cola Report for recount2:SRP030617

Date: 2019-12-25 23:52:00 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 9166 rows and 112 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 9166  112

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
SD:skmeans 2 1.000 0.979 0.990 **
SD:pam 2 1.000 0.998 0.999 **
SD:NMF 2 1.000 0.997 0.999 **
CV:mclust 2 1.000 0.977 0.988 **
CV:NMF 2 1.000 0.952 0.984 **
MAD:kmeans 2 1.000 0.987 0.995 **
MAD:pam 2 1.000 0.976 0.991 **
MAD:NMF 2 1.000 0.991 0.997 **
ATC:pam 2 1.000 0.980 0.993 **
ATC:NMF 2 1.000 0.986 0.994 **
MAD:skmeans 2 1.000 0.962 0.984 **
ATC:skmeans 2 1.000 0.956 0.983 **
ATC:kmeans 4 0.997 0.943 0.978 ** 2
SD:kmeans 3 0.988 0.974 0.984 ** 2
SD:hclust 4 0.984 0.956 0.987 ** 2
MAD:hclust 3 0.982 0.955 0.979 ** 2
ATC:mclust 2 0.982 0.960 0.983 **
ATC:hclust 5 0.902 0.898 0.956 * 2
MAD:mclust 2 0.815 0.850 0.940
CV:skmeans 2 0.638 0.820 0.923
CV:kmeans 4 0.536 0.712 0.856
SD:mclust 3 0.503 0.777 0.861
CV:pam 3 0.370 0.666 0.830
CV:hclust 3 0.315 0.832 0.862

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 1.000           0.997       0.999         0.1217 0.882   0.882
#> CV:NMF      2 1.000           0.952       0.984         0.1504 0.851   0.851
#> MAD:NMF     2 1.000           0.991       0.997         0.1250 0.882   0.882
#> ATC:NMF     2 1.000           0.986       0.994         0.1274 0.882   0.882
#> SD:skmeans  2 1.000           0.979       0.991         0.3750 0.622   0.622
#> CV:skmeans  2 0.638           0.820       0.923         0.4754 0.532   0.532
#> MAD:skmeans 2 1.000           0.962       0.984         0.4366 0.560   0.560
#> ATC:skmeans 2 1.000           0.956       0.983         0.3391 0.671   0.671
#> SD:mclust   2 0.890           0.934       0.972         0.3853 0.622   0.622
#> CV:mclust   2 1.000           0.977       0.989         0.3017 0.704   0.704
#> MAD:mclust  2 0.815           0.850       0.940         0.4055 0.604   0.604
#> ATC:mclust  2 0.982           0.960       0.983         0.3412 0.671   0.671
#> SD:kmeans   2 1.000           1.000       0.999         0.2345 0.766   0.766
#> CV:kmeans   2 0.719           0.959       0.968         0.2306 0.740   0.740
#> MAD:kmeans  2 1.000           0.987       0.995         0.2655 0.740   0.740
#> ATC:kmeans  2 1.000           0.992       0.997         0.2300 0.766   0.766
#> SD:pam      2 1.000           0.998       0.999         0.2199 0.779   0.779
#> CV:pam      2 0.274           0.661       0.823         0.3984 0.548   0.548
#> MAD:pam     2 1.000           0.976       0.991         0.2210 0.793   0.793
#> ATC:pam     2 1.000           0.980       0.993         0.2050 0.793   0.793
#> SD:hclust   2 1.000           1.000       1.000         0.2348 0.766   0.766
#> CV:hclust   2 1.000           0.980       0.992         0.0507 0.965   0.965
#> MAD:hclust  2 1.000           0.974       0.988         0.2514 0.766   0.766
#> ATC:hclust  2 1.000           0.992       0.996         0.2291 0.766   0.766
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.588           0.838       0.907         2.1347 0.783   0.754
#> CV:NMF      3 0.541           0.811       0.896         1.8600 0.765   0.726
#> MAD:NMF     3 0.560           0.868       0.916         1.7445 0.795   0.768
#> ATC:NMF     3 0.595           0.824       0.905         1.2969 0.920   0.909
#> SD:skmeans  3 0.557           0.708       0.866         0.4560 0.854   0.769
#> CV:skmeans  3 0.326           0.604       0.746         0.3665 0.795   0.629
#> MAD:skmeans 3 0.523           0.706       0.845         0.3594 0.861   0.755
#> ATC:skmeans 3 0.672           0.759       0.896         0.3861 0.869   0.807
#> SD:mclust   3 0.503           0.777       0.861         0.5803 0.732   0.569
#> CV:mclust   3 0.386           0.676       0.799         0.6895 0.752   0.648
#> MAD:mclust  3 0.496           0.725       0.828         0.2089 0.824   0.743
#> ATC:mclust  3 0.703           0.847       0.917         0.8161 0.666   0.515
#> SD:kmeans   3 0.988           0.974       0.984         0.5321 0.869   0.829
#> CV:kmeans   3 0.431           0.659       0.803         0.9183 0.907   0.880
#> MAD:kmeans  3 0.808           0.917       0.956         0.6804 0.793   0.723
#> ATC:kmeans  3 0.866           0.890       0.955         0.3888 0.887   0.853
#> SD:pam      3 1.000           0.995       0.998         0.1172 0.975   0.968
#> CV:pam      3 0.370           0.666       0.830         0.1504 0.969   0.944
#> MAD:pam     3 0.551           0.774       0.898         1.3043 0.695   0.615
#> ATC:pam     3 1.000           0.988       0.995         0.1910 0.961   0.951
#> SD:hclust   3 0.995           0.963       0.976         0.1245 0.996   0.995
#> CV:hclust   3 0.315           0.832       0.862         5.7337 0.734   0.724
#> MAD:hclust  3 0.982           0.955       0.979         0.3078 0.926   0.903
#> ATC:hclust  3 0.996           0.973       0.982         0.0541 0.991   0.989
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.690           0.823       0.912        0.13662 0.929   0.893
#> CV:NMF      4 0.457           0.753       0.857        0.23276 0.886   0.821
#> MAD:NMF     4 0.705           0.826       0.905        0.26827 0.902   0.856
#> ATC:NMF     4 0.493           0.703       0.852        0.32795 0.855   0.819
#> SD:skmeans  4 0.412           0.552       0.766        0.19206 0.845   0.700
#> CV:skmeans  4 0.334           0.394       0.633        0.13325 0.887   0.708
#> MAD:skmeans 4 0.427           0.487       0.730        0.15370 0.920   0.827
#> ATC:skmeans 4 0.433           0.561       0.790        0.27473 0.877   0.784
#> SD:mclust   4 0.349           0.584       0.705        0.04925 0.964   0.904
#> CV:mclust   4 0.379           0.435       0.707        0.18569 0.863   0.716
#> MAD:mclust  4 0.394           0.689       0.776        0.16675 0.934   0.888
#> ATC:mclust  4 0.596           0.710       0.819        0.08804 0.913   0.780
#> SD:kmeans   4 0.565           0.522       0.778        0.47339 0.815   0.709
#> CV:kmeans   4 0.536           0.712       0.856        0.29904 0.727   0.616
#> MAD:kmeans  4 0.508           0.697       0.807        0.34379 0.747   0.561
#> ATC:kmeans  4 0.997           0.943       0.978        0.18982 0.959   0.939
#> SD:pam      4 0.743           0.850       0.938        0.76640 0.860   0.815
#> CV:pam      4 0.331           0.725       0.795        0.12803 0.868   0.779
#> MAD:pam     4 0.525           0.750       0.887        0.08644 0.944   0.886
#> ATC:pam     4 0.425           0.569       0.816        0.81967 0.969   0.960
#> SD:hclust   4 0.984           0.956       0.987        0.15136 0.940   0.921
#> CV:hclust   4 0.183           0.753       0.823        0.25059 0.978   0.968
#> MAD:hclust  4 0.876           0.920       0.964        0.03331 0.999   0.999
#> ATC:hclust  4 0.996           0.966       0.983        0.00994 0.999   0.998
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.609           0.768       0.884        0.10880 0.983   0.971
#> CV:NMF      5 0.374           0.656       0.782        0.14951 0.955   0.915
#> MAD:NMF     5 0.518           0.753       0.863        0.14046 0.997   0.994
#> ATC:NMF     5 0.483           0.763       0.870        0.13338 0.892   0.838
#> SD:skmeans  5 0.410           0.443       0.687        0.09898 0.912   0.791
#> CV:skmeans  5 0.373           0.307       0.563        0.06465 0.929   0.773
#> MAD:skmeans 5 0.425           0.358       0.655        0.08050 0.944   0.871
#> ATC:skmeans 5 0.410           0.551       0.739        0.10339 0.930   0.848
#> SD:mclust   5 0.438           0.597       0.676        0.11273 0.814   0.546
#> CV:mclust   5 0.383           0.497       0.677        0.06857 0.882   0.712
#> MAD:mclust  5 0.382           0.604       0.678        0.12722 0.971   0.947
#> ATC:mclust  5 0.575           0.647       0.795        0.03305 0.936   0.820
#> SD:kmeans   5 0.509           0.745       0.848        0.17957 0.798   0.595
#> CV:kmeans   5 0.513           0.651       0.786        0.13626 0.902   0.789
#> MAD:kmeans  5 0.561           0.706       0.827        0.12572 0.908   0.764
#> ATC:kmeans  5 0.658           0.770       0.874        0.41744 0.781   0.655
#> SD:pam      5 0.744           0.843       0.936        0.00475 0.998   0.997
#> CV:pam      5 0.360           0.668       0.787        0.05642 0.962   0.932
#> MAD:pam     5 0.544           0.756       0.892        0.00518 0.995   0.989
#> ATC:pam     5 0.432           0.610       0.709        0.04552 0.623   0.494
#> SD:hclust   5 0.967           0.934       0.978        0.04233 0.998   0.997
#> CV:hclust   5 0.226           0.647       0.788        0.12575 0.983   0.975
#> MAD:hclust  5 0.861           0.899       0.952        0.05726 1.000   1.000
#> ATC:hclust  5 0.902           0.898       0.956        0.17001 0.951   0.936
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.413           0.674       0.827        0.11298 0.971   0.950
#> CV:NMF      6 0.405           0.509       0.702        0.11072 0.970   0.940
#> MAD:NMF     6 0.386           0.718       0.820        0.07443 1.000   1.000
#> ATC:NMF     6 0.646           0.786       0.894        0.07966 0.982   0.968
#> SD:skmeans  6 0.425           0.421       0.630        0.06428 0.932   0.822
#> CV:skmeans  6 0.388           0.237       0.503        0.04354 0.903   0.663
#> MAD:skmeans 6 0.440           0.354       0.604        0.05338 0.908   0.780
#> ATC:skmeans 6 0.403           0.493       0.693        0.06926 0.961   0.903
#> SD:mclust   6 0.517           0.621       0.740        0.06477 0.905   0.681
#> CV:mclust   6 0.403           0.590       0.722        0.10382 0.837   0.568
#> MAD:mclust  6 0.418           0.429       0.579        0.06334 0.736   0.527
#> ATC:mclust  6 0.524           0.688       0.785        0.02040 0.975   0.922
#> SD:kmeans   6 0.610           0.669       0.826        0.09365 0.907   0.749
#> CV:kmeans   6 0.471           0.593       0.738        0.10604 0.864   0.673
#> MAD:kmeans  6 0.562           0.477       0.772        0.06227 0.933   0.813
#> ATC:kmeans  6 0.676           0.730       0.864        0.14947 0.886   0.747
#> SD:pam      6 0.744           0.834       0.929        0.01163 0.999   0.998
#> CV:pam      6 0.372           0.664       0.802        0.03486 0.959   0.924
#> MAD:pam     6 0.544           0.756       0.892        0.00175 0.999   0.999
#> ATC:pam     6 0.393           0.519       0.776        0.07721 0.639   0.432
#> SD:hclust   6 0.939           0.927       0.982        0.04398 0.985   0.979
#> CV:hclust   6 0.224           0.723       0.760        0.09208 0.993   0.989
#> MAD:hclust  6 0.783           0.854       0.935        0.08233 0.985   0.979
#> ATC:hclust  6 0.952           0.930       0.979        0.07601 0.983   0.976

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 917, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 1834, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 2750, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 3666, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 4583, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 917, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 1834, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 2750, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 3666, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 4583, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 917)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 1834)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 2750)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 3666)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 4583)

plot of chunk tab-top-rows-heatmap-5

Results for each method


SD:hclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 9166 rows and 112 columns.
#>   Top rows (917, 1834, 2750, 3666, 4583) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.2348 0.766   0.766
#> 3 3 0.995           0.963       0.976         0.1245 0.996   0.995
#> 4 4 0.984           0.956       0.987         0.1514 0.940   0.921
#> 5 5 0.967           0.934       0.978         0.0423 0.998   0.997
#> 6 6 0.939           0.927       0.982         0.0440 0.985   0.979

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1003755     1       0          1  1  0
#> SRR1003756     1       0          1  1  0
#> SRR1003757     1       0          1  1  0
#> SRR1003758     1       0          1  1  0
#> SRR1003759     1       0          1  1  0
#> SRR1003760     2       0          1  0  1
#> SRR1003761     2       0          1  0  1
#> SRR1003762     2       0          1  0  1
#> SRR1003763     2       0          1  0  1
#> SRR1003764     2       0          1  0  1
#> SRR1003765     2       0          1  0  1
#> SRR1003766     2       0          1  0  1
#> SRR1003767     2       0          1  0  1
#> SRR1003768     2       0          1  0  1
#> SRR1003769     2       0          1  0  1
#> SRR1003770     2       0          1  0  1
#> SRR1003771     2       0          1  0  1
#> SRR1003773     1       0          1  1  0
#> SRR1003772     1       0          1  1  0
#> SRR1003774     1       0          1  1  0
#> SRR1003775     1       0          1  1  0
#> SRR1003776     1       0          1  1  0
#> SRR1003777     1       0          1  1  0
#> SRR1003778     1       0          1  1  0
#> SRR1003779     1       0          1  1  0
#> SRR1003780     2       0          1  0  1
#> SRR1003781     1       0          1  1  0
#> SRR1003784     1       0          1  1  0
#> SRR1003785     1       0          1  1  0
#> SRR1003786     1       0          1  1  0
#> SRR1003783     1       0          1  1  0
#> SRR1003787     1       0          1  1  0
#> SRR1003788     1       0          1  1  0
#> SRR1003789     2       0          1  0  1
#> SRR1003790     1       0          1  1  0
#> SRR1003791     1       0          1  1  0
#> SRR1003792     1       0          1  1  0
#> SRR1003793     1       0          1  1  0
#> SRR1003794     1       0          1  1  0
#> SRR1003795     1       0          1  1  0
#> SRR1003796     1       0          1  1  0
#> SRR1003797     1       0          1  1  0
#> SRR1003798     1       0          1  1  0
#> SRR1003799     1       0          1  1  0
#> SRR1003800     1       0          1  1  0
#> SRR1003801     1       0          1  1  0
#> SRR1003802     1       0          1  1  0
#> SRR1003803     1       0          1  1  0
#> SRR1003804     1       0          1  1  0
#> SRR1003805     1       0          1  1  0
#> SRR1003806     1       0          1  1  0
#> SRR1003807     1       0          1  1  0
#> SRR1003809     1       0          1  1  0
#> SRR1003808     1       0          1  1  0
#> SRR1003810     1       0          1  1  0
#> SRR1003811     1       0          1  1  0
#> SRR1003812     1       0          1  1  0
#> SRR1003813     1       0          1  1  0
#> SRR1003814     1       0          1  1  0
#> SRR1003815     1       0          1  1  0
#> SRR1003816     1       0          1  1  0
#> SRR1003817     1       0          1  1  0
#> SRR1003818     1       0          1  1  0
#> SRR1003819     1       0          1  1  0
#> SRR1003820     1       0          1  1  0
#> SRR1003821     1       0          1  1  0
#> SRR1003822     1       0          1  1  0
#> SRR1003824     1       0          1  1  0
#> SRR1003823     1       0          1  1  0
#> SRR1003825     1       0          1  1  0
#> SRR1003826     1       0          1  1  0
#> SRR1003827     1       0          1  1  0
#> SRR1003828     1       0          1  1  0
#> SRR1003829     1       0          1  1  0
#> SRR1003830     1       0          1  1  0
#> SRR1003831     1       0          1  1  0
#> SRR1003832     1       0          1  1  0
#> SRR1003833     1       0          1  1  0
#> SRR1003834     1       0          1  1  0
#> SRR1003836     1       0          1  1  0
#> SRR1003835     1       0          1  1  0
#> SRR1003838     1       0          1  1  0
#> SRR1003837     1       0          1  1  0
#> SRR1003839     1       0          1  1  0
#> SRR1003840     1       0          1  1  0
#> SRR1003841     2       0          1  0  1
#> SRR1003842     1       0          1  1  0
#> SRR1003844     1       0          1  1  0
#> SRR1003845     1       0          1  1  0
#> SRR1003846     1       0          1  1  0
#> SRR1003847     1       0          1  1  0
#> SRR1003848     1       0          1  1  0
#> SRR1003849     1       0          1  1  0
#> SRR1003850     1       0          1  1  0
#> SRR1003851     1       0          1  1  0
#> SRR1003852     1       0          1  1  0
#> SRR1003853     1       0          1  1  0
#> SRR1003854     1       0          1  1  0
#> SRR1003843     1       0          1  1  0
#> SRR1003855     1       0          1  1  0
#> SRR1003856     1       0          1  1  0
#> SRR1003857     1       0          1  1  0
#> SRR1003858     1       0          1  1  0
#> SRR1003859     1       0          1  1  0
#> SRR1003860     1       0          1  1  0
#> SRR1003861     1       0          1  1  0
#> SRR1003862     1       0          1  1  0
#> SRR1003863     1       0          1  1  0
#> SRR1003864     1       0          1  1  0
#> SRR1003865     1       0          1  1  0
#> SRR1003866     1       0          1  1  0
#> SRR1003867     1       0          1  1  0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1003755     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003756     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003757     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003758     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003759     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003760     3  0.6180      1.000 0.000 0.416 0.584
#> SRR1003761     3  0.6180      1.000 0.000 0.416 0.584
#> SRR1003762     2  0.0000      0.998 0.000 1.000 0.000
#> SRR1003763     2  0.0000      0.998 0.000 1.000 0.000
#> SRR1003764     2  0.0000      0.998 0.000 1.000 0.000
#> SRR1003765     2  0.0000      0.998 0.000 1.000 0.000
#> SRR1003766     2  0.0000      0.998 0.000 1.000 0.000
#> SRR1003767     2  0.0000      0.998 0.000 1.000 0.000
#> SRR1003768     2  0.0000      0.998 0.000 1.000 0.000
#> SRR1003769     2  0.0000      0.998 0.000 1.000 0.000
#> SRR1003770     2  0.0000      0.998 0.000 1.000 0.000
#> SRR1003771     2  0.0000      0.998 0.000 1.000 0.000
#> SRR1003773     1  0.6126      0.426 0.600 0.000 0.400
#> SRR1003772     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003774     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003775     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003776     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003777     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003778     1  0.6126      0.426 0.600 0.000 0.400
#> SRR1003779     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003780     2  0.0000      0.998 0.000 1.000 0.000
#> SRR1003781     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003784     1  0.0892      0.966 0.980 0.000 0.020
#> SRR1003785     1  0.3192      0.876 0.888 0.000 0.112
#> SRR1003786     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003783     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003787     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003788     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003789     2  0.0000      0.998 0.000 1.000 0.000
#> SRR1003790     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003791     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003792     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003793     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003794     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003795     1  0.0747      0.969 0.984 0.000 0.016
#> SRR1003796     1  0.6126      0.426 0.600 0.000 0.400
#> SRR1003797     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003798     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003799     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003800     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003801     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003802     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003803     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003804     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003805     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003806     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003807     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003809     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003808     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003810     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003811     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003812     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003813     1  0.3267      0.872 0.884 0.000 0.116
#> SRR1003814     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003815     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003816     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003817     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003818     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003819     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003820     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003821     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003822     1  0.0892      0.966 0.980 0.000 0.020
#> SRR1003824     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003823     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003825     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003826     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003827     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003828     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003829     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003830     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003831     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003832     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003833     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003834     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003836     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003835     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003838     1  0.2356      0.918 0.928 0.000 0.072
#> SRR1003837     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003839     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003840     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003841     2  0.0747      0.972 0.000 0.984 0.016
#> SRR1003842     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003844     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003845     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003846     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003847     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003848     1  0.0592      0.972 0.988 0.000 0.012
#> SRR1003849     1  0.4931      0.725 0.768 0.000 0.232
#> SRR1003850     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003851     1  0.1031      0.962 0.976 0.000 0.024
#> SRR1003852     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003853     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003854     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003843     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003855     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003856     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003857     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003858     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003859     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003860     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003861     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003862     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003863     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003864     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003865     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003866     1  0.0000      0.982 1.000 0.000 0.000
#> SRR1003867     1  0.0000      0.982 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1003755     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003756     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003757     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003758     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003759     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003760     4  0.2011      1.000 0.000 0.080 0.000 0.920
#> SRR1003761     4  0.2011      1.000 0.000 0.080 0.000 0.920
#> SRR1003762     2  0.0000      0.992 0.000 1.000 0.000 0.000
#> SRR1003763     2  0.0000      0.992 0.000 1.000 0.000 0.000
#> SRR1003764     2  0.0000      0.992 0.000 1.000 0.000 0.000
#> SRR1003765     2  0.0000      0.992 0.000 1.000 0.000 0.000
#> SRR1003766     2  0.0000      0.992 0.000 1.000 0.000 0.000
#> SRR1003767     2  0.0000      0.992 0.000 1.000 0.000 0.000
#> SRR1003768     2  0.0000      0.992 0.000 1.000 0.000 0.000
#> SRR1003769     2  0.0000      0.992 0.000 1.000 0.000 0.000
#> SRR1003770     2  0.0000      0.992 0.000 1.000 0.000 0.000
#> SRR1003771     2  0.0000      0.992 0.000 1.000 0.000 0.000
#> SRR1003773     3  0.0000      0.435 0.000 0.000 1.000 0.000
#> SRR1003772     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003774     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003775     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003776     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003777     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003778     3  0.0000      0.435 0.000 0.000 1.000 0.000
#> SRR1003779     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003780     2  0.0000      0.992 0.000 1.000 0.000 0.000
#> SRR1003781     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003784     1  0.0707      0.970 0.980 0.000 0.020 0.000
#> SRR1003785     1  0.4356      0.531 0.708 0.000 0.292 0.000
#> SRR1003786     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003783     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003787     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003788     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003789     2  0.0469      0.981 0.000 0.988 0.000 0.012
#> SRR1003790     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003791     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003792     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003793     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003794     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003795     1  0.0592      0.974 0.984 0.000 0.016 0.000
#> SRR1003796     3  0.0000      0.435 0.000 0.000 1.000 0.000
#> SRR1003797     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003798     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003799     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003800     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003801     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003802     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003803     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003804     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003805     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003806     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003807     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003809     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003808     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003810     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003811     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003812     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003813     1  0.4193      0.584 0.732 0.000 0.268 0.000
#> SRR1003814     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003815     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003816     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003817     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003818     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003819     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003820     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003821     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003822     1  0.0707      0.970 0.980 0.000 0.020 0.000
#> SRR1003824     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003823     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003825     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003826     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003827     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003828     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003829     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003830     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003831     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003832     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003833     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003834     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003836     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003835     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003838     1  0.2973      0.812 0.856 0.000 0.144 0.000
#> SRR1003837     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003839     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003840     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003841     2  0.2011      0.909 0.000 0.920 0.000 0.080
#> SRR1003842     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003844     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003845     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003846     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003847     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003848     1  0.0469      0.978 0.988 0.000 0.012 0.000
#> SRR1003849     3  0.4877      0.112 0.408 0.000 0.592 0.000
#> SRR1003850     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003851     1  0.1389      0.939 0.952 0.000 0.048 0.000
#> SRR1003852     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003853     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003854     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003843     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003855     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003856     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003857     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003858     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003859     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003860     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003861     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003862     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003863     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003864     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003865     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003866     1  0.0000      0.990 1.000 0.000 0.000 0.000
#> SRR1003867     1  0.0000      0.990 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1003755     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003756     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003757     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003758     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003759     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003760     5  0.1121      1.000 0.000 0.044 0.000 0.000 0.956
#> SRR1003761     5  0.1121      1.000 0.000 0.044 0.000 0.000 0.956
#> SRR1003762     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> SRR1003763     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> SRR1003764     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> SRR1003765     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> SRR1003766     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> SRR1003767     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> SRR1003768     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> SRR1003769     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> SRR1003770     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> SRR1003771     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> SRR1003773     3  0.0000      0.480 0.000 0.000 1.000 0.000 0.000
#> SRR1003772     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003774     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003775     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003776     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003777     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003778     3  0.0000      0.480 0.000 0.000 1.000 0.000 0.000
#> SRR1003779     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003780     2  0.0000      0.998 0.000 1.000 0.000 0.000 0.000
#> SRR1003781     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003784     1  0.1117      0.950 0.964 0.000 0.020 0.016 0.000
#> SRR1003785     1  0.4995      0.428 0.656 0.000 0.292 0.048 0.004
#> SRR1003786     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003783     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003787     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003788     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003789     2  0.0404      0.981 0.000 0.988 0.000 0.000 0.012
#> SRR1003790     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003791     1  0.1894      0.904 0.920 0.000 0.000 0.072 0.008
#> SRR1003792     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003793     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003794     1  0.0162      0.978 0.996 0.000 0.000 0.004 0.000
#> SRR1003795     1  0.4925      0.390 0.632 0.000 0.000 0.324 0.044
#> SRR1003796     3  0.0000      0.480 0.000 0.000 1.000 0.000 0.000
#> SRR1003797     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003798     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003799     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003800     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003801     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003802     1  0.0451      0.973 0.988 0.000 0.000 0.008 0.004
#> SRR1003803     1  0.0324      0.976 0.992 0.000 0.000 0.004 0.004
#> SRR1003804     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003805     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003806     1  0.0162      0.978 0.996 0.000 0.000 0.004 0.000
#> SRR1003807     1  0.0771      0.962 0.976 0.000 0.000 0.020 0.004
#> SRR1003809     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003808     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003810     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003811     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003812     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003813     1  0.4268      0.547 0.708 0.000 0.268 0.024 0.000
#> SRR1003814     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003815     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003816     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003817     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003818     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003819     1  0.0290      0.976 0.992 0.000 0.000 0.008 0.000
#> SRR1003820     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003821     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003822     1  0.1117      0.950 0.964 0.000 0.020 0.016 0.000
#> SRR1003824     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003823     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003825     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003826     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003827     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003828     1  0.0324      0.976 0.992 0.000 0.000 0.004 0.004
#> SRR1003829     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003830     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003831     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003832     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003833     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003834     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003836     1  0.0162      0.978 0.996 0.000 0.000 0.000 0.004
#> SRR1003835     1  0.0324      0.976 0.992 0.000 0.000 0.004 0.004
#> SRR1003838     1  0.4002      0.730 0.796 0.000 0.144 0.056 0.004
#> SRR1003837     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003839     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003840     1  0.0510      0.969 0.984 0.000 0.000 0.016 0.000
#> SRR1003841     4  0.3913      0.000 0.000 0.324 0.000 0.676 0.000
#> SRR1003842     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003844     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003845     1  0.0162      0.978 0.996 0.000 0.000 0.000 0.004
#> SRR1003846     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003847     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003848     1  0.0807      0.961 0.976 0.000 0.012 0.012 0.000
#> SRR1003849     3  0.4958      0.127 0.372 0.000 0.592 0.036 0.000
#> SRR1003850     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003851     1  0.2308      0.895 0.912 0.000 0.048 0.036 0.004
#> SRR1003852     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003853     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003854     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003843     1  0.0865      0.959 0.972 0.000 0.000 0.024 0.004
#> SRR1003855     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003856     1  0.0451      0.973 0.988 0.000 0.000 0.008 0.004
#> SRR1003857     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003858     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003859     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003860     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003861     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003862     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003863     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003864     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003865     1  0.0324      0.976 0.992 0.000 0.000 0.004 0.004
#> SRR1003866     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000
#> SRR1003867     1  0.0000      0.981 1.000 0.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1003755     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003756     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003757     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003758     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003759     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003760     6  0.0000     1.0000 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1003761     6  0.0000     1.0000 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1003762     2  0.0000     0.9989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003763     2  0.0000     0.9989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003764     2  0.0000     0.9989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003765     2  0.0000     0.9989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003766     2  0.0000     0.9989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003767     2  0.0000     0.9989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003768     2  0.0000     0.9989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003769     2  0.0000     0.9989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003770     2  0.0000     0.9989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003771     2  0.0000     0.9989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003773     3  0.0260     0.4382 0.000 0.000 0.992 0.000 0.008 0.000
#> SRR1003772     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003774     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003775     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003776     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003777     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003778     3  0.0260     0.4382 0.000 0.000 0.992 0.000 0.008 0.000
#> SRR1003779     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003780     2  0.0000     0.9989 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003781     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003784     1  0.1176     0.9455 0.956 0.000 0.020 0.024 0.000 0.000
#> SRR1003785     1  0.4764     0.3606 0.628 0.000 0.292 0.080 0.000 0.000
#> SRR1003786     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003783     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003787     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003788     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003789     2  0.0363     0.9873 0.000 0.988 0.000 0.000 0.000 0.012
#> SRR1003790     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003791     1  0.1863     0.8805 0.896 0.000 0.000 0.104 0.000 0.000
#> SRR1003792     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003793     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003794     1  0.0146     0.9796 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1003795     4  0.0000     0.0000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1003796     3  0.0000     0.4356 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1003797     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003798     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003799     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003800     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003801     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003802     1  0.0713     0.9616 0.972 0.000 0.000 0.028 0.000 0.000
#> SRR1003803     1  0.0363     0.9743 0.988 0.000 0.000 0.012 0.000 0.000
#> SRR1003804     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003805     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003806     1  0.0146     0.9796 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1003807     1  0.0937     0.9506 0.960 0.000 0.000 0.040 0.000 0.000
#> SRR1003809     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003808     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003810     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003811     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003812     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003813     1  0.4045     0.5274 0.696 0.000 0.268 0.036 0.000 0.000
#> SRR1003814     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003815     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003816     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003817     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003818     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003819     1  0.0458     0.9710 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1003820     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003821     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003822     1  0.1176     0.9455 0.956 0.000 0.020 0.024 0.000 0.000
#> SRR1003824     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003823     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003825     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003826     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003827     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003828     1  0.0547     0.9682 0.980 0.000 0.000 0.020 0.000 0.000
#> SRR1003829     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003830     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003831     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003832     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003833     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003834     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003836     1  0.0146     0.9796 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1003835     1  0.0363     0.9743 0.988 0.000 0.000 0.012 0.000 0.000
#> SRR1003838     1  0.3977     0.6747 0.760 0.000 0.144 0.096 0.000 0.000
#> SRR1003837     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003839     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003840     1  0.0603     0.9671 0.980 0.000 0.000 0.016 0.004 0.000
#> SRR1003841     5  0.0363     0.0000 0.000 0.012 0.000 0.000 0.988 0.000
#> SRR1003842     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003844     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003845     1  0.0547     0.9684 0.980 0.000 0.000 0.020 0.000 0.000
#> SRR1003846     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003847     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003848     1  0.0820     0.9607 0.972 0.000 0.012 0.016 0.000 0.000
#> SRR1003849     3  0.4684     0.0838 0.352 0.000 0.592 0.056 0.000 0.000
#> SRR1003850     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003851     1  0.2499     0.8606 0.880 0.000 0.048 0.072 0.000 0.000
#> SRR1003852     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003853     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003854     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003843     1  0.1075     0.9428 0.952 0.000 0.000 0.048 0.000 0.000
#> SRR1003855     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003856     1  0.0713     0.9617 0.972 0.000 0.000 0.028 0.000 0.000
#> SRR1003857     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003858     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003859     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003860     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003861     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003862     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003863     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003864     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003865     1  0.0363     0.9744 0.988 0.000 0.000 0.012 0.000 0.000
#> SRR1003866     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003867     1  0.0000     0.9821 1.000 0.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 9166 rows and 112 columns.
#>   Top rows (917, 1834, 2750, 3666, 4583) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       0.999         0.2345 0.766   0.766
#> 3 3 0.988           0.974       0.984         0.5321 0.869   0.829
#> 4 4 0.565           0.522       0.778         0.4734 0.815   0.709
#> 5 5 0.509           0.745       0.848         0.1796 0.798   0.595
#> 6 6 0.610           0.669       0.826         0.0936 0.907   0.749

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1003755     1  0.0376      0.996 0.996 0.004
#> SRR1003756     1  0.0376      0.996 0.996 0.004
#> SRR1003757     1  0.0376      0.996 0.996 0.004
#> SRR1003758     1  0.0376      0.996 0.996 0.004
#> SRR1003759     1  0.0000      1.000 1.000 0.000
#> SRR1003760     2  0.0376      1.000 0.004 0.996
#> SRR1003761     2  0.0376      1.000 0.004 0.996
#> SRR1003762     2  0.0376      1.000 0.004 0.996
#> SRR1003763     2  0.0376      1.000 0.004 0.996
#> SRR1003764     2  0.0376      1.000 0.004 0.996
#> SRR1003765     2  0.0376      1.000 0.004 0.996
#> SRR1003766     2  0.0376      1.000 0.004 0.996
#> SRR1003767     2  0.0376      1.000 0.004 0.996
#> SRR1003768     2  0.0376      1.000 0.004 0.996
#> SRR1003769     2  0.0376      1.000 0.004 0.996
#> SRR1003770     2  0.0376      1.000 0.004 0.996
#> SRR1003771     2  0.0376      1.000 0.004 0.996
#> SRR1003773     1  0.0000      1.000 1.000 0.000
#> SRR1003772     1  0.0000      1.000 1.000 0.000
#> SRR1003774     1  0.0000      1.000 1.000 0.000
#> SRR1003775     1  0.0000      1.000 1.000 0.000
#> SRR1003776     1  0.0000      1.000 1.000 0.000
#> SRR1003777     1  0.0000      1.000 1.000 0.000
#> SRR1003778     1  0.0938      0.988 0.988 0.012
#> SRR1003779     1  0.0000      1.000 1.000 0.000
#> SRR1003780     2  0.0376      1.000 0.004 0.996
#> SRR1003781     1  0.0000      1.000 1.000 0.000
#> SRR1003784     1  0.0000      1.000 1.000 0.000
#> SRR1003785     1  0.0000      1.000 1.000 0.000
#> SRR1003786     1  0.0000      1.000 1.000 0.000
#> SRR1003783     1  0.0000      1.000 1.000 0.000
#> SRR1003787     1  0.0000      1.000 1.000 0.000
#> SRR1003788     1  0.0000      1.000 1.000 0.000
#> SRR1003789     2  0.0376      1.000 0.004 0.996
#> SRR1003790     1  0.0000      1.000 1.000 0.000
#> SRR1003791     1  0.0000      1.000 1.000 0.000
#> SRR1003792     1  0.0000      1.000 1.000 0.000
#> SRR1003793     1  0.0000      1.000 1.000 0.000
#> SRR1003794     1  0.0000      1.000 1.000 0.000
#> SRR1003795     1  0.0000      1.000 1.000 0.000
#> SRR1003796     1  0.0000      1.000 1.000 0.000
#> SRR1003797     1  0.0000      1.000 1.000 0.000
#> SRR1003798     1  0.0000      1.000 1.000 0.000
#> SRR1003799     1  0.0000      1.000 1.000 0.000
#> SRR1003800     1  0.0000      1.000 1.000 0.000
#> SRR1003801     1  0.0000      1.000 1.000 0.000
#> SRR1003802     1  0.0000      1.000 1.000 0.000
#> SRR1003803     1  0.0000      1.000 1.000 0.000
#> SRR1003804     1  0.0000      1.000 1.000 0.000
#> SRR1003805     1  0.0000      1.000 1.000 0.000
#> SRR1003806     1  0.0000      1.000 1.000 0.000
#> SRR1003807     1  0.0000      1.000 1.000 0.000
#> SRR1003809     1  0.0000      1.000 1.000 0.000
#> SRR1003808     1  0.0000      1.000 1.000 0.000
#> SRR1003810     1  0.0000      1.000 1.000 0.000
#> SRR1003811     1  0.0000      1.000 1.000 0.000
#> SRR1003812     1  0.0000      1.000 1.000 0.000
#> SRR1003813     1  0.0000      1.000 1.000 0.000
#> SRR1003814     1  0.0000      1.000 1.000 0.000
#> SRR1003815     1  0.0000      1.000 1.000 0.000
#> SRR1003816     1  0.0000      1.000 1.000 0.000
#> SRR1003817     1  0.0000      1.000 1.000 0.000
#> SRR1003818     1  0.0000      1.000 1.000 0.000
#> SRR1003819     1  0.0000      1.000 1.000 0.000
#> SRR1003820     1  0.0000      1.000 1.000 0.000
#> SRR1003821     1  0.0000      1.000 1.000 0.000
#> SRR1003822     1  0.0000      1.000 1.000 0.000
#> SRR1003824     1  0.0000      1.000 1.000 0.000
#> SRR1003823     1  0.0000      1.000 1.000 0.000
#> SRR1003825     1  0.0000      1.000 1.000 0.000
#> SRR1003826     1  0.0000      1.000 1.000 0.000
#> SRR1003827     1  0.0000      1.000 1.000 0.000
#> SRR1003828     1  0.0000      1.000 1.000 0.000
#> SRR1003829     1  0.0000      1.000 1.000 0.000
#> SRR1003830     1  0.0000      1.000 1.000 0.000
#> SRR1003831     1  0.0000      1.000 1.000 0.000
#> SRR1003832     1  0.0000      1.000 1.000 0.000
#> SRR1003833     1  0.0000      1.000 1.000 0.000
#> SRR1003834     1  0.0000      1.000 1.000 0.000
#> SRR1003836     1  0.0000      1.000 1.000 0.000
#> SRR1003835     1  0.0000      1.000 1.000 0.000
#> SRR1003838     1  0.0000      1.000 1.000 0.000
#> SRR1003837     1  0.0000      1.000 1.000 0.000
#> SRR1003839     1  0.0000      1.000 1.000 0.000
#> SRR1003840     1  0.0000      1.000 1.000 0.000
#> SRR1003841     2  0.0376      1.000 0.004 0.996
#> SRR1003842     1  0.0000      1.000 1.000 0.000
#> SRR1003844     1  0.0000      1.000 1.000 0.000
#> SRR1003845     1  0.0000      1.000 1.000 0.000
#> SRR1003846     1  0.0000      1.000 1.000 0.000
#> SRR1003847     1  0.0000      1.000 1.000 0.000
#> SRR1003848     1  0.0000      1.000 1.000 0.000
#> SRR1003849     1  0.0000      1.000 1.000 0.000
#> SRR1003850     1  0.0000      1.000 1.000 0.000
#> SRR1003851     1  0.0000      1.000 1.000 0.000
#> SRR1003852     1  0.0000      1.000 1.000 0.000
#> SRR1003853     1  0.0000      1.000 1.000 0.000
#> SRR1003854     1  0.0000      1.000 1.000 0.000
#> SRR1003843     1  0.0000      1.000 1.000 0.000
#> SRR1003855     1  0.0000      1.000 1.000 0.000
#> SRR1003856     1  0.0000      1.000 1.000 0.000
#> SRR1003857     1  0.0000      1.000 1.000 0.000
#> SRR1003858     1  0.0000      1.000 1.000 0.000
#> SRR1003859     1  0.0000      1.000 1.000 0.000
#> SRR1003860     1  0.0000      1.000 1.000 0.000
#> SRR1003861     1  0.0000      1.000 1.000 0.000
#> SRR1003862     1  0.0000      1.000 1.000 0.000
#> SRR1003863     1  0.0000      1.000 1.000 0.000
#> SRR1003864     1  0.0000      1.000 1.000 0.000
#> SRR1003865     1  0.0000      1.000 1.000 0.000
#> SRR1003866     1  0.0000      1.000 1.000 0.000
#> SRR1003867     1  0.0000      1.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1003755     1  0.1163      0.969 0.972 0.000 0.028
#> SRR1003756     1  0.1163      0.969 0.972 0.000 0.028
#> SRR1003757     1  0.1163      0.969 0.972 0.000 0.028
#> SRR1003758     1  0.1163      0.969 0.972 0.000 0.028
#> SRR1003759     1  0.0237      0.990 0.996 0.000 0.004
#> SRR1003760     2  0.3340      0.917 0.000 0.880 0.120
#> SRR1003761     3  0.1529      0.803 0.000 0.040 0.960
#> SRR1003762     2  0.1860      0.958 0.000 0.948 0.052
#> SRR1003763     2  0.3340      0.917 0.000 0.880 0.120
#> SRR1003764     2  0.2261      0.953 0.000 0.932 0.068
#> SRR1003765     2  0.0000      0.968 0.000 1.000 0.000
#> SRR1003766     2  0.0000      0.968 0.000 1.000 0.000
#> SRR1003767     2  0.0000      0.968 0.000 1.000 0.000
#> SRR1003768     2  0.0000      0.968 0.000 1.000 0.000
#> SRR1003769     2  0.0000      0.968 0.000 1.000 0.000
#> SRR1003770     2  0.0000      0.968 0.000 1.000 0.000
#> SRR1003771     2  0.0000      0.968 0.000 1.000 0.000
#> SRR1003773     3  0.1163      0.870 0.028 0.000 0.972
#> SRR1003772     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003774     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003775     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003776     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003777     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003778     3  0.1163      0.870 0.028 0.000 0.972
#> SRR1003779     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003780     2  0.0000      0.968 0.000 1.000 0.000
#> SRR1003781     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003784     1  0.2165      0.933 0.936 0.000 0.064
#> SRR1003785     3  0.2878      0.907 0.096 0.000 0.904
#> SRR1003786     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003783     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003787     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003788     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003789     2  0.2261      0.953 0.000 0.932 0.068
#> SRR1003790     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003791     1  0.1643      0.955 0.956 0.000 0.044
#> SRR1003792     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003793     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003794     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003795     3  0.2878      0.907 0.096 0.000 0.904
#> SRR1003796     3  0.1163      0.870 0.028 0.000 0.972
#> SRR1003797     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003798     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003799     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003800     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003801     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003802     1  0.1031      0.974 0.976 0.000 0.024
#> SRR1003803     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003804     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003805     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003806     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003807     1  0.1031      0.974 0.976 0.000 0.024
#> SRR1003809     1  0.0237      0.991 0.996 0.000 0.004
#> SRR1003808     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003810     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003811     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003812     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003813     3  0.3816      0.833 0.148 0.000 0.852
#> SRR1003814     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003815     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003816     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003817     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003818     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003819     1  0.1289      0.967 0.968 0.000 0.032
#> SRR1003820     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003821     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003822     1  0.2066      0.938 0.940 0.000 0.060
#> SRR1003824     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003823     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003825     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003826     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003827     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003828     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003829     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003830     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003831     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003832     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003833     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003834     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003836     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003835     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003838     3  0.2878      0.907 0.096 0.000 0.904
#> SRR1003837     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003839     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003840     1  0.0747      0.981 0.984 0.000 0.016
#> SRR1003841     2  0.1964      0.957 0.000 0.944 0.056
#> SRR1003842     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003844     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003845     1  0.1753      0.951 0.952 0.000 0.048
#> SRR1003846     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003847     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003848     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003849     3  0.2878      0.907 0.096 0.000 0.904
#> SRR1003850     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003851     3  0.3619      0.855 0.136 0.000 0.864
#> SRR1003852     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003853     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003854     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003843     1  0.1860      0.947 0.948 0.000 0.052
#> SRR1003855     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003856     1  0.1643      0.955 0.956 0.000 0.044
#> SRR1003857     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003858     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003859     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003860     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003861     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003862     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003863     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003864     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003865     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003866     1  0.0000      0.994 1.000 0.000 0.000
#> SRR1003867     1  0.0000      0.994 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1003755     1  0.1940     0.6538 0.924 0.000 0.000 0.076
#> SRR1003756     1  0.1940     0.6538 0.924 0.000 0.000 0.076
#> SRR1003757     1  0.1940     0.6538 0.924 0.000 0.000 0.076
#> SRR1003758     1  0.1940     0.6538 0.924 0.000 0.000 0.076
#> SRR1003759     4  0.4985     0.8261 0.468 0.000 0.000 0.532
#> SRR1003760     2  0.6176     0.7656 0.000 0.572 0.060 0.368
#> SRR1003761     3  0.5039     0.3907 0.000 0.004 0.592 0.404
#> SRR1003762     2  0.5055     0.7905 0.000 0.624 0.008 0.368
#> SRR1003763     2  0.6110     0.7684 0.000 0.576 0.056 0.368
#> SRR1003764     2  0.5742     0.7806 0.000 0.596 0.036 0.368
#> SRR1003765     2  0.0000     0.8019 0.000 1.000 0.000 0.000
#> SRR1003766     2  0.0188     0.8005 0.000 0.996 0.000 0.004
#> SRR1003767     2  0.0000     0.8019 0.000 1.000 0.000 0.000
#> SRR1003768     2  0.0188     0.8005 0.000 0.996 0.000 0.004
#> SRR1003769     2  0.0188     0.8005 0.000 0.996 0.000 0.004
#> SRR1003770     2  0.0000     0.8019 0.000 1.000 0.000 0.000
#> SRR1003771     2  0.0000     0.8019 0.000 1.000 0.000 0.000
#> SRR1003773     3  0.0000     0.8210 0.000 0.000 1.000 0.000
#> SRR1003772     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003774     1  0.4916    -0.5301 0.576 0.000 0.000 0.424
#> SRR1003775     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003776     1  0.4605    -0.1372 0.664 0.000 0.000 0.336
#> SRR1003777     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003778     3  0.0000     0.8210 0.000 0.000 1.000 0.000
#> SRR1003779     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003780     2  0.4746     0.7917 0.000 0.632 0.000 0.368
#> SRR1003781     1  0.3266     0.5117 0.832 0.000 0.000 0.168
#> SRR1003784     4  0.6949     0.7899 0.348 0.000 0.124 0.528
#> SRR1003785     3  0.1890     0.8340 0.008 0.000 0.936 0.056
#> SRR1003786     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003783     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003787     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003788     4  0.4996     0.8002 0.484 0.000 0.000 0.516
#> SRR1003789     2  0.5821     0.7787 0.000 0.592 0.040 0.368
#> SRR1003790     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003791     4  0.5915     0.8466 0.400 0.000 0.040 0.560
#> SRR1003792     1  0.1302     0.7017 0.956 0.000 0.000 0.044
#> SRR1003793     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003794     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003795     3  0.2124     0.8299 0.008 0.000 0.924 0.068
#> SRR1003796     3  0.0000     0.8210 0.000 0.000 1.000 0.000
#> SRR1003797     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003798     1  0.0817     0.7189 0.976 0.000 0.000 0.024
#> SRR1003799     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003800     1  0.2469     0.6331 0.892 0.000 0.000 0.108
#> SRR1003801     1  0.5000    -0.7673 0.504 0.000 0.000 0.496
#> SRR1003802     4  0.6506     0.7843 0.460 0.000 0.072 0.468
#> SRR1003803     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003804     1  0.0707     0.7243 0.980 0.000 0.000 0.020
#> SRR1003805     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003806     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003807     1  0.5928    -0.6953 0.508 0.000 0.036 0.456
#> SRR1003809     4  0.5158     0.8234 0.472 0.000 0.004 0.524
#> SRR1003808     4  0.5000     0.7671 0.496 0.000 0.000 0.504
#> SRR1003810     1  0.4250     0.1799 0.724 0.000 0.000 0.276
#> SRR1003811     1  0.4916    -0.5236 0.576 0.000 0.000 0.424
#> SRR1003812     1  0.0188     0.7328 0.996 0.000 0.000 0.004
#> SRR1003813     3  0.4516     0.6529 0.012 0.000 0.736 0.252
#> SRR1003814     1  0.4830    -0.3939 0.608 0.000 0.000 0.392
#> SRR1003815     1  0.2216     0.6405 0.908 0.000 0.000 0.092
#> SRR1003816     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003817     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003818     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003819     4  0.5881     0.8525 0.420 0.000 0.036 0.544
#> SRR1003820     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003821     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003822     4  0.6887     0.8030 0.356 0.000 0.116 0.528
#> SRR1003824     1  0.3400     0.4994 0.820 0.000 0.000 0.180
#> SRR1003823     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003825     4  0.4996     0.8007 0.484 0.000 0.000 0.516
#> SRR1003826     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003827     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003828     1  0.4761    -0.3379 0.628 0.000 0.000 0.372
#> SRR1003829     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003830     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003831     1  0.4992    -0.7082 0.524 0.000 0.000 0.476
#> SRR1003832     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003833     1  0.4522    -0.0466 0.680 0.000 0.000 0.320
#> SRR1003834     1  0.4992    -0.7077 0.524 0.000 0.000 0.476
#> SRR1003836     4  0.5143     0.8408 0.456 0.000 0.004 0.540
#> SRR1003835     1  0.4866    -0.4936 0.596 0.000 0.000 0.404
#> SRR1003838     3  0.1890     0.8340 0.008 0.000 0.936 0.056
#> SRR1003837     1  0.4804    -0.3594 0.616 0.000 0.000 0.384
#> SRR1003839     1  0.4996    -0.7329 0.516 0.000 0.000 0.484
#> SRR1003840     4  0.5372     0.8474 0.444 0.000 0.012 0.544
#> SRR1003841     2  0.5055     0.7905 0.000 0.624 0.008 0.368
#> SRR1003842     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003844     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003845     4  0.6337     0.8336 0.380 0.000 0.068 0.552
#> SRR1003846     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003847     1  0.4072     0.2549 0.748 0.000 0.000 0.252
#> SRR1003848     4  0.5168     0.7845 0.496 0.000 0.004 0.500
#> SRR1003849     3  0.1356     0.8326 0.008 0.000 0.960 0.032
#> SRR1003850     1  0.3569     0.4519 0.804 0.000 0.000 0.196
#> SRR1003851     3  0.5256     0.5172 0.012 0.000 0.596 0.392
#> SRR1003852     1  0.5000    -0.7630 0.504 0.000 0.000 0.496
#> SRR1003853     1  0.4989    -0.6958 0.528 0.000 0.000 0.472
#> SRR1003854     1  0.3649     0.4220 0.796 0.000 0.000 0.204
#> SRR1003843     4  0.6561     0.7924 0.344 0.000 0.092 0.564
#> SRR1003855     1  0.3837     0.3612 0.776 0.000 0.000 0.224
#> SRR1003856     4  0.6773     0.8153 0.364 0.000 0.104 0.532
#> SRR1003857     1  0.0469     0.7278 0.988 0.000 0.000 0.012
#> SRR1003858     1  0.4843    -0.4161 0.604 0.000 0.000 0.396
#> SRR1003859     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003860     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003861     1  0.4877    -0.4690 0.592 0.000 0.000 0.408
#> SRR1003862     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003863     1  0.0469     0.7255 0.988 0.000 0.000 0.012
#> SRR1003864     1  0.0000     0.7353 1.000 0.000 0.000 0.000
#> SRR1003865     1  0.4967    -0.6566 0.548 0.000 0.000 0.452
#> SRR1003866     1  0.2530     0.6150 0.888 0.000 0.000 0.112
#> SRR1003867     1  0.1792     0.6750 0.932 0.000 0.000 0.068

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1003755     1  0.3202     0.7561 0.860 0.000 0.004 0.056 0.080
#> SRR1003756     1  0.3202     0.7561 0.860 0.000 0.004 0.056 0.080
#> SRR1003757     1  0.3202     0.7561 0.860 0.000 0.004 0.056 0.080
#> SRR1003758     1  0.3202     0.7561 0.860 0.000 0.004 0.056 0.080
#> SRR1003759     5  0.3885     0.7825 0.176 0.000 0.000 0.040 0.784
#> SRR1003760     2  0.1168     0.9238 0.000 0.960 0.008 0.000 0.032
#> SRR1003761     2  0.4790     0.6871 0.000 0.756 0.160 0.040 0.044
#> SRR1003762     2  0.0290     0.9403 0.000 0.992 0.000 0.008 0.000
#> SRR1003763     2  0.0162     0.9417 0.000 0.996 0.004 0.000 0.000
#> SRR1003764     2  0.0000     0.9433 0.000 1.000 0.000 0.000 0.000
#> SRR1003765     4  0.3177     0.9935 0.000 0.208 0.000 0.792 0.000
#> SRR1003766     4  0.3242     0.9922 0.000 0.216 0.000 0.784 0.000
#> SRR1003767     4  0.3143     0.9916 0.000 0.204 0.000 0.796 0.000
#> SRR1003768     4  0.3242     0.9922 0.000 0.216 0.000 0.784 0.000
#> SRR1003769     4  0.3242     0.9922 0.000 0.216 0.000 0.784 0.000
#> SRR1003770     4  0.3177     0.9935 0.000 0.208 0.000 0.792 0.000
#> SRR1003771     4  0.3143     0.9916 0.000 0.204 0.000 0.796 0.000
#> SRR1003773     3  0.0579     0.8267 0.000 0.008 0.984 0.000 0.008
#> SRR1003772     1  0.0162     0.8771 0.996 0.000 0.000 0.004 0.000
#> SRR1003774     5  0.4201     0.5701 0.408 0.000 0.000 0.000 0.592
#> SRR1003775     1  0.0162     0.8771 0.996 0.000 0.000 0.004 0.000
#> SRR1003776     1  0.4450    -0.3035 0.508 0.000 0.000 0.004 0.488
#> SRR1003777     1  0.0162     0.8771 0.996 0.000 0.000 0.004 0.000
#> SRR1003778     3  0.0579     0.8267 0.000 0.008 0.984 0.000 0.008
#> SRR1003779     1  0.0324     0.8755 0.992 0.000 0.000 0.004 0.004
#> SRR1003780     2  0.0404     0.9374 0.000 0.988 0.000 0.012 0.000
#> SRR1003781     1  0.4084     0.2936 0.668 0.000 0.000 0.004 0.328
#> SRR1003784     5  0.3916     0.7389 0.116 0.000 0.012 0.056 0.816
#> SRR1003785     3  0.3551     0.8283 0.000 0.000 0.820 0.044 0.136
#> SRR1003786     1  0.0162     0.8771 0.996 0.000 0.000 0.004 0.000
#> SRR1003783     1  0.0162     0.8771 0.996 0.000 0.000 0.004 0.000
#> SRR1003787     1  0.0324     0.8762 0.992 0.000 0.000 0.004 0.004
#> SRR1003788     5  0.2852     0.7855 0.172 0.000 0.000 0.000 0.828
#> SRR1003789     2  0.0000     0.9433 0.000 1.000 0.000 0.000 0.000
#> SRR1003790     1  0.0000     0.8773 1.000 0.000 0.000 0.000 0.000
#> SRR1003791     5  0.4589     0.6953 0.104 0.000 0.008 0.124 0.764
#> SRR1003792     1  0.2179     0.7723 0.888 0.000 0.000 0.000 0.112
#> SRR1003793     1  0.0000     0.8773 1.000 0.000 0.000 0.000 0.000
#> SRR1003794     1  0.0000     0.8773 1.000 0.000 0.000 0.000 0.000
#> SRR1003795     3  0.4487     0.8009 0.000 0.000 0.756 0.104 0.140
#> SRR1003796     3  0.0579     0.8267 0.000 0.008 0.984 0.000 0.008
#> SRR1003797     1  0.0162     0.8771 0.996 0.000 0.000 0.004 0.000
#> SRR1003798     1  0.1484     0.8369 0.944 0.000 0.000 0.008 0.048
#> SRR1003799     1  0.0000     0.8773 1.000 0.000 0.000 0.000 0.000
#> SRR1003800     1  0.2873     0.7462 0.860 0.000 0.000 0.020 0.120
#> SRR1003801     5  0.3305     0.7882 0.224 0.000 0.000 0.000 0.776
#> SRR1003802     5  0.4832     0.7214 0.180 0.000 0.008 0.080 0.732
#> SRR1003803     1  0.0000     0.8773 1.000 0.000 0.000 0.000 0.000
#> SRR1003804     1  0.1205     0.8489 0.956 0.000 0.000 0.004 0.040
#> SRR1003805     1  0.0000     0.8773 1.000 0.000 0.000 0.000 0.000
#> SRR1003806     1  0.0000     0.8773 1.000 0.000 0.000 0.000 0.000
#> SRR1003807     5  0.5206     0.6935 0.188 0.000 0.008 0.104 0.700
#> SRR1003809     5  0.3061     0.7699 0.136 0.000 0.000 0.020 0.844
#> SRR1003808     5  0.4228     0.7868 0.216 0.000 0.004 0.032 0.748
#> SRR1003810     1  0.4273    -0.1491 0.552 0.000 0.000 0.000 0.448
#> SRR1003811     5  0.4278     0.4412 0.452 0.000 0.000 0.000 0.548
#> SRR1003812     1  0.0451     0.8739 0.988 0.000 0.000 0.004 0.008
#> SRR1003813     3  0.4511     0.5873 0.000 0.000 0.628 0.016 0.356
#> SRR1003814     5  0.4610     0.5133 0.432 0.000 0.000 0.012 0.556
#> SRR1003815     1  0.2338     0.7740 0.884 0.000 0.000 0.004 0.112
#> SRR1003816     1  0.0162     0.8771 0.996 0.000 0.000 0.004 0.000
#> SRR1003817     1  0.0162     0.8771 0.996 0.000 0.000 0.004 0.000
#> SRR1003818     1  0.0162     0.8771 0.996 0.000 0.000 0.004 0.000
#> SRR1003819     5  0.3064     0.7422 0.108 0.000 0.000 0.036 0.856
#> SRR1003820     1  0.0162     0.8771 0.996 0.000 0.000 0.004 0.000
#> SRR1003821     1  0.0162     0.8771 0.996 0.000 0.000 0.004 0.000
#> SRR1003822     5  0.3916     0.7389 0.116 0.000 0.012 0.056 0.816
#> SRR1003824     1  0.3109     0.6637 0.800 0.000 0.000 0.000 0.200
#> SRR1003823     1  0.0000     0.8773 1.000 0.000 0.000 0.000 0.000
#> SRR1003825     5  0.3278     0.7797 0.156 0.000 0.000 0.020 0.824
#> SRR1003826     1  0.0000     0.8773 1.000 0.000 0.000 0.000 0.000
#> SRR1003827     1  0.0162     0.8760 0.996 0.000 0.000 0.000 0.004
#> SRR1003828     5  0.5304     0.6497 0.352 0.000 0.004 0.052 0.592
#> SRR1003829     1  0.0000     0.8773 1.000 0.000 0.000 0.000 0.000
#> SRR1003830     1  0.0000     0.8773 1.000 0.000 0.000 0.000 0.000
#> SRR1003831     5  0.3796     0.7337 0.300 0.000 0.000 0.000 0.700
#> SRR1003832     1  0.0000     0.8773 1.000 0.000 0.000 0.000 0.000
#> SRR1003833     1  0.4305    -0.3106 0.512 0.000 0.000 0.000 0.488
#> SRR1003834     5  0.3636     0.7594 0.272 0.000 0.000 0.000 0.728
#> SRR1003836     5  0.2516     0.7728 0.140 0.000 0.000 0.000 0.860
#> SRR1003835     5  0.5114     0.5944 0.404 0.000 0.004 0.032 0.560
#> SRR1003838     3  0.4139     0.8161 0.000 0.000 0.784 0.084 0.132
#> SRR1003837     5  0.4249     0.5279 0.432 0.000 0.000 0.000 0.568
#> SRR1003839     5  0.3689     0.7722 0.256 0.000 0.000 0.004 0.740
#> SRR1003840     5  0.3299     0.7402 0.108 0.000 0.004 0.040 0.848
#> SRR1003841     2  0.0324     0.9420 0.000 0.992 0.004 0.004 0.000
#> SRR1003842     1  0.0000     0.8773 1.000 0.000 0.000 0.000 0.000
#> SRR1003844     1  0.0162     0.8771 0.996 0.000 0.000 0.004 0.000
#> SRR1003845     5  0.3248     0.7381 0.104 0.000 0.004 0.040 0.852
#> SRR1003846     1  0.0000     0.8773 1.000 0.000 0.000 0.000 0.000
#> SRR1003847     1  0.4321     0.0139 0.600 0.000 0.000 0.004 0.396
#> SRR1003848     5  0.4389     0.7439 0.184 0.000 0.004 0.056 0.756
#> SRR1003849     3  0.1197     0.8368 0.000 0.000 0.952 0.000 0.048
#> SRR1003850     1  0.4482     0.2041 0.636 0.000 0.000 0.016 0.348
#> SRR1003851     5  0.6037    -0.3326 0.000 0.000 0.392 0.120 0.488
#> SRR1003852     5  0.3961     0.7880 0.184 0.000 0.004 0.032 0.780
#> SRR1003853     5  0.3816     0.7290 0.304 0.000 0.000 0.000 0.696
#> SRR1003854     1  0.3966     0.3099 0.664 0.000 0.000 0.000 0.336
#> SRR1003843     5  0.4633     0.6919 0.104 0.000 0.008 0.128 0.760
#> SRR1003855     1  0.4030     0.2512 0.648 0.000 0.000 0.000 0.352
#> SRR1003856     5  0.3839     0.7275 0.108 0.000 0.004 0.072 0.816
#> SRR1003857     1  0.0510     0.8688 0.984 0.000 0.000 0.000 0.016
#> SRR1003858     5  0.4210     0.5608 0.412 0.000 0.000 0.000 0.588
#> SRR1003859     1  0.0000     0.8773 1.000 0.000 0.000 0.000 0.000
#> SRR1003860     1  0.0000     0.8773 1.000 0.000 0.000 0.000 0.000
#> SRR1003861     5  0.4219     0.5544 0.416 0.000 0.000 0.000 0.584
#> SRR1003862     1  0.0162     0.8771 0.996 0.000 0.000 0.004 0.000
#> SRR1003863     1  0.0771     0.8653 0.976 0.000 0.000 0.004 0.020
#> SRR1003864     1  0.0162     0.8771 0.996 0.000 0.000 0.004 0.000
#> SRR1003865     5  0.5374     0.7462 0.296 0.000 0.008 0.064 0.632
#> SRR1003866     1  0.3550     0.5460 0.760 0.000 0.000 0.004 0.236
#> SRR1003867     1  0.2377     0.7486 0.872 0.000 0.000 0.000 0.128

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1003755     1  0.3231    0.73775 0.800 0.000 0.000 0.180 0.008 0.012
#> SRR1003756     1  0.3231    0.73775 0.800 0.000 0.000 0.180 0.008 0.012
#> SRR1003757     1  0.3231    0.73775 0.800 0.000 0.000 0.180 0.008 0.012
#> SRR1003758     1  0.3231    0.73775 0.800 0.000 0.000 0.180 0.008 0.012
#> SRR1003759     5  0.3364    0.52475 0.068 0.000 0.000 0.088 0.832 0.012
#> SRR1003760     6  0.2421    0.95407 0.000 0.052 0.004 0.044 0.004 0.896
#> SRR1003761     6  0.2065    0.90339 0.000 0.000 0.032 0.052 0.004 0.912
#> SRR1003762     6  0.1204    0.97737 0.000 0.056 0.000 0.000 0.000 0.944
#> SRR1003763     6  0.1204    0.97737 0.000 0.056 0.000 0.000 0.000 0.944
#> SRR1003764     6  0.1204    0.97737 0.000 0.056 0.000 0.000 0.000 0.944
#> SRR1003765     2  0.0146    0.99619 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1003766     2  0.0291    0.99615 0.000 0.992 0.000 0.004 0.000 0.004
#> SRR1003767     2  0.0146    0.99346 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR1003768     2  0.0291    0.99615 0.000 0.992 0.000 0.004 0.000 0.004
#> SRR1003769     2  0.0291    0.99615 0.000 0.992 0.000 0.004 0.000 0.004
#> SRR1003770     2  0.0146    0.99619 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1003771     2  0.0146    0.99346 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR1003773     3  0.0000    0.70533 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1003772     1  0.0665    0.89921 0.980 0.000 0.000 0.008 0.004 0.008
#> SRR1003774     5  0.3489    0.62621 0.288 0.000 0.000 0.000 0.708 0.004
#> SRR1003775     1  0.0508    0.90102 0.984 0.000 0.000 0.012 0.000 0.004
#> SRR1003776     5  0.3804    0.59989 0.336 0.000 0.000 0.008 0.656 0.000
#> SRR1003777     1  0.0665    0.89921 0.980 0.000 0.000 0.008 0.004 0.008
#> SRR1003778     3  0.0000    0.70533 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1003779     1  0.0665    0.89921 0.980 0.000 0.000 0.008 0.004 0.008
#> SRR1003780     6  0.1387    0.97108 0.000 0.068 0.000 0.000 0.000 0.932
#> SRR1003781     1  0.4635   -0.30938 0.488 0.000 0.000 0.024 0.480 0.008
#> SRR1003784     5  0.4489   -0.58449 0.012 0.000 0.000 0.456 0.520 0.012
#> SRR1003785     3  0.5578    0.05597 0.000 0.000 0.452 0.444 0.088 0.016
#> SRR1003786     1  0.0260    0.90083 0.992 0.000 0.000 0.008 0.000 0.000
#> SRR1003783     1  0.0665    0.89921 0.980 0.000 0.000 0.008 0.004 0.008
#> SRR1003787     1  0.1453    0.88097 0.944 0.000 0.000 0.008 0.040 0.008
#> SRR1003788     5  0.2412    0.56763 0.092 0.000 0.000 0.028 0.880 0.000
#> SRR1003789     6  0.1204    0.97737 0.000 0.056 0.000 0.000 0.000 0.944
#> SRR1003790     1  0.0405    0.90015 0.988 0.000 0.000 0.008 0.000 0.004
#> SRR1003791     5  0.4267   -0.43104 0.008 0.000 0.000 0.420 0.564 0.008
#> SRR1003792     1  0.3384    0.60543 0.760 0.000 0.000 0.004 0.228 0.008
#> SRR1003793     1  0.0405    0.90015 0.988 0.000 0.000 0.008 0.000 0.004
#> SRR1003794     1  0.0405    0.90015 0.988 0.000 0.000 0.008 0.000 0.004
#> SRR1003795     4  0.5212   -0.04419 0.000 0.000 0.300 0.604 0.080 0.016
#> SRR1003796     3  0.0000    0.70533 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1003797     1  0.0665    0.89921 0.980 0.000 0.000 0.008 0.004 0.008
#> SRR1003798     1  0.1889    0.85590 0.920 0.000 0.000 0.020 0.056 0.004
#> SRR1003799     1  0.0260    0.90081 0.992 0.000 0.000 0.008 0.000 0.000
#> SRR1003800     1  0.2789    0.79955 0.864 0.000 0.000 0.044 0.088 0.004
#> SRR1003801     5  0.2944    0.61680 0.148 0.000 0.000 0.008 0.832 0.012
#> SRR1003802     4  0.4809    0.66772 0.044 0.000 0.000 0.576 0.372 0.008
#> SRR1003803     1  0.0748    0.89687 0.976 0.000 0.000 0.016 0.004 0.004
#> SRR1003804     1  0.1644    0.86677 0.932 0.000 0.000 0.012 0.052 0.004
#> SRR1003805     1  0.0291    0.90049 0.992 0.000 0.000 0.004 0.000 0.004
#> SRR1003806     1  0.0405    0.90015 0.988 0.000 0.000 0.008 0.000 0.004
#> SRR1003807     4  0.4646    0.66134 0.048 0.000 0.000 0.616 0.332 0.004
#> SRR1003809     5  0.3390    0.34116 0.032 0.000 0.000 0.152 0.808 0.008
#> SRR1003808     5  0.3577    0.54416 0.084 0.000 0.000 0.088 0.816 0.012
#> SRR1003810     5  0.4249    0.48987 0.416 0.000 0.000 0.004 0.568 0.012
#> SRR1003811     5  0.4528    0.54600 0.380 0.000 0.000 0.020 0.588 0.012
#> SRR1003812     1  0.0881    0.89632 0.972 0.000 0.000 0.008 0.012 0.008
#> SRR1003813     3  0.6215   -0.20903 0.000 0.000 0.404 0.376 0.208 0.012
#> SRR1003814     5  0.3935    0.62107 0.288 0.000 0.000 0.012 0.692 0.008
#> SRR1003815     1  0.2699    0.77265 0.856 0.000 0.000 0.012 0.124 0.008
#> SRR1003816     1  0.0665    0.89921 0.980 0.000 0.000 0.008 0.004 0.008
#> SRR1003817     1  0.0260    0.90083 0.992 0.000 0.000 0.008 0.000 0.000
#> SRR1003818     1  0.0665    0.89921 0.980 0.000 0.000 0.008 0.004 0.008
#> SRR1003819     5  0.1841    0.42707 0.008 0.000 0.000 0.064 0.920 0.008
#> SRR1003820     1  0.0551    0.89990 0.984 0.000 0.000 0.008 0.004 0.004
#> SRR1003821     1  0.0520    0.89993 0.984 0.000 0.000 0.008 0.000 0.008
#> SRR1003822     5  0.4491   -0.58899 0.012 0.000 0.000 0.460 0.516 0.012
#> SRR1003824     1  0.3288    0.70038 0.800 0.000 0.000 0.016 0.176 0.008
#> SRR1003823     1  0.0405    0.90015 0.988 0.000 0.000 0.008 0.000 0.004
#> SRR1003825     5  0.3725    0.39148 0.056 0.000 0.000 0.136 0.796 0.012
#> SRR1003826     1  0.0291    0.90112 0.992 0.000 0.000 0.004 0.000 0.004
#> SRR1003827     1  0.0806    0.89486 0.972 0.000 0.000 0.000 0.020 0.008
#> SRR1003828     5  0.5999    0.20656 0.388 0.000 0.000 0.176 0.428 0.008
#> SRR1003829     1  0.0260    0.90109 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR1003830     1  0.0260    0.90081 0.992 0.000 0.000 0.008 0.000 0.000
#> SRR1003831     5  0.2631    0.62822 0.180 0.000 0.000 0.000 0.820 0.000
#> SRR1003832     1  0.0260    0.90081 0.992 0.000 0.000 0.008 0.000 0.000
#> SRR1003833     5  0.3833    0.43711 0.444 0.000 0.000 0.000 0.556 0.000
#> SRR1003834     5  0.2773    0.62308 0.164 0.000 0.000 0.004 0.828 0.004
#> SRR1003836     5  0.1633    0.46519 0.024 0.000 0.000 0.044 0.932 0.000
#> SRR1003835     5  0.5675    0.34450 0.432 0.000 0.000 0.120 0.440 0.008
#> SRR1003838     4  0.5545   -0.17292 0.000 0.000 0.400 0.492 0.096 0.012
#> SRR1003837     5  0.3528    0.62316 0.296 0.000 0.000 0.004 0.700 0.000
#> SRR1003839     5  0.1910    0.59374 0.108 0.000 0.000 0.000 0.892 0.000
#> SRR1003840     5  0.2275    0.40540 0.008 0.000 0.000 0.096 0.888 0.008
#> SRR1003841     6  0.1606    0.97407 0.000 0.056 0.000 0.008 0.004 0.932
#> SRR1003842     1  0.0405    0.90015 0.988 0.000 0.000 0.008 0.000 0.004
#> SRR1003844     1  0.0405    0.90120 0.988 0.000 0.000 0.008 0.000 0.004
#> SRR1003845     5  0.1901    0.42020 0.008 0.000 0.000 0.076 0.912 0.004
#> SRR1003846     1  0.0551    0.89984 0.984 0.000 0.000 0.008 0.004 0.004
#> SRR1003847     1  0.3944    0.00175 0.568 0.000 0.000 0.000 0.428 0.004
#> SRR1003848     4  0.5461    0.57615 0.084 0.000 0.000 0.468 0.436 0.012
#> SRR1003849     3  0.2709    0.64972 0.000 0.000 0.848 0.132 0.020 0.000
#> SRR1003850     1  0.4650    0.48952 0.688 0.000 0.000 0.096 0.212 0.004
#> SRR1003851     4  0.5219    0.55144 0.000 0.000 0.120 0.604 0.272 0.004
#> SRR1003852     5  0.3477    0.51896 0.080 0.000 0.000 0.092 0.820 0.008
#> SRR1003853     5  0.2871    0.63001 0.192 0.000 0.000 0.004 0.804 0.000
#> SRR1003854     5  0.3833    0.43635 0.444 0.000 0.000 0.000 0.556 0.000
#> SRR1003843     4  0.4034    0.65843 0.008 0.000 0.000 0.624 0.364 0.004
#> SRR1003855     5  0.3982    0.39493 0.460 0.000 0.000 0.004 0.536 0.000
#> SRR1003856     4  0.4413    0.58807 0.012 0.000 0.000 0.492 0.488 0.008
#> SRR1003857     1  0.1477    0.87573 0.940 0.000 0.000 0.008 0.048 0.004
#> SRR1003858     5  0.3309    0.62747 0.280 0.000 0.000 0.000 0.720 0.000
#> SRR1003859     1  0.0405    0.90015 0.988 0.000 0.000 0.008 0.000 0.004
#> SRR1003860     1  0.0291    0.90049 0.992 0.000 0.000 0.004 0.000 0.004
#> SRR1003861     5  0.3409    0.62153 0.300 0.000 0.000 0.000 0.700 0.000
#> SRR1003862     1  0.0260    0.90083 0.992 0.000 0.000 0.008 0.000 0.000
#> SRR1003863     1  0.0951    0.89672 0.968 0.000 0.000 0.020 0.008 0.004
#> SRR1003864     1  0.0665    0.89921 0.980 0.000 0.000 0.008 0.004 0.008
#> SRR1003865     5  0.5118    0.47397 0.192 0.000 0.000 0.148 0.652 0.008
#> SRR1003866     1  0.4183    0.14142 0.604 0.000 0.000 0.008 0.380 0.008
#> SRR1003867     1  0.2971    0.73920 0.832 0.000 0.000 0.020 0.144 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 9166 rows and 112 columns.
#>   Top rows (917, 1834, 2750, 3666, 4583) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.979       0.991         0.3750 0.622   0.622
#> 3 3 0.557           0.708       0.866         0.4560 0.854   0.769
#> 4 4 0.412           0.552       0.766         0.1921 0.845   0.700
#> 5 5 0.410           0.443       0.687         0.0990 0.912   0.791
#> 6 6 0.425           0.421       0.630         0.0643 0.932   0.822

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1003755     1   0.000      0.996 1.000 0.000
#> SRR1003756     1   0.000      0.996 1.000 0.000
#> SRR1003757     1   0.000      0.996 1.000 0.000
#> SRR1003758     1   0.000      0.996 1.000 0.000
#> SRR1003759     2   0.925      0.507 0.340 0.660
#> SRR1003760     2   0.000      0.972 0.000 1.000
#> SRR1003761     2   0.000      0.972 0.000 1.000
#> SRR1003762     2   0.000      0.972 0.000 1.000
#> SRR1003763     2   0.000      0.972 0.000 1.000
#> SRR1003764     2   0.000      0.972 0.000 1.000
#> SRR1003765     2   0.000      0.972 0.000 1.000
#> SRR1003766     2   0.000      0.972 0.000 1.000
#> SRR1003767     2   0.000      0.972 0.000 1.000
#> SRR1003768     2   0.000      0.972 0.000 1.000
#> SRR1003769     2   0.000      0.972 0.000 1.000
#> SRR1003770     2   0.000      0.972 0.000 1.000
#> SRR1003771     2   0.000      0.972 0.000 1.000
#> SRR1003773     2   0.000      0.972 0.000 1.000
#> SRR1003772     1   0.000      0.996 1.000 0.000
#> SRR1003774     1   0.000      0.996 1.000 0.000
#> SRR1003775     1   0.000      0.996 1.000 0.000
#> SRR1003776     1   0.000      0.996 1.000 0.000
#> SRR1003777     1   0.000      0.996 1.000 0.000
#> SRR1003778     2   0.000      0.972 0.000 1.000
#> SRR1003779     1   0.000      0.996 1.000 0.000
#> SRR1003780     2   0.000      0.972 0.000 1.000
#> SRR1003781     1   0.000      0.996 1.000 0.000
#> SRR1003784     1   0.000      0.996 1.000 0.000
#> SRR1003785     2   0.000      0.972 0.000 1.000
#> SRR1003786     1   0.000      0.996 1.000 0.000
#> SRR1003783     1   0.000      0.996 1.000 0.000
#> SRR1003787     1   0.000      0.996 1.000 0.000
#> SRR1003788     1   0.000      0.996 1.000 0.000
#> SRR1003789     2   0.000      0.972 0.000 1.000
#> SRR1003790     1   0.000      0.996 1.000 0.000
#> SRR1003791     1   0.662      0.788 0.828 0.172
#> SRR1003792     1   0.000      0.996 1.000 0.000
#> SRR1003793     1   0.000      0.996 1.000 0.000
#> SRR1003794     1   0.000      0.996 1.000 0.000
#> SRR1003795     2   0.000      0.972 0.000 1.000
#> SRR1003796     2   0.000      0.972 0.000 1.000
#> SRR1003797     1   0.000      0.996 1.000 0.000
#> SRR1003798     1   0.000      0.996 1.000 0.000
#> SRR1003799     1   0.000      0.996 1.000 0.000
#> SRR1003800     1   0.000      0.996 1.000 0.000
#> SRR1003801     1   0.000      0.996 1.000 0.000
#> SRR1003802     1   0.000      0.996 1.000 0.000
#> SRR1003803     1   0.000      0.996 1.000 0.000
#> SRR1003804     1   0.000      0.996 1.000 0.000
#> SRR1003805     1   0.000      0.996 1.000 0.000
#> SRR1003806     1   0.000      0.996 1.000 0.000
#> SRR1003807     1   0.000      0.996 1.000 0.000
#> SRR1003809     1   0.000      0.996 1.000 0.000
#> SRR1003808     1   0.000      0.996 1.000 0.000
#> SRR1003810     1   0.000      0.996 1.000 0.000
#> SRR1003811     1   0.000      0.996 1.000 0.000
#> SRR1003812     1   0.000      0.996 1.000 0.000
#> SRR1003813     2   0.163      0.955 0.024 0.976
#> SRR1003814     1   0.000      0.996 1.000 0.000
#> SRR1003815     1   0.000      0.996 1.000 0.000
#> SRR1003816     1   0.000      0.996 1.000 0.000
#> SRR1003817     1   0.000      0.996 1.000 0.000
#> SRR1003818     1   0.000      0.996 1.000 0.000
#> SRR1003819     1   0.595      0.828 0.856 0.144
#> SRR1003820     1   0.000      0.996 1.000 0.000
#> SRR1003821     1   0.000      0.996 1.000 0.000
#> SRR1003822     1   0.000      0.996 1.000 0.000
#> SRR1003824     1   0.000      0.996 1.000 0.000
#> SRR1003823     1   0.000      0.996 1.000 0.000
#> SRR1003825     1   0.000      0.996 1.000 0.000
#> SRR1003826     1   0.000      0.996 1.000 0.000
#> SRR1003827     1   0.000      0.996 1.000 0.000
#> SRR1003828     1   0.000      0.996 1.000 0.000
#> SRR1003829     1   0.000      0.996 1.000 0.000
#> SRR1003830     1   0.000      0.996 1.000 0.000
#> SRR1003831     1   0.000      0.996 1.000 0.000
#> SRR1003832     1   0.000      0.996 1.000 0.000
#> SRR1003833     1   0.000      0.996 1.000 0.000
#> SRR1003834     1   0.000      0.996 1.000 0.000
#> SRR1003836     1   0.000      0.996 1.000 0.000
#> SRR1003835     1   0.000      0.996 1.000 0.000
#> SRR1003838     2   0.000      0.972 0.000 1.000
#> SRR1003837     1   0.000      0.996 1.000 0.000
#> SRR1003839     1   0.000      0.996 1.000 0.000
#> SRR1003840     2   0.653      0.806 0.168 0.832
#> SRR1003841     2   0.000      0.972 0.000 1.000
#> SRR1003842     1   0.000      0.996 1.000 0.000
#> SRR1003844     1   0.000      0.996 1.000 0.000
#> SRR1003845     2   0.260      0.938 0.044 0.956
#> SRR1003846     1   0.000      0.996 1.000 0.000
#> SRR1003847     1   0.000      0.996 1.000 0.000
#> SRR1003848     1   0.000      0.996 1.000 0.000
#> SRR1003849     2   0.000      0.972 0.000 1.000
#> SRR1003850     1   0.000      0.996 1.000 0.000
#> SRR1003851     2   0.000      0.972 0.000 1.000
#> SRR1003852     1   0.000      0.996 1.000 0.000
#> SRR1003853     1   0.000      0.996 1.000 0.000
#> SRR1003854     1   0.000      0.996 1.000 0.000
#> SRR1003843     2   0.662      0.801 0.172 0.828
#> SRR1003855     1   0.000      0.996 1.000 0.000
#> SRR1003856     1   0.000      0.996 1.000 0.000
#> SRR1003857     1   0.000      0.996 1.000 0.000
#> SRR1003858     1   0.000      0.996 1.000 0.000
#> SRR1003859     1   0.000      0.996 1.000 0.000
#> SRR1003860     1   0.000      0.996 1.000 0.000
#> SRR1003861     1   0.000      0.996 1.000 0.000
#> SRR1003862     1   0.000      0.996 1.000 0.000
#> SRR1003863     1   0.000      0.996 1.000 0.000
#> SRR1003864     1   0.000      0.996 1.000 0.000
#> SRR1003865     1   0.000      0.996 1.000 0.000
#> SRR1003866     1   0.000      0.996 1.000 0.000
#> SRR1003867     1   0.000      0.996 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1003755     1  0.0424     0.8626 0.992 0.000 0.008
#> SRR1003756     1  0.0424     0.8626 0.992 0.000 0.008
#> SRR1003757     1  0.0424     0.8626 0.992 0.000 0.008
#> SRR1003758     1  0.0424     0.8626 0.992 0.000 0.008
#> SRR1003759     2  0.9888    -0.3105 0.272 0.400 0.328
#> SRR1003760     2  0.0000     0.8795 0.000 1.000 0.000
#> SRR1003761     2  0.0000     0.8795 0.000 1.000 0.000
#> SRR1003762     2  0.0000     0.8795 0.000 1.000 0.000
#> SRR1003763     2  0.0000     0.8795 0.000 1.000 0.000
#> SRR1003764     2  0.0000     0.8795 0.000 1.000 0.000
#> SRR1003765     2  0.0000     0.8795 0.000 1.000 0.000
#> SRR1003766     2  0.0000     0.8795 0.000 1.000 0.000
#> SRR1003767     2  0.0000     0.8795 0.000 1.000 0.000
#> SRR1003768     2  0.0000     0.8795 0.000 1.000 0.000
#> SRR1003769     2  0.0000     0.8795 0.000 1.000 0.000
#> SRR1003770     2  0.0000     0.8795 0.000 1.000 0.000
#> SRR1003771     2  0.0000     0.8795 0.000 1.000 0.000
#> SRR1003773     2  0.4178     0.7753 0.000 0.828 0.172
#> SRR1003772     1  0.0237     0.8621 0.996 0.000 0.004
#> SRR1003774     1  0.5291     0.6507 0.732 0.000 0.268
#> SRR1003775     1  0.0000     0.8619 1.000 0.000 0.000
#> SRR1003776     1  0.5058     0.6771 0.756 0.000 0.244
#> SRR1003777     1  0.0424     0.8622 0.992 0.000 0.008
#> SRR1003778     2  0.1860     0.8534 0.000 0.948 0.052
#> SRR1003779     1  0.1289     0.8584 0.968 0.000 0.032
#> SRR1003780     2  0.0000     0.8795 0.000 1.000 0.000
#> SRR1003781     1  0.2537     0.8406 0.920 0.000 0.080
#> SRR1003784     3  0.2537     0.6033 0.080 0.000 0.920
#> SRR1003785     2  0.6026     0.5470 0.000 0.624 0.376
#> SRR1003786     1  0.0000     0.8619 1.000 0.000 0.000
#> SRR1003783     1  0.0237     0.8621 0.996 0.000 0.004
#> SRR1003787     1  0.1860     0.8515 0.948 0.000 0.052
#> SRR1003788     3  0.6192     0.2456 0.420 0.000 0.580
#> SRR1003789     2  0.0000     0.8795 0.000 1.000 0.000
#> SRR1003790     1  0.0000     0.8619 1.000 0.000 0.000
#> SRR1003791     3  0.6046     0.6152 0.136 0.080 0.784
#> SRR1003792     1  0.1753     0.8544 0.952 0.000 0.048
#> SRR1003793     1  0.0237     0.8610 0.996 0.000 0.004
#> SRR1003794     1  0.0000     0.8619 1.000 0.000 0.000
#> SRR1003795     2  0.5948     0.5687 0.000 0.640 0.360
#> SRR1003796     2  0.4178     0.7753 0.000 0.828 0.172
#> SRR1003797     1  0.1031     0.8604 0.976 0.000 0.024
#> SRR1003798     1  0.2165     0.8383 0.936 0.000 0.064
#> SRR1003799     1  0.0000     0.8619 1.000 0.000 0.000
#> SRR1003800     1  0.3192     0.8120 0.888 0.000 0.112
#> SRR1003801     1  0.6079     0.3863 0.612 0.000 0.388
#> SRR1003802     3  0.6045     0.4827 0.380 0.000 0.620
#> SRR1003803     1  0.0592     0.8599 0.988 0.000 0.012
#> SRR1003804     1  0.2356     0.8393 0.928 0.000 0.072
#> SRR1003805     1  0.0000     0.8619 1.000 0.000 0.000
#> SRR1003806     1  0.0424     0.8606 0.992 0.000 0.008
#> SRR1003807     1  0.6291    -0.1495 0.532 0.000 0.468
#> SRR1003809     3  0.6252     0.2710 0.444 0.000 0.556
#> SRR1003808     1  0.5938     0.6530 0.732 0.020 0.248
#> SRR1003810     1  0.4452     0.7507 0.808 0.000 0.192
#> SRR1003811     1  0.5882     0.4954 0.652 0.000 0.348
#> SRR1003812     1  0.1964     0.8484 0.944 0.000 0.056
#> SRR1003813     3  0.3349     0.4942 0.004 0.108 0.888
#> SRR1003814     1  0.5138     0.6772 0.748 0.000 0.252
#> SRR1003815     1  0.2878     0.8271 0.904 0.000 0.096
#> SRR1003816     1  0.0424     0.8622 0.992 0.000 0.008
#> SRR1003817     1  0.0000     0.8619 1.000 0.000 0.000
#> SRR1003818     1  0.0237     0.8621 0.996 0.000 0.004
#> SRR1003819     3  0.6933     0.6050 0.208 0.076 0.716
#> SRR1003820     1  0.0892     0.8605 0.980 0.000 0.020
#> SRR1003821     1  0.0237     0.8621 0.996 0.000 0.004
#> SRR1003822     3  0.4346     0.6288 0.184 0.000 0.816
#> SRR1003824     1  0.3412     0.8098 0.876 0.000 0.124
#> SRR1003823     1  0.0000     0.8619 1.000 0.000 0.000
#> SRR1003825     3  0.6305     0.1445 0.484 0.000 0.516
#> SRR1003826     1  0.0237     0.8622 0.996 0.000 0.004
#> SRR1003827     1  0.1753     0.8539 0.952 0.000 0.048
#> SRR1003828     1  0.5291     0.5641 0.732 0.000 0.268
#> SRR1003829     1  0.0747     0.8613 0.984 0.000 0.016
#> SRR1003830     1  0.0237     0.8621 0.996 0.000 0.004
#> SRR1003831     1  0.6062     0.4171 0.616 0.000 0.384
#> SRR1003832     1  0.0000     0.8619 1.000 0.000 0.000
#> SRR1003833     1  0.4235     0.7691 0.824 0.000 0.176
#> SRR1003834     1  0.6154     0.3549 0.592 0.000 0.408
#> SRR1003836     3  0.6079     0.3678 0.388 0.000 0.612
#> SRR1003835     1  0.3482     0.7894 0.872 0.000 0.128
#> SRR1003838     2  0.5706     0.6263 0.000 0.680 0.320
#> SRR1003837     1  0.4399     0.7547 0.812 0.000 0.188
#> SRR1003839     1  0.6295     0.1361 0.528 0.000 0.472
#> SRR1003840     3  0.8005     0.4982 0.128 0.224 0.648
#> SRR1003841     2  0.0000     0.8795 0.000 1.000 0.000
#> SRR1003842     1  0.0000     0.8619 1.000 0.000 0.000
#> SRR1003844     1  0.0000     0.8619 1.000 0.000 0.000
#> SRR1003845     3  0.5517     0.3409 0.004 0.268 0.728
#> SRR1003846     1  0.0000     0.8619 1.000 0.000 0.000
#> SRR1003847     1  0.2878     0.8247 0.904 0.000 0.096
#> SRR1003848     1  0.6280    -0.0954 0.540 0.000 0.460
#> SRR1003849     2  0.6045     0.5394 0.000 0.620 0.380
#> SRR1003850     1  0.4235     0.7260 0.824 0.000 0.176
#> SRR1003851     3  0.6204    -0.1790 0.000 0.424 0.576
#> SRR1003852     1  0.6704     0.3119 0.608 0.016 0.376
#> SRR1003853     1  0.5988     0.4623 0.632 0.000 0.368
#> SRR1003854     1  0.4452     0.7476 0.808 0.000 0.192
#> SRR1003843     3  0.6590     0.5142 0.112 0.132 0.756
#> SRR1003855     1  0.4796     0.7079 0.780 0.000 0.220
#> SRR1003856     3  0.1964     0.5946 0.056 0.000 0.944
#> SRR1003857     1  0.1411     0.8568 0.964 0.000 0.036
#> SRR1003858     1  0.5016     0.6936 0.760 0.000 0.240
#> SRR1003859     1  0.0237     0.8610 0.996 0.000 0.004
#> SRR1003860     1  0.0424     0.8606 0.992 0.000 0.008
#> SRR1003861     1  0.5678     0.5656 0.684 0.000 0.316
#> SRR1003862     1  0.0000     0.8619 1.000 0.000 0.000
#> SRR1003863     1  0.0592     0.8624 0.988 0.000 0.012
#> SRR1003864     1  0.0424     0.8625 0.992 0.000 0.008
#> SRR1003865     1  0.4235     0.7357 0.824 0.000 0.176
#> SRR1003866     1  0.2165     0.8458 0.936 0.000 0.064
#> SRR1003867     1  0.2165     0.8457 0.936 0.000 0.064

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1003755     1  0.2578     0.7555 0.912 0.000 0.036 0.052
#> SRR1003756     1  0.2578     0.7555 0.912 0.000 0.036 0.052
#> SRR1003757     1  0.2399     0.7571 0.920 0.000 0.032 0.048
#> SRR1003758     1  0.2399     0.7571 0.920 0.000 0.032 0.048
#> SRR1003759     4  0.9388     0.0863 0.188 0.272 0.132 0.408
#> SRR1003760     2  0.0000     0.8751 0.000 1.000 0.000 0.000
#> SRR1003761     2  0.0000     0.8751 0.000 1.000 0.000 0.000
#> SRR1003762     2  0.0000     0.8751 0.000 1.000 0.000 0.000
#> SRR1003763     2  0.0000     0.8751 0.000 1.000 0.000 0.000
#> SRR1003764     2  0.0000     0.8751 0.000 1.000 0.000 0.000
#> SRR1003765     2  0.0000     0.8751 0.000 1.000 0.000 0.000
#> SRR1003766     2  0.0000     0.8751 0.000 1.000 0.000 0.000
#> SRR1003767     2  0.0000     0.8751 0.000 1.000 0.000 0.000
#> SRR1003768     2  0.0000     0.8751 0.000 1.000 0.000 0.000
#> SRR1003769     2  0.0000     0.8751 0.000 1.000 0.000 0.000
#> SRR1003770     2  0.0000     0.8751 0.000 1.000 0.000 0.000
#> SRR1003771     2  0.0000     0.8751 0.000 1.000 0.000 0.000
#> SRR1003773     2  0.4836     0.5874 0.000 0.672 0.320 0.008
#> SRR1003772     1  0.1209     0.7634 0.964 0.000 0.004 0.032
#> SRR1003774     1  0.6627    -0.1662 0.504 0.000 0.084 0.412
#> SRR1003775     1  0.1284     0.7668 0.964 0.000 0.012 0.024
#> SRR1003776     1  0.5865     0.0730 0.552 0.000 0.036 0.412
#> SRR1003777     1  0.2342     0.7698 0.912 0.000 0.008 0.080
#> SRR1003778     2  0.3583     0.7412 0.000 0.816 0.180 0.004
#> SRR1003779     1  0.2401     0.7636 0.904 0.000 0.004 0.092
#> SRR1003780     2  0.0000     0.8751 0.000 1.000 0.000 0.000
#> SRR1003781     1  0.5420     0.5500 0.684 0.000 0.044 0.272
#> SRR1003784     3  0.4035     0.5046 0.020 0.000 0.804 0.176
#> SRR1003785     3  0.6176    -0.1753 0.000 0.424 0.524 0.052
#> SRR1003786     1  0.0921     0.7630 0.972 0.000 0.000 0.028
#> SRR1003783     1  0.1557     0.7652 0.944 0.000 0.000 0.056
#> SRR1003787     1  0.3831     0.6977 0.792 0.000 0.004 0.204
#> SRR1003788     4  0.6362     0.3271 0.168 0.000 0.176 0.656
#> SRR1003789     2  0.0000     0.8751 0.000 1.000 0.000 0.000
#> SRR1003790     1  0.1109     0.7637 0.968 0.000 0.004 0.028
#> SRR1003791     3  0.8048     0.2143 0.104 0.052 0.448 0.396
#> SRR1003792     1  0.4136     0.6855 0.788 0.000 0.016 0.196
#> SRR1003793     1  0.2521     0.7689 0.912 0.000 0.024 0.064
#> SRR1003794     1  0.3745     0.7588 0.852 0.000 0.060 0.088
#> SRR1003795     2  0.5604     0.2747 0.000 0.504 0.476 0.020
#> SRR1003796     2  0.4769     0.6033 0.000 0.684 0.308 0.008
#> SRR1003797     1  0.3583     0.7164 0.816 0.000 0.004 0.180
#> SRR1003798     1  0.5140     0.6610 0.760 0.000 0.096 0.144
#> SRR1003799     1  0.1938     0.7722 0.936 0.000 0.012 0.052
#> SRR1003800     1  0.5042     0.6721 0.768 0.000 0.136 0.096
#> SRR1003801     4  0.7446     0.4331 0.396 0.000 0.172 0.432
#> SRR1003802     3  0.6769     0.3107 0.220 0.000 0.608 0.172
#> SRR1003803     1  0.4458     0.7181 0.808 0.000 0.076 0.116
#> SRR1003804     1  0.5058     0.6668 0.768 0.000 0.104 0.128
#> SRR1003805     1  0.2266     0.7737 0.912 0.000 0.004 0.084
#> SRR1003806     1  0.2222     0.7692 0.924 0.000 0.016 0.060
#> SRR1003807     3  0.7515    -0.0233 0.364 0.000 0.448 0.188
#> SRR1003809     3  0.7842    -0.1832 0.264 0.000 0.376 0.360
#> SRR1003808     4  0.7330     0.3885 0.412 0.016 0.100 0.472
#> SRR1003810     1  0.6013     0.3699 0.624 0.000 0.064 0.312
#> SRR1003811     1  0.7345    -0.1145 0.508 0.000 0.184 0.308
#> SRR1003812     1  0.2675     0.7581 0.892 0.000 0.008 0.100
#> SRR1003813     3  0.4559     0.5036 0.004 0.040 0.792 0.164
#> SRR1003814     4  0.6148     0.2340 0.468 0.000 0.048 0.484
#> SRR1003815     1  0.4789     0.6555 0.772 0.000 0.056 0.172
#> SRR1003816     1  0.1743     0.7642 0.940 0.000 0.004 0.056
#> SRR1003817     1  0.1118     0.7632 0.964 0.000 0.000 0.036
#> SRR1003818     1  0.3307     0.7633 0.868 0.000 0.028 0.104
#> SRR1003819     4  0.6853     0.0953 0.092 0.024 0.256 0.628
#> SRR1003820     1  0.1637     0.7699 0.940 0.000 0.000 0.060
#> SRR1003821     1  0.1022     0.7626 0.968 0.000 0.000 0.032
#> SRR1003822     3  0.4856     0.4971 0.084 0.000 0.780 0.136
#> SRR1003824     1  0.5477     0.5977 0.728 0.000 0.092 0.180
#> SRR1003823     1  0.2521     0.7694 0.912 0.000 0.024 0.064
#> SRR1003825     1  0.7811    -0.4430 0.380 0.000 0.252 0.368
#> SRR1003826     1  0.2266     0.7676 0.912 0.000 0.004 0.084
#> SRR1003827     1  0.3479     0.7417 0.840 0.000 0.012 0.148
#> SRR1003828     1  0.7324     0.0570 0.532 0.000 0.240 0.228
#> SRR1003829     1  0.3821     0.7590 0.840 0.000 0.040 0.120
#> SRR1003830     1  0.2413     0.7698 0.916 0.000 0.020 0.064
#> SRR1003831     4  0.6106     0.5325 0.332 0.000 0.064 0.604
#> SRR1003832     1  0.2224     0.7681 0.928 0.000 0.032 0.040
#> SRR1003833     1  0.5926     0.4069 0.632 0.000 0.060 0.308
#> SRR1003834     4  0.6957     0.3457 0.416 0.000 0.112 0.472
#> SRR1003836     4  0.7289     0.2962 0.212 0.000 0.252 0.536
#> SRR1003835     1  0.6732     0.3248 0.612 0.000 0.168 0.220
#> SRR1003838     2  0.5846     0.3175 0.000 0.516 0.452 0.032
#> SRR1003837     1  0.6182     0.3311 0.616 0.000 0.076 0.308
#> SRR1003839     4  0.6078     0.5313 0.312 0.000 0.068 0.620
#> SRR1003840     4  0.8375    -0.0263 0.080 0.144 0.244 0.532
#> SRR1003841     2  0.0000     0.8751 0.000 1.000 0.000 0.000
#> SRR1003842     1  0.1938     0.7723 0.936 0.000 0.012 0.052
#> SRR1003844     1  0.1743     0.7716 0.940 0.000 0.004 0.056
#> SRR1003845     4  0.7278    -0.2501 0.000 0.188 0.284 0.528
#> SRR1003846     1  0.2450     0.7757 0.912 0.000 0.016 0.072
#> SRR1003847     1  0.5535     0.6146 0.720 0.000 0.088 0.192
#> SRR1003848     3  0.7249    -0.0328 0.348 0.000 0.496 0.156
#> SRR1003849     2  0.5935     0.2686 0.000 0.496 0.468 0.036
#> SRR1003850     1  0.6323     0.4668 0.660 0.000 0.164 0.176
#> SRR1003851     3  0.4538     0.3850 0.000 0.216 0.760 0.024
#> SRR1003852     4  0.7188     0.3722 0.292 0.000 0.172 0.536
#> SRR1003853     4  0.6510     0.4588 0.380 0.000 0.080 0.540
#> SRR1003854     1  0.5271     0.3740 0.640 0.000 0.020 0.340
#> SRR1003843     3  0.6381     0.4867 0.028 0.076 0.684 0.212
#> SRR1003855     1  0.5860     0.1510 0.580 0.000 0.040 0.380
#> SRR1003856     3  0.4182     0.5057 0.024 0.000 0.796 0.180
#> SRR1003857     1  0.3806     0.7322 0.824 0.000 0.020 0.156
#> SRR1003858     1  0.6038     0.0361 0.532 0.000 0.044 0.424
#> SRR1003859     1  0.1624     0.7665 0.952 0.000 0.020 0.028
#> SRR1003860     1  0.3652     0.7501 0.856 0.000 0.052 0.092
#> SRR1003861     4  0.6079     0.2498 0.464 0.000 0.044 0.492
#> SRR1003862     1  0.0707     0.7644 0.980 0.000 0.000 0.020
#> SRR1003863     1  0.3164     0.7563 0.884 0.000 0.052 0.064
#> SRR1003864     1  0.2888     0.7583 0.872 0.000 0.004 0.124
#> SRR1003865     1  0.7102     0.1578 0.548 0.000 0.164 0.288
#> SRR1003866     1  0.4781     0.6397 0.752 0.000 0.036 0.212
#> SRR1003867     1  0.4735     0.6949 0.784 0.000 0.068 0.148

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1003755     1   0.294    0.68552 0.876 0.000 0.012 0.088 0.024
#> SRR1003756     1   0.294    0.68552 0.876 0.000 0.012 0.088 0.024
#> SRR1003757     1   0.249    0.68758 0.900 0.000 0.008 0.072 0.020
#> SRR1003758     1   0.249    0.68758 0.900 0.000 0.008 0.072 0.020
#> SRR1003759     5   0.964   -0.11294 0.132 0.176 0.132 0.256 0.304
#> SRR1003760     2   0.000    0.91040 0.000 1.000 0.000 0.000 0.000
#> SRR1003761     2   0.000    0.91040 0.000 1.000 0.000 0.000 0.000
#> SRR1003762     2   0.000    0.91040 0.000 1.000 0.000 0.000 0.000
#> SRR1003763     2   0.000    0.91040 0.000 1.000 0.000 0.000 0.000
#> SRR1003764     2   0.000    0.91040 0.000 1.000 0.000 0.000 0.000
#> SRR1003765     2   0.000    0.91040 0.000 1.000 0.000 0.000 0.000
#> SRR1003766     2   0.000    0.91040 0.000 1.000 0.000 0.000 0.000
#> SRR1003767     2   0.000    0.91040 0.000 1.000 0.000 0.000 0.000
#> SRR1003768     2   0.000    0.91040 0.000 1.000 0.000 0.000 0.000
#> SRR1003769     2   0.000    0.91040 0.000 1.000 0.000 0.000 0.000
#> SRR1003770     2   0.000    0.91040 0.000 1.000 0.000 0.000 0.000
#> SRR1003771     2   0.000    0.91040 0.000 1.000 0.000 0.000 0.000
#> SRR1003773     2   0.426    0.13366 0.000 0.564 0.436 0.000 0.000
#> SRR1003772     1   0.208    0.68835 0.908 0.000 0.000 0.008 0.084
#> SRR1003774     5   0.743    0.27872 0.316 0.000 0.052 0.192 0.440
#> SRR1003775     1   0.141    0.69154 0.948 0.000 0.000 0.044 0.008
#> SRR1003776     5   0.660    0.29484 0.380 0.000 0.044 0.084 0.492
#> SRR1003777     1   0.343    0.70130 0.836 0.000 0.000 0.056 0.108
#> SRR1003778     2   0.377    0.48790 0.000 0.704 0.296 0.000 0.000
#> SRR1003779     1   0.397    0.68616 0.804 0.000 0.008 0.052 0.136
#> SRR1003780     2   0.000    0.91040 0.000 1.000 0.000 0.000 0.000
#> SRR1003781     1   0.714    0.04492 0.456 0.000 0.028 0.212 0.304
#> SRR1003784     3   0.597    0.10886 0.032 0.000 0.648 0.212 0.108
#> SRR1003785     3   0.519    0.36634 0.000 0.344 0.612 0.024 0.020
#> SRR1003786     1   0.139    0.68942 0.952 0.000 0.000 0.032 0.016
#> SRR1003783     1   0.281    0.69782 0.884 0.000 0.004 0.048 0.064
#> SRR1003787     1   0.522    0.56814 0.672 0.000 0.004 0.084 0.240
#> SRR1003788     5   0.742    0.12890 0.140 0.000 0.148 0.172 0.540
#> SRR1003789     2   0.000    0.91040 0.000 1.000 0.000 0.000 0.000
#> SRR1003790     1   0.289    0.70022 0.876 0.000 0.004 0.084 0.036
#> SRR1003791     4   0.873    0.15428 0.072 0.044 0.284 0.320 0.280
#> SRR1003792     1   0.570    0.57210 0.652 0.000 0.008 0.148 0.192
#> SRR1003793     1   0.385    0.69756 0.816 0.000 0.008 0.120 0.056
#> SRR1003794     1   0.513    0.64656 0.720 0.000 0.016 0.172 0.092
#> SRR1003795     3   0.575    0.10200 0.000 0.460 0.472 0.056 0.012
#> SRR1003796     2   0.443    0.05707 0.000 0.540 0.456 0.004 0.000
#> SRR1003797     1   0.482    0.61605 0.700 0.000 0.004 0.056 0.240
#> SRR1003798     1   0.582    0.57104 0.668 0.000 0.036 0.200 0.096
#> SRR1003799     1   0.322    0.70851 0.868 0.000 0.016 0.064 0.052
#> SRR1003800     1   0.668    0.44186 0.600 0.000 0.084 0.216 0.100
#> SRR1003801     1   0.808   -0.37099 0.372 0.000 0.108 0.216 0.304
#> SRR1003802     3   0.783   -0.48029 0.212 0.000 0.364 0.348 0.076
#> SRR1003803     1   0.577    0.53874 0.644 0.000 0.020 0.240 0.096
#> SRR1003804     1   0.562    0.60133 0.700 0.000 0.044 0.160 0.096
#> SRR1003805     1   0.368    0.70236 0.828 0.000 0.004 0.096 0.072
#> SRR1003806     1   0.364    0.69741 0.824 0.000 0.004 0.124 0.048
#> SRR1003807     4   0.766    0.25784 0.236 0.000 0.312 0.396 0.056
#> SRR1003809     4   0.859    0.09297 0.252 0.000 0.264 0.268 0.216
#> SRR1003808     5   0.813    0.15109 0.264 0.016 0.056 0.304 0.360
#> SRR1003810     1   0.660    0.31595 0.568 0.000 0.040 0.124 0.268
#> SRR1003811     1   0.762   -0.10711 0.460 0.000 0.100 0.144 0.296
#> SRR1003812     1   0.326    0.66869 0.820 0.000 0.000 0.016 0.164
#> SRR1003813     3   0.381    0.28087 0.004 0.008 0.828 0.104 0.056
#> SRR1003814     5   0.737    0.27094 0.268 0.000 0.056 0.196 0.480
#> SRR1003815     1   0.524    0.62004 0.728 0.000 0.028 0.112 0.132
#> SRR1003816     1   0.283    0.69524 0.876 0.000 0.000 0.044 0.080
#> SRR1003817     1   0.149    0.69175 0.948 0.000 0.000 0.024 0.028
#> SRR1003818     1   0.487    0.63282 0.740 0.000 0.008 0.132 0.120
#> SRR1003819     5   0.750   -0.00803 0.080 0.000 0.204 0.220 0.496
#> SRR1003820     1   0.310    0.69143 0.848 0.000 0.000 0.028 0.124
#> SRR1003821     1   0.153    0.68960 0.948 0.000 0.004 0.012 0.036
#> SRR1003822     3   0.694   -0.07684 0.068 0.000 0.560 0.240 0.132
#> SRR1003824     1   0.610    0.51171 0.660 0.000 0.048 0.148 0.144
#> SRR1003823     1   0.345    0.70093 0.836 0.000 0.000 0.100 0.064
#> SRR1003825     5   0.847   -0.11560 0.268 0.000 0.164 0.264 0.304
#> SRR1003826     1   0.309    0.69852 0.868 0.000 0.004 0.060 0.068
#> SRR1003827     1   0.496    0.60536 0.692 0.000 0.000 0.084 0.224
#> SRR1003828     1   0.791   -0.02979 0.436 0.000 0.140 0.280 0.144
#> SRR1003829     1   0.546    0.60850 0.688 0.000 0.012 0.148 0.152
#> SRR1003830     1   0.285    0.70228 0.880 0.000 0.008 0.084 0.028
#> SRR1003831     5   0.633    0.32551 0.248 0.000 0.040 0.108 0.604
#> SRR1003832     1   0.240    0.69819 0.904 0.000 0.004 0.068 0.024
#> SRR1003833     1   0.671    0.26490 0.540 0.000 0.040 0.124 0.296
#> SRR1003834     5   0.768    0.25101 0.296 0.000 0.092 0.164 0.448
#> SRR1003836     5   0.783    0.03654 0.156 0.000 0.152 0.216 0.476
#> SRR1003835     1   0.743    0.16493 0.508 0.000 0.088 0.244 0.160
#> SRR1003838     3   0.504    0.11733 0.000 0.456 0.516 0.024 0.004
#> SRR1003837     1   0.735   -0.15833 0.416 0.000 0.036 0.220 0.328
#> SRR1003839     5   0.635    0.27122 0.172 0.000 0.048 0.148 0.632
#> SRR1003840     5   0.843   -0.09747 0.032 0.096 0.160 0.308 0.404
#> SRR1003841     2   0.000    0.91040 0.000 1.000 0.000 0.000 0.000
#> SRR1003842     1   0.284    0.70029 0.880 0.000 0.004 0.080 0.036
#> SRR1003844     1   0.300    0.70478 0.864 0.000 0.000 0.044 0.092
#> SRR1003845     5   0.841   -0.16377 0.004 0.152 0.244 0.220 0.380
#> SRR1003846     1   0.374    0.70002 0.824 0.000 0.004 0.096 0.076
#> SRR1003847     1   0.712    0.30333 0.508 0.000 0.044 0.260 0.188
#> SRR1003848     1   0.806   -0.44262 0.332 0.000 0.300 0.280 0.088
#> SRR1003849     3   0.457    0.34846 0.000 0.356 0.628 0.012 0.004
#> SRR1003850     1   0.696    0.28991 0.536 0.000 0.088 0.288 0.088
#> SRR1003851     3   0.510    0.38123 0.000 0.136 0.724 0.128 0.012
#> SRR1003852     5   0.761    0.02012 0.200 0.000 0.060 0.340 0.400
#> SRR1003853     5   0.695    0.29422 0.272 0.000 0.048 0.148 0.532
#> SRR1003854     1   0.624    0.12439 0.500 0.000 0.016 0.096 0.388
#> SRR1003843     3   0.725   -0.01371 0.016 0.036 0.492 0.324 0.132
#> SRR1003855     1   0.654   -0.08515 0.464 0.000 0.024 0.108 0.404
#> SRR1003856     3   0.672    0.01654 0.040 0.000 0.568 0.232 0.160
#> SRR1003857     1   0.534    0.61744 0.712 0.000 0.024 0.104 0.160
#> SRR1003858     5   0.708    0.25052 0.372 0.000 0.036 0.156 0.436
#> SRR1003859     1   0.300    0.70123 0.872 0.000 0.004 0.076 0.048
#> SRR1003860     1   0.462    0.67045 0.760 0.000 0.012 0.152 0.076
#> SRR1003861     5   0.664    0.31107 0.344 0.000 0.020 0.140 0.496
#> SRR1003862     1   0.149    0.69594 0.948 0.000 0.000 0.028 0.024
#> SRR1003863     1   0.359    0.68687 0.840 0.000 0.012 0.096 0.052
#> SRR1003864     1   0.414    0.67183 0.784 0.000 0.000 0.084 0.132
#> SRR1003865     1   0.791   -0.27002 0.372 0.000 0.084 0.328 0.216
#> SRR1003866     1   0.643    0.38438 0.584 0.000 0.028 0.140 0.248
#> SRR1003867     1   0.630    0.49982 0.616 0.000 0.032 0.208 0.144

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1003755     1   0.445     0.5815 0.764 0.000 0.036 0.148 0.028 0.024
#> SRR1003756     1   0.445     0.5815 0.764 0.000 0.036 0.148 0.028 0.024
#> SRR1003757     1   0.404     0.5950 0.792 0.000 0.028 0.136 0.024 0.020
#> SRR1003758     1   0.404     0.5950 0.792 0.000 0.028 0.136 0.024 0.020
#> SRR1003759     5   0.913     0.2068 0.104 0.180 0.060 0.096 0.344 0.216
#> SRR1003760     2   0.000     0.9643 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003761     2   0.000     0.9643 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003762     2   0.000     0.9643 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003763     2   0.000     0.9643 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003764     2   0.000     0.9643 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003765     2   0.000     0.9643 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003766     2   0.000     0.9643 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003767     2   0.000     0.9643 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003768     2   0.000     0.9643 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003769     2   0.000     0.9643 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003770     2   0.000     0.9643 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003771     2   0.000     0.9643 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003773     3   0.414     0.4261 0.000 0.404 0.584 0.008 0.004 0.000
#> SRR1003772     1   0.281     0.6368 0.876 0.000 0.000 0.044 0.024 0.056
#> SRR1003774     6   0.767     0.1725 0.332 0.000 0.024 0.108 0.184 0.352
#> SRR1003775     1   0.297     0.6387 0.852 0.000 0.000 0.108 0.024 0.016
#> SRR1003776     6   0.693     0.1928 0.392 0.000 0.016 0.068 0.124 0.400
#> SRR1003777     1   0.513     0.6171 0.716 0.000 0.008 0.128 0.052 0.096
#> SRR1003778     2   0.377     0.0481 0.000 0.596 0.404 0.000 0.000 0.000
#> SRR1003779     1   0.463     0.6140 0.736 0.000 0.000 0.044 0.064 0.156
#> SRR1003780     2   0.000     0.9643 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003781     1   0.702     0.2319 0.500 0.000 0.008 0.124 0.144 0.224
#> SRR1003784     3   0.659     0.2031 0.004 0.000 0.540 0.232 0.132 0.092
#> SRR1003785     3   0.490     0.5448 0.000 0.228 0.692 0.020 0.040 0.020
#> SRR1003786     1   0.213     0.6329 0.908 0.000 0.000 0.056 0.004 0.032
#> SRR1003783     1   0.328     0.6391 0.848 0.000 0.000 0.048 0.036 0.068
#> SRR1003787     1   0.555     0.5089 0.636 0.000 0.004 0.084 0.044 0.232
#> SRR1003788     6   0.747    -0.0341 0.084 0.000 0.136 0.116 0.136 0.528
#> SRR1003789     2   0.000     0.9643 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003790     1   0.361     0.6460 0.820 0.000 0.000 0.104 0.040 0.036
#> SRR1003791     5   0.877     0.1139 0.040 0.032 0.252 0.196 0.308 0.172
#> SRR1003792     1   0.679     0.4433 0.544 0.000 0.008 0.132 0.136 0.180
#> SRR1003793     1   0.481     0.6312 0.728 0.000 0.004 0.160 0.052 0.056
#> SRR1003794     1   0.570     0.5746 0.668 0.000 0.012 0.156 0.072 0.092
#> SRR1003795     3   0.576     0.5124 0.000 0.308 0.576 0.044 0.064 0.008
#> SRR1003796     3   0.406     0.3583 0.000 0.436 0.556 0.000 0.008 0.000
#> SRR1003797     1   0.587     0.5105 0.612 0.000 0.000 0.100 0.072 0.216
#> SRR1003798     1   0.656     0.3846 0.528 0.000 0.024 0.296 0.060 0.092
#> SRR1003799     1   0.517     0.6189 0.708 0.000 0.016 0.160 0.036 0.080
#> SRR1003800     1   0.713     0.2191 0.496 0.000 0.060 0.284 0.076 0.084
#> SRR1003801     6   0.838     0.0917 0.296 0.000 0.068 0.152 0.184 0.300
#> SRR1003802     4   0.756     0.1880 0.128 0.000 0.308 0.428 0.072 0.064
#> SRR1003803     1   0.667     0.3534 0.524 0.000 0.012 0.272 0.084 0.108
#> SRR1003804     1   0.616     0.4622 0.564 0.000 0.012 0.284 0.056 0.084
#> SRR1003805     1   0.495     0.6266 0.724 0.000 0.000 0.112 0.096 0.068
#> SRR1003806     1   0.455     0.6267 0.744 0.000 0.012 0.172 0.032 0.040
#> SRR1003807     4   0.823     0.2948 0.228 0.000 0.196 0.376 0.132 0.068
#> SRR1003809     6   0.883    -0.1479 0.208 0.000 0.168 0.228 0.132 0.264
#> SRR1003808     5   0.771    -0.0205 0.196 0.008 0.028 0.076 0.396 0.296
#> SRR1003810     1   0.726     0.3257 0.536 0.000 0.056 0.132 0.104 0.172
#> SRR1003811     1   0.819    -0.1513 0.384 0.000 0.088 0.184 0.100 0.244
#> SRR1003812     1   0.352     0.6280 0.812 0.000 0.000 0.040 0.016 0.132
#> SRR1003813     3   0.430     0.3651 0.008 0.000 0.788 0.084 0.048 0.072
#> SRR1003814     1   0.759    -0.3371 0.332 0.000 0.016 0.088 0.284 0.280
#> SRR1003815     1   0.619     0.5300 0.632 0.000 0.024 0.144 0.068 0.132
#> SRR1003816     1   0.341     0.6287 0.832 0.000 0.000 0.044 0.024 0.100
#> SRR1003817     1   0.302     0.6432 0.864 0.000 0.000 0.060 0.028 0.048
#> SRR1003818     1   0.522     0.6061 0.712 0.000 0.008 0.128 0.076 0.076
#> SRR1003819     6   0.793    -0.1619 0.064 0.016 0.120 0.088 0.264 0.448
#> SRR1003820     1   0.383     0.6420 0.808 0.000 0.000 0.084 0.032 0.076
#> SRR1003821     1   0.247     0.6320 0.896 0.000 0.004 0.060 0.012 0.028
#> SRR1003822     3   0.811    -0.1958 0.096 0.000 0.384 0.284 0.132 0.104
#> SRR1003824     1   0.753     0.3293 0.500 0.000 0.064 0.176 0.096 0.164
#> SRR1003823     1   0.507     0.6053 0.708 0.000 0.004 0.164 0.064 0.060
#> SRR1003825     4   0.875     0.0583 0.196 0.000 0.116 0.292 0.180 0.216
#> SRR1003826     1   0.423     0.6362 0.776 0.000 0.000 0.116 0.040 0.068
#> SRR1003827     1   0.531     0.5809 0.684 0.000 0.000 0.068 0.092 0.156
#> SRR1003828     4   0.798     0.1574 0.316 0.000 0.044 0.348 0.144 0.148
#> SRR1003829     1   0.591     0.5626 0.640 0.000 0.004 0.152 0.100 0.104
#> SRR1003830     1   0.433     0.6424 0.776 0.000 0.004 0.116 0.052 0.052
#> SRR1003831     6   0.656     0.2217 0.212 0.000 0.016 0.068 0.140 0.564
#> SRR1003832     1   0.488     0.6119 0.704 0.000 0.012 0.208 0.044 0.032
#> SRR1003833     1   0.730     0.0187 0.432 0.000 0.020 0.144 0.096 0.308
#> SRR1003834     6   0.779     0.1916 0.264 0.000 0.044 0.176 0.104 0.412
#> SRR1003836     6   0.787    -0.1028 0.092 0.000 0.108 0.120 0.228 0.452
#> SRR1003835     1   0.825    -0.2666 0.360 0.000 0.084 0.280 0.124 0.152
#> SRR1003838     3   0.510     0.5362 0.000 0.284 0.640 0.024 0.040 0.012
#> SRR1003837     1   0.780    -0.1552 0.372 0.000 0.044 0.180 0.092 0.312
#> SRR1003839     6   0.708     0.1218 0.172 0.000 0.036 0.080 0.180 0.532
#> SRR1003840     5   0.874     0.2633 0.060 0.072 0.112 0.108 0.376 0.272
#> SRR1003841     2   0.000     0.9643 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003842     1   0.409     0.6446 0.776 0.000 0.000 0.136 0.024 0.064
#> SRR1003844     1   0.372     0.6494 0.820 0.000 0.000 0.068 0.044 0.068
#> SRR1003845     6   0.832    -0.3011 0.004 0.104 0.164 0.088 0.272 0.368
#> SRR1003846     1   0.445     0.6415 0.772 0.000 0.012 0.100 0.028 0.088
#> SRR1003847     1   0.770     0.1096 0.424 0.000 0.024 0.144 0.184 0.224
#> SRR1003848     4   0.825     0.2085 0.196 0.000 0.244 0.368 0.112 0.080
#> SRR1003849     3   0.477     0.5417 0.000 0.244 0.684 0.004 0.040 0.028
#> SRR1003850     1   0.769    -0.1722 0.368 0.000 0.052 0.356 0.128 0.096
#> SRR1003851     3   0.540     0.4561 0.000 0.080 0.704 0.108 0.096 0.012
#> SRR1003852     5   0.757     0.1353 0.128 0.000 0.024 0.140 0.400 0.308
#> SRR1003853     6   0.703     0.2236 0.220 0.000 0.020 0.108 0.132 0.520
#> SRR1003854     1   0.631    -0.0210 0.440 0.000 0.008 0.068 0.068 0.416
#> SRR1003843     3   0.766    -0.0152 0.020 0.016 0.372 0.352 0.164 0.076
#> SRR1003855     1   0.682    -0.1650 0.412 0.000 0.020 0.104 0.064 0.400
#> SRR1003856     3   0.704     0.1361 0.020 0.000 0.524 0.208 0.120 0.128
#> SRR1003857     1   0.547     0.5834 0.684 0.000 0.012 0.104 0.048 0.152
#> SRR1003858     6   0.748     0.1979 0.344 0.000 0.016 0.136 0.132 0.372
#> SRR1003859     1   0.373     0.6400 0.800 0.000 0.000 0.136 0.024 0.040
#> SRR1003860     1   0.539     0.5726 0.664 0.000 0.004 0.208 0.064 0.060
#> SRR1003861     6   0.700     0.2607 0.320 0.000 0.024 0.092 0.096 0.468
#> SRR1003862     1   0.266     0.6406 0.880 0.000 0.000 0.076 0.020 0.024
#> SRR1003863     1   0.478     0.6030 0.736 0.000 0.032 0.168 0.032 0.032
#> SRR1003864     1   0.529     0.5952 0.684 0.000 0.000 0.108 0.056 0.152
#> SRR1003865     1   0.851    -0.3591 0.308 0.000 0.080 0.240 0.224 0.148
#> SRR1003866     1   0.723     0.3061 0.504 0.000 0.020 0.128 0.176 0.172
#> SRR1003867     1   0.711     0.2716 0.500 0.000 0.024 0.248 0.132 0.096

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 9166 rows and 112 columns.
#>   Top rows (917, 1834, 2750, 3666, 4583) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.998       0.999        0.21993 0.779   0.779
#> 3 3 1.000           0.995       0.998        0.11723 0.975   0.968
#> 4 4 0.743           0.850       0.938        0.76640 0.860   0.815
#> 5 5 0.744           0.843       0.936        0.00475 0.998   0.997
#> 6 6 0.744           0.834       0.929        0.01163 0.999   0.998

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1003755     1   0.000      1.000 1.000 0.000
#> SRR1003756     1   0.000      1.000 1.000 0.000
#> SRR1003757     1   0.000      1.000 1.000 0.000
#> SRR1003758     1   0.000      1.000 1.000 0.000
#> SRR1003759     1   0.000      1.000 1.000 0.000
#> SRR1003760     2   0.000      0.991 0.000 1.000
#> SRR1003761     1   0.000      1.000 1.000 0.000
#> SRR1003762     2   0.000      0.991 0.000 1.000
#> SRR1003763     2   0.518      0.869 0.116 0.884
#> SRR1003764     2   0.000      0.991 0.000 1.000
#> SRR1003765     2   0.000      0.991 0.000 1.000
#> SRR1003766     2   0.000      0.991 0.000 1.000
#> SRR1003767     2   0.000      0.991 0.000 1.000
#> SRR1003768     2   0.000      0.991 0.000 1.000
#> SRR1003769     2   0.000      0.991 0.000 1.000
#> SRR1003770     2   0.000      0.991 0.000 1.000
#> SRR1003771     2   0.000      0.991 0.000 1.000
#> SRR1003773     1   0.000      1.000 1.000 0.000
#> SRR1003772     1   0.000      1.000 1.000 0.000
#> SRR1003774     1   0.000      1.000 1.000 0.000
#> SRR1003775     1   0.000      1.000 1.000 0.000
#> SRR1003776     1   0.000      1.000 1.000 0.000
#> SRR1003777     1   0.000      1.000 1.000 0.000
#> SRR1003778     1   0.000      1.000 1.000 0.000
#> SRR1003779     1   0.000      1.000 1.000 0.000
#> SRR1003780     2   0.000      0.991 0.000 1.000
#> SRR1003781     1   0.000      1.000 1.000 0.000
#> SRR1003784     1   0.000      1.000 1.000 0.000
#> SRR1003785     1   0.000      1.000 1.000 0.000
#> SRR1003786     1   0.000      1.000 1.000 0.000
#> SRR1003783     1   0.000      1.000 1.000 0.000
#> SRR1003787     1   0.000      1.000 1.000 0.000
#> SRR1003788     1   0.000      1.000 1.000 0.000
#> SRR1003789     2   0.000      0.991 0.000 1.000
#> SRR1003790     1   0.000      1.000 1.000 0.000
#> SRR1003791     1   0.000      1.000 1.000 0.000
#> SRR1003792     1   0.000      1.000 1.000 0.000
#> SRR1003793     1   0.000      1.000 1.000 0.000
#> SRR1003794     1   0.000      1.000 1.000 0.000
#> SRR1003795     1   0.000      1.000 1.000 0.000
#> SRR1003796     1   0.000      1.000 1.000 0.000
#> SRR1003797     1   0.000      1.000 1.000 0.000
#> SRR1003798     1   0.000      1.000 1.000 0.000
#> SRR1003799     1   0.000      1.000 1.000 0.000
#> SRR1003800     1   0.000      1.000 1.000 0.000
#> SRR1003801     1   0.000      1.000 1.000 0.000
#> SRR1003802     1   0.000      1.000 1.000 0.000
#> SRR1003803     1   0.000      1.000 1.000 0.000
#> SRR1003804     1   0.000      1.000 1.000 0.000
#> SRR1003805     1   0.000      1.000 1.000 0.000
#> SRR1003806     1   0.000      1.000 1.000 0.000
#> SRR1003807     1   0.000      1.000 1.000 0.000
#> SRR1003809     1   0.000      1.000 1.000 0.000
#> SRR1003808     1   0.000      1.000 1.000 0.000
#> SRR1003810     1   0.000      1.000 1.000 0.000
#> SRR1003811     1   0.000      1.000 1.000 0.000
#> SRR1003812     1   0.000      1.000 1.000 0.000
#> SRR1003813     1   0.000      1.000 1.000 0.000
#> SRR1003814     1   0.000      1.000 1.000 0.000
#> SRR1003815     1   0.000      1.000 1.000 0.000
#> SRR1003816     1   0.000      1.000 1.000 0.000
#> SRR1003817     1   0.000      1.000 1.000 0.000
#> SRR1003818     1   0.000      1.000 1.000 0.000
#> SRR1003819     1   0.000      1.000 1.000 0.000
#> SRR1003820     1   0.000      1.000 1.000 0.000
#> SRR1003821     1   0.000      1.000 1.000 0.000
#> SRR1003822     1   0.000      1.000 1.000 0.000
#> SRR1003824     1   0.000      1.000 1.000 0.000
#> SRR1003823     1   0.000      1.000 1.000 0.000
#> SRR1003825     1   0.000      1.000 1.000 0.000
#> SRR1003826     1   0.000      1.000 1.000 0.000
#> SRR1003827     1   0.000      1.000 1.000 0.000
#> SRR1003828     1   0.000      1.000 1.000 0.000
#> SRR1003829     1   0.000      1.000 1.000 0.000
#> SRR1003830     1   0.000      1.000 1.000 0.000
#> SRR1003831     1   0.000      1.000 1.000 0.000
#> SRR1003832     1   0.000      1.000 1.000 0.000
#> SRR1003833     1   0.000      1.000 1.000 0.000
#> SRR1003834     1   0.000      1.000 1.000 0.000
#> SRR1003836     1   0.000      1.000 1.000 0.000
#> SRR1003835     1   0.000      1.000 1.000 0.000
#> SRR1003838     1   0.000      1.000 1.000 0.000
#> SRR1003837     1   0.000      1.000 1.000 0.000
#> SRR1003839     1   0.000      1.000 1.000 0.000
#> SRR1003840     1   0.000      1.000 1.000 0.000
#> SRR1003841     2   0.000      0.991 0.000 1.000
#> SRR1003842     1   0.000      1.000 1.000 0.000
#> SRR1003844     1   0.000      1.000 1.000 0.000
#> SRR1003845     1   0.000      1.000 1.000 0.000
#> SRR1003846     1   0.000      1.000 1.000 0.000
#> SRR1003847     1   0.000      1.000 1.000 0.000
#> SRR1003848     1   0.000      1.000 1.000 0.000
#> SRR1003849     1   0.000      1.000 1.000 0.000
#> SRR1003850     1   0.000      1.000 1.000 0.000
#> SRR1003851     1   0.000      1.000 1.000 0.000
#> SRR1003852     1   0.000      1.000 1.000 0.000
#> SRR1003853     1   0.000      1.000 1.000 0.000
#> SRR1003854     1   0.000      1.000 1.000 0.000
#> SRR1003843     1   0.000      1.000 1.000 0.000
#> SRR1003855     1   0.000      1.000 1.000 0.000
#> SRR1003856     1   0.000      1.000 1.000 0.000
#> SRR1003857     1   0.000      1.000 1.000 0.000
#> SRR1003858     1   0.000      1.000 1.000 0.000
#> SRR1003859     1   0.000      1.000 1.000 0.000
#> SRR1003860     1   0.000      1.000 1.000 0.000
#> SRR1003861     1   0.000      1.000 1.000 0.000
#> SRR1003862     1   0.000      1.000 1.000 0.000
#> SRR1003863     1   0.000      1.000 1.000 0.000
#> SRR1003864     1   0.000      1.000 1.000 0.000
#> SRR1003865     1   0.000      1.000 1.000 0.000
#> SRR1003866     1   0.000      1.000 1.000 0.000
#> SRR1003867     1   0.000      1.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1003755     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003756     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003757     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003758     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003759     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003760     2  0.0000      0.999 0.000 1.000 0.000
#> SRR1003761     2  0.0000      0.999 0.000 1.000 0.000
#> SRR1003762     2  0.0000      0.999 0.000 1.000 0.000
#> SRR1003763     2  0.0000      0.999 0.000 1.000 0.000
#> SRR1003764     2  0.0000      0.999 0.000 1.000 0.000
#> SRR1003765     3  0.0000      0.977 0.000 0.000 1.000
#> SRR1003766     3  0.0000      0.977 0.000 0.000 1.000
#> SRR1003767     3  0.0000      0.977 0.000 0.000 1.000
#> SRR1003768     3  0.0000      0.977 0.000 0.000 1.000
#> SRR1003769     3  0.0000      0.977 0.000 0.000 1.000
#> SRR1003770     3  0.0000      0.977 0.000 0.000 1.000
#> SRR1003771     3  0.3619      0.842 0.000 0.136 0.864
#> SRR1003773     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003772     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003774     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003775     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003776     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003777     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003778     1  0.3619      0.843 0.864 0.136 0.000
#> SRR1003779     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003780     2  0.0237      0.996 0.000 0.996 0.004
#> SRR1003781     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003784     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003785     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003786     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003783     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003787     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003788     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003789     2  0.0000      0.999 0.000 1.000 0.000
#> SRR1003790     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003791     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003792     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003793     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003794     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003795     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003796     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003797     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003798     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003799     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003800     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003801     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003802     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003803     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003804     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003805     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003806     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003807     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003809     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003808     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003810     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003811     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003812     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003813     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003814     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003815     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003816     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003817     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003818     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003819     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003820     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003821     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003822     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003824     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003823     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003825     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003826     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003827     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003828     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003829     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003830     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003831     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003832     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003833     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003834     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003836     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003835     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003838     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003837     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003839     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003840     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003841     2  0.0237      0.996 0.000 0.996 0.004
#> SRR1003842     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003844     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003845     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003846     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003847     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003848     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003849     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003850     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003851     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003852     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003853     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003854     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003843     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003855     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003856     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003857     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003858     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003859     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003860     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003861     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003862     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003863     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003864     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003865     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003866     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003867     1  0.0000      0.999 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1003755     3  0.0000      0.724 0.000 0.000 1.000 0.000
#> SRR1003756     3  0.0000      0.724 0.000 0.000 1.000 0.000
#> SRR1003757     3  0.0000      0.724 0.000 0.000 1.000 0.000
#> SRR1003758     3  0.0000      0.724 0.000 0.000 1.000 0.000
#> SRR1003759     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003760     4  0.0000      0.999 0.000 0.000 0.000 1.000
#> SRR1003761     4  0.0000      0.999 0.000 0.000 0.000 1.000
#> SRR1003762     4  0.0000      0.999 0.000 0.000 0.000 1.000
#> SRR1003763     4  0.0000      0.999 0.000 0.000 0.000 1.000
#> SRR1003764     4  0.0000      0.999 0.000 0.000 0.000 1.000
#> SRR1003765     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> SRR1003766     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> SRR1003767     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> SRR1003768     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> SRR1003769     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> SRR1003770     2  0.0000      0.977 0.000 1.000 0.000 0.000
#> SRR1003771     2  0.2868      0.842 0.000 0.864 0.000 0.136
#> SRR1003773     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003772     1  0.4817      0.342 0.612 0.000 0.388 0.000
#> SRR1003774     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003775     3  0.4761      0.456 0.372 0.000 0.628 0.000
#> SRR1003776     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003777     1  0.0336      0.922 0.992 0.000 0.008 0.000
#> SRR1003778     1  0.2868      0.812 0.864 0.000 0.000 0.136
#> SRR1003779     1  0.3837      0.707 0.776 0.000 0.224 0.000
#> SRR1003780     4  0.0188      0.996 0.000 0.004 0.000 0.996
#> SRR1003781     1  0.0336      0.922 0.992 0.000 0.008 0.000
#> SRR1003784     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003785     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003786     3  0.0921      0.739 0.028 0.000 0.972 0.000
#> SRR1003783     3  0.3266      0.645 0.168 0.000 0.832 0.000
#> SRR1003787     1  0.3726      0.722 0.788 0.000 0.212 0.000
#> SRR1003788     1  0.2973      0.808 0.856 0.000 0.144 0.000
#> SRR1003789     4  0.0000      0.999 0.000 0.000 0.000 1.000
#> SRR1003790     1  0.4888      0.257 0.588 0.000 0.412 0.000
#> SRR1003791     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003792     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003793     1  0.0817      0.915 0.976 0.000 0.024 0.000
#> SRR1003794     1  0.1302      0.902 0.956 0.000 0.044 0.000
#> SRR1003795     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003796     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003797     1  0.4103      0.666 0.744 0.000 0.256 0.000
#> SRR1003798     1  0.2011      0.875 0.920 0.000 0.080 0.000
#> SRR1003799     1  0.4543      0.512 0.676 0.000 0.324 0.000
#> SRR1003800     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003801     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003802     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003803     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003804     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003805     1  0.2469      0.850 0.892 0.000 0.108 0.000
#> SRR1003806     1  0.0336      0.922 0.992 0.000 0.008 0.000
#> SRR1003807     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003809     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003808     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003810     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003811     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003812     1  0.1940      0.878 0.924 0.000 0.076 0.000
#> SRR1003813     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003814     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003815     1  0.0336      0.922 0.992 0.000 0.008 0.000
#> SRR1003816     1  0.4730      0.410 0.636 0.000 0.364 0.000
#> SRR1003817     1  0.0469      0.920 0.988 0.000 0.012 0.000
#> SRR1003818     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003819     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003820     1  0.4624      0.480 0.660 0.000 0.340 0.000
#> SRR1003821     3  0.4925      0.297 0.428 0.000 0.572 0.000
#> SRR1003822     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003824     1  0.3688      0.735 0.792 0.000 0.208 0.000
#> SRR1003823     1  0.3837      0.704 0.776 0.000 0.224 0.000
#> SRR1003825     1  0.0707      0.916 0.980 0.000 0.020 0.000
#> SRR1003826     1  0.3528      0.750 0.808 0.000 0.192 0.000
#> SRR1003827     1  0.0592      0.918 0.984 0.000 0.016 0.000
#> SRR1003828     1  0.0188      0.924 0.996 0.000 0.004 0.000
#> SRR1003829     1  0.0707      0.917 0.980 0.000 0.020 0.000
#> SRR1003830     3  0.1637      0.735 0.060 0.000 0.940 0.000
#> SRR1003831     1  0.2530      0.843 0.888 0.000 0.112 0.000
#> SRR1003832     1  0.4804      0.371 0.616 0.000 0.384 0.000
#> SRR1003833     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003834     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003836     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003835     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003838     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003837     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003839     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003840     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003841     4  0.0188      0.996 0.000 0.004 0.000 0.996
#> SRR1003842     1  0.4454      0.555 0.692 0.000 0.308 0.000
#> SRR1003844     1  0.1716      0.889 0.936 0.000 0.064 0.000
#> SRR1003845     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003846     3  0.1557      0.738 0.056 0.000 0.944 0.000
#> SRR1003847     1  0.1302      0.902 0.956 0.000 0.044 0.000
#> SRR1003848     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003849     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003850     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003851     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003852     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003853     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003854     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003843     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003855     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003856     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003857     1  0.1211      0.905 0.960 0.000 0.040 0.000
#> SRR1003858     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003859     1  0.4730      0.398 0.636 0.000 0.364 0.000
#> SRR1003860     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003861     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003862     1  0.4406      0.581 0.700 0.000 0.300 0.000
#> SRR1003863     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003864     1  0.0336      0.923 0.992 0.000 0.008 0.000
#> SRR1003865     1  0.0000      0.926 1.000 0.000 0.000 0.000
#> SRR1003866     1  0.0188      0.924 0.996 0.000 0.004 0.000
#> SRR1003867     1  0.3400      0.772 0.820 0.000 0.180 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1003755     5  0.0000      0.681 0.000 0.000 0.000 0.000 1.000
#> SRR1003756     5  0.0000      0.681 0.000 0.000 0.000 0.000 1.000
#> SRR1003757     5  0.0000      0.681 0.000 0.000 0.000 0.000 1.000
#> SRR1003758     5  0.0000      0.681 0.000 0.000 0.000 0.000 1.000
#> SRR1003759     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003760     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> SRR1003761     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> SRR1003762     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> SRR1003763     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> SRR1003764     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> SRR1003765     3  0.0510      0.981 0.000 0.000 0.984 0.016 0.000
#> SRR1003766     3  0.0000      0.994 0.000 0.000 1.000 0.000 0.000
#> SRR1003767     4  0.0609      0.849 0.000 0.000 0.020 0.980 0.000
#> SRR1003768     3  0.0000      0.994 0.000 0.000 1.000 0.000 0.000
#> SRR1003769     3  0.0000      0.994 0.000 0.000 1.000 0.000 0.000
#> SRR1003770     4  0.3774      0.604 0.000 0.000 0.296 0.704 0.000
#> SRR1003771     4  0.0609      0.849 0.000 0.000 0.020 0.980 0.000
#> SRR1003773     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003772     1  0.4150      0.342 0.612 0.000 0.000 0.000 0.388
#> SRR1003774     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003775     5  0.4101      0.405 0.372 0.000 0.000 0.000 0.628
#> SRR1003776     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003777     1  0.0290      0.922 0.992 0.000 0.000 0.000 0.008
#> SRR1003778     1  0.3016      0.795 0.848 0.132 0.000 0.020 0.000
#> SRR1003779     1  0.3305      0.707 0.776 0.000 0.000 0.000 0.224
#> SRR1003780     2  0.0162      0.996 0.000 0.996 0.004 0.000 0.000
#> SRR1003781     1  0.0290      0.922 0.992 0.000 0.000 0.000 0.008
#> SRR1003784     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003785     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003786     5  0.0794      0.699 0.028 0.000 0.000 0.000 0.972
#> SRR1003783     5  0.2813      0.596 0.168 0.000 0.000 0.000 0.832
#> SRR1003787     1  0.3210      0.723 0.788 0.000 0.000 0.000 0.212
#> SRR1003788     1  0.2561      0.808 0.856 0.000 0.000 0.000 0.144
#> SRR1003789     2  0.0000      0.999 0.000 1.000 0.000 0.000 0.000
#> SRR1003790     1  0.4210      0.257 0.588 0.000 0.000 0.000 0.412
#> SRR1003791     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003792     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003793     1  0.0703      0.915 0.976 0.000 0.000 0.000 0.024
#> SRR1003794     1  0.1121      0.902 0.956 0.000 0.000 0.000 0.044
#> SRR1003795     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003796     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003797     1  0.3534      0.667 0.744 0.000 0.000 0.000 0.256
#> SRR1003798     1  0.1732      0.874 0.920 0.000 0.000 0.000 0.080
#> SRR1003799     1  0.3913      0.512 0.676 0.000 0.000 0.000 0.324
#> SRR1003800     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003801     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003802     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003803     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003804     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003805     1  0.2127      0.850 0.892 0.000 0.000 0.000 0.108
#> SRR1003806     1  0.0290      0.922 0.992 0.000 0.000 0.000 0.008
#> SRR1003807     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003809     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003808     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003810     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003811     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003812     1  0.1671      0.878 0.924 0.000 0.000 0.000 0.076
#> SRR1003813     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003814     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003815     1  0.0290      0.922 0.992 0.000 0.000 0.000 0.008
#> SRR1003816     1  0.4074      0.410 0.636 0.000 0.000 0.000 0.364
#> SRR1003817     1  0.0404      0.920 0.988 0.000 0.000 0.000 0.012
#> SRR1003818     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003819     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003820     1  0.3983      0.480 0.660 0.000 0.000 0.000 0.340
#> SRR1003821     5  0.4242      0.297 0.428 0.000 0.000 0.000 0.572
#> SRR1003822     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003824     1  0.3177      0.735 0.792 0.000 0.000 0.000 0.208
#> SRR1003823     1  0.3305      0.704 0.776 0.000 0.000 0.000 0.224
#> SRR1003825     1  0.0609      0.916 0.980 0.000 0.000 0.000 0.020
#> SRR1003826     1  0.3039      0.750 0.808 0.000 0.000 0.000 0.192
#> SRR1003827     1  0.0510      0.918 0.984 0.000 0.000 0.000 0.016
#> SRR1003828     1  0.0162      0.924 0.996 0.000 0.000 0.000 0.004
#> SRR1003829     1  0.0609      0.917 0.980 0.000 0.000 0.000 0.020
#> SRR1003830     5  0.1410      0.695 0.060 0.000 0.000 0.000 0.940
#> SRR1003831     1  0.2179      0.843 0.888 0.000 0.000 0.000 0.112
#> SRR1003832     1  0.4138      0.371 0.616 0.000 0.000 0.000 0.384
#> SRR1003833     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003834     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003836     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003835     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003838     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003837     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003839     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003840     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003841     2  0.0162      0.996 0.000 0.996 0.004 0.000 0.000
#> SRR1003842     1  0.3837      0.556 0.692 0.000 0.000 0.000 0.308
#> SRR1003844     1  0.1478      0.889 0.936 0.000 0.000 0.000 0.064
#> SRR1003845     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003846     5  0.1341      0.699 0.056 0.000 0.000 0.000 0.944
#> SRR1003847     1  0.1121      0.902 0.956 0.000 0.000 0.000 0.044
#> SRR1003848     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003849     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003850     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003851     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003852     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003853     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003854     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003843     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003855     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003856     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003857     1  0.1043      0.905 0.960 0.000 0.000 0.000 0.040
#> SRR1003858     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003859     1  0.4074      0.398 0.636 0.000 0.000 0.000 0.364
#> SRR1003860     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003861     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003862     1  0.3796      0.582 0.700 0.000 0.000 0.000 0.300
#> SRR1003863     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003864     1  0.0290      0.923 0.992 0.000 0.000 0.000 0.008
#> SRR1003865     1  0.0000      0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1003866     1  0.0162      0.924 0.996 0.000 0.000 0.000 0.004
#> SRR1003867     1  0.2929      0.772 0.820 0.000 0.000 0.000 0.180

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1   p2   p3    p4    p5    p6
#> SRR1003755     5  0.0000     0.6754 0.000 0.00 0.00 0.000 1.000 0.000
#> SRR1003756     5  0.0000     0.6754 0.000 0.00 0.00 0.000 1.000 0.000
#> SRR1003757     5  0.0000     0.6754 0.000 0.00 0.00 0.000 1.000 0.000
#> SRR1003758     5  0.0000     0.6754 0.000 0.00 0.00 0.000 1.000 0.000
#> SRR1003759     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003760     6  0.0000     0.9994 0.000 0.00 0.00 0.000 0.000 1.000
#> SRR1003761     6  0.0000     0.9994 0.000 0.00 0.00 0.000 0.000 1.000
#> SRR1003762     6  0.0000     0.9994 0.000 0.00 0.00 0.000 0.000 1.000
#> SRR1003763     6  0.0000     0.9994 0.000 0.00 0.00 0.000 0.000 1.000
#> SRR1003764     6  0.0000     0.9994 0.000 0.00 0.00 0.000 0.000 1.000
#> SRR1003765     4  0.3797     0.7144 0.000 0.00 0.42 0.580 0.000 0.000
#> SRR1003766     2  0.3797     1.0000 0.000 0.58 0.42 0.000 0.000 0.000
#> SRR1003767     3  0.3797     1.0000 0.000 0.00 0.58 0.420 0.000 0.000
#> SRR1003768     2  0.3797     1.0000 0.000 0.58 0.42 0.000 0.000 0.000
#> SRR1003769     2  0.3797     1.0000 0.000 0.58 0.42 0.000 0.000 0.000
#> SRR1003770     4  0.3309     0.7561 0.000 0.00 0.28 0.720 0.000 0.000
#> SRR1003771     3  0.3797     1.0000 0.000 0.00 0.58 0.420 0.000 0.000
#> SRR1003773     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003772     1  0.3727     0.3415 0.612 0.00 0.00 0.000 0.388 0.000
#> SRR1003774     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003775     5  0.3684     0.3994 0.372 0.00 0.00 0.000 0.628 0.000
#> SRR1003776     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003777     1  0.0260     0.9176 0.992 0.00 0.00 0.000 0.008 0.000
#> SRR1003778     1  0.5054     0.0794 0.504 0.42 0.00 0.000 0.000 0.076
#> SRR1003779     1  0.2969     0.7031 0.776 0.00 0.00 0.000 0.224 0.000
#> SRR1003780     6  0.0146     0.9960 0.000 0.00 0.00 0.004 0.000 0.996
#> SRR1003781     1  0.0260     0.9174 0.992 0.00 0.00 0.000 0.008 0.000
#> SRR1003784     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003785     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003786     5  0.0713     0.6942 0.028 0.00 0.00 0.000 0.972 0.000
#> SRR1003783     5  0.2527     0.5906 0.168 0.00 0.00 0.000 0.832 0.000
#> SRR1003787     1  0.2883     0.7192 0.788 0.00 0.00 0.000 0.212 0.000
#> SRR1003788     1  0.2300     0.8034 0.856 0.00 0.00 0.000 0.144 0.000
#> SRR1003789     6  0.0000     0.9994 0.000 0.00 0.00 0.000 0.000 1.000
#> SRR1003790     1  0.3782     0.2551 0.588 0.00 0.00 0.000 0.412 0.000
#> SRR1003791     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003792     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003793     1  0.0632     0.9104 0.976 0.00 0.00 0.000 0.024 0.000
#> SRR1003794     1  0.1007     0.8975 0.956 0.00 0.00 0.000 0.044 0.000
#> SRR1003795     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003796     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003797     1  0.3175     0.6636 0.744 0.00 0.00 0.000 0.256 0.000
#> SRR1003798     1  0.1556     0.8694 0.920 0.00 0.00 0.000 0.080 0.000
#> SRR1003799     1  0.3515     0.5105 0.676 0.00 0.00 0.000 0.324 0.000
#> SRR1003800     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003801     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003802     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003803     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003804     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003805     1  0.1910     0.8446 0.892 0.00 0.00 0.000 0.108 0.000
#> SRR1003806     1  0.0260     0.9176 0.992 0.00 0.00 0.000 0.008 0.000
#> SRR1003807     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003809     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003808     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003810     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003811     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003812     1  0.1501     0.8728 0.924 0.00 0.00 0.000 0.076 0.000
#> SRR1003813     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003814     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003815     1  0.0260     0.9177 0.992 0.00 0.00 0.000 0.008 0.000
#> SRR1003816     1  0.3659     0.4082 0.636 0.00 0.00 0.000 0.364 0.000
#> SRR1003817     1  0.0363     0.9157 0.988 0.00 0.00 0.000 0.012 0.000
#> SRR1003818     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003819     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003820     1  0.3578     0.4775 0.660 0.00 0.00 0.000 0.340 0.000
#> SRR1003821     5  0.3810     0.2952 0.428 0.00 0.00 0.000 0.572 0.000
#> SRR1003822     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003824     1  0.2854     0.7317 0.792 0.00 0.00 0.000 0.208 0.000
#> SRR1003823     1  0.2969     0.6997 0.776 0.00 0.00 0.000 0.224 0.000
#> SRR1003825     1  0.0547     0.9111 0.980 0.00 0.00 0.000 0.020 0.000
#> SRR1003826     1  0.2730     0.7452 0.808 0.00 0.00 0.000 0.192 0.000
#> SRR1003827     1  0.0458     0.9136 0.984 0.00 0.00 0.000 0.016 0.000
#> SRR1003828     1  0.0146     0.9193 0.996 0.00 0.00 0.000 0.004 0.000
#> SRR1003829     1  0.0547     0.9121 0.980 0.00 0.00 0.000 0.020 0.000
#> SRR1003830     5  0.1267     0.6905 0.060 0.00 0.00 0.000 0.940 0.000
#> SRR1003831     1  0.1957     0.8384 0.888 0.00 0.00 0.000 0.112 0.000
#> SRR1003832     1  0.3717     0.3715 0.616 0.00 0.00 0.000 0.384 0.000
#> SRR1003833     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003834     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003836     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003835     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003838     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003837     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003839     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003840     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003841     6  0.0000     0.9994 0.000 0.00 0.00 0.000 0.000 1.000
#> SRR1003842     1  0.3446     0.5547 0.692 0.00 0.00 0.000 0.308 0.000
#> SRR1003844     1  0.1327     0.8838 0.936 0.00 0.00 0.000 0.064 0.000
#> SRR1003845     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003846     5  0.1204     0.6941 0.056 0.00 0.00 0.000 0.944 0.000
#> SRR1003847     1  0.1007     0.8969 0.956 0.00 0.00 0.000 0.044 0.000
#> SRR1003848     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003849     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003850     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003851     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003852     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003853     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003854     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003843     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003855     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003856     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003857     1  0.0937     0.9003 0.960 0.00 0.00 0.000 0.040 0.000
#> SRR1003858     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003859     1  0.3659     0.3965 0.636 0.00 0.00 0.000 0.364 0.000
#> SRR1003860     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003861     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003862     1  0.3409     0.5802 0.700 0.00 0.00 0.000 0.300 0.000
#> SRR1003863     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003864     1  0.0260     0.9179 0.992 0.00 0.00 0.000 0.008 0.000
#> SRR1003865     1  0.0000     0.9208 1.000 0.00 0.00 0.000 0.000 0.000
#> SRR1003866     1  0.0146     0.9193 0.996 0.00 0.00 0.000 0.004 0.000
#> SRR1003867     1  0.2631     0.7674 0.820 0.00 0.00 0.000 0.180 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 9166 rows and 112 columns.
#>   Top rows (917, 1834, 2750, 3666, 4583) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.890           0.934       0.972         0.3853 0.622   0.622
#> 3 3 0.503           0.777       0.861         0.5803 0.732   0.569
#> 4 4 0.349           0.584       0.705         0.0492 0.964   0.904
#> 5 5 0.438           0.597       0.676         0.1127 0.814   0.546
#> 6 6 0.517           0.621       0.740         0.0648 0.905   0.681

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1003755     2  0.6712      0.791 0.176 0.824
#> SRR1003756     2  0.6712      0.791 0.176 0.824
#> SRR1003757     2  0.8955      0.575 0.312 0.688
#> SRR1003758     2  0.8955      0.575 0.312 0.688
#> SRR1003759     1  0.8081      0.670 0.752 0.248
#> SRR1003760     2  0.0000      0.956 0.000 1.000
#> SRR1003761     2  0.0000      0.956 0.000 1.000
#> SRR1003762     2  0.0000      0.956 0.000 1.000
#> SRR1003763     2  0.0000      0.956 0.000 1.000
#> SRR1003764     2  0.0000      0.956 0.000 1.000
#> SRR1003765     2  0.0000      0.956 0.000 1.000
#> SRR1003766     2  0.0000      0.956 0.000 1.000
#> SRR1003767     2  0.0000      0.956 0.000 1.000
#> SRR1003768     2  0.0000      0.956 0.000 1.000
#> SRR1003769     2  0.0000      0.956 0.000 1.000
#> SRR1003770     2  0.0000      0.956 0.000 1.000
#> SRR1003771     2  0.0000      0.956 0.000 1.000
#> SRR1003773     2  0.0000      0.956 0.000 1.000
#> SRR1003772     1  0.0000      0.974 1.000 0.000
#> SRR1003774     1  0.0000      0.974 1.000 0.000
#> SRR1003775     1  0.0000      0.974 1.000 0.000
#> SRR1003776     1  0.0000      0.974 1.000 0.000
#> SRR1003777     1  0.0000      0.974 1.000 0.000
#> SRR1003778     2  0.0000      0.956 0.000 1.000
#> SRR1003779     1  0.0000      0.974 1.000 0.000
#> SRR1003780     2  0.0000      0.956 0.000 1.000
#> SRR1003781     1  0.0000      0.974 1.000 0.000
#> SRR1003784     1  0.9323      0.462 0.652 0.348
#> SRR1003785     2  0.0000      0.956 0.000 1.000
#> SRR1003786     1  0.0000      0.974 1.000 0.000
#> SRR1003783     1  0.0000      0.974 1.000 0.000
#> SRR1003787     1  0.0000      0.974 1.000 0.000
#> SRR1003788     1  0.0000      0.974 1.000 0.000
#> SRR1003789     2  0.0000      0.956 0.000 1.000
#> SRR1003790     1  0.0000      0.974 1.000 0.000
#> SRR1003791     1  0.0376      0.971 0.996 0.004
#> SRR1003792     1  0.0000      0.974 1.000 0.000
#> SRR1003793     1  0.0000      0.974 1.000 0.000
#> SRR1003794     1  0.0000      0.974 1.000 0.000
#> SRR1003795     2  0.0672      0.950 0.008 0.992
#> SRR1003796     2  0.0000      0.956 0.000 1.000
#> SRR1003797     1  0.0000      0.974 1.000 0.000
#> SRR1003798     1  0.0000      0.974 1.000 0.000
#> SRR1003799     1  0.0000      0.974 1.000 0.000
#> SRR1003800     1  0.0000      0.974 1.000 0.000
#> SRR1003801     1  0.0000      0.974 1.000 0.000
#> SRR1003802     1  0.1414      0.957 0.980 0.020
#> SRR1003803     1  0.0000      0.974 1.000 0.000
#> SRR1003804     1  0.0000      0.974 1.000 0.000
#> SRR1003805     1  0.0000      0.974 1.000 0.000
#> SRR1003806     1  0.0000      0.974 1.000 0.000
#> SRR1003807     1  0.0000      0.974 1.000 0.000
#> SRR1003809     1  0.0938      0.964 0.988 0.012
#> SRR1003808     1  0.7815      0.700 0.768 0.232
#> SRR1003810     1  0.0000      0.974 1.000 0.000
#> SRR1003811     1  0.0000      0.974 1.000 0.000
#> SRR1003812     1  0.0000      0.974 1.000 0.000
#> SRR1003813     2  0.0000      0.956 0.000 1.000
#> SRR1003814     1  0.0000      0.974 1.000 0.000
#> SRR1003815     1  0.0000      0.974 1.000 0.000
#> SRR1003816     1  0.0000      0.974 1.000 0.000
#> SRR1003817     1  0.0000      0.974 1.000 0.000
#> SRR1003818     1  0.0000      0.974 1.000 0.000
#> SRR1003819     1  0.0000      0.974 1.000 0.000
#> SRR1003820     1  0.0000      0.974 1.000 0.000
#> SRR1003821     1  0.0000      0.974 1.000 0.000
#> SRR1003822     1  0.6438      0.797 0.836 0.164
#> SRR1003824     1  0.0000      0.974 1.000 0.000
#> SRR1003823     1  0.0000      0.974 1.000 0.000
#> SRR1003825     1  0.0000      0.974 1.000 0.000
#> SRR1003826     1  0.0000      0.974 1.000 0.000
#> SRR1003827     1  0.0000      0.974 1.000 0.000
#> SRR1003828     1  0.0000      0.974 1.000 0.000
#> SRR1003829     1  0.0000      0.974 1.000 0.000
#> SRR1003830     1  0.0000      0.974 1.000 0.000
#> SRR1003831     1  0.0000      0.974 1.000 0.000
#> SRR1003832     1  0.0000      0.974 1.000 0.000
#> SRR1003833     1  0.0000      0.974 1.000 0.000
#> SRR1003834     1  0.0000      0.974 1.000 0.000
#> SRR1003836     1  0.0000      0.974 1.000 0.000
#> SRR1003835     1  0.0000      0.974 1.000 0.000
#> SRR1003838     2  0.0000      0.956 0.000 1.000
#> SRR1003837     1  0.0000      0.974 1.000 0.000
#> SRR1003839     1  0.0000      0.974 1.000 0.000
#> SRR1003840     1  0.1184      0.961 0.984 0.016
#> SRR1003841     2  0.0000      0.956 0.000 1.000
#> SRR1003842     1  0.0000      0.974 1.000 0.000
#> SRR1003844     1  0.0000      0.974 1.000 0.000
#> SRR1003845     1  0.0376      0.971 0.996 0.004
#> SRR1003846     1  0.0000      0.974 1.000 0.000
#> SRR1003847     1  0.0000      0.974 1.000 0.000
#> SRR1003848     1  0.9922      0.163 0.552 0.448
#> SRR1003849     2  0.0000      0.956 0.000 1.000
#> SRR1003850     1  0.0000      0.974 1.000 0.000
#> SRR1003851     2  0.6148      0.820 0.152 0.848
#> SRR1003852     1  0.0000      0.974 1.000 0.000
#> SRR1003853     1  0.0000      0.974 1.000 0.000
#> SRR1003854     1  0.0000      0.974 1.000 0.000
#> SRR1003843     1  0.3584      0.912 0.932 0.068
#> SRR1003855     1  0.0000      0.974 1.000 0.000
#> SRR1003856     1  0.8327      0.641 0.736 0.264
#> SRR1003857     1  0.0000      0.974 1.000 0.000
#> SRR1003858     1  0.0000      0.974 1.000 0.000
#> SRR1003859     1  0.0000      0.974 1.000 0.000
#> SRR1003860     1  0.0000      0.974 1.000 0.000
#> SRR1003861     1  0.0000      0.974 1.000 0.000
#> SRR1003862     1  0.0000      0.974 1.000 0.000
#> SRR1003863     1  0.0000      0.974 1.000 0.000
#> SRR1003864     1  0.0000      0.974 1.000 0.000
#> SRR1003865     1  0.7376      0.735 0.792 0.208
#> SRR1003866     1  0.0000      0.974 1.000 0.000
#> SRR1003867     1  0.0000      0.974 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1003755     2  0.6031     0.7752 0.096 0.788 0.116
#> SRR1003756     2  0.6037     0.7728 0.100 0.788 0.112
#> SRR1003757     2  0.7979     0.5923 0.100 0.628 0.272
#> SRR1003758     2  0.7979     0.5923 0.100 0.628 0.272
#> SRR1003759     3  0.3610     0.8434 0.096 0.016 0.888
#> SRR1003760     2  0.0592     0.8726 0.000 0.988 0.012
#> SRR1003761     2  0.0592     0.8726 0.000 0.988 0.012
#> SRR1003762     2  0.0000     0.8733 0.000 1.000 0.000
#> SRR1003763     2  0.0000     0.8733 0.000 1.000 0.000
#> SRR1003764     2  0.0000     0.8733 0.000 1.000 0.000
#> SRR1003765     2  0.1289     0.8697 0.000 0.968 0.032
#> SRR1003766     2  0.1289     0.8697 0.000 0.968 0.032
#> SRR1003767     2  0.1289     0.8697 0.000 0.968 0.032
#> SRR1003768     2  0.1289     0.8697 0.000 0.968 0.032
#> SRR1003769     2  0.1289     0.8697 0.000 0.968 0.032
#> SRR1003770     2  0.1289     0.8697 0.000 0.968 0.032
#> SRR1003771     2  0.1289     0.8697 0.000 0.968 0.032
#> SRR1003773     2  0.3995     0.8471 0.016 0.868 0.116
#> SRR1003772     1  0.0000     0.8743 1.000 0.000 0.000
#> SRR1003774     1  0.6295    -0.1422 0.528 0.000 0.472
#> SRR1003775     1  0.0592     0.8746 0.988 0.000 0.012
#> SRR1003776     1  0.2537     0.8492 0.920 0.000 0.080
#> SRR1003777     1  0.0237     0.8755 0.996 0.000 0.004
#> SRR1003778     2  0.3995     0.8471 0.016 0.868 0.116
#> SRR1003779     1  0.0592     0.8746 0.988 0.000 0.012
#> SRR1003780     2  0.0000     0.8733 0.000 1.000 0.000
#> SRR1003781     3  0.3551     0.8612 0.132 0.000 0.868
#> SRR1003784     3  0.5004     0.7988 0.088 0.072 0.840
#> SRR1003785     2  0.6407     0.7351 0.028 0.700 0.272
#> SRR1003786     1  0.0592     0.8747 0.988 0.000 0.012
#> SRR1003783     1  0.0000     0.8743 1.000 0.000 0.000
#> SRR1003787     1  0.3038     0.8302 0.896 0.000 0.104
#> SRR1003788     3  0.5016     0.8231 0.240 0.000 0.760
#> SRR1003789     2  0.0000     0.8733 0.000 1.000 0.000
#> SRR1003790     1  0.0747     0.8735 0.984 0.000 0.016
#> SRR1003791     3  0.3412     0.8621 0.124 0.000 0.876
#> SRR1003792     1  0.2878     0.8381 0.904 0.000 0.096
#> SRR1003793     1  0.1289     0.8733 0.968 0.000 0.032
#> SRR1003794     1  0.0747     0.8697 0.984 0.000 0.016
#> SRR1003795     2  0.6487     0.7459 0.032 0.700 0.268
#> SRR1003796     2  0.3995     0.8471 0.016 0.868 0.116
#> SRR1003797     1  0.0237     0.8750 0.996 0.000 0.004
#> SRR1003798     1  0.4796     0.7102 0.780 0.000 0.220
#> SRR1003799     1  0.2165     0.8600 0.936 0.000 0.064
#> SRR1003800     3  0.5621     0.7372 0.308 0.000 0.692
#> SRR1003801     3  0.5785     0.7125 0.332 0.000 0.668
#> SRR1003802     3  0.3267     0.8581 0.116 0.000 0.884
#> SRR1003803     1  0.2711     0.8532 0.912 0.000 0.088
#> SRR1003804     3  0.6045     0.6191 0.380 0.000 0.620
#> SRR1003805     1  0.0747     0.8697 0.984 0.000 0.016
#> SRR1003806     1  0.2261     0.8648 0.932 0.000 0.068
#> SRR1003807     3  0.3482     0.8606 0.128 0.000 0.872
#> SRR1003809     3  0.4233     0.8592 0.160 0.004 0.836
#> SRR1003808     3  0.3850     0.8309 0.088 0.028 0.884
#> SRR1003810     3  0.5810     0.7075 0.336 0.000 0.664
#> SRR1003811     3  0.4842     0.8342 0.224 0.000 0.776
#> SRR1003812     1  0.1031     0.8729 0.976 0.000 0.024
#> SRR1003813     2  0.6954     0.6088 0.028 0.620 0.352
#> SRR1003814     3  0.3686     0.8630 0.140 0.000 0.860
#> SRR1003815     3  0.5363     0.7889 0.276 0.000 0.724
#> SRR1003816     1  0.0000     0.8743 1.000 0.000 0.000
#> SRR1003817     1  0.0237     0.8742 0.996 0.000 0.004
#> SRR1003818     3  0.6308     0.2962 0.492 0.000 0.508
#> SRR1003819     3  0.3619     0.8626 0.136 0.000 0.864
#> SRR1003820     1  0.0424     0.8751 0.992 0.000 0.008
#> SRR1003821     1  0.0237     0.8750 0.996 0.000 0.004
#> SRR1003822     3  0.4628     0.8148 0.088 0.056 0.856
#> SRR1003824     3  0.5291     0.7987 0.268 0.000 0.732
#> SRR1003823     1  0.1031     0.8723 0.976 0.000 0.024
#> SRR1003825     3  0.5397     0.7853 0.280 0.000 0.720
#> SRR1003826     1  0.3686     0.7934 0.860 0.000 0.140
#> SRR1003827     1  0.0237     0.8748 0.996 0.000 0.004
#> SRR1003828     1  0.6295    -0.0799 0.528 0.000 0.472
#> SRR1003829     1  0.0747     0.8753 0.984 0.000 0.016
#> SRR1003830     1  0.0747     0.8697 0.984 0.000 0.016
#> SRR1003831     1  0.4452     0.7343 0.808 0.000 0.192
#> SRR1003832     1  0.1643     0.8724 0.956 0.000 0.044
#> SRR1003833     1  0.4842     0.6834 0.776 0.000 0.224
#> SRR1003834     1  0.5785     0.4371 0.668 0.000 0.332
#> SRR1003836     3  0.4504     0.8486 0.196 0.000 0.804
#> SRR1003835     3  0.5733     0.7064 0.324 0.000 0.676
#> SRR1003838     2  0.6441     0.7307 0.028 0.696 0.276
#> SRR1003837     1  0.2537     0.8497 0.920 0.000 0.080
#> SRR1003839     1  0.6274    -0.0773 0.544 0.000 0.456
#> SRR1003840     3  0.3482     0.8613 0.128 0.000 0.872
#> SRR1003841     2  0.0000     0.8733 0.000 1.000 0.000
#> SRR1003842     1  0.0747     0.8697 0.984 0.000 0.016
#> SRR1003844     1  0.0237     0.8742 0.996 0.000 0.004
#> SRR1003845     3  0.3482     0.8613 0.128 0.000 0.872
#> SRR1003846     1  0.0424     0.8730 0.992 0.000 0.008
#> SRR1003847     1  0.6260    -0.0170 0.552 0.000 0.448
#> SRR1003848     3  0.4357     0.8112 0.080 0.052 0.868
#> SRR1003849     2  0.5772     0.7798 0.024 0.756 0.220
#> SRR1003850     3  0.6062     0.5984 0.384 0.000 0.616
#> SRR1003851     2  0.7366     0.4496 0.032 0.524 0.444
#> SRR1003852     3  0.3412     0.8610 0.124 0.000 0.876
#> SRR1003853     1  0.4887     0.6926 0.772 0.000 0.228
#> SRR1003854     1  0.1643     0.8665 0.956 0.000 0.044
#> SRR1003843     3  0.3129     0.8355 0.088 0.008 0.904
#> SRR1003855     1  0.3619     0.8071 0.864 0.000 0.136
#> SRR1003856     3  0.3966     0.8446 0.100 0.024 0.876
#> SRR1003857     1  0.1529     0.8697 0.960 0.000 0.040
#> SRR1003858     1  0.2959     0.8361 0.900 0.000 0.100
#> SRR1003859     1  0.1411     0.8739 0.964 0.000 0.036
#> SRR1003860     1  0.1411     0.8739 0.964 0.000 0.036
#> SRR1003861     1  0.3686     0.8006 0.860 0.000 0.140
#> SRR1003862     1  0.0237     0.8737 0.996 0.000 0.004
#> SRR1003863     3  0.4796     0.8349 0.220 0.000 0.780
#> SRR1003864     1  0.0000     0.8743 1.000 0.000 0.000
#> SRR1003865     3  0.3461     0.8259 0.076 0.024 0.900
#> SRR1003866     1  0.5988     0.2943 0.632 0.000 0.368
#> SRR1003867     1  0.4399     0.7317 0.812 0.000 0.188

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3 p4
#> SRR1003755     2  0.6310     0.6211 0.068 0.724 0.140 NA
#> SRR1003756     2  0.6329     0.6227 0.068 0.724 0.136 NA
#> SRR1003757     2  0.8236     0.2335 0.096 0.476 0.352 NA
#> SRR1003758     2  0.8252     0.2460 0.088 0.472 0.356 NA
#> SRR1003759     3  0.6926     0.4584 0.048 0.032 0.528 NA
#> SRR1003760     2  0.2466     0.7348 0.000 0.900 0.004 NA
#> SRR1003761     2  0.2737     0.7325 0.000 0.888 0.008 NA
#> SRR1003762     2  0.0188     0.7485 0.000 0.996 0.000 NA
#> SRR1003763     2  0.0592     0.7479 0.000 0.984 0.000 NA
#> SRR1003764     2  0.0469     0.7481 0.000 0.988 0.000 NA
#> SRR1003765     2  0.4164     0.7184 0.000 0.736 0.000 NA
#> SRR1003766     2  0.4164     0.7184 0.000 0.736 0.000 NA
#> SRR1003767     2  0.4164     0.7184 0.000 0.736 0.000 NA
#> SRR1003768     2  0.4164     0.7184 0.000 0.736 0.000 NA
#> SRR1003769     2  0.4164     0.7184 0.000 0.736 0.000 NA
#> SRR1003770     2  0.4164     0.7184 0.000 0.736 0.000 NA
#> SRR1003771     2  0.4164     0.7184 0.000 0.736 0.000 NA
#> SRR1003773     2  0.8347     0.4367 0.040 0.484 0.276 NA
#> SRR1003772     1  0.2214     0.7804 0.928 0.000 0.028 NA
#> SRR1003774     1  0.5143     0.2797 0.540 0.000 0.456 NA
#> SRR1003775     1  0.1284     0.7818 0.964 0.000 0.024 NA
#> SRR1003776     1  0.3528     0.7443 0.808 0.000 0.192 NA
#> SRR1003777     1  0.2411     0.7865 0.920 0.000 0.040 NA
#> SRR1003778     2  0.8347     0.4367 0.040 0.484 0.276 NA
#> SRR1003779     1  0.2500     0.7835 0.916 0.000 0.044 NA
#> SRR1003780     2  0.0000     0.7483 0.000 1.000 0.000 NA
#> SRR1003781     3  0.7265     0.5651 0.140 0.004 0.512 NA
#> SRR1003784     3  0.7376     0.4913 0.120 0.060 0.636 NA
#> SRR1003785     3  0.8841    -0.2316 0.060 0.352 0.388 NA
#> SRR1003786     1  0.1284     0.7882 0.964 0.000 0.024 NA
#> SRR1003783     1  0.2214     0.7804 0.928 0.000 0.028 NA
#> SRR1003787     1  0.5631     0.6732 0.700 0.000 0.224 NA
#> SRR1003788     3  0.4837     0.4021 0.348 0.004 0.648 NA
#> SRR1003789     2  0.0188     0.7485 0.000 0.996 0.000 NA
#> SRR1003790     1  0.1411     0.7814 0.960 0.000 0.020 NA
#> SRR1003791     3  0.6829     0.6068 0.136 0.004 0.604 NA
#> SRR1003792     1  0.5690     0.7033 0.716 0.000 0.168 NA
#> SRR1003793     1  0.2197     0.7830 0.928 0.000 0.048 NA
#> SRR1003794     1  0.2060     0.7891 0.932 0.000 0.052 NA
#> SRR1003795     2  0.9213     0.2411 0.096 0.404 0.292 NA
#> SRR1003796     2  0.8295     0.4441 0.040 0.492 0.276 NA
#> SRR1003797     1  0.2844     0.7871 0.900 0.000 0.052 NA
#> SRR1003798     1  0.5389     0.5491 0.660 0.000 0.308 NA
#> SRR1003799     1  0.4546     0.6757 0.732 0.000 0.256 NA
#> SRR1003800     3  0.5947     0.3543 0.384 0.000 0.572 NA
#> SRR1003801     3  0.4950     0.3169 0.376 0.000 0.620 NA
#> SRR1003802     3  0.6752     0.5699 0.160 0.012 0.648 NA
#> SRR1003803     1  0.4197     0.7517 0.808 0.000 0.156 NA
#> SRR1003804     3  0.5971     0.2429 0.428 0.000 0.532 NA
#> SRR1003805     1  0.1042     0.7736 0.972 0.000 0.008 NA
#> SRR1003806     1  0.4387     0.7122 0.776 0.000 0.200 NA
#> SRR1003807     3  0.6179     0.5441 0.276 0.004 0.644 NA
#> SRR1003809     3  0.5434     0.5993 0.188 0.000 0.728 NA
#> SRR1003808     3  0.6815     0.4542 0.056 0.020 0.524 NA
#> SRR1003810     3  0.5070     0.3363 0.372 0.000 0.620 NA
#> SRR1003811     3  0.4098     0.5910 0.204 0.000 0.784 NA
#> SRR1003812     1  0.2861     0.7849 0.888 0.000 0.096 NA
#> SRR1003813     3  0.8776    -0.1469 0.060 0.320 0.424 NA
#> SRR1003814     3  0.7385     0.5416 0.196 0.000 0.508 NA
#> SRR1003815     3  0.4387     0.5711 0.236 0.000 0.752 NA
#> SRR1003816     1  0.2124     0.7812 0.932 0.000 0.028 NA
#> SRR1003817     1  0.0937     0.7811 0.976 0.000 0.012 NA
#> SRR1003818     3  0.6555     0.1473 0.444 0.000 0.480 NA
#> SRR1003819     3  0.7048     0.5872 0.184 0.004 0.592 NA
#> SRR1003820     1  0.3009     0.7869 0.892 0.000 0.052 NA
#> SRR1003821     1  0.1624     0.7876 0.952 0.000 0.028 NA
#> SRR1003822     3  0.7123     0.5160 0.120 0.052 0.656 NA
#> SRR1003824     3  0.4635     0.5350 0.268 0.000 0.720 NA
#> SRR1003823     1  0.1520     0.7776 0.956 0.000 0.020 NA
#> SRR1003825     3  0.5203     0.4100 0.348 0.000 0.636 NA
#> SRR1003826     1  0.5998     0.6294 0.684 0.000 0.200 NA
#> SRR1003827     1  0.2408     0.7826 0.920 0.000 0.036 NA
#> SRR1003828     1  0.5691     0.3059 0.564 0.000 0.408 NA
#> SRR1003829     1  0.2586     0.7813 0.912 0.000 0.040 NA
#> SRR1003830     1  0.1004     0.7716 0.972 0.000 0.004 NA
#> SRR1003831     1  0.4605     0.5889 0.664 0.000 0.336 NA
#> SRR1003832     1  0.2949     0.7776 0.888 0.000 0.088 NA
#> SRR1003833     1  0.5313     0.5001 0.608 0.000 0.376 NA
#> SRR1003834     1  0.5203     0.4020 0.576 0.000 0.416 NA
#> SRR1003836     3  0.4891     0.4691 0.308 0.000 0.680 NA
#> SRR1003835     3  0.5888     0.2176 0.424 0.000 0.540 NA
#> SRR1003838     3  0.8891    -0.2195 0.064 0.348 0.388 NA
#> SRR1003837     1  0.4328     0.7030 0.748 0.000 0.244 NA
#> SRR1003839     1  0.5300     0.4130 0.580 0.000 0.408 NA
#> SRR1003840     3  0.6663     0.5505 0.088 0.008 0.596 NA
#> SRR1003841     2  0.0469     0.7485 0.000 0.988 0.000 NA
#> SRR1003842     1  0.0657     0.7735 0.984 0.000 0.004 NA
#> SRR1003844     1  0.1388     0.7913 0.960 0.000 0.028 NA
#> SRR1003845     3  0.6644     0.5989 0.124 0.004 0.624 NA
#> SRR1003846     1  0.1297     0.7791 0.964 0.000 0.016 NA
#> SRR1003847     1  0.5894     0.3412 0.568 0.000 0.392 NA
#> SRR1003848     3  0.7105     0.5213 0.120 0.060 0.664 NA
#> SRR1003849     2  0.8613     0.3038 0.044 0.396 0.360 NA
#> SRR1003850     3  0.5686     0.3954 0.376 0.000 0.592 NA
#> SRR1003851     3  0.8929    -0.0026 0.080 0.260 0.452 NA
#> SRR1003852     3  0.6946     0.5746 0.120 0.004 0.564 NA
#> SRR1003853     1  0.5108     0.6258 0.672 0.000 0.308 NA
#> SRR1003854     1  0.3166     0.7759 0.868 0.000 0.116 NA
#> SRR1003843     3  0.7043     0.5873 0.124 0.012 0.592 NA
#> SRR1003855     1  0.4713     0.5675 0.640 0.000 0.360 NA
#> SRR1003856     3  0.6563     0.5585 0.124 0.036 0.696 NA
#> SRR1003857     1  0.3853     0.7639 0.820 0.000 0.160 NA
#> SRR1003858     1  0.4103     0.6927 0.744 0.000 0.256 NA
#> SRR1003859     1  0.2546     0.7822 0.912 0.000 0.060 NA
#> SRR1003860     1  0.2443     0.7822 0.916 0.000 0.060 NA
#> SRR1003861     1  0.4477     0.6320 0.688 0.000 0.312 NA
#> SRR1003862     1  0.0937     0.7800 0.976 0.000 0.012 NA
#> SRR1003863     3  0.4175     0.5966 0.200 0.000 0.784 NA
#> SRR1003864     1  0.2675     0.7867 0.908 0.000 0.048 NA
#> SRR1003865     3  0.6557     0.5861 0.104 0.024 0.676 NA
#> SRR1003866     1  0.7023     0.3904 0.544 0.000 0.312 NA
#> SRR1003867     1  0.5823     0.6385 0.704 0.000 0.176 NA

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1003755     2  0.6893     0.5296 0.060 0.620 0.172 0.128 0.020
#> SRR1003756     2  0.6885     0.5320 0.060 0.620 0.176 0.124 0.020
#> SRR1003757     2  0.8184     0.2742 0.072 0.464 0.204 0.228 0.032
#> SRR1003758     2  0.8184     0.2742 0.072 0.464 0.204 0.228 0.032
#> SRR1003759     4  0.7939     0.3901 0.064 0.016 0.240 0.456 0.224
#> SRR1003760     2  0.0960     0.7420 0.000 0.972 0.008 0.004 0.016
#> SRR1003761     2  0.1179     0.7396 0.000 0.964 0.016 0.004 0.016
#> SRR1003762     2  0.0609     0.7423 0.000 0.980 0.000 0.000 0.020
#> SRR1003763     2  0.0162     0.7480 0.000 0.996 0.000 0.000 0.004
#> SRR1003764     2  0.0290     0.7478 0.000 0.992 0.000 0.000 0.008
#> SRR1003765     5  0.3684     0.9990 0.000 0.280 0.000 0.000 0.720
#> SRR1003766     5  0.3684     0.9990 0.000 0.280 0.000 0.000 0.720
#> SRR1003767     5  0.3707     0.9943 0.000 0.284 0.000 0.000 0.716
#> SRR1003768     5  0.3684     0.9990 0.000 0.280 0.000 0.000 0.720
#> SRR1003769     5  0.3684     0.9990 0.000 0.280 0.000 0.000 0.720
#> SRR1003770     5  0.3684     0.9990 0.000 0.280 0.000 0.000 0.720
#> SRR1003771     5  0.3684     0.9990 0.000 0.280 0.000 0.000 0.720
#> SRR1003773     3  0.4387     0.5439 0.000 0.348 0.640 0.012 0.000
#> SRR1003772     1  0.2575     0.7703 0.904 0.000 0.044 0.016 0.036
#> SRR1003774     4  0.4929     0.4003 0.324 0.000 0.024 0.640 0.012
#> SRR1003775     1  0.2618     0.7810 0.900 0.000 0.012 0.052 0.036
#> SRR1003776     1  0.4442     0.5843 0.676 0.000 0.016 0.304 0.004
#> SRR1003777     1  0.3149     0.7744 0.872 0.000 0.036 0.020 0.072
#> SRR1003778     3  0.4402     0.5381 0.000 0.352 0.636 0.012 0.000
#> SRR1003779     1  0.3204     0.7816 0.872 0.000 0.032 0.064 0.032
#> SRR1003780     2  0.0609     0.7423 0.000 0.980 0.000 0.000 0.020
#> SRR1003781     4  0.7568     0.4673 0.092 0.000 0.200 0.496 0.212
#> SRR1003784     3  0.5088     0.6147 0.008 0.040 0.664 0.284 0.004
#> SRR1003785     3  0.5030     0.6847 0.004 0.236 0.688 0.072 0.000
#> SRR1003786     1  0.2270     0.7960 0.916 0.000 0.012 0.052 0.020
#> SRR1003783     1  0.2684     0.7733 0.900 0.000 0.044 0.024 0.032
#> SRR1003787     1  0.6645     0.5053 0.588 0.000 0.068 0.244 0.100
#> SRR1003788     4  0.4232     0.6071 0.172 0.004 0.044 0.776 0.004
#> SRR1003789     2  0.0290     0.7474 0.000 0.992 0.000 0.000 0.008
#> SRR1003790     1  0.2208     0.7842 0.908 0.000 0.020 0.072 0.000
#> SRR1003791     4  0.7410     0.4654 0.084 0.004 0.232 0.528 0.152
#> SRR1003792     1  0.6310     0.6162 0.632 0.000 0.052 0.200 0.116
#> SRR1003793     1  0.2110     0.7849 0.912 0.000 0.016 0.072 0.000
#> SRR1003794     1  0.2722     0.7801 0.872 0.000 0.020 0.108 0.000
#> SRR1003795     3  0.5588     0.5556 0.024 0.296 0.632 0.044 0.004
#> SRR1003796     3  0.4402     0.5381 0.000 0.352 0.636 0.012 0.000
#> SRR1003797     1  0.3792     0.7829 0.840 0.000 0.056 0.068 0.036
#> SRR1003798     4  0.5594     0.2141 0.432 0.000 0.040 0.512 0.016
#> SRR1003799     1  0.5256     0.2008 0.540 0.000 0.032 0.420 0.008
#> SRR1003800     4  0.5171     0.5799 0.216 0.000 0.076 0.696 0.012
#> SRR1003801     4  0.3965     0.5938 0.180 0.000 0.028 0.784 0.008
#> SRR1003802     3  0.6054     0.2785 0.048 0.024 0.540 0.380 0.008
#> SRR1003803     1  0.4378     0.7004 0.740 0.000 0.040 0.216 0.004
#> SRR1003804     4  0.4782     0.5675 0.236 0.000 0.048 0.708 0.008
#> SRR1003805     1  0.1106     0.7856 0.964 0.000 0.012 0.024 0.000
#> SRR1003806     1  0.5189     0.3334 0.584 0.000 0.028 0.376 0.012
#> SRR1003807     4  0.5292     0.5756 0.124 0.008 0.132 0.724 0.012
#> SRR1003809     4  0.5642     0.3283 0.064 0.000 0.312 0.608 0.016
#> SRR1003808     4  0.7832     0.3457 0.052 0.016 0.252 0.456 0.224
#> SRR1003810     4  0.4275     0.6127 0.148 0.000 0.056 0.784 0.012
#> SRR1003811     4  0.5594     0.4439 0.076 0.000 0.252 0.652 0.020
#> SRR1003812     1  0.3685     0.7585 0.824 0.000 0.028 0.132 0.016
#> SRR1003813     3  0.5301     0.6900 0.004 0.216 0.676 0.104 0.000
#> SRR1003814     4  0.7239     0.4957 0.092 0.000 0.164 0.548 0.196
#> SRR1003815     4  0.5737     0.5037 0.092 0.000 0.196 0.676 0.036
#> SRR1003816     1  0.2575     0.7703 0.904 0.000 0.044 0.016 0.036
#> SRR1003817     1  0.0727     0.7802 0.980 0.000 0.004 0.004 0.012
#> SRR1003818     4  0.7899     0.3510 0.344 0.000 0.096 0.376 0.184
#> SRR1003819     4  0.7212     0.5182 0.088 0.008 0.184 0.576 0.144
#> SRR1003820     1  0.4310     0.7649 0.808 0.000 0.052 0.052 0.088
#> SRR1003821     1  0.1904     0.7893 0.936 0.000 0.020 0.028 0.016
#> SRR1003822     3  0.5187     0.5896 0.008 0.040 0.644 0.304 0.004
#> SRR1003824     4  0.5623     0.5072 0.104 0.000 0.204 0.672 0.020
#> SRR1003823     1  0.1493     0.7882 0.948 0.000 0.024 0.028 0.000
#> SRR1003825     4  0.4715     0.6163 0.164 0.000 0.056 0.756 0.024
#> SRR1003826     1  0.6495     0.4969 0.600 0.000 0.040 0.216 0.144
#> SRR1003827     1  0.3706     0.7811 0.844 0.000 0.040 0.076 0.040
#> SRR1003828     4  0.5248     0.3899 0.348 0.000 0.036 0.604 0.012
#> SRR1003829     1  0.3388     0.7755 0.860 0.000 0.020 0.064 0.056
#> SRR1003830     1  0.1012     0.7831 0.968 0.000 0.012 0.020 0.000
#> SRR1003831     4  0.5052     0.0785 0.436 0.000 0.020 0.536 0.008
#> SRR1003832     1  0.3399     0.7365 0.812 0.000 0.020 0.168 0.000
#> SRR1003833     4  0.4997     0.1916 0.404 0.000 0.020 0.568 0.008
#> SRR1003834     4  0.5056     0.3735 0.336 0.000 0.040 0.620 0.004
#> SRR1003836     4  0.4473     0.6146 0.148 0.000 0.076 0.768 0.008
#> SRR1003835     4  0.5599     0.5524 0.256 0.004 0.048 0.660 0.032
#> SRR1003838     3  0.4976     0.6878 0.004 0.228 0.696 0.072 0.000
#> SRR1003837     1  0.4810     0.5553 0.652 0.000 0.012 0.316 0.020
#> SRR1003839     4  0.5012     0.2927 0.368 0.000 0.016 0.600 0.016
#> SRR1003840     4  0.7608     0.4271 0.068 0.008 0.228 0.500 0.196
#> SRR1003841     2  0.0451     0.7483 0.000 0.988 0.004 0.000 0.008
#> SRR1003842     1  0.0807     0.7823 0.976 0.000 0.012 0.012 0.000
#> SRR1003844     1  0.1869     0.7914 0.936 0.000 0.008 0.028 0.028
#> SRR1003845     4  0.7188     0.4621 0.076 0.000 0.224 0.540 0.160
#> SRR1003846     1  0.1267     0.7864 0.960 0.000 0.012 0.024 0.004
#> SRR1003847     4  0.6360     0.1902 0.432 0.000 0.040 0.464 0.064
#> SRR1003848     3  0.5575     0.6061 0.020 0.052 0.640 0.284 0.004
#> SRR1003849     3  0.4993     0.6724 0.004 0.248 0.684 0.064 0.000
#> SRR1003850     4  0.6570     0.5146 0.248 0.000 0.204 0.536 0.012
#> SRR1003851     3  0.5117     0.6919 0.008 0.172 0.712 0.108 0.000
#> SRR1003852     4  0.7864     0.4331 0.092 0.004 0.240 0.460 0.204
#> SRR1003853     1  0.5164     0.3531 0.572 0.000 0.016 0.392 0.020
#> SRR1003854     1  0.4290     0.7201 0.768 0.000 0.016 0.184 0.032
#> SRR1003843     4  0.7529     0.3914 0.056 0.020 0.272 0.512 0.140
#> SRR1003855     4  0.5020     0.1975 0.408 0.000 0.016 0.564 0.012
#> SRR1003856     3  0.5845     0.5081 0.032 0.040 0.612 0.308 0.008
#> SRR1003857     1  0.5203     0.6113 0.664 0.000 0.032 0.276 0.028
#> SRR1003858     1  0.4841     0.4310 0.600 0.000 0.016 0.376 0.008
#> SRR1003859     1  0.3370     0.7433 0.824 0.000 0.028 0.148 0.000
#> SRR1003860     1  0.3197     0.7541 0.836 0.000 0.024 0.140 0.000
#> SRR1003861     4  0.5071     0.0621 0.440 0.000 0.016 0.532 0.012
#> SRR1003862     1  0.0865     0.7862 0.972 0.000 0.000 0.024 0.004
#> SRR1003863     4  0.5731     0.4374 0.080 0.000 0.252 0.644 0.024
#> SRR1003864     1  0.3170     0.7815 0.876 0.000 0.048 0.040 0.036
#> SRR1003865     4  0.8237     0.3835 0.084 0.032 0.240 0.464 0.180
#> SRR1003866     1  0.7454     0.1366 0.440 0.000 0.064 0.332 0.164
#> SRR1003867     1  0.5724     0.5955 0.668 0.000 0.024 0.200 0.108

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1003755     6  0.7857    -0.0658 0.072 0.004 0.352 0.124 0.080 0.368
#> SRR1003756     6  0.7857    -0.0658 0.072 0.004 0.352 0.124 0.080 0.368
#> SRR1003757     3  0.7553     0.2750 0.072 0.004 0.484 0.148 0.060 0.232
#> SRR1003758     3  0.7553     0.2750 0.072 0.004 0.484 0.148 0.060 0.232
#> SRR1003759     4  0.4459     0.7812 0.000 0.000 0.036 0.728 0.196 0.040
#> SRR1003760     6  0.2122     0.8276 0.000 0.084 0.008 0.008 0.000 0.900
#> SRR1003761     6  0.2169     0.8259 0.000 0.080 0.012 0.008 0.000 0.900
#> SRR1003762     6  0.1970     0.8331 0.000 0.092 0.008 0.000 0.000 0.900
#> SRR1003763     6  0.1970     0.8331 0.000 0.092 0.008 0.000 0.000 0.900
#> SRR1003764     6  0.1970     0.8331 0.000 0.092 0.008 0.000 0.000 0.900
#> SRR1003765     2  0.0547     0.9969 0.000 0.980 0.000 0.000 0.000 0.020
#> SRR1003766     2  0.0547     0.9969 0.000 0.980 0.000 0.000 0.000 0.020
#> SRR1003767     2  0.0790     0.9867 0.000 0.968 0.000 0.000 0.000 0.032
#> SRR1003768     2  0.0547     0.9969 0.000 0.980 0.000 0.000 0.000 0.020
#> SRR1003769     2  0.0547     0.9969 0.000 0.980 0.000 0.000 0.000 0.020
#> SRR1003770     2  0.0547     0.9969 0.000 0.980 0.000 0.000 0.000 0.020
#> SRR1003771     2  0.0632     0.9942 0.000 0.976 0.000 0.000 0.000 0.024
#> SRR1003773     3  0.3534     0.5302 0.000 0.000 0.716 0.008 0.000 0.276
#> SRR1003772     1  0.1973     0.7421 0.916 0.000 0.004 0.064 0.004 0.012
#> SRR1003774     5  0.3709     0.6363 0.204 0.000 0.000 0.040 0.756 0.000
#> SRR1003775     1  0.2788     0.7476 0.880 0.000 0.004 0.044 0.056 0.016
#> SRR1003776     1  0.4066     0.3911 0.596 0.000 0.000 0.012 0.392 0.000
#> SRR1003777     1  0.2420     0.7525 0.900 0.000 0.008 0.060 0.020 0.012
#> SRR1003778     3  0.3534     0.5302 0.000 0.000 0.716 0.008 0.000 0.276
#> SRR1003779     1  0.2716     0.7517 0.880 0.000 0.004 0.064 0.044 0.008
#> SRR1003780     6  0.1970     0.8324 0.000 0.092 0.008 0.000 0.000 0.900
#> SRR1003781     4  0.4822     0.7491 0.060 0.000 0.020 0.668 0.252 0.000
#> SRR1003784     3  0.4713     0.6416 0.000 0.020 0.724 0.088 0.164 0.004
#> SRR1003785     3  0.3210     0.6966 0.000 0.000 0.844 0.020 0.040 0.096
#> SRR1003786     1  0.1155     0.7620 0.956 0.000 0.000 0.004 0.036 0.004
#> SRR1003783     1  0.2280     0.7477 0.904 0.000 0.004 0.064 0.016 0.012
#> SRR1003787     1  0.5013     0.5990 0.664 0.000 0.016 0.096 0.224 0.000
#> SRR1003788     5  0.3793     0.5814 0.080 0.000 0.020 0.084 0.812 0.004
#> SRR1003789     6  0.1918     0.8327 0.000 0.088 0.008 0.000 0.000 0.904
#> SRR1003790     1  0.2669     0.7446 0.880 0.000 0.000 0.032 0.072 0.016
#> SRR1003791     4  0.5591     0.7581 0.064 0.000 0.052 0.616 0.264 0.004
#> SRR1003792     1  0.5723     0.4226 0.544 0.000 0.000 0.224 0.228 0.004
#> SRR1003793     1  0.3399     0.7165 0.828 0.000 0.004 0.032 0.120 0.016
#> SRR1003794     1  0.3707     0.7019 0.792 0.000 0.008 0.020 0.164 0.016
#> SRR1003795     3  0.5026     0.6517 0.012 0.000 0.720 0.076 0.040 0.152
#> SRR1003796     3  0.3534     0.5302 0.000 0.000 0.716 0.008 0.000 0.276
#> SRR1003797     1  0.3055     0.7465 0.852 0.000 0.000 0.072 0.068 0.008
#> SRR1003798     5  0.5034     0.5853 0.284 0.000 0.016 0.040 0.644 0.016
#> SRR1003799     5  0.4744     0.3025 0.448 0.004 0.012 0.012 0.520 0.004
#> SRR1003800     5  0.4252     0.6056 0.112 0.012 0.040 0.028 0.796 0.012
#> SRR1003801     5  0.2702     0.6206 0.092 0.000 0.004 0.036 0.868 0.000
#> SRR1003802     3  0.5929     0.3937 0.012 0.020 0.552 0.108 0.308 0.000
#> SRR1003803     1  0.5431     0.5113 0.624 0.000 0.016 0.084 0.264 0.012
#> SRR1003804     5  0.4084     0.6106 0.124 0.008 0.028 0.024 0.800 0.016
#> SRR1003805     1  0.1802     0.7521 0.932 0.000 0.000 0.024 0.024 0.020
#> SRR1003806     5  0.5099     0.4192 0.372 0.000 0.008 0.036 0.568 0.016
#> SRR1003807     5  0.5426     0.4379 0.064 0.000 0.104 0.144 0.684 0.004
#> SRR1003809     5  0.5597     0.2774 0.028 0.016 0.228 0.088 0.640 0.000
#> SRR1003808     4  0.4340     0.7897 0.008 0.000 0.032 0.748 0.184 0.028
#> SRR1003810     5  0.2601     0.5962 0.068 0.004 0.016 0.024 0.888 0.000
#> SRR1003811     5  0.4671     0.3536 0.020 0.020 0.204 0.036 0.720 0.000
#> SRR1003812     1  0.2766     0.7349 0.852 0.000 0.004 0.020 0.124 0.000
#> SRR1003813     3  0.3291     0.6931 0.000 0.012 0.844 0.012 0.032 0.100
#> SRR1003814     4  0.4578     0.7414 0.024 0.000 0.020 0.636 0.320 0.000
#> SRR1003815     5  0.4924     0.4808 0.064 0.020 0.120 0.052 0.744 0.000
#> SRR1003816     1  0.1973     0.7421 0.916 0.000 0.004 0.064 0.004 0.012
#> SRR1003817     1  0.0696     0.7546 0.980 0.000 0.004 0.008 0.004 0.004
#> SRR1003818     1  0.6029     0.2360 0.504 0.000 0.012 0.208 0.276 0.000
#> SRR1003819     4  0.5543     0.6415 0.052 0.000 0.032 0.520 0.392 0.004
#> SRR1003820     1  0.2538     0.7490 0.888 0.000 0.004 0.076 0.020 0.012
#> SRR1003821     1  0.1363     0.7564 0.952 0.000 0.004 0.028 0.012 0.004
#> SRR1003822     3  0.4854     0.6191 0.004 0.020 0.704 0.084 0.188 0.000
#> SRR1003824     5  0.5019     0.4558 0.056 0.020 0.148 0.048 0.728 0.000
#> SRR1003823     1  0.2016     0.7501 0.920 0.000 0.000 0.024 0.040 0.016
#> SRR1003825     5  0.3934     0.6292 0.140 0.000 0.012 0.068 0.780 0.000
#> SRR1003826     1  0.5438     0.4003 0.568 0.000 0.000 0.260 0.172 0.000
#> SRR1003827     1  0.3466     0.7347 0.820 0.000 0.000 0.072 0.100 0.008
#> SRR1003828     5  0.4626     0.6430 0.208 0.000 0.032 0.024 0.720 0.016
#> SRR1003829     1  0.3765     0.7223 0.804 0.000 0.000 0.084 0.096 0.016
#> SRR1003830     1  0.1802     0.7455 0.932 0.000 0.000 0.024 0.024 0.020
#> SRR1003831     5  0.4060     0.5812 0.284 0.000 0.000 0.032 0.684 0.000
#> SRR1003832     1  0.4809     0.4394 0.628 0.000 0.008 0.028 0.320 0.016
#> SRR1003833     5  0.4365     0.5878 0.292 0.000 0.004 0.040 0.664 0.000
#> SRR1003834     5  0.3696     0.6515 0.148 0.000 0.020 0.036 0.796 0.000
#> SRR1003836     5  0.3408     0.5733 0.072 0.000 0.016 0.080 0.832 0.000
#> SRR1003835     5  0.4469     0.6444 0.196 0.000 0.028 0.024 0.736 0.016
#> SRR1003838     3  0.3123     0.6982 0.000 0.000 0.852 0.024 0.036 0.088
#> SRR1003837     1  0.4689     0.1103 0.516 0.000 0.000 0.044 0.440 0.000
#> SRR1003839     5  0.3727     0.6396 0.216 0.000 0.000 0.036 0.748 0.000
#> SRR1003840     4  0.4494     0.8086 0.008 0.000 0.036 0.700 0.244 0.012
#> SRR1003841     6  0.1970     0.8324 0.000 0.092 0.008 0.000 0.000 0.900
#> SRR1003842     1  0.1718     0.7446 0.936 0.000 0.000 0.024 0.020 0.020
#> SRR1003844     1  0.1495     0.7607 0.948 0.000 0.008 0.020 0.020 0.004
#> SRR1003845     4  0.4712     0.8069 0.024 0.000 0.040 0.664 0.272 0.000
#> SRR1003846     1  0.2037     0.7562 0.924 0.000 0.012 0.016 0.036 0.012
#> SRR1003847     5  0.5546     0.3397 0.396 0.000 0.004 0.092 0.500 0.008
#> SRR1003848     3  0.4848     0.6025 0.004 0.020 0.696 0.072 0.208 0.000
#> SRR1003849     3  0.2895     0.6796 0.000 0.000 0.852 0.016 0.016 0.116
#> SRR1003850     5  0.5472     0.5755 0.148 0.016 0.084 0.032 0.704 0.016
#> SRR1003851     3  0.3639     0.6985 0.004 0.000 0.828 0.056 0.080 0.032
#> SRR1003852     4  0.5021     0.8073 0.060 0.000 0.024 0.688 0.216 0.012
#> SRR1003853     1  0.5629     0.1704 0.496 0.000 0.008 0.120 0.376 0.000
#> SRR1003854     1  0.3758     0.6848 0.772 0.000 0.004 0.048 0.176 0.000
#> SRR1003843     4  0.6095     0.6939 0.028 0.000 0.124 0.560 0.276 0.012
#> SRR1003855     5  0.3368     0.6494 0.232 0.000 0.000 0.012 0.756 0.000
#> SRR1003856     3  0.5229     0.6030 0.008 0.012 0.684 0.104 0.184 0.008
#> SRR1003857     1  0.4844     0.0629 0.504 0.000 0.000 0.056 0.440 0.000
#> SRR1003858     5  0.4328     0.0820 0.460 0.000 0.000 0.020 0.520 0.000
#> SRR1003859     1  0.4263     0.5954 0.720 0.000 0.004 0.028 0.232 0.016
#> SRR1003860     1  0.3572     0.6850 0.792 0.000 0.000 0.024 0.168 0.016
#> SRR1003861     5  0.3670     0.5919 0.284 0.000 0.000 0.012 0.704 0.000
#> SRR1003862     1  0.1431     0.7533 0.952 0.000 0.008 0.016 0.016 0.008
#> SRR1003863     5  0.5579     0.2891 0.052 0.020 0.256 0.040 0.632 0.000
#> SRR1003864     1  0.2765     0.7500 0.872 0.000 0.000 0.064 0.056 0.008
#> SRR1003865     4  0.6632     0.6545 0.072 0.000 0.080 0.528 0.292 0.028
#> SRR1003866     1  0.6073     0.0206 0.380 0.000 0.000 0.352 0.268 0.000
#> SRR1003867     1  0.6264     0.2927 0.496 0.000 0.004 0.252 0.232 0.016

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 9166 rows and 112 columns.
#>   Top rows (917, 1834, 2750, 3666, 4583) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.997       0.999          0.122 0.882   0.882
#> 3 3 0.588           0.838       0.907          2.135 0.783   0.754
#> 4 4 0.690           0.823       0.912          0.137 0.929   0.893
#> 5 5 0.609           0.768       0.884          0.109 0.983   0.971
#> 6 6 0.413           0.674       0.827          0.113 0.971   0.950

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1003755     1   0.000      0.998 1.000 0.000
#> SRR1003756     1   0.000      0.998 1.000 0.000
#> SRR1003757     1   0.000      0.998 1.000 0.000
#> SRR1003758     1   0.000      0.998 1.000 0.000
#> SRR1003759     1   0.000      0.998 1.000 0.000
#> SRR1003760     1   0.000      0.998 1.000 0.000
#> SRR1003761     1   0.000      0.998 1.000 0.000
#> SRR1003762     1   0.000      0.998 1.000 0.000
#> SRR1003763     1   0.000      0.998 1.000 0.000
#> SRR1003764     1   0.000      0.998 1.000 0.000
#> SRR1003765     2   0.000      1.000 0.000 1.000
#> SRR1003766     2   0.000      1.000 0.000 1.000
#> SRR1003767     2   0.000      1.000 0.000 1.000
#> SRR1003768     2   0.000      1.000 0.000 1.000
#> SRR1003769     2   0.000      1.000 0.000 1.000
#> SRR1003770     2   0.000      1.000 0.000 1.000
#> SRR1003771     2   0.000      1.000 0.000 1.000
#> SRR1003773     1   0.000      0.998 1.000 0.000
#> SRR1003772     1   0.000      0.998 1.000 0.000
#> SRR1003774     1   0.000      0.998 1.000 0.000
#> SRR1003775     1   0.000      0.998 1.000 0.000
#> SRR1003776     1   0.000      0.998 1.000 0.000
#> SRR1003777     1   0.000      0.998 1.000 0.000
#> SRR1003778     1   0.000      0.998 1.000 0.000
#> SRR1003779     1   0.000      0.998 1.000 0.000
#> SRR1003780     1   0.000      0.998 1.000 0.000
#> SRR1003781     1   0.000      0.998 1.000 0.000
#> SRR1003784     1   0.000      0.998 1.000 0.000
#> SRR1003785     1   0.000      0.998 1.000 0.000
#> SRR1003786     1   0.000      0.998 1.000 0.000
#> SRR1003783     1   0.000      0.998 1.000 0.000
#> SRR1003787     1   0.000      0.998 1.000 0.000
#> SRR1003788     1   0.000      0.998 1.000 0.000
#> SRR1003789     1   0.000      0.998 1.000 0.000
#> SRR1003790     1   0.000      0.998 1.000 0.000
#> SRR1003791     1   0.000      0.998 1.000 0.000
#> SRR1003792     1   0.000      0.998 1.000 0.000
#> SRR1003793     1   0.000      0.998 1.000 0.000
#> SRR1003794     1   0.000      0.998 1.000 0.000
#> SRR1003795     1   0.000      0.998 1.000 0.000
#> SRR1003796     1   0.000      0.998 1.000 0.000
#> SRR1003797     1   0.000      0.998 1.000 0.000
#> SRR1003798     1   0.000      0.998 1.000 0.000
#> SRR1003799     1   0.000      0.998 1.000 0.000
#> SRR1003800     1   0.000      0.998 1.000 0.000
#> SRR1003801     1   0.000      0.998 1.000 0.000
#> SRR1003802     1   0.000      0.998 1.000 0.000
#> SRR1003803     1   0.000      0.998 1.000 0.000
#> SRR1003804     1   0.000      0.998 1.000 0.000
#> SRR1003805     1   0.000      0.998 1.000 0.000
#> SRR1003806     1   0.000      0.998 1.000 0.000
#> SRR1003807     1   0.000      0.998 1.000 0.000
#> SRR1003809     1   0.000      0.998 1.000 0.000
#> SRR1003808     1   0.000      0.998 1.000 0.000
#> SRR1003810     1   0.000      0.998 1.000 0.000
#> SRR1003811     1   0.000      0.998 1.000 0.000
#> SRR1003812     1   0.000      0.998 1.000 0.000
#> SRR1003813     1   0.000      0.998 1.000 0.000
#> SRR1003814     1   0.000      0.998 1.000 0.000
#> SRR1003815     1   0.000      0.998 1.000 0.000
#> SRR1003816     1   0.000      0.998 1.000 0.000
#> SRR1003817     1   0.000      0.998 1.000 0.000
#> SRR1003818     1   0.000      0.998 1.000 0.000
#> SRR1003819     1   0.000      0.998 1.000 0.000
#> SRR1003820     1   0.000      0.998 1.000 0.000
#> SRR1003821     1   0.000      0.998 1.000 0.000
#> SRR1003822     1   0.000      0.998 1.000 0.000
#> SRR1003824     1   0.000      0.998 1.000 0.000
#> SRR1003823     1   0.000      0.998 1.000 0.000
#> SRR1003825     1   0.000      0.998 1.000 0.000
#> SRR1003826     1   0.000      0.998 1.000 0.000
#> SRR1003827     1   0.000      0.998 1.000 0.000
#> SRR1003828     1   0.000      0.998 1.000 0.000
#> SRR1003829     1   0.000      0.998 1.000 0.000
#> SRR1003830     1   0.000      0.998 1.000 0.000
#> SRR1003831     1   0.000      0.998 1.000 0.000
#> SRR1003832     1   0.000      0.998 1.000 0.000
#> SRR1003833     1   0.000      0.998 1.000 0.000
#> SRR1003834     1   0.000      0.998 1.000 0.000
#> SRR1003836     1   0.000      0.998 1.000 0.000
#> SRR1003835     1   0.000      0.998 1.000 0.000
#> SRR1003838     1   0.000      0.998 1.000 0.000
#> SRR1003837     1   0.000      0.998 1.000 0.000
#> SRR1003839     1   0.000      0.998 1.000 0.000
#> SRR1003840     1   0.000      0.998 1.000 0.000
#> SRR1003841     1   0.644      0.804 0.836 0.164
#> SRR1003842     1   0.000      0.998 1.000 0.000
#> SRR1003844     1   0.000      0.998 1.000 0.000
#> SRR1003845     1   0.000      0.998 1.000 0.000
#> SRR1003846     1   0.000      0.998 1.000 0.000
#> SRR1003847     1   0.000      0.998 1.000 0.000
#> SRR1003848     1   0.000      0.998 1.000 0.000
#> SRR1003849     1   0.000      0.998 1.000 0.000
#> SRR1003850     1   0.000      0.998 1.000 0.000
#> SRR1003851     1   0.000      0.998 1.000 0.000
#> SRR1003852     1   0.000      0.998 1.000 0.000
#> SRR1003853     1   0.000      0.998 1.000 0.000
#> SRR1003854     1   0.000      0.998 1.000 0.000
#> SRR1003843     1   0.000      0.998 1.000 0.000
#> SRR1003855     1   0.000      0.998 1.000 0.000
#> SRR1003856     1   0.000      0.998 1.000 0.000
#> SRR1003857     1   0.000      0.998 1.000 0.000
#> SRR1003858     1   0.000      0.998 1.000 0.000
#> SRR1003859     1   0.000      0.998 1.000 0.000
#> SRR1003860     1   0.000      0.998 1.000 0.000
#> SRR1003861     1   0.000      0.998 1.000 0.000
#> SRR1003862     1   0.000      0.998 1.000 0.000
#> SRR1003863     1   0.000      0.998 1.000 0.000
#> SRR1003864     1   0.000      0.998 1.000 0.000
#> SRR1003865     1   0.000      0.998 1.000 0.000
#> SRR1003866     1   0.000      0.998 1.000 0.000
#> SRR1003867     1   0.000      0.998 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1003755     1  0.5058     0.7131 0.756 0.000 0.244
#> SRR1003756     1  0.5058     0.7131 0.756 0.000 0.244
#> SRR1003757     1  0.5650     0.5910 0.688 0.000 0.312
#> SRR1003758     1  0.5621     0.5993 0.692 0.000 0.308
#> SRR1003759     1  0.2261     0.8654 0.932 0.000 0.068
#> SRR1003760     1  0.2448     0.8656 0.924 0.000 0.076
#> SRR1003761     1  0.2356     0.8679 0.928 0.000 0.072
#> SRR1003762     1  0.3039     0.8686 0.920 0.044 0.036
#> SRR1003763     1  0.2681     0.8887 0.932 0.040 0.028
#> SRR1003764     1  0.1529     0.8906 0.960 0.000 0.040
#> SRR1003765     2  0.0000     0.9963 0.000 1.000 0.000
#> SRR1003766     2  0.0424     0.9960 0.000 0.992 0.008
#> SRR1003767     2  0.0424     0.9948 0.000 0.992 0.008
#> SRR1003768     2  0.0424     0.9960 0.000 0.992 0.008
#> SRR1003769     2  0.0424     0.9960 0.000 0.992 0.008
#> SRR1003770     2  0.0000     0.9963 0.000 1.000 0.000
#> SRR1003771     2  0.0424     0.9948 0.000 0.992 0.008
#> SRR1003773     3  0.2625     0.8568 0.084 0.000 0.916
#> SRR1003772     1  0.0424     0.8993 0.992 0.000 0.008
#> SRR1003774     1  0.1529     0.8944 0.960 0.000 0.040
#> SRR1003775     1  0.0237     0.8982 0.996 0.000 0.004
#> SRR1003776     1  0.0592     0.8988 0.988 0.000 0.012
#> SRR1003777     1  0.0592     0.8983 0.988 0.000 0.012
#> SRR1003778     3  0.2625     0.8568 0.084 0.000 0.916
#> SRR1003779     1  0.1163     0.8977 0.972 0.000 0.028
#> SRR1003780     1  0.4842     0.7030 0.776 0.000 0.224
#> SRR1003781     1  0.1753     0.8806 0.952 0.000 0.048
#> SRR1003784     3  0.2796     0.8584 0.092 0.000 0.908
#> SRR1003785     3  0.2625     0.8568 0.084 0.000 0.916
#> SRR1003786     1  0.1643     0.8830 0.956 0.000 0.044
#> SRR1003783     1  0.0237     0.8982 0.996 0.000 0.004
#> SRR1003787     1  0.0892     0.8976 0.980 0.000 0.020
#> SRR1003788     1  0.4291     0.7975 0.820 0.000 0.180
#> SRR1003789     1  0.5650     0.5322 0.688 0.000 0.312
#> SRR1003790     1  0.0747     0.8996 0.984 0.000 0.016
#> SRR1003791     1  0.1411     0.8997 0.964 0.000 0.036
#> SRR1003792     1  0.1753     0.8805 0.952 0.000 0.048
#> SRR1003793     1  0.1643     0.8934 0.956 0.000 0.044
#> SRR1003794     1  0.1289     0.9004 0.968 0.000 0.032
#> SRR1003795     3  0.2796     0.8566 0.092 0.000 0.908
#> SRR1003796     3  0.2625     0.8568 0.084 0.000 0.916
#> SRR1003797     1  0.0237     0.8979 0.996 0.000 0.004
#> SRR1003798     1  0.3816     0.8278 0.852 0.000 0.148
#> SRR1003799     1  0.2625     0.8741 0.916 0.000 0.084
#> SRR1003800     1  0.5178     0.6945 0.744 0.000 0.256
#> SRR1003801     1  0.4291     0.7970 0.820 0.000 0.180
#> SRR1003802     3  0.5905     0.5370 0.352 0.000 0.648
#> SRR1003803     1  0.1031     0.8991 0.976 0.000 0.024
#> SRR1003804     1  0.4452     0.7821 0.808 0.000 0.192
#> SRR1003805     1  0.0892     0.8950 0.980 0.000 0.020
#> SRR1003806     1  0.2066     0.8861 0.940 0.000 0.060
#> SRR1003807     1  0.2959     0.8728 0.900 0.000 0.100
#> SRR1003809     1  0.6309    -0.0241 0.504 0.000 0.496
#> SRR1003808     1  0.1529     0.8857 0.960 0.000 0.040
#> SRR1003810     1  0.4796     0.7468 0.780 0.000 0.220
#> SRR1003811     1  0.6154     0.3417 0.592 0.000 0.408
#> SRR1003812     1  0.0237     0.8982 0.996 0.000 0.004
#> SRR1003813     3  0.2711     0.8581 0.088 0.000 0.912
#> SRR1003814     1  0.1529     0.8958 0.960 0.000 0.040
#> SRR1003815     1  0.4002     0.8166 0.840 0.000 0.160
#> SRR1003816     1  0.1163     0.8917 0.972 0.000 0.028
#> SRR1003817     1  0.0424     0.8977 0.992 0.000 0.008
#> SRR1003818     1  0.0592     0.8971 0.988 0.000 0.012
#> SRR1003819     1  0.3752     0.8347 0.856 0.000 0.144
#> SRR1003820     1  0.0747     0.8963 0.984 0.000 0.016
#> SRR1003821     1  0.1031     0.8931 0.976 0.000 0.024
#> SRR1003822     3  0.3482     0.8366 0.128 0.000 0.872
#> SRR1003824     1  0.5560     0.6185 0.700 0.000 0.300
#> SRR1003823     1  0.1289     0.8893 0.968 0.000 0.032
#> SRR1003825     1  0.3340     0.8501 0.880 0.000 0.120
#> SRR1003826     1  0.1529     0.8853 0.960 0.000 0.040
#> SRR1003827     1  0.0892     0.8973 0.980 0.000 0.020
#> SRR1003828     1  0.2625     0.8740 0.916 0.000 0.084
#> SRR1003829     1  0.0592     0.8992 0.988 0.000 0.012
#> SRR1003830     1  0.0892     0.8949 0.980 0.000 0.020
#> SRR1003831     1  0.2448     0.8789 0.924 0.000 0.076
#> SRR1003832     1  0.1411     0.8978 0.964 0.000 0.036
#> SRR1003833     1  0.1163     0.8975 0.972 0.000 0.028
#> SRR1003834     1  0.5291     0.6810 0.732 0.000 0.268
#> SRR1003836     1  0.5529     0.6306 0.704 0.000 0.296
#> SRR1003835     1  0.2261     0.8867 0.932 0.000 0.068
#> SRR1003838     3  0.2625     0.8568 0.084 0.000 0.916
#> SRR1003837     1  0.1643     0.8955 0.956 0.000 0.044
#> SRR1003839     1  0.2959     0.8664 0.900 0.000 0.100
#> SRR1003840     1  0.1643     0.8830 0.956 0.000 0.044
#> SRR1003841     3  0.6934     0.3878 0.348 0.028 0.624
#> SRR1003842     1  0.1163     0.8914 0.972 0.000 0.028
#> SRR1003844     1  0.0592     0.8994 0.988 0.000 0.012
#> SRR1003845     1  0.0892     0.8973 0.980 0.000 0.020
#> SRR1003846     1  0.0747     0.8994 0.984 0.000 0.016
#> SRR1003847     1  0.1529     0.8991 0.960 0.000 0.040
#> SRR1003848     3  0.4002     0.8044 0.160 0.000 0.840
#> SRR1003849     3  0.2625     0.8568 0.084 0.000 0.916
#> SRR1003850     1  0.4002     0.8188 0.840 0.000 0.160
#> SRR1003851     3  0.3116     0.8519 0.108 0.000 0.892
#> SRR1003852     1  0.1643     0.8830 0.956 0.000 0.044
#> SRR1003853     1  0.1411     0.8913 0.964 0.000 0.036
#> SRR1003854     1  0.1163     0.8955 0.972 0.000 0.028
#> SRR1003843     1  0.3340     0.8576 0.880 0.000 0.120
#> SRR1003855     1  0.3482     0.8459 0.872 0.000 0.128
#> SRR1003856     3  0.5706     0.6150 0.320 0.000 0.680
#> SRR1003857     1  0.1289     0.8967 0.968 0.000 0.032
#> SRR1003858     1  0.1860     0.8906 0.948 0.000 0.052
#> SRR1003859     1  0.1163     0.8973 0.972 0.000 0.028
#> SRR1003860     1  0.0592     0.8986 0.988 0.000 0.012
#> SRR1003861     1  0.3267     0.8540 0.884 0.000 0.116
#> SRR1003862     1  0.1289     0.8893 0.968 0.000 0.032
#> SRR1003863     1  0.5497     0.6312 0.708 0.000 0.292
#> SRR1003864     1  0.0237     0.8982 0.996 0.000 0.004
#> SRR1003865     1  0.1529     0.8946 0.960 0.000 0.040
#> SRR1003866     1  0.0747     0.9001 0.984 0.000 0.016
#> SRR1003867     1  0.0747     0.8962 0.984 0.000 0.016

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1003755     1  0.4149    0.75463 0.812 0.000 0.152 0.036
#> SRR1003756     1  0.4237    0.74978 0.808 0.000 0.152 0.040
#> SRR1003757     1  0.3032    0.83403 0.868 0.000 0.124 0.008
#> SRR1003758     1  0.2988    0.84564 0.876 0.000 0.112 0.012
#> SRR1003759     4  0.4331    0.74927 0.288 0.000 0.000 0.712
#> SRR1003760     4  0.4468    0.78988 0.232 0.000 0.016 0.752
#> SRR1003761     4  0.4360    0.78945 0.248 0.000 0.008 0.744
#> SRR1003762     1  0.6653    0.29628 0.628 0.236 0.004 0.132
#> SRR1003763     1  0.7886   -0.44367 0.448 0.212 0.008 0.332
#> SRR1003764     1  0.5325   -0.22320 0.524 0.004 0.004 0.468
#> SRR1003765     2  0.0000    0.97855 0.000 1.000 0.000 0.000
#> SRR1003766     2  0.1398    0.97583 0.000 0.956 0.004 0.040
#> SRR1003767     2  0.0817    0.97373 0.000 0.976 0.000 0.024
#> SRR1003768     2  0.1398    0.97583 0.000 0.956 0.004 0.040
#> SRR1003769     2  0.1398    0.97583 0.000 0.956 0.004 0.040
#> SRR1003770     2  0.0000    0.97855 0.000 1.000 0.000 0.000
#> SRR1003771     2  0.0817    0.97373 0.000 0.976 0.000 0.024
#> SRR1003773     3  0.0804    0.75008 0.008 0.000 0.980 0.012
#> SRR1003772     1  0.0707    0.91857 0.980 0.000 0.000 0.020
#> SRR1003774     1  0.2345    0.87295 0.900 0.000 0.000 0.100
#> SRR1003775     1  0.1022    0.91987 0.968 0.000 0.000 0.032
#> SRR1003776     1  0.1867    0.89439 0.928 0.000 0.000 0.072
#> SRR1003777     1  0.0469    0.92084 0.988 0.000 0.000 0.012
#> SRR1003778     3  0.1042    0.74570 0.008 0.000 0.972 0.020
#> SRR1003779     1  0.0707    0.92046 0.980 0.000 0.000 0.020
#> SRR1003780     4  0.6055    0.75310 0.240 0.000 0.096 0.664
#> SRR1003781     1  0.1022    0.92003 0.968 0.000 0.000 0.032
#> SRR1003784     3  0.1489    0.74627 0.044 0.000 0.952 0.004
#> SRR1003785     3  0.0804    0.74861 0.008 0.000 0.980 0.012
#> SRR1003786     1  0.0707    0.91890 0.980 0.000 0.000 0.020
#> SRR1003783     1  0.0592    0.91913 0.984 0.000 0.000 0.016
#> SRR1003787     1  0.1211    0.91350 0.960 0.000 0.000 0.040
#> SRR1003788     1  0.1833    0.91311 0.944 0.000 0.024 0.032
#> SRR1003789     4  0.4955    0.68628 0.144 0.000 0.084 0.772
#> SRR1003790     1  0.1211    0.91367 0.960 0.000 0.000 0.040
#> SRR1003791     1  0.1722    0.91262 0.944 0.000 0.008 0.048
#> SRR1003792     1  0.0921    0.91862 0.972 0.000 0.000 0.028
#> SRR1003793     1  0.1635    0.91053 0.948 0.000 0.008 0.044
#> SRR1003794     1  0.1576    0.91046 0.948 0.000 0.004 0.048
#> SRR1003795     3  0.5637    0.50741 0.168 0.000 0.720 0.112
#> SRR1003796     3  0.0657    0.75243 0.012 0.000 0.984 0.004
#> SRR1003797     1  0.1022    0.91733 0.968 0.000 0.000 0.032
#> SRR1003798     1  0.2002    0.90780 0.936 0.000 0.020 0.044
#> SRR1003799     1  0.0672    0.92088 0.984 0.000 0.008 0.008
#> SRR1003800     1  0.2751    0.88583 0.904 0.000 0.040 0.056
#> SRR1003801     1  0.2813    0.87590 0.896 0.000 0.024 0.080
#> SRR1003802     3  0.5931    0.00489 0.460 0.000 0.504 0.036
#> SRR1003803     1  0.1576    0.91051 0.948 0.000 0.004 0.048
#> SRR1003804     1  0.1833    0.91182 0.944 0.000 0.032 0.024
#> SRR1003805     1  0.0921    0.91844 0.972 0.000 0.000 0.028
#> SRR1003806     1  0.1305    0.91486 0.960 0.000 0.004 0.036
#> SRR1003807     1  0.1610    0.91842 0.952 0.000 0.016 0.032
#> SRR1003809     1  0.5050    0.23049 0.588 0.000 0.408 0.004
#> SRR1003808     1  0.1716    0.89945 0.936 0.000 0.000 0.064
#> SRR1003810     1  0.2335    0.89820 0.920 0.000 0.060 0.020
#> SRR1003811     1  0.4936    0.33647 0.624 0.000 0.372 0.004
#> SRR1003812     1  0.1637    0.90270 0.940 0.000 0.000 0.060
#> SRR1003813     3  0.0524    0.74990 0.008 0.000 0.988 0.004
#> SRR1003814     1  0.1474    0.90948 0.948 0.000 0.000 0.052
#> SRR1003815     1  0.2124    0.90647 0.932 0.000 0.028 0.040
#> SRR1003816     1  0.0921    0.91644 0.972 0.000 0.000 0.028
#> SRR1003817     1  0.0592    0.92019 0.984 0.000 0.000 0.016
#> SRR1003818     1  0.1389    0.90949 0.952 0.000 0.000 0.048
#> SRR1003819     1  0.3245    0.86656 0.880 0.000 0.056 0.064
#> SRR1003820     1  0.0336    0.91967 0.992 0.000 0.000 0.008
#> SRR1003821     1  0.0592    0.92017 0.984 0.000 0.000 0.016
#> SRR1003822     3  0.2676    0.69954 0.092 0.000 0.896 0.012
#> SRR1003824     1  0.2635    0.87865 0.904 0.000 0.076 0.020
#> SRR1003823     1  0.1305    0.91721 0.960 0.000 0.004 0.036
#> SRR1003825     1  0.0804    0.92050 0.980 0.000 0.012 0.008
#> SRR1003826     1  0.0469    0.91976 0.988 0.000 0.000 0.012
#> SRR1003827     1  0.0817    0.91761 0.976 0.000 0.000 0.024
#> SRR1003828     1  0.1042    0.92005 0.972 0.000 0.008 0.020
#> SRR1003829     1  0.1022    0.91769 0.968 0.000 0.000 0.032
#> SRR1003830     1  0.1118    0.91561 0.964 0.000 0.000 0.036
#> SRR1003831     1  0.1488    0.91753 0.956 0.000 0.012 0.032
#> SRR1003832     1  0.1151    0.91759 0.968 0.000 0.008 0.024
#> SRR1003833     1  0.0469    0.92032 0.988 0.000 0.000 0.012
#> SRR1003834     1  0.2125    0.88995 0.920 0.000 0.076 0.004
#> SRR1003836     1  0.3377    0.81056 0.848 0.000 0.140 0.012
#> SRR1003835     1  0.1584    0.91730 0.952 0.000 0.012 0.036
#> SRR1003838     3  0.1174    0.75309 0.020 0.000 0.968 0.012
#> SRR1003837     1  0.0592    0.92082 0.984 0.000 0.000 0.016
#> SRR1003839     1  0.1584    0.91710 0.952 0.000 0.012 0.036
#> SRR1003840     1  0.1940    0.89965 0.924 0.000 0.000 0.076
#> SRR1003841     4  0.7612    0.35927 0.160 0.020 0.272 0.548
#> SRR1003842     1  0.1118    0.91600 0.964 0.000 0.000 0.036
#> SRR1003844     1  0.0000    0.91917 1.000 0.000 0.000 0.000
#> SRR1003845     1  0.0895    0.92038 0.976 0.000 0.004 0.020
#> SRR1003846     1  0.0921    0.91818 0.972 0.000 0.000 0.028
#> SRR1003847     1  0.0376    0.92007 0.992 0.000 0.004 0.004
#> SRR1003848     3  0.4661    0.41380 0.256 0.000 0.728 0.016
#> SRR1003849     3  0.0672    0.75000 0.008 0.000 0.984 0.008
#> SRR1003850     1  0.2313    0.90235 0.924 0.000 0.032 0.044
#> SRR1003851     3  0.2335    0.73383 0.060 0.000 0.920 0.020
#> SRR1003852     1  0.0592    0.92048 0.984 0.000 0.000 0.016
#> SRR1003853     1  0.1209    0.91904 0.964 0.000 0.004 0.032
#> SRR1003854     1  0.1004    0.92238 0.972 0.000 0.004 0.024
#> SRR1003843     1  0.2742    0.87727 0.900 0.000 0.024 0.076
#> SRR1003855     1  0.1913    0.91088 0.940 0.000 0.020 0.040
#> SRR1003856     3  0.5207    0.32359 0.292 0.000 0.680 0.028
#> SRR1003857     1  0.0779    0.92161 0.980 0.000 0.004 0.016
#> SRR1003858     1  0.1059    0.92178 0.972 0.000 0.016 0.012
#> SRR1003859     1  0.1109    0.91760 0.968 0.000 0.004 0.028
#> SRR1003860     1  0.0817    0.92219 0.976 0.000 0.000 0.024
#> SRR1003861     1  0.1284    0.91954 0.964 0.000 0.012 0.024
#> SRR1003862     1  0.0592    0.92056 0.984 0.000 0.000 0.016
#> SRR1003863     1  0.3324    0.81643 0.852 0.000 0.136 0.012
#> SRR1003864     1  0.0469    0.92034 0.988 0.000 0.000 0.012
#> SRR1003865     1  0.1209    0.92165 0.964 0.000 0.004 0.032
#> SRR1003866     1  0.0469    0.92048 0.988 0.000 0.000 0.012
#> SRR1003867     1  0.1211    0.91585 0.960 0.000 0.000 0.040

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1003755     1  0.5037     0.6618 0.724 0.000 0.180 0.080 0.016
#> SRR1003756     1  0.5037     0.6618 0.724 0.000 0.180 0.080 0.016
#> SRR1003757     1  0.3375     0.8242 0.840 0.000 0.104 0.056 0.000
#> SRR1003758     1  0.3169     0.8448 0.856 0.000 0.084 0.060 0.000
#> SRR1003759     5  0.2068     0.5699 0.092 0.000 0.000 0.004 0.904
#> SRR1003760     5  0.1901     0.5815 0.056 0.000 0.004 0.012 0.928
#> SRR1003761     5  0.1591     0.5787 0.052 0.000 0.004 0.004 0.940
#> SRR1003762     1  0.7619    -0.0501 0.476 0.276 0.000 0.120 0.128
#> SRR1003763     1  0.8057    -0.4895 0.348 0.200 0.000 0.108 0.344
#> SRR1003764     5  0.6067     0.1356 0.316 0.004 0.004 0.112 0.564
#> SRR1003765     2  0.0162     0.9572 0.000 0.996 0.000 0.004 0.000
#> SRR1003766     2  0.1809     0.9523 0.000 0.928 0.000 0.060 0.012
#> SRR1003767     2  0.1251     0.9460 0.000 0.956 0.000 0.036 0.008
#> SRR1003768     2  0.1809     0.9523 0.000 0.928 0.000 0.060 0.012
#> SRR1003769     2  0.1809     0.9523 0.000 0.928 0.000 0.060 0.012
#> SRR1003770     2  0.0162     0.9572 0.000 0.996 0.000 0.004 0.000
#> SRR1003771     2  0.1251     0.9460 0.000 0.956 0.000 0.036 0.008
#> SRR1003773     3  0.1251     0.6401 0.000 0.000 0.956 0.036 0.008
#> SRR1003772     1  0.1365     0.9044 0.952 0.000 0.004 0.040 0.004
#> SRR1003774     1  0.2388     0.8827 0.900 0.000 0.000 0.028 0.072
#> SRR1003775     1  0.1270     0.9043 0.948 0.000 0.000 0.052 0.000
#> SRR1003776     1  0.2381     0.8871 0.908 0.000 0.004 0.052 0.036
#> SRR1003777     1  0.0798     0.9058 0.976 0.000 0.000 0.016 0.008
#> SRR1003778     3  0.2052     0.6081 0.004 0.000 0.912 0.080 0.004
#> SRR1003779     1  0.1243     0.9051 0.960 0.000 0.004 0.028 0.008
#> SRR1003780     5  0.6611     0.1827 0.096 0.000 0.040 0.352 0.512
#> SRR1003781     1  0.0955     0.9085 0.968 0.000 0.000 0.028 0.004
#> SRR1003784     3  0.1588     0.6389 0.028 0.000 0.948 0.016 0.008
#> SRR1003785     3  0.0609     0.6460 0.000 0.000 0.980 0.020 0.000
#> SRR1003786     1  0.0771     0.9069 0.976 0.000 0.000 0.020 0.004
#> SRR1003783     1  0.0955     0.9060 0.968 0.000 0.000 0.028 0.004
#> SRR1003787     1  0.1403     0.9029 0.952 0.000 0.000 0.024 0.024
#> SRR1003788     1  0.2791     0.8818 0.892 0.000 0.036 0.056 0.016
#> SRR1003789     5  0.5439     0.4156 0.044 0.000 0.056 0.204 0.696
#> SRR1003790     1  0.1571     0.8995 0.936 0.000 0.004 0.060 0.000
#> SRR1003791     1  0.3328     0.8053 0.812 0.000 0.008 0.176 0.004
#> SRR1003792     1  0.0566     0.9056 0.984 0.000 0.000 0.012 0.004
#> SRR1003793     1  0.1408     0.9032 0.948 0.000 0.008 0.044 0.000
#> SRR1003794     1  0.1557     0.9031 0.940 0.000 0.008 0.052 0.000
#> SRR1003795     4  0.6912     0.0778 0.188 0.000 0.376 0.420 0.016
#> SRR1003796     3  0.0963     0.6425 0.000 0.000 0.964 0.036 0.000
#> SRR1003797     1  0.0693     0.9061 0.980 0.000 0.000 0.012 0.008
#> SRR1003798     1  0.1670     0.9019 0.936 0.000 0.012 0.052 0.000
#> SRR1003799     1  0.1300     0.9081 0.956 0.000 0.016 0.028 0.000
#> SRR1003800     1  0.2012     0.8996 0.920 0.000 0.020 0.060 0.000
#> SRR1003801     1  0.3445     0.8659 0.860 0.000 0.048 0.060 0.032
#> SRR1003802     3  0.5831    -0.0630 0.408 0.000 0.496 0.096 0.000
#> SRR1003803     1  0.1608     0.8963 0.928 0.000 0.000 0.072 0.000
#> SRR1003804     1  0.1845     0.9011 0.928 0.000 0.016 0.056 0.000
#> SRR1003805     1  0.1270     0.9038 0.948 0.000 0.000 0.052 0.000
#> SRR1003806     1  0.1502     0.9013 0.940 0.000 0.004 0.056 0.000
#> SRR1003807     1  0.3722     0.7863 0.796 0.000 0.024 0.176 0.004
#> SRR1003809     1  0.4825     0.2959 0.568 0.000 0.408 0.024 0.000
#> SRR1003808     1  0.1741     0.9023 0.936 0.000 0.000 0.040 0.024
#> SRR1003810     1  0.2283     0.8967 0.916 0.000 0.036 0.040 0.008
#> SRR1003811     1  0.5196     0.3367 0.576 0.000 0.380 0.040 0.004
#> SRR1003812     1  0.1893     0.8980 0.928 0.000 0.000 0.048 0.024
#> SRR1003813     3  0.0955     0.6478 0.004 0.000 0.968 0.028 0.000
#> SRR1003814     1  0.1750     0.8987 0.936 0.000 0.000 0.036 0.028
#> SRR1003815     1  0.2544     0.8892 0.900 0.000 0.028 0.064 0.008
#> SRR1003816     1  0.1168     0.9059 0.960 0.000 0.000 0.032 0.008
#> SRR1003817     1  0.0771     0.9063 0.976 0.000 0.000 0.020 0.004
#> SRR1003818     1  0.0992     0.9056 0.968 0.000 0.000 0.024 0.008
#> SRR1003819     1  0.3997     0.8280 0.828 0.000 0.052 0.076 0.044
#> SRR1003820     1  0.0671     0.9056 0.980 0.000 0.000 0.016 0.004
#> SRR1003821     1  0.0451     0.9054 0.988 0.000 0.000 0.008 0.004
#> SRR1003822     3  0.2332     0.5641 0.076 0.000 0.904 0.016 0.004
#> SRR1003824     1  0.2580     0.8906 0.892 0.000 0.064 0.044 0.000
#> SRR1003823     1  0.1357     0.9022 0.948 0.000 0.000 0.048 0.004
#> SRR1003825     1  0.1605     0.9077 0.944 0.000 0.012 0.040 0.004
#> SRR1003826     1  0.0510     0.9076 0.984 0.000 0.000 0.016 0.000
#> SRR1003827     1  0.0579     0.9058 0.984 0.000 0.000 0.008 0.008
#> SRR1003828     1  0.2102     0.8950 0.916 0.000 0.012 0.068 0.004
#> SRR1003829     1  0.1116     0.9057 0.964 0.000 0.004 0.028 0.004
#> SRR1003830     1  0.1430     0.9016 0.944 0.000 0.004 0.052 0.000
#> SRR1003831     1  0.2149     0.8988 0.924 0.000 0.012 0.036 0.028
#> SRR1003832     1  0.1331     0.9037 0.952 0.000 0.008 0.040 0.000
#> SRR1003833     1  0.1243     0.9071 0.960 0.000 0.004 0.028 0.008
#> SRR1003834     1  0.3021     0.8751 0.872 0.000 0.064 0.060 0.004
#> SRR1003836     1  0.4337     0.7875 0.784 0.000 0.136 0.068 0.012
#> SRR1003835     1  0.1892     0.8951 0.916 0.000 0.004 0.080 0.000
#> SRR1003838     3  0.2006     0.6208 0.012 0.000 0.916 0.072 0.000
#> SRR1003837     1  0.1483     0.9057 0.952 0.000 0.008 0.028 0.012
#> SRR1003839     1  0.2666     0.8842 0.892 0.000 0.012 0.076 0.020
#> SRR1003840     1  0.3122     0.8591 0.852 0.000 0.004 0.120 0.024
#> SRR1003841     4  0.7222    -0.1611 0.048 0.008 0.144 0.516 0.284
#> SRR1003842     1  0.1591     0.9020 0.940 0.000 0.004 0.052 0.004
#> SRR1003844     1  0.0880     0.9081 0.968 0.000 0.000 0.032 0.000
#> SRR1003845     1  0.3433     0.8333 0.832 0.000 0.004 0.132 0.032
#> SRR1003846     1  0.1043     0.9064 0.960 0.000 0.000 0.040 0.000
#> SRR1003847     1  0.0912     0.9097 0.972 0.000 0.012 0.016 0.000
#> SRR1003848     3  0.4276     0.2030 0.244 0.000 0.724 0.032 0.000
#> SRR1003849     3  0.1124     0.6420 0.004 0.000 0.960 0.036 0.000
#> SRR1003850     1  0.3366     0.8210 0.828 0.000 0.032 0.140 0.000
#> SRR1003851     3  0.3517     0.5092 0.068 0.000 0.832 0.100 0.000
#> SRR1003852     1  0.1443     0.9062 0.948 0.000 0.004 0.044 0.004
#> SRR1003853     1  0.1216     0.9070 0.960 0.000 0.000 0.020 0.020
#> SRR1003854     1  0.0992     0.9086 0.968 0.000 0.000 0.024 0.008
#> SRR1003843     1  0.4754     0.5593 0.664 0.000 0.020 0.304 0.012
#> SRR1003855     1  0.2791     0.8832 0.892 0.000 0.016 0.056 0.036
#> SRR1003856     3  0.4768     0.0943 0.304 0.000 0.656 0.040 0.000
#> SRR1003857     1  0.1282     0.9103 0.952 0.000 0.004 0.044 0.000
#> SRR1003858     1  0.1808     0.9005 0.936 0.000 0.004 0.040 0.020
#> SRR1003859     1  0.1357     0.9023 0.948 0.000 0.004 0.048 0.000
#> SRR1003860     1  0.1043     0.9051 0.960 0.000 0.000 0.040 0.000
#> SRR1003861     1  0.2173     0.8980 0.920 0.000 0.012 0.052 0.016
#> SRR1003862     1  0.0609     0.9058 0.980 0.000 0.000 0.020 0.000
#> SRR1003863     1  0.3134     0.8400 0.848 0.000 0.120 0.032 0.000
#> SRR1003864     1  0.0865     0.9049 0.972 0.000 0.000 0.024 0.004
#> SRR1003865     1  0.1857     0.9022 0.928 0.000 0.004 0.060 0.008
#> SRR1003866     1  0.0898     0.9062 0.972 0.000 0.000 0.020 0.008
#> SRR1003867     1  0.1282     0.9028 0.952 0.000 0.004 0.044 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1003755     1  0.5793     0.2941 0.600 0.000 0.164 0.212 0.012 0.012
#> SRR1003756     1  0.5740     0.3195 0.608 0.000 0.160 0.208 0.012 0.012
#> SRR1003757     1  0.3801     0.7118 0.784 0.000 0.060 0.148 0.008 0.000
#> SRR1003758     1  0.3823     0.7224 0.788 0.000 0.052 0.148 0.008 0.004
#> SRR1003759     6  0.1616     0.3328 0.020 0.000 0.000 0.048 0.000 0.932
#> SRR1003760     6  0.0964     0.2980 0.012 0.000 0.000 0.004 0.016 0.968
#> SRR1003761     6  0.0622     0.3111 0.012 0.000 0.000 0.008 0.000 0.980
#> SRR1003762     1  0.7752    -0.4631 0.412 0.196 0.000 0.244 0.032 0.116
#> SRR1003763     4  0.8061    -0.0347 0.288 0.116 0.004 0.288 0.028 0.276
#> SRR1003764     6  0.6843    -0.4312 0.328 0.004 0.004 0.292 0.024 0.348
#> SRR1003765     2  0.0146     0.9158 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1003766     2  0.2549     0.9046 0.000 0.884 0.000 0.036 0.072 0.008
#> SRR1003767     2  0.1864     0.8901 0.000 0.924 0.000 0.032 0.040 0.004
#> SRR1003768     2  0.2549     0.9046 0.000 0.884 0.000 0.036 0.072 0.008
#> SRR1003769     2  0.2549     0.9046 0.000 0.884 0.000 0.036 0.072 0.008
#> SRR1003770     2  0.0146     0.9158 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1003771     2  0.1864     0.8901 0.000 0.924 0.000 0.032 0.040 0.004
#> SRR1003773     3  0.0993     0.6068 0.000 0.000 0.964 0.024 0.012 0.000
#> SRR1003772     1  0.1753     0.8370 0.912 0.000 0.000 0.084 0.000 0.004
#> SRR1003774     1  0.3240     0.7939 0.812 0.000 0.000 0.148 0.000 0.040
#> SRR1003775     1  0.2462     0.8126 0.860 0.000 0.000 0.132 0.004 0.004
#> SRR1003776     1  0.2668     0.8048 0.828 0.000 0.000 0.168 0.000 0.004
#> SRR1003777     1  0.1858     0.8412 0.904 0.000 0.000 0.092 0.004 0.000
#> SRR1003778     3  0.2944     0.5460 0.000 0.000 0.856 0.068 0.072 0.004
#> SRR1003779     1  0.1753     0.8396 0.912 0.000 0.000 0.084 0.000 0.004
#> SRR1003780     6  0.7187    -0.1252 0.044 0.000 0.024 0.220 0.304 0.408
#> SRR1003781     1  0.1918     0.8467 0.904 0.000 0.000 0.088 0.000 0.008
#> SRR1003784     3  0.2220     0.6289 0.052 0.000 0.908 0.020 0.020 0.000
#> SRR1003785     3  0.1382     0.6083 0.000 0.000 0.948 0.036 0.008 0.008
#> SRR1003786     1  0.1588     0.8362 0.924 0.000 0.000 0.072 0.000 0.004
#> SRR1003783     1  0.1398     0.8417 0.940 0.000 0.000 0.052 0.000 0.008
#> SRR1003787     1  0.2170     0.8260 0.888 0.000 0.000 0.100 0.000 0.012
#> SRR1003788     1  0.3658     0.7822 0.780 0.000 0.024 0.184 0.004 0.008
#> SRR1003789     6  0.6458     0.0840 0.032 0.000 0.012 0.188 0.240 0.528
#> SRR1003790     1  0.2113     0.8273 0.896 0.000 0.000 0.092 0.008 0.004
#> SRR1003791     1  0.4505     0.5941 0.684 0.000 0.000 0.252 0.056 0.008
#> SRR1003792     1  0.1444     0.8422 0.928 0.000 0.000 0.072 0.000 0.000
#> SRR1003793     1  0.1901     0.8304 0.912 0.000 0.000 0.076 0.008 0.004
#> SRR1003794     1  0.1615     0.8425 0.928 0.000 0.000 0.064 0.004 0.004
#> SRR1003795     4  0.7243    -0.1522 0.140 0.000 0.192 0.428 0.240 0.000
#> SRR1003796     3  0.2001     0.5969 0.000 0.000 0.912 0.040 0.048 0.000
#> SRR1003797     1  0.1644     0.8398 0.920 0.000 0.000 0.076 0.000 0.004
#> SRR1003798     1  0.1806     0.8356 0.908 0.000 0.004 0.088 0.000 0.000
#> SRR1003799     1  0.1584     0.8443 0.928 0.000 0.000 0.064 0.000 0.008
#> SRR1003800     1  0.2711     0.8120 0.860 0.000 0.012 0.116 0.012 0.000
#> SRR1003801     1  0.3842     0.7665 0.780 0.000 0.028 0.172 0.008 0.012
#> SRR1003802     3  0.5737    -0.0891 0.380 0.000 0.492 0.112 0.016 0.000
#> SRR1003803     1  0.2501     0.8192 0.872 0.000 0.000 0.108 0.016 0.004
#> SRR1003804     1  0.2062     0.8360 0.900 0.000 0.008 0.088 0.000 0.004
#> SRR1003805     1  0.2400     0.8197 0.872 0.000 0.000 0.116 0.008 0.004
#> SRR1003806     1  0.2051     0.8264 0.896 0.000 0.000 0.096 0.004 0.004
#> SRR1003807     1  0.3785     0.7104 0.764 0.000 0.012 0.196 0.028 0.000
#> SRR1003809     1  0.4802    -0.0415 0.496 0.000 0.452 0.052 0.000 0.000
#> SRR1003808     1  0.2911     0.8116 0.832 0.000 0.000 0.144 0.000 0.024
#> SRR1003810     1  0.2667     0.8196 0.852 0.000 0.020 0.128 0.000 0.000
#> SRR1003811     3  0.4979    -0.1219 0.448 0.000 0.492 0.056 0.004 0.000
#> SRR1003812     1  0.2402     0.8144 0.856 0.000 0.000 0.140 0.000 0.004
#> SRR1003813     3  0.0632     0.6127 0.000 0.000 0.976 0.024 0.000 0.000
#> SRR1003814     1  0.2513     0.8218 0.852 0.000 0.000 0.140 0.000 0.008
#> SRR1003815     1  0.3309     0.7760 0.788 0.000 0.016 0.192 0.004 0.000
#> SRR1003816     1  0.2219     0.8252 0.864 0.000 0.000 0.136 0.000 0.000
#> SRR1003817     1  0.2051     0.8288 0.896 0.000 0.000 0.096 0.004 0.004
#> SRR1003818     1  0.2100     0.8333 0.884 0.000 0.000 0.112 0.000 0.004
#> SRR1003819     1  0.4309     0.6918 0.720 0.000 0.032 0.228 0.004 0.016
#> SRR1003820     1  0.1267     0.8422 0.940 0.000 0.000 0.060 0.000 0.000
#> SRR1003821     1  0.1204     0.8430 0.944 0.000 0.000 0.056 0.000 0.000
#> SRR1003822     3  0.2864     0.6008 0.100 0.000 0.860 0.028 0.012 0.000
#> SRR1003824     1  0.2812     0.8352 0.868 0.000 0.040 0.084 0.004 0.004
#> SRR1003823     1  0.2113     0.8261 0.896 0.000 0.000 0.092 0.008 0.004
#> SRR1003825     1  0.2398     0.8408 0.888 0.000 0.016 0.088 0.004 0.004
#> SRR1003826     1  0.0865     0.8456 0.964 0.000 0.000 0.036 0.000 0.000
#> SRR1003827     1  0.1531     0.8377 0.928 0.000 0.000 0.068 0.000 0.004
#> SRR1003828     1  0.2734     0.7974 0.840 0.000 0.000 0.148 0.008 0.004
#> SRR1003829     1  0.1843     0.8338 0.912 0.000 0.000 0.080 0.004 0.004
#> SRR1003830     1  0.2006     0.8259 0.892 0.000 0.000 0.104 0.000 0.004
#> SRR1003831     1  0.2558     0.8117 0.840 0.000 0.004 0.156 0.000 0.000
#> SRR1003832     1  0.2051     0.8284 0.896 0.000 0.004 0.096 0.000 0.004
#> SRR1003833     1  0.1908     0.8447 0.900 0.000 0.000 0.096 0.000 0.004
#> SRR1003834     1  0.3139     0.8062 0.816 0.000 0.032 0.152 0.000 0.000
#> SRR1003836     1  0.4327     0.7396 0.752 0.000 0.096 0.140 0.008 0.004
#> SRR1003835     1  0.2402     0.8178 0.868 0.000 0.000 0.120 0.012 0.000
#> SRR1003838     3  0.3226     0.5881 0.028 0.000 0.836 0.116 0.020 0.000
#> SRR1003837     1  0.2146     0.8350 0.880 0.000 0.000 0.116 0.000 0.004
#> SRR1003839     1  0.3589     0.7619 0.776 0.000 0.008 0.196 0.004 0.016
#> SRR1003840     1  0.4173     0.6394 0.696 0.000 0.000 0.268 0.024 0.012
#> SRR1003841     5  0.4451     0.0000 0.000 0.004 0.064 0.008 0.720 0.204
#> SRR1003842     1  0.1732     0.8374 0.920 0.000 0.000 0.072 0.004 0.004
#> SRR1003844     1  0.1075     0.8435 0.952 0.000 0.000 0.048 0.000 0.000
#> SRR1003845     1  0.3957     0.6572 0.696 0.000 0.008 0.284 0.004 0.008
#> SRR1003846     1  0.1387     0.8399 0.932 0.000 0.000 0.068 0.000 0.000
#> SRR1003847     1  0.1349     0.8459 0.940 0.000 0.000 0.056 0.004 0.000
#> SRR1003848     3  0.4075     0.3914 0.204 0.000 0.744 0.036 0.016 0.000
#> SRR1003849     3  0.1124     0.6116 0.000 0.000 0.956 0.036 0.008 0.000
#> SRR1003850     1  0.3294     0.7729 0.812 0.000 0.020 0.156 0.012 0.000
#> SRR1003851     3  0.4361     0.5188 0.060 0.000 0.760 0.140 0.040 0.000
#> SRR1003852     1  0.2558     0.8255 0.840 0.000 0.000 0.156 0.004 0.000
#> SRR1003853     1  0.2488     0.8377 0.864 0.000 0.000 0.124 0.008 0.004
#> SRR1003854     1  0.2320     0.8250 0.864 0.000 0.000 0.132 0.000 0.004
#> SRR1003843     1  0.5436     0.1344 0.540 0.000 0.008 0.348 0.104 0.000
#> SRR1003855     1  0.3061     0.7916 0.816 0.000 0.004 0.168 0.004 0.008
#> SRR1003856     3  0.4588     0.2664 0.248 0.000 0.676 0.072 0.004 0.000
#> SRR1003857     1  0.2170     0.8480 0.888 0.000 0.000 0.100 0.000 0.012
#> SRR1003858     1  0.2320     0.8220 0.864 0.000 0.000 0.132 0.000 0.004
#> SRR1003859     1  0.1949     0.8272 0.904 0.000 0.000 0.088 0.004 0.004
#> SRR1003860     1  0.1753     0.8343 0.912 0.000 0.000 0.084 0.000 0.004
#> SRR1003861     1  0.2845     0.7963 0.820 0.000 0.004 0.172 0.000 0.004
#> SRR1003862     1  0.1700     0.8325 0.916 0.000 0.000 0.080 0.000 0.004
#> SRR1003863     1  0.3860     0.7196 0.764 0.000 0.164 0.072 0.000 0.000
#> SRR1003864     1  0.1327     0.8378 0.936 0.000 0.000 0.064 0.000 0.000
#> SRR1003865     1  0.2146     0.8425 0.880 0.000 0.000 0.116 0.004 0.000
#> SRR1003866     1  0.2275     0.8416 0.888 0.000 0.000 0.096 0.008 0.008
#> SRR1003867     1  0.1908     0.8312 0.900 0.000 0.000 0.096 0.000 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 9166 rows and 112 columns.
#>   Top rows (917, 1834, 2750, 3666, 4583) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.980       0.992         0.0507 0.965   0.965
#> 3 3 0.315           0.832       0.862         5.7337 0.734   0.724
#> 4 4 0.183           0.753       0.823         0.2506 0.978   0.968
#> 5 5 0.226           0.647       0.788         0.1258 0.983   0.975
#> 6 6 0.224           0.723       0.760         0.0921 0.993   0.989

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette   p1   p2
#> SRR1003755     2   0.000      1.000 0.00 1.00
#> SRR1003756     2   0.000      1.000 0.00 1.00
#> SRR1003757     1   0.981      0.283 0.58 0.42
#> SRR1003758     1   0.981      0.283 0.58 0.42
#> SRR1003759     1   0.000      0.992 1.00 0.00
#> SRR1003760     1   0.000      0.992 1.00 0.00
#> SRR1003761     1   0.000      0.992 1.00 0.00
#> SRR1003762     1   0.000      0.992 1.00 0.00
#> SRR1003763     1   0.000      0.992 1.00 0.00
#> SRR1003764     1   0.000      0.992 1.00 0.00
#> SRR1003765     1   0.000      0.992 1.00 0.00
#> SRR1003766     1   0.000      0.992 1.00 0.00
#> SRR1003767     1   0.000      0.992 1.00 0.00
#> SRR1003768     1   0.000      0.992 1.00 0.00
#> SRR1003769     1   0.000      0.992 1.00 0.00
#> SRR1003770     1   0.000      0.992 1.00 0.00
#> SRR1003771     1   0.000      0.992 1.00 0.00
#> SRR1003773     1   0.000      0.992 1.00 0.00
#> SRR1003772     1   0.000      0.992 1.00 0.00
#> SRR1003774     1   0.000      0.992 1.00 0.00
#> SRR1003775     1   0.000      0.992 1.00 0.00
#> SRR1003776     1   0.000      0.992 1.00 0.00
#> SRR1003777     1   0.000      0.992 1.00 0.00
#> SRR1003778     1   0.000      0.992 1.00 0.00
#> SRR1003779     1   0.000      0.992 1.00 0.00
#> SRR1003780     1   0.000      0.992 1.00 0.00
#> SRR1003781     1   0.000      0.992 1.00 0.00
#> SRR1003784     1   0.000      0.992 1.00 0.00
#> SRR1003785     1   0.000      0.992 1.00 0.00
#> SRR1003786     1   0.000      0.992 1.00 0.00
#> SRR1003783     1   0.000      0.992 1.00 0.00
#> SRR1003787     1   0.000      0.992 1.00 0.00
#> SRR1003788     1   0.000      0.992 1.00 0.00
#> SRR1003789     1   0.000      0.992 1.00 0.00
#> SRR1003790     1   0.000      0.992 1.00 0.00
#> SRR1003791     1   0.000      0.992 1.00 0.00
#> SRR1003792     1   0.000      0.992 1.00 0.00
#> SRR1003793     1   0.000      0.992 1.00 0.00
#> SRR1003794     1   0.000      0.992 1.00 0.00
#> SRR1003795     1   0.000      0.992 1.00 0.00
#> SRR1003796     1   0.000      0.992 1.00 0.00
#> SRR1003797     1   0.000      0.992 1.00 0.00
#> SRR1003798     1   0.000      0.992 1.00 0.00
#> SRR1003799     1   0.000      0.992 1.00 0.00
#> SRR1003800     1   0.000      0.992 1.00 0.00
#> SRR1003801     1   0.000      0.992 1.00 0.00
#> SRR1003802     1   0.000      0.992 1.00 0.00
#> SRR1003803     1   0.000      0.992 1.00 0.00
#> SRR1003804     1   0.000      0.992 1.00 0.00
#> SRR1003805     1   0.000      0.992 1.00 0.00
#> SRR1003806     1   0.000      0.992 1.00 0.00
#> SRR1003807     1   0.000      0.992 1.00 0.00
#> SRR1003809     1   0.000      0.992 1.00 0.00
#> SRR1003808     1   0.000      0.992 1.00 0.00
#> SRR1003810     1   0.000      0.992 1.00 0.00
#> SRR1003811     1   0.000      0.992 1.00 0.00
#> SRR1003812     1   0.000      0.992 1.00 0.00
#> SRR1003813     1   0.000      0.992 1.00 0.00
#> SRR1003814     1   0.000      0.992 1.00 0.00
#> SRR1003815     1   0.000      0.992 1.00 0.00
#> SRR1003816     1   0.000      0.992 1.00 0.00
#> SRR1003817     1   0.000      0.992 1.00 0.00
#> SRR1003818     1   0.000      0.992 1.00 0.00
#> SRR1003819     1   0.000      0.992 1.00 0.00
#> SRR1003820     1   0.000      0.992 1.00 0.00
#> SRR1003821     1   0.000      0.992 1.00 0.00
#> SRR1003822     1   0.000      0.992 1.00 0.00
#> SRR1003824     1   0.000      0.992 1.00 0.00
#> SRR1003823     1   0.000      0.992 1.00 0.00
#> SRR1003825     1   0.000      0.992 1.00 0.00
#> SRR1003826     1   0.000      0.992 1.00 0.00
#> SRR1003827     1   0.000      0.992 1.00 0.00
#> SRR1003828     1   0.000      0.992 1.00 0.00
#> SRR1003829     1   0.000      0.992 1.00 0.00
#> SRR1003830     1   0.000      0.992 1.00 0.00
#> SRR1003831     1   0.000      0.992 1.00 0.00
#> SRR1003832     1   0.000      0.992 1.00 0.00
#> SRR1003833     1   0.000      0.992 1.00 0.00
#> SRR1003834     1   0.000      0.992 1.00 0.00
#> SRR1003836     1   0.000      0.992 1.00 0.00
#> SRR1003835     1   0.000      0.992 1.00 0.00
#> SRR1003838     1   0.000      0.992 1.00 0.00
#> SRR1003837     1   0.000      0.992 1.00 0.00
#> SRR1003839     1   0.000      0.992 1.00 0.00
#> SRR1003840     1   0.000      0.992 1.00 0.00
#> SRR1003841     1   0.000      0.992 1.00 0.00
#> SRR1003842     1   0.000      0.992 1.00 0.00
#> SRR1003844     1   0.000      0.992 1.00 0.00
#> SRR1003845     1   0.000      0.992 1.00 0.00
#> SRR1003846     1   0.000      0.992 1.00 0.00
#> SRR1003847     1   0.000      0.992 1.00 0.00
#> SRR1003848     1   0.000      0.992 1.00 0.00
#> SRR1003849     1   0.000      0.992 1.00 0.00
#> SRR1003850     1   0.000      0.992 1.00 0.00
#> SRR1003851     1   0.000      0.992 1.00 0.00
#> SRR1003852     1   0.000      0.992 1.00 0.00
#> SRR1003853     1   0.000      0.992 1.00 0.00
#> SRR1003854     1   0.000      0.992 1.00 0.00
#> SRR1003843     1   0.000      0.992 1.00 0.00
#> SRR1003855     1   0.000      0.992 1.00 0.00
#> SRR1003856     1   0.000      0.992 1.00 0.00
#> SRR1003857     1   0.000      0.992 1.00 0.00
#> SRR1003858     1   0.000      0.992 1.00 0.00
#> SRR1003859     1   0.000      0.992 1.00 0.00
#> SRR1003860     1   0.000      0.992 1.00 0.00
#> SRR1003861     1   0.000      0.992 1.00 0.00
#> SRR1003862     1   0.000      0.992 1.00 0.00
#> SRR1003863     1   0.000      0.992 1.00 0.00
#> SRR1003864     1   0.000      0.992 1.00 0.00
#> SRR1003865     1   0.000      0.992 1.00 0.00
#> SRR1003866     1   0.000      0.992 1.00 0.00
#> SRR1003867     1   0.000      0.992 1.00 0.00

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2   p3
#> SRR1003755     3  0.0000      1.000 0.000 0.000 1.00
#> SRR1003756     3  0.0000      1.000 0.000 0.000 1.00
#> SRR1003757     1  0.6192      0.317 0.580 0.000 0.42
#> SRR1003758     1  0.6192      0.317 0.580 0.000 0.42
#> SRR1003759     1  0.4605      0.759 0.796 0.204 0.00
#> SRR1003760     2  0.4842      0.886 0.224 0.776 0.00
#> SRR1003761     2  0.4842      0.886 0.224 0.776 0.00
#> SRR1003762     1  0.4887      0.719 0.772 0.228 0.00
#> SRR1003763     1  0.4887      0.719 0.772 0.228 0.00
#> SRR1003764     1  0.4887      0.719 0.772 0.228 0.00
#> SRR1003765     2  0.4796      0.891 0.220 0.780 0.00
#> SRR1003766     2  0.4796      0.891 0.220 0.780 0.00
#> SRR1003767     2  0.4796      0.891 0.220 0.780 0.00
#> SRR1003768     2  0.4796      0.891 0.220 0.780 0.00
#> SRR1003769     2  0.4796      0.891 0.220 0.780 0.00
#> SRR1003770     2  0.4796      0.891 0.220 0.780 0.00
#> SRR1003771     2  0.4796      0.891 0.220 0.780 0.00
#> SRR1003773     2  0.5859      0.704 0.344 0.656 0.00
#> SRR1003772     1  0.1753      0.893 0.952 0.048 0.00
#> SRR1003774     1  0.2796      0.891 0.908 0.092 0.00
#> SRR1003775     1  0.1289      0.891 0.968 0.032 0.00
#> SRR1003776     1  0.1753      0.896 0.952 0.048 0.00
#> SRR1003777     1  0.1753      0.888 0.952 0.048 0.00
#> SRR1003778     2  0.5882      0.705 0.348 0.652 0.00
#> SRR1003779     1  0.1643      0.893 0.956 0.044 0.00
#> SRR1003780     2  0.4750      0.888 0.216 0.784 0.00
#> SRR1003781     1  0.2537      0.895 0.920 0.080 0.00
#> SRR1003784     1  0.3941      0.841 0.844 0.156 0.00
#> SRR1003785     1  0.5760      0.476 0.672 0.328 0.00
#> SRR1003786     1  0.1860      0.893 0.948 0.052 0.00
#> SRR1003783     1  0.1163      0.892 0.972 0.028 0.00
#> SRR1003787     1  0.1643      0.895 0.956 0.044 0.00
#> SRR1003788     1  0.1964      0.894 0.944 0.056 0.00
#> SRR1003789     2  0.4750      0.888 0.216 0.784 0.00
#> SRR1003790     1  0.1411      0.889 0.964 0.036 0.00
#> SRR1003791     2  0.5650      0.582 0.312 0.688 0.00
#> SRR1003792     1  0.2165      0.896 0.936 0.064 0.00
#> SRR1003793     1  0.1411      0.895 0.964 0.036 0.00
#> SRR1003794     1  0.1964      0.896 0.944 0.056 0.00
#> SRR1003795     2  0.3482      0.712 0.128 0.872 0.00
#> SRR1003796     2  0.5760      0.731 0.328 0.672 0.00
#> SRR1003797     1  0.1753      0.894 0.952 0.048 0.00
#> SRR1003798     1  0.3686      0.859 0.860 0.140 0.00
#> SRR1003799     1  0.2261      0.891 0.932 0.068 0.00
#> SRR1003800     1  0.1643      0.898 0.956 0.044 0.00
#> SRR1003801     1  0.2625      0.891 0.916 0.084 0.00
#> SRR1003802     1  0.3038      0.882 0.896 0.104 0.00
#> SRR1003803     1  0.1411      0.894 0.964 0.036 0.00
#> SRR1003804     1  0.2625      0.895 0.916 0.084 0.00
#> SRR1003805     1  0.2165      0.895 0.936 0.064 0.00
#> SRR1003806     1  0.1289      0.891 0.968 0.032 0.00
#> SRR1003807     1  0.3816      0.861 0.852 0.148 0.00
#> SRR1003809     1  0.4346      0.806 0.816 0.184 0.00
#> SRR1003808     1  0.4504      0.767 0.804 0.196 0.00
#> SRR1003810     1  0.1753      0.897 0.952 0.048 0.00
#> SRR1003811     1  0.2711      0.890 0.912 0.088 0.00
#> SRR1003812     1  0.2066      0.891 0.940 0.060 0.00
#> SRR1003813     1  0.3941      0.833 0.844 0.156 0.00
#> SRR1003814     1  0.3482      0.867 0.872 0.128 0.00
#> SRR1003815     1  0.1643      0.892 0.956 0.044 0.00
#> SRR1003816     1  0.1643      0.895 0.956 0.044 0.00
#> SRR1003817     1  0.0747      0.892 0.984 0.016 0.00
#> SRR1003818     1  0.0747      0.891 0.984 0.016 0.00
#> SRR1003819     1  0.4452      0.802 0.808 0.192 0.00
#> SRR1003820     1  0.1753      0.894 0.952 0.048 0.00
#> SRR1003821     1  0.1163      0.894 0.972 0.028 0.00
#> SRR1003822     1  0.4504      0.798 0.804 0.196 0.00
#> SRR1003824     1  0.2537      0.890 0.920 0.080 0.00
#> SRR1003823     1  0.1860      0.897 0.948 0.052 0.00
#> SRR1003825     1  0.3340      0.871 0.880 0.120 0.00
#> SRR1003826     1  0.1529      0.893 0.960 0.040 0.00
#> SRR1003827     1  0.1643      0.894 0.956 0.044 0.00
#> SRR1003828     1  0.2448      0.889 0.924 0.076 0.00
#> SRR1003829     1  0.2261      0.896 0.932 0.068 0.00
#> SRR1003830     1  0.2165      0.894 0.936 0.064 0.00
#> SRR1003831     1  0.2878      0.880 0.904 0.096 0.00
#> SRR1003832     1  0.1860      0.889 0.948 0.052 0.00
#> SRR1003833     1  0.1860      0.898 0.948 0.052 0.00
#> SRR1003834     1  0.3752      0.856 0.856 0.144 0.00
#> SRR1003836     1  0.3267      0.875 0.884 0.116 0.00
#> SRR1003835     1  0.3038      0.885 0.896 0.104 0.00
#> SRR1003838     1  0.6111      0.318 0.604 0.396 0.00
#> SRR1003837     1  0.2711      0.893 0.912 0.088 0.00
#> SRR1003839     1  0.4291      0.797 0.820 0.180 0.00
#> SRR1003840     2  0.5621      0.780 0.308 0.692 0.00
#> SRR1003841     2  0.4750      0.888 0.216 0.784 0.00
#> SRR1003842     1  0.2356      0.892 0.928 0.072 0.00
#> SRR1003844     1  0.1643      0.895 0.956 0.044 0.00
#> SRR1003845     1  0.4974      0.683 0.764 0.236 0.00
#> SRR1003846     1  0.2066      0.896 0.940 0.060 0.00
#> SRR1003847     1  0.2448      0.897 0.924 0.076 0.00
#> SRR1003848     1  0.2625      0.893 0.916 0.084 0.00
#> SRR1003849     1  0.6204      0.147 0.576 0.424 0.00
#> SRR1003850     1  0.2878      0.889 0.904 0.096 0.00
#> SRR1003851     1  0.5327      0.667 0.728 0.272 0.00
#> SRR1003852     1  0.4842      0.728 0.776 0.224 0.00
#> SRR1003853     1  0.2356      0.885 0.928 0.072 0.00
#> SRR1003854     1  0.1411      0.894 0.964 0.036 0.00
#> SRR1003843     1  0.6192      0.251 0.580 0.420 0.00
#> SRR1003855     1  0.2261      0.897 0.932 0.068 0.00
#> SRR1003856     1  0.5138      0.688 0.748 0.252 0.00
#> SRR1003857     1  0.2261      0.896 0.932 0.068 0.00
#> SRR1003858     1  0.2261      0.890 0.932 0.068 0.00
#> SRR1003859     1  0.2066      0.886 0.940 0.060 0.00
#> SRR1003860     1  0.2356      0.893 0.928 0.072 0.00
#> SRR1003861     1  0.1860      0.894 0.948 0.052 0.00
#> SRR1003862     1  0.1964      0.892 0.944 0.056 0.00
#> SRR1003863     1  0.1753      0.895 0.952 0.048 0.00
#> SRR1003864     1  0.2165      0.892 0.936 0.064 0.00
#> SRR1003865     1  0.4235      0.831 0.824 0.176 0.00
#> SRR1003866     1  0.2711      0.884 0.912 0.088 0.00
#> SRR1003867     1  0.1753      0.896 0.952 0.048 0.00

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3   p4
#> SRR1003755     4   0.000    1.00000 0.000 0.000 0.000 1.00
#> SRR1003756     4   0.000    1.00000 0.000 0.000 0.000 1.00
#> SRR1003757     1   0.521    0.43262 0.572 0.000 0.008 0.42
#> SRR1003758     1   0.521    0.43262 0.572 0.000 0.008 0.42
#> SRR1003759     1   0.553    0.66885 0.632 0.336 0.032 0.00
#> SRR1003760     2   0.212    0.68276 0.068 0.924 0.008 0.00
#> SRR1003761     2   0.212    0.68276 0.068 0.924 0.008 0.00
#> SRR1003762     1   0.519    0.61579 0.616 0.372 0.012 0.00
#> SRR1003763     1   0.519    0.61579 0.616 0.372 0.012 0.00
#> SRR1003764     1   0.519    0.61579 0.616 0.372 0.012 0.00
#> SRR1003765     2   0.179    0.69634 0.068 0.932 0.000 0.00
#> SRR1003766     2   0.179    0.69634 0.068 0.932 0.000 0.00
#> SRR1003767     2   0.179    0.69634 0.068 0.932 0.000 0.00
#> SRR1003768     2   0.179    0.69634 0.068 0.932 0.000 0.00
#> SRR1003769     2   0.179    0.69634 0.068 0.932 0.000 0.00
#> SRR1003770     2   0.179    0.69634 0.068 0.932 0.000 0.00
#> SRR1003771     2   0.179    0.69634 0.068 0.932 0.000 0.00
#> SRR1003773     2   0.707    0.12117 0.172 0.560 0.268 0.00
#> SRR1003772     1   0.182    0.87016 0.944 0.036 0.020 0.00
#> SRR1003774     1   0.404    0.86446 0.832 0.112 0.056 0.00
#> SRR1003775     1   0.151    0.86429 0.956 0.028 0.016 0.00
#> SRR1003776     1   0.233    0.87355 0.916 0.072 0.012 0.00
#> SRR1003777     1   0.158    0.86599 0.952 0.036 0.012 0.00
#> SRR1003778     2   0.700    0.13341 0.164 0.568 0.268 0.00
#> SRR1003779     1   0.182    0.87126 0.944 0.036 0.020 0.00
#> SRR1003780     2   0.190    0.68435 0.064 0.932 0.004 0.00
#> SRR1003781     1   0.287    0.86934 0.884 0.104 0.012 0.00
#> SRR1003784     1   0.552    0.79295 0.724 0.184 0.092 0.00
#> SRR1003785     1   0.720    0.40015 0.524 0.312 0.164 0.00
#> SRR1003786     1   0.203    0.87099 0.936 0.036 0.028 0.00
#> SRR1003783     1   0.183    0.86937 0.944 0.024 0.032 0.00
#> SRR1003787     1   0.197    0.87254 0.932 0.060 0.008 0.00
#> SRR1003788     1   0.373    0.86399 0.844 0.120 0.036 0.00
#> SRR1003789     2   0.190    0.68435 0.064 0.932 0.004 0.00
#> SRR1003790     1   0.152    0.86412 0.956 0.024 0.020 0.00
#> SRR1003791     3   0.723    0.32349 0.156 0.340 0.504 0.00
#> SRR1003792     1   0.244    0.87606 0.916 0.060 0.024 0.00
#> SRR1003793     1   0.238    0.87598 0.916 0.068 0.016 0.00
#> SRR1003794     1   0.318    0.87504 0.876 0.096 0.028 0.00
#> SRR1003795     3   0.589    0.25880 0.036 0.428 0.536 0.00
#> SRR1003796     2   0.699    0.12947 0.168 0.572 0.260 0.00
#> SRR1003797     1   0.264    0.87513 0.908 0.060 0.032 0.00
#> SRR1003798     1   0.549    0.80149 0.720 0.200 0.080 0.00
#> SRR1003799     1   0.267    0.86917 0.908 0.040 0.052 0.00
#> SRR1003800     1   0.260    0.87692 0.908 0.068 0.024 0.00
#> SRR1003801     1   0.385    0.86440 0.840 0.116 0.044 0.00
#> SRR1003802     1   0.521    0.82904 0.756 0.140 0.104 0.00
#> SRR1003803     1   0.226    0.87434 0.924 0.056 0.020 0.00
#> SRR1003804     1   0.311    0.87511 0.884 0.080 0.036 0.00
#> SRR1003805     1   0.238    0.87435 0.920 0.052 0.028 0.00
#> SRR1003806     1   0.130    0.86788 0.964 0.020 0.016 0.00
#> SRR1003807     1   0.424    0.84303 0.808 0.152 0.040 0.00
#> SRR1003809     1   0.626    0.70710 0.652 0.232 0.116 0.00
#> SRR1003808     1   0.516    0.72060 0.688 0.284 0.028 0.00
#> SRR1003810     1   0.308    0.87448 0.880 0.096 0.024 0.00
#> SRR1003811     1   0.415    0.85372 0.828 0.100 0.072 0.00
#> SRR1003812     1   0.221    0.86897 0.928 0.028 0.044 0.00
#> SRR1003813     1   0.589    0.75305 0.692 0.200 0.108 0.00
#> SRR1003814     1   0.420    0.84083 0.808 0.156 0.036 0.00
#> SRR1003815     1   0.202    0.87289 0.936 0.040 0.024 0.00
#> SRR1003816     1   0.252    0.87267 0.912 0.064 0.024 0.00
#> SRR1003817     1   0.236    0.87014 0.920 0.056 0.024 0.00
#> SRR1003818     1   0.217    0.86945 0.928 0.052 0.020 0.00
#> SRR1003819     1   0.592    0.70851 0.656 0.272 0.072 0.00
#> SRR1003820     1   0.223    0.87110 0.928 0.036 0.036 0.00
#> SRR1003821     1   0.217    0.87157 0.928 0.052 0.020 0.00
#> SRR1003822     1   0.634    0.69807 0.648 0.224 0.128 0.00
#> SRR1003824     1   0.396    0.85952 0.840 0.092 0.068 0.00
#> SRR1003823     1   0.206    0.87593 0.932 0.052 0.016 0.00
#> SRR1003825     1   0.529    0.81422 0.748 0.152 0.100 0.00
#> SRR1003826     1   0.198    0.87121 0.936 0.048 0.016 0.00
#> SRR1003827     1   0.180    0.87079 0.944 0.040 0.016 0.00
#> SRR1003828     1   0.423    0.85327 0.816 0.132 0.052 0.00
#> SRR1003829     1   0.284    0.87634 0.892 0.088 0.020 0.00
#> SRR1003830     1   0.220    0.87440 0.928 0.048 0.024 0.00
#> SRR1003831     1   0.376    0.85886 0.832 0.144 0.024 0.00
#> SRR1003832     1   0.230    0.87138 0.924 0.048 0.028 0.00
#> SRR1003833     1   0.241    0.87670 0.916 0.064 0.020 0.00
#> SRR1003834     1   0.535    0.80686 0.740 0.168 0.092 0.00
#> SRR1003836     1   0.527    0.82368 0.748 0.160 0.092 0.00
#> SRR1003835     1   0.430    0.85835 0.816 0.120 0.064 0.00
#> SRR1003838     1   0.765    0.06611 0.400 0.392 0.208 0.00
#> SRR1003837     1   0.304    0.87136 0.888 0.076 0.036 0.00
#> SRR1003839     1   0.501    0.76757 0.732 0.228 0.040 0.00
#> SRR1003840     2   0.626   -0.09300 0.092 0.628 0.280 0.00
#> SRR1003841     2   0.190    0.68435 0.064 0.932 0.004 0.00
#> SRR1003842     1   0.276    0.87361 0.904 0.052 0.044 0.00
#> SRR1003844     1   0.206    0.87247 0.932 0.052 0.016 0.00
#> SRR1003845     1   0.591    0.64694 0.644 0.292 0.064 0.00
#> SRR1003846     1   0.206    0.87068 0.932 0.052 0.016 0.00
#> SRR1003847     1   0.254    0.87560 0.904 0.084 0.012 0.00
#> SRR1003848     1   0.367    0.86313 0.856 0.088 0.056 0.00
#> SRR1003849     2   0.770   -0.00264 0.388 0.392 0.220 0.00
#> SRR1003850     1   0.395    0.86434 0.828 0.136 0.036 0.00
#> SRR1003851     1   0.693    0.58343 0.576 0.268 0.156 0.00
#> SRR1003852     1   0.542    0.69013 0.676 0.284 0.040 0.00
#> SRR1003853     1   0.376    0.85638 0.832 0.144 0.024 0.00
#> SRR1003854     1   0.202    0.87410 0.932 0.056 0.012 0.00
#> SRR1003843     1   0.721    0.26703 0.476 0.380 0.144 0.00
#> SRR1003855     1   0.314    0.87487 0.884 0.072 0.044 0.00
#> SRR1003856     1   0.666    0.63720 0.616 0.232 0.152 0.00
#> SRR1003857     1   0.337    0.87144 0.868 0.096 0.036 0.00
#> SRR1003858     1   0.355    0.87052 0.860 0.096 0.044 0.00
#> SRR1003859     1   0.183    0.86454 0.944 0.024 0.032 0.00
#> SRR1003860     1   0.330    0.87308 0.876 0.076 0.048 0.00
#> SRR1003861     1   0.271    0.87319 0.900 0.080 0.020 0.00
#> SRR1003862     1   0.191    0.87391 0.940 0.040 0.020 0.00
#> SRR1003863     1   0.193    0.87053 0.940 0.036 0.024 0.00
#> SRR1003864     1   0.204    0.86949 0.936 0.032 0.032 0.00
#> SRR1003865     1   0.525    0.80042 0.736 0.196 0.068 0.00
#> SRR1003866     1   0.379    0.85871 0.840 0.124 0.036 0.00
#> SRR1003867     1   0.247    0.87544 0.908 0.080 0.012 0.00

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4   p5
#> SRR1003755     5   0.000     1.0000 0.000 0.000 0.000 0.000 1.00
#> SRR1003756     5   0.000     1.0000 0.000 0.000 0.000 0.000 1.00
#> SRR1003757     1   0.477     0.1915 0.560 0.000 0.020 0.000 0.42
#> SRR1003758     1   0.477     0.1915 0.560 0.000 0.020 0.000 0.42
#> SRR1003759     1   0.576     0.3515 0.588 0.308 0.100 0.004 0.00
#> SRR1003760     2   0.189     0.7923 0.044 0.932 0.020 0.004 0.00
#> SRR1003761     2   0.189     0.7923 0.044 0.932 0.020 0.004 0.00
#> SRR1003762     1   0.462     0.3114 0.592 0.392 0.016 0.000 0.00
#> SRR1003763     1   0.462     0.3114 0.592 0.392 0.016 0.000 0.00
#> SRR1003764     1   0.462     0.3114 0.592 0.392 0.016 0.000 0.00
#> SRR1003765     2   0.112     0.8065 0.044 0.956 0.000 0.000 0.00
#> SRR1003766     2   0.112     0.8065 0.044 0.956 0.000 0.000 0.00
#> SRR1003767     2   0.112     0.8065 0.044 0.956 0.000 0.000 0.00
#> SRR1003768     2   0.112     0.8065 0.044 0.956 0.000 0.000 0.00
#> SRR1003769     2   0.112     0.8065 0.044 0.956 0.000 0.000 0.00
#> SRR1003770     2   0.112     0.8065 0.044 0.956 0.000 0.000 0.00
#> SRR1003771     2   0.112     0.8065 0.044 0.956 0.000 0.000 0.00
#> SRR1003773     2   0.653     0.1440 0.076 0.488 0.392 0.044 0.00
#> SRR1003772     1   0.211     0.7845 0.912 0.016 0.072 0.000 0.00
#> SRR1003774     1   0.432     0.7569 0.780 0.100 0.116 0.004 0.00
#> SRR1003775     1   0.152     0.7801 0.944 0.004 0.048 0.004 0.00
#> SRR1003776     1   0.273     0.7872 0.884 0.064 0.052 0.000 0.00
#> SRR1003777     1   0.194     0.7819 0.920 0.012 0.068 0.000 0.00
#> SRR1003778     2   0.643     0.1580 0.068 0.496 0.392 0.044 0.00
#> SRR1003779     1   0.198     0.7875 0.924 0.028 0.048 0.000 0.00
#> SRR1003780     2   0.179     0.7952 0.044 0.936 0.016 0.004 0.00
#> SRR1003781     1   0.305     0.7800 0.864 0.076 0.060 0.000 0.00
#> SRR1003784     1   0.594     0.5049 0.632 0.164 0.192 0.012 0.00
#> SRR1003785     1   0.691    -0.5348 0.436 0.284 0.272 0.008 0.00
#> SRR1003786     1   0.221     0.7875 0.912 0.016 0.068 0.004 0.00
#> SRR1003783     1   0.194     0.7855 0.924 0.020 0.056 0.000 0.00
#> SRR1003787     1   0.192     0.7874 0.928 0.032 0.040 0.000 0.00
#> SRR1003788     1   0.407     0.7538 0.800 0.108 0.088 0.004 0.00
#> SRR1003789     2   0.179     0.7952 0.044 0.936 0.016 0.004 0.00
#> SRR1003790     1   0.174     0.7813 0.932 0.012 0.056 0.000 0.00
#> SRR1003791     4   0.572     0.3215 0.068 0.228 0.040 0.664 0.00
#> SRR1003792     1   0.245     0.7924 0.900 0.056 0.044 0.000 0.00
#> SRR1003793     1   0.251     0.7922 0.896 0.044 0.060 0.000 0.00
#> SRR1003794     1   0.348     0.7871 0.840 0.056 0.100 0.004 0.00
#> SRR1003795     4   0.699     0.3122 0.016 0.212 0.344 0.428 0.00
#> SRR1003796     2   0.673     0.1384 0.072 0.488 0.376 0.064 0.00
#> SRR1003797     1   0.282     0.7910 0.884 0.052 0.060 0.004 0.00
#> SRR1003798     1   0.547     0.6366 0.680 0.164 0.148 0.008 0.00
#> SRR1003799     1   0.313     0.7693 0.848 0.020 0.128 0.004 0.00
#> SRR1003800     1   0.286     0.7927 0.876 0.056 0.068 0.000 0.00
#> SRR1003801     1   0.417     0.7500 0.784 0.104 0.112 0.000 0.00
#> SRR1003802     1   0.537     0.6146 0.676 0.100 0.216 0.008 0.00
#> SRR1003803     1   0.306     0.7899 0.868 0.048 0.080 0.004 0.00
#> SRR1003804     1   0.334     0.7890 0.844 0.060 0.096 0.000 0.00
#> SRR1003805     1   0.297     0.7891 0.872 0.040 0.084 0.004 0.00
#> SRR1003806     1   0.167     0.7842 0.936 0.012 0.052 0.000 0.00
#> SRR1003807     1   0.491     0.7095 0.748 0.140 0.092 0.020 0.00
#> SRR1003809     1   0.656     0.2173 0.552 0.204 0.228 0.016 0.00
#> SRR1003808     1   0.526     0.4753 0.644 0.284 0.068 0.004 0.00
#> SRR1003810     1   0.342     0.7833 0.840 0.080 0.080 0.000 0.00
#> SRR1003811     1   0.458     0.7110 0.756 0.052 0.176 0.016 0.00
#> SRR1003812     1   0.268     0.7859 0.880 0.016 0.100 0.004 0.00
#> SRR1003813     1   0.616     0.3657 0.592 0.188 0.212 0.008 0.00
#> SRR1003814     1   0.444     0.7303 0.780 0.136 0.068 0.016 0.00
#> SRR1003815     1   0.249     0.7906 0.896 0.036 0.068 0.000 0.00
#> SRR1003816     1   0.236     0.7871 0.904 0.036 0.060 0.000 0.00
#> SRR1003817     1   0.215     0.7832 0.916 0.036 0.048 0.000 0.00
#> SRR1003818     1   0.215     0.7828 0.916 0.036 0.048 0.000 0.00
#> SRR1003819     1   0.623     0.2928 0.568 0.268 0.156 0.008 0.00
#> SRR1003820     1   0.205     0.7855 0.916 0.016 0.068 0.000 0.00
#> SRR1003821     1   0.205     0.7850 0.920 0.028 0.052 0.000 0.00
#> SRR1003822     1   0.650     0.1182 0.536 0.212 0.244 0.008 0.00
#> SRR1003824     1   0.424     0.7479 0.788 0.072 0.132 0.008 0.00
#> SRR1003823     1   0.251     0.7918 0.904 0.048 0.040 0.008 0.00
#> SRR1003825     1   0.544     0.6025 0.672 0.136 0.188 0.004 0.00
#> SRR1003826     1   0.238     0.7887 0.904 0.048 0.048 0.000 0.00
#> SRR1003827     1   0.200     0.7857 0.924 0.036 0.040 0.000 0.00
#> SRR1003828     1   0.445     0.7237 0.776 0.112 0.104 0.008 0.00
#> SRR1003829     1   0.307     0.7917 0.872 0.052 0.068 0.008 0.00
#> SRR1003830     1   0.245     0.7908 0.896 0.028 0.076 0.000 0.00
#> SRR1003831     1   0.368     0.7635 0.824 0.116 0.056 0.004 0.00
#> SRR1003832     1   0.239     0.7857 0.900 0.028 0.072 0.000 0.00
#> SRR1003833     1   0.286     0.7930 0.876 0.060 0.064 0.000 0.00
#> SRR1003834     1   0.554     0.6285 0.672 0.148 0.172 0.008 0.00
#> SRR1003836     1   0.540     0.6127 0.664 0.108 0.224 0.004 0.00
#> SRR1003835     1   0.461     0.7309 0.756 0.080 0.156 0.008 0.00
#> SRR1003838     3   0.726     0.8741 0.276 0.344 0.360 0.020 0.00
#> SRR1003837     1   0.336     0.7794 0.856 0.048 0.084 0.012 0.00
#> SRR1003839     1   0.540     0.5677 0.684 0.212 0.088 0.016 0.00
#> SRR1003840     2   0.681     0.0600 0.060 0.584 0.188 0.168 0.00
#> SRR1003841     2   0.179     0.7952 0.044 0.936 0.016 0.004 0.00
#> SRR1003842     1   0.309     0.7839 0.856 0.040 0.104 0.000 0.00
#> SRR1003844     1   0.207     0.7885 0.920 0.044 0.036 0.000 0.00
#> SRR1003845     1   0.589     0.3040 0.592 0.280 0.124 0.004 0.00
#> SRR1003846     1   0.257     0.7903 0.900 0.024 0.064 0.012 0.00
#> SRR1003847     1   0.349     0.7852 0.840 0.060 0.096 0.004 0.00
#> SRR1003848     1   0.397     0.7562 0.808 0.048 0.132 0.012 0.00
#> SRR1003849     3   0.750     0.8694 0.272 0.324 0.368 0.036 0.00
#> SRR1003850     1   0.428     0.7569 0.784 0.112 0.100 0.004 0.00
#> SRR1003851     1   0.675    -0.1759 0.480 0.236 0.276 0.008 0.00
#> SRR1003852     1   0.550     0.4066 0.632 0.272 0.092 0.004 0.00
#> SRR1003853     1   0.427     0.7495 0.784 0.120 0.092 0.004 0.00
#> SRR1003854     1   0.228     0.7900 0.908 0.032 0.060 0.000 0.00
#> SRR1003843     1   0.773    -0.4213 0.444 0.296 0.160 0.100 0.00
#> SRR1003855     1   0.338     0.7851 0.852 0.056 0.084 0.008 0.00
#> SRR1003856     1   0.648    -0.0723 0.504 0.188 0.304 0.004 0.00
#> SRR1003857     1   0.367     0.7736 0.820 0.068 0.112 0.000 0.00
#> SRR1003858     1   0.342     0.7812 0.840 0.076 0.084 0.000 0.00
#> SRR1003859     1   0.212     0.7805 0.900 0.004 0.096 0.000 0.00
#> SRR1003860     1   0.340     0.7765 0.848 0.036 0.104 0.012 0.00
#> SRR1003861     1   0.266     0.7891 0.888 0.056 0.056 0.000 0.00
#> SRR1003862     1   0.239     0.7927 0.900 0.028 0.072 0.000 0.00
#> SRR1003863     1   0.194     0.7825 0.924 0.020 0.056 0.000 0.00
#> SRR1003864     1   0.205     0.7837 0.916 0.016 0.068 0.000 0.00
#> SRR1003865     1   0.527     0.6393 0.708 0.140 0.140 0.012 0.00
#> SRR1003866     1   0.397     0.7629 0.816 0.100 0.072 0.012 0.00
#> SRR1003867     1   0.301     0.7916 0.872 0.052 0.072 0.004 0.00

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5   p6
#> SRR1003755     6   0.000     1.0000 0.000 0.000 0.000 0.000 0.000 1.00
#> SRR1003756     6   0.000     1.0000 0.000 0.000 0.000 0.000 0.000 1.00
#> SRR1003757     1   0.444     0.5102 0.556 0.000 0.008 0.000 0.016 0.42
#> SRR1003758     1   0.444     0.5102 0.556 0.000 0.008 0.000 0.016 0.42
#> SRR1003759     1   0.611     0.5539 0.532 0.308 0.056 0.000 0.104 0.00
#> SRR1003760     2   0.169     0.8945 0.032 0.936 0.012 0.000 0.020 0.00
#> SRR1003761     2   0.169     0.8945 0.032 0.936 0.012 0.000 0.020 0.00
#> SRR1003762     1   0.487     0.5277 0.548 0.400 0.008 0.000 0.044 0.00
#> SRR1003763     1   0.487     0.5277 0.548 0.400 0.008 0.000 0.044 0.00
#> SRR1003764     1   0.487     0.5277 0.548 0.400 0.008 0.000 0.044 0.00
#> SRR1003765     2   0.079     0.9213 0.032 0.968 0.000 0.000 0.000 0.00
#> SRR1003766     2   0.079     0.9213 0.032 0.968 0.000 0.000 0.000 0.00
#> SRR1003767     2   0.079     0.9213 0.032 0.968 0.000 0.000 0.000 0.00
#> SRR1003768     2   0.079     0.9213 0.032 0.968 0.000 0.000 0.000 0.00
#> SRR1003769     2   0.079     0.9213 0.032 0.968 0.000 0.000 0.000 0.00
#> SRR1003770     2   0.079     0.9213 0.032 0.968 0.000 0.000 0.000 0.00
#> SRR1003771     2   0.079     0.9213 0.032 0.968 0.000 0.000 0.000 0.00
#> SRR1003773     3   0.474     0.4225 0.012 0.384 0.576 0.024 0.004 0.00
#> SRR1003772     1   0.236     0.8201 0.892 0.016 0.012 0.000 0.080 0.00
#> SRR1003774     1   0.491     0.8001 0.728 0.080 0.080 0.000 0.112 0.00
#> SRR1003775     1   0.212     0.8176 0.912 0.008 0.016 0.004 0.060 0.00
#> SRR1003776     1   0.336     0.8234 0.840 0.064 0.024 0.000 0.072 0.00
#> SRR1003777     1   0.263     0.8196 0.864 0.020 0.004 0.000 0.112 0.00
#> SRR1003778     3   0.469     0.4312 0.008 0.400 0.564 0.024 0.004 0.00
#> SRR1003779     1   0.252     0.8236 0.888 0.032 0.012 0.000 0.068 0.00
#> SRR1003780     2   0.146     0.9033 0.028 0.948 0.016 0.004 0.004 0.00
#> SRR1003781     1   0.401     0.8011 0.784 0.064 0.024 0.000 0.128 0.00
#> SRR1003784     1   0.642     0.6269 0.584 0.128 0.188 0.008 0.092 0.00
#> SRR1003785     1   0.744    -0.0599 0.380 0.236 0.284 0.012 0.088 0.00
#> SRR1003786     1   0.269     0.8224 0.884 0.020 0.016 0.008 0.072 0.00
#> SRR1003783     1   0.198     0.8198 0.916 0.016 0.008 0.000 0.060 0.00
#> SRR1003787     1   0.270     0.8247 0.880 0.040 0.016 0.000 0.064 0.00
#> SRR1003788     1   0.470     0.8007 0.752 0.100 0.056 0.004 0.088 0.00
#> SRR1003789     2   0.146     0.9033 0.028 0.948 0.016 0.004 0.004 0.00
#> SRR1003790     1   0.252     0.8208 0.888 0.020 0.020 0.000 0.072 0.00
#> SRR1003791     5   0.555     0.0000 0.004 0.136 0.012 0.244 0.604 0.00
#> SRR1003792     1   0.301     0.8291 0.860 0.052 0.016 0.000 0.072 0.00
#> SRR1003793     1   0.277     0.8273 0.868 0.028 0.012 0.000 0.092 0.00
#> SRR1003794     1   0.405     0.8192 0.780 0.044 0.036 0.000 0.140 0.00
#> SRR1003795     4   0.343     0.0000 0.008 0.080 0.088 0.824 0.000 0.00
#> SRR1003796     3   0.509     0.4083 0.012 0.416 0.520 0.052 0.000 0.00
#> SRR1003797     1   0.330     0.8265 0.848 0.056 0.020 0.004 0.072 0.00
#> SRR1003798     1   0.584     0.7350 0.640 0.136 0.124 0.000 0.100 0.00
#> SRR1003799     1   0.368     0.8120 0.816 0.012 0.056 0.008 0.108 0.00
#> SRR1003800     1   0.332     0.8287 0.844 0.048 0.032 0.000 0.076 0.00
#> SRR1003801     1   0.466     0.8044 0.748 0.060 0.100 0.000 0.092 0.00
#> SRR1003802     1   0.600     0.6811 0.604 0.068 0.192 0.000 0.136 0.00
#> SRR1003803     1   0.360     0.8209 0.820 0.044 0.020 0.004 0.112 0.00
#> SRR1003804     1   0.374     0.8283 0.820 0.044 0.040 0.004 0.092 0.00
#> SRR1003805     1   0.329     0.8243 0.840 0.040 0.024 0.000 0.096 0.00
#> SRR1003806     1   0.207     0.8193 0.916 0.016 0.020 0.000 0.048 0.00
#> SRR1003807     1   0.547     0.7768 0.696 0.120 0.056 0.016 0.112 0.00
#> SRR1003809     1   0.693     0.4613 0.488 0.160 0.248 0.004 0.100 0.00
#> SRR1003808     1   0.587     0.6212 0.596 0.264 0.048 0.008 0.084 0.00
#> SRR1003810     1   0.390     0.8228 0.808 0.068 0.052 0.000 0.072 0.00
#> SRR1003811     1   0.526     0.7704 0.704 0.044 0.096 0.012 0.144 0.00
#> SRR1003812     1   0.305     0.8249 0.852 0.008 0.036 0.004 0.100 0.00
#> SRR1003813     1   0.666     0.5662 0.548 0.156 0.184 0.004 0.108 0.00
#> SRR1003814     1   0.492     0.7761 0.708 0.120 0.020 0.004 0.148 0.00
#> SRR1003815     1   0.299     0.8268 0.864 0.036 0.028 0.000 0.072 0.00
#> SRR1003816     1   0.277     0.8209 0.880 0.032 0.040 0.000 0.048 0.00
#> SRR1003817     1   0.255     0.8175 0.892 0.036 0.024 0.000 0.048 0.00
#> SRR1003818     1   0.261     0.8169 0.888 0.036 0.024 0.000 0.052 0.00
#> SRR1003819     1   0.699     0.5255 0.520 0.216 0.144 0.016 0.104 0.00
#> SRR1003820     1   0.232     0.8219 0.892 0.008 0.016 0.000 0.084 0.00
#> SRR1003821     1   0.251     0.8200 0.888 0.016 0.024 0.000 0.072 0.00
#> SRR1003822     1   0.711     0.3898 0.468 0.156 0.276 0.016 0.084 0.00
#> SRR1003824     1   0.471     0.8025 0.752 0.068 0.072 0.004 0.104 0.00
#> SRR1003823     1   0.292     0.8260 0.880 0.036 0.020 0.016 0.048 0.00
#> SRR1003825     1   0.604     0.7132 0.628 0.104 0.148 0.004 0.116 0.00
#> SRR1003826     1   0.274     0.8259 0.868 0.044 0.004 0.000 0.084 0.00
#> SRR1003827     1   0.236     0.8239 0.900 0.028 0.016 0.000 0.056 0.00
#> SRR1003828     1   0.517     0.7799 0.720 0.104 0.080 0.008 0.088 0.00
#> SRR1003829     1   0.338     0.8279 0.840 0.040 0.016 0.008 0.096 0.00
#> SRR1003830     1   0.304     0.8285 0.856 0.036 0.020 0.000 0.088 0.00
#> SRR1003831     1   0.454     0.8092 0.772 0.096 0.048 0.012 0.072 0.00
#> SRR1003832     1   0.253     0.8212 0.884 0.024 0.012 0.000 0.080 0.00
#> SRR1003833     1   0.333     0.8301 0.840 0.056 0.012 0.004 0.088 0.00
#> SRR1003834     1   0.622     0.7305 0.624 0.116 0.132 0.012 0.116 0.00
#> SRR1003836     1   0.608     0.7138 0.620 0.068 0.140 0.008 0.164 0.00
#> SRR1003835     1   0.518     0.7809 0.696 0.060 0.068 0.004 0.172 0.00
#> SRR1003838     3   0.735     0.3694 0.224 0.300 0.380 0.008 0.088 0.00
#> SRR1003837     1   0.366     0.8215 0.828 0.044 0.032 0.008 0.088 0.00
#> SRR1003839     1   0.588     0.6733 0.624 0.216 0.048 0.012 0.100 0.00
#> SRR1003840     2   0.655    -0.0857 0.028 0.496 0.340 0.048 0.088 0.00
#> SRR1003841     2   0.146     0.9033 0.028 0.948 0.016 0.004 0.004 0.00
#> SRR1003842     1   0.356     0.8208 0.828 0.036 0.032 0.004 0.100 0.00
#> SRR1003844     1   0.253     0.8231 0.884 0.048 0.004 0.000 0.064 0.00
#> SRR1003845     1   0.647     0.5362 0.540 0.260 0.104 0.004 0.092 0.00
#> SRR1003846     1   0.299     0.8279 0.868 0.028 0.020 0.008 0.076 0.00
#> SRR1003847     1   0.420     0.8225 0.788 0.048 0.056 0.004 0.104 0.00
#> SRR1003848     1   0.462     0.8019 0.756 0.036 0.064 0.012 0.132 0.00
#> SRR1003849     3   0.676     0.4147 0.208 0.256 0.480 0.008 0.048 0.00
#> SRR1003850     1   0.483     0.8107 0.744 0.076 0.092 0.004 0.084 0.00
#> SRR1003851     1   0.718     0.2548 0.424 0.192 0.264 0.000 0.120 0.00
#> SRR1003852     1   0.621     0.5837 0.576 0.256 0.060 0.012 0.096 0.00
#> SRR1003853     1   0.503     0.7964 0.720 0.124 0.052 0.004 0.100 0.00
#> SRR1003854     1   0.288     0.8257 0.868 0.036 0.020 0.000 0.076 0.00
#> SRR1003843     1   0.817     0.0730 0.400 0.244 0.116 0.144 0.096 0.00
#> SRR1003855     1   0.389     0.8237 0.820 0.048 0.036 0.016 0.080 0.00
#> SRR1003856     1   0.732     0.3247 0.452 0.140 0.256 0.012 0.140 0.00
#> SRR1003857     1   0.406     0.8203 0.792 0.056 0.048 0.000 0.104 0.00
#> SRR1003858     1   0.425     0.8229 0.788 0.060 0.060 0.004 0.088 0.00
#> SRR1003859     1   0.262     0.8218 0.868 0.004 0.024 0.000 0.104 0.00
#> SRR1003860     1   0.390     0.8208 0.816 0.040 0.044 0.012 0.088 0.00
#> SRR1003861     1   0.298     0.8258 0.868 0.048 0.036 0.000 0.048 0.00
#> SRR1003862     1   0.276     0.8265 0.876 0.028 0.024 0.000 0.072 0.00
#> SRR1003863     1   0.224     0.8176 0.908 0.024 0.020 0.000 0.048 0.00
#> SRR1003864     1   0.249     0.8226 0.892 0.024 0.020 0.000 0.064 0.00
#> SRR1003865     1   0.593     0.7224 0.652 0.112 0.072 0.016 0.148 0.00
#> SRR1003866     1   0.466     0.7953 0.756 0.100 0.040 0.008 0.096 0.00
#> SRR1003867     1   0.370     0.8220 0.816 0.048 0.024 0.004 0.108 0.00

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 9166 rows and 112 columns.
#>   Top rows (917, 1834, 2750, 3666, 4583) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.719           0.959       0.968          0.231 0.740   0.740
#> 3 3 0.431           0.659       0.803          0.918 0.907   0.880
#> 4 4 0.536           0.712       0.856          0.299 0.727   0.616
#> 5 5 0.513           0.651       0.786          0.136 0.902   0.789
#> 6 6 0.471           0.593       0.738          0.106 0.864   0.673

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1003755     1  0.4939      0.861 0.892 0.108
#> SRR1003756     1  0.4939      0.861 0.892 0.108
#> SRR1003757     1  0.4939      0.861 0.892 0.108
#> SRR1003758     1  0.4939      0.861 0.892 0.108
#> SRR1003759     1  0.0000      0.991 1.000 0.000
#> SRR1003760     2  0.4939      0.927 0.108 0.892
#> SRR1003761     2  0.4939      0.927 0.108 0.892
#> SRR1003762     2  0.4939      0.927 0.108 0.892
#> SRR1003763     2  0.9996      0.312 0.488 0.512
#> SRR1003764     2  0.4939      0.927 0.108 0.892
#> SRR1003765     2  0.4939      0.927 0.108 0.892
#> SRR1003766     2  0.4939      0.927 0.108 0.892
#> SRR1003767     2  0.4939      0.927 0.108 0.892
#> SRR1003768     2  0.4939      0.927 0.108 0.892
#> SRR1003769     2  0.4939      0.927 0.108 0.892
#> SRR1003770     2  0.4939      0.927 0.108 0.892
#> SRR1003771     2  0.4939      0.927 0.108 0.892
#> SRR1003773     1  0.0000      0.991 1.000 0.000
#> SRR1003772     1  0.0000      0.991 1.000 0.000
#> SRR1003774     1  0.0000      0.991 1.000 0.000
#> SRR1003775     1  0.0000      0.991 1.000 0.000
#> SRR1003776     1  0.0000      0.991 1.000 0.000
#> SRR1003777     1  0.0000      0.991 1.000 0.000
#> SRR1003778     2  0.9754      0.532 0.408 0.592
#> SRR1003779     1  0.0000      0.991 1.000 0.000
#> SRR1003780     2  0.4939      0.927 0.108 0.892
#> SRR1003781     1  0.0000      0.991 1.000 0.000
#> SRR1003784     1  0.0000      0.991 1.000 0.000
#> SRR1003785     1  0.0000      0.991 1.000 0.000
#> SRR1003786     1  0.0000      0.991 1.000 0.000
#> SRR1003783     1  0.0000      0.991 1.000 0.000
#> SRR1003787     1  0.0000      0.991 1.000 0.000
#> SRR1003788     1  0.0000      0.991 1.000 0.000
#> SRR1003789     2  0.4939      0.927 0.108 0.892
#> SRR1003790     1  0.0000      0.991 1.000 0.000
#> SRR1003791     1  0.0000      0.991 1.000 0.000
#> SRR1003792     1  0.0000      0.991 1.000 0.000
#> SRR1003793     1  0.0000      0.991 1.000 0.000
#> SRR1003794     1  0.0000      0.991 1.000 0.000
#> SRR1003795     1  0.4431      0.877 0.908 0.092
#> SRR1003796     2  0.9944      0.415 0.456 0.544
#> SRR1003797     1  0.0000      0.991 1.000 0.000
#> SRR1003798     1  0.0000      0.991 1.000 0.000
#> SRR1003799     1  0.0000      0.991 1.000 0.000
#> SRR1003800     1  0.0000      0.991 1.000 0.000
#> SRR1003801     1  0.0000      0.991 1.000 0.000
#> SRR1003802     1  0.0000      0.991 1.000 0.000
#> SRR1003803     1  0.0000      0.991 1.000 0.000
#> SRR1003804     1  0.0000      0.991 1.000 0.000
#> SRR1003805     1  0.0000      0.991 1.000 0.000
#> SRR1003806     1  0.0000      0.991 1.000 0.000
#> SRR1003807     1  0.0000      0.991 1.000 0.000
#> SRR1003809     1  0.0000      0.991 1.000 0.000
#> SRR1003808     1  0.2603      0.941 0.956 0.044
#> SRR1003810     1  0.0000      0.991 1.000 0.000
#> SRR1003811     1  0.0000      0.991 1.000 0.000
#> SRR1003812     1  0.0000      0.991 1.000 0.000
#> SRR1003813     1  0.0000      0.991 1.000 0.000
#> SRR1003814     1  0.0000      0.991 1.000 0.000
#> SRR1003815     1  0.0000      0.991 1.000 0.000
#> SRR1003816     1  0.0000      0.991 1.000 0.000
#> SRR1003817     1  0.0000      0.991 1.000 0.000
#> SRR1003818     1  0.0000      0.991 1.000 0.000
#> SRR1003819     1  0.0000      0.991 1.000 0.000
#> SRR1003820     1  0.0000      0.991 1.000 0.000
#> SRR1003821     1  0.0000      0.991 1.000 0.000
#> SRR1003822     1  0.0000      0.991 1.000 0.000
#> SRR1003824     1  0.0000      0.991 1.000 0.000
#> SRR1003823     1  0.0000      0.991 1.000 0.000
#> SRR1003825     1  0.0000      0.991 1.000 0.000
#> SRR1003826     1  0.0000      0.991 1.000 0.000
#> SRR1003827     1  0.0000      0.991 1.000 0.000
#> SRR1003828     1  0.0000      0.991 1.000 0.000
#> SRR1003829     1  0.0000      0.991 1.000 0.000
#> SRR1003830     1  0.0000      0.991 1.000 0.000
#> SRR1003831     1  0.0000      0.991 1.000 0.000
#> SRR1003832     1  0.0000      0.991 1.000 0.000
#> SRR1003833     1  0.0000      0.991 1.000 0.000
#> SRR1003834     1  0.0000      0.991 1.000 0.000
#> SRR1003836     1  0.0000      0.991 1.000 0.000
#> SRR1003835     1  0.0000      0.991 1.000 0.000
#> SRR1003838     1  0.0000      0.991 1.000 0.000
#> SRR1003837     1  0.0000      0.991 1.000 0.000
#> SRR1003839     1  0.0000      0.991 1.000 0.000
#> SRR1003840     1  0.5946      0.794 0.856 0.144
#> SRR1003841     2  0.4939      0.927 0.108 0.892
#> SRR1003842     1  0.0000      0.991 1.000 0.000
#> SRR1003844     1  0.0000      0.991 1.000 0.000
#> SRR1003845     1  0.0672      0.982 0.992 0.008
#> SRR1003846     1  0.0000      0.991 1.000 0.000
#> SRR1003847     1  0.0000      0.991 1.000 0.000
#> SRR1003848     1  0.0000      0.991 1.000 0.000
#> SRR1003849     1  0.0000      0.991 1.000 0.000
#> SRR1003850     1  0.0000      0.991 1.000 0.000
#> SRR1003851     1  0.0000      0.991 1.000 0.000
#> SRR1003852     1  0.0938      0.978 0.988 0.012
#> SRR1003853     1  0.0000      0.991 1.000 0.000
#> SRR1003854     1  0.0000      0.991 1.000 0.000
#> SRR1003843     1  0.0000      0.991 1.000 0.000
#> SRR1003855     1  0.0000      0.991 1.000 0.000
#> SRR1003856     1  0.0000      0.991 1.000 0.000
#> SRR1003857     1  0.0000      0.991 1.000 0.000
#> SRR1003858     1  0.0000      0.991 1.000 0.000
#> SRR1003859     1  0.0000      0.991 1.000 0.000
#> SRR1003860     1  0.0000      0.991 1.000 0.000
#> SRR1003861     1  0.0000      0.991 1.000 0.000
#> SRR1003862     1  0.0000      0.991 1.000 0.000
#> SRR1003863     1  0.0000      0.991 1.000 0.000
#> SRR1003864     1  0.0000      0.991 1.000 0.000
#> SRR1003865     1  0.0000      0.991 1.000 0.000
#> SRR1003866     1  0.0000      0.991 1.000 0.000
#> SRR1003867     1  0.0000      0.991 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1003755     3  0.3267      0.995 0.116 0.000 0.884
#> SRR1003756     3  0.3267      0.995 0.116 0.000 0.884
#> SRR1003757     3  0.3340      0.995 0.120 0.000 0.880
#> SRR1003758     3  0.3340      0.995 0.120 0.000 0.880
#> SRR1003759     1  0.3192      0.636 0.888 0.000 0.112
#> SRR1003760     2  0.3769      0.863 0.016 0.880 0.104
#> SRR1003761     2  0.4172      0.852 0.028 0.868 0.104
#> SRR1003762     2  0.3618      0.865 0.012 0.884 0.104
#> SRR1003763     2  0.8792      0.118 0.432 0.456 0.112
#> SRR1003764     2  0.3539      0.868 0.012 0.888 0.100
#> SRR1003765     2  0.0000      0.905 0.000 1.000 0.000
#> SRR1003766     2  0.0237      0.905 0.000 0.996 0.004
#> SRR1003767     2  0.0000      0.905 0.000 1.000 0.000
#> SRR1003768     2  0.0237      0.905 0.000 0.996 0.004
#> SRR1003769     2  0.0237      0.905 0.000 0.996 0.004
#> SRR1003770     2  0.0000      0.905 0.000 1.000 0.000
#> SRR1003771     2  0.0000      0.905 0.000 1.000 0.000
#> SRR1003773     1  0.3192      0.636 0.888 0.000 0.112
#> SRR1003772     1  0.6244      0.473 0.560 0.000 0.440
#> SRR1003774     1  0.1031      0.708 0.976 0.000 0.024
#> SRR1003775     1  0.6244      0.473 0.560 0.000 0.440
#> SRR1003776     1  0.4974      0.667 0.764 0.000 0.236
#> SRR1003777     1  0.6204      0.499 0.576 0.000 0.424
#> SRR1003778     1  0.5263      0.560 0.824 0.060 0.116
#> SRR1003779     1  0.6235      0.480 0.564 0.000 0.436
#> SRR1003780     2  0.0592      0.906 0.000 0.988 0.012
#> SRR1003781     1  0.3340      0.709 0.880 0.000 0.120
#> SRR1003784     1  0.1411      0.686 0.964 0.000 0.036
#> SRR1003785     1  0.3192      0.636 0.888 0.000 0.112
#> SRR1003786     1  0.6244      0.473 0.560 0.000 0.440
#> SRR1003783     1  0.6244      0.473 0.560 0.000 0.440
#> SRR1003787     1  0.3482      0.709 0.872 0.000 0.128
#> SRR1003788     1  0.0747      0.706 0.984 0.000 0.016
#> SRR1003789     2  0.1860      0.895 0.000 0.948 0.052
#> SRR1003790     1  0.6235      0.481 0.564 0.000 0.436
#> SRR1003791     1  0.3192      0.636 0.888 0.000 0.112
#> SRR1003792     1  0.3879      0.703 0.848 0.000 0.152
#> SRR1003793     1  0.6126      0.531 0.600 0.000 0.400
#> SRR1003794     1  0.4062      0.699 0.836 0.000 0.164
#> SRR1003795     1  0.3267      0.632 0.884 0.000 0.116
#> SRR1003796     1  0.5166      0.565 0.828 0.056 0.116
#> SRR1003797     1  0.3879      0.703 0.848 0.000 0.152
#> SRR1003798     1  0.2537      0.713 0.920 0.000 0.080
#> SRR1003799     1  0.6244      0.473 0.560 0.000 0.440
#> SRR1003800     1  0.3038      0.711 0.896 0.000 0.104
#> SRR1003801     1  0.1031      0.708 0.976 0.000 0.024
#> SRR1003802     1  0.2165      0.714 0.936 0.000 0.064
#> SRR1003803     1  0.4062      0.700 0.836 0.000 0.164
#> SRR1003804     1  0.5988      0.565 0.632 0.000 0.368
#> SRR1003805     1  0.5926      0.577 0.644 0.000 0.356
#> SRR1003806     1  0.6154      0.520 0.592 0.000 0.408
#> SRR1003807     1  0.1860      0.677 0.948 0.000 0.052
#> SRR1003809     1  0.1411      0.686 0.964 0.000 0.036
#> SRR1003808     1  0.3192      0.636 0.888 0.000 0.112
#> SRR1003810     1  0.4062      0.700 0.836 0.000 0.164
#> SRR1003811     1  0.6235      0.480 0.564 0.000 0.436
#> SRR1003812     1  0.6244      0.473 0.560 0.000 0.440
#> SRR1003813     1  0.1529      0.684 0.960 0.000 0.040
#> SRR1003814     1  0.2959      0.712 0.900 0.000 0.100
#> SRR1003815     1  0.6244      0.473 0.560 0.000 0.440
#> SRR1003816     1  0.6168      0.516 0.588 0.000 0.412
#> SRR1003817     1  0.6244      0.473 0.560 0.000 0.440
#> SRR1003818     1  0.5465      0.635 0.712 0.000 0.288
#> SRR1003819     1  0.3192      0.636 0.888 0.000 0.112
#> SRR1003820     1  0.6244      0.473 0.560 0.000 0.440
#> SRR1003821     1  0.6244      0.473 0.560 0.000 0.440
#> SRR1003822     1  0.1529      0.684 0.960 0.000 0.040
#> SRR1003824     1  0.5591      0.618 0.696 0.000 0.304
#> SRR1003823     1  0.6215      0.493 0.572 0.000 0.428
#> SRR1003825     1  0.0892      0.704 0.980 0.000 0.020
#> SRR1003826     1  0.4346      0.692 0.816 0.000 0.184
#> SRR1003827     1  0.5835      0.593 0.660 0.000 0.340
#> SRR1003828     1  0.1163      0.707 0.972 0.000 0.028
#> SRR1003829     1  0.3267      0.710 0.884 0.000 0.116
#> SRR1003830     1  0.6204      0.499 0.576 0.000 0.424
#> SRR1003831     1  0.1163      0.708 0.972 0.000 0.028
#> SRR1003832     1  0.6244      0.473 0.560 0.000 0.440
#> SRR1003833     1  0.2261      0.713 0.932 0.000 0.068
#> SRR1003834     1  0.1529      0.684 0.960 0.000 0.040
#> SRR1003836     1  0.0892      0.692 0.980 0.000 0.020
#> SRR1003835     1  0.1031      0.703 0.976 0.000 0.024
#> SRR1003838     1  0.3192      0.636 0.888 0.000 0.112
#> SRR1003837     1  0.5178      0.644 0.744 0.000 0.256
#> SRR1003839     1  0.1753      0.680 0.952 0.000 0.048
#> SRR1003840     1  0.3192      0.636 0.888 0.000 0.112
#> SRR1003841     2  0.0592      0.906 0.000 0.988 0.012
#> SRR1003842     1  0.6111      0.535 0.604 0.000 0.396
#> SRR1003844     1  0.6079      0.544 0.612 0.000 0.388
#> SRR1003845     1  0.3192      0.636 0.888 0.000 0.112
#> SRR1003846     1  0.6215      0.493 0.572 0.000 0.428
#> SRR1003847     1  0.2356      0.714 0.928 0.000 0.072
#> SRR1003848     1  0.6154      0.510 0.592 0.000 0.408
#> SRR1003849     1  0.3192      0.636 0.888 0.000 0.112
#> SRR1003850     1  0.0592      0.704 0.988 0.000 0.012
#> SRR1003851     1  0.3192      0.636 0.888 0.000 0.112
#> SRR1003852     1  0.3192      0.636 0.888 0.000 0.112
#> SRR1003853     1  0.1289      0.709 0.968 0.000 0.032
#> SRR1003854     1  0.4796      0.676 0.780 0.000 0.220
#> SRR1003843     1  0.3192      0.636 0.888 0.000 0.112
#> SRR1003855     1  0.5733      0.606 0.676 0.000 0.324
#> SRR1003856     1  0.2711      0.654 0.912 0.000 0.088
#> SRR1003857     1  0.6095      0.540 0.608 0.000 0.392
#> SRR1003858     1  0.3619      0.707 0.864 0.000 0.136
#> SRR1003859     1  0.6235      0.480 0.564 0.000 0.436
#> SRR1003860     1  0.4796      0.676 0.780 0.000 0.220
#> SRR1003861     1  0.1964      0.713 0.944 0.000 0.056
#> SRR1003862     1  0.6168      0.515 0.588 0.000 0.412
#> SRR1003863     1  0.6244      0.473 0.560 0.000 0.440
#> SRR1003864     1  0.6235      0.481 0.564 0.000 0.436
#> SRR1003865     1  0.1964      0.679 0.944 0.000 0.056
#> SRR1003866     1  0.1860      0.709 0.948 0.000 0.052
#> SRR1003867     1  0.3267      0.710 0.884 0.000 0.116

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1003755     4  0.1792     0.9719 0.068 0.000 0.000 0.932
#> SRR1003756     4  0.1792     0.9719 0.068 0.000 0.000 0.932
#> SRR1003757     4  0.2149     0.9721 0.088 0.000 0.000 0.912
#> SRR1003758     4  0.2149     0.9721 0.088 0.000 0.000 0.912
#> SRR1003759     3  0.4741     0.6471 0.228 0.000 0.744 0.028
#> SRR1003760     2  0.5997     0.6052 0.000 0.576 0.376 0.048
#> SRR1003761     2  0.6087     0.5612 0.000 0.540 0.412 0.048
#> SRR1003762     2  0.5821     0.6192 0.000 0.592 0.368 0.040
#> SRR1003763     3  0.7333    -0.2284 0.068 0.364 0.528 0.040
#> SRR1003764     2  0.5746     0.6341 0.000 0.612 0.348 0.040
#> SRR1003765     2  0.0000     0.8022 0.000 1.000 0.000 0.000
#> SRR1003766     2  0.0376     0.8021 0.000 0.992 0.004 0.004
#> SRR1003767     2  0.0000     0.8022 0.000 1.000 0.000 0.000
#> SRR1003768     2  0.0376     0.8021 0.000 0.992 0.004 0.004
#> SRR1003769     2  0.0376     0.8021 0.000 0.992 0.004 0.004
#> SRR1003770     2  0.0000     0.8022 0.000 1.000 0.000 0.000
#> SRR1003771     2  0.0000     0.8022 0.000 1.000 0.000 0.000
#> SRR1003773     3  0.1488     0.6961 0.012 0.000 0.956 0.032
#> SRR1003772     1  0.2149     0.8293 0.912 0.000 0.000 0.088
#> SRR1003774     1  0.4866     0.2573 0.596 0.000 0.404 0.000
#> SRR1003775     1  0.2149     0.8293 0.912 0.000 0.000 0.088
#> SRR1003776     1  0.1398     0.8348 0.956 0.000 0.040 0.004
#> SRR1003777     1  0.1716     0.8388 0.936 0.000 0.000 0.064
#> SRR1003778     3  0.1209     0.6829 0.004 0.000 0.964 0.032
#> SRR1003779     1  0.2081     0.8315 0.916 0.000 0.000 0.084
#> SRR1003780     2  0.2300     0.7963 0.000 0.920 0.064 0.016
#> SRR1003781     1  0.1305     0.8335 0.960 0.000 0.036 0.004
#> SRR1003784     3  0.4792     0.5667 0.312 0.000 0.680 0.008
#> SRR1003785     3  0.1182     0.7118 0.016 0.000 0.968 0.016
#> SRR1003786     1  0.2149     0.8293 0.912 0.000 0.000 0.088
#> SRR1003783     1  0.2149     0.8293 0.912 0.000 0.000 0.088
#> SRR1003787     1  0.1209     0.8343 0.964 0.000 0.032 0.004
#> SRR1003788     1  0.4699     0.4835 0.676 0.000 0.320 0.004
#> SRR1003789     2  0.4035     0.7458 0.000 0.804 0.176 0.020
#> SRR1003790     1  0.2149     0.8293 0.912 0.000 0.000 0.088
#> SRR1003791     3  0.2011     0.7348 0.080 0.000 0.920 0.000
#> SRR1003792     1  0.1109     0.8346 0.968 0.000 0.028 0.004
#> SRR1003793     1  0.1488     0.8438 0.956 0.000 0.012 0.032
#> SRR1003794     1  0.1576     0.8299 0.948 0.000 0.048 0.004
#> SRR1003795     3  0.1109     0.6876 0.004 0.000 0.968 0.028
#> SRR1003796     3  0.1209     0.6829 0.004 0.000 0.964 0.032
#> SRR1003797     1  0.2081     0.8118 0.916 0.000 0.084 0.000
#> SRR1003798     1  0.4898     0.2223 0.584 0.000 0.416 0.000
#> SRR1003799     1  0.2334     0.8292 0.908 0.000 0.004 0.088
#> SRR1003800     1  0.1661     0.8289 0.944 0.000 0.052 0.004
#> SRR1003801     1  0.4830     0.3054 0.608 0.000 0.392 0.000
#> SRR1003802     1  0.5535     0.2794 0.560 0.000 0.420 0.020
#> SRR1003803     1  0.1936     0.8440 0.940 0.000 0.028 0.032
#> SRR1003804     1  0.2521     0.8395 0.912 0.000 0.024 0.064
#> SRR1003805     1  0.1637     0.8412 0.940 0.000 0.000 0.060
#> SRR1003806     1  0.2053     0.8383 0.924 0.000 0.004 0.072
#> SRR1003807     3  0.4889     0.5006 0.360 0.000 0.636 0.004
#> SRR1003809     3  0.4792     0.5655 0.312 0.000 0.680 0.008
#> SRR1003808     3  0.2281     0.7301 0.096 0.000 0.904 0.000
#> SRR1003810     1  0.2704     0.7812 0.876 0.000 0.124 0.000
#> SRR1003811     1  0.4424     0.7953 0.812 0.000 0.100 0.088
#> SRR1003812     1  0.2149     0.8293 0.912 0.000 0.000 0.088
#> SRR1003813     3  0.4560     0.5964 0.296 0.000 0.700 0.004
#> SRR1003814     1  0.3172     0.7466 0.840 0.000 0.160 0.000
#> SRR1003815     1  0.2149     0.8293 0.912 0.000 0.000 0.088
#> SRR1003816     1  0.2266     0.8332 0.912 0.000 0.004 0.084
#> SRR1003817     1  0.2149     0.8293 0.912 0.000 0.000 0.088
#> SRR1003818     1  0.0707     0.8378 0.980 0.000 0.020 0.000
#> SRR1003819     3  0.2125     0.7374 0.076 0.000 0.920 0.004
#> SRR1003820     1  0.1716     0.8385 0.936 0.000 0.000 0.064
#> SRR1003821     1  0.2081     0.8310 0.916 0.000 0.000 0.084
#> SRR1003822     3  0.4722     0.5881 0.300 0.000 0.692 0.008
#> SRR1003824     1  0.1837     0.8441 0.944 0.000 0.028 0.028
#> SRR1003823     1  0.2081     0.8316 0.916 0.000 0.000 0.084
#> SRR1003825     1  0.4907     0.2120 0.580 0.000 0.420 0.000
#> SRR1003826     1  0.1305     0.8335 0.960 0.000 0.036 0.004
#> SRR1003827     1  0.1151     0.8375 0.968 0.000 0.024 0.008
#> SRR1003828     1  0.4925     0.1915 0.572 0.000 0.428 0.000
#> SRR1003829     1  0.1557     0.8284 0.944 0.000 0.056 0.000
#> SRR1003830     1  0.2334     0.8310 0.908 0.000 0.004 0.088
#> SRR1003831     1  0.4372     0.5860 0.728 0.000 0.268 0.004
#> SRR1003832     1  0.2149     0.8293 0.912 0.000 0.000 0.088
#> SRR1003833     1  0.2654     0.7913 0.888 0.000 0.108 0.004
#> SRR1003834     3  0.4933     0.3298 0.432 0.000 0.568 0.000
#> SRR1003836     3  0.5168     0.1163 0.492 0.000 0.504 0.004
#> SRR1003835     1  0.3610     0.6957 0.800 0.000 0.200 0.000
#> SRR1003838     3  0.1520     0.7159 0.024 0.000 0.956 0.020
#> SRR1003837     1  0.1938     0.8349 0.936 0.000 0.052 0.012
#> SRR1003839     1  0.4994    -0.0685 0.520 0.000 0.480 0.000
#> SRR1003840     3  0.2542     0.7235 0.084 0.000 0.904 0.012
#> SRR1003841     2  0.2300     0.7963 0.000 0.920 0.064 0.016
#> SRR1003842     1  0.2081     0.8347 0.916 0.000 0.000 0.084
#> SRR1003844     1  0.2266     0.8358 0.912 0.000 0.004 0.084
#> SRR1003845     3  0.2466     0.7295 0.096 0.000 0.900 0.004
#> SRR1003846     1  0.1807     0.8429 0.940 0.000 0.008 0.052
#> SRR1003847     1  0.1302     0.8321 0.956 0.000 0.044 0.000
#> SRR1003848     1  0.2376     0.8418 0.916 0.000 0.016 0.068
#> SRR1003849     3  0.1059     0.7076 0.012 0.000 0.972 0.016
#> SRR1003850     1  0.4916     0.2024 0.576 0.000 0.424 0.000
#> SRR1003851     3  0.1629     0.7156 0.024 0.000 0.952 0.024
#> SRR1003852     3  0.2345     0.7291 0.100 0.000 0.900 0.000
#> SRR1003853     1  0.4313     0.5955 0.736 0.000 0.260 0.004
#> SRR1003854     1  0.1022     0.8346 0.968 0.000 0.032 0.000
#> SRR1003843     3  0.1902     0.7316 0.064 0.000 0.932 0.004
#> SRR1003855     1  0.0937     0.8417 0.976 0.000 0.012 0.012
#> SRR1003856     3  0.4372     0.6359 0.268 0.000 0.728 0.004
#> SRR1003857     1  0.2125     0.8368 0.920 0.000 0.004 0.076
#> SRR1003858     1  0.3908     0.6724 0.784 0.000 0.212 0.004
#> SRR1003859     1  0.2149     0.8293 0.912 0.000 0.000 0.088
#> SRR1003860     1  0.1209     0.8359 0.964 0.000 0.032 0.004
#> SRR1003861     1  0.2773     0.7866 0.880 0.000 0.116 0.004
#> SRR1003862     1  0.2401     0.8318 0.904 0.000 0.004 0.092
#> SRR1003863     1  0.2149     0.8293 0.912 0.000 0.000 0.088
#> SRR1003864     1  0.1474     0.8411 0.948 0.000 0.000 0.052
#> SRR1003865     1  0.4964     0.2884 0.616 0.000 0.380 0.004
#> SRR1003866     1  0.3402     0.7395 0.832 0.000 0.164 0.004
#> SRR1003867     1  0.1305     0.8337 0.960 0.000 0.036 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1003755     4  0.0510    0.96861 0.016 0.000 0.000 0.984 0.000
#> SRR1003756     4  0.0510    0.96861 0.016 0.000 0.000 0.984 0.000
#> SRR1003757     4  0.0963    0.96859 0.036 0.000 0.000 0.964 0.000
#> SRR1003758     4  0.0963    0.96859 0.036 0.000 0.000 0.964 0.000
#> SRR1003759     5  0.5180   -0.08805 0.060 0.000 0.292 0.004 0.644
#> SRR1003760     5  0.5442    0.59722 0.000 0.380 0.056 0.004 0.560
#> SRR1003761     5  0.5543    0.60687 0.000 0.356 0.068 0.004 0.572
#> SRR1003762     5  0.5230    0.51345 0.000 0.452 0.044 0.000 0.504
#> SRR1003763     5  0.5973    0.56808 0.004 0.332 0.112 0.000 0.552
#> SRR1003764     5  0.5044    0.47970 0.000 0.464 0.032 0.000 0.504
#> SRR1003765     2  0.0162    0.87887 0.000 0.996 0.000 0.000 0.004
#> SRR1003766     2  0.0324    0.87882 0.000 0.992 0.000 0.004 0.004
#> SRR1003767     2  0.0451    0.87775 0.000 0.988 0.000 0.004 0.008
#> SRR1003768     2  0.0324    0.87882 0.000 0.992 0.000 0.004 0.004
#> SRR1003769     2  0.0324    0.87882 0.000 0.992 0.000 0.004 0.004
#> SRR1003770     2  0.0162    0.87887 0.000 0.996 0.000 0.000 0.004
#> SRR1003771     2  0.0451    0.87775 0.000 0.988 0.000 0.004 0.008
#> SRR1003773     3  0.2890    0.49477 0.000 0.000 0.836 0.004 0.160
#> SRR1003772     1  0.0992    0.83273 0.968 0.000 0.000 0.008 0.024
#> SRR1003774     3  0.6110    0.09019 0.396 0.000 0.476 0.000 0.128
#> SRR1003775     1  0.0898    0.83264 0.972 0.000 0.000 0.008 0.020
#> SRR1003776     1  0.3309    0.80713 0.836 0.000 0.036 0.000 0.128
#> SRR1003777     1  0.1798    0.83561 0.928 0.000 0.004 0.004 0.064
#> SRR1003778     3  0.3861    0.37649 0.000 0.000 0.712 0.004 0.284
#> SRR1003779     1  0.0992    0.83256 0.968 0.000 0.000 0.008 0.024
#> SRR1003780     2  0.3394    0.70013 0.000 0.824 0.020 0.004 0.152
#> SRR1003781     1  0.3477    0.80568 0.824 0.000 0.040 0.000 0.136
#> SRR1003784     3  0.3670    0.55799 0.068 0.000 0.820 0.000 0.112
#> SRR1003785     3  0.2787    0.51054 0.004 0.000 0.856 0.004 0.136
#> SRR1003786     1  0.1331    0.83628 0.952 0.000 0.000 0.008 0.040
#> SRR1003783     1  0.0898    0.83168 0.972 0.000 0.000 0.008 0.020
#> SRR1003787     1  0.3531    0.79666 0.816 0.000 0.036 0.000 0.148
#> SRR1003788     1  0.6615    0.24310 0.444 0.000 0.324 0.000 0.232
#> SRR1003789     2  0.4372    0.40075 0.000 0.712 0.024 0.004 0.260
#> SRR1003790     1  0.0693    0.83117 0.980 0.000 0.000 0.008 0.012
#> SRR1003791     3  0.3934    0.50457 0.008 0.000 0.716 0.000 0.276
#> SRR1003792     1  0.1628    0.84117 0.936 0.000 0.008 0.000 0.056
#> SRR1003793     1  0.1628    0.84008 0.936 0.000 0.008 0.000 0.056
#> SRR1003794     1  0.3321    0.82511 0.832 0.000 0.032 0.000 0.136
#> SRR1003795     3  0.3790    0.41573 0.000 0.000 0.724 0.004 0.272
#> SRR1003796     3  0.3579    0.41645 0.000 0.000 0.756 0.004 0.240
#> SRR1003797     1  0.4125    0.77749 0.772 0.000 0.056 0.000 0.172
#> SRR1003798     1  0.6347    0.15711 0.460 0.000 0.376 0.000 0.164
#> SRR1003799     1  0.2968    0.82170 0.872 0.000 0.028 0.008 0.092
#> SRR1003800     1  0.4104    0.79206 0.788 0.000 0.088 0.000 0.124
#> SRR1003801     3  0.6105    0.09275 0.392 0.000 0.480 0.000 0.128
#> SRR1003802     3  0.6219   -0.02435 0.420 0.000 0.440 0.000 0.140
#> SRR1003803     1  0.4210    0.79166 0.784 0.000 0.072 0.004 0.140
#> SRR1003804     1  0.4023    0.78656 0.804 0.000 0.096 0.004 0.096
#> SRR1003805     1  0.1518    0.83732 0.944 0.000 0.004 0.004 0.048
#> SRR1003806     1  0.1408    0.83545 0.948 0.000 0.000 0.008 0.044
#> SRR1003807     3  0.4535    0.55859 0.160 0.000 0.748 0.000 0.092
#> SRR1003809     3  0.3688    0.55917 0.124 0.000 0.816 0.000 0.060
#> SRR1003808     3  0.5167    0.36591 0.044 0.000 0.552 0.000 0.404
#> SRR1003810     1  0.4528    0.75913 0.752 0.000 0.104 0.000 0.144
#> SRR1003811     1  0.5623    0.62575 0.652 0.000 0.220 0.008 0.120
#> SRR1003812     1  0.1857    0.83815 0.928 0.000 0.004 0.008 0.060
#> SRR1003813     3  0.3476    0.56516 0.076 0.000 0.836 0.000 0.088
#> SRR1003814     1  0.5158    0.67836 0.676 0.000 0.100 0.000 0.224
#> SRR1003815     1  0.1331    0.83322 0.952 0.000 0.000 0.008 0.040
#> SRR1003816     1  0.1697    0.83432 0.932 0.000 0.000 0.008 0.060
#> SRR1003817     1  0.0798    0.83132 0.976 0.000 0.000 0.008 0.016
#> SRR1003818     1  0.2351    0.82901 0.896 0.000 0.016 0.000 0.088
#> SRR1003819     3  0.2763    0.54897 0.004 0.000 0.848 0.000 0.148
#> SRR1003820     1  0.1041    0.83382 0.964 0.000 0.000 0.004 0.032
#> SRR1003821     1  0.0955    0.83462 0.968 0.000 0.000 0.004 0.028
#> SRR1003822     3  0.3176    0.56612 0.064 0.000 0.856 0.000 0.080
#> SRR1003824     1  0.4886    0.69577 0.712 0.000 0.188 0.000 0.100
#> SRR1003823     1  0.3246    0.82138 0.848 0.000 0.024 0.008 0.120
#> SRR1003825     3  0.5989    0.25597 0.336 0.000 0.536 0.000 0.128
#> SRR1003826     1  0.2825    0.82067 0.860 0.000 0.016 0.000 0.124
#> SRR1003827     1  0.1502    0.83614 0.940 0.000 0.004 0.000 0.056
#> SRR1003828     1  0.6618   -0.00249 0.400 0.000 0.384 0.000 0.216
#> SRR1003829     1  0.3714    0.80960 0.812 0.000 0.056 0.000 0.132
#> SRR1003830     1  0.1788    0.83436 0.932 0.000 0.004 0.008 0.056
#> SRR1003831     1  0.6127    0.46530 0.552 0.000 0.276 0.000 0.172
#> SRR1003832     1  0.1644    0.83429 0.940 0.000 0.004 0.008 0.048
#> SRR1003833     1  0.5664    0.64144 0.628 0.000 0.152 0.000 0.220
#> SRR1003834     3  0.5759    0.50030 0.200 0.000 0.620 0.000 0.180
#> SRR1003836     3  0.5909    0.46375 0.244 0.000 0.592 0.000 0.164
#> SRR1003835     1  0.6496    0.34468 0.488 0.000 0.280 0.000 0.232
#> SRR1003838     3  0.2787    0.51788 0.004 0.000 0.856 0.004 0.136
#> SRR1003837     1  0.5006    0.71901 0.708 0.000 0.156 0.000 0.136
#> SRR1003839     3  0.6701    0.29345 0.300 0.000 0.428 0.000 0.272
#> SRR1003840     3  0.4632    0.27496 0.012 0.000 0.540 0.000 0.448
#> SRR1003841     2  0.3394    0.70013 0.000 0.824 0.020 0.004 0.152
#> SRR1003842     1  0.3346    0.81808 0.848 0.000 0.036 0.008 0.108
#> SRR1003844     1  0.1251    0.83457 0.956 0.000 0.000 0.008 0.036
#> SRR1003845     3  0.4298    0.41363 0.008 0.000 0.640 0.000 0.352
#> SRR1003846     1  0.1442    0.83781 0.952 0.000 0.012 0.004 0.032
#> SRR1003847     1  0.4069    0.79229 0.792 0.000 0.096 0.000 0.112
#> SRR1003848     1  0.2673    0.83117 0.892 0.000 0.044 0.004 0.060
#> SRR1003849     3  0.2536    0.50559 0.000 0.000 0.868 0.004 0.128
#> SRR1003850     3  0.6146    0.08202 0.400 0.000 0.468 0.000 0.132
#> SRR1003851     3  0.2646    0.52185 0.004 0.000 0.868 0.004 0.124
#> SRR1003852     3  0.4682    0.32763 0.016 0.000 0.564 0.000 0.420
#> SRR1003853     1  0.6525    0.38218 0.484 0.000 0.252 0.000 0.264
#> SRR1003854     1  0.2793    0.82956 0.876 0.000 0.036 0.000 0.088
#> SRR1003843     3  0.3990    0.43248 0.004 0.000 0.688 0.000 0.308
#> SRR1003855     1  0.3657    0.81047 0.820 0.000 0.064 0.000 0.116
#> SRR1003856     3  0.2969    0.55397 0.020 0.000 0.852 0.000 0.128
#> SRR1003857     1  0.3077    0.82677 0.864 0.000 0.028 0.008 0.100
#> SRR1003858     1  0.5271    0.67473 0.680 0.000 0.168 0.000 0.152
#> SRR1003859     1  0.1717    0.83358 0.936 0.000 0.004 0.008 0.052
#> SRR1003860     1  0.2448    0.83777 0.892 0.000 0.020 0.000 0.088
#> SRR1003861     1  0.5190    0.69390 0.688 0.000 0.140 0.000 0.172
#> SRR1003862     1  0.2291    0.83414 0.908 0.000 0.012 0.008 0.072
#> SRR1003863     1  0.1483    0.83552 0.952 0.000 0.012 0.008 0.028
#> SRR1003864     1  0.1251    0.83475 0.956 0.000 0.000 0.008 0.036
#> SRR1003865     1  0.6736    0.08729 0.412 0.000 0.312 0.000 0.276
#> SRR1003866     1  0.4936    0.71215 0.712 0.000 0.116 0.000 0.172
#> SRR1003867     1  0.3099    0.82926 0.848 0.000 0.028 0.000 0.124

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4   p5    p6
#> SRR1003755     5  0.0000     0.9540 0.000 0.000 0.000 0.000 1.00 0.000
#> SRR1003756     5  0.0000     0.9540 0.000 0.000 0.000 0.000 1.00 0.000
#> SRR1003757     5  0.1049     0.9540 0.032 0.000 0.000 0.000 0.96 0.008
#> SRR1003758     5  0.1049     0.9540 0.032 0.000 0.000 0.000 0.96 0.008
#> SRR1003759     6  0.4696     0.1850 0.008 0.000 0.040 0.352 0.00 0.600
#> SRR1003760     6  0.4793     0.6777 0.000 0.264 0.048 0.024 0.00 0.664
#> SRR1003761     6  0.4871     0.6730 0.000 0.232 0.056 0.032 0.00 0.680
#> SRR1003762     6  0.5279     0.6238 0.000 0.376 0.036 0.040 0.00 0.548
#> SRR1003763     6  0.5569     0.6570 0.000 0.328 0.036 0.072 0.00 0.564
#> SRR1003764     6  0.5225     0.6182 0.000 0.380 0.032 0.040 0.00 0.548
#> SRR1003765     2  0.0260     0.8863 0.000 0.992 0.000 0.008 0.00 0.000
#> SRR1003766     2  0.0405     0.8843 0.000 0.988 0.000 0.004 0.00 0.008
#> SRR1003767     2  0.0260     0.8867 0.000 0.992 0.000 0.008 0.00 0.000
#> SRR1003768     2  0.0405     0.8843 0.000 0.988 0.000 0.004 0.00 0.008
#> SRR1003769     2  0.0405     0.8843 0.000 0.988 0.000 0.004 0.00 0.008
#> SRR1003770     2  0.0260     0.8863 0.000 0.992 0.000 0.008 0.00 0.000
#> SRR1003771     2  0.0260     0.8867 0.000 0.992 0.000 0.008 0.00 0.000
#> SRR1003773     3  0.1434     0.7109 0.000 0.000 0.940 0.048 0.00 0.012
#> SRR1003772     1  0.0806     0.7674 0.972 0.000 0.000 0.008 0.00 0.020
#> SRR1003774     4  0.6515     0.5247 0.276 0.000 0.132 0.512 0.00 0.080
#> SRR1003775     1  0.1088     0.7698 0.960 0.000 0.000 0.024 0.00 0.016
#> SRR1003776     1  0.4190     0.6034 0.692 0.000 0.000 0.260 0.00 0.048
#> SRR1003777     1  0.2554     0.7616 0.876 0.000 0.000 0.076 0.00 0.048
#> SRR1003778     3  0.2384     0.6569 0.000 0.000 0.888 0.048 0.00 0.064
#> SRR1003779     1  0.1642     0.7725 0.936 0.000 0.004 0.032 0.00 0.028
#> SRR1003780     2  0.3192     0.7257 0.000 0.828 0.020 0.016 0.00 0.136
#> SRR1003781     1  0.4637     0.5398 0.628 0.000 0.000 0.308 0.00 0.064
#> SRR1003784     3  0.5642     0.1986 0.016 0.000 0.468 0.420 0.00 0.096
#> SRR1003785     3  0.1838     0.7183 0.000 0.000 0.916 0.068 0.00 0.016
#> SRR1003786     1  0.0725     0.7687 0.976 0.000 0.000 0.012 0.00 0.012
#> SRR1003783     1  0.0508     0.7665 0.984 0.000 0.000 0.004 0.00 0.012
#> SRR1003787     1  0.4534     0.3976 0.580 0.000 0.000 0.380 0.00 0.040
#> SRR1003788     4  0.4492     0.5912 0.148 0.000 0.028 0.744 0.00 0.080
#> SRR1003789     2  0.4285     0.4798 0.000 0.716 0.028 0.024 0.00 0.232
#> SRR1003790     1  0.0777     0.7702 0.972 0.000 0.000 0.024 0.00 0.004
#> SRR1003791     4  0.5046     0.2614 0.000 0.000 0.224 0.632 0.00 0.144
#> SRR1003792     1  0.3328     0.7663 0.816 0.000 0.000 0.120 0.00 0.064
#> SRR1003793     1  0.2129     0.7756 0.904 0.000 0.000 0.056 0.00 0.040
#> SRR1003794     1  0.4579     0.7001 0.696 0.000 0.004 0.208 0.00 0.092
#> SRR1003795     3  0.3167     0.6292 0.000 0.000 0.832 0.096 0.00 0.072
#> SRR1003796     3  0.2237     0.6566 0.000 0.000 0.896 0.036 0.00 0.068
#> SRR1003797     1  0.4604     0.5518 0.636 0.000 0.000 0.300 0.00 0.064
#> SRR1003798     4  0.6307     0.5081 0.256 0.000 0.132 0.544 0.00 0.068
#> SRR1003799     1  0.3576     0.7283 0.800 0.000 0.004 0.136 0.00 0.060
#> SRR1003800     1  0.4955     0.4283 0.548 0.000 0.004 0.388 0.00 0.060
#> SRR1003801     4  0.6449     0.5026 0.184 0.000 0.240 0.520 0.00 0.056
#> SRR1003802     4  0.7401     0.2812 0.300 0.000 0.232 0.344 0.00 0.124
#> SRR1003803     1  0.4982     0.6555 0.656 0.000 0.008 0.228 0.00 0.108
#> SRR1003804     1  0.4884     0.6138 0.672 0.000 0.024 0.240 0.00 0.064
#> SRR1003805     1  0.2822     0.7653 0.864 0.000 0.004 0.076 0.00 0.056
#> SRR1003806     1  0.1738     0.7733 0.928 0.000 0.004 0.052 0.00 0.016
#> SRR1003807     4  0.6018     0.4185 0.124 0.000 0.292 0.544 0.00 0.040
#> SRR1003809     3  0.6121     0.2951 0.064 0.000 0.528 0.316 0.00 0.092
#> SRR1003808     4  0.5669     0.2866 0.020 0.000 0.188 0.600 0.00 0.192
#> SRR1003810     1  0.5559     0.3177 0.524 0.000 0.028 0.376 0.00 0.072
#> SRR1003811     1  0.6138     0.4107 0.564 0.000 0.068 0.256 0.00 0.112
#> SRR1003812     1  0.1257     0.7713 0.952 0.000 0.000 0.028 0.00 0.020
#> SRR1003813     3  0.5447     0.2205 0.020 0.000 0.480 0.432 0.00 0.068
#> SRR1003814     1  0.5470     0.2004 0.500 0.000 0.020 0.408 0.00 0.072
#> SRR1003815     1  0.1572     0.7722 0.936 0.000 0.000 0.036 0.00 0.028
#> SRR1003816     1  0.2145     0.7635 0.900 0.000 0.000 0.072 0.00 0.028
#> SRR1003817     1  0.0603     0.7659 0.980 0.000 0.000 0.004 0.00 0.016
#> SRR1003818     1  0.3027     0.7251 0.824 0.000 0.000 0.148 0.00 0.028
#> SRR1003819     4  0.4783    -0.1060 0.000 0.000 0.428 0.520 0.00 0.052
#> SRR1003820     1  0.1151     0.7696 0.956 0.000 0.000 0.012 0.00 0.032
#> SRR1003821     1  0.1261     0.7711 0.952 0.000 0.000 0.024 0.00 0.024
#> SRR1003822     3  0.5233     0.3546 0.016 0.000 0.568 0.348 0.00 0.068
#> SRR1003824     1  0.5975     0.1847 0.476 0.000 0.036 0.388 0.00 0.100
#> SRR1003823     1  0.4193     0.7099 0.748 0.000 0.008 0.168 0.00 0.076
#> SRR1003825     4  0.6327     0.5289 0.140 0.000 0.156 0.584 0.00 0.120
#> SRR1003826     1  0.3555     0.7013 0.776 0.000 0.000 0.184 0.00 0.040
#> SRR1003827     1  0.2365     0.7744 0.888 0.000 0.000 0.072 0.00 0.040
#> SRR1003828     4  0.5508     0.5877 0.156 0.000 0.092 0.668 0.00 0.084
#> SRR1003829     1  0.4900     0.5364 0.592 0.000 0.000 0.328 0.00 0.080
#> SRR1003830     1  0.2499     0.7669 0.880 0.000 0.000 0.072 0.00 0.048
#> SRR1003831     4  0.5431     0.5449 0.260 0.000 0.068 0.624 0.00 0.048
#> SRR1003832     1  0.2542     0.7669 0.876 0.000 0.000 0.080 0.00 0.044
#> SRR1003833     4  0.4554     0.4908 0.244 0.000 0.012 0.688 0.00 0.056
#> SRR1003834     4  0.5605     0.5021 0.092 0.000 0.188 0.648 0.00 0.072
#> SRR1003836     4  0.6090     0.5140 0.116 0.000 0.152 0.612 0.00 0.120
#> SRR1003835     4  0.5196     0.5509 0.236 0.000 0.024 0.648 0.00 0.092
#> SRR1003838     3  0.2747     0.7014 0.000 0.000 0.860 0.096 0.00 0.044
#> SRR1003837     1  0.5626     0.0492 0.456 0.000 0.028 0.444 0.00 0.072
#> SRR1003839     4  0.4260     0.5808 0.120 0.000 0.036 0.772 0.00 0.072
#> SRR1003840     4  0.5786     0.1010 0.000 0.000 0.188 0.468 0.00 0.344
#> SRR1003841     2  0.3192     0.7257 0.000 0.828 0.020 0.016 0.00 0.136
#> SRR1003842     1  0.4376     0.6919 0.724 0.000 0.004 0.180 0.00 0.092
#> SRR1003844     1  0.2070     0.7695 0.908 0.000 0.000 0.044 0.00 0.048
#> SRR1003845     4  0.5417     0.1897 0.000 0.000 0.268 0.568 0.00 0.164
#> SRR1003846     1  0.2971     0.7682 0.860 0.000 0.012 0.076 0.00 0.052
#> SRR1003847     1  0.4841     0.3152 0.536 0.000 0.004 0.412 0.00 0.048
#> SRR1003848     1  0.4081     0.7214 0.768 0.000 0.016 0.152 0.00 0.064
#> SRR1003849     3  0.1471     0.7186 0.000 0.000 0.932 0.064 0.00 0.004
#> SRR1003850     4  0.6109     0.5439 0.208 0.000 0.164 0.576 0.00 0.052
#> SRR1003851     3  0.3439     0.6787 0.000 0.000 0.808 0.120 0.00 0.072
#> SRR1003852     4  0.5630     0.2426 0.012 0.000 0.192 0.588 0.00 0.208
#> SRR1003853     4  0.3491     0.5955 0.148 0.000 0.008 0.804 0.00 0.040
#> SRR1003854     1  0.4234     0.6170 0.676 0.000 0.000 0.280 0.00 0.044
#> SRR1003843     4  0.5700    -0.1239 0.000 0.000 0.404 0.436 0.00 0.160
#> SRR1003855     1  0.4910     0.5709 0.628 0.000 0.008 0.292 0.00 0.072
#> SRR1003856     4  0.5448    -0.1540 0.008 0.000 0.432 0.468 0.00 0.092
#> SRR1003857     1  0.4168     0.7138 0.756 0.000 0.008 0.148 0.00 0.088
#> SRR1003858     1  0.5314     0.2538 0.520 0.000 0.028 0.404 0.00 0.048
#> SRR1003859     1  0.2147     0.7640 0.896 0.000 0.000 0.084 0.00 0.020
#> SRR1003860     1  0.4278     0.6920 0.712 0.000 0.000 0.212 0.00 0.076
#> SRR1003861     4  0.4649     0.2336 0.380 0.000 0.000 0.572 0.00 0.048
#> SRR1003862     1  0.2511     0.7675 0.880 0.000 0.000 0.064 0.00 0.056
#> SRR1003863     1  0.1341     0.7716 0.948 0.000 0.000 0.028 0.00 0.024
#> SRR1003864     1  0.1245     0.7711 0.952 0.000 0.000 0.032 0.00 0.016
#> SRR1003865     4  0.5157     0.5473 0.148 0.000 0.032 0.684 0.00 0.136
#> SRR1003866     1  0.5135     0.3886 0.560 0.000 0.016 0.368 0.00 0.056
#> SRR1003867     1  0.4373     0.7111 0.720 0.000 0.004 0.192 0.00 0.084

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 9166 rows and 112 columns.
#>   Top rows (917, 1834, 2750, 3666, 4583) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.638           0.820       0.923         0.4754 0.532   0.532
#> 3 3 0.326           0.604       0.746         0.3665 0.795   0.629
#> 4 4 0.334           0.394       0.633         0.1332 0.887   0.708
#> 5 5 0.373           0.307       0.563         0.0646 0.929   0.773
#> 6 6 0.388           0.237       0.503         0.0435 0.903   0.663

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1003755     1  0.0000     0.9175 1.000 0.000
#> SRR1003756     1  0.0000     0.9175 1.000 0.000
#> SRR1003757     1  0.0000     0.9175 1.000 0.000
#> SRR1003758     1  0.0000     0.9175 1.000 0.000
#> SRR1003759     2  0.0376     0.9080 0.004 0.996
#> SRR1003760     2  0.0000     0.9107 0.000 1.000
#> SRR1003761     2  0.0000     0.9107 0.000 1.000
#> SRR1003762     2  0.0000     0.9107 0.000 1.000
#> SRR1003763     2  0.0000     0.9107 0.000 1.000
#> SRR1003764     2  0.0000     0.9107 0.000 1.000
#> SRR1003765     2  0.0000     0.9107 0.000 1.000
#> SRR1003766     2  0.0000     0.9107 0.000 1.000
#> SRR1003767     2  0.0000     0.9107 0.000 1.000
#> SRR1003768     2  0.0000     0.9107 0.000 1.000
#> SRR1003769     2  0.0000     0.9107 0.000 1.000
#> SRR1003770     2  0.0000     0.9107 0.000 1.000
#> SRR1003771     2  0.0000     0.9107 0.000 1.000
#> SRR1003773     2  0.0000     0.9107 0.000 1.000
#> SRR1003772     1  0.0000     0.9175 1.000 0.000
#> SRR1003774     1  0.8955     0.5752 0.688 0.312
#> SRR1003775     1  0.0000     0.9175 1.000 0.000
#> SRR1003776     1  0.0672     0.9148 0.992 0.008
#> SRR1003777     1  0.0000     0.9175 1.000 0.000
#> SRR1003778     2  0.0000     0.9107 0.000 1.000
#> SRR1003779     1  0.0000     0.9175 1.000 0.000
#> SRR1003780     2  0.0000     0.9107 0.000 1.000
#> SRR1003781     1  0.6531     0.7951 0.832 0.168
#> SRR1003784     1  0.9996     0.0343 0.512 0.488
#> SRR1003785     2  0.0000     0.9107 0.000 1.000
#> SRR1003786     1  0.0000     0.9175 1.000 0.000
#> SRR1003783     1  0.0000     0.9175 1.000 0.000
#> SRR1003787     1  0.1843     0.9058 0.972 0.028
#> SRR1003788     1  0.9491     0.4552 0.632 0.368
#> SRR1003789     2  0.0000     0.9107 0.000 1.000
#> SRR1003790     1  0.0000     0.9175 1.000 0.000
#> SRR1003791     2  0.0000     0.9107 0.000 1.000
#> SRR1003792     1  0.3431     0.8853 0.936 0.064
#> SRR1003793     1  0.0000     0.9175 1.000 0.000
#> SRR1003794     1  0.0672     0.9147 0.992 0.008
#> SRR1003795     2  0.0000     0.9107 0.000 1.000
#> SRR1003796     2  0.0000     0.9107 0.000 1.000
#> SRR1003797     1  0.4690     0.8584 0.900 0.100
#> SRR1003798     1  0.7883     0.7077 0.764 0.236
#> SRR1003799     1  0.0000     0.9175 1.000 0.000
#> SRR1003800     1  0.0000     0.9175 1.000 0.000
#> SRR1003801     1  0.9795     0.3243 0.584 0.416
#> SRR1003802     1  0.1633     0.9076 0.976 0.024
#> SRR1003803     1  0.3274     0.8878 0.940 0.060
#> SRR1003804     1  0.0000     0.9175 1.000 0.000
#> SRR1003805     1  0.0376     0.9161 0.996 0.004
#> SRR1003806     1  0.0000     0.9175 1.000 0.000
#> SRR1003807     2  0.6148     0.7776 0.152 0.848
#> SRR1003809     2  0.9993     0.0407 0.484 0.516
#> SRR1003808     2  0.0000     0.9107 0.000 1.000
#> SRR1003810     1  0.2043     0.9039 0.968 0.032
#> SRR1003811     1  0.0000     0.9175 1.000 0.000
#> SRR1003812     1  0.0000     0.9175 1.000 0.000
#> SRR1003813     2  0.9635     0.3861 0.388 0.612
#> SRR1003814     2  0.9996    -0.0056 0.488 0.512
#> SRR1003815     1  0.0000     0.9175 1.000 0.000
#> SRR1003816     1  0.0000     0.9175 1.000 0.000
#> SRR1003817     1  0.0000     0.9175 1.000 0.000
#> SRR1003818     1  0.0000     0.9175 1.000 0.000
#> SRR1003819     2  0.0000     0.9107 0.000 1.000
#> SRR1003820     1  0.0000     0.9175 1.000 0.000
#> SRR1003821     1  0.0000     0.9175 1.000 0.000
#> SRR1003822     2  0.9087     0.5306 0.324 0.676
#> SRR1003824     1  0.0000     0.9175 1.000 0.000
#> SRR1003823     1  0.0000     0.9175 1.000 0.000
#> SRR1003825     1  0.7745     0.7189 0.772 0.228
#> SRR1003826     1  0.0938     0.9131 0.988 0.012
#> SRR1003827     1  0.0000     0.9175 1.000 0.000
#> SRR1003828     1  0.9993     0.0870 0.516 0.484
#> SRR1003829     1  0.4562     0.8617 0.904 0.096
#> SRR1003830     1  0.0000     0.9175 1.000 0.000
#> SRR1003831     1  0.9552     0.4332 0.624 0.376
#> SRR1003832     1  0.0000     0.9175 1.000 0.000
#> SRR1003833     1  0.3733     0.8791 0.928 0.072
#> SRR1003834     2  0.9580     0.3861 0.380 0.620
#> SRR1003836     1  0.9129     0.5056 0.672 0.328
#> SRR1003835     1  0.6712     0.7777 0.824 0.176
#> SRR1003838     2  0.0000     0.9107 0.000 1.000
#> SRR1003837     1  0.0000     0.9175 1.000 0.000
#> SRR1003839     2  0.4022     0.8513 0.080 0.920
#> SRR1003840     2  0.0000     0.9107 0.000 1.000
#> SRR1003841     2  0.0000     0.9107 0.000 1.000
#> SRR1003842     1  0.0000     0.9175 1.000 0.000
#> SRR1003844     1  0.0000     0.9175 1.000 0.000
#> SRR1003845     2  0.0000     0.9107 0.000 1.000
#> SRR1003846     1  0.0000     0.9175 1.000 0.000
#> SRR1003847     1  0.6973     0.7649 0.812 0.188
#> SRR1003848     1  0.0000     0.9175 1.000 0.000
#> SRR1003849     2  0.0000     0.9107 0.000 1.000
#> SRR1003850     1  0.9248     0.5239 0.660 0.340
#> SRR1003851     2  0.1184     0.9004 0.016 0.984
#> SRR1003852     2  0.0000     0.9107 0.000 1.000
#> SRR1003853     1  0.4815     0.8554 0.896 0.104
#> SRR1003854     1  0.1633     0.9078 0.976 0.024
#> SRR1003843     2  0.0000     0.9107 0.000 1.000
#> SRR1003855     1  0.0000     0.9175 1.000 0.000
#> SRR1003856     2  0.7299     0.7255 0.204 0.796
#> SRR1003857     1  0.0000     0.9175 1.000 0.000
#> SRR1003858     1  0.5737     0.8261 0.864 0.136
#> SRR1003859     1  0.0000     0.9175 1.000 0.000
#> SRR1003860     1  0.0000     0.9175 1.000 0.000
#> SRR1003861     1  0.8386     0.6585 0.732 0.268
#> SRR1003862     1  0.0000     0.9175 1.000 0.000
#> SRR1003863     1  0.0000     0.9175 1.000 0.000
#> SRR1003864     1  0.0000     0.9175 1.000 0.000
#> SRR1003865     2  0.9754     0.3471 0.408 0.592
#> SRR1003866     2  0.9248     0.4900 0.340 0.660
#> SRR1003867     1  0.6438     0.7991 0.836 0.164

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1003755     1  0.0592    0.69850 0.988 0.000 0.012
#> SRR1003756     1  0.0592    0.69850 0.988 0.000 0.012
#> SRR1003757     1  0.0592    0.69850 0.988 0.000 0.012
#> SRR1003758     1  0.0592    0.69850 0.988 0.000 0.012
#> SRR1003759     2  0.3989    0.79455 0.012 0.864 0.124
#> SRR1003760     2  0.0000    0.86745 0.000 1.000 0.000
#> SRR1003761     2  0.0000    0.86745 0.000 1.000 0.000
#> SRR1003762     2  0.0000    0.86745 0.000 1.000 0.000
#> SRR1003763     2  0.0000    0.86745 0.000 1.000 0.000
#> SRR1003764     2  0.0000    0.86745 0.000 1.000 0.000
#> SRR1003765     2  0.0000    0.86745 0.000 1.000 0.000
#> SRR1003766     2  0.0000    0.86745 0.000 1.000 0.000
#> SRR1003767     2  0.0000    0.86745 0.000 1.000 0.000
#> SRR1003768     2  0.0000    0.86745 0.000 1.000 0.000
#> SRR1003769     2  0.0000    0.86745 0.000 1.000 0.000
#> SRR1003770     2  0.0000    0.86745 0.000 1.000 0.000
#> SRR1003771     2  0.0000    0.86745 0.000 1.000 0.000
#> SRR1003773     2  0.4702    0.74790 0.000 0.788 0.212
#> SRR1003772     1  0.3340    0.72302 0.880 0.000 0.120
#> SRR1003774     3  0.9030    0.41612 0.388 0.136 0.476
#> SRR1003775     1  0.3619    0.72722 0.864 0.000 0.136
#> SRR1003776     1  0.6275    0.52540 0.644 0.008 0.348
#> SRR1003777     1  0.4452    0.71252 0.808 0.000 0.192
#> SRR1003778     2  0.2537    0.84257 0.000 0.920 0.080
#> SRR1003779     1  0.3879    0.72403 0.848 0.000 0.152
#> SRR1003780     2  0.0000    0.86745 0.000 1.000 0.000
#> SRR1003781     1  0.9266   -0.23730 0.424 0.156 0.420
#> SRR1003784     3  0.8917    0.60922 0.244 0.188 0.568
#> SRR1003785     2  0.5363    0.67401 0.000 0.724 0.276
#> SRR1003786     1  0.2711    0.71977 0.912 0.000 0.088
#> SRR1003783     1  0.2796    0.71659 0.908 0.000 0.092
#> SRR1003787     3  0.6825   -0.27174 0.488 0.012 0.500
#> SRR1003788     3  0.9198    0.59970 0.280 0.192 0.528
#> SRR1003789     2  0.0000    0.86745 0.000 1.000 0.000
#> SRR1003790     1  0.4235    0.71982 0.824 0.000 0.176
#> SRR1003791     2  0.5058    0.69374 0.000 0.756 0.244
#> SRR1003792     1  0.8411    0.15656 0.508 0.088 0.404
#> SRR1003793     1  0.4750    0.70698 0.784 0.000 0.216
#> SRR1003794     1  0.6297    0.53426 0.640 0.008 0.352
#> SRR1003795     2  0.2261    0.84978 0.000 0.932 0.068
#> SRR1003796     2  0.2959    0.83325 0.000 0.900 0.100
#> SRR1003797     1  0.8373    0.22616 0.524 0.088 0.388
#> SRR1003798     3  0.7968    0.37986 0.372 0.068 0.560
#> SRR1003799     1  0.4121    0.70566 0.832 0.000 0.168
#> SRR1003800     1  0.6460    0.32088 0.556 0.004 0.440
#> SRR1003801     3  0.9442    0.58334 0.288 0.216 0.496
#> SRR1003802     1  0.6936    0.03593 0.524 0.016 0.460
#> SRR1003803     1  0.7699    0.26236 0.560 0.052 0.388
#> SRR1003804     1  0.5621    0.56560 0.692 0.000 0.308
#> SRR1003805     1  0.5158    0.69987 0.764 0.004 0.232
#> SRR1003806     1  0.4842    0.69324 0.776 0.000 0.224
#> SRR1003807     3  0.9069    0.29335 0.136 0.424 0.440
#> SRR1003809     3  0.9141    0.54103 0.360 0.152 0.488
#> SRR1003808     2  0.1860    0.85293 0.000 0.948 0.052
#> SRR1003810     1  0.5678    0.56705 0.684 0.000 0.316
#> SRR1003811     1  0.4555    0.65458 0.800 0.000 0.200
#> SRR1003812     1  0.3686    0.72505 0.860 0.000 0.140
#> SRR1003813     3  0.8825    0.58555 0.296 0.148 0.556
#> SRR1003814     2  0.9930   -0.57463 0.360 0.364 0.276
#> SRR1003815     1  0.3038    0.72274 0.896 0.000 0.104
#> SRR1003816     1  0.3619    0.72073 0.864 0.000 0.136
#> SRR1003817     1  0.2261    0.71563 0.932 0.000 0.068
#> SRR1003818     1  0.4702    0.70105 0.788 0.000 0.212
#> SRR1003819     2  0.5292    0.69897 0.008 0.764 0.228
#> SRR1003820     1  0.4235    0.71693 0.824 0.000 0.176
#> SRR1003821     1  0.3816    0.71744 0.852 0.000 0.148
#> SRR1003822     3  0.8845    0.61345 0.240 0.184 0.576
#> SRR1003824     1  0.5988    0.43550 0.632 0.000 0.368
#> SRR1003823     1  0.4974    0.67601 0.764 0.000 0.236
#> SRR1003825     3  0.8439    0.46147 0.368 0.096 0.536
#> SRR1003826     1  0.6200    0.59268 0.676 0.012 0.312
#> SRR1003827     1  0.5810    0.60365 0.664 0.000 0.336
#> SRR1003828     3  0.9721    0.58590 0.284 0.264 0.452
#> SRR1003829     1  0.8331   -0.00684 0.484 0.080 0.436
#> SRR1003830     1  0.4291    0.71932 0.820 0.000 0.180
#> SRR1003831     3  0.9233    0.58920 0.268 0.204 0.528
#> SRR1003832     1  0.3412    0.72498 0.876 0.000 0.124
#> SRR1003833     3  0.8228    0.36919 0.364 0.084 0.552
#> SRR1003834     3  0.7333    0.60715 0.116 0.180 0.704
#> SRR1003836     3  0.7884    0.58473 0.252 0.104 0.644
#> SRR1003835     3  0.8774    0.35644 0.412 0.112 0.476
#> SRR1003838     2  0.6143    0.60601 0.012 0.684 0.304
#> SRR1003837     1  0.6026    0.47132 0.624 0.000 0.376
#> SRR1003839     2  0.8243    0.15098 0.084 0.548 0.368
#> SRR1003840     2  0.1411    0.85928 0.000 0.964 0.036
#> SRR1003841     2  0.0000    0.86745 0.000 1.000 0.000
#> SRR1003842     1  0.5138    0.66891 0.748 0.000 0.252
#> SRR1003844     1  0.3941    0.72424 0.844 0.000 0.156
#> SRR1003845     2  0.2448    0.84582 0.000 0.924 0.076
#> SRR1003846     1  0.4605    0.71028 0.796 0.000 0.204
#> SRR1003847     3  0.8618    0.35316 0.388 0.104 0.508
#> SRR1003848     1  0.5327    0.62306 0.728 0.000 0.272
#> SRR1003849     2  0.5327    0.67701 0.000 0.728 0.272
#> SRR1003850     3  0.8752    0.58381 0.284 0.148 0.568
#> SRR1003851     2  0.6721    0.47086 0.016 0.604 0.380
#> SRR1003852     2  0.1289    0.86101 0.000 0.968 0.032
#> SRR1003853     3  0.8263    0.57245 0.268 0.120 0.612
#> SRR1003854     1  0.6994    0.49575 0.612 0.028 0.360
#> SRR1003843     2  0.3755    0.81460 0.008 0.872 0.120
#> SRR1003855     1  0.5678    0.60718 0.684 0.000 0.316
#> SRR1003856     3  0.8894    0.50312 0.152 0.300 0.548
#> SRR1003857     1  0.4974    0.67917 0.764 0.000 0.236
#> SRR1003858     1  0.7924    0.34027 0.612 0.084 0.304
#> SRR1003859     1  0.4399    0.71683 0.812 0.000 0.188
#> SRR1003860     1  0.6008    0.54266 0.628 0.000 0.372
#> SRR1003861     3  0.8872    0.55758 0.288 0.156 0.556
#> SRR1003862     1  0.3551    0.72743 0.868 0.000 0.132
#> SRR1003863     1  0.0747    0.70027 0.984 0.000 0.016
#> SRR1003864     1  0.3686    0.72857 0.860 0.000 0.140
#> SRR1003865     3  0.9676    0.52613 0.348 0.220 0.432
#> SRR1003866     3  0.9866    0.52811 0.256 0.356 0.388
#> SRR1003867     1  0.9544   -0.38955 0.420 0.192 0.388

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1003755     1  0.0376     0.5454 0.992 0.000 0.004 0.004
#> SRR1003756     1  0.0376     0.5454 0.992 0.000 0.004 0.004
#> SRR1003757     1  0.0336     0.5455 0.992 0.000 0.000 0.008
#> SRR1003758     1  0.0336     0.5455 0.992 0.000 0.000 0.008
#> SRR1003759     2  0.5671     0.6812 0.012 0.744 0.128 0.116
#> SRR1003760     2  0.0000     0.8303 0.000 1.000 0.000 0.000
#> SRR1003761     2  0.0000     0.8303 0.000 1.000 0.000 0.000
#> SRR1003762     2  0.0000     0.8303 0.000 1.000 0.000 0.000
#> SRR1003763     2  0.0188     0.8289 0.000 0.996 0.004 0.000
#> SRR1003764     2  0.0000     0.8303 0.000 1.000 0.000 0.000
#> SRR1003765     2  0.0000     0.8303 0.000 1.000 0.000 0.000
#> SRR1003766     2  0.0000     0.8303 0.000 1.000 0.000 0.000
#> SRR1003767     2  0.0000     0.8303 0.000 1.000 0.000 0.000
#> SRR1003768     2  0.0000     0.8303 0.000 1.000 0.000 0.000
#> SRR1003769     2  0.0000     0.8303 0.000 1.000 0.000 0.000
#> SRR1003770     2  0.0000     0.8303 0.000 1.000 0.000 0.000
#> SRR1003771     2  0.0000     0.8303 0.000 1.000 0.000 0.000
#> SRR1003773     2  0.5558     0.5686 0.000 0.640 0.324 0.036
#> SRR1003772     1  0.5083     0.5492 0.716 0.000 0.036 0.248
#> SRR1003774     3  0.9237    -0.1076 0.280 0.080 0.368 0.272
#> SRR1003775     1  0.5742     0.5319 0.664 0.000 0.060 0.276
#> SRR1003776     1  0.7618     0.2509 0.504 0.004 0.228 0.264
#> SRR1003777     1  0.5898     0.4516 0.604 0.000 0.048 0.348
#> SRR1003778     2  0.3636     0.7648 0.000 0.820 0.172 0.008
#> SRR1003779     1  0.6356     0.4522 0.596 0.000 0.084 0.320
#> SRR1003780     2  0.0000     0.8303 0.000 1.000 0.000 0.000
#> SRR1003781     4  0.8857     0.2790 0.260 0.068 0.224 0.448
#> SRR1003784     3  0.8056     0.1833 0.144 0.060 0.556 0.240
#> SRR1003785     2  0.6101     0.4148 0.000 0.560 0.388 0.052
#> SRR1003786     1  0.3853     0.5667 0.820 0.000 0.020 0.160
#> SRR1003783     1  0.4793     0.5599 0.756 0.000 0.040 0.204
#> SRR1003787     4  0.7921     0.2499 0.312 0.008 0.228 0.452
#> SRR1003788     4  0.9409     0.0547 0.196 0.120 0.308 0.376
#> SRR1003789     2  0.0000     0.8303 0.000 1.000 0.000 0.000
#> SRR1003790     1  0.5883     0.5105 0.640 0.000 0.060 0.300
#> SRR1003791     2  0.6638     0.5264 0.008 0.640 0.228 0.124
#> SRR1003792     4  0.8665     0.2503 0.352 0.052 0.188 0.408
#> SRR1003793     1  0.6859     0.3584 0.512 0.000 0.108 0.380
#> SRR1003794     4  0.8024     0.1465 0.364 0.012 0.208 0.416
#> SRR1003795     2  0.4057     0.7615 0.000 0.812 0.160 0.028
#> SRR1003796     2  0.3768     0.7534 0.000 0.808 0.184 0.008
#> SRR1003797     4  0.8344     0.2209 0.344 0.036 0.180 0.440
#> SRR1003798     3  0.8731    -0.0541 0.308 0.040 0.388 0.264
#> SRR1003799     1  0.5820     0.5248 0.700 0.000 0.108 0.192
#> SRR1003800     1  0.8048    -0.2173 0.360 0.004 0.288 0.348
#> SRR1003801     3  0.9423     0.1052 0.172 0.156 0.416 0.256
#> SRR1003802     3  0.7917    -0.1096 0.364 0.004 0.396 0.236
#> SRR1003803     1  0.8722    -0.2303 0.348 0.036 0.276 0.340
#> SRR1003804     1  0.6758     0.3986 0.604 0.000 0.156 0.240
#> SRR1003805     1  0.7169     0.3261 0.528 0.000 0.160 0.312
#> SRR1003806     1  0.6561     0.4219 0.564 0.000 0.092 0.344
#> SRR1003807     3  0.9556     0.1651 0.124 0.292 0.352 0.232
#> SRR1003809     3  0.8823     0.1311 0.252 0.080 0.472 0.196
#> SRR1003808     2  0.3820     0.7663 0.000 0.848 0.088 0.064
#> SRR1003810     1  0.7857     0.0166 0.428 0.004 0.228 0.340
#> SRR1003811     1  0.6689     0.4045 0.620 0.000 0.196 0.184
#> SRR1003812     1  0.5267     0.5460 0.740 0.000 0.076 0.184
#> SRR1003813     3  0.8112     0.2121 0.196 0.076 0.572 0.156
#> SRR1003814     4  0.9838     0.1438 0.256 0.236 0.180 0.328
#> SRR1003815     1  0.5763     0.5335 0.700 0.000 0.096 0.204
#> SRR1003816     1  0.5384     0.5427 0.728 0.000 0.076 0.196
#> SRR1003817     1  0.4839     0.5594 0.764 0.000 0.052 0.184
#> SRR1003818     1  0.6495     0.4451 0.608 0.000 0.108 0.284
#> SRR1003819     2  0.6962     0.4230 0.012 0.588 0.292 0.108
#> SRR1003820     1  0.5890     0.5052 0.660 0.000 0.072 0.268
#> SRR1003821     1  0.5772     0.5216 0.672 0.000 0.068 0.260
#> SRR1003822     3  0.8237     0.2313 0.132 0.096 0.564 0.208
#> SRR1003824     1  0.7536     0.1527 0.484 0.000 0.296 0.220
#> SRR1003823     1  0.6116     0.4912 0.668 0.000 0.112 0.220
#> SRR1003825     3  0.8853     0.0400 0.220 0.068 0.448 0.264
#> SRR1003826     4  0.7184    -0.0204 0.408 0.016 0.088 0.488
#> SRR1003827     1  0.6875     0.3369 0.520 0.000 0.112 0.368
#> SRR1003828     4  0.9693    -0.0190 0.212 0.152 0.312 0.324
#> SRR1003829     4  0.8656     0.2646 0.320 0.044 0.220 0.416
#> SRR1003830     1  0.6307     0.4696 0.620 0.000 0.092 0.288
#> SRR1003831     4  0.8848     0.1369 0.160 0.084 0.316 0.440
#> SRR1003832     1  0.5434     0.5240 0.696 0.000 0.052 0.252
#> SRR1003833     4  0.8610     0.1964 0.220 0.044 0.300 0.436
#> SRR1003834     3  0.8615     0.1756 0.116 0.124 0.516 0.244
#> SRR1003836     3  0.8551     0.1033 0.244 0.052 0.480 0.224
#> SRR1003835     4  0.8869     0.1726 0.316 0.044 0.300 0.340
#> SRR1003838     2  0.6940     0.3029 0.020 0.516 0.400 0.064
#> SRR1003837     1  0.7669     0.0128 0.452 0.000 0.312 0.236
#> SRR1003839     2  0.9493    -0.4037 0.104 0.328 0.284 0.284
#> SRR1003840     2  0.2983     0.8008 0.000 0.892 0.068 0.040
#> SRR1003841     2  0.0000     0.8303 0.000 1.000 0.000 0.000
#> SRR1003842     1  0.6538     0.4251 0.600 0.000 0.108 0.292
#> SRR1003844     1  0.5910     0.5220 0.672 0.000 0.084 0.244
#> SRR1003845     2  0.4100     0.7734 0.000 0.824 0.128 0.048
#> SRR1003846     1  0.7067     0.3499 0.552 0.000 0.160 0.288
#> SRR1003847     4  0.8878     0.2389 0.328 0.048 0.264 0.360
#> SRR1003848     1  0.7325     0.3069 0.528 0.000 0.208 0.264
#> SRR1003849     2  0.5798     0.4782 0.004 0.584 0.384 0.028
#> SRR1003850     3  0.8445     0.1412 0.152 0.064 0.492 0.292
#> SRR1003851     3  0.6842    -0.2295 0.016 0.460 0.464 0.060
#> SRR1003852     2  0.3716     0.7856 0.000 0.852 0.096 0.052
#> SRR1003853     4  0.8396     0.0941 0.212 0.028 0.368 0.392
#> SRR1003854     1  0.8294     0.0203 0.432 0.036 0.168 0.364
#> SRR1003843     2  0.5715     0.6954 0.012 0.732 0.172 0.084
#> SRR1003855     1  0.7211     0.3079 0.548 0.000 0.204 0.248
#> SRR1003856     3  0.8666     0.2353 0.112 0.160 0.524 0.204
#> SRR1003857     1  0.6890     0.3860 0.580 0.000 0.152 0.268
#> SRR1003858     1  0.8235     0.1415 0.492 0.044 0.160 0.304
#> SRR1003859     1  0.5608     0.5333 0.684 0.000 0.060 0.256
#> SRR1003860     1  0.7313     0.2608 0.508 0.000 0.176 0.316
#> SRR1003861     4  0.9599     0.0881 0.244 0.124 0.304 0.328
#> SRR1003862     1  0.5212     0.5541 0.740 0.000 0.068 0.192
#> SRR1003863     1  0.1798     0.5544 0.944 0.000 0.016 0.040
#> SRR1003864     1  0.5817     0.5365 0.676 0.000 0.076 0.248
#> SRR1003865     3  0.9759    -0.0612 0.260 0.148 0.312 0.280
#> SRR1003866     4  0.9862     0.0404 0.216 0.248 0.204 0.332
#> SRR1003867     4  0.9343     0.2445 0.268 0.116 0.208 0.408

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1003755     1  0.0451    0.46617 0.988 0.000 0.000 0.004 0.008
#> SRR1003756     1  0.0451    0.46617 0.988 0.000 0.000 0.004 0.008
#> SRR1003757     1  0.0579    0.46682 0.984 0.000 0.000 0.008 0.008
#> SRR1003758     1  0.0579    0.46682 0.984 0.000 0.000 0.008 0.008
#> SRR1003759     2  0.7045    0.42281 0.016 0.612 0.120 0.160 0.092
#> SRR1003760     2  0.0162    0.83139 0.000 0.996 0.004 0.000 0.000
#> SRR1003761     2  0.0290    0.83131 0.000 0.992 0.008 0.000 0.000
#> SRR1003762     2  0.0162    0.83149 0.000 0.996 0.000 0.004 0.000
#> SRR1003763     2  0.0324    0.83024 0.000 0.992 0.004 0.004 0.000
#> SRR1003764     2  0.0162    0.83149 0.000 0.996 0.000 0.004 0.000
#> SRR1003765     2  0.0000    0.83206 0.000 1.000 0.000 0.000 0.000
#> SRR1003766     2  0.0000    0.83206 0.000 1.000 0.000 0.000 0.000
#> SRR1003767     2  0.0000    0.83206 0.000 1.000 0.000 0.000 0.000
#> SRR1003768     2  0.0000    0.83206 0.000 1.000 0.000 0.000 0.000
#> SRR1003769     2  0.0000    0.83206 0.000 1.000 0.000 0.000 0.000
#> SRR1003770     2  0.0000    0.83206 0.000 1.000 0.000 0.000 0.000
#> SRR1003771     2  0.0000    0.83206 0.000 1.000 0.000 0.000 0.000
#> SRR1003773     2  0.5637    0.31204 0.000 0.540 0.392 0.060 0.008
#> SRR1003772     1  0.6063    0.43651 0.632 0.000 0.048 0.076 0.244
#> SRR1003774     3  0.9443   -0.21355 0.232 0.056 0.276 0.216 0.220
#> SRR1003775     1  0.6155    0.44238 0.632 0.000 0.036 0.116 0.216
#> SRR1003776     1  0.7966    0.08704 0.424 0.000 0.116 0.188 0.272
#> SRR1003777     1  0.7083    0.31428 0.520 0.000 0.052 0.160 0.268
#> SRR1003778     2  0.3300    0.71652 0.000 0.792 0.204 0.004 0.000
#> SRR1003779     1  0.7272    0.31422 0.520 0.000 0.068 0.180 0.232
#> SRR1003780     2  0.0404    0.82974 0.000 0.988 0.012 0.000 0.000
#> SRR1003781     5  0.9068    0.17547 0.224 0.052 0.120 0.256 0.348
#> SRR1003784     3  0.8765   -0.06292 0.124 0.044 0.420 0.192 0.220
#> SRR1003785     3  0.6013    0.02408 0.004 0.408 0.508 0.068 0.012
#> SRR1003786     1  0.5067    0.47808 0.736 0.000 0.020 0.108 0.136
#> SRR1003783     1  0.5914    0.45055 0.636 0.000 0.032 0.084 0.248
#> SRR1003787     5  0.8152    0.18346 0.228 0.000 0.112 0.304 0.356
#> SRR1003788     4  0.9468    0.13172 0.144 0.084 0.220 0.320 0.232
#> SRR1003789     2  0.0404    0.82974 0.000 0.988 0.012 0.000 0.000
#> SRR1003790     1  0.6397    0.42953 0.620 0.000 0.048 0.128 0.204
#> SRR1003791     2  0.7480    0.25257 0.004 0.516 0.240 0.156 0.084
#> SRR1003792     5  0.8298    0.22327 0.248 0.020 0.112 0.176 0.444
#> SRR1003793     1  0.7175    0.20553 0.452 0.000 0.068 0.112 0.368
#> SRR1003794     5  0.8174    0.18596 0.288 0.000 0.112 0.244 0.356
#> SRR1003795     2  0.4856    0.64070 0.000 0.708 0.228 0.056 0.008
#> SRR1003796     2  0.3957    0.63142 0.000 0.712 0.280 0.008 0.000
#> SRR1003797     5  0.8162    0.26664 0.292 0.028 0.116 0.112 0.452
#> SRR1003798     1  0.8938   -0.22890 0.296 0.020 0.284 0.184 0.216
#> SRR1003799     1  0.6704    0.42060 0.620 0.000 0.108 0.144 0.128
#> SRR1003800     5  0.8659    0.16333 0.248 0.004 0.224 0.208 0.316
#> SRR1003801     3  0.9427   -0.12355 0.196 0.100 0.364 0.148 0.192
#> SRR1003802     3  0.8397   -0.19300 0.312 0.004 0.320 0.240 0.124
#> SRR1003803     1  0.8921   -0.19655 0.312 0.020 0.172 0.240 0.256
#> SRR1003804     1  0.7284    0.32955 0.552 0.000 0.124 0.136 0.188
#> SRR1003805     1  0.7751    0.19609 0.448 0.000 0.084 0.232 0.236
#> SRR1003806     1  0.7425    0.29471 0.516 0.004 0.076 0.156 0.248
#> SRR1003807     3  0.9414   -0.08457 0.092 0.140 0.332 0.264 0.172
#> SRR1003809     3  0.7982   -0.02725 0.192 0.016 0.504 0.160 0.128
#> SRR1003808     2  0.4999    0.68924 0.000 0.764 0.084 0.084 0.068
#> SRR1003810     1  0.7899    0.06670 0.424 0.000 0.144 0.132 0.300
#> SRR1003811     1  0.7282    0.34725 0.556 0.000 0.148 0.168 0.128
#> SRR1003812     1  0.6770    0.39268 0.584 0.000 0.056 0.156 0.204
#> SRR1003813     3  0.8660   -0.05105 0.152 0.052 0.456 0.204 0.136
#> SRR1003814     5  0.9576   -0.04616 0.212 0.172 0.096 0.196 0.324
#> SRR1003815     1  0.5683    0.45443 0.688 0.000 0.052 0.072 0.188
#> SRR1003816     1  0.6227    0.42640 0.632 0.000 0.048 0.104 0.216
#> SRR1003817     1  0.6075    0.44083 0.640 0.000 0.044 0.092 0.224
#> SRR1003818     1  0.7070    0.22801 0.488 0.000 0.044 0.152 0.316
#> SRR1003819     2  0.7548    0.04009 0.016 0.456 0.348 0.120 0.060
#> SRR1003820     1  0.6452    0.40702 0.580 0.000 0.036 0.116 0.268
#> SRR1003821     1  0.6536    0.33023 0.532 0.000 0.032 0.108 0.328
#> SRR1003822     3  0.7641    0.01908 0.072 0.020 0.532 0.208 0.168
#> SRR1003824     1  0.7884    0.17494 0.460 0.000 0.128 0.184 0.228
#> SRR1003823     1  0.7165    0.33426 0.532 0.000 0.060 0.204 0.204
#> SRR1003825     3  0.8806   -0.13789 0.160 0.028 0.328 0.324 0.160
#> SRR1003826     5  0.7852    0.20000 0.320 0.008 0.092 0.144 0.436
#> SRR1003827     1  0.7570    0.11352 0.440 0.000 0.080 0.156 0.324
#> SRR1003828     4  0.9775    0.16207 0.152 0.132 0.252 0.268 0.196
#> SRR1003829     5  0.8764    0.19454 0.224 0.024 0.144 0.232 0.376
#> SRR1003830     1  0.6742    0.37031 0.548 0.000 0.040 0.136 0.276
#> SRR1003831     4  0.8614    0.10399 0.068 0.056 0.180 0.368 0.328
#> SRR1003832     1  0.6254    0.40605 0.608 0.000 0.028 0.128 0.236
#> SRR1003833     5  0.8595    0.13561 0.184 0.020 0.128 0.308 0.360
#> SRR1003834     3  0.8498   -0.11336 0.068 0.036 0.376 0.288 0.232
#> SRR1003836     4  0.8650    0.10035 0.164 0.028 0.320 0.360 0.128
#> SRR1003835     4  0.9180    0.04142 0.200 0.044 0.228 0.340 0.188
#> SRR1003838     3  0.6529    0.14880 0.028 0.320 0.552 0.092 0.008
#> SRR1003837     1  0.7998    0.07144 0.416 0.000 0.132 0.164 0.288
#> SRR1003839     4  0.9369    0.06639 0.056 0.240 0.236 0.296 0.172
#> SRR1003840     2  0.3701    0.76178 0.000 0.836 0.100 0.044 0.020
#> SRR1003841     2  0.0404    0.82974 0.000 0.988 0.012 0.000 0.000
#> SRR1003842     1  0.7119    0.35773 0.548 0.000 0.068 0.200 0.184
#> SRR1003844     1  0.6790    0.38800 0.576 0.000 0.060 0.132 0.232
#> SRR1003845     2  0.5356    0.66334 0.000 0.724 0.148 0.084 0.044
#> SRR1003846     1  0.7581    0.25490 0.496 0.000 0.096 0.188 0.220
#> SRR1003847     5  0.8922    0.17498 0.256 0.032 0.148 0.208 0.356
#> SRR1003848     1  0.7864    0.17840 0.476 0.000 0.168 0.160 0.196
#> SRR1003849     3  0.6059    0.00338 0.000 0.412 0.496 0.076 0.016
#> SRR1003850     3  0.9055   -0.12507 0.148 0.044 0.352 0.260 0.196
#> SRR1003851     3  0.7149    0.12301 0.012 0.232 0.568 0.120 0.068
#> SRR1003852     2  0.4435    0.73178 0.000 0.800 0.076 0.080 0.044
#> SRR1003853     4  0.8762    0.01746 0.156 0.024 0.188 0.376 0.256
#> SRR1003854     5  0.8562    0.13979 0.328 0.036 0.084 0.192 0.360
#> SRR1003843     2  0.6828    0.40304 0.008 0.576 0.240 0.136 0.040
#> SRR1003855     1  0.7844    0.16418 0.444 0.000 0.100 0.252 0.204
#> SRR1003856     3  0.8457   -0.01407 0.088 0.068 0.480 0.220 0.144
#> SRR1003857     1  0.7560    0.28520 0.492 0.000 0.088 0.192 0.228
#> SRR1003858     1  0.8870   -0.14313 0.352 0.032 0.128 0.224 0.264
#> SRR1003859     1  0.6908    0.38979 0.584 0.000 0.076 0.160 0.180
#> SRR1003860     1  0.8079   -0.01408 0.364 0.000 0.116 0.192 0.328
#> SRR1003861     5  0.9252    0.08513 0.228 0.064 0.128 0.252 0.328
#> SRR1003862     1  0.6317    0.44261 0.636 0.000 0.048 0.156 0.160
#> SRR1003863     1  0.3247    0.48177 0.868 0.000 0.028 0.032 0.072
#> SRR1003864     1  0.6516    0.37604 0.580 0.000 0.052 0.096 0.272
#> SRR1003865     4  0.9395    0.06061 0.168 0.084 0.168 0.352 0.228
#> SRR1003866     4  0.9919    0.13075 0.160 0.220 0.164 0.240 0.216
#> SRR1003867     5  0.9393    0.06485 0.188 0.068 0.172 0.252 0.320

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1003755     1  0.0291    0.42513 0.992 0.000 0.004 0.000 0.000 0.004
#> SRR1003756     1  0.0291    0.42513 0.992 0.000 0.004 0.000 0.000 0.004
#> SRR1003757     1  0.0436    0.42614 0.988 0.000 0.004 0.004 0.000 0.004
#> SRR1003758     1  0.0436    0.42614 0.988 0.000 0.004 0.004 0.000 0.004
#> SRR1003759     2  0.7488    0.30080 0.016 0.540 0.108 0.068 0.184 0.084
#> SRR1003760     2  0.1067    0.78738 0.000 0.964 0.024 0.004 0.004 0.004
#> SRR1003761     2  0.1465    0.78226 0.000 0.948 0.024 0.004 0.020 0.004
#> SRR1003762     2  0.0405    0.78895 0.000 0.988 0.004 0.000 0.008 0.000
#> SRR1003763     2  0.0806    0.78404 0.000 0.972 0.008 0.000 0.020 0.000
#> SRR1003764     2  0.0260    0.78958 0.000 0.992 0.000 0.000 0.008 0.000
#> SRR1003765     2  0.0000    0.79105 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003766     2  0.0000    0.79105 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003767     2  0.0000    0.79105 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003768     2  0.0000    0.79105 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003769     2  0.0000    0.79105 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003770     2  0.0000    0.79105 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003771     2  0.0000    0.79105 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003773     3  0.5983    0.17364 0.000 0.364 0.524 0.036 0.048 0.028
#> SRR1003772     1  0.6050    0.37071 0.580 0.000 0.004 0.120 0.048 0.248
#> SRR1003774     6  0.9264   -0.00460 0.224 0.028 0.232 0.160 0.116 0.240
#> SRR1003775     1  0.7022    0.32273 0.508 0.000 0.012 0.148 0.112 0.220
#> SRR1003776     6  0.8393    0.11286 0.300 0.000 0.108 0.120 0.148 0.324
#> SRR1003777     1  0.7060    0.13097 0.408 0.000 0.020 0.112 0.084 0.376
#> SRR1003778     2  0.4234    0.55979 0.000 0.684 0.284 0.004 0.016 0.012
#> SRR1003779     1  0.7772    0.11808 0.408 0.000 0.036 0.156 0.128 0.272
#> SRR1003780     2  0.0632    0.78742 0.000 0.976 0.024 0.000 0.000 0.000
#> SRR1003781     6  0.9235    0.00770 0.176 0.044 0.080 0.204 0.208 0.288
#> SRR1003784     3  0.8275    0.00956 0.100 0.020 0.420 0.244 0.148 0.068
#> SRR1003785     3  0.6464    0.26551 0.000 0.284 0.552 0.044 0.072 0.048
#> SRR1003786     1  0.6192    0.39925 0.632 0.000 0.020 0.092 0.104 0.152
#> SRR1003783     1  0.6154    0.38459 0.604 0.000 0.040 0.072 0.044 0.240
#> SRR1003787     6  0.8159    0.09559 0.168 0.004 0.112 0.096 0.180 0.440
#> SRR1003788     4  0.9510   -0.05536 0.164 0.040 0.216 0.224 0.196 0.160
#> SRR1003789     2  0.0713    0.78662 0.000 0.972 0.028 0.000 0.000 0.000
#> SRR1003790     1  0.7567    0.23610 0.448 0.000 0.048 0.180 0.076 0.248
#> SRR1003791     2  0.8368   -0.12432 0.016 0.396 0.240 0.112 0.172 0.064
#> SRR1003792     6  0.8745   -0.00725 0.196 0.020 0.076 0.232 0.132 0.344
#> SRR1003793     1  0.8102   -0.02120 0.324 0.000 0.052 0.288 0.104 0.232
#> SRR1003794     4  0.8391   -0.02530 0.264 0.000 0.052 0.288 0.216 0.180
#> SRR1003795     2  0.5637    0.43026 0.000 0.592 0.300 0.024 0.068 0.016
#> SRR1003796     2  0.4515    0.44365 0.000 0.608 0.356 0.000 0.028 0.008
#> SRR1003797     6  0.8406    0.09507 0.208 0.016 0.072 0.124 0.168 0.412
#> SRR1003798     5  0.9211   -0.09442 0.212 0.012 0.188 0.168 0.224 0.196
#> SRR1003799     1  0.7084    0.33355 0.552 0.000 0.048 0.176 0.104 0.120
#> SRR1003800     4  0.8900    0.05478 0.208 0.000 0.160 0.252 0.216 0.164
#> SRR1003801     3  0.9434   -0.06656 0.104 0.096 0.300 0.224 0.096 0.180
#> SRR1003802     1  0.8165   -0.18203 0.328 0.000 0.276 0.128 0.220 0.048
#> SRR1003803     5  0.9075   -0.12361 0.184 0.012 0.136 0.168 0.276 0.224
#> SRR1003804     1  0.7536    0.16962 0.480 0.000 0.088 0.248 0.084 0.100
#> SRR1003805     1  0.8377    0.00396 0.344 0.000 0.100 0.196 0.104 0.256
#> SRR1003806     1  0.7724    0.18254 0.412 0.000 0.032 0.140 0.144 0.272
#> SRR1003807     3  0.9229   -0.06741 0.096 0.112 0.312 0.268 0.076 0.136
#> SRR1003809     3  0.9019   -0.10617 0.164 0.024 0.340 0.192 0.164 0.116
#> SRR1003808     2  0.5716    0.59050 0.000 0.696 0.084 0.048 0.104 0.068
#> SRR1003810     1  0.8659   -0.12047 0.320 0.000 0.140 0.228 0.128 0.184
#> SRR1003811     1  0.7605    0.17819 0.488 0.000 0.120 0.216 0.096 0.080
#> SRR1003812     1  0.7248    0.30573 0.532 0.000 0.056 0.120 0.100 0.192
#> SRR1003813     3  0.7955   -0.00325 0.124 0.008 0.452 0.212 0.152 0.052
#> SRR1003814     5  0.9789    0.05936 0.168 0.184 0.088 0.136 0.216 0.208
#> SRR1003815     1  0.6838    0.30301 0.512 0.000 0.028 0.104 0.072 0.284
#> SRR1003816     1  0.6519    0.32364 0.572 0.000 0.044 0.064 0.072 0.248
#> SRR1003817     1  0.6368    0.36658 0.584 0.000 0.024 0.068 0.088 0.236
#> SRR1003818     6  0.7115   -0.04617 0.376 0.000 0.040 0.052 0.124 0.408
#> SRR1003819     2  0.8134   -0.20171 0.016 0.372 0.320 0.128 0.116 0.048
#> SRR1003820     1  0.6646    0.33708 0.548 0.000 0.020 0.140 0.060 0.232
#> SRR1003821     1  0.7069    0.24613 0.484 0.000 0.024 0.132 0.080 0.280
#> SRR1003822     3  0.8132    0.04201 0.080 0.020 0.472 0.152 0.176 0.100
#> SRR1003824     4  0.8127    0.01168 0.316 0.000 0.140 0.352 0.104 0.088
#> SRR1003823     1  0.7246    0.28750 0.500 0.000 0.032 0.232 0.104 0.132
#> SRR1003825     3  0.9338   -0.20350 0.172 0.028 0.248 0.232 0.148 0.172
#> SRR1003826     6  0.8211    0.09733 0.296 0.008 0.044 0.180 0.124 0.348
#> SRR1003827     6  0.8129    0.06247 0.304 0.000 0.080 0.204 0.080 0.332
#> SRR1003828     5  0.9372    0.09590 0.076 0.108 0.184 0.156 0.336 0.140
#> SRR1003829     4  0.8553    0.01575 0.204 0.008 0.108 0.364 0.100 0.216
#> SRR1003830     1  0.7511    0.23700 0.448 0.000 0.044 0.280 0.096 0.132
#> SRR1003831     5  0.9284    0.06621 0.072 0.056 0.164 0.232 0.276 0.200
#> SRR1003832     1  0.6604    0.34518 0.564 0.000 0.016 0.200 0.072 0.148
#> SRR1003833     6  0.9071   -0.04311 0.176 0.020 0.100 0.244 0.184 0.276
#> SRR1003834     3  0.8953   -0.05150 0.052 0.052 0.316 0.140 0.264 0.176
#> SRR1003836     4  0.8848   -0.03245 0.152 0.012 0.232 0.280 0.240 0.084
#> SRR1003835     5  0.9255   -0.02896 0.224 0.028 0.164 0.152 0.284 0.148
#> SRR1003838     3  0.6703    0.26517 0.004 0.228 0.564 0.060 0.116 0.028
#> SRR1003837     1  0.8029   -0.00469 0.364 0.000 0.132 0.320 0.088 0.096
#> SRR1003839     5  0.9410    0.07960 0.064 0.144 0.200 0.124 0.316 0.152
#> SRR1003840     2  0.4366    0.68878 0.000 0.784 0.108 0.024 0.056 0.028
#> SRR1003841     2  0.0632    0.78742 0.000 0.976 0.024 0.000 0.000 0.000
#> SRR1003842     1  0.7519    0.22448 0.472 0.000 0.040 0.216 0.172 0.100
#> SRR1003844     1  0.7232    0.25962 0.496 0.000 0.048 0.116 0.080 0.260
#> SRR1003845     2  0.6777    0.35478 0.000 0.552 0.180 0.044 0.184 0.040
#> SRR1003846     1  0.8205    0.11253 0.404 0.000 0.080 0.200 0.136 0.180
#> SRR1003847     6  0.9114   -0.05115 0.188 0.020 0.100 0.204 0.220 0.268
#> SRR1003848     1  0.7564    0.23430 0.508 0.000 0.076 0.168 0.108 0.140
#> SRR1003849     3  0.5856    0.26923 0.004 0.324 0.568 0.048 0.040 0.016
#> SRR1003850     3  0.9342   -0.11394 0.124 0.040 0.284 0.208 0.196 0.148
#> SRR1003851     3  0.6917    0.24215 0.016 0.168 0.572 0.040 0.164 0.040
#> SRR1003852     2  0.5661    0.59670 0.000 0.692 0.100 0.044 0.120 0.044
#> SRR1003853     5  0.8902    0.02590 0.124 0.028 0.136 0.148 0.376 0.188
#> SRR1003854     6  0.8633    0.07336 0.272 0.020 0.088 0.188 0.092 0.340
#> SRR1003843     2  0.7461    0.20727 0.004 0.488 0.248 0.068 0.132 0.060
#> SRR1003855     1  0.8100    0.06357 0.388 0.000 0.068 0.252 0.112 0.180
#> SRR1003856     3  0.8466    0.10535 0.048 0.088 0.428 0.096 0.244 0.096
#> SRR1003857     1  0.7045    0.27753 0.496 0.000 0.020 0.264 0.100 0.120
#> SRR1003858     6  0.8654    0.09978 0.304 0.016 0.076 0.176 0.124 0.304
#> SRR1003859     1  0.7313    0.30077 0.492 0.000 0.040 0.216 0.076 0.176
#> SRR1003860     6  0.7837    0.05377 0.324 0.000 0.052 0.128 0.120 0.376
#> SRR1003861     6  0.9054    0.02188 0.144 0.048 0.100 0.264 0.116 0.328
#> SRR1003862     1  0.6797    0.36978 0.560 0.000 0.024 0.156 0.084 0.176
#> SRR1003863     1  0.3939    0.42503 0.808 0.000 0.004 0.060 0.040 0.088
#> SRR1003864     1  0.7161    0.25719 0.488 0.000 0.036 0.116 0.084 0.276
#> SRR1003865     5  0.9457    0.09141 0.128 0.088 0.116 0.160 0.328 0.180
#> SRR1003866     6  0.9854   -0.13354 0.124 0.152 0.136 0.152 0.200 0.236
#> SRR1003867     4  0.8806    0.02226 0.144 0.020 0.064 0.276 0.224 0.272

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 9166 rows and 112 columns.
#>   Top rows (917, 1834, 2750, 3666, 4583) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.274           0.661       0.823         0.3984 0.548   0.548
#> 3 3 0.370           0.666       0.830         0.1504 0.969   0.944
#> 4 4 0.331           0.725       0.795         0.1280 0.868   0.779
#> 5 5 0.360           0.668       0.787         0.0564 0.962   0.932
#> 6 6 0.372           0.664       0.802         0.0349 0.959   0.924

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1003755     1  0.0000     0.7355 1.000 0.000
#> SRR1003756     1  0.0000     0.7355 1.000 0.000
#> SRR1003757     1  0.0000     0.7355 1.000 0.000
#> SRR1003758     1  0.0000     0.7355 1.000 0.000
#> SRR1003759     2  0.7299     0.7206 0.204 0.796
#> SRR1003760     2  0.0000     0.7583 0.000 1.000
#> SRR1003761     2  0.0000     0.7583 0.000 1.000
#> SRR1003762     2  0.0000     0.7583 0.000 1.000
#> SRR1003763     2  0.9286     0.4461 0.344 0.656
#> SRR1003764     2  0.0000     0.7583 0.000 1.000
#> SRR1003765     2  0.0000     0.7583 0.000 1.000
#> SRR1003766     2  0.0000     0.7583 0.000 1.000
#> SRR1003767     2  0.0000     0.7583 0.000 1.000
#> SRR1003768     2  0.0000     0.7583 0.000 1.000
#> SRR1003769     2  0.0000     0.7583 0.000 1.000
#> SRR1003770     2  0.0000     0.7583 0.000 1.000
#> SRR1003771     2  0.0000     0.7583 0.000 1.000
#> SRR1003773     2  0.7219     0.7249 0.200 0.800
#> SRR1003772     1  0.2236     0.7537 0.964 0.036
#> SRR1003774     2  0.9866     0.1531 0.432 0.568
#> SRR1003775     1  0.1414     0.7470 0.980 0.020
#> SRR1003776     1  0.7299     0.7535 0.796 0.204
#> SRR1003777     1  0.0672     0.7408 0.992 0.008
#> SRR1003778     2  0.0672     0.7583 0.008 0.992
#> SRR1003779     1  0.2603     0.7565 0.956 0.044
#> SRR1003780     2  0.0000     0.7583 0.000 1.000
#> SRR1003781     2  0.9850     0.1702 0.428 0.572
#> SRR1003784     1  0.7745     0.7385 0.772 0.228
#> SRR1003785     2  0.7219     0.7249 0.200 0.800
#> SRR1003786     1  0.0000     0.7355 1.000 0.000
#> SRR1003783     1  0.0000     0.7355 1.000 0.000
#> SRR1003787     1  0.9580     0.5575 0.620 0.380
#> SRR1003788     1  0.9933     0.3680 0.548 0.452
#> SRR1003789     2  0.0000     0.7583 0.000 1.000
#> SRR1003790     1  0.3114     0.7601 0.944 0.056
#> SRR1003791     2  0.7219     0.7249 0.200 0.800
#> SRR1003792     1  0.9754     0.5021 0.592 0.408
#> SRR1003793     1  0.4298     0.7665 0.912 0.088
#> SRR1003794     1  0.7883     0.7319 0.764 0.236
#> SRR1003795     2  0.0672     0.7583 0.008 0.992
#> SRR1003796     2  0.0000     0.7583 0.000 1.000
#> SRR1003797     1  0.9710     0.5198 0.600 0.400
#> SRR1003798     1  0.7528     0.7466 0.784 0.216
#> SRR1003799     1  0.0000     0.7355 1.000 0.000
#> SRR1003800     1  0.7299     0.7534 0.796 0.204
#> SRR1003801     1  0.9686     0.5279 0.604 0.396
#> SRR1003802     1  0.5294     0.7669 0.880 0.120
#> SRR1003803     1  0.9686     0.5278 0.604 0.396
#> SRR1003804     1  0.1843     0.7506 0.972 0.028
#> SRR1003805     1  0.7139     0.7564 0.804 0.196
#> SRR1003806     1  0.7219     0.7547 0.800 0.200
#> SRR1003807     2  0.9635     0.3230 0.388 0.612
#> SRR1003809     1  0.9710     0.5198 0.600 0.400
#> SRR1003808     2  0.7219     0.7249 0.200 0.800
#> SRR1003810     1  0.7219     0.7547 0.800 0.200
#> SRR1003811     1  0.0376     0.7382 0.996 0.004
#> SRR1003812     1  0.2603     0.7567 0.956 0.044
#> SRR1003813     1  0.9710     0.5198 0.600 0.400
#> SRR1003814     2  0.9977    -0.0573 0.472 0.528
#> SRR1003815     1  0.5946     0.7693 0.856 0.144
#> SRR1003816     1  0.6623     0.7644 0.828 0.172
#> SRR1003817     1  0.6531     0.7654 0.832 0.168
#> SRR1003818     1  0.0938     0.7428 0.988 0.012
#> SRR1003819     2  0.7299     0.7206 0.204 0.796
#> SRR1003820     1  0.3584     0.7629 0.932 0.068
#> SRR1003821     1  0.0376     0.7382 0.996 0.004
#> SRR1003822     1  0.9393     0.5965 0.644 0.356
#> SRR1003824     1  0.0938     0.7429 0.988 0.012
#> SRR1003823     1  0.0000     0.7355 1.000 0.000
#> SRR1003825     1  0.7299     0.7534 0.796 0.204
#> SRR1003826     1  0.7376     0.7515 0.792 0.208
#> SRR1003827     1  0.7299     0.7533 0.796 0.204
#> SRR1003828     1  0.9710     0.5198 0.600 0.400
#> SRR1003829     1  0.9710     0.5189 0.600 0.400
#> SRR1003830     1  0.4690     0.7687 0.900 0.100
#> SRR1003831     1  0.9896     0.4081 0.560 0.440
#> SRR1003832     1  0.0000     0.7355 1.000 0.000
#> SRR1003833     1  0.9775     0.4918 0.588 0.412
#> SRR1003834     1  0.9795     0.4820 0.584 0.416
#> SRR1003836     1  0.9775     0.4827 0.588 0.412
#> SRR1003835     1  0.9795     0.4815 0.584 0.416
#> SRR1003838     2  0.8081     0.6557 0.248 0.752
#> SRR1003837     1  0.6801     0.7619 0.820 0.180
#> SRR1003839     2  0.9754     0.2529 0.408 0.592
#> SRR1003840     2  0.7219     0.7249 0.200 0.800
#> SRR1003841     2  0.0000     0.7583 0.000 1.000
#> SRR1003842     1  0.5629     0.7700 0.868 0.132
#> SRR1003844     1  0.6148     0.7684 0.848 0.152
#> SRR1003845     2  0.7219     0.7249 0.200 0.800
#> SRR1003846     1  0.0000     0.7355 1.000 0.000
#> SRR1003847     1  0.9710     0.5198 0.600 0.400
#> SRR1003848     1  0.1843     0.7506 0.972 0.028
#> SRR1003849     2  0.7219     0.7249 0.200 0.800
#> SRR1003850     1  0.9754     0.5018 0.592 0.408
#> SRR1003851     2  0.7453     0.7104 0.212 0.788
#> SRR1003852     2  0.7219     0.7249 0.200 0.800
#> SRR1003853     1  0.9427     0.5901 0.640 0.360
#> SRR1003854     1  0.9170     0.6297 0.668 0.332
#> SRR1003843     2  0.7219     0.7249 0.200 0.800
#> SRR1003855     1  0.4562     0.7682 0.904 0.096
#> SRR1003856     2  0.9954     0.0172 0.460 0.540
#> SRR1003857     1  0.5842     0.7695 0.860 0.140
#> SRR1003858     1  0.8207     0.7141 0.744 0.256
#> SRR1003859     1  0.0376     0.7382 0.996 0.004
#> SRR1003860     1  0.7219     0.7554 0.800 0.200
#> SRR1003861     1  0.9710     0.5198 0.600 0.400
#> SRR1003862     1  0.0376     0.7384 0.996 0.004
#> SRR1003863     1  0.0000     0.7355 1.000 0.000
#> SRR1003864     1  0.4815     0.7692 0.896 0.104
#> SRR1003865     1  0.9491     0.5503 0.632 0.368
#> SRR1003866     2  0.9710     0.2821 0.400 0.600
#> SRR1003867     1  0.9323     0.6086 0.652 0.348

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1003755     1  0.0424     0.7363 0.992 0.000 0.008
#> SRR1003756     1  0.0424     0.7363 0.992 0.000 0.008
#> SRR1003757     1  0.0424     0.7363 0.992 0.000 0.008
#> SRR1003758     1  0.0424     0.7363 0.992 0.000 0.008
#> SRR1003759     3  0.4504     0.6335 0.196 0.000 0.804
#> SRR1003760     3  0.0424     0.7586 0.008 0.000 0.992
#> SRR1003761     3  0.0424     0.7586 0.008 0.000 0.992
#> SRR1003762     3  0.0424     0.7586 0.008 0.000 0.992
#> SRR1003763     2  0.8072     0.3363 0.208 0.648 0.144
#> SRR1003764     3  0.0424     0.7586 0.008 0.000 0.992
#> SRR1003765     2  0.0000     0.9050 0.000 1.000 0.000
#> SRR1003766     2  0.0000     0.9050 0.000 1.000 0.000
#> SRR1003767     2  0.0424     0.9010 0.000 0.992 0.008
#> SRR1003768     2  0.0000     0.9050 0.000 1.000 0.000
#> SRR1003769     2  0.0000     0.9050 0.000 1.000 0.000
#> SRR1003770     3  0.3879     0.5106 0.000 0.152 0.848
#> SRR1003771     3  0.1860     0.6997 0.000 0.052 0.948
#> SRR1003773     3  0.0424     0.7586 0.008 0.000 0.992
#> SRR1003772     1  0.1411     0.7560 0.964 0.000 0.036
#> SRR1003774     3  0.6244    -0.0508 0.440 0.000 0.560
#> SRR1003775     1  0.0747     0.7504 0.984 0.000 0.016
#> SRR1003776     1  0.4974     0.7520 0.764 0.000 0.236
#> SRR1003777     1  0.0424     0.7419 0.992 0.000 0.008
#> SRR1003778     3  0.0424     0.7586 0.008 0.000 0.992
#> SRR1003779     1  0.1529     0.7603 0.960 0.000 0.040
#> SRR1003780     3  0.1860     0.6997 0.000 0.052 0.948
#> SRR1003781     3  0.6235    -0.0325 0.436 0.000 0.564
#> SRR1003784     1  0.4974     0.7526 0.764 0.000 0.236
#> SRR1003785     3  0.0892     0.7581 0.020 0.000 0.980
#> SRR1003786     1  0.0424     0.7363 0.992 0.000 0.008
#> SRR1003783     1  0.0424     0.7363 0.992 0.000 0.008
#> SRR1003787     1  0.6045     0.6125 0.620 0.000 0.380
#> SRR1003788     1  0.6252     0.4726 0.556 0.000 0.444
#> SRR1003789     3  0.0661     0.7501 0.004 0.008 0.988
#> SRR1003790     1  0.1860     0.7642 0.948 0.000 0.052
#> SRR1003791     3  0.0424     0.7586 0.008 0.000 0.992
#> SRR1003792     1  0.6126     0.5800 0.600 0.000 0.400
#> SRR1003793     1  0.2796     0.7714 0.908 0.000 0.092
#> SRR1003794     1  0.5058     0.7477 0.756 0.000 0.244
#> SRR1003795     3  0.0424     0.7586 0.008 0.000 0.992
#> SRR1003796     3  0.0424     0.7586 0.008 0.000 0.992
#> SRR1003797     1  0.6095     0.5939 0.608 0.000 0.392
#> SRR1003798     1  0.5058     0.7481 0.756 0.000 0.244
#> SRR1003799     1  0.0237     0.7390 0.996 0.000 0.004
#> SRR1003800     1  0.4974     0.7520 0.764 0.000 0.236
#> SRR1003801     1  0.6095     0.5939 0.608 0.000 0.392
#> SRR1003802     1  0.3816     0.7719 0.852 0.000 0.148
#> SRR1003803     1  0.6079     0.6003 0.612 0.000 0.388
#> SRR1003804     1  0.1031     0.7542 0.976 0.000 0.024
#> SRR1003805     1  0.4504     0.7662 0.804 0.000 0.196
#> SRR1003806     1  0.4555     0.7649 0.800 0.000 0.200
#> SRR1003807     3  0.6111     0.1415 0.396 0.000 0.604
#> SRR1003809     1  0.6095     0.5939 0.608 0.000 0.392
#> SRR1003808     3  0.1411     0.7552 0.036 0.000 0.964
#> SRR1003810     1  0.4796     0.7588 0.780 0.000 0.220
#> SRR1003811     1  0.0237     0.7391 0.996 0.000 0.004
#> SRR1003812     1  0.1411     0.7592 0.964 0.000 0.036
#> SRR1003813     1  0.6095     0.5939 0.608 0.000 0.392
#> SRR1003814     3  0.6302    -0.2321 0.480 0.000 0.520
#> SRR1003815     1  0.3619     0.7763 0.864 0.000 0.136
#> SRR1003816     1  0.4178     0.7736 0.828 0.000 0.172
#> SRR1003817     1  0.4062     0.7743 0.836 0.000 0.164
#> SRR1003818     1  0.1643     0.7563 0.956 0.000 0.044
#> SRR1003819     3  0.4002     0.6799 0.160 0.000 0.840
#> SRR1003820     1  0.2165     0.7673 0.936 0.000 0.064
#> SRR1003821     1  0.0000     0.7413 1.000 0.000 0.000
#> SRR1003822     1  0.5948     0.6400 0.640 0.000 0.360
#> SRR1003824     1  0.0424     0.7460 0.992 0.000 0.008
#> SRR1003823     1  0.0424     0.7363 0.992 0.000 0.008
#> SRR1003825     1  0.5016     0.7502 0.760 0.000 0.240
#> SRR1003826     1  0.5016     0.7503 0.760 0.000 0.240
#> SRR1003827     1  0.4796     0.7592 0.780 0.000 0.220
#> SRR1003828     1  0.6095     0.5939 0.608 0.000 0.392
#> SRR1003829     1  0.6126     0.5801 0.600 0.000 0.400
#> SRR1003830     1  0.2796     0.7733 0.908 0.000 0.092
#> SRR1003831     1  0.6225     0.5054 0.568 0.000 0.432
#> SRR1003832     1  0.0424     0.7363 0.992 0.000 0.008
#> SRR1003833     1  0.6140     0.5718 0.596 0.000 0.404
#> SRR1003834     1  0.6154     0.5642 0.592 0.000 0.408
#> SRR1003836     1  0.6168     0.5493 0.588 0.000 0.412
#> SRR1003835     1  0.6154     0.5637 0.592 0.000 0.408
#> SRR1003838     3  0.5178     0.5300 0.256 0.000 0.744
#> SRR1003837     1  0.4291     0.7710 0.820 0.000 0.180
#> SRR1003839     3  0.6180     0.0616 0.416 0.000 0.584
#> SRR1003840     3  0.0424     0.7586 0.008 0.000 0.992
#> SRR1003841     3  0.1860     0.6997 0.000 0.052 0.948
#> SRR1003842     1  0.3412     0.7763 0.876 0.000 0.124
#> SRR1003844     1  0.3879     0.7763 0.848 0.000 0.152
#> SRR1003845     3  0.0424     0.7586 0.008 0.000 0.992
#> SRR1003846     1  0.0237     0.7390 0.996 0.000 0.004
#> SRR1003847     1  0.6095     0.5939 0.608 0.000 0.392
#> SRR1003848     1  0.1031     0.7543 0.976 0.000 0.024
#> SRR1003849     3  0.2625     0.7361 0.084 0.000 0.916
#> SRR1003850     1  0.6126     0.5797 0.600 0.000 0.400
#> SRR1003851     3  0.4750     0.6031 0.216 0.000 0.784
#> SRR1003852     3  0.0424     0.7586 0.008 0.000 0.992
#> SRR1003853     1  0.5968     0.6347 0.636 0.000 0.364
#> SRR1003854     1  0.5835     0.6631 0.660 0.000 0.340
#> SRR1003843     3  0.1643     0.7527 0.044 0.000 0.956
#> SRR1003855     1  0.3192     0.7757 0.888 0.000 0.112
#> SRR1003856     3  0.6286    -0.1601 0.464 0.000 0.536
#> SRR1003857     1  0.3879     0.7766 0.848 0.000 0.152
#> SRR1003858     1  0.5431     0.7173 0.716 0.000 0.284
#> SRR1003859     1  0.0000     0.7413 1.000 0.000 0.000
#> SRR1003860     1  0.4974     0.7526 0.764 0.000 0.236
#> SRR1003861     1  0.6095     0.5939 0.608 0.000 0.392
#> SRR1003862     1  0.0592     0.7393 0.988 0.000 0.012
#> SRR1003863     1  0.0424     0.7363 0.992 0.000 0.008
#> SRR1003864     1  0.2959     0.7743 0.900 0.000 0.100
#> SRR1003865     1  0.5968     0.6171 0.636 0.000 0.364
#> SRR1003866     3  0.6154     0.0952 0.408 0.000 0.592
#> SRR1003867     1  0.5926     0.6454 0.644 0.000 0.356

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1003755     4  0.0188     1.0000 0.000 0.000 0.004 0.996
#> SRR1003756     4  0.0188     1.0000 0.000 0.000 0.004 0.996
#> SRR1003757     1  0.4072     0.7052 0.748 0.000 0.000 0.252
#> SRR1003758     1  0.4072     0.7052 0.748 0.000 0.000 0.252
#> SRR1003759     3  0.4925     0.4192 0.428 0.000 0.572 0.000
#> SRR1003760     3  0.0188     0.8472 0.004 0.000 0.996 0.000
#> SRR1003761     3  0.3074     0.7513 0.152 0.000 0.848 0.000
#> SRR1003762     3  0.4072     0.7002 0.252 0.000 0.748 0.000
#> SRR1003763     2  0.5846     0.0282 0.452 0.516 0.032 0.000
#> SRR1003764     3  0.4040     0.7044 0.248 0.000 0.752 0.000
#> SRR1003765     2  0.0000     0.7623 0.000 1.000 0.000 0.000
#> SRR1003766     2  0.0000     0.7623 0.000 1.000 0.000 0.000
#> SRR1003767     2  0.0336     0.7540 0.000 0.992 0.008 0.000
#> SRR1003768     2  0.0000     0.7623 0.000 1.000 0.000 0.000
#> SRR1003769     2  0.0000     0.7623 0.000 1.000 0.000 0.000
#> SRR1003770     3  0.2530     0.7280 0.004 0.100 0.896 0.000
#> SRR1003771     3  0.0188     0.8472 0.004 0.000 0.996 0.000
#> SRR1003773     3  0.0188     0.8472 0.004 0.000 0.996 0.000
#> SRR1003772     1  0.3881     0.7608 0.812 0.000 0.016 0.172
#> SRR1003774     1  0.4998     0.3118 0.512 0.000 0.488 0.000
#> SRR1003775     1  0.3401     0.7604 0.840 0.000 0.008 0.152
#> SRR1003776     1  0.2053     0.7846 0.924 0.000 0.072 0.004
#> SRR1003777     1  0.3311     0.7470 0.828 0.000 0.000 0.172
#> SRR1003778     3  0.0188     0.8472 0.004 0.000 0.996 0.000
#> SRR1003779     1  0.3351     0.7630 0.844 0.000 0.008 0.148
#> SRR1003780     3  0.0188     0.8472 0.004 0.000 0.996 0.000
#> SRR1003781     1  0.4933     0.3812 0.568 0.000 0.432 0.000
#> SRR1003784     1  0.3557     0.7970 0.856 0.000 0.108 0.036
#> SRR1003785     3  0.0592     0.8425 0.016 0.000 0.984 0.000
#> SRR1003786     1  0.4072     0.7052 0.748 0.000 0.000 0.252
#> SRR1003783     1  0.4040     0.7082 0.752 0.000 0.000 0.248
#> SRR1003787     1  0.4134     0.7135 0.740 0.000 0.260 0.000
#> SRR1003788     1  0.4585     0.6335 0.668 0.000 0.332 0.000
#> SRR1003789     3  0.0188     0.8472 0.004 0.000 0.996 0.000
#> SRR1003790     1  0.3606     0.7723 0.840 0.000 0.020 0.140
#> SRR1003791     3  0.0592     0.8447 0.016 0.000 0.984 0.000
#> SRR1003792     1  0.4406     0.6913 0.700 0.000 0.300 0.000
#> SRR1003793     1  0.5477     0.7682 0.728 0.000 0.092 0.180
#> SRR1003794     1  0.5530     0.7751 0.712 0.000 0.212 0.076
#> SRR1003795     3  0.0188     0.8472 0.004 0.000 0.996 0.000
#> SRR1003796     3  0.0188     0.8472 0.004 0.000 0.996 0.000
#> SRR1003797     1  0.4072     0.7139 0.748 0.000 0.252 0.000
#> SRR1003798     1  0.2805     0.7893 0.888 0.000 0.100 0.012
#> SRR1003799     1  0.4008     0.7109 0.756 0.000 0.000 0.244
#> SRR1003800     1  0.2402     0.7883 0.912 0.000 0.076 0.012
#> SRR1003801     1  0.3219     0.7459 0.836 0.000 0.164 0.000
#> SRR1003802     1  0.4344     0.7872 0.816 0.000 0.108 0.076
#> SRR1003803     1  0.3801     0.7296 0.780 0.000 0.220 0.000
#> SRR1003804     1  0.3142     0.7655 0.860 0.000 0.008 0.132
#> SRR1003805     1  0.4203     0.7920 0.824 0.000 0.068 0.108
#> SRR1003806     1  0.5383     0.7934 0.740 0.000 0.160 0.100
#> SRR1003807     1  0.4916     0.3013 0.576 0.000 0.424 0.000
#> SRR1003809     1  0.4382     0.6948 0.704 0.000 0.296 0.000
#> SRR1003808     3  0.1022     0.8325 0.032 0.000 0.968 0.000
#> SRR1003810     1  0.3716     0.8002 0.852 0.000 0.096 0.052
#> SRR1003811     1  0.3907     0.7180 0.768 0.000 0.000 0.232
#> SRR1003812     1  0.3428     0.7645 0.844 0.000 0.012 0.144
#> SRR1003813     1  0.3764     0.7308 0.784 0.000 0.216 0.000
#> SRR1003814     1  0.4356     0.5765 0.708 0.000 0.292 0.000
#> SRR1003815     1  0.3821     0.7823 0.840 0.000 0.040 0.120
#> SRR1003816     1  0.5938     0.7764 0.696 0.000 0.168 0.136
#> SRR1003817     1  0.5483     0.7902 0.736 0.000 0.136 0.128
#> SRR1003818     1  0.1978     0.7819 0.928 0.000 0.004 0.068
#> SRR1003819     3  0.4522     0.6042 0.320 0.000 0.680 0.000
#> SRR1003820     1  0.3598     0.7760 0.848 0.000 0.028 0.124
#> SRR1003821     1  0.2973     0.7564 0.856 0.000 0.000 0.144
#> SRR1003822     1  0.3074     0.7615 0.848 0.000 0.152 0.000
#> SRR1003824     1  0.2760     0.7603 0.872 0.000 0.000 0.128
#> SRR1003823     1  0.4072     0.7052 0.748 0.000 0.000 0.252
#> SRR1003825     1  0.1792     0.7823 0.932 0.000 0.068 0.000
#> SRR1003826     1  0.3105     0.7909 0.868 0.000 0.120 0.012
#> SRR1003827     1  0.4106     0.7990 0.832 0.000 0.084 0.084
#> SRR1003828     1  0.4500     0.6847 0.684 0.000 0.316 0.000
#> SRR1003829     1  0.4382     0.6776 0.704 0.000 0.296 0.000
#> SRR1003830     1  0.4532     0.7791 0.792 0.000 0.052 0.156
#> SRR1003831     1  0.4643     0.6364 0.656 0.000 0.344 0.000
#> SRR1003832     1  0.4072     0.7052 0.748 0.000 0.000 0.252
#> SRR1003833     1  0.4730     0.6507 0.636 0.000 0.364 0.000
#> SRR1003834     1  0.4697     0.6517 0.644 0.000 0.356 0.000
#> SRR1003836     1  0.3569     0.7226 0.804 0.000 0.196 0.000
#> SRR1003835     1  0.3219     0.7373 0.836 0.000 0.164 0.000
#> SRR1003838     3  0.4522     0.4502 0.320 0.000 0.680 0.000
#> SRR1003837     1  0.3877     0.7877 0.840 0.000 0.048 0.112
#> SRR1003839     1  0.4999     0.2579 0.508 0.000 0.492 0.000
#> SRR1003840     3  0.0188     0.8472 0.004 0.000 0.996 0.000
#> SRR1003841     3  0.0188     0.8472 0.004 0.000 0.996 0.000
#> SRR1003842     1  0.4852     0.7861 0.776 0.000 0.072 0.152
#> SRR1003844     1  0.3818     0.7883 0.844 0.000 0.048 0.108
#> SRR1003845     3  0.0188     0.8472 0.004 0.000 0.996 0.000
#> SRR1003846     1  0.3942     0.7158 0.764 0.000 0.000 0.236
#> SRR1003847     1  0.4356     0.6997 0.708 0.000 0.292 0.000
#> SRR1003848     1  0.3681     0.7524 0.816 0.000 0.008 0.176
#> SRR1003849     3  0.4222     0.6855 0.272 0.000 0.728 0.000
#> SRR1003850     1  0.4164     0.7050 0.736 0.000 0.264 0.000
#> SRR1003851     3  0.4522     0.5325 0.320 0.000 0.680 0.000
#> SRR1003852     3  0.0188     0.8472 0.004 0.000 0.996 0.000
#> SRR1003853     1  0.3400     0.7543 0.820 0.000 0.180 0.000
#> SRR1003854     1  0.2704     0.7622 0.876 0.000 0.124 0.000
#> SRR1003843     3  0.2973     0.7836 0.144 0.000 0.856 0.000
#> SRR1003855     1  0.3793     0.7916 0.844 0.000 0.044 0.112
#> SRR1003856     1  0.4866     0.4607 0.596 0.000 0.404 0.000
#> SRR1003857     1  0.3176     0.7905 0.880 0.000 0.036 0.084
#> SRR1003858     1  0.2814     0.7794 0.868 0.000 0.132 0.000
#> SRR1003859     1  0.3219     0.7499 0.836 0.000 0.000 0.164
#> SRR1003860     1  0.3032     0.7900 0.868 0.000 0.124 0.008
#> SRR1003861     1  0.3266     0.7448 0.832 0.000 0.168 0.000
#> SRR1003862     1  0.4008     0.7128 0.756 0.000 0.000 0.244
#> SRR1003863     1  0.4072     0.7052 0.748 0.000 0.000 0.252
#> SRR1003864     1  0.4663     0.7827 0.788 0.000 0.064 0.148
#> SRR1003865     1  0.3172     0.7409 0.840 0.000 0.160 0.000
#> SRR1003866     1  0.4996     0.2566 0.516 0.000 0.484 0.000
#> SRR1003867     1  0.2760     0.7631 0.872 0.000 0.128 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3 p4    p5
#> SRR1003755     4  0.0000     1.0000 0.000 0.000 0.000  1 0.000
#> SRR1003756     4  0.0000     1.0000 0.000 0.000 0.000  1 0.000
#> SRR1003757     1  0.2966     0.7362 0.816 0.184 0.000  0 0.000
#> SRR1003758     1  0.2966     0.7362 0.816 0.184 0.000  0 0.000
#> SRR1003759     3  0.6510     0.3004 0.360 0.196 0.444  0 0.000
#> SRR1003760     3  0.0000     0.7148 0.000 0.000 1.000  0 0.000
#> SRR1003761     3  0.3835     0.5665 0.156 0.048 0.796  0 0.000
#> SRR1003762     3  0.7195     0.3792 0.184 0.204 0.540  0 0.072
#> SRR1003763     2  0.6671    -0.0395 0.352 0.412 0.000  0 0.236
#> SRR1003764     3  0.5787     0.4561 0.180 0.204 0.616  0 0.000
#> SRR1003765     5  0.0000     0.6167 0.000 0.000 0.000  0 1.000
#> SRR1003766     2  0.4150     0.3084 0.000 0.612 0.000  0 0.388
#> SRR1003767     5  0.0000     0.6167 0.000 0.000 0.000  0 1.000
#> SRR1003768     2  0.4150     0.3084 0.000 0.612 0.000  0 0.388
#> SRR1003769     2  0.4150     0.3084 0.000 0.612 0.000  0 0.388
#> SRR1003770     5  0.3752     0.3654 0.000 0.000 0.292  0 0.708
#> SRR1003771     3  0.0162     0.7088 0.000 0.000 0.996  0 0.004
#> SRR1003773     3  0.0000     0.7148 0.000 0.000 1.000  0 0.000
#> SRR1003772     1  0.2179     0.7713 0.896 0.100 0.004  0 0.000
#> SRR1003774     3  0.6162    -0.3273 0.432 0.132 0.436  0 0.000
#> SRR1003775     1  0.1270     0.7801 0.948 0.052 0.000  0 0.000
#> SRR1003776     1  0.3355     0.7636 0.804 0.184 0.012  0 0.000
#> SRR1003777     1  0.1671     0.7779 0.924 0.076 0.000  0 0.000
#> SRR1003778     3  0.0000     0.7148 0.000 0.000 1.000  0 0.000
#> SRR1003779     1  0.1341     0.7808 0.944 0.056 0.000  0 0.000
#> SRR1003780     3  0.0000     0.7148 0.000 0.000 1.000  0 0.000
#> SRR1003781     1  0.6434     0.3793 0.452 0.180 0.368  0 0.000
#> SRR1003784     1  0.3966     0.7901 0.796 0.132 0.072  0 0.000
#> SRR1003785     3  0.0404     0.7116 0.012 0.000 0.988  0 0.000
#> SRR1003786     1  0.2966     0.7362 0.816 0.184 0.000  0 0.000
#> SRR1003783     1  0.2929     0.7386 0.820 0.180 0.000  0 0.000
#> SRR1003787     1  0.5820     0.7093 0.612 0.192 0.196  0 0.000
#> SRR1003788     1  0.6071     0.6294 0.556 0.160 0.284  0 0.000
#> SRR1003789     3  0.0000     0.7148 0.000 0.000 1.000  0 0.000
#> SRR1003790     1  0.0955     0.7837 0.968 0.028 0.004  0 0.000
#> SRR1003791     3  0.0451     0.7126 0.004 0.008 0.988  0 0.000
#> SRR1003792     1  0.5701     0.6784 0.604 0.124 0.272  0 0.000
#> SRR1003793     1  0.3754     0.7729 0.816 0.100 0.084  0 0.000
#> SRR1003794     1  0.4087     0.7544 0.756 0.036 0.208  0 0.000
#> SRR1003795     3  0.0000     0.7148 0.000 0.000 1.000  0 0.000
#> SRR1003796     3  0.0000     0.7148 0.000 0.000 1.000  0 0.000
#> SRR1003797     1  0.5731     0.7175 0.624 0.196 0.180  0 0.000
#> SRR1003798     1  0.4199     0.7803 0.772 0.160 0.068  0 0.000
#> SRR1003799     1  0.2891     0.7408 0.824 0.176 0.000  0 0.000
#> SRR1003800     1  0.3723     0.7817 0.804 0.152 0.044  0 0.000
#> SRR1003801     1  0.4402     0.7581 0.740 0.204 0.056  0 0.000
#> SRR1003802     1  0.5102     0.7779 0.684 0.216 0.100  0 0.000
#> SRR1003803     1  0.5295     0.7421 0.672 0.200 0.128  0 0.000
#> SRR1003804     1  0.1124     0.7842 0.960 0.036 0.004  0 0.000
#> SRR1003805     1  0.1082     0.7872 0.964 0.028 0.008  0 0.000
#> SRR1003806     1  0.3359     0.7759 0.816 0.020 0.164  0 0.000
#> SRR1003807     1  0.5467     0.2572 0.548 0.068 0.384  0 0.000
#> SRR1003809     1  0.5848     0.6984 0.604 0.168 0.228  0 0.000
#> SRR1003808     3  0.0794     0.7038 0.028 0.000 0.972  0 0.000
#> SRR1003810     1  0.3416     0.7992 0.840 0.088 0.072  0 0.000
#> SRR1003811     1  0.2813     0.7449 0.832 0.168 0.000  0 0.000
#> SRR1003812     1  0.0963     0.7812 0.964 0.036 0.000  0 0.000
#> SRR1003813     1  0.5384     0.7375 0.664 0.196 0.140  0 0.000
#> SRR1003814     1  0.5728     0.6047 0.624 0.200 0.176  0 0.000
#> SRR1003815     1  0.0566     0.7858 0.984 0.004 0.012  0 0.000
#> SRR1003816     1  0.3527     0.7574 0.804 0.024 0.172  0 0.000
#> SRR1003817     1  0.3106     0.7784 0.840 0.020 0.140  0 0.000
#> SRR1003818     1  0.2561     0.7907 0.856 0.144 0.000  0 0.000
#> SRR1003819     3  0.5589     0.5136 0.244 0.128 0.628  0 0.000
#> SRR1003820     1  0.1082     0.7858 0.964 0.028 0.008  0 0.000
#> SRR1003821     1  0.1478     0.7814 0.936 0.064 0.000  0 0.000
#> SRR1003822     1  0.4276     0.7656 0.764 0.168 0.068  0 0.000
#> SRR1003824     1  0.0609     0.7810 0.980 0.020 0.000  0 0.000
#> SRR1003823     1  0.2966     0.7362 0.816 0.184 0.000  0 0.000
#> SRR1003825     1  0.3246     0.7622 0.808 0.184 0.008  0 0.000
#> SRR1003826     1  0.4819     0.7711 0.724 0.164 0.112  0 0.000
#> SRR1003827     1  0.2659     0.8017 0.888 0.060 0.052  0 0.000
#> SRR1003828     1  0.5700     0.6733 0.600 0.120 0.280  0 0.000
#> SRR1003829     1  0.6049     0.6756 0.576 0.192 0.232  0 0.000
#> SRR1003830     1  0.2830     0.7839 0.876 0.080 0.044  0 0.000
#> SRR1003831     1  0.6002     0.6155 0.552 0.140 0.308  0 0.000
#> SRR1003832     1  0.2966     0.7362 0.816 0.184 0.000  0 0.000
#> SRR1003833     1  0.5131     0.6052 0.588 0.048 0.364  0 0.000
#> SRR1003834     1  0.5519     0.6278 0.584 0.084 0.332  0 0.000
#> SRR1003836     1  0.4796     0.7309 0.728 0.152 0.120  0 0.000
#> SRR1003835     1  0.3897     0.7448 0.768 0.204 0.028  0 0.000
#> SRR1003838     3  0.5136     0.4462 0.260 0.080 0.660  0 0.000
#> SRR1003837     1  0.0510     0.7825 0.984 0.016 0.000  0 0.000
#> SRR1003839     3  0.6213    -0.2616 0.408 0.140 0.452  0 0.000
#> SRR1003840     3  0.0000     0.7148 0.000 0.000 1.000  0 0.000
#> SRR1003841     3  0.0000     0.7148 0.000 0.000 1.000  0 0.000
#> SRR1003842     1  0.2654     0.7929 0.888 0.048 0.064  0 0.000
#> SRR1003844     1  0.0865     0.7872 0.972 0.024 0.004  0 0.000
#> SRR1003845     3  0.0000     0.7148 0.000 0.000 1.000  0 0.000
#> SRR1003846     1  0.2813     0.7443 0.832 0.168 0.000  0 0.000
#> SRR1003847     1  0.5678     0.6899 0.612 0.128 0.260  0 0.000
#> SRR1003848     1  0.1792     0.7737 0.916 0.084 0.000  0 0.000
#> SRR1003849     3  0.5638     0.5249 0.172 0.192 0.636  0 0.000
#> SRR1003850     1  0.5819     0.7079 0.612 0.188 0.200  0 0.000
#> SRR1003851     3  0.4863     0.5205 0.272 0.056 0.672  0 0.000
#> SRR1003852     3  0.0000     0.7148 0.000 0.000 1.000  0 0.000
#> SRR1003853     1  0.5076     0.7490 0.692 0.200 0.108  0 0.000
#> SRR1003854     1  0.3530     0.7506 0.784 0.204 0.012  0 0.000
#> SRR1003843     3  0.3749     0.6384 0.104 0.080 0.816  0 0.000
#> SRR1003855     1  0.3409     0.8016 0.824 0.144 0.032  0 0.000
#> SRR1003856     1  0.6025     0.4157 0.496 0.120 0.384  0 0.000
#> SRR1003857     1  0.1484     0.7927 0.944 0.048 0.008  0 0.000
#> SRR1003858     1  0.4587     0.7576 0.728 0.204 0.068  0 0.000
#> SRR1003859     1  0.1851     0.7738 0.912 0.088 0.000  0 0.000
#> SRR1003860     1  0.5016     0.7598 0.704 0.176 0.120  0 0.000
#> SRR1003861     1  0.4465     0.7560 0.736 0.204 0.060  0 0.000
#> SRR1003862     1  0.2891     0.7400 0.824 0.176 0.000  0 0.000
#> SRR1003863     1  0.2966     0.7362 0.816 0.184 0.000  0 0.000
#> SRR1003864     1  0.2928     0.7878 0.872 0.064 0.064  0 0.000
#> SRR1003865     1  0.4054     0.7398 0.760 0.204 0.036  0 0.000
#> SRR1003866     1  0.5650     0.1953 0.468 0.076 0.456  0 0.000
#> SRR1003867     1  0.4054     0.7528 0.760 0.204 0.036  0 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3 p4 p5    p6
#> SRR1003755     4  0.0000      1.000 0.000 0.000 0.000  1  0 0.000
#> SRR1003756     4  0.0000      1.000 0.000 0.000 0.000  1  0 0.000
#> SRR1003757     1  0.2491      0.677 0.836 0.000 0.000  0  0 0.164
#> SRR1003758     1  0.2491      0.677 0.836 0.000 0.000  0  0 0.164
#> SRR1003759     6  0.6118      0.371 0.336 0.000 0.304  0  0 0.360
#> SRR1003760     3  0.0000      0.812 0.000 0.000 1.000  0  0 0.000
#> SRR1003761     3  0.3602      0.559 0.136 0.000 0.792  0  0 0.072
#> SRR1003762     6  0.2595      0.627 0.160 0.000 0.004  0  0 0.836
#> SRR1003763     6  0.2595      0.620 0.160 0.004 0.000  0  0 0.836
#> SRR1003764     6  0.2669      0.625 0.156 0.000 0.008  0  0 0.836
#> SRR1003765     2  0.0000      1.000 0.000 1.000 0.000  0  0 0.000
#> SRR1003766     5  0.0000      1.000 0.000 0.000 0.000  0  1 0.000
#> SRR1003767     2  0.0000      1.000 0.000 1.000 0.000  0  0 0.000
#> SRR1003768     5  0.0000      1.000 0.000 0.000 0.000  0  1 0.000
#> SRR1003769     5  0.0000      1.000 0.000 0.000 0.000  0  1 0.000
#> SRR1003770     2  0.0000      1.000 0.000 1.000 0.000  0  0 0.000
#> SRR1003771     3  0.0547      0.791 0.000 0.020 0.980  0  0 0.000
#> SRR1003773     3  0.0000      0.812 0.000 0.000 1.000  0  0 0.000
#> SRR1003772     1  0.1700      0.713 0.916 0.000 0.004  0  0 0.080
#> SRR1003774     1  0.5781      0.277 0.428 0.000 0.396  0  0 0.176
#> SRR1003775     1  0.1141      0.719 0.948 0.000 0.000  0  0 0.052
#> SRR1003776     1  0.3161      0.664 0.776 0.000 0.008  0  0 0.216
#> SRR1003777     1  0.1501      0.718 0.924 0.000 0.000  0  0 0.076
#> SRR1003778     3  0.0000      0.812 0.000 0.000 1.000  0  0 0.000
#> SRR1003779     1  0.1556      0.720 0.920 0.000 0.000  0  0 0.080
#> SRR1003780     3  0.0000      0.812 0.000 0.000 1.000  0  0 0.000
#> SRR1003781     1  0.6013      0.260 0.432 0.000 0.292  0  0 0.276
#> SRR1003784     1  0.3754      0.716 0.776 0.000 0.072  0  0 0.152
#> SRR1003785     3  0.0363      0.804 0.012 0.000 0.988  0  0 0.000
#> SRR1003786     1  0.2491      0.677 0.836 0.000 0.000  0  0 0.164
#> SRR1003783     1  0.2454      0.680 0.840 0.000 0.000  0  0 0.160
#> SRR1003787     1  0.5228      0.636 0.612 0.000 0.192  0  0 0.196
#> SRR1003788     1  0.5453      0.560 0.556 0.000 0.284  0  0 0.160
#> SRR1003789     3  0.0000      0.812 0.000 0.000 1.000  0  0 0.000
#> SRR1003790     1  0.0858      0.722 0.968 0.000 0.004  0  0 0.028
#> SRR1003791     3  0.0405      0.807 0.004 0.000 0.988  0  0 0.008
#> SRR1003792     1  0.5672      0.507 0.528 0.000 0.260  0  0 0.212
#> SRR1003793     1  0.3072      0.714 0.840 0.000 0.084  0  0 0.076
#> SRR1003794     1  0.3671      0.700 0.756 0.000 0.208  0  0 0.036
#> SRR1003795     3  0.0000      0.812 0.000 0.000 1.000  0  0 0.000
#> SRR1003796     3  0.0000      0.812 0.000 0.000 1.000  0  0 0.000
#> SRR1003797     1  0.5145      0.641 0.624 0.000 0.176  0  0 0.200
#> SRR1003798     1  0.3841      0.701 0.764 0.000 0.068  0  0 0.168
#> SRR1003799     1  0.2416      0.682 0.844 0.000 0.000  0  0 0.156
#> SRR1003800     1  0.3456      0.699 0.788 0.000 0.040  0  0 0.172
#> SRR1003801     1  0.4352      0.605 0.668 0.000 0.052  0  0 0.280
#> SRR1003802     1  0.4447      0.712 0.704 0.000 0.100  0  0 0.196
#> SRR1003803     1  0.4941      0.644 0.640 0.000 0.124  0  0 0.236
#> SRR1003804     1  0.1082      0.722 0.956 0.000 0.004  0  0 0.040
#> SRR1003805     1  0.1349      0.717 0.940 0.000 0.004  0  0 0.056
#> SRR1003806     1  0.3017      0.722 0.816 0.000 0.164  0  0 0.020
#> SRR1003807     1  0.5159      0.149 0.528 0.000 0.380  0  0 0.092
#> SRR1003809     1  0.5260      0.629 0.604 0.000 0.224  0  0 0.172
#> SRR1003808     3  0.0713      0.788 0.028 0.000 0.972  0  0 0.000
#> SRR1003810     1  0.3159      0.732 0.832 0.000 0.068  0  0 0.100
#> SRR1003811     1  0.2340      0.686 0.852 0.000 0.000  0  0 0.148
#> SRR1003812     1  0.0713      0.719 0.972 0.000 0.000  0  0 0.028
#> SRR1003813     1  0.5304      0.548 0.572 0.000 0.136  0  0 0.292
#> SRR1003814     6  0.4493      0.437 0.364 0.000 0.040  0  0 0.596
#> SRR1003815     1  0.0972      0.719 0.964 0.000 0.008  0  0 0.028
#> SRR1003816     1  0.3003      0.704 0.812 0.000 0.172  0  0 0.016
#> SRR1003817     1  0.2750      0.725 0.844 0.000 0.136  0  0 0.020
#> SRR1003818     1  0.2491      0.712 0.836 0.000 0.000  0  0 0.164
#> SRR1003819     3  0.5259      0.219 0.240 0.000 0.600  0  0 0.160
#> SRR1003820     1  0.1124      0.722 0.956 0.000 0.008  0  0 0.036
#> SRR1003821     1  0.1387      0.721 0.932 0.000 0.000  0  0 0.068
#> SRR1003822     1  0.3978      0.676 0.744 0.000 0.064  0  0 0.192
#> SRR1003824     1  0.1007      0.716 0.956 0.000 0.000  0  0 0.044
#> SRR1003823     1  0.2491      0.677 0.836 0.000 0.000  0  0 0.164
#> SRR1003825     1  0.3023      0.665 0.784 0.000 0.004  0  0 0.212
#> SRR1003826     1  0.4351      0.693 0.720 0.000 0.108  0  0 0.172
#> SRR1003827     1  0.2499      0.735 0.880 0.000 0.048  0  0 0.072
#> SRR1003828     1  0.5224      0.600 0.588 0.000 0.280  0  0 0.132
#> SRR1003829     1  0.5437      0.602 0.576 0.000 0.228  0  0 0.196
#> SRR1003830     1  0.2433      0.726 0.884 0.000 0.044  0  0 0.072
#> SRR1003831     1  0.5408      0.554 0.552 0.000 0.304  0  0 0.144
#> SRR1003832     1  0.2454      0.678 0.840 0.000 0.000  0  0 0.160
#> SRR1003833     1  0.4797      0.550 0.580 0.000 0.356  0  0 0.064
#> SRR1003834     1  0.4957      0.572 0.584 0.000 0.332  0  0 0.084
#> SRR1003836     1  0.4474      0.632 0.708 0.000 0.120  0  0 0.172
#> SRR1003835     1  0.3509      0.636 0.744 0.000 0.016  0  0 0.240
#> SRR1003838     3  0.4613      0.276 0.260 0.000 0.660  0  0 0.080
#> SRR1003837     1  0.1007      0.715 0.956 0.000 0.000  0  0 0.044
#> SRR1003839     3  0.5607     -0.325 0.408 0.000 0.448  0  0 0.144
#> SRR1003840     3  0.0000      0.812 0.000 0.000 1.000  0  0 0.000
#> SRR1003841     3  0.0000      0.812 0.000 0.000 1.000  0  0 0.000
#> SRR1003842     1  0.2119      0.734 0.904 0.000 0.060  0  0 0.036
#> SRR1003844     1  0.1285      0.722 0.944 0.000 0.004  0  0 0.052
#> SRR1003845     3  0.0000      0.812 0.000 0.000 1.000  0  0 0.000
#> SRR1003846     1  0.2300      0.686 0.856 0.000 0.000  0  0 0.144
#> SRR1003847     1  0.5135      0.625 0.608 0.000 0.260  0  0 0.132
#> SRR1003848     1  0.1501      0.714 0.924 0.000 0.000  0  0 0.076
#> SRR1003849     3  0.5389      0.148 0.160 0.000 0.572  0  0 0.268
#> SRR1003850     1  0.5228      0.634 0.612 0.000 0.192  0  0 0.196
#> SRR1003851     3  0.4402      0.329 0.268 0.000 0.672  0  0 0.060
#> SRR1003852     3  0.0000      0.812 0.000 0.000 1.000  0  0 0.000
#> SRR1003853     1  0.4746      0.644 0.660 0.000 0.104  0  0 0.236
#> SRR1003854     1  0.3189      0.645 0.760 0.000 0.004  0  0 0.236
#> SRR1003843     3  0.3424      0.637 0.092 0.000 0.812  0  0 0.096
#> SRR1003855     1  0.3101      0.739 0.820 0.000 0.032  0  0 0.148
#> SRR1003856     1  0.5443      0.359 0.492 0.000 0.384  0  0 0.124
#> SRR1003857     1  0.1462      0.725 0.936 0.000 0.008  0  0 0.056
#> SRR1003858     1  0.4198      0.664 0.708 0.000 0.060  0  0 0.232
#> SRR1003859     1  0.1444      0.714 0.928 0.000 0.000  0  0 0.072
#> SRR1003860     1  0.4624      0.678 0.688 0.000 0.120  0  0 0.192
#> SRR1003861     1  0.4332      0.620 0.672 0.000 0.052  0  0 0.276
#> SRR1003862     1  0.2378      0.681 0.848 0.000 0.000  0  0 0.152
#> SRR1003863     1  0.2454      0.678 0.840 0.000 0.000  0  0 0.160
#> SRR1003864     1  0.2258      0.729 0.896 0.000 0.060  0  0 0.044
#> SRR1003865     1  0.3745      0.626 0.732 0.000 0.028  0  0 0.240
#> SRR1003866     1  0.5391      0.187 0.456 0.000 0.432  0  0 0.112
#> SRR1003867     1  0.4094      0.532 0.652 0.000 0.024  0  0 0.324

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 9166 rows and 112 columns.
#>   Top rows (917, 1834, 2750, 3666, 4583) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.977       0.989         0.3017 0.704   0.704
#> 3 3 0.386           0.676       0.799         0.6895 0.752   0.648
#> 4 4 0.379           0.435       0.707         0.1857 0.863   0.716
#> 5 5 0.383           0.497       0.677         0.0686 0.882   0.712
#> 6 6 0.403           0.590       0.722         0.1038 0.837   0.568

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1003755     2  0.0000      0.979 0.000 1.000
#> SRR1003756     2  0.0000      0.979 0.000 1.000
#> SRR1003757     2  0.1633      0.964 0.024 0.976
#> SRR1003758     2  0.1633      0.964 0.024 0.976
#> SRR1003759     2  0.8909      0.551 0.308 0.692
#> SRR1003760     2  0.1414      0.966 0.020 0.980
#> SRR1003761     2  0.0000      0.979 0.000 1.000
#> SRR1003762     2  0.0000      0.979 0.000 1.000
#> SRR1003763     2  0.0000      0.979 0.000 1.000
#> SRR1003764     2  0.0000      0.979 0.000 1.000
#> SRR1003765     2  0.0000      0.979 0.000 1.000
#> SRR1003766     2  0.0000      0.979 0.000 1.000
#> SRR1003767     2  0.0000      0.979 0.000 1.000
#> SRR1003768     2  0.0000      0.979 0.000 1.000
#> SRR1003769     2  0.0000      0.979 0.000 1.000
#> SRR1003770     2  0.0000      0.979 0.000 1.000
#> SRR1003771     2  0.0000      0.979 0.000 1.000
#> SRR1003773     1  0.2778      0.952 0.952 0.048
#> SRR1003772     1  0.0000      0.990 1.000 0.000
#> SRR1003774     1  0.0000      0.990 1.000 0.000
#> SRR1003775     1  0.0000      0.990 1.000 0.000
#> SRR1003776     1  0.0000      0.990 1.000 0.000
#> SRR1003777     1  0.0000      0.990 1.000 0.000
#> SRR1003778     1  0.2778      0.952 0.952 0.048
#> SRR1003779     1  0.0000      0.990 1.000 0.000
#> SRR1003780     2  0.0000      0.979 0.000 1.000
#> SRR1003781     1  0.0000      0.990 1.000 0.000
#> SRR1003784     1  0.0000      0.990 1.000 0.000
#> SRR1003785     1  0.2603      0.956 0.956 0.044
#> SRR1003786     1  0.0000      0.990 1.000 0.000
#> SRR1003783     1  0.0000      0.990 1.000 0.000
#> SRR1003787     1  0.0000      0.990 1.000 0.000
#> SRR1003788     1  0.0000      0.990 1.000 0.000
#> SRR1003789     2  0.0938      0.972 0.012 0.988
#> SRR1003790     1  0.0000      0.990 1.000 0.000
#> SRR1003791     1  0.0000      0.990 1.000 0.000
#> SRR1003792     1  0.0000      0.990 1.000 0.000
#> SRR1003793     1  0.0000      0.990 1.000 0.000
#> SRR1003794     1  0.0000      0.990 1.000 0.000
#> SRR1003795     1  0.1843      0.970 0.972 0.028
#> SRR1003796     1  0.2778      0.952 0.952 0.048
#> SRR1003797     1  0.0000      0.990 1.000 0.000
#> SRR1003798     1  0.0000      0.990 1.000 0.000
#> SRR1003799     1  0.5842      0.839 0.860 0.140
#> SRR1003800     1  0.0000      0.990 1.000 0.000
#> SRR1003801     1  0.0000      0.990 1.000 0.000
#> SRR1003802     1  0.0000      0.990 1.000 0.000
#> SRR1003803     1  0.0000      0.990 1.000 0.000
#> SRR1003804     1  0.0000      0.990 1.000 0.000
#> SRR1003805     1  0.0000      0.990 1.000 0.000
#> SRR1003806     1  0.0000      0.990 1.000 0.000
#> SRR1003807     1  0.0000      0.990 1.000 0.000
#> SRR1003809     1  0.0672      0.985 0.992 0.008
#> SRR1003808     1  0.2043      0.965 0.968 0.032
#> SRR1003810     1  0.0000      0.990 1.000 0.000
#> SRR1003811     1  0.2948      0.949 0.948 0.052
#> SRR1003812     1  0.0000      0.990 1.000 0.000
#> SRR1003813     1  0.2603      0.956 0.956 0.044
#> SRR1003814     1  0.6712      0.795 0.824 0.176
#> SRR1003815     1  0.0000      0.990 1.000 0.000
#> SRR1003816     1  0.0000      0.990 1.000 0.000
#> SRR1003817     1  0.0000      0.990 1.000 0.000
#> SRR1003818     1  0.0000      0.990 1.000 0.000
#> SRR1003819     1  0.0000      0.990 1.000 0.000
#> SRR1003820     1  0.0000      0.990 1.000 0.000
#> SRR1003821     1  0.0000      0.990 1.000 0.000
#> SRR1003822     1  0.0376      0.987 0.996 0.004
#> SRR1003824     1  0.0000      0.990 1.000 0.000
#> SRR1003823     1  0.0000      0.990 1.000 0.000
#> SRR1003825     1  0.0000      0.990 1.000 0.000
#> SRR1003826     1  0.0000      0.990 1.000 0.000
#> SRR1003827     1  0.0000      0.990 1.000 0.000
#> SRR1003828     1  0.1184      0.978 0.984 0.016
#> SRR1003829     1  0.0000      0.990 1.000 0.000
#> SRR1003830     1  0.0000      0.990 1.000 0.000
#> SRR1003831     1  0.0000      0.990 1.000 0.000
#> SRR1003832     1  0.0000      0.990 1.000 0.000
#> SRR1003833     1  0.0000      0.990 1.000 0.000
#> SRR1003834     1  0.0000      0.990 1.000 0.000
#> SRR1003836     1  0.0000      0.990 1.000 0.000
#> SRR1003835     1  0.0000      0.990 1.000 0.000
#> SRR1003838     1  0.2423      0.959 0.960 0.040
#> SRR1003837     1  0.0000      0.990 1.000 0.000
#> SRR1003839     1  0.0000      0.990 1.000 0.000
#> SRR1003840     1  0.0672      0.985 0.992 0.008
#> SRR1003841     2  0.0000      0.979 0.000 1.000
#> SRR1003842     1  0.0000      0.990 1.000 0.000
#> SRR1003844     1  0.0000      0.990 1.000 0.000
#> SRR1003845     1  0.0000      0.990 1.000 0.000
#> SRR1003846     1  0.0000      0.990 1.000 0.000
#> SRR1003847     1  0.0000      0.990 1.000 0.000
#> SRR1003848     1  0.1184      0.979 0.984 0.016
#> SRR1003849     1  0.2778      0.952 0.952 0.048
#> SRR1003850     1  0.0000      0.990 1.000 0.000
#> SRR1003851     1  0.0376      0.987 0.996 0.004
#> SRR1003852     1  0.0376      0.987 0.996 0.004
#> SRR1003853     1  0.0000      0.990 1.000 0.000
#> SRR1003854     1  0.0000      0.990 1.000 0.000
#> SRR1003843     1  0.0000      0.990 1.000 0.000
#> SRR1003855     1  0.0000      0.990 1.000 0.000
#> SRR1003856     1  0.0376      0.987 0.996 0.004
#> SRR1003857     1  0.0000      0.990 1.000 0.000
#> SRR1003858     1  0.0000      0.990 1.000 0.000
#> SRR1003859     1  0.0000      0.990 1.000 0.000
#> SRR1003860     1  0.0000      0.990 1.000 0.000
#> SRR1003861     1  0.0000      0.990 1.000 0.000
#> SRR1003862     1  0.0000      0.990 1.000 0.000
#> SRR1003863     1  0.4298      0.906 0.912 0.088
#> SRR1003864     1  0.0000      0.990 1.000 0.000
#> SRR1003865     1  0.0000      0.990 1.000 0.000
#> SRR1003866     1  0.0000      0.990 1.000 0.000
#> SRR1003867     1  0.0000      0.990 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1003755     2  0.3482     0.8904 0.000 0.872 0.128
#> SRR1003756     2  0.3482     0.8904 0.000 0.872 0.128
#> SRR1003757     2  0.7124     0.7865 0.056 0.672 0.272
#> SRR1003758     2  0.7124     0.7865 0.056 0.672 0.272
#> SRR1003759     2  0.9851     0.0468 0.284 0.420 0.296
#> SRR1003760     2  0.5020     0.8598 0.012 0.796 0.192
#> SRR1003761     2  0.3995     0.8973 0.016 0.868 0.116
#> SRR1003762     2  0.0237     0.9170 0.000 0.996 0.004
#> SRR1003763     2  0.0424     0.9168 0.000 0.992 0.008
#> SRR1003764     2  0.1031     0.9153 0.000 0.976 0.024
#> SRR1003765     2  0.0237     0.9169 0.000 0.996 0.004
#> SRR1003766     2  0.0237     0.9169 0.000 0.996 0.004
#> SRR1003767     2  0.0237     0.9169 0.000 0.996 0.004
#> SRR1003768     2  0.0237     0.9169 0.000 0.996 0.004
#> SRR1003769     2  0.0237     0.9169 0.000 0.996 0.004
#> SRR1003770     2  0.0424     0.9168 0.000 0.992 0.008
#> SRR1003771     2  0.0747     0.9166 0.000 0.984 0.016
#> SRR1003773     3  0.6195     0.8560 0.276 0.020 0.704
#> SRR1003772     1  0.1163     0.7390 0.972 0.000 0.028
#> SRR1003774     1  0.6235     0.0137 0.564 0.000 0.436
#> SRR1003775     1  0.0747     0.7352 0.984 0.000 0.016
#> SRR1003776     1  0.2261     0.7433 0.932 0.000 0.068
#> SRR1003777     1  0.1289     0.7461 0.968 0.000 0.032
#> SRR1003778     3  0.6195     0.8560 0.276 0.020 0.704
#> SRR1003779     1  0.2261     0.7454 0.932 0.000 0.068
#> SRR1003780     2  0.3551     0.8975 0.000 0.868 0.132
#> SRR1003781     1  0.4291     0.6916 0.820 0.000 0.180
#> SRR1003784     3  0.6126     0.8266 0.352 0.004 0.644
#> SRR1003785     3  0.6195     0.8560 0.276 0.020 0.704
#> SRR1003786     1  0.0892     0.7359 0.980 0.000 0.020
#> SRR1003783     1  0.0424     0.7273 0.992 0.000 0.008
#> SRR1003787     1  0.1964     0.7489 0.944 0.000 0.056
#> SRR1003788     1  0.5497     0.5220 0.708 0.000 0.292
#> SRR1003789     2  0.4399     0.8700 0.000 0.812 0.188
#> SRR1003790     1  0.0592     0.7286 0.988 0.000 0.012
#> SRR1003791     3  0.6298     0.8078 0.388 0.004 0.608
#> SRR1003792     1  0.2165     0.7403 0.936 0.000 0.064
#> SRR1003793     1  0.0747     0.7334 0.984 0.000 0.016
#> SRR1003794     1  0.3816     0.7154 0.852 0.000 0.148
#> SRR1003795     3  0.6632     0.8440 0.272 0.036 0.692
#> SRR1003796     3  0.6161     0.8508 0.272 0.020 0.708
#> SRR1003797     1  0.1031     0.7362 0.976 0.000 0.024
#> SRR1003798     1  0.5650     0.4721 0.688 0.000 0.312
#> SRR1003799     1  0.8079     0.3408 0.628 0.112 0.260
#> SRR1003800     1  0.4887     0.6422 0.772 0.000 0.228
#> SRR1003801     1  0.6505    -0.2320 0.528 0.004 0.468
#> SRR1003802     3  0.5948     0.8183 0.360 0.000 0.640
#> SRR1003803     1  0.5497     0.5535 0.708 0.000 0.292
#> SRR1003804     1  0.5706     0.4537 0.680 0.000 0.320
#> SRR1003805     1  0.1964     0.7471 0.944 0.000 0.056
#> SRR1003806     1  0.0424     0.7273 0.992 0.000 0.008
#> SRR1003807     1  0.6274    -0.1412 0.544 0.000 0.456
#> SRR1003809     3  0.5591     0.8602 0.304 0.000 0.696
#> SRR1003808     3  0.6793     0.6310 0.452 0.012 0.536
#> SRR1003810     1  0.5291     0.6002 0.732 0.000 0.268
#> SRR1003811     3  0.7665     0.7996 0.340 0.060 0.600
#> SRR1003812     1  0.2878     0.7482 0.904 0.000 0.096
#> SRR1003813     3  0.6416     0.8637 0.304 0.020 0.676
#> SRR1003814     1  0.6662     0.4590 0.716 0.052 0.232
#> SRR1003815     1  0.4399     0.6860 0.812 0.000 0.188
#> SRR1003816     1  0.3832     0.7099 0.880 0.020 0.100
#> SRR1003817     1  0.2066     0.7338 0.940 0.000 0.060
#> SRR1003818     1  0.1753     0.7305 0.952 0.000 0.048
#> SRR1003819     3  0.6062     0.7841 0.384 0.000 0.616
#> SRR1003820     1  0.1163     0.7350 0.972 0.000 0.028
#> SRR1003821     1  0.0592     0.7292 0.988 0.000 0.012
#> SRR1003822     3  0.5859     0.8397 0.344 0.000 0.656
#> SRR1003824     1  0.5902     0.4654 0.680 0.004 0.316
#> SRR1003823     1  0.3482     0.7297 0.872 0.000 0.128
#> SRR1003825     1  0.6140     0.1268 0.596 0.000 0.404
#> SRR1003826     1  0.1860     0.7493 0.948 0.000 0.052
#> SRR1003827     1  0.0592     0.7298 0.988 0.000 0.012
#> SRR1003828     1  0.7128     0.3140 0.620 0.036 0.344
#> SRR1003829     1  0.1529     0.7464 0.960 0.000 0.040
#> SRR1003830     1  0.0592     0.7238 0.988 0.000 0.012
#> SRR1003831     1  0.5178     0.5736 0.744 0.000 0.256
#> SRR1003832     1  0.0892     0.7321 0.980 0.000 0.020
#> SRR1003833     1  0.3879     0.7127 0.848 0.000 0.152
#> SRR1003834     1  0.6274    -0.2313 0.544 0.000 0.456
#> SRR1003836     1  0.6302    -0.3485 0.520 0.000 0.480
#> SRR1003835     1  0.5138     0.6039 0.748 0.000 0.252
#> SRR1003838     3  0.6229     0.8590 0.280 0.020 0.700
#> SRR1003837     1  0.5497     0.5285 0.708 0.000 0.292
#> SRR1003839     1  0.5948     0.3323 0.640 0.000 0.360
#> SRR1003840     3  0.6045     0.7945 0.380 0.000 0.620
#> SRR1003841     2  0.3551     0.8975 0.000 0.868 0.132
#> SRR1003842     1  0.3267     0.7356 0.884 0.000 0.116
#> SRR1003844     1  0.2537     0.7406 0.920 0.000 0.080
#> SRR1003845     3  0.6062     0.8079 0.384 0.000 0.616
#> SRR1003846     1  0.2711     0.7458 0.912 0.000 0.088
#> SRR1003847     1  0.3941     0.7206 0.844 0.000 0.156
#> SRR1003848     1  0.7448     0.3089 0.616 0.052 0.332
#> SRR1003849     3  0.6229     0.8590 0.280 0.020 0.700
#> SRR1003850     1  0.6111     0.1511 0.604 0.000 0.396
#> SRR1003851     3  0.6229     0.8590 0.280 0.020 0.700
#> SRR1003852     3  0.6026     0.8054 0.376 0.000 0.624
#> SRR1003853     1  0.5058     0.6140 0.756 0.000 0.244
#> SRR1003854     1  0.1411     0.7333 0.964 0.000 0.036
#> SRR1003843     3  0.6026     0.8077 0.376 0.000 0.624
#> SRR1003855     1  0.4399     0.6860 0.812 0.000 0.188
#> SRR1003856     3  0.6204     0.6956 0.424 0.000 0.576
#> SRR1003857     1  0.4555     0.6754 0.800 0.000 0.200
#> SRR1003858     1  0.4629     0.6988 0.808 0.004 0.188
#> SRR1003859     1  0.1753     0.7393 0.952 0.000 0.048
#> SRR1003860     1  0.1031     0.7324 0.976 0.000 0.024
#> SRR1003861     1  0.4452     0.6944 0.808 0.000 0.192
#> SRR1003862     1  0.1964     0.7493 0.944 0.000 0.056
#> SRR1003863     1  0.8803     0.2189 0.580 0.180 0.240
#> SRR1003864     1  0.1031     0.7370 0.976 0.000 0.024
#> SRR1003865     1  0.4796     0.6502 0.780 0.000 0.220
#> SRR1003866     1  0.4654     0.6676 0.792 0.000 0.208
#> SRR1003867     1  0.3340     0.7391 0.880 0.000 0.120

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1003755     2  0.4406    0.78538 0.000 0.700 0.000 0.300
#> SRR1003756     2  0.4406    0.78538 0.000 0.700 0.000 0.300
#> SRR1003757     4  0.8219   -0.68006 0.040 0.408 0.144 0.408
#> SRR1003758     2  0.8248    0.55098 0.040 0.408 0.148 0.404
#> SRR1003759     1  0.9627   -0.15306 0.344 0.312 0.156 0.188
#> SRR1003760     2  0.5857    0.80003 0.004 0.712 0.172 0.112
#> SRR1003761     2  0.4932    0.84787 0.008 0.792 0.104 0.096
#> SRR1003762     2  0.1284    0.89042 0.000 0.964 0.012 0.024
#> SRR1003763     2  0.1474    0.88711 0.000 0.948 0.000 0.052
#> SRR1003764     2  0.1411    0.88752 0.000 0.960 0.020 0.020
#> SRR1003765     2  0.1302    0.88928 0.000 0.956 0.000 0.044
#> SRR1003766     2  0.1118    0.88745 0.000 0.964 0.000 0.036
#> SRR1003767     2  0.0817    0.88996 0.000 0.976 0.000 0.024
#> SRR1003768     2  0.1118    0.88745 0.000 0.964 0.000 0.036
#> SRR1003769     2  0.1022    0.88867 0.000 0.968 0.000 0.032
#> SRR1003770     2  0.1109    0.88991 0.000 0.968 0.004 0.028
#> SRR1003771     2  0.1936    0.88590 0.000 0.940 0.032 0.028
#> SRR1003773     3  0.1940    0.58560 0.076 0.000 0.924 0.000
#> SRR1003772     1  0.1209    0.63575 0.964 0.000 0.004 0.032
#> SRR1003774     4  0.7395    0.62211 0.344 0.000 0.176 0.480
#> SRR1003775     1  0.1624    0.63904 0.952 0.000 0.020 0.028
#> SRR1003776     1  0.2053    0.63993 0.924 0.000 0.004 0.072
#> SRR1003777     1  0.0927    0.64524 0.976 0.000 0.008 0.016
#> SRR1003778     3  0.2081    0.58781 0.084 0.000 0.916 0.000
#> SRR1003779     1  0.3681    0.55632 0.816 0.000 0.008 0.176
#> SRR1003780     2  0.5217    0.83009 0.000 0.756 0.108 0.136
#> SRR1003781     1  0.3464    0.60916 0.868 0.000 0.056 0.076
#> SRR1003784     3  0.6957    0.37821 0.260 0.000 0.576 0.164
#> SRR1003785     3  0.1940    0.58560 0.076 0.000 0.924 0.000
#> SRR1003786     1  0.1059    0.63577 0.972 0.000 0.012 0.016
#> SRR1003783     1  0.0895    0.63474 0.976 0.000 0.004 0.020
#> SRR1003787     1  0.2197    0.64162 0.928 0.000 0.024 0.048
#> SRR1003788     1  0.6678   -0.32576 0.500 0.000 0.088 0.412
#> SRR1003789     2  0.5533    0.81540 0.000 0.732 0.136 0.132
#> SRR1003790     1  0.1109    0.63298 0.968 0.000 0.004 0.028
#> SRR1003791     3  0.7631    0.22816 0.224 0.004 0.500 0.272
#> SRR1003792     1  0.2197    0.63866 0.928 0.000 0.024 0.048
#> SRR1003793     1  0.1305    0.64727 0.960 0.000 0.004 0.036
#> SRR1003794     1  0.5384    0.48272 0.728 0.000 0.076 0.196
#> SRR1003795     3  0.3909    0.58825 0.128 0.016 0.840 0.016
#> SRR1003796     3  0.1940    0.58560 0.076 0.000 0.924 0.000
#> SRR1003797     1  0.1042    0.64039 0.972 0.000 0.008 0.020
#> SRR1003798     1  0.6275   -0.34602 0.484 0.000 0.056 0.460
#> SRR1003799     1  0.7422   -0.23405 0.492 0.044 0.064 0.400
#> SRR1003800     1  0.6207   -0.30603 0.496 0.000 0.052 0.452
#> SRR1003801     4  0.7421    0.59464 0.372 0.000 0.172 0.456
#> SRR1003802     3  0.7540    0.10640 0.304 0.000 0.480 0.216
#> SRR1003803     1  0.6130   -0.10669 0.548 0.000 0.052 0.400
#> SRR1003804     1  0.6337   -0.35602 0.472 0.000 0.060 0.468
#> SRR1003805     1  0.2928    0.62025 0.880 0.000 0.012 0.108
#> SRR1003806     1  0.1022    0.64807 0.968 0.000 0.000 0.032
#> SRR1003807     4  0.7404    0.62320 0.348 0.000 0.176 0.476
#> SRR1003809     3  0.7045    0.26314 0.328 0.000 0.532 0.140
#> SRR1003808     3  0.8010    0.09130 0.272 0.008 0.440 0.280
#> SRR1003810     4  0.5938    0.25366 0.480 0.000 0.036 0.484
#> SRR1003811     1  0.8938   -0.36153 0.372 0.056 0.328 0.244
#> SRR1003812     1  0.2775    0.63312 0.896 0.000 0.020 0.084
#> SRR1003813     3  0.6690    0.42094 0.248 0.000 0.608 0.144
#> SRR1003814     1  0.5574    0.44665 0.728 0.000 0.148 0.124
#> SRR1003815     1  0.5465    0.08053 0.588 0.000 0.020 0.392
#> SRR1003816     1  0.1902    0.64297 0.932 0.000 0.004 0.064
#> SRR1003817     1  0.1305    0.63827 0.960 0.000 0.004 0.036
#> SRR1003818     1  0.1398    0.64556 0.956 0.000 0.004 0.040
#> SRR1003819     4  0.7737    0.20229 0.232 0.000 0.360 0.408
#> SRR1003820     1  0.0817    0.63632 0.976 0.000 0.000 0.024
#> SRR1003821     1  0.0927    0.63547 0.976 0.000 0.008 0.016
#> SRR1003822     3  0.7222    0.34221 0.264 0.004 0.560 0.172
#> SRR1003824     1  0.6672   -0.37684 0.468 0.004 0.072 0.456
#> SRR1003823     1  0.4348    0.51841 0.780 0.000 0.024 0.196
#> SRR1003825     4  0.6843    0.42026 0.440 0.000 0.100 0.460
#> SRR1003826     1  0.1389    0.64747 0.952 0.000 0.000 0.048
#> SRR1003827     1  0.0895    0.64211 0.976 0.000 0.004 0.020
#> SRR1003828     1  0.6177   -0.32985 0.488 0.004 0.040 0.468
#> SRR1003829     1  0.2943    0.62982 0.892 0.000 0.032 0.076
#> SRR1003830     1  0.1305    0.63846 0.960 0.000 0.004 0.036
#> SRR1003831     1  0.6855    0.05300 0.580 0.000 0.144 0.276
#> SRR1003832     1  0.1520    0.63628 0.956 0.000 0.020 0.024
#> SRR1003833     1  0.6063    0.33708 0.680 0.000 0.124 0.196
#> SRR1003834     4  0.7634    0.61983 0.352 0.000 0.212 0.436
#> SRR1003836     4  0.7770    0.56321 0.336 0.000 0.248 0.416
#> SRR1003835     1  0.5792   -0.11773 0.552 0.000 0.032 0.416
#> SRR1003838     3  0.3991    0.57141 0.172 0.000 0.808 0.020
#> SRR1003837     1  0.6336   -0.34343 0.480 0.000 0.060 0.460
#> SRR1003839     4  0.7253    0.48387 0.424 0.000 0.144 0.432
#> SRR1003840     3  0.7539    0.21599 0.252 0.000 0.492 0.256
#> SRR1003841     2  0.5167    0.83147 0.000 0.760 0.108 0.132
#> SRR1003842     1  0.4678    0.47100 0.744 0.000 0.024 0.232
#> SRR1003844     1  0.1489    0.64780 0.952 0.000 0.004 0.044
#> SRR1003845     3  0.7922    0.18444 0.212 0.012 0.472 0.304
#> SRR1003846     1  0.4175    0.53125 0.784 0.000 0.016 0.200
#> SRR1003847     1  0.5847    0.19465 0.628 0.000 0.052 0.320
#> SRR1003848     1  0.6680   -0.33793 0.480 0.020 0.044 0.456
#> SRR1003849     3  0.2281    0.59038 0.096 0.000 0.904 0.000
#> SRR1003850     4  0.7535    0.62635 0.336 0.000 0.200 0.464
#> SRR1003851     3  0.3307    0.59621 0.104 0.000 0.868 0.028
#> SRR1003852     3  0.7299    0.29383 0.240 0.000 0.536 0.224
#> SRR1003853     1  0.6589   -0.07334 0.556 0.000 0.092 0.352
#> SRR1003854     1  0.1151    0.64192 0.968 0.000 0.008 0.024
#> SRR1003843     4  0.7892    0.29112 0.292 0.000 0.340 0.368
#> SRR1003855     1  0.5526   -0.05375 0.564 0.000 0.020 0.416
#> SRR1003856     3  0.7694   -0.00909 0.308 0.000 0.448 0.244
#> SRR1003857     1  0.5536    0.05287 0.592 0.000 0.024 0.384
#> SRR1003858     1  0.5311    0.24937 0.648 0.000 0.024 0.328
#> SRR1003859     1  0.2882    0.63871 0.892 0.000 0.024 0.084
#> SRR1003860     1  0.0817    0.64787 0.976 0.000 0.000 0.024
#> SRR1003861     1  0.5543   -0.09174 0.556 0.000 0.020 0.424
#> SRR1003862     1  0.1929    0.64110 0.940 0.000 0.024 0.036
#> SRR1003863     4  0.7243    0.35525 0.420 0.060 0.036 0.484
#> SRR1003864     1  0.0779    0.64369 0.980 0.000 0.004 0.016
#> SRR1003865     1  0.5105    0.39429 0.696 0.000 0.028 0.276
#> SRR1003866     1  0.5142    0.49680 0.744 0.000 0.064 0.192
#> SRR1003867     1  0.3015    0.63026 0.884 0.000 0.024 0.092

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1003755     5  0.3999     0.5298 0.000 0.344 0.000 0.000 0.656
#> SRR1003756     5  0.3999     0.5298 0.000 0.344 0.000 0.000 0.656
#> SRR1003757     5  0.7272     0.6376 0.016 0.112 0.124 0.156 0.592
#> SRR1003758     5  0.7272     0.6376 0.016 0.112 0.124 0.156 0.592
#> SRR1003759     1  0.9584    -0.2404 0.300 0.176 0.092 0.252 0.180
#> SRR1003760     2  0.6979     0.5082 0.000 0.564 0.068 0.216 0.152
#> SRR1003761     2  0.6318     0.5859 0.000 0.628 0.040 0.172 0.160
#> SRR1003762     2  0.2866     0.7372 0.000 0.872 0.004 0.024 0.100
#> SRR1003763     2  0.3280     0.6905 0.000 0.824 0.004 0.012 0.160
#> SRR1003764     2  0.2879     0.7510 0.000 0.880 0.008 0.032 0.080
#> SRR1003765     2  0.1041     0.7639 0.000 0.964 0.004 0.000 0.032
#> SRR1003766     2  0.1502     0.7545 0.000 0.940 0.004 0.000 0.056
#> SRR1003767     2  0.0451     0.7688 0.000 0.988 0.004 0.000 0.008
#> SRR1003768     2  0.1502     0.7545 0.000 0.940 0.004 0.000 0.056
#> SRR1003769     2  0.1124     0.7609 0.000 0.960 0.004 0.000 0.036
#> SRR1003770     2  0.1059     0.7694 0.000 0.968 0.004 0.008 0.020
#> SRR1003771     2  0.2971     0.7489 0.000 0.880 0.016 0.032 0.072
#> SRR1003773     3  0.1493     0.6282 0.028 0.000 0.948 0.024 0.000
#> SRR1003772     1  0.2462     0.6615 0.880 0.000 0.000 0.112 0.008
#> SRR1003774     4  0.6371     0.6106 0.380 0.000 0.120 0.488 0.012
#> SRR1003775     1  0.1638     0.6658 0.932 0.000 0.000 0.064 0.004
#> SRR1003776     1  0.2548     0.6625 0.876 0.000 0.004 0.116 0.004
#> SRR1003777     1  0.1768     0.6629 0.924 0.000 0.004 0.072 0.000
#> SRR1003778     3  0.2344     0.6307 0.032 0.000 0.904 0.064 0.000
#> SRR1003779     1  0.2997     0.6353 0.840 0.000 0.000 0.148 0.012
#> SRR1003780     2  0.6008     0.5981 0.000 0.664 0.056 0.092 0.188
#> SRR1003781     1  0.3107     0.6384 0.852 0.000 0.008 0.124 0.016
#> SRR1003784     3  0.5698     0.5815 0.176 0.000 0.644 0.176 0.004
#> SRR1003785     3  0.2074     0.6566 0.044 0.000 0.920 0.036 0.000
#> SRR1003786     1  0.1341     0.6586 0.944 0.000 0.000 0.056 0.000
#> SRR1003783     1  0.1282     0.6593 0.952 0.000 0.000 0.044 0.004
#> SRR1003787     1  0.1892     0.6611 0.916 0.000 0.000 0.080 0.004
#> SRR1003788     1  0.5545    -0.3444 0.516 0.000 0.032 0.432 0.020
#> SRR1003789     2  0.6570     0.5580 0.000 0.628 0.084 0.132 0.156
#> SRR1003790     1  0.1970     0.6556 0.924 0.000 0.004 0.060 0.012
#> SRR1003791     4  0.8384     0.3860 0.292 0.012 0.244 0.356 0.096
#> SRR1003792     1  0.2497     0.6616 0.880 0.000 0.004 0.112 0.004
#> SRR1003793     1  0.1408     0.6706 0.948 0.000 0.000 0.044 0.008
#> SRR1003794     1  0.3801     0.6061 0.816 0.008 0.008 0.144 0.024
#> SRR1003795     3  0.3760     0.6269 0.076 0.016 0.844 0.056 0.008
#> SRR1003796     3  0.1300     0.6221 0.028 0.000 0.956 0.016 0.000
#> SRR1003797     1  0.1831     0.6739 0.920 0.000 0.004 0.076 0.000
#> SRR1003798     4  0.5493     0.4676 0.456 0.000 0.052 0.488 0.004
#> SRR1003799     1  0.6326    -0.2747 0.532 0.016 0.036 0.376 0.040
#> SRR1003800     1  0.4855    -0.2702 0.544 0.000 0.016 0.436 0.004
#> SRR1003801     4  0.6930     0.5998 0.388 0.008 0.136 0.448 0.020
#> SRR1003802     3  0.6373     0.4168 0.212 0.000 0.572 0.204 0.012
#> SRR1003803     1  0.5178    -0.1312 0.560 0.000 0.024 0.404 0.012
#> SRR1003804     4  0.5950     0.4960 0.448 0.000 0.072 0.468 0.012
#> SRR1003805     1  0.2351     0.6607 0.896 0.000 0.000 0.088 0.016
#> SRR1003806     1  0.1956     0.6777 0.916 0.000 0.000 0.076 0.008
#> SRR1003807     4  0.5614     0.5989 0.384 0.000 0.068 0.544 0.004
#> SRR1003809     3  0.6054     0.6053 0.160 0.004 0.648 0.168 0.020
#> SRR1003808     1  0.8453    -0.2631 0.396 0.016 0.156 0.288 0.144
#> SRR1003810     4  0.5302     0.4294 0.472 0.000 0.032 0.488 0.008
#> SRR1003811     3  0.7706     0.2073 0.272 0.036 0.496 0.156 0.040
#> SRR1003812     1  0.2516     0.6558 0.860 0.000 0.000 0.140 0.000
#> SRR1003813     3  0.6032     0.5763 0.184 0.000 0.636 0.160 0.020
#> SRR1003814     1  0.6652     0.3123 0.656 0.020 0.092 0.136 0.096
#> SRR1003815     1  0.5761     0.1581 0.596 0.000 0.064 0.320 0.020
#> SRR1003816     1  0.3538     0.6513 0.832 0.000 0.028 0.128 0.012
#> SRR1003817     1  0.2881     0.6576 0.860 0.000 0.012 0.124 0.004
#> SRR1003818     1  0.2488     0.6610 0.872 0.000 0.004 0.124 0.000
#> SRR1003819     4  0.7122     0.6007 0.320 0.000 0.188 0.460 0.032
#> SRR1003820     1  0.1991     0.6646 0.916 0.000 0.004 0.076 0.004
#> SRR1003821     1  0.1670     0.6543 0.936 0.000 0.000 0.052 0.012
#> SRR1003822     3  0.6195     0.5300 0.192 0.000 0.608 0.184 0.016
#> SRR1003824     4  0.5897     0.5159 0.436 0.000 0.068 0.484 0.012
#> SRR1003823     1  0.3706     0.5583 0.796 0.000 0.012 0.180 0.012
#> SRR1003825     4  0.6120     0.5723 0.400 0.000 0.112 0.484 0.004
#> SRR1003826     1  0.2162     0.6750 0.916 0.000 0.008 0.064 0.012
#> SRR1003827     1  0.1502     0.6737 0.940 0.000 0.004 0.056 0.000
#> SRR1003828     4  0.6080     0.4934 0.436 0.004 0.052 0.484 0.024
#> SRR1003829     1  0.2068     0.6641 0.904 0.000 0.004 0.092 0.000
#> SRR1003830     1  0.1357     0.6650 0.948 0.000 0.000 0.048 0.004
#> SRR1003831     1  0.5196     0.2789 0.652 0.000 0.020 0.292 0.036
#> SRR1003832     1  0.1845     0.6614 0.928 0.000 0.000 0.056 0.016
#> SRR1003833     1  0.3783     0.5365 0.768 0.000 0.004 0.216 0.012
#> SRR1003834     4  0.6368     0.6043 0.376 0.000 0.132 0.484 0.008
#> SRR1003836     4  0.6921     0.5654 0.324 0.000 0.248 0.420 0.008
#> SRR1003835     1  0.4928    -0.1496 0.564 0.000 0.016 0.412 0.008
#> SRR1003838     3  0.3043     0.6706 0.056 0.000 0.864 0.080 0.000
#> SRR1003837     1  0.5381    -0.4558 0.484 0.000 0.044 0.468 0.004
#> SRR1003839     1  0.5902    -0.4179 0.476 0.000 0.044 0.452 0.028
#> SRR1003840     4  0.8487     0.1983 0.304 0.012 0.156 0.368 0.160
#> SRR1003841     2  0.6008     0.5981 0.000 0.664 0.056 0.092 0.188
#> SRR1003842     1  0.3972     0.5057 0.764 0.000 0.016 0.212 0.008
#> SRR1003844     1  0.2439     0.6667 0.876 0.000 0.004 0.120 0.000
#> SRR1003845     4  0.8133     0.3569 0.240 0.016 0.208 0.448 0.088
#> SRR1003846     1  0.3299     0.6256 0.828 0.000 0.004 0.152 0.016
#> SRR1003847     1  0.4462     0.3546 0.672 0.000 0.004 0.308 0.016
#> SRR1003848     4  0.6685     0.5304 0.416 0.000 0.108 0.444 0.032
#> SRR1003849     3  0.2172     0.6359 0.016 0.000 0.908 0.076 0.000
#> SRR1003850     4  0.5896     0.5857 0.396 0.000 0.080 0.516 0.008
#> SRR1003851     3  0.2940     0.6738 0.048 0.000 0.876 0.072 0.004
#> SRR1003852     4  0.8566     0.2655 0.332 0.016 0.160 0.340 0.152
#> SRR1003853     1  0.4837     0.1785 0.628 0.000 0.016 0.344 0.012
#> SRR1003854     1  0.2536     0.6665 0.868 0.000 0.004 0.128 0.000
#> SRR1003843     4  0.7789     0.5434 0.284 0.004 0.164 0.456 0.092
#> SRR1003855     1  0.4975    -0.0423 0.584 0.000 0.016 0.388 0.012
#> SRR1003856     3  0.6774     0.1312 0.244 0.000 0.476 0.272 0.008
#> SRR1003857     1  0.4703     0.1486 0.640 0.000 0.016 0.336 0.008
#> SRR1003858     1  0.5063     0.2674 0.640 0.004 0.012 0.320 0.024
#> SRR1003859     1  0.2393     0.6681 0.900 0.000 0.004 0.080 0.016
#> SRR1003860     1  0.2349     0.6743 0.900 0.000 0.012 0.084 0.004
#> SRR1003861     1  0.4882     0.0205 0.588 0.000 0.012 0.388 0.012
#> SRR1003862     1  0.2054     0.6686 0.916 0.000 0.004 0.072 0.008
#> SRR1003863     4  0.7756     0.5448 0.332 0.012 0.116 0.448 0.092
#> SRR1003864     1  0.2420     0.6740 0.896 0.000 0.008 0.088 0.008
#> SRR1003865     1  0.5427     0.4021 0.676 0.000 0.044 0.240 0.040
#> SRR1003866     1  0.3953     0.5911 0.780 0.000 0.008 0.188 0.024
#> SRR1003867     1  0.3080     0.6429 0.844 0.000 0.008 0.140 0.008

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1003755     5  0.1196     0.7494 0.000 0.040 0.000 0.000 0.952 0.008
#> SRR1003756     5  0.1196     0.7494 0.000 0.040 0.000 0.000 0.952 0.008
#> SRR1003757     5  0.6597     0.7242 0.012 0.036 0.092 0.100 0.628 0.132
#> SRR1003758     5  0.6597     0.7242 0.012 0.036 0.092 0.100 0.628 0.132
#> SRR1003759     6  0.8154     0.1248 0.144 0.116 0.044 0.240 0.024 0.432
#> SRR1003760     6  0.4830     0.2078 0.000 0.284 0.020 0.012 0.028 0.656
#> SRR1003761     6  0.5223    -0.0213 0.000 0.388 0.012 0.016 0.036 0.548
#> SRR1003762     2  0.3885     0.7356 0.000 0.756 0.000 0.000 0.064 0.180
#> SRR1003763     2  0.4703     0.6694 0.000 0.684 0.000 0.000 0.152 0.164
#> SRR1003764     2  0.3892     0.7180 0.000 0.740 0.000 0.000 0.048 0.212
#> SRR1003765     2  0.0260     0.8487 0.000 0.992 0.000 0.000 0.008 0.000
#> SRR1003766     2  0.0260     0.8492 0.000 0.992 0.000 0.000 0.008 0.000
#> SRR1003767     2  0.0363     0.8459 0.000 0.988 0.000 0.000 0.000 0.012
#> SRR1003768     2  0.0260     0.8492 0.000 0.992 0.000 0.000 0.008 0.000
#> SRR1003769     2  0.0146     0.8490 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1003770     2  0.0622     0.8477 0.000 0.980 0.000 0.000 0.008 0.012
#> SRR1003771     2  0.4119     0.5316 0.000 0.692 0.004 0.008 0.016 0.280
#> SRR1003773     3  0.1296     0.7471 0.004 0.000 0.952 0.032 0.000 0.012
#> SRR1003772     1  0.2536     0.7491 0.880 0.000 0.004 0.092 0.004 0.020
#> SRR1003774     4  0.4755     0.6652 0.124 0.000 0.092 0.740 0.004 0.040
#> SRR1003775     1  0.2426     0.7485 0.896 0.000 0.020 0.068 0.004 0.012
#> SRR1003776     1  0.3455     0.7235 0.776 0.000 0.004 0.200 0.000 0.020
#> SRR1003777     1  0.2574     0.7646 0.884 0.000 0.004 0.080 0.008 0.024
#> SRR1003778     3  0.2591     0.7189 0.004 0.000 0.880 0.052 0.000 0.064
#> SRR1003779     1  0.3357     0.7123 0.764 0.000 0.000 0.224 0.004 0.008
#> SRR1003780     6  0.4653     0.1562 0.000 0.384 0.008 0.004 0.024 0.580
#> SRR1003781     1  0.3945     0.7047 0.748 0.000 0.000 0.200 0.004 0.048
#> SRR1003784     3  0.4876     0.6578 0.036 0.000 0.656 0.276 0.004 0.028
#> SRR1003785     3  0.1082     0.7568 0.004 0.000 0.956 0.040 0.000 0.000
#> SRR1003786     1  0.1888     0.7576 0.916 0.000 0.000 0.068 0.004 0.012
#> SRR1003783     1  0.1152     0.7561 0.952 0.000 0.000 0.044 0.004 0.000
#> SRR1003787     1  0.3633     0.7342 0.784 0.000 0.004 0.176 0.004 0.032
#> SRR1003788     4  0.4502     0.5454 0.320 0.000 0.020 0.640 0.000 0.020
#> SRR1003789     6  0.4506     0.1872 0.000 0.352 0.012 0.004 0.016 0.616
#> SRR1003790     1  0.1812     0.7456 0.924 0.000 0.004 0.060 0.008 0.004
#> SRR1003791     4  0.7542     0.3684 0.204 0.012 0.140 0.448 0.004 0.192
#> SRR1003792     1  0.3949     0.7135 0.748 0.000 0.004 0.208 0.004 0.036
#> SRR1003793     1  0.2821     0.7603 0.856 0.000 0.004 0.116 0.004 0.020
#> SRR1003794     1  0.4940     0.6045 0.656 0.000 0.024 0.260 0.000 0.060
#> SRR1003795     3  0.5197     0.6151 0.040 0.016 0.704 0.168 0.000 0.072
#> SRR1003796     3  0.1194     0.7455 0.004 0.000 0.956 0.032 0.000 0.008
#> SRR1003797     1  0.3223     0.7553 0.824 0.000 0.008 0.144 0.004 0.020
#> SRR1003798     4  0.4655     0.6755 0.200 0.000 0.056 0.716 0.004 0.024
#> SRR1003799     4  0.6051     0.5644 0.300 0.004 0.056 0.572 0.016 0.052
#> SRR1003800     4  0.4457     0.5540 0.316 0.000 0.020 0.648 0.004 0.012
#> SRR1003801     4  0.5332     0.6520 0.120 0.012 0.100 0.712 0.004 0.052
#> SRR1003802     3  0.5196     0.5803 0.052 0.000 0.616 0.304 0.008 0.020
#> SRR1003803     4  0.4500     0.6024 0.272 0.000 0.024 0.680 0.004 0.020
#> SRR1003804     4  0.5119     0.6719 0.200 0.000 0.100 0.676 0.004 0.020
#> SRR1003805     1  0.3776     0.7248 0.768 0.000 0.016 0.196 0.004 0.016
#> SRR1003806     1  0.2662     0.7653 0.840 0.000 0.004 0.152 0.004 0.000
#> SRR1003807     4  0.4304     0.6848 0.140 0.000 0.056 0.764 0.000 0.040
#> SRR1003809     3  0.3842     0.7451 0.036 0.000 0.780 0.168 0.004 0.012
#> SRR1003808     4  0.7446     0.1300 0.284 0.000 0.068 0.328 0.016 0.304
#> SRR1003810     4  0.4374     0.6414 0.236 0.000 0.024 0.712 0.004 0.024
#> SRR1003811     3  0.6286     0.6375 0.072 0.016 0.608 0.208 0.004 0.092
#> SRR1003812     1  0.3961     0.7140 0.764 0.000 0.020 0.188 0.004 0.024
#> SRR1003813     3  0.4162     0.7362 0.040 0.000 0.744 0.200 0.004 0.012
#> SRR1003814     1  0.6692     0.2848 0.480 0.008 0.032 0.280 0.004 0.196
#> SRR1003815     1  0.5474    -0.1222 0.472 0.000 0.028 0.452 0.008 0.040
#> SRR1003816     1  0.4546     0.6716 0.728 0.004 0.016 0.196 0.004 0.052
#> SRR1003817     1  0.3337     0.7332 0.820 0.000 0.004 0.136 0.004 0.036
#> SRR1003818     1  0.2945     0.7520 0.824 0.000 0.000 0.156 0.000 0.020
#> SRR1003819     4  0.5333     0.6081 0.104 0.000 0.128 0.700 0.008 0.060
#> SRR1003820     1  0.1788     0.7551 0.928 0.000 0.004 0.052 0.004 0.012
#> SRR1003821     1  0.1686     0.7453 0.932 0.000 0.004 0.052 0.004 0.008
#> SRR1003822     3  0.4686     0.6478 0.048 0.000 0.672 0.264 0.004 0.012
#> SRR1003824     4  0.5603     0.6719 0.188 0.000 0.096 0.660 0.012 0.044
#> SRR1003823     1  0.4907     0.3245 0.592 0.000 0.024 0.356 0.004 0.024
#> SRR1003825     4  0.5491     0.6427 0.156 0.000 0.160 0.648 0.000 0.036
#> SRR1003826     1  0.2848     0.7565 0.848 0.000 0.000 0.124 0.004 0.024
#> SRR1003827     1  0.2669     0.7648 0.864 0.000 0.000 0.108 0.004 0.024
#> SRR1003828     4  0.5046     0.6700 0.188 0.000 0.036 0.696 0.004 0.076
#> SRR1003829     1  0.3455     0.7267 0.776 0.000 0.000 0.200 0.004 0.020
#> SRR1003830     1  0.1637     0.7534 0.932 0.000 0.004 0.056 0.004 0.004
#> SRR1003831     1  0.4959     0.3809 0.564 0.000 0.020 0.380 0.000 0.036
#> SRR1003832     1  0.2086     0.7506 0.912 0.000 0.004 0.064 0.008 0.012
#> SRR1003833     1  0.4405     0.5604 0.644 0.000 0.004 0.316 0.000 0.036
#> SRR1003834     4  0.5147     0.6678 0.152 0.000 0.124 0.692 0.004 0.028
#> SRR1003836     4  0.5595     0.4447 0.104 0.000 0.280 0.592 0.004 0.020
#> SRR1003835     4  0.4368     0.5073 0.328 0.000 0.012 0.640 0.000 0.020
#> SRR1003838     3  0.1542     0.7574 0.004 0.000 0.936 0.052 0.000 0.008
#> SRR1003837     4  0.4078     0.6317 0.268 0.000 0.024 0.700 0.000 0.008
#> SRR1003839     4  0.4841     0.4540 0.332 0.000 0.012 0.608 0.000 0.048
#> SRR1003840     6  0.7580    -0.1082 0.264 0.012 0.048 0.304 0.020 0.352
#> SRR1003841     6  0.4827     0.1662 0.000 0.376 0.012 0.008 0.024 0.580
#> SRR1003842     1  0.4912     0.2509 0.564 0.000 0.020 0.388 0.004 0.024
#> SRR1003844     1  0.3329     0.7221 0.792 0.000 0.000 0.184 0.004 0.020
#> SRR1003845     4  0.7382     0.4019 0.188 0.012 0.100 0.488 0.012 0.200
#> SRR1003846     1  0.4189     0.6569 0.724 0.000 0.024 0.232 0.004 0.016
#> SRR1003847     1  0.4549     0.3035 0.552 0.000 0.004 0.416 0.000 0.028
#> SRR1003848     4  0.6212     0.6301 0.180 0.000 0.124 0.616 0.020 0.060
#> SRR1003849     3  0.1155     0.7463 0.004 0.000 0.956 0.036 0.000 0.004
#> SRR1003850     4  0.4557     0.6789 0.148 0.000 0.080 0.744 0.004 0.024
#> SRR1003851     3  0.2476     0.7666 0.012 0.000 0.880 0.096 0.000 0.012
#> SRR1003852     6  0.7396    -0.1401 0.308 0.012 0.048 0.288 0.008 0.336
#> SRR1003853     4  0.5134     0.0721 0.464 0.000 0.028 0.476 0.000 0.032
#> SRR1003854     1  0.3424     0.7461 0.796 0.000 0.004 0.168 0.000 0.032
#> SRR1003843     4  0.5761     0.6069 0.124 0.004 0.132 0.668 0.008 0.064
#> SRR1003855     4  0.4321     0.3981 0.400 0.000 0.012 0.580 0.000 0.008
#> SRR1003856     4  0.5491     0.1514 0.060 0.000 0.380 0.532 0.004 0.024
#> SRR1003857     4  0.4533     0.3452 0.432 0.000 0.020 0.540 0.000 0.008
#> SRR1003858     4  0.4819     0.2466 0.424 0.000 0.004 0.532 0.004 0.036
#> SRR1003859     1  0.3196     0.7511 0.852 0.000 0.028 0.088 0.004 0.028
#> SRR1003860     1  0.2723     0.7664 0.856 0.000 0.004 0.120 0.000 0.020
#> SRR1003861     4  0.4574     0.2269 0.440 0.000 0.000 0.524 0.000 0.036
#> SRR1003862     1  0.3017     0.7447 0.840 0.000 0.016 0.132 0.004 0.008
#> SRR1003863     4  0.7180     0.5580 0.180 0.000 0.116 0.544 0.056 0.104
#> SRR1003864     1  0.2748     0.7639 0.856 0.000 0.008 0.120 0.000 0.016
#> SRR1003865     1  0.4741     0.2762 0.536 0.000 0.004 0.420 0.000 0.040
#> SRR1003866     1  0.4451     0.6348 0.680 0.000 0.000 0.248 0.000 0.072
#> SRR1003867     1  0.4017     0.6922 0.732 0.000 0.004 0.228 0.004 0.032

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 9166 rows and 112 columns.
#>   Top rows (917, 1834, 2750, 3666, 4583) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.952       0.984          0.150 0.851   0.851
#> 3 3 0.541           0.811       0.896          1.860 0.765   0.726
#> 4 4 0.457           0.753       0.857          0.233 0.886   0.821
#> 5 5 0.374           0.656       0.782          0.150 0.955   0.915
#> 6 6 0.405           0.509       0.702          0.111 0.970   0.940

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1003755     1   0.000     0.9897 1.000 0.000
#> SRR1003756     1   0.000     0.9897 1.000 0.000
#> SRR1003757     1   0.000     0.9897 1.000 0.000
#> SRR1003758     1   0.000     0.9897 1.000 0.000
#> SRR1003759     1   0.000     0.9897 1.000 0.000
#> SRR1003760     1   0.000     0.9897 1.000 0.000
#> SRR1003761     1   0.000     0.9897 1.000 0.000
#> SRR1003762     2   0.998     0.1800 0.472 0.528
#> SRR1003763     1   0.994    -0.0107 0.544 0.456
#> SRR1003764     1   0.999    -0.1060 0.520 0.480
#> SRR1003765     2   0.000     0.8867 0.000 1.000
#> SRR1003766     2   0.000     0.8867 0.000 1.000
#> SRR1003767     2   0.000     0.8867 0.000 1.000
#> SRR1003768     2   0.000     0.8867 0.000 1.000
#> SRR1003769     2   0.000     0.8867 0.000 1.000
#> SRR1003770     2   0.000     0.8867 0.000 1.000
#> SRR1003771     2   0.000     0.8867 0.000 1.000
#> SRR1003773     1   0.000     0.9897 1.000 0.000
#> SRR1003772     1   0.000     0.9897 1.000 0.000
#> SRR1003774     1   0.000     0.9897 1.000 0.000
#> SRR1003775     1   0.000     0.9897 1.000 0.000
#> SRR1003776     1   0.000     0.9897 1.000 0.000
#> SRR1003777     1   0.000     0.9897 1.000 0.000
#> SRR1003778     1   0.000     0.9897 1.000 0.000
#> SRR1003779     1   0.000     0.9897 1.000 0.000
#> SRR1003780     1   0.000     0.9897 1.000 0.000
#> SRR1003781     1   0.000     0.9897 1.000 0.000
#> SRR1003784     1   0.000     0.9897 1.000 0.000
#> SRR1003785     1   0.000     0.9897 1.000 0.000
#> SRR1003786     1   0.000     0.9897 1.000 0.000
#> SRR1003783     1   0.000     0.9897 1.000 0.000
#> SRR1003787     1   0.000     0.9897 1.000 0.000
#> SRR1003788     1   0.000     0.9897 1.000 0.000
#> SRR1003789     1   0.000     0.9897 1.000 0.000
#> SRR1003790     1   0.000     0.9897 1.000 0.000
#> SRR1003791     1   0.000     0.9897 1.000 0.000
#> SRR1003792     1   0.000     0.9897 1.000 0.000
#> SRR1003793     1   0.000     0.9897 1.000 0.000
#> SRR1003794     1   0.000     0.9897 1.000 0.000
#> SRR1003795     1   0.000     0.9897 1.000 0.000
#> SRR1003796     1   0.000     0.9897 1.000 0.000
#> SRR1003797     1   0.000     0.9897 1.000 0.000
#> SRR1003798     1   0.000     0.9897 1.000 0.000
#> SRR1003799     1   0.000     0.9897 1.000 0.000
#> SRR1003800     1   0.000     0.9897 1.000 0.000
#> SRR1003801     1   0.000     0.9897 1.000 0.000
#> SRR1003802     1   0.000     0.9897 1.000 0.000
#> SRR1003803     1   0.000     0.9897 1.000 0.000
#> SRR1003804     1   0.000     0.9897 1.000 0.000
#> SRR1003805     1   0.000     0.9897 1.000 0.000
#> SRR1003806     1   0.000     0.9897 1.000 0.000
#> SRR1003807     1   0.000     0.9897 1.000 0.000
#> SRR1003809     1   0.000     0.9897 1.000 0.000
#> SRR1003808     1   0.000     0.9897 1.000 0.000
#> SRR1003810     1   0.000     0.9897 1.000 0.000
#> SRR1003811     1   0.000     0.9897 1.000 0.000
#> SRR1003812     1   0.000     0.9897 1.000 0.000
#> SRR1003813     1   0.000     0.9897 1.000 0.000
#> SRR1003814     1   0.000     0.9897 1.000 0.000
#> SRR1003815     1   0.000     0.9897 1.000 0.000
#> SRR1003816     1   0.000     0.9897 1.000 0.000
#> SRR1003817     1   0.000     0.9897 1.000 0.000
#> SRR1003818     1   0.000     0.9897 1.000 0.000
#> SRR1003819     1   0.000     0.9897 1.000 0.000
#> SRR1003820     1   0.000     0.9897 1.000 0.000
#> SRR1003821     1   0.000     0.9897 1.000 0.000
#> SRR1003822     1   0.000     0.9897 1.000 0.000
#> SRR1003824     1   0.000     0.9897 1.000 0.000
#> SRR1003823     1   0.000     0.9897 1.000 0.000
#> SRR1003825     1   0.000     0.9897 1.000 0.000
#> SRR1003826     1   0.000     0.9897 1.000 0.000
#> SRR1003827     1   0.000     0.9897 1.000 0.000
#> SRR1003828     1   0.000     0.9897 1.000 0.000
#> SRR1003829     1   0.000     0.9897 1.000 0.000
#> SRR1003830     1   0.000     0.9897 1.000 0.000
#> SRR1003831     1   0.000     0.9897 1.000 0.000
#> SRR1003832     1   0.000     0.9897 1.000 0.000
#> SRR1003833     1   0.000     0.9897 1.000 0.000
#> SRR1003834     1   0.000     0.9897 1.000 0.000
#> SRR1003836     1   0.000     0.9897 1.000 0.000
#> SRR1003835     1   0.000     0.9897 1.000 0.000
#> SRR1003838     1   0.000     0.9897 1.000 0.000
#> SRR1003837     1   0.000     0.9897 1.000 0.000
#> SRR1003839     1   0.000     0.9897 1.000 0.000
#> SRR1003840     1   0.000     0.9897 1.000 0.000
#> SRR1003841     2   0.981     0.3360 0.420 0.580
#> SRR1003842     1   0.000     0.9897 1.000 0.000
#> SRR1003844     1   0.000     0.9897 1.000 0.000
#> SRR1003845     1   0.000     0.9897 1.000 0.000
#> SRR1003846     1   0.000     0.9897 1.000 0.000
#> SRR1003847     1   0.000     0.9897 1.000 0.000
#> SRR1003848     1   0.000     0.9897 1.000 0.000
#> SRR1003849     1   0.000     0.9897 1.000 0.000
#> SRR1003850     1   0.000     0.9897 1.000 0.000
#> SRR1003851     1   0.000     0.9897 1.000 0.000
#> SRR1003852     1   0.000     0.9897 1.000 0.000
#> SRR1003853     1   0.000     0.9897 1.000 0.000
#> SRR1003854     1   0.000     0.9897 1.000 0.000
#> SRR1003843     1   0.000     0.9897 1.000 0.000
#> SRR1003855     1   0.000     0.9897 1.000 0.000
#> SRR1003856     1   0.000     0.9897 1.000 0.000
#> SRR1003857     1   0.000     0.9897 1.000 0.000
#> SRR1003858     1   0.000     0.9897 1.000 0.000
#> SRR1003859     1   0.000     0.9897 1.000 0.000
#> SRR1003860     1   0.000     0.9897 1.000 0.000
#> SRR1003861     1   0.000     0.9897 1.000 0.000
#> SRR1003862     1   0.000     0.9897 1.000 0.000
#> SRR1003863     1   0.000     0.9897 1.000 0.000
#> SRR1003864     1   0.000     0.9897 1.000 0.000
#> SRR1003865     1   0.000     0.9897 1.000 0.000
#> SRR1003866     1   0.000     0.9897 1.000 0.000
#> SRR1003867     1   0.000     0.9897 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1003755     1  0.5988     0.5051 0.632 0.000 0.368
#> SRR1003756     1  0.5926     0.5304 0.644 0.000 0.356
#> SRR1003757     1  0.3038     0.8550 0.896 0.000 0.104
#> SRR1003758     1  0.2711     0.8637 0.912 0.000 0.088
#> SRR1003759     1  0.4974     0.6889 0.764 0.000 0.236
#> SRR1003760     1  0.6209     0.4395 0.628 0.004 0.368
#> SRR1003761     1  0.7085     0.4013 0.612 0.032 0.356
#> SRR1003762     2  0.2772     0.9321 0.004 0.916 0.080
#> SRR1003763     2  0.2959     0.9202 0.000 0.900 0.100
#> SRR1003764     2  0.4390     0.8686 0.012 0.840 0.148
#> SRR1003765     2  0.0000     0.9675 0.000 1.000 0.000
#> SRR1003766     2  0.0000     0.9675 0.000 1.000 0.000
#> SRR1003767     2  0.0000     0.9675 0.000 1.000 0.000
#> SRR1003768     2  0.0000     0.9675 0.000 1.000 0.000
#> SRR1003769     2  0.0000     0.9675 0.000 1.000 0.000
#> SRR1003770     2  0.0000     0.9675 0.000 1.000 0.000
#> SRR1003771     2  0.0000     0.9675 0.000 1.000 0.000
#> SRR1003773     3  0.2066     0.8272 0.060 0.000 0.940
#> SRR1003772     1  0.0424     0.8867 0.992 0.000 0.008
#> SRR1003774     1  0.4702     0.7522 0.788 0.000 0.212
#> SRR1003775     1  0.0000     0.8864 1.000 0.000 0.000
#> SRR1003776     1  0.1289     0.8884 0.968 0.000 0.032
#> SRR1003777     1  0.0000     0.8864 1.000 0.000 0.000
#> SRR1003778     3  0.2066     0.8272 0.060 0.000 0.940
#> SRR1003779     1  0.1411     0.8833 0.964 0.000 0.036
#> SRR1003780     1  0.2625     0.8450 0.916 0.000 0.084
#> SRR1003781     1  0.0424     0.8867 0.992 0.000 0.008
#> SRR1003784     3  0.4654     0.7820 0.208 0.000 0.792
#> SRR1003785     3  0.2356     0.8413 0.072 0.000 0.928
#> SRR1003786     1  0.0237     0.8855 0.996 0.000 0.004
#> SRR1003783     1  0.0237     0.8869 0.996 0.000 0.004
#> SRR1003787     1  0.0424     0.8844 0.992 0.000 0.008
#> SRR1003788     1  0.3752     0.8294 0.856 0.000 0.144
#> SRR1003789     1  0.6330     0.3672 0.600 0.004 0.396
#> SRR1003790     1  0.0592     0.8876 0.988 0.000 0.012
#> SRR1003791     1  0.4178     0.8004 0.828 0.000 0.172
#> SRR1003792     1  0.0424     0.8844 0.992 0.000 0.008
#> SRR1003793     1  0.1031     0.8873 0.976 0.000 0.024
#> SRR1003794     1  0.0592     0.8884 0.988 0.000 0.012
#> SRR1003795     3  0.3816     0.8200 0.148 0.000 0.852
#> SRR1003796     3  0.2261     0.8372 0.068 0.000 0.932
#> SRR1003797     1  0.0237     0.8855 0.996 0.000 0.004
#> SRR1003798     1  0.4887     0.7430 0.772 0.000 0.228
#> SRR1003799     1  0.5760     0.5622 0.672 0.000 0.328
#> SRR1003800     1  0.3941     0.8106 0.844 0.000 0.156
#> SRR1003801     1  0.6062     0.4354 0.616 0.000 0.384
#> SRR1003802     3  0.4750     0.7755 0.216 0.000 0.784
#> SRR1003803     1  0.2959     0.8561 0.900 0.000 0.100
#> SRR1003804     1  0.5706     0.5901 0.680 0.000 0.320
#> SRR1003805     1  0.1031     0.8876 0.976 0.000 0.024
#> SRR1003806     1  0.1031     0.8862 0.976 0.000 0.024
#> SRR1003807     1  0.4346     0.7928 0.816 0.000 0.184
#> SRR1003809     3  0.2878     0.8478 0.096 0.000 0.904
#> SRR1003808     1  0.0892     0.8841 0.980 0.000 0.020
#> SRR1003810     1  0.2448     0.8737 0.924 0.000 0.076
#> SRR1003811     3  0.5529     0.6417 0.296 0.000 0.704
#> SRR1003812     1  0.0892     0.8888 0.980 0.000 0.020
#> SRR1003813     3  0.3686     0.8308 0.140 0.000 0.860
#> SRR1003814     1  0.1411     0.8740 0.964 0.000 0.036
#> SRR1003815     1  0.2066     0.8800 0.940 0.000 0.060
#> SRR1003816     1  0.0237     0.8855 0.996 0.000 0.004
#> SRR1003817     1  0.0237     0.8855 0.996 0.000 0.004
#> SRR1003818     1  0.0237     0.8855 0.996 0.000 0.004
#> SRR1003819     1  0.5363     0.6678 0.724 0.000 0.276
#> SRR1003820     1  0.0237     0.8855 0.996 0.000 0.004
#> SRR1003821     1  0.0000     0.8864 1.000 0.000 0.000
#> SRR1003822     3  0.4399     0.8024 0.188 0.000 0.812
#> SRR1003824     1  0.5138     0.7099 0.748 0.000 0.252
#> SRR1003823     1  0.1411     0.8866 0.964 0.000 0.036
#> SRR1003825     1  0.4750     0.7575 0.784 0.000 0.216
#> SRR1003826     1  0.0000     0.8864 1.000 0.000 0.000
#> SRR1003827     1  0.0424     0.8867 0.992 0.000 0.008
#> SRR1003828     1  0.4346     0.7937 0.816 0.000 0.184
#> SRR1003829     1  0.0000     0.8864 1.000 0.000 0.000
#> SRR1003830     1  0.0592     0.8880 0.988 0.000 0.012
#> SRR1003831     1  0.1163     0.8878 0.972 0.000 0.028
#> SRR1003832     1  0.0237     0.8871 0.996 0.000 0.004
#> SRR1003833     1  0.0000     0.8864 1.000 0.000 0.000
#> SRR1003834     1  0.4702     0.7590 0.788 0.000 0.212
#> SRR1003836     1  0.6299     0.1056 0.524 0.000 0.476
#> SRR1003835     1  0.1964     0.8820 0.944 0.000 0.056
#> SRR1003838     3  0.2261     0.8379 0.068 0.000 0.932
#> SRR1003837     1  0.4346     0.7925 0.816 0.000 0.184
#> SRR1003839     1  0.0747     0.8883 0.984 0.000 0.016
#> SRR1003840     1  0.2625     0.8491 0.916 0.000 0.084
#> SRR1003841     3  0.9910     0.1630 0.272 0.344 0.384
#> SRR1003842     1  0.2356     0.8755 0.928 0.000 0.072
#> SRR1003844     1  0.0424     0.8878 0.992 0.000 0.008
#> SRR1003845     1  0.2261     0.8756 0.932 0.000 0.068
#> SRR1003846     1  0.0424     0.8873 0.992 0.000 0.008
#> SRR1003847     1  0.1163     0.8854 0.972 0.000 0.028
#> SRR1003848     1  0.3619     0.8306 0.864 0.000 0.136
#> SRR1003849     3  0.2448     0.8431 0.076 0.000 0.924
#> SRR1003850     1  0.4974     0.7227 0.764 0.000 0.236
#> SRR1003851     3  0.2796     0.8468 0.092 0.000 0.908
#> SRR1003852     1  0.0237     0.8855 0.996 0.000 0.004
#> SRR1003853     1  0.0424     0.8873 0.992 0.000 0.008
#> SRR1003854     1  0.0424     0.8844 0.992 0.000 0.008
#> SRR1003843     1  0.5529     0.6161 0.704 0.000 0.296
#> SRR1003855     1  0.2625     0.8653 0.916 0.000 0.084
#> SRR1003856     1  0.6305     0.0337 0.516 0.000 0.484
#> SRR1003857     1  0.1529     0.8853 0.960 0.000 0.040
#> SRR1003858     1  0.1163     0.8877 0.972 0.000 0.028
#> SRR1003859     1  0.0747     0.8875 0.984 0.000 0.016
#> SRR1003860     1  0.0237     0.8873 0.996 0.000 0.004
#> SRR1003861     1  0.1163     0.8878 0.972 0.000 0.028
#> SRR1003862     1  0.0592     0.8885 0.988 0.000 0.012
#> SRR1003863     1  0.2448     0.8717 0.924 0.000 0.076
#> SRR1003864     1  0.0424     0.8873 0.992 0.000 0.008
#> SRR1003865     1  0.3267     0.8413 0.884 0.000 0.116
#> SRR1003866     1  0.0747     0.8891 0.984 0.000 0.016
#> SRR1003867     1  0.0592     0.8876 0.988 0.000 0.012

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1003755     3  0.7869    0.02256 0.280 0.000 0.380 0.340
#> SRR1003756     3  0.7837    0.07951 0.292 0.000 0.408 0.300
#> SRR1003757     1  0.2271    0.87871 0.916 0.000 0.076 0.008
#> SRR1003758     1  0.1890    0.88469 0.936 0.000 0.056 0.008
#> SRR1003759     4  0.3497    0.67932 0.124 0.000 0.024 0.852
#> SRR1003760     4  0.3533    0.69695 0.080 0.000 0.056 0.864
#> SRR1003761     4  0.3595    0.69668 0.084 0.008 0.040 0.868
#> SRR1003762     2  0.4584    0.59302 0.000 0.696 0.004 0.300
#> SRR1003763     2  0.5097    0.36122 0.000 0.568 0.004 0.428
#> SRR1003764     4  0.5093    0.06659 0.000 0.348 0.012 0.640
#> SRR1003765     2  0.0000    0.89923 0.000 1.000 0.000 0.000
#> SRR1003766     2  0.0188    0.89911 0.000 0.996 0.000 0.004
#> SRR1003767     2  0.0000    0.89923 0.000 1.000 0.000 0.000
#> SRR1003768     2  0.0188    0.89911 0.000 0.996 0.000 0.004
#> SRR1003769     2  0.0188    0.89911 0.000 0.996 0.000 0.004
#> SRR1003770     2  0.0000    0.89923 0.000 1.000 0.000 0.000
#> SRR1003771     2  0.0000    0.89923 0.000 1.000 0.000 0.000
#> SRR1003773     3  0.1305    0.68957 0.004 0.000 0.960 0.036
#> SRR1003772     1  0.0921    0.88541 0.972 0.000 0.000 0.028
#> SRR1003774     1  0.6576    0.56941 0.628 0.000 0.220 0.152
#> SRR1003775     1  0.0817    0.88551 0.976 0.000 0.000 0.024
#> SRR1003776     1  0.2216    0.88257 0.908 0.000 0.000 0.092
#> SRR1003777     1  0.1211    0.88559 0.960 0.000 0.000 0.040
#> SRR1003778     3  0.1890    0.68293 0.008 0.000 0.936 0.056
#> SRR1003779     1  0.0921    0.88506 0.972 0.000 0.000 0.028
#> SRR1003780     4  0.5643    0.25572 0.428 0.000 0.024 0.548
#> SRR1003781     1  0.1211    0.88692 0.960 0.000 0.000 0.040
#> SRR1003784     3  0.2859    0.67898 0.112 0.000 0.880 0.008
#> SRR1003785     3  0.2060    0.69808 0.016 0.000 0.932 0.052
#> SRR1003786     1  0.0188    0.88355 0.996 0.000 0.000 0.004
#> SRR1003783     1  0.0817    0.88462 0.976 0.000 0.000 0.024
#> SRR1003787     1  0.1557    0.88715 0.944 0.000 0.000 0.056
#> SRR1003788     1  0.4469    0.82631 0.808 0.000 0.080 0.112
#> SRR1003789     4  0.3771    0.66127 0.052 0.004 0.088 0.856
#> SRR1003790     1  0.0707    0.88358 0.980 0.000 0.000 0.020
#> SRR1003791     1  0.6359    0.61414 0.648 0.000 0.132 0.220
#> SRR1003792     1  0.1557    0.88924 0.944 0.000 0.000 0.056
#> SRR1003793     1  0.0921    0.88508 0.972 0.000 0.000 0.028
#> SRR1003794     1  0.1743    0.88856 0.940 0.000 0.004 0.056
#> SRR1003795     3  0.6083    0.51858 0.112 0.000 0.672 0.216
#> SRR1003796     3  0.0895    0.68914 0.004 0.000 0.976 0.020
#> SRR1003797     1  0.1557    0.88566 0.944 0.000 0.000 0.056
#> SRR1003798     1  0.4735    0.78994 0.784 0.000 0.148 0.068
#> SRR1003799     1  0.4423    0.79995 0.792 0.000 0.168 0.040
#> SRR1003800     1  0.1888    0.88642 0.940 0.000 0.016 0.044
#> SRR1003801     1  0.6212    0.36782 0.560 0.000 0.380 0.060
#> SRR1003802     3  0.4378    0.61674 0.164 0.000 0.796 0.040
#> SRR1003803     1  0.2926    0.88011 0.896 0.000 0.048 0.056
#> SRR1003804     1  0.4669    0.76858 0.764 0.000 0.200 0.036
#> SRR1003805     1  0.1305    0.88776 0.960 0.000 0.004 0.036
#> SRR1003806     1  0.1118    0.88782 0.964 0.000 0.000 0.036
#> SRR1003807     1  0.5141    0.77150 0.756 0.000 0.160 0.084
#> SRR1003809     3  0.1520    0.70184 0.020 0.000 0.956 0.024
#> SRR1003808     1  0.2814    0.85456 0.868 0.000 0.000 0.132
#> SRR1003810     1  0.2843    0.87805 0.892 0.000 0.020 0.088
#> SRR1003811     3  0.3862    0.63270 0.152 0.000 0.824 0.024
#> SRR1003812     1  0.1118    0.88567 0.964 0.000 0.000 0.036
#> SRR1003813     3  0.2908    0.69592 0.064 0.000 0.896 0.040
#> SRR1003814     1  0.3569    0.76017 0.804 0.000 0.000 0.196
#> SRR1003815     1  0.2376    0.88371 0.916 0.000 0.016 0.068
#> SRR1003816     1  0.1557    0.88450 0.944 0.000 0.000 0.056
#> SRR1003817     1  0.1302    0.88611 0.956 0.000 0.000 0.044
#> SRR1003818     1  0.2081    0.87428 0.916 0.000 0.000 0.084
#> SRR1003819     1  0.5610    0.72636 0.720 0.000 0.176 0.104
#> SRR1003820     1  0.1302    0.88541 0.956 0.000 0.000 0.044
#> SRR1003821     1  0.1022    0.88480 0.968 0.000 0.000 0.032
#> SRR1003822     3  0.3486    0.68697 0.092 0.000 0.864 0.044
#> SRR1003824     1  0.4466    0.79202 0.784 0.000 0.180 0.036
#> SRR1003823     1  0.2984    0.87462 0.888 0.000 0.028 0.084
#> SRR1003825     1  0.5553    0.73993 0.724 0.000 0.176 0.100
#> SRR1003826     1  0.1398    0.88638 0.956 0.000 0.004 0.040
#> SRR1003827     1  0.1118    0.88605 0.964 0.000 0.000 0.036
#> SRR1003828     1  0.4655    0.81775 0.796 0.000 0.116 0.088
#> SRR1003829     1  0.1867    0.88671 0.928 0.000 0.000 0.072
#> SRR1003830     1  0.0921    0.88430 0.972 0.000 0.000 0.028
#> SRR1003831     1  0.2706    0.88510 0.900 0.000 0.020 0.080
#> SRR1003832     1  0.1302    0.88508 0.956 0.000 0.000 0.044
#> SRR1003833     1  0.1545    0.88892 0.952 0.000 0.008 0.040
#> SRR1003834     1  0.6286    0.61044 0.660 0.000 0.200 0.140
#> SRR1003836     1  0.6709   -0.00700 0.460 0.000 0.452 0.088
#> SRR1003835     1  0.3497    0.86084 0.852 0.000 0.024 0.124
#> SRR1003838     3  0.2124    0.68635 0.008 0.000 0.924 0.068
#> SRR1003837     1  0.3731    0.84179 0.844 0.000 0.120 0.036
#> SRR1003839     1  0.2563    0.88366 0.908 0.000 0.020 0.072
#> SRR1003840     1  0.6323    0.00427 0.500 0.000 0.060 0.440
#> SRR1003841     3  0.9767   -0.15708 0.168 0.212 0.324 0.296
#> SRR1003842     1  0.2867    0.87169 0.884 0.000 0.012 0.104
#> SRR1003844     1  0.1022    0.88411 0.968 0.000 0.000 0.032
#> SRR1003845     1  0.4010    0.83609 0.816 0.000 0.028 0.156
#> SRR1003846     1  0.2125    0.88399 0.920 0.000 0.004 0.076
#> SRR1003847     1  0.0817    0.88651 0.976 0.000 0.000 0.024
#> SRR1003848     1  0.4591    0.82824 0.800 0.000 0.084 0.116
#> SRR1003849     3  0.1545    0.69606 0.008 0.000 0.952 0.040
#> SRR1003850     1  0.4898    0.80353 0.780 0.000 0.116 0.104
#> SRR1003851     3  0.2867    0.67155 0.012 0.000 0.884 0.104
#> SRR1003852     1  0.1389    0.88620 0.952 0.000 0.000 0.048
#> SRR1003853     1  0.2796    0.88002 0.892 0.000 0.016 0.092
#> SRR1003854     1  0.1978    0.88690 0.928 0.000 0.004 0.068
#> SRR1003843     1  0.7012    0.39112 0.560 0.000 0.284 0.156
#> SRR1003855     1  0.1975    0.88716 0.936 0.000 0.016 0.048
#> SRR1003856     3  0.6366    0.15550 0.424 0.000 0.512 0.064
#> SRR1003857     1  0.2300    0.88767 0.924 0.000 0.028 0.048
#> SRR1003858     1  0.2675    0.87772 0.892 0.000 0.008 0.100
#> SRR1003859     1  0.1211    0.88758 0.960 0.000 0.000 0.040
#> SRR1003860     1  0.1743    0.88857 0.940 0.000 0.004 0.056
#> SRR1003861     1  0.2281    0.87583 0.904 0.000 0.000 0.096
#> SRR1003862     1  0.2222    0.88676 0.924 0.000 0.016 0.060
#> SRR1003863     1  0.3533    0.86477 0.864 0.000 0.080 0.056
#> SRR1003864     1  0.1022    0.88406 0.968 0.000 0.000 0.032
#> SRR1003865     1  0.5939    0.62349 0.668 0.000 0.084 0.248
#> SRR1003866     1  0.2198    0.88860 0.920 0.000 0.008 0.072
#> SRR1003867     1  0.1389    0.88753 0.952 0.000 0.000 0.048

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1003755     3   0.713     0.1848 0.096 0.000 0.452 0.076 0.376
#> SRR1003756     3   0.705     0.2358 0.100 0.000 0.476 0.068 0.356
#> SRR1003757     1   0.340     0.7983 0.852 0.000 0.072 0.068 0.008
#> SRR1003758     1   0.301     0.8040 0.876 0.000 0.052 0.064 0.008
#> SRR1003759     5   0.258     0.6521 0.040 0.000 0.008 0.052 0.900
#> SRR1003760     5   0.177     0.6688 0.020 0.000 0.008 0.032 0.940
#> SRR1003761     5   0.197     0.6697 0.020 0.000 0.012 0.036 0.932
#> SRR1003762     2   0.514     0.1650 0.004 0.576 0.000 0.036 0.384
#> SRR1003763     5   0.535    -0.0141 0.000 0.456 0.000 0.052 0.492
#> SRR1003764     5   0.573     0.4932 0.012 0.224 0.020 0.072 0.672
#> SRR1003765     2   0.000     0.9126 0.000 1.000 0.000 0.000 0.000
#> SRR1003766     2   0.104     0.9080 0.000 0.960 0.000 0.040 0.000
#> SRR1003767     2   0.000     0.9126 0.000 1.000 0.000 0.000 0.000
#> SRR1003768     2   0.104     0.9080 0.000 0.960 0.000 0.040 0.000
#> SRR1003769     2   0.104     0.9080 0.000 0.960 0.000 0.040 0.000
#> SRR1003770     2   0.000     0.9126 0.000 1.000 0.000 0.000 0.000
#> SRR1003771     2   0.000     0.9126 0.000 1.000 0.000 0.000 0.000
#> SRR1003773     3   0.277     0.7114 0.000 0.000 0.876 0.092 0.032
#> SRR1003772     1   0.165     0.8036 0.940 0.000 0.000 0.040 0.020
#> SRR1003774     1   0.794    -0.1266 0.448 0.000 0.248 0.164 0.140
#> SRR1003775     1   0.221     0.8037 0.908 0.000 0.000 0.072 0.020
#> SRR1003776     1   0.354     0.7837 0.832 0.000 0.008 0.124 0.036
#> SRR1003777     1   0.198     0.8011 0.920 0.000 0.000 0.064 0.016
#> SRR1003778     3   0.281     0.7142 0.000 0.000 0.876 0.084 0.040
#> SRR1003779     1   0.172     0.8072 0.936 0.000 0.004 0.052 0.008
#> SRR1003780     5   0.707    -0.2331 0.280 0.000 0.016 0.268 0.436
#> SRR1003781     1   0.251     0.8053 0.892 0.000 0.000 0.080 0.028
#> SRR1003784     3   0.350     0.7137 0.044 0.000 0.844 0.100 0.012
#> SRR1003785     3   0.283     0.7360 0.020 0.000 0.888 0.068 0.024
#> SRR1003786     1   0.181     0.8052 0.928 0.000 0.000 0.060 0.012
#> SRR1003783     1   0.141     0.8037 0.948 0.000 0.000 0.044 0.008
#> SRR1003787     1   0.224     0.8063 0.908 0.000 0.000 0.068 0.024
#> SRR1003788     1   0.552     0.7357 0.724 0.000 0.076 0.116 0.084
#> SRR1003789     5   0.315     0.6329 0.000 0.000 0.052 0.092 0.856
#> SRR1003790     1   0.173     0.8042 0.940 0.000 0.004 0.036 0.020
#> SRR1003791     4   0.748     0.3905 0.360 0.000 0.072 0.420 0.148
#> SRR1003792     1   0.271     0.8116 0.888 0.000 0.008 0.080 0.024
#> SRR1003793     1   0.212     0.8090 0.900 0.000 0.000 0.096 0.004
#> SRR1003794     1   0.365     0.8023 0.840 0.000 0.020 0.096 0.044
#> SRR1003795     4   0.678    -0.1700 0.080 0.000 0.380 0.480 0.060
#> SRR1003796     3   0.310     0.6993 0.000 0.000 0.848 0.124 0.028
#> SRR1003797     1   0.297     0.7976 0.848 0.000 0.000 0.136 0.016
#> SRR1003798     1   0.609     0.5599 0.644 0.000 0.216 0.092 0.048
#> SRR1003799     1   0.525     0.6711 0.704 0.000 0.180 0.104 0.012
#> SRR1003800     1   0.352     0.7999 0.820 0.000 0.020 0.152 0.008
#> SRR1003801     1   0.651     0.2678 0.540 0.000 0.308 0.128 0.024
#> SRR1003802     3   0.501     0.5297 0.136 0.000 0.744 0.096 0.024
#> SRR1003803     1   0.462     0.7499 0.744 0.000 0.044 0.196 0.016
#> SRR1003804     1   0.532     0.6664 0.684 0.000 0.184 0.128 0.004
#> SRR1003805     1   0.353     0.8006 0.848 0.000 0.024 0.092 0.036
#> SRR1003806     1   0.234     0.8087 0.892 0.000 0.004 0.100 0.004
#> SRR1003807     1   0.585     0.6548 0.676 0.000 0.156 0.132 0.036
#> SRR1003809     3   0.220     0.7388 0.016 0.000 0.920 0.048 0.016
#> SRR1003808     1   0.459     0.6672 0.736 0.000 0.000 0.184 0.080
#> SRR1003810     1   0.473     0.7578 0.768 0.000 0.052 0.140 0.040
#> SRR1003811     3   0.398     0.6929 0.068 0.000 0.824 0.084 0.024
#> SRR1003812     1   0.271     0.8073 0.892 0.000 0.008 0.064 0.036
#> SRR1003813     3   0.379     0.7168 0.048 0.000 0.836 0.088 0.028
#> SRR1003814     1   0.553     0.4662 0.656 0.000 0.004 0.128 0.212
#> SRR1003815     1   0.309     0.8011 0.860 0.000 0.004 0.104 0.032
#> SRR1003816     1   0.324     0.7965 0.856 0.000 0.008 0.100 0.036
#> SRR1003817     1   0.236     0.7993 0.892 0.000 0.000 0.096 0.012
#> SRR1003818     1   0.388     0.7503 0.792 0.000 0.000 0.160 0.048
#> SRR1003819     1   0.729     0.1503 0.496 0.000 0.220 0.232 0.052
#> SRR1003820     1   0.198     0.8028 0.924 0.000 0.000 0.048 0.028
#> SRR1003821     1   0.191     0.8027 0.928 0.000 0.000 0.044 0.028
#> SRR1003822     3   0.353     0.6949 0.056 0.000 0.836 0.104 0.004
#> SRR1003824     1   0.567     0.6120 0.668 0.000 0.212 0.096 0.024
#> SRR1003823     1   0.454     0.7534 0.768 0.000 0.048 0.160 0.024
#> SRR1003825     1   0.669     0.4960 0.592 0.000 0.192 0.164 0.052
#> SRR1003826     1   0.257     0.8053 0.876 0.000 0.000 0.112 0.012
#> SRR1003827     1   0.224     0.8069 0.912 0.000 0.004 0.064 0.020
#> SRR1003828     1   0.574     0.6910 0.684 0.000 0.112 0.168 0.036
#> SRR1003829     1   0.311     0.8020 0.852 0.000 0.000 0.112 0.036
#> SRR1003830     1   0.224     0.8063 0.908 0.000 0.008 0.076 0.008
#> SRR1003831     1   0.337     0.8110 0.852 0.000 0.016 0.100 0.032
#> SRR1003832     1   0.232     0.8029 0.904 0.000 0.000 0.068 0.028
#> SRR1003833     1   0.378     0.7924 0.812 0.000 0.020 0.148 0.020
#> SRR1003834     1   0.751     0.2426 0.516 0.000 0.204 0.172 0.108
#> SRR1003836     1   0.750    -0.2335 0.408 0.000 0.380 0.120 0.092
#> SRR1003835     1   0.476     0.7691 0.772 0.000 0.036 0.112 0.080
#> SRR1003838     3   0.351     0.7232 0.008 0.000 0.844 0.088 0.060
#> SRR1003837     1   0.442     0.7565 0.772 0.000 0.120 0.104 0.004
#> SRR1003839     1   0.480     0.7352 0.756 0.000 0.024 0.148 0.072
#> SRR1003840     4   0.753     0.2809 0.268 0.000 0.048 0.424 0.260
#> SRR1003841     4   0.965    -0.0278 0.132 0.112 0.260 0.268 0.228
#> SRR1003842     1   0.469     0.7599 0.772 0.000 0.024 0.100 0.104
#> SRR1003844     1   0.208     0.8046 0.916 0.000 0.000 0.064 0.020
#> SRR1003845     1   0.600     0.6154 0.656 0.000 0.040 0.196 0.108
#> SRR1003846     1   0.454     0.7750 0.784 0.000 0.028 0.116 0.072
#> SRR1003847     1   0.310     0.8091 0.864 0.000 0.024 0.100 0.012
#> SRR1003848     1   0.569     0.6733 0.684 0.000 0.080 0.192 0.044
#> SRR1003849     3   0.166     0.7317 0.004 0.000 0.936 0.056 0.004
#> SRR1003850     1   0.590     0.5755 0.636 0.000 0.156 0.196 0.012
#> SRR1003851     3   0.414     0.6953 0.016 0.000 0.808 0.092 0.084
#> SRR1003852     1   0.343     0.7918 0.832 0.000 0.004 0.132 0.032
#> SRR1003853     1   0.445     0.7725 0.780 0.000 0.024 0.144 0.052
#> SRR1003854     1   0.297     0.8089 0.872 0.000 0.004 0.084 0.040
#> SRR1003843     4   0.768     0.3665 0.360 0.000 0.176 0.388 0.076
#> SRR1003855     1   0.376     0.7893 0.816 0.000 0.032 0.140 0.012
#> SRR1003856     3   0.685    -0.0649 0.284 0.000 0.540 0.124 0.052
#> SRR1003857     1   0.463     0.7765 0.780 0.000 0.060 0.120 0.040
#> SRR1003858     1   0.409     0.7955 0.804 0.000 0.012 0.120 0.064
#> SRR1003859     1   0.230     0.8102 0.904 0.000 0.008 0.080 0.008
#> SRR1003860     1   0.362     0.7923 0.820 0.000 0.000 0.124 0.056
#> SRR1003861     1   0.364     0.7927 0.824 0.000 0.000 0.096 0.080
#> SRR1003862     1   0.269     0.8097 0.900 0.000 0.028 0.044 0.028
#> SRR1003863     1   0.430     0.7796 0.796 0.000 0.092 0.096 0.016
#> SRR1003864     1   0.229     0.8091 0.908 0.000 0.012 0.072 0.008
#> SRR1003865     1   0.700     0.1025 0.516 0.000 0.036 0.192 0.256
#> SRR1003866     1   0.389     0.8003 0.812 0.000 0.016 0.136 0.036
#> SRR1003867     1   0.275     0.8086 0.880 0.000 0.008 0.096 0.016

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1003755     3  0.6777     0.1280 0.012 0.000 0.452 0.044 0.168 0.324
#> SRR1003756     3  0.6748     0.1558 0.016 0.000 0.464 0.040 0.160 0.320
#> SRR1003757     1  0.3725     0.6712 0.804 0.000 0.116 0.016 0.064 0.000
#> SRR1003758     1  0.3214     0.6865 0.840 0.000 0.068 0.008 0.084 0.000
#> SRR1003759     6  0.0972     0.6722 0.008 0.000 0.000 0.000 0.028 0.964
#> SRR1003760     6  0.0436     0.6785 0.004 0.000 0.004 0.000 0.004 0.988
#> SRR1003761     6  0.0146     0.6812 0.000 0.000 0.000 0.000 0.004 0.996
#> SRR1003762     2  0.5556     0.2492 0.000 0.552 0.000 0.012 0.116 0.320
#> SRR1003763     2  0.6256    -0.0770 0.000 0.424 0.000 0.028 0.156 0.392
#> SRR1003764     6  0.6132     0.4234 0.000 0.204 0.004 0.040 0.176 0.576
#> SRR1003765     2  0.0146     0.8376 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR1003766     2  0.1257     0.8326 0.000 0.952 0.000 0.020 0.028 0.000
#> SRR1003767     2  0.0146     0.8376 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR1003768     2  0.1257     0.8326 0.000 0.952 0.000 0.020 0.028 0.000
#> SRR1003769     2  0.1257     0.8326 0.000 0.952 0.000 0.020 0.028 0.000
#> SRR1003770     2  0.0146     0.8376 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR1003771     2  0.0146     0.8376 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR1003773     3  0.3376     0.6073 0.000 0.000 0.836 0.084 0.060 0.020
#> SRR1003772     1  0.1908     0.6907 0.900 0.000 0.000 0.000 0.096 0.004
#> SRR1003774     1  0.8011    -0.3731 0.320 0.000 0.248 0.060 0.296 0.076
#> SRR1003775     1  0.2455     0.6818 0.872 0.000 0.000 0.012 0.112 0.004
#> SRR1003776     1  0.4370     0.5557 0.676 0.000 0.008 0.028 0.284 0.004
#> SRR1003777     1  0.2520     0.6639 0.844 0.000 0.000 0.004 0.152 0.000
#> SRR1003778     3  0.3644     0.5932 0.004 0.000 0.812 0.108 0.068 0.008
#> SRR1003779     1  0.2827     0.6931 0.848 0.000 0.008 0.008 0.132 0.004
#> SRR1003780     6  0.7768    -0.2095 0.180 0.000 0.008 0.196 0.300 0.316
#> SRR1003781     1  0.3176     0.6778 0.824 0.000 0.004 0.016 0.148 0.008
#> SRR1003784     3  0.4010     0.6195 0.040 0.000 0.808 0.072 0.072 0.008
#> SRR1003785     3  0.4397     0.6137 0.020 0.000 0.776 0.120 0.060 0.024
#> SRR1003786     1  0.2373     0.6942 0.880 0.000 0.000 0.008 0.104 0.008
#> SRR1003783     1  0.1888     0.6887 0.916 0.000 0.000 0.012 0.068 0.004
#> SRR1003787     1  0.3594     0.6577 0.768 0.000 0.000 0.020 0.204 0.008
#> SRR1003788     1  0.5719     0.6125 0.672 0.000 0.036 0.072 0.172 0.048
#> SRR1003789     6  0.4828     0.5993 0.008 0.000 0.020 0.104 0.144 0.724
#> SRR1003790     1  0.2135     0.6906 0.872 0.000 0.000 0.000 0.128 0.000
#> SRR1003791     4  0.7654    -0.0596 0.208 0.000 0.052 0.380 0.304 0.056
#> SRR1003792     1  0.2963     0.6926 0.828 0.000 0.004 0.016 0.152 0.000
#> SRR1003793     1  0.2566     0.6926 0.868 0.000 0.008 0.012 0.112 0.000
#> SRR1003794     1  0.3760     0.6835 0.804 0.000 0.008 0.032 0.136 0.020
#> SRR1003795     4  0.5613     0.1939 0.016 0.000 0.216 0.652 0.064 0.052
#> SRR1003796     3  0.3351     0.5672 0.000 0.000 0.800 0.168 0.028 0.004
#> SRR1003797     1  0.3593     0.6333 0.764 0.000 0.000 0.024 0.208 0.004
#> SRR1003798     1  0.7243     0.2776 0.504 0.000 0.220 0.056 0.164 0.056
#> SRR1003799     1  0.5884     0.5327 0.636 0.000 0.152 0.068 0.140 0.004
#> SRR1003800     1  0.3997     0.6864 0.800 0.000 0.028 0.052 0.112 0.008
#> SRR1003801     1  0.7085    -0.0207 0.424 0.000 0.360 0.084 0.108 0.024
#> SRR1003802     3  0.4893     0.5172 0.116 0.000 0.740 0.072 0.064 0.008
#> SRR1003803     1  0.4738     0.6361 0.736 0.000 0.048 0.048 0.160 0.008
#> SRR1003804     1  0.6011     0.4890 0.600 0.000 0.196 0.064 0.140 0.000
#> SRR1003805     1  0.3701     0.6875 0.804 0.000 0.024 0.012 0.144 0.016
#> SRR1003806     1  0.3164     0.6956 0.832 0.000 0.000 0.044 0.120 0.004
#> SRR1003807     1  0.6480     0.4711 0.580 0.000 0.124 0.076 0.204 0.016
#> SRR1003809     3  0.3745     0.6352 0.020 0.000 0.820 0.080 0.072 0.008
#> SRR1003808     1  0.5541     0.1448 0.500 0.000 0.012 0.040 0.420 0.028
#> SRR1003810     1  0.6290     0.4143 0.548 0.000 0.060 0.080 0.296 0.016
#> SRR1003811     3  0.4129     0.6142 0.040 0.000 0.804 0.084 0.056 0.016
#> SRR1003812     1  0.3844     0.6735 0.752 0.000 0.008 0.008 0.216 0.016
#> SRR1003813     3  0.4085     0.6203 0.012 0.000 0.792 0.056 0.120 0.020
#> SRR1003814     1  0.6033    -0.0877 0.492 0.000 0.000 0.040 0.364 0.104
#> SRR1003815     1  0.4799     0.5774 0.680 0.000 0.036 0.032 0.248 0.004
#> SRR1003816     1  0.4178     0.5963 0.708 0.000 0.000 0.036 0.248 0.008
#> SRR1003817     1  0.2948     0.6580 0.804 0.000 0.000 0.008 0.188 0.000
#> SRR1003818     1  0.4965     0.4670 0.636 0.000 0.000 0.052 0.288 0.024
#> SRR1003819     1  0.7890    -0.2606 0.344 0.000 0.188 0.124 0.312 0.032
#> SRR1003820     1  0.2053     0.6841 0.888 0.000 0.000 0.004 0.108 0.000
#> SRR1003821     1  0.2588     0.6809 0.860 0.000 0.000 0.012 0.124 0.004
#> SRR1003822     3  0.4772     0.5868 0.064 0.000 0.752 0.076 0.100 0.008
#> SRR1003824     1  0.6239     0.3974 0.544 0.000 0.224 0.044 0.188 0.000
#> SRR1003823     1  0.5202     0.6066 0.668 0.000 0.024 0.132 0.176 0.000
#> SRR1003825     1  0.7343     0.1968 0.480 0.000 0.200 0.092 0.200 0.028
#> SRR1003826     1  0.3564     0.6653 0.768 0.000 0.000 0.024 0.204 0.004
#> SRR1003827     1  0.2723     0.6944 0.856 0.000 0.000 0.020 0.120 0.004
#> SRR1003828     1  0.6561     0.4797 0.604 0.000 0.092 0.104 0.164 0.036
#> SRR1003829     1  0.3998     0.6622 0.768 0.000 0.004 0.036 0.176 0.016
#> SRR1003830     1  0.2404     0.6818 0.880 0.000 0.004 0.008 0.104 0.004
#> SRR1003831     1  0.4158     0.6693 0.736 0.000 0.004 0.028 0.216 0.016
#> SRR1003832     1  0.2631     0.6756 0.856 0.000 0.000 0.012 0.128 0.004
#> SRR1003833     1  0.4229     0.6549 0.732 0.000 0.004 0.032 0.216 0.016
#> SRR1003834     1  0.8195    -0.1566 0.348 0.000 0.240 0.072 0.244 0.096
#> SRR1003836     3  0.7598    -0.1766 0.324 0.000 0.396 0.044 0.156 0.080
#> SRR1003835     1  0.6278     0.4854 0.608 0.000 0.048 0.044 0.216 0.084
#> SRR1003838     3  0.5115     0.5906 0.020 0.000 0.724 0.120 0.100 0.036
#> SRR1003837     1  0.5516     0.6097 0.656 0.000 0.132 0.036 0.172 0.004
#> SRR1003839     1  0.6379     0.3090 0.516 0.000 0.036 0.056 0.340 0.052
#> SRR1003840     5  0.7657    -0.2112 0.176 0.000 0.008 0.296 0.352 0.168
#> SRR1003841     4  0.9581     0.0661 0.096 0.080 0.160 0.260 0.204 0.200
#> SRR1003842     1  0.4624     0.6456 0.752 0.000 0.028 0.016 0.144 0.060
#> SRR1003844     1  0.2489     0.6781 0.860 0.000 0.000 0.012 0.128 0.000
#> SRR1003845     1  0.7054     0.1168 0.468 0.000 0.048 0.136 0.308 0.040
#> SRR1003846     1  0.4589     0.6581 0.752 0.000 0.024 0.020 0.152 0.052
#> SRR1003847     1  0.3518     0.6760 0.784 0.000 0.008 0.024 0.184 0.000
#> SRR1003848     1  0.6374     0.4644 0.624 0.000 0.092 0.104 0.148 0.032
#> SRR1003849     3  0.2918     0.6311 0.000 0.000 0.856 0.088 0.052 0.004
#> SRR1003850     1  0.7141     0.2657 0.520 0.000 0.112 0.160 0.184 0.024
#> SRR1003851     3  0.5477     0.5512 0.044 0.000 0.716 0.076 0.072 0.092
#> SRR1003852     1  0.4173     0.5848 0.692 0.000 0.000 0.028 0.272 0.008
#> SRR1003853     1  0.5499     0.6042 0.644 0.000 0.016 0.048 0.244 0.048
#> SRR1003854     1  0.3352     0.6866 0.800 0.000 0.000 0.012 0.172 0.016
#> SRR1003843     4  0.7873     0.0120 0.204 0.000 0.096 0.396 0.256 0.048
#> SRR1003855     1  0.4610     0.6298 0.704 0.000 0.028 0.048 0.220 0.000
#> SRR1003856     3  0.7106     0.0594 0.260 0.000 0.504 0.060 0.128 0.048
#> SRR1003857     1  0.5133     0.6400 0.692 0.000 0.048 0.040 0.204 0.016
#> SRR1003858     1  0.5488     0.5554 0.624 0.000 0.008 0.060 0.268 0.040
#> SRR1003859     1  0.2912     0.6873 0.856 0.000 0.000 0.028 0.104 0.012
#> SRR1003860     1  0.4050     0.6657 0.784 0.000 0.004 0.044 0.140 0.028
#> SRR1003861     1  0.5099     0.5716 0.656 0.000 0.000 0.044 0.248 0.052
#> SRR1003862     1  0.3374     0.6939 0.820 0.000 0.016 0.004 0.140 0.020
#> SRR1003863     1  0.5211     0.6482 0.704 0.000 0.092 0.048 0.148 0.008
#> SRR1003864     1  0.2805     0.6718 0.828 0.000 0.000 0.012 0.160 0.000
#> SRR1003865     5  0.7441     0.1611 0.360 0.000 0.048 0.072 0.392 0.128
#> SRR1003866     1  0.4509     0.6479 0.704 0.000 0.020 0.036 0.236 0.004
#> SRR1003867     1  0.2967     0.6867 0.840 0.000 0.008 0.012 0.136 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 9166 rows and 112 columns.
#>   Top rows (917, 1834, 2750, 3666, 4583) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.974       0.988         0.2514 0.766   0.766
#> 3 3 0.982           0.955       0.979         0.3078 0.926   0.903
#> 4 4 0.876           0.920       0.964         0.0333 0.999   0.999
#> 5 5 0.861           0.899       0.952         0.0573 1.000   1.000
#> 6 6 0.783           0.854       0.935         0.0823 0.985   0.979

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1003755     1  0.0000      0.986 1.000 0.000
#> SRR1003756     1  0.0000      0.986 1.000 0.000
#> SRR1003757     1  0.0000      0.986 1.000 0.000
#> SRR1003758     1  0.0000      0.986 1.000 0.000
#> SRR1003759     1  0.0000      0.986 1.000 0.000
#> SRR1003760     2  0.0000      1.000 0.000 1.000
#> SRR1003761     2  0.0000      1.000 0.000 1.000
#> SRR1003762     2  0.0000      1.000 0.000 1.000
#> SRR1003763     2  0.0000      1.000 0.000 1.000
#> SRR1003764     2  0.0000      1.000 0.000 1.000
#> SRR1003765     2  0.0000      1.000 0.000 1.000
#> SRR1003766     2  0.0000      1.000 0.000 1.000
#> SRR1003767     2  0.0000      1.000 0.000 1.000
#> SRR1003768     2  0.0000      1.000 0.000 1.000
#> SRR1003769     2  0.0000      1.000 0.000 1.000
#> SRR1003770     2  0.0000      1.000 0.000 1.000
#> SRR1003771     2  0.0000      1.000 0.000 1.000
#> SRR1003773     1  0.7950      0.704 0.760 0.240
#> SRR1003772     1  0.0000      0.986 1.000 0.000
#> SRR1003774     1  0.0000      0.986 1.000 0.000
#> SRR1003775     1  0.0000      0.986 1.000 0.000
#> SRR1003776     1  0.0000      0.986 1.000 0.000
#> SRR1003777     1  0.0000      0.986 1.000 0.000
#> SRR1003778     1  0.8267      0.671 0.740 0.260
#> SRR1003779     1  0.0000      0.986 1.000 0.000
#> SRR1003780     2  0.0000      1.000 0.000 1.000
#> SRR1003781     1  0.0000      0.986 1.000 0.000
#> SRR1003784     1  0.0672      0.980 0.992 0.008
#> SRR1003785     1  0.5294      0.867 0.880 0.120
#> SRR1003786     1  0.0000      0.986 1.000 0.000
#> SRR1003783     1  0.0000      0.986 1.000 0.000
#> SRR1003787     1  0.0000      0.986 1.000 0.000
#> SRR1003788     1  0.0000      0.986 1.000 0.000
#> SRR1003789     2  0.0000      1.000 0.000 1.000
#> SRR1003790     1  0.0000      0.986 1.000 0.000
#> SRR1003791     1  0.0000      0.986 1.000 0.000
#> SRR1003792     1  0.0000      0.986 1.000 0.000
#> SRR1003793     1  0.0000      0.986 1.000 0.000
#> SRR1003794     1  0.0000      0.986 1.000 0.000
#> SRR1003795     1  0.7219      0.764 0.800 0.200
#> SRR1003796     1  0.8267      0.671 0.740 0.260
#> SRR1003797     1  0.0000      0.986 1.000 0.000
#> SRR1003798     1  0.0000      0.986 1.000 0.000
#> SRR1003799     1  0.0000      0.986 1.000 0.000
#> SRR1003800     1  0.0000      0.986 1.000 0.000
#> SRR1003801     1  0.0000      0.986 1.000 0.000
#> SRR1003802     1  0.0000      0.986 1.000 0.000
#> SRR1003803     1  0.0000      0.986 1.000 0.000
#> SRR1003804     1  0.0000      0.986 1.000 0.000
#> SRR1003805     1  0.0000      0.986 1.000 0.000
#> SRR1003806     1  0.0000      0.986 1.000 0.000
#> SRR1003807     1  0.0000      0.986 1.000 0.000
#> SRR1003809     1  0.0000      0.986 1.000 0.000
#> SRR1003808     1  0.0000      0.986 1.000 0.000
#> SRR1003810     1  0.0000      0.986 1.000 0.000
#> SRR1003811     1  0.0000      0.986 1.000 0.000
#> SRR1003812     1  0.0000      0.986 1.000 0.000
#> SRR1003813     1  0.1184      0.973 0.984 0.016
#> SRR1003814     1  0.0000      0.986 1.000 0.000
#> SRR1003815     1  0.0000      0.986 1.000 0.000
#> SRR1003816     1  0.0000      0.986 1.000 0.000
#> SRR1003817     1  0.0000      0.986 1.000 0.000
#> SRR1003818     1  0.0000      0.986 1.000 0.000
#> SRR1003819     1  0.0000      0.986 1.000 0.000
#> SRR1003820     1  0.0000      0.986 1.000 0.000
#> SRR1003821     1  0.0000      0.986 1.000 0.000
#> SRR1003822     1  0.0672      0.980 0.992 0.008
#> SRR1003824     1  0.0000      0.986 1.000 0.000
#> SRR1003823     1  0.0000      0.986 1.000 0.000
#> SRR1003825     1  0.0000      0.986 1.000 0.000
#> SRR1003826     1  0.0000      0.986 1.000 0.000
#> SRR1003827     1  0.0000      0.986 1.000 0.000
#> SRR1003828     1  0.0000      0.986 1.000 0.000
#> SRR1003829     1  0.0000      0.986 1.000 0.000
#> SRR1003830     1  0.0000      0.986 1.000 0.000
#> SRR1003831     1  0.0000      0.986 1.000 0.000
#> SRR1003832     1  0.0000      0.986 1.000 0.000
#> SRR1003833     1  0.0000      0.986 1.000 0.000
#> SRR1003834     1  0.0000      0.986 1.000 0.000
#> SRR1003836     1  0.0000      0.986 1.000 0.000
#> SRR1003835     1  0.0000      0.986 1.000 0.000
#> SRR1003838     1  0.1633      0.965 0.976 0.024
#> SRR1003837     1  0.0000      0.986 1.000 0.000
#> SRR1003839     1  0.0000      0.986 1.000 0.000
#> SRR1003840     1  0.0000      0.986 1.000 0.000
#> SRR1003841     2  0.0000      1.000 0.000 1.000
#> SRR1003842     1  0.0000      0.986 1.000 0.000
#> SRR1003844     1  0.0000      0.986 1.000 0.000
#> SRR1003845     1  0.0000      0.986 1.000 0.000
#> SRR1003846     1  0.0000      0.986 1.000 0.000
#> SRR1003847     1  0.0000      0.986 1.000 0.000
#> SRR1003848     1  0.0672      0.980 0.992 0.008
#> SRR1003849     1  0.6343      0.818 0.840 0.160
#> SRR1003850     1  0.0000      0.986 1.000 0.000
#> SRR1003851     1  0.2948      0.939 0.948 0.052
#> SRR1003852     1  0.0000      0.986 1.000 0.000
#> SRR1003853     1  0.0000      0.986 1.000 0.000
#> SRR1003854     1  0.0000      0.986 1.000 0.000
#> SRR1003843     1  0.0376      0.983 0.996 0.004
#> SRR1003855     1  0.0000      0.986 1.000 0.000
#> SRR1003856     1  0.0000      0.986 1.000 0.000
#> SRR1003857     1  0.0000      0.986 1.000 0.000
#> SRR1003858     1  0.0000      0.986 1.000 0.000
#> SRR1003859     1  0.0000      0.986 1.000 0.000
#> SRR1003860     1  0.0000      0.986 1.000 0.000
#> SRR1003861     1  0.0000      0.986 1.000 0.000
#> SRR1003862     1  0.0000      0.986 1.000 0.000
#> SRR1003863     1  0.0000      0.986 1.000 0.000
#> SRR1003864     1  0.0000      0.986 1.000 0.000
#> SRR1003865     1  0.0000      0.986 1.000 0.000
#> SRR1003866     1  0.0000      0.986 1.000 0.000
#> SRR1003867     1  0.0000      0.986 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1003755     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003756     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003757     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003758     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003759     1  0.0237      0.978 0.996 0.000 0.004
#> SRR1003760     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1003761     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1003762     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1003763     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1003764     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1003765     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1003766     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1003767     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1003768     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1003769     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1003770     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1003771     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1003773     3  0.2682      0.858 0.004 0.076 0.920
#> SRR1003772     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003774     1  0.0237      0.978 0.996 0.000 0.004
#> SRR1003775     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003776     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003777     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003778     3  0.2878      0.854 0.000 0.096 0.904
#> SRR1003779     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003780     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1003781     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003784     1  0.2711      0.901 0.912 0.000 0.088
#> SRR1003785     1  0.7459      0.284 0.584 0.044 0.372
#> SRR1003786     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003783     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003787     1  0.0237      0.978 0.996 0.000 0.004
#> SRR1003788     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003789     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1003790     1  0.0237      0.978 0.996 0.000 0.004
#> SRR1003791     1  0.3116      0.880 0.892 0.000 0.108
#> SRR1003792     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003793     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003794     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003795     3  0.2443      0.835 0.028 0.032 0.940
#> SRR1003796     3  0.2878      0.854 0.000 0.096 0.904
#> SRR1003797     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003798     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003799     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003800     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003801     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003802     1  0.1163      0.960 0.972 0.000 0.028
#> SRR1003803     1  0.0424      0.976 0.992 0.000 0.008
#> SRR1003804     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003805     1  0.0237      0.978 0.996 0.000 0.004
#> SRR1003806     1  0.0237      0.978 0.996 0.000 0.004
#> SRR1003807     1  0.1643      0.947 0.956 0.000 0.044
#> SRR1003809     1  0.0424      0.975 0.992 0.000 0.008
#> SRR1003808     1  0.0237      0.978 0.996 0.000 0.004
#> SRR1003810     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003811     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003812     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003813     1  0.5254      0.648 0.736 0.000 0.264
#> SRR1003814     1  0.0237      0.978 0.996 0.000 0.004
#> SRR1003815     1  0.0237      0.978 0.996 0.000 0.004
#> SRR1003816     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003817     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003818     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003819     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003820     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003821     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003822     1  0.2537      0.909 0.920 0.000 0.080
#> SRR1003824     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003823     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003825     1  0.0237      0.978 0.996 0.000 0.004
#> SRR1003826     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003827     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003828     1  0.0592      0.972 0.988 0.000 0.012
#> SRR1003829     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003830     1  0.0237      0.978 0.996 0.000 0.004
#> SRR1003831     1  0.0237      0.978 0.996 0.000 0.004
#> SRR1003832     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003833     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003834     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003836     1  0.0237      0.978 0.996 0.000 0.004
#> SRR1003835     1  0.0237      0.978 0.996 0.000 0.004
#> SRR1003838     1  0.5588      0.615 0.720 0.004 0.276
#> SRR1003837     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003839     1  0.0237      0.978 0.996 0.000 0.004
#> SRR1003840     1  0.0892      0.966 0.980 0.000 0.020
#> SRR1003841     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1003842     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003844     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003845     1  0.0424      0.975 0.992 0.000 0.008
#> SRR1003846     1  0.0237      0.978 0.996 0.000 0.004
#> SRR1003847     1  0.0424      0.976 0.992 0.000 0.008
#> SRR1003848     1  0.1411      0.952 0.964 0.000 0.036
#> SRR1003849     3  0.5852      0.623 0.180 0.044 0.776
#> SRR1003850     1  0.0237      0.978 0.996 0.000 0.004
#> SRR1003851     1  0.5173      0.779 0.816 0.036 0.148
#> SRR1003852     1  0.0424      0.976 0.992 0.000 0.008
#> SRR1003853     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003854     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003843     1  0.2096      0.936 0.944 0.004 0.052
#> SRR1003855     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003856     1  0.2796      0.897 0.908 0.000 0.092
#> SRR1003857     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003858     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003859     1  0.0237      0.978 0.996 0.000 0.004
#> SRR1003860     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003861     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003862     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003863     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003864     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003865     1  0.0747      0.971 0.984 0.000 0.016
#> SRR1003866     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1003867     1  0.0237      0.978 0.996 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1003755     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> SRR1003756     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> SRR1003757     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> SRR1003758     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> SRR1003759     1  0.0927      0.963 0.976 0.000 0.008 0.016
#> SRR1003760     2  0.2216      0.925 0.000 0.908 0.000 0.092
#> SRR1003761     2  0.2216      0.925 0.000 0.908 0.000 0.092
#> SRR1003762     2  0.2216      0.925 0.000 0.908 0.000 0.092
#> SRR1003763     2  0.2216      0.925 0.000 0.908 0.000 0.092
#> SRR1003764     2  0.2216      0.925 0.000 0.908 0.000 0.092
#> SRR1003765     2  0.0000      0.951 0.000 1.000 0.000 0.000
#> SRR1003766     2  0.0000      0.951 0.000 1.000 0.000 0.000
#> SRR1003767     2  0.0000      0.951 0.000 1.000 0.000 0.000
#> SRR1003768     2  0.0000      0.951 0.000 1.000 0.000 0.000
#> SRR1003769     2  0.0000      0.951 0.000 1.000 0.000 0.000
#> SRR1003770     2  0.0000      0.951 0.000 1.000 0.000 0.000
#> SRR1003771     2  0.0000      0.951 0.000 1.000 0.000 0.000
#> SRR1003773     3  0.1389      0.568 0.000 0.048 0.952 0.000
#> SRR1003772     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> SRR1003774     1  0.0376      0.972 0.992 0.000 0.004 0.004
#> SRR1003775     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> SRR1003776     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> SRR1003777     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> SRR1003778     3  0.2335      0.588 0.000 0.060 0.920 0.020
#> SRR1003779     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> SRR1003780     2  0.1557      0.919 0.000 0.944 0.000 0.056
#> SRR1003781     1  0.0188      0.972 0.996 0.000 0.000 0.004
#> SRR1003784     1  0.2861      0.883 0.888 0.000 0.096 0.016
#> SRR1003785     1  0.6060      0.267 0.572 0.028 0.388 0.012
#> SRR1003786     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> SRR1003783     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> SRR1003787     1  0.0188      0.972 0.996 0.000 0.004 0.000
#> SRR1003788     1  0.0779      0.967 0.980 0.000 0.004 0.016
#> SRR1003789     2  0.0000      0.951 0.000 1.000 0.000 0.000
#> SRR1003790     1  0.0188      0.972 0.996 0.000 0.004 0.000
#> SRR1003791     1  0.3325      0.854 0.864 0.000 0.024 0.112
#> SRR1003792     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> SRR1003793     1  0.0188      0.972 0.996 0.000 0.000 0.004
#> SRR1003794     1  0.0188      0.972 0.996 0.000 0.000 0.004
#> SRR1003795     4  0.5186      0.000 0.000 0.016 0.344 0.640
#> SRR1003796     3  0.2335      0.588 0.000 0.060 0.920 0.020
#> SRR1003797     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> SRR1003798     1  0.0188      0.972 0.996 0.000 0.000 0.004
#> SRR1003799     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> SRR1003800     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> SRR1003801     1  0.0524      0.970 0.988 0.000 0.004 0.008
#> SRR1003802     1  0.1356      0.951 0.960 0.000 0.008 0.032
#> SRR1003803     1  0.0524      0.970 0.988 0.000 0.004 0.008
#> SRR1003804     1  0.0188      0.972 0.996 0.000 0.000 0.004
#> SRR1003805     1  0.0188      0.972 0.996 0.000 0.004 0.000
#> SRR1003806     1  0.0188      0.972 0.996 0.000 0.004 0.000
#> SRR1003807     1  0.2111      0.929 0.932 0.000 0.024 0.044
#> SRR1003809     1  0.1042      0.962 0.972 0.000 0.008 0.020
#> SRR1003808     1  0.1174      0.958 0.968 0.000 0.012 0.020
#> SRR1003810     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> SRR1003811     1  0.0188      0.972 0.996 0.000 0.000 0.004
#> SRR1003812     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> SRR1003813     1  0.4635      0.633 0.720 0.000 0.268 0.012
#> SRR1003814     1  0.0376      0.971 0.992 0.000 0.004 0.004
#> SRR1003815     1  0.0188      0.972 0.996 0.000 0.004 0.000
#> SRR1003816     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> SRR1003817     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> SRR1003818     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> SRR1003819     1  0.0804      0.965 0.980 0.000 0.008 0.012
#> SRR1003820     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> SRR1003821     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> SRR1003822     1  0.2742      0.896 0.900 0.000 0.076 0.024
#> SRR1003824     1  0.0188      0.972 0.996 0.000 0.000 0.004
#> SRR1003823     1  0.0188      0.972 0.996 0.000 0.000 0.004
#> SRR1003825     1  0.1059      0.963 0.972 0.000 0.012 0.016
#> SRR1003826     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> SRR1003827     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> SRR1003828     1  0.0469      0.969 0.988 0.000 0.000 0.012
#> SRR1003829     1  0.0188      0.972 0.996 0.000 0.000 0.004
#> SRR1003830     1  0.0188      0.972 0.996 0.000 0.004 0.000
#> SRR1003831     1  0.0376      0.972 0.992 0.000 0.004 0.004
#> SRR1003832     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> SRR1003833     1  0.0188      0.972 0.996 0.000 0.000 0.004
#> SRR1003834     1  0.0469      0.970 0.988 0.000 0.000 0.012
#> SRR1003836     1  0.0524      0.971 0.988 0.000 0.004 0.008
#> SRR1003835     1  0.0376      0.971 0.992 0.000 0.004 0.004
#> SRR1003838     1  0.5457      0.591 0.700 0.004 0.252 0.044
#> SRR1003837     1  0.0336      0.972 0.992 0.000 0.000 0.008
#> SRR1003839     1  0.0524      0.971 0.988 0.000 0.004 0.008
#> SRR1003840     1  0.3198      0.875 0.880 0.000 0.040 0.080
#> SRR1003841     2  0.3172      0.820 0.000 0.840 0.000 0.160
#> SRR1003842     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> SRR1003844     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> SRR1003845     1  0.1042      0.960 0.972 0.000 0.008 0.020
#> SRR1003846     1  0.0188      0.972 0.996 0.000 0.004 0.000
#> SRR1003847     1  0.0672      0.969 0.984 0.000 0.008 0.008
#> SRR1003848     1  0.1398      0.946 0.956 0.000 0.040 0.004
#> SRR1003849     3  0.4418      0.201 0.172 0.024 0.796 0.008
#> SRR1003850     1  0.0524      0.971 0.988 0.000 0.004 0.008
#> SRR1003851     1  0.4851      0.763 0.796 0.020 0.140 0.044
#> SRR1003852     1  0.0524      0.970 0.988 0.000 0.004 0.008
#> SRR1003853     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> SRR1003854     1  0.0188      0.972 0.996 0.000 0.000 0.004
#> SRR1003843     1  0.2521      0.914 0.916 0.004 0.020 0.060
#> SRR1003855     1  0.0188      0.972 0.996 0.000 0.000 0.004
#> SRR1003856     1  0.3107      0.880 0.884 0.000 0.080 0.036
#> SRR1003857     1  0.0188      0.972 0.996 0.000 0.000 0.004
#> SRR1003858     1  0.0188      0.972 0.996 0.000 0.000 0.004
#> SRR1003859     1  0.0188      0.972 0.996 0.000 0.004 0.000
#> SRR1003860     1  0.0188      0.972 0.996 0.000 0.000 0.004
#> SRR1003861     1  0.0188      0.972 0.996 0.000 0.000 0.004
#> SRR1003862     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> SRR1003863     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> SRR1003864     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> SRR1003865     1  0.0804      0.966 0.980 0.000 0.012 0.008
#> SRR1003866     1  0.0188      0.972 0.996 0.000 0.000 0.004
#> SRR1003867     1  0.0779      0.966 0.980 0.000 0.004 0.016

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4 p5
#> SRR1003755     1  0.0162      0.959 0.996 0.000 0.000 0.004 NA
#> SRR1003756     1  0.0162      0.959 0.996 0.000 0.000 0.004 NA
#> SRR1003757     1  0.0162      0.959 0.996 0.000 0.000 0.004 NA
#> SRR1003758     1  0.0162      0.959 0.996 0.000 0.000 0.004 NA
#> SRR1003759     1  0.1857      0.924 0.928 0.000 0.004 0.008 NA
#> SRR1003760     2  0.2230      0.889 0.000 0.884 0.000 0.000 NA
#> SRR1003761     2  0.2230      0.889 0.000 0.884 0.000 0.000 NA
#> SRR1003762     2  0.2020      0.898 0.000 0.900 0.000 0.000 NA
#> SRR1003763     2  0.2020      0.898 0.000 0.900 0.000 0.000 NA
#> SRR1003764     2  0.2020      0.898 0.000 0.900 0.000 0.000 NA
#> SRR1003765     2  0.0000      0.926 0.000 1.000 0.000 0.000 NA
#> SRR1003766     2  0.0000      0.926 0.000 1.000 0.000 0.000 NA
#> SRR1003767     2  0.0000      0.926 0.000 1.000 0.000 0.000 NA
#> SRR1003768     2  0.0000      0.926 0.000 1.000 0.000 0.000 NA
#> SRR1003769     2  0.0000      0.926 0.000 1.000 0.000 0.000 NA
#> SRR1003770     2  0.0000      0.926 0.000 1.000 0.000 0.000 NA
#> SRR1003771     2  0.0000      0.926 0.000 1.000 0.000 0.000 NA
#> SRR1003773     3  0.1117      0.719 0.000 0.016 0.964 0.020 NA
#> SRR1003772     1  0.0162      0.959 0.996 0.000 0.000 0.004 NA
#> SRR1003774     1  0.0740      0.959 0.980 0.000 0.004 0.008 NA
#> SRR1003775     1  0.0000      0.959 1.000 0.000 0.000 0.000 NA
#> SRR1003776     1  0.0162      0.959 0.996 0.000 0.000 0.000 NA
#> SRR1003777     1  0.0324      0.959 0.992 0.000 0.000 0.004 NA
#> SRR1003778     3  0.0794      0.731 0.000 0.028 0.972 0.000 NA
#> SRR1003779     1  0.0162      0.959 0.996 0.000 0.000 0.004 NA
#> SRR1003780     2  0.2329      0.837 0.000 0.876 0.000 0.000 NA
#> SRR1003781     1  0.0771      0.955 0.976 0.000 0.004 0.000 NA
#> SRR1003784     1  0.3340      0.856 0.856 0.000 0.088 0.012 NA
#> SRR1003785     1  0.5893      0.251 0.552 0.012 0.380 0.032 NA
#> SRR1003786     1  0.0000      0.959 1.000 0.000 0.000 0.000 NA
#> SRR1003783     1  0.0162      0.959 0.996 0.000 0.000 0.004 NA
#> SRR1003787     1  0.0451      0.959 0.988 0.000 0.000 0.004 NA
#> SRR1003788     1  0.1365      0.942 0.952 0.000 0.004 0.004 NA
#> SRR1003789     2  0.0000      0.926 0.000 1.000 0.000 0.000 NA
#> SRR1003790     1  0.0162      0.959 0.996 0.000 0.000 0.004 NA
#> SRR1003791     1  0.4959      0.689 0.736 0.000 0.012 0.108 NA
#> SRR1003792     1  0.0451      0.959 0.988 0.000 0.004 0.000 NA
#> SRR1003793     1  0.0162      0.959 0.996 0.000 0.000 0.000 NA
#> SRR1003794     1  0.0451      0.958 0.988 0.000 0.000 0.004 NA
#> SRR1003795     4  0.0404      0.000 0.000 0.000 0.012 0.988 NA
#> SRR1003796     3  0.0794      0.731 0.000 0.028 0.972 0.000 NA
#> SRR1003797     1  0.0324      0.959 0.992 0.000 0.000 0.004 NA
#> SRR1003798     1  0.0162      0.959 0.996 0.000 0.000 0.000 NA
#> SRR1003799     1  0.0000      0.959 1.000 0.000 0.000 0.000 NA
#> SRR1003800     1  0.0000      0.959 1.000 0.000 0.000 0.000 NA
#> SRR1003801     1  0.0771      0.955 0.976 0.000 0.004 0.000 NA
#> SRR1003802     1  0.1836      0.927 0.932 0.000 0.000 0.032 NA
#> SRR1003803     1  0.0912      0.954 0.972 0.000 0.000 0.012 NA
#> SRR1003804     1  0.0162      0.959 0.996 0.000 0.000 0.000 NA
#> SRR1003805     1  0.0451      0.958 0.988 0.000 0.000 0.008 NA
#> SRR1003806     1  0.0162      0.959 0.996 0.000 0.000 0.004 NA
#> SRR1003807     1  0.2551      0.906 0.904 0.000 0.012 0.044 NA
#> SRR1003809     1  0.1569      0.942 0.948 0.000 0.008 0.012 NA
#> SRR1003808     1  0.1990      0.919 0.920 0.000 0.004 0.008 NA
#> SRR1003810     1  0.0324      0.959 0.992 0.000 0.000 0.004 NA
#> SRR1003811     1  0.0451      0.959 0.988 0.000 0.000 0.004 NA
#> SRR1003812     1  0.0162      0.959 0.996 0.000 0.000 0.004 NA
#> SRR1003813     1  0.5012      0.614 0.696 0.000 0.244 0.032 NA
#> SRR1003814     1  0.0671      0.956 0.980 0.000 0.004 0.000 NA
#> SRR1003815     1  0.0451      0.959 0.988 0.000 0.000 0.004 NA
#> SRR1003816     1  0.0162      0.959 0.996 0.000 0.000 0.004 NA
#> SRR1003817     1  0.0162      0.959 0.996 0.000 0.000 0.004 NA
#> SRR1003818     1  0.0162      0.959 0.996 0.000 0.000 0.004 NA
#> SRR1003819     1  0.2069      0.909 0.912 0.000 0.012 0.000 NA
#> SRR1003820     1  0.0162      0.959 0.996 0.000 0.000 0.004 NA
#> SRR1003821     1  0.0162      0.959 0.996 0.000 0.000 0.004 NA
#> SRR1003822     1  0.3113      0.869 0.868 0.000 0.080 0.008 NA
#> SRR1003824     1  0.0162      0.959 0.996 0.000 0.000 0.000 NA
#> SRR1003823     1  0.0162      0.959 0.996 0.000 0.000 0.004 NA
#> SRR1003825     1  0.1200      0.950 0.964 0.000 0.008 0.012 NA
#> SRR1003826     1  0.0000      0.959 1.000 0.000 0.000 0.000 NA
#> SRR1003827     1  0.0324      0.959 0.992 0.000 0.000 0.004 NA
#> SRR1003828     1  0.1012      0.950 0.968 0.000 0.000 0.012 NA
#> SRR1003829     1  0.0290      0.959 0.992 0.000 0.000 0.000 NA
#> SRR1003830     1  0.0162      0.959 0.996 0.000 0.000 0.004 NA
#> SRR1003831     1  0.0671      0.957 0.980 0.000 0.004 0.000 NA
#> SRR1003832     1  0.0000      0.959 1.000 0.000 0.000 0.000 NA
#> SRR1003833     1  0.0290      0.959 0.992 0.000 0.000 0.000 NA
#> SRR1003834     1  0.0833      0.954 0.976 0.000 0.004 0.004 NA
#> SRR1003836     1  0.0854      0.958 0.976 0.000 0.004 0.008 NA
#> SRR1003835     1  0.0912      0.954 0.972 0.000 0.000 0.012 NA
#> SRR1003838     1  0.5547      0.574 0.676 0.000 0.224 0.068 NA
#> SRR1003837     1  0.0613      0.958 0.984 0.000 0.004 0.004 NA
#> SRR1003839     1  0.0771      0.956 0.976 0.000 0.004 0.000 NA
#> SRR1003840     1  0.4210      0.384 0.588 0.000 0.000 0.000 NA
#> SRR1003841     2  0.4114      0.482 0.000 0.624 0.000 0.000 NA
#> SRR1003842     1  0.0000      0.959 1.000 0.000 0.000 0.000 NA
#> SRR1003844     1  0.0324      0.959 0.992 0.000 0.000 0.004 NA
#> SRR1003845     1  0.2474      0.897 0.896 0.000 0.012 0.008 NA
#> SRR1003846     1  0.0324      0.959 0.992 0.000 0.000 0.004 NA
#> SRR1003847     1  0.0693      0.956 0.980 0.000 0.000 0.008 NA
#> SRR1003848     1  0.1808      0.929 0.936 0.000 0.040 0.004 NA
#> SRR1003849     3  0.4243      0.367 0.160 0.008 0.788 0.032 NA
#> SRR1003850     1  0.0451      0.959 0.988 0.000 0.000 0.008 NA
#> SRR1003851     1  0.5071      0.732 0.760 0.012 0.136 0.048 NA
#> SRR1003852     1  0.1492      0.943 0.948 0.000 0.004 0.008 NA
#> SRR1003853     1  0.0613      0.959 0.984 0.000 0.004 0.004 NA
#> SRR1003854     1  0.0451      0.958 0.988 0.000 0.004 0.000 NA
#> SRR1003843     1  0.2804      0.888 0.884 0.000 0.004 0.068 NA
#> SRR1003855     1  0.0451      0.958 0.988 0.000 0.004 0.000 NA
#> SRR1003856     1  0.3658      0.850 0.848 0.000 0.068 0.040 NA
#> SRR1003857     1  0.0162      0.959 0.996 0.000 0.000 0.000 NA
#> SRR1003858     1  0.0451      0.959 0.988 0.000 0.000 0.004 NA
#> SRR1003859     1  0.0162      0.959 0.996 0.000 0.000 0.004 NA
#> SRR1003860     1  0.0162      0.959 0.996 0.000 0.000 0.000 NA
#> SRR1003861     1  0.0451      0.958 0.988 0.000 0.004 0.000 NA
#> SRR1003862     1  0.0162      0.959 0.996 0.000 0.000 0.004 NA
#> SRR1003863     1  0.0162      0.959 0.996 0.000 0.000 0.004 NA
#> SRR1003864     1  0.0162      0.959 0.996 0.000 0.000 0.004 NA
#> SRR1003865     1  0.1399      0.944 0.952 0.000 0.000 0.020 NA
#> SRR1003866     1  0.0771      0.955 0.976 0.000 0.004 0.000 NA
#> SRR1003867     1  0.1153      0.950 0.964 0.000 0.004 0.008 NA

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3 p4    p5    p6
#> SRR1003755     1  0.0260     0.9367 0.992 0.000 0.000 NA 0.000 0.008
#> SRR1003756     1  0.0260     0.9367 0.992 0.000 0.000 NA 0.000 0.008
#> SRR1003757     1  0.0260     0.9367 0.992 0.000 0.000 NA 0.000 0.008
#> SRR1003758     1  0.0260     0.9367 0.992 0.000 0.000 NA 0.000 0.008
#> SRR1003759     1  0.2300     0.8479 0.856 0.000 0.000 NA 0.000 0.144
#> SRR1003760     2  0.2558     0.8489 0.000 0.840 0.000 NA 0.000 0.004
#> SRR1003761     2  0.2558     0.8489 0.000 0.840 0.000 NA 0.000 0.004
#> SRR1003762     2  0.1814     0.8859 0.000 0.900 0.000 NA 0.000 0.000
#> SRR1003763     2  0.1814     0.8859 0.000 0.900 0.000 NA 0.000 0.000
#> SRR1003764     2  0.1814     0.8859 0.000 0.900 0.000 NA 0.000 0.000
#> SRR1003765     2  0.0000     0.9159 0.000 1.000 0.000 NA 0.000 0.000
#> SRR1003766     2  0.0000     0.9159 0.000 1.000 0.000 NA 0.000 0.000
#> SRR1003767     2  0.0000     0.9159 0.000 1.000 0.000 NA 0.000 0.000
#> SRR1003768     2  0.0000     0.9159 0.000 1.000 0.000 NA 0.000 0.000
#> SRR1003769     2  0.0000     0.9159 0.000 1.000 0.000 NA 0.000 0.000
#> SRR1003770     2  0.0000     0.9159 0.000 1.000 0.000 NA 0.000 0.000
#> SRR1003771     2  0.0000     0.9159 0.000 1.000 0.000 NA 0.000 0.000
#> SRR1003773     3  0.0777     0.7444 0.000 0.004 0.972 NA 0.024 0.000
#> SRR1003772     1  0.0260     0.9367 0.992 0.000 0.000 NA 0.000 0.008
#> SRR1003774     1  0.0937     0.9347 0.960 0.000 0.000 NA 0.000 0.040
#> SRR1003775     1  0.0146     0.9364 0.996 0.000 0.000 NA 0.000 0.004
#> SRR1003776     1  0.0260     0.9366 0.992 0.000 0.000 NA 0.000 0.008
#> SRR1003777     1  0.0363     0.9369 0.988 0.000 0.000 NA 0.000 0.012
#> SRR1003778     3  0.0405     0.7544 0.000 0.008 0.988 NA 0.000 0.000
#> SRR1003779     1  0.0363     0.9370 0.988 0.000 0.000 NA 0.000 0.012
#> SRR1003780     2  0.2092     0.8287 0.000 0.876 0.000 NA 0.000 0.000
#> SRR1003781     1  0.1082     0.9275 0.956 0.000 0.000 NA 0.000 0.040
#> SRR1003784     1  0.3514     0.7956 0.824 0.000 0.076 NA 0.016 0.084
#> SRR1003785     1  0.5489    -0.0157 0.520 0.000 0.388 NA 0.028 0.064
#> SRR1003786     1  0.0146     0.9364 0.996 0.000 0.000 NA 0.000 0.004
#> SRR1003783     1  0.0260     0.9367 0.992 0.000 0.000 NA 0.000 0.008
#> SRR1003787     1  0.0632     0.9375 0.976 0.000 0.000 NA 0.000 0.024
#> SRR1003788     1  0.1714     0.8937 0.908 0.000 0.000 NA 0.000 0.092
#> SRR1003789     2  0.0000     0.9159 0.000 1.000 0.000 NA 0.000 0.000
#> SRR1003790     1  0.0146     0.9373 0.996 0.000 0.000 NA 0.000 0.004
#> SRR1003791     1  0.5408    -0.1077 0.508 0.000 0.004 NA 0.088 0.396
#> SRR1003792     1  0.0692     0.9373 0.976 0.000 0.000 NA 0.000 0.020
#> SRR1003793     1  0.0363     0.9369 0.988 0.000 0.000 NA 0.000 0.012
#> SRR1003794     1  0.0547     0.9373 0.980 0.000 0.000 NA 0.000 0.020
#> SRR1003795     5  0.0000     0.0000 0.000 0.000 0.000 NA 1.000 0.000
#> SRR1003796     3  0.0405     0.7544 0.000 0.008 0.988 NA 0.000 0.000
#> SRR1003797     1  0.0363     0.9369 0.988 0.000 0.000 NA 0.000 0.012
#> SRR1003798     1  0.0458     0.9376 0.984 0.000 0.000 NA 0.000 0.016
#> SRR1003799     1  0.0146     0.9364 0.996 0.000 0.000 NA 0.000 0.004
#> SRR1003800     1  0.0260     0.9371 0.992 0.000 0.000 NA 0.000 0.008
#> SRR1003801     1  0.1285     0.9235 0.944 0.000 0.000 NA 0.000 0.052
#> SRR1003802     1  0.2170     0.8746 0.888 0.000 0.000 NA 0.012 0.100
#> SRR1003803     1  0.0935     0.9311 0.964 0.000 0.000 NA 0.004 0.032
#> SRR1003804     1  0.0260     0.9377 0.992 0.000 0.000 NA 0.000 0.008
#> SRR1003805     1  0.0458     0.9372 0.984 0.000 0.000 NA 0.000 0.016
#> SRR1003806     1  0.0458     0.9374 0.984 0.000 0.000 NA 0.000 0.016
#> SRR1003807     1  0.2998     0.8389 0.852 0.000 0.008 NA 0.020 0.112
#> SRR1003809     1  0.1728     0.9093 0.924 0.000 0.004 NA 0.008 0.064
#> SRR1003808     1  0.2593     0.8340 0.844 0.000 0.000 NA 0.000 0.148
#> SRR1003810     1  0.0458     0.9369 0.984 0.000 0.000 NA 0.000 0.016
#> SRR1003811     1  0.0713     0.9369 0.972 0.000 0.000 NA 0.000 0.028
#> SRR1003812     1  0.0260     0.9368 0.992 0.000 0.000 NA 0.000 0.008
#> SRR1003813     1  0.5539     0.4061 0.632 0.000 0.232 NA 0.024 0.104
#> SRR1003814     1  0.1152     0.9268 0.952 0.000 0.000 NA 0.000 0.044
#> SRR1003815     1  0.0713     0.9365 0.972 0.000 0.000 NA 0.000 0.028
#> SRR1003816     1  0.0260     0.9368 0.992 0.000 0.000 NA 0.000 0.008
#> SRR1003817     1  0.0363     0.9370 0.988 0.000 0.000 NA 0.000 0.012
#> SRR1003818     1  0.0260     0.9368 0.992 0.000 0.000 NA 0.000 0.008
#> SRR1003819     1  0.2890     0.8164 0.844 0.000 0.004 NA 0.000 0.128
#> SRR1003820     1  0.0260     0.9368 0.992 0.000 0.000 NA 0.000 0.008
#> SRR1003821     1  0.0260     0.9367 0.992 0.000 0.000 NA 0.000 0.008
#> SRR1003822     1  0.3161     0.8205 0.840 0.000 0.076 NA 0.004 0.080
#> SRR1003824     1  0.0363     0.9377 0.988 0.000 0.000 NA 0.000 0.012
#> SRR1003823     1  0.0260     0.9376 0.992 0.000 0.000 NA 0.000 0.008
#> SRR1003825     1  0.1204     0.9222 0.944 0.000 0.000 NA 0.000 0.056
#> SRR1003826     1  0.0146     0.9364 0.996 0.000 0.000 NA 0.000 0.004
#> SRR1003827     1  0.0458     0.9369 0.984 0.000 0.000 NA 0.000 0.016
#> SRR1003828     1  0.1411     0.9177 0.936 0.000 0.000 NA 0.004 0.060
#> SRR1003829     1  0.0458     0.9368 0.984 0.000 0.000 NA 0.000 0.016
#> SRR1003830     1  0.0260     0.9376 0.992 0.000 0.000 NA 0.000 0.008
#> SRR1003831     1  0.1075     0.9295 0.952 0.000 0.000 NA 0.000 0.048
#> SRR1003832     1  0.0146     0.9364 0.996 0.000 0.000 NA 0.000 0.004
#> SRR1003833     1  0.0632     0.9371 0.976 0.000 0.000 NA 0.000 0.024
#> SRR1003834     1  0.1075     0.9259 0.952 0.000 0.000 NA 0.000 0.048
#> SRR1003836     1  0.1267     0.9252 0.940 0.000 0.000 NA 0.000 0.060
#> SRR1003835     1  0.1411     0.9199 0.936 0.000 0.000 NA 0.004 0.060
#> SRR1003838     1  0.5848     0.3518 0.616 0.000 0.220 NA 0.052 0.108
#> SRR1003837     1  0.0713     0.9355 0.972 0.000 0.000 NA 0.000 0.028
#> SRR1003839     1  0.1007     0.9299 0.956 0.000 0.000 NA 0.000 0.044
#> SRR1003840     6  0.5735     0.0000 0.168 0.000 0.000 NA 0.000 0.444
#> SRR1003841     2  0.3823     0.3520 0.000 0.564 0.000 NA 0.000 0.000
#> SRR1003842     1  0.0260     0.9374 0.992 0.000 0.000 NA 0.000 0.008
#> SRR1003844     1  0.0458     0.9365 0.984 0.000 0.000 NA 0.000 0.016
#> SRR1003845     1  0.3380     0.7620 0.804 0.000 0.004 NA 0.004 0.164
#> SRR1003846     1  0.0363     0.9380 0.988 0.000 0.000 NA 0.000 0.012
#> SRR1003847     1  0.0935     0.9339 0.964 0.000 0.000 NA 0.004 0.032
#> SRR1003848     1  0.2000     0.9002 0.916 0.000 0.032 NA 0.004 0.048
#> SRR1003849     3  0.3923     0.2379 0.148 0.000 0.788 NA 0.028 0.032
#> SRR1003850     1  0.0632     0.9368 0.976 0.000 0.000 NA 0.000 0.024
#> SRR1003851     1  0.4771     0.6301 0.720 0.000 0.148 NA 0.028 0.104
#> SRR1003852     1  0.2092     0.8726 0.876 0.000 0.000 NA 0.000 0.124
#> SRR1003853     1  0.0937     0.9344 0.960 0.000 0.000 NA 0.000 0.040
#> SRR1003854     1  0.0547     0.9366 0.980 0.000 0.000 NA 0.000 0.020
#> SRR1003843     1  0.3268     0.7932 0.812 0.000 0.000 NA 0.044 0.144
#> SRR1003855     1  0.0713     0.9363 0.972 0.000 0.000 NA 0.000 0.028
#> SRR1003856     1  0.3745     0.7751 0.808 0.000 0.060 NA 0.024 0.108
#> SRR1003857     1  0.0547     0.9380 0.980 0.000 0.000 NA 0.000 0.020
#> SRR1003858     1  0.0713     0.9369 0.972 0.000 0.000 NA 0.000 0.028
#> SRR1003859     1  0.0260     0.9376 0.992 0.000 0.000 NA 0.000 0.008
#> SRR1003860     1  0.0260     0.9368 0.992 0.000 0.000 NA 0.000 0.008
#> SRR1003861     1  0.0713     0.9359 0.972 0.000 0.000 NA 0.000 0.028
#> SRR1003862     1  0.0260     0.9367 0.992 0.000 0.000 NA 0.000 0.008
#> SRR1003863     1  0.0260     0.9367 0.992 0.000 0.000 NA 0.000 0.008
#> SRR1003864     1  0.0260     0.9368 0.992 0.000 0.000 NA 0.000 0.008
#> SRR1003865     1  0.1908     0.8974 0.900 0.000 0.000 NA 0.004 0.096
#> SRR1003866     1  0.1141     0.9240 0.948 0.000 0.000 NA 0.000 0.052
#> SRR1003867     1  0.1219     0.9269 0.948 0.000 0.000 NA 0.000 0.048

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 9166 rows and 112 columns.
#>   Top rows (917, 1834, 2750, 3666, 4583) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.987       0.995         0.2655 0.740   0.740
#> 3 3 0.808           0.917       0.956         0.6804 0.793   0.723
#> 4 4 0.508           0.697       0.807         0.3438 0.747   0.561
#> 5 5 0.561           0.706       0.827         0.1257 0.908   0.764
#> 6 6 0.562           0.477       0.772         0.0623 0.933   0.813

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1003755     1   0.000      0.995 1.000 0.000
#> SRR1003756     1   0.000      0.995 1.000 0.000
#> SRR1003757     1   0.000      0.995 1.000 0.000
#> SRR1003758     1   0.000      0.995 1.000 0.000
#> SRR1003759     1   0.000      0.995 1.000 0.000
#> SRR1003760     2   0.000      0.996 0.000 1.000
#> SRR1003761     2   0.000      0.996 0.000 1.000
#> SRR1003762     2   0.000      0.996 0.000 1.000
#> SRR1003763     2   0.000      0.996 0.000 1.000
#> SRR1003764     2   0.000      0.996 0.000 1.000
#> SRR1003765     2   0.000      0.996 0.000 1.000
#> SRR1003766     2   0.000      0.996 0.000 1.000
#> SRR1003767     2   0.000      0.996 0.000 1.000
#> SRR1003768     2   0.000      0.996 0.000 1.000
#> SRR1003769     2   0.000      0.996 0.000 1.000
#> SRR1003770     2   0.000      0.996 0.000 1.000
#> SRR1003771     2   0.000      0.996 0.000 1.000
#> SRR1003773     1   0.991      0.196 0.556 0.444
#> SRR1003772     1   0.000      0.995 1.000 0.000
#> SRR1003774     1   0.000      0.995 1.000 0.000
#> SRR1003775     1   0.000      0.995 1.000 0.000
#> SRR1003776     1   0.000      0.995 1.000 0.000
#> SRR1003777     1   0.000      0.995 1.000 0.000
#> SRR1003778     2   0.000      0.996 0.000 1.000
#> SRR1003779     1   0.000      0.995 1.000 0.000
#> SRR1003780     2   0.000      0.996 0.000 1.000
#> SRR1003781     1   0.000      0.995 1.000 0.000
#> SRR1003784     1   0.000      0.995 1.000 0.000
#> SRR1003785     1   0.000      0.995 1.000 0.000
#> SRR1003786     1   0.000      0.995 1.000 0.000
#> SRR1003783     1   0.000      0.995 1.000 0.000
#> SRR1003787     1   0.000      0.995 1.000 0.000
#> SRR1003788     1   0.000      0.995 1.000 0.000
#> SRR1003789     2   0.000      0.996 0.000 1.000
#> SRR1003790     1   0.000      0.995 1.000 0.000
#> SRR1003791     1   0.000      0.995 1.000 0.000
#> SRR1003792     1   0.000      0.995 1.000 0.000
#> SRR1003793     1   0.000      0.995 1.000 0.000
#> SRR1003794     1   0.000      0.995 1.000 0.000
#> SRR1003795     1   0.141      0.975 0.980 0.020
#> SRR1003796     2   0.327      0.936 0.060 0.940
#> SRR1003797     1   0.000      0.995 1.000 0.000
#> SRR1003798     1   0.000      0.995 1.000 0.000
#> SRR1003799     1   0.000      0.995 1.000 0.000
#> SRR1003800     1   0.000      0.995 1.000 0.000
#> SRR1003801     1   0.000      0.995 1.000 0.000
#> SRR1003802     1   0.000      0.995 1.000 0.000
#> SRR1003803     1   0.000      0.995 1.000 0.000
#> SRR1003804     1   0.000      0.995 1.000 0.000
#> SRR1003805     1   0.000      0.995 1.000 0.000
#> SRR1003806     1   0.000      0.995 1.000 0.000
#> SRR1003807     1   0.000      0.995 1.000 0.000
#> SRR1003809     1   0.000      0.995 1.000 0.000
#> SRR1003808     1   0.000      0.995 1.000 0.000
#> SRR1003810     1   0.000      0.995 1.000 0.000
#> SRR1003811     1   0.000      0.995 1.000 0.000
#> SRR1003812     1   0.000      0.995 1.000 0.000
#> SRR1003813     1   0.000      0.995 1.000 0.000
#> SRR1003814     1   0.000      0.995 1.000 0.000
#> SRR1003815     1   0.000      0.995 1.000 0.000
#> SRR1003816     1   0.000      0.995 1.000 0.000
#> SRR1003817     1   0.000      0.995 1.000 0.000
#> SRR1003818     1   0.000      0.995 1.000 0.000
#> SRR1003819     1   0.000      0.995 1.000 0.000
#> SRR1003820     1   0.000      0.995 1.000 0.000
#> SRR1003821     1   0.000      0.995 1.000 0.000
#> SRR1003822     1   0.000      0.995 1.000 0.000
#> SRR1003824     1   0.000      0.995 1.000 0.000
#> SRR1003823     1   0.000      0.995 1.000 0.000
#> SRR1003825     1   0.000      0.995 1.000 0.000
#> SRR1003826     1   0.000      0.995 1.000 0.000
#> SRR1003827     1   0.000      0.995 1.000 0.000
#> SRR1003828     1   0.000      0.995 1.000 0.000
#> SRR1003829     1   0.000      0.995 1.000 0.000
#> SRR1003830     1   0.000      0.995 1.000 0.000
#> SRR1003831     1   0.000      0.995 1.000 0.000
#> SRR1003832     1   0.000      0.995 1.000 0.000
#> SRR1003833     1   0.000      0.995 1.000 0.000
#> SRR1003834     1   0.000      0.995 1.000 0.000
#> SRR1003836     1   0.000      0.995 1.000 0.000
#> SRR1003835     1   0.000      0.995 1.000 0.000
#> SRR1003838     1   0.000      0.995 1.000 0.000
#> SRR1003837     1   0.000      0.995 1.000 0.000
#> SRR1003839     1   0.000      0.995 1.000 0.000
#> SRR1003840     1   0.000      0.995 1.000 0.000
#> SRR1003841     2   0.000      0.996 0.000 1.000
#> SRR1003842     1   0.000      0.995 1.000 0.000
#> SRR1003844     1   0.000      0.995 1.000 0.000
#> SRR1003845     1   0.000      0.995 1.000 0.000
#> SRR1003846     1   0.000      0.995 1.000 0.000
#> SRR1003847     1   0.000      0.995 1.000 0.000
#> SRR1003848     1   0.000      0.995 1.000 0.000
#> SRR1003849     1   0.000      0.995 1.000 0.000
#> SRR1003850     1   0.000      0.995 1.000 0.000
#> SRR1003851     1   0.000      0.995 1.000 0.000
#> SRR1003852     1   0.000      0.995 1.000 0.000
#> SRR1003853     1   0.000      0.995 1.000 0.000
#> SRR1003854     1   0.000      0.995 1.000 0.000
#> SRR1003843     1   0.000      0.995 1.000 0.000
#> SRR1003855     1   0.000      0.995 1.000 0.000
#> SRR1003856     1   0.000      0.995 1.000 0.000
#> SRR1003857     1   0.000      0.995 1.000 0.000
#> SRR1003858     1   0.000      0.995 1.000 0.000
#> SRR1003859     1   0.000      0.995 1.000 0.000
#> SRR1003860     1   0.000      0.995 1.000 0.000
#> SRR1003861     1   0.000      0.995 1.000 0.000
#> SRR1003862     1   0.000      0.995 1.000 0.000
#> SRR1003863     1   0.000      0.995 1.000 0.000
#> SRR1003864     1   0.000      0.995 1.000 0.000
#> SRR1003865     1   0.000      0.995 1.000 0.000
#> SRR1003866     1   0.000      0.995 1.000 0.000
#> SRR1003867     1   0.000      0.995 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1003755     1  0.1411      0.943 0.964 0.000 0.036
#> SRR1003756     1  0.1411      0.943 0.964 0.000 0.036
#> SRR1003757     1  0.1411      0.943 0.964 0.000 0.036
#> SRR1003758     1  0.1411      0.943 0.964 0.000 0.036
#> SRR1003759     1  0.3412      0.858 0.876 0.000 0.124
#> SRR1003760     2  0.3551      0.888 0.000 0.868 0.132
#> SRR1003761     2  0.4974      0.768 0.000 0.764 0.236
#> SRR1003762     2  0.1964      0.944 0.000 0.944 0.056
#> SRR1003763     3  0.4796      0.526 0.000 0.220 0.780
#> SRR1003764     2  0.1964      0.944 0.000 0.944 0.056
#> SRR1003765     2  0.0000      0.961 0.000 1.000 0.000
#> SRR1003766     2  0.0592      0.958 0.000 0.988 0.012
#> SRR1003767     2  0.0000      0.961 0.000 1.000 0.000
#> SRR1003768     2  0.0592      0.958 0.000 0.988 0.012
#> SRR1003769     2  0.0592      0.958 0.000 0.988 0.012
#> SRR1003770     2  0.0000      0.961 0.000 1.000 0.000
#> SRR1003771     2  0.0000      0.961 0.000 1.000 0.000
#> SRR1003773     3  0.2050      0.787 0.028 0.020 0.952
#> SRR1003772     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003774     1  0.0892      0.961 0.980 0.000 0.020
#> SRR1003775     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003776     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003777     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003778     3  0.1860      0.736 0.000 0.052 0.948
#> SRR1003779     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003780     2  0.0000      0.961 0.000 1.000 0.000
#> SRR1003781     1  0.0237      0.970 0.996 0.000 0.004
#> SRR1003784     3  0.4654      0.786 0.208 0.000 0.792
#> SRR1003785     3  0.1753      0.813 0.048 0.000 0.952
#> SRR1003786     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003783     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003787     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003788     1  0.1289      0.953 0.968 0.000 0.032
#> SRR1003789     2  0.1964      0.944 0.000 0.944 0.056
#> SRR1003790     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003791     3  0.4654      0.786 0.208 0.000 0.792
#> SRR1003792     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003793     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003794     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003795     3  0.1753      0.813 0.048 0.000 0.952
#> SRR1003796     3  0.2116      0.759 0.012 0.040 0.948
#> SRR1003797     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003798     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003799     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003800     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003801     1  0.3340      0.863 0.880 0.000 0.120
#> SRR1003802     1  0.4062      0.801 0.836 0.000 0.164
#> SRR1003803     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003804     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003805     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003806     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003807     1  0.5098      0.653 0.752 0.000 0.248
#> SRR1003809     1  0.4002      0.808 0.840 0.000 0.160
#> SRR1003808     1  0.2796      0.896 0.908 0.000 0.092
#> SRR1003810     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003811     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003812     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003813     3  0.4002      0.809 0.160 0.000 0.840
#> SRR1003814     1  0.0237      0.970 0.996 0.000 0.004
#> SRR1003815     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003816     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003817     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003818     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003819     3  0.4750      0.777 0.216 0.000 0.784
#> SRR1003820     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003821     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003822     3  0.4702      0.782 0.212 0.000 0.788
#> SRR1003824     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003823     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003825     1  0.1860      0.937 0.948 0.000 0.052
#> SRR1003826     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003827     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003828     1  0.0237      0.970 0.996 0.000 0.004
#> SRR1003829     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003830     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003831     1  0.1031      0.959 0.976 0.000 0.024
#> SRR1003832     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003833     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003834     1  0.1529      0.947 0.960 0.000 0.040
#> SRR1003836     1  0.4291      0.771 0.820 0.000 0.180
#> SRR1003835     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003838     3  0.1753      0.813 0.048 0.000 0.952
#> SRR1003837     1  0.1163      0.956 0.972 0.000 0.028
#> SRR1003839     1  0.1964      0.933 0.944 0.000 0.056
#> SRR1003840     3  0.5968      0.566 0.364 0.000 0.636
#> SRR1003841     2  0.0000      0.961 0.000 1.000 0.000
#> SRR1003842     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003844     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003845     3  0.2261      0.819 0.068 0.000 0.932
#> SRR1003846     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003847     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003848     1  0.2537      0.906 0.920 0.000 0.080
#> SRR1003849     3  0.1753      0.813 0.048 0.000 0.952
#> SRR1003850     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003851     3  0.2165      0.819 0.064 0.000 0.936
#> SRR1003852     1  0.5254      0.613 0.736 0.000 0.264
#> SRR1003853     1  0.0892      0.961 0.980 0.000 0.020
#> SRR1003854     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003843     3  0.4062      0.808 0.164 0.000 0.836
#> SRR1003855     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003856     3  0.4702      0.782 0.212 0.000 0.788
#> SRR1003857     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003858     1  0.0747      0.964 0.984 0.000 0.016
#> SRR1003859     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003860     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003861     1  0.0892      0.961 0.980 0.000 0.020
#> SRR1003862     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003863     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003864     1  0.0000      0.972 1.000 0.000 0.000
#> SRR1003865     1  0.1643      0.944 0.956 0.000 0.044
#> SRR1003866     1  0.0747      0.964 0.984 0.000 0.016
#> SRR1003867     1  0.0747      0.964 0.984 0.000 0.016

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1003755     1  0.2589   0.750211 0.884 0.000 0.000 0.116
#> SRR1003756     1  0.2589   0.750211 0.884 0.000 0.000 0.116
#> SRR1003757     1  0.2589   0.750211 0.884 0.000 0.000 0.116
#> SRR1003758     1  0.2589   0.750211 0.884 0.000 0.000 0.116
#> SRR1003759     4  0.4284   0.778814 0.224 0.000 0.012 0.764
#> SRR1003760     2  0.6928   0.531425 0.000 0.556 0.308 0.136
#> SRR1003761     2  0.6961   0.517102 0.000 0.548 0.316 0.136
#> SRR1003762     2  0.3793   0.841709 0.000 0.844 0.112 0.044
#> SRR1003763     3  0.6791  -0.178454 0.000 0.392 0.508 0.100
#> SRR1003764     2  0.3793   0.841709 0.000 0.844 0.112 0.044
#> SRR1003765     2  0.0469   0.896148 0.000 0.988 0.000 0.012
#> SRR1003766     2  0.0707   0.894125 0.000 0.980 0.000 0.020
#> SRR1003767     2  0.0336   0.896439 0.000 0.992 0.000 0.008
#> SRR1003768     2  0.0707   0.894125 0.000 0.980 0.000 0.020
#> SRR1003769     2  0.0707   0.894125 0.000 0.980 0.000 0.020
#> SRR1003770     2  0.0469   0.896148 0.000 0.988 0.000 0.012
#> SRR1003771     2  0.0336   0.896439 0.000 0.992 0.000 0.008
#> SRR1003773     3  0.0469   0.743476 0.000 0.000 0.988 0.012
#> SRR1003772     1  0.0188   0.859935 0.996 0.000 0.000 0.004
#> SRR1003774     4  0.4977   0.536873 0.460 0.000 0.000 0.540
#> SRR1003775     1  0.0188   0.860732 0.996 0.000 0.000 0.004
#> SRR1003776     1  0.4843  -0.000421 0.604 0.000 0.000 0.396
#> SRR1003777     1  0.0000   0.860769 1.000 0.000 0.000 0.000
#> SRR1003778     3  0.0188   0.734597 0.000 0.004 0.996 0.000
#> SRR1003779     1  0.0336   0.859575 0.992 0.000 0.000 0.008
#> SRR1003780     2  0.0524   0.895916 0.000 0.988 0.008 0.004
#> SRR1003781     1  0.5112  -0.191360 0.560 0.000 0.004 0.436
#> SRR1003784     4  0.6732   0.381347 0.108 0.000 0.336 0.556
#> SRR1003785     3  0.2469   0.780102 0.000 0.000 0.892 0.108
#> SRR1003786     1  0.0188   0.859730 0.996 0.000 0.000 0.004
#> SRR1003783     1  0.0000   0.860769 1.000 0.000 0.000 0.000
#> SRR1003787     1  0.0921   0.850456 0.972 0.000 0.000 0.028
#> SRR1003788     4  0.4560   0.803441 0.296 0.000 0.004 0.700
#> SRR1003789     2  0.3734   0.843881 0.000 0.848 0.108 0.044
#> SRR1003790     1  0.0188   0.860732 0.996 0.000 0.000 0.004
#> SRR1003791     4  0.5540   0.589264 0.108 0.000 0.164 0.728
#> SRR1003792     1  0.3400   0.668835 0.820 0.000 0.000 0.180
#> SRR1003793     1  0.0188   0.860732 0.996 0.000 0.000 0.004
#> SRR1003794     1  0.0707   0.857013 0.980 0.000 0.000 0.020
#> SRR1003795     3  0.2408   0.780282 0.000 0.000 0.896 0.104
#> SRR1003796     3  0.0524   0.740580 0.000 0.004 0.988 0.008
#> SRR1003797     1  0.0336   0.859579 0.992 0.000 0.000 0.008
#> SRR1003798     1  0.2831   0.758855 0.876 0.000 0.004 0.120
#> SRR1003799     1  0.0188   0.860194 0.996 0.000 0.000 0.004
#> SRR1003800     1  0.3539   0.666686 0.820 0.000 0.004 0.176
#> SRR1003801     4  0.4594   0.808377 0.280 0.000 0.008 0.712
#> SRR1003802     4  0.5383   0.800377 0.292 0.000 0.036 0.672
#> SRR1003803     1  0.1004   0.854204 0.972 0.000 0.004 0.024
#> SRR1003804     1  0.0592   0.858563 0.984 0.000 0.000 0.016
#> SRR1003805     1  0.0188   0.860732 0.996 0.000 0.000 0.004
#> SRR1003806     1  0.0336   0.860018 0.992 0.000 0.000 0.008
#> SRR1003807     4  0.5732   0.798500 0.264 0.000 0.064 0.672
#> SRR1003809     4  0.4855   0.809758 0.268 0.000 0.020 0.712
#> SRR1003808     4  0.4401   0.807509 0.272 0.000 0.004 0.724
#> SRR1003810     1  0.3726   0.606863 0.788 0.000 0.000 0.212
#> SRR1003811     1  0.2589   0.768703 0.884 0.000 0.000 0.116
#> SRR1003812     1  0.0188   0.859935 0.996 0.000 0.000 0.004
#> SRR1003813     3  0.6009   0.119218 0.040 0.000 0.492 0.468
#> SRR1003814     1  0.4994  -0.347585 0.520 0.000 0.000 0.480
#> SRR1003815     1  0.0336   0.859798 0.992 0.000 0.000 0.008
#> SRR1003816     1  0.0188   0.859935 0.996 0.000 0.000 0.004
#> SRR1003817     1  0.0000   0.860769 1.000 0.000 0.000 0.000
#> SRR1003818     1  0.0188   0.860924 0.996 0.000 0.000 0.004
#> SRR1003819     4  0.5209   0.612577 0.104 0.000 0.140 0.756
#> SRR1003820     1  0.0000   0.860769 1.000 0.000 0.000 0.000
#> SRR1003821     1  0.0000   0.860769 1.000 0.000 0.000 0.000
#> SRR1003822     4  0.6764   0.402568 0.112 0.000 0.332 0.556
#> SRR1003824     1  0.4072   0.488871 0.748 0.000 0.000 0.252
#> SRR1003823     1  0.0336   0.860018 0.992 0.000 0.000 0.008
#> SRR1003825     4  0.4509   0.805502 0.288 0.000 0.004 0.708
#> SRR1003826     1  0.0188   0.860732 0.996 0.000 0.000 0.004
#> SRR1003827     1  0.1389   0.834533 0.952 0.000 0.000 0.048
#> SRR1003828     4  0.5004   0.706093 0.392 0.000 0.004 0.604
#> SRR1003829     1  0.1302   0.840565 0.956 0.000 0.000 0.044
#> SRR1003830     1  0.0336   0.860018 0.992 0.000 0.000 0.008
#> SRR1003831     4  0.4699   0.788228 0.320 0.000 0.004 0.676
#> SRR1003832     1  0.0469   0.858717 0.988 0.000 0.000 0.012
#> SRR1003833     4  0.4961   0.598329 0.448 0.000 0.000 0.552
#> SRR1003834     4  0.4500   0.792402 0.316 0.000 0.000 0.684
#> SRR1003836     4  0.4927   0.809731 0.264 0.000 0.024 0.712
#> SRR1003835     4  0.5155   0.566409 0.468 0.000 0.004 0.528
#> SRR1003838     3  0.2814   0.769537 0.000 0.000 0.868 0.132
#> SRR1003837     4  0.4661   0.756529 0.348 0.000 0.000 0.652
#> SRR1003839     4  0.4535   0.805061 0.292 0.000 0.004 0.704
#> SRR1003840     4  0.4789   0.722296 0.172 0.000 0.056 0.772
#> SRR1003841     2  0.0524   0.895916 0.000 0.988 0.008 0.004
#> SRR1003842     1  0.0336   0.860018 0.992 0.000 0.000 0.008
#> SRR1003844     1  0.0000   0.860769 1.000 0.000 0.000 0.000
#> SRR1003845     4  0.4353   0.366497 0.012 0.000 0.232 0.756
#> SRR1003846     1  0.0188   0.860194 0.996 0.000 0.000 0.004
#> SRR1003847     4  0.5137   0.597930 0.452 0.000 0.004 0.544
#> SRR1003848     4  0.5663   0.602193 0.440 0.000 0.024 0.536
#> SRR1003849     3  0.2216   0.779910 0.000 0.000 0.908 0.092
#> SRR1003850     1  0.5060  -0.161719 0.584 0.000 0.004 0.412
#> SRR1003851     3  0.4304   0.648969 0.000 0.000 0.716 0.284
#> SRR1003852     4  0.4501   0.769803 0.212 0.000 0.024 0.764
#> SRR1003853     4  0.4585   0.777998 0.332 0.000 0.000 0.668
#> SRR1003854     1  0.3907   0.567960 0.768 0.000 0.000 0.232
#> SRR1003843     4  0.5464   0.463582 0.064 0.000 0.228 0.708
#> SRR1003855     1  0.3444   0.676116 0.816 0.000 0.000 0.184
#> SRR1003856     4  0.6428   0.513870 0.112 0.000 0.264 0.624
#> SRR1003857     1  0.1474   0.834235 0.948 0.000 0.000 0.052
#> SRR1003858     1  0.4998  -0.378387 0.512 0.000 0.000 0.488
#> SRR1003859     1  0.0336   0.860018 0.992 0.000 0.000 0.008
#> SRR1003860     1  0.0921   0.851165 0.972 0.000 0.000 0.028
#> SRR1003861     4  0.4790   0.715173 0.380 0.000 0.000 0.620
#> SRR1003862     1  0.0188   0.860732 0.996 0.000 0.000 0.004
#> SRR1003863     1  0.0188   0.860194 0.996 0.000 0.000 0.004
#> SRR1003864     1  0.0000   0.860769 1.000 0.000 0.000 0.000
#> SRR1003865     4  0.4720   0.784831 0.324 0.000 0.004 0.672
#> SRR1003866     1  0.5137  -0.255622 0.544 0.000 0.004 0.452
#> SRR1003867     1  0.5060  -0.073552 0.584 0.000 0.004 0.412

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1003755     1  0.2989     0.7954 0.872 0.000 0.004 0.080 0.044
#> SRR1003756     1  0.2989     0.7954 0.872 0.000 0.004 0.080 0.044
#> SRR1003757     1  0.2989     0.7954 0.872 0.000 0.004 0.080 0.044
#> SRR1003758     1  0.2989     0.7954 0.872 0.000 0.004 0.080 0.044
#> SRR1003759     5  0.4094     0.7498 0.084 0.000 0.000 0.128 0.788
#> SRR1003760     4  0.5887     0.7818 0.000 0.404 0.088 0.504 0.004
#> SRR1003761     4  0.5954     0.7950 0.000 0.392 0.096 0.508 0.004
#> SRR1003762     2  0.4886    -0.2737 0.000 0.596 0.032 0.372 0.000
#> SRR1003763     4  0.6893     0.6639 0.000 0.324 0.276 0.396 0.004
#> SRR1003764     2  0.4886    -0.2737 0.000 0.596 0.032 0.372 0.000
#> SRR1003765     2  0.0290     0.7770 0.000 0.992 0.000 0.008 0.000
#> SRR1003766     2  0.0613     0.7743 0.000 0.984 0.004 0.008 0.004
#> SRR1003767     2  0.0609     0.7742 0.000 0.980 0.000 0.020 0.000
#> SRR1003768     2  0.0613     0.7743 0.000 0.984 0.004 0.008 0.004
#> SRR1003769     2  0.0613     0.7743 0.000 0.984 0.004 0.008 0.004
#> SRR1003770     2  0.0290     0.7770 0.000 0.992 0.000 0.008 0.000
#> SRR1003771     2  0.0609     0.7742 0.000 0.980 0.000 0.020 0.000
#> SRR1003773     3  0.0693     0.8517 0.000 0.000 0.980 0.008 0.012
#> SRR1003772     1  0.0162     0.8833 0.996 0.000 0.000 0.004 0.000
#> SRR1003774     5  0.4350     0.6558 0.268 0.000 0.000 0.028 0.704
#> SRR1003775     1  0.0290     0.8839 0.992 0.000 0.000 0.008 0.000
#> SRR1003776     5  0.4924     0.3047 0.420 0.000 0.000 0.028 0.552
#> SRR1003777     1  0.0162     0.8833 0.996 0.000 0.000 0.004 0.000
#> SRR1003778     3  0.0880     0.8284 0.000 0.000 0.968 0.032 0.000
#> SRR1003779     1  0.1942     0.8599 0.920 0.000 0.000 0.012 0.068
#> SRR1003780     2  0.1041     0.7570 0.000 0.964 0.004 0.032 0.000
#> SRR1003781     5  0.5922     0.2300 0.420 0.000 0.000 0.104 0.476
#> SRR1003784     5  0.5484     0.6227 0.032 0.000 0.148 0.112 0.708
#> SRR1003785     3  0.1626     0.8629 0.000 0.000 0.940 0.016 0.044
#> SRR1003786     1  0.0290     0.8838 0.992 0.000 0.000 0.008 0.000
#> SRR1003783     1  0.0162     0.8833 0.996 0.000 0.000 0.004 0.000
#> SRR1003787     1  0.2462     0.8252 0.880 0.000 0.000 0.008 0.112
#> SRR1003788     5  0.2110     0.7645 0.072 0.000 0.000 0.016 0.912
#> SRR1003789     2  0.4958    -0.3726 0.000 0.568 0.032 0.400 0.000
#> SRR1003790     1  0.0703     0.8835 0.976 0.000 0.000 0.024 0.000
#> SRR1003791     5  0.5321     0.6270 0.032 0.000 0.048 0.236 0.684
#> SRR1003792     1  0.4622     0.6034 0.692 0.000 0.000 0.044 0.264
#> SRR1003793     1  0.1741     0.8747 0.936 0.000 0.000 0.040 0.024
#> SRR1003794     1  0.2074     0.8676 0.920 0.000 0.000 0.044 0.036
#> SRR1003795     3  0.3267     0.8327 0.000 0.000 0.844 0.112 0.044
#> SRR1003796     3  0.0992     0.8382 0.000 0.000 0.968 0.024 0.008
#> SRR1003797     1  0.1082     0.8800 0.964 0.000 0.000 0.008 0.028
#> SRR1003798     1  0.4449     0.7090 0.752 0.000 0.000 0.080 0.168
#> SRR1003799     1  0.0566     0.8846 0.984 0.000 0.000 0.012 0.004
#> SRR1003800     1  0.5035     0.5408 0.672 0.000 0.000 0.076 0.252
#> SRR1003801     5  0.2540     0.7705 0.088 0.000 0.000 0.024 0.888
#> SRR1003802     5  0.5587     0.7093 0.100 0.000 0.028 0.184 0.688
#> SRR1003803     1  0.2438     0.8587 0.900 0.000 0.000 0.060 0.040
#> SRR1003804     1  0.2209     0.8642 0.912 0.000 0.000 0.032 0.056
#> SRR1003805     1  0.1331     0.8820 0.952 0.000 0.000 0.040 0.008
#> SRR1003806     1  0.0955     0.8827 0.968 0.000 0.000 0.028 0.004
#> SRR1003807     5  0.5974     0.6899 0.076 0.000 0.044 0.240 0.640
#> SRR1003809     5  0.3051     0.7541 0.060 0.000 0.000 0.076 0.864
#> SRR1003808     5  0.4322     0.7535 0.088 0.000 0.000 0.144 0.768
#> SRR1003810     1  0.4292     0.5763 0.704 0.000 0.000 0.024 0.272
#> SRR1003811     1  0.4065     0.6219 0.720 0.000 0.000 0.016 0.264
#> SRR1003812     1  0.0290     0.8831 0.992 0.000 0.000 0.008 0.000
#> SRR1003813     5  0.6140     0.0646 0.000 0.000 0.372 0.136 0.492
#> SRR1003814     5  0.5396     0.4028 0.376 0.000 0.000 0.064 0.560
#> SRR1003815     1  0.0566     0.8841 0.984 0.000 0.000 0.012 0.004
#> SRR1003816     1  0.0290     0.8831 0.992 0.000 0.000 0.008 0.000
#> SRR1003817     1  0.0162     0.8833 0.996 0.000 0.000 0.004 0.000
#> SRR1003818     1  0.0898     0.8820 0.972 0.000 0.000 0.008 0.020
#> SRR1003819     5  0.4473     0.7050 0.044 0.000 0.024 0.160 0.772
#> SRR1003820     1  0.0671     0.8826 0.980 0.000 0.000 0.004 0.016
#> SRR1003821     1  0.0290     0.8831 0.992 0.000 0.000 0.008 0.000
#> SRR1003822     5  0.5567     0.6297 0.032 0.000 0.152 0.116 0.700
#> SRR1003824     1  0.4996     0.0783 0.548 0.000 0.000 0.032 0.420
#> SRR1003823     1  0.0865     0.8831 0.972 0.000 0.000 0.024 0.004
#> SRR1003825     5  0.2928     0.7571 0.064 0.000 0.000 0.064 0.872
#> SRR1003826     1  0.0703     0.8845 0.976 0.000 0.000 0.024 0.000
#> SRR1003827     1  0.2233     0.8502 0.904 0.000 0.000 0.016 0.080
#> SRR1003828     5  0.5010     0.7275 0.148 0.000 0.000 0.144 0.708
#> SRR1003829     1  0.2983     0.8407 0.868 0.000 0.000 0.056 0.076
#> SRR1003830     1  0.0771     0.8837 0.976 0.000 0.000 0.020 0.004
#> SRR1003831     5  0.2448     0.7668 0.088 0.000 0.000 0.020 0.892
#> SRR1003832     1  0.0898     0.8836 0.972 0.000 0.000 0.020 0.008
#> SRR1003833     5  0.3656     0.7527 0.168 0.000 0.000 0.032 0.800
#> SRR1003834     5  0.2871     0.7695 0.088 0.000 0.000 0.040 0.872
#> SRR1003836     5  0.2193     0.7616 0.060 0.000 0.000 0.028 0.912
#> SRR1003835     5  0.4964     0.7223 0.204 0.000 0.000 0.096 0.700
#> SRR1003838     3  0.2962     0.8370 0.000 0.000 0.868 0.084 0.048
#> SRR1003837     5  0.2574     0.7657 0.112 0.000 0.000 0.012 0.876
#> SRR1003839     5  0.2482     0.7661 0.084 0.000 0.000 0.024 0.892
#> SRR1003840     5  0.4100     0.7191 0.052 0.000 0.004 0.160 0.784
#> SRR1003841     2  0.1124     0.7552 0.000 0.960 0.004 0.036 0.000
#> SRR1003842     1  0.0865     0.8831 0.972 0.000 0.000 0.024 0.004
#> SRR1003844     1  0.0290     0.8845 0.992 0.000 0.000 0.008 0.000
#> SRR1003845     5  0.4750     0.6185 0.012 0.000 0.052 0.208 0.728
#> SRR1003846     1  0.0771     0.8841 0.976 0.000 0.000 0.020 0.004
#> SRR1003847     5  0.4618     0.7258 0.208 0.000 0.000 0.068 0.724
#> SRR1003848     5  0.5888     0.6848 0.164 0.000 0.028 0.144 0.664
#> SRR1003849     3  0.1043     0.8634 0.000 0.000 0.960 0.000 0.040
#> SRR1003850     5  0.5821     0.5560 0.312 0.000 0.004 0.104 0.580
#> SRR1003851     3  0.5312     0.5245 0.000 0.000 0.648 0.096 0.256
#> SRR1003852     5  0.3970     0.7388 0.056 0.000 0.000 0.156 0.788
#> SRR1003853     5  0.2416     0.7669 0.100 0.000 0.000 0.012 0.888
#> SRR1003854     1  0.4867     0.1639 0.544 0.000 0.000 0.024 0.432
#> SRR1003843     5  0.5951     0.5787 0.024 0.000 0.100 0.248 0.628
#> SRR1003855     1  0.4812     0.3770 0.600 0.000 0.000 0.028 0.372
#> SRR1003856     5  0.5325     0.6431 0.032 0.000 0.116 0.128 0.724
#> SRR1003857     1  0.3283     0.7922 0.832 0.000 0.000 0.028 0.140
#> SRR1003858     5  0.4538     0.4415 0.364 0.000 0.000 0.016 0.620
#> SRR1003859     1  0.0865     0.8831 0.972 0.000 0.000 0.024 0.004
#> SRR1003860     1  0.2300     0.8633 0.908 0.000 0.000 0.052 0.040
#> SRR1003861     5  0.2997     0.7554 0.148 0.000 0.000 0.012 0.840
#> SRR1003862     1  0.0162     0.8837 0.996 0.000 0.000 0.004 0.000
#> SRR1003863     1  0.0324     0.8825 0.992 0.000 0.000 0.004 0.004
#> SRR1003864     1  0.0807     0.8840 0.976 0.000 0.000 0.012 0.012
#> SRR1003865     5  0.4797     0.7531 0.104 0.000 0.000 0.172 0.724
#> SRR1003866     5  0.6047     0.2859 0.400 0.000 0.000 0.120 0.480
#> SRR1003867     1  0.6100    -0.1510 0.448 0.000 0.000 0.124 0.428

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1003755     1  0.3569    0.71761 0.792 0.000 0.000 0.164 0.008 0.036
#> SRR1003756     1  0.3569    0.71761 0.792 0.000 0.000 0.164 0.008 0.036
#> SRR1003757     1  0.3569    0.71761 0.792 0.000 0.000 0.164 0.008 0.036
#> SRR1003758     1  0.3569    0.71761 0.792 0.000 0.000 0.164 0.008 0.036
#> SRR1003759     5  0.5602    0.00647 0.024 0.000 0.000 0.216 0.612 0.148
#> SRR1003760     6  0.4614    0.75839 0.000 0.296 0.024 0.020 0.004 0.656
#> SRR1003761     6  0.4559    0.75751 0.000 0.284 0.024 0.020 0.004 0.668
#> SRR1003762     2  0.4097   -0.56590 0.000 0.500 0.008 0.000 0.000 0.492
#> SRR1003763     6  0.6485    0.64528 0.000 0.256 0.176 0.040 0.008 0.520
#> SRR1003764     2  0.4097   -0.56590 0.000 0.500 0.008 0.000 0.000 0.492
#> SRR1003765     2  0.0458    0.78574 0.000 0.984 0.000 0.016 0.000 0.000
#> SRR1003766     2  0.0692    0.78292 0.000 0.976 0.000 0.004 0.000 0.020
#> SRR1003767     2  0.1320    0.78169 0.000 0.948 0.000 0.016 0.000 0.036
#> SRR1003768     2  0.0692    0.78292 0.000 0.976 0.000 0.004 0.000 0.020
#> SRR1003769     2  0.0692    0.78292 0.000 0.976 0.000 0.004 0.000 0.020
#> SRR1003770     2  0.0458    0.78574 0.000 0.984 0.000 0.016 0.000 0.000
#> SRR1003771     2  0.1320    0.78169 0.000 0.948 0.000 0.016 0.000 0.036
#> SRR1003773     3  0.0547    0.81234 0.000 0.000 0.980 0.000 0.000 0.020
#> SRR1003772     1  0.0520    0.85678 0.984 0.000 0.000 0.008 0.000 0.008
#> SRR1003774     5  0.4884    0.32908 0.280 0.000 0.000 0.044 0.648 0.028
#> SRR1003775     1  0.0717    0.85854 0.976 0.000 0.000 0.016 0.000 0.008
#> SRR1003776     5  0.4727    0.24848 0.408 0.000 0.000 0.028 0.552 0.012
#> SRR1003777     1  0.0622    0.85607 0.980 0.000 0.000 0.008 0.000 0.012
#> SRR1003778     3  0.0937    0.80380 0.000 0.000 0.960 0.000 0.000 0.040
#> SRR1003779     1  0.2147    0.83703 0.896 0.000 0.000 0.020 0.084 0.000
#> SRR1003780     2  0.1644    0.74637 0.000 0.920 0.000 0.004 0.000 0.076
#> SRR1003781     5  0.6516    0.15400 0.396 0.000 0.000 0.164 0.396 0.044
#> SRR1003784     5  0.5699   -0.43999 0.004 0.000 0.100 0.280 0.588 0.028
#> SRR1003785     3  0.2822    0.80406 0.000 0.000 0.856 0.108 0.032 0.004
#> SRR1003786     1  0.0622    0.85607 0.980 0.000 0.000 0.008 0.000 0.012
#> SRR1003783     1  0.0508    0.85697 0.984 0.000 0.000 0.004 0.000 0.012
#> SRR1003787     1  0.3183    0.71850 0.788 0.000 0.000 0.004 0.200 0.008
#> SRR1003788     5  0.1679    0.29452 0.028 0.000 0.000 0.028 0.936 0.008
#> SRR1003789     6  0.4128    0.42402 0.000 0.488 0.004 0.004 0.000 0.504
#> SRR1003790     1  0.1152    0.85944 0.952 0.000 0.000 0.044 0.004 0.000
#> SRR1003791     5  0.5964   -0.46881 0.004 0.000 0.012 0.376 0.472 0.136
#> SRR1003792     1  0.4862    0.55224 0.648 0.000 0.000 0.068 0.272 0.012
#> SRR1003793     1  0.2380    0.84522 0.892 0.000 0.000 0.068 0.036 0.004
#> SRR1003794     1  0.2571    0.83361 0.876 0.000 0.000 0.064 0.060 0.000
#> SRR1003795     3  0.4423    0.75825 0.000 0.000 0.736 0.180 0.024 0.060
#> SRR1003796     3  0.0865    0.80564 0.000 0.000 0.964 0.000 0.000 0.036
#> SRR1003797     1  0.1493    0.85149 0.936 0.000 0.000 0.004 0.056 0.004
#> SRR1003798     1  0.4957    0.59465 0.664 0.000 0.000 0.148 0.184 0.004
#> SRR1003799     1  0.1053    0.86160 0.964 0.000 0.000 0.020 0.012 0.004
#> SRR1003800     1  0.5336    0.39774 0.588 0.000 0.000 0.168 0.244 0.000
#> SRR1003801     5  0.2058    0.32028 0.048 0.000 0.000 0.012 0.916 0.024
#> SRR1003802     5  0.4903   -0.44331 0.040 0.000 0.008 0.380 0.568 0.004
#> SRR1003803     1  0.3350    0.80557 0.828 0.000 0.000 0.112 0.048 0.012
#> SRR1003804     1  0.3384    0.76969 0.812 0.000 0.000 0.068 0.120 0.000
#> SRR1003805     1  0.1820    0.85510 0.924 0.000 0.000 0.056 0.012 0.008
#> SRR1003806     1  0.1672    0.85755 0.932 0.000 0.000 0.048 0.016 0.004
#> SRR1003807     4  0.5524    0.52107 0.044 0.000 0.008 0.480 0.440 0.028
#> SRR1003809     5  0.2964    0.08894 0.012 0.000 0.000 0.140 0.836 0.012
#> SRR1003808     5  0.6086   -0.05732 0.040 0.000 0.000 0.276 0.544 0.140
#> SRR1003810     1  0.4180    0.43518 0.632 0.000 0.000 0.008 0.348 0.012
#> SRR1003811     1  0.4041    0.29830 0.584 0.000 0.000 0.004 0.408 0.004
#> SRR1003812     1  0.0881    0.85570 0.972 0.000 0.000 0.008 0.008 0.012
#> SRR1003813     5  0.6492   -0.49355 0.000 0.000 0.232 0.260 0.472 0.036
#> SRR1003814     5  0.5995    0.26674 0.324 0.000 0.000 0.124 0.520 0.032
#> SRR1003815     1  0.1442    0.85687 0.944 0.000 0.000 0.012 0.040 0.004
#> SRR1003816     1  0.0622    0.85607 0.980 0.000 0.000 0.008 0.000 0.012
#> SRR1003817     1  0.0622    0.85607 0.980 0.000 0.000 0.008 0.000 0.012
#> SRR1003818     1  0.0777    0.86155 0.972 0.000 0.000 0.004 0.024 0.000
#> SRR1003819     5  0.5420   -0.15339 0.004 0.000 0.008 0.272 0.600 0.116
#> SRR1003820     1  0.1082    0.85881 0.956 0.000 0.000 0.000 0.040 0.004
#> SRR1003821     1  0.0622    0.85607 0.980 0.000 0.000 0.008 0.000 0.012
#> SRR1003822     5  0.5813   -0.46715 0.004 0.000 0.100 0.292 0.572 0.032
#> SRR1003824     5  0.4735    0.18522 0.432 0.000 0.000 0.048 0.520 0.000
#> SRR1003823     1  0.1616    0.85602 0.932 0.000 0.000 0.048 0.020 0.000
#> SRR1003825     5  0.2996    0.09757 0.016 0.000 0.000 0.144 0.832 0.008
#> SRR1003826     1  0.0891    0.86087 0.968 0.000 0.000 0.024 0.008 0.000
#> SRR1003827     1  0.2826    0.80539 0.844 0.000 0.000 0.028 0.128 0.000
#> SRR1003828     5  0.5004   -0.31525 0.084 0.000 0.000 0.348 0.568 0.000
#> SRR1003829     1  0.3017    0.81409 0.848 0.000 0.000 0.052 0.096 0.004
#> SRR1003830     1  0.1552    0.85855 0.940 0.000 0.000 0.036 0.020 0.004
#> SRR1003831     5  0.2313    0.30750 0.036 0.000 0.000 0.044 0.904 0.016
#> SRR1003832     1  0.1346    0.86167 0.952 0.000 0.000 0.024 0.016 0.008
#> SRR1003833     5  0.2925    0.34974 0.148 0.000 0.000 0.016 0.832 0.004
#> SRR1003834     5  0.2106    0.26049 0.032 0.000 0.000 0.064 0.904 0.000
#> SRR1003836     5  0.1434    0.25630 0.012 0.000 0.000 0.028 0.948 0.012
#> SRR1003835     5  0.5165    0.12541 0.128 0.000 0.000 0.176 0.672 0.024
#> SRR1003838     3  0.3824    0.77354 0.000 0.000 0.780 0.164 0.040 0.016
#> SRR1003837     5  0.2831    0.34537 0.084 0.000 0.000 0.032 0.868 0.016
#> SRR1003839     5  0.2125    0.28810 0.028 0.000 0.000 0.028 0.916 0.028
#> SRR1003840     5  0.5607   -0.23070 0.004 0.000 0.000 0.316 0.532 0.148
#> SRR1003841     2  0.1644    0.74637 0.000 0.920 0.000 0.004 0.000 0.076
#> SRR1003842     1  0.1552    0.85861 0.940 0.000 0.000 0.036 0.020 0.004
#> SRR1003844     1  0.0000    0.85937 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003845     5  0.5882   -0.27020 0.000 0.000 0.016 0.308 0.524 0.152
#> SRR1003846     1  0.1562    0.86000 0.940 0.000 0.000 0.032 0.024 0.004
#> SRR1003847     5  0.4963    0.19687 0.236 0.000 0.000 0.112 0.648 0.004
#> SRR1003848     5  0.5392   -0.40978 0.084 0.000 0.008 0.356 0.548 0.004
#> SRR1003849     3  0.0520    0.81785 0.000 0.000 0.984 0.008 0.008 0.000
#> SRR1003850     5  0.5742    0.05072 0.232 0.000 0.000 0.224 0.540 0.004
#> SRR1003851     3  0.5983    0.16893 0.000 0.000 0.520 0.248 0.220 0.012
#> SRR1003852     5  0.5422   -0.22448 0.004 0.000 0.000 0.340 0.540 0.116
#> SRR1003853     5  0.2036    0.33550 0.064 0.000 0.000 0.016 0.912 0.008
#> SRR1003854     5  0.4242    0.21461 0.412 0.000 0.000 0.012 0.572 0.004
#> SRR1003843     4  0.5834    0.59082 0.000 0.000 0.056 0.496 0.388 0.060
#> SRR1003855     5  0.3907    0.22462 0.408 0.000 0.000 0.004 0.588 0.000
#> SRR1003856     5  0.5304   -0.44694 0.004 0.000 0.060 0.312 0.600 0.024
#> SRR1003857     1  0.3388    0.76198 0.792 0.000 0.000 0.036 0.172 0.000
#> SRR1003858     5  0.3693    0.33304 0.280 0.000 0.000 0.008 0.708 0.004
#> SRR1003859     1  0.1478    0.85951 0.944 0.000 0.000 0.032 0.020 0.004
#> SRR1003860     1  0.2655    0.83597 0.876 0.000 0.000 0.060 0.060 0.004
#> SRR1003861     5  0.2664    0.35830 0.136 0.000 0.000 0.016 0.848 0.000
#> SRR1003862     1  0.0622    0.85607 0.980 0.000 0.000 0.008 0.000 0.012
#> SRR1003863     1  0.0862    0.86136 0.972 0.000 0.000 0.008 0.016 0.004
#> SRR1003864     1  0.1265    0.85809 0.948 0.000 0.000 0.008 0.044 0.000
#> SRR1003865     5  0.6217   -0.18520 0.060 0.000 0.000 0.344 0.496 0.100
#> SRR1003866     1  0.7006   -0.20453 0.384 0.000 0.000 0.220 0.324 0.072
#> SRR1003867     1  0.6633    0.11488 0.472 0.000 0.000 0.212 0.264 0.052

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 9166 rows and 112 columns.
#>   Top rows (917, 1834, 2750, 3666, 4583) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.962       0.984         0.4366 0.560   0.560
#> 3 3 0.523           0.706       0.845         0.3594 0.861   0.755
#> 4 4 0.427           0.487       0.730         0.1537 0.920   0.827
#> 5 5 0.425           0.358       0.655         0.0805 0.944   0.871
#> 6 6 0.440           0.354       0.604         0.0534 0.908   0.780

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1003755     1  0.0000      0.992 1.000 0.000
#> SRR1003756     1  0.0000      0.992 1.000 0.000
#> SRR1003757     1  0.0000      0.992 1.000 0.000
#> SRR1003758     1  0.0000      0.992 1.000 0.000
#> SRR1003759     2  0.0000      0.966 0.000 1.000
#> SRR1003760     2  0.0000      0.966 0.000 1.000
#> SRR1003761     2  0.0000      0.966 0.000 1.000
#> SRR1003762     2  0.0000      0.966 0.000 1.000
#> SRR1003763     2  0.0000      0.966 0.000 1.000
#> SRR1003764     2  0.0000      0.966 0.000 1.000
#> SRR1003765     2  0.0000      0.966 0.000 1.000
#> SRR1003766     2  0.0000      0.966 0.000 1.000
#> SRR1003767     2  0.0000      0.966 0.000 1.000
#> SRR1003768     2  0.0000      0.966 0.000 1.000
#> SRR1003769     2  0.0000      0.966 0.000 1.000
#> SRR1003770     2  0.0000      0.966 0.000 1.000
#> SRR1003771     2  0.0000      0.966 0.000 1.000
#> SRR1003773     2  0.0000      0.966 0.000 1.000
#> SRR1003772     1  0.0000      0.992 1.000 0.000
#> SRR1003774     1  0.0000      0.992 1.000 0.000
#> SRR1003775     1  0.0000      0.992 1.000 0.000
#> SRR1003776     1  0.0000      0.992 1.000 0.000
#> SRR1003777     1  0.0000      0.992 1.000 0.000
#> SRR1003778     2  0.0000      0.966 0.000 1.000
#> SRR1003779     1  0.0000      0.992 1.000 0.000
#> SRR1003780     2  0.0000      0.966 0.000 1.000
#> SRR1003781     1  0.0000      0.992 1.000 0.000
#> SRR1003784     2  0.4022      0.899 0.080 0.920
#> SRR1003785     2  0.0000      0.966 0.000 1.000
#> SRR1003786     1  0.0000      0.992 1.000 0.000
#> SRR1003783     1  0.0000      0.992 1.000 0.000
#> SRR1003787     1  0.0000      0.992 1.000 0.000
#> SRR1003788     1  0.0376      0.988 0.996 0.004
#> SRR1003789     2  0.0000      0.966 0.000 1.000
#> SRR1003790     1  0.0000      0.992 1.000 0.000
#> SRR1003791     2  0.0000      0.966 0.000 1.000
#> SRR1003792     1  0.0000      0.992 1.000 0.000
#> SRR1003793     1  0.0000      0.992 1.000 0.000
#> SRR1003794     1  0.0000      0.992 1.000 0.000
#> SRR1003795     2  0.0000      0.966 0.000 1.000
#> SRR1003796     2  0.0000      0.966 0.000 1.000
#> SRR1003797     1  0.0000      0.992 1.000 0.000
#> SRR1003798     1  0.0000      0.992 1.000 0.000
#> SRR1003799     1  0.0000      0.992 1.000 0.000
#> SRR1003800     1  0.0000      0.992 1.000 0.000
#> SRR1003801     1  0.3274      0.932 0.940 0.060
#> SRR1003802     1  0.0376      0.988 0.996 0.004
#> SRR1003803     1  0.0000      0.992 1.000 0.000
#> SRR1003804     1  0.0000      0.992 1.000 0.000
#> SRR1003805     1  0.0000      0.992 1.000 0.000
#> SRR1003806     1  0.0000      0.992 1.000 0.000
#> SRR1003807     1  0.9635      0.340 0.612 0.388
#> SRR1003809     1  0.3733      0.917 0.928 0.072
#> SRR1003808     2  0.9866      0.257 0.432 0.568
#> SRR1003810     1  0.0000      0.992 1.000 0.000
#> SRR1003811     1  0.0000      0.992 1.000 0.000
#> SRR1003812     1  0.0000      0.992 1.000 0.000
#> SRR1003813     2  0.1633      0.948 0.024 0.976
#> SRR1003814     1  0.1414      0.974 0.980 0.020
#> SRR1003815     1  0.0000      0.992 1.000 0.000
#> SRR1003816     1  0.0000      0.992 1.000 0.000
#> SRR1003817     1  0.0000      0.992 1.000 0.000
#> SRR1003818     1  0.0000      0.992 1.000 0.000
#> SRR1003819     2  0.0000      0.966 0.000 1.000
#> SRR1003820     1  0.0000      0.992 1.000 0.000
#> SRR1003821     1  0.0000      0.992 1.000 0.000
#> SRR1003822     2  0.7376      0.743 0.208 0.792
#> SRR1003824     1  0.0000      0.992 1.000 0.000
#> SRR1003823     1  0.0000      0.992 1.000 0.000
#> SRR1003825     1  0.0000      0.992 1.000 0.000
#> SRR1003826     1  0.0000      0.992 1.000 0.000
#> SRR1003827     1  0.0000      0.992 1.000 0.000
#> SRR1003828     1  0.0000      0.992 1.000 0.000
#> SRR1003829     1  0.0000      0.992 1.000 0.000
#> SRR1003830     1  0.0000      0.992 1.000 0.000
#> SRR1003831     1  0.0376      0.988 0.996 0.004
#> SRR1003832     1  0.0000      0.992 1.000 0.000
#> SRR1003833     1  0.0000      0.992 1.000 0.000
#> SRR1003834     1  0.0376      0.988 0.996 0.004
#> SRR1003836     2  0.9323      0.490 0.348 0.652
#> SRR1003835     1  0.0000      0.992 1.000 0.000
#> SRR1003838     2  0.0000      0.966 0.000 1.000
#> SRR1003837     1  0.0000      0.992 1.000 0.000
#> SRR1003839     1  0.0376      0.988 0.996 0.004
#> SRR1003840     2  0.0000      0.966 0.000 1.000
#> SRR1003841     2  0.0000      0.966 0.000 1.000
#> SRR1003842     1  0.0000      0.992 1.000 0.000
#> SRR1003844     1  0.0000      0.992 1.000 0.000
#> SRR1003845     2  0.0000      0.966 0.000 1.000
#> SRR1003846     1  0.0000      0.992 1.000 0.000
#> SRR1003847     1  0.0000      0.992 1.000 0.000
#> SRR1003848     1  0.0000      0.992 1.000 0.000
#> SRR1003849     2  0.0000      0.966 0.000 1.000
#> SRR1003850     1  0.0000      0.992 1.000 0.000
#> SRR1003851     2  0.0000      0.966 0.000 1.000
#> SRR1003852     2  0.0000      0.966 0.000 1.000
#> SRR1003853     1  0.0000      0.992 1.000 0.000
#> SRR1003854     1  0.0000      0.992 1.000 0.000
#> SRR1003843     2  0.0000      0.966 0.000 1.000
#> SRR1003855     1  0.0000      0.992 1.000 0.000
#> SRR1003856     2  0.4431      0.887 0.092 0.908
#> SRR1003857     1  0.0000      0.992 1.000 0.000
#> SRR1003858     1  0.0000      0.992 1.000 0.000
#> SRR1003859     1  0.0000      0.992 1.000 0.000
#> SRR1003860     1  0.0000      0.992 1.000 0.000
#> SRR1003861     1  0.0000      0.992 1.000 0.000
#> SRR1003862     1  0.0000      0.992 1.000 0.000
#> SRR1003863     1  0.0000      0.992 1.000 0.000
#> SRR1003864     1  0.0000      0.992 1.000 0.000
#> SRR1003865     1  0.1414      0.974 0.980 0.020
#> SRR1003866     1  0.1414      0.974 0.980 0.020
#> SRR1003867     1  0.0000      0.992 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1003755     1  0.0424     0.8248 0.992 0.000 0.008
#> SRR1003756     1  0.0424     0.8248 0.992 0.000 0.008
#> SRR1003757     1  0.0424     0.8248 0.992 0.000 0.008
#> SRR1003758     1  0.0424     0.8248 0.992 0.000 0.008
#> SRR1003759     2  0.6599     0.6757 0.084 0.748 0.168
#> SRR1003760     2  0.0000     0.8900 0.000 1.000 0.000
#> SRR1003761     2  0.0000     0.8900 0.000 1.000 0.000
#> SRR1003762     2  0.0000     0.8900 0.000 1.000 0.000
#> SRR1003763     2  0.0000     0.8900 0.000 1.000 0.000
#> SRR1003764     2  0.0000     0.8900 0.000 1.000 0.000
#> SRR1003765     2  0.0000     0.8900 0.000 1.000 0.000
#> SRR1003766     2  0.0000     0.8900 0.000 1.000 0.000
#> SRR1003767     2  0.0000     0.8900 0.000 1.000 0.000
#> SRR1003768     2  0.0000     0.8900 0.000 1.000 0.000
#> SRR1003769     2  0.0000     0.8900 0.000 1.000 0.000
#> SRR1003770     2  0.0000     0.8900 0.000 1.000 0.000
#> SRR1003771     2  0.0000     0.8900 0.000 1.000 0.000
#> SRR1003773     2  0.2356     0.8707 0.000 0.928 0.072
#> SRR1003772     1  0.0424     0.8253 0.992 0.000 0.008
#> SRR1003774     1  0.5896     0.5375 0.700 0.008 0.292
#> SRR1003775     1  0.0747     0.8245 0.984 0.000 0.016
#> SRR1003776     1  0.5098     0.6404 0.752 0.000 0.248
#> SRR1003777     1  0.0747     0.8267 0.984 0.000 0.016
#> SRR1003778     2  0.0747     0.8865 0.000 0.984 0.016
#> SRR1003779     1  0.2066     0.8243 0.940 0.000 0.060
#> SRR1003780     2  0.0000     0.8900 0.000 1.000 0.000
#> SRR1003781     1  0.5098     0.6660 0.752 0.000 0.248
#> SRR1003784     3  0.5138     0.5135 0.052 0.120 0.828
#> SRR1003785     2  0.3941     0.8301 0.000 0.844 0.156
#> SRR1003786     1  0.0000     0.8233 1.000 0.000 0.000
#> SRR1003783     1  0.0892     0.8271 0.980 0.000 0.020
#> SRR1003787     1  0.2878     0.8067 0.904 0.000 0.096
#> SRR1003788     3  0.5958     0.5979 0.300 0.008 0.692
#> SRR1003789     2  0.0000     0.8900 0.000 1.000 0.000
#> SRR1003790     1  0.1163     0.8255 0.972 0.000 0.028
#> SRR1003791     2  0.5058     0.7538 0.000 0.756 0.244
#> SRR1003792     1  0.3879     0.7793 0.848 0.000 0.152
#> SRR1003793     1  0.1964     0.8263 0.944 0.000 0.056
#> SRR1003794     1  0.3619     0.7886 0.864 0.000 0.136
#> SRR1003795     2  0.2448     0.8707 0.000 0.924 0.076
#> SRR1003796     2  0.1411     0.8819 0.000 0.964 0.036
#> SRR1003797     1  0.1753     0.8252 0.952 0.000 0.048
#> SRR1003798     1  0.5058     0.6404 0.756 0.000 0.244
#> SRR1003799     1  0.1643     0.8292 0.956 0.000 0.044
#> SRR1003800     1  0.5178     0.6042 0.744 0.000 0.256
#> SRR1003801     1  0.7668    -0.2571 0.496 0.044 0.460
#> SRR1003802     3  0.5785     0.6269 0.300 0.004 0.696
#> SRR1003803     1  0.3267     0.7881 0.884 0.000 0.116
#> SRR1003804     1  0.4750     0.6844 0.784 0.000 0.216
#> SRR1003805     1  0.0892     0.8279 0.980 0.000 0.020
#> SRR1003806     1  0.1860     0.8240 0.948 0.000 0.052
#> SRR1003807     3  0.9550     0.5550 0.340 0.204 0.456
#> SRR1003809     3  0.6051     0.6429 0.292 0.012 0.696
#> SRR1003808     2  0.9369    -0.0399 0.280 0.508 0.212
#> SRR1003810     1  0.4346     0.7394 0.816 0.000 0.184
#> SRR1003811     1  0.5678     0.4936 0.684 0.000 0.316
#> SRR1003812     1  0.0747     0.8271 0.984 0.000 0.016
#> SRR1003813     3  0.5508     0.4204 0.028 0.188 0.784
#> SRR1003814     1  0.6761     0.5478 0.700 0.048 0.252
#> SRR1003815     1  0.2796     0.8109 0.908 0.000 0.092
#> SRR1003816     1  0.0424     0.8254 0.992 0.000 0.008
#> SRR1003817     1  0.0000     0.8233 1.000 0.000 0.000
#> SRR1003818     1  0.1643     0.8286 0.956 0.000 0.044
#> SRR1003819     2  0.7099     0.4866 0.028 0.588 0.384
#> SRR1003820     1  0.1860     0.8249 0.948 0.000 0.052
#> SRR1003821     1  0.0000     0.8233 1.000 0.000 0.000
#> SRR1003822     3  0.7042     0.5672 0.132 0.140 0.728
#> SRR1003824     1  0.5327     0.5801 0.728 0.000 0.272
#> SRR1003823     1  0.1411     0.8287 0.964 0.000 0.036
#> SRR1003825     3  0.5733     0.6091 0.324 0.000 0.676
#> SRR1003826     1  0.0424     0.8261 0.992 0.000 0.008
#> SRR1003827     1  0.1753     0.8285 0.952 0.000 0.048
#> SRR1003828     3  0.6302     0.2983 0.480 0.000 0.520
#> SRR1003829     1  0.1529     0.8300 0.960 0.000 0.040
#> SRR1003830     1  0.1289     0.8296 0.968 0.000 0.032
#> SRR1003831     3  0.6669     0.2454 0.468 0.008 0.524
#> SRR1003832     1  0.1163     0.8286 0.972 0.000 0.028
#> SRR1003833     1  0.5591     0.5507 0.696 0.000 0.304
#> SRR1003834     3  0.6308     0.2433 0.492 0.000 0.508
#> SRR1003836     3  0.8862     0.5860 0.232 0.192 0.576
#> SRR1003835     1  0.5497     0.5543 0.708 0.000 0.292
#> SRR1003838     2  0.3879     0.8333 0.000 0.848 0.152
#> SRR1003837     1  0.6215     0.1857 0.572 0.000 0.428
#> SRR1003839     3  0.6935     0.4729 0.372 0.024 0.604
#> SRR1003840     2  0.5480     0.7136 0.004 0.732 0.264
#> SRR1003841     2  0.0000     0.8900 0.000 1.000 0.000
#> SRR1003842     1  0.1529     0.8297 0.960 0.000 0.040
#> SRR1003844     1  0.0747     0.8268 0.984 0.000 0.016
#> SRR1003845     2  0.3267     0.8507 0.000 0.884 0.116
#> SRR1003846     1  0.2261     0.8250 0.932 0.000 0.068
#> SRR1003847     1  0.5325     0.6401 0.748 0.004 0.248
#> SRR1003848     3  0.6204     0.4767 0.424 0.000 0.576
#> SRR1003849     2  0.4796     0.7780 0.000 0.780 0.220
#> SRR1003850     1  0.6062     0.1884 0.616 0.000 0.384
#> SRR1003851     2  0.5560     0.6921 0.000 0.700 0.300
#> SRR1003852     2  0.4887     0.7564 0.000 0.772 0.228
#> SRR1003853     1  0.6244     0.0907 0.560 0.000 0.440
#> SRR1003854     1  0.4452     0.7306 0.808 0.000 0.192
#> SRR1003843     2  0.5254     0.7351 0.000 0.736 0.264
#> SRR1003855     1  0.5016     0.6588 0.760 0.000 0.240
#> SRR1003856     3  0.3850     0.5166 0.028 0.088 0.884
#> SRR1003857     1  0.3340     0.8022 0.880 0.000 0.120
#> SRR1003858     1  0.5650     0.5446 0.688 0.000 0.312
#> SRR1003859     1  0.1031     0.8263 0.976 0.000 0.024
#> SRR1003860     1  0.2625     0.8173 0.916 0.000 0.084
#> SRR1003861     1  0.5859     0.4353 0.656 0.000 0.344
#> SRR1003862     1  0.0424     0.8245 0.992 0.000 0.008
#> SRR1003863     1  0.1289     0.8291 0.968 0.000 0.032
#> SRR1003864     1  0.2261     0.8220 0.932 0.000 0.068
#> SRR1003865     1  0.6998     0.4218 0.664 0.044 0.292
#> SRR1003866     1  0.5384     0.7023 0.788 0.024 0.188
#> SRR1003867     1  0.4645     0.7212 0.816 0.008 0.176

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1003755     1  0.0657     0.6804 0.984 0.000 0.004 0.012
#> SRR1003756     1  0.0657     0.6804 0.984 0.000 0.004 0.012
#> SRR1003757     1  0.1042     0.6817 0.972 0.000 0.008 0.020
#> SRR1003758     1  0.1042     0.6817 0.972 0.000 0.008 0.020
#> SRR1003759     2  0.7408     0.2759 0.032 0.544 0.092 0.332
#> SRR1003760     2  0.0000     0.8062 0.000 1.000 0.000 0.000
#> SRR1003761     2  0.0000     0.8062 0.000 1.000 0.000 0.000
#> SRR1003762     2  0.0000     0.8062 0.000 1.000 0.000 0.000
#> SRR1003763     2  0.0000     0.8062 0.000 1.000 0.000 0.000
#> SRR1003764     2  0.0000     0.8062 0.000 1.000 0.000 0.000
#> SRR1003765     2  0.0000     0.8062 0.000 1.000 0.000 0.000
#> SRR1003766     2  0.0000     0.8062 0.000 1.000 0.000 0.000
#> SRR1003767     2  0.0000     0.8062 0.000 1.000 0.000 0.000
#> SRR1003768     2  0.0000     0.8062 0.000 1.000 0.000 0.000
#> SRR1003769     2  0.0000     0.8062 0.000 1.000 0.000 0.000
#> SRR1003770     2  0.0000     0.8062 0.000 1.000 0.000 0.000
#> SRR1003771     2  0.0000     0.8062 0.000 1.000 0.000 0.000
#> SRR1003773     2  0.3942     0.6938 0.000 0.764 0.236 0.000
#> SRR1003772     1  0.1978     0.6898 0.928 0.000 0.004 0.068
#> SRR1003774     1  0.7162     0.1290 0.536 0.004 0.136 0.324
#> SRR1003775     1  0.1743     0.6884 0.940 0.000 0.004 0.056
#> SRR1003776     1  0.7082     0.1501 0.540 0.000 0.152 0.308
#> SRR1003777     1  0.2542     0.6928 0.904 0.000 0.012 0.084
#> SRR1003778     2  0.2149     0.7763 0.000 0.912 0.088 0.000
#> SRR1003779     1  0.4423     0.6558 0.788 0.000 0.036 0.176
#> SRR1003780     2  0.0000     0.8062 0.000 1.000 0.000 0.000
#> SRR1003781     1  0.6423     0.3547 0.580 0.000 0.084 0.336
#> SRR1003784     3  0.4160     0.4571 0.040 0.028 0.848 0.084
#> SRR1003785     2  0.5220     0.5544 0.000 0.632 0.352 0.016
#> SRR1003786     1  0.1211     0.6835 0.960 0.000 0.000 0.040
#> SRR1003783     1  0.2281     0.6910 0.904 0.000 0.000 0.096
#> SRR1003787     1  0.4964     0.5854 0.716 0.000 0.028 0.256
#> SRR1003788     4  0.7670     0.3085 0.192 0.004 0.344 0.460
#> SRR1003789     2  0.0000     0.8062 0.000 1.000 0.000 0.000
#> SRR1003790     1  0.2522     0.6875 0.908 0.000 0.016 0.076
#> SRR1003791     2  0.6404     0.5414 0.000 0.644 0.220 0.136
#> SRR1003792     1  0.4900     0.6225 0.732 0.000 0.032 0.236
#> SRR1003793     1  0.4798     0.6616 0.768 0.000 0.052 0.180
#> SRR1003794     1  0.5434     0.5911 0.728 0.000 0.084 0.188
#> SRR1003795     2  0.4049     0.7083 0.000 0.780 0.212 0.008
#> SRR1003796     2  0.3266     0.7361 0.000 0.832 0.168 0.000
#> SRR1003797     1  0.4267     0.6546 0.788 0.000 0.024 0.188
#> SRR1003798     1  0.6708     0.3629 0.596 0.000 0.132 0.272
#> SRR1003799     1  0.3372     0.6902 0.868 0.000 0.036 0.096
#> SRR1003800     1  0.6883     0.3478 0.596 0.000 0.192 0.212
#> SRR1003801     4  0.8082     0.4094 0.264 0.016 0.252 0.468
#> SRR1003802     3  0.7153     0.1033 0.196 0.000 0.556 0.248
#> SRR1003803     1  0.5628     0.5949 0.704 0.000 0.080 0.216
#> SRR1003804     1  0.6027     0.5272 0.684 0.000 0.124 0.192
#> SRR1003805     1  0.3806     0.6864 0.824 0.000 0.020 0.156
#> SRR1003806     1  0.3934     0.6814 0.836 0.000 0.048 0.116
#> SRR1003807     3  0.9235    -0.0735 0.248 0.092 0.404 0.256
#> SRR1003809     3  0.8016    -0.0811 0.256 0.024 0.508 0.212
#> SRR1003808     2  0.9672    -0.3836 0.220 0.320 0.144 0.316
#> SRR1003810     1  0.6064     0.4940 0.672 0.000 0.108 0.220
#> SRR1003811     1  0.6855     0.2594 0.600 0.000 0.200 0.200
#> SRR1003812     1  0.1824     0.6859 0.936 0.000 0.004 0.060
#> SRR1003813     3  0.5659     0.4608 0.028 0.104 0.760 0.108
#> SRR1003814     1  0.7792    -0.2533 0.428 0.024 0.128 0.420
#> SRR1003815     1  0.4776     0.6537 0.776 0.000 0.060 0.164
#> SRR1003816     1  0.2342     0.6838 0.912 0.000 0.008 0.080
#> SRR1003817     1  0.2222     0.6873 0.924 0.000 0.016 0.060
#> SRR1003818     1  0.4462     0.6620 0.804 0.000 0.064 0.132
#> SRR1003819     3  0.8713     0.2095 0.040 0.344 0.372 0.244
#> SRR1003820     1  0.3377     0.6868 0.848 0.000 0.012 0.140
#> SRR1003821     1  0.1489     0.6864 0.952 0.000 0.004 0.044
#> SRR1003822     3  0.5977     0.4629 0.048 0.104 0.748 0.100
#> SRR1003824     1  0.6977     0.2462 0.584 0.000 0.204 0.212
#> SRR1003823     1  0.3427     0.6867 0.860 0.000 0.028 0.112
#> SRR1003825     4  0.7853     0.3233 0.268 0.000 0.364 0.368
#> SRR1003826     1  0.2831     0.6961 0.876 0.000 0.004 0.120
#> SRR1003827     1  0.4755     0.6539 0.760 0.000 0.040 0.200
#> SRR1003828     1  0.7899    -0.3926 0.372 0.000 0.324 0.304
#> SRR1003829     1  0.4462     0.6740 0.792 0.000 0.044 0.164
#> SRR1003830     1  0.3907     0.6774 0.828 0.000 0.032 0.140
#> SRR1003831     4  0.7541     0.4338 0.240 0.004 0.236 0.520
#> SRR1003832     1  0.3307     0.6865 0.868 0.000 0.028 0.104
#> SRR1003833     1  0.7191    -0.0870 0.500 0.000 0.148 0.352
#> SRR1003834     1  0.7914    -0.5359 0.348 0.000 0.308 0.344
#> SRR1003836     4  0.9692    -0.0581 0.176 0.180 0.308 0.336
#> SRR1003835     1  0.7468    -0.2216 0.464 0.000 0.184 0.352
#> SRR1003838     2  0.4608     0.6289 0.000 0.692 0.304 0.004
#> SRR1003837     4  0.7370     0.3247 0.412 0.000 0.160 0.428
#> SRR1003839     4  0.7295     0.3748 0.188 0.008 0.232 0.572
#> SRR1003840     2  0.7159     0.3522 0.000 0.556 0.200 0.244
#> SRR1003841     2  0.0000     0.8062 0.000 1.000 0.000 0.000
#> SRR1003842     1  0.3392     0.6886 0.856 0.000 0.020 0.124
#> SRR1003844     1  0.2610     0.6973 0.900 0.000 0.012 0.088
#> SRR1003845     2  0.5624     0.6452 0.000 0.724 0.148 0.128
#> SRR1003846     1  0.4524     0.6464 0.768 0.000 0.028 0.204
#> SRR1003847     1  0.7122     0.1579 0.540 0.004 0.132 0.324
#> SRR1003848     3  0.6993    -0.0673 0.296 0.000 0.556 0.148
#> SRR1003849     2  0.5536     0.4819 0.000 0.592 0.384 0.024
#> SRR1003850     1  0.7660    -0.2098 0.464 0.000 0.276 0.260
#> SRR1003851     2  0.5700     0.4224 0.000 0.560 0.412 0.028
#> SRR1003852     2  0.6819     0.3618 0.000 0.564 0.124 0.312
#> SRR1003853     4  0.7028     0.3990 0.380 0.000 0.124 0.496
#> SRR1003854     1  0.6830     0.0534 0.524 0.000 0.108 0.368
#> SRR1003843     2  0.6084     0.5864 0.000 0.656 0.252 0.092
#> SRR1003855     1  0.6037     0.3702 0.628 0.000 0.068 0.304
#> SRR1003856     3  0.4998     0.4347 0.008 0.048 0.768 0.176
#> SRR1003857     1  0.4916     0.6212 0.760 0.000 0.056 0.184
#> SRR1003858     1  0.6652     0.0195 0.516 0.000 0.088 0.396
#> SRR1003859     1  0.2813     0.6889 0.896 0.000 0.024 0.080
#> SRR1003860     1  0.5091     0.6459 0.752 0.000 0.068 0.180
#> SRR1003861     1  0.7458    -0.3018 0.444 0.000 0.176 0.380
#> SRR1003862     1  0.1677     0.6901 0.948 0.000 0.012 0.040
#> SRR1003863     1  0.1610     0.6896 0.952 0.000 0.016 0.032
#> SRR1003864     1  0.4423     0.6608 0.788 0.000 0.036 0.176
#> SRR1003865     4  0.8368     0.3976 0.368 0.040 0.168 0.424
#> SRR1003866     1  0.7031     0.2265 0.548 0.012 0.096 0.344
#> SRR1003867     1  0.6794     0.3716 0.584 0.000 0.136 0.280

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1003755     1   0.150    0.57162 0.940 0.000 0.004 0.056 0.000
#> SRR1003756     1   0.150    0.57162 0.940 0.000 0.004 0.056 0.000
#> SRR1003757     1   0.150    0.57057 0.940 0.000 0.004 0.056 0.000
#> SRR1003758     1   0.150    0.57057 0.940 0.000 0.004 0.056 0.000
#> SRR1003759     2   0.839    0.08034 0.040 0.428 0.100 0.132 0.300
#> SRR1003760     2   0.000    0.77616 0.000 1.000 0.000 0.000 0.000
#> SRR1003761     2   0.000    0.77616 0.000 1.000 0.000 0.000 0.000
#> SRR1003762     2   0.000    0.77616 0.000 1.000 0.000 0.000 0.000
#> SRR1003763     2   0.000    0.77616 0.000 1.000 0.000 0.000 0.000
#> SRR1003764     2   0.000    0.77616 0.000 1.000 0.000 0.000 0.000
#> SRR1003765     2   0.000    0.77616 0.000 1.000 0.000 0.000 0.000
#> SRR1003766     2   0.000    0.77616 0.000 1.000 0.000 0.000 0.000
#> SRR1003767     2   0.000    0.77616 0.000 1.000 0.000 0.000 0.000
#> SRR1003768     2   0.000    0.77616 0.000 1.000 0.000 0.000 0.000
#> SRR1003769     2   0.000    0.77616 0.000 1.000 0.000 0.000 0.000
#> SRR1003770     2   0.000    0.77616 0.000 1.000 0.000 0.000 0.000
#> SRR1003771     2   0.000    0.77616 0.000 1.000 0.000 0.000 0.000
#> SRR1003773     2   0.401    0.65519 0.000 0.728 0.256 0.000 0.016
#> SRR1003772     1   0.262    0.57679 0.876 0.000 0.004 0.112 0.008
#> SRR1003774     1   0.795   -0.23757 0.412 0.000 0.128 0.304 0.156
#> SRR1003775     1   0.319    0.59169 0.852 0.000 0.004 0.112 0.032
#> SRR1003776     1   0.759   -0.24122 0.416 0.000 0.080 0.352 0.152
#> SRR1003777     1   0.342    0.58695 0.824 0.000 0.016 0.152 0.008
#> SRR1003778     2   0.301    0.71230 0.000 0.824 0.172 0.000 0.004
#> SRR1003779     1   0.464    0.56340 0.752 0.000 0.032 0.184 0.032
#> SRR1003780     2   0.000    0.77616 0.000 1.000 0.000 0.000 0.000
#> SRR1003781     1   0.712   -0.16957 0.424 0.004 0.032 0.392 0.148
#> SRR1003784     3   0.511    0.39563 0.020 0.044 0.768 0.052 0.116
#> SRR1003785     2   0.508    0.52663 0.000 0.596 0.364 0.004 0.036
#> SRR1003786     1   0.120    0.57436 0.956 0.000 0.004 0.040 0.000
#> SRR1003783     1   0.249    0.58226 0.872 0.000 0.000 0.124 0.004
#> SRR1003787     1   0.605    0.40309 0.616 0.000 0.028 0.260 0.096
#> SRR1003788     5   0.829    0.05880 0.124 0.004 0.208 0.292 0.372
#> SRR1003789     2   0.000    0.77616 0.000 1.000 0.000 0.000 0.000
#> SRR1003790     1   0.375    0.59046 0.820 0.000 0.012 0.132 0.036
#> SRR1003791     2   0.791    0.26594 0.004 0.480 0.152 0.144 0.220
#> SRR1003792     1   0.641    0.30549 0.564 0.000 0.020 0.276 0.140
#> SRR1003793     1   0.571    0.50179 0.664 0.000 0.032 0.224 0.080
#> SRR1003794     1   0.663    0.39345 0.576 0.000 0.068 0.268 0.088
#> SRR1003795     2   0.448    0.65860 0.000 0.720 0.240 0.004 0.036
#> SRR1003796     2   0.366    0.68822 0.000 0.776 0.208 0.000 0.016
#> SRR1003797     1   0.513    0.48205 0.664 0.000 0.020 0.280 0.036
#> SRR1003798     1   0.768    0.14435 0.484 0.000 0.108 0.232 0.176
#> SRR1003799     1   0.477    0.58148 0.760 0.000 0.036 0.152 0.052
#> SRR1003800     1   0.774    0.00576 0.452 0.000 0.148 0.288 0.112
#> SRR1003801     1   0.898   -0.51483 0.248 0.016 0.240 0.248 0.248
#> SRR1003802     3   0.795    0.11804 0.144 0.000 0.456 0.216 0.184
#> SRR1003803     1   0.669    0.39846 0.592 0.000 0.084 0.232 0.092
#> SRR1003804     1   0.693    0.36450 0.588 0.000 0.092 0.180 0.140
#> SRR1003805     1   0.502    0.55739 0.728 0.000 0.024 0.184 0.064
#> SRR1003806     1   0.544    0.53401 0.700 0.000 0.044 0.196 0.060
#> SRR1003807     3   0.937   -0.04289 0.192 0.068 0.296 0.156 0.288
#> SRR1003809     3   0.853   -0.00973 0.152 0.012 0.396 0.220 0.220
#> SRR1003808     5   0.947    0.09636 0.172 0.216 0.092 0.172 0.348
#> SRR1003810     1   0.676    0.32647 0.568 0.000 0.072 0.264 0.096
#> SRR1003811     1   0.767   -0.03565 0.480 0.000 0.180 0.240 0.100
#> SRR1003812     1   0.291    0.57459 0.848 0.000 0.000 0.140 0.012
#> SRR1003813     3   0.490    0.39028 0.020 0.056 0.788 0.052 0.084
#> SRR1003814     1   0.801   -0.37829 0.364 0.008 0.068 0.340 0.220
#> SRR1003815     1   0.538    0.51635 0.700 0.000 0.044 0.204 0.052
#> SRR1003816     1   0.280    0.57280 0.852 0.000 0.000 0.140 0.008
#> SRR1003817     1   0.202    0.57636 0.900 0.000 0.000 0.100 0.000
#> SRR1003818     1   0.508    0.53474 0.724 0.000 0.028 0.188 0.060
#> SRR1003819     2   0.889   -0.26147 0.032 0.296 0.292 0.116 0.264
#> SRR1003820     1   0.444    0.56429 0.760 0.000 0.008 0.176 0.056
#> SRR1003821     1   0.198    0.57713 0.920 0.000 0.000 0.064 0.016
#> SRR1003822     3   0.730    0.34798 0.056 0.072 0.608 0.092 0.172
#> SRR1003824     1   0.788    0.02551 0.468 0.000 0.176 0.212 0.144
#> SRR1003823     1   0.431    0.57066 0.752 0.000 0.028 0.208 0.012
#> SRR1003825     5   0.829    0.09267 0.132 0.000 0.244 0.276 0.348
#> SRR1003826     1   0.377    0.58792 0.800 0.000 0.008 0.168 0.024
#> SRR1003827     1   0.546    0.53023 0.704 0.000 0.028 0.164 0.104
#> SRR1003828     1   0.846   -0.35522 0.332 0.000 0.272 0.196 0.200
#> SRR1003829     1   0.568    0.49584 0.680 0.000 0.040 0.200 0.080
#> SRR1003830     1   0.425    0.56876 0.756 0.000 0.008 0.204 0.032
#> SRR1003831     4   0.822    0.23127 0.208 0.004 0.116 0.388 0.284
#> SRR1003832     1   0.331    0.58339 0.852 0.000 0.020 0.108 0.020
#> SRR1003833     1   0.790   -0.32616 0.388 0.000 0.084 0.308 0.220
#> SRR1003834     4   0.852    0.25111 0.272 0.000 0.192 0.304 0.232
#> SRR1003836     5   0.906    0.07485 0.084 0.088 0.192 0.264 0.372
#> SRR1003835     1   0.821   -0.28396 0.340 0.000 0.112 0.288 0.260
#> SRR1003838     2   0.589    0.52305 0.000 0.588 0.300 0.008 0.104
#> SRR1003837     1   0.769   -0.34482 0.368 0.000 0.068 0.368 0.196
#> SRR1003839     5   0.792   -0.02784 0.160 0.000 0.112 0.356 0.372
#> SRR1003840     2   0.781    0.25763 0.004 0.472 0.156 0.108 0.260
#> SRR1003841     2   0.000    0.77616 0.000 1.000 0.000 0.000 0.000
#> SRR1003842     1   0.462    0.54259 0.712 0.000 0.016 0.248 0.024
#> SRR1003844     1   0.286    0.59120 0.852 0.000 0.000 0.136 0.012
#> SRR1003845     2   0.590    0.60246 0.000 0.680 0.108 0.052 0.160
#> SRR1003846     1   0.566    0.49949 0.664 0.000 0.032 0.232 0.072
#> SRR1003847     1   0.772   -0.04010 0.464 0.000 0.092 0.236 0.208
#> SRR1003848     3   0.751    0.08275 0.232 0.000 0.512 0.128 0.128
#> SRR1003849     2   0.586    0.42472 0.000 0.532 0.392 0.020 0.056
#> SRR1003850     1   0.839   -0.24608 0.372 0.000 0.204 0.220 0.204
#> SRR1003851     2   0.626    0.28694 0.000 0.468 0.432 0.028 0.072
#> SRR1003852     2   0.811   -0.01965 0.000 0.372 0.148 0.156 0.324
#> SRR1003853     4   0.789    0.21809 0.208 0.000 0.108 0.444 0.240
#> SRR1003854     1   0.734   -0.01929 0.480 0.000 0.056 0.280 0.184
#> SRR1003843     2   0.712    0.40800 0.000 0.540 0.228 0.064 0.168
#> SRR1003855     1   0.777   -0.26776 0.416 0.000 0.080 0.304 0.200
#> SRR1003856     3   0.623    0.34823 0.012 0.048 0.668 0.104 0.168
#> SRR1003857     1   0.586    0.50724 0.680 0.000 0.056 0.176 0.088
#> SRR1003858     4   0.761    0.30607 0.360 0.000 0.064 0.388 0.188
#> SRR1003859     1   0.439    0.57352 0.776 0.000 0.016 0.156 0.052
#> SRR1003860     1   0.613    0.47091 0.656 0.000 0.052 0.176 0.116
#> SRR1003861     1   0.780   -0.43994 0.360 0.000 0.064 0.328 0.248
#> SRR1003862     1   0.219    0.58454 0.904 0.000 0.000 0.084 0.012
#> SRR1003863     1   0.369    0.58189 0.836 0.000 0.036 0.104 0.024
#> SRR1003864     1   0.514    0.49618 0.676 0.000 0.008 0.252 0.064
#> SRR1003865     5   0.838   -0.14098 0.292 0.012 0.104 0.220 0.372
#> SRR1003866     1   0.722    0.13445 0.484 0.004 0.040 0.308 0.164
#> SRR1003867     1   0.778    0.12178 0.496 0.008 0.096 0.224 0.176

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1003755     1  0.1820    0.57119 0.928 0.000 0.000 0.044 0.012 0.016
#> SRR1003756     1  0.1820    0.57119 0.928 0.000 0.000 0.044 0.012 0.016
#> SRR1003757     1  0.1523    0.56861 0.940 0.000 0.000 0.044 0.008 0.008
#> SRR1003758     1  0.1523    0.56861 0.940 0.000 0.000 0.044 0.008 0.008
#> SRR1003759     2  0.8845    0.01800 0.040 0.404 0.108 0.128 0.156 0.164
#> SRR1003760     2  0.0146    0.76165 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR1003761     2  0.0146    0.76165 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR1003762     2  0.0000    0.76274 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003763     2  0.0000    0.76274 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003764     2  0.0000    0.76274 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003765     2  0.0000    0.76274 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003766     2  0.0000    0.76274 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003767     2  0.0000    0.76274 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003768     2  0.0000    0.76274 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003769     2  0.0000    0.76274 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003770     2  0.0000    0.76274 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003771     2  0.0000    0.76274 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003773     2  0.3769    0.55921 0.000 0.640 0.356 0.000 0.000 0.004
#> SRR1003772     1  0.3405    0.58793 0.816 0.000 0.000 0.136 0.036 0.012
#> SRR1003774     1  0.8397   -0.29576 0.308 0.000 0.076 0.248 0.248 0.120
#> SRR1003775     1  0.3908    0.59449 0.792 0.000 0.004 0.140 0.024 0.040
#> SRR1003776     1  0.8157   -0.04683 0.384 0.000 0.072 0.220 0.216 0.108
#> SRR1003777     1  0.4594    0.57974 0.732 0.000 0.020 0.192 0.032 0.024
#> SRR1003778     2  0.3215    0.65623 0.000 0.756 0.240 0.000 0.004 0.000
#> SRR1003779     1  0.6032    0.51043 0.612 0.000 0.004 0.200 0.108 0.076
#> SRR1003780     2  0.0000    0.76274 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003781     1  0.7644   -0.13137 0.344 0.000 0.020 0.324 0.212 0.100
#> SRR1003784     3  0.4985    0.42148 0.004 0.020 0.736 0.028 0.076 0.136
#> SRR1003785     2  0.5384    0.35682 0.000 0.492 0.440 0.016 0.032 0.020
#> SRR1003786     1  0.1858    0.58029 0.912 0.000 0.000 0.076 0.000 0.012
#> SRR1003783     1  0.3390    0.58943 0.816 0.000 0.000 0.140 0.028 0.016
#> SRR1003787     1  0.6474    0.37742 0.536 0.000 0.016 0.180 0.236 0.032
#> SRR1003788     5  0.7878    0.08672 0.092 0.000 0.148 0.100 0.460 0.200
#> SRR1003789     2  0.0000    0.76274 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003790     1  0.4663    0.57957 0.724 0.000 0.004 0.188 0.036 0.048
#> SRR1003791     2  0.8425    0.02988 0.008 0.380 0.228 0.076 0.124 0.184
#> SRR1003792     1  0.7453    0.18524 0.456 0.000 0.032 0.264 0.140 0.108
#> SRR1003793     1  0.6071    0.51973 0.616 0.000 0.008 0.196 0.076 0.104
#> SRR1003794     1  0.6789    0.36317 0.532 0.000 0.024 0.256 0.080 0.108
#> SRR1003795     2  0.4694    0.62288 0.000 0.692 0.236 0.008 0.012 0.052
#> SRR1003796     2  0.3421    0.64278 0.000 0.736 0.256 0.000 0.008 0.000
#> SRR1003797     1  0.5791    0.52889 0.652 0.000 0.016 0.180 0.100 0.052
#> SRR1003798     1  0.7297    0.28110 0.476 0.000 0.080 0.224 0.028 0.192
#> SRR1003799     1  0.5731    0.54375 0.656 0.000 0.008 0.172 0.092 0.072
#> SRR1003800     1  0.7688    0.13664 0.440 0.000 0.076 0.176 0.060 0.248
#> SRR1003801     4  0.8912   -0.04291 0.168 0.008 0.140 0.280 0.264 0.140
#> SRR1003802     6  0.7478    0.04838 0.088 0.000 0.268 0.128 0.052 0.464
#> SRR1003803     1  0.7258    0.19822 0.440 0.000 0.016 0.272 0.080 0.192
#> SRR1003804     1  0.7262    0.29838 0.504 0.000 0.044 0.136 0.084 0.232
#> SRR1003805     1  0.5887    0.52979 0.624 0.000 0.016 0.228 0.056 0.076
#> SRR1003806     1  0.5950    0.53377 0.632 0.000 0.016 0.188 0.048 0.116
#> SRR1003807     6  0.8556    0.10915 0.136 0.040 0.252 0.116 0.060 0.396
#> SRR1003809     3  0.8975   -0.14424 0.168 0.008 0.308 0.176 0.156 0.184
#> SRR1003808     4  0.9783    0.04235 0.156 0.188 0.076 0.200 0.188 0.192
#> SRR1003810     1  0.7398    0.33503 0.508 0.000 0.060 0.188 0.164 0.080
#> SRR1003811     1  0.7794    0.16419 0.460 0.000 0.096 0.232 0.100 0.112
#> SRR1003812     1  0.4259    0.57752 0.744 0.000 0.000 0.188 0.028 0.040
#> SRR1003813     3  0.5904    0.41761 0.008 0.056 0.696 0.084 0.084 0.072
#> SRR1003814     4  0.8300    0.04070 0.244 0.004 0.048 0.340 0.228 0.136
#> SRR1003815     1  0.6582    0.44925 0.576 0.000 0.020 0.204 0.112 0.088
#> SRR1003816     1  0.3300    0.57892 0.816 0.000 0.004 0.152 0.020 0.008
#> SRR1003817     1  0.3283    0.58378 0.824 0.000 0.004 0.140 0.012 0.020
#> SRR1003818     1  0.5530    0.53100 0.640 0.000 0.004 0.232 0.068 0.056
#> SRR1003819     5  0.8858   -0.13381 0.020 0.208 0.260 0.168 0.280 0.064
#> SRR1003820     1  0.5701    0.53571 0.648 0.000 0.016 0.188 0.116 0.032
#> SRR1003821     1  0.2945    0.58464 0.852 0.000 0.004 0.116 0.016 0.012
#> SRR1003822     3  0.7598    0.36277 0.052 0.044 0.544 0.092 0.084 0.184
#> SRR1003824     1  0.8325   -0.11016 0.372 0.000 0.084 0.236 0.140 0.168
#> SRR1003823     1  0.5769    0.51800 0.640 0.000 0.000 0.168 0.084 0.108
#> SRR1003825     6  0.8675    0.07577 0.148 0.000 0.180 0.124 0.236 0.312
#> SRR1003826     1  0.4956    0.56702 0.688 0.000 0.008 0.216 0.020 0.068
#> SRR1003827     1  0.6212    0.49713 0.600 0.000 0.016 0.196 0.140 0.048
#> SRR1003828     6  0.8616    0.09171 0.220 0.000 0.156 0.208 0.100 0.316
#> SRR1003829     1  0.6652    0.44195 0.560 0.000 0.012 0.200 0.132 0.096
#> SRR1003830     1  0.5269    0.55472 0.680 0.000 0.004 0.188 0.044 0.084
#> SRR1003831     5  0.7469    0.11201 0.156 0.000 0.120 0.156 0.512 0.056
#> SRR1003832     1  0.5042    0.56664 0.712 0.000 0.004 0.156 0.052 0.076
#> SRR1003833     1  0.7852   -0.16387 0.332 0.000 0.028 0.256 0.280 0.104
#> SRR1003834     6  0.8717   -0.03054 0.208 0.000 0.108 0.160 0.256 0.268
#> SRR1003836     5  0.9460    0.01680 0.116 0.080 0.192 0.140 0.320 0.152
#> SRR1003835     4  0.8274    0.01310 0.280 0.000 0.052 0.316 0.152 0.200
#> SRR1003838     2  0.5006    0.47603 0.000 0.564 0.384 0.008 0.020 0.024
#> SRR1003837     5  0.8184   -0.00529 0.252 0.000 0.068 0.220 0.356 0.104
#> SRR1003839     5  0.7776    0.10782 0.112 0.000 0.128 0.180 0.484 0.096
#> SRR1003840     2  0.8828   -0.06733 0.016 0.368 0.144 0.132 0.184 0.156
#> SRR1003841     2  0.0000    0.76274 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003842     1  0.5867    0.53565 0.656 0.000 0.016 0.160 0.076 0.092
#> SRR1003844     1  0.4808    0.58115 0.732 0.000 0.008 0.156 0.040 0.064
#> SRR1003845     2  0.6506    0.50672 0.000 0.604 0.156 0.028 0.128 0.084
#> SRR1003846     1  0.6135    0.49709 0.608 0.000 0.016 0.220 0.072 0.084
#> SRR1003847     1  0.8203   -0.09596 0.376 0.000 0.072 0.256 0.164 0.132
#> SRR1003848     3  0.8148   -0.18250 0.224 0.000 0.356 0.116 0.056 0.248
#> SRR1003849     2  0.4847    0.34001 0.000 0.492 0.464 0.000 0.012 0.032
#> SRR1003850     6  0.8282    0.08400 0.288 0.000 0.128 0.168 0.076 0.340
#> SRR1003851     2  0.6294    0.20317 0.000 0.432 0.424 0.016 0.032 0.096
#> SRR1003852     2  0.8486   -0.13190 0.000 0.332 0.116 0.104 0.208 0.240
#> SRR1003853     5  0.8073   -0.04506 0.204 0.000 0.056 0.180 0.408 0.152
#> SRR1003854     1  0.7608    0.10604 0.428 0.000 0.032 0.164 0.268 0.108
#> SRR1003843     2  0.6752    0.35781 0.000 0.508 0.228 0.012 0.052 0.200
#> SRR1003855     1  0.7467   -0.01321 0.392 0.000 0.032 0.128 0.348 0.100
#> SRR1003856     3  0.6697    0.36991 0.012 0.052 0.612 0.064 0.088 0.172
#> SRR1003857     1  0.6385    0.46014 0.584 0.000 0.008 0.200 0.116 0.092
#> SRR1003858     1  0.8164   -0.28861 0.296 0.000 0.060 0.260 0.288 0.096
#> SRR1003859     1  0.4440    0.57067 0.748 0.000 0.000 0.156 0.036 0.060
#> SRR1003860     1  0.6203    0.52137 0.608 0.000 0.024 0.216 0.060 0.092
#> SRR1003861     5  0.8160   -0.04470 0.304 0.000 0.108 0.164 0.348 0.076
#> SRR1003862     1  0.2767    0.58671 0.876 0.000 0.004 0.080 0.016 0.024
#> SRR1003863     1  0.4349    0.58700 0.792 0.000 0.024 0.076 0.036 0.072
#> SRR1003864     1  0.5953    0.48685 0.600 0.000 0.004 0.208 0.148 0.040
#> SRR1003865     4  0.8847    0.04517 0.196 0.000 0.132 0.252 0.180 0.240
#> SRR1003866     1  0.8290   -0.14934 0.360 0.004 0.060 0.272 0.148 0.156
#> SRR1003867     1  0.8403   -0.14937 0.348 0.004 0.064 0.256 0.148 0.180

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 9166 rows and 112 columns.
#>   Top rows (917, 1834, 2750, 3666, 4583) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.976       0.991        0.22097 0.793   0.793
#> 3 3 0.551           0.774       0.898        1.30433 0.695   0.615
#> 4 4 0.525           0.750       0.887        0.08644 0.944   0.886
#> 5 5 0.544           0.756       0.892        0.00518 0.995   0.989
#> 6 6 0.544           0.756       0.892        0.00175 0.999   0.999

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1003755     1   0.000     0.9900 1.000 0.000
#> SRR1003756     1   0.000     0.9900 1.000 0.000
#> SRR1003757     1   0.000     0.9900 1.000 0.000
#> SRR1003758     1   0.000     0.9900 1.000 0.000
#> SRR1003759     1   0.000     0.9900 1.000 0.000
#> SRR1003760     2   0.000     1.0000 0.000 1.000
#> SRR1003761     1   1.000     0.0319 0.504 0.496
#> SRR1003762     2   0.000     1.0000 0.000 1.000
#> SRR1003763     1   0.949     0.4239 0.632 0.368
#> SRR1003764     2   0.000     1.0000 0.000 1.000
#> SRR1003765     2   0.000     1.0000 0.000 1.000
#> SRR1003766     2   0.000     1.0000 0.000 1.000
#> SRR1003767     2   0.000     1.0000 0.000 1.000
#> SRR1003768     2   0.000     1.0000 0.000 1.000
#> SRR1003769     2   0.000     1.0000 0.000 1.000
#> SRR1003770     2   0.000     1.0000 0.000 1.000
#> SRR1003771     2   0.000     1.0000 0.000 1.000
#> SRR1003773     1   0.000     0.9900 1.000 0.000
#> SRR1003772     1   0.000     0.9900 1.000 0.000
#> SRR1003774     1   0.000     0.9900 1.000 0.000
#> SRR1003775     1   0.000     0.9900 1.000 0.000
#> SRR1003776     1   0.000     0.9900 1.000 0.000
#> SRR1003777     1   0.000     0.9900 1.000 0.000
#> SRR1003778     1   0.000     0.9900 1.000 0.000
#> SRR1003779     1   0.000     0.9900 1.000 0.000
#> SRR1003780     2   0.000     1.0000 0.000 1.000
#> SRR1003781     1   0.000     0.9900 1.000 0.000
#> SRR1003784     1   0.000     0.9900 1.000 0.000
#> SRR1003785     1   0.000     0.9900 1.000 0.000
#> SRR1003786     1   0.000     0.9900 1.000 0.000
#> SRR1003783     1   0.000     0.9900 1.000 0.000
#> SRR1003787     1   0.000     0.9900 1.000 0.000
#> SRR1003788     1   0.000     0.9900 1.000 0.000
#> SRR1003789     2   0.000     1.0000 0.000 1.000
#> SRR1003790     1   0.000     0.9900 1.000 0.000
#> SRR1003791     1   0.000     0.9900 1.000 0.000
#> SRR1003792     1   0.000     0.9900 1.000 0.000
#> SRR1003793     1   0.000     0.9900 1.000 0.000
#> SRR1003794     1   0.000     0.9900 1.000 0.000
#> SRR1003795     1   0.000     0.9900 1.000 0.000
#> SRR1003796     1   0.506     0.8680 0.888 0.112
#> SRR1003797     1   0.000     0.9900 1.000 0.000
#> SRR1003798     1   0.000     0.9900 1.000 0.000
#> SRR1003799     1   0.000     0.9900 1.000 0.000
#> SRR1003800     1   0.000     0.9900 1.000 0.000
#> SRR1003801     1   0.000     0.9900 1.000 0.000
#> SRR1003802     1   0.000     0.9900 1.000 0.000
#> SRR1003803     1   0.000     0.9900 1.000 0.000
#> SRR1003804     1   0.000     0.9900 1.000 0.000
#> SRR1003805     1   0.000     0.9900 1.000 0.000
#> SRR1003806     1   0.000     0.9900 1.000 0.000
#> SRR1003807     1   0.000     0.9900 1.000 0.000
#> SRR1003809     1   0.000     0.9900 1.000 0.000
#> SRR1003808     1   0.000     0.9900 1.000 0.000
#> SRR1003810     1   0.000     0.9900 1.000 0.000
#> SRR1003811     1   0.000     0.9900 1.000 0.000
#> SRR1003812     1   0.000     0.9900 1.000 0.000
#> SRR1003813     1   0.000     0.9900 1.000 0.000
#> SRR1003814     1   0.000     0.9900 1.000 0.000
#> SRR1003815     1   0.000     0.9900 1.000 0.000
#> SRR1003816     1   0.000     0.9900 1.000 0.000
#> SRR1003817     1   0.000     0.9900 1.000 0.000
#> SRR1003818     1   0.000     0.9900 1.000 0.000
#> SRR1003819     1   0.000     0.9900 1.000 0.000
#> SRR1003820     1   0.000     0.9900 1.000 0.000
#> SRR1003821     1   0.000     0.9900 1.000 0.000
#> SRR1003822     1   0.000     0.9900 1.000 0.000
#> SRR1003824     1   0.000     0.9900 1.000 0.000
#> SRR1003823     1   0.000     0.9900 1.000 0.000
#> SRR1003825     1   0.000     0.9900 1.000 0.000
#> SRR1003826     1   0.000     0.9900 1.000 0.000
#> SRR1003827     1   0.000     0.9900 1.000 0.000
#> SRR1003828     1   0.000     0.9900 1.000 0.000
#> SRR1003829     1   0.000     0.9900 1.000 0.000
#> SRR1003830     1   0.000     0.9900 1.000 0.000
#> SRR1003831     1   0.000     0.9900 1.000 0.000
#> SRR1003832     1   0.000     0.9900 1.000 0.000
#> SRR1003833     1   0.000     0.9900 1.000 0.000
#> SRR1003834     1   0.000     0.9900 1.000 0.000
#> SRR1003836     1   0.000     0.9900 1.000 0.000
#> SRR1003835     1   0.000     0.9900 1.000 0.000
#> SRR1003838     1   0.000     0.9900 1.000 0.000
#> SRR1003837     1   0.000     0.9900 1.000 0.000
#> SRR1003839     1   0.000     0.9900 1.000 0.000
#> SRR1003840     1   0.000     0.9900 1.000 0.000
#> SRR1003841     2   0.000     1.0000 0.000 1.000
#> SRR1003842     1   0.000     0.9900 1.000 0.000
#> SRR1003844     1   0.000     0.9900 1.000 0.000
#> SRR1003845     1   0.000     0.9900 1.000 0.000
#> SRR1003846     1   0.000     0.9900 1.000 0.000
#> SRR1003847     1   0.000     0.9900 1.000 0.000
#> SRR1003848     1   0.000     0.9900 1.000 0.000
#> SRR1003849     1   0.000     0.9900 1.000 0.000
#> SRR1003850     1   0.000     0.9900 1.000 0.000
#> SRR1003851     1   0.000     0.9900 1.000 0.000
#> SRR1003852     1   0.000     0.9900 1.000 0.000
#> SRR1003853     1   0.000     0.9900 1.000 0.000
#> SRR1003854     1   0.000     0.9900 1.000 0.000
#> SRR1003843     1   0.000     0.9900 1.000 0.000
#> SRR1003855     1   0.000     0.9900 1.000 0.000
#> SRR1003856     1   0.000     0.9900 1.000 0.000
#> SRR1003857     1   0.000     0.9900 1.000 0.000
#> SRR1003858     1   0.000     0.9900 1.000 0.000
#> SRR1003859     1   0.000     0.9900 1.000 0.000
#> SRR1003860     1   0.000     0.9900 1.000 0.000
#> SRR1003861     1   0.000     0.9900 1.000 0.000
#> SRR1003862     1   0.000     0.9900 1.000 0.000
#> SRR1003863     1   0.000     0.9900 1.000 0.000
#> SRR1003864     1   0.000     0.9900 1.000 0.000
#> SRR1003865     1   0.000     0.9900 1.000 0.000
#> SRR1003866     1   0.000     0.9900 1.000 0.000
#> SRR1003867     1   0.000     0.9900 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1003755     3  0.0000     0.6463 0.000 0.000 1.000
#> SRR1003756     3  0.0000     0.6463 0.000 0.000 1.000
#> SRR1003757     3  0.0000     0.6463 0.000 0.000 1.000
#> SRR1003758     3  0.0000     0.6463 0.000 0.000 1.000
#> SRR1003759     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003760     2  0.0000     1.0000 0.000 1.000 0.000
#> SRR1003761     1  0.6309     0.0557 0.504 0.496 0.000
#> SRR1003762     2  0.0000     1.0000 0.000 1.000 0.000
#> SRR1003763     1  0.5988     0.3548 0.632 0.368 0.000
#> SRR1003764     2  0.0000     1.0000 0.000 1.000 0.000
#> SRR1003765     2  0.0000     1.0000 0.000 1.000 0.000
#> SRR1003766     2  0.0000     1.0000 0.000 1.000 0.000
#> SRR1003767     2  0.0000     1.0000 0.000 1.000 0.000
#> SRR1003768     2  0.0000     1.0000 0.000 1.000 0.000
#> SRR1003769     2  0.0000     1.0000 0.000 1.000 0.000
#> SRR1003770     2  0.0000     1.0000 0.000 1.000 0.000
#> SRR1003771     2  0.0000     1.0000 0.000 1.000 0.000
#> SRR1003773     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003772     3  0.5098     0.6726 0.248 0.000 0.752
#> SRR1003774     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003775     3  0.4452     0.6775 0.192 0.000 0.808
#> SRR1003776     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003777     1  0.3816     0.7621 0.852 0.000 0.148
#> SRR1003778     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003779     3  0.5760     0.6628 0.328 0.000 0.672
#> SRR1003780     2  0.0000     1.0000 0.000 1.000 0.000
#> SRR1003781     1  0.2537     0.8370 0.920 0.000 0.080
#> SRR1003784     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003785     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003786     3  0.0000     0.6463 0.000 0.000 1.000
#> SRR1003783     3  0.6308     0.3143 0.492 0.000 0.508
#> SRR1003787     3  0.5465     0.7106 0.288 0.000 0.712
#> SRR1003788     1  0.4750     0.6596 0.784 0.000 0.216
#> SRR1003789     2  0.0000     1.0000 0.000 1.000 0.000
#> SRR1003790     3  0.5835     0.6506 0.340 0.000 0.660
#> SRR1003791     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003792     1  0.4702     0.6483 0.788 0.000 0.212
#> SRR1003793     1  0.4555     0.6829 0.800 0.000 0.200
#> SRR1003794     1  0.5254     0.5647 0.736 0.000 0.264
#> SRR1003795     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003796     1  0.3192     0.7925 0.888 0.112 0.000
#> SRR1003797     3  0.6215     0.4829 0.428 0.000 0.572
#> SRR1003798     1  0.6045     0.1621 0.620 0.000 0.380
#> SRR1003799     3  0.5706     0.6549 0.320 0.000 0.680
#> SRR1003800     1  0.3551     0.7856 0.868 0.000 0.132
#> SRR1003801     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003802     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003803     1  0.5098     0.5727 0.752 0.000 0.248
#> SRR1003804     1  0.5138     0.6070 0.748 0.000 0.252
#> SRR1003805     3  0.6307     0.3394 0.488 0.000 0.512
#> SRR1003806     1  0.1753     0.8714 0.952 0.000 0.048
#> SRR1003807     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003809     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003808     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003810     1  0.3267     0.8098 0.884 0.000 0.116
#> SRR1003811     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003812     3  0.4702     0.7340 0.212 0.000 0.788
#> SRR1003813     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003814     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003815     1  0.5810     0.3262 0.664 0.000 0.336
#> SRR1003816     3  0.4121     0.7350 0.168 0.000 0.832
#> SRR1003817     1  0.3482     0.7854 0.872 0.000 0.128
#> SRR1003818     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003819     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003820     3  0.6309     0.3347 0.496 0.000 0.504
#> SRR1003821     3  0.3879     0.7133 0.152 0.000 0.848
#> SRR1003822     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003824     1  0.4452     0.6962 0.808 0.000 0.192
#> SRR1003823     3  0.4504     0.7330 0.196 0.000 0.804
#> SRR1003825     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003826     1  0.6192     0.0428 0.580 0.000 0.420
#> SRR1003827     1  0.0892     0.8861 0.980 0.000 0.020
#> SRR1003828     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003829     1  0.2356     0.8500 0.928 0.000 0.072
#> SRR1003830     3  0.0747     0.6581 0.016 0.000 0.984
#> SRR1003831     1  0.2261     0.8520 0.932 0.000 0.068
#> SRR1003832     3  0.4346     0.7362 0.184 0.000 0.816
#> SRR1003833     1  0.1411     0.8789 0.964 0.000 0.036
#> SRR1003834     1  0.1289     0.8814 0.968 0.000 0.032
#> SRR1003836     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003835     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003838     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003837     1  0.0237     0.8926 0.996 0.000 0.004
#> SRR1003839     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003840     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003841     2  0.0000     1.0000 0.000 1.000 0.000
#> SRR1003842     3  0.5968     0.6104 0.364 0.000 0.636
#> SRR1003844     3  0.6305     0.3698 0.484 0.000 0.516
#> SRR1003845     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003846     3  0.2448     0.6954 0.076 0.000 0.924
#> SRR1003847     1  0.0747     0.8883 0.984 0.000 0.016
#> SRR1003848     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003849     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003850     1  0.0747     0.8877 0.984 0.000 0.016
#> SRR1003851     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003852     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003853     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003854     1  0.2796     0.8287 0.908 0.000 0.092
#> SRR1003843     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003855     1  0.3267     0.7978 0.884 0.000 0.116
#> SRR1003856     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003857     3  0.5529     0.7027 0.296 0.000 0.704
#> SRR1003858     1  0.0237     0.8925 0.996 0.000 0.004
#> SRR1003859     3  0.0237     0.6500 0.004 0.000 0.996
#> SRR1003860     1  0.1163     0.8806 0.972 0.000 0.028
#> SRR1003861     1  0.2878     0.8262 0.904 0.000 0.096
#> SRR1003862     1  0.5948     0.2924 0.640 0.000 0.360
#> SRR1003863     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003864     1  0.0747     0.8881 0.984 0.000 0.016
#> SRR1003865     1  0.0000     0.8940 1.000 0.000 0.000
#> SRR1003866     1  0.1031     0.8851 0.976 0.000 0.024
#> SRR1003867     1  0.5905     0.2701 0.648 0.000 0.352

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1003755     4  0.0000     0.6014 0.000 0.000 0.000 1.000
#> SRR1003756     4  0.0000     0.6014 0.000 0.000 0.000 1.000
#> SRR1003757     4  0.0000     0.6014 0.000 0.000 0.000 1.000
#> SRR1003758     4  0.0000     0.6014 0.000 0.000 0.000 1.000
#> SRR1003759     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1003760     2  0.0000     0.8511 0.000 1.000 0.000 0.000
#> SRR1003761     2  0.0000     0.8511 0.000 1.000 0.000 0.000
#> SRR1003762     2  0.0000     0.8511 0.000 1.000 0.000 0.000
#> SRR1003763     2  0.0000     0.8511 0.000 1.000 0.000 0.000
#> SRR1003764     2  0.0000     0.8511 0.000 1.000 0.000 0.000
#> SRR1003765     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1003766     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1003767     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1003768     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1003769     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1003770     2  0.4898     0.3214 0.000 0.584 0.416 0.000
#> SRR1003771     2  0.3610     0.7009 0.000 0.800 0.200 0.000
#> SRR1003773     1  0.3688     0.6909 0.792 0.208 0.000 0.000
#> SRR1003772     4  0.4040     0.6227 0.248 0.000 0.000 0.752
#> SRR1003774     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1003775     4  0.3528     0.6278 0.192 0.000 0.000 0.808
#> SRR1003776     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1003777     1  0.3024     0.7717 0.852 0.000 0.000 0.148
#> SRR1003778     2  0.0000     0.8511 0.000 1.000 0.000 0.000
#> SRR1003779     4  0.4564     0.6602 0.328 0.000 0.000 0.672
#> SRR1003780     2  0.2530     0.7921 0.000 0.888 0.112 0.000
#> SRR1003781     1  0.2011     0.8399 0.920 0.000 0.000 0.080
#> SRR1003784     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1003785     1  0.3569     0.7091 0.804 0.196 0.000 0.000
#> SRR1003786     4  0.0000     0.6014 0.000 0.000 0.000 1.000
#> SRR1003783     4  0.4999     0.3000 0.492 0.000 0.000 0.508
#> SRR1003787     4  0.4331     0.6975 0.288 0.000 0.000 0.712
#> SRR1003788     1  0.3764     0.6827 0.784 0.000 0.000 0.216
#> SRR1003789     2  0.0000     0.8511 0.000 1.000 0.000 0.000
#> SRR1003790     4  0.4624     0.6501 0.340 0.000 0.000 0.660
#> SRR1003791     1  0.0469     0.8859 0.988 0.012 0.000 0.000
#> SRR1003792     1  0.3726     0.6563 0.788 0.000 0.000 0.212
#> SRR1003793     1  0.3610     0.6949 0.800 0.000 0.000 0.200
#> SRR1003794     1  0.4164     0.5785 0.736 0.000 0.000 0.264
#> SRR1003795     1  0.3873     0.6600 0.772 0.228 0.000 0.000
#> SRR1003796     2  0.4500     0.3301 0.316 0.684 0.000 0.000
#> SRR1003797     4  0.4925     0.4718 0.428 0.000 0.000 0.572
#> SRR1003798     1  0.4790     0.1687 0.620 0.000 0.000 0.380
#> SRR1003799     4  0.4522     0.6477 0.320 0.000 0.000 0.680
#> SRR1003800     1  0.2814     0.7926 0.868 0.000 0.000 0.132
#> SRR1003801     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1003802     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1003803     1  0.4040     0.5810 0.752 0.000 0.000 0.248
#> SRR1003804     1  0.4072     0.6292 0.748 0.000 0.000 0.252
#> SRR1003805     4  0.4998     0.3320 0.488 0.000 0.000 0.512
#> SRR1003806     1  0.1389     0.8739 0.952 0.000 0.000 0.048
#> SRR1003807     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1003809     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1003808     1  0.0336     0.8869 0.992 0.008 0.000 0.000
#> SRR1003810     1  0.2589     0.8196 0.884 0.000 0.000 0.116
#> SRR1003811     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1003812     4  0.3726     0.6987 0.212 0.000 0.000 0.788
#> SRR1003813     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1003814     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1003815     1  0.4605     0.3360 0.664 0.000 0.000 0.336
#> SRR1003816     4  0.3266     0.7006 0.168 0.000 0.000 0.832
#> SRR1003817     1  0.2760     0.7984 0.872 0.000 0.000 0.128
#> SRR1003818     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1003819     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1003820     4  0.5000     0.3346 0.496 0.000 0.000 0.504
#> SRR1003821     4  0.3074     0.6740 0.152 0.000 0.000 0.848
#> SRR1003822     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1003824     1  0.3528     0.7074 0.808 0.000 0.000 0.192
#> SRR1003823     4  0.3569     0.6958 0.196 0.000 0.000 0.804
#> SRR1003825     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1003826     1  0.4907     0.0778 0.580 0.000 0.000 0.420
#> SRR1003827     1  0.0707     0.8839 0.980 0.000 0.000 0.020
#> SRR1003828     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1003829     1  0.1867     0.8537 0.928 0.000 0.000 0.072
#> SRR1003830     4  0.0592     0.6145 0.016 0.000 0.000 0.984
#> SRR1003831     1  0.1792     0.8544 0.932 0.000 0.000 0.068
#> SRR1003832     4  0.3444     0.7005 0.184 0.000 0.000 0.816
#> SRR1003833     1  0.1118     0.8796 0.964 0.000 0.000 0.036
#> SRR1003834     1  0.1022     0.8818 0.968 0.000 0.000 0.032
#> SRR1003836     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1003835     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1003838     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1003837     1  0.0188     0.8876 0.996 0.000 0.000 0.004
#> SRR1003839     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1003840     1  0.1118     0.8750 0.964 0.036 0.000 0.000
#> SRR1003841     2  0.2647     0.7861 0.000 0.880 0.120 0.000
#> SRR1003842     4  0.4730     0.6012 0.364 0.000 0.000 0.636
#> SRR1003844     4  0.4996     0.3700 0.484 0.000 0.000 0.516
#> SRR1003845     1  0.1637     0.8577 0.940 0.060 0.000 0.000
#> SRR1003846     4  0.1940     0.6551 0.076 0.000 0.000 0.924
#> SRR1003847     1  0.0592     0.8858 0.984 0.000 0.000 0.016
#> SRR1003848     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1003849     1  0.1302     0.8702 0.956 0.044 0.000 0.000
#> SRR1003850     1  0.0592     0.8855 0.984 0.000 0.000 0.016
#> SRR1003851     1  0.3528     0.7143 0.808 0.192 0.000 0.000
#> SRR1003852     1  0.0921     0.8793 0.972 0.028 0.000 0.000
#> SRR1003853     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1003854     1  0.2216     0.8331 0.908 0.000 0.000 0.092
#> SRR1003843     1  0.0188     0.8875 0.996 0.004 0.000 0.000
#> SRR1003855     1  0.2589     0.8025 0.884 0.000 0.000 0.116
#> SRR1003856     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1003857     4  0.4382     0.6934 0.296 0.000 0.000 0.704
#> SRR1003858     1  0.0188     0.8875 0.996 0.000 0.000 0.004
#> SRR1003859     4  0.0188     0.6056 0.004 0.000 0.000 0.996
#> SRR1003860     1  0.0921     0.8802 0.972 0.000 0.000 0.028
#> SRR1003861     1  0.2281     0.8352 0.904 0.000 0.000 0.096
#> SRR1003862     1  0.4713     0.3207 0.640 0.000 0.000 0.360
#> SRR1003863     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1003864     1  0.0592     0.8852 0.984 0.000 0.000 0.016
#> SRR1003865     1  0.0000     0.8879 1.000 0.000 0.000 0.000
#> SRR1003866     1  0.0817     0.8841 0.976 0.000 0.000 0.024
#> SRR1003867     1  0.4679     0.2772 0.648 0.000 0.000 0.352

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1003755     4  0.0000     0.5809 0.000 0.000 0.000 1.000 0.000
#> SRR1003756     4  0.0000     0.5809 0.000 0.000 0.000 1.000 0.000
#> SRR1003757     4  0.0000     0.5809 0.000 0.000 0.000 1.000 0.000
#> SRR1003758     4  0.0000     0.5809 0.000 0.000 0.000 1.000 0.000
#> SRR1003759     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000
#> SRR1003760     2  0.0000     0.9069 0.000 1.000 0.000 0.000 0.000
#> SRR1003761     2  0.0000     0.9069 0.000 1.000 0.000 0.000 0.000
#> SRR1003762     2  0.0000     0.9069 0.000 1.000 0.000 0.000 0.000
#> SRR1003763     2  0.0000     0.9069 0.000 1.000 0.000 0.000 0.000
#> SRR1003764     2  0.0000     0.9069 0.000 1.000 0.000 0.000 0.000
#> SRR1003765     5  0.3366     0.7035 0.000 0.000 0.232 0.000 0.768
#> SRR1003766     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1003767     5  0.0000     0.9162 0.000 0.000 0.000 0.000 1.000
#> SRR1003768     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1003769     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1003770     5  0.0290     0.9150 0.000 0.000 0.008 0.000 0.992
#> SRR1003771     5  0.0000     0.9162 0.000 0.000 0.000 0.000 1.000
#> SRR1003773     1  0.3177     0.6893 0.792 0.208 0.000 0.000 0.000
#> SRR1003772     4  0.3480     0.6015 0.248 0.000 0.000 0.752 0.000
#> SRR1003774     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000
#> SRR1003775     4  0.3039     0.6062 0.192 0.000 0.000 0.808 0.000
#> SRR1003776     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000
#> SRR1003777     1  0.2605     0.7715 0.852 0.000 0.000 0.148 0.000
#> SRR1003778     2  0.0000     0.9069 0.000 1.000 0.000 0.000 0.000
#> SRR1003779     4  0.3932     0.6602 0.328 0.000 0.000 0.672 0.000
#> SRR1003780     2  0.0609     0.8923 0.000 0.980 0.000 0.000 0.020
#> SRR1003781     1  0.1732     0.8398 0.920 0.000 0.000 0.080 0.000
#> SRR1003784     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000
#> SRR1003785     1  0.3074     0.7076 0.804 0.196 0.000 0.000 0.000
#> SRR1003786     4  0.0000     0.5809 0.000 0.000 0.000 1.000 0.000
#> SRR1003783     4  0.4306     0.3000 0.492 0.000 0.000 0.508 0.000
#> SRR1003787     4  0.3730     0.6835 0.288 0.000 0.000 0.712 0.000
#> SRR1003788     1  0.3242     0.6825 0.784 0.000 0.000 0.216 0.000
#> SRR1003789     2  0.0000     0.9069 0.000 1.000 0.000 0.000 0.000
#> SRR1003790     4  0.3983     0.6502 0.340 0.000 0.000 0.660 0.000
#> SRR1003791     1  0.0404     0.8858 0.988 0.012 0.000 0.000 0.000
#> SRR1003792     1  0.3210     0.6562 0.788 0.000 0.000 0.212 0.000
#> SRR1003793     1  0.3109     0.6948 0.800 0.000 0.000 0.200 0.000
#> SRR1003794     1  0.3586     0.5783 0.736 0.000 0.000 0.264 0.000
#> SRR1003795     1  0.3336     0.6589 0.772 0.228 0.000 0.000 0.000
#> SRR1003796     2  0.3876     0.3170 0.316 0.684 0.000 0.000 0.000
#> SRR1003797     4  0.4242     0.4719 0.428 0.000 0.000 0.572 0.000
#> SRR1003798     1  0.4126     0.1686 0.620 0.000 0.000 0.380 0.000
#> SRR1003799     4  0.3895     0.6355 0.320 0.000 0.000 0.680 0.000
#> SRR1003800     1  0.2424     0.7925 0.868 0.000 0.000 0.132 0.000
#> SRR1003801     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000
#> SRR1003802     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000
#> SRR1003803     1  0.3480     0.5809 0.752 0.000 0.000 0.248 0.000
#> SRR1003804     1  0.3508     0.6290 0.748 0.000 0.000 0.252 0.000
#> SRR1003805     4  0.4305     0.3321 0.488 0.000 0.000 0.512 0.000
#> SRR1003806     1  0.1197     0.8738 0.952 0.000 0.000 0.048 0.000
#> SRR1003807     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000
#> SRR1003809     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000
#> SRR1003808     1  0.0290     0.8867 0.992 0.008 0.000 0.000 0.000
#> SRR1003810     1  0.2230     0.8195 0.884 0.000 0.000 0.116 0.000
#> SRR1003811     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000
#> SRR1003812     4  0.3210     0.6837 0.212 0.000 0.000 0.788 0.000
#> SRR1003813     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000
#> SRR1003814     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000
#> SRR1003815     1  0.3966     0.3359 0.664 0.000 0.000 0.336 0.000
#> SRR1003816     4  0.2813     0.6855 0.168 0.000 0.000 0.832 0.000
#> SRR1003817     1  0.2377     0.7982 0.872 0.000 0.000 0.128 0.000
#> SRR1003818     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000
#> SRR1003819     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000
#> SRR1003820     4  0.4307     0.3347 0.496 0.000 0.000 0.504 0.000
#> SRR1003821     4  0.2648     0.6562 0.152 0.000 0.000 0.848 0.000
#> SRR1003822     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000
#> SRR1003824     1  0.3039     0.7073 0.808 0.000 0.000 0.192 0.000
#> SRR1003823     4  0.3074     0.6802 0.196 0.000 0.000 0.804 0.000
#> SRR1003825     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000
#> SRR1003826     1  0.4227     0.0777 0.580 0.000 0.000 0.420 0.000
#> SRR1003827     1  0.0609     0.8837 0.980 0.000 0.000 0.020 0.000
#> SRR1003828     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000
#> SRR1003829     1  0.1608     0.8536 0.928 0.000 0.000 0.072 0.000
#> SRR1003830     4  0.0510     0.5946 0.016 0.000 0.000 0.984 0.000
#> SRR1003831     1  0.1544     0.8543 0.932 0.000 0.000 0.068 0.000
#> SRR1003832     4  0.2966     0.6855 0.184 0.000 0.000 0.816 0.000
#> SRR1003833     1  0.0963     0.8795 0.964 0.000 0.000 0.036 0.000
#> SRR1003834     1  0.0880     0.8817 0.968 0.000 0.000 0.032 0.000
#> SRR1003836     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000
#> SRR1003835     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000
#> SRR1003838     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000
#> SRR1003837     1  0.0162     0.8875 0.996 0.000 0.000 0.004 0.000
#> SRR1003839     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000
#> SRR1003840     1  0.0963     0.8749 0.964 0.036 0.000 0.000 0.000
#> SRR1003841     2  0.1410     0.8516 0.000 0.940 0.000 0.000 0.060
#> SRR1003842     4  0.4074     0.6012 0.364 0.000 0.000 0.636 0.000
#> SRR1003844     4  0.4304     0.3700 0.484 0.000 0.000 0.516 0.000
#> SRR1003845     1  0.1410     0.8574 0.940 0.060 0.000 0.000 0.000
#> SRR1003846     4  0.1671     0.6374 0.076 0.000 0.000 0.924 0.000
#> SRR1003847     1  0.0510     0.8857 0.984 0.000 0.000 0.016 0.000
#> SRR1003848     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000
#> SRR1003849     1  0.1121     0.8698 0.956 0.044 0.000 0.000 0.000
#> SRR1003850     1  0.0510     0.8854 0.984 0.000 0.000 0.016 0.000
#> SRR1003851     1  0.3039     0.7126 0.808 0.192 0.000 0.000 0.000
#> SRR1003852     1  0.0794     0.8791 0.972 0.028 0.000 0.000 0.000
#> SRR1003853     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000
#> SRR1003854     1  0.1908     0.8330 0.908 0.000 0.000 0.092 0.000
#> SRR1003843     1  0.0162     0.8874 0.996 0.004 0.000 0.000 0.000
#> SRR1003855     1  0.2230     0.8024 0.884 0.000 0.000 0.116 0.000
#> SRR1003856     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000
#> SRR1003857     4  0.3774     0.6794 0.296 0.000 0.000 0.704 0.000
#> SRR1003858     1  0.0162     0.8874 0.996 0.000 0.000 0.004 0.000
#> SRR1003859     4  0.0162     0.5854 0.004 0.000 0.000 0.996 0.000
#> SRR1003860     1  0.0794     0.8801 0.972 0.000 0.000 0.028 0.000
#> SRR1003861     1  0.1965     0.8350 0.904 0.000 0.000 0.096 0.000
#> SRR1003862     1  0.4060     0.3206 0.640 0.000 0.000 0.360 0.000
#> SRR1003863     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000
#> SRR1003864     1  0.0510     0.8851 0.984 0.000 0.000 0.016 0.000
#> SRR1003865     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000
#> SRR1003866     1  0.0703     0.8840 0.976 0.000 0.000 0.024 0.000
#> SRR1003867     1  0.4030     0.2771 0.648 0.000 0.000 0.352 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1003755     4  0.0000     0.5698 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1003756     4  0.0000     0.5698 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1003757     4  0.0000     0.5698 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1003758     4  0.0000     0.5698 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1003759     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003760     6  0.0000     0.8876 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1003761     6  0.0000     0.8876 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1003762     6  0.0000     0.8876 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1003763     6  0.0000     0.8876 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1003764     6  0.0000     0.8876 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1003765     3  0.1257     0.9781 0.000 0.020 0.952 0.000 0.028 0.000
#> SRR1003766     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003767     5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1003768     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003769     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003770     3  0.1152     0.9779 0.000 0.004 0.952 0.000 0.044 0.000
#> SRR1003771     5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1003773     1  0.2854     0.6900 0.792 0.000 0.000 0.000 0.000 0.208
#> SRR1003772     4  0.3126     0.5897 0.248 0.000 0.000 0.752 0.000 0.000
#> SRR1003774     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003775     4  0.2730     0.5942 0.192 0.000 0.000 0.808 0.000 0.000
#> SRR1003776     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003777     1  0.2340     0.7717 0.852 0.000 0.000 0.148 0.000 0.000
#> SRR1003778     6  0.0000     0.8876 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1003779     4  0.3531     0.6572 0.328 0.000 0.000 0.672 0.000 0.000
#> SRR1003780     6  0.1700     0.8373 0.000 0.000 0.048 0.000 0.024 0.928
#> SRR1003781     1  0.1556     0.8399 0.920 0.000 0.000 0.080 0.000 0.000
#> SRR1003784     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003785     1  0.2762     0.7082 0.804 0.000 0.000 0.000 0.000 0.196
#> SRR1003786     4  0.0000     0.5698 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1003783     4  0.3868     0.2997 0.492 0.000 0.000 0.508 0.000 0.000
#> SRR1003787     4  0.3351     0.6760 0.288 0.000 0.000 0.712 0.000 0.000
#> SRR1003788     1  0.2912     0.6828 0.784 0.000 0.000 0.216 0.000 0.000
#> SRR1003789     6  0.0000     0.8876 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1003790     4  0.3578     0.6492 0.340 0.000 0.000 0.660 0.000 0.000
#> SRR1003791     1  0.0363     0.8858 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR1003792     1  0.2883     0.6563 0.788 0.000 0.000 0.212 0.000 0.000
#> SRR1003793     1  0.2793     0.6950 0.800 0.000 0.000 0.200 0.000 0.000
#> SRR1003794     1  0.3221     0.5787 0.736 0.000 0.000 0.264 0.000 0.000
#> SRR1003795     1  0.3649     0.6526 0.764 0.000 0.040 0.000 0.000 0.196
#> SRR1003796     6  0.3482     0.2827 0.316 0.000 0.000 0.000 0.000 0.684
#> SRR1003797     4  0.3810     0.4715 0.428 0.000 0.000 0.572 0.000 0.000
#> SRR1003798     1  0.3706     0.1688 0.620 0.000 0.000 0.380 0.000 0.000
#> SRR1003799     4  0.3499     0.6264 0.320 0.000 0.000 0.680 0.000 0.000
#> SRR1003800     1  0.2178     0.7926 0.868 0.000 0.000 0.132 0.000 0.000
#> SRR1003801     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003802     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003803     1  0.3126     0.5811 0.752 0.000 0.000 0.248 0.000 0.000
#> SRR1003804     1  0.3151     0.6293 0.748 0.000 0.000 0.252 0.000 0.000
#> SRR1003805     4  0.3867     0.3320 0.488 0.000 0.000 0.512 0.000 0.000
#> SRR1003806     1  0.1075     0.8738 0.952 0.000 0.000 0.048 0.000 0.000
#> SRR1003807     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003809     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003808     1  0.0260     0.8868 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR1003810     1  0.2003     0.8196 0.884 0.000 0.000 0.116 0.000 0.000
#> SRR1003811     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003812     4  0.2883     0.6755 0.212 0.000 0.000 0.788 0.000 0.000
#> SRR1003813     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003814     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003815     1  0.3563     0.3361 0.664 0.000 0.000 0.336 0.000 0.000
#> SRR1003816     4  0.2527     0.6774 0.168 0.000 0.000 0.832 0.000 0.000
#> SRR1003817     1  0.2135     0.7983 0.872 0.000 0.000 0.128 0.000 0.000
#> SRR1003818     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003819     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003820     4  0.3868     0.3345 0.496 0.000 0.000 0.504 0.000 0.000
#> SRR1003821     4  0.2378     0.6464 0.152 0.000 0.000 0.848 0.000 0.000
#> SRR1003822     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003824     1  0.2730     0.7075 0.808 0.000 0.000 0.192 0.000 0.000
#> SRR1003823     4  0.2762     0.6717 0.196 0.000 0.000 0.804 0.000 0.000
#> SRR1003825     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003826     1  0.3797     0.0785 0.580 0.000 0.000 0.420 0.000 0.000
#> SRR1003827     1  0.0547     0.8838 0.980 0.000 0.000 0.020 0.000 0.000
#> SRR1003828     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003829     1  0.1444     0.8537 0.928 0.000 0.000 0.072 0.000 0.000
#> SRR1003830     4  0.0458     0.5838 0.016 0.000 0.000 0.984 0.000 0.000
#> SRR1003831     1  0.1387     0.8544 0.932 0.000 0.000 0.068 0.000 0.000
#> SRR1003832     4  0.2664     0.6772 0.184 0.000 0.000 0.816 0.000 0.000
#> SRR1003833     1  0.0865     0.8796 0.964 0.000 0.000 0.036 0.000 0.000
#> SRR1003834     1  0.0790     0.8817 0.968 0.000 0.000 0.032 0.000 0.000
#> SRR1003836     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003835     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003838     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003837     1  0.0146     0.8875 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1003839     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003840     1  0.0972     0.8760 0.964 0.000 0.008 0.000 0.000 0.028
#> SRR1003841     6  0.2432     0.7637 0.000 0.000 0.100 0.000 0.024 0.876
#> SRR1003842     4  0.3659     0.6010 0.364 0.000 0.000 0.636 0.000 0.000
#> SRR1003844     4  0.3866     0.3699 0.484 0.000 0.000 0.516 0.000 0.000
#> SRR1003845     1  0.1267     0.8576 0.940 0.000 0.000 0.000 0.000 0.060
#> SRR1003846     4  0.1501     0.6276 0.076 0.000 0.000 0.924 0.000 0.000
#> SRR1003847     1  0.0458     0.8857 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1003848     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003849     1  0.1007     0.8699 0.956 0.000 0.000 0.000 0.000 0.044
#> SRR1003850     1  0.0458     0.8855 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1003851     1  0.2730     0.7133 0.808 0.000 0.000 0.000 0.000 0.192
#> SRR1003852     1  0.0713     0.8792 0.972 0.000 0.000 0.000 0.000 0.028
#> SRR1003853     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003854     1  0.1714     0.8330 0.908 0.000 0.000 0.092 0.000 0.000
#> SRR1003843     1  0.0146     0.8874 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1003855     1  0.2003     0.8025 0.884 0.000 0.000 0.116 0.000 0.000
#> SRR1003856     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003857     4  0.3390     0.6719 0.296 0.000 0.000 0.704 0.000 0.000
#> SRR1003858     1  0.0146     0.8874 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1003859     4  0.0146     0.5744 0.004 0.000 0.000 0.996 0.000 0.000
#> SRR1003860     1  0.0713     0.8801 0.972 0.000 0.000 0.028 0.000 0.000
#> SRR1003861     1  0.1765     0.8351 0.904 0.000 0.000 0.096 0.000 0.000
#> SRR1003862     1  0.3647     0.3212 0.640 0.000 0.000 0.360 0.000 0.000
#> SRR1003863     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003864     1  0.0458     0.8852 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1003865     1  0.0000     0.8878 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003866     1  0.0632     0.8841 0.976 0.000 0.000 0.024 0.000 0.000
#> SRR1003867     1  0.3620     0.2774 0.648 0.000 0.000 0.352 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 9166 rows and 112 columns.
#>   Top rows (917, 1834, 2750, 3666, 4583) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.815           0.850       0.940         0.4055 0.604   0.604
#> 3 3 0.496           0.725       0.828         0.2089 0.824   0.743
#> 4 4 0.394           0.689       0.776         0.1667 0.934   0.888
#> 5 5 0.382           0.604       0.678         0.1272 0.971   0.947
#> 6 6 0.418           0.429       0.579         0.0633 0.736   0.527

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1003755     2  0.3431    0.90136 0.064 0.936
#> SRR1003756     2  0.3431    0.90136 0.064 0.936
#> SRR1003757     2  0.9044    0.57371 0.320 0.680
#> SRR1003758     2  0.9044    0.57371 0.320 0.680
#> SRR1003759     1  0.9970    0.06485 0.532 0.468
#> SRR1003760     2  0.0376    0.91183 0.004 0.996
#> SRR1003761     2  0.0376    0.91183 0.004 0.996
#> SRR1003762     2  0.0000    0.91169 0.000 1.000
#> SRR1003763     2  0.0000    0.91169 0.000 1.000
#> SRR1003764     2  0.0000    0.91169 0.000 1.000
#> SRR1003765     2  0.0000    0.91169 0.000 1.000
#> SRR1003766     2  0.0000    0.91169 0.000 1.000
#> SRR1003767     2  0.0000    0.91169 0.000 1.000
#> SRR1003768     2  0.0000    0.91169 0.000 1.000
#> SRR1003769     2  0.0000    0.91169 0.000 1.000
#> SRR1003770     2  0.0000    0.91169 0.000 1.000
#> SRR1003771     2  0.0000    0.91169 0.000 1.000
#> SRR1003773     2  0.3274    0.90382 0.060 0.940
#> SRR1003772     1  0.0000    0.93907 1.000 0.000
#> SRR1003774     1  0.0376    0.93622 0.996 0.004
#> SRR1003775     1  0.0000    0.93907 1.000 0.000
#> SRR1003776     1  0.0000    0.93907 1.000 0.000
#> SRR1003777     1  0.0000    0.93907 1.000 0.000
#> SRR1003778     2  0.3274    0.90382 0.060 0.940
#> SRR1003779     1  0.0000    0.93907 1.000 0.000
#> SRR1003780     2  0.0000    0.91169 0.000 1.000
#> SRR1003781     1  0.0000    0.93907 1.000 0.000
#> SRR1003784     1  1.0000   -0.05643 0.504 0.496
#> SRR1003785     2  0.3274    0.90382 0.060 0.940
#> SRR1003786     1  0.0000    0.93907 1.000 0.000
#> SRR1003783     1  0.0000    0.93907 1.000 0.000
#> SRR1003787     1  0.0000    0.93907 1.000 0.000
#> SRR1003788     1  0.0376    0.93623 0.996 0.004
#> SRR1003789     2  0.0000    0.91169 0.000 1.000
#> SRR1003790     1  0.0000    0.93907 1.000 0.000
#> SRR1003791     1  0.9491    0.38394 0.632 0.368
#> SRR1003792     1  0.0000    0.93907 1.000 0.000
#> SRR1003793     1  0.0000    0.93907 1.000 0.000
#> SRR1003794     1  0.0000    0.93907 1.000 0.000
#> SRR1003795     2  0.2423    0.90794 0.040 0.960
#> SRR1003796     2  0.3274    0.90382 0.060 0.940
#> SRR1003797     1  0.0000    0.93907 1.000 0.000
#> SRR1003798     1  0.0000    0.93907 1.000 0.000
#> SRR1003799     1  0.0000    0.93907 1.000 0.000
#> SRR1003800     1  0.0000    0.93907 1.000 0.000
#> SRR1003801     1  0.1414    0.92341 0.980 0.020
#> SRR1003802     1  0.8909    0.52033 0.692 0.308
#> SRR1003803     1  0.0000    0.93907 1.000 0.000
#> SRR1003804     1  0.0000    0.93907 1.000 0.000
#> SRR1003805     1  0.0000    0.93907 1.000 0.000
#> SRR1003806     1  0.0000    0.93907 1.000 0.000
#> SRR1003807     1  0.2603    0.90126 0.956 0.044
#> SRR1003809     1  0.2603    0.90297 0.956 0.044
#> SRR1003808     1  0.5946    0.79219 0.856 0.144
#> SRR1003810     1  0.0000    0.93907 1.000 0.000
#> SRR1003811     1  0.3114    0.89054 0.944 0.056
#> SRR1003812     1  0.0000    0.93907 1.000 0.000
#> SRR1003813     2  0.3431    0.90148 0.064 0.936
#> SRR1003814     1  0.0000    0.93907 1.000 0.000
#> SRR1003815     1  0.0672    0.93298 0.992 0.008
#> SRR1003816     1  0.0000    0.93907 1.000 0.000
#> SRR1003817     1  0.0000    0.93907 1.000 0.000
#> SRR1003818     1  0.0000    0.93907 1.000 0.000
#> SRR1003819     1  0.9552    0.35960 0.624 0.376
#> SRR1003820     1  0.0000    0.93907 1.000 0.000
#> SRR1003821     1  0.0000    0.93907 1.000 0.000
#> SRR1003822     1  0.9970    0.05861 0.532 0.468
#> SRR1003824     1  0.0376    0.93619 0.996 0.004
#> SRR1003823     1  0.0000    0.93907 1.000 0.000
#> SRR1003825     1  0.0000    0.93907 1.000 0.000
#> SRR1003826     1  0.0000    0.93907 1.000 0.000
#> SRR1003827     1  0.0000    0.93907 1.000 0.000
#> SRR1003828     1  0.0000    0.93907 1.000 0.000
#> SRR1003829     1  0.0000    0.93907 1.000 0.000
#> SRR1003830     1  0.0000    0.93907 1.000 0.000
#> SRR1003831     1  0.0000    0.93907 1.000 0.000
#> SRR1003832     1  0.0000    0.93907 1.000 0.000
#> SRR1003833     1  0.0000    0.93907 1.000 0.000
#> SRR1003834     1  0.0000    0.93907 1.000 0.000
#> SRR1003836     1  0.0000    0.93907 1.000 0.000
#> SRR1003835     1  0.1184    0.92618 0.984 0.016
#> SRR1003838     2  0.3733    0.89557 0.072 0.928
#> SRR1003837     1  0.0000    0.93907 1.000 0.000
#> SRR1003839     1  0.0000    0.93907 1.000 0.000
#> SRR1003840     1  0.9754    0.27048 0.592 0.408
#> SRR1003841     2  0.0000    0.91169 0.000 1.000
#> SRR1003842     1  0.0000    0.93907 1.000 0.000
#> SRR1003844     1  0.0000    0.93907 1.000 0.000
#> SRR1003845     2  0.9286    0.52455 0.344 0.656
#> SRR1003846     1  0.0000    0.93907 1.000 0.000
#> SRR1003847     1  0.0000    0.93907 1.000 0.000
#> SRR1003848     1  0.8608    0.57061 0.716 0.284
#> SRR1003849     2  0.3274    0.90382 0.060 0.940
#> SRR1003850     1  0.0000    0.93907 1.000 0.000
#> SRR1003851     2  0.9358    0.50858 0.352 0.648
#> SRR1003852     1  0.9686    0.30194 0.604 0.396
#> SRR1003853     1  0.0000    0.93907 1.000 0.000
#> SRR1003854     1  0.0000    0.93907 1.000 0.000
#> SRR1003843     2  0.9393    0.49851 0.356 0.644
#> SRR1003855     1  0.0000    0.93907 1.000 0.000
#> SRR1003856     1  0.9988    0.00947 0.520 0.480
#> SRR1003857     1  0.0000    0.93907 1.000 0.000
#> SRR1003858     1  0.0000    0.93907 1.000 0.000
#> SRR1003859     1  0.0000    0.93907 1.000 0.000
#> SRR1003860     1  0.0000    0.93907 1.000 0.000
#> SRR1003861     1  0.0000    0.93907 1.000 0.000
#> SRR1003862     1  0.0000    0.93907 1.000 0.000
#> SRR1003863     1  0.0000    0.93907 1.000 0.000
#> SRR1003864     1  0.0000    0.93907 1.000 0.000
#> SRR1003865     1  0.0000    0.93907 1.000 0.000
#> SRR1003866     1  0.0000    0.93907 1.000 0.000
#> SRR1003867     1  0.0000    0.93907 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1003755     1  0.9674     -0.117 0.440 0.336 0.224
#> SRR1003756     1  0.9674     -0.117 0.440 0.336 0.224
#> SRR1003757     1  0.7585      0.316 0.484 0.040 0.476
#> SRR1003758     1  0.7585      0.316 0.484 0.040 0.476
#> SRR1003759     1  0.5406      0.711 0.780 0.020 0.200
#> SRR1003760     2  0.3607      0.873 0.008 0.880 0.112
#> SRR1003761     2  0.3607      0.873 0.008 0.880 0.112
#> SRR1003762     2  0.2165      0.926 0.000 0.936 0.064
#> SRR1003763     2  0.3272      0.883 0.004 0.892 0.104
#> SRR1003764     2  0.2165      0.926 0.000 0.936 0.064
#> SRR1003765     2  0.0000      0.948 0.000 1.000 0.000
#> SRR1003766     2  0.0000      0.948 0.000 1.000 0.000
#> SRR1003767     2  0.0000      0.948 0.000 1.000 0.000
#> SRR1003768     2  0.0000      0.948 0.000 1.000 0.000
#> SRR1003769     2  0.0000      0.948 0.000 1.000 0.000
#> SRR1003770     2  0.0000      0.948 0.000 1.000 0.000
#> SRR1003771     2  0.0000      0.948 0.000 1.000 0.000
#> SRR1003773     3  0.6527      0.436 0.020 0.320 0.660
#> SRR1003772     1  0.2356      0.835 0.928 0.000 0.072
#> SRR1003774     1  0.4121      0.804 0.832 0.000 0.168
#> SRR1003775     1  0.1860      0.826 0.948 0.000 0.052
#> SRR1003776     1  0.3116      0.829 0.892 0.000 0.108
#> SRR1003777     1  0.1411      0.823 0.964 0.000 0.036
#> SRR1003778     3  0.6527      0.436 0.020 0.320 0.660
#> SRR1003779     1  0.1860      0.835 0.948 0.000 0.052
#> SRR1003780     2  0.0237      0.947 0.000 0.996 0.004
#> SRR1003781     1  0.2537      0.832 0.920 0.000 0.080
#> SRR1003784     3  0.5597      0.523 0.216 0.020 0.764
#> SRR1003785     3  0.6570      0.455 0.024 0.308 0.668
#> SRR1003786     1  0.1529      0.826 0.960 0.000 0.040
#> SRR1003783     1  0.1643      0.822 0.956 0.000 0.044
#> SRR1003787     1  0.1643      0.820 0.956 0.000 0.044
#> SRR1003788     1  0.5058      0.754 0.756 0.000 0.244
#> SRR1003789     2  0.2261      0.925 0.000 0.932 0.068
#> SRR1003790     1  0.1964      0.822 0.944 0.000 0.056
#> SRR1003791     1  0.6386      0.526 0.584 0.004 0.412
#> SRR1003792     1  0.1529      0.827 0.960 0.000 0.040
#> SRR1003793     1  0.1964      0.822 0.944 0.000 0.056
#> SRR1003794     1  0.2356      0.834 0.928 0.000 0.072
#> SRR1003795     3  0.8546      0.431 0.108 0.348 0.544
#> SRR1003796     3  0.6553      0.431 0.020 0.324 0.656
#> SRR1003797     1  0.1411      0.823 0.964 0.000 0.036
#> SRR1003798     1  0.2959      0.827 0.900 0.000 0.100
#> SRR1003799     1  0.3038      0.828 0.896 0.000 0.104
#> SRR1003800     1  0.4842      0.765 0.776 0.000 0.224
#> SRR1003801     1  0.5529      0.705 0.704 0.000 0.296
#> SRR1003802     3  0.6307     -0.328 0.488 0.000 0.512
#> SRR1003803     1  0.1753      0.831 0.952 0.000 0.048
#> SRR1003804     1  0.5098      0.747 0.752 0.000 0.248
#> SRR1003805     1  0.1964      0.823 0.944 0.000 0.056
#> SRR1003806     1  0.2356      0.835 0.928 0.000 0.072
#> SRR1003807     1  0.5291      0.731 0.732 0.000 0.268
#> SRR1003809     1  0.6104      0.632 0.648 0.004 0.348
#> SRR1003808     1  0.3412      0.799 0.876 0.000 0.124
#> SRR1003810     1  0.5254      0.737 0.736 0.000 0.264
#> SRR1003811     1  0.6104      0.650 0.648 0.004 0.348
#> SRR1003812     1  0.2165      0.831 0.936 0.000 0.064
#> SRR1003813     3  0.6416      0.456 0.020 0.304 0.676
#> SRR1003814     1  0.2165      0.831 0.936 0.000 0.064
#> SRR1003815     1  0.5859      0.652 0.656 0.000 0.344
#> SRR1003816     1  0.2261      0.830 0.932 0.000 0.068
#> SRR1003817     1  0.1964      0.825 0.944 0.000 0.056
#> SRR1003818     1  0.1860      0.824 0.948 0.000 0.052
#> SRR1003819     1  0.6079      0.584 0.612 0.000 0.388
#> SRR1003820     1  0.1529      0.821 0.960 0.000 0.040
#> SRR1003821     1  0.1643      0.822 0.956 0.000 0.044
#> SRR1003822     3  0.5397      0.400 0.280 0.000 0.720
#> SRR1003824     1  0.5363      0.723 0.724 0.000 0.276
#> SRR1003823     1  0.1753      0.825 0.952 0.000 0.048
#> SRR1003825     1  0.4974      0.756 0.764 0.000 0.236
#> SRR1003826     1  0.2448      0.835 0.924 0.000 0.076
#> SRR1003827     1  0.1643      0.820 0.956 0.000 0.044
#> SRR1003828     1  0.3267      0.824 0.884 0.000 0.116
#> SRR1003829     1  0.1643      0.834 0.956 0.000 0.044
#> SRR1003830     1  0.2165      0.826 0.936 0.000 0.064
#> SRR1003831     1  0.3038      0.830 0.896 0.000 0.104
#> SRR1003832     1  0.2165      0.837 0.936 0.000 0.064
#> SRR1003833     1  0.3941      0.809 0.844 0.000 0.156
#> SRR1003834     1  0.3412      0.821 0.876 0.000 0.124
#> SRR1003836     1  0.5016      0.751 0.760 0.000 0.240
#> SRR1003835     1  0.6057      0.645 0.656 0.004 0.340
#> SRR1003838     3  0.7351      0.496 0.068 0.268 0.664
#> SRR1003837     1  0.2165      0.834 0.936 0.000 0.064
#> SRR1003839     1  0.3619      0.819 0.864 0.000 0.136
#> SRR1003840     1  0.6865      0.556 0.596 0.020 0.384
#> SRR1003841     2  0.0424      0.947 0.000 0.992 0.008
#> SRR1003842     1  0.1964      0.822 0.944 0.000 0.056
#> SRR1003844     1  0.2878      0.836 0.904 0.000 0.096
#> SRR1003845     1  0.7159      0.414 0.528 0.024 0.448
#> SRR1003846     1  0.2066      0.828 0.940 0.000 0.060
#> SRR1003847     1  0.2261      0.836 0.932 0.000 0.068
#> SRR1003848     1  0.6308      0.324 0.508 0.000 0.492
#> SRR1003849     3  0.6473      0.446 0.020 0.312 0.668
#> SRR1003850     1  0.5905      0.635 0.648 0.000 0.352
#> SRR1003851     3  0.6827      0.532 0.192 0.080 0.728
#> SRR1003852     1  0.6818      0.614 0.628 0.024 0.348
#> SRR1003853     1  0.1529      0.834 0.960 0.000 0.040
#> SRR1003854     1  0.1753      0.825 0.952 0.000 0.048
#> SRR1003843     1  0.7169      0.386 0.520 0.024 0.456
#> SRR1003855     1  0.3482      0.822 0.872 0.000 0.128
#> SRR1003856     3  0.5621      0.329 0.308 0.000 0.692
#> SRR1003857     1  0.2625      0.831 0.916 0.000 0.084
#> SRR1003858     1  0.2625      0.833 0.916 0.000 0.084
#> SRR1003859     1  0.1964      0.825 0.944 0.000 0.056
#> SRR1003860     1  0.1411      0.827 0.964 0.000 0.036
#> SRR1003861     1  0.3551      0.819 0.868 0.000 0.132
#> SRR1003862     1  0.1529      0.821 0.960 0.000 0.040
#> SRR1003863     1  0.5291      0.732 0.732 0.000 0.268
#> SRR1003864     1  0.1643      0.820 0.956 0.000 0.044
#> SRR1003865     1  0.2261      0.833 0.932 0.000 0.068
#> SRR1003866     1  0.1753      0.832 0.952 0.000 0.048
#> SRR1003867     1  0.1643      0.834 0.956 0.000 0.044

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1003755     4  0.8703     0.6297 0.056 0.200 0.304 0.440
#> SRR1003756     4  0.8703     0.6297 0.056 0.200 0.304 0.440
#> SRR1003757     4  0.8529     0.5990 0.156 0.060 0.328 0.456
#> SRR1003758     4  0.8509     0.5863 0.160 0.056 0.332 0.452
#> SRR1003759     1  0.7140     0.4698 0.612 0.016 0.208 0.164
#> SRR1003760     2  0.5803     0.7137 0.000 0.700 0.196 0.104
#> SRR1003761     2  0.5747     0.7167 0.000 0.704 0.196 0.100
#> SRR1003762     2  0.4979     0.7639 0.000 0.760 0.176 0.064
#> SRR1003763     2  0.5421     0.7292 0.000 0.724 0.200 0.076
#> SRR1003764     2  0.4756     0.7698 0.000 0.772 0.176 0.052
#> SRR1003765     2  0.0188     0.8124 0.000 0.996 0.000 0.004
#> SRR1003766     2  0.0188     0.8124 0.000 0.996 0.000 0.004
#> SRR1003767     2  0.0524     0.8149 0.000 0.988 0.004 0.008
#> SRR1003768     2  0.0188     0.8124 0.000 0.996 0.000 0.004
#> SRR1003769     2  0.0188     0.8124 0.000 0.996 0.000 0.004
#> SRR1003770     2  0.0376     0.8139 0.000 0.992 0.004 0.004
#> SRR1003771     2  0.0524     0.8149 0.000 0.988 0.004 0.008
#> SRR1003773     3  0.2401     0.4119 0.000 0.092 0.904 0.004
#> SRR1003772     1  0.3355     0.8013 0.836 0.000 0.004 0.160
#> SRR1003774     1  0.3525     0.7852 0.860 0.000 0.040 0.100
#> SRR1003775     1  0.4250     0.7726 0.724 0.000 0.000 0.276
#> SRR1003776     1  0.2300     0.8118 0.920 0.000 0.016 0.064
#> SRR1003777     1  0.3444     0.7855 0.816 0.000 0.000 0.184
#> SRR1003778     3  0.2593     0.4038 0.000 0.104 0.892 0.004
#> SRR1003779     1  0.2647     0.8100 0.880 0.000 0.000 0.120
#> SRR1003780     2  0.4635     0.7901 0.000 0.796 0.124 0.080
#> SRR1003781     1  0.4417     0.7885 0.796 0.000 0.044 0.160
#> SRR1003784     3  0.5458     0.2541 0.232 0.004 0.712 0.052
#> SRR1003785     3  0.2530     0.4211 0.008 0.072 0.912 0.008
#> SRR1003786     1  0.3486     0.7873 0.812 0.000 0.000 0.188
#> SRR1003783     1  0.3486     0.7843 0.812 0.000 0.000 0.188
#> SRR1003787     1  0.3400     0.7889 0.820 0.000 0.000 0.180
#> SRR1003788     1  0.3051     0.7818 0.884 0.000 0.028 0.088
#> SRR1003789     2  0.5536     0.7509 0.000 0.724 0.180 0.096
#> SRR1003790     1  0.4382     0.7668 0.704 0.000 0.000 0.296
#> SRR1003791     1  0.7353     0.5358 0.576 0.012 0.184 0.228
#> SRR1003792     1  0.2469     0.8133 0.892 0.000 0.000 0.108
#> SRR1003793     1  0.4304     0.7716 0.716 0.000 0.000 0.284
#> SRR1003794     1  0.4018     0.8017 0.772 0.000 0.004 0.224
#> SRR1003795     3  0.6722     0.1844 0.032 0.108 0.672 0.188
#> SRR1003796     3  0.2593     0.4038 0.000 0.104 0.892 0.004
#> SRR1003797     1  0.3400     0.7896 0.820 0.000 0.000 0.180
#> SRR1003798     1  0.4163     0.7747 0.792 0.000 0.020 0.188
#> SRR1003799     1  0.3760     0.8060 0.836 0.000 0.028 0.136
#> SRR1003800     1  0.4920     0.7563 0.756 0.000 0.052 0.192
#> SRR1003801     1  0.3972     0.7609 0.840 0.000 0.080 0.080
#> SRR1003802     3  0.7292     0.0500 0.388 0.000 0.460 0.152
#> SRR1003803     1  0.3908     0.8012 0.784 0.000 0.004 0.212
#> SRR1003804     1  0.4656     0.7652 0.792 0.000 0.072 0.136
#> SRR1003805     1  0.4331     0.7697 0.712 0.000 0.000 0.288
#> SRR1003806     1  0.3024     0.8021 0.852 0.000 0.000 0.148
#> SRR1003807     1  0.5842     0.6827 0.688 0.000 0.092 0.220
#> SRR1003809     1  0.4592     0.7315 0.804 0.004 0.128 0.064
#> SRR1003808     1  0.3818     0.7868 0.844 0.000 0.048 0.108
#> SRR1003810     1  0.3547     0.7701 0.864 0.000 0.064 0.072
#> SRR1003811     1  0.5464     0.6383 0.716 0.000 0.212 0.072
#> SRR1003812     1  0.3311     0.7952 0.828 0.000 0.000 0.172
#> SRR1003813     3  0.2530     0.4081 0.000 0.100 0.896 0.004
#> SRR1003814     1  0.3166     0.7978 0.868 0.000 0.016 0.116
#> SRR1003815     1  0.4940     0.7143 0.776 0.000 0.128 0.096
#> SRR1003816     1  0.3356     0.7929 0.824 0.000 0.000 0.176
#> SRR1003817     1  0.3400     0.7907 0.820 0.000 0.000 0.180
#> SRR1003818     1  0.2345     0.8118 0.900 0.000 0.000 0.100
#> SRR1003819     1  0.6758     0.5238 0.628 0.004 0.192 0.176
#> SRR1003820     1  0.3528     0.7839 0.808 0.000 0.000 0.192
#> SRR1003821     1  0.3486     0.7851 0.812 0.000 0.000 0.188
#> SRR1003822     3  0.6298     0.2016 0.268 0.000 0.632 0.100
#> SRR1003824     1  0.4964     0.6841 0.764 0.000 0.168 0.068
#> SRR1003823     1  0.4277     0.7778 0.720 0.000 0.000 0.280
#> SRR1003825     1  0.3958     0.7825 0.824 0.000 0.032 0.144
#> SRR1003826     1  0.3829     0.8142 0.828 0.004 0.016 0.152
#> SRR1003827     1  0.3172     0.7968 0.840 0.000 0.000 0.160
#> SRR1003828     1  0.4284     0.7709 0.780 0.000 0.020 0.200
#> SRR1003829     1  0.3356     0.8123 0.824 0.000 0.000 0.176
#> SRR1003830     1  0.4331     0.7715 0.712 0.000 0.000 0.288
#> SRR1003831     1  0.2222     0.8086 0.924 0.000 0.016 0.060
#> SRR1003832     1  0.3837     0.7981 0.776 0.000 0.000 0.224
#> SRR1003833     1  0.3219     0.8062 0.868 0.000 0.020 0.112
#> SRR1003834     1  0.2473     0.7989 0.908 0.000 0.012 0.080
#> SRR1003836     1  0.3279     0.7842 0.872 0.000 0.032 0.096
#> SRR1003835     1  0.5689     0.7227 0.712 0.000 0.104 0.184
#> SRR1003838     3  0.3285     0.3952 0.052 0.024 0.892 0.032
#> SRR1003837     1  0.1557     0.8065 0.944 0.000 0.000 0.056
#> SRR1003839     1  0.2198     0.7985 0.920 0.000 0.008 0.072
#> SRR1003840     1  0.7081     0.5366 0.632 0.024 0.148 0.196
#> SRR1003841     2  0.4688     0.7875 0.000 0.792 0.128 0.080
#> SRR1003842     1  0.4356     0.7682 0.708 0.000 0.000 0.292
#> SRR1003844     1  0.3402     0.8154 0.832 0.000 0.004 0.164
#> SRR1003845     1  0.7772     0.3242 0.528 0.016 0.232 0.224
#> SRR1003846     1  0.4040     0.7895 0.752 0.000 0.000 0.248
#> SRR1003847     1  0.2611     0.8190 0.896 0.000 0.008 0.096
#> SRR1003848     3  0.6840     0.0664 0.432 0.000 0.468 0.100
#> SRR1003849     3  0.2149     0.4157 0.000 0.088 0.912 0.000
#> SRR1003850     1  0.6523     0.6013 0.636 0.000 0.208 0.156
#> SRR1003851     3  0.5749     0.2301 0.076 0.012 0.724 0.188
#> SRR1003852     1  0.7123     0.6262 0.628 0.024 0.152 0.196
#> SRR1003853     1  0.1302     0.8133 0.956 0.000 0.000 0.044
#> SRR1003854     1  0.2868     0.8055 0.864 0.000 0.000 0.136
#> SRR1003843     1  0.8493    -0.2935 0.364 0.024 0.344 0.268
#> SRR1003855     1  0.2011     0.7977 0.920 0.000 0.000 0.080
#> SRR1003856     3  0.6278     0.2030 0.228 0.000 0.652 0.120
#> SRR1003857     1  0.1557     0.8087 0.944 0.000 0.000 0.056
#> SRR1003858     1  0.1452     0.8117 0.956 0.000 0.008 0.036
#> SRR1003859     1  0.4277     0.7729 0.720 0.000 0.000 0.280
#> SRR1003860     1  0.4072     0.7842 0.748 0.000 0.000 0.252
#> SRR1003861     1  0.2197     0.7969 0.916 0.000 0.004 0.080
#> SRR1003862     1  0.4250     0.7714 0.724 0.000 0.000 0.276
#> SRR1003863     1  0.4245     0.7373 0.820 0.000 0.116 0.064
#> SRR1003864     1  0.3444     0.7859 0.816 0.000 0.000 0.184
#> SRR1003865     1  0.2546     0.8199 0.900 0.000 0.008 0.092
#> SRR1003866     1  0.3196     0.8174 0.856 0.000 0.008 0.136
#> SRR1003867     1  0.3647     0.8097 0.832 0.000 0.016 0.152

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4 p5
#> SRR1003755     4   0.806     0.7260 0.052 0.092 0.320 0.456 NA
#> SRR1003756     4   0.806     0.7260 0.052 0.092 0.320 0.456 NA
#> SRR1003757     4   0.762     0.7361 0.120 0.008 0.232 0.520 NA
#> SRR1003758     4   0.767     0.7263 0.124 0.008 0.228 0.516 NA
#> SRR1003759     1   0.745     0.3249 0.504 0.004 0.216 0.060 NA
#> SRR1003760     2   0.610     0.6165 0.000 0.648 0.212 0.068 NA
#> SRR1003761     2   0.615     0.6000 0.000 0.636 0.228 0.064 NA
#> SRR1003762     2   0.516     0.6565 0.000 0.720 0.184 0.028 NA
#> SRR1003763     2   0.573     0.6050 0.004 0.664 0.232 0.028 NA
#> SRR1003764     2   0.513     0.6603 0.000 0.724 0.180 0.028 NA
#> SRR1003765     2   0.417     0.6836 0.000 0.756 0.000 0.200 NA
#> SRR1003766     2   0.417     0.6836 0.000 0.756 0.000 0.200 NA
#> SRR1003767     2   0.369     0.7031 0.000 0.820 0.004 0.128 NA
#> SRR1003768     2   0.417     0.6836 0.000 0.756 0.000 0.200 NA
#> SRR1003769     2   0.417     0.6836 0.000 0.756 0.000 0.200 NA
#> SRR1003770     2   0.392     0.6920 0.000 0.784 0.000 0.172 NA
#> SRR1003771     2   0.369     0.7039 0.000 0.820 0.004 0.128 NA
#> SRR1003773     3   0.103     0.5666 0.004 0.024 0.968 0.000 NA
#> SRR1003772     1   0.537     0.6310 0.568 0.000 0.008 0.044 NA
#> SRR1003774     1   0.360     0.6525 0.832 0.000 0.020 0.024 NA
#> SRR1003775     1   0.429     0.6297 0.540 0.000 0.000 0.000 NA
#> SRR1003776     1   0.342     0.7009 0.824 0.000 0.008 0.016 NA
#> SRR1003777     1   0.489     0.6412 0.596 0.000 0.000 0.032 NA
#> SRR1003778     3   0.103     0.5666 0.004 0.024 0.968 0.000 NA
#> SRR1003779     1   0.511     0.6562 0.604 0.000 0.004 0.040 NA
#> SRR1003780     2   0.352     0.6906 0.000 0.844 0.084 0.064 NA
#> SRR1003781     1   0.449     0.6979 0.772 0.004 0.008 0.064 NA
#> SRR1003784     3   0.619     0.3261 0.236 0.000 0.628 0.080 NA
#> SRR1003785     3   0.167     0.5759 0.012 0.012 0.948 0.024 NA
#> SRR1003786     1   0.466     0.6739 0.644 0.000 0.004 0.020 NA
#> SRR1003783     1   0.492     0.6444 0.604 0.000 0.000 0.036 NA
#> SRR1003787     1   0.451     0.6689 0.648 0.000 0.000 0.020 NA
#> SRR1003788     1   0.306     0.6632 0.860 0.000 0.004 0.028 NA
#> SRR1003789     2   0.589     0.6410 0.000 0.676 0.184 0.076 NA
#> SRR1003790     1   0.499     0.6337 0.556 0.000 0.004 0.024 NA
#> SRR1003791     1   0.809     0.3522 0.460 0.008 0.164 0.136 NA
#> SRR1003792     1   0.405     0.7198 0.748 0.000 0.000 0.028 NA
#> SRR1003793     1   0.495     0.6258 0.528 0.000 0.004 0.020 NA
#> SRR1003794     1   0.460     0.6884 0.624 0.000 0.000 0.020 NA
#> SRR1003795     3   0.644     0.3900 0.044 0.052 0.660 0.192 NA
#> SRR1003796     3   0.103     0.5666 0.004 0.024 0.968 0.000 NA
#> SRR1003797     1   0.484     0.6563 0.628 0.000 0.000 0.036 NA
#> SRR1003798     1   0.447     0.6925 0.760 0.000 0.004 0.076 NA
#> SRR1003799     1   0.445     0.7132 0.772 0.000 0.020 0.048 NA
#> SRR1003800     1   0.416     0.6727 0.768 0.000 0.000 0.056 NA
#> SRR1003801     1   0.476     0.6275 0.760 0.000 0.032 0.056 NA
#> SRR1003802     1   0.768    -0.0498 0.444 0.000 0.276 0.204 NA
#> SRR1003803     1   0.445     0.7124 0.696 0.000 0.000 0.032 NA
#> SRR1003804     1   0.444     0.6688 0.784 0.000 0.020 0.068 NA
#> SRR1003805     1   0.422     0.6617 0.584 0.000 0.000 0.000 NA
#> SRR1003806     1   0.451     0.7003 0.716 0.000 0.000 0.048 NA
#> SRR1003807     1   0.543     0.6279 0.708 0.000 0.028 0.104 NA
#> SRR1003809     1   0.566     0.5979 0.708 0.004 0.068 0.060 NA
#> SRR1003808     1   0.554     0.6020 0.692 0.000 0.048 0.060 NA
#> SRR1003810     1   0.436     0.6406 0.776 0.000 0.012 0.056 NA
#> SRR1003811     1   0.670     0.5146 0.620 0.000 0.132 0.104 NA
#> SRR1003812     1   0.455     0.6762 0.632 0.000 0.004 0.012 NA
#> SRR1003813     3   0.125     0.5724 0.008 0.016 0.964 0.008 NA
#> SRR1003814     1   0.468     0.6495 0.744 0.000 0.012 0.060 NA
#> SRR1003815     1   0.610     0.5622 0.664 0.000 0.076 0.084 NA
#> SRR1003816     1   0.497     0.6412 0.588 0.000 0.000 0.036 NA
#> SRR1003817     1   0.481     0.6411 0.576 0.000 0.000 0.024 NA
#> SRR1003818     1   0.362     0.7111 0.788 0.000 0.000 0.020 NA
#> SRR1003819     1   0.710     0.3324 0.564 0.000 0.176 0.084 NA
#> SRR1003820     1   0.493     0.6421 0.600 0.000 0.000 0.036 NA
#> SRR1003821     1   0.446     0.6564 0.620 0.000 0.000 0.012 NA
#> SRR1003822     3   0.723     0.1677 0.348 0.000 0.464 0.116 NA
#> SRR1003824     1   0.498     0.6214 0.764 0.000 0.100 0.068 NA
#> SRR1003823     1   0.535     0.6301 0.540 0.000 0.012 0.032 NA
#> SRR1003825     1   0.396     0.6747 0.800 0.000 0.012 0.036 NA
#> SRR1003826     1   0.468     0.7203 0.732 0.000 0.012 0.048 NA
#> SRR1003827     1   0.487     0.6770 0.632 0.000 0.000 0.040 NA
#> SRR1003828     1   0.445     0.6837 0.752 0.000 0.004 0.060 NA
#> SRR1003829     1   0.382     0.7189 0.756 0.000 0.000 0.016 NA
#> SRR1003830     1   0.510     0.6236 0.524 0.000 0.004 0.028 NA
#> SRR1003831     1   0.313     0.6858 0.848 0.000 0.004 0.020 NA
#> SRR1003832     1   0.466     0.7036 0.692 0.000 0.004 0.036 NA
#> SRR1003833     1   0.430     0.6967 0.764 0.000 0.012 0.036 NA
#> SRR1003834     1   0.290     0.6816 0.864 0.000 0.000 0.028 NA
#> SRR1003836     1   0.314     0.6715 0.852 0.000 0.000 0.040 NA
#> SRR1003835     1   0.599     0.6550 0.656 0.008 0.040 0.068 NA
#> SRR1003838     3   0.476     0.5131 0.092 0.004 0.784 0.076 NA
#> SRR1003837     1   0.242     0.7047 0.896 0.000 0.000 0.024 NA
#> SRR1003839     1   0.298     0.6761 0.860 0.000 0.004 0.020 NA
#> SRR1003840     1   0.809     0.3505 0.492 0.024 0.132 0.124 NA
#> SRR1003841     2   0.361     0.6886 0.000 0.832 0.100 0.064 NA
#> SRR1003842     1   0.503     0.6212 0.528 0.000 0.004 0.024 NA
#> SRR1003844     1   0.456     0.6727 0.612 0.000 0.000 0.016 NA
#> SRR1003845     1   0.875    -0.0326 0.368 0.020 0.224 0.152 NA
#> SRR1003846     1   0.495     0.6591 0.576 0.000 0.004 0.024 NA
#> SRR1003847     1   0.319     0.7167 0.840 0.000 0.000 0.028 NA
#> SRR1003848     1   0.746     0.0643 0.472 0.000 0.308 0.124 NA
#> SRR1003849     3   0.096     0.5748 0.008 0.016 0.972 0.004 NA
#> SRR1003850     1   0.623     0.5876 0.664 0.000 0.140 0.100 NA
#> SRR1003851     3   0.635     0.3879 0.132 0.000 0.636 0.176 NA
#> SRR1003852     1   0.819     0.3907 0.476 0.024 0.128 0.136 NA
#> SRR1003853     1   0.329     0.7138 0.844 0.000 0.004 0.032 NA
#> SRR1003854     1   0.396     0.7123 0.760 0.000 0.000 0.028 NA
#> SRR1003843     1   0.898    -0.2588 0.288 0.020 0.276 0.204 NA
#> SRR1003855     1   0.293     0.6756 0.864 0.000 0.004 0.020 NA
#> SRR1003856     3   0.746     0.1496 0.328 0.000 0.448 0.152 NA
#> SRR1003857     1   0.277     0.7163 0.868 0.000 0.000 0.020 NA
#> SRR1003858     1   0.245     0.7026 0.892 0.000 0.000 0.020 NA
#> SRR1003859     1   0.523     0.6359 0.552 0.000 0.008 0.032 NA
#> SRR1003860     1   0.389     0.6973 0.680 0.000 0.000 0.000 NA
#> SRR1003861     1   0.295     0.6722 0.860 0.000 0.000 0.028 NA
#> SRR1003862     1   0.462     0.6390 0.552 0.000 0.000 0.012 NA
#> SRR1003863     1   0.470     0.6455 0.784 0.000 0.056 0.084 NA
#> SRR1003864     1   0.473     0.6636 0.640 0.000 0.000 0.032 NA
#> SRR1003865     1   0.373     0.7086 0.800 0.000 0.000 0.040 NA
#> SRR1003866     1   0.391     0.7112 0.772 0.000 0.000 0.032 NA
#> SRR1003867     1   0.440     0.7060 0.736 0.000 0.000 0.052 NA

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1003755     4  0.5370    0.76362 0.008 0.044 0.220 0.676 0.020 0.032
#> SRR1003756     4  0.5370    0.76362 0.008 0.044 0.220 0.676 0.020 0.032
#> SRR1003757     4  0.4156    0.77700 0.012 0.008 0.068 0.796 0.104 0.012
#> SRR1003758     4  0.4156    0.77700 0.012 0.008 0.068 0.796 0.104 0.012
#> SRR1003759     1  0.7683   -0.13460 0.356 0.000 0.064 0.044 0.320 0.216
#> SRR1003760     6  0.2883    0.83638 0.000 0.212 0.000 0.000 0.000 0.788
#> SRR1003761     6  0.3277    0.82327 0.000 0.188 0.016 0.000 0.004 0.792
#> SRR1003762     6  0.3221    0.83429 0.000 0.264 0.000 0.000 0.000 0.736
#> SRR1003763     6  0.4059    0.81666 0.000 0.224 0.036 0.004 0.004 0.732
#> SRR1003764     6  0.3221    0.83429 0.000 0.264 0.000 0.000 0.000 0.736
#> SRR1003765     2  0.0146    0.92322 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1003766     2  0.0146    0.92322 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1003767     2  0.2003    0.84328 0.000 0.884 0.000 0.000 0.000 0.116
#> SRR1003768     2  0.0146    0.92322 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1003769     2  0.0146    0.92322 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1003770     2  0.1349    0.90129 0.000 0.940 0.000 0.004 0.000 0.056
#> SRR1003771     2  0.2219    0.81008 0.000 0.864 0.000 0.000 0.000 0.136
#> SRR1003773     3  0.2730    0.66231 0.000 0.000 0.808 0.000 0.000 0.192
#> SRR1003772     1  0.3668    0.53981 0.824 0.000 0.056 0.020 0.092 0.008
#> SRR1003774     5  0.4566    0.29073 0.428 0.000 0.004 0.028 0.540 0.000
#> SRR1003775     1  0.3740    0.52444 0.816 0.000 0.076 0.004 0.084 0.020
#> SRR1003776     1  0.4300    0.05465 0.548 0.000 0.000 0.020 0.432 0.000
#> SRR1003777     1  0.2950    0.56172 0.864 0.000 0.048 0.004 0.076 0.008
#> SRR1003778     3  0.2730    0.66231 0.000 0.000 0.808 0.000 0.000 0.192
#> SRR1003779     1  0.3380    0.55420 0.836 0.000 0.044 0.016 0.100 0.004
#> SRR1003780     6  0.4306    0.45659 0.000 0.464 0.012 0.004 0.000 0.520
#> SRR1003781     1  0.6177    0.13893 0.516 0.000 0.028 0.040 0.356 0.060
#> SRR1003784     3  0.7929    0.23336 0.060 0.000 0.360 0.212 0.292 0.076
#> SRR1003785     3  0.5145    0.65334 0.016 0.000 0.692 0.060 0.032 0.200
#> SRR1003786     1  0.2645    0.56329 0.888 0.000 0.052 0.008 0.044 0.008
#> SRR1003783     1  0.2834    0.55792 0.876 0.000 0.060 0.008 0.048 0.008
#> SRR1003787     1  0.3126    0.55232 0.844 0.000 0.044 0.004 0.104 0.004
#> SRR1003788     5  0.4637    0.36943 0.392 0.000 0.004 0.028 0.572 0.004
#> SRR1003789     6  0.3213    0.83081 0.000 0.204 0.008 0.004 0.000 0.784
#> SRR1003790     1  0.4446    0.50880 0.768 0.000 0.096 0.008 0.100 0.028
#> SRR1003791     5  0.7683    0.30609 0.252 0.000 0.072 0.068 0.444 0.164
#> SRR1003792     1  0.4039    0.46943 0.720 0.000 0.012 0.016 0.248 0.004
#> SRR1003793     1  0.4740    0.50896 0.744 0.000 0.104 0.008 0.112 0.032
#> SRR1003794     1  0.4940    0.50341 0.696 0.000 0.072 0.012 0.204 0.016
#> SRR1003795     3  0.8123    0.41313 0.012 0.012 0.320 0.252 0.160 0.244
#> SRR1003796     3  0.2730    0.66231 0.000 0.000 0.808 0.000 0.000 0.192
#> SRR1003797     1  0.2930    0.55700 0.868 0.000 0.044 0.004 0.072 0.012
#> SRR1003798     1  0.5298   -0.11782 0.480 0.000 0.012 0.036 0.456 0.016
#> SRR1003799     1  0.6187    0.15779 0.532 0.000 0.068 0.048 0.332 0.020
#> SRR1003800     5  0.5372    0.21382 0.436 0.000 0.024 0.032 0.496 0.012
#> SRR1003801     5  0.5276    0.42740 0.364 0.000 0.012 0.064 0.556 0.004
#> SRR1003802     5  0.7751   -0.01367 0.104 0.000 0.168 0.288 0.400 0.040
#> SRR1003803     1  0.4913    0.47031 0.676 0.000 0.044 0.016 0.248 0.016
#> SRR1003804     5  0.5668    0.36582 0.408 0.000 0.008 0.084 0.488 0.012
#> SRR1003805     1  0.3896    0.54572 0.792 0.000 0.080 0.000 0.112 0.016
#> SRR1003806     1  0.5907    0.34754 0.572 0.000 0.064 0.028 0.308 0.028
#> SRR1003807     5  0.5731    0.36893 0.368 0.000 0.024 0.048 0.536 0.024
#> SRR1003809     5  0.5815    0.45411 0.324 0.000 0.020 0.100 0.548 0.008
#> SRR1003808     1  0.6103   -0.03164 0.464 0.000 0.016 0.044 0.416 0.060
#> SRR1003810     5  0.4872    0.39999 0.388 0.000 0.000 0.064 0.548 0.000
#> SRR1003811     5  0.7153    0.42678 0.248 0.000 0.052 0.264 0.420 0.016
#> SRR1003812     1  0.3660    0.54425 0.820 0.000 0.036 0.024 0.112 0.008
#> SRR1003813     3  0.3333    0.66648 0.000 0.000 0.784 0.000 0.024 0.192
#> SRR1003814     1  0.6156    0.00428 0.464 0.000 0.016 0.052 0.412 0.056
#> SRR1003815     5  0.6350    0.44668 0.304 0.004 0.016 0.188 0.484 0.004
#> SRR1003816     1  0.3431    0.53714 0.836 0.000 0.052 0.008 0.092 0.012
#> SRR1003817     1  0.2689    0.55100 0.884 0.000 0.064 0.008 0.036 0.008
#> SRR1003818     1  0.3767    0.43489 0.708 0.000 0.012 0.004 0.276 0.000
#> SRR1003819     5  0.6976    0.39766 0.300 0.000 0.052 0.048 0.492 0.108
#> SRR1003820     1  0.3282    0.54346 0.844 0.000 0.052 0.008 0.088 0.008
#> SRR1003821     1  0.2618    0.56424 0.888 0.000 0.060 0.004 0.036 0.012
#> SRR1003822     5  0.8052   -0.30899 0.076 0.000 0.264 0.272 0.324 0.064
#> SRR1003824     5  0.6677    0.43387 0.300 0.000 0.028 0.224 0.440 0.008
#> SRR1003823     1  0.5079    0.48790 0.716 0.000 0.108 0.012 0.132 0.032
#> SRR1003825     5  0.4721    0.34366 0.420 0.000 0.000 0.032 0.540 0.008
#> SRR1003826     1  0.5939    0.37570 0.616 0.000 0.052 0.044 0.248 0.040
#> SRR1003827     1  0.3387    0.55549 0.828 0.000 0.028 0.012 0.124 0.008
#> SRR1003828     5  0.4995    0.12659 0.468 0.000 0.016 0.028 0.484 0.004
#> SRR1003829     1  0.4150    0.46448 0.720 0.000 0.028 0.016 0.236 0.000
#> SRR1003830     1  0.5179    0.48139 0.708 0.000 0.104 0.012 0.140 0.036
#> SRR1003831     5  0.4463    0.18038 0.456 0.000 0.000 0.028 0.516 0.000
#> SRR1003832     1  0.5411    0.46937 0.676 0.000 0.076 0.028 0.196 0.024
#> SRR1003833     1  0.4808   -0.05090 0.524 0.000 0.004 0.028 0.436 0.008
#> SRR1003834     5  0.4648    0.27104 0.444 0.000 0.004 0.032 0.520 0.000
#> SRR1003836     5  0.4922    0.36461 0.400 0.000 0.008 0.032 0.552 0.008
#> SRR1003835     1  0.6513   -0.18193 0.456 0.004 0.044 0.044 0.404 0.048
#> SRR1003838     3  0.7795    0.52968 0.048 0.000 0.448 0.160 0.136 0.208
#> SRR1003837     1  0.4684   -0.04827 0.520 0.000 0.008 0.028 0.444 0.000
#> SRR1003839     5  0.4276    0.31151 0.416 0.000 0.000 0.020 0.564 0.000
#> SRR1003840     5  0.7381    0.32397 0.268 0.000 0.044 0.072 0.464 0.152
#> SRR1003841     6  0.4400    0.49127 0.000 0.456 0.012 0.008 0.000 0.524
#> SRR1003842     1  0.4964    0.48941 0.732 0.000 0.100 0.016 0.120 0.032
#> SRR1003844     1  0.3050    0.57255 0.852 0.000 0.044 0.012 0.092 0.000
#> SRR1003845     5  0.7728    0.32198 0.200 0.000 0.076 0.072 0.456 0.196
#> SRR1003846     1  0.4819    0.51600 0.744 0.000 0.100 0.012 0.108 0.036
#> SRR1003847     1  0.4611    0.21720 0.584 0.000 0.016 0.020 0.380 0.000
#> SRR1003848     5  0.7952    0.26034 0.168 0.000 0.168 0.232 0.396 0.036
#> SRR1003849     3  0.3296    0.66824 0.000 0.000 0.792 0.008 0.012 0.188
#> SRR1003850     5  0.7388    0.38844 0.308 0.000 0.088 0.208 0.384 0.012
#> SRR1003851     3  0.8398    0.41005 0.056 0.000 0.316 0.232 0.184 0.212
#> SRR1003852     5  0.7560    0.26532 0.324 0.000 0.052 0.064 0.400 0.160
#> SRR1003853     1  0.4846    0.17214 0.572 0.000 0.012 0.024 0.384 0.008
#> SRR1003854     1  0.3716    0.45058 0.732 0.000 0.012 0.008 0.248 0.000
#> SRR1003843     5  0.7850   -0.18437 0.116 0.000 0.120 0.072 0.432 0.260
#> SRR1003855     5  0.4566    0.29181 0.428 0.000 0.000 0.028 0.540 0.004
#> SRR1003856     5  0.7843   -0.33515 0.060 0.000 0.272 0.272 0.340 0.056
#> SRR1003857     1  0.4292    0.08692 0.568 0.000 0.008 0.004 0.416 0.004
#> SRR1003858     1  0.4249    0.08738 0.568 0.000 0.004 0.012 0.416 0.000
#> SRR1003859     1  0.5237    0.49310 0.712 0.000 0.104 0.020 0.128 0.036
#> SRR1003860     1  0.3269    0.56180 0.832 0.000 0.052 0.000 0.108 0.008
#> SRR1003861     5  0.4432    0.27655 0.432 0.000 0.000 0.020 0.544 0.004
#> SRR1003862     1  0.3439    0.53854 0.832 0.000 0.080 0.000 0.068 0.020
#> SRR1003863     5  0.6387    0.42787 0.336 0.000 0.016 0.188 0.452 0.008
#> SRR1003864     1  0.2316    0.57260 0.900 0.000 0.028 0.004 0.064 0.004
#> SRR1003865     1  0.5102    0.19041 0.560 0.000 0.016 0.024 0.384 0.016
#> SRR1003866     1  0.5200    0.26472 0.592 0.000 0.020 0.032 0.340 0.016
#> SRR1003867     1  0.5299    0.28284 0.596 0.000 0.024 0.036 0.328 0.016

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 9166 rows and 112 columns.
#>   Top rows (917, 1834, 2750, 3666, 4583) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.991       0.997         0.1250 0.882   0.882
#> 3 3 0.560           0.868       0.916         1.7445 0.795   0.768
#> 4 4 0.705           0.826       0.905         0.2683 0.902   0.856
#> 5 5 0.518           0.753       0.863         0.1405 0.997   0.994
#> 6 6 0.386           0.718       0.820         0.0744 1.000   1.000

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1003755     1   0.000      0.996 1.000 0.000
#> SRR1003756     1   0.000      0.996 1.000 0.000
#> SRR1003757     1   0.000      0.996 1.000 0.000
#> SRR1003758     1   0.000      0.996 1.000 0.000
#> SRR1003759     1   0.000      0.996 1.000 0.000
#> SRR1003760     1   0.000      0.996 1.000 0.000
#> SRR1003761     1   0.000      0.996 1.000 0.000
#> SRR1003762     1   0.000      0.996 1.000 0.000
#> SRR1003763     1   0.000      0.996 1.000 0.000
#> SRR1003764     1   0.000      0.996 1.000 0.000
#> SRR1003765     2   0.000      1.000 0.000 1.000
#> SRR1003766     2   0.000      1.000 0.000 1.000
#> SRR1003767     2   0.000      1.000 0.000 1.000
#> SRR1003768     2   0.000      1.000 0.000 1.000
#> SRR1003769     2   0.000      1.000 0.000 1.000
#> SRR1003770     2   0.000      1.000 0.000 1.000
#> SRR1003771     2   0.000      1.000 0.000 1.000
#> SRR1003773     1   0.000      0.996 1.000 0.000
#> SRR1003772     1   0.000      0.996 1.000 0.000
#> SRR1003774     1   0.000      0.996 1.000 0.000
#> SRR1003775     1   0.000      0.996 1.000 0.000
#> SRR1003776     1   0.000      0.996 1.000 0.000
#> SRR1003777     1   0.000      0.996 1.000 0.000
#> SRR1003778     1   0.000      0.996 1.000 0.000
#> SRR1003779     1   0.000      0.996 1.000 0.000
#> SRR1003780     1   0.000      0.996 1.000 0.000
#> SRR1003781     1   0.000      0.996 1.000 0.000
#> SRR1003784     1   0.000      0.996 1.000 0.000
#> SRR1003785     1   0.000      0.996 1.000 0.000
#> SRR1003786     1   0.000      0.996 1.000 0.000
#> SRR1003783     1   0.000      0.996 1.000 0.000
#> SRR1003787     1   0.000      0.996 1.000 0.000
#> SRR1003788     1   0.000      0.996 1.000 0.000
#> SRR1003789     1   0.000      0.996 1.000 0.000
#> SRR1003790     1   0.000      0.996 1.000 0.000
#> SRR1003791     1   0.000      0.996 1.000 0.000
#> SRR1003792     1   0.000      0.996 1.000 0.000
#> SRR1003793     1   0.000      0.996 1.000 0.000
#> SRR1003794     1   0.000      0.996 1.000 0.000
#> SRR1003795     1   0.000      0.996 1.000 0.000
#> SRR1003796     1   0.000      0.996 1.000 0.000
#> SRR1003797     1   0.000      0.996 1.000 0.000
#> SRR1003798     1   0.000      0.996 1.000 0.000
#> SRR1003799     1   0.000      0.996 1.000 0.000
#> SRR1003800     1   0.000      0.996 1.000 0.000
#> SRR1003801     1   0.000      0.996 1.000 0.000
#> SRR1003802     1   0.000      0.996 1.000 0.000
#> SRR1003803     1   0.000      0.996 1.000 0.000
#> SRR1003804     1   0.000      0.996 1.000 0.000
#> SRR1003805     1   0.000      0.996 1.000 0.000
#> SRR1003806     1   0.000      0.996 1.000 0.000
#> SRR1003807     1   0.000      0.996 1.000 0.000
#> SRR1003809     1   0.000      0.996 1.000 0.000
#> SRR1003808     1   0.000      0.996 1.000 0.000
#> SRR1003810     1   0.000      0.996 1.000 0.000
#> SRR1003811     1   0.000      0.996 1.000 0.000
#> SRR1003812     1   0.000      0.996 1.000 0.000
#> SRR1003813     1   0.000      0.996 1.000 0.000
#> SRR1003814     1   0.000      0.996 1.000 0.000
#> SRR1003815     1   0.000      0.996 1.000 0.000
#> SRR1003816     1   0.000      0.996 1.000 0.000
#> SRR1003817     1   0.000      0.996 1.000 0.000
#> SRR1003818     1   0.000      0.996 1.000 0.000
#> SRR1003819     1   0.000      0.996 1.000 0.000
#> SRR1003820     1   0.000      0.996 1.000 0.000
#> SRR1003821     1   0.000      0.996 1.000 0.000
#> SRR1003822     1   0.000      0.996 1.000 0.000
#> SRR1003824     1   0.000      0.996 1.000 0.000
#> SRR1003823     1   0.000      0.996 1.000 0.000
#> SRR1003825     1   0.000      0.996 1.000 0.000
#> SRR1003826     1   0.000      0.996 1.000 0.000
#> SRR1003827     1   0.000      0.996 1.000 0.000
#> SRR1003828     1   0.000      0.996 1.000 0.000
#> SRR1003829     1   0.000      0.996 1.000 0.000
#> SRR1003830     1   0.000      0.996 1.000 0.000
#> SRR1003831     1   0.000      0.996 1.000 0.000
#> SRR1003832     1   0.000      0.996 1.000 0.000
#> SRR1003833     1   0.000      0.996 1.000 0.000
#> SRR1003834     1   0.000      0.996 1.000 0.000
#> SRR1003836     1   0.000      0.996 1.000 0.000
#> SRR1003835     1   0.000      0.996 1.000 0.000
#> SRR1003838     1   0.000      0.996 1.000 0.000
#> SRR1003837     1   0.000      0.996 1.000 0.000
#> SRR1003839     1   0.000      0.996 1.000 0.000
#> SRR1003840     1   0.000      0.996 1.000 0.000
#> SRR1003841     1   0.955      0.397 0.624 0.376
#> SRR1003842     1   0.000      0.996 1.000 0.000
#> SRR1003844     1   0.000      0.996 1.000 0.000
#> SRR1003845     1   0.000      0.996 1.000 0.000
#> SRR1003846     1   0.000      0.996 1.000 0.000
#> SRR1003847     1   0.000      0.996 1.000 0.000
#> SRR1003848     1   0.000      0.996 1.000 0.000
#> SRR1003849     1   0.000      0.996 1.000 0.000
#> SRR1003850     1   0.000      0.996 1.000 0.000
#> SRR1003851     1   0.000      0.996 1.000 0.000
#> SRR1003852     1   0.000      0.996 1.000 0.000
#> SRR1003853     1   0.000      0.996 1.000 0.000
#> SRR1003854     1   0.000      0.996 1.000 0.000
#> SRR1003843     1   0.000      0.996 1.000 0.000
#> SRR1003855     1   0.000      0.996 1.000 0.000
#> SRR1003856     1   0.000      0.996 1.000 0.000
#> SRR1003857     1   0.000      0.996 1.000 0.000
#> SRR1003858     1   0.000      0.996 1.000 0.000
#> SRR1003859     1   0.000      0.996 1.000 0.000
#> SRR1003860     1   0.000      0.996 1.000 0.000
#> SRR1003861     1   0.000      0.996 1.000 0.000
#> SRR1003862     1   0.000      0.996 1.000 0.000
#> SRR1003863     1   0.000      0.996 1.000 0.000
#> SRR1003864     1   0.000      0.996 1.000 0.000
#> SRR1003865     1   0.000      0.996 1.000 0.000
#> SRR1003866     1   0.000      0.996 1.000 0.000
#> SRR1003867     1   0.000      0.996 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1003755     1  0.4291     0.7851 0.820 0.000 0.180
#> SRR1003756     1  0.4291     0.7851 0.820 0.000 0.180
#> SRR1003757     1  0.3619     0.8334 0.864 0.000 0.136
#> SRR1003758     1  0.3340     0.8512 0.880 0.000 0.120
#> SRR1003759     1  0.3482     0.8183 0.872 0.000 0.128
#> SRR1003760     1  0.4465     0.7621 0.820 0.004 0.176
#> SRR1003761     1  0.3941     0.7890 0.844 0.000 0.156
#> SRR1003762     1  0.4121     0.8353 0.876 0.040 0.084
#> SRR1003763     1  0.5566     0.7726 0.812 0.108 0.080
#> SRR1003764     1  0.3682     0.8294 0.876 0.008 0.116
#> SRR1003765     2  0.0000     0.9887 0.000 1.000 0.000
#> SRR1003766     2  0.1289     0.9871 0.000 0.968 0.032
#> SRR1003767     2  0.0592     0.9866 0.000 0.988 0.012
#> SRR1003768     2  0.1289     0.9871 0.000 0.968 0.032
#> SRR1003769     2  0.1289     0.9871 0.000 0.968 0.032
#> SRR1003770     2  0.0000     0.9887 0.000 1.000 0.000
#> SRR1003771     2  0.0592     0.9866 0.000 0.988 0.012
#> SRR1003773     3  0.4235     0.8689 0.176 0.000 0.824
#> SRR1003772     1  0.0747     0.9225 0.984 0.000 0.016
#> SRR1003774     1  0.1163     0.9200 0.972 0.000 0.028
#> SRR1003775     1  0.0237     0.9225 0.996 0.000 0.004
#> SRR1003776     1  0.1031     0.9228 0.976 0.000 0.024
#> SRR1003777     1  0.0424     0.9234 0.992 0.000 0.008
#> SRR1003778     3  0.4178     0.8674 0.172 0.000 0.828
#> SRR1003779     1  0.0747     0.9231 0.984 0.000 0.016
#> SRR1003780     1  0.5678     0.4570 0.684 0.000 0.316
#> SRR1003781     1  0.1031     0.9165 0.976 0.000 0.024
#> SRR1003784     3  0.4605     0.8606 0.204 0.000 0.796
#> SRR1003785     3  0.4235     0.8689 0.176 0.000 0.824
#> SRR1003786     1  0.1163     0.9144 0.972 0.000 0.028
#> SRR1003783     1  0.0892     0.9182 0.980 0.000 0.020
#> SRR1003787     1  0.0592     0.9209 0.988 0.000 0.012
#> SRR1003788     1  0.2066     0.9017 0.940 0.000 0.060
#> SRR1003789     1  0.5948     0.3779 0.640 0.000 0.360
#> SRR1003790     1  0.0424     0.9216 0.992 0.000 0.008
#> SRR1003791     1  0.0592     0.9213 0.988 0.000 0.012
#> SRR1003792     1  0.1031     0.9166 0.976 0.000 0.024
#> SRR1003793     1  0.0237     0.9224 0.996 0.000 0.004
#> SRR1003794     1  0.1411     0.9176 0.964 0.000 0.036
#> SRR1003795     3  0.4452     0.8634 0.192 0.000 0.808
#> SRR1003796     3  0.4291     0.8718 0.180 0.000 0.820
#> SRR1003797     1  0.0592     0.9209 0.988 0.000 0.012
#> SRR1003798     1  0.3038     0.8683 0.896 0.000 0.104
#> SRR1003799     1  0.1163     0.9179 0.972 0.000 0.028
#> SRR1003800     1  0.3551     0.8391 0.868 0.000 0.132
#> SRR1003801     1  0.2796     0.8869 0.908 0.000 0.092
#> SRR1003802     1  0.6192     0.0479 0.580 0.000 0.420
#> SRR1003803     1  0.0592     0.9219 0.988 0.000 0.012
#> SRR1003804     1  0.3686     0.8317 0.860 0.000 0.140
#> SRR1003805     1  0.0424     0.9233 0.992 0.000 0.008
#> SRR1003806     1  0.1643     0.9135 0.956 0.000 0.044
#> SRR1003807     1  0.2959     0.8748 0.900 0.000 0.100
#> SRR1003809     1  0.4399     0.7624 0.812 0.000 0.188
#> SRR1003808     1  0.1529     0.9108 0.960 0.000 0.040
#> SRR1003810     1  0.3482     0.8496 0.872 0.000 0.128
#> SRR1003811     1  0.4974     0.6845 0.764 0.000 0.236
#> SRR1003812     1  0.0592     0.9221 0.988 0.000 0.012
#> SRR1003813     3  0.4235     0.8709 0.176 0.000 0.824
#> SRR1003814     1  0.1643     0.9079 0.956 0.000 0.044
#> SRR1003815     1  0.2165     0.9043 0.936 0.000 0.064
#> SRR1003816     1  0.0892     0.9210 0.980 0.000 0.020
#> SRR1003817     1  0.0424     0.9230 0.992 0.000 0.008
#> SRR1003818     1  0.0747     0.9219 0.984 0.000 0.016
#> SRR1003819     1  0.1860     0.9175 0.948 0.000 0.052
#> SRR1003820     1  0.0747     0.9200 0.984 0.000 0.016
#> SRR1003821     1  0.0237     0.9221 0.996 0.000 0.004
#> SRR1003822     3  0.5733     0.7350 0.324 0.000 0.676
#> SRR1003824     1  0.4399     0.7622 0.812 0.000 0.188
#> SRR1003823     1  0.0424     0.9219 0.992 0.000 0.008
#> SRR1003825     1  0.2796     0.8817 0.908 0.000 0.092
#> SRR1003826     1  0.0592     0.9210 0.988 0.000 0.012
#> SRR1003827     1  0.1031     0.9165 0.976 0.000 0.024
#> SRR1003828     1  0.1860     0.9067 0.948 0.000 0.052
#> SRR1003829     1  0.0424     0.9216 0.992 0.000 0.008
#> SRR1003830     1  0.0237     0.9224 0.996 0.000 0.004
#> SRR1003831     1  0.1411     0.9212 0.964 0.000 0.036
#> SRR1003832     1  0.1163     0.9199 0.972 0.000 0.028
#> SRR1003833     1  0.0747     0.9234 0.984 0.000 0.016
#> SRR1003834     1  0.4346     0.7683 0.816 0.000 0.184
#> SRR1003836     1  0.2959     0.8704 0.900 0.000 0.100
#> SRR1003835     1  0.0592     0.9228 0.988 0.000 0.012
#> SRR1003838     3  0.4291     0.8718 0.180 0.000 0.820
#> SRR1003837     1  0.1163     0.9217 0.972 0.000 0.028
#> SRR1003839     1  0.0424     0.9229 0.992 0.000 0.008
#> SRR1003840     1  0.1163     0.9156 0.972 0.000 0.028
#> SRR1003841     3  0.8765     0.4369 0.252 0.168 0.580
#> SRR1003842     1  0.0424     0.9234 0.992 0.000 0.008
#> SRR1003844     1  0.1031     0.9192 0.976 0.000 0.024
#> SRR1003845     1  0.0892     0.9222 0.980 0.000 0.020
#> SRR1003846     1  0.0000     0.9220 1.000 0.000 0.000
#> SRR1003847     1  0.0237     0.9221 0.996 0.000 0.004
#> SRR1003848     3  0.5178     0.8153 0.256 0.000 0.744
#> SRR1003849     3  0.4178     0.8675 0.172 0.000 0.828
#> SRR1003850     1  0.3686     0.8342 0.860 0.000 0.140
#> SRR1003851     3  0.4452     0.8698 0.192 0.000 0.808
#> SRR1003852     1  0.1411     0.9095 0.964 0.000 0.036
#> SRR1003853     1  0.0592     0.9206 0.988 0.000 0.012
#> SRR1003854     1  0.0237     0.9221 0.996 0.000 0.004
#> SRR1003843     1  0.1964     0.9059 0.944 0.000 0.056
#> SRR1003855     1  0.2796     0.8839 0.908 0.000 0.092
#> SRR1003856     3  0.6305     0.3325 0.484 0.000 0.516
#> SRR1003857     1  0.1163     0.9209 0.972 0.000 0.028
#> SRR1003858     1  0.1643     0.9166 0.956 0.000 0.044
#> SRR1003859     1  0.0592     0.9227 0.988 0.000 0.012
#> SRR1003860     1  0.0237     0.9225 0.996 0.000 0.004
#> SRR1003861     1  0.1643     0.9105 0.956 0.000 0.044
#> SRR1003862     1  0.0424     0.9216 0.992 0.000 0.008
#> SRR1003863     1  0.3941     0.8090 0.844 0.000 0.156
#> SRR1003864     1  0.0424     0.9215 0.992 0.000 0.008
#> SRR1003865     1  0.0237     0.9221 0.996 0.000 0.004
#> SRR1003866     1  0.0424     0.9223 0.992 0.000 0.008
#> SRR1003867     1  0.0424     0.9231 0.992 0.000 0.008

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1003755     1  0.6216     0.3790 0.652 0.000 0.240 0.108
#> SRR1003756     1  0.6238     0.3780 0.652 0.000 0.236 0.112
#> SRR1003757     1  0.1284     0.9182 0.964 0.000 0.024 0.012
#> SRR1003758     1  0.1059     0.9209 0.972 0.000 0.016 0.012
#> SRR1003759     4  0.4304     0.7091 0.284 0.000 0.000 0.716
#> SRR1003760     4  0.4671     0.6933 0.220 0.000 0.028 0.752
#> SRR1003761     4  0.4609     0.6967 0.224 0.000 0.024 0.752
#> SRR1003762     1  0.6901    -0.1332 0.568 0.116 0.004 0.312
#> SRR1003763     4  0.7727     0.5928 0.392 0.156 0.012 0.440
#> SRR1003764     4  0.4905     0.6586 0.364 0.000 0.004 0.632
#> SRR1003765     2  0.0000     0.9571 0.000 1.000 0.000 0.000
#> SRR1003766     2  0.2542     0.9514 0.000 0.904 0.012 0.084
#> SRR1003767     2  0.1211     0.9480 0.000 0.960 0.000 0.040
#> SRR1003768     2  0.2542     0.9514 0.000 0.904 0.012 0.084
#> SRR1003769     2  0.2542     0.9514 0.000 0.904 0.012 0.084
#> SRR1003770     2  0.0000     0.9571 0.000 1.000 0.000 0.000
#> SRR1003771     2  0.1389     0.9443 0.000 0.952 0.000 0.048
#> SRR1003773     3  0.0779     0.8094 0.016 0.000 0.980 0.004
#> SRR1003772     1  0.0921     0.9204 0.972 0.000 0.000 0.028
#> SRR1003774     1  0.3908     0.7076 0.784 0.000 0.004 0.212
#> SRR1003775     1  0.0707     0.9204 0.980 0.000 0.000 0.020
#> SRR1003776     1  0.2408     0.8734 0.896 0.000 0.000 0.104
#> SRR1003777     1  0.1211     0.9208 0.960 0.000 0.000 0.040
#> SRR1003778     3  0.1411     0.8115 0.020 0.000 0.960 0.020
#> SRR1003779     1  0.0524     0.9220 0.988 0.000 0.004 0.008
#> SRR1003780     4  0.7719     0.5319 0.284 0.000 0.268 0.448
#> SRR1003781     1  0.1022     0.9228 0.968 0.000 0.000 0.032
#> SRR1003784     3  0.1938     0.8025 0.052 0.000 0.936 0.012
#> SRR1003785     3  0.0895     0.8141 0.020 0.000 0.976 0.004
#> SRR1003786     1  0.1022     0.9212 0.968 0.000 0.000 0.032
#> SRR1003783     1  0.1474     0.9153 0.948 0.000 0.000 0.052
#> SRR1003787     1  0.1389     0.9137 0.952 0.000 0.000 0.048
#> SRR1003788     1  0.0937     0.9238 0.976 0.000 0.012 0.012
#> SRR1003789     4  0.5676     0.4992 0.136 0.000 0.144 0.720
#> SRR1003790     1  0.0469     0.9211 0.988 0.000 0.000 0.012
#> SRR1003791     1  0.1557     0.9077 0.944 0.000 0.000 0.056
#> SRR1003792     1  0.1389     0.9188 0.952 0.000 0.000 0.048
#> SRR1003793     1  0.0817     0.9186 0.976 0.000 0.000 0.024
#> SRR1003794     1  0.0921     0.9187 0.972 0.000 0.000 0.028
#> SRR1003795     3  0.5332     0.6170 0.124 0.000 0.748 0.128
#> SRR1003796     3  0.1042     0.8140 0.020 0.000 0.972 0.008
#> SRR1003797     1  0.1211     0.9186 0.960 0.000 0.000 0.040
#> SRR1003798     1  0.1767     0.9070 0.944 0.000 0.012 0.044
#> SRR1003799     1  0.0469     0.9202 0.988 0.000 0.000 0.012
#> SRR1003800     1  0.1677     0.9071 0.948 0.000 0.012 0.040
#> SRR1003801     1  0.3858     0.8063 0.844 0.000 0.056 0.100
#> SRR1003802     1  0.5920     0.2090 0.612 0.000 0.336 0.052
#> SRR1003803     1  0.0921     0.9178 0.972 0.000 0.000 0.028
#> SRR1003804     1  0.2124     0.8909 0.924 0.000 0.068 0.008
#> SRR1003805     1  0.0921     0.9212 0.972 0.000 0.000 0.028
#> SRR1003806     1  0.0921     0.9180 0.972 0.000 0.000 0.028
#> SRR1003807     1  0.1929     0.9037 0.940 0.000 0.036 0.024
#> SRR1003809     1  0.4088     0.6233 0.764 0.000 0.232 0.004
#> SRR1003808     1  0.2345     0.8738 0.900 0.000 0.000 0.100
#> SRR1003810     1  0.1256     0.9203 0.964 0.000 0.028 0.008
#> SRR1003811     1  0.5355     0.2453 0.620 0.000 0.360 0.020
#> SRR1003812     1  0.1743     0.9106 0.940 0.000 0.004 0.056
#> SRR1003813     3  0.1411     0.8104 0.020 0.000 0.960 0.020
#> SRR1003814     1  0.1716     0.9090 0.936 0.000 0.000 0.064
#> SRR1003815     1  0.1635     0.9202 0.948 0.000 0.008 0.044
#> SRR1003816     1  0.1302     0.9179 0.956 0.000 0.000 0.044
#> SRR1003817     1  0.0817     0.9209 0.976 0.000 0.000 0.024
#> SRR1003818     1  0.1637     0.9090 0.940 0.000 0.000 0.060
#> SRR1003819     1  0.3142     0.8281 0.860 0.000 0.008 0.132
#> SRR1003820     1  0.1211     0.9170 0.960 0.000 0.000 0.040
#> SRR1003821     1  0.0469     0.9210 0.988 0.000 0.000 0.012
#> SRR1003822     3  0.4452     0.3674 0.260 0.000 0.732 0.008
#> SRR1003824     1  0.3501     0.7834 0.848 0.000 0.132 0.020
#> SRR1003823     1  0.0707     0.9190 0.980 0.000 0.000 0.020
#> SRR1003825     1  0.1936     0.9098 0.940 0.000 0.028 0.032
#> SRR1003826     1  0.0469     0.9212 0.988 0.000 0.000 0.012
#> SRR1003827     1  0.2011     0.8954 0.920 0.000 0.000 0.080
#> SRR1003828     1  0.1302     0.9175 0.956 0.000 0.000 0.044
#> SRR1003829     1  0.0707     0.9225 0.980 0.000 0.000 0.020
#> SRR1003830     1  0.0592     0.9205 0.984 0.000 0.000 0.016
#> SRR1003831     1  0.1902     0.9046 0.932 0.000 0.004 0.064
#> SRR1003832     1  0.0188     0.9208 0.996 0.000 0.000 0.004
#> SRR1003833     1  0.1022     0.9237 0.968 0.000 0.000 0.032
#> SRR1003834     1  0.1807     0.9028 0.940 0.000 0.052 0.008
#> SRR1003836     1  0.1610     0.9189 0.952 0.000 0.016 0.032
#> SRR1003835     1  0.0817     0.9217 0.976 0.000 0.000 0.024
#> SRR1003838     3  0.1109     0.8147 0.028 0.000 0.968 0.004
#> SRR1003837     1  0.0376     0.9227 0.992 0.000 0.004 0.004
#> SRR1003839     1  0.1576     0.9131 0.948 0.000 0.004 0.048
#> SRR1003840     1  0.2216     0.8880 0.908 0.000 0.000 0.092
#> SRR1003841     4  0.9220     0.0717 0.160 0.116 0.348 0.376
#> SRR1003842     1  0.0817     0.9210 0.976 0.000 0.000 0.024
#> SRR1003844     1  0.0336     0.9207 0.992 0.000 0.000 0.008
#> SRR1003845     1  0.1792     0.9050 0.932 0.000 0.000 0.068
#> SRR1003846     1  0.0707     0.9192 0.980 0.000 0.000 0.020
#> SRR1003847     1  0.1389     0.9189 0.952 0.000 0.000 0.048
#> SRR1003848     3  0.3271     0.6824 0.132 0.000 0.856 0.012
#> SRR1003849     3  0.1042     0.8141 0.020 0.000 0.972 0.008
#> SRR1003850     1  0.2759     0.8657 0.904 0.000 0.052 0.044
#> SRR1003851     3  0.1824     0.7973 0.060 0.000 0.936 0.004
#> SRR1003852     1  0.1118     0.9220 0.964 0.000 0.000 0.036
#> SRR1003853     1  0.0921     0.9230 0.972 0.000 0.000 0.028
#> SRR1003854     1  0.0707     0.9223 0.980 0.000 0.000 0.020
#> SRR1003843     1  0.2197     0.8800 0.916 0.000 0.004 0.080
#> SRR1003855     1  0.1767     0.9176 0.944 0.000 0.012 0.044
#> SRR1003856     3  0.5060    -0.0317 0.412 0.000 0.584 0.004
#> SRR1003857     1  0.0817     0.9243 0.976 0.000 0.000 0.024
#> SRR1003858     1  0.1004     0.9233 0.972 0.000 0.004 0.024
#> SRR1003859     1  0.1022     0.9154 0.968 0.000 0.000 0.032
#> SRR1003860     1  0.0707     0.9222 0.980 0.000 0.000 0.020
#> SRR1003861     1  0.1182     0.9227 0.968 0.000 0.016 0.016
#> SRR1003862     1  0.0707     0.9222 0.980 0.000 0.000 0.020
#> SRR1003863     1  0.1474     0.9040 0.948 0.000 0.052 0.000
#> SRR1003864     1  0.1211     0.9199 0.960 0.000 0.000 0.040
#> SRR1003865     1  0.0921     0.9236 0.972 0.000 0.000 0.028
#> SRR1003866     1  0.0657     0.9226 0.984 0.000 0.004 0.012
#> SRR1003867     1  0.0592     0.9234 0.984 0.000 0.000 0.016

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1003755     1  0.6878   -0.03107 0.460 0.000 0.392 0.060 0.088
#> SRR1003756     1  0.6836   -0.01614 0.464 0.000 0.392 0.060 0.084
#> SRR1003757     1  0.1216    0.89102 0.960 0.000 0.020 0.020 0.000
#> SRR1003758     1  0.1082    0.89135 0.964 0.000 0.008 0.028 0.000
#> SRR1003759     5  0.2597    0.48817 0.092 0.000 0.000 0.024 0.884
#> SRR1003760     5  0.1830    0.46099 0.068 0.000 0.000 0.008 0.924
#> SRR1003761     5  0.1608    0.47291 0.072 0.000 0.000 0.000 0.928
#> SRR1003762     1  0.7183   -0.14092 0.492 0.108 0.000 0.080 0.320
#> SRR1003763     5  0.8002    0.27945 0.320 0.124 0.020 0.096 0.440
#> SRR1003764     5  0.6025    0.30719 0.336 0.004 0.000 0.116 0.544
#> SRR1003765     2  0.0000    0.93326 0.000 1.000 0.000 0.000 0.000
#> SRR1003766     2  0.2450    0.92482 0.000 0.896 0.000 0.076 0.028
#> SRR1003767     2  0.1750    0.91443 0.000 0.936 0.000 0.036 0.028
#> SRR1003768     2  0.2450    0.92482 0.000 0.896 0.000 0.076 0.028
#> SRR1003769     2  0.2450    0.92482 0.000 0.896 0.000 0.076 0.028
#> SRR1003770     2  0.0162    0.93269 0.000 0.996 0.000 0.004 0.000
#> SRR1003771     2  0.1836    0.91217 0.000 0.932 0.000 0.036 0.032
#> SRR1003773     3  0.1386    0.69798 0.000 0.000 0.952 0.032 0.016
#> SRR1003772     1  0.1740    0.88332 0.932 0.000 0.000 0.056 0.012
#> SRR1003774     1  0.4767    0.69776 0.724 0.000 0.004 0.072 0.200
#> SRR1003775     1  0.1043    0.88794 0.960 0.000 0.000 0.040 0.000
#> SRR1003776     1  0.4032    0.80389 0.800 0.000 0.004 0.072 0.124
#> SRR1003777     1  0.2208    0.88331 0.908 0.000 0.000 0.072 0.020
#> SRR1003778     3  0.2300    0.66809 0.000 0.000 0.904 0.072 0.024
#> SRR1003779     1  0.2110    0.88768 0.912 0.000 0.000 0.072 0.016
#> SRR1003780     5  0.7635    0.04269 0.112 0.000 0.172 0.220 0.496
#> SRR1003781     1  0.1331    0.89081 0.952 0.000 0.000 0.040 0.008
#> SRR1003784     3  0.1780    0.69662 0.024 0.000 0.940 0.028 0.008
#> SRR1003785     3  0.1668    0.69485 0.000 0.000 0.940 0.032 0.028
#> SRR1003786     1  0.1300    0.88784 0.956 0.000 0.000 0.028 0.016
#> SRR1003783     1  0.2149    0.88181 0.916 0.000 0.000 0.048 0.036
#> SRR1003787     1  0.2221    0.88256 0.912 0.000 0.000 0.052 0.036
#> SRR1003788     1  0.1704    0.89235 0.928 0.000 0.000 0.068 0.004
#> SRR1003789     5  0.5738    0.29275 0.060 0.000 0.048 0.228 0.664
#> SRR1003790     1  0.1041    0.88892 0.964 0.000 0.000 0.032 0.004
#> SRR1003791     1  0.3124    0.83455 0.844 0.000 0.004 0.136 0.016
#> SRR1003792     1  0.1444    0.89075 0.948 0.000 0.000 0.040 0.012
#> SRR1003793     1  0.1357    0.88340 0.948 0.000 0.000 0.048 0.004
#> SRR1003794     1  0.1557    0.88767 0.940 0.000 0.000 0.052 0.008
#> SRR1003795     4  0.6416    0.25747 0.136 0.000 0.388 0.468 0.008
#> SRR1003796     3  0.1662    0.68568 0.004 0.000 0.936 0.056 0.004
#> SRR1003797     1  0.1251    0.88903 0.956 0.000 0.000 0.036 0.008
#> SRR1003798     1  0.2568    0.86497 0.888 0.000 0.016 0.092 0.004
#> SRR1003799     1  0.1116    0.88856 0.964 0.000 0.004 0.028 0.004
#> SRR1003800     1  0.2037    0.87620 0.920 0.000 0.012 0.064 0.004
#> SRR1003801     1  0.4844    0.75754 0.772 0.000 0.076 0.052 0.100
#> SRR1003802     1  0.5912    0.16867 0.536 0.000 0.348 0.116 0.000
#> SRR1003803     1  0.1357    0.88470 0.948 0.000 0.000 0.048 0.004
#> SRR1003804     1  0.2659    0.87142 0.888 0.000 0.060 0.052 0.000
#> SRR1003805     1  0.1484    0.89023 0.944 0.000 0.000 0.048 0.008
#> SRR1003806     1  0.1443    0.88531 0.948 0.000 0.004 0.044 0.004
#> SRR1003807     1  0.3192    0.83556 0.848 0.000 0.040 0.112 0.000
#> SRR1003809     1  0.4546    0.53189 0.668 0.000 0.304 0.028 0.000
#> SRR1003808     1  0.3397    0.84629 0.848 0.000 0.004 0.080 0.068
#> SRR1003810     1  0.3134    0.87445 0.864 0.000 0.028 0.096 0.012
#> SRR1003811     1  0.5809    0.08275 0.484 0.000 0.448 0.048 0.020
#> SRR1003812     1  0.3030    0.86394 0.868 0.000 0.004 0.088 0.040
#> SRR1003813     3  0.1990    0.69827 0.004 0.000 0.928 0.040 0.028
#> SRR1003814     1  0.2903    0.85978 0.872 0.000 0.000 0.080 0.048
#> SRR1003815     1  0.2879    0.87371 0.880 0.000 0.008 0.080 0.032
#> SRR1003816     1  0.2570    0.87420 0.888 0.000 0.000 0.084 0.028
#> SRR1003817     1  0.2104    0.88075 0.916 0.000 0.000 0.060 0.024
#> SRR1003818     1  0.2535    0.87352 0.892 0.000 0.000 0.076 0.032
#> SRR1003819     1  0.4795    0.75284 0.752 0.000 0.012 0.120 0.116
#> SRR1003820     1  0.2171    0.88391 0.912 0.000 0.000 0.064 0.024
#> SRR1003821     1  0.1331    0.88974 0.952 0.000 0.000 0.040 0.008
#> SRR1003822     3  0.3696    0.27488 0.212 0.000 0.772 0.016 0.000
#> SRR1003824     1  0.4019    0.76483 0.792 0.000 0.152 0.052 0.004
#> SRR1003823     1  0.1270    0.88051 0.948 0.000 0.000 0.052 0.000
#> SRR1003825     1  0.3575    0.84222 0.848 0.000 0.056 0.076 0.020
#> SRR1003826     1  0.1205    0.89026 0.956 0.000 0.000 0.040 0.004
#> SRR1003827     1  0.2228    0.88508 0.912 0.000 0.000 0.048 0.040
#> SRR1003828     1  0.1956    0.87485 0.916 0.000 0.000 0.076 0.008
#> SRR1003829     1  0.1124    0.88887 0.960 0.000 0.000 0.036 0.004
#> SRR1003830     1  0.1544    0.87933 0.932 0.000 0.000 0.068 0.000
#> SRR1003831     1  0.2300    0.88226 0.904 0.000 0.000 0.072 0.024
#> SRR1003832     1  0.0955    0.88615 0.968 0.000 0.000 0.028 0.004
#> SRR1003833     1  0.1877    0.88800 0.924 0.000 0.000 0.064 0.012
#> SRR1003834     1  0.2757    0.88090 0.888 0.000 0.032 0.072 0.008
#> SRR1003836     1  0.2568    0.86530 0.888 0.000 0.016 0.092 0.004
#> SRR1003835     1  0.1502    0.88832 0.940 0.000 0.000 0.056 0.004
#> SRR1003838     3  0.2275    0.67917 0.012 0.000 0.912 0.064 0.012
#> SRR1003837     1  0.1924    0.88931 0.924 0.000 0.004 0.064 0.008
#> SRR1003839     1  0.3533    0.85153 0.836 0.000 0.004 0.104 0.056
#> SRR1003840     1  0.4649    0.69587 0.716 0.000 0.000 0.220 0.064
#> SRR1003841     4  0.8541    0.24147 0.068 0.060 0.192 0.436 0.244
#> SRR1003842     1  0.1502    0.88402 0.940 0.000 0.000 0.056 0.004
#> SRR1003844     1  0.0794    0.88882 0.972 0.000 0.000 0.028 0.000
#> SRR1003845     1  0.4055    0.81524 0.800 0.000 0.012 0.140 0.048
#> SRR1003846     1  0.1168    0.88737 0.960 0.000 0.000 0.032 0.008
#> SRR1003847     1  0.1216    0.89040 0.960 0.000 0.000 0.020 0.020
#> SRR1003848     3  0.2825    0.49185 0.124 0.000 0.860 0.016 0.000
#> SRR1003849     3  0.1485    0.69378 0.000 0.000 0.948 0.032 0.020
#> SRR1003850     1  0.4447    0.73711 0.768 0.000 0.092 0.136 0.004
#> SRR1003851     3  0.2426    0.62213 0.064 0.000 0.900 0.036 0.000
#> SRR1003852     1  0.1626    0.89223 0.940 0.000 0.000 0.044 0.016
#> SRR1003853     1  0.1444    0.89229 0.948 0.000 0.000 0.040 0.012
#> SRR1003854     1  0.1830    0.88948 0.924 0.000 0.000 0.068 0.008
#> SRR1003843     1  0.3828    0.72410 0.764 0.000 0.008 0.220 0.008
#> SRR1003855     1  0.3328    0.86299 0.860 0.000 0.020 0.084 0.036
#> SRR1003856     3  0.5126    0.00627 0.364 0.000 0.596 0.032 0.008
#> SRR1003857     1  0.2053    0.89060 0.924 0.000 0.004 0.048 0.024
#> SRR1003858     1  0.1569    0.89220 0.944 0.000 0.008 0.044 0.004
#> SRR1003859     1  0.1484    0.88204 0.944 0.000 0.000 0.048 0.008
#> SRR1003860     1  0.0671    0.88681 0.980 0.000 0.000 0.016 0.004
#> SRR1003861     1  0.2550    0.88276 0.892 0.000 0.004 0.084 0.020
#> SRR1003862     1  0.0898    0.88945 0.972 0.000 0.000 0.020 0.008
#> SRR1003863     1  0.2650    0.87400 0.892 0.000 0.068 0.036 0.004
#> SRR1003864     1  0.1502    0.88859 0.940 0.000 0.000 0.056 0.004
#> SRR1003865     1  0.2012    0.89314 0.920 0.000 0.000 0.060 0.020
#> SRR1003866     1  0.1282    0.88819 0.952 0.000 0.000 0.044 0.004
#> SRR1003867     1  0.1357    0.89139 0.948 0.000 0.000 0.048 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3 p4    p5    p6
#> SRR1003755     1  0.6693     0.0254 0.448 0.000 0.340 NA 0.000 0.088
#> SRR1003756     1  0.6658    -0.0137 0.432 0.000 0.364 NA 0.000 0.084
#> SRR1003757     1  0.1720     0.8675 0.928 0.000 0.032 NA 0.000 0.000
#> SRR1003758     1  0.1745     0.8672 0.924 0.000 0.020 NA 0.000 0.000
#> SRR1003759     6  0.1461     0.3179 0.044 0.000 0.000 NA 0.000 0.940
#> SRR1003760     6  0.0912     0.2854 0.008 0.000 0.004 NA 0.012 0.972
#> SRR1003761     6  0.0405     0.2917 0.008 0.000 0.000 NA 0.004 0.988
#> SRR1003762     1  0.7171    -0.2701 0.428 0.076 0.000 NA 0.012 0.300
#> SRR1003763     6  0.7887     0.2264 0.308 0.088 0.020 NA 0.016 0.364
#> SRR1003764     6  0.6205     0.2209 0.368 0.000 0.004 NA 0.008 0.424
#> SRR1003765     2  0.0260     0.8460 0.000 0.992 0.000 NA 0.008 0.000
#> SRR1003766     2  0.3686     0.8240 0.000 0.788 0.000 NA 0.124 0.000
#> SRR1003767     2  0.2964     0.7985 0.000 0.868 0.000 NA 0.036 0.036
#> SRR1003768     2  0.3686     0.8240 0.000 0.788 0.000 NA 0.124 0.000
#> SRR1003769     2  0.3686     0.8240 0.000 0.788 0.000 NA 0.124 0.000
#> SRR1003770     2  0.0260     0.8460 0.000 0.992 0.000 NA 0.008 0.000
#> SRR1003771     2  0.2964     0.7985 0.000 0.868 0.000 NA 0.036 0.036
#> SRR1003773     3  0.1750     0.6748 0.000 0.000 0.932 NA 0.040 0.012
#> SRR1003772     1  0.1728     0.8577 0.924 0.000 0.004 NA 0.000 0.008
#> SRR1003774     1  0.4591     0.6564 0.688 0.000 0.004 NA 0.000 0.224
#> SRR1003775     1  0.1444     0.8636 0.928 0.000 0.000 NA 0.000 0.000
#> SRR1003776     1  0.3847     0.7925 0.792 0.000 0.004 NA 0.004 0.100
#> SRR1003777     1  0.2424     0.8636 0.892 0.000 0.008 NA 0.008 0.012
#> SRR1003778     3  0.4102     0.6000 0.012 0.000 0.788 NA 0.112 0.012
#> SRR1003779     1  0.2317     0.8615 0.892 0.000 0.008 NA 0.004 0.008
#> SRR1003780     6  0.7823    -0.0204 0.100 0.000 0.064 NA 0.184 0.448
#> SRR1003781     1  0.1082     0.8615 0.956 0.000 0.000 NA 0.000 0.004
#> SRR1003784     3  0.2317     0.6741 0.064 0.000 0.900 NA 0.020 0.000
#> SRR1003785     3  0.1861     0.6708 0.000 0.000 0.928 NA 0.036 0.016
#> SRR1003786     1  0.1594     0.8645 0.932 0.000 0.000 NA 0.000 0.016
#> SRR1003783     1  0.1434     0.8596 0.940 0.000 0.000 NA 0.000 0.012
#> SRR1003787     1  0.1643     0.8607 0.924 0.000 0.000 NA 0.000 0.008
#> SRR1003788     1  0.2773     0.8586 0.872 0.000 0.016 NA 0.012 0.008
#> SRR1003789     6  0.6850     0.0479 0.028 0.000 0.040 NA 0.156 0.488
#> SRR1003790     1  0.1588     0.8648 0.924 0.000 0.000 NA 0.004 0.000
#> SRR1003791     1  0.4527     0.7330 0.696 0.000 0.008 NA 0.044 0.008
#> SRR1003792     1  0.1693     0.8639 0.932 0.000 0.000 NA 0.004 0.020
#> SRR1003793     1  0.1588     0.8624 0.924 0.000 0.000 NA 0.004 0.000
#> SRR1003794     1  0.2009     0.8656 0.908 0.000 0.000 NA 0.024 0.000
#> SRR1003795     5  0.7150     0.3920 0.076 0.000 0.184 NA 0.380 0.008
#> SRR1003796     3  0.2948     0.6290 0.000 0.000 0.848 NA 0.092 0.000
#> SRR1003797     1  0.1477     0.8651 0.940 0.000 0.000 NA 0.004 0.008
#> SRR1003798     1  0.2500     0.8501 0.868 0.000 0.012 NA 0.004 0.000
#> SRR1003799     1  0.2051     0.8657 0.896 0.000 0.000 NA 0.004 0.004
#> SRR1003800     1  0.3068     0.8425 0.840 0.000 0.020 NA 0.016 0.000
#> SRR1003801     1  0.5233     0.7308 0.716 0.000 0.120 NA 0.012 0.068
#> SRR1003802     1  0.6186     0.1153 0.472 0.000 0.372 NA 0.048 0.000
#> SRR1003803     1  0.2070     0.8614 0.896 0.000 0.000 NA 0.012 0.000
#> SRR1003804     1  0.2696     0.8562 0.872 0.000 0.076 NA 0.000 0.004
#> SRR1003805     1  0.2455     0.8618 0.872 0.000 0.000 NA 0.012 0.004
#> SRR1003806     1  0.2196     0.8587 0.884 0.000 0.004 NA 0.000 0.004
#> SRR1003807     1  0.4832     0.7469 0.728 0.000 0.056 NA 0.056 0.004
#> SRR1003809     1  0.5031     0.5006 0.600 0.000 0.332 NA 0.004 0.012
#> SRR1003808     1  0.3553     0.8243 0.808 0.000 0.004 NA 0.012 0.032
#> SRR1003810     1  0.3352     0.8439 0.840 0.000 0.060 NA 0.008 0.008
#> SRR1003811     1  0.5274     0.1132 0.484 0.000 0.448 NA 0.004 0.016
#> SRR1003812     1  0.2487     0.8484 0.888 0.000 0.004 NA 0.004 0.028
#> SRR1003813     3  0.2415     0.6726 0.004 0.000 0.904 NA 0.032 0.024
#> SRR1003814     1  0.3140     0.8251 0.848 0.000 0.008 NA 0.008 0.032
#> SRR1003815     1  0.2315     0.8562 0.892 0.000 0.008 NA 0.000 0.016
#> SRR1003816     1  0.2364     0.8504 0.892 0.000 0.004 NA 0.000 0.032
#> SRR1003817     1  0.1867     0.8575 0.916 0.000 0.000 NA 0.000 0.020
#> SRR1003818     1  0.2425     0.8571 0.884 0.000 0.004 NA 0.000 0.024
#> SRR1003819     1  0.4606     0.7405 0.736 0.000 0.024 NA 0.008 0.060
#> SRR1003820     1  0.1410     0.8630 0.944 0.000 0.000 NA 0.004 0.008
#> SRR1003821     1  0.1152     0.8625 0.952 0.000 0.000 NA 0.000 0.004
#> SRR1003822     3  0.4464     0.4088 0.228 0.000 0.708 NA 0.024 0.000
#> SRR1003824     1  0.4697     0.7118 0.708 0.000 0.184 NA 0.004 0.008
#> SRR1003823     1  0.2872     0.8434 0.832 0.000 0.000 NA 0.012 0.004
#> SRR1003825     1  0.4109     0.8237 0.796 0.000 0.052 NA 0.016 0.024
#> SRR1003826     1  0.1732     0.8649 0.920 0.000 0.000 NA 0.004 0.004
#> SRR1003827     1  0.1644     0.8647 0.932 0.000 0.000 NA 0.000 0.040
#> SRR1003828     1  0.3483     0.8228 0.804 0.000 0.008 NA 0.020 0.008
#> SRR1003829     1  0.1075     0.8629 0.952 0.000 0.000 NA 0.000 0.000
#> SRR1003830     1  0.2573     0.8542 0.856 0.000 0.000 NA 0.008 0.004
#> SRR1003831     1  0.2306     0.8621 0.888 0.000 0.008 NA 0.004 0.004
#> SRR1003832     1  0.2001     0.8601 0.900 0.000 0.000 NA 0.004 0.004
#> SRR1003833     1  0.2451     0.8630 0.892 0.000 0.004 NA 0.016 0.012
#> SRR1003834     1  0.3243     0.8516 0.844 0.000 0.048 NA 0.020 0.000
#> SRR1003836     1  0.3593     0.8283 0.784 0.000 0.028 NA 0.004 0.004
#> SRR1003835     1  0.2462     0.8504 0.860 0.000 0.000 NA 0.004 0.004
#> SRR1003838     3  0.3674     0.6171 0.012 0.000 0.820 NA 0.076 0.008
#> SRR1003837     1  0.2044     0.8645 0.908 0.000 0.004 NA 0.004 0.008
#> SRR1003839     1  0.4198     0.8110 0.780 0.000 0.008 NA 0.036 0.040
#> SRR1003840     1  0.5993     0.5103 0.604 0.000 0.004 NA 0.112 0.060
#> SRR1003841     5  0.5834     0.3457 0.004 0.028 0.120 NA 0.640 0.192
#> SRR1003842     1  0.2333     0.8529 0.872 0.000 0.000 NA 0.004 0.004
#> SRR1003844     1  0.1333     0.8666 0.944 0.000 0.000 NA 0.008 0.000
#> SRR1003845     1  0.5288     0.6852 0.672 0.000 0.016 NA 0.024 0.076
#> SRR1003846     1  0.1584     0.8631 0.928 0.000 0.000 NA 0.008 0.000
#> SRR1003847     1  0.2705     0.8668 0.876 0.000 0.004 NA 0.004 0.040
#> SRR1003848     3  0.3316     0.5490 0.152 0.000 0.812 NA 0.028 0.000
#> SRR1003849     3  0.2321     0.6687 0.004 0.000 0.904 NA 0.052 0.008
#> SRR1003850     1  0.4405     0.7433 0.732 0.000 0.080 NA 0.012 0.000
#> SRR1003851     3  0.4099     0.6028 0.060 0.000 0.788 NA 0.044 0.000
#> SRR1003852     1  0.2454     0.8688 0.884 0.000 0.000 NA 0.008 0.020
#> SRR1003853     1  0.2162     0.8704 0.896 0.000 0.000 NA 0.004 0.012
#> SRR1003854     1  0.1921     0.8668 0.920 0.000 0.000 NA 0.012 0.012
#> SRR1003843     1  0.5168     0.6352 0.640 0.000 0.008 NA 0.104 0.004
#> SRR1003855     1  0.3699     0.8373 0.824 0.000 0.020 NA 0.024 0.028
#> SRR1003856     3  0.4704     0.2630 0.300 0.000 0.628 NA 0.000 0.000
#> SRR1003857     1  0.2920     0.8626 0.864 0.000 0.008 NA 0.008 0.028
#> SRR1003858     1  0.1285     0.8609 0.944 0.000 0.000 NA 0.004 0.000
#> SRR1003859     1  0.2278     0.8521 0.868 0.000 0.000 NA 0.004 0.000
#> SRR1003860     1  0.1531     0.8642 0.928 0.000 0.000 NA 0.004 0.000
#> SRR1003861     1  0.3011     0.8506 0.852 0.000 0.016 NA 0.008 0.012
#> SRR1003862     1  0.1493     0.8636 0.936 0.000 0.000 NA 0.004 0.004
#> SRR1003863     1  0.2937     0.8450 0.852 0.000 0.100 NA 0.004 0.000
#> SRR1003864     1  0.1010     0.8625 0.960 0.000 0.000 NA 0.004 0.000
#> SRR1003865     1  0.2837     0.8611 0.840 0.000 0.004 NA 0.008 0.004
#> SRR1003866     1  0.1787     0.8655 0.920 0.000 0.004 NA 0.008 0.000
#> SRR1003867     1  0.1858     0.8654 0.904 0.000 0.000 NA 0.000 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 9166 rows and 112 columns.
#>   Top rows (917, 1834, 2750, 3666, 4583) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.992       0.996        0.22913 0.766   0.766
#> 3 3 0.996           0.973       0.982        0.05412 0.991   0.989
#> 4 4 0.996           0.966       0.983        0.00994 0.999   0.998
#> 5 5 0.902           0.898       0.956        0.17001 0.951   0.936
#> 6 6 0.952           0.930       0.979        0.07601 0.983   0.976

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1003755     1   0.000       1.00 1.000 0.000
#> SRR1003756     1   0.000       1.00 1.000 0.000
#> SRR1003757     1   0.000       1.00 1.000 0.000
#> SRR1003758     1   0.000       1.00 1.000 0.000
#> SRR1003759     1   0.000       1.00 1.000 0.000
#> SRR1003760     2   0.745       0.75 0.212 0.788
#> SRR1003761     2   0.745       0.75 0.212 0.788
#> SRR1003762     2   0.000       0.97 0.000 1.000
#> SRR1003763     2   0.000       0.97 0.000 1.000
#> SRR1003764     2   0.000       0.97 0.000 1.000
#> SRR1003765     2   0.000       0.97 0.000 1.000
#> SRR1003766     2   0.000       0.97 0.000 1.000
#> SRR1003767     2   0.000       0.97 0.000 1.000
#> SRR1003768     2   0.000       0.97 0.000 1.000
#> SRR1003769     2   0.000       0.97 0.000 1.000
#> SRR1003770     2   0.000       0.97 0.000 1.000
#> SRR1003771     2   0.000       0.97 0.000 1.000
#> SRR1003773     1   0.000       1.00 1.000 0.000
#> SRR1003772     1   0.000       1.00 1.000 0.000
#> SRR1003774     1   0.000       1.00 1.000 0.000
#> SRR1003775     1   0.000       1.00 1.000 0.000
#> SRR1003776     1   0.000       1.00 1.000 0.000
#> SRR1003777     1   0.000       1.00 1.000 0.000
#> SRR1003778     1   0.000       1.00 1.000 0.000
#> SRR1003779     1   0.000       1.00 1.000 0.000
#> SRR1003780     2   0.000       0.97 0.000 1.000
#> SRR1003781     1   0.000       1.00 1.000 0.000
#> SRR1003784     1   0.000       1.00 1.000 0.000
#> SRR1003785     1   0.000       1.00 1.000 0.000
#> SRR1003786     1   0.000       1.00 1.000 0.000
#> SRR1003783     1   0.000       1.00 1.000 0.000
#> SRR1003787     1   0.000       1.00 1.000 0.000
#> SRR1003788     1   0.000       1.00 1.000 0.000
#> SRR1003789     2   0.000       0.97 0.000 1.000
#> SRR1003790     1   0.000       1.00 1.000 0.000
#> SRR1003791     1   0.000       1.00 1.000 0.000
#> SRR1003792     1   0.000       1.00 1.000 0.000
#> SRR1003793     1   0.000       1.00 1.000 0.000
#> SRR1003794     1   0.000       1.00 1.000 0.000
#> SRR1003795     1   0.000       1.00 1.000 0.000
#> SRR1003796     1   0.000       1.00 1.000 0.000
#> SRR1003797     1   0.000       1.00 1.000 0.000
#> SRR1003798     1   0.000       1.00 1.000 0.000
#> SRR1003799     1   0.000       1.00 1.000 0.000
#> SRR1003800     1   0.000       1.00 1.000 0.000
#> SRR1003801     1   0.000       1.00 1.000 0.000
#> SRR1003802     1   0.000       1.00 1.000 0.000
#> SRR1003803     1   0.000       1.00 1.000 0.000
#> SRR1003804     1   0.000       1.00 1.000 0.000
#> SRR1003805     1   0.000       1.00 1.000 0.000
#> SRR1003806     1   0.000       1.00 1.000 0.000
#> SRR1003807     1   0.000       1.00 1.000 0.000
#> SRR1003809     1   0.000       1.00 1.000 0.000
#> SRR1003808     1   0.000       1.00 1.000 0.000
#> SRR1003810     1   0.000       1.00 1.000 0.000
#> SRR1003811     1   0.000       1.00 1.000 0.000
#> SRR1003812     1   0.000       1.00 1.000 0.000
#> SRR1003813     1   0.000       1.00 1.000 0.000
#> SRR1003814     1   0.000       1.00 1.000 0.000
#> SRR1003815     1   0.000       1.00 1.000 0.000
#> SRR1003816     1   0.000       1.00 1.000 0.000
#> SRR1003817     1   0.000       1.00 1.000 0.000
#> SRR1003818     1   0.000       1.00 1.000 0.000
#> SRR1003819     1   0.000       1.00 1.000 0.000
#> SRR1003820     1   0.000       1.00 1.000 0.000
#> SRR1003821     1   0.000       1.00 1.000 0.000
#> SRR1003822     1   0.000       1.00 1.000 0.000
#> SRR1003824     1   0.000       1.00 1.000 0.000
#> SRR1003823     1   0.000       1.00 1.000 0.000
#> SRR1003825     1   0.000       1.00 1.000 0.000
#> SRR1003826     1   0.000       1.00 1.000 0.000
#> SRR1003827     1   0.000       1.00 1.000 0.000
#> SRR1003828     1   0.000       1.00 1.000 0.000
#> SRR1003829     1   0.000       1.00 1.000 0.000
#> SRR1003830     1   0.000       1.00 1.000 0.000
#> SRR1003831     1   0.000       1.00 1.000 0.000
#> SRR1003832     1   0.000       1.00 1.000 0.000
#> SRR1003833     1   0.000       1.00 1.000 0.000
#> SRR1003834     1   0.000       1.00 1.000 0.000
#> SRR1003836     1   0.000       1.00 1.000 0.000
#> SRR1003835     1   0.000       1.00 1.000 0.000
#> SRR1003838     1   0.000       1.00 1.000 0.000
#> SRR1003837     1   0.000       1.00 1.000 0.000
#> SRR1003839     1   0.000       1.00 1.000 0.000
#> SRR1003840     1   0.000       1.00 1.000 0.000
#> SRR1003841     2   0.000       0.97 0.000 1.000
#> SRR1003842     1   0.000       1.00 1.000 0.000
#> SRR1003844     1   0.000       1.00 1.000 0.000
#> SRR1003845     1   0.000       1.00 1.000 0.000
#> SRR1003846     1   0.000       1.00 1.000 0.000
#> SRR1003847     1   0.000       1.00 1.000 0.000
#> SRR1003848     1   0.000       1.00 1.000 0.000
#> SRR1003849     1   0.000       1.00 1.000 0.000
#> SRR1003850     1   0.000       1.00 1.000 0.000
#> SRR1003851     1   0.000       1.00 1.000 0.000
#> SRR1003852     1   0.000       1.00 1.000 0.000
#> SRR1003853     1   0.000       1.00 1.000 0.000
#> SRR1003854     1   0.000       1.00 1.000 0.000
#> SRR1003843     1   0.000       1.00 1.000 0.000
#> SRR1003855     1   0.000       1.00 1.000 0.000
#> SRR1003856     1   0.000       1.00 1.000 0.000
#> SRR1003857     1   0.000       1.00 1.000 0.000
#> SRR1003858     1   0.000       1.00 1.000 0.000
#> SRR1003859     1   0.000       1.00 1.000 0.000
#> SRR1003860     1   0.000       1.00 1.000 0.000
#> SRR1003861     1   0.000       1.00 1.000 0.000
#> SRR1003862     1   0.000       1.00 1.000 0.000
#> SRR1003863     1   0.000       1.00 1.000 0.000
#> SRR1003864     1   0.000       1.00 1.000 0.000
#> SRR1003865     1   0.000       1.00 1.000 0.000
#> SRR1003866     1   0.000       1.00 1.000 0.000
#> SRR1003867     1   0.000       1.00 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette p1    p2    p3
#> SRR1003755     1   0.000      1.000  1 0.000 0.000
#> SRR1003756     1   0.000      1.000  1 0.000 0.000
#> SRR1003757     1   0.000      1.000  1 0.000 0.000
#> SRR1003758     1   0.000      1.000  1 0.000 0.000
#> SRR1003759     1   0.000      1.000  1 0.000 0.000
#> SRR1003760     3   0.000      0.558  0 0.000 1.000
#> SRR1003761     3   0.000      0.558  0 0.000 1.000
#> SRR1003762     3   0.627      0.643  0 0.452 0.548
#> SRR1003763     3   0.627      0.643  0 0.452 0.548
#> SRR1003764     3   0.627      0.643  0 0.452 0.548
#> SRR1003765     2   0.000      0.965  0 1.000 0.000
#> SRR1003766     2   0.000      0.965  0 1.000 0.000
#> SRR1003767     2   0.000      0.965  0 1.000 0.000
#> SRR1003768     2   0.000      0.965  0 1.000 0.000
#> SRR1003769     2   0.000      0.965  0 1.000 0.000
#> SRR1003770     2   0.000      0.965  0 1.000 0.000
#> SRR1003771     2   0.000      0.965  0 1.000 0.000
#> SRR1003773     1   0.000      1.000  1 0.000 0.000
#> SRR1003772     1   0.000      1.000  1 0.000 0.000
#> SRR1003774     1   0.000      1.000  1 0.000 0.000
#> SRR1003775     1   0.000      1.000  1 0.000 0.000
#> SRR1003776     1   0.000      1.000  1 0.000 0.000
#> SRR1003777     1   0.000      1.000  1 0.000 0.000
#> SRR1003778     1   0.000      1.000  1 0.000 0.000
#> SRR1003779     1   0.000      1.000  1 0.000 0.000
#> SRR1003780     2   0.000      0.965  0 1.000 0.000
#> SRR1003781     1   0.000      1.000  1 0.000 0.000
#> SRR1003784     1   0.000      1.000  1 0.000 0.000
#> SRR1003785     1   0.000      1.000  1 0.000 0.000
#> SRR1003786     1   0.000      1.000  1 0.000 0.000
#> SRR1003783     1   0.000      1.000  1 0.000 0.000
#> SRR1003787     1   0.000      1.000  1 0.000 0.000
#> SRR1003788     1   0.000      1.000  1 0.000 0.000
#> SRR1003789     3   0.629      0.620  0 0.464 0.536
#> SRR1003790     1   0.000      1.000  1 0.000 0.000
#> SRR1003791     1   0.000      1.000  1 0.000 0.000
#> SRR1003792     1   0.000      1.000  1 0.000 0.000
#> SRR1003793     1   0.000      1.000  1 0.000 0.000
#> SRR1003794     1   0.000      1.000  1 0.000 0.000
#> SRR1003795     1   0.000      1.000  1 0.000 0.000
#> SRR1003796     1   0.000      1.000  1 0.000 0.000
#> SRR1003797     1   0.000      1.000  1 0.000 0.000
#> SRR1003798     1   0.000      1.000  1 0.000 0.000
#> SRR1003799     1   0.000      1.000  1 0.000 0.000
#> SRR1003800     1   0.000      1.000  1 0.000 0.000
#> SRR1003801     1   0.000      1.000  1 0.000 0.000
#> SRR1003802     1   0.000      1.000  1 0.000 0.000
#> SRR1003803     1   0.000      1.000  1 0.000 0.000
#> SRR1003804     1   0.000      1.000  1 0.000 0.000
#> SRR1003805     1   0.000      1.000  1 0.000 0.000
#> SRR1003806     1   0.000      1.000  1 0.000 0.000
#> SRR1003807     1   0.000      1.000  1 0.000 0.000
#> SRR1003809     1   0.000      1.000  1 0.000 0.000
#> SRR1003808     1   0.000      1.000  1 0.000 0.000
#> SRR1003810     1   0.000      1.000  1 0.000 0.000
#> SRR1003811     1   0.000      1.000  1 0.000 0.000
#> SRR1003812     1   0.000      1.000  1 0.000 0.000
#> SRR1003813     1   0.000      1.000  1 0.000 0.000
#> SRR1003814     1   0.000      1.000  1 0.000 0.000
#> SRR1003815     1   0.000      1.000  1 0.000 0.000
#> SRR1003816     1   0.000      1.000  1 0.000 0.000
#> SRR1003817     1   0.000      1.000  1 0.000 0.000
#> SRR1003818     1   0.000      1.000  1 0.000 0.000
#> SRR1003819     1   0.000      1.000  1 0.000 0.000
#> SRR1003820     1   0.000      1.000  1 0.000 0.000
#> SRR1003821     1   0.000      1.000  1 0.000 0.000
#> SRR1003822     1   0.000      1.000  1 0.000 0.000
#> SRR1003824     1   0.000      1.000  1 0.000 0.000
#> SRR1003823     1   0.000      1.000  1 0.000 0.000
#> SRR1003825     1   0.000      1.000  1 0.000 0.000
#> SRR1003826     1   0.000      1.000  1 0.000 0.000
#> SRR1003827     1   0.000      1.000  1 0.000 0.000
#> SRR1003828     1   0.000      1.000  1 0.000 0.000
#> SRR1003829     1   0.000      1.000  1 0.000 0.000
#> SRR1003830     1   0.000      1.000  1 0.000 0.000
#> SRR1003831     1   0.000      1.000  1 0.000 0.000
#> SRR1003832     1   0.000      1.000  1 0.000 0.000
#> SRR1003833     1   0.000      1.000  1 0.000 0.000
#> SRR1003834     1   0.000      1.000  1 0.000 0.000
#> SRR1003836     1   0.000      1.000  1 0.000 0.000
#> SRR1003835     1   0.000      1.000  1 0.000 0.000
#> SRR1003838     1   0.000      1.000  1 0.000 0.000
#> SRR1003837     1   0.000      1.000  1 0.000 0.000
#> SRR1003839     1   0.000      1.000  1 0.000 0.000
#> SRR1003840     1   0.000      1.000  1 0.000 0.000
#> SRR1003841     2   0.424      0.634  0 0.824 0.176
#> SRR1003842     1   0.000      1.000  1 0.000 0.000
#> SRR1003844     1   0.000      1.000  1 0.000 0.000
#> SRR1003845     1   0.000      1.000  1 0.000 0.000
#> SRR1003846     1   0.000      1.000  1 0.000 0.000
#> SRR1003847     1   0.000      1.000  1 0.000 0.000
#> SRR1003848     1   0.000      1.000  1 0.000 0.000
#> SRR1003849     1   0.000      1.000  1 0.000 0.000
#> SRR1003850     1   0.000      1.000  1 0.000 0.000
#> SRR1003851     1   0.000      1.000  1 0.000 0.000
#> SRR1003852     1   0.000      1.000  1 0.000 0.000
#> SRR1003853     1   0.000      1.000  1 0.000 0.000
#> SRR1003854     1   0.000      1.000  1 0.000 0.000
#> SRR1003843     1   0.000      1.000  1 0.000 0.000
#> SRR1003855     1   0.000      1.000  1 0.000 0.000
#> SRR1003856     1   0.000      1.000  1 0.000 0.000
#> SRR1003857     1   0.000      1.000  1 0.000 0.000
#> SRR1003858     1   0.000      1.000  1 0.000 0.000
#> SRR1003859     1   0.000      1.000  1 0.000 0.000
#> SRR1003860     1   0.000      1.000  1 0.000 0.000
#> SRR1003861     1   0.000      1.000  1 0.000 0.000
#> SRR1003862     1   0.000      1.000  1 0.000 0.000
#> SRR1003863     1   0.000      1.000  1 0.000 0.000
#> SRR1003864     1   0.000      1.000  1 0.000 0.000
#> SRR1003865     1   0.000      1.000  1 0.000 0.000
#> SRR1003866     1   0.000      1.000  1 0.000 0.000
#> SRR1003867     1   0.000      1.000  1 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1003755     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003756     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003757     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003758     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003759     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003760     4  0.0000      0.335 0.000 0.000 0.000 1.000
#> SRR1003761     4  0.0000      0.335 0.000 0.000 0.000 1.000
#> SRR1003762     4  0.4967      0.665 0.000 0.452 0.000 0.548
#> SRR1003763     4  0.4967      0.665 0.000 0.452 0.000 0.548
#> SRR1003764     4  0.4967      0.665 0.000 0.452 0.000 0.548
#> SRR1003765     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1003766     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1003767     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1003768     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1003769     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1003770     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1003771     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1003773     1  0.0707      0.980 0.980 0.000 0.020 0.000
#> SRR1003772     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003774     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003775     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003776     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003777     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003778     1  0.0707      0.980 0.980 0.000 0.020 0.000
#> SRR1003779     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003780     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1003781     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003784     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003785     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003786     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003783     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003787     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003788     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003789     4  0.4981      0.644 0.000 0.464 0.000 0.536
#> SRR1003790     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003791     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003792     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003793     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003794     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003795     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003796     1  0.0707      0.980 0.980 0.000 0.020 0.000
#> SRR1003797     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003798     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003799     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003800     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003801     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003802     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003803     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003804     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003805     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003806     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003807     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003809     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003808     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003810     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003811     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003812     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003813     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003814     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003815     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003816     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003817     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003818     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003819     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003820     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003821     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003822     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003824     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003823     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003825     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003826     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003827     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003828     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003829     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003830     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003831     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003832     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003833     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003834     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003836     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003835     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003838     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003837     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003839     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003840     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003841     3  0.0707      0.000 0.000 0.020 0.980 0.000
#> SRR1003842     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003844     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003845     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003846     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003847     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003848     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003849     1  0.0188      0.996 0.996 0.000 0.004 0.000
#> SRR1003850     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003851     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003852     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003853     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003854     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003843     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003855     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003856     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003857     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003858     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003859     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003860     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003861     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003862     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003863     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003864     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003865     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003866     1  0.0000      0.999 1.000 0.000 0.000 0.000
#> SRR1003867     1  0.0000      0.999 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4 p5
#> SRR1003755     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003756     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003757     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003758     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003759     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003760     4   0.000      1.000 0.000 0.000 0.000 1.000  0
#> SRR1003761     4   0.000      1.000 0.000 0.000 0.000 1.000  0
#> SRR1003762     3   0.639     -0.202 0.000 0.400 0.432 0.168  0
#> SRR1003763     3   0.639     -0.202 0.000 0.400 0.432 0.168  0
#> SRR1003764     3   0.639     -0.202 0.000 0.400 0.432 0.168  0
#> SRR1003765     2   0.000      1.000 0.000 1.000 0.000 0.000  0
#> SRR1003766     2   0.000      1.000 0.000 1.000 0.000 0.000  0
#> SRR1003767     2   0.000      1.000 0.000 1.000 0.000 0.000  0
#> SRR1003768     2   0.000      1.000 0.000 1.000 0.000 0.000  0
#> SRR1003769     2   0.000      1.000 0.000 1.000 0.000 0.000  0
#> SRR1003770     2   0.000      1.000 0.000 1.000 0.000 0.000  0
#> SRR1003771     2   0.000      1.000 0.000 1.000 0.000 0.000  0
#> SRR1003773     3   0.425      0.273 0.432 0.000 0.568 0.000  0
#> SRR1003772     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003774     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003775     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003776     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003777     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003778     3   0.425      0.273 0.432 0.000 0.568 0.000  0
#> SRR1003779     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003780     2   0.000      1.000 0.000 1.000 0.000 0.000  0
#> SRR1003781     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003784     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003785     1   0.395      0.374 0.668 0.000 0.332 0.000  0
#> SRR1003786     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003783     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003787     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003788     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003789     3   0.632     -0.221 0.000 0.412 0.432 0.156  0
#> SRR1003790     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003791     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003792     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003793     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003794     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003795     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003796     3   0.425      0.273 0.432 0.000 0.568 0.000  0
#> SRR1003797     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003798     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003799     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003800     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003801     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003802     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003803     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003804     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003805     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003806     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003807     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003809     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003808     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003810     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003811     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003812     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003813     1   0.134      0.918 0.944 0.000 0.056 0.000  0
#> SRR1003814     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003815     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003816     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003817     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003818     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003819     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003820     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003821     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003822     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003824     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003823     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003825     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003826     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003827     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003828     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003829     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003830     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003831     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003832     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003833     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003834     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003836     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003835     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003838     1   0.395      0.374 0.668 0.000 0.332 0.000  0
#> SRR1003837     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003839     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003840     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003841     5   0.000      0.000 0.000 0.000 0.000 0.000  1
#> SRR1003842     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003844     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003845     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003846     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003847     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003848     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003849     1   0.403      0.313 0.648 0.000 0.352 0.000  0
#> SRR1003850     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003851     1   0.134      0.918 0.944 0.000 0.056 0.000  0
#> SRR1003852     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003853     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003854     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003843     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003855     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003856     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003857     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003858     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003859     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003860     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003861     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003862     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003863     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003864     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003865     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003866     1   0.000      0.985 1.000 0.000 0.000 0.000  0
#> SRR1003867     1   0.000      0.985 1.000 0.000 0.000 0.000  0

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1 p2    p3    p4 p5    p6
#> SRR1003755     1  0.0363      0.968 0.988  0 0.012 0.000  0 0.000
#> SRR1003756     1  0.0363      0.968 0.988  0 0.012 0.000  0 0.000
#> SRR1003757     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003758     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003759     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003760     4  0.0363      1.000 0.000  0 0.000 0.988  0 0.012
#> SRR1003761     4  0.0363      1.000 0.000  0 0.000 0.988  0 0.012
#> SRR1003762     6  0.0000      0.943 0.000  0 0.000 0.000  0 1.000
#> SRR1003763     6  0.0000      0.943 0.000  0 0.000 0.000  0 1.000
#> SRR1003764     6  0.0000      0.943 0.000  0 0.000 0.000  0 1.000
#> SRR1003765     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1003766     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1003767     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1003768     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1003769     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1003770     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1003771     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1003773     3  0.2562      0.636 0.172  0 0.828 0.000  0 0.000
#> SRR1003772     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003774     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003775     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003776     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003777     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003778     3  0.2562      0.636 0.172  0 0.828 0.000  0 0.000
#> SRR1003779     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003780     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1003781     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003784     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003785     1  0.3868     -0.480 0.504  0 0.496 0.000  0 0.000
#> SRR1003786     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003783     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003787     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003788     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003789     6  0.2912      0.816 0.000  0 0.172 0.012  0 0.816
#> SRR1003790     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003791     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003792     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003793     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003794     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003795     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003796     3  0.2562      0.636 0.172  0 0.828 0.000  0 0.000
#> SRR1003797     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003798     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003799     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003800     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003801     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003802     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003803     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003804     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003805     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003806     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003807     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003809     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003808     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003810     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003811     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003812     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003813     1  0.1387      0.889 0.932  0 0.068 0.000  0 0.000
#> SRR1003814     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003815     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003816     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003817     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003818     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003819     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003820     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003821     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003822     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003824     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003823     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003825     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003826     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003827     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003828     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003829     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003830     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003831     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003832     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003833     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003834     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003836     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003835     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003838     1  0.3868     -0.480 0.504  0 0.496 0.000  0 0.000
#> SRR1003837     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003839     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003840     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003841     5  0.0000      0.000 0.000  0 0.000 0.000  1 0.000
#> SRR1003842     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003844     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003845     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003846     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003847     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003848     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003849     3  0.3867      0.364 0.488  0 0.512 0.000  0 0.000
#> SRR1003850     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003851     1  0.1387      0.888 0.932  0 0.068 0.000  0 0.000
#> SRR1003852     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003853     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003854     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003843     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003855     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003856     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003857     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003858     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003859     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003860     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003861     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003862     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003863     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003864     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003865     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003866     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000
#> SRR1003867     1  0.0000      0.983 1.000  0 0.000 0.000  0 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 9166 rows and 112 columns.
#>   Top rows (917, 1834, 2750, 3666, 4583) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.992       0.997          0.230 0.766   0.766
#> 3 3 0.866           0.890       0.955          0.389 0.887   0.853
#> 4 4 0.997           0.943       0.978          0.190 0.959   0.939
#> 5 5 0.658           0.770       0.874          0.417 0.781   0.655
#> 6 6 0.676           0.730       0.864          0.149 0.886   0.747

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1003755     1   0.000      1.000 1.000 0.000
#> SRR1003756     1   0.000      1.000 1.000 0.000
#> SRR1003757     1   0.000      1.000 1.000 0.000
#> SRR1003758     1   0.000      1.000 1.000 0.000
#> SRR1003759     1   0.000      1.000 1.000 0.000
#> SRR1003760     2   0.000      0.974 0.000 1.000
#> SRR1003761     2   0.946      0.428 0.364 0.636
#> SRR1003762     2   0.000      0.974 0.000 1.000
#> SRR1003763     2   0.000      0.974 0.000 1.000
#> SRR1003764     2   0.000      0.974 0.000 1.000
#> SRR1003765     2   0.000      0.974 0.000 1.000
#> SRR1003766     2   0.000      0.974 0.000 1.000
#> SRR1003767     2   0.000      0.974 0.000 1.000
#> SRR1003768     2   0.000      0.974 0.000 1.000
#> SRR1003769     2   0.000      0.974 0.000 1.000
#> SRR1003770     2   0.000      0.974 0.000 1.000
#> SRR1003771     2   0.000      0.974 0.000 1.000
#> SRR1003773     1   0.000      1.000 1.000 0.000
#> SRR1003772     1   0.000      1.000 1.000 0.000
#> SRR1003774     1   0.000      1.000 1.000 0.000
#> SRR1003775     1   0.000      1.000 1.000 0.000
#> SRR1003776     1   0.000      1.000 1.000 0.000
#> SRR1003777     1   0.000      1.000 1.000 0.000
#> SRR1003778     1   0.000      1.000 1.000 0.000
#> SRR1003779     1   0.000      1.000 1.000 0.000
#> SRR1003780     2   0.000      0.974 0.000 1.000
#> SRR1003781     1   0.000      1.000 1.000 0.000
#> SRR1003784     1   0.000      1.000 1.000 0.000
#> SRR1003785     1   0.000      1.000 1.000 0.000
#> SRR1003786     1   0.000      1.000 1.000 0.000
#> SRR1003783     1   0.000      1.000 1.000 0.000
#> SRR1003787     1   0.000      1.000 1.000 0.000
#> SRR1003788     1   0.000      1.000 1.000 0.000
#> SRR1003789     2   0.000      0.974 0.000 1.000
#> SRR1003790     1   0.000      1.000 1.000 0.000
#> SRR1003791     1   0.000      1.000 1.000 0.000
#> SRR1003792     1   0.000      1.000 1.000 0.000
#> SRR1003793     1   0.000      1.000 1.000 0.000
#> SRR1003794     1   0.000      1.000 1.000 0.000
#> SRR1003795     1   0.000      1.000 1.000 0.000
#> SRR1003796     1   0.000      1.000 1.000 0.000
#> SRR1003797     1   0.000      1.000 1.000 0.000
#> SRR1003798     1   0.000      1.000 1.000 0.000
#> SRR1003799     1   0.000      1.000 1.000 0.000
#> SRR1003800     1   0.000      1.000 1.000 0.000
#> SRR1003801     1   0.000      1.000 1.000 0.000
#> SRR1003802     1   0.000      1.000 1.000 0.000
#> SRR1003803     1   0.000      1.000 1.000 0.000
#> SRR1003804     1   0.000      1.000 1.000 0.000
#> SRR1003805     1   0.000      1.000 1.000 0.000
#> SRR1003806     1   0.000      1.000 1.000 0.000
#> SRR1003807     1   0.000      1.000 1.000 0.000
#> SRR1003809     1   0.000      1.000 1.000 0.000
#> SRR1003808     1   0.000      1.000 1.000 0.000
#> SRR1003810     1   0.000      1.000 1.000 0.000
#> SRR1003811     1   0.000      1.000 1.000 0.000
#> SRR1003812     1   0.000      1.000 1.000 0.000
#> SRR1003813     1   0.000      1.000 1.000 0.000
#> SRR1003814     1   0.000      1.000 1.000 0.000
#> SRR1003815     1   0.000      1.000 1.000 0.000
#> SRR1003816     1   0.000      1.000 1.000 0.000
#> SRR1003817     1   0.000      1.000 1.000 0.000
#> SRR1003818     1   0.000      1.000 1.000 0.000
#> SRR1003819     1   0.000      1.000 1.000 0.000
#> SRR1003820     1   0.000      1.000 1.000 0.000
#> SRR1003821     1   0.000      1.000 1.000 0.000
#> SRR1003822     1   0.000      1.000 1.000 0.000
#> SRR1003824     1   0.000      1.000 1.000 0.000
#> SRR1003823     1   0.000      1.000 1.000 0.000
#> SRR1003825     1   0.000      1.000 1.000 0.000
#> SRR1003826     1   0.000      1.000 1.000 0.000
#> SRR1003827     1   0.000      1.000 1.000 0.000
#> SRR1003828     1   0.000      1.000 1.000 0.000
#> SRR1003829     1   0.000      1.000 1.000 0.000
#> SRR1003830     1   0.000      1.000 1.000 0.000
#> SRR1003831     1   0.000      1.000 1.000 0.000
#> SRR1003832     1   0.000      1.000 1.000 0.000
#> SRR1003833     1   0.000      1.000 1.000 0.000
#> SRR1003834     1   0.000      1.000 1.000 0.000
#> SRR1003836     1   0.000      1.000 1.000 0.000
#> SRR1003835     1   0.000      1.000 1.000 0.000
#> SRR1003838     1   0.000      1.000 1.000 0.000
#> SRR1003837     1   0.000      1.000 1.000 0.000
#> SRR1003839     1   0.000      1.000 1.000 0.000
#> SRR1003840     1   0.000      1.000 1.000 0.000
#> SRR1003841     2   0.000      0.974 0.000 1.000
#> SRR1003842     1   0.000      1.000 1.000 0.000
#> SRR1003844     1   0.000      1.000 1.000 0.000
#> SRR1003845     1   0.000      1.000 1.000 0.000
#> SRR1003846     1   0.000      1.000 1.000 0.000
#> SRR1003847     1   0.000      1.000 1.000 0.000
#> SRR1003848     1   0.000      1.000 1.000 0.000
#> SRR1003849     1   0.000      1.000 1.000 0.000
#> SRR1003850     1   0.000      1.000 1.000 0.000
#> SRR1003851     1   0.000      1.000 1.000 0.000
#> SRR1003852     1   0.000      1.000 1.000 0.000
#> SRR1003853     1   0.000      1.000 1.000 0.000
#> SRR1003854     1   0.000      1.000 1.000 0.000
#> SRR1003843     1   0.000      1.000 1.000 0.000
#> SRR1003855     1   0.000      1.000 1.000 0.000
#> SRR1003856     1   0.000      1.000 1.000 0.000
#> SRR1003857     1   0.000      1.000 1.000 0.000
#> SRR1003858     1   0.000      1.000 1.000 0.000
#> SRR1003859     1   0.000      1.000 1.000 0.000
#> SRR1003860     1   0.000      1.000 1.000 0.000
#> SRR1003861     1   0.000      1.000 1.000 0.000
#> SRR1003862     1   0.000      1.000 1.000 0.000
#> SRR1003863     1   0.000      1.000 1.000 0.000
#> SRR1003864     1   0.000      1.000 1.000 0.000
#> SRR1003865     1   0.000      1.000 1.000 0.000
#> SRR1003866     1   0.000      1.000 1.000 0.000
#> SRR1003867     1   0.000      1.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1003755     1  0.4555      0.679 0.800 0.000 0.200
#> SRR1003756     1  0.4555      0.679 0.800 0.000 0.200
#> SRR1003757     1  0.0424      0.979 0.992 0.000 0.008
#> SRR1003758     1  0.0424      0.979 0.992 0.000 0.008
#> SRR1003759     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003760     3  0.5363     -0.132 0.000 0.276 0.724
#> SRR1003761     3  0.0424      0.221 0.000 0.008 0.992
#> SRR1003762     2  0.3038      0.857 0.000 0.896 0.104
#> SRR1003763     3  0.5431     -0.146 0.000 0.284 0.716
#> SRR1003764     2  0.6192      0.568 0.000 0.580 0.420
#> SRR1003765     2  0.0000      0.913 0.000 1.000 0.000
#> SRR1003766     2  0.0000      0.913 0.000 1.000 0.000
#> SRR1003767     2  0.0000      0.913 0.000 1.000 0.000
#> SRR1003768     2  0.0000      0.913 0.000 1.000 0.000
#> SRR1003769     2  0.0000      0.913 0.000 1.000 0.000
#> SRR1003770     2  0.0000      0.913 0.000 1.000 0.000
#> SRR1003771     2  0.0000      0.913 0.000 1.000 0.000
#> SRR1003773     3  0.4291      0.495 0.180 0.000 0.820
#> SRR1003772     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003774     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003775     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003776     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003777     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003778     3  0.3340      0.432 0.120 0.000 0.880
#> SRR1003779     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003780     2  0.0000      0.913 0.000 1.000 0.000
#> SRR1003781     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003784     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003785     3  0.6215      0.506 0.428 0.000 0.572
#> SRR1003786     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003783     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003787     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003788     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003789     3  0.6308     -0.515 0.000 0.492 0.508
#> SRR1003790     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003791     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003792     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003793     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003794     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003795     3  0.6235      0.488 0.436 0.000 0.564
#> SRR1003796     3  0.4291      0.495 0.180 0.000 0.820
#> SRR1003797     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003798     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003799     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003800     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003801     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003802     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003803     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003804     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003805     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003806     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003807     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003809     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003808     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003810     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003811     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003812     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003813     1  0.2878      0.860 0.904 0.000 0.096
#> SRR1003814     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003815     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003816     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003817     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003818     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003819     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003820     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003821     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003822     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003824     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003823     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003825     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003826     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003827     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003828     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003829     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003830     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003831     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003832     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003833     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003834     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003836     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003835     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003838     3  0.6215      0.506 0.428 0.000 0.572
#> SRR1003837     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003839     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003840     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003841     2  0.6168      0.578 0.000 0.588 0.412
#> SRR1003842     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003844     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003845     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003846     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003847     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003848     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003849     3  0.6215      0.506 0.428 0.000 0.572
#> SRR1003850     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003851     1  0.5733      0.345 0.676 0.000 0.324
#> SRR1003852     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003853     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003854     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003843     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003855     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003856     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003857     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003858     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003859     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003860     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003861     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003862     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003863     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003864     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003865     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003866     1  0.0000      0.988 1.000 0.000 0.000
#> SRR1003867     1  0.0000      0.988 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1003755     1  0.6748     -0.130 0.476 0.000 0.432 0.092
#> SRR1003756     1  0.6748     -0.130 0.476 0.000 0.432 0.092
#> SRR1003757     1  0.2198      0.903 0.920 0.000 0.008 0.072
#> SRR1003758     1  0.2198      0.903 0.920 0.000 0.008 0.072
#> SRR1003759     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003760     4  0.2473      0.925 0.000 0.012 0.080 0.908
#> SRR1003761     4  0.2281      0.911 0.000 0.000 0.096 0.904
#> SRR1003762     4  0.3219      0.860 0.000 0.164 0.000 0.836
#> SRR1003763     4  0.2473      0.925 0.000 0.012 0.080 0.908
#> SRR1003764     4  0.2216      0.923 0.000 0.092 0.000 0.908
#> SRR1003765     2  0.0000      0.998 0.000 1.000 0.000 0.000
#> SRR1003766     2  0.0188      0.998 0.000 0.996 0.000 0.004
#> SRR1003767     2  0.0000      0.998 0.000 1.000 0.000 0.000
#> SRR1003768     2  0.0188      0.998 0.000 0.996 0.000 0.004
#> SRR1003769     2  0.0188      0.998 0.000 0.996 0.000 0.004
#> SRR1003770     2  0.0000      0.998 0.000 1.000 0.000 0.000
#> SRR1003771     2  0.0000      0.998 0.000 1.000 0.000 0.000
#> SRR1003773     3  0.0592      0.840 0.000 0.000 0.984 0.016
#> SRR1003772     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003774     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003775     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003776     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003777     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003778     3  0.0592      0.840 0.000 0.000 0.984 0.016
#> SRR1003779     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003780     2  0.0188      0.998 0.000 0.996 0.000 0.004
#> SRR1003781     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003784     1  0.0188      0.982 0.996 0.000 0.004 0.000
#> SRR1003785     3  0.0592      0.857 0.016 0.000 0.984 0.000
#> SRR1003786     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003783     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003787     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003788     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003789     4  0.2623      0.932 0.000 0.064 0.028 0.908
#> SRR1003790     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003791     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003792     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003793     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003794     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003795     3  0.0592      0.857 0.016 0.000 0.984 0.000
#> SRR1003796     3  0.0592      0.840 0.000 0.000 0.984 0.016
#> SRR1003797     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003798     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003799     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003800     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003801     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003802     1  0.0469      0.974 0.988 0.000 0.012 0.000
#> SRR1003803     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003804     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003805     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003806     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003807     1  0.0188      0.982 0.996 0.000 0.004 0.000
#> SRR1003809     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003808     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003810     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003811     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003812     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003813     3  0.4500      0.358 0.316 0.000 0.684 0.000
#> SRR1003814     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003815     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003816     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003817     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003818     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003819     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003820     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003821     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003822     1  0.0188      0.982 0.996 0.000 0.004 0.000
#> SRR1003824     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003823     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003825     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003826     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003827     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003828     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003829     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003830     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003831     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003832     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003833     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003834     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003836     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003835     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003838     3  0.0592      0.857 0.016 0.000 0.984 0.000
#> SRR1003837     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003839     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003840     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003841     4  0.2546      0.921 0.000 0.092 0.008 0.900
#> SRR1003842     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003844     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003845     1  0.0188      0.982 0.996 0.000 0.004 0.000
#> SRR1003846     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003847     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003848     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003849     3  0.0592      0.857 0.016 0.000 0.984 0.000
#> SRR1003850     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003851     3  0.2408      0.716 0.104 0.000 0.896 0.000
#> SRR1003852     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003853     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003854     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003843     1  0.0188      0.982 0.996 0.000 0.004 0.000
#> SRR1003855     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003856     1  0.0188      0.982 0.996 0.000 0.004 0.000
#> SRR1003857     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003858     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003859     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003860     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003861     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003862     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003863     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003864     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003865     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003866     1  0.0000      0.985 1.000 0.000 0.000 0.000
#> SRR1003867     1  0.0000      0.985 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1003755     4  0.6807    -0.1180 0.336 0.000 0.300 0.364 0.000
#> SRR1003756     4  0.6807    -0.1180 0.336 0.000 0.300 0.364 0.000
#> SRR1003757     1  0.1851     0.8060 0.912 0.000 0.000 0.088 0.000
#> SRR1003758     1  0.1851     0.8060 0.912 0.000 0.000 0.088 0.000
#> SRR1003759     4  0.3932     0.8266 0.328 0.000 0.000 0.672 0.000
#> SRR1003760     5  0.1341     0.9519 0.000 0.000 0.000 0.056 0.944
#> SRR1003761     5  0.2992     0.9016 0.000 0.000 0.064 0.068 0.868
#> SRR1003762     5  0.1430     0.9307 0.000 0.052 0.000 0.004 0.944
#> SRR1003763     5  0.0162     0.9626 0.000 0.000 0.000 0.004 0.996
#> SRR1003764     5  0.0162     0.9626 0.000 0.000 0.000 0.004 0.996
#> SRR1003765     2  0.0162     0.9945 0.000 0.996 0.000 0.004 0.000
#> SRR1003766     2  0.0162     0.9943 0.000 0.996 0.000 0.004 0.000
#> SRR1003767     2  0.0510     0.9904 0.000 0.984 0.000 0.016 0.000
#> SRR1003768     2  0.0162     0.9943 0.000 0.996 0.000 0.004 0.000
#> SRR1003769     2  0.0162     0.9943 0.000 0.996 0.000 0.004 0.000
#> SRR1003770     2  0.0162     0.9945 0.000 0.996 0.000 0.004 0.000
#> SRR1003771     2  0.0510     0.9904 0.000 0.984 0.000 0.016 0.000
#> SRR1003773     3  0.0000     0.7350 0.000 0.000 1.000 0.000 0.000
#> SRR1003772     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003774     1  0.0162     0.8924 0.996 0.000 0.000 0.004 0.000
#> SRR1003775     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003776     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003777     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003778     3  0.0000     0.7350 0.000 0.000 1.000 0.000 0.000
#> SRR1003779     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003780     2  0.0000     0.9947 0.000 1.000 0.000 0.000 0.000
#> SRR1003781     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003784     4  0.3837     0.8164 0.308 0.000 0.000 0.692 0.000
#> SRR1003785     3  0.3586     0.7708 0.000 0.000 0.736 0.264 0.000
#> SRR1003786     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003783     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003787     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003788     4  0.4101     0.7721 0.372 0.000 0.000 0.628 0.000
#> SRR1003789     5  0.0000     0.9627 0.000 0.000 0.000 0.000 1.000
#> SRR1003790     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003791     4  0.4242     0.6563 0.428 0.000 0.000 0.572 0.000
#> SRR1003792     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003793     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003794     1  0.0162     0.8926 0.996 0.000 0.000 0.004 0.000
#> SRR1003795     3  0.4283     0.5893 0.000 0.000 0.544 0.456 0.000
#> SRR1003796     3  0.0000     0.7350 0.000 0.000 1.000 0.000 0.000
#> SRR1003797     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003798     1  0.0510     0.8849 0.984 0.000 0.000 0.016 0.000
#> SRR1003799     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003800     1  0.1671     0.8228 0.924 0.000 0.000 0.076 0.000
#> SRR1003801     1  0.3857     0.3383 0.688 0.000 0.000 0.312 0.000
#> SRR1003802     4  0.3816     0.8112 0.304 0.000 0.000 0.696 0.000
#> SRR1003803     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003804     1  0.0794     0.8761 0.972 0.000 0.000 0.028 0.000
#> SRR1003805     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003806     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003807     4  0.3857     0.8197 0.312 0.000 0.000 0.688 0.000
#> SRR1003809     4  0.3857     0.8202 0.312 0.000 0.000 0.688 0.000
#> SRR1003808     1  0.3424     0.5284 0.760 0.000 0.000 0.240 0.000
#> SRR1003810     1  0.0162     0.8924 0.996 0.000 0.000 0.004 0.000
#> SRR1003811     1  0.0290     0.8899 0.992 0.000 0.000 0.008 0.000
#> SRR1003812     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003813     4  0.5091     0.1880 0.084 0.000 0.244 0.672 0.000
#> SRR1003814     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003815     1  0.0162     0.8924 0.996 0.000 0.000 0.004 0.000
#> SRR1003816     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003817     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003818     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003819     1  0.4242    -0.2333 0.572 0.000 0.000 0.428 0.000
#> SRR1003820     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003821     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003822     4  0.3837     0.8164 0.308 0.000 0.000 0.692 0.000
#> SRR1003824     1  0.3837     0.3511 0.692 0.000 0.000 0.308 0.000
#> SRR1003823     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003825     4  0.3932     0.8282 0.328 0.000 0.000 0.672 0.000
#> SRR1003826     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003827     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003828     1  0.4114     0.0716 0.624 0.000 0.000 0.376 0.000
#> SRR1003829     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003830     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003831     1  0.3395     0.5428 0.764 0.000 0.000 0.236 0.000
#> SRR1003832     1  0.0290     0.8904 0.992 0.000 0.000 0.008 0.000
#> SRR1003833     1  0.2929     0.6578 0.820 0.000 0.000 0.180 0.000
#> SRR1003834     1  0.3003     0.6393 0.812 0.000 0.000 0.188 0.000
#> SRR1003836     4  0.3983     0.8180 0.340 0.000 0.000 0.660 0.000
#> SRR1003835     4  0.3949     0.8261 0.332 0.000 0.000 0.668 0.000
#> SRR1003838     3  0.3336     0.7851 0.000 0.000 0.772 0.228 0.000
#> SRR1003837     1  0.3424     0.5338 0.760 0.000 0.000 0.240 0.000
#> SRR1003839     1  0.4060     0.1473 0.640 0.000 0.000 0.360 0.000
#> SRR1003840     4  0.4306     0.4668 0.492 0.000 0.000 0.508 0.000
#> SRR1003841     5  0.0963     0.9588 0.000 0.000 0.000 0.036 0.964
#> SRR1003842     1  0.0290     0.8904 0.992 0.000 0.000 0.008 0.000
#> SRR1003844     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003845     4  0.3913     0.8266 0.324 0.000 0.000 0.676 0.000
#> SRR1003846     1  0.0609     0.8824 0.980 0.000 0.000 0.020 0.000
#> SRR1003847     1  0.3895     0.3057 0.680 0.000 0.000 0.320 0.000
#> SRR1003848     4  0.3932     0.8282 0.328 0.000 0.000 0.672 0.000
#> SRR1003849     3  0.3395     0.7823 0.000 0.000 0.764 0.236 0.000
#> SRR1003850     1  0.3966     0.2481 0.664 0.000 0.000 0.336 0.000
#> SRR1003851     4  0.4201    -0.1858 0.008 0.000 0.328 0.664 0.000
#> SRR1003852     1  0.4138     0.0244 0.616 0.000 0.000 0.384 0.000
#> SRR1003853     1  0.3774     0.3855 0.704 0.000 0.000 0.296 0.000
#> SRR1003854     1  0.0510     0.8850 0.984 0.000 0.000 0.016 0.000
#> SRR1003843     4  0.3932     0.8282 0.328 0.000 0.000 0.672 0.000
#> SRR1003855     1  0.0794     0.8757 0.972 0.000 0.000 0.028 0.000
#> SRR1003856     4  0.3949     0.8261 0.332 0.000 0.000 0.668 0.000
#> SRR1003857     1  0.0290     0.8904 0.992 0.000 0.000 0.008 0.000
#> SRR1003858     1  0.0703     0.8792 0.976 0.000 0.000 0.024 0.000
#> SRR1003859     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003860     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003861     1  0.0510     0.8853 0.984 0.000 0.000 0.016 0.000
#> SRR1003862     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003863     1  0.0404     0.8886 0.988 0.000 0.000 0.012 0.000
#> SRR1003864     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003865     4  0.3983     0.8177 0.340 0.000 0.000 0.660 0.000
#> SRR1003866     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000
#> SRR1003867     1  0.0000     0.8944 1.000 0.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1003755     5  0.7024     1.0000 0.208 0.000 0.152 0.160 0.480 0.000
#> SRR1003756     5  0.7024     1.0000 0.208 0.000 0.152 0.160 0.480 0.000
#> SRR1003757     1  0.4045     0.6483 0.756 0.000 0.000 0.124 0.120 0.000
#> SRR1003758     1  0.4045     0.6483 0.756 0.000 0.000 0.124 0.120 0.000
#> SRR1003759     4  0.3956     0.5617 0.088 0.000 0.000 0.760 0.152 0.000
#> SRR1003760     6  0.2003     0.9174 0.000 0.000 0.000 0.000 0.116 0.884
#> SRR1003761     6  0.3053     0.8728 0.000 0.000 0.020 0.000 0.168 0.812
#> SRR1003762     6  0.0922     0.9348 0.000 0.024 0.000 0.004 0.004 0.968
#> SRR1003763     6  0.0291     0.9449 0.000 0.000 0.000 0.004 0.004 0.992
#> SRR1003764     6  0.0291     0.9449 0.000 0.000 0.000 0.004 0.004 0.992
#> SRR1003765     2  0.0603     0.9858 0.000 0.980 0.000 0.004 0.016 0.000
#> SRR1003766     2  0.0291     0.9857 0.000 0.992 0.000 0.004 0.004 0.000
#> SRR1003767     2  0.0790     0.9814 0.000 0.968 0.000 0.000 0.032 0.000
#> SRR1003768     2  0.0291     0.9857 0.000 0.992 0.000 0.004 0.004 0.000
#> SRR1003769     2  0.0291     0.9857 0.000 0.992 0.000 0.004 0.004 0.000
#> SRR1003770     2  0.0603     0.9858 0.000 0.980 0.000 0.004 0.016 0.000
#> SRR1003771     2  0.0790     0.9814 0.000 0.968 0.000 0.000 0.032 0.000
#> SRR1003773     3  0.0000     0.5916 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1003772     1  0.0146     0.9045 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1003774     1  0.0508     0.9008 0.984 0.000 0.000 0.012 0.004 0.000
#> SRR1003775     1  0.0146     0.9045 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1003776     1  0.0146     0.9045 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1003777     1  0.0146     0.9045 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1003778     3  0.0000     0.5916 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1003779     1  0.0146     0.9045 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1003780     2  0.0146     0.9863 0.000 0.996 0.000 0.004 0.000 0.000
#> SRR1003781     1  0.0146     0.9045 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1003784     4  0.2119     0.5560 0.036 0.000 0.000 0.904 0.060 0.000
#> SRR1003785     3  0.5808     0.5629 0.000 0.000 0.480 0.316 0.204 0.000
#> SRR1003786     1  0.0000     0.9048 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003783     1  0.0000     0.9048 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003787     1  0.0000     0.9048 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003788     4  0.2146     0.5969 0.116 0.000 0.000 0.880 0.004 0.000
#> SRR1003789     6  0.0000     0.9452 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1003790     1  0.0000     0.9048 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003791     4  0.4493     0.5486 0.160 0.000 0.000 0.708 0.132 0.000
#> SRR1003792     1  0.0146     0.9040 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1003793     1  0.0000     0.9048 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003794     1  0.0717     0.8954 0.976 0.000 0.000 0.016 0.008 0.000
#> SRR1003795     4  0.5941    -0.4447 0.000 0.000 0.236 0.448 0.316 0.000
#> SRR1003796     3  0.0000     0.5916 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1003797     1  0.0000     0.9048 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003798     1  0.1970     0.8385 0.900 0.000 0.000 0.092 0.008 0.000
#> SRR1003799     1  0.0260     0.9030 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1003800     1  0.3190     0.6737 0.772 0.000 0.000 0.220 0.008 0.000
#> SRR1003801     4  0.4093     0.2244 0.476 0.000 0.000 0.516 0.008 0.000
#> SRR1003802     4  0.3319     0.4574 0.036 0.000 0.000 0.800 0.164 0.000
#> SRR1003803     1  0.0000     0.9048 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003804     1  0.2669     0.7710 0.836 0.000 0.000 0.156 0.008 0.000
#> SRR1003805     1  0.0146     0.9045 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1003806     1  0.0291     0.9030 0.992 0.000 0.000 0.004 0.004 0.000
#> SRR1003807     4  0.2889     0.5427 0.044 0.000 0.000 0.848 0.108 0.000
#> SRR1003809     4  0.2442     0.5645 0.048 0.000 0.000 0.884 0.068 0.000
#> SRR1003808     1  0.4922     0.2441 0.616 0.000 0.000 0.288 0.096 0.000
#> SRR1003810     1  0.0692     0.8975 0.976 0.000 0.000 0.020 0.004 0.000
#> SRR1003811     1  0.1701     0.8553 0.920 0.000 0.000 0.072 0.008 0.000
#> SRR1003812     1  0.0146     0.9045 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1003813     4  0.3460     0.3752 0.008 0.000 0.028 0.796 0.168 0.000
#> SRR1003814     1  0.0146     0.9045 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1003815     1  0.0291     0.9032 0.992 0.000 0.000 0.004 0.004 0.000
#> SRR1003816     1  0.0146     0.9045 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1003817     1  0.0146     0.9045 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1003818     1  0.0146     0.9045 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1003819     4  0.4603     0.3397 0.416 0.000 0.000 0.544 0.040 0.000
#> SRR1003820     1  0.0146     0.9045 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1003821     1  0.0000     0.9048 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003822     4  0.2442     0.5678 0.048 0.000 0.000 0.884 0.068 0.000
#> SRR1003824     4  0.4172     0.2790 0.460 0.000 0.000 0.528 0.012 0.000
#> SRR1003823     1  0.0146     0.9040 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1003825     4  0.1644     0.6076 0.076 0.000 0.000 0.920 0.004 0.000
#> SRR1003826     1  0.0000     0.9048 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003827     1  0.0000     0.9048 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003828     4  0.3915     0.3708 0.412 0.000 0.000 0.584 0.004 0.000
#> SRR1003829     1  0.0000     0.9048 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003830     1  0.0146     0.9040 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1003831     1  0.3872     0.2265 0.604 0.000 0.000 0.392 0.004 0.000
#> SRR1003832     1  0.1124     0.8835 0.956 0.000 0.000 0.036 0.008 0.000
#> SRR1003833     1  0.3636     0.4539 0.676 0.000 0.000 0.320 0.004 0.000
#> SRR1003834     1  0.3468     0.5335 0.712 0.000 0.000 0.284 0.004 0.000
#> SRR1003836     4  0.1967     0.6097 0.084 0.000 0.000 0.904 0.012 0.000
#> SRR1003835     4  0.1970     0.6078 0.092 0.000 0.000 0.900 0.008 0.000
#> SRR1003838     3  0.5731     0.5815 0.000 0.000 0.508 0.288 0.204 0.000
#> SRR1003837     1  0.3915     0.1525 0.584 0.000 0.000 0.412 0.004 0.000
#> SRR1003839     4  0.4300     0.3534 0.432 0.000 0.000 0.548 0.020 0.000
#> SRR1003840     4  0.5288     0.4428 0.252 0.000 0.000 0.592 0.156 0.000
#> SRR1003841     6  0.2006     0.9258 0.000 0.000 0.000 0.016 0.080 0.904
#> SRR1003842     1  0.1049     0.8862 0.960 0.000 0.000 0.032 0.008 0.000
#> SRR1003844     1  0.0146     0.9040 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1003845     4  0.3730     0.5471 0.060 0.000 0.000 0.772 0.168 0.000
#> SRR1003846     1  0.2212     0.8196 0.880 0.000 0.000 0.112 0.008 0.000
#> SRR1003847     4  0.3998     0.1838 0.492 0.000 0.000 0.504 0.004 0.000
#> SRR1003848     4  0.1588     0.6054 0.072 0.000 0.000 0.924 0.004 0.000
#> SRR1003849     3  0.5723     0.5813 0.000 0.000 0.508 0.292 0.200 0.000
#> SRR1003850     4  0.4097     0.1820 0.492 0.000 0.000 0.500 0.008 0.000
#> SRR1003851     4  0.4122     0.2302 0.000 0.000 0.064 0.724 0.212 0.000
#> SRR1003852     4  0.5530     0.3638 0.364 0.000 0.000 0.496 0.140 0.000
#> SRR1003853     1  0.3989    -0.0891 0.528 0.000 0.000 0.468 0.004 0.000
#> SRR1003854     1  0.1700     0.8535 0.916 0.000 0.000 0.080 0.004 0.000
#> SRR1003843     4  0.3103     0.5805 0.064 0.000 0.000 0.836 0.100 0.000
#> SRR1003855     1  0.2389     0.8037 0.864 0.000 0.000 0.128 0.008 0.000
#> SRR1003856     4  0.1802     0.6054 0.072 0.000 0.000 0.916 0.012 0.000
#> SRR1003857     1  0.1584     0.8666 0.928 0.000 0.000 0.064 0.008 0.000
#> SRR1003858     1  0.1858     0.8431 0.904 0.000 0.000 0.092 0.004 0.000
#> SRR1003859     1  0.0260     0.9030 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1003860     1  0.0000     0.9048 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003861     1  0.1700     0.8531 0.916 0.000 0.000 0.080 0.004 0.000
#> SRR1003862     1  0.0146     0.9045 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1003863     1  0.1462     0.8748 0.936 0.000 0.000 0.056 0.008 0.000
#> SRR1003864     1  0.0146     0.9045 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1003865     4  0.3307     0.5970 0.108 0.000 0.000 0.820 0.072 0.000
#> SRR1003866     1  0.0146     0.9045 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1003867     1  0.0146     0.9045 0.996 0.000 0.000 0.000 0.004 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 9166 rows and 112 columns.
#>   Top rows (917, 1834, 2750, 3666, 4583) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.956       0.983         0.3391 0.671   0.671
#> 3 3 0.672           0.759       0.896         0.3861 0.869   0.807
#> 4 4 0.433           0.561       0.790         0.2747 0.877   0.784
#> 5 5 0.410           0.551       0.739         0.1034 0.930   0.848
#> 6 6 0.403           0.493       0.693         0.0693 0.961   0.903

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1003755     1  0.9954      0.140 0.540 0.460
#> SRR1003756     1  0.9954      0.140 0.540 0.460
#> SRR1003757     1  0.0000      0.984 1.000 0.000
#> SRR1003758     1  0.0000      0.984 1.000 0.000
#> SRR1003759     1  0.4298      0.889 0.912 0.088
#> SRR1003760     2  0.0000      0.977 0.000 1.000
#> SRR1003761     2  0.0000      0.977 0.000 1.000
#> SRR1003762     2  0.0000      0.977 0.000 1.000
#> SRR1003763     2  0.0000      0.977 0.000 1.000
#> SRR1003764     2  0.0000      0.977 0.000 1.000
#> SRR1003765     2  0.0000      0.977 0.000 1.000
#> SRR1003766     2  0.0000      0.977 0.000 1.000
#> SRR1003767     2  0.0000      0.977 0.000 1.000
#> SRR1003768     2  0.0000      0.977 0.000 1.000
#> SRR1003769     2  0.0000      0.977 0.000 1.000
#> SRR1003770     2  0.0000      0.977 0.000 1.000
#> SRR1003771     2  0.0000      0.977 0.000 1.000
#> SRR1003773     2  0.0000      0.977 0.000 1.000
#> SRR1003772     1  0.0000      0.984 1.000 0.000
#> SRR1003774     1  0.0000      0.984 1.000 0.000
#> SRR1003775     1  0.0000      0.984 1.000 0.000
#> SRR1003776     1  0.0000      0.984 1.000 0.000
#> SRR1003777     1  0.0000      0.984 1.000 0.000
#> SRR1003778     2  0.0000      0.977 0.000 1.000
#> SRR1003779     1  0.0000      0.984 1.000 0.000
#> SRR1003780     2  0.0000      0.977 0.000 1.000
#> SRR1003781     1  0.0000      0.984 1.000 0.000
#> SRR1003784     1  0.0000      0.984 1.000 0.000
#> SRR1003785     2  0.6887      0.784 0.184 0.816
#> SRR1003786     1  0.0000      0.984 1.000 0.000
#> SRR1003783     1  0.0000      0.984 1.000 0.000
#> SRR1003787     1  0.0000      0.984 1.000 0.000
#> SRR1003788     1  0.0000      0.984 1.000 0.000
#> SRR1003789     2  0.0000      0.977 0.000 1.000
#> SRR1003790     1  0.0000      0.984 1.000 0.000
#> SRR1003791     1  0.0000      0.984 1.000 0.000
#> SRR1003792     1  0.0000      0.984 1.000 0.000
#> SRR1003793     1  0.0000      0.984 1.000 0.000
#> SRR1003794     1  0.0000      0.984 1.000 0.000
#> SRR1003795     2  0.4815      0.882 0.104 0.896
#> SRR1003796     2  0.0000      0.977 0.000 1.000
#> SRR1003797     1  0.0000      0.984 1.000 0.000
#> SRR1003798     1  0.0000      0.984 1.000 0.000
#> SRR1003799     1  0.0000      0.984 1.000 0.000
#> SRR1003800     1  0.0000      0.984 1.000 0.000
#> SRR1003801     1  0.0000      0.984 1.000 0.000
#> SRR1003802     1  0.0000      0.984 1.000 0.000
#> SRR1003803     1  0.0000      0.984 1.000 0.000
#> SRR1003804     1  0.0000      0.984 1.000 0.000
#> SRR1003805     1  0.0000      0.984 1.000 0.000
#> SRR1003806     1  0.0000      0.984 1.000 0.000
#> SRR1003807     1  0.0000      0.984 1.000 0.000
#> SRR1003809     1  0.0000      0.984 1.000 0.000
#> SRR1003808     1  0.0000      0.984 1.000 0.000
#> SRR1003810     1  0.0000      0.984 1.000 0.000
#> SRR1003811     1  0.0000      0.984 1.000 0.000
#> SRR1003812     1  0.0000      0.984 1.000 0.000
#> SRR1003813     1  0.0000      0.984 1.000 0.000
#> SRR1003814     1  0.0000      0.984 1.000 0.000
#> SRR1003815     1  0.0000      0.984 1.000 0.000
#> SRR1003816     1  0.0000      0.984 1.000 0.000
#> SRR1003817     1  0.0000      0.984 1.000 0.000
#> SRR1003818     1  0.0000      0.984 1.000 0.000
#> SRR1003819     1  0.0000      0.984 1.000 0.000
#> SRR1003820     1  0.0000      0.984 1.000 0.000
#> SRR1003821     1  0.0000      0.984 1.000 0.000
#> SRR1003822     1  0.0000      0.984 1.000 0.000
#> SRR1003824     1  0.0000      0.984 1.000 0.000
#> SRR1003823     1  0.0000      0.984 1.000 0.000
#> SRR1003825     1  0.0000      0.984 1.000 0.000
#> SRR1003826     1  0.0000      0.984 1.000 0.000
#> SRR1003827     1  0.0000      0.984 1.000 0.000
#> SRR1003828     1  0.0000      0.984 1.000 0.000
#> SRR1003829     1  0.0000      0.984 1.000 0.000
#> SRR1003830     1  0.0000      0.984 1.000 0.000
#> SRR1003831     1  0.0000      0.984 1.000 0.000
#> SRR1003832     1  0.0000      0.984 1.000 0.000
#> SRR1003833     1  0.0000      0.984 1.000 0.000
#> SRR1003834     1  0.0000      0.984 1.000 0.000
#> SRR1003836     1  0.0000      0.984 1.000 0.000
#> SRR1003835     1  0.0000      0.984 1.000 0.000
#> SRR1003838     2  0.0000      0.977 0.000 1.000
#> SRR1003837     1  0.0000      0.984 1.000 0.000
#> SRR1003839     1  0.0000      0.984 1.000 0.000
#> SRR1003840     1  0.0000      0.984 1.000 0.000
#> SRR1003841     2  0.0000      0.977 0.000 1.000
#> SRR1003842     1  0.0000      0.984 1.000 0.000
#> SRR1003844     1  0.0000      0.984 1.000 0.000
#> SRR1003845     1  0.9460      0.409 0.636 0.364
#> SRR1003846     1  0.0000      0.984 1.000 0.000
#> SRR1003847     1  0.0000      0.984 1.000 0.000
#> SRR1003848     1  0.0000      0.984 1.000 0.000
#> SRR1003849     2  0.0938      0.968 0.012 0.988
#> SRR1003850     1  0.0000      0.984 1.000 0.000
#> SRR1003851     2  0.7219      0.761 0.200 0.800
#> SRR1003852     1  0.0000      0.984 1.000 0.000
#> SRR1003853     1  0.0000      0.984 1.000 0.000
#> SRR1003854     1  0.0000      0.984 1.000 0.000
#> SRR1003843     1  0.1184      0.968 0.984 0.016
#> SRR1003855     1  0.0000      0.984 1.000 0.000
#> SRR1003856     1  0.0000      0.984 1.000 0.000
#> SRR1003857     1  0.0000      0.984 1.000 0.000
#> SRR1003858     1  0.0000      0.984 1.000 0.000
#> SRR1003859     1  0.0000      0.984 1.000 0.000
#> SRR1003860     1  0.0000      0.984 1.000 0.000
#> SRR1003861     1  0.0000      0.984 1.000 0.000
#> SRR1003862     1  0.0000      0.984 1.000 0.000
#> SRR1003863     1  0.0000      0.984 1.000 0.000
#> SRR1003864     1  0.0000      0.984 1.000 0.000
#> SRR1003865     1  0.0000      0.984 1.000 0.000
#> SRR1003866     1  0.0000      0.984 1.000 0.000
#> SRR1003867     1  0.0000      0.984 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1003755     2  0.9599    -0.1259 0.388 0.412 0.200
#> SRR1003756     2  0.9599    -0.1259 0.388 0.412 0.200
#> SRR1003757     1  0.2165     0.8869 0.936 0.000 0.064
#> SRR1003758     1  0.2165     0.8869 0.936 0.000 0.064
#> SRR1003759     1  0.6529     0.6732 0.760 0.124 0.116
#> SRR1003760     2  0.0000     0.8482 0.000 1.000 0.000
#> SRR1003761     2  0.0000     0.8482 0.000 1.000 0.000
#> SRR1003762     2  0.0000     0.8482 0.000 1.000 0.000
#> SRR1003763     2  0.0000     0.8482 0.000 1.000 0.000
#> SRR1003764     2  0.0000     0.8482 0.000 1.000 0.000
#> SRR1003765     2  0.0000     0.8482 0.000 1.000 0.000
#> SRR1003766     2  0.0000     0.8482 0.000 1.000 0.000
#> SRR1003767     2  0.0000     0.8482 0.000 1.000 0.000
#> SRR1003768     2  0.0000     0.8482 0.000 1.000 0.000
#> SRR1003769     2  0.0000     0.8482 0.000 1.000 0.000
#> SRR1003770     2  0.0000     0.8482 0.000 1.000 0.000
#> SRR1003771     2  0.0000     0.8482 0.000 1.000 0.000
#> SRR1003773     2  0.6154     0.3584 0.000 0.592 0.408
#> SRR1003772     1  0.0000     0.9140 1.000 0.000 0.000
#> SRR1003774     1  0.0592     0.9125 0.988 0.000 0.012
#> SRR1003775     1  0.0000     0.9140 1.000 0.000 0.000
#> SRR1003776     1  0.0000     0.9140 1.000 0.000 0.000
#> SRR1003777     1  0.0000     0.9140 1.000 0.000 0.000
#> SRR1003778     2  0.4399     0.6771 0.000 0.812 0.188
#> SRR1003779     1  0.0000     0.9140 1.000 0.000 0.000
#> SRR1003780     2  0.0000     0.8482 0.000 1.000 0.000
#> SRR1003781     1  0.0000     0.9140 1.000 0.000 0.000
#> SRR1003784     3  0.5497     0.5273 0.292 0.000 0.708
#> SRR1003785     3  0.4842     0.3273 0.000 0.224 0.776
#> SRR1003786     1  0.0000     0.9140 1.000 0.000 0.000
#> SRR1003783     1  0.0000     0.9140 1.000 0.000 0.000
#> SRR1003787     1  0.0237     0.9137 0.996 0.000 0.004
#> SRR1003788     1  0.5621     0.5870 0.692 0.000 0.308
#> SRR1003789     2  0.0000     0.8482 0.000 1.000 0.000
#> SRR1003790     1  0.0000     0.9140 1.000 0.000 0.000
#> SRR1003791     1  0.5291     0.6441 0.732 0.000 0.268
#> SRR1003792     1  0.0000     0.9140 1.000 0.000 0.000
#> SRR1003793     1  0.0237     0.9136 0.996 0.000 0.004
#> SRR1003794     1  0.0747     0.9124 0.984 0.000 0.016
#> SRR1003795     3  0.5706     0.2023 0.000 0.320 0.680
#> SRR1003796     2  0.6168     0.3504 0.000 0.588 0.412
#> SRR1003797     1  0.0000     0.9140 1.000 0.000 0.000
#> SRR1003798     1  0.1163     0.9102 0.972 0.000 0.028
#> SRR1003799     1  0.0424     0.9127 0.992 0.000 0.008
#> SRR1003800     1  0.1964     0.8998 0.944 0.000 0.056
#> SRR1003801     1  0.2165     0.8931 0.936 0.000 0.064
#> SRR1003802     3  0.5497     0.5203 0.292 0.000 0.708
#> SRR1003803     1  0.0237     0.9134 0.996 0.000 0.004
#> SRR1003804     1  0.1529     0.9039 0.960 0.000 0.040
#> SRR1003805     1  0.0000     0.9140 1.000 0.000 0.000
#> SRR1003806     1  0.0747     0.9103 0.984 0.000 0.016
#> SRR1003807     1  0.6286    -0.0564 0.536 0.000 0.464
#> SRR1003809     1  0.6235     0.0819 0.564 0.000 0.436
#> SRR1003808     1  0.0747     0.9121 0.984 0.000 0.016
#> SRR1003810     1  0.0000     0.9140 1.000 0.000 0.000
#> SRR1003811     1  0.1289     0.9035 0.968 0.000 0.032
#> SRR1003812     1  0.0000     0.9140 1.000 0.000 0.000
#> SRR1003813     3  0.2537     0.4742 0.080 0.000 0.920
#> SRR1003814     1  0.0000     0.9140 1.000 0.000 0.000
#> SRR1003815     1  0.0237     0.9134 0.996 0.000 0.004
#> SRR1003816     1  0.0000     0.9140 1.000 0.000 0.000
#> SRR1003817     1  0.0000     0.9140 1.000 0.000 0.000
#> SRR1003818     1  0.0000     0.9140 1.000 0.000 0.000
#> SRR1003819     1  0.3192     0.8443 0.888 0.000 0.112
#> SRR1003820     1  0.0000     0.9140 1.000 0.000 0.000
#> SRR1003821     1  0.0000     0.9140 1.000 0.000 0.000
#> SRR1003822     1  0.6274     0.0499 0.544 0.000 0.456
#> SRR1003824     1  0.2959     0.8694 0.900 0.000 0.100
#> SRR1003823     1  0.0424     0.9135 0.992 0.000 0.008
#> SRR1003825     1  0.6008     0.4401 0.628 0.000 0.372
#> SRR1003826     1  0.0000     0.9140 1.000 0.000 0.000
#> SRR1003827     1  0.0000     0.9140 1.000 0.000 0.000
#> SRR1003828     1  0.4291     0.7815 0.820 0.000 0.180
#> SRR1003829     1  0.0237     0.9135 0.996 0.000 0.004
#> SRR1003830     1  0.0000     0.9140 1.000 0.000 0.000
#> SRR1003831     1  0.3267     0.8514 0.884 0.000 0.116
#> SRR1003832     1  0.0892     0.9117 0.980 0.000 0.020
#> SRR1003833     1  0.3192     0.8587 0.888 0.000 0.112
#> SRR1003834     1  0.2261     0.8901 0.932 0.000 0.068
#> SRR1003836     1  0.6079     0.3991 0.612 0.000 0.388
#> SRR1003835     1  0.4504     0.7619 0.804 0.000 0.196
#> SRR1003838     3  0.5810     0.1710 0.000 0.336 0.664
#> SRR1003837     1  0.2711     0.8791 0.912 0.000 0.088
#> SRR1003839     1  0.4178     0.7993 0.828 0.000 0.172
#> SRR1003840     1  0.4654     0.7524 0.792 0.000 0.208
#> SRR1003841     2  0.0000     0.8482 0.000 1.000 0.000
#> SRR1003842     1  0.1163     0.9097 0.972 0.000 0.028
#> SRR1003844     1  0.0000     0.9140 1.000 0.000 0.000
#> SRR1003845     3  0.8370     0.2965 0.416 0.084 0.500
#> SRR1003846     1  0.1753     0.9005 0.952 0.000 0.048
#> SRR1003847     1  0.2796     0.8727 0.908 0.000 0.092
#> SRR1003848     1  0.6008     0.4034 0.628 0.000 0.372
#> SRR1003849     3  0.5905     0.1313 0.000 0.352 0.648
#> SRR1003850     1  0.3941     0.8232 0.844 0.000 0.156
#> SRR1003851     3  0.3116     0.4109 0.000 0.108 0.892
#> SRR1003852     1  0.4346     0.7832 0.816 0.000 0.184
#> SRR1003853     1  0.3038     0.8618 0.896 0.000 0.104
#> SRR1003854     1  0.2448     0.8817 0.924 0.000 0.076
#> SRR1003843     3  0.6215     0.2521 0.428 0.000 0.572
#> SRR1003855     1  0.1643     0.9020 0.956 0.000 0.044
#> SRR1003856     3  0.6180     0.2648 0.416 0.000 0.584
#> SRR1003857     1  0.0424     0.9130 0.992 0.000 0.008
#> SRR1003858     1  0.1643     0.9015 0.956 0.000 0.044
#> SRR1003859     1  0.0237     0.9136 0.996 0.000 0.004
#> SRR1003860     1  0.0000     0.9140 1.000 0.000 0.000
#> SRR1003861     1  0.1529     0.9030 0.960 0.000 0.040
#> SRR1003862     1  0.0000     0.9140 1.000 0.000 0.000
#> SRR1003863     1  0.0747     0.9109 0.984 0.000 0.016
#> SRR1003864     1  0.0000     0.9140 1.000 0.000 0.000
#> SRR1003865     1  0.3038     0.8605 0.896 0.000 0.104
#> SRR1003866     1  0.0000     0.9140 1.000 0.000 0.000
#> SRR1003867     1  0.0000     0.9140 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1003755     2  0.9532    -0.1121 0.220 0.352 0.304 0.124
#> SRR1003756     2  0.9532    -0.1121 0.220 0.352 0.304 0.124
#> SRR1003757     1  0.6100     0.3207 0.624 0.000 0.072 0.304
#> SRR1003758     1  0.6100     0.3207 0.624 0.000 0.072 0.304
#> SRR1003759     1  0.8100    -0.4366 0.440 0.064 0.092 0.404
#> SRR1003760     2  0.0000     0.8613 0.000 1.000 0.000 0.000
#> SRR1003761     2  0.0000     0.8613 0.000 1.000 0.000 0.000
#> SRR1003762     2  0.0000     0.8613 0.000 1.000 0.000 0.000
#> SRR1003763     2  0.0000     0.8613 0.000 1.000 0.000 0.000
#> SRR1003764     2  0.0000     0.8613 0.000 1.000 0.000 0.000
#> SRR1003765     2  0.0000     0.8613 0.000 1.000 0.000 0.000
#> SRR1003766     2  0.0000     0.8613 0.000 1.000 0.000 0.000
#> SRR1003767     2  0.0000     0.8613 0.000 1.000 0.000 0.000
#> SRR1003768     2  0.0000     0.8613 0.000 1.000 0.000 0.000
#> SRR1003769     2  0.0000     0.8613 0.000 1.000 0.000 0.000
#> SRR1003770     2  0.0000     0.8613 0.000 1.000 0.000 0.000
#> SRR1003771     2  0.0000     0.8613 0.000 1.000 0.000 0.000
#> SRR1003773     3  0.4941     0.4677 0.000 0.436 0.564 0.000
#> SRR1003772     1  0.0524     0.7354 0.988 0.000 0.008 0.004
#> SRR1003774     1  0.2443     0.7261 0.916 0.000 0.024 0.060
#> SRR1003775     1  0.0336     0.7366 0.992 0.000 0.000 0.008
#> SRR1003776     1  0.1302     0.7417 0.956 0.000 0.000 0.044
#> SRR1003777     1  0.0817     0.7383 0.976 0.000 0.000 0.024
#> SRR1003778     2  0.4522     0.2202 0.000 0.680 0.320 0.000
#> SRR1003779     1  0.0804     0.7366 0.980 0.000 0.008 0.012
#> SRR1003780     2  0.0000     0.8613 0.000 1.000 0.000 0.000
#> SRR1003781     1  0.2101     0.7337 0.928 0.000 0.012 0.060
#> SRR1003784     4  0.7060     0.0571 0.128 0.000 0.376 0.496
#> SRR1003785     3  0.4139     0.6946 0.000 0.144 0.816 0.040
#> SRR1003786     1  0.1545     0.7406 0.952 0.000 0.008 0.040
#> SRR1003783     1  0.0336     0.7378 0.992 0.000 0.000 0.008
#> SRR1003787     1  0.2408     0.7317 0.896 0.000 0.000 0.104
#> SRR1003788     4  0.6805     0.5129 0.400 0.000 0.100 0.500
#> SRR1003789     2  0.0000     0.8613 0.000 1.000 0.000 0.000
#> SRR1003790     1  0.1767     0.7390 0.944 0.000 0.012 0.044
#> SRR1003791     1  0.6506    -0.4041 0.472 0.000 0.072 0.456
#> SRR1003792     1  0.2530     0.7324 0.896 0.000 0.004 0.100
#> SRR1003793     1  0.2799     0.7288 0.884 0.000 0.008 0.108
#> SRR1003794     1  0.3166     0.7196 0.868 0.000 0.016 0.116
#> SRR1003795     3  0.5733     0.6360 0.000 0.312 0.640 0.048
#> SRR1003796     3  0.4948     0.4626 0.000 0.440 0.560 0.000
#> SRR1003797     1  0.1022     0.7407 0.968 0.000 0.000 0.032
#> SRR1003798     1  0.4744     0.5759 0.736 0.000 0.024 0.240
#> SRR1003799     1  0.2335     0.7395 0.920 0.000 0.020 0.060
#> SRR1003800     1  0.5678     0.3711 0.640 0.000 0.044 0.316
#> SRR1003801     1  0.5590     0.4511 0.692 0.000 0.064 0.244
#> SRR1003802     3  0.7239     0.0234 0.156 0.000 0.500 0.344
#> SRR1003803     1  0.2676     0.7347 0.896 0.000 0.012 0.092
#> SRR1003804     1  0.4636     0.6328 0.772 0.000 0.040 0.188
#> SRR1003805     1  0.0657     0.7387 0.984 0.000 0.004 0.012
#> SRR1003806     1  0.3082     0.7302 0.884 0.000 0.032 0.084
#> SRR1003807     1  0.7849    -0.4601 0.380 0.000 0.268 0.352
#> SRR1003809     1  0.7660    -0.3250 0.448 0.000 0.228 0.324
#> SRR1003808     1  0.3763     0.6482 0.832 0.000 0.024 0.144
#> SRR1003810     1  0.1938     0.7347 0.936 0.000 0.012 0.052
#> SRR1003811     1  0.4300     0.6277 0.820 0.000 0.088 0.092
#> SRR1003812     1  0.0804     0.7353 0.980 0.000 0.008 0.012
#> SRR1003813     3  0.4095     0.5699 0.024 0.000 0.804 0.172
#> SRR1003814     1  0.1807     0.7299 0.940 0.000 0.008 0.052
#> SRR1003815     1  0.2844     0.7116 0.900 0.000 0.048 0.052
#> SRR1003816     1  0.0672     0.7342 0.984 0.000 0.008 0.008
#> SRR1003817     1  0.0524     0.7343 0.988 0.000 0.004 0.008
#> SRR1003818     1  0.1488     0.7350 0.956 0.000 0.012 0.032
#> SRR1003819     1  0.5811     0.3883 0.704 0.000 0.116 0.180
#> SRR1003820     1  0.1305     0.7427 0.960 0.000 0.004 0.036
#> SRR1003821     1  0.1305     0.7405 0.960 0.000 0.004 0.036
#> SRR1003822     1  0.7877    -0.4681 0.360 0.000 0.280 0.360
#> SRR1003824     1  0.6134     0.4248 0.660 0.000 0.104 0.236
#> SRR1003823     1  0.2706     0.7364 0.900 0.000 0.020 0.080
#> SRR1003825     4  0.6058     0.6094 0.336 0.000 0.060 0.604
#> SRR1003826     1  0.0921     0.7401 0.972 0.000 0.000 0.028
#> SRR1003827     1  0.1576     0.7442 0.948 0.000 0.004 0.048
#> SRR1003828     1  0.5851     0.3892 0.660 0.000 0.068 0.272
#> SRR1003829     1  0.2760     0.7202 0.872 0.000 0.000 0.128
#> SRR1003830     1  0.2987     0.7289 0.880 0.000 0.016 0.104
#> SRR1003831     1  0.5300     0.0674 0.580 0.000 0.012 0.408
#> SRR1003832     1  0.3958     0.6815 0.816 0.000 0.024 0.160
#> SRR1003833     1  0.5268     0.2229 0.592 0.000 0.012 0.396
#> SRR1003834     1  0.4914     0.4396 0.676 0.000 0.012 0.312
#> SRR1003836     4  0.6595     0.6547 0.268 0.000 0.124 0.608
#> SRR1003835     4  0.6709     0.3654 0.456 0.000 0.088 0.456
#> SRR1003838     3  0.4599     0.6827 0.000 0.248 0.736 0.016
#> SRR1003837     1  0.5203     0.1241 0.576 0.000 0.008 0.416
#> SRR1003839     4  0.5372     0.3910 0.444 0.000 0.012 0.544
#> SRR1003840     4  0.5837     0.5423 0.400 0.000 0.036 0.564
#> SRR1003841     2  0.0000     0.8613 0.000 1.000 0.000 0.000
#> SRR1003842     1  0.3808     0.6755 0.812 0.000 0.012 0.176
#> SRR1003844     1  0.2342     0.7399 0.912 0.000 0.008 0.080
#> SRR1003845     4  0.6541     0.5323 0.160 0.016 0.148 0.676
#> SRR1003846     1  0.5386     0.3572 0.632 0.000 0.024 0.344
#> SRR1003847     1  0.5263    -0.0948 0.544 0.000 0.008 0.448
#> SRR1003848     4  0.7540     0.5936 0.304 0.000 0.216 0.480
#> SRR1003849     3  0.5198     0.6769 0.000 0.252 0.708 0.040
#> SRR1003850     1  0.6135     0.1077 0.568 0.000 0.056 0.376
#> SRR1003851     3  0.5032     0.6666 0.000 0.080 0.764 0.156
#> SRR1003852     4  0.5269     0.5683 0.364 0.000 0.016 0.620
#> SRR1003853     4  0.5409     0.1733 0.492 0.000 0.012 0.496
#> SRR1003854     1  0.4564     0.4216 0.672 0.000 0.000 0.328
#> SRR1003843     4  0.6245     0.5287 0.164 0.000 0.168 0.668
#> SRR1003855     1  0.4761     0.4313 0.664 0.000 0.004 0.332
#> SRR1003856     4  0.6163     0.5520 0.164 0.000 0.160 0.676
#> SRR1003857     1  0.4079     0.6721 0.800 0.000 0.020 0.180
#> SRR1003858     1  0.3791     0.6311 0.796 0.000 0.004 0.200
#> SRR1003859     1  0.3335     0.7069 0.860 0.000 0.020 0.120
#> SRR1003860     1  0.2021     0.7439 0.932 0.000 0.012 0.056
#> SRR1003861     1  0.4175     0.6361 0.784 0.000 0.016 0.200
#> SRR1003862     1  0.0188     0.7360 0.996 0.000 0.000 0.004
#> SRR1003863     1  0.3205     0.7238 0.872 0.000 0.024 0.104
#> SRR1003864     1  0.0524     0.7351 0.988 0.000 0.004 0.008
#> SRR1003865     1  0.5279     0.4587 0.716 0.000 0.052 0.232
#> SRR1003866     1  0.0804     0.7359 0.980 0.000 0.008 0.012
#> SRR1003867     1  0.0817     0.7420 0.976 0.000 0.000 0.024

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1003755     5  0.8161     0.3104 0.120 0.268 0.084 0.048 0.480
#> SRR1003756     5  0.8161     0.3104 0.120 0.268 0.084 0.048 0.480
#> SRR1003757     1  0.6703    -0.2033 0.424 0.000 0.000 0.264 0.312
#> SRR1003758     1  0.6703    -0.2033 0.424 0.000 0.000 0.264 0.312
#> SRR1003759     4  0.9004     0.1612 0.304 0.064 0.096 0.340 0.196
#> SRR1003760     2  0.0000     0.9661 0.000 1.000 0.000 0.000 0.000
#> SRR1003761     2  0.0000     0.9661 0.000 1.000 0.000 0.000 0.000
#> SRR1003762     2  0.0000     0.9661 0.000 1.000 0.000 0.000 0.000
#> SRR1003763     2  0.0000     0.9661 0.000 1.000 0.000 0.000 0.000
#> SRR1003764     2  0.0000     0.9661 0.000 1.000 0.000 0.000 0.000
#> SRR1003765     2  0.0000     0.9661 0.000 1.000 0.000 0.000 0.000
#> SRR1003766     2  0.0000     0.9661 0.000 1.000 0.000 0.000 0.000
#> SRR1003767     2  0.0000     0.9661 0.000 1.000 0.000 0.000 0.000
#> SRR1003768     2  0.0000     0.9661 0.000 1.000 0.000 0.000 0.000
#> SRR1003769     2  0.0000     0.9661 0.000 1.000 0.000 0.000 0.000
#> SRR1003770     2  0.0000     0.9661 0.000 1.000 0.000 0.000 0.000
#> SRR1003771     2  0.0000     0.9661 0.000 1.000 0.000 0.000 0.000
#> SRR1003773     3  0.4508     0.6540 0.000 0.332 0.648 0.000 0.020
#> SRR1003772     1  0.1117     0.7119 0.964 0.000 0.000 0.020 0.016
#> SRR1003774     1  0.4135     0.6501 0.800 0.000 0.008 0.084 0.108
#> SRR1003775     1  0.1493     0.7246 0.948 0.000 0.000 0.028 0.024
#> SRR1003776     1  0.2228     0.7216 0.912 0.000 0.000 0.048 0.040
#> SRR1003777     1  0.1173     0.7173 0.964 0.000 0.004 0.020 0.012
#> SRR1003778     2  0.4403     0.0694 0.000 0.608 0.384 0.000 0.008
#> SRR1003779     1  0.1648     0.7188 0.940 0.000 0.000 0.020 0.040
#> SRR1003780     2  0.0000     0.9661 0.000 1.000 0.000 0.000 0.000
#> SRR1003781     1  0.3517     0.6924 0.840 0.000 0.004 0.084 0.072
#> SRR1003784     5  0.7732     0.3209 0.064 0.000 0.252 0.276 0.408
#> SRR1003785     3  0.3533     0.6815 0.000 0.104 0.836 0.004 0.056
#> SRR1003786     1  0.1331     0.7225 0.952 0.000 0.000 0.040 0.008
#> SRR1003783     1  0.1106     0.7190 0.964 0.000 0.000 0.012 0.024
#> SRR1003787     1  0.3328     0.6959 0.812 0.000 0.008 0.176 0.004
#> SRR1003788     4  0.7428     0.3791 0.292 0.000 0.072 0.476 0.160
#> SRR1003789     2  0.0000     0.9661 0.000 1.000 0.000 0.000 0.000
#> SRR1003790     1  0.2233     0.7235 0.904 0.000 0.000 0.080 0.016
#> SRR1003791     1  0.7599    -0.4389 0.404 0.000 0.076 0.360 0.160
#> SRR1003792     1  0.3732     0.7042 0.812 0.000 0.008 0.148 0.032
#> SRR1003793     1  0.3106     0.7148 0.840 0.000 0.000 0.140 0.020
#> SRR1003794     1  0.5058     0.6052 0.692 0.000 0.004 0.224 0.080
#> SRR1003795     3  0.5970     0.6735 0.000 0.196 0.664 0.056 0.084
#> SRR1003796     3  0.4270     0.6505 0.000 0.336 0.656 0.004 0.004
#> SRR1003797     1  0.2110     0.7271 0.912 0.000 0.000 0.072 0.016
#> SRR1003798     1  0.5416     0.4753 0.632 0.000 0.004 0.284 0.080
#> SRR1003799     1  0.3112     0.7178 0.856 0.000 0.000 0.100 0.044
#> SRR1003800     1  0.6265     0.3517 0.584 0.000 0.020 0.268 0.128
#> SRR1003801     1  0.5833     0.4593 0.640 0.000 0.024 0.244 0.092
#> SRR1003802     5  0.7505     0.3218 0.072 0.000 0.292 0.172 0.464
#> SRR1003803     1  0.4275     0.6959 0.792 0.000 0.012 0.120 0.076
#> SRR1003804     1  0.5607     0.5304 0.660 0.000 0.016 0.228 0.096
#> SRR1003805     1  0.1836     0.7225 0.932 0.000 0.000 0.036 0.032
#> SRR1003806     1  0.3683     0.7108 0.828 0.000 0.004 0.096 0.072
#> SRR1003807     5  0.8589     0.1160 0.256 0.000 0.232 0.228 0.284
#> SRR1003809     5  0.8046     0.1895 0.296 0.000 0.140 0.160 0.404
#> SRR1003808     1  0.5199     0.5067 0.708 0.000 0.008 0.132 0.152
#> SRR1003810     1  0.2989     0.7053 0.868 0.000 0.000 0.072 0.060
#> SRR1003811     1  0.5286     0.4826 0.696 0.000 0.016 0.084 0.204
#> SRR1003812     1  0.0771     0.7118 0.976 0.000 0.000 0.004 0.020
#> SRR1003813     3  0.5971     0.1476 0.020 0.000 0.520 0.064 0.396
#> SRR1003814     1  0.2237     0.7145 0.916 0.000 0.004 0.040 0.040
#> SRR1003815     1  0.3507     0.6639 0.828 0.000 0.000 0.052 0.120
#> SRR1003816     1  0.0912     0.7107 0.972 0.000 0.000 0.012 0.016
#> SRR1003817     1  0.1310     0.7117 0.956 0.000 0.000 0.024 0.020
#> SRR1003818     1  0.1828     0.7148 0.936 0.000 0.004 0.032 0.028
#> SRR1003819     1  0.7141     0.0698 0.552 0.000 0.076 0.180 0.192
#> SRR1003820     1  0.1774     0.7274 0.932 0.000 0.000 0.052 0.016
#> SRR1003821     1  0.1408     0.7227 0.948 0.000 0.000 0.044 0.008
#> SRR1003822     5  0.8418     0.1417 0.256 0.000 0.188 0.204 0.352
#> SRR1003824     1  0.5987     0.4152 0.616 0.000 0.012 0.236 0.136
#> SRR1003823     1  0.3474     0.7128 0.836 0.000 0.004 0.116 0.044
#> SRR1003825     4  0.7602     0.3068 0.236 0.000 0.072 0.464 0.228
#> SRR1003826     1  0.1809     0.7260 0.928 0.000 0.000 0.060 0.012
#> SRR1003827     1  0.1942     0.7290 0.920 0.000 0.000 0.068 0.012
#> SRR1003828     1  0.6935    -0.1623 0.460 0.000 0.036 0.368 0.136
#> SRR1003829     1  0.3381     0.7039 0.820 0.000 0.004 0.160 0.016
#> SRR1003830     1  0.3525     0.6956 0.816 0.000 0.004 0.156 0.024
#> SRR1003831     1  0.5190     0.1531 0.540 0.000 0.008 0.424 0.028
#> SRR1003832     1  0.4509     0.6197 0.716 0.000 0.000 0.236 0.048
#> SRR1003833     1  0.5655     0.2051 0.544 0.000 0.016 0.392 0.048
#> SRR1003834     1  0.5857     0.3394 0.588 0.000 0.012 0.312 0.088
#> SRR1003836     4  0.6663     0.3921 0.180 0.000 0.076 0.612 0.132
#> SRR1003835     4  0.7601     0.3909 0.328 0.000 0.064 0.416 0.192
#> SRR1003838     3  0.3613     0.7176 0.000 0.160 0.812 0.012 0.016
#> SRR1003837     1  0.5532     0.1173 0.508 0.000 0.008 0.436 0.048
#> SRR1003839     4  0.5681     0.4438 0.360 0.000 0.024 0.572 0.044
#> SRR1003840     4  0.7107     0.4888 0.348 0.000 0.068 0.476 0.108
#> SRR1003841     2  0.0000     0.9661 0.000 1.000 0.000 0.000 0.000
#> SRR1003842     1  0.4830     0.5865 0.684 0.000 0.000 0.256 0.060
#> SRR1003844     1  0.3012     0.7137 0.852 0.000 0.000 0.124 0.024
#> SRR1003845     4  0.6773     0.1108 0.068 0.016 0.180 0.628 0.108
#> SRR1003846     1  0.5367     0.4258 0.600 0.000 0.004 0.336 0.060
#> SRR1003847     4  0.5594     0.3222 0.408 0.000 0.012 0.532 0.048
#> SRR1003848     4  0.8232     0.1874 0.228 0.000 0.136 0.380 0.256
#> SRR1003849     3  0.5807     0.6967 0.000 0.232 0.648 0.024 0.096
#> SRR1003850     1  0.6812    -0.0555 0.472 0.000 0.036 0.372 0.120
#> SRR1003851     3  0.4598     0.5426 0.000 0.032 0.784 0.092 0.092
#> SRR1003852     4  0.6619     0.5125 0.304 0.000 0.056 0.552 0.088
#> SRR1003853     4  0.5394     0.3492 0.400 0.000 0.000 0.540 0.060
#> SRR1003854     1  0.4201     0.5102 0.664 0.000 0.000 0.328 0.008
#> SRR1003843     4  0.7271     0.0152 0.072 0.000 0.244 0.520 0.164
#> SRR1003855     1  0.4990     0.3926 0.600 0.000 0.000 0.360 0.040
#> SRR1003856     4  0.7424     0.2117 0.132 0.000 0.144 0.536 0.188
#> SRR1003857     1  0.4062     0.6713 0.764 0.000 0.000 0.196 0.040
#> SRR1003858     1  0.4234     0.6554 0.760 0.000 0.000 0.184 0.056
#> SRR1003859     1  0.3419     0.6881 0.804 0.000 0.000 0.180 0.016
#> SRR1003860     1  0.2362     0.7291 0.900 0.000 0.000 0.076 0.024
#> SRR1003861     1  0.4302     0.6499 0.744 0.000 0.000 0.208 0.048
#> SRR1003862     1  0.1012     0.7169 0.968 0.000 0.000 0.020 0.012
#> SRR1003863     1  0.4524     0.6639 0.768 0.000 0.008 0.132 0.092
#> SRR1003864     1  0.1386     0.7193 0.952 0.000 0.000 0.032 0.016
#> SRR1003865     1  0.7130    -0.2058 0.472 0.000 0.028 0.256 0.244
#> SRR1003866     1  0.2730     0.7144 0.892 0.000 0.008 0.044 0.056
#> SRR1003867     1  0.2679     0.7227 0.892 0.000 0.004 0.048 0.056

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1003755     5  0.5371     0.1767 0.092 0.208 0.016 0.000 0.664 0.020
#> SRR1003756     5  0.5371     0.1767 0.092 0.208 0.016 0.000 0.664 0.020
#> SRR1003757     5  0.6870    -0.0450 0.340 0.000 0.000 0.056 0.380 0.224
#> SRR1003758     5  0.6879    -0.0489 0.336 0.000 0.000 0.056 0.380 0.228
#> SRR1003759     4  0.9221     0.0938 0.200 0.052 0.068 0.280 0.164 0.236
#> SRR1003760     2  0.0000     0.9581 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003761     2  0.0000     0.9581 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003762     2  0.0000     0.9581 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003763     2  0.0000     0.9581 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003764     2  0.0000     0.9581 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003765     2  0.0000     0.9581 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003766     2  0.0000     0.9581 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003767     2  0.0000     0.9581 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003768     2  0.0000     0.9581 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003769     2  0.0000     0.9581 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003770     2  0.0000     0.9581 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003771     2  0.0000     0.9581 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003773     3  0.3977     0.7028 0.000 0.284 0.692 0.004 0.020 0.000
#> SRR1003772     1  0.1078     0.6875 0.964 0.000 0.000 0.008 0.012 0.016
#> SRR1003774     1  0.5332     0.5873 0.716 0.000 0.020 0.084 0.072 0.108
#> SRR1003775     1  0.1350     0.6929 0.952 0.000 0.000 0.008 0.020 0.020
#> SRR1003776     1  0.3296     0.6956 0.844 0.000 0.000 0.036 0.036 0.084
#> SRR1003777     1  0.1838     0.6960 0.928 0.000 0.000 0.020 0.012 0.040
#> SRR1003778     2  0.4337    -0.3054 0.000 0.500 0.480 0.000 0.020 0.000
#> SRR1003779     1  0.2638     0.6977 0.884 0.000 0.000 0.016 0.040 0.060
#> SRR1003780     2  0.0000     0.9581 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003781     1  0.4830     0.6355 0.732 0.000 0.000 0.088 0.060 0.120
#> SRR1003784     4  0.8104     0.1734 0.048 0.000 0.176 0.392 0.184 0.200
#> SRR1003785     3  0.3546     0.7177 0.000 0.084 0.836 0.040 0.032 0.008
#> SRR1003786     1  0.1793     0.6939 0.928 0.000 0.000 0.012 0.012 0.048
#> SRR1003783     1  0.1268     0.6921 0.952 0.000 0.000 0.008 0.004 0.036
#> SRR1003787     1  0.3972     0.6543 0.740 0.000 0.000 0.024 0.016 0.220
#> SRR1003788     6  0.7796     0.0927 0.184 0.000 0.056 0.184 0.120 0.456
#> SRR1003789     2  0.0000     0.9581 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003790     1  0.2766     0.7036 0.868 0.000 0.000 0.012 0.028 0.092
#> SRR1003791     1  0.8246    -0.3926 0.352 0.000 0.068 0.220 0.116 0.244
#> SRR1003792     1  0.3973     0.6788 0.780 0.000 0.000 0.048 0.024 0.148
#> SRR1003793     1  0.3839     0.6741 0.776 0.000 0.000 0.032 0.020 0.172
#> SRR1003794     1  0.5443     0.5833 0.656 0.000 0.004 0.080 0.048 0.212
#> SRR1003795     3  0.6305     0.6849 0.000 0.216 0.608 0.064 0.068 0.044
#> SRR1003796     3  0.3738     0.7089 0.000 0.280 0.704 0.000 0.016 0.000
#> SRR1003797     1  0.2367     0.6975 0.888 0.000 0.000 0.016 0.008 0.088
#> SRR1003798     1  0.6188     0.4701 0.572 0.000 0.008 0.108 0.056 0.256
#> SRR1003799     1  0.4380     0.6853 0.772 0.000 0.008 0.044 0.048 0.128
#> SRR1003800     1  0.6419     0.3449 0.528 0.000 0.008 0.148 0.044 0.272
#> SRR1003801     1  0.7120     0.2311 0.516 0.000 0.016 0.164 0.140 0.164
#> SRR1003802     5  0.8411    -0.3254 0.116 0.000 0.188 0.264 0.336 0.096
#> SRR1003803     1  0.4887     0.6631 0.732 0.000 0.004 0.096 0.048 0.120
#> SRR1003804     1  0.6524     0.4960 0.584 0.000 0.028 0.120 0.064 0.204
#> SRR1003805     1  0.2745     0.7033 0.884 0.000 0.004 0.040 0.020 0.052
#> SRR1003806     1  0.4455     0.6771 0.764 0.000 0.004 0.068 0.040 0.124
#> SRR1003807     4  0.8322     0.2485 0.256 0.000 0.108 0.372 0.140 0.124
#> SRR1003809     4  0.8095     0.2375 0.324 0.000 0.084 0.340 0.164 0.088
#> SRR1003808     1  0.6537     0.3942 0.596 0.000 0.020 0.156 0.120 0.108
#> SRR1003810     1  0.4537     0.6356 0.764 0.000 0.004 0.108 0.060 0.064
#> SRR1003811     1  0.6237     0.3941 0.620 0.000 0.016 0.128 0.156 0.080
#> SRR1003812     1  0.1167     0.6884 0.960 0.000 0.000 0.008 0.012 0.020
#> SRR1003813     3  0.6459     0.3587 0.008 0.000 0.532 0.248 0.168 0.044
#> SRR1003814     1  0.3902     0.6618 0.804 0.000 0.000 0.080 0.036 0.080
#> SRR1003815     1  0.4512     0.6264 0.768 0.000 0.004 0.064 0.096 0.068
#> SRR1003816     1  0.1369     0.6889 0.952 0.000 0.000 0.016 0.016 0.016
#> SRR1003817     1  0.1364     0.6877 0.952 0.000 0.000 0.016 0.012 0.020
#> SRR1003818     1  0.2629     0.6896 0.892 0.000 0.004 0.040 0.024 0.040
#> SRR1003819     1  0.7409    -0.0139 0.500 0.000 0.060 0.224 0.088 0.128
#> SRR1003820     1  0.2488     0.7006 0.888 0.000 0.000 0.020 0.016 0.076
#> SRR1003821     1  0.2488     0.6974 0.888 0.000 0.000 0.016 0.020 0.076
#> SRR1003822     4  0.8360     0.2687 0.224 0.000 0.096 0.376 0.172 0.132
#> SRR1003824     1  0.7131     0.1056 0.448 0.000 0.004 0.100 0.192 0.256
#> SRR1003823     1  0.3778     0.6842 0.784 0.000 0.000 0.024 0.028 0.164
#> SRR1003825     6  0.8190     0.0506 0.196 0.000 0.052 0.280 0.136 0.336
#> SRR1003826     1  0.2345     0.6975 0.896 0.000 0.000 0.016 0.016 0.072
#> SRR1003827     1  0.3316     0.6998 0.828 0.000 0.000 0.024 0.024 0.124
#> SRR1003828     1  0.7294     0.0874 0.480 0.000 0.032 0.228 0.076 0.184
#> SRR1003829     1  0.4065     0.6725 0.764 0.000 0.004 0.040 0.016 0.176
#> SRR1003830     1  0.4482     0.6544 0.720 0.000 0.004 0.020 0.044 0.212
#> SRR1003831     1  0.6151     0.0613 0.464 0.000 0.008 0.100 0.032 0.396
#> SRR1003832     1  0.5054     0.5950 0.664 0.000 0.000 0.044 0.052 0.240
#> SRR1003833     1  0.5695     0.1326 0.480 0.000 0.008 0.044 0.040 0.428
#> SRR1003834     1  0.5987     0.2728 0.512 0.000 0.012 0.072 0.036 0.368
#> SRR1003836     6  0.7265     0.1701 0.136 0.000 0.068 0.236 0.056 0.504
#> SRR1003835     6  0.8227     0.0157 0.248 0.000 0.064 0.224 0.116 0.348
#> SRR1003838     3  0.3904     0.7482 0.000 0.148 0.788 0.040 0.020 0.004
#> SRR1003837     6  0.6027    -0.0236 0.432 0.000 0.008 0.084 0.032 0.444
#> SRR1003839     6  0.6464     0.3383 0.248 0.000 0.036 0.092 0.052 0.572
#> SRR1003840     6  0.7878     0.2164 0.276 0.000 0.048 0.212 0.088 0.376
#> SRR1003841     2  0.0000     0.9581 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003842     1  0.5761     0.3936 0.552 0.000 0.008 0.056 0.044 0.340
#> SRR1003844     1  0.3816     0.6878 0.784 0.000 0.000 0.032 0.024 0.160
#> SRR1003845     6  0.7461     0.0177 0.032 0.016 0.128 0.200 0.104 0.520
#> SRR1003846     1  0.5753     0.1842 0.476 0.000 0.004 0.048 0.048 0.424
#> SRR1003847     6  0.6830     0.3005 0.340 0.000 0.012 0.116 0.076 0.456
#> SRR1003848     6  0.8436     0.0249 0.200 0.000 0.092 0.284 0.116 0.308
#> SRR1003849     3  0.5687     0.7220 0.000 0.168 0.664 0.040 0.108 0.020
#> SRR1003850     1  0.7137    -0.1497 0.396 0.000 0.024 0.124 0.076 0.380
#> SRR1003851     3  0.5332     0.5991 0.000 0.036 0.716 0.128 0.076 0.044
#> SRR1003852     6  0.6584     0.3339 0.232 0.000 0.016 0.124 0.072 0.556
#> SRR1003853     6  0.6268     0.3389 0.292 0.000 0.016 0.084 0.056 0.552
#> SRR1003854     1  0.5415     0.3456 0.528 0.000 0.000 0.064 0.024 0.384
#> SRR1003843     6  0.7612    -0.0721 0.040 0.000 0.172 0.312 0.080 0.396
#> SRR1003855     1  0.5569     0.2591 0.504 0.000 0.000 0.064 0.032 0.400
#> SRR1003856     6  0.7427     0.0048 0.060 0.000 0.104 0.296 0.084 0.456
#> SRR1003857     1  0.5387     0.5603 0.636 0.000 0.008 0.060 0.036 0.260
#> SRR1003858     1  0.5806     0.4418 0.592 0.000 0.000 0.104 0.048 0.256
#> SRR1003859     1  0.4082     0.6658 0.752 0.000 0.000 0.028 0.028 0.192
#> SRR1003860     1  0.2706     0.7060 0.876 0.000 0.004 0.028 0.008 0.084
#> SRR1003861     1  0.5539     0.5123 0.624 0.000 0.008 0.120 0.016 0.232
#> SRR1003862     1  0.0984     0.6904 0.968 0.000 0.000 0.012 0.008 0.012
#> SRR1003863     1  0.5225     0.6223 0.720 0.000 0.020 0.108 0.048 0.104
#> SRR1003864     1  0.1382     0.6910 0.948 0.000 0.000 0.008 0.008 0.036
#> SRR1003865     1  0.8313    -0.3674 0.368 0.000 0.072 0.228 0.152 0.180
#> SRR1003866     1  0.3294     0.6940 0.848 0.000 0.000 0.048 0.040 0.064
#> SRR1003867     1  0.3331     0.6951 0.836 0.000 0.000 0.056 0.016 0.092

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 9166 rows and 112 columns.
#>   Top rows (917, 1834, 2750, 3666, 4583) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.980       0.993         0.2050 0.793   0.793
#> 3 3 1.000           0.988       0.995         0.1910 0.961   0.951
#> 4 4 0.425           0.569       0.816         0.8197 0.969   0.960
#> 5 5 0.432           0.610       0.709         0.0455 0.623   0.494
#> 6 6 0.393           0.519       0.776         0.0772 0.639   0.432

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1003755     1   0.000    0.99685 1.000 0.000
#> SRR1003756     1   0.000    0.99685 1.000 0.000
#> SRR1003757     1   0.000    0.99685 1.000 0.000
#> SRR1003758     1   0.000    0.99685 1.000 0.000
#> SRR1003759     1   0.000    0.99685 1.000 0.000
#> SRR1003760     1   0.876    0.55581 0.704 0.296
#> SRR1003761     1   0.000    0.99685 1.000 0.000
#> SRR1003762     2   0.000    0.95834 0.000 1.000
#> SRR1003763     2   1.000    0.00949 0.496 0.504
#> SRR1003764     2   0.000    0.95834 0.000 1.000
#> SRR1003765     2   0.000    0.95834 0.000 1.000
#> SRR1003766     2   0.000    0.95834 0.000 1.000
#> SRR1003767     2   0.000    0.95834 0.000 1.000
#> SRR1003768     2   0.000    0.95834 0.000 1.000
#> SRR1003769     2   0.000    0.95834 0.000 1.000
#> SRR1003770     2   0.000    0.95834 0.000 1.000
#> SRR1003771     2   0.000    0.95834 0.000 1.000
#> SRR1003773     1   0.000    0.99685 1.000 0.000
#> SRR1003772     1   0.000    0.99685 1.000 0.000
#> SRR1003774     1   0.000    0.99685 1.000 0.000
#> SRR1003775     1   0.000    0.99685 1.000 0.000
#> SRR1003776     1   0.000    0.99685 1.000 0.000
#> SRR1003777     1   0.000    0.99685 1.000 0.000
#> SRR1003778     1   0.000    0.99685 1.000 0.000
#> SRR1003779     1   0.000    0.99685 1.000 0.000
#> SRR1003780     2   0.000    0.95834 0.000 1.000
#> SRR1003781     1   0.000    0.99685 1.000 0.000
#> SRR1003784     1   0.000    0.99685 1.000 0.000
#> SRR1003785     1   0.000    0.99685 1.000 0.000
#> SRR1003786     1   0.000    0.99685 1.000 0.000
#> SRR1003783     1   0.000    0.99685 1.000 0.000
#> SRR1003787     1   0.000    0.99685 1.000 0.000
#> SRR1003788     1   0.000    0.99685 1.000 0.000
#> SRR1003789     2   0.000    0.95834 0.000 1.000
#> SRR1003790     1   0.000    0.99685 1.000 0.000
#> SRR1003791     1   0.000    0.99685 1.000 0.000
#> SRR1003792     1   0.000    0.99685 1.000 0.000
#> SRR1003793     1   0.000    0.99685 1.000 0.000
#> SRR1003794     1   0.000    0.99685 1.000 0.000
#> SRR1003795     1   0.000    0.99685 1.000 0.000
#> SRR1003796     1   0.000    0.99685 1.000 0.000
#> SRR1003797     1   0.000    0.99685 1.000 0.000
#> SRR1003798     1   0.000    0.99685 1.000 0.000
#> SRR1003799     1   0.000    0.99685 1.000 0.000
#> SRR1003800     1   0.000    0.99685 1.000 0.000
#> SRR1003801     1   0.000    0.99685 1.000 0.000
#> SRR1003802     1   0.000    0.99685 1.000 0.000
#> SRR1003803     1   0.000    0.99685 1.000 0.000
#> SRR1003804     1   0.000    0.99685 1.000 0.000
#> SRR1003805     1   0.000    0.99685 1.000 0.000
#> SRR1003806     1   0.000    0.99685 1.000 0.000
#> SRR1003807     1   0.000    0.99685 1.000 0.000
#> SRR1003809     1   0.000    0.99685 1.000 0.000
#> SRR1003808     1   0.000    0.99685 1.000 0.000
#> SRR1003810     1   0.000    0.99685 1.000 0.000
#> SRR1003811     1   0.000    0.99685 1.000 0.000
#> SRR1003812     1   0.000    0.99685 1.000 0.000
#> SRR1003813     1   0.000    0.99685 1.000 0.000
#> SRR1003814     1   0.000    0.99685 1.000 0.000
#> SRR1003815     1   0.000    0.99685 1.000 0.000
#> SRR1003816     1   0.000    0.99685 1.000 0.000
#> SRR1003817     1   0.000    0.99685 1.000 0.000
#> SRR1003818     1   0.000    0.99685 1.000 0.000
#> SRR1003819     1   0.000    0.99685 1.000 0.000
#> SRR1003820     1   0.000    0.99685 1.000 0.000
#> SRR1003821     1   0.000    0.99685 1.000 0.000
#> SRR1003822     1   0.000    0.99685 1.000 0.000
#> SRR1003824     1   0.000    0.99685 1.000 0.000
#> SRR1003823     1   0.000    0.99685 1.000 0.000
#> SRR1003825     1   0.000    0.99685 1.000 0.000
#> SRR1003826     1   0.000    0.99685 1.000 0.000
#> SRR1003827     1   0.000    0.99685 1.000 0.000
#> SRR1003828     1   0.000    0.99685 1.000 0.000
#> SRR1003829     1   0.000    0.99685 1.000 0.000
#> SRR1003830     1   0.000    0.99685 1.000 0.000
#> SRR1003831     1   0.000    0.99685 1.000 0.000
#> SRR1003832     1   0.000    0.99685 1.000 0.000
#> SRR1003833     1   0.000    0.99685 1.000 0.000
#> SRR1003834     1   0.000    0.99685 1.000 0.000
#> SRR1003836     1   0.000    0.99685 1.000 0.000
#> SRR1003835     1   0.000    0.99685 1.000 0.000
#> SRR1003838     1   0.000    0.99685 1.000 0.000
#> SRR1003837     1   0.000    0.99685 1.000 0.000
#> SRR1003839     1   0.000    0.99685 1.000 0.000
#> SRR1003840     1   0.000    0.99685 1.000 0.000
#> SRR1003841     2   0.000    0.95834 0.000 1.000
#> SRR1003842     1   0.000    0.99685 1.000 0.000
#> SRR1003844     1   0.000    0.99685 1.000 0.000
#> SRR1003845     1   0.000    0.99685 1.000 0.000
#> SRR1003846     1   0.000    0.99685 1.000 0.000
#> SRR1003847     1   0.000    0.99685 1.000 0.000
#> SRR1003848     1   0.000    0.99685 1.000 0.000
#> SRR1003849     1   0.000    0.99685 1.000 0.000
#> SRR1003850     1   0.000    0.99685 1.000 0.000
#> SRR1003851     1   0.000    0.99685 1.000 0.000
#> SRR1003852     1   0.000    0.99685 1.000 0.000
#> SRR1003853     1   0.000    0.99685 1.000 0.000
#> SRR1003854     1   0.000    0.99685 1.000 0.000
#> SRR1003843     1   0.000    0.99685 1.000 0.000
#> SRR1003855     1   0.000    0.99685 1.000 0.000
#> SRR1003856     1   0.000    0.99685 1.000 0.000
#> SRR1003857     1   0.000    0.99685 1.000 0.000
#> SRR1003858     1   0.000    0.99685 1.000 0.000
#> SRR1003859     1   0.000    0.99685 1.000 0.000
#> SRR1003860     1   0.000    0.99685 1.000 0.000
#> SRR1003861     1   0.000    0.99685 1.000 0.000
#> SRR1003862     1   0.000    0.99685 1.000 0.000
#> SRR1003863     1   0.000    0.99685 1.000 0.000
#> SRR1003864     1   0.000    0.99685 1.000 0.000
#> SRR1003865     1   0.000    0.99685 1.000 0.000
#> SRR1003866     1   0.000    0.99685 1.000 0.000
#> SRR1003867     1   0.000    0.99685 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1003755     1  0.0237      0.997 0.996 0.000 0.004
#> SRR1003756     1  0.0237      0.997 0.996 0.000 0.004
#> SRR1003757     1  0.0237      0.997 0.996 0.000 0.004
#> SRR1003758     1  0.0237      0.997 0.996 0.000 0.004
#> SRR1003759     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003760     3  0.0237      0.918 0.000 0.004 0.996
#> SRR1003761     3  0.1753      0.833 0.048 0.000 0.952
#> SRR1003762     3  0.0237      0.918 0.000 0.004 0.996
#> SRR1003763     3  0.0237      0.915 0.004 0.000 0.996
#> SRR1003764     3  0.0237      0.918 0.000 0.004 0.996
#> SRR1003765     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1003766     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1003767     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1003768     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1003769     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1003770     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1003771     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1003773     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003772     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003774     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003775     1  0.0237      0.997 0.996 0.000 0.004
#> SRR1003776     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003777     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003778     1  0.0592      0.988 0.988 0.000 0.012
#> SRR1003779     1  0.0237      0.997 0.996 0.000 0.004
#> SRR1003780     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1003781     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003784     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003785     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003786     1  0.0237      0.997 0.996 0.000 0.004
#> SRR1003783     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003787     1  0.0237      0.997 0.996 0.000 0.004
#> SRR1003788     1  0.0237      0.997 0.996 0.000 0.004
#> SRR1003789     3  0.0237      0.918 0.000 0.004 0.996
#> SRR1003790     1  0.0237      0.997 0.996 0.000 0.004
#> SRR1003791     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003792     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003793     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003794     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003795     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003796     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003797     1  0.0237      0.997 0.996 0.000 0.004
#> SRR1003798     1  0.0237      0.997 0.996 0.000 0.004
#> SRR1003799     1  0.0237      0.997 0.996 0.000 0.004
#> SRR1003800     1  0.0237      0.997 0.996 0.000 0.004
#> SRR1003801     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003802     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003803     1  0.0237      0.997 0.996 0.000 0.004
#> SRR1003804     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003805     1  0.0237      0.997 0.996 0.000 0.004
#> SRR1003806     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003807     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003809     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003808     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003810     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003811     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003812     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003813     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003814     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003815     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003816     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003817     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003818     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003819     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003820     1  0.0237      0.997 0.996 0.000 0.004
#> SRR1003821     1  0.0237      0.997 0.996 0.000 0.004
#> SRR1003822     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003824     1  0.0237      0.997 0.996 0.000 0.004
#> SRR1003823     1  0.0237      0.997 0.996 0.000 0.004
#> SRR1003825     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003826     1  0.0237      0.997 0.996 0.000 0.004
#> SRR1003827     1  0.0237      0.997 0.996 0.000 0.004
#> SRR1003828     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003829     1  0.0237      0.997 0.996 0.000 0.004
#> SRR1003830     1  0.0237      0.997 0.996 0.000 0.004
#> SRR1003831     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003832     1  0.0237      0.997 0.996 0.000 0.004
#> SRR1003833     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003834     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003836     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003835     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003838     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003837     1  0.0237      0.997 0.996 0.000 0.004
#> SRR1003839     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003840     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003841     3  0.5859      0.476 0.000 0.344 0.656
#> SRR1003842     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003844     1  0.0237      0.997 0.996 0.000 0.004
#> SRR1003845     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003846     1  0.0237      0.997 0.996 0.000 0.004
#> SRR1003847     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003848     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003849     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003850     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003851     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003852     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003853     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003854     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003843     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003855     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003856     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003857     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003858     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003859     1  0.0237      0.997 0.996 0.000 0.004
#> SRR1003860     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003861     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003862     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003863     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003864     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003865     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003866     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1003867     1  0.0237      0.997 0.996 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1003755     3  0.4981    1.00000 0.464 0.000 0.536 0.000
#> SRR1003756     3  0.4981    1.00000 0.464 0.000 0.536 0.000
#> SRR1003757     1  0.4500   -0.12754 0.684 0.000 0.316 0.000
#> SRR1003758     1  0.4382   -0.15470 0.704 0.000 0.296 0.000
#> SRR1003759     1  0.4277    0.66699 0.720 0.000 0.280 0.000
#> SRR1003760     4  0.0000    0.90332 0.000 0.000 0.000 1.000
#> SRR1003761     4  0.4335    0.74537 0.036 0.000 0.168 0.796
#> SRR1003762     4  0.0000    0.90332 0.000 0.000 0.000 1.000
#> SRR1003763     4  0.0000    0.90332 0.000 0.000 0.000 1.000
#> SRR1003764     4  0.0000    0.90332 0.000 0.000 0.000 1.000
#> SRR1003765     2  0.0000    0.95967 0.000 1.000 0.000 0.000
#> SRR1003766     2  0.0000    0.95967 0.000 1.000 0.000 0.000
#> SRR1003767     2  0.3266    0.87198 0.000 0.832 0.168 0.000
#> SRR1003768     2  0.0000    0.95967 0.000 1.000 0.000 0.000
#> SRR1003769     2  0.0000    0.95967 0.000 1.000 0.000 0.000
#> SRR1003770     2  0.0000    0.95967 0.000 1.000 0.000 0.000
#> SRR1003771     2  0.3266    0.87198 0.000 0.832 0.168 0.000
#> SRR1003773     1  0.4996    0.38731 0.516 0.000 0.484 0.000
#> SRR1003772     1  0.0469    0.62636 0.988 0.000 0.012 0.000
#> SRR1003774     1  0.2814    0.66845 0.868 0.000 0.132 0.000
#> SRR1003775     1  0.1211    0.57981 0.960 0.000 0.040 0.000
#> SRR1003776     1  0.0921    0.59524 0.972 0.000 0.028 0.000
#> SRR1003777     1  0.0592    0.62881 0.984 0.000 0.016 0.000
#> SRR1003778     1  0.4996    0.38731 0.516 0.000 0.484 0.000
#> SRR1003779     1  0.3649    0.37152 0.796 0.000 0.204 0.000
#> SRR1003780     2  0.0000    0.95967 0.000 1.000 0.000 0.000
#> SRR1003781     1  0.0469    0.60969 0.988 0.000 0.012 0.000
#> SRR1003784     1  0.4406    0.66000 0.700 0.000 0.300 0.000
#> SRR1003785     1  0.4406    0.66000 0.700 0.000 0.300 0.000
#> SRR1003786     1  0.4250   -0.09634 0.724 0.000 0.276 0.000
#> SRR1003783     1  0.0000    0.61723 1.000 0.000 0.000 0.000
#> SRR1003787     1  0.4331   -0.15026 0.712 0.000 0.288 0.000
#> SRR1003788     1  0.4989    0.48676 0.528 0.000 0.472 0.000
#> SRR1003789     4  0.0000    0.90332 0.000 0.000 0.000 1.000
#> SRR1003790     1  0.3528    0.42558 0.808 0.000 0.192 0.000
#> SRR1003791     1  0.4382    0.66169 0.704 0.000 0.296 0.000
#> SRR1003792     1  0.2530    0.66430 0.888 0.000 0.112 0.000
#> SRR1003793     1  0.0000    0.61723 1.000 0.000 0.000 0.000
#> SRR1003794     1  0.0336    0.61895 0.992 0.000 0.008 0.000
#> SRR1003795     1  0.4382    0.66169 0.704 0.000 0.296 0.000
#> SRR1003796     1  0.4992    0.40306 0.524 0.000 0.476 0.000
#> SRR1003797     1  0.4193   -0.05994 0.732 0.000 0.268 0.000
#> SRR1003798     1  0.3074    0.41156 0.848 0.000 0.152 0.000
#> SRR1003799     1  0.2814    0.57564 0.868 0.000 0.132 0.000
#> SRR1003800     1  0.4356    0.66589 0.708 0.000 0.292 0.000
#> SRR1003801     1  0.3311    0.67503 0.828 0.000 0.172 0.000
#> SRR1003802     1  0.4406    0.66251 0.700 0.000 0.300 0.000
#> SRR1003803     1  0.4164    0.00753 0.736 0.000 0.264 0.000
#> SRR1003804     1  0.4406    0.66000 0.700 0.000 0.300 0.000
#> SRR1003805     1  0.4103   -0.00966 0.744 0.000 0.256 0.000
#> SRR1003806     1  0.4008    0.67435 0.756 0.000 0.244 0.000
#> SRR1003807     1  0.4406    0.66000 0.700 0.000 0.300 0.000
#> SRR1003809     1  0.4406    0.66000 0.700 0.000 0.300 0.000
#> SRR1003808     1  0.1211    0.62657 0.960 0.000 0.040 0.000
#> SRR1003810     1  0.4382    0.66169 0.704 0.000 0.296 0.000
#> SRR1003811     1  0.4277    0.66778 0.720 0.000 0.280 0.000
#> SRR1003812     1  0.0817    0.61246 0.976 0.000 0.024 0.000
#> SRR1003813     1  0.4406    0.66000 0.700 0.000 0.300 0.000
#> SRR1003814     1  0.0188    0.62055 0.996 0.000 0.004 0.000
#> SRR1003815     1  0.4382    0.66169 0.704 0.000 0.296 0.000
#> SRR1003816     1  0.0592    0.60611 0.984 0.000 0.016 0.000
#> SRR1003817     1  0.2973    0.67121 0.856 0.000 0.144 0.000
#> SRR1003818     1  0.3024    0.66697 0.852 0.000 0.148 0.000
#> SRR1003819     1  0.4382    0.66169 0.704 0.000 0.296 0.000
#> SRR1003820     1  0.4331   -0.15026 0.712 0.000 0.288 0.000
#> SRR1003821     1  0.2345    0.48979 0.900 0.000 0.100 0.000
#> SRR1003822     1  0.4406    0.66000 0.700 0.000 0.300 0.000
#> SRR1003824     1  0.3400    0.32531 0.820 0.000 0.180 0.000
#> SRR1003823     1  0.4222   -0.08968 0.728 0.000 0.272 0.000
#> SRR1003825     1  0.4585    0.64594 0.668 0.000 0.332 0.000
#> SRR1003826     1  0.3610    0.21365 0.800 0.000 0.200 0.000
#> SRR1003827     1  0.0921    0.59402 0.972 0.000 0.028 0.000
#> SRR1003828     1  0.3444    0.67495 0.816 0.000 0.184 0.000
#> SRR1003829     1  0.2921    0.40177 0.860 0.000 0.140 0.000
#> SRR1003830     1  0.4331   -0.15026 0.712 0.000 0.288 0.000
#> SRR1003831     1  0.2814    0.65474 0.868 0.000 0.132 0.000
#> SRR1003832     1  0.4250   -0.05755 0.724 0.000 0.276 0.000
#> SRR1003833     1  0.2469    0.47290 0.892 0.000 0.108 0.000
#> SRR1003834     1  0.3688    0.67689 0.792 0.000 0.208 0.000
#> SRR1003836     1  0.4382    0.66169 0.704 0.000 0.296 0.000
#> SRR1003835     1  0.3907    0.67631 0.768 0.000 0.232 0.000
#> SRR1003838     1  0.4454    0.65360 0.692 0.000 0.308 0.000
#> SRR1003837     1  0.2921    0.61037 0.860 0.000 0.140 0.000
#> SRR1003839     1  0.4103    0.67298 0.744 0.000 0.256 0.000
#> SRR1003840     1  0.3873    0.67656 0.772 0.000 0.228 0.000
#> SRR1003841     4  0.6524    0.46446 0.000 0.264 0.120 0.616
#> SRR1003842     1  0.2081    0.53891 0.916 0.000 0.084 0.000
#> SRR1003844     1  0.0336    0.61266 0.992 0.000 0.008 0.000
#> SRR1003845     1  0.3907    0.67598 0.768 0.000 0.232 0.000
#> SRR1003846     1  0.4331   -0.15026 0.712 0.000 0.288 0.000
#> SRR1003847     1  0.0188    0.61522 0.996 0.000 0.004 0.000
#> SRR1003848     1  0.4406    0.66000 0.700 0.000 0.300 0.000
#> SRR1003849     1  0.4406    0.66000 0.700 0.000 0.300 0.000
#> SRR1003850     1  0.4382    0.66189 0.704 0.000 0.296 0.000
#> SRR1003851     1  0.4406    0.66000 0.700 0.000 0.300 0.000
#> SRR1003852     1  0.0469    0.61406 0.988 0.000 0.012 0.000
#> SRR1003853     1  0.0592    0.60627 0.984 0.000 0.016 0.000
#> SRR1003854     1  0.0469    0.61614 0.988 0.000 0.012 0.000
#> SRR1003843     1  0.4406    0.66000 0.700 0.000 0.300 0.000
#> SRR1003855     1  0.0469    0.60996 0.988 0.000 0.012 0.000
#> SRR1003856     1  0.4406    0.66000 0.700 0.000 0.300 0.000
#> SRR1003857     1  0.0921    0.63437 0.972 0.000 0.028 0.000
#> SRR1003858     1  0.4277    0.66782 0.720 0.000 0.280 0.000
#> SRR1003859     1  0.4072    0.00802 0.748 0.000 0.252 0.000
#> SRR1003860     1  0.0000    0.61723 1.000 0.000 0.000 0.000
#> SRR1003861     1  0.4382    0.66169 0.704 0.000 0.296 0.000
#> SRR1003862     1  0.4193    0.66949 0.732 0.000 0.268 0.000
#> SRR1003863     1  0.4382    0.66169 0.704 0.000 0.296 0.000
#> SRR1003864     1  0.0592    0.62862 0.984 0.000 0.016 0.000
#> SRR1003865     1  0.4406    0.66000 0.700 0.000 0.300 0.000
#> SRR1003866     1  0.0707    0.62323 0.980 0.000 0.020 0.000
#> SRR1003867     1  0.4103    0.52621 0.744 0.000 0.256 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1003755     1  0.4327   -0.25679 0.632 0.000 0.360 0.008 0.000
#> SRR1003756     1  0.4327   -0.25679 0.632 0.000 0.360 0.008 0.000
#> SRR1003757     1  0.0703    0.51148 0.976 0.000 0.024 0.000 0.000
#> SRR1003758     1  0.0290    0.51578 0.992 0.000 0.008 0.000 0.000
#> SRR1003759     3  0.4101    0.88259 0.372 0.000 0.628 0.000 0.000
#> SRR1003760     2  0.0000    0.93621 0.000 1.000 0.000 0.000 0.000
#> SRR1003761     2  0.3828    0.65188 0.020 0.788 0.184 0.008 0.000
#> SRR1003762     2  0.0000    0.93621 0.000 1.000 0.000 0.000 0.000
#> SRR1003763     2  0.0000    0.93621 0.000 1.000 0.000 0.000 0.000
#> SRR1003764     2  0.0000    0.93621 0.000 1.000 0.000 0.000 0.000
#> SRR1003765     5  0.0000    1.00000 0.000 0.000 0.000 0.000 1.000
#> SRR1003766     5  0.0000    1.00000 0.000 0.000 0.000 0.000 1.000
#> SRR1003767     4  0.3109    0.63453 0.000 0.000 0.000 0.800 0.200
#> SRR1003768     5  0.0000    1.00000 0.000 0.000 0.000 0.000 1.000
#> SRR1003769     5  0.0000    1.00000 0.000 0.000 0.000 0.000 1.000
#> SRR1003770     5  0.0000    1.00000 0.000 0.000 0.000 0.000 1.000
#> SRR1003771     4  0.3109    0.63453 0.000 0.000 0.000 0.800 0.200
#> SRR1003773     3  0.2813    0.50047 0.168 0.000 0.832 0.000 0.000
#> SRR1003772     1  0.4015    0.44295 0.652 0.000 0.348 0.000 0.000
#> SRR1003774     1  0.4300   -0.30204 0.524 0.000 0.476 0.000 0.000
#> SRR1003775     1  0.3752    0.54018 0.708 0.000 0.292 0.000 0.000
#> SRR1003776     1  0.3816    0.52721 0.696 0.000 0.304 0.000 0.000
#> SRR1003777     1  0.4045    0.41700 0.644 0.000 0.356 0.000 0.000
#> SRR1003778     3  0.3093    0.49086 0.168 0.000 0.824 0.008 0.000
#> SRR1003779     1  0.3109    0.54975 0.800 0.000 0.200 0.000 0.000
#> SRR1003780     5  0.0000    1.00000 0.000 0.000 0.000 0.000 1.000
#> SRR1003781     1  0.3876    0.51194 0.684 0.000 0.316 0.000 0.000
#> SRR1003784     3  0.4045    0.89428 0.356 0.000 0.644 0.000 0.000
#> SRR1003785     3  0.4045    0.89428 0.356 0.000 0.644 0.000 0.000
#> SRR1003786     1  0.0609    0.53306 0.980 0.000 0.020 0.000 0.000
#> SRR1003783     1  0.3949    0.48613 0.668 0.000 0.332 0.000 0.000
#> SRR1003787     1  0.0000    0.51890 1.000 0.000 0.000 0.000 0.000
#> SRR1003788     1  0.4291   -0.42364 0.536 0.000 0.464 0.000 0.000
#> SRR1003789     2  0.0000    0.93621 0.000 1.000 0.000 0.000 0.000
#> SRR1003790     1  0.3242    0.53693 0.784 0.000 0.216 0.000 0.000
#> SRR1003791     3  0.4060    0.89368 0.360 0.000 0.640 0.000 0.000
#> SRR1003792     1  0.4283   -0.17911 0.544 0.000 0.456 0.000 0.000
#> SRR1003793     1  0.3949    0.48613 0.668 0.000 0.332 0.000 0.000
#> SRR1003794     1  0.3949    0.48667 0.668 0.000 0.332 0.000 0.000
#> SRR1003795     3  0.4060    0.89368 0.360 0.000 0.640 0.000 0.000
#> SRR1003796     3  0.2891    0.51557 0.176 0.000 0.824 0.000 0.000
#> SRR1003797     1  0.0963    0.54185 0.964 0.000 0.036 0.000 0.000
#> SRR1003798     1  0.2966    0.57199 0.816 0.000 0.184 0.000 0.000
#> SRR1003799     1  0.3730    0.47849 0.712 0.000 0.288 0.000 0.000
#> SRR1003800     3  0.4210    0.82387 0.412 0.000 0.588 0.000 0.000
#> SRR1003801     3  0.4304    0.51928 0.484 0.000 0.516 0.000 0.000
#> SRR1003802     3  0.4126    0.86977 0.380 0.000 0.620 0.000 0.000
#> SRR1003803     1  0.1197    0.54154 0.952 0.000 0.048 0.000 0.000
#> SRR1003804     3  0.4045    0.89428 0.356 0.000 0.644 0.000 0.000
#> SRR1003805     1  0.1043    0.54337 0.960 0.000 0.040 0.000 0.000
#> SRR1003806     3  0.4242    0.77072 0.428 0.000 0.572 0.000 0.000
#> SRR1003807     3  0.4045    0.89428 0.356 0.000 0.644 0.000 0.000
#> SRR1003809     3  0.4045    0.89428 0.356 0.000 0.644 0.000 0.000
#> SRR1003808     1  0.3932    0.47447 0.672 0.000 0.328 0.000 0.000
#> SRR1003810     3  0.4060    0.89368 0.360 0.000 0.640 0.000 0.000
#> SRR1003811     3  0.4114    0.87620 0.376 0.000 0.624 0.000 0.000
#> SRR1003812     1  0.3895    0.51235 0.680 0.000 0.320 0.000 0.000
#> SRR1003813     3  0.4045    0.89428 0.356 0.000 0.644 0.000 0.000
#> SRR1003814     1  0.3949    0.48628 0.668 0.000 0.332 0.000 0.000
#> SRR1003815     3  0.4060    0.89368 0.360 0.000 0.640 0.000 0.000
#> SRR1003816     1  0.3876    0.51643 0.684 0.000 0.316 0.000 0.000
#> SRR1003817     1  0.4305   -0.38028 0.512 0.000 0.488 0.000 0.000
#> SRR1003818     1  0.4302   -0.34376 0.520 0.000 0.480 0.000 0.000
#> SRR1003819     3  0.4060    0.89368 0.360 0.000 0.640 0.000 0.000
#> SRR1003820     1  0.0162    0.52194 0.996 0.000 0.004 0.000 0.000
#> SRR1003821     1  0.3109    0.57426 0.800 0.000 0.200 0.000 0.000
#> SRR1003822     3  0.4045    0.89428 0.356 0.000 0.644 0.000 0.000
#> SRR1003824     1  0.2732    0.57164 0.840 0.000 0.160 0.000 0.000
#> SRR1003823     1  0.1043    0.53898 0.960 0.000 0.040 0.000 0.000
#> SRR1003825     3  0.4249    0.75432 0.432 0.000 0.568 0.000 0.000
#> SRR1003826     1  0.2230    0.56326 0.884 0.000 0.116 0.000 0.000
#> SRR1003827     1  0.3816    0.52998 0.696 0.000 0.304 0.000 0.000
#> SRR1003828     3  0.4302    0.54468 0.480 0.000 0.520 0.000 0.000
#> SRR1003829     1  0.3003    0.57855 0.812 0.000 0.188 0.000 0.000
#> SRR1003830     1  0.0000    0.51890 1.000 0.000 0.000 0.000 0.000
#> SRR1003831     1  0.4227    0.00164 0.580 0.000 0.420 0.000 0.000
#> SRR1003832     1  0.1410    0.53734 0.940 0.000 0.060 0.000 0.000
#> SRR1003833     1  0.3143    0.57504 0.796 0.000 0.204 0.000 0.000
#> SRR1003834     3  0.4273    0.70204 0.448 0.000 0.552 0.000 0.000
#> SRR1003836     3  0.4060    0.89368 0.360 0.000 0.640 0.000 0.000
#> SRR1003835     3  0.4235    0.76246 0.424 0.000 0.576 0.000 0.000
#> SRR1003838     3  0.4015    0.88206 0.348 0.000 0.652 0.000 0.000
#> SRR1003837     1  0.4030    0.32842 0.648 0.000 0.352 0.000 0.000
#> SRR1003839     3  0.4171    0.83982 0.396 0.000 0.604 0.000 0.000
#> SRR1003840     3  0.4242    0.75537 0.428 0.000 0.572 0.000 0.000
#> SRR1003841     4  0.5346   -0.13242 0.000 0.452 0.000 0.496 0.052
#> SRR1003842     1  0.3561    0.55628 0.740 0.000 0.260 0.000 0.000
#> SRR1003844     1  0.3913    0.50331 0.676 0.000 0.324 0.000 0.000
#> SRR1003845     3  0.4227    0.77706 0.420 0.000 0.580 0.000 0.000
#> SRR1003846     1  0.0000    0.51890 1.000 0.000 0.000 0.000 0.000
#> SRR1003847     1  0.3913    0.50123 0.676 0.000 0.324 0.000 0.000
#> SRR1003848     3  0.4045    0.89428 0.356 0.000 0.644 0.000 0.000
#> SRR1003849     3  0.4045    0.89428 0.356 0.000 0.644 0.000 0.000
#> SRR1003850     3  0.4060    0.89249 0.360 0.000 0.640 0.000 0.000
#> SRR1003851     3  0.4045    0.89428 0.356 0.000 0.644 0.000 0.000
#> SRR1003852     1  0.3816    0.52325 0.696 0.000 0.304 0.000 0.000
#> SRR1003853     1  0.3796    0.52610 0.700 0.000 0.300 0.000 0.000
#> SRR1003854     1  0.3932    0.49627 0.672 0.000 0.328 0.000 0.000
#> SRR1003843     3  0.4045    0.89428 0.356 0.000 0.644 0.000 0.000
#> SRR1003855     1  0.3895    0.50862 0.680 0.000 0.320 0.000 0.000
#> SRR1003856     3  0.4045    0.89428 0.356 0.000 0.644 0.000 0.000
#> SRR1003857     1  0.4074    0.39318 0.636 0.000 0.364 0.000 0.000
#> SRR1003858     3  0.4114    0.87680 0.376 0.000 0.624 0.000 0.000
#> SRR1003859     1  0.1270    0.54744 0.948 0.000 0.052 0.000 0.000
#> SRR1003860     1  0.3949    0.48613 0.668 0.000 0.332 0.000 0.000
#> SRR1003861     3  0.4060    0.89368 0.360 0.000 0.640 0.000 0.000
#> SRR1003862     3  0.4150    0.85701 0.388 0.000 0.612 0.000 0.000
#> SRR1003863     3  0.4060    0.89368 0.360 0.000 0.640 0.000 0.000
#> SRR1003864     1  0.4060    0.40232 0.640 0.000 0.360 0.000 0.000
#> SRR1003865     3  0.4045    0.89428 0.356 0.000 0.644 0.000 0.000
#> SRR1003866     1  0.3932    0.49022 0.672 0.000 0.328 0.000 0.000
#> SRR1003867     1  0.3774    0.34359 0.704 0.000 0.296 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1003755     5  0.4721    -0.3897 0.000 0.000 0.116 0.212 0.672 0.000
#> SRR1003756     5  0.4721    -0.3897 0.000 0.000 0.116 0.212 0.672 0.000
#> SRR1003757     5  0.3244     0.6563 0.268 0.000 0.000 0.000 0.732 0.000
#> SRR1003758     5  0.3126     0.6742 0.248 0.000 0.000 0.000 0.752 0.000
#> SRR1003759     1  0.0458     0.6540 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1003760     6  0.0000     0.9143 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1003761     6  0.4736     0.5064 0.032 0.000 0.108 0.028 0.072 0.760
#> SRR1003762     6  0.0000     0.9143 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1003763     6  0.0000     0.9143 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1003764     6  0.0000     0.9143 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1003765     2  0.0000     0.8118 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003766     2  0.3330     0.8124 0.000 0.716 0.000 0.284 0.000 0.000
#> SRR1003767     3  0.2003     1.0000 0.000 0.116 0.884 0.000 0.000 0.000
#> SRR1003768     2  0.3330     0.8124 0.000 0.716 0.000 0.284 0.000 0.000
#> SRR1003769     2  0.3330     0.8124 0.000 0.716 0.000 0.284 0.000 0.000
#> SRR1003770     2  0.0000     0.8118 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003771     3  0.2003     1.0000 0.000 0.116 0.884 0.000 0.000 0.000
#> SRR1003773     1  0.2340     0.5226 0.852 0.000 0.000 0.000 0.148 0.000
#> SRR1003772     1  0.3592     0.3984 0.656 0.000 0.000 0.000 0.344 0.000
#> SRR1003774     1  0.2562     0.5954 0.828 0.000 0.000 0.000 0.172 0.000
#> SRR1003775     1  0.3774     0.2285 0.592 0.000 0.000 0.000 0.408 0.000
#> SRR1003776     1  0.3747     0.2799 0.604 0.000 0.000 0.000 0.396 0.000
#> SRR1003777     1  0.3578     0.4042 0.660 0.000 0.000 0.000 0.340 0.000
#> SRR1003778     1  0.4154     0.4561 0.776 0.000 0.116 0.024 0.084 0.000
#> SRR1003779     1  0.3866    -0.2688 0.516 0.000 0.000 0.000 0.484 0.000
#> SRR1003780     2  0.0146     0.8092 0.000 0.996 0.004 0.000 0.000 0.000
#> SRR1003781     1  0.3717     0.3153 0.616 0.000 0.000 0.000 0.384 0.000
#> SRR1003784     1  0.1387     0.6211 0.932 0.000 0.000 0.000 0.068 0.000
#> SRR1003785     1  0.1327     0.6191 0.936 0.000 0.000 0.000 0.064 0.000
#> SRR1003786     5  0.3499     0.7396 0.320 0.000 0.000 0.000 0.680 0.000
#> SRR1003783     1  0.3672     0.3498 0.632 0.000 0.000 0.000 0.368 0.000
#> SRR1003787     5  0.3409     0.7412 0.300 0.000 0.000 0.000 0.700 0.000
#> SRR1003788     1  0.2883     0.4157 0.788 0.000 0.000 0.000 0.212 0.000
#> SRR1003789     6  0.0000     0.9143 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1003790     1  0.3864    -0.2259 0.520 0.000 0.000 0.000 0.480 0.000
#> SRR1003791     1  0.0790     0.6538 0.968 0.000 0.000 0.000 0.032 0.000
#> SRR1003792     1  0.2941     0.5577 0.780 0.000 0.000 0.000 0.220 0.000
#> SRR1003793     1  0.3672     0.3498 0.632 0.000 0.000 0.000 0.368 0.000
#> SRR1003794     1  0.3672     0.3517 0.632 0.000 0.000 0.000 0.368 0.000
#> SRR1003795     1  0.0937     0.6353 0.960 0.000 0.000 0.000 0.040 0.000
#> SRR1003796     1  0.2260     0.5332 0.860 0.000 0.000 0.000 0.140 0.000
#> SRR1003797     5  0.3563     0.7294 0.336 0.000 0.000 0.000 0.664 0.000
#> SRR1003798     1  0.3869    -0.2944 0.500 0.000 0.000 0.000 0.500 0.000
#> SRR1003799     1  0.3756     0.2127 0.600 0.000 0.000 0.000 0.400 0.000
#> SRR1003800     1  0.1141     0.6490 0.948 0.000 0.000 0.000 0.052 0.000
#> SRR1003801     1  0.2454     0.6091 0.840 0.000 0.000 0.000 0.160 0.000
#> SRR1003802     1  0.1501     0.6303 0.924 0.000 0.000 0.000 0.076 0.000
#> SRR1003803     5  0.3607     0.7211 0.348 0.000 0.000 0.000 0.652 0.000
#> SRR1003804     1  0.0146     0.6488 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1003805     5  0.3578     0.7266 0.340 0.000 0.000 0.000 0.660 0.000
#> SRR1003806     1  0.1610     0.6481 0.916 0.000 0.000 0.000 0.084 0.000
#> SRR1003807     1  0.0458     0.6458 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1003809     1  0.0632     0.6463 0.976 0.000 0.000 0.000 0.024 0.000
#> SRR1003808     1  0.3737     0.3407 0.608 0.000 0.000 0.000 0.392 0.000
#> SRR1003810     1  0.0000     0.6496 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003811     1  0.1007     0.6550 0.956 0.000 0.000 0.000 0.044 0.000
#> SRR1003812     1  0.3706     0.3175 0.620 0.000 0.000 0.000 0.380 0.000
#> SRR1003813     1  0.1327     0.6191 0.936 0.000 0.000 0.000 0.064 0.000
#> SRR1003814     1  0.3672     0.3520 0.632 0.000 0.000 0.000 0.368 0.000
#> SRR1003815     1  0.0363     0.6527 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR1003816     1  0.3717     0.3100 0.616 0.000 0.000 0.000 0.384 0.000
#> SRR1003817     1  0.2730     0.5844 0.808 0.000 0.000 0.000 0.192 0.000
#> SRR1003818     1  0.2597     0.5830 0.824 0.000 0.000 0.000 0.176 0.000
#> SRR1003819     1  0.0790     0.6539 0.968 0.000 0.000 0.000 0.032 0.000
#> SRR1003820     5  0.3428     0.7420 0.304 0.000 0.000 0.000 0.696 0.000
#> SRR1003821     1  0.3869    -0.2136 0.500 0.000 0.000 0.000 0.500 0.000
#> SRR1003822     1  0.1327     0.6191 0.936 0.000 0.000 0.000 0.064 0.000
#> SRR1003824     5  0.3857     0.3862 0.468 0.000 0.000 0.000 0.532 0.000
#> SRR1003823     5  0.3578     0.7264 0.340 0.000 0.000 0.000 0.660 0.000
#> SRR1003825     1  0.2219     0.5701 0.864 0.000 0.000 0.000 0.136 0.000
#> SRR1003826     5  0.3789     0.5539 0.416 0.000 0.000 0.000 0.584 0.000
#> SRR1003827     1  0.3747     0.2728 0.604 0.000 0.000 0.000 0.396 0.000
#> SRR1003828     1  0.2664     0.6099 0.816 0.000 0.000 0.000 0.184 0.000
#> SRR1003829     5  0.3867     0.2483 0.488 0.000 0.000 0.000 0.512 0.000
#> SRR1003830     5  0.3409     0.7412 0.300 0.000 0.000 0.000 0.700 0.000
#> SRR1003831     1  0.3221     0.5167 0.736 0.000 0.000 0.000 0.264 0.000
#> SRR1003832     5  0.3647     0.7070 0.360 0.000 0.000 0.000 0.640 0.000
#> SRR1003833     1  0.3868    -0.1883 0.508 0.000 0.000 0.000 0.492 0.000
#> SRR1003834     1  0.2219     0.6320 0.864 0.000 0.000 0.000 0.136 0.000
#> SRR1003836     1  0.0000     0.6496 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003835     1  0.1556     0.6531 0.920 0.000 0.000 0.000 0.080 0.000
#> SRR1003838     1  0.1327     0.6191 0.936 0.000 0.000 0.000 0.064 0.000
#> SRR1003837     1  0.3547     0.3936 0.668 0.000 0.000 0.000 0.332 0.000
#> SRR1003839     1  0.1327     0.6531 0.936 0.000 0.000 0.000 0.064 0.000
#> SRR1003840     1  0.1501     0.6501 0.924 0.000 0.000 0.000 0.076 0.000
#> SRR1003841     4  0.5386     0.0000 0.000 0.000 0.136 0.548 0.000 0.316
#> SRR1003842     1  0.3828     0.0739 0.560 0.000 0.000 0.000 0.440 0.000
#> SRR1003844     1  0.3695     0.3317 0.624 0.000 0.000 0.000 0.376 0.000
#> SRR1003845     1  0.1957     0.6465 0.888 0.000 0.000 0.000 0.112 0.000
#> SRR1003846     5  0.3409     0.7412 0.300 0.000 0.000 0.000 0.700 0.000
#> SRR1003847     1  0.3672     0.3478 0.632 0.000 0.000 0.000 0.368 0.000
#> SRR1003848     1  0.1141     0.6273 0.948 0.000 0.000 0.000 0.052 0.000
#> SRR1003849     1  0.1327     0.6191 0.936 0.000 0.000 0.000 0.064 0.000
#> SRR1003850     1  0.0632     0.6467 0.976 0.000 0.000 0.000 0.024 0.000
#> SRR1003851     1  0.1267     0.6221 0.940 0.000 0.000 0.000 0.060 0.000
#> SRR1003852     1  0.3804     0.2954 0.576 0.000 0.000 0.000 0.424 0.000
#> SRR1003853     1  0.3747     0.2811 0.604 0.000 0.000 0.000 0.396 0.000
#> SRR1003854     1  0.3684     0.3422 0.628 0.000 0.000 0.000 0.372 0.000
#> SRR1003843     1  0.0865     0.6367 0.964 0.000 0.000 0.000 0.036 0.000
#> SRR1003855     1  0.3684     0.3387 0.628 0.000 0.000 0.000 0.372 0.000
#> SRR1003856     1  0.1327     0.6191 0.936 0.000 0.000 0.000 0.064 0.000
#> SRR1003857     1  0.3309     0.4761 0.720 0.000 0.000 0.000 0.280 0.000
#> SRR1003858     1  0.1204     0.6550 0.944 0.000 0.000 0.000 0.056 0.000
#> SRR1003859     5  0.3620     0.7101 0.352 0.000 0.000 0.000 0.648 0.000
#> SRR1003860     1  0.3672     0.3498 0.632 0.000 0.000 0.000 0.368 0.000
#> SRR1003861     1  0.0260     0.6519 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1003862     1  0.1444     0.6507 0.928 0.000 0.000 0.000 0.072 0.000
#> SRR1003863     1  0.0000     0.6496 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1003864     1  0.3515     0.4298 0.676 0.000 0.000 0.000 0.324 0.000
#> SRR1003865     1  0.0632     0.6428 0.976 0.000 0.000 0.000 0.024 0.000
#> SRR1003866     1  0.3684     0.3462 0.628 0.000 0.000 0.000 0.372 0.000
#> SRR1003867     1  0.3727     0.1545 0.612 0.000 0.000 0.000 0.388 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 9166 rows and 112 columns.
#>   Top rows (917, 1834, 2750, 3666, 4583) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.982           0.960       0.983         0.3412 0.671   0.671
#> 3 3 0.703           0.847       0.917         0.8161 0.666   0.515
#> 4 4 0.596           0.710       0.819         0.0880 0.913   0.780
#> 5 5 0.575           0.647       0.795         0.0330 0.936   0.820
#> 6 6 0.524           0.688       0.785         0.0204 0.975   0.922

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1003755     2  0.0000      0.982 0.000 1.000
#> SRR1003756     2  0.0000      0.982 0.000 1.000
#> SRR1003757     1  0.3274      0.928 0.940 0.060
#> SRR1003758     1  0.3114      0.932 0.944 0.056
#> SRR1003759     1  0.9732      0.340 0.596 0.404
#> SRR1003760     2  0.0000      0.982 0.000 1.000
#> SRR1003761     2  0.0000      0.982 0.000 1.000
#> SRR1003762     2  0.0000      0.982 0.000 1.000
#> SRR1003763     2  0.0000      0.982 0.000 1.000
#> SRR1003764     2  0.0000      0.982 0.000 1.000
#> SRR1003765     2  0.0000      0.982 0.000 1.000
#> SRR1003766     2  0.0000      0.982 0.000 1.000
#> SRR1003767     2  0.0000      0.982 0.000 1.000
#> SRR1003768     2  0.0000      0.982 0.000 1.000
#> SRR1003769     2  0.0000      0.982 0.000 1.000
#> SRR1003770     2  0.0000      0.982 0.000 1.000
#> SRR1003771     2  0.0000      0.982 0.000 1.000
#> SRR1003773     2  0.0000      0.982 0.000 1.000
#> SRR1003772     1  0.0000      0.982 1.000 0.000
#> SRR1003774     1  0.0000      0.982 1.000 0.000
#> SRR1003775     1  0.0000      0.982 1.000 0.000
#> SRR1003776     1  0.0000      0.982 1.000 0.000
#> SRR1003777     1  0.0000      0.982 1.000 0.000
#> SRR1003778     2  0.0000      0.982 0.000 1.000
#> SRR1003779     1  0.0000      0.982 1.000 0.000
#> SRR1003780     2  0.0000      0.982 0.000 1.000
#> SRR1003781     1  0.0000      0.982 1.000 0.000
#> SRR1003784     1  0.0000      0.982 1.000 0.000
#> SRR1003785     2  0.6438      0.806 0.164 0.836
#> SRR1003786     1  0.0000      0.982 1.000 0.000
#> SRR1003783     1  0.0000      0.982 1.000 0.000
#> SRR1003787     1  0.0000      0.982 1.000 0.000
#> SRR1003788     1  0.0000      0.982 1.000 0.000
#> SRR1003789     2  0.0000      0.982 0.000 1.000
#> SRR1003790     1  0.0000      0.982 1.000 0.000
#> SRR1003791     1  0.0000      0.982 1.000 0.000
#> SRR1003792     1  0.0000      0.982 1.000 0.000
#> SRR1003793     1  0.0000      0.982 1.000 0.000
#> SRR1003794     1  0.0000      0.982 1.000 0.000
#> SRR1003795     1  0.9393      0.459 0.644 0.356
#> SRR1003796     2  0.0000      0.982 0.000 1.000
#> SRR1003797     1  0.0000      0.982 1.000 0.000
#> SRR1003798     1  0.0000      0.982 1.000 0.000
#> SRR1003799     1  0.0000      0.982 1.000 0.000
#> SRR1003800     1  0.0000      0.982 1.000 0.000
#> SRR1003801     1  0.0000      0.982 1.000 0.000
#> SRR1003802     1  0.2948      0.936 0.948 0.052
#> SRR1003803     1  0.0000      0.982 1.000 0.000
#> SRR1003804     1  0.0000      0.982 1.000 0.000
#> SRR1003805     1  0.0000      0.982 1.000 0.000
#> SRR1003806     1  0.0000      0.982 1.000 0.000
#> SRR1003807     1  0.0000      0.982 1.000 0.000
#> SRR1003809     1  0.0000      0.982 1.000 0.000
#> SRR1003808     1  0.0000      0.982 1.000 0.000
#> SRR1003810     1  0.0000      0.982 1.000 0.000
#> SRR1003811     1  0.0000      0.982 1.000 0.000
#> SRR1003812     1  0.0000      0.982 1.000 0.000
#> SRR1003813     1  0.8955      0.547 0.688 0.312
#> SRR1003814     1  0.0000      0.982 1.000 0.000
#> SRR1003815     1  0.0000      0.982 1.000 0.000
#> SRR1003816     1  0.0000      0.982 1.000 0.000
#> SRR1003817     1  0.0000      0.982 1.000 0.000
#> SRR1003818     1  0.0000      0.982 1.000 0.000
#> SRR1003819     1  0.0000      0.982 1.000 0.000
#> SRR1003820     1  0.0000      0.982 1.000 0.000
#> SRR1003821     1  0.0000      0.982 1.000 0.000
#> SRR1003822     1  0.0000      0.982 1.000 0.000
#> SRR1003824     1  0.0000      0.982 1.000 0.000
#> SRR1003823     1  0.0000      0.982 1.000 0.000
#> SRR1003825     1  0.0000      0.982 1.000 0.000
#> SRR1003826     1  0.0000      0.982 1.000 0.000
#> SRR1003827     1  0.0000      0.982 1.000 0.000
#> SRR1003828     1  0.0000      0.982 1.000 0.000
#> SRR1003829     1  0.0000      0.982 1.000 0.000
#> SRR1003830     1  0.0000      0.982 1.000 0.000
#> SRR1003831     1  0.0000      0.982 1.000 0.000
#> SRR1003832     1  0.0000      0.982 1.000 0.000
#> SRR1003833     1  0.0000      0.982 1.000 0.000
#> SRR1003834     1  0.0000      0.982 1.000 0.000
#> SRR1003836     1  0.0000      0.982 1.000 0.000
#> SRR1003835     1  0.0000      0.982 1.000 0.000
#> SRR1003838     2  0.1633      0.962 0.024 0.976
#> SRR1003837     1  0.0000      0.982 1.000 0.000
#> SRR1003839     1  0.0000      0.982 1.000 0.000
#> SRR1003840     1  0.5294      0.862 0.880 0.120
#> SRR1003841     2  0.0000      0.982 0.000 1.000
#> SRR1003842     1  0.0000      0.982 1.000 0.000
#> SRR1003844     1  0.0000      0.982 1.000 0.000
#> SRR1003845     1  0.5294      0.862 0.880 0.120
#> SRR1003846     1  0.0000      0.982 1.000 0.000
#> SRR1003847     1  0.0000      0.982 1.000 0.000
#> SRR1003848     1  0.0000      0.982 1.000 0.000
#> SRR1003849     2  0.7139      0.760 0.196 0.804
#> SRR1003850     1  0.0000      0.982 1.000 0.000
#> SRR1003851     1  0.1414      0.966 0.980 0.020
#> SRR1003852     1  0.0000      0.982 1.000 0.000
#> SRR1003853     1  0.0000      0.982 1.000 0.000
#> SRR1003854     1  0.0000      0.982 1.000 0.000
#> SRR1003843     1  0.0000      0.982 1.000 0.000
#> SRR1003855     1  0.0000      0.982 1.000 0.000
#> SRR1003856     1  0.0672      0.976 0.992 0.008
#> SRR1003857     1  0.0000      0.982 1.000 0.000
#> SRR1003858     1  0.0000      0.982 1.000 0.000
#> SRR1003859     1  0.0000      0.982 1.000 0.000
#> SRR1003860     1  0.0000      0.982 1.000 0.000
#> SRR1003861     1  0.0000      0.982 1.000 0.000
#> SRR1003862     1  0.0000      0.982 1.000 0.000
#> SRR1003863     1  0.0000      0.982 1.000 0.000
#> SRR1003864     1  0.0000      0.982 1.000 0.000
#> SRR1003865     1  0.1843      0.959 0.972 0.028
#> SRR1003866     1  0.0000      0.982 1.000 0.000
#> SRR1003867     1  0.0000      0.982 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1003755     2  0.0000    0.99037 0.000 1.000 0.000
#> SRR1003756     2  0.0000    0.99037 0.000 1.000 0.000
#> SRR1003757     3  0.0892    0.86958 0.020 0.000 0.980
#> SRR1003758     3  0.1031    0.87153 0.024 0.000 0.976
#> SRR1003759     3  0.3359    0.82031 0.016 0.084 0.900
#> SRR1003760     2  0.0000    0.99037 0.000 1.000 0.000
#> SRR1003761     2  0.0000    0.99037 0.000 1.000 0.000
#> SRR1003762     2  0.0000    0.99037 0.000 1.000 0.000
#> SRR1003763     2  0.0000    0.99037 0.000 1.000 0.000
#> SRR1003764     2  0.0000    0.99037 0.000 1.000 0.000
#> SRR1003765     2  0.0000    0.99037 0.000 1.000 0.000
#> SRR1003766     2  0.0000    0.99037 0.000 1.000 0.000
#> SRR1003767     2  0.0000    0.99037 0.000 1.000 0.000
#> SRR1003768     2  0.0000    0.99037 0.000 1.000 0.000
#> SRR1003769     2  0.0000    0.99037 0.000 1.000 0.000
#> SRR1003770     2  0.0000    0.99037 0.000 1.000 0.000
#> SRR1003771     2  0.0000    0.99037 0.000 1.000 0.000
#> SRR1003773     2  0.2356    0.94181 0.000 0.928 0.072
#> SRR1003772     1  0.0592    0.90791 0.988 0.000 0.012
#> SRR1003774     3  0.5291    0.68888 0.268 0.000 0.732
#> SRR1003775     1  0.2261    0.88737 0.932 0.000 0.068
#> SRR1003776     1  0.1411    0.90366 0.964 0.000 0.036
#> SRR1003777     1  0.1753    0.89518 0.952 0.000 0.048
#> SRR1003778     2  0.2261    0.94459 0.000 0.932 0.068
#> SRR1003779     1  0.1289    0.90543 0.968 0.000 0.032
#> SRR1003780     2  0.0000    0.99037 0.000 1.000 0.000
#> SRR1003781     3  0.4750    0.79083 0.216 0.000 0.784
#> SRR1003784     3  0.0747    0.86763 0.016 0.000 0.984
#> SRR1003785     3  0.4002    0.75240 0.000 0.160 0.840
#> SRR1003786     1  0.0000    0.90615 1.000 0.000 0.000
#> SRR1003783     1  0.0424    0.90734 0.992 0.000 0.008
#> SRR1003787     1  0.0747    0.90846 0.984 0.000 0.016
#> SRR1003788     3  0.2448    0.88031 0.076 0.000 0.924
#> SRR1003789     2  0.0000    0.99037 0.000 1.000 0.000
#> SRR1003790     1  0.0000    0.90615 1.000 0.000 0.000
#> SRR1003791     3  0.3412    0.85685 0.124 0.000 0.876
#> SRR1003792     1  0.2625    0.87974 0.916 0.000 0.084
#> SRR1003793     1  0.0592    0.90791 0.988 0.000 0.012
#> SRR1003794     1  0.0747    0.90836 0.984 0.000 0.016
#> SRR1003795     3  0.3686    0.77465 0.000 0.140 0.860
#> SRR1003796     2  0.2356    0.94181 0.000 0.928 0.072
#> SRR1003797     1  0.0000    0.90615 1.000 0.000 0.000
#> SRR1003798     1  0.5327    0.64526 0.728 0.000 0.272
#> SRR1003799     1  0.2878    0.86800 0.904 0.000 0.096
#> SRR1003800     1  0.6140    0.34615 0.596 0.000 0.404
#> SRR1003801     3  0.3686    0.84564 0.140 0.000 0.860
#> SRR1003802     3  0.0475    0.85965 0.004 0.004 0.992
#> SRR1003803     1  0.0747    0.90754 0.984 0.000 0.016
#> SRR1003804     3  0.5835    0.54256 0.340 0.000 0.660
#> SRR1003805     1  0.0237    0.90707 0.996 0.000 0.004
#> SRR1003806     1  0.2448    0.88386 0.924 0.000 0.076
#> SRR1003807     3  0.2356    0.88082 0.072 0.000 0.928
#> SRR1003809     3  0.2066    0.88049 0.060 0.000 0.940
#> SRR1003808     3  0.4346    0.82083 0.184 0.000 0.816
#> SRR1003810     3  0.5397    0.66937 0.280 0.000 0.720
#> SRR1003811     3  0.3038    0.86859 0.104 0.000 0.896
#> SRR1003812     1  0.0747    0.90759 0.984 0.000 0.016
#> SRR1003813     3  0.2448    0.82480 0.000 0.076 0.924
#> SRR1003814     3  0.6026    0.50030 0.376 0.000 0.624
#> SRR1003815     3  0.3038    0.86821 0.104 0.000 0.896
#> SRR1003816     1  0.0592    0.90791 0.988 0.000 0.012
#> SRR1003817     1  0.2878    0.86938 0.904 0.000 0.096
#> SRR1003818     3  0.6126    0.47995 0.400 0.000 0.600
#> SRR1003819     3  0.2356    0.88182 0.072 0.000 0.928
#> SRR1003820     1  0.0592    0.90741 0.988 0.000 0.012
#> SRR1003821     1  0.2066    0.88936 0.940 0.000 0.060
#> SRR1003822     3  0.0237    0.86000 0.004 0.000 0.996
#> SRR1003824     3  0.4605    0.78357 0.204 0.000 0.796
#> SRR1003823     1  0.0000    0.90615 1.000 0.000 0.000
#> SRR1003825     3  0.1860    0.87988 0.052 0.000 0.948
#> SRR1003826     1  0.3752    0.82564 0.856 0.000 0.144
#> SRR1003827     1  0.0000    0.90615 1.000 0.000 0.000
#> SRR1003828     1  0.5560    0.60939 0.700 0.000 0.300
#> SRR1003829     1  0.0592    0.90791 0.988 0.000 0.012
#> SRR1003830     1  0.0000    0.90615 1.000 0.000 0.000
#> SRR1003831     1  0.1031    0.90708 0.976 0.000 0.024
#> SRR1003832     1  0.0000    0.90615 1.000 0.000 0.000
#> SRR1003833     1  0.0424    0.90760 0.992 0.000 0.008
#> SRR1003834     1  0.0592    0.90850 0.988 0.000 0.012
#> SRR1003836     3  0.2711    0.87610 0.088 0.000 0.912
#> SRR1003835     3  0.2537    0.88005 0.080 0.000 0.920
#> SRR1003838     3  0.4178    0.74189 0.000 0.172 0.828
#> SRR1003837     1  0.2537    0.87043 0.920 0.000 0.080
#> SRR1003839     1  0.5810    0.52697 0.664 0.000 0.336
#> SRR1003840     3  0.0983    0.86390 0.016 0.004 0.980
#> SRR1003841     2  0.0000    0.99037 0.000 1.000 0.000
#> SRR1003842     1  0.1529    0.90315 0.960 0.000 0.040
#> SRR1003844     1  0.0000    0.90615 1.000 0.000 0.000
#> SRR1003845     3  0.0829    0.86341 0.012 0.004 0.984
#> SRR1003846     1  0.0424    0.90760 0.992 0.000 0.008
#> SRR1003847     1  0.5968    0.38797 0.636 0.000 0.364
#> SRR1003848     3  0.2261    0.88098 0.068 0.000 0.932
#> SRR1003849     3  0.3879    0.76010 0.000 0.152 0.848
#> SRR1003850     1  0.6307   -0.00152 0.512 0.000 0.488
#> SRR1003851     3  0.2496    0.83218 0.004 0.068 0.928
#> SRR1003852     3  0.4842    0.78295 0.224 0.000 0.776
#> SRR1003853     1  0.4291    0.76426 0.820 0.000 0.180
#> SRR1003854     1  0.6045    0.34669 0.620 0.000 0.380
#> SRR1003843     3  0.2261    0.88083 0.068 0.000 0.932
#> SRR1003855     1  0.0000    0.90615 1.000 0.000 0.000
#> SRR1003856     3  0.1015    0.86538 0.012 0.008 0.980
#> SRR1003857     1  0.2066    0.89080 0.940 0.000 0.060
#> SRR1003858     1  0.2356    0.88108 0.928 0.000 0.072
#> SRR1003859     1  0.0000    0.90615 1.000 0.000 0.000
#> SRR1003860     1  0.0000    0.90615 1.000 0.000 0.000
#> SRR1003861     1  0.2711    0.87313 0.912 0.000 0.088
#> SRR1003862     1  0.0592    0.90791 0.988 0.000 0.012
#> SRR1003863     3  0.2261    0.88205 0.068 0.000 0.932
#> SRR1003864     1  0.0000    0.90615 1.000 0.000 0.000
#> SRR1003865     3  0.1620    0.86445 0.024 0.012 0.964
#> SRR1003866     1  0.5760    0.46808 0.672 0.000 0.328
#> SRR1003867     1  0.0000    0.90615 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1003755     2  0.1211    0.92112 0.000 0.960 0.040 0.000
#> SRR1003756     2  0.1211    0.92112 0.000 0.960 0.040 0.000
#> SRR1003757     4  0.3257    0.58617 0.004 0.000 0.152 0.844
#> SRR1003758     4  0.3257    0.58617 0.004 0.000 0.152 0.844
#> SRR1003759     4  0.6652    0.21178 0.000 0.088 0.396 0.516
#> SRR1003760     2  0.0188    0.94540 0.000 0.996 0.004 0.000
#> SRR1003761     2  0.0469    0.94207 0.000 0.988 0.012 0.000
#> SRR1003762     2  0.0000    0.94574 0.000 1.000 0.000 0.000
#> SRR1003763     2  0.0000    0.94574 0.000 1.000 0.000 0.000
#> SRR1003764     2  0.0000    0.94574 0.000 1.000 0.000 0.000
#> SRR1003765     2  0.2814    0.90963 0.000 0.868 0.132 0.000
#> SRR1003766     2  0.2814    0.90963 0.000 0.868 0.132 0.000
#> SRR1003767     2  0.1716    0.93623 0.000 0.936 0.064 0.000
#> SRR1003768     2  0.2814    0.90963 0.000 0.868 0.132 0.000
#> SRR1003769     2  0.2814    0.90963 0.000 0.868 0.132 0.000
#> SRR1003770     2  0.2814    0.90963 0.000 0.868 0.132 0.000
#> SRR1003771     2  0.1867    0.93405 0.000 0.928 0.072 0.000
#> SRR1003773     3  0.5950    0.37038 0.000 0.416 0.544 0.040
#> SRR1003772     1  0.0779    0.87886 0.980 0.000 0.004 0.016
#> SRR1003774     4  0.4079    0.62221 0.180 0.000 0.020 0.800
#> SRR1003775     1  0.2111    0.87749 0.932 0.000 0.024 0.044
#> SRR1003776     1  0.1743    0.87909 0.940 0.000 0.004 0.056
#> SRR1003777     1  0.0804    0.87762 0.980 0.000 0.008 0.012
#> SRR1003778     3  0.5774    0.25865 0.000 0.464 0.508 0.028
#> SRR1003779     1  0.2401    0.86187 0.904 0.000 0.004 0.092
#> SRR1003780     2  0.0188    0.94540 0.000 0.996 0.004 0.000
#> SRR1003781     4  0.7654    0.41797 0.284 0.000 0.252 0.464
#> SRR1003784     4  0.4972   -0.20897 0.000 0.000 0.456 0.544
#> SRR1003785     3  0.5453    0.69330 0.000 0.032 0.648 0.320
#> SRR1003786     1  0.0376    0.87584 0.992 0.000 0.004 0.004
#> SRR1003783     1  0.0779    0.87997 0.980 0.000 0.004 0.016
#> SRR1003787     1  0.0895    0.87976 0.976 0.000 0.004 0.020
#> SRR1003788     4  0.3128    0.65664 0.040 0.000 0.076 0.884
#> SRR1003789     2  0.0188    0.94540 0.000 0.996 0.004 0.000
#> SRR1003790     1  0.1042    0.87974 0.972 0.000 0.008 0.020
#> SRR1003791     4  0.5121    0.66855 0.120 0.000 0.116 0.764
#> SRR1003792     1  0.2593    0.86761 0.904 0.000 0.016 0.080
#> SRR1003793     1  0.1004    0.87954 0.972 0.000 0.004 0.024
#> SRR1003794     1  0.1820    0.87988 0.944 0.000 0.020 0.036
#> SRR1003795     3  0.5311    0.68812 0.000 0.024 0.648 0.328
#> SRR1003796     3  0.5827    0.33167 0.000 0.436 0.532 0.032
#> SRR1003797     1  0.0188    0.87479 0.996 0.000 0.004 0.000
#> SRR1003798     1  0.5161    0.60807 0.676 0.000 0.024 0.300
#> SRR1003799     1  0.2831    0.84709 0.876 0.000 0.004 0.120
#> SRR1003800     4  0.5213    0.42340 0.328 0.000 0.020 0.652
#> SRR1003801     4  0.3335    0.65513 0.120 0.000 0.020 0.860
#> SRR1003802     3  0.5158    0.38954 0.000 0.004 0.524 0.472
#> SRR1003803     1  0.1209    0.88150 0.964 0.000 0.004 0.032
#> SRR1003804     4  0.4290    0.59241 0.212 0.000 0.016 0.772
#> SRR1003805     1  0.0672    0.87724 0.984 0.000 0.008 0.008
#> SRR1003806     1  0.3249    0.83661 0.852 0.000 0.008 0.140
#> SRR1003807     4  0.3399    0.65238 0.040 0.000 0.092 0.868
#> SRR1003809     4  0.4175    0.48910 0.012 0.000 0.212 0.776
#> SRR1003808     4  0.7534    0.45315 0.240 0.000 0.268 0.492
#> SRR1003810     4  0.4267    0.62031 0.188 0.000 0.024 0.788
#> SRR1003811     4  0.3900    0.67841 0.072 0.000 0.084 0.844
#> SRR1003812     1  0.1042    0.88006 0.972 0.000 0.008 0.020
#> SRR1003813     3  0.4837    0.64684 0.000 0.004 0.648 0.348
#> SRR1003814     1  0.7464   -0.02429 0.496 0.000 0.208 0.296
#> SRR1003815     4  0.3900    0.68073 0.084 0.000 0.072 0.844
#> SRR1003816     1  0.1284    0.88103 0.964 0.000 0.012 0.024
#> SRR1003817     1  0.2530    0.85645 0.896 0.000 0.004 0.100
#> SRR1003818     1  0.7386   -0.02847 0.496 0.000 0.184 0.320
#> SRR1003819     4  0.4150    0.66407 0.056 0.000 0.120 0.824
#> SRR1003820     1  0.0927    0.87510 0.976 0.000 0.016 0.008
#> SRR1003821     1  0.0672    0.87754 0.984 0.000 0.008 0.008
#> SRR1003822     4  0.4431    0.32070 0.000 0.000 0.304 0.696
#> SRR1003824     4  0.4057    0.64302 0.152 0.000 0.032 0.816
#> SRR1003823     1  0.0469    0.87340 0.988 0.000 0.012 0.000
#> SRR1003825     4  0.2844    0.67027 0.048 0.000 0.052 0.900
#> SRR1003826     1  0.2844    0.85574 0.900 0.000 0.052 0.048
#> SRR1003827     1  0.0336    0.87846 0.992 0.000 0.000 0.008
#> SRR1003828     1  0.5766    0.38913 0.564 0.000 0.032 0.404
#> SRR1003829     1  0.0895    0.87945 0.976 0.000 0.004 0.020
#> SRR1003830     1  0.0336    0.87342 0.992 0.000 0.008 0.000
#> SRR1003831     1  0.2882    0.85851 0.892 0.000 0.024 0.084
#> SRR1003832     1  0.0469    0.87894 0.988 0.000 0.000 0.012
#> SRR1003833     1  0.2521    0.86754 0.912 0.000 0.024 0.064
#> SRR1003834     1  0.2635    0.86833 0.904 0.000 0.020 0.076
#> SRR1003836     4  0.4155    0.68592 0.100 0.000 0.072 0.828
#> SRR1003835     4  0.3323    0.67976 0.064 0.000 0.060 0.876
#> SRR1003838     3  0.5517    0.69271 0.000 0.036 0.648 0.316
#> SRR1003837     1  0.4446    0.75998 0.776 0.000 0.028 0.196
#> SRR1003839     1  0.5649    0.41914 0.580 0.000 0.028 0.392
#> SRR1003840     4  0.5202    0.49826 0.016 0.004 0.312 0.668
#> SRR1003841     2  0.0188    0.94540 0.000 0.996 0.004 0.000
#> SRR1003842     1  0.2060    0.87855 0.932 0.000 0.016 0.052
#> SRR1003844     1  0.0524    0.87796 0.988 0.000 0.004 0.008
#> SRR1003845     4  0.5154    0.46934 0.012 0.004 0.324 0.660
#> SRR1003846     1  0.1854    0.87660 0.940 0.000 0.012 0.048
#> SRR1003847     1  0.5793    0.42183 0.600 0.000 0.040 0.360
#> SRR1003848     4  0.3056    0.65393 0.040 0.000 0.072 0.888
#> SRR1003849     3  0.5384    0.69200 0.000 0.028 0.648 0.324
#> SRR1003850     1  0.6214    0.00892 0.476 0.000 0.052 0.472
#> SRR1003851     3  0.5233    0.68340 0.000 0.020 0.648 0.332
#> SRR1003852     4  0.7347    0.48987 0.228 0.000 0.244 0.528
#> SRR1003853     1  0.5041    0.69518 0.728 0.000 0.040 0.232
#> SRR1003854     1  0.5609    0.68614 0.712 0.000 0.088 0.200
#> SRR1003843     4  0.4050    0.63697 0.036 0.000 0.144 0.820
#> SRR1003855     1  0.1824    0.87396 0.936 0.000 0.004 0.060
#> SRR1003856     4  0.4830    0.10994 0.000 0.000 0.392 0.608
#> SRR1003857     1  0.3278    0.84254 0.864 0.000 0.020 0.116
#> SRR1003858     1  0.3658    0.82164 0.836 0.000 0.020 0.144
#> SRR1003859     1  0.1174    0.88015 0.968 0.000 0.012 0.020
#> SRR1003860     1  0.0817    0.88095 0.976 0.000 0.000 0.024
#> SRR1003861     1  0.4281    0.78378 0.792 0.000 0.028 0.180
#> SRR1003862     1  0.1042    0.87995 0.972 0.000 0.008 0.020
#> SRR1003863     4  0.5179    0.52018 0.052 0.000 0.220 0.728
#> SRR1003864     1  0.0188    0.87477 0.996 0.000 0.004 0.000
#> SRR1003865     4  0.5761    0.41621 0.024 0.012 0.332 0.632
#> SRR1003866     1  0.5067    0.63681 0.736 0.000 0.048 0.216
#> SRR1003867     1  0.1109    0.88095 0.968 0.000 0.004 0.028

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1003755     2  0.3087    0.68673 0.008 0.836 0.152 0.000 0.004
#> SRR1003756     2  0.3087    0.68673 0.008 0.836 0.152 0.000 0.004
#> SRR1003757     4  0.5332    0.48625 0.028 0.000 0.184 0.708 0.080
#> SRR1003758     4  0.5342    0.49707 0.032 0.000 0.176 0.712 0.080
#> SRR1003759     5  0.7298    0.37796 0.012 0.116 0.116 0.176 0.580
#> SRR1003760     2  0.0579    0.82022 0.000 0.984 0.008 0.008 0.000
#> SRR1003761     2  0.1356    0.80368 0.000 0.956 0.028 0.004 0.012
#> SRR1003762     2  0.0566    0.82303 0.000 0.984 0.004 0.000 0.012
#> SRR1003763     2  0.0162    0.82107 0.000 0.996 0.004 0.000 0.000
#> SRR1003764     2  0.0324    0.82190 0.000 0.992 0.004 0.000 0.004
#> SRR1003765     2  0.5659    0.68720 0.000 0.604 0.116 0.000 0.280
#> SRR1003766     2  0.5659    0.68720 0.000 0.604 0.116 0.000 0.280
#> SRR1003767     2  0.1894    0.81464 0.000 0.920 0.008 0.000 0.072
#> SRR1003768     2  0.5659    0.68720 0.000 0.604 0.116 0.000 0.280
#> SRR1003769     2  0.5659    0.68720 0.000 0.604 0.116 0.000 0.280
#> SRR1003770     2  0.5659    0.68720 0.000 0.604 0.116 0.000 0.280
#> SRR1003771     2  0.2843    0.79356 0.000 0.848 0.008 0.000 0.144
#> SRR1003773     3  0.4877    0.32761 0.016 0.456 0.524 0.004 0.000
#> SRR1003772     1  0.1059    0.85210 0.968 0.000 0.008 0.004 0.020
#> SRR1003774     4  0.3551    0.55338 0.136 0.000 0.000 0.820 0.044
#> SRR1003775     1  0.2179    0.84263 0.912 0.000 0.008 0.008 0.072
#> SRR1003776     1  0.2359    0.84488 0.912 0.000 0.008 0.044 0.036
#> SRR1003777     1  0.1364    0.85083 0.952 0.000 0.012 0.000 0.036
#> SRR1003778     3  0.4826    0.28900 0.020 0.472 0.508 0.000 0.000
#> SRR1003779     1  0.2456    0.84185 0.904 0.000 0.008 0.064 0.024
#> SRR1003780     2  0.0609    0.82298 0.000 0.980 0.000 0.000 0.020
#> SRR1003781     1  0.7496   -0.37627 0.408 0.000 0.048 0.212 0.332
#> SRR1003784     4  0.5304    0.33624 0.036 0.000 0.408 0.548 0.008
#> SRR1003785     3  0.3387    0.70672 0.024 0.008 0.836 0.132 0.000
#> SRR1003786     1  0.1082    0.85221 0.964 0.000 0.008 0.000 0.028
#> SRR1003783     1  0.2074    0.84013 0.920 0.000 0.004 0.016 0.060
#> SRR1003787     1  0.0566    0.85246 0.984 0.000 0.004 0.012 0.000
#> SRR1003788     4  0.2390    0.60750 0.032 0.000 0.044 0.912 0.012
#> SRR1003789     2  0.0579    0.81900 0.000 0.984 0.008 0.000 0.008
#> SRR1003790     1  0.1205    0.85147 0.956 0.000 0.000 0.004 0.040
#> SRR1003791     4  0.6491    0.30073 0.144 0.000 0.048 0.612 0.196
#> SRR1003792     1  0.2830    0.82535 0.876 0.000 0.000 0.080 0.044
#> SRR1003793     1  0.0510    0.85257 0.984 0.000 0.000 0.016 0.000
#> SRR1003794     1  0.1996    0.84380 0.928 0.000 0.004 0.036 0.032
#> SRR1003795     3  0.3381    0.69598 0.016 0.004 0.820 0.160 0.000
#> SRR1003796     3  0.4787    0.31769 0.012 0.456 0.528 0.004 0.000
#> SRR1003797     1  0.0579    0.85165 0.984 0.000 0.008 0.000 0.008
#> SRR1003798     1  0.4914    0.58418 0.676 0.000 0.000 0.260 0.064
#> SRR1003799     1  0.2522    0.81449 0.880 0.000 0.000 0.108 0.012
#> SRR1003800     4  0.4799    0.43471 0.220 0.000 0.008 0.716 0.056
#> SRR1003801     4  0.2932    0.58948 0.112 0.000 0.004 0.864 0.020
#> SRR1003802     4  0.5367    0.17518 0.036 0.000 0.468 0.488 0.008
#> SRR1003803     1  0.2103    0.84929 0.920 0.000 0.004 0.020 0.056
#> SRR1003804     4  0.3888    0.53358 0.148 0.000 0.000 0.796 0.056
#> SRR1003805     1  0.0693    0.85192 0.980 0.000 0.008 0.000 0.012
#> SRR1003806     1  0.3495    0.76692 0.812 0.000 0.000 0.160 0.028
#> SRR1003807     4  0.2606    0.61068 0.032 0.000 0.056 0.900 0.012
#> SRR1003809     4  0.3973    0.57521 0.036 0.000 0.164 0.792 0.008
#> SRR1003808     5  0.7698    0.28906 0.332 0.000 0.052 0.264 0.352
#> SRR1003810     4  0.3953    0.55549 0.144 0.000 0.012 0.804 0.040
#> SRR1003811     4  0.4028    0.59839 0.044 0.000 0.088 0.824 0.044
#> SRR1003812     1  0.1988    0.85080 0.928 0.000 0.008 0.016 0.048
#> SRR1003813     3  0.4010    0.65595 0.032 0.000 0.784 0.176 0.008
#> SRR1003814     1  0.5968    0.32738 0.604 0.000 0.036 0.064 0.296
#> SRR1003815     4  0.3952    0.60506 0.048 0.000 0.064 0.832 0.056
#> SRR1003816     1  0.1492    0.85110 0.948 0.000 0.008 0.004 0.040
#> SRR1003817     1  0.2472    0.84543 0.908 0.000 0.012 0.044 0.036
#> SRR1003818     1  0.6220    0.26852 0.572 0.000 0.032 0.084 0.312
#> SRR1003819     4  0.4993    0.58818 0.084 0.000 0.088 0.764 0.064
#> SRR1003820     1  0.1522    0.84794 0.944 0.000 0.012 0.000 0.044
#> SRR1003821     1  0.0898    0.85145 0.972 0.000 0.008 0.000 0.020
#> SRR1003822     4  0.5114    0.39326 0.032 0.000 0.360 0.600 0.008
#> SRR1003824     4  0.3459    0.57142 0.116 0.000 0.000 0.832 0.052
#> SRR1003823     1  0.1717    0.84558 0.936 0.000 0.008 0.004 0.052
#> SRR1003825     4  0.3191    0.60307 0.092 0.000 0.020 0.864 0.024
#> SRR1003826     1  0.1862    0.85228 0.940 0.004 0.016 0.012 0.028
#> SRR1003827     1  0.0324    0.85236 0.992 0.000 0.004 0.004 0.000
#> SRR1003828     4  0.5606    0.19673 0.360 0.000 0.004 0.564 0.072
#> SRR1003829     1  0.0671    0.85399 0.980 0.000 0.000 0.016 0.004
#> SRR1003830     1  0.0566    0.85150 0.984 0.000 0.004 0.000 0.012
#> SRR1003831     1  0.4058    0.73558 0.784 0.000 0.000 0.152 0.064
#> SRR1003832     1  0.0740    0.85351 0.980 0.000 0.004 0.008 0.008
#> SRR1003833     1  0.2928    0.81490 0.872 0.000 0.000 0.064 0.064
#> SRR1003834     1  0.3073    0.81814 0.868 0.000 0.004 0.076 0.052
#> SRR1003836     4  0.4091    0.60375 0.104 0.000 0.044 0.816 0.036
#> SRR1003835     4  0.3423    0.60184 0.092 0.000 0.016 0.852 0.040
#> SRR1003838     3  0.3599    0.70728 0.024 0.016 0.828 0.132 0.000
#> SRR1003837     1  0.4890    0.65210 0.708 0.000 0.004 0.216 0.072
#> SRR1003839     1  0.5746    0.05634 0.472 0.000 0.004 0.452 0.072
#> SRR1003840     5  0.6858    0.45859 0.048 0.004 0.100 0.328 0.520
#> SRR1003841     2  0.0992    0.81939 0.000 0.968 0.008 0.024 0.000
#> SRR1003842     1  0.2074    0.84830 0.920 0.000 0.000 0.036 0.044
#> SRR1003844     1  0.0740    0.85360 0.980 0.000 0.008 0.008 0.004
#> SRR1003845     5  0.6689    0.32715 0.016 0.012 0.104 0.400 0.468
#> SRR1003846     1  0.2446    0.83546 0.900 0.000 0.000 0.056 0.044
#> SRR1003847     1  0.5674    0.40316 0.596 0.000 0.008 0.316 0.080
#> SRR1003848     4  0.2766    0.61703 0.040 0.000 0.056 0.892 0.012
#> SRR1003849     3  0.3556    0.70272 0.032 0.008 0.828 0.132 0.000
#> SRR1003850     4  0.7106    0.19388 0.336 0.000 0.080 0.488 0.096
#> SRR1003851     3  0.3606    0.68549 0.024 0.004 0.808 0.164 0.000
#> SRR1003852     5  0.7455    0.40308 0.280 0.000 0.040 0.260 0.420
#> SRR1003853     1  0.5238    0.55461 0.652 0.000 0.000 0.260 0.088
#> SRR1003854     1  0.5116    0.69663 0.728 0.000 0.016 0.132 0.124
#> SRR1003843     4  0.4660    0.57663 0.044 0.000 0.116 0.780 0.060
#> SRR1003855     1  0.2819    0.82263 0.884 0.000 0.004 0.052 0.060
#> SRR1003856     4  0.6513    0.28959 0.060 0.000 0.368 0.512 0.060
#> SRR1003857     1  0.3750    0.77588 0.820 0.000 0.004 0.116 0.060
#> SRR1003858     1  0.4254    0.72571 0.776 0.000 0.004 0.156 0.064
#> SRR1003859     1  0.1728    0.85417 0.940 0.000 0.004 0.020 0.036
#> SRR1003860     1  0.1267    0.85271 0.960 0.000 0.004 0.024 0.012
#> SRR1003861     1  0.5347    0.43052 0.616 0.000 0.004 0.316 0.064
#> SRR1003862     1  0.1280    0.85290 0.960 0.000 0.008 0.008 0.024
#> SRR1003863     4  0.6590    0.40354 0.088 0.000 0.240 0.596 0.076
#> SRR1003864     1  0.0566    0.85092 0.984 0.000 0.004 0.000 0.012
#> SRR1003865     4  0.7297   -0.00821 0.032 0.012 0.172 0.492 0.292
#> SRR1003866     1  0.4110    0.72270 0.792 0.000 0.012 0.044 0.152
#> SRR1003867     1  0.0854    0.85224 0.976 0.000 0.008 0.004 0.012

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1003755     6  0.3257     0.8063 0.004 0.012 0.092 0.000 0.048 0.844
#> SRR1003756     6  0.3257     0.8063 0.004 0.012 0.092 0.000 0.048 0.844
#> SRR1003757     4  0.6395     0.5536 0.068 0.092 0.220 0.592 0.028 0.000
#> SRR1003758     4  0.6395     0.5536 0.068 0.092 0.220 0.592 0.028 0.000
#> SRR1003759     5  0.4877     0.3951 0.024 0.008 0.052 0.096 0.764 0.056
#> SRR1003760     6  0.1905     0.8672 0.000 0.012 0.020 0.020 0.016 0.932
#> SRR1003761     6  0.1977     0.8628 0.000 0.008 0.032 0.000 0.040 0.920
#> SRR1003762     6  0.2506     0.8551 0.000 0.068 0.000 0.000 0.052 0.880
#> SRR1003763     6  0.1616     0.8698 0.000 0.020 0.000 0.000 0.048 0.932
#> SRR1003764     6  0.1930     0.8666 0.000 0.036 0.000 0.000 0.048 0.916
#> SRR1003765     2  0.3050     1.0000 0.000 0.764 0.000 0.000 0.000 0.236
#> SRR1003766     2  0.3050     1.0000 0.000 0.764 0.000 0.000 0.000 0.236
#> SRR1003767     6  0.3224     0.8023 0.000 0.132 0.004 0.000 0.040 0.824
#> SRR1003768     2  0.3050     1.0000 0.000 0.764 0.000 0.000 0.000 0.236
#> SRR1003769     2  0.3050     1.0000 0.000 0.764 0.000 0.000 0.000 0.236
#> SRR1003770     2  0.3050     1.0000 0.000 0.764 0.000 0.000 0.000 0.236
#> SRR1003771     6  0.3596     0.7566 0.000 0.172 0.004 0.000 0.040 0.784
#> SRR1003773     3  0.5701     0.2235 0.008 0.012 0.536 0.016 0.056 0.372
#> SRR1003772     1  0.1176     0.8383 0.956 0.024 0.000 0.000 0.020 0.000
#> SRR1003774     4  0.3024     0.6687 0.120 0.004 0.004 0.844 0.028 0.000
#> SRR1003775     1  0.2501     0.8286 0.896 0.040 0.004 0.012 0.048 0.000
#> SRR1003776     1  0.2351     0.8364 0.904 0.032 0.000 0.028 0.036 0.000
#> SRR1003777     1  0.1682     0.8394 0.928 0.052 0.000 0.000 0.020 0.000
#> SRR1003778     3  0.5533     0.1480 0.016 0.012 0.504 0.000 0.056 0.412
#> SRR1003779     1  0.2339     0.8370 0.908 0.024 0.004 0.036 0.028 0.000
#> SRR1003780     6  0.2308     0.8554 0.000 0.068 0.000 0.000 0.040 0.892
#> SRR1003781     5  0.6994     0.3828 0.396 0.048 0.036 0.120 0.400 0.000
#> SRR1003784     4  0.6292     0.3556 0.060 0.056 0.380 0.484 0.020 0.000
#> SRR1003785     3  0.2364     0.6588 0.044 0.004 0.904 0.036 0.000 0.012
#> SRR1003786     1  0.1321     0.8417 0.952 0.024 0.000 0.004 0.020 0.000
#> SRR1003783     1  0.2907     0.8151 0.868 0.064 0.004 0.008 0.056 0.000
#> SRR1003787     1  0.0798     0.8430 0.976 0.012 0.004 0.004 0.004 0.000
#> SRR1003788     4  0.2610     0.7175 0.060 0.004 0.048 0.884 0.004 0.000
#> SRR1003789     6  0.1232     0.8714 0.000 0.016 0.024 0.000 0.004 0.956
#> SRR1003790     1  0.2628     0.8310 0.888 0.056 0.004 0.012 0.040 0.000
#> SRR1003791     4  0.6211     0.2281 0.176 0.000 0.028 0.500 0.296 0.000
#> SRR1003792     1  0.2619     0.8241 0.884 0.008 0.004 0.072 0.032 0.000
#> SRR1003793     1  0.1026     0.8432 0.968 0.008 0.004 0.012 0.008 0.000
#> SRR1003794     1  0.2720     0.8247 0.884 0.016 0.004 0.056 0.040 0.000
#> SRR1003795     3  0.3656     0.6381 0.048 0.012 0.820 0.108 0.012 0.000
#> SRR1003796     3  0.5627     0.2117 0.008 0.012 0.536 0.012 0.056 0.376
#> SRR1003797     1  0.0820     0.8392 0.972 0.012 0.000 0.000 0.016 0.000
#> SRR1003798     1  0.5510     0.5064 0.620 0.052 0.012 0.276 0.040 0.000
#> SRR1003799     1  0.2976     0.7879 0.844 0.012 0.000 0.124 0.020 0.000
#> SRR1003800     4  0.3744     0.6103 0.168 0.008 0.004 0.784 0.036 0.000
#> SRR1003801     4  0.1845     0.7089 0.072 0.004 0.000 0.916 0.008 0.000
#> SRR1003802     3  0.6195    -0.1092 0.056 0.052 0.492 0.380 0.020 0.000
#> SRR1003803     1  0.2744     0.8208 0.876 0.060 0.000 0.012 0.052 0.000
#> SRR1003804     4  0.2771     0.6714 0.116 0.000 0.000 0.852 0.032 0.000
#> SRR1003805     1  0.0993     0.8422 0.964 0.012 0.000 0.000 0.024 0.000
#> SRR1003806     1  0.3922     0.6599 0.732 0.004 0.004 0.236 0.024 0.000
#> SRR1003807     4  0.2730     0.7193 0.060 0.008 0.036 0.884 0.012 0.000
#> SRR1003809     4  0.5128     0.6522 0.056 0.036 0.196 0.696 0.016 0.000
#> SRR1003808     5  0.7417     0.4772 0.308 0.064 0.036 0.176 0.416 0.000
#> SRR1003810     4  0.3019     0.6789 0.124 0.004 0.008 0.844 0.020 0.000
#> SRR1003811     4  0.5114     0.6857 0.060 0.080 0.100 0.736 0.024 0.000
#> SRR1003812     1  0.2244     0.8388 0.912 0.032 0.004 0.016 0.036 0.000
#> SRR1003813     3  0.3462     0.6387 0.044 0.000 0.824 0.112 0.020 0.000
#> SRR1003814     1  0.6210     0.3094 0.596 0.072 0.020 0.076 0.236 0.000
#> SRR1003815     4  0.4722     0.6995 0.064 0.064 0.080 0.768 0.024 0.000
#> SRR1003816     1  0.1933     0.8380 0.924 0.032 0.000 0.012 0.032 0.000
#> SRR1003817     1  0.2633     0.8313 0.892 0.032 0.004 0.044 0.028 0.000
#> SRR1003818     1  0.5961     0.3801 0.616 0.076 0.008 0.080 0.220 0.000
#> SRR1003819     4  0.4891     0.7014 0.072 0.052 0.076 0.760 0.040 0.000
#> SRR1003820     1  0.2144     0.8270 0.908 0.048 0.000 0.004 0.040 0.000
#> SRR1003821     1  0.0964     0.8399 0.968 0.016 0.000 0.004 0.012 0.000
#> SRR1003822     4  0.6053     0.4264 0.048 0.056 0.336 0.540 0.020 0.000
#> SRR1003824     4  0.2526     0.6938 0.096 0.004 0.000 0.876 0.024 0.000
#> SRR1003823     1  0.2471     0.8218 0.888 0.052 0.000 0.004 0.056 0.000
#> SRR1003825     4  0.3035     0.7136 0.072 0.020 0.012 0.868 0.028 0.000
#> SRR1003826     1  0.2947     0.8074 0.872 0.036 0.012 0.012 0.068 0.000
#> SRR1003827     1  0.0508     0.8412 0.984 0.000 0.000 0.004 0.012 0.000
#> SRR1003828     4  0.5003     0.3684 0.296 0.020 0.004 0.632 0.048 0.000
#> SRR1003829     1  0.0893     0.8422 0.972 0.016 0.004 0.004 0.004 0.000
#> SRR1003830     1  0.0777     0.8397 0.972 0.004 0.000 0.000 0.024 0.000
#> SRR1003831     1  0.3770     0.7664 0.800 0.016 0.004 0.136 0.044 0.000
#> SRR1003832     1  0.0951     0.8441 0.968 0.020 0.000 0.004 0.008 0.000
#> SRR1003833     1  0.3182     0.8032 0.852 0.016 0.004 0.084 0.044 0.000
#> SRR1003834     1  0.3742     0.7970 0.820 0.040 0.004 0.092 0.044 0.000
#> SRR1003836     4  0.2911     0.7198 0.076 0.012 0.028 0.872 0.012 0.000
#> SRR1003835     4  0.3462     0.7046 0.076 0.048 0.004 0.840 0.032 0.000
#> SRR1003838     3  0.2677     0.6599 0.052 0.008 0.892 0.032 0.004 0.012
#> SRR1003837     1  0.4779     0.6756 0.708 0.048 0.004 0.204 0.036 0.000
#> SRR1003839     1  0.5526     0.1046 0.472 0.012 0.008 0.440 0.068 0.000
#> SRR1003840     5  0.4706     0.4836 0.052 0.000 0.040 0.164 0.736 0.008
#> SRR1003841     6  0.2818     0.8527 0.000 0.008 0.028 0.044 0.036 0.884
#> SRR1003842     1  0.2350     0.8336 0.900 0.008 0.004 0.064 0.024 0.000
#> SRR1003844     1  0.0748     0.8416 0.976 0.004 0.000 0.004 0.016 0.000
#> SRR1003845     5  0.4932     0.4449 0.036 0.000 0.044 0.220 0.692 0.008
#> SRR1003846     1  0.2828     0.8177 0.872 0.012 0.004 0.080 0.032 0.000
#> SRR1003847     1  0.5458     0.5107 0.632 0.012 0.008 0.220 0.128 0.000
#> SRR1003848     4  0.2927     0.7198 0.064 0.020 0.040 0.872 0.004 0.000
#> SRR1003849     3  0.2563     0.6585 0.056 0.004 0.896 0.028 0.008 0.008
#> SRR1003850     4  0.6209     0.3919 0.292 0.032 0.032 0.560 0.084 0.000
#> SRR1003851     3  0.3938     0.6166 0.044 0.012 0.796 0.132 0.016 0.000
#> SRR1003852     5  0.5795     0.5275 0.308 0.000 0.016 0.140 0.536 0.000
#> SRR1003853     1  0.4464     0.6933 0.728 0.004 0.004 0.168 0.096 0.000
#> SRR1003854     1  0.4355     0.7263 0.752 0.004 0.012 0.148 0.084 0.000
#> SRR1003843     4  0.4781     0.6842 0.064 0.008 0.088 0.752 0.088 0.000
#> SRR1003855     1  0.3009     0.8136 0.868 0.024 0.004 0.064 0.040 0.000
#> SRR1003856     4  0.6975     0.3720 0.088 0.040 0.344 0.460 0.068 0.000
#> SRR1003857     1  0.3492     0.7868 0.828 0.020 0.004 0.108 0.040 0.000
#> SRR1003858     1  0.3941     0.7478 0.784 0.020 0.004 0.152 0.040 0.000
#> SRR1003859     1  0.2678     0.8289 0.884 0.064 0.004 0.012 0.036 0.000
#> SRR1003860     1  0.1700     0.8436 0.936 0.028 0.000 0.012 0.024 0.000
#> SRR1003861     1  0.5461     0.2402 0.540 0.032 0.004 0.376 0.048 0.000
#> SRR1003862     1  0.1478     0.8375 0.944 0.032 0.000 0.004 0.020 0.000
#> SRR1003863     4  0.7051     0.5738 0.112 0.068 0.180 0.560 0.080 0.000
#> SRR1003864     1  0.0692     0.8393 0.976 0.004 0.000 0.000 0.020 0.000
#> SRR1003865     4  0.7848    -0.0292 0.048 0.064 0.148 0.364 0.360 0.016
#> SRR1003866     1  0.4283     0.7161 0.776 0.072 0.000 0.048 0.104 0.000
#> SRR1003867     1  0.1844     0.8425 0.932 0.028 0.004 0.012 0.024 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 9166 rows and 112 columns.
#>   Top rows (917, 1834, 2750, 3666, 4583) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.986       0.994         0.1274 0.882   0.882
#> 3 3 0.595           0.824       0.905         1.2969 0.920   0.909
#> 4 4 0.493           0.703       0.852         0.3280 0.855   0.819
#> 5 5 0.483           0.763       0.870         0.1334 0.892   0.838
#> 6 6 0.646           0.786       0.894         0.0797 0.982   0.968

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1003755     1  0.0000      0.994 1.000 0.000
#> SRR1003756     1  0.0000      0.994 1.000 0.000
#> SRR1003757     1  0.0000      0.994 1.000 0.000
#> SRR1003758     1  0.0000      0.994 1.000 0.000
#> SRR1003759     1  0.0000      0.994 1.000 0.000
#> SRR1003760     1  0.3431      0.930 0.936 0.064
#> SRR1003761     1  0.1184      0.980 0.984 0.016
#> SRR1003762     1  0.2043      0.964 0.968 0.032
#> SRR1003763     1  0.0938      0.984 0.988 0.012
#> SRR1003764     1  0.0376      0.991 0.996 0.004
#> SRR1003765     2  0.0672      0.996 0.008 0.992
#> SRR1003766     2  0.0938      0.996 0.012 0.988
#> SRR1003767     2  0.0672      0.994 0.008 0.992
#> SRR1003768     2  0.0938      0.996 0.012 0.988
#> SRR1003769     2  0.0938      0.996 0.012 0.988
#> SRR1003770     2  0.0672      0.996 0.008 0.992
#> SRR1003771     2  0.0672      0.994 0.008 0.992
#> SRR1003773     1  0.0376      0.991 0.996 0.004
#> SRR1003772     1  0.0000      0.994 1.000 0.000
#> SRR1003774     1  0.0000      0.994 1.000 0.000
#> SRR1003775     1  0.0000      0.994 1.000 0.000
#> SRR1003776     1  0.0000      0.994 1.000 0.000
#> SRR1003777     1  0.0000      0.994 1.000 0.000
#> SRR1003778     1  0.0672      0.987 0.992 0.008
#> SRR1003779     1  0.0000      0.994 1.000 0.000
#> SRR1003780     1  0.0672      0.987 0.992 0.008
#> SRR1003781     1  0.0000      0.994 1.000 0.000
#> SRR1003784     1  0.0000      0.994 1.000 0.000
#> SRR1003785     1  0.0000      0.994 1.000 0.000
#> SRR1003786     1  0.0000      0.994 1.000 0.000
#> SRR1003783     1  0.0000      0.994 1.000 0.000
#> SRR1003787     1  0.0000      0.994 1.000 0.000
#> SRR1003788     1  0.0000      0.994 1.000 0.000
#> SRR1003789     1  0.0938      0.984 0.988 0.012
#> SRR1003790     1  0.0000      0.994 1.000 0.000
#> SRR1003791     1  0.0000      0.994 1.000 0.000
#> SRR1003792     1  0.0000      0.994 1.000 0.000
#> SRR1003793     1  0.0000      0.994 1.000 0.000
#> SRR1003794     1  0.0000      0.994 1.000 0.000
#> SRR1003795     1  0.0000      0.994 1.000 0.000
#> SRR1003796     1  0.0672      0.987 0.992 0.008
#> SRR1003797     1  0.0000      0.994 1.000 0.000
#> SRR1003798     1  0.0000      0.994 1.000 0.000
#> SRR1003799     1  0.0000      0.994 1.000 0.000
#> SRR1003800     1  0.0000      0.994 1.000 0.000
#> SRR1003801     1  0.0000      0.994 1.000 0.000
#> SRR1003802     1  0.0000      0.994 1.000 0.000
#> SRR1003803     1  0.0000      0.994 1.000 0.000
#> SRR1003804     1  0.0000      0.994 1.000 0.000
#> SRR1003805     1  0.0000      0.994 1.000 0.000
#> SRR1003806     1  0.0000      0.994 1.000 0.000
#> SRR1003807     1  0.0000      0.994 1.000 0.000
#> SRR1003809     1  0.0000      0.994 1.000 0.000
#> SRR1003808     1  0.0000      0.994 1.000 0.000
#> SRR1003810     1  0.0000      0.994 1.000 0.000
#> SRR1003811     1  0.0000      0.994 1.000 0.000
#> SRR1003812     1  0.0000      0.994 1.000 0.000
#> SRR1003813     1  0.0000      0.994 1.000 0.000
#> SRR1003814     1  0.0000      0.994 1.000 0.000
#> SRR1003815     1  0.0000      0.994 1.000 0.000
#> SRR1003816     1  0.0000      0.994 1.000 0.000
#> SRR1003817     1  0.0000      0.994 1.000 0.000
#> SRR1003818     1  0.0000      0.994 1.000 0.000
#> SRR1003819     1  0.0000      0.994 1.000 0.000
#> SRR1003820     1  0.0000      0.994 1.000 0.000
#> SRR1003821     1  0.0000      0.994 1.000 0.000
#> SRR1003822     1  0.0000      0.994 1.000 0.000
#> SRR1003824     1  0.0000      0.994 1.000 0.000
#> SRR1003823     1  0.0000      0.994 1.000 0.000
#> SRR1003825     1  0.0000      0.994 1.000 0.000
#> SRR1003826     1  0.0000      0.994 1.000 0.000
#> SRR1003827     1  0.0000      0.994 1.000 0.000
#> SRR1003828     1  0.0000      0.994 1.000 0.000
#> SRR1003829     1  0.0000      0.994 1.000 0.000
#> SRR1003830     1  0.0000      0.994 1.000 0.000
#> SRR1003831     1  0.0000      0.994 1.000 0.000
#> SRR1003832     1  0.0000      0.994 1.000 0.000
#> SRR1003833     1  0.0000      0.994 1.000 0.000
#> SRR1003834     1  0.0000      0.994 1.000 0.000
#> SRR1003836     1  0.0000      0.994 1.000 0.000
#> SRR1003835     1  0.0000      0.994 1.000 0.000
#> SRR1003838     1  0.0000      0.994 1.000 0.000
#> SRR1003837     1  0.0000      0.994 1.000 0.000
#> SRR1003839     1  0.0000      0.994 1.000 0.000
#> SRR1003840     1  0.0000      0.994 1.000 0.000
#> SRR1003841     1  0.9896      0.211 0.560 0.440
#> SRR1003842     1  0.0000      0.994 1.000 0.000
#> SRR1003844     1  0.0000      0.994 1.000 0.000
#> SRR1003845     1  0.0000      0.994 1.000 0.000
#> SRR1003846     1  0.0000      0.994 1.000 0.000
#> SRR1003847     1  0.0000      0.994 1.000 0.000
#> SRR1003848     1  0.0000      0.994 1.000 0.000
#> SRR1003849     1  0.0000      0.994 1.000 0.000
#> SRR1003850     1  0.0000      0.994 1.000 0.000
#> SRR1003851     1  0.0000      0.994 1.000 0.000
#> SRR1003852     1  0.0000      0.994 1.000 0.000
#> SRR1003853     1  0.0000      0.994 1.000 0.000
#> SRR1003854     1  0.0000      0.994 1.000 0.000
#> SRR1003843     1  0.0000      0.994 1.000 0.000
#> SRR1003855     1  0.0000      0.994 1.000 0.000
#> SRR1003856     1  0.0000      0.994 1.000 0.000
#> SRR1003857     1  0.0000      0.994 1.000 0.000
#> SRR1003858     1  0.0000      0.994 1.000 0.000
#> SRR1003859     1  0.0000      0.994 1.000 0.000
#> SRR1003860     1  0.0000      0.994 1.000 0.000
#> SRR1003861     1  0.0000      0.994 1.000 0.000
#> SRR1003862     1  0.0000      0.994 1.000 0.000
#> SRR1003863     1  0.0000      0.994 1.000 0.000
#> SRR1003864     1  0.0000      0.994 1.000 0.000
#> SRR1003865     1  0.0000      0.994 1.000 0.000
#> SRR1003866     1  0.0000      0.994 1.000 0.000
#> SRR1003867     1  0.0000      0.994 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1003755     1  0.1289    0.89659 0.968 0.000 0.032
#> SRR1003756     1  0.1289    0.89659 0.968 0.000 0.032
#> SRR1003757     1  0.1289    0.89763 0.968 0.000 0.032
#> SRR1003758     1  0.1289    0.89763 0.968 0.000 0.032
#> SRR1003759     1  0.4399    0.77491 0.812 0.000 0.188
#> SRR1003760     3  0.8843    0.61246 0.160 0.276 0.564
#> SRR1003761     3  0.8311    0.65832 0.252 0.132 0.616
#> SRR1003762     1  0.5576    0.72083 0.812 0.104 0.084
#> SRR1003763     1  0.5093    0.77223 0.836 0.076 0.088
#> SRR1003764     1  0.4845    0.79684 0.844 0.052 0.104
#> SRR1003765     2  0.0424    0.98315 0.000 0.992 0.008
#> SRR1003766     2  0.0747    0.98195 0.000 0.984 0.016
#> SRR1003767     2  0.1411    0.97555 0.000 0.964 0.036
#> SRR1003768     2  0.0747    0.98195 0.000 0.984 0.016
#> SRR1003769     2  0.0592    0.98263 0.000 0.988 0.012
#> SRR1003770     2  0.0592    0.98296 0.000 0.988 0.012
#> SRR1003771     2  0.1529    0.97383 0.000 0.960 0.040
#> SRR1003773     1  0.6192    0.29985 0.580 0.000 0.420
#> SRR1003772     1  0.0237    0.89836 0.996 0.000 0.004
#> SRR1003774     1  0.1643    0.89356 0.956 0.000 0.044
#> SRR1003775     1  0.1031    0.89430 0.976 0.000 0.024
#> SRR1003776     1  0.0237    0.89824 0.996 0.000 0.004
#> SRR1003777     1  0.1163    0.89279 0.972 0.000 0.028
#> SRR1003778     1  0.6309    0.00539 0.504 0.000 0.496
#> SRR1003779     1  0.0592    0.89841 0.988 0.000 0.012
#> SRR1003780     3  0.4172    0.73943 0.156 0.004 0.840
#> SRR1003781     1  0.1529    0.88744 0.960 0.000 0.040
#> SRR1003784     1  0.5327    0.66065 0.728 0.000 0.272
#> SRR1003785     1  0.6079    0.39879 0.612 0.000 0.388
#> SRR1003786     1  0.1289    0.89157 0.968 0.000 0.032
#> SRR1003783     1  0.0592    0.89684 0.988 0.000 0.012
#> SRR1003787     1  0.0892    0.89548 0.980 0.000 0.020
#> SRR1003788     1  0.2796    0.87195 0.908 0.000 0.092
#> SRR1003789     3  0.4172    0.74544 0.156 0.004 0.840
#> SRR1003790     1  0.0892    0.89538 0.980 0.000 0.020
#> SRR1003791     1  0.3686    0.83999 0.860 0.000 0.140
#> SRR1003792     1  0.1031    0.89523 0.976 0.000 0.024
#> SRR1003793     1  0.1289    0.89421 0.968 0.000 0.032
#> SRR1003794     1  0.0747    0.89926 0.984 0.000 0.016
#> SRR1003795     1  0.6126    0.37200 0.600 0.000 0.400
#> SRR1003796     1  0.6309   -0.01856 0.500 0.000 0.500
#> SRR1003797     1  0.0592    0.89686 0.988 0.000 0.012
#> SRR1003798     1  0.0892    0.89872 0.980 0.000 0.020
#> SRR1003799     1  0.0592    0.89871 0.988 0.000 0.012
#> SRR1003800     1  0.1643    0.89431 0.956 0.000 0.044
#> SRR1003801     1  0.1753    0.89242 0.952 0.000 0.048
#> SRR1003802     1  0.3619    0.83872 0.864 0.000 0.136
#> SRR1003803     1  0.0747    0.89859 0.984 0.000 0.016
#> SRR1003804     1  0.1411    0.89558 0.964 0.000 0.036
#> SRR1003805     1  0.1289    0.89133 0.968 0.000 0.032
#> SRR1003806     1  0.1289    0.89641 0.968 0.000 0.032
#> SRR1003807     1  0.3879    0.82534 0.848 0.000 0.152
#> SRR1003809     1  0.3267    0.85363 0.884 0.000 0.116
#> SRR1003808     1  0.1411    0.89758 0.964 0.000 0.036
#> SRR1003810     1  0.1289    0.89618 0.968 0.000 0.032
#> SRR1003811     1  0.1964    0.89028 0.944 0.000 0.056
#> SRR1003812     1  0.0424    0.89781 0.992 0.000 0.008
#> SRR1003813     1  0.5560    0.60186 0.700 0.000 0.300
#> SRR1003814     1  0.1031    0.89472 0.976 0.000 0.024
#> SRR1003815     1  0.1643    0.89476 0.956 0.000 0.044
#> SRR1003816     1  0.0747    0.89643 0.984 0.000 0.016
#> SRR1003817     1  0.0592    0.89751 0.988 0.000 0.012
#> SRR1003818     1  0.0892    0.89547 0.980 0.000 0.020
#> SRR1003819     1  0.2537    0.87798 0.920 0.000 0.080
#> SRR1003820     1  0.0892    0.89528 0.980 0.000 0.020
#> SRR1003821     1  0.0892    0.89547 0.980 0.000 0.020
#> SRR1003822     1  0.5016    0.71017 0.760 0.000 0.240
#> SRR1003824     1  0.2537    0.87883 0.920 0.000 0.080
#> SRR1003823     1  0.1163    0.89559 0.972 0.000 0.028
#> SRR1003825     1  0.2796    0.87295 0.908 0.000 0.092
#> SRR1003826     1  0.1643    0.88517 0.956 0.000 0.044
#> SRR1003827     1  0.0747    0.89584 0.984 0.000 0.016
#> SRR1003828     1  0.2448    0.88117 0.924 0.000 0.076
#> SRR1003829     1  0.1031    0.89497 0.976 0.000 0.024
#> SRR1003830     1  0.0747    0.89780 0.984 0.000 0.016
#> SRR1003831     1  0.1411    0.89565 0.964 0.000 0.036
#> SRR1003832     1  0.0892    0.89921 0.980 0.000 0.020
#> SRR1003833     1  0.1031    0.89860 0.976 0.000 0.024
#> SRR1003834     1  0.2356    0.88336 0.928 0.000 0.072
#> SRR1003836     1  0.3941    0.81879 0.844 0.000 0.156
#> SRR1003835     1  0.2066    0.88985 0.940 0.000 0.060
#> SRR1003838     1  0.6140    0.35914 0.596 0.000 0.404
#> SRR1003837     1  0.0892    0.89921 0.980 0.000 0.020
#> SRR1003839     1  0.2261    0.88475 0.932 0.000 0.068
#> SRR1003840     1  0.4062    0.81108 0.836 0.000 0.164
#> SRR1003841     3  0.5470    0.34437 0.036 0.168 0.796
#> SRR1003842     1  0.1289    0.89482 0.968 0.000 0.032
#> SRR1003844     1  0.0424    0.89728 0.992 0.000 0.008
#> SRR1003845     1  0.4750    0.75138 0.784 0.000 0.216
#> SRR1003846     1  0.1031    0.89681 0.976 0.000 0.024
#> SRR1003847     1  0.1753    0.89889 0.952 0.000 0.048
#> SRR1003848     1  0.3816    0.82759 0.852 0.000 0.148
#> SRR1003849     1  0.5905    0.49719 0.648 0.000 0.352
#> SRR1003850     1  0.3816    0.82787 0.852 0.000 0.148
#> SRR1003851     1  0.5926    0.48800 0.644 0.000 0.356
#> SRR1003852     1  0.2625    0.87777 0.916 0.000 0.084
#> SRR1003853     1  0.1860    0.89579 0.948 0.000 0.052
#> SRR1003854     1  0.1031    0.89707 0.976 0.000 0.024
#> SRR1003843     1  0.4654    0.75978 0.792 0.000 0.208
#> SRR1003855     1  0.0892    0.89774 0.980 0.000 0.020
#> SRR1003856     1  0.5591    0.60207 0.696 0.000 0.304
#> SRR1003857     1  0.0892    0.89757 0.980 0.000 0.020
#> SRR1003858     1  0.1031    0.89824 0.976 0.000 0.024
#> SRR1003859     1  0.0592    0.89801 0.988 0.000 0.012
#> SRR1003860     1  0.0237    0.89845 0.996 0.000 0.004
#> SRR1003861     1  0.1964    0.88953 0.944 0.000 0.056
#> SRR1003862     1  0.0747    0.89699 0.984 0.000 0.016
#> SRR1003863     1  0.3267    0.85374 0.884 0.000 0.116
#> SRR1003864     1  0.0747    0.89670 0.984 0.000 0.016
#> SRR1003865     1  0.1411    0.89791 0.964 0.000 0.036
#> SRR1003866     1  0.0237    0.89858 0.996 0.000 0.004
#> SRR1003867     1  0.0592    0.89738 0.988 0.000 0.012

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1003755     1  0.3550     0.7238 0.860 0.000 0.096 0.044
#> SRR1003756     1  0.3266     0.7496 0.876 0.000 0.084 0.040
#> SRR1003757     1  0.2522     0.8079 0.908 0.000 0.076 0.016
#> SRR1003758     1  0.2450     0.8111 0.912 0.000 0.072 0.016
#> SRR1003759     1  0.7389    -0.2342 0.516 0.000 0.212 0.272
#> SRR1003760     4  0.8712     0.5686 0.088 0.200 0.208 0.504
#> SRR1003761     4  0.8669     0.6215 0.100 0.132 0.276 0.492
#> SRR1003762     1  0.7885    -0.2138 0.516 0.072 0.336 0.076
#> SRR1003763     1  0.9099    -0.4268 0.376 0.136 0.368 0.120
#> SRR1003764     3  0.8914    -0.0611 0.348 0.108 0.416 0.128
#> SRR1003765     2  0.0000     0.9351 0.000 1.000 0.000 0.000
#> SRR1003766     2  0.2722     0.9263 0.000 0.904 0.032 0.064
#> SRR1003767     2  0.2111     0.9127 0.000 0.932 0.024 0.044
#> SRR1003768     2  0.2722     0.9263 0.000 0.904 0.032 0.064
#> SRR1003769     2  0.2623     0.9274 0.000 0.908 0.028 0.064
#> SRR1003770     2  0.0000     0.9351 0.000 1.000 0.000 0.000
#> SRR1003771     2  0.2021     0.9146 0.000 0.936 0.024 0.040
#> SRR1003773     3  0.4761     0.8108 0.332 0.000 0.664 0.004
#> SRR1003772     1  0.0376     0.8378 0.992 0.000 0.004 0.004
#> SRR1003774     1  0.2053     0.8189 0.924 0.000 0.072 0.004
#> SRR1003775     1  0.0895     0.8333 0.976 0.000 0.004 0.020
#> SRR1003776     1  0.0376     0.8373 0.992 0.000 0.004 0.004
#> SRR1003777     1  0.1042     0.8313 0.972 0.000 0.008 0.020
#> SRR1003778     3  0.4855     0.6622 0.268 0.000 0.712 0.020
#> SRR1003779     1  0.0672     0.8377 0.984 0.000 0.008 0.008
#> SRR1003780     4  0.6660     0.5604 0.084 0.000 0.452 0.464
#> SRR1003781     1  0.1706     0.8168 0.948 0.000 0.016 0.036
#> SRR1003784     1  0.4989    -0.4581 0.528 0.000 0.472 0.000
#> SRR1003785     3  0.5203     0.8263 0.348 0.000 0.636 0.016
#> SRR1003786     1  0.1004     0.8309 0.972 0.000 0.004 0.024
#> SRR1003783     1  0.0188     0.8370 0.996 0.000 0.000 0.004
#> SRR1003787     1  0.0469     0.8385 0.988 0.000 0.000 0.012
#> SRR1003788     1  0.3688     0.6345 0.792 0.000 0.208 0.000
#> SRR1003789     4  0.5872     0.6468 0.032 0.004 0.380 0.584
#> SRR1003790     1  0.0707     0.8361 0.980 0.000 0.000 0.020
#> SRR1003791     1  0.3323     0.7846 0.876 0.000 0.064 0.060
#> SRR1003792     1  0.0779     0.8380 0.980 0.000 0.004 0.016
#> SRR1003793     1  0.0707     0.8348 0.980 0.000 0.000 0.020
#> SRR1003794     1  0.1151     0.8390 0.968 0.000 0.008 0.024
#> SRR1003795     3  0.5969     0.8160 0.392 0.000 0.564 0.044
#> SRR1003796     3  0.5291     0.7939 0.324 0.000 0.652 0.024
#> SRR1003797     1  0.0657     0.8363 0.984 0.000 0.004 0.012
#> SRR1003798     1  0.1557     0.8285 0.944 0.000 0.056 0.000
#> SRR1003799     1  0.1109     0.8354 0.968 0.000 0.028 0.004
#> SRR1003800     1  0.2888     0.7702 0.872 0.000 0.124 0.004
#> SRR1003801     1  0.2469     0.7889 0.892 0.000 0.108 0.000
#> SRR1003802     1  0.5080    -0.2299 0.576 0.000 0.420 0.004
#> SRR1003803     1  0.0469     0.8373 0.988 0.000 0.000 0.012
#> SRR1003804     1  0.2216     0.8035 0.908 0.000 0.092 0.000
#> SRR1003805     1  0.0524     0.8359 0.988 0.000 0.004 0.008
#> SRR1003806     1  0.1792     0.8199 0.932 0.000 0.068 0.000
#> SRR1003807     1  0.4675     0.5101 0.736 0.000 0.244 0.020
#> SRR1003809     1  0.4632     0.3406 0.688 0.000 0.308 0.004
#> SRR1003808     1  0.1677     0.8233 0.948 0.000 0.012 0.040
#> SRR1003810     1  0.1807     0.8283 0.940 0.000 0.052 0.008
#> SRR1003811     1  0.3636     0.7018 0.820 0.000 0.172 0.008
#> SRR1003812     1  0.0188     0.8370 0.996 0.000 0.000 0.004
#> SRR1003813     3  0.5050     0.7938 0.408 0.000 0.588 0.004
#> SRR1003814     1  0.1488     0.8222 0.956 0.000 0.032 0.012
#> SRR1003815     1  0.2676     0.7982 0.896 0.000 0.092 0.012
#> SRR1003816     1  0.0672     0.8373 0.984 0.000 0.008 0.008
#> SRR1003817     1  0.1059     0.8348 0.972 0.000 0.016 0.012
#> SRR1003818     1  0.0804     0.8347 0.980 0.000 0.008 0.012
#> SRR1003819     1  0.3219     0.7775 0.868 0.000 0.112 0.020
#> SRR1003820     1  0.0188     0.8370 0.996 0.000 0.000 0.004
#> SRR1003821     1  0.0657     0.8350 0.984 0.000 0.004 0.012
#> SRR1003822     1  0.4977    -0.4017 0.540 0.000 0.460 0.000
#> SRR1003824     1  0.3266     0.7091 0.832 0.000 0.168 0.000
#> SRR1003823     1  0.0592     0.8358 0.984 0.000 0.000 0.016
#> SRR1003825     1  0.3278     0.7690 0.864 0.000 0.116 0.020
#> SRR1003826     1  0.1109     0.8310 0.968 0.000 0.004 0.028
#> SRR1003827     1  0.0188     0.8377 0.996 0.000 0.000 0.004
#> SRR1003828     1  0.2924     0.7866 0.884 0.000 0.100 0.016
#> SRR1003829     1  0.1022     0.8313 0.968 0.000 0.000 0.032
#> SRR1003830     1  0.0592     0.8358 0.984 0.000 0.000 0.016
#> SRR1003831     1  0.2142     0.8243 0.928 0.000 0.056 0.016
#> SRR1003832     1  0.0657     0.8377 0.984 0.000 0.004 0.012
#> SRR1003833     1  0.1624     0.8338 0.952 0.000 0.020 0.028
#> SRR1003834     1  0.2999     0.7603 0.864 0.000 0.132 0.004
#> SRR1003836     1  0.4353     0.5589 0.756 0.000 0.232 0.012
#> SRR1003835     1  0.2759     0.8138 0.904 0.000 0.052 0.044
#> SRR1003838     3  0.5452     0.8298 0.360 0.000 0.616 0.024
#> SRR1003837     1  0.1297     0.8387 0.964 0.000 0.016 0.020
#> SRR1003839     1  0.2522     0.8114 0.908 0.000 0.076 0.016
#> SRR1003840     1  0.4100     0.6876 0.824 0.000 0.048 0.128
#> SRR1003841     4  0.5421     0.4386 0.000 0.076 0.200 0.724
#> SRR1003842     1  0.1389     0.8262 0.952 0.000 0.000 0.048
#> SRR1003844     1  0.0336     0.8374 0.992 0.000 0.000 0.008
#> SRR1003845     1  0.4824     0.6307 0.780 0.000 0.144 0.076
#> SRR1003846     1  0.1211     0.8311 0.960 0.000 0.000 0.040
#> SRR1003847     1  0.2002     0.8272 0.936 0.000 0.020 0.044
#> SRR1003848     1  0.4917     0.1939 0.656 0.000 0.336 0.008
#> SRR1003849     3  0.4817     0.8254 0.388 0.000 0.612 0.000
#> SRR1003850     1  0.4098     0.6248 0.784 0.000 0.204 0.012
#> SRR1003851     3  0.5526     0.7846 0.416 0.000 0.564 0.020
#> SRR1003852     1  0.2053     0.8111 0.924 0.000 0.004 0.072
#> SRR1003853     1  0.1975     0.8264 0.936 0.000 0.016 0.048
#> SRR1003854     1  0.1767     0.8291 0.944 0.000 0.012 0.044
#> SRR1003843     1  0.4974     0.5183 0.736 0.000 0.224 0.040
#> SRR1003855     1  0.1557     0.8271 0.944 0.000 0.056 0.000
#> SRR1003856     1  0.4998    -0.5240 0.512 0.000 0.488 0.000
#> SRR1003857     1  0.1209     0.8354 0.964 0.000 0.032 0.004
#> SRR1003858     1  0.1211     0.8338 0.960 0.000 0.040 0.000
#> SRR1003859     1  0.0657     0.8380 0.984 0.000 0.004 0.012
#> SRR1003860     1  0.0804     0.8379 0.980 0.000 0.012 0.008
#> SRR1003861     1  0.3047     0.7760 0.872 0.000 0.116 0.012
#> SRR1003862     1  0.0469     0.8367 0.988 0.000 0.000 0.012
#> SRR1003863     1  0.4456     0.4259 0.716 0.000 0.280 0.004
#> SRR1003864     1  0.0524     0.8364 0.988 0.000 0.008 0.004
#> SRR1003865     1  0.1488     0.8370 0.956 0.000 0.032 0.012
#> SRR1003866     1  0.0657     0.8378 0.984 0.000 0.012 0.004
#> SRR1003867     1  0.0524     0.8376 0.988 0.000 0.008 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1003755     1  0.5255     0.3507 0.644 0.000 0.068 0.004 0.284
#> SRR1003756     1  0.4914     0.4392 0.676 0.000 0.064 0.000 0.260
#> SRR1003757     1  0.2286     0.8562 0.888 0.000 0.108 0.000 0.004
#> SRR1003758     1  0.2286     0.8570 0.888 0.000 0.108 0.000 0.004
#> SRR1003759     5  0.6887     0.3841 0.192 0.000 0.084 0.136 0.588
#> SRR1003760     5  0.6900     0.2370 0.024 0.068 0.096 0.192 0.620
#> SRR1003761     5  0.7124     0.2575 0.024 0.064 0.128 0.184 0.600
#> SRR1003762     5  0.6132     0.3914 0.220 0.028 0.092 0.012 0.648
#> SRR1003763     5  0.5445     0.4568 0.108 0.060 0.092 0.004 0.736
#> SRR1003764     5  0.5037     0.4712 0.120 0.024 0.100 0.004 0.752
#> SRR1003765     2  0.0162     0.8806 0.000 0.996 0.000 0.000 0.004
#> SRR1003766     2  0.2879     0.8734 0.000 0.880 0.008 0.080 0.032
#> SRR1003767     2  0.3629     0.8106 0.000 0.848 0.036 0.076 0.040
#> SRR1003768     2  0.2879     0.8734 0.000 0.880 0.008 0.080 0.032
#> SRR1003769     2  0.2879     0.8734 0.000 0.880 0.008 0.080 0.032
#> SRR1003770     2  0.0162     0.8806 0.000 0.996 0.000 0.000 0.004
#> SRR1003771     2  0.3688     0.8075 0.000 0.844 0.036 0.080 0.040
#> SRR1003773     3  0.3688     0.6468 0.148 0.000 0.812 0.004 0.036
#> SRR1003772     1  0.0451     0.9068 0.988 0.000 0.004 0.000 0.008
#> SRR1003774     1  0.1970     0.8932 0.924 0.000 0.060 0.004 0.012
#> SRR1003775     1  0.0898     0.9000 0.972 0.000 0.008 0.000 0.020
#> SRR1003776     1  0.0324     0.9072 0.992 0.000 0.004 0.000 0.004
#> SRR1003777     1  0.1168     0.8924 0.960 0.000 0.008 0.000 0.032
#> SRR1003778     3  0.3497     0.5280 0.108 0.000 0.840 0.008 0.044
#> SRR1003779     1  0.0992     0.9053 0.968 0.000 0.008 0.000 0.024
#> SRR1003780     3  0.7412    -0.4873 0.044 0.000 0.448 0.264 0.244
#> SRR1003781     1  0.1251     0.8893 0.956 0.000 0.008 0.000 0.036
#> SRR1003784     3  0.4225     0.5973 0.364 0.000 0.632 0.000 0.004
#> SRR1003785     3  0.2970     0.6852 0.168 0.000 0.828 0.000 0.004
#> SRR1003786     1  0.0798     0.9011 0.976 0.000 0.008 0.000 0.016
#> SRR1003783     1  0.0290     0.9057 0.992 0.000 0.000 0.000 0.008
#> SRR1003787     1  0.0324     0.9073 0.992 0.000 0.004 0.004 0.000
#> SRR1003788     1  0.3305     0.6863 0.776 0.000 0.224 0.000 0.000
#> SRR1003789     5  0.6862    -0.0873 0.020 0.000 0.176 0.332 0.472
#> SRR1003790     1  0.0451     0.9055 0.988 0.000 0.008 0.000 0.004
#> SRR1003791     1  0.3052     0.8493 0.868 0.000 0.092 0.032 0.008
#> SRR1003792     1  0.0693     0.9072 0.980 0.000 0.008 0.000 0.012
#> SRR1003793     1  0.0290     0.9072 0.992 0.000 0.000 0.008 0.000
#> SRR1003794     1  0.0579     0.9080 0.984 0.000 0.008 0.008 0.000
#> SRR1003795     3  0.4518     0.6795 0.216 0.000 0.732 0.048 0.004
#> SRR1003796     3  0.3344     0.6443 0.144 0.000 0.832 0.012 0.012
#> SRR1003797     1  0.0671     0.9035 0.980 0.000 0.004 0.000 0.016
#> SRR1003798     1  0.1082     0.9051 0.964 0.000 0.028 0.008 0.000
#> SRR1003799     1  0.0671     0.9072 0.980 0.000 0.016 0.000 0.004
#> SRR1003800     1  0.2338     0.8525 0.884 0.000 0.112 0.004 0.000
#> SRR1003801     1  0.1792     0.8789 0.916 0.000 0.084 0.000 0.000
#> SRR1003802     3  0.4560     0.3385 0.484 0.000 0.508 0.000 0.008
#> SRR1003803     1  0.0486     0.9085 0.988 0.000 0.004 0.004 0.004
#> SRR1003804     1  0.1671     0.8843 0.924 0.000 0.076 0.000 0.000
#> SRR1003805     1  0.0693     0.9029 0.980 0.000 0.008 0.000 0.012
#> SRR1003806     1  0.1121     0.9004 0.956 0.000 0.044 0.000 0.000
#> SRR1003807     1  0.4065     0.5804 0.720 0.000 0.264 0.016 0.000
#> SRR1003809     1  0.5068     0.0455 0.572 0.000 0.388 0.000 0.040
#> SRR1003808     1  0.1082     0.8997 0.964 0.000 0.000 0.008 0.028
#> SRR1003810     1  0.1571     0.8936 0.936 0.000 0.060 0.000 0.004
#> SRR1003811     1  0.3988     0.6919 0.768 0.000 0.196 0.000 0.036
#> SRR1003812     1  0.0609     0.9043 0.980 0.000 0.000 0.000 0.020
#> SRR1003813     3  0.3883     0.6886 0.184 0.000 0.780 0.000 0.036
#> SRR1003814     1  0.2589     0.8295 0.888 0.000 0.012 0.008 0.092
#> SRR1003815     1  0.2848     0.8424 0.868 0.000 0.104 0.000 0.028
#> SRR1003816     1  0.0794     0.9005 0.972 0.000 0.000 0.000 0.028
#> SRR1003817     1  0.1041     0.8967 0.964 0.000 0.004 0.000 0.032
#> SRR1003818     1  0.1116     0.8983 0.964 0.000 0.004 0.004 0.028
#> SRR1003819     1  0.2474     0.8718 0.896 0.000 0.084 0.008 0.012
#> SRR1003820     1  0.0324     0.9058 0.992 0.000 0.004 0.000 0.004
#> SRR1003821     1  0.0798     0.9019 0.976 0.000 0.008 0.000 0.016
#> SRR1003822     3  0.4549     0.4096 0.464 0.000 0.528 0.000 0.008
#> SRR1003824     1  0.2612     0.8364 0.868 0.000 0.124 0.008 0.000
#> SRR1003823     1  0.0486     0.9068 0.988 0.000 0.004 0.004 0.004
#> SRR1003825     1  0.2249     0.8674 0.896 0.000 0.096 0.008 0.000
#> SRR1003826     1  0.1059     0.8985 0.968 0.000 0.008 0.004 0.020
#> SRR1003827     1  0.0162     0.9062 0.996 0.000 0.000 0.000 0.004
#> SRR1003828     1  0.2233     0.8750 0.904 0.000 0.080 0.016 0.000
#> SRR1003829     1  0.0451     0.9080 0.988 0.000 0.004 0.008 0.000
#> SRR1003830     1  0.0000     0.9066 1.000 0.000 0.000 0.000 0.000
#> SRR1003831     1  0.1408     0.8998 0.948 0.000 0.044 0.008 0.000
#> SRR1003832     1  0.0740     0.9083 0.980 0.000 0.008 0.008 0.004
#> SRR1003833     1  0.1195     0.9041 0.960 0.000 0.028 0.012 0.000
#> SRR1003834     1  0.1764     0.8904 0.928 0.000 0.064 0.008 0.000
#> SRR1003836     1  0.3087     0.7977 0.836 0.000 0.152 0.008 0.004
#> SRR1003835     1  0.1809     0.8911 0.928 0.000 0.060 0.012 0.000
#> SRR1003838     3  0.3203     0.6846 0.168 0.000 0.820 0.012 0.000
#> SRR1003837     1  0.0865     0.9070 0.972 0.000 0.024 0.004 0.000
#> SRR1003839     1  0.1670     0.8952 0.936 0.000 0.052 0.012 0.000
#> SRR1003840     1  0.3279     0.8313 0.868 0.000 0.028 0.040 0.064
#> SRR1003841     4  0.4063     0.0000 0.000 0.032 0.108 0.816 0.044
#> SRR1003842     1  0.0566     0.9076 0.984 0.000 0.000 0.012 0.004
#> SRR1003844     1  0.0727     0.9050 0.980 0.000 0.004 0.004 0.012
#> SRR1003845     1  0.3289     0.8359 0.860 0.000 0.088 0.036 0.016
#> SRR1003846     1  0.0693     0.9069 0.980 0.000 0.012 0.008 0.000
#> SRR1003847     1  0.1012     0.9069 0.968 0.000 0.020 0.012 0.000
#> SRR1003848     1  0.4491     0.2625 0.624 0.000 0.364 0.008 0.004
#> SRR1003849     3  0.3381     0.6908 0.176 0.000 0.808 0.000 0.016
#> SRR1003850     1  0.3141     0.7939 0.832 0.000 0.152 0.016 0.000
#> SRR1003851     3  0.3582     0.6891 0.224 0.000 0.768 0.008 0.000
#> SRR1003852     1  0.1651     0.8942 0.944 0.000 0.008 0.036 0.012
#> SRR1003853     1  0.1314     0.9056 0.960 0.000 0.012 0.012 0.016
#> SRR1003854     1  0.0693     0.9075 0.980 0.000 0.008 0.012 0.000
#> SRR1003843     1  0.4267     0.6282 0.736 0.000 0.232 0.028 0.004
#> SRR1003855     1  0.1168     0.9026 0.960 0.000 0.032 0.008 0.000
#> SRR1003856     3  0.4789     0.5612 0.400 0.000 0.580 0.016 0.004
#> SRR1003857     1  0.0865     0.9060 0.972 0.000 0.024 0.004 0.000
#> SRR1003858     1  0.0771     0.9071 0.976 0.000 0.020 0.000 0.004
#> SRR1003859     1  0.0324     0.9073 0.992 0.000 0.004 0.004 0.000
#> SRR1003860     1  0.0510     0.9067 0.984 0.000 0.016 0.000 0.000
#> SRR1003861     1  0.2304     0.8632 0.892 0.000 0.100 0.008 0.000
#> SRR1003862     1  0.0404     0.9056 0.988 0.000 0.000 0.000 0.012
#> SRR1003863     1  0.4029     0.4476 0.680 0.000 0.316 0.000 0.004
#> SRR1003864     1  0.0932     0.9026 0.972 0.000 0.004 0.004 0.020
#> SRR1003865     1  0.1413     0.9086 0.956 0.000 0.020 0.012 0.012
#> SRR1003866     1  0.0912     0.9090 0.972 0.000 0.016 0.000 0.012
#> SRR1003867     1  0.0798     0.9075 0.976 0.000 0.008 0.000 0.016

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1003755     6  0.4521     0.1265 0.448 0.000 0.024 0.000 0.004 0.524
#> SRR1003756     1  0.4537    -0.2205 0.492 0.000 0.024 0.000 0.004 0.480
#> SRR1003757     1  0.2918     0.8667 0.856 0.000 0.088 0.004 0.000 0.052
#> SRR1003758     1  0.2575     0.8870 0.880 0.000 0.072 0.004 0.000 0.044
#> SRR1003759     5  0.3393     0.4484 0.108 0.000 0.004 0.000 0.820 0.068
#> SRR1003760     5  0.3121     0.5425 0.016 0.032 0.008 0.004 0.864 0.076
#> SRR1003761     5  0.3299     0.5392 0.016 0.036 0.008 0.004 0.852 0.084
#> SRR1003762     6  0.4296     0.3356 0.088 0.032 0.020 0.000 0.068 0.792
#> SRR1003763     6  0.4267     0.2638 0.024 0.040 0.016 0.004 0.132 0.784
#> SRR1003764     6  0.4025     0.2892 0.032 0.016 0.028 0.000 0.128 0.796
#> SRR1003765     2  0.0000     0.8905 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003766     2  0.2426     0.8847 0.000 0.896 0.000 0.048 0.012 0.044
#> SRR1003767     2  0.3235     0.8159 0.000 0.848 0.004 0.076 0.012 0.060
#> SRR1003768     2  0.2426     0.8847 0.000 0.896 0.000 0.048 0.012 0.044
#> SRR1003769     2  0.2426     0.8847 0.000 0.896 0.000 0.048 0.012 0.044
#> SRR1003770     2  0.0000     0.8905 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1003771     2  0.3235     0.8159 0.000 0.848 0.004 0.076 0.012 0.060
#> SRR1003773     3  0.2030     0.7268 0.048 0.000 0.920 0.016 0.004 0.012
#> SRR1003772     1  0.0937     0.9115 0.960 0.000 0.000 0.000 0.000 0.040
#> SRR1003774     1  0.2066     0.9038 0.908 0.000 0.052 0.000 0.000 0.040
#> SRR1003775     1  0.1010     0.9122 0.960 0.000 0.004 0.000 0.000 0.036
#> SRR1003776     1  0.0777     0.9190 0.972 0.000 0.000 0.000 0.004 0.024
#> SRR1003777     1  0.1082     0.9095 0.956 0.000 0.004 0.000 0.000 0.040
#> SRR1003778     3  0.2888     0.6845 0.044 0.000 0.880 0.028 0.008 0.040
#> SRR1003779     1  0.1434     0.9083 0.940 0.000 0.012 0.000 0.000 0.048
#> SRR1003780     5  0.6292     0.1788 0.020 0.000 0.352 0.060 0.508 0.060
#> SRR1003781     1  0.0692     0.9157 0.976 0.000 0.004 0.000 0.000 0.020
#> SRR1003784     3  0.3081     0.6379 0.220 0.000 0.776 0.000 0.000 0.004
#> SRR1003785     3  0.1573     0.7380 0.052 0.000 0.936 0.004 0.004 0.004
#> SRR1003786     1  0.0935     0.9126 0.964 0.000 0.004 0.000 0.000 0.032
#> SRR1003783     1  0.0547     0.9178 0.980 0.000 0.000 0.000 0.000 0.020
#> SRR1003787     1  0.0146     0.9180 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1003788     1  0.3673     0.6712 0.736 0.000 0.244 0.000 0.004 0.016
#> SRR1003789     5  0.6349     0.2051 0.012 0.000 0.068 0.180 0.592 0.148
#> SRR1003790     1  0.0547     0.9178 0.980 0.000 0.000 0.000 0.000 0.020
#> SRR1003791     1  0.3498     0.8307 0.836 0.000 0.096 0.016 0.016 0.036
#> SRR1003792     1  0.0260     0.9201 0.992 0.000 0.008 0.000 0.000 0.000
#> SRR1003793     1  0.0551     0.9181 0.984 0.000 0.004 0.000 0.004 0.008
#> SRR1003794     1  0.0146     0.9198 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1003795     3  0.4770     0.6446 0.104 0.000 0.756 0.076 0.016 0.048
#> SRR1003796     3  0.1738     0.7355 0.052 0.000 0.928 0.016 0.000 0.004
#> SRR1003797     1  0.0777     0.9155 0.972 0.000 0.004 0.000 0.000 0.024
#> SRR1003798     1  0.1096     0.9199 0.964 0.000 0.020 0.004 0.008 0.004
#> SRR1003799     1  0.1261     0.9180 0.952 0.000 0.024 0.000 0.000 0.024
#> SRR1003800     1  0.1845     0.8982 0.916 0.000 0.072 0.004 0.000 0.008
#> SRR1003801     1  0.1829     0.9057 0.920 0.000 0.064 0.000 0.004 0.012
#> SRR1003802     3  0.4183     0.3777 0.380 0.000 0.604 0.008 0.000 0.008
#> SRR1003803     1  0.0653     0.9203 0.980 0.000 0.004 0.004 0.000 0.012
#> SRR1003804     1  0.1750     0.9085 0.928 0.000 0.056 0.004 0.004 0.008
#> SRR1003805     1  0.0405     0.9173 0.988 0.000 0.004 0.000 0.000 0.008
#> SRR1003806     1  0.1036     0.9199 0.964 0.000 0.024 0.004 0.000 0.008
#> SRR1003807     1  0.4490     0.5885 0.688 0.000 0.260 0.008 0.008 0.036
#> SRR1003809     1  0.4396     0.0375 0.520 0.000 0.456 0.000 0.000 0.024
#> SRR1003808     1  0.1059     0.9179 0.964 0.000 0.004 0.000 0.016 0.016
#> SRR1003810     1  0.1789     0.9106 0.924 0.000 0.044 0.000 0.000 0.032
#> SRR1003811     1  0.3672     0.7661 0.776 0.000 0.168 0.000 0.000 0.056
#> SRR1003812     1  0.1219     0.9066 0.948 0.000 0.004 0.000 0.000 0.048
#> SRR1003813     3  0.2187     0.7431 0.064 0.000 0.908 0.012 0.004 0.012
#> SRR1003814     1  0.2544     0.8376 0.864 0.000 0.004 0.000 0.012 0.120
#> SRR1003815     1  0.2948     0.8572 0.848 0.000 0.092 0.000 0.000 0.060
#> SRR1003816     1  0.1471     0.8986 0.932 0.000 0.004 0.000 0.000 0.064
#> SRR1003817     1  0.1327     0.9006 0.936 0.000 0.000 0.000 0.000 0.064
#> SRR1003818     1  0.1010     0.9138 0.960 0.000 0.000 0.000 0.004 0.036
#> SRR1003819     1  0.2619     0.8886 0.880 0.000 0.072 0.000 0.008 0.040
#> SRR1003820     1  0.0603     0.9163 0.980 0.000 0.004 0.000 0.000 0.016
#> SRR1003821     1  0.0692     0.9157 0.976 0.000 0.004 0.000 0.000 0.020
#> SRR1003822     3  0.3867     0.4693 0.328 0.000 0.660 0.000 0.000 0.012
#> SRR1003824     1  0.1888     0.9005 0.916 0.000 0.068 0.000 0.004 0.012
#> SRR1003823     1  0.0291     0.9183 0.992 0.000 0.004 0.000 0.000 0.004
#> SRR1003825     1  0.2280     0.8945 0.904 0.000 0.064 0.004 0.012 0.016
#> SRR1003826     1  0.0508     0.9173 0.984 0.000 0.004 0.000 0.000 0.012
#> SRR1003827     1  0.0405     0.9190 0.988 0.000 0.000 0.000 0.004 0.008
#> SRR1003828     1  0.2034     0.9057 0.920 0.000 0.044 0.004 0.008 0.024
#> SRR1003829     1  0.0260     0.9183 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1003830     1  0.0405     0.9195 0.988 0.000 0.004 0.000 0.000 0.008
#> SRR1003831     1  0.0891     0.9177 0.968 0.000 0.024 0.000 0.008 0.000
#> SRR1003832     1  0.0436     0.9179 0.988 0.000 0.004 0.000 0.004 0.004
#> SRR1003833     1  0.1078     0.9167 0.964 0.000 0.016 0.000 0.008 0.012
#> SRR1003834     1  0.1268     0.9150 0.952 0.000 0.036 0.000 0.008 0.004
#> SRR1003836     1  0.2274     0.8817 0.892 0.000 0.088 0.000 0.008 0.012
#> SRR1003835     1  0.2179     0.8960 0.908 0.000 0.064 0.004 0.008 0.016
#> SRR1003838     3  0.1692     0.7306 0.048 0.000 0.932 0.012 0.000 0.008
#> SRR1003837     1  0.0837     0.9178 0.972 0.000 0.020 0.000 0.004 0.004
#> SRR1003839     1  0.1555     0.9119 0.940 0.000 0.040 0.000 0.012 0.008
#> SRR1003840     1  0.2680     0.8766 0.892 0.000 0.016 0.016 0.048 0.028
#> SRR1003841     4  0.3069     0.0000 0.000 0.032 0.020 0.852 0.096 0.000
#> SRR1003842     1  0.0692     0.9174 0.976 0.000 0.000 0.000 0.004 0.020
#> SRR1003844     1  0.0405     0.9194 0.988 0.000 0.000 0.000 0.004 0.008
#> SRR1003845     1  0.2832     0.8746 0.884 0.000 0.040 0.016 0.016 0.044
#> SRR1003846     1  0.0881     0.9186 0.972 0.000 0.008 0.000 0.008 0.012
#> SRR1003847     1  0.1180     0.9164 0.960 0.000 0.016 0.000 0.012 0.012
#> SRR1003848     1  0.4265     0.3099 0.596 0.000 0.384 0.004 0.000 0.016
#> SRR1003849     3  0.1493     0.7423 0.056 0.000 0.936 0.004 0.004 0.000
#> SRR1003850     1  0.3069     0.8589 0.860 0.000 0.088 0.012 0.012 0.028
#> SRR1003851     3  0.2415     0.7379 0.084 0.000 0.888 0.016 0.000 0.012
#> SRR1003852     1  0.1218     0.9117 0.956 0.000 0.000 0.004 0.012 0.028
#> SRR1003853     1  0.1180     0.9170 0.960 0.000 0.012 0.000 0.012 0.016
#> SRR1003854     1  0.0881     0.9187 0.972 0.000 0.008 0.000 0.008 0.012
#> SRR1003843     1  0.4866     0.6445 0.712 0.000 0.196 0.040 0.012 0.040
#> SRR1003855     1  0.0951     0.9181 0.968 0.000 0.020 0.000 0.008 0.004
#> SRR1003856     3  0.3329     0.6196 0.236 0.000 0.756 0.004 0.000 0.004
#> SRR1003857     1  0.1053     0.9188 0.964 0.000 0.020 0.000 0.004 0.012
#> SRR1003858     1  0.0935     0.9178 0.964 0.000 0.032 0.000 0.004 0.000
#> SRR1003859     1  0.0405     0.9191 0.988 0.000 0.004 0.000 0.000 0.008
#> SRR1003860     1  0.0405     0.9194 0.988 0.000 0.008 0.000 0.000 0.004
#> SRR1003861     1  0.1728     0.9039 0.924 0.000 0.064 0.000 0.008 0.004
#> SRR1003862     1  0.0865     0.9133 0.964 0.000 0.000 0.000 0.000 0.036
#> SRR1003863     1  0.3784     0.5522 0.680 0.000 0.308 0.000 0.000 0.012
#> SRR1003864     1  0.0777     0.9158 0.972 0.000 0.004 0.000 0.000 0.024
#> SRR1003865     1  0.1528     0.9193 0.944 0.000 0.028 0.000 0.012 0.016
#> SRR1003866     1  0.0717     0.9192 0.976 0.000 0.008 0.000 0.000 0.016
#> SRR1003867     1  0.0935     0.9151 0.964 0.000 0.004 0.000 0.000 0.032

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0