cola Report for recount2:SRP027358

Date: 2019-12-25 23:42:33 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 14550 rows and 135 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 14550   135

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
SD:mclust 5 1.000 1.000 1.000 ** 2,4
MAD:mclust 2 1.000 0.997 0.998 **
ATC:hclust 2 1.000 0.999 0.998 **
ATC:NMF 2 1.000 1.000 1.000 **
SD:NMF 4 0.997 0.955 0.971 **
SD:pam 6 0.979 0.962 0.971 **
MAD:NMF 5 0.946 0.888 0.941 * 2,3
MAD:pam 6 0.931 0.920 0.952 * 4
CV:NMF 6 0.928 0.926 0.927 * 2
MAD:hclust 5 0.916 0.970 0.982 *
ATC:pam 3 0.909 0.960 0.978 * 2
CV:mclust 2 0.888 0.957 0.980
ATC:mclust 6 0.856 0.865 0.923
MAD:skmeans 4 0.817 0.887 0.919
SD:skmeans 2 0.789 0.852 0.941
CV:pam 2 0.705 0.978 0.965
ATC:skmeans 3 0.705 0.915 0.943
ATC:kmeans 3 0.692 0.909 0.931
CV:skmeans 2 0.691 0.916 0.959
SD:hclust 3 0.524 0.779 0.880
CV:hclust 3 0.503 0.873 0.823
CV:kmeans 2 0.369 0.754 0.850
MAD:kmeans 5 0.351 0.683 0.660
SD:kmeans 3 0.269 0.625 0.743

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.867           0.946       0.974          0.438 0.580   0.580
#> CV:NMF      2 1.000           0.984       0.992          0.426 0.580   0.580
#> MAD:NMF     2 0.916           0.916       0.947          0.446 0.538   0.538
#> ATC:NMF     2 1.000           1.000       1.000          0.295 0.705   0.705
#> SD:skmeans  2 0.789           0.852       0.941          0.486 0.511   0.511
#> CV:skmeans  2 0.691           0.916       0.959          0.471 0.538   0.538
#> MAD:skmeans 2 0.705           0.871       0.936          0.481 0.511   0.511
#> ATC:skmeans 2 0.580           0.759       0.881          0.479 0.511   0.511
#> SD:mclust   2 1.000           1.000       1.000          0.503 0.498   0.498
#> CV:mclust   2 0.888           0.957       0.980          0.500 0.498   0.498
#> MAD:mclust  2 1.000           0.997       0.998          0.502 0.498   0.498
#> ATC:mclust  2 0.636           0.881       0.914          0.456 0.498   0.498
#> SD:kmeans   2 0.307           0.491       0.819          0.316 0.789   0.789
#> CV:kmeans   2 0.369           0.754       0.850          0.331 0.636   0.636
#> MAD:kmeans  2 0.253           0.543       0.805          0.346 0.705   0.705
#> ATC:kmeans  2 0.440           0.830       0.861          0.304 0.705   0.705
#> SD:pam      2 0.636           0.768       0.897          0.197 0.888   0.888
#> CV:pam      2 0.705           0.978       0.965          0.316 0.636   0.636
#> MAD:pam     2 0.868           0.918       0.960          0.419 0.580   0.580
#> ATC:pam     2 1.000           1.000       1.000          0.295 0.705   0.705
#> SD:hclust   2 0.412           0.749       0.895          0.224 0.888   0.888
#> CV:hclust   2 0.888           0.966       0.976          0.172 0.789   0.789
#> MAD:hclust  2 0.636           0.955       0.972          0.238 0.789   0.789
#> ATC:hclust  2 1.000           0.999       0.998          0.295 0.705   0.705
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.790           0.880       0.928         0.3050 0.818   0.693
#> CV:NMF      3 0.744           0.866       0.915         0.3292 0.818   0.693
#> MAD:NMF     3 0.991           0.964       0.971         0.2872 0.734   0.567
#> ATC:NMF     3 0.839           0.931       0.964         0.7347 0.769   0.673
#> SD:skmeans  3 0.776           0.896       0.920         0.2633 0.831   0.683
#> CV:skmeans  3 0.581           0.605       0.810         0.3118 0.825   0.683
#> MAD:skmeans 3 0.636           0.763       0.849         0.3286 0.831   0.683
#> ATC:skmeans 3 0.705           0.915       0.943         0.3378 0.639   0.413
#> SD:mclust   3 0.782           0.810       0.918         0.0989 0.726   0.560
#> CV:mclust   3 0.635           0.707       0.824         0.0985 0.803   0.648
#> MAD:mclust  3 0.587           0.767       0.824         0.1511 0.915   0.829
#> ATC:mclust  3 0.649           0.670       0.821         0.2191 0.803   0.648
#> SD:kmeans   3 0.269           0.625       0.743         0.6095 0.603   0.517
#> CV:kmeans   3 0.224           0.659       0.758         0.4879 1.000   1.000
#> MAD:kmeans  3 0.162           0.536       0.678         0.5550 0.713   0.608
#> ATC:kmeans  3 0.692           0.909       0.931         0.5538 0.832   0.762
#> SD:pam      3 0.718           0.830       0.935         1.1164 0.727   0.692
#> CV:pam      3 0.664           0.922       0.956         0.2319 0.979   0.967
#> MAD:pam     3 0.725           0.894       0.955        -0.0259 0.866   0.799
#> ATC:pam     3 0.909           0.960       0.978         0.4708 0.832   0.762
#> SD:hclust   3 0.524           0.779       0.880         0.8928 0.727   0.692
#> CV:hclust   3 0.503           0.873       0.823         0.9626 0.748   0.681
#> MAD:hclust  3 0.748           0.933       0.969         0.9797 0.748   0.681
#> ATC:hclust  3 0.755           0.855       0.942         0.6571 0.832   0.762
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.997           0.955       0.971         0.1241 0.852   0.685
#> CV:NMF      4 0.737           0.788       0.878         0.2169 0.858   0.666
#> MAD:NMF     4 0.725           0.813       0.886         0.1748 0.864   0.702
#> ATC:NMF     4 0.736           0.926       0.932         0.0876 0.986   0.970
#> SD:skmeans  4 0.672           0.870       0.875         0.1929 0.875   0.676
#> CV:skmeans  4 0.733           0.777       0.851         0.1850 0.797   0.526
#> MAD:skmeans 4 0.817           0.887       0.919         0.1577 0.875   0.676
#> ATC:skmeans 4 0.751           0.850       0.911         0.1601 0.897   0.710
#> SD:mclust   4 1.000           1.000       1.000         0.1274 0.789   0.604
#> CV:mclust   4 0.824           0.876       0.905         0.1212 0.852   0.689
#> MAD:mclust  4 0.542           0.571       0.704         0.1663 0.908   0.785
#> ATC:mclust  4 0.845           0.912       0.933         0.0597 0.943   0.873
#> SD:kmeans   4 0.272           0.620       0.676         0.2188 0.941   0.875
#> CV:kmeans   4 0.304           0.554       0.668         0.2277 0.789   0.683
#> MAD:kmeans  4 0.276           0.507       0.624         0.1924 0.743   0.508
#> ATC:kmeans  4 0.535           0.761       0.799         0.2931 1.000   1.000
#> SD:pam      4 0.678           0.825       0.916         0.1823 0.916   0.863
#> CV:pam      4 0.790           0.855       0.928         0.2820 0.916   0.863
#> MAD:pam     4 0.955           0.910       0.948         0.2332 0.888   0.821
#> ATC:pam     4 1.000           1.000       1.000         0.0828 0.993   0.987
#> SD:hclust   4 0.622           0.878       0.918         0.0897 0.916   0.863
#> CV:hclust   4 0.622           0.892       0.935         0.3506 0.993   0.987
#> MAD:hclust  4 0.769           0.930       0.946         0.0284 0.993   0.987
#> ATC:hclust  4 0.832           0.928       0.956         0.1515 0.839   0.708
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.735           0.657       0.811         0.1373 0.860   0.643
#> CV:NMF      5 0.892           0.932       0.920         0.0769 0.916   0.727
#> MAD:NMF     5 0.946           0.888       0.941         0.1124 0.850   0.597
#> ATC:NMF     5 0.590           0.711       0.834         0.2147 0.754   0.517
#> SD:skmeans  5 0.743           0.814       0.766         0.0690 0.972   0.891
#> CV:skmeans  5 0.721           0.768       0.807         0.0612 0.950   0.814
#> MAD:skmeans 5 0.777           0.791       0.798         0.0595 1.000   1.000
#> ATC:skmeans 5 0.751           0.782       0.848         0.0531 0.972   0.888
#> SD:mclust   5 1.000           1.000       1.000         0.0454 0.972   0.925
#> CV:mclust   5 0.866           0.949       0.964         0.0482 0.972   0.925
#> MAD:mclust  5 0.674           0.637       0.748         0.0711 0.797   0.483
#> ATC:mclust  5 0.769           0.884       0.936         0.0542 0.993   0.983
#> SD:kmeans   5 0.382           0.571       0.625         0.1320 0.763   0.478
#> CV:kmeans   5 0.395           0.627       0.652         0.1595 0.750   0.488
#> MAD:kmeans  5 0.351           0.683       0.660         0.1114 0.896   0.682
#> ATC:kmeans  5 0.514           0.512       0.632         0.1536 0.812   0.649
#> SD:pam      5 0.811           0.820       0.905         0.1824 0.818   0.670
#> CV:pam      5 0.843           0.969       0.948         0.1463 0.860   0.737
#> MAD:pam     5 0.756           0.887       0.920         0.1698 0.923   0.855
#> ATC:pam     5 1.000           0.993       0.994         0.0380 0.986   0.973
#> SD:hclust   5 0.825           0.967       0.954         0.2680 0.860   0.737
#> CV:hclust   5 0.755           0.783       0.889         0.2280 0.923   0.855
#> MAD:hclust  5 0.916           0.970       0.982         0.2302 0.860   0.737
#> ATC:hclust  5 0.811           0.889       0.918         0.0259 0.986   0.965
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.817           0.890       0.869         0.0506 0.916   0.714
#> CV:NMF      6 0.928           0.926       0.927         0.0538 0.979   0.914
#> MAD:NMF     6 0.822           0.844       0.871         0.0507 0.993   0.971
#> ATC:NMF     6 0.716           0.819       0.867         0.1240 0.792   0.441
#> SD:skmeans  6 0.778           0.614       0.722         0.0420 0.966   0.851
#> CV:skmeans  6 0.771           0.731       0.757         0.0430 0.986   0.937
#> MAD:skmeans 6 0.764           0.754       0.753         0.0435 0.911   0.656
#> ATC:skmeans 6 0.786           0.736       0.803         0.0385 0.973   0.878
#> SD:mclust   6 0.807           0.779       0.838         0.1148 0.979   0.939
#> CV:mclust   6 0.732           0.851       0.858         0.1010 0.972   0.919
#> MAD:mclust  6 0.699           0.722       0.834         0.0398 0.830   0.471
#> ATC:mclust  6 0.856           0.865       0.923         0.0682 0.972   0.930
#> SD:kmeans   6 0.480           0.634       0.646         0.0733 0.902   0.666
#> CV:kmeans   6 0.416           0.587       0.624         0.0520 0.923   0.738
#> MAD:kmeans  6 0.526           0.560       0.625         0.0781 0.944   0.773
#> ATC:kmeans  6 0.536           0.595       0.668         0.0809 0.778   0.442
#> SD:pam      6 0.979           0.962       0.971         0.0719 0.972   0.929
#> CV:pam      6 0.724           0.820       0.875         0.1359 0.986   0.964
#> MAD:pam     6 0.931           0.920       0.952         0.2544 0.805   0.571
#> ATC:pam     6 0.683           0.771       0.844         0.2735 1.000   1.000
#> SD:hclust   6 0.972           0.970       0.976         0.0654 0.986   0.964
#> CV:hclust   6 0.637           0.704       0.792         0.2531 0.805   0.571
#> MAD:hclust  6 1.000           0.998       0.998         0.0467 0.986   0.964
#> ATC:hclust  6 0.909           0.937       0.960         0.0568 0.986   0.964

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Results for each method


SD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14550 rows and 135 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.412           0.749       0.895         0.2239 0.888   0.888
#> 3 3 0.524           0.779       0.880         0.8928 0.727   0.692
#> 4 4 0.622           0.878       0.918         0.0897 0.916   0.863
#> 5 5 0.825           0.967       0.954         0.2680 0.860   0.737
#> 6 6 0.972           0.970       0.976         0.0654 0.986   0.964

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR934216     1   0.991     -0.263 0.556 0.444
#> SRR934217     1   0.991     -0.263 0.556 0.444
#> SRR934218     1   0.991     -0.263 0.556 0.444
#> SRR934219     1   0.991     -0.263 0.556 0.444
#> SRR934220     1   0.991     -0.263 0.556 0.444
#> SRR934221     1   0.991     -0.263 0.556 0.444
#> SRR934222     1   0.991     -0.263 0.556 0.444
#> SRR934223     1   0.991     -0.263 0.556 0.444
#> SRR934224     1   0.000      0.863 1.000 0.000
#> SRR934225     1   0.000      0.863 1.000 0.000
#> SRR934226     1   0.000      0.863 1.000 0.000
#> SRR934227     1   0.000      0.863 1.000 0.000
#> SRR934228     1   0.000      0.863 1.000 0.000
#> SRR934229     1   0.000      0.863 1.000 0.000
#> SRR934230     1   0.000      0.863 1.000 0.000
#> SRR934231     1   0.000      0.863 1.000 0.000
#> SRR934232     1   0.844      0.622 0.728 0.272
#> SRR934233     1   0.844      0.622 0.728 0.272
#> SRR934234     1   0.844      0.622 0.728 0.272
#> SRR934235     1   0.844      0.622 0.728 0.272
#> SRR934236     1   0.844      0.622 0.728 0.272
#> SRR934237     1   0.844      0.622 0.728 0.272
#> SRR934238     1   0.844      0.622 0.728 0.272
#> SRR934239     1   0.844      0.622 0.728 0.272
#> SRR934240     1   0.844      0.622 0.728 0.272
#> SRR934241     1   0.844      0.622 0.728 0.272
#> SRR934242     1   0.844      0.622 0.728 0.272
#> SRR934243     1   0.844      0.622 0.728 0.272
#> SRR934244     1   0.844      0.622 0.728 0.272
#> SRR934245     1   0.844      0.622 0.728 0.272
#> SRR934246     1   0.844      0.622 0.728 0.272
#> SRR934247     1   0.844      0.622 0.728 0.272
#> SRR934248     1   0.518      0.754 0.884 0.116
#> SRR934249     1   0.518      0.754 0.884 0.116
#> SRR934250     1   0.518      0.754 0.884 0.116
#> SRR934251     1   0.518      0.754 0.884 0.116
#> SRR934252     1   0.518      0.754 0.884 0.116
#> SRR934253     1   0.518      0.754 0.884 0.116
#> SRR934254     1   0.518      0.754 0.884 0.116
#> SRR934255     1   0.518      0.754 0.884 0.116
#> SRR934256     1   0.844      0.622 0.728 0.272
#> SRR934257     1   0.844      0.622 0.728 0.272
#> SRR934258     1   0.844      0.622 0.728 0.272
#> SRR934259     1   0.844      0.622 0.728 0.272
#> SRR934260     1   0.844      0.622 0.728 0.272
#> SRR934261     1   0.844      0.622 0.728 0.272
#> SRR934262     1   0.844      0.622 0.728 0.272
#> SRR934263     1   0.844      0.622 0.728 0.272
#> SRR934264     1   0.518      0.754 0.884 0.116
#> SRR934265     1   0.518      0.754 0.884 0.116
#> SRR934266     1   0.518      0.754 0.884 0.116
#> SRR934267     1   0.518      0.754 0.884 0.116
#> SRR934268     1   0.518      0.754 0.884 0.116
#> SRR934269     1   0.518      0.754 0.884 0.116
#> SRR934270     1   0.518      0.754 0.884 0.116
#> SRR934271     1   0.518      0.754 0.884 0.116
#> SRR934272     1   0.000      0.863 1.000 0.000
#> SRR934273     1   0.000      0.863 1.000 0.000
#> SRR934274     1   0.000      0.863 1.000 0.000
#> SRR934275     1   0.000      0.863 1.000 0.000
#> SRR934276     1   0.000      0.863 1.000 0.000
#> SRR934277     1   0.000      0.863 1.000 0.000
#> SRR934278     1   0.000      0.863 1.000 0.000
#> SRR934279     1   0.000      0.863 1.000 0.000
#> SRR934280     1   0.000      0.863 1.000 0.000
#> SRR934281     1   0.000      0.863 1.000 0.000
#> SRR934282     1   0.000      0.863 1.000 0.000
#> SRR934283     1   0.000      0.863 1.000 0.000
#> SRR934284     1   0.000      0.863 1.000 0.000
#> SRR934285     1   0.000      0.863 1.000 0.000
#> SRR934286     1   0.000      0.863 1.000 0.000
#> SRR934287     1   0.000      0.863 1.000 0.000
#> SRR934288     1   0.000      0.863 1.000 0.000
#> SRR934289     1   0.000      0.863 1.000 0.000
#> SRR934290     1   0.000      0.863 1.000 0.000
#> SRR934291     1   0.000      0.863 1.000 0.000
#> SRR934292     1   0.000      0.863 1.000 0.000
#> SRR934293     1   0.000      0.863 1.000 0.000
#> SRR934294     1   0.000      0.863 1.000 0.000
#> SRR934295     1   0.000      0.863 1.000 0.000
#> SRR934296     1   0.000      0.863 1.000 0.000
#> SRR934297     1   0.000      0.863 1.000 0.000
#> SRR934298     1   0.000      0.863 1.000 0.000
#> SRR934299     1   0.000      0.863 1.000 0.000
#> SRR934300     1   0.000      0.863 1.000 0.000
#> SRR934301     1   0.000      0.863 1.000 0.000
#> SRR934302     1   0.000      0.863 1.000 0.000
#> SRR934303     1   0.000      0.863 1.000 0.000
#> SRR934304     2   0.844      1.000 0.272 0.728
#> SRR934305     2   0.844      1.000 0.272 0.728
#> SRR934306     2   0.844      1.000 0.272 0.728
#> SRR934307     2   0.844      1.000 0.272 0.728
#> SRR934308     2   0.844      1.000 0.272 0.728
#> SRR934309     2   0.844      1.000 0.272 0.728
#> SRR934310     2   0.844      1.000 0.272 0.728
#> SRR934311     2   0.844      1.000 0.272 0.728
#> SRR934312     1   0.000      0.863 1.000 0.000
#> SRR934313     1   0.000      0.863 1.000 0.000
#> SRR934314     1   0.000      0.863 1.000 0.000
#> SRR934315     1   0.000      0.863 1.000 0.000
#> SRR934316     1   0.000      0.863 1.000 0.000
#> SRR934317     1   0.000      0.863 1.000 0.000
#> SRR934318     1   0.000      0.863 1.000 0.000
#> SRR934319     1   0.000      0.863 1.000 0.000
#> SRR934320     1   0.000      0.863 1.000 0.000
#> SRR934321     1   0.000      0.863 1.000 0.000
#> SRR934322     1   0.000      0.863 1.000 0.000
#> SRR934323     1   0.000      0.863 1.000 0.000
#> SRR934324     1   0.000      0.863 1.000 0.000
#> SRR934325     1   0.000      0.863 1.000 0.000
#> SRR934326     1   0.000      0.863 1.000 0.000
#> SRR934327     1   0.000      0.863 1.000 0.000
#> SRR934328     1   0.000      0.863 1.000 0.000
#> SRR934329     1   0.000      0.863 1.000 0.000
#> SRR934330     1   0.000      0.863 1.000 0.000
#> SRR934331     1   0.000      0.863 1.000 0.000
#> SRR934332     1   0.000      0.863 1.000 0.000
#> SRR934333     1   0.000      0.863 1.000 0.000
#> SRR934334     1   0.000      0.863 1.000 0.000
#> SRR934335     1   0.000      0.863 1.000 0.000
#> SRR934344     1   0.000      0.863 1.000 0.000
#> SRR934345     1   0.000      0.863 1.000 0.000
#> SRR934346     1   0.000      0.863 1.000 0.000
#> SRR934347     1   0.000      0.863 1.000 0.000
#> SRR934348     1   0.000      0.863 1.000 0.000
#> SRR934349     1   0.000      0.863 1.000 0.000
#> SRR934350     1   0.000      0.863 1.000 0.000
#> SRR934351     1   0.000      0.863 1.000 0.000
#> SRR934336     1   0.000      0.863 1.000 0.000
#> SRR934337     1   0.000      0.863 1.000 0.000
#> SRR934338     1   0.000      0.863 1.000 0.000
#> SRR934339     1   0.000      0.863 1.000 0.000
#> SRR934340     1   0.000      0.863 1.000 0.000
#> SRR934341     1   0.000      0.863 1.000 0.000
#> SRR934342     1   0.000      0.863 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR934216     1   0.999    -0.0703 0.356 0.316 0.328
#> SRR934217     1   0.999    -0.0703 0.356 0.316 0.328
#> SRR934218     1   0.999    -0.0703 0.356 0.316 0.328
#> SRR934219     1   0.999    -0.0703 0.356 0.316 0.328
#> SRR934220     1   0.999    -0.0703 0.356 0.316 0.328
#> SRR934221     1   0.999    -0.0703 0.356 0.316 0.328
#> SRR934222     1   0.999    -0.0703 0.356 0.316 0.328
#> SRR934223     1   0.999    -0.0703 0.356 0.316 0.328
#> SRR934224     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934225     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934226     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934227     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934228     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934229     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934230     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934231     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934232     2   0.334     0.7108 0.120 0.880 0.000
#> SRR934233     2   0.334     0.7108 0.120 0.880 0.000
#> SRR934234     2   0.334     0.7108 0.120 0.880 0.000
#> SRR934235     2   0.334     0.7108 0.120 0.880 0.000
#> SRR934236     2   0.334     0.7108 0.120 0.880 0.000
#> SRR934237     2   0.334     0.7108 0.120 0.880 0.000
#> SRR934238     2   0.334     0.7108 0.120 0.880 0.000
#> SRR934239     2   0.334     0.7108 0.120 0.880 0.000
#> SRR934240     2   0.568     0.8752 0.316 0.684 0.000
#> SRR934241     2   0.568     0.8752 0.316 0.684 0.000
#> SRR934242     2   0.568     0.8752 0.316 0.684 0.000
#> SRR934243     2   0.568     0.8752 0.316 0.684 0.000
#> SRR934244     2   0.568     0.8752 0.316 0.684 0.000
#> SRR934245     2   0.568     0.8752 0.316 0.684 0.000
#> SRR934246     2   0.568     0.8752 0.316 0.684 0.000
#> SRR934247     2   0.568     0.8752 0.316 0.684 0.000
#> SRR934248     1   0.568     0.5851 0.684 0.316 0.000
#> SRR934249     1   0.568     0.5851 0.684 0.316 0.000
#> SRR934250     1   0.568     0.5851 0.684 0.316 0.000
#> SRR934251     1   0.568     0.5851 0.684 0.316 0.000
#> SRR934252     1   0.568     0.5851 0.684 0.316 0.000
#> SRR934253     1   0.568     0.5851 0.684 0.316 0.000
#> SRR934254     1   0.568     0.5851 0.684 0.316 0.000
#> SRR934255     1   0.568     0.5851 0.684 0.316 0.000
#> SRR934256     2   0.568     0.8752 0.316 0.684 0.000
#> SRR934257     2   0.568     0.8752 0.316 0.684 0.000
#> SRR934258     2   0.568     0.8752 0.316 0.684 0.000
#> SRR934259     2   0.568     0.8752 0.316 0.684 0.000
#> SRR934260     2   0.568     0.8752 0.316 0.684 0.000
#> SRR934261     2   0.568     0.8752 0.316 0.684 0.000
#> SRR934262     2   0.568     0.8752 0.316 0.684 0.000
#> SRR934263     2   0.568     0.8752 0.316 0.684 0.000
#> SRR934264     1   0.568     0.5851 0.684 0.316 0.000
#> SRR934265     1   0.568     0.5851 0.684 0.316 0.000
#> SRR934266     1   0.568     0.5851 0.684 0.316 0.000
#> SRR934267     1   0.568     0.5851 0.684 0.316 0.000
#> SRR934268     1   0.568     0.5851 0.684 0.316 0.000
#> SRR934269     1   0.568     0.5851 0.684 0.316 0.000
#> SRR934270     1   0.568     0.5851 0.684 0.316 0.000
#> SRR934271     1   0.568     0.5851 0.684 0.316 0.000
#> SRR934272     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934273     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934274     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934275     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934276     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934277     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934278     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934279     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934280     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934281     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934282     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934283     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934284     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934285     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934286     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934287     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934288     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934289     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934290     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934291     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934292     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934293     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934294     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934295     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934296     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934297     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934298     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934299     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934300     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934301     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934302     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934303     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934304     3   0.000     1.0000 0.000 0.000 1.000
#> SRR934305     3   0.000     1.0000 0.000 0.000 1.000
#> SRR934306     3   0.000     1.0000 0.000 0.000 1.000
#> SRR934307     3   0.000     1.0000 0.000 0.000 1.000
#> SRR934308     3   0.000     1.0000 0.000 0.000 1.000
#> SRR934309     3   0.000     1.0000 0.000 0.000 1.000
#> SRR934310     3   0.000     1.0000 0.000 0.000 1.000
#> SRR934311     3   0.000     1.0000 0.000 0.000 1.000
#> SRR934312     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934313     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934314     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934315     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934316     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934317     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934318     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934319     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934320     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934321     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934322     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934323     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934324     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934325     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934326     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934327     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934328     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934329     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934330     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934331     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934332     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934333     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934334     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934335     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934344     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934345     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934346     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934347     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934348     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934349     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934350     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934351     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934336     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934337     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934338     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934339     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934340     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934341     1   0.000     0.8699 1.000 0.000 0.000
#> SRR934342     1   0.000     0.8699 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2 p3 p4
#> SRR934216     4   0.000      1.000 0.000 0.000  0  1
#> SRR934217     4   0.000      1.000 0.000 0.000  0  1
#> SRR934218     4   0.000      1.000 0.000 0.000  0  1
#> SRR934219     4   0.000      1.000 0.000 0.000  0  1
#> SRR934220     4   0.000      1.000 0.000 0.000  0  1
#> SRR934221     4   0.000      1.000 0.000 0.000  0  1
#> SRR934222     4   0.000      1.000 0.000 0.000  0  1
#> SRR934223     4   0.000      1.000 0.000 0.000  0  1
#> SRR934224     1   0.000      0.928 1.000 0.000  0  0
#> SRR934225     1   0.000      0.928 1.000 0.000  0  0
#> SRR934226     1   0.000      0.928 1.000 0.000  0  0
#> SRR934227     1   0.000      0.928 1.000 0.000  0  0
#> SRR934228     1   0.000      0.928 1.000 0.000  0  0
#> SRR934229     1   0.000      0.928 1.000 0.000  0  0
#> SRR934230     1   0.000      0.928 1.000 0.000  0  0
#> SRR934231     1   0.000      0.928 1.000 0.000  0  0
#> SRR934232     2   0.265      0.719 0.120 0.880  0  0
#> SRR934233     2   0.265      0.719 0.120 0.880  0  0
#> SRR934234     2   0.265      0.719 0.120 0.880  0  0
#> SRR934235     2   0.265      0.719 0.120 0.880  0  0
#> SRR934236     2   0.265      0.719 0.120 0.880  0  0
#> SRR934237     2   0.265      0.719 0.120 0.880  0  0
#> SRR934238     2   0.265      0.719 0.120 0.880  0  0
#> SRR934239     2   0.265      0.719 0.120 0.880  0  0
#> SRR934240     2   0.450      0.878 0.316 0.684  0  0
#> SRR934241     2   0.450      0.878 0.316 0.684  0  0
#> SRR934242     2   0.450      0.878 0.316 0.684  0  0
#> SRR934243     2   0.450      0.878 0.316 0.684  0  0
#> SRR934244     2   0.450      0.878 0.316 0.684  0  0
#> SRR934245     2   0.450      0.878 0.316 0.684  0  0
#> SRR934246     2   0.450      0.878 0.316 0.684  0  0
#> SRR934247     2   0.450      0.878 0.316 0.684  0  0
#> SRR934248     1   0.450      0.593 0.684 0.316  0  0
#> SRR934249     1   0.450      0.593 0.684 0.316  0  0
#> SRR934250     1   0.450      0.593 0.684 0.316  0  0
#> SRR934251     1   0.450      0.593 0.684 0.316  0  0
#> SRR934252     1   0.450      0.593 0.684 0.316  0  0
#> SRR934253     1   0.450      0.593 0.684 0.316  0  0
#> SRR934254     1   0.450      0.593 0.684 0.316  0  0
#> SRR934255     1   0.450      0.593 0.684 0.316  0  0
#> SRR934256     2   0.450      0.878 0.316 0.684  0  0
#> SRR934257     2   0.450      0.878 0.316 0.684  0  0
#> SRR934258     2   0.450      0.878 0.316 0.684  0  0
#> SRR934259     2   0.450      0.878 0.316 0.684  0  0
#> SRR934260     2   0.450      0.878 0.316 0.684  0  0
#> SRR934261     2   0.450      0.878 0.316 0.684  0  0
#> SRR934262     2   0.450      0.878 0.316 0.684  0  0
#> SRR934263     2   0.450      0.878 0.316 0.684  0  0
#> SRR934264     1   0.450      0.593 0.684 0.316  0  0
#> SRR934265     1   0.450      0.593 0.684 0.316  0  0
#> SRR934266     1   0.450      0.593 0.684 0.316  0  0
#> SRR934267     1   0.450      0.593 0.684 0.316  0  0
#> SRR934268     1   0.450      0.593 0.684 0.316  0  0
#> SRR934269     1   0.450      0.593 0.684 0.316  0  0
#> SRR934270     1   0.450      0.593 0.684 0.316  0  0
#> SRR934271     1   0.450      0.593 0.684 0.316  0  0
#> SRR934272     1   0.000      0.928 1.000 0.000  0  0
#> SRR934273     1   0.000      0.928 1.000 0.000  0  0
#> SRR934274     1   0.000      0.928 1.000 0.000  0  0
#> SRR934275     1   0.000      0.928 1.000 0.000  0  0
#> SRR934276     1   0.000      0.928 1.000 0.000  0  0
#> SRR934277     1   0.000      0.928 1.000 0.000  0  0
#> SRR934278     1   0.000      0.928 1.000 0.000  0  0
#> SRR934279     1   0.000      0.928 1.000 0.000  0  0
#> SRR934280     1   0.000      0.928 1.000 0.000  0  0
#> SRR934281     1   0.000      0.928 1.000 0.000  0  0
#> SRR934282     1   0.000      0.928 1.000 0.000  0  0
#> SRR934283     1   0.000      0.928 1.000 0.000  0  0
#> SRR934284     1   0.000      0.928 1.000 0.000  0  0
#> SRR934285     1   0.000      0.928 1.000 0.000  0  0
#> SRR934286     1   0.000      0.928 1.000 0.000  0  0
#> SRR934287     1   0.000      0.928 1.000 0.000  0  0
#> SRR934288     1   0.000      0.928 1.000 0.000  0  0
#> SRR934289     1   0.000      0.928 1.000 0.000  0  0
#> SRR934290     1   0.000      0.928 1.000 0.000  0  0
#> SRR934291     1   0.000      0.928 1.000 0.000  0  0
#> SRR934292     1   0.000      0.928 1.000 0.000  0  0
#> SRR934293     1   0.000      0.928 1.000 0.000  0  0
#> SRR934294     1   0.000      0.928 1.000 0.000  0  0
#> SRR934295     1   0.000      0.928 1.000 0.000  0  0
#> SRR934296     1   0.000      0.928 1.000 0.000  0  0
#> SRR934297     1   0.000      0.928 1.000 0.000  0  0
#> SRR934298     1   0.000      0.928 1.000 0.000  0  0
#> SRR934299     1   0.000      0.928 1.000 0.000  0  0
#> SRR934300     1   0.000      0.928 1.000 0.000  0  0
#> SRR934301     1   0.000      0.928 1.000 0.000  0  0
#> SRR934302     1   0.000      0.928 1.000 0.000  0  0
#> SRR934303     1   0.000      0.928 1.000 0.000  0  0
#> SRR934304     3   0.000      1.000 0.000 0.000  1  0
#> SRR934305     3   0.000      1.000 0.000 0.000  1  0
#> SRR934306     3   0.000      1.000 0.000 0.000  1  0
#> SRR934307     3   0.000      1.000 0.000 0.000  1  0
#> SRR934308     3   0.000      1.000 0.000 0.000  1  0
#> SRR934309     3   0.000      1.000 0.000 0.000  1  0
#> SRR934310     3   0.000      1.000 0.000 0.000  1  0
#> SRR934311     3   0.000      1.000 0.000 0.000  1  0
#> SRR934312     1   0.000      0.928 1.000 0.000  0  0
#> SRR934313     1   0.000      0.928 1.000 0.000  0  0
#> SRR934314     1   0.000      0.928 1.000 0.000  0  0
#> SRR934315     1   0.000      0.928 1.000 0.000  0  0
#> SRR934316     1   0.000      0.928 1.000 0.000  0  0
#> SRR934317     1   0.000      0.928 1.000 0.000  0  0
#> SRR934318     1   0.000      0.928 1.000 0.000  0  0
#> SRR934319     1   0.000      0.928 1.000 0.000  0  0
#> SRR934320     1   0.000      0.928 1.000 0.000  0  0
#> SRR934321     1   0.000      0.928 1.000 0.000  0  0
#> SRR934322     1   0.000      0.928 1.000 0.000  0  0
#> SRR934323     1   0.000      0.928 1.000 0.000  0  0
#> SRR934324     1   0.000      0.928 1.000 0.000  0  0
#> SRR934325     1   0.000      0.928 1.000 0.000  0  0
#> SRR934326     1   0.000      0.928 1.000 0.000  0  0
#> SRR934327     1   0.000      0.928 1.000 0.000  0  0
#> SRR934328     1   0.000      0.928 1.000 0.000  0  0
#> SRR934329     1   0.000      0.928 1.000 0.000  0  0
#> SRR934330     1   0.000      0.928 1.000 0.000  0  0
#> SRR934331     1   0.000      0.928 1.000 0.000  0  0
#> SRR934332     1   0.000      0.928 1.000 0.000  0  0
#> SRR934333     1   0.000      0.928 1.000 0.000  0  0
#> SRR934334     1   0.000      0.928 1.000 0.000  0  0
#> SRR934335     1   0.000      0.928 1.000 0.000  0  0
#> SRR934344     1   0.000      0.928 1.000 0.000  0  0
#> SRR934345     1   0.000      0.928 1.000 0.000  0  0
#> SRR934346     1   0.000      0.928 1.000 0.000  0  0
#> SRR934347     1   0.000      0.928 1.000 0.000  0  0
#> SRR934348     1   0.000      0.928 1.000 0.000  0  0
#> SRR934349     1   0.000      0.928 1.000 0.000  0  0
#> SRR934350     1   0.000      0.928 1.000 0.000  0  0
#> SRR934351     1   0.000      0.928 1.000 0.000  0  0
#> SRR934336     1   0.000      0.928 1.000 0.000  0  0
#> SRR934337     1   0.000      0.928 1.000 0.000  0  0
#> SRR934338     1   0.000      0.928 1.000 0.000  0  0
#> SRR934339     1   0.000      0.928 1.000 0.000  0  0
#> SRR934340     1   0.000      0.928 1.000 0.000  0  0
#> SRR934341     1   0.000      0.928 1.000 0.000  0  0
#> SRR934342     1   0.000      0.928 1.000 0.000  0  0

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2 p3    p4 p5
#> SRR934216     3   0.000      1.000 0.000 0.000  1 0.000  0
#> SRR934217     3   0.000      1.000 0.000 0.000  1 0.000  0
#> SRR934218     3   0.000      1.000 0.000 0.000  1 0.000  0
#> SRR934219     3   0.000      1.000 0.000 0.000  1 0.000  0
#> SRR934220     3   0.000      1.000 0.000 0.000  1 0.000  0
#> SRR934221     3   0.000      1.000 0.000 0.000  1 0.000  0
#> SRR934222     3   0.000      1.000 0.000 0.000  1 0.000  0
#> SRR934223     3   0.000      1.000 0.000 0.000  1 0.000  0
#> SRR934224     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934225     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934226     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934227     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934228     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934229     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934230     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934231     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934232     2   0.307      0.791 0.000 0.804  0 0.196  0
#> SRR934233     2   0.307      0.791 0.000 0.804  0 0.196  0
#> SRR934234     2   0.307      0.791 0.000 0.804  0 0.196  0
#> SRR934235     2   0.307      0.791 0.000 0.804  0 0.196  0
#> SRR934236     2   0.307      0.791 0.000 0.804  0 0.196  0
#> SRR934237     2   0.307      0.791 0.000 0.804  0 0.196  0
#> SRR934238     2   0.307      0.791 0.000 0.804  0 0.196  0
#> SRR934239     2   0.307      0.791 0.000 0.804  0 0.196  0
#> SRR934240     2   0.000      0.851 0.000 1.000  0 0.000  0
#> SRR934241     2   0.000      0.851 0.000 1.000  0 0.000  0
#> SRR934242     2   0.000      0.851 0.000 1.000  0 0.000  0
#> SRR934243     2   0.000      0.851 0.000 1.000  0 0.000  0
#> SRR934244     2   0.000      0.851 0.000 1.000  0 0.000  0
#> SRR934245     2   0.000      0.851 0.000 1.000  0 0.000  0
#> SRR934246     2   0.000      0.851 0.000 1.000  0 0.000  0
#> SRR934247     2   0.000      0.851 0.000 1.000  0 0.000  0
#> SRR934248     4   0.304      1.000 0.192 0.000  0 0.808  0
#> SRR934249     4   0.304      1.000 0.192 0.000  0 0.808  0
#> SRR934250     4   0.304      1.000 0.192 0.000  0 0.808  0
#> SRR934251     4   0.304      1.000 0.192 0.000  0 0.808  0
#> SRR934252     4   0.304      1.000 0.192 0.000  0 0.808  0
#> SRR934253     4   0.304      1.000 0.192 0.000  0 0.808  0
#> SRR934254     4   0.304      1.000 0.192 0.000  0 0.808  0
#> SRR934255     4   0.304      1.000 0.192 0.000  0 0.808  0
#> SRR934256     2   0.320      0.808 0.004 0.804  0 0.192  0
#> SRR934257     2   0.320      0.808 0.004 0.804  0 0.192  0
#> SRR934258     2   0.320      0.808 0.004 0.804  0 0.192  0
#> SRR934259     2   0.320      0.808 0.004 0.804  0 0.192  0
#> SRR934260     2   0.320      0.808 0.004 0.804  0 0.192  0
#> SRR934261     2   0.320      0.808 0.004 0.804  0 0.192  0
#> SRR934262     2   0.320      0.808 0.004 0.804  0 0.192  0
#> SRR934263     2   0.320      0.808 0.004 0.804  0 0.192  0
#> SRR934264     4   0.304      1.000 0.192 0.000  0 0.808  0
#> SRR934265     4   0.304      1.000 0.192 0.000  0 0.808  0
#> SRR934266     4   0.304      1.000 0.192 0.000  0 0.808  0
#> SRR934267     4   0.304      1.000 0.192 0.000  0 0.808  0
#> SRR934268     4   0.304      1.000 0.192 0.000  0 0.808  0
#> SRR934269     4   0.304      1.000 0.192 0.000  0 0.808  0
#> SRR934270     4   0.304      1.000 0.192 0.000  0 0.808  0
#> SRR934271     4   0.304      1.000 0.192 0.000  0 0.808  0
#> SRR934272     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934273     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934274     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934275     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934276     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934277     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934278     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934279     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934280     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934281     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934282     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934283     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934284     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934285     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934286     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934287     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934288     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934289     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934290     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934291     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934292     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934293     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934294     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934295     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934296     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934297     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934298     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934299     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934300     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934301     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934302     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934303     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934304     5   0.000      1.000 0.000 0.000  0 0.000  1
#> SRR934305     5   0.000      1.000 0.000 0.000  0 0.000  1
#> SRR934306     5   0.000      1.000 0.000 0.000  0 0.000  1
#> SRR934307     5   0.000      1.000 0.000 0.000  0 0.000  1
#> SRR934308     5   0.000      1.000 0.000 0.000  0 0.000  1
#> SRR934309     5   0.000      1.000 0.000 0.000  0 0.000  1
#> SRR934310     5   0.000      1.000 0.000 0.000  0 0.000  1
#> SRR934311     5   0.000      1.000 0.000 0.000  0 0.000  1
#> SRR934312     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934313     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934314     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934315     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934316     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934317     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934318     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934319     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934320     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934321     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934322     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934323     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934324     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934325     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934326     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934327     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934328     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934329     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934330     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934331     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934332     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934333     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934334     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934335     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934344     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934345     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934346     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934347     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934348     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934349     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934350     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934351     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934336     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934337     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934338     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934339     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934340     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934341     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934342     1   0.000      1.000 1.000 0.000  0 0.000  0

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette p1    p2 p3    p4 p5    p6
#> SRR934216     3  0.0000      1.000  0 0.000  1 0.000  0 0.000
#> SRR934217     3  0.0000      1.000  0 0.000  1 0.000  0 0.000
#> SRR934218     3  0.0000      1.000  0 0.000  1 0.000  0 0.000
#> SRR934219     3  0.0000      1.000  0 0.000  1 0.000  0 0.000
#> SRR934220     3  0.0000      1.000  0 0.000  1 0.000  0 0.000
#> SRR934221     3  0.0000      1.000  0 0.000  1 0.000  0 0.000
#> SRR934222     3  0.0000      1.000  0 0.000  1 0.000  0 0.000
#> SRR934223     3  0.0000      1.000  0 0.000  1 0.000  0 0.000
#> SRR934224     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934225     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934226     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934227     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934228     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934229     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934230     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934231     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934232     2  0.0146      0.866  0 0.996  0 0.004  0 0.000
#> SRR934233     2  0.0146      0.866  0 0.996  0 0.004  0 0.000
#> SRR934234     2  0.0146      0.866  0 0.996  0 0.004  0 0.000
#> SRR934235     2  0.0146      0.866  0 0.996  0 0.004  0 0.000
#> SRR934236     2  0.0146      0.866  0 0.996  0 0.004  0 0.000
#> SRR934237     2  0.0146      0.866  0 0.996  0 0.004  0 0.000
#> SRR934238     2  0.0146      0.866  0 0.996  0 0.004  0 0.000
#> SRR934239     2  0.0146      0.866  0 0.996  0 0.004  0 0.000
#> SRR934240     2  0.2730      0.851  0 0.808  0 0.000  0 0.192
#> SRR934241     2  0.2730      0.851  0 0.808  0 0.000  0 0.192
#> SRR934242     2  0.2730      0.851  0 0.808  0 0.000  0 0.192
#> SRR934243     2  0.2730      0.851  0 0.808  0 0.000  0 0.192
#> SRR934244     2  0.2730      0.851  0 0.808  0 0.000  0 0.192
#> SRR934245     2  0.2730      0.851  0 0.808  0 0.000  0 0.192
#> SRR934246     2  0.2730      0.851  0 0.808  0 0.000  0 0.192
#> SRR934247     2  0.2730      0.851  0 0.808  0 0.000  0 0.192
#> SRR934248     4  0.0000      0.891  0 0.000  0 1.000  0 0.000
#> SRR934249     4  0.0000      0.891  0 0.000  0 1.000  0 0.000
#> SRR934250     4  0.0000      0.891  0 0.000  0 1.000  0 0.000
#> SRR934251     4  0.0000      0.891  0 0.000  0 1.000  0 0.000
#> SRR934252     4  0.0000      0.891  0 0.000  0 1.000  0 0.000
#> SRR934253     4  0.0000      0.891  0 0.000  0 1.000  0 0.000
#> SRR934254     4  0.0000      0.891  0 0.000  0 1.000  0 0.000
#> SRR934255     4  0.0000      0.891  0 0.000  0 1.000  0 0.000
#> SRR934256     6  0.0000      1.000  0 0.000  0 0.000  0 1.000
#> SRR934257     6  0.0000      1.000  0 0.000  0 0.000  0 1.000
#> SRR934258     6  0.0000      1.000  0 0.000  0 0.000  0 1.000
#> SRR934259     6  0.0000      1.000  0 0.000  0 0.000  0 1.000
#> SRR934260     6  0.0000      1.000  0 0.000  0 0.000  0 1.000
#> SRR934261     6  0.0000      1.000  0 0.000  0 0.000  0 1.000
#> SRR934262     6  0.0000      1.000  0 0.000  0 0.000  0 1.000
#> SRR934263     6  0.0000      1.000  0 0.000  0 0.000  0 1.000
#> SRR934264     4  0.2730      0.892  0 0.192  0 0.808  0 0.000
#> SRR934265     4  0.2730      0.892  0 0.192  0 0.808  0 0.000
#> SRR934266     4  0.2730      0.892  0 0.192  0 0.808  0 0.000
#> SRR934267     4  0.2730      0.892  0 0.192  0 0.808  0 0.000
#> SRR934268     4  0.2730      0.892  0 0.192  0 0.808  0 0.000
#> SRR934269     4  0.2730      0.892  0 0.192  0 0.808  0 0.000
#> SRR934270     4  0.2730      0.892  0 0.192  0 0.808  0 0.000
#> SRR934271     4  0.2730      0.892  0 0.192  0 0.808  0 0.000
#> SRR934272     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934273     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934274     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934275     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934276     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934277     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934278     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934279     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934280     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934281     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934282     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934283     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934284     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934285     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934286     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934287     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934288     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934289     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934290     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934291     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934292     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934293     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934294     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934295     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934296     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934297     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934298     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934299     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934300     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934301     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934302     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934303     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934304     5  0.0000      1.000  0 0.000  0 0.000  1 0.000
#> SRR934305     5  0.0000      1.000  0 0.000  0 0.000  1 0.000
#> SRR934306     5  0.0000      1.000  0 0.000  0 0.000  1 0.000
#> SRR934307     5  0.0000      1.000  0 0.000  0 0.000  1 0.000
#> SRR934308     5  0.0000      1.000  0 0.000  0 0.000  1 0.000
#> SRR934309     5  0.0000      1.000  0 0.000  0 0.000  1 0.000
#> SRR934310     5  0.0000      1.000  0 0.000  0 0.000  1 0.000
#> SRR934311     5  0.0000      1.000  0 0.000  0 0.000  1 0.000
#> SRR934312     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934313     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934314     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934315     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934316     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934317     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934318     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934319     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934320     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934321     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934322     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934323     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934324     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934325     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934326     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934327     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934328     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934329     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934330     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934331     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934332     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934333     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934334     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934335     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934344     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934345     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934346     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934347     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934348     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934349     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934350     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934351     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934336     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934337     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934338     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934339     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934340     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934341     1  0.0000      1.000  1 0.000  0 0.000  0 0.000
#> SRR934342     1  0.0000      1.000  1 0.000  0 0.000  0 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14550 rows and 135 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.307           0.491       0.819         0.3164 0.789   0.789
#> 3 3 0.269           0.625       0.743         0.6095 0.603   0.517
#> 4 4 0.272           0.620       0.676         0.2188 0.941   0.875
#> 5 5 0.382           0.571       0.625         0.1320 0.763   0.478
#> 6 6 0.480           0.634       0.646         0.0733 0.902   0.666

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR934216     1  0.9754     0.0179 0.592 0.408
#> SRR934217     1  0.9754     0.0179 0.592 0.408
#> SRR934218     1  0.9754     0.0179 0.592 0.408
#> SRR934219     1  0.9754     0.0179 0.592 0.408
#> SRR934220     1  0.9754     0.0179 0.592 0.408
#> SRR934221     1  0.9754     0.0179 0.592 0.408
#> SRR934222     1  0.9754     0.0179 0.592 0.408
#> SRR934223     1  0.9754     0.0179 0.592 0.408
#> SRR934224     1  0.2043     0.7349 0.968 0.032
#> SRR934225     1  0.2043     0.7349 0.968 0.032
#> SRR934226     1  0.2043     0.7349 0.968 0.032
#> SRR934227     1  0.2043     0.7349 0.968 0.032
#> SRR934228     1  0.2043     0.7349 0.968 0.032
#> SRR934229     1  0.2043     0.7349 0.968 0.032
#> SRR934230     1  0.2043     0.7349 0.968 0.032
#> SRR934231     1  0.2043     0.7349 0.968 0.032
#> SRR934232     2  0.9977     0.4592 0.472 0.528
#> SRR934233     2  0.9977     0.4592 0.472 0.528
#> SRR934234     2  0.9977     0.4592 0.472 0.528
#> SRR934235     2  0.9977     0.4592 0.472 0.528
#> SRR934236     2  0.9977     0.4592 0.472 0.528
#> SRR934237     2  0.9977     0.4592 0.472 0.528
#> SRR934238     2  0.9977     0.4592 0.472 0.528
#> SRR934239     2  0.9977     0.4592 0.472 0.528
#> SRR934240     1  0.9896    -0.1325 0.560 0.440
#> SRR934241     1  0.9896    -0.1325 0.560 0.440
#> SRR934242     1  0.9896    -0.1325 0.560 0.440
#> SRR934243     1  0.9896    -0.1325 0.560 0.440
#> SRR934244     1  0.9896    -0.1325 0.560 0.440
#> SRR934245     1  0.9896    -0.1325 0.560 0.440
#> SRR934246     1  0.9896    -0.1325 0.560 0.440
#> SRR934247     1  0.9896    -0.1325 0.560 0.440
#> SRR934248     1  0.9866    -0.1135 0.568 0.432
#> SRR934249     1  0.9866    -0.1135 0.568 0.432
#> SRR934250     1  0.9866    -0.1135 0.568 0.432
#> SRR934251     1  0.9866    -0.1135 0.568 0.432
#> SRR934252     1  0.9866    -0.1135 0.568 0.432
#> SRR934253     1  0.9866    -0.1135 0.568 0.432
#> SRR934254     1  0.9866    -0.1135 0.568 0.432
#> SRR934255     1  0.9866    -0.1135 0.568 0.432
#> SRR934256     1  0.9044     0.2851 0.680 0.320
#> SRR934257     1  0.9044     0.2851 0.680 0.320
#> SRR934258     1  0.9044     0.2851 0.680 0.320
#> SRR934259     1  0.9044     0.2851 0.680 0.320
#> SRR934260     1  0.9044     0.2851 0.680 0.320
#> SRR934261     1  0.9044     0.2851 0.680 0.320
#> SRR934262     1  0.9044     0.2851 0.680 0.320
#> SRR934263     1  0.9044     0.2851 0.680 0.320
#> SRR934264     1  0.9754    -0.0463 0.592 0.408
#> SRR934265     1  0.9754    -0.0463 0.592 0.408
#> SRR934266     1  0.9754    -0.0463 0.592 0.408
#> SRR934267     1  0.9754    -0.0463 0.592 0.408
#> SRR934268     1  0.9754    -0.0463 0.592 0.408
#> SRR934269     1  0.9754    -0.0463 0.592 0.408
#> SRR934270     1  0.9754    -0.0463 0.592 0.408
#> SRR934271     1  0.9754    -0.0463 0.592 0.408
#> SRR934272     1  0.1184     0.7377 0.984 0.016
#> SRR934273     1  0.1184     0.7377 0.984 0.016
#> SRR934274     1  0.1184     0.7377 0.984 0.016
#> SRR934275     1  0.1184     0.7377 0.984 0.016
#> SRR934276     1  0.1184     0.7377 0.984 0.016
#> SRR934277     1  0.1184     0.7377 0.984 0.016
#> SRR934278     1  0.1184     0.7377 0.984 0.016
#> SRR934279     1  0.1184     0.7377 0.984 0.016
#> SRR934280     1  0.1633     0.7372 0.976 0.024
#> SRR934281     1  0.1633     0.7372 0.976 0.024
#> SRR934282     1  0.1633     0.7372 0.976 0.024
#> SRR934283     1  0.1633     0.7372 0.976 0.024
#> SRR934284     1  0.1633     0.7372 0.976 0.024
#> SRR934285     1  0.1633     0.7372 0.976 0.024
#> SRR934286     1  0.1633     0.7372 0.976 0.024
#> SRR934287     1  0.1633     0.7372 0.976 0.024
#> SRR934288     1  0.2236     0.7291 0.964 0.036
#> SRR934289     1  0.2236     0.7291 0.964 0.036
#> SRR934290     1  0.2236     0.7291 0.964 0.036
#> SRR934291     1  0.2236     0.7291 0.964 0.036
#> SRR934292     1  0.2236     0.7291 0.964 0.036
#> SRR934293     1  0.2236     0.7291 0.964 0.036
#> SRR934294     1  0.2236     0.7291 0.964 0.036
#> SRR934295     1  0.2236     0.7291 0.964 0.036
#> SRR934296     1  0.5294     0.6466 0.880 0.120
#> SRR934297     1  0.5294     0.6466 0.880 0.120
#> SRR934298     1  0.5294     0.6466 0.880 0.120
#> SRR934299     1  0.5294     0.6466 0.880 0.120
#> SRR934300     1  0.5294     0.6466 0.880 0.120
#> SRR934301     1  0.5294     0.6466 0.880 0.120
#> SRR934302     1  0.5294     0.6466 0.880 0.120
#> SRR934303     1  0.5294     0.6466 0.880 0.120
#> SRR934304     2  0.8207     0.6320 0.256 0.744
#> SRR934305     2  0.8207     0.6320 0.256 0.744
#> SRR934306     2  0.8207     0.6320 0.256 0.744
#> SRR934307     2  0.8207     0.6320 0.256 0.744
#> SRR934308     2  0.8207     0.6320 0.256 0.744
#> SRR934309     2  0.8207     0.6320 0.256 0.744
#> SRR934310     2  0.8207     0.6320 0.256 0.744
#> SRR934311     2  0.8207     0.6320 0.256 0.744
#> SRR934312     1  0.0672     0.7396 0.992 0.008
#> SRR934313     1  0.0672     0.7396 0.992 0.008
#> SRR934314     1  0.0672     0.7396 0.992 0.008
#> SRR934315     1  0.0672     0.7396 0.992 0.008
#> SRR934316     1  0.0672     0.7396 0.992 0.008
#> SRR934317     1  0.0672     0.7396 0.992 0.008
#> SRR934318     1  0.0672     0.7396 0.992 0.008
#> SRR934319     1  0.0672     0.7396 0.992 0.008
#> SRR934320     1  0.1633     0.7346 0.976 0.024
#> SRR934321     1  0.1633     0.7346 0.976 0.024
#> SRR934322     1  0.1633     0.7346 0.976 0.024
#> SRR934323     1  0.1633     0.7346 0.976 0.024
#> SRR934324     1  0.1633     0.7346 0.976 0.024
#> SRR934325     1  0.1633     0.7346 0.976 0.024
#> SRR934326     1  0.1633     0.7346 0.976 0.024
#> SRR934327     1  0.1633     0.7346 0.976 0.024
#> SRR934328     1  0.1633     0.7389 0.976 0.024
#> SRR934329     1  0.1633     0.7389 0.976 0.024
#> SRR934330     1  0.1633     0.7389 0.976 0.024
#> SRR934331     1  0.1633     0.7389 0.976 0.024
#> SRR934332     1  0.1633     0.7389 0.976 0.024
#> SRR934333     1  0.1633     0.7389 0.976 0.024
#> SRR934334     1  0.1633     0.7389 0.976 0.024
#> SRR934335     1  0.1633     0.7389 0.976 0.024
#> SRR934344     1  0.1633     0.7389 0.976 0.024
#> SRR934345     1  0.1633     0.7389 0.976 0.024
#> SRR934346     1  0.1633     0.7389 0.976 0.024
#> SRR934347     1  0.1633     0.7389 0.976 0.024
#> SRR934348     1  0.1633     0.7389 0.976 0.024
#> SRR934349     1  0.1633     0.7389 0.976 0.024
#> SRR934350     1  0.1633     0.7389 0.976 0.024
#> SRR934351     1  0.1633     0.7389 0.976 0.024
#> SRR934336     1  0.1414     0.7375 0.980 0.020
#> SRR934337     1  0.1414     0.7375 0.980 0.020
#> SRR934338     1  0.1414     0.7375 0.980 0.020
#> SRR934339     1  0.1414     0.7375 0.980 0.020
#> SRR934340     1  0.1414     0.7375 0.980 0.020
#> SRR934341     1  0.1414     0.7375 0.980 0.020
#> SRR934342     1  0.1414     0.7375 0.980 0.020

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR934216     3  0.8967      0.443 0.380 0.132 0.488
#> SRR934217     3  0.8967      0.443 0.380 0.132 0.488
#> SRR934218     3  0.8967      0.443 0.380 0.132 0.488
#> SRR934219     3  0.8967      0.443 0.380 0.132 0.488
#> SRR934220     3  0.8967      0.443 0.380 0.132 0.488
#> SRR934221     3  0.8967      0.443 0.380 0.132 0.488
#> SRR934222     3  0.8967      0.443 0.380 0.132 0.488
#> SRR934223     3  0.8967      0.443 0.380 0.132 0.488
#> SRR934224     1  0.3888      0.770 0.888 0.064 0.048
#> SRR934225     1  0.3888      0.770 0.888 0.064 0.048
#> SRR934226     1  0.3888      0.770 0.888 0.064 0.048
#> SRR934227     1  0.3888      0.770 0.888 0.064 0.048
#> SRR934228     1  0.3888      0.770 0.888 0.064 0.048
#> SRR934229     1  0.3888      0.770 0.888 0.064 0.048
#> SRR934230     1  0.3888      0.770 0.888 0.064 0.048
#> SRR934231     1  0.3888      0.770 0.888 0.064 0.048
#> SRR934232     2  0.8216      0.604 0.188 0.640 0.172
#> SRR934233     2  0.8216      0.604 0.188 0.640 0.172
#> SRR934234     2  0.8216      0.604 0.188 0.640 0.172
#> SRR934235     2  0.8216      0.604 0.188 0.640 0.172
#> SRR934236     2  0.8216      0.604 0.188 0.640 0.172
#> SRR934237     2  0.8216      0.604 0.188 0.640 0.172
#> SRR934238     2  0.8216      0.604 0.188 0.640 0.172
#> SRR934239     2  0.8216      0.604 0.188 0.640 0.172
#> SRR934240     2  0.7053      0.721 0.244 0.692 0.064
#> SRR934241     2  0.7053      0.721 0.244 0.692 0.064
#> SRR934242     2  0.7053      0.721 0.244 0.692 0.064
#> SRR934243     2  0.7053      0.721 0.244 0.692 0.064
#> SRR934244     2  0.7053      0.721 0.244 0.692 0.064
#> SRR934245     2  0.7053      0.721 0.244 0.692 0.064
#> SRR934246     2  0.7053      0.721 0.244 0.692 0.064
#> SRR934247     2  0.7053      0.721 0.244 0.692 0.064
#> SRR934248     3  0.9871      0.406 0.308 0.280 0.412
#> SRR934249     3  0.9871      0.406 0.308 0.280 0.412
#> SRR934250     3  0.9871      0.406 0.308 0.280 0.412
#> SRR934251     3  0.9871      0.406 0.308 0.280 0.412
#> SRR934252     3  0.9871      0.406 0.308 0.280 0.412
#> SRR934253     3  0.9871      0.406 0.308 0.280 0.412
#> SRR934254     3  0.9871      0.406 0.308 0.280 0.412
#> SRR934255     3  0.9871      0.406 0.308 0.280 0.412
#> SRR934256     2  0.7236      0.606 0.392 0.576 0.032
#> SRR934257     2  0.7236      0.606 0.392 0.576 0.032
#> SRR934258     2  0.7236      0.606 0.392 0.576 0.032
#> SRR934259     2  0.7236      0.606 0.392 0.576 0.032
#> SRR934260     2  0.7236      0.606 0.392 0.576 0.032
#> SRR934261     2  0.7236      0.606 0.392 0.576 0.032
#> SRR934262     2  0.7236      0.606 0.392 0.576 0.032
#> SRR934263     2  0.7236      0.606 0.392 0.576 0.032
#> SRR934264     3  0.9776      0.374 0.384 0.232 0.384
#> SRR934265     3  0.9776      0.374 0.384 0.232 0.384
#> SRR934266     1  0.9776     -0.549 0.384 0.232 0.384
#> SRR934267     3  0.9776      0.374 0.384 0.232 0.384
#> SRR934268     1  0.9776     -0.549 0.384 0.232 0.384
#> SRR934269     1  0.9776     -0.549 0.384 0.232 0.384
#> SRR934270     1  0.9776     -0.549 0.384 0.232 0.384
#> SRR934271     1  0.9776     -0.549 0.384 0.232 0.384
#> SRR934272     1  0.2434      0.799 0.940 0.036 0.024
#> SRR934273     1  0.2434      0.799 0.940 0.036 0.024
#> SRR934274     1  0.2434      0.799 0.940 0.036 0.024
#> SRR934275     1  0.2434      0.799 0.940 0.036 0.024
#> SRR934276     1  0.2434      0.799 0.940 0.036 0.024
#> SRR934277     1  0.2434      0.799 0.940 0.036 0.024
#> SRR934278     1  0.2434      0.799 0.940 0.036 0.024
#> SRR934279     1  0.2434      0.799 0.940 0.036 0.024
#> SRR934280     1  0.1905      0.806 0.956 0.028 0.016
#> SRR934281     1  0.1905      0.806 0.956 0.028 0.016
#> SRR934282     1  0.1905      0.806 0.956 0.028 0.016
#> SRR934283     1  0.1905      0.806 0.956 0.028 0.016
#> SRR934284     1  0.1905      0.806 0.956 0.028 0.016
#> SRR934285     1  0.1905      0.806 0.956 0.028 0.016
#> SRR934286     1  0.1905      0.806 0.956 0.028 0.016
#> SRR934287     1  0.1905      0.806 0.956 0.028 0.016
#> SRR934288     1  0.5497      0.760 0.812 0.124 0.064
#> SRR934289     1  0.5497      0.760 0.812 0.124 0.064
#> SRR934290     1  0.5497      0.760 0.812 0.124 0.064
#> SRR934291     1  0.5497      0.760 0.812 0.124 0.064
#> SRR934292     1  0.5497      0.760 0.812 0.124 0.064
#> SRR934293     1  0.5497      0.760 0.812 0.124 0.064
#> SRR934294     1  0.5497      0.760 0.812 0.124 0.064
#> SRR934295     1  0.5497      0.760 0.812 0.124 0.064
#> SRR934296     1  0.6168      0.608 0.740 0.224 0.036
#> SRR934297     1  0.6168      0.608 0.740 0.224 0.036
#> SRR934298     1  0.6168      0.608 0.740 0.224 0.036
#> SRR934299     1  0.6168      0.608 0.740 0.224 0.036
#> SRR934300     1  0.6168      0.608 0.740 0.224 0.036
#> SRR934301     1  0.6168      0.608 0.740 0.224 0.036
#> SRR934302     1  0.6168      0.608 0.740 0.224 0.036
#> SRR934303     1  0.6168      0.608 0.740 0.224 0.036
#> SRR934304     3  0.5911      0.405 0.060 0.156 0.784
#> SRR934305     3  0.5911      0.405 0.060 0.156 0.784
#> SRR934306     3  0.5911      0.405 0.060 0.156 0.784
#> SRR934307     3  0.5911      0.405 0.060 0.156 0.784
#> SRR934308     3  0.5911      0.405 0.060 0.156 0.784
#> SRR934309     3  0.5970      0.405 0.060 0.160 0.780
#> SRR934310     3  0.5911      0.405 0.060 0.156 0.784
#> SRR934311     3  0.5911      0.405 0.060 0.156 0.784
#> SRR934312     1  0.0592      0.810 0.988 0.012 0.000
#> SRR934313     1  0.0592      0.810 0.988 0.012 0.000
#> SRR934314     1  0.0592      0.810 0.988 0.012 0.000
#> SRR934315     1  0.0592      0.810 0.988 0.012 0.000
#> SRR934316     1  0.0592      0.810 0.988 0.012 0.000
#> SRR934317     1  0.0592      0.810 0.988 0.012 0.000
#> SRR934318     1  0.0592      0.810 0.988 0.012 0.000
#> SRR934319     1  0.0592      0.810 0.988 0.012 0.000
#> SRR934320     1  0.2564      0.803 0.936 0.036 0.028
#> SRR934321     1  0.2564      0.803 0.936 0.036 0.028
#> SRR934322     1  0.2564      0.803 0.936 0.036 0.028
#> SRR934323     1  0.2564      0.803 0.936 0.036 0.028
#> SRR934324     1  0.2564      0.803 0.936 0.036 0.028
#> SRR934325     1  0.2564      0.803 0.936 0.036 0.028
#> SRR934326     1  0.2564      0.803 0.936 0.036 0.028
#> SRR934327     1  0.2564      0.803 0.936 0.036 0.028
#> SRR934328     1  0.5554      0.756 0.812 0.112 0.076
#> SRR934329     1  0.5554      0.756 0.812 0.112 0.076
#> SRR934330     1  0.5554      0.756 0.812 0.112 0.076
#> SRR934331     1  0.5554      0.756 0.812 0.112 0.076
#> SRR934332     1  0.5554      0.756 0.812 0.112 0.076
#> SRR934333     1  0.5554      0.756 0.812 0.112 0.076
#> SRR934334     1  0.5554      0.756 0.812 0.112 0.076
#> SRR934335     1  0.5554      0.756 0.812 0.112 0.076
#> SRR934344     1  0.5449      0.757 0.816 0.116 0.068
#> SRR934345     1  0.5449      0.757 0.816 0.116 0.068
#> SRR934346     1  0.5449      0.757 0.816 0.116 0.068
#> SRR934347     1  0.5449      0.757 0.816 0.116 0.068
#> SRR934348     1  0.5449      0.757 0.816 0.116 0.068
#> SRR934349     1  0.5449      0.757 0.816 0.116 0.068
#> SRR934350     1  0.5449      0.757 0.816 0.116 0.068
#> SRR934351     1  0.5449      0.757 0.816 0.116 0.068
#> SRR934336     1  0.2187      0.804 0.948 0.024 0.028
#> SRR934337     1  0.2187      0.804 0.948 0.024 0.028
#> SRR934338     1  0.2187      0.804 0.948 0.024 0.028
#> SRR934339     1  0.2187      0.804 0.948 0.024 0.028
#> SRR934340     1  0.2187      0.804 0.948 0.024 0.028
#> SRR934341     1  0.2187      0.804 0.948 0.024 0.028
#> SRR934342     1  0.2187      0.804 0.948 0.024 0.028

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3 p4
#> SRR934216     3   0.889      0.432 0.308 0.048 0.364 NA
#> SRR934217     3   0.889      0.432 0.308 0.048 0.364 NA
#> SRR934218     3   0.889      0.432 0.308 0.048 0.364 NA
#> SRR934219     3   0.889      0.432 0.308 0.048 0.364 NA
#> SRR934220     3   0.894      0.431 0.308 0.052 0.364 NA
#> SRR934221     3   0.889      0.432 0.308 0.048 0.364 NA
#> SRR934222     3   0.889      0.432 0.308 0.048 0.364 NA
#> SRR934223     3   0.889      0.432 0.308 0.048 0.364 NA
#> SRR934224     1   0.413      0.659 0.828 0.016 0.020 NA
#> SRR934225     1   0.413      0.659 0.828 0.016 0.020 NA
#> SRR934226     1   0.413      0.659 0.828 0.016 0.020 NA
#> SRR934227     1   0.413      0.659 0.828 0.016 0.020 NA
#> SRR934228     1   0.413      0.659 0.828 0.016 0.020 NA
#> SRR934229     1   0.413      0.659 0.828 0.016 0.020 NA
#> SRR934230     1   0.413      0.659 0.828 0.016 0.020 NA
#> SRR934231     1   0.413      0.659 0.828 0.016 0.020 NA
#> SRR934232     2   0.563      0.575 0.060 0.744 0.172 NA
#> SRR934233     2   0.563      0.575 0.060 0.744 0.172 NA
#> SRR934234     2   0.563      0.575 0.060 0.744 0.172 NA
#> SRR934235     2   0.563      0.575 0.060 0.744 0.172 NA
#> SRR934236     2   0.563      0.575 0.060 0.744 0.172 NA
#> SRR934237     2   0.563      0.575 0.060 0.744 0.172 NA
#> SRR934238     2   0.563      0.575 0.060 0.744 0.172 NA
#> SRR934239     2   0.563      0.575 0.060 0.744 0.172 NA
#> SRR934240     2   0.385      0.719 0.124 0.844 0.012 NA
#> SRR934241     2   0.385      0.719 0.124 0.844 0.012 NA
#> SRR934242     2   0.385      0.719 0.124 0.844 0.012 NA
#> SRR934243     2   0.385      0.719 0.124 0.844 0.012 NA
#> SRR934244     2   0.385      0.719 0.124 0.844 0.012 NA
#> SRR934245     2   0.385      0.719 0.124 0.844 0.012 NA
#> SRR934246     2   0.385      0.719 0.124 0.844 0.012 NA
#> SRR934247     2   0.385      0.719 0.124 0.844 0.012 NA
#> SRR934248     3   0.887      0.483 0.184 0.248 0.476 NA
#> SRR934249     3   0.887      0.483 0.184 0.248 0.476 NA
#> SRR934250     3   0.892      0.483 0.184 0.248 0.472 NA
#> SRR934251     3   0.892      0.483 0.184 0.248 0.472 NA
#> SRR934252     3   0.887      0.483 0.184 0.248 0.476 NA
#> SRR934253     3   0.892      0.483 0.184 0.248 0.472 NA
#> SRR934254     3   0.892      0.483 0.184 0.248 0.472 NA
#> SRR934255     3   0.887      0.483 0.184 0.248 0.476 NA
#> SRR934256     2   0.741      0.628 0.172 0.576 0.016 NA
#> SRR934257     2   0.741      0.628 0.172 0.576 0.016 NA
#> SRR934258     2   0.741      0.628 0.172 0.576 0.016 NA
#> SRR934259     2   0.741      0.628 0.172 0.576 0.016 NA
#> SRR934260     2   0.741      0.628 0.172 0.576 0.016 NA
#> SRR934261     2   0.741      0.628 0.172 0.576 0.016 NA
#> SRR934262     2   0.741      0.628 0.172 0.576 0.016 NA
#> SRR934263     2   0.741      0.628 0.172 0.576 0.016 NA
#> SRR934264     3   0.846      0.514 0.284 0.228 0.452 NA
#> SRR934265     3   0.846      0.514 0.284 0.228 0.452 NA
#> SRR934266     3   0.846      0.514 0.284 0.228 0.452 NA
#> SRR934267     3   0.846      0.514 0.284 0.228 0.452 NA
#> SRR934268     3   0.846      0.514 0.284 0.228 0.452 NA
#> SRR934269     3   0.846      0.514 0.284 0.228 0.452 NA
#> SRR934270     3   0.846      0.514 0.284 0.228 0.452 NA
#> SRR934271     3   0.846      0.514 0.284 0.228 0.452 NA
#> SRR934272     1   0.216      0.737 0.932 0.016 0.004 NA
#> SRR934273     1   0.216      0.737 0.932 0.016 0.004 NA
#> SRR934274     1   0.216      0.737 0.932 0.016 0.004 NA
#> SRR934275     1   0.216      0.737 0.932 0.016 0.004 NA
#> SRR934276     1   0.216      0.737 0.932 0.016 0.004 NA
#> SRR934277     1   0.216      0.737 0.932 0.016 0.004 NA
#> SRR934278     1   0.216      0.737 0.932 0.016 0.004 NA
#> SRR934279     1   0.216      0.737 0.932 0.016 0.004 NA
#> SRR934280     1   0.196      0.738 0.944 0.024 0.008 NA
#> SRR934281     1   0.196      0.738 0.944 0.024 0.008 NA
#> SRR934282     1   0.196      0.738 0.944 0.024 0.008 NA
#> SRR934283     1   0.196      0.738 0.944 0.024 0.008 NA
#> SRR934284     1   0.196      0.738 0.944 0.024 0.008 NA
#> SRR934285     1   0.196      0.738 0.944 0.024 0.008 NA
#> SRR934286     1   0.196      0.738 0.944 0.024 0.008 NA
#> SRR934287     1   0.196      0.738 0.944 0.024 0.008 NA
#> SRR934288     1   0.553      0.645 0.592 0.016 0.004 NA
#> SRR934289     1   0.553      0.645 0.592 0.016 0.004 NA
#> SRR934290     1   0.553      0.645 0.592 0.016 0.004 NA
#> SRR934291     1   0.553      0.645 0.592 0.016 0.004 NA
#> SRR934292     1   0.553      0.645 0.592 0.016 0.004 NA
#> SRR934293     1   0.553      0.645 0.592 0.016 0.004 NA
#> SRR934294     1   0.553      0.645 0.592 0.016 0.004 NA
#> SRR934295     1   0.553      0.645 0.592 0.016 0.004 NA
#> SRR934296     1   0.753      0.563 0.588 0.172 0.028 NA
#> SRR934297     1   0.753      0.563 0.588 0.172 0.028 NA
#> SRR934298     1   0.753      0.563 0.588 0.172 0.028 NA
#> SRR934299     1   0.753      0.563 0.588 0.172 0.028 NA
#> SRR934300     1   0.753      0.563 0.588 0.172 0.028 NA
#> SRR934301     1   0.753      0.563 0.588 0.172 0.028 NA
#> SRR934302     1   0.753      0.563 0.588 0.172 0.028 NA
#> SRR934303     1   0.753      0.563 0.588 0.172 0.028 NA
#> SRR934304     3   0.593      0.374 0.020 0.108 0.732 NA
#> SRR934305     3   0.593      0.374 0.020 0.108 0.732 NA
#> SRR934306     3   0.593      0.374 0.020 0.108 0.732 NA
#> SRR934307     3   0.593      0.374 0.020 0.108 0.732 NA
#> SRR934308     3   0.603      0.374 0.020 0.112 0.724 NA
#> SRR934309     3   0.599      0.374 0.020 0.112 0.728 NA
#> SRR934310     3   0.593      0.374 0.020 0.108 0.732 NA
#> SRR934311     3   0.593      0.374 0.020 0.108 0.732 NA
#> SRR934312     1   0.184      0.746 0.948 0.016 0.008 NA
#> SRR934313     1   0.184      0.746 0.948 0.016 0.008 NA
#> SRR934314     1   0.184      0.746 0.948 0.016 0.008 NA
#> SRR934315     1   0.184      0.746 0.948 0.016 0.008 NA
#> SRR934316     1   0.184      0.746 0.948 0.016 0.008 NA
#> SRR934317     1   0.184      0.746 0.948 0.016 0.008 NA
#> SRR934318     1   0.184      0.746 0.948 0.016 0.008 NA
#> SRR934319     1   0.184      0.746 0.948 0.016 0.008 NA
#> SRR934320     1   0.406      0.728 0.828 0.020 0.012 NA
#> SRR934321     1   0.406      0.728 0.828 0.020 0.012 NA
#> SRR934322     1   0.406      0.728 0.828 0.020 0.012 NA
#> SRR934323     1   0.406      0.728 0.828 0.020 0.012 NA
#> SRR934324     1   0.406      0.728 0.828 0.020 0.012 NA
#> SRR934325     1   0.406      0.728 0.828 0.020 0.012 NA
#> SRR934326     1   0.406      0.728 0.828 0.020 0.012 NA
#> SRR934327     1   0.406      0.728 0.828 0.020 0.012 NA
#> SRR934328     1   0.538      0.637 0.568 0.004 0.008 NA
#> SRR934329     1   0.538      0.637 0.568 0.004 0.008 NA
#> SRR934330     1   0.538      0.637 0.568 0.004 0.008 NA
#> SRR934331     1   0.538      0.637 0.568 0.004 0.008 NA
#> SRR934332     1   0.538      0.637 0.568 0.004 0.008 NA
#> SRR934333     1   0.538      0.637 0.568 0.004 0.008 NA
#> SRR934334     1   0.538      0.637 0.568 0.004 0.008 NA
#> SRR934335     1   0.538      0.637 0.568 0.004 0.008 NA
#> SRR934344     1   0.523      0.644 0.564 0.000 0.008 NA
#> SRR934345     1   0.523      0.644 0.564 0.000 0.008 NA
#> SRR934346     1   0.523      0.644 0.564 0.000 0.008 NA
#> SRR934347     1   0.523      0.644 0.564 0.000 0.008 NA
#> SRR934348     1   0.523      0.644 0.564 0.000 0.008 NA
#> SRR934349     1   0.523      0.644 0.564 0.000 0.008 NA
#> SRR934350     1   0.523      0.644 0.564 0.000 0.008 NA
#> SRR934351     1   0.523      0.644 0.564 0.000 0.008 NA
#> SRR934336     1   0.188      0.736 0.944 0.008 0.008 NA
#> SRR934337     1   0.188      0.736 0.944 0.008 0.008 NA
#> SRR934338     1   0.188      0.736 0.944 0.008 0.008 NA
#> SRR934339     1   0.188      0.736 0.944 0.008 0.008 NA
#> SRR934340     1   0.188      0.736 0.944 0.008 0.008 NA
#> SRR934341     1   0.188      0.736 0.944 0.008 0.008 NA
#> SRR934342     1   0.188      0.736 0.944 0.008 0.008 NA

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> SRR934216     3  0.8614      0.602 0.188 0.256 0.400 0.024 0.132
#> SRR934217     3  0.8614      0.602 0.188 0.256 0.400 0.024 0.132
#> SRR934218     3  0.8614      0.602 0.188 0.256 0.400 0.024 0.132
#> SRR934219     3  0.8614      0.602 0.188 0.256 0.400 0.024 0.132
#> SRR934220     3  0.8614      0.602 0.188 0.256 0.400 0.024 0.132
#> SRR934221     3  0.8614      0.602 0.188 0.256 0.400 0.024 0.132
#> SRR934222     3  0.8614      0.602 0.188 0.256 0.400 0.024 0.132
#> SRR934223     3  0.8614      0.602 0.188 0.256 0.400 0.024 0.132
#> SRR934224     1  0.5924      0.661 0.652 0.080 0.044 0.000 0.224
#> SRR934225     1  0.5924      0.661 0.652 0.080 0.044 0.000 0.224
#> SRR934226     1  0.5924      0.661 0.652 0.080 0.044 0.000 0.224
#> SRR934227     1  0.5924      0.661 0.652 0.080 0.044 0.000 0.224
#> SRR934228     1  0.5924      0.661 0.652 0.080 0.044 0.000 0.224
#> SRR934229     1  0.5924      0.661 0.652 0.080 0.044 0.000 0.224
#> SRR934230     1  0.5924      0.661 0.652 0.080 0.044 0.000 0.224
#> SRR934231     1  0.5924      0.661 0.652 0.080 0.044 0.000 0.224
#> SRR934232     4  0.0968      0.341 0.012 0.000 0.004 0.972 0.012
#> SRR934233     4  0.0968      0.341 0.012 0.000 0.004 0.972 0.012
#> SRR934234     4  0.0968      0.341 0.012 0.000 0.004 0.972 0.012
#> SRR934235     4  0.0968      0.341 0.012 0.000 0.004 0.972 0.012
#> SRR934236     4  0.0968      0.341 0.012 0.000 0.004 0.972 0.012
#> SRR934237     4  0.0968      0.341 0.012 0.000 0.004 0.972 0.012
#> SRR934238     4  0.0968      0.341 0.012 0.000 0.004 0.972 0.012
#> SRR934239     4  0.0968      0.341 0.012 0.000 0.004 0.972 0.012
#> SRR934240     4  0.5962     -0.278 0.064 0.244 0.000 0.640 0.052
#> SRR934241     4  0.5962     -0.278 0.064 0.244 0.000 0.640 0.052
#> SRR934242     4  0.5962     -0.278 0.064 0.244 0.000 0.640 0.052
#> SRR934243     4  0.5962     -0.278 0.064 0.244 0.000 0.640 0.052
#> SRR934244     4  0.5962     -0.278 0.064 0.244 0.000 0.640 0.052
#> SRR934245     4  0.5962     -0.278 0.064 0.244 0.000 0.640 0.052
#> SRR934246     4  0.5962     -0.278 0.064 0.244 0.000 0.640 0.052
#> SRR934247     4  0.5962     -0.278 0.064 0.244 0.000 0.640 0.052
#> SRR934248     4  0.9101      0.403 0.188 0.120 0.192 0.412 0.088
#> SRR934249     4  0.9101      0.403 0.188 0.120 0.192 0.412 0.088
#> SRR934250     4  0.9089      0.403 0.192 0.116 0.192 0.412 0.088
#> SRR934251     4  0.9089      0.403 0.192 0.116 0.192 0.412 0.088
#> SRR934252     4  0.9089      0.403 0.192 0.116 0.192 0.412 0.088
#> SRR934253     4  0.9089      0.403 0.192 0.116 0.192 0.412 0.088
#> SRR934254     4  0.9089      0.403 0.192 0.116 0.192 0.412 0.088
#> SRR934255     4  0.9101      0.403 0.188 0.120 0.192 0.412 0.088
#> SRR934256     2  0.7711      1.000 0.088 0.448 0.008 0.328 0.128
#> SRR934257     2  0.7711      1.000 0.088 0.448 0.008 0.328 0.128
#> SRR934258     2  0.7711      1.000 0.088 0.448 0.008 0.328 0.128
#> SRR934259     2  0.7711      1.000 0.088 0.448 0.008 0.328 0.128
#> SRR934260     2  0.7711      1.000 0.088 0.448 0.008 0.328 0.128
#> SRR934261     2  0.7751      0.997 0.092 0.444 0.008 0.328 0.128
#> SRR934262     2  0.7711      1.000 0.088 0.448 0.008 0.328 0.128
#> SRR934263     2  0.7711      1.000 0.088 0.448 0.008 0.328 0.128
#> SRR934264     4  0.8809      0.374 0.248 0.084 0.200 0.404 0.064
#> SRR934265     4  0.8809      0.374 0.248 0.084 0.200 0.404 0.064
#> SRR934266     4  0.8809      0.374 0.248 0.084 0.200 0.404 0.064
#> SRR934267     4  0.8809      0.374 0.248 0.084 0.200 0.404 0.064
#> SRR934268     4  0.8809      0.374 0.248 0.084 0.200 0.404 0.064
#> SRR934269     4  0.8809      0.374 0.248 0.084 0.200 0.404 0.064
#> SRR934270     4  0.8809      0.374 0.248 0.084 0.200 0.404 0.064
#> SRR934271     4  0.8809      0.374 0.248 0.084 0.200 0.404 0.064
#> SRR934272     1  0.6277      0.686 0.528 0.048 0.044 0.004 0.376
#> SRR934273     1  0.6277      0.686 0.528 0.048 0.044 0.004 0.376
#> SRR934274     1  0.6277      0.686 0.528 0.048 0.044 0.004 0.376
#> SRR934275     1  0.6277      0.686 0.528 0.048 0.044 0.004 0.376
#> SRR934276     1  0.6277      0.686 0.528 0.048 0.044 0.004 0.376
#> SRR934277     1  0.6277      0.686 0.528 0.048 0.044 0.004 0.376
#> SRR934278     1  0.6277      0.686 0.528 0.048 0.044 0.004 0.376
#> SRR934279     1  0.6277      0.686 0.528 0.048 0.044 0.004 0.376
#> SRR934280     1  0.5321      0.738 0.624 0.036 0.008 0.008 0.324
#> SRR934281     1  0.5321      0.738 0.624 0.036 0.008 0.008 0.324
#> SRR934282     1  0.5321      0.738 0.624 0.036 0.008 0.008 0.324
#> SRR934283     1  0.5321      0.738 0.624 0.036 0.008 0.008 0.324
#> SRR934284     1  0.5321      0.738 0.624 0.036 0.008 0.008 0.324
#> SRR934285     1  0.5321      0.738 0.624 0.036 0.008 0.008 0.324
#> SRR934286     1  0.5321      0.738 0.624 0.036 0.008 0.008 0.324
#> SRR934287     1  0.5321      0.738 0.624 0.036 0.008 0.008 0.324
#> SRR934288     5  0.2513      0.746 0.040 0.048 0.008 0.000 0.904
#> SRR934289     5  0.2513      0.746 0.040 0.048 0.008 0.000 0.904
#> SRR934290     5  0.2513      0.746 0.040 0.048 0.008 0.000 0.904
#> SRR934291     5  0.2513      0.746 0.040 0.048 0.008 0.000 0.904
#> SRR934292     5  0.2513      0.746 0.040 0.048 0.008 0.000 0.904
#> SRR934293     5  0.2513      0.746 0.040 0.048 0.008 0.000 0.904
#> SRR934294     5  0.2513      0.746 0.040 0.048 0.008 0.000 0.904
#> SRR934295     5  0.2513      0.746 0.040 0.048 0.008 0.000 0.904
#> SRR934296     5  0.7799      0.416 0.192 0.100 0.036 0.124 0.548
#> SRR934297     5  0.7799      0.416 0.192 0.100 0.036 0.124 0.548
#> SRR934298     5  0.7799      0.416 0.192 0.100 0.036 0.124 0.548
#> SRR934299     5  0.7799      0.416 0.192 0.100 0.036 0.124 0.548
#> SRR934300     5  0.7799      0.416 0.192 0.100 0.036 0.124 0.548
#> SRR934301     5  0.7799      0.416 0.192 0.100 0.036 0.124 0.548
#> SRR934302     5  0.7799      0.416 0.192 0.100 0.036 0.124 0.548
#> SRR934303     5  0.7799      0.416 0.192 0.100 0.036 0.124 0.548
#> SRR934304     3  0.2971      0.545 0.008 0.000 0.836 0.156 0.000
#> SRR934305     3  0.3129      0.545 0.008 0.004 0.832 0.156 0.000
#> SRR934306     3  0.3081      0.545 0.012 0.000 0.832 0.156 0.000
#> SRR934307     3  0.3081      0.545 0.012 0.000 0.832 0.156 0.000
#> SRR934308     3  0.3013      0.544 0.008 0.000 0.832 0.160 0.000
#> SRR934309     3  0.3573      0.542 0.016 0.012 0.816 0.156 0.000
#> SRR934310     3  0.3081      0.545 0.012 0.000 0.832 0.156 0.000
#> SRR934311     3  0.2971      0.545 0.008 0.000 0.836 0.156 0.000
#> SRR934312     1  0.6093      0.670 0.500 0.044 0.032 0.004 0.420
#> SRR934313     1  0.6093      0.670 0.500 0.044 0.032 0.004 0.420
#> SRR934314     1  0.6093      0.670 0.500 0.044 0.032 0.004 0.420
#> SRR934315     1  0.6093      0.670 0.500 0.044 0.032 0.004 0.420
#> SRR934316     1  0.6093      0.670 0.500 0.044 0.032 0.004 0.420
#> SRR934317     1  0.6093      0.670 0.500 0.044 0.032 0.004 0.420
#> SRR934318     1  0.6088      0.675 0.504 0.044 0.032 0.004 0.416
#> SRR934319     1  0.6093      0.670 0.500 0.044 0.032 0.004 0.420
#> SRR934320     1  0.6180      0.631 0.580 0.068 0.012 0.020 0.320
#> SRR934321     1  0.6180      0.631 0.580 0.068 0.012 0.020 0.320
#> SRR934322     1  0.6180      0.631 0.580 0.068 0.012 0.020 0.320
#> SRR934323     1  0.6180      0.631 0.580 0.068 0.012 0.020 0.320
#> SRR934324     1  0.6180      0.631 0.580 0.068 0.012 0.020 0.320
#> SRR934325     1  0.6180      0.631 0.580 0.068 0.012 0.020 0.320
#> SRR934326     1  0.6180      0.631 0.580 0.068 0.012 0.020 0.320
#> SRR934327     1  0.6180      0.631 0.580 0.068 0.012 0.020 0.320
#> SRR934328     5  0.1179      0.755 0.016 0.016 0.004 0.000 0.964
#> SRR934329     5  0.1179      0.755 0.016 0.016 0.004 0.000 0.964
#> SRR934330     5  0.1179      0.755 0.016 0.016 0.004 0.000 0.964
#> SRR934331     5  0.1179      0.755 0.016 0.016 0.004 0.000 0.964
#> SRR934332     5  0.1179      0.755 0.016 0.016 0.004 0.000 0.964
#> SRR934333     5  0.1179      0.755 0.016 0.016 0.004 0.000 0.964
#> SRR934334     5  0.1179      0.755 0.016 0.016 0.004 0.000 0.964
#> SRR934335     5  0.1179      0.755 0.016 0.016 0.004 0.000 0.964
#> SRR934344     5  0.3203      0.694 0.124 0.008 0.020 0.000 0.848
#> SRR934345     5  0.3203      0.694 0.124 0.008 0.020 0.000 0.848
#> SRR934346     5  0.3203      0.694 0.124 0.008 0.020 0.000 0.848
#> SRR934347     5  0.3203      0.694 0.124 0.008 0.020 0.000 0.848
#> SRR934348     5  0.3203      0.694 0.124 0.008 0.020 0.000 0.848
#> SRR934349     5  0.3203      0.694 0.124 0.008 0.020 0.000 0.848
#> SRR934350     5  0.3203      0.694 0.124 0.008 0.020 0.000 0.848
#> SRR934351     5  0.3203      0.694 0.124 0.008 0.020 0.000 0.848
#> SRR934336     1  0.3870      0.745 0.732 0.000 0.004 0.004 0.260
#> SRR934337     1  0.3870      0.745 0.732 0.000 0.004 0.004 0.260
#> SRR934338     1  0.3870      0.745 0.732 0.000 0.004 0.004 0.260
#> SRR934339     1  0.3870      0.745 0.732 0.000 0.004 0.004 0.260
#> SRR934340     1  0.3870      0.745 0.732 0.000 0.004 0.004 0.260
#> SRR934341     1  0.3870      0.745 0.732 0.000 0.004 0.004 0.260
#> SRR934342     1  0.3870      0.745 0.732 0.000 0.004 0.004 0.260

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR934216     3   0.782     0.9990 0.060 0.000 0.448 0.120 0.224 0.148
#> SRR934217     3   0.786     0.9970 0.064 0.000 0.444 0.120 0.224 0.148
#> SRR934218     3   0.782     0.9990 0.060 0.000 0.448 0.120 0.224 0.148
#> SRR934219     3   0.782     0.9990 0.060 0.000 0.448 0.120 0.224 0.148
#> SRR934220     3   0.786     0.9970 0.064 0.000 0.444 0.120 0.224 0.148
#> SRR934221     3   0.782     0.9990 0.060 0.000 0.448 0.120 0.224 0.148
#> SRR934222     3   0.782     0.9990 0.060 0.000 0.448 0.120 0.224 0.148
#> SRR934223     3   0.782     0.9990 0.060 0.000 0.448 0.120 0.224 0.148
#> SRR934224     6   0.527     0.4840 0.032 0.008 0.312 0.032 0.004 0.612
#> SRR934225     6   0.527     0.4840 0.032 0.008 0.312 0.032 0.004 0.612
#> SRR934226     6   0.527     0.4840 0.032 0.008 0.312 0.032 0.004 0.612
#> SRR934227     6   0.527     0.4840 0.032 0.008 0.312 0.032 0.004 0.612
#> SRR934228     6   0.527     0.4840 0.032 0.008 0.312 0.032 0.004 0.612
#> SRR934229     6   0.527     0.4840 0.032 0.008 0.312 0.032 0.004 0.612
#> SRR934230     6   0.527     0.4840 0.032 0.008 0.312 0.032 0.004 0.612
#> SRR934231     6   0.527     0.4840 0.032 0.008 0.312 0.032 0.004 0.612
#> SRR934232     4   0.785     0.1566 0.020 0.300 0.132 0.412 0.112 0.024
#> SRR934233     4   0.785     0.1566 0.020 0.300 0.132 0.412 0.112 0.024
#> SRR934234     4   0.785     0.1566 0.020 0.300 0.132 0.412 0.112 0.024
#> SRR934235     4   0.785     0.1566 0.020 0.300 0.132 0.412 0.112 0.024
#> SRR934236     4   0.785     0.1566 0.020 0.300 0.132 0.412 0.112 0.024
#> SRR934237     4   0.785     0.1566 0.020 0.300 0.132 0.412 0.112 0.024
#> SRR934238     4   0.785     0.1566 0.020 0.300 0.132 0.412 0.112 0.024
#> SRR934239     4   0.785     0.1566 0.020 0.300 0.132 0.412 0.112 0.024
#> SRR934240     2   0.768     0.6296 0.040 0.528 0.152 0.164 0.072 0.044
#> SRR934241     2   0.773     0.6280 0.048 0.528 0.144 0.164 0.072 0.044
#> SRR934242     2   0.768     0.6296 0.040 0.528 0.152 0.164 0.072 0.044
#> SRR934243     2   0.768     0.6296 0.040 0.528 0.152 0.164 0.072 0.044
#> SRR934244     2   0.768     0.6296 0.040 0.528 0.152 0.164 0.072 0.044
#> SRR934245     2   0.771     0.6289 0.044 0.528 0.148 0.164 0.072 0.044
#> SRR934246     2   0.768     0.6296 0.040 0.528 0.152 0.164 0.072 0.044
#> SRR934247     2   0.768     0.6296 0.040 0.528 0.152 0.164 0.072 0.044
#> SRR934248     4   0.349     0.5459 0.036 0.008 0.012 0.848 0.020 0.076
#> SRR934249     4   0.349     0.5459 0.036 0.008 0.012 0.848 0.020 0.076
#> SRR934250     4   0.349     0.5459 0.036 0.008 0.012 0.848 0.020 0.076
#> SRR934251     4   0.349     0.5459 0.036 0.008 0.012 0.848 0.020 0.076
#> SRR934252     4   0.349     0.5459 0.036 0.008 0.012 0.848 0.020 0.076
#> SRR934253     4   0.349     0.5459 0.036 0.008 0.012 0.848 0.020 0.076
#> SRR934254     4   0.349     0.5459 0.036 0.008 0.012 0.848 0.020 0.076
#> SRR934255     4   0.349     0.5459 0.036 0.008 0.012 0.848 0.020 0.076
#> SRR934256     2   0.252     0.6966 0.044 0.884 0.000 0.000 0.004 0.068
#> SRR934257     2   0.252     0.6966 0.044 0.884 0.000 0.000 0.004 0.068
#> SRR934258     2   0.263     0.6964 0.044 0.880 0.000 0.000 0.008 0.068
#> SRR934259     2   0.252     0.6966 0.044 0.884 0.000 0.000 0.004 0.068
#> SRR934260     2   0.273     0.6959 0.044 0.876 0.000 0.000 0.012 0.068
#> SRR934261     2   0.258     0.6962 0.048 0.880 0.000 0.000 0.004 0.068
#> SRR934262     2   0.263     0.6964 0.044 0.880 0.000 0.000 0.008 0.068
#> SRR934263     2   0.252     0.6966 0.044 0.884 0.000 0.000 0.004 0.068
#> SRR934264     4   0.571     0.5576 0.032 0.028 0.040 0.708 0.064 0.128
#> SRR934265     4   0.571     0.5576 0.032 0.028 0.040 0.708 0.064 0.128
#> SRR934266     4   0.571     0.5576 0.032 0.028 0.040 0.708 0.064 0.128
#> SRR934267     4   0.571     0.5576 0.032 0.028 0.040 0.708 0.064 0.128
#> SRR934268     4   0.571     0.5576 0.032 0.028 0.040 0.708 0.064 0.128
#> SRR934269     4   0.571     0.5576 0.032 0.028 0.040 0.708 0.064 0.128
#> SRR934270     4   0.571     0.5576 0.032 0.028 0.040 0.708 0.064 0.128
#> SRR934271     4   0.571     0.5576 0.032 0.028 0.040 0.708 0.064 0.128
#> SRR934272     6   0.456     0.6459 0.088 0.000 0.116 0.020 0.016 0.760
#> SRR934273     6   0.456     0.6459 0.088 0.000 0.116 0.020 0.016 0.760
#> SRR934274     6   0.456     0.6459 0.088 0.000 0.116 0.020 0.016 0.760
#> SRR934275     6   0.456     0.6459 0.088 0.000 0.116 0.020 0.016 0.760
#> SRR934276     6   0.456     0.6459 0.088 0.000 0.116 0.020 0.016 0.760
#> SRR934277     6   0.456     0.6459 0.088 0.000 0.116 0.020 0.016 0.760
#> SRR934278     6   0.456     0.6459 0.088 0.000 0.116 0.020 0.016 0.760
#> SRR934279     6   0.456     0.6459 0.088 0.000 0.116 0.020 0.016 0.760
#> SRR934280     6   0.291     0.6662 0.048 0.028 0.024 0.008 0.008 0.884
#> SRR934281     6   0.291     0.6662 0.048 0.028 0.024 0.008 0.008 0.884
#> SRR934282     6   0.291     0.6662 0.048 0.028 0.024 0.008 0.008 0.884
#> SRR934283     6   0.291     0.6662 0.048 0.028 0.024 0.008 0.008 0.884
#> SRR934284     6   0.291     0.6662 0.048 0.028 0.024 0.008 0.008 0.884
#> SRR934285     6   0.291     0.6662 0.048 0.028 0.024 0.008 0.008 0.884
#> SRR934286     6   0.291     0.6662 0.048 0.028 0.024 0.008 0.008 0.884
#> SRR934287     6   0.291     0.6662 0.048 0.028 0.024 0.008 0.008 0.884
#> SRR934288     1   0.575     0.8142 0.660 0.024 0.048 0.004 0.064 0.200
#> SRR934289     1   0.575     0.8142 0.660 0.024 0.048 0.004 0.064 0.200
#> SRR934290     1   0.575     0.8142 0.660 0.024 0.048 0.004 0.064 0.200
#> SRR934291     1   0.575     0.8142 0.660 0.024 0.048 0.004 0.064 0.200
#> SRR934292     1   0.575     0.8142 0.660 0.024 0.048 0.004 0.064 0.200
#> SRR934293     1   0.575     0.8142 0.660 0.024 0.048 0.004 0.064 0.200
#> SRR934294     1   0.575     0.8142 0.660 0.024 0.048 0.004 0.064 0.200
#> SRR934295     1   0.575     0.8142 0.660 0.024 0.048 0.004 0.064 0.200
#> SRR934296     6   0.837    -0.0109 0.332 0.108 0.108 0.020 0.084 0.348
#> SRR934297     6   0.837    -0.0109 0.332 0.108 0.108 0.020 0.084 0.348
#> SRR934298     6   0.837    -0.0109 0.332 0.108 0.108 0.020 0.084 0.348
#> SRR934299     6   0.837    -0.0109 0.332 0.108 0.108 0.020 0.084 0.348
#> SRR934300     6   0.837    -0.0109 0.332 0.108 0.108 0.020 0.084 0.348
#> SRR934301     6   0.837    -0.0109 0.332 0.108 0.108 0.020 0.084 0.348
#> SRR934302     6   0.837    -0.0109 0.332 0.108 0.108 0.020 0.084 0.348
#> SRR934303     6   0.837    -0.0109 0.332 0.108 0.108 0.020 0.084 0.348
#> SRR934304     5   0.370     0.9910 0.004 0.008 0.004 0.192 0.776 0.016
#> SRR934305     5   0.400     0.9878 0.004 0.012 0.012 0.192 0.764 0.016
#> SRR934306     5   0.356     0.9914 0.004 0.008 0.000 0.192 0.780 0.016
#> SRR934307     5   0.367     0.9912 0.008 0.008 0.000 0.192 0.776 0.016
#> SRR934308     5   0.401     0.9862 0.012 0.008 0.008 0.192 0.764 0.016
#> SRR934309     5   0.441     0.9750 0.012 0.016 0.016 0.196 0.744 0.016
#> SRR934310     5   0.367     0.9912 0.008 0.008 0.000 0.192 0.776 0.016
#> SRR934311     5   0.356     0.9914 0.004 0.008 0.000 0.192 0.780 0.016
#> SRR934312     6   0.451     0.6360 0.132 0.008 0.080 0.008 0.012 0.760
#> SRR934313     6   0.451     0.6360 0.132 0.008 0.080 0.008 0.012 0.760
#> SRR934314     6   0.451     0.6360 0.132 0.008 0.080 0.008 0.012 0.760
#> SRR934315     6   0.451     0.6360 0.132 0.008 0.080 0.008 0.012 0.760
#> SRR934316     6   0.451     0.6360 0.132 0.008 0.080 0.008 0.012 0.760
#> SRR934317     6   0.451     0.6360 0.132 0.008 0.080 0.008 0.012 0.760
#> SRR934318     6   0.451     0.6360 0.132 0.008 0.080 0.008 0.012 0.760
#> SRR934319     6   0.451     0.6360 0.132 0.008 0.080 0.008 0.012 0.760
#> SRR934320     6   0.604     0.5686 0.088 0.084 0.088 0.024 0.028 0.688
#> SRR934321     6   0.604     0.5686 0.088 0.084 0.088 0.024 0.028 0.688
#> SRR934322     6   0.604     0.5686 0.088 0.084 0.088 0.024 0.028 0.688
#> SRR934323     6   0.604     0.5686 0.088 0.084 0.088 0.024 0.028 0.688
#> SRR934324     6   0.604     0.5686 0.088 0.084 0.088 0.024 0.028 0.688
#> SRR934325     6   0.604     0.5686 0.088 0.084 0.088 0.024 0.028 0.688
#> SRR934326     6   0.604     0.5686 0.088 0.084 0.088 0.024 0.028 0.688
#> SRR934327     6   0.604     0.5686 0.088 0.084 0.088 0.024 0.028 0.688
#> SRR934328     1   0.345     0.8791 0.812 0.000 0.004 0.016 0.020 0.148
#> SRR934329     1   0.345     0.8791 0.812 0.000 0.004 0.016 0.020 0.148
#> SRR934330     1   0.345     0.8791 0.812 0.000 0.004 0.016 0.020 0.148
#> SRR934331     1   0.345     0.8791 0.812 0.000 0.004 0.016 0.020 0.148
#> SRR934332     1   0.345     0.8791 0.812 0.000 0.004 0.016 0.020 0.148
#> SRR934333     1   0.345     0.8791 0.812 0.000 0.004 0.016 0.020 0.148
#> SRR934334     1   0.345     0.8791 0.812 0.000 0.004 0.016 0.020 0.148
#> SRR934335     1   0.345     0.8791 0.812 0.000 0.004 0.016 0.020 0.148
#> SRR934344     1   0.394     0.8689 0.776 0.004 0.024 0.008 0.012 0.176
#> SRR934345     1   0.394     0.8689 0.776 0.004 0.024 0.008 0.012 0.176
#> SRR934346     1   0.394     0.8689 0.776 0.004 0.024 0.008 0.012 0.176
#> SRR934347     1   0.394     0.8689 0.776 0.004 0.024 0.008 0.012 0.176
#> SRR934348     1   0.394     0.8689 0.776 0.004 0.024 0.008 0.012 0.176
#> SRR934349     1   0.394     0.8689 0.776 0.004 0.024 0.008 0.012 0.176
#> SRR934350     1   0.394     0.8689 0.776 0.004 0.024 0.008 0.012 0.176
#> SRR934351     1   0.394     0.8689 0.776 0.004 0.024 0.008 0.012 0.176
#> SRR934336     6   0.305     0.6502 0.016 0.008 0.068 0.028 0.008 0.872
#> SRR934337     6   0.305     0.6502 0.016 0.008 0.068 0.028 0.008 0.872
#> SRR934338     6   0.305     0.6502 0.016 0.008 0.068 0.028 0.008 0.872
#> SRR934339     6   0.305     0.6502 0.016 0.008 0.068 0.028 0.008 0.872
#> SRR934340     6   0.305     0.6502 0.016 0.008 0.068 0.028 0.008 0.872
#> SRR934341     6   0.305     0.6502 0.016 0.008 0.068 0.028 0.008 0.872
#> SRR934342     6   0.305     0.6502 0.016 0.008 0.068 0.028 0.008 0.872

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14550 rows and 135 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.789           0.852       0.941          0.486 0.511   0.511
#> 3 3 0.776           0.896       0.920          0.263 0.831   0.683
#> 4 4 0.672           0.870       0.875          0.193 0.875   0.676
#> 5 5 0.743           0.814       0.766          0.069 0.972   0.891
#> 6 6 0.778           0.614       0.722          0.042 0.966   0.851

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR934216     1   0.983      0.289 0.576 0.424
#> SRR934217     1   0.983      0.289 0.576 0.424
#> SRR934218     1   0.983      0.289 0.576 0.424
#> SRR934219     1   0.983      0.289 0.576 0.424
#> SRR934220     1   0.983      0.289 0.576 0.424
#> SRR934221     1   0.983      0.289 0.576 0.424
#> SRR934222     1   0.983      0.289 0.576 0.424
#> SRR934223     1   0.983      0.289 0.576 0.424
#> SRR934224     1   0.000      0.951 1.000 0.000
#> SRR934225     1   0.000      0.951 1.000 0.000
#> SRR934226     1   0.000      0.951 1.000 0.000
#> SRR934227     1   0.000      0.951 1.000 0.000
#> SRR934228     1   0.000      0.951 1.000 0.000
#> SRR934229     1   0.000      0.951 1.000 0.000
#> SRR934230     1   0.000      0.951 1.000 0.000
#> SRR934231     1   0.000      0.951 1.000 0.000
#> SRR934232     2   0.000      0.910 0.000 1.000
#> SRR934233     2   0.000      0.910 0.000 1.000
#> SRR934234     2   0.000      0.910 0.000 1.000
#> SRR934235     2   0.000      0.910 0.000 1.000
#> SRR934236     2   0.000      0.910 0.000 1.000
#> SRR934237     2   0.000      0.910 0.000 1.000
#> SRR934238     2   0.000      0.910 0.000 1.000
#> SRR934239     2   0.000      0.910 0.000 1.000
#> SRR934240     2   0.000      0.910 0.000 1.000
#> SRR934241     2   0.000      0.910 0.000 1.000
#> SRR934242     2   0.000      0.910 0.000 1.000
#> SRR934243     2   0.000      0.910 0.000 1.000
#> SRR934244     2   0.000      0.910 0.000 1.000
#> SRR934245     2   0.000      0.910 0.000 1.000
#> SRR934246     2   0.000      0.910 0.000 1.000
#> SRR934247     2   0.000      0.910 0.000 1.000
#> SRR934248     2   0.000      0.910 0.000 1.000
#> SRR934249     2   0.000      0.910 0.000 1.000
#> SRR934250     2   0.000      0.910 0.000 1.000
#> SRR934251     2   0.000      0.910 0.000 1.000
#> SRR934252     2   0.000      0.910 0.000 1.000
#> SRR934253     2   0.000      0.910 0.000 1.000
#> SRR934254     2   0.000      0.910 0.000 1.000
#> SRR934255     2   0.000      0.910 0.000 1.000
#> SRR934256     2   0.997      0.253 0.468 0.532
#> SRR934257     2   0.997      0.253 0.468 0.532
#> SRR934258     2   0.997      0.253 0.468 0.532
#> SRR934259     2   0.997      0.253 0.468 0.532
#> SRR934260     2   0.997      0.253 0.468 0.532
#> SRR934261     2   0.997      0.253 0.468 0.532
#> SRR934262     2   0.997      0.253 0.468 0.532
#> SRR934263     2   0.997      0.253 0.468 0.532
#> SRR934264     2   0.000      0.910 0.000 1.000
#> SRR934265     2   0.000      0.910 0.000 1.000
#> SRR934266     2   0.000      0.910 0.000 1.000
#> SRR934267     2   0.000      0.910 0.000 1.000
#> SRR934268     2   0.000      0.910 0.000 1.000
#> SRR934269     2   0.000      0.910 0.000 1.000
#> SRR934270     2   0.000      0.910 0.000 1.000
#> SRR934271     2   0.000      0.910 0.000 1.000
#> SRR934272     1   0.000      0.951 1.000 0.000
#> SRR934273     1   0.000      0.951 1.000 0.000
#> SRR934274     1   0.000      0.951 1.000 0.000
#> SRR934275     1   0.000      0.951 1.000 0.000
#> SRR934276     1   0.000      0.951 1.000 0.000
#> SRR934277     1   0.000      0.951 1.000 0.000
#> SRR934278     1   0.000      0.951 1.000 0.000
#> SRR934279     1   0.000      0.951 1.000 0.000
#> SRR934280     1   0.000      0.951 1.000 0.000
#> SRR934281     1   0.000      0.951 1.000 0.000
#> SRR934282     1   0.000      0.951 1.000 0.000
#> SRR934283     1   0.000      0.951 1.000 0.000
#> SRR934284     1   0.000      0.951 1.000 0.000
#> SRR934285     1   0.000      0.951 1.000 0.000
#> SRR934286     1   0.000      0.951 1.000 0.000
#> SRR934287     1   0.000      0.951 1.000 0.000
#> SRR934288     1   0.000      0.951 1.000 0.000
#> SRR934289     1   0.000      0.951 1.000 0.000
#> SRR934290     1   0.000      0.951 1.000 0.000
#> SRR934291     1   0.000      0.951 1.000 0.000
#> SRR934292     1   0.000      0.951 1.000 0.000
#> SRR934293     1   0.000      0.951 1.000 0.000
#> SRR934294     1   0.000      0.951 1.000 0.000
#> SRR934295     1   0.000      0.951 1.000 0.000
#> SRR934296     2   0.456      0.849 0.096 0.904
#> SRR934297     2   0.456      0.849 0.096 0.904
#> SRR934298     2   0.456      0.849 0.096 0.904
#> SRR934299     2   0.456      0.849 0.096 0.904
#> SRR934300     2   0.456      0.849 0.096 0.904
#> SRR934301     2   0.456      0.849 0.096 0.904
#> SRR934302     2   0.456      0.849 0.096 0.904
#> SRR934303     2   0.456      0.849 0.096 0.904
#> SRR934304     2   0.000      0.910 0.000 1.000
#> SRR934305     2   0.000      0.910 0.000 1.000
#> SRR934306     2   0.000      0.910 0.000 1.000
#> SRR934307     2   0.000      0.910 0.000 1.000
#> SRR934308     2   0.000      0.910 0.000 1.000
#> SRR934309     2   0.000      0.910 0.000 1.000
#> SRR934310     2   0.000      0.910 0.000 1.000
#> SRR934311     2   0.000      0.910 0.000 1.000
#> SRR934312     1   0.000      0.951 1.000 0.000
#> SRR934313     1   0.000      0.951 1.000 0.000
#> SRR934314     1   0.000      0.951 1.000 0.000
#> SRR934315     1   0.000      0.951 1.000 0.000
#> SRR934316     1   0.000      0.951 1.000 0.000
#> SRR934317     1   0.000      0.951 1.000 0.000
#> SRR934318     1   0.000      0.951 1.000 0.000
#> SRR934319     1   0.000      0.951 1.000 0.000
#> SRR934320     1   0.000      0.951 1.000 0.000
#> SRR934321     1   0.000      0.951 1.000 0.000
#> SRR934322     1   0.000      0.951 1.000 0.000
#> SRR934323     1   0.000      0.951 1.000 0.000
#> SRR934324     1   0.000      0.951 1.000 0.000
#> SRR934325     1   0.000      0.951 1.000 0.000
#> SRR934326     1   0.000      0.951 1.000 0.000
#> SRR934327     1   0.000      0.951 1.000 0.000
#> SRR934328     1   0.000      0.951 1.000 0.000
#> SRR934329     1   0.000      0.951 1.000 0.000
#> SRR934330     1   0.000      0.951 1.000 0.000
#> SRR934331     1   0.000      0.951 1.000 0.000
#> SRR934332     1   0.000      0.951 1.000 0.000
#> SRR934333     1   0.000      0.951 1.000 0.000
#> SRR934334     1   0.000      0.951 1.000 0.000
#> SRR934335     1   0.000      0.951 1.000 0.000
#> SRR934344     1   0.000      0.951 1.000 0.000
#> SRR934345     1   0.000      0.951 1.000 0.000
#> SRR934346     1   0.000      0.951 1.000 0.000
#> SRR934347     1   0.000      0.951 1.000 0.000
#> SRR934348     1   0.000      0.951 1.000 0.000
#> SRR934349     1   0.000      0.951 1.000 0.000
#> SRR934350     1   0.000      0.951 1.000 0.000
#> SRR934351     1   0.000      0.951 1.000 0.000
#> SRR934336     1   0.000      0.951 1.000 0.000
#> SRR934337     1   0.000      0.951 1.000 0.000
#> SRR934338     1   0.000      0.951 1.000 0.000
#> SRR934339     1   0.000      0.951 1.000 0.000
#> SRR934340     1   0.000      0.951 1.000 0.000
#> SRR934341     1   0.000      0.951 1.000 0.000
#> SRR934342     1   0.000      0.951 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR934216     3  0.5741      0.856 0.036 0.188 0.776
#> SRR934217     3  0.5741      0.856 0.036 0.188 0.776
#> SRR934218     3  0.5741      0.856 0.036 0.188 0.776
#> SRR934219     3  0.5741      0.856 0.036 0.188 0.776
#> SRR934220     3  0.5741      0.856 0.036 0.188 0.776
#> SRR934221     3  0.5741      0.856 0.036 0.188 0.776
#> SRR934222     3  0.5741      0.856 0.036 0.188 0.776
#> SRR934223     3  0.5741      0.856 0.036 0.188 0.776
#> SRR934224     1  0.0983      0.960 0.980 0.004 0.016
#> SRR934225     1  0.0983      0.960 0.980 0.004 0.016
#> SRR934226     1  0.0983      0.960 0.980 0.004 0.016
#> SRR934227     1  0.0983      0.960 0.980 0.004 0.016
#> SRR934228     1  0.0983      0.960 0.980 0.004 0.016
#> SRR934229     1  0.0983      0.960 0.980 0.004 0.016
#> SRR934230     1  0.0983      0.960 0.980 0.004 0.016
#> SRR934231     1  0.0983      0.960 0.980 0.004 0.016
#> SRR934232     2  0.5363      0.797 0.000 0.724 0.276
#> SRR934233     2  0.5363      0.797 0.000 0.724 0.276
#> SRR934234     2  0.5363      0.797 0.000 0.724 0.276
#> SRR934235     2  0.5363      0.797 0.000 0.724 0.276
#> SRR934236     2  0.5363      0.797 0.000 0.724 0.276
#> SRR934237     2  0.5363      0.797 0.000 0.724 0.276
#> SRR934238     2  0.5363      0.797 0.000 0.724 0.276
#> SRR934239     2  0.5363      0.797 0.000 0.724 0.276
#> SRR934240     2  0.4702      0.829 0.000 0.788 0.212
#> SRR934241     2  0.4702      0.829 0.000 0.788 0.212
#> SRR934242     2  0.4702      0.829 0.000 0.788 0.212
#> SRR934243     2  0.4702      0.829 0.000 0.788 0.212
#> SRR934244     2  0.4702      0.829 0.000 0.788 0.212
#> SRR934245     2  0.4702      0.829 0.000 0.788 0.212
#> SRR934246     2  0.4702      0.829 0.000 0.788 0.212
#> SRR934247     2  0.4702      0.829 0.000 0.788 0.212
#> SRR934248     3  0.0237      0.879 0.000 0.004 0.996
#> SRR934249     3  0.0237      0.879 0.000 0.004 0.996
#> SRR934250     3  0.0237      0.879 0.000 0.004 0.996
#> SRR934251     3  0.0237      0.879 0.000 0.004 0.996
#> SRR934252     3  0.0237      0.879 0.000 0.004 0.996
#> SRR934253     3  0.0237      0.879 0.000 0.004 0.996
#> SRR934254     3  0.0237      0.879 0.000 0.004 0.996
#> SRR934255     3  0.0237      0.879 0.000 0.004 0.996
#> SRR934256     2  0.4682      0.753 0.192 0.804 0.004
#> SRR934257     2  0.4682      0.753 0.192 0.804 0.004
#> SRR934258     2  0.4682      0.753 0.192 0.804 0.004
#> SRR934259     2  0.4682      0.753 0.192 0.804 0.004
#> SRR934260     2  0.4682      0.753 0.192 0.804 0.004
#> SRR934261     2  0.4682      0.753 0.192 0.804 0.004
#> SRR934262     2  0.4682      0.753 0.192 0.804 0.004
#> SRR934263     2  0.4682      0.753 0.192 0.804 0.004
#> SRR934264     3  0.0000      0.879 0.000 0.000 1.000
#> SRR934265     3  0.0000      0.879 0.000 0.000 1.000
#> SRR934266     3  0.0000      0.879 0.000 0.000 1.000
#> SRR934267     3  0.0000      0.879 0.000 0.000 1.000
#> SRR934268     3  0.0000      0.879 0.000 0.000 1.000
#> SRR934269     3  0.0000      0.879 0.000 0.000 1.000
#> SRR934270     3  0.0000      0.879 0.000 0.000 1.000
#> SRR934271     3  0.0000      0.879 0.000 0.000 1.000
#> SRR934272     1  0.0661      0.963 0.988 0.004 0.008
#> SRR934273     1  0.0661      0.963 0.988 0.004 0.008
#> SRR934274     1  0.0661      0.963 0.988 0.004 0.008
#> SRR934275     1  0.0661      0.963 0.988 0.004 0.008
#> SRR934276     1  0.0661      0.963 0.988 0.004 0.008
#> SRR934277     1  0.0661      0.963 0.988 0.004 0.008
#> SRR934278     1  0.0661      0.963 0.988 0.004 0.008
#> SRR934279     1  0.0661      0.963 0.988 0.004 0.008
#> SRR934280     1  0.0237      0.964 0.996 0.000 0.004
#> SRR934281     1  0.0237      0.964 0.996 0.000 0.004
#> SRR934282     1  0.0237      0.964 0.996 0.000 0.004
#> SRR934283     1  0.0237      0.964 0.996 0.000 0.004
#> SRR934284     1  0.0237      0.964 0.996 0.000 0.004
#> SRR934285     1  0.0237      0.964 0.996 0.000 0.004
#> SRR934286     1  0.0237      0.964 0.996 0.000 0.004
#> SRR934287     1  0.0237      0.964 0.996 0.000 0.004
#> SRR934288     1  0.2796      0.931 0.908 0.092 0.000
#> SRR934289     1  0.2796      0.931 0.908 0.092 0.000
#> SRR934290     1  0.2796      0.931 0.908 0.092 0.000
#> SRR934291     1  0.2796      0.931 0.908 0.092 0.000
#> SRR934292     1  0.2796      0.931 0.908 0.092 0.000
#> SRR934293     1  0.2796      0.931 0.908 0.092 0.000
#> SRR934294     1  0.2796      0.931 0.908 0.092 0.000
#> SRR934295     1  0.2796      0.931 0.908 0.092 0.000
#> SRR934296     2  0.0592      0.789 0.000 0.988 0.012
#> SRR934297     2  0.0592      0.789 0.000 0.988 0.012
#> SRR934298     2  0.0592      0.789 0.000 0.988 0.012
#> SRR934299     2  0.0592      0.789 0.000 0.988 0.012
#> SRR934300     2  0.0592      0.789 0.000 0.988 0.012
#> SRR934301     2  0.0592      0.789 0.000 0.988 0.012
#> SRR934302     2  0.0592      0.789 0.000 0.988 0.012
#> SRR934303     2  0.0592      0.789 0.000 0.988 0.012
#> SRR934304     3  0.4346      0.874 0.000 0.184 0.816
#> SRR934305     3  0.4346      0.874 0.000 0.184 0.816
#> SRR934306     3  0.4346      0.874 0.000 0.184 0.816
#> SRR934307     3  0.4346      0.874 0.000 0.184 0.816
#> SRR934308     3  0.4346      0.874 0.000 0.184 0.816
#> SRR934309     3  0.4346      0.874 0.000 0.184 0.816
#> SRR934310     3  0.4346      0.874 0.000 0.184 0.816
#> SRR934311     3  0.4346      0.874 0.000 0.184 0.816
#> SRR934312     1  0.0237      0.964 0.996 0.000 0.004
#> SRR934313     1  0.0237      0.964 0.996 0.000 0.004
#> SRR934314     1  0.0237      0.964 0.996 0.000 0.004
#> SRR934315     1  0.0237      0.964 0.996 0.000 0.004
#> SRR934316     1  0.0237      0.964 0.996 0.000 0.004
#> SRR934317     1  0.0237      0.964 0.996 0.000 0.004
#> SRR934318     1  0.0237      0.964 0.996 0.000 0.004
#> SRR934319     1  0.0237      0.964 0.996 0.000 0.004
#> SRR934320     1  0.1529      0.955 0.960 0.040 0.000
#> SRR934321     1  0.1529      0.955 0.960 0.040 0.000
#> SRR934322     1  0.1529      0.955 0.960 0.040 0.000
#> SRR934323     1  0.1529      0.955 0.960 0.040 0.000
#> SRR934324     1  0.1529      0.955 0.960 0.040 0.000
#> SRR934325     1  0.1529      0.955 0.960 0.040 0.000
#> SRR934326     1  0.1529      0.955 0.960 0.040 0.000
#> SRR934327     1  0.1529      0.955 0.960 0.040 0.000
#> SRR934328     1  0.2711      0.934 0.912 0.088 0.000
#> SRR934329     1  0.2711      0.934 0.912 0.088 0.000
#> SRR934330     1  0.2711      0.934 0.912 0.088 0.000
#> SRR934331     1  0.2711      0.934 0.912 0.088 0.000
#> SRR934332     1  0.2711      0.934 0.912 0.088 0.000
#> SRR934333     1  0.2711      0.934 0.912 0.088 0.000
#> SRR934334     1  0.2711      0.934 0.912 0.088 0.000
#> SRR934335     1  0.2711      0.934 0.912 0.088 0.000
#> SRR934344     1  0.1964      0.951 0.944 0.056 0.000
#> SRR934345     1  0.1964      0.951 0.944 0.056 0.000
#> SRR934346     1  0.1964      0.951 0.944 0.056 0.000
#> SRR934347     1  0.1964      0.951 0.944 0.056 0.000
#> SRR934348     1  0.1964      0.951 0.944 0.056 0.000
#> SRR934349     1  0.1964      0.951 0.944 0.056 0.000
#> SRR934350     1  0.1964      0.951 0.944 0.056 0.000
#> SRR934351     1  0.1964      0.951 0.944 0.056 0.000
#> SRR934336     1  0.0661      0.963 0.988 0.004 0.008
#> SRR934337     1  0.0661      0.963 0.988 0.004 0.008
#> SRR934338     1  0.0661      0.963 0.988 0.004 0.008
#> SRR934339     1  0.0661      0.963 0.988 0.004 0.008
#> SRR934340     1  0.0661      0.963 0.988 0.004 0.008
#> SRR934341     1  0.0661      0.963 0.988 0.004 0.008
#> SRR934342     1  0.0661      0.963 0.988 0.004 0.008

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> SRR934216     3  0.5900      0.830 0.008 0.168 0.716 0.108
#> SRR934217     3  0.5900      0.830 0.008 0.168 0.716 0.108
#> SRR934218     3  0.5900      0.830 0.008 0.168 0.716 0.108
#> SRR934219     3  0.5900      0.830 0.008 0.168 0.716 0.108
#> SRR934220     3  0.5900      0.830 0.008 0.168 0.716 0.108
#> SRR934221     3  0.5900      0.830 0.008 0.168 0.716 0.108
#> SRR934222     3  0.5900      0.830 0.008 0.168 0.716 0.108
#> SRR934223     3  0.5900      0.830 0.008 0.168 0.716 0.108
#> SRR934224     1  0.1302      0.930 0.956 0.000 0.000 0.044
#> SRR934225     1  0.1302      0.930 0.956 0.000 0.000 0.044
#> SRR934226     1  0.1302      0.930 0.956 0.000 0.000 0.044
#> SRR934227     1  0.1302      0.930 0.956 0.000 0.000 0.044
#> SRR934228     1  0.1302      0.930 0.956 0.000 0.000 0.044
#> SRR934229     1  0.1302      0.930 0.956 0.000 0.000 0.044
#> SRR934230     1  0.1302      0.930 0.956 0.000 0.000 0.044
#> SRR934231     1  0.1302      0.930 0.956 0.000 0.000 0.044
#> SRR934232     2  0.4283      0.782 0.000 0.740 0.256 0.004
#> SRR934233     2  0.4283      0.782 0.000 0.740 0.256 0.004
#> SRR934234     2  0.4283      0.782 0.000 0.740 0.256 0.004
#> SRR934235     2  0.4283      0.782 0.000 0.740 0.256 0.004
#> SRR934236     2  0.4283      0.782 0.000 0.740 0.256 0.004
#> SRR934237     2  0.4283      0.782 0.000 0.740 0.256 0.004
#> SRR934238     2  0.4283      0.782 0.000 0.740 0.256 0.004
#> SRR934239     2  0.4283      0.782 0.000 0.740 0.256 0.004
#> SRR934240     2  0.3356      0.815 0.000 0.824 0.176 0.000
#> SRR934241     2  0.3356      0.815 0.000 0.824 0.176 0.000
#> SRR934242     2  0.3356      0.815 0.000 0.824 0.176 0.000
#> SRR934243     2  0.3356      0.815 0.000 0.824 0.176 0.000
#> SRR934244     2  0.3356      0.815 0.000 0.824 0.176 0.000
#> SRR934245     2  0.3356      0.815 0.000 0.824 0.176 0.000
#> SRR934246     2  0.3356      0.815 0.000 0.824 0.176 0.000
#> SRR934247     2  0.3356      0.815 0.000 0.824 0.176 0.000
#> SRR934248     3  0.0524      0.839 0.000 0.008 0.988 0.004
#> SRR934249     3  0.0524      0.839 0.000 0.008 0.988 0.004
#> SRR934250     3  0.0524      0.839 0.000 0.008 0.988 0.004
#> SRR934251     3  0.0524      0.839 0.000 0.008 0.988 0.004
#> SRR934252     3  0.0524      0.839 0.000 0.008 0.988 0.004
#> SRR934253     3  0.0524      0.839 0.000 0.008 0.988 0.004
#> SRR934254     3  0.0524      0.839 0.000 0.008 0.988 0.004
#> SRR934255     3  0.0524      0.839 0.000 0.008 0.988 0.004
#> SRR934256     2  0.4688      0.764 0.080 0.792 0.000 0.128
#> SRR934257     2  0.4688      0.764 0.080 0.792 0.000 0.128
#> SRR934258     2  0.4688      0.764 0.080 0.792 0.000 0.128
#> SRR934259     2  0.4688      0.764 0.080 0.792 0.000 0.128
#> SRR934260     2  0.4688      0.764 0.080 0.792 0.000 0.128
#> SRR934261     2  0.4688      0.764 0.080 0.792 0.000 0.128
#> SRR934262     2  0.4688      0.764 0.080 0.792 0.000 0.128
#> SRR934263     2  0.4688      0.764 0.080 0.792 0.000 0.128
#> SRR934264     3  0.0336      0.841 0.000 0.008 0.992 0.000
#> SRR934265     3  0.0336      0.841 0.000 0.008 0.992 0.000
#> SRR934266     3  0.0336      0.841 0.000 0.008 0.992 0.000
#> SRR934267     3  0.0336      0.841 0.000 0.008 0.992 0.000
#> SRR934268     3  0.0336      0.841 0.000 0.008 0.992 0.000
#> SRR934269     3  0.0336      0.841 0.000 0.008 0.992 0.000
#> SRR934270     3  0.0336      0.841 0.000 0.008 0.992 0.000
#> SRR934271     3  0.0336      0.841 0.000 0.008 0.992 0.000
#> SRR934272     1  0.1557      0.933 0.944 0.000 0.000 0.056
#> SRR934273     1  0.1557      0.933 0.944 0.000 0.000 0.056
#> SRR934274     1  0.1557      0.933 0.944 0.000 0.000 0.056
#> SRR934275     1  0.1557      0.933 0.944 0.000 0.000 0.056
#> SRR934276     1  0.1557      0.933 0.944 0.000 0.000 0.056
#> SRR934277     1  0.1557      0.933 0.944 0.000 0.000 0.056
#> SRR934278     1  0.1557      0.933 0.944 0.000 0.000 0.056
#> SRR934279     1  0.1557      0.933 0.944 0.000 0.000 0.056
#> SRR934280     1  0.0817      0.932 0.976 0.000 0.000 0.024
#> SRR934281     1  0.0817      0.932 0.976 0.000 0.000 0.024
#> SRR934282     1  0.0817      0.932 0.976 0.000 0.000 0.024
#> SRR934283     1  0.0817      0.932 0.976 0.000 0.000 0.024
#> SRR934284     1  0.0817      0.932 0.976 0.000 0.000 0.024
#> SRR934285     1  0.0817      0.932 0.976 0.000 0.000 0.024
#> SRR934286     1  0.0817      0.932 0.976 0.000 0.000 0.024
#> SRR934287     1  0.0817      0.932 0.976 0.000 0.000 0.024
#> SRR934288     4  0.2675      0.984 0.100 0.008 0.000 0.892
#> SRR934289     4  0.2675      0.984 0.100 0.008 0.000 0.892
#> SRR934290     4  0.2675      0.984 0.100 0.008 0.000 0.892
#> SRR934291     4  0.2675      0.984 0.100 0.008 0.000 0.892
#> SRR934292     4  0.2675      0.984 0.100 0.008 0.000 0.892
#> SRR934293     4  0.2675      0.984 0.100 0.008 0.000 0.892
#> SRR934294     4  0.2675      0.984 0.100 0.008 0.000 0.892
#> SRR934295     4  0.2675      0.984 0.100 0.008 0.000 0.892
#> SRR934296     2  0.3688      0.691 0.000 0.792 0.000 0.208
#> SRR934297     2  0.3688      0.691 0.000 0.792 0.000 0.208
#> SRR934298     2  0.3688      0.691 0.000 0.792 0.000 0.208
#> SRR934299     2  0.3688      0.691 0.000 0.792 0.000 0.208
#> SRR934300     2  0.3688      0.691 0.000 0.792 0.000 0.208
#> SRR934301     2  0.3688      0.691 0.000 0.792 0.000 0.208
#> SRR934302     2  0.3688      0.691 0.000 0.792 0.000 0.208
#> SRR934303     2  0.3688      0.691 0.000 0.792 0.000 0.208
#> SRR934304     3  0.5143      0.841 0.000 0.172 0.752 0.076
#> SRR934305     3  0.5143      0.841 0.000 0.172 0.752 0.076
#> SRR934306     3  0.5143      0.841 0.000 0.172 0.752 0.076
#> SRR934307     3  0.5143      0.841 0.000 0.172 0.752 0.076
#> SRR934308     3  0.5143      0.841 0.000 0.172 0.752 0.076
#> SRR934309     3  0.5143      0.841 0.000 0.172 0.752 0.076
#> SRR934310     3  0.5143      0.841 0.000 0.172 0.752 0.076
#> SRR934311     3  0.5143      0.841 0.000 0.172 0.752 0.076
#> SRR934312     1  0.2011      0.916 0.920 0.000 0.000 0.080
#> SRR934313     1  0.2011      0.916 0.920 0.000 0.000 0.080
#> SRR934314     1  0.2011      0.916 0.920 0.000 0.000 0.080
#> SRR934315     1  0.2011      0.916 0.920 0.000 0.000 0.080
#> SRR934316     1  0.2011      0.916 0.920 0.000 0.000 0.080
#> SRR934317     1  0.2011      0.916 0.920 0.000 0.000 0.080
#> SRR934318     1  0.2011      0.916 0.920 0.000 0.000 0.080
#> SRR934319     1  0.2011      0.916 0.920 0.000 0.000 0.080
#> SRR934320     1  0.3545      0.810 0.828 0.008 0.000 0.164
#> SRR934321     1  0.3545      0.810 0.828 0.008 0.000 0.164
#> SRR934322     1  0.3545      0.810 0.828 0.008 0.000 0.164
#> SRR934323     1  0.3545      0.810 0.828 0.008 0.000 0.164
#> SRR934324     1  0.3545      0.810 0.828 0.008 0.000 0.164
#> SRR934325     1  0.3545      0.810 0.828 0.008 0.000 0.164
#> SRR934326     1  0.3545      0.810 0.828 0.008 0.000 0.164
#> SRR934327     1  0.3545      0.810 0.828 0.008 0.000 0.164
#> SRR934328     4  0.2611      0.984 0.096 0.008 0.000 0.896
#> SRR934329     4  0.2611      0.984 0.096 0.008 0.000 0.896
#> SRR934330     4  0.2611      0.984 0.096 0.008 0.000 0.896
#> SRR934331     4  0.2611      0.984 0.096 0.008 0.000 0.896
#> SRR934332     4  0.2611      0.984 0.096 0.008 0.000 0.896
#> SRR934333     4  0.2611      0.984 0.096 0.008 0.000 0.896
#> SRR934334     4  0.2611      0.984 0.096 0.008 0.000 0.896
#> SRR934335     4  0.2611      0.984 0.096 0.008 0.000 0.896
#> SRR934344     4  0.2760      0.975 0.128 0.000 0.000 0.872
#> SRR934345     4  0.2760      0.975 0.128 0.000 0.000 0.872
#> SRR934346     4  0.2760      0.975 0.128 0.000 0.000 0.872
#> SRR934347     4  0.2760      0.975 0.128 0.000 0.000 0.872
#> SRR934348     4  0.2760      0.975 0.128 0.000 0.000 0.872
#> SRR934349     4  0.2760      0.975 0.128 0.000 0.000 0.872
#> SRR934350     4  0.2760      0.975 0.128 0.000 0.000 0.872
#> SRR934351     4  0.2760      0.975 0.128 0.000 0.000 0.872
#> SRR934336     1  0.0921      0.933 0.972 0.000 0.000 0.028
#> SRR934337     1  0.0921      0.933 0.972 0.000 0.000 0.028
#> SRR934338     1  0.0921      0.933 0.972 0.000 0.000 0.028
#> SRR934339     1  0.0921      0.933 0.972 0.000 0.000 0.028
#> SRR934340     1  0.0921      0.933 0.972 0.000 0.000 0.028
#> SRR934341     1  0.0921      0.933 0.972 0.000 0.000 0.028
#> SRR934342     1  0.0921      0.933 0.972 0.000 0.000 0.028

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> SRR934216     5  0.1095      0.887 0.008 0.000 0.012 0.012 0.968
#> SRR934217     5  0.1095      0.887 0.008 0.000 0.012 0.012 0.968
#> SRR934218     5  0.1095      0.887 0.008 0.000 0.012 0.012 0.968
#> SRR934219     5  0.1095      0.887 0.008 0.000 0.012 0.012 0.968
#> SRR934220     5  0.1095      0.887 0.008 0.000 0.012 0.012 0.968
#> SRR934221     5  0.1095      0.887 0.008 0.000 0.012 0.012 0.968
#> SRR934222     5  0.1095      0.887 0.008 0.000 0.012 0.012 0.968
#> SRR934223     5  0.1095      0.887 0.008 0.000 0.012 0.012 0.968
#> SRR934224     1  0.3128      0.806 0.880 0.008 0.016 0.032 0.064
#> SRR934225     1  0.3128      0.806 0.880 0.008 0.016 0.032 0.064
#> SRR934226     1  0.3128      0.806 0.880 0.008 0.016 0.032 0.064
#> SRR934227     1  0.3128      0.806 0.880 0.008 0.016 0.032 0.064
#> SRR934228     1  0.3128      0.806 0.880 0.008 0.016 0.032 0.064
#> SRR934229     1  0.3128      0.806 0.880 0.008 0.016 0.032 0.064
#> SRR934230     1  0.3128      0.806 0.880 0.008 0.016 0.032 0.064
#> SRR934231     1  0.3128      0.806 0.880 0.008 0.016 0.032 0.064
#> SRR934232     2  0.4425      0.507 0.000 0.544 0.000 0.452 0.004
#> SRR934233     2  0.4425      0.507 0.000 0.544 0.000 0.452 0.004
#> SRR934234     2  0.4425      0.507 0.000 0.544 0.000 0.452 0.004
#> SRR934235     2  0.4425      0.507 0.000 0.544 0.000 0.452 0.004
#> SRR934236     2  0.4425      0.507 0.000 0.544 0.000 0.452 0.004
#> SRR934237     2  0.4425      0.507 0.000 0.544 0.000 0.452 0.004
#> SRR934238     2  0.4425      0.507 0.000 0.544 0.000 0.452 0.004
#> SRR934239     2  0.4425      0.507 0.000 0.544 0.000 0.452 0.004
#> SRR934240     2  0.2929      0.721 0.000 0.820 0.000 0.180 0.000
#> SRR934241     2  0.2929      0.721 0.000 0.820 0.000 0.180 0.000
#> SRR934242     2  0.2929      0.721 0.000 0.820 0.000 0.180 0.000
#> SRR934243     2  0.2929      0.721 0.000 0.820 0.000 0.180 0.000
#> SRR934244     2  0.2929      0.721 0.000 0.820 0.000 0.180 0.000
#> SRR934245     2  0.2929      0.721 0.000 0.820 0.000 0.180 0.000
#> SRR934246     2  0.2929      0.721 0.000 0.820 0.000 0.180 0.000
#> SRR934247     2  0.2929      0.721 0.000 0.820 0.000 0.180 0.000
#> SRR934248     4  0.4415      0.964 0.000 0.008 0.000 0.604 0.388
#> SRR934249     4  0.4415      0.964 0.000 0.008 0.000 0.604 0.388
#> SRR934250     4  0.4415      0.964 0.000 0.008 0.000 0.604 0.388
#> SRR934251     4  0.4415      0.964 0.000 0.008 0.000 0.604 0.388
#> SRR934252     4  0.4415      0.964 0.000 0.008 0.000 0.604 0.388
#> SRR934253     4  0.4415      0.964 0.000 0.008 0.000 0.604 0.388
#> SRR934254     4  0.4415      0.964 0.000 0.008 0.000 0.604 0.388
#> SRR934255     4  0.4415      0.964 0.000 0.008 0.000 0.604 0.388
#> SRR934256     2  0.2949      0.714 0.028 0.880 0.076 0.016 0.000
#> SRR934257     2  0.2949      0.714 0.028 0.880 0.076 0.016 0.000
#> SRR934258     2  0.2949      0.714 0.028 0.880 0.076 0.016 0.000
#> SRR934259     2  0.2949      0.714 0.028 0.880 0.076 0.016 0.000
#> SRR934260     2  0.2949      0.714 0.028 0.880 0.076 0.016 0.000
#> SRR934261     2  0.2949      0.714 0.028 0.880 0.076 0.016 0.000
#> SRR934262     2  0.2949      0.714 0.028 0.880 0.076 0.016 0.000
#> SRR934263     2  0.2949      0.714 0.028 0.880 0.076 0.016 0.000
#> SRR934264     4  0.4597      0.963 0.000 0.012 0.000 0.564 0.424
#> SRR934265     4  0.4597      0.963 0.000 0.012 0.000 0.564 0.424
#> SRR934266     4  0.4597      0.963 0.000 0.012 0.000 0.564 0.424
#> SRR934267     4  0.4597      0.963 0.000 0.012 0.000 0.564 0.424
#> SRR934268     4  0.4597      0.963 0.000 0.012 0.000 0.564 0.424
#> SRR934269     4  0.4597      0.963 0.000 0.012 0.000 0.564 0.424
#> SRR934270     4  0.4597      0.963 0.000 0.012 0.000 0.564 0.424
#> SRR934271     4  0.4597      0.963 0.000 0.012 0.000 0.564 0.424
#> SRR934272     1  0.4544      0.810 0.764 0.008 0.028 0.180 0.020
#> SRR934273     1  0.4544      0.810 0.764 0.008 0.028 0.180 0.020
#> SRR934274     1  0.4544      0.810 0.764 0.008 0.028 0.180 0.020
#> SRR934275     1  0.4544      0.810 0.764 0.008 0.028 0.180 0.020
#> SRR934276     1  0.4544      0.810 0.764 0.008 0.028 0.180 0.020
#> SRR934277     1  0.4544      0.810 0.764 0.008 0.028 0.180 0.020
#> SRR934278     1  0.4544      0.810 0.764 0.008 0.028 0.180 0.020
#> SRR934279     1  0.4544      0.810 0.764 0.008 0.028 0.180 0.020
#> SRR934280     1  0.3606      0.823 0.816 0.024 0.008 0.152 0.000
#> SRR934281     1  0.3606      0.823 0.816 0.024 0.008 0.152 0.000
#> SRR934282     1  0.3606      0.823 0.816 0.024 0.008 0.152 0.000
#> SRR934283     1  0.3606      0.823 0.816 0.024 0.008 0.152 0.000
#> SRR934284     1  0.3606      0.823 0.816 0.024 0.008 0.152 0.000
#> SRR934285     1  0.3606      0.823 0.816 0.024 0.008 0.152 0.000
#> SRR934286     1  0.3606      0.823 0.816 0.024 0.008 0.152 0.000
#> SRR934287     1  0.3606      0.823 0.816 0.024 0.008 0.152 0.000
#> SRR934288     3  0.1716      0.972 0.024 0.016 0.944 0.016 0.000
#> SRR934289     3  0.1716      0.972 0.024 0.016 0.944 0.016 0.000
#> SRR934290     3  0.1716      0.972 0.024 0.016 0.944 0.016 0.000
#> SRR934291     3  0.1716      0.972 0.024 0.016 0.944 0.016 0.000
#> SRR934292     3  0.1716      0.972 0.024 0.016 0.944 0.016 0.000
#> SRR934293     3  0.1716      0.972 0.024 0.016 0.944 0.016 0.000
#> SRR934294     3  0.1716      0.972 0.024 0.016 0.944 0.016 0.000
#> SRR934295     3  0.1716      0.972 0.024 0.016 0.944 0.016 0.000
#> SRR934296     2  0.6323      0.554 0.000 0.624 0.092 0.060 0.224
#> SRR934297     2  0.6323      0.554 0.000 0.624 0.092 0.060 0.224
#> SRR934298     2  0.6323      0.554 0.000 0.624 0.092 0.060 0.224
#> SRR934299     2  0.6323      0.554 0.000 0.624 0.092 0.060 0.224
#> SRR934300     2  0.6323      0.554 0.000 0.624 0.092 0.060 0.224
#> SRR934301     2  0.6323      0.554 0.000 0.624 0.092 0.060 0.224
#> SRR934302     2  0.6323      0.554 0.000 0.624 0.092 0.060 0.224
#> SRR934303     2  0.6323      0.554 0.000 0.624 0.092 0.060 0.224
#> SRR934304     5  0.2616      0.880 0.000 0.036 0.000 0.076 0.888
#> SRR934305     5  0.2616      0.880 0.000 0.036 0.000 0.076 0.888
#> SRR934306     5  0.2616      0.880 0.000 0.036 0.000 0.076 0.888
#> SRR934307     5  0.2616      0.880 0.000 0.036 0.000 0.076 0.888
#> SRR934308     5  0.2616      0.880 0.000 0.036 0.000 0.076 0.888
#> SRR934309     5  0.2616      0.880 0.000 0.036 0.000 0.076 0.888
#> SRR934310     5  0.2616      0.880 0.000 0.036 0.000 0.076 0.888
#> SRR934311     5  0.2616      0.880 0.000 0.036 0.000 0.076 0.888
#> SRR934312     1  0.5868      0.782 0.664 0.020 0.084 0.220 0.012
#> SRR934313     1  0.5868      0.782 0.664 0.020 0.084 0.220 0.012
#> SRR934314     1  0.5868      0.782 0.664 0.020 0.084 0.220 0.012
#> SRR934315     1  0.5868      0.782 0.664 0.020 0.084 0.220 0.012
#> SRR934316     1  0.5868      0.782 0.664 0.020 0.084 0.220 0.012
#> SRR934317     1  0.5868      0.782 0.664 0.020 0.084 0.220 0.012
#> SRR934318     1  0.5868      0.782 0.664 0.020 0.084 0.220 0.012
#> SRR934319     1  0.5868      0.782 0.664 0.020 0.084 0.220 0.012
#> SRR934320     1  0.6233      0.679 0.688 0.124 0.096 0.076 0.016
#> SRR934321     1  0.6233      0.679 0.688 0.124 0.096 0.076 0.016
#> SRR934322     1  0.6233      0.679 0.688 0.124 0.096 0.076 0.016
#> SRR934323     1  0.6233      0.679 0.688 0.124 0.096 0.076 0.016
#> SRR934324     1  0.6233      0.679 0.688 0.124 0.096 0.076 0.016
#> SRR934325     1  0.6233      0.679 0.688 0.124 0.096 0.076 0.016
#> SRR934326     1  0.6233      0.679 0.688 0.124 0.096 0.076 0.016
#> SRR934327     1  0.6233      0.679 0.688 0.124 0.096 0.076 0.016
#> SRR934328     3  0.0404      0.977 0.012 0.000 0.988 0.000 0.000
#> SRR934329     3  0.0404      0.977 0.012 0.000 0.988 0.000 0.000
#> SRR934330     3  0.0404      0.977 0.012 0.000 0.988 0.000 0.000
#> SRR934331     3  0.0404      0.977 0.012 0.000 0.988 0.000 0.000
#> SRR934332     3  0.0404      0.977 0.012 0.000 0.988 0.000 0.000
#> SRR934333     3  0.0404      0.977 0.012 0.000 0.988 0.000 0.000
#> SRR934334     3  0.0404      0.977 0.012 0.000 0.988 0.000 0.000
#> SRR934335     3  0.0404      0.977 0.012 0.000 0.988 0.000 0.000
#> SRR934344     3  0.1329      0.973 0.032 0.004 0.956 0.008 0.000
#> SRR934345     3  0.1329      0.973 0.032 0.004 0.956 0.008 0.000
#> SRR934346     3  0.1329      0.973 0.032 0.004 0.956 0.008 0.000
#> SRR934347     3  0.1329      0.973 0.032 0.004 0.956 0.008 0.000
#> SRR934348     3  0.1329      0.973 0.032 0.004 0.956 0.008 0.000
#> SRR934349     3  0.1329      0.973 0.032 0.004 0.956 0.008 0.000
#> SRR934350     3  0.1329      0.973 0.032 0.004 0.956 0.008 0.000
#> SRR934351     3  0.1329      0.973 0.032 0.004 0.956 0.008 0.000
#> SRR934336     1  0.1679      0.818 0.948 0.020 0.012 0.004 0.016
#> SRR934337     1  0.1679      0.818 0.948 0.020 0.012 0.004 0.016
#> SRR934338     1  0.1679      0.818 0.948 0.020 0.012 0.004 0.016
#> SRR934339     1  0.1679      0.818 0.948 0.020 0.012 0.004 0.016
#> SRR934340     1  0.1679      0.818 0.948 0.020 0.012 0.004 0.016
#> SRR934341     1  0.1679      0.818 0.948 0.020 0.012 0.004 0.016
#> SRR934342     1  0.1679      0.818 0.948 0.020 0.012 0.004 0.016

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR934216     5   0.229      0.902 0.004 0.000 0.072 0.008 0.900 0.016
#> SRR934217     5   0.229      0.902 0.004 0.000 0.072 0.008 0.900 0.016
#> SRR934218     5   0.229      0.902 0.004 0.000 0.072 0.008 0.900 0.016
#> SRR934219     5   0.229      0.902 0.004 0.000 0.072 0.008 0.900 0.016
#> SRR934220     5   0.229      0.902 0.004 0.000 0.072 0.008 0.900 0.016
#> SRR934221     5   0.229      0.902 0.004 0.000 0.072 0.008 0.900 0.016
#> SRR934222     5   0.229      0.902 0.004 0.000 0.072 0.008 0.900 0.016
#> SRR934223     5   0.229      0.902 0.004 0.000 0.072 0.008 0.900 0.016
#> SRR934224     6   0.178      0.438 0.008 0.000 0.024 0.008 0.024 0.936
#> SRR934225     6   0.178      0.438 0.008 0.000 0.024 0.008 0.024 0.936
#> SRR934226     6   0.178      0.438 0.008 0.000 0.024 0.008 0.024 0.936
#> SRR934227     6   0.178      0.438 0.008 0.000 0.024 0.008 0.024 0.936
#> SRR934228     6   0.178      0.438 0.008 0.000 0.024 0.008 0.024 0.936
#> SRR934229     6   0.178      0.438 0.008 0.000 0.024 0.008 0.024 0.936
#> SRR934230     6   0.178      0.438 0.008 0.000 0.024 0.008 0.024 0.936
#> SRR934231     6   0.178      0.438 0.008 0.000 0.024 0.008 0.024 0.936
#> SRR934232     2   0.385      0.446 0.000 0.612 0.004 0.384 0.000 0.000
#> SRR934233     2   0.385      0.446 0.000 0.612 0.004 0.384 0.000 0.000
#> SRR934234     2   0.385      0.446 0.000 0.612 0.004 0.384 0.000 0.000
#> SRR934235     2   0.385      0.446 0.000 0.612 0.004 0.384 0.000 0.000
#> SRR934236     2   0.385      0.446 0.000 0.612 0.004 0.384 0.000 0.000
#> SRR934237     2   0.385      0.446 0.000 0.612 0.004 0.384 0.000 0.000
#> SRR934238     2   0.385      0.446 0.000 0.612 0.004 0.384 0.000 0.000
#> SRR934239     2   0.385      0.446 0.000 0.612 0.004 0.384 0.000 0.000
#> SRR934240     2   0.200      0.656 0.000 0.884 0.000 0.116 0.000 0.000
#> SRR934241     2   0.200      0.656 0.000 0.884 0.000 0.116 0.000 0.000
#> SRR934242     2   0.200      0.656 0.000 0.884 0.000 0.116 0.000 0.000
#> SRR934243     2   0.200      0.656 0.000 0.884 0.000 0.116 0.000 0.000
#> SRR934244     2   0.200      0.656 0.000 0.884 0.000 0.116 0.000 0.000
#> SRR934245     2   0.200      0.656 0.000 0.884 0.000 0.116 0.000 0.000
#> SRR934246     2   0.200      0.656 0.000 0.884 0.000 0.116 0.000 0.000
#> SRR934247     2   0.200      0.656 0.000 0.884 0.000 0.116 0.000 0.000
#> SRR934248     4   0.292      0.969 0.000 0.000 0.008 0.808 0.184 0.000
#> SRR934249     4   0.292      0.969 0.000 0.000 0.008 0.808 0.184 0.000
#> SRR934250     4   0.292      0.969 0.000 0.000 0.008 0.808 0.184 0.000
#> SRR934251     4   0.292      0.969 0.000 0.000 0.008 0.808 0.184 0.000
#> SRR934252     4   0.292      0.969 0.000 0.000 0.008 0.808 0.184 0.000
#> SRR934253     4   0.292      0.969 0.000 0.000 0.008 0.808 0.184 0.000
#> SRR934254     4   0.292      0.969 0.000 0.000 0.008 0.808 0.184 0.000
#> SRR934255     4   0.292      0.969 0.000 0.000 0.008 0.808 0.184 0.000
#> SRR934256     2   0.388      0.647 0.028 0.728 0.240 0.004 0.000 0.000
#> SRR934257     2   0.388      0.647 0.028 0.728 0.240 0.004 0.000 0.000
#> SRR934258     2   0.388      0.647 0.028 0.728 0.240 0.004 0.000 0.000
#> SRR934259     2   0.388      0.647 0.028 0.728 0.240 0.004 0.000 0.000
#> SRR934260     2   0.388      0.647 0.028 0.728 0.240 0.004 0.000 0.000
#> SRR934261     2   0.388      0.647 0.028 0.728 0.240 0.004 0.000 0.000
#> SRR934262     2   0.388      0.647 0.028 0.728 0.240 0.004 0.000 0.000
#> SRR934263     2   0.388      0.647 0.028 0.728 0.240 0.004 0.000 0.000
#> SRR934264     4   0.326      0.968 0.000 0.000 0.012 0.772 0.216 0.000
#> SRR934265     4   0.326      0.968 0.000 0.000 0.012 0.772 0.216 0.000
#> SRR934266     4   0.326      0.968 0.000 0.000 0.012 0.772 0.216 0.000
#> SRR934267     4   0.326      0.968 0.000 0.000 0.012 0.772 0.216 0.000
#> SRR934268     4   0.326      0.968 0.000 0.000 0.012 0.772 0.216 0.000
#> SRR934269     4   0.326      0.968 0.000 0.000 0.012 0.772 0.216 0.000
#> SRR934270     4   0.326      0.968 0.000 0.000 0.012 0.772 0.216 0.000
#> SRR934271     4   0.326      0.968 0.000 0.000 0.012 0.772 0.216 0.000
#> SRR934272     6   0.429     -0.204 0.012 0.000 0.292 0.012 0.008 0.676
#> SRR934273     6   0.429     -0.204 0.012 0.000 0.292 0.012 0.008 0.676
#> SRR934274     6   0.429     -0.204 0.012 0.000 0.292 0.012 0.008 0.676
#> SRR934275     6   0.429     -0.204 0.012 0.000 0.292 0.012 0.008 0.676
#> SRR934276     6   0.429     -0.204 0.012 0.000 0.292 0.012 0.008 0.676
#> SRR934277     6   0.429     -0.204 0.012 0.000 0.292 0.012 0.008 0.676
#> SRR934278     6   0.429     -0.204 0.012 0.000 0.292 0.012 0.008 0.676
#> SRR934279     6   0.429     -0.204 0.012 0.000 0.292 0.012 0.008 0.676
#> SRR934280     6   0.420     -0.370 0.000 0.004 0.448 0.008 0.000 0.540
#> SRR934281     6   0.420     -0.370 0.000 0.004 0.448 0.008 0.000 0.540
#> SRR934282     6   0.420     -0.370 0.000 0.004 0.448 0.008 0.000 0.540
#> SRR934283     6   0.420     -0.370 0.000 0.004 0.448 0.008 0.000 0.540
#> SRR934284     6   0.420     -0.370 0.000 0.004 0.448 0.008 0.000 0.540
#> SRR934285     6   0.420     -0.370 0.000 0.004 0.448 0.008 0.000 0.540
#> SRR934286     6   0.420     -0.370 0.000 0.004 0.448 0.008 0.000 0.540
#> SRR934287     6   0.420     -0.370 0.000 0.004 0.448 0.008 0.000 0.540
#> SRR934288     1   0.224      0.944 0.916 0.016 0.032 0.028 0.004 0.004
#> SRR934289     1   0.224      0.944 0.916 0.016 0.032 0.028 0.004 0.004
#> SRR934290     1   0.224      0.944 0.916 0.016 0.032 0.028 0.004 0.004
#> SRR934291     1   0.224      0.944 0.916 0.016 0.032 0.028 0.004 0.004
#> SRR934292     1   0.224      0.944 0.916 0.016 0.032 0.028 0.004 0.004
#> SRR934293     1   0.224      0.944 0.916 0.016 0.032 0.028 0.004 0.004
#> SRR934294     1   0.224      0.944 0.916 0.016 0.032 0.028 0.004 0.004
#> SRR934295     1   0.224      0.944 0.916 0.016 0.032 0.028 0.004 0.004
#> SRR934296     2   0.776      0.441 0.056 0.412 0.252 0.072 0.208 0.000
#> SRR934297     2   0.776      0.441 0.056 0.412 0.252 0.072 0.208 0.000
#> SRR934298     2   0.776      0.441 0.056 0.412 0.252 0.072 0.208 0.000
#> SRR934299     2   0.776      0.441 0.056 0.412 0.252 0.072 0.208 0.000
#> SRR934300     2   0.776      0.441 0.056 0.412 0.252 0.072 0.208 0.000
#> SRR934301     2   0.776      0.441 0.056 0.412 0.252 0.072 0.208 0.000
#> SRR934302     2   0.776      0.441 0.056 0.412 0.252 0.072 0.208 0.000
#> SRR934303     2   0.776      0.441 0.056 0.412 0.252 0.072 0.208 0.000
#> SRR934304     5   0.175      0.899 0.000 0.020 0.000 0.056 0.924 0.000
#> SRR934305     5   0.175      0.899 0.000 0.020 0.000 0.056 0.924 0.000
#> SRR934306     5   0.175      0.899 0.000 0.020 0.000 0.056 0.924 0.000
#> SRR934307     5   0.175      0.899 0.000 0.020 0.000 0.056 0.924 0.000
#> SRR934308     5   0.175      0.899 0.000 0.020 0.000 0.056 0.924 0.000
#> SRR934309     5   0.175      0.899 0.000 0.020 0.000 0.056 0.924 0.000
#> SRR934310     5   0.175      0.899 0.000 0.020 0.000 0.056 0.924 0.000
#> SRR934311     5   0.175      0.899 0.000 0.020 0.000 0.056 0.924 0.000
#> SRR934312     3   0.502      1.000 0.052 0.000 0.504 0.008 0.000 0.436
#> SRR934313     3   0.502      1.000 0.052 0.000 0.504 0.008 0.000 0.436
#> SRR934314     3   0.502      1.000 0.052 0.000 0.504 0.008 0.000 0.436
#> SRR934315     3   0.502      1.000 0.052 0.000 0.504 0.008 0.000 0.436
#> SRR934316     3   0.502      1.000 0.052 0.000 0.504 0.008 0.000 0.436
#> SRR934317     3   0.502      1.000 0.052 0.000 0.504 0.008 0.000 0.436
#> SRR934318     3   0.502      1.000 0.052 0.000 0.504 0.008 0.000 0.436
#> SRR934319     3   0.502      1.000 0.052 0.000 0.504 0.008 0.000 0.436
#> SRR934320     6   0.654      0.322 0.060 0.068 0.276 0.044 0.000 0.552
#> SRR934321     6   0.654      0.322 0.060 0.068 0.276 0.044 0.000 0.552
#> SRR934322     6   0.654      0.322 0.060 0.068 0.276 0.044 0.000 0.552
#> SRR934323     6   0.654      0.322 0.060 0.068 0.276 0.044 0.000 0.552
#> SRR934324     6   0.654      0.322 0.060 0.068 0.276 0.044 0.000 0.552
#> SRR934325     6   0.654      0.322 0.060 0.068 0.276 0.044 0.000 0.552
#> SRR934326     6   0.654      0.322 0.060 0.068 0.276 0.044 0.000 0.552
#> SRR934327     6   0.654      0.322 0.060 0.068 0.276 0.044 0.000 0.552
#> SRR934328     1   0.000      0.964 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR934329     1   0.000      0.964 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR934330     1   0.000      0.964 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR934331     1   0.000      0.964 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR934332     1   0.000      0.964 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR934333     1   0.000      0.964 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR934334     1   0.000      0.964 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR934335     1   0.000      0.964 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR934344     1   0.106      0.959 0.964 0.004 0.016 0.000 0.000 0.016
#> SRR934345     1   0.106      0.959 0.964 0.004 0.016 0.000 0.000 0.016
#> SRR934346     1   0.106      0.959 0.964 0.004 0.016 0.000 0.000 0.016
#> SRR934347     1   0.106      0.959 0.964 0.004 0.016 0.000 0.000 0.016
#> SRR934348     1   0.106      0.959 0.964 0.004 0.016 0.000 0.000 0.016
#> SRR934349     1   0.106      0.959 0.964 0.004 0.016 0.000 0.000 0.016
#> SRR934350     1   0.106      0.959 0.964 0.004 0.016 0.000 0.000 0.016
#> SRR934351     1   0.106      0.959 0.964 0.004 0.016 0.000 0.000 0.016
#> SRR934336     6   0.252      0.424 0.000 0.008 0.104 0.004 0.008 0.876
#> SRR934337     6   0.252      0.424 0.000 0.008 0.104 0.004 0.008 0.876
#> SRR934338     6   0.252      0.424 0.000 0.008 0.104 0.004 0.008 0.876
#> SRR934339     6   0.252      0.424 0.000 0.008 0.104 0.004 0.008 0.876
#> SRR934340     6   0.252      0.424 0.000 0.008 0.104 0.004 0.008 0.876
#> SRR934341     6   0.252      0.424 0.000 0.008 0.104 0.004 0.008 0.876
#> SRR934342     6   0.252      0.424 0.000 0.008 0.104 0.004 0.008 0.876

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14550 rows and 135 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.636           0.768       0.897         0.1968 0.888   0.888
#> 3 3 0.718           0.830       0.935         1.1164 0.727   0.692
#> 4 4 0.678           0.825       0.916         0.1823 0.916   0.863
#> 5 5 0.811           0.820       0.905         0.1824 0.818   0.670
#> 6 6 0.979           0.962       0.971         0.0719 0.972   0.929

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR934216     1  0.9686      0.859 0.604 0.396
#> SRR934217     1  0.9686      0.859 0.604 0.396
#> SRR934218     1  0.9686      0.859 0.604 0.396
#> SRR934219     1  0.9686      0.859 0.604 0.396
#> SRR934220     1  0.9686      0.859 0.604 0.396
#> SRR934221     1  0.9686      0.859 0.604 0.396
#> SRR934222     1  0.9686      0.859 0.604 0.396
#> SRR934223     1  0.9686      0.859 0.604 0.396
#> SRR934224     1  0.9686      0.859 0.604 0.396
#> SRR934225     1  0.9686      0.859 0.604 0.396
#> SRR934226     1  0.9686      0.859 0.604 0.396
#> SRR934227     1  0.9686      0.859 0.604 0.396
#> SRR934228     1  0.9686      0.859 0.604 0.396
#> SRR934229     1  0.9686      0.859 0.604 0.396
#> SRR934230     1  0.9686      0.859 0.604 0.396
#> SRR934231     1  0.9686      0.859 0.604 0.396
#> SRR934232     1  0.2423      0.302 0.960 0.040
#> SRR934233     1  0.2423      0.302 0.960 0.040
#> SRR934234     1  0.2423      0.302 0.960 0.040
#> SRR934235     1  0.2423      0.302 0.960 0.040
#> SRR934236     1  0.2423      0.302 0.960 0.040
#> SRR934237     1  0.2423      0.302 0.960 0.040
#> SRR934238     1  0.2423      0.302 0.960 0.040
#> SRR934239     1  0.2423      0.302 0.960 0.040
#> SRR934240     1  0.1843      0.319 0.972 0.028
#> SRR934241     1  0.1843      0.319 0.972 0.028
#> SRR934242     1  0.1843      0.319 0.972 0.028
#> SRR934243     1  0.1843      0.319 0.972 0.028
#> SRR934244     1  0.1843      0.319 0.972 0.028
#> SRR934245     1  0.1843      0.319 0.972 0.028
#> SRR934246     1  0.1843      0.319 0.972 0.028
#> SRR934247     1  0.1843      0.319 0.972 0.028
#> SRR934248     1  0.9881      0.822 0.564 0.436
#> SRR934249     1  0.9881      0.822 0.564 0.436
#> SRR934250     1  0.9881      0.822 0.564 0.436
#> SRR934251     1  0.9881      0.822 0.564 0.436
#> SRR934252     1  0.9881      0.822 0.564 0.436
#> SRR934253     1  0.9881      0.822 0.564 0.436
#> SRR934254     1  0.9881      0.822 0.564 0.436
#> SRR934255     1  0.9881      0.822 0.564 0.436
#> SRR934256     1  0.0376      0.345 0.996 0.004
#> SRR934257     1  0.0376      0.345 0.996 0.004
#> SRR934258     1  0.0376      0.345 0.996 0.004
#> SRR934259     1  0.0376      0.345 0.996 0.004
#> SRR934260     1  0.0376      0.345 0.996 0.004
#> SRR934261     1  0.0376      0.345 0.996 0.004
#> SRR934262     1  0.0376      0.345 0.996 0.004
#> SRR934263     1  0.0376      0.345 0.996 0.004
#> SRR934264     1  0.9866      0.825 0.568 0.432
#> SRR934265     1  0.9866      0.825 0.568 0.432
#> SRR934266     1  0.9866      0.825 0.568 0.432
#> SRR934267     1  0.9866      0.825 0.568 0.432
#> SRR934268     1  0.9866      0.825 0.568 0.432
#> SRR934269     1  0.9866      0.825 0.568 0.432
#> SRR934270     1  0.9866      0.825 0.568 0.432
#> SRR934271     1  0.9866      0.825 0.568 0.432
#> SRR934272     1  0.9686      0.859 0.604 0.396
#> SRR934273     1  0.9686      0.859 0.604 0.396
#> SRR934274     1  0.9686      0.859 0.604 0.396
#> SRR934275     1  0.9686      0.859 0.604 0.396
#> SRR934276     1  0.9686      0.859 0.604 0.396
#> SRR934277     1  0.9686      0.859 0.604 0.396
#> SRR934278     1  0.9686      0.859 0.604 0.396
#> SRR934279     1  0.9686      0.859 0.604 0.396
#> SRR934280     1  0.9686      0.859 0.604 0.396
#> SRR934281     1  0.9686      0.859 0.604 0.396
#> SRR934282     1  0.9686      0.859 0.604 0.396
#> SRR934283     1  0.9686      0.859 0.604 0.396
#> SRR934284     1  0.9686      0.859 0.604 0.396
#> SRR934285     1  0.9686      0.859 0.604 0.396
#> SRR934286     1  0.9686      0.859 0.604 0.396
#> SRR934287     1  0.9686      0.859 0.604 0.396
#> SRR934288     1  0.9686      0.859 0.604 0.396
#> SRR934289     1  0.9686      0.859 0.604 0.396
#> SRR934290     1  0.9686      0.859 0.604 0.396
#> SRR934291     1  0.9686      0.859 0.604 0.396
#> SRR934292     1  0.9686      0.859 0.604 0.396
#> SRR934293     1  0.9686      0.859 0.604 0.396
#> SRR934294     1  0.9686      0.859 0.604 0.396
#> SRR934295     1  0.9686      0.859 0.604 0.396
#> SRR934296     1  0.9686      0.859 0.604 0.396
#> SRR934297     1  0.9686      0.859 0.604 0.396
#> SRR934298     1  0.9686      0.859 0.604 0.396
#> SRR934299     1  0.9686      0.859 0.604 0.396
#> SRR934300     1  0.9686      0.859 0.604 0.396
#> SRR934301     1  0.9686      0.859 0.604 0.396
#> SRR934302     1  0.9686      0.859 0.604 0.396
#> SRR934303     1  0.9686      0.859 0.604 0.396
#> SRR934304     2  0.0000      1.000 0.000 1.000
#> SRR934305     2  0.0000      1.000 0.000 1.000
#> SRR934306     2  0.0000      1.000 0.000 1.000
#> SRR934307     2  0.0000      1.000 0.000 1.000
#> SRR934308     2  0.0000      1.000 0.000 1.000
#> SRR934309     2  0.0000      1.000 0.000 1.000
#> SRR934310     2  0.0000      1.000 0.000 1.000
#> SRR934311     2  0.0000      1.000 0.000 1.000
#> SRR934312     1  0.9686      0.859 0.604 0.396
#> SRR934313     1  0.9686      0.859 0.604 0.396
#> SRR934314     1  0.9686      0.859 0.604 0.396
#> SRR934315     1  0.9686      0.859 0.604 0.396
#> SRR934316     1  0.9686      0.859 0.604 0.396
#> SRR934317     1  0.9686      0.859 0.604 0.396
#> SRR934318     1  0.9686      0.859 0.604 0.396
#> SRR934319     1  0.9686      0.859 0.604 0.396
#> SRR934320     1  0.9686      0.859 0.604 0.396
#> SRR934321     1  0.9686      0.859 0.604 0.396
#> SRR934322     1  0.9686      0.859 0.604 0.396
#> SRR934323     1  0.9686      0.859 0.604 0.396
#> SRR934324     1  0.9686      0.859 0.604 0.396
#> SRR934325     1  0.9686      0.859 0.604 0.396
#> SRR934326     1  0.9686      0.859 0.604 0.396
#> SRR934327     1  0.9686      0.859 0.604 0.396
#> SRR934328     1  0.9686      0.859 0.604 0.396
#> SRR934329     1  0.9686      0.859 0.604 0.396
#> SRR934330     1  0.9686      0.859 0.604 0.396
#> SRR934331     1  0.9686      0.859 0.604 0.396
#> SRR934332     1  0.9686      0.859 0.604 0.396
#> SRR934333     1  0.9686      0.859 0.604 0.396
#> SRR934334     1  0.9686      0.859 0.604 0.396
#> SRR934335     1  0.9686      0.859 0.604 0.396
#> SRR934344     1  0.9686      0.859 0.604 0.396
#> SRR934345     1  0.9686      0.859 0.604 0.396
#> SRR934346     1  0.9686      0.859 0.604 0.396
#> SRR934347     1  0.9686      0.859 0.604 0.396
#> SRR934348     1  0.9686      0.859 0.604 0.396
#> SRR934349     1  0.9686      0.859 0.604 0.396
#> SRR934350     1  0.9686      0.859 0.604 0.396
#> SRR934351     1  0.9686      0.859 0.604 0.396
#> SRR934336     1  0.9686      0.859 0.604 0.396
#> SRR934337     1  0.9686      0.859 0.604 0.396
#> SRR934338     1  0.9686      0.859 0.604 0.396
#> SRR934339     1  0.9686      0.859 0.604 0.396
#> SRR934340     1  0.9686      0.859 0.604 0.396
#> SRR934341     1  0.9686      0.859 0.604 0.396
#> SRR934342     1  0.9686      0.859 0.604 0.396

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2 p3
#> SRR934216     1   0.000      0.926 1.000 0.000  0
#> SRR934217     1   0.000      0.926 1.000 0.000  0
#> SRR934218     1   0.000      0.926 1.000 0.000  0
#> SRR934219     1   0.000      0.926 1.000 0.000  0
#> SRR934220     1   0.000      0.926 1.000 0.000  0
#> SRR934221     1   0.000      0.926 1.000 0.000  0
#> SRR934222     1   0.000      0.926 1.000 0.000  0
#> SRR934223     1   0.000      0.926 1.000 0.000  0
#> SRR934224     1   0.000      0.926 1.000 0.000  0
#> SRR934225     1   0.000      0.926 1.000 0.000  0
#> SRR934226     1   0.000      0.926 1.000 0.000  0
#> SRR934227     1   0.000      0.926 1.000 0.000  0
#> SRR934228     1   0.000      0.926 1.000 0.000  0
#> SRR934229     1   0.000      0.926 1.000 0.000  0
#> SRR934230     1   0.000      0.926 1.000 0.000  0
#> SRR934231     1   0.000      0.926 1.000 0.000  0
#> SRR934232     2   0.000      0.789 0.000 1.000  0
#> SRR934233     2   0.000      0.789 0.000 1.000  0
#> SRR934234     2   0.000      0.789 0.000 1.000  0
#> SRR934235     2   0.000      0.789 0.000 1.000  0
#> SRR934236     2   0.000      0.789 0.000 1.000  0
#> SRR934237     2   0.000      0.789 0.000 1.000  0
#> SRR934238     2   0.000      0.789 0.000 1.000  0
#> SRR934239     2   0.000      0.789 0.000 1.000  0
#> SRR934240     2   0.000      0.789 0.000 1.000  0
#> SRR934241     2   0.000      0.789 0.000 1.000  0
#> SRR934242     2   0.000      0.789 0.000 1.000  0
#> SRR934243     2   0.000      0.789 0.000 1.000  0
#> SRR934244     2   0.000      0.789 0.000 1.000  0
#> SRR934245     2   0.000      0.789 0.000 1.000  0
#> SRR934246     2   0.000      0.789 0.000 1.000  0
#> SRR934247     2   0.000      0.789 0.000 1.000  0
#> SRR934248     1   0.613      0.402 0.600 0.400  0
#> SRR934249     1   0.613      0.402 0.600 0.400  0
#> SRR934250     1   0.613      0.402 0.600 0.400  0
#> SRR934251     1   0.613      0.402 0.600 0.400  0
#> SRR934252     1   0.613      0.402 0.600 0.400  0
#> SRR934253     1   0.613      0.402 0.600 0.400  0
#> SRR934254     1   0.613      0.402 0.600 0.400  0
#> SRR934255     1   0.613      0.402 0.600 0.400  0
#> SRR934256     2   0.497      0.615 0.236 0.764  0
#> SRR934257     2   0.540      0.584 0.280 0.720  0
#> SRR934258     2   0.576      0.523 0.328 0.672  0
#> SRR934259     2   0.556      0.562 0.300 0.700  0
#> SRR934260     2   0.543      0.580 0.284 0.716  0
#> SRR934261     2   0.568      0.541 0.316 0.684  0
#> SRR934262     2   0.540      0.584 0.280 0.720  0
#> SRR934263     2   0.601      0.455 0.372 0.628  0
#> SRR934264     1   0.613      0.402 0.600 0.400  0
#> SRR934265     1   0.613      0.402 0.600 0.400  0
#> SRR934266     1   0.613      0.402 0.600 0.400  0
#> SRR934267     1   0.613      0.402 0.600 0.400  0
#> SRR934268     1   0.613      0.402 0.600 0.400  0
#> SRR934269     1   0.613      0.402 0.600 0.400  0
#> SRR934270     1   0.613      0.402 0.600 0.400  0
#> SRR934271     1   0.613      0.402 0.600 0.400  0
#> SRR934272     1   0.000      0.926 1.000 0.000  0
#> SRR934273     1   0.000      0.926 1.000 0.000  0
#> SRR934274     1   0.000      0.926 1.000 0.000  0
#> SRR934275     1   0.000      0.926 1.000 0.000  0
#> SRR934276     1   0.000      0.926 1.000 0.000  0
#> SRR934277     1   0.000      0.926 1.000 0.000  0
#> SRR934278     1   0.000      0.926 1.000 0.000  0
#> SRR934279     1   0.000      0.926 1.000 0.000  0
#> SRR934280     1   0.000      0.926 1.000 0.000  0
#> SRR934281     1   0.000      0.926 1.000 0.000  0
#> SRR934282     1   0.000      0.926 1.000 0.000  0
#> SRR934283     1   0.000      0.926 1.000 0.000  0
#> SRR934284     1   0.000      0.926 1.000 0.000  0
#> SRR934285     1   0.000      0.926 1.000 0.000  0
#> SRR934286     1   0.000      0.926 1.000 0.000  0
#> SRR934287     1   0.000      0.926 1.000 0.000  0
#> SRR934288     1   0.000      0.926 1.000 0.000  0
#> SRR934289     1   0.000      0.926 1.000 0.000  0
#> SRR934290     1   0.000      0.926 1.000 0.000  0
#> SRR934291     1   0.000      0.926 1.000 0.000  0
#> SRR934292     1   0.000      0.926 1.000 0.000  0
#> SRR934293     1   0.000      0.926 1.000 0.000  0
#> SRR934294     1   0.000      0.926 1.000 0.000  0
#> SRR934295     1   0.000      0.926 1.000 0.000  0
#> SRR934296     1   0.000      0.926 1.000 0.000  0
#> SRR934297     1   0.000      0.926 1.000 0.000  0
#> SRR934298     1   0.000      0.926 1.000 0.000  0
#> SRR934299     1   0.000      0.926 1.000 0.000  0
#> SRR934300     1   0.000      0.926 1.000 0.000  0
#> SRR934301     1   0.000      0.926 1.000 0.000  0
#> SRR934302     1   0.000      0.926 1.000 0.000  0
#> SRR934303     1   0.000      0.926 1.000 0.000  0
#> SRR934304     3   0.000      1.000 0.000 0.000  1
#> SRR934305     3   0.000      1.000 0.000 0.000  1
#> SRR934306     3   0.000      1.000 0.000 0.000  1
#> SRR934307     3   0.000      1.000 0.000 0.000  1
#> SRR934308     3   0.000      1.000 0.000 0.000  1
#> SRR934309     3   0.000      1.000 0.000 0.000  1
#> SRR934310     3   0.000      1.000 0.000 0.000  1
#> SRR934311     3   0.000      1.000 0.000 0.000  1
#> SRR934312     1   0.000      0.926 1.000 0.000  0
#> SRR934313     1   0.000      0.926 1.000 0.000  0
#> SRR934314     1   0.000      0.926 1.000 0.000  0
#> SRR934315     1   0.000      0.926 1.000 0.000  0
#> SRR934316     1   0.000      0.926 1.000 0.000  0
#> SRR934317     1   0.000      0.926 1.000 0.000  0
#> SRR934318     1   0.000      0.926 1.000 0.000  0
#> SRR934319     1   0.000      0.926 1.000 0.000  0
#> SRR934320     1   0.000      0.926 1.000 0.000  0
#> SRR934321     1   0.000      0.926 1.000 0.000  0
#> SRR934322     1   0.000      0.926 1.000 0.000  0
#> SRR934323     1   0.000      0.926 1.000 0.000  0
#> SRR934324     1   0.000      0.926 1.000 0.000  0
#> SRR934325     1   0.000      0.926 1.000 0.000  0
#> SRR934326     1   0.000      0.926 1.000 0.000  0
#> SRR934327     1   0.000      0.926 1.000 0.000  0
#> SRR934328     1   0.000      0.926 1.000 0.000  0
#> SRR934329     1   0.000      0.926 1.000 0.000  0
#> SRR934330     1   0.000      0.926 1.000 0.000  0
#> SRR934331     1   0.000      0.926 1.000 0.000  0
#> SRR934332     1   0.000      0.926 1.000 0.000  0
#> SRR934333     1   0.000      0.926 1.000 0.000  0
#> SRR934334     1   0.000      0.926 1.000 0.000  0
#> SRR934335     1   0.000      0.926 1.000 0.000  0
#> SRR934344     1   0.000      0.926 1.000 0.000  0
#> SRR934345     1   0.000      0.926 1.000 0.000  0
#> SRR934346     1   0.000      0.926 1.000 0.000  0
#> SRR934347     1   0.000      0.926 1.000 0.000  0
#> SRR934348     1   0.000      0.926 1.000 0.000  0
#> SRR934349     1   0.000      0.926 1.000 0.000  0
#> SRR934350     1   0.000      0.926 1.000 0.000  0
#> SRR934351     1   0.000      0.926 1.000 0.000  0
#> SRR934336     1   0.000      0.926 1.000 0.000  0
#> SRR934337     1   0.000      0.926 1.000 0.000  0
#> SRR934338     1   0.000      0.926 1.000 0.000  0
#> SRR934339     1   0.000      0.926 1.000 0.000  0
#> SRR934340     1   0.000      0.926 1.000 0.000  0
#> SRR934341     1   0.000      0.926 1.000 0.000  0
#> SRR934342     1   0.000      0.926 1.000 0.000  0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2 p3    p4
#> SRR934216     4   0.365      1.000 0.204 0.000  0 0.796
#> SRR934217     4   0.365      1.000 0.204 0.000  0 0.796
#> SRR934218     4   0.365      1.000 0.204 0.000  0 0.796
#> SRR934219     4   0.365      1.000 0.204 0.000  0 0.796
#> SRR934220     4   0.365      1.000 0.204 0.000  0 0.796
#> SRR934221     4   0.365      1.000 0.204 0.000  0 0.796
#> SRR934222     4   0.365      1.000 0.204 0.000  0 0.796
#> SRR934223     4   0.365      1.000 0.204 0.000  0 0.796
#> SRR934224     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934225     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934226     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934227     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934228     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934229     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934230     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934231     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934232     2   0.000      0.800 0.000 1.000  0 0.000
#> SRR934233     2   0.000      0.800 0.000 1.000  0 0.000
#> SRR934234     2   0.000      0.800 0.000 1.000  0 0.000
#> SRR934235     2   0.000      0.800 0.000 1.000  0 0.000
#> SRR934236     2   0.000      0.800 0.000 1.000  0 0.000
#> SRR934237     2   0.000      0.800 0.000 1.000  0 0.000
#> SRR934238     2   0.000      0.800 0.000 1.000  0 0.000
#> SRR934239     2   0.000      0.800 0.000 1.000  0 0.000
#> SRR934240     2   0.000      0.800 0.000 1.000  0 0.000
#> SRR934241     2   0.000      0.800 0.000 1.000  0 0.000
#> SRR934242     2   0.000      0.800 0.000 1.000  0 0.000
#> SRR934243     2   0.000      0.800 0.000 1.000  0 0.000
#> SRR934244     2   0.000      0.800 0.000 1.000  0 0.000
#> SRR934245     2   0.000      0.800 0.000 1.000  0 0.000
#> SRR934246     2   0.000      0.800 0.000 1.000  0 0.000
#> SRR934247     2   0.000      0.800 0.000 1.000  0 0.000
#> SRR934248     1   0.503      0.414 0.596 0.400  0 0.004
#> SRR934249     1   0.503      0.414 0.596 0.400  0 0.004
#> SRR934250     1   0.503      0.414 0.596 0.400  0 0.004
#> SRR934251     1   0.503      0.414 0.596 0.400  0 0.004
#> SRR934252     1   0.503      0.414 0.596 0.400  0 0.004
#> SRR934253     1   0.503      0.414 0.596 0.400  0 0.004
#> SRR934254     1   0.503      0.414 0.596 0.400  0 0.004
#> SRR934255     1   0.503      0.414 0.596 0.400  0 0.004
#> SRR934256     2   0.689      0.532 0.204 0.596  0 0.200
#> SRR934257     2   0.689      0.532 0.204 0.596  0 0.200
#> SRR934258     2   0.689      0.532 0.204 0.596  0 0.200
#> SRR934259     2   0.689      0.532 0.204 0.596  0 0.200
#> SRR934260     2   0.689      0.532 0.204 0.596  0 0.200
#> SRR934261     2   0.689      0.532 0.204 0.596  0 0.200
#> SRR934262     2   0.689      0.532 0.204 0.596  0 0.200
#> SRR934263     2   0.689      0.532 0.204 0.596  0 0.200
#> SRR934264     1   0.485      0.420 0.600 0.400  0 0.000
#> SRR934265     1   0.485      0.420 0.600 0.400  0 0.000
#> SRR934266     1   0.485      0.420 0.600 0.400  0 0.000
#> SRR934267     1   0.485      0.420 0.600 0.400  0 0.000
#> SRR934268     1   0.485      0.420 0.600 0.400  0 0.000
#> SRR934269     1   0.485      0.420 0.600 0.400  0 0.000
#> SRR934270     1   0.485      0.420 0.600 0.400  0 0.000
#> SRR934271     1   0.485      0.420 0.600 0.400  0 0.000
#> SRR934272     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934273     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934274     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934275     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934276     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934277     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934278     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934279     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934280     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934281     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934282     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934283     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934284     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934285     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934286     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934287     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934288     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934289     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934290     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934291     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934292     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934293     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934294     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934295     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934296     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934297     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934298     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934299     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934300     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934301     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934302     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934303     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934304     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR934305     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR934306     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR934307     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR934308     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR934309     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR934310     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR934311     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR934312     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934313     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934314     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934315     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934316     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934317     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934318     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934319     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934320     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934321     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934322     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934323     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934324     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934325     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934326     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934327     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934328     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934329     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934330     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934331     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934332     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934333     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934334     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934335     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934344     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934345     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934346     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934347     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934348     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934349     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934350     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934351     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934336     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934337     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934338     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934339     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934340     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934341     1   0.000      0.906 1.000 0.000  0 0.000
#> SRR934342     1   0.000      0.906 1.000 0.000  0 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2 p3    p4 p5
#> SRR934216     3   0.000      1.000 0.000 0.000  1 0.000  0
#> SRR934217     3   0.000      1.000 0.000 0.000  1 0.000  0
#> SRR934218     3   0.000      1.000 0.000 0.000  1 0.000  0
#> SRR934219     3   0.000      1.000 0.000 0.000  1 0.000  0
#> SRR934220     3   0.000      1.000 0.000 0.000  1 0.000  0
#> SRR934221     3   0.000      1.000 0.000 0.000  1 0.000  0
#> SRR934222     3   0.000      1.000 0.000 0.000  1 0.000  0
#> SRR934223     3   0.000      1.000 0.000 0.000  1 0.000  0
#> SRR934224     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934225     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934226     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934227     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934228     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934229     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934230     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934231     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934232     2   0.000      0.607 0.000 1.000  0 0.000  0
#> SRR934233     2   0.000      0.607 0.000 1.000  0 0.000  0
#> SRR934234     2   0.000      0.607 0.000 1.000  0 0.000  0
#> SRR934235     2   0.000      0.607 0.000 1.000  0 0.000  0
#> SRR934236     2   0.000      0.607 0.000 1.000  0 0.000  0
#> SRR934237     2   0.000      0.607 0.000 1.000  0 0.000  0
#> SRR934238     2   0.000      0.607 0.000 1.000  0 0.000  0
#> SRR934239     2   0.000      0.607 0.000 1.000  0 0.000  0
#> SRR934240     2   0.000      0.607 0.000 1.000  0 0.000  0
#> SRR934241     2   0.000      0.607 0.000 1.000  0 0.000  0
#> SRR934242     2   0.000      0.607 0.000 1.000  0 0.000  0
#> SRR934243     2   0.000      0.607 0.000 1.000  0 0.000  0
#> SRR934244     2   0.000      0.607 0.000 1.000  0 0.000  0
#> SRR934245     2   0.000      0.607 0.000 1.000  0 0.000  0
#> SRR934246     2   0.000      0.607 0.000 1.000  0 0.000  0
#> SRR934247     2   0.000      0.607 0.000 1.000  0 0.000  0
#> SRR934248     4   0.430      0.111 0.000 0.476  0 0.524  0
#> SRR934249     4   0.430      0.111 0.000 0.476  0 0.524  0
#> SRR934250     4   0.430      0.111 0.000 0.476  0 0.524  0
#> SRR934251     4   0.430      0.111 0.000 0.476  0 0.524  0
#> SRR934252     4   0.430      0.111 0.000 0.476  0 0.524  0
#> SRR934253     4   0.430      0.111 0.000 0.476  0 0.524  0
#> SRR934254     4   0.430      0.111 0.000 0.476  0 0.524  0
#> SRR934255     4   0.430      0.111 0.000 0.476  0 0.524  0
#> SRR934256     4   0.628      0.390 0.156 0.368  0 0.476  0
#> SRR934257     4   0.628      0.390 0.156 0.368  0 0.476  0
#> SRR934258     4   0.628      0.390 0.156 0.368  0 0.476  0
#> SRR934259     4   0.628      0.390 0.156 0.368  0 0.476  0
#> SRR934260     4   0.628      0.390 0.156 0.368  0 0.476  0
#> SRR934261     4   0.628      0.390 0.156 0.368  0 0.476  0
#> SRR934262     4   0.628      0.390 0.156 0.368  0 0.476  0
#> SRR934263     4   0.628      0.390 0.156 0.368  0 0.476  0
#> SRR934264     2   0.667      0.254 0.232 0.400  0 0.368  0
#> SRR934265     2   0.667      0.254 0.232 0.400  0 0.368  0
#> SRR934266     2   0.667      0.254 0.232 0.400  0 0.368  0
#> SRR934267     2   0.667      0.254 0.232 0.400  0 0.368  0
#> SRR934268     2   0.667      0.254 0.232 0.400  0 0.368  0
#> SRR934269     2   0.667      0.254 0.232 0.400  0 0.368  0
#> SRR934270     2   0.667      0.254 0.232 0.400  0 0.368  0
#> SRR934271     2   0.667      0.254 0.232 0.400  0 0.368  0
#> SRR934272     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934273     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934274     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934275     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934276     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934277     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934278     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934279     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934280     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934281     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934282     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934283     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934284     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934285     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934286     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934287     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934288     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934289     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934290     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934291     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934292     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934293     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934294     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934295     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934296     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934297     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934298     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934299     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934300     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934301     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934302     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934303     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934304     5   0.000      1.000 0.000 0.000  0 0.000  1
#> SRR934305     5   0.000      1.000 0.000 0.000  0 0.000  1
#> SRR934306     5   0.000      1.000 0.000 0.000  0 0.000  1
#> SRR934307     5   0.000      1.000 0.000 0.000  0 0.000  1
#> SRR934308     5   0.000      1.000 0.000 0.000  0 0.000  1
#> SRR934309     5   0.000      1.000 0.000 0.000  0 0.000  1
#> SRR934310     5   0.000      1.000 0.000 0.000  0 0.000  1
#> SRR934311     5   0.000      1.000 0.000 0.000  0 0.000  1
#> SRR934312     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934313     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934314     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934315     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934316     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934317     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934318     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934319     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934320     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934321     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934322     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934323     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934324     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934325     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934326     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934327     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934328     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934329     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934330     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934331     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934332     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934333     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934334     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934335     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934344     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934345     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934346     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934347     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934348     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934349     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934350     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934351     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934336     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934337     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934338     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934339     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934340     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934341     1   0.000      1.000 1.000 0.000  0 0.000  0
#> SRR934342     1   0.000      1.000 1.000 0.000  0 0.000  0

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2 p3    p4 p5 p6
#> SRR934216     3  0.0000      1.000 0.000 0.000  1 0.000  0  0
#> SRR934217     3  0.0000      1.000 0.000 0.000  1 0.000  0  0
#> SRR934218     3  0.0000      1.000 0.000 0.000  1 0.000  0  0
#> SRR934219     3  0.0000      1.000 0.000 0.000  1 0.000  0  0
#> SRR934220     3  0.0000      1.000 0.000 0.000  1 0.000  0  0
#> SRR934221     3  0.0000      1.000 0.000 0.000  1 0.000  0  0
#> SRR934222     3  0.0000      1.000 0.000 0.000  1 0.000  0  0
#> SRR934223     3  0.0000      1.000 0.000 0.000  1 0.000  0  0
#> SRR934224     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934225     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934226     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934227     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934228     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934229     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934230     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934231     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934232     2  0.0146      0.997 0.000 0.996  0 0.004  0  0
#> SRR934233     2  0.0146      0.997 0.000 0.996  0 0.004  0  0
#> SRR934234     2  0.0146      0.997 0.000 0.996  0 0.004  0  0
#> SRR934235     2  0.0146      0.997 0.000 0.996  0 0.004  0  0
#> SRR934236     2  0.0146      0.997 0.000 0.996  0 0.004  0  0
#> SRR934237     2  0.0146      0.997 0.000 0.996  0 0.004  0  0
#> SRR934238     2  0.0146      0.997 0.000 0.996  0 0.004  0  0
#> SRR934239     2  0.0146      0.997 0.000 0.996  0 0.004  0  0
#> SRR934240     2  0.0000      0.997 0.000 1.000  0 0.000  0  0
#> SRR934241     2  0.0000      0.997 0.000 1.000  0 0.000  0  0
#> SRR934242     2  0.0000      0.997 0.000 1.000  0 0.000  0  0
#> SRR934243     2  0.0000      0.997 0.000 1.000  0 0.000  0  0
#> SRR934244     2  0.0000      0.997 0.000 1.000  0 0.000  0  0
#> SRR934245     2  0.0000      0.997 0.000 1.000  0 0.000  0  0
#> SRR934246     2  0.0000      0.997 0.000 1.000  0 0.000  0  0
#> SRR934247     2  0.0000      0.997 0.000 1.000  0 0.000  0  0
#> SRR934248     4  0.0547      0.756 0.000 0.020  0 0.980  0  0
#> SRR934249     4  0.0547      0.756 0.000 0.020  0 0.980  0  0
#> SRR934250     4  0.0547      0.756 0.000 0.020  0 0.980  0  0
#> SRR934251     4  0.0547      0.756 0.000 0.020  0 0.980  0  0
#> SRR934252     4  0.0547      0.756 0.000 0.020  0 0.980  0  0
#> SRR934253     4  0.0547      0.756 0.000 0.020  0 0.980  0  0
#> SRR934254     4  0.0547      0.756 0.000 0.020  0 0.980  0  0
#> SRR934255     4  0.0547      0.756 0.000 0.020  0 0.980  0  0
#> SRR934256     6  0.0000      1.000 0.000 0.000  0 0.000  0  1
#> SRR934257     6  0.0000      1.000 0.000 0.000  0 0.000  0  1
#> SRR934258     6  0.0000      1.000 0.000 0.000  0 0.000  0  1
#> SRR934259     6  0.0000      1.000 0.000 0.000  0 0.000  0  1
#> SRR934260     6  0.0000      1.000 0.000 0.000  0 0.000  0  1
#> SRR934261     6  0.0000      1.000 0.000 0.000  0 0.000  0  1
#> SRR934262     6  0.0000      1.000 0.000 0.000  0 0.000  0  1
#> SRR934263     6  0.0000      1.000 0.000 0.000  0 0.000  0  1
#> SRR934264     4  0.3695      0.694 0.000 0.376  0 0.624  0  0
#> SRR934265     4  0.3695      0.694 0.000 0.376  0 0.624  0  0
#> SRR934266     4  0.3695      0.694 0.000 0.376  0 0.624  0  0
#> SRR934267     4  0.3695      0.694 0.000 0.376  0 0.624  0  0
#> SRR934268     4  0.3695      0.694 0.000 0.376  0 0.624  0  0
#> SRR934269     4  0.3695      0.694 0.000 0.376  0 0.624  0  0
#> SRR934270     4  0.3695      0.694 0.000 0.376  0 0.624  0  0
#> SRR934271     4  0.3695      0.694 0.000 0.376  0 0.624  0  0
#> SRR934272     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934273     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934274     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934275     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934276     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934277     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934278     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934279     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934280     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934281     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934282     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934283     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934284     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934285     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934286     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934287     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934288     1  0.0547      0.988 0.980 0.000  0 0.020  0  0
#> SRR934289     1  0.0547      0.988 0.980 0.000  0 0.020  0  0
#> SRR934290     1  0.0547      0.988 0.980 0.000  0 0.020  0  0
#> SRR934291     1  0.0547      0.988 0.980 0.000  0 0.020  0  0
#> SRR934292     1  0.0547      0.988 0.980 0.000  0 0.020  0  0
#> SRR934293     1  0.0547      0.988 0.980 0.000  0 0.020  0  0
#> SRR934294     1  0.0547      0.988 0.980 0.000  0 0.020  0  0
#> SRR934295     1  0.0547      0.988 0.980 0.000  0 0.020  0  0
#> SRR934296     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934297     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934298     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934299     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934300     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934301     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934302     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934303     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934304     5  0.0000      1.000 0.000 0.000  0 0.000  1  0
#> SRR934305     5  0.0000      1.000 0.000 0.000  0 0.000  1  0
#> SRR934306     5  0.0000      1.000 0.000 0.000  0 0.000  1  0
#> SRR934307     5  0.0000      1.000 0.000 0.000  0 0.000  1  0
#> SRR934308     5  0.0000      1.000 0.000 0.000  0 0.000  1  0
#> SRR934309     5  0.0000      1.000 0.000 0.000  0 0.000  1  0
#> SRR934310     5  0.0000      1.000 0.000 0.000  0 0.000  1  0
#> SRR934311     5  0.0000      1.000 0.000 0.000  0 0.000  1  0
#> SRR934312     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934313     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934314     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934315     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934316     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934317     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934318     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934319     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934320     1  0.0547      0.988 0.980 0.000  0 0.020  0  0
#> SRR934321     1  0.0547      0.988 0.980 0.000  0 0.020  0  0
#> SRR934322     1  0.0458      0.989 0.984 0.000  0 0.016  0  0
#> SRR934323     1  0.0547      0.988 0.980 0.000  0 0.020  0  0
#> SRR934324     1  0.0547      0.988 0.980 0.000  0 0.020  0  0
#> SRR934325     1  0.0458      0.989 0.984 0.000  0 0.016  0  0
#> SRR934326     1  0.0547      0.988 0.980 0.000  0 0.020  0  0
#> SRR934327     1  0.0547      0.988 0.980 0.000  0 0.020  0  0
#> SRR934328     1  0.0547      0.988 0.980 0.000  0 0.020  0  0
#> SRR934329     1  0.0547      0.988 0.980 0.000  0 0.020  0  0
#> SRR934330     1  0.0547      0.988 0.980 0.000  0 0.020  0  0
#> SRR934331     1  0.0547      0.988 0.980 0.000  0 0.020  0  0
#> SRR934332     1  0.0547      0.988 0.980 0.000  0 0.020  0  0
#> SRR934333     1  0.0547      0.988 0.980 0.000  0 0.020  0  0
#> SRR934334     1  0.0547      0.988 0.980 0.000  0 0.020  0  0
#> SRR934335     1  0.0547      0.988 0.980 0.000  0 0.020  0  0
#> SRR934344     1  0.0547      0.988 0.980 0.000  0 0.020  0  0
#> SRR934345     1  0.0547      0.988 0.980 0.000  0 0.020  0  0
#> SRR934346     1  0.0547      0.988 0.980 0.000  0 0.020  0  0
#> SRR934347     1  0.0547      0.988 0.980 0.000  0 0.020  0  0
#> SRR934348     1  0.0547      0.988 0.980 0.000  0 0.020  0  0
#> SRR934349     1  0.0547      0.988 0.980 0.000  0 0.020  0  0
#> SRR934350     1  0.0547      0.988 0.980 0.000  0 0.020  0  0
#> SRR934351     1  0.0547      0.988 0.980 0.000  0 0.020  0  0
#> SRR934336     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934337     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934338     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934339     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934340     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934341     1  0.0000      0.992 1.000 0.000  0 0.000  0  0
#> SRR934342     1  0.0000      0.992 1.000 0.000  0 0.000  0  0

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14550 rows and 135 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.5029 0.498   0.498
#> 3 3 0.782           0.810       0.918         0.0989 0.726   0.560
#> 4 4 1.000           1.000       1.000         0.1274 0.789   0.604
#> 5 5 1.000           1.000       1.000         0.0454 0.972   0.925
#> 6 6 0.807           0.779       0.838         0.1148 0.979   0.939

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2 4

There is also optional best \(k\) = 2 4 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> SRR934216     2       0          1  0  1
#> SRR934217     2       0          1  0  1
#> SRR934218     2       0          1  0  1
#> SRR934219     2       0          1  0  1
#> SRR934220     2       0          1  0  1
#> SRR934221     2       0          1  0  1
#> SRR934222     2       0          1  0  1
#> SRR934223     2       0          1  0  1
#> SRR934224     1       0          1  1  0
#> SRR934225     1       0          1  1  0
#> SRR934226     1       0          1  1  0
#> SRR934227     1       0          1  1  0
#> SRR934228     1       0          1  1  0
#> SRR934229     1       0          1  1  0
#> SRR934230     1       0          1  1  0
#> SRR934231     1       0          1  1  0
#> SRR934232     2       0          1  0  1
#> SRR934233     2       0          1  0  1
#> SRR934234     2       0          1  0  1
#> SRR934235     2       0          1  0  1
#> SRR934236     2       0          1  0  1
#> SRR934237     2       0          1  0  1
#> SRR934238     2       0          1  0  1
#> SRR934239     2       0          1  0  1
#> SRR934240     2       0          1  0  1
#> SRR934241     2       0          1  0  1
#> SRR934242     2       0          1  0  1
#> SRR934243     2       0          1  0  1
#> SRR934244     2       0          1  0  1
#> SRR934245     2       0          1  0  1
#> SRR934246     2       0          1  0  1
#> SRR934247     2       0          1  0  1
#> SRR934248     2       0          1  0  1
#> SRR934249     2       0          1  0  1
#> SRR934250     2       0          1  0  1
#> SRR934251     2       0          1  0  1
#> SRR934252     2       0          1  0  1
#> SRR934253     2       0          1  0  1
#> SRR934254     2       0          1  0  1
#> SRR934255     2       0          1  0  1
#> SRR934256     2       0          1  0  1
#> SRR934257     2       0          1  0  1
#> SRR934258     2       0          1  0  1
#> SRR934259     2       0          1  0  1
#> SRR934260     2       0          1  0  1
#> SRR934261     2       0          1  0  1
#> SRR934262     2       0          1  0  1
#> SRR934263     2       0          1  0  1
#> SRR934264     2       0          1  0  1
#> SRR934265     2       0          1  0  1
#> SRR934266     2       0          1  0  1
#> SRR934267     2       0          1  0  1
#> SRR934268     2       0          1  0  1
#> SRR934269     2       0          1  0  1
#> SRR934270     2       0          1  0  1
#> SRR934271     2       0          1  0  1
#> SRR934272     1       0          1  1  0
#> SRR934273     1       0          1  1  0
#> SRR934274     1       0          1  1  0
#> SRR934275     1       0          1  1  0
#> SRR934276     1       0          1  1  0
#> SRR934277     1       0          1  1  0
#> SRR934278     1       0          1  1  0
#> SRR934279     1       0          1  1  0
#> SRR934280     1       0          1  1  0
#> SRR934281     1       0          1  1  0
#> SRR934282     1       0          1  1  0
#> SRR934283     1       0          1  1  0
#> SRR934284     1       0          1  1  0
#> SRR934285     1       0          1  1  0
#> SRR934286     1       0          1  1  0
#> SRR934287     1       0          1  1  0
#> SRR934288     1       0          1  1  0
#> SRR934289     1       0          1  1  0
#> SRR934290     1       0          1  1  0
#> SRR934291     1       0          1  1  0
#> SRR934292     1       0          1  1  0
#> SRR934293     1       0          1  1  0
#> SRR934294     1       0          1  1  0
#> SRR934295     1       0          1  1  0
#> SRR934296     2       0          1  0  1
#> SRR934297     2       0          1  0  1
#> SRR934298     2       0          1  0  1
#> SRR934299     2       0          1  0  1
#> SRR934300     2       0          1  0  1
#> SRR934301     2       0          1  0  1
#> SRR934302     2       0          1  0  1
#> SRR934303     2       0          1  0  1
#> SRR934304     2       0          1  0  1
#> SRR934305     2       0          1  0  1
#> SRR934306     2       0          1  0  1
#> SRR934307     2       0          1  0  1
#> SRR934308     2       0          1  0  1
#> SRR934309     2       0          1  0  1
#> SRR934310     2       0          1  0  1
#> SRR934311     2       0          1  0  1
#> SRR934312     1       0          1  1  0
#> SRR934313     1       0          1  1  0
#> SRR934314     1       0          1  1  0
#> SRR934315     1       0          1  1  0
#> SRR934316     1       0          1  1  0
#> SRR934317     1       0          1  1  0
#> SRR934318     1       0          1  1  0
#> SRR934319     1       0          1  1  0
#> SRR934320     1       0          1  1  0
#> SRR934321     1       0          1  1  0
#> SRR934322     1       0          1  1  0
#> SRR934323     1       0          1  1  0
#> SRR934324     1       0          1  1  0
#> SRR934325     1       0          1  1  0
#> SRR934326     1       0          1  1  0
#> SRR934327     1       0          1  1  0
#> SRR934328     1       0          1  1  0
#> SRR934329     1       0          1  1  0
#> SRR934330     1       0          1  1  0
#> SRR934331     1       0          1  1  0
#> SRR934332     1       0          1  1  0
#> SRR934333     1       0          1  1  0
#> SRR934334     1       0          1  1  0
#> SRR934335     1       0          1  1  0
#> SRR934344     1       0          1  1  0
#> SRR934345     1       0          1  1  0
#> SRR934346     1       0          1  1  0
#> SRR934347     1       0          1  1  0
#> SRR934348     1       0          1  1  0
#> SRR934349     1       0          1  1  0
#> SRR934350     1       0          1  1  0
#> SRR934351     1       0          1  1  0
#> SRR934336     1       0          1  1  0
#> SRR934337     1       0          1  1  0
#> SRR934338     1       0          1  1  0
#> SRR934339     1       0          1  1  0
#> SRR934340     1       0          1  1  0
#> SRR934341     1       0          1  1  0
#> SRR934342     1       0          1  1  0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR934216     3  0.0892      0.373 0.020 0.000 0.980
#> SRR934217     3  0.0892      0.373 0.020 0.000 0.980
#> SRR934218     3  0.0892      0.373 0.020 0.000 0.980
#> SRR934219     3  0.0892      0.373 0.020 0.000 0.980
#> SRR934220     3  0.0892      0.373 0.020 0.000 0.980
#> SRR934221     3  0.0892      0.373 0.020 0.000 0.980
#> SRR934222     3  0.0892      0.373 0.020 0.000 0.980
#> SRR934223     3  0.0892      0.373 0.020 0.000 0.980
#> SRR934224     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934225     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934226     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934227     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934228     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934229     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934230     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934231     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934232     2  0.6235      0.996 0.000 0.564 0.436
#> SRR934233     2  0.6235      0.996 0.000 0.564 0.436
#> SRR934234     2  0.6235      0.996 0.000 0.564 0.436
#> SRR934235     2  0.6235      0.996 0.000 0.564 0.436
#> SRR934236     2  0.6235      0.996 0.000 0.564 0.436
#> SRR934237     2  0.6235      0.996 0.000 0.564 0.436
#> SRR934238     2  0.6235      0.996 0.000 0.564 0.436
#> SRR934239     2  0.6235      0.996 0.000 0.564 0.436
#> SRR934240     2  0.6235      0.996 0.000 0.564 0.436
#> SRR934241     2  0.6235      0.996 0.000 0.564 0.436
#> SRR934242     2  0.6235      0.996 0.000 0.564 0.436
#> SRR934243     2  0.6235      0.996 0.000 0.564 0.436
#> SRR934244     2  0.6235      0.996 0.000 0.564 0.436
#> SRR934245     2  0.6235      0.996 0.000 0.564 0.436
#> SRR934246     2  0.6235      0.996 0.000 0.564 0.436
#> SRR934247     2  0.6235      0.996 0.000 0.564 0.436
#> SRR934248     3  0.6215      0.813 0.000 0.428 0.572
#> SRR934249     3  0.6215      0.813 0.000 0.428 0.572
#> SRR934250     3  0.6215      0.813 0.000 0.428 0.572
#> SRR934251     3  0.6215      0.813 0.000 0.428 0.572
#> SRR934252     3  0.6215      0.813 0.000 0.428 0.572
#> SRR934253     3  0.6215      0.813 0.000 0.428 0.572
#> SRR934254     3  0.6215      0.813 0.000 0.428 0.572
#> SRR934255     3  0.6215      0.813 0.000 0.428 0.572
#> SRR934256     1  0.6235      0.337 0.564 0.000 0.436
#> SRR934257     1  0.6235      0.337 0.564 0.000 0.436
#> SRR934258     1  0.6235      0.337 0.564 0.000 0.436
#> SRR934259     1  0.6235      0.337 0.564 0.000 0.436
#> SRR934260     1  0.6235      0.337 0.564 0.000 0.436
#> SRR934261     1  0.6235      0.337 0.564 0.000 0.436
#> SRR934262     1  0.6235      0.337 0.564 0.000 0.436
#> SRR934263     1  0.6235      0.337 0.564 0.000 0.436
#> SRR934264     3  0.6215      0.813 0.000 0.428 0.572
#> SRR934265     3  0.6215      0.813 0.000 0.428 0.572
#> SRR934266     3  0.6215      0.813 0.000 0.428 0.572
#> SRR934267     3  0.6215      0.813 0.000 0.428 0.572
#> SRR934268     3  0.6215      0.813 0.000 0.428 0.572
#> SRR934269     3  0.6215      0.813 0.000 0.428 0.572
#> SRR934270     3  0.6215      0.813 0.000 0.428 0.572
#> SRR934271     3  0.6215      0.813 0.000 0.428 0.572
#> SRR934272     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934273     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934274     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934275     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934276     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934277     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934278     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934279     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934280     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934281     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934282     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934283     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934284     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934285     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934286     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934287     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934288     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934289     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934290     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934291     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934292     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934293     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934294     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934295     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934296     1  0.6274      0.304 0.544 0.000 0.456
#> SRR934297     1  0.6274      0.304 0.544 0.000 0.456
#> SRR934298     1  0.6274      0.304 0.544 0.000 0.456
#> SRR934299     1  0.6274      0.304 0.544 0.000 0.456
#> SRR934300     1  0.6274      0.304 0.544 0.000 0.456
#> SRR934301     1  0.6274      0.304 0.544 0.000 0.456
#> SRR934302     1  0.6274      0.304 0.544 0.000 0.456
#> SRR934303     1  0.6274      0.304 0.544 0.000 0.456
#> SRR934304     2  0.6215      0.992 0.000 0.572 0.428
#> SRR934305     2  0.6215      0.992 0.000 0.572 0.428
#> SRR934306     2  0.6215      0.992 0.000 0.572 0.428
#> SRR934307     2  0.6215      0.992 0.000 0.572 0.428
#> SRR934308     2  0.6215      0.992 0.000 0.572 0.428
#> SRR934309     2  0.6215      0.992 0.000 0.572 0.428
#> SRR934310     2  0.6215      0.992 0.000 0.572 0.428
#> SRR934311     2  0.6215      0.992 0.000 0.572 0.428
#> SRR934312     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934313     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934314     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934315     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934316     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934317     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934318     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934319     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934320     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934321     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934322     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934323     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934324     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934325     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934326     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934327     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934328     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934329     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934330     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934331     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934332     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934333     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934334     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934335     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934344     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934345     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934346     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934347     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934348     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934349     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934350     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934351     1  0.0000      0.906 1.000 0.000 0.000
#> SRR934336     1  0.0237      0.903 0.996 0.000 0.004
#> SRR934337     1  0.0237      0.903 0.996 0.000 0.004
#> SRR934338     1  0.0237      0.903 0.996 0.000 0.004
#> SRR934339     1  0.0237      0.903 0.996 0.000 0.004
#> SRR934340     1  0.0237      0.903 0.996 0.000 0.004
#> SRR934341     1  0.0237      0.903 0.996 0.000 0.004
#> SRR934342     1  0.0237      0.903 0.996 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette p1 p2 p3 p4
#> SRR934216     2       0          1  0  1  0  0
#> SRR934217     2       0          1  0  1  0  0
#> SRR934218     2       0          1  0  1  0  0
#> SRR934219     2       0          1  0  1  0  0
#> SRR934220     2       0          1  0  1  0  0
#> SRR934221     2       0          1  0  1  0  0
#> SRR934222     2       0          1  0  1  0  0
#> SRR934223     2       0          1  0  1  0  0
#> SRR934224     1       0          1  1  0  0  0
#> SRR934225     1       0          1  1  0  0  0
#> SRR934226     1       0          1  1  0  0  0
#> SRR934227     1       0          1  1  0  0  0
#> SRR934228     1       0          1  1  0  0  0
#> SRR934229     1       0          1  1  0  0  0
#> SRR934230     1       0          1  1  0  0  0
#> SRR934231     1       0          1  1  0  0  0
#> SRR934232     2       0          1  0  1  0  0
#> SRR934233     2       0          1  0  1  0  0
#> SRR934234     2       0          1  0  1  0  0
#> SRR934235     2       0          1  0  1  0  0
#> SRR934236     2       0          1  0  1  0  0
#> SRR934237     2       0          1  0  1  0  0
#> SRR934238     2       0          1  0  1  0  0
#> SRR934239     2       0          1  0  1  0  0
#> SRR934240     2       0          1  0  1  0  0
#> SRR934241     2       0          1  0  1  0  0
#> SRR934242     2       0          1  0  1  0  0
#> SRR934243     2       0          1  0  1  0  0
#> SRR934244     2       0          1  0  1  0  0
#> SRR934245     2       0          1  0  1  0  0
#> SRR934246     2       0          1  0  1  0  0
#> SRR934247     2       0          1  0  1  0  0
#> SRR934248     4       0          1  0  0  0  1
#> SRR934249     4       0          1  0  0  0  1
#> SRR934250     4       0          1  0  0  0  1
#> SRR934251     4       0          1  0  0  0  1
#> SRR934252     4       0          1  0  0  0  1
#> SRR934253     4       0          1  0  0  0  1
#> SRR934254     4       0          1  0  0  0  1
#> SRR934255     4       0          1  0  0  0  1
#> SRR934256     2       0          1  0  1  0  0
#> SRR934257     2       0          1  0  1  0  0
#> SRR934258     2       0          1  0  1  0  0
#> SRR934259     2       0          1  0  1  0  0
#> SRR934260     2       0          1  0  1  0  0
#> SRR934261     2       0          1  0  1  0  0
#> SRR934262     2       0          1  0  1  0  0
#> SRR934263     2       0          1  0  1  0  0
#> SRR934264     4       0          1  0  0  0  1
#> SRR934265     4       0          1  0  0  0  1
#> SRR934266     4       0          1  0  0  0  1
#> SRR934267     4       0          1  0  0  0  1
#> SRR934268     4       0          1  0  0  0  1
#> SRR934269     4       0          1  0  0  0  1
#> SRR934270     4       0          1  0  0  0  1
#> SRR934271     4       0          1  0  0  0  1
#> SRR934272     1       0          1  1  0  0  0
#> SRR934273     1       0          1  1  0  0  0
#> SRR934274     1       0          1  1  0  0  0
#> SRR934275     1       0          1  1  0  0  0
#> SRR934276     1       0          1  1  0  0  0
#> SRR934277     1       0          1  1  0  0  0
#> SRR934278     1       0          1  1  0  0  0
#> SRR934279     1       0          1  1  0  0  0
#> SRR934280     1       0          1  1  0  0  0
#> SRR934281     1       0          1  1  0  0  0
#> SRR934282     1       0          1  1  0  0  0
#> SRR934283     1       0          1  1  0  0  0
#> SRR934284     1       0          1  1  0  0  0
#> SRR934285     1       0          1  1  0  0  0
#> SRR934286     1       0          1  1  0  0  0
#> SRR934287     1       0          1  1  0  0  0
#> SRR934288     1       0          1  1  0  0  0
#> SRR934289     1       0          1  1  0  0  0
#> SRR934290     1       0          1  1  0  0  0
#> SRR934291     1       0          1  1  0  0  0
#> SRR934292     1       0          1  1  0  0  0
#> SRR934293     1       0          1  1  0  0  0
#> SRR934294     1       0          1  1  0  0  0
#> SRR934295     1       0          1  1  0  0  0
#> SRR934296     2       0          1  0  1  0  0
#> SRR934297     2       0          1  0  1  0  0
#> SRR934298     2       0          1  0  1  0  0
#> SRR934299     2       0          1  0  1  0  0
#> SRR934300     2       0          1  0  1  0  0
#> SRR934301     2       0          1  0  1  0  0
#> SRR934302     2       0          1  0  1  0  0
#> SRR934303     2       0          1  0  1  0  0
#> SRR934304     3       0          1  0  0  1  0
#> SRR934305     3       0          1  0  0  1  0
#> SRR934306     3       0          1  0  0  1  0
#> SRR934307     3       0          1  0  0  1  0
#> SRR934308     3       0          1  0  0  1  0
#> SRR934309     3       0          1  0  0  1  0
#> SRR934310     3       0          1  0  0  1  0
#> SRR934311     3       0          1  0  0  1  0
#> SRR934312     1       0          1  1  0  0  0
#> SRR934313     1       0          1  1  0  0  0
#> SRR934314     1       0          1  1  0  0  0
#> SRR934315     1       0          1  1  0  0  0
#> SRR934316     1       0          1  1  0  0  0
#> SRR934317     1       0          1  1  0  0  0
#> SRR934318     1       0          1  1  0  0  0
#> SRR934319     1       0          1  1  0  0  0
#> SRR934320     1       0          1  1  0  0  0
#> SRR934321     1       0          1  1  0  0  0
#> SRR934322     1       0          1  1  0  0  0
#> SRR934323     1       0          1  1  0  0  0
#> SRR934324     1       0          1  1  0  0  0
#> SRR934325     1       0          1  1  0  0  0
#> SRR934326     1       0          1  1  0  0  0
#> SRR934327     1       0          1  1  0  0  0
#> SRR934328     1       0          1  1  0  0  0
#> SRR934329     1       0          1  1  0  0  0
#> SRR934330     1       0          1  1  0  0  0
#> SRR934331     1       0          1  1  0  0  0
#> SRR934332     1       0          1  1  0  0  0
#> SRR934333     1       0          1  1  0  0  0
#> SRR934334     1       0          1  1  0  0  0
#> SRR934335     1       0          1  1  0  0  0
#> SRR934344     1       0          1  1  0  0  0
#> SRR934345     1       0          1  1  0  0  0
#> SRR934346     1       0          1  1  0  0  0
#> SRR934347     1       0          1  1  0  0  0
#> SRR934348     1       0          1  1  0  0  0
#> SRR934349     1       0          1  1  0  0  0
#> SRR934350     1       0          1  1  0  0  0
#> SRR934351     1       0          1  1  0  0  0
#> SRR934336     1       0          1  1  0  0  0
#> SRR934337     1       0          1  1  0  0  0
#> SRR934338     1       0          1  1  0  0  0
#> SRR934339     1       0          1  1  0  0  0
#> SRR934340     1       0          1  1  0  0  0
#> SRR934341     1       0          1  1  0  0  0
#> SRR934342     1       0          1  1  0  0  0

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette p1 p2 p3 p4 p5
#> SRR934216     3       0          1  0  0  1  0  0
#> SRR934217     3       0          1  0  0  1  0  0
#> SRR934218     3       0          1  0  0  1  0  0
#> SRR934219     3       0          1  0  0  1  0  0
#> SRR934220     3       0          1  0  0  1  0  0
#> SRR934221     3       0          1  0  0  1  0  0
#> SRR934222     3       0          1  0  0  1  0  0
#> SRR934223     3       0          1  0  0  1  0  0
#> SRR934224     1       0          1  1  0  0  0  0
#> SRR934225     1       0          1  1  0  0  0  0
#> SRR934226     1       0          1  1  0  0  0  0
#> SRR934227     1       0          1  1  0  0  0  0
#> SRR934228     1       0          1  1  0  0  0  0
#> SRR934229     1       0          1  1  0  0  0  0
#> SRR934230     1       0          1  1  0  0  0  0
#> SRR934231     1       0          1  1  0  0  0  0
#> SRR934232     2       0          1  0  1  0  0  0
#> SRR934233     2       0          1  0  1  0  0  0
#> SRR934234     2       0          1  0  1  0  0  0
#> SRR934235     2       0          1  0  1  0  0  0
#> SRR934236     2       0          1  0  1  0  0  0
#> SRR934237     2       0          1  0  1  0  0  0
#> SRR934238     2       0          1  0  1  0  0  0
#> SRR934239     2       0          1  0  1  0  0  0
#> SRR934240     2       0          1  0  1  0  0  0
#> SRR934241     2       0          1  0  1  0  0  0
#> SRR934242     2       0          1  0  1  0  0  0
#> SRR934243     2       0          1  0  1  0  0  0
#> SRR934244     2       0          1  0  1  0  0  0
#> SRR934245     2       0          1  0  1  0  0  0
#> SRR934246     2       0          1  0  1  0  0  0
#> SRR934247     2       0          1  0  1  0  0  0
#> SRR934248     4       0          1  0  0  0  1  0
#> SRR934249     4       0          1  0  0  0  1  0
#> SRR934250     4       0          1  0  0  0  1  0
#> SRR934251     4       0          1  0  0  0  1  0
#> SRR934252     4       0          1  0  0  0  1  0
#> SRR934253     4       0          1  0  0  0  1  0
#> SRR934254     4       0          1  0  0  0  1  0
#> SRR934255     4       0          1  0  0  0  1  0
#> SRR934256     2       0          1  0  1  0  0  0
#> SRR934257     2       0          1  0  1  0  0  0
#> SRR934258     2       0          1  0  1  0  0  0
#> SRR934259     2       0          1  0  1  0  0  0
#> SRR934260     2       0          1  0  1  0  0  0
#> SRR934261     2       0          1  0  1  0  0  0
#> SRR934262     2       0          1  0  1  0  0  0
#> SRR934263     2       0          1  0  1  0  0  0
#> SRR934264     4       0          1  0  0  0  1  0
#> SRR934265     4       0          1  0  0  0  1  0
#> SRR934266     4       0          1  0  0  0  1  0
#> SRR934267     4       0          1  0  0  0  1  0
#> SRR934268     4       0          1  0  0  0  1  0
#> SRR934269     4       0          1  0  0  0  1  0
#> SRR934270     4       0          1  0  0  0  1  0
#> SRR934271     4       0          1  0  0  0  1  0
#> SRR934272     1       0          1  1  0  0  0  0
#> SRR934273     1       0          1  1  0  0  0  0
#> SRR934274     1       0          1  1  0  0  0  0
#> SRR934275     1       0          1  1  0  0  0  0
#> SRR934276     1       0          1  1  0  0  0  0
#> SRR934277     1       0          1  1  0  0  0  0
#> SRR934278     1       0          1  1  0  0  0  0
#> SRR934279     1       0          1  1  0  0  0  0
#> SRR934280     1       0          1  1  0  0  0  0
#> SRR934281     1       0          1  1  0  0  0  0
#> SRR934282     1       0          1  1  0  0  0  0
#> SRR934283     1       0          1  1  0  0  0  0
#> SRR934284     1       0          1  1  0  0  0  0
#> SRR934285     1       0          1  1  0  0  0  0
#> SRR934286     1       0          1  1  0  0  0  0
#> SRR934287     1       0          1  1  0  0  0  0
#> SRR934288     1       0          1  1  0  0  0  0
#> SRR934289     1       0          1  1  0  0  0  0
#> SRR934290     1       0          1  1  0  0  0  0
#> SRR934291     1       0          1  1  0  0  0  0
#> SRR934292     1       0          1  1  0  0  0  0
#> SRR934293     1       0          1  1  0  0  0  0
#> SRR934294     1       0          1  1  0  0  0  0
#> SRR934295     1       0          1  1  0  0  0  0
#> SRR934296     2       0          1  0  1  0  0  0
#> SRR934297     2       0          1  0  1  0  0  0
#> SRR934298     2       0          1  0  1  0  0  0
#> SRR934299     2       0          1  0  1  0  0  0
#> SRR934300     2       0          1  0  1  0  0  0
#> SRR934301     2       0          1  0  1  0  0  0
#> SRR934302     2       0          1  0  1  0  0  0
#> SRR934303     2       0          1  0  1  0  0  0
#> SRR934304     5       0          1  0  0  0  0  1
#> SRR934305     5       0          1  0  0  0  0  1
#> SRR934306     5       0          1  0  0  0  0  1
#> SRR934307     5       0          1  0  0  0  0  1
#> SRR934308     5       0          1  0  0  0  0  1
#> SRR934309     5       0          1  0  0  0  0  1
#> SRR934310     5       0          1  0  0  0  0  1
#> SRR934311     5       0          1  0  0  0  0  1
#> SRR934312     1       0          1  1  0  0  0  0
#> SRR934313     1       0          1  1  0  0  0  0
#> SRR934314     1       0          1  1  0  0  0  0
#> SRR934315     1       0          1  1  0  0  0  0
#> SRR934316     1       0          1  1  0  0  0  0
#> SRR934317     1       0          1  1  0  0  0  0
#> SRR934318     1       0          1  1  0  0  0  0
#> SRR934319     1       0          1  1  0  0  0  0
#> SRR934320     1       0          1  1  0  0  0  0
#> SRR934321     1       0          1  1  0  0  0  0
#> SRR934322     1       0          1  1  0  0  0  0
#> SRR934323     1       0          1  1  0  0  0  0
#> SRR934324     1       0          1  1  0  0  0  0
#> SRR934325     1       0          1  1  0  0  0  0
#> SRR934326     1       0          1  1  0  0  0  0
#> SRR934327     1       0          1  1  0  0  0  0
#> SRR934328     1       0          1  1  0  0  0  0
#> SRR934329     1       0          1  1  0  0  0  0
#> SRR934330     1       0          1  1  0  0  0  0
#> SRR934331     1       0          1  1  0  0  0  0
#> SRR934332     1       0          1  1  0  0  0  0
#> SRR934333     1       0          1  1  0  0  0  0
#> SRR934334     1       0          1  1  0  0  0  0
#> SRR934335     1       0          1  1  0  0  0  0
#> SRR934344     1       0          1  1  0  0  0  0
#> SRR934345     1       0          1  1  0  0  0  0
#> SRR934346     1       0          1  1  0  0  0  0
#> SRR934347     1       0          1  1  0  0  0  0
#> SRR934348     1       0          1  1  0  0  0  0
#> SRR934349     1       0          1  1  0  0  0  0
#> SRR934350     1       0          1  1  0  0  0  0
#> SRR934351     1       0          1  1  0  0  0  0
#> SRR934336     1       0          1  1  0  0  0  0
#> SRR934337     1       0          1  1  0  0  0  0
#> SRR934338     1       0          1  1  0  0  0  0
#> SRR934339     1       0          1  1  0  0  0  0
#> SRR934340     1       0          1  1  0  0  0  0
#> SRR934341     1       0          1  1  0  0  0  0
#> SRR934342     1       0          1  1  0  0  0  0

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2 p3 p4 p5    p6
#> SRR934216     3   0.000      1.000 0.000 0.000  1  0  0 0.000
#> SRR934217     3   0.000      1.000 0.000 0.000  1  0  0 0.000
#> SRR934218     3   0.000      1.000 0.000 0.000  1  0  0 0.000
#> SRR934219     3   0.000      1.000 0.000 0.000  1  0  0 0.000
#> SRR934220     3   0.000      1.000 0.000 0.000  1  0  0 0.000
#> SRR934221     3   0.000      1.000 0.000 0.000  1  0  0 0.000
#> SRR934222     3   0.000      1.000 0.000 0.000  1  0  0 0.000
#> SRR934223     3   0.000      1.000 0.000 0.000  1  0  0 0.000
#> SRR934224     1   0.386      0.666 0.524 0.000  0  0  0 0.476
#> SRR934225     1   0.386      0.666 0.524 0.000  0  0  0 0.476
#> SRR934226     1   0.386      0.666 0.524 0.000  0  0  0 0.476
#> SRR934227     1   0.386      0.666 0.524 0.000  0  0  0 0.476
#> SRR934228     1   0.386      0.666 0.524 0.000  0  0  0 0.476
#> SRR934229     1   0.386      0.666 0.524 0.000  0  0  0 0.476
#> SRR934230     1   0.386      0.666 0.524 0.000  0  0  0 0.476
#> SRR934231     1   0.386      0.666 0.524 0.000  0  0  0 0.476
#> SRR934232     2   0.000      0.754 0.000 1.000  0  0  0 0.000
#> SRR934233     2   0.000      0.754 0.000 1.000  0  0  0 0.000
#> SRR934234     2   0.000      0.754 0.000 1.000  0  0  0 0.000
#> SRR934235     2   0.000      0.754 0.000 1.000  0  0  0 0.000
#> SRR934236     2   0.000      0.754 0.000 1.000  0  0  0 0.000
#> SRR934237     2   0.000      0.754 0.000 1.000  0  0  0 0.000
#> SRR934238     2   0.000      0.754 0.000 1.000  0  0  0 0.000
#> SRR934239     2   0.000      0.754 0.000 1.000  0  0  0 0.000
#> SRR934240     2   0.000      0.754 0.000 1.000  0  0  0 0.000
#> SRR934241     2   0.000      0.754 0.000 1.000  0  0  0 0.000
#> SRR934242     2   0.000      0.754 0.000 1.000  0  0  0 0.000
#> SRR934243     2   0.000      0.754 0.000 1.000  0  0  0 0.000
#> SRR934244     2   0.000      0.754 0.000 1.000  0  0  0 0.000
#> SRR934245     2   0.000      0.754 0.000 1.000  0  0  0 0.000
#> SRR934246     2   0.000      0.754 0.000 1.000  0  0  0 0.000
#> SRR934247     2   0.000      0.754 0.000 1.000  0  0  0 0.000
#> SRR934248     4   0.000      1.000 0.000 0.000  0  1  0 0.000
#> SRR934249     4   0.000      1.000 0.000 0.000  0  1  0 0.000
#> SRR934250     4   0.000      1.000 0.000 0.000  0  1  0 0.000
#> SRR934251     4   0.000      1.000 0.000 0.000  0  1  0 0.000
#> SRR934252     4   0.000      1.000 0.000 0.000  0  1  0 0.000
#> SRR934253     4   0.000      1.000 0.000 0.000  0  1  0 0.000
#> SRR934254     4   0.000      1.000 0.000 0.000  0  1  0 0.000
#> SRR934255     4   0.000      1.000 0.000 0.000  0  1  0 0.000
#> SRR934256     6   0.386      1.000 0.000 0.476  0  0  0 0.524
#> SRR934257     6   0.386      1.000 0.000 0.476  0  0  0 0.524
#> SRR934258     6   0.386      1.000 0.000 0.476  0  0  0 0.524
#> SRR934259     6   0.386      1.000 0.000 0.476  0  0  0 0.524
#> SRR934260     6   0.386      1.000 0.000 0.476  0  0  0 0.524
#> SRR934261     6   0.386      1.000 0.000 0.476  0  0  0 0.524
#> SRR934262     6   0.386      1.000 0.000 0.476  0  0  0 0.524
#> SRR934263     6   0.386      1.000 0.000 0.476  0  0  0 0.524
#> SRR934264     4   0.000      1.000 0.000 0.000  0  1  0 0.000
#> SRR934265     4   0.000      1.000 0.000 0.000  0  1  0 0.000
#> SRR934266     4   0.000      1.000 0.000 0.000  0  1  0 0.000
#> SRR934267     4   0.000      1.000 0.000 0.000  0  1  0 0.000
#> SRR934268     4   0.000      1.000 0.000 0.000  0  1  0 0.000
#> SRR934269     4   0.000      1.000 0.000 0.000  0  1  0 0.000
#> SRR934270     4   0.000      1.000 0.000 0.000  0  1  0 0.000
#> SRR934271     4   0.000      1.000 0.000 0.000  0  1  0 0.000
#> SRR934272     1   0.358      0.734 0.660 0.000  0  0  0 0.340
#> SRR934273     1   0.358      0.734 0.660 0.000  0  0  0 0.340
#> SRR934274     1   0.358      0.734 0.660 0.000  0  0  0 0.340
#> SRR934275     1   0.358      0.734 0.660 0.000  0  0  0 0.340
#> SRR934276     1   0.358      0.734 0.660 0.000  0  0  0 0.340
#> SRR934277     1   0.358      0.734 0.660 0.000  0  0  0 0.340
#> SRR934278     1   0.358      0.734 0.660 0.000  0  0  0 0.340
#> SRR934279     1   0.358      0.734 0.660 0.000  0  0  0 0.340
#> SRR934280     1   0.000      0.810 1.000 0.000  0  0  0 0.000
#> SRR934281     1   0.000      0.810 1.000 0.000  0  0  0 0.000
#> SRR934282     1   0.000      0.810 1.000 0.000  0  0  0 0.000
#> SRR934283     1   0.000      0.810 1.000 0.000  0  0  0 0.000
#> SRR934284     1   0.000      0.810 1.000 0.000  0  0  0 0.000
#> SRR934285     1   0.000      0.810 1.000 0.000  0  0  0 0.000
#> SRR934286     1   0.000      0.810 1.000 0.000  0  0  0 0.000
#> SRR934287     1   0.000      0.810 1.000 0.000  0  0  0 0.000
#> SRR934288     1   0.000      0.810 1.000 0.000  0  0  0 0.000
#> SRR934289     1   0.000      0.810 1.000 0.000  0  0  0 0.000
#> SRR934290     1   0.000      0.810 1.000 0.000  0  0  0 0.000
#> SRR934291     1   0.000      0.810 1.000 0.000  0  0  0 0.000
#> SRR934292     1   0.000      0.810 1.000 0.000  0  0  0 0.000
#> SRR934293     1   0.000      0.810 1.000 0.000  0  0  0 0.000
#> SRR934294     1   0.000      0.810 1.000 0.000  0  0  0 0.000
#> SRR934295     1   0.000      0.810 1.000 0.000  0  0  0 0.000
#> SRR934296     2   0.352     -0.113 0.000 0.676  0  0  0 0.324
#> SRR934297     2   0.352     -0.113 0.000 0.676  0  0  0 0.324
#> SRR934298     2   0.352     -0.113 0.000 0.676  0  0  0 0.324
#> SRR934299     2   0.352     -0.113 0.000 0.676  0  0  0 0.324
#> SRR934300     2   0.352     -0.113 0.000 0.676  0  0  0 0.324
#> SRR934301     2   0.352     -0.113 0.000 0.676  0  0  0 0.324
#> SRR934302     2   0.352     -0.113 0.000 0.676  0  0  0 0.324
#> SRR934303     2   0.352     -0.113 0.000 0.676  0  0  0 0.324
#> SRR934304     5   0.000      1.000 0.000 0.000  0  0  1 0.000
#> SRR934305     5   0.000      1.000 0.000 0.000  0  0  1 0.000
#> SRR934306     5   0.000      1.000 0.000 0.000  0  0  1 0.000
#> SRR934307     5   0.000      1.000 0.000 0.000  0  0  1 0.000
#> SRR934308     5   0.000      1.000 0.000 0.000  0  0  1 0.000
#> SRR934309     5   0.000      1.000 0.000 0.000  0  0  1 0.000
#> SRR934310     5   0.000      1.000 0.000 0.000  0  0  1 0.000
#> SRR934311     5   0.000      1.000 0.000 0.000  0  0  1 0.000
#> SRR934312     1   0.026      0.811 0.992 0.000  0  0  0 0.008
#> SRR934313     1   0.026      0.811 0.992 0.000  0  0  0 0.008
#> SRR934314     1   0.026      0.811 0.992 0.000  0  0  0 0.008
#> SRR934315     1   0.026      0.811 0.992 0.000  0  0  0 0.008
#> SRR934316     1   0.026      0.811 0.992 0.000  0  0  0 0.008
#> SRR934317     1   0.026      0.811 0.992 0.000  0  0  0 0.008
#> SRR934318     1   0.026      0.811 0.992 0.000  0  0  0 0.008
#> SRR934319     1   0.026      0.811 0.992 0.000  0  0  0 0.008
#> SRR934320     1   0.000      0.810 1.000 0.000  0  0  0 0.000
#> SRR934321     1   0.000      0.810 1.000 0.000  0  0  0 0.000
#> SRR934322     1   0.000      0.810 1.000 0.000  0  0  0 0.000
#> SRR934323     1   0.000      0.810 1.000 0.000  0  0  0 0.000
#> SRR934324     1   0.000      0.810 1.000 0.000  0  0  0 0.000
#> SRR934325     1   0.000      0.810 1.000 0.000  0  0  0 0.000
#> SRR934326     1   0.000      0.810 1.000 0.000  0  0  0 0.000
#> SRR934327     1   0.000      0.810 1.000 0.000  0  0  0 0.000
#> SRR934328     1   0.026      0.811 0.992 0.000  0  0  0 0.008
#> SRR934329     1   0.026      0.811 0.992 0.000  0  0  0 0.008
#> SRR934330     1   0.026      0.811 0.992 0.000  0  0  0 0.008
#> SRR934331     1   0.026      0.811 0.992 0.000  0  0  0 0.008
#> SRR934332     1   0.026      0.811 0.992 0.000  0  0  0 0.008
#> SRR934333     1   0.026      0.811 0.992 0.000  0  0  0 0.008
#> SRR934334     1   0.026      0.811 0.992 0.000  0  0  0 0.008
#> SRR934335     1   0.026      0.811 0.992 0.000  0  0  0 0.008
#> SRR934344     1   0.372      0.715 0.616 0.000  0  0  0 0.384
#> SRR934345     1   0.372      0.715 0.616 0.000  0  0  0 0.384
#> SRR934346     1   0.372      0.715 0.616 0.000  0  0  0 0.384
#> SRR934347     1   0.372      0.715 0.616 0.000  0  0  0 0.384
#> SRR934348     1   0.372      0.715 0.616 0.000  0  0  0 0.384
#> SRR934349     1   0.372      0.715 0.616 0.000  0  0  0 0.384
#> SRR934350     1   0.372      0.715 0.616 0.000  0  0  0 0.384
#> SRR934351     1   0.372      0.715 0.616 0.000  0  0  0 0.384
#> SRR934336     1   0.386      0.666 0.524 0.000  0  0  0 0.476
#> SRR934337     1   0.386      0.666 0.524 0.000  0  0  0 0.476
#> SRR934338     1   0.386      0.666 0.524 0.000  0  0  0 0.476
#> SRR934339     1   0.386      0.666 0.524 0.000  0  0  0 0.476
#> SRR934340     1   0.386      0.666 0.524 0.000  0  0  0 0.476
#> SRR934341     1   0.386      0.666 0.524 0.000  0  0  0 0.476
#> SRR934342     1   0.386      0.666 0.524 0.000  0  0  0 0.476

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14550 rows and 135 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.867           0.946       0.974         0.4381 0.580   0.580
#> 3 3 0.790           0.880       0.928         0.3050 0.818   0.693
#> 4 4 0.997           0.955       0.971         0.1241 0.852   0.685
#> 5 5 0.735           0.657       0.811         0.1373 0.860   0.643
#> 6 6 0.817           0.890       0.869         0.0506 0.916   0.714

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR934216     1  0.7815      0.724 0.768 0.232
#> SRR934217     1  0.7950      0.712 0.760 0.240
#> SRR934218     1  0.7950      0.712 0.760 0.240
#> SRR934219     1  0.7453      0.752 0.788 0.212
#> SRR934220     1  0.7299      0.762 0.796 0.204
#> SRR934221     1  0.7528      0.746 0.784 0.216
#> SRR934222     1  0.7815      0.724 0.768 0.232
#> SRR934223     1  0.7745      0.729 0.772 0.228
#> SRR934224     1  0.0000      0.962 1.000 0.000
#> SRR934225     1  0.0000      0.962 1.000 0.000
#> SRR934226     1  0.0000      0.962 1.000 0.000
#> SRR934227     1  0.0000      0.962 1.000 0.000
#> SRR934228     1  0.0000      0.962 1.000 0.000
#> SRR934229     1  0.0000      0.962 1.000 0.000
#> SRR934230     1  0.0000      0.962 1.000 0.000
#> SRR934231     1  0.0000      0.962 1.000 0.000
#> SRR934232     2  0.0000      0.997 0.000 1.000
#> SRR934233     2  0.0000      0.997 0.000 1.000
#> SRR934234     2  0.0000      0.997 0.000 1.000
#> SRR934235     2  0.0000      0.997 0.000 1.000
#> SRR934236     2  0.0000      0.997 0.000 1.000
#> SRR934237     2  0.0000      0.997 0.000 1.000
#> SRR934238     2  0.0000      0.997 0.000 1.000
#> SRR934239     2  0.0000      0.997 0.000 1.000
#> SRR934240     2  0.1414      0.981 0.020 0.980
#> SRR934241     2  0.0672      0.992 0.008 0.992
#> SRR934242     2  0.0672      0.992 0.008 0.992
#> SRR934243     2  0.1414      0.981 0.020 0.980
#> SRR934244     2  0.0938      0.988 0.012 0.988
#> SRR934245     2  0.0672      0.992 0.008 0.992
#> SRR934246     2  0.0938      0.988 0.012 0.988
#> SRR934247     2  0.0672      0.992 0.008 0.992
#> SRR934248     2  0.0000      0.997 0.000 1.000
#> SRR934249     2  0.0000      0.997 0.000 1.000
#> SRR934250     2  0.0000      0.997 0.000 1.000
#> SRR934251     2  0.0000      0.997 0.000 1.000
#> SRR934252     2  0.0000      0.997 0.000 1.000
#> SRR934253     2  0.0000      0.997 0.000 1.000
#> SRR934254     2  0.0000      0.997 0.000 1.000
#> SRR934255     2  0.0000      0.997 0.000 1.000
#> SRR934256     1  0.0000      0.962 1.000 0.000
#> SRR934257     1  0.0000      0.962 1.000 0.000
#> SRR934258     1  0.0000      0.962 1.000 0.000
#> SRR934259     1  0.0000      0.962 1.000 0.000
#> SRR934260     1  0.0000      0.962 1.000 0.000
#> SRR934261     1  0.0000      0.962 1.000 0.000
#> SRR934262     1  0.0000      0.962 1.000 0.000
#> SRR934263     1  0.0000      0.962 1.000 0.000
#> SRR934264     2  0.0000      0.997 0.000 1.000
#> SRR934265     2  0.0000      0.997 0.000 1.000
#> SRR934266     2  0.0000      0.997 0.000 1.000
#> SRR934267     2  0.0000      0.997 0.000 1.000
#> SRR934268     2  0.0000      0.997 0.000 1.000
#> SRR934269     2  0.0000      0.997 0.000 1.000
#> SRR934270     2  0.0000      0.997 0.000 1.000
#> SRR934271     2  0.0000      0.997 0.000 1.000
#> SRR934272     1  0.0000      0.962 1.000 0.000
#> SRR934273     1  0.0000      0.962 1.000 0.000
#> SRR934274     1  0.0000      0.962 1.000 0.000
#> SRR934275     1  0.0000      0.962 1.000 0.000
#> SRR934276     1  0.0000      0.962 1.000 0.000
#> SRR934277     1  0.0000      0.962 1.000 0.000
#> SRR934278     1  0.0000      0.962 1.000 0.000
#> SRR934279     1  0.0000      0.962 1.000 0.000
#> SRR934280     1  0.0000      0.962 1.000 0.000
#> SRR934281     1  0.0000      0.962 1.000 0.000
#> SRR934282     1  0.0000      0.962 1.000 0.000
#> SRR934283     1  0.0000      0.962 1.000 0.000
#> SRR934284     1  0.0000      0.962 1.000 0.000
#> SRR934285     1  0.0000      0.962 1.000 0.000
#> SRR934286     1  0.0000      0.962 1.000 0.000
#> SRR934287     1  0.0000      0.962 1.000 0.000
#> SRR934288     1  0.0000      0.962 1.000 0.000
#> SRR934289     1  0.0000      0.962 1.000 0.000
#> SRR934290     1  0.0000      0.962 1.000 0.000
#> SRR934291     1  0.0000      0.962 1.000 0.000
#> SRR934292     1  0.0000      0.962 1.000 0.000
#> SRR934293     1  0.0000      0.962 1.000 0.000
#> SRR934294     1  0.0000      0.962 1.000 0.000
#> SRR934295     1  0.0000      0.962 1.000 0.000
#> SRR934296     1  0.7299      0.762 0.796 0.204
#> SRR934297     1  0.7299      0.762 0.796 0.204
#> SRR934298     1  0.7299      0.762 0.796 0.204
#> SRR934299     1  0.7299      0.762 0.796 0.204
#> SRR934300     1  0.7299      0.762 0.796 0.204
#> SRR934301     1  0.7299      0.762 0.796 0.204
#> SRR934302     1  0.7299      0.762 0.796 0.204
#> SRR934303     1  0.7299      0.762 0.796 0.204
#> SRR934304     2  0.0000      0.997 0.000 1.000
#> SRR934305     2  0.0000      0.997 0.000 1.000
#> SRR934306     2  0.0000      0.997 0.000 1.000
#> SRR934307     2  0.0000      0.997 0.000 1.000
#> SRR934308     2  0.0000      0.997 0.000 1.000
#> SRR934309     2  0.0000      0.997 0.000 1.000
#> SRR934310     2  0.0000      0.997 0.000 1.000
#> SRR934311     2  0.0000      0.997 0.000 1.000
#> SRR934312     1  0.0000      0.962 1.000 0.000
#> SRR934313     1  0.0000      0.962 1.000 0.000
#> SRR934314     1  0.0000      0.962 1.000 0.000
#> SRR934315     1  0.0000      0.962 1.000 0.000
#> SRR934316     1  0.0000      0.962 1.000 0.000
#> SRR934317     1  0.0000      0.962 1.000 0.000
#> SRR934318     1  0.0000      0.962 1.000 0.000
#> SRR934319     1  0.0000      0.962 1.000 0.000
#> SRR934320     1  0.0000      0.962 1.000 0.000
#> SRR934321     1  0.0000      0.962 1.000 0.000
#> SRR934322     1  0.0000      0.962 1.000 0.000
#> SRR934323     1  0.0000      0.962 1.000 0.000
#> SRR934324     1  0.0000      0.962 1.000 0.000
#> SRR934325     1  0.0000      0.962 1.000 0.000
#> SRR934326     1  0.0000      0.962 1.000 0.000
#> SRR934327     1  0.0000      0.962 1.000 0.000
#> SRR934328     1  0.0000      0.962 1.000 0.000
#> SRR934329     1  0.0000      0.962 1.000 0.000
#> SRR934330     1  0.0000      0.962 1.000 0.000
#> SRR934331     1  0.0000      0.962 1.000 0.000
#> SRR934332     1  0.0000      0.962 1.000 0.000
#> SRR934333     1  0.0000      0.962 1.000 0.000
#> SRR934334     1  0.0000      0.962 1.000 0.000
#> SRR934335     1  0.0000      0.962 1.000 0.000
#> SRR934344     1  0.0000      0.962 1.000 0.000
#> SRR934345     1  0.0000      0.962 1.000 0.000
#> SRR934346     1  0.0000      0.962 1.000 0.000
#> SRR934347     1  0.0000      0.962 1.000 0.000
#> SRR934348     1  0.0000      0.962 1.000 0.000
#> SRR934349     1  0.0000      0.962 1.000 0.000
#> SRR934350     1  0.0000      0.962 1.000 0.000
#> SRR934351     1  0.0000      0.962 1.000 0.000
#> SRR934336     1  0.0000      0.962 1.000 0.000
#> SRR934337     1  0.0000      0.962 1.000 0.000
#> SRR934338     1  0.0000      0.962 1.000 0.000
#> SRR934339     1  0.0000      0.962 1.000 0.000
#> SRR934340     1  0.0000      0.962 1.000 0.000
#> SRR934341     1  0.0000      0.962 1.000 0.000
#> SRR934342     1  0.0000      0.962 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR934216     1  0.5058      0.693 0.756 0.000 0.244
#> SRR934217     1  0.5058      0.693 0.756 0.000 0.244
#> SRR934218     1  0.5058      0.693 0.756 0.000 0.244
#> SRR934219     1  0.5058      0.693 0.756 0.000 0.244
#> SRR934220     1  0.5058      0.693 0.756 0.000 0.244
#> SRR934221     1  0.5058      0.693 0.756 0.000 0.244
#> SRR934222     1  0.5058      0.693 0.756 0.000 0.244
#> SRR934223     1  0.5058      0.693 0.756 0.000 0.244
#> SRR934224     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934225     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934226     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934227     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934228     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934229     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934230     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934231     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934232     3  0.5058      0.919 0.000 0.244 0.756
#> SRR934233     3  0.5058      0.919 0.000 0.244 0.756
#> SRR934234     3  0.5058      0.919 0.000 0.244 0.756
#> SRR934235     3  0.5058      0.919 0.000 0.244 0.756
#> SRR934236     3  0.5058      0.919 0.000 0.244 0.756
#> SRR934237     3  0.5058      0.919 0.000 0.244 0.756
#> SRR934238     3  0.5058      0.919 0.000 0.244 0.756
#> SRR934239     3  0.5058      0.919 0.000 0.244 0.756
#> SRR934240     2  0.0237      0.695 0.000 0.996 0.004
#> SRR934241     2  0.0237      0.695 0.000 0.996 0.004
#> SRR934242     2  0.0237      0.695 0.000 0.996 0.004
#> SRR934243     2  0.0000      0.696 0.000 1.000 0.000
#> SRR934244     2  0.0237      0.695 0.000 0.996 0.004
#> SRR934245     2  0.0000      0.696 0.000 1.000 0.000
#> SRR934246     2  0.0000      0.696 0.000 1.000 0.000
#> SRR934247     2  0.0237      0.695 0.000 0.996 0.004
#> SRR934248     3  0.5058      0.919 0.000 0.244 0.756
#> SRR934249     3  0.5058      0.919 0.000 0.244 0.756
#> SRR934250     3  0.5058      0.919 0.000 0.244 0.756
#> SRR934251     3  0.5058      0.919 0.000 0.244 0.756
#> SRR934252     3  0.5058      0.919 0.000 0.244 0.756
#> SRR934253     3  0.5058      0.919 0.000 0.244 0.756
#> SRR934254     3  0.5058      0.919 0.000 0.244 0.756
#> SRR934255     3  0.5058      0.919 0.000 0.244 0.756
#> SRR934256     2  0.5058      0.713 0.244 0.756 0.000
#> SRR934257     2  0.5058      0.713 0.244 0.756 0.000
#> SRR934258     2  0.5058      0.713 0.244 0.756 0.000
#> SRR934259     2  0.5058      0.713 0.244 0.756 0.000
#> SRR934260     2  0.5058      0.713 0.244 0.756 0.000
#> SRR934261     2  0.5058      0.713 0.244 0.756 0.000
#> SRR934262     2  0.5058      0.713 0.244 0.756 0.000
#> SRR934263     2  0.5058      0.713 0.244 0.756 0.000
#> SRR934264     3  0.5058      0.919 0.000 0.244 0.756
#> SRR934265     3  0.5058      0.919 0.000 0.244 0.756
#> SRR934266     3  0.5058      0.919 0.000 0.244 0.756
#> SRR934267     3  0.5058      0.919 0.000 0.244 0.756
#> SRR934268     3  0.5058      0.919 0.000 0.244 0.756
#> SRR934269     3  0.5058      0.919 0.000 0.244 0.756
#> SRR934270     3  0.5058      0.919 0.000 0.244 0.756
#> SRR934271     3  0.5058      0.919 0.000 0.244 0.756
#> SRR934272     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934273     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934274     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934275     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934276     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934277     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934278     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934279     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934280     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934281     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934282     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934283     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934284     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934285     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934286     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934287     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934288     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934289     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934290     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934291     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934292     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934293     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934294     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934295     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934296     2  0.6881      0.650 0.020 0.592 0.388
#> SRR934297     2  0.6783      0.642 0.016 0.588 0.396
#> SRR934298     2  0.7104      0.671 0.032 0.608 0.360
#> SRR934299     2  0.7032      0.667 0.028 0.604 0.368
#> SRR934300     2  0.6753      0.650 0.016 0.596 0.388
#> SRR934301     2  0.6553      0.623 0.008 0.580 0.412
#> SRR934302     2  0.7032      0.667 0.028 0.604 0.368
#> SRR934303     2  0.6832      0.661 0.020 0.604 0.376
#> SRR934304     3  0.0000      0.739 0.000 0.000 1.000
#> SRR934305     3  0.0000      0.739 0.000 0.000 1.000
#> SRR934306     3  0.0000      0.739 0.000 0.000 1.000
#> SRR934307     3  0.0000      0.739 0.000 0.000 1.000
#> SRR934308     3  0.0000      0.739 0.000 0.000 1.000
#> SRR934309     3  0.0000      0.739 0.000 0.000 1.000
#> SRR934310     3  0.0000      0.739 0.000 0.000 1.000
#> SRR934311     3  0.0000      0.739 0.000 0.000 1.000
#> SRR934312     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934313     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934314     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934315     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934316     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934317     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934318     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934319     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934320     1  0.0237      0.967 0.996 0.004 0.000
#> SRR934321     1  0.0747      0.957 0.984 0.016 0.000
#> SRR934322     1  0.0592      0.960 0.988 0.012 0.000
#> SRR934323     1  0.0592      0.960 0.988 0.012 0.000
#> SRR934324     1  0.0592      0.960 0.988 0.012 0.000
#> SRR934325     1  0.0747      0.957 0.984 0.016 0.000
#> SRR934326     1  0.0747      0.957 0.984 0.016 0.000
#> SRR934327     1  0.0592      0.960 0.988 0.012 0.000
#> SRR934328     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934329     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934330     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934331     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934332     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934333     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934334     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934335     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934344     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934345     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934346     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934347     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934348     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934349     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934350     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934351     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934336     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934337     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934338     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934339     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934340     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934341     1  0.0000      0.970 1.000 0.000 0.000
#> SRR934342     1  0.0000      0.970 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> SRR934216     3  0.0817      0.863 0.024 0.000 0.976 0.000
#> SRR934217     3  0.0921      0.860 0.028 0.000 0.972 0.000
#> SRR934218     3  0.0817      0.863 0.024 0.000 0.976 0.000
#> SRR934219     3  0.1022      0.856 0.032 0.000 0.968 0.000
#> SRR934220     3  0.1118      0.851 0.036 0.000 0.964 0.000
#> SRR934221     3  0.0817      0.863 0.024 0.000 0.976 0.000
#> SRR934222     3  0.0921      0.860 0.028 0.000 0.972 0.000
#> SRR934223     3  0.0817      0.863 0.024 0.000 0.976 0.000
#> SRR934224     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934225     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934226     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934227     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934228     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934229     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934230     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934231     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934232     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> SRR934233     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> SRR934234     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> SRR934235     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> SRR934236     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> SRR934237     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> SRR934238     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> SRR934239     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> SRR934240     2  0.0592      0.986 0.000 0.984 0.000 0.016
#> SRR934241     2  0.0592      0.986 0.000 0.984 0.000 0.016
#> SRR934242     2  0.0592      0.986 0.000 0.984 0.000 0.016
#> SRR934243     2  0.0592      0.986 0.000 0.984 0.000 0.016
#> SRR934244     2  0.0592      0.986 0.000 0.984 0.000 0.016
#> SRR934245     2  0.0592      0.986 0.000 0.984 0.000 0.016
#> SRR934246     2  0.0592      0.986 0.000 0.984 0.000 0.016
#> SRR934247     2  0.0592      0.986 0.000 0.984 0.000 0.016
#> SRR934248     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> SRR934249     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> SRR934250     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> SRR934251     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> SRR934252     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> SRR934253     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> SRR934254     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> SRR934255     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> SRR934256     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR934257     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR934258     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR934259     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR934260     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR934261     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR934262     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR934263     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR934264     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> SRR934265     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> SRR934266     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> SRR934267     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> SRR934268     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> SRR934269     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> SRR934270     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> SRR934271     2  0.0000      0.995 0.000 1.000 0.000 0.000
#> SRR934272     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934273     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934274     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934275     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934276     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934277     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934278     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934279     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934280     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934281     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934282     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934283     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934284     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934285     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934286     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934287     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934288     1  0.0592      0.984 0.984 0.000 0.016 0.000
#> SRR934289     1  0.0592      0.984 0.984 0.000 0.016 0.000
#> SRR934290     1  0.0592      0.984 0.984 0.000 0.016 0.000
#> SRR934291     1  0.0592      0.984 0.984 0.000 0.016 0.000
#> SRR934292     1  0.0592      0.984 0.984 0.000 0.016 0.000
#> SRR934293     1  0.0592      0.984 0.984 0.000 0.016 0.000
#> SRR934294     1  0.0592      0.984 0.984 0.000 0.016 0.000
#> SRR934295     1  0.0592      0.984 0.984 0.000 0.016 0.000
#> SRR934296     3  0.4431      0.678 0.000 0.000 0.696 0.304
#> SRR934297     3  0.4250      0.706 0.000 0.000 0.724 0.276
#> SRR934298     3  0.4624      0.624 0.000 0.000 0.660 0.340
#> SRR934299     3  0.4382      0.688 0.000 0.000 0.704 0.296
#> SRR934300     3  0.4382      0.688 0.000 0.000 0.704 0.296
#> SRR934301     3  0.4431      0.678 0.000 0.000 0.696 0.304
#> SRR934302     3  0.4331      0.696 0.000 0.000 0.712 0.288
#> SRR934303     3  0.4277      0.703 0.000 0.000 0.720 0.280
#> SRR934304     3  0.0592      0.864 0.000 0.016 0.984 0.000
#> SRR934305     3  0.0592      0.864 0.000 0.016 0.984 0.000
#> SRR934306     3  0.0592      0.864 0.000 0.016 0.984 0.000
#> SRR934307     3  0.0592      0.864 0.000 0.016 0.984 0.000
#> SRR934308     3  0.0592      0.864 0.000 0.016 0.984 0.000
#> SRR934309     3  0.0592      0.864 0.000 0.016 0.984 0.000
#> SRR934310     3  0.0592      0.864 0.000 0.016 0.984 0.000
#> SRR934311     3  0.0592      0.864 0.000 0.016 0.984 0.000
#> SRR934312     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934313     1  0.0336      0.987 0.992 0.000 0.000 0.008
#> SRR934314     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934315     1  0.0336      0.987 0.992 0.000 0.000 0.008
#> SRR934316     1  0.0188      0.988 0.996 0.000 0.000 0.004
#> SRR934317     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934318     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934319     1  0.0336      0.987 0.992 0.000 0.000 0.008
#> SRR934320     1  0.0336      0.986 0.992 0.000 0.000 0.008
#> SRR934321     1  0.0592      0.982 0.984 0.000 0.000 0.016
#> SRR934322     1  0.0336      0.986 0.992 0.000 0.000 0.008
#> SRR934323     1  0.1118      0.969 0.964 0.000 0.000 0.036
#> SRR934324     1  0.0592      0.982 0.984 0.000 0.000 0.016
#> SRR934325     1  0.1557      0.950 0.944 0.000 0.000 0.056
#> SRR934326     1  0.0469      0.984 0.988 0.000 0.000 0.012
#> SRR934327     1  0.0336      0.986 0.992 0.000 0.000 0.008
#> SRR934328     1  0.1798      0.959 0.944 0.000 0.016 0.040
#> SRR934329     1  0.1888      0.955 0.940 0.000 0.016 0.044
#> SRR934330     1  0.1297      0.974 0.964 0.000 0.016 0.020
#> SRR934331     1  0.1610      0.965 0.952 0.000 0.016 0.032
#> SRR934332     1  0.1510      0.968 0.956 0.000 0.016 0.028
#> SRR934333     1  0.1610      0.965 0.952 0.000 0.016 0.032
#> SRR934334     1  0.1510      0.969 0.956 0.000 0.016 0.028
#> SRR934335     1  0.1975      0.952 0.936 0.000 0.016 0.048
#> SRR934344     1  0.0592      0.984 0.984 0.000 0.016 0.000
#> SRR934345     1  0.0592      0.984 0.984 0.000 0.016 0.000
#> SRR934346     1  0.0592      0.984 0.984 0.000 0.016 0.000
#> SRR934347     1  0.0592      0.984 0.984 0.000 0.016 0.000
#> SRR934348     1  0.0592      0.984 0.984 0.000 0.016 0.000
#> SRR934349     1  0.0592      0.984 0.984 0.000 0.016 0.000
#> SRR934350     1  0.0592      0.984 0.984 0.000 0.016 0.000
#> SRR934351     1  0.0592      0.984 0.984 0.000 0.016 0.000
#> SRR934336     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934337     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934338     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934339     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934340     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934341     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR934342     1  0.0000      0.989 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> SRR934216     3  0.4100     0.9839 0.044 0.000 0.764 0.000 0.192
#> SRR934217     3  0.4136     0.9878 0.048 0.000 0.764 0.000 0.188
#> SRR934218     3  0.4100     0.9839 0.044 0.000 0.764 0.000 0.192
#> SRR934219     3  0.4269     0.9853 0.056 0.000 0.756 0.000 0.188
#> SRR934220     3  0.4269     0.9853 0.056 0.000 0.756 0.000 0.188
#> SRR934221     3  0.4238     0.9889 0.052 0.000 0.756 0.000 0.192
#> SRR934222     3  0.4203     0.9893 0.052 0.000 0.760 0.000 0.188
#> SRR934223     3  0.4238     0.9889 0.052 0.000 0.756 0.000 0.192
#> SRR934224     1  0.0510     0.8690 0.984 0.000 0.016 0.000 0.000
#> SRR934225     1  0.0510     0.8690 0.984 0.000 0.016 0.000 0.000
#> SRR934226     1  0.0510     0.8690 0.984 0.000 0.016 0.000 0.000
#> SRR934227     1  0.0510     0.8690 0.984 0.000 0.016 0.000 0.000
#> SRR934228     1  0.0510     0.8690 0.984 0.000 0.016 0.000 0.000
#> SRR934229     1  0.0510     0.8690 0.984 0.000 0.016 0.000 0.000
#> SRR934230     1  0.0510     0.8690 0.984 0.000 0.016 0.000 0.000
#> SRR934231     1  0.0510     0.8690 0.984 0.000 0.016 0.000 0.000
#> SRR934232     4  0.0703     0.9256 0.000 0.000 0.024 0.976 0.000
#> SRR934233     4  0.0703     0.9256 0.000 0.000 0.024 0.976 0.000
#> SRR934234     4  0.0609     0.9254 0.000 0.000 0.020 0.980 0.000
#> SRR934235     4  0.0703     0.9256 0.000 0.000 0.024 0.976 0.000
#> SRR934236     4  0.0794     0.9253 0.000 0.000 0.028 0.972 0.000
#> SRR934237     4  0.0703     0.9258 0.000 0.000 0.024 0.976 0.000
#> SRR934238     4  0.0794     0.9253 0.000 0.000 0.028 0.972 0.000
#> SRR934239     4  0.0794     0.9253 0.000 0.000 0.028 0.972 0.000
#> SRR934240     4  0.3413     0.8719 0.000 0.000 0.124 0.832 0.044
#> SRR934241     4  0.3413     0.8719 0.000 0.000 0.124 0.832 0.044
#> SRR934242     4  0.3413     0.8719 0.000 0.000 0.124 0.832 0.044
#> SRR934243     4  0.3413     0.8719 0.000 0.000 0.124 0.832 0.044
#> SRR934244     4  0.3413     0.8719 0.000 0.000 0.124 0.832 0.044
#> SRR934245     4  0.3413     0.8719 0.000 0.000 0.124 0.832 0.044
#> SRR934246     4  0.3413     0.8719 0.000 0.000 0.124 0.832 0.044
#> SRR934247     4  0.3413     0.8719 0.000 0.000 0.124 0.832 0.044
#> SRR934248     4  0.1270     0.9174 0.000 0.000 0.052 0.948 0.000
#> SRR934249     4  0.1270     0.9174 0.000 0.000 0.052 0.948 0.000
#> SRR934250     4  0.1270     0.9174 0.000 0.000 0.052 0.948 0.000
#> SRR934251     4  0.1270     0.9174 0.000 0.000 0.052 0.948 0.000
#> SRR934252     4  0.1270     0.9174 0.000 0.000 0.052 0.948 0.000
#> SRR934253     4  0.1270     0.9174 0.000 0.000 0.052 0.948 0.000
#> SRR934254     4  0.1270     0.9174 0.000 0.000 0.052 0.948 0.000
#> SRR934255     4  0.1270     0.9174 0.000 0.000 0.052 0.948 0.000
#> SRR934256     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR934257     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR934258     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR934259     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR934260     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR934261     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR934262     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR934263     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR934264     4  0.1341     0.9056 0.056 0.000 0.000 0.944 0.000
#> SRR934265     4  0.1197     0.9107 0.048 0.000 0.000 0.952 0.000
#> SRR934266     4  0.1270     0.9079 0.052 0.000 0.000 0.948 0.000
#> SRR934267     4  0.1197     0.9107 0.048 0.000 0.000 0.952 0.000
#> SRR934268     4  0.1484     0.9100 0.048 0.000 0.008 0.944 0.000
#> SRR934269     4  0.1608     0.8894 0.072 0.000 0.000 0.928 0.000
#> SRR934270     4  0.1341     0.9056 0.056 0.000 0.000 0.944 0.000
#> SRR934271     4  0.1357     0.9105 0.048 0.000 0.004 0.948 0.000
#> SRR934272     1  0.0510     0.8708 0.984 0.000 0.000 0.000 0.016
#> SRR934273     1  0.0290     0.8728 0.992 0.000 0.000 0.000 0.008
#> SRR934274     1  0.0510     0.8708 0.984 0.000 0.000 0.000 0.016
#> SRR934275     1  0.0510     0.8708 0.984 0.000 0.000 0.000 0.016
#> SRR934276     1  0.0510     0.8708 0.984 0.000 0.000 0.000 0.016
#> SRR934277     1  0.0671     0.8709 0.980 0.000 0.004 0.000 0.016
#> SRR934278     1  0.0290     0.8728 0.992 0.000 0.000 0.000 0.008
#> SRR934279     1  0.0510     0.8708 0.984 0.000 0.000 0.000 0.016
#> SRR934280     1  0.0693     0.8731 0.980 0.000 0.008 0.000 0.012
#> SRR934281     1  0.0898     0.8713 0.972 0.000 0.008 0.000 0.020
#> SRR934282     1  0.0898     0.8713 0.972 0.000 0.008 0.000 0.020
#> SRR934283     1  0.0693     0.8731 0.980 0.000 0.008 0.000 0.012
#> SRR934284     1  0.0898     0.8713 0.972 0.000 0.008 0.000 0.020
#> SRR934285     1  0.0898     0.8713 0.972 0.000 0.008 0.000 0.020
#> SRR934286     1  0.0693     0.8731 0.980 0.000 0.008 0.000 0.012
#> SRR934287     1  0.0693     0.8731 0.980 0.000 0.008 0.000 0.012
#> SRR934288     1  0.5692    -0.0436 0.472 0.000 0.080 0.000 0.448
#> SRR934289     1  0.5836    -0.0533 0.468 0.004 0.080 0.000 0.448
#> SRR934290     1  0.6127    -0.0803 0.456 0.016 0.080 0.000 0.448
#> SRR934291     1  0.5692    -0.0436 0.472 0.000 0.080 0.000 0.448
#> SRR934292     1  0.5689    -0.0308 0.480 0.000 0.080 0.000 0.440
#> SRR934293     1  0.5836    -0.0533 0.468 0.004 0.080 0.000 0.448
#> SRR934294     1  0.5692    -0.0436 0.472 0.000 0.080 0.000 0.448
#> SRR934295     1  0.5692    -0.0436 0.472 0.000 0.080 0.000 0.448
#> SRR934296     5  0.1990     0.1893 0.004 0.040 0.028 0.000 0.928
#> SRR934297     5  0.2234     0.1890 0.012 0.036 0.032 0.000 0.920
#> SRR934298     5  0.2152     0.1857 0.004 0.044 0.032 0.000 0.920
#> SRR934299     5  0.2152     0.1834 0.004 0.044 0.032 0.000 0.920
#> SRR934300     5  0.2075     0.1861 0.004 0.040 0.032 0.000 0.924
#> SRR934301     5  0.2067     0.1881 0.004 0.044 0.028 0.000 0.924
#> SRR934302     5  0.2067     0.1881 0.004 0.044 0.028 0.000 0.924
#> SRR934303     5  0.2152     0.1834 0.004 0.044 0.032 0.000 0.920
#> SRR934304     5  0.4294    -0.3695 0.000 0.000 0.468 0.000 0.532
#> SRR934305     5  0.4294    -0.3695 0.000 0.000 0.468 0.000 0.532
#> SRR934306     5  0.4294    -0.3695 0.000 0.000 0.468 0.000 0.532
#> SRR934307     5  0.4294    -0.3695 0.000 0.000 0.468 0.000 0.532
#> SRR934308     5  0.4294    -0.3695 0.000 0.000 0.468 0.000 0.532
#> SRR934309     5  0.4294    -0.3695 0.000 0.000 0.468 0.000 0.532
#> SRR934310     5  0.4294    -0.3695 0.000 0.000 0.468 0.000 0.532
#> SRR934311     5  0.4294    -0.3695 0.000 0.000 0.468 0.000 0.532
#> SRR934312     1  0.2507     0.8372 0.908 0.020 0.044 0.000 0.028
#> SRR934313     1  0.2857     0.8180 0.888 0.064 0.020 0.000 0.028
#> SRR934314     1  0.2228     0.8433 0.920 0.040 0.012 0.000 0.028
#> SRR934315     1  0.2734     0.8162 0.888 0.076 0.008 0.000 0.028
#> SRR934316     1  0.2882     0.8191 0.888 0.060 0.024 0.000 0.028
#> SRR934317     1  0.2555     0.8314 0.904 0.052 0.016 0.000 0.028
#> SRR934318     1  0.2765     0.8261 0.896 0.044 0.036 0.000 0.024
#> SRR934319     1  0.2824     0.8174 0.888 0.068 0.016 0.000 0.028
#> SRR934320     1  0.0566     0.8711 0.984 0.012 0.004 0.000 0.000
#> SRR934321     1  0.0955     0.8633 0.968 0.028 0.004 0.000 0.000
#> SRR934322     1  0.0771     0.8681 0.976 0.020 0.004 0.000 0.000
#> SRR934323     1  0.1124     0.8601 0.960 0.036 0.004 0.000 0.000
#> SRR934324     1  0.0771     0.8679 0.976 0.020 0.004 0.000 0.000
#> SRR934325     1  0.0771     0.8702 0.976 0.020 0.004 0.000 0.000
#> SRR934326     1  0.0955     0.8633 0.968 0.028 0.004 0.000 0.000
#> SRR934327     1  0.1041     0.8623 0.964 0.032 0.004 0.000 0.000
#> SRR934328     5  0.8081     0.3400 0.144 0.196 0.232 0.000 0.428
#> SRR934329     5  0.8064     0.3349 0.136 0.204 0.232 0.000 0.428
#> SRR934330     5  0.8099     0.3459 0.156 0.184 0.232 0.000 0.428
#> SRR934331     5  0.8094     0.3447 0.152 0.188 0.232 0.000 0.428
#> SRR934332     5  0.8099     0.3459 0.156 0.184 0.232 0.000 0.428
#> SRR934333     5  0.8088     0.3427 0.148 0.192 0.232 0.000 0.428
#> SRR934334     5  0.8062     0.3424 0.144 0.192 0.232 0.000 0.432
#> SRR934335     5  0.8073     0.3371 0.140 0.200 0.232 0.000 0.428
#> SRR934344     5  0.6551     0.2840 0.384 0.000 0.200 0.000 0.416
#> SRR934345     5  0.6566     0.2921 0.380 0.000 0.204 0.000 0.416
#> SRR934346     5  0.6551     0.2840 0.384 0.000 0.200 0.000 0.416
#> SRR934347     5  0.6596     0.3071 0.372 0.000 0.212 0.000 0.416
#> SRR934348     5  0.6596     0.3071 0.372 0.000 0.212 0.000 0.416
#> SRR934349     5  0.6596     0.3071 0.372 0.000 0.212 0.000 0.416
#> SRR934350     5  0.6517     0.2655 0.392 0.000 0.192 0.000 0.416
#> SRR934351     5  0.6596     0.3071 0.372 0.000 0.212 0.000 0.416
#> SRR934336     1  0.0000     0.8730 1.000 0.000 0.000 0.000 0.000
#> SRR934337     1  0.0000     0.8730 1.000 0.000 0.000 0.000 0.000
#> SRR934338     1  0.0000     0.8730 1.000 0.000 0.000 0.000 0.000
#> SRR934339     1  0.0000     0.8730 1.000 0.000 0.000 0.000 0.000
#> SRR934340     1  0.0000     0.8730 1.000 0.000 0.000 0.000 0.000
#> SRR934341     1  0.0000     0.8730 1.000 0.000 0.000 0.000 0.000
#> SRR934342     1  0.0000     0.8730 1.000 0.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR934216     3  0.4821      0.990 0.088 0.000 0.696 0.000 0.196 0.020
#> SRR934217     3  0.4869      0.992 0.088 0.000 0.696 0.000 0.192 0.024
#> SRR934218     3  0.4886      0.992 0.092 0.000 0.696 0.000 0.188 0.024
#> SRR934219     3  0.4930      0.987 0.092 0.000 0.696 0.000 0.184 0.028
#> SRR934220     3  0.4914      0.988 0.088 0.000 0.696 0.000 0.188 0.028
#> SRR934221     3  0.4886      0.992 0.092 0.000 0.696 0.000 0.188 0.024
#> SRR934222     3  0.4821      0.990 0.088 0.000 0.696 0.000 0.196 0.020
#> SRR934223     3  0.4821      0.990 0.088 0.000 0.696 0.000 0.196 0.020
#> SRR934224     6  0.1387      0.946 0.000 0.000 0.068 0.000 0.000 0.932
#> SRR934225     6  0.1387      0.946 0.000 0.000 0.068 0.000 0.000 0.932
#> SRR934226     6  0.1387      0.946 0.000 0.000 0.068 0.000 0.000 0.932
#> SRR934227     6  0.1387      0.946 0.000 0.000 0.068 0.000 0.000 0.932
#> SRR934228     6  0.1387      0.946 0.000 0.000 0.068 0.000 0.000 0.932
#> SRR934229     6  0.1387      0.946 0.000 0.000 0.068 0.000 0.000 0.932
#> SRR934230     6  0.1387      0.946 0.000 0.000 0.068 0.000 0.000 0.932
#> SRR934231     6  0.1387      0.946 0.000 0.000 0.068 0.000 0.000 0.932
#> SRR934232     4  0.3123      0.843 0.088 0.000 0.076 0.836 0.000 0.000
#> SRR934233     4  0.3068      0.843 0.088 0.000 0.072 0.840 0.000 0.000
#> SRR934234     4  0.3068      0.844 0.088 0.000 0.072 0.840 0.000 0.000
#> SRR934235     4  0.3013      0.844 0.088 0.000 0.068 0.844 0.000 0.000
#> SRR934236     4  0.3327      0.838 0.092 0.000 0.088 0.820 0.000 0.000
#> SRR934237     4  0.3123      0.843 0.088 0.000 0.076 0.836 0.000 0.000
#> SRR934238     4  0.3175      0.842 0.088 0.000 0.080 0.832 0.000 0.000
#> SRR934239     4  0.3227      0.841 0.088 0.000 0.084 0.828 0.000 0.000
#> SRR934240     4  0.5012      0.729 0.100 0.000 0.300 0.600 0.000 0.000
#> SRR934241     4  0.5012      0.729 0.100 0.000 0.300 0.600 0.000 0.000
#> SRR934242     4  0.5012      0.729 0.100 0.000 0.300 0.600 0.000 0.000
#> SRR934243     4  0.5012      0.729 0.100 0.000 0.300 0.600 0.000 0.000
#> SRR934244     4  0.5012      0.729 0.100 0.000 0.300 0.600 0.000 0.000
#> SRR934245     4  0.5012      0.729 0.100 0.000 0.300 0.600 0.000 0.000
#> SRR934246     4  0.5012      0.729 0.100 0.000 0.300 0.600 0.000 0.000
#> SRR934247     4  0.5012      0.729 0.100 0.000 0.300 0.600 0.000 0.000
#> SRR934248     4  0.1075      0.841 0.048 0.000 0.000 0.952 0.000 0.000
#> SRR934249     4  0.1075      0.841 0.048 0.000 0.000 0.952 0.000 0.000
#> SRR934250     4  0.1075      0.841 0.048 0.000 0.000 0.952 0.000 0.000
#> SRR934251     4  0.1075      0.841 0.048 0.000 0.000 0.952 0.000 0.000
#> SRR934252     4  0.1075      0.841 0.048 0.000 0.000 0.952 0.000 0.000
#> SRR934253     4  0.1075      0.841 0.048 0.000 0.000 0.952 0.000 0.000
#> SRR934254     4  0.1075      0.841 0.048 0.000 0.000 0.952 0.000 0.000
#> SRR934255     4  0.1075      0.841 0.048 0.000 0.000 0.952 0.000 0.000
#> SRR934256     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR934257     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR934258     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR934259     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR934260     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR934261     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR934262     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR934263     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR934264     4  0.0260      0.852 0.000 0.000 0.008 0.992 0.000 0.000
#> SRR934265     4  0.0260      0.852 0.000 0.000 0.008 0.992 0.000 0.000
#> SRR934266     4  0.0405      0.851 0.004 0.000 0.008 0.988 0.000 0.000
#> SRR934267     4  0.0405      0.851 0.004 0.000 0.008 0.988 0.000 0.000
#> SRR934268     4  0.0520      0.851 0.008 0.000 0.008 0.984 0.000 0.000
#> SRR934269     4  0.0260      0.852 0.000 0.000 0.008 0.992 0.000 0.000
#> SRR934270     4  0.0260      0.852 0.000 0.000 0.008 0.992 0.000 0.000
#> SRR934271     4  0.0520      0.851 0.008 0.000 0.008 0.984 0.000 0.000
#> SRR934272     6  0.0000      0.973 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR934273     6  0.0000      0.973 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR934274     6  0.0000      0.973 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR934275     6  0.0000      0.973 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR934276     6  0.0000      0.973 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR934277     6  0.0000      0.973 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR934278     6  0.0000      0.973 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR934279     6  0.0000      0.973 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR934280     6  0.0000      0.973 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR934281     6  0.0000      0.973 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR934282     6  0.0000      0.973 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR934283     6  0.0000      0.973 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR934284     6  0.0000      0.973 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR934285     6  0.0000      0.973 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR934286     6  0.0000      0.973 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR934287     6  0.0000      0.973 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR934288     1  0.2933      0.893 0.796 0.000 0.004 0.000 0.000 0.200
#> SRR934289     1  0.3043      0.893 0.792 0.000 0.008 0.000 0.000 0.200
#> SRR934290     1  0.3043      0.893 0.792 0.000 0.008 0.000 0.000 0.200
#> SRR934291     1  0.3043      0.893 0.792 0.000 0.008 0.000 0.000 0.200
#> SRR934292     1  0.2964      0.892 0.792 0.000 0.004 0.000 0.000 0.204
#> SRR934293     1  0.3043      0.893 0.792 0.000 0.008 0.000 0.000 0.200
#> SRR934294     1  0.3043      0.893 0.792 0.000 0.008 0.000 0.000 0.200
#> SRR934295     1  0.3043      0.893 0.792 0.000 0.008 0.000 0.000 0.200
#> SRR934296     5  0.3582      0.771 0.252 0.000 0.016 0.000 0.732 0.000
#> SRR934297     5  0.3674      0.755 0.268 0.000 0.016 0.000 0.716 0.000
#> SRR934298     5  0.3606      0.767 0.256 0.000 0.016 0.000 0.728 0.000
#> SRR934299     5  0.3404      0.789 0.224 0.000 0.016 0.000 0.760 0.000
#> SRR934300     5  0.3875      0.739 0.280 0.000 0.016 0.000 0.700 0.004
#> SRR934301     5  0.3404      0.789 0.224 0.000 0.016 0.000 0.760 0.000
#> SRR934302     5  0.3348      0.791 0.216 0.000 0.016 0.000 0.768 0.000
#> SRR934303     5  0.3320      0.792 0.212 0.000 0.016 0.000 0.772 0.000
#> SRR934304     5  0.0000      0.776 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR934305     5  0.0000      0.776 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR934306     5  0.0000      0.776 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR934307     5  0.0000      0.776 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR934308     5  0.0000      0.776 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR934309     5  0.0000      0.776 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR934310     5  0.0000      0.776 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR934311     5  0.0000      0.776 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR934312     6  0.1074      0.956 0.000 0.012 0.028 0.000 0.000 0.960
#> SRR934313     6  0.1367      0.943 0.000 0.044 0.012 0.000 0.000 0.944
#> SRR934314     6  0.1138      0.956 0.004 0.024 0.012 0.000 0.000 0.960
#> SRR934315     6  0.1333      0.943 0.000 0.048 0.008 0.000 0.000 0.944
#> SRR934316     6  0.1644      0.935 0.000 0.040 0.028 0.000 0.000 0.932
#> SRR934317     6  0.1434      0.941 0.000 0.048 0.012 0.000 0.000 0.940
#> SRR934318     6  0.1334      0.947 0.000 0.032 0.020 0.000 0.000 0.948
#> SRR934319     6  0.1563      0.933 0.000 0.056 0.012 0.000 0.000 0.932
#> SRR934320     6  0.0603      0.972 0.004 0.000 0.016 0.000 0.000 0.980
#> SRR934321     6  0.0603      0.972 0.004 0.000 0.016 0.000 0.000 0.980
#> SRR934322     6  0.0603      0.972 0.004 0.000 0.016 0.000 0.000 0.980
#> SRR934323     6  0.0951      0.969 0.004 0.008 0.020 0.000 0.000 0.968
#> SRR934324     6  0.0837      0.970 0.004 0.004 0.020 0.000 0.000 0.972
#> SRR934325     6  0.1059      0.966 0.004 0.016 0.016 0.000 0.000 0.964
#> SRR934326     6  0.0603      0.972 0.004 0.000 0.016 0.000 0.000 0.980
#> SRR934327     6  0.0951      0.969 0.004 0.008 0.020 0.000 0.000 0.968
#> SRR934328     1  0.2723      0.775 0.856 0.120 0.004 0.000 0.000 0.020
#> SRR934329     1  0.2624      0.774 0.856 0.124 0.000 0.000 0.000 0.020
#> SRR934330     1  0.2723      0.775 0.856 0.120 0.004 0.000 0.000 0.020
#> SRR934331     1  0.2723      0.775 0.856 0.120 0.004 0.000 0.000 0.020
#> SRR934332     1  0.2667      0.774 0.852 0.128 0.000 0.000 0.000 0.020
#> SRR934333     1  0.2760      0.779 0.856 0.116 0.004 0.000 0.000 0.024
#> SRR934334     1  0.2723      0.775 0.856 0.120 0.004 0.000 0.000 0.020
#> SRR934335     1  0.2907      0.765 0.828 0.152 0.000 0.000 0.000 0.020
#> SRR934344     1  0.2823      0.893 0.796 0.000 0.000 0.000 0.000 0.204
#> SRR934345     1  0.2823      0.893 0.796 0.000 0.000 0.000 0.000 0.204
#> SRR934346     1  0.2823      0.893 0.796 0.000 0.000 0.000 0.000 0.204
#> SRR934347     1  0.2823      0.893 0.796 0.000 0.000 0.000 0.000 0.204
#> SRR934348     1  0.2823      0.893 0.796 0.000 0.000 0.000 0.000 0.204
#> SRR934349     1  0.2793      0.893 0.800 0.000 0.000 0.000 0.000 0.200
#> SRR934350     1  0.2823      0.893 0.796 0.000 0.000 0.000 0.000 0.204
#> SRR934351     1  0.2823      0.893 0.796 0.000 0.000 0.000 0.000 0.204
#> SRR934336     6  0.0458      0.972 0.000 0.000 0.016 0.000 0.000 0.984
#> SRR934337     6  0.0458      0.972 0.000 0.000 0.016 0.000 0.000 0.984
#> SRR934338     6  0.0458      0.972 0.000 0.000 0.016 0.000 0.000 0.984
#> SRR934339     6  0.0363      0.973 0.000 0.000 0.012 0.000 0.000 0.988
#> SRR934340     6  0.0363      0.973 0.000 0.000 0.012 0.000 0.000 0.988
#> SRR934341     6  0.0363      0.973 0.000 0.000 0.012 0.000 0.000 0.988
#> SRR934342     6  0.0458      0.972 0.000 0.000 0.016 0.000 0.000 0.984

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14550 rows and 135 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.888           0.966       0.976          0.172 0.789   0.789
#> 3 3 0.503           0.873       0.823          0.963 0.748   0.681
#> 4 4 0.622           0.892       0.935          0.351 0.993   0.987
#> 5 5 0.755           0.783       0.889          0.228 0.923   0.855
#> 6 6 0.637           0.704       0.792          0.253 0.805   0.571

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette  p1  p2
#> SRR934216     2   0.971      0.644 0.4 0.6
#> SRR934217     2   0.971      0.644 0.4 0.6
#> SRR934218     2   0.971      0.644 0.4 0.6
#> SRR934219     2   0.971      0.644 0.4 0.6
#> SRR934220     2   0.971      0.644 0.4 0.6
#> SRR934221     2   0.971      0.644 0.4 0.6
#> SRR934222     2   0.971      0.644 0.4 0.6
#> SRR934223     2   0.971      0.644 0.4 0.6
#> SRR934224     1   0.000      1.000 1.0 0.0
#> SRR934225     1   0.000      1.000 1.0 0.0
#> SRR934226     1   0.000      1.000 1.0 0.0
#> SRR934227     1   0.000      1.000 1.0 0.0
#> SRR934228     1   0.000      1.000 1.0 0.0
#> SRR934229     1   0.000      1.000 1.0 0.0
#> SRR934230     1   0.000      1.000 1.0 0.0
#> SRR934231     1   0.000      1.000 1.0 0.0
#> SRR934232     1   0.000      1.000 1.0 0.0
#> SRR934233     1   0.000      1.000 1.0 0.0
#> SRR934234     1   0.000      1.000 1.0 0.0
#> SRR934235     1   0.000      1.000 1.0 0.0
#> SRR934236     1   0.000      1.000 1.0 0.0
#> SRR934237     1   0.000      1.000 1.0 0.0
#> SRR934238     1   0.000      1.000 1.0 0.0
#> SRR934239     1   0.000      1.000 1.0 0.0
#> SRR934240     1   0.000      1.000 1.0 0.0
#> SRR934241     1   0.000      1.000 1.0 0.0
#> SRR934242     1   0.000      1.000 1.0 0.0
#> SRR934243     1   0.000      1.000 1.0 0.0
#> SRR934244     1   0.000      1.000 1.0 0.0
#> SRR934245     1   0.000      1.000 1.0 0.0
#> SRR934246     1   0.000      1.000 1.0 0.0
#> SRR934247     1   0.000      1.000 1.0 0.0
#> SRR934248     1   0.000      1.000 1.0 0.0
#> SRR934249     1   0.000      1.000 1.0 0.0
#> SRR934250     1   0.000      1.000 1.0 0.0
#> SRR934251     1   0.000      1.000 1.0 0.0
#> SRR934252     1   0.000      1.000 1.0 0.0
#> SRR934253     1   0.000      1.000 1.0 0.0
#> SRR934254     1   0.000      1.000 1.0 0.0
#> SRR934255     1   0.000      1.000 1.0 0.0
#> SRR934256     1   0.000      1.000 1.0 0.0
#> SRR934257     1   0.000      1.000 1.0 0.0
#> SRR934258     1   0.000      1.000 1.0 0.0
#> SRR934259     1   0.000      1.000 1.0 0.0
#> SRR934260     1   0.000      1.000 1.0 0.0
#> SRR934261     1   0.000      1.000 1.0 0.0
#> SRR934262     1   0.000      1.000 1.0 0.0
#> SRR934263     1   0.000      1.000 1.0 0.0
#> SRR934264     1   0.000      1.000 1.0 0.0
#> SRR934265     1   0.000      1.000 1.0 0.0
#> SRR934266     1   0.000      1.000 1.0 0.0
#> SRR934267     1   0.000      1.000 1.0 0.0
#> SRR934268     1   0.000      1.000 1.0 0.0
#> SRR934269     1   0.000      1.000 1.0 0.0
#> SRR934270     1   0.000      1.000 1.0 0.0
#> SRR934271     1   0.000      1.000 1.0 0.0
#> SRR934272     1   0.000      1.000 1.0 0.0
#> SRR934273     1   0.000      1.000 1.0 0.0
#> SRR934274     1   0.000      1.000 1.0 0.0
#> SRR934275     1   0.000      1.000 1.0 0.0
#> SRR934276     1   0.000      1.000 1.0 0.0
#> SRR934277     1   0.000      1.000 1.0 0.0
#> SRR934278     1   0.000      1.000 1.0 0.0
#> SRR934279     1   0.000      1.000 1.0 0.0
#> SRR934280     1   0.000      1.000 1.0 0.0
#> SRR934281     1   0.000      1.000 1.0 0.0
#> SRR934282     1   0.000      1.000 1.0 0.0
#> SRR934283     1   0.000      1.000 1.0 0.0
#> SRR934284     1   0.000      1.000 1.0 0.0
#> SRR934285     1   0.000      1.000 1.0 0.0
#> SRR934286     1   0.000      1.000 1.0 0.0
#> SRR934287     1   0.000      1.000 1.0 0.0
#> SRR934288     1   0.000      1.000 1.0 0.0
#> SRR934289     1   0.000      1.000 1.0 0.0
#> SRR934290     1   0.000      1.000 1.0 0.0
#> SRR934291     1   0.000      1.000 1.0 0.0
#> SRR934292     1   0.000      1.000 1.0 0.0
#> SRR934293     1   0.000      1.000 1.0 0.0
#> SRR934294     1   0.000      1.000 1.0 0.0
#> SRR934295     1   0.000      1.000 1.0 0.0
#> SRR934296     1   0.000      1.000 1.0 0.0
#> SRR934297     1   0.000      1.000 1.0 0.0
#> SRR934298     1   0.000      1.000 1.0 0.0
#> SRR934299     1   0.000      1.000 1.0 0.0
#> SRR934300     1   0.000      1.000 1.0 0.0
#> SRR934301     1   0.000      1.000 1.0 0.0
#> SRR934302     1   0.000      1.000 1.0 0.0
#> SRR934303     1   0.000      1.000 1.0 0.0
#> SRR934304     2   0.000      0.780 0.0 1.0
#> SRR934305     2   0.000      0.780 0.0 1.0
#> SRR934306     2   0.000      0.780 0.0 1.0
#> SRR934307     2   0.000      0.780 0.0 1.0
#> SRR934308     2   0.000      0.780 0.0 1.0
#> SRR934309     2   0.000      0.780 0.0 1.0
#> SRR934310     2   0.000      0.780 0.0 1.0
#> SRR934311     2   0.000      0.780 0.0 1.0
#> SRR934312     1   0.000      1.000 1.0 0.0
#> SRR934313     1   0.000      1.000 1.0 0.0
#> SRR934314     1   0.000      1.000 1.0 0.0
#> SRR934315     1   0.000      1.000 1.0 0.0
#> SRR934316     1   0.000      1.000 1.0 0.0
#> SRR934317     1   0.000      1.000 1.0 0.0
#> SRR934318     1   0.000      1.000 1.0 0.0
#> SRR934319     1   0.000      1.000 1.0 0.0
#> SRR934320     1   0.000      1.000 1.0 0.0
#> SRR934321     1   0.000      1.000 1.0 0.0
#> SRR934322     1   0.000      1.000 1.0 0.0
#> SRR934323     1   0.000      1.000 1.0 0.0
#> SRR934324     1   0.000      1.000 1.0 0.0
#> SRR934325     1   0.000      1.000 1.0 0.0
#> SRR934326     1   0.000      1.000 1.0 0.0
#> SRR934327     1   0.000      1.000 1.0 0.0
#> SRR934328     1   0.000      1.000 1.0 0.0
#> SRR934329     1   0.000      1.000 1.0 0.0
#> SRR934330     1   0.000      1.000 1.0 0.0
#> SRR934331     1   0.000      1.000 1.0 0.0
#> SRR934332     1   0.000      1.000 1.0 0.0
#> SRR934333     1   0.000      1.000 1.0 0.0
#> SRR934334     1   0.000      1.000 1.0 0.0
#> SRR934335     1   0.000      1.000 1.0 0.0
#> SRR934344     1   0.000      1.000 1.0 0.0
#> SRR934345     1   0.000      1.000 1.0 0.0
#> SRR934346     1   0.000      1.000 1.0 0.0
#> SRR934347     1   0.000      1.000 1.0 0.0
#> SRR934348     1   0.000      1.000 1.0 0.0
#> SRR934349     1   0.000      1.000 1.0 0.0
#> SRR934350     1   0.000      1.000 1.0 0.0
#> SRR934351     1   0.000      1.000 1.0 0.0
#> SRR934336     1   0.000      1.000 1.0 0.0
#> SRR934337     1   0.000      1.000 1.0 0.0
#> SRR934338     1   0.000      1.000 1.0 0.0
#> SRR934339     1   0.000      1.000 1.0 0.0
#> SRR934340     1   0.000      1.000 1.0 0.0
#> SRR934341     1   0.000      1.000 1.0 0.0
#> SRR934342     1   0.000      1.000 1.0 0.0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR934216     3   0.613      0.504 0.400 0.000 0.600
#> SRR934217     3   0.613      0.504 0.400 0.000 0.600
#> SRR934218     3   0.613      0.504 0.400 0.000 0.600
#> SRR934219     3   0.613      0.504 0.400 0.000 0.600
#> SRR934220     3   0.613      0.504 0.400 0.000 0.600
#> SRR934221     3   0.613      0.504 0.400 0.000 0.600
#> SRR934222     3   0.613      0.504 0.400 0.000 0.600
#> SRR934223     3   0.613      0.504 0.400 0.000 0.600
#> SRR934224     1   0.000      0.959 1.000 0.000 0.000
#> SRR934225     1   0.000      0.959 1.000 0.000 0.000
#> SRR934226     1   0.000      0.959 1.000 0.000 0.000
#> SRR934227     1   0.000      0.959 1.000 0.000 0.000
#> SRR934228     1   0.000      0.959 1.000 0.000 0.000
#> SRR934229     1   0.000      0.959 1.000 0.000 0.000
#> SRR934230     1   0.000      0.959 1.000 0.000 0.000
#> SRR934231     1   0.000      0.959 1.000 0.000 0.000
#> SRR934232     2   0.630      0.806 0.472 0.528 0.000
#> SRR934233     2   0.630      0.806 0.472 0.528 0.000
#> SRR934234     2   0.630      0.806 0.472 0.528 0.000
#> SRR934235     2   0.630      0.806 0.472 0.528 0.000
#> SRR934236     2   0.630      0.806 0.472 0.528 0.000
#> SRR934237     2   0.630      0.806 0.472 0.528 0.000
#> SRR934238     2   0.630      0.806 0.472 0.528 0.000
#> SRR934239     2   0.630      0.806 0.472 0.528 0.000
#> SRR934240     1   0.362      0.751 0.864 0.136 0.000
#> SRR934241     1   0.362      0.751 0.864 0.136 0.000
#> SRR934242     1   0.362      0.751 0.864 0.136 0.000
#> SRR934243     1   0.362      0.751 0.864 0.136 0.000
#> SRR934244     1   0.362      0.751 0.864 0.136 0.000
#> SRR934245     1   0.362      0.751 0.864 0.136 0.000
#> SRR934246     1   0.362      0.751 0.864 0.136 0.000
#> SRR934247     1   0.362      0.751 0.864 0.136 0.000
#> SRR934248     2   0.629      0.896 0.464 0.536 0.000
#> SRR934249     2   0.629      0.896 0.464 0.536 0.000
#> SRR934250     2   0.629      0.896 0.464 0.536 0.000
#> SRR934251     2   0.629      0.896 0.464 0.536 0.000
#> SRR934252     2   0.629      0.896 0.464 0.536 0.000
#> SRR934253     2   0.629      0.896 0.464 0.536 0.000
#> SRR934254     2   0.629      0.896 0.464 0.536 0.000
#> SRR934255     2   0.629      0.896 0.464 0.536 0.000
#> SRR934256     1   0.327      0.784 0.884 0.116 0.000
#> SRR934257     1   0.327      0.784 0.884 0.116 0.000
#> SRR934258     1   0.327      0.784 0.884 0.116 0.000
#> SRR934259     1   0.327      0.784 0.884 0.116 0.000
#> SRR934260     1   0.327      0.784 0.884 0.116 0.000
#> SRR934261     1   0.327      0.784 0.884 0.116 0.000
#> SRR934262     1   0.327      0.784 0.884 0.116 0.000
#> SRR934263     1   0.327      0.784 0.884 0.116 0.000
#> SRR934264     2   0.630      0.897 0.484 0.516 0.000
#> SRR934265     2   0.630      0.897 0.484 0.516 0.000
#> SRR934266     2   0.630      0.897 0.484 0.516 0.000
#> SRR934267     2   0.630      0.897 0.484 0.516 0.000
#> SRR934268     2   0.630      0.897 0.484 0.516 0.000
#> SRR934269     2   0.630      0.897 0.484 0.516 0.000
#> SRR934270     2   0.630      0.897 0.484 0.516 0.000
#> SRR934271     2   0.630      0.897 0.484 0.516 0.000
#> SRR934272     1   0.000      0.959 1.000 0.000 0.000
#> SRR934273     1   0.000      0.959 1.000 0.000 0.000
#> SRR934274     1   0.000      0.959 1.000 0.000 0.000
#> SRR934275     1   0.000      0.959 1.000 0.000 0.000
#> SRR934276     1   0.000      0.959 1.000 0.000 0.000
#> SRR934277     1   0.000      0.959 1.000 0.000 0.000
#> SRR934278     1   0.000      0.959 1.000 0.000 0.000
#> SRR934279     1   0.000      0.959 1.000 0.000 0.000
#> SRR934280     1   0.000      0.959 1.000 0.000 0.000
#> SRR934281     1   0.000      0.959 1.000 0.000 0.000
#> SRR934282     1   0.000      0.959 1.000 0.000 0.000
#> SRR934283     1   0.000      0.959 1.000 0.000 0.000
#> SRR934284     1   0.000      0.959 1.000 0.000 0.000
#> SRR934285     1   0.000      0.959 1.000 0.000 0.000
#> SRR934286     1   0.000      0.959 1.000 0.000 0.000
#> SRR934287     1   0.000      0.959 1.000 0.000 0.000
#> SRR934288     1   0.000      0.959 1.000 0.000 0.000
#> SRR934289     1   0.000      0.959 1.000 0.000 0.000
#> SRR934290     1   0.000      0.959 1.000 0.000 0.000
#> SRR934291     1   0.000      0.959 1.000 0.000 0.000
#> SRR934292     1   0.000      0.959 1.000 0.000 0.000
#> SRR934293     1   0.000      0.959 1.000 0.000 0.000
#> SRR934294     1   0.000      0.959 1.000 0.000 0.000
#> SRR934295     1   0.000      0.959 1.000 0.000 0.000
#> SRR934296     1   0.000      0.959 1.000 0.000 0.000
#> SRR934297     1   0.000      0.959 1.000 0.000 0.000
#> SRR934298     1   0.000      0.959 1.000 0.000 0.000
#> SRR934299     1   0.000      0.959 1.000 0.000 0.000
#> SRR934300     1   0.000      0.959 1.000 0.000 0.000
#> SRR934301     1   0.000      0.959 1.000 0.000 0.000
#> SRR934302     1   0.000      0.959 1.000 0.000 0.000
#> SRR934303     1   0.000      0.959 1.000 0.000 0.000
#> SRR934304     3   0.588      0.626 0.000 0.348 0.652
#> SRR934305     3   0.588      0.626 0.000 0.348 0.652
#> SRR934306     3   0.588      0.626 0.000 0.348 0.652
#> SRR934307     3   0.588      0.626 0.000 0.348 0.652
#> SRR934308     3   0.588      0.626 0.000 0.348 0.652
#> SRR934309     3   0.588      0.626 0.000 0.348 0.652
#> SRR934310     3   0.588      0.626 0.000 0.348 0.652
#> SRR934311     3   0.588      0.626 0.000 0.348 0.652
#> SRR934312     1   0.000      0.959 1.000 0.000 0.000
#> SRR934313     1   0.000      0.959 1.000 0.000 0.000
#> SRR934314     1   0.000      0.959 1.000 0.000 0.000
#> SRR934315     1   0.000      0.959 1.000 0.000 0.000
#> SRR934316     1   0.000      0.959 1.000 0.000 0.000
#> SRR934317     1   0.000      0.959 1.000 0.000 0.000
#> SRR934318     1   0.000      0.959 1.000 0.000 0.000
#> SRR934319     1   0.000      0.959 1.000 0.000 0.000
#> SRR934320     1   0.000      0.959 1.000 0.000 0.000
#> SRR934321     1   0.000      0.959 1.000 0.000 0.000
#> SRR934322     1   0.000      0.959 1.000 0.000 0.000
#> SRR934323     1   0.000      0.959 1.000 0.000 0.000
#> SRR934324     1   0.000      0.959 1.000 0.000 0.000
#> SRR934325     1   0.000      0.959 1.000 0.000 0.000
#> SRR934326     1   0.000      0.959 1.000 0.000 0.000
#> SRR934327     1   0.000      0.959 1.000 0.000 0.000
#> SRR934328     1   0.000      0.959 1.000 0.000 0.000
#> SRR934329     1   0.000      0.959 1.000 0.000 0.000
#> SRR934330     1   0.000      0.959 1.000 0.000 0.000
#> SRR934331     1   0.000      0.959 1.000 0.000 0.000
#> SRR934332     1   0.000      0.959 1.000 0.000 0.000
#> SRR934333     1   0.000      0.959 1.000 0.000 0.000
#> SRR934334     1   0.000      0.959 1.000 0.000 0.000
#> SRR934335     1   0.000      0.959 1.000 0.000 0.000
#> SRR934344     1   0.000      0.959 1.000 0.000 0.000
#> SRR934345     1   0.000      0.959 1.000 0.000 0.000
#> SRR934346     1   0.000      0.959 1.000 0.000 0.000
#> SRR934347     1   0.000      0.959 1.000 0.000 0.000
#> SRR934348     1   0.000      0.959 1.000 0.000 0.000
#> SRR934349     1   0.000      0.959 1.000 0.000 0.000
#> SRR934350     1   0.000      0.959 1.000 0.000 0.000
#> SRR934351     1   0.000      0.959 1.000 0.000 0.000
#> SRR934336     1   0.000      0.959 1.000 0.000 0.000
#> SRR934337     1   0.000      0.959 1.000 0.000 0.000
#> SRR934338     1   0.000      0.959 1.000 0.000 0.000
#> SRR934339     1   0.000      0.959 1.000 0.000 0.000
#> SRR934340     1   0.000      0.959 1.000 0.000 0.000
#> SRR934341     1   0.000      0.959 1.000 0.000 0.000
#> SRR934342     1   0.000      0.959 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2 p3 p4
#> SRR934216     3   0.000      1.000 0.000 0.000  1  0
#> SRR934217     3   0.000      1.000 0.000 0.000  1  0
#> SRR934218     3   0.000      1.000 0.000 0.000  1  0
#> SRR934219     3   0.000      1.000 0.000 0.000  1  0
#> SRR934220     3   0.000      1.000 0.000 0.000  1  0
#> SRR934221     3   0.000      1.000 0.000 0.000  1  0
#> SRR934222     3   0.000      1.000 0.000 0.000  1  0
#> SRR934223     3   0.000      1.000 0.000 0.000  1  0
#> SRR934224     1   0.000      0.949 1.000 0.000  0  0
#> SRR934225     1   0.000      0.949 1.000 0.000  0  0
#> SRR934226     1   0.000      0.949 1.000 0.000  0  0
#> SRR934227     1   0.000      0.949 1.000 0.000  0  0
#> SRR934228     1   0.000      0.949 1.000 0.000  0  0
#> SRR934229     1   0.000      0.949 1.000 0.000  0  0
#> SRR934230     1   0.000      0.949 1.000 0.000  0  0
#> SRR934231     1   0.000      0.949 1.000 0.000  0  0
#> SRR934232     2   0.391      0.661 0.232 0.768  0  0
#> SRR934233     2   0.391      0.661 0.232 0.768  0  0
#> SRR934234     2   0.391      0.661 0.232 0.768  0  0
#> SRR934235     2   0.391      0.661 0.232 0.768  0  0
#> SRR934236     2   0.391      0.661 0.232 0.768  0  0
#> SRR934237     2   0.391      0.661 0.232 0.768  0  0
#> SRR934238     2   0.391      0.661 0.232 0.768  0  0
#> SRR934239     2   0.391      0.661 0.232 0.768  0  0
#> SRR934240     1   0.416      0.648 0.736 0.264  0  0
#> SRR934241     1   0.416      0.648 0.736 0.264  0  0
#> SRR934242     1   0.416      0.648 0.736 0.264  0  0
#> SRR934243     1   0.416      0.648 0.736 0.264  0  0
#> SRR934244     1   0.416      0.648 0.736 0.264  0  0
#> SRR934245     1   0.416      0.648 0.736 0.264  0  0
#> SRR934246     1   0.416      0.648 0.736 0.264  0  0
#> SRR934247     1   0.416      0.648 0.736 0.264  0  0
#> SRR934248     2   0.357      0.814 0.196 0.804  0  0
#> SRR934249     2   0.357      0.814 0.196 0.804  0  0
#> SRR934250     2   0.357      0.814 0.196 0.804  0  0
#> SRR934251     2   0.357      0.814 0.196 0.804  0  0
#> SRR934252     2   0.357      0.814 0.196 0.804  0  0
#> SRR934253     2   0.357      0.814 0.196 0.804  0  0
#> SRR934254     2   0.357      0.814 0.196 0.804  0  0
#> SRR934255     2   0.357      0.814 0.196 0.804  0  0
#> SRR934256     1   0.357      0.738 0.804 0.196  0  0
#> SRR934257     1   0.357      0.738 0.804 0.196  0  0
#> SRR934258     1   0.357      0.738 0.804 0.196  0  0
#> SRR934259     1   0.357      0.738 0.804 0.196  0  0
#> SRR934260     1   0.357      0.738 0.804 0.196  0  0
#> SRR934261     1   0.357      0.738 0.804 0.196  0  0
#> SRR934262     1   0.357      0.738 0.804 0.196  0  0
#> SRR934263     1   0.357      0.738 0.804 0.196  0  0
#> SRR934264     2   0.376      0.823 0.216 0.784  0  0
#> SRR934265     2   0.376      0.823 0.216 0.784  0  0
#> SRR934266     2   0.376      0.823 0.216 0.784  0  0
#> SRR934267     2   0.376      0.823 0.216 0.784  0  0
#> SRR934268     2   0.376      0.823 0.216 0.784  0  0
#> SRR934269     2   0.376      0.823 0.216 0.784  0  0
#> SRR934270     2   0.376      0.823 0.216 0.784  0  0
#> SRR934271     2   0.376      0.823 0.216 0.784  0  0
#> SRR934272     1   0.000      0.949 1.000 0.000  0  0
#> SRR934273     1   0.000      0.949 1.000 0.000  0  0
#> SRR934274     1   0.000      0.949 1.000 0.000  0  0
#> SRR934275     1   0.000      0.949 1.000 0.000  0  0
#> SRR934276     1   0.000      0.949 1.000 0.000  0  0
#> SRR934277     1   0.000      0.949 1.000 0.000  0  0
#> SRR934278     1   0.000      0.949 1.000 0.000  0  0
#> SRR934279     1   0.000      0.949 1.000 0.000  0  0
#> SRR934280     1   0.000      0.949 1.000 0.000  0  0
#> SRR934281     1   0.000      0.949 1.000 0.000  0  0
#> SRR934282     1   0.000      0.949 1.000 0.000  0  0
#> SRR934283     1   0.000      0.949 1.000 0.000  0  0
#> SRR934284     1   0.000      0.949 1.000 0.000  0  0
#> SRR934285     1   0.000      0.949 1.000 0.000  0  0
#> SRR934286     1   0.000      0.949 1.000 0.000  0  0
#> SRR934287     1   0.000      0.949 1.000 0.000  0  0
#> SRR934288     1   0.000      0.949 1.000 0.000  0  0
#> SRR934289     1   0.000      0.949 1.000 0.000  0  0
#> SRR934290     1   0.000      0.949 1.000 0.000  0  0
#> SRR934291     1   0.000      0.949 1.000 0.000  0  0
#> SRR934292     1   0.000      0.949 1.000 0.000  0  0
#> SRR934293     1   0.000      0.949 1.000 0.000  0  0
#> SRR934294     1   0.000      0.949 1.000 0.000  0  0
#> SRR934295     1   0.000      0.949 1.000 0.000  0  0
#> SRR934296     1   0.000      0.949 1.000 0.000  0  0
#> SRR934297     1   0.000      0.949 1.000 0.000  0  0
#> SRR934298     1   0.000      0.949 1.000 0.000  0  0
#> SRR934299     1   0.000      0.949 1.000 0.000  0  0
#> SRR934300     1   0.000      0.949 1.000 0.000  0  0
#> SRR934301     1   0.000      0.949 1.000 0.000  0  0
#> SRR934302     1   0.000      0.949 1.000 0.000  0  0
#> SRR934303     1   0.000      0.949 1.000 0.000  0  0
#> SRR934304     4   0.000      1.000 0.000 0.000  0  1
#> SRR934305     4   0.000      1.000 0.000 0.000  0  1
#> SRR934306     4   0.000      1.000 0.000 0.000  0  1
#> SRR934307     4   0.000      1.000 0.000 0.000  0  1
#> SRR934308     4   0.000      1.000 0.000 0.000  0  1
#> SRR934309     4   0.000      1.000 0.000 0.000  0  1
#> SRR934310     4   0.000      1.000 0.000 0.000  0  1
#> SRR934311     4   0.000      1.000 0.000 0.000  0  1
#> SRR934312     1   0.000      0.949 1.000 0.000  0  0
#> SRR934313     1   0.000      0.949 1.000 0.000  0  0
#> SRR934314     1   0.000      0.949 1.000 0.000  0  0
#> SRR934315     1   0.000      0.949 1.000 0.000  0  0
#> SRR934316     1   0.000      0.949 1.000 0.000  0  0
#> SRR934317     1   0.000      0.949 1.000 0.000  0  0
#> SRR934318     1   0.000      0.949 1.000 0.000  0  0
#> SRR934319     1   0.000      0.949 1.000 0.000  0  0
#> SRR934320     1   0.000      0.949 1.000 0.000  0  0
#> SRR934321     1   0.000      0.949 1.000 0.000  0  0
#> SRR934322     1   0.000      0.949 1.000 0.000  0  0
#> SRR934323     1   0.000      0.949 1.000 0.000  0  0
#> SRR934324     1   0.000      0.949 1.000 0.000  0  0
#> SRR934325     1   0.000      0.949 1.000 0.000  0  0
#> SRR934326     1   0.000      0.949 1.000 0.000  0  0
#> SRR934327     1   0.000      0.949 1.000 0.000  0  0
#> SRR934328     1   0.000      0.949 1.000 0.000  0  0
#> SRR934329     1   0.000      0.949 1.000 0.000  0  0
#> SRR934330     1   0.000      0.949 1.000 0.000  0  0
#> SRR934331     1   0.000      0.949 1.000 0.000  0  0
#> SRR934332     1   0.000      0.949 1.000 0.000  0  0
#> SRR934333     1   0.000      0.949 1.000 0.000  0  0
#> SRR934334     1   0.000      0.949 1.000 0.000  0  0
#> SRR934335     1   0.000      0.949 1.000 0.000  0  0
#> SRR934344     1   0.000      0.949 1.000 0.000  0  0
#> SRR934345     1   0.000      0.949 1.000 0.000  0  0
#> SRR934346     1   0.000      0.949 1.000 0.000  0  0
#> SRR934347     1   0.000      0.949 1.000 0.000  0  0
#> SRR934348     1   0.000      0.949 1.000 0.000  0  0
#> SRR934349     1   0.000      0.949 1.000 0.000  0  0
#> SRR934350     1   0.000      0.949 1.000 0.000  0  0
#> SRR934351     1   0.000      0.949 1.000 0.000  0  0
#> SRR934336     1   0.000      0.949 1.000 0.000  0  0
#> SRR934337     1   0.000      0.949 1.000 0.000  0  0
#> SRR934338     1   0.000      0.949 1.000 0.000  0  0
#> SRR934339     1   0.000      0.949 1.000 0.000  0  0
#> SRR934340     1   0.000      0.949 1.000 0.000  0  0
#> SRR934341     1   0.000      0.949 1.000 0.000  0  0
#> SRR934342     1   0.000      0.949 1.000 0.000  0  0

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2 p3    p4    p5
#> SRR934216     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR934217     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR934218     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR934219     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR934220     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR934221     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR934222     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR934223     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR934224     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934225     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934226     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934227     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934228     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934229     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934230     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934231     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934232     4  0.4283      0.495 0.000 0.456  0 0.544 0.000
#> SRR934233     4  0.4283      0.495 0.000 0.456  0 0.544 0.000
#> SRR934234     4  0.4283      0.495 0.000 0.456  0 0.544 0.000
#> SRR934235     4  0.4283      0.495 0.000 0.456  0 0.544 0.000
#> SRR934236     4  0.4283      0.495 0.000 0.456  0 0.544 0.000
#> SRR934237     4  0.4283      0.495 0.000 0.456  0 0.544 0.000
#> SRR934238     4  0.4283      0.495 0.000 0.456  0 0.544 0.000
#> SRR934239     4  0.4283      0.495 0.000 0.456  0 0.544 0.000
#> SRR934240     2  0.4990      1.000 0.360 0.600  0 0.040 0.000
#> SRR934241     2  0.4990      1.000 0.360 0.600  0 0.040 0.000
#> SRR934242     2  0.4990      1.000 0.360 0.600  0 0.040 0.000
#> SRR934243     2  0.4990      1.000 0.360 0.600  0 0.040 0.000
#> SRR934244     2  0.4990      1.000 0.360 0.600  0 0.040 0.000
#> SRR934245     2  0.4990      1.000 0.360 0.600  0 0.040 0.000
#> SRR934246     2  0.4990      1.000 0.360 0.600  0 0.040 0.000
#> SRR934247     2  0.4990      1.000 0.360 0.600  0 0.040 0.000
#> SRR934248     4  0.4161      0.549 0.000 0.000  0 0.608 0.392
#> SRR934249     4  0.4161      0.549 0.000 0.000  0 0.608 0.392
#> SRR934250     4  0.4161      0.549 0.000 0.000  0 0.608 0.392
#> SRR934251     4  0.4161      0.549 0.000 0.000  0 0.608 0.392
#> SRR934252     4  0.4161      0.549 0.000 0.000  0 0.608 0.392
#> SRR934253     4  0.4161      0.549 0.000 0.000  0 0.608 0.392
#> SRR934254     4  0.4161      0.549 0.000 0.000  0 0.608 0.392
#> SRR934255     4  0.4161      0.549 0.000 0.000  0 0.608 0.392
#> SRR934256     1  0.4182     -0.268 0.600 0.400  0 0.000 0.000
#> SRR934257     1  0.4182     -0.268 0.600 0.400  0 0.000 0.000
#> SRR934258     1  0.4182     -0.268 0.600 0.400  0 0.000 0.000
#> SRR934259     1  0.4182     -0.268 0.600 0.400  0 0.000 0.000
#> SRR934260     1  0.4182     -0.268 0.600 0.400  0 0.000 0.000
#> SRR934261     1  0.4182     -0.268 0.600 0.400  0 0.000 0.000
#> SRR934262     1  0.4182     -0.268 0.600 0.400  0 0.000 0.000
#> SRR934263     1  0.4182     -0.268 0.600 0.400  0 0.000 0.000
#> SRR934264     4  0.0000      0.653 0.000 0.000  0 1.000 0.000
#> SRR934265     4  0.0000      0.653 0.000 0.000  0 1.000 0.000
#> SRR934266     4  0.0000      0.653 0.000 0.000  0 1.000 0.000
#> SRR934267     4  0.0000      0.653 0.000 0.000  0 1.000 0.000
#> SRR934268     4  0.0000      0.653 0.000 0.000  0 1.000 0.000
#> SRR934269     4  0.0000      0.653 0.000 0.000  0 1.000 0.000
#> SRR934270     4  0.0000      0.653 0.000 0.000  0 1.000 0.000
#> SRR934271     4  0.0000      0.653 0.000 0.000  0 1.000 0.000
#> SRR934272     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934273     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934274     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934275     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934276     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934277     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934278     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934279     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934280     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934281     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934282     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934283     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934284     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934285     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934286     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934287     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934288     1  0.0404      0.908 0.988 0.012  0 0.000 0.000
#> SRR934289     1  0.0404      0.908 0.988 0.012  0 0.000 0.000
#> SRR934290     1  0.0404      0.908 0.988 0.012  0 0.000 0.000
#> SRR934291     1  0.0404      0.908 0.988 0.012  0 0.000 0.000
#> SRR934292     1  0.0404      0.908 0.988 0.012  0 0.000 0.000
#> SRR934293     1  0.0404      0.908 0.988 0.012  0 0.000 0.000
#> SRR934294     1  0.0404      0.908 0.988 0.012  0 0.000 0.000
#> SRR934295     1  0.0404      0.908 0.988 0.012  0 0.000 0.000
#> SRR934296     1  0.2605      0.713 0.852 0.148  0 0.000 0.000
#> SRR934297     1  0.2605      0.713 0.852 0.148  0 0.000 0.000
#> SRR934298     1  0.2605      0.713 0.852 0.148  0 0.000 0.000
#> SRR934299     1  0.2605      0.713 0.852 0.148  0 0.000 0.000
#> SRR934300     1  0.2605      0.713 0.852 0.148  0 0.000 0.000
#> SRR934301     1  0.2605      0.713 0.852 0.148  0 0.000 0.000
#> SRR934302     1  0.2605      0.713 0.852 0.148  0 0.000 0.000
#> SRR934303     1  0.2605      0.713 0.852 0.148  0 0.000 0.000
#> SRR934304     5  0.4161      1.000 0.000 0.392  0 0.000 0.608
#> SRR934305     5  0.4161      1.000 0.000 0.392  0 0.000 0.608
#> SRR934306     5  0.4161      1.000 0.000 0.392  0 0.000 0.608
#> SRR934307     5  0.4161      1.000 0.000 0.392  0 0.000 0.608
#> SRR934308     5  0.4161      1.000 0.000 0.392  0 0.000 0.608
#> SRR934309     5  0.4161      1.000 0.000 0.392  0 0.000 0.608
#> SRR934310     5  0.4161      1.000 0.000 0.392  0 0.000 0.608
#> SRR934311     5  0.4161      1.000 0.000 0.392  0 0.000 0.608
#> SRR934312     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934313     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934314     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934315     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934316     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934317     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934318     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934319     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934320     1  0.0510      0.900 0.984 0.016  0 0.000 0.000
#> SRR934321     1  0.0510      0.900 0.984 0.016  0 0.000 0.000
#> SRR934322     1  0.0510      0.900 0.984 0.016  0 0.000 0.000
#> SRR934323     1  0.0510      0.900 0.984 0.016  0 0.000 0.000
#> SRR934324     1  0.0510      0.900 0.984 0.016  0 0.000 0.000
#> SRR934325     1  0.0510      0.900 0.984 0.016  0 0.000 0.000
#> SRR934326     1  0.0510      0.900 0.984 0.016  0 0.000 0.000
#> SRR934327     1  0.0510      0.900 0.984 0.016  0 0.000 0.000
#> SRR934328     1  0.0404      0.908 0.988 0.012  0 0.000 0.000
#> SRR934329     1  0.0404      0.908 0.988 0.012  0 0.000 0.000
#> SRR934330     1  0.0404      0.908 0.988 0.012  0 0.000 0.000
#> SRR934331     1  0.0404      0.908 0.988 0.012  0 0.000 0.000
#> SRR934332     1  0.0404      0.908 0.988 0.012  0 0.000 0.000
#> SRR934333     1  0.0404      0.908 0.988 0.012  0 0.000 0.000
#> SRR934334     1  0.0404      0.908 0.988 0.012  0 0.000 0.000
#> SRR934335     1  0.0404      0.908 0.988 0.012  0 0.000 0.000
#> SRR934344     1  0.0404      0.908 0.988 0.012  0 0.000 0.000
#> SRR934345     1  0.0404      0.908 0.988 0.012  0 0.000 0.000
#> SRR934346     1  0.0404      0.908 0.988 0.012  0 0.000 0.000
#> SRR934347     1  0.0404      0.908 0.988 0.012  0 0.000 0.000
#> SRR934348     1  0.0404      0.908 0.988 0.012  0 0.000 0.000
#> SRR934349     1  0.0404      0.908 0.988 0.012  0 0.000 0.000
#> SRR934350     1  0.0404      0.908 0.988 0.012  0 0.000 0.000
#> SRR934351     1  0.0404      0.908 0.988 0.012  0 0.000 0.000
#> SRR934336     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934337     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934338     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934339     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934340     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934341     1  0.0000      0.911 1.000 0.000  0 0.000 0.000
#> SRR934342     1  0.0000      0.911 1.000 0.000  0 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2 p3    p4 p5    p6
#> SRR934216     3   0.000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR934217     3   0.000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR934218     3   0.000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR934219     3   0.000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR934220     3   0.000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR934221     3   0.000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR934222     3   0.000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR934223     3   0.000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR934224     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934225     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934226     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934227     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934228     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934229     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934230     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934231     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934232     4   0.385      0.332 0.000 0.456  0 0.544  0 0.000
#> SRR934233     4   0.385      0.332 0.000 0.456  0 0.544  0 0.000
#> SRR934234     4   0.385      0.332 0.000 0.456  0 0.544  0 0.000
#> SRR934235     4   0.385      0.332 0.000 0.456  0 0.544  0 0.000
#> SRR934236     4   0.385      0.332 0.000 0.456  0 0.544  0 0.000
#> SRR934237     4   0.385      0.332 0.000 0.456  0 0.544  0 0.000
#> SRR934238     4   0.385      0.332 0.000 0.456  0 0.544  0 0.000
#> SRR934239     4   0.385      0.332 0.000 0.456  0 0.544  0 0.000
#> SRR934240     2   0.584      1.000 0.168 0.604  0 0.040  0 0.188
#> SRR934241     2   0.584      1.000 0.168 0.604  0 0.040  0 0.188
#> SRR934242     2   0.584      1.000 0.168 0.604  0 0.040  0 0.188
#> SRR934243     2   0.584      1.000 0.168 0.604  0 0.040  0 0.188
#> SRR934244     2   0.584      1.000 0.168 0.604  0 0.040  0 0.188
#> SRR934245     2   0.584      1.000 0.168 0.604  0 0.040  0 0.188
#> SRR934246     2   0.584      1.000 0.168 0.604  0 0.040  0 0.188
#> SRR934247     2   0.584      1.000 0.168 0.604  0 0.040  0 0.188
#> SRR934248     4   0.375      0.550 0.000 0.396  0 0.604  0 0.000
#> SRR934249     4   0.375      0.550 0.000 0.396  0 0.604  0 0.000
#> SRR934250     4   0.375      0.550 0.000 0.396  0 0.604  0 0.000
#> SRR934251     4   0.375      0.550 0.000 0.396  0 0.604  0 0.000
#> SRR934252     4   0.375      0.550 0.000 0.396  0 0.604  0 0.000
#> SRR934253     4   0.375      0.550 0.000 0.396  0 0.604  0 0.000
#> SRR934254     4   0.375      0.550 0.000 0.396  0 0.604  0 0.000
#> SRR934255     4   0.375      0.550 0.000 0.396  0 0.604  0 0.000
#> SRR934256     6   0.611     -0.288 0.328 0.304  0 0.000  0 0.368
#> SRR934257     6   0.611     -0.288 0.328 0.304  0 0.000  0 0.368
#> SRR934258     6   0.611     -0.288 0.328 0.304  0 0.000  0 0.368
#> SRR934259     6   0.611     -0.288 0.328 0.304  0 0.000  0 0.368
#> SRR934260     6   0.611     -0.288 0.328 0.304  0 0.000  0 0.368
#> SRR934261     6   0.611     -0.288 0.328 0.304  0 0.000  0 0.368
#> SRR934262     6   0.611     -0.288 0.328 0.304  0 0.000  0 0.368
#> SRR934263     6   0.611     -0.288 0.328 0.304  0 0.000  0 0.368
#> SRR934264     4   0.000      0.656 0.000 0.000  0 1.000  0 0.000
#> SRR934265     4   0.000      0.656 0.000 0.000  0 1.000  0 0.000
#> SRR934266     4   0.000      0.656 0.000 0.000  0 1.000  0 0.000
#> SRR934267     4   0.000      0.656 0.000 0.000  0 1.000  0 0.000
#> SRR934268     4   0.000      0.656 0.000 0.000  0 1.000  0 0.000
#> SRR934269     4   0.000      0.656 0.000 0.000  0 1.000  0 0.000
#> SRR934270     4   0.000      0.656 0.000 0.000  0 1.000  0 0.000
#> SRR934271     4   0.000      0.656 0.000 0.000  0 1.000  0 0.000
#> SRR934272     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934273     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934274     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934275     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934276     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934277     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934278     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934279     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934280     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934281     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934282     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934283     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934284     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934285     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934286     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934287     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934288     1   0.376      0.800 0.600 0.000  0 0.000  0 0.400
#> SRR934289     1   0.376      0.800 0.600 0.000  0 0.000  0 0.400
#> SRR934290     1   0.376      0.800 0.600 0.000  0 0.000  0 0.400
#> SRR934291     1   0.376      0.800 0.600 0.000  0 0.000  0 0.400
#> SRR934292     1   0.376      0.800 0.600 0.000  0 0.000  0 0.400
#> SRR934293     1   0.376      0.800 0.600 0.000  0 0.000  0 0.400
#> SRR934294     1   0.376      0.800 0.600 0.000  0 0.000  0 0.400
#> SRR934295     1   0.376      0.800 0.600 0.000  0 0.000  0 0.400
#> SRR934296     1   0.509      0.230 0.628 0.152  0 0.000  0 0.220
#> SRR934297     1   0.509      0.230 0.628 0.152  0 0.000  0 0.220
#> SRR934298     1   0.509      0.230 0.628 0.152  0 0.000  0 0.220
#> SRR934299     1   0.509      0.230 0.628 0.152  0 0.000  0 0.220
#> SRR934300     1   0.509      0.230 0.628 0.152  0 0.000  0 0.220
#> SRR934301     1   0.509      0.230 0.628 0.152  0 0.000  0 0.220
#> SRR934302     1   0.509      0.230 0.628 0.152  0 0.000  0 0.220
#> SRR934303     1   0.509      0.230 0.628 0.152  0 0.000  0 0.220
#> SRR934304     5   0.000      1.000 0.000 0.000  0 0.000  1 0.000
#> SRR934305     5   0.000      1.000 0.000 0.000  0 0.000  1 0.000
#> SRR934306     5   0.000      1.000 0.000 0.000  0 0.000  1 0.000
#> SRR934307     5   0.000      1.000 0.000 0.000  0 0.000  1 0.000
#> SRR934308     5   0.000      1.000 0.000 0.000  0 0.000  1 0.000
#> SRR934309     5   0.000      1.000 0.000 0.000  0 0.000  1 0.000
#> SRR934310     5   0.000      1.000 0.000 0.000  0 0.000  1 0.000
#> SRR934311     5   0.000      1.000 0.000 0.000  0 0.000  1 0.000
#> SRR934312     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934313     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934314     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934315     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934316     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934317     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934318     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934319     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934320     6   0.132      0.809 0.036 0.016  0 0.000  0 0.948
#> SRR934321     6   0.132      0.809 0.036 0.016  0 0.000  0 0.948
#> SRR934322     6   0.132      0.809 0.036 0.016  0 0.000  0 0.948
#> SRR934323     6   0.132      0.809 0.036 0.016  0 0.000  0 0.948
#> SRR934324     6   0.132      0.809 0.036 0.016  0 0.000  0 0.948
#> SRR934325     6   0.132      0.809 0.036 0.016  0 0.000  0 0.948
#> SRR934326     6   0.132      0.809 0.036 0.016  0 0.000  0 0.948
#> SRR934327     6   0.132      0.809 0.036 0.016  0 0.000  0 0.948
#> SRR934328     1   0.366      0.810 0.636 0.000  0 0.000  0 0.364
#> SRR934329     1   0.366      0.810 0.636 0.000  0 0.000  0 0.364
#> SRR934330     1   0.366      0.810 0.636 0.000  0 0.000  0 0.364
#> SRR934331     1   0.366      0.810 0.636 0.000  0 0.000  0 0.364
#> SRR934332     1   0.366      0.810 0.636 0.000  0 0.000  0 0.364
#> SRR934333     1   0.366      0.810 0.636 0.000  0 0.000  0 0.364
#> SRR934334     1   0.366      0.810 0.636 0.000  0 0.000  0 0.364
#> SRR934335     1   0.366      0.810 0.636 0.000  0 0.000  0 0.364
#> SRR934344     1   0.371      0.813 0.620 0.000  0 0.000  0 0.380
#> SRR934345     1   0.371      0.813 0.620 0.000  0 0.000  0 0.380
#> SRR934346     1   0.371      0.813 0.620 0.000  0 0.000  0 0.380
#> SRR934347     1   0.371      0.813 0.620 0.000  0 0.000  0 0.380
#> SRR934348     1   0.371      0.813 0.620 0.000  0 0.000  0 0.380
#> SRR934349     1   0.371      0.813 0.620 0.000  0 0.000  0 0.380
#> SRR934350     1   0.371      0.813 0.620 0.000  0 0.000  0 0.380
#> SRR934351     1   0.371      0.813 0.620 0.000  0 0.000  0 0.380
#> SRR934336     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934337     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934338     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934339     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934340     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934341     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000
#> SRR934342     6   0.000      0.855 0.000 0.000  0 0.000  0 1.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14550 rows and 135 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.369           0.754       0.850          0.331 0.636   0.636
#> 3 3 0.224           0.659       0.758          0.488 1.000   1.000
#> 4 4 0.304           0.554       0.668          0.228 0.789   0.683
#> 5 5 0.395           0.627       0.652          0.159 0.750   0.488
#> 6 6 0.416           0.587       0.624          0.052 0.923   0.738

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR934216     1  0.9754    0.00991 0.592 0.408
#> SRR934217     1  0.9754    0.00991 0.592 0.408
#> SRR934218     1  0.9754    0.00991 0.592 0.408
#> SRR934219     1  0.9754    0.00991 0.592 0.408
#> SRR934220     1  0.9754    0.00991 0.592 0.408
#> SRR934221     1  0.9754    0.00991 0.592 0.408
#> SRR934222     1  0.9754    0.00991 0.592 0.408
#> SRR934223     1  0.9754    0.00991 0.592 0.408
#> SRR934224     1  0.1414    0.86459 0.980 0.020
#> SRR934225     1  0.1414    0.86459 0.980 0.020
#> SRR934226     1  0.1414    0.86459 0.980 0.020
#> SRR934227     1  0.1414    0.86459 0.980 0.020
#> SRR934228     1  0.1414    0.86459 0.980 0.020
#> SRR934229     1  0.1414    0.86459 0.980 0.020
#> SRR934230     1  0.1414    0.86459 0.980 0.020
#> SRR934231     1  0.1414    0.86459 0.980 0.020
#> SRR934232     2  0.9393    0.76416 0.356 0.644
#> SRR934233     2  0.9393    0.76416 0.356 0.644
#> SRR934234     2  0.9393    0.76416 0.356 0.644
#> SRR934235     2  0.9393    0.76416 0.356 0.644
#> SRR934236     2  0.9393    0.76416 0.356 0.644
#> SRR934237     2  0.9393    0.76416 0.356 0.644
#> SRR934238     2  0.9393    0.76416 0.356 0.644
#> SRR934239     2  0.9393    0.76416 0.356 0.644
#> SRR934240     1  0.9170    0.35234 0.668 0.332
#> SRR934241     1  0.9170    0.35234 0.668 0.332
#> SRR934242     1  0.9170    0.35234 0.668 0.332
#> SRR934243     1  0.9170    0.35234 0.668 0.332
#> SRR934244     1  0.9170    0.35234 0.668 0.332
#> SRR934245     1  0.9170    0.35234 0.668 0.332
#> SRR934246     1  0.9170    0.35234 0.668 0.332
#> SRR934247     1  0.9170    0.35234 0.668 0.332
#> SRR934248     2  0.9522    0.82635 0.372 0.628
#> SRR934249     2  0.9522    0.82635 0.372 0.628
#> SRR934250     2  0.9522    0.82635 0.372 0.628
#> SRR934251     2  0.9522    0.82635 0.372 0.628
#> SRR934252     2  0.9522    0.82635 0.372 0.628
#> SRR934253     2  0.9522    0.82635 0.372 0.628
#> SRR934254     2  0.9522    0.82635 0.372 0.628
#> SRR934255     2  0.9522    0.82635 0.372 0.628
#> SRR934256     1  0.6712    0.71707 0.824 0.176
#> SRR934257     1  0.6712    0.71707 0.824 0.176
#> SRR934258     1  0.6712    0.71707 0.824 0.176
#> SRR934259     1  0.6712    0.71707 0.824 0.176
#> SRR934260     1  0.6712    0.71707 0.824 0.176
#> SRR934261     1  0.6712    0.71707 0.824 0.176
#> SRR934262     1  0.6712    0.71707 0.824 0.176
#> SRR934263     1  0.6712    0.71707 0.824 0.176
#> SRR934264     2  0.9795    0.80548 0.416 0.584
#> SRR934265     2  0.9795    0.80548 0.416 0.584
#> SRR934266     2  0.9795    0.80548 0.416 0.584
#> SRR934267     2  0.9795    0.80548 0.416 0.584
#> SRR934268     2  0.9795    0.80548 0.416 0.584
#> SRR934269     2  0.9795    0.80548 0.416 0.584
#> SRR934270     2  0.9795    0.80548 0.416 0.584
#> SRR934271     2  0.9795    0.80548 0.416 0.584
#> SRR934272     1  0.1184    0.86542 0.984 0.016
#> SRR934273     1  0.1184    0.86542 0.984 0.016
#> SRR934274     1  0.1184    0.86542 0.984 0.016
#> SRR934275     1  0.1184    0.86542 0.984 0.016
#> SRR934276     1  0.1184    0.86542 0.984 0.016
#> SRR934277     1  0.1184    0.86542 0.984 0.016
#> SRR934278     1  0.1184    0.86542 0.984 0.016
#> SRR934279     1  0.1184    0.86542 0.984 0.016
#> SRR934280     1  0.1184    0.86660 0.984 0.016
#> SRR934281     1  0.1184    0.86660 0.984 0.016
#> SRR934282     1  0.1184    0.86660 0.984 0.016
#> SRR934283     1  0.1184    0.86660 0.984 0.016
#> SRR934284     1  0.1184    0.86660 0.984 0.016
#> SRR934285     1  0.1184    0.86660 0.984 0.016
#> SRR934286     1  0.1184    0.86660 0.984 0.016
#> SRR934287     1  0.1184    0.86660 0.984 0.016
#> SRR934288     1  0.2236    0.86387 0.964 0.036
#> SRR934289     1  0.2236    0.86387 0.964 0.036
#> SRR934290     1  0.2236    0.86387 0.964 0.036
#> SRR934291     1  0.2236    0.86387 0.964 0.036
#> SRR934292     1  0.2236    0.86387 0.964 0.036
#> SRR934293     1  0.2236    0.86387 0.964 0.036
#> SRR934294     1  0.2236    0.86387 0.964 0.036
#> SRR934295     1  0.2236    0.86387 0.964 0.036
#> SRR934296     1  0.2948    0.84840 0.948 0.052
#> SRR934297     1  0.2948    0.84840 0.948 0.052
#> SRR934298     1  0.2948    0.84840 0.948 0.052
#> SRR934299     1  0.2948    0.84840 0.948 0.052
#> SRR934300     1  0.2948    0.84840 0.948 0.052
#> SRR934301     1  0.2948    0.84840 0.948 0.052
#> SRR934302     1  0.2948    0.84840 0.948 0.052
#> SRR934303     1  0.2948    0.84840 0.948 0.052
#> SRR934304     2  0.7299    0.72266 0.204 0.796
#> SRR934305     2  0.7299    0.72266 0.204 0.796
#> SRR934306     2  0.7299    0.72266 0.204 0.796
#> SRR934307     2  0.7299    0.72266 0.204 0.796
#> SRR934308     2  0.7299    0.72266 0.204 0.796
#> SRR934309     2  0.7299    0.72266 0.204 0.796
#> SRR934310     2  0.7299    0.72266 0.204 0.796
#> SRR934311     2  0.7299    0.72266 0.204 0.796
#> SRR934312     1  0.0938    0.86583 0.988 0.012
#> SRR934313     1  0.0938    0.86583 0.988 0.012
#> SRR934314     1  0.0938    0.86583 0.988 0.012
#> SRR934315     1  0.0938    0.86583 0.988 0.012
#> SRR934316     1  0.0938    0.86583 0.988 0.012
#> SRR934317     1  0.0938    0.86583 0.988 0.012
#> SRR934318     1  0.0938    0.86583 0.988 0.012
#> SRR934319     1  0.0938    0.86583 0.988 0.012
#> SRR934320     1  0.2236    0.86039 0.964 0.036
#> SRR934321     1  0.2236    0.86039 0.964 0.036
#> SRR934322     1  0.2236    0.86039 0.964 0.036
#> SRR934323     1  0.2236    0.86039 0.964 0.036
#> SRR934324     1  0.2236    0.86039 0.964 0.036
#> SRR934325     1  0.2236    0.86039 0.964 0.036
#> SRR934326     1  0.2236    0.86039 0.964 0.036
#> SRR934327     1  0.2236    0.86039 0.964 0.036
#> SRR934328     1  0.2236    0.86387 0.964 0.036
#> SRR934329     1  0.2236    0.86387 0.964 0.036
#> SRR934330     1  0.2236    0.86387 0.964 0.036
#> SRR934331     1  0.2236    0.86387 0.964 0.036
#> SRR934332     1  0.2236    0.86387 0.964 0.036
#> SRR934333     1  0.2236    0.86387 0.964 0.036
#> SRR934334     1  0.2236    0.86387 0.964 0.036
#> SRR934335     1  0.2236    0.86387 0.964 0.036
#> SRR934344     1  0.2236    0.86387 0.964 0.036
#> SRR934345     1  0.2236    0.86387 0.964 0.036
#> SRR934346     1  0.2236    0.86387 0.964 0.036
#> SRR934347     1  0.2236    0.86387 0.964 0.036
#> SRR934348     1  0.2236    0.86387 0.964 0.036
#> SRR934349     1  0.2236    0.86387 0.964 0.036
#> SRR934350     1  0.2236    0.86387 0.964 0.036
#> SRR934351     1  0.2236    0.86387 0.964 0.036
#> SRR934336     1  0.0672    0.86638 0.992 0.008
#> SRR934337     1  0.0672    0.86638 0.992 0.008
#> SRR934338     1  0.0672    0.86638 0.992 0.008
#> SRR934339     1  0.0672    0.86638 0.992 0.008
#> SRR934340     1  0.0672    0.86638 0.992 0.008
#> SRR934341     1  0.0672    0.86638 0.992 0.008
#> SRR934342     1  0.0672    0.86638 0.992 0.008

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1 p2    p3
#> SRR934216     1  0.9392    0.04174 0.436 NA 0.172
#> SRR934217     1  0.9392    0.04174 0.436 NA 0.172
#> SRR934218     1  0.9392    0.04174 0.436 NA 0.172
#> SRR934219     1  0.9392    0.04174 0.436 NA 0.172
#> SRR934220     1  0.9392    0.04174 0.436 NA 0.172
#> SRR934221     1  0.9392    0.04174 0.436 NA 0.172
#> SRR934222     1  0.9392    0.04174 0.436 NA 0.172
#> SRR934223     1  0.9392    0.04174 0.436 NA 0.172
#> SRR934224     1  0.2176    0.76823 0.948 NA 0.020
#> SRR934225     1  0.2176    0.76823 0.948 NA 0.020
#> SRR934226     1  0.2176    0.76823 0.948 NA 0.020
#> SRR934227     1  0.2176    0.76823 0.948 NA 0.020
#> SRR934228     1  0.2176    0.76823 0.948 NA 0.020
#> SRR934229     1  0.2176    0.76823 0.948 NA 0.020
#> SRR934230     1  0.2176    0.76823 0.948 NA 0.020
#> SRR934231     1  0.2176    0.76823 0.948 NA 0.020
#> SRR934232     3  0.6393    0.77614 0.148 NA 0.764
#> SRR934233     3  0.6393    0.77614 0.148 NA 0.764
#> SRR934234     3  0.6393    0.77614 0.148 NA 0.764
#> SRR934235     3  0.6393    0.77614 0.148 NA 0.764
#> SRR934236     3  0.6393    0.77614 0.148 NA 0.764
#> SRR934237     3  0.6393    0.77614 0.148 NA 0.764
#> SRR934238     3  0.6393    0.77614 0.148 NA 0.764
#> SRR934239     3  0.6393    0.77614 0.148 NA 0.764
#> SRR934240     1  0.9642    0.00365 0.416 NA 0.376
#> SRR934241     1  0.9642    0.00365 0.416 NA 0.376
#> SRR934242     1  0.9642    0.00365 0.416 NA 0.376
#> SRR934243     1  0.9642    0.00365 0.416 NA 0.376
#> SRR934244     1  0.9642    0.00365 0.416 NA 0.376
#> SRR934245     1  0.9642    0.00365 0.416 NA 0.376
#> SRR934246     1  0.9642    0.00365 0.416 NA 0.376
#> SRR934247     1  0.9642    0.00365 0.416 NA 0.376
#> SRR934248     3  0.6001    0.80222 0.176 NA 0.772
#> SRR934249     3  0.6001    0.80222 0.176 NA 0.772
#> SRR934250     3  0.6001    0.80222 0.176 NA 0.772
#> SRR934251     3  0.6001    0.80222 0.176 NA 0.772
#> SRR934252     3  0.6001    0.80222 0.176 NA 0.772
#> SRR934253     3  0.6001    0.80222 0.176 NA 0.772
#> SRR934254     3  0.6001    0.80222 0.176 NA 0.772
#> SRR934255     3  0.6001    0.80222 0.176 NA 0.772
#> SRR934256     1  0.8343    0.54472 0.612 NA 0.132
#> SRR934257     1  0.8343    0.54472 0.612 NA 0.132
#> SRR934258     1  0.8343    0.54472 0.612 NA 0.132
#> SRR934259     1  0.8343    0.54472 0.612 NA 0.132
#> SRR934260     1  0.8343    0.54472 0.612 NA 0.132
#> SRR934261     1  0.8343    0.54472 0.612 NA 0.132
#> SRR934262     1  0.8343    0.54472 0.612 NA 0.132
#> SRR934263     1  0.8343    0.54472 0.612 NA 0.132
#> SRR934264     3  0.5763    0.79809 0.244 NA 0.740
#> SRR934265     3  0.5763    0.79809 0.244 NA 0.740
#> SRR934266     3  0.5763    0.79809 0.244 NA 0.740
#> SRR934267     3  0.5763    0.79809 0.244 NA 0.740
#> SRR934268     3  0.5763    0.79809 0.244 NA 0.740
#> SRR934269     3  0.5763    0.79809 0.244 NA 0.740
#> SRR934270     3  0.5763    0.79809 0.244 NA 0.740
#> SRR934271     3  0.5763    0.79809 0.244 NA 0.740
#> SRR934272     1  0.1636    0.77052 0.964 NA 0.016
#> SRR934273     1  0.1636    0.77052 0.964 NA 0.016
#> SRR934274     1  0.1636    0.77052 0.964 NA 0.016
#> SRR934275     1  0.1636    0.77052 0.964 NA 0.016
#> SRR934276     1  0.1636    0.77052 0.964 NA 0.016
#> SRR934277     1  0.1636    0.77052 0.964 NA 0.016
#> SRR934278     1  0.1636    0.77052 0.964 NA 0.016
#> SRR934279     1  0.1636    0.77052 0.964 NA 0.016
#> SRR934280     1  0.1482    0.77533 0.968 NA 0.012
#> SRR934281     1  0.1482    0.77533 0.968 NA 0.012
#> SRR934282     1  0.1482    0.77533 0.968 NA 0.012
#> SRR934283     1  0.1482    0.77533 0.968 NA 0.012
#> SRR934284     1  0.1482    0.77533 0.968 NA 0.012
#> SRR934285     1  0.1482    0.77533 0.968 NA 0.012
#> SRR934286     1  0.1482    0.77533 0.968 NA 0.012
#> SRR934287     1  0.1482    0.77533 0.968 NA 0.012
#> SRR934288     1  0.5514    0.74280 0.800 NA 0.044
#> SRR934289     1  0.5514    0.74280 0.800 NA 0.044
#> SRR934290     1  0.5514    0.74280 0.800 NA 0.044
#> SRR934291     1  0.5514    0.74280 0.800 NA 0.044
#> SRR934292     1  0.5514    0.74280 0.800 NA 0.044
#> SRR934293     1  0.5514    0.74280 0.800 NA 0.044
#> SRR934294     1  0.5514    0.74280 0.800 NA 0.044
#> SRR934295     1  0.5514    0.74280 0.800 NA 0.044
#> SRR934296     1  0.4737    0.75839 0.852 NA 0.064
#> SRR934297     1  0.4737    0.75839 0.852 NA 0.064
#> SRR934298     1  0.4737    0.75839 0.852 NA 0.064
#> SRR934299     1  0.4737    0.75839 0.852 NA 0.064
#> SRR934300     1  0.4737    0.75839 0.852 NA 0.064
#> SRR934301     1  0.4737    0.75839 0.852 NA 0.064
#> SRR934302     1  0.4737    0.75839 0.852 NA 0.064
#> SRR934303     1  0.4737    0.75839 0.852 NA 0.064
#> SRR934304     3  0.8578    0.67914 0.100 NA 0.504
#> SRR934305     3  0.8578    0.67914 0.100 NA 0.504
#> SRR934306     3  0.8569    0.67913 0.100 NA 0.508
#> SRR934307     3  0.8569    0.67913 0.100 NA 0.508
#> SRR934308     3  0.8578    0.67914 0.100 NA 0.504
#> SRR934309     3  0.8569    0.67913 0.100 NA 0.508
#> SRR934310     3  0.8569    0.67913 0.100 NA 0.508
#> SRR934311     3  0.8569    0.67913 0.100 NA 0.508
#> SRR934312     1  0.0592    0.77609 0.988 NA 0.000
#> SRR934313     1  0.0592    0.77609 0.988 NA 0.000
#> SRR934314     1  0.0592    0.77609 0.988 NA 0.000
#> SRR934315     1  0.0592    0.77609 0.988 NA 0.000
#> SRR934316     1  0.0592    0.77609 0.988 NA 0.000
#> SRR934317     1  0.0592    0.77609 0.988 NA 0.000
#> SRR934318     1  0.0592    0.77609 0.988 NA 0.000
#> SRR934319     1  0.0592    0.77609 0.988 NA 0.000
#> SRR934320     1  0.3713    0.75722 0.892 NA 0.032
#> SRR934321     1  0.3713    0.75722 0.892 NA 0.032
#> SRR934322     1  0.3713    0.75722 0.892 NA 0.032
#> SRR934323     1  0.3713    0.75722 0.892 NA 0.032
#> SRR934324     1  0.3713    0.75722 0.892 NA 0.032
#> SRR934325     1  0.3713    0.75722 0.892 NA 0.032
#> SRR934326     1  0.3713    0.75722 0.892 NA 0.032
#> SRR934327     1  0.3713    0.75722 0.892 NA 0.032
#> SRR934328     1  0.6203    0.72264 0.760 NA 0.056
#> SRR934329     1  0.6203    0.72264 0.760 NA 0.056
#> SRR934330     1  0.6203    0.72264 0.760 NA 0.056
#> SRR934331     1  0.6203    0.72264 0.760 NA 0.056
#> SRR934332     1  0.6203    0.72264 0.760 NA 0.056
#> SRR934333     1  0.6203    0.72264 0.760 NA 0.056
#> SRR934334     1  0.6203    0.72264 0.760 NA 0.056
#> SRR934335     1  0.6203    0.72264 0.760 NA 0.056
#> SRR934344     1  0.6098    0.72705 0.768 NA 0.056
#> SRR934345     1  0.6098    0.72705 0.768 NA 0.056
#> SRR934346     1  0.6098    0.72705 0.768 NA 0.056
#> SRR934347     1  0.6098    0.72705 0.768 NA 0.056
#> SRR934348     1  0.6098    0.72705 0.768 NA 0.056
#> SRR934349     1  0.6098    0.72705 0.768 NA 0.056
#> SRR934350     1  0.6098    0.72705 0.768 NA 0.056
#> SRR934351     1  0.6098    0.72705 0.768 NA 0.056
#> SRR934336     1  0.1919    0.77045 0.956 NA 0.020
#> SRR934337     1  0.1919    0.77045 0.956 NA 0.020
#> SRR934338     1  0.1919    0.77045 0.956 NA 0.020
#> SRR934339     1  0.1919    0.77045 0.956 NA 0.020
#> SRR934340     1  0.1919    0.77045 0.956 NA 0.020
#> SRR934341     1  0.1919    0.77045 0.956 NA 0.020
#> SRR934342     1  0.1919    0.77045 0.956 NA 0.020

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3 p4
#> SRR934216     3   0.908      0.531 0.272 0.064 0.368 NA
#> SRR934217     3   0.908      0.531 0.272 0.064 0.364 NA
#> SRR934218     3   0.908      0.531 0.272 0.064 0.368 NA
#> SRR934219     3   0.908      0.531 0.272 0.064 0.368 NA
#> SRR934220     3   0.908      0.531 0.272 0.064 0.364 NA
#> SRR934221     3   0.908      0.531 0.272 0.064 0.368 NA
#> SRR934222     3   0.908      0.531 0.272 0.064 0.368 NA
#> SRR934223     3   0.908      0.531 0.272 0.064 0.368 NA
#> SRR934224     1   0.629      0.634 0.480 0.016 0.028 NA
#> SRR934225     1   0.629      0.634 0.480 0.016 0.028 NA
#> SRR934226     1   0.629      0.634 0.480 0.016 0.028 NA
#> SRR934227     1   0.629      0.634 0.480 0.016 0.028 NA
#> SRR934228     1   0.629      0.634 0.480 0.016 0.028 NA
#> SRR934229     1   0.629      0.634 0.480 0.016 0.028 NA
#> SRR934230     1   0.629      0.634 0.480 0.016 0.028 NA
#> SRR934231     1   0.629      0.634 0.480 0.016 0.028 NA
#> SRR934232     2   0.326      0.603 0.048 0.888 0.008 NA
#> SRR934233     2   0.326      0.603 0.048 0.888 0.008 NA
#> SRR934234     2   0.326      0.603 0.048 0.888 0.008 NA
#> SRR934235     2   0.326      0.603 0.048 0.888 0.008 NA
#> SRR934236     2   0.326      0.603 0.048 0.888 0.008 NA
#> SRR934237     2   0.326      0.603 0.048 0.888 0.008 NA
#> SRR934238     2   0.326      0.603 0.048 0.888 0.008 NA
#> SRR934239     2   0.326      0.603 0.048 0.888 0.008 NA
#> SRR934240     2   0.860      0.349 0.256 0.496 0.072 NA
#> SRR934241     2   0.860      0.349 0.256 0.496 0.072 NA
#> SRR934242     2   0.860      0.349 0.256 0.496 0.072 NA
#> SRR934243     2   0.860      0.349 0.256 0.496 0.072 NA
#> SRR934244     2   0.860      0.349 0.256 0.496 0.072 NA
#> SRR934245     2   0.860      0.349 0.256 0.496 0.072 NA
#> SRR934246     2   0.860      0.349 0.256 0.496 0.072 NA
#> SRR934247     2   0.860      0.349 0.256 0.496 0.072 NA
#> SRR934248     2   0.729      0.563 0.092 0.660 0.136 NA
#> SRR934249     2   0.729      0.563 0.092 0.660 0.136 NA
#> SRR934250     2   0.730      0.562 0.092 0.660 0.124 NA
#> SRR934251     2   0.729      0.563 0.092 0.660 0.136 NA
#> SRR934252     2   0.729      0.563 0.092 0.660 0.132 NA
#> SRR934253     2   0.730      0.562 0.092 0.660 0.128 NA
#> SRR934254     2   0.729      0.563 0.092 0.660 0.136 NA
#> SRR934255     2   0.729      0.563 0.092 0.660 0.136 NA
#> SRR934256     1   0.911      0.320 0.440 0.156 0.120 NA
#> SRR934257     1   0.911      0.320 0.440 0.156 0.120 NA
#> SRR934258     1   0.911      0.320 0.440 0.156 0.120 NA
#> SRR934259     1   0.911      0.320 0.440 0.156 0.120 NA
#> SRR934260     1   0.911      0.320 0.440 0.156 0.120 NA
#> SRR934261     1   0.911      0.320 0.440 0.156 0.120 NA
#> SRR934262     1   0.911      0.320 0.440 0.156 0.120 NA
#> SRR934263     1   0.911      0.320 0.440 0.156 0.120 NA
#> SRR934264     2   0.640      0.590 0.068 0.724 0.108 NA
#> SRR934265     2   0.640      0.590 0.068 0.724 0.108 NA
#> SRR934266     2   0.640      0.590 0.068 0.724 0.108 NA
#> SRR934267     2   0.640      0.590 0.068 0.724 0.108 NA
#> SRR934268     2   0.640      0.590 0.068 0.724 0.108 NA
#> SRR934269     2   0.640      0.590 0.068 0.724 0.108 NA
#> SRR934270     2   0.640      0.590 0.068 0.724 0.108 NA
#> SRR934271     2   0.640      0.590 0.068 0.724 0.108 NA
#> SRR934272     1   0.606      0.663 0.536 0.012 0.024 NA
#> SRR934273     1   0.606      0.663 0.536 0.012 0.024 NA
#> SRR934274     1   0.606      0.663 0.536 0.012 0.024 NA
#> SRR934275     1   0.606      0.663 0.536 0.012 0.024 NA
#> SRR934276     1   0.606      0.663 0.536 0.012 0.024 NA
#> SRR934277     1   0.606      0.663 0.536 0.012 0.024 NA
#> SRR934278     1   0.606      0.663 0.536 0.012 0.024 NA
#> SRR934279     1   0.606      0.663 0.536 0.012 0.024 NA
#> SRR934280     1   0.565      0.669 0.532 0.004 0.016 NA
#> SRR934281     1   0.565      0.669 0.532 0.004 0.016 NA
#> SRR934282     1   0.565      0.669 0.532 0.004 0.016 NA
#> SRR934283     1   0.565      0.669 0.532 0.004 0.016 NA
#> SRR934284     1   0.565      0.669 0.532 0.004 0.016 NA
#> SRR934285     1   0.565      0.669 0.532 0.004 0.016 NA
#> SRR934286     1   0.565      0.669 0.532 0.004 0.016 NA
#> SRR934287     1   0.565      0.669 0.532 0.004 0.016 NA
#> SRR934288     1   0.137      0.569 0.964 0.004 0.016 NA
#> SRR934289     1   0.137      0.569 0.964 0.004 0.016 NA
#> SRR934290     1   0.137      0.569 0.964 0.004 0.016 NA
#> SRR934291     1   0.137      0.569 0.964 0.004 0.016 NA
#> SRR934292     1   0.137      0.569 0.964 0.004 0.016 NA
#> SRR934293     1   0.137      0.569 0.964 0.004 0.016 NA
#> SRR934294     1   0.137      0.569 0.964 0.004 0.016 NA
#> SRR934295     1   0.137      0.569 0.964 0.004 0.016 NA
#> SRR934296     1   0.653      0.538 0.696 0.064 0.060 NA
#> SRR934297     1   0.653      0.538 0.696 0.064 0.060 NA
#> SRR934298     1   0.653      0.538 0.696 0.064 0.060 NA
#> SRR934299     1   0.653      0.538 0.696 0.064 0.060 NA
#> SRR934300     1   0.653      0.538 0.696 0.064 0.060 NA
#> SRR934301     1   0.653      0.538 0.696 0.064 0.060 NA
#> SRR934302     1   0.653      0.538 0.696 0.064 0.060 NA
#> SRR934303     1   0.653      0.538 0.696 0.064 0.060 NA
#> SRR934304     3   0.664      0.350 0.036 0.344 0.584 NA
#> SRR934305     3   0.664      0.350 0.036 0.344 0.584 NA
#> SRR934306     3   0.664      0.350 0.036 0.344 0.584 NA
#> SRR934307     3   0.664      0.350 0.036 0.344 0.584 NA
#> SRR934308     3   0.685      0.341 0.036 0.360 0.560 NA
#> SRR934309     3   0.664      0.350 0.036 0.344 0.584 NA
#> SRR934310     3   0.664      0.350 0.036 0.344 0.584 NA
#> SRR934311     3   0.664      0.350 0.036 0.344 0.584 NA
#> SRR934312     1   0.583      0.674 0.556 0.008 0.020 NA
#> SRR934313     1   0.583      0.674 0.556 0.008 0.020 NA
#> SRR934314     1   0.583      0.674 0.556 0.008 0.020 NA
#> SRR934315     1   0.583      0.674 0.556 0.008 0.020 NA
#> SRR934316     1   0.583      0.674 0.556 0.008 0.020 NA
#> SRR934317     1   0.583      0.674 0.556 0.008 0.020 NA
#> SRR934318     1   0.583      0.674 0.556 0.008 0.020 NA
#> SRR934319     1   0.583      0.674 0.556 0.008 0.020 NA
#> SRR934320     1   0.618      0.661 0.564 0.016 0.028 NA
#> SRR934321     1   0.618      0.661 0.564 0.016 0.028 NA
#> SRR934322     1   0.618      0.661 0.564 0.016 0.028 NA
#> SRR934323     1   0.618      0.661 0.564 0.016 0.028 NA
#> SRR934324     1   0.618      0.661 0.564 0.016 0.028 NA
#> SRR934325     1   0.618      0.661 0.564 0.016 0.028 NA
#> SRR934326     1   0.618      0.661 0.564 0.016 0.028 NA
#> SRR934327     1   0.618      0.661 0.564 0.016 0.028 NA
#> SRR934328     1   0.297      0.504 0.900 0.008 0.032 NA
#> SRR934329     1   0.297      0.504 0.900 0.008 0.032 NA
#> SRR934330     1   0.297      0.504 0.900 0.008 0.032 NA
#> SRR934331     1   0.297      0.504 0.900 0.008 0.032 NA
#> SRR934332     1   0.297      0.504 0.900 0.008 0.032 NA
#> SRR934333     1   0.297      0.504 0.900 0.008 0.032 NA
#> SRR934334     1   0.297      0.504 0.900 0.008 0.032 NA
#> SRR934335     1   0.297      0.504 0.900 0.008 0.032 NA
#> SRR934344     1   0.112      0.555 0.972 0.004 0.012 NA
#> SRR934345     1   0.112      0.555 0.972 0.004 0.012 NA
#> SRR934346     1   0.112      0.555 0.972 0.004 0.012 NA
#> SRR934347     1   0.112      0.555 0.972 0.004 0.012 NA
#> SRR934348     1   0.112      0.555 0.972 0.004 0.012 NA
#> SRR934349     1   0.112      0.555 0.972 0.004 0.012 NA
#> SRR934350     1   0.112      0.555 0.972 0.004 0.012 NA
#> SRR934351     1   0.112      0.555 0.972 0.004 0.012 NA
#> SRR934336     1   0.589      0.668 0.528 0.012 0.016 NA
#> SRR934337     1   0.589      0.668 0.528 0.012 0.016 NA
#> SRR934338     1   0.589      0.668 0.528 0.012 0.016 NA
#> SRR934339     1   0.589      0.668 0.528 0.012 0.016 NA
#> SRR934340     1   0.589      0.668 0.528 0.012 0.016 NA
#> SRR934341     1   0.589      0.668 0.528 0.012 0.016 NA
#> SRR934342     1   0.589      0.668 0.528 0.012 0.016 NA

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> SRR934216     3   0.898      0.436 0.196 0.196 0.348 0.028 0.232
#> SRR934217     3   0.901      0.434 0.204 0.196 0.340 0.028 0.232
#> SRR934218     3   0.898      0.436 0.196 0.196 0.348 0.028 0.232
#> SRR934219     3   0.898      0.436 0.196 0.196 0.348 0.028 0.232
#> SRR934220     3   0.901      0.434 0.204 0.196 0.340 0.028 0.232
#> SRR934221     3   0.898      0.436 0.196 0.196 0.348 0.028 0.232
#> SRR934222     3   0.898      0.436 0.196 0.196 0.348 0.028 0.232
#> SRR934223     3   0.898      0.436 0.196 0.196 0.348 0.028 0.232
#> SRR934224     1   0.494      0.782 0.724 0.196 0.064 0.000 0.016
#> SRR934225     1   0.494      0.782 0.724 0.196 0.064 0.000 0.016
#> SRR934226     1   0.494      0.782 0.724 0.196 0.064 0.000 0.016
#> SRR934227     1   0.494      0.782 0.724 0.196 0.064 0.000 0.016
#> SRR934228     1   0.494      0.782 0.724 0.196 0.064 0.000 0.016
#> SRR934229     1   0.494      0.782 0.724 0.196 0.064 0.000 0.016
#> SRR934230     1   0.494      0.782 0.724 0.196 0.064 0.000 0.016
#> SRR934231     1   0.494      0.782 0.724 0.196 0.064 0.000 0.016
#> SRR934232     4   0.121      0.460 0.024 0.016 0.000 0.960 0.000
#> SRR934233     4   0.121      0.460 0.024 0.016 0.000 0.960 0.000
#> SRR934234     4   0.121      0.460 0.024 0.016 0.000 0.960 0.000
#> SRR934235     4   0.121      0.460 0.024 0.016 0.000 0.960 0.000
#> SRR934236     4   0.121      0.460 0.024 0.016 0.000 0.960 0.000
#> SRR934237     4   0.121      0.460 0.024 0.016 0.000 0.960 0.000
#> SRR934238     4   0.121      0.460 0.024 0.016 0.000 0.960 0.000
#> SRR934239     4   0.121      0.460 0.024 0.016 0.000 0.960 0.000
#> SRR934240     4   0.781      0.240 0.180 0.088 0.168 0.536 0.028
#> SRR934241     4   0.781      0.240 0.180 0.088 0.168 0.536 0.028
#> SRR934242     4   0.781      0.240 0.180 0.088 0.168 0.536 0.028
#> SRR934243     4   0.781      0.240 0.180 0.088 0.168 0.536 0.028
#> SRR934244     4   0.781      0.240 0.180 0.088 0.168 0.536 0.028
#> SRR934245     4   0.781      0.240 0.180 0.088 0.168 0.536 0.028
#> SRR934246     4   0.781      0.240 0.180 0.088 0.168 0.536 0.028
#> SRR934247     4   0.781      0.240 0.180 0.088 0.168 0.536 0.028
#> SRR934248     4   0.768      0.373 0.088 0.024 0.108 0.516 0.264
#> SRR934249     4   0.771      0.373 0.088 0.024 0.112 0.516 0.260
#> SRR934250     4   0.768      0.373 0.088 0.024 0.108 0.516 0.264
#> SRR934251     4   0.768      0.373 0.088 0.024 0.108 0.516 0.264
#> SRR934252     4   0.768      0.373 0.088 0.024 0.108 0.516 0.264
#> SRR934253     4   0.768      0.373 0.088 0.024 0.108 0.516 0.264
#> SRR934254     4   0.768      0.373 0.088 0.024 0.108 0.516 0.264
#> SRR934255     4   0.768      0.373 0.088 0.024 0.108 0.516 0.264
#> SRR934256     3   0.860      0.419 0.236 0.264 0.340 0.152 0.008
#> SRR934257     3   0.860      0.419 0.236 0.264 0.340 0.152 0.008
#> SRR934258     3   0.860      0.419 0.236 0.264 0.340 0.152 0.008
#> SRR934259     3   0.860      0.419 0.236 0.264 0.340 0.152 0.008
#> SRR934260     3   0.861      0.418 0.240 0.264 0.336 0.152 0.008
#> SRR934261     3   0.860      0.419 0.236 0.264 0.340 0.152 0.008
#> SRR934262     3   0.860      0.419 0.236 0.264 0.340 0.152 0.008
#> SRR934263     3   0.860      0.419 0.236 0.264 0.340 0.152 0.008
#> SRR934264     4   0.663      0.414 0.084 0.012 0.072 0.628 0.204
#> SRR934265     4   0.663      0.414 0.084 0.012 0.072 0.628 0.204
#> SRR934266     4   0.663      0.414 0.084 0.012 0.072 0.628 0.204
#> SRR934267     4   0.663      0.414 0.084 0.012 0.072 0.628 0.204
#> SRR934268     4   0.663      0.414 0.084 0.012 0.072 0.628 0.204
#> SRR934269     4   0.663      0.414 0.084 0.012 0.072 0.628 0.204
#> SRR934270     4   0.663      0.414 0.084 0.012 0.072 0.628 0.204
#> SRR934271     4   0.663      0.414 0.084 0.012 0.072 0.628 0.204
#> SRR934272     1   0.473      0.789 0.712 0.240 0.032 0.000 0.016
#> SRR934273     1   0.473      0.789 0.712 0.240 0.032 0.000 0.016
#> SRR934274     1   0.473      0.789 0.712 0.240 0.032 0.000 0.016
#> SRR934275     1   0.473      0.789 0.712 0.240 0.032 0.000 0.016
#> SRR934276     1   0.473      0.789 0.712 0.240 0.032 0.000 0.016
#> SRR934277     1   0.473      0.789 0.712 0.240 0.032 0.000 0.016
#> SRR934278     1   0.473      0.789 0.712 0.240 0.032 0.000 0.016
#> SRR934279     1   0.473      0.789 0.712 0.240 0.032 0.000 0.016
#> SRR934280     1   0.556      0.778 0.680 0.224 0.064 0.004 0.028
#> SRR934281     1   0.556      0.778 0.680 0.224 0.064 0.004 0.028
#> SRR934282     1   0.556      0.778 0.680 0.224 0.064 0.004 0.028
#> SRR934283     1   0.556      0.778 0.680 0.224 0.064 0.004 0.028
#> SRR934284     1   0.556      0.778 0.680 0.224 0.064 0.004 0.028
#> SRR934285     1   0.556      0.778 0.680 0.224 0.064 0.004 0.028
#> SRR934286     1   0.556      0.778 0.680 0.224 0.064 0.004 0.028
#> SRR934287     1   0.556      0.778 0.680 0.224 0.064 0.004 0.028
#> SRR934288     2   0.454      0.743 0.084 0.800 0.060 0.004 0.052
#> SRR934289     2   0.454      0.743 0.084 0.800 0.060 0.004 0.052
#> SRR934290     2   0.454      0.743 0.084 0.800 0.060 0.004 0.052
#> SRR934291     2   0.454      0.743 0.084 0.800 0.060 0.004 0.052
#> SRR934292     2   0.454      0.743 0.084 0.800 0.060 0.004 0.052
#> SRR934293     2   0.454      0.743 0.084 0.800 0.060 0.004 0.052
#> SRR934294     2   0.454      0.743 0.084 0.800 0.060 0.004 0.052
#> SRR934295     2   0.454      0.743 0.084 0.800 0.060 0.004 0.052
#> SRR934296     2   0.721      0.501 0.220 0.580 0.120 0.044 0.036
#> SRR934297     2   0.721      0.501 0.220 0.580 0.120 0.044 0.036
#> SRR934298     2   0.721      0.501 0.220 0.580 0.120 0.044 0.036
#> SRR934299     2   0.721      0.501 0.220 0.580 0.120 0.044 0.036
#> SRR934300     2   0.721      0.501 0.220 0.580 0.120 0.044 0.036
#> SRR934301     2   0.721      0.501 0.220 0.580 0.120 0.044 0.036
#> SRR934302     2   0.721      0.501 0.220 0.580 0.120 0.044 0.036
#> SRR934303     2   0.721      0.501 0.220 0.580 0.120 0.044 0.036
#> SRR934304     5   0.441      0.996 0.012 0.020 0.000 0.244 0.724
#> SRR934305     5   0.441      0.996 0.012 0.020 0.000 0.244 0.724
#> SRR934306     5   0.479      0.993 0.012 0.020 0.012 0.244 0.712
#> SRR934307     5   0.456      0.996 0.012 0.020 0.004 0.244 0.720
#> SRR934308     5   0.468      0.995 0.012 0.020 0.008 0.244 0.716
#> SRR934309     5   0.468      0.993 0.012 0.020 0.008 0.244 0.716
#> SRR934310     5   0.441      0.996 0.012 0.020 0.000 0.244 0.724
#> SRR934311     5   0.456      0.996 0.012 0.020 0.004 0.244 0.720
#> SRR934312     1   0.579      0.766 0.644 0.260 0.064 0.004 0.028
#> SRR934313     1   0.579      0.766 0.644 0.260 0.064 0.004 0.028
#> SRR934314     1   0.579      0.766 0.644 0.260 0.064 0.004 0.028
#> SRR934315     1   0.579      0.766 0.644 0.260 0.064 0.004 0.028
#> SRR934316     1   0.579      0.766 0.644 0.260 0.064 0.004 0.028
#> SRR934317     1   0.579      0.766 0.644 0.260 0.064 0.004 0.028
#> SRR934318     1   0.579      0.766 0.644 0.260 0.064 0.004 0.028
#> SRR934319     1   0.579      0.766 0.644 0.260 0.064 0.004 0.028
#> SRR934320     1   0.638      0.624 0.576 0.256 0.148 0.020 0.000
#> SRR934321     1   0.638      0.624 0.576 0.256 0.148 0.020 0.000
#> SRR934322     1   0.638      0.624 0.576 0.256 0.148 0.020 0.000
#> SRR934323     1   0.638      0.624 0.576 0.256 0.148 0.020 0.000
#> SRR934324     1   0.638      0.624 0.576 0.256 0.148 0.020 0.000
#> SRR934325     1   0.638      0.624 0.576 0.256 0.148 0.020 0.000
#> SRR934326     1   0.638      0.624 0.576 0.256 0.148 0.020 0.000
#> SRR934327     1   0.638      0.624 0.576 0.256 0.148 0.020 0.000
#> SRR934328     2   0.096      0.773 0.016 0.972 0.008 0.000 0.004
#> SRR934329     2   0.096      0.773 0.016 0.972 0.008 0.000 0.004
#> SRR934330     2   0.096      0.773 0.016 0.972 0.008 0.000 0.004
#> SRR934331     2   0.096      0.773 0.016 0.972 0.008 0.000 0.004
#> SRR934332     2   0.096      0.773 0.016 0.972 0.008 0.000 0.004
#> SRR934333     2   0.096      0.773 0.016 0.972 0.008 0.000 0.004
#> SRR934334     2   0.096      0.773 0.016 0.972 0.008 0.000 0.004
#> SRR934335     2   0.096      0.773 0.016 0.972 0.008 0.000 0.004
#> SRR934344     2   0.104      0.779 0.040 0.960 0.000 0.000 0.000
#> SRR934345     2   0.104      0.779 0.040 0.960 0.000 0.000 0.000
#> SRR934346     2   0.104      0.779 0.040 0.960 0.000 0.000 0.000
#> SRR934347     2   0.104      0.779 0.040 0.960 0.000 0.000 0.000
#> SRR934348     2   0.104      0.779 0.040 0.960 0.000 0.000 0.000
#> SRR934349     2   0.104      0.779 0.040 0.960 0.000 0.000 0.000
#> SRR934350     2   0.104      0.779 0.040 0.960 0.000 0.000 0.000
#> SRR934351     2   0.104      0.779 0.040 0.960 0.000 0.000 0.000
#> SRR934336     1   0.480      0.806 0.724 0.220 0.040 0.008 0.008
#> SRR934337     1   0.480      0.806 0.724 0.220 0.040 0.008 0.008
#> SRR934338     1   0.480      0.806 0.724 0.220 0.040 0.008 0.008
#> SRR934339     1   0.480      0.806 0.724 0.220 0.040 0.008 0.008
#> SRR934340     1   0.480      0.806 0.724 0.220 0.040 0.008 0.008
#> SRR934341     1   0.480      0.806 0.724 0.220 0.040 0.008 0.008
#> SRR934342     1   0.480      0.806 0.724 0.220 0.040 0.008 0.008

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1 p2    p3    p4    p5    p6
#> SRR934216     3  0.5243    0.99836 0.124 NA 0.660 0.024 0.000 0.192
#> SRR934217     3  0.5379    0.99712 0.124 NA 0.656 0.024 0.000 0.192
#> SRR934218     3  0.5379    0.99712 0.124 NA 0.656 0.024 0.000 0.192
#> SRR934219     3  0.5243    0.99836 0.124 NA 0.660 0.024 0.000 0.192
#> SRR934220     3  0.5516    0.99423 0.124 NA 0.652 0.024 0.004 0.192
#> SRR934221     3  0.5243    0.99836 0.124 NA 0.660 0.024 0.000 0.192
#> SRR934222     3  0.5243    0.99836 0.124 NA 0.660 0.024 0.000 0.192
#> SRR934223     3  0.5243    0.99836 0.124 NA 0.660 0.024 0.000 0.192
#> SRR934224     6  0.5244    0.61590 0.068 NA 0.072 0.008 0.020 0.736
#> SRR934225     6  0.5244    0.61590 0.068 NA 0.072 0.008 0.020 0.736
#> SRR934226     6  0.5244    0.61590 0.068 NA 0.072 0.008 0.020 0.736
#> SRR934227     6  0.5244    0.61590 0.068 NA 0.072 0.008 0.020 0.736
#> SRR934228     6  0.5244    0.61590 0.068 NA 0.072 0.008 0.020 0.736
#> SRR934229     6  0.5244    0.61590 0.068 NA 0.072 0.008 0.020 0.736
#> SRR934230     6  0.5244    0.61590 0.068 NA 0.072 0.008 0.020 0.736
#> SRR934231     6  0.5244    0.61590 0.068 NA 0.072 0.008 0.020 0.736
#> SRR934232     4  0.0858    0.57134 0.004 NA 0.000 0.968 0.000 0.028
#> SRR934233     4  0.0858    0.57134 0.004 NA 0.000 0.968 0.000 0.028
#> SRR934234     4  0.0858    0.57134 0.004 NA 0.000 0.968 0.000 0.028
#> SRR934235     4  0.0858    0.57134 0.004 NA 0.000 0.968 0.000 0.028
#> SRR934236     4  0.0858    0.57134 0.004 NA 0.000 0.968 0.000 0.028
#> SRR934237     4  0.0858    0.57134 0.004 NA 0.000 0.968 0.000 0.028
#> SRR934238     4  0.0858    0.57134 0.004 NA 0.000 0.968 0.000 0.028
#> SRR934239     4  0.0858    0.57134 0.004 NA 0.000 0.968 0.000 0.028
#> SRR934240     4  0.7933    0.22022 0.072 NA 0.020 0.500 0.164 0.140
#> SRR934241     4  0.7978    0.21973 0.072 NA 0.024 0.500 0.160 0.140
#> SRR934242     4  0.7933    0.22022 0.072 NA 0.020 0.500 0.164 0.140
#> SRR934243     4  0.7933    0.22022 0.072 NA 0.020 0.500 0.164 0.140
#> SRR934244     4  0.7933    0.22022 0.072 NA 0.020 0.500 0.164 0.140
#> SRR934245     4  0.7978    0.21973 0.072 NA 0.024 0.500 0.160 0.140
#> SRR934246     4  0.7933    0.22022 0.072 NA 0.020 0.500 0.164 0.140
#> SRR934247     4  0.7933    0.22022 0.072 NA 0.020 0.500 0.164 0.140
#> SRR934248     4  0.5792    0.54299 0.012 NA 0.044 0.484 0.004 0.032
#> SRR934249     4  0.5841    0.54309 0.012 NA 0.048 0.484 0.004 0.032
#> SRR934250     4  0.5841    0.54319 0.012 NA 0.048 0.484 0.004 0.032
#> SRR934251     4  0.5792    0.54299 0.012 NA 0.044 0.484 0.004 0.032
#> SRR934252     4  0.5937    0.54311 0.012 NA 0.048 0.484 0.008 0.032
#> SRR934253     4  0.5887    0.54308 0.012 NA 0.044 0.484 0.008 0.032
#> SRR934254     4  0.5841    0.54309 0.012 NA 0.048 0.484 0.004 0.032
#> SRR934255     4  0.5841    0.54309 0.012 NA 0.048 0.484 0.004 0.032
#> SRR934256     5  0.9121    0.42082 0.192 NA 0.024 0.136 0.308 0.208
#> SRR934257     5  0.9121    0.42082 0.192 NA 0.024 0.136 0.308 0.208
#> SRR934258     5  0.9121    0.42082 0.192 NA 0.024 0.136 0.308 0.208
#> SRR934259     5  0.9121    0.42082 0.192 NA 0.024 0.136 0.308 0.208
#> SRR934260     5  0.9140    0.41961 0.192 NA 0.024 0.136 0.304 0.208
#> SRR934261     5  0.9121    0.42082 0.192 NA 0.024 0.136 0.308 0.208
#> SRR934262     5  0.9121    0.42082 0.192 NA 0.024 0.136 0.308 0.208
#> SRR934263     5  0.9121    0.42082 0.192 NA 0.024 0.136 0.308 0.208
#> SRR934264     4  0.5902    0.59563 0.016 NA 0.052 0.636 0.008 0.064
#> SRR934265     4  0.5902    0.59563 0.016 NA 0.052 0.636 0.008 0.064
#> SRR934266     4  0.5902    0.59563 0.016 NA 0.052 0.636 0.008 0.064
#> SRR934267     4  0.5902    0.59563 0.016 NA 0.052 0.636 0.008 0.064
#> SRR934268     4  0.5902    0.59563 0.016 NA 0.052 0.636 0.008 0.064
#> SRR934269     4  0.5902    0.59563 0.016 NA 0.052 0.636 0.008 0.064
#> SRR934270     4  0.5902    0.59563 0.016 NA 0.052 0.636 0.008 0.064
#> SRR934271     4  0.5902    0.59563 0.016 NA 0.052 0.636 0.008 0.064
#> SRR934272     6  0.3559    0.67562 0.068 NA 0.068 0.004 0.004 0.836
#> SRR934273     6  0.3559    0.67562 0.068 NA 0.068 0.004 0.004 0.836
#> SRR934274     6  0.3559    0.67562 0.068 NA 0.068 0.004 0.004 0.836
#> SRR934275     6  0.3559    0.67562 0.068 NA 0.068 0.004 0.004 0.836
#> SRR934276     6  0.3559    0.67562 0.068 NA 0.068 0.004 0.004 0.836
#> SRR934277     6  0.3559    0.67562 0.068 NA 0.068 0.004 0.004 0.836
#> SRR934278     6  0.3559    0.67562 0.068 NA 0.068 0.004 0.004 0.836
#> SRR934279     6  0.3559    0.67562 0.068 NA 0.068 0.004 0.004 0.836
#> SRR934280     6  0.5367    0.62541 0.036 NA 0.060 0.008 0.064 0.732
#> SRR934281     6  0.5367    0.62541 0.036 NA 0.060 0.008 0.064 0.732
#> SRR934282     6  0.5367    0.62541 0.036 NA 0.060 0.008 0.064 0.732
#> SRR934283     6  0.5367    0.62541 0.036 NA 0.060 0.008 0.064 0.732
#> SRR934284     6  0.5367    0.62541 0.036 NA 0.060 0.008 0.064 0.732
#> SRR934285     6  0.5367    0.62541 0.036 NA 0.060 0.008 0.064 0.732
#> SRR934286     6  0.5367    0.62541 0.036 NA 0.060 0.008 0.064 0.732
#> SRR934287     6  0.5367    0.62541 0.036 NA 0.060 0.008 0.064 0.732
#> SRR934288     1  0.5831    0.76034 0.584 NA 0.040 0.000 0.012 0.292
#> SRR934289     1  0.5831    0.76034 0.584 NA 0.040 0.000 0.012 0.292
#> SRR934290     1  0.5831    0.76034 0.584 NA 0.040 0.000 0.012 0.292
#> SRR934291     1  0.5831    0.76034 0.584 NA 0.040 0.000 0.012 0.292
#> SRR934292     1  0.5831    0.76034 0.584 NA 0.040 0.000 0.012 0.292
#> SRR934293     1  0.5831    0.76034 0.584 NA 0.040 0.000 0.012 0.292
#> SRR934294     1  0.5831    0.76034 0.584 NA 0.040 0.000 0.012 0.292
#> SRR934295     1  0.5831    0.76034 0.584 NA 0.040 0.000 0.012 0.292
#> SRR934296     6  0.7617    0.00638 0.340 NA 0.052 0.032 0.072 0.436
#> SRR934297     6  0.7617    0.00638 0.340 NA 0.052 0.032 0.072 0.436
#> SRR934298     6  0.7617    0.00638 0.340 NA 0.052 0.032 0.072 0.436
#> SRR934299     6  0.7617    0.00638 0.340 NA 0.052 0.032 0.072 0.436
#> SRR934300     6  0.7617    0.00638 0.340 NA 0.052 0.032 0.072 0.436
#> SRR934301     6  0.7617    0.00638 0.340 NA 0.052 0.032 0.072 0.436
#> SRR934302     6  0.7617    0.00638 0.340 NA 0.052 0.032 0.072 0.436
#> SRR934303     6  0.7617    0.00638 0.340 NA 0.052 0.032 0.072 0.436
#> SRR934304     5  0.6724    0.35504 0.008 NA 0.168 0.160 0.552 0.000
#> SRR934305     5  0.6724    0.35504 0.008 NA 0.168 0.160 0.552 0.000
#> SRR934306     5  0.6657    0.35475 0.004 NA 0.168 0.160 0.552 0.000
#> SRR934307     5  0.6649    0.35486 0.004 NA 0.172 0.160 0.552 0.000
#> SRR934308     5  0.6957    0.34828 0.012 NA 0.180 0.160 0.528 0.000
#> SRR934309     5  0.6709    0.35283 0.004 NA 0.176 0.160 0.544 0.000
#> SRR934310     5  0.6622    0.35520 0.004 NA 0.168 0.160 0.556 0.000
#> SRR934311     5  0.6622    0.35520 0.004 NA 0.168 0.160 0.556 0.000
#> SRR934312     6  0.4632    0.64846 0.092 NA 0.084 0.000 0.032 0.768
#> SRR934313     6  0.4632    0.64846 0.092 NA 0.084 0.000 0.032 0.768
#> SRR934314     6  0.4632    0.64846 0.092 NA 0.084 0.000 0.032 0.768
#> SRR934315     6  0.4632    0.64846 0.092 NA 0.084 0.000 0.032 0.768
#> SRR934316     6  0.4632    0.64846 0.092 NA 0.084 0.000 0.032 0.768
#> SRR934317     6  0.4632    0.64846 0.092 NA 0.084 0.000 0.032 0.768
#> SRR934318     6  0.4632    0.64846 0.092 NA 0.084 0.000 0.032 0.768
#> SRR934319     6  0.4632    0.64846 0.092 NA 0.084 0.000 0.032 0.768
#> SRR934320     6  0.5212    0.61657 0.088 NA 0.016 0.028 0.068 0.748
#> SRR934321     6  0.5212    0.61657 0.088 NA 0.016 0.028 0.068 0.748
#> SRR934322     6  0.5212    0.61657 0.088 NA 0.016 0.028 0.068 0.748
#> SRR934323     6  0.5212    0.61657 0.088 NA 0.016 0.028 0.068 0.748
#> SRR934324     6  0.5212    0.61657 0.088 NA 0.016 0.028 0.068 0.748
#> SRR934325     6  0.5212    0.61657 0.088 NA 0.016 0.028 0.068 0.748
#> SRR934326     6  0.5212    0.61657 0.088 NA 0.016 0.028 0.068 0.748
#> SRR934327     6  0.5212    0.61657 0.088 NA 0.016 0.028 0.068 0.748
#> SRR934328     1  0.5114    0.81458 0.704 NA 0.024 0.004 0.012 0.180
#> SRR934329     1  0.5114    0.81458 0.704 NA 0.024 0.004 0.012 0.180
#> SRR934330     1  0.5114    0.81458 0.704 NA 0.024 0.004 0.012 0.180
#> SRR934331     1  0.5114    0.81458 0.704 NA 0.024 0.004 0.012 0.180
#> SRR934332     1  0.5114    0.81458 0.704 NA 0.024 0.004 0.012 0.180
#> SRR934333     1  0.5114    0.81458 0.704 NA 0.024 0.004 0.012 0.180
#> SRR934334     1  0.5114    0.81458 0.704 NA 0.024 0.004 0.012 0.180
#> SRR934335     1  0.5114    0.81458 0.704 NA 0.024 0.004 0.012 0.180
#> SRR934344     1  0.3581    0.84634 0.764 NA 0.004 0.004 0.008 0.216
#> SRR934345     1  0.3581    0.84634 0.764 NA 0.004 0.004 0.008 0.216
#> SRR934346     1  0.3581    0.84634 0.764 NA 0.004 0.004 0.008 0.216
#> SRR934347     1  0.3581    0.84634 0.764 NA 0.004 0.004 0.008 0.216
#> SRR934348     1  0.3581    0.84634 0.764 NA 0.004 0.004 0.008 0.216
#> SRR934349     1  0.3581    0.84634 0.764 NA 0.004 0.004 0.008 0.216
#> SRR934350     1  0.3581    0.84634 0.764 NA 0.004 0.004 0.008 0.216
#> SRR934351     1  0.3581    0.84634 0.764 NA 0.004 0.004 0.008 0.216
#> SRR934336     6  0.2963    0.68743 0.032 NA 0.044 0.004 0.008 0.880
#> SRR934337     6  0.2963    0.68743 0.032 NA 0.044 0.004 0.008 0.880
#> SRR934338     6  0.2963    0.68743 0.032 NA 0.044 0.004 0.008 0.880
#> SRR934339     6  0.2963    0.68743 0.032 NA 0.044 0.004 0.008 0.880
#> SRR934340     6  0.2963    0.68743 0.032 NA 0.044 0.004 0.008 0.880
#> SRR934341     6  0.2963    0.68743 0.032 NA 0.044 0.004 0.008 0.880
#> SRR934342     6  0.2963    0.68743 0.032 NA 0.044 0.004 0.008 0.880

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14550 rows and 135 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.691           0.916       0.959         0.4708 0.538   0.538
#> 3 3 0.581           0.605       0.810         0.3118 0.825   0.683
#> 4 4 0.733           0.777       0.851         0.1850 0.797   0.526
#> 5 5 0.721           0.768       0.807         0.0612 0.950   0.814
#> 6 6 0.771           0.731       0.757         0.0430 0.986   0.937

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR934216     2   0.697      0.793 0.188 0.812
#> SRR934217     2   0.697      0.793 0.188 0.812
#> SRR934218     2   0.697      0.793 0.188 0.812
#> SRR934219     2   0.697      0.793 0.188 0.812
#> SRR934220     2   0.697      0.793 0.188 0.812
#> SRR934221     2   0.697      0.793 0.188 0.812
#> SRR934222     2   0.697      0.793 0.188 0.812
#> SRR934223     2   0.697      0.793 0.188 0.812
#> SRR934224     1   0.000      0.951 1.000 0.000
#> SRR934225     1   0.000      0.951 1.000 0.000
#> SRR934226     1   0.000      0.951 1.000 0.000
#> SRR934227     1   0.000      0.951 1.000 0.000
#> SRR934228     1   0.000      0.951 1.000 0.000
#> SRR934229     1   0.000      0.951 1.000 0.000
#> SRR934230     1   0.000      0.951 1.000 0.000
#> SRR934231     1   0.000      0.951 1.000 0.000
#> SRR934232     2   0.000      0.965 0.000 1.000
#> SRR934233     2   0.000      0.965 0.000 1.000
#> SRR934234     2   0.000      0.965 0.000 1.000
#> SRR934235     2   0.000      0.965 0.000 1.000
#> SRR934236     2   0.000      0.965 0.000 1.000
#> SRR934237     2   0.000      0.965 0.000 1.000
#> SRR934238     2   0.000      0.965 0.000 1.000
#> SRR934239     2   0.000      0.965 0.000 1.000
#> SRR934240     2   0.000      0.965 0.000 1.000
#> SRR934241     2   0.000      0.965 0.000 1.000
#> SRR934242     2   0.000      0.965 0.000 1.000
#> SRR934243     2   0.000      0.965 0.000 1.000
#> SRR934244     2   0.000      0.965 0.000 1.000
#> SRR934245     2   0.000      0.965 0.000 1.000
#> SRR934246     2   0.000      0.965 0.000 1.000
#> SRR934247     2   0.000      0.965 0.000 1.000
#> SRR934248     2   0.000      0.965 0.000 1.000
#> SRR934249     2   0.000      0.965 0.000 1.000
#> SRR934250     2   0.000      0.965 0.000 1.000
#> SRR934251     2   0.000      0.965 0.000 1.000
#> SRR934252     2   0.000      0.965 0.000 1.000
#> SRR934253     2   0.000      0.965 0.000 1.000
#> SRR934254     2   0.000      0.965 0.000 1.000
#> SRR934255     2   0.000      0.965 0.000 1.000
#> SRR934256     1   0.662      0.802 0.828 0.172
#> SRR934257     1   0.662      0.802 0.828 0.172
#> SRR934258     1   0.662      0.802 0.828 0.172
#> SRR934259     1   0.662      0.802 0.828 0.172
#> SRR934260     1   0.662      0.802 0.828 0.172
#> SRR934261     1   0.662      0.802 0.828 0.172
#> SRR934262     1   0.662      0.802 0.828 0.172
#> SRR934263     1   0.662      0.802 0.828 0.172
#> SRR934264     2   0.000      0.965 0.000 1.000
#> SRR934265     2   0.000      0.965 0.000 1.000
#> SRR934266     2   0.000      0.965 0.000 1.000
#> SRR934267     2   0.000      0.965 0.000 1.000
#> SRR934268     2   0.000      0.965 0.000 1.000
#> SRR934269     2   0.000      0.965 0.000 1.000
#> SRR934270     2   0.000      0.965 0.000 1.000
#> SRR934271     2   0.000      0.965 0.000 1.000
#> SRR934272     1   0.000      0.951 1.000 0.000
#> SRR934273     1   0.000      0.951 1.000 0.000
#> SRR934274     1   0.000      0.951 1.000 0.000
#> SRR934275     1   0.000      0.951 1.000 0.000
#> SRR934276     1   0.000      0.951 1.000 0.000
#> SRR934277     1   0.000      0.951 1.000 0.000
#> SRR934278     1   0.000      0.951 1.000 0.000
#> SRR934279     1   0.000      0.951 1.000 0.000
#> SRR934280     1   0.000      0.951 1.000 0.000
#> SRR934281     1   0.000      0.951 1.000 0.000
#> SRR934282     1   0.000      0.951 1.000 0.000
#> SRR934283     1   0.000      0.951 1.000 0.000
#> SRR934284     1   0.000      0.951 1.000 0.000
#> SRR934285     1   0.000      0.951 1.000 0.000
#> SRR934286     1   0.000      0.951 1.000 0.000
#> SRR934287     1   0.000      0.951 1.000 0.000
#> SRR934288     1   0.000      0.951 1.000 0.000
#> SRR934289     1   0.000      0.951 1.000 0.000
#> SRR934290     1   0.000      0.951 1.000 0.000
#> SRR934291     1   0.000      0.951 1.000 0.000
#> SRR934292     1   0.000      0.951 1.000 0.000
#> SRR934293     1   0.000      0.951 1.000 0.000
#> SRR934294     1   0.000      0.951 1.000 0.000
#> SRR934295     1   0.000      0.951 1.000 0.000
#> SRR934296     1   0.913      0.589 0.672 0.328
#> SRR934297     1   0.913      0.589 0.672 0.328
#> SRR934298     1   0.913      0.589 0.672 0.328
#> SRR934299     1   0.913      0.589 0.672 0.328
#> SRR934300     1   0.913      0.589 0.672 0.328
#> SRR934301     1   0.913      0.589 0.672 0.328
#> SRR934302     1   0.913      0.589 0.672 0.328
#> SRR934303     1   0.913      0.589 0.672 0.328
#> SRR934304     2   0.000      0.965 0.000 1.000
#> SRR934305     2   0.000      0.965 0.000 1.000
#> SRR934306     2   0.000      0.965 0.000 1.000
#> SRR934307     2   0.000      0.965 0.000 1.000
#> SRR934308     2   0.000      0.965 0.000 1.000
#> SRR934309     2   0.000      0.965 0.000 1.000
#> SRR934310     2   0.000      0.965 0.000 1.000
#> SRR934311     2   0.000      0.965 0.000 1.000
#> SRR934312     1   0.000      0.951 1.000 0.000
#> SRR934313     1   0.000      0.951 1.000 0.000
#> SRR934314     1   0.000      0.951 1.000 0.000
#> SRR934315     1   0.000      0.951 1.000 0.000
#> SRR934316     1   0.000      0.951 1.000 0.000
#> SRR934317     1   0.000      0.951 1.000 0.000
#> SRR934318     1   0.000      0.951 1.000 0.000
#> SRR934319     1   0.000      0.951 1.000 0.000
#> SRR934320     1   0.000      0.951 1.000 0.000
#> SRR934321     1   0.000      0.951 1.000 0.000
#> SRR934322     1   0.000      0.951 1.000 0.000
#> SRR934323     1   0.000      0.951 1.000 0.000
#> SRR934324     1   0.000      0.951 1.000 0.000
#> SRR934325     1   0.000      0.951 1.000 0.000
#> SRR934326     1   0.000      0.951 1.000 0.000
#> SRR934327     1   0.000      0.951 1.000 0.000
#> SRR934328     1   0.000      0.951 1.000 0.000
#> SRR934329     1   0.000      0.951 1.000 0.000
#> SRR934330     1   0.000      0.951 1.000 0.000
#> SRR934331     1   0.000      0.951 1.000 0.000
#> SRR934332     1   0.000      0.951 1.000 0.000
#> SRR934333     1   0.000      0.951 1.000 0.000
#> SRR934334     1   0.000      0.951 1.000 0.000
#> SRR934335     1   0.000      0.951 1.000 0.000
#> SRR934344     1   0.000      0.951 1.000 0.000
#> SRR934345     1   0.000      0.951 1.000 0.000
#> SRR934346     1   0.000      0.951 1.000 0.000
#> SRR934347     1   0.000      0.951 1.000 0.000
#> SRR934348     1   0.000      0.951 1.000 0.000
#> SRR934349     1   0.000      0.951 1.000 0.000
#> SRR934350     1   0.000      0.951 1.000 0.000
#> SRR934351     1   0.000      0.951 1.000 0.000
#> SRR934336     1   0.000      0.951 1.000 0.000
#> SRR934337     1   0.000      0.951 1.000 0.000
#> SRR934338     1   0.000      0.951 1.000 0.000
#> SRR934339     1   0.000      0.951 1.000 0.000
#> SRR934340     1   0.000      0.951 1.000 0.000
#> SRR934341     1   0.000      0.951 1.000 0.000
#> SRR934342     1   0.000      0.951 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR934216     2  0.9399     0.1950 0.188 0.480 0.332
#> SRR934217     2  0.9399     0.1950 0.188 0.480 0.332
#> SRR934218     2  0.9399     0.1950 0.188 0.480 0.332
#> SRR934219     2  0.9399     0.1950 0.188 0.480 0.332
#> SRR934220     2  0.9399     0.1950 0.188 0.480 0.332
#> SRR934221     2  0.9399     0.1950 0.188 0.480 0.332
#> SRR934222     2  0.9399     0.1950 0.188 0.480 0.332
#> SRR934223     2  0.9399     0.1950 0.188 0.480 0.332
#> SRR934224     1  0.0000     0.8095 1.000 0.000 0.000
#> SRR934225     1  0.0000     0.8095 1.000 0.000 0.000
#> SRR934226     1  0.0000     0.8095 1.000 0.000 0.000
#> SRR934227     1  0.0000     0.8095 1.000 0.000 0.000
#> SRR934228     1  0.0000     0.8095 1.000 0.000 0.000
#> SRR934229     1  0.0000     0.8095 1.000 0.000 0.000
#> SRR934230     1  0.0000     0.8095 1.000 0.000 0.000
#> SRR934231     1  0.0000     0.8095 1.000 0.000 0.000
#> SRR934232     3  0.4750     0.7063 0.000 0.216 0.784
#> SRR934233     3  0.4750     0.7063 0.000 0.216 0.784
#> SRR934234     3  0.4750     0.7063 0.000 0.216 0.784
#> SRR934235     3  0.4750     0.7063 0.000 0.216 0.784
#> SRR934236     3  0.4750     0.7063 0.000 0.216 0.784
#> SRR934237     3  0.4750     0.7063 0.000 0.216 0.784
#> SRR934238     3  0.4750     0.7063 0.000 0.216 0.784
#> SRR934239     3  0.4750     0.7063 0.000 0.216 0.784
#> SRR934240     3  0.5621     0.6322 0.000 0.308 0.692
#> SRR934241     3  0.5621     0.6322 0.000 0.308 0.692
#> SRR934242     3  0.5621     0.6322 0.000 0.308 0.692
#> SRR934243     3  0.5621     0.6322 0.000 0.308 0.692
#> SRR934244     3  0.5621     0.6322 0.000 0.308 0.692
#> SRR934245     3  0.5621     0.6322 0.000 0.308 0.692
#> SRR934246     3  0.5621     0.6322 0.000 0.308 0.692
#> SRR934247     3  0.5621     0.6322 0.000 0.308 0.692
#> SRR934248     3  0.0000     0.7472 0.000 0.000 1.000
#> SRR934249     3  0.0000     0.7472 0.000 0.000 1.000
#> SRR934250     3  0.0000     0.7472 0.000 0.000 1.000
#> SRR934251     3  0.0000     0.7472 0.000 0.000 1.000
#> SRR934252     3  0.0000     0.7472 0.000 0.000 1.000
#> SRR934253     3  0.0000     0.7472 0.000 0.000 1.000
#> SRR934254     3  0.0000     0.7472 0.000 0.000 1.000
#> SRR934255     3  0.0000     0.7472 0.000 0.000 1.000
#> SRR934256     2  0.6669    -0.0985 0.468 0.524 0.008
#> SRR934257     2  0.6669    -0.0985 0.468 0.524 0.008
#> SRR934258     2  0.6669    -0.0985 0.468 0.524 0.008
#> SRR934259     2  0.6669    -0.0985 0.468 0.524 0.008
#> SRR934260     2  0.6669    -0.0985 0.468 0.524 0.008
#> SRR934261     2  0.6669    -0.0985 0.468 0.524 0.008
#> SRR934262     2  0.6669    -0.0985 0.468 0.524 0.008
#> SRR934263     2  0.6669    -0.0985 0.468 0.524 0.008
#> SRR934264     3  0.0000     0.7472 0.000 0.000 1.000
#> SRR934265     3  0.0000     0.7472 0.000 0.000 1.000
#> SRR934266     3  0.0000     0.7472 0.000 0.000 1.000
#> SRR934267     3  0.0000     0.7472 0.000 0.000 1.000
#> SRR934268     3  0.0000     0.7472 0.000 0.000 1.000
#> SRR934269     3  0.0000     0.7472 0.000 0.000 1.000
#> SRR934270     3  0.0000     0.7472 0.000 0.000 1.000
#> SRR934271     3  0.0000     0.7472 0.000 0.000 1.000
#> SRR934272     1  0.0000     0.8095 1.000 0.000 0.000
#> SRR934273     1  0.0000     0.8095 1.000 0.000 0.000
#> SRR934274     1  0.0000     0.8095 1.000 0.000 0.000
#> SRR934275     1  0.0000     0.8095 1.000 0.000 0.000
#> SRR934276     1  0.0000     0.8095 1.000 0.000 0.000
#> SRR934277     1  0.0000     0.8095 1.000 0.000 0.000
#> SRR934278     1  0.0000     0.8095 1.000 0.000 0.000
#> SRR934279     1  0.0000     0.8095 1.000 0.000 0.000
#> SRR934280     1  0.0237     0.8093 0.996 0.004 0.000
#> SRR934281     1  0.0237     0.8093 0.996 0.004 0.000
#> SRR934282     1  0.0237     0.8093 0.996 0.004 0.000
#> SRR934283     1  0.0237     0.8093 0.996 0.004 0.000
#> SRR934284     1  0.0237     0.8093 0.996 0.004 0.000
#> SRR934285     1  0.0237     0.8093 0.996 0.004 0.000
#> SRR934286     1  0.0237     0.8093 0.996 0.004 0.000
#> SRR934287     1  0.0237     0.8093 0.996 0.004 0.000
#> SRR934288     1  0.5905     0.6112 0.648 0.352 0.000
#> SRR934289     1  0.5905     0.6112 0.648 0.352 0.000
#> SRR934290     1  0.5905     0.6112 0.648 0.352 0.000
#> SRR934291     1  0.5905     0.6112 0.648 0.352 0.000
#> SRR934292     1  0.5905     0.6112 0.648 0.352 0.000
#> SRR934293     1  0.5905     0.6112 0.648 0.352 0.000
#> SRR934294     1  0.5905     0.6112 0.648 0.352 0.000
#> SRR934295     1  0.5905     0.6112 0.648 0.352 0.000
#> SRR934296     2  0.0237     0.4391 0.000 0.996 0.004
#> SRR934297     2  0.0237     0.4391 0.000 0.996 0.004
#> SRR934298     2  0.0237     0.4391 0.000 0.996 0.004
#> SRR934299     2  0.0237     0.4391 0.000 0.996 0.004
#> SRR934300     2  0.0237     0.4391 0.000 0.996 0.004
#> SRR934301     2  0.0237     0.4391 0.000 0.996 0.004
#> SRR934302     2  0.0237     0.4391 0.000 0.996 0.004
#> SRR934303     2  0.0237     0.4391 0.000 0.996 0.004
#> SRR934304     3  0.6235     0.3158 0.000 0.436 0.564
#> SRR934305     3  0.6235     0.3158 0.000 0.436 0.564
#> SRR934306     3  0.6235     0.3158 0.000 0.436 0.564
#> SRR934307     3  0.6235     0.3158 0.000 0.436 0.564
#> SRR934308     3  0.6235     0.3158 0.000 0.436 0.564
#> SRR934309     3  0.6235     0.3158 0.000 0.436 0.564
#> SRR934310     3  0.6235     0.3158 0.000 0.436 0.564
#> SRR934311     3  0.6235     0.3158 0.000 0.436 0.564
#> SRR934312     1  0.0000     0.8095 1.000 0.000 0.000
#> SRR934313     1  0.0000     0.8095 1.000 0.000 0.000
#> SRR934314     1  0.0000     0.8095 1.000 0.000 0.000
#> SRR934315     1  0.0000     0.8095 1.000 0.000 0.000
#> SRR934316     1  0.0000     0.8095 1.000 0.000 0.000
#> SRR934317     1  0.0000     0.8095 1.000 0.000 0.000
#> SRR934318     1  0.0000     0.8095 1.000 0.000 0.000
#> SRR934319     1  0.0000     0.8095 1.000 0.000 0.000
#> SRR934320     1  0.3551     0.7617 0.868 0.132 0.000
#> SRR934321     1  0.3551     0.7617 0.868 0.132 0.000
#> SRR934322     1  0.3551     0.7617 0.868 0.132 0.000
#> SRR934323     1  0.3551     0.7617 0.868 0.132 0.000
#> SRR934324     1  0.3551     0.7617 0.868 0.132 0.000
#> SRR934325     1  0.3551     0.7617 0.868 0.132 0.000
#> SRR934326     1  0.3551     0.7617 0.868 0.132 0.000
#> SRR934327     1  0.3551     0.7617 0.868 0.132 0.000
#> SRR934328     1  0.5988     0.5911 0.632 0.368 0.000
#> SRR934329     1  0.5988     0.5911 0.632 0.368 0.000
#> SRR934330     1  0.5988     0.5911 0.632 0.368 0.000
#> SRR934331     1  0.5988     0.5911 0.632 0.368 0.000
#> SRR934332     1  0.5988     0.5911 0.632 0.368 0.000
#> SRR934333     1  0.5988     0.5911 0.632 0.368 0.000
#> SRR934334     1  0.5988     0.5911 0.632 0.368 0.000
#> SRR934335     1  0.5988     0.5911 0.632 0.368 0.000
#> SRR934344     1  0.5905     0.6112 0.648 0.352 0.000
#> SRR934345     1  0.5905     0.6112 0.648 0.352 0.000
#> SRR934346     1  0.5905     0.6112 0.648 0.352 0.000
#> SRR934347     1  0.5905     0.6112 0.648 0.352 0.000
#> SRR934348     1  0.5905     0.6112 0.648 0.352 0.000
#> SRR934349     1  0.5905     0.6112 0.648 0.352 0.000
#> SRR934350     1  0.5905     0.6112 0.648 0.352 0.000
#> SRR934351     1  0.5905     0.6112 0.648 0.352 0.000
#> SRR934336     1  0.0000     0.8095 1.000 0.000 0.000
#> SRR934337     1  0.0000     0.8095 1.000 0.000 0.000
#> SRR934338     1  0.0000     0.8095 1.000 0.000 0.000
#> SRR934339     1  0.0000     0.8095 1.000 0.000 0.000
#> SRR934340     1  0.0000     0.8095 1.000 0.000 0.000
#> SRR934341     1  0.0000     0.8095 1.000 0.000 0.000
#> SRR934342     1  0.0000     0.8095 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> SRR934216     3  0.7386      0.726 0.060 0.276 0.592 0.072
#> SRR934217     3  0.7386      0.726 0.060 0.276 0.592 0.072
#> SRR934218     3  0.7386      0.726 0.060 0.276 0.592 0.072
#> SRR934219     3  0.7386      0.726 0.060 0.276 0.592 0.072
#> SRR934220     3  0.7386      0.726 0.060 0.276 0.592 0.072
#> SRR934221     3  0.7386      0.726 0.060 0.276 0.592 0.072
#> SRR934222     3  0.7386      0.726 0.060 0.276 0.592 0.072
#> SRR934223     3  0.7386      0.726 0.060 0.276 0.592 0.072
#> SRR934224     1  0.1042      0.934 0.972 0.000 0.020 0.008
#> SRR934225     1  0.1042      0.934 0.972 0.000 0.020 0.008
#> SRR934226     1  0.1042      0.934 0.972 0.000 0.020 0.008
#> SRR934227     1  0.1042      0.934 0.972 0.000 0.020 0.008
#> SRR934228     1  0.1042      0.934 0.972 0.000 0.020 0.008
#> SRR934229     1  0.1042      0.934 0.972 0.000 0.020 0.008
#> SRR934230     1  0.1042      0.934 0.972 0.000 0.020 0.008
#> SRR934231     1  0.1042      0.934 0.972 0.000 0.020 0.008
#> SRR934232     2  0.4509      0.763 0.000 0.708 0.288 0.004
#> SRR934233     2  0.4509      0.763 0.000 0.708 0.288 0.004
#> SRR934234     2  0.4509      0.763 0.000 0.708 0.288 0.004
#> SRR934235     2  0.4509      0.763 0.000 0.708 0.288 0.004
#> SRR934236     2  0.4509      0.763 0.000 0.708 0.288 0.004
#> SRR934237     2  0.4509      0.763 0.000 0.708 0.288 0.004
#> SRR934238     2  0.4509      0.763 0.000 0.708 0.288 0.004
#> SRR934239     2  0.4509      0.763 0.000 0.708 0.288 0.004
#> SRR934240     2  0.5269      0.716 0.000 0.620 0.364 0.016
#> SRR934241     2  0.5269      0.716 0.000 0.620 0.364 0.016
#> SRR934242     2  0.5269      0.716 0.000 0.620 0.364 0.016
#> SRR934243     2  0.5269      0.716 0.000 0.620 0.364 0.016
#> SRR934244     2  0.5269      0.716 0.000 0.620 0.364 0.016
#> SRR934245     2  0.5269      0.716 0.000 0.620 0.364 0.016
#> SRR934246     2  0.5269      0.716 0.000 0.620 0.364 0.016
#> SRR934247     2  0.5269      0.716 0.000 0.620 0.364 0.016
#> SRR934248     2  0.0000      0.751 0.000 1.000 0.000 0.000
#> SRR934249     2  0.0000      0.751 0.000 1.000 0.000 0.000
#> SRR934250     2  0.0000      0.751 0.000 1.000 0.000 0.000
#> SRR934251     2  0.0000      0.751 0.000 1.000 0.000 0.000
#> SRR934252     2  0.0000      0.751 0.000 1.000 0.000 0.000
#> SRR934253     2  0.0000      0.751 0.000 1.000 0.000 0.000
#> SRR934254     2  0.0000      0.751 0.000 1.000 0.000 0.000
#> SRR934255     2  0.0000      0.751 0.000 1.000 0.000 0.000
#> SRR934256     4  0.8082      0.429 0.228 0.012 0.336 0.424
#> SRR934257     4  0.8082      0.429 0.228 0.012 0.336 0.424
#> SRR934258     4  0.8082      0.429 0.228 0.012 0.336 0.424
#> SRR934259     4  0.8082      0.429 0.228 0.012 0.336 0.424
#> SRR934260     4  0.8082      0.429 0.228 0.012 0.336 0.424
#> SRR934261     4  0.8082      0.429 0.228 0.012 0.336 0.424
#> SRR934262     4  0.8082      0.429 0.228 0.012 0.336 0.424
#> SRR934263     4  0.8082      0.429 0.228 0.012 0.336 0.424
#> SRR934264     2  0.0000      0.751 0.000 1.000 0.000 0.000
#> SRR934265     2  0.0000      0.751 0.000 1.000 0.000 0.000
#> SRR934266     2  0.0000      0.751 0.000 1.000 0.000 0.000
#> SRR934267     2  0.0000      0.751 0.000 1.000 0.000 0.000
#> SRR934268     2  0.0000      0.751 0.000 1.000 0.000 0.000
#> SRR934269     2  0.0000      0.751 0.000 1.000 0.000 0.000
#> SRR934270     2  0.0000      0.751 0.000 1.000 0.000 0.000
#> SRR934271     2  0.0000      0.751 0.000 1.000 0.000 0.000
#> SRR934272     1  0.2222      0.923 0.924 0.000 0.016 0.060
#> SRR934273     1  0.2222      0.923 0.924 0.000 0.016 0.060
#> SRR934274     1  0.2222      0.923 0.924 0.000 0.016 0.060
#> SRR934275     1  0.2222      0.923 0.924 0.000 0.016 0.060
#> SRR934276     1  0.2222      0.923 0.924 0.000 0.016 0.060
#> SRR934277     1  0.2222      0.923 0.924 0.000 0.016 0.060
#> SRR934278     1  0.2222      0.923 0.924 0.000 0.016 0.060
#> SRR934279     1  0.2222      0.923 0.924 0.000 0.016 0.060
#> SRR934280     1  0.0469      0.930 0.988 0.000 0.000 0.012
#> SRR934281     1  0.0469      0.930 0.988 0.000 0.000 0.012
#> SRR934282     1  0.0469      0.930 0.988 0.000 0.000 0.012
#> SRR934283     1  0.0469      0.930 0.988 0.000 0.000 0.012
#> SRR934284     1  0.0469      0.930 0.988 0.000 0.000 0.012
#> SRR934285     1  0.0469      0.930 0.988 0.000 0.000 0.012
#> SRR934286     1  0.0469      0.930 0.988 0.000 0.000 0.012
#> SRR934287     1  0.0469      0.930 0.988 0.000 0.000 0.012
#> SRR934288     4  0.1637      0.823 0.060 0.000 0.000 0.940
#> SRR934289     4  0.1637      0.823 0.060 0.000 0.000 0.940
#> SRR934290     4  0.1637      0.823 0.060 0.000 0.000 0.940
#> SRR934291     4  0.1637      0.823 0.060 0.000 0.000 0.940
#> SRR934292     4  0.1637      0.823 0.060 0.000 0.000 0.940
#> SRR934293     4  0.1637      0.823 0.060 0.000 0.000 0.940
#> SRR934294     4  0.1637      0.823 0.060 0.000 0.000 0.940
#> SRR934295     4  0.1637      0.823 0.060 0.000 0.000 0.940
#> SRR934296     3  0.4222      0.489 0.000 0.000 0.728 0.272
#> SRR934297     3  0.4222      0.489 0.000 0.000 0.728 0.272
#> SRR934298     3  0.4222      0.489 0.000 0.000 0.728 0.272
#> SRR934299     3  0.4222      0.489 0.000 0.000 0.728 0.272
#> SRR934300     3  0.4222      0.489 0.000 0.000 0.728 0.272
#> SRR934301     3  0.4222      0.489 0.000 0.000 0.728 0.272
#> SRR934302     3  0.4222      0.489 0.000 0.000 0.728 0.272
#> SRR934303     3  0.4222      0.489 0.000 0.000 0.728 0.272
#> SRR934304     3  0.5085      0.702 0.000 0.376 0.616 0.008
#> SRR934305     3  0.5085      0.702 0.000 0.376 0.616 0.008
#> SRR934306     3  0.5085      0.702 0.000 0.376 0.616 0.008
#> SRR934307     3  0.5085      0.702 0.000 0.376 0.616 0.008
#> SRR934308     3  0.5085      0.702 0.000 0.376 0.616 0.008
#> SRR934309     3  0.5085      0.702 0.000 0.376 0.616 0.008
#> SRR934310     3  0.5085      0.702 0.000 0.376 0.616 0.008
#> SRR934311     3  0.5085      0.702 0.000 0.376 0.616 0.008
#> SRR934312     1  0.2101      0.924 0.928 0.000 0.012 0.060
#> SRR934313     1  0.2101      0.924 0.928 0.000 0.012 0.060
#> SRR934314     1  0.2101      0.924 0.928 0.000 0.012 0.060
#> SRR934315     1  0.2101      0.924 0.928 0.000 0.012 0.060
#> SRR934316     1  0.2101      0.924 0.928 0.000 0.012 0.060
#> SRR934317     1  0.2101      0.924 0.928 0.000 0.012 0.060
#> SRR934318     1  0.2101      0.924 0.928 0.000 0.012 0.060
#> SRR934319     1  0.2101      0.924 0.928 0.000 0.012 0.060
#> SRR934320     1  0.4259      0.791 0.816 0.000 0.056 0.128
#> SRR934321     1  0.4259      0.791 0.816 0.000 0.056 0.128
#> SRR934322     1  0.4259      0.791 0.816 0.000 0.056 0.128
#> SRR934323     1  0.4259      0.791 0.816 0.000 0.056 0.128
#> SRR934324     1  0.4259      0.791 0.816 0.000 0.056 0.128
#> SRR934325     1  0.4259      0.791 0.816 0.000 0.056 0.128
#> SRR934326     1  0.4259      0.791 0.816 0.000 0.056 0.128
#> SRR934327     1  0.4259      0.791 0.816 0.000 0.056 0.128
#> SRR934328     4  0.0921      0.818 0.028 0.000 0.000 0.972
#> SRR934329     4  0.0921      0.818 0.028 0.000 0.000 0.972
#> SRR934330     4  0.0921      0.818 0.028 0.000 0.000 0.972
#> SRR934331     4  0.0921      0.818 0.028 0.000 0.000 0.972
#> SRR934332     4  0.0921      0.818 0.028 0.000 0.000 0.972
#> SRR934333     4  0.0921      0.818 0.028 0.000 0.000 0.972
#> SRR934334     4  0.0921      0.818 0.028 0.000 0.000 0.972
#> SRR934335     4  0.0921      0.818 0.028 0.000 0.000 0.972
#> SRR934344     4  0.1302      0.825 0.044 0.000 0.000 0.956
#> SRR934345     4  0.1302      0.825 0.044 0.000 0.000 0.956
#> SRR934346     4  0.1302      0.825 0.044 0.000 0.000 0.956
#> SRR934347     4  0.1302      0.825 0.044 0.000 0.000 0.956
#> SRR934348     4  0.1302      0.825 0.044 0.000 0.000 0.956
#> SRR934349     4  0.1302      0.825 0.044 0.000 0.000 0.956
#> SRR934350     4  0.1302      0.825 0.044 0.000 0.000 0.956
#> SRR934351     4  0.1302      0.825 0.044 0.000 0.000 0.956
#> SRR934336     1  0.0804      0.934 0.980 0.000 0.008 0.012
#> SRR934337     1  0.0804      0.934 0.980 0.000 0.008 0.012
#> SRR934338     1  0.0804      0.934 0.980 0.000 0.008 0.012
#> SRR934339     1  0.0804      0.934 0.980 0.000 0.008 0.012
#> SRR934340     1  0.0804      0.934 0.980 0.000 0.008 0.012
#> SRR934341     1  0.0804      0.934 0.980 0.000 0.008 0.012
#> SRR934342     1  0.0804      0.934 0.980 0.000 0.008 0.012

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> SRR934216     3  0.3729      0.687 0.056 0.000 0.844 0.064 0.036
#> SRR934217     3  0.3729      0.687 0.056 0.000 0.844 0.064 0.036
#> SRR934218     3  0.3729      0.687 0.056 0.000 0.844 0.064 0.036
#> SRR934219     3  0.3729      0.687 0.056 0.000 0.844 0.064 0.036
#> SRR934220     3  0.3729      0.687 0.056 0.000 0.844 0.064 0.036
#> SRR934221     3  0.3729      0.687 0.056 0.000 0.844 0.064 0.036
#> SRR934222     3  0.3729      0.687 0.056 0.000 0.844 0.064 0.036
#> SRR934223     3  0.3729      0.687 0.056 0.000 0.844 0.064 0.036
#> SRR934224     1  0.2459      0.845 0.904 0.040 0.052 0.000 0.004
#> SRR934225     1  0.2459      0.845 0.904 0.040 0.052 0.000 0.004
#> SRR934226     1  0.2459      0.845 0.904 0.040 0.052 0.000 0.004
#> SRR934227     1  0.2459      0.845 0.904 0.040 0.052 0.000 0.004
#> SRR934228     1  0.2459      0.845 0.904 0.040 0.052 0.000 0.004
#> SRR934229     1  0.2459      0.845 0.904 0.040 0.052 0.000 0.004
#> SRR934230     1  0.2459      0.845 0.904 0.040 0.052 0.000 0.004
#> SRR934231     1  0.2459      0.845 0.904 0.040 0.052 0.000 0.004
#> SRR934232     4  0.3642      0.678 0.000 0.232 0.008 0.760 0.000
#> SRR934233     4  0.3642      0.678 0.000 0.232 0.008 0.760 0.000
#> SRR934234     4  0.3642      0.678 0.000 0.232 0.008 0.760 0.000
#> SRR934235     4  0.3642      0.678 0.000 0.232 0.008 0.760 0.000
#> SRR934236     4  0.3642      0.678 0.000 0.232 0.008 0.760 0.000
#> SRR934237     4  0.3642      0.678 0.000 0.232 0.008 0.760 0.000
#> SRR934238     4  0.3642      0.678 0.000 0.232 0.008 0.760 0.000
#> SRR934239     4  0.3642      0.678 0.000 0.232 0.008 0.760 0.000
#> SRR934240     2  0.4582      0.379 0.000 0.572 0.012 0.416 0.000
#> SRR934241     2  0.4582      0.379 0.000 0.572 0.012 0.416 0.000
#> SRR934242     2  0.4582      0.379 0.000 0.572 0.012 0.416 0.000
#> SRR934243     2  0.4582      0.379 0.000 0.572 0.012 0.416 0.000
#> SRR934244     2  0.4582      0.379 0.000 0.572 0.012 0.416 0.000
#> SRR934245     2  0.4582      0.379 0.000 0.572 0.012 0.416 0.000
#> SRR934246     2  0.4582      0.379 0.000 0.572 0.012 0.416 0.000
#> SRR934247     2  0.4582      0.379 0.000 0.572 0.012 0.416 0.000
#> SRR934248     4  0.0992      0.868 0.000 0.008 0.024 0.968 0.000
#> SRR934249     4  0.0992      0.868 0.000 0.008 0.024 0.968 0.000
#> SRR934250     4  0.0992      0.868 0.000 0.008 0.024 0.968 0.000
#> SRR934251     4  0.0992      0.868 0.000 0.008 0.024 0.968 0.000
#> SRR934252     4  0.0992      0.868 0.000 0.008 0.024 0.968 0.000
#> SRR934253     4  0.0992      0.868 0.000 0.008 0.024 0.968 0.000
#> SRR934254     4  0.0992      0.868 0.000 0.008 0.024 0.968 0.000
#> SRR934255     4  0.0992      0.868 0.000 0.008 0.024 0.968 0.000
#> SRR934256     2  0.5490      0.590 0.116 0.636 0.000 0.000 0.248
#> SRR934257     2  0.5490      0.590 0.116 0.636 0.000 0.000 0.248
#> SRR934258     2  0.5490      0.590 0.116 0.636 0.000 0.000 0.248
#> SRR934259     2  0.5490      0.590 0.116 0.636 0.000 0.000 0.248
#> SRR934260     2  0.5490      0.590 0.116 0.636 0.000 0.000 0.248
#> SRR934261     2  0.5490      0.590 0.116 0.636 0.000 0.000 0.248
#> SRR934262     2  0.5490      0.590 0.116 0.636 0.000 0.000 0.248
#> SRR934263     2  0.5490      0.590 0.116 0.636 0.000 0.000 0.248
#> SRR934264     4  0.0703      0.870 0.000 0.000 0.024 0.976 0.000
#> SRR934265     4  0.0703      0.870 0.000 0.000 0.024 0.976 0.000
#> SRR934266     4  0.0703      0.870 0.000 0.000 0.024 0.976 0.000
#> SRR934267     4  0.0703      0.870 0.000 0.000 0.024 0.976 0.000
#> SRR934268     4  0.0703      0.870 0.000 0.000 0.024 0.976 0.000
#> SRR934269     4  0.0703      0.870 0.000 0.000 0.024 0.976 0.000
#> SRR934270     4  0.0703      0.870 0.000 0.000 0.024 0.976 0.000
#> SRR934271     4  0.0703      0.870 0.000 0.000 0.024 0.976 0.000
#> SRR934272     1  0.3247      0.821 0.868 0.028 0.072 0.000 0.032
#> SRR934273     1  0.3247      0.821 0.868 0.028 0.072 0.000 0.032
#> SRR934274     1  0.3247      0.821 0.868 0.028 0.072 0.000 0.032
#> SRR934275     1  0.3247      0.821 0.868 0.028 0.072 0.000 0.032
#> SRR934276     1  0.3247      0.821 0.868 0.028 0.072 0.000 0.032
#> SRR934277     1  0.3247      0.821 0.868 0.028 0.072 0.000 0.032
#> SRR934278     1  0.3247      0.821 0.868 0.028 0.072 0.000 0.032
#> SRR934279     1  0.3247      0.821 0.868 0.028 0.072 0.000 0.032
#> SRR934280     1  0.2588      0.832 0.884 0.100 0.008 0.000 0.008
#> SRR934281     1  0.2588      0.832 0.884 0.100 0.008 0.000 0.008
#> SRR934282     1  0.2588      0.832 0.884 0.100 0.008 0.000 0.008
#> SRR934283     1  0.2588      0.832 0.884 0.100 0.008 0.000 0.008
#> SRR934284     1  0.2588      0.832 0.884 0.100 0.008 0.000 0.008
#> SRR934285     1  0.2588      0.832 0.884 0.100 0.008 0.000 0.008
#> SRR934286     1  0.2588      0.832 0.884 0.100 0.008 0.000 0.008
#> SRR934287     1  0.2588      0.832 0.884 0.100 0.008 0.000 0.008
#> SRR934288     5  0.0671      0.983 0.016 0.004 0.000 0.000 0.980
#> SRR934289     5  0.0671      0.983 0.016 0.004 0.000 0.000 0.980
#> SRR934290     5  0.0671      0.983 0.016 0.004 0.000 0.000 0.980
#> SRR934291     5  0.0671      0.983 0.016 0.004 0.000 0.000 0.980
#> SRR934292     5  0.0671      0.983 0.016 0.004 0.000 0.000 0.980
#> SRR934293     5  0.0671      0.983 0.016 0.004 0.000 0.000 0.980
#> SRR934294     5  0.0671      0.983 0.016 0.004 0.000 0.000 0.980
#> SRR934295     5  0.0671      0.983 0.016 0.004 0.000 0.000 0.980
#> SRR934296     3  0.6145      0.525 0.000 0.440 0.444 0.004 0.112
#> SRR934297     3  0.6145      0.525 0.000 0.440 0.444 0.004 0.112
#> SRR934298     3  0.6145      0.525 0.000 0.440 0.444 0.004 0.112
#> SRR934299     3  0.6145      0.525 0.000 0.440 0.444 0.004 0.112
#> SRR934300     3  0.6145      0.525 0.000 0.440 0.444 0.004 0.112
#> SRR934301     3  0.6145      0.525 0.000 0.440 0.444 0.004 0.112
#> SRR934302     3  0.6145      0.525 0.000 0.440 0.444 0.004 0.112
#> SRR934303     3  0.6145      0.525 0.000 0.440 0.444 0.004 0.112
#> SRR934304     3  0.4679      0.726 0.000 0.124 0.740 0.136 0.000
#> SRR934305     3  0.4679      0.726 0.000 0.124 0.740 0.136 0.000
#> SRR934306     3  0.4679      0.726 0.000 0.124 0.740 0.136 0.000
#> SRR934307     3  0.4679      0.726 0.000 0.124 0.740 0.136 0.000
#> SRR934308     3  0.4679      0.726 0.000 0.124 0.740 0.136 0.000
#> SRR934309     3  0.4679      0.726 0.000 0.124 0.740 0.136 0.000
#> SRR934310     3  0.4679      0.726 0.000 0.124 0.740 0.136 0.000
#> SRR934311     3  0.4679      0.726 0.000 0.124 0.740 0.136 0.000
#> SRR934312     1  0.3808      0.820 0.840 0.060 0.060 0.000 0.040
#> SRR934313     1  0.3808      0.820 0.840 0.060 0.060 0.000 0.040
#> SRR934314     1  0.3808      0.820 0.840 0.060 0.060 0.000 0.040
#> SRR934315     1  0.3808      0.820 0.840 0.060 0.060 0.000 0.040
#> SRR934316     1  0.3808      0.820 0.840 0.060 0.060 0.000 0.040
#> SRR934317     1  0.3808      0.820 0.840 0.060 0.060 0.000 0.040
#> SRR934318     1  0.3808      0.820 0.840 0.060 0.060 0.000 0.040
#> SRR934319     1  0.3808      0.820 0.840 0.060 0.060 0.000 0.040
#> SRR934320     1  0.5968      0.642 0.628 0.260 0.040 0.000 0.072
#> SRR934321     1  0.5968      0.642 0.628 0.260 0.040 0.000 0.072
#> SRR934322     1  0.5968      0.642 0.628 0.260 0.040 0.000 0.072
#> SRR934323     1  0.5968      0.642 0.628 0.260 0.040 0.000 0.072
#> SRR934324     1  0.5968      0.642 0.628 0.260 0.040 0.000 0.072
#> SRR934325     1  0.5968      0.642 0.628 0.260 0.040 0.000 0.072
#> SRR934326     1  0.5968      0.642 0.628 0.260 0.040 0.000 0.072
#> SRR934327     1  0.5968      0.642 0.628 0.260 0.040 0.000 0.072
#> SRR934328     5  0.0932      0.974 0.004 0.020 0.004 0.000 0.972
#> SRR934329     5  0.0932      0.974 0.004 0.020 0.004 0.000 0.972
#> SRR934330     5  0.0932      0.974 0.004 0.020 0.004 0.000 0.972
#> SRR934331     5  0.0932      0.974 0.004 0.020 0.004 0.000 0.972
#> SRR934332     5  0.0932      0.974 0.004 0.020 0.004 0.000 0.972
#> SRR934333     5  0.0932      0.974 0.004 0.020 0.004 0.000 0.972
#> SRR934334     5  0.0932      0.974 0.004 0.020 0.004 0.000 0.972
#> SRR934335     5  0.0932      0.974 0.004 0.020 0.004 0.000 0.972
#> SRR934344     5  0.0404      0.984 0.012 0.000 0.000 0.000 0.988
#> SRR934345     5  0.0404      0.984 0.012 0.000 0.000 0.000 0.988
#> SRR934346     5  0.0404      0.984 0.012 0.000 0.000 0.000 0.988
#> SRR934347     5  0.0404      0.984 0.012 0.000 0.000 0.000 0.988
#> SRR934348     5  0.0404      0.984 0.012 0.000 0.000 0.000 0.988
#> SRR934349     5  0.0404      0.984 0.012 0.000 0.000 0.000 0.988
#> SRR934350     5  0.0404      0.984 0.012 0.000 0.000 0.000 0.988
#> SRR934351     5  0.0404      0.984 0.012 0.000 0.000 0.000 0.988
#> SRR934336     1  0.2910      0.841 0.884 0.060 0.044 0.000 0.012
#> SRR934337     1  0.2910      0.841 0.884 0.060 0.044 0.000 0.012
#> SRR934338     1  0.2910      0.841 0.884 0.060 0.044 0.000 0.012
#> SRR934339     1  0.2910      0.841 0.884 0.060 0.044 0.000 0.012
#> SRR934340     1  0.2910      0.841 0.884 0.060 0.044 0.000 0.012
#> SRR934341     1  0.2910      0.841 0.884 0.060 0.044 0.000 0.012
#> SRR934342     1  0.2910      0.841 0.884 0.060 0.044 0.000 0.012

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR934216     3  0.5224      1.000 0.012 0.008 0.528 0.036 0.412 0.004
#> SRR934217     3  0.5224      1.000 0.012 0.008 0.528 0.036 0.412 0.004
#> SRR934218     3  0.5224      1.000 0.012 0.008 0.528 0.036 0.412 0.004
#> SRR934219     3  0.5224      1.000 0.012 0.008 0.528 0.036 0.412 0.004
#> SRR934220     3  0.5224      1.000 0.012 0.008 0.528 0.036 0.412 0.004
#> SRR934221     3  0.5224      1.000 0.012 0.008 0.528 0.036 0.412 0.004
#> SRR934222     3  0.5224      1.000 0.012 0.008 0.528 0.036 0.412 0.004
#> SRR934223     3  0.5224      1.000 0.012 0.008 0.528 0.036 0.412 0.004
#> SRR934224     6  0.2001      0.746 0.004 0.004 0.092 0.000 0.000 0.900
#> SRR934225     6  0.2001      0.746 0.004 0.004 0.092 0.000 0.000 0.900
#> SRR934226     6  0.2001      0.746 0.004 0.004 0.092 0.000 0.000 0.900
#> SRR934227     6  0.2001      0.746 0.004 0.004 0.092 0.000 0.000 0.900
#> SRR934228     6  0.2001      0.746 0.004 0.004 0.092 0.000 0.000 0.900
#> SRR934229     6  0.2001      0.746 0.004 0.004 0.092 0.000 0.000 0.900
#> SRR934230     6  0.2001      0.746 0.004 0.004 0.092 0.000 0.000 0.900
#> SRR934231     6  0.2001      0.746 0.004 0.004 0.092 0.000 0.000 0.900
#> SRR934232     4  0.3923      0.575 0.000 0.372 0.008 0.620 0.000 0.000
#> SRR934233     4  0.3923      0.575 0.000 0.372 0.008 0.620 0.000 0.000
#> SRR934234     4  0.3923      0.575 0.000 0.372 0.008 0.620 0.000 0.000
#> SRR934235     4  0.3923      0.575 0.000 0.372 0.008 0.620 0.000 0.000
#> SRR934236     4  0.3923      0.575 0.000 0.372 0.008 0.620 0.000 0.000
#> SRR934237     4  0.3923      0.575 0.000 0.372 0.008 0.620 0.000 0.000
#> SRR934238     4  0.3923      0.575 0.000 0.372 0.008 0.620 0.000 0.000
#> SRR934239     4  0.3923      0.575 0.000 0.372 0.008 0.620 0.000 0.000
#> SRR934240     2  0.3136      0.523 0.000 0.768 0.000 0.228 0.004 0.000
#> SRR934241     2  0.3136      0.523 0.000 0.768 0.000 0.228 0.004 0.000
#> SRR934242     2  0.3136      0.523 0.000 0.768 0.000 0.228 0.004 0.000
#> SRR934243     2  0.3136      0.523 0.000 0.768 0.000 0.228 0.004 0.000
#> SRR934244     2  0.3136      0.523 0.000 0.768 0.000 0.228 0.004 0.000
#> SRR934245     2  0.3136      0.523 0.000 0.768 0.000 0.228 0.004 0.000
#> SRR934246     2  0.3136      0.523 0.000 0.768 0.000 0.228 0.004 0.000
#> SRR934247     2  0.3136      0.523 0.000 0.768 0.000 0.228 0.004 0.000
#> SRR934248     4  0.0935      0.804 0.000 0.004 0.032 0.964 0.000 0.000
#> SRR934249     4  0.0935      0.804 0.000 0.004 0.032 0.964 0.000 0.000
#> SRR934250     4  0.0935      0.804 0.000 0.004 0.032 0.964 0.000 0.000
#> SRR934251     4  0.0935      0.804 0.000 0.004 0.032 0.964 0.000 0.000
#> SRR934252     4  0.0935      0.804 0.000 0.004 0.032 0.964 0.000 0.000
#> SRR934253     4  0.0935      0.804 0.000 0.004 0.032 0.964 0.000 0.000
#> SRR934254     4  0.0935      0.804 0.000 0.004 0.032 0.964 0.000 0.000
#> SRR934255     4  0.0935      0.804 0.000 0.004 0.032 0.964 0.000 0.000
#> SRR934256     2  0.6648      0.638 0.156 0.608 0.080 0.000 0.088 0.068
#> SRR934257     2  0.6648      0.638 0.156 0.608 0.080 0.000 0.088 0.068
#> SRR934258     2  0.6648      0.638 0.156 0.608 0.080 0.000 0.088 0.068
#> SRR934259     2  0.6648      0.638 0.156 0.608 0.080 0.000 0.088 0.068
#> SRR934260     2  0.6648      0.638 0.156 0.608 0.080 0.000 0.088 0.068
#> SRR934261     2  0.6648      0.638 0.156 0.608 0.080 0.000 0.088 0.068
#> SRR934262     2  0.6648      0.638 0.156 0.608 0.080 0.000 0.088 0.068
#> SRR934263     2  0.6648      0.638 0.156 0.608 0.080 0.000 0.088 0.068
#> SRR934264     4  0.1124      0.816 0.000 0.036 0.000 0.956 0.008 0.000
#> SRR934265     4  0.1124      0.816 0.000 0.036 0.000 0.956 0.008 0.000
#> SRR934266     4  0.1124      0.816 0.000 0.036 0.000 0.956 0.008 0.000
#> SRR934267     4  0.1124      0.816 0.000 0.036 0.000 0.956 0.008 0.000
#> SRR934268     4  0.1124      0.816 0.000 0.036 0.000 0.956 0.008 0.000
#> SRR934269     4  0.1124      0.816 0.000 0.036 0.000 0.956 0.008 0.000
#> SRR934270     4  0.1124      0.816 0.000 0.036 0.000 0.956 0.008 0.000
#> SRR934271     4  0.1124      0.816 0.000 0.036 0.000 0.956 0.008 0.000
#> SRR934272     6  0.3446      0.711 0.000 0.000 0.308 0.000 0.000 0.692
#> SRR934273     6  0.3446      0.711 0.000 0.000 0.308 0.000 0.000 0.692
#> SRR934274     6  0.3446      0.711 0.000 0.000 0.308 0.000 0.000 0.692
#> SRR934275     6  0.3446      0.711 0.000 0.000 0.308 0.000 0.000 0.692
#> SRR934276     6  0.3446      0.711 0.000 0.000 0.308 0.000 0.000 0.692
#> SRR934277     6  0.3446      0.711 0.000 0.000 0.308 0.000 0.000 0.692
#> SRR934278     6  0.3446      0.711 0.000 0.000 0.308 0.000 0.000 0.692
#> SRR934279     6  0.3446      0.711 0.000 0.000 0.308 0.000 0.000 0.692
#> SRR934280     6  0.4438      0.724 0.000 0.080 0.208 0.000 0.004 0.708
#> SRR934281     6  0.4438      0.724 0.000 0.080 0.208 0.000 0.004 0.708
#> SRR934282     6  0.4438      0.724 0.000 0.080 0.208 0.000 0.004 0.708
#> SRR934283     6  0.4438      0.724 0.000 0.080 0.208 0.000 0.004 0.708
#> SRR934284     6  0.4438      0.724 0.000 0.080 0.208 0.000 0.004 0.708
#> SRR934285     6  0.4438      0.724 0.000 0.080 0.208 0.000 0.004 0.708
#> SRR934286     6  0.4438      0.724 0.000 0.080 0.208 0.000 0.004 0.708
#> SRR934287     6  0.4438      0.724 0.000 0.080 0.208 0.000 0.004 0.708
#> SRR934288     1  0.1528      0.961 0.944 0.012 0.028 0.000 0.016 0.000
#> SRR934289     1  0.1528      0.961 0.944 0.012 0.028 0.000 0.016 0.000
#> SRR934290     1  0.1528      0.961 0.944 0.012 0.028 0.000 0.016 0.000
#> SRR934291     1  0.1528      0.961 0.944 0.012 0.028 0.000 0.016 0.000
#> SRR934292     1  0.1528      0.961 0.944 0.012 0.028 0.000 0.016 0.000
#> SRR934293     1  0.1528      0.961 0.944 0.012 0.028 0.000 0.016 0.000
#> SRR934294     1  0.1528      0.961 0.944 0.012 0.028 0.000 0.016 0.000
#> SRR934295     1  0.1528      0.961 0.944 0.012 0.028 0.000 0.016 0.000
#> SRR934296     5  0.4108      0.637 0.072 0.164 0.000 0.008 0.756 0.000
#> SRR934297     5  0.4108      0.637 0.072 0.164 0.000 0.008 0.756 0.000
#> SRR934298     5  0.4108      0.637 0.072 0.164 0.000 0.008 0.756 0.000
#> SRR934299     5  0.4108      0.637 0.072 0.164 0.000 0.008 0.756 0.000
#> SRR934300     5  0.4108      0.637 0.072 0.164 0.000 0.008 0.756 0.000
#> SRR934301     5  0.4108      0.637 0.072 0.164 0.000 0.008 0.756 0.000
#> SRR934302     5  0.4108      0.637 0.072 0.164 0.000 0.008 0.756 0.000
#> SRR934303     5  0.4108      0.637 0.072 0.164 0.000 0.008 0.756 0.000
#> SRR934304     5  0.3806      0.419 0.000 0.000 0.136 0.088 0.776 0.000
#> SRR934305     5  0.3806      0.419 0.000 0.000 0.136 0.088 0.776 0.000
#> SRR934306     5  0.3806      0.419 0.000 0.000 0.136 0.088 0.776 0.000
#> SRR934307     5  0.3806      0.419 0.000 0.000 0.136 0.088 0.776 0.000
#> SRR934308     5  0.3806      0.419 0.000 0.000 0.136 0.088 0.776 0.000
#> SRR934309     5  0.3806      0.419 0.000 0.000 0.136 0.088 0.776 0.000
#> SRR934310     5  0.3806      0.419 0.000 0.000 0.136 0.088 0.776 0.000
#> SRR934311     5  0.3806      0.419 0.000 0.000 0.136 0.088 0.776 0.000
#> SRR934312     6  0.4840      0.692 0.012 0.032 0.368 0.000 0.004 0.584
#> SRR934313     6  0.4840      0.692 0.012 0.032 0.368 0.000 0.004 0.584
#> SRR934314     6  0.4840      0.692 0.012 0.032 0.368 0.000 0.004 0.584
#> SRR934315     6  0.4840      0.692 0.012 0.032 0.368 0.000 0.004 0.584
#> SRR934316     6  0.4840      0.692 0.012 0.032 0.368 0.000 0.004 0.584
#> SRR934317     6  0.4840      0.692 0.012 0.032 0.368 0.000 0.004 0.584
#> SRR934318     6  0.4840      0.692 0.012 0.032 0.368 0.000 0.004 0.584
#> SRR934319     6  0.4840      0.692 0.012 0.032 0.368 0.000 0.004 0.584
#> SRR934320     6  0.6424      0.498 0.032 0.208 0.136 0.000 0.040 0.584
#> SRR934321     6  0.6424      0.498 0.032 0.208 0.136 0.000 0.040 0.584
#> SRR934322     6  0.6424      0.498 0.032 0.208 0.136 0.000 0.040 0.584
#> SRR934323     6  0.6424      0.498 0.032 0.208 0.136 0.000 0.040 0.584
#> SRR934324     6  0.6424      0.498 0.032 0.208 0.136 0.000 0.040 0.584
#> SRR934325     6  0.6424      0.498 0.032 0.208 0.136 0.000 0.040 0.584
#> SRR934326     6  0.6424      0.498 0.032 0.208 0.136 0.000 0.040 0.584
#> SRR934327     6  0.6424      0.498 0.032 0.208 0.136 0.000 0.040 0.584
#> SRR934328     1  0.0146      0.976 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR934329     1  0.0146      0.976 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR934330     1  0.0146      0.976 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR934331     1  0.0146      0.976 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR934332     1  0.0146      0.976 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR934333     1  0.0146      0.976 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR934334     1  0.0146      0.976 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR934335     1  0.0146      0.976 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR934344     1  0.0551      0.974 0.984 0.004 0.008 0.000 0.000 0.004
#> SRR934345     1  0.0551      0.974 0.984 0.004 0.008 0.000 0.000 0.004
#> SRR934346     1  0.0551      0.974 0.984 0.004 0.008 0.000 0.000 0.004
#> SRR934347     1  0.0551      0.974 0.984 0.004 0.008 0.000 0.000 0.004
#> SRR934348     1  0.0551      0.974 0.984 0.004 0.008 0.000 0.000 0.004
#> SRR934349     1  0.0551      0.974 0.984 0.004 0.008 0.000 0.000 0.004
#> SRR934350     1  0.0551      0.974 0.984 0.004 0.008 0.000 0.000 0.004
#> SRR934351     1  0.0551      0.974 0.984 0.004 0.008 0.000 0.000 0.004
#> SRR934336     6  0.1390      0.742 0.004 0.032 0.016 0.000 0.000 0.948
#> SRR934337     6  0.1390      0.742 0.004 0.032 0.016 0.000 0.000 0.948
#> SRR934338     6  0.1390      0.742 0.004 0.032 0.016 0.000 0.000 0.948
#> SRR934339     6  0.1390      0.742 0.004 0.032 0.016 0.000 0.000 0.948
#> SRR934340     6  0.1390      0.742 0.004 0.032 0.016 0.000 0.000 0.948
#> SRR934341     6  0.1390      0.742 0.004 0.032 0.016 0.000 0.000 0.948
#> SRR934342     6  0.1390      0.742 0.004 0.032 0.016 0.000 0.000 0.948

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14550 rows and 135 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.705           0.978       0.965          0.316 0.636   0.636
#> 3 3 0.664           0.922       0.956          0.232 0.979   0.967
#> 4 4 0.790           0.855       0.928          0.282 0.916   0.863
#> 5 5 0.843           0.969       0.948          0.146 0.860   0.737
#> 6 6 0.724           0.820       0.875          0.136 0.986   0.964

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR934216     1  0.0000      0.999 1.000 0.000
#> SRR934217     1  0.0000      0.999 1.000 0.000
#> SRR934218     1  0.0000      0.999 1.000 0.000
#> SRR934219     1  0.0000      0.999 1.000 0.000
#> SRR934220     1  0.0000      0.999 1.000 0.000
#> SRR934221     1  0.0000      0.999 1.000 0.000
#> SRR934222     1  0.0000      0.999 1.000 0.000
#> SRR934223     1  0.0000      0.999 1.000 0.000
#> SRR934224     1  0.0000      0.999 1.000 0.000
#> SRR934225     1  0.0000      0.999 1.000 0.000
#> SRR934226     1  0.0000      0.999 1.000 0.000
#> SRR934227     1  0.0000      0.999 1.000 0.000
#> SRR934228     1  0.0000      0.999 1.000 0.000
#> SRR934229     1  0.0000      0.999 1.000 0.000
#> SRR934230     1  0.0000      0.999 1.000 0.000
#> SRR934231     1  0.0000      0.999 1.000 0.000
#> SRR934232     2  0.7139      0.937 0.196 0.804
#> SRR934233     2  0.7139      0.937 0.196 0.804
#> SRR934234     2  0.7139      0.937 0.196 0.804
#> SRR934235     2  0.7139      0.937 0.196 0.804
#> SRR934236     2  0.7139      0.937 0.196 0.804
#> SRR934237     2  0.7139      0.937 0.196 0.804
#> SRR934238     2  0.7139      0.937 0.196 0.804
#> SRR934239     2  0.7139      0.937 0.196 0.804
#> SRR934240     1  0.0376      0.996 0.996 0.004
#> SRR934241     1  0.0376      0.996 0.996 0.004
#> SRR934242     1  0.0376      0.996 0.996 0.004
#> SRR934243     1  0.0376      0.996 0.996 0.004
#> SRR934244     1  0.0376      0.996 0.996 0.004
#> SRR934245     1  0.0376      0.996 0.996 0.004
#> SRR934246     1  0.0376      0.996 0.996 0.004
#> SRR934247     1  0.0376      0.996 0.996 0.004
#> SRR934248     2  0.7139      0.937 0.196 0.804
#> SRR934249     2  0.7139      0.937 0.196 0.804
#> SRR934250     2  0.7139      0.937 0.196 0.804
#> SRR934251     2  0.7139      0.937 0.196 0.804
#> SRR934252     2  0.7139      0.937 0.196 0.804
#> SRR934253     2  0.7139      0.937 0.196 0.804
#> SRR934254     2  0.7139      0.937 0.196 0.804
#> SRR934255     2  0.7139      0.937 0.196 0.804
#> SRR934256     1  0.0376      0.996 0.996 0.004
#> SRR934257     1  0.0376      0.996 0.996 0.004
#> SRR934258     1  0.0376      0.996 0.996 0.004
#> SRR934259     1  0.0376      0.996 0.996 0.004
#> SRR934260     1  0.0376      0.996 0.996 0.004
#> SRR934261     1  0.0376      0.996 0.996 0.004
#> SRR934262     1  0.0376      0.996 0.996 0.004
#> SRR934263     1  0.0376      0.996 0.996 0.004
#> SRR934264     2  0.7139      0.937 0.196 0.804
#> SRR934265     2  0.7139      0.937 0.196 0.804
#> SRR934266     2  0.7139      0.937 0.196 0.804
#> SRR934267     2  0.7139      0.937 0.196 0.804
#> SRR934268     2  0.7139      0.937 0.196 0.804
#> SRR934269     2  0.7139      0.937 0.196 0.804
#> SRR934270     2  0.7139      0.937 0.196 0.804
#> SRR934271     2  0.7139      0.937 0.196 0.804
#> SRR934272     1  0.0000      0.999 1.000 0.000
#> SRR934273     1  0.0000      0.999 1.000 0.000
#> SRR934274     1  0.0000      0.999 1.000 0.000
#> SRR934275     1  0.0000      0.999 1.000 0.000
#> SRR934276     1  0.0000      0.999 1.000 0.000
#> SRR934277     1  0.0000      0.999 1.000 0.000
#> SRR934278     1  0.0000      0.999 1.000 0.000
#> SRR934279     1  0.0000      0.999 1.000 0.000
#> SRR934280     1  0.0000      0.999 1.000 0.000
#> SRR934281     1  0.0000      0.999 1.000 0.000
#> SRR934282     1  0.0000      0.999 1.000 0.000
#> SRR934283     1  0.0000      0.999 1.000 0.000
#> SRR934284     1  0.0000      0.999 1.000 0.000
#> SRR934285     1  0.0000      0.999 1.000 0.000
#> SRR934286     1  0.0000      0.999 1.000 0.000
#> SRR934287     1  0.0000      0.999 1.000 0.000
#> SRR934288     1  0.0000      0.999 1.000 0.000
#> SRR934289     1  0.0000      0.999 1.000 0.000
#> SRR934290     1  0.0000      0.999 1.000 0.000
#> SRR934291     1  0.0000      0.999 1.000 0.000
#> SRR934292     1  0.0000      0.999 1.000 0.000
#> SRR934293     1  0.0000      0.999 1.000 0.000
#> SRR934294     1  0.0000      0.999 1.000 0.000
#> SRR934295     1  0.0000      0.999 1.000 0.000
#> SRR934296     1  0.0000      0.999 1.000 0.000
#> SRR934297     1  0.0000      0.999 1.000 0.000
#> SRR934298     1  0.0000      0.999 1.000 0.000
#> SRR934299     1  0.0000      0.999 1.000 0.000
#> SRR934300     1  0.0000      0.999 1.000 0.000
#> SRR934301     1  0.0000      0.999 1.000 0.000
#> SRR934302     1  0.0000      0.999 1.000 0.000
#> SRR934303     1  0.0000      0.999 1.000 0.000
#> SRR934304     2  0.0000      0.839 0.000 1.000
#> SRR934305     2  0.0000      0.839 0.000 1.000
#> SRR934306     2  0.0000      0.839 0.000 1.000
#> SRR934307     2  0.0000      0.839 0.000 1.000
#> SRR934308     2  0.0000      0.839 0.000 1.000
#> SRR934309     2  0.0000      0.839 0.000 1.000
#> SRR934310     2  0.0000      0.839 0.000 1.000
#> SRR934311     2  0.0000      0.839 0.000 1.000
#> SRR934312     1  0.0000      0.999 1.000 0.000
#> SRR934313     1  0.0000      0.999 1.000 0.000
#> SRR934314     1  0.0000      0.999 1.000 0.000
#> SRR934315     1  0.0000      0.999 1.000 0.000
#> SRR934316     1  0.0000      0.999 1.000 0.000
#> SRR934317     1  0.0000      0.999 1.000 0.000
#> SRR934318     1  0.0000      0.999 1.000 0.000
#> SRR934319     1  0.0000      0.999 1.000 0.000
#> SRR934320     1  0.0000      0.999 1.000 0.000
#> SRR934321     1  0.0000      0.999 1.000 0.000
#> SRR934322     1  0.0000      0.999 1.000 0.000
#> SRR934323     1  0.0000      0.999 1.000 0.000
#> SRR934324     1  0.0000      0.999 1.000 0.000
#> SRR934325     1  0.0000      0.999 1.000 0.000
#> SRR934326     1  0.0000      0.999 1.000 0.000
#> SRR934327     1  0.0000      0.999 1.000 0.000
#> SRR934328     1  0.0000      0.999 1.000 0.000
#> SRR934329     1  0.0000      0.999 1.000 0.000
#> SRR934330     1  0.0000      0.999 1.000 0.000
#> SRR934331     1  0.0000      0.999 1.000 0.000
#> SRR934332     1  0.0000      0.999 1.000 0.000
#> SRR934333     1  0.0000      0.999 1.000 0.000
#> SRR934334     1  0.0000      0.999 1.000 0.000
#> SRR934335     1  0.0000      0.999 1.000 0.000
#> SRR934344     1  0.0000      0.999 1.000 0.000
#> SRR934345     1  0.0000      0.999 1.000 0.000
#> SRR934346     1  0.0000      0.999 1.000 0.000
#> SRR934347     1  0.0000      0.999 1.000 0.000
#> SRR934348     1  0.0000      0.999 1.000 0.000
#> SRR934349     1  0.0000      0.999 1.000 0.000
#> SRR934350     1  0.0000      0.999 1.000 0.000
#> SRR934351     1  0.0000      0.999 1.000 0.000
#> SRR934336     1  0.0000      0.999 1.000 0.000
#> SRR934337     1  0.0000      0.999 1.000 0.000
#> SRR934338     1  0.0000      0.999 1.000 0.000
#> SRR934339     1  0.0000      0.999 1.000 0.000
#> SRR934340     1  0.0000      0.999 1.000 0.000
#> SRR934341     1  0.0000      0.999 1.000 0.000
#> SRR934342     1  0.0000      0.999 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2 p3
#> SRR934216     1   0.000      0.964 1.000 0.000  0
#> SRR934217     1   0.000      0.964 1.000 0.000  0
#> SRR934218     1   0.000      0.964 1.000 0.000  0
#> SRR934219     1   0.000      0.964 1.000 0.000  0
#> SRR934220     1   0.000      0.964 1.000 0.000  0
#> SRR934221     1   0.000      0.964 1.000 0.000  0
#> SRR934222     1   0.000      0.964 1.000 0.000  0
#> SRR934223     1   0.000      0.964 1.000 0.000  0
#> SRR934224     1   0.000      0.964 1.000 0.000  0
#> SRR934225     1   0.000      0.964 1.000 0.000  0
#> SRR934226     1   0.000      0.964 1.000 0.000  0
#> SRR934227     1   0.000      0.964 1.000 0.000  0
#> SRR934228     1   0.000      0.964 1.000 0.000  0
#> SRR934229     1   0.000      0.964 1.000 0.000  0
#> SRR934230     1   0.000      0.964 1.000 0.000  0
#> SRR934231     1   0.000      0.964 1.000 0.000  0
#> SRR934232     2   0.000      0.743 0.000 1.000  0
#> SRR934233     2   0.000      0.743 0.000 1.000  0
#> SRR934234     2   0.000      0.743 0.000 1.000  0
#> SRR934235     2   0.000      0.743 0.000 1.000  0
#> SRR934236     2   0.000      0.743 0.000 1.000  0
#> SRR934237     2   0.000      0.743 0.000 1.000  0
#> SRR934238     2   0.000      0.743 0.000 1.000  0
#> SRR934239     2   0.000      0.743 0.000 1.000  0
#> SRR934240     1   0.455      0.781 0.800 0.200  0
#> SRR934241     1   0.455      0.781 0.800 0.200  0
#> SRR934242     1   0.455      0.781 0.800 0.200  0
#> SRR934243     1   0.455      0.781 0.800 0.200  0
#> SRR934244     1   0.455      0.781 0.800 0.200  0
#> SRR934245     1   0.455      0.781 0.800 0.200  0
#> SRR934246     1   0.455      0.781 0.800 0.200  0
#> SRR934247     1   0.455      0.781 0.800 0.200  0
#> SRR934248     2   0.418      0.881 0.172 0.828  0
#> SRR934249     2   0.418      0.881 0.172 0.828  0
#> SRR934250     2   0.418      0.881 0.172 0.828  0
#> SRR934251     2   0.418      0.881 0.172 0.828  0
#> SRR934252     2   0.418      0.881 0.172 0.828  0
#> SRR934253     2   0.418      0.881 0.172 0.828  0
#> SRR934254     2   0.418      0.881 0.172 0.828  0
#> SRR934255     2   0.418      0.881 0.172 0.828  0
#> SRR934256     1   0.455      0.781 0.800 0.200  0
#> SRR934257     1   0.455      0.781 0.800 0.200  0
#> SRR934258     1   0.455      0.781 0.800 0.200  0
#> SRR934259     1   0.455      0.781 0.800 0.200  0
#> SRR934260     1   0.455      0.781 0.800 0.200  0
#> SRR934261     1   0.455      0.781 0.800 0.200  0
#> SRR934262     1   0.455      0.781 0.800 0.200  0
#> SRR934263     1   0.455      0.781 0.800 0.200  0
#> SRR934264     2   0.418      0.881 0.172 0.828  0
#> SRR934265     2   0.418      0.881 0.172 0.828  0
#> SRR934266     2   0.418      0.881 0.172 0.828  0
#> SRR934267     2   0.418      0.881 0.172 0.828  0
#> SRR934268     2   0.418      0.881 0.172 0.828  0
#> SRR934269     2   0.418      0.881 0.172 0.828  0
#> SRR934270     2   0.418      0.881 0.172 0.828  0
#> SRR934271     2   0.418      0.881 0.172 0.828  0
#> SRR934272     1   0.000      0.964 1.000 0.000  0
#> SRR934273     1   0.000      0.964 1.000 0.000  0
#> SRR934274     1   0.000      0.964 1.000 0.000  0
#> SRR934275     1   0.000      0.964 1.000 0.000  0
#> SRR934276     1   0.000      0.964 1.000 0.000  0
#> SRR934277     1   0.000      0.964 1.000 0.000  0
#> SRR934278     1   0.000      0.964 1.000 0.000  0
#> SRR934279     1   0.000      0.964 1.000 0.000  0
#> SRR934280     1   0.000      0.964 1.000 0.000  0
#> SRR934281     1   0.000      0.964 1.000 0.000  0
#> SRR934282     1   0.000      0.964 1.000 0.000  0
#> SRR934283     1   0.000      0.964 1.000 0.000  0
#> SRR934284     1   0.000      0.964 1.000 0.000  0
#> SRR934285     1   0.000      0.964 1.000 0.000  0
#> SRR934286     1   0.000      0.964 1.000 0.000  0
#> SRR934287     1   0.000      0.964 1.000 0.000  0
#> SRR934288     1   0.000      0.964 1.000 0.000  0
#> SRR934289     1   0.000      0.964 1.000 0.000  0
#> SRR934290     1   0.000      0.964 1.000 0.000  0
#> SRR934291     1   0.000      0.964 1.000 0.000  0
#> SRR934292     1   0.000      0.964 1.000 0.000  0
#> SRR934293     1   0.000      0.964 1.000 0.000  0
#> SRR934294     1   0.000      0.964 1.000 0.000  0
#> SRR934295     1   0.000      0.964 1.000 0.000  0
#> SRR934296     1   0.000      0.964 1.000 0.000  0
#> SRR934297     1   0.000      0.964 1.000 0.000  0
#> SRR934298     1   0.000      0.964 1.000 0.000  0
#> SRR934299     1   0.000      0.964 1.000 0.000  0
#> SRR934300     1   0.000      0.964 1.000 0.000  0
#> SRR934301     1   0.000      0.964 1.000 0.000  0
#> SRR934302     1   0.000      0.964 1.000 0.000  0
#> SRR934303     1   0.000      0.964 1.000 0.000  0
#> SRR934304     3   0.000      1.000 0.000 0.000  1
#> SRR934305     3   0.000      1.000 0.000 0.000  1
#> SRR934306     3   0.000      1.000 0.000 0.000  1
#> SRR934307     3   0.000      1.000 0.000 0.000  1
#> SRR934308     3   0.000      1.000 0.000 0.000  1
#> SRR934309     3   0.000      1.000 0.000 0.000  1
#> SRR934310     3   0.000      1.000 0.000 0.000  1
#> SRR934311     3   0.000      1.000 0.000 0.000  1
#> SRR934312     1   0.000      0.964 1.000 0.000  0
#> SRR934313     1   0.000      0.964 1.000 0.000  0
#> SRR934314     1   0.000      0.964 1.000 0.000  0
#> SRR934315     1   0.000      0.964 1.000 0.000  0
#> SRR934316     1   0.000      0.964 1.000 0.000  0
#> SRR934317     1   0.000      0.964 1.000 0.000  0
#> SRR934318     1   0.000      0.964 1.000 0.000  0
#> SRR934319     1   0.000      0.964 1.000 0.000  0
#> SRR934320     1   0.000      0.964 1.000 0.000  0
#> SRR934321     1   0.000      0.964 1.000 0.000  0
#> SRR934322     1   0.000      0.964 1.000 0.000  0
#> SRR934323     1   0.000      0.964 1.000 0.000  0
#> SRR934324     1   0.000      0.964 1.000 0.000  0
#> SRR934325     1   0.000      0.964 1.000 0.000  0
#> SRR934326     1   0.000      0.964 1.000 0.000  0
#> SRR934327     1   0.000      0.964 1.000 0.000  0
#> SRR934328     1   0.000      0.964 1.000 0.000  0
#> SRR934329     1   0.000      0.964 1.000 0.000  0
#> SRR934330     1   0.000      0.964 1.000 0.000  0
#> SRR934331     1   0.000      0.964 1.000 0.000  0
#> SRR934332     1   0.000      0.964 1.000 0.000  0
#> SRR934333     1   0.000      0.964 1.000 0.000  0
#> SRR934334     1   0.000      0.964 1.000 0.000  0
#> SRR934335     1   0.000      0.964 1.000 0.000  0
#> SRR934344     1   0.000      0.964 1.000 0.000  0
#> SRR934345     1   0.000      0.964 1.000 0.000  0
#> SRR934346     1   0.000      0.964 1.000 0.000  0
#> SRR934347     1   0.000      0.964 1.000 0.000  0
#> SRR934348     1   0.000      0.964 1.000 0.000  0
#> SRR934349     1   0.000      0.964 1.000 0.000  0
#> SRR934350     1   0.000      0.964 1.000 0.000  0
#> SRR934351     1   0.000      0.964 1.000 0.000  0
#> SRR934336     1   0.000      0.964 1.000 0.000  0
#> SRR934337     1   0.000      0.964 1.000 0.000  0
#> SRR934338     1   0.000      0.964 1.000 0.000  0
#> SRR934339     1   0.000      0.964 1.000 0.000  0
#> SRR934340     1   0.000      0.964 1.000 0.000  0
#> SRR934341     1   0.000      0.964 1.000 0.000  0
#> SRR934342     1   0.000      0.964 1.000 0.000  0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2 p3   p4
#> SRR934216     4  0.0000      1.000 0.000 0.000  0 1.00
#> SRR934217     4  0.0000      1.000 0.000 0.000  0 1.00
#> SRR934218     4  0.0000      1.000 0.000 0.000  0 1.00
#> SRR934219     4  0.0000      1.000 0.000 0.000  0 1.00
#> SRR934220     4  0.0000      1.000 0.000 0.000  0 1.00
#> SRR934221     4  0.0000      1.000 0.000 0.000  0 1.00
#> SRR934222     4  0.0000      1.000 0.000 0.000  0 1.00
#> SRR934223     4  0.0000      1.000 0.000 0.000  0 1.00
#> SRR934224     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934225     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934226     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934227     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934228     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934229     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934230     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934231     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934232     2  0.0000      0.995 0.000 1.000  0 0.00
#> SRR934233     2  0.0000      0.995 0.000 1.000  0 0.00
#> SRR934234     2  0.0000      0.995 0.000 1.000  0 0.00
#> SRR934235     2  0.0000      0.995 0.000 1.000  0 0.00
#> SRR934236     2  0.0000      0.995 0.000 1.000  0 0.00
#> SRR934237     2  0.0000      0.995 0.000 1.000  0 0.00
#> SRR934238     2  0.0000      0.995 0.000 1.000  0 0.00
#> SRR934239     2  0.0000      0.995 0.000 1.000  0 0.00
#> SRR934240     1  0.0921      0.340 0.972 0.028  0 0.00
#> SRR934241     1  0.0921      0.340 0.972 0.028  0 0.00
#> SRR934242     1  0.0921      0.340 0.972 0.028  0 0.00
#> SRR934243     1  0.0921      0.340 0.972 0.028  0 0.00
#> SRR934244     1  0.0921      0.340 0.972 0.028  0 0.00
#> SRR934245     1  0.0921      0.340 0.972 0.028  0 0.00
#> SRR934246     1  0.0921      0.340 0.972 0.028  0 0.00
#> SRR934247     1  0.0921      0.340 0.972 0.028  0 0.00
#> SRR934248     2  0.0188      0.997 0.004 0.996  0 0.00
#> SRR934249     2  0.0188      0.997 0.004 0.996  0 0.00
#> SRR934250     2  0.0188      0.997 0.004 0.996  0 0.00
#> SRR934251     2  0.0188      0.997 0.004 0.996  0 0.00
#> SRR934252     2  0.0188      0.997 0.004 0.996  0 0.00
#> SRR934253     2  0.0188      0.997 0.004 0.996  0 0.00
#> SRR934254     2  0.0188      0.997 0.004 0.996  0 0.00
#> SRR934255     2  0.0188      0.997 0.004 0.996  0 0.00
#> SRR934256     1  0.0921      0.340 0.972 0.028  0 0.00
#> SRR934257     1  0.0921      0.340 0.972 0.028  0 0.00
#> SRR934258     1  0.0921      0.340 0.972 0.028  0 0.00
#> SRR934259     1  0.0921      0.340 0.972 0.028  0 0.00
#> SRR934260     1  0.0921      0.340 0.972 0.028  0 0.00
#> SRR934261     1  0.0921      0.340 0.972 0.028  0 0.00
#> SRR934262     1  0.0921      0.340 0.972 0.028  0 0.00
#> SRR934263     1  0.0921      0.340 0.972 0.028  0 0.00
#> SRR934264     2  0.0188      0.997 0.004 0.996  0 0.00
#> SRR934265     2  0.0188      0.997 0.004 0.996  0 0.00
#> SRR934266     2  0.0188      0.997 0.004 0.996  0 0.00
#> SRR934267     2  0.0188      0.997 0.004 0.996  0 0.00
#> SRR934268     2  0.0188      0.997 0.004 0.996  0 0.00
#> SRR934269     2  0.0188      0.997 0.004 0.996  0 0.00
#> SRR934270     2  0.0188      0.997 0.004 0.996  0 0.00
#> SRR934271     2  0.0188      0.997 0.004 0.996  0 0.00
#> SRR934272     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934273     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934274     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934275     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934276     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934277     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934278     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934279     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934280     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934281     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934282     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934283     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934284     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934285     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934286     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934287     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934288     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934289     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934290     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934291     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934292     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934293     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934294     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934295     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934296     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934297     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934298     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934299     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934300     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934301     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934302     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934303     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934304     3  0.0000      1.000 0.000 0.000  1 0.00
#> SRR934305     3  0.0000      1.000 0.000 0.000  1 0.00
#> SRR934306     3  0.0000      1.000 0.000 0.000  1 0.00
#> SRR934307     3  0.0000      1.000 0.000 0.000  1 0.00
#> SRR934308     3  0.0000      1.000 0.000 0.000  1 0.00
#> SRR934309     3  0.0000      1.000 0.000 0.000  1 0.00
#> SRR934310     3  0.0000      1.000 0.000 0.000  1 0.00
#> SRR934311     3  0.0000      1.000 0.000 0.000  1 0.00
#> SRR934312     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934313     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934314     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934315     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934316     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934317     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934318     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934319     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934320     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934321     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934322     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934323     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934324     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934325     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934326     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934327     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934328     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934329     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934330     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934331     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934332     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934333     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934334     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934335     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934344     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934345     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934346     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934347     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934348     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934349     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934350     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934351     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934336     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934337     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934338     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934339     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934340     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934341     1  0.4790      0.888 0.620 0.000  0 0.38
#> SRR934342     1  0.4790      0.888 0.620 0.000  0 0.38

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2 p3    p4 p5
#> SRR934216     3  0.0000      1.000 0.000 0.000  1 0.000  0
#> SRR934217     3  0.0000      1.000 0.000 0.000  1 0.000  0
#> SRR934218     3  0.0000      1.000 0.000 0.000  1 0.000  0
#> SRR934219     3  0.0000      1.000 0.000 0.000  1 0.000  0
#> SRR934220     3  0.0000      1.000 0.000 0.000  1 0.000  0
#> SRR934221     3  0.0000      1.000 0.000 0.000  1 0.000  0
#> SRR934222     3  0.0000      1.000 0.000 0.000  1 0.000  0
#> SRR934223     3  0.0000      1.000 0.000 0.000  1 0.000  0
#> SRR934224     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934225     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934226     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934227     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934228     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934229     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934230     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934231     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934232     4  0.0000      0.913 0.000 0.000  0 1.000  0
#> SRR934233     4  0.0000      0.913 0.000 0.000  0 1.000  0
#> SRR934234     4  0.0000      0.913 0.000 0.000  0 1.000  0
#> SRR934235     4  0.0000      0.913 0.000 0.000  0 1.000  0
#> SRR934236     4  0.0000      0.913 0.000 0.000  0 1.000  0
#> SRR934237     4  0.0000      0.913 0.000 0.000  0 1.000  0
#> SRR934238     4  0.0000      0.913 0.000 0.000  0 1.000  0
#> SRR934239     4  0.0000      0.913 0.000 0.000  0 1.000  0
#> SRR934240     2  0.3876      0.925 0.316 0.684  0 0.000  0
#> SRR934241     2  0.3816      0.933 0.304 0.696  0 0.000  0
#> SRR934242     2  0.4150      0.847 0.388 0.612  0 0.000  0
#> SRR934243     2  0.3707      0.941 0.284 0.716  0 0.000  0
#> SRR934244     2  0.4101      0.870 0.372 0.628  0 0.000  0
#> SRR934245     2  0.3636      0.944 0.272 0.728  0 0.000  0
#> SRR934246     2  0.3966      0.907 0.336 0.664  0 0.000  0
#> SRR934247     2  0.4114      0.865 0.376 0.624  0 0.000  0
#> SRR934248     4  0.3636      0.813 0.000 0.272  0 0.728  0
#> SRR934249     4  0.3636      0.813 0.000 0.272  0 0.728  0
#> SRR934250     4  0.3636      0.813 0.000 0.272  0 0.728  0
#> SRR934251     4  0.3636      0.813 0.000 0.272  0 0.728  0
#> SRR934252     4  0.3636      0.813 0.000 0.272  0 0.728  0
#> SRR934253     4  0.3636      0.813 0.000 0.272  0 0.728  0
#> SRR934254     4  0.3636      0.813 0.000 0.272  0 0.728  0
#> SRR934255     4  0.3636      0.813 0.000 0.272  0 0.728  0
#> SRR934256     2  0.3636      0.944 0.272 0.728  0 0.000  0
#> SRR934257     2  0.3636      0.944 0.272 0.728  0 0.000  0
#> SRR934258     2  0.3636      0.944 0.272 0.728  0 0.000  0
#> SRR934259     2  0.3636      0.944 0.272 0.728  0 0.000  0
#> SRR934260     2  0.3636      0.944 0.272 0.728  0 0.000  0
#> SRR934261     2  0.3636      0.944 0.272 0.728  0 0.000  0
#> SRR934262     2  0.3636      0.944 0.272 0.728  0 0.000  0
#> SRR934263     2  0.3636      0.944 0.272 0.728  0 0.000  0
#> SRR934264     4  0.0000      0.913 0.000 0.000  0 1.000  0
#> SRR934265     4  0.0000      0.913 0.000 0.000  0 1.000  0
#> SRR934266     4  0.0000      0.913 0.000 0.000  0 1.000  0
#> SRR934267     4  0.0000      0.913 0.000 0.000  0 1.000  0
#> SRR934268     4  0.0000      0.913 0.000 0.000  0 1.000  0
#> SRR934269     4  0.0000      0.913 0.000 0.000  0 1.000  0
#> SRR934270     4  0.0000      0.913 0.000 0.000  0 1.000  0
#> SRR934271     4  0.0000      0.913 0.000 0.000  0 1.000  0
#> SRR934272     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934273     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934274     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934275     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934276     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934277     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934278     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934279     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934280     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934281     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934282     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934283     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934284     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934285     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934286     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934287     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934288     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934289     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934290     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934291     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934292     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934293     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934294     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934295     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934296     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934297     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934298     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934299     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934300     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934301     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934302     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934303     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934304     5  0.0000      1.000 0.000 0.000  0 0.000  1
#> SRR934305     5  0.0000      1.000 0.000 0.000  0 0.000  1
#> SRR934306     5  0.0000      1.000 0.000 0.000  0 0.000  1
#> SRR934307     5  0.0000      1.000 0.000 0.000  0 0.000  1
#> SRR934308     5  0.0000      1.000 0.000 0.000  0 0.000  1
#> SRR934309     5  0.0000      1.000 0.000 0.000  0 0.000  1
#> SRR934310     5  0.0000      1.000 0.000 0.000  0 0.000  1
#> SRR934311     5  0.0000      1.000 0.000 0.000  0 0.000  1
#> SRR934312     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934313     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934314     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934315     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934316     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934317     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934318     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934319     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934320     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934321     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934322     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934323     1  0.0162      0.994 0.996 0.004  0 0.000  0
#> SRR934324     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934325     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934326     1  0.0162      0.994 0.996 0.004  0 0.000  0
#> SRR934327     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934328     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934329     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934330     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934331     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934332     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934333     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934334     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934335     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934344     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934345     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934346     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934347     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934348     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934349     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934350     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934351     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934336     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934337     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934338     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934339     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934340     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934341     1  0.0000      1.000 1.000 0.000  0 0.000  0
#> SRR934342     1  0.0000      1.000 1.000 0.000  0 0.000  0

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2 p3    p4 p5    p6
#> SRR934216     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR934217     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR934218     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR934219     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR934220     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR934221     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR934222     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR934223     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR934224     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934225     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934226     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934227     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934228     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934229     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934230     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934231     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934232     4  0.2883      0.811 0.000 0.000  0 0.788  0 0.212
#> SRR934233     4  0.2883      0.811 0.000 0.000  0 0.788  0 0.212
#> SRR934234     4  0.2883      0.811 0.000 0.000  0 0.788  0 0.212
#> SRR934235     4  0.2883      0.811 0.000 0.000  0 0.788  0 0.212
#> SRR934236     4  0.2883      0.811 0.000 0.000  0 0.788  0 0.212
#> SRR934237     4  0.2883      0.811 0.000 0.000  0 0.788  0 0.212
#> SRR934238     4  0.2883      0.811 0.000 0.000  0 0.788  0 0.212
#> SRR934239     4  0.2883      0.811 0.000 0.000  0 0.788  0 0.212
#> SRR934240     2  0.5731      0.737 0.276 0.512  0 0.000  0 0.212
#> SRR934241     2  0.5639      0.746 0.252 0.536  0 0.000  0 0.212
#> SRR934242     2  0.5931      0.642 0.388 0.400  0 0.000  0 0.212
#> SRR934243     2  0.5529      0.747 0.228 0.560  0 0.000  0 0.212
#> SRR934244     2  0.5922      0.668 0.368 0.420  0 0.000  0 0.212
#> SRR934245     2  0.5374      0.738 0.200 0.588  0 0.000  0 0.212
#> SRR934246     2  0.5854      0.709 0.320 0.468  0 0.000  0 0.212
#> SRR934247     2  0.5922      0.667 0.368 0.420  0 0.000  0 0.212
#> SRR934248     6  0.3797      1.000 0.000 0.000  0 0.420  0 0.580
#> SRR934249     6  0.3797      1.000 0.000 0.000  0 0.420  0 0.580
#> SRR934250     6  0.3797      1.000 0.000 0.000  0 0.420  0 0.580
#> SRR934251     6  0.3797      1.000 0.000 0.000  0 0.420  0 0.580
#> SRR934252     6  0.3797      1.000 0.000 0.000  0 0.420  0 0.580
#> SRR934253     6  0.3797      1.000 0.000 0.000  0 0.420  0 0.580
#> SRR934254     6  0.3797      1.000 0.000 0.000  0 0.420  0 0.580
#> SRR934255     6  0.3797      1.000 0.000 0.000  0 0.420  0 0.580
#> SRR934256     2  0.1556      0.651 0.080 0.920  0 0.000  0 0.000
#> SRR934257     2  0.1556      0.652 0.080 0.920  0 0.000  0 0.000
#> SRR934258     2  0.2048      0.711 0.120 0.880  0 0.000  0 0.000
#> SRR934259     2  0.2562      0.745 0.172 0.828  0 0.000  0 0.000
#> SRR934260     2  0.2416      0.743 0.156 0.844  0 0.000  0 0.000
#> SRR934261     2  0.2454      0.745 0.160 0.840  0 0.000  0 0.000
#> SRR934262     2  0.2300      0.735 0.144 0.856  0 0.000  0 0.000
#> SRR934263     2  0.2562      0.745 0.172 0.828  0 0.000  0 0.000
#> SRR934264     4  0.0000      0.775 0.000 0.000  0 1.000  0 0.000
#> SRR934265     4  0.0000      0.775 0.000 0.000  0 1.000  0 0.000
#> SRR934266     4  0.0000      0.775 0.000 0.000  0 1.000  0 0.000
#> SRR934267     4  0.0000      0.775 0.000 0.000  0 1.000  0 0.000
#> SRR934268     4  0.0000      0.775 0.000 0.000  0 1.000  0 0.000
#> SRR934269     4  0.0000      0.775 0.000 0.000  0 1.000  0 0.000
#> SRR934270     4  0.0000      0.775 0.000 0.000  0 1.000  0 0.000
#> SRR934271     4  0.0000      0.775 0.000 0.000  0 1.000  0 0.000
#> SRR934272     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934273     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934274     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934275     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934276     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934277     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934278     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934279     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934280     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934281     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934282     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934283     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934284     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934285     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934286     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934287     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934288     1  0.4318      0.685 0.728 0.140  0 0.000  0 0.132
#> SRR934289     1  0.4474      0.670 0.708 0.172  0 0.000  0 0.120
#> SRR934290     1  0.5093      0.606 0.632 0.176  0 0.000  0 0.192
#> SRR934291     1  0.5062      0.609 0.636 0.168  0 0.000  0 0.196
#> SRR934292     1  0.2778      0.752 0.824 0.168  0 0.000  0 0.008
#> SRR934293     1  0.2597      0.752 0.824 0.176  0 0.000  0 0.000
#> SRR934294     1  0.3284      0.737 0.800 0.168  0 0.000  0 0.032
#> SRR934295     1  0.4030      0.700 0.748 0.172  0 0.000  0 0.080
#> SRR934296     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934297     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934298     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934299     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934300     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934301     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934302     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934303     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934304     5  0.0000      1.000 0.000 0.000  0 0.000  1 0.000
#> SRR934305     5  0.0000      1.000 0.000 0.000  0 0.000  1 0.000
#> SRR934306     5  0.0000      1.000 0.000 0.000  0 0.000  1 0.000
#> SRR934307     5  0.0000      1.000 0.000 0.000  0 0.000  1 0.000
#> SRR934308     5  0.0000      1.000 0.000 0.000  0 0.000  1 0.000
#> SRR934309     5  0.0000      1.000 0.000 0.000  0 0.000  1 0.000
#> SRR934310     5  0.0000      1.000 0.000 0.000  0 0.000  1 0.000
#> SRR934311     5  0.0000      1.000 0.000 0.000  0 0.000  1 0.000
#> SRR934312     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934313     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934314     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934315     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934316     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934317     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934318     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934319     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934320     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934321     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934322     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934323     1  0.0458      0.852 0.984 0.016  0 0.000  0 0.000
#> SRR934324     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934325     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934326     1  0.0146      0.862 0.996 0.004  0 0.000  0 0.000
#> SRR934327     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934328     1  0.5167      0.595 0.620 0.172  0 0.000  0 0.208
#> SRR934329     1  0.5167      0.595 0.620 0.172  0 0.000  0 0.208
#> SRR934330     1  0.5167      0.595 0.620 0.172  0 0.000  0 0.208
#> SRR934331     1  0.5167      0.595 0.620 0.172  0 0.000  0 0.208
#> SRR934332     1  0.5223      0.585 0.612 0.180  0 0.000  0 0.208
#> SRR934333     1  0.5223      0.585 0.612 0.180  0 0.000  0 0.208
#> SRR934334     1  0.5195      0.590 0.616 0.176  0 0.000  0 0.208
#> SRR934335     1  0.5195      0.590 0.616 0.176  0 0.000  0 0.208
#> SRR934344     1  0.5167      0.595 0.620 0.172  0 0.000  0 0.208
#> SRR934345     1  0.5167      0.595 0.620 0.172  0 0.000  0 0.208
#> SRR934346     1  0.5167      0.595 0.620 0.172  0 0.000  0 0.208
#> SRR934347     1  0.5167      0.595 0.620 0.172  0 0.000  0 0.208
#> SRR934348     1  0.5195      0.590 0.616 0.176  0 0.000  0 0.208
#> SRR934349     1  0.5167      0.595 0.620 0.172  0 0.000  0 0.208
#> SRR934350     1  0.5167      0.595 0.620 0.172  0 0.000  0 0.208
#> SRR934351     1  0.5167      0.595 0.620 0.172  0 0.000  0 0.208
#> SRR934336     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934337     1  0.0260      0.861 0.992 0.008  0 0.000  0 0.000
#> SRR934338     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934339     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934340     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934341     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000
#> SRR934342     1  0.0000      0.866 1.000 0.000  0 0.000  0 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14550 rows and 135 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.888           0.957       0.980         0.4997 0.498   0.498
#> 3 3 0.635           0.707       0.824         0.0985 0.803   0.648
#> 4 4 0.824           0.876       0.905         0.1212 0.852   0.689
#> 5 5 0.866           0.949       0.964         0.0482 0.972   0.925
#> 6 6 0.732           0.851       0.858         0.1010 0.972   0.919

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR934216     2   0.000      0.963 0.000 1.000
#> SRR934217     2   0.000      0.963 0.000 1.000
#> SRR934218     2   0.000      0.963 0.000 1.000
#> SRR934219     2   0.000      0.963 0.000 1.000
#> SRR934220     2   0.000      0.963 0.000 1.000
#> SRR934221     2   0.000      0.963 0.000 1.000
#> SRR934222     2   0.000      0.963 0.000 1.000
#> SRR934223     2   0.000      0.963 0.000 1.000
#> SRR934224     1   0.000      0.993 1.000 0.000
#> SRR934225     1   0.000      0.993 1.000 0.000
#> SRR934226     1   0.000      0.993 1.000 0.000
#> SRR934227     1   0.000      0.993 1.000 0.000
#> SRR934228     1   0.000      0.993 1.000 0.000
#> SRR934229     1   0.000      0.993 1.000 0.000
#> SRR934230     1   0.000      0.993 1.000 0.000
#> SRR934231     1   0.000      0.993 1.000 0.000
#> SRR934232     2   0.000      0.963 0.000 1.000
#> SRR934233     2   0.000      0.963 0.000 1.000
#> SRR934234     2   0.000      0.963 0.000 1.000
#> SRR934235     2   0.000      0.963 0.000 1.000
#> SRR934236     2   0.000      0.963 0.000 1.000
#> SRR934237     2   0.000      0.963 0.000 1.000
#> SRR934238     2   0.000      0.963 0.000 1.000
#> SRR934239     2   0.000      0.963 0.000 1.000
#> SRR934240     2   0.000      0.963 0.000 1.000
#> SRR934241     2   0.000      0.963 0.000 1.000
#> SRR934242     2   0.000      0.963 0.000 1.000
#> SRR934243     2   0.000      0.963 0.000 1.000
#> SRR934244     2   0.000      0.963 0.000 1.000
#> SRR934245     2   0.000      0.963 0.000 1.000
#> SRR934246     2   0.000      0.963 0.000 1.000
#> SRR934247     2   0.000      0.963 0.000 1.000
#> SRR934248     2   0.000      0.963 0.000 1.000
#> SRR934249     2   0.000      0.963 0.000 1.000
#> SRR934250     2   0.000      0.963 0.000 1.000
#> SRR934251     2   0.000      0.963 0.000 1.000
#> SRR934252     2   0.000      0.963 0.000 1.000
#> SRR934253     2   0.000      0.963 0.000 1.000
#> SRR934254     2   0.000      0.963 0.000 1.000
#> SRR934255     2   0.000      0.963 0.000 1.000
#> SRR934256     2   0.861      0.648 0.284 0.716
#> SRR934257     2   0.861      0.648 0.284 0.716
#> SRR934258     2   0.861      0.648 0.284 0.716
#> SRR934259     2   0.861      0.648 0.284 0.716
#> SRR934260     2   0.861      0.648 0.284 0.716
#> SRR934261     2   0.861      0.648 0.284 0.716
#> SRR934262     2   0.861      0.648 0.284 0.716
#> SRR934263     2   0.861      0.648 0.284 0.716
#> SRR934264     2   0.000      0.963 0.000 1.000
#> SRR934265     2   0.000      0.963 0.000 1.000
#> SRR934266     2   0.000      0.963 0.000 1.000
#> SRR934267     2   0.000      0.963 0.000 1.000
#> SRR934268     2   0.000      0.963 0.000 1.000
#> SRR934269     2   0.000      0.963 0.000 1.000
#> SRR934270     2   0.000      0.963 0.000 1.000
#> SRR934271     2   0.000      0.963 0.000 1.000
#> SRR934272     1   0.000      0.993 1.000 0.000
#> SRR934273     1   0.000      0.993 1.000 0.000
#> SRR934274     1   0.000      0.993 1.000 0.000
#> SRR934275     1   0.000      0.993 1.000 0.000
#> SRR934276     1   0.000      0.993 1.000 0.000
#> SRR934277     1   0.000      0.993 1.000 0.000
#> SRR934278     1   0.000      0.993 1.000 0.000
#> SRR934279     1   0.000      0.993 1.000 0.000
#> SRR934280     1   0.000      0.993 1.000 0.000
#> SRR934281     1   0.000      0.993 1.000 0.000
#> SRR934282     1   0.000      0.993 1.000 0.000
#> SRR934283     1   0.000      0.993 1.000 0.000
#> SRR934284     1   0.000      0.993 1.000 0.000
#> SRR934285     1   0.000      0.993 1.000 0.000
#> SRR934286     1   0.000      0.993 1.000 0.000
#> SRR934287     1   0.000      0.993 1.000 0.000
#> SRR934288     1   0.000      0.993 1.000 0.000
#> SRR934289     1   0.000      0.993 1.000 0.000
#> SRR934290     1   0.000      0.993 1.000 0.000
#> SRR934291     1   0.000      0.993 1.000 0.000
#> SRR934292     1   0.000      0.993 1.000 0.000
#> SRR934293     1   0.000      0.993 1.000 0.000
#> SRR934294     1   0.000      0.993 1.000 0.000
#> SRR934295     1   0.000      0.993 1.000 0.000
#> SRR934296     2   0.000      0.963 0.000 1.000
#> SRR934297     2   0.000      0.963 0.000 1.000
#> SRR934298     2   0.000      0.963 0.000 1.000
#> SRR934299     2   0.000      0.963 0.000 1.000
#> SRR934300     2   0.000      0.963 0.000 1.000
#> SRR934301     2   0.000      0.963 0.000 1.000
#> SRR934302     2   0.000      0.963 0.000 1.000
#> SRR934303     2   0.000      0.963 0.000 1.000
#> SRR934304     2   0.000      0.963 0.000 1.000
#> SRR934305     2   0.000      0.963 0.000 1.000
#> SRR934306     2   0.000      0.963 0.000 1.000
#> SRR934307     2   0.000      0.963 0.000 1.000
#> SRR934308     2   0.000      0.963 0.000 1.000
#> SRR934309     2   0.000      0.963 0.000 1.000
#> SRR934310     2   0.000      0.963 0.000 1.000
#> SRR934311     2   0.000      0.963 0.000 1.000
#> SRR934312     1   0.000      0.993 1.000 0.000
#> SRR934313     1   0.000      0.993 1.000 0.000
#> SRR934314     1   0.000      0.993 1.000 0.000
#> SRR934315     1   0.000      0.993 1.000 0.000
#> SRR934316     1   0.000      0.993 1.000 0.000
#> SRR934317     1   0.000      0.993 1.000 0.000
#> SRR934318     1   0.000      0.993 1.000 0.000
#> SRR934319     1   0.000      0.993 1.000 0.000
#> SRR934320     1   0.000      0.993 1.000 0.000
#> SRR934321     1   0.000      0.993 1.000 0.000
#> SRR934322     1   0.000      0.993 1.000 0.000
#> SRR934323     1   0.000      0.993 1.000 0.000
#> SRR934324     1   0.000      0.993 1.000 0.000
#> SRR934325     1   0.000      0.993 1.000 0.000
#> SRR934326     1   0.000      0.993 1.000 0.000
#> SRR934327     1   0.000      0.993 1.000 0.000
#> SRR934328     1   0.000      0.993 1.000 0.000
#> SRR934329     1   0.000      0.993 1.000 0.000
#> SRR934330     1   0.000      0.993 1.000 0.000
#> SRR934331     1   0.000      0.993 1.000 0.000
#> SRR934332     1   0.000      0.993 1.000 0.000
#> SRR934333     1   0.000      0.993 1.000 0.000
#> SRR934334     1   0.000      0.993 1.000 0.000
#> SRR934335     1   0.000      0.993 1.000 0.000
#> SRR934344     1   0.000      0.993 1.000 0.000
#> SRR934345     1   0.000      0.993 1.000 0.000
#> SRR934346     1   0.000      0.993 1.000 0.000
#> SRR934347     1   0.000      0.993 1.000 0.000
#> SRR934348     1   0.000      0.993 1.000 0.000
#> SRR934349     1   0.000      0.993 1.000 0.000
#> SRR934350     1   0.000      0.993 1.000 0.000
#> SRR934351     1   0.000      0.993 1.000 0.000
#> SRR934336     1   0.358      0.931 0.932 0.068
#> SRR934337     1   0.373      0.927 0.928 0.072
#> SRR934338     1   0.358      0.931 0.932 0.068
#> SRR934339     1   0.358      0.931 0.932 0.068
#> SRR934340     1   0.358      0.931 0.932 0.068
#> SRR934341     1   0.358      0.931 0.932 0.068
#> SRR934342     1   0.358      0.931 0.932 0.068

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR934216     2  0.9517      0.338 0.280 0.488 0.232
#> SRR934217     2  0.9517      0.338 0.280 0.488 0.232
#> SRR934218     2  0.9517      0.338 0.280 0.488 0.232
#> SRR934219     2  0.9517      0.338 0.280 0.488 0.232
#> SRR934220     2  0.9517      0.338 0.280 0.488 0.232
#> SRR934221     2  0.9517      0.338 0.280 0.488 0.232
#> SRR934222     2  0.9517      0.338 0.280 0.488 0.232
#> SRR934223     2  0.9517      0.338 0.280 0.488 0.232
#> SRR934224     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934225     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934226     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934227     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934228     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934229     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934230     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934231     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934232     3  0.6520      0.162 0.004 0.488 0.508
#> SRR934233     3  0.6520      0.162 0.004 0.488 0.508
#> SRR934234     3  0.6520      0.162 0.004 0.488 0.508
#> SRR934235     3  0.6520      0.162 0.004 0.488 0.508
#> SRR934236     3  0.6520      0.162 0.004 0.488 0.508
#> SRR934237     3  0.6520      0.162 0.004 0.488 0.508
#> SRR934238     3  0.6520      0.162 0.004 0.488 0.508
#> SRR934239     3  0.6520      0.162 0.004 0.488 0.508
#> SRR934240     2  0.5928      0.293 0.008 0.696 0.296
#> SRR934241     2  0.5928      0.293 0.008 0.696 0.296
#> SRR934242     2  0.5928      0.293 0.008 0.696 0.296
#> SRR934243     2  0.5928      0.293 0.008 0.696 0.296
#> SRR934244     2  0.5928      0.293 0.008 0.696 0.296
#> SRR934245     2  0.5928      0.293 0.008 0.696 0.296
#> SRR934246     2  0.5928      0.293 0.008 0.696 0.296
#> SRR934247     2  0.5928      0.293 0.008 0.696 0.296
#> SRR934248     3  0.0000      0.727 0.000 0.000 1.000
#> SRR934249     3  0.0000      0.727 0.000 0.000 1.000
#> SRR934250     3  0.0000      0.727 0.000 0.000 1.000
#> SRR934251     3  0.0000      0.727 0.000 0.000 1.000
#> SRR934252     3  0.0000      0.727 0.000 0.000 1.000
#> SRR934253     3  0.0000      0.727 0.000 0.000 1.000
#> SRR934254     3  0.0000      0.727 0.000 0.000 1.000
#> SRR934255     3  0.0000      0.727 0.000 0.000 1.000
#> SRR934256     1  0.6668      0.503 0.696 0.264 0.040
#> SRR934257     1  0.6668      0.503 0.696 0.264 0.040
#> SRR934258     1  0.6668      0.503 0.696 0.264 0.040
#> SRR934259     1  0.6668      0.503 0.696 0.264 0.040
#> SRR934260     1  0.6668      0.503 0.696 0.264 0.040
#> SRR934261     1  0.6668      0.503 0.696 0.264 0.040
#> SRR934262     1  0.6668      0.503 0.696 0.264 0.040
#> SRR934263     1  0.6668      0.503 0.696 0.264 0.040
#> SRR934264     3  0.0592      0.729 0.000 0.012 0.988
#> SRR934265     3  0.0592      0.729 0.000 0.012 0.988
#> SRR934266     3  0.0592      0.729 0.000 0.012 0.988
#> SRR934267     3  0.0592      0.729 0.000 0.012 0.988
#> SRR934268     3  0.0592      0.729 0.000 0.012 0.988
#> SRR934269     3  0.0592      0.729 0.000 0.012 0.988
#> SRR934270     3  0.0592      0.729 0.000 0.012 0.988
#> SRR934271     3  0.0592      0.729 0.000 0.012 0.988
#> SRR934272     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934273     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934274     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934275     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934276     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934277     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934278     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934279     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934280     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934281     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934282     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934283     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934284     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934285     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934286     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934287     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934288     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934289     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934290     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934291     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934292     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934293     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934294     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934295     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934296     2  0.9212      0.366 0.180 0.516 0.304
#> SRR934297     2  0.9212      0.366 0.180 0.516 0.304
#> SRR934298     2  0.9212      0.366 0.180 0.516 0.304
#> SRR934299     2  0.9212      0.366 0.180 0.516 0.304
#> SRR934300     2  0.9212      0.366 0.180 0.516 0.304
#> SRR934301     2  0.9212      0.366 0.180 0.516 0.304
#> SRR934302     2  0.9212      0.366 0.180 0.516 0.304
#> SRR934303     2  0.9231      0.362 0.180 0.512 0.308
#> SRR934304     2  0.5733      0.328 0.000 0.676 0.324
#> SRR934305     2  0.5733      0.328 0.000 0.676 0.324
#> SRR934306     2  0.5733      0.328 0.000 0.676 0.324
#> SRR934307     2  0.5733      0.328 0.000 0.676 0.324
#> SRR934308     2  0.5733      0.328 0.000 0.676 0.324
#> SRR934309     2  0.5733      0.328 0.000 0.676 0.324
#> SRR934310     2  0.5733      0.328 0.000 0.676 0.324
#> SRR934311     2  0.5733      0.328 0.000 0.676 0.324
#> SRR934312     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934313     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934314     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934315     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934316     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934317     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934318     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934319     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934320     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934321     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934322     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934323     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934324     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934325     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934326     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934327     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934328     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934329     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934330     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934331     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934332     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934333     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934334     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934335     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934344     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934345     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934346     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934347     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934348     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934349     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934350     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934351     1  0.0000      0.958 1.000 0.000 0.000
#> SRR934336     1  0.1031      0.937 0.976 0.000 0.024
#> SRR934337     1  0.1031      0.937 0.976 0.000 0.024
#> SRR934338     1  0.1031      0.937 0.976 0.000 0.024
#> SRR934339     1  0.1031      0.937 0.976 0.000 0.024
#> SRR934340     1  0.1031      0.937 0.976 0.000 0.024
#> SRR934341     1  0.1031      0.937 0.976 0.000 0.024
#> SRR934342     1  0.1031      0.937 0.976 0.000 0.024

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> SRR934216     3  0.0524      1.000 0.000 0.004 0.988 0.008
#> SRR934217     3  0.0524      1.000 0.000 0.004 0.988 0.008
#> SRR934218     3  0.0524      1.000 0.000 0.004 0.988 0.008
#> SRR934219     3  0.0524      1.000 0.000 0.004 0.988 0.008
#> SRR934220     3  0.0524      1.000 0.000 0.004 0.988 0.008
#> SRR934221     3  0.0524      1.000 0.000 0.004 0.988 0.008
#> SRR934222     3  0.0524      1.000 0.000 0.004 0.988 0.008
#> SRR934223     3  0.0524      1.000 0.000 0.004 0.988 0.008
#> SRR934224     1  0.0188      0.997 0.996 0.000 0.004 0.000
#> SRR934225     1  0.0188      0.997 0.996 0.000 0.004 0.000
#> SRR934226     1  0.0188      0.997 0.996 0.000 0.004 0.000
#> SRR934227     1  0.0188      0.997 0.996 0.000 0.004 0.000
#> SRR934228     1  0.0188      0.997 0.996 0.000 0.004 0.000
#> SRR934229     1  0.0188      0.997 0.996 0.000 0.004 0.000
#> SRR934230     1  0.0188      0.997 0.996 0.000 0.004 0.000
#> SRR934231     1  0.0188      0.997 0.996 0.000 0.004 0.000
#> SRR934232     2  0.2149      0.684 0.000 0.912 0.000 0.088
#> SRR934233     2  0.2149      0.684 0.000 0.912 0.000 0.088
#> SRR934234     2  0.2149      0.684 0.000 0.912 0.000 0.088
#> SRR934235     2  0.2149      0.684 0.000 0.912 0.000 0.088
#> SRR934236     2  0.2149      0.684 0.000 0.912 0.000 0.088
#> SRR934237     2  0.2149      0.684 0.000 0.912 0.000 0.088
#> SRR934238     2  0.2149      0.684 0.000 0.912 0.000 0.088
#> SRR934239     2  0.2149      0.684 0.000 0.912 0.000 0.088
#> SRR934240     2  0.0000      0.705 0.000 1.000 0.000 0.000
#> SRR934241     2  0.0000      0.705 0.000 1.000 0.000 0.000
#> SRR934242     2  0.0000      0.705 0.000 1.000 0.000 0.000
#> SRR934243     2  0.0000      0.705 0.000 1.000 0.000 0.000
#> SRR934244     2  0.0000      0.705 0.000 1.000 0.000 0.000
#> SRR934245     2  0.0000      0.705 0.000 1.000 0.000 0.000
#> SRR934246     2  0.0000      0.705 0.000 1.000 0.000 0.000
#> SRR934247     2  0.0000      0.705 0.000 1.000 0.000 0.000
#> SRR934248     4  0.3024      1.000 0.000 0.148 0.000 0.852
#> SRR934249     4  0.3024      1.000 0.000 0.148 0.000 0.852
#> SRR934250     4  0.3024      1.000 0.000 0.148 0.000 0.852
#> SRR934251     4  0.3024      1.000 0.000 0.148 0.000 0.852
#> SRR934252     4  0.3024      1.000 0.000 0.148 0.000 0.852
#> SRR934253     4  0.3024      1.000 0.000 0.148 0.000 0.852
#> SRR934254     4  0.3024      1.000 0.000 0.148 0.000 0.852
#> SRR934255     4  0.3024      1.000 0.000 0.148 0.000 0.852
#> SRR934256     2  0.4643      0.493 0.344 0.656 0.000 0.000
#> SRR934257     2  0.4643      0.493 0.344 0.656 0.000 0.000
#> SRR934258     2  0.4643      0.493 0.344 0.656 0.000 0.000
#> SRR934259     2  0.4643      0.493 0.344 0.656 0.000 0.000
#> SRR934260     2  0.4643      0.493 0.344 0.656 0.000 0.000
#> SRR934261     2  0.4643      0.493 0.344 0.656 0.000 0.000
#> SRR934262     2  0.4643      0.493 0.344 0.656 0.000 0.000
#> SRR934263     2  0.4643      0.493 0.344 0.656 0.000 0.000
#> SRR934264     4  0.3024      1.000 0.000 0.148 0.000 0.852
#> SRR934265     4  0.3024      1.000 0.000 0.148 0.000 0.852
#> SRR934266     4  0.3024      1.000 0.000 0.148 0.000 0.852
#> SRR934267     4  0.3024      1.000 0.000 0.148 0.000 0.852
#> SRR934268     4  0.3024      1.000 0.000 0.148 0.000 0.852
#> SRR934269     4  0.3024      1.000 0.000 0.148 0.000 0.852
#> SRR934270     4  0.3024      1.000 0.000 0.148 0.000 0.852
#> SRR934271     4  0.3024      1.000 0.000 0.148 0.000 0.852
#> SRR934272     1  0.0188      0.997 0.996 0.000 0.004 0.000
#> SRR934273     1  0.0188      0.997 0.996 0.000 0.004 0.000
#> SRR934274     1  0.0188      0.997 0.996 0.000 0.004 0.000
#> SRR934275     1  0.0188      0.997 0.996 0.000 0.004 0.000
#> SRR934276     1  0.0188      0.997 0.996 0.000 0.004 0.000
#> SRR934277     1  0.0188      0.997 0.996 0.000 0.004 0.000
#> SRR934278     1  0.0188      0.997 0.996 0.000 0.004 0.000
#> SRR934279     1  0.0188      0.997 0.996 0.000 0.004 0.000
#> SRR934280     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934281     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934282     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934283     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934284     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934285     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934286     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934287     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934288     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934289     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934290     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934291     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934292     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934293     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934294     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934295     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934296     2  0.5395      0.571 0.000 0.736 0.092 0.172
#> SRR934297     2  0.5395      0.571 0.000 0.736 0.092 0.172
#> SRR934298     2  0.5395      0.571 0.000 0.736 0.092 0.172
#> SRR934299     2  0.5376      0.569 0.000 0.736 0.088 0.176
#> SRR934300     2  0.5395      0.571 0.000 0.736 0.092 0.172
#> SRR934301     2  0.5395      0.571 0.000 0.736 0.092 0.172
#> SRR934302     2  0.5395      0.571 0.000 0.736 0.092 0.172
#> SRR934303     2  0.5376      0.569 0.000 0.736 0.088 0.176
#> SRR934304     2  0.6860      0.483 0.000 0.592 0.244 0.164
#> SRR934305     2  0.6860      0.483 0.000 0.592 0.244 0.164
#> SRR934306     2  0.6860      0.483 0.000 0.592 0.244 0.164
#> SRR934307     2  0.6860      0.483 0.000 0.592 0.244 0.164
#> SRR934308     2  0.6860      0.483 0.000 0.592 0.244 0.164
#> SRR934309     2  0.6860      0.483 0.000 0.592 0.244 0.164
#> SRR934310     2  0.6860      0.483 0.000 0.592 0.244 0.164
#> SRR934311     2  0.6860      0.483 0.000 0.592 0.244 0.164
#> SRR934312     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934313     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934314     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934315     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934316     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934317     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934318     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934319     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934320     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934321     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934322     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934323     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934324     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934325     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934326     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934327     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934328     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934329     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934330     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934331     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934332     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934333     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934334     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934335     1  0.0000      0.998 1.000 0.000 0.000 0.000
#> SRR934344     1  0.0188      0.996 0.996 0.000 0.004 0.000
#> SRR934345     1  0.0188      0.996 0.996 0.000 0.004 0.000
#> SRR934346     1  0.0188      0.996 0.996 0.000 0.004 0.000
#> SRR934347     1  0.0188      0.996 0.996 0.000 0.004 0.000
#> SRR934348     1  0.0188      0.996 0.996 0.000 0.004 0.000
#> SRR934349     1  0.0188      0.996 0.996 0.000 0.004 0.000
#> SRR934350     1  0.0188      0.996 0.996 0.000 0.004 0.000
#> SRR934351     1  0.0188      0.996 0.996 0.000 0.004 0.000
#> SRR934336     1  0.0188      0.997 0.996 0.000 0.004 0.000
#> SRR934337     1  0.0188      0.997 0.996 0.000 0.004 0.000
#> SRR934338     1  0.0188      0.997 0.996 0.000 0.004 0.000
#> SRR934339     1  0.0188      0.997 0.996 0.000 0.004 0.000
#> SRR934340     1  0.0188      0.997 0.996 0.000 0.004 0.000
#> SRR934341     1  0.0188      0.997 0.996 0.000 0.004 0.000
#> SRR934342     1  0.0188      0.997 0.996 0.000 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> SRR934216     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR934217     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR934218     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR934219     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR934220     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR934221     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR934222     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR934223     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR934224     1  0.0162      0.995 0.996 0.004 0.000 0.000 0.000
#> SRR934225     1  0.0162      0.995 0.996 0.004 0.000 0.000 0.000
#> SRR934226     1  0.0162      0.995 0.996 0.004 0.000 0.000 0.000
#> SRR934227     1  0.0162      0.995 0.996 0.004 0.000 0.000 0.000
#> SRR934228     1  0.0162      0.995 0.996 0.004 0.000 0.000 0.000
#> SRR934229     1  0.0162      0.995 0.996 0.004 0.000 0.000 0.000
#> SRR934230     1  0.0162      0.995 0.996 0.004 0.000 0.000 0.000
#> SRR934231     1  0.0162      0.995 0.996 0.004 0.000 0.000 0.000
#> SRR934232     2  0.2852      0.826 0.000 0.828 0.000 0.172 0.000
#> SRR934233     2  0.2852      0.826 0.000 0.828 0.000 0.172 0.000
#> SRR934234     2  0.2852      0.826 0.000 0.828 0.000 0.172 0.000
#> SRR934235     2  0.2852      0.826 0.000 0.828 0.000 0.172 0.000
#> SRR934236     2  0.2852      0.826 0.000 0.828 0.000 0.172 0.000
#> SRR934237     2  0.2852      0.826 0.000 0.828 0.000 0.172 0.000
#> SRR934238     2  0.2852      0.826 0.000 0.828 0.000 0.172 0.000
#> SRR934239     2  0.2852      0.826 0.000 0.828 0.000 0.172 0.000
#> SRR934240     2  0.2011      0.850 0.000 0.908 0.000 0.088 0.004
#> SRR934241     2  0.2011      0.850 0.000 0.908 0.000 0.088 0.004
#> SRR934242     2  0.2011      0.850 0.000 0.908 0.000 0.088 0.004
#> SRR934243     2  0.2011      0.850 0.000 0.908 0.000 0.088 0.004
#> SRR934244     2  0.2011      0.850 0.000 0.908 0.000 0.088 0.004
#> SRR934245     2  0.2011      0.850 0.000 0.908 0.000 0.088 0.004
#> SRR934246     2  0.2011      0.850 0.000 0.908 0.000 0.088 0.004
#> SRR934247     2  0.2011      0.850 0.000 0.908 0.000 0.088 0.004
#> SRR934248     4  0.0000      0.978 0.000 0.000 0.000 1.000 0.000
#> SRR934249     4  0.0000      0.978 0.000 0.000 0.000 1.000 0.000
#> SRR934250     4  0.0000      0.978 0.000 0.000 0.000 1.000 0.000
#> SRR934251     4  0.0000      0.978 0.000 0.000 0.000 1.000 0.000
#> SRR934252     4  0.0000      0.978 0.000 0.000 0.000 1.000 0.000
#> SRR934253     4  0.0000      0.978 0.000 0.000 0.000 1.000 0.000
#> SRR934254     4  0.0000      0.978 0.000 0.000 0.000 1.000 0.000
#> SRR934255     4  0.0000      0.978 0.000 0.000 0.000 1.000 0.000
#> SRR934256     2  0.2813      0.751 0.168 0.832 0.000 0.000 0.000
#> SRR934257     2  0.2813      0.751 0.168 0.832 0.000 0.000 0.000
#> SRR934258     2  0.2813      0.751 0.168 0.832 0.000 0.000 0.000
#> SRR934259     2  0.2813      0.751 0.168 0.832 0.000 0.000 0.000
#> SRR934260     2  0.2813      0.751 0.168 0.832 0.000 0.000 0.000
#> SRR934261     2  0.2813      0.751 0.168 0.832 0.000 0.000 0.000
#> SRR934262     2  0.2813      0.751 0.168 0.832 0.000 0.000 0.000
#> SRR934263     2  0.2813      0.751 0.168 0.832 0.000 0.000 0.000
#> SRR934264     4  0.0880      0.978 0.000 0.032 0.000 0.968 0.000
#> SRR934265     4  0.0880      0.978 0.000 0.032 0.000 0.968 0.000
#> SRR934266     4  0.0880      0.978 0.000 0.032 0.000 0.968 0.000
#> SRR934267     4  0.0880      0.978 0.000 0.032 0.000 0.968 0.000
#> SRR934268     4  0.0880      0.978 0.000 0.032 0.000 0.968 0.000
#> SRR934269     4  0.0880      0.978 0.000 0.032 0.000 0.968 0.000
#> SRR934270     4  0.0880      0.978 0.000 0.032 0.000 0.968 0.000
#> SRR934271     4  0.0880      0.978 0.000 0.032 0.000 0.968 0.000
#> SRR934272     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> SRR934273     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> SRR934274     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> SRR934275     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> SRR934276     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> SRR934277     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> SRR934278     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> SRR934279     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> SRR934280     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> SRR934281     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> SRR934282     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> SRR934283     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> SRR934284     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> SRR934285     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> SRR934286     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> SRR934287     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> SRR934288     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> SRR934289     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> SRR934290     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> SRR934291     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> SRR934292     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> SRR934293     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> SRR934294     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> SRR934295     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> SRR934296     2  0.2286      0.803 0.000 0.888 0.004 0.108 0.000
#> SRR934297     2  0.2286      0.803 0.000 0.888 0.004 0.108 0.000
#> SRR934298     2  0.2286      0.803 0.000 0.888 0.004 0.108 0.000
#> SRR934299     2  0.2286      0.803 0.000 0.888 0.004 0.108 0.000
#> SRR934300     2  0.2286      0.803 0.000 0.888 0.004 0.108 0.000
#> SRR934301     2  0.2286      0.803 0.000 0.888 0.004 0.108 0.000
#> SRR934302     2  0.2286      0.803 0.000 0.888 0.004 0.108 0.000
#> SRR934303     2  0.2286      0.803 0.000 0.888 0.004 0.108 0.000
#> SRR934304     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000
#> SRR934305     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000
#> SRR934306     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000
#> SRR934307     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000
#> SRR934308     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000
#> SRR934309     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000
#> SRR934310     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000
#> SRR934311     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000
#> SRR934312     1  0.0162      0.995 0.996 0.004 0.000 0.000 0.000
#> SRR934313     1  0.0162      0.995 0.996 0.004 0.000 0.000 0.000
#> SRR934314     1  0.0162      0.995 0.996 0.004 0.000 0.000 0.000
#> SRR934315     1  0.0162      0.995 0.996 0.004 0.000 0.000 0.000
#> SRR934316     1  0.0162      0.995 0.996 0.004 0.000 0.000 0.000
#> SRR934317     1  0.0162      0.995 0.996 0.004 0.000 0.000 0.000
#> SRR934318     1  0.0162      0.995 0.996 0.004 0.000 0.000 0.000
#> SRR934319     1  0.0162      0.995 0.996 0.004 0.000 0.000 0.000
#> SRR934320     1  0.0404      0.989 0.988 0.012 0.000 0.000 0.000
#> SRR934321     1  0.0404      0.989 0.988 0.012 0.000 0.000 0.000
#> SRR934322     1  0.0404      0.989 0.988 0.012 0.000 0.000 0.000
#> SRR934323     1  0.0404      0.989 0.988 0.012 0.000 0.000 0.000
#> SRR934324     1  0.0404      0.989 0.988 0.012 0.000 0.000 0.000
#> SRR934325     1  0.0404      0.989 0.988 0.012 0.000 0.000 0.000
#> SRR934326     1  0.0404      0.989 0.988 0.012 0.000 0.000 0.000
#> SRR934327     1  0.0404      0.989 0.988 0.012 0.000 0.000 0.000
#> SRR934328     1  0.0162      0.995 0.996 0.004 0.000 0.000 0.000
#> SRR934329     1  0.0162      0.995 0.996 0.004 0.000 0.000 0.000
#> SRR934330     1  0.0162      0.995 0.996 0.004 0.000 0.000 0.000
#> SRR934331     1  0.0162      0.995 0.996 0.004 0.000 0.000 0.000
#> SRR934332     1  0.0162      0.995 0.996 0.004 0.000 0.000 0.000
#> SRR934333     1  0.0162      0.995 0.996 0.004 0.000 0.000 0.000
#> SRR934334     1  0.0162      0.995 0.996 0.004 0.000 0.000 0.000
#> SRR934335     1  0.0162      0.995 0.996 0.004 0.000 0.000 0.000
#> SRR934344     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> SRR934345     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> SRR934346     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> SRR934347     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> SRR934348     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> SRR934349     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> SRR934350     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> SRR934351     1  0.0000      0.996 1.000 0.000 0.000 0.000 0.000
#> SRR934336     1  0.0404      0.988 0.988 0.012 0.000 0.000 0.000
#> SRR934337     1  0.0404      0.988 0.988 0.012 0.000 0.000 0.000
#> SRR934338     1  0.0404      0.988 0.988 0.012 0.000 0.000 0.000
#> SRR934339     1  0.0404      0.988 0.988 0.012 0.000 0.000 0.000
#> SRR934340     1  0.0404      0.988 0.988 0.012 0.000 0.000 0.000
#> SRR934341     1  0.0404      0.988 0.988 0.012 0.000 0.000 0.000
#> SRR934342     1  0.0404      0.988 0.988 0.012 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2 p3    p4 p5    p6
#> SRR934216     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR934217     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR934218     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR934219     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR934220     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR934221     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR934222     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR934223     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR934224     1  0.3482      0.753 0.684 0.000  0 0.000  0 0.316
#> SRR934225     1  0.3482      0.753 0.684 0.000  0 0.000  0 0.316
#> SRR934226     1  0.3482      0.753 0.684 0.000  0 0.000  0 0.316
#> SRR934227     1  0.3499      0.753 0.680 0.000  0 0.000  0 0.320
#> SRR934228     1  0.3482      0.753 0.684 0.000  0 0.000  0 0.316
#> SRR934229     1  0.3482      0.753 0.684 0.000  0 0.000  0 0.316
#> SRR934230     1  0.3482      0.756 0.684 0.000  0 0.000  0 0.316
#> SRR934231     1  0.3499      0.753 0.680 0.000  0 0.000  0 0.320
#> SRR934232     2  0.0000      0.927 0.000 1.000  0 0.000  0 0.000
#> SRR934233     2  0.0000      0.927 0.000 1.000  0 0.000  0 0.000
#> SRR934234     2  0.0000      0.927 0.000 1.000  0 0.000  0 0.000
#> SRR934235     2  0.0000      0.927 0.000 1.000  0 0.000  0 0.000
#> SRR934236     2  0.0000      0.927 0.000 1.000  0 0.000  0 0.000
#> SRR934237     2  0.0000      0.927 0.000 1.000  0 0.000  0 0.000
#> SRR934238     2  0.0000      0.927 0.000 1.000  0 0.000  0 0.000
#> SRR934239     2  0.0000      0.927 0.000 1.000  0 0.000  0 0.000
#> SRR934240     2  0.1663      0.924 0.000 0.912  0 0.000  0 0.088
#> SRR934241     2  0.1663      0.924 0.000 0.912  0 0.000  0 0.088
#> SRR934242     2  0.1663      0.924 0.000 0.912  0 0.000  0 0.088
#> SRR934243     2  0.1663      0.924 0.000 0.912  0 0.000  0 0.088
#> SRR934244     2  0.1663      0.924 0.000 0.912  0 0.000  0 0.088
#> SRR934245     2  0.1663      0.924 0.000 0.912  0 0.000  0 0.088
#> SRR934246     2  0.1663      0.924 0.000 0.912  0 0.000  0 0.088
#> SRR934247     2  0.1663      0.924 0.000 0.912  0 0.000  0 0.088
#> SRR934248     4  0.0000      0.881 0.000 0.000  0 1.000  0 0.000
#> SRR934249     4  0.0000      0.881 0.000 0.000  0 1.000  0 0.000
#> SRR934250     4  0.0000      0.881 0.000 0.000  0 1.000  0 0.000
#> SRR934251     4  0.0000      0.881 0.000 0.000  0 1.000  0 0.000
#> SRR934252     4  0.0000      0.881 0.000 0.000  0 1.000  0 0.000
#> SRR934253     4  0.0000      0.881 0.000 0.000  0 1.000  0 0.000
#> SRR934254     4  0.0000      0.881 0.000 0.000  0 1.000  0 0.000
#> SRR934255     4  0.0000      0.881 0.000 0.000  0 1.000  0 0.000
#> SRR934256     6  0.5446      0.798 0.144 0.316  0 0.000  0 0.540
#> SRR934257     6  0.5446      0.798 0.144 0.316  0 0.000  0 0.540
#> SRR934258     6  0.5446      0.798 0.144 0.316  0 0.000  0 0.540
#> SRR934259     6  0.5446      0.798 0.144 0.316  0 0.000  0 0.540
#> SRR934260     6  0.5446      0.798 0.144 0.316  0 0.000  0 0.540
#> SRR934261     6  0.5446      0.798 0.144 0.316  0 0.000  0 0.540
#> SRR934262     6  0.5446      0.798 0.144 0.316  0 0.000  0 0.540
#> SRR934263     6  0.5446      0.798 0.144 0.316  0 0.000  0 0.540
#> SRR934264     4  0.2793      0.882 0.000 0.200  0 0.800  0 0.000
#> SRR934265     4  0.2793      0.882 0.000 0.200  0 0.800  0 0.000
#> SRR934266     4  0.2793      0.882 0.000 0.200  0 0.800  0 0.000
#> SRR934267     4  0.2793      0.882 0.000 0.200  0 0.800  0 0.000
#> SRR934268     4  0.2793      0.882 0.000 0.200  0 0.800  0 0.000
#> SRR934269     4  0.2793      0.882 0.000 0.200  0 0.800  0 0.000
#> SRR934270     4  0.2793      0.882 0.000 0.200  0 0.800  0 0.000
#> SRR934271     4  0.2793      0.882 0.000 0.200  0 0.800  0 0.000
#> SRR934272     1  0.3499      0.753 0.680 0.000  0 0.000  0 0.320
#> SRR934273     1  0.3499      0.753 0.680 0.000  0 0.000  0 0.320
#> SRR934274     1  0.3499      0.753 0.680 0.000  0 0.000  0 0.320
#> SRR934275     1  0.3499      0.753 0.680 0.000  0 0.000  0 0.320
#> SRR934276     1  0.3499      0.753 0.680 0.000  0 0.000  0 0.320
#> SRR934277     1  0.3499      0.753 0.680 0.000  0 0.000  0 0.320
#> SRR934278     1  0.3499      0.753 0.680 0.000  0 0.000  0 0.320
#> SRR934279     1  0.3499      0.753 0.680 0.000  0 0.000  0 0.320
#> SRR934280     1  0.0146      0.857 0.996 0.000  0 0.000  0 0.004
#> SRR934281     1  0.0146      0.857 0.996 0.000  0 0.000  0 0.004
#> SRR934282     1  0.0146      0.857 0.996 0.000  0 0.000  0 0.004
#> SRR934283     1  0.0146      0.857 0.996 0.000  0 0.000  0 0.004
#> SRR934284     1  0.0146      0.857 0.996 0.000  0 0.000  0 0.004
#> SRR934285     1  0.0146      0.857 0.996 0.000  0 0.000  0 0.004
#> SRR934286     1  0.0146      0.857 0.996 0.000  0 0.000  0 0.004
#> SRR934287     1  0.0146      0.857 0.996 0.000  0 0.000  0 0.004
#> SRR934288     1  0.0146      0.857 0.996 0.000  0 0.000  0 0.004
#> SRR934289     1  0.0146      0.857 0.996 0.000  0 0.000  0 0.004
#> SRR934290     1  0.0146      0.857 0.996 0.000  0 0.000  0 0.004
#> SRR934291     1  0.0146      0.857 0.996 0.000  0 0.000  0 0.004
#> SRR934292     1  0.0146      0.857 0.996 0.000  0 0.000  0 0.004
#> SRR934293     1  0.0146      0.857 0.996 0.000  0 0.000  0 0.004
#> SRR934294     1  0.0146      0.857 0.996 0.000  0 0.000  0 0.004
#> SRR934295     1  0.0146      0.857 0.996 0.000  0 0.000  0 0.004
#> SRR934296     6  0.4219      0.773 0.000 0.320  0 0.032  0 0.648
#> SRR934297     6  0.4219      0.773 0.000 0.320  0 0.032  0 0.648
#> SRR934298     6  0.4219      0.773 0.000 0.320  0 0.032  0 0.648
#> SRR934299     6  0.4219      0.773 0.000 0.320  0 0.032  0 0.648
#> SRR934300     6  0.4219      0.773 0.000 0.320  0 0.032  0 0.648
#> SRR934301     6  0.4219      0.773 0.000 0.320  0 0.032  0 0.648
#> SRR934302     6  0.4219      0.773 0.000 0.320  0 0.032  0 0.648
#> SRR934303     6  0.4219      0.773 0.000 0.320  0 0.032  0 0.648
#> SRR934304     5  0.0000      1.000 0.000 0.000  0 0.000  1 0.000
#> SRR934305     5  0.0000      1.000 0.000 0.000  0 0.000  1 0.000
#> SRR934306     5  0.0000      1.000 0.000 0.000  0 0.000  1 0.000
#> SRR934307     5  0.0000      1.000 0.000 0.000  0 0.000  1 0.000
#> SRR934308     5  0.0000      1.000 0.000 0.000  0 0.000  1 0.000
#> SRR934309     5  0.0000      1.000 0.000 0.000  0 0.000  1 0.000
#> SRR934310     5  0.0000      1.000 0.000 0.000  0 0.000  1 0.000
#> SRR934311     5  0.0000      1.000 0.000 0.000  0 0.000  1 0.000
#> SRR934312     1  0.1610      0.849 0.916 0.000  0 0.000  0 0.084
#> SRR934313     1  0.1610      0.849 0.916 0.000  0 0.000  0 0.084
#> SRR934314     1  0.1663      0.848 0.912 0.000  0 0.000  0 0.088
#> SRR934315     1  0.1610      0.849 0.916 0.000  0 0.000  0 0.084
#> SRR934316     1  0.1663      0.848 0.912 0.000  0 0.000  0 0.088
#> SRR934317     1  0.1663      0.848 0.912 0.000  0 0.000  0 0.088
#> SRR934318     1  0.1327      0.853 0.936 0.000  0 0.000  0 0.064
#> SRR934319     1  0.1663      0.848 0.912 0.000  0 0.000  0 0.088
#> SRR934320     1  0.2178      0.763 0.868 0.000  0 0.000  0 0.132
#> SRR934321     1  0.2260      0.756 0.860 0.000  0 0.000  0 0.140
#> SRR934322     1  0.2260      0.756 0.860 0.000  0 0.000  0 0.140
#> SRR934323     1  0.2260      0.756 0.860 0.000  0 0.000  0 0.140
#> SRR934324     1  0.2260      0.756 0.860 0.000  0 0.000  0 0.140
#> SRR934325     1  0.2178      0.763 0.868 0.000  0 0.000  0 0.132
#> SRR934326     1  0.2260      0.756 0.860 0.000  0 0.000  0 0.140
#> SRR934327     1  0.2260      0.756 0.860 0.000  0 0.000  0 0.140
#> SRR934328     1  0.0547      0.857 0.980 0.000  0 0.000  0 0.020
#> SRR934329     1  0.0547      0.857 0.980 0.000  0 0.000  0 0.020
#> SRR934330     1  0.0458      0.858 0.984 0.000  0 0.000  0 0.016
#> SRR934331     1  0.0547      0.857 0.980 0.000  0 0.000  0 0.020
#> SRR934332     1  0.0458      0.858 0.984 0.000  0 0.000  0 0.016
#> SRR934333     1  0.0547      0.857 0.980 0.000  0 0.000  0 0.020
#> SRR934334     1  0.0547      0.857 0.980 0.000  0 0.000  0 0.020
#> SRR934335     1  0.0547      0.857 0.980 0.000  0 0.000  0 0.020
#> SRR934344     1  0.0363      0.856 0.988 0.000  0 0.000  0 0.012
#> SRR934345     1  0.0363      0.856 0.988 0.000  0 0.000  0 0.012
#> SRR934346     1  0.0363      0.856 0.988 0.000  0 0.000  0 0.012
#> SRR934347     1  0.0363      0.856 0.988 0.000  0 0.000  0 0.012
#> SRR934348     1  0.0363      0.856 0.988 0.000  0 0.000  0 0.012
#> SRR934349     1  0.0363      0.856 0.988 0.000  0 0.000  0 0.012
#> SRR934350     1  0.0363      0.856 0.988 0.000  0 0.000  0 0.012
#> SRR934351     1  0.0363      0.856 0.988 0.000  0 0.000  0 0.012
#> SRR934336     1  0.3647      0.730 0.640 0.000  0 0.000  0 0.360
#> SRR934337     1  0.3647      0.730 0.640 0.000  0 0.000  0 0.360
#> SRR934338     1  0.3647      0.730 0.640 0.000  0 0.000  0 0.360
#> SRR934339     1  0.3647      0.730 0.640 0.000  0 0.000  0 0.360
#> SRR934340     1  0.3647      0.730 0.640 0.000  0 0.000  0 0.360
#> SRR934341     1  0.3647      0.730 0.640 0.000  0 0.000  0 0.360
#> SRR934342     1  0.3647      0.730 0.640 0.000  0 0.000  0 0.360

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14550 rows and 135 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.984       0.992         0.4265 0.580   0.580
#> 3 3 0.744           0.866       0.915         0.3292 0.818   0.693
#> 4 4 0.737           0.788       0.878         0.2169 0.858   0.666
#> 5 5 0.892           0.932       0.920         0.0769 0.916   0.727
#> 6 6 0.928           0.926       0.927         0.0538 0.979   0.914

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR934216     1   0.000      0.988 1.000 0.000
#> SRR934217     1   0.000      0.988 1.000 0.000
#> SRR934218     1   0.000      0.988 1.000 0.000
#> SRR934219     1   0.000      0.988 1.000 0.000
#> SRR934220     1   0.000      0.988 1.000 0.000
#> SRR934221     1   0.000      0.988 1.000 0.000
#> SRR934222     1   0.000      0.988 1.000 0.000
#> SRR934223     1   0.000      0.988 1.000 0.000
#> SRR934224     1   0.000      0.988 1.000 0.000
#> SRR934225     1   0.000      0.988 1.000 0.000
#> SRR934226     1   0.000      0.988 1.000 0.000
#> SRR934227     1   0.000      0.988 1.000 0.000
#> SRR934228     1   0.000      0.988 1.000 0.000
#> SRR934229     1   0.000      0.988 1.000 0.000
#> SRR934230     1   0.000      0.988 1.000 0.000
#> SRR934231     1   0.000      0.988 1.000 0.000
#> SRR934232     2   0.000      1.000 0.000 1.000
#> SRR934233     2   0.000      1.000 0.000 1.000
#> SRR934234     2   0.000      1.000 0.000 1.000
#> SRR934235     2   0.000      1.000 0.000 1.000
#> SRR934236     2   0.000      1.000 0.000 1.000
#> SRR934237     2   0.000      1.000 0.000 1.000
#> SRR934238     2   0.000      1.000 0.000 1.000
#> SRR934239     2   0.000      1.000 0.000 1.000
#> SRR934240     2   0.000      1.000 0.000 1.000
#> SRR934241     2   0.000      1.000 0.000 1.000
#> SRR934242     2   0.000      1.000 0.000 1.000
#> SRR934243     2   0.000      1.000 0.000 1.000
#> SRR934244     2   0.000      1.000 0.000 1.000
#> SRR934245     2   0.000      1.000 0.000 1.000
#> SRR934246     2   0.000      1.000 0.000 1.000
#> SRR934247     2   0.000      1.000 0.000 1.000
#> SRR934248     2   0.000      1.000 0.000 1.000
#> SRR934249     2   0.000      1.000 0.000 1.000
#> SRR934250     2   0.000      1.000 0.000 1.000
#> SRR934251     2   0.000      1.000 0.000 1.000
#> SRR934252     2   0.000      1.000 0.000 1.000
#> SRR934253     2   0.000      1.000 0.000 1.000
#> SRR934254     2   0.000      1.000 0.000 1.000
#> SRR934255     2   0.000      1.000 0.000 1.000
#> SRR934256     1   0.000      0.988 1.000 0.000
#> SRR934257     1   0.000      0.988 1.000 0.000
#> SRR934258     1   0.000      0.988 1.000 0.000
#> SRR934259     1   0.000      0.988 1.000 0.000
#> SRR934260     1   0.000      0.988 1.000 0.000
#> SRR934261     1   0.000      0.988 1.000 0.000
#> SRR934262     1   0.000      0.988 1.000 0.000
#> SRR934263     1   0.000      0.988 1.000 0.000
#> SRR934264     2   0.000      1.000 0.000 1.000
#> SRR934265     2   0.000      1.000 0.000 1.000
#> SRR934266     2   0.000      1.000 0.000 1.000
#> SRR934267     2   0.000      1.000 0.000 1.000
#> SRR934268     2   0.000      1.000 0.000 1.000
#> SRR934269     2   0.000      1.000 0.000 1.000
#> SRR934270     2   0.000      1.000 0.000 1.000
#> SRR934271     2   0.000      1.000 0.000 1.000
#> SRR934272     1   0.000      0.988 1.000 0.000
#> SRR934273     1   0.000      0.988 1.000 0.000
#> SRR934274     1   0.000      0.988 1.000 0.000
#> SRR934275     1   0.000      0.988 1.000 0.000
#> SRR934276     1   0.000      0.988 1.000 0.000
#> SRR934277     1   0.000      0.988 1.000 0.000
#> SRR934278     1   0.000      0.988 1.000 0.000
#> SRR934279     1   0.000      0.988 1.000 0.000
#> SRR934280     1   0.000      0.988 1.000 0.000
#> SRR934281     1   0.000      0.988 1.000 0.000
#> SRR934282     1   0.000      0.988 1.000 0.000
#> SRR934283     1   0.000      0.988 1.000 0.000
#> SRR934284     1   0.000      0.988 1.000 0.000
#> SRR934285     1   0.000      0.988 1.000 0.000
#> SRR934286     1   0.000      0.988 1.000 0.000
#> SRR934287     1   0.000      0.988 1.000 0.000
#> SRR934288     1   0.000      0.988 1.000 0.000
#> SRR934289     1   0.000      0.988 1.000 0.000
#> SRR934290     1   0.000      0.988 1.000 0.000
#> SRR934291     1   0.000      0.988 1.000 0.000
#> SRR934292     1   0.000      0.988 1.000 0.000
#> SRR934293     1   0.000      0.988 1.000 0.000
#> SRR934294     1   0.000      0.988 1.000 0.000
#> SRR934295     1   0.000      0.988 1.000 0.000
#> SRR934296     1   0.529      0.872 0.880 0.120
#> SRR934297     1   0.625      0.828 0.844 0.156
#> SRR934298     1   0.529      0.872 0.880 0.120
#> SRR934299     1   0.653      0.812 0.832 0.168
#> SRR934300     1   0.584      0.848 0.860 0.140
#> SRR934301     1   0.697      0.785 0.812 0.188
#> SRR934302     1   0.416      0.910 0.916 0.084
#> SRR934303     1   0.506      0.881 0.888 0.112
#> SRR934304     2   0.000      1.000 0.000 1.000
#> SRR934305     2   0.000      1.000 0.000 1.000
#> SRR934306     2   0.000      1.000 0.000 1.000
#> SRR934307     2   0.000      1.000 0.000 1.000
#> SRR934308     2   0.000      1.000 0.000 1.000
#> SRR934309     2   0.000      1.000 0.000 1.000
#> SRR934310     2   0.000      1.000 0.000 1.000
#> SRR934311     2   0.000      1.000 0.000 1.000
#> SRR934312     1   0.000      0.988 1.000 0.000
#> SRR934313     1   0.000      0.988 1.000 0.000
#> SRR934314     1   0.000      0.988 1.000 0.000
#> SRR934315     1   0.000      0.988 1.000 0.000
#> SRR934316     1   0.000      0.988 1.000 0.000
#> SRR934317     1   0.000      0.988 1.000 0.000
#> SRR934318     1   0.000      0.988 1.000 0.000
#> SRR934319     1   0.000      0.988 1.000 0.000
#> SRR934320     1   0.000      0.988 1.000 0.000
#> SRR934321     1   0.000      0.988 1.000 0.000
#> SRR934322     1   0.000      0.988 1.000 0.000
#> SRR934323     1   0.000      0.988 1.000 0.000
#> SRR934324     1   0.000      0.988 1.000 0.000
#> SRR934325     1   0.000      0.988 1.000 0.000
#> SRR934326     1   0.000      0.988 1.000 0.000
#> SRR934327     1   0.000      0.988 1.000 0.000
#> SRR934328     1   0.000      0.988 1.000 0.000
#> SRR934329     1   0.000      0.988 1.000 0.000
#> SRR934330     1   0.000      0.988 1.000 0.000
#> SRR934331     1   0.000      0.988 1.000 0.000
#> SRR934332     1   0.000      0.988 1.000 0.000
#> SRR934333     1   0.000      0.988 1.000 0.000
#> SRR934334     1   0.000      0.988 1.000 0.000
#> SRR934335     1   0.000      0.988 1.000 0.000
#> SRR934344     1   0.000      0.988 1.000 0.000
#> SRR934345     1   0.000      0.988 1.000 0.000
#> SRR934346     1   0.000      0.988 1.000 0.000
#> SRR934347     1   0.000      0.988 1.000 0.000
#> SRR934348     1   0.000      0.988 1.000 0.000
#> SRR934349     1   0.000      0.988 1.000 0.000
#> SRR934350     1   0.000      0.988 1.000 0.000
#> SRR934351     1   0.000      0.988 1.000 0.000
#> SRR934336     1   0.000      0.988 1.000 0.000
#> SRR934337     1   0.000      0.988 1.000 0.000
#> SRR934338     1   0.000      0.988 1.000 0.000
#> SRR934339     1   0.000      0.988 1.000 0.000
#> SRR934340     1   0.000      0.988 1.000 0.000
#> SRR934341     1   0.000      0.988 1.000 0.000
#> SRR934342     1   0.000      0.988 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR934216     3  0.4178      0.710 0.172 0.000 0.828
#> SRR934217     3  0.3412      0.717 0.124 0.000 0.876
#> SRR934218     3  0.3941      0.718 0.156 0.000 0.844
#> SRR934219     3  0.3941      0.718 0.156 0.000 0.844
#> SRR934220     3  0.3941      0.718 0.156 0.000 0.844
#> SRR934221     3  0.3482      0.718 0.128 0.000 0.872
#> SRR934222     3  0.3816      0.719 0.148 0.000 0.852
#> SRR934223     3  0.3551      0.718 0.132 0.000 0.868
#> SRR934224     1  0.2711      0.914 0.912 0.000 0.088
#> SRR934225     1  0.2711      0.914 0.912 0.000 0.088
#> SRR934226     1  0.2959      0.904 0.900 0.000 0.100
#> SRR934227     1  0.2711      0.914 0.912 0.000 0.088
#> SRR934228     1  0.2625      0.916 0.916 0.000 0.084
#> SRR934229     1  0.2796      0.910 0.908 0.000 0.092
#> SRR934230     1  0.2625      0.916 0.916 0.000 0.084
#> SRR934231     1  0.2625      0.916 0.916 0.000 0.084
#> SRR934232     2  0.0000      0.957 0.000 1.000 0.000
#> SRR934233     2  0.0000      0.957 0.000 1.000 0.000
#> SRR934234     2  0.0000      0.957 0.000 1.000 0.000
#> SRR934235     2  0.0000      0.957 0.000 1.000 0.000
#> SRR934236     2  0.0000      0.957 0.000 1.000 0.000
#> SRR934237     2  0.0000      0.957 0.000 1.000 0.000
#> SRR934238     2  0.0000      0.957 0.000 1.000 0.000
#> SRR934239     2  0.0000      0.957 0.000 1.000 0.000
#> SRR934240     2  0.4563      0.844 0.036 0.852 0.112
#> SRR934241     2  0.3532      0.877 0.008 0.884 0.108
#> SRR934242     2  0.3454      0.880 0.008 0.888 0.104
#> SRR934243     2  0.4892      0.827 0.048 0.840 0.112
#> SRR934244     2  0.4324      0.854 0.028 0.860 0.112
#> SRR934245     2  0.4446      0.849 0.032 0.856 0.112
#> SRR934246     2  0.4446      0.849 0.032 0.856 0.112
#> SRR934247     2  0.3846      0.870 0.016 0.876 0.108
#> SRR934248     2  0.0000      0.957 0.000 1.000 0.000
#> SRR934249     2  0.0000      0.957 0.000 1.000 0.000
#> SRR934250     2  0.0000      0.957 0.000 1.000 0.000
#> SRR934251     2  0.0000      0.957 0.000 1.000 0.000
#> SRR934252     2  0.0000      0.957 0.000 1.000 0.000
#> SRR934253     2  0.0000      0.957 0.000 1.000 0.000
#> SRR934254     2  0.0000      0.957 0.000 1.000 0.000
#> SRR934255     2  0.0000      0.957 0.000 1.000 0.000
#> SRR934256     1  0.3192      0.848 0.888 0.000 0.112
#> SRR934257     1  0.3192      0.848 0.888 0.000 0.112
#> SRR934258     1  0.3192      0.848 0.888 0.000 0.112
#> SRR934259     1  0.3192      0.848 0.888 0.000 0.112
#> SRR934260     1  0.3192      0.848 0.888 0.000 0.112
#> SRR934261     1  0.3192      0.848 0.888 0.000 0.112
#> SRR934262     1  0.3192      0.848 0.888 0.000 0.112
#> SRR934263     1  0.3192      0.848 0.888 0.000 0.112
#> SRR934264     2  0.0000      0.957 0.000 1.000 0.000
#> SRR934265     2  0.0000      0.957 0.000 1.000 0.000
#> SRR934266     2  0.0000      0.957 0.000 1.000 0.000
#> SRR934267     2  0.0000      0.957 0.000 1.000 0.000
#> SRR934268     2  0.0000      0.957 0.000 1.000 0.000
#> SRR934269     2  0.0000      0.957 0.000 1.000 0.000
#> SRR934270     2  0.0000      0.957 0.000 1.000 0.000
#> SRR934271     2  0.0000      0.957 0.000 1.000 0.000
#> SRR934272     1  0.2625      0.916 0.916 0.000 0.084
#> SRR934273     1  0.2625      0.916 0.916 0.000 0.084
#> SRR934274     1  0.2625      0.916 0.916 0.000 0.084
#> SRR934275     1  0.2625      0.916 0.916 0.000 0.084
#> SRR934276     1  0.2625      0.916 0.916 0.000 0.084
#> SRR934277     1  0.2537      0.918 0.920 0.000 0.080
#> SRR934278     1  0.2711      0.914 0.912 0.000 0.088
#> SRR934279     1  0.2625      0.916 0.916 0.000 0.084
#> SRR934280     1  0.1411      0.930 0.964 0.000 0.036
#> SRR934281     1  0.1411      0.930 0.964 0.000 0.036
#> SRR934282     1  0.1411      0.930 0.964 0.000 0.036
#> SRR934283     1  0.1411      0.930 0.964 0.000 0.036
#> SRR934284     1  0.1411      0.930 0.964 0.000 0.036
#> SRR934285     1  0.1411      0.930 0.964 0.000 0.036
#> SRR934286     1  0.1411      0.930 0.964 0.000 0.036
#> SRR934287     1  0.1289      0.931 0.968 0.000 0.032
#> SRR934288     1  0.0424      0.929 0.992 0.000 0.008
#> SRR934289     1  0.0592      0.927 0.988 0.000 0.012
#> SRR934290     1  0.1529      0.911 0.960 0.000 0.040
#> SRR934291     1  0.0592      0.927 0.988 0.000 0.012
#> SRR934292     1  0.0747      0.925 0.984 0.000 0.016
#> SRR934293     1  0.0592      0.927 0.988 0.000 0.012
#> SRR934294     1  0.0747      0.925 0.984 0.000 0.016
#> SRR934295     1  0.0592      0.927 0.988 0.000 0.012
#> SRR934296     3  0.6095      0.519 0.392 0.000 0.608
#> SRR934297     3  0.5905      0.586 0.352 0.000 0.648
#> SRR934298     3  0.6126      0.502 0.400 0.000 0.600
#> SRR934299     3  0.5988      0.563 0.368 0.000 0.632
#> SRR934300     3  0.6126      0.501 0.400 0.000 0.600
#> SRR934301     3  0.5650      0.630 0.312 0.000 0.688
#> SRR934302     3  0.5905      0.586 0.352 0.000 0.648
#> SRR934303     3  0.6026      0.549 0.376 0.000 0.624
#> SRR934304     3  0.4887      0.610 0.000 0.228 0.772
#> SRR934305     3  0.4887      0.610 0.000 0.228 0.772
#> SRR934306     3  0.4887      0.610 0.000 0.228 0.772
#> SRR934307     3  0.4887      0.610 0.000 0.228 0.772
#> SRR934308     3  0.4887      0.610 0.000 0.228 0.772
#> SRR934309     3  0.4887      0.610 0.000 0.228 0.772
#> SRR934310     3  0.4887      0.610 0.000 0.228 0.772
#> SRR934311     3  0.4887      0.610 0.000 0.228 0.772
#> SRR934312     1  0.2356      0.922 0.928 0.000 0.072
#> SRR934313     1  0.2356      0.922 0.928 0.000 0.072
#> SRR934314     1  0.2356      0.922 0.928 0.000 0.072
#> SRR934315     1  0.2356      0.922 0.928 0.000 0.072
#> SRR934316     1  0.2356      0.922 0.928 0.000 0.072
#> SRR934317     1  0.2356      0.922 0.928 0.000 0.072
#> SRR934318     1  0.2356      0.922 0.928 0.000 0.072
#> SRR934319     1  0.2356      0.922 0.928 0.000 0.072
#> SRR934320     1  0.0424      0.929 0.992 0.000 0.008
#> SRR934321     1  0.0000      0.930 1.000 0.000 0.000
#> SRR934322     1  0.0424      0.929 0.992 0.000 0.008
#> SRR934323     1  0.0424      0.929 0.992 0.000 0.008
#> SRR934324     1  0.0424      0.929 0.992 0.000 0.008
#> SRR934325     1  0.0424      0.929 0.992 0.000 0.008
#> SRR934326     1  0.0237      0.929 0.996 0.000 0.004
#> SRR934327     1  0.0424      0.929 0.992 0.000 0.008
#> SRR934328     1  0.2625      0.876 0.916 0.000 0.084
#> SRR934329     1  0.2711      0.873 0.912 0.000 0.088
#> SRR934330     1  0.2711      0.873 0.912 0.000 0.088
#> SRR934331     1  0.3038      0.857 0.896 0.000 0.104
#> SRR934332     1  0.2356      0.886 0.928 0.000 0.072
#> SRR934333     1  0.1031      0.921 0.976 0.000 0.024
#> SRR934334     1  0.2711      0.873 0.912 0.000 0.088
#> SRR934335     1  0.2796      0.869 0.908 0.000 0.092
#> SRR934344     1  0.0424      0.929 0.992 0.000 0.008
#> SRR934345     1  0.0424      0.929 0.992 0.000 0.008
#> SRR934346     1  0.0000      0.930 1.000 0.000 0.000
#> SRR934347     1  0.0237      0.929 0.996 0.000 0.004
#> SRR934348     1  0.0237      0.929 0.996 0.000 0.004
#> SRR934349     1  0.0424      0.929 0.992 0.000 0.008
#> SRR934350     1  0.0424      0.929 0.992 0.000 0.008
#> SRR934351     1  0.0000      0.930 1.000 0.000 0.000
#> SRR934336     1  0.1964      0.927 0.944 0.000 0.056
#> SRR934337     1  0.2356      0.922 0.928 0.000 0.072
#> SRR934338     1  0.2261      0.924 0.932 0.000 0.068
#> SRR934339     1  0.2261      0.924 0.932 0.000 0.068
#> SRR934340     1  0.1860      0.928 0.948 0.000 0.052
#> SRR934341     1  0.2261      0.924 0.932 0.000 0.068
#> SRR934342     1  0.2066      0.926 0.940 0.000 0.060

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> SRR934216     3  0.6756      0.758 0.188 0.000 0.612 0.200
#> SRR934217     3  0.6756      0.758 0.188 0.000 0.612 0.200
#> SRR934218     3  0.6756      0.758 0.188 0.000 0.612 0.200
#> SRR934219     3  0.6756      0.758 0.188 0.000 0.612 0.200
#> SRR934220     3  0.6756      0.758 0.188 0.000 0.612 0.200
#> SRR934221     3  0.6756      0.758 0.188 0.000 0.612 0.200
#> SRR934222     3  0.6756      0.758 0.188 0.000 0.612 0.200
#> SRR934223     3  0.6756      0.758 0.188 0.000 0.612 0.200
#> SRR934224     1  0.0469      0.816 0.988 0.000 0.000 0.012
#> SRR934225     1  0.0469      0.816 0.988 0.000 0.000 0.012
#> SRR934226     1  0.0469      0.816 0.988 0.000 0.000 0.012
#> SRR934227     1  0.0469      0.816 0.988 0.000 0.000 0.012
#> SRR934228     1  0.0469      0.816 0.988 0.000 0.000 0.012
#> SRR934229     1  0.0469      0.816 0.988 0.000 0.000 0.012
#> SRR934230     1  0.0469      0.816 0.988 0.000 0.000 0.012
#> SRR934231     1  0.0469      0.816 0.988 0.000 0.000 0.012
#> SRR934232     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR934233     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR934234     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR934235     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR934236     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR934237     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR934238     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR934239     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR934240     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR934241     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR934242     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR934243     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR934244     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR934245     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR934246     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR934247     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR934248     2  0.0469      0.992 0.000 0.988 0.000 0.012
#> SRR934249     2  0.0469      0.992 0.000 0.988 0.000 0.012
#> SRR934250     2  0.0469      0.992 0.000 0.988 0.000 0.012
#> SRR934251     2  0.0469      0.992 0.000 0.988 0.000 0.012
#> SRR934252     2  0.0469      0.992 0.000 0.988 0.000 0.012
#> SRR934253     2  0.0469      0.992 0.000 0.988 0.000 0.012
#> SRR934254     2  0.0469      0.992 0.000 0.988 0.000 0.012
#> SRR934255     2  0.0469      0.992 0.000 0.988 0.000 0.012
#> SRR934256     4  0.3726      0.865 0.212 0.000 0.000 0.788
#> SRR934257     4  0.3726      0.865 0.212 0.000 0.000 0.788
#> SRR934258     4  0.3726      0.865 0.212 0.000 0.000 0.788
#> SRR934259     4  0.3726      0.865 0.212 0.000 0.000 0.788
#> SRR934260     4  0.3726      0.865 0.212 0.000 0.000 0.788
#> SRR934261     4  0.3726      0.865 0.212 0.000 0.000 0.788
#> SRR934262     4  0.3726      0.865 0.212 0.000 0.000 0.788
#> SRR934263     4  0.3726      0.865 0.212 0.000 0.000 0.788
#> SRR934264     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR934265     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR934266     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR934267     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR934268     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR934269     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR934270     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR934271     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR934272     1  0.0469      0.816 0.988 0.000 0.000 0.012
#> SRR934273     1  0.0469      0.816 0.988 0.000 0.000 0.012
#> SRR934274     1  0.0469      0.816 0.988 0.000 0.000 0.012
#> SRR934275     1  0.0469      0.816 0.988 0.000 0.000 0.012
#> SRR934276     1  0.0469      0.816 0.988 0.000 0.000 0.012
#> SRR934277     1  0.0469      0.816 0.988 0.000 0.000 0.012
#> SRR934278     1  0.0469      0.816 0.988 0.000 0.000 0.012
#> SRR934279     1  0.0469      0.816 0.988 0.000 0.000 0.012
#> SRR934280     1  0.2149      0.804 0.912 0.000 0.000 0.088
#> SRR934281     1  0.2149      0.804 0.912 0.000 0.000 0.088
#> SRR934282     1  0.2408      0.792 0.896 0.000 0.000 0.104
#> SRR934283     1  0.2149      0.804 0.912 0.000 0.000 0.088
#> SRR934284     1  0.2149      0.804 0.912 0.000 0.000 0.088
#> SRR934285     1  0.2530      0.785 0.888 0.000 0.000 0.112
#> SRR934286     1  0.2149      0.804 0.912 0.000 0.000 0.088
#> SRR934287     1  0.2469      0.789 0.892 0.000 0.000 0.108
#> SRR934288     1  0.4406      0.431 0.700 0.000 0.000 0.300
#> SRR934289     1  0.4941     -0.157 0.564 0.000 0.000 0.436
#> SRR934290     4  0.4866      0.636 0.404 0.000 0.000 0.596
#> SRR934291     1  0.4967     -0.230 0.548 0.000 0.000 0.452
#> SRR934292     1  0.4981     -0.281 0.536 0.000 0.000 0.464
#> SRR934293     1  0.4730      0.201 0.636 0.000 0.000 0.364
#> SRR934294     1  0.4981     -0.282 0.536 0.000 0.000 0.464
#> SRR934295     1  0.4454      0.407 0.692 0.000 0.000 0.308
#> SRR934296     3  0.0921      0.875 0.000 0.000 0.972 0.028
#> SRR934297     3  0.0817      0.876 0.000 0.000 0.976 0.024
#> SRR934298     3  0.1716      0.855 0.000 0.000 0.936 0.064
#> SRR934299     3  0.1302      0.868 0.000 0.000 0.956 0.044
#> SRR934300     3  0.1022      0.873 0.000 0.000 0.968 0.032
#> SRR934301     3  0.0921      0.875 0.000 0.000 0.972 0.028
#> SRR934302     3  0.1022      0.873 0.000 0.000 0.968 0.032
#> SRR934303     3  0.0817      0.876 0.000 0.000 0.976 0.024
#> SRR934304     3  0.0000      0.880 0.000 0.000 1.000 0.000
#> SRR934305     3  0.0000      0.880 0.000 0.000 1.000 0.000
#> SRR934306     3  0.0000      0.880 0.000 0.000 1.000 0.000
#> SRR934307     3  0.0000      0.880 0.000 0.000 1.000 0.000
#> SRR934308     3  0.0000      0.880 0.000 0.000 1.000 0.000
#> SRR934309     3  0.0000      0.880 0.000 0.000 1.000 0.000
#> SRR934310     3  0.0000      0.880 0.000 0.000 1.000 0.000
#> SRR934311     3  0.0000      0.880 0.000 0.000 1.000 0.000
#> SRR934312     1  0.1022      0.824 0.968 0.000 0.000 0.032
#> SRR934313     1  0.1022      0.824 0.968 0.000 0.000 0.032
#> SRR934314     1  0.0921      0.824 0.972 0.000 0.000 0.028
#> SRR934315     1  0.1211      0.823 0.960 0.000 0.000 0.040
#> SRR934316     1  0.1389      0.821 0.952 0.000 0.000 0.048
#> SRR934317     1  0.1302      0.822 0.956 0.000 0.000 0.044
#> SRR934318     1  0.1474      0.820 0.948 0.000 0.000 0.052
#> SRR934319     1  0.1474      0.820 0.948 0.000 0.000 0.052
#> SRR934320     1  0.3219      0.727 0.836 0.000 0.000 0.164
#> SRR934321     1  0.2921      0.756 0.860 0.000 0.000 0.140
#> SRR934322     1  0.3311      0.714 0.828 0.000 0.000 0.172
#> SRR934323     1  0.3219      0.726 0.836 0.000 0.000 0.164
#> SRR934324     1  0.3123      0.737 0.844 0.000 0.000 0.156
#> SRR934325     1  0.3219      0.726 0.836 0.000 0.000 0.164
#> SRR934326     1  0.3219      0.726 0.836 0.000 0.000 0.164
#> SRR934327     1  0.3123      0.737 0.844 0.000 0.000 0.156
#> SRR934328     4  0.3726      0.865 0.212 0.000 0.000 0.788
#> SRR934329     4  0.3726      0.865 0.212 0.000 0.000 0.788
#> SRR934330     4  0.3726      0.865 0.212 0.000 0.000 0.788
#> SRR934331     4  0.3726      0.865 0.212 0.000 0.000 0.788
#> SRR934332     4  0.3801      0.860 0.220 0.000 0.000 0.780
#> SRR934333     4  0.3801      0.860 0.220 0.000 0.000 0.780
#> SRR934334     4  0.3726      0.865 0.212 0.000 0.000 0.788
#> SRR934335     4  0.3726      0.865 0.212 0.000 0.000 0.788
#> SRR934344     1  0.4999     -0.398 0.508 0.000 0.000 0.492
#> SRR934345     4  0.4972      0.533 0.456 0.000 0.000 0.544
#> SRR934346     1  0.4996     -0.366 0.516 0.000 0.000 0.484
#> SRR934347     4  0.4996      0.451 0.484 0.000 0.000 0.516
#> SRR934348     4  0.4972      0.533 0.456 0.000 0.000 0.544
#> SRR934349     4  0.5000      0.408 0.496 0.000 0.000 0.504
#> SRR934350     4  0.4967      0.543 0.452 0.000 0.000 0.548
#> SRR934351     4  0.4992      0.477 0.476 0.000 0.000 0.524
#> SRR934336     1  0.0707      0.824 0.980 0.000 0.000 0.020
#> SRR934337     1  0.0336      0.823 0.992 0.000 0.000 0.008
#> SRR934338     1  0.0188      0.820 0.996 0.000 0.000 0.004
#> SRR934339     1  0.0188      0.822 0.996 0.000 0.000 0.004
#> SRR934340     1  0.0592      0.824 0.984 0.000 0.000 0.016
#> SRR934341     1  0.0336      0.821 0.992 0.000 0.000 0.008
#> SRR934342     1  0.0336      0.823 0.992 0.000 0.000 0.008

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> SRR934216     3  0.3972      0.996 0.032 0.008 0.788 0.000 0.172
#> SRR934217     3  0.3972      0.996 0.032 0.008 0.788 0.000 0.172
#> SRR934218     3  0.3928      0.990 0.028 0.008 0.788 0.000 0.176
#> SRR934219     3  0.3934      0.994 0.032 0.008 0.792 0.000 0.168
#> SRR934220     3  0.3934      0.994 0.032 0.008 0.792 0.000 0.168
#> SRR934221     3  0.3972      0.996 0.032 0.008 0.788 0.000 0.172
#> SRR934222     3  0.3934      0.994 0.032 0.008 0.792 0.000 0.168
#> SRR934223     3  0.3972      0.996 0.032 0.008 0.788 0.000 0.172
#> SRR934224     1  0.0566      0.975 0.984 0.004 0.012 0.000 0.000
#> SRR934225     1  0.0566      0.975 0.984 0.004 0.012 0.000 0.000
#> SRR934226     1  0.0566      0.975 0.984 0.004 0.012 0.000 0.000
#> SRR934227     1  0.0566      0.975 0.984 0.004 0.012 0.000 0.000
#> SRR934228     1  0.0566      0.975 0.984 0.004 0.012 0.000 0.000
#> SRR934229     1  0.0671      0.973 0.980 0.004 0.016 0.000 0.000
#> SRR934230     1  0.0566      0.975 0.984 0.004 0.012 0.000 0.000
#> SRR934231     1  0.0566      0.975 0.984 0.004 0.012 0.000 0.000
#> SRR934232     4  0.0000      0.972 0.000 0.000 0.000 1.000 0.000
#> SRR934233     4  0.0000      0.972 0.000 0.000 0.000 1.000 0.000
#> SRR934234     4  0.0000      0.972 0.000 0.000 0.000 1.000 0.000
#> SRR934235     4  0.0000      0.972 0.000 0.000 0.000 1.000 0.000
#> SRR934236     4  0.0000      0.972 0.000 0.000 0.000 1.000 0.000
#> SRR934237     4  0.0000      0.972 0.000 0.000 0.000 1.000 0.000
#> SRR934238     4  0.0000      0.972 0.000 0.000 0.000 1.000 0.000
#> SRR934239     4  0.0000      0.972 0.000 0.000 0.000 1.000 0.000
#> SRR934240     4  0.0510      0.968 0.000 0.000 0.016 0.984 0.000
#> SRR934241     4  0.0510      0.968 0.000 0.000 0.016 0.984 0.000
#> SRR934242     4  0.0510      0.968 0.000 0.000 0.016 0.984 0.000
#> SRR934243     4  0.0510      0.968 0.000 0.000 0.016 0.984 0.000
#> SRR934244     4  0.0510      0.968 0.000 0.000 0.016 0.984 0.000
#> SRR934245     4  0.0510      0.968 0.000 0.000 0.016 0.984 0.000
#> SRR934246     4  0.0510      0.968 0.000 0.000 0.016 0.984 0.000
#> SRR934247     4  0.0510      0.968 0.000 0.000 0.016 0.984 0.000
#> SRR934248     4  0.2426      0.930 0.000 0.064 0.036 0.900 0.000
#> SRR934249     4  0.2426      0.930 0.000 0.064 0.036 0.900 0.000
#> SRR934250     4  0.2426      0.930 0.000 0.064 0.036 0.900 0.000
#> SRR934251     4  0.2426      0.930 0.000 0.064 0.036 0.900 0.000
#> SRR934252     4  0.2426      0.930 0.000 0.064 0.036 0.900 0.000
#> SRR934253     4  0.2426      0.930 0.000 0.064 0.036 0.900 0.000
#> SRR934254     4  0.2426      0.930 0.000 0.064 0.036 0.900 0.000
#> SRR934255     4  0.2426      0.930 0.000 0.064 0.036 0.900 0.000
#> SRR934256     2  0.4179      0.795 0.072 0.776 0.152 0.000 0.000
#> SRR934257     2  0.4179      0.795 0.072 0.776 0.152 0.000 0.000
#> SRR934258     2  0.4237      0.795 0.076 0.772 0.152 0.000 0.000
#> SRR934259     2  0.4237      0.795 0.076 0.772 0.152 0.000 0.000
#> SRR934260     2  0.4179      0.795 0.072 0.776 0.152 0.000 0.000
#> SRR934261     2  0.4237      0.795 0.076 0.772 0.152 0.000 0.000
#> SRR934262     2  0.4237      0.795 0.076 0.772 0.152 0.000 0.000
#> SRR934263     2  0.4237      0.795 0.076 0.772 0.152 0.000 0.000
#> SRR934264     4  0.0290      0.971 0.000 0.000 0.008 0.992 0.000
#> SRR934265     4  0.0290      0.971 0.000 0.000 0.008 0.992 0.000
#> SRR934266     4  0.0290      0.971 0.000 0.000 0.008 0.992 0.000
#> SRR934267     4  0.0290      0.971 0.000 0.000 0.008 0.992 0.000
#> SRR934268     4  0.0290      0.971 0.000 0.000 0.008 0.992 0.000
#> SRR934269     4  0.0290      0.971 0.000 0.000 0.008 0.992 0.000
#> SRR934270     4  0.0290      0.971 0.000 0.000 0.008 0.992 0.000
#> SRR934271     4  0.0290      0.971 0.000 0.000 0.008 0.992 0.000
#> SRR934272     1  0.0162      0.978 0.996 0.004 0.000 0.000 0.000
#> SRR934273     1  0.0162      0.978 0.996 0.004 0.000 0.000 0.000
#> SRR934274     1  0.0162      0.978 0.996 0.004 0.000 0.000 0.000
#> SRR934275     1  0.0162      0.978 0.996 0.004 0.000 0.000 0.000
#> SRR934276     1  0.0162      0.978 0.996 0.004 0.000 0.000 0.000
#> SRR934277     1  0.0162      0.978 0.996 0.004 0.000 0.000 0.000
#> SRR934278     1  0.0162      0.978 0.996 0.004 0.000 0.000 0.000
#> SRR934279     1  0.0162      0.978 0.996 0.004 0.000 0.000 0.000
#> SRR934280     1  0.0865      0.977 0.972 0.024 0.004 0.000 0.000
#> SRR934281     1  0.0865      0.977 0.972 0.024 0.004 0.000 0.000
#> SRR934282     1  0.0771      0.977 0.976 0.020 0.004 0.000 0.000
#> SRR934283     1  0.0771      0.977 0.976 0.020 0.004 0.000 0.000
#> SRR934284     1  0.0865      0.977 0.972 0.024 0.004 0.000 0.000
#> SRR934285     1  0.0955      0.975 0.968 0.028 0.004 0.000 0.000
#> SRR934286     1  0.0771      0.977 0.976 0.020 0.004 0.000 0.000
#> SRR934287     1  0.0865      0.977 0.972 0.024 0.004 0.000 0.000
#> SRR934288     2  0.4232      0.680 0.312 0.676 0.012 0.000 0.000
#> SRR934289     2  0.3885      0.737 0.268 0.724 0.008 0.000 0.000
#> SRR934290     2  0.2971      0.834 0.156 0.836 0.008 0.000 0.000
#> SRR934291     2  0.3521      0.776 0.232 0.764 0.004 0.000 0.000
#> SRR934292     2  0.3750      0.775 0.232 0.756 0.012 0.000 0.000
#> SRR934293     2  0.4046      0.702 0.296 0.696 0.008 0.000 0.000
#> SRR934294     2  0.3967      0.744 0.264 0.724 0.012 0.000 0.000
#> SRR934295     2  0.4557      0.498 0.404 0.584 0.012 0.000 0.000
#> SRR934296     5  0.0880      0.965 0.000 0.032 0.000 0.000 0.968
#> SRR934297     5  0.1197      0.945 0.000 0.048 0.000 0.000 0.952
#> SRR934298     5  0.0703      0.969 0.000 0.024 0.000 0.000 0.976
#> SRR934299     5  0.0963      0.961 0.000 0.036 0.000 0.000 0.964
#> SRR934300     5  0.0880      0.965 0.000 0.032 0.000 0.000 0.968
#> SRR934301     5  0.0880      0.965 0.000 0.032 0.000 0.000 0.968
#> SRR934302     5  0.0963      0.961 0.000 0.036 0.000 0.000 0.964
#> SRR934303     5  0.0290      0.973 0.000 0.008 0.000 0.000 0.992
#> SRR934304     5  0.0000      0.973 0.000 0.000 0.000 0.000 1.000
#> SRR934305     5  0.0000      0.973 0.000 0.000 0.000 0.000 1.000
#> SRR934306     5  0.0000      0.973 0.000 0.000 0.000 0.000 1.000
#> SRR934307     5  0.0000      0.973 0.000 0.000 0.000 0.000 1.000
#> SRR934308     5  0.0000      0.973 0.000 0.000 0.000 0.000 1.000
#> SRR934309     5  0.0000      0.973 0.000 0.000 0.000 0.000 1.000
#> SRR934310     5  0.0000      0.973 0.000 0.000 0.000 0.000 1.000
#> SRR934311     5  0.0000      0.973 0.000 0.000 0.000 0.000 1.000
#> SRR934312     1  0.0609      0.978 0.980 0.020 0.000 0.000 0.000
#> SRR934313     1  0.0510      0.980 0.984 0.016 0.000 0.000 0.000
#> SRR934314     1  0.0609      0.978 0.980 0.020 0.000 0.000 0.000
#> SRR934315     1  0.0703      0.978 0.976 0.024 0.000 0.000 0.000
#> SRR934316     1  0.0404      0.980 0.988 0.012 0.000 0.000 0.000
#> SRR934317     1  0.0609      0.978 0.980 0.020 0.000 0.000 0.000
#> SRR934318     1  0.0794      0.977 0.972 0.028 0.000 0.000 0.000
#> SRR934319     1  0.0404      0.980 0.988 0.012 0.000 0.000 0.000
#> SRR934320     1  0.1818      0.950 0.932 0.044 0.024 0.000 0.000
#> SRR934321     1  0.1300      0.969 0.956 0.028 0.016 0.000 0.000
#> SRR934322     1  0.1818      0.950 0.932 0.044 0.024 0.000 0.000
#> SRR934323     1  0.1626      0.957 0.940 0.044 0.016 0.000 0.000
#> SRR934324     1  0.1741      0.954 0.936 0.040 0.024 0.000 0.000
#> SRR934325     1  0.1399      0.967 0.952 0.028 0.020 0.000 0.000
#> SRR934326     1  0.1364      0.966 0.952 0.036 0.012 0.000 0.000
#> SRR934327     1  0.1281      0.969 0.956 0.032 0.012 0.000 0.000
#> SRR934328     2  0.2708      0.855 0.072 0.884 0.044 0.000 0.000
#> SRR934329     2  0.2782      0.855 0.072 0.880 0.048 0.000 0.000
#> SRR934330     2  0.2632      0.856 0.072 0.888 0.040 0.000 0.000
#> SRR934331     2  0.2473      0.856 0.072 0.896 0.032 0.000 0.000
#> SRR934332     2  0.2853      0.854 0.072 0.876 0.052 0.000 0.000
#> SRR934333     2  0.3181      0.848 0.072 0.856 0.072 0.000 0.000
#> SRR934334     2  0.2708      0.855 0.072 0.884 0.044 0.000 0.000
#> SRR934335     2  0.2708      0.855 0.072 0.884 0.044 0.000 0.000
#> SRR934344     2  0.3090      0.859 0.104 0.856 0.040 0.000 0.000
#> SRR934345     2  0.2616      0.860 0.100 0.880 0.020 0.000 0.000
#> SRR934346     2  0.3409      0.854 0.112 0.836 0.052 0.000 0.000
#> SRR934347     2  0.3184      0.858 0.100 0.852 0.048 0.000 0.000
#> SRR934348     2  0.2962      0.858 0.084 0.868 0.048 0.000 0.000
#> SRR934349     2  0.3454      0.854 0.100 0.836 0.064 0.000 0.000
#> SRR934350     2  0.2628      0.861 0.088 0.884 0.028 0.000 0.000
#> SRR934351     2  0.3255      0.857 0.100 0.848 0.052 0.000 0.000
#> SRR934336     1  0.0771      0.980 0.976 0.020 0.004 0.000 0.000
#> SRR934337     1  0.0693      0.980 0.980 0.012 0.008 0.000 0.000
#> SRR934338     1  0.0798      0.979 0.976 0.016 0.008 0.000 0.000
#> SRR934339     1  0.0671      0.979 0.980 0.016 0.004 0.000 0.000
#> SRR934340     1  0.0771      0.980 0.976 0.020 0.004 0.000 0.000
#> SRR934341     1  0.1195      0.969 0.960 0.028 0.012 0.000 0.000
#> SRR934342     1  0.0798      0.979 0.976 0.016 0.008 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR934216     3  0.0603      1.000 0.000 0.000 0.980 0.000 0.016 0.004
#> SRR934217     3  0.0603      1.000 0.000 0.000 0.980 0.000 0.016 0.004
#> SRR934218     3  0.0603      1.000 0.000 0.000 0.980 0.000 0.016 0.004
#> SRR934219     3  0.0603      1.000 0.000 0.000 0.980 0.000 0.016 0.004
#> SRR934220     3  0.0603      1.000 0.000 0.000 0.980 0.000 0.016 0.004
#> SRR934221     3  0.0603      1.000 0.000 0.000 0.980 0.000 0.016 0.004
#> SRR934222     3  0.0603      1.000 0.000 0.000 0.980 0.000 0.016 0.004
#> SRR934223     3  0.0603      1.000 0.000 0.000 0.980 0.000 0.016 0.004
#> SRR934224     6  0.0767      0.969 0.008 0.012 0.004 0.000 0.000 0.976
#> SRR934225     6  0.0881      0.968 0.008 0.012 0.008 0.000 0.000 0.972
#> SRR934226     6  0.0881      0.968 0.008 0.012 0.008 0.000 0.000 0.972
#> SRR934227     6  0.0767      0.969 0.008 0.012 0.004 0.000 0.000 0.976
#> SRR934228     6  0.0767      0.969 0.008 0.012 0.004 0.000 0.000 0.976
#> SRR934229     6  0.0881      0.968 0.008 0.012 0.008 0.000 0.000 0.972
#> SRR934230     6  0.0767      0.969 0.008 0.012 0.004 0.000 0.000 0.976
#> SRR934231     6  0.0767      0.969 0.008 0.012 0.004 0.000 0.000 0.976
#> SRR934232     4  0.1151      0.852 0.000 0.032 0.012 0.956 0.000 0.000
#> SRR934233     4  0.1151      0.852 0.000 0.032 0.012 0.956 0.000 0.000
#> SRR934234     4  0.1151      0.852 0.000 0.032 0.012 0.956 0.000 0.000
#> SRR934235     4  0.1151      0.852 0.000 0.032 0.012 0.956 0.000 0.000
#> SRR934236     4  0.1151      0.852 0.000 0.032 0.012 0.956 0.000 0.000
#> SRR934237     4  0.1151      0.852 0.000 0.032 0.012 0.956 0.000 0.000
#> SRR934238     4  0.1151      0.852 0.000 0.032 0.012 0.956 0.000 0.000
#> SRR934239     4  0.1151      0.852 0.000 0.032 0.012 0.956 0.000 0.000
#> SRR934240     4  0.4420      0.640 0.000 0.300 0.020 0.660 0.020 0.000
#> SRR934241     4  0.3645      0.766 0.000 0.176 0.020 0.784 0.020 0.000
#> SRR934242     4  0.3506      0.777 0.000 0.160 0.020 0.800 0.020 0.000
#> SRR934243     4  0.4588      0.577 0.000 0.344 0.020 0.616 0.020 0.000
#> SRR934244     4  0.4588      0.577 0.000 0.344 0.020 0.616 0.020 0.000
#> SRR934245     4  0.3804      0.750 0.000 0.196 0.020 0.764 0.020 0.000
#> SRR934246     4  0.4402      0.645 0.000 0.296 0.020 0.664 0.020 0.000
#> SRR934247     4  0.4055      0.716 0.000 0.232 0.020 0.728 0.020 0.000
#> SRR934248     4  0.3215      0.747 0.004 0.240 0.000 0.756 0.000 0.000
#> SRR934249     4  0.3215      0.747 0.004 0.240 0.000 0.756 0.000 0.000
#> SRR934250     4  0.3215      0.747 0.004 0.240 0.000 0.756 0.000 0.000
#> SRR934251     4  0.3215      0.747 0.004 0.240 0.000 0.756 0.000 0.000
#> SRR934252     4  0.3215      0.747 0.004 0.240 0.000 0.756 0.000 0.000
#> SRR934253     4  0.3215      0.747 0.004 0.240 0.000 0.756 0.000 0.000
#> SRR934254     4  0.3215      0.747 0.004 0.240 0.000 0.756 0.000 0.000
#> SRR934255     4  0.3215      0.747 0.004 0.240 0.000 0.756 0.000 0.000
#> SRR934256     2  0.3816      0.995 0.296 0.688 0.000 0.000 0.000 0.016
#> SRR934257     2  0.3835      0.994 0.300 0.684 0.000 0.000 0.000 0.016
#> SRR934258     2  0.3835      0.994 0.300 0.684 0.000 0.000 0.000 0.016
#> SRR934259     2  0.3898      0.992 0.296 0.684 0.000 0.000 0.000 0.020
#> SRR934260     2  0.3835      0.994 0.300 0.684 0.000 0.000 0.000 0.016
#> SRR934261     2  0.3816      0.995 0.296 0.688 0.000 0.000 0.000 0.016
#> SRR934262     2  0.3816      0.995 0.296 0.688 0.000 0.000 0.000 0.016
#> SRR934263     2  0.3879      0.990 0.292 0.688 0.000 0.000 0.000 0.020
#> SRR934264     4  0.0000      0.853 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR934265     4  0.0000      0.853 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR934266     4  0.0000      0.853 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR934267     4  0.0000      0.853 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR934268     4  0.0000      0.853 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR934269     4  0.0000      0.853 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR934270     4  0.0000      0.853 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR934271     4  0.0000      0.853 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR934272     6  0.0291      0.970 0.000 0.004 0.004 0.000 0.000 0.992
#> SRR934273     6  0.0291      0.970 0.000 0.004 0.004 0.000 0.000 0.992
#> SRR934274     6  0.0291      0.970 0.000 0.004 0.004 0.000 0.000 0.992
#> SRR934275     6  0.0291      0.970 0.000 0.004 0.004 0.000 0.000 0.992
#> SRR934276     6  0.0291      0.970 0.000 0.004 0.004 0.000 0.000 0.992
#> SRR934277     6  0.0291      0.970 0.000 0.004 0.004 0.000 0.000 0.992
#> SRR934278     6  0.0291      0.970 0.000 0.004 0.004 0.000 0.000 0.992
#> SRR934279     6  0.0291      0.970 0.000 0.004 0.004 0.000 0.000 0.992
#> SRR934280     6  0.0692      0.969 0.000 0.020 0.000 0.000 0.004 0.976
#> SRR934281     6  0.0777      0.968 0.000 0.024 0.000 0.000 0.004 0.972
#> SRR934282     6  0.0692      0.969 0.000 0.020 0.000 0.000 0.004 0.976
#> SRR934283     6  0.0632      0.969 0.000 0.024 0.000 0.000 0.000 0.976
#> SRR934284     6  0.0458      0.971 0.000 0.016 0.000 0.000 0.000 0.984
#> SRR934285     6  0.1010      0.965 0.000 0.036 0.000 0.000 0.004 0.960
#> SRR934286     6  0.0547      0.969 0.000 0.020 0.000 0.000 0.000 0.980
#> SRR934287     6  0.0777      0.968 0.000 0.024 0.000 0.000 0.004 0.972
#> SRR934288     1  0.1080      0.941 0.960 0.004 0.004 0.000 0.000 0.032
#> SRR934289     1  0.0858      0.951 0.968 0.000 0.004 0.000 0.000 0.028
#> SRR934290     1  0.0603      0.964 0.980 0.004 0.000 0.000 0.000 0.016
#> SRR934291     1  0.1003      0.951 0.964 0.004 0.004 0.000 0.000 0.028
#> SRR934292     1  0.0858      0.953 0.968 0.004 0.000 0.000 0.000 0.028
#> SRR934293     1  0.0937      0.936 0.960 0.000 0.000 0.000 0.000 0.040
#> SRR934294     1  0.0865      0.943 0.964 0.000 0.000 0.000 0.000 0.036
#> SRR934295     1  0.1615      0.877 0.928 0.004 0.004 0.000 0.000 0.064
#> SRR934296     5  0.0291      0.983 0.004 0.000 0.004 0.000 0.992 0.000
#> SRR934297     5  0.0547      0.973 0.020 0.000 0.000 0.000 0.980 0.000
#> SRR934298     5  0.0260      0.982 0.008 0.000 0.000 0.000 0.992 0.000
#> SRR934299     5  0.0291      0.979 0.004 0.000 0.004 0.000 0.992 0.000
#> SRR934300     5  0.0363      0.981 0.012 0.000 0.000 0.000 0.988 0.000
#> SRR934301     5  0.0520      0.982 0.008 0.000 0.008 0.000 0.984 0.000
#> SRR934302     5  0.0405      0.977 0.008 0.000 0.004 0.000 0.988 0.000
#> SRR934303     5  0.0146      0.983 0.000 0.000 0.004 0.000 0.996 0.000
#> SRR934304     5  0.0547      0.985 0.000 0.000 0.020 0.000 0.980 0.000
#> SRR934305     5  0.0547      0.985 0.000 0.000 0.020 0.000 0.980 0.000
#> SRR934306     5  0.0547      0.985 0.000 0.000 0.020 0.000 0.980 0.000
#> SRR934307     5  0.0547      0.985 0.000 0.000 0.020 0.000 0.980 0.000
#> SRR934308     5  0.0547      0.985 0.000 0.000 0.020 0.000 0.980 0.000
#> SRR934309     5  0.0547      0.985 0.000 0.000 0.020 0.000 0.980 0.000
#> SRR934310     5  0.0547      0.985 0.000 0.000 0.020 0.000 0.980 0.000
#> SRR934311     5  0.0547      0.985 0.000 0.000 0.020 0.000 0.980 0.000
#> SRR934312     6  0.0858      0.968 0.000 0.028 0.004 0.000 0.000 0.968
#> SRR934313     6  0.1010      0.966 0.000 0.036 0.004 0.000 0.000 0.960
#> SRR934314     6  0.0777      0.969 0.000 0.024 0.004 0.000 0.000 0.972
#> SRR934315     6  0.1010      0.966 0.000 0.036 0.004 0.000 0.000 0.960
#> SRR934316     6  0.1226      0.963 0.000 0.040 0.004 0.000 0.004 0.952
#> SRR934317     6  0.1003      0.967 0.000 0.028 0.004 0.000 0.004 0.964
#> SRR934318     6  0.1010      0.966 0.000 0.036 0.004 0.000 0.000 0.960
#> SRR934319     6  0.0692      0.969 0.000 0.020 0.004 0.000 0.000 0.976
#> SRR934320     6  0.1918      0.930 0.008 0.088 0.000 0.000 0.000 0.904
#> SRR934321     6  0.1584      0.946 0.008 0.064 0.000 0.000 0.000 0.928
#> SRR934322     6  0.2118      0.917 0.008 0.104 0.000 0.000 0.000 0.888
#> SRR934323     6  0.2170      0.916 0.012 0.100 0.000 0.000 0.000 0.888
#> SRR934324     6  0.2070      0.924 0.012 0.092 0.000 0.000 0.000 0.896
#> SRR934325     6  0.1970      0.927 0.008 0.092 0.000 0.000 0.000 0.900
#> SRR934326     6  0.1866      0.933 0.008 0.084 0.000 0.000 0.000 0.908
#> SRR934327     6  0.1866      0.933 0.008 0.084 0.000 0.000 0.000 0.908
#> SRR934328     1  0.0508      0.967 0.984 0.012 0.000 0.000 0.000 0.004
#> SRR934329     1  0.0508      0.967 0.984 0.012 0.000 0.000 0.000 0.004
#> SRR934330     1  0.0508      0.967 0.984 0.012 0.000 0.000 0.000 0.004
#> SRR934331     1  0.0508      0.967 0.984 0.012 0.000 0.000 0.000 0.004
#> SRR934332     1  0.0508      0.967 0.984 0.012 0.000 0.000 0.000 0.004
#> SRR934333     1  0.0508      0.967 0.984 0.012 0.000 0.000 0.000 0.004
#> SRR934334     1  0.0508      0.967 0.984 0.012 0.000 0.000 0.000 0.004
#> SRR934335     1  0.0508      0.967 0.984 0.012 0.000 0.000 0.000 0.004
#> SRR934344     1  0.0146      0.971 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR934345     1  0.0146      0.971 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR934346     1  0.0146      0.971 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR934347     1  0.0146      0.971 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR934348     1  0.0146      0.971 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR934349     1  0.0146      0.971 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR934350     1  0.0146      0.971 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR934351     1  0.0146      0.971 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR934336     6  0.0622      0.969 0.008 0.012 0.000 0.000 0.000 0.980
#> SRR934337     6  0.0622      0.969 0.008 0.012 0.000 0.000 0.000 0.980
#> SRR934338     6  0.0622      0.969 0.008 0.012 0.000 0.000 0.000 0.980
#> SRR934339     6  0.0622      0.969 0.008 0.012 0.000 0.000 0.000 0.980
#> SRR934340     6  0.0717      0.969 0.008 0.016 0.000 0.000 0.000 0.976
#> SRR934341     6  0.0725      0.968 0.012 0.012 0.000 0.000 0.000 0.976
#> SRR934342     6  0.0622      0.969 0.008 0.012 0.000 0.000 0.000 0.980

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14550 rows and 135 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.636           0.955       0.972         0.2383 0.789   0.789
#> 3 3 0.748           0.933       0.969         0.9797 0.748   0.681
#> 4 4 0.769           0.930       0.946         0.0284 0.993   0.987
#> 5 5 0.916           0.970       0.982         0.2302 0.860   0.737
#> 6 6 1.000           0.998       0.998         0.0467 0.986   0.964

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR934216     2   0.118      0.991 0.016 0.984
#> SRR934217     2   0.118      0.991 0.016 0.984
#> SRR934218     2   0.118      0.991 0.016 0.984
#> SRR934219     2   0.118      0.991 0.016 0.984
#> SRR934220     2   0.118      0.991 0.016 0.984
#> SRR934221     2   0.118      0.991 0.016 0.984
#> SRR934222     2   0.118      0.991 0.016 0.984
#> SRR934223     2   0.118      0.991 0.016 0.984
#> SRR934224     1   0.000      0.967 1.000 0.000
#> SRR934225     1   0.000      0.967 1.000 0.000
#> SRR934226     1   0.000      0.967 1.000 0.000
#> SRR934227     1   0.000      0.967 1.000 0.000
#> SRR934228     1   0.000      0.967 1.000 0.000
#> SRR934229     1   0.000      0.967 1.000 0.000
#> SRR934230     1   0.000      0.967 1.000 0.000
#> SRR934231     1   0.000      0.967 1.000 0.000
#> SRR934232     1   0.506      0.905 0.888 0.112
#> SRR934233     1   0.506      0.905 0.888 0.112
#> SRR934234     1   0.506      0.905 0.888 0.112
#> SRR934235     1   0.506      0.905 0.888 0.112
#> SRR934236     1   0.506      0.905 0.888 0.112
#> SRR934237     1   0.506      0.905 0.888 0.112
#> SRR934238     1   0.506      0.905 0.888 0.112
#> SRR934239     1   0.506      0.905 0.888 0.112
#> SRR934240     1   0.506      0.905 0.888 0.112
#> SRR934241     1   0.506      0.905 0.888 0.112
#> SRR934242     1   0.506      0.905 0.888 0.112
#> SRR934243     1   0.506      0.905 0.888 0.112
#> SRR934244     1   0.506      0.905 0.888 0.112
#> SRR934245     1   0.506      0.905 0.888 0.112
#> SRR934246     1   0.506      0.905 0.888 0.112
#> SRR934247     1   0.506      0.905 0.888 0.112
#> SRR934248     1   0.518      0.902 0.884 0.116
#> SRR934249     1   0.518      0.902 0.884 0.116
#> SRR934250     1   0.518      0.902 0.884 0.116
#> SRR934251     1   0.518      0.902 0.884 0.116
#> SRR934252     1   0.518      0.902 0.884 0.116
#> SRR934253     1   0.518      0.902 0.884 0.116
#> SRR934254     1   0.518      0.902 0.884 0.116
#> SRR934255     1   0.518      0.902 0.884 0.116
#> SRR934256     1   0.000      0.967 1.000 0.000
#> SRR934257     1   0.000      0.967 1.000 0.000
#> SRR934258     1   0.000      0.967 1.000 0.000
#> SRR934259     1   0.000      0.967 1.000 0.000
#> SRR934260     1   0.000      0.967 1.000 0.000
#> SRR934261     1   0.000      0.967 1.000 0.000
#> SRR934262     1   0.000      0.967 1.000 0.000
#> SRR934263     1   0.000      0.967 1.000 0.000
#> SRR934264     1   0.518      0.902 0.884 0.116
#> SRR934265     1   0.518      0.902 0.884 0.116
#> SRR934266     1   0.518      0.902 0.884 0.116
#> SRR934267     1   0.518      0.902 0.884 0.116
#> SRR934268     1   0.518      0.902 0.884 0.116
#> SRR934269     1   0.518      0.902 0.884 0.116
#> SRR934270     1   0.518      0.902 0.884 0.116
#> SRR934271     1   0.518      0.902 0.884 0.116
#> SRR934272     1   0.000      0.967 1.000 0.000
#> SRR934273     1   0.000      0.967 1.000 0.000
#> SRR934274     1   0.000      0.967 1.000 0.000
#> SRR934275     1   0.000      0.967 1.000 0.000
#> SRR934276     1   0.000      0.967 1.000 0.000
#> SRR934277     1   0.000      0.967 1.000 0.000
#> SRR934278     1   0.000      0.967 1.000 0.000
#> SRR934279     1   0.000      0.967 1.000 0.000
#> SRR934280     1   0.000      0.967 1.000 0.000
#> SRR934281     1   0.000      0.967 1.000 0.000
#> SRR934282     1   0.000      0.967 1.000 0.000
#> SRR934283     1   0.000      0.967 1.000 0.000
#> SRR934284     1   0.000      0.967 1.000 0.000
#> SRR934285     1   0.000      0.967 1.000 0.000
#> SRR934286     1   0.000      0.967 1.000 0.000
#> SRR934287     1   0.000      0.967 1.000 0.000
#> SRR934288     1   0.000      0.967 1.000 0.000
#> SRR934289     1   0.000      0.967 1.000 0.000
#> SRR934290     1   0.000      0.967 1.000 0.000
#> SRR934291     1   0.000      0.967 1.000 0.000
#> SRR934292     1   0.000      0.967 1.000 0.000
#> SRR934293     1   0.000      0.967 1.000 0.000
#> SRR934294     1   0.000      0.967 1.000 0.000
#> SRR934295     1   0.000      0.967 1.000 0.000
#> SRR934296     1   0.000      0.967 1.000 0.000
#> SRR934297     1   0.000      0.967 1.000 0.000
#> SRR934298     1   0.000      0.967 1.000 0.000
#> SRR934299     1   0.000      0.967 1.000 0.000
#> SRR934300     1   0.000      0.967 1.000 0.000
#> SRR934301     1   0.000      0.967 1.000 0.000
#> SRR934302     1   0.000      0.967 1.000 0.000
#> SRR934303     1   0.000      0.967 1.000 0.000
#> SRR934304     2   0.000      0.991 0.000 1.000
#> SRR934305     2   0.000      0.991 0.000 1.000
#> SRR934306     2   0.000      0.991 0.000 1.000
#> SRR934307     2   0.000      0.991 0.000 1.000
#> SRR934308     2   0.000      0.991 0.000 1.000
#> SRR934309     2   0.000      0.991 0.000 1.000
#> SRR934310     2   0.000      0.991 0.000 1.000
#> SRR934311     2   0.000      0.991 0.000 1.000
#> SRR934312     1   0.000      0.967 1.000 0.000
#> SRR934313     1   0.000      0.967 1.000 0.000
#> SRR934314     1   0.000      0.967 1.000 0.000
#> SRR934315     1   0.000      0.967 1.000 0.000
#> SRR934316     1   0.000      0.967 1.000 0.000
#> SRR934317     1   0.000      0.967 1.000 0.000
#> SRR934318     1   0.000      0.967 1.000 0.000
#> SRR934319     1   0.000      0.967 1.000 0.000
#> SRR934320     1   0.000      0.967 1.000 0.000
#> SRR934321     1   0.000      0.967 1.000 0.000
#> SRR934322     1   0.000      0.967 1.000 0.000
#> SRR934323     1   0.000      0.967 1.000 0.000
#> SRR934324     1   0.000      0.967 1.000 0.000
#> SRR934325     1   0.000      0.967 1.000 0.000
#> SRR934326     1   0.000      0.967 1.000 0.000
#> SRR934327     1   0.000      0.967 1.000 0.000
#> SRR934328     1   0.000      0.967 1.000 0.000
#> SRR934329     1   0.000      0.967 1.000 0.000
#> SRR934330     1   0.000      0.967 1.000 0.000
#> SRR934331     1   0.000      0.967 1.000 0.000
#> SRR934332     1   0.000      0.967 1.000 0.000
#> SRR934333     1   0.000      0.967 1.000 0.000
#> SRR934334     1   0.000      0.967 1.000 0.000
#> SRR934335     1   0.000      0.967 1.000 0.000
#> SRR934344     1   0.000      0.967 1.000 0.000
#> SRR934345     1   0.000      0.967 1.000 0.000
#> SRR934346     1   0.000      0.967 1.000 0.000
#> SRR934347     1   0.000      0.967 1.000 0.000
#> SRR934348     1   0.000      0.967 1.000 0.000
#> SRR934349     1   0.000      0.967 1.000 0.000
#> SRR934350     1   0.000      0.967 1.000 0.000
#> SRR934351     1   0.000      0.967 1.000 0.000
#> SRR934336     1   0.000      0.967 1.000 0.000
#> SRR934337     1   0.000      0.967 1.000 0.000
#> SRR934338     1   0.000      0.967 1.000 0.000
#> SRR934339     1   0.000      0.967 1.000 0.000
#> SRR934340     1   0.000      0.967 1.000 0.000
#> SRR934341     1   0.000      0.967 1.000 0.000
#> SRR934342     1   0.000      0.967 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR934216     3  0.0747      0.985 0.016 0.000 0.984
#> SRR934217     3  0.0747      0.985 0.016 0.000 0.984
#> SRR934218     3  0.0747      0.985 0.016 0.000 0.984
#> SRR934219     3  0.0747      0.985 0.016 0.000 0.984
#> SRR934220     3  0.0747      0.985 0.016 0.000 0.984
#> SRR934221     3  0.0747      0.985 0.016 0.000 0.984
#> SRR934222     3  0.0747      0.985 0.016 0.000 0.984
#> SRR934223     3  0.0747      0.985 0.016 0.000 0.984
#> SRR934224     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934225     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934226     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934227     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934228     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934229     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934230     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934231     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934232     2  0.0000      0.896 0.000 1.000 0.000
#> SRR934233     2  0.0000      0.896 0.000 1.000 0.000
#> SRR934234     2  0.0000      0.896 0.000 1.000 0.000
#> SRR934235     2  0.0000      0.896 0.000 1.000 0.000
#> SRR934236     2  0.0000      0.896 0.000 1.000 0.000
#> SRR934237     2  0.0000      0.896 0.000 1.000 0.000
#> SRR934238     2  0.0000      0.896 0.000 1.000 0.000
#> SRR934239     2  0.0000      0.896 0.000 1.000 0.000
#> SRR934240     2  0.0000      0.896 0.000 1.000 0.000
#> SRR934241     2  0.0000      0.896 0.000 1.000 0.000
#> SRR934242     2  0.0000      0.896 0.000 1.000 0.000
#> SRR934243     2  0.0000      0.896 0.000 1.000 0.000
#> SRR934244     2  0.0000      0.896 0.000 1.000 0.000
#> SRR934245     2  0.0000      0.896 0.000 1.000 0.000
#> SRR934246     2  0.0000      0.896 0.000 1.000 0.000
#> SRR934247     2  0.0000      0.896 0.000 1.000 0.000
#> SRR934248     1  0.4351      0.820 0.828 0.168 0.004
#> SRR934249     1  0.4351      0.820 0.828 0.168 0.004
#> SRR934250     1  0.4351      0.820 0.828 0.168 0.004
#> SRR934251     1  0.4351      0.820 0.828 0.168 0.004
#> SRR934252     1  0.4351      0.820 0.828 0.168 0.004
#> SRR934253     1  0.4351      0.820 0.828 0.168 0.004
#> SRR934254     1  0.4351      0.820 0.828 0.168 0.004
#> SRR934255     1  0.4351      0.820 0.828 0.168 0.004
#> SRR934256     2  0.4121      0.790 0.168 0.832 0.000
#> SRR934257     2  0.4121      0.790 0.168 0.832 0.000
#> SRR934258     2  0.4121      0.790 0.168 0.832 0.000
#> SRR934259     2  0.4121      0.790 0.168 0.832 0.000
#> SRR934260     2  0.4121      0.790 0.168 0.832 0.000
#> SRR934261     2  0.4121      0.790 0.168 0.832 0.000
#> SRR934262     2  0.4121      0.790 0.168 0.832 0.000
#> SRR934263     2  0.4121      0.790 0.168 0.832 0.000
#> SRR934264     1  0.4351      0.820 0.828 0.168 0.004
#> SRR934265     1  0.4351      0.820 0.828 0.168 0.004
#> SRR934266     1  0.4351      0.820 0.828 0.168 0.004
#> SRR934267     1  0.4351      0.820 0.828 0.168 0.004
#> SRR934268     1  0.4351      0.820 0.828 0.168 0.004
#> SRR934269     1  0.4351      0.820 0.828 0.168 0.004
#> SRR934270     1  0.4351      0.820 0.828 0.168 0.004
#> SRR934271     1  0.4351      0.820 0.828 0.168 0.004
#> SRR934272     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934273     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934274     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934275     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934276     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934277     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934278     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934279     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934280     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934281     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934282     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934283     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934284     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934285     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934286     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934287     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934288     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934289     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934290     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934291     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934292     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934293     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934294     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934295     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934296     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934297     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934298     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934299     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934300     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934301     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934302     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934303     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934304     3  0.0000      0.985 0.000 0.000 1.000
#> SRR934305     3  0.0000      0.985 0.000 0.000 1.000
#> SRR934306     3  0.0000      0.985 0.000 0.000 1.000
#> SRR934307     3  0.0000      0.985 0.000 0.000 1.000
#> SRR934308     3  0.0000      0.985 0.000 0.000 1.000
#> SRR934309     3  0.0000      0.985 0.000 0.000 1.000
#> SRR934310     3  0.0000      0.985 0.000 0.000 1.000
#> SRR934311     3  0.0000      0.985 0.000 0.000 1.000
#> SRR934312     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934313     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934314     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934315     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934316     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934317     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934318     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934319     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934320     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934321     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934322     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934323     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934324     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934325     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934326     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934327     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934328     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934329     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934330     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934331     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934332     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934333     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934334     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934335     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934344     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934345     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934346     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934347     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934348     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934349     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934350     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934351     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934336     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934337     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934338     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934339     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934340     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934341     1  0.0000      0.968 1.000 0.000 0.000
#> SRR934342     1  0.0000      0.968 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3   p4
#> SRR934216     4   0.328      1.000 0.016 0.000 0.124 0.86
#> SRR934217     4   0.328      1.000 0.016 0.000 0.124 0.86
#> SRR934218     4   0.328      1.000 0.016 0.000 0.124 0.86
#> SRR934219     4   0.328      1.000 0.016 0.000 0.124 0.86
#> SRR934220     4   0.328      1.000 0.016 0.000 0.124 0.86
#> SRR934221     4   0.328      1.000 0.016 0.000 0.124 0.86
#> SRR934222     4   0.328      1.000 0.016 0.000 0.124 0.86
#> SRR934223     4   0.328      1.000 0.016 0.000 0.124 0.86
#> SRR934224     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934225     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934226     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934227     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934228     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934229     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934230     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934231     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934232     2   0.000      0.890 0.000 1.000 0.000 0.00
#> SRR934233     2   0.000      0.890 0.000 1.000 0.000 0.00
#> SRR934234     2   0.000      0.890 0.000 1.000 0.000 0.00
#> SRR934235     2   0.000      0.890 0.000 1.000 0.000 0.00
#> SRR934236     2   0.000      0.890 0.000 1.000 0.000 0.00
#> SRR934237     2   0.000      0.890 0.000 1.000 0.000 0.00
#> SRR934238     2   0.000      0.890 0.000 1.000 0.000 0.00
#> SRR934239     2   0.000      0.890 0.000 1.000 0.000 0.00
#> SRR934240     2   0.000      0.890 0.000 1.000 0.000 0.00
#> SRR934241     2   0.000      0.890 0.000 1.000 0.000 0.00
#> SRR934242     2   0.000      0.890 0.000 1.000 0.000 0.00
#> SRR934243     2   0.000      0.890 0.000 1.000 0.000 0.00
#> SRR934244     2   0.000      0.890 0.000 1.000 0.000 0.00
#> SRR934245     2   0.000      0.890 0.000 1.000 0.000 0.00
#> SRR934246     2   0.000      0.890 0.000 1.000 0.000 0.00
#> SRR934247     2   0.000      0.890 0.000 1.000 0.000 0.00
#> SRR934248     1   0.449      0.801 0.800 0.060 0.000 0.14
#> SRR934249     1   0.449      0.801 0.800 0.060 0.000 0.14
#> SRR934250     1   0.449      0.801 0.800 0.060 0.000 0.14
#> SRR934251     1   0.449      0.801 0.800 0.060 0.000 0.14
#> SRR934252     1   0.449      0.801 0.800 0.060 0.000 0.14
#> SRR934253     1   0.449      0.801 0.800 0.060 0.000 0.14
#> SRR934254     1   0.449      0.801 0.800 0.060 0.000 0.14
#> SRR934255     1   0.449      0.801 0.800 0.060 0.000 0.14
#> SRR934256     2   0.327      0.778 0.168 0.832 0.000 0.00
#> SRR934257     2   0.327      0.778 0.168 0.832 0.000 0.00
#> SRR934258     2   0.327      0.778 0.168 0.832 0.000 0.00
#> SRR934259     2   0.327      0.778 0.168 0.832 0.000 0.00
#> SRR934260     2   0.327      0.778 0.168 0.832 0.000 0.00
#> SRR934261     2   0.327      0.778 0.168 0.832 0.000 0.00
#> SRR934262     2   0.327      0.778 0.168 0.832 0.000 0.00
#> SRR934263     2   0.327      0.778 0.168 0.832 0.000 0.00
#> SRR934264     1   0.449      0.801 0.800 0.060 0.000 0.14
#> SRR934265     1   0.449      0.801 0.800 0.060 0.000 0.14
#> SRR934266     1   0.449      0.801 0.800 0.060 0.000 0.14
#> SRR934267     1   0.449      0.801 0.800 0.060 0.000 0.14
#> SRR934268     1   0.449      0.801 0.800 0.060 0.000 0.14
#> SRR934269     1   0.449      0.801 0.800 0.060 0.000 0.14
#> SRR934270     1   0.449      0.801 0.800 0.060 0.000 0.14
#> SRR934271     1   0.449      0.801 0.800 0.060 0.000 0.14
#> SRR934272     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934273     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934274     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934275     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934276     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934277     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934278     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934279     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934280     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934281     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934282     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934283     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934284     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934285     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934286     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934287     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934288     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934289     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934290     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934291     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934292     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934293     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934294     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934295     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934296     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934297     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934298     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934299     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934300     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934301     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934302     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934303     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934304     3   0.000      1.000 0.000 0.000 1.000 0.00
#> SRR934305     3   0.000      1.000 0.000 0.000 1.000 0.00
#> SRR934306     3   0.000      1.000 0.000 0.000 1.000 0.00
#> SRR934307     3   0.000      1.000 0.000 0.000 1.000 0.00
#> SRR934308     3   0.000      1.000 0.000 0.000 1.000 0.00
#> SRR934309     3   0.000      1.000 0.000 0.000 1.000 0.00
#> SRR934310     3   0.000      1.000 0.000 0.000 1.000 0.00
#> SRR934311     3   0.000      1.000 0.000 0.000 1.000 0.00
#> SRR934312     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934313     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934314     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934315     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934316     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934317     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934318     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934319     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934320     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934321     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934322     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934323     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934324     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934325     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934326     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934327     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934328     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934329     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934330     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934331     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934332     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934333     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934334     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934335     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934344     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934345     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934346     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934347     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934348     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934349     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934350     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934351     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934336     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934337     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934338     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934339     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934340     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934341     1   0.000      0.965 1.000 0.000 0.000 0.00
#> SRR934342     1   0.000      0.965 1.000 0.000 0.000 0.00

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2 p3    p4 p5
#> SRR934216     3  0.0000      1.000 0.000 0.000  1 0.000  0
#> SRR934217     3  0.0000      1.000 0.000 0.000  1 0.000  0
#> SRR934218     3  0.0000      1.000 0.000 0.000  1 0.000  0
#> SRR934219     3  0.0000      1.000 0.000 0.000  1 0.000  0
#> SRR934220     3  0.0000      1.000 0.000 0.000  1 0.000  0
#> SRR934221     3  0.0000      1.000 0.000 0.000  1 0.000  0
#> SRR934222     3  0.0000      1.000 0.000 0.000  1 0.000  0
#> SRR934223     3  0.0000      1.000 0.000 0.000  1 0.000  0
#> SRR934224     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934225     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934226     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934227     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934228     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934229     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934230     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934231     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934232     2  0.0000      0.884 0.000 1.000  0 0.000  0
#> SRR934233     2  0.0000      0.884 0.000 1.000  0 0.000  0
#> SRR934234     2  0.0000      0.884 0.000 1.000  0 0.000  0
#> SRR934235     2  0.0000      0.884 0.000 1.000  0 0.000  0
#> SRR934236     2  0.0000      0.884 0.000 1.000  0 0.000  0
#> SRR934237     2  0.0000      0.884 0.000 1.000  0 0.000  0
#> SRR934238     2  0.0000      0.884 0.000 1.000  0 0.000  0
#> SRR934239     2  0.0000      0.884 0.000 1.000  0 0.000  0
#> SRR934240     2  0.0000      0.884 0.000 1.000  0 0.000  0
#> SRR934241     2  0.0000      0.884 0.000 1.000  0 0.000  0
#> SRR934242     2  0.0000      0.884 0.000 1.000  0 0.000  0
#> SRR934243     2  0.0000      0.884 0.000 1.000  0 0.000  0
#> SRR934244     2  0.0000      0.884 0.000 1.000  0 0.000  0
#> SRR934245     2  0.0000      0.884 0.000 1.000  0 0.000  0
#> SRR934246     2  0.0000      0.884 0.000 1.000  0 0.000  0
#> SRR934247     2  0.0000      0.884 0.000 1.000  0 0.000  0
#> SRR934248     4  0.0963      1.000 0.036 0.000  0 0.964  0
#> SRR934249     4  0.0963      1.000 0.036 0.000  0 0.964  0
#> SRR934250     4  0.0963      1.000 0.036 0.000  0 0.964  0
#> SRR934251     4  0.0963      1.000 0.036 0.000  0 0.964  0
#> SRR934252     4  0.0963      1.000 0.036 0.000  0 0.964  0
#> SRR934253     4  0.0963      1.000 0.036 0.000  0 0.964  0
#> SRR934254     4  0.0963      1.000 0.036 0.000  0 0.964  0
#> SRR934255     4  0.0963      1.000 0.036 0.000  0 0.964  0
#> SRR934256     2  0.3734      0.765 0.168 0.796  0 0.036  0
#> SRR934257     2  0.3734      0.765 0.168 0.796  0 0.036  0
#> SRR934258     2  0.3734      0.765 0.168 0.796  0 0.036  0
#> SRR934259     2  0.3734      0.765 0.168 0.796  0 0.036  0
#> SRR934260     2  0.3734      0.765 0.168 0.796  0 0.036  0
#> SRR934261     2  0.3734      0.765 0.168 0.796  0 0.036  0
#> SRR934262     2  0.3734      0.765 0.168 0.796  0 0.036  0
#> SRR934263     2  0.3734      0.765 0.168 0.796  0 0.036  0
#> SRR934264     4  0.0963      1.000 0.036 0.000  0 0.964  0
#> SRR934265     4  0.0963      1.000 0.036 0.000  0 0.964  0
#> SRR934266     4  0.0963      1.000 0.036 0.000  0 0.964  0
#> SRR934267     4  0.0963      1.000 0.036 0.000  0 0.964  0
#> SRR934268     4  0.0963      1.000 0.036 0.000  0 0.964  0
#> SRR934269     4  0.0963      1.000 0.036 0.000  0 0.964  0
#> SRR934270     4  0.0963      1.000 0.036 0.000  0 0.964  0
#> SRR934271     4  0.0963      1.000 0.036 0.000  0 0.964  0
#> SRR934272     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934273     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934274     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934275     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934276     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934277     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934278     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934279     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934280     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934281     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934282     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934283     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934284     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934285     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934286     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934287     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934288     1  0.0290      0.995 0.992 0.000  0 0.008  0
#> SRR934289     1  0.0290      0.995 0.992 0.000  0 0.008  0
#> SRR934290     1  0.0290      0.995 0.992 0.000  0 0.008  0
#> SRR934291     1  0.0290      0.995 0.992 0.000  0 0.008  0
#> SRR934292     1  0.0290      0.995 0.992 0.000  0 0.008  0
#> SRR934293     1  0.0290      0.995 0.992 0.000  0 0.008  0
#> SRR934294     1  0.0290      0.995 0.992 0.000  0 0.008  0
#> SRR934295     1  0.0290      0.995 0.992 0.000  0 0.008  0
#> SRR934296     1  0.0290      0.995 0.992 0.000  0 0.008  0
#> SRR934297     1  0.0290      0.995 0.992 0.000  0 0.008  0
#> SRR934298     1  0.0290      0.995 0.992 0.000  0 0.008  0
#> SRR934299     1  0.0290      0.995 0.992 0.000  0 0.008  0
#> SRR934300     1  0.0290      0.995 0.992 0.000  0 0.008  0
#> SRR934301     1  0.0290      0.995 0.992 0.000  0 0.008  0
#> SRR934302     1  0.0290      0.995 0.992 0.000  0 0.008  0
#> SRR934303     1  0.0290      0.995 0.992 0.000  0 0.008  0
#> SRR934304     5  0.0000      1.000 0.000 0.000  0 0.000  1
#> SRR934305     5  0.0000      1.000 0.000 0.000  0 0.000  1
#> SRR934306     5  0.0000      1.000 0.000 0.000  0 0.000  1
#> SRR934307     5  0.0000      1.000 0.000 0.000  0 0.000  1
#> SRR934308     5  0.0000      1.000 0.000 0.000  0 0.000  1
#> SRR934309     5  0.0000      1.000 0.000 0.000  0 0.000  1
#> SRR934310     5  0.0000      1.000 0.000 0.000  0 0.000  1
#> SRR934311     5  0.0000      1.000 0.000 0.000  0 0.000  1
#> SRR934312     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934313     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934314     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934315     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934316     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934317     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934318     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934319     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934320     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934321     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934322     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934323     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934324     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934325     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934326     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934327     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934328     1  0.0290      0.995 0.992 0.000  0 0.008  0
#> SRR934329     1  0.0290      0.995 0.992 0.000  0 0.008  0
#> SRR934330     1  0.0290      0.995 0.992 0.000  0 0.008  0
#> SRR934331     1  0.0290      0.995 0.992 0.000  0 0.008  0
#> SRR934332     1  0.0290      0.995 0.992 0.000  0 0.008  0
#> SRR934333     1  0.0290      0.995 0.992 0.000  0 0.008  0
#> SRR934334     1  0.0290      0.995 0.992 0.000  0 0.008  0
#> SRR934335     1  0.0290      0.995 0.992 0.000  0 0.008  0
#> SRR934344     1  0.0290      0.995 0.992 0.000  0 0.008  0
#> SRR934345     1  0.0290      0.995 0.992 0.000  0 0.008  0
#> SRR934346     1  0.0290      0.995 0.992 0.000  0 0.008  0
#> SRR934347     1  0.0290      0.995 0.992 0.000  0 0.008  0
#> SRR934348     1  0.0290      0.995 0.992 0.000  0 0.008  0
#> SRR934349     1  0.0290      0.995 0.992 0.000  0 0.008  0
#> SRR934350     1  0.0290      0.995 0.992 0.000  0 0.008  0
#> SRR934351     1  0.0290      0.995 0.992 0.000  0 0.008  0
#> SRR934336     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934337     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934338     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934339     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934340     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934341     1  0.0000      0.997 1.000 0.000  0 0.000  0
#> SRR934342     1  0.0000      0.997 1.000 0.000  0 0.000  0

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1 p2 p3    p4 p5 p6
#> SRR934216     3   0.000      1.000 0.000  0  1 0.000  0  0
#> SRR934217     3   0.000      1.000 0.000  0  1 0.000  0  0
#> SRR934218     3   0.000      1.000 0.000  0  1 0.000  0  0
#> SRR934219     3   0.000      1.000 0.000  0  1 0.000  0  0
#> SRR934220     3   0.000      1.000 0.000  0  1 0.000  0  0
#> SRR934221     3   0.000      1.000 0.000  0  1 0.000  0  0
#> SRR934222     3   0.000      1.000 0.000  0  1 0.000  0  0
#> SRR934223     3   0.000      1.000 0.000  0  1 0.000  0  0
#> SRR934224     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934225     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934226     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934227     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934228     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934229     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934230     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934231     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934232     2   0.000      1.000 0.000  1  0 0.000  0  0
#> SRR934233     2   0.000      1.000 0.000  1  0 0.000  0  0
#> SRR934234     2   0.000      1.000 0.000  1  0 0.000  0  0
#> SRR934235     2   0.000      1.000 0.000  1  0 0.000  0  0
#> SRR934236     2   0.000      1.000 0.000  1  0 0.000  0  0
#> SRR934237     2   0.000      1.000 0.000  1  0 0.000  0  0
#> SRR934238     2   0.000      1.000 0.000  1  0 0.000  0  0
#> SRR934239     2   0.000      1.000 0.000  1  0 0.000  0  0
#> SRR934240     2   0.000      1.000 0.000  1  0 0.000  0  0
#> SRR934241     2   0.000      1.000 0.000  1  0 0.000  0  0
#> SRR934242     2   0.000      1.000 0.000  1  0 0.000  0  0
#> SRR934243     2   0.000      1.000 0.000  1  0 0.000  0  0
#> SRR934244     2   0.000      1.000 0.000  1  0 0.000  0  0
#> SRR934245     2   0.000      1.000 0.000  1  0 0.000  0  0
#> SRR934246     2   0.000      1.000 0.000  1  0 0.000  0  0
#> SRR934247     2   0.000      1.000 0.000  1  0 0.000  0  0
#> SRR934248     4   0.000      1.000 0.000  0  0 1.000  0  0
#> SRR934249     4   0.000      1.000 0.000  0  0 1.000  0  0
#> SRR934250     4   0.000      1.000 0.000  0  0 1.000  0  0
#> SRR934251     4   0.000      1.000 0.000  0  0 1.000  0  0
#> SRR934252     4   0.000      1.000 0.000  0  0 1.000  0  0
#> SRR934253     4   0.000      1.000 0.000  0  0 1.000  0  0
#> SRR934254     4   0.000      1.000 0.000  0  0 1.000  0  0
#> SRR934255     4   0.000      1.000 0.000  0  0 1.000  0  0
#> SRR934256     6   0.000      1.000 0.000  0  0 0.000  0  1
#> SRR934257     6   0.000      1.000 0.000  0  0 0.000  0  1
#> SRR934258     6   0.000      1.000 0.000  0  0 0.000  0  1
#> SRR934259     6   0.000      1.000 0.000  0  0 0.000  0  1
#> SRR934260     6   0.000      1.000 0.000  0  0 0.000  0  1
#> SRR934261     6   0.000      1.000 0.000  0  0 0.000  0  1
#> SRR934262     6   0.000      1.000 0.000  0  0 0.000  0  1
#> SRR934263     6   0.000      1.000 0.000  0  0 0.000  0  1
#> SRR934264     4   0.000      1.000 0.000  0  0 1.000  0  0
#> SRR934265     4   0.000      1.000 0.000  0  0 1.000  0  0
#> SRR934266     4   0.000      1.000 0.000  0  0 1.000  0  0
#> SRR934267     4   0.000      1.000 0.000  0  0 1.000  0  0
#> SRR934268     4   0.000      1.000 0.000  0  0 1.000  0  0
#> SRR934269     4   0.000      1.000 0.000  0  0 1.000  0  0
#> SRR934270     4   0.000      1.000 0.000  0  0 1.000  0  0
#> SRR934271     4   0.000      1.000 0.000  0  0 1.000  0  0
#> SRR934272     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934273     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934274     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934275     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934276     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934277     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934278     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934279     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934280     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934281     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934282     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934283     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934284     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934285     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934286     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934287     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934288     1   0.026      0.995 0.992  0  0 0.008  0  0
#> SRR934289     1   0.026      0.995 0.992  0  0 0.008  0  0
#> SRR934290     1   0.026      0.995 0.992  0  0 0.008  0  0
#> SRR934291     1   0.026      0.995 0.992  0  0 0.008  0  0
#> SRR934292     1   0.026      0.995 0.992  0  0 0.008  0  0
#> SRR934293     1   0.026      0.995 0.992  0  0 0.008  0  0
#> SRR934294     1   0.026      0.995 0.992  0  0 0.008  0  0
#> SRR934295     1   0.026      0.995 0.992  0  0 0.008  0  0
#> SRR934296     1   0.026      0.995 0.992  0  0 0.008  0  0
#> SRR934297     1   0.026      0.995 0.992  0  0 0.008  0  0
#> SRR934298     1   0.026      0.995 0.992  0  0 0.008  0  0
#> SRR934299     1   0.026      0.995 0.992  0  0 0.008  0  0
#> SRR934300     1   0.026      0.995 0.992  0  0 0.008  0  0
#> SRR934301     1   0.026      0.995 0.992  0  0 0.008  0  0
#> SRR934302     1   0.026      0.995 0.992  0  0 0.008  0  0
#> SRR934303     1   0.026      0.995 0.992  0  0 0.008  0  0
#> SRR934304     5   0.000      1.000 0.000  0  0 0.000  1  0
#> SRR934305     5   0.000      1.000 0.000  0  0 0.000  1  0
#> SRR934306     5   0.000      1.000 0.000  0  0 0.000  1  0
#> SRR934307     5   0.000      1.000 0.000  0  0 0.000  1  0
#> SRR934308     5   0.000      1.000 0.000  0  0 0.000  1  0
#> SRR934309     5   0.000      1.000 0.000  0  0 0.000  1  0
#> SRR934310     5   0.000      1.000 0.000  0  0 0.000  1  0
#> SRR934311     5   0.000      1.000 0.000  0  0 0.000  1  0
#> SRR934312     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934313     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934314     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934315     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934316     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934317     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934318     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934319     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934320     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934321     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934322     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934323     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934324     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934325     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934326     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934327     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934328     1   0.026      0.995 0.992  0  0 0.008  0  0
#> SRR934329     1   0.026      0.995 0.992  0  0 0.008  0  0
#> SRR934330     1   0.026      0.995 0.992  0  0 0.008  0  0
#> SRR934331     1   0.026      0.995 0.992  0  0 0.008  0  0
#> SRR934332     1   0.026      0.995 0.992  0  0 0.008  0  0
#> SRR934333     1   0.026      0.995 0.992  0  0 0.008  0  0
#> SRR934334     1   0.026      0.995 0.992  0  0 0.008  0  0
#> SRR934335     1   0.026      0.995 0.992  0  0 0.008  0  0
#> SRR934344     1   0.026      0.995 0.992  0  0 0.008  0  0
#> SRR934345     1   0.026      0.995 0.992  0  0 0.008  0  0
#> SRR934346     1   0.026      0.995 0.992  0  0 0.008  0  0
#> SRR934347     1   0.026      0.995 0.992  0  0 0.008  0  0
#> SRR934348     1   0.026      0.995 0.992  0  0 0.008  0  0
#> SRR934349     1   0.026      0.995 0.992  0  0 0.008  0  0
#> SRR934350     1   0.026      0.995 0.992  0  0 0.008  0  0
#> SRR934351     1   0.026      0.995 0.992  0  0 0.008  0  0
#> SRR934336     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934337     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934338     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934339     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934340     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934341     1   0.000      0.997 1.000  0  0 0.000  0  0
#> SRR934342     1   0.000      0.997 1.000  0  0 0.000  0  0

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14550 rows and 135 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.253           0.543       0.805         0.3463 0.705   0.705
#> 3 3 0.162           0.536       0.678         0.5550 0.713   0.608
#> 4 4 0.276           0.507       0.624         0.1924 0.743   0.508
#> 5 5 0.351           0.683       0.660         0.1114 0.896   0.682
#> 6 6 0.526           0.560       0.625         0.0781 0.944   0.773

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR934216     1   0.929     0.2961 0.656 0.344
#> SRR934217     1   0.929     0.2961 0.656 0.344
#> SRR934218     1   0.929     0.2961 0.656 0.344
#> SRR934219     1   0.929     0.2961 0.656 0.344
#> SRR934220     1   0.929     0.2961 0.656 0.344
#> SRR934221     1   0.929     0.2961 0.656 0.344
#> SRR934222     1   0.929     0.2961 0.656 0.344
#> SRR934223     1   0.929     0.2961 0.656 0.344
#> SRR934224     1   0.343     0.7215 0.936 0.064
#> SRR934225     1   0.343     0.7215 0.936 0.064
#> SRR934226     1   0.343     0.7215 0.936 0.064
#> SRR934227     1   0.343     0.7215 0.936 0.064
#> SRR934228     1   0.343     0.7215 0.936 0.064
#> SRR934229     1   0.343     0.7215 0.936 0.064
#> SRR934230     1   0.343     0.7215 0.936 0.064
#> SRR934231     1   0.343     0.7215 0.936 0.064
#> SRR934232     2   0.955     0.7079 0.376 0.624
#> SRR934233     2   0.955     0.7079 0.376 0.624
#> SRR934234     2   0.955     0.7079 0.376 0.624
#> SRR934235     2   0.955     0.7079 0.376 0.624
#> SRR934236     2   0.955     0.7079 0.376 0.624
#> SRR934237     2   0.955     0.7079 0.376 0.624
#> SRR934238     2   0.955     0.7079 0.376 0.624
#> SRR934239     2   0.955     0.7079 0.376 0.624
#> SRR934240     2   0.978     0.6728 0.412 0.588
#> SRR934241     2   0.978     0.6728 0.412 0.588
#> SRR934242     2   0.978     0.6728 0.412 0.588
#> SRR934243     2   0.978     0.6728 0.412 0.588
#> SRR934244     2   0.978     0.6728 0.412 0.588
#> SRR934245     2   0.978     0.6728 0.412 0.588
#> SRR934246     2   0.978     0.6728 0.412 0.588
#> SRR934247     2   0.978     0.6728 0.412 0.588
#> SRR934248     1   0.983    -0.0478 0.576 0.424
#> SRR934249     1   0.983    -0.0478 0.576 0.424
#> SRR934250     1   0.983    -0.0478 0.576 0.424
#> SRR934251     1   0.983    -0.0478 0.576 0.424
#> SRR934252     1   0.983    -0.0478 0.576 0.424
#> SRR934253     1   0.983    -0.0478 0.576 0.424
#> SRR934254     1   0.983    -0.0478 0.576 0.424
#> SRR934255     1   0.983    -0.0478 0.576 0.424
#> SRR934256     1   0.994    -0.2535 0.544 0.456
#> SRR934257     1   0.994    -0.2535 0.544 0.456
#> SRR934258     1   0.994    -0.2535 0.544 0.456
#> SRR934259     1   0.994    -0.2535 0.544 0.456
#> SRR934260     1   0.994    -0.2535 0.544 0.456
#> SRR934261     1   0.994    -0.2535 0.544 0.456
#> SRR934262     1   0.994    -0.2535 0.544 0.456
#> SRR934263     1   0.994    -0.2535 0.544 0.456
#> SRR934264     1   0.936     0.1773 0.648 0.352
#> SRR934265     1   0.936     0.1773 0.648 0.352
#> SRR934266     1   0.936     0.1773 0.648 0.352
#> SRR934267     1   0.936     0.1773 0.648 0.352
#> SRR934268     1   0.936     0.1773 0.648 0.352
#> SRR934269     1   0.936     0.1773 0.648 0.352
#> SRR934270     1   0.936     0.1773 0.648 0.352
#> SRR934271     1   0.936     0.1773 0.648 0.352
#> SRR934272     1   0.118     0.7389 0.984 0.016
#> SRR934273     1   0.118     0.7389 0.984 0.016
#> SRR934274     1   0.118     0.7389 0.984 0.016
#> SRR934275     1   0.118     0.7389 0.984 0.016
#> SRR934276     1   0.118     0.7389 0.984 0.016
#> SRR934277     1   0.118     0.7389 0.984 0.016
#> SRR934278     1   0.118     0.7389 0.984 0.016
#> SRR934279     1   0.118     0.7389 0.984 0.016
#> SRR934280     1   0.204     0.7368 0.968 0.032
#> SRR934281     1   0.204     0.7368 0.968 0.032
#> SRR934282     1   0.204     0.7368 0.968 0.032
#> SRR934283     1   0.204     0.7368 0.968 0.032
#> SRR934284     1   0.204     0.7368 0.968 0.032
#> SRR934285     1   0.204     0.7368 0.968 0.032
#> SRR934286     1   0.204     0.7368 0.968 0.032
#> SRR934287     1   0.204     0.7368 0.968 0.032
#> SRR934288     1   0.402     0.7286 0.920 0.080
#> SRR934289     1   0.402     0.7286 0.920 0.080
#> SRR934290     1   0.402     0.7286 0.920 0.080
#> SRR934291     1   0.402     0.7286 0.920 0.080
#> SRR934292     1   0.402     0.7286 0.920 0.080
#> SRR934293     1   0.402     0.7286 0.920 0.080
#> SRR934294     1   0.402     0.7286 0.920 0.080
#> SRR934295     1   0.402     0.7286 0.920 0.080
#> SRR934296     1   0.662     0.6070 0.828 0.172
#> SRR934297     1   0.662     0.6070 0.828 0.172
#> SRR934298     1   0.662     0.6070 0.828 0.172
#> SRR934299     1   0.662     0.6070 0.828 0.172
#> SRR934300     1   0.662     0.6070 0.828 0.172
#> SRR934301     1   0.662     0.6070 0.828 0.172
#> SRR934302     1   0.662     0.6070 0.828 0.172
#> SRR934303     1   0.662     0.6070 0.828 0.172
#> SRR934304     2   0.904     0.5005 0.320 0.680
#> SRR934305     2   0.904     0.5005 0.320 0.680
#> SRR934306     2   0.904     0.5005 0.320 0.680
#> SRR934307     2   0.904     0.5005 0.320 0.680
#> SRR934308     2   0.904     0.5005 0.320 0.680
#> SRR934309     2   0.904     0.5005 0.320 0.680
#> SRR934310     2   0.904     0.5005 0.320 0.680
#> SRR934311     2   0.904     0.5005 0.320 0.680
#> SRR934312     1   0.000     0.7420 1.000 0.000
#> SRR934313     1   0.000     0.7420 1.000 0.000
#> SRR934314     1   0.000     0.7420 1.000 0.000
#> SRR934315     1   0.000     0.7420 1.000 0.000
#> SRR934316     1   0.000     0.7420 1.000 0.000
#> SRR934317     1   0.000     0.7420 1.000 0.000
#> SRR934318     1   0.000     0.7420 1.000 0.000
#> SRR934319     1   0.000     0.7420 1.000 0.000
#> SRR934320     1   0.343     0.7286 0.936 0.064
#> SRR934321     1   0.343     0.7286 0.936 0.064
#> SRR934322     1   0.343     0.7286 0.936 0.064
#> SRR934323     1   0.343     0.7286 0.936 0.064
#> SRR934324     1   0.343     0.7286 0.936 0.064
#> SRR934325     1   0.343     0.7286 0.936 0.064
#> SRR934326     1   0.343     0.7286 0.936 0.064
#> SRR934327     1   0.343     0.7286 0.936 0.064
#> SRR934328     1   0.388     0.7321 0.924 0.076
#> SRR934329     1   0.388     0.7321 0.924 0.076
#> SRR934330     1   0.388     0.7321 0.924 0.076
#> SRR934331     1   0.388     0.7321 0.924 0.076
#> SRR934332     1   0.388     0.7321 0.924 0.076
#> SRR934333     1   0.388     0.7321 0.924 0.076
#> SRR934334     1   0.388     0.7321 0.924 0.076
#> SRR934335     1   0.388     0.7321 0.924 0.076
#> SRR934344     1   0.373     0.7337 0.928 0.072
#> SRR934345     1   0.373     0.7337 0.928 0.072
#> SRR934346     1   0.373     0.7337 0.928 0.072
#> SRR934347     1   0.373     0.7337 0.928 0.072
#> SRR934348     1   0.373     0.7337 0.928 0.072
#> SRR934349     1   0.373     0.7337 0.928 0.072
#> SRR934350     1   0.373     0.7337 0.928 0.072
#> SRR934351     1   0.373     0.7337 0.928 0.072
#> SRR934336     1   0.184     0.7382 0.972 0.028
#> SRR934337     1   0.184     0.7382 0.972 0.028
#> SRR934338     1   0.184     0.7382 0.972 0.028
#> SRR934339     1   0.184     0.7382 0.972 0.028
#> SRR934340     1   0.184     0.7382 0.972 0.028
#> SRR934341     1   0.184     0.7382 0.972 0.028
#> SRR934342     1   0.184     0.7382 0.972 0.028

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR934216     3   0.704      0.502 0.400 0.024 0.576
#> SRR934217     3   0.704      0.502 0.400 0.024 0.576
#> SRR934218     3   0.704      0.502 0.400 0.024 0.576
#> SRR934219     3   0.704      0.502 0.400 0.024 0.576
#> SRR934220     3   0.704      0.502 0.400 0.024 0.576
#> SRR934221     3   0.704      0.502 0.400 0.024 0.576
#> SRR934222     3   0.704      0.502 0.400 0.024 0.576
#> SRR934223     3   0.704      0.502 0.400 0.024 0.576
#> SRR934224     1   0.417      0.630 0.872 0.036 0.092
#> SRR934225     1   0.417      0.630 0.872 0.036 0.092
#> SRR934226     1   0.417      0.630 0.872 0.036 0.092
#> SRR934227     1   0.417      0.630 0.872 0.036 0.092
#> SRR934228     1   0.417      0.630 0.872 0.036 0.092
#> SRR934229     1   0.417      0.630 0.872 0.036 0.092
#> SRR934230     1   0.417      0.630 0.872 0.036 0.092
#> SRR934231     1   0.417      0.630 0.872 0.036 0.092
#> SRR934232     2   0.823      0.628 0.156 0.636 0.208
#> SRR934233     2   0.823      0.628 0.156 0.636 0.208
#> SRR934234     2   0.823      0.628 0.156 0.636 0.208
#> SRR934235     2   0.823      0.628 0.156 0.636 0.208
#> SRR934236     2   0.823      0.628 0.156 0.636 0.208
#> SRR934237     2   0.823      0.628 0.156 0.636 0.208
#> SRR934238     2   0.823      0.628 0.156 0.636 0.208
#> SRR934239     2   0.823      0.628 0.156 0.636 0.208
#> SRR934240     2   0.744      0.726 0.220 0.684 0.096
#> SRR934241     2   0.744      0.726 0.220 0.684 0.096
#> SRR934242     2   0.744      0.726 0.220 0.684 0.096
#> SRR934243     2   0.744      0.726 0.220 0.684 0.096
#> SRR934244     2   0.744      0.726 0.220 0.684 0.096
#> SRR934245     2   0.744      0.726 0.220 0.684 0.096
#> SRR934246     2   0.744      0.726 0.220 0.684 0.096
#> SRR934247     2   0.744      0.726 0.220 0.684 0.096
#> SRR934248     3   0.990      0.477 0.292 0.304 0.404
#> SRR934249     3   0.990      0.477 0.292 0.304 0.404
#> SRR934250     3   0.990      0.477 0.292 0.304 0.404
#> SRR934251     3   0.990      0.477 0.292 0.304 0.404
#> SRR934252     3   0.990      0.477 0.292 0.304 0.404
#> SRR934253     3   0.990      0.477 0.292 0.304 0.404
#> SRR934254     3   0.990      0.477 0.292 0.304 0.404
#> SRR934255     3   0.990      0.477 0.292 0.304 0.404
#> SRR934256     2   0.754      0.598 0.332 0.612 0.056
#> SRR934257     2   0.754      0.598 0.332 0.612 0.056
#> SRR934258     2   0.754      0.598 0.332 0.612 0.056
#> SRR934259     2   0.754      0.598 0.332 0.612 0.056
#> SRR934260     2   0.754      0.598 0.332 0.612 0.056
#> SRR934261     2   0.754      0.598 0.332 0.612 0.056
#> SRR934262     2   0.754      0.598 0.332 0.612 0.056
#> SRR934263     2   0.754      0.598 0.332 0.612 0.056
#> SRR934264     1   0.946     -0.494 0.412 0.180 0.408
#> SRR934265     1   0.946     -0.494 0.412 0.180 0.408
#> SRR934266     1   0.946     -0.494 0.412 0.180 0.408
#> SRR934267     1   0.946     -0.494 0.412 0.180 0.408
#> SRR934268     1   0.946     -0.494 0.412 0.180 0.408
#> SRR934269     1   0.946     -0.494 0.412 0.180 0.408
#> SRR934270     1   0.946     -0.494 0.412 0.180 0.408
#> SRR934271     1   0.946     -0.494 0.412 0.180 0.408
#> SRR934272     1   0.140      0.672 0.968 0.004 0.028
#> SRR934273     1   0.140      0.672 0.968 0.004 0.028
#> SRR934274     1   0.140      0.672 0.968 0.004 0.028
#> SRR934275     1   0.140      0.672 0.968 0.004 0.028
#> SRR934276     1   0.140      0.672 0.968 0.004 0.028
#> SRR934277     1   0.140      0.672 0.968 0.004 0.028
#> SRR934278     1   0.140      0.672 0.968 0.004 0.028
#> SRR934279     1   0.140      0.672 0.968 0.004 0.028
#> SRR934280     1   0.212      0.674 0.948 0.040 0.012
#> SRR934281     1   0.212      0.674 0.948 0.040 0.012
#> SRR934282     1   0.212      0.674 0.948 0.040 0.012
#> SRR934283     1   0.212      0.674 0.948 0.040 0.012
#> SRR934284     1   0.212      0.674 0.948 0.040 0.012
#> SRR934285     1   0.212      0.674 0.948 0.040 0.012
#> SRR934286     1   0.212      0.674 0.948 0.040 0.012
#> SRR934287     1   0.212      0.674 0.948 0.040 0.012
#> SRR934288     1   0.836      0.553 0.616 0.244 0.140
#> SRR934289     1   0.836      0.553 0.616 0.244 0.140
#> SRR934290     1   0.836      0.553 0.616 0.244 0.140
#> SRR934291     1   0.836      0.553 0.616 0.244 0.140
#> SRR934292     1   0.836      0.553 0.616 0.244 0.140
#> SRR934293     1   0.836      0.553 0.616 0.244 0.140
#> SRR934294     1   0.836      0.553 0.616 0.244 0.140
#> SRR934295     1   0.836      0.553 0.616 0.244 0.140
#> SRR934296     1   0.820      0.485 0.616 0.268 0.116
#> SRR934297     1   0.820      0.485 0.616 0.268 0.116
#> SRR934298     1   0.820      0.485 0.616 0.268 0.116
#> SRR934299     1   0.820      0.485 0.616 0.268 0.116
#> SRR934300     1   0.820      0.485 0.616 0.268 0.116
#> SRR934301     1   0.820      0.485 0.616 0.268 0.116
#> SRR934302     1   0.820      0.485 0.616 0.268 0.116
#> SRR934303     1   0.820      0.485 0.616 0.268 0.116
#> SRR934304     3   0.776      0.553 0.144 0.180 0.676
#> SRR934305     3   0.776      0.553 0.144 0.180 0.676
#> SRR934306     3   0.776      0.553 0.144 0.180 0.676
#> SRR934307     3   0.776      0.553 0.144 0.180 0.676
#> SRR934308     3   0.776      0.553 0.144 0.180 0.676
#> SRR934309     3   0.776      0.553 0.144 0.180 0.676
#> SRR934310     3   0.776      0.553 0.144 0.180 0.676
#> SRR934311     3   0.776      0.553 0.144 0.180 0.676
#> SRR934312     1   0.101      0.681 0.980 0.012 0.008
#> SRR934313     1   0.101      0.681 0.980 0.012 0.008
#> SRR934314     1   0.101      0.681 0.980 0.012 0.008
#> SRR934315     1   0.101      0.681 0.980 0.012 0.008
#> SRR934316     1   0.101      0.681 0.980 0.012 0.008
#> SRR934317     1   0.101      0.681 0.980 0.012 0.008
#> SRR934318     1   0.101      0.681 0.980 0.012 0.008
#> SRR934319     1   0.101      0.681 0.980 0.012 0.008
#> SRR934320     1   0.464      0.666 0.852 0.104 0.044
#> SRR934321     1   0.464      0.666 0.852 0.104 0.044
#> SRR934322     1   0.464      0.666 0.852 0.104 0.044
#> SRR934323     1   0.464      0.666 0.852 0.104 0.044
#> SRR934324     1   0.464      0.666 0.852 0.104 0.044
#> SRR934325     1   0.464      0.666 0.852 0.104 0.044
#> SRR934326     1   0.464      0.666 0.852 0.104 0.044
#> SRR934327     1   0.464      0.666 0.852 0.104 0.044
#> SRR934328     1   0.846      0.547 0.608 0.244 0.148
#> SRR934329     1   0.846      0.547 0.608 0.244 0.148
#> SRR934330     1   0.846      0.547 0.608 0.244 0.148
#> SRR934331     1   0.846      0.547 0.608 0.244 0.148
#> SRR934332     1   0.846      0.547 0.608 0.244 0.148
#> SRR934333     1   0.846      0.547 0.608 0.244 0.148
#> SRR934334     1   0.846      0.547 0.608 0.244 0.148
#> SRR934335     1   0.846      0.547 0.608 0.244 0.148
#> SRR934344     1   0.786      0.574 0.664 0.204 0.132
#> SRR934345     1   0.786      0.574 0.664 0.204 0.132
#> SRR934346     1   0.786      0.574 0.664 0.204 0.132
#> SRR934347     1   0.786      0.574 0.664 0.204 0.132
#> SRR934348     1   0.786      0.574 0.664 0.204 0.132
#> SRR934349     1   0.786      0.574 0.664 0.204 0.132
#> SRR934350     1   0.786      0.574 0.664 0.204 0.132
#> SRR934351     1   0.786      0.574 0.664 0.204 0.132
#> SRR934336     1   0.288      0.656 0.924 0.024 0.052
#> SRR934337     1   0.288      0.656 0.924 0.024 0.052
#> SRR934338     1   0.288      0.656 0.924 0.024 0.052
#> SRR934339     1   0.288      0.656 0.924 0.024 0.052
#> SRR934340     1   0.288      0.656 0.924 0.024 0.052
#> SRR934341     1   0.288      0.656 0.924 0.024 0.052
#> SRR934342     1   0.288      0.656 0.924 0.024 0.052

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> SRR934216     1   0.860     -0.160 0.400 0.064 0.388 0.148
#> SRR934217     1   0.860     -0.160 0.400 0.064 0.388 0.148
#> SRR934218     1   0.865     -0.160 0.396 0.068 0.388 0.148
#> SRR934219     1   0.860     -0.160 0.400 0.064 0.388 0.148
#> SRR934220     1   0.860     -0.160 0.400 0.064 0.388 0.148
#> SRR934221     1   0.865     -0.160 0.396 0.068 0.388 0.148
#> SRR934222     1   0.860     -0.160 0.400 0.064 0.388 0.148
#> SRR934223     1   0.860     -0.160 0.400 0.064 0.388 0.148
#> SRR934224     1   0.536      0.515 0.676 0.000 0.036 0.288
#> SRR934225     1   0.536      0.515 0.676 0.000 0.036 0.288
#> SRR934226     1   0.536      0.515 0.676 0.000 0.036 0.288
#> SRR934227     1   0.536      0.515 0.676 0.000 0.036 0.288
#> SRR934228     1   0.536      0.515 0.676 0.000 0.036 0.288
#> SRR934229     1   0.536      0.515 0.676 0.000 0.036 0.288
#> SRR934230     1   0.536      0.515 0.676 0.000 0.036 0.288
#> SRR934231     1   0.536      0.515 0.676 0.000 0.036 0.288
#> SRR934232     2   0.567      0.559 0.104 0.764 0.096 0.036
#> SRR934233     2   0.567      0.559 0.104 0.764 0.096 0.036
#> SRR934234     2   0.567      0.559 0.104 0.764 0.096 0.036
#> SRR934235     2   0.567      0.559 0.104 0.764 0.096 0.036
#> SRR934236     2   0.567      0.559 0.104 0.764 0.096 0.036
#> SRR934237     2   0.567      0.559 0.104 0.764 0.096 0.036
#> SRR934238     2   0.567      0.559 0.104 0.764 0.096 0.036
#> SRR934239     2   0.567      0.559 0.104 0.764 0.096 0.036
#> SRR934240     2   0.322      0.713 0.036 0.888 0.008 0.068
#> SRR934241     2   0.322      0.713 0.036 0.888 0.008 0.068
#> SRR934242     2   0.322      0.713 0.036 0.888 0.008 0.068
#> SRR934243     2   0.322      0.713 0.036 0.888 0.008 0.068
#> SRR934244     2   0.322      0.713 0.036 0.888 0.008 0.068
#> SRR934245     2   0.322      0.713 0.036 0.888 0.008 0.068
#> SRR934246     2   0.322      0.713 0.036 0.888 0.008 0.068
#> SRR934247     2   0.322      0.713 0.036 0.888 0.008 0.068
#> SRR934248     3   0.990      0.627 0.236 0.272 0.300 0.192
#> SRR934249     3   0.990      0.627 0.236 0.272 0.300 0.192
#> SRR934250     3   0.990      0.627 0.236 0.272 0.300 0.192
#> SRR934251     3   0.990      0.627 0.236 0.272 0.300 0.192
#> SRR934252     3   0.990      0.627 0.236 0.272 0.300 0.192
#> SRR934253     3   0.990      0.627 0.236 0.272 0.300 0.192
#> SRR934254     3   0.990      0.627 0.236 0.272 0.300 0.192
#> SRR934255     3   0.990      0.627 0.236 0.272 0.300 0.192
#> SRR934256     2   0.793      0.626 0.156 0.580 0.060 0.204
#> SRR934257     2   0.793      0.626 0.156 0.580 0.060 0.204
#> SRR934258     2   0.793      0.626 0.156 0.580 0.060 0.204
#> SRR934259     2   0.793      0.626 0.156 0.580 0.060 0.204
#> SRR934260     2   0.793      0.626 0.156 0.580 0.060 0.204
#> SRR934261     2   0.795      0.626 0.152 0.580 0.064 0.204
#> SRR934262     2   0.793      0.626 0.156 0.580 0.060 0.204
#> SRR934263     2   0.793      0.626 0.156 0.580 0.060 0.204
#> SRR934264     1   0.958     -0.419 0.356 0.220 0.292 0.132
#> SRR934265     1   0.958     -0.419 0.356 0.220 0.292 0.132
#> SRR934266     1   0.958     -0.419 0.356 0.220 0.292 0.132
#> SRR934267     1   0.958     -0.419 0.356 0.220 0.292 0.132
#> SRR934268     1   0.958     -0.419 0.356 0.220 0.292 0.132
#> SRR934269     1   0.958     -0.419 0.356 0.220 0.292 0.132
#> SRR934270     1   0.958     -0.419 0.356 0.220 0.292 0.132
#> SRR934271     1   0.958     -0.419 0.356 0.220 0.292 0.132
#> SRR934272     1   0.585      0.543 0.580 0.024 0.008 0.388
#> SRR934273     1   0.585      0.543 0.580 0.024 0.008 0.388
#> SRR934274     1   0.585      0.543 0.580 0.024 0.008 0.388
#> SRR934275     1   0.585      0.543 0.580 0.024 0.008 0.388
#> SRR934276     1   0.585      0.543 0.580 0.024 0.008 0.388
#> SRR934277     1   0.585      0.543 0.580 0.024 0.008 0.388
#> SRR934278     1   0.585      0.543 0.580 0.024 0.008 0.388
#> SRR934279     1   0.585      0.543 0.580 0.024 0.008 0.388
#> SRR934280     1   0.706      0.509 0.496 0.044 0.040 0.420
#> SRR934281     1   0.706      0.509 0.496 0.044 0.040 0.420
#> SRR934282     1   0.706      0.509 0.496 0.044 0.040 0.420
#> SRR934283     1   0.706      0.509 0.496 0.044 0.040 0.420
#> SRR934284     1   0.706      0.509 0.496 0.044 0.040 0.420
#> SRR934285     1   0.706      0.509 0.496 0.044 0.040 0.420
#> SRR934286     1   0.706      0.509 0.496 0.044 0.040 0.420
#> SRR934287     1   0.706      0.509 0.496 0.044 0.040 0.420
#> SRR934288     4   0.199      0.813 0.024 0.012 0.020 0.944
#> SRR934289     4   0.199      0.813 0.024 0.012 0.020 0.944
#> SRR934290     4   0.199      0.813 0.024 0.012 0.020 0.944
#> SRR934291     4   0.199      0.813 0.024 0.012 0.020 0.944
#> SRR934292     4   0.199      0.813 0.024 0.012 0.020 0.944
#> SRR934293     4   0.199      0.813 0.024 0.012 0.020 0.944
#> SRR934294     4   0.199      0.813 0.024 0.012 0.020 0.944
#> SRR934295     4   0.199      0.813 0.024 0.012 0.020 0.944
#> SRR934296     4   0.656      0.616 0.120 0.156 0.032 0.692
#> SRR934297     4   0.656      0.616 0.120 0.156 0.032 0.692
#> SRR934298     4   0.656      0.616 0.120 0.156 0.032 0.692
#> SRR934299     4   0.656      0.616 0.120 0.156 0.032 0.692
#> SRR934300     4   0.656      0.616 0.120 0.156 0.032 0.692
#> SRR934301     4   0.656      0.616 0.120 0.156 0.032 0.692
#> SRR934302     4   0.656      0.616 0.120 0.156 0.032 0.692
#> SRR934303     4   0.656      0.616 0.120 0.156 0.032 0.692
#> SRR934304     3   0.613      0.620 0.044 0.192 0.712 0.052
#> SRR934305     3   0.613      0.620 0.044 0.192 0.712 0.052
#> SRR934306     3   0.613      0.620 0.044 0.192 0.712 0.052
#> SRR934307     3   0.613      0.620 0.044 0.192 0.712 0.052
#> SRR934308     3   0.613      0.620 0.044 0.192 0.712 0.052
#> SRR934309     3   0.617      0.619 0.044 0.196 0.708 0.052
#> SRR934310     3   0.613      0.620 0.044 0.192 0.712 0.052
#> SRR934311     3   0.613      0.620 0.044 0.192 0.712 0.052
#> SRR934312     1   0.635      0.509 0.512 0.032 0.016 0.440
#> SRR934313     1   0.635      0.509 0.512 0.032 0.016 0.440
#> SRR934314     1   0.635      0.509 0.512 0.032 0.016 0.440
#> SRR934315     1   0.635      0.509 0.512 0.032 0.016 0.440
#> SRR934316     1   0.635      0.509 0.512 0.032 0.016 0.440
#> SRR934317     1   0.635      0.509 0.512 0.032 0.016 0.440
#> SRR934318     1   0.635      0.509 0.512 0.032 0.016 0.440
#> SRR934319     1   0.635      0.509 0.512 0.032 0.016 0.440
#> SRR934320     1   0.743      0.425 0.496 0.056 0.052 0.396
#> SRR934321     1   0.743      0.425 0.496 0.056 0.052 0.396
#> SRR934322     1   0.743      0.425 0.496 0.056 0.052 0.396
#> SRR934323     1   0.743      0.425 0.496 0.056 0.052 0.396
#> SRR934324     1   0.743      0.425 0.496 0.056 0.052 0.396
#> SRR934325     1   0.743      0.425 0.496 0.056 0.052 0.396
#> SRR934326     1   0.743      0.425 0.496 0.056 0.052 0.396
#> SRR934327     1   0.743      0.425 0.496 0.056 0.052 0.396
#> SRR934328     4   0.151      0.815 0.020 0.008 0.012 0.960
#> SRR934329     4   0.151      0.815 0.020 0.008 0.012 0.960
#> SRR934330     4   0.151      0.815 0.020 0.008 0.012 0.960
#> SRR934331     4   0.151      0.815 0.020 0.008 0.012 0.960
#> SRR934332     4   0.151      0.815 0.020 0.008 0.012 0.960
#> SRR934333     4   0.151      0.815 0.020 0.008 0.012 0.960
#> SRR934334     4   0.151      0.815 0.020 0.008 0.012 0.960
#> SRR934335     4   0.151      0.815 0.020 0.008 0.012 0.960
#> SRR934344     4   0.346      0.754 0.124 0.004 0.016 0.856
#> SRR934345     4   0.346      0.754 0.124 0.004 0.016 0.856
#> SRR934346     4   0.346      0.754 0.124 0.004 0.016 0.856
#> SRR934347     4   0.346      0.754 0.124 0.004 0.016 0.856
#> SRR934348     4   0.346      0.754 0.124 0.004 0.016 0.856
#> SRR934349     4   0.346      0.754 0.124 0.004 0.016 0.856
#> SRR934350     4   0.346      0.754 0.124 0.004 0.016 0.856
#> SRR934351     4   0.346      0.754 0.124 0.004 0.016 0.856
#> SRR934336     1   0.584      0.557 0.608 0.008 0.028 0.356
#> SRR934337     1   0.584      0.557 0.608 0.008 0.028 0.356
#> SRR934338     1   0.584      0.557 0.608 0.008 0.028 0.356
#> SRR934339     1   0.584      0.557 0.608 0.008 0.028 0.356
#> SRR934340     1   0.584      0.557 0.608 0.008 0.028 0.356
#> SRR934341     1   0.584      0.557 0.608 0.008 0.028 0.356
#> SRR934342     1   0.584      0.557 0.608 0.008 0.028 0.356

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> SRR934216     3   0.788      1.000 0.184 0.008 0.384 0.356 0.068
#> SRR934217     3   0.788      1.000 0.184 0.008 0.384 0.356 0.068
#> SRR934218     3   0.788      1.000 0.184 0.008 0.384 0.356 0.068
#> SRR934219     3   0.788      1.000 0.184 0.008 0.384 0.356 0.068
#> SRR934220     3   0.792      0.997 0.184 0.008 0.380 0.356 0.072
#> SRR934221     3   0.788      1.000 0.184 0.008 0.384 0.356 0.068
#> SRR934222     3   0.788      1.000 0.184 0.008 0.384 0.356 0.068
#> SRR934223     3   0.788      1.000 0.184 0.008 0.384 0.356 0.068
#> SRR934224     1   0.497      0.620 0.676 0.004 0.264 0.000 0.056
#> SRR934225     1   0.497      0.620 0.676 0.004 0.264 0.000 0.056
#> SRR934226     1   0.497      0.620 0.676 0.004 0.264 0.000 0.056
#> SRR934227     1   0.497      0.620 0.676 0.004 0.264 0.000 0.056
#> SRR934228     1   0.497      0.620 0.676 0.004 0.264 0.000 0.056
#> SRR934229     1   0.497      0.620 0.676 0.004 0.264 0.000 0.056
#> SRR934230     1   0.497      0.620 0.676 0.004 0.264 0.000 0.056
#> SRR934231     1   0.497      0.620 0.676 0.004 0.264 0.000 0.056
#> SRR934232     2   0.605      0.540 0.004 0.676 0.120 0.152 0.048
#> SRR934233     2   0.605      0.540 0.004 0.676 0.120 0.152 0.048
#> SRR934234     2   0.605      0.540 0.004 0.676 0.120 0.152 0.048
#> SRR934235     2   0.605      0.540 0.004 0.676 0.120 0.152 0.048
#> SRR934236     2   0.605      0.540 0.004 0.676 0.120 0.152 0.048
#> SRR934237     2   0.605      0.540 0.004 0.676 0.120 0.152 0.048
#> SRR934238     2   0.605      0.540 0.004 0.676 0.120 0.152 0.048
#> SRR934239     2   0.605      0.540 0.004 0.676 0.120 0.152 0.048
#> SRR934240     2   0.251      0.700 0.028 0.908 0.000 0.044 0.020
#> SRR934241     2   0.251      0.700 0.028 0.908 0.000 0.044 0.020
#> SRR934242     2   0.251      0.700 0.028 0.908 0.000 0.044 0.020
#> SRR934243     2   0.251      0.700 0.028 0.908 0.000 0.044 0.020
#> SRR934244     2   0.251      0.700 0.028 0.908 0.000 0.044 0.020
#> SRR934245     2   0.251      0.700 0.028 0.908 0.000 0.044 0.020
#> SRR934246     2   0.251      0.700 0.028 0.908 0.000 0.044 0.020
#> SRR934247     2   0.251      0.700 0.028 0.908 0.000 0.044 0.020
#> SRR934248     4   0.968      0.564 0.120 0.184 0.176 0.320 0.200
#> SRR934249     4   0.968      0.564 0.120 0.184 0.176 0.320 0.200
#> SRR934250     4   0.968      0.564 0.120 0.184 0.180 0.320 0.196
#> SRR934251     4   0.968      0.564 0.120 0.184 0.180 0.320 0.196
#> SRR934252     4   0.968      0.564 0.120 0.184 0.176 0.320 0.200
#> SRR934253     4   0.968      0.564 0.120 0.184 0.180 0.320 0.196
#> SRR934254     4   0.968      0.564 0.120 0.184 0.176 0.320 0.200
#> SRR934255     4   0.968      0.564 0.120 0.184 0.176 0.320 0.200
#> SRR934256     2   0.724      0.610 0.108 0.596 0.148 0.016 0.132
#> SRR934257     2   0.724      0.610 0.108 0.596 0.148 0.016 0.132
#> SRR934258     2   0.724      0.610 0.108 0.596 0.148 0.016 0.132
#> SRR934259     2   0.724      0.610 0.108 0.596 0.148 0.016 0.132
#> SRR934260     2   0.724      0.610 0.108 0.596 0.148 0.016 0.132
#> SRR934261     2   0.724      0.610 0.108 0.596 0.148 0.016 0.132
#> SRR934262     2   0.724      0.610 0.108 0.596 0.148 0.016 0.132
#> SRR934263     2   0.724      0.610 0.108 0.596 0.148 0.016 0.132
#> SRR934264     4   0.940      0.501 0.272 0.128 0.204 0.312 0.084
#> SRR934265     4   0.940      0.501 0.272 0.128 0.204 0.312 0.084
#> SRR934266     4   0.940      0.501 0.272 0.128 0.204 0.312 0.084
#> SRR934267     4   0.940      0.501 0.272 0.128 0.204 0.312 0.084
#> SRR934268     4   0.940      0.501 0.272 0.128 0.204 0.312 0.084
#> SRR934269     4   0.940      0.501 0.272 0.128 0.204 0.312 0.084
#> SRR934270     4   0.940      0.501 0.272 0.128 0.204 0.312 0.084
#> SRR934271     4   0.940      0.501 0.272 0.128 0.204 0.312 0.084
#> SRR934272     1   0.409      0.739 0.804 0.004 0.072 0.004 0.116
#> SRR934273     1   0.409      0.739 0.804 0.004 0.072 0.004 0.116
#> SRR934274     1   0.409      0.739 0.804 0.004 0.072 0.004 0.116
#> SRR934275     1   0.409      0.739 0.804 0.004 0.072 0.004 0.116
#> SRR934276     1   0.409      0.739 0.804 0.004 0.072 0.004 0.116
#> SRR934277     1   0.409      0.739 0.804 0.004 0.072 0.004 0.116
#> SRR934278     1   0.409      0.739 0.804 0.004 0.072 0.004 0.116
#> SRR934279     1   0.409      0.739 0.804 0.004 0.072 0.004 0.116
#> SRR934280     1   0.321      0.767 0.876 0.032 0.060 0.004 0.028
#> SRR934281     1   0.321      0.767 0.876 0.032 0.060 0.004 0.028
#> SRR934282     1   0.321      0.767 0.876 0.032 0.060 0.004 0.028
#> SRR934283     1   0.321      0.767 0.876 0.032 0.060 0.004 0.028
#> SRR934284     1   0.321      0.767 0.876 0.032 0.060 0.004 0.028
#> SRR934285     1   0.321      0.767 0.876 0.032 0.060 0.004 0.028
#> SRR934286     1   0.321      0.767 0.876 0.032 0.060 0.004 0.028
#> SRR934287     1   0.321      0.767 0.876 0.032 0.060 0.004 0.028
#> SRR934288     5   0.526      0.827 0.232 0.012 0.064 0.004 0.688
#> SRR934289     5   0.526      0.827 0.232 0.012 0.064 0.004 0.688
#> SRR934290     5   0.526      0.827 0.232 0.012 0.064 0.004 0.688
#> SRR934291     5   0.526      0.827 0.232 0.012 0.064 0.004 0.688
#> SRR934292     5   0.526      0.827 0.232 0.012 0.064 0.004 0.688
#> SRR934293     5   0.526      0.827 0.232 0.012 0.064 0.004 0.688
#> SRR934294     5   0.526      0.827 0.232 0.012 0.064 0.004 0.688
#> SRR934295     5   0.526      0.827 0.232 0.012 0.064 0.004 0.688
#> SRR934296     5   0.844      0.633 0.272 0.104 0.128 0.048 0.448
#> SRR934297     5   0.844      0.633 0.272 0.104 0.128 0.048 0.448
#> SRR934298     5   0.844      0.633 0.272 0.104 0.128 0.048 0.448
#> SRR934299     5   0.844      0.633 0.272 0.104 0.128 0.048 0.448
#> SRR934300     5   0.844      0.633 0.272 0.104 0.128 0.048 0.448
#> SRR934301     5   0.844      0.633 0.272 0.104 0.128 0.048 0.448
#> SRR934302     5   0.844      0.633 0.272 0.104 0.128 0.048 0.448
#> SRR934303     5   0.844      0.633 0.272 0.104 0.128 0.048 0.448
#> SRR934304     4   0.249      0.250 0.024 0.048 0.000 0.908 0.020
#> SRR934305     4   0.249      0.250 0.024 0.048 0.000 0.908 0.020
#> SRR934306     4   0.239      0.250 0.024 0.048 0.000 0.912 0.016
#> SRR934307     4   0.239      0.250 0.024 0.048 0.000 0.912 0.016
#> SRR934308     4   0.274      0.248 0.024 0.048 0.004 0.900 0.024
#> SRR934309     4   0.239      0.250 0.024 0.048 0.000 0.912 0.016
#> SRR934310     4   0.249      0.250 0.024 0.048 0.000 0.908 0.020
#> SRR934311     4   0.239      0.250 0.024 0.048 0.000 0.912 0.016
#> SRR934312     1   0.432      0.737 0.808 0.016 0.060 0.012 0.104
#> SRR934313     1   0.432      0.737 0.808 0.016 0.060 0.012 0.104
#> SRR934314     1   0.432      0.737 0.808 0.016 0.060 0.012 0.104
#> SRR934315     1   0.432      0.737 0.808 0.016 0.060 0.012 0.104
#> SRR934316     1   0.432      0.737 0.808 0.016 0.060 0.012 0.104
#> SRR934317     1   0.432      0.737 0.808 0.016 0.060 0.012 0.104
#> SRR934318     1   0.432      0.737 0.808 0.016 0.060 0.012 0.104
#> SRR934319     1   0.432      0.737 0.808 0.016 0.060 0.012 0.104
#> SRR934320     1   0.508      0.699 0.752 0.028 0.108 0.004 0.108
#> SRR934321     1   0.508      0.699 0.752 0.028 0.108 0.004 0.108
#> SRR934322     1   0.508      0.699 0.752 0.028 0.108 0.004 0.108
#> SRR934323     1   0.508      0.699 0.752 0.028 0.108 0.004 0.108
#> SRR934324     1   0.508      0.699 0.752 0.028 0.108 0.004 0.108
#> SRR934325     1   0.508      0.699 0.752 0.028 0.108 0.004 0.108
#> SRR934326     1   0.508      0.699 0.752 0.028 0.108 0.004 0.108
#> SRR934327     1   0.508      0.699 0.752 0.028 0.108 0.004 0.108
#> SRR934328     5   0.400      0.834 0.208 0.004 0.008 0.012 0.768
#> SRR934329     5   0.400      0.834 0.208 0.004 0.008 0.012 0.768
#> SRR934330     5   0.400      0.834 0.208 0.004 0.008 0.012 0.768
#> SRR934331     5   0.400      0.834 0.208 0.004 0.008 0.012 0.768
#> SRR934332     5   0.400      0.834 0.208 0.004 0.008 0.012 0.768
#> SRR934333     5   0.400      0.834 0.208 0.004 0.008 0.012 0.768
#> SRR934334     5   0.400      0.834 0.208 0.004 0.008 0.012 0.768
#> SRR934335     5   0.400      0.834 0.208 0.004 0.008 0.012 0.768
#> SRR934344     5   0.428      0.813 0.224 0.000 0.040 0.000 0.736
#> SRR934345     5   0.428      0.813 0.224 0.000 0.040 0.000 0.736
#> SRR934346     5   0.428      0.813 0.224 0.000 0.040 0.000 0.736
#> SRR934347     5   0.428      0.813 0.224 0.000 0.040 0.000 0.736
#> SRR934348     5   0.428      0.813 0.224 0.000 0.040 0.000 0.736
#> SRR934349     5   0.428      0.813 0.224 0.000 0.040 0.000 0.736
#> SRR934350     5   0.428      0.813 0.224 0.000 0.040 0.000 0.736
#> SRR934351     5   0.428      0.813 0.224 0.000 0.040 0.000 0.736
#> SRR934336     1   0.224      0.783 0.920 0.004 0.036 0.004 0.036
#> SRR934337     1   0.224      0.783 0.920 0.004 0.036 0.004 0.036
#> SRR934338     1   0.224      0.783 0.920 0.004 0.036 0.004 0.036
#> SRR934339     1   0.224      0.783 0.920 0.004 0.036 0.004 0.036
#> SRR934340     1   0.224      0.783 0.920 0.004 0.036 0.004 0.036
#> SRR934341     1   0.224      0.783 0.920 0.004 0.036 0.004 0.036
#> SRR934342     1   0.224      0.783 0.920 0.004 0.036 0.004 0.036

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR934216     3  0.7554     0.3506 0.064 0.004 0.448 0.112 0.300 0.072
#> SRR934217     3  0.7554     0.3506 0.064 0.004 0.448 0.112 0.300 0.072
#> SRR934218     3  0.7554     0.3506 0.064 0.004 0.448 0.112 0.300 0.072
#> SRR934219     3  0.7554     0.3506 0.064 0.004 0.448 0.112 0.300 0.072
#> SRR934220     3  0.7585     0.3489 0.064 0.004 0.444 0.116 0.300 0.072
#> SRR934221     3  0.7554     0.3506 0.064 0.004 0.448 0.112 0.300 0.072
#> SRR934222     3  0.7554     0.3506 0.064 0.004 0.448 0.112 0.300 0.072
#> SRR934223     3  0.7554     0.3506 0.064 0.004 0.448 0.112 0.300 0.072
#> SRR934224     3  0.4385     0.1688 0.024 0.000 0.532 0.000 0.000 0.444
#> SRR934225     3  0.4385     0.1688 0.024 0.000 0.532 0.000 0.000 0.444
#> SRR934226     3  0.4385     0.1688 0.024 0.000 0.532 0.000 0.000 0.444
#> SRR934227     3  0.4385     0.1688 0.024 0.000 0.532 0.000 0.000 0.444
#> SRR934228     3  0.4385     0.1688 0.024 0.000 0.532 0.000 0.000 0.444
#> SRR934229     3  0.4385     0.1688 0.024 0.000 0.532 0.000 0.000 0.444
#> SRR934230     3  0.4385     0.1688 0.024 0.000 0.532 0.000 0.000 0.444
#> SRR934231     3  0.4385     0.1688 0.024 0.000 0.532 0.000 0.000 0.444
#> SRR934232     2  0.4999     0.4500 0.008 0.676 0.008 0.212 0.096 0.000
#> SRR934233     2  0.4999     0.4500 0.008 0.676 0.008 0.212 0.096 0.000
#> SRR934234     2  0.4999     0.4500 0.008 0.676 0.008 0.212 0.096 0.000
#> SRR934235     2  0.4999     0.4500 0.008 0.676 0.008 0.212 0.096 0.000
#> SRR934236     2  0.4999     0.4500 0.008 0.676 0.008 0.212 0.096 0.000
#> SRR934237     2  0.4999     0.4500 0.008 0.676 0.008 0.212 0.096 0.000
#> SRR934238     2  0.4999     0.4500 0.008 0.676 0.008 0.212 0.096 0.000
#> SRR934239     2  0.4999     0.4500 0.008 0.676 0.008 0.212 0.096 0.000
#> SRR934240     2  0.0976     0.6476 0.016 0.968 0.000 0.000 0.008 0.008
#> SRR934241     2  0.0976     0.6476 0.016 0.968 0.000 0.000 0.008 0.008
#> SRR934242     2  0.0976     0.6476 0.016 0.968 0.000 0.000 0.008 0.008
#> SRR934243     2  0.0976     0.6476 0.016 0.968 0.000 0.000 0.008 0.008
#> SRR934244     2  0.0976     0.6476 0.016 0.968 0.000 0.000 0.008 0.008
#> SRR934245     2  0.0976     0.6476 0.016 0.968 0.000 0.000 0.008 0.008
#> SRR934246     2  0.0976     0.6476 0.016 0.968 0.000 0.000 0.008 0.008
#> SRR934247     2  0.0976     0.6476 0.016 0.968 0.000 0.000 0.008 0.008
#> SRR934248     4  0.8744     0.9974 0.080 0.172 0.056 0.344 0.284 0.064
#> SRR934249     4  0.8784     0.9974 0.080 0.172 0.060 0.340 0.284 0.064
#> SRR934250     4  0.8744     0.9974 0.080 0.172 0.056 0.344 0.284 0.064
#> SRR934251     4  0.8784     0.9974 0.080 0.172 0.060 0.340 0.284 0.064
#> SRR934252     4  0.8784     0.9974 0.080 0.172 0.060 0.340 0.284 0.064
#> SRR934253     4  0.8784     0.9974 0.080 0.172 0.060 0.340 0.284 0.064
#> SRR934254     4  0.8744     0.9974 0.080 0.172 0.056 0.344 0.284 0.064
#> SRR934255     4  0.8744     0.9974 0.080 0.172 0.056 0.344 0.284 0.064
#> SRR934256     2  0.7388     0.5452 0.092 0.500 0.064 0.272 0.016 0.056
#> SRR934257     2  0.7395     0.5452 0.088 0.500 0.068 0.272 0.016 0.056
#> SRR934258     2  0.7479     0.5451 0.092 0.500 0.068 0.264 0.020 0.056
#> SRR934259     2  0.7395     0.5452 0.088 0.500 0.068 0.272 0.016 0.056
#> SRR934260     2  0.7567     0.5447 0.084 0.500 0.072 0.260 0.028 0.056
#> SRR934261     2  0.7591     0.5439 0.092 0.500 0.076 0.252 0.024 0.056
#> SRR934262     2  0.7448     0.5451 0.092 0.500 0.064 0.268 0.020 0.056
#> SRR934263     2  0.7388     0.5452 0.092 0.500 0.064 0.272 0.016 0.056
#> SRR934264     5  0.9169     0.0372 0.036 0.084 0.192 0.228 0.288 0.172
#> SRR934265     5  0.9169     0.0372 0.036 0.084 0.192 0.228 0.288 0.172
#> SRR934266     5  0.9169     0.0372 0.036 0.084 0.192 0.228 0.288 0.172
#> SRR934267     5  0.9169     0.0372 0.036 0.084 0.192 0.228 0.288 0.172
#> SRR934268     5  0.9169     0.0372 0.036 0.084 0.192 0.228 0.288 0.172
#> SRR934269     5  0.9169     0.0372 0.036 0.084 0.192 0.228 0.288 0.172
#> SRR934270     5  0.9169     0.0372 0.036 0.084 0.192 0.228 0.288 0.172
#> SRR934271     5  0.9169     0.0372 0.036 0.084 0.192 0.228 0.288 0.172
#> SRR934272     6  0.6348     0.5556 0.140 0.004 0.184 0.048 0.020 0.604
#> SRR934273     6  0.6348     0.5556 0.140 0.004 0.184 0.048 0.020 0.604
#> SRR934274     6  0.6348     0.5556 0.140 0.004 0.184 0.048 0.020 0.604
#> SRR934275     6  0.6348     0.5556 0.140 0.004 0.184 0.048 0.020 0.604
#> SRR934276     6  0.6348     0.5556 0.140 0.004 0.184 0.048 0.020 0.604
#> SRR934277     6  0.6348     0.5556 0.140 0.004 0.184 0.048 0.020 0.604
#> SRR934278     6  0.6348     0.5556 0.140 0.004 0.184 0.048 0.020 0.604
#> SRR934279     6  0.6348     0.5556 0.140 0.004 0.184 0.048 0.020 0.604
#> SRR934280     6  0.2367     0.6518 0.064 0.000 0.012 0.020 0.004 0.900
#> SRR934281     6  0.2367     0.6518 0.064 0.000 0.012 0.020 0.004 0.900
#> SRR934282     6  0.2367     0.6518 0.064 0.000 0.012 0.020 0.004 0.900
#> SRR934283     6  0.2367     0.6518 0.064 0.000 0.012 0.020 0.004 0.900
#> SRR934284     6  0.2367     0.6518 0.064 0.000 0.012 0.020 0.004 0.900
#> SRR934285     6  0.2367     0.6518 0.064 0.000 0.012 0.020 0.004 0.900
#> SRR934286     6  0.2367     0.6518 0.064 0.000 0.012 0.020 0.004 0.900
#> SRR934287     6  0.2367     0.6518 0.064 0.000 0.012 0.020 0.004 0.900
#> SRR934288     1  0.4790     0.7902 0.748 0.008 0.032 0.112 0.004 0.096
#> SRR934289     1  0.4790     0.7902 0.748 0.008 0.032 0.112 0.004 0.096
#> SRR934290     1  0.4790     0.7902 0.748 0.008 0.032 0.112 0.004 0.096
#> SRR934291     1  0.4790     0.7902 0.748 0.008 0.032 0.112 0.004 0.096
#> SRR934292     1  0.4790     0.7902 0.748 0.008 0.032 0.112 0.004 0.096
#> SRR934293     1  0.4790     0.7902 0.748 0.008 0.032 0.112 0.004 0.096
#> SRR934294     1  0.4790     0.7902 0.748 0.008 0.032 0.112 0.004 0.096
#> SRR934295     1  0.4790     0.7902 0.748 0.008 0.032 0.112 0.004 0.096
#> SRR934296     1  0.8340     0.6281 0.484 0.124 0.068 0.116 0.060 0.148
#> SRR934297     1  0.8340     0.6281 0.484 0.124 0.068 0.116 0.060 0.148
#> SRR934298     1  0.8351     0.6281 0.484 0.124 0.072 0.112 0.060 0.148
#> SRR934299     1  0.8340     0.6281 0.484 0.124 0.068 0.116 0.060 0.148
#> SRR934300     1  0.8340     0.6281 0.484 0.124 0.068 0.116 0.060 0.148
#> SRR934301     1  0.8340     0.6281 0.484 0.124 0.068 0.116 0.060 0.148
#> SRR934302     1  0.8340     0.6281 0.484 0.124 0.068 0.116 0.060 0.148
#> SRR934303     1  0.8340     0.6281 0.484 0.124 0.068 0.116 0.060 0.148
#> SRR934304     5  0.2076     0.4296 0.016 0.060 0.000 0.000 0.912 0.012
#> SRR934305     5  0.2307     0.4281 0.020 0.060 0.000 0.004 0.904 0.012
#> SRR934306     5  0.2127     0.4297 0.012 0.060 0.000 0.004 0.912 0.012
#> SRR934307     5  0.2127     0.4297 0.012 0.060 0.000 0.004 0.912 0.012
#> SRR934308     5  0.2164     0.4280 0.020 0.060 0.000 0.000 0.908 0.012
#> SRR934309     5  0.2688     0.4254 0.016 0.060 0.008 0.012 0.892 0.012
#> SRR934310     5  0.2127     0.4297 0.012 0.060 0.000 0.004 0.912 0.012
#> SRR934311     5  0.2076     0.4296 0.016 0.060 0.000 0.000 0.912 0.012
#> SRR934312     6  0.4904     0.6279 0.152 0.004 0.048 0.048 0.012 0.736
#> SRR934313     6  0.4904     0.6279 0.152 0.004 0.048 0.048 0.012 0.736
#> SRR934314     6  0.4904     0.6279 0.152 0.004 0.048 0.048 0.012 0.736
#> SRR934315     6  0.4904     0.6279 0.152 0.004 0.048 0.048 0.012 0.736
#> SRR934316     6  0.4904     0.6279 0.152 0.004 0.048 0.048 0.012 0.736
#> SRR934317     6  0.4904     0.6279 0.152 0.004 0.048 0.048 0.012 0.736
#> SRR934318     6  0.4904     0.6279 0.152 0.004 0.048 0.048 0.012 0.736
#> SRR934319     6  0.4904     0.6279 0.152 0.004 0.048 0.048 0.012 0.736
#> SRR934320     6  0.5735     0.5030 0.084 0.012 0.148 0.068 0.008 0.680
#> SRR934321     6  0.5735     0.5030 0.084 0.012 0.148 0.068 0.008 0.680
#> SRR934322     6  0.5735     0.5030 0.084 0.012 0.148 0.068 0.008 0.680
#> SRR934323     6  0.5735     0.5030 0.084 0.012 0.148 0.068 0.008 0.680
#> SRR934324     6  0.5735     0.5030 0.084 0.012 0.148 0.068 0.008 0.680
#> SRR934325     6  0.5735     0.5030 0.084 0.012 0.148 0.068 0.008 0.680
#> SRR934326     6  0.5735     0.5030 0.084 0.012 0.148 0.068 0.008 0.680
#> SRR934327     6  0.5735     0.5030 0.084 0.012 0.148 0.068 0.008 0.680
#> SRR934328     1  0.2380     0.8037 0.892 0.004 0.004 0.020 0.000 0.080
#> SRR934329     1  0.2380     0.8037 0.892 0.004 0.004 0.020 0.000 0.080
#> SRR934330     1  0.2380     0.8037 0.892 0.004 0.004 0.020 0.000 0.080
#> SRR934331     1  0.2380     0.8037 0.892 0.004 0.004 0.020 0.000 0.080
#> SRR934332     1  0.2380     0.8037 0.892 0.004 0.004 0.020 0.000 0.080
#> SRR934333     1  0.2380     0.8037 0.892 0.004 0.004 0.020 0.000 0.080
#> SRR934334     1  0.2380     0.8037 0.892 0.004 0.004 0.020 0.000 0.080
#> SRR934335     1  0.2380     0.8037 0.892 0.004 0.004 0.020 0.000 0.080
#> SRR934344     1  0.3095     0.7731 0.844 0.000 0.028 0.016 0.000 0.112
#> SRR934345     1  0.3095     0.7731 0.844 0.000 0.028 0.016 0.000 0.112
#> SRR934346     1  0.3095     0.7731 0.844 0.000 0.028 0.016 0.000 0.112
#> SRR934347     1  0.3095     0.7731 0.844 0.000 0.028 0.016 0.000 0.112
#> SRR934348     1  0.3095     0.7731 0.844 0.000 0.028 0.016 0.000 0.112
#> SRR934349     1  0.3095     0.7731 0.844 0.000 0.028 0.016 0.000 0.112
#> SRR934350     1  0.3095     0.7731 0.844 0.000 0.028 0.016 0.000 0.112
#> SRR934351     1  0.3095     0.7731 0.844 0.000 0.028 0.016 0.000 0.112
#> SRR934336     6  0.3856     0.5599 0.016 0.000 0.172 0.024 0.008 0.780
#> SRR934337     6  0.3856     0.5599 0.016 0.000 0.172 0.024 0.008 0.780
#> SRR934338     6  0.3856     0.5599 0.016 0.000 0.172 0.024 0.008 0.780
#> SRR934339     6  0.3856     0.5599 0.016 0.000 0.172 0.024 0.008 0.780
#> SRR934340     6  0.3856     0.5599 0.016 0.000 0.172 0.024 0.008 0.780
#> SRR934341     6  0.3856     0.5599 0.016 0.000 0.172 0.024 0.008 0.780
#> SRR934342     6  0.3856     0.5599 0.016 0.000 0.172 0.024 0.008 0.780

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14550 rows and 135 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.705           0.871       0.936         0.4813 0.511   0.511
#> 3 3 0.636           0.763       0.849         0.3286 0.831   0.683
#> 4 4 0.817           0.887       0.919         0.1577 0.875   0.676
#> 5 5 0.777           0.791       0.798         0.0595 1.000   1.000
#> 6 6 0.764           0.754       0.753         0.0435 0.911   0.656

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR934216     1  0.9248      0.508 0.660 0.340
#> SRR934217     1  0.9248      0.508 0.660 0.340
#> SRR934218     1  0.9248      0.508 0.660 0.340
#> SRR934219     1  0.9248      0.508 0.660 0.340
#> SRR934220     1  0.9248      0.508 0.660 0.340
#> SRR934221     1  0.9248      0.508 0.660 0.340
#> SRR934222     1  0.9248      0.508 0.660 0.340
#> SRR934223     1  0.9248      0.508 0.660 0.340
#> SRR934224     1  0.0938      0.949 0.988 0.012
#> SRR934225     1  0.0938      0.949 0.988 0.012
#> SRR934226     1  0.0938      0.949 0.988 0.012
#> SRR934227     1  0.0938      0.949 0.988 0.012
#> SRR934228     1  0.0938      0.949 0.988 0.012
#> SRR934229     1  0.0938      0.949 0.988 0.012
#> SRR934230     1  0.0938      0.949 0.988 0.012
#> SRR934231     1  0.0938      0.949 0.988 0.012
#> SRR934232     2  0.0672      0.890 0.008 0.992
#> SRR934233     2  0.0672      0.890 0.008 0.992
#> SRR934234     2  0.0672      0.890 0.008 0.992
#> SRR934235     2  0.0672      0.890 0.008 0.992
#> SRR934236     2  0.0672      0.890 0.008 0.992
#> SRR934237     2  0.0672      0.890 0.008 0.992
#> SRR934238     2  0.0672      0.890 0.008 0.992
#> SRR934239     2  0.0672      0.890 0.008 0.992
#> SRR934240     2  0.0938      0.890 0.012 0.988
#> SRR934241     2  0.0938      0.890 0.012 0.988
#> SRR934242     2  0.0938      0.890 0.012 0.988
#> SRR934243     2  0.0938      0.890 0.012 0.988
#> SRR934244     2  0.0938      0.890 0.012 0.988
#> SRR934245     2  0.0938      0.890 0.012 0.988
#> SRR934246     2  0.0938      0.890 0.012 0.988
#> SRR934247     2  0.0938      0.890 0.012 0.988
#> SRR934248     2  0.0376      0.889 0.004 0.996
#> SRR934249     2  0.0376      0.889 0.004 0.996
#> SRR934250     2  0.0376      0.889 0.004 0.996
#> SRR934251     2  0.0376      0.889 0.004 0.996
#> SRR934252     2  0.0376      0.889 0.004 0.996
#> SRR934253     2  0.0376      0.889 0.004 0.996
#> SRR934254     2  0.0376      0.889 0.004 0.996
#> SRR934255     2  0.0376      0.889 0.004 0.996
#> SRR934256     2  0.9323      0.602 0.348 0.652
#> SRR934257     2  0.9323      0.602 0.348 0.652
#> SRR934258     2  0.9323      0.602 0.348 0.652
#> SRR934259     2  0.9323      0.602 0.348 0.652
#> SRR934260     2  0.9323      0.602 0.348 0.652
#> SRR934261     2  0.9323      0.602 0.348 0.652
#> SRR934262     2  0.9323      0.602 0.348 0.652
#> SRR934263     2  0.9323      0.602 0.348 0.652
#> SRR934264     2  0.2236      0.878 0.036 0.964
#> SRR934265     2  0.2236      0.878 0.036 0.964
#> SRR934266     2  0.2236      0.878 0.036 0.964
#> SRR934267     2  0.2236      0.878 0.036 0.964
#> SRR934268     2  0.2236      0.878 0.036 0.964
#> SRR934269     2  0.2236      0.878 0.036 0.964
#> SRR934270     2  0.2236      0.878 0.036 0.964
#> SRR934271     2  0.2236      0.878 0.036 0.964
#> SRR934272     1  0.0672      0.951 0.992 0.008
#> SRR934273     1  0.0672      0.951 0.992 0.008
#> SRR934274     1  0.0672      0.951 0.992 0.008
#> SRR934275     1  0.0672      0.951 0.992 0.008
#> SRR934276     1  0.0672      0.951 0.992 0.008
#> SRR934277     1  0.0672      0.951 0.992 0.008
#> SRR934278     1  0.0672      0.951 0.992 0.008
#> SRR934279     1  0.0672      0.951 0.992 0.008
#> SRR934280     1  0.0000      0.954 1.000 0.000
#> SRR934281     1  0.0000      0.954 1.000 0.000
#> SRR934282     1  0.0000      0.954 1.000 0.000
#> SRR934283     1  0.0000      0.954 1.000 0.000
#> SRR934284     1  0.0000      0.954 1.000 0.000
#> SRR934285     1  0.0000      0.954 1.000 0.000
#> SRR934286     1  0.0000      0.954 1.000 0.000
#> SRR934287     1  0.0000      0.954 1.000 0.000
#> SRR934288     1  0.0672      0.952 0.992 0.008
#> SRR934289     1  0.0672      0.952 0.992 0.008
#> SRR934290     1  0.0672      0.952 0.992 0.008
#> SRR934291     1  0.0672      0.952 0.992 0.008
#> SRR934292     1  0.0672      0.952 0.992 0.008
#> SRR934293     1  0.0672      0.952 0.992 0.008
#> SRR934294     1  0.0672      0.952 0.992 0.008
#> SRR934295     1  0.0672      0.952 0.992 0.008
#> SRR934296     2  0.8555      0.696 0.280 0.720
#> SRR934297     2  0.8555      0.696 0.280 0.720
#> SRR934298     2  0.8555      0.696 0.280 0.720
#> SRR934299     2  0.8555      0.696 0.280 0.720
#> SRR934300     2  0.8555      0.696 0.280 0.720
#> SRR934301     2  0.8555      0.696 0.280 0.720
#> SRR934302     2  0.8555      0.696 0.280 0.720
#> SRR934303     2  0.8555      0.696 0.280 0.720
#> SRR934304     2  0.0376      0.889 0.004 0.996
#> SRR934305     2  0.0376      0.889 0.004 0.996
#> SRR934306     2  0.0376      0.889 0.004 0.996
#> SRR934307     2  0.0376      0.889 0.004 0.996
#> SRR934308     2  0.0376      0.889 0.004 0.996
#> SRR934309     2  0.0376      0.889 0.004 0.996
#> SRR934310     2  0.0376      0.889 0.004 0.996
#> SRR934311     2  0.0376      0.889 0.004 0.996
#> SRR934312     1  0.0000      0.954 1.000 0.000
#> SRR934313     1  0.0000      0.954 1.000 0.000
#> SRR934314     1  0.0000      0.954 1.000 0.000
#> SRR934315     1  0.0000      0.954 1.000 0.000
#> SRR934316     1  0.0000      0.954 1.000 0.000
#> SRR934317     1  0.0000      0.954 1.000 0.000
#> SRR934318     1  0.0000      0.954 1.000 0.000
#> SRR934319     1  0.0000      0.954 1.000 0.000
#> SRR934320     1  0.0376      0.953 0.996 0.004
#> SRR934321     1  0.0376      0.953 0.996 0.004
#> SRR934322     1  0.0376      0.953 0.996 0.004
#> SRR934323     1  0.0376      0.953 0.996 0.004
#> SRR934324     1  0.0376      0.953 0.996 0.004
#> SRR934325     1  0.0376      0.953 0.996 0.004
#> SRR934326     1  0.0376      0.953 0.996 0.004
#> SRR934327     1  0.0376      0.953 0.996 0.004
#> SRR934328     1  0.0672      0.952 0.992 0.008
#> SRR934329     1  0.0672      0.952 0.992 0.008
#> SRR934330     1  0.0672      0.952 0.992 0.008
#> SRR934331     1  0.0672      0.952 0.992 0.008
#> SRR934332     1  0.0672      0.952 0.992 0.008
#> SRR934333     1  0.0672      0.952 0.992 0.008
#> SRR934334     1  0.0672      0.952 0.992 0.008
#> SRR934335     1  0.0672      0.952 0.992 0.008
#> SRR934344     1  0.0376      0.953 0.996 0.004
#> SRR934345     1  0.0376      0.953 0.996 0.004
#> SRR934346     1  0.0376      0.953 0.996 0.004
#> SRR934347     1  0.0376      0.953 0.996 0.004
#> SRR934348     1  0.0376      0.953 0.996 0.004
#> SRR934349     1  0.0376      0.953 0.996 0.004
#> SRR934350     1  0.0376      0.953 0.996 0.004
#> SRR934351     1  0.0376      0.953 0.996 0.004
#> SRR934336     1  0.0672      0.951 0.992 0.008
#> SRR934337     1  0.0672      0.951 0.992 0.008
#> SRR934338     1  0.0672      0.951 0.992 0.008
#> SRR934339     1  0.0672      0.951 0.992 0.008
#> SRR934340     1  0.0672      0.951 0.992 0.008
#> SRR934341     1  0.0672      0.951 0.992 0.008
#> SRR934342     1  0.0672      0.951 0.992 0.008

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR934216     3  0.6224      0.701 0.240 0.032 0.728
#> SRR934217     3  0.6224      0.701 0.240 0.032 0.728
#> SRR934218     3  0.6224      0.701 0.240 0.032 0.728
#> SRR934219     3  0.6224      0.701 0.240 0.032 0.728
#> SRR934220     3  0.6224      0.701 0.240 0.032 0.728
#> SRR934221     3  0.6224      0.701 0.240 0.032 0.728
#> SRR934222     3  0.6224      0.701 0.240 0.032 0.728
#> SRR934223     3  0.6224      0.701 0.240 0.032 0.728
#> SRR934224     1  0.1163      0.807 0.972 0.000 0.028
#> SRR934225     1  0.1163      0.807 0.972 0.000 0.028
#> SRR934226     1  0.1163      0.807 0.972 0.000 0.028
#> SRR934227     1  0.1163      0.807 0.972 0.000 0.028
#> SRR934228     1  0.1163      0.807 0.972 0.000 0.028
#> SRR934229     1  0.1163      0.807 0.972 0.000 0.028
#> SRR934230     1  0.1163      0.807 0.972 0.000 0.028
#> SRR934231     1  0.1163      0.807 0.972 0.000 0.028
#> SRR934232     2  0.6079      0.657 0.000 0.612 0.388
#> SRR934233     2  0.6079      0.657 0.000 0.612 0.388
#> SRR934234     2  0.6079      0.657 0.000 0.612 0.388
#> SRR934235     2  0.6079      0.657 0.000 0.612 0.388
#> SRR934236     2  0.6079      0.657 0.000 0.612 0.388
#> SRR934237     2  0.6079      0.657 0.000 0.612 0.388
#> SRR934238     2  0.6079      0.657 0.000 0.612 0.388
#> SRR934239     2  0.6079      0.657 0.000 0.612 0.388
#> SRR934240     2  0.5859      0.702 0.000 0.656 0.344
#> SRR934241     2  0.5859      0.702 0.000 0.656 0.344
#> SRR934242     2  0.5859      0.702 0.000 0.656 0.344
#> SRR934243     2  0.5859      0.702 0.000 0.656 0.344
#> SRR934244     2  0.5859      0.702 0.000 0.656 0.344
#> SRR934245     2  0.5859      0.702 0.000 0.656 0.344
#> SRR934246     2  0.5859      0.702 0.000 0.656 0.344
#> SRR934247     2  0.5859      0.702 0.000 0.656 0.344
#> SRR934248     3  0.0237      0.887 0.000 0.004 0.996
#> SRR934249     3  0.0237      0.887 0.000 0.004 0.996
#> SRR934250     3  0.0237      0.887 0.000 0.004 0.996
#> SRR934251     3  0.0237      0.887 0.000 0.004 0.996
#> SRR934252     3  0.0237      0.887 0.000 0.004 0.996
#> SRR934253     3  0.0237      0.887 0.000 0.004 0.996
#> SRR934254     3  0.0237      0.887 0.000 0.004 0.996
#> SRR934255     3  0.0237      0.887 0.000 0.004 0.996
#> SRR934256     2  0.2187      0.763 0.024 0.948 0.028
#> SRR934257     2  0.2187      0.763 0.024 0.948 0.028
#> SRR934258     2  0.2187      0.763 0.024 0.948 0.028
#> SRR934259     2  0.2187      0.763 0.024 0.948 0.028
#> SRR934260     2  0.2187      0.763 0.024 0.948 0.028
#> SRR934261     2  0.2187      0.763 0.024 0.948 0.028
#> SRR934262     2  0.2187      0.763 0.024 0.948 0.028
#> SRR934263     2  0.2187      0.763 0.024 0.948 0.028
#> SRR934264     3  0.0747      0.886 0.016 0.000 0.984
#> SRR934265     3  0.0747      0.886 0.016 0.000 0.984
#> SRR934266     3  0.0747      0.886 0.016 0.000 0.984
#> SRR934267     3  0.0747      0.886 0.016 0.000 0.984
#> SRR934268     3  0.0747      0.886 0.016 0.000 0.984
#> SRR934269     3  0.0747      0.886 0.016 0.000 0.984
#> SRR934270     3  0.0747      0.886 0.016 0.000 0.984
#> SRR934271     3  0.0747      0.886 0.016 0.000 0.984
#> SRR934272     1  0.0000      0.823 1.000 0.000 0.000
#> SRR934273     1  0.0000      0.823 1.000 0.000 0.000
#> SRR934274     1  0.0000      0.823 1.000 0.000 0.000
#> SRR934275     1  0.0000      0.823 1.000 0.000 0.000
#> SRR934276     1  0.0000      0.823 1.000 0.000 0.000
#> SRR934277     1  0.0000      0.823 1.000 0.000 0.000
#> SRR934278     1  0.0000      0.823 1.000 0.000 0.000
#> SRR934279     1  0.0000      0.823 1.000 0.000 0.000
#> SRR934280     1  0.0424      0.823 0.992 0.008 0.000
#> SRR934281     1  0.0424      0.823 0.992 0.008 0.000
#> SRR934282     1  0.0424      0.823 0.992 0.008 0.000
#> SRR934283     1  0.0424      0.823 0.992 0.008 0.000
#> SRR934284     1  0.0424      0.823 0.992 0.008 0.000
#> SRR934285     1  0.0424      0.823 0.992 0.008 0.000
#> SRR934286     1  0.0424      0.823 0.992 0.008 0.000
#> SRR934287     1  0.0424      0.823 0.992 0.008 0.000
#> SRR934288     1  0.6476      0.597 0.548 0.448 0.004
#> SRR934289     1  0.6476      0.597 0.548 0.448 0.004
#> SRR934290     1  0.6476      0.597 0.548 0.448 0.004
#> SRR934291     1  0.6476      0.597 0.548 0.448 0.004
#> SRR934292     1  0.6476      0.597 0.548 0.448 0.004
#> SRR934293     1  0.6476      0.597 0.548 0.448 0.004
#> SRR934294     1  0.6476      0.597 0.548 0.448 0.004
#> SRR934295     1  0.6476      0.597 0.548 0.448 0.004
#> SRR934296     2  0.0983      0.754 0.004 0.980 0.016
#> SRR934297     2  0.0983      0.754 0.004 0.980 0.016
#> SRR934298     2  0.0983      0.754 0.004 0.980 0.016
#> SRR934299     2  0.0983      0.754 0.004 0.980 0.016
#> SRR934300     2  0.0983      0.754 0.004 0.980 0.016
#> SRR934301     2  0.0983      0.754 0.004 0.980 0.016
#> SRR934302     2  0.0983      0.754 0.004 0.980 0.016
#> SRR934303     2  0.0983      0.754 0.004 0.980 0.016
#> SRR934304     3  0.0237      0.887 0.000 0.004 0.996
#> SRR934305     3  0.0237      0.887 0.000 0.004 0.996
#> SRR934306     3  0.0237      0.887 0.000 0.004 0.996
#> SRR934307     3  0.0237      0.887 0.000 0.004 0.996
#> SRR934308     3  0.0237      0.887 0.000 0.004 0.996
#> SRR934309     3  0.0237      0.887 0.000 0.004 0.996
#> SRR934310     3  0.0237      0.887 0.000 0.004 0.996
#> SRR934311     3  0.0237      0.887 0.000 0.004 0.996
#> SRR934312     1  0.0237      0.823 0.996 0.004 0.000
#> SRR934313     1  0.0237      0.823 0.996 0.004 0.000
#> SRR934314     1  0.0237      0.823 0.996 0.004 0.000
#> SRR934315     1  0.0237      0.823 0.996 0.004 0.000
#> SRR934316     1  0.0237      0.823 0.996 0.004 0.000
#> SRR934317     1  0.0237      0.823 0.996 0.004 0.000
#> SRR934318     1  0.0237      0.823 0.996 0.004 0.000
#> SRR934319     1  0.0237      0.823 0.996 0.004 0.000
#> SRR934320     1  0.3816      0.788 0.852 0.148 0.000
#> SRR934321     1  0.3816      0.788 0.852 0.148 0.000
#> SRR934322     1  0.3816      0.788 0.852 0.148 0.000
#> SRR934323     1  0.3816      0.788 0.852 0.148 0.000
#> SRR934324     1  0.3816      0.788 0.852 0.148 0.000
#> SRR934325     1  0.3816      0.788 0.852 0.148 0.000
#> SRR934326     1  0.3816      0.788 0.852 0.148 0.000
#> SRR934327     1  0.3816      0.788 0.852 0.148 0.000
#> SRR934328     1  0.7029      0.594 0.540 0.440 0.020
#> SRR934329     1  0.7029      0.594 0.540 0.440 0.020
#> SRR934330     1  0.7029      0.594 0.540 0.440 0.020
#> SRR934331     1  0.7029      0.594 0.540 0.440 0.020
#> SRR934332     1  0.7029      0.594 0.540 0.440 0.020
#> SRR934333     1  0.7029      0.594 0.540 0.440 0.020
#> SRR934334     1  0.7029      0.594 0.540 0.440 0.020
#> SRR934335     1  0.7029      0.594 0.540 0.440 0.020
#> SRR934344     1  0.6434      0.661 0.612 0.380 0.008
#> SRR934345     1  0.6434      0.661 0.612 0.380 0.008
#> SRR934346     1  0.6434      0.661 0.612 0.380 0.008
#> SRR934347     1  0.6434      0.661 0.612 0.380 0.008
#> SRR934348     1  0.6434      0.661 0.612 0.380 0.008
#> SRR934349     1  0.6434      0.661 0.612 0.380 0.008
#> SRR934350     1  0.6434      0.661 0.612 0.380 0.008
#> SRR934351     1  0.6434      0.661 0.612 0.380 0.008
#> SRR934336     1  0.0000      0.823 1.000 0.000 0.000
#> SRR934337     1  0.0000      0.823 1.000 0.000 0.000
#> SRR934338     1  0.0000      0.823 1.000 0.000 0.000
#> SRR934339     1  0.0000      0.823 1.000 0.000 0.000
#> SRR934340     1  0.0000      0.823 1.000 0.000 0.000
#> SRR934341     1  0.0000      0.823 1.000 0.000 0.000
#> SRR934342     1  0.0000      0.823 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> SRR934216     3  0.2797      0.864 0.068 0.000 0.900 0.032
#> SRR934217     3  0.2797      0.864 0.068 0.000 0.900 0.032
#> SRR934218     3  0.2797      0.864 0.068 0.000 0.900 0.032
#> SRR934219     3  0.2797      0.864 0.068 0.000 0.900 0.032
#> SRR934220     3  0.2797      0.864 0.068 0.000 0.900 0.032
#> SRR934221     3  0.2797      0.864 0.068 0.000 0.900 0.032
#> SRR934222     3  0.2797      0.864 0.068 0.000 0.900 0.032
#> SRR934223     3  0.2797      0.864 0.068 0.000 0.900 0.032
#> SRR934224     1  0.0376      0.964 0.992 0.000 0.004 0.004
#> SRR934225     1  0.0376      0.964 0.992 0.000 0.004 0.004
#> SRR934226     1  0.0376      0.964 0.992 0.000 0.004 0.004
#> SRR934227     1  0.0376      0.964 0.992 0.000 0.004 0.004
#> SRR934228     1  0.0376      0.964 0.992 0.000 0.004 0.004
#> SRR934229     1  0.0376      0.964 0.992 0.000 0.004 0.004
#> SRR934230     1  0.0376      0.964 0.992 0.000 0.004 0.004
#> SRR934231     1  0.0376      0.964 0.992 0.000 0.004 0.004
#> SRR934232     2  0.2281      0.780 0.000 0.904 0.096 0.000
#> SRR934233     2  0.2281      0.780 0.000 0.904 0.096 0.000
#> SRR934234     2  0.2281      0.780 0.000 0.904 0.096 0.000
#> SRR934235     2  0.2281      0.780 0.000 0.904 0.096 0.000
#> SRR934236     2  0.2281      0.780 0.000 0.904 0.096 0.000
#> SRR934237     2  0.2281      0.780 0.000 0.904 0.096 0.000
#> SRR934238     2  0.2281      0.780 0.000 0.904 0.096 0.000
#> SRR934239     2  0.2281      0.780 0.000 0.904 0.096 0.000
#> SRR934240     2  0.1211      0.803 0.000 0.960 0.040 0.000
#> SRR934241     2  0.1211      0.803 0.000 0.960 0.040 0.000
#> SRR934242     2  0.1211      0.803 0.000 0.960 0.040 0.000
#> SRR934243     2  0.1211      0.803 0.000 0.960 0.040 0.000
#> SRR934244     2  0.1211      0.803 0.000 0.960 0.040 0.000
#> SRR934245     2  0.1211      0.803 0.000 0.960 0.040 0.000
#> SRR934246     2  0.1211      0.803 0.000 0.960 0.040 0.000
#> SRR934247     2  0.1211      0.803 0.000 0.960 0.040 0.000
#> SRR934248     3  0.2760      0.904 0.000 0.128 0.872 0.000
#> SRR934249     3  0.2760      0.904 0.000 0.128 0.872 0.000
#> SRR934250     3  0.2760      0.904 0.000 0.128 0.872 0.000
#> SRR934251     3  0.2760      0.904 0.000 0.128 0.872 0.000
#> SRR934252     3  0.2760      0.904 0.000 0.128 0.872 0.000
#> SRR934253     3  0.2760      0.904 0.000 0.128 0.872 0.000
#> SRR934254     3  0.2760      0.904 0.000 0.128 0.872 0.000
#> SRR934255     3  0.2760      0.904 0.000 0.128 0.872 0.000
#> SRR934256     2  0.3196      0.770 0.008 0.856 0.000 0.136
#> SRR934257     2  0.3196      0.770 0.008 0.856 0.000 0.136
#> SRR934258     2  0.3196      0.770 0.008 0.856 0.000 0.136
#> SRR934259     2  0.3196      0.770 0.008 0.856 0.000 0.136
#> SRR934260     2  0.3196      0.770 0.008 0.856 0.000 0.136
#> SRR934261     2  0.3196      0.770 0.008 0.856 0.000 0.136
#> SRR934262     2  0.3196      0.770 0.008 0.856 0.000 0.136
#> SRR934263     2  0.3196      0.770 0.008 0.856 0.000 0.136
#> SRR934264     3  0.2345      0.916 0.000 0.100 0.900 0.000
#> SRR934265     3  0.2345      0.916 0.000 0.100 0.900 0.000
#> SRR934266     3  0.2345      0.916 0.000 0.100 0.900 0.000
#> SRR934267     3  0.2345      0.916 0.000 0.100 0.900 0.000
#> SRR934268     3  0.2345      0.916 0.000 0.100 0.900 0.000
#> SRR934269     3  0.2345      0.916 0.000 0.100 0.900 0.000
#> SRR934270     3  0.2345      0.916 0.000 0.100 0.900 0.000
#> SRR934271     3  0.2345      0.916 0.000 0.100 0.900 0.000
#> SRR934272     1  0.0469      0.965 0.988 0.000 0.000 0.012
#> SRR934273     1  0.0469      0.965 0.988 0.000 0.000 0.012
#> SRR934274     1  0.0469      0.965 0.988 0.000 0.000 0.012
#> SRR934275     1  0.0469      0.965 0.988 0.000 0.000 0.012
#> SRR934276     1  0.0469      0.965 0.988 0.000 0.000 0.012
#> SRR934277     1  0.0469      0.965 0.988 0.000 0.000 0.012
#> SRR934278     1  0.0469      0.965 0.988 0.000 0.000 0.012
#> SRR934279     1  0.0469      0.965 0.988 0.000 0.000 0.012
#> SRR934280     1  0.1174      0.965 0.968 0.020 0.000 0.012
#> SRR934281     1  0.1174      0.965 0.968 0.020 0.000 0.012
#> SRR934282     1  0.1174      0.965 0.968 0.020 0.000 0.012
#> SRR934283     1  0.1174      0.965 0.968 0.020 0.000 0.012
#> SRR934284     1  0.1174      0.965 0.968 0.020 0.000 0.012
#> SRR934285     1  0.1174      0.965 0.968 0.020 0.000 0.012
#> SRR934286     1  0.1174      0.965 0.968 0.020 0.000 0.012
#> SRR934287     1  0.1174      0.965 0.968 0.020 0.000 0.012
#> SRR934288     4  0.0376      0.990 0.004 0.004 0.000 0.992
#> SRR934289     4  0.0376      0.990 0.004 0.004 0.000 0.992
#> SRR934290     4  0.0376      0.990 0.004 0.004 0.000 0.992
#> SRR934291     4  0.0376      0.990 0.004 0.004 0.000 0.992
#> SRR934292     4  0.0376      0.990 0.004 0.004 0.000 0.992
#> SRR934293     4  0.0376      0.990 0.004 0.004 0.000 0.992
#> SRR934294     4  0.0376      0.990 0.004 0.004 0.000 0.992
#> SRR934295     4  0.0376      0.990 0.004 0.004 0.000 0.992
#> SRR934296     2  0.6007      0.456 0.000 0.548 0.044 0.408
#> SRR934297     2  0.6007      0.456 0.000 0.548 0.044 0.408
#> SRR934298     2  0.6007      0.456 0.000 0.548 0.044 0.408
#> SRR934299     2  0.6007      0.456 0.000 0.548 0.044 0.408
#> SRR934300     2  0.6007      0.456 0.000 0.548 0.044 0.408
#> SRR934301     2  0.6007      0.456 0.000 0.548 0.044 0.408
#> SRR934302     2  0.6007      0.456 0.000 0.548 0.044 0.408
#> SRR934303     2  0.6007      0.456 0.000 0.548 0.044 0.408
#> SRR934304     3  0.0336      0.912 0.000 0.008 0.992 0.000
#> SRR934305     3  0.0336      0.912 0.000 0.008 0.992 0.000
#> SRR934306     3  0.0336      0.912 0.000 0.008 0.992 0.000
#> SRR934307     3  0.0336      0.912 0.000 0.008 0.992 0.000
#> SRR934308     3  0.0336      0.912 0.000 0.008 0.992 0.000
#> SRR934309     3  0.0336      0.912 0.000 0.008 0.992 0.000
#> SRR934310     3  0.0336      0.912 0.000 0.008 0.992 0.000
#> SRR934311     3  0.0336      0.912 0.000 0.008 0.992 0.000
#> SRR934312     1  0.1042      0.965 0.972 0.008 0.000 0.020
#> SRR934313     1  0.1042      0.965 0.972 0.008 0.000 0.020
#> SRR934314     1  0.1042      0.965 0.972 0.008 0.000 0.020
#> SRR934315     1  0.1042      0.965 0.972 0.008 0.000 0.020
#> SRR934316     1  0.1042      0.965 0.972 0.008 0.000 0.020
#> SRR934317     1  0.1042      0.965 0.972 0.008 0.000 0.020
#> SRR934318     1  0.1042      0.965 0.972 0.008 0.000 0.020
#> SRR934319     1  0.1042      0.965 0.972 0.008 0.000 0.020
#> SRR934320     1  0.3947      0.884 0.848 0.072 0.004 0.076
#> SRR934321     1  0.3947      0.884 0.848 0.072 0.004 0.076
#> SRR934322     1  0.3947      0.884 0.848 0.072 0.004 0.076
#> SRR934323     1  0.3947      0.884 0.848 0.072 0.004 0.076
#> SRR934324     1  0.3947      0.884 0.848 0.072 0.004 0.076
#> SRR934325     1  0.3947      0.884 0.848 0.072 0.004 0.076
#> SRR934326     1  0.3947      0.884 0.848 0.072 0.004 0.076
#> SRR934327     1  0.3947      0.884 0.848 0.072 0.004 0.076
#> SRR934328     4  0.0000      0.992 0.000 0.000 0.000 1.000
#> SRR934329     4  0.0000      0.992 0.000 0.000 0.000 1.000
#> SRR934330     4  0.0000      0.992 0.000 0.000 0.000 1.000
#> SRR934331     4  0.0000      0.992 0.000 0.000 0.000 1.000
#> SRR934332     4  0.0000      0.992 0.000 0.000 0.000 1.000
#> SRR934333     4  0.0000      0.992 0.000 0.000 0.000 1.000
#> SRR934334     4  0.0000      0.992 0.000 0.000 0.000 1.000
#> SRR934335     4  0.0000      0.992 0.000 0.000 0.000 1.000
#> SRR934344     4  0.0524      0.988 0.008 0.000 0.004 0.988
#> SRR934345     4  0.0524      0.988 0.008 0.000 0.004 0.988
#> SRR934346     4  0.0524      0.988 0.008 0.000 0.004 0.988
#> SRR934347     4  0.0524      0.988 0.008 0.000 0.004 0.988
#> SRR934348     4  0.0524      0.988 0.008 0.000 0.004 0.988
#> SRR934349     4  0.0524      0.988 0.008 0.000 0.004 0.988
#> SRR934350     4  0.0524      0.988 0.008 0.000 0.004 0.988
#> SRR934351     4  0.0524      0.988 0.008 0.000 0.004 0.988
#> SRR934336     1  0.0859      0.965 0.980 0.008 0.004 0.008
#> SRR934337     1  0.0859      0.965 0.980 0.008 0.004 0.008
#> SRR934338     1  0.0859      0.965 0.980 0.008 0.004 0.008
#> SRR934339     1  0.0859      0.965 0.980 0.008 0.004 0.008
#> SRR934340     1  0.0859      0.965 0.980 0.008 0.004 0.008
#> SRR934341     1  0.0859      0.965 0.980 0.008 0.004 0.008
#> SRR934342     1  0.0859      0.965 0.980 0.008 0.004 0.008

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2 p3    p4    p5
#> SRR934216     4  0.5150      0.760 0.032 0.000 NA 0.588 0.008
#> SRR934217     4  0.5150      0.760 0.032 0.000 NA 0.588 0.008
#> SRR934218     4  0.5150      0.760 0.032 0.000 NA 0.588 0.008
#> SRR934219     4  0.5150      0.760 0.032 0.000 NA 0.588 0.008
#> SRR934220     4  0.5150      0.760 0.032 0.000 NA 0.588 0.008
#> SRR934221     4  0.5150      0.760 0.032 0.000 NA 0.588 0.008
#> SRR934222     4  0.5150      0.760 0.032 0.000 NA 0.588 0.008
#> SRR934223     4  0.5150      0.760 0.032 0.000 NA 0.588 0.008
#> SRR934224     1  0.1970      0.804 0.924 0.004 NA 0.012 0.000
#> SRR934225     1  0.1970      0.804 0.924 0.004 NA 0.012 0.000
#> SRR934226     1  0.1970      0.804 0.924 0.004 NA 0.012 0.000
#> SRR934227     1  0.1970      0.804 0.924 0.004 NA 0.012 0.000
#> SRR934228     1  0.1970      0.804 0.924 0.004 NA 0.012 0.000
#> SRR934229     1  0.1970      0.804 0.924 0.004 NA 0.012 0.000
#> SRR934230     1  0.1970      0.804 0.924 0.004 NA 0.012 0.000
#> SRR934231     1  0.1970      0.804 0.924 0.004 NA 0.012 0.000
#> SRR934232     2  0.4024      0.677 0.000 0.752 NA 0.220 0.000
#> SRR934233     2  0.4024      0.677 0.000 0.752 NA 0.220 0.000
#> SRR934234     2  0.4024      0.677 0.000 0.752 NA 0.220 0.000
#> SRR934235     2  0.4024      0.677 0.000 0.752 NA 0.220 0.000
#> SRR934236     2  0.4024      0.677 0.000 0.752 NA 0.220 0.000
#> SRR934237     2  0.4024      0.677 0.000 0.752 NA 0.220 0.000
#> SRR934238     2  0.4024      0.677 0.000 0.752 NA 0.220 0.000
#> SRR934239     2  0.4024      0.677 0.000 0.752 NA 0.220 0.000
#> SRR934240     2  0.1671      0.762 0.000 0.924 NA 0.076 0.000
#> SRR934241     2  0.1671      0.762 0.000 0.924 NA 0.076 0.000
#> SRR934242     2  0.1671      0.762 0.000 0.924 NA 0.076 0.000
#> SRR934243     2  0.1671      0.762 0.000 0.924 NA 0.076 0.000
#> SRR934244     2  0.1671      0.762 0.000 0.924 NA 0.076 0.000
#> SRR934245     2  0.1671      0.762 0.000 0.924 NA 0.076 0.000
#> SRR934246     2  0.1671      0.762 0.000 0.924 NA 0.076 0.000
#> SRR934247     2  0.1671      0.762 0.000 0.924 NA 0.076 0.000
#> SRR934248     4  0.1997      0.758 0.000 0.040 NA 0.924 0.000
#> SRR934249     4  0.1997      0.758 0.000 0.040 NA 0.924 0.000
#> SRR934250     4  0.1997      0.758 0.000 0.040 NA 0.924 0.000
#> SRR934251     4  0.1997      0.758 0.000 0.040 NA 0.924 0.000
#> SRR934252     4  0.1997      0.758 0.000 0.040 NA 0.924 0.000
#> SRR934253     4  0.1997      0.758 0.000 0.040 NA 0.924 0.000
#> SRR934254     4  0.1997      0.758 0.000 0.040 NA 0.924 0.000
#> SRR934255     4  0.1997      0.758 0.000 0.040 NA 0.924 0.000
#> SRR934256     2  0.3456      0.753 0.012 0.844 NA 0.000 0.036
#> SRR934257     2  0.3456      0.753 0.012 0.844 NA 0.000 0.036
#> SRR934258     2  0.3456      0.753 0.012 0.844 NA 0.000 0.036
#> SRR934259     2  0.3456      0.753 0.012 0.844 NA 0.000 0.036
#> SRR934260     2  0.3456      0.753 0.012 0.844 NA 0.000 0.036
#> SRR934261     2  0.3456      0.753 0.012 0.844 NA 0.000 0.036
#> SRR934262     2  0.3456      0.753 0.012 0.844 NA 0.000 0.036
#> SRR934263     2  0.3456      0.753 0.012 0.844 NA 0.000 0.036
#> SRR934264     4  0.0912      0.785 0.000 0.016 NA 0.972 0.000
#> SRR934265     4  0.0912      0.785 0.000 0.016 NA 0.972 0.000
#> SRR934266     4  0.0912      0.785 0.000 0.016 NA 0.972 0.000
#> SRR934267     4  0.0912      0.785 0.000 0.016 NA 0.972 0.000
#> SRR934268     4  0.0912      0.785 0.000 0.016 NA 0.972 0.000
#> SRR934269     4  0.0912      0.785 0.000 0.016 NA 0.972 0.000
#> SRR934270     4  0.0912      0.785 0.000 0.016 NA 0.972 0.000
#> SRR934271     4  0.0912      0.785 0.000 0.016 NA 0.972 0.000
#> SRR934272     1  0.4318      0.802 0.688 0.000 NA 0.008 0.008
#> SRR934273     1  0.4318      0.802 0.688 0.000 NA 0.008 0.008
#> SRR934274     1  0.4318      0.802 0.688 0.000 NA 0.008 0.008
#> SRR934275     1  0.4318      0.802 0.688 0.000 NA 0.008 0.008
#> SRR934276     1  0.4318      0.802 0.688 0.000 NA 0.008 0.008
#> SRR934277     1  0.4318      0.802 0.688 0.000 NA 0.008 0.008
#> SRR934278     1  0.4318      0.802 0.688 0.000 NA 0.008 0.008
#> SRR934279     1  0.4318      0.802 0.688 0.000 NA 0.008 0.008
#> SRR934280     1  0.3835      0.818 0.744 0.012 NA 0.000 0.000
#> SRR934281     1  0.3835      0.818 0.744 0.012 NA 0.000 0.000
#> SRR934282     1  0.3835      0.818 0.744 0.012 NA 0.000 0.000
#> SRR934283     1  0.3835      0.818 0.744 0.012 NA 0.000 0.000
#> SRR934284     1  0.3835      0.818 0.744 0.012 NA 0.000 0.000
#> SRR934285     1  0.3835      0.818 0.744 0.012 NA 0.000 0.000
#> SRR934286     1  0.3835      0.818 0.744 0.012 NA 0.000 0.000
#> SRR934287     1  0.3835      0.818 0.744 0.012 NA 0.000 0.000
#> SRR934288     5  0.1043      0.971 0.000 0.000 NA 0.000 0.960
#> SRR934289     5  0.1043      0.971 0.000 0.000 NA 0.000 0.960
#> SRR934290     5  0.1043      0.971 0.000 0.000 NA 0.000 0.960
#> SRR934291     5  0.1043      0.971 0.000 0.000 NA 0.000 0.960
#> SRR934292     5  0.1043      0.971 0.000 0.000 NA 0.000 0.960
#> SRR934293     5  0.1043      0.971 0.000 0.000 NA 0.000 0.960
#> SRR934294     5  0.1043      0.971 0.000 0.000 NA 0.000 0.960
#> SRR934295     5  0.1043      0.971 0.000 0.000 NA 0.000 0.960
#> SRR934296     2  0.6403      0.516 0.000 0.512 NA 0.000 0.256
#> SRR934297     2  0.6403      0.516 0.000 0.512 NA 0.000 0.256
#> SRR934298     2  0.6403      0.516 0.000 0.512 NA 0.000 0.256
#> SRR934299     2  0.6403      0.516 0.000 0.512 NA 0.000 0.256
#> SRR934300     2  0.6403      0.516 0.000 0.512 NA 0.000 0.256
#> SRR934301     2  0.6403      0.516 0.000 0.512 NA 0.000 0.256
#> SRR934302     2  0.6403      0.516 0.000 0.512 NA 0.000 0.256
#> SRR934303     2  0.6403      0.516 0.000 0.512 NA 0.000 0.256
#> SRR934304     4  0.4235      0.782 0.000 0.008 NA 0.656 0.000
#> SRR934305     4  0.4235      0.782 0.000 0.008 NA 0.656 0.000
#> SRR934306     4  0.4235      0.782 0.000 0.008 NA 0.656 0.000
#> SRR934307     4  0.4235      0.782 0.000 0.008 NA 0.656 0.000
#> SRR934308     4  0.4235      0.782 0.000 0.008 NA 0.656 0.000
#> SRR934309     4  0.4235      0.782 0.000 0.008 NA 0.656 0.000
#> SRR934310     4  0.4235      0.782 0.000 0.008 NA 0.656 0.000
#> SRR934311     4  0.4235      0.782 0.000 0.008 NA 0.656 0.000
#> SRR934312     1  0.4647      0.791 0.628 0.004 NA 0.000 0.016
#> SRR934313     1  0.4647      0.791 0.628 0.004 NA 0.000 0.016
#> SRR934314     1  0.4647      0.791 0.628 0.004 NA 0.000 0.016
#> SRR934315     1  0.4647      0.791 0.628 0.004 NA 0.000 0.016
#> SRR934316     1  0.4647      0.791 0.628 0.004 NA 0.000 0.016
#> SRR934317     1  0.4647      0.791 0.628 0.004 NA 0.000 0.016
#> SRR934318     1  0.4647      0.791 0.628 0.004 NA 0.000 0.016
#> SRR934319     1  0.4647      0.791 0.628 0.004 NA 0.000 0.016
#> SRR934320     1  0.5066      0.694 0.748 0.072 NA 0.000 0.044
#> SRR934321     1  0.5066      0.694 0.748 0.072 NA 0.000 0.044
#> SRR934322     1  0.5066      0.694 0.748 0.072 NA 0.000 0.044
#> SRR934323     1  0.5066      0.694 0.748 0.072 NA 0.000 0.044
#> SRR934324     1  0.5066      0.694 0.748 0.072 NA 0.000 0.044
#> SRR934325     1  0.5066      0.694 0.748 0.072 NA 0.000 0.044
#> SRR934326     1  0.5066      0.694 0.748 0.072 NA 0.000 0.044
#> SRR934327     1  0.5066      0.694 0.748 0.072 NA 0.000 0.044
#> SRR934328     5  0.0000      0.982 0.000 0.000 NA 0.000 1.000
#> SRR934329     5  0.0000      0.982 0.000 0.000 NA 0.000 1.000
#> SRR934330     5  0.0000      0.982 0.000 0.000 NA 0.000 1.000
#> SRR934331     5  0.0000      0.982 0.000 0.000 NA 0.000 1.000
#> SRR934332     5  0.0000      0.982 0.000 0.000 NA 0.000 1.000
#> SRR934333     5  0.0000      0.982 0.000 0.000 NA 0.000 1.000
#> SRR934334     5  0.0000      0.982 0.000 0.000 NA 0.000 1.000
#> SRR934335     5  0.0000      0.982 0.000 0.000 NA 0.000 1.000
#> SRR934344     5  0.0451      0.980 0.008 0.000 NA 0.000 0.988
#> SRR934345     5  0.0451      0.980 0.008 0.000 NA 0.000 0.988
#> SRR934346     5  0.0451      0.980 0.008 0.000 NA 0.000 0.988
#> SRR934347     5  0.0451      0.980 0.008 0.000 NA 0.000 0.988
#> SRR934348     5  0.0451      0.980 0.008 0.000 NA 0.000 0.988
#> SRR934349     5  0.0451      0.980 0.008 0.000 NA 0.000 0.988
#> SRR934350     5  0.0451      0.980 0.008 0.000 NA 0.000 0.988
#> SRR934351     5  0.0451      0.980 0.008 0.000 NA 0.000 0.988
#> SRR934336     1  0.0833      0.812 0.976 0.004 NA 0.004 0.000
#> SRR934337     1  0.0833      0.812 0.976 0.004 NA 0.004 0.000
#> SRR934338     1  0.0833      0.812 0.976 0.004 NA 0.004 0.000
#> SRR934339     1  0.0833      0.812 0.976 0.004 NA 0.004 0.000
#> SRR934340     1  0.0833      0.812 0.976 0.004 NA 0.004 0.000
#> SRR934341     1  0.0833      0.812 0.976 0.004 NA 0.004 0.000
#> SRR934342     1  0.0833      0.812 0.976 0.004 NA 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR934216     3  0.2724      0.839 0.000 0.000 0.864 0.000 0.084 0.052
#> SRR934217     3  0.2724      0.839 0.000 0.000 0.864 0.000 0.084 0.052
#> SRR934218     3  0.2724      0.839 0.000 0.000 0.864 0.000 0.084 0.052
#> SRR934219     3  0.2724      0.839 0.000 0.000 0.864 0.000 0.084 0.052
#> SRR934220     3  0.2724      0.839 0.000 0.000 0.864 0.000 0.084 0.052
#> SRR934221     3  0.2724      0.839 0.000 0.000 0.864 0.000 0.084 0.052
#> SRR934222     3  0.2724      0.839 0.000 0.000 0.864 0.000 0.084 0.052
#> SRR934223     3  0.2724      0.839 0.000 0.000 0.864 0.000 0.084 0.052
#> SRR934224     5  0.2171      0.620 0.000 0.000 0.040 0.016 0.912 0.032
#> SRR934225     5  0.2171      0.620 0.000 0.000 0.040 0.016 0.912 0.032
#> SRR934226     5  0.2171      0.620 0.000 0.000 0.040 0.016 0.912 0.032
#> SRR934227     5  0.2171      0.620 0.000 0.000 0.040 0.016 0.912 0.032
#> SRR934228     5  0.2171      0.620 0.000 0.000 0.040 0.016 0.912 0.032
#> SRR934229     5  0.2171      0.620 0.000 0.000 0.040 0.016 0.912 0.032
#> SRR934230     5  0.2171      0.620 0.000 0.000 0.040 0.016 0.912 0.032
#> SRR934231     5  0.2171      0.620 0.000 0.000 0.040 0.016 0.912 0.032
#> SRR934232     2  0.5397      0.592 0.000 0.516 0.008 0.384 0.000 0.092
#> SRR934233     2  0.5397      0.592 0.000 0.516 0.008 0.384 0.000 0.092
#> SRR934234     2  0.5397      0.592 0.000 0.516 0.008 0.384 0.000 0.092
#> SRR934235     2  0.5397      0.592 0.000 0.516 0.008 0.384 0.000 0.092
#> SRR934236     2  0.5397      0.592 0.000 0.516 0.008 0.384 0.000 0.092
#> SRR934237     2  0.5397      0.592 0.000 0.516 0.008 0.384 0.000 0.092
#> SRR934238     2  0.5397      0.592 0.000 0.516 0.008 0.384 0.000 0.092
#> SRR934239     2  0.5397      0.592 0.000 0.516 0.008 0.384 0.000 0.092
#> SRR934240     2  0.4687      0.685 0.000 0.672 0.004 0.240 0.000 0.084
#> SRR934241     2  0.4687      0.685 0.000 0.672 0.004 0.240 0.000 0.084
#> SRR934242     2  0.4687      0.685 0.000 0.672 0.004 0.240 0.000 0.084
#> SRR934243     2  0.4687      0.685 0.000 0.672 0.004 0.240 0.000 0.084
#> SRR934244     2  0.4687      0.685 0.000 0.672 0.004 0.240 0.000 0.084
#> SRR934245     2  0.4687      0.685 0.000 0.672 0.004 0.240 0.000 0.084
#> SRR934246     2  0.4687      0.685 0.000 0.672 0.004 0.240 0.000 0.084
#> SRR934247     2  0.4687      0.685 0.000 0.672 0.004 0.240 0.000 0.084
#> SRR934248     4  0.3592      0.948 0.000 0.000 0.344 0.656 0.000 0.000
#> SRR934249     4  0.3592      0.948 0.000 0.000 0.344 0.656 0.000 0.000
#> SRR934250     4  0.3592      0.948 0.000 0.000 0.344 0.656 0.000 0.000
#> SRR934251     4  0.3592      0.948 0.000 0.000 0.344 0.656 0.000 0.000
#> SRR934252     4  0.3592      0.948 0.000 0.000 0.344 0.656 0.000 0.000
#> SRR934253     4  0.3592      0.948 0.000 0.000 0.344 0.656 0.000 0.000
#> SRR934254     4  0.3592      0.948 0.000 0.000 0.344 0.656 0.000 0.000
#> SRR934255     4  0.3592      0.948 0.000 0.000 0.344 0.656 0.000 0.000
#> SRR934256     2  0.1699      0.664 0.008 0.936 0.000 0.004 0.012 0.040
#> SRR934257     2  0.1699      0.664 0.008 0.936 0.000 0.004 0.012 0.040
#> SRR934258     2  0.1699      0.664 0.008 0.936 0.000 0.004 0.012 0.040
#> SRR934259     2  0.1699      0.664 0.008 0.936 0.000 0.004 0.012 0.040
#> SRR934260     2  0.1699      0.664 0.008 0.936 0.000 0.004 0.012 0.040
#> SRR934261     2  0.1699      0.664 0.008 0.936 0.000 0.004 0.012 0.040
#> SRR934262     2  0.1699      0.664 0.008 0.936 0.000 0.004 0.012 0.040
#> SRR934263     2  0.1699      0.664 0.008 0.936 0.000 0.004 0.012 0.040
#> SRR934264     4  0.3765      0.946 0.000 0.000 0.404 0.596 0.000 0.000
#> SRR934265     4  0.3765      0.946 0.000 0.000 0.404 0.596 0.000 0.000
#> SRR934266     4  0.3765      0.946 0.000 0.000 0.404 0.596 0.000 0.000
#> SRR934267     4  0.3765      0.946 0.000 0.000 0.404 0.596 0.000 0.000
#> SRR934268     4  0.3765      0.946 0.000 0.000 0.404 0.596 0.000 0.000
#> SRR934269     4  0.3765      0.946 0.000 0.000 0.404 0.596 0.000 0.000
#> SRR934270     4  0.3765      0.946 0.000 0.000 0.404 0.596 0.000 0.000
#> SRR934271     4  0.3765      0.946 0.000 0.000 0.404 0.596 0.000 0.000
#> SRR934272     6  0.4780      0.690 0.004 0.000 0.012 0.020 0.468 0.496
#> SRR934273     6  0.4780      0.690 0.004 0.000 0.012 0.020 0.468 0.496
#> SRR934274     6  0.4780      0.690 0.004 0.000 0.012 0.020 0.468 0.496
#> SRR934275     6  0.4780      0.690 0.004 0.000 0.012 0.020 0.468 0.496
#> SRR934276     6  0.4780      0.690 0.004 0.000 0.012 0.020 0.468 0.496
#> SRR934277     6  0.4780      0.690 0.004 0.000 0.012 0.020 0.468 0.496
#> SRR934278     6  0.4780      0.690 0.004 0.000 0.012 0.020 0.468 0.496
#> SRR934279     6  0.4780      0.690 0.004 0.000 0.012 0.020 0.468 0.496
#> SRR934280     6  0.4706      0.638 0.004 0.012 0.000 0.016 0.468 0.500
#> SRR934281     6  0.4706      0.638 0.004 0.012 0.000 0.016 0.468 0.500
#> SRR934282     6  0.4706      0.638 0.004 0.012 0.000 0.016 0.468 0.500
#> SRR934283     6  0.4706      0.638 0.004 0.012 0.000 0.016 0.468 0.500
#> SRR934284     6  0.4706      0.638 0.004 0.012 0.000 0.016 0.468 0.500
#> SRR934285     6  0.4706      0.638 0.004 0.012 0.000 0.016 0.468 0.500
#> SRR934286     6  0.4706      0.638 0.004 0.012 0.000 0.016 0.468 0.500
#> SRR934287     6  0.4706      0.638 0.004 0.012 0.000 0.016 0.468 0.500
#> SRR934288     1  0.1536      0.950 0.940 0.004 0.000 0.040 0.000 0.016
#> SRR934289     1  0.1536      0.950 0.940 0.004 0.000 0.040 0.000 0.016
#> SRR934290     1  0.1536      0.950 0.940 0.004 0.000 0.040 0.000 0.016
#> SRR934291     1  0.1536      0.950 0.940 0.004 0.000 0.040 0.000 0.016
#> SRR934292     1  0.1536      0.950 0.940 0.004 0.000 0.040 0.000 0.016
#> SRR934293     1  0.1536      0.950 0.940 0.004 0.000 0.040 0.000 0.016
#> SRR934294     1  0.1536      0.950 0.940 0.004 0.000 0.040 0.000 0.016
#> SRR934295     1  0.1536      0.950 0.940 0.004 0.000 0.040 0.000 0.016
#> SRR934296     2  0.7356      0.497 0.152 0.536 0.076 0.136 0.000 0.100
#> SRR934297     2  0.7356      0.497 0.152 0.536 0.076 0.136 0.000 0.100
#> SRR934298     2  0.7356      0.497 0.152 0.536 0.076 0.136 0.000 0.100
#> SRR934299     2  0.7356      0.497 0.152 0.536 0.076 0.136 0.000 0.100
#> SRR934300     2  0.7356      0.497 0.152 0.536 0.076 0.136 0.000 0.100
#> SRR934301     2  0.7356      0.497 0.152 0.536 0.076 0.136 0.000 0.100
#> SRR934302     2  0.7356      0.497 0.152 0.536 0.076 0.136 0.000 0.100
#> SRR934303     2  0.7356      0.497 0.152 0.536 0.076 0.136 0.000 0.100
#> SRR934304     3  0.1444      0.815 0.000 0.000 0.928 0.072 0.000 0.000
#> SRR934305     3  0.1444      0.815 0.000 0.000 0.928 0.072 0.000 0.000
#> SRR934306     3  0.1444      0.815 0.000 0.000 0.928 0.072 0.000 0.000
#> SRR934307     3  0.1444      0.815 0.000 0.000 0.928 0.072 0.000 0.000
#> SRR934308     3  0.1444      0.815 0.000 0.000 0.928 0.072 0.000 0.000
#> SRR934309     3  0.1444      0.815 0.000 0.000 0.928 0.072 0.000 0.000
#> SRR934310     3  0.1444      0.815 0.000 0.000 0.928 0.072 0.000 0.000
#> SRR934311     3  0.1444      0.815 0.000 0.000 0.928 0.072 0.000 0.000
#> SRR934312     6  0.3809      0.763 0.008 0.000 0.000 0.004 0.304 0.684
#> SRR934313     6  0.3809      0.763 0.008 0.000 0.000 0.004 0.304 0.684
#> SRR934314     6  0.3809      0.763 0.008 0.000 0.000 0.004 0.304 0.684
#> SRR934315     6  0.3809      0.763 0.008 0.000 0.000 0.004 0.304 0.684
#> SRR934316     6  0.3809      0.763 0.008 0.000 0.000 0.004 0.304 0.684
#> SRR934317     6  0.3809      0.763 0.008 0.000 0.000 0.004 0.304 0.684
#> SRR934318     6  0.3809      0.763 0.008 0.000 0.000 0.004 0.304 0.684
#> SRR934319     6  0.3809      0.763 0.008 0.000 0.000 0.004 0.304 0.684
#> SRR934320     5  0.5822      0.614 0.024 0.136 0.000 0.016 0.624 0.200
#> SRR934321     5  0.5822      0.614 0.024 0.136 0.000 0.016 0.624 0.200
#> SRR934322     5  0.5822      0.614 0.024 0.136 0.000 0.016 0.624 0.200
#> SRR934323     5  0.5822      0.614 0.024 0.136 0.000 0.016 0.624 0.200
#> SRR934324     5  0.5822      0.614 0.024 0.136 0.000 0.016 0.624 0.200
#> SRR934325     5  0.5822      0.614 0.024 0.136 0.000 0.016 0.624 0.200
#> SRR934326     5  0.5822      0.614 0.024 0.136 0.000 0.016 0.624 0.200
#> SRR934327     5  0.5822      0.614 0.024 0.136 0.000 0.016 0.624 0.200
#> SRR934328     1  0.0146      0.965 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR934329     1  0.0146      0.965 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR934330     1  0.0146      0.965 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR934331     1  0.0146      0.965 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR934332     1  0.0146      0.965 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR934333     1  0.0146      0.965 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR934334     1  0.0146      0.965 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR934335     1  0.0146      0.965 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR934344     1  0.1138      0.958 0.960 0.000 0.000 0.004 0.024 0.012
#> SRR934345     1  0.1138      0.958 0.960 0.000 0.000 0.004 0.024 0.012
#> SRR934346     1  0.1138      0.958 0.960 0.000 0.000 0.004 0.024 0.012
#> SRR934347     1  0.1138      0.958 0.960 0.000 0.000 0.004 0.024 0.012
#> SRR934348     1  0.1138      0.958 0.960 0.000 0.000 0.004 0.024 0.012
#> SRR934349     1  0.1138      0.958 0.960 0.000 0.000 0.004 0.024 0.012
#> SRR934350     1  0.1138      0.958 0.960 0.000 0.000 0.004 0.024 0.012
#> SRR934351     1  0.1138      0.958 0.960 0.000 0.000 0.004 0.024 0.012
#> SRR934336     5  0.2257      0.617 0.000 0.000 0.000 0.008 0.876 0.116
#> SRR934337     5  0.2257      0.617 0.000 0.000 0.000 0.008 0.876 0.116
#> SRR934338     5  0.2257      0.617 0.000 0.000 0.000 0.008 0.876 0.116
#> SRR934339     5  0.2257      0.617 0.000 0.000 0.000 0.008 0.876 0.116
#> SRR934340     5  0.2257      0.617 0.000 0.000 0.000 0.008 0.876 0.116
#> SRR934341     5  0.2257      0.617 0.000 0.000 0.000 0.008 0.876 0.116
#> SRR934342     5  0.2257      0.617 0.000 0.000 0.000 0.008 0.876 0.116

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14550 rows and 135 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.868           0.918       0.960         0.4193 0.580   0.580
#> 3 3 0.725           0.894       0.955        -0.0259 0.866   0.799
#> 4 4 0.955           0.910       0.948         0.2332 0.888   0.821
#> 5 5 0.756           0.887       0.920         0.1698 0.923   0.855
#> 6 6 0.931           0.920       0.952         0.2544 0.805   0.571

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 4

There is also optional best \(k\) = 4 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR934216     1   0.000      0.968 1.000 0.000
#> SRR934217     1   0.000      0.968 1.000 0.000
#> SRR934218     1   0.000      0.968 1.000 0.000
#> SRR934219     1   0.000      0.968 1.000 0.000
#> SRR934220     1   0.000      0.968 1.000 0.000
#> SRR934221     1   0.000      0.968 1.000 0.000
#> SRR934222     1   0.000      0.968 1.000 0.000
#> SRR934223     1   0.000      0.968 1.000 0.000
#> SRR934224     1   0.000      0.968 1.000 0.000
#> SRR934225     1   0.000      0.968 1.000 0.000
#> SRR934226     1   0.000      0.968 1.000 0.000
#> SRR934227     1   0.000      0.968 1.000 0.000
#> SRR934228     1   0.000      0.968 1.000 0.000
#> SRR934229     1   0.000      0.968 1.000 0.000
#> SRR934230     1   0.000      0.968 1.000 0.000
#> SRR934231     1   0.000      0.968 1.000 0.000
#> SRR934232     2   0.000      0.927 0.000 1.000
#> SRR934233     2   0.000      0.927 0.000 1.000
#> SRR934234     2   0.000      0.927 0.000 1.000
#> SRR934235     2   0.000      0.927 0.000 1.000
#> SRR934236     2   0.000      0.927 0.000 1.000
#> SRR934237     2   0.000      0.927 0.000 1.000
#> SRR934238     2   0.000      0.927 0.000 1.000
#> SRR934239     2   0.000      0.927 0.000 1.000
#> SRR934240     2   0.000      0.927 0.000 1.000
#> SRR934241     2   0.000      0.927 0.000 1.000
#> SRR934242     2   0.000      0.927 0.000 1.000
#> SRR934243     2   0.000      0.927 0.000 1.000
#> SRR934244     2   0.000      0.927 0.000 1.000
#> SRR934245     2   0.000      0.927 0.000 1.000
#> SRR934246     2   0.000      0.927 0.000 1.000
#> SRR934247     2   0.000      0.927 0.000 1.000
#> SRR934248     2   0.343      0.929 0.064 0.936
#> SRR934249     2   0.343      0.929 0.064 0.936
#> SRR934250     2   0.343      0.929 0.064 0.936
#> SRR934251     2   0.343      0.929 0.064 0.936
#> SRR934252     2   0.343      0.929 0.064 0.936
#> SRR934253     2   0.343      0.929 0.064 0.936
#> SRR934254     2   0.343      0.929 0.064 0.936
#> SRR934255     2   0.343      0.929 0.064 0.936
#> SRR934256     2   0.714      0.799 0.196 0.804
#> SRR934257     2   0.714      0.799 0.196 0.804
#> SRR934258     2   0.722      0.794 0.200 0.800
#> SRR934259     2   0.722      0.794 0.200 0.800
#> SRR934260     2   0.697      0.807 0.188 0.812
#> SRR934261     2   0.714      0.799 0.196 0.804
#> SRR934262     2   0.722      0.794 0.200 0.800
#> SRR934263     2   0.722      0.794 0.200 0.800
#> SRR934264     1   0.939      0.450 0.644 0.356
#> SRR934265     1   0.876      0.575 0.704 0.296
#> SRR934266     1   0.966      0.358 0.608 0.392
#> SRR934267     1   0.943      0.440 0.640 0.360
#> SRR934268     1   0.876      0.574 0.704 0.296
#> SRR934269     1   0.961      0.380 0.616 0.384
#> SRR934270     1   0.909      0.520 0.676 0.324
#> SRR934271     1   0.961      0.380 0.616 0.384
#> SRR934272     1   0.000      0.968 1.000 0.000
#> SRR934273     1   0.000      0.968 1.000 0.000
#> SRR934274     1   0.000      0.968 1.000 0.000
#> SRR934275     1   0.000      0.968 1.000 0.000
#> SRR934276     1   0.000      0.968 1.000 0.000
#> SRR934277     1   0.000      0.968 1.000 0.000
#> SRR934278     1   0.000      0.968 1.000 0.000
#> SRR934279     1   0.000      0.968 1.000 0.000
#> SRR934280     1   0.000      0.968 1.000 0.000
#> SRR934281     1   0.000      0.968 1.000 0.000
#> SRR934282     1   0.000      0.968 1.000 0.000
#> SRR934283     1   0.000      0.968 1.000 0.000
#> SRR934284     1   0.000      0.968 1.000 0.000
#> SRR934285     1   0.000      0.968 1.000 0.000
#> SRR934286     1   0.000      0.968 1.000 0.000
#> SRR934287     1   0.000      0.968 1.000 0.000
#> SRR934288     1   0.000      0.968 1.000 0.000
#> SRR934289     1   0.000      0.968 1.000 0.000
#> SRR934290     1   0.000      0.968 1.000 0.000
#> SRR934291     1   0.000      0.968 1.000 0.000
#> SRR934292     1   0.000      0.968 1.000 0.000
#> SRR934293     1   0.000      0.968 1.000 0.000
#> SRR934294     1   0.000      0.968 1.000 0.000
#> SRR934295     1   0.000      0.968 1.000 0.000
#> SRR934296     1   0.000      0.968 1.000 0.000
#> SRR934297     1   0.000      0.968 1.000 0.000
#> SRR934298     1   0.000      0.968 1.000 0.000
#> SRR934299     1   0.000      0.968 1.000 0.000
#> SRR934300     1   0.000      0.968 1.000 0.000
#> SRR934301     1   0.000      0.968 1.000 0.000
#> SRR934302     1   0.000      0.968 1.000 0.000
#> SRR934303     1   0.000      0.968 1.000 0.000
#> SRR934304     2   0.343      0.929 0.064 0.936
#> SRR934305     2   0.343      0.929 0.064 0.936
#> SRR934306     2   0.343      0.929 0.064 0.936
#> SRR934307     2   0.343      0.929 0.064 0.936
#> SRR934308     2   0.343      0.929 0.064 0.936
#> SRR934309     2   0.343      0.929 0.064 0.936
#> SRR934310     2   0.343      0.929 0.064 0.936
#> SRR934311     2   0.343      0.929 0.064 0.936
#> SRR934312     1   0.000      0.968 1.000 0.000
#> SRR934313     1   0.000      0.968 1.000 0.000
#> SRR934314     1   0.000      0.968 1.000 0.000
#> SRR934315     1   0.000      0.968 1.000 0.000
#> SRR934316     1   0.000      0.968 1.000 0.000
#> SRR934317     1   0.000      0.968 1.000 0.000
#> SRR934318     1   0.000      0.968 1.000 0.000
#> SRR934319     1   0.000      0.968 1.000 0.000
#> SRR934320     1   0.000      0.968 1.000 0.000
#> SRR934321     1   0.000      0.968 1.000 0.000
#> SRR934322     1   0.000      0.968 1.000 0.000
#> SRR934323     1   0.000      0.968 1.000 0.000
#> SRR934324     1   0.000      0.968 1.000 0.000
#> SRR934325     1   0.000      0.968 1.000 0.000
#> SRR934326     1   0.000      0.968 1.000 0.000
#> SRR934327     1   0.000      0.968 1.000 0.000
#> SRR934328     1   0.000      0.968 1.000 0.000
#> SRR934329     1   0.000      0.968 1.000 0.000
#> SRR934330     1   0.000      0.968 1.000 0.000
#> SRR934331     1   0.000      0.968 1.000 0.000
#> SRR934332     1   0.000      0.968 1.000 0.000
#> SRR934333     1   0.000      0.968 1.000 0.000
#> SRR934334     1   0.000      0.968 1.000 0.000
#> SRR934335     1   0.000      0.968 1.000 0.000
#> SRR934344     1   0.000      0.968 1.000 0.000
#> SRR934345     1   0.000      0.968 1.000 0.000
#> SRR934346     1   0.000      0.968 1.000 0.000
#> SRR934347     1   0.000      0.968 1.000 0.000
#> SRR934348     1   0.000      0.968 1.000 0.000
#> SRR934349     1   0.000      0.968 1.000 0.000
#> SRR934350     1   0.000      0.968 1.000 0.000
#> SRR934351     1   0.000      0.968 1.000 0.000
#> SRR934336     1   0.000      0.968 1.000 0.000
#> SRR934337     1   0.000      0.968 1.000 0.000
#> SRR934338     1   0.000      0.968 1.000 0.000
#> SRR934339     1   0.000      0.968 1.000 0.000
#> SRR934340     1   0.000      0.968 1.000 0.000
#> SRR934341     1   0.000      0.968 1.000 0.000
#> SRR934342     1   0.000      0.968 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2 p3
#> SRR934216     1   0.000      0.951 1.000 0.000  0
#> SRR934217     1   0.000      0.951 1.000 0.000  0
#> SRR934218     1   0.000      0.951 1.000 0.000  0
#> SRR934219     1   0.000      0.951 1.000 0.000  0
#> SRR934220     1   0.000      0.951 1.000 0.000  0
#> SRR934221     1   0.000      0.951 1.000 0.000  0
#> SRR934222     1   0.000      0.951 1.000 0.000  0
#> SRR934223     1   0.000      0.951 1.000 0.000  0
#> SRR934224     1   0.000      0.951 1.000 0.000  0
#> SRR934225     1   0.000      0.951 1.000 0.000  0
#> SRR934226     1   0.000      0.951 1.000 0.000  0
#> SRR934227     1   0.000      0.951 1.000 0.000  0
#> SRR934228     1   0.000      0.951 1.000 0.000  0
#> SRR934229     1   0.000      0.951 1.000 0.000  0
#> SRR934230     1   0.000      0.951 1.000 0.000  0
#> SRR934231     1   0.000      0.951 1.000 0.000  0
#> SRR934232     2   0.000      0.860 0.000 1.000  0
#> SRR934233     2   0.000      0.860 0.000 1.000  0
#> SRR934234     2   0.000      0.860 0.000 1.000  0
#> SRR934235     2   0.000      0.860 0.000 1.000  0
#> SRR934236     2   0.000      0.860 0.000 1.000  0
#> SRR934237     2   0.000      0.860 0.000 1.000  0
#> SRR934238     2   0.000      0.860 0.000 1.000  0
#> SRR934239     2   0.000      0.860 0.000 1.000  0
#> SRR934240     2   0.000      0.860 0.000 1.000  0
#> SRR934241     2   0.000      0.860 0.000 1.000  0
#> SRR934242     2   0.000      0.860 0.000 1.000  0
#> SRR934243     2   0.000      0.860 0.000 1.000  0
#> SRR934244     2   0.000      0.860 0.000 1.000  0
#> SRR934245     2   0.000      0.860 0.000 1.000  0
#> SRR934246     2   0.000      0.860 0.000 1.000  0
#> SRR934247     2   0.000      0.860 0.000 1.000  0
#> SRR934248     1   0.546      0.648 0.712 0.288  0
#> SRR934249     1   0.546      0.648 0.712 0.288  0
#> SRR934250     1   0.546      0.648 0.712 0.288  0
#> SRR934251     1   0.546      0.648 0.712 0.288  0
#> SRR934252     1   0.546      0.648 0.712 0.288  0
#> SRR934253     1   0.546      0.648 0.712 0.288  0
#> SRR934254     1   0.546      0.648 0.712 0.288  0
#> SRR934255     1   0.546      0.648 0.712 0.288  0
#> SRR934256     2   0.450      0.716 0.196 0.804  0
#> SRR934257     2   0.450      0.716 0.196 0.804  0
#> SRR934258     2   0.455      0.711 0.200 0.800  0
#> SRR934259     2   0.455      0.711 0.200 0.800  0
#> SRR934260     2   0.440      0.723 0.188 0.812  0
#> SRR934261     2   0.450      0.716 0.196 0.804  0
#> SRR934262     2   0.455      0.711 0.200 0.800  0
#> SRR934263     2   0.455      0.711 0.200 0.800  0
#> SRR934264     1   0.546      0.648 0.712 0.288  0
#> SRR934265     1   0.533      0.670 0.728 0.272  0
#> SRR934266     1   0.546      0.648 0.712 0.288  0
#> SRR934267     1   0.540      0.659 0.720 0.280  0
#> SRR934268     1   0.533      0.670 0.728 0.272  0
#> SRR934269     1   0.546      0.648 0.712 0.288  0
#> SRR934270     1   0.533      0.670 0.728 0.272  0
#> SRR934271     1   0.546      0.648 0.712 0.288  0
#> SRR934272     1   0.000      0.951 1.000 0.000  0
#> SRR934273     1   0.000      0.951 1.000 0.000  0
#> SRR934274     1   0.000      0.951 1.000 0.000  0
#> SRR934275     1   0.000      0.951 1.000 0.000  0
#> SRR934276     1   0.000      0.951 1.000 0.000  0
#> SRR934277     1   0.000      0.951 1.000 0.000  0
#> SRR934278     1   0.000      0.951 1.000 0.000  0
#> SRR934279     1   0.000      0.951 1.000 0.000  0
#> SRR934280     1   0.000      0.951 1.000 0.000  0
#> SRR934281     1   0.000      0.951 1.000 0.000  0
#> SRR934282     1   0.000      0.951 1.000 0.000  0
#> SRR934283     1   0.000      0.951 1.000 0.000  0
#> SRR934284     1   0.000      0.951 1.000 0.000  0
#> SRR934285     1   0.000      0.951 1.000 0.000  0
#> SRR934286     1   0.000      0.951 1.000 0.000  0
#> SRR934287     1   0.000      0.951 1.000 0.000  0
#> SRR934288     1   0.000      0.951 1.000 0.000  0
#> SRR934289     1   0.000      0.951 1.000 0.000  0
#> SRR934290     1   0.000      0.951 1.000 0.000  0
#> SRR934291     1   0.000      0.951 1.000 0.000  0
#> SRR934292     1   0.000      0.951 1.000 0.000  0
#> SRR934293     1   0.000      0.951 1.000 0.000  0
#> SRR934294     1   0.000      0.951 1.000 0.000  0
#> SRR934295     1   0.000      0.951 1.000 0.000  0
#> SRR934296     1   0.000      0.951 1.000 0.000  0
#> SRR934297     1   0.000      0.951 1.000 0.000  0
#> SRR934298     1   0.000      0.951 1.000 0.000  0
#> SRR934299     1   0.000      0.951 1.000 0.000  0
#> SRR934300     1   0.000      0.951 1.000 0.000  0
#> SRR934301     1   0.000      0.951 1.000 0.000  0
#> SRR934302     1   0.000      0.951 1.000 0.000  0
#> SRR934303     1   0.000      0.951 1.000 0.000  0
#> SRR934304     3   0.000      1.000 0.000 0.000  1
#> SRR934305     3   0.000      1.000 0.000 0.000  1
#> SRR934306     3   0.000      1.000 0.000 0.000  1
#> SRR934307     3   0.000      1.000 0.000 0.000  1
#> SRR934308     3   0.000      1.000 0.000 0.000  1
#> SRR934309     3   0.000      1.000 0.000 0.000  1
#> SRR934310     3   0.000      1.000 0.000 0.000  1
#> SRR934311     3   0.000      1.000 0.000 0.000  1
#> SRR934312     1   0.000      0.951 1.000 0.000  0
#> SRR934313     1   0.000      0.951 1.000 0.000  0
#> SRR934314     1   0.000      0.951 1.000 0.000  0
#> SRR934315     1   0.000      0.951 1.000 0.000  0
#> SRR934316     1   0.000      0.951 1.000 0.000  0
#> SRR934317     1   0.000      0.951 1.000 0.000  0
#> SRR934318     1   0.000      0.951 1.000 0.000  0
#> SRR934319     1   0.000      0.951 1.000 0.000  0
#> SRR934320     1   0.000      0.951 1.000 0.000  0
#> SRR934321     1   0.000      0.951 1.000 0.000  0
#> SRR934322     1   0.000      0.951 1.000 0.000  0
#> SRR934323     1   0.000      0.951 1.000 0.000  0
#> SRR934324     1   0.000      0.951 1.000 0.000  0
#> SRR934325     1   0.000      0.951 1.000 0.000  0
#> SRR934326     1   0.000      0.951 1.000 0.000  0
#> SRR934327     1   0.000      0.951 1.000 0.000  0
#> SRR934328     1   0.000      0.951 1.000 0.000  0
#> SRR934329     1   0.000      0.951 1.000 0.000  0
#> SRR934330     1   0.000      0.951 1.000 0.000  0
#> SRR934331     1   0.000      0.951 1.000 0.000  0
#> SRR934332     1   0.000      0.951 1.000 0.000  0
#> SRR934333     1   0.000      0.951 1.000 0.000  0
#> SRR934334     1   0.000      0.951 1.000 0.000  0
#> SRR934335     1   0.000      0.951 1.000 0.000  0
#> SRR934344     1   0.000      0.951 1.000 0.000  0
#> SRR934345     1   0.000      0.951 1.000 0.000  0
#> SRR934346     1   0.000      0.951 1.000 0.000  0
#> SRR934347     1   0.000      0.951 1.000 0.000  0
#> SRR934348     1   0.000      0.951 1.000 0.000  0
#> SRR934349     1   0.000      0.951 1.000 0.000  0
#> SRR934350     1   0.000      0.951 1.000 0.000  0
#> SRR934351     1   0.000      0.951 1.000 0.000  0
#> SRR934336     1   0.000      0.951 1.000 0.000  0
#> SRR934337     1   0.000      0.951 1.000 0.000  0
#> SRR934338     1   0.000      0.951 1.000 0.000  0
#> SRR934339     1   0.000      0.951 1.000 0.000  0
#> SRR934340     1   0.000      0.951 1.000 0.000  0
#> SRR934341     1   0.000      0.951 1.000 0.000  0
#> SRR934342     1   0.000      0.951 1.000 0.000  0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2 p3    p4
#> SRR934216     1  0.1716      0.893 0.936 0.000  0 0.064
#> SRR934217     1  0.1716      0.893 0.936 0.000  0 0.064
#> SRR934218     1  0.1716      0.893 0.936 0.000  0 0.064
#> SRR934219     1  0.1716      0.893 0.936 0.000  0 0.064
#> SRR934220     1  0.1716      0.893 0.936 0.000  0 0.064
#> SRR934221     1  0.1716      0.893 0.936 0.000  0 0.064
#> SRR934222     1  0.1716      0.893 0.936 0.000  0 0.064
#> SRR934223     1  0.1716      0.893 0.936 0.000  0 0.064
#> SRR934224     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934225     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934226     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934227     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934228     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934229     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934230     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934231     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934232     2  0.0000      0.955 0.000 1.000  0 0.000
#> SRR934233     2  0.0000      0.955 0.000 1.000  0 0.000
#> SRR934234     2  0.0000      0.955 0.000 1.000  0 0.000
#> SRR934235     2  0.0000      0.955 0.000 1.000  0 0.000
#> SRR934236     2  0.0000      0.955 0.000 1.000  0 0.000
#> SRR934237     2  0.0000      0.955 0.000 1.000  0 0.000
#> SRR934238     2  0.0000      0.955 0.000 1.000  0 0.000
#> SRR934239     2  0.0000      0.955 0.000 1.000  0 0.000
#> SRR934240     2  0.0000      0.955 0.000 1.000  0 0.000
#> SRR934241     2  0.0000      0.955 0.000 1.000  0 0.000
#> SRR934242     2  0.0000      0.955 0.000 1.000  0 0.000
#> SRR934243     2  0.0000      0.955 0.000 1.000  0 0.000
#> SRR934244     2  0.0000      0.955 0.000 1.000  0 0.000
#> SRR934245     2  0.0000      0.955 0.000 1.000  0 0.000
#> SRR934246     2  0.0000      0.955 0.000 1.000  0 0.000
#> SRR934247     2  0.0000      0.955 0.000 1.000  0 0.000
#> SRR934248     2  0.1716      0.911 0.064 0.936  0 0.000
#> SRR934249     2  0.1716      0.911 0.064 0.936  0 0.000
#> SRR934250     2  0.1716      0.911 0.064 0.936  0 0.000
#> SRR934251     2  0.1716      0.911 0.064 0.936  0 0.000
#> SRR934252     2  0.1716      0.911 0.064 0.936  0 0.000
#> SRR934253     2  0.1716      0.911 0.064 0.936  0 0.000
#> SRR934254     2  0.1716      0.911 0.064 0.936  0 0.000
#> SRR934255     2  0.1716      0.911 0.064 0.936  0 0.000
#> SRR934256     4  0.1716      1.000 0.000 0.064  0 0.936
#> SRR934257     4  0.1716      1.000 0.000 0.064  0 0.936
#> SRR934258     4  0.1716      1.000 0.000 0.064  0 0.936
#> SRR934259     4  0.1716      1.000 0.000 0.064  0 0.936
#> SRR934260     4  0.1716      1.000 0.000 0.064  0 0.936
#> SRR934261     4  0.1716      1.000 0.000 0.064  0 0.936
#> SRR934262     4  0.1716      1.000 0.000 0.064  0 0.936
#> SRR934263     4  0.1716      1.000 0.000 0.064  0 0.936
#> SRR934264     1  0.4730      0.487 0.636 0.364  0 0.000
#> SRR934265     1  0.4500      0.585 0.684 0.316  0 0.000
#> SRR934266     1  0.4804      0.441 0.616 0.384  0 0.000
#> SRR934267     1  0.4713      0.496 0.640 0.360  0 0.000
#> SRR934268     1  0.4406      0.614 0.700 0.300  0 0.000
#> SRR934269     1  0.4804      0.441 0.616 0.384  0 0.000
#> SRR934270     1  0.4522      0.578 0.680 0.320  0 0.000
#> SRR934271     1  0.4804      0.441 0.616 0.384  0 0.000
#> SRR934272     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934273     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934274     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934275     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934276     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934277     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934278     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934279     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934280     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934281     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934282     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934283     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934284     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934285     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934286     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934287     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934288     1  0.2081      0.913 0.916 0.000  0 0.084
#> SRR934289     1  0.2081      0.913 0.916 0.000  0 0.084
#> SRR934290     1  0.2081      0.913 0.916 0.000  0 0.084
#> SRR934291     1  0.2081      0.913 0.916 0.000  0 0.084
#> SRR934292     1  0.2081      0.913 0.916 0.000  0 0.084
#> SRR934293     1  0.2081      0.913 0.916 0.000  0 0.084
#> SRR934294     1  0.2081      0.913 0.916 0.000  0 0.084
#> SRR934295     1  0.2081      0.913 0.916 0.000  0 0.084
#> SRR934296     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934297     1  0.0188      0.932 0.996 0.000  0 0.004
#> SRR934298     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934299     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934300     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934301     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934302     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934303     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934304     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR934305     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR934306     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR934307     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR934308     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR934309     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR934310     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR934311     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR934312     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934313     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934314     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934315     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934316     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934317     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934318     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934319     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934320     1  0.2011      0.915 0.920 0.000  0 0.080
#> SRR934321     1  0.1940      0.916 0.924 0.000  0 0.076
#> SRR934322     1  0.2011      0.915 0.920 0.000  0 0.080
#> SRR934323     1  0.2081      0.913 0.916 0.000  0 0.084
#> SRR934324     1  0.2011      0.915 0.920 0.000  0 0.080
#> SRR934325     1  0.2011      0.915 0.920 0.000  0 0.080
#> SRR934326     1  0.2081      0.913 0.916 0.000  0 0.084
#> SRR934327     1  0.2081      0.913 0.916 0.000  0 0.084
#> SRR934328     1  0.2081      0.913 0.916 0.000  0 0.084
#> SRR934329     1  0.2081      0.913 0.916 0.000  0 0.084
#> SRR934330     1  0.2081      0.913 0.916 0.000  0 0.084
#> SRR934331     1  0.2081      0.913 0.916 0.000  0 0.084
#> SRR934332     1  0.2081      0.913 0.916 0.000  0 0.084
#> SRR934333     1  0.2081      0.913 0.916 0.000  0 0.084
#> SRR934334     1  0.2081      0.913 0.916 0.000  0 0.084
#> SRR934335     1  0.2081      0.913 0.916 0.000  0 0.084
#> SRR934344     1  0.2081      0.913 0.916 0.000  0 0.084
#> SRR934345     1  0.2081      0.913 0.916 0.000  0 0.084
#> SRR934346     1  0.2081      0.913 0.916 0.000  0 0.084
#> SRR934347     1  0.2081      0.913 0.916 0.000  0 0.084
#> SRR934348     1  0.2081      0.913 0.916 0.000  0 0.084
#> SRR934349     1  0.2081      0.913 0.916 0.000  0 0.084
#> SRR934350     1  0.2081      0.913 0.916 0.000  0 0.084
#> SRR934351     1  0.2081      0.913 0.916 0.000  0 0.084
#> SRR934336     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934337     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934338     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934339     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934340     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934341     1  0.0000      0.932 1.000 0.000  0 0.000
#> SRR934342     1  0.0000      0.932 1.000 0.000  0 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3 p4 p5
#> SRR934216     3  0.3177      1.000 0.208 0.000 0.792  0  0
#> SRR934217     3  0.3177      1.000 0.208 0.000 0.792  0  0
#> SRR934218     3  0.3177      1.000 0.208 0.000 0.792  0  0
#> SRR934219     3  0.3177      1.000 0.208 0.000 0.792  0  0
#> SRR934220     3  0.3177      1.000 0.208 0.000 0.792  0  0
#> SRR934221     3  0.3177      1.000 0.208 0.000 0.792  0  0
#> SRR934222     3  0.3177      1.000 0.208 0.000 0.792  0  0
#> SRR934223     3  0.3177      1.000 0.208 0.000 0.792  0  0
#> SRR934224     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934225     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934226     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934227     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934228     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934229     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934230     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934231     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934232     2  0.0000      1.000 0.000 1.000 0.000  0  0
#> SRR934233     2  0.0000      1.000 0.000 1.000 0.000  0  0
#> SRR934234     2  0.0000      1.000 0.000 1.000 0.000  0  0
#> SRR934235     2  0.0000      1.000 0.000 1.000 0.000  0  0
#> SRR934236     2  0.0000      1.000 0.000 1.000 0.000  0  0
#> SRR934237     2  0.0000      1.000 0.000 1.000 0.000  0  0
#> SRR934238     2  0.0000      1.000 0.000 1.000 0.000  0  0
#> SRR934239     2  0.0000      1.000 0.000 1.000 0.000  0  0
#> SRR934240     2  0.0000      1.000 0.000 1.000 0.000  0  0
#> SRR934241     2  0.0000      1.000 0.000 1.000 0.000  0  0
#> SRR934242     2  0.0000      1.000 0.000 1.000 0.000  0  0
#> SRR934243     2  0.0000      1.000 0.000 1.000 0.000  0  0
#> SRR934244     2  0.0000      1.000 0.000 1.000 0.000  0  0
#> SRR934245     2  0.0000      1.000 0.000 1.000 0.000  0  0
#> SRR934246     2  0.0000      1.000 0.000 1.000 0.000  0  0
#> SRR934247     2  0.0000      1.000 0.000 1.000 0.000  0  0
#> SRR934248     2  0.0000      1.000 0.000 1.000 0.000  0  0
#> SRR934249     2  0.0000      1.000 0.000 1.000 0.000  0  0
#> SRR934250     2  0.0000      1.000 0.000 1.000 0.000  0  0
#> SRR934251     2  0.0000      1.000 0.000 1.000 0.000  0  0
#> SRR934252     2  0.0000      1.000 0.000 1.000 0.000  0  0
#> SRR934253     2  0.0000      1.000 0.000 1.000 0.000  0  0
#> SRR934254     2  0.0000      1.000 0.000 1.000 0.000  0  0
#> SRR934255     2  0.0000      1.000 0.000 1.000 0.000  0  0
#> SRR934256     4  0.0000      1.000 0.000 0.000 0.000  1  0
#> SRR934257     4  0.0000      1.000 0.000 0.000 0.000  1  0
#> SRR934258     4  0.0000      1.000 0.000 0.000 0.000  1  0
#> SRR934259     4  0.0000      1.000 0.000 0.000 0.000  1  0
#> SRR934260     4  0.0000      1.000 0.000 0.000 0.000  1  0
#> SRR934261     4  0.0000      1.000 0.000 0.000 0.000  1  0
#> SRR934262     4  0.0000      1.000 0.000 0.000 0.000  1  0
#> SRR934263     4  0.0000      1.000 0.000 0.000 0.000  1  0
#> SRR934264     1  0.4074      0.523 0.636 0.364 0.000  0  0
#> SRR934265     1  0.3876      0.598 0.684 0.316 0.000  0  0
#> SRR934266     1  0.4138      0.488 0.616 0.384 0.000  0  0
#> SRR934267     1  0.4060      0.530 0.640 0.360 0.000  0  0
#> SRR934268     1  0.3796      0.623 0.700 0.300 0.000  0  0
#> SRR934269     1  0.4138      0.488 0.616 0.384 0.000  0  0
#> SRR934270     1  0.3913      0.589 0.676 0.324 0.000  0  0
#> SRR934271     1  0.4138      0.488 0.616 0.384 0.000  0  0
#> SRR934272     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934273     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934274     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934275     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934276     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934277     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934278     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934279     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934280     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934281     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934282     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934283     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934284     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934285     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934286     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934287     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934288     1  0.3177      0.825 0.792 0.000 0.208  0  0
#> SRR934289     1  0.3177      0.825 0.792 0.000 0.208  0  0
#> SRR934290     1  0.3177      0.825 0.792 0.000 0.208  0  0
#> SRR934291     1  0.3177      0.825 0.792 0.000 0.208  0  0
#> SRR934292     1  0.3177      0.825 0.792 0.000 0.208  0  0
#> SRR934293     1  0.3177      0.825 0.792 0.000 0.208  0  0
#> SRR934294     1  0.3177      0.825 0.792 0.000 0.208  0  0
#> SRR934295     1  0.3177      0.825 0.792 0.000 0.208  0  0
#> SRR934296     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934297     1  0.0162      0.871 0.996 0.000 0.004  0  0
#> SRR934298     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934299     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934300     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934301     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934302     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934303     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934304     5  0.0000      1.000 0.000 0.000 0.000  0  1
#> SRR934305     5  0.0000      1.000 0.000 0.000 0.000  0  1
#> SRR934306     5  0.0000      1.000 0.000 0.000 0.000  0  1
#> SRR934307     5  0.0000      1.000 0.000 0.000 0.000  0  1
#> SRR934308     5  0.0000      1.000 0.000 0.000 0.000  0  1
#> SRR934309     5  0.0000      1.000 0.000 0.000 0.000  0  1
#> SRR934310     5  0.0000      1.000 0.000 0.000 0.000  0  1
#> SRR934311     5  0.0000      1.000 0.000 0.000 0.000  0  1
#> SRR934312     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934313     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934314     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934315     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934316     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934317     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934318     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934319     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934320     1  0.2813      0.839 0.832 0.000 0.168  0  0
#> SRR934321     1  0.2773      0.840 0.836 0.000 0.164  0  0
#> SRR934322     1  0.2852      0.838 0.828 0.000 0.172  0  0
#> SRR934323     1  0.2966      0.833 0.816 0.000 0.184  0  0
#> SRR934324     1  0.2773      0.840 0.836 0.000 0.164  0  0
#> SRR934325     1  0.2690      0.842 0.844 0.000 0.156  0  0
#> SRR934326     1  0.2891      0.836 0.824 0.000 0.176  0  0
#> SRR934327     1  0.2929      0.835 0.820 0.000 0.180  0  0
#> SRR934328     1  0.3177      0.825 0.792 0.000 0.208  0  0
#> SRR934329     1  0.3177      0.825 0.792 0.000 0.208  0  0
#> SRR934330     1  0.3177      0.825 0.792 0.000 0.208  0  0
#> SRR934331     1  0.3177      0.825 0.792 0.000 0.208  0  0
#> SRR934332     1  0.3177      0.825 0.792 0.000 0.208  0  0
#> SRR934333     1  0.3177      0.825 0.792 0.000 0.208  0  0
#> SRR934334     1  0.3177      0.825 0.792 0.000 0.208  0  0
#> SRR934335     1  0.3177      0.825 0.792 0.000 0.208  0  0
#> SRR934344     1  0.3177      0.825 0.792 0.000 0.208  0  0
#> SRR934345     1  0.3177      0.825 0.792 0.000 0.208  0  0
#> SRR934346     1  0.3177      0.825 0.792 0.000 0.208  0  0
#> SRR934347     1  0.3177      0.825 0.792 0.000 0.208  0  0
#> SRR934348     1  0.3177      0.825 0.792 0.000 0.208  0  0
#> SRR934349     1  0.3177      0.825 0.792 0.000 0.208  0  0
#> SRR934350     1  0.3177      0.825 0.792 0.000 0.208  0  0
#> SRR934351     1  0.3177      0.825 0.792 0.000 0.208  0  0
#> SRR934336     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934337     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934338     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934339     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934340     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934341     1  0.0000      0.871 1.000 0.000 0.000  0  0
#> SRR934342     1  0.0000      0.871 1.000 0.000 0.000  0  0

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2 p3 p4 p5    p6
#> SRR934216     3  0.0000      1.000 0.000 0.000  1  0  0 0.000
#> SRR934217     3  0.0000      1.000 0.000 0.000  1  0  0 0.000
#> SRR934218     3  0.0000      1.000 0.000 0.000  1  0  0 0.000
#> SRR934219     3  0.0000      1.000 0.000 0.000  1  0  0 0.000
#> SRR934220     3  0.0000      1.000 0.000 0.000  1  0  0 0.000
#> SRR934221     3  0.0000      1.000 0.000 0.000  1  0  0 0.000
#> SRR934222     3  0.0000      1.000 0.000 0.000  1  0  0 0.000
#> SRR934223     3  0.0000      1.000 0.000 0.000  1  0  0 0.000
#> SRR934224     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934225     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934226     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934227     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934228     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934229     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934230     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934231     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934232     2  0.0000      0.981 0.000 1.000  0  0  0 0.000
#> SRR934233     2  0.0000      0.981 0.000 1.000  0  0  0 0.000
#> SRR934234     2  0.0000      0.981 0.000 1.000  0  0  0 0.000
#> SRR934235     2  0.0000      0.981 0.000 1.000  0  0  0 0.000
#> SRR934236     2  0.0000      0.981 0.000 1.000  0  0  0 0.000
#> SRR934237     2  0.0000      0.981 0.000 1.000  0  0  0 0.000
#> SRR934238     2  0.0000      0.981 0.000 1.000  0  0  0 0.000
#> SRR934239     2  0.0000      0.981 0.000 1.000  0  0  0 0.000
#> SRR934240     2  0.0000      0.981 0.000 1.000  0  0  0 0.000
#> SRR934241     2  0.0000      0.981 0.000 1.000  0  0  0 0.000
#> SRR934242     2  0.0000      0.981 0.000 1.000  0  0  0 0.000
#> SRR934243     2  0.0000      0.981 0.000 1.000  0  0  0 0.000
#> SRR934244     2  0.0000      0.981 0.000 1.000  0  0  0 0.000
#> SRR934245     2  0.0000      0.981 0.000 1.000  0  0  0 0.000
#> SRR934246     2  0.0000      0.981 0.000 1.000  0  0  0 0.000
#> SRR934247     2  0.0000      0.981 0.000 1.000  0  0  0 0.000
#> SRR934248     2  0.1204      0.961 0.056 0.944  0  0  0 0.000
#> SRR934249     2  0.1204      0.961 0.056 0.944  0  0  0 0.000
#> SRR934250     2  0.1204      0.961 0.056 0.944  0  0  0 0.000
#> SRR934251     2  0.1204      0.961 0.056 0.944  0  0  0 0.000
#> SRR934252     2  0.1204      0.961 0.056 0.944  0  0  0 0.000
#> SRR934253     2  0.1204      0.961 0.056 0.944  0  0  0 0.000
#> SRR934254     2  0.1204      0.961 0.056 0.944  0  0  0 0.000
#> SRR934255     2  0.1204      0.961 0.056 0.944  0  0  0 0.000
#> SRR934256     4  0.0000      1.000 0.000 0.000  0  1  0 0.000
#> SRR934257     4  0.0000      1.000 0.000 0.000  0  1  0 0.000
#> SRR934258     4  0.0000      1.000 0.000 0.000  0  1  0 0.000
#> SRR934259     4  0.0000      1.000 0.000 0.000  0  1  0 0.000
#> SRR934260     4  0.0000      1.000 0.000 0.000  0  1  0 0.000
#> SRR934261     4  0.0000      1.000 0.000 0.000  0  1  0 0.000
#> SRR934262     4  0.0000      1.000 0.000 0.000  0  1  0 0.000
#> SRR934263     4  0.0000      1.000 0.000 0.000  0  1  0 0.000
#> SRR934264     6  0.4672      0.428 0.056 0.348  0  0  0 0.596
#> SRR934265     6  0.4515      0.515 0.056 0.304  0  0  0 0.640
#> SRR934266     6  0.4717      0.391 0.056 0.364  0  0  0 0.580
#> SRR934267     6  0.4660      0.436 0.056 0.344  0  0  0 0.600
#> SRR934268     6  0.4481      0.529 0.056 0.296  0  0  0 0.648
#> SRR934269     6  0.4727      0.382 0.056 0.368  0  0  0 0.576
#> SRR934270     6  0.4563      0.492 0.056 0.316  0  0  0 0.628
#> SRR934271     6  0.4717      0.391 0.056 0.364  0  0  0 0.580
#> SRR934272     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934273     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934274     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934275     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934276     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934277     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934278     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934279     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934280     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934281     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934282     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934283     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934284     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934285     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934286     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934287     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934288     1  0.1204      0.951 0.944 0.000  0  0  0 0.056
#> SRR934289     1  0.1204      0.951 0.944 0.000  0  0  0 0.056
#> SRR934290     1  0.1204      0.951 0.944 0.000  0  0  0 0.056
#> SRR934291     1  0.1204      0.951 0.944 0.000  0  0  0 0.056
#> SRR934292     1  0.1204      0.951 0.944 0.000  0  0  0 0.056
#> SRR934293     1  0.1204      0.951 0.944 0.000  0  0  0 0.056
#> SRR934294     1  0.1204      0.951 0.944 0.000  0  0  0 0.056
#> SRR934295     1  0.1204      0.951 0.944 0.000  0  0  0 0.056
#> SRR934296     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934297     6  0.0146      0.930 0.004 0.000  0  0  0 0.996
#> SRR934298     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934299     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934300     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934301     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934302     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934303     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934304     5  0.0000      1.000 0.000 0.000  0  0  1 0.000
#> SRR934305     5  0.0000      1.000 0.000 0.000  0  0  1 0.000
#> SRR934306     5  0.0000      1.000 0.000 0.000  0  0  1 0.000
#> SRR934307     5  0.0000      1.000 0.000 0.000  0  0  1 0.000
#> SRR934308     5  0.0000      1.000 0.000 0.000  0  0  1 0.000
#> SRR934309     5  0.0000      1.000 0.000 0.000  0  0  1 0.000
#> SRR934310     5  0.0000      1.000 0.000 0.000  0  0  1 0.000
#> SRR934311     5  0.0000      1.000 0.000 0.000  0  0  1 0.000
#> SRR934312     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934313     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934314     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934315     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934316     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934317     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934318     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934319     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934320     1  0.2664      0.834 0.816 0.000  0  0  0 0.184
#> SRR934321     1  0.3101      0.751 0.756 0.000  0  0  0 0.244
#> SRR934322     1  0.2941      0.786 0.780 0.000  0  0  0 0.220
#> SRR934323     1  0.1714      0.923 0.908 0.000  0  0  0 0.092
#> SRR934324     1  0.3446      0.648 0.692 0.000  0  0  0 0.308
#> SRR934325     1  0.2416      0.866 0.844 0.000  0  0  0 0.156
#> SRR934326     1  0.2562      0.846 0.828 0.000  0  0  0 0.172
#> SRR934327     1  0.2340      0.872 0.852 0.000  0  0  0 0.148
#> SRR934328     1  0.1204      0.951 0.944 0.000  0  0  0 0.056
#> SRR934329     1  0.1204      0.951 0.944 0.000  0  0  0 0.056
#> SRR934330     1  0.1204      0.951 0.944 0.000  0  0  0 0.056
#> SRR934331     1  0.1204      0.951 0.944 0.000  0  0  0 0.056
#> SRR934332     1  0.1204      0.951 0.944 0.000  0  0  0 0.056
#> SRR934333     1  0.1204      0.951 0.944 0.000  0  0  0 0.056
#> SRR934334     1  0.1204      0.951 0.944 0.000  0  0  0 0.056
#> SRR934335     1  0.1204      0.951 0.944 0.000  0  0  0 0.056
#> SRR934344     1  0.1204      0.951 0.944 0.000  0  0  0 0.056
#> SRR934345     1  0.1204      0.951 0.944 0.000  0  0  0 0.056
#> SRR934346     1  0.1204      0.951 0.944 0.000  0  0  0 0.056
#> SRR934347     1  0.1204      0.951 0.944 0.000  0  0  0 0.056
#> SRR934348     1  0.1204      0.951 0.944 0.000  0  0  0 0.056
#> SRR934349     1  0.1204      0.951 0.944 0.000  0  0  0 0.056
#> SRR934350     1  0.1204      0.951 0.944 0.000  0  0  0 0.056
#> SRR934351     1  0.1204      0.951 0.944 0.000  0  0  0 0.056
#> SRR934336     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934337     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934338     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934339     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934340     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934341     6  0.0000      0.934 0.000 0.000  0  0  0 1.000
#> SRR934342     6  0.0000      0.934 0.000 0.000  0  0  0 1.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14550 rows and 135 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.997       0.998         0.5022 0.498   0.498
#> 3 3 0.587           0.767       0.824         0.1511 0.915   0.829
#> 4 4 0.542           0.571       0.704         0.1663 0.908   0.785
#> 5 5 0.674           0.637       0.748         0.0711 0.797   0.483
#> 6 6 0.699           0.722       0.834         0.0398 0.830   0.471

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR934216     2  0.0376      0.997 0.004 0.996
#> SRR934217     2  0.0376      0.997 0.004 0.996
#> SRR934218     2  0.0376      0.997 0.004 0.996
#> SRR934219     2  0.0376      0.997 0.004 0.996
#> SRR934220     2  0.0376      0.997 0.004 0.996
#> SRR934221     2  0.0376      0.997 0.004 0.996
#> SRR934222     2  0.0376      0.997 0.004 0.996
#> SRR934223     2  0.0376      0.997 0.004 0.996
#> SRR934224     1  0.0000      0.997 1.000 0.000
#> SRR934225     1  0.0000      0.997 1.000 0.000
#> SRR934226     1  0.0000      0.997 1.000 0.000
#> SRR934227     1  0.0000      0.997 1.000 0.000
#> SRR934228     1  0.0000      0.997 1.000 0.000
#> SRR934229     1  0.0000      0.997 1.000 0.000
#> SRR934230     1  0.0000      0.997 1.000 0.000
#> SRR934231     1  0.0000      0.997 1.000 0.000
#> SRR934232     2  0.0000      0.998 0.000 1.000
#> SRR934233     2  0.0000      0.998 0.000 1.000
#> SRR934234     2  0.0000      0.998 0.000 1.000
#> SRR934235     2  0.0000      0.998 0.000 1.000
#> SRR934236     2  0.0000      0.998 0.000 1.000
#> SRR934237     2  0.0000      0.998 0.000 1.000
#> SRR934238     2  0.0000      0.998 0.000 1.000
#> SRR934239     2  0.0000      0.998 0.000 1.000
#> SRR934240     2  0.0000      0.998 0.000 1.000
#> SRR934241     2  0.0000      0.998 0.000 1.000
#> SRR934242     2  0.0000      0.998 0.000 1.000
#> SRR934243     2  0.0000      0.998 0.000 1.000
#> SRR934244     2  0.0000      0.998 0.000 1.000
#> SRR934245     2  0.0000      0.998 0.000 1.000
#> SRR934246     2  0.0000      0.998 0.000 1.000
#> SRR934247     2  0.0000      0.998 0.000 1.000
#> SRR934248     2  0.0000      0.998 0.000 1.000
#> SRR934249     2  0.0000      0.998 0.000 1.000
#> SRR934250     2  0.0000      0.998 0.000 1.000
#> SRR934251     2  0.0000      0.998 0.000 1.000
#> SRR934252     2  0.0000      0.998 0.000 1.000
#> SRR934253     2  0.0000      0.998 0.000 1.000
#> SRR934254     2  0.0000      0.998 0.000 1.000
#> SRR934255     2  0.0000      0.998 0.000 1.000
#> SRR934256     2  0.0376      0.997 0.004 0.996
#> SRR934257     2  0.0376      0.997 0.004 0.996
#> SRR934258     2  0.0376      0.997 0.004 0.996
#> SRR934259     2  0.0376      0.997 0.004 0.996
#> SRR934260     2  0.0376      0.997 0.004 0.996
#> SRR934261     2  0.0376      0.997 0.004 0.996
#> SRR934262     2  0.0376      0.997 0.004 0.996
#> SRR934263     2  0.0376      0.997 0.004 0.996
#> SRR934264     2  0.0000      0.998 0.000 1.000
#> SRR934265     2  0.0000      0.998 0.000 1.000
#> SRR934266     2  0.0000      0.998 0.000 1.000
#> SRR934267     2  0.0000      0.998 0.000 1.000
#> SRR934268     2  0.0000      0.998 0.000 1.000
#> SRR934269     2  0.0000      0.998 0.000 1.000
#> SRR934270     2  0.0000      0.998 0.000 1.000
#> SRR934271     2  0.0000      0.998 0.000 1.000
#> SRR934272     1  0.0000      0.997 1.000 0.000
#> SRR934273     1  0.0000      0.997 1.000 0.000
#> SRR934274     1  0.0000      0.997 1.000 0.000
#> SRR934275     1  0.0000      0.997 1.000 0.000
#> SRR934276     1  0.0000      0.997 1.000 0.000
#> SRR934277     1  0.0000      0.997 1.000 0.000
#> SRR934278     1  0.0000      0.997 1.000 0.000
#> SRR934279     1  0.0000      0.997 1.000 0.000
#> SRR934280     1  0.0000      0.997 1.000 0.000
#> SRR934281     1  0.0000      0.997 1.000 0.000
#> SRR934282     1  0.0000      0.997 1.000 0.000
#> SRR934283     1  0.0000      0.997 1.000 0.000
#> SRR934284     1  0.0000      0.997 1.000 0.000
#> SRR934285     1  0.0000      0.997 1.000 0.000
#> SRR934286     1  0.0000      0.997 1.000 0.000
#> SRR934287     1  0.0000      0.997 1.000 0.000
#> SRR934288     1  0.0672      0.995 0.992 0.008
#> SRR934289     1  0.0672      0.995 0.992 0.008
#> SRR934290     1  0.0672      0.995 0.992 0.008
#> SRR934291     1  0.0672      0.995 0.992 0.008
#> SRR934292     1  0.0672      0.995 0.992 0.008
#> SRR934293     1  0.0672      0.995 0.992 0.008
#> SRR934294     1  0.0672      0.995 0.992 0.008
#> SRR934295     1  0.0672      0.995 0.992 0.008
#> SRR934296     2  0.0376      0.997 0.004 0.996
#> SRR934297     2  0.0376      0.997 0.004 0.996
#> SRR934298     2  0.0376      0.997 0.004 0.996
#> SRR934299     2  0.0376      0.997 0.004 0.996
#> SRR934300     2  0.0376      0.997 0.004 0.996
#> SRR934301     2  0.0376      0.997 0.004 0.996
#> SRR934302     2  0.0376      0.997 0.004 0.996
#> SRR934303     2  0.0376      0.997 0.004 0.996
#> SRR934304     2  0.0000      0.998 0.000 1.000
#> SRR934305     2  0.0000      0.998 0.000 1.000
#> SRR934306     2  0.0000      0.998 0.000 1.000
#> SRR934307     2  0.0000      0.998 0.000 1.000
#> SRR934308     2  0.0000      0.998 0.000 1.000
#> SRR934309     2  0.0000      0.998 0.000 1.000
#> SRR934310     2  0.0000      0.998 0.000 1.000
#> SRR934311     2  0.0000      0.998 0.000 1.000
#> SRR934312     1  0.0000      0.997 1.000 0.000
#> SRR934313     1  0.0000      0.997 1.000 0.000
#> SRR934314     1  0.0000      0.997 1.000 0.000
#> SRR934315     1  0.0000      0.997 1.000 0.000
#> SRR934316     1  0.0000      0.997 1.000 0.000
#> SRR934317     1  0.0000      0.997 1.000 0.000
#> SRR934318     1  0.0000      0.997 1.000 0.000
#> SRR934319     1  0.0000      0.997 1.000 0.000
#> SRR934320     1  0.0000      0.997 1.000 0.000
#> SRR934321     1  0.0000      0.997 1.000 0.000
#> SRR934322     1  0.0000      0.997 1.000 0.000
#> SRR934323     1  0.0000      0.997 1.000 0.000
#> SRR934324     1  0.0000      0.997 1.000 0.000
#> SRR934325     1  0.0000      0.997 1.000 0.000
#> SRR934326     1  0.0000      0.997 1.000 0.000
#> SRR934327     1  0.0000      0.997 1.000 0.000
#> SRR934328     1  0.0672      0.995 0.992 0.008
#> SRR934329     1  0.0672      0.995 0.992 0.008
#> SRR934330     1  0.0672      0.995 0.992 0.008
#> SRR934331     1  0.0672      0.995 0.992 0.008
#> SRR934332     1  0.0672      0.995 0.992 0.008
#> SRR934333     1  0.0672      0.995 0.992 0.008
#> SRR934334     1  0.0672      0.995 0.992 0.008
#> SRR934335     1  0.0672      0.995 0.992 0.008
#> SRR934344     1  0.0672      0.995 0.992 0.008
#> SRR934345     1  0.0672      0.995 0.992 0.008
#> SRR934346     1  0.0672      0.995 0.992 0.008
#> SRR934347     1  0.0672      0.995 0.992 0.008
#> SRR934348     1  0.0672      0.995 0.992 0.008
#> SRR934349     1  0.0672      0.995 0.992 0.008
#> SRR934350     1  0.0672      0.995 0.992 0.008
#> SRR934351     1  0.0672      0.995 0.992 0.008
#> SRR934336     1  0.0000      0.997 1.000 0.000
#> SRR934337     1  0.0000      0.997 1.000 0.000
#> SRR934338     1  0.0000      0.997 1.000 0.000
#> SRR934339     1  0.0000      0.997 1.000 0.000
#> SRR934340     1  0.0000      0.997 1.000 0.000
#> SRR934341     1  0.0000      0.997 1.000 0.000
#> SRR934342     1  0.0000      0.997 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR934216     2  0.5619      0.502 0.012 0.744 0.244
#> SRR934217     2  0.5619      0.502 0.012 0.744 0.244
#> SRR934218     2  0.5619      0.502 0.012 0.744 0.244
#> SRR934219     2  0.5619      0.502 0.012 0.744 0.244
#> SRR934220     2  0.5619      0.502 0.012 0.744 0.244
#> SRR934221     2  0.5619      0.502 0.012 0.744 0.244
#> SRR934222     2  0.5619      0.502 0.012 0.744 0.244
#> SRR934223     2  0.5619      0.502 0.012 0.744 0.244
#> SRR934224     1  0.1337      0.932 0.972 0.012 0.016
#> SRR934225     1  0.1337      0.932 0.972 0.012 0.016
#> SRR934226     1  0.1337      0.932 0.972 0.012 0.016
#> SRR934227     1  0.1337      0.932 0.972 0.012 0.016
#> SRR934228     1  0.1337      0.932 0.972 0.012 0.016
#> SRR934229     1  0.1337      0.932 0.972 0.012 0.016
#> SRR934230     1  0.1337      0.932 0.972 0.012 0.016
#> SRR934231     1  0.1337      0.932 0.972 0.012 0.016
#> SRR934232     2  0.6126      0.444 0.000 0.600 0.400
#> SRR934233     2  0.6126      0.444 0.000 0.600 0.400
#> SRR934234     2  0.6126      0.444 0.000 0.600 0.400
#> SRR934235     2  0.6126      0.444 0.000 0.600 0.400
#> SRR934236     2  0.6126      0.444 0.000 0.600 0.400
#> SRR934237     2  0.6126      0.444 0.000 0.600 0.400
#> SRR934238     2  0.6126      0.444 0.000 0.600 0.400
#> SRR934239     2  0.6126      0.444 0.000 0.600 0.400
#> SRR934240     2  0.6345      0.445 0.004 0.596 0.400
#> SRR934241     2  0.6345      0.445 0.004 0.596 0.400
#> SRR934242     2  0.6345      0.445 0.004 0.596 0.400
#> SRR934243     2  0.6345      0.445 0.004 0.596 0.400
#> SRR934244     2  0.6345      0.445 0.004 0.596 0.400
#> SRR934245     2  0.6345      0.445 0.004 0.596 0.400
#> SRR934246     2  0.6345      0.445 0.004 0.596 0.400
#> SRR934247     2  0.6345      0.445 0.004 0.596 0.400
#> SRR934248     3  0.0592      1.000 0.000 0.012 0.988
#> SRR934249     3  0.0592      1.000 0.000 0.012 0.988
#> SRR934250     3  0.0592      1.000 0.000 0.012 0.988
#> SRR934251     3  0.0592      1.000 0.000 0.012 0.988
#> SRR934252     3  0.0592      1.000 0.000 0.012 0.988
#> SRR934253     3  0.0592      1.000 0.000 0.012 0.988
#> SRR934254     3  0.0592      1.000 0.000 0.012 0.988
#> SRR934255     3  0.0592      1.000 0.000 0.012 0.988
#> SRR934256     2  0.8686      0.465 0.432 0.464 0.104
#> SRR934257     2  0.8686      0.465 0.432 0.464 0.104
#> SRR934258     2  0.8686      0.465 0.432 0.464 0.104
#> SRR934259     2  0.8686      0.465 0.432 0.464 0.104
#> SRR934260     2  0.8686      0.465 0.432 0.464 0.104
#> SRR934261     2  0.8686      0.465 0.432 0.464 0.104
#> SRR934262     2  0.8686      0.465 0.432 0.464 0.104
#> SRR934263     2  0.8686      0.465 0.432 0.464 0.104
#> SRR934264     3  0.0592      1.000 0.000 0.012 0.988
#> SRR934265     3  0.0592      1.000 0.000 0.012 0.988
#> SRR934266     3  0.0592      1.000 0.000 0.012 0.988
#> SRR934267     3  0.0592      1.000 0.000 0.012 0.988
#> SRR934268     3  0.0592      1.000 0.000 0.012 0.988
#> SRR934269     3  0.0592      1.000 0.000 0.012 0.988
#> SRR934270     3  0.0592      1.000 0.000 0.012 0.988
#> SRR934271     3  0.0592      1.000 0.000 0.012 0.988
#> SRR934272     1  0.1482      0.930 0.968 0.012 0.020
#> SRR934273     1  0.1482      0.930 0.968 0.012 0.020
#> SRR934274     1  0.1482      0.930 0.968 0.012 0.020
#> SRR934275     1  0.1482      0.930 0.968 0.012 0.020
#> SRR934276     1  0.1482      0.930 0.968 0.012 0.020
#> SRR934277     1  0.1482      0.930 0.968 0.012 0.020
#> SRR934278     1  0.1482      0.930 0.968 0.012 0.020
#> SRR934279     1  0.1482      0.930 0.968 0.012 0.020
#> SRR934280     1  0.0000      0.936 1.000 0.000 0.000
#> SRR934281     1  0.0000      0.936 1.000 0.000 0.000
#> SRR934282     1  0.0000      0.936 1.000 0.000 0.000
#> SRR934283     1  0.0000      0.936 1.000 0.000 0.000
#> SRR934284     1  0.0000      0.936 1.000 0.000 0.000
#> SRR934285     1  0.0000      0.936 1.000 0.000 0.000
#> SRR934286     1  0.0000      0.936 1.000 0.000 0.000
#> SRR934287     1  0.0000      0.936 1.000 0.000 0.000
#> SRR934288     1  0.4033      0.881 0.856 0.136 0.008
#> SRR934289     1  0.4195      0.880 0.852 0.136 0.012
#> SRR934290     1  0.4128      0.882 0.856 0.132 0.012
#> SRR934291     1  0.4033      0.881 0.856 0.136 0.008
#> SRR934292     1  0.4128      0.882 0.856 0.132 0.012
#> SRR934293     1  0.3965      0.884 0.860 0.132 0.008
#> SRR934294     1  0.4033      0.881 0.856 0.136 0.008
#> SRR934295     1  0.3965      0.884 0.860 0.132 0.008
#> SRR934296     2  0.6126      0.452 0.352 0.644 0.004
#> SRR934297     2  0.6126      0.452 0.352 0.644 0.004
#> SRR934298     2  0.6126      0.452 0.352 0.644 0.004
#> SRR934299     2  0.6126      0.452 0.352 0.644 0.004
#> SRR934300     2  0.6126      0.452 0.352 0.644 0.004
#> SRR934301     2  0.6126      0.452 0.352 0.644 0.004
#> SRR934302     2  0.6126      0.452 0.352 0.644 0.004
#> SRR934303     2  0.6126      0.452 0.352 0.644 0.004
#> SRR934304     2  0.4291      0.530 0.000 0.820 0.180
#> SRR934305     2  0.4291      0.530 0.000 0.820 0.180
#> SRR934306     2  0.4291      0.530 0.000 0.820 0.180
#> SRR934307     2  0.4291      0.530 0.000 0.820 0.180
#> SRR934308     2  0.4291      0.530 0.000 0.820 0.180
#> SRR934309     2  0.4291      0.530 0.000 0.820 0.180
#> SRR934310     2  0.4291      0.530 0.000 0.820 0.180
#> SRR934311     2  0.4291      0.530 0.000 0.820 0.180
#> SRR934312     1  0.0000      0.936 1.000 0.000 0.000
#> SRR934313     1  0.0000      0.936 1.000 0.000 0.000
#> SRR934314     1  0.0000      0.936 1.000 0.000 0.000
#> SRR934315     1  0.0000      0.936 1.000 0.000 0.000
#> SRR934316     1  0.0000      0.936 1.000 0.000 0.000
#> SRR934317     1  0.0000      0.936 1.000 0.000 0.000
#> SRR934318     1  0.0000      0.936 1.000 0.000 0.000
#> SRR934319     1  0.0000      0.936 1.000 0.000 0.000
#> SRR934320     1  0.0000      0.936 1.000 0.000 0.000
#> SRR934321     1  0.0000      0.936 1.000 0.000 0.000
#> SRR934322     1  0.0000      0.936 1.000 0.000 0.000
#> SRR934323     1  0.0000      0.936 1.000 0.000 0.000
#> SRR934324     1  0.0000      0.936 1.000 0.000 0.000
#> SRR934325     1  0.0000      0.936 1.000 0.000 0.000
#> SRR934326     1  0.0000      0.936 1.000 0.000 0.000
#> SRR934327     1  0.0000      0.936 1.000 0.000 0.000
#> SRR934328     1  0.4164      0.875 0.848 0.144 0.008
#> SRR934329     1  0.4164      0.875 0.848 0.144 0.008
#> SRR934330     1  0.4164      0.875 0.848 0.144 0.008
#> SRR934331     1  0.4164      0.875 0.848 0.144 0.008
#> SRR934332     1  0.4099      0.877 0.852 0.140 0.008
#> SRR934333     1  0.4164      0.875 0.848 0.144 0.008
#> SRR934334     1  0.4164      0.875 0.848 0.144 0.008
#> SRR934335     1  0.4164      0.875 0.848 0.144 0.008
#> SRR934344     1  0.4931      0.868 0.828 0.140 0.032
#> SRR934345     1  0.4931      0.868 0.828 0.140 0.032
#> SRR934346     1  0.4931      0.868 0.828 0.140 0.032
#> SRR934347     1  0.4931      0.868 0.828 0.140 0.032
#> SRR934348     1  0.4931      0.868 0.828 0.140 0.032
#> SRR934349     1  0.4931      0.868 0.828 0.140 0.032
#> SRR934350     1  0.4931      0.868 0.828 0.140 0.032
#> SRR934351     1  0.4931      0.868 0.828 0.140 0.032
#> SRR934336     1  0.1182      0.932 0.976 0.012 0.012
#> SRR934337     1  0.1182      0.932 0.976 0.012 0.012
#> SRR934338     1  0.1182      0.932 0.976 0.012 0.012
#> SRR934339     1  0.1182      0.932 0.976 0.012 0.012
#> SRR934340     1  0.1182      0.932 0.976 0.012 0.012
#> SRR934341     1  0.1182      0.932 0.976 0.012 0.012
#> SRR934342     1  0.1182      0.932 0.976 0.012 0.012

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> SRR934216     3  0.6649     0.4554 0.080 0.048 0.684 0.188
#> SRR934217     3  0.6649     0.4554 0.080 0.048 0.684 0.188
#> SRR934218     3  0.6649     0.4554 0.080 0.048 0.684 0.188
#> SRR934219     3  0.6649     0.4554 0.080 0.048 0.684 0.188
#> SRR934220     3  0.6649     0.4554 0.080 0.048 0.684 0.188
#> SRR934221     3  0.6649     0.4554 0.080 0.048 0.684 0.188
#> SRR934222     3  0.6649     0.4554 0.080 0.048 0.684 0.188
#> SRR934223     3  0.6649     0.4554 0.080 0.048 0.684 0.188
#> SRR934224     1  0.4576     0.6526 0.728 0.012 0.000 0.260
#> SRR934225     1  0.4576     0.6526 0.728 0.012 0.000 0.260
#> SRR934226     1  0.4576     0.6526 0.728 0.012 0.000 0.260
#> SRR934227     1  0.4576     0.6526 0.728 0.012 0.000 0.260
#> SRR934228     1  0.4576     0.6526 0.728 0.012 0.000 0.260
#> SRR934229     1  0.4576     0.6526 0.728 0.012 0.000 0.260
#> SRR934230     1  0.4576     0.6526 0.728 0.012 0.000 0.260
#> SRR934231     1  0.4576     0.6526 0.728 0.012 0.000 0.260
#> SRR934232     2  0.7849     0.1005 0.000 0.400 0.316 0.284
#> SRR934233     2  0.7849     0.1005 0.000 0.400 0.316 0.284
#> SRR934234     2  0.7849     0.1005 0.000 0.400 0.316 0.284
#> SRR934235     2  0.7849     0.1005 0.000 0.400 0.316 0.284
#> SRR934236     2  0.7849     0.1005 0.000 0.400 0.316 0.284
#> SRR934237     2  0.7849     0.1005 0.000 0.400 0.316 0.284
#> SRR934238     2  0.7849     0.1005 0.000 0.400 0.316 0.284
#> SRR934239     2  0.7849     0.1005 0.000 0.400 0.316 0.284
#> SRR934240     3  0.7875     0.0761 0.000 0.328 0.384 0.288
#> SRR934241     3  0.7875     0.0761 0.000 0.328 0.384 0.288
#> SRR934242     3  0.7875     0.0761 0.000 0.328 0.384 0.288
#> SRR934243     3  0.7875     0.0761 0.000 0.328 0.384 0.288
#> SRR934244     3  0.7875     0.0761 0.000 0.328 0.384 0.288
#> SRR934245     3  0.7875     0.0761 0.000 0.328 0.384 0.288
#> SRR934246     3  0.7875     0.0761 0.000 0.328 0.384 0.288
#> SRR934247     3  0.7875     0.0761 0.000 0.328 0.384 0.288
#> SRR934248     2  0.0000     0.7386 0.000 1.000 0.000 0.000
#> SRR934249     2  0.0000     0.7386 0.000 1.000 0.000 0.000
#> SRR934250     2  0.0000     0.7386 0.000 1.000 0.000 0.000
#> SRR934251     2  0.0000     0.7386 0.000 1.000 0.000 0.000
#> SRR934252     2  0.0000     0.7386 0.000 1.000 0.000 0.000
#> SRR934253     2  0.0000     0.7386 0.000 1.000 0.000 0.000
#> SRR934254     2  0.0000     0.7386 0.000 1.000 0.000 0.000
#> SRR934255     2  0.0000     0.7386 0.000 1.000 0.000 0.000
#> SRR934256     4  0.7830     0.5450 0.260 0.000 0.356 0.384
#> SRR934257     4  0.7830     0.5450 0.260 0.000 0.356 0.384
#> SRR934258     4  0.7830     0.5450 0.260 0.000 0.356 0.384
#> SRR934259     4  0.7830     0.5450 0.260 0.000 0.356 0.384
#> SRR934260     4  0.7830     0.5450 0.260 0.000 0.356 0.384
#> SRR934261     4  0.7830     0.5450 0.260 0.000 0.356 0.384
#> SRR934262     4  0.7830     0.5450 0.260 0.000 0.356 0.384
#> SRR934263     4  0.7830     0.5450 0.260 0.000 0.356 0.384
#> SRR934264     2  0.0000     0.7386 0.000 1.000 0.000 0.000
#> SRR934265     2  0.0000     0.7386 0.000 1.000 0.000 0.000
#> SRR934266     2  0.0000     0.7386 0.000 1.000 0.000 0.000
#> SRR934267     2  0.0000     0.7386 0.000 1.000 0.000 0.000
#> SRR934268     2  0.0000     0.7386 0.000 1.000 0.000 0.000
#> SRR934269     2  0.0000     0.7386 0.000 1.000 0.000 0.000
#> SRR934270     2  0.0000     0.7386 0.000 1.000 0.000 0.000
#> SRR934271     2  0.0000     0.7386 0.000 1.000 0.000 0.000
#> SRR934272     1  0.4158     0.6678 0.768 0.008 0.000 0.224
#> SRR934273     1  0.4053     0.6661 0.768 0.004 0.000 0.228
#> SRR934274     1  0.4053     0.6661 0.768 0.004 0.000 0.228
#> SRR934275     1  0.4053     0.6661 0.768 0.004 0.000 0.228
#> SRR934276     1  0.4053     0.6661 0.768 0.004 0.000 0.228
#> SRR934277     1  0.4122     0.6645 0.760 0.004 0.000 0.236
#> SRR934278     1  0.4284     0.6684 0.764 0.012 0.000 0.224
#> SRR934279     1  0.4053     0.6661 0.768 0.004 0.000 0.228
#> SRR934280     1  0.0592     0.7303 0.984 0.000 0.000 0.016
#> SRR934281     1  0.0592     0.7303 0.984 0.000 0.000 0.016
#> SRR934282     1  0.0469     0.7299 0.988 0.000 0.000 0.012
#> SRR934283     1  0.0469     0.7299 0.988 0.000 0.000 0.012
#> SRR934284     1  0.0469     0.7299 0.988 0.000 0.000 0.012
#> SRR934285     1  0.0469     0.7299 0.988 0.000 0.000 0.012
#> SRR934286     1  0.0469     0.7299 0.988 0.000 0.000 0.012
#> SRR934287     1  0.0469     0.7299 0.988 0.000 0.000 0.012
#> SRR934288     1  0.4452     0.6125 0.732 0.008 0.000 0.260
#> SRR934289     1  0.4539     0.6074 0.720 0.008 0.000 0.272
#> SRR934290     1  0.4673     0.6039 0.700 0.008 0.000 0.292
#> SRR934291     1  0.4539     0.6113 0.720 0.008 0.000 0.272
#> SRR934292     1  0.4482     0.6090 0.728 0.008 0.000 0.264
#> SRR934293     1  0.4422     0.6139 0.736 0.008 0.000 0.256
#> SRR934294     1  0.4482     0.6132 0.728 0.008 0.000 0.264
#> SRR934295     1  0.4452     0.6105 0.732 0.008 0.000 0.260
#> SRR934296     4  0.7719     0.6102 0.268 0.000 0.284 0.448
#> SRR934297     4  0.7719     0.6102 0.268 0.000 0.284 0.448
#> SRR934298     4  0.7719     0.6102 0.268 0.000 0.284 0.448
#> SRR934299     4  0.7719     0.6102 0.268 0.000 0.284 0.448
#> SRR934300     4  0.7719     0.6102 0.268 0.000 0.284 0.448
#> SRR934301     4  0.7719     0.6102 0.268 0.000 0.284 0.448
#> SRR934302     4  0.7719     0.6102 0.268 0.000 0.284 0.448
#> SRR934303     4  0.7719     0.6102 0.268 0.000 0.284 0.448
#> SRR934304     3  0.0000     0.5322 0.000 0.000 1.000 0.000
#> SRR934305     3  0.0000     0.5322 0.000 0.000 1.000 0.000
#> SRR934306     3  0.0000     0.5322 0.000 0.000 1.000 0.000
#> SRR934307     3  0.0000     0.5322 0.000 0.000 1.000 0.000
#> SRR934308     3  0.0000     0.5322 0.000 0.000 1.000 0.000
#> SRR934309     3  0.0000     0.5322 0.000 0.000 1.000 0.000
#> SRR934310     3  0.0000     0.5322 0.000 0.000 1.000 0.000
#> SRR934311     3  0.0000     0.5322 0.000 0.000 1.000 0.000
#> SRR934312     1  0.2053     0.7246 0.924 0.004 0.000 0.072
#> SRR934313     1  0.1792     0.7230 0.932 0.000 0.000 0.068
#> SRR934314     1  0.2271     0.7261 0.916 0.008 0.000 0.076
#> SRR934315     1  0.2053     0.7246 0.924 0.004 0.000 0.072
#> SRR934316     1  0.2271     0.7261 0.916 0.008 0.000 0.076
#> SRR934317     1  0.2271     0.7261 0.916 0.008 0.000 0.076
#> SRR934318     1  0.2271     0.7261 0.916 0.008 0.000 0.076
#> SRR934319     1  0.2198     0.7260 0.920 0.008 0.000 0.072
#> SRR934320     1  0.0895     0.7305 0.976 0.000 0.004 0.020
#> SRR934321     1  0.0524     0.7316 0.988 0.000 0.004 0.008
#> SRR934322     1  0.0524     0.7316 0.988 0.000 0.004 0.008
#> SRR934323     1  0.0524     0.7316 0.988 0.000 0.004 0.008
#> SRR934324     1  0.0524     0.7316 0.988 0.000 0.004 0.008
#> SRR934325     1  0.0657     0.7310 0.984 0.000 0.004 0.012
#> SRR934326     1  0.0657     0.7310 0.984 0.000 0.004 0.012
#> SRR934327     1  0.0657     0.7314 0.984 0.000 0.004 0.012
#> SRR934328     1  0.4748     0.5706 0.716 0.000 0.016 0.268
#> SRR934329     1  0.4511     0.5814 0.724 0.000 0.008 0.268
#> SRR934330     1  0.4511     0.5814 0.724 0.000 0.008 0.268
#> SRR934331     1  0.4372     0.5861 0.728 0.000 0.004 0.268
#> SRR934332     1  0.4193     0.5902 0.732 0.000 0.000 0.268
#> SRR934333     1  0.4372     0.5861 0.728 0.000 0.004 0.268
#> SRR934334     1  0.4635     0.5764 0.720 0.000 0.012 0.268
#> SRR934335     1  0.4635     0.5764 0.720 0.000 0.012 0.268
#> SRR934344     1  0.5057     0.5699 0.648 0.012 0.000 0.340
#> SRR934345     1  0.5057     0.5699 0.648 0.012 0.000 0.340
#> SRR934346     1  0.5057     0.5699 0.648 0.012 0.000 0.340
#> SRR934347     1  0.5057     0.5699 0.648 0.012 0.000 0.340
#> SRR934348     1  0.5057     0.5699 0.648 0.012 0.000 0.340
#> SRR934349     1  0.5057     0.5699 0.648 0.012 0.000 0.340
#> SRR934350     1  0.5057     0.5699 0.648 0.012 0.000 0.340
#> SRR934351     1  0.5057     0.5699 0.648 0.012 0.000 0.340
#> SRR934336     1  0.4262     0.6587 0.756 0.008 0.000 0.236
#> SRR934337     1  0.4262     0.6587 0.756 0.008 0.000 0.236
#> SRR934338     1  0.4262     0.6587 0.756 0.008 0.000 0.236
#> SRR934339     1  0.4262     0.6587 0.756 0.008 0.000 0.236
#> SRR934340     1  0.4123     0.6699 0.772 0.008 0.000 0.220
#> SRR934341     1  0.4262     0.6587 0.756 0.008 0.000 0.236
#> SRR934342     1  0.4262     0.6587 0.756 0.008 0.000 0.236

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> SRR934216     5  0.0794      0.791 0.028 0.000 0.000 0.000 0.972
#> SRR934217     5  0.0794      0.791 0.028 0.000 0.000 0.000 0.972
#> SRR934218     5  0.0794      0.791 0.028 0.000 0.000 0.000 0.972
#> SRR934219     5  0.0794      0.791 0.028 0.000 0.000 0.000 0.972
#> SRR934220     5  0.0794      0.791 0.028 0.000 0.000 0.000 0.972
#> SRR934221     5  0.0794      0.791 0.028 0.000 0.000 0.000 0.972
#> SRR934222     5  0.0794      0.791 0.028 0.000 0.000 0.000 0.972
#> SRR934223     5  0.0794      0.791 0.028 0.000 0.000 0.000 0.972
#> SRR934224     1  0.0510      0.610 0.984 0.000 0.000 0.000 0.016
#> SRR934225     1  0.0510      0.610 0.984 0.000 0.000 0.000 0.016
#> SRR934226     1  0.0510      0.610 0.984 0.000 0.000 0.000 0.016
#> SRR934227     1  0.0510      0.610 0.984 0.000 0.000 0.000 0.016
#> SRR934228     1  0.0510      0.610 0.984 0.000 0.000 0.000 0.016
#> SRR934229     1  0.0510      0.610 0.984 0.000 0.000 0.000 0.016
#> SRR934230     1  0.0510      0.610 0.984 0.000 0.000 0.000 0.016
#> SRR934231     1  0.0510      0.610 0.984 0.000 0.000 0.000 0.016
#> SRR934232     2  0.0771      0.774 0.004 0.976 0.000 0.020 0.000
#> SRR934233     2  0.0771      0.774 0.004 0.976 0.000 0.020 0.000
#> SRR934234     2  0.0771      0.774 0.004 0.976 0.000 0.020 0.000
#> SRR934235     2  0.0771      0.774 0.004 0.976 0.000 0.020 0.000
#> SRR934236     2  0.0771      0.774 0.004 0.976 0.000 0.020 0.000
#> SRR934237     2  0.0771      0.774 0.004 0.976 0.000 0.020 0.000
#> SRR934238     2  0.0771      0.774 0.004 0.976 0.000 0.020 0.000
#> SRR934239     2  0.0771      0.774 0.004 0.976 0.000 0.020 0.000
#> SRR934240     2  0.0404      0.774 0.000 0.988 0.000 0.012 0.000
#> SRR934241     2  0.0404      0.774 0.000 0.988 0.000 0.012 0.000
#> SRR934242     2  0.0404      0.774 0.000 0.988 0.000 0.012 0.000
#> SRR934243     2  0.0404      0.774 0.000 0.988 0.000 0.012 0.000
#> SRR934244     2  0.0404      0.774 0.000 0.988 0.000 0.012 0.000
#> SRR934245     2  0.0404      0.774 0.000 0.988 0.000 0.012 0.000
#> SRR934246     2  0.0404      0.774 0.000 0.988 0.000 0.012 0.000
#> SRR934247     2  0.0404      0.774 0.000 0.988 0.000 0.012 0.000
#> SRR934248     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR934249     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR934250     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR934251     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR934252     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR934253     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR934254     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR934255     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR934256     2  0.6842      0.265 0.028 0.456 0.140 0.000 0.376
#> SRR934257     2  0.6842      0.265 0.028 0.456 0.140 0.000 0.376
#> SRR934258     2  0.6842      0.265 0.028 0.456 0.140 0.000 0.376
#> SRR934259     2  0.6842      0.265 0.028 0.456 0.140 0.000 0.376
#> SRR934260     2  0.6842      0.265 0.028 0.456 0.140 0.000 0.376
#> SRR934261     2  0.6842      0.265 0.028 0.456 0.140 0.000 0.376
#> SRR934262     2  0.6842      0.265 0.028 0.456 0.140 0.000 0.376
#> SRR934263     2  0.6842      0.265 0.028 0.456 0.140 0.000 0.376
#> SRR934264     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR934265     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR934266     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR934267     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR934268     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR934269     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR934270     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR934271     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR934272     1  0.0404      0.613 0.988 0.000 0.000 0.000 0.012
#> SRR934273     1  0.0404      0.613 0.988 0.000 0.000 0.000 0.012
#> SRR934274     1  0.0404      0.613 0.988 0.000 0.000 0.000 0.012
#> SRR934275     1  0.0404      0.613 0.988 0.000 0.000 0.000 0.012
#> SRR934276     1  0.0404      0.613 0.988 0.000 0.000 0.000 0.012
#> SRR934277     1  0.0404      0.613 0.988 0.000 0.000 0.000 0.012
#> SRR934278     1  0.0404      0.613 0.988 0.000 0.000 0.000 0.012
#> SRR934279     1  0.0404      0.613 0.988 0.000 0.000 0.000 0.012
#> SRR934280     1  0.4915      0.340 0.556 0.004 0.420 0.000 0.020
#> SRR934281     1  0.4915      0.340 0.556 0.004 0.420 0.000 0.020
#> SRR934282     1  0.4915      0.340 0.556 0.004 0.420 0.000 0.020
#> SRR934283     1  0.4915      0.340 0.556 0.004 0.420 0.000 0.020
#> SRR934284     1  0.4915      0.340 0.556 0.004 0.420 0.000 0.020
#> SRR934285     1  0.4915      0.340 0.556 0.004 0.420 0.000 0.020
#> SRR934286     1  0.4915      0.340 0.556 0.004 0.420 0.000 0.020
#> SRR934287     1  0.4915      0.340 0.556 0.004 0.420 0.000 0.020
#> SRR934288     3  0.3913      0.703 0.324 0.000 0.676 0.000 0.000
#> SRR934289     3  0.3913      0.703 0.324 0.000 0.676 0.000 0.000
#> SRR934290     3  0.3932      0.694 0.328 0.000 0.672 0.000 0.000
#> SRR934291     3  0.3913      0.703 0.324 0.000 0.676 0.000 0.000
#> SRR934292     3  0.3913      0.703 0.324 0.000 0.676 0.000 0.000
#> SRR934293     3  0.3913      0.703 0.324 0.000 0.676 0.000 0.000
#> SRR934294     3  0.3913      0.703 0.324 0.000 0.676 0.000 0.000
#> SRR934295     3  0.3913      0.703 0.324 0.000 0.676 0.000 0.000
#> SRR934296     3  0.6099      0.465 0.136 0.352 0.512 0.000 0.000
#> SRR934297     3  0.6099      0.465 0.136 0.352 0.512 0.000 0.000
#> SRR934298     3  0.6099      0.465 0.136 0.352 0.512 0.000 0.000
#> SRR934299     3  0.6099      0.465 0.136 0.352 0.512 0.000 0.000
#> SRR934300     3  0.6099      0.465 0.136 0.352 0.512 0.000 0.000
#> SRR934301     3  0.6099      0.465 0.136 0.352 0.512 0.000 0.000
#> SRR934302     3  0.6099      0.465 0.136 0.352 0.512 0.000 0.000
#> SRR934303     3  0.6099      0.465 0.136 0.352 0.512 0.000 0.000
#> SRR934304     5  0.5510      0.743 0.000 0.208 0.144 0.000 0.648
#> SRR934305     5  0.5510      0.743 0.000 0.208 0.144 0.000 0.648
#> SRR934306     5  0.5510      0.743 0.000 0.208 0.144 0.000 0.648
#> SRR934307     5  0.5510      0.743 0.000 0.208 0.144 0.000 0.648
#> SRR934308     5  0.5510      0.743 0.000 0.208 0.144 0.000 0.648
#> SRR934309     5  0.5510      0.743 0.000 0.208 0.144 0.000 0.648
#> SRR934310     5  0.5510      0.743 0.000 0.208 0.144 0.000 0.648
#> SRR934311     5  0.5510      0.743 0.000 0.208 0.144 0.000 0.648
#> SRR934312     1  0.5028      0.336 0.552 0.008 0.420 0.000 0.020
#> SRR934313     1  0.5028      0.336 0.552 0.008 0.420 0.000 0.020
#> SRR934314     1  0.5028      0.336 0.552 0.008 0.420 0.000 0.020
#> SRR934315     1  0.5028      0.336 0.552 0.008 0.420 0.000 0.020
#> SRR934316     1  0.5028      0.336 0.552 0.008 0.420 0.000 0.020
#> SRR934317     1  0.5028      0.336 0.552 0.008 0.420 0.000 0.020
#> SRR934318     1  0.5028      0.336 0.552 0.008 0.420 0.000 0.020
#> SRR934319     1  0.5028      0.336 0.552 0.008 0.420 0.000 0.020
#> SRR934320     1  0.4922      0.330 0.552 0.004 0.424 0.000 0.020
#> SRR934321     1  0.4922      0.330 0.552 0.004 0.424 0.000 0.020
#> SRR934322     1  0.4922      0.330 0.552 0.004 0.424 0.000 0.020
#> SRR934323     1  0.4922      0.330 0.552 0.004 0.424 0.000 0.020
#> SRR934324     1  0.4915      0.340 0.556 0.004 0.420 0.000 0.020
#> SRR934325     1  0.4922      0.330 0.552 0.004 0.424 0.000 0.020
#> SRR934326     1  0.4922      0.330 0.552 0.004 0.424 0.000 0.020
#> SRR934327     1  0.4922      0.330 0.552 0.004 0.424 0.000 0.020
#> SRR934328     3  0.3861      0.738 0.284 0.004 0.712 0.000 0.000
#> SRR934329     3  0.3861      0.738 0.284 0.004 0.712 0.000 0.000
#> SRR934330     3  0.3861      0.738 0.284 0.004 0.712 0.000 0.000
#> SRR934331     3  0.3861      0.738 0.284 0.004 0.712 0.000 0.000
#> SRR934332     3  0.3906      0.731 0.292 0.004 0.704 0.000 0.000
#> SRR934333     3  0.3861      0.738 0.284 0.004 0.712 0.000 0.000
#> SRR934334     3  0.3861      0.738 0.284 0.004 0.712 0.000 0.000
#> SRR934335     3  0.3861      0.738 0.284 0.004 0.712 0.000 0.000
#> SRR934344     3  0.3752      0.740 0.292 0.000 0.708 0.000 0.000
#> SRR934345     3  0.3752      0.740 0.292 0.000 0.708 0.000 0.000
#> SRR934346     3  0.3752      0.740 0.292 0.000 0.708 0.000 0.000
#> SRR934347     3  0.3752      0.740 0.292 0.000 0.708 0.000 0.000
#> SRR934348     3  0.3752      0.740 0.292 0.000 0.708 0.000 0.000
#> SRR934349     3  0.3752      0.740 0.292 0.000 0.708 0.000 0.000
#> SRR934350     3  0.3752      0.740 0.292 0.000 0.708 0.000 0.000
#> SRR934351     3  0.3752      0.740 0.292 0.000 0.708 0.000 0.000
#> SRR934336     1  0.0162      0.613 0.996 0.000 0.000 0.000 0.004
#> SRR934337     1  0.0162      0.613 0.996 0.000 0.000 0.000 0.004
#> SRR934338     1  0.0162      0.613 0.996 0.000 0.000 0.000 0.004
#> SRR934339     1  0.0162      0.613 0.996 0.000 0.000 0.000 0.004
#> SRR934340     1  0.1877      0.583 0.924 0.000 0.064 0.000 0.012
#> SRR934341     1  0.0162      0.613 0.996 0.000 0.000 0.000 0.004
#> SRR934342     1  0.0162      0.613 0.996 0.000 0.000 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1   p2    p3 p4    p5    p6
#> SRR934216     3  0.0000     1.0000 0.000 0.00 1.000  0 0.000 0.000
#> SRR934217     3  0.0000     1.0000 0.000 0.00 1.000  0 0.000 0.000
#> SRR934218     3  0.0000     1.0000 0.000 0.00 1.000  0 0.000 0.000
#> SRR934219     3  0.0000     1.0000 0.000 0.00 1.000  0 0.000 0.000
#> SRR934220     3  0.0000     1.0000 0.000 0.00 1.000  0 0.000 0.000
#> SRR934221     3  0.0000     1.0000 0.000 0.00 1.000  0 0.000 0.000
#> SRR934222     3  0.0000     1.0000 0.000 0.00 1.000  0 0.000 0.000
#> SRR934223     3  0.0000     1.0000 0.000 0.00 1.000  0 0.000 0.000
#> SRR934224     6  0.2300     0.9946 0.144 0.00 0.000  0 0.000 0.856
#> SRR934225     6  0.2300     0.9946 0.144 0.00 0.000  0 0.000 0.856
#> SRR934226     6  0.2300     0.9946 0.144 0.00 0.000  0 0.000 0.856
#> SRR934227     6  0.2300     0.9946 0.144 0.00 0.000  0 0.000 0.856
#> SRR934228     6  0.2300     0.9946 0.144 0.00 0.000  0 0.000 0.856
#> SRR934229     6  0.2300     0.9946 0.144 0.00 0.000  0 0.000 0.856
#> SRR934230     6  0.2300     0.9946 0.144 0.00 0.000  0 0.000 0.856
#> SRR934231     6  0.2300     0.9946 0.144 0.00 0.000  0 0.000 0.856
#> SRR934232     2  0.0000     0.9299 0.000 1.00 0.000  0 0.000 0.000
#> SRR934233     2  0.0000     0.9299 0.000 1.00 0.000  0 0.000 0.000
#> SRR934234     2  0.0000     0.9299 0.000 1.00 0.000  0 0.000 0.000
#> SRR934235     2  0.0000     0.9299 0.000 1.00 0.000  0 0.000 0.000
#> SRR934236     2  0.0000     0.9299 0.000 1.00 0.000  0 0.000 0.000
#> SRR934237     2  0.0000     0.9299 0.000 1.00 0.000  0 0.000 0.000
#> SRR934238     2  0.0000     0.9299 0.000 1.00 0.000  0 0.000 0.000
#> SRR934239     2  0.0000     0.9299 0.000 1.00 0.000  0 0.000 0.000
#> SRR934240     2  0.0000     0.9299 0.000 1.00 0.000  0 0.000 0.000
#> SRR934241     2  0.0000     0.9299 0.000 1.00 0.000  0 0.000 0.000
#> SRR934242     2  0.0000     0.9299 0.000 1.00 0.000  0 0.000 0.000
#> SRR934243     2  0.0000     0.9299 0.000 1.00 0.000  0 0.000 0.000
#> SRR934244     2  0.0000     0.9299 0.000 1.00 0.000  0 0.000 0.000
#> SRR934245     2  0.0000     0.9299 0.000 1.00 0.000  0 0.000 0.000
#> SRR934246     2  0.0000     0.9299 0.000 1.00 0.000  0 0.000 0.000
#> SRR934247     2  0.0000     0.9299 0.000 1.00 0.000  0 0.000 0.000
#> SRR934248     4  0.0000     1.0000 0.000 0.00 0.000  1 0.000 0.000
#> SRR934249     4  0.0000     1.0000 0.000 0.00 0.000  1 0.000 0.000
#> SRR934250     4  0.0000     1.0000 0.000 0.00 0.000  1 0.000 0.000
#> SRR934251     4  0.0000     1.0000 0.000 0.00 0.000  1 0.000 0.000
#> SRR934252     4  0.0000     1.0000 0.000 0.00 0.000  1 0.000 0.000
#> SRR934253     4  0.0000     1.0000 0.000 0.00 0.000  1 0.000 0.000
#> SRR934254     4  0.0000     1.0000 0.000 0.00 0.000  1 0.000 0.000
#> SRR934255     4  0.0000     1.0000 0.000 0.00 0.000  1 0.000 0.000
#> SRR934256     2  0.3869     0.1544 0.000 0.50 0.000  0 0.500 0.000
#> SRR934257     2  0.3869     0.1544 0.000 0.50 0.000  0 0.500 0.000
#> SRR934258     5  0.3869    -0.2584 0.000 0.50 0.000  0 0.500 0.000
#> SRR934259     5  0.3869    -0.2584 0.000 0.50 0.000  0 0.500 0.000
#> SRR934260     5  0.3869    -0.2584 0.000 0.50 0.000  0 0.500 0.000
#> SRR934261     5  0.3869    -0.2584 0.000 0.50 0.000  0 0.500 0.000
#> SRR934262     5  0.3869    -0.2584 0.000 0.50 0.000  0 0.500 0.000
#> SRR934263     5  0.3869    -0.2584 0.000 0.50 0.000  0 0.500 0.000
#> SRR934264     4  0.0000     1.0000 0.000 0.00 0.000  1 0.000 0.000
#> SRR934265     4  0.0000     1.0000 0.000 0.00 0.000  1 0.000 0.000
#> SRR934266     4  0.0000     1.0000 0.000 0.00 0.000  1 0.000 0.000
#> SRR934267     4  0.0000     1.0000 0.000 0.00 0.000  1 0.000 0.000
#> SRR934268     4  0.0000     1.0000 0.000 0.00 0.000  1 0.000 0.000
#> SRR934269     4  0.0000     1.0000 0.000 0.00 0.000  1 0.000 0.000
#> SRR934270     4  0.0000     1.0000 0.000 0.00 0.000  1 0.000 0.000
#> SRR934271     4  0.0000     1.0000 0.000 0.00 0.000  1 0.000 0.000
#> SRR934272     6  0.2300     0.9946 0.144 0.00 0.000  0 0.000 0.856
#> SRR934273     6  0.2300     0.9946 0.144 0.00 0.000  0 0.000 0.856
#> SRR934274     6  0.2300     0.9946 0.144 0.00 0.000  0 0.000 0.856
#> SRR934275     6  0.2300     0.9946 0.144 0.00 0.000  0 0.000 0.856
#> SRR934276     6  0.2300     0.9946 0.144 0.00 0.000  0 0.000 0.856
#> SRR934277     6  0.2300     0.9946 0.144 0.00 0.000  0 0.000 0.856
#> SRR934278     6  0.2300     0.9946 0.144 0.00 0.000  0 0.000 0.856
#> SRR934279     6  0.2300     0.9946 0.144 0.00 0.000  0 0.000 0.856
#> SRR934280     1  0.2941     0.7116 0.780 0.00 0.000  0 0.000 0.220
#> SRR934281     1  0.2941     0.7116 0.780 0.00 0.000  0 0.000 0.220
#> SRR934282     1  0.2941     0.7116 0.780 0.00 0.000  0 0.000 0.220
#> SRR934283     1  0.2941     0.7116 0.780 0.00 0.000  0 0.000 0.220
#> SRR934284     1  0.2941     0.7116 0.780 0.00 0.000  0 0.000 0.220
#> SRR934285     1  0.2941     0.7116 0.780 0.00 0.000  0 0.000 0.220
#> SRR934286     1  0.2941     0.7116 0.780 0.00 0.000  0 0.000 0.220
#> SRR934287     1  0.2941     0.7116 0.780 0.00 0.000  0 0.000 0.220
#> SRR934288     1  0.0000     0.7682 1.000 0.00 0.000  0 0.000 0.000
#> SRR934289     1  0.0000     0.7682 1.000 0.00 0.000  0 0.000 0.000
#> SRR934290     1  0.0146     0.7676 0.996 0.00 0.000  0 0.000 0.004
#> SRR934291     1  0.0000     0.7682 1.000 0.00 0.000  0 0.000 0.000
#> SRR934292     1  0.0000     0.7682 1.000 0.00 0.000  0 0.000 0.000
#> SRR934293     1  0.0000     0.7682 1.000 0.00 0.000  0 0.000 0.000
#> SRR934294     1  0.0000     0.7682 1.000 0.00 0.000  0 0.000 0.000
#> SRR934295     1  0.0000     0.7682 1.000 0.00 0.000  0 0.000 0.000
#> SRR934296     1  0.4083     0.0688 0.532 0.46 0.000  0 0.008 0.000
#> SRR934297     1  0.4083     0.0688 0.532 0.46 0.000  0 0.008 0.000
#> SRR934298     1  0.4083     0.0688 0.532 0.46 0.000  0 0.008 0.000
#> SRR934299     1  0.4083     0.0688 0.532 0.46 0.000  0 0.008 0.000
#> SRR934300     1  0.4083     0.0688 0.532 0.46 0.000  0 0.008 0.000
#> SRR934301     1  0.4083     0.0688 0.532 0.46 0.000  0 0.008 0.000
#> SRR934302     1  0.4083     0.0688 0.532 0.46 0.000  0 0.008 0.000
#> SRR934303     1  0.4083     0.0688 0.532 0.46 0.000  0 0.008 0.000
#> SRR934304     5  0.5544     0.1451 0.000 0.00 0.356  0 0.500 0.144
#> SRR934305     5  0.5544     0.1451 0.000 0.00 0.356  0 0.500 0.144
#> SRR934306     5  0.5544     0.1451 0.000 0.00 0.356  0 0.500 0.144
#> SRR934307     5  0.5544     0.1451 0.000 0.00 0.356  0 0.500 0.144
#> SRR934308     5  0.5544     0.1451 0.000 0.00 0.356  0 0.500 0.144
#> SRR934309     5  0.5544     0.1451 0.000 0.00 0.356  0 0.500 0.144
#> SRR934310     5  0.5544     0.1451 0.000 0.00 0.356  0 0.500 0.144
#> SRR934311     5  0.5544     0.1451 0.000 0.00 0.356  0 0.500 0.144
#> SRR934312     1  0.3050     0.6949 0.764 0.00 0.000  0 0.000 0.236
#> SRR934313     1  0.3050     0.6949 0.764 0.00 0.000  0 0.000 0.236
#> SRR934314     1  0.3050     0.6949 0.764 0.00 0.000  0 0.000 0.236
#> SRR934315     1  0.3050     0.6949 0.764 0.00 0.000  0 0.000 0.236
#> SRR934316     1  0.3050     0.6949 0.764 0.00 0.000  0 0.000 0.236
#> SRR934317     1  0.3050     0.6949 0.764 0.00 0.000  0 0.000 0.236
#> SRR934318     1  0.3050     0.6949 0.764 0.00 0.000  0 0.000 0.236
#> SRR934319     1  0.3023     0.6987 0.768 0.00 0.000  0 0.000 0.232
#> SRR934320     1  0.2941     0.7116 0.780 0.00 0.000  0 0.000 0.220
#> SRR934321     1  0.2941     0.7116 0.780 0.00 0.000  0 0.000 0.220
#> SRR934322     1  0.2941     0.7116 0.780 0.00 0.000  0 0.000 0.220
#> SRR934323     1  0.2941     0.7116 0.780 0.00 0.000  0 0.000 0.220
#> SRR934324     1  0.2941     0.7116 0.780 0.00 0.000  0 0.000 0.220
#> SRR934325     1  0.2941     0.7116 0.780 0.00 0.000  0 0.000 0.220
#> SRR934326     1  0.2941     0.7116 0.780 0.00 0.000  0 0.000 0.220
#> SRR934327     1  0.2941     0.7116 0.780 0.00 0.000  0 0.000 0.220
#> SRR934328     1  0.0000     0.7682 1.000 0.00 0.000  0 0.000 0.000
#> SRR934329     1  0.0000     0.7682 1.000 0.00 0.000  0 0.000 0.000
#> SRR934330     1  0.0000     0.7682 1.000 0.00 0.000  0 0.000 0.000
#> SRR934331     1  0.0000     0.7682 1.000 0.00 0.000  0 0.000 0.000
#> SRR934332     1  0.0260     0.7669 0.992 0.00 0.000  0 0.000 0.008
#> SRR934333     1  0.0000     0.7682 1.000 0.00 0.000  0 0.000 0.000
#> SRR934334     1  0.0000     0.7682 1.000 0.00 0.000  0 0.000 0.000
#> SRR934335     1  0.0000     0.7682 1.000 0.00 0.000  0 0.000 0.000
#> SRR934344     1  0.0000     0.7682 1.000 0.00 0.000  0 0.000 0.000
#> SRR934345     1  0.0000     0.7682 1.000 0.00 0.000  0 0.000 0.000
#> SRR934346     1  0.0000     0.7682 1.000 0.00 0.000  0 0.000 0.000
#> SRR934347     1  0.0000     0.7682 1.000 0.00 0.000  0 0.000 0.000
#> SRR934348     1  0.0000     0.7682 1.000 0.00 0.000  0 0.000 0.000
#> SRR934349     1  0.0000     0.7682 1.000 0.00 0.000  0 0.000 0.000
#> SRR934350     1  0.0000     0.7682 1.000 0.00 0.000  0 0.000 0.000
#> SRR934351     1  0.0000     0.7682 1.000 0.00 0.000  0 0.000 0.000
#> SRR934336     6  0.2300     0.9946 0.144 0.00 0.000  0 0.000 0.856
#> SRR934337     6  0.2300     0.9946 0.144 0.00 0.000  0 0.000 0.856
#> SRR934338     6  0.2300     0.9946 0.144 0.00 0.000  0 0.000 0.856
#> SRR934339     6  0.2300     0.9946 0.144 0.00 0.000  0 0.000 0.856
#> SRR934340     6  0.2969     0.8662 0.224 0.00 0.000  0 0.000 0.776
#> SRR934341     6  0.2300     0.9946 0.144 0.00 0.000  0 0.000 0.856
#> SRR934342     6  0.2300     0.9946 0.144 0.00 0.000  0 0.000 0.856

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14550 rows and 135 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.916           0.916       0.947         0.4457 0.538   0.538
#> 3 3 0.991           0.964       0.971         0.2872 0.734   0.567
#> 4 4 0.725           0.813       0.886         0.1748 0.864   0.702
#> 5 5 0.946           0.888       0.941         0.1124 0.850   0.597
#> 6 6 0.822           0.844       0.871         0.0507 0.993   0.971

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR934216     2  0.9608      0.527 0.384 0.616
#> SRR934217     2  0.9460      0.565 0.364 0.636
#> SRR934218     2  0.9248      0.606 0.340 0.660
#> SRR934219     2  0.9795      0.457 0.416 0.584
#> SRR934220     2  0.9850      0.426 0.428 0.572
#> SRR934221     2  0.9732      0.485 0.404 0.596
#> SRR934222     2  0.9608      0.527 0.384 0.616
#> SRR934223     2  0.9833      0.437 0.424 0.576
#> SRR934224     1  0.1184      0.968 0.984 0.016
#> SRR934225     1  0.1184      0.968 0.984 0.016
#> SRR934226     1  0.1184      0.968 0.984 0.016
#> SRR934227     1  0.1184      0.968 0.984 0.016
#> SRR934228     1  0.1184      0.968 0.984 0.016
#> SRR934229     1  0.1184      0.968 0.984 0.016
#> SRR934230     1  0.1184      0.968 0.984 0.016
#> SRR934231     1  0.1184      0.968 0.984 0.016
#> SRR934232     2  0.0938      0.888 0.012 0.988
#> SRR934233     2  0.0938      0.888 0.012 0.988
#> SRR934234     2  0.0938      0.888 0.012 0.988
#> SRR934235     2  0.0938      0.888 0.012 0.988
#> SRR934236     2  0.0938      0.888 0.012 0.988
#> SRR934237     2  0.0938      0.888 0.012 0.988
#> SRR934238     2  0.0938      0.888 0.012 0.988
#> SRR934239     2  0.0938      0.888 0.012 0.988
#> SRR934240     2  0.4562      0.857 0.096 0.904
#> SRR934241     2  0.3879      0.869 0.076 0.924
#> SRR934242     2  0.4298      0.862 0.088 0.912
#> SRR934243     2  0.4562      0.857 0.096 0.904
#> SRR934244     2  0.5059      0.843 0.112 0.888
#> SRR934245     2  0.4161      0.865 0.084 0.916
#> SRR934246     2  0.4431      0.860 0.092 0.908
#> SRR934247     2  0.4161      0.865 0.084 0.916
#> SRR934248     2  0.2603      0.904 0.044 0.956
#> SRR934249     2  0.2603      0.904 0.044 0.956
#> SRR934250     2  0.2603      0.904 0.044 0.956
#> SRR934251     2  0.2603      0.904 0.044 0.956
#> SRR934252     2  0.2603      0.904 0.044 0.956
#> SRR934253     2  0.2603      0.904 0.044 0.956
#> SRR934254     2  0.2603      0.904 0.044 0.956
#> SRR934255     2  0.2603      0.904 0.044 0.956
#> SRR934256     1  0.3274      0.952 0.940 0.060
#> SRR934257     1  0.3274      0.952 0.940 0.060
#> SRR934258     1  0.3274      0.952 0.940 0.060
#> SRR934259     1  0.3274      0.952 0.940 0.060
#> SRR934260     1  0.3274      0.952 0.940 0.060
#> SRR934261     1  0.3274      0.952 0.940 0.060
#> SRR934262     1  0.3274      0.952 0.940 0.060
#> SRR934263     1  0.3274      0.952 0.940 0.060
#> SRR934264     2  0.3274      0.900 0.060 0.940
#> SRR934265     2  0.3274      0.900 0.060 0.940
#> SRR934266     2  0.3274      0.900 0.060 0.940
#> SRR934267     2  0.3274      0.900 0.060 0.940
#> SRR934268     2  0.3274      0.900 0.060 0.940
#> SRR934269     2  0.3274      0.900 0.060 0.940
#> SRR934270     2  0.3274      0.900 0.060 0.940
#> SRR934271     2  0.3274      0.900 0.060 0.940
#> SRR934272     1  0.0938      0.970 0.988 0.012
#> SRR934273     1  0.0938      0.970 0.988 0.012
#> SRR934274     1  0.0938      0.970 0.988 0.012
#> SRR934275     1  0.0938      0.970 0.988 0.012
#> SRR934276     1  0.0938      0.970 0.988 0.012
#> SRR934277     1  0.0938      0.970 0.988 0.012
#> SRR934278     1  0.0938      0.970 0.988 0.012
#> SRR934279     1  0.0938      0.970 0.988 0.012
#> SRR934280     1  0.2043      0.967 0.968 0.032
#> SRR934281     1  0.2043      0.967 0.968 0.032
#> SRR934282     1  0.2043      0.967 0.968 0.032
#> SRR934283     1  0.2043      0.967 0.968 0.032
#> SRR934284     1  0.2043      0.967 0.968 0.032
#> SRR934285     1  0.2043      0.967 0.968 0.032
#> SRR934286     1  0.2043      0.967 0.968 0.032
#> SRR934287     1  0.2043      0.967 0.968 0.032
#> SRR934288     1  0.2236      0.965 0.964 0.036
#> SRR934289     1  0.2236      0.965 0.964 0.036
#> SRR934290     1  0.2236      0.965 0.964 0.036
#> SRR934291     1  0.2236      0.965 0.964 0.036
#> SRR934292     1  0.2236      0.965 0.964 0.036
#> SRR934293     1  0.2236      0.965 0.964 0.036
#> SRR934294     1  0.2236      0.965 0.964 0.036
#> SRR934295     1  0.2236      0.965 0.964 0.036
#> SRR934296     1  0.3274      0.952 0.940 0.060
#> SRR934297     1  0.3114      0.955 0.944 0.056
#> SRR934298     1  0.3274      0.952 0.940 0.060
#> SRR934299     1  0.3274      0.952 0.940 0.060
#> SRR934300     1  0.3114      0.955 0.944 0.056
#> SRR934301     1  0.3274      0.952 0.940 0.060
#> SRR934302     1  0.3274      0.952 0.940 0.060
#> SRR934303     1  0.3274      0.952 0.940 0.060
#> SRR934304     2  0.2603      0.904 0.044 0.956
#> SRR934305     2  0.2603      0.904 0.044 0.956
#> SRR934306     2  0.2603      0.904 0.044 0.956
#> SRR934307     2  0.2603      0.904 0.044 0.956
#> SRR934308     2  0.2603      0.904 0.044 0.956
#> SRR934309     2  0.2603      0.904 0.044 0.956
#> SRR934310     2  0.2603      0.904 0.044 0.956
#> SRR934311     2  0.2603      0.904 0.044 0.956
#> SRR934312     1  0.0376      0.971 0.996 0.004
#> SRR934313     1  0.0376      0.971 0.996 0.004
#> SRR934314     1  0.0672      0.971 0.992 0.008
#> SRR934315     1  0.0000      0.971 1.000 0.000
#> SRR934316     1  0.0376      0.971 0.996 0.004
#> SRR934317     1  0.0672      0.971 0.992 0.008
#> SRR934318     1  0.0376      0.971 0.996 0.004
#> SRR934319     1  0.0000      0.971 1.000 0.000
#> SRR934320     1  0.2043      0.967 0.968 0.032
#> SRR934321     1  0.2043      0.967 0.968 0.032
#> SRR934322     1  0.2043      0.967 0.968 0.032
#> SRR934323     1  0.2043      0.967 0.968 0.032
#> SRR934324     1  0.2043      0.967 0.968 0.032
#> SRR934325     1  0.2043      0.967 0.968 0.032
#> SRR934326     1  0.2043      0.967 0.968 0.032
#> SRR934327     1  0.2043      0.967 0.968 0.032
#> SRR934328     1  0.0672      0.971 0.992 0.008
#> SRR934329     1  0.0672      0.971 0.992 0.008
#> SRR934330     1  0.0672      0.971 0.992 0.008
#> SRR934331     1  0.0672      0.971 0.992 0.008
#> SRR934332     1  0.0938      0.970 0.988 0.012
#> SRR934333     1  0.0672      0.971 0.992 0.008
#> SRR934334     1  0.0672      0.971 0.992 0.008
#> SRR934335     1  0.0672      0.971 0.992 0.008
#> SRR934344     1  0.0938      0.970 0.988 0.012
#> SRR934345     1  0.0938      0.970 0.988 0.012
#> SRR934346     1  0.0938      0.970 0.988 0.012
#> SRR934347     1  0.0938      0.970 0.988 0.012
#> SRR934348     1  0.0938      0.970 0.988 0.012
#> SRR934349     1  0.0938      0.970 0.988 0.012
#> SRR934350     1  0.0938      0.970 0.988 0.012
#> SRR934351     1  0.0938      0.970 0.988 0.012
#> SRR934336     1  0.0938      0.970 0.988 0.012
#> SRR934337     1  0.0938      0.970 0.988 0.012
#> SRR934338     1  0.0938      0.970 0.988 0.012
#> SRR934339     1  0.0938      0.970 0.988 0.012
#> SRR934340     1  0.0938      0.970 0.988 0.012
#> SRR934341     1  0.0938      0.970 0.988 0.012
#> SRR934342     1  0.0938      0.970 0.988 0.012

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR934216     1  0.1643      0.954 0.956 0.044 0.000
#> SRR934217     1  0.1643      0.954 0.956 0.044 0.000
#> SRR934218     1  0.1643      0.954 0.956 0.044 0.000
#> SRR934219     1  0.1643      0.954 0.956 0.044 0.000
#> SRR934220     1  0.1643      0.954 0.956 0.044 0.000
#> SRR934221     1  0.1643      0.954 0.956 0.044 0.000
#> SRR934222     1  0.1643      0.954 0.956 0.044 0.000
#> SRR934223     1  0.1643      0.954 0.956 0.044 0.000
#> SRR934224     1  0.0000      0.985 1.000 0.000 0.000
#> SRR934225     1  0.0000      0.985 1.000 0.000 0.000
#> SRR934226     1  0.0000      0.985 1.000 0.000 0.000
#> SRR934227     1  0.0000      0.985 1.000 0.000 0.000
#> SRR934228     1  0.0000      0.985 1.000 0.000 0.000
#> SRR934229     1  0.0000      0.985 1.000 0.000 0.000
#> SRR934230     1  0.0000      0.985 1.000 0.000 0.000
#> SRR934231     1  0.0000      0.985 1.000 0.000 0.000
#> SRR934232     3  0.0237      0.986 0.000 0.004 0.996
#> SRR934233     3  0.0237      0.986 0.000 0.004 0.996
#> SRR934234     3  0.0237      0.986 0.000 0.004 0.996
#> SRR934235     3  0.0237      0.986 0.000 0.004 0.996
#> SRR934236     3  0.0237      0.986 0.000 0.004 0.996
#> SRR934237     3  0.0237      0.986 0.000 0.004 0.996
#> SRR934238     3  0.0237      0.986 0.000 0.004 0.996
#> SRR934239     3  0.0237      0.986 0.000 0.004 0.996
#> SRR934240     2  0.4555      0.818 0.000 0.800 0.200
#> SRR934241     2  0.4750      0.800 0.000 0.784 0.216
#> SRR934242     2  0.4399      0.828 0.000 0.812 0.188
#> SRR934243     2  0.4346      0.831 0.000 0.816 0.184
#> SRR934244     2  0.4555      0.818 0.000 0.800 0.200
#> SRR934245     2  0.4654      0.810 0.000 0.792 0.208
#> SRR934246     2  0.4399      0.828 0.000 0.812 0.188
#> SRR934247     2  0.4555      0.818 0.000 0.800 0.200
#> SRR934248     3  0.0000      0.987 0.000 0.000 1.000
#> SRR934249     3  0.0000      0.987 0.000 0.000 1.000
#> SRR934250     3  0.0000      0.987 0.000 0.000 1.000
#> SRR934251     3  0.0000      0.987 0.000 0.000 1.000
#> SRR934252     3  0.0000      0.987 0.000 0.000 1.000
#> SRR934253     3  0.0000      0.987 0.000 0.000 1.000
#> SRR934254     3  0.0000      0.987 0.000 0.000 1.000
#> SRR934255     3  0.0000      0.987 0.000 0.000 1.000
#> SRR934256     2  0.1643      0.926 0.044 0.956 0.000
#> SRR934257     2  0.1643      0.926 0.044 0.956 0.000
#> SRR934258     2  0.1643      0.926 0.044 0.956 0.000
#> SRR934259     2  0.1643      0.926 0.044 0.956 0.000
#> SRR934260     2  0.1643      0.926 0.044 0.956 0.000
#> SRR934261     2  0.1643      0.926 0.044 0.956 0.000
#> SRR934262     2  0.1643      0.926 0.044 0.956 0.000
#> SRR934263     2  0.1643      0.926 0.044 0.956 0.000
#> SRR934264     3  0.0000      0.987 0.000 0.000 1.000
#> SRR934265     3  0.0000      0.987 0.000 0.000 1.000
#> SRR934266     3  0.0000      0.987 0.000 0.000 1.000
#> SRR934267     3  0.0000      0.987 0.000 0.000 1.000
#> SRR934268     3  0.0000      0.987 0.000 0.000 1.000
#> SRR934269     3  0.0000      0.987 0.000 0.000 1.000
#> SRR934270     3  0.0000      0.987 0.000 0.000 1.000
#> SRR934271     3  0.0000      0.987 0.000 0.000 1.000
#> SRR934272     1  0.0000      0.985 1.000 0.000 0.000
#> SRR934273     1  0.0000      0.985 1.000 0.000 0.000
#> SRR934274     1  0.0000      0.985 1.000 0.000 0.000
#> SRR934275     1  0.0000      0.985 1.000 0.000 0.000
#> SRR934276     1  0.0000      0.985 1.000 0.000 0.000
#> SRR934277     1  0.0000      0.985 1.000 0.000 0.000
#> SRR934278     1  0.0000      0.985 1.000 0.000 0.000
#> SRR934279     1  0.0000      0.985 1.000 0.000 0.000
#> SRR934280     1  0.0747      0.983 0.984 0.016 0.000
#> SRR934281     1  0.0747      0.983 0.984 0.016 0.000
#> SRR934282     1  0.0747      0.983 0.984 0.016 0.000
#> SRR934283     1  0.0747      0.983 0.984 0.016 0.000
#> SRR934284     1  0.1163      0.978 0.972 0.028 0.000
#> SRR934285     1  0.0747      0.983 0.984 0.016 0.000
#> SRR934286     1  0.0892      0.982 0.980 0.020 0.000
#> SRR934287     1  0.0892      0.982 0.980 0.020 0.000
#> SRR934288     1  0.0747      0.983 0.984 0.016 0.000
#> SRR934289     1  0.0747      0.983 0.984 0.016 0.000
#> SRR934290     1  0.2448      0.937 0.924 0.076 0.000
#> SRR934291     1  0.0747      0.983 0.984 0.016 0.000
#> SRR934292     1  0.0747      0.983 0.984 0.016 0.000
#> SRR934293     1  0.1031      0.981 0.976 0.024 0.000
#> SRR934294     1  0.0747      0.983 0.984 0.016 0.000
#> SRR934295     1  0.0747      0.983 0.984 0.016 0.000
#> SRR934296     2  0.1643      0.926 0.044 0.956 0.000
#> SRR934297     2  0.1643      0.926 0.044 0.956 0.000
#> SRR934298     2  0.1643      0.926 0.044 0.956 0.000
#> SRR934299     2  0.1643      0.926 0.044 0.956 0.000
#> SRR934300     2  0.1643      0.926 0.044 0.956 0.000
#> SRR934301     2  0.1643      0.926 0.044 0.956 0.000
#> SRR934302     2  0.1643      0.926 0.044 0.956 0.000
#> SRR934303     2  0.1643      0.926 0.044 0.956 0.000
#> SRR934304     3  0.1643      0.964 0.000 0.044 0.956
#> SRR934305     3  0.1643      0.964 0.000 0.044 0.956
#> SRR934306     3  0.1643      0.964 0.000 0.044 0.956
#> SRR934307     3  0.1643      0.964 0.000 0.044 0.956
#> SRR934308     3  0.1643      0.964 0.000 0.044 0.956
#> SRR934309     3  0.1643      0.964 0.000 0.044 0.956
#> SRR934310     3  0.1643      0.964 0.000 0.044 0.956
#> SRR934311     3  0.1643      0.964 0.000 0.044 0.956
#> SRR934312     1  0.0237      0.985 0.996 0.004 0.000
#> SRR934313     1  0.0000      0.985 1.000 0.000 0.000
#> SRR934314     1  0.0237      0.985 0.996 0.004 0.000
#> SRR934315     1  0.0000      0.985 1.000 0.000 0.000
#> SRR934316     1  0.0000      0.985 1.000 0.000 0.000
#> SRR934317     1  0.0237      0.985 0.996 0.004 0.000
#> SRR934318     1  0.0237      0.985 0.996 0.004 0.000
#> SRR934319     1  0.0000      0.985 1.000 0.000 0.000
#> SRR934320     1  0.1163      0.978 0.972 0.028 0.000
#> SRR934321     1  0.1163      0.978 0.972 0.028 0.000
#> SRR934322     1  0.1031      0.980 0.976 0.024 0.000
#> SRR934323     1  0.1529      0.970 0.960 0.040 0.000
#> SRR934324     1  0.1289      0.975 0.968 0.032 0.000
#> SRR934325     1  0.1411      0.973 0.964 0.036 0.000
#> SRR934326     1  0.1411      0.973 0.964 0.036 0.000
#> SRR934327     1  0.1289      0.975 0.968 0.032 0.000
#> SRR934328     1  0.0892      0.981 0.980 0.020 0.000
#> SRR934329     1  0.0424      0.985 0.992 0.008 0.000
#> SRR934330     1  0.1411      0.970 0.964 0.036 0.000
#> SRR934331     1  0.1643      0.964 0.956 0.044 0.000
#> SRR934332     1  0.1289      0.974 0.968 0.032 0.000
#> SRR934333     1  0.1411      0.971 0.964 0.036 0.000
#> SRR934334     1  0.0892      0.981 0.980 0.020 0.000
#> SRR934335     1  0.1411      0.972 0.964 0.036 0.000
#> SRR934344     1  0.0237      0.985 0.996 0.004 0.000
#> SRR934345     1  0.0424      0.985 0.992 0.008 0.000
#> SRR934346     1  0.0424      0.985 0.992 0.008 0.000
#> SRR934347     1  0.0237      0.985 0.996 0.004 0.000
#> SRR934348     1  0.0424      0.985 0.992 0.008 0.000
#> SRR934349     1  0.0237      0.985 0.996 0.004 0.000
#> SRR934350     1  0.0424      0.985 0.992 0.008 0.000
#> SRR934351     1  0.0237      0.985 0.996 0.004 0.000
#> SRR934336     1  0.0000      0.985 1.000 0.000 0.000
#> SRR934337     1  0.0000      0.985 1.000 0.000 0.000
#> SRR934338     1  0.0000      0.985 1.000 0.000 0.000
#> SRR934339     1  0.0000      0.985 1.000 0.000 0.000
#> SRR934340     1  0.0000      0.985 1.000 0.000 0.000
#> SRR934341     1  0.0000      0.985 1.000 0.000 0.000
#> SRR934342     1  0.0000      0.985 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> SRR934216     3  0.3335      0.847 0.128 0.000 0.856 0.016
#> SRR934217     3  0.3335      0.847 0.128 0.000 0.856 0.016
#> SRR934218     3  0.3335      0.847 0.128 0.000 0.856 0.016
#> SRR934219     3  0.3335      0.847 0.128 0.000 0.856 0.016
#> SRR934220     3  0.3335      0.847 0.128 0.000 0.856 0.016
#> SRR934221     3  0.3335      0.847 0.128 0.000 0.856 0.016
#> SRR934222     3  0.3335      0.847 0.128 0.000 0.856 0.016
#> SRR934223     3  0.3335      0.847 0.128 0.000 0.856 0.016
#> SRR934224     1  0.0000      0.884 1.000 0.000 0.000 0.000
#> SRR934225     1  0.0000      0.884 1.000 0.000 0.000 0.000
#> SRR934226     1  0.0000      0.884 1.000 0.000 0.000 0.000
#> SRR934227     1  0.0000      0.884 1.000 0.000 0.000 0.000
#> SRR934228     1  0.0000      0.884 1.000 0.000 0.000 0.000
#> SRR934229     1  0.0000      0.884 1.000 0.000 0.000 0.000
#> SRR934230     1  0.0000      0.884 1.000 0.000 0.000 0.000
#> SRR934231     1  0.0000      0.884 1.000 0.000 0.000 0.000
#> SRR934232     2  0.0000      0.920 0.000 1.000 0.000 0.000
#> SRR934233     2  0.0000      0.920 0.000 1.000 0.000 0.000
#> SRR934234     2  0.0000      0.920 0.000 1.000 0.000 0.000
#> SRR934235     2  0.0000      0.920 0.000 1.000 0.000 0.000
#> SRR934236     2  0.0000      0.920 0.000 1.000 0.000 0.000
#> SRR934237     2  0.0000      0.920 0.000 1.000 0.000 0.000
#> SRR934238     2  0.0000      0.920 0.000 1.000 0.000 0.000
#> SRR934239     2  0.0000      0.920 0.000 1.000 0.000 0.000
#> SRR934240     2  0.3763      0.849 0.000 0.832 0.144 0.024
#> SRR934241     2  0.3763      0.849 0.000 0.832 0.144 0.024
#> SRR934242     2  0.3763      0.849 0.000 0.832 0.144 0.024
#> SRR934243     2  0.3763      0.849 0.000 0.832 0.144 0.024
#> SRR934244     2  0.3763      0.849 0.000 0.832 0.144 0.024
#> SRR934245     2  0.3763      0.849 0.000 0.832 0.144 0.024
#> SRR934246     2  0.3763      0.849 0.000 0.832 0.144 0.024
#> SRR934247     2  0.3763      0.849 0.000 0.832 0.144 0.024
#> SRR934248     2  0.0000      0.920 0.000 1.000 0.000 0.000
#> SRR934249     2  0.0000      0.920 0.000 1.000 0.000 0.000
#> SRR934250     2  0.0000      0.920 0.000 1.000 0.000 0.000
#> SRR934251     2  0.0000      0.920 0.000 1.000 0.000 0.000
#> SRR934252     2  0.0000      0.920 0.000 1.000 0.000 0.000
#> SRR934253     2  0.0000      0.920 0.000 1.000 0.000 0.000
#> SRR934254     2  0.0000      0.920 0.000 1.000 0.000 0.000
#> SRR934255     2  0.0000      0.920 0.000 1.000 0.000 0.000
#> SRR934256     4  0.2973      0.773 0.000 0.000 0.144 0.856
#> SRR934257     4  0.2973      0.773 0.000 0.000 0.144 0.856
#> SRR934258     4  0.2973      0.773 0.000 0.000 0.144 0.856
#> SRR934259     4  0.2973      0.773 0.000 0.000 0.144 0.856
#> SRR934260     4  0.2973      0.773 0.000 0.000 0.144 0.856
#> SRR934261     4  0.2973      0.773 0.000 0.000 0.144 0.856
#> SRR934262     4  0.2973      0.773 0.000 0.000 0.144 0.856
#> SRR934263     4  0.2973      0.773 0.000 0.000 0.144 0.856
#> SRR934264     2  0.2149      0.877 0.088 0.912 0.000 0.000
#> SRR934265     2  0.2345      0.863 0.100 0.900 0.000 0.000
#> SRR934266     2  0.2011      0.884 0.080 0.920 0.000 0.000
#> SRR934267     2  0.1867      0.889 0.072 0.928 0.000 0.000
#> SRR934268     2  0.2216      0.874 0.092 0.908 0.000 0.000
#> SRR934269     2  0.2281      0.868 0.096 0.904 0.000 0.000
#> SRR934270     2  0.2081      0.881 0.084 0.916 0.000 0.000
#> SRR934271     2  0.1940      0.887 0.076 0.924 0.000 0.000
#> SRR934272     1  0.0000      0.884 1.000 0.000 0.000 0.000
#> SRR934273     1  0.0000      0.884 1.000 0.000 0.000 0.000
#> SRR934274     1  0.0000      0.884 1.000 0.000 0.000 0.000
#> SRR934275     1  0.0000      0.884 1.000 0.000 0.000 0.000
#> SRR934276     1  0.0000      0.884 1.000 0.000 0.000 0.000
#> SRR934277     1  0.0000      0.884 1.000 0.000 0.000 0.000
#> SRR934278     1  0.0000      0.884 1.000 0.000 0.000 0.000
#> SRR934279     1  0.0000      0.884 1.000 0.000 0.000 0.000
#> SRR934280     1  0.0000      0.884 1.000 0.000 0.000 0.000
#> SRR934281     1  0.0000      0.884 1.000 0.000 0.000 0.000
#> SRR934282     1  0.0000      0.884 1.000 0.000 0.000 0.000
#> SRR934283     1  0.0000      0.884 1.000 0.000 0.000 0.000
#> SRR934284     1  0.0336      0.883 0.992 0.000 0.000 0.008
#> SRR934285     1  0.0000      0.884 1.000 0.000 0.000 0.000
#> SRR934286     1  0.0000      0.884 1.000 0.000 0.000 0.000
#> SRR934287     1  0.0188      0.883 0.996 0.000 0.000 0.004
#> SRR934288     1  0.5311      0.624 0.648 0.000 0.024 0.328
#> SRR934289     1  0.5349      0.612 0.640 0.000 0.024 0.336
#> SRR934290     4  0.5691     -0.324 0.468 0.000 0.024 0.508
#> SRR934291     1  0.5250      0.637 0.660 0.000 0.024 0.316
#> SRR934292     1  0.5536      0.541 0.592 0.000 0.024 0.384
#> SRR934293     1  0.5611      0.496 0.564 0.000 0.024 0.412
#> SRR934294     1  0.5496      0.564 0.604 0.000 0.024 0.372
#> SRR934295     1  0.5010      0.678 0.700 0.000 0.024 0.276
#> SRR934296     4  0.3569      0.729 0.000 0.000 0.196 0.804
#> SRR934297     4  0.3486      0.737 0.000 0.000 0.188 0.812
#> SRR934298     4  0.3400      0.739 0.000 0.000 0.180 0.820
#> SRR934299     4  0.3486      0.737 0.000 0.000 0.188 0.812
#> SRR934300     4  0.3486      0.737 0.000 0.000 0.188 0.812
#> SRR934301     4  0.3528      0.733 0.000 0.000 0.192 0.808
#> SRR934302     4  0.3486      0.737 0.000 0.000 0.188 0.812
#> SRR934303     4  0.3486      0.737 0.000 0.000 0.188 0.812
#> SRR934304     3  0.3311      0.849 0.000 0.172 0.828 0.000
#> SRR934305     3  0.3311      0.849 0.000 0.172 0.828 0.000
#> SRR934306     3  0.3311      0.849 0.000 0.172 0.828 0.000
#> SRR934307     3  0.3311      0.849 0.000 0.172 0.828 0.000
#> SRR934308     3  0.3311      0.849 0.000 0.172 0.828 0.000
#> SRR934309     3  0.3311      0.849 0.000 0.172 0.828 0.000
#> SRR934310     3  0.3311      0.849 0.000 0.172 0.828 0.000
#> SRR934311     3  0.3311      0.849 0.000 0.172 0.828 0.000
#> SRR934312     1  0.0188      0.883 0.996 0.000 0.004 0.000
#> SRR934313     1  0.0188      0.883 0.996 0.000 0.004 0.000
#> SRR934314     1  0.0376      0.883 0.992 0.000 0.004 0.004
#> SRR934315     1  0.0376      0.883 0.992 0.000 0.004 0.004
#> SRR934316     1  0.0188      0.883 0.996 0.000 0.004 0.000
#> SRR934317     1  0.0188      0.883 0.996 0.000 0.004 0.000
#> SRR934318     1  0.0188      0.883 0.996 0.000 0.004 0.000
#> SRR934319     1  0.0188      0.883 0.996 0.000 0.004 0.000
#> SRR934320     1  0.0592      0.879 0.984 0.000 0.000 0.016
#> SRR934321     1  0.0336      0.882 0.992 0.000 0.000 0.008
#> SRR934322     1  0.0336      0.882 0.992 0.000 0.000 0.008
#> SRR934323     1  0.0817      0.875 0.976 0.000 0.000 0.024
#> SRR934324     1  0.0336      0.882 0.992 0.000 0.000 0.008
#> SRR934325     1  0.0592      0.879 0.984 0.000 0.000 0.016
#> SRR934326     1  0.0707      0.877 0.980 0.000 0.000 0.020
#> SRR934327     1  0.0336      0.882 0.992 0.000 0.000 0.008
#> SRR934328     1  0.5691      0.506 0.564 0.000 0.028 0.408
#> SRR934329     1  0.5708      0.491 0.556 0.000 0.028 0.416
#> SRR934330     1  0.5750      0.443 0.532 0.000 0.028 0.440
#> SRR934331     1  0.5731      0.468 0.544 0.000 0.028 0.428
#> SRR934332     1  0.5671      0.520 0.572 0.000 0.028 0.400
#> SRR934333     1  0.5638      0.540 0.584 0.000 0.028 0.388
#> SRR934334     1  0.5724      0.476 0.548 0.000 0.028 0.424
#> SRR934335     1  0.5750      0.443 0.532 0.000 0.028 0.440
#> SRR934344     1  0.3913      0.789 0.824 0.000 0.028 0.148
#> SRR934345     1  0.3913      0.789 0.824 0.000 0.028 0.148
#> SRR934346     1  0.3913      0.789 0.824 0.000 0.028 0.148
#> SRR934347     1  0.3913      0.789 0.824 0.000 0.028 0.148
#> SRR934348     1  0.3913      0.789 0.824 0.000 0.028 0.148
#> SRR934349     1  0.3913      0.789 0.824 0.000 0.028 0.148
#> SRR934350     1  0.3913      0.789 0.824 0.000 0.028 0.148
#> SRR934351     1  0.3913      0.789 0.824 0.000 0.028 0.148
#> SRR934336     1  0.0000      0.884 1.000 0.000 0.000 0.000
#> SRR934337     1  0.0000      0.884 1.000 0.000 0.000 0.000
#> SRR934338     1  0.0000      0.884 1.000 0.000 0.000 0.000
#> SRR934339     1  0.0000      0.884 1.000 0.000 0.000 0.000
#> SRR934340     1  0.0000      0.884 1.000 0.000 0.000 0.000
#> SRR934341     1  0.0000      0.884 1.000 0.000 0.000 0.000
#> SRR934342     1  0.0000      0.884 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> SRR934216     5  0.1041      0.974 0.004 0.000 0.032 0.000 0.964
#> SRR934217     5  0.0880      0.973 0.000 0.000 0.032 0.000 0.968
#> SRR934218     5  0.1041      0.974 0.004 0.000 0.032 0.000 0.964
#> SRR934219     5  0.1041      0.974 0.004 0.000 0.032 0.000 0.964
#> SRR934220     5  0.1202      0.972 0.004 0.004 0.032 0.000 0.960
#> SRR934221     5  0.1041      0.974 0.004 0.000 0.032 0.000 0.964
#> SRR934222     5  0.1041      0.974 0.004 0.000 0.032 0.000 0.964
#> SRR934223     5  0.1041      0.974 0.004 0.000 0.032 0.000 0.964
#> SRR934224     1  0.0290      0.984 0.992 0.000 0.008 0.000 0.000
#> SRR934225     1  0.0290      0.984 0.992 0.000 0.008 0.000 0.000
#> SRR934226     1  0.0290      0.984 0.992 0.000 0.008 0.000 0.000
#> SRR934227     1  0.0290      0.984 0.992 0.000 0.008 0.000 0.000
#> SRR934228     1  0.0290      0.984 0.992 0.000 0.008 0.000 0.000
#> SRR934229     1  0.0290      0.984 0.992 0.000 0.008 0.000 0.000
#> SRR934230     1  0.0290      0.984 0.992 0.000 0.008 0.000 0.000
#> SRR934231     1  0.0290      0.984 0.992 0.000 0.008 0.000 0.000
#> SRR934232     4  0.0000      0.827 0.000 0.000 0.000 1.000 0.000
#> SRR934233     4  0.0000      0.827 0.000 0.000 0.000 1.000 0.000
#> SRR934234     4  0.0000      0.827 0.000 0.000 0.000 1.000 0.000
#> SRR934235     4  0.0000      0.827 0.000 0.000 0.000 1.000 0.000
#> SRR934236     4  0.0162      0.826 0.000 0.004 0.000 0.996 0.000
#> SRR934237     4  0.0000      0.827 0.000 0.000 0.000 1.000 0.000
#> SRR934238     4  0.0000      0.827 0.000 0.000 0.000 1.000 0.000
#> SRR934239     4  0.0000      0.827 0.000 0.000 0.000 1.000 0.000
#> SRR934240     4  0.1251      0.813 0.000 0.036 0.008 0.956 0.000
#> SRR934241     4  0.1251      0.813 0.000 0.036 0.008 0.956 0.000
#> SRR934242     4  0.1251      0.813 0.000 0.036 0.008 0.956 0.000
#> SRR934243     4  0.1251      0.813 0.000 0.036 0.008 0.956 0.000
#> SRR934244     4  0.1251      0.813 0.000 0.036 0.008 0.956 0.000
#> SRR934245     4  0.1251      0.813 0.000 0.036 0.008 0.956 0.000
#> SRR934246     4  0.1251      0.813 0.000 0.036 0.008 0.956 0.000
#> SRR934247     4  0.1251      0.813 0.000 0.036 0.008 0.956 0.000
#> SRR934248     4  0.0000      0.827 0.000 0.000 0.000 1.000 0.000
#> SRR934249     4  0.0000      0.827 0.000 0.000 0.000 1.000 0.000
#> SRR934250     4  0.0000      0.827 0.000 0.000 0.000 1.000 0.000
#> SRR934251     4  0.0000      0.827 0.000 0.000 0.000 1.000 0.000
#> SRR934252     4  0.0000      0.827 0.000 0.000 0.000 1.000 0.000
#> SRR934253     4  0.0000      0.827 0.000 0.000 0.000 1.000 0.000
#> SRR934254     4  0.0000      0.827 0.000 0.000 0.000 1.000 0.000
#> SRR934255     4  0.0000      0.827 0.000 0.000 0.000 1.000 0.000
#> SRR934256     2  0.1121      1.000 0.000 0.956 0.044 0.000 0.000
#> SRR934257     2  0.1121      1.000 0.000 0.956 0.044 0.000 0.000
#> SRR934258     2  0.1121      1.000 0.000 0.956 0.044 0.000 0.000
#> SRR934259     2  0.1121      1.000 0.000 0.956 0.044 0.000 0.000
#> SRR934260     2  0.1121      1.000 0.000 0.956 0.044 0.000 0.000
#> SRR934261     2  0.1121      1.000 0.000 0.956 0.044 0.000 0.000
#> SRR934262     2  0.1121      1.000 0.000 0.956 0.044 0.000 0.000
#> SRR934263     2  0.1121      1.000 0.000 0.956 0.044 0.000 0.000
#> SRR934264     4  0.4249      0.390 0.432 0.000 0.000 0.568 0.000
#> SRR934265     4  0.4201      0.447 0.408 0.000 0.000 0.592 0.000
#> SRR934266     4  0.4192      0.454 0.404 0.000 0.000 0.596 0.000
#> SRR934267     4  0.4235      0.411 0.424 0.000 0.000 0.576 0.000
#> SRR934268     4  0.4210      0.438 0.412 0.000 0.000 0.588 0.000
#> SRR934269     4  0.4201      0.447 0.408 0.000 0.000 0.592 0.000
#> SRR934270     4  0.4219      0.429 0.416 0.000 0.000 0.584 0.000
#> SRR934271     4  0.4182      0.461 0.400 0.000 0.000 0.600 0.000
#> SRR934272     1  0.0162      0.985 0.996 0.000 0.004 0.000 0.000
#> SRR934273     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000
#> SRR934274     1  0.0162      0.985 0.996 0.000 0.004 0.000 0.000
#> SRR934275     1  0.0162      0.985 0.996 0.000 0.004 0.000 0.000
#> SRR934276     1  0.0162      0.985 0.996 0.000 0.004 0.000 0.000
#> SRR934277     1  0.0162      0.985 0.996 0.000 0.004 0.000 0.000
#> SRR934278     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000
#> SRR934279     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000
#> SRR934280     1  0.0794      0.980 0.972 0.028 0.000 0.000 0.000
#> SRR934281     1  0.0794      0.980 0.972 0.028 0.000 0.000 0.000
#> SRR934282     1  0.0609      0.983 0.980 0.020 0.000 0.000 0.000
#> SRR934283     1  0.0794      0.980 0.972 0.028 0.000 0.000 0.000
#> SRR934284     1  0.0963      0.977 0.964 0.036 0.000 0.000 0.000
#> SRR934285     1  0.0794      0.980 0.972 0.028 0.000 0.000 0.000
#> SRR934286     1  0.0794      0.980 0.972 0.028 0.000 0.000 0.000
#> SRR934287     1  0.0880      0.978 0.968 0.032 0.000 0.000 0.000
#> SRR934288     3  0.0404      0.897 0.012 0.000 0.988 0.000 0.000
#> SRR934289     3  0.0671      0.897 0.016 0.004 0.980 0.000 0.000
#> SRR934290     3  0.0451      0.897 0.008 0.004 0.988 0.000 0.000
#> SRR934291     3  0.0404      0.897 0.012 0.000 0.988 0.000 0.000
#> SRR934292     3  0.0566      0.897 0.012 0.004 0.984 0.000 0.000
#> SRR934293     3  0.0566      0.897 0.012 0.004 0.984 0.000 0.000
#> SRR934294     3  0.0566      0.897 0.012 0.004 0.984 0.000 0.000
#> SRR934295     3  0.0566      0.897 0.012 0.004 0.984 0.000 0.000
#> SRR934296     3  0.5013      0.683 0.000 0.084 0.684 0.000 0.232
#> SRR934297     3  0.5077      0.699 0.004 0.088 0.696 0.000 0.212
#> SRR934298     3  0.4944      0.701 0.000 0.092 0.700 0.000 0.208
#> SRR934299     3  0.5032      0.689 0.000 0.092 0.688 0.000 0.220
#> SRR934300     3  0.5077      0.699 0.004 0.088 0.696 0.000 0.212
#> SRR934301     3  0.5191      0.658 0.000 0.088 0.660 0.000 0.252
#> SRR934302     3  0.5037      0.683 0.000 0.088 0.684 0.000 0.228
#> SRR934303     3  0.5167      0.659 0.000 0.088 0.664 0.000 0.248
#> SRR934304     5  0.0000      0.975 0.000 0.000 0.000 0.000 1.000
#> SRR934305     5  0.0000      0.975 0.000 0.000 0.000 0.000 1.000
#> SRR934306     5  0.0000      0.975 0.000 0.000 0.000 0.000 1.000
#> SRR934307     5  0.0000      0.975 0.000 0.000 0.000 0.000 1.000
#> SRR934308     5  0.0000      0.975 0.000 0.000 0.000 0.000 1.000
#> SRR934309     5  0.0000      0.975 0.000 0.000 0.000 0.000 1.000
#> SRR934310     5  0.0000      0.975 0.000 0.000 0.000 0.000 1.000
#> SRR934311     5  0.0000      0.975 0.000 0.000 0.000 0.000 1.000
#> SRR934312     1  0.0290      0.986 0.992 0.008 0.000 0.000 0.000
#> SRR934313     1  0.0579      0.985 0.984 0.008 0.008 0.000 0.000
#> SRR934314     1  0.0290      0.986 0.992 0.008 0.000 0.000 0.000
#> SRR934315     1  0.0290      0.986 0.992 0.008 0.000 0.000 0.000
#> SRR934316     1  0.0290      0.986 0.992 0.008 0.000 0.000 0.000
#> SRR934317     1  0.0290      0.986 0.992 0.008 0.000 0.000 0.000
#> SRR934318     1  0.0404      0.985 0.988 0.012 0.000 0.000 0.000
#> SRR934319     1  0.0290      0.986 0.992 0.008 0.000 0.000 0.000
#> SRR934320     1  0.1043      0.974 0.960 0.040 0.000 0.000 0.000
#> SRR934321     1  0.1043      0.974 0.960 0.040 0.000 0.000 0.000
#> SRR934322     1  0.1043      0.974 0.960 0.040 0.000 0.000 0.000
#> SRR934323     1  0.1121      0.971 0.956 0.044 0.000 0.000 0.000
#> SRR934324     1  0.1043      0.974 0.960 0.040 0.000 0.000 0.000
#> SRR934325     1  0.1121      0.971 0.956 0.044 0.000 0.000 0.000
#> SRR934326     1  0.1121      0.971 0.956 0.044 0.000 0.000 0.000
#> SRR934327     1  0.1043      0.974 0.960 0.040 0.000 0.000 0.000
#> SRR934328     3  0.0162      0.895 0.000 0.004 0.996 0.000 0.000
#> SRR934329     3  0.0162      0.895 0.000 0.004 0.996 0.000 0.000
#> SRR934330     3  0.0162      0.895 0.000 0.004 0.996 0.000 0.000
#> SRR934331     3  0.0162      0.895 0.000 0.004 0.996 0.000 0.000
#> SRR934332     3  0.0162      0.895 0.000 0.004 0.996 0.000 0.000
#> SRR934333     3  0.0162      0.895 0.000 0.004 0.996 0.000 0.000
#> SRR934334     3  0.0162      0.895 0.000 0.004 0.996 0.000 0.000
#> SRR934335     3  0.0162      0.895 0.000 0.004 0.996 0.000 0.000
#> SRR934344     3  0.1041      0.890 0.032 0.004 0.964 0.000 0.000
#> SRR934345     3  0.1041      0.890 0.032 0.004 0.964 0.000 0.000
#> SRR934346     3  0.1041      0.890 0.032 0.004 0.964 0.000 0.000
#> SRR934347     3  0.1041      0.890 0.032 0.004 0.964 0.000 0.000
#> SRR934348     3  0.1041      0.890 0.032 0.004 0.964 0.000 0.000
#> SRR934349     3  0.1041      0.890 0.032 0.004 0.964 0.000 0.000
#> SRR934350     3  0.1041      0.890 0.032 0.004 0.964 0.000 0.000
#> SRR934351     3  0.1041      0.890 0.032 0.004 0.964 0.000 0.000
#> SRR934336     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000
#> SRR934337     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000
#> SRR934338     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000
#> SRR934339     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000
#> SRR934340     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000
#> SRR934341     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000
#> SRR934342     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR934216     3  0.0717      0.997 0.008 0.000 0.976 0.000 0.000 0.016
#> SRR934217     3  0.0717      0.997 0.008 0.000 0.976 0.000 0.000 0.016
#> SRR934218     3  0.0717      0.997 0.008 0.000 0.976 0.000 0.000 0.016
#> SRR934219     3  0.0806      0.992 0.008 0.000 0.972 0.000 0.000 0.020
#> SRR934220     3  0.0717      0.997 0.008 0.000 0.976 0.000 0.000 0.016
#> SRR934221     3  0.0806      0.992 0.008 0.000 0.972 0.000 0.000 0.020
#> SRR934222     3  0.0717      0.997 0.008 0.000 0.976 0.000 0.000 0.016
#> SRR934223     3  0.0717      0.997 0.008 0.000 0.976 0.000 0.000 0.016
#> SRR934224     6  0.4390      0.745 0.000 0.000 0.232 0.004 0.064 0.700
#> SRR934225     6  0.4439      0.736 0.000 0.000 0.240 0.004 0.064 0.692
#> SRR934226     6  0.4415      0.741 0.000 0.000 0.236 0.004 0.064 0.696
#> SRR934227     6  0.4314      0.758 0.000 0.000 0.220 0.004 0.064 0.712
#> SRR934228     6  0.4439      0.736 0.000 0.000 0.240 0.004 0.064 0.692
#> SRR934229     6  0.4365      0.750 0.000 0.000 0.228 0.004 0.064 0.704
#> SRR934230     6  0.4340      0.754 0.000 0.000 0.224 0.004 0.064 0.708
#> SRR934231     6  0.4365      0.750 0.000 0.000 0.228 0.004 0.064 0.704
#> SRR934232     4  0.1523      0.832 0.000 0.008 0.008 0.940 0.044 0.000
#> SRR934233     4  0.1268      0.833 0.000 0.008 0.004 0.952 0.036 0.000
#> SRR934234     4  0.1590      0.831 0.000 0.008 0.008 0.936 0.048 0.000
#> SRR934235     4  0.1307      0.833 0.000 0.008 0.008 0.952 0.032 0.000
#> SRR934236     4  0.1655      0.830 0.000 0.008 0.008 0.932 0.052 0.000
#> SRR934237     4  0.1590      0.831 0.000 0.008 0.008 0.936 0.048 0.000
#> SRR934238     4  0.1590      0.831 0.000 0.008 0.008 0.936 0.048 0.000
#> SRR934239     4  0.1382      0.833 0.000 0.008 0.008 0.948 0.036 0.000
#> SRR934240     4  0.4031      0.696 0.000 0.008 0.008 0.652 0.332 0.000
#> SRR934241     4  0.4031      0.696 0.000 0.008 0.008 0.652 0.332 0.000
#> SRR934242     4  0.4031      0.696 0.000 0.008 0.008 0.652 0.332 0.000
#> SRR934243     4  0.4031      0.696 0.000 0.008 0.008 0.652 0.332 0.000
#> SRR934244     4  0.4031      0.696 0.000 0.008 0.008 0.652 0.332 0.000
#> SRR934245     4  0.4031      0.696 0.000 0.008 0.008 0.652 0.332 0.000
#> SRR934246     4  0.4031      0.696 0.000 0.008 0.008 0.652 0.332 0.000
#> SRR934247     4  0.4031      0.696 0.000 0.008 0.008 0.652 0.332 0.000
#> SRR934248     4  0.0146      0.831 0.004 0.000 0.000 0.996 0.000 0.000
#> SRR934249     4  0.0146      0.831 0.004 0.000 0.000 0.996 0.000 0.000
#> SRR934250     4  0.0000      0.832 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR934251     4  0.0000      0.832 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR934252     4  0.0146      0.831 0.004 0.000 0.000 0.996 0.000 0.000
#> SRR934253     4  0.0000      0.832 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR934254     4  0.0000      0.832 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR934255     4  0.0000      0.832 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR934256     2  0.0260      1.000 0.008 0.992 0.000 0.000 0.000 0.000
#> SRR934257     2  0.0260      1.000 0.008 0.992 0.000 0.000 0.000 0.000
#> SRR934258     2  0.0260      1.000 0.008 0.992 0.000 0.000 0.000 0.000
#> SRR934259     2  0.0260      1.000 0.008 0.992 0.000 0.000 0.000 0.000
#> SRR934260     2  0.0260      1.000 0.008 0.992 0.000 0.000 0.000 0.000
#> SRR934261     2  0.0260      1.000 0.008 0.992 0.000 0.000 0.000 0.000
#> SRR934262     2  0.0260      1.000 0.008 0.992 0.000 0.000 0.000 0.000
#> SRR934263     2  0.0260      1.000 0.008 0.992 0.000 0.000 0.000 0.000
#> SRR934264     4  0.3834      0.694 0.000 0.000 0.172 0.772 0.048 0.008
#> SRR934265     4  0.3834      0.694 0.000 0.000 0.172 0.772 0.048 0.008
#> SRR934266     4  0.3765      0.703 0.000 0.000 0.164 0.780 0.048 0.008
#> SRR934267     4  0.3834      0.694 0.000 0.000 0.172 0.772 0.048 0.008
#> SRR934268     4  0.3730      0.706 0.000 0.000 0.160 0.784 0.048 0.008
#> SRR934269     4  0.3765      0.702 0.000 0.000 0.164 0.780 0.048 0.008
#> SRR934270     4  0.3800      0.699 0.000 0.000 0.168 0.776 0.048 0.008
#> SRR934271     4  0.3765      0.702 0.000 0.000 0.164 0.780 0.048 0.008
#> SRR934272     6  0.0547      0.875 0.000 0.000 0.020 0.000 0.000 0.980
#> SRR934273     6  0.0458      0.875 0.000 0.000 0.016 0.000 0.000 0.984
#> SRR934274     6  0.0458      0.875 0.000 0.000 0.016 0.000 0.000 0.984
#> SRR934275     6  0.0458      0.875 0.000 0.000 0.016 0.000 0.000 0.984
#> SRR934276     6  0.0458      0.875 0.000 0.000 0.016 0.000 0.000 0.984
#> SRR934277     6  0.0458      0.875 0.000 0.000 0.016 0.000 0.000 0.984
#> SRR934278     6  0.0458      0.875 0.000 0.000 0.016 0.000 0.000 0.984
#> SRR934279     6  0.0458      0.875 0.000 0.000 0.016 0.000 0.000 0.984
#> SRR934280     6  0.0692      0.874 0.000 0.000 0.004 0.000 0.020 0.976
#> SRR934281     6  0.0692      0.874 0.000 0.000 0.004 0.000 0.020 0.976
#> SRR934282     6  0.0547      0.875 0.000 0.000 0.000 0.000 0.020 0.980
#> SRR934283     6  0.0692      0.874 0.000 0.000 0.004 0.000 0.020 0.976
#> SRR934284     6  0.0692      0.874 0.000 0.000 0.004 0.000 0.020 0.976
#> SRR934285     6  0.0692      0.874 0.000 0.000 0.004 0.000 0.020 0.976
#> SRR934286     6  0.0692      0.874 0.000 0.000 0.004 0.000 0.020 0.976
#> SRR934287     6  0.0692      0.874 0.000 0.004 0.000 0.000 0.020 0.976
#> SRR934288     1  0.0000      0.896 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR934289     1  0.0000      0.896 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR934290     1  0.0000      0.896 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR934291     1  0.0000      0.896 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR934292     1  0.0000      0.896 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR934293     1  0.0000      0.896 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR934294     1  0.0000      0.896 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR934295     1  0.0000      0.896 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR934296     1  0.5352      0.561 0.620 0.000 0.056 0.000 0.276 0.048
#> SRR934297     1  0.4833      0.630 0.676 0.000 0.044 0.000 0.244 0.036
#> SRR934298     1  0.5078      0.614 0.660 0.004 0.040 0.000 0.252 0.044
#> SRR934299     1  0.5376      0.520 0.592 0.004 0.044 0.000 0.320 0.040
#> SRR934300     1  0.4922      0.611 0.660 0.000 0.040 0.000 0.260 0.040
#> SRR934301     1  0.5602      0.475 0.572 0.000 0.068 0.000 0.316 0.044
#> SRR934302     1  0.5286      0.551 0.616 0.000 0.056 0.000 0.288 0.040
#> SRR934303     1  0.5312      0.527 0.600 0.000 0.052 0.000 0.308 0.040
#> SRR934304     5  0.3765      1.000 0.000 0.000 0.404 0.000 0.596 0.000
#> SRR934305     5  0.3765      1.000 0.000 0.000 0.404 0.000 0.596 0.000
#> SRR934306     5  0.3765      1.000 0.000 0.000 0.404 0.000 0.596 0.000
#> SRR934307     5  0.3765      1.000 0.000 0.000 0.404 0.000 0.596 0.000
#> SRR934308     5  0.3765      1.000 0.000 0.000 0.404 0.000 0.596 0.000
#> SRR934309     5  0.3765      1.000 0.000 0.000 0.404 0.000 0.596 0.000
#> SRR934310     5  0.3765      1.000 0.000 0.000 0.404 0.000 0.596 0.000
#> SRR934311     5  0.3765      1.000 0.000 0.000 0.404 0.000 0.596 0.000
#> SRR934312     6  0.1401      0.865 0.000 0.004 0.028 0.000 0.020 0.948
#> SRR934313     6  0.1549      0.859 0.000 0.000 0.044 0.000 0.020 0.936
#> SRR934314     6  0.1237      0.868 0.000 0.004 0.020 0.000 0.020 0.956
#> SRR934315     6  0.1401      0.865 0.000 0.004 0.028 0.000 0.020 0.948
#> SRR934316     6  0.1401      0.865 0.000 0.004 0.028 0.000 0.020 0.948
#> SRR934317     6  0.1401      0.865 0.000 0.004 0.028 0.000 0.020 0.948
#> SRR934318     6  0.1401      0.865 0.000 0.004 0.028 0.000 0.020 0.948
#> SRR934319     6  0.1401      0.865 0.000 0.004 0.028 0.000 0.020 0.948
#> SRR934320     6  0.4418      0.825 0.000 0.076 0.084 0.004 0.060 0.776
#> SRR934321     6  0.4360      0.826 0.000 0.084 0.076 0.004 0.056 0.780
#> SRR934322     6  0.4151      0.835 0.000 0.068 0.076 0.004 0.056 0.796
#> SRR934323     6  0.4971      0.785 0.000 0.136 0.080 0.004 0.056 0.724
#> SRR934324     6  0.3985      0.841 0.000 0.060 0.072 0.004 0.056 0.808
#> SRR934325     6  0.4264      0.831 0.000 0.072 0.076 0.004 0.060 0.788
#> SRR934326     6  0.4418      0.824 0.000 0.084 0.076 0.004 0.060 0.776
#> SRR934327     6  0.4662      0.813 0.000 0.096 0.084 0.004 0.060 0.756
#> SRR934328     1  0.0146      0.896 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR934329     1  0.0146      0.896 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR934330     1  0.0146      0.896 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR934331     1  0.0146      0.896 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR934332     1  0.0146      0.896 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR934333     1  0.0146      0.896 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR934334     1  0.0146      0.896 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR934335     1  0.0146      0.896 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR934344     1  0.0405      0.895 0.988 0.000 0.008 0.000 0.004 0.000
#> SRR934345     1  0.0405      0.895 0.988 0.000 0.008 0.000 0.004 0.000
#> SRR934346     1  0.0405      0.895 0.988 0.000 0.008 0.000 0.004 0.000
#> SRR934347     1  0.0405      0.895 0.988 0.000 0.008 0.000 0.004 0.000
#> SRR934348     1  0.0405      0.895 0.988 0.000 0.008 0.000 0.004 0.000
#> SRR934349     1  0.0405      0.895 0.988 0.000 0.008 0.000 0.004 0.000
#> SRR934350     1  0.0405      0.895 0.988 0.000 0.008 0.000 0.004 0.000
#> SRR934351     1  0.0405      0.895 0.988 0.000 0.008 0.000 0.004 0.000
#> SRR934336     6  0.2786      0.856 0.000 0.000 0.084 0.000 0.056 0.860
#> SRR934337     6  0.2786      0.856 0.000 0.000 0.084 0.000 0.056 0.860
#> SRR934338     6  0.2837      0.855 0.000 0.000 0.088 0.000 0.056 0.856
#> SRR934339     6  0.2680      0.859 0.000 0.000 0.076 0.000 0.056 0.868
#> SRR934340     6  0.2680      0.859 0.000 0.000 0.076 0.000 0.056 0.868
#> SRR934341     6  0.2733      0.857 0.000 0.000 0.080 0.000 0.056 0.864
#> SRR934342     6  0.2786      0.856 0.000 0.000 0.084 0.000 0.056 0.860

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14550 rows and 135 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.999       0.998         0.2954 0.705   0.705
#> 3 3 0.755           0.855       0.942         0.6571 0.832   0.762
#> 4 4 0.832           0.928       0.956         0.1515 0.839   0.708
#> 5 5 0.811           0.889       0.918         0.0259 0.986   0.965
#> 6 6 0.909           0.937       0.960         0.0568 0.986   0.964

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR934216     1  0.0376      0.997 0.996 0.004
#> SRR934217     1  0.0376      0.997 0.996 0.004
#> SRR934218     1  0.0376      0.997 0.996 0.004
#> SRR934219     1  0.0376      0.997 0.996 0.004
#> SRR934220     1  0.0376      0.997 0.996 0.004
#> SRR934221     1  0.0376      0.997 0.996 0.004
#> SRR934222     1  0.0376      0.997 0.996 0.004
#> SRR934223     1  0.0376      0.997 0.996 0.004
#> SRR934224     1  0.0376      0.997 0.996 0.004
#> SRR934225     1  0.0376      0.997 0.996 0.004
#> SRR934226     1  0.0376      0.997 0.996 0.004
#> SRR934227     1  0.0376      0.997 0.996 0.004
#> SRR934228     1  0.0376      0.997 0.996 0.004
#> SRR934229     1  0.0376      0.997 0.996 0.004
#> SRR934230     1  0.0376      0.997 0.996 0.004
#> SRR934231     1  0.0376      0.997 0.996 0.004
#> SRR934232     2  0.0376      1.000 0.004 0.996
#> SRR934233     2  0.0376      1.000 0.004 0.996
#> SRR934234     2  0.0376      1.000 0.004 0.996
#> SRR934235     2  0.0376      1.000 0.004 0.996
#> SRR934236     2  0.0376      1.000 0.004 0.996
#> SRR934237     2  0.0376      1.000 0.004 0.996
#> SRR934238     2  0.0376      1.000 0.004 0.996
#> SRR934239     2  0.0376      1.000 0.004 0.996
#> SRR934240     2  0.0376      1.000 0.004 0.996
#> SRR934241     2  0.0376      1.000 0.004 0.996
#> SRR934242     2  0.0376      1.000 0.004 0.996
#> SRR934243     2  0.0376      1.000 0.004 0.996
#> SRR934244     2  0.0376      1.000 0.004 0.996
#> SRR934245     2  0.0376      1.000 0.004 0.996
#> SRR934246     2  0.0376      1.000 0.004 0.996
#> SRR934247     2  0.0376      1.000 0.004 0.996
#> SRR934248     1  0.0000      0.999 1.000 0.000
#> SRR934249     1  0.0000      0.999 1.000 0.000
#> SRR934250     1  0.0000      0.999 1.000 0.000
#> SRR934251     1  0.0000      0.999 1.000 0.000
#> SRR934252     1  0.0000      0.999 1.000 0.000
#> SRR934253     1  0.0000      0.999 1.000 0.000
#> SRR934254     1  0.0000      0.999 1.000 0.000
#> SRR934255     1  0.0000      0.999 1.000 0.000
#> SRR934256     2  0.0376      1.000 0.004 0.996
#> SRR934257     2  0.0376      1.000 0.004 0.996
#> SRR934258     2  0.0376      1.000 0.004 0.996
#> SRR934259     2  0.0376      1.000 0.004 0.996
#> SRR934260     2  0.0376      1.000 0.004 0.996
#> SRR934261     2  0.0376      1.000 0.004 0.996
#> SRR934262     2  0.0376      1.000 0.004 0.996
#> SRR934263     2  0.0376      1.000 0.004 0.996
#> SRR934264     1  0.0376      0.997 0.996 0.004
#> SRR934265     1  0.0376      0.997 0.996 0.004
#> SRR934266     1  0.0376      0.997 0.996 0.004
#> SRR934267     1  0.0376      0.997 0.996 0.004
#> SRR934268     1  0.0376      0.997 0.996 0.004
#> SRR934269     1  0.0376      0.997 0.996 0.004
#> SRR934270     1  0.0376      0.997 0.996 0.004
#> SRR934271     1  0.0376      0.997 0.996 0.004
#> SRR934272     1  0.0000      0.999 1.000 0.000
#> SRR934273     1  0.0000      0.999 1.000 0.000
#> SRR934274     1  0.0000      0.999 1.000 0.000
#> SRR934275     1  0.0000      0.999 1.000 0.000
#> SRR934276     1  0.0000      0.999 1.000 0.000
#> SRR934277     1  0.0000      0.999 1.000 0.000
#> SRR934278     1  0.0000      0.999 1.000 0.000
#> SRR934279     1  0.0000      0.999 1.000 0.000
#> SRR934280     1  0.0000      0.999 1.000 0.000
#> SRR934281     1  0.0000      0.999 1.000 0.000
#> SRR934282     1  0.0000      0.999 1.000 0.000
#> SRR934283     1  0.0000      0.999 1.000 0.000
#> SRR934284     1  0.0000      0.999 1.000 0.000
#> SRR934285     1  0.0000      0.999 1.000 0.000
#> SRR934286     1  0.0000      0.999 1.000 0.000
#> SRR934287     1  0.0000      0.999 1.000 0.000
#> SRR934288     1  0.0000      0.999 1.000 0.000
#> SRR934289     1  0.0000      0.999 1.000 0.000
#> SRR934290     1  0.0000      0.999 1.000 0.000
#> SRR934291     1  0.0000      0.999 1.000 0.000
#> SRR934292     1  0.0000      0.999 1.000 0.000
#> SRR934293     1  0.0000      0.999 1.000 0.000
#> SRR934294     1  0.0000      0.999 1.000 0.000
#> SRR934295     1  0.0000      0.999 1.000 0.000
#> SRR934296     1  0.0000      0.999 1.000 0.000
#> SRR934297     1  0.0000      0.999 1.000 0.000
#> SRR934298     1  0.0000      0.999 1.000 0.000
#> SRR934299     1  0.0000      0.999 1.000 0.000
#> SRR934300     1  0.0000      0.999 1.000 0.000
#> SRR934301     1  0.0000      0.999 1.000 0.000
#> SRR934302     1  0.0000      0.999 1.000 0.000
#> SRR934303     1  0.0000      0.999 1.000 0.000
#> SRR934304     1  0.0376      0.997 0.996 0.004
#> SRR934305     1  0.0376      0.997 0.996 0.004
#> SRR934306     1  0.0376      0.997 0.996 0.004
#> SRR934307     1  0.0376      0.997 0.996 0.004
#> SRR934308     1  0.0376      0.997 0.996 0.004
#> SRR934309     1  0.0376      0.997 0.996 0.004
#> SRR934310     1  0.0376      0.997 0.996 0.004
#> SRR934311     1  0.0376      0.997 0.996 0.004
#> SRR934312     1  0.0000      0.999 1.000 0.000
#> SRR934313     1  0.0000      0.999 1.000 0.000
#> SRR934314     1  0.0000      0.999 1.000 0.000
#> SRR934315     1  0.0000      0.999 1.000 0.000
#> SRR934316     1  0.0000      0.999 1.000 0.000
#> SRR934317     1  0.0000      0.999 1.000 0.000
#> SRR934318     1  0.0000      0.999 1.000 0.000
#> SRR934319     1  0.0000      0.999 1.000 0.000
#> SRR934320     1  0.0000      0.999 1.000 0.000
#> SRR934321     1  0.0000      0.999 1.000 0.000
#> SRR934322     1  0.0000      0.999 1.000 0.000
#> SRR934323     1  0.0000      0.999 1.000 0.000
#> SRR934324     1  0.0000      0.999 1.000 0.000
#> SRR934325     1  0.0000      0.999 1.000 0.000
#> SRR934326     1  0.0000      0.999 1.000 0.000
#> SRR934327     1  0.0000      0.999 1.000 0.000
#> SRR934328     1  0.0000      0.999 1.000 0.000
#> SRR934329     1  0.0000      0.999 1.000 0.000
#> SRR934330     1  0.0000      0.999 1.000 0.000
#> SRR934331     1  0.0000      0.999 1.000 0.000
#> SRR934332     1  0.0000      0.999 1.000 0.000
#> SRR934333     1  0.0000      0.999 1.000 0.000
#> SRR934334     1  0.0000      0.999 1.000 0.000
#> SRR934335     1  0.0000      0.999 1.000 0.000
#> SRR934344     1  0.0000      0.999 1.000 0.000
#> SRR934345     1  0.0000      0.999 1.000 0.000
#> SRR934346     1  0.0000      0.999 1.000 0.000
#> SRR934347     1  0.0000      0.999 1.000 0.000
#> SRR934348     1  0.0000      0.999 1.000 0.000
#> SRR934349     1  0.0000      0.999 1.000 0.000
#> SRR934350     1  0.0000      0.999 1.000 0.000
#> SRR934351     1  0.0000      0.999 1.000 0.000
#> SRR934336     1  0.0000      0.999 1.000 0.000
#> SRR934337     1  0.0000      0.999 1.000 0.000
#> SRR934338     1  0.0000      0.999 1.000 0.000
#> SRR934339     1  0.0000      0.999 1.000 0.000
#> SRR934340     1  0.0000      0.999 1.000 0.000
#> SRR934341     1  0.0000      0.999 1.000 0.000
#> SRR934342     1  0.0000      0.999 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1 p2    p3
#> SRR934216     3   0.470      0.825 0.212  0 0.788
#> SRR934217     3   0.470      0.825 0.212  0 0.788
#> SRR934218     3   0.470      0.825 0.212  0 0.788
#> SRR934219     3   0.470      0.825 0.212  0 0.788
#> SRR934220     3   0.470      0.825 0.212  0 0.788
#> SRR934221     3   0.470      0.825 0.212  0 0.788
#> SRR934222     3   0.470      0.825 0.212  0 0.788
#> SRR934223     3   0.470      0.825 0.212  0 0.788
#> SRR934224     1   0.606      0.354 0.616  0 0.384
#> SRR934225     1   0.606      0.354 0.616  0 0.384
#> SRR934226     1   0.606      0.354 0.616  0 0.384
#> SRR934227     1   0.606      0.354 0.616  0 0.384
#> SRR934228     1   0.606      0.354 0.616  0 0.384
#> SRR934229     1   0.606      0.354 0.616  0 0.384
#> SRR934230     1   0.606      0.354 0.616  0 0.384
#> SRR934231     1   0.606      0.354 0.616  0 0.384
#> SRR934232     2   0.000      1.000 0.000  1 0.000
#> SRR934233     2   0.000      1.000 0.000  1 0.000
#> SRR934234     2   0.000      1.000 0.000  1 0.000
#> SRR934235     2   0.000      1.000 0.000  1 0.000
#> SRR934236     2   0.000      1.000 0.000  1 0.000
#> SRR934237     2   0.000      1.000 0.000  1 0.000
#> SRR934238     2   0.000      1.000 0.000  1 0.000
#> SRR934239     2   0.000      1.000 0.000  1 0.000
#> SRR934240     2   0.000      1.000 0.000  1 0.000
#> SRR934241     2   0.000      1.000 0.000  1 0.000
#> SRR934242     2   0.000      1.000 0.000  1 0.000
#> SRR934243     2   0.000      1.000 0.000  1 0.000
#> SRR934244     2   0.000      1.000 0.000  1 0.000
#> SRR934245     2   0.000      1.000 0.000  1 0.000
#> SRR934246     2   0.000      1.000 0.000  1 0.000
#> SRR934247     2   0.000      1.000 0.000  1 0.000
#> SRR934248     1   0.000      0.920 1.000  0 0.000
#> SRR934249     1   0.000      0.920 1.000  0 0.000
#> SRR934250     1   0.000      0.920 1.000  0 0.000
#> SRR934251     1   0.000      0.920 1.000  0 0.000
#> SRR934252     1   0.000      0.920 1.000  0 0.000
#> SRR934253     1   0.000      0.920 1.000  0 0.000
#> SRR934254     1   0.000      0.920 1.000  0 0.000
#> SRR934255     1   0.000      0.920 1.000  0 0.000
#> SRR934256     2   0.000      1.000 0.000  1 0.000
#> SRR934257     2   0.000      1.000 0.000  1 0.000
#> SRR934258     2   0.000      1.000 0.000  1 0.000
#> SRR934259     2   0.000      1.000 0.000  1 0.000
#> SRR934260     2   0.000      1.000 0.000  1 0.000
#> SRR934261     2   0.000      1.000 0.000  1 0.000
#> SRR934262     2   0.000      1.000 0.000  1 0.000
#> SRR934263     2   0.000      1.000 0.000  1 0.000
#> SRR934264     1   0.606      0.354 0.616  0 0.384
#> SRR934265     1   0.606      0.354 0.616  0 0.384
#> SRR934266     1   0.606      0.354 0.616  0 0.384
#> SRR934267     1   0.606      0.354 0.616  0 0.384
#> SRR934268     1   0.606      0.354 0.616  0 0.384
#> SRR934269     1   0.606      0.354 0.616  0 0.384
#> SRR934270     1   0.606      0.354 0.616  0 0.384
#> SRR934271     1   0.606      0.354 0.616  0 0.384
#> SRR934272     1   0.000      0.920 1.000  0 0.000
#> SRR934273     1   0.000      0.920 1.000  0 0.000
#> SRR934274     1   0.000      0.920 1.000  0 0.000
#> SRR934275     1   0.000      0.920 1.000  0 0.000
#> SRR934276     1   0.000      0.920 1.000  0 0.000
#> SRR934277     1   0.000      0.920 1.000  0 0.000
#> SRR934278     1   0.000      0.920 1.000  0 0.000
#> SRR934279     1   0.000      0.920 1.000  0 0.000
#> SRR934280     1   0.000      0.920 1.000  0 0.000
#> SRR934281     1   0.000      0.920 1.000  0 0.000
#> SRR934282     1   0.000      0.920 1.000  0 0.000
#> SRR934283     1   0.000      0.920 1.000  0 0.000
#> SRR934284     1   0.000      0.920 1.000  0 0.000
#> SRR934285     1   0.000      0.920 1.000  0 0.000
#> SRR934286     1   0.000      0.920 1.000  0 0.000
#> SRR934287     1   0.000      0.920 1.000  0 0.000
#> SRR934288     1   0.000      0.920 1.000  0 0.000
#> SRR934289     1   0.000      0.920 1.000  0 0.000
#> SRR934290     1   0.000      0.920 1.000  0 0.000
#> SRR934291     1   0.000      0.920 1.000  0 0.000
#> SRR934292     1   0.000      0.920 1.000  0 0.000
#> SRR934293     1   0.000      0.920 1.000  0 0.000
#> SRR934294     1   0.000      0.920 1.000  0 0.000
#> SRR934295     1   0.000      0.920 1.000  0 0.000
#> SRR934296     1   0.000      0.920 1.000  0 0.000
#> SRR934297     1   0.000      0.920 1.000  0 0.000
#> SRR934298     1   0.000      0.920 1.000  0 0.000
#> SRR934299     1   0.000      0.920 1.000  0 0.000
#> SRR934300     1   0.000      0.920 1.000  0 0.000
#> SRR934301     1   0.000      0.920 1.000  0 0.000
#> SRR934302     1   0.000      0.920 1.000  0 0.000
#> SRR934303     1   0.000      0.920 1.000  0 0.000
#> SRR934304     3   0.000      0.810 0.000  0 1.000
#> SRR934305     3   0.000      0.810 0.000  0 1.000
#> SRR934306     3   0.000      0.810 0.000  0 1.000
#> SRR934307     3   0.000      0.810 0.000  0 1.000
#> SRR934308     3   0.000      0.810 0.000  0 1.000
#> SRR934309     3   0.000      0.810 0.000  0 1.000
#> SRR934310     3   0.000      0.810 0.000  0 1.000
#> SRR934311     3   0.000      0.810 0.000  0 1.000
#> SRR934312     1   0.000      0.920 1.000  0 0.000
#> SRR934313     1   0.000      0.920 1.000  0 0.000
#> SRR934314     1   0.000      0.920 1.000  0 0.000
#> SRR934315     1   0.000      0.920 1.000  0 0.000
#> SRR934316     1   0.000      0.920 1.000  0 0.000
#> SRR934317     1   0.000      0.920 1.000  0 0.000
#> SRR934318     1   0.000      0.920 1.000  0 0.000
#> SRR934319     1   0.000      0.920 1.000  0 0.000
#> SRR934320     1   0.000      0.920 1.000  0 0.000
#> SRR934321     1   0.000      0.920 1.000  0 0.000
#> SRR934322     1   0.000      0.920 1.000  0 0.000
#> SRR934323     1   0.000      0.920 1.000  0 0.000
#> SRR934324     1   0.000      0.920 1.000  0 0.000
#> SRR934325     1   0.000      0.920 1.000  0 0.000
#> SRR934326     1   0.000      0.920 1.000  0 0.000
#> SRR934327     1   0.000      0.920 1.000  0 0.000
#> SRR934328     1   0.000      0.920 1.000  0 0.000
#> SRR934329     1   0.000      0.920 1.000  0 0.000
#> SRR934330     1   0.000      0.920 1.000  0 0.000
#> SRR934331     1   0.000      0.920 1.000  0 0.000
#> SRR934332     1   0.000      0.920 1.000  0 0.000
#> SRR934333     1   0.000      0.920 1.000  0 0.000
#> SRR934334     1   0.000      0.920 1.000  0 0.000
#> SRR934335     1   0.000      0.920 1.000  0 0.000
#> SRR934344     1   0.000      0.920 1.000  0 0.000
#> SRR934345     1   0.000      0.920 1.000  0 0.000
#> SRR934346     1   0.000      0.920 1.000  0 0.000
#> SRR934347     1   0.000      0.920 1.000  0 0.000
#> SRR934348     1   0.000      0.920 1.000  0 0.000
#> SRR934349     1   0.000      0.920 1.000  0 0.000
#> SRR934350     1   0.000      0.920 1.000  0 0.000
#> SRR934351     1   0.000      0.920 1.000  0 0.000
#> SRR934336     1   0.000      0.920 1.000  0 0.000
#> SRR934337     1   0.000      0.920 1.000  0 0.000
#> SRR934338     1   0.000      0.920 1.000  0 0.000
#> SRR934339     1   0.000      0.920 1.000  0 0.000
#> SRR934340     1   0.000      0.920 1.000  0 0.000
#> SRR934341     1   0.000      0.920 1.000  0 0.000
#> SRR934342     1   0.000      0.920 1.000  0 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1 p2  p3    p4
#> SRR934216     4   0.361      0.401 0.000  0 0.2 0.800
#> SRR934217     4   0.361      0.401 0.000  0 0.2 0.800
#> SRR934218     4   0.361      0.401 0.000  0 0.2 0.800
#> SRR934219     4   0.361      0.401 0.000  0 0.2 0.800
#> SRR934220     4   0.361      0.401 0.000  0 0.2 0.800
#> SRR934221     4   0.361      0.401 0.000  0 0.2 0.800
#> SRR934222     4   0.361      0.401 0.000  0 0.2 0.800
#> SRR934223     4   0.361      0.401 0.000  0 0.2 0.800
#> SRR934224     4   0.365      0.718 0.204  0 0.0 0.796
#> SRR934225     4   0.365      0.718 0.204  0 0.0 0.796
#> SRR934226     4   0.365      0.718 0.204  0 0.0 0.796
#> SRR934227     4   0.365      0.718 0.204  0 0.0 0.796
#> SRR934228     4   0.365      0.718 0.204  0 0.0 0.796
#> SRR934229     4   0.365      0.718 0.204  0 0.0 0.796
#> SRR934230     4   0.365      0.718 0.204  0 0.0 0.796
#> SRR934231     4   0.365      0.718 0.204  0 0.0 0.796
#> SRR934232     2   0.000      1.000 0.000  1 0.0 0.000
#> SRR934233     2   0.000      1.000 0.000  1 0.0 0.000
#> SRR934234     2   0.000      1.000 0.000  1 0.0 0.000
#> SRR934235     2   0.000      1.000 0.000  1 0.0 0.000
#> SRR934236     2   0.000      1.000 0.000  1 0.0 0.000
#> SRR934237     2   0.000      1.000 0.000  1 0.0 0.000
#> SRR934238     2   0.000      1.000 0.000  1 0.0 0.000
#> SRR934239     2   0.000      1.000 0.000  1 0.0 0.000
#> SRR934240     2   0.000      1.000 0.000  1 0.0 0.000
#> SRR934241     2   0.000      1.000 0.000  1 0.0 0.000
#> SRR934242     2   0.000      1.000 0.000  1 0.0 0.000
#> SRR934243     2   0.000      1.000 0.000  1 0.0 0.000
#> SRR934244     2   0.000      1.000 0.000  1 0.0 0.000
#> SRR934245     2   0.000      1.000 0.000  1 0.0 0.000
#> SRR934246     2   0.000      1.000 0.000  1 0.0 0.000
#> SRR934247     2   0.000      1.000 0.000  1 0.0 0.000
#> SRR934248     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934249     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934250     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934251     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934252     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934253     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934254     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934255     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934256     2   0.000      1.000 0.000  1 0.0 0.000
#> SRR934257     2   0.000      1.000 0.000  1 0.0 0.000
#> SRR934258     2   0.000      1.000 0.000  1 0.0 0.000
#> SRR934259     2   0.000      1.000 0.000  1 0.0 0.000
#> SRR934260     2   0.000      1.000 0.000  1 0.0 0.000
#> SRR934261     2   0.000      1.000 0.000  1 0.0 0.000
#> SRR934262     2   0.000      1.000 0.000  1 0.0 0.000
#> SRR934263     2   0.000      1.000 0.000  1 0.0 0.000
#> SRR934264     4   0.464      0.674 0.344  0 0.0 0.656
#> SRR934265     4   0.464      0.674 0.344  0 0.0 0.656
#> SRR934266     4   0.464      0.674 0.344  0 0.0 0.656
#> SRR934267     4   0.464      0.674 0.344  0 0.0 0.656
#> SRR934268     4   0.464      0.674 0.344  0 0.0 0.656
#> SRR934269     4   0.464      0.674 0.344  0 0.0 0.656
#> SRR934270     4   0.464      0.674 0.344  0 0.0 0.656
#> SRR934271     4   0.464      0.674 0.344  0 0.0 0.656
#> SRR934272     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934273     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934274     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934275     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934276     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934277     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934278     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934279     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934280     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934281     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934282     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934283     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934284     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934285     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934286     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934287     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934288     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934289     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934290     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934291     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934292     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934293     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934294     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934295     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934296     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934297     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934298     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934299     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934300     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934301     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934302     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934303     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934304     3   0.000      1.000 0.000  0 1.0 0.000
#> SRR934305     3   0.000      1.000 0.000  0 1.0 0.000
#> SRR934306     3   0.000      1.000 0.000  0 1.0 0.000
#> SRR934307     3   0.000      1.000 0.000  0 1.0 0.000
#> SRR934308     3   0.000      1.000 0.000  0 1.0 0.000
#> SRR934309     3   0.000      1.000 0.000  0 1.0 0.000
#> SRR934310     3   0.000      1.000 0.000  0 1.0 0.000
#> SRR934311     3   0.000      1.000 0.000  0 1.0 0.000
#> SRR934312     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934313     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934314     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934315     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934316     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934317     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934318     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934319     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934320     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934321     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934322     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934323     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934324     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934325     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934326     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934327     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934328     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934329     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934330     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934331     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934332     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934333     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934334     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934335     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934344     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934345     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934346     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934347     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934348     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934349     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934350     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934351     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934336     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934337     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934338     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934339     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934340     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934341     1   0.000      1.000 1.000  0 0.0 0.000
#> SRR934342     1   0.000      1.000 1.000  0 0.0 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette   p1    p2    p3   p4    p5
#> SRR934216     4   0.603      0.186 0.00 0.224 0.000 0.58 0.196
#> SRR934217     4   0.603      0.186 0.00 0.224 0.000 0.58 0.196
#> SRR934218     4   0.603      0.186 0.00 0.224 0.000 0.58 0.196
#> SRR934219     4   0.603      0.186 0.00 0.224 0.000 0.58 0.196
#> SRR934220     4   0.603      0.186 0.00 0.224 0.000 0.58 0.196
#> SRR934221     4   0.603      0.186 0.00 0.224 0.000 0.58 0.196
#> SRR934222     4   0.603      0.186 0.00 0.224 0.000 0.58 0.196
#> SRR934223     4   0.603      0.186 0.00 0.224 0.000 0.58 0.196
#> SRR934224     4   0.311      0.656 0.20 0.000 0.000 0.80 0.000
#> SRR934225     4   0.311      0.656 0.20 0.000 0.000 0.80 0.000
#> SRR934226     4   0.311      0.656 0.20 0.000 0.000 0.80 0.000
#> SRR934227     4   0.311      0.656 0.20 0.000 0.000 0.80 0.000
#> SRR934228     4   0.311      0.656 0.20 0.000 0.000 0.80 0.000
#> SRR934229     4   0.311      0.656 0.20 0.000 0.000 0.80 0.000
#> SRR934230     4   0.311      0.656 0.20 0.000 0.000 0.80 0.000
#> SRR934231     4   0.311      0.656 0.20 0.000 0.000 0.80 0.000
#> SRR934232     2   0.331      0.844 0.00 0.776 0.224 0.00 0.000
#> SRR934233     2   0.331      0.844 0.00 0.776 0.224 0.00 0.000
#> SRR934234     2   0.331      0.844 0.00 0.776 0.224 0.00 0.000
#> SRR934235     2   0.331      0.844 0.00 0.776 0.224 0.00 0.000
#> SRR934236     2   0.331      0.844 0.00 0.776 0.224 0.00 0.000
#> SRR934237     2   0.331      0.844 0.00 0.776 0.224 0.00 0.000
#> SRR934238     2   0.331      0.844 0.00 0.776 0.224 0.00 0.000
#> SRR934239     2   0.331      0.844 0.00 0.776 0.224 0.00 0.000
#> SRR934240     2   0.423      0.820 0.00 0.580 0.420 0.00 0.000
#> SRR934241     2   0.423      0.820 0.00 0.580 0.420 0.00 0.000
#> SRR934242     2   0.423      0.820 0.00 0.580 0.420 0.00 0.000
#> SRR934243     2   0.423      0.820 0.00 0.580 0.420 0.00 0.000
#> SRR934244     2   0.423      0.820 0.00 0.580 0.420 0.00 0.000
#> SRR934245     2   0.423      0.820 0.00 0.580 0.420 0.00 0.000
#> SRR934246     2   0.423      0.820 0.00 0.580 0.420 0.00 0.000
#> SRR934247     2   0.423      0.820 0.00 0.580 0.420 0.00 0.000
#> SRR934248     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934249     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934250     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934251     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934252     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934253     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934254     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934255     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934256     3   0.000      1.000 0.00 0.000 1.000 0.00 0.000
#> SRR934257     3   0.000      1.000 0.00 0.000 1.000 0.00 0.000
#> SRR934258     3   0.000      1.000 0.00 0.000 1.000 0.00 0.000
#> SRR934259     3   0.000      1.000 0.00 0.000 1.000 0.00 0.000
#> SRR934260     3   0.000      1.000 0.00 0.000 1.000 0.00 0.000
#> SRR934261     3   0.000      1.000 0.00 0.000 1.000 0.00 0.000
#> SRR934262     3   0.000      1.000 0.00 0.000 1.000 0.00 0.000
#> SRR934263     3   0.000      1.000 0.00 0.000 1.000 0.00 0.000
#> SRR934264     4   0.398      0.629 0.34 0.000 0.000 0.66 0.000
#> SRR934265     4   0.398      0.629 0.34 0.000 0.000 0.66 0.000
#> SRR934266     4   0.398      0.629 0.34 0.000 0.000 0.66 0.000
#> SRR934267     4   0.398      0.629 0.34 0.000 0.000 0.66 0.000
#> SRR934268     4   0.398      0.629 0.34 0.000 0.000 0.66 0.000
#> SRR934269     4   0.398      0.629 0.34 0.000 0.000 0.66 0.000
#> SRR934270     4   0.398      0.629 0.34 0.000 0.000 0.66 0.000
#> SRR934271     4   0.398      0.629 0.34 0.000 0.000 0.66 0.000
#> SRR934272     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934273     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934274     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934275     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934276     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934277     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934278     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934279     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934280     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934281     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934282     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934283     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934284     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934285     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934286     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934287     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934288     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934289     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934290     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934291     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934292     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934293     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934294     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934295     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934296     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934297     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934298     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934299     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934300     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934301     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934302     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934303     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934304     5   0.000      1.000 0.00 0.000 0.000 0.00 1.000
#> SRR934305     5   0.000      1.000 0.00 0.000 0.000 0.00 1.000
#> SRR934306     5   0.000      1.000 0.00 0.000 0.000 0.00 1.000
#> SRR934307     5   0.000      1.000 0.00 0.000 0.000 0.00 1.000
#> SRR934308     5   0.000      1.000 0.00 0.000 0.000 0.00 1.000
#> SRR934309     5   0.000      1.000 0.00 0.000 0.000 0.00 1.000
#> SRR934310     5   0.000      1.000 0.00 0.000 0.000 0.00 1.000
#> SRR934311     5   0.000      1.000 0.00 0.000 0.000 0.00 1.000
#> SRR934312     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934313     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934314     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934315     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934316     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934317     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934318     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934319     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934320     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934321     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934322     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934323     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934324     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934325     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934326     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934327     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934328     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934329     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934330     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934331     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934332     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934333     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934334     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934335     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934344     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934345     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934346     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934347     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934348     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934349     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934350     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934351     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934336     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934337     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934338     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934339     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934340     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934341     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000
#> SRR934342     1   0.000      1.000 1.00 0.000 0.000 0.00 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1  p2 p3  p4 p5    p6
#> SRR934216     3  0.0000      1.000 0.000 0.0  1 0.0  0 0.000
#> SRR934217     3  0.0000      1.000 0.000 0.0  1 0.0  0 0.000
#> SRR934218     3  0.0000      1.000 0.000 0.0  1 0.0  0 0.000
#> SRR934219     3  0.0000      1.000 0.000 0.0  1 0.0  0 0.000
#> SRR934220     3  0.0000      1.000 0.000 0.0  1 0.0  0 0.000
#> SRR934221     3  0.0000      1.000 0.000 0.0  1 0.0  0 0.000
#> SRR934222     3  0.0000      1.000 0.000 0.0  1 0.0  0 0.000
#> SRR934223     3  0.0000      1.000 0.000 0.0  1 0.0  0 0.000
#> SRR934224     6  0.0000      0.683 0.000 0.0  0 0.0  0 1.000
#> SRR934225     6  0.0000      0.683 0.000 0.0  0 0.0  0 1.000
#> SRR934226     6  0.0000      0.683 0.000 0.0  0 0.0  0 1.000
#> SRR934227     6  0.0000      0.683 0.000 0.0  0 0.0  0 1.000
#> SRR934228     6  0.0000      0.683 0.000 0.0  0 0.0  0 1.000
#> SRR934229     6  0.0000      0.683 0.000 0.0  0 0.0  0 1.000
#> SRR934230     6  0.0000      0.683 0.000 0.0  0 0.0  0 1.000
#> SRR934231     6  0.0000      0.683 0.000 0.0  0 0.0  0 1.000
#> SRR934232     2  0.0000      0.880 0.000 1.0  0 0.0  0 0.000
#> SRR934233     2  0.0000      0.880 0.000 1.0  0 0.0  0 0.000
#> SRR934234     2  0.0000      0.880 0.000 1.0  0 0.0  0 0.000
#> SRR934235     2  0.0000      0.880 0.000 1.0  0 0.0  0 0.000
#> SRR934236     2  0.0000      0.880 0.000 1.0  0 0.0  0 0.000
#> SRR934237     2  0.0000      0.880 0.000 1.0  0 0.0  0 0.000
#> SRR934238     2  0.0000      0.880 0.000 1.0  0 0.0  0 0.000
#> SRR934239     2  0.0000      0.880 0.000 1.0  0 0.0  0 0.000
#> SRR934240     2  0.2793      0.867 0.000 0.8  0 0.2  0 0.000
#> SRR934241     2  0.2793      0.867 0.000 0.8  0 0.2  0 0.000
#> SRR934242     2  0.2793      0.867 0.000 0.8  0 0.2  0 0.000
#> SRR934243     2  0.2793      0.867 0.000 0.8  0 0.2  0 0.000
#> SRR934244     2  0.2793      0.867 0.000 0.8  0 0.2  0 0.000
#> SRR934245     2  0.2793      0.867 0.000 0.8  0 0.2  0 0.000
#> SRR934246     2  0.2793      0.867 0.000 0.8  0 0.2  0 0.000
#> SRR934247     2  0.2793      0.867 0.000 0.8  0 0.2  0 0.000
#> SRR934248     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934249     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934250     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934251     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934252     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934253     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934254     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934255     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934256     4  0.0000      1.000 0.000 0.0  0 1.0  0 0.000
#> SRR934257     4  0.0000      1.000 0.000 0.0  0 1.0  0 0.000
#> SRR934258     4  0.0000      1.000 0.000 0.0  0 1.0  0 0.000
#> SRR934259     4  0.0000      1.000 0.000 0.0  0 1.0  0 0.000
#> SRR934260     4  0.0000      1.000 0.000 0.0  0 1.0  0 0.000
#> SRR934261     4  0.0000      1.000 0.000 0.0  0 1.0  0 0.000
#> SRR934262     4  0.0000      1.000 0.000 0.0  0 1.0  0 0.000
#> SRR934263     4  0.0000      1.000 0.000 0.0  0 1.0  0 0.000
#> SRR934264     6  0.3409      0.723 0.300 0.0  0 0.0  0 0.700
#> SRR934265     6  0.3409      0.723 0.300 0.0  0 0.0  0 0.700
#> SRR934266     6  0.3409      0.723 0.300 0.0  0 0.0  0 0.700
#> SRR934267     6  0.3409      0.723 0.300 0.0  0 0.0  0 0.700
#> SRR934268     6  0.3409      0.723 0.300 0.0  0 0.0  0 0.700
#> SRR934269     6  0.3409      0.723 0.300 0.0  0 0.0  0 0.700
#> SRR934270     6  0.3409      0.723 0.300 0.0  0 0.0  0 0.700
#> SRR934271     6  0.3409      0.723 0.300 0.0  0 0.0  0 0.700
#> SRR934272     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934273     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934274     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934275     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934276     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934277     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934278     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934279     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934280     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934281     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934282     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934283     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934284     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934285     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934286     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934287     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934288     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934289     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934290     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934291     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934292     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934293     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934294     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934295     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934296     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934297     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934298     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934299     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934300     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934301     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934302     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934303     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934304     5  0.0000      1.000 0.000 0.0  0 0.0  1 0.000
#> SRR934305     5  0.0000      1.000 0.000 0.0  0 0.0  1 0.000
#> SRR934306     5  0.0000      1.000 0.000 0.0  0 0.0  1 0.000
#> SRR934307     5  0.0000      1.000 0.000 0.0  0 0.0  1 0.000
#> SRR934308     5  0.0000      1.000 0.000 0.0  0 0.0  1 0.000
#> SRR934309     5  0.0000      1.000 0.000 0.0  0 0.0  1 0.000
#> SRR934310     5  0.0000      1.000 0.000 0.0  0 0.0  1 0.000
#> SRR934311     5  0.0000      1.000 0.000 0.0  0 0.0  1 0.000
#> SRR934312     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934313     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934314     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934315     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934316     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934317     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934318     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934319     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934320     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934321     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934322     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934323     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934324     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934325     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934326     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934327     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934328     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934329     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934330     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934331     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934332     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934333     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934334     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934335     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934344     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934345     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934346     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934347     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934348     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934349     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934350     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934351     1  0.0000      0.978 1.000 0.0  0 0.0  0 0.000
#> SRR934336     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934337     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934338     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934339     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934340     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934341     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036
#> SRR934342     1  0.0865      0.977 0.964 0.0  0 0.0  0 0.036

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14550 rows and 135 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.440           0.830       0.861         0.3036 0.705   0.705
#> 3 3 0.692           0.909       0.931         0.5538 0.832   0.762
#> 4 4 0.535           0.761       0.799         0.2931 1.000   1.000
#> 5 5 0.514           0.512       0.632         0.1536 0.812   0.649
#> 6 6 0.536           0.595       0.668         0.0809 0.778   0.442

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR934216     1  0.0672      0.562 0.992 0.008
#> SRR934217     1  0.0672      0.562 0.992 0.008
#> SRR934218     1  0.0672      0.562 0.992 0.008
#> SRR934219     1  0.0672      0.562 0.992 0.008
#> SRR934220     1  0.0672      0.562 0.992 0.008
#> SRR934221     1  0.0672      0.562 0.992 0.008
#> SRR934222     1  0.0672      0.562 0.992 0.008
#> SRR934223     1  0.0672      0.562 0.992 0.008
#> SRR934224     1  0.6973      0.761 0.812 0.188
#> SRR934225     1  0.6973      0.761 0.812 0.188
#> SRR934226     1  0.6973      0.761 0.812 0.188
#> SRR934227     1  0.6973      0.761 0.812 0.188
#> SRR934228     1  0.6973      0.761 0.812 0.188
#> SRR934229     1  0.6973      0.761 0.812 0.188
#> SRR934230     1  0.6973      0.761 0.812 0.188
#> SRR934231     1  0.6973      0.761 0.812 0.188
#> SRR934232     2  0.0672      0.997 0.008 0.992
#> SRR934233     2  0.0672      0.997 0.008 0.992
#> SRR934234     2  0.0672      0.997 0.008 0.992
#> SRR934235     2  0.0672      0.997 0.008 0.992
#> SRR934236     2  0.0672      0.997 0.008 0.992
#> SRR934237     2  0.0672      0.997 0.008 0.992
#> SRR934238     2  0.0672      0.997 0.008 0.992
#> SRR934239     2  0.0672      0.997 0.008 0.992
#> SRR934240     2  0.0672      0.997 0.008 0.992
#> SRR934241     2  0.0672      0.997 0.008 0.992
#> SRR934242     2  0.0672      0.997 0.008 0.992
#> SRR934243     2  0.0672      0.997 0.008 0.992
#> SRR934244     2  0.0672      0.997 0.008 0.992
#> SRR934245     2  0.0672      0.997 0.008 0.992
#> SRR934246     2  0.0672      0.997 0.008 0.992
#> SRR934247     2  0.0672      0.997 0.008 0.992
#> SRR934248     1  0.9710      0.828 0.600 0.400
#> SRR934249     1  0.9710      0.828 0.600 0.400
#> SRR934250     1  0.9710      0.828 0.600 0.400
#> SRR934251     1  0.9710      0.828 0.600 0.400
#> SRR934252     1  0.9710      0.828 0.600 0.400
#> SRR934253     1  0.9710      0.828 0.600 0.400
#> SRR934254     1  0.9710      0.828 0.600 0.400
#> SRR934255     1  0.9710      0.828 0.600 0.400
#> SRR934256     2  0.0672      0.994 0.008 0.992
#> SRR934257     2  0.0672      0.994 0.008 0.992
#> SRR934258     2  0.0672      0.994 0.008 0.992
#> SRR934259     2  0.0672      0.994 0.008 0.992
#> SRR934260     2  0.0672      0.994 0.008 0.992
#> SRR934261     2  0.0672      0.994 0.008 0.992
#> SRR934262     2  0.0672      0.994 0.008 0.992
#> SRR934263     2  0.0672      0.994 0.008 0.992
#> SRR934264     1  0.6887      0.758 0.816 0.184
#> SRR934265     1  0.6887      0.758 0.816 0.184
#> SRR934266     1  0.6887      0.758 0.816 0.184
#> SRR934267     1  0.6887      0.758 0.816 0.184
#> SRR934268     1  0.6887      0.758 0.816 0.184
#> SRR934269     1  0.6887      0.758 0.816 0.184
#> SRR934270     1  0.6887      0.758 0.816 0.184
#> SRR934271     1  0.6887      0.758 0.816 0.184
#> SRR934272     1  0.9170      0.860 0.668 0.332
#> SRR934273     1  0.9170      0.860 0.668 0.332
#> SRR934274     1  0.9170      0.860 0.668 0.332
#> SRR934275     1  0.9170      0.860 0.668 0.332
#> SRR934276     1  0.9170      0.860 0.668 0.332
#> SRR934277     1  0.9170      0.860 0.668 0.332
#> SRR934278     1  0.9170      0.860 0.668 0.332
#> SRR934279     1  0.9170      0.860 0.668 0.332
#> SRR934280     1  0.9427      0.860 0.640 0.360
#> SRR934281     1  0.9427      0.860 0.640 0.360
#> SRR934282     1  0.9427      0.860 0.640 0.360
#> SRR934283     1  0.9427      0.860 0.640 0.360
#> SRR934284     1  0.9427      0.860 0.640 0.360
#> SRR934285     1  0.9427      0.860 0.640 0.360
#> SRR934286     1  0.9427      0.860 0.640 0.360
#> SRR934287     1  0.9427      0.860 0.640 0.360
#> SRR934288     1  0.9427      0.860 0.640 0.360
#> SRR934289     1  0.9427      0.860 0.640 0.360
#> SRR934290     1  0.9427      0.860 0.640 0.360
#> SRR934291     1  0.9427      0.860 0.640 0.360
#> SRR934292     1  0.9427      0.860 0.640 0.360
#> SRR934293     1  0.9427      0.860 0.640 0.360
#> SRR934294     1  0.9427      0.860 0.640 0.360
#> SRR934295     1  0.9427      0.860 0.640 0.360
#> SRR934296     1  0.9635      0.841 0.612 0.388
#> SRR934297     1  0.9635      0.841 0.612 0.388
#> SRR934298     1  0.9635      0.841 0.612 0.388
#> SRR934299     1  0.9635      0.841 0.612 0.388
#> SRR934300     1  0.9635      0.841 0.612 0.388
#> SRR934301     1  0.9635      0.841 0.612 0.388
#> SRR934302     1  0.9635      0.841 0.612 0.388
#> SRR934303     1  0.9635      0.841 0.612 0.388
#> SRR934304     1  0.3584      0.498 0.932 0.068
#> SRR934305     1  0.3584      0.498 0.932 0.068
#> SRR934306     1  0.3584      0.498 0.932 0.068
#> SRR934307     1  0.3584      0.498 0.932 0.068
#> SRR934308     1  0.3584      0.498 0.932 0.068
#> SRR934309     1  0.3584      0.498 0.932 0.068
#> SRR934310     1  0.3584      0.498 0.932 0.068
#> SRR934311     1  0.3584      0.498 0.932 0.068
#> SRR934312     1  0.9427      0.860 0.640 0.360
#> SRR934313     1  0.9427      0.860 0.640 0.360
#> SRR934314     1  0.9427      0.860 0.640 0.360
#> SRR934315     1  0.9427      0.860 0.640 0.360
#> SRR934316     1  0.9427      0.860 0.640 0.360
#> SRR934317     1  0.9427      0.860 0.640 0.360
#> SRR934318     1  0.9427      0.860 0.640 0.360
#> SRR934319     1  0.9427      0.860 0.640 0.360
#> SRR934320     1  0.9460      0.860 0.636 0.364
#> SRR934321     1  0.9460      0.860 0.636 0.364
#> SRR934322     1  0.9460      0.860 0.636 0.364
#> SRR934323     1  0.9460      0.860 0.636 0.364
#> SRR934324     1  0.9460      0.860 0.636 0.364
#> SRR934325     1  0.9460      0.860 0.636 0.364
#> SRR934326     1  0.9460      0.860 0.636 0.364
#> SRR934327     1  0.9460      0.860 0.636 0.364
#> SRR934328     1  0.9427      0.860 0.640 0.360
#> SRR934329     1  0.9427      0.860 0.640 0.360
#> SRR934330     1  0.9427      0.860 0.640 0.360
#> SRR934331     1  0.9427      0.860 0.640 0.360
#> SRR934332     1  0.9427      0.860 0.640 0.360
#> SRR934333     1  0.9427      0.860 0.640 0.360
#> SRR934334     1  0.9427      0.860 0.640 0.360
#> SRR934335     1  0.9427      0.860 0.640 0.360
#> SRR934344     1  0.9170      0.860 0.668 0.332
#> SRR934345     1  0.9170      0.860 0.668 0.332
#> SRR934346     1  0.9170      0.860 0.668 0.332
#> SRR934347     1  0.9170      0.860 0.668 0.332
#> SRR934348     1  0.9170      0.860 0.668 0.332
#> SRR934349     1  0.9170      0.860 0.668 0.332
#> SRR934350     1  0.9170      0.860 0.668 0.332
#> SRR934351     1  0.9170      0.860 0.668 0.332
#> SRR934336     1  0.9170      0.860 0.668 0.332
#> SRR934337     1  0.9170      0.860 0.668 0.332
#> SRR934338     1  0.9170      0.860 0.668 0.332
#> SRR934339     1  0.9170      0.860 0.668 0.332
#> SRR934340     1  0.9170      0.860 0.668 0.332
#> SRR934341     1  0.9170      0.860 0.668 0.332
#> SRR934342     1  0.9170      0.860 0.668 0.332

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR934216     3  0.5267      0.923 0.140 0.044 0.816
#> SRR934217     3  0.5267      0.923 0.140 0.044 0.816
#> SRR934218     3  0.5267      0.923 0.140 0.044 0.816
#> SRR934219     3  0.5267      0.923 0.140 0.044 0.816
#> SRR934220     3  0.5267      0.923 0.140 0.044 0.816
#> SRR934221     3  0.5267      0.923 0.140 0.044 0.816
#> SRR934222     3  0.5267      0.923 0.140 0.044 0.816
#> SRR934223     3  0.5267      0.923 0.140 0.044 0.816
#> SRR934224     1  0.5318      0.730 0.780 0.016 0.204
#> SRR934225     1  0.5318      0.730 0.780 0.016 0.204
#> SRR934226     1  0.5318      0.730 0.780 0.016 0.204
#> SRR934227     1  0.5318      0.730 0.780 0.016 0.204
#> SRR934228     1  0.5318      0.730 0.780 0.016 0.204
#> SRR934229     1  0.5318      0.730 0.780 0.016 0.204
#> SRR934230     1  0.5318      0.730 0.780 0.016 0.204
#> SRR934231     1  0.5318      0.730 0.780 0.016 0.204
#> SRR934232     2  0.3692      0.965 0.056 0.896 0.048
#> SRR934233     2  0.3692      0.965 0.056 0.896 0.048
#> SRR934234     2  0.3692      0.965 0.056 0.896 0.048
#> SRR934235     2  0.3692      0.965 0.056 0.896 0.048
#> SRR934236     2  0.3692      0.965 0.056 0.896 0.048
#> SRR934237     2  0.3692      0.965 0.056 0.896 0.048
#> SRR934238     2  0.3692      0.965 0.056 0.896 0.048
#> SRR934239     2  0.3692      0.965 0.056 0.896 0.048
#> SRR934240     2  0.2066      0.977 0.060 0.940 0.000
#> SRR934241     2  0.2066      0.977 0.060 0.940 0.000
#> SRR934242     2  0.2066      0.977 0.060 0.940 0.000
#> SRR934243     2  0.2066      0.977 0.060 0.940 0.000
#> SRR934244     2  0.2066      0.977 0.060 0.940 0.000
#> SRR934245     2  0.2066      0.977 0.060 0.940 0.000
#> SRR934246     2  0.2066      0.977 0.060 0.940 0.000
#> SRR934247     2  0.2066      0.977 0.060 0.940 0.000
#> SRR934248     1  0.3193      0.873 0.896 0.004 0.100
#> SRR934249     1  0.3193      0.873 0.896 0.004 0.100
#> SRR934250     1  0.3193      0.873 0.896 0.004 0.100
#> SRR934251     1  0.3193      0.873 0.896 0.004 0.100
#> SRR934252     1  0.3193      0.873 0.896 0.004 0.100
#> SRR934253     1  0.3193      0.873 0.896 0.004 0.100
#> SRR934254     1  0.3193      0.873 0.896 0.004 0.100
#> SRR934255     1  0.3193      0.873 0.896 0.004 0.100
#> SRR934256     2  0.3213      0.973 0.060 0.912 0.028
#> SRR934257     2  0.3213      0.973 0.060 0.912 0.028
#> SRR934258     2  0.3213      0.973 0.060 0.912 0.028
#> SRR934259     2  0.3213      0.973 0.060 0.912 0.028
#> SRR934260     2  0.3213      0.973 0.060 0.912 0.028
#> SRR934261     2  0.3213      0.973 0.060 0.912 0.028
#> SRR934262     2  0.3213      0.973 0.060 0.912 0.028
#> SRR934263     2  0.3213      0.973 0.060 0.912 0.028
#> SRR934264     1  0.5443      0.669 0.736 0.004 0.260
#> SRR934265     1  0.5443      0.669 0.736 0.004 0.260
#> SRR934266     1  0.5443      0.669 0.736 0.004 0.260
#> SRR934267     1  0.5443      0.669 0.736 0.004 0.260
#> SRR934268     1  0.5443      0.669 0.736 0.004 0.260
#> SRR934269     1  0.5443      0.669 0.736 0.004 0.260
#> SRR934270     1  0.5443      0.669 0.736 0.004 0.260
#> SRR934271     1  0.5443      0.669 0.736 0.004 0.260
#> SRR934272     1  0.0000      0.939 1.000 0.000 0.000
#> SRR934273     1  0.0000      0.939 1.000 0.000 0.000
#> SRR934274     1  0.0000      0.939 1.000 0.000 0.000
#> SRR934275     1  0.0000      0.939 1.000 0.000 0.000
#> SRR934276     1  0.0000      0.939 1.000 0.000 0.000
#> SRR934277     1  0.0000      0.939 1.000 0.000 0.000
#> SRR934278     1  0.0000      0.939 1.000 0.000 0.000
#> SRR934279     1  0.0000      0.939 1.000 0.000 0.000
#> SRR934280     1  0.0000      0.939 1.000 0.000 0.000
#> SRR934281     1  0.0000      0.939 1.000 0.000 0.000
#> SRR934282     1  0.0000      0.939 1.000 0.000 0.000
#> SRR934283     1  0.0000      0.939 1.000 0.000 0.000
#> SRR934284     1  0.0000      0.939 1.000 0.000 0.000
#> SRR934285     1  0.0000      0.939 1.000 0.000 0.000
#> SRR934286     1  0.0000      0.939 1.000 0.000 0.000
#> SRR934287     1  0.0000      0.939 1.000 0.000 0.000
#> SRR934288     1  0.0424      0.937 0.992 0.000 0.008
#> SRR934289     1  0.0424      0.937 0.992 0.000 0.008
#> SRR934290     1  0.0424      0.937 0.992 0.000 0.008
#> SRR934291     1  0.0424      0.937 0.992 0.000 0.008
#> SRR934292     1  0.0424      0.937 0.992 0.000 0.008
#> SRR934293     1  0.0424      0.937 0.992 0.000 0.008
#> SRR934294     1  0.0424      0.937 0.992 0.000 0.008
#> SRR934295     1  0.0424      0.937 0.992 0.000 0.008
#> SRR934296     1  0.1031      0.928 0.976 0.000 0.024
#> SRR934297     1  0.1031      0.928 0.976 0.000 0.024
#> SRR934298     1  0.1031      0.928 0.976 0.000 0.024
#> SRR934299     1  0.1031      0.928 0.976 0.000 0.024
#> SRR934300     1  0.1031      0.928 0.976 0.000 0.024
#> SRR934301     1  0.1031      0.928 0.976 0.000 0.024
#> SRR934302     1  0.1031      0.928 0.976 0.000 0.024
#> SRR934303     1  0.1031      0.928 0.976 0.000 0.024
#> SRR934304     3  0.3045      0.922 0.064 0.020 0.916
#> SRR934305     3  0.3045      0.922 0.064 0.020 0.916
#> SRR934306     3  0.3045      0.922 0.064 0.020 0.916
#> SRR934307     3  0.3045      0.922 0.064 0.020 0.916
#> SRR934308     3  0.3045      0.922 0.064 0.020 0.916
#> SRR934309     3  0.3045      0.922 0.064 0.020 0.916
#> SRR934310     3  0.3045      0.922 0.064 0.020 0.916
#> SRR934311     3  0.3045      0.922 0.064 0.020 0.916
#> SRR934312     1  0.0000      0.939 1.000 0.000 0.000
#> SRR934313     1  0.0000      0.939 1.000 0.000 0.000
#> SRR934314     1  0.0000      0.939 1.000 0.000 0.000
#> SRR934315     1  0.0000      0.939 1.000 0.000 0.000
#> SRR934316     1  0.0000      0.939 1.000 0.000 0.000
#> SRR934317     1  0.0000      0.939 1.000 0.000 0.000
#> SRR934318     1  0.0000      0.939 1.000 0.000 0.000
#> SRR934319     1  0.0000      0.939 1.000 0.000 0.000
#> SRR934320     1  0.0237      0.938 0.996 0.000 0.004
#> SRR934321     1  0.0237      0.938 0.996 0.000 0.004
#> SRR934322     1  0.0237      0.938 0.996 0.000 0.004
#> SRR934323     1  0.0237      0.938 0.996 0.000 0.004
#> SRR934324     1  0.0237      0.938 0.996 0.000 0.004
#> SRR934325     1  0.0237      0.938 0.996 0.000 0.004
#> SRR934326     1  0.0237      0.938 0.996 0.000 0.004
#> SRR934327     1  0.0237      0.938 0.996 0.000 0.004
#> SRR934328     1  0.0592      0.936 0.988 0.000 0.012
#> SRR934329     1  0.0592      0.936 0.988 0.000 0.012
#> SRR934330     1  0.0592      0.936 0.988 0.000 0.012
#> SRR934331     1  0.0592      0.936 0.988 0.000 0.012
#> SRR934332     1  0.0592      0.936 0.988 0.000 0.012
#> SRR934333     1  0.0592      0.936 0.988 0.000 0.012
#> SRR934334     1  0.0592      0.936 0.988 0.000 0.012
#> SRR934335     1  0.0592      0.936 0.988 0.000 0.012
#> SRR934344     1  0.0237      0.938 0.996 0.000 0.004
#> SRR934345     1  0.0237      0.938 0.996 0.000 0.004
#> SRR934346     1  0.0237      0.938 0.996 0.000 0.004
#> SRR934347     1  0.0237      0.938 0.996 0.000 0.004
#> SRR934348     1  0.0237      0.938 0.996 0.000 0.004
#> SRR934349     1  0.0237      0.938 0.996 0.000 0.004
#> SRR934350     1  0.0237      0.938 0.996 0.000 0.004
#> SRR934351     1  0.0237      0.938 0.996 0.000 0.004
#> SRR934336     1  0.0000      0.939 1.000 0.000 0.000
#> SRR934337     1  0.0000      0.939 1.000 0.000 0.000
#> SRR934338     1  0.0000      0.939 1.000 0.000 0.000
#> SRR934339     1  0.0000      0.939 1.000 0.000 0.000
#> SRR934340     1  0.0000      0.939 1.000 0.000 0.000
#> SRR934341     1  0.0000      0.939 1.000 0.000 0.000
#> SRR934342     1  0.0000      0.939 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3 p4
#> SRR934216     3  0.1305      0.894 0.036 0.000 0.960 NA
#> SRR934217     3  0.1305      0.894 0.036 0.000 0.960 NA
#> SRR934218     3  0.1305      0.894 0.036 0.000 0.960 NA
#> SRR934219     3  0.1305      0.894 0.036 0.000 0.960 NA
#> SRR934220     3  0.1305      0.894 0.036 0.000 0.960 NA
#> SRR934221     3  0.1305      0.894 0.036 0.000 0.960 NA
#> SRR934222     3  0.1305      0.894 0.036 0.000 0.960 NA
#> SRR934223     3  0.1305      0.894 0.036 0.000 0.960 NA
#> SRR934224     1  0.7416      0.435 0.516 0.000 0.240 NA
#> SRR934225     1  0.7416      0.435 0.516 0.000 0.240 NA
#> SRR934226     1  0.7416      0.435 0.516 0.000 0.240 NA
#> SRR934227     1  0.7416      0.435 0.516 0.000 0.240 NA
#> SRR934228     1  0.7416      0.435 0.516 0.000 0.240 NA
#> SRR934229     1  0.7416      0.435 0.516 0.000 0.240 NA
#> SRR934230     1  0.7416      0.435 0.516 0.000 0.240 NA
#> SRR934231     1  0.7416      0.435 0.516 0.000 0.240 NA
#> SRR934232     2  0.3326      0.887 0.008 0.856 0.004 NA
#> SRR934233     2  0.3326      0.887 0.008 0.856 0.004 NA
#> SRR934234     2  0.3326      0.887 0.008 0.856 0.004 NA
#> SRR934235     2  0.3326      0.887 0.008 0.856 0.004 NA
#> SRR934236     2  0.3326      0.887 0.008 0.856 0.004 NA
#> SRR934237     2  0.3326      0.887 0.008 0.856 0.004 NA
#> SRR934238     2  0.3326      0.887 0.008 0.856 0.004 NA
#> SRR934239     2  0.3326      0.887 0.008 0.856 0.004 NA
#> SRR934240     2  0.0524      0.923 0.004 0.988 0.000 NA
#> SRR934241     2  0.0524      0.923 0.004 0.988 0.000 NA
#> SRR934242     2  0.0524      0.923 0.004 0.988 0.000 NA
#> SRR934243     2  0.0524      0.923 0.004 0.988 0.000 NA
#> SRR934244     2  0.0524      0.923 0.004 0.988 0.000 NA
#> SRR934245     2  0.0524      0.923 0.004 0.988 0.000 NA
#> SRR934246     2  0.0524      0.923 0.004 0.988 0.000 NA
#> SRR934247     2  0.0524      0.923 0.004 0.988 0.000 NA
#> SRR934248     1  0.6510      0.650 0.628 0.024 0.056 NA
#> SRR934249     1  0.6510      0.650 0.628 0.024 0.056 NA
#> SRR934250     1  0.6510      0.650 0.628 0.024 0.056 NA
#> SRR934251     1  0.6510      0.650 0.628 0.024 0.056 NA
#> SRR934252     1  0.6510      0.650 0.628 0.024 0.056 NA
#> SRR934253     1  0.6510      0.650 0.628 0.024 0.056 NA
#> SRR934254     1  0.6510      0.650 0.628 0.024 0.056 NA
#> SRR934255     1  0.6510      0.650 0.628 0.024 0.056 NA
#> SRR934256     2  0.2530      0.905 0.004 0.896 0.000 NA
#> SRR934257     2  0.2530      0.905 0.004 0.896 0.000 NA
#> SRR934258     2  0.2530      0.905 0.004 0.896 0.000 NA
#> SRR934259     2  0.2530      0.905 0.004 0.896 0.000 NA
#> SRR934260     2  0.2530      0.905 0.004 0.896 0.000 NA
#> SRR934261     2  0.2530      0.905 0.004 0.896 0.000 NA
#> SRR934262     2  0.2530      0.905 0.004 0.896 0.000 NA
#> SRR934263     2  0.2530      0.905 0.004 0.896 0.000 NA
#> SRR934264     1  0.7654      0.408 0.496 0.004 0.228 NA
#> SRR934265     1  0.7654      0.408 0.496 0.004 0.228 NA
#> SRR934266     1  0.7654      0.408 0.496 0.004 0.228 NA
#> SRR934267     1  0.7654      0.408 0.496 0.004 0.228 NA
#> SRR934268     1  0.7654      0.408 0.496 0.004 0.228 NA
#> SRR934269     1  0.7654      0.408 0.496 0.004 0.228 NA
#> SRR934270     1  0.7654      0.408 0.496 0.004 0.228 NA
#> SRR934271     1  0.7654      0.408 0.496 0.004 0.228 NA
#> SRR934272     1  0.2868      0.775 0.864 0.000 0.000 NA
#> SRR934273     1  0.2868      0.775 0.864 0.000 0.000 NA
#> SRR934274     1  0.2868      0.775 0.864 0.000 0.000 NA
#> SRR934275     1  0.2868      0.775 0.864 0.000 0.000 NA
#> SRR934276     1  0.2868      0.775 0.864 0.000 0.000 NA
#> SRR934277     1  0.2868      0.775 0.864 0.000 0.000 NA
#> SRR934278     1  0.2868      0.775 0.864 0.000 0.000 NA
#> SRR934279     1  0.2868      0.775 0.864 0.000 0.000 NA
#> SRR934280     1  0.1302      0.790 0.956 0.000 0.000 NA
#> SRR934281     1  0.1302      0.790 0.956 0.000 0.000 NA
#> SRR934282     1  0.1302      0.790 0.956 0.000 0.000 NA
#> SRR934283     1  0.1302      0.790 0.956 0.000 0.000 NA
#> SRR934284     1  0.1302      0.790 0.956 0.000 0.000 NA
#> SRR934285     1  0.1302      0.790 0.956 0.000 0.000 NA
#> SRR934286     1  0.1302      0.790 0.956 0.000 0.000 NA
#> SRR934287     1  0.1302      0.790 0.956 0.000 0.000 NA
#> SRR934288     1  0.4040      0.738 0.752 0.000 0.000 NA
#> SRR934289     1  0.4040      0.738 0.752 0.000 0.000 NA
#> SRR934290     1  0.4040      0.738 0.752 0.000 0.000 NA
#> SRR934291     1  0.4040      0.738 0.752 0.000 0.000 NA
#> SRR934292     1  0.4040      0.738 0.752 0.000 0.000 NA
#> SRR934293     1  0.4040      0.738 0.752 0.000 0.000 NA
#> SRR934294     1  0.4040      0.738 0.752 0.000 0.000 NA
#> SRR934295     1  0.4040      0.738 0.752 0.000 0.000 NA
#> SRR934296     1  0.4313      0.724 0.736 0.000 0.004 NA
#> SRR934297     1  0.4313      0.724 0.736 0.000 0.004 NA
#> SRR934298     1  0.4313      0.724 0.736 0.000 0.004 NA
#> SRR934299     1  0.4313      0.724 0.736 0.000 0.004 NA
#> SRR934300     1  0.4313      0.724 0.736 0.000 0.004 NA
#> SRR934301     1  0.4313      0.724 0.736 0.000 0.004 NA
#> SRR934302     1  0.4313      0.724 0.736 0.000 0.004 NA
#> SRR934303     1  0.4313      0.724 0.736 0.000 0.004 NA
#> SRR934304     3  0.3933      0.892 0.000 0.008 0.792 NA
#> SRR934305     3  0.3933      0.892 0.000 0.008 0.792 NA
#> SRR934306     3  0.3933      0.892 0.000 0.008 0.792 NA
#> SRR934307     3  0.3933      0.892 0.000 0.008 0.792 NA
#> SRR934308     3  0.3933      0.892 0.000 0.008 0.792 NA
#> SRR934309     3  0.3933      0.892 0.000 0.008 0.792 NA
#> SRR934310     3  0.3933      0.892 0.000 0.008 0.792 NA
#> SRR934311     3  0.3933      0.892 0.000 0.008 0.792 NA
#> SRR934312     1  0.0188      0.794 0.996 0.000 0.000 NA
#> SRR934313     1  0.0188      0.794 0.996 0.000 0.000 NA
#> SRR934314     1  0.0188      0.794 0.996 0.000 0.000 NA
#> SRR934315     1  0.0188      0.794 0.996 0.000 0.000 NA
#> SRR934316     1  0.0188      0.794 0.996 0.000 0.000 NA
#> SRR934317     1  0.0188      0.794 0.996 0.000 0.000 NA
#> SRR934318     1  0.0188      0.794 0.996 0.000 0.000 NA
#> SRR934319     1  0.0188      0.794 0.996 0.000 0.000 NA
#> SRR934320     1  0.1716      0.792 0.936 0.000 0.000 NA
#> SRR934321     1  0.1716      0.792 0.936 0.000 0.000 NA
#> SRR934322     1  0.1716      0.792 0.936 0.000 0.000 NA
#> SRR934323     1  0.1716      0.792 0.936 0.000 0.000 NA
#> SRR934324     1  0.1716      0.792 0.936 0.000 0.000 NA
#> SRR934325     1  0.1716      0.792 0.936 0.000 0.000 NA
#> SRR934326     1  0.1716      0.792 0.936 0.000 0.000 NA
#> SRR934327     1  0.1716      0.792 0.936 0.000 0.000 NA
#> SRR934328     1  0.4072      0.762 0.748 0.000 0.000 NA
#> SRR934329     1  0.4072      0.762 0.748 0.000 0.000 NA
#> SRR934330     1  0.4072      0.762 0.748 0.000 0.000 NA
#> SRR934331     1  0.4072      0.762 0.748 0.000 0.000 NA
#> SRR934332     1  0.4072      0.762 0.748 0.000 0.000 NA
#> SRR934333     1  0.4072      0.762 0.748 0.000 0.000 NA
#> SRR934334     1  0.4072      0.762 0.748 0.000 0.000 NA
#> SRR934335     1  0.4072      0.762 0.748 0.000 0.000 NA
#> SRR934344     1  0.3688      0.783 0.792 0.000 0.000 NA
#> SRR934345     1  0.3688      0.783 0.792 0.000 0.000 NA
#> SRR934346     1  0.3688      0.783 0.792 0.000 0.000 NA
#> SRR934347     1  0.3688      0.783 0.792 0.000 0.000 NA
#> SRR934348     1  0.3688      0.783 0.792 0.000 0.000 NA
#> SRR934349     1  0.3688      0.783 0.792 0.000 0.000 NA
#> SRR934350     1  0.3688      0.783 0.792 0.000 0.000 NA
#> SRR934351     1  0.3688      0.783 0.792 0.000 0.000 NA
#> SRR934336     1  0.2345      0.782 0.900 0.000 0.000 NA
#> SRR934337     1  0.2345      0.782 0.900 0.000 0.000 NA
#> SRR934338     1  0.2345      0.782 0.900 0.000 0.000 NA
#> SRR934339     1  0.2345      0.782 0.900 0.000 0.000 NA
#> SRR934340     1  0.2345      0.782 0.900 0.000 0.000 NA
#> SRR934341     1  0.2345      0.782 0.900 0.000 0.000 NA
#> SRR934342     1  0.2345      0.782 0.900 0.000 0.000 NA

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3 p4    p5
#> SRR934216     3  0.0880      0.842 0.032 0.000 0.968 NA 0.000
#> SRR934217     3  0.0880      0.842 0.032 0.000 0.968 NA 0.000
#> SRR934218     3  0.1041      0.841 0.032 0.000 0.964 NA 0.004
#> SRR934219     3  0.0880      0.842 0.032 0.000 0.968 NA 0.000
#> SRR934220     3  0.0880      0.842 0.032 0.000 0.968 NA 0.000
#> SRR934221     3  0.0880      0.842 0.032 0.000 0.968 NA 0.000
#> SRR934222     3  0.0880      0.842 0.032 0.000 0.968 NA 0.000
#> SRR934223     3  0.0880      0.842 0.032 0.000 0.968 NA 0.000
#> SRR934224     1  0.6860      0.382 0.552 0.000 0.220 NA 0.040
#> SRR934225     1  0.6860      0.382 0.552 0.000 0.220 NA 0.040
#> SRR934226     1  0.6860      0.382 0.552 0.000 0.220 NA 0.040
#> SRR934227     1  0.6860      0.382 0.552 0.000 0.220 NA 0.040
#> SRR934228     1  0.6860      0.382 0.552 0.000 0.220 NA 0.040
#> SRR934229     1  0.6860      0.382 0.552 0.000 0.220 NA 0.040
#> SRR934230     1  0.6860      0.382 0.552 0.000 0.220 NA 0.040
#> SRR934231     1  0.6860      0.382 0.552 0.000 0.220 NA 0.040
#> SRR934232     2  0.4123      0.843 0.000 0.796 0.004 NA 0.092
#> SRR934233     2  0.4123      0.843 0.000 0.796 0.004 NA 0.092
#> SRR934234     2  0.4123      0.843 0.000 0.796 0.004 NA 0.092
#> SRR934235     2  0.4123      0.843 0.000 0.796 0.004 NA 0.092
#> SRR934236     2  0.4123      0.843 0.000 0.796 0.004 NA 0.092
#> SRR934237     2  0.4123      0.843 0.000 0.796 0.004 NA 0.092
#> SRR934238     2  0.4123      0.843 0.000 0.796 0.004 NA 0.092
#> SRR934239     2  0.4123      0.843 0.000 0.796 0.004 NA 0.092
#> SRR934240     2  0.0000      0.893 0.000 1.000 0.000 NA 0.000
#> SRR934241     2  0.0000      0.893 0.000 1.000 0.000 NA 0.000
#> SRR934242     2  0.0000      0.893 0.000 1.000 0.000 NA 0.000
#> SRR934243     2  0.0000      0.893 0.000 1.000 0.000 NA 0.000
#> SRR934244     2  0.0000      0.893 0.000 1.000 0.000 NA 0.000
#> SRR934245     2  0.0000      0.893 0.000 1.000 0.000 NA 0.000
#> SRR934246     2  0.0000      0.893 0.000 1.000 0.000 NA 0.000
#> SRR934247     2  0.0000      0.893 0.000 1.000 0.000 NA 0.000
#> SRR934248     1  0.8380      0.204 0.420 0.032 0.100 NA 0.148
#> SRR934249     1  0.8380      0.204 0.420 0.032 0.100 NA 0.148
#> SRR934250     1  0.8380      0.204 0.420 0.032 0.100 NA 0.148
#> SRR934251     1  0.8380      0.204 0.420 0.032 0.100 NA 0.148
#> SRR934252     1  0.8380      0.204 0.420 0.032 0.100 NA 0.148
#> SRR934253     1  0.8380      0.204 0.420 0.032 0.100 NA 0.148
#> SRR934254     1  0.8380      0.204 0.420 0.032 0.100 NA 0.148
#> SRR934255     1  0.8380      0.204 0.420 0.032 0.100 NA 0.148
#> SRR934256     2  0.3176      0.866 0.000 0.856 0.000 NA 0.080
#> SRR934257     2  0.3176      0.866 0.000 0.856 0.000 NA 0.080
#> SRR934258     2  0.3176      0.866 0.000 0.856 0.000 NA 0.080
#> SRR934259     2  0.3176      0.866 0.000 0.856 0.000 NA 0.080
#> SRR934260     2  0.3176      0.866 0.000 0.856 0.000 NA 0.080
#> SRR934261     2  0.3176      0.866 0.000 0.856 0.000 NA 0.080
#> SRR934262     2  0.3176      0.866 0.000 0.856 0.000 NA 0.080
#> SRR934263     2  0.3176      0.866 0.000 0.856 0.000 NA 0.080
#> SRR934264     1  0.7005      0.273 0.456 0.000 0.260 NA 0.016
#> SRR934265     1  0.7005      0.273 0.456 0.000 0.260 NA 0.016
#> SRR934266     1  0.7005      0.273 0.456 0.000 0.260 NA 0.016
#> SRR934267     1  0.7005      0.273 0.456 0.000 0.260 NA 0.016
#> SRR934268     1  0.7005      0.273 0.456 0.000 0.260 NA 0.016
#> SRR934269     1  0.7005      0.273 0.456 0.000 0.260 NA 0.016
#> SRR934270     1  0.7005      0.273 0.456 0.000 0.260 NA 0.016
#> SRR934271     1  0.7005      0.273 0.456 0.000 0.260 NA 0.016
#> SRR934272     1  0.1549      0.436 0.944 0.000 0.000 NA 0.016
#> SRR934273     1  0.1549      0.436 0.944 0.000 0.000 NA 0.016
#> SRR934274     1  0.1549      0.436 0.944 0.000 0.000 NA 0.016
#> SRR934275     1  0.1549      0.436 0.944 0.000 0.000 NA 0.016
#> SRR934276     1  0.1549      0.436 0.944 0.000 0.000 NA 0.016
#> SRR934277     1  0.1549      0.436 0.944 0.000 0.000 NA 0.016
#> SRR934278     1  0.1549      0.436 0.944 0.000 0.000 NA 0.016
#> SRR934279     1  0.1549      0.436 0.944 0.000 0.000 NA 0.016
#> SRR934280     1  0.4272      0.269 0.752 0.000 0.000 NA 0.196
#> SRR934281     1  0.4272      0.269 0.752 0.000 0.000 NA 0.196
#> SRR934282     1  0.4272      0.269 0.752 0.000 0.000 NA 0.196
#> SRR934283     1  0.4272      0.269 0.752 0.000 0.000 NA 0.196
#> SRR934284     1  0.4272      0.269 0.752 0.000 0.000 NA 0.196
#> SRR934285     1  0.4272      0.269 0.752 0.000 0.000 NA 0.196
#> SRR934286     1  0.4272      0.269 0.752 0.000 0.000 NA 0.196
#> SRR934287     1  0.4272      0.269 0.752 0.000 0.000 NA 0.196
#> SRR934288     5  0.4182      0.808 0.352 0.000 0.000 NA 0.644
#> SRR934289     5  0.4182      0.808 0.352 0.000 0.000 NA 0.644
#> SRR934290     5  0.4182      0.808 0.352 0.000 0.000 NA 0.644
#> SRR934291     5  0.4182      0.808 0.352 0.000 0.000 NA 0.644
#> SRR934292     5  0.4182      0.808 0.352 0.000 0.000 NA 0.644
#> SRR934293     5  0.4182      0.808 0.352 0.000 0.000 NA 0.644
#> SRR934294     5  0.4182      0.808 0.352 0.000 0.000 NA 0.644
#> SRR934295     5  0.4182      0.808 0.352 0.000 0.000 NA 0.644
#> SRR934296     5  0.4836      0.756 0.356 0.000 0.000 NA 0.612
#> SRR934297     5  0.4836      0.756 0.356 0.000 0.000 NA 0.612
#> SRR934298     5  0.4836      0.756 0.356 0.000 0.000 NA 0.612
#> SRR934299     5  0.4836      0.756 0.356 0.000 0.000 NA 0.612
#> SRR934300     5  0.4836      0.756 0.356 0.000 0.000 NA 0.612
#> SRR934301     5  0.4836      0.756 0.356 0.000 0.000 NA 0.612
#> SRR934302     5  0.4836      0.756 0.356 0.000 0.000 NA 0.612
#> SRR934303     5  0.4836      0.756 0.356 0.000 0.000 NA 0.612
#> SRR934304     3  0.4906      0.838 0.000 0.008 0.664 NA 0.036
#> SRR934305     3  0.4906      0.838 0.000 0.008 0.664 NA 0.036
#> SRR934306     3  0.4906      0.838 0.000 0.008 0.664 NA 0.036
#> SRR934307     3  0.4906      0.838 0.000 0.008 0.664 NA 0.036
#> SRR934308     3  0.5005      0.837 0.000 0.008 0.664 NA 0.044
#> SRR934309     3  0.4906      0.838 0.000 0.008 0.664 NA 0.036
#> SRR934310     3  0.4906      0.838 0.000 0.008 0.664 NA 0.036
#> SRR934311     3  0.4906      0.838 0.000 0.008 0.664 NA 0.036
#> SRR934312     1  0.3513      0.287 0.800 0.000 0.000 NA 0.180
#> SRR934313     1  0.3513      0.287 0.800 0.000 0.000 NA 0.180
#> SRR934314     1  0.3513      0.287 0.800 0.000 0.000 NA 0.180
#> SRR934315     1  0.3513      0.287 0.800 0.000 0.000 NA 0.180
#> SRR934316     1  0.3513      0.287 0.800 0.000 0.000 NA 0.180
#> SRR934317     1  0.3513      0.287 0.800 0.000 0.000 NA 0.180
#> SRR934318     1  0.3513      0.287 0.800 0.000 0.000 NA 0.180
#> SRR934319     1  0.3513      0.287 0.800 0.000 0.000 NA 0.180
#> SRR934320     1  0.5137      0.199 0.676 0.000 0.000 NA 0.228
#> SRR934321     1  0.5137      0.199 0.676 0.000 0.000 NA 0.228
#> SRR934322     1  0.5137      0.199 0.676 0.000 0.000 NA 0.228
#> SRR934323     1  0.5137      0.199 0.676 0.000 0.000 NA 0.228
#> SRR934324     1  0.5137      0.199 0.676 0.000 0.000 NA 0.228
#> SRR934325     1  0.5137      0.199 0.676 0.000 0.000 NA 0.228
#> SRR934326     1  0.5137      0.199 0.676 0.000 0.000 NA 0.228
#> SRR934327     1  0.5137      0.199 0.676 0.000 0.000 NA 0.228
#> SRR934328     5  0.5733      0.689 0.440 0.000 0.000 NA 0.476
#> SRR934329     5  0.5733      0.689 0.440 0.000 0.000 NA 0.476
#> SRR934330     5  0.5733      0.689 0.440 0.000 0.000 NA 0.476
#> SRR934331     5  0.5733      0.689 0.440 0.000 0.000 NA 0.476
#> SRR934332     5  0.5733      0.689 0.440 0.000 0.000 NA 0.476
#> SRR934333     5  0.5733      0.689 0.440 0.000 0.000 NA 0.476
#> SRR934334     5  0.5733      0.689 0.440 0.000 0.000 NA 0.476
#> SRR934335     5  0.5733      0.689 0.440 0.000 0.000 NA 0.476
#> SRR934344     1  0.5538     -0.327 0.596 0.000 0.000 NA 0.312
#> SRR934345     1  0.5538     -0.327 0.596 0.000 0.000 NA 0.312
#> SRR934346     1  0.5538     -0.327 0.596 0.000 0.000 NA 0.312
#> SRR934347     1  0.5538     -0.327 0.596 0.000 0.000 NA 0.312
#> SRR934348     1  0.5538     -0.327 0.596 0.000 0.000 NA 0.312
#> SRR934349     1  0.5538     -0.327 0.596 0.000 0.000 NA 0.312
#> SRR934350     1  0.5538     -0.327 0.596 0.000 0.000 NA 0.312
#> SRR934351     1  0.5538     -0.327 0.596 0.000 0.000 NA 0.312
#> SRR934336     1  0.0579      0.434 0.984 0.000 0.000 NA 0.008
#> SRR934337     1  0.0579      0.434 0.984 0.000 0.000 NA 0.008
#> SRR934338     1  0.0579      0.434 0.984 0.000 0.000 NA 0.008
#> SRR934339     1  0.0579      0.434 0.984 0.000 0.000 NA 0.008
#> SRR934340     1  0.0579      0.434 0.984 0.000 0.000 NA 0.008
#> SRR934341     1  0.0579      0.434 0.984 0.000 0.000 NA 0.008
#> SRR934342     1  0.0579      0.434 0.984 0.000 0.000 NA 0.008

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4 p5    p6
#> SRR934216     3  0.6115      0.766 0.024 0.000 0.564 0.252 NA 0.012
#> SRR934217     3  0.6115      0.766 0.024 0.000 0.564 0.252 NA 0.012
#> SRR934218     3  0.6115      0.766 0.024 0.000 0.564 0.252 NA 0.012
#> SRR934219     3  0.6115      0.766 0.024 0.000 0.564 0.252 NA 0.012
#> SRR934220     3  0.6154      0.765 0.028 0.000 0.564 0.252 NA 0.012
#> SRR934221     3  0.6115      0.766 0.024 0.000 0.564 0.252 NA 0.012
#> SRR934222     3  0.6115      0.766 0.024 0.000 0.564 0.252 NA 0.012
#> SRR934223     3  0.6115      0.766 0.024 0.000 0.564 0.252 NA 0.012
#> SRR934224     4  0.5270      0.644 0.032 0.000 0.016 0.668 NA 0.228
#> SRR934225     4  0.5270      0.644 0.032 0.000 0.016 0.668 NA 0.228
#> SRR934226     4  0.5270      0.644 0.032 0.000 0.016 0.668 NA 0.228
#> SRR934227     4  0.5270      0.644 0.032 0.000 0.016 0.668 NA 0.228
#> SRR934228     4  0.5270      0.644 0.032 0.000 0.016 0.668 NA 0.228
#> SRR934229     4  0.5270      0.644 0.032 0.000 0.016 0.668 NA 0.228
#> SRR934230     4  0.5270      0.644 0.032 0.000 0.016 0.668 NA 0.228
#> SRR934231     4  0.5270      0.644 0.032 0.000 0.016 0.668 NA 0.228
#> SRR934232     2  0.4293      0.790 0.020 0.736 0.000 0.028 NA 0.008
#> SRR934233     2  0.4336      0.790 0.020 0.736 0.000 0.032 NA 0.008
#> SRR934234     2  0.4336      0.790 0.020 0.736 0.000 0.032 NA 0.008
#> SRR934235     2  0.4293      0.790 0.020 0.736 0.000 0.028 NA 0.008
#> SRR934236     2  0.4293      0.790 0.020 0.736 0.000 0.028 NA 0.008
#> SRR934237     2  0.4336      0.790 0.020 0.736 0.000 0.032 NA 0.008
#> SRR934238     2  0.4293      0.790 0.020 0.736 0.000 0.028 NA 0.008
#> SRR934239     2  0.4293      0.790 0.020 0.736 0.000 0.028 NA 0.008
#> SRR934240     2  0.0146      0.848 0.000 0.996 0.000 0.000 NA 0.000
#> SRR934241     2  0.0146      0.848 0.000 0.996 0.000 0.000 NA 0.000
#> SRR934242     2  0.0146      0.848 0.000 0.996 0.000 0.000 NA 0.000
#> SRR934243     2  0.0146      0.848 0.000 0.996 0.000 0.000 NA 0.000
#> SRR934244     2  0.0146      0.848 0.000 0.996 0.000 0.000 NA 0.000
#> SRR934245     2  0.0146      0.848 0.000 0.996 0.000 0.000 NA 0.000
#> SRR934246     2  0.0146      0.848 0.000 0.996 0.000 0.000 NA 0.000
#> SRR934247     2  0.0146      0.848 0.000 0.996 0.000 0.000 NA 0.000
#> SRR934248     4  0.8513      0.502 0.192 0.036 0.036 0.372 NA 0.240
#> SRR934249     4  0.8513      0.502 0.192 0.036 0.036 0.372 NA 0.240
#> SRR934250     4  0.8513      0.502 0.192 0.036 0.036 0.372 NA 0.240
#> SRR934251     4  0.8513      0.502 0.192 0.036 0.036 0.372 NA 0.240
#> SRR934252     4  0.8513      0.502 0.192 0.036 0.036 0.372 NA 0.240
#> SRR934253     4  0.8513      0.502 0.192 0.036 0.036 0.372 NA 0.240
#> SRR934254     4  0.8513      0.502 0.192 0.036 0.036 0.372 NA 0.240
#> SRR934255     4  0.8513      0.502 0.192 0.036 0.036 0.372 NA 0.240
#> SRR934256     2  0.3919      0.806 0.024 0.772 0.000 0.032 NA 0.000
#> SRR934257     2  0.3955      0.806 0.024 0.772 0.000 0.036 NA 0.000
#> SRR934258     2  0.3955      0.806 0.024 0.772 0.000 0.036 NA 0.000
#> SRR934259     2  0.3919      0.806 0.024 0.772 0.000 0.032 NA 0.000
#> SRR934260     2  0.4029      0.806 0.028 0.772 0.000 0.040 NA 0.000
#> SRR934261     2  0.3988      0.806 0.024 0.772 0.000 0.040 NA 0.000
#> SRR934262     2  0.3919      0.806 0.024 0.772 0.000 0.032 NA 0.000
#> SRR934263     2  0.3919      0.806 0.024 0.772 0.000 0.032 NA 0.000
#> SRR934264     4  0.4924      0.686 0.024 0.000 0.052 0.668 NA 0.252
#> SRR934265     4  0.4924      0.686 0.024 0.000 0.052 0.668 NA 0.252
#> SRR934266     4  0.4924      0.686 0.024 0.000 0.052 0.668 NA 0.252
#> SRR934267     4  0.4924      0.686 0.024 0.000 0.052 0.668 NA 0.252
#> SRR934268     4  0.4924      0.686 0.024 0.000 0.052 0.668 NA 0.252
#> SRR934269     4  0.4924      0.686 0.024 0.000 0.052 0.668 NA 0.252
#> SRR934270     4  0.4924      0.686 0.024 0.000 0.052 0.668 NA 0.252
#> SRR934271     4  0.4924      0.686 0.024 0.000 0.052 0.668 NA 0.252
#> SRR934272     6  0.5074      0.350 0.104 0.000 0.000 0.252 NA 0.636
#> SRR934273     6  0.5074      0.350 0.104 0.000 0.000 0.252 NA 0.636
#> SRR934274     6  0.5074      0.350 0.104 0.000 0.000 0.252 NA 0.636
#> SRR934275     6  0.5074      0.350 0.104 0.000 0.000 0.252 NA 0.636
#> SRR934276     6  0.5074      0.350 0.104 0.000 0.000 0.252 NA 0.636
#> SRR934277     6  0.5074      0.350 0.104 0.000 0.000 0.252 NA 0.636
#> SRR934278     6  0.5074      0.350 0.104 0.000 0.000 0.252 NA 0.636
#> SRR934279     6  0.5074      0.350 0.104 0.000 0.000 0.252 NA 0.636
#> SRR934280     6  0.3017      0.555 0.052 0.000 0.000 0.004 NA 0.848
#> SRR934281     6  0.3017      0.555 0.052 0.000 0.000 0.004 NA 0.848
#> SRR934282     6  0.3017      0.555 0.052 0.000 0.000 0.004 NA 0.848
#> SRR934283     6  0.3017      0.555 0.052 0.000 0.000 0.004 NA 0.848
#> SRR934284     6  0.3017      0.555 0.052 0.000 0.000 0.004 NA 0.848
#> SRR934285     6  0.3017      0.555 0.052 0.000 0.000 0.004 NA 0.848
#> SRR934286     6  0.3017      0.555 0.052 0.000 0.000 0.004 NA 0.848
#> SRR934287     6  0.3017      0.555 0.052 0.000 0.000 0.004 NA 0.848
#> SRR934288     1  0.5094      0.611 0.596 0.000 0.000 0.004 NA 0.308
#> SRR934289     1  0.5094      0.611 0.596 0.000 0.000 0.004 NA 0.308
#> SRR934290     1  0.5094      0.611 0.596 0.000 0.000 0.004 NA 0.308
#> SRR934291     1  0.5094      0.611 0.596 0.000 0.000 0.004 NA 0.308
#> SRR934292     1  0.5094      0.611 0.596 0.000 0.000 0.004 NA 0.308
#> SRR934293     1  0.5094      0.611 0.596 0.000 0.000 0.004 NA 0.308
#> SRR934294     1  0.5094      0.611 0.596 0.000 0.000 0.004 NA 0.308
#> SRR934295     1  0.5094      0.611 0.596 0.000 0.000 0.004 NA 0.308
#> SRR934296     6  0.5823     -0.135 0.372 0.000 0.000 0.000 NA 0.440
#> SRR934297     6  0.5823     -0.135 0.372 0.000 0.000 0.000 NA 0.440
#> SRR934298     6  0.5823     -0.135 0.372 0.000 0.000 0.000 NA 0.440
#> SRR934299     6  0.5823     -0.135 0.372 0.000 0.000 0.000 NA 0.440
#> SRR934300     6  0.5823     -0.135 0.372 0.000 0.000 0.000 NA 0.440
#> SRR934301     6  0.5823     -0.135 0.372 0.000 0.000 0.000 NA 0.440
#> SRR934302     6  0.5823     -0.135 0.372 0.000 0.000 0.000 NA 0.440
#> SRR934303     6  0.5823     -0.135 0.372 0.000 0.000 0.000 NA 0.440
#> SRR934304     3  0.0520      0.788 0.000 0.008 0.984 0.008 NA 0.000
#> SRR934305     3  0.0665      0.788 0.004 0.008 0.980 0.008 NA 0.000
#> SRR934306     3  0.0810      0.788 0.004 0.008 0.976 0.008 NA 0.000
#> SRR934307     3  0.0520      0.788 0.000 0.008 0.984 0.008 NA 0.000
#> SRR934308     3  0.1038      0.787 0.008 0.008 0.968 0.008 NA 0.000
#> SRR934309     3  0.0665      0.788 0.004 0.008 0.980 0.008 NA 0.000
#> SRR934310     3  0.0520      0.788 0.000 0.008 0.984 0.008 NA 0.000
#> SRR934311     3  0.0520      0.788 0.000 0.008 0.984 0.008 NA 0.000
#> SRR934312     6  0.1268      0.586 0.036 0.000 0.000 0.008 NA 0.952
#> SRR934313     6  0.1268      0.586 0.036 0.000 0.000 0.008 NA 0.952
#> SRR934314     6  0.1268      0.586 0.036 0.000 0.000 0.008 NA 0.952
#> SRR934315     6  0.1268      0.586 0.036 0.000 0.000 0.008 NA 0.952
#> SRR934316     6  0.1268      0.586 0.036 0.000 0.000 0.008 NA 0.952
#> SRR934317     6  0.1268      0.586 0.036 0.000 0.000 0.008 NA 0.952
#> SRR934318     6  0.1268      0.586 0.036 0.000 0.000 0.008 NA 0.952
#> SRR934319     6  0.1268      0.586 0.036 0.000 0.000 0.008 NA 0.952
#> SRR934320     6  0.4547      0.518 0.076 0.000 0.000 0.048 NA 0.752
#> SRR934321     6  0.4547      0.518 0.076 0.000 0.000 0.048 NA 0.752
#> SRR934322     6  0.4547      0.518 0.076 0.000 0.000 0.048 NA 0.752
#> SRR934323     6  0.4547      0.518 0.076 0.000 0.000 0.048 NA 0.752
#> SRR934324     6  0.4547      0.518 0.076 0.000 0.000 0.048 NA 0.752
#> SRR934325     6  0.4547      0.518 0.076 0.000 0.000 0.048 NA 0.752
#> SRR934326     6  0.4547      0.518 0.076 0.000 0.000 0.048 NA 0.752
#> SRR934327     6  0.4547      0.518 0.076 0.000 0.000 0.048 NA 0.752
#> SRR934328     1  0.4178      0.727 0.700 0.000 0.000 0.032 NA 0.260
#> SRR934329     1  0.4178      0.727 0.700 0.000 0.000 0.032 NA 0.260
#> SRR934330     1  0.4178      0.727 0.700 0.000 0.000 0.032 NA 0.260
#> SRR934331     1  0.4178      0.727 0.700 0.000 0.000 0.032 NA 0.260
#> SRR934332     1  0.4178      0.727 0.700 0.000 0.000 0.032 NA 0.260
#> SRR934333     1  0.4178      0.727 0.700 0.000 0.000 0.032 NA 0.260
#> SRR934334     1  0.4178      0.727 0.700 0.000 0.000 0.032 NA 0.260
#> SRR934335     1  0.4178      0.727 0.700 0.000 0.000 0.032 NA 0.260
#> SRR934344     1  0.5649      0.599 0.568 0.000 0.000 0.132 NA 0.284
#> SRR934345     1  0.5649      0.599 0.568 0.000 0.000 0.132 NA 0.284
#> SRR934346     1  0.5649      0.599 0.568 0.000 0.000 0.132 NA 0.284
#> SRR934347     1  0.5649      0.599 0.568 0.000 0.000 0.132 NA 0.284
#> SRR934348     1  0.5649      0.599 0.568 0.000 0.000 0.132 NA 0.284
#> SRR934349     1  0.5649      0.599 0.568 0.000 0.000 0.132 NA 0.284
#> SRR934350     1  0.5649      0.599 0.568 0.000 0.000 0.132 NA 0.284
#> SRR934351     1  0.5649      0.599 0.568 0.000 0.000 0.132 NA 0.284
#> SRR934336     6  0.4413      0.453 0.056 0.000 0.000 0.208 NA 0.720
#> SRR934337     6  0.4413      0.453 0.056 0.000 0.000 0.208 NA 0.720
#> SRR934338     6  0.4413      0.453 0.056 0.000 0.000 0.208 NA 0.720
#> SRR934339     6  0.4413      0.453 0.056 0.000 0.000 0.208 NA 0.720
#> SRR934340     6  0.4413      0.453 0.056 0.000 0.000 0.208 NA 0.720
#> SRR934341     6  0.4413      0.453 0.056 0.000 0.000 0.208 NA 0.720
#> SRR934342     6  0.4413      0.453 0.056 0.000 0.000 0.208 NA 0.720

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14550 rows and 135 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.580           0.759       0.881         0.4786 0.511   0.511
#> 3 3 0.705           0.915       0.943         0.3378 0.639   0.413
#> 4 4 0.751           0.850       0.911         0.1601 0.897   0.710
#> 5 5 0.751           0.782       0.848         0.0531 0.972   0.888
#> 6 6 0.786           0.736       0.803         0.0385 0.973   0.878

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR934216     1  0.9710      0.889 0.600 0.400
#> SRR934217     1  0.9710      0.889 0.600 0.400
#> SRR934218     1  0.9710      0.889 0.600 0.400
#> SRR934219     1  0.9710      0.889 0.600 0.400
#> SRR934220     1  0.9710      0.889 0.600 0.400
#> SRR934221     1  0.9710      0.889 0.600 0.400
#> SRR934222     1  0.9710      0.889 0.600 0.400
#> SRR934223     1  0.9710      0.889 0.600 0.400
#> SRR934224     1  0.9710      0.889 0.600 0.400
#> SRR934225     1  0.9710      0.889 0.600 0.400
#> SRR934226     1  0.9710      0.889 0.600 0.400
#> SRR934227     1  0.9710      0.889 0.600 0.400
#> SRR934228     1  0.9710      0.889 0.600 0.400
#> SRR934229     1  0.9710      0.889 0.600 0.400
#> SRR934230     1  0.9710      0.889 0.600 0.400
#> SRR934231     1  0.9710      0.889 0.600 0.400
#> SRR934232     2  0.9710      0.779 0.400 0.600
#> SRR934233     2  0.9710      0.779 0.400 0.600
#> SRR934234     2  0.9710      0.779 0.400 0.600
#> SRR934235     2  0.9710      0.779 0.400 0.600
#> SRR934236     2  0.9710      0.779 0.400 0.600
#> SRR934237     2  0.9710      0.779 0.400 0.600
#> SRR934238     2  0.9710      0.779 0.400 0.600
#> SRR934239     2  0.9710      0.779 0.400 0.600
#> SRR934240     2  0.9710      0.779 0.400 0.600
#> SRR934241     2  0.9710      0.779 0.400 0.600
#> SRR934242     2  0.9710      0.779 0.400 0.600
#> SRR934243     2  0.9710      0.779 0.400 0.600
#> SRR934244     2  0.9710      0.779 0.400 0.600
#> SRR934245     2  0.9710      0.779 0.400 0.600
#> SRR934246     2  0.9710      0.779 0.400 0.600
#> SRR934247     2  0.9710      0.779 0.400 0.600
#> SRR934248     1  0.0376      0.441 0.996 0.004
#> SRR934249     1  0.0376      0.441 0.996 0.004
#> SRR934250     1  0.0376      0.441 0.996 0.004
#> SRR934251     1  0.0376      0.441 0.996 0.004
#> SRR934252     1  0.0376      0.441 0.996 0.004
#> SRR934253     1  0.0376      0.441 0.996 0.004
#> SRR934254     1  0.0376      0.441 0.996 0.004
#> SRR934255     1  0.0376      0.441 0.996 0.004
#> SRR934256     2  0.9710      0.779 0.400 0.600
#> SRR934257     2  0.9710      0.779 0.400 0.600
#> SRR934258     2  0.9710      0.779 0.400 0.600
#> SRR934259     2  0.9710      0.779 0.400 0.600
#> SRR934260     2  0.9710      0.779 0.400 0.600
#> SRR934261     2  0.9710      0.779 0.400 0.600
#> SRR934262     2  0.9710      0.779 0.400 0.600
#> SRR934263     2  0.9710      0.779 0.400 0.600
#> SRR934264     1  0.9710      0.889 0.600 0.400
#> SRR934265     1  0.9710      0.889 0.600 0.400
#> SRR934266     1  0.9710      0.889 0.600 0.400
#> SRR934267     1  0.9710      0.889 0.600 0.400
#> SRR934268     1  0.9710      0.889 0.600 0.400
#> SRR934269     1  0.9710      0.889 0.600 0.400
#> SRR934270     1  0.9710      0.889 0.600 0.400
#> SRR934271     1  0.9710      0.889 0.600 0.400
#> SRR934272     1  0.9710      0.889 0.600 0.400
#> SRR934273     1  0.9710      0.889 0.600 0.400
#> SRR934274     1  0.9710      0.889 0.600 0.400
#> SRR934275     1  0.9710      0.889 0.600 0.400
#> SRR934276     1  0.9710      0.889 0.600 0.400
#> SRR934277     1  0.9710      0.889 0.600 0.400
#> SRR934278     1  0.9710      0.889 0.600 0.400
#> SRR934279     1  0.9710      0.889 0.600 0.400
#> SRR934280     2  0.0376      0.602 0.004 0.996
#> SRR934281     2  0.0376      0.602 0.004 0.996
#> SRR934282     2  0.0376      0.602 0.004 0.996
#> SRR934283     2  0.0376      0.602 0.004 0.996
#> SRR934284     2  0.0376      0.602 0.004 0.996
#> SRR934285     2  0.0376      0.602 0.004 0.996
#> SRR934286     2  0.0376      0.602 0.004 0.996
#> SRR934287     2  0.0376      0.602 0.004 0.996
#> SRR934288     2  0.0000      0.605 0.000 1.000
#> SRR934289     2  0.0000      0.605 0.000 1.000
#> SRR934290     2  0.0000      0.605 0.000 1.000
#> SRR934291     2  0.0000      0.605 0.000 1.000
#> SRR934292     2  0.0000      0.605 0.000 1.000
#> SRR934293     2  0.0000      0.605 0.000 1.000
#> SRR934294     2  0.0000      0.605 0.000 1.000
#> SRR934295     2  0.0000      0.605 0.000 1.000
#> SRR934296     2  0.9710      0.779 0.400 0.600
#> SRR934297     2  0.9710      0.779 0.400 0.600
#> SRR934298     2  0.9710      0.779 0.400 0.600
#> SRR934299     2  0.9710      0.779 0.400 0.600
#> SRR934300     2  0.9710      0.779 0.400 0.600
#> SRR934301     2  0.9710      0.779 0.400 0.600
#> SRR934302     2  0.9710      0.779 0.400 0.600
#> SRR934303     2  0.9710      0.779 0.400 0.600
#> SRR934304     1  0.0000      0.447 1.000 0.000
#> SRR934305     1  0.0000      0.447 1.000 0.000
#> SRR934306     1  0.0000      0.447 1.000 0.000
#> SRR934307     1  0.0000      0.447 1.000 0.000
#> SRR934308     1  0.0000      0.447 1.000 0.000
#> SRR934309     1  0.0000      0.447 1.000 0.000
#> SRR934310     1  0.0000      0.447 1.000 0.000
#> SRR934311     1  0.0000      0.447 1.000 0.000
#> SRR934312     1  0.9710      0.889 0.600 0.400
#> SRR934313     1  0.9710      0.889 0.600 0.400
#> SRR934314     1  0.9710      0.889 0.600 0.400
#> SRR934315     1  0.9710      0.889 0.600 0.400
#> SRR934316     1  0.9710      0.889 0.600 0.400
#> SRR934317     1  0.9710      0.889 0.600 0.400
#> SRR934318     1  0.9710      0.889 0.600 0.400
#> SRR934319     1  0.9710      0.889 0.600 0.400
#> SRR934320     2  0.0376      0.602 0.004 0.996
#> SRR934321     2  0.0376      0.602 0.004 0.996
#> SRR934322     2  0.0376      0.602 0.004 0.996
#> SRR934323     2  0.0376      0.602 0.004 0.996
#> SRR934324     2  0.0376      0.602 0.004 0.996
#> SRR934325     2  0.0376      0.602 0.004 0.996
#> SRR934326     2  0.0376      0.602 0.004 0.996
#> SRR934327     2  0.0376      0.602 0.004 0.996
#> SRR934328     1  0.9710      0.889 0.600 0.400
#> SRR934329     1  0.9710      0.889 0.600 0.400
#> SRR934330     1  0.9710      0.889 0.600 0.400
#> SRR934331     1  0.9710      0.889 0.600 0.400
#> SRR934332     1  0.9710      0.889 0.600 0.400
#> SRR934333     1  0.9710      0.889 0.600 0.400
#> SRR934334     1  0.9710      0.889 0.600 0.400
#> SRR934335     1  0.9710      0.889 0.600 0.400
#> SRR934344     1  0.9710      0.889 0.600 0.400
#> SRR934345     1  0.9710      0.889 0.600 0.400
#> SRR934346     1  0.9710      0.889 0.600 0.400
#> SRR934347     1  0.9710      0.889 0.600 0.400
#> SRR934348     1  0.9710      0.889 0.600 0.400
#> SRR934349     1  0.9710      0.889 0.600 0.400
#> SRR934350     1  0.9710      0.889 0.600 0.400
#> SRR934351     1  0.9710      0.889 0.600 0.400
#> SRR934336     1  0.9710      0.889 0.600 0.400
#> SRR934337     1  0.9710      0.889 0.600 0.400
#> SRR934338     1  0.9710      0.889 0.600 0.400
#> SRR934339     1  0.9710      0.889 0.600 0.400
#> SRR934340     1  0.9710      0.889 0.600 0.400
#> SRR934341     1  0.9710      0.889 0.600 0.400
#> SRR934342     1  0.9710      0.889 0.600 0.400

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR934216     3  0.0000      0.928 0.000 0.000 1.000
#> SRR934217     3  0.0000      0.928 0.000 0.000 1.000
#> SRR934218     3  0.0000      0.928 0.000 0.000 1.000
#> SRR934219     3  0.0000      0.928 0.000 0.000 1.000
#> SRR934220     3  0.0000      0.928 0.000 0.000 1.000
#> SRR934221     3  0.0000      0.928 0.000 0.000 1.000
#> SRR934222     3  0.0000      0.928 0.000 0.000 1.000
#> SRR934223     3  0.0000      0.928 0.000 0.000 1.000
#> SRR934224     3  0.4750      0.729 0.216 0.000 0.784
#> SRR934225     3  0.4750      0.729 0.216 0.000 0.784
#> SRR934226     3  0.4750      0.729 0.216 0.000 0.784
#> SRR934227     3  0.4750      0.729 0.216 0.000 0.784
#> SRR934228     3  0.4750      0.729 0.216 0.000 0.784
#> SRR934229     3  0.4750      0.729 0.216 0.000 0.784
#> SRR934230     3  0.4750      0.729 0.216 0.000 0.784
#> SRR934231     3  0.4750      0.729 0.216 0.000 0.784
#> SRR934232     2  0.0000      1.000 0.000 1.000 0.000
#> SRR934233     2  0.0000      1.000 0.000 1.000 0.000
#> SRR934234     2  0.0000      1.000 0.000 1.000 0.000
#> SRR934235     2  0.0000      1.000 0.000 1.000 0.000
#> SRR934236     2  0.0000      1.000 0.000 1.000 0.000
#> SRR934237     2  0.0000      1.000 0.000 1.000 0.000
#> SRR934238     2  0.0000      1.000 0.000 1.000 0.000
#> SRR934239     2  0.0000      1.000 0.000 1.000 0.000
#> SRR934240     2  0.0000      1.000 0.000 1.000 0.000
#> SRR934241     2  0.0000      1.000 0.000 1.000 0.000
#> SRR934242     2  0.0000      1.000 0.000 1.000 0.000
#> SRR934243     2  0.0000      1.000 0.000 1.000 0.000
#> SRR934244     2  0.0000      1.000 0.000 1.000 0.000
#> SRR934245     2  0.0000      1.000 0.000 1.000 0.000
#> SRR934246     2  0.0000      1.000 0.000 1.000 0.000
#> SRR934247     2  0.0000      1.000 0.000 1.000 0.000
#> SRR934248     3  0.2356      0.880 0.000 0.072 0.928
#> SRR934249     3  0.2356      0.880 0.000 0.072 0.928
#> SRR934250     3  0.2356      0.880 0.000 0.072 0.928
#> SRR934251     3  0.2356      0.880 0.000 0.072 0.928
#> SRR934252     3  0.2356      0.880 0.000 0.072 0.928
#> SRR934253     3  0.2356      0.880 0.000 0.072 0.928
#> SRR934254     3  0.2356      0.880 0.000 0.072 0.928
#> SRR934255     3  0.2356      0.880 0.000 0.072 0.928
#> SRR934256     2  0.0000      1.000 0.000 1.000 0.000
#> SRR934257     2  0.0000      1.000 0.000 1.000 0.000
#> SRR934258     2  0.0000      1.000 0.000 1.000 0.000
#> SRR934259     2  0.0000      1.000 0.000 1.000 0.000
#> SRR934260     2  0.0000      1.000 0.000 1.000 0.000
#> SRR934261     2  0.0000      1.000 0.000 1.000 0.000
#> SRR934262     2  0.0000      1.000 0.000 1.000 0.000
#> SRR934263     2  0.0000      1.000 0.000 1.000 0.000
#> SRR934264     3  0.0000      0.928 0.000 0.000 1.000
#> SRR934265     3  0.0000      0.928 0.000 0.000 1.000
#> SRR934266     3  0.0000      0.928 0.000 0.000 1.000
#> SRR934267     3  0.0000      0.928 0.000 0.000 1.000
#> SRR934268     3  0.0000      0.928 0.000 0.000 1.000
#> SRR934269     3  0.0000      0.928 0.000 0.000 1.000
#> SRR934270     3  0.0000      0.928 0.000 0.000 1.000
#> SRR934271     3  0.0000      0.928 0.000 0.000 1.000
#> SRR934272     1  0.3482      0.901 0.872 0.000 0.128
#> SRR934273     1  0.3482      0.901 0.872 0.000 0.128
#> SRR934274     1  0.3482      0.901 0.872 0.000 0.128
#> SRR934275     1  0.3482      0.901 0.872 0.000 0.128
#> SRR934276     1  0.3482      0.901 0.872 0.000 0.128
#> SRR934277     1  0.3482      0.901 0.872 0.000 0.128
#> SRR934278     1  0.3482      0.901 0.872 0.000 0.128
#> SRR934279     1  0.3482      0.901 0.872 0.000 0.128
#> SRR934280     1  0.0237      0.911 0.996 0.004 0.000
#> SRR934281     1  0.0237      0.911 0.996 0.004 0.000
#> SRR934282     1  0.0237      0.911 0.996 0.004 0.000
#> SRR934283     1  0.0237      0.911 0.996 0.004 0.000
#> SRR934284     1  0.0237      0.911 0.996 0.004 0.000
#> SRR934285     1  0.0237      0.911 0.996 0.004 0.000
#> SRR934286     1  0.0237      0.911 0.996 0.004 0.000
#> SRR934287     1  0.0237      0.911 0.996 0.004 0.000
#> SRR934288     1  0.4121      0.829 0.832 0.168 0.000
#> SRR934289     1  0.4121      0.829 0.832 0.168 0.000
#> SRR934290     1  0.4121      0.829 0.832 0.168 0.000
#> SRR934291     1  0.4121      0.829 0.832 0.168 0.000
#> SRR934292     1  0.4121      0.829 0.832 0.168 0.000
#> SRR934293     1  0.4121      0.829 0.832 0.168 0.000
#> SRR934294     1  0.4121      0.829 0.832 0.168 0.000
#> SRR934295     1  0.4121      0.829 0.832 0.168 0.000
#> SRR934296     2  0.0000      1.000 0.000 1.000 0.000
#> SRR934297     2  0.0000      1.000 0.000 1.000 0.000
#> SRR934298     2  0.0000      1.000 0.000 1.000 0.000
#> SRR934299     2  0.0000      1.000 0.000 1.000 0.000
#> SRR934300     2  0.0000      1.000 0.000 1.000 0.000
#> SRR934301     2  0.0000      1.000 0.000 1.000 0.000
#> SRR934302     2  0.0000      1.000 0.000 1.000 0.000
#> SRR934303     2  0.0000      1.000 0.000 1.000 0.000
#> SRR934304     3  0.0000      0.928 0.000 0.000 1.000
#> SRR934305     3  0.0000      0.928 0.000 0.000 1.000
#> SRR934306     3  0.0000      0.928 0.000 0.000 1.000
#> SRR934307     3  0.0000      0.928 0.000 0.000 1.000
#> SRR934308     3  0.0000      0.928 0.000 0.000 1.000
#> SRR934309     3  0.0000      0.928 0.000 0.000 1.000
#> SRR934310     3  0.0000      0.928 0.000 0.000 1.000
#> SRR934311     3  0.0000      0.928 0.000 0.000 1.000
#> SRR934312     1  0.0000      0.911 1.000 0.000 0.000
#> SRR934313     1  0.0000      0.911 1.000 0.000 0.000
#> SRR934314     1  0.0000      0.911 1.000 0.000 0.000
#> SRR934315     1  0.0000      0.911 1.000 0.000 0.000
#> SRR934316     1  0.0000      0.911 1.000 0.000 0.000
#> SRR934317     1  0.0000      0.911 1.000 0.000 0.000
#> SRR934318     1  0.0000      0.911 1.000 0.000 0.000
#> SRR934319     1  0.0000      0.911 1.000 0.000 0.000
#> SRR934320     1  0.2165      0.893 0.936 0.064 0.000
#> SRR934321     1  0.2165      0.893 0.936 0.064 0.000
#> SRR934322     1  0.2165      0.893 0.936 0.064 0.000
#> SRR934323     1  0.2165      0.893 0.936 0.064 0.000
#> SRR934324     1  0.2165      0.893 0.936 0.064 0.000
#> SRR934325     1  0.2165      0.893 0.936 0.064 0.000
#> SRR934326     1  0.2165      0.893 0.936 0.064 0.000
#> SRR934327     1  0.2165      0.893 0.936 0.064 0.000
#> SRR934328     1  0.3340      0.906 0.880 0.000 0.120
#> SRR934329     1  0.3340      0.906 0.880 0.000 0.120
#> SRR934330     1  0.3340      0.906 0.880 0.000 0.120
#> SRR934331     1  0.3340      0.906 0.880 0.000 0.120
#> SRR934332     1  0.3340      0.906 0.880 0.000 0.120
#> SRR934333     1  0.3340      0.906 0.880 0.000 0.120
#> SRR934334     1  0.3340      0.906 0.880 0.000 0.120
#> SRR934335     1  0.3340      0.906 0.880 0.000 0.120
#> SRR934344     1  0.3412      0.904 0.876 0.000 0.124
#> SRR934345     1  0.3412      0.904 0.876 0.000 0.124
#> SRR934346     1  0.3412      0.904 0.876 0.000 0.124
#> SRR934347     1  0.3412      0.904 0.876 0.000 0.124
#> SRR934348     1  0.3412      0.904 0.876 0.000 0.124
#> SRR934349     1  0.3412      0.904 0.876 0.000 0.124
#> SRR934350     1  0.3412      0.904 0.876 0.000 0.124
#> SRR934351     1  0.3412      0.904 0.876 0.000 0.124
#> SRR934336     1  0.2356      0.914 0.928 0.000 0.072
#> SRR934337     1  0.2356      0.914 0.928 0.000 0.072
#> SRR934338     1  0.2356      0.914 0.928 0.000 0.072
#> SRR934339     1  0.2356      0.914 0.928 0.000 0.072
#> SRR934340     1  0.2356      0.914 0.928 0.000 0.072
#> SRR934341     1  0.2356      0.914 0.928 0.000 0.072
#> SRR934342     1  0.2356      0.914 0.928 0.000 0.072

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> SRR934216     3  0.0592      0.850 0.000 0.000 0.984 0.016
#> SRR934217     3  0.0592      0.850 0.000 0.000 0.984 0.016
#> SRR934218     3  0.0592      0.850 0.000 0.000 0.984 0.016
#> SRR934219     3  0.0592      0.850 0.000 0.000 0.984 0.016
#> SRR934220     3  0.0592      0.850 0.000 0.000 0.984 0.016
#> SRR934221     3  0.0592      0.850 0.000 0.000 0.984 0.016
#> SRR934222     3  0.0592      0.850 0.000 0.000 0.984 0.016
#> SRR934223     3  0.0592      0.850 0.000 0.000 0.984 0.016
#> SRR934224     3  0.6070      0.278 0.404 0.000 0.548 0.048
#> SRR934225     3  0.6070      0.278 0.404 0.000 0.548 0.048
#> SRR934226     3  0.6070      0.278 0.404 0.000 0.548 0.048
#> SRR934227     3  0.6070      0.278 0.404 0.000 0.548 0.048
#> SRR934228     3  0.6070      0.278 0.404 0.000 0.548 0.048
#> SRR934229     3  0.6070      0.278 0.404 0.000 0.548 0.048
#> SRR934230     3  0.6070      0.278 0.404 0.000 0.548 0.048
#> SRR934231     3  0.6070      0.278 0.404 0.000 0.548 0.048
#> SRR934232     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR934233     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR934234     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR934235     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR934236     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR934237     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR934238     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR934239     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR934240     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR934241     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR934242     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR934243     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR934244     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR934245     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR934246     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR934247     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR934248     3  0.4046      0.766 0.000 0.124 0.828 0.048
#> SRR934249     3  0.4046      0.766 0.000 0.124 0.828 0.048
#> SRR934250     3  0.4046      0.766 0.000 0.124 0.828 0.048
#> SRR934251     3  0.4046      0.766 0.000 0.124 0.828 0.048
#> SRR934252     3  0.4046      0.766 0.000 0.124 0.828 0.048
#> SRR934253     3  0.4046      0.766 0.000 0.124 0.828 0.048
#> SRR934254     3  0.4046      0.766 0.000 0.124 0.828 0.048
#> SRR934255     3  0.4046      0.766 0.000 0.124 0.828 0.048
#> SRR934256     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR934257     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR934258     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR934259     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR934260     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR934261     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR934262     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR934263     2  0.0000      0.980 0.000 1.000 0.000 0.000
#> SRR934264     3  0.0707      0.851 0.000 0.000 0.980 0.020
#> SRR934265     3  0.0707      0.851 0.000 0.000 0.980 0.020
#> SRR934266     3  0.0707      0.851 0.000 0.000 0.980 0.020
#> SRR934267     3  0.0707      0.851 0.000 0.000 0.980 0.020
#> SRR934268     3  0.0707      0.851 0.000 0.000 0.980 0.020
#> SRR934269     3  0.0707      0.851 0.000 0.000 0.980 0.020
#> SRR934270     3  0.0707      0.851 0.000 0.000 0.980 0.020
#> SRR934271     3  0.0707      0.851 0.000 0.000 0.980 0.020
#> SRR934272     1  0.4843      0.804 0.784 0.000 0.104 0.112
#> SRR934273     1  0.4843      0.804 0.784 0.000 0.104 0.112
#> SRR934274     1  0.4843      0.804 0.784 0.000 0.104 0.112
#> SRR934275     1  0.4843      0.804 0.784 0.000 0.104 0.112
#> SRR934276     1  0.4843      0.804 0.784 0.000 0.104 0.112
#> SRR934277     1  0.4843      0.804 0.784 0.000 0.104 0.112
#> SRR934278     1  0.4843      0.804 0.784 0.000 0.104 0.112
#> SRR934279     1  0.4843      0.804 0.784 0.000 0.104 0.112
#> SRR934280     1  0.0469      0.877 0.988 0.000 0.000 0.012
#> SRR934281     1  0.0469      0.877 0.988 0.000 0.000 0.012
#> SRR934282     1  0.0469      0.877 0.988 0.000 0.000 0.012
#> SRR934283     1  0.0469      0.877 0.988 0.000 0.000 0.012
#> SRR934284     1  0.0469      0.877 0.988 0.000 0.000 0.012
#> SRR934285     1  0.0469      0.877 0.988 0.000 0.000 0.012
#> SRR934286     1  0.0469      0.877 0.988 0.000 0.000 0.012
#> SRR934287     1  0.0469      0.877 0.988 0.000 0.000 0.012
#> SRR934288     4  0.3229      0.917 0.072 0.048 0.000 0.880
#> SRR934289     4  0.3229      0.917 0.072 0.048 0.000 0.880
#> SRR934290     4  0.3229      0.917 0.072 0.048 0.000 0.880
#> SRR934291     4  0.3229      0.917 0.072 0.048 0.000 0.880
#> SRR934292     4  0.3229      0.917 0.072 0.048 0.000 0.880
#> SRR934293     4  0.3229      0.917 0.072 0.048 0.000 0.880
#> SRR934294     4  0.3229      0.917 0.072 0.048 0.000 0.880
#> SRR934295     4  0.3229      0.917 0.072 0.048 0.000 0.880
#> SRR934296     2  0.1867      0.938 0.000 0.928 0.000 0.072
#> SRR934297     2  0.1867      0.938 0.000 0.928 0.000 0.072
#> SRR934298     2  0.1867      0.938 0.000 0.928 0.000 0.072
#> SRR934299     2  0.1867      0.938 0.000 0.928 0.000 0.072
#> SRR934300     2  0.1867      0.938 0.000 0.928 0.000 0.072
#> SRR934301     2  0.1867      0.938 0.000 0.928 0.000 0.072
#> SRR934302     2  0.1867      0.938 0.000 0.928 0.000 0.072
#> SRR934303     2  0.1867      0.938 0.000 0.928 0.000 0.072
#> SRR934304     3  0.0336      0.848 0.000 0.000 0.992 0.008
#> SRR934305     3  0.0336      0.848 0.000 0.000 0.992 0.008
#> SRR934306     3  0.0336      0.848 0.000 0.000 0.992 0.008
#> SRR934307     3  0.0336      0.848 0.000 0.000 0.992 0.008
#> SRR934308     3  0.0336      0.848 0.000 0.000 0.992 0.008
#> SRR934309     3  0.0336      0.848 0.000 0.000 0.992 0.008
#> SRR934310     3  0.0336      0.848 0.000 0.000 0.992 0.008
#> SRR934311     3  0.0336      0.848 0.000 0.000 0.992 0.008
#> SRR934312     1  0.0817      0.879 0.976 0.000 0.000 0.024
#> SRR934313     1  0.0817      0.879 0.976 0.000 0.000 0.024
#> SRR934314     1  0.0817      0.879 0.976 0.000 0.000 0.024
#> SRR934315     1  0.0817      0.879 0.976 0.000 0.000 0.024
#> SRR934316     1  0.0817      0.879 0.976 0.000 0.000 0.024
#> SRR934317     1  0.0817      0.879 0.976 0.000 0.000 0.024
#> SRR934318     1  0.0817      0.879 0.976 0.000 0.000 0.024
#> SRR934319     1  0.0817      0.879 0.976 0.000 0.000 0.024
#> SRR934320     1  0.4379      0.754 0.792 0.036 0.000 0.172
#> SRR934321     1  0.4379      0.754 0.792 0.036 0.000 0.172
#> SRR934322     1  0.4379      0.754 0.792 0.036 0.000 0.172
#> SRR934323     1  0.4379      0.754 0.792 0.036 0.000 0.172
#> SRR934324     1  0.4379      0.754 0.792 0.036 0.000 0.172
#> SRR934325     1  0.4379      0.754 0.792 0.036 0.000 0.172
#> SRR934326     1  0.4379      0.754 0.792 0.036 0.000 0.172
#> SRR934327     1  0.4379      0.754 0.792 0.036 0.000 0.172
#> SRR934328     4  0.1059      0.952 0.016 0.000 0.012 0.972
#> SRR934329     4  0.1059      0.952 0.016 0.000 0.012 0.972
#> SRR934330     4  0.1059      0.952 0.016 0.000 0.012 0.972
#> SRR934331     4  0.1059      0.952 0.016 0.000 0.012 0.972
#> SRR934332     4  0.1059      0.952 0.016 0.000 0.012 0.972
#> SRR934333     4  0.1059      0.952 0.016 0.000 0.012 0.972
#> SRR934334     4  0.1059      0.952 0.016 0.000 0.012 0.972
#> SRR934335     4  0.1059      0.952 0.016 0.000 0.012 0.972
#> SRR934344     4  0.1833      0.945 0.032 0.000 0.024 0.944
#> SRR934345     4  0.1833      0.945 0.032 0.000 0.024 0.944
#> SRR934346     4  0.1833      0.945 0.032 0.000 0.024 0.944
#> SRR934347     4  0.1833      0.945 0.032 0.000 0.024 0.944
#> SRR934348     4  0.1833      0.945 0.032 0.000 0.024 0.944
#> SRR934349     4  0.1833      0.945 0.032 0.000 0.024 0.944
#> SRR934350     4  0.1833      0.945 0.032 0.000 0.024 0.944
#> SRR934351     4  0.1833      0.945 0.032 0.000 0.024 0.944
#> SRR934336     1  0.3164      0.858 0.884 0.000 0.052 0.064
#> SRR934337     1  0.3164      0.858 0.884 0.000 0.052 0.064
#> SRR934338     1  0.3164      0.858 0.884 0.000 0.052 0.064
#> SRR934339     1  0.3164      0.858 0.884 0.000 0.052 0.064
#> SRR934340     1  0.3164      0.858 0.884 0.000 0.052 0.064
#> SRR934341     1  0.3164      0.858 0.884 0.000 0.052 0.064
#> SRR934342     1  0.3164      0.858 0.884 0.000 0.052 0.064

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> SRR934216     5  0.0000      0.654 0.000 0.000 0.000 0.000 1.000
#> SRR934217     5  0.0000      0.654 0.000 0.000 0.000 0.000 1.000
#> SRR934218     5  0.0000      0.654 0.000 0.000 0.000 0.000 1.000
#> SRR934219     5  0.0000      0.654 0.000 0.000 0.000 0.000 1.000
#> SRR934220     5  0.0000      0.654 0.000 0.000 0.000 0.000 1.000
#> SRR934221     5  0.0000      0.654 0.000 0.000 0.000 0.000 1.000
#> SRR934222     5  0.0000      0.654 0.000 0.000 0.000 0.000 1.000
#> SRR934223     5  0.0000      0.654 0.000 0.000 0.000 0.000 1.000
#> SRR934224     5  0.6159      0.464 0.200 0.000 0.016 0.172 0.612
#> SRR934225     5  0.6159      0.464 0.200 0.000 0.016 0.172 0.612
#> SRR934226     5  0.6159      0.464 0.200 0.000 0.016 0.172 0.612
#> SRR934227     5  0.6159      0.464 0.200 0.000 0.016 0.172 0.612
#> SRR934228     5  0.6159      0.464 0.200 0.000 0.016 0.172 0.612
#> SRR934229     5  0.6159      0.464 0.200 0.000 0.016 0.172 0.612
#> SRR934230     5  0.6159      0.464 0.200 0.000 0.016 0.172 0.612
#> SRR934231     5  0.6159      0.464 0.200 0.000 0.016 0.172 0.612
#> SRR934232     2  0.0290      0.967 0.000 0.992 0.000 0.008 0.000
#> SRR934233     2  0.0290      0.967 0.000 0.992 0.000 0.008 0.000
#> SRR934234     2  0.0290      0.967 0.000 0.992 0.000 0.008 0.000
#> SRR934235     2  0.0290      0.967 0.000 0.992 0.000 0.008 0.000
#> SRR934236     2  0.0290      0.967 0.000 0.992 0.000 0.008 0.000
#> SRR934237     2  0.0290      0.967 0.000 0.992 0.000 0.008 0.000
#> SRR934238     2  0.0290      0.967 0.000 0.992 0.000 0.008 0.000
#> SRR934239     2  0.0290      0.967 0.000 0.992 0.000 0.008 0.000
#> SRR934240     2  0.0000      0.969 0.000 1.000 0.000 0.000 0.000
#> SRR934241     2  0.0000      0.969 0.000 1.000 0.000 0.000 0.000
#> SRR934242     2  0.0000      0.969 0.000 1.000 0.000 0.000 0.000
#> SRR934243     2  0.0000      0.969 0.000 1.000 0.000 0.000 0.000
#> SRR934244     2  0.0000      0.969 0.000 1.000 0.000 0.000 0.000
#> SRR934245     2  0.0000      0.969 0.000 1.000 0.000 0.000 0.000
#> SRR934246     2  0.0000      0.969 0.000 1.000 0.000 0.000 0.000
#> SRR934247     2  0.0000      0.969 0.000 1.000 0.000 0.000 0.000
#> SRR934248     4  0.4718      1.000 0.000 0.028 0.000 0.628 0.344
#> SRR934249     4  0.4718      1.000 0.000 0.028 0.000 0.628 0.344
#> SRR934250     4  0.4718      1.000 0.000 0.028 0.000 0.628 0.344
#> SRR934251     4  0.4718      1.000 0.000 0.028 0.000 0.628 0.344
#> SRR934252     4  0.4718      1.000 0.000 0.028 0.000 0.628 0.344
#> SRR934253     4  0.4718      1.000 0.000 0.028 0.000 0.628 0.344
#> SRR934254     4  0.4718      1.000 0.000 0.028 0.000 0.628 0.344
#> SRR934255     4  0.4718      1.000 0.000 0.028 0.000 0.628 0.344
#> SRR934256     2  0.0000      0.969 0.000 1.000 0.000 0.000 0.000
#> SRR934257     2  0.0000      0.969 0.000 1.000 0.000 0.000 0.000
#> SRR934258     2  0.0000      0.969 0.000 1.000 0.000 0.000 0.000
#> SRR934259     2  0.0000      0.969 0.000 1.000 0.000 0.000 0.000
#> SRR934260     2  0.0000      0.969 0.000 1.000 0.000 0.000 0.000
#> SRR934261     2  0.0000      0.969 0.000 1.000 0.000 0.000 0.000
#> SRR934262     2  0.0000      0.969 0.000 1.000 0.000 0.000 0.000
#> SRR934263     2  0.0000      0.969 0.000 1.000 0.000 0.000 0.000
#> SRR934264     5  0.2124      0.628 0.004 0.000 0.000 0.096 0.900
#> SRR934265     5  0.2124      0.628 0.004 0.000 0.000 0.096 0.900
#> SRR934266     5  0.2124      0.628 0.004 0.000 0.000 0.096 0.900
#> SRR934267     5  0.2124      0.628 0.004 0.000 0.000 0.096 0.900
#> SRR934268     5  0.2124      0.628 0.004 0.000 0.000 0.096 0.900
#> SRR934269     5  0.2124      0.628 0.004 0.000 0.000 0.096 0.900
#> SRR934270     5  0.2124      0.628 0.004 0.000 0.000 0.096 0.900
#> SRR934271     5  0.2124      0.628 0.004 0.000 0.000 0.096 0.900
#> SRR934272     1  0.6667      0.655 0.612 0.000 0.072 0.160 0.156
#> SRR934273     1  0.6667      0.655 0.612 0.000 0.072 0.160 0.156
#> SRR934274     1  0.6667      0.655 0.612 0.000 0.072 0.160 0.156
#> SRR934275     1  0.6667      0.655 0.612 0.000 0.072 0.160 0.156
#> SRR934276     1  0.6667      0.655 0.612 0.000 0.072 0.160 0.156
#> SRR934277     1  0.6667      0.655 0.612 0.000 0.072 0.160 0.156
#> SRR934278     1  0.6667      0.655 0.612 0.000 0.072 0.160 0.156
#> SRR934279     1  0.6667      0.655 0.612 0.000 0.072 0.160 0.156
#> SRR934280     1  0.1195      0.775 0.960 0.000 0.012 0.028 0.000
#> SRR934281     1  0.1195      0.775 0.960 0.000 0.012 0.028 0.000
#> SRR934282     1  0.1195      0.775 0.960 0.000 0.012 0.028 0.000
#> SRR934283     1  0.1195      0.775 0.960 0.000 0.012 0.028 0.000
#> SRR934284     1  0.1195      0.775 0.960 0.000 0.012 0.028 0.000
#> SRR934285     1  0.1195      0.775 0.960 0.000 0.012 0.028 0.000
#> SRR934286     1  0.1195      0.775 0.960 0.000 0.012 0.028 0.000
#> SRR934287     1  0.1195      0.775 0.960 0.000 0.012 0.028 0.000
#> SRR934288     3  0.2761      0.912 0.028 0.028 0.896 0.048 0.000
#> SRR934289     3  0.2761      0.912 0.028 0.028 0.896 0.048 0.000
#> SRR934290     3  0.2761      0.912 0.028 0.028 0.896 0.048 0.000
#> SRR934291     3  0.2761      0.912 0.028 0.028 0.896 0.048 0.000
#> SRR934292     3  0.2761      0.912 0.028 0.028 0.896 0.048 0.000
#> SRR934293     3  0.2761      0.912 0.028 0.028 0.896 0.048 0.000
#> SRR934294     3  0.2761      0.912 0.028 0.028 0.896 0.048 0.000
#> SRR934295     3  0.2761      0.912 0.028 0.028 0.896 0.048 0.000
#> SRR934296     2  0.2813      0.910 0.004 0.880 0.032 0.084 0.000
#> SRR934297     2  0.2813      0.910 0.004 0.880 0.032 0.084 0.000
#> SRR934298     2  0.2813      0.910 0.004 0.880 0.032 0.084 0.000
#> SRR934299     2  0.2813      0.910 0.004 0.880 0.032 0.084 0.000
#> SRR934300     2  0.2813      0.910 0.004 0.880 0.032 0.084 0.000
#> SRR934301     2  0.2813      0.910 0.004 0.880 0.032 0.084 0.000
#> SRR934302     2  0.2813      0.910 0.004 0.880 0.032 0.084 0.000
#> SRR934303     2  0.2813      0.910 0.004 0.880 0.032 0.084 0.000
#> SRR934304     5  0.3242      0.379 0.000 0.000 0.000 0.216 0.784
#> SRR934305     5  0.3242      0.379 0.000 0.000 0.000 0.216 0.784
#> SRR934306     5  0.3242      0.379 0.000 0.000 0.000 0.216 0.784
#> SRR934307     5  0.3242      0.379 0.000 0.000 0.000 0.216 0.784
#> SRR934308     5  0.3242      0.379 0.000 0.000 0.000 0.216 0.784
#> SRR934309     5  0.3242      0.379 0.000 0.000 0.000 0.216 0.784
#> SRR934310     5  0.3242      0.379 0.000 0.000 0.000 0.216 0.784
#> SRR934311     5  0.3242      0.379 0.000 0.000 0.000 0.216 0.784
#> SRR934312     1  0.1106      0.782 0.964 0.000 0.024 0.012 0.000
#> SRR934313     1  0.1106      0.782 0.964 0.000 0.024 0.012 0.000
#> SRR934314     1  0.1106      0.782 0.964 0.000 0.024 0.012 0.000
#> SRR934315     1  0.1106      0.782 0.964 0.000 0.024 0.012 0.000
#> SRR934316     1  0.1106      0.782 0.964 0.000 0.024 0.012 0.000
#> SRR934317     1  0.1106      0.782 0.964 0.000 0.024 0.012 0.000
#> SRR934318     1  0.1106      0.782 0.964 0.000 0.024 0.012 0.000
#> SRR934319     1  0.1106      0.782 0.964 0.000 0.024 0.012 0.000
#> SRR934320     1  0.5884      0.648 0.668 0.024 0.120 0.184 0.004
#> SRR934321     1  0.5884      0.648 0.668 0.024 0.120 0.184 0.004
#> SRR934322     1  0.5884      0.648 0.668 0.024 0.120 0.184 0.004
#> SRR934323     1  0.5884      0.648 0.668 0.024 0.120 0.184 0.004
#> SRR934324     1  0.5884      0.648 0.668 0.024 0.120 0.184 0.004
#> SRR934325     1  0.5884      0.648 0.668 0.024 0.120 0.184 0.004
#> SRR934326     1  0.5884      0.648 0.668 0.024 0.120 0.184 0.004
#> SRR934327     1  0.5884      0.648 0.668 0.024 0.120 0.184 0.004
#> SRR934328     3  0.0162      0.941 0.000 0.000 0.996 0.000 0.004
#> SRR934329     3  0.0162      0.941 0.000 0.000 0.996 0.000 0.004
#> SRR934330     3  0.0162      0.941 0.000 0.000 0.996 0.000 0.004
#> SRR934331     3  0.0162      0.941 0.000 0.000 0.996 0.000 0.004
#> SRR934332     3  0.0162      0.941 0.000 0.000 0.996 0.000 0.004
#> SRR934333     3  0.0162      0.941 0.000 0.000 0.996 0.000 0.004
#> SRR934334     3  0.0162      0.941 0.000 0.000 0.996 0.000 0.004
#> SRR934335     3  0.0162      0.941 0.000 0.000 0.996 0.000 0.004
#> SRR934344     3  0.1739      0.926 0.004 0.000 0.940 0.024 0.032
#> SRR934345     3  0.1739      0.926 0.004 0.000 0.940 0.024 0.032
#> SRR934346     3  0.1739      0.926 0.004 0.000 0.940 0.024 0.032
#> SRR934347     3  0.1739      0.926 0.004 0.000 0.940 0.024 0.032
#> SRR934348     3  0.1739      0.926 0.004 0.000 0.940 0.024 0.032
#> SRR934349     3  0.1739      0.926 0.004 0.000 0.940 0.024 0.032
#> SRR934350     3  0.1739      0.926 0.004 0.000 0.940 0.024 0.032
#> SRR934351     3  0.1739      0.926 0.004 0.000 0.940 0.024 0.032
#> SRR934336     1  0.5885      0.702 0.676 0.000 0.040 0.152 0.132
#> SRR934337     1  0.5885      0.702 0.676 0.000 0.040 0.152 0.132
#> SRR934338     1  0.5885      0.702 0.676 0.000 0.040 0.152 0.132
#> SRR934339     1  0.5885      0.702 0.676 0.000 0.040 0.152 0.132
#> SRR934340     1  0.5885      0.702 0.676 0.000 0.040 0.152 0.132
#> SRR934341     1  0.5885      0.702 0.676 0.000 0.040 0.152 0.132
#> SRR934342     1  0.5885      0.702 0.676 0.000 0.040 0.152 0.132

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR934216     5  0.0146      0.689 0.000 0.000 0.000 0.000 0.996 0.004
#> SRR934217     5  0.0146      0.689 0.000 0.000 0.000 0.000 0.996 0.004
#> SRR934218     5  0.0146      0.689 0.000 0.000 0.000 0.000 0.996 0.004
#> SRR934219     5  0.0146      0.689 0.000 0.000 0.000 0.000 0.996 0.004
#> SRR934220     5  0.0146      0.689 0.000 0.000 0.000 0.000 0.996 0.004
#> SRR934221     5  0.0146      0.689 0.000 0.000 0.000 0.000 0.996 0.004
#> SRR934222     5  0.0146      0.689 0.000 0.000 0.000 0.000 0.996 0.004
#> SRR934223     5  0.0146      0.689 0.000 0.000 0.000 0.000 0.996 0.004
#> SRR934224     5  0.4980      0.528 0.000 0.000 0.052 0.012 0.576 0.360
#> SRR934225     5  0.4980      0.528 0.000 0.000 0.052 0.012 0.576 0.360
#> SRR934226     5  0.4980      0.528 0.000 0.000 0.052 0.012 0.576 0.360
#> SRR934227     5  0.4980      0.528 0.000 0.000 0.052 0.012 0.576 0.360
#> SRR934228     5  0.4980      0.528 0.000 0.000 0.052 0.012 0.576 0.360
#> SRR934229     5  0.4980      0.528 0.000 0.000 0.052 0.012 0.576 0.360
#> SRR934230     5  0.4980      0.528 0.000 0.000 0.052 0.012 0.576 0.360
#> SRR934231     5  0.4980      0.528 0.000 0.000 0.052 0.012 0.576 0.360
#> SRR934232     2  0.0632      0.905 0.000 0.976 0.000 0.024 0.000 0.000
#> SRR934233     2  0.0632      0.905 0.000 0.976 0.000 0.024 0.000 0.000
#> SRR934234     2  0.0632      0.905 0.000 0.976 0.000 0.024 0.000 0.000
#> SRR934235     2  0.0632      0.905 0.000 0.976 0.000 0.024 0.000 0.000
#> SRR934236     2  0.0632      0.905 0.000 0.976 0.000 0.024 0.000 0.000
#> SRR934237     2  0.0632      0.905 0.000 0.976 0.000 0.024 0.000 0.000
#> SRR934238     2  0.0632      0.905 0.000 0.976 0.000 0.024 0.000 0.000
#> SRR934239     2  0.0632      0.905 0.000 0.976 0.000 0.024 0.000 0.000
#> SRR934240     2  0.0547      0.906 0.000 0.980 0.000 0.020 0.000 0.000
#> SRR934241     2  0.0547      0.906 0.000 0.980 0.000 0.020 0.000 0.000
#> SRR934242     2  0.0547      0.906 0.000 0.980 0.000 0.020 0.000 0.000
#> SRR934243     2  0.0547      0.906 0.000 0.980 0.000 0.020 0.000 0.000
#> SRR934244     2  0.0547      0.906 0.000 0.980 0.000 0.020 0.000 0.000
#> SRR934245     2  0.0547      0.906 0.000 0.980 0.000 0.020 0.000 0.000
#> SRR934246     2  0.0547      0.906 0.000 0.980 0.000 0.020 0.000 0.000
#> SRR934247     2  0.0547      0.906 0.000 0.980 0.000 0.020 0.000 0.000
#> SRR934248     4  0.2771      1.000 0.000 0.032 0.000 0.852 0.116 0.000
#> SRR934249     4  0.2771      1.000 0.000 0.032 0.000 0.852 0.116 0.000
#> SRR934250     4  0.2771      1.000 0.000 0.032 0.000 0.852 0.116 0.000
#> SRR934251     4  0.2771      1.000 0.000 0.032 0.000 0.852 0.116 0.000
#> SRR934252     4  0.2771      1.000 0.000 0.032 0.000 0.852 0.116 0.000
#> SRR934253     4  0.2771      1.000 0.000 0.032 0.000 0.852 0.116 0.000
#> SRR934254     4  0.2771      1.000 0.000 0.032 0.000 0.852 0.116 0.000
#> SRR934255     4  0.2771      1.000 0.000 0.032 0.000 0.852 0.116 0.000
#> SRR934256     2  0.0692      0.901 0.000 0.976 0.020 0.004 0.000 0.000
#> SRR934257     2  0.0692      0.901 0.000 0.976 0.020 0.004 0.000 0.000
#> SRR934258     2  0.0692      0.901 0.000 0.976 0.020 0.004 0.000 0.000
#> SRR934259     2  0.0692      0.901 0.000 0.976 0.020 0.004 0.000 0.000
#> SRR934260     2  0.0692      0.901 0.000 0.976 0.020 0.004 0.000 0.000
#> SRR934261     2  0.0692      0.901 0.000 0.976 0.020 0.004 0.000 0.000
#> SRR934262     2  0.0692      0.901 0.000 0.976 0.020 0.004 0.000 0.000
#> SRR934263     2  0.0692      0.901 0.000 0.976 0.020 0.004 0.000 0.000
#> SRR934264     5  0.4012      0.631 0.000 0.000 0.008 0.172 0.760 0.060
#> SRR934265     5  0.4012      0.631 0.000 0.000 0.008 0.172 0.760 0.060
#> SRR934266     5  0.4012      0.631 0.000 0.000 0.008 0.172 0.760 0.060
#> SRR934267     5  0.4012      0.631 0.000 0.000 0.008 0.172 0.760 0.060
#> SRR934268     5  0.4012      0.631 0.000 0.000 0.008 0.172 0.760 0.060
#> SRR934269     5  0.4012      0.631 0.000 0.000 0.008 0.172 0.760 0.060
#> SRR934270     5  0.4012      0.631 0.000 0.000 0.008 0.172 0.760 0.060
#> SRR934271     5  0.4012      0.631 0.000 0.000 0.008 0.172 0.760 0.060
#> SRR934272     6  0.2958      0.579 0.028 0.000 0.004 0.012 0.096 0.860
#> SRR934273     6  0.2958      0.579 0.028 0.000 0.004 0.012 0.096 0.860
#> SRR934274     6  0.2958      0.579 0.028 0.000 0.004 0.012 0.096 0.860
#> SRR934275     6  0.2958      0.579 0.028 0.000 0.004 0.012 0.096 0.860
#> SRR934276     6  0.2958      0.579 0.028 0.000 0.004 0.012 0.096 0.860
#> SRR934277     6  0.2958      0.579 0.028 0.000 0.004 0.012 0.096 0.860
#> SRR934278     6  0.2958      0.579 0.028 0.000 0.004 0.012 0.096 0.860
#> SRR934279     6  0.2958      0.579 0.028 0.000 0.004 0.012 0.096 0.860
#> SRR934280     6  0.3890      0.389 0.004 0.000 0.400 0.000 0.000 0.596
#> SRR934281     6  0.3890      0.389 0.004 0.000 0.400 0.000 0.000 0.596
#> SRR934282     6  0.3890      0.389 0.004 0.000 0.400 0.000 0.000 0.596
#> SRR934283     6  0.3890      0.389 0.004 0.000 0.400 0.000 0.000 0.596
#> SRR934284     6  0.3890      0.389 0.004 0.000 0.400 0.000 0.000 0.596
#> SRR934285     6  0.3890      0.389 0.004 0.000 0.400 0.000 0.000 0.596
#> SRR934286     6  0.3890      0.389 0.004 0.000 0.400 0.000 0.000 0.596
#> SRR934287     6  0.3890      0.389 0.004 0.000 0.400 0.000 0.000 0.596
#> SRR934288     1  0.3875      0.833 0.796 0.012 0.132 0.052 0.000 0.008
#> SRR934289     1  0.3875      0.833 0.796 0.012 0.132 0.052 0.000 0.008
#> SRR934290     1  0.3875      0.833 0.796 0.012 0.132 0.052 0.000 0.008
#> SRR934291     1  0.3875      0.833 0.796 0.012 0.132 0.052 0.000 0.008
#> SRR934292     1  0.3875      0.833 0.796 0.012 0.132 0.052 0.000 0.008
#> SRR934293     1  0.3875      0.833 0.796 0.012 0.132 0.052 0.000 0.008
#> SRR934294     1  0.3875      0.833 0.796 0.012 0.132 0.052 0.000 0.008
#> SRR934295     1  0.3875      0.833 0.796 0.012 0.132 0.052 0.000 0.008
#> SRR934296     2  0.5107      0.734 0.036 0.688 0.172 0.104 0.000 0.000
#> SRR934297     2  0.5107      0.734 0.036 0.688 0.172 0.104 0.000 0.000
#> SRR934298     2  0.5107      0.734 0.036 0.688 0.172 0.104 0.000 0.000
#> SRR934299     2  0.5107      0.734 0.036 0.688 0.172 0.104 0.000 0.000
#> SRR934300     2  0.5107      0.734 0.036 0.688 0.172 0.104 0.000 0.000
#> SRR934301     2  0.5107      0.734 0.036 0.688 0.172 0.104 0.000 0.000
#> SRR934302     2  0.5107      0.734 0.036 0.688 0.172 0.104 0.000 0.000
#> SRR934303     2  0.5107      0.734 0.036 0.688 0.172 0.104 0.000 0.000
#> SRR934304     5  0.3715      0.521 0.000 0.000 0.048 0.188 0.764 0.000
#> SRR934305     5  0.3715      0.521 0.000 0.000 0.048 0.188 0.764 0.000
#> SRR934306     5  0.3715      0.521 0.000 0.000 0.048 0.188 0.764 0.000
#> SRR934307     5  0.3715      0.521 0.000 0.000 0.048 0.188 0.764 0.000
#> SRR934308     5  0.3715      0.521 0.000 0.000 0.048 0.188 0.764 0.000
#> SRR934309     5  0.3715      0.521 0.000 0.000 0.048 0.188 0.764 0.000
#> SRR934310     5  0.3715      0.521 0.000 0.000 0.048 0.188 0.764 0.000
#> SRR934311     5  0.3715      0.521 0.000 0.000 0.048 0.188 0.764 0.000
#> SRR934312     6  0.3601      0.497 0.000 0.000 0.312 0.004 0.000 0.684
#> SRR934313     6  0.3601      0.497 0.000 0.000 0.312 0.004 0.000 0.684
#> SRR934314     6  0.3601      0.497 0.000 0.000 0.312 0.004 0.000 0.684
#> SRR934315     6  0.3601      0.497 0.000 0.000 0.312 0.004 0.000 0.684
#> SRR934316     6  0.3601      0.497 0.000 0.000 0.312 0.004 0.000 0.684
#> SRR934317     6  0.3601      0.497 0.000 0.000 0.312 0.004 0.000 0.684
#> SRR934318     6  0.3601      0.497 0.000 0.000 0.312 0.004 0.000 0.684
#> SRR934319     6  0.3601      0.497 0.000 0.000 0.312 0.004 0.000 0.684
#> SRR934320     3  0.5069      1.000 0.064 0.028 0.692 0.012 0.000 0.204
#> SRR934321     3  0.5069      1.000 0.064 0.028 0.692 0.012 0.000 0.204
#> SRR934322     3  0.5069      1.000 0.064 0.028 0.692 0.012 0.000 0.204
#> SRR934323     3  0.5069      1.000 0.064 0.028 0.692 0.012 0.000 0.204
#> SRR934324     3  0.5069      1.000 0.064 0.028 0.692 0.012 0.000 0.204
#> SRR934325     3  0.5069      1.000 0.064 0.028 0.692 0.012 0.000 0.204
#> SRR934326     3  0.5069      1.000 0.064 0.028 0.692 0.012 0.000 0.204
#> SRR934327     3  0.5069      1.000 0.064 0.028 0.692 0.012 0.000 0.204
#> SRR934328     1  0.0363      0.903 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR934329     1  0.0363      0.903 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR934330     1  0.0363      0.903 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR934331     1  0.0363      0.903 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR934332     1  0.0363      0.903 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR934333     1  0.0363      0.903 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR934334     1  0.0363      0.903 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR934335     1  0.0363      0.903 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR934344     1  0.1757      0.891 0.928 0.000 0.012 0.000 0.008 0.052
#> SRR934345     1  0.1757      0.891 0.928 0.000 0.012 0.000 0.008 0.052
#> SRR934346     1  0.1757      0.891 0.928 0.000 0.012 0.000 0.008 0.052
#> SRR934347     1  0.1757      0.891 0.928 0.000 0.012 0.000 0.008 0.052
#> SRR934348     1  0.1757      0.891 0.928 0.000 0.012 0.000 0.008 0.052
#> SRR934349     1  0.1757      0.891 0.928 0.000 0.012 0.000 0.008 0.052
#> SRR934350     1  0.1757      0.891 0.928 0.000 0.012 0.000 0.008 0.052
#> SRR934351     1  0.1757      0.891 0.928 0.000 0.012 0.000 0.008 0.052
#> SRR934336     6  0.3308      0.594 0.012 0.000 0.088 0.000 0.064 0.836
#> SRR934337     6  0.3308      0.594 0.012 0.000 0.088 0.000 0.064 0.836
#> SRR934338     6  0.3308      0.594 0.012 0.000 0.088 0.000 0.064 0.836
#> SRR934339     6  0.3308      0.594 0.012 0.000 0.088 0.000 0.064 0.836
#> SRR934340     6  0.3308      0.594 0.012 0.000 0.088 0.000 0.064 0.836
#> SRR934341     6  0.3308      0.594 0.012 0.000 0.088 0.000 0.064 0.836
#> SRR934342     6  0.3308      0.594 0.012 0.000 0.088 0.000 0.064 0.836

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14550 rows and 135 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.2952 0.705   0.705
#> 3 3 0.909           0.960       0.978         0.4708 0.832   0.762
#> 4 4 1.000           1.000       1.000         0.0828 0.993   0.987
#> 5 5 1.000           0.993       0.994         0.0380 0.986   0.973
#> 6 6 0.683           0.771       0.844         0.2735 1.000   1.000

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> SRR934216     1       0          1  1  0
#> SRR934217     1       0          1  1  0
#> SRR934218     1       0          1  1  0
#> SRR934219     1       0          1  1  0
#> SRR934220     1       0          1  1  0
#> SRR934221     1       0          1  1  0
#> SRR934222     1       0          1  1  0
#> SRR934223     1       0          1  1  0
#> SRR934224     1       0          1  1  0
#> SRR934225     1       0          1  1  0
#> SRR934226     1       0          1  1  0
#> SRR934227     1       0          1  1  0
#> SRR934228     1       0          1  1  0
#> SRR934229     1       0          1  1  0
#> SRR934230     1       0          1  1  0
#> SRR934231     1       0          1  1  0
#> SRR934232     2       0          1  0  1
#> SRR934233     2       0          1  0  1
#> SRR934234     2       0          1  0  1
#> SRR934235     2       0          1  0  1
#> SRR934236     2       0          1  0  1
#> SRR934237     2       0          1  0  1
#> SRR934238     2       0          1  0  1
#> SRR934239     2       0          1  0  1
#> SRR934240     2       0          1  0  1
#> SRR934241     2       0          1  0  1
#> SRR934242     2       0          1  0  1
#> SRR934243     2       0          1  0  1
#> SRR934244     2       0          1  0  1
#> SRR934245     2       0          1  0  1
#> SRR934246     2       0          1  0  1
#> SRR934247     2       0          1  0  1
#> SRR934248     1       0          1  1  0
#> SRR934249     1       0          1  1  0
#> SRR934250     1       0          1  1  0
#> SRR934251     1       0          1  1  0
#> SRR934252     1       0          1  1  0
#> SRR934253     1       0          1  1  0
#> SRR934254     1       0          1  1  0
#> SRR934255     1       0          1  1  0
#> SRR934256     2       0          1  0  1
#> SRR934257     2       0          1  0  1
#> SRR934258     2       0          1  0  1
#> SRR934259     2       0          1  0  1
#> SRR934260     2       0          1  0  1
#> SRR934261     2       0          1  0  1
#> SRR934262     2       0          1  0  1
#> SRR934263     2       0          1  0  1
#> SRR934264     1       0          1  1  0
#> SRR934265     1       0          1  1  0
#> SRR934266     1       0          1  1  0
#> SRR934267     1       0          1  1  0
#> SRR934268     1       0          1  1  0
#> SRR934269     1       0          1  1  0
#> SRR934270     1       0          1  1  0
#> SRR934271     1       0          1  1  0
#> SRR934272     1       0          1  1  0
#> SRR934273     1       0          1  1  0
#> SRR934274     1       0          1  1  0
#> SRR934275     1       0          1  1  0
#> SRR934276     1       0          1  1  0
#> SRR934277     1       0          1  1  0
#> SRR934278     1       0          1  1  0
#> SRR934279     1       0          1  1  0
#> SRR934280     1       0          1  1  0
#> SRR934281     1       0          1  1  0
#> SRR934282     1       0          1  1  0
#> SRR934283     1       0          1  1  0
#> SRR934284     1       0          1  1  0
#> SRR934285     1       0          1  1  0
#> SRR934286     1       0          1  1  0
#> SRR934287     1       0          1  1  0
#> SRR934288     1       0          1  1  0
#> SRR934289     1       0          1  1  0
#> SRR934290     1       0          1  1  0
#> SRR934291     1       0          1  1  0
#> SRR934292     1       0          1  1  0
#> SRR934293     1       0          1  1  0
#> SRR934294     1       0          1  1  0
#> SRR934295     1       0          1  1  0
#> SRR934296     1       0          1  1  0
#> SRR934297     1       0          1  1  0
#> SRR934298     1       0          1  1  0
#> SRR934299     1       0          1  1  0
#> SRR934300     1       0          1  1  0
#> SRR934301     1       0          1  1  0
#> SRR934302     1       0          1  1  0
#> SRR934303     1       0          1  1  0
#> SRR934304     1       0          1  1  0
#> SRR934305     1       0          1  1  0
#> SRR934306     1       0          1  1  0
#> SRR934307     1       0          1  1  0
#> SRR934308     1       0          1  1  0
#> SRR934309     1       0          1  1  0
#> SRR934310     1       0          1  1  0
#> SRR934311     1       0          1  1  0
#> SRR934312     1       0          1  1  0
#> SRR934313     1       0          1  1  0
#> SRR934314     1       0          1  1  0
#> SRR934315     1       0          1  1  0
#> SRR934316     1       0          1  1  0
#> SRR934317     1       0          1  1  0
#> SRR934318     1       0          1  1  0
#> SRR934319     1       0          1  1  0
#> SRR934320     1       0          1  1  0
#> SRR934321     1       0          1  1  0
#> SRR934322     1       0          1  1  0
#> SRR934323     1       0          1  1  0
#> SRR934324     1       0          1  1  0
#> SRR934325     1       0          1  1  0
#> SRR934326     1       0          1  1  0
#> SRR934327     1       0          1  1  0
#> SRR934328     1       0          1  1  0
#> SRR934329     1       0          1  1  0
#> SRR934330     1       0          1  1  0
#> SRR934331     1       0          1  1  0
#> SRR934332     1       0          1  1  0
#> SRR934333     1       0          1  1  0
#> SRR934334     1       0          1  1  0
#> SRR934335     1       0          1  1  0
#> SRR934344     1       0          1  1  0
#> SRR934345     1       0          1  1  0
#> SRR934346     1       0          1  1  0
#> SRR934347     1       0          1  1  0
#> SRR934348     1       0          1  1  0
#> SRR934349     1       0          1  1  0
#> SRR934350     1       0          1  1  0
#> SRR934351     1       0          1  1  0
#> SRR934336     1       0          1  1  0
#> SRR934337     1       0          1  1  0
#> SRR934338     1       0          1  1  0
#> SRR934339     1       0          1  1  0
#> SRR934340     1       0          1  1  0
#> SRR934341     1       0          1  1  0
#> SRR934342     1       0          1  1  0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1 p2    p3
#> SRR934216     3   0.603      0.679 0.376  0 0.624
#> SRR934217     3   0.603      0.679 0.376  0 0.624
#> SRR934218     3   0.603      0.679 0.376  0 0.624
#> SRR934219     3   0.603      0.679 0.376  0 0.624
#> SRR934220     3   0.603      0.679 0.376  0 0.624
#> SRR934221     3   0.603      0.679 0.376  0 0.624
#> SRR934222     3   0.603      0.679 0.376  0 0.624
#> SRR934223     3   0.603      0.679 0.376  0 0.624
#> SRR934224     1   0.000      1.000 1.000  0 0.000
#> SRR934225     1   0.000      1.000 1.000  0 0.000
#> SRR934226     1   0.000      1.000 1.000  0 0.000
#> SRR934227     1   0.000      1.000 1.000  0 0.000
#> SRR934228     1   0.000      1.000 1.000  0 0.000
#> SRR934229     1   0.000      1.000 1.000  0 0.000
#> SRR934230     1   0.000      1.000 1.000  0 0.000
#> SRR934231     1   0.000      1.000 1.000  0 0.000
#> SRR934232     2   0.000      1.000 0.000  1 0.000
#> SRR934233     2   0.000      1.000 0.000  1 0.000
#> SRR934234     2   0.000      1.000 0.000  1 0.000
#> SRR934235     2   0.000      1.000 0.000  1 0.000
#> SRR934236     2   0.000      1.000 0.000  1 0.000
#> SRR934237     2   0.000      1.000 0.000  1 0.000
#> SRR934238     2   0.000      1.000 0.000  1 0.000
#> SRR934239     2   0.000      1.000 0.000  1 0.000
#> SRR934240     2   0.000      1.000 0.000  1 0.000
#> SRR934241     2   0.000      1.000 0.000  1 0.000
#> SRR934242     2   0.000      1.000 0.000  1 0.000
#> SRR934243     2   0.000      1.000 0.000  1 0.000
#> SRR934244     2   0.000      1.000 0.000  1 0.000
#> SRR934245     2   0.000      1.000 0.000  1 0.000
#> SRR934246     2   0.000      1.000 0.000  1 0.000
#> SRR934247     2   0.000      1.000 0.000  1 0.000
#> SRR934248     1   0.000      1.000 1.000  0 0.000
#> SRR934249     1   0.000      1.000 1.000  0 0.000
#> SRR934250     1   0.000      1.000 1.000  0 0.000
#> SRR934251     1   0.000      1.000 1.000  0 0.000
#> SRR934252     1   0.000      1.000 1.000  0 0.000
#> SRR934253     1   0.000      1.000 1.000  0 0.000
#> SRR934254     1   0.000      1.000 1.000  0 0.000
#> SRR934255     1   0.000      1.000 1.000  0 0.000
#> SRR934256     2   0.000      1.000 0.000  1 0.000
#> SRR934257     2   0.000      1.000 0.000  1 0.000
#> SRR934258     2   0.000      1.000 0.000  1 0.000
#> SRR934259     2   0.000      1.000 0.000  1 0.000
#> SRR934260     2   0.000      1.000 0.000  1 0.000
#> SRR934261     2   0.000      1.000 0.000  1 0.000
#> SRR934262     2   0.000      1.000 0.000  1 0.000
#> SRR934263     2   0.000      1.000 0.000  1 0.000
#> SRR934264     1   0.000      1.000 1.000  0 0.000
#> SRR934265     1   0.000      1.000 1.000  0 0.000
#> SRR934266     1   0.000      1.000 1.000  0 0.000
#> SRR934267     1   0.000      1.000 1.000  0 0.000
#> SRR934268     1   0.000      1.000 1.000  0 0.000
#> SRR934269     1   0.000      1.000 1.000  0 0.000
#> SRR934270     1   0.000      1.000 1.000  0 0.000
#> SRR934271     1   0.000      1.000 1.000  0 0.000
#> SRR934272     1   0.000      1.000 1.000  0 0.000
#> SRR934273     1   0.000      1.000 1.000  0 0.000
#> SRR934274     1   0.000      1.000 1.000  0 0.000
#> SRR934275     1   0.000      1.000 1.000  0 0.000
#> SRR934276     1   0.000      1.000 1.000  0 0.000
#> SRR934277     1   0.000      1.000 1.000  0 0.000
#> SRR934278     1   0.000      1.000 1.000  0 0.000
#> SRR934279     1   0.000      1.000 1.000  0 0.000
#> SRR934280     1   0.000      1.000 1.000  0 0.000
#> SRR934281     1   0.000      1.000 1.000  0 0.000
#> SRR934282     1   0.000      1.000 1.000  0 0.000
#> SRR934283     1   0.000      1.000 1.000  0 0.000
#> SRR934284     1   0.000      1.000 1.000  0 0.000
#> SRR934285     1   0.000      1.000 1.000  0 0.000
#> SRR934286     1   0.000      1.000 1.000  0 0.000
#> SRR934287     1   0.000      1.000 1.000  0 0.000
#> SRR934288     1   0.000      1.000 1.000  0 0.000
#> SRR934289     1   0.000      1.000 1.000  0 0.000
#> SRR934290     1   0.000      1.000 1.000  0 0.000
#> SRR934291     1   0.000      1.000 1.000  0 0.000
#> SRR934292     1   0.000      1.000 1.000  0 0.000
#> SRR934293     1   0.000      1.000 1.000  0 0.000
#> SRR934294     1   0.000      1.000 1.000  0 0.000
#> SRR934295     1   0.000      1.000 1.000  0 0.000
#> SRR934296     1   0.000      1.000 1.000  0 0.000
#> SRR934297     1   0.000      1.000 1.000  0 0.000
#> SRR934298     1   0.000      1.000 1.000  0 0.000
#> SRR934299     1   0.000      1.000 1.000  0 0.000
#> SRR934300     1   0.000      1.000 1.000  0 0.000
#> SRR934301     1   0.000      1.000 1.000  0 0.000
#> SRR934302     1   0.000      1.000 1.000  0 0.000
#> SRR934303     1   0.000      1.000 1.000  0 0.000
#> SRR934304     3   0.000      0.643 0.000  0 1.000
#> SRR934305     3   0.000      0.643 0.000  0 1.000
#> SRR934306     3   0.000      0.643 0.000  0 1.000
#> SRR934307     3   0.000      0.643 0.000  0 1.000
#> SRR934308     3   0.000      0.643 0.000  0 1.000
#> SRR934309     3   0.000      0.643 0.000  0 1.000
#> SRR934310     3   0.000      0.643 0.000  0 1.000
#> SRR934311     3   0.000      0.643 0.000  0 1.000
#> SRR934312     1   0.000      1.000 1.000  0 0.000
#> SRR934313     1   0.000      1.000 1.000  0 0.000
#> SRR934314     1   0.000      1.000 1.000  0 0.000
#> SRR934315     1   0.000      1.000 1.000  0 0.000
#> SRR934316     1   0.000      1.000 1.000  0 0.000
#> SRR934317     1   0.000      1.000 1.000  0 0.000
#> SRR934318     1   0.000      1.000 1.000  0 0.000
#> SRR934319     1   0.000      1.000 1.000  0 0.000
#> SRR934320     1   0.000      1.000 1.000  0 0.000
#> SRR934321     1   0.000      1.000 1.000  0 0.000
#> SRR934322     1   0.000      1.000 1.000  0 0.000
#> SRR934323     1   0.000      1.000 1.000  0 0.000
#> SRR934324     1   0.000      1.000 1.000  0 0.000
#> SRR934325     1   0.000      1.000 1.000  0 0.000
#> SRR934326     1   0.000      1.000 1.000  0 0.000
#> SRR934327     1   0.000      1.000 1.000  0 0.000
#> SRR934328     1   0.000      1.000 1.000  0 0.000
#> SRR934329     1   0.000      1.000 1.000  0 0.000
#> SRR934330     1   0.000      1.000 1.000  0 0.000
#> SRR934331     1   0.000      1.000 1.000  0 0.000
#> SRR934332     1   0.000      1.000 1.000  0 0.000
#> SRR934333     1   0.000      1.000 1.000  0 0.000
#> SRR934334     1   0.000      1.000 1.000  0 0.000
#> SRR934335     1   0.000      1.000 1.000  0 0.000
#> SRR934344     1   0.000      1.000 1.000  0 0.000
#> SRR934345     1   0.000      1.000 1.000  0 0.000
#> SRR934346     1   0.000      1.000 1.000  0 0.000
#> SRR934347     1   0.000      1.000 1.000  0 0.000
#> SRR934348     1   0.000      1.000 1.000  0 0.000
#> SRR934349     1   0.000      1.000 1.000  0 0.000
#> SRR934350     1   0.000      1.000 1.000  0 0.000
#> SRR934351     1   0.000      1.000 1.000  0 0.000
#> SRR934336     1   0.000      1.000 1.000  0 0.000
#> SRR934337     1   0.000      1.000 1.000  0 0.000
#> SRR934338     1   0.000      1.000 1.000  0 0.000
#> SRR934339     1   0.000      1.000 1.000  0 0.000
#> SRR934340     1   0.000      1.000 1.000  0 0.000
#> SRR934341     1   0.000      1.000 1.000  0 0.000
#> SRR934342     1   0.000      1.000 1.000  0 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette p1 p2 p3 p4
#> SRR934216     3       0          1  0  0  1  0
#> SRR934217     3       0          1  0  0  1  0
#> SRR934218     3       0          1  0  0  1  0
#> SRR934219     3       0          1  0  0  1  0
#> SRR934220     3       0          1  0  0  1  0
#> SRR934221     3       0          1  0  0  1  0
#> SRR934222     3       0          1  0  0  1  0
#> SRR934223     3       0          1  0  0  1  0
#> SRR934224     1       0          1  1  0  0  0
#> SRR934225     1       0          1  1  0  0  0
#> SRR934226     1       0          1  1  0  0  0
#> SRR934227     1       0          1  1  0  0  0
#> SRR934228     1       0          1  1  0  0  0
#> SRR934229     1       0          1  1  0  0  0
#> SRR934230     1       0          1  1  0  0  0
#> SRR934231     1       0          1  1  0  0  0
#> SRR934232     2       0          1  0  1  0  0
#> SRR934233     2       0          1  0  1  0  0
#> SRR934234     2       0          1  0  1  0  0
#> SRR934235     2       0          1  0  1  0  0
#> SRR934236     2       0          1  0  1  0  0
#> SRR934237     2       0          1  0  1  0  0
#> SRR934238     2       0          1  0  1  0  0
#> SRR934239     2       0          1  0  1  0  0
#> SRR934240     2       0          1  0  1  0  0
#> SRR934241     2       0          1  0  1  0  0
#> SRR934242     2       0          1  0  1  0  0
#> SRR934243     2       0          1  0  1  0  0
#> SRR934244     2       0          1  0  1  0  0
#> SRR934245     2       0          1  0  1  0  0
#> SRR934246     2       0          1  0  1  0  0
#> SRR934247     2       0          1  0  1  0  0
#> SRR934248     1       0          1  1  0  0  0
#> SRR934249     1       0          1  1  0  0  0
#> SRR934250     1       0          1  1  0  0  0
#> SRR934251     1       0          1  1  0  0  0
#> SRR934252     1       0          1  1  0  0  0
#> SRR934253     1       0          1  1  0  0  0
#> SRR934254     1       0          1  1  0  0  0
#> SRR934255     1       0          1  1  0  0  0
#> SRR934256     2       0          1  0  1  0  0
#> SRR934257     2       0          1  0  1  0  0
#> SRR934258     2       0          1  0  1  0  0
#> SRR934259     2       0          1  0  1  0  0
#> SRR934260     2       0          1  0  1  0  0
#> SRR934261     2       0          1  0  1  0  0
#> SRR934262     2       0          1  0  1  0  0
#> SRR934263     2       0          1  0  1  0  0
#> SRR934264     1       0          1  1  0  0  0
#> SRR934265     1       0          1  1  0  0  0
#> SRR934266     1       0          1  1  0  0  0
#> SRR934267     1       0          1  1  0  0  0
#> SRR934268     1       0          1  1  0  0  0
#> SRR934269     1       0          1  1  0  0  0
#> SRR934270     1       0          1  1  0  0  0
#> SRR934271     1       0          1  1  0  0  0
#> SRR934272     1       0          1  1  0  0  0
#> SRR934273     1       0          1  1  0  0  0
#> SRR934274     1       0          1  1  0  0  0
#> SRR934275     1       0          1  1  0  0  0
#> SRR934276     1       0          1  1  0  0  0
#> SRR934277     1       0          1  1  0  0  0
#> SRR934278     1       0          1  1  0  0  0
#> SRR934279     1       0          1  1  0  0  0
#> SRR934280     1       0          1  1  0  0  0
#> SRR934281     1       0          1  1  0  0  0
#> SRR934282     1       0          1  1  0  0  0
#> SRR934283     1       0          1  1  0  0  0
#> SRR934284     1       0          1  1  0  0  0
#> SRR934285     1       0          1  1  0  0  0
#> SRR934286     1       0          1  1  0  0  0
#> SRR934287     1       0          1  1  0  0  0
#> SRR934288     1       0          1  1  0  0  0
#> SRR934289     1       0          1  1  0  0  0
#> SRR934290     1       0          1  1  0  0  0
#> SRR934291     1       0          1  1  0  0  0
#> SRR934292     1       0          1  1  0  0  0
#> SRR934293     1       0          1  1  0  0  0
#> SRR934294     1       0          1  1  0  0  0
#> SRR934295     1       0          1  1  0  0  0
#> SRR934296     1       0          1  1  0  0  0
#> SRR934297     1       0          1  1  0  0  0
#> SRR934298     1       0          1  1  0  0  0
#> SRR934299     1       0          1  1  0  0  0
#> SRR934300     1       0          1  1  0  0  0
#> SRR934301     1       0          1  1  0  0  0
#> SRR934302     1       0          1  1  0  0  0
#> SRR934303     1       0          1  1  0  0  0
#> SRR934304     4       0          1  0  0  0  1
#> SRR934305     4       0          1  0  0  0  1
#> SRR934306     4       0          1  0  0  0  1
#> SRR934307     4       0          1  0  0  0  1
#> SRR934308     4       0          1  0  0  0  1
#> SRR934309     4       0          1  0  0  0  1
#> SRR934310     4       0          1  0  0  0  1
#> SRR934311     4       0          1  0  0  0  1
#> SRR934312     1       0          1  1  0  0  0
#> SRR934313     1       0          1  1  0  0  0
#> SRR934314     1       0          1  1  0  0  0
#> SRR934315     1       0          1  1  0  0  0
#> SRR934316     1       0          1  1  0  0  0
#> SRR934317     1       0          1  1  0  0  0
#> SRR934318     1       0          1  1  0  0  0
#> SRR934319     1       0          1  1  0  0  0
#> SRR934320     1       0          1  1  0  0  0
#> SRR934321     1       0          1  1  0  0  0
#> SRR934322     1       0          1  1  0  0  0
#> SRR934323     1       0          1  1  0  0  0
#> SRR934324     1       0          1  1  0  0  0
#> SRR934325     1       0          1  1  0  0  0
#> SRR934326     1       0          1  1  0  0  0
#> SRR934327     1       0          1  1  0  0  0
#> SRR934328     1       0          1  1  0  0  0
#> SRR934329     1       0          1  1  0  0  0
#> SRR934330     1       0          1  1  0  0  0
#> SRR934331     1       0          1  1  0  0  0
#> SRR934332     1       0          1  1  0  0  0
#> SRR934333     1       0          1  1  0  0  0
#> SRR934334     1       0          1  1  0  0  0
#> SRR934335     1       0          1  1  0  0  0
#> SRR934344     1       0          1  1  0  0  0
#> SRR934345     1       0          1  1  0  0  0
#> SRR934346     1       0          1  1  0  0  0
#> SRR934347     1       0          1  1  0  0  0
#> SRR934348     1       0          1  1  0  0  0
#> SRR934349     1       0          1  1  0  0  0
#> SRR934350     1       0          1  1  0  0  0
#> SRR934351     1       0          1  1  0  0  0
#> SRR934336     1       0          1  1  0  0  0
#> SRR934337     1       0          1  1  0  0  0
#> SRR934338     1       0          1  1  0  0  0
#> SRR934339     1       0          1  1  0  0  0
#> SRR934340     1       0          1  1  0  0  0
#> SRR934341     1       0          1  1  0  0  0
#> SRR934342     1       0          1  1  0  0  0

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2 p3    p4 p5
#> SRR934216     3  0.0000      1.000 0.000 0.000  1 0.000  0
#> SRR934217     3  0.0000      1.000 0.000 0.000  1 0.000  0
#> SRR934218     3  0.0000      1.000 0.000 0.000  1 0.000  0
#> SRR934219     3  0.0000      1.000 0.000 0.000  1 0.000  0
#> SRR934220     3  0.0000      1.000 0.000 0.000  1 0.000  0
#> SRR934221     3  0.0000      1.000 0.000 0.000  1 0.000  0
#> SRR934222     3  0.0000      1.000 0.000 0.000  1 0.000  0
#> SRR934223     3  0.0000      1.000 0.000 0.000  1 0.000  0
#> SRR934224     1  0.0290      0.992 0.992 0.000  0 0.008  0
#> SRR934225     1  0.0290      0.992 0.992 0.000  0 0.008  0
#> SRR934226     1  0.0290      0.992 0.992 0.000  0 0.008  0
#> SRR934227     1  0.0290      0.992 0.992 0.000  0 0.008  0
#> SRR934228     1  0.0290      0.992 0.992 0.000  0 0.008  0
#> SRR934229     1  0.0290      0.992 0.992 0.000  0 0.008  0
#> SRR934230     1  0.0290      0.992 0.992 0.000  0 0.008  0
#> SRR934231     1  0.0290      0.992 0.992 0.000  0 0.008  0
#> SRR934232     2  0.0000      0.991 0.000 1.000  0 0.000  0
#> SRR934233     2  0.0000      0.991 0.000 1.000  0 0.000  0
#> SRR934234     2  0.0000      0.991 0.000 1.000  0 0.000  0
#> SRR934235     2  0.0000      0.991 0.000 1.000  0 0.000  0
#> SRR934236     2  0.0000      0.991 0.000 1.000  0 0.000  0
#> SRR934237     2  0.0000      0.991 0.000 1.000  0 0.000  0
#> SRR934238     2  0.0000      0.991 0.000 1.000  0 0.000  0
#> SRR934239     2  0.0000      0.991 0.000 1.000  0 0.000  0
#> SRR934240     2  0.0404      0.991 0.000 0.988  0 0.012  0
#> SRR934241     2  0.0404      0.991 0.000 0.988  0 0.012  0
#> SRR934242     2  0.0404      0.991 0.000 0.988  0 0.012  0
#> SRR934243     2  0.0404      0.991 0.000 0.988  0 0.012  0
#> SRR934244     2  0.0404      0.991 0.000 0.988  0 0.012  0
#> SRR934245     2  0.0404      0.991 0.000 0.988  0 0.012  0
#> SRR934246     2  0.0404      0.991 0.000 0.988  0 0.012  0
#> SRR934247     2  0.0404      0.991 0.000 0.988  0 0.012  0
#> SRR934248     1  0.0162      0.993 0.996 0.000  0 0.004  0
#> SRR934249     1  0.0162      0.993 0.996 0.000  0 0.004  0
#> SRR934250     1  0.0162      0.993 0.996 0.000  0 0.004  0
#> SRR934251     1  0.0162      0.993 0.996 0.000  0 0.004  0
#> SRR934252     1  0.0162      0.993 0.996 0.000  0 0.004  0
#> SRR934253     1  0.0162      0.993 0.996 0.000  0 0.004  0
#> SRR934254     1  0.0162      0.993 0.996 0.000  0 0.004  0
#> SRR934255     1  0.0162      0.993 0.996 0.000  0 0.004  0
#> SRR934256     4  0.0404      1.000 0.000 0.012  0 0.988  0
#> SRR934257     4  0.0404      1.000 0.000 0.012  0 0.988  0
#> SRR934258     4  0.0404      1.000 0.000 0.012  0 0.988  0
#> SRR934259     4  0.0404      1.000 0.000 0.012  0 0.988  0
#> SRR934260     4  0.0404      1.000 0.000 0.012  0 0.988  0
#> SRR934261     4  0.0404      1.000 0.000 0.012  0 0.988  0
#> SRR934262     4  0.0404      1.000 0.000 0.012  0 0.988  0
#> SRR934263     4  0.0404      1.000 0.000 0.012  0 0.988  0
#> SRR934264     1  0.0290      0.992 0.992 0.000  0 0.008  0
#> SRR934265     1  0.0290      0.992 0.992 0.000  0 0.008  0
#> SRR934266     1  0.0290      0.992 0.992 0.000  0 0.008  0
#> SRR934267     1  0.0290      0.992 0.992 0.000  0 0.008  0
#> SRR934268     1  0.0290      0.992 0.992 0.000  0 0.008  0
#> SRR934269     1  0.0290      0.992 0.992 0.000  0 0.008  0
#> SRR934270     1  0.0290      0.992 0.992 0.000  0 0.008  0
#> SRR934271     1  0.0290      0.992 0.992 0.000  0 0.008  0
#> SRR934272     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934273     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934274     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934275     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934276     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934277     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934278     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934279     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934280     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934281     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934282     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934283     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934284     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934285     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934286     1  0.0162      0.993 0.996 0.004  0 0.000  0
#> SRR934287     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934288     1  0.0566      0.988 0.984 0.012  0 0.004  0
#> SRR934289     1  0.0566      0.988 0.984 0.012  0 0.004  0
#> SRR934290     1  0.0566      0.988 0.984 0.012  0 0.004  0
#> SRR934291     1  0.0566      0.988 0.984 0.012  0 0.004  0
#> SRR934292     1  0.0566      0.988 0.984 0.012  0 0.004  0
#> SRR934293     1  0.0566      0.988 0.984 0.012  0 0.004  0
#> SRR934294     1  0.0566      0.988 0.984 0.012  0 0.004  0
#> SRR934295     1  0.0566      0.988 0.984 0.012  0 0.004  0
#> SRR934296     1  0.0566      0.988 0.984 0.012  0 0.004  0
#> SRR934297     1  0.0566      0.988 0.984 0.012  0 0.004  0
#> SRR934298     1  0.0566      0.988 0.984 0.012  0 0.004  0
#> SRR934299     1  0.0566      0.988 0.984 0.012  0 0.004  0
#> SRR934300     1  0.0566      0.988 0.984 0.012  0 0.004  0
#> SRR934301     1  0.0566      0.988 0.984 0.012  0 0.004  0
#> SRR934302     1  0.0566      0.988 0.984 0.012  0 0.004  0
#> SRR934303     1  0.0566      0.988 0.984 0.012  0 0.004  0
#> SRR934304     5  0.0000      1.000 0.000 0.000  0 0.000  1
#> SRR934305     5  0.0000      1.000 0.000 0.000  0 0.000  1
#> SRR934306     5  0.0000      1.000 0.000 0.000  0 0.000  1
#> SRR934307     5  0.0000      1.000 0.000 0.000  0 0.000  1
#> SRR934308     5  0.0000      1.000 0.000 0.000  0 0.000  1
#> SRR934309     5  0.0000      1.000 0.000 0.000  0 0.000  1
#> SRR934310     5  0.0000      1.000 0.000 0.000  0 0.000  1
#> SRR934311     5  0.0000      1.000 0.000 0.000  0 0.000  1
#> SRR934312     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934313     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934314     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934315     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934316     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934317     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934318     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934319     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934320     1  0.0566      0.988 0.984 0.012  0 0.004  0
#> SRR934321     1  0.0566      0.988 0.984 0.012  0 0.004  0
#> SRR934322     1  0.0566      0.988 0.984 0.012  0 0.004  0
#> SRR934323     1  0.0566      0.988 0.984 0.012  0 0.004  0
#> SRR934324     1  0.0566      0.988 0.984 0.012  0 0.004  0
#> SRR934325     1  0.0566      0.988 0.984 0.012  0 0.004  0
#> SRR934326     1  0.0566      0.988 0.984 0.012  0 0.004  0
#> SRR934327     1  0.0566      0.988 0.984 0.012  0 0.004  0
#> SRR934328     1  0.0162      0.993 0.996 0.000  0 0.004  0
#> SRR934329     1  0.0162      0.993 0.996 0.000  0 0.004  0
#> SRR934330     1  0.0162      0.993 0.996 0.000  0 0.004  0
#> SRR934331     1  0.0162      0.993 0.996 0.000  0 0.004  0
#> SRR934332     1  0.0162      0.993 0.996 0.000  0 0.004  0
#> SRR934333     1  0.0162      0.993 0.996 0.000  0 0.004  0
#> SRR934334     1  0.0162      0.993 0.996 0.000  0 0.004  0
#> SRR934335     1  0.0162      0.993 0.996 0.000  0 0.004  0
#> SRR934344     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934345     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934346     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934347     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934348     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934349     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934350     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934351     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934336     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934337     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934338     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934339     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934340     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934341     1  0.0000      0.994 1.000 0.000  0 0.000  0
#> SRR934342     1  0.0000      0.994 1.000 0.000  0 0.000  0

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2 p3 p4 p5 p6
#> SRR934216     3  0.0000      1.000 0.000 0.000  1 NA  0  0
#> SRR934217     3  0.0000      1.000 0.000 0.000  1 NA  0  0
#> SRR934218     3  0.0000      1.000 0.000 0.000  1 NA  0  0
#> SRR934219     3  0.0000      1.000 0.000 0.000  1 NA  0  0
#> SRR934220     3  0.0000      1.000 0.000 0.000  1 NA  0  0
#> SRR934221     3  0.0000      1.000 0.000 0.000  1 NA  0  0
#> SRR934222     3  0.0000      1.000 0.000 0.000  1 NA  0  0
#> SRR934223     3  0.0000      1.000 0.000 0.000  1 NA  0  0
#> SRR934224     1  0.1387      0.769 0.932 0.000  0 NA  0  0
#> SRR934225     1  0.1387      0.769 0.932 0.000  0 NA  0  0
#> SRR934226     1  0.1387      0.769 0.932 0.000  0 NA  0  0
#> SRR934227     1  0.1387      0.769 0.932 0.000  0 NA  0  0
#> SRR934228     1  0.1387      0.769 0.932 0.000  0 NA  0  0
#> SRR934229     1  0.1387      0.769 0.932 0.000  0 NA  0  0
#> SRR934230     1  0.1387      0.769 0.932 0.000  0 NA  0  0
#> SRR934231     1  0.1387      0.769 0.932 0.000  0 NA  0  0
#> SRR934232     2  0.0260      0.893 0.000 0.992  0 NA  0  0
#> SRR934233     2  0.0260      0.893 0.000 0.992  0 NA  0  0
#> SRR934234     2  0.0260      0.893 0.000 0.992  0 NA  0  0
#> SRR934235     2  0.0260      0.893 0.000 0.992  0 NA  0  0
#> SRR934236     2  0.0260      0.893 0.000 0.992  0 NA  0  0
#> SRR934237     2  0.0260      0.893 0.000 0.992  0 NA  0  0
#> SRR934238     2  0.0260      0.893 0.000 0.992  0 NA  0  0
#> SRR934239     2  0.0260      0.893 0.000 0.992  0 NA  0  0
#> SRR934240     2  0.2941      0.893 0.000 0.780  0 NA  0  0
#> SRR934241     2  0.2941      0.893 0.000 0.780  0 NA  0  0
#> SRR934242     2  0.2941      0.893 0.000 0.780  0 NA  0  0
#> SRR934243     2  0.2941      0.893 0.000 0.780  0 NA  0  0
#> SRR934244     2  0.2941      0.893 0.000 0.780  0 NA  0  0
#> SRR934245     2  0.2941      0.893 0.000 0.780  0 NA  0  0
#> SRR934246     2  0.2941      0.893 0.000 0.780  0 NA  0  0
#> SRR934247     2  0.2941      0.893 0.000 0.780  0 NA  0  0
#> SRR934248     1  0.3847      0.388 0.544 0.000  0 NA  0  0
#> SRR934249     1  0.3847      0.388 0.544 0.000  0 NA  0  0
#> SRR934250     1  0.3847      0.388 0.544 0.000  0 NA  0  0
#> SRR934251     1  0.3847      0.388 0.544 0.000  0 NA  0  0
#> SRR934252     1  0.3847      0.388 0.544 0.000  0 NA  0  0
#> SRR934253     1  0.3847      0.388 0.544 0.000  0 NA  0  0
#> SRR934254     1  0.3847      0.388 0.544 0.000  0 NA  0  0
#> SRR934255     1  0.3847      0.388 0.544 0.000  0 NA  0  0
#> SRR934256     6  0.0000      1.000 0.000 0.000  0 NA  0  1
#> SRR934257     6  0.0000      1.000 0.000 0.000  0 NA  0  1
#> SRR934258     6  0.0000      1.000 0.000 0.000  0 NA  0  1
#> SRR934259     6  0.0000      1.000 0.000 0.000  0 NA  0  1
#> SRR934260     6  0.0000      1.000 0.000 0.000  0 NA  0  1
#> SRR934261     6  0.0000      1.000 0.000 0.000  0 NA  0  1
#> SRR934262     6  0.0000      1.000 0.000 0.000  0 NA  0  1
#> SRR934263     6  0.0000      1.000 0.000 0.000  0 NA  0  1
#> SRR934264     1  0.3851      0.383 0.540 0.000  0 NA  0  0
#> SRR934265     1  0.3851      0.383 0.540 0.000  0 NA  0  0
#> SRR934266     1  0.3851      0.383 0.540 0.000  0 NA  0  0
#> SRR934267     1  0.3851      0.383 0.540 0.000  0 NA  0  0
#> SRR934268     1  0.3851      0.383 0.540 0.000  0 NA  0  0
#> SRR934269     1  0.3851      0.383 0.540 0.000  0 NA  0  0
#> SRR934270     1  0.3851      0.383 0.540 0.000  0 NA  0  0
#> SRR934271     1  0.3851      0.383 0.540 0.000  0 NA  0  0
#> SRR934272     1  0.0000      0.797 1.000 0.000  0 NA  0  0
#> SRR934273     1  0.0000      0.797 1.000 0.000  0 NA  0  0
#> SRR934274     1  0.0000      0.797 1.000 0.000  0 NA  0  0
#> SRR934275     1  0.0000      0.797 1.000 0.000  0 NA  0  0
#> SRR934276     1  0.0000      0.797 1.000 0.000  0 NA  0  0
#> SRR934277     1  0.0000      0.797 1.000 0.000  0 NA  0  0
#> SRR934278     1  0.0000      0.797 1.000 0.000  0 NA  0  0
#> SRR934279     1  0.0000      0.797 1.000 0.000  0 NA  0  0
#> SRR934280     1  0.0000      0.797 1.000 0.000  0 NA  0  0
#> SRR934281     1  0.0000      0.797 1.000 0.000  0 NA  0  0
#> SRR934282     1  0.0000      0.797 1.000 0.000  0 NA  0  0
#> SRR934283     1  0.0000      0.797 1.000 0.000  0 NA  0  0
#> SRR934284     1  0.0000      0.797 1.000 0.000  0 NA  0  0
#> SRR934285     1  0.0146      0.797 0.996 0.000  0 NA  0  0
#> SRR934286     1  0.0146      0.797 0.996 0.000  0 NA  0  0
#> SRR934287     1  0.0000      0.797 1.000 0.000  0 NA  0  0
#> SRR934288     1  0.3499      0.686 0.680 0.000  0 NA  0  0
#> SRR934289     1  0.3499      0.686 0.680 0.000  0 NA  0  0
#> SRR934290     1  0.3499      0.686 0.680 0.000  0 NA  0  0
#> SRR934291     1  0.3499      0.686 0.680 0.000  0 NA  0  0
#> SRR934292     1  0.3499      0.686 0.680 0.000  0 NA  0  0
#> SRR934293     1  0.3499      0.686 0.680 0.000  0 NA  0  0
#> SRR934294     1  0.3499      0.686 0.680 0.000  0 NA  0  0
#> SRR934295     1  0.3499      0.686 0.680 0.000  0 NA  0  0
#> SRR934296     1  0.3371      0.701 0.708 0.000  0 NA  0  0
#> SRR934297     1  0.3371      0.701 0.708 0.000  0 NA  0  0
#> SRR934298     1  0.3371      0.701 0.708 0.000  0 NA  0  0
#> SRR934299     1  0.3371      0.701 0.708 0.000  0 NA  0  0
#> SRR934300     1  0.3371      0.701 0.708 0.000  0 NA  0  0
#> SRR934301     1  0.3371      0.701 0.708 0.000  0 NA  0  0
#> SRR934302     1  0.3371      0.701 0.708 0.000  0 NA  0  0
#> SRR934303     1  0.3371      0.701 0.708 0.000  0 NA  0  0
#> SRR934304     5  0.0000      1.000 0.000 0.000  0 NA  1  0
#> SRR934305     5  0.0000      1.000 0.000 0.000  0 NA  1  0
#> SRR934306     5  0.0000      1.000 0.000 0.000  0 NA  1  0
#> SRR934307     5  0.0000      1.000 0.000 0.000  0 NA  1  0
#> SRR934308     5  0.0000      1.000 0.000 0.000  0 NA  1  0
#> SRR934309     5  0.0000      1.000 0.000 0.000  0 NA  1  0
#> SRR934310     5  0.0000      1.000 0.000 0.000  0 NA  1  0
#> SRR934311     5  0.0000      1.000 0.000 0.000  0 NA  1  0
#> SRR934312     1  0.0000      0.797 1.000 0.000  0 NA  0  0
#> SRR934313     1  0.0000      0.797 1.000 0.000  0 NA  0  0
#> SRR934314     1  0.0000      0.797 1.000 0.000  0 NA  0  0
#> SRR934315     1  0.0000      0.797 1.000 0.000  0 NA  0  0
#> SRR934316     1  0.0000      0.797 1.000 0.000  0 NA  0  0
#> SRR934317     1  0.0000      0.797 1.000 0.000  0 NA  0  0
#> SRR934318     1  0.0000      0.797 1.000 0.000  0 NA  0  0
#> SRR934319     1  0.0000      0.797 1.000 0.000  0 NA  0  0
#> SRR934320     1  0.3151      0.725 0.748 0.000  0 NA  0  0
#> SRR934321     1  0.3175      0.724 0.744 0.000  0 NA  0  0
#> SRR934322     1  0.3101      0.728 0.756 0.000  0 NA  0  0
#> SRR934323     1  0.3076      0.730 0.760 0.000  0 NA  0  0
#> SRR934324     1  0.3126      0.727 0.752 0.000  0 NA  0  0
#> SRR934325     1  0.3050      0.732 0.764 0.000  0 NA  0  0
#> SRR934326     1  0.3175      0.723 0.744 0.000  0 NA  0  0
#> SRR934327     1  0.3198      0.721 0.740 0.000  0 NA  0  0
#> SRR934328     1  0.3464      0.693 0.688 0.000  0 NA  0  0
#> SRR934329     1  0.3464      0.693 0.688 0.000  0 NA  0  0
#> SRR934330     1  0.3464      0.693 0.688 0.000  0 NA  0  0
#> SRR934331     1  0.3464      0.693 0.688 0.000  0 NA  0  0
#> SRR934332     1  0.3464      0.693 0.688 0.000  0 NA  0  0
#> SRR934333     1  0.3464      0.693 0.688 0.000  0 NA  0  0
#> SRR934334     1  0.3464      0.693 0.688 0.000  0 NA  0  0
#> SRR934335     1  0.3464      0.693 0.688 0.000  0 NA  0  0
#> SRR934344     1  0.0713      0.793 0.972 0.000  0 NA  0  0
#> SRR934345     1  0.0713      0.793 0.972 0.000  0 NA  0  0
#> SRR934346     1  0.0713      0.793 0.972 0.000  0 NA  0  0
#> SRR934347     1  0.0713      0.793 0.972 0.000  0 NA  0  0
#> SRR934348     1  0.0713      0.793 0.972 0.000  0 NA  0  0
#> SRR934349     1  0.0713      0.793 0.972 0.000  0 NA  0  0
#> SRR934350     1  0.0713      0.793 0.972 0.000  0 NA  0  0
#> SRR934351     1  0.0713      0.793 0.972 0.000  0 NA  0  0
#> SRR934336     1  0.0000      0.797 1.000 0.000  0 NA  0  0
#> SRR934337     1  0.0000      0.797 1.000 0.000  0 NA  0  0
#> SRR934338     1  0.0000      0.797 1.000 0.000  0 NA  0  0
#> SRR934339     1  0.0000      0.797 1.000 0.000  0 NA  0  0
#> SRR934340     1  0.0000      0.797 1.000 0.000  0 NA  0  0
#> SRR934341     1  0.0000      0.797 1.000 0.000  0 NA  0  0
#> SRR934342     1  0.0000      0.797 1.000 0.000  0 NA  0  0

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14550 rows and 135 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.636           0.881       0.914         0.4560 0.498   0.498
#> 3 3 0.649           0.670       0.821         0.2191 0.803   0.648
#> 4 4 0.845           0.912       0.933         0.0597 0.943   0.873
#> 5 5 0.769           0.884       0.936         0.0542 0.993   0.983
#> 6 6 0.856           0.865       0.923         0.0682 0.972   0.930

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> SRR934216     2  0.0000      0.798 0.000 1.000
#> SRR934217     2  0.0000      0.798 0.000 1.000
#> SRR934218     2  0.0000      0.798 0.000 1.000
#> SRR934219     2  0.0000      0.798 0.000 1.000
#> SRR934220     2  0.0000      0.798 0.000 1.000
#> SRR934221     2  0.0000      0.798 0.000 1.000
#> SRR934222     2  0.0000      0.798 0.000 1.000
#> SRR934223     2  0.0000      0.798 0.000 1.000
#> SRR934224     1  0.2778      0.946 0.952 0.048
#> SRR934225     1  0.2778      0.946 0.952 0.048
#> SRR934226     1  0.2603      0.951 0.956 0.044
#> SRR934227     1  0.2778      0.946 0.952 0.048
#> SRR934228     1  0.2948      0.941 0.948 0.052
#> SRR934229     1  0.2778      0.946 0.952 0.048
#> SRR934230     1  0.1414      0.976 0.980 0.020
#> SRR934231     1  0.2603      0.951 0.956 0.044
#> SRR934232     2  0.0672      0.799 0.008 0.992
#> SRR934233     2  0.1184      0.798 0.016 0.984
#> SRR934234     2  0.0376      0.799 0.004 0.996
#> SRR934235     2  0.0376      0.799 0.004 0.996
#> SRR934236     2  0.0376      0.799 0.004 0.996
#> SRR934237     2  0.0376      0.799 0.004 0.996
#> SRR934238     2  0.1633      0.797 0.024 0.976
#> SRR934239     2  0.0672      0.799 0.008 0.992
#> SRR934240     2  0.0000      0.798 0.000 1.000
#> SRR934241     2  0.0000      0.798 0.000 1.000
#> SRR934242     2  0.0000      0.798 0.000 1.000
#> SRR934243     2  0.0000      0.798 0.000 1.000
#> SRR934244     2  0.0000      0.798 0.000 1.000
#> SRR934245     2  0.0000      0.798 0.000 1.000
#> SRR934246     2  0.0000      0.798 0.000 1.000
#> SRR934247     2  0.0000      0.798 0.000 1.000
#> SRR934248     2  0.9323      0.730 0.348 0.652
#> SRR934249     2  0.9323      0.730 0.348 0.652
#> SRR934250     2  0.9323      0.730 0.348 0.652
#> SRR934251     2  0.9323      0.730 0.348 0.652
#> SRR934252     2  0.9323      0.730 0.348 0.652
#> SRR934253     2  0.9323      0.730 0.348 0.652
#> SRR934254     2  0.9323      0.730 0.348 0.652
#> SRR934255     2  0.9323      0.730 0.348 0.652
#> SRR934256     2  0.9323      0.730 0.348 0.652
#> SRR934257     2  0.9323      0.730 0.348 0.652
#> SRR934258     2  0.9323      0.730 0.348 0.652
#> SRR934259     2  0.9323      0.730 0.348 0.652
#> SRR934260     2  0.9323      0.730 0.348 0.652
#> SRR934261     2  0.9323      0.730 0.348 0.652
#> SRR934262     2  0.9323      0.730 0.348 0.652
#> SRR934263     2  0.9323      0.730 0.348 0.652
#> SRR934264     2  0.9323      0.730 0.348 0.652
#> SRR934265     2  0.9323      0.730 0.348 0.652
#> SRR934266     2  0.9323      0.730 0.348 0.652
#> SRR934267     2  0.9323      0.730 0.348 0.652
#> SRR934268     2  0.9323      0.730 0.348 0.652
#> SRR934269     2  0.9323      0.730 0.348 0.652
#> SRR934270     2  0.9323      0.730 0.348 0.652
#> SRR934271     2  0.9323      0.730 0.348 0.652
#> SRR934272     1  0.0376      0.990 0.996 0.004
#> SRR934273     1  0.0376      0.990 0.996 0.004
#> SRR934274     1  0.0376      0.990 0.996 0.004
#> SRR934275     1  0.0376      0.990 0.996 0.004
#> SRR934276     1  0.0376      0.990 0.996 0.004
#> SRR934277     1  0.0376      0.990 0.996 0.004
#> SRR934278     1  0.0376      0.990 0.996 0.004
#> SRR934279     1  0.0376      0.990 0.996 0.004
#> SRR934280     1  0.0000      0.993 1.000 0.000
#> SRR934281     1  0.0000      0.993 1.000 0.000
#> SRR934282     1  0.0000      0.993 1.000 0.000
#> SRR934283     1  0.0000      0.993 1.000 0.000
#> SRR934284     1  0.0000      0.993 1.000 0.000
#> SRR934285     1  0.0000      0.993 1.000 0.000
#> SRR934286     1  0.0000      0.993 1.000 0.000
#> SRR934287     1  0.0000      0.993 1.000 0.000
#> SRR934288     1  0.0000      0.993 1.000 0.000
#> SRR934289     1  0.0000      0.993 1.000 0.000
#> SRR934290     1  0.0000      0.993 1.000 0.000
#> SRR934291     1  0.0000      0.993 1.000 0.000
#> SRR934292     1  0.0000      0.993 1.000 0.000
#> SRR934293     1  0.0000      0.993 1.000 0.000
#> SRR934294     1  0.0000      0.993 1.000 0.000
#> SRR934295     1  0.0000      0.993 1.000 0.000
#> SRR934296     2  0.9393      0.720 0.356 0.644
#> SRR934297     2  0.9393      0.720 0.356 0.644
#> SRR934298     2  0.9393      0.720 0.356 0.644
#> SRR934299     2  0.9393      0.720 0.356 0.644
#> SRR934300     2  0.9393      0.720 0.356 0.644
#> SRR934301     2  0.9393      0.720 0.356 0.644
#> SRR934302     2  0.9393      0.720 0.356 0.644
#> SRR934303     2  0.9393      0.720 0.356 0.644
#> SRR934304     2  0.0000      0.798 0.000 1.000
#> SRR934305     2  0.0000      0.798 0.000 1.000
#> SRR934306     2  0.0000      0.798 0.000 1.000
#> SRR934307     2  0.0000      0.798 0.000 1.000
#> SRR934308     2  0.0000      0.798 0.000 1.000
#> SRR934309     2  0.0000      0.798 0.000 1.000
#> SRR934310     2  0.0000      0.798 0.000 1.000
#> SRR934311     2  0.0000      0.798 0.000 1.000
#> SRR934312     1  0.0000      0.993 1.000 0.000
#> SRR934313     1  0.0000      0.993 1.000 0.000
#> SRR934314     1  0.0000      0.993 1.000 0.000
#> SRR934315     1  0.0000      0.993 1.000 0.000
#> SRR934316     1  0.0000      0.993 1.000 0.000
#> SRR934317     1  0.0000      0.993 1.000 0.000
#> SRR934318     1  0.0000      0.993 1.000 0.000
#> SRR934319     1  0.0000      0.993 1.000 0.000
#> SRR934320     1  0.0000      0.993 1.000 0.000
#> SRR934321     1  0.0000      0.993 1.000 0.000
#> SRR934322     1  0.0000      0.993 1.000 0.000
#> SRR934323     1  0.0000      0.993 1.000 0.000
#> SRR934324     1  0.0000      0.993 1.000 0.000
#> SRR934325     1  0.0000      0.993 1.000 0.000
#> SRR934326     1  0.0000      0.993 1.000 0.000
#> SRR934327     1  0.0000      0.993 1.000 0.000
#> SRR934328     1  0.0000      0.993 1.000 0.000
#> SRR934329     1  0.0000      0.993 1.000 0.000
#> SRR934330     1  0.0000      0.993 1.000 0.000
#> SRR934331     1  0.0000      0.993 1.000 0.000
#> SRR934332     1  0.0000      0.993 1.000 0.000
#> SRR934333     1  0.0000      0.993 1.000 0.000
#> SRR934334     1  0.0000      0.993 1.000 0.000
#> SRR934335     1  0.0000      0.993 1.000 0.000
#> SRR934344     1  0.0000      0.993 1.000 0.000
#> SRR934345     1  0.0000      0.993 1.000 0.000
#> SRR934346     1  0.0000      0.993 1.000 0.000
#> SRR934347     1  0.0000      0.993 1.000 0.000
#> SRR934348     1  0.0000      0.993 1.000 0.000
#> SRR934349     1  0.0000      0.993 1.000 0.000
#> SRR934350     1  0.0000      0.993 1.000 0.000
#> SRR934351     1  0.0000      0.993 1.000 0.000
#> SRR934336     1  0.0000      0.993 1.000 0.000
#> SRR934337     1  0.0000      0.993 1.000 0.000
#> SRR934338     1  0.0000      0.993 1.000 0.000
#> SRR934339     1  0.0000      0.993 1.000 0.000
#> SRR934340     1  0.0000      0.993 1.000 0.000
#> SRR934341     1  0.0000      0.993 1.000 0.000
#> SRR934342     1  0.0000      0.993 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR934216     3  0.0000     0.6416 0.000 0.000 1.000
#> SRR934217     3  0.0000     0.6416 0.000 0.000 1.000
#> SRR934218     3  0.0000     0.6416 0.000 0.000 1.000
#> SRR934219     3  0.0000     0.6416 0.000 0.000 1.000
#> SRR934220     3  0.0000     0.6416 0.000 0.000 1.000
#> SRR934221     3  0.0000     0.6416 0.000 0.000 1.000
#> SRR934222     3  0.0000     0.6416 0.000 0.000 1.000
#> SRR934223     3  0.0000     0.6416 0.000 0.000 1.000
#> SRR934224     1  0.5580     0.6532 0.736 0.008 0.256
#> SRR934225     1  0.5580     0.6532 0.736 0.008 0.256
#> SRR934226     1  0.5580     0.6532 0.736 0.008 0.256
#> SRR934227     1  0.5580     0.6532 0.736 0.008 0.256
#> SRR934228     1  0.5580     0.6532 0.736 0.008 0.256
#> SRR934229     1  0.5580     0.6532 0.736 0.008 0.256
#> SRR934230     1  0.5580     0.6532 0.736 0.008 0.256
#> SRR934231     1  0.5580     0.6532 0.736 0.008 0.256
#> SRR934232     2  0.6513     0.4070 0.004 0.520 0.476
#> SRR934233     2  0.6505     0.4075 0.004 0.528 0.468
#> SRR934234     2  0.6505     0.4082 0.004 0.528 0.468
#> SRR934235     2  0.6505     0.4082 0.004 0.528 0.468
#> SRR934236     2  0.6513     0.4070 0.004 0.520 0.476
#> SRR934237     2  0.6518     0.4034 0.004 0.512 0.484
#> SRR934238     2  0.6500     0.4069 0.004 0.532 0.464
#> SRR934239     2  0.6505     0.4082 0.004 0.528 0.468
#> SRR934240     2  0.6309     0.3969 0.000 0.504 0.496
#> SRR934241     2  0.6309     0.3969 0.000 0.504 0.496
#> SRR934242     2  0.6309     0.3969 0.000 0.504 0.496
#> SRR934243     2  0.6309     0.3969 0.000 0.504 0.496
#> SRR934244     2  0.6309     0.3969 0.000 0.504 0.496
#> SRR934245     2  0.6309     0.3969 0.000 0.504 0.496
#> SRR934246     2  0.6309     0.3969 0.000 0.504 0.496
#> SRR934247     2  0.6309     0.3969 0.000 0.504 0.496
#> SRR934248     2  0.7181     0.3644 0.024 0.508 0.468
#> SRR934249     2  0.7181     0.3644 0.024 0.508 0.468
#> SRR934250     2  0.7181     0.3644 0.024 0.508 0.468
#> SRR934251     2  0.7181     0.3644 0.024 0.508 0.468
#> SRR934252     2  0.7181     0.3644 0.024 0.508 0.468
#> SRR934253     2  0.7181     0.3644 0.024 0.508 0.468
#> SRR934254     2  0.7181     0.3644 0.024 0.508 0.468
#> SRR934255     2  0.7181     0.3644 0.024 0.508 0.468
#> SRR934256     2  0.6936    -0.0156 0.016 0.524 0.460
#> SRR934257     2  0.6936    -0.0156 0.016 0.524 0.460
#> SRR934258     2  0.6936    -0.0156 0.016 0.524 0.460
#> SRR934259     2  0.6936    -0.0156 0.016 0.524 0.460
#> SRR934260     2  0.6936    -0.0156 0.016 0.524 0.460
#> SRR934261     2  0.6936    -0.0156 0.016 0.524 0.460
#> SRR934262     2  0.6936    -0.0156 0.016 0.524 0.460
#> SRR934263     2  0.6936    -0.0156 0.016 0.524 0.460
#> SRR934264     3  0.8957    -0.0400 0.128 0.400 0.472
#> SRR934265     3  0.8957    -0.0400 0.128 0.400 0.472
#> SRR934266     3  0.8957    -0.0400 0.128 0.400 0.472
#> SRR934267     3  0.8957    -0.0400 0.128 0.400 0.472
#> SRR934268     3  0.8957    -0.0400 0.128 0.400 0.472
#> SRR934269     3  0.8957    -0.0400 0.128 0.400 0.472
#> SRR934270     3  0.8957    -0.0400 0.128 0.400 0.472
#> SRR934271     3  0.8957    -0.0400 0.128 0.400 0.472
#> SRR934272     1  0.1411     0.9277 0.964 0.000 0.036
#> SRR934273     1  0.1411     0.9277 0.964 0.000 0.036
#> SRR934274     1  0.1411     0.9277 0.964 0.000 0.036
#> SRR934275     1  0.1411     0.9277 0.964 0.000 0.036
#> SRR934276     1  0.1411     0.9277 0.964 0.000 0.036
#> SRR934277     1  0.1411     0.9277 0.964 0.000 0.036
#> SRR934278     1  0.1411     0.9277 0.964 0.000 0.036
#> SRR934279     1  0.1411     0.9277 0.964 0.000 0.036
#> SRR934280     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934281     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934282     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934283     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934284     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934285     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934286     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934287     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934288     1  0.0424     0.9433 0.992 0.008 0.000
#> SRR934289     1  0.0424     0.9433 0.992 0.008 0.000
#> SRR934290     1  0.0424     0.9433 0.992 0.008 0.000
#> SRR934291     1  0.0424     0.9433 0.992 0.008 0.000
#> SRR934292     1  0.0424     0.9433 0.992 0.008 0.000
#> SRR934293     1  0.0424     0.9433 0.992 0.008 0.000
#> SRR934294     1  0.0424     0.9433 0.992 0.008 0.000
#> SRR934295     1  0.0424     0.9433 0.992 0.008 0.000
#> SRR934296     1  0.3983     0.8231 0.852 0.004 0.144
#> SRR934297     1  0.3983     0.8231 0.852 0.004 0.144
#> SRR934298     1  0.3983     0.8231 0.852 0.004 0.144
#> SRR934299     1  0.3983     0.8231 0.852 0.004 0.144
#> SRR934300     1  0.3983     0.8231 0.852 0.004 0.144
#> SRR934301     1  0.3983     0.8231 0.852 0.004 0.144
#> SRR934302     1  0.3983     0.8231 0.852 0.004 0.144
#> SRR934303     1  0.3983     0.8231 0.852 0.004 0.144
#> SRR934304     3  0.0424     0.6406 0.000 0.008 0.992
#> SRR934305     3  0.0424     0.6406 0.000 0.008 0.992
#> SRR934306     3  0.0424     0.6406 0.000 0.008 0.992
#> SRR934307     3  0.0424     0.6406 0.000 0.008 0.992
#> SRR934308     3  0.0424     0.6406 0.000 0.008 0.992
#> SRR934309     3  0.0424     0.6406 0.000 0.008 0.992
#> SRR934310     3  0.0424     0.6406 0.000 0.008 0.992
#> SRR934311     3  0.0424     0.6406 0.000 0.008 0.992
#> SRR934312     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934313     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934314     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934315     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934316     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934317     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934318     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934319     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934320     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934321     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934322     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934323     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934324     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934325     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934326     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934327     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934328     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934329     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934330     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934331     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934332     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934333     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934334     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934335     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934344     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934345     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934346     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934347     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934348     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934349     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934350     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934351     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934336     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934337     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934338     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934339     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934340     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934341     1  0.0000     0.9464 1.000 0.000 0.000
#> SRR934342     1  0.0424     0.9433 0.992 0.008 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> SRR934216     3  0.4164      0.780 0.000 0.264 0.736 0.000
#> SRR934217     3  0.4164      0.780 0.000 0.264 0.736 0.000
#> SRR934218     3  0.4164      0.780 0.000 0.264 0.736 0.000
#> SRR934219     3  0.4164      0.780 0.000 0.264 0.736 0.000
#> SRR934220     3  0.4164      0.780 0.000 0.264 0.736 0.000
#> SRR934221     3  0.4164      0.780 0.000 0.264 0.736 0.000
#> SRR934222     3  0.4164      0.780 0.000 0.264 0.736 0.000
#> SRR934223     3  0.4164      0.780 0.000 0.264 0.736 0.000
#> SRR934224     1  0.0859      0.951 0.980 0.004 0.008 0.008
#> SRR934225     1  0.0859      0.951 0.980 0.004 0.008 0.008
#> SRR934226     1  0.0859      0.951 0.980 0.004 0.008 0.008
#> SRR934227     1  0.0859      0.951 0.980 0.004 0.008 0.008
#> SRR934228     1  0.0859      0.951 0.980 0.004 0.008 0.008
#> SRR934229     1  0.0859      0.951 0.980 0.004 0.008 0.008
#> SRR934230     1  0.0859      0.951 0.980 0.004 0.008 0.008
#> SRR934231     1  0.0859      0.951 0.980 0.004 0.008 0.008
#> SRR934232     2  0.0000      0.946 0.000 1.000 0.000 0.000
#> SRR934233     2  0.0000      0.946 0.000 1.000 0.000 0.000
#> SRR934234     2  0.0000      0.946 0.000 1.000 0.000 0.000
#> SRR934235     2  0.0000      0.946 0.000 1.000 0.000 0.000
#> SRR934236     2  0.0000      0.946 0.000 1.000 0.000 0.000
#> SRR934237     2  0.0000      0.946 0.000 1.000 0.000 0.000
#> SRR934238     2  0.0000      0.946 0.000 1.000 0.000 0.000
#> SRR934239     2  0.0000      0.946 0.000 1.000 0.000 0.000
#> SRR934240     2  0.0336      0.945 0.000 0.992 0.000 0.008
#> SRR934241     2  0.0336      0.945 0.000 0.992 0.000 0.008
#> SRR934242     2  0.0336      0.945 0.000 0.992 0.000 0.008
#> SRR934243     2  0.0336      0.945 0.000 0.992 0.000 0.008
#> SRR934244     2  0.0336      0.945 0.000 0.992 0.000 0.008
#> SRR934245     2  0.0336      0.945 0.000 0.992 0.000 0.008
#> SRR934246     2  0.0336      0.945 0.000 0.992 0.000 0.008
#> SRR934247     2  0.0336      0.945 0.000 0.992 0.000 0.008
#> SRR934248     2  0.0921      0.942 0.000 0.972 0.028 0.000
#> SRR934249     2  0.0921      0.942 0.000 0.972 0.028 0.000
#> SRR934250     2  0.0921      0.942 0.000 0.972 0.028 0.000
#> SRR934251     2  0.0921      0.942 0.000 0.972 0.028 0.000
#> SRR934252     2  0.0921      0.942 0.000 0.972 0.028 0.000
#> SRR934253     2  0.0921      0.942 0.000 0.972 0.028 0.000
#> SRR934254     2  0.0921      0.942 0.000 0.972 0.028 0.000
#> SRR934255     2  0.0921      0.942 0.000 0.972 0.028 0.000
#> SRR934256     4  0.0336      1.000 0.000 0.000 0.008 0.992
#> SRR934257     4  0.0336      1.000 0.000 0.000 0.008 0.992
#> SRR934258     4  0.0336      1.000 0.000 0.000 0.008 0.992
#> SRR934259     4  0.0336      1.000 0.000 0.000 0.008 0.992
#> SRR934260     4  0.0336      1.000 0.000 0.000 0.008 0.992
#> SRR934261     4  0.0336      1.000 0.000 0.000 0.008 0.992
#> SRR934262     4  0.0336      1.000 0.000 0.000 0.008 0.992
#> SRR934263     4  0.0336      1.000 0.000 0.000 0.008 0.992
#> SRR934264     2  0.3295      0.872 0.072 0.884 0.036 0.008
#> SRR934265     2  0.3295      0.872 0.072 0.884 0.036 0.008
#> SRR934266     2  0.3295      0.872 0.072 0.884 0.036 0.008
#> SRR934267     2  0.3295      0.872 0.072 0.884 0.036 0.008
#> SRR934268     2  0.3295      0.872 0.072 0.884 0.036 0.008
#> SRR934269     2  0.3295      0.872 0.072 0.884 0.036 0.008
#> SRR934270     2  0.3295      0.872 0.072 0.884 0.036 0.008
#> SRR934271     2  0.3295      0.872 0.072 0.884 0.036 0.008
#> SRR934272     1  0.1486      0.937 0.960 0.024 0.008 0.008
#> SRR934273     1  0.1486      0.937 0.960 0.024 0.008 0.008
#> SRR934274     1  0.1486      0.937 0.960 0.024 0.008 0.008
#> SRR934275     1  0.1486      0.937 0.960 0.024 0.008 0.008
#> SRR934276     1  0.1486      0.937 0.960 0.024 0.008 0.008
#> SRR934277     1  0.1486      0.937 0.960 0.024 0.008 0.008
#> SRR934278     1  0.1486      0.937 0.960 0.024 0.008 0.008
#> SRR934279     1  0.1486      0.937 0.960 0.024 0.008 0.008
#> SRR934280     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934281     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934282     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934283     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934284     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934285     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934286     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934287     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934288     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934289     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934290     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934291     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934292     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934293     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934294     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934295     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934296     1  0.4482      0.641 0.728 0.264 0.008 0.000
#> SRR934297     1  0.4482      0.641 0.728 0.264 0.008 0.000
#> SRR934298     1  0.4482      0.641 0.728 0.264 0.008 0.000
#> SRR934299     1  0.4482      0.641 0.728 0.264 0.008 0.000
#> SRR934300     1  0.4482      0.641 0.728 0.264 0.008 0.000
#> SRR934301     1  0.4482      0.641 0.728 0.264 0.008 0.000
#> SRR934302     1  0.4482      0.641 0.728 0.264 0.008 0.000
#> SRR934303     1  0.4482      0.641 0.728 0.264 0.008 0.000
#> SRR934304     3  0.0000      0.764 0.000 0.000 1.000 0.000
#> SRR934305     3  0.0000      0.764 0.000 0.000 1.000 0.000
#> SRR934306     3  0.0000      0.764 0.000 0.000 1.000 0.000
#> SRR934307     3  0.0000      0.764 0.000 0.000 1.000 0.000
#> SRR934308     3  0.0000      0.764 0.000 0.000 1.000 0.000
#> SRR934309     3  0.0000      0.764 0.000 0.000 1.000 0.000
#> SRR934310     3  0.0000      0.764 0.000 0.000 1.000 0.000
#> SRR934311     3  0.0000      0.764 0.000 0.000 1.000 0.000
#> SRR934312     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934313     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934314     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934315     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934316     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934317     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934318     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934319     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934320     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934321     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934322     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934323     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934324     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934325     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934326     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934327     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934328     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934329     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934330     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934331     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934332     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934333     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934334     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934335     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934344     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934345     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934346     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934347     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934348     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934349     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934350     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934351     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934336     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934337     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934338     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934339     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934340     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934341     1  0.0000      0.961 1.000 0.000 0.000 0.000
#> SRR934342     1  0.0000      0.961 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1 p2    p3    p4   p5
#> SRR934216     3   0.104      1.000 0.000  0 0.960 0.000 0.04
#> SRR934217     3   0.104      1.000 0.000  0 0.960 0.000 0.04
#> SRR934218     3   0.104      1.000 0.000  0 0.960 0.000 0.04
#> SRR934219     3   0.104      1.000 0.000  0 0.960 0.000 0.04
#> SRR934220     3   0.104      1.000 0.000  0 0.960 0.000 0.04
#> SRR934221     3   0.104      1.000 0.000  0 0.960 0.000 0.04
#> SRR934222     3   0.104      1.000 0.000  0 0.960 0.000 0.04
#> SRR934223     3   0.104      1.000 0.000  0 0.960 0.000 0.04
#> SRR934224     1   0.340      0.747 0.764  0 0.236 0.000 0.00
#> SRR934225     1   0.340      0.747 0.764  0 0.236 0.000 0.00
#> SRR934226     1   0.340      0.747 0.764  0 0.236 0.000 0.00
#> SRR934227     1   0.340      0.747 0.764  0 0.236 0.000 0.00
#> SRR934228     1   0.340      0.747 0.764  0 0.236 0.000 0.00
#> SRR934229     1   0.340      0.747 0.764  0 0.236 0.000 0.00
#> SRR934230     1   0.340      0.747 0.764  0 0.236 0.000 0.00
#> SRR934231     1   0.340      0.747 0.764  0 0.236 0.000 0.00
#> SRR934232     4   0.000      0.857 0.000  0 0.000 1.000 0.00
#> SRR934233     4   0.000      0.857 0.000  0 0.000 1.000 0.00
#> SRR934234     4   0.000      0.857 0.000  0 0.000 1.000 0.00
#> SRR934235     4   0.000      0.857 0.000  0 0.000 1.000 0.00
#> SRR934236     4   0.000      0.857 0.000  0 0.000 1.000 0.00
#> SRR934237     4   0.000      0.857 0.000  0 0.000 1.000 0.00
#> SRR934238     4   0.000      0.857 0.000  0 0.000 1.000 0.00
#> SRR934239     4   0.000      0.857 0.000  0 0.000 1.000 0.00
#> SRR934240     4   0.000      0.857 0.000  0 0.000 1.000 0.00
#> SRR934241     4   0.000      0.857 0.000  0 0.000 1.000 0.00
#> SRR934242     4   0.000      0.857 0.000  0 0.000 1.000 0.00
#> SRR934243     4   0.000      0.857 0.000  0 0.000 1.000 0.00
#> SRR934244     4   0.000      0.857 0.000  0 0.000 1.000 0.00
#> SRR934245     4   0.000      0.857 0.000  0 0.000 1.000 0.00
#> SRR934246     4   0.000      0.857 0.000  0 0.000 1.000 0.00
#> SRR934247     4   0.000      0.857 0.000  0 0.000 1.000 0.00
#> SRR934248     4   0.154      0.846 0.000  0 0.068 0.932 0.00
#> SRR934249     4   0.154      0.846 0.000  0 0.068 0.932 0.00
#> SRR934250     4   0.154      0.846 0.000  0 0.068 0.932 0.00
#> SRR934251     4   0.154      0.846 0.000  0 0.068 0.932 0.00
#> SRR934252     4   0.154      0.846 0.000  0 0.068 0.932 0.00
#> SRR934253     4   0.154      0.846 0.000  0 0.068 0.932 0.00
#> SRR934254     4   0.154      0.846 0.000  0 0.068 0.932 0.00
#> SRR934255     4   0.154      0.846 0.000  0 0.068 0.932 0.00
#> SRR934256     2   0.000      1.000 0.000  1 0.000 0.000 0.00
#> SRR934257     2   0.000      1.000 0.000  1 0.000 0.000 0.00
#> SRR934258     2   0.000      1.000 0.000  1 0.000 0.000 0.00
#> SRR934259     2   0.000      1.000 0.000  1 0.000 0.000 0.00
#> SRR934260     2   0.000      1.000 0.000  1 0.000 0.000 0.00
#> SRR934261     2   0.000      1.000 0.000  1 0.000 0.000 0.00
#> SRR934262     2   0.000      1.000 0.000  1 0.000 0.000 0.00
#> SRR934263     2   0.000      1.000 0.000  1 0.000 0.000 0.00
#> SRR934264     4   0.536      0.510 0.068  0 0.344 0.588 0.00
#> SRR934265     4   0.536      0.510 0.068  0 0.344 0.588 0.00
#> SRR934266     4   0.536      0.510 0.068  0 0.344 0.588 0.00
#> SRR934267     4   0.536      0.510 0.068  0 0.344 0.588 0.00
#> SRR934268     4   0.536      0.510 0.068  0 0.344 0.588 0.00
#> SRR934269     4   0.536      0.510 0.068  0 0.344 0.588 0.00
#> SRR934270     4   0.536      0.510 0.068  0 0.344 0.588 0.00
#> SRR934271     4   0.536      0.510 0.068  0 0.344 0.588 0.00
#> SRR934272     1   0.321      0.778 0.788  0 0.212 0.000 0.00
#> SRR934273     1   0.321      0.778 0.788  0 0.212 0.000 0.00
#> SRR934274     1   0.321      0.778 0.788  0 0.212 0.000 0.00
#> SRR934275     1   0.321      0.778 0.788  0 0.212 0.000 0.00
#> SRR934276     1   0.321      0.778 0.788  0 0.212 0.000 0.00
#> SRR934277     1   0.321      0.778 0.788  0 0.212 0.000 0.00
#> SRR934278     1   0.321      0.778 0.788  0 0.212 0.000 0.00
#> SRR934279     1   0.321      0.778 0.788  0 0.212 0.000 0.00
#> SRR934280     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934281     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934282     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934283     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934284     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934285     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934286     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934287     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934288     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934289     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934290     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934291     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934292     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934293     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934294     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934295     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934296     1   0.251      0.867 0.892  0 0.080 0.028 0.00
#> SRR934297     1   0.251      0.867 0.892  0 0.080 0.028 0.00
#> SRR934298     1   0.251      0.867 0.892  0 0.080 0.028 0.00
#> SRR934299     1   0.251      0.867 0.892  0 0.080 0.028 0.00
#> SRR934300     1   0.251      0.867 0.892  0 0.080 0.028 0.00
#> SRR934301     1   0.251      0.867 0.892  0 0.080 0.028 0.00
#> SRR934302     1   0.251      0.867 0.892  0 0.080 0.028 0.00
#> SRR934303     1   0.251      0.867 0.892  0 0.080 0.028 0.00
#> SRR934304     5   0.000      1.000 0.000  0 0.000 0.000 1.00
#> SRR934305     5   0.000      1.000 0.000  0 0.000 0.000 1.00
#> SRR934306     5   0.000      1.000 0.000  0 0.000 0.000 1.00
#> SRR934307     5   0.000      1.000 0.000  0 0.000 0.000 1.00
#> SRR934308     5   0.000      1.000 0.000  0 0.000 0.000 1.00
#> SRR934309     5   0.000      1.000 0.000  0 0.000 0.000 1.00
#> SRR934310     5   0.000      1.000 0.000  0 0.000 0.000 1.00
#> SRR934311     5   0.000      1.000 0.000  0 0.000 0.000 1.00
#> SRR934312     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934313     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934314     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934315     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934316     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934317     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934318     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934319     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934320     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934321     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934322     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934323     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934324     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934325     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934326     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934327     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934328     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934329     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934330     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934331     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934332     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934333     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934334     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934335     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934344     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934345     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934346     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934347     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934348     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934349     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934350     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934351     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934336     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934337     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934338     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934339     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934340     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934341     1   0.000      0.939 1.000  0 0.000 0.000 0.00
#> SRR934342     1   0.000      0.939 1.000  0 0.000 0.000 0.00

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2 p3    p4 p5 p6
#> SRR934216     3  0.0000      1.000 0.000 0.000  1 0.000  0  0
#> SRR934217     3  0.0000      1.000 0.000 0.000  1 0.000  0  0
#> SRR934218     3  0.0000      1.000 0.000 0.000  1 0.000  0  0
#> SRR934219     3  0.0000      1.000 0.000 0.000  1 0.000  0  0
#> SRR934220     3  0.0000      1.000 0.000 0.000  1 0.000  0  0
#> SRR934221     3  0.0000      1.000 0.000 0.000  1 0.000  0  0
#> SRR934222     3  0.0000      1.000 0.000 0.000  1 0.000  0  0
#> SRR934223     3  0.0000      1.000 0.000 0.000  1 0.000  0  0
#> SRR934224     1  0.3446      0.658 0.692 0.000  0 0.308  0  0
#> SRR934225     1  0.3446      0.658 0.692 0.000  0 0.308  0  0
#> SRR934226     1  0.3446      0.658 0.692 0.000  0 0.308  0  0
#> SRR934227     1  0.3446      0.658 0.692 0.000  0 0.308  0  0
#> SRR934228     1  0.3446      0.658 0.692 0.000  0 0.308  0  0
#> SRR934229     1  0.3446      0.658 0.692 0.000  0 0.308  0  0
#> SRR934230     1  0.3446      0.658 0.692 0.000  0 0.308  0  0
#> SRR934231     1  0.3446      0.658 0.692 0.000  0 0.308  0  0
#> SRR934232     2  0.0000      1.000 0.000 1.000  0 0.000  0  0
#> SRR934233     2  0.0000      1.000 0.000 1.000  0 0.000  0  0
#> SRR934234     2  0.0000      1.000 0.000 1.000  0 0.000  0  0
#> SRR934235     2  0.0000      1.000 0.000 1.000  0 0.000  0  0
#> SRR934236     2  0.0000      1.000 0.000 1.000  0 0.000  0  0
#> SRR934237     2  0.0000      1.000 0.000 1.000  0 0.000  0  0
#> SRR934238     2  0.0000      1.000 0.000 1.000  0 0.000  0  0
#> SRR934239     2  0.0000      1.000 0.000 1.000  0 0.000  0  0
#> SRR934240     2  0.0000      1.000 0.000 1.000  0 0.000  0  0
#> SRR934241     2  0.0000      1.000 0.000 1.000  0 0.000  0  0
#> SRR934242     2  0.0000      1.000 0.000 1.000  0 0.000  0  0
#> SRR934243     2  0.0000      1.000 0.000 1.000  0 0.000  0  0
#> SRR934244     2  0.0000      1.000 0.000 1.000  0 0.000  0  0
#> SRR934245     2  0.0000      1.000 0.000 1.000  0 0.000  0  0
#> SRR934246     2  0.0000      1.000 0.000 1.000  0 0.000  0  0
#> SRR934247     2  0.0000      1.000 0.000 1.000  0 0.000  0  0
#> SRR934248     4  0.3607      0.667 0.000 0.348  0 0.652  0  0
#> SRR934249     4  0.3607      0.667 0.000 0.348  0 0.652  0  0
#> SRR934250     4  0.3607      0.667 0.000 0.348  0 0.652  0  0
#> SRR934251     4  0.3607      0.667 0.000 0.348  0 0.652  0  0
#> SRR934252     4  0.3607      0.667 0.000 0.348  0 0.652  0  0
#> SRR934253     4  0.3607      0.667 0.000 0.348  0 0.652  0  0
#> SRR934254     4  0.3607      0.667 0.000 0.348  0 0.652  0  0
#> SRR934255     4  0.3607      0.667 0.000 0.348  0 0.652  0  0
#> SRR934256     6  0.0000      1.000 0.000 0.000  0 0.000  0  1
#> SRR934257     6  0.0000      1.000 0.000 0.000  0 0.000  0  1
#> SRR934258     6  0.0000      1.000 0.000 0.000  0 0.000  0  1
#> SRR934259     6  0.0000      1.000 0.000 0.000  0 0.000  0  1
#> SRR934260     6  0.0000      1.000 0.000 0.000  0 0.000  0  1
#> SRR934261     6  0.0000      1.000 0.000 0.000  0 0.000  0  1
#> SRR934262     6  0.0000      1.000 0.000 0.000  0 0.000  0  1
#> SRR934263     6  0.0000      1.000 0.000 0.000  0 0.000  0  1
#> SRR934264     4  0.0547      0.736 0.020 0.000  0 0.980  0  0
#> SRR934265     4  0.0547      0.736 0.020 0.000  0 0.980  0  0
#> SRR934266     4  0.0547      0.736 0.020 0.000  0 0.980  0  0
#> SRR934267     4  0.0547      0.736 0.020 0.000  0 0.980  0  0
#> SRR934268     4  0.0547      0.736 0.020 0.000  0 0.980  0  0
#> SRR934269     4  0.0547      0.736 0.020 0.000  0 0.980  0  0
#> SRR934270     4  0.0547      0.736 0.020 0.000  0 0.980  0  0
#> SRR934271     4  0.0547      0.736 0.020 0.000  0 0.980  0  0
#> SRR934272     1  0.3789      0.464 0.584 0.000  0 0.416  0  0
#> SRR934273     1  0.3789      0.464 0.584 0.000  0 0.416  0  0
#> SRR934274     1  0.3789      0.464 0.584 0.000  0 0.416  0  0
#> SRR934275     1  0.3789      0.464 0.584 0.000  0 0.416  0  0
#> SRR934276     1  0.3782      0.472 0.588 0.000  0 0.412  0  0
#> SRR934277     1  0.3789      0.464 0.584 0.000  0 0.416  0  0
#> SRR934278     1  0.3774      0.479 0.592 0.000  0 0.408  0  0
#> SRR934279     1  0.3789      0.464 0.584 0.000  0 0.416  0  0
#> SRR934280     1  0.0547      0.900 0.980 0.000  0 0.020  0  0
#> SRR934281     1  0.0547      0.900 0.980 0.000  0 0.020  0  0
#> SRR934282     1  0.0547      0.900 0.980 0.000  0 0.020  0  0
#> SRR934283     1  0.0547      0.900 0.980 0.000  0 0.020  0  0
#> SRR934284     1  0.0547      0.900 0.980 0.000  0 0.020  0  0
#> SRR934285     1  0.0363      0.902 0.988 0.000  0 0.012  0  0
#> SRR934286     1  0.0547      0.900 0.980 0.000  0 0.020  0  0
#> SRR934287     1  0.0547      0.900 0.980 0.000  0 0.020  0  0
#> SRR934288     1  0.0000      0.904 1.000 0.000  0 0.000  0  0
#> SRR934289     1  0.0000      0.904 1.000 0.000  0 0.000  0  0
#> SRR934290     1  0.0000      0.904 1.000 0.000  0 0.000  0  0
#> SRR934291     1  0.0000      0.904 1.000 0.000  0 0.000  0  0
#> SRR934292     1  0.0000      0.904 1.000 0.000  0 0.000  0  0
#> SRR934293     1  0.0000      0.904 1.000 0.000  0 0.000  0  0
#> SRR934294     1  0.0000      0.904 1.000 0.000  0 0.000  0  0
#> SRR934295     1  0.0000      0.904 1.000 0.000  0 0.000  0  0
#> SRR934296     1  0.1863      0.864 0.896 0.000  0 0.104  0  0
#> SRR934297     1  0.1863      0.864 0.896 0.000  0 0.104  0  0
#> SRR934298     1  0.1863      0.864 0.896 0.000  0 0.104  0  0
#> SRR934299     1  0.1863      0.864 0.896 0.000  0 0.104  0  0
#> SRR934300     1  0.1863      0.864 0.896 0.000  0 0.104  0  0
#> SRR934301     1  0.1863      0.864 0.896 0.000  0 0.104  0  0
#> SRR934302     1  0.1863      0.864 0.896 0.000  0 0.104  0  0
#> SRR934303     1  0.1863      0.864 0.896 0.000  0 0.104  0  0
#> SRR934304     5  0.0000      1.000 0.000 0.000  0 0.000  1  0
#> SRR934305     5  0.0000      1.000 0.000 0.000  0 0.000  1  0
#> SRR934306     5  0.0000      1.000 0.000 0.000  0 0.000  1  0
#> SRR934307     5  0.0000      1.000 0.000 0.000  0 0.000  1  0
#> SRR934308     5  0.0000      1.000 0.000 0.000  0 0.000  1  0
#> SRR934309     5  0.0000      1.000 0.000 0.000  0 0.000  1  0
#> SRR934310     5  0.0000      1.000 0.000 0.000  0 0.000  1  0
#> SRR934311     5  0.0000      1.000 0.000 0.000  0 0.000  1  0
#> SRR934312     1  0.0547      0.903 0.980 0.000  0 0.020  0  0
#> SRR934313     1  0.0547      0.903 0.980 0.000  0 0.020  0  0
#> SRR934314     1  0.0547      0.903 0.980 0.000  0 0.020  0  0
#> SRR934315     1  0.0547      0.903 0.980 0.000  0 0.020  0  0
#> SRR934316     1  0.0547      0.903 0.980 0.000  0 0.020  0  0
#> SRR934317     1  0.0547      0.903 0.980 0.000  0 0.020  0  0
#> SRR934318     1  0.0547      0.903 0.980 0.000  0 0.020  0  0
#> SRR934319     1  0.0547      0.903 0.980 0.000  0 0.020  0  0
#> SRR934320     1  0.0547      0.900 0.980 0.000  0 0.020  0  0
#> SRR934321     1  0.0547      0.900 0.980 0.000  0 0.020  0  0
#> SRR934322     1  0.0547      0.900 0.980 0.000  0 0.020  0  0
#> SRR934323     1  0.0547      0.900 0.980 0.000  0 0.020  0  0
#> SRR934324     1  0.0547      0.900 0.980 0.000  0 0.020  0  0
#> SRR934325     1  0.0547      0.900 0.980 0.000  0 0.020  0  0
#> SRR934326     1  0.0547      0.900 0.980 0.000  0 0.020  0  0
#> SRR934327     1  0.0547      0.900 0.980 0.000  0 0.020  0  0
#> SRR934328     1  0.0547      0.903 0.980 0.000  0 0.020  0  0
#> SRR934329     1  0.0547      0.903 0.980 0.000  0 0.020  0  0
#> SRR934330     1  0.0547      0.903 0.980 0.000  0 0.020  0  0
#> SRR934331     1  0.0547      0.903 0.980 0.000  0 0.020  0  0
#> SRR934332     1  0.0547      0.903 0.980 0.000  0 0.020  0  0
#> SRR934333     1  0.0547      0.903 0.980 0.000  0 0.020  0  0
#> SRR934334     1  0.0547      0.903 0.980 0.000  0 0.020  0  0
#> SRR934335     1  0.0547      0.903 0.980 0.000  0 0.020  0  0
#> SRR934344     1  0.0260      0.904 0.992 0.000  0 0.008  0  0
#> SRR934345     1  0.0260      0.904 0.992 0.000  0 0.008  0  0
#> SRR934346     1  0.0260      0.904 0.992 0.000  0 0.008  0  0
#> SRR934347     1  0.0146      0.905 0.996 0.000  0 0.004  0  0
#> SRR934348     1  0.0260      0.904 0.992 0.000  0 0.008  0  0
#> SRR934349     1  0.0363      0.904 0.988 0.000  0 0.012  0  0
#> SRR934350     1  0.0363      0.904 0.988 0.000  0 0.012  0  0
#> SRR934351     1  0.0260      0.904 0.992 0.000  0 0.008  0  0
#> SRR934336     1  0.0000      0.904 1.000 0.000  0 0.000  0  0
#> SRR934337     1  0.0000      0.904 1.000 0.000  0 0.000  0  0
#> SRR934338     1  0.0000      0.904 1.000 0.000  0 0.000  0  0
#> SRR934339     1  0.0000      0.904 1.000 0.000  0 0.000  0  0
#> SRR934340     1  0.0000      0.904 1.000 0.000  0 0.000  0  0
#> SRR934341     1  0.0000      0.904 1.000 0.000  0 0.000  0  0
#> SRR934342     1  0.0000      0.904 1.000 0.000  0 0.000  0  0

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14550 rows and 135 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.2952 0.705   0.705
#> 3 3 0.839           0.931       0.964         0.7347 0.769   0.673
#> 4 4 0.736           0.926       0.932         0.0876 0.986   0.970
#> 5 5 0.590           0.711       0.834         0.2147 0.754   0.517
#> 6 6 0.716           0.819       0.867         0.1240 0.792   0.441

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette p1 p2
#> SRR934216     1       0          1  1  0
#> SRR934217     1       0          1  1  0
#> SRR934218     1       0          1  1  0
#> SRR934219     1       0          1  1  0
#> SRR934220     1       0          1  1  0
#> SRR934221     1       0          1  1  0
#> SRR934222     1       0          1  1  0
#> SRR934223     1       0          1  1  0
#> SRR934224     1       0          1  1  0
#> SRR934225     1       0          1  1  0
#> SRR934226     1       0          1  1  0
#> SRR934227     1       0          1  1  0
#> SRR934228     1       0          1  1  0
#> SRR934229     1       0          1  1  0
#> SRR934230     1       0          1  1  0
#> SRR934231     1       0          1  1  0
#> SRR934232     2       0          1  0  1
#> SRR934233     2       0          1  0  1
#> SRR934234     2       0          1  0  1
#> SRR934235     2       0          1  0  1
#> SRR934236     2       0          1  0  1
#> SRR934237     2       0          1  0  1
#> SRR934238     2       0          1  0  1
#> SRR934239     2       0          1  0  1
#> SRR934240     2       0          1  0  1
#> SRR934241     2       0          1  0  1
#> SRR934242     2       0          1  0  1
#> SRR934243     2       0          1  0  1
#> SRR934244     2       0          1  0  1
#> SRR934245     2       0          1  0  1
#> SRR934246     2       0          1  0  1
#> SRR934247     2       0          1  0  1
#> SRR934248     1       0          1  1  0
#> SRR934249     1       0          1  1  0
#> SRR934250     1       0          1  1  0
#> SRR934251     1       0          1  1  0
#> SRR934252     1       0          1  1  0
#> SRR934253     1       0          1  1  0
#> SRR934254     1       0          1  1  0
#> SRR934255     1       0          1  1  0
#> SRR934256     2       0          1  0  1
#> SRR934257     2       0          1  0  1
#> SRR934258     2       0          1  0  1
#> SRR934259     2       0          1  0  1
#> SRR934260     2       0          1  0  1
#> SRR934261     2       0          1  0  1
#> SRR934262     2       0          1  0  1
#> SRR934263     2       0          1  0  1
#> SRR934264     1       0          1  1  0
#> SRR934265     1       0          1  1  0
#> SRR934266     1       0          1  1  0
#> SRR934267     1       0          1  1  0
#> SRR934268     1       0          1  1  0
#> SRR934269     1       0          1  1  0
#> SRR934270     1       0          1  1  0
#> SRR934271     1       0          1  1  0
#> SRR934272     1       0          1  1  0
#> SRR934273     1       0          1  1  0
#> SRR934274     1       0          1  1  0
#> SRR934275     1       0          1  1  0
#> SRR934276     1       0          1  1  0
#> SRR934277     1       0          1  1  0
#> SRR934278     1       0          1  1  0
#> SRR934279     1       0          1  1  0
#> SRR934280     1       0          1  1  0
#> SRR934281     1       0          1  1  0
#> SRR934282     1       0          1  1  0
#> SRR934283     1       0          1  1  0
#> SRR934284     1       0          1  1  0
#> SRR934285     1       0          1  1  0
#> SRR934286     1       0          1  1  0
#> SRR934287     1       0          1  1  0
#> SRR934288     1       0          1  1  0
#> SRR934289     1       0          1  1  0
#> SRR934290     1       0          1  1  0
#> SRR934291     1       0          1  1  0
#> SRR934292     1       0          1  1  0
#> SRR934293     1       0          1  1  0
#> SRR934294     1       0          1  1  0
#> SRR934295     1       0          1  1  0
#> SRR934296     1       0          1  1  0
#> SRR934297     1       0          1  1  0
#> SRR934298     1       0          1  1  0
#> SRR934299     1       0          1  1  0
#> SRR934300     1       0          1  1  0
#> SRR934301     1       0          1  1  0
#> SRR934302     1       0          1  1  0
#> SRR934303     1       0          1  1  0
#> SRR934304     1       0          1  1  0
#> SRR934305     1       0          1  1  0
#> SRR934306     1       0          1  1  0
#> SRR934307     1       0          1  1  0
#> SRR934308     1       0          1  1  0
#> SRR934309     1       0          1  1  0
#> SRR934310     1       0          1  1  0
#> SRR934311     1       0          1  1  0
#> SRR934312     1       0          1  1  0
#> SRR934313     1       0          1  1  0
#> SRR934314     1       0          1  1  0
#> SRR934315     1       0          1  1  0
#> SRR934316     1       0          1  1  0
#> SRR934317     1       0          1  1  0
#> SRR934318     1       0          1  1  0
#> SRR934319     1       0          1  1  0
#> SRR934320     1       0          1  1  0
#> SRR934321     1       0          1  1  0
#> SRR934322     1       0          1  1  0
#> SRR934323     1       0          1  1  0
#> SRR934324     1       0          1  1  0
#> SRR934325     1       0          1  1  0
#> SRR934326     1       0          1  1  0
#> SRR934327     1       0          1  1  0
#> SRR934328     1       0          1  1  0
#> SRR934329     1       0          1  1  0
#> SRR934330     1       0          1  1  0
#> SRR934331     1       0          1  1  0
#> SRR934332     1       0          1  1  0
#> SRR934333     1       0          1  1  0
#> SRR934334     1       0          1  1  0
#> SRR934335     1       0          1  1  0
#> SRR934344     1       0          1  1  0
#> SRR934345     1       0          1  1  0
#> SRR934346     1       0          1  1  0
#> SRR934347     1       0          1  1  0
#> SRR934348     1       0          1  1  0
#> SRR934349     1       0          1  1  0
#> SRR934350     1       0          1  1  0
#> SRR934351     1       0          1  1  0
#> SRR934336     1       0          1  1  0
#> SRR934337     1       0          1  1  0
#> SRR934338     1       0          1  1  0
#> SRR934339     1       0          1  1  0
#> SRR934340     1       0          1  1  0
#> SRR934341     1       0          1  1  0
#> SRR934342     1       0          1  1  0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> SRR934216     3  0.4504      0.781 0.196 0.000 0.804
#> SRR934217     3  0.4291      0.791 0.180 0.000 0.820
#> SRR934218     3  0.5529      0.675 0.296 0.000 0.704
#> SRR934219     3  0.4887      0.755 0.228 0.000 0.772
#> SRR934220     3  0.5560      0.670 0.300 0.000 0.700
#> SRR934221     3  0.4796      0.763 0.220 0.000 0.780
#> SRR934222     3  0.4235      0.793 0.176 0.000 0.824
#> SRR934223     3  0.4750      0.766 0.216 0.000 0.784
#> SRR934224     1  0.0237      0.982 0.996 0.000 0.004
#> SRR934225     1  0.0237      0.982 0.996 0.000 0.004
#> SRR934226     1  0.0237      0.982 0.996 0.000 0.004
#> SRR934227     1  0.0237      0.982 0.996 0.000 0.004
#> SRR934228     1  0.0237      0.982 0.996 0.000 0.004
#> SRR934229     1  0.0237      0.982 0.996 0.000 0.004
#> SRR934230     1  0.0237      0.982 0.996 0.000 0.004
#> SRR934231     1  0.0237      0.982 0.996 0.000 0.004
#> SRR934232     2  0.3116      0.907 0.000 0.892 0.108
#> SRR934233     2  0.3619      0.885 0.000 0.864 0.136
#> SRR934234     2  0.3192      0.904 0.000 0.888 0.112
#> SRR934235     2  0.3752      0.877 0.000 0.856 0.144
#> SRR934236     2  0.2711      0.919 0.000 0.912 0.088
#> SRR934237     2  0.1964      0.935 0.000 0.944 0.056
#> SRR934238     2  0.3482      0.892 0.000 0.872 0.128
#> SRR934239     2  0.4346      0.833 0.000 0.816 0.184
#> SRR934240     2  0.0000      0.959 0.000 1.000 0.000
#> SRR934241     2  0.0000      0.959 0.000 1.000 0.000
#> SRR934242     2  0.0000      0.959 0.000 1.000 0.000
#> SRR934243     2  0.0000      0.959 0.000 1.000 0.000
#> SRR934244     2  0.0000      0.959 0.000 1.000 0.000
#> SRR934245     2  0.0000      0.959 0.000 1.000 0.000
#> SRR934246     2  0.0000      0.959 0.000 1.000 0.000
#> SRR934247     2  0.0000      0.959 0.000 1.000 0.000
#> SRR934248     3  0.1860      0.818 0.052 0.000 0.948
#> SRR934249     3  0.1643      0.816 0.044 0.000 0.956
#> SRR934250     3  0.4121      0.778 0.168 0.000 0.832
#> SRR934251     3  0.3267      0.813 0.116 0.000 0.884
#> SRR934252     3  0.4654      0.740 0.208 0.000 0.792
#> SRR934253     3  0.3412      0.810 0.124 0.000 0.876
#> SRR934254     3  0.2537      0.819 0.080 0.000 0.920
#> SRR934255     3  0.3340      0.811 0.120 0.000 0.880
#> SRR934256     2  0.0000      0.959 0.000 1.000 0.000
#> SRR934257     2  0.0000      0.959 0.000 1.000 0.000
#> SRR934258     2  0.0000      0.959 0.000 1.000 0.000
#> SRR934259     2  0.0000      0.959 0.000 1.000 0.000
#> SRR934260     2  0.0000      0.959 0.000 1.000 0.000
#> SRR934261     2  0.0000      0.959 0.000 1.000 0.000
#> SRR934262     2  0.0000      0.959 0.000 1.000 0.000
#> SRR934263     2  0.0000      0.959 0.000 1.000 0.000
#> SRR934264     1  0.0892      0.968 0.980 0.000 0.020
#> SRR934265     1  0.1031      0.965 0.976 0.000 0.024
#> SRR934266     1  0.1031      0.965 0.976 0.000 0.024
#> SRR934267     1  0.1411      0.953 0.964 0.000 0.036
#> SRR934268     1  0.1031      0.965 0.976 0.000 0.024
#> SRR934269     1  0.0892      0.968 0.980 0.000 0.020
#> SRR934270     1  0.2165      0.924 0.936 0.000 0.064
#> SRR934271     1  0.1163      0.961 0.972 0.000 0.028
#> SRR934272     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934273     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934274     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934275     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934276     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934277     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934278     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934279     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934280     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934281     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934282     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934283     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934284     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934285     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934286     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934287     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934288     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934289     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934290     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934291     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934292     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934293     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934294     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934295     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934296     1  0.2711      0.896 0.912 0.088 0.000
#> SRR934297     1  0.3412      0.853 0.876 0.124 0.000
#> SRR934298     1  0.1964      0.932 0.944 0.056 0.000
#> SRR934299     1  0.3619      0.836 0.864 0.136 0.000
#> SRR934300     1  0.2066      0.927 0.940 0.060 0.000
#> SRR934301     1  0.3340      0.858 0.880 0.120 0.000
#> SRR934302     1  0.4121      0.792 0.832 0.168 0.000
#> SRR934303     1  0.4121      0.793 0.832 0.168 0.000
#> SRR934304     3  0.0000      0.800 0.000 0.000 1.000
#> SRR934305     3  0.0000      0.800 0.000 0.000 1.000
#> SRR934306     3  0.0000      0.800 0.000 0.000 1.000
#> SRR934307     3  0.0000      0.800 0.000 0.000 1.000
#> SRR934308     3  0.0000      0.800 0.000 0.000 1.000
#> SRR934309     3  0.0000      0.800 0.000 0.000 1.000
#> SRR934310     3  0.0000      0.800 0.000 0.000 1.000
#> SRR934311     3  0.0000      0.800 0.000 0.000 1.000
#> SRR934312     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934313     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934314     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934315     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934316     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934317     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934318     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934319     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934320     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934321     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934322     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934323     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934324     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934325     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934326     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934327     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934328     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934329     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934330     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934331     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934332     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934333     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934334     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934335     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934344     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934345     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934346     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934347     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934348     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934349     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934350     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934351     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934336     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934337     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934338     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934339     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934340     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934341     1  0.0000      0.984 1.000 0.000 0.000
#> SRR934342     1  0.0000      0.984 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> SRR934216     3  0.2593      0.851 0.104 0.000 0.892 0.004
#> SRR934217     3  0.2530      0.854 0.100 0.000 0.896 0.004
#> SRR934218     3  0.2530      0.854 0.100 0.000 0.896 0.004
#> SRR934219     3  0.2530      0.854 0.100 0.000 0.896 0.004
#> SRR934220     3  0.2593      0.851 0.104 0.000 0.892 0.004
#> SRR934221     3  0.2593      0.851 0.104 0.000 0.892 0.004
#> SRR934222     3  0.2593      0.851 0.104 0.000 0.892 0.004
#> SRR934223     3  0.2530      0.854 0.100 0.000 0.896 0.004
#> SRR934224     1  0.1398      0.933 0.956 0.000 0.040 0.004
#> SRR934225     1  0.1398      0.933 0.956 0.000 0.040 0.004
#> SRR934226     1  0.1398      0.933 0.956 0.000 0.040 0.004
#> SRR934227     1  0.1398      0.933 0.956 0.000 0.040 0.004
#> SRR934228     1  0.1398      0.933 0.956 0.000 0.040 0.004
#> SRR934229     1  0.1398      0.933 0.956 0.000 0.040 0.004
#> SRR934230     1  0.1398      0.933 0.956 0.000 0.040 0.004
#> SRR934231     1  0.1398      0.933 0.956 0.000 0.040 0.004
#> SRR934232     2  0.0469      0.989 0.000 0.988 0.012 0.000
#> SRR934233     2  0.0336      0.992 0.000 0.992 0.008 0.000
#> SRR934234     2  0.0469      0.989 0.000 0.988 0.012 0.000
#> SRR934235     2  0.0336      0.992 0.000 0.992 0.008 0.000
#> SRR934236     2  0.0336      0.992 0.000 0.992 0.008 0.000
#> SRR934237     2  0.0000      0.994 0.000 1.000 0.000 0.000
#> SRR934238     2  0.0188      0.993 0.000 0.996 0.004 0.000
#> SRR934239     2  0.0469      0.989 0.000 0.988 0.012 0.000
#> SRR934240     2  0.0000      0.994 0.000 1.000 0.000 0.000
#> SRR934241     2  0.0000      0.994 0.000 1.000 0.000 0.000
#> SRR934242     2  0.0000      0.994 0.000 1.000 0.000 0.000
#> SRR934243     2  0.0000      0.994 0.000 1.000 0.000 0.000
#> SRR934244     2  0.0000      0.994 0.000 1.000 0.000 0.000
#> SRR934245     2  0.0000      0.994 0.000 1.000 0.000 0.000
#> SRR934246     2  0.0000      0.994 0.000 1.000 0.000 0.000
#> SRR934247     2  0.0000      0.994 0.000 1.000 0.000 0.000
#> SRR934248     3  0.4944      0.819 0.072 0.160 0.768 0.000
#> SRR934249     3  0.5143      0.807 0.076 0.172 0.752 0.000
#> SRR934250     3  0.4804      0.824 0.072 0.148 0.780 0.000
#> SRR934251     3  0.4944      0.817 0.072 0.160 0.768 0.000
#> SRR934252     3  0.5594      0.770 0.112 0.164 0.724 0.000
#> SRR934253     3  0.5011      0.815 0.076 0.160 0.764 0.000
#> SRR934254     3  0.4898      0.821 0.072 0.156 0.772 0.000
#> SRR934255     3  0.4829      0.821 0.068 0.156 0.776 0.000
#> SRR934256     4  0.3024      1.000 0.000 0.148 0.000 0.852
#> SRR934257     4  0.3024      1.000 0.000 0.148 0.000 0.852
#> SRR934258     4  0.3024      1.000 0.000 0.148 0.000 0.852
#> SRR934259     4  0.3024      1.000 0.000 0.148 0.000 0.852
#> SRR934260     4  0.3024      1.000 0.000 0.148 0.000 0.852
#> SRR934261     4  0.3024      1.000 0.000 0.148 0.000 0.852
#> SRR934262     4  0.3024      1.000 0.000 0.148 0.000 0.852
#> SRR934263     4  0.3024      1.000 0.000 0.148 0.000 0.852
#> SRR934264     1  0.1585      0.931 0.952 0.004 0.040 0.004
#> SRR934265     1  0.1585      0.931 0.952 0.004 0.040 0.004
#> SRR934266     1  0.1585      0.931 0.952 0.004 0.040 0.004
#> SRR934267     1  0.1585      0.931 0.952 0.004 0.040 0.004
#> SRR934268     1  0.1585      0.931 0.952 0.004 0.040 0.004
#> SRR934269     1  0.1585      0.931 0.952 0.004 0.040 0.004
#> SRR934270     1  0.1585      0.931 0.952 0.004 0.040 0.004
#> SRR934271     1  0.1585      0.931 0.952 0.004 0.040 0.004
#> SRR934272     1  0.0336      0.943 0.992 0.000 0.008 0.000
#> SRR934273     1  0.0336      0.943 0.992 0.000 0.008 0.000
#> SRR934274     1  0.0524      0.943 0.988 0.000 0.008 0.004
#> SRR934275     1  0.0336      0.943 0.992 0.000 0.008 0.000
#> SRR934276     1  0.0672      0.943 0.984 0.000 0.008 0.008
#> SRR934277     1  0.0672      0.944 0.984 0.000 0.008 0.008
#> SRR934278     1  0.0336      0.943 0.992 0.000 0.008 0.000
#> SRR934279     1  0.0336      0.943 0.992 0.000 0.008 0.000
#> SRR934280     1  0.0524      0.942 0.988 0.000 0.008 0.004
#> SRR934281     1  0.0336      0.943 0.992 0.000 0.008 0.000
#> SRR934282     1  0.0657      0.944 0.984 0.000 0.004 0.012
#> SRR934283     1  0.0376      0.943 0.992 0.000 0.004 0.004
#> SRR934284     1  0.0376      0.943 0.992 0.000 0.004 0.004
#> SRR934285     1  0.0188      0.943 0.996 0.000 0.004 0.000
#> SRR934286     1  0.0657      0.942 0.984 0.000 0.012 0.004
#> SRR934287     1  0.0657      0.942 0.984 0.000 0.012 0.004
#> SRR934288     1  0.2281      0.928 0.904 0.000 0.000 0.096
#> SRR934289     1  0.2281      0.928 0.904 0.000 0.000 0.096
#> SRR934290     1  0.2281      0.928 0.904 0.000 0.000 0.096
#> SRR934291     1  0.2281      0.928 0.904 0.000 0.000 0.096
#> SRR934292     1  0.2281      0.928 0.904 0.000 0.000 0.096
#> SRR934293     1  0.2281      0.928 0.904 0.000 0.000 0.096
#> SRR934294     1  0.2281      0.928 0.904 0.000 0.000 0.096
#> SRR934295     1  0.2281      0.928 0.904 0.000 0.000 0.096
#> SRR934296     1  0.2281      0.928 0.904 0.000 0.000 0.096
#> SRR934297     1  0.2281      0.928 0.904 0.000 0.000 0.096
#> SRR934298     1  0.2281      0.928 0.904 0.000 0.000 0.096
#> SRR934299     1  0.2281      0.928 0.904 0.000 0.000 0.096
#> SRR934300     1  0.2281      0.928 0.904 0.000 0.000 0.096
#> SRR934301     1  0.2281      0.928 0.904 0.000 0.000 0.096
#> SRR934302     1  0.2281      0.928 0.904 0.000 0.000 0.096
#> SRR934303     1  0.2408      0.925 0.896 0.000 0.000 0.104
#> SRR934304     3  0.1211      0.827 0.000 0.000 0.960 0.040
#> SRR934305     3  0.1211      0.827 0.000 0.000 0.960 0.040
#> SRR934306     3  0.1211      0.827 0.000 0.000 0.960 0.040
#> SRR934307     3  0.1211      0.827 0.000 0.000 0.960 0.040
#> SRR934308     3  0.1211      0.827 0.000 0.000 0.960 0.040
#> SRR934309     3  0.1211      0.827 0.000 0.000 0.960 0.040
#> SRR934310     3  0.1211      0.827 0.000 0.000 0.960 0.040
#> SRR934311     3  0.1211      0.827 0.000 0.000 0.960 0.040
#> SRR934312     1  0.1474      0.938 0.948 0.000 0.000 0.052
#> SRR934313     1  0.1302      0.940 0.956 0.000 0.000 0.044
#> SRR934314     1  0.1474      0.940 0.948 0.000 0.000 0.052
#> SRR934315     1  0.1302      0.940 0.956 0.000 0.000 0.044
#> SRR934316     1  0.1867      0.934 0.928 0.000 0.000 0.072
#> SRR934317     1  0.1867      0.934 0.928 0.000 0.000 0.072
#> SRR934318     1  0.0524      0.944 0.988 0.000 0.008 0.004
#> SRR934319     1  0.1716      0.936 0.936 0.000 0.000 0.064
#> SRR934320     1  0.1256      0.937 0.964 0.000 0.028 0.008
#> SRR934321     1  0.1042      0.939 0.972 0.000 0.020 0.008
#> SRR934322     1  0.1042      0.939 0.972 0.000 0.020 0.008
#> SRR934323     1  0.1151      0.938 0.968 0.000 0.024 0.008
#> SRR934324     1  0.1042      0.939 0.972 0.000 0.020 0.008
#> SRR934325     1  0.1042      0.939 0.972 0.000 0.020 0.008
#> SRR934326     1  0.1256      0.937 0.964 0.000 0.028 0.008
#> SRR934327     1  0.1042      0.939 0.972 0.000 0.020 0.008
#> SRR934328     1  0.2281      0.928 0.904 0.000 0.000 0.096
#> SRR934329     1  0.2281      0.928 0.904 0.000 0.000 0.096
#> SRR934330     1  0.2281      0.928 0.904 0.000 0.000 0.096
#> SRR934331     1  0.2281      0.928 0.904 0.000 0.000 0.096
#> SRR934332     1  0.2281      0.928 0.904 0.000 0.000 0.096
#> SRR934333     1  0.2281      0.928 0.904 0.000 0.000 0.096
#> SRR934334     1  0.2281      0.928 0.904 0.000 0.000 0.096
#> SRR934335     1  0.2281      0.928 0.904 0.000 0.000 0.096
#> SRR934344     1  0.2216      0.930 0.908 0.000 0.000 0.092
#> SRR934345     1  0.2216      0.930 0.908 0.000 0.000 0.092
#> SRR934346     1  0.2281      0.928 0.904 0.000 0.000 0.096
#> SRR934347     1  0.2216      0.930 0.908 0.000 0.000 0.092
#> SRR934348     1  0.2216      0.930 0.908 0.000 0.000 0.092
#> SRR934349     1  0.2216      0.930 0.908 0.000 0.000 0.092
#> SRR934350     1  0.2216      0.930 0.908 0.000 0.000 0.092
#> SRR934351     1  0.2216      0.930 0.908 0.000 0.000 0.092
#> SRR934336     1  0.1305      0.935 0.960 0.000 0.036 0.004
#> SRR934337     1  0.1398      0.933 0.956 0.000 0.040 0.004
#> SRR934338     1  0.1305      0.935 0.960 0.000 0.036 0.004
#> SRR934339     1  0.1305      0.935 0.960 0.000 0.036 0.004
#> SRR934340     1  0.1109      0.937 0.968 0.000 0.028 0.004
#> SRR934341     1  0.1398      0.933 0.956 0.000 0.040 0.004
#> SRR934342     1  0.1398      0.933 0.956 0.000 0.040 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> SRR934216     4  0.4101    0.50100 0.004 0.000 0.000 0.664 0.332
#> SRR934217     4  0.4135    0.48869 0.004 0.000 0.000 0.656 0.340
#> SRR934218     4  0.4118    0.49605 0.004 0.000 0.000 0.660 0.336
#> SRR934219     4  0.4135    0.48869 0.004 0.000 0.000 0.656 0.340
#> SRR934220     4  0.4101    0.50100 0.004 0.000 0.000 0.664 0.332
#> SRR934221     4  0.4101    0.50100 0.004 0.000 0.000 0.664 0.332
#> SRR934222     4  0.4101    0.50100 0.004 0.000 0.000 0.664 0.332
#> SRR934223     4  0.4135    0.48869 0.004 0.000 0.000 0.656 0.340
#> SRR934224     4  0.3366    0.70285 0.212 0.000 0.004 0.784 0.000
#> SRR934225     4  0.3366    0.70285 0.212 0.000 0.004 0.784 0.000
#> SRR934226     4  0.3398    0.70073 0.216 0.000 0.004 0.780 0.000
#> SRR934227     4  0.3366    0.70285 0.212 0.000 0.004 0.784 0.000
#> SRR934228     4  0.3366    0.70285 0.212 0.000 0.004 0.784 0.000
#> SRR934229     4  0.3366    0.70285 0.212 0.000 0.004 0.784 0.000
#> SRR934230     4  0.3333    0.70469 0.208 0.000 0.004 0.788 0.000
#> SRR934231     4  0.3398    0.70073 0.216 0.000 0.004 0.780 0.000
#> SRR934232     2  0.3366    0.83912 0.000 0.768 0.000 0.232 0.000
#> SRR934233     2  0.3424    0.83413 0.000 0.760 0.000 0.240 0.000
#> SRR934234     2  0.3395    0.83719 0.000 0.764 0.000 0.236 0.000
#> SRR934235     2  0.3366    0.83911 0.000 0.768 0.000 0.232 0.000
#> SRR934236     2  0.3395    0.83719 0.000 0.764 0.000 0.236 0.000
#> SRR934237     2  0.3452    0.82967 0.000 0.756 0.000 0.244 0.000
#> SRR934238     2  0.3366    0.83870 0.000 0.768 0.000 0.232 0.000
#> SRR934239     2  0.3305    0.83961 0.000 0.776 0.000 0.224 0.000
#> SRR934240     2  0.0404    0.83693 0.000 0.988 0.012 0.000 0.000
#> SRR934241     2  0.0404    0.83693 0.000 0.988 0.012 0.000 0.000
#> SRR934242     2  0.0404    0.83693 0.000 0.988 0.012 0.000 0.000
#> SRR934243     2  0.0404    0.83693 0.000 0.988 0.012 0.000 0.000
#> SRR934244     2  0.0404    0.83693 0.000 0.988 0.012 0.000 0.000
#> SRR934245     2  0.0404    0.83693 0.000 0.988 0.012 0.000 0.000
#> SRR934246     2  0.0404    0.83693 0.000 0.988 0.012 0.000 0.000
#> SRR934247     2  0.0404    0.83693 0.000 0.988 0.012 0.000 0.000
#> SRR934248     4  0.3142    0.60306 0.000 0.108 0.004 0.856 0.032
#> SRR934249     4  0.3256    0.55342 0.000 0.148 0.004 0.832 0.016
#> SRR934250     4  0.2520    0.61764 0.000 0.096 0.004 0.888 0.012
#> SRR934251     4  0.3111    0.56208 0.000 0.144 0.004 0.840 0.012
#> SRR934252     4  0.2575    0.61704 0.000 0.100 0.004 0.884 0.012
#> SRR934253     4  0.2775    0.61058 0.000 0.100 0.004 0.876 0.020
#> SRR934254     4  0.3340    0.54014 0.000 0.156 0.004 0.824 0.016
#> SRR934255     4  0.3124    0.56980 0.000 0.136 0.004 0.844 0.016
#> SRR934256     3  0.0290    1.00000 0.000 0.008 0.992 0.000 0.000
#> SRR934257     3  0.0290    1.00000 0.000 0.008 0.992 0.000 0.000
#> SRR934258     3  0.0290    1.00000 0.000 0.008 0.992 0.000 0.000
#> SRR934259     3  0.0290    1.00000 0.000 0.008 0.992 0.000 0.000
#> SRR934260     3  0.0290    1.00000 0.000 0.008 0.992 0.000 0.000
#> SRR934261     3  0.0290    1.00000 0.000 0.008 0.992 0.000 0.000
#> SRR934262     3  0.0290    1.00000 0.000 0.008 0.992 0.000 0.000
#> SRR934263     3  0.0290    1.00000 0.000 0.008 0.992 0.000 0.000
#> SRR934264     4  0.0865    0.70867 0.024 0.000 0.000 0.972 0.004
#> SRR934265     4  0.0703    0.70847 0.024 0.000 0.000 0.976 0.000
#> SRR934266     4  0.0865    0.70867 0.024 0.000 0.000 0.972 0.004
#> SRR934267     4  0.0771    0.70635 0.020 0.000 0.000 0.976 0.004
#> SRR934268     4  0.0865    0.70867 0.024 0.000 0.000 0.972 0.004
#> SRR934269     4  0.0865    0.70867 0.024 0.000 0.000 0.972 0.004
#> SRR934270     4  0.0771    0.70635 0.020 0.000 0.000 0.976 0.004
#> SRR934271     4  0.0865    0.70867 0.024 0.000 0.000 0.972 0.004
#> SRR934272     1  0.4201    0.32619 0.592 0.000 0.000 0.408 0.000
#> SRR934273     1  0.4114    0.41524 0.624 0.000 0.000 0.376 0.000
#> SRR934274     1  0.4088    0.43552 0.632 0.000 0.000 0.368 0.000
#> SRR934275     1  0.4201    0.32533 0.592 0.000 0.000 0.408 0.000
#> SRR934276     1  0.3983    0.50134 0.660 0.000 0.000 0.340 0.000
#> SRR934277     1  0.3857    0.55767 0.688 0.000 0.000 0.312 0.000
#> SRR934278     4  0.4307    0.00136 0.500 0.000 0.000 0.500 0.000
#> SRR934279     1  0.4210    0.32382 0.588 0.000 0.000 0.412 0.000
#> SRR934280     1  0.3039    0.73985 0.808 0.000 0.000 0.192 0.000
#> SRR934281     1  0.2966    0.74730 0.816 0.000 0.000 0.184 0.000
#> SRR934282     1  0.3039    0.73798 0.808 0.000 0.000 0.192 0.000
#> SRR934283     1  0.2929    0.74838 0.820 0.000 0.000 0.180 0.000
#> SRR934284     1  0.2813    0.75745 0.832 0.000 0.000 0.168 0.000
#> SRR934285     1  0.2732    0.76279 0.840 0.000 0.000 0.160 0.000
#> SRR934286     1  0.3508    0.66923 0.748 0.000 0.000 0.252 0.000
#> SRR934287     1  0.3305    0.70501 0.776 0.000 0.000 0.224 0.000
#> SRR934288     1  0.0000    0.81970 1.000 0.000 0.000 0.000 0.000
#> SRR934289     1  0.0000    0.81970 1.000 0.000 0.000 0.000 0.000
#> SRR934290     1  0.0000    0.81970 1.000 0.000 0.000 0.000 0.000
#> SRR934291     1  0.0000    0.81970 1.000 0.000 0.000 0.000 0.000
#> SRR934292     1  0.0000    0.81970 1.000 0.000 0.000 0.000 0.000
#> SRR934293     1  0.0000    0.81970 1.000 0.000 0.000 0.000 0.000
#> SRR934294     1  0.0000    0.81970 1.000 0.000 0.000 0.000 0.000
#> SRR934295     1  0.0000    0.81970 1.000 0.000 0.000 0.000 0.000
#> SRR934296     1  0.2280    0.73418 0.880 0.120 0.000 0.000 0.000
#> SRR934297     1  0.2127    0.74594 0.892 0.108 0.000 0.000 0.000
#> SRR934298     1  0.1908    0.75991 0.908 0.092 0.000 0.000 0.000
#> SRR934299     1  0.1965    0.75634 0.904 0.096 0.000 0.000 0.000
#> SRR934300     1  0.2179    0.75563 0.896 0.100 0.000 0.004 0.000
#> SRR934301     1  0.2329    0.73170 0.876 0.124 0.000 0.000 0.000
#> SRR934302     1  0.2124    0.75852 0.900 0.096 0.000 0.004 0.000
#> SRR934303     1  0.2230    0.73857 0.884 0.116 0.000 0.000 0.000
#> SRR934304     5  0.0162    1.00000 0.000 0.000 0.000 0.004 0.996
#> SRR934305     5  0.0162    1.00000 0.000 0.000 0.000 0.004 0.996
#> SRR934306     5  0.0162    1.00000 0.000 0.000 0.000 0.004 0.996
#> SRR934307     5  0.0162    1.00000 0.000 0.000 0.000 0.004 0.996
#> SRR934308     5  0.0162    1.00000 0.000 0.000 0.000 0.004 0.996
#> SRR934309     5  0.0162    1.00000 0.000 0.000 0.000 0.004 0.996
#> SRR934310     5  0.0162    1.00000 0.000 0.000 0.000 0.004 0.996
#> SRR934311     5  0.0162    1.00000 0.000 0.000 0.000 0.004 0.996
#> SRR934312     1  0.2516    0.77407 0.860 0.000 0.000 0.140 0.000
#> SRR934313     1  0.2891    0.74985 0.824 0.000 0.000 0.176 0.000
#> SRR934314     1  0.2690    0.76471 0.844 0.000 0.000 0.156 0.000
#> SRR934315     1  0.2773    0.76054 0.836 0.000 0.000 0.164 0.000
#> SRR934316     1  0.2179    0.78704 0.888 0.000 0.000 0.112 0.000
#> SRR934317     1  0.1965    0.79339 0.904 0.000 0.000 0.096 0.000
#> SRR934318     1  0.3480    0.66742 0.752 0.000 0.000 0.248 0.000
#> SRR934319     1  0.2471    0.77602 0.864 0.000 0.000 0.136 0.000
#> SRR934320     4  0.4390    0.26095 0.428 0.000 0.004 0.568 0.000
#> SRR934321     4  0.4452   -0.01425 0.496 0.000 0.004 0.500 0.000
#> SRR934322     1  0.4450    0.02837 0.508 0.000 0.004 0.488 0.000
#> SRR934323     4  0.4410    0.22378 0.440 0.000 0.004 0.556 0.000
#> SRR934324     1  0.4415    0.18173 0.552 0.000 0.004 0.444 0.000
#> SRR934325     1  0.4196    0.47721 0.640 0.000 0.004 0.356 0.000
#> SRR934326     4  0.4555    0.47978 0.344 0.000 0.020 0.636 0.000
#> SRR934327     1  0.4446    0.06109 0.520 0.000 0.004 0.476 0.000
#> SRR934328     1  0.0000    0.81970 1.000 0.000 0.000 0.000 0.000
#> SRR934329     1  0.0000    0.81970 1.000 0.000 0.000 0.000 0.000
#> SRR934330     1  0.0000    0.81970 1.000 0.000 0.000 0.000 0.000
#> SRR934331     1  0.0000    0.81970 1.000 0.000 0.000 0.000 0.000
#> SRR934332     1  0.0000    0.81970 1.000 0.000 0.000 0.000 0.000
#> SRR934333     1  0.0000    0.81970 1.000 0.000 0.000 0.000 0.000
#> SRR934334     1  0.0000    0.81970 1.000 0.000 0.000 0.000 0.000
#> SRR934335     1  0.0000    0.81970 1.000 0.000 0.000 0.000 0.000
#> SRR934344     1  0.0000    0.81970 1.000 0.000 0.000 0.000 0.000
#> SRR934345     1  0.0000    0.81970 1.000 0.000 0.000 0.000 0.000
#> SRR934346     1  0.0000    0.81970 1.000 0.000 0.000 0.000 0.000
#> SRR934347     1  0.0000    0.81970 1.000 0.000 0.000 0.000 0.000
#> SRR934348     1  0.0000    0.81970 1.000 0.000 0.000 0.000 0.000
#> SRR934349     1  0.0000    0.81970 1.000 0.000 0.000 0.000 0.000
#> SRR934350     1  0.0000    0.81970 1.000 0.000 0.000 0.000 0.000
#> SRR934351     1  0.0000    0.81970 1.000 0.000 0.000 0.000 0.000
#> SRR934336     4  0.3612    0.64863 0.268 0.000 0.000 0.732 0.000
#> SRR934337     4  0.3534    0.66232 0.256 0.000 0.000 0.744 0.000
#> SRR934338     4  0.3661    0.63939 0.276 0.000 0.000 0.724 0.000
#> SRR934339     4  0.3561    0.65930 0.260 0.000 0.000 0.740 0.000
#> SRR934340     4  0.3752    0.61533 0.292 0.000 0.000 0.708 0.000
#> SRR934341     4  0.3586    0.65417 0.264 0.000 0.000 0.736 0.000
#> SRR934342     4  0.3561    0.65930 0.260 0.000 0.000 0.740 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR934216     4  0.6276      0.681 0.068 0.000 0.004 0.584 0.172 0.172
#> SRR934217     4  0.6251      0.675 0.064 0.000 0.004 0.584 0.184 0.164
#> SRR934218     4  0.6276      0.683 0.068 0.000 0.004 0.584 0.168 0.176
#> SRR934219     4  0.6251      0.675 0.064 0.000 0.004 0.584 0.184 0.164
#> SRR934220     4  0.6274      0.682 0.068 0.000 0.004 0.584 0.164 0.180
#> SRR934221     4  0.6276      0.681 0.068 0.000 0.004 0.584 0.172 0.172
#> SRR934222     4  0.6251      0.677 0.064 0.000 0.004 0.584 0.184 0.164
#> SRR934223     4  0.6274      0.676 0.068 0.000 0.004 0.584 0.180 0.164
#> SRR934224     6  0.4399      0.239 0.028 0.004 0.000 0.352 0.000 0.616
#> SRR934225     6  0.4399      0.230 0.028 0.004 0.000 0.352 0.000 0.616
#> SRR934226     6  0.4292      0.264 0.032 0.000 0.000 0.340 0.000 0.628
#> SRR934227     6  0.4399      0.239 0.028 0.004 0.000 0.352 0.000 0.616
#> SRR934228     6  0.4234      0.309 0.032 0.000 0.000 0.324 0.000 0.644
#> SRR934229     6  0.4302      0.310 0.028 0.004 0.000 0.324 0.000 0.644
#> SRR934230     6  0.4411      0.226 0.028 0.004 0.000 0.356 0.000 0.612
#> SRR934231     6  0.4373      0.255 0.028 0.004 0.000 0.344 0.000 0.624
#> SRR934232     2  0.4249      0.789 0.032 0.640 0.000 0.328 0.000 0.000
#> SRR934233     2  0.4264      0.786 0.032 0.636 0.000 0.332 0.000 0.000
#> SRR934234     2  0.4249      0.789 0.032 0.640 0.000 0.328 0.000 0.000
#> SRR934235     2  0.4249      0.789 0.032 0.640 0.000 0.328 0.000 0.000
#> SRR934236     2  0.4249      0.789 0.032 0.640 0.000 0.328 0.000 0.000
#> SRR934237     2  0.4249      0.789 0.032 0.640 0.000 0.328 0.000 0.000
#> SRR934238     2  0.4264      0.786 0.032 0.636 0.000 0.332 0.000 0.000
#> SRR934239     2  0.4264      0.786 0.032 0.636 0.000 0.332 0.000 0.000
#> SRR934240     2  0.0547      0.781 0.000 0.980 0.020 0.000 0.000 0.000
#> SRR934241     2  0.0547      0.781 0.000 0.980 0.020 0.000 0.000 0.000
#> SRR934242     2  0.0547      0.781 0.000 0.980 0.020 0.000 0.000 0.000
#> SRR934243     2  0.0547      0.781 0.000 0.980 0.020 0.000 0.000 0.000
#> SRR934244     2  0.0547      0.781 0.000 0.980 0.020 0.000 0.000 0.000
#> SRR934245     2  0.0547      0.781 0.000 0.980 0.020 0.000 0.000 0.000
#> SRR934246     2  0.0547      0.781 0.000 0.980 0.020 0.000 0.000 0.000
#> SRR934247     2  0.0547      0.781 0.000 0.980 0.020 0.000 0.000 0.000
#> SRR934248     4  0.2496      0.671 0.008 0.032 0.000 0.900 0.016 0.044
#> SRR934249     4  0.2263      0.661 0.008 0.032 0.000 0.912 0.012 0.036
#> SRR934250     4  0.2179      0.672 0.008 0.024 0.000 0.916 0.012 0.040
#> SRR934251     4  0.2233      0.667 0.008 0.032 0.000 0.912 0.008 0.040
#> SRR934252     4  0.2157      0.671 0.008 0.028 0.000 0.916 0.008 0.040
#> SRR934253     4  0.2263      0.661 0.008 0.032 0.000 0.912 0.012 0.036
#> SRR934254     4  0.2233      0.667 0.008 0.032 0.000 0.912 0.008 0.040
#> SRR934255     4  0.2334      0.666 0.008 0.032 0.000 0.908 0.012 0.040
#> SRR934256     3  0.0146      1.000 0.000 0.004 0.996 0.000 0.000 0.000
#> SRR934257     3  0.0146      1.000 0.000 0.004 0.996 0.000 0.000 0.000
#> SRR934258     3  0.0146      1.000 0.000 0.004 0.996 0.000 0.000 0.000
#> SRR934259     3  0.0146      1.000 0.000 0.004 0.996 0.000 0.000 0.000
#> SRR934260     3  0.0146      1.000 0.000 0.004 0.996 0.000 0.000 0.000
#> SRR934261     3  0.0146      1.000 0.000 0.004 0.996 0.000 0.000 0.000
#> SRR934262     3  0.0146      1.000 0.000 0.004 0.996 0.000 0.000 0.000
#> SRR934263     3  0.0146      1.000 0.000 0.004 0.996 0.000 0.000 0.000
#> SRR934264     4  0.3426      0.736 0.004 0.000 0.000 0.720 0.000 0.276
#> SRR934265     4  0.3405      0.740 0.004 0.000 0.000 0.724 0.000 0.272
#> SRR934266     4  0.3405      0.741 0.004 0.000 0.000 0.724 0.000 0.272
#> SRR934267     4  0.3314      0.749 0.004 0.000 0.000 0.740 0.000 0.256
#> SRR934268     4  0.3383      0.744 0.004 0.000 0.000 0.728 0.000 0.268
#> SRR934269     4  0.3405      0.741 0.004 0.000 0.000 0.724 0.000 0.272
#> SRR934270     4  0.3360      0.744 0.004 0.000 0.000 0.732 0.000 0.264
#> SRR934271     4  0.3448      0.731 0.004 0.000 0.000 0.716 0.000 0.280
#> SRR934272     6  0.0935      0.863 0.032 0.000 0.000 0.004 0.000 0.964
#> SRR934273     6  0.1152      0.862 0.044 0.000 0.000 0.004 0.000 0.952
#> SRR934274     6  0.1152      0.862 0.044 0.000 0.000 0.004 0.000 0.952
#> SRR934275     6  0.1082      0.863 0.040 0.000 0.000 0.004 0.000 0.956
#> SRR934276     6  0.1082      0.862 0.040 0.000 0.000 0.004 0.000 0.956
#> SRR934277     6  0.1152      0.862 0.044 0.000 0.000 0.004 0.000 0.952
#> SRR934278     6  0.0935      0.863 0.032 0.000 0.000 0.004 0.000 0.964
#> SRR934279     6  0.1010      0.863 0.036 0.000 0.000 0.004 0.000 0.960
#> SRR934280     6  0.0458      0.862 0.016 0.000 0.000 0.000 0.000 0.984
#> SRR934281     6  0.0547      0.863 0.020 0.000 0.000 0.000 0.000 0.980
#> SRR934282     6  0.0547      0.863 0.020 0.000 0.000 0.000 0.000 0.980
#> SRR934283     6  0.0547      0.863 0.020 0.000 0.000 0.000 0.000 0.980
#> SRR934284     6  0.0632      0.863 0.024 0.000 0.000 0.000 0.000 0.976
#> SRR934285     6  0.0632      0.863 0.024 0.000 0.000 0.000 0.000 0.976
#> SRR934286     6  0.0260      0.858 0.008 0.000 0.000 0.000 0.000 0.992
#> SRR934287     6  0.0547      0.863 0.020 0.000 0.000 0.000 0.000 0.980
#> SRR934288     1  0.1556      0.957 0.920 0.000 0.000 0.000 0.000 0.080
#> SRR934289     1  0.1556      0.957 0.920 0.000 0.000 0.000 0.000 0.080
#> SRR934290     1  0.1610      0.954 0.916 0.000 0.000 0.000 0.000 0.084
#> SRR934291     1  0.1556      0.957 0.920 0.000 0.000 0.000 0.000 0.080
#> SRR934292     1  0.1556      0.957 0.920 0.000 0.000 0.000 0.000 0.080
#> SRR934293     1  0.1556      0.957 0.920 0.000 0.000 0.000 0.000 0.080
#> SRR934294     1  0.1556      0.957 0.920 0.000 0.000 0.000 0.000 0.080
#> SRR934295     1  0.1556      0.957 0.920 0.000 0.000 0.000 0.000 0.080
#> SRR934296     1  0.3009      0.920 0.844 0.040 0.000 0.000 0.004 0.112
#> SRR934297     1  0.3095      0.920 0.844 0.044 0.000 0.000 0.008 0.104
#> SRR934298     1  0.2793      0.926 0.856 0.028 0.000 0.000 0.004 0.112
#> SRR934299     1  0.3009      0.920 0.844 0.040 0.000 0.000 0.004 0.112
#> SRR934300     1  0.2699      0.931 0.864 0.020 0.000 0.000 0.008 0.108
#> SRR934301     1  0.3009      0.920 0.844 0.040 0.000 0.000 0.004 0.112
#> SRR934302     1  0.3009      0.920 0.844 0.040 0.000 0.000 0.004 0.112
#> SRR934303     1  0.3283      0.915 0.836 0.044 0.000 0.004 0.008 0.108
#> SRR934304     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR934305     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR934306     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR934307     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR934308     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR934309     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR934310     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR934311     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR934312     6  0.1714      0.841 0.092 0.000 0.000 0.000 0.000 0.908
#> SRR934313     6  0.1714      0.841 0.092 0.000 0.000 0.000 0.000 0.908
#> SRR934314     6  0.1556      0.848 0.080 0.000 0.000 0.000 0.000 0.920
#> SRR934315     6  0.1610      0.846 0.084 0.000 0.000 0.000 0.000 0.916
#> SRR934316     6  0.1765      0.837 0.096 0.000 0.000 0.000 0.000 0.904
#> SRR934317     6  0.2219      0.800 0.136 0.000 0.000 0.000 0.000 0.864
#> SRR934318     6  0.1327      0.856 0.064 0.000 0.000 0.000 0.000 0.936
#> SRR934319     6  0.1714      0.840 0.092 0.000 0.000 0.000 0.000 0.908
#> SRR934320     6  0.2366      0.838 0.056 0.000 0.020 0.024 0.000 0.900
#> SRR934321     6  0.2488      0.823 0.076 0.000 0.020 0.016 0.000 0.888
#> SRR934322     6  0.2222      0.829 0.084 0.000 0.008 0.012 0.000 0.896
#> SRR934323     6  0.1983      0.841 0.060 0.000 0.012 0.012 0.000 0.916
#> SRR934324     6  0.2275      0.823 0.096 0.000 0.008 0.008 0.000 0.888
#> SRR934325     6  0.2361      0.812 0.104 0.000 0.004 0.012 0.000 0.880
#> SRR934326     6  0.2386      0.835 0.052 0.000 0.024 0.024 0.000 0.900
#> SRR934327     6  0.2729      0.813 0.088 0.000 0.024 0.016 0.000 0.872
#> SRR934328     1  0.1863      0.935 0.920 0.000 0.000 0.036 0.000 0.044
#> SRR934329     1  0.1863      0.935 0.920 0.000 0.000 0.036 0.000 0.044
#> SRR934330     1  0.1780      0.941 0.924 0.000 0.000 0.028 0.000 0.048
#> SRR934331     1  0.1863      0.935 0.920 0.000 0.000 0.036 0.000 0.044
#> SRR934332     1  0.1789      0.937 0.924 0.000 0.000 0.032 0.000 0.044
#> SRR934333     1  0.1780      0.940 0.924 0.000 0.000 0.028 0.000 0.048
#> SRR934334     1  0.1863      0.935 0.920 0.000 0.000 0.036 0.000 0.044
#> SRR934335     1  0.1863      0.935 0.920 0.000 0.000 0.036 0.000 0.044
#> SRR934344     1  0.1327      0.957 0.936 0.000 0.000 0.000 0.000 0.064
#> SRR934345     1  0.1327      0.957 0.936 0.000 0.000 0.000 0.000 0.064
#> SRR934346     1  0.1327      0.957 0.936 0.000 0.000 0.000 0.000 0.064
#> SRR934347     1  0.1387      0.957 0.932 0.000 0.000 0.000 0.000 0.068
#> SRR934348     1  0.1387      0.957 0.932 0.000 0.000 0.000 0.000 0.068
#> SRR934349     1  0.1327      0.957 0.936 0.000 0.000 0.000 0.000 0.064
#> SRR934350     1  0.1327      0.957 0.936 0.000 0.000 0.000 0.000 0.064
#> SRR934351     1  0.1387      0.957 0.932 0.000 0.000 0.000 0.000 0.068
#> SRR934336     6  0.0508      0.853 0.004 0.000 0.000 0.012 0.000 0.984
#> SRR934337     6  0.0692      0.850 0.004 0.000 0.000 0.020 0.000 0.976
#> SRR934338     6  0.0405      0.855 0.004 0.000 0.000 0.008 0.000 0.988
#> SRR934339     6  0.0603      0.851 0.004 0.000 0.000 0.016 0.000 0.980
#> SRR934340     6  0.0405      0.855 0.004 0.000 0.000 0.008 0.000 0.988
#> SRR934341     6  0.0405      0.855 0.004 0.000 0.000 0.008 0.000 0.988
#> SRR934342     6  0.0777      0.847 0.004 0.000 0.000 0.024 0.000 0.972

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0