cola Report for recount2:SRP033266

Date: 2019-12-25 23:54:04 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 15218 rows and 144 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 15218   144

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance
ATC:skmeans 2 1.000 0.960 0.985 **
ATC:NMF 2 1.000 0.960 0.979 **
ATC:pam 4 0.978 0.927 0.957 **
ATC:kmeans 2 0.820 0.948 0.958
ATC:hclust 3 0.808 0.876 0.931
ATC:mclust 4 0.798 0.898 0.935
CV:NMF 3 0.776 0.849 0.935
MAD:pam 4 0.771 0.904 0.919
MAD:NMF 3 0.764 0.836 0.921
SD:pam 5 0.688 0.865 0.867
SD:NMF 3 0.678 0.809 0.917
MAD:hclust 4 0.677 0.842 0.908
MAD:mclust 5 0.669 0.702 0.819
SD:mclust 5 0.654 0.760 0.845
CV:pam 4 0.573 0.879 0.915
SD:hclust 4 0.572 0.755 0.852
CV:hclust 3 0.559 0.836 0.925
SD:skmeans 3 0.525 0.748 0.863
CV:mclust 5 0.426 0.585 0.745
MAD:skmeans 2 0.417 0.794 0.881
CV:skmeans 2 0.321 0.748 0.857
CV:kmeans 5 0.148 0.476 0.588
MAD:kmeans 3 0.063 0.535 0.665
SD:kmeans 3 0.055 0.479 0.644

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k  1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.7387           0.916       0.953          0.411 0.615   0.615
#> CV:NMF      2 0.3791           0.736       0.767          0.441 0.615   0.615
#> MAD:NMF     2 0.4714           0.698       0.868          0.439 0.557   0.557
#> ATC:NMF     2 0.9998           0.960       0.979          0.411 0.573   0.573
#> SD:skmeans  2 0.3949           0.721       0.860          0.493 0.498   0.498
#> CV:skmeans  2 0.3205           0.748       0.857          0.501 0.497   0.497
#> MAD:skmeans 2 0.4170           0.794       0.881          0.490 0.528   0.528
#> ATC:skmeans 2 1.0000           0.960       0.985          0.481 0.513   0.513
#> SD:mclust   2 0.4161           0.733       0.833          0.344 0.812   0.812
#> CV:mclust   2 0.2623           0.775       0.781          0.304 0.730   0.730
#> MAD:mclust  2 0.2942           0.587       0.694          0.393 0.557   0.557
#> ATC:mclust  2 0.5102           0.898       0.914          0.438 0.539   0.539
#> SD:kmeans   2 0.0645           0.247       0.620          0.382 0.749   0.749
#> CV:kmeans   2 0.0654           0.000       0.774          0.318 1.000   1.000
#> MAD:kmeans  2 0.0762           0.554       0.656          0.399 0.590   0.590
#> ATC:kmeans  2 0.8199           0.948       0.958          0.448 0.528   0.528
#> SD:pam      2 0.5572           0.957       0.964          0.209 0.812   0.812
#> CV:pam      2 0.8023           0.919       0.937          0.156 0.812   0.812
#> MAD:pam     2 0.3057           0.456       0.709          0.296 0.548   0.548
#> ATC:pam     2 0.7573           0.839       0.936          0.376 0.676   0.676
#> SD:hclust   2 0.8011           0.925       0.950          0.274 0.660   0.660
#> CV:hclust   2 0.4215           0.847       0.920          0.186 0.894   0.894
#> MAD:hclust  2 0.6311           0.884       0.923          0.191 0.759   0.759
#> ATC:hclust  2 0.6077           0.861       0.925          0.422 0.528   0.528
get_stats(res_list, k = 3)
#>             k  1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.6784           0.809       0.917          0.539 0.667   0.489
#> CV:NMF      3 0.7759           0.849       0.935          0.472 0.669   0.490
#> MAD:NMF     3 0.7643           0.836       0.921          0.422 0.628   0.433
#> ATC:NMF     3 0.7253           0.664       0.849          0.378 0.788   0.669
#> SD:skmeans  3 0.5245           0.748       0.863          0.350 0.714   0.486
#> CV:skmeans  3 0.3159           0.485       0.677          0.326 0.717   0.489
#> MAD:skmeans 3 0.5535           0.755       0.870          0.352 0.688   0.466
#> ATC:skmeans 3 0.8937           0.893       0.947          0.218 0.837   0.700
#> SD:mclust   3 0.4119           0.637       0.824          0.690 0.600   0.507
#> CV:mclust   3 0.2636           0.529       0.704          0.619 0.647   0.559
#> MAD:mclust  3 0.3238           0.616       0.774          0.459 0.739   0.570
#> ATC:mclust  3 0.7110           0.907       0.922          0.393 0.777   0.615
#> SD:kmeans   3 0.0548           0.479       0.644          0.476 0.450   0.352
#> CV:kmeans   3 0.0565           0.428       0.573          0.497 0.812   0.812
#> MAD:kmeans  3 0.0630           0.535       0.665          0.412 0.812   0.691
#> ATC:kmeans  3 0.5357           0.789       0.852          0.284 0.901   0.814
#> SD:pam      3 0.6015           0.702       0.804          1.290 0.686   0.614
#> CV:pam      3 0.5345           0.835       0.897          1.097 0.906   0.884
#> MAD:pam     3 0.6071           0.819       0.826          0.730 0.560   0.402
#> ATC:pam     3 0.8788           0.915       0.962          0.407 0.783   0.684
#> SD:hclust   3 0.5142           0.861       0.903          0.338 0.987   0.981
#> CV:hclust   3 0.5595           0.836       0.925          1.022 0.708   0.676
#> MAD:hclust  3 0.3276           0.663       0.769          1.442 0.642   0.541
#> ATC:hclust  3 0.8084           0.876       0.931          0.334 0.937   0.881
get_stats(res_list, k = 4)
#>             k  1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.6992           0.782       0.889          0.157 0.806   0.524
#> CV:NMF      4 0.7174           0.654       0.819          0.137 0.848   0.610
#> MAD:NMF     4 0.8151           0.797       0.905          0.172 0.772   0.479
#> ATC:NMF     4 0.7911           0.855       0.925          0.186 0.723   0.504
#> SD:skmeans  4 0.6094           0.725       0.840          0.118 0.849   0.589
#> CV:skmeans  4 0.5509           0.640       0.795          0.120 0.777   0.440
#> MAD:skmeans 4 0.6321           0.735       0.850          0.123 0.849   0.589
#> ATC:skmeans 4 0.7852           0.908       0.930          0.154 0.929   0.831
#> SD:mclust   4 0.4862           0.344       0.675          0.157 0.668   0.364
#> CV:mclust   4 0.4011           0.594       0.766          0.114 0.822   0.706
#> MAD:mclust  4 0.5668           0.688       0.821          0.250 0.802   0.541
#> ATC:mclust  4 0.7979           0.898       0.935          0.147 0.916   0.787
#> SD:kmeans   4 0.1165           0.397       0.562          0.149 0.814   0.570
#> CV:kmeans   4 0.0806           0.409       0.623          0.231 0.666   0.589
#> MAD:kmeans  4 0.1635           0.451       0.591          0.168 0.809   0.583
#> ATC:kmeans  4 0.5400           0.695       0.781          0.154 1.000   1.000
#> SD:pam      4 0.6151           0.832       0.861          0.317 0.733   0.511
#> CV:pam      4 0.5729           0.879       0.915          0.462 0.820   0.749
#> MAD:pam     4 0.7705           0.904       0.919          0.318 0.813   0.612
#> ATC:pam     4 0.9779           0.927       0.957          0.125 0.902   0.800
#> SD:hclust   4 0.5720           0.755       0.852          0.742 0.691   0.523
#> CV:hclust   4 0.3413           0.458       0.677          0.571 0.816   0.703
#> MAD:hclust  4 0.6772           0.842       0.908          0.347 0.887   0.753
#> ATC:hclust  4 0.8441           0.884       0.934          0.043 0.985   0.968
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.777           0.786       0.868         0.0743 0.883   0.606
#> CV:NMF      5 0.736           0.735       0.810         0.0684 0.884   0.609
#> MAD:NMF     5 0.756           0.700       0.841         0.0771 0.862   0.546
#> ATC:NMF     5 0.684           0.749       0.809         0.0854 0.933   0.817
#> SD:skmeans  5 0.650           0.628       0.717         0.0628 1.000   1.000
#> CV:skmeans  5 0.670           0.590       0.739         0.0690 0.907   0.660
#> MAD:skmeans 5 0.659           0.662       0.779         0.0626 0.921   0.709
#> ATC:skmeans 5 0.743           0.799       0.857         0.1198 0.874   0.641
#> SD:mclust   5 0.654           0.760       0.845         0.1096 0.773   0.414
#> CV:mclust   5 0.426           0.585       0.745         0.2901 0.671   0.396
#> MAD:mclust  5 0.669           0.702       0.819         0.0548 0.970   0.889
#> ATC:mclust  5 0.818           0.917       0.955         0.0294 0.982   0.943
#> SD:kmeans   5 0.235           0.449       0.574         0.0958 0.904   0.696
#> CV:kmeans   5 0.148           0.476       0.588         0.1236 0.831   0.651
#> MAD:kmeans  5 0.322           0.525       0.619         0.1001 0.847   0.570
#> ATC:kmeans  5 0.539           0.624       0.724         0.0799 0.816   0.586
#> SD:pam      5 0.688           0.865       0.867         0.0942 0.937   0.808
#> CV:pam      5 0.553           0.733       0.850         0.1987 0.915   0.844
#> MAD:pam     5 0.815           0.920       0.939         0.0804 0.951   0.836
#> ATC:pam     5 0.881           0.884       0.914         0.1027 0.896   0.744
#> SD:hclust   5 0.602           0.726       0.835         0.1154 0.932   0.798
#> CV:hclust   5 0.483           0.428       0.610         0.1060 0.738   0.557
#> MAD:hclust  5 0.631           0.696       0.819         0.1196 0.854   0.619
#> ATC:hclust  5 0.745           0.836       0.871         0.1876 0.874   0.720
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.810           0.719       0.828         0.0414 0.935   0.716
#> CV:NMF      6 0.771           0.712       0.800         0.0444 0.925   0.670
#> MAD:NMF     6 0.751           0.693       0.780         0.0424 0.911   0.622
#> ATC:NMF     6 0.672           0.640       0.737         0.0710 0.828   0.506
#> SD:skmeans  6 0.676           0.431       0.624         0.0409 0.859   0.504
#> CV:skmeans  6 0.729           0.650       0.763         0.0412 0.948   0.758
#> MAD:skmeans 6 0.702           0.570       0.711         0.0401 0.970   0.864
#> ATC:skmeans 6 0.794           0.784       0.836         0.0519 0.950   0.803
#> SD:mclust   6 0.679           0.768       0.817         0.0675 0.963   0.850
#> CV:mclust   6 0.557           0.705       0.776         0.0878 0.926   0.723
#> MAD:mclust  6 0.724           0.721       0.783         0.0532 0.983   0.929
#> ATC:mclust  6 0.767           0.595       0.773         0.0962 0.892   0.633
#> SD:kmeans   6 0.372           0.348       0.589         0.0656 0.867   0.596
#> CV:kmeans   6 0.229           0.525       0.612         0.0800 0.992   0.976
#> MAD:kmeans  6 0.448           0.488       0.610         0.0577 0.944   0.806
#> ATC:kmeans  6 0.519           0.590       0.652         0.0567 0.926   0.735
#> SD:pam      6 0.768           0.872       0.873         0.0566 0.975   0.906
#> CV:pam      6 0.555           0.838       0.873         0.1527 0.824   0.633
#> MAD:pam     6 0.795           0.863       0.898         0.0817 0.948   0.794
#> ATC:pam     6 0.800           0.915       0.912         0.1500 0.906   0.695
#> SD:hclust   6 0.740           0.770       0.852         0.0665 0.984   0.941
#> CV:hclust   6 0.582           0.501       0.706         0.0802 0.660   0.381
#> MAD:hclust  6 0.722           0.855       0.889         0.0989 0.938   0.774
#> ATC:hclust  6 0.773           0.837       0.855         0.0415 0.977   0.928

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Results for each method


SD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15218 rows and 144 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.801           0.925       0.950         0.2735 0.660   0.660
#> 3 3 0.514           0.861       0.903         0.3377 0.987   0.981
#> 4 4 0.572           0.755       0.852         0.7419 0.691   0.523
#> 5 5 0.602           0.726       0.835         0.1154 0.932   0.798
#> 6 6 0.740           0.770       0.852         0.0665 0.984   0.941

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1036002     1   0.998      0.531 0.528 0.472
#> SRR1036003     1   0.998      0.531 0.528 0.472
#> SRR1036004     1   0.998      0.531 0.528 0.472
#> SRR1036005     1   0.000      0.750 1.000 0.000
#> SRR1036006     1   0.000      0.750 1.000 0.000
#> SRR1036007     1   0.000      0.750 1.000 0.000
#> SRR1036008     1   0.000      0.750 1.000 0.000
#> SRR1036009     1   0.000      0.750 1.000 0.000
#> SRR1036013     2   0.000      1.000 0.000 1.000
#> SRR1036014     2   0.000      1.000 0.000 1.000
#> SRR1036015     2   0.000      1.000 0.000 1.000
#> SRR1036016     2   0.000      1.000 0.000 1.000
#> SRR1036017     2   0.000      1.000 0.000 1.000
#> SRR1036018     2   0.000      1.000 0.000 1.000
#> SRR1036010     2   0.000      1.000 0.000 1.000
#> SRR1036011     2   0.000      1.000 0.000 1.000
#> SRR1036012     2   0.000      1.000 0.000 1.000
#> SRR1036019     2   0.000      1.000 0.000 1.000
#> SRR1036020     2   0.000      1.000 0.000 1.000
#> SRR1036021     2   0.000      1.000 0.000 1.000
#> SRR1036022     2   0.000      1.000 0.000 1.000
#> SRR1036023     2   0.000      1.000 0.000 1.000
#> SRR1036024     2   0.000      1.000 0.000 1.000
#> SRR1036025     2   0.000      1.000 0.000 1.000
#> SRR1036026     2   0.000      1.000 0.000 1.000
#> SRR1036027     2   0.000      1.000 0.000 1.000
#> SRR1036028     2   0.000      1.000 0.000 1.000
#> SRR1036029     2   0.000      1.000 0.000 1.000
#> SRR1036030     2   0.000      1.000 0.000 1.000
#> SRR1036031     2   0.000      1.000 0.000 1.000
#> SRR1036032     2   0.000      1.000 0.000 1.000
#> SRR1036033     2   0.000      1.000 0.000 1.000
#> SRR1036034     2   0.000      1.000 0.000 1.000
#> SRR1036035     2   0.000      1.000 0.000 1.000
#> SRR1036036     2   0.000      1.000 0.000 1.000
#> SRR1036037     2   0.000      1.000 0.000 1.000
#> SRR1036038     2   0.000      1.000 0.000 1.000
#> SRR1036039     2   0.000      1.000 0.000 1.000
#> SRR1036040     2   0.000      1.000 0.000 1.000
#> SRR1036041     2   0.000      1.000 0.000 1.000
#> SRR1036042     1   0.998      0.531 0.528 0.472
#> SRR1036043     1   0.998      0.531 0.528 0.472
#> SRR1036044     1   0.998      0.531 0.528 0.472
#> SRR1036045     1   0.998      0.531 0.528 0.472
#> SRR1036046     1   0.998      0.531 0.528 0.472
#> SRR1036047     1   0.998      0.531 0.528 0.472
#> SRR1036048     1   0.998      0.531 0.528 0.472
#> SRR1036049     1   0.998      0.531 0.528 0.472
#> SRR1036050     2   0.000      1.000 0.000 1.000
#> SRR1036051     2   0.000      1.000 0.000 1.000
#> SRR1036052     2   0.000      1.000 0.000 1.000
#> SRR1036053     2   0.000      1.000 0.000 1.000
#> SRR1036054     2   0.000      1.000 0.000 1.000
#> SRR1036055     2   0.000      1.000 0.000 1.000
#> SRR1036056     2   0.000      1.000 0.000 1.000
#> SRR1036057     2   0.000      1.000 0.000 1.000
#> SRR1036058     2   0.000      1.000 0.000 1.000
#> SRR1036059     2   0.000      1.000 0.000 1.000
#> SRR1036060     2   0.000      1.000 0.000 1.000
#> SRR1036061     2   0.000      1.000 0.000 1.000
#> SRR1036062     2   0.000      1.000 0.000 1.000
#> SRR1036063     2   0.000      1.000 0.000 1.000
#> SRR1036064     2   0.000      1.000 0.000 1.000
#> SRR1036065     2   0.000      1.000 0.000 1.000
#> SRR1036066     2   0.000      1.000 0.000 1.000
#> SRR1036067     2   0.000      1.000 0.000 1.000
#> SRR1036068     2   0.000      1.000 0.000 1.000
#> SRR1036069     2   0.000      1.000 0.000 1.000
#> SRR1036070     2   0.000      1.000 0.000 1.000
#> SRR1036071     2   0.000      1.000 0.000 1.000
#> SRR1036072     2   0.000      1.000 0.000 1.000
#> SRR1036073     2   0.000      1.000 0.000 1.000
#> SRR1036074     2   0.000      1.000 0.000 1.000
#> SRR1036075     2   0.000      1.000 0.000 1.000
#> SRR1036076     2   0.000      1.000 0.000 1.000
#> SRR1036077     2   0.000      1.000 0.000 1.000
#> SRR1036078     2   0.000      1.000 0.000 1.000
#> SRR1036079     2   0.000      1.000 0.000 1.000
#> SRR1036080     2   0.000      1.000 0.000 1.000
#> SRR1036081     2   0.000      1.000 0.000 1.000
#> SRR1036082     2   0.000      1.000 0.000 1.000
#> SRR1036083     2   0.000      1.000 0.000 1.000
#> SRR1036084     2   0.000      1.000 0.000 1.000
#> SRR1036090     2   0.000      1.000 0.000 1.000
#> SRR1036091     2   0.000      1.000 0.000 1.000
#> SRR1036092     2   0.000      1.000 0.000 1.000
#> SRR1036093     2   0.000      1.000 0.000 1.000
#> SRR1036094     2   0.000      1.000 0.000 1.000
#> SRR1036085     1   0.000      0.750 1.000 0.000
#> SRR1036086     1   0.000      0.750 1.000 0.000
#> SRR1036087     1   0.000      0.750 1.000 0.000
#> SRR1036088     1   0.000      0.750 1.000 0.000
#> SRR1036089     1   0.000      0.750 1.000 0.000
#> SRR1036095     2   0.000      1.000 0.000 1.000
#> SRR1036096     2   0.000      1.000 0.000 1.000
#> SRR1036097     2   0.000      1.000 0.000 1.000
#> SRR1036098     2   0.000      1.000 0.000 1.000
#> SRR1036099     2   0.000      1.000 0.000 1.000
#> SRR1036100     2   0.000      1.000 0.000 1.000
#> SRR1036101     2   0.000      1.000 0.000 1.000
#> SRR1036102     2   0.000      1.000 0.000 1.000
#> SRR1036103     2   0.000      1.000 0.000 1.000
#> SRR1036104     2   0.000      1.000 0.000 1.000
#> SRR1036105     1   0.000      0.750 1.000 0.000
#> SRR1036106     1   0.000      0.750 1.000 0.000
#> SRR1036107     1   0.000      0.750 1.000 0.000
#> SRR1036108     1   0.000      0.750 1.000 0.000
#> SRR1036109     1   0.000      0.750 1.000 0.000
#> SRR1036110     2   0.000      1.000 0.000 1.000
#> SRR1036111     2   0.000      1.000 0.000 1.000
#> SRR1036112     2   0.000      1.000 0.000 1.000
#> SRR1036113     2   0.000      1.000 0.000 1.000
#> SRR1036114     2   0.000      1.000 0.000 1.000
#> SRR1036115     2   0.000      1.000 0.000 1.000
#> SRR1036116     2   0.000      1.000 0.000 1.000
#> SRR1036117     2   0.000      1.000 0.000 1.000
#> SRR1036118     2   0.000      1.000 0.000 1.000
#> SRR1036119     2   0.000      1.000 0.000 1.000
#> SRR1036120     1   0.963      0.626 0.612 0.388
#> SRR1036121     1   0.963      0.626 0.612 0.388
#> SRR1036122     1   0.963      0.626 0.612 0.388
#> SRR1036123     1   0.963      0.626 0.612 0.388
#> SRR1036124     1   0.963      0.626 0.612 0.388
#> SRR1036125     2   0.000      1.000 0.000 1.000
#> SRR1036126     2   0.000      1.000 0.000 1.000
#> SRR1036127     2   0.000      1.000 0.000 1.000
#> SRR1036128     2   0.000      1.000 0.000 1.000
#> SRR1036129     2   0.000      1.000 0.000 1.000
#> SRR1036130     2   0.000      1.000 0.000 1.000
#> SRR1036131     2   0.000      1.000 0.000 1.000
#> SRR1036132     2   0.000      1.000 0.000 1.000
#> SRR1036133     2   0.000      1.000 0.000 1.000
#> SRR1036134     2   0.000      1.000 0.000 1.000
#> SRR1036135     2   0.000      1.000 0.000 1.000
#> SRR1036136     2   0.000      1.000 0.000 1.000
#> SRR1036137     2   0.000      1.000 0.000 1.000
#> SRR1036138     2   0.000      1.000 0.000 1.000
#> SRR1036139     2   0.000      1.000 0.000 1.000
#> SRR1036140     2   0.000      1.000 0.000 1.000
#> SRR1036141     2   0.000      1.000 0.000 1.000
#> SRR1036142     2   0.000      1.000 0.000 1.000
#> SRR1036143     2   0.000      1.000 0.000 1.000
#> SRR1036144     2   0.000      1.000 0.000 1.000
#> SRR1036145     2   0.000      1.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1036002     3   0.891      0.476 0.140 0.332 0.528
#> SRR1036003     3   0.891      0.476 0.140 0.332 0.528
#> SRR1036004     3   0.891      0.476 0.140 0.332 0.528
#> SRR1036005     3   0.000      0.597 0.000 0.000 1.000
#> SRR1036006     3   0.000      0.597 0.000 0.000 1.000
#> SRR1036007     3   0.000      0.597 0.000 0.000 1.000
#> SRR1036008     3   0.000      0.597 0.000 0.000 1.000
#> SRR1036009     3   0.000      0.597 0.000 0.000 1.000
#> SRR1036013     2   0.129      0.939 0.032 0.968 0.000
#> SRR1036014     2   0.129      0.939 0.032 0.968 0.000
#> SRR1036015     2   0.129      0.939 0.032 0.968 0.000
#> SRR1036016     2   0.129      0.939 0.032 0.968 0.000
#> SRR1036017     2   0.129      0.939 0.032 0.968 0.000
#> SRR1036018     2   0.129      0.939 0.032 0.968 0.000
#> SRR1036010     2   0.382      0.898 0.148 0.852 0.000
#> SRR1036011     2   0.382      0.898 0.148 0.852 0.000
#> SRR1036012     2   0.382      0.898 0.148 0.852 0.000
#> SRR1036019     2   0.296      0.903 0.100 0.900 0.000
#> SRR1036020     2   0.296      0.903 0.100 0.900 0.000
#> SRR1036021     2   0.296      0.903 0.100 0.900 0.000
#> SRR1036022     2   0.296      0.903 0.100 0.900 0.000
#> SRR1036023     2   0.296      0.903 0.100 0.900 0.000
#> SRR1036024     2   0.164      0.937 0.044 0.956 0.000
#> SRR1036025     2   0.164      0.937 0.044 0.956 0.000
#> SRR1036026     2   0.164      0.937 0.044 0.956 0.000
#> SRR1036027     2   0.164      0.937 0.044 0.956 0.000
#> SRR1036028     2   0.164      0.937 0.044 0.956 0.000
#> SRR1036029     2   0.164      0.937 0.044 0.956 0.000
#> SRR1036030     2   0.207      0.931 0.060 0.940 0.000
#> SRR1036031     2   0.207      0.931 0.060 0.940 0.000
#> SRR1036032     2   0.207      0.931 0.060 0.940 0.000
#> SRR1036033     2   0.207      0.931 0.060 0.940 0.000
#> SRR1036034     2   0.207      0.931 0.060 0.940 0.000
#> SRR1036035     2   0.207      0.931 0.060 0.940 0.000
#> SRR1036036     2   0.207      0.931 0.060 0.940 0.000
#> SRR1036037     2   0.207      0.931 0.060 0.940 0.000
#> SRR1036038     2   0.226      0.935 0.068 0.932 0.000
#> SRR1036039     2   0.226      0.935 0.068 0.932 0.000
#> SRR1036040     2   0.226      0.935 0.068 0.932 0.000
#> SRR1036041     2   0.226      0.939 0.068 0.932 0.000
#> SRR1036042     3   0.891      0.476 0.140 0.332 0.528
#> SRR1036043     3   0.891      0.476 0.140 0.332 0.528
#> SRR1036044     3   0.891      0.476 0.140 0.332 0.528
#> SRR1036045     3   0.891      0.476 0.140 0.332 0.528
#> SRR1036046     3   0.891      0.476 0.140 0.332 0.528
#> SRR1036047     3   0.891      0.476 0.140 0.332 0.528
#> SRR1036048     3   0.891      0.476 0.140 0.332 0.528
#> SRR1036049     3   0.891      0.476 0.140 0.332 0.528
#> SRR1036050     2   0.226      0.939 0.068 0.932 0.000
#> SRR1036051     2   0.226      0.939 0.068 0.932 0.000
#> SRR1036052     2   0.226      0.939 0.068 0.932 0.000
#> SRR1036053     2   0.226      0.939 0.068 0.932 0.000
#> SRR1036054     2   0.226      0.939 0.068 0.932 0.000
#> SRR1036055     2   0.254      0.934 0.080 0.920 0.000
#> SRR1036056     2   0.254      0.934 0.080 0.920 0.000
#> SRR1036057     2   0.254      0.934 0.080 0.920 0.000
#> SRR1036058     2   0.141      0.938 0.036 0.964 0.000
#> SRR1036059     2   0.141      0.938 0.036 0.964 0.000
#> SRR1036060     2   0.141      0.938 0.036 0.964 0.000
#> SRR1036061     2   0.141      0.938 0.036 0.964 0.000
#> SRR1036062     2   0.141      0.938 0.036 0.964 0.000
#> SRR1036063     2   0.141      0.938 0.036 0.964 0.000
#> SRR1036064     2   0.141      0.938 0.036 0.964 0.000
#> SRR1036065     2   0.141      0.938 0.036 0.964 0.000
#> SRR1036066     2   0.164      0.937 0.044 0.956 0.000
#> SRR1036067     2   0.164      0.937 0.044 0.956 0.000
#> SRR1036068     2   0.164      0.937 0.044 0.956 0.000
#> SRR1036069     2   0.164      0.937 0.044 0.956 0.000
#> SRR1036070     2   0.164      0.937 0.044 0.956 0.000
#> SRR1036071     2   0.164      0.937 0.044 0.956 0.000
#> SRR1036072     2   0.164      0.937 0.044 0.956 0.000
#> SRR1036073     2   0.164      0.937 0.044 0.956 0.000
#> SRR1036074     2   0.207      0.931 0.060 0.940 0.000
#> SRR1036075     2   0.207      0.931 0.060 0.940 0.000
#> SRR1036076     2   0.207      0.931 0.060 0.940 0.000
#> SRR1036077     2   0.207      0.931 0.060 0.940 0.000
#> SRR1036078     2   0.207      0.931 0.060 0.940 0.000
#> SRR1036079     2   0.207      0.931 0.060 0.940 0.000
#> SRR1036080     2   0.207      0.931 0.060 0.940 0.000
#> SRR1036081     2   0.207      0.931 0.060 0.940 0.000
#> SRR1036082     2   0.207      0.930 0.060 0.940 0.000
#> SRR1036083     2   0.207      0.930 0.060 0.940 0.000
#> SRR1036084     2   0.207      0.930 0.060 0.940 0.000
#> SRR1036090     2   0.288      0.905 0.096 0.904 0.000
#> SRR1036091     2   0.288      0.905 0.096 0.904 0.000
#> SRR1036092     2   0.288      0.905 0.096 0.904 0.000
#> SRR1036093     2   0.288      0.905 0.096 0.904 0.000
#> SRR1036094     2   0.288      0.905 0.096 0.904 0.000
#> SRR1036085     3   0.000      0.597 0.000 0.000 1.000
#> SRR1036086     3   0.000      0.597 0.000 0.000 1.000
#> SRR1036087     3   0.000      0.597 0.000 0.000 1.000
#> SRR1036088     3   0.000      0.597 0.000 0.000 1.000
#> SRR1036089     3   0.000      0.597 0.000 0.000 1.000
#> SRR1036095     2   0.207      0.931 0.060 0.940 0.000
#> SRR1036096     2   0.207      0.931 0.060 0.940 0.000
#> SRR1036097     2   0.207      0.931 0.060 0.940 0.000
#> SRR1036098     2   0.207      0.931 0.060 0.940 0.000
#> SRR1036099     2   0.207      0.931 0.060 0.940 0.000
#> SRR1036100     2   0.196      0.932 0.056 0.944 0.000
#> SRR1036101     2   0.196      0.932 0.056 0.944 0.000
#> SRR1036102     2   0.196      0.932 0.056 0.944 0.000
#> SRR1036103     2   0.196      0.932 0.056 0.944 0.000
#> SRR1036104     2   0.196      0.932 0.056 0.944 0.000
#> SRR1036105     3   0.000      0.597 0.000 0.000 1.000
#> SRR1036106     3   0.000      0.597 0.000 0.000 1.000
#> SRR1036107     3   0.000      0.597 0.000 0.000 1.000
#> SRR1036108     3   0.000      0.597 0.000 0.000 1.000
#> SRR1036109     3   0.000      0.597 0.000 0.000 1.000
#> SRR1036110     2   0.196      0.931 0.056 0.944 0.000
#> SRR1036111     2   0.196      0.931 0.056 0.944 0.000
#> SRR1036112     2   0.196      0.931 0.056 0.944 0.000
#> SRR1036113     2   0.196      0.931 0.056 0.944 0.000
#> SRR1036114     2   0.196      0.931 0.056 0.944 0.000
#> SRR1036115     2   0.207      0.931 0.060 0.940 0.000
#> SRR1036116     2   0.207      0.931 0.060 0.940 0.000
#> SRR1036117     2   0.207      0.931 0.060 0.940 0.000
#> SRR1036118     2   0.207      0.931 0.060 0.940 0.000
#> SRR1036119     2   0.207      0.931 0.060 0.940 0.000
#> SRR1036120     1   0.207      1.000 0.940 0.060 0.000
#> SRR1036121     1   0.207      1.000 0.940 0.060 0.000
#> SRR1036122     1   0.207      1.000 0.940 0.060 0.000
#> SRR1036123     1   0.207      1.000 0.940 0.060 0.000
#> SRR1036124     1   0.207      1.000 0.940 0.060 0.000
#> SRR1036125     2   0.164      0.937 0.044 0.956 0.000
#> SRR1036126     2   0.164      0.937 0.044 0.956 0.000
#> SRR1036127     2   0.164      0.937 0.044 0.956 0.000
#> SRR1036128     2   0.164      0.937 0.044 0.956 0.000
#> SRR1036129     2   0.164      0.937 0.044 0.956 0.000
#> SRR1036130     2   0.164      0.937 0.044 0.956 0.000
#> SRR1036131     2   0.164      0.937 0.044 0.956 0.000
#> SRR1036132     2   0.164      0.937 0.044 0.956 0.000
#> SRR1036133     2   0.271      0.910 0.088 0.912 0.000
#> SRR1036134     2   0.271      0.910 0.088 0.912 0.000
#> SRR1036135     2   0.271      0.910 0.088 0.912 0.000
#> SRR1036136     2   0.271      0.910 0.088 0.912 0.000
#> SRR1036137     2   0.271      0.910 0.088 0.912 0.000
#> SRR1036138     2   0.288      0.905 0.096 0.904 0.000
#> SRR1036139     2   0.288      0.905 0.096 0.904 0.000
#> SRR1036140     2   0.288      0.905 0.096 0.904 0.000
#> SRR1036141     2   0.288      0.905 0.096 0.904 0.000
#> SRR1036142     2   0.288      0.905 0.096 0.904 0.000
#> SRR1036143     2   0.288      0.905 0.096 0.904 0.000
#> SRR1036144     2   0.288      0.905 0.096 0.904 0.000
#> SRR1036145     2   0.288      0.905 0.096 0.904 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1036002     3  0.6868      0.550 0.004 0.372 0.528 0.096
#> SRR1036003     3  0.6868      0.550 0.004 0.372 0.528 0.096
#> SRR1036004     3  0.6868      0.550 0.004 0.372 0.528 0.096
#> SRR1036005     3  0.0000      0.673 0.000 0.000 1.000 0.000
#> SRR1036006     3  0.0000      0.673 0.000 0.000 1.000 0.000
#> SRR1036007     3  0.0000      0.673 0.000 0.000 1.000 0.000
#> SRR1036008     3  0.0000      0.673 0.000 0.000 1.000 0.000
#> SRR1036009     3  0.0000      0.673 0.000 0.000 1.000 0.000
#> SRR1036013     1  0.4961      0.324 0.552 0.448 0.000 0.000
#> SRR1036014     1  0.4961      0.324 0.552 0.448 0.000 0.000
#> SRR1036015     1  0.4961      0.324 0.552 0.448 0.000 0.000
#> SRR1036016     1  0.4961      0.324 0.552 0.448 0.000 0.000
#> SRR1036017     1  0.4961      0.324 0.552 0.448 0.000 0.000
#> SRR1036018     1  0.4961      0.324 0.552 0.448 0.000 0.000
#> SRR1036010     1  0.4549      0.714 0.804 0.096 0.000 0.100
#> SRR1036011     1  0.4549      0.714 0.804 0.096 0.000 0.100
#> SRR1036012     1  0.4549      0.714 0.804 0.096 0.000 0.100
#> SRR1036019     2  0.1940      0.872 0.000 0.924 0.000 0.076
#> SRR1036020     2  0.1940      0.872 0.000 0.924 0.000 0.076
#> SRR1036021     2  0.1940      0.872 0.000 0.924 0.000 0.076
#> SRR1036022     2  0.1940      0.872 0.000 0.924 0.000 0.076
#> SRR1036023     2  0.1940      0.872 0.000 0.924 0.000 0.076
#> SRR1036024     1  0.4406      0.647 0.700 0.300 0.000 0.000
#> SRR1036025     1  0.4406      0.647 0.700 0.300 0.000 0.000
#> SRR1036026     1  0.4406      0.647 0.700 0.300 0.000 0.000
#> SRR1036027     1  0.4406      0.647 0.700 0.300 0.000 0.000
#> SRR1036028     1  0.4406      0.647 0.700 0.300 0.000 0.000
#> SRR1036029     1  0.4406      0.647 0.700 0.300 0.000 0.000
#> SRR1036030     2  0.1209      0.883 0.032 0.964 0.000 0.004
#> SRR1036031     2  0.1209      0.883 0.032 0.964 0.000 0.004
#> SRR1036032     2  0.1209      0.883 0.032 0.964 0.000 0.004
#> SRR1036033     2  0.1209      0.883 0.032 0.964 0.000 0.004
#> SRR1036034     2  0.1209      0.883 0.032 0.964 0.000 0.004
#> SRR1036035     2  0.1209      0.883 0.032 0.964 0.000 0.004
#> SRR1036036     2  0.1209      0.883 0.032 0.964 0.000 0.004
#> SRR1036037     2  0.1209      0.883 0.032 0.964 0.000 0.004
#> SRR1036038     1  0.3806      0.775 0.824 0.156 0.000 0.020
#> SRR1036039     1  0.3806      0.775 0.824 0.156 0.000 0.020
#> SRR1036040     1  0.3806      0.775 0.824 0.156 0.000 0.020
#> SRR1036041     1  0.3052      0.798 0.860 0.136 0.000 0.004
#> SRR1036042     3  0.6868      0.550 0.004 0.372 0.528 0.096
#> SRR1036043     3  0.6868      0.550 0.004 0.372 0.528 0.096
#> SRR1036044     3  0.6868      0.550 0.004 0.372 0.528 0.096
#> SRR1036045     3  0.6868      0.550 0.004 0.372 0.528 0.096
#> SRR1036046     3  0.6868      0.550 0.004 0.372 0.528 0.096
#> SRR1036047     3  0.6868      0.550 0.004 0.372 0.528 0.096
#> SRR1036048     3  0.6868      0.550 0.004 0.372 0.528 0.096
#> SRR1036049     3  0.6868      0.550 0.004 0.372 0.528 0.096
#> SRR1036050     1  0.3052      0.798 0.860 0.136 0.000 0.004
#> SRR1036051     1  0.3052      0.798 0.860 0.136 0.000 0.004
#> SRR1036052     1  0.3052      0.798 0.860 0.136 0.000 0.004
#> SRR1036053     1  0.3052      0.798 0.860 0.136 0.000 0.004
#> SRR1036054     1  0.3052      0.798 0.860 0.136 0.000 0.004
#> SRR1036055     1  0.4155      0.724 0.756 0.240 0.000 0.004
#> SRR1036056     1  0.4155      0.724 0.756 0.240 0.000 0.004
#> SRR1036057     1  0.4155      0.724 0.756 0.240 0.000 0.004
#> SRR1036058     2  0.5587      0.457 0.372 0.600 0.000 0.028
#> SRR1036059     2  0.5587      0.457 0.372 0.600 0.000 0.028
#> SRR1036060     2  0.5587      0.457 0.372 0.600 0.000 0.028
#> SRR1036061     2  0.5587      0.457 0.372 0.600 0.000 0.028
#> SRR1036062     2  0.5587      0.457 0.372 0.600 0.000 0.028
#> SRR1036063     2  0.5587      0.457 0.372 0.600 0.000 0.028
#> SRR1036064     2  0.5587      0.457 0.372 0.600 0.000 0.028
#> SRR1036065     2  0.5587      0.457 0.372 0.600 0.000 0.028
#> SRR1036066     1  0.2149      0.821 0.912 0.088 0.000 0.000
#> SRR1036067     1  0.2149      0.821 0.912 0.088 0.000 0.000
#> SRR1036068     1  0.2149      0.821 0.912 0.088 0.000 0.000
#> SRR1036069     1  0.2149      0.821 0.912 0.088 0.000 0.000
#> SRR1036070     1  0.2149      0.821 0.912 0.088 0.000 0.000
#> SRR1036071     1  0.2149      0.821 0.912 0.088 0.000 0.000
#> SRR1036072     1  0.2149      0.821 0.912 0.088 0.000 0.000
#> SRR1036073     1  0.2149      0.821 0.912 0.088 0.000 0.000
#> SRR1036074     2  0.1388      0.882 0.028 0.960 0.000 0.012
#> SRR1036075     2  0.1388      0.882 0.028 0.960 0.000 0.012
#> SRR1036076     2  0.1388      0.882 0.028 0.960 0.000 0.012
#> SRR1036077     2  0.1388      0.882 0.028 0.960 0.000 0.012
#> SRR1036078     2  0.1388      0.882 0.028 0.960 0.000 0.012
#> SRR1036079     2  0.1388      0.882 0.028 0.960 0.000 0.012
#> SRR1036080     2  0.1388      0.882 0.028 0.960 0.000 0.012
#> SRR1036081     2  0.1388      0.882 0.028 0.960 0.000 0.012
#> SRR1036082     2  0.1256      0.883 0.028 0.964 0.000 0.008
#> SRR1036083     2  0.1256      0.883 0.028 0.964 0.000 0.008
#> SRR1036084     2  0.1256      0.883 0.028 0.964 0.000 0.008
#> SRR1036090     2  0.2125      0.873 0.004 0.920 0.000 0.076
#> SRR1036091     2  0.2125      0.873 0.004 0.920 0.000 0.076
#> SRR1036092     2  0.2125      0.873 0.004 0.920 0.000 0.076
#> SRR1036093     2  0.2125      0.873 0.004 0.920 0.000 0.076
#> SRR1036094     2  0.2125      0.873 0.004 0.920 0.000 0.076
#> SRR1036085     3  0.0000      0.673 0.000 0.000 1.000 0.000
#> SRR1036086     3  0.0000      0.673 0.000 0.000 1.000 0.000
#> SRR1036087     3  0.0000      0.673 0.000 0.000 1.000 0.000
#> SRR1036088     3  0.0000      0.673 0.000 0.000 1.000 0.000
#> SRR1036089     3  0.0000      0.673 0.000 0.000 1.000 0.000
#> SRR1036095     1  0.0895      0.792 0.976 0.020 0.000 0.004
#> SRR1036096     1  0.0895      0.792 0.976 0.020 0.000 0.004
#> SRR1036097     1  0.0895      0.792 0.976 0.020 0.000 0.004
#> SRR1036098     1  0.0895      0.792 0.976 0.020 0.000 0.004
#> SRR1036099     1  0.0895      0.792 0.976 0.020 0.000 0.004
#> SRR1036100     2  0.1305      0.883 0.036 0.960 0.000 0.004
#> SRR1036101     2  0.1305      0.883 0.036 0.960 0.000 0.004
#> SRR1036102     2  0.1305      0.883 0.036 0.960 0.000 0.004
#> SRR1036103     2  0.1305      0.883 0.036 0.960 0.000 0.004
#> SRR1036104     2  0.1305      0.883 0.036 0.960 0.000 0.004
#> SRR1036105     3  0.0000      0.673 0.000 0.000 1.000 0.000
#> SRR1036106     3  0.0000      0.673 0.000 0.000 1.000 0.000
#> SRR1036107     3  0.0000      0.673 0.000 0.000 1.000 0.000
#> SRR1036108     3  0.0000      0.673 0.000 0.000 1.000 0.000
#> SRR1036109     3  0.0000      0.673 0.000 0.000 1.000 0.000
#> SRR1036110     2  0.1488      0.880 0.032 0.956 0.000 0.012
#> SRR1036111     2  0.1488      0.880 0.032 0.956 0.000 0.012
#> SRR1036112     2  0.1488      0.880 0.032 0.956 0.000 0.012
#> SRR1036113     2  0.1488      0.880 0.032 0.956 0.000 0.012
#> SRR1036114     2  0.1488      0.880 0.032 0.956 0.000 0.012
#> SRR1036115     1  0.0895      0.792 0.976 0.020 0.000 0.004
#> SRR1036116     1  0.0895      0.792 0.976 0.020 0.000 0.004
#> SRR1036117     1  0.0895      0.792 0.976 0.020 0.000 0.004
#> SRR1036118     1  0.0895      0.792 0.976 0.020 0.000 0.004
#> SRR1036119     1  0.0895      0.792 0.976 0.020 0.000 0.004
#> SRR1036120     4  0.1174      1.000 0.020 0.012 0.000 0.968
#> SRR1036121     4  0.1174      1.000 0.020 0.012 0.000 0.968
#> SRR1036122     4  0.1174      1.000 0.020 0.012 0.000 0.968
#> SRR1036123     4  0.1174      1.000 0.020 0.012 0.000 0.968
#> SRR1036124     4  0.1174      1.000 0.020 0.012 0.000 0.968
#> SRR1036125     1  0.1743      0.817 0.940 0.056 0.000 0.004
#> SRR1036126     1  0.1743      0.817 0.940 0.056 0.000 0.004
#> SRR1036127     1  0.1743      0.817 0.940 0.056 0.000 0.004
#> SRR1036128     1  0.1743      0.817 0.940 0.056 0.000 0.004
#> SRR1036129     1  0.1743      0.817 0.940 0.056 0.000 0.004
#> SRR1036130     1  0.1743      0.817 0.940 0.056 0.000 0.004
#> SRR1036131     1  0.1743      0.817 0.940 0.056 0.000 0.004
#> SRR1036132     1  0.1743      0.817 0.940 0.056 0.000 0.004
#> SRR1036133     2  0.2402      0.876 0.012 0.912 0.000 0.076
#> SRR1036134     2  0.2402      0.876 0.012 0.912 0.000 0.076
#> SRR1036135     2  0.2402      0.876 0.012 0.912 0.000 0.076
#> SRR1036136     2  0.2402      0.876 0.012 0.912 0.000 0.076
#> SRR1036137     2  0.2402      0.876 0.012 0.912 0.000 0.076
#> SRR1036138     2  0.2125      0.873 0.004 0.920 0.000 0.076
#> SRR1036139     2  0.2125      0.873 0.004 0.920 0.000 0.076
#> SRR1036140     2  0.2125      0.873 0.004 0.920 0.000 0.076
#> SRR1036141     2  0.2125      0.873 0.004 0.920 0.000 0.076
#> SRR1036142     2  0.2125      0.873 0.004 0.920 0.000 0.076
#> SRR1036143     2  0.2125      0.873 0.004 0.920 0.000 0.076
#> SRR1036144     2  0.2125      0.873 0.004 0.920 0.000 0.076
#> SRR1036145     2  0.2125      0.873 0.004 0.920 0.000 0.076

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1036002     3  0.7360      0.569 0.012 0.276 0.528 0.092 0.092
#> SRR1036003     3  0.7360      0.569 0.012 0.276 0.528 0.092 0.092
#> SRR1036004     3  0.7360      0.569 0.012 0.276 0.528 0.092 0.092
#> SRR1036005     3  0.0000      0.683 0.000 0.000 1.000 0.000 0.000
#> SRR1036006     3  0.0000      0.683 0.000 0.000 1.000 0.000 0.000
#> SRR1036007     3  0.0000      0.683 0.000 0.000 1.000 0.000 0.000
#> SRR1036008     3  0.0000      0.683 0.000 0.000 1.000 0.000 0.000
#> SRR1036009     3  0.0000      0.683 0.000 0.000 1.000 0.000 0.000
#> SRR1036013     1  0.5843      0.358 0.572 0.124 0.000 0.304 0.000
#> SRR1036014     1  0.5843      0.358 0.572 0.124 0.000 0.304 0.000
#> SRR1036015     1  0.5843      0.358 0.572 0.124 0.000 0.304 0.000
#> SRR1036016     1  0.5843      0.358 0.572 0.124 0.000 0.304 0.000
#> SRR1036017     1  0.5843      0.358 0.572 0.124 0.000 0.304 0.000
#> SRR1036018     1  0.5843      0.358 0.572 0.124 0.000 0.304 0.000
#> SRR1036010     1  0.3648      0.745 0.824 0.000 0.000 0.092 0.084
#> SRR1036011     1  0.3648      0.745 0.824 0.000 0.000 0.092 0.084
#> SRR1036012     1  0.3648      0.745 0.824 0.000 0.000 0.092 0.084
#> SRR1036019     2  0.0324      0.869 0.000 0.992 0.000 0.004 0.004
#> SRR1036020     2  0.0324      0.869 0.000 0.992 0.000 0.004 0.004
#> SRR1036021     2  0.0324      0.869 0.000 0.992 0.000 0.004 0.004
#> SRR1036022     2  0.0324      0.869 0.000 0.992 0.000 0.004 0.004
#> SRR1036023     2  0.0324      0.869 0.000 0.992 0.000 0.004 0.004
#> SRR1036024     1  0.4104      0.664 0.748 0.032 0.000 0.220 0.000
#> SRR1036025     1  0.4104      0.664 0.748 0.032 0.000 0.220 0.000
#> SRR1036026     1  0.4104      0.664 0.748 0.032 0.000 0.220 0.000
#> SRR1036027     1  0.4104      0.664 0.748 0.032 0.000 0.220 0.000
#> SRR1036028     1  0.4104      0.664 0.748 0.032 0.000 0.220 0.000
#> SRR1036029     1  0.4104      0.664 0.748 0.032 0.000 0.220 0.000
#> SRR1036030     2  0.3476      0.854 0.076 0.836 0.000 0.088 0.000
#> SRR1036031     2  0.3476      0.854 0.076 0.836 0.000 0.088 0.000
#> SRR1036032     2  0.3476      0.854 0.076 0.836 0.000 0.088 0.000
#> SRR1036033     2  0.3476      0.854 0.076 0.836 0.000 0.088 0.000
#> SRR1036034     2  0.3476      0.854 0.076 0.836 0.000 0.088 0.000
#> SRR1036035     2  0.3476      0.854 0.076 0.836 0.000 0.088 0.000
#> SRR1036036     2  0.3476      0.854 0.076 0.836 0.000 0.088 0.000
#> SRR1036037     2  0.3476      0.854 0.076 0.836 0.000 0.088 0.000
#> SRR1036038     1  0.2621      0.776 0.876 0.008 0.000 0.112 0.004
#> SRR1036039     1  0.2621      0.776 0.876 0.008 0.000 0.112 0.004
#> SRR1036040     1  0.2621      0.776 0.876 0.008 0.000 0.112 0.004
#> SRR1036041     1  0.2104      0.806 0.916 0.024 0.000 0.060 0.000
#> SRR1036042     3  0.7360      0.569 0.012 0.276 0.528 0.092 0.092
#> SRR1036043     3  0.7360      0.569 0.012 0.276 0.528 0.092 0.092
#> SRR1036044     3  0.7360      0.569 0.012 0.276 0.528 0.092 0.092
#> SRR1036045     3  0.7360      0.569 0.012 0.276 0.528 0.092 0.092
#> SRR1036046     3  0.7360      0.569 0.012 0.276 0.528 0.092 0.092
#> SRR1036047     3  0.7360      0.569 0.012 0.276 0.528 0.092 0.092
#> SRR1036048     3  0.7360      0.569 0.012 0.276 0.528 0.092 0.092
#> SRR1036049     3  0.7360      0.569 0.012 0.276 0.528 0.092 0.092
#> SRR1036050     1  0.2104      0.806 0.916 0.024 0.000 0.060 0.000
#> SRR1036051     1  0.2104      0.806 0.916 0.024 0.000 0.060 0.000
#> SRR1036052     1  0.2104      0.806 0.916 0.024 0.000 0.060 0.000
#> SRR1036053     1  0.2104      0.806 0.916 0.024 0.000 0.060 0.000
#> SRR1036054     1  0.2104      0.806 0.916 0.024 0.000 0.060 0.000
#> SRR1036055     1  0.3912      0.699 0.804 0.108 0.000 0.088 0.000
#> SRR1036056     1  0.3912      0.699 0.804 0.108 0.000 0.088 0.000
#> SRR1036057     1  0.3912      0.699 0.804 0.108 0.000 0.088 0.000
#> SRR1036058     4  0.2230      0.441 0.116 0.000 0.000 0.884 0.000
#> SRR1036059     4  0.2230      0.441 0.116 0.000 0.000 0.884 0.000
#> SRR1036060     4  0.2230      0.441 0.116 0.000 0.000 0.884 0.000
#> SRR1036061     4  0.2230      0.441 0.116 0.000 0.000 0.884 0.000
#> SRR1036062     4  0.2230      0.441 0.116 0.000 0.000 0.884 0.000
#> SRR1036063     4  0.2230      0.441 0.116 0.000 0.000 0.884 0.000
#> SRR1036064     4  0.2230      0.441 0.116 0.000 0.000 0.884 0.000
#> SRR1036065     4  0.2230      0.441 0.116 0.000 0.000 0.884 0.000
#> SRR1036066     1  0.1168      0.828 0.960 0.032 0.000 0.008 0.000
#> SRR1036067     1  0.1168      0.828 0.960 0.032 0.000 0.008 0.000
#> SRR1036068     1  0.1168      0.828 0.960 0.032 0.000 0.008 0.000
#> SRR1036069     1  0.1168      0.828 0.960 0.032 0.000 0.008 0.000
#> SRR1036070     1  0.1168      0.828 0.960 0.032 0.000 0.008 0.000
#> SRR1036071     1  0.1168      0.828 0.960 0.032 0.000 0.008 0.000
#> SRR1036072     1  0.1168      0.828 0.960 0.032 0.000 0.008 0.000
#> SRR1036073     1  0.1168      0.828 0.960 0.032 0.000 0.008 0.000
#> SRR1036074     2  0.3907      0.838 0.068 0.820 0.000 0.100 0.012
#> SRR1036075     2  0.3907      0.838 0.068 0.820 0.000 0.100 0.012
#> SRR1036076     2  0.3907      0.838 0.068 0.820 0.000 0.100 0.012
#> SRR1036077     2  0.3907      0.838 0.068 0.820 0.000 0.100 0.012
#> SRR1036078     2  0.3907      0.838 0.068 0.820 0.000 0.100 0.012
#> SRR1036079     2  0.3907      0.838 0.068 0.820 0.000 0.100 0.012
#> SRR1036080     2  0.3907      0.838 0.068 0.820 0.000 0.100 0.012
#> SRR1036081     2  0.3907      0.838 0.068 0.820 0.000 0.100 0.012
#> SRR1036082     4  0.5797      0.309 0.068 0.432 0.000 0.492 0.008
#> SRR1036083     4  0.5797      0.309 0.068 0.432 0.000 0.492 0.008
#> SRR1036084     4  0.5797      0.309 0.068 0.432 0.000 0.492 0.008
#> SRR1036090     2  0.0324      0.872 0.004 0.992 0.000 0.004 0.000
#> SRR1036091     2  0.0324      0.872 0.004 0.992 0.000 0.004 0.000
#> SRR1036092     2  0.0324      0.872 0.004 0.992 0.000 0.004 0.000
#> SRR1036093     2  0.0324      0.872 0.004 0.992 0.000 0.004 0.000
#> SRR1036094     2  0.0324      0.872 0.004 0.992 0.000 0.004 0.000
#> SRR1036085     3  0.0000      0.683 0.000 0.000 1.000 0.000 0.000
#> SRR1036086     3  0.0000      0.683 0.000 0.000 1.000 0.000 0.000
#> SRR1036087     3  0.0000      0.683 0.000 0.000 1.000 0.000 0.000
#> SRR1036088     3  0.0000      0.683 0.000 0.000 1.000 0.000 0.000
#> SRR1036089     3  0.0000      0.683 0.000 0.000 1.000 0.000 0.000
#> SRR1036095     1  0.1908      0.800 0.908 0.000 0.000 0.092 0.000
#> SRR1036096     1  0.1908      0.800 0.908 0.000 0.000 0.092 0.000
#> SRR1036097     1  0.1908      0.800 0.908 0.000 0.000 0.092 0.000
#> SRR1036098     1  0.1908      0.800 0.908 0.000 0.000 0.092 0.000
#> SRR1036099     1  0.1908      0.800 0.908 0.000 0.000 0.092 0.000
#> SRR1036100     2  0.3479      0.853 0.080 0.836 0.000 0.084 0.000
#> SRR1036101     2  0.3479      0.853 0.080 0.836 0.000 0.084 0.000
#> SRR1036102     2  0.3479      0.853 0.080 0.836 0.000 0.084 0.000
#> SRR1036103     2  0.3479      0.853 0.080 0.836 0.000 0.084 0.000
#> SRR1036104     2  0.3479      0.853 0.080 0.836 0.000 0.084 0.000
#> SRR1036105     3  0.0000      0.683 0.000 0.000 1.000 0.000 0.000
#> SRR1036106     3  0.0000      0.683 0.000 0.000 1.000 0.000 0.000
#> SRR1036107     3  0.0000      0.683 0.000 0.000 1.000 0.000 0.000
#> SRR1036108     3  0.0000      0.683 0.000 0.000 1.000 0.000 0.000
#> SRR1036109     3  0.0000      0.683 0.000 0.000 1.000 0.000 0.000
#> SRR1036110     4  0.5917      0.367 0.072 0.408 0.000 0.508 0.012
#> SRR1036111     4  0.5917      0.367 0.072 0.408 0.000 0.508 0.012
#> SRR1036112     4  0.5917      0.367 0.072 0.408 0.000 0.508 0.012
#> SRR1036113     4  0.5917      0.367 0.072 0.408 0.000 0.508 0.012
#> SRR1036114     4  0.5917      0.367 0.072 0.408 0.000 0.508 0.012
#> SRR1036115     1  0.1908      0.800 0.908 0.000 0.000 0.092 0.000
#> SRR1036116     1  0.1908      0.800 0.908 0.000 0.000 0.092 0.000
#> SRR1036117     1  0.1908      0.800 0.908 0.000 0.000 0.092 0.000
#> SRR1036118     1  0.1908      0.800 0.908 0.000 0.000 0.092 0.000
#> SRR1036119     1  0.1908      0.800 0.908 0.000 0.000 0.092 0.000
#> SRR1036120     5  0.0162      1.000 0.004 0.000 0.000 0.000 0.996
#> SRR1036121     5  0.0162      1.000 0.004 0.000 0.000 0.000 0.996
#> SRR1036122     5  0.0162      1.000 0.004 0.000 0.000 0.000 0.996
#> SRR1036123     5  0.0162      1.000 0.004 0.000 0.000 0.000 0.996
#> SRR1036124     5  0.0162      1.000 0.004 0.000 0.000 0.000 0.996
#> SRR1036125     1  0.0162      0.829 0.996 0.004 0.000 0.000 0.000
#> SRR1036126     1  0.0162      0.829 0.996 0.004 0.000 0.000 0.000
#> SRR1036127     1  0.0162      0.829 0.996 0.004 0.000 0.000 0.000
#> SRR1036128     1  0.0162      0.829 0.996 0.004 0.000 0.000 0.000
#> SRR1036129     1  0.0162      0.829 0.996 0.004 0.000 0.000 0.000
#> SRR1036130     1  0.0162      0.829 0.996 0.004 0.000 0.000 0.000
#> SRR1036131     1  0.0162      0.829 0.996 0.004 0.000 0.000 0.000
#> SRR1036132     1  0.0162      0.829 0.996 0.004 0.000 0.000 0.000
#> SRR1036133     2  0.0609      0.875 0.020 0.980 0.000 0.000 0.000
#> SRR1036134     2  0.0609      0.875 0.020 0.980 0.000 0.000 0.000
#> SRR1036135     2  0.0609      0.875 0.020 0.980 0.000 0.000 0.000
#> SRR1036136     2  0.0609      0.875 0.020 0.980 0.000 0.000 0.000
#> SRR1036137     2  0.0609      0.875 0.020 0.980 0.000 0.000 0.000
#> SRR1036138     2  0.0324      0.872 0.004 0.992 0.000 0.004 0.000
#> SRR1036139     2  0.0324      0.872 0.004 0.992 0.000 0.004 0.000
#> SRR1036140     2  0.0324      0.872 0.004 0.992 0.000 0.004 0.000
#> SRR1036141     2  0.0324      0.872 0.004 0.992 0.000 0.004 0.000
#> SRR1036142     2  0.0324      0.872 0.004 0.992 0.000 0.004 0.000
#> SRR1036143     2  0.0324      0.872 0.004 0.992 0.000 0.004 0.000
#> SRR1036144     2  0.0324      0.872 0.004 0.992 0.000 0.004 0.000
#> SRR1036145     2  0.0324      0.872 0.004 0.992 0.000 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2 p3    p4    p5    p6
#> SRR1036002     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036003     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036004     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036005     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036006     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036007     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036008     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036009     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036013     1  0.5578      0.382 0.576 0.028  0 0.304 0.000 0.092
#> SRR1036014     1  0.5578      0.382 0.576 0.028  0 0.304 0.000 0.092
#> SRR1036015     1  0.5578      0.382 0.576 0.028  0 0.304 0.000 0.092
#> SRR1036016     1  0.5578      0.382 0.576 0.028  0 0.304 0.000 0.092
#> SRR1036017     1  0.5578      0.382 0.576 0.028  0 0.304 0.000 0.092
#> SRR1036018     1  0.5578      0.382 0.576 0.028  0 0.304 0.000 0.092
#> SRR1036010     1  0.2697      0.734 0.812 0.000  0 0.000 0.000 0.188
#> SRR1036011     1  0.2697      0.734 0.812 0.000  0 0.000 0.000 0.188
#> SRR1036012     1  0.2697      0.734 0.812 0.000  0 0.000 0.000 0.188
#> SRR1036019     2  0.0547      0.798 0.000 0.980  0 0.000 0.020 0.000
#> SRR1036020     2  0.0547      0.798 0.000 0.980  0 0.000 0.020 0.000
#> SRR1036021     2  0.0547      0.798 0.000 0.980  0 0.000 0.020 0.000
#> SRR1036022     2  0.0547      0.798 0.000 0.980  0 0.000 0.020 0.000
#> SRR1036023     2  0.0547      0.798 0.000 0.980  0 0.000 0.020 0.000
#> SRR1036024     1  0.3614      0.669 0.752 0.028  0 0.220 0.000 0.000
#> SRR1036025     1  0.3614      0.669 0.752 0.028  0 0.220 0.000 0.000
#> SRR1036026     1  0.3614      0.669 0.752 0.028  0 0.220 0.000 0.000
#> SRR1036027     1  0.3614      0.669 0.752 0.028  0 0.220 0.000 0.000
#> SRR1036028     1  0.3614      0.669 0.752 0.028  0 0.220 0.000 0.000
#> SRR1036029     1  0.3614      0.669 0.752 0.028  0 0.220 0.000 0.000
#> SRR1036030     2  0.3573      0.766 0.044 0.832  0 0.084 0.036 0.004
#> SRR1036031     2  0.3573      0.766 0.044 0.832  0 0.084 0.036 0.004
#> SRR1036032     2  0.3573      0.766 0.044 0.832  0 0.084 0.036 0.004
#> SRR1036033     2  0.3573      0.766 0.044 0.832  0 0.084 0.036 0.004
#> SRR1036034     2  0.3573      0.766 0.044 0.832  0 0.084 0.036 0.004
#> SRR1036035     2  0.3573      0.766 0.044 0.832  0 0.084 0.036 0.004
#> SRR1036036     2  0.3573      0.766 0.044 0.832  0 0.084 0.036 0.004
#> SRR1036037     2  0.3573      0.766 0.044 0.832  0 0.084 0.036 0.004
#> SRR1036038     1  0.3423      0.764 0.832 0.020  0 0.004 0.036 0.108
#> SRR1036039     1  0.3423      0.764 0.832 0.020  0 0.004 0.036 0.108
#> SRR1036040     1  0.3423      0.764 0.832 0.020  0 0.004 0.036 0.108
#> SRR1036041     1  0.1644      0.806 0.920 0.004  0 0.076 0.000 0.000
#> SRR1036042     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036043     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036044     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036045     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036046     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036047     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036048     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036049     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036050     1  0.1644      0.806 0.920 0.004  0 0.076 0.000 0.000
#> SRR1036051     1  0.1644      0.806 0.920 0.004  0 0.076 0.000 0.000
#> SRR1036052     1  0.1644      0.806 0.920 0.004  0 0.076 0.000 0.000
#> SRR1036053     1  0.1644      0.806 0.920 0.004  0 0.076 0.000 0.000
#> SRR1036054     1  0.1644      0.806 0.920 0.004  0 0.076 0.000 0.000
#> SRR1036055     1  0.4336      0.669 0.776 0.100  0 0.084 0.036 0.004
#> SRR1036056     1  0.4336      0.669 0.776 0.100  0 0.084 0.036 0.004
#> SRR1036057     1  0.4336      0.669 0.776 0.100  0 0.084 0.036 0.004
#> SRR1036058     4  0.1610      0.528 0.084 0.000  0 0.916 0.000 0.000
#> SRR1036059     4  0.1610      0.528 0.084 0.000  0 0.916 0.000 0.000
#> SRR1036060     4  0.1610      0.528 0.084 0.000  0 0.916 0.000 0.000
#> SRR1036061     4  0.1610      0.528 0.084 0.000  0 0.916 0.000 0.000
#> SRR1036062     4  0.1610      0.528 0.084 0.000  0 0.916 0.000 0.000
#> SRR1036063     4  0.1610      0.528 0.084 0.000  0 0.916 0.000 0.000
#> SRR1036064     4  0.1610      0.528 0.084 0.000  0 0.916 0.000 0.000
#> SRR1036065     4  0.1610      0.528 0.084 0.000  0 0.916 0.000 0.000
#> SRR1036066     1  0.0972      0.830 0.964 0.028  0 0.008 0.000 0.000
#> SRR1036067     1  0.0972      0.830 0.964 0.028  0 0.008 0.000 0.000
#> SRR1036068     1  0.0972      0.830 0.964 0.028  0 0.008 0.000 0.000
#> SRR1036069     1  0.0972      0.830 0.964 0.028  0 0.008 0.000 0.000
#> SRR1036070     1  0.0972      0.830 0.964 0.028  0 0.008 0.000 0.000
#> SRR1036071     1  0.0972      0.830 0.964 0.028  0 0.008 0.000 0.000
#> SRR1036072     1  0.0972      0.830 0.964 0.028  0 0.008 0.000 0.000
#> SRR1036073     1  0.0972      0.830 0.964 0.028  0 0.008 0.000 0.000
#> SRR1036074     2  0.6070      0.595 0.036 0.592  0 0.076 0.032 0.264
#> SRR1036075     2  0.6070      0.595 0.036 0.592  0 0.076 0.032 0.264
#> SRR1036076     2  0.6070      0.595 0.036 0.592  0 0.076 0.032 0.264
#> SRR1036077     2  0.6070      0.595 0.036 0.592  0 0.076 0.032 0.264
#> SRR1036078     2  0.6070      0.595 0.036 0.592  0 0.076 0.032 0.264
#> SRR1036079     2  0.6070      0.595 0.036 0.592  0 0.076 0.032 0.264
#> SRR1036080     2  0.6070      0.595 0.036 0.592  0 0.076 0.032 0.264
#> SRR1036081     2  0.6070      0.595 0.036 0.592  0 0.076 0.032 0.264
#> SRR1036082     4  0.7107      0.511 0.036 0.236  0 0.464 0.036 0.228
#> SRR1036083     4  0.7107      0.511 0.036 0.236  0 0.464 0.036 0.228
#> SRR1036084     4  0.7107      0.511 0.036 0.236  0 0.464 0.036 0.228
#> SRR1036090     2  0.1594      0.793 0.000 0.932  0 0.000 0.016 0.052
#> SRR1036091     2  0.1594      0.793 0.000 0.932  0 0.000 0.016 0.052
#> SRR1036092     2  0.1594      0.793 0.000 0.932  0 0.000 0.016 0.052
#> SRR1036093     2  0.1594      0.793 0.000 0.932  0 0.000 0.016 0.052
#> SRR1036094     2  0.1594      0.793 0.000 0.932  0 0.000 0.016 0.052
#> SRR1036085     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036086     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036087     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036088     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036089     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036095     1  0.1765      0.812 0.904 0.000  0 0.096 0.000 0.000
#> SRR1036096     1  0.1765      0.812 0.904 0.000  0 0.096 0.000 0.000
#> SRR1036097     1  0.1765      0.812 0.904 0.000  0 0.096 0.000 0.000
#> SRR1036098     1  0.1765      0.812 0.904 0.000  0 0.096 0.000 0.000
#> SRR1036099     1  0.1765      0.812 0.904 0.000  0 0.096 0.000 0.000
#> SRR1036100     2  0.6201      0.628 0.056 0.612  0 0.084 0.032 0.216
#> SRR1036101     2  0.6201      0.628 0.056 0.612  0 0.084 0.032 0.216
#> SRR1036102     2  0.6201      0.628 0.056 0.612  0 0.084 0.032 0.216
#> SRR1036103     2  0.6201      0.628 0.056 0.612  0 0.084 0.032 0.216
#> SRR1036104     2  0.6201      0.628 0.056 0.612  0 0.084 0.032 0.216
#> SRR1036105     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036106     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036107     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036108     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036109     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036110     4  0.7021      0.535 0.040 0.212  0 0.484 0.032 0.232
#> SRR1036111     4  0.7021      0.535 0.040 0.212  0 0.484 0.032 0.232
#> SRR1036112     4  0.7021      0.535 0.040 0.212  0 0.484 0.032 0.232
#> SRR1036113     4  0.7021      0.535 0.040 0.212  0 0.484 0.032 0.232
#> SRR1036114     4  0.7021      0.535 0.040 0.212  0 0.484 0.032 0.232
#> SRR1036115     1  0.1765      0.812 0.904 0.000  0 0.096 0.000 0.000
#> SRR1036116     1  0.1765      0.812 0.904 0.000  0 0.096 0.000 0.000
#> SRR1036117     1  0.1765      0.812 0.904 0.000  0 0.096 0.000 0.000
#> SRR1036118     1  0.1765      0.812 0.904 0.000  0 0.096 0.000 0.000
#> SRR1036119     1  0.1765      0.812 0.904 0.000  0 0.096 0.000 0.000
#> SRR1036120     5  0.1141      1.000 0.000 0.000  0 0.000 0.948 0.052
#> SRR1036121     5  0.1141      1.000 0.000 0.000  0 0.000 0.948 0.052
#> SRR1036122     5  0.1141      1.000 0.000 0.000  0 0.000 0.948 0.052
#> SRR1036123     5  0.1141      1.000 0.000 0.000  0 0.000 0.948 0.052
#> SRR1036124     5  0.1141      1.000 0.000 0.000  0 0.000 0.948 0.052
#> SRR1036125     1  0.0000      0.832 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036126     1  0.0000      0.832 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036127     1  0.0000      0.832 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036128     1  0.0000      0.832 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036129     1  0.0000      0.832 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036130     1  0.0000      0.832 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036131     1  0.0000      0.832 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036132     1  0.0000      0.832 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036133     2  0.0146      0.802 0.004 0.996  0 0.000 0.000 0.000
#> SRR1036134     2  0.0146      0.802 0.004 0.996  0 0.000 0.000 0.000
#> SRR1036135     2  0.0146      0.802 0.004 0.996  0 0.000 0.000 0.000
#> SRR1036136     2  0.0146      0.802 0.004 0.996  0 0.000 0.000 0.000
#> SRR1036137     2  0.0146      0.802 0.004 0.996  0 0.000 0.000 0.000
#> SRR1036138     2  0.0458      0.798 0.000 0.984  0 0.000 0.016 0.000
#> SRR1036139     2  0.0458      0.798 0.000 0.984  0 0.000 0.016 0.000
#> SRR1036140     2  0.0458      0.798 0.000 0.984  0 0.000 0.016 0.000
#> SRR1036141     2  0.0458      0.798 0.000 0.984  0 0.000 0.016 0.000
#> SRR1036142     2  0.0458      0.798 0.000 0.984  0 0.000 0.016 0.000
#> SRR1036143     2  0.0458      0.798 0.000 0.984  0 0.000 0.016 0.000
#> SRR1036144     2  0.0458      0.798 0.000 0.984  0 0.000 0.016 0.000
#> SRR1036145     2  0.0458      0.798 0.000 0.984  0 0.000 0.016 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15218 rows and 144 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k  1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.0645           0.247       0.620         0.3818 0.749   0.749
#> 3 3 0.0548           0.479       0.644         0.4759 0.450   0.352
#> 4 4 0.1165           0.397       0.562         0.1486 0.814   0.570
#> 5 5 0.2347           0.449       0.574         0.0958 0.904   0.696
#> 6 6 0.3722           0.348       0.589         0.0656 0.867   0.596

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1036002     2   0.881      0.382 0.300 0.700
#> SRR1036003     2   0.881      0.382 0.300 0.700
#> SRR1036004     2   0.881      0.382 0.300 0.700
#> SRR1036005     2   0.985      0.283 0.428 0.572
#> SRR1036006     2   0.985      0.283 0.428 0.572
#> SRR1036007     2   0.985      0.283 0.428 0.572
#> SRR1036008     2   0.985      0.283 0.428 0.572
#> SRR1036009     2   0.985      0.283 0.428 0.572
#> SRR1036013     2   0.881      0.353 0.300 0.700
#> SRR1036014     2   0.881      0.353 0.300 0.700
#> SRR1036015     2   0.881      0.353 0.300 0.700
#> SRR1036016     2   0.881      0.353 0.300 0.700
#> SRR1036017     2   0.881      0.353 0.300 0.700
#> SRR1036018     2   0.881      0.353 0.300 0.700
#> SRR1036010     2   0.998     -0.654 0.472 0.528
#> SRR1036011     2   0.998     -0.654 0.472 0.528
#> SRR1036012     2   0.998     -0.654 0.472 0.528
#> SRR1036019     2   0.518      0.469 0.116 0.884
#> SRR1036020     2   0.518      0.469 0.116 0.884
#> SRR1036021     2   0.518      0.469 0.116 0.884
#> SRR1036022     2   0.518      0.469 0.116 0.884
#> SRR1036023     2   0.518      0.469 0.116 0.884
#> SRR1036024     2   0.788      0.233 0.236 0.764
#> SRR1036025     2   0.788      0.233 0.236 0.764
#> SRR1036026     2   0.788      0.233 0.236 0.764
#> SRR1036027     2   0.788      0.233 0.236 0.764
#> SRR1036028     2   0.788      0.233 0.236 0.764
#> SRR1036029     2   0.788      0.233 0.236 0.764
#> SRR1036030     2   0.745      0.229 0.212 0.788
#> SRR1036031     2   0.745      0.229 0.212 0.788
#> SRR1036032     2   0.745      0.229 0.212 0.788
#> SRR1036033     2   0.745      0.229 0.212 0.788
#> SRR1036034     2   0.745      0.229 0.212 0.788
#> SRR1036035     2   0.745      0.229 0.212 0.788
#> SRR1036036     2   0.745      0.229 0.212 0.788
#> SRR1036037     2   0.745      0.229 0.212 0.788
#> SRR1036038     2   0.978     -0.515 0.412 0.588
#> SRR1036039     2   0.978     -0.515 0.412 0.588
#> SRR1036040     2   0.978     -0.515 0.412 0.588
#> SRR1036041     2   0.990     -0.607 0.440 0.560
#> SRR1036042     2   0.839      0.416 0.268 0.732
#> SRR1036043     2   0.839      0.416 0.268 0.732
#> SRR1036044     2   0.839      0.416 0.268 0.732
#> SRR1036045     2   0.839      0.416 0.268 0.732
#> SRR1036046     2   0.839      0.416 0.268 0.732
#> SRR1036047     2   0.839      0.416 0.268 0.732
#> SRR1036048     2   0.839      0.416 0.268 0.732
#> SRR1036049     2   0.839      0.416 0.268 0.732
#> SRR1036050     2   1.000     -0.672 0.500 0.500
#> SRR1036051     1   1.000      0.653 0.500 0.500
#> SRR1036052     2   1.000     -0.672 0.500 0.500
#> SRR1036053     1   1.000      0.653 0.500 0.500
#> SRR1036054     1   1.000      0.653 0.500 0.500
#> SRR1036055     2   0.966     -0.418 0.392 0.608
#> SRR1036056     2   0.966     -0.418 0.392 0.608
#> SRR1036057     2   0.966     -0.418 0.392 0.608
#> SRR1036058     2   0.939      0.141 0.356 0.644
#> SRR1036059     2   0.939      0.141 0.356 0.644
#> SRR1036060     2   0.939      0.141 0.356 0.644
#> SRR1036061     2   0.939      0.141 0.356 0.644
#> SRR1036062     2   0.939      0.141 0.356 0.644
#> SRR1036063     2   0.939      0.141 0.356 0.644
#> SRR1036064     2   0.939      0.141 0.356 0.644
#> SRR1036065     2   0.939      0.141 0.356 0.644
#> SRR1036066     2   0.987     -0.494 0.432 0.568
#> SRR1036067     2   0.987     -0.494 0.432 0.568
#> SRR1036068     2   0.987     -0.494 0.432 0.568
#> SRR1036069     2   0.987     -0.494 0.432 0.568
#> SRR1036070     2   0.987     -0.494 0.432 0.568
#> SRR1036071     2   0.987     -0.494 0.432 0.568
#> SRR1036072     2   0.987     -0.494 0.432 0.568
#> SRR1036073     2   0.987     -0.494 0.432 0.568
#> SRR1036074     2   0.529      0.481 0.120 0.880
#> SRR1036075     2   0.529      0.481 0.120 0.880
#> SRR1036076     2   0.529      0.481 0.120 0.880
#> SRR1036077     2   0.529      0.481 0.120 0.880
#> SRR1036078     2   0.529      0.481 0.120 0.880
#> SRR1036079     2   0.529      0.481 0.120 0.880
#> SRR1036080     2   0.529      0.481 0.120 0.880
#> SRR1036081     2   0.529      0.481 0.120 0.880
#> SRR1036082     2   0.584      0.445 0.140 0.860
#> SRR1036083     2   0.584      0.445 0.140 0.860
#> SRR1036084     2   0.584      0.445 0.140 0.860
#> SRR1036090     2   0.388      0.477 0.076 0.924
#> SRR1036091     2   0.388      0.477 0.076 0.924
#> SRR1036092     2   0.388      0.477 0.076 0.924
#> SRR1036093     2   0.388      0.477 0.076 0.924
#> SRR1036094     2   0.388      0.477 0.076 0.924
#> SRR1036085     2   0.994      0.250 0.456 0.544
#> SRR1036086     2   0.994      0.250 0.456 0.544
#> SRR1036087     2   0.994      0.250 0.456 0.544
#> SRR1036088     2   0.994      0.250 0.456 0.544
#> SRR1036089     2   0.994      0.250 0.456 0.544
#> SRR1036095     2   0.978     -0.378 0.412 0.588
#> SRR1036096     2   0.978     -0.378 0.412 0.588
#> SRR1036097     2   0.978     -0.378 0.412 0.588
#> SRR1036098     2   0.978     -0.378 0.412 0.588
#> SRR1036099     2   0.978     -0.378 0.412 0.588
#> SRR1036100     2   0.278      0.470 0.048 0.952
#> SRR1036101     2   0.278      0.470 0.048 0.952
#> SRR1036102     2   0.278      0.470 0.048 0.952
#> SRR1036103     2   0.278      0.470 0.048 0.952
#> SRR1036104     2   0.278      0.470 0.048 0.952
#> SRR1036105     2   0.992      0.258 0.448 0.552
#> SRR1036106     2   0.992      0.258 0.448 0.552
#> SRR1036107     2   0.992      0.258 0.448 0.552
#> SRR1036108     2   0.992      0.258 0.448 0.552
#> SRR1036109     2   0.992      0.258 0.448 0.552
#> SRR1036110     2   0.861      0.380 0.284 0.716
#> SRR1036111     2   0.861      0.380 0.284 0.716
#> SRR1036112     2   0.861      0.380 0.284 0.716
#> SRR1036113     2   0.861      0.380 0.284 0.716
#> SRR1036114     2   0.861      0.380 0.284 0.716
#> SRR1036115     1   1.000      0.661 0.512 0.488
#> SRR1036116     1   1.000      0.661 0.512 0.488
#> SRR1036117     1   1.000      0.661 0.512 0.488
#> SRR1036118     1   1.000      0.661 0.512 0.488
#> SRR1036119     1   1.000      0.661 0.512 0.488
#> SRR1036120     1   0.961      0.439 0.616 0.384
#> SRR1036121     1   0.961      0.439 0.616 0.384
#> SRR1036122     1   0.961      0.439 0.616 0.384
#> SRR1036123     1   0.961      0.439 0.616 0.384
#> SRR1036124     1   0.961      0.439 0.616 0.384
#> SRR1036125     1   0.997      0.711 0.532 0.468
#> SRR1036126     1   0.997      0.711 0.532 0.468
#> SRR1036127     1   0.997      0.711 0.532 0.468
#> SRR1036128     1   0.997      0.711 0.532 0.468
#> SRR1036129     1   0.997      0.711 0.532 0.468
#> SRR1036130     1   0.997      0.711 0.532 0.468
#> SRR1036131     1   0.997      0.711 0.532 0.468
#> SRR1036132     1   0.997      0.711 0.532 0.468
#> SRR1036133     2   0.456      0.443 0.096 0.904
#> SRR1036134     2   0.456      0.443 0.096 0.904
#> SRR1036135     2   0.456      0.443 0.096 0.904
#> SRR1036136     2   0.456      0.443 0.096 0.904
#> SRR1036137     2   0.456      0.443 0.096 0.904
#> SRR1036138     2   0.518      0.467 0.116 0.884
#> SRR1036139     2   0.518      0.467 0.116 0.884
#> SRR1036140     2   0.518      0.467 0.116 0.884
#> SRR1036141     2   0.518      0.467 0.116 0.884
#> SRR1036142     2   0.518      0.467 0.116 0.884
#> SRR1036143     2   0.518      0.467 0.116 0.884
#> SRR1036144     2   0.518      0.467 0.116 0.884
#> SRR1036145     2   0.518      0.467 0.116 0.884

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1036002     3   0.965     0.3158 0.208 0.380 0.412
#> SRR1036003     3   0.965     0.3158 0.208 0.380 0.412
#> SRR1036004     3   0.965     0.3158 0.208 0.380 0.412
#> SRR1036005     3   0.811     0.8924 0.192 0.160 0.648
#> SRR1036006     3   0.811     0.8924 0.192 0.160 0.648
#> SRR1036007     3   0.811     0.8924 0.192 0.160 0.648
#> SRR1036008     3   0.811     0.8924 0.192 0.160 0.648
#> SRR1036009     3   0.811     0.8924 0.192 0.160 0.648
#> SRR1036013     1   0.980     0.1878 0.432 0.272 0.296
#> SRR1036014     1   0.980     0.1878 0.432 0.272 0.296
#> SRR1036015     1   0.980     0.1878 0.432 0.272 0.296
#> SRR1036016     1   0.980     0.1878 0.432 0.272 0.296
#> SRR1036017     1   0.980     0.1878 0.432 0.272 0.296
#> SRR1036018     1   0.980     0.1878 0.432 0.272 0.296
#> SRR1036010     1   0.348     0.5816 0.904 0.044 0.052
#> SRR1036011     1   0.348     0.5816 0.904 0.044 0.052
#> SRR1036012     1   0.348     0.5816 0.904 0.044 0.052
#> SRR1036019     2   0.745     0.5805 0.156 0.700 0.144
#> SRR1036020     2   0.745     0.5805 0.156 0.700 0.144
#> SRR1036021     2   0.745     0.5805 0.156 0.700 0.144
#> SRR1036022     2   0.745     0.5805 0.156 0.700 0.144
#> SRR1036023     2   0.745     0.5805 0.156 0.700 0.144
#> SRR1036024     1   0.881     0.3562 0.580 0.236 0.184
#> SRR1036025     1   0.881     0.3562 0.580 0.236 0.184
#> SRR1036026     1   0.881     0.3562 0.580 0.236 0.184
#> SRR1036027     1   0.881     0.3562 0.580 0.236 0.184
#> SRR1036028     1   0.881     0.3562 0.580 0.236 0.184
#> SRR1036029     1   0.881     0.3562 0.580 0.236 0.184
#> SRR1036030     2   0.711     0.4080 0.388 0.584 0.028
#> SRR1036031     2   0.711     0.4080 0.388 0.584 0.028
#> SRR1036032     2   0.711     0.4080 0.388 0.584 0.028
#> SRR1036033     2   0.711     0.4080 0.388 0.584 0.028
#> SRR1036034     2   0.711     0.4080 0.388 0.584 0.028
#> SRR1036035     2   0.711     0.4080 0.388 0.584 0.028
#> SRR1036036     2   0.711     0.4080 0.388 0.584 0.028
#> SRR1036037     2   0.711     0.4080 0.388 0.584 0.028
#> SRR1036038     1   0.550     0.5002 0.804 0.148 0.048
#> SRR1036039     1   0.550     0.5002 0.804 0.148 0.048
#> SRR1036040     1   0.550     0.5002 0.804 0.148 0.048
#> SRR1036041     1   0.355     0.5693 0.896 0.080 0.024
#> SRR1036042     2   0.928     0.0979 0.172 0.488 0.340
#> SRR1036043     2   0.928     0.0979 0.172 0.488 0.340
#> SRR1036044     2   0.928     0.0979 0.172 0.488 0.340
#> SRR1036045     2   0.928     0.0979 0.172 0.488 0.340
#> SRR1036046     2   0.928     0.0979 0.172 0.488 0.340
#> SRR1036047     2   0.928     0.0979 0.172 0.488 0.340
#> SRR1036048     2   0.928     0.0979 0.172 0.488 0.340
#> SRR1036049     2   0.928     0.0979 0.172 0.488 0.340
#> SRR1036050     1   0.367     0.5674 0.896 0.064 0.040
#> SRR1036051     1   0.367     0.5674 0.896 0.064 0.040
#> SRR1036052     1   0.367     0.5674 0.896 0.064 0.040
#> SRR1036053     1   0.367     0.5674 0.896 0.064 0.040
#> SRR1036054     1   0.367     0.5674 0.896 0.064 0.040
#> SRR1036055     1   0.636     0.2974 0.696 0.280 0.024
#> SRR1036056     1   0.636     0.2974 0.696 0.280 0.024
#> SRR1036057     1   0.636     0.2974 0.696 0.280 0.024
#> SRR1036058     1   0.988     0.2450 0.412 0.296 0.292
#> SRR1036059     1   0.988     0.2450 0.412 0.296 0.292
#> SRR1036060     1   0.988     0.2450 0.412 0.296 0.292
#> SRR1036061     1   0.988     0.2450 0.412 0.296 0.292
#> SRR1036062     1   0.988     0.2450 0.412 0.296 0.292
#> SRR1036063     1   0.988     0.2450 0.412 0.296 0.292
#> SRR1036064     1   0.988     0.2450 0.412 0.296 0.292
#> SRR1036065     1   0.988     0.2450 0.412 0.296 0.292
#> SRR1036066     1   0.484     0.5809 0.848 0.080 0.072
#> SRR1036067     1   0.484     0.5809 0.848 0.080 0.072
#> SRR1036068     1   0.484     0.5809 0.848 0.080 0.072
#> SRR1036069     1   0.484     0.5809 0.848 0.080 0.072
#> SRR1036070     1   0.484     0.5809 0.848 0.080 0.072
#> SRR1036071     1   0.484     0.5809 0.848 0.080 0.072
#> SRR1036072     1   0.484     0.5809 0.848 0.080 0.072
#> SRR1036073     1   0.484     0.5809 0.848 0.080 0.072
#> SRR1036074     2   0.917     0.4856 0.244 0.540 0.216
#> SRR1036075     2   0.917     0.4856 0.244 0.540 0.216
#> SRR1036076     2   0.917     0.4856 0.244 0.540 0.216
#> SRR1036077     2   0.917     0.4856 0.244 0.540 0.216
#> SRR1036078     2   0.917     0.4856 0.244 0.540 0.216
#> SRR1036079     2   0.917     0.4856 0.244 0.540 0.216
#> SRR1036080     2   0.917     0.4856 0.244 0.540 0.216
#> SRR1036081     2   0.917     0.4856 0.244 0.540 0.216
#> SRR1036082     2   0.917     0.3376 0.312 0.516 0.172
#> SRR1036083     2   0.917     0.3376 0.312 0.516 0.172
#> SRR1036084     2   0.917     0.3376 0.312 0.516 0.172
#> SRR1036090     2   0.790     0.5857 0.280 0.628 0.092
#> SRR1036091     2   0.790     0.5857 0.280 0.628 0.092
#> SRR1036092     2   0.790     0.5857 0.280 0.628 0.092
#> SRR1036093     2   0.790     0.5857 0.280 0.628 0.092
#> SRR1036094     2   0.790     0.5857 0.280 0.628 0.092
#> SRR1036085     3   0.807     0.8945 0.208 0.144 0.648
#> SRR1036086     3   0.807     0.8945 0.208 0.144 0.648
#> SRR1036087     3   0.807     0.8945 0.208 0.144 0.648
#> SRR1036088     3   0.807     0.8945 0.208 0.144 0.648
#> SRR1036089     3   0.807     0.8945 0.208 0.144 0.648
#> SRR1036095     1   0.778     0.4971 0.676 0.168 0.156
#> SRR1036096     1   0.778     0.4971 0.676 0.168 0.156
#> SRR1036097     1   0.778     0.4971 0.676 0.168 0.156
#> SRR1036098     1   0.778     0.4971 0.676 0.168 0.156
#> SRR1036099     1   0.778     0.4971 0.676 0.168 0.156
#> SRR1036100     2   0.815     0.5348 0.296 0.604 0.100
#> SRR1036101     2   0.815     0.5348 0.296 0.604 0.100
#> SRR1036102     2   0.815     0.5348 0.296 0.604 0.100
#> SRR1036103     2   0.815     0.5348 0.296 0.604 0.100
#> SRR1036104     2   0.815     0.5348 0.296 0.604 0.100
#> SRR1036105     3   0.803     0.8981 0.204 0.144 0.652
#> SRR1036106     3   0.803     0.8981 0.204 0.144 0.652
#> SRR1036107     3   0.803     0.8981 0.204 0.144 0.652
#> SRR1036108     3   0.803     0.8981 0.204 0.144 0.652
#> SRR1036109     3   0.803     0.8981 0.204 0.144 0.652
#> SRR1036110     2   0.990    -0.0209 0.368 0.368 0.264
#> SRR1036111     1   0.990    -0.0112 0.368 0.368 0.264
#> SRR1036112     1   0.990    -0.0112 0.368 0.368 0.264
#> SRR1036113     1   0.990    -0.0112 0.368 0.368 0.264
#> SRR1036114     1   0.990    -0.0112 0.368 0.368 0.264
#> SRR1036115     1   0.517     0.5688 0.832 0.076 0.092
#> SRR1036116     1   0.517     0.5688 0.832 0.076 0.092
#> SRR1036117     1   0.517     0.5688 0.832 0.076 0.092
#> SRR1036118     1   0.517     0.5688 0.832 0.076 0.092
#> SRR1036119     1   0.517     0.5688 0.832 0.076 0.092
#> SRR1036120     1   0.745     0.4193 0.680 0.092 0.228
#> SRR1036121     1   0.745     0.4193 0.680 0.092 0.228
#> SRR1036122     1   0.745     0.4193 0.680 0.092 0.228
#> SRR1036123     1   0.745     0.4193 0.680 0.092 0.228
#> SRR1036124     1   0.745     0.4193 0.680 0.092 0.228
#> SRR1036125     1   0.353     0.5814 0.892 0.016 0.092
#> SRR1036126     1   0.353     0.5814 0.892 0.016 0.092
#> SRR1036127     1   0.353     0.5814 0.892 0.016 0.092
#> SRR1036128     1   0.353     0.5814 0.892 0.016 0.092
#> SRR1036129     1   0.353     0.5814 0.892 0.016 0.092
#> SRR1036130     1   0.353     0.5814 0.892 0.016 0.092
#> SRR1036131     1   0.353     0.5814 0.892 0.016 0.092
#> SRR1036132     1   0.353     0.5814 0.892 0.016 0.092
#> SRR1036133     2   0.598     0.5900 0.228 0.744 0.028
#> SRR1036134     2   0.598     0.5900 0.228 0.744 0.028
#> SRR1036135     2   0.598     0.5900 0.228 0.744 0.028
#> SRR1036136     2   0.598     0.5900 0.228 0.744 0.028
#> SRR1036137     2   0.598     0.5900 0.228 0.744 0.028
#> SRR1036138     2   0.661     0.6029 0.188 0.740 0.072
#> SRR1036139     2   0.661     0.6029 0.188 0.740 0.072
#> SRR1036140     2   0.661     0.6029 0.188 0.740 0.072
#> SRR1036141     2   0.661     0.6029 0.188 0.740 0.072
#> SRR1036142     2   0.661     0.6029 0.188 0.740 0.072
#> SRR1036143     2   0.661     0.6029 0.188 0.740 0.072
#> SRR1036144     2   0.661     0.6029 0.188 0.740 0.072
#> SRR1036145     2   0.661     0.6029 0.188 0.740 0.072

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1036002     3   0.858     0.3325 0.084 0.240 0.512 0.164
#> SRR1036003     3   0.858     0.3325 0.084 0.240 0.512 0.164
#> SRR1036004     3   0.858     0.3325 0.084 0.240 0.512 0.164
#> SRR1036005     3   0.343     0.5423 0.056 0.064 0.876 0.004
#> SRR1036006     3   0.343     0.5423 0.056 0.064 0.876 0.004
#> SRR1036007     3   0.343     0.5423 0.056 0.064 0.876 0.004
#> SRR1036008     3   0.343     0.5423 0.056 0.064 0.876 0.004
#> SRR1036009     3   0.343     0.5423 0.056 0.064 0.876 0.004
#> SRR1036013     3   0.994    -0.3207 0.268 0.216 0.296 0.220
#> SRR1036014     3   0.994    -0.3207 0.268 0.216 0.296 0.220
#> SRR1036015     3   0.994    -0.3207 0.268 0.216 0.296 0.220
#> SRR1036016     3   0.994    -0.3207 0.268 0.216 0.296 0.220
#> SRR1036017     3   0.994    -0.3207 0.268 0.216 0.296 0.220
#> SRR1036018     3   0.994    -0.3207 0.268 0.216 0.296 0.220
#> SRR1036010     1   0.449     0.6167 0.836 0.040 0.068 0.056
#> SRR1036011     1   0.449     0.6167 0.836 0.040 0.068 0.056
#> SRR1036012     1   0.449     0.6167 0.836 0.040 0.068 0.056
#> SRR1036019     2   0.632     0.5289 0.056 0.724 0.088 0.132
#> SRR1036020     2   0.632     0.5289 0.056 0.724 0.088 0.132
#> SRR1036021     2   0.632     0.5289 0.056 0.724 0.088 0.132
#> SRR1036022     2   0.632     0.5289 0.056 0.724 0.088 0.132
#> SRR1036023     2   0.632     0.5289 0.056 0.724 0.088 0.132
#> SRR1036024     1   0.964    -0.2411 0.392 0.216 0.192 0.200
#> SRR1036025     1   0.964    -0.2411 0.392 0.216 0.192 0.200
#> SRR1036026     1   0.964    -0.2411 0.392 0.216 0.192 0.200
#> SRR1036027     1   0.964    -0.2411 0.392 0.216 0.192 0.200
#> SRR1036028     1   0.964    -0.2411 0.392 0.216 0.192 0.200
#> SRR1036029     1   0.964    -0.2411 0.392 0.216 0.192 0.200
#> SRR1036030     2   0.745     0.4352 0.284 0.568 0.028 0.120
#> SRR1036031     2   0.745     0.4352 0.284 0.568 0.028 0.120
#> SRR1036032     2   0.745     0.4352 0.284 0.568 0.028 0.120
#> SRR1036033     2   0.745     0.4352 0.284 0.568 0.028 0.120
#> SRR1036034     2   0.745     0.4352 0.284 0.568 0.028 0.120
#> SRR1036035     2   0.745     0.4352 0.284 0.568 0.028 0.120
#> SRR1036036     2   0.745     0.4352 0.284 0.568 0.028 0.120
#> SRR1036037     2   0.745     0.4352 0.284 0.568 0.028 0.120
#> SRR1036038     1   0.704     0.5459 0.668 0.172 0.088 0.072
#> SRR1036039     1   0.704     0.5459 0.668 0.172 0.088 0.072
#> SRR1036040     1   0.704     0.5459 0.668 0.172 0.088 0.072
#> SRR1036041     1   0.374     0.6186 0.864 0.088 0.028 0.020
#> SRR1036042     3   0.911     0.2473 0.100 0.304 0.420 0.176
#> SRR1036043     3   0.911     0.2473 0.100 0.304 0.420 0.176
#> SRR1036044     3   0.911     0.2473 0.100 0.304 0.420 0.176
#> SRR1036045     3   0.911     0.2473 0.100 0.304 0.420 0.176
#> SRR1036046     3   0.911     0.2473 0.100 0.304 0.420 0.176
#> SRR1036047     3   0.911     0.2473 0.100 0.304 0.420 0.176
#> SRR1036048     3   0.911     0.2473 0.100 0.304 0.420 0.176
#> SRR1036049     3   0.911     0.2473 0.100 0.304 0.420 0.176
#> SRR1036050     1   0.271     0.6130 0.916 0.040 0.016 0.028
#> SRR1036051     1   0.271     0.6130 0.916 0.040 0.016 0.028
#> SRR1036052     1   0.271     0.6130 0.916 0.040 0.016 0.028
#> SRR1036053     1   0.271     0.6130 0.916 0.040 0.016 0.028
#> SRR1036054     1   0.271     0.6130 0.916 0.040 0.016 0.028
#> SRR1036055     1   0.660     0.3338 0.616 0.296 0.016 0.072
#> SRR1036056     1   0.660     0.3338 0.616 0.296 0.016 0.072
#> SRR1036057     1   0.660     0.3338 0.616 0.296 0.016 0.072
#> SRR1036058     4   0.923     0.6848 0.208 0.140 0.196 0.456
#> SRR1036059     4   0.923     0.6848 0.208 0.140 0.196 0.456
#> SRR1036060     4   0.923     0.6848 0.208 0.140 0.196 0.456
#> SRR1036061     4   0.923     0.6848 0.208 0.140 0.196 0.456
#> SRR1036062     4   0.923     0.6848 0.208 0.140 0.196 0.456
#> SRR1036063     4   0.923     0.6848 0.208 0.140 0.196 0.456
#> SRR1036064     4   0.923     0.6848 0.208 0.140 0.196 0.456
#> SRR1036065     4   0.923     0.6848 0.208 0.140 0.196 0.456
#> SRR1036066     1   0.727     0.4701 0.656 0.084 0.160 0.100
#> SRR1036067     1   0.727     0.4701 0.656 0.084 0.160 0.100
#> SRR1036068     1   0.727     0.4701 0.656 0.084 0.160 0.100
#> SRR1036069     1   0.727     0.4701 0.656 0.084 0.160 0.100
#> SRR1036070     1   0.727     0.4701 0.656 0.084 0.160 0.100
#> SRR1036071     1   0.727     0.4701 0.656 0.084 0.160 0.100
#> SRR1036072     1   0.727     0.4701 0.656 0.084 0.160 0.100
#> SRR1036073     1   0.727     0.4701 0.656 0.084 0.160 0.100
#> SRR1036074     2   0.915    -0.0482 0.096 0.396 0.184 0.324
#> SRR1036075     2   0.915    -0.0482 0.096 0.396 0.184 0.324
#> SRR1036076     2   0.915    -0.0482 0.096 0.396 0.184 0.324
#> SRR1036077     2   0.915    -0.0482 0.096 0.396 0.184 0.324
#> SRR1036078     2   0.915    -0.0482 0.096 0.396 0.184 0.324
#> SRR1036079     2   0.915    -0.0482 0.096 0.396 0.184 0.324
#> SRR1036080     2   0.915    -0.0482 0.096 0.396 0.184 0.324
#> SRR1036081     2   0.915    -0.0482 0.096 0.396 0.184 0.324
#> SRR1036082     4   0.927     0.3626 0.152 0.348 0.128 0.372
#> SRR1036083     4   0.927     0.3626 0.152 0.348 0.128 0.372
#> SRR1036084     4   0.927     0.3626 0.152 0.348 0.128 0.372
#> SRR1036090     2   0.770     0.4843 0.164 0.616 0.148 0.072
#> SRR1036091     2   0.770     0.4843 0.164 0.616 0.148 0.072
#> SRR1036092     2   0.770     0.4843 0.164 0.616 0.148 0.072
#> SRR1036093     2   0.770     0.4843 0.164 0.616 0.148 0.072
#> SRR1036094     2   0.770     0.4843 0.164 0.616 0.148 0.072
#> SRR1036085     3   0.388     0.5285 0.064 0.048 0.864 0.024
#> SRR1036086     3   0.388     0.5285 0.064 0.048 0.864 0.024
#> SRR1036087     3   0.388     0.5285 0.064 0.048 0.864 0.024
#> SRR1036088     3   0.388     0.5285 0.064 0.048 0.864 0.024
#> SRR1036089     3   0.388     0.5285 0.064 0.048 0.864 0.024
#> SRR1036095     1   0.810     0.2686 0.568 0.140 0.076 0.216
#> SRR1036096     1   0.810     0.2686 0.568 0.140 0.076 0.216
#> SRR1036097     1   0.810     0.2686 0.568 0.140 0.076 0.216
#> SRR1036098     1   0.810     0.2686 0.568 0.140 0.076 0.216
#> SRR1036099     1   0.810     0.2686 0.568 0.140 0.076 0.216
#> SRR1036100     2   0.856     0.3351 0.164 0.532 0.100 0.204
#> SRR1036101     2   0.856     0.3351 0.164 0.532 0.100 0.204
#> SRR1036102     2   0.856     0.3351 0.164 0.532 0.100 0.204
#> SRR1036103     2   0.856     0.3351 0.164 0.532 0.100 0.204
#> SRR1036104     2   0.856     0.3351 0.164 0.532 0.100 0.204
#> SRR1036105     3   0.332     0.5424 0.060 0.064 0.876 0.000
#> SRR1036106     3   0.332     0.5424 0.060 0.064 0.876 0.000
#> SRR1036107     3   0.332     0.5424 0.060 0.064 0.876 0.000
#> SRR1036108     3   0.332     0.5424 0.060 0.064 0.876 0.000
#> SRR1036109     3   0.332     0.5424 0.060 0.064 0.876 0.000
#> SRR1036110     4   0.987     0.5683 0.204 0.220 0.248 0.328
#> SRR1036111     4   0.987     0.5683 0.204 0.220 0.248 0.328
#> SRR1036112     4   0.987     0.5683 0.204 0.220 0.248 0.328
#> SRR1036113     4   0.987     0.5683 0.204 0.220 0.248 0.328
#> SRR1036114     4   0.987     0.5683 0.204 0.220 0.248 0.328
#> SRR1036115     1   0.441     0.5668 0.828 0.032 0.028 0.112
#> SRR1036116     1   0.441     0.5668 0.828 0.032 0.028 0.112
#> SRR1036117     1   0.441     0.5668 0.828 0.032 0.028 0.112
#> SRR1036118     1   0.441     0.5668 0.828 0.032 0.028 0.112
#> SRR1036119     1   0.441     0.5668 0.828 0.032 0.028 0.112
#> SRR1036120     1   0.850     0.3452 0.520 0.072 0.212 0.196
#> SRR1036121     1   0.850     0.3452 0.520 0.072 0.212 0.196
#> SRR1036122     1   0.850     0.3452 0.520 0.072 0.212 0.196
#> SRR1036123     1   0.850     0.3452 0.520 0.072 0.212 0.196
#> SRR1036124     1   0.850     0.3452 0.520 0.072 0.212 0.196
#> SRR1036125     1   0.522     0.6121 0.784 0.040 0.132 0.044
#> SRR1036126     1   0.522     0.6121 0.784 0.040 0.132 0.044
#> SRR1036127     1   0.522     0.6121 0.784 0.040 0.132 0.044
#> SRR1036128     1   0.522     0.6121 0.784 0.040 0.132 0.044
#> SRR1036129     1   0.522     0.6121 0.784 0.040 0.132 0.044
#> SRR1036130     1   0.522     0.6121 0.784 0.040 0.132 0.044
#> SRR1036131     1   0.522     0.6121 0.784 0.040 0.132 0.044
#> SRR1036132     1   0.522     0.6121 0.784 0.040 0.132 0.044
#> SRR1036133     2   0.444     0.5706 0.120 0.820 0.012 0.048
#> SRR1036134     2   0.444     0.5706 0.120 0.820 0.012 0.048
#> SRR1036135     2   0.444     0.5706 0.120 0.820 0.012 0.048
#> SRR1036136     2   0.444     0.5706 0.120 0.820 0.012 0.048
#> SRR1036137     2   0.444     0.5706 0.120 0.820 0.012 0.048
#> SRR1036138     2   0.416     0.5857 0.076 0.840 0.076 0.008
#> SRR1036139     2   0.416     0.5857 0.076 0.840 0.076 0.008
#> SRR1036140     2   0.416     0.5857 0.076 0.840 0.076 0.008
#> SRR1036141     2   0.416     0.5857 0.076 0.840 0.076 0.008
#> SRR1036142     2   0.416     0.5857 0.076 0.840 0.076 0.008
#> SRR1036143     2   0.416     0.5857 0.076 0.840 0.076 0.008
#> SRR1036144     2   0.416     0.5857 0.076 0.840 0.076 0.008
#> SRR1036145     2   0.416     0.5857 0.076 0.840 0.076 0.008

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1036002     4   0.431     0.3096 0.040 0.088 0.032 0.820 0.020
#> SRR1036003     4   0.431     0.3096 0.040 0.088 0.032 0.820 0.020
#> SRR1036004     4   0.431     0.3096 0.040 0.088 0.032 0.820 0.020
#> SRR1036005     3   0.627     0.9704 0.056 0.028 0.516 0.392 0.008
#> SRR1036006     3   0.627     0.9704 0.056 0.028 0.516 0.392 0.008
#> SRR1036007     3   0.627     0.9704 0.056 0.028 0.516 0.392 0.008
#> SRR1036008     3   0.627     0.9704 0.056 0.028 0.516 0.392 0.008
#> SRR1036009     3   0.627     0.9704 0.056 0.028 0.516 0.392 0.008
#> SRR1036013     4   0.889     0.1208 0.212 0.128 0.064 0.428 0.168
#> SRR1036014     4   0.889     0.1208 0.212 0.128 0.064 0.428 0.168
#> SRR1036015     4   0.889     0.1208 0.212 0.128 0.064 0.428 0.168
#> SRR1036016     4   0.889     0.1208 0.212 0.128 0.064 0.428 0.168
#> SRR1036017     4   0.889     0.1208 0.212 0.128 0.064 0.428 0.168
#> SRR1036018     4   0.889     0.1208 0.212 0.128 0.064 0.428 0.168
#> SRR1036010     1   0.465     0.5615 0.796 0.012 0.036 0.096 0.060
#> SRR1036011     1   0.465     0.5615 0.796 0.012 0.036 0.096 0.060
#> SRR1036012     1   0.465     0.5615 0.796 0.012 0.036 0.096 0.060
#> SRR1036019     2   0.780     0.3895 0.036 0.540 0.096 0.212 0.116
#> SRR1036020     2   0.780     0.3895 0.036 0.540 0.096 0.212 0.116
#> SRR1036021     2   0.780     0.3894 0.036 0.540 0.092 0.212 0.120
#> SRR1036022     2   0.780     0.3895 0.036 0.540 0.096 0.212 0.116
#> SRR1036023     2   0.780     0.3895 0.036 0.540 0.096 0.212 0.116
#> SRR1036024     1   0.909    -0.0968 0.344 0.176 0.052 0.284 0.144
#> SRR1036025     1   0.909    -0.0968 0.344 0.176 0.052 0.284 0.144
#> SRR1036026     1   0.909    -0.0968 0.344 0.176 0.052 0.284 0.144
#> SRR1036027     1   0.909    -0.0968 0.344 0.176 0.052 0.284 0.144
#> SRR1036028     1   0.909    -0.0968 0.344 0.176 0.052 0.284 0.144
#> SRR1036029     1   0.909    -0.0968 0.344 0.176 0.052 0.284 0.144
#> SRR1036030     2   0.691     0.4432 0.240 0.596 0.044 0.032 0.088
#> SRR1036031     2   0.691     0.4432 0.240 0.596 0.044 0.032 0.088
#> SRR1036032     2   0.691     0.4432 0.240 0.596 0.044 0.032 0.088
#> SRR1036033     2   0.691     0.4432 0.240 0.596 0.044 0.032 0.088
#> SRR1036034     2   0.691     0.4432 0.240 0.596 0.044 0.032 0.088
#> SRR1036035     2   0.691     0.4432 0.240 0.596 0.044 0.032 0.088
#> SRR1036036     2   0.691     0.4432 0.240 0.596 0.044 0.032 0.088
#> SRR1036037     2   0.691     0.4432 0.240 0.596 0.044 0.032 0.088
#> SRR1036038     1   0.674     0.4927 0.660 0.132 0.044 0.100 0.064
#> SRR1036039     1   0.674     0.4927 0.660 0.132 0.044 0.100 0.064
#> SRR1036040     1   0.674     0.4927 0.660 0.132 0.044 0.100 0.064
#> SRR1036041     1   0.290     0.5753 0.896 0.048 0.020 0.016 0.020
#> SRR1036042     4   0.325     0.3987 0.052 0.088 0.004 0.856 0.000
#> SRR1036043     4   0.325     0.3987 0.052 0.088 0.004 0.856 0.000
#> SRR1036044     4   0.325     0.3987 0.052 0.088 0.004 0.856 0.000
#> SRR1036045     4   0.325     0.3987 0.052 0.088 0.004 0.856 0.000
#> SRR1036046     4   0.325     0.3987 0.052 0.088 0.004 0.856 0.000
#> SRR1036047     4   0.325     0.3987 0.052 0.088 0.004 0.856 0.000
#> SRR1036048     4   0.325     0.3987 0.052 0.088 0.004 0.856 0.000
#> SRR1036049     4   0.325     0.3987 0.052 0.088 0.004 0.856 0.000
#> SRR1036050     1   0.323     0.5657 0.880 0.024 0.036 0.012 0.048
#> SRR1036051     1   0.323     0.5657 0.880 0.024 0.036 0.012 0.048
#> SRR1036052     1   0.323     0.5657 0.880 0.024 0.036 0.012 0.048
#> SRR1036053     1   0.323     0.5657 0.880 0.024 0.036 0.012 0.048
#> SRR1036054     1   0.323     0.5657 0.880 0.024 0.036 0.012 0.048
#> SRR1036055     1   0.686     0.2281 0.548 0.312 0.056 0.016 0.068
#> SRR1036056     1   0.686     0.2281 0.548 0.312 0.056 0.016 0.068
#> SRR1036057     1   0.686     0.2281 0.548 0.312 0.056 0.016 0.068
#> SRR1036058     5   0.829     0.9990 0.176 0.104 0.032 0.212 0.476
#> SRR1036059     5   0.831     0.9969 0.176 0.104 0.032 0.216 0.472
#> SRR1036060     5   0.829     0.9990 0.176 0.104 0.032 0.212 0.476
#> SRR1036061     5   0.829     0.9990 0.176 0.104 0.032 0.212 0.476
#> SRR1036062     5   0.831     0.9969 0.176 0.104 0.032 0.216 0.472
#> SRR1036063     5   0.829     0.9990 0.176 0.104 0.032 0.212 0.476
#> SRR1036064     5   0.829     0.9990 0.176 0.104 0.032 0.212 0.476
#> SRR1036065     5   0.829     0.9990 0.176 0.104 0.032 0.212 0.476
#> SRR1036066     1   0.738     0.4435 0.616 0.088 0.064 0.124 0.108
#> SRR1036067     1   0.738     0.4435 0.616 0.088 0.064 0.124 0.108
#> SRR1036068     1   0.738     0.4435 0.616 0.088 0.064 0.124 0.108
#> SRR1036069     1   0.738     0.4435 0.616 0.088 0.064 0.124 0.108
#> SRR1036070     1   0.738     0.4435 0.616 0.088 0.064 0.124 0.108
#> SRR1036071     1   0.738     0.4435 0.616 0.088 0.064 0.124 0.108
#> SRR1036072     1   0.738     0.4435 0.616 0.088 0.064 0.124 0.108
#> SRR1036073     1   0.738     0.4435 0.616 0.088 0.064 0.124 0.108
#> SRR1036074     4   0.874     0.2646 0.072 0.312 0.056 0.356 0.204
#> SRR1036075     4   0.870     0.2648 0.072 0.312 0.052 0.356 0.208
#> SRR1036076     4   0.870     0.2648 0.072 0.312 0.052 0.356 0.208
#> SRR1036077     4   0.870     0.2648 0.072 0.312 0.052 0.356 0.208
#> SRR1036078     4   0.870     0.2648 0.072 0.312 0.052 0.356 0.208
#> SRR1036079     4   0.870     0.2648 0.072 0.312 0.052 0.356 0.208
#> SRR1036080     4   0.874     0.2646 0.072 0.312 0.056 0.356 0.204
#> SRR1036081     4   0.874     0.2646 0.072 0.312 0.056 0.356 0.204
#> SRR1036082     2   0.901    -0.1319 0.092 0.360 0.064 0.248 0.236
#> SRR1036083     2   0.901    -0.1319 0.092 0.360 0.064 0.248 0.236
#> SRR1036084     2   0.901    -0.1319 0.092 0.360 0.064 0.248 0.236
#> SRR1036090     2   0.745     0.3666 0.136 0.484 0.016 0.316 0.048
#> SRR1036091     2   0.745     0.3666 0.136 0.484 0.016 0.316 0.048
#> SRR1036092     2   0.745     0.3666 0.136 0.484 0.016 0.316 0.048
#> SRR1036093     2   0.745     0.3666 0.136 0.484 0.016 0.316 0.048
#> SRR1036094     2   0.745     0.3666 0.136 0.484 0.016 0.316 0.048
#> SRR1036085     3   0.648     0.9632 0.060 0.028 0.520 0.376 0.016
#> SRR1036086     3   0.648     0.9632 0.060 0.028 0.520 0.376 0.016
#> SRR1036087     3   0.648     0.9632 0.060 0.028 0.520 0.376 0.016
#> SRR1036088     3   0.648     0.9632 0.060 0.028 0.520 0.376 0.016
#> SRR1036089     3   0.648     0.9632 0.060 0.028 0.520 0.376 0.016
#> SRR1036095     1   0.768     0.2852 0.564 0.088 0.076 0.064 0.208
#> SRR1036096     1   0.768     0.2852 0.564 0.088 0.076 0.064 0.208
#> SRR1036097     1   0.768     0.2852 0.564 0.088 0.076 0.064 0.208
#> SRR1036098     1   0.768     0.2852 0.564 0.088 0.076 0.064 0.208
#> SRR1036099     1   0.768     0.2852 0.564 0.088 0.076 0.064 0.208
#> SRR1036100     2   0.861     0.1199 0.128 0.424 0.040 0.264 0.144
#> SRR1036101     2   0.861     0.1199 0.128 0.424 0.040 0.264 0.144
#> SRR1036102     2   0.861     0.1199 0.128 0.424 0.040 0.264 0.144
#> SRR1036103     2   0.861     0.1199 0.128 0.424 0.040 0.264 0.144
#> SRR1036104     2   0.861     0.1199 0.128 0.424 0.040 0.264 0.144
#> SRR1036105     3   0.627     0.9720 0.060 0.020 0.516 0.392 0.012
#> SRR1036106     3   0.627     0.9720 0.060 0.020 0.516 0.392 0.012
#> SRR1036107     3   0.627     0.9720 0.060 0.020 0.516 0.392 0.012
#> SRR1036108     3   0.627     0.9720 0.060 0.020 0.516 0.392 0.012
#> SRR1036109     3   0.627     0.9720 0.060 0.020 0.516 0.392 0.012
#> SRR1036110     4   0.902     0.1012 0.140 0.160 0.064 0.400 0.236
#> SRR1036111     4   0.902     0.1012 0.140 0.160 0.064 0.400 0.236
#> SRR1036112     4   0.902     0.1012 0.140 0.160 0.064 0.400 0.236
#> SRR1036113     4   0.902     0.1012 0.140 0.160 0.064 0.400 0.236
#> SRR1036114     4   0.902     0.1012 0.140 0.160 0.064 0.400 0.236
#> SRR1036115     1   0.484     0.5012 0.768 0.020 0.076 0.008 0.128
#> SRR1036116     1   0.484     0.5012 0.768 0.020 0.076 0.008 0.128
#> SRR1036117     1   0.484     0.5012 0.768 0.020 0.076 0.008 0.128
#> SRR1036118     1   0.484     0.5012 0.768 0.020 0.076 0.008 0.128
#> SRR1036119     1   0.484     0.5012 0.768 0.020 0.076 0.008 0.128
#> SRR1036120     1   0.853     0.2902 0.440 0.032 0.132 0.160 0.236
#> SRR1036121     1   0.853     0.2902 0.440 0.032 0.132 0.160 0.236
#> SRR1036122     1   0.853     0.2902 0.440 0.032 0.132 0.160 0.236
#> SRR1036123     1   0.854     0.2902 0.440 0.032 0.136 0.160 0.232
#> SRR1036124     1   0.853     0.2902 0.440 0.032 0.132 0.160 0.236
#> SRR1036125     1   0.363     0.5754 0.860 0.016 0.048 0.052 0.024
#> SRR1036126     1   0.363     0.5754 0.860 0.016 0.048 0.052 0.024
#> SRR1036127     1   0.363     0.5754 0.860 0.016 0.048 0.052 0.024
#> SRR1036128     1   0.363     0.5754 0.860 0.016 0.048 0.052 0.024
#> SRR1036129     1   0.363     0.5754 0.860 0.016 0.048 0.052 0.024
#> SRR1036130     1   0.363     0.5754 0.860 0.016 0.048 0.052 0.024
#> SRR1036131     1   0.363     0.5754 0.860 0.016 0.048 0.052 0.024
#> SRR1036132     1   0.363     0.5754 0.860 0.016 0.048 0.052 0.024
#> SRR1036133     2   0.512     0.5429 0.108 0.760 0.024 0.092 0.016
#> SRR1036134     2   0.512     0.5429 0.108 0.760 0.024 0.092 0.016
#> SRR1036135     2   0.512     0.5429 0.108 0.760 0.024 0.092 0.016
#> SRR1036136     2   0.512     0.5429 0.108 0.760 0.024 0.092 0.016
#> SRR1036137     2   0.512     0.5429 0.108 0.760 0.024 0.092 0.016
#> SRR1036138     2   0.571     0.5215 0.060 0.696 0.024 0.196 0.024
#> SRR1036139     2   0.571     0.5215 0.060 0.696 0.024 0.196 0.024
#> SRR1036140     2   0.571     0.5215 0.060 0.696 0.024 0.196 0.024
#> SRR1036141     2   0.571     0.5215 0.060 0.696 0.024 0.196 0.024
#> SRR1036142     2   0.571     0.5215 0.060 0.696 0.024 0.196 0.024
#> SRR1036143     2   0.571     0.5215 0.060 0.696 0.024 0.196 0.024
#> SRR1036144     2   0.571     0.5215 0.060 0.696 0.024 0.196 0.024
#> SRR1036145     2   0.571     0.5215 0.060 0.696 0.024 0.196 0.024

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4 p5    p6
#> SRR1036002     3   0.839    -0.0876 0.028 0.140 0.284 0.268 NA 0.016
#> SRR1036003     3   0.839    -0.0876 0.028 0.140 0.284 0.268 NA 0.016
#> SRR1036004     3   0.839    -0.0876 0.028 0.140 0.284 0.268 NA 0.016
#> SRR1036005     3   0.180     0.8351 0.004 0.012 0.932 0.044 NA 0.004
#> SRR1036006     3   0.180     0.8351 0.004 0.012 0.932 0.044 NA 0.004
#> SRR1036007     3   0.180     0.8351 0.004 0.012 0.932 0.044 NA 0.004
#> SRR1036008     3   0.180     0.8351 0.004 0.012 0.932 0.044 NA 0.004
#> SRR1036009     3   0.180     0.8351 0.004 0.012 0.932 0.044 NA 0.004
#> SRR1036013     4   0.898     0.0463 0.192 0.104 0.164 0.352 NA 0.160
#> SRR1036014     4   0.898     0.0463 0.192 0.104 0.164 0.352 NA 0.160
#> SRR1036015     4   0.898     0.0463 0.192 0.104 0.164 0.352 NA 0.160
#> SRR1036016     4   0.898     0.0463 0.192 0.104 0.164 0.352 NA 0.160
#> SRR1036017     4   0.898     0.0463 0.192 0.104 0.164 0.352 NA 0.160
#> SRR1036018     4   0.898     0.0463 0.192 0.104 0.164 0.352 NA 0.160
#> SRR1036010     1   0.440     0.5958 0.772 0.024 0.012 0.008 NA 0.040
#> SRR1036011     1   0.440     0.5958 0.772 0.024 0.012 0.008 NA 0.040
#> SRR1036012     1   0.440     0.5958 0.772 0.024 0.012 0.008 NA 0.040
#> SRR1036019     2   0.582     0.5586 0.016 0.684 0.012 0.112 NA 0.060
#> SRR1036020     2   0.585     0.5586 0.016 0.684 0.016 0.116 NA 0.056
#> SRR1036021     2   0.581     0.5585 0.016 0.684 0.012 0.116 NA 0.056
#> SRR1036022     2   0.585     0.5586 0.016 0.684 0.016 0.116 NA 0.056
#> SRR1036023     2   0.582     0.5586 0.016 0.684 0.012 0.112 NA 0.060
#> SRR1036024     4   0.865     0.1198 0.288 0.124 0.104 0.328 NA 0.144
#> SRR1036025     4   0.865     0.1198 0.288 0.124 0.104 0.328 NA 0.144
#> SRR1036026     4   0.865     0.1198 0.288 0.124 0.104 0.328 NA 0.144
#> SRR1036027     4   0.865     0.1198 0.288 0.124 0.104 0.328 NA 0.144
#> SRR1036028     4   0.865     0.1198 0.288 0.124 0.104 0.328 NA 0.144
#> SRR1036029     4   0.865     0.1198 0.288 0.124 0.104 0.328 NA 0.144
#> SRR1036030     2   0.716     0.5495 0.156 0.508 0.000 0.100 NA 0.024
#> SRR1036031     2   0.720     0.5495 0.156 0.508 0.000 0.100 NA 0.028
#> SRR1036032     2   0.716     0.5495 0.156 0.508 0.000 0.100 NA 0.024
#> SRR1036033     2   0.716     0.5495 0.156 0.508 0.000 0.100 NA 0.024
#> SRR1036034     2   0.720     0.5495 0.156 0.508 0.000 0.100 NA 0.028
#> SRR1036035     2   0.716     0.5495 0.156 0.508 0.000 0.100 NA 0.024
#> SRR1036036     2   0.720     0.5495 0.156 0.508 0.000 0.100 NA 0.028
#> SRR1036037     2   0.716     0.5495 0.156 0.508 0.000 0.100 NA 0.024
#> SRR1036038     1   0.634     0.5186 0.656 0.108 0.044 0.040 NA 0.024
#> SRR1036039     1   0.634     0.5186 0.656 0.108 0.044 0.040 NA 0.024
#> SRR1036040     1   0.634     0.5186 0.656 0.108 0.044 0.040 NA 0.024
#> SRR1036041     1   0.228     0.6212 0.916 0.028 0.012 0.012 NA 0.004
#> SRR1036042     4   0.826     0.1179 0.028 0.148 0.240 0.308 NA 0.008
#> SRR1036043     4   0.826     0.1179 0.028 0.148 0.240 0.308 NA 0.008
#> SRR1036044     4   0.826     0.1179 0.028 0.148 0.240 0.308 NA 0.008
#> SRR1036045     4   0.826     0.1179 0.028 0.148 0.240 0.308 NA 0.008
#> SRR1036046     4   0.826     0.1179 0.028 0.148 0.240 0.308 NA 0.008
#> SRR1036047     4   0.826     0.1179 0.028 0.148 0.240 0.308 NA 0.008
#> SRR1036048     4   0.826     0.1179 0.028 0.148 0.240 0.308 NA 0.008
#> SRR1036049     4   0.826     0.1179 0.028 0.148 0.240 0.308 NA 0.008
#> SRR1036050     1   0.304     0.6157 0.876 0.020 0.004 0.012 NA 0.044
#> SRR1036051     1   0.304     0.6157 0.876 0.020 0.004 0.012 NA 0.044
#> SRR1036052     1   0.304     0.6157 0.876 0.020 0.004 0.012 NA 0.044
#> SRR1036053     1   0.304     0.6157 0.876 0.020 0.004 0.012 NA 0.044
#> SRR1036054     1   0.304     0.6157 0.876 0.020 0.004 0.012 NA 0.044
#> SRR1036055     1   0.705     0.2067 0.516 0.228 0.004 0.064 NA 0.024
#> SRR1036056     1   0.705     0.2067 0.516 0.228 0.004 0.064 NA 0.024
#> SRR1036057     1   0.705     0.2067 0.516 0.228 0.004 0.064 NA 0.024
#> SRR1036058     4   0.749    -0.9852 0.068 0.048 0.080 0.400 NA 0.384
#> SRR1036059     4   0.723    -1.0000 0.068 0.048 0.076 0.400 NA 0.400
#> SRR1036060     4   0.735    -0.9922 0.068 0.048 0.080 0.400 NA 0.392
#> SRR1036061     4   0.723    -1.0000 0.068 0.048 0.076 0.400 NA 0.400
#> SRR1036062     6   0.723     0.0000 0.068 0.048 0.076 0.400 NA 0.400
#> SRR1036063     4   0.723    -1.0000 0.068 0.048 0.076 0.400 NA 0.400
#> SRR1036064     4   0.727    -0.9958 0.068 0.048 0.080 0.400 NA 0.396
#> SRR1036065     4   0.723    -1.0000 0.068 0.048 0.076 0.400 NA 0.400
#> SRR1036066     1   0.757     0.3696 0.520 0.052 0.088 0.128 NA 0.196
#> SRR1036067     1   0.757     0.3696 0.520 0.052 0.088 0.128 NA 0.196
#> SRR1036068     1   0.757     0.3696 0.520 0.052 0.088 0.128 NA 0.196
#> SRR1036069     1   0.757     0.3696 0.520 0.052 0.088 0.128 NA 0.196
#> SRR1036070     1   0.757     0.3696 0.520 0.052 0.088 0.128 NA 0.196
#> SRR1036071     1   0.757     0.3696 0.520 0.052 0.088 0.128 NA 0.196
#> SRR1036072     1   0.757     0.3696 0.520 0.052 0.088 0.128 NA 0.196
#> SRR1036073     1   0.757     0.3696 0.520 0.052 0.088 0.128 NA 0.196
#> SRR1036074     4   0.506     0.2885 0.076 0.148 0.036 0.724 NA 0.012
#> SRR1036075     4   0.506     0.2885 0.076 0.148 0.036 0.724 NA 0.012
#> SRR1036076     4   0.506     0.2885 0.076 0.148 0.036 0.724 NA 0.012
#> SRR1036077     4   0.506     0.2885 0.076 0.148 0.036 0.724 NA 0.012
#> SRR1036078     4   0.506     0.2885 0.076 0.148 0.036 0.724 NA 0.012
#> SRR1036079     4   0.506     0.2885 0.076 0.148 0.036 0.724 NA 0.012
#> SRR1036080     4   0.506     0.2885 0.076 0.148 0.036 0.724 NA 0.012
#> SRR1036081     4   0.506     0.2885 0.076 0.148 0.036 0.724 NA 0.012
#> SRR1036082     4   0.624     0.1405 0.076 0.132 0.028 0.668 NA 0.032
#> SRR1036083     4   0.624     0.1405 0.076 0.132 0.028 0.668 NA 0.032
#> SRR1036084     4   0.624     0.1405 0.076 0.132 0.028 0.668 NA 0.032
#> SRR1036090     2   0.656     0.5127 0.108 0.644 0.052 0.124 NA 0.032
#> SRR1036091     2   0.656     0.5127 0.108 0.644 0.052 0.124 NA 0.032
#> SRR1036092     2   0.656     0.5127 0.108 0.644 0.052 0.124 NA 0.032
#> SRR1036093     2   0.656     0.5127 0.108 0.644 0.052 0.124 NA 0.032
#> SRR1036094     2   0.656     0.5127 0.108 0.644 0.052 0.124 NA 0.032
#> SRR1036085     3   0.323     0.8201 0.008 0.012 0.868 0.044 NA 0.024
#> SRR1036086     3   0.323     0.8201 0.008 0.012 0.868 0.044 NA 0.024
#> SRR1036087     3   0.323     0.8201 0.008 0.012 0.868 0.044 NA 0.024
#> SRR1036088     3   0.323     0.8201 0.008 0.012 0.868 0.044 NA 0.024
#> SRR1036089     3   0.323     0.8201 0.008 0.012 0.868 0.044 NA 0.024
#> SRR1036095     1   0.804     0.2790 0.452 0.100 0.012 0.116 NA 0.236
#> SRR1036096     1   0.804     0.2790 0.452 0.100 0.012 0.116 NA 0.236
#> SRR1036097     1   0.804     0.2790 0.452 0.100 0.012 0.116 NA 0.236
#> SRR1036098     1   0.804     0.2790 0.452 0.100 0.012 0.116 NA 0.236
#> SRR1036099     1   0.804     0.2790 0.452 0.100 0.012 0.116 NA 0.236
#> SRR1036100     4   0.733     0.1247 0.140 0.308 0.024 0.456 NA 0.016
#> SRR1036101     4   0.733     0.1247 0.140 0.308 0.024 0.456 NA 0.016
#> SRR1036102     4   0.733     0.1247 0.140 0.308 0.024 0.456 NA 0.016
#> SRR1036103     4   0.733     0.1247 0.140 0.308 0.024 0.456 NA 0.016
#> SRR1036104     4   0.733     0.1247 0.140 0.308 0.024 0.456 NA 0.016
#> SRR1036105     3   0.177     0.8360 0.008 0.012 0.932 0.044 NA 0.000
#> SRR1036106     3   0.177     0.8360 0.008 0.012 0.932 0.044 NA 0.000
#> SRR1036107     3   0.177     0.8360 0.008 0.012 0.932 0.044 NA 0.000
#> SRR1036108     3   0.177     0.8360 0.008 0.012 0.932 0.044 NA 0.000
#> SRR1036109     3   0.177     0.8360 0.008 0.012 0.932 0.044 NA 0.000
#> SRR1036110     4   0.672     0.0307 0.116 0.044 0.112 0.636 NA 0.048
#> SRR1036111     4   0.672     0.0307 0.116 0.044 0.112 0.636 NA 0.048
#> SRR1036112     4   0.672     0.0307 0.116 0.044 0.112 0.636 NA 0.048
#> SRR1036113     4   0.672     0.0307 0.116 0.044 0.112 0.636 NA 0.048
#> SRR1036114     4   0.672     0.0307 0.116 0.044 0.112 0.636 NA 0.048
#> SRR1036115     1   0.550     0.5151 0.672 0.020 0.008 0.020 NA 0.200
#> SRR1036116     1   0.550     0.5151 0.672 0.020 0.008 0.020 NA 0.200
#> SRR1036117     1   0.550     0.5151 0.672 0.020 0.008 0.020 NA 0.200
#> SRR1036118     1   0.550     0.5151 0.672 0.020 0.008 0.020 NA 0.200
#> SRR1036119     1   0.550     0.5151 0.672 0.020 0.008 0.020 NA 0.200
#> SRR1036120     1   0.859     0.2577 0.344 0.024 0.096 0.072 NA 0.280
#> SRR1036121     1   0.864     0.2577 0.344 0.024 0.100 0.076 NA 0.272
#> SRR1036122     1   0.860     0.2577 0.344 0.024 0.096 0.072 NA 0.276
#> SRR1036123     1   0.863     0.2577 0.344 0.024 0.096 0.076 NA 0.272
#> SRR1036124     1   0.859     0.2577 0.344 0.024 0.096 0.072 NA 0.280
#> SRR1036125     1   0.369     0.6101 0.840 0.016 0.076 0.032 NA 0.012
#> SRR1036126     1   0.369     0.6101 0.840 0.016 0.076 0.032 NA 0.012
#> SRR1036127     1   0.369     0.6101 0.840 0.016 0.076 0.032 NA 0.012
#> SRR1036128     1   0.369     0.6101 0.840 0.016 0.076 0.032 NA 0.012
#> SRR1036129     1   0.369     0.6101 0.840 0.016 0.076 0.032 NA 0.012
#> SRR1036130     1   0.369     0.6101 0.840 0.016 0.076 0.032 NA 0.012
#> SRR1036131     1   0.369     0.6101 0.840 0.016 0.076 0.032 NA 0.012
#> SRR1036132     1   0.369     0.6101 0.840 0.016 0.076 0.032 NA 0.012
#> SRR1036133     2   0.467     0.6771 0.052 0.780 0.008 0.064 NA 0.020
#> SRR1036134     2   0.467     0.6771 0.052 0.780 0.008 0.064 NA 0.020
#> SRR1036135     2   0.467     0.6771 0.052 0.780 0.008 0.064 NA 0.020
#> SRR1036136     2   0.467     0.6771 0.052 0.780 0.008 0.064 NA 0.020
#> SRR1036137     2   0.467     0.6771 0.052 0.780 0.008 0.064 NA 0.020
#> SRR1036138     2   0.305     0.6851 0.024 0.880 0.040 0.032 NA 0.012
#> SRR1036139     2   0.305     0.6851 0.024 0.880 0.040 0.032 NA 0.012
#> SRR1036140     2   0.305     0.6851 0.024 0.880 0.040 0.032 NA 0.012
#> SRR1036141     2   0.305     0.6851 0.024 0.880 0.040 0.032 NA 0.012
#> SRR1036142     2   0.305     0.6851 0.024 0.880 0.040 0.032 NA 0.012
#> SRR1036143     2   0.305     0.6851 0.024 0.880 0.040 0.032 NA 0.012
#> SRR1036144     2   0.305     0.6851 0.024 0.880 0.040 0.032 NA 0.012
#> SRR1036145     2   0.305     0.6851 0.024 0.880 0.040 0.032 NA 0.012

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15218 rows and 144 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.395           0.721       0.860         0.4929 0.498   0.498
#> 3 3 0.525           0.748       0.863         0.3500 0.714   0.486
#> 4 4 0.609           0.725       0.840         0.1182 0.849   0.589
#> 5 5 0.650           0.628       0.717         0.0628 1.000   1.000
#> 6 6 0.676           0.431       0.624         0.0409 0.859   0.504

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1036002     2  0.0938      0.831 0.012 0.988
#> SRR1036003     2  0.0938      0.831 0.012 0.988
#> SRR1036004     2  0.0938      0.831 0.012 0.988
#> SRR1036005     2  0.7528      0.735 0.216 0.784
#> SRR1036006     2  0.7528      0.735 0.216 0.784
#> SRR1036007     2  0.7528      0.735 0.216 0.784
#> SRR1036008     2  0.7528      0.735 0.216 0.784
#> SRR1036009     2  0.7528      0.735 0.216 0.784
#> SRR1036013     2  0.8813      0.629 0.300 0.700
#> SRR1036014     2  0.8813      0.629 0.300 0.700
#> SRR1036015     2  0.8813      0.629 0.300 0.700
#> SRR1036016     2  0.8813      0.629 0.300 0.700
#> SRR1036017     2  0.8813      0.629 0.300 0.700
#> SRR1036018     2  0.8813      0.629 0.300 0.700
#> SRR1036010     1  0.2236      0.807 0.964 0.036
#> SRR1036011     1  0.2236      0.807 0.964 0.036
#> SRR1036012     1  0.2236      0.807 0.964 0.036
#> SRR1036019     2  0.2043      0.835 0.032 0.968
#> SRR1036020     2  0.2043      0.835 0.032 0.968
#> SRR1036021     2  0.2043      0.835 0.032 0.968
#> SRR1036022     2  0.2043      0.835 0.032 0.968
#> SRR1036023     2  0.2043      0.835 0.032 0.968
#> SRR1036024     1  0.9170      0.426 0.668 0.332
#> SRR1036025     1  0.9170      0.426 0.668 0.332
#> SRR1036026     1  0.9170      0.426 0.668 0.332
#> SRR1036027     1  0.9170      0.426 0.668 0.332
#> SRR1036028     1  0.9170      0.426 0.668 0.332
#> SRR1036029     1  0.9170      0.426 0.668 0.332
#> SRR1036030     1  0.8713      0.605 0.708 0.292
#> SRR1036031     1  0.8713      0.605 0.708 0.292
#> SRR1036032     1  0.8713      0.605 0.708 0.292
#> SRR1036033     1  0.8713      0.605 0.708 0.292
#> SRR1036034     1  0.8713      0.605 0.708 0.292
#> SRR1036035     1  0.8713      0.605 0.708 0.292
#> SRR1036036     1  0.8713      0.605 0.708 0.292
#> SRR1036037     1  0.8713      0.605 0.708 0.292
#> SRR1036038     1  0.8763      0.614 0.704 0.296
#> SRR1036039     1  0.8763      0.614 0.704 0.296
#> SRR1036040     1  0.8763      0.614 0.704 0.296
#> SRR1036041     1  0.0672      0.810 0.992 0.008
#> SRR1036042     2  0.0000      0.832 0.000 1.000
#> SRR1036043     2  0.0000      0.832 0.000 1.000
#> SRR1036044     2  0.0000      0.832 0.000 1.000
#> SRR1036045     2  0.0000      0.832 0.000 1.000
#> SRR1036046     2  0.0000      0.832 0.000 1.000
#> SRR1036047     2  0.0000      0.832 0.000 1.000
#> SRR1036048     2  0.0000      0.832 0.000 1.000
#> SRR1036049     2  0.0000      0.832 0.000 1.000
#> SRR1036050     1  0.1633      0.807 0.976 0.024
#> SRR1036051     1  0.1633      0.807 0.976 0.024
#> SRR1036052     1  0.1633      0.807 0.976 0.024
#> SRR1036053     1  0.1633      0.807 0.976 0.024
#> SRR1036054     1  0.1633      0.807 0.976 0.024
#> SRR1036055     1  0.8081      0.642 0.752 0.248
#> SRR1036056     1  0.8081      0.642 0.752 0.248
#> SRR1036057     1  0.8081      0.642 0.752 0.248
#> SRR1036058     1  0.9608      0.294 0.616 0.384
#> SRR1036059     1  0.9608      0.294 0.616 0.384
#> SRR1036060     1  0.9608      0.294 0.616 0.384
#> SRR1036061     1  0.9608      0.294 0.616 0.384
#> SRR1036062     1  0.9608      0.294 0.616 0.384
#> SRR1036063     1  0.9608      0.294 0.616 0.384
#> SRR1036064     1  0.9608      0.294 0.616 0.384
#> SRR1036065     1  0.9608      0.294 0.616 0.384
#> SRR1036066     1  0.0376      0.811 0.996 0.004
#> SRR1036067     1  0.0376      0.811 0.996 0.004
#> SRR1036068     1  0.0376      0.811 0.996 0.004
#> SRR1036069     1  0.0376      0.811 0.996 0.004
#> SRR1036070     1  0.0376      0.811 0.996 0.004
#> SRR1036071     1  0.0376      0.811 0.996 0.004
#> SRR1036072     1  0.0376      0.811 0.996 0.004
#> SRR1036073     1  0.0376      0.811 0.996 0.004
#> SRR1036074     2  0.2423      0.836 0.040 0.960
#> SRR1036075     2  0.2423      0.836 0.040 0.960
#> SRR1036076     2  0.2423      0.836 0.040 0.960
#> SRR1036077     2  0.2423      0.836 0.040 0.960
#> SRR1036078     2  0.2423      0.836 0.040 0.960
#> SRR1036079     2  0.2423      0.836 0.040 0.960
#> SRR1036080     2  0.2423      0.836 0.040 0.960
#> SRR1036081     2  0.2423      0.836 0.040 0.960
#> SRR1036082     2  0.7299      0.697 0.204 0.796
#> SRR1036083     2  0.7299      0.697 0.204 0.796
#> SRR1036084     2  0.7299      0.697 0.204 0.796
#> SRR1036090     2  0.3114      0.828 0.056 0.944
#> SRR1036091     2  0.3114      0.828 0.056 0.944
#> SRR1036092     2  0.3114      0.828 0.056 0.944
#> SRR1036093     2  0.3114      0.828 0.056 0.944
#> SRR1036094     2  0.3114      0.828 0.056 0.944
#> SRR1036085     2  0.7528      0.735 0.216 0.784
#> SRR1036086     2  0.7528      0.735 0.216 0.784
#> SRR1036087     2  0.7528      0.735 0.216 0.784
#> SRR1036088     2  0.7528      0.735 0.216 0.784
#> SRR1036089     2  0.7528      0.735 0.216 0.784
#> SRR1036095     1  0.0672      0.809 0.992 0.008
#> SRR1036096     1  0.0672      0.809 0.992 0.008
#> SRR1036097     1  0.0672      0.809 0.992 0.008
#> SRR1036098     1  0.0672      0.809 0.992 0.008
#> SRR1036099     1  0.0672      0.809 0.992 0.008
#> SRR1036100     2  0.2778      0.833 0.048 0.952
#> SRR1036101     2  0.2778      0.833 0.048 0.952
#> SRR1036102     2  0.2778      0.833 0.048 0.952
#> SRR1036103     2  0.2778      0.833 0.048 0.952
#> SRR1036104     2  0.2778      0.833 0.048 0.952
#> SRR1036105     2  0.7528      0.735 0.216 0.784
#> SRR1036106     2  0.7528      0.735 0.216 0.784
#> SRR1036107     2  0.7528      0.735 0.216 0.784
#> SRR1036108     2  0.7528      0.735 0.216 0.784
#> SRR1036109     2  0.7528      0.735 0.216 0.784
#> SRR1036110     2  0.9248      0.568 0.340 0.660
#> SRR1036111     2  0.9248      0.568 0.340 0.660
#> SRR1036112     2  0.9248      0.568 0.340 0.660
#> SRR1036113     2  0.9248      0.568 0.340 0.660
#> SRR1036114     2  0.9248      0.568 0.340 0.660
#> SRR1036115     1  0.0000      0.810 1.000 0.000
#> SRR1036116     1  0.0000      0.810 1.000 0.000
#> SRR1036117     1  0.0000      0.810 1.000 0.000
#> SRR1036118     1  0.0000      0.810 1.000 0.000
#> SRR1036119     1  0.0000      0.810 1.000 0.000
#> SRR1036120     1  0.4939      0.778 0.892 0.108
#> SRR1036121     1  0.4939      0.778 0.892 0.108
#> SRR1036122     1  0.4939      0.778 0.892 0.108
#> SRR1036123     1  0.4939      0.778 0.892 0.108
#> SRR1036124     1  0.4939      0.778 0.892 0.108
#> SRR1036125     1  0.1184      0.805 0.984 0.016
#> SRR1036126     1  0.1184      0.805 0.984 0.016
#> SRR1036127     1  0.1184      0.805 0.984 0.016
#> SRR1036128     1  0.1184      0.805 0.984 0.016
#> SRR1036129     1  0.1184      0.805 0.984 0.016
#> SRR1036130     1  0.1184      0.805 0.984 0.016
#> SRR1036131     1  0.1184      0.805 0.984 0.016
#> SRR1036132     1  0.1184      0.805 0.984 0.016
#> SRR1036133     2  0.7299      0.674 0.204 0.796
#> SRR1036134     2  0.7299      0.674 0.204 0.796
#> SRR1036135     2  0.7299      0.674 0.204 0.796
#> SRR1036136     2  0.7299      0.674 0.204 0.796
#> SRR1036137     2  0.7299      0.674 0.204 0.796
#> SRR1036138     2  0.2603      0.833 0.044 0.956
#> SRR1036139     2  0.2603      0.833 0.044 0.956
#> SRR1036140     2  0.2603      0.833 0.044 0.956
#> SRR1036141     2  0.2603      0.833 0.044 0.956
#> SRR1036142     2  0.2603      0.833 0.044 0.956
#> SRR1036143     2  0.2603      0.833 0.044 0.956
#> SRR1036144     2  0.2603      0.833 0.044 0.956
#> SRR1036145     2  0.2603      0.833 0.044 0.956

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1036002     3  0.0983      0.810 0.004 0.016 0.980
#> SRR1036003     3  0.0983      0.810 0.004 0.016 0.980
#> SRR1036004     3  0.0983      0.810 0.004 0.016 0.980
#> SRR1036005     3  0.0475      0.812 0.004 0.004 0.992
#> SRR1036006     3  0.0475      0.812 0.004 0.004 0.992
#> SRR1036007     3  0.0475      0.812 0.004 0.004 0.992
#> SRR1036008     3  0.0475      0.812 0.004 0.004 0.992
#> SRR1036009     3  0.0475      0.812 0.004 0.004 0.992
#> SRR1036013     3  0.5348      0.731 0.176 0.028 0.796
#> SRR1036014     3  0.5348      0.731 0.176 0.028 0.796
#> SRR1036015     3  0.5348      0.731 0.176 0.028 0.796
#> SRR1036016     3  0.5348      0.731 0.176 0.028 0.796
#> SRR1036017     3  0.5348      0.731 0.176 0.028 0.796
#> SRR1036018     3  0.5348      0.731 0.176 0.028 0.796
#> SRR1036010     1  0.3573      0.779 0.876 0.004 0.120
#> SRR1036011     1  0.3573      0.779 0.876 0.004 0.120
#> SRR1036012     1  0.3573      0.779 0.876 0.004 0.120
#> SRR1036019     2  0.1860      0.897 0.000 0.948 0.052
#> SRR1036020     2  0.1860      0.897 0.000 0.948 0.052
#> SRR1036021     2  0.1860      0.897 0.000 0.948 0.052
#> SRR1036022     2  0.1860      0.897 0.000 0.948 0.052
#> SRR1036023     2  0.1860      0.897 0.000 0.948 0.052
#> SRR1036024     1  0.7844      0.447 0.660 0.120 0.220
#> SRR1036025     1  0.7844      0.447 0.660 0.120 0.220
#> SRR1036026     1  0.7844      0.447 0.660 0.120 0.220
#> SRR1036027     1  0.7844      0.447 0.660 0.120 0.220
#> SRR1036028     1  0.7844      0.447 0.660 0.120 0.220
#> SRR1036029     1  0.7844      0.447 0.660 0.120 0.220
#> SRR1036030     2  0.3267      0.837 0.116 0.884 0.000
#> SRR1036031     2  0.3267      0.837 0.116 0.884 0.000
#> SRR1036032     2  0.3267      0.837 0.116 0.884 0.000
#> SRR1036033     2  0.3267      0.837 0.116 0.884 0.000
#> SRR1036034     2  0.3267      0.837 0.116 0.884 0.000
#> SRR1036035     2  0.3267      0.837 0.116 0.884 0.000
#> SRR1036036     2  0.3267      0.837 0.116 0.884 0.000
#> SRR1036037     2  0.3267      0.837 0.116 0.884 0.000
#> SRR1036038     1  0.7880      0.615 0.668 0.164 0.168
#> SRR1036039     1  0.7880      0.615 0.668 0.164 0.168
#> SRR1036040     1  0.7880      0.615 0.668 0.164 0.168
#> SRR1036041     1  0.0892      0.830 0.980 0.020 0.000
#> SRR1036042     3  0.2537      0.787 0.000 0.080 0.920
#> SRR1036043     3  0.2537      0.787 0.000 0.080 0.920
#> SRR1036044     3  0.2537      0.787 0.000 0.080 0.920
#> SRR1036045     3  0.2537      0.787 0.000 0.080 0.920
#> SRR1036046     3  0.2537      0.787 0.000 0.080 0.920
#> SRR1036047     3  0.2537      0.787 0.000 0.080 0.920
#> SRR1036048     3  0.2537      0.787 0.000 0.080 0.920
#> SRR1036049     3  0.2537      0.787 0.000 0.080 0.920
#> SRR1036050     1  0.0747      0.831 0.984 0.016 0.000
#> SRR1036051     1  0.0747      0.831 0.984 0.016 0.000
#> SRR1036052     1  0.0747      0.831 0.984 0.016 0.000
#> SRR1036053     1  0.0747      0.831 0.984 0.016 0.000
#> SRR1036054     1  0.0747      0.831 0.984 0.016 0.000
#> SRR1036055     1  0.6225      0.268 0.568 0.432 0.000
#> SRR1036056     1  0.6225      0.268 0.568 0.432 0.000
#> SRR1036057     1  0.6225      0.268 0.568 0.432 0.000
#> SRR1036058     3  0.9672      0.286 0.384 0.212 0.404
#> SRR1036059     3  0.9672      0.286 0.384 0.212 0.404
#> SRR1036060     3  0.9672      0.286 0.384 0.212 0.404
#> SRR1036061     3  0.9672      0.286 0.384 0.212 0.404
#> SRR1036062     3  0.9672      0.286 0.384 0.212 0.404
#> SRR1036063     3  0.9672      0.286 0.384 0.212 0.404
#> SRR1036064     3  0.9672      0.286 0.384 0.212 0.404
#> SRR1036065     3  0.9672      0.286 0.384 0.212 0.404
#> SRR1036066     1  0.0000      0.829 1.000 0.000 0.000
#> SRR1036067     1  0.0000      0.829 1.000 0.000 0.000
#> SRR1036068     1  0.0000      0.829 1.000 0.000 0.000
#> SRR1036069     1  0.0000      0.829 1.000 0.000 0.000
#> SRR1036070     1  0.0000      0.829 1.000 0.000 0.000
#> SRR1036071     1  0.0000      0.829 1.000 0.000 0.000
#> SRR1036072     1  0.0000      0.829 1.000 0.000 0.000
#> SRR1036073     1  0.0000      0.829 1.000 0.000 0.000
#> SRR1036074     2  0.5842      0.725 0.036 0.768 0.196
#> SRR1036075     2  0.5842      0.725 0.036 0.768 0.196
#> SRR1036076     2  0.5842      0.725 0.036 0.768 0.196
#> SRR1036077     2  0.5842      0.725 0.036 0.768 0.196
#> SRR1036078     2  0.5842      0.725 0.036 0.768 0.196
#> SRR1036079     2  0.5842      0.725 0.036 0.768 0.196
#> SRR1036080     2  0.5842      0.725 0.036 0.768 0.196
#> SRR1036081     2  0.5842      0.725 0.036 0.768 0.196
#> SRR1036082     2  0.4964      0.793 0.048 0.836 0.116
#> SRR1036083     2  0.4964      0.793 0.048 0.836 0.116
#> SRR1036084     2  0.4964      0.793 0.048 0.836 0.116
#> SRR1036090     2  0.2200      0.896 0.004 0.940 0.056
#> SRR1036091     2  0.2200      0.896 0.004 0.940 0.056
#> SRR1036092     2  0.2200      0.896 0.004 0.940 0.056
#> SRR1036093     2  0.2200      0.896 0.004 0.940 0.056
#> SRR1036094     2  0.2200      0.896 0.004 0.940 0.056
#> SRR1036085     3  0.0475      0.812 0.004 0.004 0.992
#> SRR1036086     3  0.0475      0.812 0.004 0.004 0.992
#> SRR1036087     3  0.0475      0.812 0.004 0.004 0.992
#> SRR1036088     3  0.0475      0.812 0.004 0.004 0.992
#> SRR1036089     3  0.0475      0.812 0.004 0.004 0.992
#> SRR1036095     1  0.2486      0.808 0.932 0.060 0.008
#> SRR1036096     1  0.2486      0.808 0.932 0.060 0.008
#> SRR1036097     1  0.2486      0.808 0.932 0.060 0.008
#> SRR1036098     1  0.2486      0.808 0.932 0.060 0.008
#> SRR1036099     1  0.2486      0.808 0.932 0.060 0.008
#> SRR1036100     2  0.0237      0.890 0.000 0.996 0.004
#> SRR1036101     2  0.0237      0.890 0.000 0.996 0.004
#> SRR1036102     2  0.0237      0.890 0.000 0.996 0.004
#> SRR1036103     2  0.0237      0.890 0.000 0.996 0.004
#> SRR1036104     2  0.0237      0.890 0.000 0.996 0.004
#> SRR1036105     3  0.0475      0.812 0.004 0.004 0.992
#> SRR1036106     3  0.0475      0.812 0.004 0.004 0.992
#> SRR1036107     3  0.0475      0.812 0.004 0.004 0.992
#> SRR1036108     3  0.0475      0.812 0.004 0.004 0.992
#> SRR1036109     3  0.0475      0.812 0.004 0.004 0.992
#> SRR1036110     3  0.6109      0.738 0.140 0.080 0.780
#> SRR1036111     3  0.6109      0.738 0.140 0.080 0.780
#> SRR1036112     3  0.6109      0.738 0.140 0.080 0.780
#> SRR1036113     3  0.6109      0.738 0.140 0.080 0.780
#> SRR1036114     3  0.6109      0.738 0.140 0.080 0.780
#> SRR1036115     1  0.0424      0.831 0.992 0.008 0.000
#> SRR1036116     1  0.0424      0.831 0.992 0.008 0.000
#> SRR1036117     1  0.0424      0.831 0.992 0.008 0.000
#> SRR1036118     1  0.0424      0.831 0.992 0.008 0.000
#> SRR1036119     1  0.0424      0.831 0.992 0.008 0.000
#> SRR1036120     1  0.5905      0.497 0.648 0.000 0.352
#> SRR1036121     1  0.5905      0.497 0.648 0.000 0.352
#> SRR1036122     1  0.5905      0.497 0.648 0.000 0.352
#> SRR1036123     1  0.5905      0.497 0.648 0.000 0.352
#> SRR1036124     1  0.5905      0.497 0.648 0.000 0.352
#> SRR1036125     1  0.2096      0.823 0.944 0.004 0.052
#> SRR1036126     1  0.2096      0.823 0.944 0.004 0.052
#> SRR1036127     1  0.2096      0.823 0.944 0.004 0.052
#> SRR1036128     1  0.2096      0.823 0.944 0.004 0.052
#> SRR1036129     1  0.2096      0.823 0.944 0.004 0.052
#> SRR1036130     1  0.2096      0.823 0.944 0.004 0.052
#> SRR1036131     1  0.2096      0.823 0.944 0.004 0.052
#> SRR1036132     1  0.2096      0.823 0.944 0.004 0.052
#> SRR1036133     2  0.0475      0.893 0.004 0.992 0.004
#> SRR1036134     2  0.0475      0.893 0.004 0.992 0.004
#> SRR1036135     2  0.0475      0.893 0.004 0.992 0.004
#> SRR1036136     2  0.0475      0.893 0.004 0.992 0.004
#> SRR1036137     2  0.0475      0.893 0.004 0.992 0.004
#> SRR1036138     2  0.2066      0.895 0.000 0.940 0.060
#> SRR1036139     2  0.2066      0.895 0.000 0.940 0.060
#> SRR1036140     2  0.2066      0.895 0.000 0.940 0.060
#> SRR1036141     2  0.2066      0.895 0.000 0.940 0.060
#> SRR1036142     2  0.2066      0.895 0.000 0.940 0.060
#> SRR1036143     2  0.2066      0.895 0.000 0.940 0.060
#> SRR1036144     2  0.2066      0.895 0.000 0.940 0.060
#> SRR1036145     2  0.2066      0.895 0.000 0.940 0.060

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1036002     3  0.1771      0.893 0.004 0.012 0.948 0.036
#> SRR1036003     3  0.1771      0.893 0.004 0.012 0.948 0.036
#> SRR1036004     3  0.1771      0.893 0.004 0.012 0.948 0.036
#> SRR1036005     3  0.0000      0.909 0.000 0.000 1.000 0.000
#> SRR1036006     3  0.0000      0.909 0.000 0.000 1.000 0.000
#> SRR1036007     3  0.0000      0.909 0.000 0.000 1.000 0.000
#> SRR1036008     3  0.0000      0.909 0.000 0.000 1.000 0.000
#> SRR1036009     3  0.0000      0.909 0.000 0.000 1.000 0.000
#> SRR1036013     4  0.6204      0.253 0.052 0.000 0.448 0.500
#> SRR1036014     4  0.6204      0.253 0.052 0.000 0.448 0.500
#> SRR1036015     4  0.6204      0.253 0.052 0.000 0.448 0.500
#> SRR1036016     4  0.6204      0.253 0.052 0.000 0.448 0.500
#> SRR1036017     4  0.6204      0.253 0.052 0.000 0.448 0.500
#> SRR1036018     4  0.6204      0.253 0.052 0.000 0.448 0.500
#> SRR1036010     1  0.2115      0.795 0.936 0.004 0.036 0.024
#> SRR1036011     1  0.2115      0.795 0.936 0.004 0.036 0.024
#> SRR1036012     1  0.2115      0.795 0.936 0.004 0.036 0.024
#> SRR1036019     2  0.1635      0.897 0.000 0.948 0.008 0.044
#> SRR1036020     2  0.1635      0.897 0.000 0.948 0.008 0.044
#> SRR1036021     2  0.1635      0.897 0.000 0.948 0.008 0.044
#> SRR1036022     2  0.1635      0.897 0.000 0.948 0.008 0.044
#> SRR1036023     2  0.1635      0.897 0.000 0.948 0.008 0.044
#> SRR1036024     4  0.5214      0.456 0.336 0.004 0.012 0.648
#> SRR1036025     4  0.5214      0.456 0.336 0.004 0.012 0.648
#> SRR1036026     4  0.5214      0.456 0.336 0.004 0.012 0.648
#> SRR1036027     4  0.5214      0.456 0.336 0.004 0.012 0.648
#> SRR1036028     4  0.5214      0.456 0.336 0.004 0.012 0.648
#> SRR1036029     4  0.5214      0.456 0.336 0.004 0.012 0.648
#> SRR1036030     2  0.3962      0.820 0.124 0.832 0.000 0.044
#> SRR1036031     2  0.3962      0.820 0.124 0.832 0.000 0.044
#> SRR1036032     2  0.3962      0.820 0.124 0.832 0.000 0.044
#> SRR1036033     2  0.3962      0.820 0.124 0.832 0.000 0.044
#> SRR1036034     2  0.3962      0.820 0.124 0.832 0.000 0.044
#> SRR1036035     2  0.3962      0.820 0.124 0.832 0.000 0.044
#> SRR1036036     2  0.3962      0.820 0.124 0.832 0.000 0.044
#> SRR1036037     2  0.3962      0.820 0.124 0.832 0.000 0.044
#> SRR1036038     1  0.6001      0.656 0.700 0.120 0.176 0.004
#> SRR1036039     1  0.6001      0.656 0.700 0.120 0.176 0.004
#> SRR1036040     1  0.6001      0.656 0.700 0.120 0.176 0.004
#> SRR1036041     1  0.0672      0.801 0.984 0.008 0.000 0.008
#> SRR1036042     3  0.5370      0.790 0.008 0.084 0.756 0.152
#> SRR1036043     3  0.5370      0.790 0.008 0.084 0.756 0.152
#> SRR1036044     3  0.5370      0.790 0.008 0.084 0.756 0.152
#> SRR1036045     3  0.5370      0.790 0.008 0.084 0.756 0.152
#> SRR1036046     3  0.5370      0.790 0.008 0.084 0.756 0.152
#> SRR1036047     3  0.5370      0.790 0.008 0.084 0.756 0.152
#> SRR1036048     3  0.5370      0.790 0.008 0.084 0.756 0.152
#> SRR1036049     3  0.5370      0.790 0.008 0.084 0.756 0.152
#> SRR1036050     1  0.0817      0.802 0.976 0.000 0.000 0.024
#> SRR1036051     1  0.0817      0.802 0.976 0.000 0.000 0.024
#> SRR1036052     1  0.0817      0.802 0.976 0.000 0.000 0.024
#> SRR1036053     1  0.0817      0.802 0.976 0.000 0.000 0.024
#> SRR1036054     1  0.0817      0.802 0.976 0.000 0.000 0.024
#> SRR1036055     1  0.5762      0.391 0.608 0.352 0.000 0.040
#> SRR1036056     1  0.5762      0.391 0.608 0.352 0.000 0.040
#> SRR1036057     1  0.5762      0.391 0.608 0.352 0.000 0.040
#> SRR1036058     4  0.3143      0.691 0.080 0.008 0.024 0.888
#> SRR1036059     4  0.3143      0.691 0.080 0.008 0.024 0.888
#> SRR1036060     4  0.3143      0.691 0.080 0.008 0.024 0.888
#> SRR1036061     4  0.3143      0.691 0.080 0.008 0.024 0.888
#> SRR1036062     4  0.3143      0.691 0.080 0.008 0.024 0.888
#> SRR1036063     4  0.3143      0.691 0.080 0.008 0.024 0.888
#> SRR1036064     4  0.3143      0.691 0.080 0.008 0.024 0.888
#> SRR1036065     4  0.3143      0.691 0.080 0.008 0.024 0.888
#> SRR1036066     1  0.2266      0.788 0.912 0.000 0.004 0.084
#> SRR1036067     1  0.2266      0.788 0.912 0.000 0.004 0.084
#> SRR1036068     1  0.2266      0.788 0.912 0.000 0.004 0.084
#> SRR1036069     1  0.2266      0.788 0.912 0.000 0.004 0.084
#> SRR1036070     1  0.2266      0.788 0.912 0.000 0.004 0.084
#> SRR1036071     1  0.2266      0.788 0.912 0.000 0.004 0.084
#> SRR1036072     1  0.2266      0.788 0.912 0.000 0.004 0.084
#> SRR1036073     1  0.2266      0.788 0.912 0.000 0.004 0.084
#> SRR1036074     4  0.6098      0.452 0.000 0.316 0.068 0.616
#> SRR1036075     4  0.6098      0.452 0.000 0.316 0.068 0.616
#> SRR1036076     4  0.6098      0.452 0.000 0.316 0.068 0.616
#> SRR1036077     4  0.6098      0.452 0.000 0.316 0.068 0.616
#> SRR1036078     4  0.6098      0.452 0.000 0.316 0.068 0.616
#> SRR1036079     4  0.6098      0.452 0.000 0.316 0.068 0.616
#> SRR1036080     4  0.6098      0.452 0.000 0.316 0.068 0.616
#> SRR1036081     4  0.6098      0.452 0.000 0.316 0.068 0.616
#> SRR1036082     4  0.2714      0.675 0.000 0.112 0.004 0.884
#> SRR1036083     4  0.2714      0.675 0.000 0.112 0.004 0.884
#> SRR1036084     4  0.2714      0.675 0.000 0.112 0.004 0.884
#> SRR1036090     2  0.0524      0.912 0.000 0.988 0.008 0.004
#> SRR1036091     2  0.0524      0.912 0.000 0.988 0.008 0.004
#> SRR1036092     2  0.0524      0.912 0.000 0.988 0.008 0.004
#> SRR1036093     2  0.0524      0.912 0.000 0.988 0.008 0.004
#> SRR1036094     2  0.0524      0.912 0.000 0.988 0.008 0.004
#> SRR1036085     3  0.0000      0.909 0.000 0.000 1.000 0.000
#> SRR1036086     3  0.0000      0.909 0.000 0.000 1.000 0.000
#> SRR1036087     3  0.0000      0.909 0.000 0.000 1.000 0.000
#> SRR1036088     3  0.0000      0.909 0.000 0.000 1.000 0.000
#> SRR1036089     3  0.0000      0.909 0.000 0.000 1.000 0.000
#> SRR1036095     1  0.5368      0.456 0.636 0.024 0.000 0.340
#> SRR1036096     1  0.5368      0.456 0.636 0.024 0.000 0.340
#> SRR1036097     1  0.5368      0.456 0.636 0.024 0.000 0.340
#> SRR1036098     1  0.5368      0.456 0.636 0.024 0.000 0.340
#> SRR1036099     1  0.5368      0.456 0.636 0.024 0.000 0.340
#> SRR1036100     2  0.3610      0.763 0.000 0.800 0.000 0.200
#> SRR1036101     2  0.3610      0.763 0.000 0.800 0.000 0.200
#> SRR1036102     2  0.3610      0.763 0.000 0.800 0.000 0.200
#> SRR1036103     2  0.3610      0.763 0.000 0.800 0.000 0.200
#> SRR1036104     2  0.3610      0.763 0.000 0.800 0.000 0.200
#> SRR1036105     3  0.0000      0.909 0.000 0.000 1.000 0.000
#> SRR1036106     3  0.0000      0.909 0.000 0.000 1.000 0.000
#> SRR1036107     3  0.0000      0.909 0.000 0.000 1.000 0.000
#> SRR1036108     3  0.0000      0.909 0.000 0.000 1.000 0.000
#> SRR1036109     3  0.0000      0.909 0.000 0.000 1.000 0.000
#> SRR1036110     4  0.2704      0.665 0.000 0.000 0.124 0.876
#> SRR1036111     4  0.2704      0.665 0.000 0.000 0.124 0.876
#> SRR1036112     4  0.2704      0.665 0.000 0.000 0.124 0.876
#> SRR1036113     4  0.2704      0.665 0.000 0.000 0.124 0.876
#> SRR1036114     4  0.2704      0.665 0.000 0.000 0.124 0.876
#> SRR1036115     1  0.2704      0.767 0.876 0.000 0.000 0.124
#> SRR1036116     1  0.2704      0.767 0.876 0.000 0.000 0.124
#> SRR1036117     1  0.2704      0.767 0.876 0.000 0.000 0.124
#> SRR1036118     1  0.2704      0.767 0.876 0.000 0.000 0.124
#> SRR1036119     1  0.2704      0.767 0.876 0.000 0.000 0.124
#> SRR1036120     1  0.6121      0.503 0.624 0.004 0.312 0.060
#> SRR1036121     1  0.6121      0.503 0.624 0.004 0.312 0.060
#> SRR1036122     1  0.6121      0.503 0.624 0.004 0.312 0.060
#> SRR1036123     1  0.6121      0.503 0.624 0.004 0.312 0.060
#> SRR1036124     1  0.6121      0.503 0.624 0.004 0.312 0.060
#> SRR1036125     1  0.2363      0.801 0.920 0.000 0.056 0.024
#> SRR1036126     1  0.2363      0.801 0.920 0.000 0.056 0.024
#> SRR1036127     1  0.2363      0.801 0.920 0.000 0.056 0.024
#> SRR1036128     1  0.2363      0.801 0.920 0.000 0.056 0.024
#> SRR1036129     1  0.2363      0.801 0.920 0.000 0.056 0.024
#> SRR1036130     1  0.2363      0.801 0.920 0.000 0.056 0.024
#> SRR1036131     1  0.2363      0.801 0.920 0.000 0.056 0.024
#> SRR1036132     1  0.2363      0.801 0.920 0.000 0.056 0.024
#> SRR1036133     2  0.0188      0.911 0.000 0.996 0.000 0.004
#> SRR1036134     2  0.0188      0.911 0.000 0.996 0.000 0.004
#> SRR1036135     2  0.0188      0.911 0.000 0.996 0.000 0.004
#> SRR1036136     2  0.0188      0.911 0.000 0.996 0.000 0.004
#> SRR1036137     2  0.0188      0.911 0.000 0.996 0.000 0.004
#> SRR1036138     2  0.0336      0.913 0.000 0.992 0.008 0.000
#> SRR1036139     2  0.0336      0.913 0.000 0.992 0.008 0.000
#> SRR1036140     2  0.0336      0.913 0.000 0.992 0.008 0.000
#> SRR1036141     2  0.0336      0.913 0.000 0.992 0.008 0.000
#> SRR1036142     2  0.0336      0.913 0.000 0.992 0.008 0.000
#> SRR1036143     2  0.0336      0.913 0.000 0.992 0.008 0.000
#> SRR1036144     2  0.0336      0.913 0.000 0.992 0.008 0.000
#> SRR1036145     2  0.0336      0.913 0.000 0.992 0.008 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1036002     3  0.4091      0.767 0.000 0.020 0.804 0.044 0.132
#> SRR1036003     3  0.4091      0.767 0.000 0.020 0.804 0.044 0.132
#> SRR1036004     3  0.4091      0.767 0.000 0.020 0.804 0.044 0.132
#> SRR1036005     3  0.0000      0.824 0.000 0.000 1.000 0.000 0.000
#> SRR1036006     3  0.0000      0.824 0.000 0.000 1.000 0.000 0.000
#> SRR1036007     3  0.0000      0.824 0.000 0.000 1.000 0.000 0.000
#> SRR1036008     3  0.0000      0.824 0.000 0.000 1.000 0.000 0.000
#> SRR1036009     3  0.0000      0.824 0.000 0.000 1.000 0.000 0.000
#> SRR1036013     4  0.7505      0.283 0.048 0.000 0.364 0.380 0.208
#> SRR1036014     4  0.7505      0.283 0.048 0.000 0.364 0.380 0.208
#> SRR1036015     4  0.7505      0.283 0.048 0.000 0.364 0.380 0.208
#> SRR1036016     4  0.7505      0.283 0.048 0.000 0.364 0.380 0.208
#> SRR1036017     4  0.7505      0.283 0.048 0.000 0.364 0.380 0.208
#> SRR1036018     4  0.7505      0.283 0.048 0.000 0.364 0.380 0.208
#> SRR1036010     1  0.2899      0.710 0.872 0.000 0.020 0.008 0.100
#> SRR1036011     1  0.2899      0.710 0.872 0.000 0.020 0.008 0.100
#> SRR1036012     1  0.2899      0.710 0.872 0.000 0.020 0.008 0.100
#> SRR1036019     2  0.4517      0.726 0.012 0.776 0.004 0.064 0.144
#> SRR1036020     2  0.4517      0.726 0.012 0.776 0.004 0.064 0.144
#> SRR1036021     2  0.4517      0.726 0.012 0.776 0.004 0.064 0.144
#> SRR1036022     2  0.4517      0.726 0.012 0.776 0.004 0.064 0.144
#> SRR1036023     2  0.4517      0.726 0.012 0.776 0.004 0.064 0.144
#> SRR1036024     4  0.6678      0.407 0.236 0.004 0.004 0.508 0.248
#> SRR1036025     4  0.6678      0.407 0.236 0.004 0.004 0.508 0.248
#> SRR1036026     4  0.6678      0.407 0.236 0.004 0.004 0.508 0.248
#> SRR1036027     4  0.6678      0.407 0.236 0.004 0.004 0.508 0.248
#> SRR1036028     4  0.6678      0.407 0.236 0.004 0.004 0.508 0.248
#> SRR1036029     4  0.6678      0.407 0.236 0.004 0.004 0.508 0.248
#> SRR1036030     2  0.4618      0.774 0.048 0.748 0.000 0.016 0.188
#> SRR1036031     2  0.4618      0.774 0.048 0.748 0.000 0.016 0.188
#> SRR1036032     2  0.4618      0.774 0.048 0.748 0.000 0.016 0.188
#> SRR1036033     2  0.4618      0.774 0.048 0.748 0.000 0.016 0.188
#> SRR1036034     2  0.4618      0.774 0.048 0.748 0.000 0.016 0.188
#> SRR1036035     2  0.4618      0.774 0.048 0.748 0.000 0.016 0.188
#> SRR1036036     2  0.4618      0.774 0.048 0.748 0.000 0.016 0.188
#> SRR1036037     2  0.4618      0.774 0.048 0.748 0.000 0.016 0.188
#> SRR1036038     1  0.6115      0.615 0.672 0.076 0.136 0.000 0.116
#> SRR1036039     1  0.6115      0.615 0.672 0.076 0.136 0.000 0.116
#> SRR1036040     1  0.6115      0.615 0.672 0.076 0.136 0.000 0.116
#> SRR1036041     1  0.1682      0.716 0.940 0.012 0.000 0.004 0.044
#> SRR1036042     3  0.7196      0.609 0.000 0.068 0.536 0.204 0.192
#> SRR1036043     3  0.7196      0.609 0.000 0.068 0.536 0.204 0.192
#> SRR1036044     3  0.7196      0.609 0.000 0.068 0.536 0.204 0.192
#> SRR1036045     3  0.7196      0.609 0.000 0.068 0.536 0.204 0.192
#> SRR1036046     3  0.7196      0.609 0.000 0.068 0.536 0.204 0.192
#> SRR1036047     3  0.7196      0.609 0.000 0.068 0.536 0.204 0.192
#> SRR1036048     3  0.7196      0.609 0.000 0.068 0.536 0.204 0.192
#> SRR1036049     3  0.7196      0.609 0.000 0.068 0.536 0.204 0.192
#> SRR1036050     1  0.1857      0.715 0.928 0.004 0.000 0.008 0.060
#> SRR1036051     1  0.1857      0.715 0.928 0.004 0.000 0.008 0.060
#> SRR1036052     1  0.1857      0.715 0.928 0.004 0.000 0.008 0.060
#> SRR1036053     1  0.1857      0.715 0.928 0.004 0.000 0.008 0.060
#> SRR1036054     1  0.1857      0.715 0.928 0.004 0.000 0.008 0.060
#> SRR1036055     1  0.6194      0.371 0.576 0.288 0.000 0.016 0.120
#> SRR1036056     1  0.6194      0.371 0.576 0.288 0.000 0.016 0.120
#> SRR1036057     1  0.6194      0.371 0.576 0.288 0.000 0.016 0.120
#> SRR1036058     4  0.4600      0.584 0.044 0.000 0.008 0.728 0.220
#> SRR1036059     4  0.4600      0.584 0.044 0.000 0.008 0.728 0.220
#> SRR1036060     4  0.4600      0.584 0.044 0.000 0.008 0.728 0.220
#> SRR1036061     4  0.4600      0.584 0.044 0.000 0.008 0.728 0.220
#> SRR1036062     4  0.4600      0.584 0.044 0.000 0.008 0.728 0.220
#> SRR1036063     4  0.4600      0.584 0.044 0.000 0.008 0.728 0.220
#> SRR1036064     4  0.4600      0.584 0.044 0.000 0.008 0.728 0.220
#> SRR1036065     4  0.4600      0.584 0.044 0.000 0.008 0.728 0.220
#> SRR1036066     1  0.4612      0.600 0.736 0.000 0.000 0.084 0.180
#> SRR1036067     1  0.4612      0.600 0.736 0.000 0.000 0.084 0.180
#> SRR1036068     1  0.4612      0.600 0.736 0.000 0.000 0.084 0.180
#> SRR1036069     1  0.4612      0.600 0.736 0.000 0.000 0.084 0.180
#> SRR1036070     1  0.4612      0.600 0.736 0.000 0.000 0.084 0.180
#> SRR1036071     1  0.4612      0.600 0.736 0.000 0.000 0.084 0.180
#> SRR1036072     1  0.4612      0.600 0.736 0.000 0.000 0.084 0.180
#> SRR1036073     1  0.4612      0.600 0.736 0.000 0.000 0.084 0.180
#> SRR1036074     4  0.6364      0.436 0.012 0.112 0.008 0.560 0.308
#> SRR1036075     4  0.6364      0.436 0.012 0.112 0.008 0.560 0.308
#> SRR1036076     4  0.6364      0.436 0.012 0.112 0.008 0.560 0.308
#> SRR1036077     4  0.6364      0.436 0.012 0.112 0.008 0.560 0.308
#> SRR1036078     4  0.6364      0.436 0.012 0.112 0.008 0.560 0.308
#> SRR1036079     4  0.6364      0.436 0.012 0.112 0.008 0.560 0.308
#> SRR1036080     4  0.6364      0.436 0.012 0.112 0.008 0.560 0.308
#> SRR1036081     4  0.6364      0.436 0.012 0.112 0.008 0.560 0.308
#> SRR1036082     4  0.4621      0.542 0.012 0.024 0.004 0.720 0.240
#> SRR1036083     4  0.4621      0.542 0.012 0.024 0.004 0.720 0.240
#> SRR1036084     4  0.4621      0.542 0.012 0.024 0.004 0.720 0.240
#> SRR1036090     2  0.1704      0.808 0.000 0.928 0.004 0.000 0.068
#> SRR1036091     2  0.1704      0.808 0.000 0.928 0.004 0.000 0.068
#> SRR1036092     2  0.1704      0.808 0.000 0.928 0.004 0.000 0.068
#> SRR1036093     2  0.1704      0.808 0.000 0.928 0.004 0.000 0.068
#> SRR1036094     2  0.1704      0.808 0.000 0.928 0.004 0.000 0.068
#> SRR1036085     3  0.0000      0.824 0.000 0.000 1.000 0.000 0.000
#> SRR1036086     3  0.0000      0.824 0.000 0.000 1.000 0.000 0.000
#> SRR1036087     3  0.0000      0.824 0.000 0.000 1.000 0.000 0.000
#> SRR1036088     3  0.0000      0.824 0.000 0.000 1.000 0.000 0.000
#> SRR1036089     3  0.0000      0.824 0.000 0.000 1.000 0.000 0.000
#> SRR1036095     1  0.6776      0.398 0.516 0.020 0.000 0.192 0.272
#> SRR1036096     1  0.6776      0.398 0.516 0.020 0.000 0.192 0.272
#> SRR1036097     1  0.6776      0.398 0.516 0.020 0.000 0.192 0.272
#> SRR1036098     1  0.6776      0.398 0.516 0.020 0.000 0.192 0.272
#> SRR1036099     1  0.6776      0.398 0.516 0.020 0.000 0.192 0.272
#> SRR1036100     2  0.6279      0.525 0.000 0.504 0.000 0.168 0.328
#> SRR1036101     2  0.6279      0.525 0.000 0.504 0.000 0.168 0.328
#> SRR1036102     2  0.6279      0.525 0.000 0.504 0.000 0.168 0.328
#> SRR1036103     2  0.6279      0.525 0.000 0.504 0.000 0.168 0.328
#> SRR1036104     2  0.6279      0.525 0.000 0.504 0.000 0.168 0.328
#> SRR1036105     3  0.0000      0.824 0.000 0.000 1.000 0.000 0.000
#> SRR1036106     3  0.0000      0.824 0.000 0.000 1.000 0.000 0.000
#> SRR1036107     3  0.0000      0.824 0.000 0.000 1.000 0.000 0.000
#> SRR1036108     3  0.0000      0.824 0.000 0.000 1.000 0.000 0.000
#> SRR1036109     3  0.0000      0.824 0.000 0.000 1.000 0.000 0.000
#> SRR1036110     4  0.1626      0.592 0.000 0.000 0.044 0.940 0.016
#> SRR1036111     4  0.1626      0.592 0.000 0.000 0.044 0.940 0.016
#> SRR1036112     4  0.1626      0.592 0.000 0.000 0.044 0.940 0.016
#> SRR1036113     4  0.1626      0.592 0.000 0.000 0.044 0.940 0.016
#> SRR1036114     4  0.1626      0.592 0.000 0.000 0.044 0.940 0.016
#> SRR1036115     1  0.4847      0.624 0.720 0.004 0.000 0.080 0.196
#> SRR1036116     1  0.4847      0.624 0.720 0.004 0.000 0.080 0.196
#> SRR1036117     1  0.4847      0.624 0.720 0.004 0.000 0.080 0.196
#> SRR1036118     1  0.4847      0.624 0.720 0.004 0.000 0.080 0.196
#> SRR1036119     1  0.4847      0.624 0.720 0.004 0.000 0.080 0.196
#> SRR1036120     1  0.6736      0.363 0.520 0.008 0.316 0.016 0.140
#> SRR1036121     1  0.6736      0.363 0.520 0.008 0.316 0.016 0.140
#> SRR1036122     1  0.6736      0.363 0.520 0.008 0.316 0.016 0.140
#> SRR1036123     1  0.6736      0.363 0.520 0.008 0.316 0.016 0.140
#> SRR1036124     1  0.6736      0.363 0.520 0.008 0.316 0.016 0.140
#> SRR1036125     1  0.3115      0.711 0.876 0.000 0.048 0.020 0.056
#> SRR1036126     1  0.3115      0.711 0.876 0.000 0.048 0.020 0.056
#> SRR1036127     1  0.3115      0.711 0.876 0.000 0.048 0.020 0.056
#> SRR1036128     1  0.3115      0.711 0.876 0.000 0.048 0.020 0.056
#> SRR1036129     1  0.3115      0.711 0.876 0.000 0.048 0.020 0.056
#> SRR1036130     1  0.3115      0.711 0.876 0.000 0.048 0.020 0.056
#> SRR1036131     1  0.3115      0.711 0.876 0.000 0.048 0.020 0.056
#> SRR1036132     1  0.3115      0.711 0.876 0.000 0.048 0.020 0.056
#> SRR1036133     2  0.2338      0.818 0.000 0.884 0.000 0.004 0.112
#> SRR1036134     2  0.2338      0.818 0.000 0.884 0.000 0.004 0.112
#> SRR1036135     2  0.2338      0.818 0.000 0.884 0.000 0.004 0.112
#> SRR1036136     2  0.2338      0.818 0.000 0.884 0.000 0.004 0.112
#> SRR1036137     2  0.2338      0.818 0.000 0.884 0.000 0.004 0.112
#> SRR1036138     2  0.0162      0.824 0.000 0.996 0.004 0.000 0.000
#> SRR1036139     2  0.0162      0.824 0.000 0.996 0.004 0.000 0.000
#> SRR1036140     2  0.0162      0.824 0.000 0.996 0.004 0.000 0.000
#> SRR1036141     2  0.0162      0.824 0.000 0.996 0.004 0.000 0.000
#> SRR1036142     2  0.0162      0.824 0.000 0.996 0.004 0.000 0.000
#> SRR1036143     2  0.0162      0.824 0.000 0.996 0.004 0.000 0.000
#> SRR1036144     2  0.0162      0.824 0.000 0.996 0.004 0.000 0.000
#> SRR1036145     2  0.0162      0.824 0.000 0.996 0.004 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1036002     3  0.6595     0.6127 0.008 0.020 0.604 0.100 0.100 0.168
#> SRR1036003     3  0.6595     0.6127 0.008 0.020 0.604 0.100 0.100 0.168
#> SRR1036004     3  0.6595     0.6127 0.008 0.020 0.604 0.100 0.100 0.168
#> SRR1036005     3  0.0000     0.7261 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036006     3  0.0000     0.7261 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036007     3  0.0000     0.7261 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036008     3  0.0000     0.7261 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036009     3  0.0000     0.7261 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036013     4  0.7612     0.4537 0.184 0.000 0.256 0.436 0.048 0.076
#> SRR1036014     4  0.7612     0.4537 0.184 0.000 0.256 0.436 0.048 0.076
#> SRR1036015     4  0.7612     0.4537 0.184 0.000 0.256 0.436 0.048 0.076
#> SRR1036016     4  0.7612     0.4537 0.184 0.000 0.256 0.436 0.048 0.076
#> SRR1036017     4  0.7612     0.4537 0.184 0.000 0.256 0.436 0.048 0.076
#> SRR1036018     4  0.7612     0.4537 0.184 0.000 0.256 0.436 0.048 0.076
#> SRR1036010     6  0.4945     0.2230 0.412 0.000 0.004 0.056 0.000 0.528
#> SRR1036011     6  0.4945     0.2230 0.412 0.000 0.004 0.056 0.000 0.528
#> SRR1036012     6  0.4945     0.2230 0.412 0.000 0.004 0.056 0.000 0.528
#> SRR1036019     2  0.5262     0.5695 0.012 0.668 0.000 0.048 0.228 0.044
#> SRR1036020     2  0.5262     0.5695 0.012 0.668 0.000 0.048 0.228 0.044
#> SRR1036021     2  0.5262     0.5695 0.012 0.668 0.000 0.048 0.228 0.044
#> SRR1036022     2  0.5262     0.5695 0.012 0.668 0.000 0.048 0.228 0.044
#> SRR1036023     2  0.5262     0.5695 0.012 0.668 0.000 0.048 0.228 0.044
#> SRR1036024     1  0.5950     0.0418 0.576 0.000 0.000 0.268 0.064 0.092
#> SRR1036025     1  0.5950     0.0418 0.576 0.000 0.000 0.268 0.064 0.092
#> SRR1036026     1  0.5950     0.0418 0.576 0.000 0.000 0.268 0.064 0.092
#> SRR1036027     1  0.5950     0.0418 0.576 0.000 0.000 0.268 0.064 0.092
#> SRR1036028     1  0.5950     0.0418 0.576 0.000 0.000 0.268 0.064 0.092
#> SRR1036029     1  0.5950     0.0418 0.576 0.000 0.000 0.268 0.064 0.092
#> SRR1036030     2  0.5026     0.7016 0.016 0.684 0.000 0.028 0.044 0.228
#> SRR1036031     2  0.5026     0.7016 0.016 0.684 0.000 0.028 0.044 0.228
#> SRR1036032     2  0.5026     0.7016 0.016 0.684 0.000 0.028 0.044 0.228
#> SRR1036033     2  0.5026     0.7016 0.016 0.684 0.000 0.028 0.044 0.228
#> SRR1036034     2  0.5026     0.7016 0.016 0.684 0.000 0.028 0.044 0.228
#> SRR1036035     2  0.5026     0.7016 0.016 0.684 0.000 0.028 0.044 0.228
#> SRR1036036     2  0.5026     0.7016 0.016 0.684 0.000 0.028 0.044 0.228
#> SRR1036037     2  0.5026     0.7016 0.016 0.684 0.000 0.028 0.044 0.228
#> SRR1036038     6  0.6712     0.3548 0.284 0.056 0.108 0.012 0.012 0.528
#> SRR1036039     6  0.6712     0.3548 0.284 0.056 0.108 0.012 0.012 0.528
#> SRR1036040     6  0.6712     0.3548 0.284 0.056 0.108 0.012 0.012 0.528
#> SRR1036041     1  0.4429     0.0035 0.548 0.000 0.000 0.028 0.000 0.424
#> SRR1036042     3  0.8618     0.4235 0.012 0.068 0.320 0.140 0.272 0.188
#> SRR1036043     3  0.8618     0.4235 0.012 0.068 0.320 0.140 0.272 0.188
#> SRR1036044     3  0.8618     0.4235 0.012 0.068 0.320 0.140 0.272 0.188
#> SRR1036045     3  0.8618     0.4235 0.012 0.068 0.320 0.140 0.272 0.188
#> SRR1036046     3  0.8618     0.4235 0.012 0.068 0.320 0.140 0.272 0.188
#> SRR1036047     3  0.8618     0.4235 0.012 0.068 0.320 0.140 0.272 0.188
#> SRR1036048     3  0.8618     0.4235 0.012 0.068 0.320 0.140 0.272 0.188
#> SRR1036049     3  0.8618     0.4235 0.012 0.068 0.320 0.140 0.272 0.188
#> SRR1036050     1  0.5356    -0.1399 0.504 0.000 0.000 0.068 0.016 0.412
#> SRR1036051     1  0.5356    -0.1399 0.504 0.000 0.000 0.068 0.016 0.412
#> SRR1036052     1  0.5356    -0.1399 0.504 0.000 0.000 0.068 0.016 0.412
#> SRR1036053     1  0.5356    -0.1399 0.504 0.000 0.000 0.068 0.016 0.412
#> SRR1036054     1  0.5356    -0.1399 0.504 0.000 0.000 0.068 0.016 0.412
#> SRR1036055     6  0.6911     0.3596 0.236 0.240 0.000 0.024 0.032 0.468
#> SRR1036056     6  0.6911     0.3596 0.236 0.240 0.000 0.024 0.032 0.468
#> SRR1036057     6  0.6911     0.3596 0.236 0.240 0.000 0.024 0.032 0.468
#> SRR1036058     4  0.3973     0.4868 0.036 0.000 0.004 0.728 0.232 0.000
#> SRR1036059     4  0.3973     0.4868 0.036 0.000 0.004 0.728 0.232 0.000
#> SRR1036060     4  0.3973     0.4868 0.036 0.000 0.004 0.728 0.232 0.000
#> SRR1036061     4  0.3973     0.4868 0.036 0.000 0.004 0.728 0.232 0.000
#> SRR1036062     4  0.3973     0.4868 0.036 0.000 0.004 0.728 0.232 0.000
#> SRR1036063     4  0.3973     0.4868 0.036 0.000 0.004 0.728 0.232 0.000
#> SRR1036064     4  0.3973     0.4868 0.036 0.000 0.004 0.728 0.232 0.000
#> SRR1036065     4  0.3973     0.4868 0.036 0.000 0.004 0.728 0.232 0.000
#> SRR1036066     1  0.0458     0.3805 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1036067     1  0.0458     0.3805 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1036068     1  0.0458     0.3805 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1036069     1  0.0458     0.3805 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1036070     1  0.0458     0.3805 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1036071     1  0.0458     0.3805 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1036072     1  0.0458     0.3805 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1036073     1  0.0458     0.3805 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1036074     5  0.1307     0.6544 0.008 0.032 0.008 0.000 0.952 0.000
#> SRR1036075     5  0.1307     0.6544 0.008 0.032 0.008 0.000 0.952 0.000
#> SRR1036076     5  0.1307     0.6544 0.008 0.032 0.008 0.000 0.952 0.000
#> SRR1036077     5  0.1307     0.6544 0.008 0.032 0.008 0.000 0.952 0.000
#> SRR1036078     5  0.1307     0.6544 0.008 0.032 0.008 0.000 0.952 0.000
#> SRR1036079     5  0.1307     0.6544 0.008 0.032 0.008 0.000 0.952 0.000
#> SRR1036080     5  0.1307     0.6544 0.008 0.032 0.008 0.000 0.952 0.000
#> SRR1036081     5  0.1307     0.6544 0.008 0.032 0.008 0.000 0.952 0.000
#> SRR1036082     5  0.3826     0.5585 0.004 0.016 0.000 0.156 0.788 0.036
#> SRR1036083     5  0.3826     0.5585 0.004 0.016 0.000 0.156 0.788 0.036
#> SRR1036084     5  0.3826     0.5585 0.004 0.016 0.000 0.156 0.788 0.036
#> SRR1036090     2  0.3654     0.7308 0.008 0.828 0.000 0.048 0.028 0.088
#> SRR1036091     2  0.3654     0.7308 0.008 0.828 0.000 0.048 0.028 0.088
#> SRR1036092     2  0.3654     0.7308 0.008 0.828 0.000 0.048 0.028 0.088
#> SRR1036093     2  0.3654     0.7308 0.008 0.828 0.000 0.048 0.028 0.088
#> SRR1036094     2  0.3654     0.7308 0.008 0.828 0.000 0.048 0.028 0.088
#> SRR1036085     3  0.0000     0.7261 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036086     3  0.0000     0.7261 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036087     3  0.0000     0.7261 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036088     3  0.0000     0.7261 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036089     3  0.0000     0.7261 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036095     4  0.5693    -0.0287 0.132 0.004 0.000 0.516 0.004 0.344
#> SRR1036096     4  0.5693    -0.0287 0.132 0.004 0.000 0.516 0.004 0.344
#> SRR1036097     4  0.5693    -0.0287 0.132 0.004 0.000 0.516 0.004 0.344
#> SRR1036098     4  0.5693    -0.0287 0.132 0.004 0.000 0.516 0.004 0.344
#> SRR1036099     4  0.5693    -0.0287 0.132 0.004 0.000 0.516 0.004 0.344
#> SRR1036100     5  0.5857     0.1746 0.000 0.352 0.000 0.032 0.516 0.100
#> SRR1036101     5  0.5857     0.1746 0.000 0.352 0.000 0.032 0.516 0.100
#> SRR1036102     5  0.5857     0.1746 0.000 0.352 0.000 0.032 0.516 0.100
#> SRR1036103     5  0.5857     0.1746 0.000 0.352 0.000 0.032 0.516 0.100
#> SRR1036104     5  0.5857     0.1746 0.000 0.352 0.000 0.032 0.516 0.100
#> SRR1036105     3  0.0000     0.7261 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036106     3  0.0000     0.7261 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036107     3  0.0000     0.7261 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036108     3  0.0000     0.7261 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036109     3  0.0000     0.7261 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036110     5  0.5240     0.2093 0.004 0.000 0.032 0.424 0.512 0.028
#> SRR1036111     5  0.5240     0.2093 0.004 0.000 0.032 0.424 0.512 0.028
#> SRR1036112     5  0.5240     0.2093 0.004 0.000 0.032 0.424 0.512 0.028
#> SRR1036113     5  0.5240     0.2093 0.004 0.000 0.032 0.424 0.512 0.028
#> SRR1036114     5  0.5240     0.2093 0.004 0.000 0.032 0.424 0.512 0.028
#> SRR1036115     6  0.6024     0.4090 0.248 0.000 0.000 0.348 0.000 0.404
#> SRR1036116     6  0.6024     0.4090 0.248 0.000 0.000 0.348 0.000 0.404
#> SRR1036117     6  0.6024     0.4090 0.248 0.000 0.000 0.348 0.000 0.404
#> SRR1036118     6  0.6024     0.4090 0.248 0.000 0.000 0.348 0.000 0.404
#> SRR1036119     6  0.6024     0.4090 0.248 0.000 0.000 0.348 0.000 0.404
#> SRR1036120     1  0.7549     0.0475 0.412 0.000 0.164 0.100 0.028 0.296
#> SRR1036121     1  0.7549     0.0475 0.412 0.000 0.164 0.100 0.028 0.296
#> SRR1036122     1  0.7549     0.0475 0.412 0.000 0.164 0.100 0.028 0.296
#> SRR1036123     1  0.7549     0.0475 0.412 0.000 0.164 0.100 0.028 0.296
#> SRR1036124     1  0.7549     0.0475 0.412 0.000 0.164 0.100 0.028 0.296
#> SRR1036125     1  0.5131     0.0733 0.524 0.000 0.064 0.008 0.000 0.404
#> SRR1036126     1  0.5131     0.0733 0.524 0.000 0.064 0.008 0.000 0.404
#> SRR1036127     1  0.5131     0.0733 0.524 0.000 0.064 0.008 0.000 0.404
#> SRR1036128     1  0.5131     0.0733 0.524 0.000 0.064 0.008 0.000 0.404
#> SRR1036129     1  0.5131     0.0733 0.524 0.000 0.064 0.008 0.000 0.404
#> SRR1036130     1  0.5131     0.0733 0.524 0.000 0.064 0.008 0.000 0.404
#> SRR1036131     1  0.5131     0.0733 0.524 0.000 0.064 0.008 0.000 0.404
#> SRR1036132     1  0.5131     0.0733 0.524 0.000 0.064 0.008 0.000 0.404
#> SRR1036133     2  0.2878     0.7746 0.000 0.860 0.000 0.016 0.024 0.100
#> SRR1036134     2  0.2878     0.7746 0.000 0.860 0.000 0.016 0.024 0.100
#> SRR1036135     2  0.2878     0.7746 0.000 0.860 0.000 0.016 0.024 0.100
#> SRR1036136     2  0.2878     0.7746 0.000 0.860 0.000 0.016 0.024 0.100
#> SRR1036137     2  0.2878     0.7746 0.000 0.860 0.000 0.016 0.024 0.100
#> SRR1036138     2  0.0458     0.7905 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1036139     2  0.0458     0.7905 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1036140     2  0.0458     0.7905 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1036141     2  0.0458     0.7905 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1036142     2  0.0458     0.7905 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1036143     2  0.0458     0.7905 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1036144     2  0.0458     0.7905 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1036145     2  0.0458     0.7905 0.000 0.984 0.000 0.000 0.016 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15218 rows and 144 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.557           0.957       0.964         0.2088 0.812   0.812
#> 3 3 0.602           0.702       0.804         1.2902 0.686   0.614
#> 4 4 0.615           0.832       0.861         0.3169 0.733   0.511
#> 5 5 0.688           0.865       0.867         0.0942 0.937   0.808
#> 6 6 0.768           0.872       0.873         0.0566 0.975   0.906

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1036002     2   0.689      0.829 0.184 0.816
#> SRR1036003     2   0.680      0.832 0.180 0.820
#> SRR1036004     2   0.662      0.841 0.172 0.828
#> SRR1036005     1   0.469      1.000 0.900 0.100
#> SRR1036006     1   0.469      1.000 0.900 0.100
#> SRR1036007     1   0.469      1.000 0.900 0.100
#> SRR1036008     1   0.469      1.000 0.900 0.100
#> SRR1036009     1   0.469      1.000 0.900 0.100
#> SRR1036013     2   0.000      0.969 0.000 1.000
#> SRR1036014     2   0.000      0.969 0.000 1.000
#> SRR1036015     2   0.000      0.969 0.000 1.000
#> SRR1036016     2   0.000      0.969 0.000 1.000
#> SRR1036017     2   0.000      0.969 0.000 1.000
#> SRR1036018     2   0.000      0.969 0.000 1.000
#> SRR1036010     2   0.000      0.969 0.000 1.000
#> SRR1036011     2   0.000      0.969 0.000 1.000
#> SRR1036012     2   0.000      0.969 0.000 1.000
#> SRR1036019     2   0.469      0.913 0.100 0.900
#> SRR1036020     2   0.469      0.913 0.100 0.900
#> SRR1036021     2   0.469      0.913 0.100 0.900
#> SRR1036022     2   0.469      0.913 0.100 0.900
#> SRR1036023     2   0.469      0.913 0.100 0.900
#> SRR1036024     2   0.000      0.969 0.000 1.000
#> SRR1036025     2   0.000      0.969 0.000 1.000
#> SRR1036026     2   0.000      0.969 0.000 1.000
#> SRR1036027     2   0.000      0.969 0.000 1.000
#> SRR1036028     2   0.000      0.969 0.000 1.000
#> SRR1036029     2   0.000      0.969 0.000 1.000
#> SRR1036030     2   0.469      0.913 0.100 0.900
#> SRR1036031     2   0.469      0.913 0.100 0.900
#> SRR1036032     2   0.469      0.913 0.100 0.900
#> SRR1036033     2   0.469      0.913 0.100 0.900
#> SRR1036034     2   0.469      0.913 0.100 0.900
#> SRR1036035     2   0.469      0.913 0.100 0.900
#> SRR1036036     2   0.469      0.913 0.100 0.900
#> SRR1036037     2   0.469      0.913 0.100 0.900
#> SRR1036038     2   0.000      0.969 0.000 1.000
#> SRR1036039     2   0.000      0.969 0.000 1.000
#> SRR1036040     2   0.000      0.969 0.000 1.000
#> SRR1036041     2   0.000      0.969 0.000 1.000
#> SRR1036042     2   0.000      0.969 0.000 1.000
#> SRR1036043     2   0.000      0.969 0.000 1.000
#> SRR1036044     2   0.000      0.969 0.000 1.000
#> SRR1036045     2   0.000      0.969 0.000 1.000
#> SRR1036046     2   0.000      0.969 0.000 1.000
#> SRR1036047     2   0.000      0.969 0.000 1.000
#> SRR1036048     2   0.000      0.969 0.000 1.000
#> SRR1036049     2   0.000      0.969 0.000 1.000
#> SRR1036050     2   0.000      0.969 0.000 1.000
#> SRR1036051     2   0.000      0.969 0.000 1.000
#> SRR1036052     2   0.000      0.969 0.000 1.000
#> SRR1036053     2   0.000      0.969 0.000 1.000
#> SRR1036054     2   0.000      0.969 0.000 1.000
#> SRR1036055     2   0.000      0.969 0.000 1.000
#> SRR1036056     2   0.000      0.969 0.000 1.000
#> SRR1036057     2   0.000      0.969 0.000 1.000
#> SRR1036058     2   0.000      0.969 0.000 1.000
#> SRR1036059     2   0.000      0.969 0.000 1.000
#> SRR1036060     2   0.000      0.969 0.000 1.000
#> SRR1036061     2   0.000      0.969 0.000 1.000
#> SRR1036062     2   0.000      0.969 0.000 1.000
#> SRR1036063     2   0.000      0.969 0.000 1.000
#> SRR1036064     2   0.000      0.969 0.000 1.000
#> SRR1036065     2   0.000      0.969 0.000 1.000
#> SRR1036066     2   0.000      0.969 0.000 1.000
#> SRR1036067     2   0.000      0.969 0.000 1.000
#> SRR1036068     2   0.000      0.969 0.000 1.000
#> SRR1036069     2   0.000      0.969 0.000 1.000
#> SRR1036070     2   0.000      0.969 0.000 1.000
#> SRR1036071     2   0.000      0.969 0.000 1.000
#> SRR1036072     2   0.000      0.969 0.000 1.000
#> SRR1036073     2   0.000      0.969 0.000 1.000
#> SRR1036074     2   0.000      0.969 0.000 1.000
#> SRR1036075     2   0.000      0.969 0.000 1.000
#> SRR1036076     2   0.000      0.969 0.000 1.000
#> SRR1036077     2   0.000      0.969 0.000 1.000
#> SRR1036078     2   0.000      0.969 0.000 1.000
#> SRR1036079     2   0.000      0.969 0.000 1.000
#> SRR1036080     2   0.000      0.969 0.000 1.000
#> SRR1036081     2   0.000      0.969 0.000 1.000
#> SRR1036082     2   0.000      0.969 0.000 1.000
#> SRR1036083     2   0.000      0.969 0.000 1.000
#> SRR1036084     2   0.000      0.969 0.000 1.000
#> SRR1036090     2   0.469      0.913 0.100 0.900
#> SRR1036091     2   0.469      0.913 0.100 0.900
#> SRR1036092     2   0.469      0.913 0.100 0.900
#> SRR1036093     2   0.469      0.913 0.100 0.900
#> SRR1036094     2   0.469      0.913 0.100 0.900
#> SRR1036085     1   0.469      1.000 0.900 0.100
#> SRR1036086     1   0.469      1.000 0.900 0.100
#> SRR1036087     1   0.469      1.000 0.900 0.100
#> SRR1036088     1   0.469      1.000 0.900 0.100
#> SRR1036089     1   0.469      1.000 0.900 0.100
#> SRR1036095     2   0.000      0.969 0.000 1.000
#> SRR1036096     2   0.000      0.969 0.000 1.000
#> SRR1036097     2   0.000      0.969 0.000 1.000
#> SRR1036098     2   0.000      0.969 0.000 1.000
#> SRR1036099     2   0.000      0.969 0.000 1.000
#> SRR1036100     2   0.000      0.969 0.000 1.000
#> SRR1036101     2   0.000      0.969 0.000 1.000
#> SRR1036102     2   0.000      0.969 0.000 1.000
#> SRR1036103     2   0.000      0.969 0.000 1.000
#> SRR1036104     2   0.000      0.969 0.000 1.000
#> SRR1036105     1   0.469      1.000 0.900 0.100
#> SRR1036106     1   0.469      1.000 0.900 0.100
#> SRR1036107     1   0.469      1.000 0.900 0.100
#> SRR1036108     1   0.469      1.000 0.900 0.100
#> SRR1036109     1   0.469      1.000 0.900 0.100
#> SRR1036110     2   0.000      0.969 0.000 1.000
#> SRR1036111     2   0.000      0.969 0.000 1.000
#> SRR1036112     2   0.000      0.969 0.000 1.000
#> SRR1036113     2   0.000      0.969 0.000 1.000
#> SRR1036114     2   0.000      0.969 0.000 1.000
#> SRR1036115     2   0.000      0.969 0.000 1.000
#> SRR1036116     2   0.000      0.969 0.000 1.000
#> SRR1036117     2   0.000      0.969 0.000 1.000
#> SRR1036118     2   0.000      0.969 0.000 1.000
#> SRR1036119     2   0.000      0.969 0.000 1.000
#> SRR1036120     2   0.000      0.969 0.000 1.000
#> SRR1036121     2   0.000      0.969 0.000 1.000
#> SRR1036122     2   0.000      0.969 0.000 1.000
#> SRR1036123     2   0.000      0.969 0.000 1.000
#> SRR1036124     2   0.000      0.969 0.000 1.000
#> SRR1036125     2   0.000      0.969 0.000 1.000
#> SRR1036126     2   0.000      0.969 0.000 1.000
#> SRR1036127     2   0.000      0.969 0.000 1.000
#> SRR1036128     2   0.000      0.969 0.000 1.000
#> SRR1036129     2   0.000      0.969 0.000 1.000
#> SRR1036130     2   0.000      0.969 0.000 1.000
#> SRR1036131     2   0.000      0.969 0.000 1.000
#> SRR1036132     2   0.000      0.969 0.000 1.000
#> SRR1036133     2   0.469      0.913 0.100 0.900
#> SRR1036134     2   0.469      0.913 0.100 0.900
#> SRR1036135     2   0.469      0.913 0.100 0.900
#> SRR1036136     2   0.469      0.913 0.100 0.900
#> SRR1036137     2   0.469      0.913 0.100 0.900
#> SRR1036138     2   0.469      0.913 0.100 0.900
#> SRR1036139     2   0.469      0.913 0.100 0.900
#> SRR1036140     2   0.469      0.913 0.100 0.900
#> SRR1036141     2   0.469      0.913 0.100 0.900
#> SRR1036142     2   0.469      0.913 0.100 0.900
#> SRR1036143     2   0.469      0.913 0.100 0.900
#> SRR1036144     2   0.469      0.913 0.100 0.900
#> SRR1036145     2   0.469      0.913 0.100 0.900

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1036002     2  0.8097     -0.112 0.388 0.540 0.072
#> SRR1036003     2  0.8227     -0.104 0.384 0.536 0.080
#> SRR1036004     2  0.8108     -0.132 0.392 0.536 0.072
#> SRR1036005     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1036006     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1036007     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1036008     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1036009     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1036013     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036014     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036015     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036016     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036017     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036018     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036010     1  0.0000      0.579 1.000 0.000 0.000
#> SRR1036011     1  0.0000      0.579 1.000 0.000 0.000
#> SRR1036012     1  0.0000      0.579 1.000 0.000 0.000
#> SRR1036019     2  0.0000      0.845 0.000 1.000 0.000
#> SRR1036020     2  0.0000      0.845 0.000 1.000 0.000
#> SRR1036021     2  0.0000      0.845 0.000 1.000 0.000
#> SRR1036022     2  0.0000      0.845 0.000 1.000 0.000
#> SRR1036023     2  0.0000      0.845 0.000 1.000 0.000
#> SRR1036024     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036025     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036026     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036027     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036028     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036029     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036030     2  0.1643      0.826 0.044 0.956 0.000
#> SRR1036031     2  0.1643      0.826 0.044 0.956 0.000
#> SRR1036032     2  0.1753      0.823 0.048 0.952 0.000
#> SRR1036033     2  0.1643      0.826 0.044 0.956 0.000
#> SRR1036034     2  0.1643      0.826 0.044 0.956 0.000
#> SRR1036035     2  0.1753      0.823 0.048 0.952 0.000
#> SRR1036036     2  0.1163      0.835 0.028 0.972 0.000
#> SRR1036037     2  0.1411      0.831 0.036 0.964 0.000
#> SRR1036038     1  0.0000      0.579 1.000 0.000 0.000
#> SRR1036039     1  0.0000      0.579 1.000 0.000 0.000
#> SRR1036040     1  0.0000      0.579 1.000 0.000 0.000
#> SRR1036041     1  0.0000      0.579 1.000 0.000 0.000
#> SRR1036042     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036043     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036044     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036045     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036046     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036047     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036048     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036049     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036050     1  0.0000      0.579 1.000 0.000 0.000
#> SRR1036051     1  0.0000      0.579 1.000 0.000 0.000
#> SRR1036052     1  0.0000      0.579 1.000 0.000 0.000
#> SRR1036053     1  0.0000      0.579 1.000 0.000 0.000
#> SRR1036054     1  0.0000      0.579 1.000 0.000 0.000
#> SRR1036055     1  0.0000      0.579 1.000 0.000 0.000
#> SRR1036056     1  0.0000      0.579 1.000 0.000 0.000
#> SRR1036057     1  0.0000      0.579 1.000 0.000 0.000
#> SRR1036058     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036059     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036060     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036061     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036062     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036063     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036064     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036065     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036066     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036067     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036068     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036069     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036070     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036071     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036072     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036073     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036074     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036075     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036076     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036077     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036078     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036079     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036080     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036081     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036082     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036083     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036084     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036090     2  0.5835      0.210 0.340 0.660 0.000
#> SRR1036091     2  0.5785      0.243 0.332 0.668 0.000
#> SRR1036092     2  0.5760      0.257 0.328 0.672 0.000
#> SRR1036093     2  0.5760      0.257 0.328 0.672 0.000
#> SRR1036094     2  0.5785      0.243 0.332 0.668 0.000
#> SRR1036085     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1036086     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1036087     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1036088     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1036089     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1036095     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036096     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036097     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036098     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036099     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036100     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036101     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036102     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036103     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036104     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036105     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1036106     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1036107     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1036108     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1036109     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1036110     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036111     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036112     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036113     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036114     1  0.6126      0.715 0.600 0.400 0.000
#> SRR1036115     1  0.0000      0.579 1.000 0.000 0.000
#> SRR1036116     1  0.0000      0.579 1.000 0.000 0.000
#> SRR1036117     1  0.0000      0.579 1.000 0.000 0.000
#> SRR1036118     1  0.0000      0.579 1.000 0.000 0.000
#> SRR1036119     1  0.0000      0.579 1.000 0.000 0.000
#> SRR1036120     1  0.0747      0.583 0.984 0.016 0.000
#> SRR1036121     1  0.0892      0.583 0.980 0.020 0.000
#> SRR1036122     1  0.0747      0.583 0.984 0.016 0.000
#> SRR1036123     1  0.0237      0.580 0.996 0.004 0.000
#> SRR1036124     1  0.0424      0.581 0.992 0.008 0.000
#> SRR1036125     1  0.0000      0.579 1.000 0.000 0.000
#> SRR1036126     1  0.0000      0.579 1.000 0.000 0.000
#> SRR1036127     1  0.0000      0.579 1.000 0.000 0.000
#> SRR1036128     1  0.0000      0.579 1.000 0.000 0.000
#> SRR1036129     1  0.0000      0.579 1.000 0.000 0.000
#> SRR1036130     1  0.0000      0.579 1.000 0.000 0.000
#> SRR1036131     1  0.0000      0.579 1.000 0.000 0.000
#> SRR1036132     1  0.0000      0.579 1.000 0.000 0.000
#> SRR1036133     2  0.0000      0.845 0.000 1.000 0.000
#> SRR1036134     2  0.0000      0.845 0.000 1.000 0.000
#> SRR1036135     2  0.0000      0.845 0.000 1.000 0.000
#> SRR1036136     2  0.0000      0.845 0.000 1.000 0.000
#> SRR1036137     2  0.0000      0.845 0.000 1.000 0.000
#> SRR1036138     2  0.0000      0.845 0.000 1.000 0.000
#> SRR1036139     2  0.0000      0.845 0.000 1.000 0.000
#> SRR1036140     2  0.0000      0.845 0.000 1.000 0.000
#> SRR1036141     2  0.0000      0.845 0.000 1.000 0.000
#> SRR1036142     2  0.0000      0.845 0.000 1.000 0.000
#> SRR1036143     2  0.0000      0.845 0.000 1.000 0.000
#> SRR1036144     2  0.0000      0.845 0.000 1.000 0.000
#> SRR1036145     2  0.0000      0.845 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2 p3    p4
#> SRR1036002     2   0.490      0.456 0.416 0.584  0 0.000
#> SRR1036003     2   0.490      0.456 0.416 0.584  0 0.000
#> SRR1036004     2   0.490      0.456 0.416 0.584  0 0.000
#> SRR1036005     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR1036006     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR1036007     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR1036008     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR1036009     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR1036013     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036014     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036015     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036016     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036017     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036018     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036010     1   0.387      0.739 0.772 0.228  0 0.000
#> SRR1036011     1   0.391      0.742 0.768 0.232  0 0.000
#> SRR1036012     1   0.387      0.738 0.772 0.228  0 0.000
#> SRR1036019     4   0.000      0.912 0.000 0.000  0 1.000
#> SRR1036020     4   0.000      0.912 0.000 0.000  0 1.000
#> SRR1036021     4   0.000      0.912 0.000 0.000  0 1.000
#> SRR1036022     4   0.000      0.912 0.000 0.000  0 1.000
#> SRR1036023     4   0.000      0.912 0.000 0.000  0 1.000
#> SRR1036024     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036025     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036026     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036027     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036028     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036029     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036030     4   0.340      0.793 0.000 0.180  0 0.820
#> SRR1036031     4   0.331      0.801 0.000 0.172  0 0.828
#> SRR1036032     4   0.349      0.782 0.000 0.188  0 0.812
#> SRR1036033     4   0.340      0.793 0.000 0.180  0 0.820
#> SRR1036034     4   0.331      0.801 0.000 0.172  0 0.828
#> SRR1036035     4   0.344      0.788 0.000 0.184  0 0.816
#> SRR1036036     4   0.331      0.800 0.000 0.172  0 0.828
#> SRR1036037     4   0.327      0.804 0.000 0.168  0 0.832
#> SRR1036038     1   0.490      0.906 0.584 0.416  0 0.000
#> SRR1036039     1   0.490      0.906 0.584 0.416  0 0.000
#> SRR1036040     1   0.490      0.906 0.584 0.416  0 0.000
#> SRR1036041     1   0.490      0.906 0.584 0.416  0 0.000
#> SRR1036042     2   0.490      0.456 0.416 0.584  0 0.000
#> SRR1036043     2   0.490      0.456 0.416 0.584  0 0.000
#> SRR1036044     2   0.490      0.456 0.416 0.584  0 0.000
#> SRR1036045     2   0.490      0.456 0.416 0.584  0 0.000
#> SRR1036046     2   0.490      0.456 0.416 0.584  0 0.000
#> SRR1036047     2   0.490      0.456 0.416 0.584  0 0.000
#> SRR1036048     2   0.490      0.456 0.416 0.584  0 0.000
#> SRR1036049     2   0.490      0.456 0.416 0.584  0 0.000
#> SRR1036050     1   0.490      0.906 0.584 0.416  0 0.000
#> SRR1036051     1   0.490      0.906 0.584 0.416  0 0.000
#> SRR1036052     1   0.490      0.906 0.584 0.416  0 0.000
#> SRR1036053     1   0.490      0.906 0.584 0.416  0 0.000
#> SRR1036054     1   0.490      0.906 0.584 0.416  0 0.000
#> SRR1036055     1   0.490      0.906 0.584 0.416  0 0.000
#> SRR1036056     1   0.490      0.906 0.584 0.416  0 0.000
#> SRR1036057     1   0.490      0.906 0.584 0.416  0 0.000
#> SRR1036058     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036059     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036060     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036061     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036062     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036063     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036064     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036065     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036066     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036067     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036068     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036069     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036070     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036071     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036072     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036073     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036074     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036075     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036076     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036077     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036078     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036079     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036080     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036081     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036082     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036083     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036084     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036090     2   0.413      0.560 0.000 0.740  0 0.260
#> SRR1036091     2   0.425      0.541 0.000 0.724  0 0.276
#> SRR1036092     2   0.425      0.541 0.000 0.724  0 0.276
#> SRR1036093     2   0.422      0.546 0.000 0.728  0 0.272
#> SRR1036094     2   0.425      0.541 0.000 0.724  0 0.276
#> SRR1036085     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR1036086     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR1036087     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR1036088     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR1036089     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR1036095     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036096     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036097     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036098     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036099     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036100     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036101     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036102     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036103     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036104     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036105     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR1036106     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR1036107     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR1036108     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR1036109     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR1036110     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036111     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036112     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036113     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036114     2   0.000      0.857 0.000 1.000  0 0.000
#> SRR1036115     1   0.490      0.906 0.584 0.416  0 0.000
#> SRR1036116     1   0.490      0.906 0.584 0.416  0 0.000
#> SRR1036117     1   0.490      0.906 0.584 0.416  0 0.000
#> SRR1036118     1   0.490      0.906 0.584 0.416  0 0.000
#> SRR1036119     1   0.490      0.906 0.584 0.416  0 0.000
#> SRR1036120     1   0.445      0.595 0.692 0.308  0 0.000
#> SRR1036121     1   0.464      0.608 0.656 0.344  0 0.000
#> SRR1036122     1   0.460      0.620 0.664 0.336  0 0.000
#> SRR1036123     1   0.454      0.628 0.676 0.324  0 0.000
#> SRR1036124     1   0.452      0.624 0.680 0.320  0 0.000
#> SRR1036125     1   0.490      0.906 0.584 0.416  0 0.000
#> SRR1036126     1   0.490      0.906 0.584 0.416  0 0.000
#> SRR1036127     1   0.490      0.906 0.584 0.416  0 0.000
#> SRR1036128     1   0.490      0.906 0.584 0.416  0 0.000
#> SRR1036129     1   0.490      0.906 0.584 0.416  0 0.000
#> SRR1036130     1   0.490      0.906 0.584 0.416  0 0.000
#> SRR1036131     1   0.490      0.906 0.584 0.416  0 0.000
#> SRR1036132     1   0.490      0.906 0.584 0.416  0 0.000
#> SRR1036133     4   0.000      0.912 0.000 0.000  0 1.000
#> SRR1036134     4   0.000      0.912 0.000 0.000  0 1.000
#> SRR1036135     4   0.000      0.912 0.000 0.000  0 1.000
#> SRR1036136     4   0.000      0.912 0.000 0.000  0 1.000
#> SRR1036137     4   0.000      0.912 0.000 0.000  0 1.000
#> SRR1036138     4   0.000      0.912 0.000 0.000  0 1.000
#> SRR1036139     4   0.000      0.912 0.000 0.000  0 1.000
#> SRR1036140     4   0.000      0.912 0.000 0.000  0 1.000
#> SRR1036141     4   0.000      0.912 0.000 0.000  0 1.000
#> SRR1036142     4   0.000      0.912 0.000 0.000  0 1.000
#> SRR1036143     4   0.000      0.912 0.000 0.000  0 1.000
#> SRR1036144     4   0.000      0.912 0.000 0.000  0 1.000
#> SRR1036145     4   0.000      0.912 0.000 0.000  0 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2 p3    p4    p5
#> SRR1036002     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1036003     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1036004     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1036005     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036006     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036007     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036008     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036009     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036013     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036014     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036015     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036016     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036017     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036018     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036010     1   0.590      0.700 0.600 0.000  0 0.212 0.188
#> SRR1036011     1   0.590      0.705 0.600 0.000  0 0.216 0.184
#> SRR1036012     1   0.590      0.699 0.600 0.000  0 0.212 0.188
#> SRR1036019     2   0.000      0.848 0.000 1.000  0 0.000 0.000
#> SRR1036020     2   0.000      0.848 0.000 1.000  0 0.000 0.000
#> SRR1036021     2   0.000      0.848 0.000 1.000  0 0.000 0.000
#> SRR1036022     2   0.000      0.848 0.000 1.000  0 0.000 0.000
#> SRR1036023     2   0.000      0.848 0.000 1.000  0 0.000 0.000
#> SRR1036024     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036025     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036026     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036027     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036028     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036029     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036030     2   0.620      0.618 0.280 0.540  0 0.180 0.000
#> SRR1036031     2   0.614      0.625 0.280 0.548  0 0.172 0.000
#> SRR1036032     2   0.625      0.608 0.280 0.532  0 0.188 0.000
#> SRR1036033     2   0.620      0.618 0.280 0.540  0 0.180 0.000
#> SRR1036034     2   0.614      0.625 0.280 0.548  0 0.172 0.000
#> SRR1036035     2   0.623      0.613 0.280 0.536  0 0.184 0.000
#> SRR1036036     2   0.614      0.625 0.280 0.548  0 0.172 0.000
#> SRR1036037     2   0.611      0.627 0.280 0.552  0 0.168 0.000
#> SRR1036038     1   0.418      0.865 0.600 0.000  0 0.400 0.000
#> SRR1036039     1   0.418      0.865 0.600 0.000  0 0.400 0.000
#> SRR1036040     1   0.418      0.865 0.600 0.000  0 0.400 0.000
#> SRR1036041     1   0.418      0.865 0.600 0.000  0 0.400 0.000
#> SRR1036042     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1036043     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1036044     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1036045     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1036046     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1036047     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1036048     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1036049     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1036050     1   0.418      0.865 0.600 0.000  0 0.400 0.000
#> SRR1036051     1   0.418      0.865 0.600 0.000  0 0.400 0.000
#> SRR1036052     1   0.418      0.865 0.600 0.000  0 0.400 0.000
#> SRR1036053     1   0.418      0.865 0.600 0.000  0 0.400 0.000
#> SRR1036054     1   0.418      0.865 0.600 0.000  0 0.400 0.000
#> SRR1036055     1   0.228      0.546 0.880 0.000  0 0.120 0.000
#> SRR1036056     1   0.228      0.546 0.880 0.000  0 0.120 0.000
#> SRR1036057     1   0.228      0.546 0.880 0.000  0 0.120 0.000
#> SRR1036058     4   0.228      0.820 0.120 0.000  0 0.880 0.000
#> SRR1036059     4   0.228      0.820 0.120 0.000  0 0.880 0.000
#> SRR1036060     4   0.228      0.820 0.120 0.000  0 0.880 0.000
#> SRR1036061     4   0.228      0.820 0.120 0.000  0 0.880 0.000
#> SRR1036062     4   0.228      0.820 0.120 0.000  0 0.880 0.000
#> SRR1036063     4   0.228      0.820 0.120 0.000  0 0.880 0.000
#> SRR1036064     4   0.228      0.820 0.120 0.000  0 0.880 0.000
#> SRR1036065     4   0.228      0.820 0.120 0.000  0 0.880 0.000
#> SRR1036066     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036067     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036068     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036069     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036070     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036071     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036072     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036073     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036074     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036075     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036076     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036077     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036078     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036079     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036080     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036081     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036082     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036083     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036084     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036090     4   0.356      0.593 0.000 0.260  0 0.740 0.000
#> SRR1036091     4   0.366      0.570 0.000 0.276  0 0.724 0.000
#> SRR1036092     4   0.366      0.570 0.000 0.276  0 0.724 0.000
#> SRR1036093     4   0.364      0.576 0.000 0.272  0 0.728 0.000
#> SRR1036094     4   0.364      0.576 0.000 0.272  0 0.728 0.000
#> SRR1036085     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036086     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036087     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036088     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036089     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036095     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036096     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036097     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036098     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036099     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036100     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036101     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036102     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036103     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036104     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036105     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036106     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036107     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036108     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036109     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036110     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036111     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036112     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036113     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036114     4   0.000      0.936 0.000 0.000  0 1.000 0.000
#> SRR1036115     1   0.418      0.865 0.600 0.000  0 0.400 0.000
#> SRR1036116     1   0.418      0.865 0.600 0.000  0 0.400 0.000
#> SRR1036117     1   0.418      0.865 0.600 0.000  0 0.400 0.000
#> SRR1036118     1   0.418      0.865 0.600 0.000  0 0.400 0.000
#> SRR1036119     1   0.418      0.865 0.600 0.000  0 0.400 0.000
#> SRR1036120     1   0.664      0.587 0.444 0.000  0 0.308 0.248
#> SRR1036121     1   0.660      0.623 0.436 0.000  0 0.344 0.220
#> SRR1036122     1   0.659      0.629 0.444 0.000  0 0.336 0.220
#> SRR1036123     1   0.657      0.632 0.456 0.000  0 0.320 0.224
#> SRR1036124     1   0.659      0.624 0.452 0.000  0 0.320 0.228
#> SRR1036125     1   0.418      0.865 0.600 0.000  0 0.400 0.000
#> SRR1036126     1   0.418      0.865 0.600 0.000  0 0.400 0.000
#> SRR1036127     1   0.418      0.865 0.600 0.000  0 0.400 0.000
#> SRR1036128     1   0.418      0.865 0.600 0.000  0 0.400 0.000
#> SRR1036129     1   0.418      0.865 0.600 0.000  0 0.400 0.000
#> SRR1036130     1   0.418      0.865 0.600 0.000  0 0.400 0.000
#> SRR1036131     1   0.418      0.865 0.600 0.000  0 0.400 0.000
#> SRR1036132     1   0.418      0.865 0.600 0.000  0 0.400 0.000
#> SRR1036133     2   0.000      0.848 0.000 1.000  0 0.000 0.000
#> SRR1036134     2   0.000      0.848 0.000 1.000  0 0.000 0.000
#> SRR1036135     2   0.000      0.848 0.000 1.000  0 0.000 0.000
#> SRR1036136     2   0.000      0.848 0.000 1.000  0 0.000 0.000
#> SRR1036137     2   0.000      0.848 0.000 1.000  0 0.000 0.000
#> SRR1036138     2   0.000      0.848 0.000 1.000  0 0.000 0.000
#> SRR1036139     2   0.000      0.848 0.000 1.000  0 0.000 0.000
#> SRR1036140     2   0.000      0.848 0.000 1.000  0 0.000 0.000
#> SRR1036141     2   0.000      0.848 0.000 1.000  0 0.000 0.000
#> SRR1036142     2   0.000      0.848 0.000 1.000  0 0.000 0.000
#> SRR1036143     2   0.000      0.848 0.000 1.000  0 0.000 0.000
#> SRR1036144     2   0.000      0.848 0.000 1.000  0 0.000 0.000
#> SRR1036145     2   0.000      0.848 0.000 1.000  0 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2 p3    p4    p5    p6
#> SRR1036002     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036003     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036004     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036005     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036006     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036007     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036008     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036009     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036013     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036014     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036015     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036016     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036017     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036018     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036010     1  0.2697      0.701 0.812 0.000  0 0.000 0.000 0.188
#> SRR1036011     1  0.2664      0.707 0.816 0.000  0 0.000 0.000 0.184
#> SRR1036012     1  0.2697      0.700 0.812 0.000  0 0.000 0.000 0.188
#> SRR1036019     2  0.0000      0.999 0.000 1.000  0 0.000 0.000 0.000
#> SRR1036020     2  0.0000      0.999 0.000 1.000  0 0.000 0.000 0.000
#> SRR1036021     2  0.0000      0.999 0.000 1.000  0 0.000 0.000 0.000
#> SRR1036022     2  0.0000      0.999 0.000 1.000  0 0.000 0.000 0.000
#> SRR1036023     2  0.0000      0.999 0.000 1.000  0 0.000 0.000 0.000
#> SRR1036024     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036025     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036026     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036027     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036028     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036029     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036030     5  0.1265      0.976 0.000 0.044  0 0.008 0.948 0.000
#> SRR1036031     5  0.1265      0.976 0.000 0.044  0 0.008 0.948 0.000
#> SRR1036032     5  0.1265      0.976 0.000 0.044  0 0.008 0.948 0.000
#> SRR1036033     5  0.1265      0.976 0.000 0.044  0 0.008 0.948 0.000
#> SRR1036034     5  0.1265      0.976 0.000 0.044  0 0.008 0.948 0.000
#> SRR1036035     5  0.1265      0.976 0.000 0.044  0 0.008 0.948 0.000
#> SRR1036036     5  0.1219      0.971 0.000 0.048  0 0.004 0.948 0.000
#> SRR1036037     5  0.1265      0.976 0.000 0.044  0 0.008 0.948 0.000
#> SRR1036038     1  0.0000      0.899 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036039     1  0.0000      0.899 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036040     1  0.0000      0.899 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036041     1  0.0000      0.899 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036042     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036043     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036044     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036045     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036046     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036047     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036048     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036049     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036050     1  0.0000      0.899 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036051     1  0.0000      0.899 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036052     1  0.0000      0.899 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036053     1  0.0000      0.899 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036054     1  0.0000      0.899 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036055     5  0.1141      0.936 0.052 0.000  0 0.000 0.948 0.000
#> SRR1036056     5  0.1141      0.936 0.052 0.000  0 0.000 0.948 0.000
#> SRR1036057     5  0.1141      0.936 0.052 0.000  0 0.000 0.948 0.000
#> SRR1036058     4  0.1141      0.425 0.000 0.000  0 0.948 0.052 0.000
#> SRR1036059     4  0.1141      0.425 0.000 0.000  0 0.948 0.052 0.000
#> SRR1036060     4  0.1141      0.425 0.000 0.000  0 0.948 0.052 0.000
#> SRR1036061     4  0.1141      0.425 0.000 0.000  0 0.948 0.052 0.000
#> SRR1036062     4  0.1141      0.425 0.000 0.000  0 0.948 0.052 0.000
#> SRR1036063     4  0.1141      0.425 0.000 0.000  0 0.948 0.052 0.000
#> SRR1036064     4  0.1141      0.425 0.000 0.000  0 0.948 0.052 0.000
#> SRR1036065     4  0.1141      0.425 0.000 0.000  0 0.948 0.052 0.000
#> SRR1036066     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036067     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036068     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036069     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036070     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036071     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036072     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036073     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036074     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036075     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036076     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036077     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036078     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036079     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036080     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036081     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036082     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036083     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036084     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036090     4  0.5265      0.572 0.148 0.260  0 0.592 0.000 0.000
#> SRR1036091     4  0.5272      0.554 0.140 0.276  0 0.584 0.000 0.000
#> SRR1036092     4  0.5240      0.555 0.136 0.276  0 0.588 0.000 0.000
#> SRR1036093     4  0.5223      0.560 0.136 0.272  0 0.592 0.000 0.000
#> SRR1036094     4  0.5240      0.555 0.136 0.276  0 0.588 0.000 0.000
#> SRR1036085     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036086     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036087     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036088     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036089     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036095     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036096     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036097     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036098     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036099     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036100     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036101     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036102     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036103     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036104     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036105     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036106     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036107     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036108     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036109     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036110     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036111     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036112     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036113     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036114     4  0.3756      0.863 0.400 0.000  0 0.600 0.000 0.000
#> SRR1036115     1  0.0000      0.899 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036116     1  0.0000      0.899 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036117     1  0.0000      0.899 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036118     1  0.0000      0.899 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036119     1  0.0000      0.899 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036120     1  0.5298      0.586 0.592 0.000  0 0.160 0.000 0.248
#> SRR1036121     1  0.5186      0.633 0.616 0.000  0 0.168 0.000 0.216
#> SRR1036122     1  0.5126      0.639 0.624 0.000  0 0.160 0.000 0.216
#> SRR1036123     1  0.5023      0.644 0.636 0.000  0 0.144 0.000 0.220
#> SRR1036124     1  0.5079      0.635 0.628 0.000  0 0.148 0.000 0.224
#> SRR1036125     1  0.0000      0.899 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036126     1  0.0000      0.899 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036127     1  0.0000      0.899 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036128     1  0.0000      0.899 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036129     1  0.0000      0.899 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036130     1  0.0000      0.899 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036131     1  0.0000      0.899 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036132     1  0.0000      0.899 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036133     2  0.0146      0.997 0.000 0.996  0 0.000 0.004 0.000
#> SRR1036134     2  0.0146      0.997 0.000 0.996  0 0.000 0.004 0.000
#> SRR1036135     2  0.0146      0.997 0.000 0.996  0 0.000 0.004 0.000
#> SRR1036136     2  0.0000      0.999 0.000 1.000  0 0.000 0.000 0.000
#> SRR1036137     2  0.0146      0.997 0.000 0.996  0 0.000 0.004 0.000
#> SRR1036138     2  0.0000      0.999 0.000 1.000  0 0.000 0.000 0.000
#> SRR1036139     2  0.0000      0.999 0.000 1.000  0 0.000 0.000 0.000
#> SRR1036140     2  0.0000      0.999 0.000 1.000  0 0.000 0.000 0.000
#> SRR1036141     2  0.0000      0.999 0.000 1.000  0 0.000 0.000 0.000
#> SRR1036142     2  0.0000      0.999 0.000 1.000  0 0.000 0.000 0.000
#> SRR1036143     2  0.0000      0.999 0.000 1.000  0 0.000 0.000 0.000
#> SRR1036144     2  0.0000      0.999 0.000 1.000  0 0.000 0.000 0.000
#> SRR1036145     2  0.0000      0.999 0.000 1.000  0 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15218 rows and 144 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.416           0.733       0.833         0.3443 0.812   0.812
#> 3 3 0.412           0.637       0.824         0.6903 0.600   0.507
#> 4 4 0.486           0.344       0.675         0.1574 0.668   0.364
#> 5 5 0.654           0.760       0.845         0.1096 0.773   0.414
#> 6 6 0.679           0.768       0.817         0.0675 0.963   0.850

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1036002     2  0.4022      0.610 0.080 0.920
#> SRR1036003     2  0.4022      0.610 0.080 0.920
#> SRR1036004     2  0.4022      0.610 0.080 0.920
#> SRR1036005     1  0.9209      1.000 0.664 0.336
#> SRR1036006     1  0.9209      1.000 0.664 0.336
#> SRR1036007     1  0.9209      1.000 0.664 0.336
#> SRR1036008     1  0.9209      1.000 0.664 0.336
#> SRR1036009     1  0.9209      1.000 0.664 0.336
#> SRR1036013     2  0.9608      0.766 0.384 0.616
#> SRR1036014     2  0.9608      0.766 0.384 0.616
#> SRR1036015     2  0.9608      0.766 0.384 0.616
#> SRR1036016     2  0.9608      0.766 0.384 0.616
#> SRR1036017     2  0.9608      0.766 0.384 0.616
#> SRR1036018     2  0.9608      0.766 0.384 0.616
#> SRR1036010     2  0.0376      0.655 0.004 0.996
#> SRR1036011     2  0.0376      0.655 0.004 0.996
#> SRR1036012     2  0.0376      0.655 0.004 0.996
#> SRR1036019     2  0.9209      0.773 0.336 0.664
#> SRR1036020     2  0.9209      0.773 0.336 0.664
#> SRR1036021     2  0.9209      0.773 0.336 0.664
#> SRR1036022     2  0.9209      0.773 0.336 0.664
#> SRR1036023     2  0.9209      0.773 0.336 0.664
#> SRR1036024     2  0.8955      0.776 0.312 0.688
#> SRR1036025     2  0.8955      0.776 0.312 0.688
#> SRR1036026     2  0.8955      0.776 0.312 0.688
#> SRR1036027     2  0.8955      0.776 0.312 0.688
#> SRR1036028     2  0.8955      0.776 0.312 0.688
#> SRR1036029     2  0.8955      0.776 0.312 0.688
#> SRR1036030     2  0.9686      0.755 0.396 0.604
#> SRR1036031     2  0.9686      0.755 0.396 0.604
#> SRR1036032     2  0.9686      0.755 0.396 0.604
#> SRR1036033     2  0.9686      0.755 0.396 0.604
#> SRR1036034     2  0.9686      0.755 0.396 0.604
#> SRR1036035     2  0.9686      0.755 0.396 0.604
#> SRR1036036     2  0.9686      0.755 0.396 0.604
#> SRR1036037     2  0.9686      0.755 0.396 0.604
#> SRR1036038     2  0.0938      0.657 0.012 0.988
#> SRR1036039     2  0.0672      0.658 0.008 0.992
#> SRR1036040     2  0.0938      0.657 0.012 0.988
#> SRR1036041     2  0.0376      0.655 0.004 0.996
#> SRR1036042     2  0.9732      0.762 0.404 0.596
#> SRR1036043     2  0.9732      0.762 0.404 0.596
#> SRR1036044     2  0.9732      0.762 0.404 0.596
#> SRR1036045     2  0.9732      0.762 0.404 0.596
#> SRR1036046     2  0.9732      0.762 0.404 0.596
#> SRR1036047     2  0.9732      0.762 0.404 0.596
#> SRR1036048     2  0.9732      0.762 0.404 0.596
#> SRR1036049     2  0.9732      0.762 0.404 0.596
#> SRR1036050     2  0.0376      0.655 0.004 0.996
#> SRR1036051     2  0.0376      0.655 0.004 0.996
#> SRR1036052     2  0.0376      0.655 0.004 0.996
#> SRR1036053     2  0.0376      0.655 0.004 0.996
#> SRR1036054     2  0.0376      0.655 0.004 0.996
#> SRR1036055     2  0.2423      0.676 0.040 0.960
#> SRR1036056     2  0.2423      0.676 0.040 0.960
#> SRR1036057     2  0.2423      0.676 0.040 0.960
#> SRR1036058     2  0.9552      0.425 0.376 0.624
#> SRR1036059     2  0.9552      0.425 0.376 0.624
#> SRR1036060     2  0.9552      0.425 0.376 0.624
#> SRR1036061     2  0.9552      0.425 0.376 0.624
#> SRR1036062     2  0.9552      0.425 0.376 0.624
#> SRR1036063     2  0.9552      0.425 0.376 0.624
#> SRR1036064     2  0.9552      0.425 0.376 0.624
#> SRR1036065     2  0.9552      0.425 0.376 0.624
#> SRR1036066     2  0.0000      0.659 0.000 1.000
#> SRR1036067     2  0.0000      0.659 0.000 1.000
#> SRR1036068     2  0.0000      0.659 0.000 1.000
#> SRR1036069     2  0.0000      0.659 0.000 1.000
#> SRR1036070     2  0.0000      0.659 0.000 1.000
#> SRR1036071     2  0.0000      0.659 0.000 1.000
#> SRR1036072     2  0.0000      0.659 0.000 1.000
#> SRR1036073     2  0.0000      0.659 0.000 1.000
#> SRR1036074     2  0.9795      0.759 0.416 0.584
#> SRR1036075     2  0.9795      0.759 0.416 0.584
#> SRR1036076     2  0.9795      0.759 0.416 0.584
#> SRR1036077     2  0.9795      0.759 0.416 0.584
#> SRR1036078     2  0.9795      0.759 0.416 0.584
#> SRR1036079     2  0.9795      0.759 0.416 0.584
#> SRR1036080     2  0.9795      0.759 0.416 0.584
#> SRR1036081     2  0.9795      0.759 0.416 0.584
#> SRR1036082     2  0.9491      0.772 0.368 0.632
#> SRR1036083     2  0.9552      0.770 0.376 0.624
#> SRR1036084     2  0.9491      0.772 0.368 0.632
#> SRR1036090     2  0.9248      0.774 0.340 0.660
#> SRR1036091     2  0.9248      0.774 0.340 0.660
#> SRR1036092     2  0.9248      0.774 0.340 0.660
#> SRR1036093     2  0.9248      0.774 0.340 0.660
#> SRR1036094     2  0.9248      0.774 0.340 0.660
#> SRR1036085     1  0.9209      1.000 0.664 0.336
#> SRR1036086     1  0.9209      1.000 0.664 0.336
#> SRR1036087     1  0.9209      1.000 0.664 0.336
#> SRR1036088     1  0.9209      1.000 0.664 0.336
#> SRR1036089     1  0.9209      1.000 0.664 0.336
#> SRR1036095     2  0.5519      0.717 0.128 0.872
#> SRR1036096     2  0.5519      0.717 0.128 0.872
#> SRR1036097     2  0.5519      0.717 0.128 0.872
#> SRR1036098     2  0.5519      0.717 0.128 0.872
#> SRR1036099     2  0.5519      0.717 0.128 0.872
#> SRR1036100     2  0.9129      0.774 0.328 0.672
#> SRR1036101     2  0.9129      0.774 0.328 0.672
#> SRR1036102     2  0.9129      0.774 0.328 0.672
#> SRR1036103     2  0.9129      0.774 0.328 0.672
#> SRR1036104     2  0.9129      0.774 0.328 0.672
#> SRR1036105     1  0.9209      1.000 0.664 0.336
#> SRR1036106     1  0.9209      1.000 0.664 0.336
#> SRR1036107     1  0.9209      1.000 0.664 0.336
#> SRR1036108     1  0.9209      1.000 0.664 0.336
#> SRR1036109     1  0.9209      1.000 0.664 0.336
#> SRR1036110     2  0.9732      0.760 0.404 0.596
#> SRR1036111     2  0.9732      0.760 0.404 0.596
#> SRR1036112     2  0.9732      0.760 0.404 0.596
#> SRR1036113     2  0.9732      0.760 0.404 0.596
#> SRR1036114     2  0.9732      0.760 0.404 0.596
#> SRR1036115     2  0.1184      0.647 0.016 0.984
#> SRR1036116     2  0.1184      0.647 0.016 0.984
#> SRR1036117     2  0.1184      0.647 0.016 0.984
#> SRR1036118     2  0.1184      0.647 0.016 0.984
#> SRR1036119     2  0.1184      0.647 0.016 0.984
#> SRR1036120     2  0.0938      0.648 0.012 0.988
#> SRR1036121     2  0.0672      0.652 0.008 0.992
#> SRR1036122     2  0.0938      0.648 0.012 0.988
#> SRR1036123     2  0.0672      0.652 0.008 0.992
#> SRR1036124     2  0.0938      0.648 0.012 0.988
#> SRR1036125     2  0.1843      0.634 0.028 0.972
#> SRR1036126     2  0.1843      0.634 0.028 0.972
#> SRR1036127     2  0.1843      0.634 0.028 0.972
#> SRR1036128     2  0.1843      0.634 0.028 0.972
#> SRR1036129     2  0.1843      0.634 0.028 0.972
#> SRR1036130     2  0.1843      0.634 0.028 0.972
#> SRR1036131     2  0.1843      0.634 0.028 0.972
#> SRR1036132     2  0.1843      0.634 0.028 0.972
#> SRR1036133     2  0.9710      0.753 0.400 0.600
#> SRR1036134     2  0.9710      0.753 0.400 0.600
#> SRR1036135     2  0.9710      0.753 0.400 0.600
#> SRR1036136     2  0.9710      0.753 0.400 0.600
#> SRR1036137     2  0.9710      0.753 0.400 0.600
#> SRR1036138     2  0.9732      0.751 0.404 0.596
#> SRR1036139     2  0.9732      0.751 0.404 0.596
#> SRR1036140     2  0.9732      0.751 0.404 0.596
#> SRR1036141     2  0.9732      0.751 0.404 0.596
#> SRR1036142     2  0.9732      0.751 0.404 0.596
#> SRR1036143     2  0.9732      0.751 0.404 0.596
#> SRR1036144     2  0.9732      0.751 0.404 0.596
#> SRR1036145     2  0.9732      0.751 0.404 0.596

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1036002     2  0.8920     0.2311 0.408 0.468 0.124
#> SRR1036003     2  0.8920     0.2311 0.408 0.468 0.124
#> SRR1036004     2  0.8920     0.2311 0.408 0.468 0.124
#> SRR1036005     3  0.0000     1.0000 0.000 0.000 1.000
#> SRR1036006     3  0.0000     1.0000 0.000 0.000 1.000
#> SRR1036007     3  0.0000     1.0000 0.000 0.000 1.000
#> SRR1036008     3  0.0000     1.0000 0.000 0.000 1.000
#> SRR1036009     3  0.0000     1.0000 0.000 0.000 1.000
#> SRR1036013     1  0.7661    -0.0723 0.504 0.452 0.044
#> SRR1036014     1  0.7657    -0.0594 0.508 0.448 0.044
#> SRR1036015     1  0.7652    -0.0468 0.512 0.444 0.044
#> SRR1036016     1  0.7661    -0.0723 0.504 0.452 0.044
#> SRR1036017     1  0.7665    -0.0865 0.500 0.456 0.044
#> SRR1036018     1  0.7661    -0.0723 0.504 0.452 0.044
#> SRR1036010     1  0.2689     0.7540 0.932 0.032 0.036
#> SRR1036011     1  0.2689     0.7540 0.932 0.032 0.036
#> SRR1036012     1  0.2689     0.7540 0.932 0.032 0.036
#> SRR1036019     2  0.1525     0.7779 0.032 0.964 0.004
#> SRR1036020     2  0.1525     0.7779 0.032 0.964 0.004
#> SRR1036021     2  0.1525     0.7779 0.032 0.964 0.004
#> SRR1036022     2  0.1525     0.7779 0.032 0.964 0.004
#> SRR1036023     2  0.1525     0.7779 0.032 0.964 0.004
#> SRR1036024     1  0.6299    -0.0844 0.524 0.476 0.000
#> SRR1036025     1  0.6299    -0.0844 0.524 0.476 0.000
#> SRR1036026     1  0.6299    -0.0844 0.524 0.476 0.000
#> SRR1036027     1  0.6299    -0.0844 0.524 0.476 0.000
#> SRR1036028     1  0.6299    -0.0844 0.524 0.476 0.000
#> SRR1036029     1  0.6299    -0.0844 0.524 0.476 0.000
#> SRR1036030     2  0.3141     0.7597 0.020 0.912 0.068
#> SRR1036031     2  0.3141     0.7597 0.020 0.912 0.068
#> SRR1036032     2  0.3141     0.7597 0.020 0.912 0.068
#> SRR1036033     2  0.3141     0.7597 0.020 0.912 0.068
#> SRR1036034     2  0.3141     0.7597 0.020 0.912 0.068
#> SRR1036035     2  0.3141     0.7597 0.020 0.912 0.068
#> SRR1036036     2  0.3141     0.7597 0.020 0.912 0.068
#> SRR1036037     2  0.3141     0.7597 0.020 0.912 0.068
#> SRR1036038     1  0.5285     0.6907 0.824 0.112 0.064
#> SRR1036039     1  0.5285     0.6907 0.824 0.112 0.064
#> SRR1036040     1  0.5285     0.6907 0.824 0.112 0.064
#> SRR1036041     1  0.4821     0.7194 0.840 0.120 0.040
#> SRR1036042     2  0.6106     0.7141 0.200 0.756 0.044
#> SRR1036043     2  0.6106     0.7141 0.200 0.756 0.044
#> SRR1036044     2  0.6106     0.7141 0.200 0.756 0.044
#> SRR1036045     2  0.6106     0.7141 0.200 0.756 0.044
#> SRR1036046     2  0.6106     0.7141 0.200 0.756 0.044
#> SRR1036047     2  0.6106     0.7141 0.200 0.756 0.044
#> SRR1036048     2  0.6106     0.7141 0.200 0.756 0.044
#> SRR1036049     2  0.6106     0.7141 0.200 0.756 0.044
#> SRR1036050     1  0.4712     0.7258 0.848 0.108 0.044
#> SRR1036051     1  0.4712     0.7258 0.848 0.108 0.044
#> SRR1036052     1  0.4712     0.7258 0.848 0.108 0.044
#> SRR1036053     1  0.4712     0.7258 0.848 0.108 0.044
#> SRR1036054     1  0.4712     0.7258 0.848 0.108 0.044
#> SRR1036055     1  0.7919     0.3379 0.556 0.380 0.064
#> SRR1036056     1  0.7919     0.3379 0.556 0.380 0.064
#> SRR1036057     1  0.7919     0.3379 0.556 0.380 0.064
#> SRR1036058     2  0.8440     0.1732 0.420 0.492 0.088
#> SRR1036059     2  0.8440     0.1732 0.420 0.492 0.088
#> SRR1036060     2  0.8440     0.1732 0.420 0.492 0.088
#> SRR1036061     2  0.8440     0.1732 0.420 0.492 0.088
#> SRR1036062     2  0.8440     0.1732 0.420 0.492 0.088
#> SRR1036063     2  0.8440     0.1732 0.420 0.492 0.088
#> SRR1036064     2  0.8440     0.1732 0.420 0.492 0.088
#> SRR1036065     2  0.8440     0.1732 0.420 0.492 0.088
#> SRR1036066     1  0.2165     0.7502 0.936 0.064 0.000
#> SRR1036067     1  0.2165     0.7502 0.936 0.064 0.000
#> SRR1036068     1  0.2165     0.7502 0.936 0.064 0.000
#> SRR1036069     1  0.2165     0.7502 0.936 0.064 0.000
#> SRR1036070     1  0.2165     0.7502 0.936 0.064 0.000
#> SRR1036071     1  0.2165     0.7502 0.936 0.064 0.000
#> SRR1036072     1  0.2165     0.7502 0.936 0.064 0.000
#> SRR1036073     1  0.2165     0.7502 0.936 0.064 0.000
#> SRR1036074     2  0.5109     0.7071 0.212 0.780 0.008
#> SRR1036075     2  0.5109     0.7071 0.212 0.780 0.008
#> SRR1036076     2  0.5109     0.7071 0.212 0.780 0.008
#> SRR1036077     2  0.5109     0.7071 0.212 0.780 0.008
#> SRR1036078     2  0.5109     0.7071 0.212 0.780 0.008
#> SRR1036079     2  0.5109     0.7071 0.212 0.780 0.008
#> SRR1036080     2  0.5109     0.7071 0.212 0.780 0.008
#> SRR1036081     2  0.5109     0.7071 0.212 0.780 0.008
#> SRR1036082     2  0.4521     0.7261 0.180 0.816 0.004
#> SRR1036083     2  0.4521     0.7261 0.180 0.816 0.004
#> SRR1036084     2  0.4521     0.7261 0.180 0.816 0.004
#> SRR1036090     2  0.2550     0.7760 0.024 0.936 0.040
#> SRR1036091     2  0.2550     0.7760 0.024 0.936 0.040
#> SRR1036092     2  0.2550     0.7760 0.024 0.936 0.040
#> SRR1036093     2  0.2550     0.7760 0.024 0.936 0.040
#> SRR1036094     2  0.2550     0.7760 0.024 0.936 0.040
#> SRR1036085     3  0.0000     1.0000 0.000 0.000 1.000
#> SRR1036086     3  0.0000     1.0000 0.000 0.000 1.000
#> SRR1036087     3  0.0000     1.0000 0.000 0.000 1.000
#> SRR1036088     3  0.0000     1.0000 0.000 0.000 1.000
#> SRR1036089     3  0.0000     1.0000 0.000 0.000 1.000
#> SRR1036095     1  0.4452     0.6078 0.808 0.192 0.000
#> SRR1036096     1  0.4452     0.6078 0.808 0.192 0.000
#> SRR1036097     1  0.4452     0.6078 0.808 0.192 0.000
#> SRR1036098     1  0.4452     0.6078 0.808 0.192 0.000
#> SRR1036099     1  0.4452     0.6078 0.808 0.192 0.000
#> SRR1036100     2  0.1163     0.7772 0.028 0.972 0.000
#> SRR1036101     2  0.1163     0.7772 0.028 0.972 0.000
#> SRR1036102     2  0.1163     0.7772 0.028 0.972 0.000
#> SRR1036103     2  0.1163     0.7772 0.028 0.972 0.000
#> SRR1036104     2  0.1163     0.7772 0.028 0.972 0.000
#> SRR1036105     3  0.0000     1.0000 0.000 0.000 1.000
#> SRR1036106     3  0.0000     1.0000 0.000 0.000 1.000
#> SRR1036107     3  0.0000     1.0000 0.000 0.000 1.000
#> SRR1036108     3  0.0000     1.0000 0.000 0.000 1.000
#> SRR1036109     3  0.0000     1.0000 0.000 0.000 1.000
#> SRR1036110     2  0.7756     0.4225 0.380 0.564 0.056
#> SRR1036111     2  0.7756     0.4225 0.380 0.564 0.056
#> SRR1036112     2  0.7741     0.4320 0.376 0.568 0.056
#> SRR1036113     2  0.7741     0.4320 0.376 0.568 0.056
#> SRR1036114     2  0.7756     0.4225 0.380 0.564 0.056
#> SRR1036115     1  0.1163     0.7504 0.972 0.028 0.000
#> SRR1036116     1  0.1163     0.7504 0.972 0.028 0.000
#> SRR1036117     1  0.1163     0.7504 0.972 0.028 0.000
#> SRR1036118     1  0.1163     0.7504 0.972 0.028 0.000
#> SRR1036119     1  0.1163     0.7504 0.972 0.028 0.000
#> SRR1036120     1  0.4281     0.7312 0.872 0.056 0.072
#> SRR1036121     1  0.4281     0.7312 0.872 0.056 0.072
#> SRR1036122     1  0.4281     0.7312 0.872 0.056 0.072
#> SRR1036123     1  0.4281     0.7312 0.872 0.056 0.072
#> SRR1036124     1  0.4281     0.7312 0.872 0.056 0.072
#> SRR1036125     1  0.1860     0.7497 0.948 0.000 0.052
#> SRR1036126     1  0.1860     0.7497 0.948 0.000 0.052
#> SRR1036127     1  0.1860     0.7497 0.948 0.000 0.052
#> SRR1036128     1  0.1860     0.7497 0.948 0.000 0.052
#> SRR1036129     1  0.1860     0.7497 0.948 0.000 0.052
#> SRR1036130     1  0.1860     0.7497 0.948 0.000 0.052
#> SRR1036131     1  0.1860     0.7497 0.948 0.000 0.052
#> SRR1036132     1  0.1860     0.7497 0.948 0.000 0.052
#> SRR1036133     2  0.3045     0.7614 0.020 0.916 0.064
#> SRR1036134     2  0.3045     0.7614 0.020 0.916 0.064
#> SRR1036135     2  0.3045     0.7614 0.020 0.916 0.064
#> SRR1036136     2  0.3045     0.7614 0.020 0.916 0.064
#> SRR1036137     2  0.3045     0.7614 0.020 0.916 0.064
#> SRR1036138     2  0.0424     0.7710 0.008 0.992 0.000
#> SRR1036139     2  0.0424     0.7710 0.008 0.992 0.000
#> SRR1036140     2  0.0424     0.7710 0.008 0.992 0.000
#> SRR1036141     2  0.0424     0.7710 0.008 0.992 0.000
#> SRR1036142     2  0.0424     0.7710 0.008 0.992 0.000
#> SRR1036143     2  0.0424     0.7710 0.008 0.992 0.000
#> SRR1036144     2  0.0424     0.7710 0.008 0.992 0.000
#> SRR1036145     2  0.0424     0.7710 0.008 0.992 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1036002     1  0.9292    -0.4733 0.368 0.128 0.156 0.348
#> SRR1036003     1  0.9292    -0.4733 0.368 0.128 0.156 0.348
#> SRR1036004     1  0.9292    -0.4733 0.368 0.128 0.156 0.348
#> SRR1036005     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036006     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036007     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036008     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036009     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036013     1  0.3266     0.2011 0.832 0.000 0.000 0.168
#> SRR1036014     1  0.3266     0.2011 0.832 0.000 0.000 0.168
#> SRR1036015     1  0.3266     0.2011 0.832 0.000 0.000 0.168
#> SRR1036016     1  0.3266     0.2011 0.832 0.000 0.000 0.168
#> SRR1036017     1  0.3266     0.2011 0.832 0.000 0.000 0.168
#> SRR1036018     1  0.3266     0.2011 0.832 0.000 0.000 0.168
#> SRR1036010     2  0.5406    -0.4015 0.480 0.508 0.012 0.000
#> SRR1036011     2  0.5406    -0.4015 0.480 0.508 0.012 0.000
#> SRR1036012     2  0.5406    -0.4015 0.480 0.508 0.012 0.000
#> SRR1036019     2  0.8171     0.2491 0.368 0.424 0.024 0.184
#> SRR1036020     2  0.8171     0.2491 0.368 0.424 0.024 0.184
#> SRR1036021     2  0.8171     0.2491 0.368 0.424 0.024 0.184
#> SRR1036022     2  0.8171     0.2491 0.368 0.424 0.024 0.184
#> SRR1036023     2  0.8171     0.2491 0.368 0.424 0.024 0.184
#> SRR1036024     1  0.1545     0.3794 0.952 0.040 0.000 0.008
#> SRR1036025     1  0.1545     0.3794 0.952 0.040 0.000 0.008
#> SRR1036026     1  0.1545     0.3794 0.952 0.040 0.000 0.008
#> SRR1036027     1  0.1545     0.3794 0.952 0.040 0.000 0.008
#> SRR1036028     1  0.1545     0.3794 0.952 0.040 0.000 0.008
#> SRR1036029     1  0.1545     0.3794 0.952 0.040 0.000 0.008
#> SRR1036030     2  0.7585     0.4030 0.336 0.536 0.056 0.072
#> SRR1036031     2  0.7585     0.4030 0.336 0.536 0.056 0.072
#> SRR1036032     2  0.7585     0.4030 0.336 0.536 0.056 0.072
#> SRR1036033     2  0.7585     0.4030 0.336 0.536 0.056 0.072
#> SRR1036034     2  0.7585     0.4030 0.336 0.536 0.056 0.072
#> SRR1036035     2  0.7585     0.4030 0.336 0.536 0.056 0.072
#> SRR1036036     2  0.7585     0.4030 0.336 0.536 0.056 0.072
#> SRR1036037     2  0.7585     0.4030 0.336 0.536 0.056 0.072
#> SRR1036038     2  0.6580    -0.3513 0.416 0.504 0.080 0.000
#> SRR1036039     2  0.6580    -0.3513 0.416 0.504 0.080 0.000
#> SRR1036040     2  0.6580    -0.3513 0.416 0.504 0.080 0.000
#> SRR1036041     2  0.5957    -0.3666 0.420 0.540 0.040 0.000
#> SRR1036042     4  0.5994     0.7082 0.368 0.004 0.040 0.588
#> SRR1036043     4  0.5994     0.7082 0.368 0.004 0.040 0.588
#> SRR1036044     4  0.5994     0.7082 0.368 0.004 0.040 0.588
#> SRR1036045     4  0.5994     0.7082 0.368 0.004 0.040 0.588
#> SRR1036046     4  0.5994     0.7082 0.368 0.004 0.040 0.588
#> SRR1036047     4  0.5994     0.7082 0.368 0.004 0.040 0.588
#> SRR1036048     4  0.5994     0.7082 0.368 0.004 0.040 0.588
#> SRR1036049     4  0.5994     0.7082 0.368 0.004 0.040 0.588
#> SRR1036050     2  0.6207    -0.3694 0.424 0.528 0.044 0.004
#> SRR1036051     2  0.6207    -0.3694 0.424 0.528 0.044 0.004
#> SRR1036052     2  0.6207    -0.3694 0.424 0.528 0.044 0.004
#> SRR1036053     2  0.6207    -0.3694 0.424 0.528 0.044 0.004
#> SRR1036054     2  0.6207    -0.3694 0.424 0.528 0.044 0.004
#> SRR1036055     2  0.4199     0.0181 0.096 0.836 0.060 0.008
#> SRR1036056     2  0.4199     0.0181 0.096 0.836 0.060 0.008
#> SRR1036057     2  0.4199     0.0181 0.096 0.836 0.060 0.008
#> SRR1036058     4  0.5410     0.4710 0.192 0.080 0.000 0.728
#> SRR1036059     4  0.5410     0.4710 0.192 0.080 0.000 0.728
#> SRR1036060     4  0.5410     0.4710 0.192 0.080 0.000 0.728
#> SRR1036061     4  0.5410     0.4710 0.192 0.080 0.000 0.728
#> SRR1036062     4  0.5410     0.4710 0.192 0.080 0.000 0.728
#> SRR1036063     4  0.5410     0.4710 0.192 0.080 0.000 0.728
#> SRR1036064     4  0.5410     0.4710 0.192 0.080 0.000 0.728
#> SRR1036065     4  0.5410     0.4710 0.192 0.080 0.000 0.728
#> SRR1036066     1  0.5330     0.4097 0.516 0.476 0.004 0.004
#> SRR1036067     1  0.5330     0.4097 0.516 0.476 0.004 0.004
#> SRR1036068     1  0.5330     0.4097 0.516 0.476 0.004 0.004
#> SRR1036069     1  0.5330     0.4097 0.516 0.476 0.004 0.004
#> SRR1036070     1  0.5330     0.4097 0.516 0.476 0.004 0.004
#> SRR1036071     1  0.5330     0.4097 0.516 0.476 0.004 0.004
#> SRR1036072     1  0.5330     0.4097 0.516 0.476 0.004 0.004
#> SRR1036073     1  0.5330     0.4097 0.516 0.476 0.004 0.004
#> SRR1036074     4  0.4964     0.7140 0.380 0.004 0.000 0.616
#> SRR1036075     4  0.4964     0.7140 0.380 0.004 0.000 0.616
#> SRR1036076     4  0.4964     0.7140 0.380 0.004 0.000 0.616
#> SRR1036077     4  0.4964     0.7140 0.380 0.004 0.000 0.616
#> SRR1036078     4  0.4964     0.7140 0.380 0.004 0.000 0.616
#> SRR1036079     4  0.4964     0.7140 0.380 0.004 0.000 0.616
#> SRR1036080     4  0.4964     0.7140 0.380 0.004 0.000 0.616
#> SRR1036081     4  0.4964     0.7140 0.380 0.004 0.000 0.616
#> SRR1036082     1  0.6330    -0.0519 0.656 0.144 0.000 0.200
#> SRR1036083     1  0.6330    -0.0519 0.656 0.144 0.000 0.200
#> SRR1036084     1  0.6330    -0.0519 0.656 0.144 0.000 0.200
#> SRR1036090     2  0.6661     0.3972 0.376 0.552 0.016 0.056
#> SRR1036091     2  0.6661     0.3972 0.376 0.552 0.016 0.056
#> SRR1036092     2  0.6661     0.3972 0.376 0.552 0.016 0.056
#> SRR1036093     2  0.6546     0.3948 0.384 0.552 0.016 0.048
#> SRR1036094     2  0.6605     0.3964 0.380 0.552 0.016 0.052
#> SRR1036085     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036086     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036087     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036088     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036089     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036095     1  0.0336     0.3948 0.992 0.000 0.000 0.008
#> SRR1036096     1  0.0336     0.3948 0.992 0.000 0.000 0.008
#> SRR1036097     1  0.0336     0.3948 0.992 0.000 0.000 0.008
#> SRR1036098     1  0.0336     0.3948 0.992 0.000 0.000 0.008
#> SRR1036099     1  0.0336     0.3948 0.992 0.000 0.000 0.008
#> SRR1036100     2  0.6344     0.3878 0.392 0.552 0.008 0.048
#> SRR1036101     2  0.6344     0.3878 0.392 0.552 0.008 0.048
#> SRR1036102     2  0.6344     0.3878 0.392 0.552 0.008 0.048
#> SRR1036103     2  0.6344     0.3878 0.392 0.552 0.008 0.048
#> SRR1036104     2  0.6344     0.3878 0.392 0.552 0.008 0.048
#> SRR1036105     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036106     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036107     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036108     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036109     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036110     1  0.5105    -0.1364 0.696 0.028 0.000 0.276
#> SRR1036111     1  0.5105    -0.1364 0.696 0.028 0.000 0.276
#> SRR1036112     1  0.5105    -0.1364 0.696 0.028 0.000 0.276
#> SRR1036113     1  0.5105    -0.1364 0.696 0.028 0.000 0.276
#> SRR1036114     1  0.5010    -0.1316 0.700 0.024 0.000 0.276
#> SRR1036115     1  0.5212     0.4239 0.572 0.420 0.000 0.008
#> SRR1036116     1  0.5212     0.4239 0.572 0.420 0.000 0.008
#> SRR1036117     1  0.5212     0.4239 0.572 0.420 0.000 0.008
#> SRR1036118     1  0.5212     0.4239 0.572 0.420 0.000 0.008
#> SRR1036119     1  0.5212     0.4239 0.572 0.420 0.000 0.008
#> SRR1036120     2  0.8781    -0.3415 0.348 0.428 0.092 0.132
#> SRR1036121     2  0.8753    -0.3444 0.352 0.428 0.092 0.128
#> SRR1036122     2  0.8781    -0.3415 0.348 0.428 0.092 0.132
#> SRR1036123     2  0.8753    -0.3445 0.352 0.428 0.092 0.128
#> SRR1036124     2  0.8781    -0.3415 0.348 0.428 0.092 0.132
#> SRR1036125     1  0.6933     0.4045 0.488 0.420 0.084 0.008
#> SRR1036126     1  0.6933     0.4045 0.488 0.420 0.084 0.008
#> SRR1036127     1  0.6933     0.4045 0.488 0.420 0.084 0.008
#> SRR1036128     1  0.6933     0.4045 0.488 0.420 0.084 0.008
#> SRR1036129     1  0.6933     0.4045 0.488 0.420 0.084 0.008
#> SRR1036130     1  0.6933     0.4045 0.488 0.420 0.084 0.008
#> SRR1036131     1  0.6933     0.4045 0.488 0.420 0.084 0.008
#> SRR1036132     1  0.6933     0.4045 0.488 0.420 0.084 0.008
#> SRR1036133     2  0.6938     0.4116 0.336 0.568 0.020 0.076
#> SRR1036134     2  0.6938     0.4116 0.336 0.568 0.020 0.076
#> SRR1036135     2  0.6938     0.4116 0.336 0.568 0.020 0.076
#> SRR1036136     2  0.6938     0.4116 0.336 0.568 0.020 0.076
#> SRR1036137     2  0.7032     0.4107 0.336 0.564 0.024 0.076
#> SRR1036138     2  0.6176     0.4072 0.368 0.572 0.000 0.060
#> SRR1036139     2  0.6176     0.4072 0.368 0.572 0.000 0.060
#> SRR1036140     2  0.6176     0.4072 0.368 0.572 0.000 0.060
#> SRR1036141     2  0.6176     0.4072 0.368 0.572 0.000 0.060
#> SRR1036142     2  0.6176     0.4072 0.368 0.572 0.000 0.060
#> SRR1036143     2  0.6176     0.4072 0.368 0.572 0.000 0.060
#> SRR1036144     2  0.6176     0.4072 0.368 0.572 0.000 0.060
#> SRR1036145     2  0.6176     0.4072 0.368 0.572 0.000 0.060

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1036002     4  0.5265      0.440 0.016 0.400 0.008 0.564 0.012
#> SRR1036003     4  0.5265      0.440 0.016 0.400 0.008 0.564 0.012
#> SRR1036004     4  0.5265      0.440 0.016 0.400 0.008 0.564 0.012
#> SRR1036005     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036006     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036007     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036008     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036009     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036013     4  0.4333      0.517 0.212 0.000 0.000 0.740 0.048
#> SRR1036014     4  0.4333      0.517 0.212 0.000 0.000 0.740 0.048
#> SRR1036015     4  0.4333      0.517 0.212 0.000 0.000 0.740 0.048
#> SRR1036016     4  0.4333      0.517 0.212 0.000 0.000 0.740 0.048
#> SRR1036017     4  0.4333      0.517 0.212 0.000 0.000 0.740 0.048
#> SRR1036018     4  0.4333      0.517 0.212 0.000 0.000 0.740 0.048
#> SRR1036010     1  0.1588      0.777 0.948 0.028 0.000 0.008 0.016
#> SRR1036011     1  0.1588      0.777 0.948 0.028 0.000 0.008 0.016
#> SRR1036012     1  0.1673      0.777 0.944 0.032 0.000 0.008 0.016
#> SRR1036019     2  0.2771      0.842 0.012 0.860 0.000 0.128 0.000
#> SRR1036020     2  0.2771      0.842 0.012 0.860 0.000 0.128 0.000
#> SRR1036021     2  0.2771      0.842 0.012 0.860 0.000 0.128 0.000
#> SRR1036022     2  0.2771      0.842 0.012 0.860 0.000 0.128 0.000
#> SRR1036023     2  0.2771      0.842 0.012 0.860 0.000 0.128 0.000
#> SRR1036024     4  0.5191      0.343 0.408 0.004 0.000 0.552 0.036
#> SRR1036025     4  0.5191      0.343 0.408 0.004 0.000 0.552 0.036
#> SRR1036026     4  0.5191      0.343 0.408 0.004 0.000 0.552 0.036
#> SRR1036027     4  0.5191      0.343 0.408 0.004 0.000 0.552 0.036
#> SRR1036028     4  0.5191      0.343 0.408 0.004 0.000 0.552 0.036
#> SRR1036029     4  0.5191      0.343 0.408 0.004 0.000 0.552 0.036
#> SRR1036030     2  0.0162      0.963 0.000 0.996 0.004 0.000 0.000
#> SRR1036031     2  0.0162      0.963 0.000 0.996 0.004 0.000 0.000
#> SRR1036032     2  0.0162      0.963 0.000 0.996 0.004 0.000 0.000
#> SRR1036033     2  0.0162      0.963 0.000 0.996 0.004 0.000 0.000
#> SRR1036034     2  0.0162      0.963 0.000 0.996 0.004 0.000 0.000
#> SRR1036035     2  0.0162      0.963 0.000 0.996 0.004 0.000 0.000
#> SRR1036036     2  0.0162      0.963 0.000 0.996 0.004 0.000 0.000
#> SRR1036037     2  0.0162      0.963 0.000 0.996 0.004 0.000 0.000
#> SRR1036038     1  0.3517      0.736 0.812 0.168 0.004 0.004 0.012
#> SRR1036039     1  0.3517      0.736 0.812 0.168 0.004 0.004 0.012
#> SRR1036040     1  0.3517      0.736 0.812 0.168 0.004 0.004 0.012
#> SRR1036041     1  0.3205      0.738 0.816 0.176 0.004 0.004 0.000
#> SRR1036042     4  0.4029      0.536 0.000 0.316 0.004 0.680 0.000
#> SRR1036043     4  0.4029      0.536 0.000 0.316 0.004 0.680 0.000
#> SRR1036044     4  0.4029      0.536 0.000 0.316 0.004 0.680 0.000
#> SRR1036045     4  0.4029      0.536 0.000 0.316 0.004 0.680 0.000
#> SRR1036046     4  0.4029      0.536 0.000 0.316 0.004 0.680 0.000
#> SRR1036047     4  0.4029      0.536 0.000 0.316 0.004 0.680 0.000
#> SRR1036048     4  0.4029      0.536 0.000 0.316 0.004 0.680 0.000
#> SRR1036049     4  0.4029      0.536 0.000 0.316 0.004 0.680 0.000
#> SRR1036050     1  0.1788      0.782 0.932 0.056 0.008 0.000 0.004
#> SRR1036051     1  0.1788      0.782 0.932 0.056 0.008 0.000 0.004
#> SRR1036052     1  0.1788      0.782 0.932 0.056 0.008 0.000 0.004
#> SRR1036053     1  0.1788      0.782 0.932 0.056 0.008 0.000 0.004
#> SRR1036054     1  0.1788      0.782 0.932 0.056 0.008 0.000 0.004
#> SRR1036055     1  0.4438      0.477 0.608 0.384 0.004 0.004 0.000
#> SRR1036056     1  0.4438      0.477 0.608 0.384 0.004 0.004 0.000
#> SRR1036057     1  0.4438      0.477 0.608 0.384 0.004 0.004 0.000
#> SRR1036058     5  0.2471      1.000 0.136 0.000 0.000 0.000 0.864
#> SRR1036059     5  0.2471      1.000 0.136 0.000 0.000 0.000 0.864
#> SRR1036060     5  0.2471      1.000 0.136 0.000 0.000 0.000 0.864
#> SRR1036061     5  0.2471      1.000 0.136 0.000 0.000 0.000 0.864
#> SRR1036062     5  0.2471      1.000 0.136 0.000 0.000 0.000 0.864
#> SRR1036063     5  0.2471      1.000 0.136 0.000 0.000 0.000 0.864
#> SRR1036064     5  0.2471      1.000 0.136 0.000 0.000 0.000 0.864
#> SRR1036065     5  0.2471      1.000 0.136 0.000 0.000 0.000 0.864
#> SRR1036066     1  0.1393      0.771 0.956 0.012 0.000 0.008 0.024
#> SRR1036067     1  0.1393      0.771 0.956 0.012 0.000 0.008 0.024
#> SRR1036068     1  0.1393      0.771 0.956 0.012 0.000 0.008 0.024
#> SRR1036069     1  0.1393      0.771 0.956 0.012 0.000 0.008 0.024
#> SRR1036070     1  0.1393      0.771 0.956 0.012 0.000 0.008 0.024
#> SRR1036071     1  0.1393      0.771 0.956 0.012 0.000 0.008 0.024
#> SRR1036072     1  0.1393      0.771 0.956 0.012 0.000 0.008 0.024
#> SRR1036073     1  0.1393      0.771 0.956 0.012 0.000 0.008 0.024
#> SRR1036074     4  0.3430      0.610 0.000 0.220 0.000 0.776 0.004
#> SRR1036075     4  0.3430      0.610 0.000 0.220 0.000 0.776 0.004
#> SRR1036076     4  0.3430      0.610 0.000 0.220 0.000 0.776 0.004
#> SRR1036077     4  0.3430      0.610 0.000 0.220 0.000 0.776 0.004
#> SRR1036078     4  0.3430      0.610 0.000 0.220 0.000 0.776 0.004
#> SRR1036079     4  0.3430      0.610 0.000 0.220 0.000 0.776 0.004
#> SRR1036080     4  0.3430      0.610 0.000 0.220 0.000 0.776 0.004
#> SRR1036081     4  0.3430      0.610 0.000 0.220 0.000 0.776 0.004
#> SRR1036082     4  0.6056      0.545 0.220 0.144 0.000 0.620 0.016
#> SRR1036083     4  0.6056      0.545 0.220 0.144 0.000 0.620 0.016
#> SRR1036084     4  0.6056      0.545 0.220 0.144 0.000 0.620 0.016
#> SRR1036090     2  0.0671      0.957 0.016 0.980 0.000 0.000 0.004
#> SRR1036091     2  0.0671      0.957 0.016 0.980 0.000 0.000 0.004
#> SRR1036092     2  0.0671      0.957 0.016 0.980 0.000 0.000 0.004
#> SRR1036093     2  0.0671      0.957 0.016 0.980 0.000 0.000 0.004
#> SRR1036094     2  0.0671      0.957 0.016 0.980 0.000 0.000 0.004
#> SRR1036085     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036086     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036087     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036088     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036089     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036095     1  0.6343      0.459 0.516 0.000 0.000 0.284 0.200
#> SRR1036096     1  0.6343      0.459 0.516 0.000 0.000 0.284 0.200
#> SRR1036097     1  0.6343      0.459 0.516 0.000 0.000 0.284 0.200
#> SRR1036098     1  0.6343      0.459 0.516 0.000 0.000 0.284 0.200
#> SRR1036099     1  0.6343      0.459 0.516 0.000 0.000 0.284 0.200
#> SRR1036100     2  0.1443      0.933 0.044 0.948 0.000 0.004 0.004
#> SRR1036101     2  0.1443      0.933 0.044 0.948 0.000 0.004 0.004
#> SRR1036102     2  0.1443      0.933 0.044 0.948 0.000 0.004 0.004
#> SRR1036103     2  0.1443      0.933 0.044 0.948 0.000 0.004 0.004
#> SRR1036104     2  0.1443      0.933 0.044 0.948 0.000 0.004 0.004
#> SRR1036105     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036106     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036107     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036108     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036109     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036110     4  0.4345      0.528 0.212 0.012 0.000 0.748 0.028
#> SRR1036111     4  0.4345      0.528 0.212 0.012 0.000 0.748 0.028
#> SRR1036112     4  0.4345      0.528 0.212 0.012 0.000 0.748 0.028
#> SRR1036113     4  0.4345      0.528 0.212 0.012 0.000 0.748 0.028
#> SRR1036114     4  0.4345      0.528 0.212 0.012 0.000 0.748 0.028
#> SRR1036115     1  0.3353      0.762 0.796 0.000 0.000 0.008 0.196
#> SRR1036116     1  0.3353      0.762 0.796 0.000 0.000 0.008 0.196
#> SRR1036117     1  0.3353      0.762 0.796 0.000 0.000 0.008 0.196
#> SRR1036118     1  0.3353      0.762 0.796 0.000 0.000 0.008 0.196
#> SRR1036119     1  0.3353      0.762 0.796 0.000 0.000 0.008 0.196
#> SRR1036120     1  0.3935      0.714 0.760 0.000 0.008 0.220 0.012
#> SRR1036121     1  0.3935      0.714 0.760 0.000 0.008 0.220 0.012
#> SRR1036122     1  0.3935      0.714 0.760 0.000 0.008 0.220 0.012
#> SRR1036123     1  0.3935      0.714 0.760 0.000 0.008 0.220 0.012
#> SRR1036124     1  0.3935      0.714 0.760 0.000 0.008 0.220 0.012
#> SRR1036125     1  0.3013      0.776 0.832 0.000 0.008 0.000 0.160
#> SRR1036126     1  0.3013      0.776 0.832 0.000 0.008 0.000 0.160
#> SRR1036127     1  0.3013      0.776 0.832 0.000 0.008 0.000 0.160
#> SRR1036128     1  0.3013      0.776 0.832 0.000 0.008 0.000 0.160
#> SRR1036129     1  0.3013      0.776 0.832 0.000 0.008 0.000 0.160
#> SRR1036130     1  0.3013      0.776 0.832 0.000 0.008 0.000 0.160
#> SRR1036131     1  0.3013      0.776 0.832 0.000 0.008 0.000 0.160
#> SRR1036132     1  0.3013      0.776 0.832 0.000 0.008 0.000 0.160
#> SRR1036133     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000
#> SRR1036134     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000
#> SRR1036135     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000
#> SRR1036136     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000
#> SRR1036137     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000
#> SRR1036138     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000
#> SRR1036139     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000
#> SRR1036140     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000
#> SRR1036141     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000
#> SRR1036142     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000
#> SRR1036143     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000
#> SRR1036144     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000
#> SRR1036145     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1036002     6  0.4949      0.729 0.044 0.064 0.016 0.052 0.052 0.772
#> SRR1036003     6  0.4949      0.729 0.044 0.064 0.016 0.052 0.052 0.772
#> SRR1036004     6  0.4949      0.729 0.044 0.064 0.016 0.052 0.052 0.772
#> SRR1036005     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036006     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036007     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036008     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036009     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036013     4  0.2066      0.874 0.000 0.000 0.000 0.908 0.040 0.052
#> SRR1036014     4  0.2066      0.874 0.000 0.000 0.000 0.908 0.040 0.052
#> SRR1036015     4  0.2066      0.874 0.000 0.000 0.000 0.908 0.040 0.052
#> SRR1036016     4  0.2066      0.874 0.000 0.000 0.000 0.908 0.040 0.052
#> SRR1036017     4  0.2066      0.874 0.000 0.000 0.000 0.908 0.040 0.052
#> SRR1036018     4  0.2066      0.874 0.000 0.000 0.000 0.908 0.040 0.052
#> SRR1036010     1  0.4129      0.730 0.764 0.080 0.000 0.144 0.012 0.000
#> SRR1036011     1  0.4129      0.730 0.764 0.080 0.000 0.144 0.012 0.000
#> SRR1036012     1  0.4129      0.730 0.764 0.080 0.000 0.144 0.012 0.000
#> SRR1036019     2  0.4903      0.567 0.004 0.500 0.000 0.004 0.040 0.452
#> SRR1036020     2  0.4903      0.567 0.004 0.500 0.000 0.004 0.040 0.452
#> SRR1036021     2  0.4903      0.567 0.004 0.500 0.000 0.004 0.040 0.452
#> SRR1036022     2  0.4903      0.567 0.004 0.500 0.000 0.004 0.040 0.452
#> SRR1036023     2  0.4903      0.567 0.004 0.500 0.000 0.004 0.040 0.452
#> SRR1036024     4  0.1275      0.825 0.016 0.000 0.000 0.956 0.012 0.016
#> SRR1036025     4  0.1251      0.832 0.008 0.000 0.000 0.956 0.012 0.024
#> SRR1036026     4  0.1251      0.832 0.008 0.000 0.000 0.956 0.012 0.024
#> SRR1036027     4  0.1251      0.832 0.008 0.000 0.000 0.956 0.012 0.024
#> SRR1036028     4  0.1251      0.832 0.008 0.000 0.000 0.956 0.012 0.024
#> SRR1036029     4  0.1251      0.832 0.008 0.000 0.000 0.956 0.012 0.024
#> SRR1036030     2  0.0000      0.793 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1036031     2  0.0000      0.793 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1036032     2  0.0000      0.793 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1036033     2  0.0000      0.793 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1036034     2  0.0000      0.793 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1036035     2  0.0000      0.793 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1036036     2  0.0000      0.793 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1036037     2  0.0000      0.793 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1036038     1  0.4352      0.676 0.752 0.144 0.000 0.020 0.084 0.000
#> SRR1036039     1  0.4352      0.676 0.752 0.144 0.000 0.020 0.084 0.000
#> SRR1036040     1  0.4352      0.676 0.752 0.144 0.000 0.020 0.084 0.000
#> SRR1036041     1  0.5078      0.717 0.732 0.116 0.008 0.080 0.060 0.004
#> SRR1036042     6  0.1930      0.821 0.000 0.000 0.036 0.048 0.000 0.916
#> SRR1036043     6  0.1930      0.821 0.000 0.000 0.036 0.048 0.000 0.916
#> SRR1036044     6  0.1930      0.821 0.000 0.000 0.036 0.048 0.000 0.916
#> SRR1036045     6  0.1930      0.821 0.000 0.000 0.036 0.048 0.000 0.916
#> SRR1036046     6  0.1930      0.821 0.000 0.000 0.036 0.048 0.000 0.916
#> SRR1036047     6  0.1930      0.821 0.000 0.000 0.036 0.048 0.000 0.916
#> SRR1036048     6  0.1930      0.821 0.000 0.000 0.036 0.048 0.000 0.916
#> SRR1036049     6  0.1930      0.821 0.000 0.000 0.036 0.048 0.000 0.916
#> SRR1036050     1  0.4238      0.727 0.740 0.008 0.000 0.200 0.044 0.008
#> SRR1036051     1  0.4238      0.727 0.740 0.008 0.000 0.200 0.044 0.008
#> SRR1036052     1  0.4238      0.727 0.740 0.008 0.000 0.200 0.044 0.008
#> SRR1036053     1  0.4238      0.727 0.740 0.008 0.000 0.200 0.044 0.008
#> SRR1036054     1  0.4238      0.727 0.740 0.008 0.000 0.200 0.044 0.008
#> SRR1036055     1  0.5150      0.414 0.580 0.332 0.000 0.008 0.080 0.000
#> SRR1036056     1  0.5150      0.414 0.580 0.332 0.000 0.008 0.080 0.000
#> SRR1036057     1  0.5150      0.414 0.580 0.332 0.000 0.008 0.080 0.000
#> SRR1036058     5  0.1802      1.000 0.012 0.000 0.000 0.072 0.916 0.000
#> SRR1036059     5  0.1802      1.000 0.012 0.000 0.000 0.072 0.916 0.000
#> SRR1036060     5  0.1802      1.000 0.012 0.000 0.000 0.072 0.916 0.000
#> SRR1036061     5  0.1802      1.000 0.012 0.000 0.000 0.072 0.916 0.000
#> SRR1036062     5  0.1802      1.000 0.012 0.000 0.000 0.072 0.916 0.000
#> SRR1036063     5  0.1802      1.000 0.012 0.000 0.000 0.072 0.916 0.000
#> SRR1036064     5  0.1802      1.000 0.012 0.000 0.000 0.072 0.916 0.000
#> SRR1036065     5  0.1802      1.000 0.012 0.000 0.000 0.072 0.916 0.000
#> SRR1036066     1  0.4199      0.683 0.640 0.000 0.004 0.336 0.020 0.000
#> SRR1036067     1  0.4199      0.683 0.640 0.000 0.004 0.336 0.020 0.000
#> SRR1036068     1  0.4199      0.683 0.640 0.000 0.004 0.336 0.020 0.000
#> SRR1036069     1  0.4199      0.683 0.640 0.000 0.004 0.336 0.020 0.000
#> SRR1036070     1  0.4199      0.683 0.640 0.000 0.004 0.336 0.020 0.000
#> SRR1036071     1  0.4199      0.683 0.640 0.000 0.004 0.336 0.020 0.000
#> SRR1036072     1  0.4199      0.683 0.640 0.000 0.004 0.336 0.020 0.000
#> SRR1036073     1  0.4199      0.683 0.640 0.000 0.004 0.336 0.020 0.000
#> SRR1036074     6  0.4516      0.761 0.000 0.112 0.000 0.188 0.000 0.700
#> SRR1036075     6  0.4516      0.761 0.000 0.112 0.000 0.188 0.000 0.700
#> SRR1036076     6  0.4516      0.761 0.000 0.112 0.000 0.188 0.000 0.700
#> SRR1036077     6  0.4516      0.761 0.000 0.112 0.000 0.188 0.000 0.700
#> SRR1036078     6  0.4516      0.761 0.000 0.112 0.000 0.188 0.000 0.700
#> SRR1036079     6  0.4516      0.761 0.000 0.112 0.000 0.188 0.000 0.700
#> SRR1036080     6  0.4516      0.761 0.000 0.112 0.000 0.188 0.000 0.700
#> SRR1036081     6  0.4516      0.761 0.000 0.112 0.000 0.188 0.000 0.700
#> SRR1036082     4  0.5052      0.364 0.004 0.084 0.000 0.592 0.000 0.320
#> SRR1036083     4  0.5052      0.364 0.004 0.084 0.000 0.592 0.000 0.320
#> SRR1036084     4  0.5052      0.364 0.004 0.084 0.000 0.592 0.000 0.320
#> SRR1036090     2  0.4208      0.787 0.028 0.792 0.000 0.012 0.084 0.084
#> SRR1036091     2  0.4208      0.787 0.028 0.792 0.000 0.012 0.084 0.084
#> SRR1036092     2  0.4208      0.787 0.028 0.792 0.000 0.012 0.084 0.084
#> SRR1036093     2  0.4258      0.787 0.028 0.788 0.000 0.012 0.084 0.088
#> SRR1036094     2  0.4258      0.787 0.028 0.788 0.000 0.012 0.084 0.088
#> SRR1036085     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036086     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036087     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036088     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036089     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036095     1  0.4763      0.493 0.620 0.000 0.000 0.320 0.052 0.008
#> SRR1036096     1  0.4763      0.493 0.620 0.000 0.000 0.320 0.052 0.008
#> SRR1036097     1  0.4763      0.493 0.620 0.000 0.000 0.320 0.052 0.008
#> SRR1036098     1  0.4763      0.493 0.620 0.000 0.000 0.320 0.052 0.008
#> SRR1036099     1  0.4763      0.493 0.620 0.000 0.000 0.320 0.052 0.008
#> SRR1036100     2  0.4390      0.794 0.004 0.776 0.012 0.016 0.084 0.108
#> SRR1036101     2  0.4390      0.794 0.004 0.776 0.012 0.016 0.084 0.108
#> SRR1036102     2  0.4390      0.794 0.004 0.776 0.012 0.016 0.084 0.108
#> SRR1036103     2  0.4390      0.794 0.004 0.776 0.012 0.016 0.084 0.108
#> SRR1036104     2  0.4390      0.794 0.004 0.776 0.012 0.016 0.084 0.108
#> SRR1036105     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036106     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036107     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036108     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036109     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036110     4  0.2384      0.870 0.000 0.000 0.000 0.888 0.048 0.064
#> SRR1036111     4  0.2384      0.870 0.000 0.000 0.000 0.888 0.048 0.064
#> SRR1036112     4  0.2384      0.870 0.000 0.000 0.000 0.888 0.048 0.064
#> SRR1036113     4  0.2384      0.870 0.000 0.000 0.000 0.888 0.048 0.064
#> SRR1036114     4  0.2384      0.870 0.000 0.000 0.000 0.888 0.048 0.064
#> SRR1036115     1  0.2981      0.706 0.852 0.000 0.000 0.100 0.040 0.008
#> SRR1036116     1  0.2981      0.706 0.852 0.000 0.000 0.100 0.040 0.008
#> SRR1036117     1  0.2981      0.706 0.852 0.000 0.000 0.100 0.040 0.008
#> SRR1036118     1  0.2981      0.706 0.852 0.000 0.000 0.100 0.040 0.008
#> SRR1036119     1  0.2981      0.706 0.852 0.000 0.000 0.100 0.040 0.008
#> SRR1036120     1  0.5554      0.590 0.624 0.000 0.024 0.172 0.000 0.180
#> SRR1036121     1  0.5554      0.590 0.624 0.000 0.024 0.172 0.000 0.180
#> SRR1036122     1  0.5554      0.590 0.624 0.000 0.024 0.172 0.000 0.180
#> SRR1036123     1  0.5554      0.590 0.624 0.000 0.024 0.172 0.000 0.180
#> SRR1036124     1  0.5554      0.590 0.624 0.000 0.024 0.172 0.000 0.180
#> SRR1036125     1  0.0508      0.728 0.984 0.000 0.004 0.012 0.000 0.000
#> SRR1036126     1  0.0508      0.728 0.984 0.000 0.004 0.012 0.000 0.000
#> SRR1036127     1  0.0508      0.728 0.984 0.000 0.004 0.012 0.000 0.000
#> SRR1036128     1  0.0508      0.728 0.984 0.000 0.004 0.012 0.000 0.000
#> SRR1036129     1  0.0508      0.728 0.984 0.000 0.004 0.012 0.000 0.000
#> SRR1036130     1  0.0508      0.728 0.984 0.000 0.004 0.012 0.000 0.000
#> SRR1036131     1  0.0508      0.728 0.984 0.000 0.004 0.012 0.000 0.000
#> SRR1036132     1  0.0508      0.728 0.984 0.000 0.004 0.012 0.000 0.000
#> SRR1036133     2  0.1204      0.809 0.000 0.944 0.000 0.000 0.000 0.056
#> SRR1036134     2  0.1204      0.809 0.000 0.944 0.000 0.000 0.000 0.056
#> SRR1036135     2  0.1204      0.809 0.000 0.944 0.000 0.000 0.000 0.056
#> SRR1036136     2  0.1204      0.809 0.000 0.944 0.000 0.000 0.000 0.056
#> SRR1036137     2  0.1204      0.809 0.000 0.944 0.000 0.000 0.000 0.056
#> SRR1036138     2  0.3499      0.740 0.000 0.680 0.000 0.000 0.000 0.320
#> SRR1036139     2  0.3499      0.740 0.000 0.680 0.000 0.000 0.000 0.320
#> SRR1036140     2  0.3499      0.740 0.000 0.680 0.000 0.000 0.000 0.320
#> SRR1036141     2  0.3499      0.740 0.000 0.680 0.000 0.000 0.000 0.320
#> SRR1036142     2  0.3499      0.740 0.000 0.680 0.000 0.000 0.000 0.320
#> SRR1036143     2  0.3499      0.740 0.000 0.680 0.000 0.000 0.000 0.320
#> SRR1036144     2  0.3499      0.740 0.000 0.680 0.000 0.000 0.000 0.320
#> SRR1036145     2  0.3499      0.740 0.000 0.680 0.000 0.000 0.000 0.320

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15218 rows and 144 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.739           0.916       0.953         0.4113 0.615   0.615
#> 3 3 0.678           0.809       0.917         0.5394 0.667   0.489
#> 4 4 0.699           0.782       0.889         0.1570 0.806   0.524
#> 5 5 0.777           0.786       0.868         0.0743 0.883   0.606
#> 6 6 0.810           0.719       0.828         0.0414 0.935   0.716

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1036002     1  0.0000      0.987 1.000 0.000
#> SRR1036003     1  0.0000      0.987 1.000 0.000
#> SRR1036004     1  0.0000      0.987 1.000 0.000
#> SRR1036005     1  0.0000      0.987 1.000 0.000
#> SRR1036006     1  0.0000      0.987 1.000 0.000
#> SRR1036007     1  0.0000      0.987 1.000 0.000
#> SRR1036008     1  0.0000      0.987 1.000 0.000
#> SRR1036009     1  0.0000      0.987 1.000 0.000
#> SRR1036013     1  0.3114      0.944 0.944 0.056
#> SRR1036014     1  0.3431      0.937 0.936 0.064
#> SRR1036015     1  0.3431      0.937 0.936 0.064
#> SRR1036016     1  0.3274      0.941 0.940 0.060
#> SRR1036017     1  0.3431      0.937 0.936 0.064
#> SRR1036018     1  0.3274      0.941 0.940 0.060
#> SRR1036010     2  0.0000      0.938 0.000 1.000
#> SRR1036011     2  0.0000      0.938 0.000 1.000
#> SRR1036012     2  0.0000      0.938 0.000 1.000
#> SRR1036019     2  0.7950      0.751 0.240 0.760
#> SRR1036020     2  0.7883      0.757 0.236 0.764
#> SRR1036021     2  0.7883      0.757 0.236 0.764
#> SRR1036022     2  0.7883      0.757 0.236 0.764
#> SRR1036023     2  0.7883      0.757 0.236 0.764
#> SRR1036024     2  0.0000      0.938 0.000 1.000
#> SRR1036025     2  0.0000      0.938 0.000 1.000
#> SRR1036026     2  0.0000      0.938 0.000 1.000
#> SRR1036027     2  0.0000      0.938 0.000 1.000
#> SRR1036028     2  0.0000      0.938 0.000 1.000
#> SRR1036029     2  0.0000      0.938 0.000 1.000
#> SRR1036030     2  0.0000      0.938 0.000 1.000
#> SRR1036031     2  0.0000      0.938 0.000 1.000
#> SRR1036032     2  0.0000      0.938 0.000 1.000
#> SRR1036033     2  0.0000      0.938 0.000 1.000
#> SRR1036034     2  0.0000      0.938 0.000 1.000
#> SRR1036035     2  0.0000      0.938 0.000 1.000
#> SRR1036036     2  0.0000      0.938 0.000 1.000
#> SRR1036037     2  0.0000      0.938 0.000 1.000
#> SRR1036038     2  0.0376      0.937 0.004 0.996
#> SRR1036039     2  0.0376      0.937 0.004 0.996
#> SRR1036040     2  0.0376      0.937 0.004 0.996
#> SRR1036041     2  0.0000      0.938 0.000 1.000
#> SRR1036042     1  0.0000      0.987 1.000 0.000
#> SRR1036043     1  0.0000      0.987 1.000 0.000
#> SRR1036044     1  0.0000      0.987 1.000 0.000
#> SRR1036045     1  0.0000      0.987 1.000 0.000
#> SRR1036046     1  0.0000      0.987 1.000 0.000
#> SRR1036047     1  0.0000      0.987 1.000 0.000
#> SRR1036048     1  0.0000      0.987 1.000 0.000
#> SRR1036049     1  0.0000      0.987 1.000 0.000
#> SRR1036050     2  0.0000      0.938 0.000 1.000
#> SRR1036051     2  0.0000      0.938 0.000 1.000
#> SRR1036052     2  0.0000      0.938 0.000 1.000
#> SRR1036053     2  0.0000      0.938 0.000 1.000
#> SRR1036054     2  0.0000      0.938 0.000 1.000
#> SRR1036055     2  0.0000      0.938 0.000 1.000
#> SRR1036056     2  0.0000      0.938 0.000 1.000
#> SRR1036057     2  0.0000      0.938 0.000 1.000
#> SRR1036058     2  0.0000      0.938 0.000 1.000
#> SRR1036059     2  0.0000      0.938 0.000 1.000
#> SRR1036060     2  0.0000      0.938 0.000 1.000
#> SRR1036061     2  0.0000      0.938 0.000 1.000
#> SRR1036062     2  0.0000      0.938 0.000 1.000
#> SRR1036063     2  0.0000      0.938 0.000 1.000
#> SRR1036064     2  0.0000      0.938 0.000 1.000
#> SRR1036065     2  0.0000      0.938 0.000 1.000
#> SRR1036066     2  0.0000      0.938 0.000 1.000
#> SRR1036067     2  0.0000      0.938 0.000 1.000
#> SRR1036068     2  0.0000      0.938 0.000 1.000
#> SRR1036069     2  0.0000      0.938 0.000 1.000
#> SRR1036070     2  0.0000      0.938 0.000 1.000
#> SRR1036071     2  0.0000      0.938 0.000 1.000
#> SRR1036072     2  0.0000      0.938 0.000 1.000
#> SRR1036073     2  0.0000      0.938 0.000 1.000
#> SRR1036074     2  0.5519      0.864 0.128 0.872
#> SRR1036075     2  0.5519      0.864 0.128 0.872
#> SRR1036076     2  0.5519      0.864 0.128 0.872
#> SRR1036077     2  0.5519      0.864 0.128 0.872
#> SRR1036078     2  0.5519      0.864 0.128 0.872
#> SRR1036079     2  0.5519      0.864 0.128 0.872
#> SRR1036080     2  0.5519      0.864 0.128 0.872
#> SRR1036081     2  0.5519      0.864 0.128 0.872
#> SRR1036082     2  0.0938      0.934 0.012 0.988
#> SRR1036083     2  0.0938      0.934 0.012 0.988
#> SRR1036084     2  0.0938      0.934 0.012 0.988
#> SRR1036090     2  0.3114      0.914 0.056 0.944
#> SRR1036091     2  0.3114      0.914 0.056 0.944
#> SRR1036092     2  0.3114      0.914 0.056 0.944
#> SRR1036093     2  0.3114      0.914 0.056 0.944
#> SRR1036094     2  0.2948      0.916 0.052 0.948
#> SRR1036085     1  0.0000      0.987 1.000 0.000
#> SRR1036086     1  0.0000      0.987 1.000 0.000
#> SRR1036087     1  0.0000      0.987 1.000 0.000
#> SRR1036088     1  0.0000      0.987 1.000 0.000
#> SRR1036089     1  0.0000      0.987 1.000 0.000
#> SRR1036095     2  0.0000      0.938 0.000 1.000
#> SRR1036096     2  0.0000      0.938 0.000 1.000
#> SRR1036097     2  0.0000      0.938 0.000 1.000
#> SRR1036098     2  0.0000      0.938 0.000 1.000
#> SRR1036099     2  0.0000      0.938 0.000 1.000
#> SRR1036100     2  0.0000      0.938 0.000 1.000
#> SRR1036101     2  0.0000      0.938 0.000 1.000
#> SRR1036102     2  0.0000      0.938 0.000 1.000
#> SRR1036103     2  0.0000      0.938 0.000 1.000
#> SRR1036104     2  0.0000      0.938 0.000 1.000
#> SRR1036105     1  0.0000      0.987 1.000 0.000
#> SRR1036106     1  0.0000      0.987 1.000 0.000
#> SRR1036107     1  0.0000      0.987 1.000 0.000
#> SRR1036108     1  0.0000      0.987 1.000 0.000
#> SRR1036109     1  0.0000      0.987 1.000 0.000
#> SRR1036110     2  0.9209      0.594 0.336 0.664
#> SRR1036111     2  0.9209      0.594 0.336 0.664
#> SRR1036112     2  0.9209      0.594 0.336 0.664
#> SRR1036113     2  0.9209      0.594 0.336 0.664
#> SRR1036114     2  0.9209      0.594 0.336 0.664
#> SRR1036115     2  0.0000      0.938 0.000 1.000
#> SRR1036116     2  0.0000      0.938 0.000 1.000
#> SRR1036117     2  0.0000      0.938 0.000 1.000
#> SRR1036118     2  0.0000      0.938 0.000 1.000
#> SRR1036119     2  0.0000      0.938 0.000 1.000
#> SRR1036120     1  0.0938      0.982 0.988 0.012
#> SRR1036121     1  0.0672      0.983 0.992 0.008
#> SRR1036122     1  0.0938      0.982 0.988 0.012
#> SRR1036123     1  0.0938      0.982 0.988 0.012
#> SRR1036124     1  0.0938      0.982 0.988 0.012
#> SRR1036125     2  0.2778      0.912 0.048 0.952
#> SRR1036126     2  0.2778      0.912 0.048 0.952
#> SRR1036127     2  0.3114      0.906 0.056 0.944
#> SRR1036128     2  0.2778      0.912 0.048 0.952
#> SRR1036129     2  0.2778      0.912 0.048 0.952
#> SRR1036130     2  0.2948      0.909 0.052 0.948
#> SRR1036131     2  0.2778      0.912 0.048 0.952
#> SRR1036132     2  0.2778      0.912 0.048 0.952
#> SRR1036133     2  0.0376      0.937 0.004 0.996
#> SRR1036134     2  0.0376      0.937 0.004 0.996
#> SRR1036135     2  0.0376      0.937 0.004 0.996
#> SRR1036136     2  0.0376      0.937 0.004 0.996
#> SRR1036137     2  0.0376      0.937 0.004 0.996
#> SRR1036138     2  0.7376      0.790 0.208 0.792
#> SRR1036139     2  0.7376      0.790 0.208 0.792
#> SRR1036140     2  0.7376      0.790 0.208 0.792
#> SRR1036141     2  0.7376      0.790 0.208 0.792
#> SRR1036142     2  0.7376      0.790 0.208 0.792
#> SRR1036143     2  0.7376      0.790 0.208 0.792
#> SRR1036144     2  0.7376      0.790 0.208 0.792
#> SRR1036145     2  0.7376      0.790 0.208 0.792

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1036002     3  0.2878      0.881 0.000 0.096 0.904
#> SRR1036003     3  0.2625      0.891 0.000 0.084 0.916
#> SRR1036004     3  0.2878      0.881 0.000 0.096 0.904
#> SRR1036005     3  0.0000      0.946 0.000 0.000 1.000
#> SRR1036006     3  0.0000      0.946 0.000 0.000 1.000
#> SRR1036007     3  0.0000      0.946 0.000 0.000 1.000
#> SRR1036008     3  0.0000      0.946 0.000 0.000 1.000
#> SRR1036009     3  0.0000      0.946 0.000 0.000 1.000
#> SRR1036013     3  0.4062      0.822 0.164 0.000 0.836
#> SRR1036014     3  0.4452      0.787 0.192 0.000 0.808
#> SRR1036015     3  0.4346      0.799 0.184 0.000 0.816
#> SRR1036016     3  0.4178      0.813 0.172 0.000 0.828
#> SRR1036017     3  0.4235      0.809 0.176 0.000 0.824
#> SRR1036018     3  0.4235      0.809 0.176 0.000 0.824
#> SRR1036010     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036011     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036012     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036019     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036020     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036021     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036022     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036023     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036024     1  0.6008      0.491 0.628 0.372 0.000
#> SRR1036025     1  0.6008      0.491 0.628 0.372 0.000
#> SRR1036026     1  0.6008      0.491 0.628 0.372 0.000
#> SRR1036027     1  0.6008      0.491 0.628 0.372 0.000
#> SRR1036028     1  0.6008      0.491 0.628 0.372 0.000
#> SRR1036029     1  0.6008      0.491 0.628 0.372 0.000
#> SRR1036030     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036031     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036032     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036033     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036034     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036035     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036036     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036037     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036038     1  0.5968      0.442 0.636 0.364 0.000
#> SRR1036039     1  0.5968      0.442 0.636 0.364 0.000
#> SRR1036040     1  0.5968      0.442 0.636 0.364 0.000
#> SRR1036041     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036042     2  0.0237      0.946 0.000 0.996 0.004
#> SRR1036043     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036044     2  0.0237      0.946 0.000 0.996 0.004
#> SRR1036045     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036046     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036047     2  0.0237      0.946 0.000 0.996 0.004
#> SRR1036048     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036049     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036050     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036051     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036052     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036053     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036054     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036055     1  0.5926      0.457 0.644 0.356 0.000
#> SRR1036056     1  0.5988      0.433 0.632 0.368 0.000
#> SRR1036057     1  0.5882      0.471 0.652 0.348 0.000
#> SRR1036058     1  0.4555      0.723 0.800 0.200 0.000
#> SRR1036059     1  0.4555      0.723 0.800 0.200 0.000
#> SRR1036060     1  0.4555      0.723 0.800 0.200 0.000
#> SRR1036061     1  0.4555      0.723 0.800 0.200 0.000
#> SRR1036062     1  0.4555      0.723 0.800 0.200 0.000
#> SRR1036063     1  0.4555      0.723 0.800 0.200 0.000
#> SRR1036064     1  0.4555      0.723 0.800 0.200 0.000
#> SRR1036065     1  0.4555      0.723 0.800 0.200 0.000
#> SRR1036066     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036067     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036068     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036069     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036070     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036071     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036072     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036073     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036074     2  0.3267      0.835 0.116 0.884 0.000
#> SRR1036075     2  0.3038      0.849 0.104 0.896 0.000
#> SRR1036076     2  0.3116      0.844 0.108 0.892 0.000
#> SRR1036077     2  0.3340      0.830 0.120 0.880 0.000
#> SRR1036078     2  0.3340      0.830 0.120 0.880 0.000
#> SRR1036079     2  0.3340      0.830 0.120 0.880 0.000
#> SRR1036080     2  0.3267      0.835 0.116 0.884 0.000
#> SRR1036081     2  0.3412      0.825 0.124 0.876 0.000
#> SRR1036082     2  0.6111      0.218 0.396 0.604 0.000
#> SRR1036083     2  0.6111      0.218 0.396 0.604 0.000
#> SRR1036084     2  0.6111      0.218 0.396 0.604 0.000
#> SRR1036090     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036091     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036092     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036093     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036094     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036085     3  0.0000      0.946 0.000 0.000 1.000
#> SRR1036086     3  0.0000      0.946 0.000 0.000 1.000
#> SRR1036087     3  0.0000      0.946 0.000 0.000 1.000
#> SRR1036088     3  0.0000      0.946 0.000 0.000 1.000
#> SRR1036089     3  0.0000      0.946 0.000 0.000 1.000
#> SRR1036095     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036096     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036097     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036098     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036099     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036100     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036101     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036102     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036103     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036104     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036105     3  0.0000      0.946 0.000 0.000 1.000
#> SRR1036106     3  0.0000      0.946 0.000 0.000 1.000
#> SRR1036107     3  0.0000      0.946 0.000 0.000 1.000
#> SRR1036108     3  0.0000      0.946 0.000 0.000 1.000
#> SRR1036109     3  0.0000      0.946 0.000 0.000 1.000
#> SRR1036110     1  0.6518      0.205 0.512 0.484 0.004
#> SRR1036111     1  0.6680      0.198 0.508 0.484 0.008
#> SRR1036112     1  0.6305      0.210 0.516 0.484 0.000
#> SRR1036113     1  0.6305      0.210 0.516 0.484 0.000
#> SRR1036114     1  0.6518      0.205 0.512 0.484 0.004
#> SRR1036115     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036116     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036117     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036118     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036119     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036120     3  0.0424      0.944 0.008 0.000 0.992
#> SRR1036121     3  0.0424      0.944 0.008 0.000 0.992
#> SRR1036122     3  0.0424      0.944 0.008 0.000 0.992
#> SRR1036123     3  0.0424      0.944 0.008 0.000 0.992
#> SRR1036124     3  0.0424      0.944 0.008 0.000 0.992
#> SRR1036125     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036126     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036127     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036128     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036129     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036130     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036131     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036132     1  0.0000      0.818 1.000 0.000 0.000
#> SRR1036133     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036134     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036135     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036136     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036137     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036138     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036139     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036140     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036141     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036142     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036143     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036144     2  0.0000      0.949 0.000 1.000 0.000
#> SRR1036145     2  0.0000      0.949 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1036002     3  0.2882      0.899 0.000 0.024 0.892 0.084
#> SRR1036003     3  0.2882      0.899 0.000 0.024 0.892 0.084
#> SRR1036004     3  0.2882      0.899 0.000 0.024 0.892 0.084
#> SRR1036005     3  0.0000      0.981 0.000 0.000 1.000 0.000
#> SRR1036006     3  0.0000      0.981 0.000 0.000 1.000 0.000
#> SRR1036007     3  0.0000      0.981 0.000 0.000 1.000 0.000
#> SRR1036008     3  0.0000      0.981 0.000 0.000 1.000 0.000
#> SRR1036009     3  0.0000      0.981 0.000 0.000 1.000 0.000
#> SRR1036013     4  0.4462      0.712 0.044 0.000 0.164 0.792
#> SRR1036014     4  0.4322      0.721 0.044 0.000 0.152 0.804
#> SRR1036015     4  0.4370      0.718 0.044 0.000 0.156 0.800
#> SRR1036016     4  0.4370      0.718 0.044 0.000 0.156 0.800
#> SRR1036017     4  0.4274      0.724 0.044 0.000 0.148 0.808
#> SRR1036018     4  0.4274      0.724 0.044 0.000 0.148 0.808
#> SRR1036010     1  0.1940      0.835 0.924 0.000 0.000 0.076
#> SRR1036011     1  0.1940      0.835 0.924 0.000 0.000 0.076
#> SRR1036012     1  0.1940      0.835 0.924 0.000 0.000 0.076
#> SRR1036019     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1036020     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1036021     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1036022     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1036023     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1036024     4  0.4511      0.608 0.268 0.008 0.000 0.724
#> SRR1036025     4  0.4594      0.590 0.280 0.008 0.000 0.712
#> SRR1036026     4  0.4621      0.584 0.284 0.008 0.000 0.708
#> SRR1036027     4  0.4647      0.577 0.288 0.008 0.000 0.704
#> SRR1036028     4  0.4621      0.584 0.284 0.008 0.000 0.708
#> SRR1036029     4  0.4621      0.584 0.284 0.008 0.000 0.708
#> SRR1036030     2  0.0188      0.911 0.004 0.996 0.000 0.000
#> SRR1036031     2  0.0188      0.911 0.004 0.996 0.000 0.000
#> SRR1036032     2  0.0188      0.911 0.004 0.996 0.000 0.000
#> SRR1036033     2  0.0188      0.911 0.004 0.996 0.000 0.000
#> SRR1036034     2  0.0188      0.911 0.004 0.996 0.000 0.000
#> SRR1036035     2  0.0188      0.911 0.004 0.996 0.000 0.000
#> SRR1036036     2  0.0188      0.911 0.004 0.996 0.000 0.000
#> SRR1036037     2  0.0188      0.911 0.004 0.996 0.000 0.000
#> SRR1036038     1  0.3545      0.766 0.828 0.164 0.008 0.000
#> SRR1036039     1  0.3545      0.766 0.828 0.164 0.008 0.000
#> SRR1036040     1  0.3545      0.766 0.828 0.164 0.008 0.000
#> SRR1036041     1  0.0000      0.871 1.000 0.000 0.000 0.000
#> SRR1036042     2  0.4855      0.401 0.000 0.600 0.000 0.400
#> SRR1036043     2  0.4855      0.401 0.000 0.600 0.000 0.400
#> SRR1036044     2  0.4855      0.401 0.000 0.600 0.000 0.400
#> SRR1036045     2  0.4855      0.401 0.000 0.600 0.000 0.400
#> SRR1036046     2  0.4855      0.401 0.000 0.600 0.000 0.400
#> SRR1036047     2  0.4855      0.401 0.000 0.600 0.000 0.400
#> SRR1036048     2  0.4855      0.401 0.000 0.600 0.000 0.400
#> SRR1036049     2  0.4855      0.401 0.000 0.600 0.000 0.400
#> SRR1036050     1  0.0000      0.871 1.000 0.000 0.000 0.000
#> SRR1036051     1  0.0000      0.871 1.000 0.000 0.000 0.000
#> SRR1036052     1  0.0000      0.871 1.000 0.000 0.000 0.000
#> SRR1036053     1  0.0000      0.871 1.000 0.000 0.000 0.000
#> SRR1036054     1  0.0000      0.871 1.000 0.000 0.000 0.000
#> SRR1036055     1  0.4103      0.669 0.744 0.256 0.000 0.000
#> SRR1036056     1  0.4134      0.664 0.740 0.260 0.000 0.000
#> SRR1036057     1  0.4072      0.675 0.748 0.252 0.000 0.000
#> SRR1036058     4  0.2081      0.780 0.084 0.000 0.000 0.916
#> SRR1036059     4  0.2081      0.780 0.084 0.000 0.000 0.916
#> SRR1036060     4  0.2081      0.780 0.084 0.000 0.000 0.916
#> SRR1036061     4  0.2081      0.780 0.084 0.000 0.000 0.916
#> SRR1036062     4  0.2081      0.780 0.084 0.000 0.000 0.916
#> SRR1036063     4  0.2081      0.780 0.084 0.000 0.000 0.916
#> SRR1036064     4  0.2081      0.780 0.084 0.000 0.000 0.916
#> SRR1036065     4  0.2081      0.780 0.084 0.000 0.000 0.916
#> SRR1036066     1  0.2921      0.798 0.860 0.000 0.000 0.140
#> SRR1036067     1  0.2814      0.805 0.868 0.000 0.000 0.132
#> SRR1036068     1  0.3074      0.789 0.848 0.000 0.000 0.152
#> SRR1036069     1  0.2973      0.796 0.856 0.000 0.000 0.144
#> SRR1036070     1  0.3024      0.792 0.852 0.000 0.000 0.148
#> SRR1036071     1  0.2921      0.798 0.860 0.000 0.000 0.140
#> SRR1036072     1  0.2704      0.812 0.876 0.000 0.000 0.124
#> SRR1036073     1  0.2814      0.805 0.868 0.000 0.000 0.132
#> SRR1036074     4  0.4222      0.538 0.000 0.272 0.000 0.728
#> SRR1036075     4  0.4222      0.538 0.000 0.272 0.000 0.728
#> SRR1036076     4  0.4250      0.531 0.000 0.276 0.000 0.724
#> SRR1036077     4  0.4222      0.538 0.000 0.272 0.000 0.728
#> SRR1036078     4  0.4222      0.538 0.000 0.272 0.000 0.728
#> SRR1036079     4  0.4164      0.549 0.000 0.264 0.000 0.736
#> SRR1036080     4  0.4193      0.544 0.000 0.268 0.000 0.732
#> SRR1036081     4  0.4193      0.544 0.000 0.268 0.000 0.732
#> SRR1036082     4  0.1389      0.780 0.048 0.000 0.000 0.952
#> SRR1036083     4  0.1389      0.780 0.048 0.000 0.000 0.952
#> SRR1036084     4  0.1389      0.780 0.048 0.000 0.000 0.952
#> SRR1036090     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1036091     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1036092     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1036093     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1036094     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1036085     3  0.0000      0.981 0.000 0.000 1.000 0.000
#> SRR1036086     3  0.0000      0.981 0.000 0.000 1.000 0.000
#> SRR1036087     3  0.0000      0.981 0.000 0.000 1.000 0.000
#> SRR1036088     3  0.0000      0.981 0.000 0.000 1.000 0.000
#> SRR1036089     3  0.0000      0.981 0.000 0.000 1.000 0.000
#> SRR1036095     1  0.4250      0.637 0.724 0.000 0.000 0.276
#> SRR1036096     1  0.4222      0.642 0.728 0.000 0.000 0.272
#> SRR1036097     1  0.4222      0.642 0.728 0.000 0.000 0.272
#> SRR1036098     1  0.4222      0.642 0.728 0.000 0.000 0.272
#> SRR1036099     1  0.4250      0.637 0.724 0.000 0.000 0.276
#> SRR1036100     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1036101     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1036102     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1036103     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1036104     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1036105     3  0.0000      0.981 0.000 0.000 1.000 0.000
#> SRR1036106     3  0.0000      0.981 0.000 0.000 1.000 0.000
#> SRR1036107     3  0.0000      0.981 0.000 0.000 1.000 0.000
#> SRR1036108     3  0.0000      0.981 0.000 0.000 1.000 0.000
#> SRR1036109     3  0.0000      0.981 0.000 0.000 1.000 0.000
#> SRR1036110     4  0.1557      0.782 0.056 0.000 0.000 0.944
#> SRR1036111     4  0.1557      0.782 0.056 0.000 0.000 0.944
#> SRR1036112     4  0.1557      0.782 0.056 0.000 0.000 0.944
#> SRR1036113     4  0.1557      0.782 0.056 0.000 0.000 0.944
#> SRR1036114     4  0.1474      0.781 0.052 0.000 0.000 0.948
#> SRR1036115     1  0.1211      0.865 0.960 0.000 0.000 0.040
#> SRR1036116     1  0.1211      0.865 0.960 0.000 0.000 0.040
#> SRR1036117     1  0.1211      0.865 0.960 0.000 0.000 0.040
#> SRR1036118     1  0.1211      0.865 0.960 0.000 0.000 0.040
#> SRR1036119     1  0.1211      0.865 0.960 0.000 0.000 0.040
#> SRR1036120     4  0.4817      0.301 0.000 0.000 0.388 0.612
#> SRR1036121     4  0.4804      0.310 0.000 0.000 0.384 0.616
#> SRR1036122     4  0.4817      0.301 0.000 0.000 0.388 0.612
#> SRR1036123     4  0.4817      0.301 0.000 0.000 0.388 0.612
#> SRR1036124     4  0.4817      0.301 0.000 0.000 0.388 0.612
#> SRR1036125     1  0.0336      0.871 0.992 0.000 0.008 0.000
#> SRR1036126     1  0.0336      0.871 0.992 0.000 0.008 0.000
#> SRR1036127     1  0.0469      0.870 0.988 0.000 0.012 0.000
#> SRR1036128     1  0.0336      0.871 0.992 0.000 0.008 0.000
#> SRR1036129     1  0.0336      0.871 0.992 0.000 0.008 0.000
#> SRR1036130     1  0.0336      0.871 0.992 0.000 0.008 0.000
#> SRR1036131     1  0.0336      0.871 0.992 0.000 0.008 0.000
#> SRR1036132     1  0.0336      0.871 0.992 0.000 0.008 0.000
#> SRR1036133     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1036134     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1036135     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1036136     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1036137     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1036138     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1036139     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1036140     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1036141     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1036142     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1036143     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1036144     2  0.0000      0.914 0.000 1.000 0.000 0.000
#> SRR1036145     2  0.0000      0.914 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1036002     5  0.3328      0.685 0.000 0.008 0.176 0.004 0.812
#> SRR1036003     5  0.3328      0.685 0.000 0.008 0.176 0.004 0.812
#> SRR1036004     5  0.3328      0.685 0.000 0.008 0.176 0.004 0.812
#> SRR1036005     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036006     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036007     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036008     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036009     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036013     4  0.4224      0.711 0.024 0.000 0.136 0.796 0.044
#> SRR1036014     4  0.4015      0.718 0.024 0.000 0.124 0.812 0.040
#> SRR1036015     4  0.4220      0.714 0.028 0.000 0.128 0.800 0.044
#> SRR1036016     4  0.4135      0.715 0.024 0.000 0.128 0.804 0.044
#> SRR1036017     4  0.4135      0.716 0.024 0.000 0.128 0.804 0.044
#> SRR1036018     4  0.4089      0.717 0.024 0.000 0.124 0.808 0.044
#> SRR1036010     1  0.3579      0.668 0.756 0.000 0.000 0.004 0.240
#> SRR1036011     1  0.3579      0.668 0.756 0.000 0.000 0.004 0.240
#> SRR1036012     1  0.3607      0.666 0.752 0.000 0.000 0.004 0.244
#> SRR1036019     2  0.0162      0.991 0.000 0.996 0.000 0.000 0.004
#> SRR1036020     2  0.0162      0.991 0.000 0.996 0.000 0.000 0.004
#> SRR1036021     2  0.0162      0.991 0.000 0.996 0.000 0.000 0.004
#> SRR1036022     2  0.0162      0.991 0.000 0.996 0.000 0.000 0.004
#> SRR1036023     2  0.0162      0.991 0.000 0.996 0.000 0.000 0.004
#> SRR1036024     5  0.5329      0.497 0.336 0.000 0.000 0.068 0.596
#> SRR1036025     5  0.5329      0.497 0.336 0.000 0.000 0.068 0.596
#> SRR1036026     5  0.5343      0.490 0.340 0.000 0.000 0.068 0.592
#> SRR1036027     5  0.5343      0.490 0.340 0.000 0.000 0.068 0.592
#> SRR1036028     5  0.5329      0.497 0.336 0.000 0.000 0.068 0.596
#> SRR1036029     5  0.5343      0.490 0.340 0.000 0.000 0.068 0.592
#> SRR1036030     2  0.0671      0.982 0.016 0.980 0.000 0.000 0.004
#> SRR1036031     2  0.0566      0.985 0.012 0.984 0.000 0.000 0.004
#> SRR1036032     2  0.0671      0.982 0.016 0.980 0.000 0.000 0.004
#> SRR1036033     2  0.0566      0.985 0.012 0.984 0.000 0.000 0.004
#> SRR1036034     2  0.0671      0.982 0.016 0.980 0.000 0.000 0.004
#> SRR1036035     2  0.0566      0.985 0.012 0.984 0.000 0.000 0.004
#> SRR1036036     2  0.0566      0.985 0.012 0.984 0.000 0.000 0.004
#> SRR1036037     2  0.0671      0.982 0.016 0.980 0.000 0.000 0.004
#> SRR1036038     1  0.2228      0.785 0.900 0.092 0.004 0.000 0.004
#> SRR1036039     1  0.2170      0.787 0.904 0.088 0.004 0.000 0.004
#> SRR1036040     1  0.2170      0.787 0.904 0.088 0.004 0.000 0.004
#> SRR1036041     1  0.0000      0.821 1.000 0.000 0.000 0.000 0.000
#> SRR1036042     5  0.2844      0.767 0.000 0.092 0.004 0.028 0.876
#> SRR1036043     5  0.2844      0.767 0.000 0.092 0.004 0.028 0.876
#> SRR1036044     5  0.2812      0.765 0.000 0.096 0.004 0.024 0.876
#> SRR1036045     5  0.2844      0.767 0.000 0.092 0.004 0.028 0.876
#> SRR1036046     5  0.2812      0.765 0.000 0.096 0.004 0.024 0.876
#> SRR1036047     5  0.2844      0.767 0.000 0.092 0.004 0.028 0.876
#> SRR1036048     5  0.2844      0.767 0.000 0.092 0.004 0.028 0.876
#> SRR1036049     5  0.2844      0.767 0.000 0.092 0.004 0.028 0.876
#> SRR1036050     1  0.1168      0.817 0.960 0.000 0.000 0.008 0.032
#> SRR1036051     1  0.1168      0.817 0.960 0.000 0.000 0.008 0.032
#> SRR1036052     1  0.1168      0.817 0.960 0.000 0.000 0.008 0.032
#> SRR1036053     1  0.1168      0.817 0.960 0.000 0.000 0.008 0.032
#> SRR1036054     1  0.1168      0.817 0.960 0.000 0.000 0.008 0.032
#> SRR1036055     1  0.4151      0.494 0.652 0.344 0.000 0.000 0.004
#> SRR1036056     1  0.4182      0.476 0.644 0.352 0.000 0.000 0.004
#> SRR1036057     1  0.4135      0.502 0.656 0.340 0.000 0.000 0.004
#> SRR1036058     4  0.0000      0.748 0.000 0.000 0.000 1.000 0.000
#> SRR1036059     4  0.0000      0.748 0.000 0.000 0.000 1.000 0.000
#> SRR1036060     4  0.0000      0.748 0.000 0.000 0.000 1.000 0.000
#> SRR1036061     4  0.0000      0.748 0.000 0.000 0.000 1.000 0.000
#> SRR1036062     4  0.0000      0.748 0.000 0.000 0.000 1.000 0.000
#> SRR1036063     4  0.0000      0.748 0.000 0.000 0.000 1.000 0.000
#> SRR1036064     4  0.0000      0.748 0.000 0.000 0.000 1.000 0.000
#> SRR1036065     4  0.0000      0.748 0.000 0.000 0.000 1.000 0.000
#> SRR1036066     1  0.3164      0.769 0.852 0.000 0.000 0.044 0.104
#> SRR1036067     1  0.3216      0.766 0.848 0.000 0.000 0.044 0.108
#> SRR1036068     1  0.3267      0.762 0.844 0.000 0.000 0.044 0.112
#> SRR1036069     1  0.3267      0.763 0.844 0.000 0.000 0.044 0.112
#> SRR1036070     1  0.3267      0.763 0.844 0.000 0.000 0.044 0.112
#> SRR1036071     1  0.3058      0.774 0.860 0.000 0.000 0.044 0.096
#> SRR1036072     1  0.3112      0.771 0.856 0.000 0.000 0.044 0.100
#> SRR1036073     1  0.3058      0.774 0.860 0.000 0.000 0.044 0.096
#> SRR1036074     5  0.3994      0.722 0.000 0.040 0.000 0.188 0.772
#> SRR1036075     5  0.3994      0.722 0.000 0.040 0.000 0.188 0.772
#> SRR1036076     5  0.3994      0.722 0.000 0.040 0.000 0.188 0.772
#> SRR1036077     5  0.3994      0.722 0.000 0.040 0.000 0.188 0.772
#> SRR1036078     5  0.3994      0.722 0.000 0.040 0.000 0.188 0.772
#> SRR1036079     5  0.4028      0.719 0.000 0.040 0.000 0.192 0.768
#> SRR1036080     5  0.3994      0.722 0.000 0.040 0.000 0.188 0.772
#> SRR1036081     5  0.4028      0.719 0.000 0.040 0.000 0.192 0.768
#> SRR1036082     4  0.2852      0.694 0.000 0.000 0.000 0.828 0.172
#> SRR1036083     4  0.2852      0.694 0.000 0.000 0.000 0.828 0.172
#> SRR1036084     4  0.2813      0.697 0.000 0.000 0.000 0.832 0.168
#> SRR1036090     2  0.0162      0.991 0.000 0.996 0.000 0.000 0.004
#> SRR1036091     2  0.0162      0.991 0.000 0.996 0.000 0.000 0.004
#> SRR1036092     2  0.0162      0.991 0.000 0.996 0.000 0.000 0.004
#> SRR1036093     2  0.0162      0.991 0.000 0.996 0.000 0.000 0.004
#> SRR1036094     2  0.0162      0.991 0.000 0.996 0.000 0.000 0.004
#> SRR1036085     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036086     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036087     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036088     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036089     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036095     4  0.4576      0.500 0.268 0.000 0.000 0.692 0.040
#> SRR1036096     4  0.4576      0.500 0.268 0.000 0.000 0.692 0.040
#> SRR1036097     4  0.4576      0.500 0.268 0.000 0.000 0.692 0.040
#> SRR1036098     4  0.4576      0.500 0.268 0.000 0.000 0.692 0.040
#> SRR1036099     4  0.4576      0.500 0.268 0.000 0.000 0.692 0.040
#> SRR1036100     2  0.0771      0.981 0.004 0.976 0.000 0.000 0.020
#> SRR1036101     2  0.0771      0.981 0.004 0.976 0.000 0.000 0.020
#> SRR1036102     2  0.0771      0.981 0.004 0.976 0.000 0.000 0.020
#> SRR1036103     2  0.0771      0.981 0.004 0.976 0.000 0.000 0.020
#> SRR1036104     2  0.0771      0.981 0.004 0.976 0.000 0.000 0.020
#> SRR1036105     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036106     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036107     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036108     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036109     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036110     4  0.3074      0.656 0.000 0.000 0.000 0.804 0.196
#> SRR1036111     4  0.3143      0.648 0.000 0.000 0.000 0.796 0.204
#> SRR1036112     4  0.3074      0.657 0.000 0.000 0.000 0.804 0.196
#> SRR1036113     4  0.3074      0.657 0.000 0.000 0.000 0.804 0.196
#> SRR1036114     4  0.3074      0.657 0.000 0.000 0.000 0.804 0.196
#> SRR1036115     1  0.4840      0.519 0.640 0.000 0.000 0.320 0.040
#> SRR1036116     1  0.4820      0.501 0.632 0.000 0.000 0.332 0.036
#> SRR1036117     1  0.4770      0.522 0.644 0.000 0.000 0.320 0.036
#> SRR1036118     1  0.4787      0.515 0.640 0.000 0.000 0.324 0.036
#> SRR1036119     1  0.4840      0.519 0.640 0.000 0.000 0.320 0.040
#> SRR1036120     4  0.6195      0.299 0.000 0.000 0.368 0.488 0.144
#> SRR1036121     4  0.6180      0.315 0.000 0.000 0.360 0.496 0.144
#> SRR1036122     4  0.6195      0.299 0.000 0.000 0.368 0.488 0.144
#> SRR1036123     4  0.6195      0.299 0.000 0.000 0.368 0.488 0.144
#> SRR1036124     4  0.6195      0.299 0.000 0.000 0.368 0.488 0.144
#> SRR1036125     1  0.0807      0.821 0.976 0.000 0.012 0.000 0.012
#> SRR1036126     1  0.0693      0.821 0.980 0.000 0.012 0.000 0.008
#> SRR1036127     1  0.0807      0.821 0.976 0.000 0.012 0.000 0.012
#> SRR1036128     1  0.0693      0.821 0.980 0.000 0.008 0.000 0.012
#> SRR1036129     1  0.0807      0.821 0.976 0.000 0.012 0.000 0.012
#> SRR1036130     1  0.0807      0.821 0.976 0.000 0.012 0.000 0.012
#> SRR1036131     1  0.0693      0.821 0.980 0.000 0.012 0.000 0.008
#> SRR1036132     1  0.0807      0.821 0.976 0.000 0.012 0.000 0.012
#> SRR1036133     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000
#> SRR1036134     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000
#> SRR1036135     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000
#> SRR1036136     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000
#> SRR1036137     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000
#> SRR1036138     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000
#> SRR1036139     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000
#> SRR1036140     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000
#> SRR1036141     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000
#> SRR1036142     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000
#> SRR1036143     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000
#> SRR1036144     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000
#> SRR1036145     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1036002     6  0.2144      0.664 0.000 0.004 0.048 0.000 0.040 0.908
#> SRR1036003     6  0.2144      0.664 0.000 0.004 0.048 0.000 0.040 0.908
#> SRR1036004     6  0.2144      0.664 0.000 0.004 0.048 0.000 0.040 0.908
#> SRR1036005     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036006     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036007     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036008     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036009     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036013     4  0.5488      0.617 0.060 0.000 0.076 0.708 0.120 0.036
#> SRR1036014     4  0.5501      0.619 0.060 0.000 0.068 0.704 0.132 0.036
#> SRR1036015     4  0.5479      0.618 0.068 0.000 0.064 0.708 0.124 0.036
#> SRR1036016     4  0.5479      0.618 0.068 0.000 0.064 0.708 0.124 0.036
#> SRR1036017     4  0.5479      0.618 0.068 0.000 0.064 0.708 0.124 0.036
#> SRR1036018     4  0.5465      0.618 0.064 0.000 0.064 0.708 0.128 0.036
#> SRR1036010     1  0.3925      0.468 0.656 0.000 0.000 0.008 0.004 0.332
#> SRR1036011     1  0.3925      0.468 0.656 0.000 0.000 0.008 0.004 0.332
#> SRR1036012     1  0.3925      0.468 0.656 0.000 0.000 0.008 0.004 0.332
#> SRR1036019     2  0.0146      0.936 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1036020     2  0.0146      0.936 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1036021     2  0.0146      0.936 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1036022     2  0.0146      0.936 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1036023     2  0.0146      0.936 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1036024     6  0.6428      0.316 0.364 0.000 0.000 0.064 0.116 0.456
#> SRR1036025     6  0.6428      0.316 0.364 0.000 0.000 0.064 0.116 0.456
#> SRR1036026     6  0.6428      0.316 0.364 0.000 0.000 0.064 0.116 0.456
#> SRR1036027     6  0.6428      0.316 0.364 0.000 0.000 0.064 0.116 0.456
#> SRR1036028     6  0.6428      0.316 0.364 0.000 0.000 0.064 0.116 0.456
#> SRR1036029     6  0.6428      0.316 0.364 0.000 0.000 0.064 0.116 0.456
#> SRR1036030     2  0.1526      0.921 0.004 0.944 0.000 0.008 0.036 0.008
#> SRR1036031     2  0.1526      0.921 0.004 0.944 0.000 0.008 0.036 0.008
#> SRR1036032     2  0.1526      0.921 0.004 0.944 0.000 0.008 0.036 0.008
#> SRR1036033     2  0.1526      0.921 0.004 0.944 0.000 0.008 0.036 0.008
#> SRR1036034     2  0.1526      0.921 0.004 0.944 0.000 0.008 0.036 0.008
#> SRR1036035     2  0.1526      0.921 0.004 0.944 0.000 0.008 0.036 0.008
#> SRR1036036     2  0.1526      0.921 0.004 0.944 0.000 0.008 0.036 0.008
#> SRR1036037     2  0.1526      0.921 0.004 0.944 0.000 0.008 0.036 0.008
#> SRR1036038     1  0.3224      0.719 0.856 0.040 0.004 0.080 0.012 0.008
#> SRR1036039     1  0.3224      0.719 0.856 0.040 0.004 0.080 0.012 0.008
#> SRR1036040     1  0.3224      0.719 0.856 0.040 0.004 0.080 0.012 0.008
#> SRR1036041     1  0.0713      0.742 0.972 0.000 0.000 0.028 0.000 0.000
#> SRR1036042     6  0.1549      0.683 0.000 0.020 0.000 0.000 0.044 0.936
#> SRR1036043     6  0.1549      0.683 0.000 0.020 0.000 0.000 0.044 0.936
#> SRR1036044     6  0.1564      0.682 0.000 0.024 0.000 0.000 0.040 0.936
#> SRR1036045     6  0.1549      0.683 0.000 0.020 0.000 0.000 0.044 0.936
#> SRR1036046     6  0.1564      0.682 0.000 0.024 0.000 0.000 0.040 0.936
#> SRR1036047     6  0.1549      0.683 0.000 0.020 0.000 0.000 0.044 0.936
#> SRR1036048     6  0.1549      0.683 0.000 0.020 0.000 0.000 0.044 0.936
#> SRR1036049     6  0.1549      0.683 0.000 0.020 0.000 0.000 0.044 0.936
#> SRR1036050     1  0.3563      0.690 0.796 0.000 0.000 0.132 0.072 0.000
#> SRR1036051     1  0.3563      0.690 0.796 0.000 0.000 0.132 0.072 0.000
#> SRR1036052     1  0.3563      0.690 0.796 0.000 0.000 0.132 0.072 0.000
#> SRR1036053     1  0.3508      0.692 0.800 0.000 0.000 0.132 0.068 0.000
#> SRR1036054     1  0.3616      0.688 0.792 0.000 0.000 0.132 0.076 0.000
#> SRR1036055     1  0.5055      0.512 0.656 0.264 0.000 0.032 0.040 0.008
#> SRR1036056     1  0.5094      0.502 0.648 0.272 0.000 0.032 0.040 0.008
#> SRR1036057     1  0.4970      0.520 0.664 0.260 0.000 0.032 0.036 0.008
#> SRR1036058     4  0.3175      0.624 0.000 0.000 0.000 0.744 0.256 0.000
#> SRR1036059     4  0.3175      0.624 0.000 0.000 0.000 0.744 0.256 0.000
#> SRR1036060     4  0.3175      0.624 0.000 0.000 0.000 0.744 0.256 0.000
#> SRR1036061     4  0.3175      0.624 0.000 0.000 0.000 0.744 0.256 0.000
#> SRR1036062     4  0.3175      0.624 0.000 0.000 0.000 0.744 0.256 0.000
#> SRR1036063     4  0.3175      0.624 0.000 0.000 0.000 0.744 0.256 0.000
#> SRR1036064     4  0.3175      0.624 0.000 0.000 0.000 0.744 0.256 0.000
#> SRR1036065     4  0.3175      0.624 0.000 0.000 0.000 0.744 0.256 0.000
#> SRR1036066     1  0.5304      0.534 0.688 0.000 0.000 0.064 0.116 0.132
#> SRR1036067     1  0.5304      0.534 0.688 0.000 0.000 0.064 0.116 0.132
#> SRR1036068     1  0.5304      0.534 0.688 0.000 0.000 0.064 0.116 0.132
#> SRR1036069     1  0.5304      0.534 0.688 0.000 0.000 0.064 0.116 0.132
#> SRR1036070     1  0.5304      0.534 0.688 0.000 0.000 0.064 0.116 0.132
#> SRR1036071     1  0.5304      0.534 0.688 0.000 0.000 0.064 0.116 0.132
#> SRR1036072     1  0.5304      0.534 0.688 0.000 0.000 0.064 0.116 0.132
#> SRR1036073     1  0.5304      0.534 0.688 0.000 0.000 0.064 0.116 0.132
#> SRR1036074     5  0.3572      0.835 0.000 0.032 0.000 0.000 0.764 0.204
#> SRR1036075     5  0.3630      0.830 0.000 0.032 0.000 0.000 0.756 0.212
#> SRR1036076     5  0.3572      0.835 0.000 0.032 0.000 0.000 0.764 0.204
#> SRR1036077     5  0.3586      0.828 0.000 0.028 0.000 0.000 0.756 0.216
#> SRR1036078     5  0.3558      0.832 0.000 0.028 0.000 0.000 0.760 0.212
#> SRR1036079     5  0.3529      0.835 0.000 0.028 0.000 0.000 0.764 0.208
#> SRR1036080     5  0.3529      0.835 0.000 0.028 0.000 0.000 0.764 0.208
#> SRR1036081     5  0.3454      0.835 0.000 0.024 0.000 0.000 0.768 0.208
#> SRR1036082     5  0.1866      0.776 0.000 0.000 0.000 0.084 0.908 0.008
#> SRR1036083     5  0.1918      0.774 0.000 0.000 0.000 0.088 0.904 0.008
#> SRR1036084     5  0.1918      0.774 0.000 0.000 0.000 0.088 0.904 0.008
#> SRR1036090     2  0.0146      0.936 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1036091     2  0.0146      0.936 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1036092     2  0.0146      0.936 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1036093     2  0.0146      0.936 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1036094     2  0.0146      0.936 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1036085     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036086     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036087     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036088     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036089     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036095     4  0.2412      0.634 0.092 0.000 0.000 0.880 0.028 0.000
#> SRR1036096     4  0.2412      0.634 0.092 0.000 0.000 0.880 0.028 0.000
#> SRR1036097     4  0.2412      0.634 0.092 0.000 0.000 0.880 0.028 0.000
#> SRR1036098     4  0.2412      0.634 0.092 0.000 0.000 0.880 0.028 0.000
#> SRR1036099     4  0.2412      0.634 0.092 0.000 0.000 0.880 0.028 0.000
#> SRR1036100     2  0.4489      0.578 0.000 0.656 0.000 0.008 0.296 0.040
#> SRR1036101     2  0.4489      0.578 0.000 0.656 0.000 0.008 0.296 0.040
#> SRR1036102     2  0.4452      0.592 0.000 0.664 0.000 0.008 0.288 0.040
#> SRR1036103     2  0.4452      0.592 0.000 0.664 0.000 0.008 0.288 0.040
#> SRR1036104     2  0.4607      0.580 0.004 0.656 0.000 0.008 0.292 0.040
#> SRR1036105     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036106     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036107     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036108     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036109     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036110     4  0.6097      0.222 0.000 0.000 0.000 0.372 0.344 0.284
#> SRR1036111     4  0.6103      0.216 0.000 0.000 0.000 0.368 0.344 0.288
#> SRR1036112     4  0.6103      0.216 0.000 0.000 0.000 0.368 0.344 0.288
#> SRR1036113     4  0.6084      0.232 0.000 0.000 0.000 0.380 0.344 0.276
#> SRR1036114     4  0.6103      0.215 0.000 0.000 0.000 0.368 0.344 0.288
#> SRR1036115     4  0.3883      0.377 0.332 0.000 0.000 0.656 0.012 0.000
#> SRR1036116     4  0.3867      0.383 0.328 0.000 0.000 0.660 0.012 0.000
#> SRR1036117     4  0.3883      0.377 0.332 0.000 0.000 0.656 0.012 0.000
#> SRR1036118     4  0.3883      0.377 0.332 0.000 0.000 0.656 0.012 0.000
#> SRR1036119     4  0.3883      0.377 0.332 0.000 0.000 0.656 0.012 0.000
#> SRR1036120     5  0.3150      0.800 0.000 0.000 0.096 0.024 0.848 0.032
#> SRR1036121     5  0.3129      0.801 0.000 0.000 0.088 0.028 0.852 0.032
#> SRR1036122     5  0.3150      0.800 0.000 0.000 0.096 0.024 0.848 0.032
#> SRR1036123     5  0.3101      0.802 0.000 0.000 0.092 0.024 0.852 0.032
#> SRR1036124     5  0.3150      0.800 0.000 0.000 0.096 0.024 0.848 0.032
#> SRR1036125     1  0.0000      0.745 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036126     1  0.0000      0.745 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036127     1  0.0000      0.745 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036128     1  0.0000      0.745 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036129     1  0.0000      0.745 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036130     1  0.0000      0.745 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036131     1  0.0000      0.745 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036132     1  0.0000      0.745 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036133     2  0.0520      0.934 0.000 0.984 0.000 0.000 0.008 0.008
#> SRR1036134     2  0.0405      0.935 0.000 0.988 0.000 0.000 0.008 0.004
#> SRR1036135     2  0.0520      0.934 0.000 0.984 0.000 0.000 0.008 0.008
#> SRR1036136     2  0.0405      0.935 0.000 0.988 0.000 0.000 0.008 0.004
#> SRR1036137     2  0.0405      0.935 0.000 0.988 0.000 0.000 0.008 0.004
#> SRR1036138     2  0.0000      0.936 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1036139     2  0.0000      0.936 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1036140     2  0.0000      0.936 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1036141     2  0.0000      0.936 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1036142     2  0.0000      0.936 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1036143     2  0.0000      0.936 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1036144     2  0.0000      0.936 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1036145     2  0.0000      0.936 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15218 rows and 144 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.422           0.847       0.920         0.1864 0.894   0.894
#> 3 3 0.559           0.836       0.925         1.0216 0.708   0.676
#> 4 4 0.341           0.458       0.677         0.5711 0.816   0.703
#> 5 5 0.483           0.428       0.610         0.1060 0.738   0.557
#> 6 6 0.582           0.501       0.706         0.0802 0.660   0.381

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1036002     2  0.4690      0.856 0.100 0.900
#> SRR1036003     2  0.4690      0.856 0.100 0.900
#> SRR1036004     2  0.4690      0.856 0.100 0.900
#> SRR1036005     2  0.7950      0.710 0.240 0.760
#> SRR1036006     2  0.7950      0.710 0.240 0.760
#> SRR1036007     2  0.7950      0.710 0.240 0.760
#> SRR1036008     2  0.7950      0.710 0.240 0.760
#> SRR1036009     2  0.7950      0.710 0.240 0.760
#> SRR1036013     2  0.3733      0.851 0.072 0.928
#> SRR1036014     2  0.3733      0.851 0.072 0.928
#> SRR1036015     2  0.3733      0.851 0.072 0.928
#> SRR1036016     2  0.3733      0.851 0.072 0.928
#> SRR1036017     2  0.3733      0.851 0.072 0.928
#> SRR1036018     2  0.3733      0.851 0.072 0.928
#> SRR1036010     2  0.4690      0.856 0.100 0.900
#> SRR1036011     2  0.4690      0.856 0.100 0.900
#> SRR1036012     2  0.4690      0.856 0.100 0.900
#> SRR1036019     2  0.0000      0.907 0.000 1.000
#> SRR1036020     2  0.0000      0.907 0.000 1.000
#> SRR1036021     2  0.0000      0.907 0.000 1.000
#> SRR1036022     2  0.0000      0.907 0.000 1.000
#> SRR1036023     2  0.0000      0.907 0.000 1.000
#> SRR1036024     2  0.0000      0.907 0.000 1.000
#> SRR1036025     2  0.0000      0.907 0.000 1.000
#> SRR1036026     2  0.0000      0.907 0.000 1.000
#> SRR1036027     2  0.0000      0.907 0.000 1.000
#> SRR1036028     2  0.0000      0.907 0.000 1.000
#> SRR1036029     2  0.0000      0.907 0.000 1.000
#> SRR1036030     2  0.0000      0.907 0.000 1.000
#> SRR1036031     2  0.0000      0.907 0.000 1.000
#> SRR1036032     2  0.0000      0.907 0.000 1.000
#> SRR1036033     2  0.0000      0.907 0.000 1.000
#> SRR1036034     2  0.0000      0.907 0.000 1.000
#> SRR1036035     2  0.0000      0.907 0.000 1.000
#> SRR1036036     2  0.0000      0.907 0.000 1.000
#> SRR1036037     2  0.0000      0.907 0.000 1.000
#> SRR1036038     2  0.0000      0.907 0.000 1.000
#> SRR1036039     2  0.0000      0.907 0.000 1.000
#> SRR1036040     2  0.0000      0.907 0.000 1.000
#> SRR1036041     2  0.0000      0.907 0.000 1.000
#> SRR1036042     2  0.4690      0.856 0.100 0.900
#> SRR1036043     2  0.4690      0.856 0.100 0.900
#> SRR1036044     2  0.4690      0.856 0.100 0.900
#> SRR1036045     2  0.4690      0.856 0.100 0.900
#> SRR1036046     2  0.4690      0.856 0.100 0.900
#> SRR1036047     2  0.4690      0.856 0.100 0.900
#> SRR1036048     2  0.4690      0.856 0.100 0.900
#> SRR1036049     2  0.4690      0.856 0.100 0.900
#> SRR1036050     2  0.0938      0.903 0.012 0.988
#> SRR1036051     2  0.0938      0.903 0.012 0.988
#> SRR1036052     2  0.0938      0.903 0.012 0.988
#> SRR1036053     2  0.0938      0.903 0.012 0.988
#> SRR1036054     2  0.0938      0.903 0.012 0.988
#> SRR1036055     2  0.0000      0.907 0.000 1.000
#> SRR1036056     2  0.0000      0.907 0.000 1.000
#> SRR1036057     2  0.0000      0.907 0.000 1.000
#> SRR1036058     1  0.7950      1.000 0.760 0.240
#> SRR1036059     1  0.7950      1.000 0.760 0.240
#> SRR1036060     1  0.7950      1.000 0.760 0.240
#> SRR1036061     1  0.7950      1.000 0.760 0.240
#> SRR1036062     1  0.7950      1.000 0.760 0.240
#> SRR1036063     1  0.7950      1.000 0.760 0.240
#> SRR1036064     1  0.7950      1.000 0.760 0.240
#> SRR1036065     1  0.7950      1.000 0.760 0.240
#> SRR1036066     2  0.0000      0.907 0.000 1.000
#> SRR1036067     2  0.0000      0.907 0.000 1.000
#> SRR1036068     2  0.0000      0.907 0.000 1.000
#> SRR1036069     2  0.0000      0.907 0.000 1.000
#> SRR1036070     2  0.0000      0.907 0.000 1.000
#> SRR1036071     2  0.0000      0.907 0.000 1.000
#> SRR1036072     2  0.0000      0.907 0.000 1.000
#> SRR1036073     2  0.0000      0.907 0.000 1.000
#> SRR1036074     2  0.0000      0.907 0.000 1.000
#> SRR1036075     2  0.0000      0.907 0.000 1.000
#> SRR1036076     2  0.0000      0.907 0.000 1.000
#> SRR1036077     2  0.0000      0.907 0.000 1.000
#> SRR1036078     2  0.0000      0.907 0.000 1.000
#> SRR1036079     2  0.0000      0.907 0.000 1.000
#> SRR1036080     2  0.0000      0.907 0.000 1.000
#> SRR1036081     2  0.0000      0.907 0.000 1.000
#> SRR1036082     2  0.1184      0.898 0.016 0.984
#> SRR1036083     2  0.1184      0.898 0.016 0.984
#> SRR1036084     2  0.1184      0.898 0.016 0.984
#> SRR1036090     2  0.0000      0.907 0.000 1.000
#> SRR1036091     2  0.0000      0.907 0.000 1.000
#> SRR1036092     2  0.0000      0.907 0.000 1.000
#> SRR1036093     2  0.0000      0.907 0.000 1.000
#> SRR1036094     2  0.0000      0.907 0.000 1.000
#> SRR1036085     2  0.7950      0.710 0.240 0.760
#> SRR1036086     2  0.7950      0.710 0.240 0.760
#> SRR1036087     2  0.7950      0.710 0.240 0.760
#> SRR1036088     2  0.7950      0.710 0.240 0.760
#> SRR1036089     2  0.7950      0.710 0.240 0.760
#> SRR1036095     2  0.8763      0.424 0.296 0.704
#> SRR1036096     2  0.8763      0.424 0.296 0.704
#> SRR1036097     2  0.8763      0.424 0.296 0.704
#> SRR1036098     2  0.8763      0.424 0.296 0.704
#> SRR1036099     2  0.8763      0.424 0.296 0.704
#> SRR1036100     2  0.0000      0.907 0.000 1.000
#> SRR1036101     2  0.0000      0.907 0.000 1.000
#> SRR1036102     2  0.0000      0.907 0.000 1.000
#> SRR1036103     2  0.0000      0.907 0.000 1.000
#> SRR1036104     2  0.0000      0.907 0.000 1.000
#> SRR1036105     2  0.7950      0.710 0.240 0.760
#> SRR1036106     2  0.7950      0.710 0.240 0.760
#> SRR1036107     2  0.7950      0.710 0.240 0.760
#> SRR1036108     2  0.7950      0.710 0.240 0.760
#> SRR1036109     2  0.7950      0.710 0.240 0.760
#> SRR1036110     2  0.4690      0.856 0.100 0.900
#> SRR1036111     2  0.4690      0.856 0.100 0.900
#> SRR1036112     2  0.4690      0.856 0.100 0.900
#> SRR1036113     2  0.4690      0.856 0.100 0.900
#> SRR1036114     2  0.4690      0.856 0.100 0.900
#> SRR1036115     2  0.8763      0.424 0.296 0.704
#> SRR1036116     2  0.8763      0.424 0.296 0.704
#> SRR1036117     2  0.8763      0.424 0.296 0.704
#> SRR1036118     2  0.8763      0.424 0.296 0.704
#> SRR1036119     2  0.8763      0.424 0.296 0.704
#> SRR1036120     2  0.4939      0.851 0.108 0.892
#> SRR1036121     2  0.4939      0.851 0.108 0.892
#> SRR1036122     2  0.4939      0.851 0.108 0.892
#> SRR1036123     2  0.4939      0.851 0.108 0.892
#> SRR1036124     2  0.4939      0.851 0.108 0.892
#> SRR1036125     2  0.0000      0.907 0.000 1.000
#> SRR1036126     2  0.0000      0.907 0.000 1.000
#> SRR1036127     2  0.0000      0.907 0.000 1.000
#> SRR1036128     2  0.0000      0.907 0.000 1.000
#> SRR1036129     2  0.0000      0.907 0.000 1.000
#> SRR1036130     2  0.0000      0.907 0.000 1.000
#> SRR1036131     2  0.0000      0.907 0.000 1.000
#> SRR1036132     2  0.0000      0.907 0.000 1.000
#> SRR1036133     2  0.0000      0.907 0.000 1.000
#> SRR1036134     2  0.0000      0.907 0.000 1.000
#> SRR1036135     2  0.0000      0.907 0.000 1.000
#> SRR1036136     2  0.0000      0.907 0.000 1.000
#> SRR1036137     2  0.0000      0.907 0.000 1.000
#> SRR1036138     2  0.0000      0.907 0.000 1.000
#> SRR1036139     2  0.0000      0.907 0.000 1.000
#> SRR1036140     2  0.0000      0.907 0.000 1.000
#> SRR1036141     2  0.0000      0.907 0.000 1.000
#> SRR1036142     2  0.0000      0.907 0.000 1.000
#> SRR1036143     2  0.0000      0.907 0.000 1.000
#> SRR1036144     2  0.0000      0.907 0.000 1.000
#> SRR1036145     2  0.0000      0.907 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1036002     2  0.4062      0.792 0.000 0.836 0.164
#> SRR1036003     2  0.4062      0.792 0.000 0.836 0.164
#> SRR1036004     2  0.4062      0.792 0.000 0.836 0.164
#> SRR1036005     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1036006     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1036007     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1036008     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1036009     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1036013     2  0.5816      0.568 0.224 0.752 0.024
#> SRR1036014     2  0.5816      0.568 0.224 0.752 0.024
#> SRR1036015     2  0.5816      0.568 0.224 0.752 0.024
#> SRR1036016     2  0.5816      0.568 0.224 0.752 0.024
#> SRR1036017     2  0.5816      0.568 0.224 0.752 0.024
#> SRR1036018     2  0.5816      0.568 0.224 0.752 0.024
#> SRR1036010     2  0.4062      0.792 0.000 0.836 0.164
#> SRR1036011     2  0.4062      0.792 0.000 0.836 0.164
#> SRR1036012     2  0.4062      0.792 0.000 0.836 0.164
#> SRR1036019     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036020     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036021     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036022     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036023     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036024     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036025     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036026     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036027     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036028     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036029     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036030     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036031     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036032     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036033     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036034     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036035     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036036     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036037     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036038     2  0.0237      0.924 0.000 0.996 0.004
#> SRR1036039     2  0.0237      0.924 0.000 0.996 0.004
#> SRR1036040     2  0.0237      0.924 0.000 0.996 0.004
#> SRR1036041     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036042     2  0.4062      0.792 0.000 0.836 0.164
#> SRR1036043     2  0.4062      0.792 0.000 0.836 0.164
#> SRR1036044     2  0.4062      0.792 0.000 0.836 0.164
#> SRR1036045     2  0.4062      0.792 0.000 0.836 0.164
#> SRR1036046     2  0.4062      0.792 0.000 0.836 0.164
#> SRR1036047     2  0.4062      0.792 0.000 0.836 0.164
#> SRR1036048     2  0.4062      0.792 0.000 0.836 0.164
#> SRR1036049     2  0.4062      0.792 0.000 0.836 0.164
#> SRR1036050     2  0.0829      0.917 0.004 0.984 0.012
#> SRR1036051     2  0.0829      0.917 0.004 0.984 0.012
#> SRR1036052     2  0.0829      0.917 0.004 0.984 0.012
#> SRR1036053     2  0.0829      0.917 0.004 0.984 0.012
#> SRR1036054     2  0.0829      0.917 0.004 0.984 0.012
#> SRR1036055     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036056     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036057     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036058     1  0.0237      0.391 0.996 0.004 0.000
#> SRR1036059     1  0.0237      0.391 0.996 0.004 0.000
#> SRR1036060     1  0.0237      0.391 0.996 0.004 0.000
#> SRR1036061     1  0.0237      0.391 0.996 0.004 0.000
#> SRR1036062     1  0.0237      0.391 0.996 0.004 0.000
#> SRR1036063     1  0.0237      0.391 0.996 0.004 0.000
#> SRR1036064     1  0.0237      0.391 0.996 0.004 0.000
#> SRR1036065     1  0.0237      0.391 0.996 0.004 0.000
#> SRR1036066     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036067     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036068     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036069     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036070     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036071     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036072     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036073     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036074     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036075     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036076     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036077     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036078     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036079     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036080     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036081     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036082     2  0.1964      0.886 0.056 0.944 0.000
#> SRR1036083     2  0.1964      0.886 0.056 0.944 0.000
#> SRR1036084     2  0.1964      0.886 0.056 0.944 0.000
#> SRR1036090     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036091     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036092     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036093     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036094     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036085     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1036086     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1036087     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1036088     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1036089     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1036095     1  0.6305      0.514 0.516 0.484 0.000
#> SRR1036096     1  0.6305      0.514 0.516 0.484 0.000
#> SRR1036097     1  0.6305      0.514 0.516 0.484 0.000
#> SRR1036098     1  0.6305      0.514 0.516 0.484 0.000
#> SRR1036099     1  0.6305      0.514 0.516 0.484 0.000
#> SRR1036100     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036101     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036102     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036103     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036104     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036105     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1036106     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1036107     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1036108     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1036109     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1036110     2  0.4062      0.792 0.000 0.836 0.164
#> SRR1036111     2  0.4062      0.792 0.000 0.836 0.164
#> SRR1036112     2  0.4062      0.792 0.000 0.836 0.164
#> SRR1036113     2  0.4062      0.792 0.000 0.836 0.164
#> SRR1036114     2  0.4062      0.792 0.000 0.836 0.164
#> SRR1036115     1  0.6305      0.514 0.516 0.484 0.000
#> SRR1036116     1  0.6305      0.514 0.516 0.484 0.000
#> SRR1036117     1  0.6305      0.514 0.516 0.484 0.000
#> SRR1036118     1  0.6305      0.514 0.516 0.484 0.000
#> SRR1036119     1  0.6305      0.514 0.516 0.484 0.000
#> SRR1036120     2  0.4465      0.774 0.004 0.820 0.176
#> SRR1036121     2  0.4465      0.774 0.004 0.820 0.176
#> SRR1036122     2  0.4465      0.774 0.004 0.820 0.176
#> SRR1036123     2  0.4465      0.774 0.004 0.820 0.176
#> SRR1036124     2  0.4465      0.774 0.004 0.820 0.176
#> SRR1036125     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036126     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036127     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036128     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036129     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036130     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036131     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036132     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1036133     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036134     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036135     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036136     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036137     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036138     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036139     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036140     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036141     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036142     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036143     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036144     2  0.0237      0.925 0.004 0.996 0.000
#> SRR1036145     2  0.0237      0.925 0.004 0.996 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1036002     2  0.7151     0.1034 0.420 0.448 0.132 0.000
#> SRR1036003     2  0.7151     0.1034 0.420 0.448 0.132 0.000
#> SRR1036004     2  0.7151     0.1034 0.420 0.448 0.132 0.000
#> SRR1036005     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036006     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036007     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036008     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036009     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036013     1  0.6727     0.5719 0.624 0.144 0.004 0.228
#> SRR1036014     1  0.6727     0.5719 0.624 0.144 0.004 0.228
#> SRR1036015     1  0.6727     0.5719 0.624 0.144 0.004 0.228
#> SRR1036016     1  0.6727     0.5719 0.624 0.144 0.004 0.228
#> SRR1036017     1  0.6727     0.5719 0.624 0.144 0.004 0.228
#> SRR1036018     1  0.6727     0.5719 0.624 0.144 0.004 0.228
#> SRR1036010     2  0.7151     0.1034 0.420 0.448 0.132 0.000
#> SRR1036011     2  0.7151     0.1034 0.420 0.448 0.132 0.000
#> SRR1036012     2  0.7151     0.1034 0.420 0.448 0.132 0.000
#> SRR1036019     2  0.4585     0.2871 0.332 0.668 0.000 0.000
#> SRR1036020     2  0.4585     0.2871 0.332 0.668 0.000 0.000
#> SRR1036021     2  0.4585     0.2871 0.332 0.668 0.000 0.000
#> SRR1036022     2  0.4585     0.2871 0.332 0.668 0.000 0.000
#> SRR1036023     2  0.4585     0.2871 0.332 0.668 0.000 0.000
#> SRR1036024     2  0.4925     0.3811 0.428 0.572 0.000 0.000
#> SRR1036025     2  0.4925     0.3811 0.428 0.572 0.000 0.000
#> SRR1036026     2  0.4925     0.3811 0.428 0.572 0.000 0.000
#> SRR1036027     2  0.4925     0.3811 0.428 0.572 0.000 0.000
#> SRR1036028     2  0.4925     0.3811 0.428 0.572 0.000 0.000
#> SRR1036029     2  0.4925     0.3811 0.428 0.572 0.000 0.000
#> SRR1036030     2  0.0592     0.4748 0.016 0.984 0.000 0.000
#> SRR1036031     2  0.0592     0.4748 0.016 0.984 0.000 0.000
#> SRR1036032     2  0.0592     0.4748 0.016 0.984 0.000 0.000
#> SRR1036033     2  0.0592     0.4748 0.016 0.984 0.000 0.000
#> SRR1036034     2  0.0592     0.4748 0.016 0.984 0.000 0.000
#> SRR1036035     2  0.0592     0.4748 0.016 0.984 0.000 0.000
#> SRR1036036     2  0.0592     0.4748 0.016 0.984 0.000 0.000
#> SRR1036037     2  0.0592     0.4748 0.016 0.984 0.000 0.000
#> SRR1036038     2  0.3494     0.4735 0.172 0.824 0.004 0.000
#> SRR1036039     2  0.3494     0.4735 0.172 0.824 0.004 0.000
#> SRR1036040     2  0.3494     0.4735 0.172 0.824 0.004 0.000
#> SRR1036041     2  0.4925     0.3811 0.428 0.572 0.000 0.000
#> SRR1036042     2  0.7151     0.1034 0.420 0.448 0.132 0.000
#> SRR1036043     2  0.7151     0.1034 0.420 0.448 0.132 0.000
#> SRR1036044     2  0.7151     0.1034 0.420 0.448 0.132 0.000
#> SRR1036045     2  0.7151     0.1034 0.420 0.448 0.132 0.000
#> SRR1036046     2  0.7151     0.1034 0.420 0.448 0.132 0.000
#> SRR1036047     2  0.7151     0.1034 0.420 0.448 0.132 0.000
#> SRR1036048     2  0.7151     0.1034 0.420 0.448 0.132 0.000
#> SRR1036049     2  0.7151     0.1034 0.420 0.448 0.132 0.000
#> SRR1036050     1  0.3610     0.5594 0.800 0.200 0.000 0.000
#> SRR1036051     1  0.3610     0.5594 0.800 0.200 0.000 0.000
#> SRR1036052     1  0.3610     0.5594 0.800 0.200 0.000 0.000
#> SRR1036053     1  0.3610     0.5594 0.800 0.200 0.000 0.000
#> SRR1036054     1  0.3610     0.5594 0.800 0.200 0.000 0.000
#> SRR1036055     2  0.1211     0.4812 0.040 0.960 0.000 0.000
#> SRR1036056     2  0.1211     0.4812 0.040 0.960 0.000 0.000
#> SRR1036057     2  0.1211     0.4812 0.040 0.960 0.000 0.000
#> SRR1036058     4  0.0000     0.6316 0.000 0.000 0.000 1.000
#> SRR1036059     4  0.0000     0.6316 0.000 0.000 0.000 1.000
#> SRR1036060     4  0.0000     0.6316 0.000 0.000 0.000 1.000
#> SRR1036061     4  0.0000     0.6316 0.000 0.000 0.000 1.000
#> SRR1036062     4  0.0000     0.6316 0.000 0.000 0.000 1.000
#> SRR1036063     4  0.0000     0.6316 0.000 0.000 0.000 1.000
#> SRR1036064     4  0.0000     0.6316 0.000 0.000 0.000 1.000
#> SRR1036065     4  0.0000     0.6316 0.000 0.000 0.000 1.000
#> SRR1036066     2  0.4925     0.3811 0.428 0.572 0.000 0.000
#> SRR1036067     2  0.4925     0.3811 0.428 0.572 0.000 0.000
#> SRR1036068     2  0.4925     0.3811 0.428 0.572 0.000 0.000
#> SRR1036069     2  0.4925     0.3811 0.428 0.572 0.000 0.000
#> SRR1036070     2  0.4925     0.3811 0.428 0.572 0.000 0.000
#> SRR1036071     2  0.4925     0.3811 0.428 0.572 0.000 0.000
#> SRR1036072     2  0.4925     0.3811 0.428 0.572 0.000 0.000
#> SRR1036073     2  0.4925     0.3811 0.428 0.572 0.000 0.000
#> SRR1036074     2  0.4866     0.2433 0.404 0.596 0.000 0.000
#> SRR1036075     2  0.4866     0.2433 0.404 0.596 0.000 0.000
#> SRR1036076     2  0.4866     0.2433 0.404 0.596 0.000 0.000
#> SRR1036077     2  0.4866     0.2433 0.404 0.596 0.000 0.000
#> SRR1036078     2  0.4866     0.2433 0.404 0.596 0.000 0.000
#> SRR1036079     2  0.4866     0.2433 0.404 0.596 0.000 0.000
#> SRR1036080     2  0.4866     0.2433 0.404 0.596 0.000 0.000
#> SRR1036081     2  0.4866     0.2433 0.404 0.596 0.000 0.000
#> SRR1036082     2  0.6121     0.1651 0.396 0.552 0.000 0.052
#> SRR1036083     2  0.6121     0.1651 0.396 0.552 0.000 0.052
#> SRR1036084     2  0.6121     0.1651 0.396 0.552 0.000 0.052
#> SRR1036090     2  0.4713     0.4211 0.360 0.640 0.000 0.000
#> SRR1036091     2  0.4713     0.4211 0.360 0.640 0.000 0.000
#> SRR1036092     2  0.4713     0.4211 0.360 0.640 0.000 0.000
#> SRR1036093     2  0.4713     0.4211 0.360 0.640 0.000 0.000
#> SRR1036094     2  0.4713     0.4211 0.360 0.640 0.000 0.000
#> SRR1036085     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036086     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036087     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036088     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036089     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036095     4  0.7377     0.6425 0.264 0.216 0.000 0.520
#> SRR1036096     4  0.7377     0.6425 0.264 0.216 0.000 0.520
#> SRR1036097     4  0.7377     0.6425 0.264 0.216 0.000 0.520
#> SRR1036098     4  0.7377     0.6425 0.264 0.216 0.000 0.520
#> SRR1036099     4  0.7377     0.6425 0.264 0.216 0.000 0.520
#> SRR1036100     2  0.2530     0.4771 0.112 0.888 0.000 0.000
#> SRR1036101     2  0.2530     0.4771 0.112 0.888 0.000 0.000
#> SRR1036102     2  0.2530     0.4771 0.112 0.888 0.000 0.000
#> SRR1036103     2  0.2530     0.4771 0.112 0.888 0.000 0.000
#> SRR1036104     2  0.2530     0.4771 0.112 0.888 0.000 0.000
#> SRR1036105     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036106     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036107     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036108     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036109     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036110     1  0.7153    -0.0356 0.444 0.424 0.132 0.000
#> SRR1036111     1  0.7153    -0.0356 0.444 0.424 0.132 0.000
#> SRR1036112     1  0.7153    -0.0356 0.444 0.424 0.132 0.000
#> SRR1036113     1  0.7153    -0.0356 0.444 0.424 0.132 0.000
#> SRR1036114     1  0.7153    -0.0356 0.444 0.424 0.132 0.000
#> SRR1036115     4  0.7377     0.6425 0.264 0.216 0.000 0.520
#> SRR1036116     4  0.7377     0.6425 0.264 0.216 0.000 0.520
#> SRR1036117     4  0.7377     0.6425 0.264 0.216 0.000 0.520
#> SRR1036118     4  0.7377     0.6425 0.264 0.216 0.000 0.520
#> SRR1036119     4  0.7377     0.6425 0.264 0.216 0.000 0.520
#> SRR1036120     1  0.4656     0.5925 0.792 0.072 0.136 0.000
#> SRR1036121     1  0.4656     0.5925 0.792 0.072 0.136 0.000
#> SRR1036122     1  0.4656     0.5925 0.792 0.072 0.136 0.000
#> SRR1036123     1  0.4656     0.5925 0.792 0.072 0.136 0.000
#> SRR1036124     1  0.4656     0.5925 0.792 0.072 0.136 0.000
#> SRR1036125     2  0.4925     0.3811 0.428 0.572 0.000 0.000
#> SRR1036126     2  0.4925     0.3811 0.428 0.572 0.000 0.000
#> SRR1036127     2  0.4925     0.3811 0.428 0.572 0.000 0.000
#> SRR1036128     2  0.4925     0.3811 0.428 0.572 0.000 0.000
#> SRR1036129     2  0.4925     0.3811 0.428 0.572 0.000 0.000
#> SRR1036130     2  0.4925     0.3811 0.428 0.572 0.000 0.000
#> SRR1036131     2  0.4925     0.3811 0.428 0.572 0.000 0.000
#> SRR1036132     2  0.4925     0.3811 0.428 0.572 0.000 0.000
#> SRR1036133     2  0.1211     0.4708 0.040 0.960 0.000 0.000
#> SRR1036134     2  0.1211     0.4708 0.040 0.960 0.000 0.000
#> SRR1036135     2  0.1211     0.4708 0.040 0.960 0.000 0.000
#> SRR1036136     2  0.1211     0.4708 0.040 0.960 0.000 0.000
#> SRR1036137     2  0.1211     0.4708 0.040 0.960 0.000 0.000
#> SRR1036138     2  0.4103     0.3534 0.256 0.744 0.000 0.000
#> SRR1036139     2  0.4103     0.3534 0.256 0.744 0.000 0.000
#> SRR1036140     2  0.4103     0.3534 0.256 0.744 0.000 0.000
#> SRR1036141     2  0.4103     0.3534 0.256 0.744 0.000 0.000
#> SRR1036142     2  0.4103     0.3534 0.256 0.744 0.000 0.000
#> SRR1036143     2  0.4103     0.3534 0.256 0.744 0.000 0.000
#> SRR1036144     2  0.4103     0.3534 0.256 0.744 0.000 0.000
#> SRR1036145     2  0.4103     0.3534 0.256 0.744 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1036002     1   0.249     0.4211 0.872 0.004 0.000 0.124 0.000
#> SRR1036003     1   0.249     0.4211 0.872 0.004 0.000 0.124 0.000
#> SRR1036004     1   0.249     0.4211 0.872 0.004 0.000 0.124 0.000
#> SRR1036005     3   0.000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036006     3   0.000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036007     3   0.000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036008     3   0.000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036009     3   0.000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036013     1   0.788     0.0946 0.400 0.224 0.004 0.068 0.304
#> SRR1036014     1   0.788     0.0946 0.400 0.224 0.004 0.068 0.304
#> SRR1036015     1   0.788     0.0946 0.400 0.224 0.004 0.068 0.304
#> SRR1036016     1   0.788     0.0946 0.400 0.224 0.004 0.068 0.304
#> SRR1036017     1   0.788     0.0946 0.400 0.224 0.004 0.068 0.304
#> SRR1036018     1   0.788     0.0946 0.400 0.224 0.004 0.068 0.304
#> SRR1036010     1   0.249     0.4211 0.872 0.004 0.000 0.124 0.000
#> SRR1036011     1   0.249     0.4211 0.872 0.004 0.000 0.124 0.000
#> SRR1036012     1   0.249     0.4211 0.872 0.004 0.000 0.124 0.000
#> SRR1036019     2   0.520     0.7721 0.304 0.628 0.000 0.068 0.000
#> SRR1036020     2   0.520     0.7721 0.304 0.628 0.000 0.068 0.000
#> SRR1036021     2   0.520     0.7721 0.304 0.628 0.000 0.068 0.000
#> SRR1036022     2   0.520     0.7721 0.304 0.628 0.000 0.068 0.000
#> SRR1036023     2   0.520     0.7721 0.304 0.628 0.000 0.068 0.000
#> SRR1036024     1   0.120     0.4473 0.952 0.000 0.000 0.000 0.048
#> SRR1036025     1   0.120     0.4473 0.952 0.000 0.000 0.000 0.048
#> SRR1036026     1   0.120     0.4473 0.952 0.000 0.000 0.000 0.048
#> SRR1036027     1   0.120     0.4473 0.952 0.000 0.000 0.000 0.048
#> SRR1036028     1   0.120     0.4473 0.952 0.000 0.000 0.000 0.048
#> SRR1036029     1   0.120     0.4473 0.952 0.000 0.000 0.000 0.048
#> SRR1036030     1   0.460    -0.2400 0.564 0.424 0.000 0.000 0.012
#> SRR1036031     1   0.460    -0.2400 0.564 0.424 0.000 0.000 0.012
#> SRR1036032     1   0.460    -0.2400 0.564 0.424 0.000 0.000 0.012
#> SRR1036033     1   0.460    -0.2400 0.564 0.424 0.000 0.000 0.012
#> SRR1036034     1   0.460    -0.2400 0.564 0.424 0.000 0.000 0.012
#> SRR1036035     1   0.460    -0.2400 0.564 0.424 0.000 0.000 0.012
#> SRR1036036     1   0.460    -0.2400 0.564 0.424 0.000 0.000 0.012
#> SRR1036037     1   0.460    -0.2400 0.564 0.424 0.000 0.000 0.012
#> SRR1036038     1   0.387    -0.0724 0.732 0.260 0.000 0.004 0.004
#> SRR1036039     1   0.387    -0.0724 0.732 0.260 0.000 0.004 0.004
#> SRR1036040     1   0.387    -0.0724 0.732 0.260 0.000 0.004 0.004
#> SRR1036041     1   0.120     0.4473 0.952 0.000 0.000 0.000 0.048
#> SRR1036042     1   0.249     0.4211 0.872 0.004 0.000 0.124 0.000
#> SRR1036043     1   0.249     0.4211 0.872 0.004 0.000 0.124 0.000
#> SRR1036044     1   0.249     0.4211 0.872 0.004 0.000 0.124 0.000
#> SRR1036045     1   0.249     0.4211 0.872 0.004 0.000 0.124 0.000
#> SRR1036046     1   0.249     0.4211 0.872 0.004 0.000 0.124 0.000
#> SRR1036047     1   0.249     0.4211 0.872 0.004 0.000 0.124 0.000
#> SRR1036048     1   0.249     0.4211 0.872 0.004 0.000 0.124 0.000
#> SRR1036049     1   0.249     0.4211 0.872 0.004 0.000 0.124 0.000
#> SRR1036050     1   0.742     0.1533 0.508 0.228 0.000 0.184 0.080
#> SRR1036051     1   0.742     0.1533 0.508 0.228 0.000 0.184 0.080
#> SRR1036052     1   0.742     0.1533 0.508 0.228 0.000 0.184 0.080
#> SRR1036053     1   0.742     0.1533 0.508 0.228 0.000 0.184 0.080
#> SRR1036054     1   0.742     0.1533 0.508 0.228 0.000 0.184 0.080
#> SRR1036055     1   0.441    -0.1956 0.604 0.388 0.000 0.000 0.008
#> SRR1036056     1   0.441    -0.1956 0.604 0.388 0.000 0.000 0.008
#> SRR1036057     1   0.441    -0.1956 0.604 0.388 0.000 0.000 0.008
#> SRR1036058     4   0.414     1.0000 0.000 0.000 0.000 0.616 0.384
#> SRR1036059     4   0.414     1.0000 0.000 0.000 0.000 0.616 0.384
#> SRR1036060     4   0.414     1.0000 0.000 0.000 0.000 0.616 0.384
#> SRR1036061     4   0.414     1.0000 0.000 0.000 0.000 0.616 0.384
#> SRR1036062     4   0.414     1.0000 0.000 0.000 0.000 0.616 0.384
#> SRR1036063     4   0.414     1.0000 0.000 0.000 0.000 0.616 0.384
#> SRR1036064     4   0.414     1.0000 0.000 0.000 0.000 0.616 0.384
#> SRR1036065     4   0.414     1.0000 0.000 0.000 0.000 0.616 0.384
#> SRR1036066     1   0.120     0.4473 0.952 0.000 0.000 0.000 0.048
#> SRR1036067     1   0.120     0.4473 0.952 0.000 0.000 0.000 0.048
#> SRR1036068     1   0.120     0.4473 0.952 0.000 0.000 0.000 0.048
#> SRR1036069     1   0.120     0.4473 0.952 0.000 0.000 0.000 0.048
#> SRR1036070     1   0.120     0.4473 0.952 0.000 0.000 0.000 0.048
#> SRR1036071     1   0.120     0.4473 0.952 0.000 0.000 0.000 0.048
#> SRR1036072     1   0.120     0.4473 0.952 0.000 0.000 0.000 0.048
#> SRR1036073     1   0.120     0.4473 0.952 0.000 0.000 0.000 0.048
#> SRR1036074     1   0.608     0.1773 0.460 0.448 0.000 0.016 0.076
#> SRR1036075     1   0.608     0.1773 0.460 0.448 0.000 0.016 0.076
#> SRR1036076     1   0.608     0.1773 0.460 0.448 0.000 0.016 0.076
#> SRR1036077     1   0.608     0.1773 0.460 0.448 0.000 0.016 0.076
#> SRR1036078     1   0.608     0.1773 0.460 0.448 0.000 0.016 0.076
#> SRR1036079     1   0.608     0.1773 0.460 0.448 0.000 0.016 0.076
#> SRR1036080     1   0.608     0.1773 0.460 0.448 0.000 0.016 0.076
#> SRR1036081     1   0.608     0.1773 0.460 0.448 0.000 0.016 0.076
#> SRR1036082     1   0.681     0.1794 0.452 0.404 0.000 0.048 0.096
#> SRR1036083     1   0.681     0.1794 0.452 0.404 0.000 0.048 0.096
#> SRR1036084     1   0.681     0.1794 0.452 0.404 0.000 0.048 0.096
#> SRR1036090     1   0.386     0.2280 0.796 0.152 0.000 0.052 0.000
#> SRR1036091     1   0.386     0.2280 0.796 0.152 0.000 0.052 0.000
#> SRR1036092     1   0.386     0.2280 0.796 0.152 0.000 0.052 0.000
#> SRR1036093     1   0.386     0.2280 0.796 0.152 0.000 0.052 0.000
#> SRR1036094     1   0.386     0.2280 0.796 0.152 0.000 0.052 0.000
#> SRR1036085     3   0.000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036086     3   0.000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036087     3   0.000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036088     3   0.000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036089     3   0.000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036095     5   0.125     1.0000 0.036 0.008 0.000 0.000 0.956
#> SRR1036096     5   0.125     1.0000 0.036 0.008 0.000 0.000 0.956
#> SRR1036097     5   0.125     1.0000 0.036 0.008 0.000 0.000 0.956
#> SRR1036098     5   0.125     1.0000 0.036 0.008 0.000 0.000 0.956
#> SRR1036099     5   0.125     1.0000 0.036 0.008 0.000 0.000 0.956
#> SRR1036100     1   0.488    -0.1571 0.516 0.464 0.000 0.004 0.016
#> SRR1036101     1   0.488    -0.1571 0.516 0.464 0.000 0.004 0.016
#> SRR1036102     1   0.488    -0.1571 0.516 0.464 0.000 0.004 0.016
#> SRR1036103     1   0.488    -0.1571 0.516 0.464 0.000 0.004 0.016
#> SRR1036104     1   0.488    -0.1571 0.516 0.464 0.000 0.004 0.016
#> SRR1036105     3   0.000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036106     3   0.000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036107     3   0.000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036108     3   0.000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036109     3   0.000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036110     1   0.341     0.4156 0.832 0.044 0.000 0.124 0.000
#> SRR1036111     1   0.341     0.4156 0.832 0.044 0.000 0.124 0.000
#> SRR1036112     1   0.341     0.4156 0.832 0.044 0.000 0.124 0.000
#> SRR1036113     1   0.341     0.4156 0.832 0.044 0.000 0.124 0.000
#> SRR1036114     1   0.341     0.4156 0.832 0.044 0.000 0.124 0.000
#> SRR1036115     5   0.125     1.0000 0.036 0.008 0.000 0.000 0.956
#> SRR1036116     5   0.125     1.0000 0.036 0.008 0.000 0.000 0.956
#> SRR1036117     5   0.125     1.0000 0.036 0.008 0.000 0.000 0.956
#> SRR1036118     5   0.125     1.0000 0.036 0.008 0.000 0.000 0.956
#> SRR1036119     5   0.125     1.0000 0.036 0.008 0.000 0.000 0.956
#> SRR1036120     1   0.735     0.1316 0.436 0.228 0.004 0.304 0.028
#> SRR1036121     1   0.735     0.1316 0.436 0.228 0.004 0.304 0.028
#> SRR1036122     1   0.735     0.1316 0.436 0.228 0.004 0.304 0.028
#> SRR1036123     1   0.735     0.1316 0.436 0.228 0.004 0.304 0.028
#> SRR1036124     1   0.735     0.1316 0.436 0.228 0.004 0.304 0.028
#> SRR1036125     1   0.120     0.4473 0.952 0.000 0.000 0.000 0.048
#> SRR1036126     1   0.120     0.4473 0.952 0.000 0.000 0.000 0.048
#> SRR1036127     1   0.120     0.4473 0.952 0.000 0.000 0.000 0.048
#> SRR1036128     1   0.120     0.4473 0.952 0.000 0.000 0.000 0.048
#> SRR1036129     1   0.120     0.4473 0.952 0.000 0.000 0.000 0.048
#> SRR1036130     1   0.120     0.4473 0.952 0.000 0.000 0.000 0.048
#> SRR1036131     1   0.120     0.4473 0.952 0.000 0.000 0.000 0.048
#> SRR1036132     1   0.120     0.4473 0.952 0.000 0.000 0.000 0.048
#> SRR1036133     1   0.444    -0.3584 0.528 0.468 0.000 0.000 0.004
#> SRR1036134     1   0.444    -0.3584 0.528 0.468 0.000 0.000 0.004
#> SRR1036135     1   0.444    -0.3584 0.528 0.468 0.000 0.000 0.004
#> SRR1036136     1   0.444    -0.3584 0.528 0.468 0.000 0.000 0.004
#> SRR1036137     1   0.444    -0.3584 0.528 0.468 0.000 0.000 0.004
#> SRR1036138     2   0.535     0.8394 0.456 0.492 0.000 0.052 0.000
#> SRR1036139     2   0.535     0.8394 0.456 0.492 0.000 0.052 0.000
#> SRR1036140     2   0.535     0.8394 0.456 0.492 0.000 0.052 0.000
#> SRR1036141     2   0.535     0.8394 0.456 0.492 0.000 0.052 0.000
#> SRR1036142     2   0.535     0.8394 0.456 0.492 0.000 0.052 0.000
#> SRR1036143     2   0.535     0.8394 0.456 0.492 0.000 0.052 0.000
#> SRR1036144     2   0.535     0.8394 0.456 0.492 0.000 0.052 0.000
#> SRR1036145     2   0.535     0.8394 0.456 0.492 0.000 0.052 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1036002     6  0.3843     0.3438 0.000 0.452 0.000 0.000 0.000 0.548
#> SRR1036003     6  0.3843     0.3438 0.000 0.452 0.000 0.000 0.000 0.548
#> SRR1036004     6  0.3843     0.3438 0.000 0.452 0.000 0.000 0.000 0.548
#> SRR1036005     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036006     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036007     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036008     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036009     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036013     6  0.5292     0.3721 0.276 0.064 0.004 0.008 0.016 0.632
#> SRR1036014     6  0.5292     0.3721 0.276 0.064 0.004 0.008 0.016 0.632
#> SRR1036015     6  0.5292     0.3721 0.276 0.064 0.004 0.008 0.016 0.632
#> SRR1036016     6  0.5292     0.3721 0.276 0.064 0.004 0.008 0.016 0.632
#> SRR1036017     6  0.5292     0.3721 0.276 0.064 0.004 0.008 0.016 0.632
#> SRR1036018     6  0.5292     0.3721 0.276 0.064 0.004 0.008 0.016 0.632
#> SRR1036010     6  0.3843     0.3438 0.000 0.452 0.000 0.000 0.000 0.548
#> SRR1036011     6  0.3843     0.3438 0.000 0.452 0.000 0.000 0.000 0.548
#> SRR1036012     6  0.3843     0.3438 0.000 0.452 0.000 0.000 0.000 0.548
#> SRR1036019     2  0.6332     0.1867 0.000 0.556 0.000 0.228 0.076 0.140
#> SRR1036020     2  0.6332     0.1867 0.000 0.556 0.000 0.228 0.076 0.140
#> SRR1036021     2  0.6332     0.1867 0.000 0.556 0.000 0.228 0.076 0.140
#> SRR1036022     2  0.6332     0.1867 0.000 0.556 0.000 0.228 0.076 0.140
#> SRR1036023     2  0.6332     0.1867 0.000 0.556 0.000 0.228 0.076 0.140
#> SRR1036024     2  0.5221     0.1344 0.056 0.552 0.000 0.000 0.020 0.372
#> SRR1036025     2  0.5221     0.1344 0.056 0.552 0.000 0.000 0.020 0.372
#> SRR1036026     2  0.5221     0.1344 0.056 0.552 0.000 0.000 0.020 0.372
#> SRR1036027     2  0.5221     0.1344 0.056 0.552 0.000 0.000 0.020 0.372
#> SRR1036028     2  0.5221     0.1344 0.056 0.552 0.000 0.000 0.020 0.372
#> SRR1036029     2  0.5221     0.1344 0.056 0.552 0.000 0.000 0.020 0.372
#> SRR1036030     2  0.2501     0.4791 0.004 0.872 0.000 0.000 0.108 0.016
#> SRR1036031     2  0.2501     0.4791 0.004 0.872 0.000 0.000 0.108 0.016
#> SRR1036032     2  0.2501     0.4791 0.004 0.872 0.000 0.000 0.108 0.016
#> SRR1036033     2  0.2501     0.4791 0.004 0.872 0.000 0.000 0.108 0.016
#> SRR1036034     2  0.2501     0.4791 0.004 0.872 0.000 0.000 0.108 0.016
#> SRR1036035     2  0.2501     0.4791 0.004 0.872 0.000 0.000 0.108 0.016
#> SRR1036036     2  0.2501     0.4791 0.004 0.872 0.000 0.000 0.108 0.016
#> SRR1036037     2  0.2501     0.4791 0.004 0.872 0.000 0.000 0.108 0.016
#> SRR1036038     2  0.3351     0.4116 0.004 0.800 0.000 0.000 0.028 0.168
#> SRR1036039     2  0.3351     0.4116 0.004 0.800 0.000 0.000 0.028 0.168
#> SRR1036040     2  0.3351     0.4116 0.004 0.800 0.000 0.000 0.028 0.168
#> SRR1036041     2  0.5221     0.1344 0.056 0.552 0.000 0.000 0.020 0.372
#> SRR1036042     6  0.3843     0.3438 0.000 0.452 0.000 0.000 0.000 0.548
#> SRR1036043     6  0.3843     0.3438 0.000 0.452 0.000 0.000 0.000 0.548
#> SRR1036044     6  0.3843     0.3438 0.000 0.452 0.000 0.000 0.000 0.548
#> SRR1036045     6  0.3843     0.3438 0.000 0.452 0.000 0.000 0.000 0.548
#> SRR1036046     6  0.3843     0.3438 0.000 0.452 0.000 0.000 0.000 0.548
#> SRR1036047     6  0.3843     0.3438 0.000 0.452 0.000 0.000 0.000 0.548
#> SRR1036048     6  0.3843     0.3438 0.000 0.452 0.000 0.000 0.000 0.548
#> SRR1036049     6  0.3843     0.3438 0.000 0.452 0.000 0.000 0.000 0.548
#> SRR1036050     6  0.3699     0.4111 0.060 0.104 0.000 0.000 0.024 0.812
#> SRR1036051     6  0.3699     0.4111 0.060 0.104 0.000 0.000 0.024 0.812
#> SRR1036052     6  0.3699     0.4111 0.060 0.104 0.000 0.000 0.024 0.812
#> SRR1036053     6  0.3699     0.4111 0.060 0.104 0.000 0.000 0.024 0.812
#> SRR1036054     6  0.3699     0.4111 0.060 0.104 0.000 0.000 0.024 0.812
#> SRR1036055     2  0.2940     0.4723 0.004 0.848 0.000 0.000 0.112 0.036
#> SRR1036056     2  0.2940     0.4723 0.004 0.848 0.000 0.000 0.112 0.036
#> SRR1036057     2  0.2940     0.4723 0.004 0.848 0.000 0.000 0.112 0.036
#> SRR1036058     4  0.2996     1.0000 0.228 0.000 0.000 0.772 0.000 0.000
#> SRR1036059     4  0.2996     1.0000 0.228 0.000 0.000 0.772 0.000 0.000
#> SRR1036060     4  0.2996     1.0000 0.228 0.000 0.000 0.772 0.000 0.000
#> SRR1036061     4  0.2996     1.0000 0.228 0.000 0.000 0.772 0.000 0.000
#> SRR1036062     4  0.2996     1.0000 0.228 0.000 0.000 0.772 0.000 0.000
#> SRR1036063     4  0.2996     1.0000 0.228 0.000 0.000 0.772 0.000 0.000
#> SRR1036064     4  0.2996     1.0000 0.228 0.000 0.000 0.772 0.000 0.000
#> SRR1036065     4  0.2996     1.0000 0.228 0.000 0.000 0.772 0.000 0.000
#> SRR1036066     2  0.5221     0.1344 0.056 0.552 0.000 0.000 0.020 0.372
#> SRR1036067     2  0.5221     0.1344 0.056 0.552 0.000 0.000 0.020 0.372
#> SRR1036068     2  0.5221     0.1344 0.056 0.552 0.000 0.000 0.020 0.372
#> SRR1036069     2  0.5221     0.1344 0.056 0.552 0.000 0.000 0.020 0.372
#> SRR1036070     2  0.5221     0.1344 0.056 0.552 0.000 0.000 0.020 0.372
#> SRR1036071     2  0.5221     0.1344 0.056 0.552 0.000 0.000 0.020 0.372
#> SRR1036072     2  0.5221     0.1344 0.056 0.552 0.000 0.000 0.020 0.372
#> SRR1036073     2  0.5221     0.1344 0.056 0.552 0.000 0.000 0.020 0.372
#> SRR1036074     5  0.0632     0.8468 0.000 0.024 0.000 0.000 0.976 0.000
#> SRR1036075     5  0.0632     0.8468 0.000 0.024 0.000 0.000 0.976 0.000
#> SRR1036076     5  0.0632     0.8468 0.000 0.024 0.000 0.000 0.976 0.000
#> SRR1036077     5  0.0632     0.8468 0.000 0.024 0.000 0.000 0.976 0.000
#> SRR1036078     5  0.0632     0.8468 0.000 0.024 0.000 0.000 0.976 0.000
#> SRR1036079     5  0.0632     0.8468 0.000 0.024 0.000 0.000 0.976 0.000
#> SRR1036080     5  0.0632     0.8468 0.000 0.024 0.000 0.000 0.976 0.000
#> SRR1036081     5  0.0632     0.8468 0.000 0.024 0.000 0.000 0.976 0.000
#> SRR1036082     5  0.1921     0.8102 0.000 0.032 0.000 0.052 0.916 0.000
#> SRR1036083     5  0.1921     0.8102 0.000 0.032 0.000 0.052 0.916 0.000
#> SRR1036084     5  0.1921     0.8102 0.000 0.032 0.000 0.052 0.916 0.000
#> SRR1036090     2  0.4302     0.2233 0.000 0.668 0.000 0.036 0.004 0.292
#> SRR1036091     2  0.4302     0.2233 0.000 0.668 0.000 0.036 0.004 0.292
#> SRR1036092     2  0.4302     0.2233 0.000 0.668 0.000 0.036 0.004 0.292
#> SRR1036093     2  0.4302     0.2233 0.000 0.668 0.000 0.036 0.004 0.292
#> SRR1036094     2  0.4302     0.2233 0.000 0.668 0.000 0.036 0.004 0.292
#> SRR1036085     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036086     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036087     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036088     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036089     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036095     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036096     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036097     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036098     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036099     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036100     2  0.5564    -0.1291 0.008 0.456 0.000 0.016 0.456 0.064
#> SRR1036101     2  0.5564    -0.1291 0.008 0.456 0.000 0.016 0.456 0.064
#> SRR1036102     5  0.5564     0.0413 0.008 0.456 0.000 0.016 0.456 0.064
#> SRR1036103     5  0.5564     0.0413 0.008 0.456 0.000 0.016 0.456 0.064
#> SRR1036104     2  0.5564    -0.1291 0.008 0.456 0.000 0.016 0.456 0.064
#> SRR1036105     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036106     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036107     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036108     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036109     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036110     6  0.4824     0.3473 0.000 0.420 0.000 0.000 0.056 0.524
#> SRR1036111     6  0.4824     0.3473 0.000 0.420 0.000 0.000 0.056 0.524
#> SRR1036112     6  0.4824     0.3473 0.000 0.420 0.000 0.000 0.056 0.524
#> SRR1036113     6  0.4824     0.3473 0.000 0.420 0.000 0.000 0.056 0.524
#> SRR1036114     6  0.4824     0.3473 0.000 0.420 0.000 0.000 0.056 0.524
#> SRR1036115     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036116     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036117     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036118     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036119     1  0.0000     1.0000 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036120     6  0.0508     0.4505 0.000 0.012 0.004 0.000 0.000 0.984
#> SRR1036121     6  0.0508     0.4505 0.000 0.012 0.004 0.000 0.000 0.984
#> SRR1036122     6  0.0508     0.4505 0.000 0.012 0.004 0.000 0.000 0.984
#> SRR1036123     6  0.0508     0.4505 0.000 0.012 0.004 0.000 0.000 0.984
#> SRR1036124     6  0.0508     0.4505 0.000 0.012 0.004 0.000 0.000 0.984
#> SRR1036125     2  0.5221     0.1344 0.056 0.552 0.000 0.000 0.020 0.372
#> SRR1036126     2  0.5221     0.1344 0.056 0.552 0.000 0.000 0.020 0.372
#> SRR1036127     2  0.5221     0.1344 0.056 0.552 0.000 0.000 0.020 0.372
#> SRR1036128     2  0.5221     0.1344 0.056 0.552 0.000 0.000 0.020 0.372
#> SRR1036129     2  0.5221     0.1344 0.056 0.552 0.000 0.000 0.020 0.372
#> SRR1036130     2  0.5221     0.1344 0.056 0.552 0.000 0.000 0.020 0.372
#> SRR1036131     2  0.5221     0.1344 0.056 0.552 0.000 0.000 0.020 0.372
#> SRR1036132     2  0.5221     0.1344 0.056 0.552 0.000 0.000 0.020 0.372
#> SRR1036133     2  0.2510     0.4760 0.000 0.884 0.000 0.028 0.080 0.008
#> SRR1036134     2  0.2510     0.4760 0.000 0.884 0.000 0.028 0.080 0.008
#> SRR1036135     2  0.2510     0.4760 0.000 0.884 0.000 0.028 0.080 0.008
#> SRR1036136     2  0.2510     0.4760 0.000 0.884 0.000 0.028 0.080 0.008
#> SRR1036137     2  0.2510     0.4760 0.000 0.884 0.000 0.028 0.080 0.008
#> SRR1036138     2  0.3535     0.3965 0.000 0.808 0.000 0.036 0.016 0.140
#> SRR1036139     2  0.3535     0.3965 0.000 0.808 0.000 0.036 0.016 0.140
#> SRR1036140     2  0.3535     0.3965 0.000 0.808 0.000 0.036 0.016 0.140
#> SRR1036141     2  0.3535     0.3965 0.000 0.808 0.000 0.036 0.016 0.140
#> SRR1036142     2  0.3535     0.3965 0.000 0.808 0.000 0.036 0.016 0.140
#> SRR1036143     2  0.3535     0.3965 0.000 0.808 0.000 0.036 0.016 0.140
#> SRR1036144     2  0.3535     0.3965 0.000 0.808 0.000 0.036 0.016 0.140
#> SRR1036145     2  0.3535     0.3965 0.000 0.808 0.000 0.036 0.016 0.140

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15218 rows and 144 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k  1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.0654           0.000       0.774          0.318 1.000   1.000
#> 3 3 0.0565           0.428       0.573          0.497 0.812   0.812
#> 4 4 0.0806           0.409       0.623          0.231 0.666   0.589
#> 5 5 0.1477           0.476       0.588          0.124 0.831   0.651
#> 6 6 0.2293           0.525       0.612          0.080 0.992   0.976

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1    p2
#> SRR1036002     2   0.644          0 NA 0.836
#> SRR1036003     2   0.644          0 NA 0.836
#> SRR1036004     2   0.644          0 NA 0.836
#> SRR1036005     2   0.963          0 NA 0.612
#> SRR1036006     2   0.963          0 NA 0.612
#> SRR1036007     2   0.963          0 NA 0.612
#> SRR1036008     2   0.963          0 NA 0.612
#> SRR1036009     2   0.963          0 NA 0.612
#> SRR1036013     2   0.722          0 NA 0.800
#> SRR1036014     2   0.722          0 NA 0.800
#> SRR1036015     2   0.722          0 NA 0.800
#> SRR1036016     2   0.722          0 NA 0.800
#> SRR1036017     2   0.722          0 NA 0.800
#> SRR1036018     2   0.722          0 NA 0.800
#> SRR1036010     2   0.343          0 NA 0.936
#> SRR1036011     2   0.343          0 NA 0.936
#> SRR1036012     2   0.343          0 NA 0.936
#> SRR1036019     2   0.839          0 NA 0.732
#> SRR1036020     2   0.839          0 NA 0.732
#> SRR1036021     2   0.839          0 NA 0.732
#> SRR1036022     2   0.839          0 NA 0.732
#> SRR1036023     2   0.839          0 NA 0.732
#> SRR1036024     2   0.260          0 NA 0.956
#> SRR1036025     2   0.260          0 NA 0.956
#> SRR1036026     2   0.260          0 NA 0.956
#> SRR1036027     2   0.260          0 NA 0.956
#> SRR1036028     2   0.260          0 NA 0.956
#> SRR1036029     2   0.260          0 NA 0.956
#> SRR1036030     2   0.821          0 NA 0.744
#> SRR1036031     2   0.821          0 NA 0.744
#> SRR1036032     2   0.821          0 NA 0.744
#> SRR1036033     2   0.821          0 NA 0.744
#> SRR1036034     2   0.821          0 NA 0.744
#> SRR1036035     2   0.821          0 NA 0.744
#> SRR1036036     2   0.821          0 NA 0.744
#> SRR1036037     2   0.821          0 NA 0.744
#> SRR1036038     2   0.506          0 NA 0.888
#> SRR1036039     2   0.506          0 NA 0.888
#> SRR1036040     2   0.506          0 NA 0.888
#> SRR1036041     2   0.311          0 NA 0.944
#> SRR1036042     2   0.662          0 NA 0.828
#> SRR1036043     2   0.662          0 NA 0.828
#> SRR1036044     2   0.662          0 NA 0.828
#> SRR1036045     2   0.662          0 NA 0.828
#> SRR1036046     2   0.662          0 NA 0.828
#> SRR1036047     2   0.662          0 NA 0.828
#> SRR1036048     2   0.662          0 NA 0.828
#> SRR1036049     2   0.662          0 NA 0.828
#> SRR1036050     2   0.653          0 NA 0.832
#> SRR1036051     2   0.653          0 NA 0.832
#> SRR1036052     2   0.653          0 NA 0.832
#> SRR1036053     2   0.653          0 NA 0.832
#> SRR1036054     2   0.653          0 NA 0.832
#> SRR1036055     2   0.697          0 NA 0.812
#> SRR1036056     2   0.697          0 NA 0.812
#> SRR1036057     2   0.697          0 NA 0.812
#> SRR1036058     2   0.980          0 NA 0.584
#> SRR1036059     2   0.980          0 NA 0.584
#> SRR1036060     2   0.980          0 NA 0.584
#> SRR1036061     2   0.980          0 NA 0.584
#> SRR1036062     2   0.980          0 NA 0.584
#> SRR1036063     2   0.980          0 NA 0.584
#> SRR1036064     2   0.980          0 NA 0.584
#> SRR1036065     2   0.980          0 NA 0.584
#> SRR1036066     2   0.204          0 NA 0.968
#> SRR1036067     2   0.204          0 NA 0.968
#> SRR1036068     2   0.204          0 NA 0.968
#> SRR1036069     2   0.204          0 NA 0.968
#> SRR1036070     2   0.204          0 NA 0.968
#> SRR1036071     2   0.204          0 NA 0.968
#> SRR1036072     2   0.204          0 NA 0.968
#> SRR1036073     2   0.204          0 NA 0.968
#> SRR1036074     2   0.917          0 NA 0.668
#> SRR1036075     2   0.917          0 NA 0.668
#> SRR1036076     2   0.917          0 NA 0.668
#> SRR1036077     2   0.917          0 NA 0.668
#> SRR1036078     2   0.917          0 NA 0.668
#> SRR1036079     2   0.917          0 NA 0.668
#> SRR1036080     2   0.917          0 NA 0.668
#> SRR1036081     2   0.917          0 NA 0.668
#> SRR1036082     2   0.886          0 NA 0.696
#> SRR1036083     2   0.886          0 NA 0.696
#> SRR1036084     2   0.886          0 NA 0.696
#> SRR1036090     2   0.563          0 NA 0.868
#> SRR1036091     2   0.563          0 NA 0.868
#> SRR1036092     2   0.563          0 NA 0.868
#> SRR1036093     2   0.563          0 NA 0.868
#> SRR1036094     2   0.563          0 NA 0.868
#> SRR1036085     2   0.958          0 NA 0.620
#> SRR1036086     2   0.958          0 NA 0.620
#> SRR1036087     2   0.958          0 NA 0.620
#> SRR1036088     2   0.958          0 NA 0.620
#> SRR1036089     2   0.958          0 NA 0.620
#> SRR1036095     2   0.881          0 NA 0.700
#> SRR1036096     2   0.881          0 NA 0.700
#> SRR1036097     2   0.881          0 NA 0.700
#> SRR1036098     2   0.881          0 NA 0.700
#> SRR1036099     2   0.881          0 NA 0.700
#> SRR1036100     2   0.821          0 NA 0.744
#> SRR1036101     2   0.821          0 NA 0.744
#> SRR1036102     2   0.821          0 NA 0.744
#> SRR1036103     2   0.821          0 NA 0.744
#> SRR1036104     2   0.821          0 NA 0.744
#> SRR1036105     2   0.955          0 NA 0.624
#> SRR1036106     2   0.955          0 NA 0.624
#> SRR1036107     2   0.955          0 NA 0.624
#> SRR1036108     2   0.955          0 NA 0.624
#> SRR1036109     2   0.955          0 NA 0.624
#> SRR1036110     2   0.653          0 NA 0.832
#> SRR1036111     2   0.653          0 NA 0.832
#> SRR1036112     2   0.653          0 NA 0.832
#> SRR1036113     2   0.653          0 NA 0.832
#> SRR1036114     2   0.653          0 NA 0.832
#> SRR1036115     2   0.855          0 NA 0.720
#> SRR1036116     2   0.855          0 NA 0.720
#> SRR1036117     2   0.855          0 NA 0.720
#> SRR1036118     2   0.855          0 NA 0.720
#> SRR1036119     2   0.855          0 NA 0.720
#> SRR1036120     2   0.781          0 NA 0.768
#> SRR1036121     2   0.781          0 NA 0.768
#> SRR1036122     2   0.781          0 NA 0.768
#> SRR1036123     2   0.781          0 NA 0.768
#> SRR1036124     2   0.781          0 NA 0.768
#> SRR1036125     2   0.506          0 NA 0.888
#> SRR1036126     2   0.506          0 NA 0.888
#> SRR1036127     2   0.506          0 NA 0.888
#> SRR1036128     2   0.506          0 NA 0.888
#> SRR1036129     2   0.506          0 NA 0.888
#> SRR1036130     2   0.506          0 NA 0.888
#> SRR1036131     2   0.506          0 NA 0.888
#> SRR1036132     2   0.506          0 NA 0.888
#> SRR1036133     2   0.808          0 NA 0.752
#> SRR1036134     2   0.808          0 NA 0.752
#> SRR1036135     2   0.808          0 NA 0.752
#> SRR1036136     2   0.808          0 NA 0.752
#> SRR1036137     2   0.808          0 NA 0.752
#> SRR1036138     2   0.844          0 NA 0.728
#> SRR1036139     2   0.844          0 NA 0.728
#> SRR1036140     2   0.844          0 NA 0.728
#> SRR1036141     2   0.844          0 NA 0.728
#> SRR1036142     2   0.844          0 NA 0.728
#> SRR1036143     2   0.844          0 NA 0.728
#> SRR1036144     2   0.844          0 NA 0.728
#> SRR1036145     2   0.844          0 NA 0.728

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette p1    p2    p3
#> SRR1036002     2   0.756     0.2424 NA 0.692 0.164
#> SRR1036003     2   0.756     0.2424 NA 0.692 0.164
#> SRR1036004     2   0.756     0.2424 NA 0.692 0.164
#> SRR1036005     3   0.798     0.9738 NA 0.400 0.536
#> SRR1036006     3   0.798     0.9738 NA 0.400 0.536
#> SRR1036007     3   0.798     0.9738 NA 0.400 0.536
#> SRR1036008     3   0.798     0.9738 NA 0.400 0.536
#> SRR1036009     3   0.798     0.9738 NA 0.400 0.536
#> SRR1036013     2   0.683     0.3097 NA 0.740 0.148
#> SRR1036014     2   0.683     0.3097 NA 0.740 0.148
#> SRR1036015     2   0.683     0.3097 NA 0.740 0.148
#> SRR1036016     2   0.683     0.3097 NA 0.740 0.148
#> SRR1036017     2   0.683     0.3097 NA 0.740 0.148
#> SRR1036018     2   0.683     0.3097 NA 0.740 0.148
#> SRR1036010     2   0.456     0.4420 NA 0.860 0.080
#> SRR1036011     2   0.456     0.4420 NA 0.860 0.080
#> SRR1036012     2   0.456     0.4420 NA 0.860 0.080
#> SRR1036019     2   0.813     0.3599 NA 0.528 0.072
#> SRR1036020     2   0.813     0.3599 NA 0.528 0.072
#> SRR1036021     2   0.813     0.3599 NA 0.528 0.072
#> SRR1036022     2   0.813     0.3599 NA 0.528 0.072
#> SRR1036023     2   0.813     0.3599 NA 0.528 0.072
#> SRR1036024     2   0.215     0.5023 NA 0.948 0.016
#> SRR1036025     2   0.215     0.5023 NA 0.948 0.016
#> SRR1036026     2   0.215     0.5023 NA 0.948 0.016
#> SRR1036027     2   0.215     0.5023 NA 0.948 0.016
#> SRR1036028     2   0.215     0.5023 NA 0.948 0.016
#> SRR1036029     2   0.215     0.5023 NA 0.948 0.016
#> SRR1036030     2   0.731     0.4412 NA 0.616 0.044
#> SRR1036031     2   0.731     0.4412 NA 0.616 0.044
#> SRR1036032     2   0.731     0.4412 NA 0.616 0.044
#> SRR1036033     2   0.731     0.4412 NA 0.616 0.044
#> SRR1036034     2   0.731     0.4412 NA 0.616 0.044
#> SRR1036035     2   0.731     0.4412 NA 0.616 0.044
#> SRR1036036     2   0.731     0.4412 NA 0.616 0.044
#> SRR1036037     2   0.731     0.4412 NA 0.616 0.044
#> SRR1036038     2   0.541     0.4526 NA 0.820 0.076
#> SRR1036039     2   0.541     0.4526 NA 0.820 0.076
#> SRR1036040     2   0.541     0.4526 NA 0.820 0.076
#> SRR1036041     2   0.298     0.5061 NA 0.920 0.024
#> SRR1036042     2   0.756     0.2876 NA 0.692 0.148
#> SRR1036043     2   0.756     0.2876 NA 0.692 0.148
#> SRR1036044     2   0.756     0.2876 NA 0.692 0.148
#> SRR1036045     2   0.756     0.2876 NA 0.692 0.148
#> SRR1036046     2   0.756     0.2876 NA 0.692 0.148
#> SRR1036047     2   0.756     0.2876 NA 0.692 0.148
#> SRR1036048     2   0.756     0.2876 NA 0.692 0.148
#> SRR1036049     2   0.756     0.2876 NA 0.692 0.148
#> SRR1036050     2   0.662     0.4480 NA 0.752 0.100
#> SRR1036051     2   0.662     0.4480 NA 0.752 0.100
#> SRR1036052     2   0.662     0.4480 NA 0.752 0.100
#> SRR1036053     2   0.662     0.4480 NA 0.752 0.100
#> SRR1036054     2   0.662     0.4480 NA 0.752 0.100
#> SRR1036055     2   0.729     0.4635 NA 0.632 0.048
#> SRR1036056     2   0.729     0.4635 NA 0.632 0.048
#> SRR1036057     2   0.729     0.4635 NA 0.632 0.048
#> SRR1036058     2   0.936     0.1405 NA 0.456 0.372
#> SRR1036059     2   0.930     0.1406 NA 0.456 0.380
#> SRR1036060     2   0.933     0.1406 NA 0.456 0.376
#> SRR1036061     2   0.930     0.1406 NA 0.456 0.380
#> SRR1036062     2   0.930     0.1406 NA 0.456 0.380
#> SRR1036063     2   0.930     0.1406 NA 0.456 0.380
#> SRR1036064     2   0.933     0.1406 NA 0.456 0.376
#> SRR1036065     2   0.936     0.1405 NA 0.456 0.372
#> SRR1036066     2   0.256     0.4920 NA 0.936 0.028
#> SRR1036067     2   0.256     0.4920 NA 0.936 0.028
#> SRR1036068     2   0.256     0.4920 NA 0.936 0.028
#> SRR1036069     2   0.256     0.4920 NA 0.936 0.028
#> SRR1036070     2   0.256     0.4920 NA 0.936 0.028
#> SRR1036071     2   0.256     0.4920 NA 0.936 0.028
#> SRR1036072     2   0.256     0.4920 NA 0.936 0.028
#> SRR1036073     2   0.256     0.4920 NA 0.936 0.028
#> SRR1036074     2   0.875     0.3607 NA 0.548 0.132
#> SRR1036075     2   0.875     0.3607 NA 0.548 0.132
#> SRR1036076     2   0.875     0.3607 NA 0.548 0.132
#> SRR1036077     2   0.875     0.3607 NA 0.548 0.132
#> SRR1036078     2   0.875     0.3607 NA 0.548 0.132
#> SRR1036079     2   0.875     0.3607 NA 0.548 0.132
#> SRR1036080     2   0.875     0.3607 NA 0.548 0.132
#> SRR1036081     2   0.875     0.3607 NA 0.548 0.132
#> SRR1036082     2   0.885     0.3320 NA 0.504 0.124
#> SRR1036083     2   0.885     0.3320 NA 0.504 0.124
#> SRR1036084     2   0.885     0.3320 NA 0.504 0.124
#> SRR1036090     2   0.634     0.4539 NA 0.736 0.044
#> SRR1036091     2   0.634     0.4539 NA 0.736 0.044
#> SRR1036092     2   0.634     0.4539 NA 0.736 0.044
#> SRR1036093     2   0.634     0.4539 NA 0.736 0.044
#> SRR1036094     2   0.634     0.4539 NA 0.736 0.044
#> SRR1036085     3   0.808     0.9606 NA 0.384 0.544
#> SRR1036086     3   0.808     0.9606 NA 0.384 0.544
#> SRR1036087     3   0.808     0.9606 NA 0.384 0.544
#> SRR1036088     3   0.808     0.9606 NA 0.384 0.544
#> SRR1036089     3   0.808     0.9606 NA 0.384 0.544
#> SRR1036095     2   0.827     0.3703 NA 0.632 0.212
#> SRR1036096     2   0.827     0.3703 NA 0.632 0.212
#> SRR1036097     2   0.827     0.3703 NA 0.632 0.212
#> SRR1036098     2   0.827     0.3703 NA 0.632 0.212
#> SRR1036099     2   0.827     0.3703 NA 0.632 0.212
#> SRR1036100     2   0.794     0.4645 NA 0.592 0.076
#> SRR1036101     2   0.794     0.4645 NA 0.592 0.076
#> SRR1036102     2   0.794     0.4645 NA 0.592 0.076
#> SRR1036103     2   0.794     0.4645 NA 0.592 0.076
#> SRR1036104     2   0.794     0.4645 NA 0.592 0.076
#> SRR1036105     3   0.797     0.9761 NA 0.396 0.540
#> SRR1036106     3   0.797     0.9761 NA 0.396 0.540
#> SRR1036107     3   0.797     0.9761 NA 0.396 0.540
#> SRR1036108     3   0.797     0.9761 NA 0.396 0.540
#> SRR1036109     3   0.797     0.9761 NA 0.396 0.540
#> SRR1036110     2   0.611     0.4531 NA 0.784 0.104
#> SRR1036111     2   0.611     0.4531 NA 0.784 0.104
#> SRR1036112     2   0.611     0.4531 NA 0.784 0.104
#> SRR1036113     2   0.611     0.4531 NA 0.784 0.104
#> SRR1036114     2   0.611     0.4531 NA 0.784 0.104
#> SRR1036115     2   0.839     0.3754 NA 0.624 0.204
#> SRR1036116     2   0.839     0.3754 NA 0.624 0.204
#> SRR1036117     2   0.839     0.3754 NA 0.624 0.204
#> SRR1036118     2   0.839     0.3754 NA 0.624 0.204
#> SRR1036119     2   0.839     0.3754 NA 0.624 0.204
#> SRR1036120     2   0.834    -0.0919 NA 0.612 0.256
#> SRR1036121     2   0.834    -0.0919 NA 0.612 0.256
#> SRR1036122     2   0.834    -0.0919 NA 0.612 0.256
#> SRR1036123     2   0.834    -0.0919 NA 0.612 0.256
#> SRR1036124     2   0.834    -0.0919 NA 0.612 0.256
#> SRR1036125     2   0.409     0.4740 NA 0.880 0.064
#> SRR1036126     2   0.409     0.4740 NA 0.880 0.064
#> SRR1036127     2   0.409     0.4740 NA 0.880 0.064
#> SRR1036128     2   0.409     0.4740 NA 0.880 0.064
#> SRR1036129     2   0.409     0.4740 NA 0.880 0.064
#> SRR1036130     2   0.409     0.4740 NA 0.880 0.064
#> SRR1036131     2   0.409     0.4740 NA 0.880 0.064
#> SRR1036132     2   0.409     0.4740 NA 0.880 0.064
#> SRR1036133     2   0.695     0.3840 NA 0.508 0.016
#> SRR1036134     2   0.695     0.3840 NA 0.508 0.016
#> SRR1036135     2   0.695     0.3840 NA 0.508 0.016
#> SRR1036136     2   0.695     0.3840 NA 0.508 0.016
#> SRR1036137     2   0.695     0.3840 NA 0.508 0.016
#> SRR1036138     2   0.834     0.2730 NA 0.464 0.080
#> SRR1036139     2   0.834     0.2730 NA 0.464 0.080
#> SRR1036140     2   0.834     0.2730 NA 0.464 0.080
#> SRR1036141     2   0.834     0.2730 NA 0.464 0.080
#> SRR1036142     2   0.834     0.2730 NA 0.464 0.080
#> SRR1036143     2   0.834     0.2730 NA 0.464 0.080
#> SRR1036144     2   0.834     0.2730 NA 0.464 0.080
#> SRR1036145     2   0.834     0.2730 NA 0.464 0.080

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1036002     1   0.735     0.3045 0.620 0.132 0.208 0.040
#> SRR1036003     1   0.735     0.3045 0.620 0.132 0.208 0.040
#> SRR1036004     1   0.735     0.3045 0.620 0.132 0.208 0.040
#> SRR1036005     3   0.478     0.9624 0.272 0.016 0.712 0.000
#> SRR1036006     3   0.478     0.9624 0.272 0.016 0.712 0.000
#> SRR1036007     3   0.478     0.9624 0.272 0.016 0.712 0.000
#> SRR1036008     3   0.478     0.9624 0.272 0.016 0.712 0.000
#> SRR1036009     3   0.478     0.9624 0.272 0.016 0.712 0.000
#> SRR1036013     1   0.716     0.3115 0.656 0.076 0.184 0.084
#> SRR1036014     1   0.716     0.3115 0.656 0.076 0.184 0.084
#> SRR1036015     1   0.716     0.3115 0.656 0.076 0.184 0.084
#> SRR1036016     1   0.716     0.3115 0.656 0.076 0.184 0.084
#> SRR1036017     1   0.716     0.3115 0.656 0.076 0.184 0.084
#> SRR1036018     1   0.716     0.3115 0.656 0.076 0.184 0.084
#> SRR1036010     1   0.515     0.4211 0.800 0.076 0.080 0.044
#> SRR1036011     1   0.515     0.4211 0.800 0.076 0.080 0.044
#> SRR1036012     1   0.515     0.4211 0.800 0.076 0.080 0.044
#> SRR1036019     2   0.780     0.5408 0.416 0.448 0.092 0.044
#> SRR1036020     2   0.780     0.5408 0.416 0.448 0.092 0.044
#> SRR1036021     2   0.780     0.5408 0.416 0.448 0.092 0.044
#> SRR1036022     2   0.780     0.5408 0.416 0.448 0.092 0.044
#> SRR1036023     2   0.780     0.5408 0.416 0.448 0.092 0.044
#> SRR1036024     1   0.199     0.4478 0.944 0.020 0.012 0.024
#> SRR1036025     1   0.199     0.4478 0.944 0.020 0.012 0.024
#> SRR1036026     1   0.199     0.4478 0.944 0.020 0.012 0.024
#> SRR1036027     1   0.199     0.4478 0.944 0.020 0.012 0.024
#> SRR1036028     1   0.199     0.4478 0.944 0.020 0.012 0.024
#> SRR1036029     1   0.199     0.4478 0.944 0.020 0.012 0.024
#> SRR1036030     2   0.769     0.5146 0.420 0.456 0.068 0.056
#> SRR1036031     2   0.769     0.5146 0.420 0.456 0.068 0.056
#> SRR1036032     2   0.769     0.5146 0.420 0.456 0.068 0.056
#> SRR1036033     2   0.769     0.5146 0.420 0.456 0.068 0.056
#> SRR1036034     2   0.769     0.5146 0.420 0.456 0.068 0.056
#> SRR1036035     2   0.769     0.5146 0.420 0.456 0.068 0.056
#> SRR1036036     2   0.769     0.5146 0.420 0.456 0.068 0.056
#> SRR1036037     2   0.769     0.5146 0.420 0.456 0.068 0.056
#> SRR1036038     1   0.594     0.3445 0.736 0.128 0.112 0.024
#> SRR1036039     1   0.594     0.3445 0.736 0.128 0.112 0.024
#> SRR1036040     1   0.594     0.3445 0.736 0.128 0.112 0.024
#> SRR1036041     1   0.309     0.4114 0.900 0.048 0.032 0.020
#> SRR1036042     1   0.733     0.3067 0.628 0.156 0.176 0.040
#> SRR1036043     1   0.733     0.3067 0.628 0.156 0.176 0.040
#> SRR1036044     1   0.733     0.3067 0.628 0.156 0.176 0.040
#> SRR1036045     1   0.733     0.3067 0.628 0.156 0.176 0.040
#> SRR1036046     1   0.733     0.3067 0.628 0.156 0.176 0.040
#> SRR1036047     1   0.733     0.3067 0.628 0.156 0.176 0.040
#> SRR1036048     1   0.733     0.3067 0.628 0.156 0.176 0.040
#> SRR1036049     1   0.733     0.3067 0.628 0.156 0.176 0.040
#> SRR1036050     1   0.730     0.3230 0.656 0.144 0.080 0.120
#> SRR1036051     1   0.730     0.3230 0.656 0.144 0.080 0.120
#> SRR1036052     1   0.730     0.3230 0.656 0.144 0.080 0.120
#> SRR1036053     1   0.730     0.3230 0.656 0.144 0.080 0.120
#> SRR1036054     1   0.730     0.3230 0.656 0.144 0.080 0.120
#> SRR1036055     1   0.745    -0.3224 0.512 0.376 0.052 0.060
#> SRR1036056     1   0.745    -0.3224 0.512 0.376 0.052 0.060
#> SRR1036057     1   0.745    -0.3224 0.512 0.376 0.052 0.060
#> SRR1036058     4   0.702     0.9966 0.320 0.032 0.068 0.580
#> SRR1036059     4   0.702     0.9966 0.320 0.032 0.068 0.580
#> SRR1036060     4   0.694     0.9971 0.320 0.028 0.068 0.584
#> SRR1036061     4   0.700     0.9966 0.320 0.028 0.072 0.580
#> SRR1036062     4   0.706     0.9952 0.320 0.028 0.076 0.576
#> SRR1036063     4   0.714     0.9947 0.320 0.032 0.076 0.572
#> SRR1036064     4   0.694     0.9971 0.320 0.028 0.068 0.584
#> SRR1036065     4   0.694     0.9971 0.320 0.028 0.068 0.584
#> SRR1036066     1   0.242     0.4484 0.928 0.032 0.020 0.020
#> SRR1036067     1   0.242     0.4484 0.928 0.032 0.020 0.020
#> SRR1036068     1   0.242     0.4484 0.928 0.032 0.020 0.020
#> SRR1036069     1   0.242     0.4484 0.928 0.032 0.020 0.020
#> SRR1036070     1   0.242     0.4484 0.928 0.032 0.020 0.020
#> SRR1036071     1   0.242     0.4484 0.928 0.032 0.020 0.020
#> SRR1036072     1   0.242     0.4484 0.928 0.032 0.020 0.020
#> SRR1036073     1   0.242     0.4484 0.928 0.032 0.020 0.020
#> SRR1036074     1   0.889     0.0504 0.404 0.244 0.056 0.296
#> SRR1036075     1   0.889     0.0504 0.404 0.244 0.056 0.296
#> SRR1036076     1   0.889     0.0504 0.404 0.244 0.056 0.296
#> SRR1036077     1   0.889     0.0504 0.404 0.244 0.056 0.296
#> SRR1036078     1   0.889     0.0504 0.404 0.244 0.056 0.296
#> SRR1036079     1   0.889     0.0504 0.404 0.244 0.056 0.296
#> SRR1036080     1   0.889     0.0504 0.404 0.244 0.056 0.296
#> SRR1036081     1   0.889     0.0504 0.404 0.244 0.056 0.296
#> SRR1036082     1   0.900    -0.0614 0.384 0.280 0.060 0.276
#> SRR1036083     1   0.900    -0.0614 0.384 0.280 0.060 0.276
#> SRR1036084     1   0.900    -0.0614 0.384 0.280 0.060 0.276
#> SRR1036090     1   0.588     0.1220 0.696 0.224 0.072 0.008
#> SRR1036091     1   0.588     0.1220 0.696 0.224 0.072 0.008
#> SRR1036092     1   0.588     0.1220 0.696 0.224 0.072 0.008
#> SRR1036093     1   0.588     0.1220 0.696 0.224 0.072 0.008
#> SRR1036094     1   0.588     0.1220 0.696 0.224 0.072 0.008
#> SRR1036085     3   0.522     0.9473 0.256 0.016 0.712 0.016
#> SRR1036086     3   0.522     0.9473 0.256 0.016 0.712 0.016
#> SRR1036087     3   0.522     0.9473 0.256 0.016 0.712 0.016
#> SRR1036088     3   0.522     0.9473 0.256 0.016 0.712 0.016
#> SRR1036089     3   0.522     0.9473 0.256 0.016 0.712 0.016
#> SRR1036095     1   0.851    -0.0612 0.460 0.100 0.096 0.344
#> SRR1036096     1   0.851    -0.0612 0.460 0.100 0.096 0.344
#> SRR1036097     1   0.851    -0.0612 0.460 0.100 0.096 0.344
#> SRR1036098     1   0.851    -0.0612 0.460 0.100 0.096 0.344
#> SRR1036099     1   0.851    -0.0612 0.460 0.100 0.096 0.344
#> SRR1036100     1   0.834    -0.1324 0.496 0.288 0.052 0.164
#> SRR1036101     1   0.834    -0.1324 0.496 0.288 0.052 0.164
#> SRR1036102     1   0.834    -0.1324 0.496 0.288 0.052 0.164
#> SRR1036103     1   0.834    -0.1324 0.496 0.288 0.052 0.164
#> SRR1036104     1   0.834    -0.1324 0.496 0.288 0.052 0.164
#> SRR1036105     3   0.503     0.9661 0.284 0.016 0.696 0.004
#> SRR1036106     3   0.503     0.9661 0.284 0.016 0.696 0.004
#> SRR1036107     3   0.503     0.9661 0.284 0.016 0.696 0.004
#> SRR1036108     3   0.503     0.9661 0.284 0.016 0.696 0.004
#> SRR1036109     3   0.503     0.9661 0.284 0.016 0.696 0.004
#> SRR1036110     1   0.668     0.4068 0.704 0.080 0.088 0.128
#> SRR1036111     1   0.668     0.4068 0.704 0.080 0.088 0.128
#> SRR1036112     1   0.668     0.4068 0.704 0.080 0.088 0.128
#> SRR1036113     1   0.668     0.4068 0.704 0.080 0.088 0.128
#> SRR1036114     1   0.668     0.4068 0.704 0.080 0.088 0.128
#> SRR1036115     1   0.838    -0.0197 0.480 0.084 0.104 0.332
#> SRR1036116     1   0.838    -0.0197 0.480 0.084 0.104 0.332
#> SRR1036117     1   0.838    -0.0197 0.480 0.084 0.104 0.332
#> SRR1036118     1   0.838    -0.0197 0.480 0.084 0.104 0.332
#> SRR1036119     1   0.838    -0.0197 0.480 0.084 0.104 0.332
#> SRR1036120     1   0.838     0.2020 0.524 0.128 0.264 0.084
#> SRR1036121     1   0.838     0.2020 0.524 0.128 0.264 0.084
#> SRR1036122     1   0.838     0.2020 0.524 0.128 0.264 0.084
#> SRR1036123     1   0.838     0.2020 0.524 0.128 0.264 0.084
#> SRR1036124     1   0.838     0.2020 0.524 0.128 0.264 0.084
#> SRR1036125     1   0.370     0.4493 0.864 0.024 0.092 0.020
#> SRR1036126     1   0.370     0.4493 0.864 0.024 0.092 0.020
#> SRR1036127     1   0.370     0.4493 0.864 0.024 0.092 0.020
#> SRR1036128     1   0.370     0.4493 0.864 0.024 0.092 0.020
#> SRR1036129     1   0.370     0.4493 0.864 0.024 0.092 0.020
#> SRR1036130     1   0.370     0.4493 0.864 0.024 0.092 0.020
#> SRR1036131     1   0.370     0.4493 0.864 0.024 0.092 0.020
#> SRR1036132     1   0.370     0.4493 0.864 0.024 0.092 0.020
#> SRR1036133     2   0.613     0.6432 0.416 0.544 0.012 0.028
#> SRR1036134     2   0.613     0.6432 0.416 0.544 0.012 0.028
#> SRR1036135     2   0.613     0.6432 0.416 0.544 0.012 0.028
#> SRR1036136     2   0.613     0.6432 0.416 0.544 0.012 0.028
#> SRR1036137     2   0.613     0.6432 0.416 0.544 0.012 0.028
#> SRR1036138     2   0.700     0.6470 0.372 0.524 0.096 0.008
#> SRR1036139     2   0.700     0.6470 0.372 0.524 0.096 0.008
#> SRR1036140     2   0.700     0.6470 0.372 0.524 0.096 0.008
#> SRR1036141     2   0.700     0.6470 0.372 0.524 0.096 0.008
#> SRR1036142     2   0.700     0.6470 0.372 0.524 0.096 0.008
#> SRR1036143     2   0.700     0.6470 0.372 0.524 0.096 0.008
#> SRR1036144     2   0.700     0.6470 0.372 0.524 0.096 0.008
#> SRR1036145     2   0.700     0.6470 0.372 0.524 0.096 0.008

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1036002     1   0.818     0.3859 0.516 0.176 0.160 0.048 0.100
#> SRR1036003     1   0.818     0.3859 0.516 0.176 0.160 0.048 0.100
#> SRR1036004     1   0.818     0.3859 0.516 0.176 0.160 0.048 0.100
#> SRR1036005     3   0.432     0.9605 0.208 0.008 0.756 0.016 0.012
#> SRR1036006     3   0.432     0.9605 0.208 0.008 0.756 0.016 0.012
#> SRR1036007     3   0.432     0.9605 0.208 0.008 0.756 0.016 0.012
#> SRR1036008     3   0.432     0.9605 0.208 0.008 0.756 0.016 0.012
#> SRR1036009     3   0.432     0.9605 0.208 0.008 0.756 0.016 0.012
#> SRR1036013     1   0.705     0.2057 0.608 0.036 0.204 0.092 0.060
#> SRR1036014     1   0.705     0.2057 0.608 0.036 0.204 0.092 0.060
#> SRR1036015     1   0.705     0.2057 0.608 0.036 0.204 0.092 0.060
#> SRR1036016     1   0.705     0.2057 0.608 0.036 0.204 0.092 0.060
#> SRR1036017     1   0.705     0.2057 0.608 0.036 0.204 0.092 0.060
#> SRR1036018     1   0.705     0.2057 0.608 0.036 0.204 0.092 0.060
#> SRR1036010     1   0.624     0.4883 0.708 0.072 0.060 0.064 0.096
#> SRR1036011     1   0.624     0.4883 0.708 0.072 0.060 0.064 0.096
#> SRR1036012     1   0.624     0.4883 0.708 0.072 0.060 0.064 0.096
#> SRR1036019     2   0.727     0.5434 0.288 0.540 0.048 0.036 0.088
#> SRR1036020     2   0.727     0.5434 0.288 0.540 0.048 0.036 0.088
#> SRR1036021     2   0.727     0.5434 0.288 0.540 0.048 0.036 0.088
#> SRR1036022     2   0.727     0.5434 0.288 0.540 0.048 0.036 0.088
#> SRR1036023     2   0.727     0.5434 0.288 0.540 0.048 0.036 0.088
#> SRR1036024     1   0.317     0.4734 0.884 0.036 0.020 0.016 0.044
#> SRR1036025     1   0.317     0.4734 0.884 0.036 0.020 0.016 0.044
#> SRR1036026     1   0.317     0.4734 0.884 0.036 0.020 0.016 0.044
#> SRR1036027     1   0.317     0.4734 0.884 0.036 0.020 0.016 0.044
#> SRR1036028     1   0.317     0.4734 0.884 0.036 0.020 0.016 0.044
#> SRR1036029     1   0.317     0.4734 0.884 0.036 0.020 0.016 0.044
#> SRR1036030     2   0.860     0.4804 0.336 0.360 0.032 0.116 0.156
#> SRR1036031     2   0.856     0.4806 0.336 0.364 0.032 0.108 0.160
#> SRR1036032     2   0.857     0.4805 0.336 0.364 0.032 0.112 0.156
#> SRR1036033     2   0.857     0.4805 0.336 0.364 0.032 0.112 0.156
#> SRR1036034     2   0.858     0.4804 0.336 0.364 0.032 0.116 0.152
#> SRR1036035     2   0.856     0.4806 0.336 0.364 0.032 0.108 0.160
#> SRR1036036     2   0.858     0.4804 0.336 0.364 0.032 0.116 0.152
#> SRR1036037     2   0.854     0.4805 0.336 0.368 0.032 0.108 0.156
#> SRR1036038     1   0.675     0.4783 0.656 0.148 0.052 0.052 0.092
#> SRR1036039     1   0.675     0.4783 0.656 0.148 0.052 0.052 0.092
#> SRR1036040     1   0.675     0.4783 0.656 0.148 0.052 0.052 0.092
#> SRR1036041     1   0.375     0.4693 0.852 0.052 0.008 0.040 0.048
#> SRR1036042     1   0.801     0.3804 0.532 0.188 0.136 0.044 0.100
#> SRR1036043     1   0.801     0.3804 0.532 0.188 0.136 0.044 0.100
#> SRR1036044     1   0.801     0.3804 0.532 0.188 0.136 0.044 0.100
#> SRR1036045     1   0.801     0.3804 0.532 0.188 0.136 0.044 0.100
#> SRR1036046     1   0.801     0.3804 0.532 0.188 0.136 0.044 0.100
#> SRR1036047     1   0.801     0.3804 0.532 0.188 0.136 0.044 0.100
#> SRR1036048     1   0.801     0.3804 0.532 0.188 0.136 0.044 0.100
#> SRR1036049     1   0.801     0.3804 0.532 0.188 0.136 0.044 0.100
#> SRR1036050     1   0.715     0.0641 0.588 0.052 0.040 0.228 0.092
#> SRR1036051     1   0.715     0.0641 0.588 0.052 0.040 0.228 0.092
#> SRR1036052     1   0.715     0.0641 0.588 0.052 0.040 0.228 0.092
#> SRR1036053     1   0.715     0.0641 0.588 0.052 0.040 0.228 0.092
#> SRR1036054     1   0.715     0.0641 0.588 0.052 0.040 0.228 0.092
#> SRR1036055     1   0.808    -0.2479 0.452 0.300 0.024 0.112 0.112
#> SRR1036056     1   0.808    -0.2479 0.452 0.300 0.024 0.112 0.112
#> SRR1036057     1   0.808    -0.2479 0.452 0.300 0.024 0.112 0.112
#> SRR1036058     4   0.885     0.4245 0.320 0.044 0.116 0.344 0.176
#> SRR1036059     4   0.892     0.4249 0.320 0.052 0.112 0.340 0.176
#> SRR1036060     4   0.873     0.4250 0.320 0.032 0.120 0.348 0.180
#> SRR1036061     4   0.882     0.4252 0.320 0.040 0.116 0.344 0.180
#> SRR1036062     4   0.894     0.4244 0.320 0.052 0.112 0.336 0.180
#> SRR1036063     4   0.894     0.4244 0.320 0.052 0.112 0.336 0.180
#> SRR1036064     4   0.873     0.4250 0.320 0.032 0.120 0.348 0.180
#> SRR1036065     4   0.876     0.4247 0.320 0.036 0.116 0.348 0.180
#> SRR1036066     1   0.190     0.5001 0.940 0.024 0.008 0.016 0.012
#> SRR1036067     1   0.190     0.5001 0.940 0.024 0.008 0.016 0.012
#> SRR1036068     1   0.190     0.5001 0.940 0.024 0.008 0.016 0.012
#> SRR1036069     1   0.190     0.5001 0.940 0.024 0.008 0.016 0.012
#> SRR1036070     1   0.190     0.5001 0.940 0.024 0.008 0.016 0.012
#> SRR1036071     1   0.190     0.5001 0.940 0.024 0.008 0.016 0.012
#> SRR1036072     1   0.190     0.5001 0.940 0.024 0.008 0.016 0.012
#> SRR1036073     1   0.190     0.5001 0.940 0.024 0.008 0.016 0.012
#> SRR1036074     5   0.628     0.8963 0.328 0.084 0.024 0.004 0.560
#> SRR1036075     5   0.628     0.8963 0.328 0.084 0.024 0.004 0.560
#> SRR1036076     5   0.639     0.8963 0.328 0.084 0.024 0.008 0.556
#> SRR1036077     5   0.639     0.8963 0.328 0.084 0.024 0.008 0.556
#> SRR1036078     5   0.639     0.8963 0.328 0.084 0.024 0.008 0.556
#> SRR1036079     5   0.639     0.8963 0.328 0.084 0.024 0.008 0.556
#> SRR1036080     5   0.628     0.8963 0.328 0.084 0.024 0.004 0.560
#> SRR1036081     5   0.628     0.8963 0.328 0.084 0.024 0.004 0.560
#> SRR1036082     5   0.774     0.6859 0.304 0.084 0.048 0.068 0.496
#> SRR1036083     5   0.774     0.6859 0.304 0.084 0.048 0.068 0.496
#> SRR1036084     5   0.774     0.6859 0.304 0.084 0.048 0.068 0.496
#> SRR1036090     1   0.636     0.1998 0.584 0.312 0.044 0.024 0.036
#> SRR1036091     1   0.636     0.1998 0.584 0.312 0.044 0.024 0.036
#> SRR1036092     1   0.636     0.1998 0.584 0.312 0.044 0.024 0.036
#> SRR1036093     1   0.636     0.1998 0.584 0.312 0.044 0.024 0.036
#> SRR1036094     1   0.636     0.1998 0.584 0.312 0.044 0.024 0.036
#> SRR1036085     3   0.468     0.9492 0.192 0.016 0.752 0.024 0.016
#> SRR1036086     3   0.468     0.9492 0.192 0.016 0.752 0.024 0.016
#> SRR1036087     3   0.468     0.9492 0.192 0.016 0.752 0.024 0.016
#> SRR1036088     3   0.468     0.9492 0.192 0.016 0.752 0.024 0.016
#> SRR1036089     3   0.468     0.9492 0.192 0.016 0.752 0.024 0.016
#> SRR1036095     4   0.683     0.5782 0.420 0.020 0.052 0.460 0.048
#> SRR1036096     4   0.683     0.5782 0.420 0.020 0.052 0.460 0.048
#> SRR1036097     4   0.683     0.5782 0.420 0.020 0.052 0.460 0.048
#> SRR1036098     4   0.683     0.5782 0.420 0.020 0.052 0.460 0.048
#> SRR1036099     4   0.683     0.5782 0.420 0.020 0.052 0.460 0.048
#> SRR1036100     1   0.838    -0.1947 0.412 0.228 0.036 0.064 0.260
#> SRR1036101     1   0.838    -0.1947 0.412 0.228 0.036 0.064 0.260
#> SRR1036102     1   0.838    -0.1947 0.412 0.228 0.036 0.064 0.260
#> SRR1036103     1   0.838    -0.1947 0.412 0.228 0.036 0.064 0.260
#> SRR1036104     1   0.838    -0.1947 0.412 0.228 0.036 0.064 0.260
#> SRR1036105     3   0.373     0.9640 0.204 0.004 0.780 0.008 0.004
#> SRR1036106     3   0.373     0.9640 0.204 0.004 0.780 0.008 0.004
#> SRR1036107     3   0.373     0.9640 0.204 0.004 0.780 0.008 0.004
#> SRR1036108     3   0.373     0.9640 0.204 0.004 0.780 0.008 0.004
#> SRR1036109     3   0.373     0.9640 0.204 0.004 0.780 0.008 0.004
#> SRR1036110     1   0.647     0.3296 0.664 0.056 0.084 0.028 0.168
#> SRR1036111     1   0.647     0.3296 0.664 0.056 0.084 0.028 0.168
#> SRR1036112     1   0.647     0.3296 0.664 0.056 0.084 0.028 0.168
#> SRR1036113     1   0.647     0.3296 0.664 0.056 0.084 0.028 0.168
#> SRR1036114     1   0.647     0.3296 0.664 0.056 0.084 0.028 0.168
#> SRR1036115     4   0.638     0.5575 0.428 0.016 0.048 0.480 0.028
#> SRR1036116     4   0.638     0.5575 0.428 0.016 0.048 0.480 0.028
#> SRR1036117     4   0.638     0.5575 0.428 0.016 0.048 0.480 0.028
#> SRR1036118     4   0.638     0.5575 0.428 0.016 0.048 0.480 0.028
#> SRR1036119     4   0.638     0.5575 0.428 0.016 0.048 0.480 0.028
#> SRR1036120     1   0.892     0.1603 0.424 0.076 0.228 0.160 0.112
#> SRR1036121     1   0.892     0.1603 0.424 0.076 0.228 0.160 0.112
#> SRR1036122     1   0.892     0.1603 0.424 0.076 0.228 0.160 0.112
#> SRR1036123     1   0.892     0.1603 0.424 0.076 0.228 0.160 0.112
#> SRR1036124     1   0.892     0.1603 0.424 0.076 0.228 0.160 0.112
#> SRR1036125     1   0.456     0.4331 0.812 0.028 0.072 0.044 0.044
#> SRR1036126     1   0.456     0.4331 0.812 0.028 0.072 0.044 0.044
#> SRR1036127     1   0.456     0.4331 0.812 0.028 0.072 0.044 0.044
#> SRR1036128     1   0.456     0.4331 0.812 0.028 0.072 0.044 0.044
#> SRR1036129     1   0.456     0.4331 0.812 0.028 0.072 0.044 0.044
#> SRR1036130     1   0.456     0.4331 0.812 0.028 0.072 0.044 0.044
#> SRR1036131     1   0.456     0.4331 0.812 0.028 0.072 0.044 0.044
#> SRR1036132     1   0.456     0.4331 0.812 0.028 0.072 0.044 0.044
#> SRR1036133     2   0.676     0.6131 0.276 0.584 0.024 0.048 0.068
#> SRR1036134     2   0.676     0.6131 0.276 0.584 0.024 0.048 0.068
#> SRR1036135     2   0.676     0.6131 0.276 0.584 0.024 0.048 0.068
#> SRR1036136     2   0.676     0.6131 0.276 0.584 0.024 0.048 0.068
#> SRR1036137     2   0.676     0.6131 0.276 0.584 0.024 0.048 0.068
#> SRR1036138     2   0.399     0.6430 0.216 0.756 0.028 0.000 0.000
#> SRR1036139     2   0.399     0.6430 0.216 0.756 0.028 0.000 0.000
#> SRR1036140     2   0.399     0.6430 0.216 0.756 0.028 0.000 0.000
#> SRR1036141     2   0.399     0.6430 0.216 0.756 0.028 0.000 0.000
#> SRR1036142     2   0.399     0.6430 0.216 0.756 0.028 0.000 0.000
#> SRR1036143     2   0.399     0.6430 0.216 0.756 0.028 0.000 0.000
#> SRR1036144     2   0.399     0.6430 0.216 0.756 0.028 0.000 0.000
#> SRR1036145     2   0.399     0.6430 0.216 0.756 0.028 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1036002     1   0.826      0.389 0.472 0.148 0.168 0.032 0.100 0.080
#> SRR1036003     1   0.826      0.389 0.472 0.148 0.168 0.032 0.100 0.080
#> SRR1036004     1   0.826      0.389 0.472 0.148 0.168 0.032 0.100 0.080
#> SRR1036005     3   0.341      0.963 0.180 0.004 0.796 0.004 0.008 0.008
#> SRR1036006     3   0.341      0.963 0.180 0.004 0.796 0.004 0.008 0.008
#> SRR1036007     3   0.341      0.963 0.180 0.004 0.796 0.004 0.008 0.008
#> SRR1036008     3   0.341      0.963 0.180 0.004 0.796 0.004 0.008 0.008
#> SRR1036009     3   0.341      0.963 0.180 0.004 0.796 0.004 0.008 0.008
#> SRR1036013     1   0.719      0.340 0.592 0.032 0.140 0.104 0.056 0.076
#> SRR1036014     1   0.719      0.340 0.592 0.032 0.140 0.104 0.056 0.076
#> SRR1036015     1   0.719      0.340 0.592 0.032 0.140 0.104 0.056 0.076
#> SRR1036016     1   0.719      0.340 0.592 0.032 0.140 0.104 0.056 0.076
#> SRR1036017     1   0.719      0.340 0.592 0.032 0.140 0.104 0.056 0.076
#> SRR1036018     1   0.719      0.340 0.592 0.032 0.140 0.104 0.056 0.076
#> SRR1036010     1   0.660      0.480 0.656 0.084 0.056 0.040 0.068 0.096
#> SRR1036011     1   0.660      0.480 0.656 0.084 0.056 0.040 0.068 0.096
#> SRR1036012     1   0.660      0.480 0.656 0.084 0.056 0.040 0.068 0.096
#> SRR1036019     2   0.764      0.484 0.220 0.520 0.064 0.032 0.084 0.080
#> SRR1036020     2   0.765      0.484 0.220 0.520 0.068 0.032 0.084 0.076
#> SRR1036021     2   0.765      0.484 0.220 0.520 0.068 0.032 0.084 0.076
#> SRR1036022     2   0.765      0.484 0.220 0.520 0.068 0.032 0.084 0.076
#> SRR1036023     2   0.764      0.484 0.220 0.520 0.064 0.032 0.084 0.080
#> SRR1036024     1   0.186      0.503 0.936 0.024 0.008 0.016 0.008 0.008
#> SRR1036025     1   0.186      0.503 0.936 0.024 0.008 0.016 0.008 0.008
#> SRR1036026     1   0.186      0.503 0.936 0.024 0.008 0.016 0.008 0.008
#> SRR1036027     1   0.186      0.503 0.936 0.024 0.008 0.016 0.008 0.008
#> SRR1036028     1   0.186      0.503 0.936 0.024 0.008 0.016 0.008 0.008
#> SRR1036029     1   0.186      0.503 0.936 0.024 0.008 0.016 0.008 0.008
#> SRR1036030     2   0.882      0.452 0.244 0.324 0.052 0.032 0.192 0.156
#> SRR1036031     2   0.890      0.451 0.244 0.320 0.052 0.040 0.192 0.152
#> SRR1036032     2   0.885      0.452 0.244 0.324 0.052 0.036 0.192 0.152
#> SRR1036033     2   0.885      0.452 0.244 0.324 0.052 0.036 0.192 0.152
#> SRR1036034     2   0.885      0.452 0.244 0.324 0.052 0.036 0.192 0.152
#> SRR1036035     2   0.882      0.452 0.244 0.324 0.052 0.032 0.192 0.156
#> SRR1036036     2   0.882      0.452 0.244 0.324 0.052 0.032 0.192 0.156
#> SRR1036037     2   0.887      0.451 0.244 0.320 0.052 0.036 0.192 0.156
#> SRR1036038     1   0.747      0.450 0.576 0.108 0.076 0.040 0.080 0.120
#> SRR1036039     1   0.747      0.450 0.576 0.108 0.076 0.040 0.080 0.120
#> SRR1036040     1   0.747      0.450 0.576 0.108 0.076 0.040 0.080 0.120
#> SRR1036041     1   0.328      0.484 0.848 0.040 0.000 0.016 0.008 0.088
#> SRR1036042     1   0.827      0.374 0.472 0.176 0.140 0.036 0.100 0.076
#> SRR1036043     1   0.827      0.374 0.472 0.176 0.140 0.036 0.100 0.076
#> SRR1036044     1   0.827      0.374 0.472 0.176 0.140 0.036 0.100 0.076
#> SRR1036045     1   0.827      0.374 0.472 0.176 0.140 0.036 0.100 0.076
#> SRR1036046     1   0.827      0.374 0.472 0.176 0.140 0.036 0.100 0.076
#> SRR1036047     1   0.827      0.374 0.472 0.176 0.140 0.036 0.100 0.076
#> SRR1036048     1   0.827      0.374 0.472 0.176 0.140 0.036 0.100 0.076
#> SRR1036049     1   0.827      0.374 0.472 0.176 0.140 0.036 0.100 0.076
#> SRR1036050     1   0.712     -0.172 0.472 0.036 0.024 0.068 0.056 0.344
#> SRR1036051     1   0.712     -0.172 0.472 0.036 0.024 0.068 0.056 0.344
#> SRR1036052     1   0.712     -0.172 0.472 0.036 0.024 0.068 0.056 0.344
#> SRR1036053     1   0.712     -0.172 0.472 0.036 0.024 0.068 0.056 0.344
#> SRR1036054     1   0.712     -0.172 0.472 0.036 0.024 0.068 0.056 0.344
#> SRR1036055     1   0.820     -0.206 0.384 0.256 0.016 0.032 0.176 0.136
#> SRR1036056     1   0.820     -0.206 0.384 0.256 0.016 0.032 0.176 0.136
#> SRR1036057     1   0.820     -0.206 0.384 0.256 0.016 0.032 0.176 0.136
#> SRR1036058     4   0.432      0.993 0.232 0.004 0.028 0.720 0.008 0.008
#> SRR1036059     4   0.453      0.992 0.232 0.008 0.028 0.712 0.012 0.008
#> SRR1036060     4   0.422      0.994 0.232 0.004 0.028 0.724 0.004 0.008
#> SRR1036061     4   0.453      0.991 0.232 0.008 0.028 0.712 0.012 0.008
#> SRR1036062     4   0.471      0.990 0.232 0.012 0.028 0.704 0.016 0.008
#> SRR1036063     4   0.453      0.991 0.232 0.008 0.028 0.712 0.012 0.008
#> SRR1036064     4   0.422      0.994 0.232 0.004 0.028 0.724 0.004 0.008
#> SRR1036065     4   0.432      0.993 0.232 0.004 0.028 0.720 0.008 0.008
#> SRR1036066     1   0.215      0.511 0.924 0.012 0.020 0.024 0.008 0.012
#> SRR1036067     1   0.215      0.511 0.924 0.012 0.020 0.024 0.008 0.012
#> SRR1036068     1   0.215      0.511 0.924 0.012 0.020 0.024 0.008 0.012
#> SRR1036069     1   0.215      0.511 0.924 0.012 0.020 0.024 0.008 0.012
#> SRR1036070     1   0.215      0.511 0.924 0.012 0.020 0.024 0.008 0.012
#> SRR1036071     1   0.215      0.511 0.924 0.012 0.020 0.024 0.008 0.012
#> SRR1036072     1   0.215      0.511 0.924 0.012 0.020 0.024 0.008 0.012
#> SRR1036073     1   0.215      0.511 0.924 0.012 0.020 0.024 0.008 0.012
#> SRR1036074     5   0.618      0.882 0.284 0.044 0.000 0.124 0.544 0.004
#> SRR1036075     5   0.618      0.882 0.284 0.044 0.000 0.124 0.544 0.004
#> SRR1036076     5   0.618      0.882 0.284 0.044 0.000 0.124 0.544 0.004
#> SRR1036077     5   0.618      0.882 0.284 0.044 0.000 0.124 0.544 0.004
#> SRR1036078     5   0.618      0.882 0.284 0.044 0.000 0.124 0.544 0.004
#> SRR1036079     5   0.618      0.882 0.284 0.044 0.000 0.124 0.544 0.004
#> SRR1036080     5   0.618      0.882 0.284 0.044 0.000 0.124 0.544 0.004
#> SRR1036081     5   0.618      0.882 0.284 0.044 0.000 0.124 0.544 0.004
#> SRR1036082     5   0.801      0.626 0.256 0.028 0.028 0.196 0.412 0.080
#> SRR1036083     5   0.801      0.626 0.256 0.028 0.028 0.196 0.412 0.080
#> SRR1036084     5   0.801      0.626 0.256 0.028 0.028 0.196 0.412 0.080
#> SRR1036090     1   0.579      0.226 0.572 0.328 0.032 0.004 0.036 0.028
#> SRR1036091     1   0.579      0.226 0.572 0.328 0.032 0.004 0.036 0.028
#> SRR1036092     1   0.579      0.226 0.572 0.328 0.032 0.004 0.036 0.028
#> SRR1036093     1   0.579      0.226 0.572 0.328 0.032 0.004 0.036 0.028
#> SRR1036094     1   0.579      0.226 0.572 0.328 0.032 0.004 0.036 0.028
#> SRR1036085     3   0.434      0.947 0.172 0.008 0.760 0.024 0.008 0.028
#> SRR1036086     3   0.434      0.947 0.172 0.008 0.760 0.024 0.008 0.028
#> SRR1036087     3   0.434      0.947 0.172 0.008 0.760 0.024 0.008 0.028
#> SRR1036088     3   0.434      0.947 0.172 0.008 0.760 0.024 0.008 0.028
#> SRR1036089     3   0.434      0.947 0.172 0.008 0.760 0.024 0.008 0.028
#> SRR1036095     6   0.711      0.944 0.264 0.040 0.020 0.096 0.052 0.528
#> SRR1036096     6   0.711      0.944 0.264 0.040 0.020 0.096 0.052 0.528
#> SRR1036097     6   0.711      0.944 0.264 0.040 0.020 0.096 0.052 0.528
#> SRR1036098     6   0.711      0.944 0.264 0.040 0.020 0.096 0.052 0.528
#> SRR1036099     6   0.711      0.944 0.264 0.040 0.020 0.096 0.052 0.528
#> SRR1036100     1   0.859     -0.241 0.332 0.128 0.036 0.072 0.328 0.104
#> SRR1036101     1   0.859     -0.241 0.332 0.128 0.036 0.072 0.328 0.104
#> SRR1036102     1   0.859     -0.241 0.332 0.128 0.036 0.072 0.328 0.104
#> SRR1036103     1   0.859     -0.241 0.332 0.128 0.036 0.072 0.328 0.104
#> SRR1036104     1   0.859     -0.241 0.332 0.128 0.036 0.072 0.328 0.104
#> SRR1036105     3   0.320      0.965 0.184 0.008 0.800 0.000 0.004 0.004
#> SRR1036106     3   0.320      0.965 0.184 0.008 0.800 0.000 0.004 0.004
#> SRR1036107     3   0.320      0.965 0.184 0.008 0.800 0.000 0.004 0.004
#> SRR1036108     3   0.320      0.965 0.184 0.008 0.800 0.000 0.004 0.004
#> SRR1036109     3   0.320      0.965 0.184 0.008 0.800 0.000 0.004 0.004
#> SRR1036110     1   0.638      0.297 0.652 0.020 0.036 0.140 0.084 0.068
#> SRR1036111     1   0.638      0.297 0.652 0.020 0.036 0.140 0.084 0.068
#> SRR1036112     1   0.638      0.297 0.652 0.020 0.036 0.140 0.084 0.068
#> SRR1036113     1   0.638      0.297 0.652 0.020 0.036 0.140 0.084 0.068
#> SRR1036114     1   0.638      0.297 0.652 0.020 0.036 0.140 0.084 0.068
#> SRR1036115     6   0.637      0.944 0.292 0.012 0.012 0.092 0.040 0.552
#> SRR1036116     6   0.637      0.944 0.292 0.012 0.012 0.092 0.040 0.552
#> SRR1036117     6   0.637      0.944 0.292 0.012 0.012 0.092 0.040 0.552
#> SRR1036118     6   0.637      0.944 0.292 0.012 0.012 0.092 0.040 0.552
#> SRR1036119     6   0.637      0.944 0.292 0.012 0.012 0.092 0.040 0.552
#> SRR1036120     1   0.857      0.193 0.404 0.044 0.176 0.084 0.068 0.224
#> SRR1036121     1   0.857      0.193 0.404 0.044 0.176 0.084 0.068 0.224
#> SRR1036122     1   0.857      0.193 0.404 0.044 0.176 0.084 0.068 0.224
#> SRR1036123     1   0.857      0.193 0.404 0.044 0.176 0.084 0.068 0.224
#> SRR1036124     1   0.857      0.193 0.404 0.044 0.176 0.084 0.068 0.224
#> SRR1036125     1   0.402      0.458 0.812 0.020 0.068 0.016 0.004 0.080
#> SRR1036126     1   0.402      0.458 0.812 0.020 0.068 0.016 0.004 0.080
#> SRR1036127     1   0.402      0.458 0.812 0.020 0.068 0.016 0.004 0.080
#> SRR1036128     1   0.402      0.458 0.812 0.020 0.068 0.016 0.004 0.080
#> SRR1036129     1   0.402      0.458 0.812 0.020 0.068 0.016 0.004 0.080
#> SRR1036130     1   0.402      0.458 0.812 0.020 0.068 0.016 0.004 0.080
#> SRR1036131     1   0.402      0.458 0.812 0.020 0.068 0.016 0.004 0.080
#> SRR1036132     1   0.402      0.458 0.812 0.020 0.068 0.016 0.004 0.080
#> SRR1036133     2   0.712      0.575 0.204 0.556 0.028 0.036 0.132 0.044
#> SRR1036134     2   0.712      0.575 0.204 0.556 0.028 0.036 0.132 0.044
#> SRR1036135     2   0.712      0.575 0.204 0.556 0.028 0.036 0.132 0.044
#> SRR1036136     2   0.712      0.575 0.204 0.556 0.028 0.036 0.132 0.044
#> SRR1036137     2   0.712      0.575 0.204 0.556 0.028 0.036 0.132 0.044
#> SRR1036138     2   0.363      0.613 0.148 0.804 0.032 0.004 0.004 0.008
#> SRR1036139     2   0.356      0.613 0.148 0.804 0.036 0.000 0.004 0.008
#> SRR1036140     2   0.363      0.613 0.148 0.804 0.032 0.004 0.004 0.008
#> SRR1036141     2   0.363      0.613 0.148 0.804 0.032 0.004 0.004 0.008
#> SRR1036142     2   0.356      0.613 0.148 0.804 0.036 0.000 0.004 0.008
#> SRR1036143     2   0.363      0.613 0.148 0.804 0.032 0.004 0.004 0.008
#> SRR1036144     2   0.356      0.613 0.148 0.804 0.036 0.000 0.004 0.008
#> SRR1036145     2   0.356      0.613 0.148 0.804 0.036 0.000 0.004 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15218 rows and 144 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.321           0.748       0.857         0.5005 0.497   0.497
#> 3 3 0.316           0.485       0.677         0.3264 0.717   0.489
#> 4 4 0.551           0.640       0.795         0.1200 0.777   0.440
#> 5 5 0.670           0.590       0.739         0.0690 0.907   0.660
#> 6 6 0.729           0.650       0.763         0.0412 0.948   0.758

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1036002     1  0.8016      0.702 0.756 0.244
#> SRR1036003     1  0.8016      0.702 0.756 0.244
#> SRR1036004     1  0.8016      0.702 0.756 0.244
#> SRR1036005     1  0.2603      0.856 0.956 0.044
#> SRR1036006     1  0.2603      0.856 0.956 0.044
#> SRR1036007     1  0.2603      0.856 0.956 0.044
#> SRR1036008     1  0.2603      0.856 0.956 0.044
#> SRR1036009     1  0.2603      0.856 0.956 0.044
#> SRR1036013     1  0.4161      0.820 0.916 0.084
#> SRR1036014     1  0.4161      0.820 0.916 0.084
#> SRR1036015     1  0.4161      0.820 0.916 0.084
#> SRR1036016     1  0.4161      0.820 0.916 0.084
#> SRR1036017     1  0.4161      0.820 0.916 0.084
#> SRR1036018     1  0.4161      0.820 0.916 0.084
#> SRR1036010     1  0.6247      0.785 0.844 0.156
#> SRR1036011     1  0.6247      0.785 0.844 0.156
#> SRR1036012     1  0.6247      0.785 0.844 0.156
#> SRR1036019     2  0.6973      0.706 0.188 0.812
#> SRR1036020     2  0.6973      0.706 0.188 0.812
#> SRR1036021     2  0.6973      0.706 0.188 0.812
#> SRR1036022     2  0.6973      0.706 0.188 0.812
#> SRR1036023     2  0.6973      0.706 0.188 0.812
#> SRR1036024     1  0.3431      0.858 0.936 0.064
#> SRR1036025     1  0.3431      0.858 0.936 0.064
#> SRR1036026     1  0.3431      0.858 0.936 0.064
#> SRR1036027     1  0.3431      0.858 0.936 0.064
#> SRR1036028     1  0.3431      0.858 0.936 0.064
#> SRR1036029     1  0.3431      0.858 0.936 0.064
#> SRR1036030     2  0.1184      0.801 0.016 0.984
#> SRR1036031     2  0.1184      0.801 0.016 0.984
#> SRR1036032     2  0.1184      0.801 0.016 0.984
#> SRR1036033     2  0.1184      0.801 0.016 0.984
#> SRR1036034     2  0.1184      0.801 0.016 0.984
#> SRR1036035     2  0.1184      0.801 0.016 0.984
#> SRR1036036     2  0.1184      0.801 0.016 0.984
#> SRR1036037     2  0.1184      0.801 0.016 0.984
#> SRR1036038     1  0.8955      0.641 0.688 0.312
#> SRR1036039     1  0.8955      0.641 0.688 0.312
#> SRR1036040     1  0.8955      0.641 0.688 0.312
#> SRR1036041     1  0.9608      0.401 0.616 0.384
#> SRR1036042     1  0.8016      0.702 0.756 0.244
#> SRR1036043     1  0.8016      0.702 0.756 0.244
#> SRR1036044     1  0.8016      0.702 0.756 0.244
#> SRR1036045     1  0.8016      0.702 0.756 0.244
#> SRR1036046     1  0.8016      0.702 0.756 0.244
#> SRR1036047     1  0.8016      0.702 0.756 0.244
#> SRR1036048     1  0.8016      0.702 0.756 0.244
#> SRR1036049     1  0.8016      0.702 0.756 0.244
#> SRR1036050     2  0.9248      0.592 0.340 0.660
#> SRR1036051     2  0.9248      0.592 0.340 0.660
#> SRR1036052     2  0.9248      0.592 0.340 0.660
#> SRR1036053     2  0.9248      0.592 0.340 0.660
#> SRR1036054     2  0.9248      0.592 0.340 0.660
#> SRR1036055     2  0.0938      0.801 0.012 0.988
#> SRR1036056     2  0.0938      0.801 0.012 0.988
#> SRR1036057     2  0.0938      0.801 0.012 0.988
#> SRR1036058     2  0.9087      0.619 0.324 0.676
#> SRR1036059     2  0.9087      0.619 0.324 0.676
#> SRR1036060     2  0.9087      0.619 0.324 0.676
#> SRR1036061     2  0.9087      0.619 0.324 0.676
#> SRR1036062     2  0.9087      0.619 0.324 0.676
#> SRR1036063     2  0.9087      0.619 0.324 0.676
#> SRR1036064     2  0.9087      0.619 0.324 0.676
#> SRR1036065     2  0.9087      0.619 0.324 0.676
#> SRR1036066     1  0.3584      0.858 0.932 0.068
#> SRR1036067     1  0.3584      0.858 0.932 0.068
#> SRR1036068     1  0.3584      0.858 0.932 0.068
#> SRR1036069     1  0.3584      0.858 0.932 0.068
#> SRR1036070     1  0.3584      0.858 0.932 0.068
#> SRR1036071     1  0.3584      0.858 0.932 0.068
#> SRR1036072     1  0.3584      0.858 0.932 0.068
#> SRR1036073     1  0.3584      0.858 0.932 0.068
#> SRR1036074     2  0.2236      0.801 0.036 0.964
#> SRR1036075     2  0.2236      0.801 0.036 0.964
#> SRR1036076     2  0.2236      0.801 0.036 0.964
#> SRR1036077     2  0.2236      0.801 0.036 0.964
#> SRR1036078     2  0.2236      0.801 0.036 0.964
#> SRR1036079     2  0.2236      0.801 0.036 0.964
#> SRR1036080     2  0.2236      0.801 0.036 0.964
#> SRR1036081     2  0.2236      0.801 0.036 0.964
#> SRR1036082     2  0.3584      0.791 0.068 0.932
#> SRR1036083     2  0.3584      0.791 0.068 0.932
#> SRR1036084     2  0.3584      0.791 0.068 0.932
#> SRR1036090     2  0.9491      0.383 0.368 0.632
#> SRR1036091     2  0.9491      0.383 0.368 0.632
#> SRR1036092     2  0.9491      0.383 0.368 0.632
#> SRR1036093     2  0.9491      0.383 0.368 0.632
#> SRR1036094     2  0.9491      0.383 0.368 0.632
#> SRR1036085     1  0.2603      0.856 0.956 0.044
#> SRR1036086     1  0.2603      0.856 0.956 0.044
#> SRR1036087     1  0.2603      0.856 0.956 0.044
#> SRR1036088     1  0.2603      0.856 0.956 0.044
#> SRR1036089     1  0.2603      0.856 0.956 0.044
#> SRR1036095     2  0.8016      0.700 0.244 0.756
#> SRR1036096     2  0.8016      0.700 0.244 0.756
#> SRR1036097     2  0.8016      0.700 0.244 0.756
#> SRR1036098     2  0.8016      0.700 0.244 0.756
#> SRR1036099     2  0.8016      0.700 0.244 0.756
#> SRR1036100     2  0.0376      0.800 0.004 0.996
#> SRR1036101     2  0.0376      0.800 0.004 0.996
#> SRR1036102     2  0.0376      0.800 0.004 0.996
#> SRR1036103     2  0.0376      0.800 0.004 0.996
#> SRR1036104     2  0.0376      0.800 0.004 0.996
#> SRR1036105     1  0.2603      0.856 0.956 0.044
#> SRR1036106     1  0.2603      0.856 0.956 0.044
#> SRR1036107     1  0.2603      0.856 0.956 0.044
#> SRR1036108     1  0.2603      0.856 0.956 0.044
#> SRR1036109     1  0.2603      0.856 0.956 0.044
#> SRR1036110     1  0.8386      0.571 0.732 0.268
#> SRR1036111     1  0.8386      0.571 0.732 0.268
#> SRR1036112     1  0.8386      0.571 0.732 0.268
#> SRR1036113     1  0.8386      0.571 0.732 0.268
#> SRR1036114     1  0.8386      0.571 0.732 0.268
#> SRR1036115     2  0.8016      0.700 0.244 0.756
#> SRR1036116     2  0.8016      0.700 0.244 0.756
#> SRR1036117     2  0.8016      0.700 0.244 0.756
#> SRR1036118     2  0.8016      0.700 0.244 0.756
#> SRR1036119     2  0.8016      0.700 0.244 0.756
#> SRR1036120     1  0.1414      0.853 0.980 0.020
#> SRR1036121     1  0.1414      0.853 0.980 0.020
#> SRR1036122     1  0.1414      0.853 0.980 0.020
#> SRR1036123     1  0.1414      0.853 0.980 0.020
#> SRR1036124     1  0.1414      0.853 0.980 0.020
#> SRR1036125     1  0.3114      0.856 0.944 0.056
#> SRR1036126     1  0.3114      0.856 0.944 0.056
#> SRR1036127     1  0.3114      0.856 0.944 0.056
#> SRR1036128     1  0.3114      0.856 0.944 0.056
#> SRR1036129     1  0.3114      0.856 0.944 0.056
#> SRR1036130     1  0.3114      0.856 0.944 0.056
#> SRR1036131     1  0.3114      0.856 0.944 0.056
#> SRR1036132     1  0.3114      0.856 0.944 0.056
#> SRR1036133     2  0.3274      0.786 0.060 0.940
#> SRR1036134     2  0.3274      0.786 0.060 0.940
#> SRR1036135     2  0.3274      0.786 0.060 0.940
#> SRR1036136     2  0.3274      0.786 0.060 0.940
#> SRR1036137     2  0.3274      0.786 0.060 0.940
#> SRR1036138     2  0.6887      0.709 0.184 0.816
#> SRR1036139     2  0.6887      0.709 0.184 0.816
#> SRR1036140     2  0.6887      0.709 0.184 0.816
#> SRR1036141     2  0.6887      0.709 0.184 0.816
#> SRR1036142     2  0.6887      0.709 0.184 0.816
#> SRR1036143     2  0.6887      0.709 0.184 0.816
#> SRR1036144     2  0.6887      0.709 0.184 0.816
#> SRR1036145     2  0.6887      0.709 0.184 0.816

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1036002     3   0.475     0.5588 0.000 0.216 0.784
#> SRR1036003     3   0.475     0.5588 0.000 0.216 0.784
#> SRR1036004     3   0.475     0.5588 0.000 0.216 0.784
#> SRR1036005     3   0.385     0.5771 0.136 0.004 0.860
#> SRR1036006     3   0.385     0.5771 0.136 0.004 0.860
#> SRR1036007     3   0.385     0.5771 0.136 0.004 0.860
#> SRR1036008     3   0.385     0.5771 0.136 0.004 0.860
#> SRR1036009     3   0.385     0.5771 0.136 0.004 0.860
#> SRR1036013     1   0.739     0.1310 0.500 0.032 0.468
#> SRR1036014     1   0.739     0.1310 0.500 0.032 0.468
#> SRR1036015     1   0.739     0.1310 0.500 0.032 0.468
#> SRR1036016     1   0.739     0.1310 0.500 0.032 0.468
#> SRR1036017     1   0.739     0.1310 0.500 0.032 0.468
#> SRR1036018     1   0.739     0.1310 0.500 0.032 0.468
#> SRR1036010     3   0.899     0.3185 0.260 0.184 0.556
#> SRR1036011     3   0.899     0.3185 0.260 0.184 0.556
#> SRR1036012     3   0.899     0.3185 0.260 0.184 0.556
#> SRR1036019     2   0.313     0.7401 0.008 0.904 0.088
#> SRR1036020     2   0.313     0.7401 0.008 0.904 0.088
#> SRR1036021     2   0.313     0.7401 0.008 0.904 0.088
#> SRR1036022     2   0.313     0.7401 0.008 0.904 0.088
#> SRR1036023     2   0.313     0.7401 0.008 0.904 0.088
#> SRR1036024     1   0.867     0.2289 0.544 0.120 0.336
#> SRR1036025     1   0.867     0.2289 0.544 0.120 0.336
#> SRR1036026     1   0.867     0.2289 0.544 0.120 0.336
#> SRR1036027     1   0.867     0.2289 0.544 0.120 0.336
#> SRR1036028     1   0.867     0.2289 0.544 0.120 0.336
#> SRR1036029     1   0.867     0.2289 0.544 0.120 0.336
#> SRR1036030     2   0.341     0.7503 0.124 0.876 0.000
#> SRR1036031     2   0.341     0.7503 0.124 0.876 0.000
#> SRR1036032     2   0.341     0.7503 0.124 0.876 0.000
#> SRR1036033     2   0.341     0.7503 0.124 0.876 0.000
#> SRR1036034     2   0.341     0.7503 0.124 0.876 0.000
#> SRR1036035     2   0.341     0.7503 0.124 0.876 0.000
#> SRR1036036     2   0.341     0.7503 0.124 0.876 0.000
#> SRR1036037     2   0.341     0.7503 0.124 0.876 0.000
#> SRR1036038     3   0.929     0.3085 0.164 0.372 0.464
#> SRR1036039     3   0.929     0.3085 0.164 0.372 0.464
#> SRR1036040     3   0.929     0.3085 0.164 0.372 0.464
#> SRR1036041     1   0.967     0.1311 0.464 0.276 0.260
#> SRR1036042     3   0.489     0.5566 0.000 0.228 0.772
#> SRR1036043     3   0.489     0.5566 0.000 0.228 0.772
#> SRR1036044     3   0.489     0.5566 0.000 0.228 0.772
#> SRR1036045     3   0.489     0.5566 0.000 0.228 0.772
#> SRR1036046     3   0.489     0.5566 0.000 0.228 0.772
#> SRR1036047     3   0.489     0.5566 0.000 0.228 0.772
#> SRR1036048     3   0.489     0.5566 0.000 0.228 0.772
#> SRR1036049     3   0.489     0.5566 0.000 0.228 0.772
#> SRR1036050     1   0.632     0.4974 0.764 0.160 0.076
#> SRR1036051     1   0.632     0.4974 0.764 0.160 0.076
#> SRR1036052     1   0.632     0.4974 0.764 0.160 0.076
#> SRR1036053     1   0.632     0.4974 0.764 0.160 0.076
#> SRR1036054     1   0.632     0.4974 0.764 0.160 0.076
#> SRR1036055     2   0.502     0.6980 0.192 0.796 0.012
#> SRR1036056     2   0.502     0.6980 0.192 0.796 0.012
#> SRR1036057     2   0.502     0.6980 0.192 0.796 0.012
#> SRR1036058     1   0.685     0.5114 0.740 0.140 0.120
#> SRR1036059     1   0.685     0.5114 0.740 0.140 0.120
#> SRR1036060     1   0.685     0.5114 0.740 0.140 0.120
#> SRR1036061     1   0.685     0.5114 0.740 0.140 0.120
#> SRR1036062     1   0.685     0.5114 0.740 0.140 0.120
#> SRR1036063     1   0.685     0.5114 0.740 0.140 0.120
#> SRR1036064     1   0.685     0.5114 0.740 0.140 0.120
#> SRR1036065     1   0.685     0.5114 0.740 0.140 0.120
#> SRR1036066     1   0.886     0.1551 0.500 0.124 0.376
#> SRR1036067     1   0.886     0.1551 0.500 0.124 0.376
#> SRR1036068     1   0.886     0.1551 0.500 0.124 0.376
#> SRR1036069     1   0.886     0.1551 0.500 0.124 0.376
#> SRR1036070     1   0.886     0.1551 0.500 0.124 0.376
#> SRR1036071     1   0.886     0.1551 0.500 0.124 0.376
#> SRR1036072     1   0.886     0.1551 0.500 0.124 0.376
#> SRR1036073     1   0.886     0.1551 0.500 0.124 0.376
#> SRR1036074     2   0.697     0.5308 0.356 0.616 0.028
#> SRR1036075     2   0.697     0.5308 0.356 0.616 0.028
#> SRR1036076     2   0.697     0.5308 0.356 0.616 0.028
#> SRR1036077     2   0.697     0.5308 0.356 0.616 0.028
#> SRR1036078     2   0.697     0.5308 0.356 0.616 0.028
#> SRR1036079     2   0.697     0.5308 0.356 0.616 0.028
#> SRR1036080     2   0.697     0.5308 0.356 0.616 0.028
#> SRR1036081     2   0.697     0.5308 0.356 0.616 0.028
#> SRR1036082     2   0.735     0.3730 0.432 0.536 0.032
#> SRR1036083     2   0.735     0.3730 0.432 0.536 0.032
#> SRR1036084     2   0.735     0.3730 0.432 0.536 0.032
#> SRR1036090     2   0.625     0.5720 0.036 0.732 0.232
#> SRR1036091     2   0.625     0.5720 0.036 0.732 0.232
#> SRR1036092     2   0.625     0.5720 0.036 0.732 0.232
#> SRR1036093     2   0.625     0.5720 0.036 0.732 0.232
#> SRR1036094     2   0.625     0.5720 0.036 0.732 0.232
#> SRR1036085     3   0.398     0.5736 0.144 0.004 0.852
#> SRR1036086     3   0.398     0.5736 0.144 0.004 0.852
#> SRR1036087     3   0.398     0.5736 0.144 0.004 0.852
#> SRR1036088     3   0.398     0.5736 0.144 0.004 0.852
#> SRR1036089     3   0.398     0.5736 0.144 0.004 0.852
#> SRR1036095     1   0.466     0.5555 0.844 0.124 0.032
#> SRR1036096     1   0.466     0.5555 0.844 0.124 0.032
#> SRR1036097     1   0.466     0.5555 0.844 0.124 0.032
#> SRR1036098     1   0.466     0.5555 0.844 0.124 0.032
#> SRR1036099     1   0.466     0.5555 0.844 0.124 0.032
#> SRR1036100     2   0.418     0.7194 0.172 0.828 0.000
#> SRR1036101     2   0.418     0.7194 0.172 0.828 0.000
#> SRR1036102     2   0.418     0.7194 0.172 0.828 0.000
#> SRR1036103     2   0.418     0.7194 0.172 0.828 0.000
#> SRR1036104     2   0.418     0.7194 0.172 0.828 0.000
#> SRR1036105     3   0.398     0.5736 0.144 0.004 0.852
#> SRR1036106     3   0.398     0.5736 0.144 0.004 0.852
#> SRR1036107     3   0.398     0.5736 0.144 0.004 0.852
#> SRR1036108     3   0.398     0.5736 0.144 0.004 0.852
#> SRR1036109     3   0.398     0.5736 0.144 0.004 0.852
#> SRR1036110     1   0.846     0.2998 0.512 0.092 0.396
#> SRR1036111     1   0.846     0.2998 0.512 0.092 0.396
#> SRR1036112     1   0.846     0.2998 0.512 0.092 0.396
#> SRR1036113     1   0.846     0.2998 0.512 0.092 0.396
#> SRR1036114     1   0.846     0.2998 0.512 0.092 0.396
#> SRR1036115     1   0.437     0.5558 0.860 0.108 0.032
#> SRR1036116     1   0.437     0.5558 0.860 0.108 0.032
#> SRR1036117     1   0.437     0.5558 0.860 0.108 0.032
#> SRR1036118     1   0.437     0.5558 0.860 0.108 0.032
#> SRR1036119     1   0.437     0.5558 0.860 0.108 0.032
#> SRR1036120     3   0.382     0.5518 0.148 0.000 0.852
#> SRR1036121     3   0.382     0.5518 0.148 0.000 0.852
#> SRR1036122     3   0.382     0.5518 0.148 0.000 0.852
#> SRR1036123     3   0.382     0.5518 0.148 0.000 0.852
#> SRR1036124     3   0.382     0.5518 0.148 0.000 0.852
#> SRR1036125     3   0.825     0.0227 0.428 0.076 0.496
#> SRR1036126     3   0.825     0.0227 0.428 0.076 0.496
#> SRR1036127     3   0.825     0.0227 0.428 0.076 0.496
#> SRR1036128     3   0.825     0.0227 0.428 0.076 0.496
#> SRR1036129     3   0.825     0.0227 0.428 0.076 0.496
#> SRR1036130     3   0.825     0.0227 0.428 0.076 0.496
#> SRR1036131     3   0.825     0.0227 0.428 0.076 0.496
#> SRR1036132     3   0.825     0.0227 0.428 0.076 0.496
#> SRR1036133     2   0.149     0.7569 0.016 0.968 0.016
#> SRR1036134     2   0.149     0.7569 0.016 0.968 0.016
#> SRR1036135     2   0.149     0.7569 0.016 0.968 0.016
#> SRR1036136     2   0.149     0.7569 0.016 0.968 0.016
#> SRR1036137     2   0.149     0.7569 0.016 0.968 0.016
#> SRR1036138     2   0.375     0.7036 0.000 0.856 0.144
#> SRR1036139     2   0.375     0.7036 0.000 0.856 0.144
#> SRR1036140     2   0.375     0.7036 0.000 0.856 0.144
#> SRR1036141     2   0.375     0.7036 0.000 0.856 0.144
#> SRR1036142     2   0.375     0.7036 0.000 0.856 0.144
#> SRR1036143     2   0.375     0.7036 0.000 0.856 0.144
#> SRR1036144     2   0.375     0.7036 0.000 0.856 0.144
#> SRR1036145     2   0.375     0.7036 0.000 0.856 0.144

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1036002     3   0.654      0.598 0.180 0.140 0.668 0.012
#> SRR1036003     3   0.654      0.598 0.180 0.140 0.668 0.012
#> SRR1036004     3   0.654      0.598 0.180 0.140 0.668 0.012
#> SRR1036005     3   0.115      0.759 0.024 0.000 0.968 0.008
#> SRR1036006     3   0.115      0.759 0.024 0.000 0.968 0.008
#> SRR1036007     3   0.115      0.759 0.024 0.000 0.968 0.008
#> SRR1036008     3   0.115      0.759 0.024 0.000 0.968 0.008
#> SRR1036009     3   0.115      0.759 0.024 0.000 0.968 0.008
#> SRR1036013     3   0.685      0.303 0.116 0.000 0.540 0.344
#> SRR1036014     3   0.685      0.303 0.116 0.000 0.540 0.344
#> SRR1036015     3   0.685      0.303 0.116 0.000 0.540 0.344
#> SRR1036016     3   0.685      0.303 0.116 0.000 0.540 0.344
#> SRR1036017     3   0.685      0.303 0.116 0.000 0.540 0.344
#> SRR1036018     3   0.685      0.303 0.116 0.000 0.540 0.344
#> SRR1036010     1   0.521      0.614 0.756 0.048 0.184 0.012
#> SRR1036011     1   0.521      0.614 0.756 0.048 0.184 0.012
#> SRR1036012     1   0.521      0.614 0.756 0.048 0.184 0.012
#> SRR1036019     2   0.188      0.822 0.016 0.948 0.020 0.016
#> SRR1036020     2   0.188      0.822 0.016 0.948 0.020 0.016
#> SRR1036021     2   0.188      0.822 0.016 0.948 0.020 0.016
#> SRR1036022     2   0.188      0.822 0.016 0.948 0.020 0.016
#> SRR1036023     2   0.188      0.822 0.016 0.948 0.020 0.016
#> SRR1036024     1   0.161      0.801 0.952 0.000 0.016 0.032
#> SRR1036025     1   0.161      0.801 0.952 0.000 0.016 0.032
#> SRR1036026     1   0.161      0.801 0.952 0.000 0.016 0.032
#> SRR1036027     1   0.161      0.801 0.952 0.000 0.016 0.032
#> SRR1036028     1   0.161      0.801 0.952 0.000 0.016 0.032
#> SRR1036029     1   0.161      0.801 0.952 0.000 0.016 0.032
#> SRR1036030     2   0.422      0.745 0.020 0.800 0.004 0.176
#> SRR1036031     2   0.422      0.745 0.020 0.800 0.004 0.176
#> SRR1036032     2   0.422      0.745 0.020 0.800 0.004 0.176
#> SRR1036033     2   0.422      0.745 0.020 0.800 0.004 0.176
#> SRR1036034     2   0.422      0.745 0.020 0.800 0.004 0.176
#> SRR1036035     2   0.422      0.745 0.020 0.800 0.004 0.176
#> SRR1036036     2   0.422      0.745 0.020 0.800 0.004 0.176
#> SRR1036037     2   0.422      0.745 0.020 0.800 0.004 0.176
#> SRR1036038     1   0.820      0.161 0.380 0.352 0.256 0.012
#> SRR1036039     1   0.820      0.161 0.380 0.352 0.256 0.012
#> SRR1036040     1   0.820      0.161 0.380 0.352 0.256 0.012
#> SRR1036041     1   0.141      0.793 0.960 0.016 0.000 0.024
#> SRR1036042     3   0.733      0.521 0.240 0.172 0.576 0.012
#> SRR1036043     3   0.733      0.521 0.240 0.172 0.576 0.012
#> SRR1036044     3   0.733      0.521 0.240 0.172 0.576 0.012
#> SRR1036045     3   0.733      0.521 0.240 0.172 0.576 0.012
#> SRR1036046     3   0.733      0.521 0.240 0.172 0.576 0.012
#> SRR1036047     3   0.733      0.521 0.240 0.172 0.576 0.012
#> SRR1036048     3   0.733      0.521 0.240 0.172 0.576 0.012
#> SRR1036049     3   0.733      0.521 0.240 0.172 0.576 0.012
#> SRR1036050     1   0.667      0.273 0.548 0.056 0.016 0.380
#> SRR1036051     1   0.667      0.273 0.548 0.056 0.016 0.380
#> SRR1036052     1   0.667      0.273 0.548 0.056 0.016 0.380
#> SRR1036053     1   0.667      0.273 0.548 0.056 0.016 0.380
#> SRR1036054     1   0.667      0.273 0.548 0.056 0.016 0.380
#> SRR1036055     2   0.508      0.727 0.112 0.776 0.004 0.108
#> SRR1036056     2   0.508      0.727 0.112 0.776 0.004 0.108
#> SRR1036057     2   0.508      0.727 0.112 0.776 0.004 0.108
#> SRR1036058     4   0.346      0.682 0.040 0.008 0.076 0.876
#> SRR1036059     4   0.346      0.682 0.040 0.008 0.076 0.876
#> SRR1036060     4   0.346      0.682 0.040 0.008 0.076 0.876
#> SRR1036061     4   0.346      0.682 0.040 0.008 0.076 0.876
#> SRR1036062     4   0.346      0.682 0.040 0.008 0.076 0.876
#> SRR1036063     4   0.346      0.682 0.040 0.008 0.076 0.876
#> SRR1036064     4   0.346      0.682 0.040 0.008 0.076 0.876
#> SRR1036065     4   0.346      0.682 0.040 0.008 0.076 0.876
#> SRR1036066     1   0.147      0.804 0.960 0.004 0.024 0.012
#> SRR1036067     1   0.147      0.804 0.960 0.004 0.024 0.012
#> SRR1036068     1   0.147      0.804 0.960 0.004 0.024 0.012
#> SRR1036069     1   0.147      0.804 0.960 0.004 0.024 0.012
#> SRR1036070     1   0.147      0.804 0.960 0.004 0.024 0.012
#> SRR1036071     1   0.147      0.804 0.960 0.004 0.024 0.012
#> SRR1036072     1   0.147      0.804 0.960 0.004 0.024 0.012
#> SRR1036073     1   0.147      0.804 0.960 0.004 0.024 0.012
#> SRR1036074     4   0.646      0.202 0.044 0.432 0.012 0.512
#> SRR1036075     4   0.646      0.202 0.044 0.432 0.012 0.512
#> SRR1036076     4   0.646      0.202 0.044 0.432 0.012 0.512
#> SRR1036077     4   0.646      0.202 0.044 0.432 0.012 0.512
#> SRR1036078     4   0.646      0.202 0.044 0.432 0.012 0.512
#> SRR1036079     4   0.646      0.202 0.044 0.432 0.012 0.512
#> SRR1036080     4   0.646      0.202 0.044 0.432 0.012 0.512
#> SRR1036081     4   0.646      0.202 0.044 0.432 0.012 0.512
#> SRR1036082     4   0.462      0.612 0.016 0.188 0.016 0.780
#> SRR1036083     4   0.462      0.612 0.016 0.188 0.016 0.780
#> SRR1036084     4   0.462      0.612 0.016 0.188 0.016 0.780
#> SRR1036090     2   0.474      0.713 0.140 0.796 0.056 0.008
#> SRR1036091     2   0.474      0.713 0.140 0.796 0.056 0.008
#> SRR1036092     2   0.474      0.713 0.140 0.796 0.056 0.008
#> SRR1036093     2   0.474      0.713 0.140 0.796 0.056 0.008
#> SRR1036094     2   0.474      0.713 0.140 0.796 0.056 0.008
#> SRR1036085     3   0.115      0.759 0.024 0.000 0.968 0.008
#> SRR1036086     3   0.115      0.759 0.024 0.000 0.968 0.008
#> SRR1036087     3   0.115      0.759 0.024 0.000 0.968 0.008
#> SRR1036088     3   0.115      0.759 0.024 0.000 0.968 0.008
#> SRR1036089     3   0.115      0.759 0.024 0.000 0.968 0.008
#> SRR1036095     4   0.439      0.671 0.104 0.028 0.036 0.832
#> SRR1036096     4   0.439      0.671 0.104 0.028 0.036 0.832
#> SRR1036097     4   0.439      0.671 0.104 0.028 0.036 0.832
#> SRR1036098     4   0.439      0.671 0.104 0.028 0.036 0.832
#> SRR1036099     4   0.439      0.671 0.104 0.028 0.036 0.832
#> SRR1036100     2   0.492      0.583 0.012 0.700 0.004 0.284
#> SRR1036101     2   0.492      0.583 0.012 0.700 0.004 0.284
#> SRR1036102     2   0.492      0.583 0.012 0.700 0.004 0.284
#> SRR1036103     2   0.492      0.583 0.012 0.700 0.004 0.284
#> SRR1036104     2   0.492      0.583 0.012 0.700 0.004 0.284
#> SRR1036105     3   0.115      0.759 0.024 0.000 0.968 0.008
#> SRR1036106     3   0.115      0.759 0.024 0.000 0.968 0.008
#> SRR1036107     3   0.115      0.759 0.024 0.000 0.968 0.008
#> SRR1036108     3   0.115      0.759 0.024 0.000 0.968 0.008
#> SRR1036109     3   0.115      0.759 0.024 0.000 0.968 0.008
#> SRR1036110     4   0.721      0.490 0.168 0.024 0.188 0.620
#> SRR1036111     4   0.721      0.490 0.168 0.024 0.188 0.620
#> SRR1036112     4   0.721      0.490 0.168 0.024 0.188 0.620
#> SRR1036113     4   0.721      0.490 0.168 0.024 0.188 0.620
#> SRR1036114     4   0.721      0.490 0.168 0.024 0.188 0.620
#> SRR1036115     4   0.462      0.661 0.120 0.028 0.036 0.816
#> SRR1036116     4   0.462      0.661 0.120 0.028 0.036 0.816
#> SRR1036117     4   0.462      0.661 0.120 0.028 0.036 0.816
#> SRR1036118     4   0.462      0.661 0.120 0.028 0.036 0.816
#> SRR1036119     4   0.462      0.661 0.120 0.028 0.036 0.816
#> SRR1036120     3   0.299      0.734 0.084 0.008 0.892 0.016
#> SRR1036121     3   0.299      0.734 0.084 0.008 0.892 0.016
#> SRR1036122     3   0.299      0.734 0.084 0.008 0.892 0.016
#> SRR1036123     3   0.299      0.734 0.084 0.008 0.892 0.016
#> SRR1036124     3   0.299      0.734 0.084 0.008 0.892 0.016
#> SRR1036125     1   0.259      0.790 0.904 0.000 0.080 0.016
#> SRR1036126     1   0.259      0.790 0.904 0.000 0.080 0.016
#> SRR1036127     1   0.259      0.790 0.904 0.000 0.080 0.016
#> SRR1036128     1   0.259      0.790 0.904 0.000 0.080 0.016
#> SRR1036129     1   0.259      0.790 0.904 0.000 0.080 0.016
#> SRR1036130     1   0.259      0.790 0.904 0.000 0.080 0.016
#> SRR1036131     1   0.259      0.790 0.904 0.000 0.080 0.016
#> SRR1036132     1   0.259      0.790 0.904 0.000 0.080 0.016
#> SRR1036133     2   0.123      0.821 0.008 0.968 0.004 0.020
#> SRR1036134     2   0.123      0.821 0.008 0.968 0.004 0.020
#> SRR1036135     2   0.123      0.821 0.008 0.968 0.004 0.020
#> SRR1036136     2   0.123      0.821 0.008 0.968 0.004 0.020
#> SRR1036137     2   0.123      0.821 0.008 0.968 0.004 0.020
#> SRR1036138     2   0.212      0.812 0.012 0.932 0.052 0.004
#> SRR1036139     2   0.212      0.812 0.012 0.932 0.052 0.004
#> SRR1036140     2   0.212      0.812 0.012 0.932 0.052 0.004
#> SRR1036141     2   0.212      0.812 0.012 0.932 0.052 0.004
#> SRR1036142     2   0.212      0.812 0.012 0.932 0.052 0.004
#> SRR1036143     2   0.212      0.812 0.012 0.932 0.052 0.004
#> SRR1036144     2   0.212      0.812 0.012 0.932 0.052 0.004
#> SRR1036145     2   0.212      0.812 0.012 0.932 0.052 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1036002     3  0.8622     0.4688 0.140 0.180 0.432 0.216 0.032
#> SRR1036003     3  0.8622     0.4688 0.140 0.180 0.432 0.216 0.032
#> SRR1036004     3  0.8622     0.4688 0.140 0.180 0.432 0.216 0.032
#> SRR1036005     3  0.0324     0.7050 0.004 0.000 0.992 0.000 0.004
#> SRR1036006     3  0.0324     0.7050 0.004 0.000 0.992 0.000 0.004
#> SRR1036007     3  0.0324     0.7050 0.004 0.000 0.992 0.000 0.004
#> SRR1036008     3  0.0324     0.7050 0.004 0.000 0.992 0.000 0.004
#> SRR1036009     3  0.0324     0.7050 0.004 0.000 0.992 0.000 0.004
#> SRR1036013     3  0.6321     0.2642 0.064 0.000 0.564 0.052 0.320
#> SRR1036014     3  0.6321     0.2642 0.064 0.000 0.564 0.052 0.320
#> SRR1036015     3  0.6321     0.2642 0.064 0.000 0.564 0.052 0.320
#> SRR1036016     3  0.6321     0.2642 0.064 0.000 0.564 0.052 0.320
#> SRR1036017     3  0.6321     0.2642 0.064 0.000 0.564 0.052 0.320
#> SRR1036018     3  0.6321     0.2642 0.064 0.000 0.564 0.052 0.320
#> SRR1036010     1  0.7582     0.4537 0.560 0.056 0.100 0.224 0.060
#> SRR1036011     1  0.7582     0.4537 0.560 0.056 0.100 0.224 0.060
#> SRR1036012     1  0.7582     0.4537 0.560 0.056 0.100 0.224 0.060
#> SRR1036019     2  0.2228     0.6929 0.004 0.908 0.000 0.076 0.012
#> SRR1036020     2  0.2228     0.6929 0.004 0.908 0.000 0.076 0.012
#> SRR1036021     2  0.2228     0.6929 0.004 0.908 0.000 0.076 0.012
#> SRR1036022     2  0.2228     0.6929 0.004 0.908 0.000 0.076 0.012
#> SRR1036023     2  0.2228     0.6929 0.004 0.908 0.000 0.076 0.012
#> SRR1036024     1  0.1074     0.8842 0.968 0.000 0.004 0.012 0.016
#> SRR1036025     1  0.1074     0.8842 0.968 0.000 0.004 0.012 0.016
#> SRR1036026     1  0.1074     0.8842 0.968 0.000 0.004 0.012 0.016
#> SRR1036027     1  0.1074     0.8842 0.968 0.000 0.004 0.012 0.016
#> SRR1036028     1  0.1074     0.8842 0.968 0.000 0.004 0.012 0.016
#> SRR1036029     1  0.1074     0.8842 0.968 0.000 0.004 0.012 0.016
#> SRR1036030     2  0.5815     0.4851 0.008 0.592 0.000 0.304 0.096
#> SRR1036031     2  0.5815     0.4851 0.008 0.592 0.000 0.304 0.096
#> SRR1036032     2  0.5815     0.4851 0.008 0.592 0.000 0.304 0.096
#> SRR1036033     2  0.5815     0.4851 0.008 0.592 0.000 0.304 0.096
#> SRR1036034     2  0.5815     0.4851 0.008 0.592 0.000 0.304 0.096
#> SRR1036035     2  0.5815     0.4851 0.008 0.592 0.000 0.304 0.096
#> SRR1036036     2  0.5815     0.4851 0.008 0.592 0.000 0.304 0.096
#> SRR1036037     2  0.5815     0.4851 0.008 0.592 0.000 0.304 0.096
#> SRR1036038     2  0.9276     0.0211 0.276 0.328 0.172 0.160 0.064
#> SRR1036039     2  0.9276     0.0211 0.276 0.328 0.172 0.160 0.064
#> SRR1036040     2  0.9276     0.0211 0.276 0.328 0.172 0.160 0.064
#> SRR1036041     1  0.2312     0.8598 0.912 0.016 0.000 0.012 0.060
#> SRR1036042     3  0.8846     0.4424 0.164 0.192 0.392 0.220 0.032
#> SRR1036043     3  0.8846     0.4424 0.164 0.192 0.392 0.220 0.032
#> SRR1036044     3  0.8846     0.4424 0.164 0.192 0.392 0.220 0.032
#> SRR1036045     3  0.8846     0.4424 0.164 0.192 0.392 0.220 0.032
#> SRR1036046     3  0.8846     0.4424 0.164 0.192 0.392 0.220 0.032
#> SRR1036047     3  0.8846     0.4424 0.164 0.192 0.392 0.220 0.032
#> SRR1036048     3  0.8846     0.4424 0.164 0.192 0.392 0.220 0.032
#> SRR1036049     3  0.8846     0.4424 0.164 0.192 0.392 0.220 0.032
#> SRR1036050     5  0.6989     0.1401 0.388 0.016 0.000 0.204 0.392
#> SRR1036051     5  0.6989     0.1401 0.388 0.016 0.000 0.204 0.392
#> SRR1036052     5  0.6989     0.1401 0.388 0.016 0.000 0.204 0.392
#> SRR1036053     5  0.6989     0.1401 0.388 0.016 0.000 0.204 0.392
#> SRR1036054     5  0.6989     0.1401 0.388 0.016 0.000 0.204 0.392
#> SRR1036055     2  0.6815     0.4247 0.052 0.544 0.000 0.284 0.120
#> SRR1036056     2  0.6815     0.4247 0.052 0.544 0.000 0.284 0.120
#> SRR1036057     2  0.6815     0.4247 0.052 0.544 0.000 0.284 0.120
#> SRR1036058     5  0.5231     0.5021 0.056 0.000 0.020 0.240 0.684
#> SRR1036059     5  0.5231     0.5021 0.056 0.000 0.020 0.240 0.684
#> SRR1036060     5  0.5231     0.5021 0.056 0.000 0.020 0.240 0.684
#> SRR1036061     5  0.5231     0.5021 0.056 0.000 0.020 0.240 0.684
#> SRR1036062     5  0.5231     0.5021 0.056 0.000 0.020 0.240 0.684
#> SRR1036063     5  0.5231     0.5021 0.056 0.000 0.020 0.240 0.684
#> SRR1036064     5  0.5231     0.5021 0.056 0.000 0.020 0.240 0.684
#> SRR1036065     5  0.5231     0.5021 0.056 0.000 0.020 0.240 0.684
#> SRR1036066     1  0.0613     0.8885 0.984 0.000 0.004 0.004 0.008
#> SRR1036067     1  0.0613     0.8885 0.984 0.000 0.004 0.004 0.008
#> SRR1036068     1  0.0613     0.8885 0.984 0.000 0.004 0.004 0.008
#> SRR1036069     1  0.0613     0.8885 0.984 0.000 0.004 0.004 0.008
#> SRR1036070     1  0.0613     0.8885 0.984 0.000 0.004 0.004 0.008
#> SRR1036071     1  0.0613     0.8885 0.984 0.000 0.004 0.004 0.008
#> SRR1036072     1  0.0613     0.8885 0.984 0.000 0.004 0.004 0.008
#> SRR1036073     1  0.0613     0.8885 0.984 0.000 0.004 0.004 0.008
#> SRR1036074     4  0.5644     0.6926 0.028 0.120 0.000 0.688 0.164
#> SRR1036075     4  0.5644     0.6926 0.028 0.120 0.000 0.688 0.164
#> SRR1036076     4  0.5644     0.6926 0.028 0.120 0.000 0.688 0.164
#> SRR1036077     4  0.5644     0.6926 0.028 0.120 0.000 0.688 0.164
#> SRR1036078     4  0.5644     0.6926 0.028 0.120 0.000 0.688 0.164
#> SRR1036079     4  0.5644     0.6926 0.028 0.120 0.000 0.688 0.164
#> SRR1036080     4  0.5644     0.6926 0.028 0.120 0.000 0.688 0.164
#> SRR1036081     4  0.5644     0.6926 0.028 0.120 0.000 0.688 0.164
#> SRR1036082     4  0.4597     0.6099 0.020 0.028 0.000 0.732 0.220
#> SRR1036083     4  0.4597     0.6099 0.020 0.028 0.000 0.732 0.220
#> SRR1036084     4  0.4597     0.6099 0.020 0.028 0.000 0.732 0.220
#> SRR1036090     2  0.4618     0.6079 0.108 0.788 0.012 0.076 0.016
#> SRR1036091     2  0.4618     0.6079 0.108 0.788 0.012 0.076 0.016
#> SRR1036092     2  0.4618     0.6079 0.108 0.788 0.012 0.076 0.016
#> SRR1036093     2  0.4618     0.6079 0.108 0.788 0.012 0.076 0.016
#> SRR1036094     2  0.4618     0.6079 0.108 0.788 0.012 0.076 0.016
#> SRR1036085     3  0.0324     0.7050 0.004 0.000 0.992 0.000 0.004
#> SRR1036086     3  0.0324     0.7050 0.004 0.000 0.992 0.000 0.004
#> SRR1036087     3  0.0324     0.7050 0.004 0.000 0.992 0.000 0.004
#> SRR1036088     3  0.0324     0.7050 0.004 0.000 0.992 0.000 0.004
#> SRR1036089     3  0.0324     0.7050 0.004 0.000 0.992 0.000 0.004
#> SRR1036095     5  0.1787     0.6379 0.032 0.000 0.016 0.012 0.940
#> SRR1036096     5  0.1787     0.6379 0.032 0.000 0.016 0.012 0.940
#> SRR1036097     5  0.1787     0.6379 0.032 0.000 0.016 0.012 0.940
#> SRR1036098     5  0.1787     0.6379 0.032 0.000 0.016 0.012 0.940
#> SRR1036099     5  0.1787     0.6379 0.032 0.000 0.016 0.012 0.940
#> SRR1036100     4  0.6532     0.4215 0.004 0.304 0.000 0.496 0.196
#> SRR1036101     4  0.6532     0.4215 0.004 0.304 0.000 0.496 0.196
#> SRR1036102     4  0.6532     0.4215 0.004 0.304 0.000 0.496 0.196
#> SRR1036103     4  0.6532     0.4215 0.004 0.304 0.000 0.496 0.196
#> SRR1036104     4  0.6532     0.4215 0.004 0.304 0.000 0.496 0.196
#> SRR1036105     3  0.0324     0.7050 0.004 0.000 0.992 0.000 0.004
#> SRR1036106     3  0.0324     0.7050 0.004 0.000 0.992 0.000 0.004
#> SRR1036107     3  0.0324     0.7050 0.004 0.000 0.992 0.000 0.004
#> SRR1036108     3  0.0324     0.7050 0.004 0.000 0.992 0.000 0.004
#> SRR1036109     3  0.0324     0.7050 0.004 0.000 0.992 0.000 0.004
#> SRR1036110     4  0.6686     0.2616 0.072 0.004 0.060 0.544 0.320
#> SRR1036111     4  0.6686     0.2616 0.072 0.004 0.060 0.544 0.320
#> SRR1036112     4  0.6686     0.2616 0.072 0.004 0.060 0.544 0.320
#> SRR1036113     4  0.6686     0.2616 0.072 0.004 0.060 0.544 0.320
#> SRR1036114     4  0.6686     0.2616 0.072 0.004 0.060 0.544 0.320
#> SRR1036115     5  0.1605     0.6374 0.040 0.000 0.012 0.004 0.944
#> SRR1036116     5  0.1605     0.6374 0.040 0.000 0.012 0.004 0.944
#> SRR1036117     5  0.1605     0.6374 0.040 0.000 0.012 0.004 0.944
#> SRR1036118     5  0.1605     0.6374 0.040 0.000 0.012 0.004 0.944
#> SRR1036119     5  0.1605     0.6374 0.040 0.000 0.012 0.004 0.944
#> SRR1036120     3  0.4016     0.6774 0.036 0.004 0.828 0.092 0.040
#> SRR1036121     3  0.4016     0.6774 0.036 0.004 0.828 0.092 0.040
#> SRR1036122     3  0.4016     0.6774 0.036 0.004 0.828 0.092 0.040
#> SRR1036123     3  0.4016     0.6774 0.036 0.004 0.828 0.092 0.040
#> SRR1036124     3  0.4016     0.6774 0.036 0.004 0.828 0.092 0.040
#> SRR1036125     1  0.3208     0.8637 0.872 0.004 0.064 0.012 0.048
#> SRR1036126     1  0.3208     0.8637 0.872 0.004 0.064 0.012 0.048
#> SRR1036127     1  0.3208     0.8637 0.872 0.004 0.064 0.012 0.048
#> SRR1036128     1  0.3208     0.8637 0.872 0.004 0.064 0.012 0.048
#> SRR1036129     1  0.3208     0.8637 0.872 0.004 0.064 0.012 0.048
#> SRR1036130     1  0.3208     0.8637 0.872 0.004 0.064 0.012 0.048
#> SRR1036131     1  0.3208     0.8637 0.872 0.004 0.064 0.012 0.048
#> SRR1036132     1  0.3208     0.8637 0.872 0.004 0.064 0.012 0.048
#> SRR1036133     2  0.1830     0.7107 0.000 0.924 0.000 0.068 0.008
#> SRR1036134     2  0.1830     0.7107 0.000 0.924 0.000 0.068 0.008
#> SRR1036135     2  0.1830     0.7107 0.000 0.924 0.000 0.068 0.008
#> SRR1036136     2  0.1830     0.7107 0.000 0.924 0.000 0.068 0.008
#> SRR1036137     2  0.1830     0.7107 0.000 0.924 0.000 0.068 0.008
#> SRR1036138     2  0.0162     0.7174 0.000 0.996 0.004 0.000 0.000
#> SRR1036139     2  0.0162     0.7174 0.000 0.996 0.004 0.000 0.000
#> SRR1036140     2  0.0162     0.7174 0.000 0.996 0.004 0.000 0.000
#> SRR1036141     2  0.0162     0.7174 0.000 0.996 0.004 0.000 0.000
#> SRR1036142     2  0.0162     0.7174 0.000 0.996 0.004 0.000 0.000
#> SRR1036143     2  0.0162     0.7174 0.000 0.996 0.004 0.000 0.000
#> SRR1036144     2  0.0162     0.7174 0.000 0.996 0.004 0.000 0.000
#> SRR1036145     2  0.0162     0.7174 0.000 0.996 0.004 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1036002     6  0.5773      0.756 0.040 0.084 0.292 0.000 0.004 0.580
#> SRR1036003     6  0.5773      0.756 0.040 0.084 0.292 0.000 0.004 0.580
#> SRR1036004     6  0.5773      0.756 0.040 0.084 0.292 0.000 0.004 0.580
#> SRR1036005     3  0.0000      0.752 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036006     3  0.0000      0.752 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036007     3  0.0000      0.752 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036008     3  0.0000      0.752 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036009     3  0.0000      0.752 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036013     3  0.6559      0.316 0.044 0.000 0.472 0.372 0.036 0.076
#> SRR1036014     3  0.6559      0.316 0.044 0.000 0.472 0.372 0.036 0.076
#> SRR1036015     3  0.6559      0.316 0.044 0.000 0.472 0.372 0.036 0.076
#> SRR1036016     3  0.6559      0.316 0.044 0.000 0.472 0.372 0.036 0.076
#> SRR1036017     3  0.6559      0.316 0.044 0.000 0.472 0.372 0.036 0.076
#> SRR1036018     3  0.6559      0.316 0.044 0.000 0.472 0.372 0.036 0.076
#> SRR1036010     6  0.5627      0.611 0.264 0.024 0.060 0.012 0.012 0.628
#> SRR1036011     6  0.5627      0.611 0.264 0.024 0.060 0.012 0.012 0.628
#> SRR1036012     6  0.5627      0.611 0.264 0.024 0.060 0.012 0.012 0.628
#> SRR1036019     2  0.3268      0.664 0.004 0.836 0.000 0.004 0.100 0.056
#> SRR1036020     2  0.3268      0.664 0.004 0.836 0.000 0.004 0.100 0.056
#> SRR1036021     2  0.3268      0.664 0.004 0.836 0.000 0.004 0.100 0.056
#> SRR1036022     2  0.3268      0.664 0.004 0.836 0.000 0.004 0.100 0.056
#> SRR1036023     2  0.3268      0.664 0.004 0.836 0.000 0.004 0.100 0.056
#> SRR1036024     1  0.1167      0.928 0.960 0.000 0.000 0.008 0.012 0.020
#> SRR1036025     1  0.1167      0.928 0.960 0.000 0.000 0.008 0.012 0.020
#> SRR1036026     1  0.1167      0.928 0.960 0.000 0.000 0.008 0.012 0.020
#> SRR1036027     1  0.1167      0.928 0.960 0.000 0.000 0.008 0.012 0.020
#> SRR1036028     1  0.1167      0.928 0.960 0.000 0.000 0.008 0.012 0.020
#> SRR1036029     1  0.1167      0.928 0.960 0.000 0.000 0.008 0.012 0.020
#> SRR1036030     2  0.6694      0.529 0.008 0.524 0.000 0.064 0.200 0.204
#> SRR1036031     2  0.6694      0.529 0.008 0.524 0.000 0.064 0.200 0.204
#> SRR1036032     2  0.6694      0.529 0.008 0.524 0.000 0.064 0.200 0.204
#> SRR1036033     2  0.6694      0.529 0.008 0.524 0.000 0.064 0.200 0.204
#> SRR1036034     2  0.6694      0.529 0.008 0.524 0.000 0.064 0.200 0.204
#> SRR1036035     2  0.6694      0.529 0.008 0.524 0.000 0.064 0.200 0.204
#> SRR1036036     2  0.6694      0.529 0.008 0.524 0.000 0.064 0.200 0.204
#> SRR1036037     2  0.6694      0.529 0.008 0.524 0.000 0.064 0.200 0.204
#> SRR1036038     6  0.7629      0.472 0.172 0.196 0.088 0.012 0.040 0.492
#> SRR1036039     6  0.7629      0.472 0.172 0.196 0.088 0.012 0.040 0.492
#> SRR1036040     6  0.7629      0.472 0.172 0.196 0.088 0.012 0.040 0.492
#> SRR1036041     1  0.1542      0.919 0.944 0.000 0.000 0.016 0.016 0.024
#> SRR1036042     6  0.6183      0.794 0.060 0.108 0.244 0.000 0.008 0.580
#> SRR1036043     6  0.6183      0.794 0.060 0.108 0.244 0.000 0.008 0.580
#> SRR1036044     6  0.6183      0.794 0.060 0.108 0.244 0.000 0.008 0.580
#> SRR1036045     6  0.6183      0.794 0.060 0.108 0.244 0.000 0.008 0.580
#> SRR1036046     6  0.6183      0.794 0.060 0.108 0.244 0.000 0.008 0.580
#> SRR1036047     6  0.6183      0.794 0.060 0.108 0.244 0.000 0.008 0.580
#> SRR1036048     6  0.6183      0.794 0.060 0.108 0.244 0.000 0.008 0.580
#> SRR1036049     6  0.6183      0.794 0.060 0.108 0.244 0.000 0.008 0.580
#> SRR1036050     4  0.7405      0.124 0.352 0.008 0.000 0.356 0.156 0.128
#> SRR1036051     4  0.7405      0.124 0.352 0.008 0.000 0.356 0.156 0.128
#> SRR1036052     4  0.7405      0.124 0.352 0.008 0.000 0.356 0.156 0.128
#> SRR1036053     4  0.7405      0.124 0.352 0.008 0.000 0.356 0.156 0.128
#> SRR1036054     4  0.7405      0.124 0.352 0.008 0.000 0.356 0.156 0.128
#> SRR1036055     2  0.7362      0.455 0.044 0.464 0.000 0.056 0.212 0.224
#> SRR1036056     2  0.7362      0.455 0.044 0.464 0.000 0.056 0.212 0.224
#> SRR1036057     2  0.7362      0.455 0.044 0.464 0.000 0.056 0.212 0.224
#> SRR1036058     4  0.5004      0.545 0.012 0.004 0.020 0.672 0.252 0.040
#> SRR1036059     4  0.5004      0.545 0.012 0.004 0.020 0.672 0.252 0.040
#> SRR1036060     4  0.5004      0.545 0.012 0.004 0.020 0.672 0.252 0.040
#> SRR1036061     4  0.5004      0.545 0.012 0.004 0.020 0.672 0.252 0.040
#> SRR1036062     4  0.5004      0.545 0.012 0.004 0.020 0.672 0.252 0.040
#> SRR1036063     4  0.5004      0.545 0.012 0.004 0.020 0.672 0.252 0.040
#> SRR1036064     4  0.5004      0.545 0.012 0.004 0.020 0.672 0.252 0.040
#> SRR1036065     4  0.5004      0.545 0.012 0.004 0.020 0.672 0.252 0.040
#> SRR1036066     1  0.0653      0.936 0.980 0.000 0.000 0.004 0.004 0.012
#> SRR1036067     1  0.0653      0.936 0.980 0.000 0.000 0.004 0.004 0.012
#> SRR1036068     1  0.0653      0.936 0.980 0.000 0.000 0.004 0.004 0.012
#> SRR1036069     1  0.0653      0.936 0.980 0.000 0.000 0.004 0.004 0.012
#> SRR1036070     1  0.0653      0.936 0.980 0.000 0.000 0.004 0.004 0.012
#> SRR1036071     1  0.0653      0.936 0.980 0.000 0.000 0.004 0.004 0.012
#> SRR1036072     1  0.0653      0.936 0.980 0.000 0.000 0.004 0.004 0.012
#> SRR1036073     1  0.0653      0.936 0.980 0.000 0.000 0.004 0.004 0.012
#> SRR1036074     5  0.2898      0.733 0.016 0.048 0.000 0.040 0.880 0.016
#> SRR1036075     5  0.2898      0.733 0.016 0.048 0.000 0.040 0.880 0.016
#> SRR1036076     5  0.2898      0.733 0.016 0.048 0.000 0.040 0.880 0.016
#> SRR1036077     5  0.2898      0.733 0.016 0.048 0.000 0.040 0.880 0.016
#> SRR1036078     5  0.2898      0.733 0.016 0.048 0.000 0.040 0.880 0.016
#> SRR1036079     5  0.2898      0.733 0.016 0.048 0.000 0.040 0.880 0.016
#> SRR1036080     5  0.2898      0.733 0.016 0.048 0.000 0.040 0.880 0.016
#> SRR1036081     5  0.2898      0.733 0.016 0.048 0.000 0.040 0.880 0.016
#> SRR1036082     5  0.2638      0.681 0.000 0.016 0.000 0.060 0.884 0.040
#> SRR1036083     5  0.2638      0.681 0.000 0.016 0.000 0.060 0.884 0.040
#> SRR1036084     5  0.2638      0.681 0.000 0.016 0.000 0.060 0.884 0.040
#> SRR1036090     2  0.4433      0.525 0.080 0.724 0.004 0.000 0.004 0.188
#> SRR1036091     2  0.4433      0.525 0.080 0.724 0.004 0.000 0.004 0.188
#> SRR1036092     2  0.4433      0.525 0.080 0.724 0.004 0.000 0.004 0.188
#> SRR1036093     2  0.4433      0.525 0.080 0.724 0.004 0.000 0.004 0.188
#> SRR1036094     2  0.4433      0.525 0.080 0.724 0.004 0.000 0.004 0.188
#> SRR1036085     3  0.0260      0.751 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1036086     3  0.0260      0.751 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1036087     3  0.0260      0.751 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1036088     3  0.0260      0.751 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1036089     3  0.0260      0.751 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1036095     4  0.1333      0.662 0.008 0.000 0.000 0.944 0.048 0.000
#> SRR1036096     4  0.1333      0.662 0.008 0.000 0.000 0.944 0.048 0.000
#> SRR1036097     4  0.1333      0.662 0.008 0.000 0.000 0.944 0.048 0.000
#> SRR1036098     4  0.1333      0.662 0.008 0.000 0.000 0.944 0.048 0.000
#> SRR1036099     4  0.1333      0.662 0.008 0.000 0.000 0.944 0.048 0.000
#> SRR1036100     5  0.6209      0.508 0.004 0.176 0.000 0.116 0.604 0.100
#> SRR1036101     5  0.6209      0.508 0.004 0.176 0.000 0.116 0.604 0.100
#> SRR1036102     5  0.6209      0.508 0.004 0.176 0.000 0.116 0.604 0.100
#> SRR1036103     5  0.6209      0.508 0.004 0.176 0.000 0.116 0.604 0.100
#> SRR1036104     5  0.6209      0.508 0.004 0.176 0.000 0.116 0.604 0.100
#> SRR1036105     3  0.0000      0.752 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036106     3  0.0000      0.752 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036107     3  0.0000      0.752 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036108     3  0.0000      0.752 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036109     3  0.0000      0.752 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036110     5  0.6724      0.412 0.028 0.004 0.032 0.180 0.540 0.216
#> SRR1036111     5  0.6724      0.412 0.028 0.004 0.032 0.180 0.540 0.216
#> SRR1036112     5  0.6724      0.412 0.028 0.004 0.032 0.180 0.540 0.216
#> SRR1036113     5  0.6724      0.412 0.028 0.004 0.032 0.180 0.540 0.216
#> SRR1036114     5  0.6724      0.412 0.028 0.004 0.032 0.180 0.540 0.216
#> SRR1036115     4  0.1151      0.663 0.012 0.000 0.000 0.956 0.032 0.000
#> SRR1036116     4  0.1151      0.663 0.012 0.000 0.000 0.956 0.032 0.000
#> SRR1036117     4  0.1151      0.663 0.012 0.000 0.000 0.956 0.032 0.000
#> SRR1036118     4  0.1151      0.663 0.012 0.000 0.000 0.956 0.032 0.000
#> SRR1036119     4  0.1151      0.663 0.012 0.000 0.000 0.956 0.032 0.000
#> SRR1036120     3  0.5415      0.489 0.016 0.000 0.644 0.036 0.052 0.252
#> SRR1036121     3  0.5415      0.489 0.016 0.000 0.644 0.036 0.052 0.252
#> SRR1036122     3  0.5415      0.489 0.016 0.000 0.644 0.036 0.052 0.252
#> SRR1036123     3  0.5415      0.489 0.016 0.000 0.644 0.036 0.052 0.252
#> SRR1036124     3  0.5415      0.489 0.016 0.000 0.644 0.036 0.052 0.252
#> SRR1036125     1  0.3112      0.904 0.868 0.000 0.056 0.032 0.012 0.032
#> SRR1036126     1  0.3112      0.904 0.868 0.000 0.056 0.032 0.012 0.032
#> SRR1036127     1  0.3112      0.904 0.868 0.000 0.056 0.032 0.012 0.032
#> SRR1036128     1  0.3112      0.904 0.868 0.000 0.056 0.032 0.012 0.032
#> SRR1036129     1  0.3112      0.904 0.868 0.000 0.056 0.032 0.012 0.032
#> SRR1036130     1  0.3112      0.904 0.868 0.000 0.056 0.032 0.012 0.032
#> SRR1036131     1  0.3112      0.904 0.868 0.000 0.056 0.032 0.012 0.032
#> SRR1036132     1  0.3112      0.904 0.868 0.000 0.056 0.032 0.012 0.032
#> SRR1036133     2  0.2617      0.714 0.000 0.876 0.000 0.004 0.040 0.080
#> SRR1036134     2  0.2617      0.714 0.000 0.876 0.000 0.004 0.040 0.080
#> SRR1036135     2  0.2617      0.714 0.000 0.876 0.000 0.004 0.040 0.080
#> SRR1036136     2  0.2617      0.714 0.000 0.876 0.000 0.004 0.040 0.080
#> SRR1036137     2  0.2617      0.714 0.000 0.876 0.000 0.004 0.040 0.080
#> SRR1036138     2  0.0603      0.718 0.000 0.980 0.004 0.000 0.000 0.016
#> SRR1036139     2  0.0603      0.718 0.000 0.980 0.004 0.000 0.000 0.016
#> SRR1036140     2  0.0603      0.718 0.000 0.980 0.004 0.000 0.000 0.016
#> SRR1036141     2  0.0603      0.718 0.000 0.980 0.004 0.000 0.000 0.016
#> SRR1036142     2  0.0603      0.718 0.000 0.980 0.004 0.000 0.000 0.016
#> SRR1036143     2  0.0603      0.718 0.000 0.980 0.004 0.000 0.000 0.016
#> SRR1036144     2  0.0603      0.718 0.000 0.980 0.004 0.000 0.000 0.016
#> SRR1036145     2  0.0603      0.718 0.000 0.980 0.004 0.000 0.000 0.016

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15218 rows and 144 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.802           0.919       0.937          0.156 0.812   0.812
#> 3 3 0.535           0.835       0.897          1.097 0.906   0.884
#> 4 4 0.573           0.879       0.915          0.462 0.820   0.749
#> 5 5 0.553           0.733       0.850          0.199 0.915   0.844
#> 6 6 0.555           0.838       0.873          0.153 0.824   0.633

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1036002     2  0.0000      0.959 0.000 1.000
#> SRR1036003     2  0.0000      0.959 0.000 1.000
#> SRR1036004     2  0.0000      0.959 0.000 1.000
#> SRR1036005     1  0.9686      1.000 0.604 0.396
#> SRR1036006     1  0.9686      1.000 0.604 0.396
#> SRR1036007     1  0.9686      1.000 0.604 0.396
#> SRR1036008     1  0.9686      1.000 0.604 0.396
#> SRR1036009     1  0.9686      1.000 0.604 0.396
#> SRR1036013     2  0.0000      0.959 0.000 1.000
#> SRR1036014     2  0.0000      0.959 0.000 1.000
#> SRR1036015     2  0.0000      0.959 0.000 1.000
#> SRR1036016     2  0.0000      0.959 0.000 1.000
#> SRR1036017     2  0.0000      0.959 0.000 1.000
#> SRR1036018     2  0.0000      0.959 0.000 1.000
#> SRR1036010     2  0.0000      0.959 0.000 1.000
#> SRR1036011     2  0.0000      0.959 0.000 1.000
#> SRR1036012     2  0.0000      0.959 0.000 1.000
#> SRR1036019     2  0.0000      0.959 0.000 1.000
#> SRR1036020     2  0.0000      0.959 0.000 1.000
#> SRR1036021     2  0.0000      0.959 0.000 1.000
#> SRR1036022     2  0.0000      0.959 0.000 1.000
#> SRR1036023     2  0.0000      0.959 0.000 1.000
#> SRR1036024     2  0.0000      0.959 0.000 1.000
#> SRR1036025     2  0.0000      0.959 0.000 1.000
#> SRR1036026     2  0.0000      0.959 0.000 1.000
#> SRR1036027     2  0.0000      0.959 0.000 1.000
#> SRR1036028     2  0.0000      0.959 0.000 1.000
#> SRR1036029     2  0.0000      0.959 0.000 1.000
#> SRR1036030     2  0.0000      0.959 0.000 1.000
#> SRR1036031     2  0.0000      0.959 0.000 1.000
#> SRR1036032     2  0.0000      0.959 0.000 1.000
#> SRR1036033     2  0.0000      0.959 0.000 1.000
#> SRR1036034     2  0.0000      0.959 0.000 1.000
#> SRR1036035     2  0.0000      0.959 0.000 1.000
#> SRR1036036     2  0.0000      0.959 0.000 1.000
#> SRR1036037     2  0.0000      0.959 0.000 1.000
#> SRR1036038     2  0.0000      0.959 0.000 1.000
#> SRR1036039     2  0.0000      0.959 0.000 1.000
#> SRR1036040     2  0.0000      0.959 0.000 1.000
#> SRR1036041     2  0.0000      0.959 0.000 1.000
#> SRR1036042     2  0.0000      0.959 0.000 1.000
#> SRR1036043     2  0.0000      0.959 0.000 1.000
#> SRR1036044     2  0.0000      0.959 0.000 1.000
#> SRR1036045     2  0.0000      0.959 0.000 1.000
#> SRR1036046     2  0.0000      0.959 0.000 1.000
#> SRR1036047     2  0.0000      0.959 0.000 1.000
#> SRR1036048     2  0.0000      0.959 0.000 1.000
#> SRR1036049     2  0.0000      0.959 0.000 1.000
#> SRR1036050     2  0.0000      0.959 0.000 1.000
#> SRR1036051     2  0.0000      0.959 0.000 1.000
#> SRR1036052     2  0.0000      0.959 0.000 1.000
#> SRR1036053     2  0.0000      0.959 0.000 1.000
#> SRR1036054     2  0.0000      0.959 0.000 1.000
#> SRR1036055     2  0.0000      0.959 0.000 1.000
#> SRR1036056     2  0.0000      0.959 0.000 1.000
#> SRR1036057     2  0.0000      0.959 0.000 1.000
#> SRR1036058     2  0.9686      0.155 0.396 0.604
#> SRR1036059     2  0.9686      0.155 0.396 0.604
#> SRR1036060     2  0.9686      0.155 0.396 0.604
#> SRR1036061     2  0.9686      0.155 0.396 0.604
#> SRR1036062     2  0.9686      0.155 0.396 0.604
#> SRR1036063     2  0.9686      0.155 0.396 0.604
#> SRR1036064     2  0.9686      0.155 0.396 0.604
#> SRR1036065     2  0.9686      0.155 0.396 0.604
#> SRR1036066     2  0.0000      0.959 0.000 1.000
#> SRR1036067     2  0.0000      0.959 0.000 1.000
#> SRR1036068     2  0.0000      0.959 0.000 1.000
#> SRR1036069     2  0.0000      0.959 0.000 1.000
#> SRR1036070     2  0.0000      0.959 0.000 1.000
#> SRR1036071     2  0.0000      0.959 0.000 1.000
#> SRR1036072     2  0.0000      0.959 0.000 1.000
#> SRR1036073     2  0.0000      0.959 0.000 1.000
#> SRR1036074     2  0.0000      0.959 0.000 1.000
#> SRR1036075     2  0.0000      0.959 0.000 1.000
#> SRR1036076     2  0.0000      0.959 0.000 1.000
#> SRR1036077     2  0.0000      0.959 0.000 1.000
#> SRR1036078     2  0.0000      0.959 0.000 1.000
#> SRR1036079     2  0.0000      0.959 0.000 1.000
#> SRR1036080     2  0.0000      0.959 0.000 1.000
#> SRR1036081     2  0.0000      0.959 0.000 1.000
#> SRR1036082     2  0.0000      0.959 0.000 1.000
#> SRR1036083     2  0.0000      0.959 0.000 1.000
#> SRR1036084     2  0.0000      0.959 0.000 1.000
#> SRR1036090     2  0.0000      0.959 0.000 1.000
#> SRR1036091     2  0.0000      0.959 0.000 1.000
#> SRR1036092     2  0.0000      0.959 0.000 1.000
#> SRR1036093     2  0.0000      0.959 0.000 1.000
#> SRR1036094     2  0.0000      0.959 0.000 1.000
#> SRR1036085     1  0.9686      1.000 0.604 0.396
#> SRR1036086     1  0.9686      1.000 0.604 0.396
#> SRR1036087     1  0.9686      1.000 0.604 0.396
#> SRR1036088     1  0.9686      1.000 0.604 0.396
#> SRR1036089     1  0.9686      1.000 0.604 0.396
#> SRR1036095     2  0.0000      0.959 0.000 1.000
#> SRR1036096     2  0.0000      0.959 0.000 1.000
#> SRR1036097     2  0.0000      0.959 0.000 1.000
#> SRR1036098     2  0.0000      0.959 0.000 1.000
#> SRR1036099     2  0.0000      0.959 0.000 1.000
#> SRR1036100     2  0.0000      0.959 0.000 1.000
#> SRR1036101     2  0.0000      0.959 0.000 1.000
#> SRR1036102     2  0.0000      0.959 0.000 1.000
#> SRR1036103     2  0.0000      0.959 0.000 1.000
#> SRR1036104     2  0.0000      0.959 0.000 1.000
#> SRR1036105     1  0.9686      1.000 0.604 0.396
#> SRR1036106     1  0.9686      1.000 0.604 0.396
#> SRR1036107     1  0.9686      1.000 0.604 0.396
#> SRR1036108     1  0.9686      1.000 0.604 0.396
#> SRR1036109     1  0.9686      1.000 0.604 0.396
#> SRR1036110     2  0.0000      0.959 0.000 1.000
#> SRR1036111     2  0.0000      0.959 0.000 1.000
#> SRR1036112     2  0.0000      0.959 0.000 1.000
#> SRR1036113     2  0.0000      0.959 0.000 1.000
#> SRR1036114     2  0.0000      0.959 0.000 1.000
#> SRR1036115     2  0.0000      0.959 0.000 1.000
#> SRR1036116     2  0.0000      0.959 0.000 1.000
#> SRR1036117     2  0.0000      0.959 0.000 1.000
#> SRR1036118     2  0.0000      0.959 0.000 1.000
#> SRR1036119     2  0.0000      0.959 0.000 1.000
#> SRR1036120     2  0.0000      0.959 0.000 1.000
#> SRR1036121     2  0.0000      0.959 0.000 1.000
#> SRR1036122     2  0.0000      0.959 0.000 1.000
#> SRR1036123     2  0.0000      0.959 0.000 1.000
#> SRR1036124     2  0.0376      0.953 0.004 0.996
#> SRR1036125     2  0.0000      0.959 0.000 1.000
#> SRR1036126     2  0.0000      0.959 0.000 1.000
#> SRR1036127     2  0.0000      0.959 0.000 1.000
#> SRR1036128     2  0.0000      0.959 0.000 1.000
#> SRR1036129     2  0.0000      0.959 0.000 1.000
#> SRR1036130     2  0.0000      0.959 0.000 1.000
#> SRR1036131     2  0.0000      0.959 0.000 1.000
#> SRR1036132     2  0.0000      0.959 0.000 1.000
#> SRR1036133     2  0.0000      0.959 0.000 1.000
#> SRR1036134     2  0.0000      0.959 0.000 1.000
#> SRR1036135     2  0.0000      0.959 0.000 1.000
#> SRR1036136     2  0.0000      0.959 0.000 1.000
#> SRR1036137     2  0.0000      0.959 0.000 1.000
#> SRR1036138     2  0.0000      0.959 0.000 1.000
#> SRR1036139     2  0.0000      0.959 0.000 1.000
#> SRR1036140     2  0.0000      0.959 0.000 1.000
#> SRR1036141     2  0.0000      0.959 0.000 1.000
#> SRR1036142     2  0.0000      0.959 0.000 1.000
#> SRR1036143     2  0.0000      0.959 0.000 1.000
#> SRR1036144     2  0.0000      0.959 0.000 1.000
#> SRR1036145     2  0.0000      0.959 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1036002     2  0.2261      0.851 0.068 0.932 0.000
#> SRR1036003     2  0.2261      0.851 0.068 0.932 0.000
#> SRR1036004     2  0.2261      0.851 0.068 0.932 0.000
#> SRR1036005     3  0.4121      1.000 0.000 0.168 0.832
#> SRR1036006     3  0.4121      1.000 0.000 0.168 0.832
#> SRR1036007     3  0.4121      1.000 0.000 0.168 0.832
#> SRR1036008     3  0.4121      1.000 0.000 0.168 0.832
#> SRR1036009     3  0.4121      1.000 0.000 0.168 0.832
#> SRR1036013     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036014     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036015     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036016     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036017     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036018     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036010     2  0.2261      0.851 0.068 0.932 0.000
#> SRR1036011     2  0.2261      0.851 0.068 0.932 0.000
#> SRR1036012     2  0.2261      0.851 0.068 0.932 0.000
#> SRR1036019     2  0.7724      0.470 0.308 0.620 0.072
#> SRR1036020     2  0.8089      0.436 0.308 0.600 0.092
#> SRR1036021     2  0.7801      0.464 0.308 0.616 0.076
#> SRR1036022     2  0.7644      0.477 0.308 0.624 0.068
#> SRR1036023     2  0.8020      0.443 0.308 0.604 0.088
#> SRR1036024     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036025     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036026     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036027     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036028     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036029     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036030     2  0.3043      0.822 0.084 0.908 0.008
#> SRR1036031     2  0.2866      0.829 0.076 0.916 0.008
#> SRR1036032     2  0.4033      0.767 0.136 0.856 0.008
#> SRR1036033     2  0.3896      0.777 0.128 0.864 0.008
#> SRR1036034     2  0.3826      0.781 0.124 0.868 0.008
#> SRR1036035     2  0.3607      0.794 0.112 0.880 0.008
#> SRR1036036     2  0.3607      0.794 0.112 0.880 0.008
#> SRR1036037     2  0.3965      0.772 0.132 0.860 0.008
#> SRR1036038     2  0.0592      0.881 0.012 0.988 0.000
#> SRR1036039     2  0.0892      0.878 0.020 0.980 0.000
#> SRR1036040     2  0.0747      0.879 0.016 0.984 0.000
#> SRR1036041     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036042     2  0.2261      0.851 0.068 0.932 0.000
#> SRR1036043     2  0.2261      0.851 0.068 0.932 0.000
#> SRR1036044     2  0.2261      0.851 0.068 0.932 0.000
#> SRR1036045     2  0.2261      0.851 0.068 0.932 0.000
#> SRR1036046     2  0.2261      0.851 0.068 0.932 0.000
#> SRR1036047     2  0.2261      0.851 0.068 0.932 0.000
#> SRR1036048     2  0.2261      0.851 0.068 0.932 0.000
#> SRR1036049     2  0.2261      0.851 0.068 0.932 0.000
#> SRR1036050     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036051     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036052     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036053     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036054     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036055     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036056     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036057     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036058     1  0.5621      1.000 0.692 0.308 0.000
#> SRR1036059     1  0.5621      1.000 0.692 0.308 0.000
#> SRR1036060     1  0.5621      1.000 0.692 0.308 0.000
#> SRR1036061     1  0.5621      1.000 0.692 0.308 0.000
#> SRR1036062     1  0.5621      1.000 0.692 0.308 0.000
#> SRR1036063     1  0.5621      1.000 0.692 0.308 0.000
#> SRR1036064     1  0.5621      1.000 0.692 0.308 0.000
#> SRR1036065     1  0.5621      1.000 0.692 0.308 0.000
#> SRR1036066     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036067     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036068     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036069     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036070     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036071     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036072     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036073     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036074     2  0.1860      0.846 0.000 0.948 0.052
#> SRR1036075     2  0.1860      0.846 0.000 0.948 0.052
#> SRR1036076     2  0.1860      0.846 0.000 0.948 0.052
#> SRR1036077     2  0.1860      0.846 0.000 0.948 0.052
#> SRR1036078     2  0.1860      0.846 0.000 0.948 0.052
#> SRR1036079     2  0.1860      0.846 0.000 0.948 0.052
#> SRR1036080     2  0.1860      0.846 0.000 0.948 0.052
#> SRR1036081     2  0.1860      0.846 0.000 0.948 0.052
#> SRR1036082     2  0.1860      0.846 0.000 0.948 0.052
#> SRR1036083     2  0.1860      0.846 0.000 0.948 0.052
#> SRR1036084     2  0.1860      0.846 0.000 0.948 0.052
#> SRR1036090     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036091     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036092     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036093     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036094     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036085     3  0.4121      1.000 0.000 0.168 0.832
#> SRR1036086     3  0.4121      1.000 0.000 0.168 0.832
#> SRR1036087     3  0.4121      1.000 0.000 0.168 0.832
#> SRR1036088     3  0.4121      1.000 0.000 0.168 0.832
#> SRR1036089     3  0.4121      1.000 0.000 0.168 0.832
#> SRR1036095     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036096     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036097     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036098     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036099     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036100     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036101     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036102     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036103     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036104     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036105     3  0.4121      1.000 0.000 0.168 0.832
#> SRR1036106     3  0.4121      1.000 0.000 0.168 0.832
#> SRR1036107     3  0.4121      1.000 0.000 0.168 0.832
#> SRR1036108     3  0.4121      1.000 0.000 0.168 0.832
#> SRR1036109     3  0.4121      1.000 0.000 0.168 0.832
#> SRR1036110     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036111     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036112     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036113     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036114     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036115     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036116     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036117     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036118     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036119     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036120     2  0.2261      0.851 0.068 0.932 0.000
#> SRR1036121     2  0.2261      0.851 0.068 0.932 0.000
#> SRR1036122     2  0.2261      0.851 0.068 0.932 0.000
#> SRR1036123     2  0.2261      0.851 0.068 0.932 0.000
#> SRR1036124     2  0.2496      0.849 0.068 0.928 0.004
#> SRR1036125     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036126     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036127     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036128     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036129     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036130     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036131     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036132     2  0.0000      0.885 0.000 1.000 0.000
#> SRR1036133     2  0.7909      0.466 0.240 0.648 0.112
#> SRR1036134     2  0.7909      0.466 0.240 0.648 0.112
#> SRR1036135     2  0.7909      0.466 0.240 0.648 0.112
#> SRR1036136     2  0.7909      0.466 0.240 0.648 0.112
#> SRR1036137     2  0.7909      0.466 0.240 0.648 0.112
#> SRR1036138     2  0.8386      0.404 0.304 0.584 0.112
#> SRR1036139     2  0.8386      0.404 0.304 0.584 0.112
#> SRR1036140     2  0.8386      0.404 0.304 0.584 0.112
#> SRR1036141     2  0.8386      0.404 0.304 0.584 0.112
#> SRR1036142     2  0.8386      0.404 0.304 0.584 0.112
#> SRR1036143     2  0.8386      0.404 0.304 0.584 0.112
#> SRR1036144     2  0.8386      0.404 0.304 0.584 0.112
#> SRR1036145     2  0.8386      0.404 0.304 0.584 0.112

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1036002     1  0.3333      0.844 0.872 0.040 0.000 0.088
#> SRR1036003     1  0.3333      0.844 0.872 0.040 0.000 0.088
#> SRR1036004     1  0.3333      0.844 0.872 0.040 0.000 0.088
#> SRR1036005     3  0.3123      1.000 0.156 0.000 0.844 0.000
#> SRR1036006     3  0.3123      1.000 0.156 0.000 0.844 0.000
#> SRR1036007     3  0.3123      1.000 0.156 0.000 0.844 0.000
#> SRR1036008     3  0.3123      1.000 0.156 0.000 0.844 0.000
#> SRR1036009     3  0.3123      1.000 0.156 0.000 0.844 0.000
#> SRR1036013     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036014     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036015     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036016     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036017     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036018     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036010     1  0.3333      0.844 0.872 0.040 0.000 0.088
#> SRR1036011     1  0.3333      0.844 0.872 0.040 0.000 0.088
#> SRR1036012     1  0.3333      0.844 0.872 0.040 0.000 0.088
#> SRR1036019     2  0.3311      0.777 0.172 0.828 0.000 0.000
#> SRR1036020     2  0.2704      0.844 0.124 0.876 0.000 0.000
#> SRR1036021     2  0.3311      0.777 0.172 0.828 0.000 0.000
#> SRR1036022     2  0.3726      0.701 0.212 0.788 0.000 0.000
#> SRR1036023     2  0.2814      0.834 0.132 0.868 0.000 0.000
#> SRR1036024     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036025     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036026     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036027     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036028     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036029     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036030     1  0.4252      0.646 0.744 0.252 0.004 0.000
#> SRR1036031     1  0.4252      0.643 0.744 0.252 0.004 0.000
#> SRR1036032     1  0.5097      0.198 0.568 0.428 0.004 0.000
#> SRR1036033     1  0.4872      0.426 0.640 0.356 0.004 0.000
#> SRR1036034     1  0.4584      0.553 0.696 0.300 0.004 0.000
#> SRR1036035     1  0.4781      0.473 0.660 0.336 0.004 0.000
#> SRR1036036     1  0.4889      0.407 0.636 0.360 0.004 0.000
#> SRR1036037     1  0.4936      0.377 0.624 0.372 0.004 0.000
#> SRR1036038     1  0.0672      0.911 0.984 0.008 0.000 0.008
#> SRR1036039     1  0.0804      0.909 0.980 0.012 0.000 0.008
#> SRR1036040     1  0.0937      0.907 0.976 0.012 0.000 0.012
#> SRR1036041     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036042     1  0.3333      0.844 0.872 0.040 0.000 0.088
#> SRR1036043     1  0.3333      0.844 0.872 0.040 0.000 0.088
#> SRR1036044     1  0.3333      0.844 0.872 0.040 0.000 0.088
#> SRR1036045     1  0.3333      0.844 0.872 0.040 0.000 0.088
#> SRR1036046     1  0.3333      0.844 0.872 0.040 0.000 0.088
#> SRR1036047     1  0.3333      0.844 0.872 0.040 0.000 0.088
#> SRR1036048     1  0.3333      0.844 0.872 0.040 0.000 0.088
#> SRR1036049     1  0.3333      0.844 0.872 0.040 0.000 0.088
#> SRR1036050     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036051     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036052     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036053     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036054     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036055     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036056     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036057     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036058     4  0.2149      1.000 0.088 0.000 0.000 0.912
#> SRR1036059     4  0.2149      1.000 0.088 0.000 0.000 0.912
#> SRR1036060     4  0.2149      1.000 0.088 0.000 0.000 0.912
#> SRR1036061     4  0.2149      1.000 0.088 0.000 0.000 0.912
#> SRR1036062     4  0.2149      1.000 0.088 0.000 0.000 0.912
#> SRR1036063     4  0.2149      1.000 0.088 0.000 0.000 0.912
#> SRR1036064     4  0.2149      1.000 0.088 0.000 0.000 0.912
#> SRR1036065     4  0.2149      1.000 0.088 0.000 0.000 0.912
#> SRR1036066     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036067     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036068     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036069     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036070     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036071     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036072     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036073     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036074     1  0.3647      0.782 0.832 0.016 0.152 0.000
#> SRR1036075     1  0.3647      0.782 0.832 0.016 0.152 0.000
#> SRR1036076     1  0.3647      0.782 0.832 0.016 0.152 0.000
#> SRR1036077     1  0.3647      0.782 0.832 0.016 0.152 0.000
#> SRR1036078     1  0.3647      0.782 0.832 0.016 0.152 0.000
#> SRR1036079     1  0.3647      0.782 0.832 0.016 0.152 0.000
#> SRR1036080     1  0.3647      0.782 0.832 0.016 0.152 0.000
#> SRR1036081     1  0.3647      0.782 0.832 0.016 0.152 0.000
#> SRR1036082     1  0.3647      0.782 0.832 0.016 0.152 0.000
#> SRR1036083     1  0.3647      0.782 0.832 0.016 0.152 0.000
#> SRR1036084     1  0.3647      0.782 0.832 0.016 0.152 0.000
#> SRR1036090     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036091     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036092     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036093     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036094     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036085     3  0.3123      1.000 0.156 0.000 0.844 0.000
#> SRR1036086     3  0.3123      1.000 0.156 0.000 0.844 0.000
#> SRR1036087     3  0.3123      1.000 0.156 0.000 0.844 0.000
#> SRR1036088     3  0.3123      1.000 0.156 0.000 0.844 0.000
#> SRR1036089     3  0.3123      1.000 0.156 0.000 0.844 0.000
#> SRR1036095     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036096     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036097     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036098     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036099     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036100     1  0.0188      0.916 0.996 0.000 0.004 0.000
#> SRR1036101     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036102     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036103     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036104     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036105     3  0.3123      1.000 0.156 0.000 0.844 0.000
#> SRR1036106     3  0.3123      1.000 0.156 0.000 0.844 0.000
#> SRR1036107     3  0.3123      1.000 0.156 0.000 0.844 0.000
#> SRR1036108     3  0.3123      1.000 0.156 0.000 0.844 0.000
#> SRR1036109     3  0.3123      1.000 0.156 0.000 0.844 0.000
#> SRR1036110     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036111     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036112     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036113     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036114     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036115     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036116     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036117     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036118     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036119     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036120     1  0.3333      0.844 0.872 0.040 0.000 0.088
#> SRR1036121     1  0.3333      0.844 0.872 0.040 0.000 0.088
#> SRR1036122     1  0.3333      0.844 0.872 0.040 0.000 0.088
#> SRR1036123     1  0.3333      0.844 0.872 0.040 0.000 0.088
#> SRR1036124     1  0.3517      0.841 0.868 0.040 0.004 0.088
#> SRR1036125     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036126     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036127     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036128     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036129     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036130     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036131     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036132     1  0.0000      0.918 1.000 0.000 0.000 0.000
#> SRR1036133     2  0.2011      0.891 0.080 0.920 0.000 0.000
#> SRR1036134     2  0.2011      0.891 0.080 0.920 0.000 0.000
#> SRR1036135     2  0.2011      0.891 0.080 0.920 0.000 0.000
#> SRR1036136     2  0.2011      0.891 0.080 0.920 0.000 0.000
#> SRR1036137     2  0.2011      0.891 0.080 0.920 0.000 0.000
#> SRR1036138     2  0.1211      0.898 0.040 0.960 0.000 0.000
#> SRR1036139     2  0.1211      0.898 0.040 0.960 0.000 0.000
#> SRR1036140     2  0.1211      0.898 0.040 0.960 0.000 0.000
#> SRR1036141     2  0.1211      0.898 0.040 0.960 0.000 0.000
#> SRR1036142     2  0.1211      0.898 0.040 0.960 0.000 0.000
#> SRR1036143     2  0.1211      0.898 0.040 0.960 0.000 0.000
#> SRR1036144     2  0.1211      0.898 0.040 0.960 0.000 0.000
#> SRR1036145     2  0.1211      0.898 0.040 0.960 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3 p4 p5
#> SRR1036002     1  0.4227      0.458 0.580 0.000 0.000  0 NA
#> SRR1036003     1  0.4227      0.458 0.580 0.000 0.000  0 NA
#> SRR1036004     1  0.4227      0.458 0.580 0.000 0.000  0 NA
#> SRR1036005     3  0.6245      0.637 0.144 0.000 0.440  0 NA
#> SRR1036006     3  0.6245      0.637 0.144 0.000 0.440  0 NA
#> SRR1036007     3  0.6245      0.637 0.144 0.000 0.440  0 NA
#> SRR1036008     3  0.6245      0.637 0.144 0.000 0.440  0 NA
#> SRR1036009     3  0.6245      0.637 0.144 0.000 0.440  0 NA
#> SRR1036013     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036014     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036015     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036016     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036017     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036018     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036010     1  0.4227      0.458 0.580 0.000 0.000  0 NA
#> SRR1036011     1  0.4227      0.458 0.580 0.000 0.000  0 NA
#> SRR1036012     1  0.4227      0.458 0.580 0.000 0.000  0 NA
#> SRR1036019     2  0.3010      0.740 0.172 0.824 0.000  0 NA
#> SRR1036020     2  0.2377      0.811 0.128 0.872 0.000  0 NA
#> SRR1036021     2  0.2852      0.743 0.172 0.828 0.000  0 NA
#> SRR1036022     2  0.3210      0.657 0.212 0.788 0.000  0 NA
#> SRR1036023     2  0.2471      0.801 0.136 0.864 0.000  0 NA
#> SRR1036024     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036025     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036026     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036027     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036028     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036029     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036030     3  0.6024      0.204 0.296 0.148 0.556  0 NA
#> SRR1036031     3  0.5826      0.216 0.332 0.112 0.556  0 NA
#> SRR1036032     3  0.6155      0.075 0.192 0.252 0.556  0 NA
#> SRR1036033     3  0.6179      0.145 0.228 0.216 0.556  0 NA
#> SRR1036034     3  0.6139      0.183 0.260 0.184 0.556  0 NA
#> SRR1036035     3  0.6155      0.176 0.252 0.192 0.556  0 NA
#> SRR1036036     3  0.6171      0.162 0.240 0.204 0.556  0 NA
#> SRR1036037     3  0.6179      0.145 0.228 0.216 0.556  0 NA
#> SRR1036038     1  0.0880      0.836 0.968 0.000 0.000  0 NA
#> SRR1036039     1  0.1043      0.832 0.960 0.000 0.000  0 NA
#> SRR1036040     1  0.1270      0.824 0.948 0.000 0.000  0 NA
#> SRR1036041     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036042     1  0.4227      0.458 0.580 0.000 0.000  0 NA
#> SRR1036043     1  0.4227      0.458 0.580 0.000 0.000  0 NA
#> SRR1036044     1  0.4227      0.458 0.580 0.000 0.000  0 NA
#> SRR1036045     1  0.4227      0.458 0.580 0.000 0.000  0 NA
#> SRR1036046     1  0.4227      0.458 0.580 0.000 0.000  0 NA
#> SRR1036047     1  0.4227      0.458 0.580 0.000 0.000  0 NA
#> SRR1036048     1  0.4227      0.458 0.580 0.000 0.000  0 NA
#> SRR1036049     1  0.4227      0.458 0.580 0.000 0.000  0 NA
#> SRR1036050     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036051     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036052     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036053     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036054     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036055     1  0.3143      0.628 0.796 0.000 0.204  0 NA
#> SRR1036056     1  0.3480      0.551 0.752 0.000 0.248  0 NA
#> SRR1036057     1  0.2929      0.665 0.820 0.000 0.180  0 NA
#> SRR1036058     4  0.0000      1.000 0.000 0.000 0.000  1 NA
#> SRR1036059     4  0.0000      1.000 0.000 0.000 0.000  1 NA
#> SRR1036060     4  0.0000      1.000 0.000 0.000 0.000  1 NA
#> SRR1036061     4  0.0000      1.000 0.000 0.000 0.000  1 NA
#> SRR1036062     4  0.0000      1.000 0.000 0.000 0.000  1 NA
#> SRR1036063     4  0.0000      1.000 0.000 0.000 0.000  1 NA
#> SRR1036064     4  0.0000      1.000 0.000 0.000 0.000  1 NA
#> SRR1036065     4  0.0000      1.000 0.000 0.000 0.000  1 NA
#> SRR1036066     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036067     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036068     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036069     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036070     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036071     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036072     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036073     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036074     1  0.3449      0.694 0.812 0.024 0.000  0 NA
#> SRR1036075     1  0.3449      0.694 0.812 0.024 0.000  0 NA
#> SRR1036076     1  0.3449      0.694 0.812 0.024 0.000  0 NA
#> SRR1036077     1  0.3449      0.694 0.812 0.024 0.000  0 NA
#> SRR1036078     1  0.3449      0.694 0.812 0.024 0.000  0 NA
#> SRR1036079     1  0.3449      0.694 0.812 0.024 0.000  0 NA
#> SRR1036080     1  0.3449      0.694 0.812 0.024 0.000  0 NA
#> SRR1036081     1  0.3449      0.694 0.812 0.024 0.000  0 NA
#> SRR1036082     1  0.3449      0.694 0.812 0.024 0.000  0 NA
#> SRR1036083     1  0.3449      0.694 0.812 0.024 0.000  0 NA
#> SRR1036084     1  0.3449      0.694 0.812 0.024 0.000  0 NA
#> SRR1036090     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036091     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036092     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036093     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036094     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036085     3  0.6245      0.637 0.144 0.000 0.440  0 NA
#> SRR1036086     3  0.6245      0.637 0.144 0.000 0.440  0 NA
#> SRR1036087     3  0.6245      0.637 0.144 0.000 0.440  0 NA
#> SRR1036088     3  0.6245      0.637 0.144 0.000 0.440  0 NA
#> SRR1036089     3  0.6245      0.637 0.144 0.000 0.440  0 NA
#> SRR1036095     1  0.0162      0.853 0.996 0.000 0.004  0 NA
#> SRR1036096     1  0.0162      0.853 0.996 0.000 0.004  0 NA
#> SRR1036097     1  0.0162      0.853 0.996 0.000 0.004  0 NA
#> SRR1036098     1  0.0162      0.853 0.996 0.000 0.004  0 NA
#> SRR1036099     1  0.0162      0.853 0.996 0.000 0.004  0 NA
#> SRR1036100     1  0.0162      0.852 0.996 0.000 0.000  0 NA
#> SRR1036101     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036102     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036103     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036104     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036105     3  0.6245      0.637 0.144 0.000 0.440  0 NA
#> SRR1036106     3  0.6245      0.637 0.144 0.000 0.440  0 NA
#> SRR1036107     3  0.6245      0.637 0.144 0.000 0.440  0 NA
#> SRR1036108     3  0.6245      0.637 0.144 0.000 0.440  0 NA
#> SRR1036109     3  0.6245      0.637 0.144 0.000 0.440  0 NA
#> SRR1036110     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036111     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036112     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036113     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036114     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036115     1  0.0162      0.853 0.996 0.000 0.004  0 NA
#> SRR1036116     1  0.0162      0.853 0.996 0.000 0.004  0 NA
#> SRR1036117     1  0.0162      0.853 0.996 0.000 0.004  0 NA
#> SRR1036118     1  0.0162      0.853 0.996 0.000 0.004  0 NA
#> SRR1036119     1  0.0162      0.853 0.996 0.000 0.004  0 NA
#> SRR1036120     1  0.4227      0.458 0.580 0.000 0.000  0 NA
#> SRR1036121     1  0.4227      0.458 0.580 0.000 0.000  0 NA
#> SRR1036122     1  0.4227      0.458 0.580 0.000 0.000  0 NA
#> SRR1036123     1  0.4227      0.458 0.580 0.000 0.000  0 NA
#> SRR1036124     1  0.4227      0.458 0.580 0.000 0.000  0 NA
#> SRR1036125     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036126     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036127     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036128     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036129     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036130     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036131     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036132     1  0.0000      0.854 1.000 0.000 0.000  0 NA
#> SRR1036133     2  0.0703      0.915 0.024 0.976 0.000  0 NA
#> SRR1036134     2  0.0703      0.915 0.024 0.976 0.000  0 NA
#> SRR1036135     2  0.0794      0.912 0.028 0.972 0.000  0 NA
#> SRR1036136     2  0.0703      0.915 0.024 0.976 0.000  0 NA
#> SRR1036137     2  0.0703      0.915 0.024 0.976 0.000  0 NA
#> SRR1036138     2  0.0703      0.915 0.024 0.976 0.000  0 NA
#> SRR1036139     2  0.0703      0.915 0.024 0.976 0.000  0 NA
#> SRR1036140     2  0.0703      0.915 0.024 0.976 0.000  0 NA
#> SRR1036141     2  0.0703      0.915 0.024 0.976 0.000  0 NA
#> SRR1036142     2  0.0703      0.915 0.024 0.976 0.000  0 NA
#> SRR1036143     2  0.0703      0.915 0.024 0.976 0.000  0 NA
#> SRR1036144     2  0.0703      0.915 0.024 0.976 0.000  0 NA
#> SRR1036145     2  0.0703      0.915 0.024 0.976 0.000  0 NA

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3 p4    p5    p6
#> SRR1036002     6  0.3747      0.996 0.396 0.000 0.000  0 0.000 0.604
#> SRR1036003     6  0.3747      0.996 0.396 0.000 0.000  0 0.000 0.604
#> SRR1036004     6  0.3747      0.996 0.396 0.000 0.000  0 0.000 0.604
#> SRR1036005     3  0.2219      1.000 0.136 0.000 0.864  0 0.000 0.000
#> SRR1036006     3  0.2219      1.000 0.136 0.000 0.864  0 0.000 0.000
#> SRR1036007     3  0.2219      1.000 0.136 0.000 0.864  0 0.000 0.000
#> SRR1036008     3  0.2219      1.000 0.136 0.000 0.864  0 0.000 0.000
#> SRR1036009     3  0.2219      1.000 0.136 0.000 0.864  0 0.000 0.000
#> SRR1036013     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036014     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036015     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036016     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036017     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036018     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036010     6  0.3747      0.996 0.396 0.000 0.000  0 0.000 0.604
#> SRR1036011     6  0.3747      0.996 0.396 0.000 0.000  0 0.000 0.604
#> SRR1036012     6  0.3747      0.996 0.396 0.000 0.000  0 0.000 0.604
#> SRR1036019     2  0.3455      0.684 0.180 0.784 0.000  0 0.000 0.036
#> SRR1036020     2  0.2446      0.775 0.124 0.864 0.000  0 0.000 0.012
#> SRR1036021     2  0.3385      0.688 0.180 0.788 0.000  0 0.000 0.032
#> SRR1036022     2  0.3424      0.651 0.204 0.772 0.000  0 0.000 0.024
#> SRR1036023     2  0.2983      0.751 0.136 0.832 0.000  0 0.000 0.032
#> SRR1036024     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036025     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036026     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036027     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036028     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036029     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036030     5  0.0000      0.754 0.000 0.000 0.000  0 1.000 0.000
#> SRR1036031     5  0.0000      0.754 0.000 0.000 0.000  0 1.000 0.000
#> SRR1036032     5  0.0000      0.754 0.000 0.000 0.000  0 1.000 0.000
#> SRR1036033     5  0.0000      0.754 0.000 0.000 0.000  0 1.000 0.000
#> SRR1036034     5  0.0000      0.754 0.000 0.000 0.000  0 1.000 0.000
#> SRR1036035     5  0.0000      0.754 0.000 0.000 0.000  0 1.000 0.000
#> SRR1036036     5  0.0000      0.754 0.000 0.000 0.000  0 1.000 0.000
#> SRR1036037     5  0.0000      0.754 0.000 0.000 0.000  0 1.000 0.000
#> SRR1036038     1  0.1556      0.748 0.920 0.000 0.000  0 0.000 0.080
#> SRR1036039     1  0.2003      0.680 0.884 0.000 0.000  0 0.000 0.116
#> SRR1036040     1  0.1910      0.697 0.892 0.000 0.000  0 0.000 0.108
#> SRR1036041     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036042     6  0.3747      0.996 0.396 0.000 0.000  0 0.000 0.604
#> SRR1036043     6  0.3747      0.996 0.396 0.000 0.000  0 0.000 0.604
#> SRR1036044     6  0.3747      0.996 0.396 0.000 0.000  0 0.000 0.604
#> SRR1036045     6  0.3747      0.996 0.396 0.000 0.000  0 0.000 0.604
#> SRR1036046     6  0.3747      0.996 0.396 0.000 0.000  0 0.000 0.604
#> SRR1036047     6  0.3747      0.996 0.396 0.000 0.000  0 0.000 0.604
#> SRR1036048     6  0.3747      0.996 0.396 0.000 0.000  0 0.000 0.604
#> SRR1036049     6  0.3747      0.996 0.396 0.000 0.000  0 0.000 0.604
#> SRR1036050     1  0.2003      0.771 0.884 0.000 0.000  0 0.000 0.116
#> SRR1036051     1  0.1910      0.778 0.892 0.000 0.000  0 0.000 0.108
#> SRR1036052     1  0.1957      0.774 0.888 0.000 0.000  0 0.000 0.112
#> SRR1036053     1  0.1910      0.778 0.892 0.000 0.000  0 0.000 0.108
#> SRR1036054     1  0.2003      0.771 0.884 0.000 0.000  0 0.000 0.116
#> SRR1036055     5  0.3727      0.197 0.388 0.000 0.000  0 0.612 0.000
#> SRR1036056     5  0.3578      0.303 0.340 0.000 0.000  0 0.660 0.000
#> SRR1036057     5  0.3765      0.156 0.404 0.000 0.000  0 0.596 0.000
#> SRR1036058     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1036059     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1036060     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1036061     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1036062     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1036063     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1036064     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1036065     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1036066     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036067     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036068     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036069     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036070     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036071     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036072     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036073     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036074     1  0.4281      0.623 0.732 0.000 0.136  0 0.000 0.132
#> SRR1036075     1  0.4281      0.623 0.732 0.000 0.136  0 0.000 0.132
#> SRR1036076     1  0.4281      0.623 0.732 0.000 0.136  0 0.000 0.132
#> SRR1036077     1  0.4281      0.623 0.732 0.000 0.136  0 0.000 0.132
#> SRR1036078     1  0.4281      0.623 0.732 0.000 0.136  0 0.000 0.132
#> SRR1036079     1  0.4281      0.623 0.732 0.000 0.136  0 0.000 0.132
#> SRR1036080     1  0.4281      0.623 0.732 0.000 0.136  0 0.000 0.132
#> SRR1036081     1  0.4281      0.623 0.732 0.000 0.136  0 0.000 0.132
#> SRR1036082     1  0.3992      0.654 0.760 0.000 0.136  0 0.000 0.104
#> SRR1036083     1  0.3947      0.658 0.764 0.000 0.136  0 0.000 0.100
#> SRR1036084     1  0.3992      0.654 0.760 0.000 0.136  0 0.000 0.104
#> SRR1036090     1  0.0260      0.848 0.992 0.000 0.000  0 0.000 0.008
#> SRR1036091     1  0.0146      0.850 0.996 0.000 0.000  0 0.000 0.004
#> SRR1036092     1  0.0260      0.848 0.992 0.000 0.000  0 0.000 0.008
#> SRR1036093     1  0.0260      0.848 0.992 0.000 0.000  0 0.000 0.008
#> SRR1036094     1  0.0260      0.848 0.992 0.000 0.000  0 0.000 0.008
#> SRR1036085     3  0.2219      1.000 0.136 0.000 0.864  0 0.000 0.000
#> SRR1036086     3  0.2219      1.000 0.136 0.000 0.864  0 0.000 0.000
#> SRR1036087     3  0.2219      1.000 0.136 0.000 0.864  0 0.000 0.000
#> SRR1036088     3  0.2219      1.000 0.136 0.000 0.864  0 0.000 0.000
#> SRR1036089     3  0.2219      1.000 0.136 0.000 0.864  0 0.000 0.000
#> SRR1036095     1  0.3221      0.645 0.736 0.000 0.000  0 0.000 0.264
#> SRR1036096     1  0.3221      0.645 0.736 0.000 0.000  0 0.000 0.264
#> SRR1036097     1  0.3221      0.645 0.736 0.000 0.000  0 0.000 0.264
#> SRR1036098     1  0.3221      0.645 0.736 0.000 0.000  0 0.000 0.264
#> SRR1036099     1  0.3221      0.645 0.736 0.000 0.000  0 0.000 0.264
#> SRR1036100     1  0.0260      0.849 0.992 0.000 0.000  0 0.000 0.008
#> SRR1036101     1  0.0146      0.851 0.996 0.000 0.000  0 0.000 0.004
#> SRR1036102     1  0.0260      0.850 0.992 0.000 0.000  0 0.000 0.008
#> SRR1036103     1  0.0146      0.851 0.996 0.000 0.000  0 0.000 0.004
#> SRR1036104     1  0.0146      0.851 0.996 0.000 0.000  0 0.000 0.004
#> SRR1036105     3  0.2219      1.000 0.136 0.000 0.864  0 0.000 0.000
#> SRR1036106     3  0.2219      1.000 0.136 0.000 0.864  0 0.000 0.000
#> SRR1036107     3  0.2219      1.000 0.136 0.000 0.864  0 0.000 0.000
#> SRR1036108     3  0.2219      1.000 0.136 0.000 0.864  0 0.000 0.000
#> SRR1036109     3  0.2219      1.000 0.136 0.000 0.864  0 0.000 0.000
#> SRR1036110     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036111     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036112     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036113     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036114     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036115     1  0.3221      0.645 0.736 0.000 0.000  0 0.000 0.264
#> SRR1036116     1  0.3221      0.645 0.736 0.000 0.000  0 0.000 0.264
#> SRR1036117     1  0.3221      0.645 0.736 0.000 0.000  0 0.000 0.264
#> SRR1036118     1  0.3221      0.645 0.736 0.000 0.000  0 0.000 0.264
#> SRR1036119     1  0.3221      0.645 0.736 0.000 0.000  0 0.000 0.264
#> SRR1036120     6  0.3765      0.988 0.404 0.000 0.000  0 0.000 0.596
#> SRR1036121     6  0.3765      0.988 0.404 0.000 0.000  0 0.000 0.596
#> SRR1036122     6  0.3765      0.988 0.404 0.000 0.000  0 0.000 0.596
#> SRR1036123     6  0.3765      0.988 0.404 0.000 0.000  0 0.000 0.596
#> SRR1036124     6  0.3765      0.988 0.404 0.000 0.000  0 0.000 0.596
#> SRR1036125     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036126     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036127     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036128     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036129     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036130     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036131     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036132     1  0.0000      0.853 1.000 0.000 0.000  0 0.000 0.000
#> SRR1036133     2  0.0000      0.899 0.000 1.000 0.000  0 0.000 0.000
#> SRR1036134     2  0.0000      0.899 0.000 1.000 0.000  0 0.000 0.000
#> SRR1036135     2  0.0146      0.896 0.004 0.996 0.000  0 0.000 0.000
#> SRR1036136     2  0.0000      0.899 0.000 1.000 0.000  0 0.000 0.000
#> SRR1036137     2  0.0000      0.899 0.000 1.000 0.000  0 0.000 0.000
#> SRR1036138     2  0.0000      0.899 0.000 1.000 0.000  0 0.000 0.000
#> SRR1036139     2  0.0000      0.899 0.000 1.000 0.000  0 0.000 0.000
#> SRR1036140     2  0.0000      0.899 0.000 1.000 0.000  0 0.000 0.000
#> SRR1036141     2  0.0000      0.899 0.000 1.000 0.000  0 0.000 0.000
#> SRR1036142     2  0.0000      0.899 0.000 1.000 0.000  0 0.000 0.000
#> SRR1036143     2  0.0000      0.899 0.000 1.000 0.000  0 0.000 0.000
#> SRR1036144     2  0.0000      0.899 0.000 1.000 0.000  0 0.000 0.000
#> SRR1036145     2  0.0000      0.899 0.000 1.000 0.000  0 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15218 rows and 144 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.262           0.775       0.781         0.3042 0.730   0.730
#> 3 3 0.264           0.529       0.704         0.6192 0.647   0.559
#> 4 4 0.401           0.594       0.766         0.1145 0.822   0.706
#> 5 5 0.426           0.585       0.745         0.2901 0.671   0.396
#> 6 6 0.557           0.705       0.776         0.0878 0.926   0.723

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1036002     2  0.0938      0.855 0.012 0.988
#> SRR1036003     2  0.0938      0.855 0.012 0.988
#> SRR1036004     2  0.0938      0.855 0.012 0.988
#> SRR1036005     1  0.9710      0.810 0.600 0.400
#> SRR1036006     1  0.9710      0.810 0.600 0.400
#> SRR1036007     1  0.9710      0.810 0.600 0.400
#> SRR1036008     1  0.9710      0.810 0.600 0.400
#> SRR1036009     1  0.9710      0.810 0.600 0.400
#> SRR1036013     2  0.8813      0.308 0.300 0.700
#> SRR1036014     2  0.8813      0.308 0.300 0.700
#> SRR1036015     2  0.8813      0.308 0.300 0.700
#> SRR1036016     2  0.8813      0.308 0.300 0.700
#> SRR1036017     2  0.8813      0.308 0.300 0.700
#> SRR1036018     2  0.8813      0.308 0.300 0.700
#> SRR1036010     2  0.1414      0.855 0.020 0.980
#> SRR1036011     2  0.1414      0.855 0.020 0.980
#> SRR1036012     2  0.1414      0.855 0.020 0.980
#> SRR1036019     2  0.0376      0.852 0.004 0.996
#> SRR1036020     2  0.0376      0.852 0.004 0.996
#> SRR1036021     2  0.0376      0.852 0.004 0.996
#> SRR1036022     2  0.0376      0.852 0.004 0.996
#> SRR1036023     2  0.0376      0.852 0.004 0.996
#> SRR1036024     2  0.1414      0.855 0.020 0.980
#> SRR1036025     2  0.1414      0.855 0.020 0.980
#> SRR1036026     2  0.1414      0.855 0.020 0.980
#> SRR1036027     2  0.1414      0.855 0.020 0.980
#> SRR1036028     2  0.1414      0.855 0.020 0.980
#> SRR1036029     2  0.1414      0.855 0.020 0.980
#> SRR1036030     2  0.2423      0.855 0.040 0.960
#> SRR1036031     2  0.2423      0.855 0.040 0.960
#> SRR1036032     2  0.2423      0.855 0.040 0.960
#> SRR1036033     2  0.2423      0.855 0.040 0.960
#> SRR1036034     2  0.2423      0.855 0.040 0.960
#> SRR1036035     2  0.2423      0.855 0.040 0.960
#> SRR1036036     2  0.2423      0.855 0.040 0.960
#> SRR1036037     2  0.2423      0.855 0.040 0.960
#> SRR1036038     2  0.3584      0.834 0.068 0.932
#> SRR1036039     2  0.3584      0.834 0.068 0.932
#> SRR1036040     2  0.3584      0.834 0.068 0.932
#> SRR1036041     2  0.4431      0.821 0.092 0.908
#> SRR1036042     2  0.0672      0.854 0.008 0.992
#> SRR1036043     2  0.0672      0.854 0.008 0.992
#> SRR1036044     2  0.0672      0.854 0.008 0.992
#> SRR1036045     2  0.0672      0.854 0.008 0.992
#> SRR1036046     2  0.0672      0.854 0.008 0.992
#> SRR1036047     2  0.0672      0.854 0.008 0.992
#> SRR1036048     2  0.0672      0.854 0.008 0.992
#> SRR1036049     2  0.0672      0.854 0.008 0.992
#> SRR1036050     2  0.6623      0.767 0.172 0.828
#> SRR1036051     2  0.6623      0.767 0.172 0.828
#> SRR1036052     2  0.6623      0.767 0.172 0.828
#> SRR1036053     2  0.6623      0.767 0.172 0.828
#> SRR1036054     2  0.6623      0.767 0.172 0.828
#> SRR1036055     2  0.3733      0.834 0.072 0.928
#> SRR1036056     2  0.3879      0.832 0.076 0.924
#> SRR1036057     2  0.3733      0.834 0.072 0.928
#> SRR1036058     1  0.8267      0.790 0.740 0.260
#> SRR1036059     1  0.8267      0.790 0.740 0.260
#> SRR1036060     1  0.8267      0.790 0.740 0.260
#> SRR1036061     1  0.8267      0.790 0.740 0.260
#> SRR1036062     1  0.8267      0.790 0.740 0.260
#> SRR1036063     1  0.8267      0.790 0.740 0.260
#> SRR1036064     1  0.8267      0.790 0.740 0.260
#> SRR1036065     1  0.8267      0.790 0.740 0.260
#> SRR1036066     2  0.5842      0.784 0.140 0.860
#> SRR1036067     2  0.5842      0.784 0.140 0.860
#> SRR1036068     2  0.5842      0.784 0.140 0.860
#> SRR1036069     2  0.5842      0.784 0.140 0.860
#> SRR1036070     2  0.5842      0.784 0.140 0.860
#> SRR1036071     2  0.5842      0.784 0.140 0.860
#> SRR1036072     2  0.5842      0.784 0.140 0.860
#> SRR1036073     2  0.5842      0.784 0.140 0.860
#> SRR1036074     2  0.5294      0.792 0.120 0.880
#> SRR1036075     2  0.5294      0.792 0.120 0.880
#> SRR1036076     2  0.5294      0.792 0.120 0.880
#> SRR1036077     2  0.5294      0.792 0.120 0.880
#> SRR1036078     2  0.5294      0.792 0.120 0.880
#> SRR1036079     2  0.5294      0.792 0.120 0.880
#> SRR1036080     2  0.5294      0.792 0.120 0.880
#> SRR1036081     2  0.5294      0.792 0.120 0.880
#> SRR1036082     2  0.5946      0.778 0.144 0.856
#> SRR1036083     2  0.5946      0.778 0.144 0.856
#> SRR1036084     2  0.5946      0.778 0.144 0.856
#> SRR1036090     2  0.0000      0.851 0.000 1.000
#> SRR1036091     2  0.0000      0.851 0.000 1.000
#> SRR1036092     2  0.0000      0.851 0.000 1.000
#> SRR1036093     2  0.0000      0.851 0.000 1.000
#> SRR1036094     2  0.0000      0.851 0.000 1.000
#> SRR1036085     1  0.9286      0.865 0.656 0.344
#> SRR1036086     1  0.9286      0.865 0.656 0.344
#> SRR1036087     1  0.9286      0.865 0.656 0.344
#> SRR1036088     1  0.9286      0.865 0.656 0.344
#> SRR1036089     1  0.9286      0.865 0.656 0.344
#> SRR1036095     2  0.9393      0.263 0.356 0.644
#> SRR1036096     2  0.9393      0.263 0.356 0.644
#> SRR1036097     2  0.9393      0.263 0.356 0.644
#> SRR1036098     2  0.9393      0.263 0.356 0.644
#> SRR1036099     2  0.9393      0.263 0.356 0.644
#> SRR1036100     2  0.1843      0.853 0.028 0.972
#> SRR1036101     2  0.1843      0.853 0.028 0.972
#> SRR1036102     2  0.1843      0.853 0.028 0.972
#> SRR1036103     2  0.1633      0.854 0.024 0.976
#> SRR1036104     2  0.1843      0.853 0.028 0.972
#> SRR1036105     1  0.9248      0.866 0.660 0.340
#> SRR1036106     1  0.9248      0.866 0.660 0.340
#> SRR1036107     1  0.9248      0.866 0.660 0.340
#> SRR1036108     1  0.9248      0.866 0.660 0.340
#> SRR1036109     1  0.9248      0.866 0.660 0.340
#> SRR1036110     2  0.5178      0.806 0.116 0.884
#> SRR1036111     2  0.5294      0.805 0.120 0.880
#> SRR1036112     2  0.5178      0.806 0.116 0.884
#> SRR1036113     2  0.5178      0.806 0.116 0.884
#> SRR1036114     2  0.5294      0.805 0.120 0.880
#> SRR1036115     2  0.7602      0.649 0.220 0.780
#> SRR1036116     2  0.7602      0.649 0.220 0.780
#> SRR1036117     2  0.7602      0.649 0.220 0.780
#> SRR1036118     2  0.7602      0.649 0.220 0.780
#> SRR1036119     2  0.7602      0.649 0.220 0.780
#> SRR1036120     2  0.6247      0.712 0.156 0.844
#> SRR1036121     2  0.6247      0.712 0.156 0.844
#> SRR1036122     2  0.6247      0.712 0.156 0.844
#> SRR1036123     2  0.6247      0.712 0.156 0.844
#> SRR1036124     2  0.6247      0.712 0.156 0.844
#> SRR1036125     2  0.6343      0.781 0.160 0.840
#> SRR1036126     2  0.6343      0.781 0.160 0.840
#> SRR1036127     2  0.6343      0.781 0.160 0.840
#> SRR1036128     2  0.6343      0.781 0.160 0.840
#> SRR1036129     2  0.6343      0.781 0.160 0.840
#> SRR1036130     2  0.6343      0.781 0.160 0.840
#> SRR1036131     2  0.6343      0.781 0.160 0.840
#> SRR1036132     2  0.6343      0.781 0.160 0.840
#> SRR1036133     2  0.1633      0.854 0.024 0.976
#> SRR1036134     2  0.1633      0.854 0.024 0.976
#> SRR1036135     2  0.1633      0.854 0.024 0.976
#> SRR1036136     2  0.1633      0.854 0.024 0.976
#> SRR1036137     2  0.1633      0.854 0.024 0.976
#> SRR1036138     2  0.1843      0.854 0.028 0.972
#> SRR1036139     2  0.1843      0.854 0.028 0.972
#> SRR1036140     2  0.1843      0.854 0.028 0.972
#> SRR1036141     2  0.1843      0.854 0.028 0.972
#> SRR1036142     2  0.1843      0.854 0.028 0.972
#> SRR1036143     2  0.1843      0.854 0.028 0.972
#> SRR1036144     2  0.1843      0.854 0.028 0.972
#> SRR1036145     2  0.1843      0.854 0.028 0.972

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1036002     2  0.6954     0.4879 0.196 0.720 0.084
#> SRR1036003     2  0.6954     0.4879 0.196 0.720 0.084
#> SRR1036004     2  0.6954     0.4879 0.196 0.720 0.084
#> SRR1036005     3  0.1999     0.9981 0.036 0.012 0.952
#> SRR1036006     3  0.1999     0.9981 0.036 0.012 0.952
#> SRR1036007     3  0.1999     0.9981 0.036 0.012 0.952
#> SRR1036008     3  0.1999     0.9981 0.036 0.012 0.952
#> SRR1036009     3  0.1999     0.9981 0.036 0.012 0.952
#> SRR1036013     2  0.7606     0.4268 0.244 0.664 0.092
#> SRR1036014     2  0.7606     0.4268 0.244 0.664 0.092
#> SRR1036015     2  0.7606     0.4268 0.244 0.664 0.092
#> SRR1036016     2  0.7606     0.4268 0.244 0.664 0.092
#> SRR1036017     2  0.7606     0.4268 0.244 0.664 0.092
#> SRR1036018     2  0.7606     0.4268 0.244 0.664 0.092
#> SRR1036010     2  0.6865    -0.0892 0.384 0.596 0.020
#> SRR1036011     2  0.6865    -0.0892 0.384 0.596 0.020
#> SRR1036012     2  0.6865    -0.0892 0.384 0.596 0.020
#> SRR1036019     2  0.0237     0.6046 0.000 0.996 0.004
#> SRR1036020     2  0.0237     0.6046 0.000 0.996 0.004
#> SRR1036021     2  0.0237     0.6046 0.000 0.996 0.004
#> SRR1036022     2  0.0424     0.6047 0.000 0.992 0.008
#> SRR1036023     2  0.0424     0.6047 0.000 0.992 0.008
#> SRR1036024     2  0.6416     0.2770 0.304 0.676 0.020
#> SRR1036025     2  0.6416     0.2770 0.304 0.676 0.020
#> SRR1036026     2  0.6416     0.2770 0.304 0.676 0.020
#> SRR1036027     2  0.6416     0.2770 0.304 0.676 0.020
#> SRR1036028     2  0.6416     0.2770 0.304 0.676 0.020
#> SRR1036029     2  0.6416     0.2770 0.304 0.676 0.020
#> SRR1036030     2  0.4892     0.5650 0.112 0.840 0.048
#> SRR1036031     2  0.4892     0.5650 0.112 0.840 0.048
#> SRR1036032     2  0.4892     0.5650 0.112 0.840 0.048
#> SRR1036033     2  0.4892     0.5650 0.112 0.840 0.048
#> SRR1036034     2  0.4818     0.5674 0.108 0.844 0.048
#> SRR1036035     2  0.4892     0.5650 0.112 0.840 0.048
#> SRR1036036     2  0.4892     0.5650 0.112 0.840 0.048
#> SRR1036037     2  0.4892     0.5650 0.112 0.840 0.048
#> SRR1036038     2  0.6897     0.3960 0.220 0.712 0.068
#> SRR1036039     2  0.6897     0.3960 0.220 0.712 0.068
#> SRR1036040     2  0.6897     0.3960 0.220 0.712 0.068
#> SRR1036041     2  0.7291    -0.0795 0.356 0.604 0.040
#> SRR1036042     2  0.6757     0.5067 0.180 0.736 0.084
#> SRR1036043     2  0.6757     0.5067 0.180 0.736 0.084
#> SRR1036044     2  0.6757     0.5067 0.180 0.736 0.084
#> SRR1036045     2  0.6757     0.5067 0.180 0.736 0.084
#> SRR1036046     2  0.6757     0.5067 0.180 0.736 0.084
#> SRR1036047     2  0.6757     0.5067 0.180 0.736 0.084
#> SRR1036048     2  0.6757     0.5067 0.180 0.736 0.084
#> SRR1036049     2  0.6757     0.5067 0.180 0.736 0.084
#> SRR1036050     1  0.7997     0.6592 0.568 0.360 0.072
#> SRR1036051     1  0.8013     0.6603 0.564 0.364 0.072
#> SRR1036052     1  0.8013     0.6603 0.564 0.364 0.072
#> SRR1036053     1  0.8013     0.6595 0.564 0.364 0.072
#> SRR1036054     1  0.8028     0.6602 0.560 0.368 0.072
#> SRR1036055     2  0.4921     0.4948 0.164 0.816 0.020
#> SRR1036056     2  0.5036     0.4797 0.172 0.808 0.020
#> SRR1036057     2  0.4979     0.4871 0.168 0.812 0.020
#> SRR1036058     2  0.9027     0.1825 0.428 0.440 0.132
#> SRR1036059     2  0.9027     0.1825 0.428 0.440 0.132
#> SRR1036060     2  0.9027     0.1825 0.428 0.440 0.132
#> SRR1036061     2  0.9027     0.1825 0.428 0.440 0.132
#> SRR1036062     2  0.9027     0.1825 0.428 0.440 0.132
#> SRR1036063     2  0.9027     0.1825 0.428 0.440 0.132
#> SRR1036064     2  0.9027     0.1825 0.428 0.440 0.132
#> SRR1036065     2  0.9027     0.1825 0.428 0.440 0.132
#> SRR1036066     1  0.6566     0.6968 0.612 0.376 0.012
#> SRR1036067     1  0.6584     0.6943 0.608 0.380 0.012
#> SRR1036068     1  0.6566     0.6968 0.612 0.376 0.012
#> SRR1036069     1  0.6584     0.6943 0.608 0.380 0.012
#> SRR1036070     1  0.6434     0.6939 0.612 0.380 0.008
#> SRR1036071     1  0.6434     0.6939 0.612 0.380 0.008
#> SRR1036072     1  0.6566     0.6968 0.612 0.376 0.012
#> SRR1036073     1  0.6566     0.6968 0.612 0.376 0.012
#> SRR1036074     2  0.4731     0.5575 0.128 0.840 0.032
#> SRR1036075     2  0.4731     0.5575 0.128 0.840 0.032
#> SRR1036076     2  0.4731     0.5575 0.128 0.840 0.032
#> SRR1036077     2  0.4731     0.5575 0.128 0.840 0.032
#> SRR1036078     2  0.4731     0.5575 0.128 0.840 0.032
#> SRR1036079     2  0.4731     0.5575 0.128 0.840 0.032
#> SRR1036080     2  0.4731     0.5575 0.128 0.840 0.032
#> SRR1036081     2  0.4731     0.5575 0.128 0.840 0.032
#> SRR1036082     2  0.5659     0.5588 0.152 0.796 0.052
#> SRR1036083     2  0.5659     0.5588 0.152 0.796 0.052
#> SRR1036084     2  0.5659     0.5588 0.152 0.796 0.052
#> SRR1036090     2  0.5122     0.4885 0.200 0.788 0.012
#> SRR1036091     2  0.4963     0.4868 0.200 0.792 0.008
#> SRR1036092     2  0.5122     0.4885 0.200 0.788 0.012
#> SRR1036093     2  0.4963     0.4868 0.200 0.792 0.008
#> SRR1036094     2  0.5122     0.4885 0.200 0.788 0.012
#> SRR1036085     3  0.1999     0.9981 0.036 0.012 0.952
#> SRR1036086     3  0.1999     0.9981 0.036 0.012 0.952
#> SRR1036087     3  0.1999     0.9981 0.036 0.012 0.952
#> SRR1036088     3  0.1999     0.9981 0.036 0.012 0.952
#> SRR1036089     3  0.1999     0.9981 0.036 0.012 0.952
#> SRR1036095     1  0.7729     0.2237 0.516 0.436 0.048
#> SRR1036096     1  0.7729     0.2237 0.516 0.436 0.048
#> SRR1036097     1  0.7729     0.2237 0.516 0.436 0.048
#> SRR1036098     1  0.7729     0.2237 0.516 0.436 0.048
#> SRR1036099     1  0.7729     0.2237 0.516 0.436 0.048
#> SRR1036100     2  0.3276     0.5946 0.068 0.908 0.024
#> SRR1036101     2  0.3276     0.5946 0.068 0.908 0.024
#> SRR1036102     2  0.3181     0.5944 0.064 0.912 0.024
#> SRR1036103     2  0.3181     0.5944 0.064 0.912 0.024
#> SRR1036104     2  0.3181     0.5944 0.064 0.912 0.024
#> SRR1036105     3  0.1877     0.9961 0.032 0.012 0.956
#> SRR1036106     3  0.1877     0.9961 0.032 0.012 0.956
#> SRR1036107     3  0.1877     0.9961 0.032 0.012 0.956
#> SRR1036108     3  0.1877     0.9961 0.032 0.012 0.956
#> SRR1036109     3  0.1877     0.9961 0.032 0.012 0.956
#> SRR1036110     2  0.6804     0.5176 0.204 0.724 0.072
#> SRR1036111     2  0.6804     0.5176 0.204 0.724 0.072
#> SRR1036112     2  0.6804     0.5176 0.204 0.724 0.072
#> SRR1036113     2  0.6804     0.5176 0.204 0.724 0.072
#> SRR1036114     2  0.6804     0.5176 0.204 0.724 0.072
#> SRR1036115     1  0.7652     0.2235 0.512 0.444 0.044
#> SRR1036116     1  0.7652     0.2235 0.512 0.444 0.044
#> SRR1036117     1  0.7652     0.2235 0.512 0.444 0.044
#> SRR1036118     1  0.7652     0.2235 0.512 0.444 0.044
#> SRR1036119     1  0.7652     0.2235 0.512 0.444 0.044
#> SRR1036120     2  0.8399     0.3559 0.220 0.620 0.160
#> SRR1036121     2  0.8399     0.3559 0.220 0.620 0.160
#> SRR1036122     2  0.8399     0.3559 0.220 0.620 0.160
#> SRR1036123     2  0.8399     0.3559 0.220 0.620 0.160
#> SRR1036124     2  0.8399     0.3559 0.220 0.620 0.160
#> SRR1036125     1  0.7406     0.6961 0.596 0.360 0.044
#> SRR1036126     1  0.7328     0.6959 0.596 0.364 0.040
#> SRR1036127     1  0.7406     0.6961 0.596 0.360 0.044
#> SRR1036128     1  0.7406     0.6961 0.596 0.360 0.044
#> SRR1036129     1  0.7328     0.6959 0.596 0.364 0.040
#> SRR1036130     1  0.7406     0.6961 0.596 0.360 0.044
#> SRR1036131     1  0.7406     0.6961 0.596 0.360 0.044
#> SRR1036132     1  0.7424     0.6943 0.592 0.364 0.044
#> SRR1036133     2  0.3091     0.5862 0.072 0.912 0.016
#> SRR1036134     2  0.3183     0.5863 0.076 0.908 0.016
#> SRR1036135     2  0.3091     0.5862 0.072 0.912 0.016
#> SRR1036136     2  0.3091     0.5862 0.072 0.912 0.016
#> SRR1036137     2  0.3091     0.5862 0.072 0.912 0.016
#> SRR1036138     2  0.3623     0.5817 0.072 0.896 0.032
#> SRR1036139     2  0.3623     0.5817 0.072 0.896 0.032
#> SRR1036140     2  0.3623     0.5817 0.072 0.896 0.032
#> SRR1036141     2  0.3623     0.5817 0.072 0.896 0.032
#> SRR1036142     2  0.3623     0.5817 0.072 0.896 0.032
#> SRR1036143     2  0.3623     0.5817 0.072 0.896 0.032
#> SRR1036144     2  0.3623     0.5817 0.072 0.896 0.032
#> SRR1036145     2  0.3623     0.5817 0.072 0.896 0.032

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1036002     2  0.0895     0.5687 0.020 0.976 0.004 0.000
#> SRR1036003     2  0.0895     0.5687 0.020 0.976 0.004 0.000
#> SRR1036004     2  0.0895     0.5687 0.020 0.976 0.004 0.000
#> SRR1036005     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036006     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036007     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036008     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036009     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036013     2  0.2360     0.5160 0.052 0.924 0.020 0.004
#> SRR1036014     2  0.2360     0.5160 0.052 0.924 0.020 0.004
#> SRR1036015     2  0.2360     0.5160 0.052 0.924 0.020 0.004
#> SRR1036016     2  0.2360     0.5160 0.052 0.924 0.020 0.004
#> SRR1036017     2  0.2360     0.5160 0.052 0.924 0.020 0.004
#> SRR1036018     2  0.2360     0.5160 0.052 0.924 0.020 0.004
#> SRR1036010     2  0.4331    -0.2776 0.288 0.712 0.000 0.000
#> SRR1036011     2  0.4304    -0.2593 0.284 0.716 0.000 0.000
#> SRR1036012     2  0.4304    -0.2593 0.284 0.716 0.000 0.000
#> SRR1036019     2  0.4051     0.6336 0.208 0.784 0.004 0.004
#> SRR1036020     2  0.4051     0.6336 0.208 0.784 0.004 0.004
#> SRR1036021     2  0.3870     0.6338 0.208 0.788 0.004 0.000
#> SRR1036022     2  0.4051     0.6336 0.208 0.784 0.004 0.004
#> SRR1036023     2  0.4051     0.6336 0.208 0.784 0.004 0.004
#> SRR1036024     2  0.3945     0.0357 0.216 0.780 0.004 0.000
#> SRR1036025     2  0.3982     0.0156 0.220 0.776 0.004 0.000
#> SRR1036026     2  0.3945     0.0357 0.216 0.780 0.004 0.000
#> SRR1036027     2  0.3945     0.0357 0.216 0.780 0.004 0.000
#> SRR1036028     2  0.3982     0.0156 0.220 0.776 0.004 0.000
#> SRR1036029     2  0.3982     0.0156 0.220 0.776 0.004 0.000
#> SRR1036030     2  0.4877     0.5895 0.328 0.664 0.000 0.008
#> SRR1036031     2  0.4877     0.5895 0.328 0.664 0.000 0.008
#> SRR1036032     2  0.4877     0.5895 0.328 0.664 0.000 0.008
#> SRR1036033     2  0.4877     0.5895 0.328 0.664 0.000 0.008
#> SRR1036034     2  0.4877     0.5895 0.328 0.664 0.000 0.008
#> SRR1036035     2  0.4877     0.5895 0.328 0.664 0.000 0.008
#> SRR1036036     2  0.4877     0.5895 0.328 0.664 0.000 0.008
#> SRR1036037     2  0.4877     0.5895 0.328 0.664 0.000 0.008
#> SRR1036038     2  0.1970     0.5306 0.060 0.932 0.008 0.000
#> SRR1036039     2  0.1970     0.5306 0.060 0.932 0.008 0.000
#> SRR1036040     2  0.1970     0.5306 0.060 0.932 0.008 0.000
#> SRR1036041     2  0.4477    -0.3651 0.312 0.688 0.000 0.000
#> SRR1036042     2  0.0895     0.5741 0.020 0.976 0.004 0.000
#> SRR1036043     2  0.0895     0.5741 0.020 0.976 0.004 0.000
#> SRR1036044     2  0.0895     0.5741 0.020 0.976 0.004 0.000
#> SRR1036045     2  0.0895     0.5741 0.020 0.976 0.004 0.000
#> SRR1036046     2  0.0895     0.5741 0.020 0.976 0.004 0.000
#> SRR1036047     2  0.0895     0.5741 0.020 0.976 0.004 0.000
#> SRR1036048     2  0.0895     0.5741 0.020 0.976 0.004 0.000
#> SRR1036049     2  0.0895     0.5741 0.020 0.976 0.004 0.000
#> SRR1036050     1  0.5677     0.9343 0.504 0.476 0.004 0.016
#> SRR1036051     1  0.5677     0.9343 0.504 0.476 0.004 0.016
#> SRR1036052     1  0.5677     0.9343 0.504 0.476 0.004 0.016
#> SRR1036053     1  0.5677     0.9343 0.504 0.476 0.004 0.016
#> SRR1036054     1  0.5677     0.9343 0.504 0.476 0.004 0.016
#> SRR1036055     2  0.3870     0.5937 0.208 0.788 0.000 0.004
#> SRR1036056     2  0.3945     0.5854 0.216 0.780 0.000 0.004
#> SRR1036057     2  0.3908     0.5895 0.212 0.784 0.000 0.004
#> SRR1036058     4  0.0000     1.0000 0.000 0.000 0.000 1.000
#> SRR1036059     4  0.0000     1.0000 0.000 0.000 0.000 1.000
#> SRR1036060     4  0.0000     1.0000 0.000 0.000 0.000 1.000
#> SRR1036061     4  0.0000     1.0000 0.000 0.000 0.000 1.000
#> SRR1036062     4  0.0000     1.0000 0.000 0.000 0.000 1.000
#> SRR1036063     4  0.0000     1.0000 0.000 0.000 0.000 1.000
#> SRR1036064     4  0.0000     1.0000 0.000 0.000 0.000 1.000
#> SRR1036065     4  0.0000     1.0000 0.000 0.000 0.000 1.000
#> SRR1036066     1  0.5000     0.9741 0.504 0.496 0.000 0.000
#> SRR1036067     1  0.5000     0.9741 0.504 0.496 0.000 0.000
#> SRR1036068     1  0.5000     0.9741 0.504 0.496 0.000 0.000
#> SRR1036069     1  0.5000     0.9741 0.504 0.496 0.000 0.000
#> SRR1036070     1  0.5000     0.9741 0.504 0.496 0.000 0.000
#> SRR1036071     1  0.5000     0.9741 0.504 0.496 0.000 0.000
#> SRR1036072     1  0.5000     0.9741 0.504 0.496 0.000 0.000
#> SRR1036073     1  0.5000     0.9741 0.504 0.496 0.000 0.000
#> SRR1036074     2  0.5361     0.6131 0.208 0.724 0.000 0.068
#> SRR1036075     2  0.5361     0.6131 0.208 0.724 0.000 0.068
#> SRR1036076     2  0.5361     0.6131 0.208 0.724 0.000 0.068
#> SRR1036077     2  0.5361     0.6131 0.208 0.724 0.000 0.068
#> SRR1036078     2  0.5361     0.6131 0.208 0.724 0.000 0.068
#> SRR1036079     2  0.5361     0.6131 0.208 0.724 0.000 0.068
#> SRR1036080     2  0.5361     0.6131 0.208 0.724 0.000 0.068
#> SRR1036081     2  0.5361     0.6131 0.208 0.724 0.000 0.068
#> SRR1036082     2  0.4309     0.6288 0.124 0.820 0.004 0.052
#> SRR1036083     2  0.4309     0.6288 0.124 0.820 0.004 0.052
#> SRR1036084     2  0.4309     0.6288 0.124 0.820 0.004 0.052
#> SRR1036090     2  0.0817     0.5804 0.024 0.976 0.000 0.000
#> SRR1036091     2  0.0817     0.5804 0.024 0.976 0.000 0.000
#> SRR1036092     2  0.0817     0.5804 0.024 0.976 0.000 0.000
#> SRR1036093     2  0.0817     0.5804 0.024 0.976 0.000 0.000
#> SRR1036094     2  0.0817     0.5804 0.024 0.976 0.000 0.000
#> SRR1036085     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036086     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036087     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036088     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036089     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036095     2  0.7398    -0.3483 0.376 0.456 0.000 0.168
#> SRR1036096     2  0.7398    -0.3483 0.376 0.456 0.000 0.168
#> SRR1036097     2  0.7398    -0.3483 0.376 0.456 0.000 0.168
#> SRR1036098     2  0.7398    -0.3483 0.376 0.456 0.000 0.168
#> SRR1036099     2  0.7398    -0.3483 0.376 0.456 0.000 0.168
#> SRR1036100     2  0.4011     0.6341 0.208 0.784 0.000 0.008
#> SRR1036101     2  0.4011     0.6341 0.208 0.784 0.000 0.008
#> SRR1036102     2  0.4011     0.6341 0.208 0.784 0.000 0.008
#> SRR1036103     2  0.4011     0.6341 0.208 0.784 0.000 0.008
#> SRR1036104     2  0.4049     0.6340 0.212 0.780 0.000 0.008
#> SRR1036105     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036106     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036107     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036108     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036109     3  0.0000     1.0000 0.000 0.000 1.000 0.000
#> SRR1036110     2  0.2360     0.5987 0.052 0.924 0.004 0.020
#> SRR1036111     2  0.2360     0.5987 0.052 0.924 0.004 0.020
#> SRR1036112     2  0.2360     0.5987 0.052 0.924 0.004 0.020
#> SRR1036113     2  0.2360     0.5987 0.052 0.924 0.004 0.020
#> SRR1036114     2  0.2360     0.5987 0.052 0.924 0.004 0.020
#> SRR1036115     2  0.7563    -0.3524 0.376 0.452 0.004 0.168
#> SRR1036116     2  0.7563    -0.3524 0.376 0.452 0.004 0.168
#> SRR1036117     2  0.7563    -0.3524 0.376 0.452 0.004 0.168
#> SRR1036118     2  0.7563    -0.3524 0.376 0.452 0.004 0.168
#> SRR1036119     2  0.7563    -0.3524 0.376 0.452 0.004 0.168
#> SRR1036120     2  0.2565     0.5130 0.056 0.912 0.032 0.000
#> SRR1036121     2  0.2565     0.5130 0.056 0.912 0.032 0.000
#> SRR1036122     2  0.2565     0.5130 0.056 0.912 0.032 0.000
#> SRR1036123     2  0.2565     0.5130 0.056 0.912 0.032 0.000
#> SRR1036124     2  0.2565     0.5130 0.056 0.912 0.032 0.000
#> SRR1036125     1  0.5168     0.9740 0.500 0.496 0.004 0.000
#> SRR1036126     1  0.5168     0.9740 0.500 0.496 0.004 0.000
#> SRR1036127     1  0.5168     0.9740 0.500 0.496 0.004 0.000
#> SRR1036128     1  0.5168     0.9740 0.500 0.496 0.004 0.000
#> SRR1036129     1  0.5168     0.9740 0.500 0.496 0.004 0.000
#> SRR1036130     1  0.5168     0.9740 0.500 0.496 0.004 0.000
#> SRR1036131     1  0.5168     0.9740 0.500 0.496 0.004 0.000
#> SRR1036132     1  0.5168     0.9740 0.500 0.496 0.004 0.000
#> SRR1036133     2  0.4876     0.5941 0.320 0.672 0.004 0.004
#> SRR1036134     2  0.4876     0.5941 0.320 0.672 0.004 0.004
#> SRR1036135     2  0.4876     0.5941 0.320 0.672 0.004 0.004
#> SRR1036136     2  0.4876     0.5941 0.320 0.672 0.004 0.004
#> SRR1036137     2  0.4876     0.5941 0.320 0.672 0.004 0.004
#> SRR1036138     2  0.4809     0.5947 0.308 0.684 0.004 0.004
#> SRR1036139     2  0.4809     0.5947 0.308 0.684 0.004 0.004
#> SRR1036140     2  0.4809     0.5947 0.308 0.684 0.004 0.004
#> SRR1036141     2  0.4809     0.5947 0.308 0.684 0.004 0.004
#> SRR1036142     2  0.4809     0.5947 0.308 0.684 0.004 0.004
#> SRR1036143     2  0.4809     0.5947 0.308 0.684 0.004 0.004
#> SRR1036144     2  0.4809     0.5947 0.308 0.684 0.004 0.004
#> SRR1036145     2  0.4809     0.5947 0.308 0.684 0.004 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1036002     4  0.6638     0.4936 0.264 0.176 0.020 0.540 0.000
#> SRR1036003     4  0.6638     0.4936 0.264 0.176 0.020 0.540 0.000
#> SRR1036004     4  0.6638     0.4936 0.264 0.176 0.020 0.540 0.000
#> SRR1036005     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036006     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036007     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036008     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036009     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036013     4  0.6152     0.2930 0.424 0.064 0.020 0.488 0.004
#> SRR1036014     4  0.6152     0.2930 0.424 0.064 0.020 0.488 0.004
#> SRR1036015     4  0.6152     0.2930 0.424 0.064 0.020 0.488 0.004
#> SRR1036016     4  0.6152     0.2930 0.424 0.064 0.020 0.488 0.004
#> SRR1036017     4  0.6152     0.2930 0.424 0.064 0.020 0.488 0.004
#> SRR1036018     4  0.6152     0.2930 0.424 0.064 0.020 0.488 0.004
#> SRR1036010     1  0.4377     0.5341 0.776 0.112 0.004 0.108 0.000
#> SRR1036011     1  0.4279     0.5369 0.784 0.104 0.004 0.108 0.000
#> SRR1036012     1  0.4517     0.5251 0.764 0.124 0.004 0.108 0.000
#> SRR1036019     2  0.4447     0.7287 0.140 0.772 0.000 0.080 0.008
#> SRR1036020     2  0.4404     0.7324 0.136 0.776 0.000 0.080 0.008
#> SRR1036021     2  0.4404     0.7324 0.136 0.776 0.000 0.080 0.008
#> SRR1036022     2  0.4447     0.7287 0.140 0.772 0.000 0.080 0.008
#> SRR1036023     2  0.4460     0.7297 0.136 0.772 0.000 0.084 0.008
#> SRR1036024     1  0.5209     0.4032 0.704 0.072 0.012 0.208 0.004
#> SRR1036025     1  0.5181     0.4051 0.704 0.068 0.012 0.212 0.004
#> SRR1036026     1  0.5181     0.4051 0.704 0.068 0.012 0.212 0.004
#> SRR1036027     1  0.5122     0.4060 0.708 0.064 0.012 0.212 0.004
#> SRR1036028     1  0.5122     0.4060 0.708 0.064 0.012 0.212 0.004
#> SRR1036029     1  0.5122     0.4060 0.708 0.064 0.012 0.212 0.004
#> SRR1036030     2  0.3010     0.7602 0.100 0.868 0.012 0.020 0.000
#> SRR1036031     2  0.3010     0.7602 0.100 0.868 0.012 0.020 0.000
#> SRR1036032     2  0.3010     0.7602 0.100 0.868 0.012 0.020 0.000
#> SRR1036033     2  0.3010     0.7602 0.100 0.868 0.012 0.020 0.000
#> SRR1036034     2  0.3010     0.7602 0.100 0.868 0.012 0.020 0.000
#> SRR1036035     2  0.3010     0.7602 0.100 0.868 0.012 0.020 0.000
#> SRR1036036     2  0.3010     0.7602 0.100 0.868 0.012 0.020 0.000
#> SRR1036037     2  0.3010     0.7602 0.100 0.868 0.012 0.020 0.000
#> SRR1036038     4  0.6852     0.3335 0.408 0.164 0.012 0.412 0.004
#> SRR1036039     4  0.6896     0.3270 0.404 0.172 0.012 0.408 0.004
#> SRR1036040     4  0.6852     0.3335 0.408 0.164 0.012 0.412 0.004
#> SRR1036041     1  0.4917     0.5225 0.736 0.160 0.012 0.092 0.000
#> SRR1036042     4  0.6186     0.5045 0.240 0.184 0.004 0.572 0.000
#> SRR1036043     4  0.6186     0.5045 0.240 0.184 0.004 0.572 0.000
#> SRR1036044     4  0.6186     0.5045 0.240 0.184 0.004 0.572 0.000
#> SRR1036045     4  0.6186     0.5045 0.240 0.184 0.004 0.572 0.000
#> SRR1036046     4  0.6186     0.5045 0.240 0.184 0.004 0.572 0.000
#> SRR1036047     4  0.6186     0.5045 0.240 0.184 0.004 0.572 0.000
#> SRR1036048     4  0.6186     0.5045 0.240 0.184 0.004 0.572 0.000
#> SRR1036049     4  0.6186     0.5045 0.240 0.184 0.004 0.572 0.000
#> SRR1036050     1  0.4684     0.5242 0.772 0.144 0.012 0.060 0.012
#> SRR1036051     1  0.4684     0.5242 0.772 0.144 0.012 0.060 0.012
#> SRR1036052     1  0.4684     0.5242 0.772 0.144 0.012 0.060 0.012
#> SRR1036053     1  0.4684     0.5242 0.772 0.144 0.012 0.060 0.012
#> SRR1036054     1  0.4684     0.5242 0.772 0.144 0.012 0.060 0.012
#> SRR1036055     2  0.6566     0.3498 0.316 0.484 0.000 0.196 0.004
#> SRR1036056     2  0.6566     0.3510 0.316 0.484 0.000 0.196 0.004
#> SRR1036057     2  0.6576     0.3453 0.320 0.480 0.000 0.196 0.004
#> SRR1036058     5  0.0162     1.0000 0.000 0.000 0.000 0.004 0.996
#> SRR1036059     5  0.0162     1.0000 0.000 0.000 0.000 0.004 0.996
#> SRR1036060     5  0.0162     1.0000 0.000 0.000 0.000 0.004 0.996
#> SRR1036061     5  0.0162     1.0000 0.000 0.000 0.000 0.004 0.996
#> SRR1036062     5  0.0162     1.0000 0.000 0.000 0.000 0.004 0.996
#> SRR1036063     5  0.0162     1.0000 0.000 0.000 0.000 0.004 0.996
#> SRR1036064     5  0.0162     1.0000 0.000 0.000 0.000 0.004 0.996
#> SRR1036065     5  0.0162     1.0000 0.000 0.000 0.000 0.004 0.996
#> SRR1036066     1  0.0510     0.6876 0.984 0.016 0.000 0.000 0.000
#> SRR1036067     1  0.0510     0.6876 0.984 0.016 0.000 0.000 0.000
#> SRR1036068     1  0.0510     0.6876 0.984 0.016 0.000 0.000 0.000
#> SRR1036069     1  0.0510     0.6876 0.984 0.016 0.000 0.000 0.000
#> SRR1036070     1  0.0510     0.6876 0.984 0.016 0.000 0.000 0.000
#> SRR1036071     1  0.0510     0.6876 0.984 0.016 0.000 0.000 0.000
#> SRR1036072     1  0.0510     0.6876 0.984 0.016 0.000 0.000 0.000
#> SRR1036073     1  0.0510     0.6876 0.984 0.016 0.000 0.000 0.000
#> SRR1036074     2  0.4811     0.7142 0.080 0.768 0.000 0.116 0.036
#> SRR1036075     2  0.4811     0.7142 0.080 0.768 0.000 0.116 0.036
#> SRR1036076     2  0.4811     0.7142 0.080 0.768 0.000 0.116 0.036
#> SRR1036077     2  0.4811     0.7142 0.080 0.768 0.000 0.116 0.036
#> SRR1036078     2  0.4811     0.7142 0.080 0.768 0.000 0.116 0.036
#> SRR1036079     2  0.4811     0.7142 0.080 0.768 0.000 0.116 0.036
#> SRR1036080     2  0.4811     0.7142 0.080 0.768 0.000 0.116 0.036
#> SRR1036081     2  0.4811     0.7142 0.080 0.768 0.000 0.116 0.036
#> SRR1036082     2  0.6909     0.4591 0.132 0.564 0.004 0.248 0.052
#> SRR1036083     2  0.6909     0.4591 0.132 0.564 0.004 0.248 0.052
#> SRR1036084     2  0.6909     0.4591 0.132 0.564 0.004 0.248 0.052
#> SRR1036090     4  0.6902     0.4386 0.308 0.208 0.016 0.468 0.000
#> SRR1036091     4  0.6892     0.4383 0.312 0.204 0.016 0.468 0.000
#> SRR1036092     4  0.6902     0.4386 0.308 0.208 0.016 0.468 0.000
#> SRR1036093     4  0.6902     0.4386 0.308 0.208 0.016 0.468 0.000
#> SRR1036094     4  0.6892     0.4384 0.312 0.204 0.016 0.468 0.000
#> SRR1036085     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036086     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036087     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036088     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036089     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036095     4  0.6158     0.0957 0.316 0.000 0.000 0.528 0.156
#> SRR1036096     4  0.6158     0.0957 0.316 0.000 0.000 0.528 0.156
#> SRR1036097     4  0.6158     0.0957 0.316 0.000 0.000 0.528 0.156
#> SRR1036098     4  0.6158     0.0957 0.316 0.000 0.000 0.528 0.156
#> SRR1036099     4  0.6158     0.0957 0.316 0.000 0.000 0.528 0.156
#> SRR1036100     2  0.5253     0.6662 0.108 0.696 0.000 0.188 0.008
#> SRR1036101     2  0.5206     0.6678 0.104 0.700 0.000 0.188 0.008
#> SRR1036102     2  0.5344     0.6580 0.116 0.688 0.000 0.188 0.008
#> SRR1036103     2  0.5344     0.6580 0.116 0.688 0.000 0.188 0.008
#> SRR1036104     2  0.5253     0.6637 0.108 0.696 0.000 0.188 0.008
#> SRR1036105     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036106     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036107     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036108     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036109     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036110     4  0.7111     0.3842 0.224 0.256 0.004 0.492 0.024
#> SRR1036111     4  0.7111     0.3842 0.224 0.256 0.004 0.492 0.024
#> SRR1036112     4  0.7111     0.3842 0.224 0.256 0.004 0.492 0.024
#> SRR1036113     4  0.7111     0.3842 0.224 0.256 0.004 0.492 0.024
#> SRR1036114     4  0.7111     0.3842 0.224 0.256 0.004 0.492 0.024
#> SRR1036115     4  0.6096     0.0969 0.316 0.000 0.000 0.536 0.148
#> SRR1036116     4  0.6096     0.0969 0.316 0.000 0.000 0.536 0.148
#> SRR1036117     4  0.6096     0.0969 0.316 0.000 0.000 0.536 0.148
#> SRR1036118     4  0.6096     0.0969 0.316 0.000 0.000 0.536 0.148
#> SRR1036119     4  0.6096     0.0969 0.316 0.000 0.000 0.536 0.148
#> SRR1036120     1  0.6770    -0.2917 0.448 0.104 0.040 0.408 0.000
#> SRR1036121     1  0.6770    -0.2917 0.448 0.104 0.040 0.408 0.000
#> SRR1036122     1  0.6770    -0.2917 0.448 0.104 0.040 0.408 0.000
#> SRR1036123     1  0.6770    -0.2917 0.448 0.104 0.040 0.408 0.000
#> SRR1036124     1  0.6770    -0.2917 0.448 0.104 0.040 0.408 0.000
#> SRR1036125     1  0.0324     0.6852 0.992 0.004 0.000 0.004 0.000
#> SRR1036126     1  0.0324     0.6852 0.992 0.004 0.000 0.004 0.000
#> SRR1036127     1  0.0324     0.6852 0.992 0.004 0.000 0.004 0.000
#> SRR1036128     1  0.0324     0.6852 0.992 0.004 0.000 0.004 0.000
#> SRR1036129     1  0.0324     0.6852 0.992 0.004 0.000 0.004 0.000
#> SRR1036130     1  0.0324     0.6852 0.992 0.004 0.000 0.004 0.000
#> SRR1036131     1  0.0324     0.6852 0.992 0.004 0.000 0.004 0.000
#> SRR1036132     1  0.0324     0.6852 0.992 0.004 0.000 0.004 0.000
#> SRR1036133     2  0.3292     0.7632 0.120 0.844 0.000 0.032 0.004
#> SRR1036134     2  0.3340     0.7623 0.124 0.840 0.000 0.032 0.004
#> SRR1036135     2  0.3292     0.7632 0.120 0.844 0.000 0.032 0.004
#> SRR1036136     2  0.3292     0.7632 0.120 0.844 0.000 0.032 0.004
#> SRR1036137     2  0.3292     0.7632 0.120 0.844 0.000 0.032 0.004
#> SRR1036138     2  0.2052     0.7720 0.080 0.912 0.004 0.004 0.000
#> SRR1036139     2  0.2052     0.7720 0.080 0.912 0.004 0.004 0.000
#> SRR1036140     2  0.2052     0.7720 0.080 0.912 0.004 0.004 0.000
#> SRR1036141     2  0.2052     0.7720 0.080 0.912 0.004 0.004 0.000
#> SRR1036142     2  0.2052     0.7720 0.080 0.912 0.004 0.004 0.000
#> SRR1036143     2  0.2052     0.7720 0.080 0.912 0.004 0.004 0.000
#> SRR1036144     2  0.2052     0.7720 0.080 0.912 0.004 0.004 0.000
#> SRR1036145     2  0.2052     0.7720 0.080 0.912 0.004 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1036002     6  0.3945     0.6554 0.200 0.048 0.000 0.004 0.000 0.748
#> SRR1036003     6  0.3945     0.6554 0.200 0.048 0.000 0.004 0.000 0.748
#> SRR1036004     6  0.3945     0.6554 0.200 0.048 0.000 0.004 0.000 0.748
#> SRR1036005     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036006     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036007     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036008     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036009     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036013     6  0.6022     0.5819 0.220 0.004 0.004 0.004 0.240 0.528
#> SRR1036014     6  0.6022     0.5819 0.220 0.004 0.004 0.004 0.240 0.528
#> SRR1036015     6  0.6022     0.5819 0.220 0.004 0.004 0.004 0.240 0.528
#> SRR1036016     6  0.6022     0.5819 0.220 0.004 0.004 0.004 0.240 0.528
#> SRR1036017     6  0.6022     0.5819 0.220 0.004 0.004 0.004 0.240 0.528
#> SRR1036018     6  0.6022     0.5819 0.220 0.004 0.004 0.004 0.240 0.528
#> SRR1036010     1  0.2390     0.7466 0.896 0.052 0.000 0.000 0.008 0.044
#> SRR1036011     1  0.2390     0.7466 0.896 0.052 0.000 0.000 0.008 0.044
#> SRR1036012     1  0.2390     0.7466 0.896 0.052 0.000 0.000 0.008 0.044
#> SRR1036019     2  0.4168     0.7045 0.112 0.760 0.000 0.000 0.008 0.120
#> SRR1036020     2  0.4168     0.7045 0.112 0.760 0.000 0.000 0.008 0.120
#> SRR1036021     2  0.4168     0.7045 0.112 0.760 0.000 0.000 0.008 0.120
#> SRR1036022     2  0.4168     0.7045 0.112 0.760 0.000 0.000 0.008 0.120
#> SRR1036023     2  0.4209     0.7015 0.112 0.756 0.000 0.000 0.008 0.124
#> SRR1036024     1  0.4381     0.5614 0.748 0.016 0.000 0.000 0.136 0.100
#> SRR1036025     1  0.4381     0.5614 0.748 0.016 0.000 0.000 0.136 0.100
#> SRR1036026     1  0.4381     0.5614 0.748 0.016 0.000 0.000 0.136 0.100
#> SRR1036027     1  0.4381     0.5614 0.748 0.016 0.000 0.000 0.136 0.100
#> SRR1036028     1  0.4381     0.5614 0.748 0.016 0.000 0.000 0.136 0.100
#> SRR1036029     1  0.4381     0.5614 0.748 0.016 0.000 0.000 0.136 0.100
#> SRR1036030     2  0.1988     0.7531 0.072 0.912 0.000 0.004 0.004 0.008
#> SRR1036031     2  0.1988     0.7531 0.072 0.912 0.000 0.004 0.004 0.008
#> SRR1036032     2  0.1988     0.7531 0.072 0.912 0.000 0.004 0.004 0.008
#> SRR1036033     2  0.1988     0.7531 0.072 0.912 0.000 0.004 0.004 0.008
#> SRR1036034     2  0.1988     0.7531 0.072 0.912 0.000 0.004 0.004 0.008
#> SRR1036035     2  0.1988     0.7531 0.072 0.912 0.000 0.004 0.004 0.008
#> SRR1036036     2  0.1988     0.7531 0.072 0.912 0.000 0.004 0.004 0.008
#> SRR1036037     2  0.1988     0.7531 0.072 0.912 0.000 0.004 0.004 0.008
#> SRR1036038     1  0.5293    -0.0842 0.500 0.088 0.000 0.000 0.004 0.408
#> SRR1036039     1  0.5293    -0.0842 0.500 0.088 0.000 0.000 0.004 0.408
#> SRR1036040     1  0.5293    -0.0842 0.500 0.088 0.000 0.000 0.004 0.408
#> SRR1036041     1  0.3427     0.7261 0.828 0.100 0.000 0.000 0.016 0.056
#> SRR1036042     6  0.3969     0.6560 0.212 0.044 0.000 0.000 0.004 0.740
#> SRR1036043     6  0.3969     0.6560 0.212 0.044 0.000 0.000 0.004 0.740
#> SRR1036044     6  0.3969     0.6560 0.212 0.044 0.000 0.000 0.004 0.740
#> SRR1036045     6  0.3969     0.6560 0.212 0.044 0.000 0.000 0.004 0.740
#> SRR1036046     6  0.3969     0.6560 0.212 0.044 0.000 0.000 0.004 0.740
#> SRR1036047     6  0.3969     0.6560 0.212 0.044 0.000 0.000 0.004 0.740
#> SRR1036048     6  0.3969     0.6560 0.212 0.044 0.000 0.000 0.004 0.740
#> SRR1036049     6  0.3969     0.6560 0.212 0.044 0.000 0.000 0.004 0.740
#> SRR1036050     1  0.3935     0.6465 0.776 0.152 0.000 0.000 0.060 0.012
#> SRR1036051     1  0.3935     0.6465 0.776 0.152 0.000 0.000 0.060 0.012
#> SRR1036052     1  0.3935     0.6465 0.776 0.152 0.000 0.000 0.060 0.012
#> SRR1036053     1  0.3935     0.6465 0.776 0.152 0.000 0.000 0.060 0.012
#> SRR1036054     1  0.3935     0.6465 0.776 0.152 0.000 0.000 0.060 0.012
#> SRR1036055     2  0.6212     0.2178 0.352 0.468 0.000 0.004 0.020 0.156
#> SRR1036056     2  0.6212     0.2178 0.352 0.468 0.000 0.004 0.020 0.156
#> SRR1036057     2  0.6212     0.2178 0.352 0.468 0.000 0.004 0.020 0.156
#> SRR1036058     4  0.0146     1.0000 0.000 0.000 0.000 0.996 0.004 0.000
#> SRR1036059     4  0.0146     1.0000 0.000 0.000 0.000 0.996 0.004 0.000
#> SRR1036060     4  0.0146     1.0000 0.000 0.000 0.000 0.996 0.004 0.000
#> SRR1036061     4  0.0146     1.0000 0.000 0.000 0.000 0.996 0.004 0.000
#> SRR1036062     4  0.0146     1.0000 0.000 0.000 0.000 0.996 0.004 0.000
#> SRR1036063     4  0.0146     1.0000 0.000 0.000 0.000 0.996 0.004 0.000
#> SRR1036064     4  0.0146     1.0000 0.000 0.000 0.000 0.996 0.004 0.000
#> SRR1036065     4  0.0146     1.0000 0.000 0.000 0.000 0.996 0.004 0.000
#> SRR1036066     1  0.0665     0.7675 0.980 0.008 0.000 0.000 0.004 0.008
#> SRR1036067     1  0.0665     0.7675 0.980 0.008 0.000 0.000 0.004 0.008
#> SRR1036068     1  0.0665     0.7675 0.980 0.008 0.000 0.000 0.004 0.008
#> SRR1036069     1  0.0665     0.7675 0.980 0.008 0.000 0.000 0.004 0.008
#> SRR1036070     1  0.0665     0.7675 0.980 0.008 0.000 0.000 0.004 0.008
#> SRR1036071     1  0.0665     0.7675 0.980 0.008 0.000 0.000 0.004 0.008
#> SRR1036072     1  0.0665     0.7675 0.980 0.008 0.000 0.000 0.004 0.008
#> SRR1036073     1  0.0665     0.7675 0.980 0.008 0.000 0.000 0.004 0.008
#> SRR1036074     2  0.5562     0.6521 0.064 0.660 0.000 0.000 0.144 0.132
#> SRR1036075     2  0.5562     0.6521 0.064 0.660 0.000 0.000 0.144 0.132
#> SRR1036076     2  0.5562     0.6521 0.064 0.660 0.000 0.000 0.144 0.132
#> SRR1036077     2  0.5562     0.6521 0.064 0.660 0.000 0.000 0.144 0.132
#> SRR1036078     2  0.5562     0.6521 0.064 0.660 0.000 0.000 0.144 0.132
#> SRR1036079     2  0.5562     0.6521 0.064 0.660 0.000 0.000 0.144 0.132
#> SRR1036080     2  0.5562     0.6521 0.064 0.660 0.000 0.000 0.144 0.132
#> SRR1036081     2  0.5562     0.6521 0.064 0.660 0.000 0.000 0.144 0.132
#> SRR1036082     2  0.6751     0.3726 0.076 0.488 0.000 0.000 0.208 0.228
#> SRR1036083     2  0.6751     0.3726 0.076 0.488 0.000 0.000 0.208 0.228
#> SRR1036084     2  0.6751     0.3726 0.076 0.488 0.000 0.000 0.208 0.228
#> SRR1036090     6  0.6415     0.3233 0.376 0.176 0.004 0.000 0.024 0.420
#> SRR1036091     6  0.6415     0.3233 0.376 0.176 0.004 0.000 0.024 0.420
#> SRR1036092     6  0.6415     0.3233 0.376 0.176 0.004 0.000 0.024 0.420
#> SRR1036093     6  0.6415     0.3233 0.376 0.176 0.004 0.000 0.024 0.420
#> SRR1036094     6  0.6415     0.3233 0.376 0.176 0.004 0.000 0.024 0.420
#> SRR1036085     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036086     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036087     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036088     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036089     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036095     5  0.2100     1.0000 0.112 0.004 0.000 0.000 0.884 0.000
#> SRR1036096     5  0.2100     1.0000 0.112 0.004 0.000 0.000 0.884 0.000
#> SRR1036097     5  0.2100     1.0000 0.112 0.004 0.000 0.000 0.884 0.000
#> SRR1036098     5  0.2100     1.0000 0.112 0.004 0.000 0.000 0.884 0.000
#> SRR1036099     5  0.2100     1.0000 0.112 0.004 0.000 0.000 0.884 0.000
#> SRR1036100     2  0.4301     0.6851 0.096 0.760 0.000 0.000 0.020 0.124
#> SRR1036101     2  0.4301     0.6851 0.096 0.760 0.000 0.000 0.020 0.124
#> SRR1036102     2  0.4301     0.6851 0.096 0.760 0.000 0.000 0.020 0.124
#> SRR1036103     2  0.4301     0.6851 0.096 0.760 0.000 0.000 0.020 0.124
#> SRR1036104     2  0.4301     0.6851 0.096 0.760 0.000 0.000 0.020 0.124
#> SRR1036105     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036106     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036107     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036108     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036109     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036110     6  0.7014     0.4327 0.104 0.180 0.000 0.000 0.268 0.448
#> SRR1036111     6  0.7014     0.4327 0.104 0.180 0.000 0.000 0.268 0.448
#> SRR1036112     6  0.7014     0.4327 0.104 0.180 0.000 0.000 0.268 0.448
#> SRR1036113     6  0.7014     0.4327 0.104 0.180 0.000 0.000 0.268 0.448
#> SRR1036114     6  0.7014     0.4327 0.104 0.180 0.000 0.000 0.268 0.448
#> SRR1036115     5  0.2100     1.0000 0.112 0.004 0.000 0.000 0.884 0.000
#> SRR1036116     5  0.2100     1.0000 0.112 0.004 0.000 0.000 0.884 0.000
#> SRR1036117     5  0.2100     1.0000 0.112 0.004 0.000 0.000 0.884 0.000
#> SRR1036118     5  0.2100     1.0000 0.112 0.004 0.000 0.000 0.884 0.000
#> SRR1036119     5  0.2100     1.0000 0.112 0.004 0.000 0.000 0.884 0.000
#> SRR1036120     6  0.4996     0.6114 0.232 0.004 0.004 0.000 0.104 0.656
#> SRR1036121     6  0.4996     0.6114 0.232 0.004 0.004 0.000 0.104 0.656
#> SRR1036122     6  0.4996     0.6114 0.232 0.004 0.004 0.000 0.104 0.656
#> SRR1036123     6  0.4996     0.6114 0.232 0.004 0.004 0.000 0.104 0.656
#> SRR1036124     6  0.4996     0.6114 0.232 0.004 0.004 0.000 0.104 0.656
#> SRR1036125     1  0.2384     0.7402 0.884 0.000 0.000 0.000 0.032 0.084
#> SRR1036126     1  0.2384     0.7402 0.884 0.000 0.000 0.000 0.032 0.084
#> SRR1036127     1  0.2384     0.7402 0.884 0.000 0.000 0.000 0.032 0.084
#> SRR1036128     1  0.2384     0.7402 0.884 0.000 0.000 0.000 0.032 0.084
#> SRR1036129     1  0.2384     0.7402 0.884 0.000 0.000 0.000 0.032 0.084
#> SRR1036130     1  0.2384     0.7402 0.884 0.000 0.000 0.000 0.032 0.084
#> SRR1036131     1  0.2384     0.7402 0.884 0.000 0.000 0.000 0.032 0.084
#> SRR1036132     1  0.2384     0.7402 0.884 0.000 0.000 0.000 0.032 0.084
#> SRR1036133     2  0.3274     0.7431 0.096 0.824 0.000 0.000 0.000 0.080
#> SRR1036134     2  0.3277     0.7426 0.092 0.824 0.000 0.000 0.000 0.084
#> SRR1036135     2  0.3274     0.7431 0.096 0.824 0.000 0.000 0.000 0.080
#> SRR1036136     2  0.3274     0.7431 0.096 0.824 0.000 0.000 0.000 0.080
#> SRR1036137     2  0.3274     0.7431 0.096 0.824 0.000 0.000 0.000 0.080
#> SRR1036138     2  0.2633     0.7399 0.020 0.864 0.004 0.000 0.000 0.112
#> SRR1036139     2  0.2633     0.7399 0.020 0.864 0.004 0.000 0.000 0.112
#> SRR1036140     2  0.2633     0.7399 0.020 0.864 0.004 0.000 0.000 0.112
#> SRR1036141     2  0.2633     0.7399 0.020 0.864 0.004 0.000 0.000 0.112
#> SRR1036142     2  0.2633     0.7399 0.020 0.864 0.004 0.000 0.000 0.112
#> SRR1036143     2  0.2633     0.7399 0.020 0.864 0.004 0.000 0.000 0.112
#> SRR1036144     2  0.2633     0.7399 0.020 0.864 0.004 0.000 0.000 0.112
#> SRR1036145     2  0.2633     0.7399 0.020 0.864 0.004 0.000 0.000 0.112

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15218 rows and 144 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.379           0.736       0.767         0.4411 0.615   0.615
#> 3 3 0.776           0.849       0.935         0.4716 0.669   0.490
#> 4 4 0.717           0.654       0.819         0.1368 0.848   0.610
#> 5 5 0.736           0.735       0.810         0.0684 0.884   0.609
#> 6 6 0.771           0.712       0.800         0.0444 0.925   0.670

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1036002     1  0.8443      0.676 0.728 0.272
#> SRR1036003     1  0.8386      0.679 0.732 0.268
#> SRR1036004     1  0.8499      0.673 0.724 0.276
#> SRR1036005     1  0.0000      0.858 1.000 0.000
#> SRR1036006     1  0.0000      0.858 1.000 0.000
#> SRR1036007     1  0.0000      0.858 1.000 0.000
#> SRR1036008     1  0.0000      0.858 1.000 0.000
#> SRR1036009     1  0.0000      0.858 1.000 0.000
#> SRR1036013     1  0.4022      0.791 0.920 0.080
#> SRR1036014     1  0.4161      0.787 0.916 0.084
#> SRR1036015     1  0.4022      0.791 0.920 0.080
#> SRR1036016     1  0.4161      0.787 0.916 0.084
#> SRR1036017     1  0.4161      0.787 0.916 0.084
#> SRR1036018     1  0.3879      0.795 0.924 0.076
#> SRR1036010     2  0.3584      0.766 0.068 0.932
#> SRR1036011     2  0.3584      0.764 0.068 0.932
#> SRR1036012     2  0.3584      0.763 0.068 0.932
#> SRR1036019     2  0.6148      0.708 0.152 0.848
#> SRR1036020     2  0.6148      0.708 0.152 0.848
#> SRR1036021     2  0.6148      0.708 0.152 0.848
#> SRR1036022     2  0.6148      0.708 0.152 0.848
#> SRR1036023     2  0.6148      0.708 0.152 0.848
#> SRR1036024     2  0.8081      0.722 0.248 0.752
#> SRR1036025     2  0.8081      0.722 0.248 0.752
#> SRR1036026     2  0.8081      0.722 0.248 0.752
#> SRR1036027     2  0.8144      0.720 0.252 0.748
#> SRR1036028     2  0.8144      0.720 0.252 0.748
#> SRR1036029     2  0.8081      0.722 0.248 0.752
#> SRR1036030     2  0.1414      0.777 0.020 0.980
#> SRR1036031     2  0.1414      0.777 0.020 0.980
#> SRR1036032     2  0.1414      0.777 0.020 0.980
#> SRR1036033     2  0.1414      0.777 0.020 0.980
#> SRR1036034     2  0.1414      0.777 0.020 0.980
#> SRR1036035     2  0.1414      0.777 0.020 0.980
#> SRR1036036     2  0.1414      0.777 0.020 0.980
#> SRR1036037     2  0.1414      0.777 0.020 0.980
#> SRR1036038     2  0.6148      0.708 0.152 0.848
#> SRR1036039     2  0.6048      0.712 0.148 0.852
#> SRR1036040     2  0.6148      0.708 0.152 0.848
#> SRR1036041     2  0.0000      0.779 0.000 1.000
#> SRR1036042     1  0.8608      0.666 0.716 0.284
#> SRR1036043     1  0.8608      0.666 0.716 0.284
#> SRR1036044     1  0.8608      0.666 0.716 0.284
#> SRR1036045     1  0.8608      0.666 0.716 0.284
#> SRR1036046     1  0.8608      0.666 0.716 0.284
#> SRR1036047     1  0.8608      0.666 0.716 0.284
#> SRR1036048     1  0.8608      0.666 0.716 0.284
#> SRR1036049     1  0.8608      0.666 0.716 0.284
#> SRR1036050     2  0.1633      0.779 0.024 0.976
#> SRR1036051     2  0.1633      0.779 0.024 0.976
#> SRR1036052     2  0.1633      0.779 0.024 0.976
#> SRR1036053     2  0.1843      0.779 0.028 0.972
#> SRR1036054     2  0.1843      0.779 0.028 0.972
#> SRR1036055     2  0.0938      0.778 0.012 0.988
#> SRR1036056     2  0.0938      0.778 0.012 0.988
#> SRR1036057     2  0.0938      0.778 0.012 0.988
#> SRR1036058     2  0.8813      0.686 0.300 0.700
#> SRR1036059     2  0.8813      0.686 0.300 0.700
#> SRR1036060     2  0.8813      0.686 0.300 0.700
#> SRR1036061     2  0.8813      0.686 0.300 0.700
#> SRR1036062     2  0.8813      0.686 0.300 0.700
#> SRR1036063     2  0.8813      0.686 0.300 0.700
#> SRR1036064     2  0.8813      0.686 0.300 0.700
#> SRR1036065     2  0.8813      0.686 0.300 0.700
#> SRR1036066     2  0.8016      0.724 0.244 0.756
#> SRR1036067     2  0.7883      0.727 0.236 0.764
#> SRR1036068     2  0.8016      0.724 0.244 0.756
#> SRR1036069     2  0.7950      0.726 0.240 0.760
#> SRR1036070     2  0.7883      0.727 0.236 0.764
#> SRR1036071     2  0.8016      0.724 0.244 0.756
#> SRR1036072     2  0.8081      0.722 0.248 0.752
#> SRR1036073     2  0.7950      0.726 0.240 0.760
#> SRR1036074     2  0.0000      0.779 0.000 1.000
#> SRR1036075     2  0.0000      0.779 0.000 1.000
#> SRR1036076     2  0.0000      0.779 0.000 1.000
#> SRR1036077     2  0.0000      0.779 0.000 1.000
#> SRR1036078     2  0.0000      0.779 0.000 1.000
#> SRR1036079     2  0.0000      0.779 0.000 1.000
#> SRR1036080     2  0.0000      0.779 0.000 1.000
#> SRR1036081     2  0.0000      0.779 0.000 1.000
#> SRR1036082     2  0.0000      0.779 0.000 1.000
#> SRR1036083     2  0.0000      0.779 0.000 1.000
#> SRR1036084     2  0.0000      0.779 0.000 1.000
#> SRR1036090     2  0.6148      0.708 0.152 0.848
#> SRR1036091     2  0.6148      0.708 0.152 0.848
#> SRR1036092     2  0.6148      0.708 0.152 0.848
#> SRR1036093     2  0.6148      0.708 0.152 0.848
#> SRR1036094     2  0.6148      0.708 0.152 0.848
#> SRR1036085     1  0.0000      0.858 1.000 0.000
#> SRR1036086     1  0.0000      0.858 1.000 0.000
#> SRR1036087     1  0.0000      0.858 1.000 0.000
#> SRR1036088     1  0.0000      0.858 1.000 0.000
#> SRR1036089     1  0.0000      0.858 1.000 0.000
#> SRR1036095     2  0.8608      0.698 0.284 0.716
#> SRR1036096     2  0.8608      0.698 0.284 0.716
#> SRR1036097     2  0.8608      0.698 0.284 0.716
#> SRR1036098     2  0.8608      0.698 0.284 0.716
#> SRR1036099     2  0.8608      0.698 0.284 0.716
#> SRR1036100     2  0.1184      0.778 0.016 0.984
#> SRR1036101     2  0.0672      0.778 0.008 0.992
#> SRR1036102     2  0.1633      0.776 0.024 0.976
#> SRR1036103     2  0.1633      0.776 0.024 0.976
#> SRR1036104     2  0.1184      0.778 0.016 0.984
#> SRR1036105     1  0.0000      0.858 1.000 0.000
#> SRR1036106     1  0.0000      0.858 1.000 0.000
#> SRR1036107     1  0.0000      0.858 1.000 0.000
#> SRR1036108     1  0.0000      0.858 1.000 0.000
#> SRR1036109     1  0.0000      0.858 1.000 0.000
#> SRR1036110     2  0.8813      0.686 0.300 0.700
#> SRR1036111     2  0.8813      0.686 0.300 0.700
#> SRR1036112     2  0.8813      0.686 0.300 0.700
#> SRR1036113     2  0.8813      0.686 0.300 0.700
#> SRR1036114     2  0.8813      0.686 0.300 0.700
#> SRR1036115     2  0.8555      0.702 0.280 0.720
#> SRR1036116     2  0.8555      0.702 0.280 0.720
#> SRR1036117     2  0.8555      0.702 0.280 0.720
#> SRR1036118     2  0.8555      0.702 0.280 0.720
#> SRR1036119     2  0.8555      0.702 0.280 0.720
#> SRR1036120     1  0.0000      0.858 1.000 0.000
#> SRR1036121     1  0.0376      0.856 0.996 0.004
#> SRR1036122     1  0.0376      0.856 0.996 0.004
#> SRR1036123     1  0.0376      0.856 0.996 0.004
#> SRR1036124     1  0.0376      0.856 0.996 0.004
#> SRR1036125     2  0.9775      0.532 0.412 0.588
#> SRR1036126     2  0.9833      0.508 0.424 0.576
#> SRR1036127     2  0.9710      0.554 0.400 0.600
#> SRR1036128     2  0.9732      0.547 0.404 0.596
#> SRR1036129     2  0.9710      0.554 0.400 0.600
#> SRR1036130     2  0.9795      0.524 0.416 0.584
#> SRR1036131     2  0.9775      0.532 0.412 0.588
#> SRR1036132     2  0.9732      0.547 0.404 0.596
#> SRR1036133     2  0.5946      0.715 0.144 0.856
#> SRR1036134     2  0.5842      0.717 0.140 0.860
#> SRR1036135     2  0.5946      0.715 0.144 0.856
#> SRR1036136     2  0.5946      0.715 0.144 0.856
#> SRR1036137     2  0.5842      0.717 0.140 0.860
#> SRR1036138     2  0.6148      0.708 0.152 0.848
#> SRR1036139     2  0.6148      0.708 0.152 0.848
#> SRR1036140     2  0.6148      0.708 0.152 0.848
#> SRR1036141     2  0.6148      0.708 0.152 0.848
#> SRR1036142     2  0.6148      0.708 0.152 0.848
#> SRR1036143     2  0.6148      0.708 0.152 0.848
#> SRR1036144     2  0.6148      0.708 0.152 0.848
#> SRR1036145     2  0.6148      0.708 0.152 0.848

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1036002     3  0.2261      0.854 0.000 0.068 0.932
#> SRR1036003     3  0.2066      0.861 0.000 0.060 0.940
#> SRR1036004     3  0.2356      0.850 0.000 0.072 0.928
#> SRR1036005     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1036006     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1036007     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1036008     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1036009     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1036013     3  0.5254      0.654 0.264 0.000 0.736
#> SRR1036014     3  0.5098      0.677 0.248 0.000 0.752
#> SRR1036015     3  0.5621      0.576 0.308 0.000 0.692
#> SRR1036016     3  0.5529      0.600 0.296 0.000 0.704
#> SRR1036017     3  0.5431      0.621 0.284 0.000 0.716
#> SRR1036018     3  0.5216      0.661 0.260 0.000 0.740
#> SRR1036010     1  0.7116      0.511 0.636 0.324 0.040
#> SRR1036011     1  0.7357      0.485 0.620 0.332 0.048
#> SRR1036012     1  0.7310      0.434 0.600 0.360 0.040
#> SRR1036019     2  0.0000      0.921 0.000 1.000 0.000
#> SRR1036020     2  0.0000      0.921 0.000 1.000 0.000
#> SRR1036021     2  0.0000      0.921 0.000 1.000 0.000
#> SRR1036022     2  0.0237      0.920 0.004 0.996 0.000
#> SRR1036023     2  0.0000      0.921 0.000 1.000 0.000
#> SRR1036024     1  0.0000      0.941 1.000 0.000 0.000
#> SRR1036025     1  0.0000      0.941 1.000 0.000 0.000
#> SRR1036026     1  0.0000      0.941 1.000 0.000 0.000
#> SRR1036027     1  0.0000      0.941 1.000 0.000 0.000
#> SRR1036028     1  0.0000      0.941 1.000 0.000 0.000
#> SRR1036029     1  0.0000      0.941 1.000 0.000 0.000
#> SRR1036030     2  0.0000      0.921 0.000 1.000 0.000
#> SRR1036031     2  0.0000      0.921 0.000 1.000 0.000
#> SRR1036032     2  0.0000      0.921 0.000 1.000 0.000
#> SRR1036033     2  0.0000      0.921 0.000 1.000 0.000
#> SRR1036034     2  0.0000      0.921 0.000 1.000 0.000
#> SRR1036035     2  0.0000      0.921 0.000 1.000 0.000
#> SRR1036036     2  0.0000      0.921 0.000 1.000 0.000
#> SRR1036037     2  0.0000      0.921 0.000 1.000 0.000
#> SRR1036038     2  0.0661      0.917 0.004 0.988 0.008
#> SRR1036039     2  0.0237      0.920 0.004 0.996 0.000
#> SRR1036040     2  0.0475      0.919 0.004 0.992 0.004
#> SRR1036041     1  0.2261      0.884 0.932 0.068 0.000
#> SRR1036042     2  0.6518      0.132 0.004 0.512 0.484
#> SRR1036043     2  0.6513      0.158 0.004 0.520 0.476
#> SRR1036044     2  0.6421      0.311 0.004 0.572 0.424
#> SRR1036045     2  0.6228      0.433 0.004 0.624 0.372
#> SRR1036046     2  0.6476      0.245 0.004 0.548 0.448
#> SRR1036047     2  0.6398      0.332 0.004 0.580 0.416
#> SRR1036048     3  0.6521     -0.123 0.004 0.496 0.500
#> SRR1036049     2  0.6373      0.352 0.004 0.588 0.408
#> SRR1036050     1  0.0000      0.941 1.000 0.000 0.000
#> SRR1036051     1  0.0000      0.941 1.000 0.000 0.000
#> SRR1036052     1  0.0000      0.941 1.000 0.000 0.000
#> SRR1036053     1  0.0000      0.941 1.000 0.000 0.000
#> SRR1036054     1  0.0000      0.941 1.000 0.000 0.000
#> SRR1036055     2  0.0237      0.920 0.004 0.996 0.000
#> SRR1036056     2  0.0237      0.920 0.004 0.996 0.000
#> SRR1036057     2  0.0237      0.920 0.004 0.996 0.000
#> SRR1036058     1  0.0237      0.940 0.996 0.004 0.000
#> SRR1036059     1  0.0237      0.940 0.996 0.004 0.000
#> SRR1036060     1  0.0237      0.940 0.996 0.004 0.000
#> SRR1036061     1  0.0237      0.940 0.996 0.004 0.000
#> SRR1036062     1  0.0237      0.940 0.996 0.004 0.000
#> SRR1036063     1  0.0237      0.940 0.996 0.004 0.000
#> SRR1036064     1  0.0237      0.940 0.996 0.004 0.000
#> SRR1036065     1  0.0237      0.940 0.996 0.004 0.000
#> SRR1036066     1  0.0000      0.941 1.000 0.000 0.000
#> SRR1036067     1  0.0000      0.941 1.000 0.000 0.000
#> SRR1036068     1  0.0000      0.941 1.000 0.000 0.000
#> SRR1036069     1  0.0000      0.941 1.000 0.000 0.000
#> SRR1036070     1  0.0000      0.941 1.000 0.000 0.000
#> SRR1036071     1  0.0000      0.941 1.000 0.000 0.000
#> SRR1036072     1  0.0000      0.941 1.000 0.000 0.000
#> SRR1036073     1  0.0000      0.941 1.000 0.000 0.000
#> SRR1036074     2  0.3267      0.839 0.116 0.884 0.000
#> SRR1036075     2  0.3267      0.839 0.116 0.884 0.000
#> SRR1036076     2  0.3267      0.839 0.116 0.884 0.000
#> SRR1036077     2  0.3267      0.839 0.116 0.884 0.000
#> SRR1036078     2  0.3267      0.839 0.116 0.884 0.000
#> SRR1036079     2  0.3267      0.839 0.116 0.884 0.000
#> SRR1036080     2  0.3267      0.839 0.116 0.884 0.000
#> SRR1036081     2  0.3267      0.839 0.116 0.884 0.000
#> SRR1036082     1  0.0000      0.941 1.000 0.000 0.000
#> SRR1036083     1  0.0000      0.941 1.000 0.000 0.000
#> SRR1036084     1  0.0000      0.941 1.000 0.000 0.000
#> SRR1036090     2  0.0237      0.920 0.004 0.996 0.000
#> SRR1036091     2  0.0237      0.920 0.004 0.996 0.000
#> SRR1036092     2  0.0237      0.920 0.004 0.996 0.000
#> SRR1036093     2  0.0237      0.920 0.004 0.996 0.000
#> SRR1036094     2  0.0237      0.920 0.004 0.996 0.000
#> SRR1036085     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1036086     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1036087     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1036088     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1036089     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1036095     1  0.0237      0.940 0.996 0.004 0.000
#> SRR1036096     1  0.0237      0.940 0.996 0.004 0.000
#> SRR1036097     1  0.0237      0.940 0.996 0.004 0.000
#> SRR1036098     1  0.0237      0.940 0.996 0.004 0.000
#> SRR1036099     1  0.0237      0.940 0.996 0.004 0.000
#> SRR1036100     2  0.0237      0.920 0.004 0.996 0.000
#> SRR1036101     2  0.0237      0.920 0.004 0.996 0.000
#> SRR1036102     2  0.0237      0.920 0.004 0.996 0.000
#> SRR1036103     2  0.0237      0.920 0.004 0.996 0.000
#> SRR1036104     2  0.0237      0.920 0.004 0.996 0.000
#> SRR1036105     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1036106     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1036107     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1036108     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1036109     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1036110     1  0.0000      0.941 1.000 0.000 0.000
#> SRR1036111     1  0.0000      0.941 1.000 0.000 0.000
#> SRR1036112     1  0.0000      0.941 1.000 0.000 0.000
#> SRR1036113     1  0.0000      0.941 1.000 0.000 0.000
#> SRR1036114     1  0.0000      0.941 1.000 0.000 0.000
#> SRR1036115     1  0.0237      0.940 0.996 0.004 0.000
#> SRR1036116     1  0.0237      0.940 0.996 0.004 0.000
#> SRR1036117     1  0.0237      0.940 0.996 0.004 0.000
#> SRR1036118     1  0.0237      0.940 0.996 0.004 0.000
#> SRR1036119     1  0.0237      0.940 0.996 0.004 0.000
#> SRR1036120     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1036121     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1036122     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1036123     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1036124     3  0.0000      0.908 0.000 0.000 1.000
#> SRR1036125     1  0.4654      0.735 0.792 0.000 0.208
#> SRR1036126     1  0.5098      0.673 0.752 0.000 0.248
#> SRR1036127     1  0.4504      0.752 0.804 0.000 0.196
#> SRR1036128     1  0.4504      0.752 0.804 0.000 0.196
#> SRR1036129     1  0.4178      0.781 0.828 0.000 0.172
#> SRR1036130     1  0.4974      0.693 0.764 0.000 0.236
#> SRR1036131     1  0.4504      0.752 0.804 0.000 0.196
#> SRR1036132     1  0.4291      0.772 0.820 0.000 0.180
#> SRR1036133     2  0.0000      0.921 0.000 1.000 0.000
#> SRR1036134     2  0.0000      0.921 0.000 1.000 0.000
#> SRR1036135     2  0.0000      0.921 0.000 1.000 0.000
#> SRR1036136     2  0.0000      0.921 0.000 1.000 0.000
#> SRR1036137     2  0.0000      0.921 0.000 1.000 0.000
#> SRR1036138     2  0.0000      0.921 0.000 1.000 0.000
#> SRR1036139     2  0.0000      0.921 0.000 1.000 0.000
#> SRR1036140     2  0.0000      0.921 0.000 1.000 0.000
#> SRR1036141     2  0.0000      0.921 0.000 1.000 0.000
#> SRR1036142     2  0.0000      0.921 0.000 1.000 0.000
#> SRR1036143     2  0.0000      0.921 0.000 1.000 0.000
#> SRR1036144     2  0.0000      0.921 0.000 1.000 0.000
#> SRR1036145     2  0.0000      0.921 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1036002     3  0.2485     0.8394 0.016 0.064 0.916 0.004
#> SRR1036003     3  0.2485     0.8394 0.016 0.064 0.916 0.004
#> SRR1036004     3  0.2365     0.8413 0.012 0.064 0.920 0.004
#> SRR1036005     3  0.0000     0.8862 0.000 0.000 1.000 0.000
#> SRR1036006     3  0.0000     0.8862 0.000 0.000 1.000 0.000
#> SRR1036007     3  0.0000     0.8862 0.000 0.000 1.000 0.000
#> SRR1036008     3  0.0000     0.8862 0.000 0.000 1.000 0.000
#> SRR1036009     3  0.0000     0.8862 0.000 0.000 1.000 0.000
#> SRR1036013     3  0.3257     0.7911 0.004 0.000 0.844 0.152
#> SRR1036014     3  0.3355     0.7848 0.004 0.000 0.836 0.160
#> SRR1036015     3  0.3831     0.7421 0.004 0.000 0.792 0.204
#> SRR1036016     3  0.3945     0.7273 0.004 0.000 0.780 0.216
#> SRR1036017     3  0.3539     0.7705 0.004 0.000 0.820 0.176
#> SRR1036018     3  0.3494     0.7735 0.004 0.000 0.824 0.172
#> SRR1036010     1  0.3427     0.5668 0.860 0.028 0.000 0.112
#> SRR1036011     1  0.3427     0.5668 0.860 0.028 0.000 0.112
#> SRR1036012     1  0.3367     0.5666 0.864 0.028 0.000 0.108
#> SRR1036019     2  0.0188     0.8681 0.004 0.996 0.000 0.000
#> SRR1036020     2  0.0000     0.8693 0.000 1.000 0.000 0.000
#> SRR1036021     2  0.0000     0.8693 0.000 1.000 0.000 0.000
#> SRR1036022     2  0.0188     0.8681 0.004 0.996 0.000 0.000
#> SRR1036023     2  0.0000     0.8693 0.000 1.000 0.000 0.000
#> SRR1036024     1  0.2530     0.6255 0.888 0.000 0.000 0.112
#> SRR1036025     1  0.2469     0.6261 0.892 0.000 0.000 0.108
#> SRR1036026     1  0.2281     0.6286 0.904 0.000 0.000 0.096
#> SRR1036027     1  0.2216     0.6289 0.908 0.000 0.000 0.092
#> SRR1036028     1  0.2589     0.6269 0.884 0.000 0.000 0.116
#> SRR1036029     1  0.2345     0.6288 0.900 0.000 0.000 0.100
#> SRR1036030     2  0.1004     0.8621 0.024 0.972 0.000 0.004
#> SRR1036031     2  0.1109     0.8612 0.028 0.968 0.000 0.004
#> SRR1036032     2  0.1109     0.8612 0.028 0.968 0.000 0.004
#> SRR1036033     2  0.1004     0.8621 0.024 0.972 0.000 0.004
#> SRR1036034     2  0.1004     0.8621 0.024 0.972 0.000 0.004
#> SRR1036035     2  0.1109     0.8612 0.028 0.968 0.000 0.004
#> SRR1036036     2  0.1004     0.8621 0.024 0.972 0.000 0.004
#> SRR1036037     2  0.1004     0.8621 0.024 0.972 0.000 0.004
#> SRR1036038     2  0.4220     0.6434 0.248 0.748 0.004 0.000
#> SRR1036039     2  0.4252     0.6384 0.252 0.744 0.004 0.000
#> SRR1036040     2  0.4188     0.6482 0.244 0.752 0.004 0.000
#> SRR1036041     1  0.4446     0.5450 0.776 0.028 0.000 0.196
#> SRR1036042     3  0.8067     0.0646 0.244 0.368 0.380 0.008
#> SRR1036043     3  0.8067     0.0646 0.244 0.368 0.380 0.008
#> SRR1036044     2  0.8062    -0.0380 0.244 0.392 0.356 0.008
#> SRR1036045     2  0.8069    -0.0202 0.248 0.396 0.348 0.008
#> SRR1036046     2  0.8066    -0.0623 0.244 0.384 0.364 0.008
#> SRR1036047     2  0.8064    -0.0503 0.244 0.388 0.360 0.008
#> SRR1036048     3  0.8080     0.0586 0.248 0.368 0.376 0.008
#> SRR1036049     2  0.8062    -0.0373 0.244 0.392 0.356 0.008
#> SRR1036050     1  0.4877     0.0848 0.592 0.000 0.000 0.408
#> SRR1036051     1  0.4888     0.0704 0.588 0.000 0.000 0.412
#> SRR1036052     1  0.4888     0.0704 0.588 0.000 0.000 0.412
#> SRR1036053     1  0.4888     0.0704 0.588 0.000 0.000 0.412
#> SRR1036054     1  0.4866     0.0989 0.596 0.000 0.000 0.404
#> SRR1036055     2  0.4164     0.6371 0.264 0.736 0.000 0.000
#> SRR1036056     2  0.4222     0.6256 0.272 0.728 0.000 0.000
#> SRR1036057     2  0.4250     0.6214 0.276 0.724 0.000 0.000
#> SRR1036058     4  0.2345     0.6563 0.100 0.000 0.000 0.900
#> SRR1036059     4  0.2345     0.6563 0.100 0.000 0.000 0.900
#> SRR1036060     4  0.2345     0.6563 0.100 0.000 0.000 0.900
#> SRR1036061     4  0.2345     0.6563 0.100 0.000 0.000 0.900
#> SRR1036062     4  0.2345     0.6563 0.100 0.000 0.000 0.900
#> SRR1036063     4  0.2345     0.6563 0.100 0.000 0.000 0.900
#> SRR1036064     4  0.2345     0.6563 0.100 0.000 0.000 0.900
#> SRR1036065     4  0.2345     0.6563 0.100 0.000 0.000 0.900
#> SRR1036066     1  0.2530     0.6247 0.888 0.000 0.000 0.112
#> SRR1036067     1  0.2647     0.6210 0.880 0.000 0.000 0.120
#> SRR1036068     1  0.2647     0.6210 0.880 0.000 0.000 0.120
#> SRR1036069     1  0.2589     0.6232 0.884 0.000 0.000 0.116
#> SRR1036070     1  0.2530     0.6247 0.888 0.000 0.000 0.112
#> SRR1036071     1  0.2589     0.6232 0.884 0.000 0.000 0.116
#> SRR1036072     1  0.2760     0.6158 0.872 0.000 0.000 0.128
#> SRR1036073     1  0.2530     0.6247 0.888 0.000 0.000 0.112
#> SRR1036074     1  0.5698     0.4708 0.636 0.044 0.000 0.320
#> SRR1036075     1  0.5678     0.4737 0.640 0.044 0.000 0.316
#> SRR1036076     1  0.5678     0.4737 0.640 0.044 0.000 0.316
#> SRR1036077     1  0.5558     0.4726 0.640 0.036 0.000 0.324
#> SRR1036078     1  0.5773     0.4673 0.632 0.048 0.000 0.320
#> SRR1036079     1  0.5678     0.4737 0.640 0.044 0.000 0.316
#> SRR1036080     1  0.5717     0.4674 0.632 0.044 0.000 0.324
#> SRR1036081     1  0.5754     0.4704 0.636 0.048 0.000 0.316
#> SRR1036082     1  0.4830     0.4249 0.608 0.000 0.000 0.392
#> SRR1036083     1  0.4790     0.4350 0.620 0.000 0.000 0.380
#> SRR1036084     1  0.4843     0.4208 0.604 0.000 0.000 0.396
#> SRR1036090     2  0.0000     0.8693 0.000 1.000 0.000 0.000
#> SRR1036091     2  0.0000     0.8693 0.000 1.000 0.000 0.000
#> SRR1036092     2  0.0000     0.8693 0.000 1.000 0.000 0.000
#> SRR1036093     2  0.0000     0.8693 0.000 1.000 0.000 0.000
#> SRR1036094     2  0.0000     0.8693 0.000 1.000 0.000 0.000
#> SRR1036085     3  0.0000     0.8862 0.000 0.000 1.000 0.000
#> SRR1036086     3  0.0000     0.8862 0.000 0.000 1.000 0.000
#> SRR1036087     3  0.0000     0.8862 0.000 0.000 1.000 0.000
#> SRR1036088     3  0.0000     0.8862 0.000 0.000 1.000 0.000
#> SRR1036089     3  0.0000     0.8862 0.000 0.000 1.000 0.000
#> SRR1036095     4  0.4164     0.6959 0.264 0.000 0.000 0.736
#> SRR1036096     4  0.4164     0.6959 0.264 0.000 0.000 0.736
#> SRR1036097     4  0.4164     0.6959 0.264 0.000 0.000 0.736
#> SRR1036098     4  0.4164     0.6959 0.264 0.000 0.000 0.736
#> SRR1036099     4  0.4193     0.6933 0.268 0.000 0.000 0.732
#> SRR1036100     2  0.3885     0.7865 0.092 0.844 0.000 0.064
#> SRR1036101     2  0.4188     0.7706 0.112 0.824 0.000 0.064
#> SRR1036102     2  0.4022     0.7812 0.096 0.836 0.000 0.068
#> SRR1036103     2  0.3745     0.7922 0.088 0.852 0.000 0.060
#> SRR1036104     2  0.3754     0.7919 0.084 0.852 0.000 0.064
#> SRR1036105     3  0.0000     0.8862 0.000 0.000 1.000 0.000
#> SRR1036106     3  0.0000     0.8862 0.000 0.000 1.000 0.000
#> SRR1036107     3  0.0000     0.8862 0.000 0.000 1.000 0.000
#> SRR1036108     3  0.0000     0.8862 0.000 0.000 1.000 0.000
#> SRR1036109     3  0.0000     0.8862 0.000 0.000 1.000 0.000
#> SRR1036110     1  0.4916     0.3358 0.576 0.000 0.000 0.424
#> SRR1036111     1  0.4888     0.3537 0.588 0.000 0.000 0.412
#> SRR1036112     1  0.4941     0.3150 0.564 0.000 0.000 0.436
#> SRR1036113     1  0.4907     0.3431 0.580 0.000 0.000 0.420
#> SRR1036114     1  0.4916     0.3358 0.576 0.000 0.000 0.424
#> SRR1036115     4  0.4500     0.6496 0.316 0.000 0.000 0.684
#> SRR1036116     4  0.4500     0.6496 0.316 0.000 0.000 0.684
#> SRR1036117     4  0.4500     0.6496 0.316 0.000 0.000 0.684
#> SRR1036118     4  0.4500     0.6496 0.316 0.000 0.000 0.684
#> SRR1036119     4  0.4500     0.6496 0.316 0.000 0.000 0.684
#> SRR1036120     3  0.0707     0.8798 0.000 0.000 0.980 0.020
#> SRR1036121     3  0.0707     0.8798 0.000 0.000 0.980 0.020
#> SRR1036122     3  0.0707     0.8798 0.000 0.000 0.980 0.020
#> SRR1036123     3  0.0921     0.8753 0.000 0.000 0.972 0.028
#> SRR1036124     3  0.0817     0.8777 0.000 0.000 0.976 0.024
#> SRR1036125     1  0.3757     0.5903 0.828 0.000 0.020 0.152
#> SRR1036126     1  0.3862     0.5867 0.824 0.000 0.024 0.152
#> SRR1036127     1  0.3529     0.5927 0.836 0.000 0.012 0.152
#> SRR1036128     1  0.3757     0.5903 0.828 0.000 0.020 0.152
#> SRR1036129     1  0.3450     0.5912 0.836 0.000 0.008 0.156
#> SRR1036130     1  0.3757     0.5903 0.828 0.000 0.020 0.152
#> SRR1036131     1  0.3757     0.5903 0.828 0.000 0.020 0.152
#> SRR1036132     1  0.3577     0.5905 0.832 0.000 0.012 0.156
#> SRR1036133     2  0.0000     0.8693 0.000 1.000 0.000 0.000
#> SRR1036134     2  0.0000     0.8693 0.000 1.000 0.000 0.000
#> SRR1036135     2  0.0000     0.8693 0.000 1.000 0.000 0.000
#> SRR1036136     2  0.0000     0.8693 0.000 1.000 0.000 0.000
#> SRR1036137     2  0.0000     0.8693 0.000 1.000 0.000 0.000
#> SRR1036138     2  0.0000     0.8693 0.000 1.000 0.000 0.000
#> SRR1036139     2  0.0000     0.8693 0.000 1.000 0.000 0.000
#> SRR1036140     2  0.0000     0.8693 0.000 1.000 0.000 0.000
#> SRR1036141     2  0.0000     0.8693 0.000 1.000 0.000 0.000
#> SRR1036142     2  0.0000     0.8693 0.000 1.000 0.000 0.000
#> SRR1036143     2  0.0000     0.8693 0.000 1.000 0.000 0.000
#> SRR1036144     2  0.0000     0.8693 0.000 1.000 0.000 0.000
#> SRR1036145     2  0.0000     0.8693 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1036002     3  0.5491      0.436 0.004 0.080 0.616 0.300 0.000
#> SRR1036003     3  0.5523      0.437 0.004 0.084 0.616 0.296 0.000
#> SRR1036004     3  0.5505      0.446 0.004 0.084 0.620 0.292 0.000
#> SRR1036005     3  0.0000      0.906 0.000 0.000 1.000 0.000 0.000
#> SRR1036006     3  0.0000      0.906 0.000 0.000 1.000 0.000 0.000
#> SRR1036007     3  0.0000      0.906 0.000 0.000 1.000 0.000 0.000
#> SRR1036008     3  0.0000      0.906 0.000 0.000 1.000 0.000 0.000
#> SRR1036009     3  0.0000      0.906 0.000 0.000 1.000 0.000 0.000
#> SRR1036013     3  0.2170      0.867 0.004 0.000 0.904 0.004 0.088
#> SRR1036014     3  0.2112      0.868 0.004 0.000 0.908 0.004 0.084
#> SRR1036015     3  0.2957      0.832 0.008 0.000 0.860 0.012 0.120
#> SRR1036016     3  0.2699      0.850 0.008 0.000 0.880 0.012 0.100
#> SRR1036017     3  0.1991      0.873 0.004 0.000 0.916 0.004 0.076
#> SRR1036018     3  0.2352      0.860 0.004 0.000 0.896 0.008 0.092
#> SRR1036010     1  0.5012      0.333 0.600 0.004 0.000 0.364 0.032
#> SRR1036011     1  0.4937      0.336 0.604 0.004 0.000 0.364 0.028
#> SRR1036012     1  0.4961      0.314 0.596 0.004 0.000 0.372 0.028
#> SRR1036019     2  0.0162      0.904 0.000 0.996 0.000 0.004 0.000
#> SRR1036020     2  0.0162      0.904 0.000 0.996 0.000 0.004 0.000
#> SRR1036021     2  0.0162      0.904 0.000 0.996 0.000 0.004 0.000
#> SRR1036022     2  0.0162      0.904 0.000 0.996 0.000 0.004 0.000
#> SRR1036023     2  0.0162      0.904 0.000 0.996 0.000 0.004 0.000
#> SRR1036024     1  0.1908      0.774 0.908 0.000 0.000 0.092 0.000
#> SRR1036025     1  0.1671      0.790 0.924 0.000 0.000 0.076 0.000
#> SRR1036026     1  0.1671      0.790 0.924 0.000 0.000 0.076 0.000
#> SRR1036027     1  0.1478      0.799 0.936 0.000 0.000 0.064 0.000
#> SRR1036028     1  0.1671      0.790 0.924 0.000 0.000 0.076 0.000
#> SRR1036029     1  0.1043      0.816 0.960 0.000 0.000 0.040 0.000
#> SRR1036030     2  0.3367      0.849 0.012 0.856 0.000 0.052 0.080
#> SRR1036031     2  0.3367      0.849 0.012 0.856 0.000 0.052 0.080
#> SRR1036032     2  0.3367      0.849 0.012 0.856 0.000 0.052 0.080
#> SRR1036033     2  0.3367      0.849 0.012 0.856 0.000 0.052 0.080
#> SRR1036034     2  0.3367      0.849 0.012 0.856 0.000 0.052 0.080
#> SRR1036035     2  0.3367      0.849 0.012 0.856 0.000 0.052 0.080
#> SRR1036036     2  0.3367      0.849 0.012 0.856 0.000 0.052 0.080
#> SRR1036037     2  0.3367      0.849 0.012 0.856 0.000 0.052 0.080
#> SRR1036038     2  0.5082      0.483 0.344 0.620 0.004 0.016 0.016
#> SRR1036039     2  0.5099      0.429 0.368 0.596 0.000 0.020 0.016
#> SRR1036040     2  0.5036      0.509 0.332 0.632 0.004 0.016 0.016
#> SRR1036041     1  0.3147      0.728 0.856 0.024 0.000 0.008 0.112
#> SRR1036042     4  0.6201      0.700 0.084 0.196 0.072 0.648 0.000
#> SRR1036043     4  0.6175      0.701 0.084 0.200 0.068 0.648 0.000
#> SRR1036044     4  0.6175      0.701 0.084 0.200 0.068 0.648 0.000
#> SRR1036045     4  0.6169      0.701 0.088 0.200 0.064 0.648 0.000
#> SRR1036046     4  0.6196      0.702 0.088 0.196 0.068 0.648 0.000
#> SRR1036047     4  0.6148      0.700 0.084 0.204 0.064 0.648 0.000
#> SRR1036048     4  0.6201      0.700 0.084 0.196 0.072 0.648 0.000
#> SRR1036049     4  0.6196      0.702 0.088 0.196 0.068 0.648 0.000
#> SRR1036050     1  0.5342      0.406 0.612 0.000 0.000 0.076 0.312
#> SRR1036051     1  0.5342      0.406 0.612 0.000 0.000 0.076 0.312
#> SRR1036052     1  0.5342      0.406 0.612 0.000 0.000 0.076 0.312
#> SRR1036053     1  0.5359      0.397 0.608 0.000 0.000 0.076 0.316
#> SRR1036054     1  0.5342      0.406 0.612 0.000 0.000 0.076 0.312
#> SRR1036055     2  0.4861      0.768 0.116 0.768 0.000 0.064 0.052
#> SRR1036056     2  0.4997      0.754 0.128 0.756 0.000 0.064 0.052
#> SRR1036057     2  0.4953      0.759 0.124 0.760 0.000 0.064 0.052
#> SRR1036058     5  0.4930      0.585 0.072 0.000 0.000 0.244 0.684
#> SRR1036059     5  0.4930      0.585 0.072 0.000 0.000 0.244 0.684
#> SRR1036060     5  0.4930      0.585 0.072 0.000 0.000 0.244 0.684
#> SRR1036061     5  0.4930      0.585 0.072 0.000 0.000 0.244 0.684
#> SRR1036062     5  0.4930      0.585 0.072 0.000 0.000 0.244 0.684
#> SRR1036063     5  0.4930      0.585 0.072 0.000 0.000 0.244 0.684
#> SRR1036064     5  0.4930      0.585 0.072 0.000 0.000 0.244 0.684
#> SRR1036065     5  0.4930      0.585 0.072 0.000 0.000 0.244 0.684
#> SRR1036066     1  0.0290      0.832 0.992 0.000 0.000 0.008 0.000
#> SRR1036067     1  0.0290      0.832 0.992 0.000 0.000 0.008 0.000
#> SRR1036068     1  0.0290      0.832 0.992 0.000 0.000 0.008 0.000
#> SRR1036069     1  0.0290      0.832 0.992 0.000 0.000 0.008 0.000
#> SRR1036070     1  0.0290      0.832 0.992 0.000 0.000 0.008 0.000
#> SRR1036071     1  0.0290      0.832 0.992 0.000 0.000 0.008 0.000
#> SRR1036072     1  0.0290      0.832 0.992 0.000 0.000 0.008 0.000
#> SRR1036073     1  0.0290      0.832 0.992 0.000 0.000 0.008 0.000
#> SRR1036074     4  0.3509      0.705 0.196 0.008 0.000 0.792 0.004
#> SRR1036075     4  0.3618      0.705 0.196 0.012 0.000 0.788 0.004
#> SRR1036076     4  0.3509      0.705 0.196 0.008 0.000 0.792 0.004
#> SRR1036077     4  0.3509      0.705 0.196 0.008 0.000 0.792 0.004
#> SRR1036078     4  0.3509      0.705 0.196 0.008 0.000 0.792 0.004
#> SRR1036079     4  0.3509      0.705 0.196 0.008 0.000 0.792 0.004
#> SRR1036080     4  0.3509      0.705 0.196 0.008 0.000 0.792 0.004
#> SRR1036081     4  0.3618      0.705 0.196 0.012 0.000 0.788 0.004
#> SRR1036082     4  0.4807      0.622 0.132 0.000 0.000 0.728 0.140
#> SRR1036083     4  0.4807      0.622 0.132 0.000 0.000 0.728 0.140
#> SRR1036084     4  0.4766      0.625 0.132 0.000 0.000 0.732 0.136
#> SRR1036090     2  0.0162      0.904 0.000 0.996 0.000 0.004 0.000
#> SRR1036091     2  0.0162      0.904 0.000 0.996 0.000 0.004 0.000
#> SRR1036092     2  0.0162      0.904 0.000 0.996 0.000 0.004 0.000
#> SRR1036093     2  0.0162      0.904 0.000 0.996 0.000 0.004 0.000
#> SRR1036094     2  0.0162      0.904 0.000 0.996 0.000 0.004 0.000
#> SRR1036085     3  0.0000      0.906 0.000 0.000 1.000 0.000 0.000
#> SRR1036086     3  0.0000      0.906 0.000 0.000 1.000 0.000 0.000
#> SRR1036087     3  0.0000      0.906 0.000 0.000 1.000 0.000 0.000
#> SRR1036088     3  0.0000      0.906 0.000 0.000 1.000 0.000 0.000
#> SRR1036089     3  0.0000      0.906 0.000 0.000 1.000 0.000 0.000
#> SRR1036095     5  0.3897      0.616 0.204 0.000 0.000 0.028 0.768
#> SRR1036096     5  0.3897      0.616 0.204 0.000 0.000 0.028 0.768
#> SRR1036097     5  0.3863      0.617 0.200 0.000 0.000 0.028 0.772
#> SRR1036098     5  0.3897      0.616 0.204 0.000 0.000 0.028 0.768
#> SRR1036099     5  0.3897      0.616 0.204 0.000 0.000 0.028 0.768
#> SRR1036100     4  0.5701      0.567 0.004 0.284 0.000 0.608 0.104
#> SRR1036101     4  0.5622      0.583 0.004 0.260 0.000 0.628 0.108
#> SRR1036102     4  0.5523      0.562 0.004 0.296 0.000 0.616 0.084
#> SRR1036103     4  0.5517      0.509 0.004 0.332 0.000 0.592 0.072
#> SRR1036104     4  0.5687      0.511 0.004 0.324 0.000 0.584 0.088
#> SRR1036105     3  0.0000      0.906 0.000 0.000 1.000 0.000 0.000
#> SRR1036106     3  0.0000      0.906 0.000 0.000 1.000 0.000 0.000
#> SRR1036107     3  0.0000      0.906 0.000 0.000 1.000 0.000 0.000
#> SRR1036108     3  0.0000      0.906 0.000 0.000 1.000 0.000 0.000
#> SRR1036109     3  0.0000      0.906 0.000 0.000 1.000 0.000 0.000
#> SRR1036110     4  0.4062      0.507 0.040 0.000 0.000 0.764 0.196
#> SRR1036111     4  0.4028      0.512 0.040 0.000 0.000 0.768 0.192
#> SRR1036112     4  0.4161      0.492 0.040 0.000 0.000 0.752 0.208
#> SRR1036113     4  0.4129      0.497 0.040 0.000 0.000 0.756 0.204
#> SRR1036114     4  0.3994      0.516 0.040 0.000 0.000 0.772 0.188
#> SRR1036115     5  0.4655      0.482 0.328 0.000 0.000 0.028 0.644
#> SRR1036116     5  0.4655      0.482 0.328 0.000 0.000 0.028 0.644
#> SRR1036117     5  0.4655      0.482 0.328 0.000 0.000 0.028 0.644
#> SRR1036118     5  0.4671      0.474 0.332 0.000 0.000 0.028 0.640
#> SRR1036119     5  0.4655      0.482 0.328 0.000 0.000 0.028 0.644
#> SRR1036120     3  0.3130      0.843 0.000 0.000 0.856 0.096 0.048
#> SRR1036121     3  0.3130      0.843 0.000 0.000 0.856 0.096 0.048
#> SRR1036122     3  0.3058      0.844 0.000 0.000 0.860 0.096 0.044
#> SRR1036123     3  0.3130      0.842 0.000 0.000 0.856 0.096 0.048
#> SRR1036124     3  0.3130      0.843 0.000 0.000 0.856 0.096 0.048
#> SRR1036125     1  0.0324      0.829 0.992 0.000 0.004 0.000 0.004
#> SRR1036126     1  0.0451      0.827 0.988 0.000 0.008 0.000 0.004
#> SRR1036127     1  0.0162      0.830 0.996 0.000 0.000 0.000 0.004
#> SRR1036128     1  0.0324      0.829 0.992 0.000 0.004 0.000 0.004
#> SRR1036129     1  0.0162      0.830 0.996 0.000 0.000 0.000 0.004
#> SRR1036130     1  0.0451      0.827 0.988 0.000 0.008 0.000 0.004
#> SRR1036131     1  0.0451      0.827 0.988 0.000 0.008 0.000 0.004
#> SRR1036132     1  0.0162      0.830 0.996 0.000 0.000 0.000 0.004
#> SRR1036133     2  0.0290      0.902 0.000 0.992 0.000 0.000 0.008
#> SRR1036134     2  0.0290      0.902 0.000 0.992 0.000 0.000 0.008
#> SRR1036135     2  0.0290      0.902 0.000 0.992 0.000 0.000 0.008
#> SRR1036136     2  0.0290      0.902 0.000 0.992 0.000 0.000 0.008
#> SRR1036137     2  0.0290      0.902 0.000 0.992 0.000 0.000 0.008
#> SRR1036138     2  0.0162      0.904 0.000 0.996 0.000 0.004 0.000
#> SRR1036139     2  0.0162      0.904 0.000 0.996 0.000 0.004 0.000
#> SRR1036140     2  0.0162      0.904 0.000 0.996 0.000 0.004 0.000
#> SRR1036141     2  0.0162      0.904 0.000 0.996 0.000 0.004 0.000
#> SRR1036142     2  0.0162      0.904 0.000 0.996 0.000 0.004 0.000
#> SRR1036143     2  0.0162      0.904 0.000 0.996 0.000 0.004 0.000
#> SRR1036144     2  0.0162      0.904 0.000 0.996 0.000 0.004 0.000
#> SRR1036145     2  0.0162      0.904 0.000 0.996 0.000 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1036002     5  0.3445      0.469 0.000 0.048 0.156 0.000 0.796 0.000
#> SRR1036003     5  0.3445      0.469 0.000 0.048 0.156 0.000 0.796 0.000
#> SRR1036004     5  0.3516      0.461 0.000 0.048 0.164 0.000 0.788 0.000
#> SRR1036005     3  0.0146      0.900 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1036006     3  0.0146      0.900 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1036007     3  0.0146      0.900 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1036008     3  0.0146      0.900 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1036009     3  0.0146      0.900 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1036013     3  0.2948      0.829 0.012 0.000 0.860 0.044 0.000 0.084
#> SRR1036014     3  0.2828      0.834 0.012 0.000 0.868 0.040 0.000 0.080
#> SRR1036015     3  0.3620      0.777 0.012 0.000 0.808 0.060 0.000 0.120
#> SRR1036016     3  0.3065      0.822 0.012 0.000 0.852 0.048 0.000 0.088
#> SRR1036017     3  0.2867      0.836 0.016 0.000 0.868 0.040 0.000 0.076
#> SRR1036018     3  0.2849      0.830 0.008 0.000 0.864 0.044 0.000 0.084
#> SRR1036010     5  0.4048      0.433 0.236 0.004 0.000 0.012 0.728 0.020
#> SRR1036011     5  0.4121      0.420 0.248 0.004 0.000 0.012 0.716 0.020
#> SRR1036012     5  0.3997      0.438 0.228 0.004 0.000 0.012 0.736 0.020
#> SRR1036019     2  0.1124      0.824 0.000 0.956 0.000 0.008 0.036 0.000
#> SRR1036020     2  0.1225      0.823 0.000 0.952 0.000 0.012 0.036 0.000
#> SRR1036021     2  0.1320      0.821 0.000 0.948 0.000 0.016 0.036 0.000
#> SRR1036022     2  0.1492      0.817 0.000 0.940 0.000 0.024 0.036 0.000
#> SRR1036023     2  0.1408      0.819 0.000 0.944 0.000 0.020 0.036 0.000
#> SRR1036024     1  0.0363      0.981 0.988 0.000 0.000 0.012 0.000 0.000
#> SRR1036025     1  0.0363      0.981 0.988 0.000 0.000 0.012 0.000 0.000
#> SRR1036026     1  0.0363      0.981 0.988 0.000 0.000 0.012 0.000 0.000
#> SRR1036027     1  0.0363      0.981 0.988 0.000 0.000 0.012 0.000 0.000
#> SRR1036028     1  0.0363      0.981 0.988 0.000 0.000 0.012 0.000 0.000
#> SRR1036029     1  0.0260      0.984 0.992 0.000 0.000 0.008 0.000 0.000
#> SRR1036030     2  0.5642      0.686 0.000 0.660 0.000 0.132 0.116 0.092
#> SRR1036031     2  0.5598      0.689 0.000 0.664 0.000 0.132 0.116 0.088
#> SRR1036032     2  0.5598      0.689 0.000 0.664 0.000 0.132 0.116 0.088
#> SRR1036033     2  0.5598      0.689 0.000 0.664 0.000 0.132 0.116 0.088
#> SRR1036034     2  0.5598      0.689 0.000 0.664 0.000 0.132 0.116 0.088
#> SRR1036035     2  0.5598      0.689 0.000 0.664 0.000 0.132 0.116 0.088
#> SRR1036036     2  0.5598      0.689 0.000 0.664 0.000 0.132 0.116 0.088
#> SRR1036037     2  0.5598      0.689 0.000 0.664 0.000 0.132 0.116 0.088
#> SRR1036038     2  0.7840      0.192 0.276 0.364 0.000 0.088 0.232 0.040
#> SRR1036039     2  0.7875      0.165 0.276 0.356 0.000 0.084 0.240 0.044
#> SRR1036040     2  0.7735      0.240 0.284 0.388 0.000 0.084 0.204 0.040
#> SRR1036041     1  0.1672      0.911 0.932 0.000 0.000 0.016 0.004 0.048
#> SRR1036042     5  0.2094      0.556 0.020 0.080 0.000 0.000 0.900 0.000
#> SRR1036043     5  0.2094      0.556 0.020 0.080 0.000 0.000 0.900 0.000
#> SRR1036044     5  0.2094      0.556 0.020 0.080 0.000 0.000 0.900 0.000
#> SRR1036045     5  0.2094      0.556 0.020 0.080 0.000 0.000 0.900 0.000
#> SRR1036046     5  0.2094      0.556 0.020 0.080 0.000 0.000 0.900 0.000
#> SRR1036047     5  0.2094      0.556 0.020 0.080 0.000 0.000 0.900 0.000
#> SRR1036048     5  0.2094      0.556 0.020 0.080 0.000 0.000 0.900 0.000
#> SRR1036049     5  0.2094      0.556 0.020 0.080 0.000 0.000 0.900 0.000
#> SRR1036050     6  0.5280      0.636 0.364 0.000 0.004 0.072 0.008 0.552
#> SRR1036051     6  0.5280      0.636 0.364 0.000 0.004 0.072 0.008 0.552
#> SRR1036052     6  0.5280      0.636 0.364 0.000 0.004 0.072 0.008 0.552
#> SRR1036053     6  0.5280      0.636 0.364 0.000 0.004 0.072 0.008 0.552
#> SRR1036054     6  0.5280      0.636 0.364 0.000 0.004 0.072 0.008 0.552
#> SRR1036055     2  0.6223      0.672 0.048 0.648 0.000 0.132 0.096 0.076
#> SRR1036056     2  0.6196      0.675 0.052 0.652 0.000 0.128 0.096 0.072
#> SRR1036057     2  0.6300      0.668 0.056 0.644 0.000 0.128 0.096 0.076
#> SRR1036058     4  0.4357      0.610 0.036 0.000 0.000 0.624 0.000 0.340
#> SRR1036059     4  0.4357      0.610 0.036 0.000 0.000 0.624 0.000 0.340
#> SRR1036060     4  0.4357      0.610 0.036 0.000 0.000 0.624 0.000 0.340
#> SRR1036061     4  0.4357      0.610 0.036 0.000 0.000 0.624 0.000 0.340
#> SRR1036062     4  0.4357      0.610 0.036 0.000 0.000 0.624 0.000 0.340
#> SRR1036063     4  0.4357      0.610 0.036 0.000 0.000 0.624 0.000 0.340
#> SRR1036064     4  0.4357      0.610 0.036 0.000 0.000 0.624 0.000 0.340
#> SRR1036065     4  0.4357      0.610 0.036 0.000 0.000 0.624 0.000 0.340
#> SRR1036066     1  0.0146      0.986 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1036067     1  0.0146      0.986 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1036068     1  0.0146      0.986 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1036069     1  0.0146      0.986 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1036070     1  0.0146      0.986 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1036071     1  0.0146      0.986 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1036072     1  0.0146      0.986 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1036073     1  0.0146      0.986 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1036074     5  0.6501      0.488 0.152 0.000 0.000 0.268 0.512 0.068
#> SRR1036075     5  0.6501      0.488 0.152 0.000 0.000 0.268 0.512 0.068
#> SRR1036076     5  0.6501      0.488 0.152 0.000 0.000 0.268 0.512 0.068
#> SRR1036077     5  0.6501      0.488 0.152 0.000 0.000 0.268 0.512 0.068
#> SRR1036078     5  0.6501      0.488 0.152 0.000 0.000 0.268 0.512 0.068
#> SRR1036079     5  0.6501      0.488 0.152 0.000 0.000 0.268 0.512 0.068
#> SRR1036080     5  0.6501      0.488 0.152 0.000 0.000 0.268 0.512 0.068
#> SRR1036081     5  0.6501      0.488 0.152 0.000 0.000 0.268 0.512 0.068
#> SRR1036082     4  0.6117     -0.145 0.096 0.000 0.000 0.556 0.276 0.072
#> SRR1036083     4  0.6156     -0.151 0.100 0.000 0.000 0.552 0.276 0.072
#> SRR1036084     4  0.6082     -0.137 0.088 0.000 0.000 0.560 0.276 0.076
#> SRR1036090     2  0.1007      0.824 0.000 0.956 0.000 0.000 0.044 0.000
#> SRR1036091     2  0.1007      0.824 0.000 0.956 0.000 0.000 0.044 0.000
#> SRR1036092     2  0.1007      0.824 0.000 0.956 0.000 0.000 0.044 0.000
#> SRR1036093     2  0.1007      0.824 0.000 0.956 0.000 0.000 0.044 0.000
#> SRR1036094     2  0.1007      0.824 0.000 0.956 0.000 0.000 0.044 0.000
#> SRR1036085     3  0.0146      0.900 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1036086     3  0.0146      0.900 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1036087     3  0.0146      0.900 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1036088     3  0.0146      0.900 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1036089     3  0.0146      0.900 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1036095     6  0.2053      0.777 0.108 0.000 0.000 0.004 0.000 0.888
#> SRR1036096     6  0.2053      0.777 0.108 0.000 0.000 0.004 0.000 0.888
#> SRR1036097     6  0.2053      0.777 0.108 0.000 0.000 0.004 0.000 0.888
#> SRR1036098     6  0.2053      0.777 0.108 0.000 0.000 0.004 0.000 0.888
#> SRR1036099     6  0.2053      0.777 0.108 0.000 0.000 0.004 0.000 0.888
#> SRR1036100     5  0.7253      0.401 0.008 0.092 0.000 0.328 0.392 0.180
#> SRR1036101     5  0.7287      0.395 0.012 0.080 0.000 0.332 0.384 0.192
#> SRR1036102     5  0.7287      0.401 0.008 0.104 0.000 0.324 0.396 0.168
#> SRR1036103     5  0.7313      0.395 0.008 0.104 0.000 0.332 0.384 0.172
#> SRR1036104     5  0.7294      0.390 0.008 0.096 0.000 0.340 0.376 0.180
#> SRR1036105     3  0.0146      0.900 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1036106     3  0.0146      0.900 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1036107     3  0.0146      0.900 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1036108     3  0.0146      0.900 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1036109     3  0.0146      0.900 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1036110     4  0.4933      0.489 0.004 0.000 0.000 0.588 0.340 0.068
#> SRR1036111     4  0.4920      0.476 0.004 0.000 0.000 0.580 0.352 0.064
#> SRR1036112     4  0.4822      0.514 0.004 0.000 0.000 0.620 0.308 0.068
#> SRR1036113     4  0.4852      0.508 0.004 0.000 0.000 0.612 0.316 0.068
#> SRR1036114     4  0.4821      0.486 0.004 0.000 0.000 0.600 0.336 0.060
#> SRR1036115     6  0.2454      0.809 0.160 0.000 0.000 0.000 0.000 0.840
#> SRR1036116     6  0.2416      0.808 0.156 0.000 0.000 0.000 0.000 0.844
#> SRR1036117     6  0.2454      0.809 0.160 0.000 0.000 0.000 0.000 0.840
#> SRR1036118     6  0.2454      0.809 0.160 0.000 0.000 0.000 0.000 0.840
#> SRR1036119     6  0.2454      0.809 0.160 0.000 0.000 0.000 0.000 0.840
#> SRR1036120     3  0.4588      0.687 0.000 0.000 0.700 0.048 0.228 0.024
#> SRR1036121     3  0.4459      0.697 0.000 0.000 0.712 0.048 0.220 0.020
#> SRR1036122     3  0.4428      0.693 0.000 0.000 0.708 0.048 0.228 0.016
#> SRR1036123     3  0.4588      0.687 0.000 0.000 0.700 0.048 0.228 0.024
#> SRR1036124     3  0.4671      0.678 0.000 0.000 0.692 0.052 0.232 0.024
#> SRR1036125     1  0.0260      0.982 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR1036126     1  0.0260      0.982 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR1036127     1  0.0260      0.982 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR1036128     1  0.0405      0.979 0.988 0.000 0.004 0.000 0.000 0.008
#> SRR1036129     1  0.0260      0.982 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR1036130     1  0.0405      0.979 0.988 0.000 0.004 0.000 0.000 0.008
#> SRR1036131     1  0.0405      0.979 0.988 0.000 0.004 0.000 0.000 0.008
#> SRR1036132     1  0.0260      0.982 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR1036133     2  0.0000      0.825 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1036134     2  0.0000      0.825 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1036135     2  0.0000      0.825 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1036136     2  0.0000      0.825 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1036137     2  0.0000      0.825 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1036138     2  0.0713      0.828 0.000 0.972 0.000 0.000 0.028 0.000
#> SRR1036139     2  0.0713      0.828 0.000 0.972 0.000 0.000 0.028 0.000
#> SRR1036140     2  0.0713      0.828 0.000 0.972 0.000 0.000 0.028 0.000
#> SRR1036141     2  0.0713      0.828 0.000 0.972 0.000 0.000 0.028 0.000
#> SRR1036142     2  0.0713      0.828 0.000 0.972 0.000 0.000 0.028 0.000
#> SRR1036143     2  0.0713      0.828 0.000 0.972 0.000 0.000 0.028 0.000
#> SRR1036144     2  0.0713      0.828 0.000 0.972 0.000 0.000 0.028 0.000
#> SRR1036145     2  0.0713      0.828 0.000 0.972 0.000 0.000 0.028 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15218 rows and 144 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.631           0.884       0.923         0.1907 0.759   0.759
#> 3 3 0.328           0.663       0.769         1.4417 0.642   0.541
#> 4 4 0.677           0.842       0.908         0.3465 0.887   0.753
#> 5 5 0.631           0.696       0.819         0.1196 0.854   0.619
#> 6 6 0.722           0.855       0.889         0.0989 0.938   0.774

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1036002     2   0.802      0.441 0.244 0.756
#> SRR1036003     2   0.802      0.441 0.244 0.756
#> SRR1036004     2   0.802      0.441 0.244 0.756
#> SRR1036005     1   0.932      0.867 0.652 0.348
#> SRR1036006     1   0.932      0.867 0.652 0.348
#> SRR1036007     1   0.932      0.867 0.652 0.348
#> SRR1036008     1   0.932      0.867 0.652 0.348
#> SRR1036009     1   0.932      0.867 0.652 0.348
#> SRR1036013     2   0.000      0.949 0.000 1.000
#> SRR1036014     2   0.000      0.949 0.000 1.000
#> SRR1036015     2   0.000      0.949 0.000 1.000
#> SRR1036016     2   0.000      0.949 0.000 1.000
#> SRR1036017     2   0.000      0.949 0.000 1.000
#> SRR1036018     2   0.000      0.949 0.000 1.000
#> SRR1036010     2   0.184      0.937 0.028 0.972
#> SRR1036011     2   0.184      0.937 0.028 0.972
#> SRR1036012     2   0.184      0.937 0.028 0.972
#> SRR1036019     2   0.000      0.949 0.000 1.000
#> SRR1036020     2   0.000      0.949 0.000 1.000
#> SRR1036021     2   0.000      0.949 0.000 1.000
#> SRR1036022     2   0.000      0.949 0.000 1.000
#> SRR1036023     2   0.000      0.949 0.000 1.000
#> SRR1036024     2   0.000      0.949 0.000 1.000
#> SRR1036025     2   0.000      0.949 0.000 1.000
#> SRR1036026     2   0.000      0.949 0.000 1.000
#> SRR1036027     2   0.000      0.949 0.000 1.000
#> SRR1036028     2   0.000      0.949 0.000 1.000
#> SRR1036029     2   0.000      0.949 0.000 1.000
#> SRR1036030     2   0.000      0.949 0.000 1.000
#> SRR1036031     2   0.000      0.949 0.000 1.000
#> SRR1036032     2   0.000      0.949 0.000 1.000
#> SRR1036033     2   0.000      0.949 0.000 1.000
#> SRR1036034     2   0.000      0.949 0.000 1.000
#> SRR1036035     2   0.000      0.949 0.000 1.000
#> SRR1036036     2   0.000      0.949 0.000 1.000
#> SRR1036037     2   0.000      0.949 0.000 1.000
#> SRR1036038     2   0.184      0.937 0.028 0.972
#> SRR1036039     2   0.184      0.937 0.028 0.972
#> SRR1036040     2   0.184      0.937 0.028 0.972
#> SRR1036041     2   0.184      0.937 0.028 0.972
#> SRR1036042     2   0.802      0.441 0.244 0.756
#> SRR1036043     2   0.802      0.441 0.244 0.756
#> SRR1036044     2   0.802      0.441 0.244 0.756
#> SRR1036045     2   0.802      0.441 0.244 0.756
#> SRR1036046     2   0.802      0.441 0.244 0.756
#> SRR1036047     2   0.802      0.441 0.244 0.756
#> SRR1036048     2   0.802      0.441 0.244 0.756
#> SRR1036049     2   0.802      0.441 0.244 0.756
#> SRR1036050     2   0.184      0.937 0.028 0.972
#> SRR1036051     2   0.184      0.937 0.028 0.972
#> SRR1036052     2   0.184      0.937 0.028 0.972
#> SRR1036053     2   0.184      0.937 0.028 0.972
#> SRR1036054     2   0.184      0.937 0.028 0.972
#> SRR1036055     2   0.163      0.939 0.024 0.976
#> SRR1036056     2   0.163      0.939 0.024 0.976
#> SRR1036057     2   0.163      0.939 0.024 0.976
#> SRR1036058     2   0.000      0.949 0.000 1.000
#> SRR1036059     2   0.000      0.949 0.000 1.000
#> SRR1036060     2   0.000      0.949 0.000 1.000
#> SRR1036061     2   0.000      0.949 0.000 1.000
#> SRR1036062     2   0.000      0.949 0.000 1.000
#> SRR1036063     2   0.000      0.949 0.000 1.000
#> SRR1036064     2   0.000      0.949 0.000 1.000
#> SRR1036065     2   0.000      0.949 0.000 1.000
#> SRR1036066     2   0.184      0.937 0.028 0.972
#> SRR1036067     2   0.184      0.937 0.028 0.972
#> SRR1036068     2   0.184      0.937 0.028 0.972
#> SRR1036069     2   0.184      0.937 0.028 0.972
#> SRR1036070     2   0.184      0.937 0.028 0.972
#> SRR1036071     2   0.184      0.937 0.028 0.972
#> SRR1036072     2   0.184      0.937 0.028 0.972
#> SRR1036073     2   0.184      0.937 0.028 0.972
#> SRR1036074     2   0.000      0.949 0.000 1.000
#> SRR1036075     2   0.000      0.949 0.000 1.000
#> SRR1036076     2   0.000      0.949 0.000 1.000
#> SRR1036077     2   0.000      0.949 0.000 1.000
#> SRR1036078     2   0.000      0.949 0.000 1.000
#> SRR1036079     2   0.000      0.949 0.000 1.000
#> SRR1036080     2   0.000      0.949 0.000 1.000
#> SRR1036081     2   0.000      0.949 0.000 1.000
#> SRR1036082     2   0.000      0.949 0.000 1.000
#> SRR1036083     2   0.000      0.949 0.000 1.000
#> SRR1036084     2   0.000      0.949 0.000 1.000
#> SRR1036090     2   0.000      0.949 0.000 1.000
#> SRR1036091     2   0.000      0.949 0.000 1.000
#> SRR1036092     2   0.000      0.949 0.000 1.000
#> SRR1036093     2   0.000      0.949 0.000 1.000
#> SRR1036094     2   0.000      0.949 0.000 1.000
#> SRR1036085     1   0.932      0.867 0.652 0.348
#> SRR1036086     1   0.932      0.867 0.652 0.348
#> SRR1036087     1   0.932      0.867 0.652 0.348
#> SRR1036088     1   0.932      0.867 0.652 0.348
#> SRR1036089     1   0.932      0.867 0.652 0.348
#> SRR1036095     2   0.184      0.937 0.028 0.972
#> SRR1036096     2   0.184      0.937 0.028 0.972
#> SRR1036097     2   0.184      0.937 0.028 0.972
#> SRR1036098     2   0.184      0.937 0.028 0.972
#> SRR1036099     2   0.184      0.937 0.028 0.972
#> SRR1036100     2   0.000      0.949 0.000 1.000
#> SRR1036101     2   0.000      0.949 0.000 1.000
#> SRR1036102     2   0.000      0.949 0.000 1.000
#> SRR1036103     2   0.000      0.949 0.000 1.000
#> SRR1036104     2   0.000      0.949 0.000 1.000
#> SRR1036105     1   0.932      0.867 0.652 0.348
#> SRR1036106     1   0.932      0.867 0.652 0.348
#> SRR1036107     1   0.932      0.867 0.652 0.348
#> SRR1036108     1   0.932      0.867 0.652 0.348
#> SRR1036109     1   0.932      0.867 0.652 0.348
#> SRR1036110     2   0.000      0.949 0.000 1.000
#> SRR1036111     2   0.000      0.949 0.000 1.000
#> SRR1036112     2   0.000      0.949 0.000 1.000
#> SRR1036113     2   0.000      0.949 0.000 1.000
#> SRR1036114     2   0.000      0.949 0.000 1.000
#> SRR1036115     2   0.184      0.937 0.028 0.972
#> SRR1036116     2   0.184      0.937 0.028 0.972
#> SRR1036117     2   0.184      0.937 0.028 0.972
#> SRR1036118     2   0.184      0.937 0.028 0.972
#> SRR1036119     2   0.184      0.937 0.028 0.972
#> SRR1036120     1   0.981      0.532 0.580 0.420
#> SRR1036121     1   0.981      0.532 0.580 0.420
#> SRR1036122     1   0.981      0.532 0.580 0.420
#> SRR1036123     1   0.981      0.532 0.580 0.420
#> SRR1036124     1   0.981      0.532 0.580 0.420
#> SRR1036125     2   0.184      0.937 0.028 0.972
#> SRR1036126     2   0.184      0.937 0.028 0.972
#> SRR1036127     2   0.184      0.937 0.028 0.972
#> SRR1036128     2   0.184      0.937 0.028 0.972
#> SRR1036129     2   0.184      0.937 0.028 0.972
#> SRR1036130     2   0.184      0.937 0.028 0.972
#> SRR1036131     2   0.184      0.937 0.028 0.972
#> SRR1036132     2   0.184      0.937 0.028 0.972
#> SRR1036133     2   0.000      0.949 0.000 1.000
#> SRR1036134     2   0.000      0.949 0.000 1.000
#> SRR1036135     2   0.000      0.949 0.000 1.000
#> SRR1036136     2   0.000      0.949 0.000 1.000
#> SRR1036137     2   0.000      0.949 0.000 1.000
#> SRR1036138     2   0.000      0.949 0.000 1.000
#> SRR1036139     2   0.000      0.949 0.000 1.000
#> SRR1036140     2   0.000      0.949 0.000 1.000
#> SRR1036141     2   0.000      0.949 0.000 1.000
#> SRR1036142     2   0.000      0.949 0.000 1.000
#> SRR1036143     2   0.000      0.949 0.000 1.000
#> SRR1036144     2   0.000      0.949 0.000 1.000
#> SRR1036145     2   0.000      0.949 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1036002     2  0.6985    -0.1804 0.024 0.592 0.384
#> SRR1036003     2  0.6985    -0.1804 0.024 0.592 0.384
#> SRR1036004     2  0.6985    -0.1804 0.024 0.592 0.384
#> SRR1036005     3  0.4504     1.0000 0.000 0.196 0.804
#> SRR1036006     3  0.4504     1.0000 0.000 0.196 0.804
#> SRR1036007     3  0.4504     1.0000 0.000 0.196 0.804
#> SRR1036008     3  0.4504     1.0000 0.000 0.196 0.804
#> SRR1036009     3  0.4504     1.0000 0.000 0.196 0.804
#> SRR1036013     2  0.4291     0.6334 0.180 0.820 0.000
#> SRR1036014     2  0.4291     0.6334 0.180 0.820 0.000
#> SRR1036015     2  0.4291     0.6334 0.180 0.820 0.000
#> SRR1036016     2  0.4291     0.6334 0.180 0.820 0.000
#> SRR1036017     2  0.4291     0.6334 0.180 0.820 0.000
#> SRR1036018     2  0.4291     0.6334 0.180 0.820 0.000
#> SRR1036010     1  0.6026     0.8410 0.624 0.376 0.000
#> SRR1036011     1  0.6026     0.8410 0.624 0.376 0.000
#> SRR1036012     1  0.6026     0.8410 0.624 0.376 0.000
#> SRR1036019     2  0.0592     0.7531 0.012 0.988 0.000
#> SRR1036020     2  0.0592     0.7531 0.012 0.988 0.000
#> SRR1036021     2  0.0592     0.7531 0.012 0.988 0.000
#> SRR1036022     2  0.0592     0.7531 0.012 0.988 0.000
#> SRR1036023     2  0.0592     0.7531 0.012 0.988 0.000
#> SRR1036024     2  0.5835     0.1407 0.340 0.660 0.000
#> SRR1036025     2  0.5835     0.1407 0.340 0.660 0.000
#> SRR1036026     2  0.5835     0.1407 0.340 0.660 0.000
#> SRR1036027     2  0.5835     0.1407 0.340 0.660 0.000
#> SRR1036028     2  0.5835     0.1407 0.340 0.660 0.000
#> SRR1036029     2  0.5835     0.1407 0.340 0.660 0.000
#> SRR1036030     2  0.4178     0.6487 0.172 0.828 0.000
#> SRR1036031     2  0.4178     0.6487 0.172 0.828 0.000
#> SRR1036032     2  0.4178     0.6487 0.172 0.828 0.000
#> SRR1036033     2  0.4178     0.6487 0.172 0.828 0.000
#> SRR1036034     2  0.4178     0.6487 0.172 0.828 0.000
#> SRR1036035     2  0.4178     0.6487 0.172 0.828 0.000
#> SRR1036036     2  0.4178     0.6487 0.172 0.828 0.000
#> SRR1036037     2  0.4178     0.6487 0.172 0.828 0.000
#> SRR1036038     1  0.6045     0.8403 0.620 0.380 0.000
#> SRR1036039     1  0.6045     0.8403 0.620 0.380 0.000
#> SRR1036040     1  0.6045     0.8403 0.620 0.380 0.000
#> SRR1036041     1  0.6095     0.8624 0.608 0.392 0.000
#> SRR1036042     2  0.6985    -0.1804 0.024 0.592 0.384
#> SRR1036043     2  0.6985    -0.1804 0.024 0.592 0.384
#> SRR1036044     2  0.6985    -0.1804 0.024 0.592 0.384
#> SRR1036045     2  0.6985    -0.1804 0.024 0.592 0.384
#> SRR1036046     2  0.6985    -0.1804 0.024 0.592 0.384
#> SRR1036047     2  0.6985    -0.1804 0.024 0.592 0.384
#> SRR1036048     2  0.6985    -0.1804 0.024 0.592 0.384
#> SRR1036049     2  0.6985    -0.1804 0.024 0.592 0.384
#> SRR1036050     1  0.6095     0.8624 0.608 0.392 0.000
#> SRR1036051     1  0.6095     0.8624 0.608 0.392 0.000
#> SRR1036052     1  0.6095     0.8624 0.608 0.392 0.000
#> SRR1036053     1  0.6095     0.8624 0.608 0.392 0.000
#> SRR1036054     1  0.6095     0.8624 0.608 0.392 0.000
#> SRR1036055     1  0.6180     0.8300 0.584 0.416 0.000
#> SRR1036056     1  0.6180     0.8300 0.584 0.416 0.000
#> SRR1036057     1  0.6180     0.8300 0.584 0.416 0.000
#> SRR1036058     2  0.4002     0.6591 0.160 0.840 0.000
#> SRR1036059     2  0.4002     0.6591 0.160 0.840 0.000
#> SRR1036060     2  0.4002     0.6591 0.160 0.840 0.000
#> SRR1036061     2  0.4002     0.6591 0.160 0.840 0.000
#> SRR1036062     2  0.4002     0.6591 0.160 0.840 0.000
#> SRR1036063     2  0.4002     0.6591 0.160 0.840 0.000
#> SRR1036064     2  0.4002     0.6591 0.160 0.840 0.000
#> SRR1036065     2  0.4002     0.6591 0.160 0.840 0.000
#> SRR1036066     1  0.6126     0.8589 0.600 0.400 0.000
#> SRR1036067     1  0.6126     0.8589 0.600 0.400 0.000
#> SRR1036068     1  0.6126     0.8589 0.600 0.400 0.000
#> SRR1036069     1  0.6126     0.8589 0.600 0.400 0.000
#> SRR1036070     1  0.6126     0.8589 0.600 0.400 0.000
#> SRR1036071     1  0.6126     0.8589 0.600 0.400 0.000
#> SRR1036072     1  0.6126     0.8589 0.600 0.400 0.000
#> SRR1036073     1  0.6126     0.8589 0.600 0.400 0.000
#> SRR1036074     2  0.0237     0.7530 0.004 0.996 0.000
#> SRR1036075     2  0.0237     0.7530 0.004 0.996 0.000
#> SRR1036076     2  0.0237     0.7530 0.004 0.996 0.000
#> SRR1036077     2  0.0237     0.7530 0.004 0.996 0.000
#> SRR1036078     2  0.0237     0.7530 0.004 0.996 0.000
#> SRR1036079     2  0.0237     0.7530 0.004 0.996 0.000
#> SRR1036080     2  0.0237     0.7530 0.004 0.996 0.000
#> SRR1036081     2  0.0237     0.7530 0.004 0.996 0.000
#> SRR1036082     2  0.1643     0.7410 0.044 0.956 0.000
#> SRR1036083     2  0.1643     0.7410 0.044 0.956 0.000
#> SRR1036084     2  0.1643     0.7410 0.044 0.956 0.000
#> SRR1036090     2  0.0424     0.7532 0.008 0.992 0.000
#> SRR1036091     2  0.0424     0.7532 0.008 0.992 0.000
#> SRR1036092     2  0.0424     0.7532 0.008 0.992 0.000
#> SRR1036093     2  0.0424     0.7532 0.008 0.992 0.000
#> SRR1036094     2  0.0424     0.7532 0.008 0.992 0.000
#> SRR1036085     3  0.4504     1.0000 0.000 0.196 0.804
#> SRR1036086     3  0.4504     1.0000 0.000 0.196 0.804
#> SRR1036087     3  0.4504     1.0000 0.000 0.196 0.804
#> SRR1036088     3  0.4504     1.0000 0.000 0.196 0.804
#> SRR1036089     3  0.4504     1.0000 0.000 0.196 0.804
#> SRR1036095     1  0.6111     0.8619 0.604 0.396 0.000
#> SRR1036096     1  0.6111     0.8619 0.604 0.396 0.000
#> SRR1036097     1  0.6111     0.8619 0.604 0.396 0.000
#> SRR1036098     1  0.6111     0.8619 0.604 0.396 0.000
#> SRR1036099     1  0.6111     0.8619 0.604 0.396 0.000
#> SRR1036100     2  0.0424     0.7535 0.008 0.992 0.000
#> SRR1036101     2  0.0424     0.7535 0.008 0.992 0.000
#> SRR1036102     2  0.0424     0.7535 0.008 0.992 0.000
#> SRR1036103     2  0.0424     0.7535 0.008 0.992 0.000
#> SRR1036104     2  0.0424     0.7535 0.008 0.992 0.000
#> SRR1036105     3  0.4504     1.0000 0.000 0.196 0.804
#> SRR1036106     3  0.4504     1.0000 0.000 0.196 0.804
#> SRR1036107     3  0.4504     1.0000 0.000 0.196 0.804
#> SRR1036108     3  0.4504     1.0000 0.000 0.196 0.804
#> SRR1036109     3  0.4504     1.0000 0.000 0.196 0.804
#> SRR1036110     2  0.3752     0.6750 0.144 0.856 0.000
#> SRR1036111     2  0.3752     0.6750 0.144 0.856 0.000
#> SRR1036112     2  0.3752     0.6750 0.144 0.856 0.000
#> SRR1036113     2  0.3752     0.6750 0.144 0.856 0.000
#> SRR1036114     2  0.3752     0.6750 0.144 0.856 0.000
#> SRR1036115     1  0.6111     0.8619 0.604 0.396 0.000
#> SRR1036116     1  0.6111     0.8619 0.604 0.396 0.000
#> SRR1036117     1  0.6111     0.8619 0.604 0.396 0.000
#> SRR1036118     1  0.6111     0.8619 0.604 0.396 0.000
#> SRR1036119     1  0.6111     0.8619 0.604 0.396 0.000
#> SRR1036120     1  0.8303    -0.0924 0.632 0.172 0.196
#> SRR1036121     1  0.8303    -0.0924 0.632 0.172 0.196
#> SRR1036122     1  0.8303    -0.0924 0.632 0.172 0.196
#> SRR1036123     1  0.8303    -0.0924 0.632 0.172 0.196
#> SRR1036124     1  0.8303    -0.0924 0.632 0.172 0.196
#> SRR1036125     1  0.6095     0.8624 0.608 0.392 0.000
#> SRR1036126     1  0.6095     0.8624 0.608 0.392 0.000
#> SRR1036127     1  0.6095     0.8624 0.608 0.392 0.000
#> SRR1036128     1  0.6095     0.8624 0.608 0.392 0.000
#> SRR1036129     1  0.6095     0.8624 0.608 0.392 0.000
#> SRR1036130     1  0.6095     0.8624 0.608 0.392 0.000
#> SRR1036131     1  0.6095     0.8624 0.608 0.392 0.000
#> SRR1036132     1  0.6095     0.8624 0.608 0.392 0.000
#> SRR1036133     2  0.0592     0.7541 0.012 0.988 0.000
#> SRR1036134     2  0.0592     0.7541 0.012 0.988 0.000
#> SRR1036135     2  0.0592     0.7541 0.012 0.988 0.000
#> SRR1036136     2  0.0592     0.7541 0.012 0.988 0.000
#> SRR1036137     2  0.0592     0.7541 0.012 0.988 0.000
#> SRR1036138     2  0.0424     0.7532 0.008 0.992 0.000
#> SRR1036139     2  0.0424     0.7532 0.008 0.992 0.000
#> SRR1036140     2  0.0424     0.7532 0.008 0.992 0.000
#> SRR1036141     2  0.0424     0.7532 0.008 0.992 0.000
#> SRR1036142     2  0.0424     0.7532 0.008 0.992 0.000
#> SRR1036143     2  0.0424     0.7532 0.008 0.992 0.000
#> SRR1036144     2  0.0424     0.7532 0.008 0.992 0.000
#> SRR1036145     2  0.0424     0.7532 0.008 0.992 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2   p3    p4
#> SRR1036002     3  0.5649      0.604 0.000 0.392 0.58 0.028
#> SRR1036003     3  0.5649      0.604 0.000 0.392 0.58 0.028
#> SRR1036004     3  0.5649      0.604 0.000 0.392 0.58 0.028
#> SRR1036005     3  0.0000      0.688 0.000 0.000 1.00 0.000
#> SRR1036006     3  0.0000      0.688 0.000 0.000 1.00 0.000
#> SRR1036007     3  0.0000      0.688 0.000 0.000 1.00 0.000
#> SRR1036008     3  0.0000      0.688 0.000 0.000 1.00 0.000
#> SRR1036009     3  0.0000      0.688 0.000 0.000 1.00 0.000
#> SRR1036013     2  0.3688      0.820 0.208 0.792 0.00 0.000
#> SRR1036014     2  0.3688      0.820 0.208 0.792 0.00 0.000
#> SRR1036015     2  0.3688      0.820 0.208 0.792 0.00 0.000
#> SRR1036016     2  0.3688      0.820 0.208 0.792 0.00 0.000
#> SRR1036017     2  0.3688      0.820 0.208 0.792 0.00 0.000
#> SRR1036018     2  0.3688      0.820 0.208 0.792 0.00 0.000
#> SRR1036010     1  0.1174      0.969 0.968 0.012 0.00 0.020
#> SRR1036011     1  0.1174      0.969 0.968 0.012 0.00 0.020
#> SRR1036012     1  0.1174      0.969 0.968 0.012 0.00 0.020
#> SRR1036019     2  0.0707      0.850 0.000 0.980 0.00 0.020
#> SRR1036020     2  0.0707      0.850 0.000 0.980 0.00 0.020
#> SRR1036021     2  0.0707      0.850 0.000 0.980 0.00 0.020
#> SRR1036022     2  0.0707      0.850 0.000 0.980 0.00 0.020
#> SRR1036023     2  0.0707      0.850 0.000 0.980 0.00 0.020
#> SRR1036024     2  0.4804      0.583 0.384 0.616 0.00 0.000
#> SRR1036025     2  0.4804      0.583 0.384 0.616 0.00 0.000
#> SRR1036026     2  0.4804      0.583 0.384 0.616 0.00 0.000
#> SRR1036027     2  0.4804      0.583 0.384 0.616 0.00 0.000
#> SRR1036028     2  0.4804      0.583 0.384 0.616 0.00 0.000
#> SRR1036029     2  0.4804      0.583 0.384 0.616 0.00 0.000
#> SRR1036030     2  0.3444      0.833 0.184 0.816 0.00 0.000
#> SRR1036031     2  0.3444      0.833 0.184 0.816 0.00 0.000
#> SRR1036032     2  0.3444      0.833 0.184 0.816 0.00 0.000
#> SRR1036033     2  0.3444      0.833 0.184 0.816 0.00 0.000
#> SRR1036034     2  0.3444      0.833 0.184 0.816 0.00 0.000
#> SRR1036035     2  0.3444      0.833 0.184 0.816 0.00 0.000
#> SRR1036036     2  0.3444      0.833 0.184 0.816 0.00 0.000
#> SRR1036037     2  0.3444      0.833 0.184 0.816 0.00 0.000
#> SRR1036038     1  0.1297      0.967 0.964 0.016 0.00 0.020
#> SRR1036039     1  0.1297      0.967 0.964 0.016 0.00 0.020
#> SRR1036040     1  0.1297      0.967 0.964 0.016 0.00 0.020
#> SRR1036041     1  0.0592      0.979 0.984 0.016 0.00 0.000
#> SRR1036042     3  0.5649      0.604 0.000 0.392 0.58 0.028
#> SRR1036043     3  0.5649      0.604 0.000 0.392 0.58 0.028
#> SRR1036044     3  0.5649      0.604 0.000 0.392 0.58 0.028
#> SRR1036045     3  0.5649      0.604 0.000 0.392 0.58 0.028
#> SRR1036046     3  0.5649      0.604 0.000 0.392 0.58 0.028
#> SRR1036047     3  0.5649      0.604 0.000 0.392 0.58 0.028
#> SRR1036048     3  0.5649      0.604 0.000 0.392 0.58 0.028
#> SRR1036049     3  0.5649      0.604 0.000 0.392 0.58 0.028
#> SRR1036050     1  0.0592      0.979 0.984 0.016 0.00 0.000
#> SRR1036051     1  0.0592      0.979 0.984 0.016 0.00 0.000
#> SRR1036052     1  0.0592      0.979 0.984 0.016 0.00 0.000
#> SRR1036053     1  0.0592      0.979 0.984 0.016 0.00 0.000
#> SRR1036054     1  0.0592      0.979 0.984 0.016 0.00 0.000
#> SRR1036055     1  0.1211      0.956 0.960 0.040 0.00 0.000
#> SRR1036056     1  0.1211      0.956 0.960 0.040 0.00 0.000
#> SRR1036057     1  0.1211      0.956 0.960 0.040 0.00 0.000
#> SRR1036058     2  0.3444      0.834 0.184 0.816 0.00 0.000
#> SRR1036059     2  0.3444      0.834 0.184 0.816 0.00 0.000
#> SRR1036060     2  0.3444      0.834 0.184 0.816 0.00 0.000
#> SRR1036061     2  0.3444      0.834 0.184 0.816 0.00 0.000
#> SRR1036062     2  0.3444      0.834 0.184 0.816 0.00 0.000
#> SRR1036063     2  0.3444      0.834 0.184 0.816 0.00 0.000
#> SRR1036064     2  0.3444      0.834 0.184 0.816 0.00 0.000
#> SRR1036065     2  0.3444      0.834 0.184 0.816 0.00 0.000
#> SRR1036066     1  0.0188      0.984 0.996 0.004 0.00 0.000
#> SRR1036067     1  0.0188      0.984 0.996 0.004 0.00 0.000
#> SRR1036068     1  0.0188      0.984 0.996 0.004 0.00 0.000
#> SRR1036069     1  0.0188      0.984 0.996 0.004 0.00 0.000
#> SRR1036070     1  0.0188      0.984 0.996 0.004 0.00 0.000
#> SRR1036071     1  0.0188      0.984 0.996 0.004 0.00 0.000
#> SRR1036072     1  0.0188      0.984 0.996 0.004 0.00 0.000
#> SRR1036073     1  0.0188      0.984 0.996 0.004 0.00 0.000
#> SRR1036074     2  0.0524      0.851 0.004 0.988 0.00 0.008
#> SRR1036075     2  0.0524      0.851 0.004 0.988 0.00 0.008
#> SRR1036076     2  0.0524      0.851 0.004 0.988 0.00 0.008
#> SRR1036077     2  0.0524      0.851 0.004 0.988 0.00 0.008
#> SRR1036078     2  0.0524      0.851 0.004 0.988 0.00 0.008
#> SRR1036079     2  0.0524      0.851 0.004 0.988 0.00 0.008
#> SRR1036080     2  0.0524      0.851 0.004 0.988 0.00 0.008
#> SRR1036081     2  0.0524      0.851 0.004 0.988 0.00 0.008
#> SRR1036082     2  0.1722      0.855 0.048 0.944 0.00 0.008
#> SRR1036083     2  0.1722      0.855 0.048 0.944 0.00 0.008
#> SRR1036084     2  0.1722      0.855 0.048 0.944 0.00 0.008
#> SRR1036090     2  0.0592      0.850 0.000 0.984 0.00 0.016
#> SRR1036091     2  0.0592      0.850 0.000 0.984 0.00 0.016
#> SRR1036092     2  0.0592      0.850 0.000 0.984 0.00 0.016
#> SRR1036093     2  0.0592      0.850 0.000 0.984 0.00 0.016
#> SRR1036094     2  0.0592      0.850 0.000 0.984 0.00 0.016
#> SRR1036085     3  0.0000      0.688 0.000 0.000 1.00 0.000
#> SRR1036086     3  0.0000      0.688 0.000 0.000 1.00 0.000
#> SRR1036087     3  0.0000      0.688 0.000 0.000 1.00 0.000
#> SRR1036088     3  0.0000      0.688 0.000 0.000 1.00 0.000
#> SRR1036089     3  0.0000      0.688 0.000 0.000 1.00 0.000
#> SRR1036095     1  0.0000      0.985 1.000 0.000 0.00 0.000
#> SRR1036096     1  0.0000      0.985 1.000 0.000 0.00 0.000
#> SRR1036097     1  0.0000      0.985 1.000 0.000 0.00 0.000
#> SRR1036098     1  0.0000      0.985 1.000 0.000 0.00 0.000
#> SRR1036099     1  0.0000      0.985 1.000 0.000 0.00 0.000
#> SRR1036100     2  0.0524      0.853 0.008 0.988 0.00 0.004
#> SRR1036101     2  0.0524      0.853 0.008 0.988 0.00 0.004
#> SRR1036102     2  0.0524      0.853 0.008 0.988 0.00 0.004
#> SRR1036103     2  0.0524      0.853 0.008 0.988 0.00 0.004
#> SRR1036104     2  0.0524      0.853 0.008 0.988 0.00 0.004
#> SRR1036105     3  0.0000      0.688 0.000 0.000 1.00 0.000
#> SRR1036106     3  0.0000      0.688 0.000 0.000 1.00 0.000
#> SRR1036107     3  0.0000      0.688 0.000 0.000 1.00 0.000
#> SRR1036108     3  0.0000      0.688 0.000 0.000 1.00 0.000
#> SRR1036109     3  0.0000      0.688 0.000 0.000 1.00 0.000
#> SRR1036110     2  0.3591      0.839 0.168 0.824 0.00 0.008
#> SRR1036111     2  0.3591      0.839 0.168 0.824 0.00 0.008
#> SRR1036112     2  0.3591      0.839 0.168 0.824 0.00 0.008
#> SRR1036113     2  0.3591      0.839 0.168 0.824 0.00 0.008
#> SRR1036114     2  0.3591      0.839 0.168 0.824 0.00 0.008
#> SRR1036115     1  0.0000      0.985 1.000 0.000 0.00 0.000
#> SRR1036116     1  0.0000      0.985 1.000 0.000 0.00 0.000
#> SRR1036117     1  0.0000      0.985 1.000 0.000 0.00 0.000
#> SRR1036118     1  0.0000      0.985 1.000 0.000 0.00 0.000
#> SRR1036119     1  0.0000      0.985 1.000 0.000 0.00 0.000
#> SRR1036120     4  0.0376      1.000 0.004 0.004 0.00 0.992
#> SRR1036121     4  0.0376      1.000 0.004 0.004 0.00 0.992
#> SRR1036122     4  0.0376      1.000 0.004 0.004 0.00 0.992
#> SRR1036123     4  0.0376      1.000 0.004 0.004 0.00 0.992
#> SRR1036124     4  0.0376      1.000 0.004 0.004 0.00 0.992
#> SRR1036125     1  0.0188      0.985 0.996 0.004 0.00 0.000
#> SRR1036126     1  0.0188      0.985 0.996 0.004 0.00 0.000
#> SRR1036127     1  0.0188      0.985 0.996 0.004 0.00 0.000
#> SRR1036128     1  0.0188      0.985 0.996 0.004 0.00 0.000
#> SRR1036129     1  0.0188      0.985 0.996 0.004 0.00 0.000
#> SRR1036130     1  0.0188      0.985 0.996 0.004 0.00 0.000
#> SRR1036131     1  0.0188      0.985 0.996 0.004 0.00 0.000
#> SRR1036132     1  0.0188      0.985 0.996 0.004 0.00 0.000
#> SRR1036133     2  0.0779      0.852 0.004 0.980 0.00 0.016
#> SRR1036134     2  0.0779      0.852 0.004 0.980 0.00 0.016
#> SRR1036135     2  0.0779      0.852 0.004 0.980 0.00 0.016
#> SRR1036136     2  0.0779      0.852 0.004 0.980 0.00 0.016
#> SRR1036137     2  0.0779      0.852 0.004 0.980 0.00 0.016
#> SRR1036138     2  0.0592      0.850 0.000 0.984 0.00 0.016
#> SRR1036139     2  0.0592      0.850 0.000 0.984 0.00 0.016
#> SRR1036140     2  0.0592      0.850 0.000 0.984 0.00 0.016
#> SRR1036141     2  0.0592      0.850 0.000 0.984 0.00 0.016
#> SRR1036142     2  0.0592      0.850 0.000 0.984 0.00 0.016
#> SRR1036143     2  0.0592      0.850 0.000 0.984 0.00 0.016
#> SRR1036144     2  0.0592      0.850 0.000 0.984 0.00 0.016
#> SRR1036145     2  0.0592      0.850 0.000 0.984 0.00 0.016

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2  p3    p4    p5
#> SRR1036002     4  0.5229      0.168 0.004 0.108 0.2 0.688 0.000
#> SRR1036003     4  0.5229      0.168 0.004 0.108 0.2 0.688 0.000
#> SRR1036004     4  0.5229      0.168 0.004 0.108 0.2 0.688 0.000
#> SRR1036005     3  0.0000      1.000 0.000 0.000 1.0 0.000 0.000
#> SRR1036006     3  0.0000      1.000 0.000 0.000 1.0 0.000 0.000
#> SRR1036007     3  0.0000      1.000 0.000 0.000 1.0 0.000 0.000
#> SRR1036008     3  0.0000      1.000 0.000 0.000 1.0 0.000 0.000
#> SRR1036009     3  0.0000      1.000 0.000 0.000 1.0 0.000 0.000
#> SRR1036013     4  0.6285      0.453 0.152 0.392 0.0 0.456 0.000
#> SRR1036014     4  0.6285      0.453 0.152 0.392 0.0 0.456 0.000
#> SRR1036015     4  0.6285      0.453 0.152 0.392 0.0 0.456 0.000
#> SRR1036016     4  0.6285      0.453 0.152 0.392 0.0 0.456 0.000
#> SRR1036017     4  0.6285      0.453 0.152 0.392 0.0 0.456 0.000
#> SRR1036018     4  0.6285      0.453 0.152 0.392 0.0 0.456 0.000
#> SRR1036010     1  0.0880      0.948 0.968 0.000 0.0 0.032 0.000
#> SRR1036011     1  0.0880      0.948 0.968 0.000 0.0 0.032 0.000
#> SRR1036012     1  0.0880      0.948 0.968 0.000 0.0 0.032 0.000
#> SRR1036019     2  0.0451      0.751 0.000 0.988 0.0 0.008 0.004
#> SRR1036020     2  0.0451      0.751 0.000 0.988 0.0 0.008 0.004
#> SRR1036021     2  0.0451      0.751 0.000 0.988 0.0 0.008 0.004
#> SRR1036022     2  0.0451      0.751 0.000 0.988 0.0 0.008 0.004
#> SRR1036023     2  0.0451      0.751 0.000 0.988 0.0 0.008 0.004
#> SRR1036024     2  0.6783     -0.232 0.328 0.384 0.0 0.288 0.000
#> SRR1036025     2  0.6783     -0.232 0.328 0.384 0.0 0.288 0.000
#> SRR1036026     2  0.6783     -0.232 0.328 0.384 0.0 0.288 0.000
#> SRR1036027     2  0.6783     -0.232 0.328 0.384 0.0 0.288 0.000
#> SRR1036028     2  0.6783     -0.232 0.328 0.384 0.0 0.288 0.000
#> SRR1036029     2  0.6783     -0.232 0.328 0.384 0.0 0.288 0.000
#> SRR1036030     2  0.3355      0.618 0.184 0.804 0.0 0.012 0.000
#> SRR1036031     2  0.3355      0.618 0.184 0.804 0.0 0.012 0.000
#> SRR1036032     2  0.3355      0.618 0.184 0.804 0.0 0.012 0.000
#> SRR1036033     2  0.3355      0.618 0.184 0.804 0.0 0.012 0.000
#> SRR1036034     2  0.3355      0.618 0.184 0.804 0.0 0.012 0.000
#> SRR1036035     2  0.3355      0.618 0.184 0.804 0.0 0.012 0.000
#> SRR1036036     2  0.3355      0.618 0.184 0.804 0.0 0.012 0.000
#> SRR1036037     2  0.3355      0.618 0.184 0.804 0.0 0.012 0.000
#> SRR1036038     1  0.1041      0.947 0.964 0.004 0.0 0.032 0.000
#> SRR1036039     1  0.1041      0.947 0.964 0.004 0.0 0.032 0.000
#> SRR1036040     1  0.1041      0.947 0.964 0.004 0.0 0.032 0.000
#> SRR1036041     1  0.0566      0.955 0.984 0.012 0.0 0.004 0.000
#> SRR1036042     4  0.5229      0.168 0.004 0.108 0.2 0.688 0.000
#> SRR1036043     4  0.5229      0.168 0.004 0.108 0.2 0.688 0.000
#> SRR1036044     4  0.5229      0.168 0.004 0.108 0.2 0.688 0.000
#> SRR1036045     4  0.5229      0.168 0.004 0.108 0.2 0.688 0.000
#> SRR1036046     4  0.5229      0.168 0.004 0.108 0.2 0.688 0.000
#> SRR1036047     4  0.5229      0.168 0.004 0.108 0.2 0.688 0.000
#> SRR1036048     4  0.5229      0.168 0.004 0.108 0.2 0.688 0.000
#> SRR1036049     4  0.5229      0.168 0.004 0.108 0.2 0.688 0.000
#> SRR1036050     1  0.0566      0.955 0.984 0.012 0.0 0.004 0.000
#> SRR1036051     1  0.0566      0.955 0.984 0.012 0.0 0.004 0.000
#> SRR1036052     1  0.0566      0.955 0.984 0.012 0.0 0.004 0.000
#> SRR1036053     1  0.0566      0.955 0.984 0.012 0.0 0.004 0.000
#> SRR1036054     1  0.0566      0.955 0.984 0.012 0.0 0.004 0.000
#> SRR1036055     1  0.1195      0.941 0.960 0.028 0.0 0.012 0.000
#> SRR1036056     1  0.1195      0.941 0.960 0.028 0.0 0.012 0.000
#> SRR1036057     1  0.1195      0.941 0.960 0.028 0.0 0.012 0.000
#> SRR1036058     4  0.6146      0.477 0.116 0.392 0.0 0.488 0.004
#> SRR1036059     4  0.6146      0.477 0.116 0.392 0.0 0.488 0.004
#> SRR1036060     4  0.6146      0.477 0.116 0.392 0.0 0.488 0.004
#> SRR1036061     4  0.6146      0.477 0.116 0.392 0.0 0.488 0.004
#> SRR1036062     4  0.6146      0.477 0.116 0.392 0.0 0.488 0.004
#> SRR1036063     4  0.6146      0.477 0.116 0.392 0.0 0.488 0.004
#> SRR1036064     4  0.6146      0.477 0.116 0.392 0.0 0.488 0.004
#> SRR1036065     4  0.6146      0.477 0.116 0.392 0.0 0.488 0.004
#> SRR1036066     1  0.1410      0.943 0.940 0.000 0.0 0.060 0.000
#> SRR1036067     1  0.1410      0.943 0.940 0.000 0.0 0.060 0.000
#> SRR1036068     1  0.1410      0.943 0.940 0.000 0.0 0.060 0.000
#> SRR1036069     1  0.1410      0.943 0.940 0.000 0.0 0.060 0.000
#> SRR1036070     1  0.1410      0.943 0.940 0.000 0.0 0.060 0.000
#> SRR1036071     1  0.1410      0.943 0.940 0.000 0.0 0.060 0.000
#> SRR1036072     1  0.1410      0.943 0.940 0.000 0.0 0.060 0.000
#> SRR1036073     1  0.1410      0.943 0.940 0.000 0.0 0.060 0.000
#> SRR1036074     2  0.3246      0.667 0.008 0.808 0.0 0.184 0.000
#> SRR1036075     2  0.3246      0.667 0.008 0.808 0.0 0.184 0.000
#> SRR1036076     2  0.3246      0.667 0.008 0.808 0.0 0.184 0.000
#> SRR1036077     2  0.3246      0.667 0.008 0.808 0.0 0.184 0.000
#> SRR1036078     2  0.3246      0.667 0.008 0.808 0.0 0.184 0.000
#> SRR1036079     2  0.3246      0.667 0.008 0.808 0.0 0.184 0.000
#> SRR1036080     2  0.3246      0.667 0.008 0.808 0.0 0.184 0.000
#> SRR1036081     2  0.3246      0.667 0.008 0.808 0.0 0.184 0.000
#> SRR1036082     4  0.5032      0.310 0.032 0.448 0.0 0.520 0.000
#> SRR1036083     4  0.5032      0.310 0.032 0.448 0.0 0.520 0.000
#> SRR1036084     4  0.5032      0.310 0.032 0.448 0.0 0.520 0.000
#> SRR1036090     2  0.0000      0.754 0.000 1.000 0.0 0.000 0.000
#> SRR1036091     2  0.0000      0.754 0.000 1.000 0.0 0.000 0.000
#> SRR1036092     2  0.0000      0.754 0.000 1.000 0.0 0.000 0.000
#> SRR1036093     2  0.0000      0.754 0.000 1.000 0.0 0.000 0.000
#> SRR1036094     2  0.0000      0.754 0.000 1.000 0.0 0.000 0.000
#> SRR1036085     3  0.0000      1.000 0.000 0.000 1.0 0.000 0.000
#> SRR1036086     3  0.0000      1.000 0.000 0.000 1.0 0.000 0.000
#> SRR1036087     3  0.0000      1.000 0.000 0.000 1.0 0.000 0.000
#> SRR1036088     3  0.0000      1.000 0.000 0.000 1.0 0.000 0.000
#> SRR1036089     3  0.0000      1.000 0.000 0.000 1.0 0.000 0.000
#> SRR1036095     1  0.1124      0.957 0.960 0.000 0.0 0.036 0.004
#> SRR1036096     1  0.1124      0.957 0.960 0.000 0.0 0.036 0.004
#> SRR1036097     1  0.1124      0.957 0.960 0.000 0.0 0.036 0.004
#> SRR1036098     1  0.1124      0.957 0.960 0.000 0.0 0.036 0.004
#> SRR1036099     1  0.1124      0.957 0.960 0.000 0.0 0.036 0.004
#> SRR1036100     2  0.3318      0.669 0.012 0.808 0.0 0.180 0.000
#> SRR1036101     2  0.3318      0.669 0.012 0.808 0.0 0.180 0.000
#> SRR1036102     2  0.3318      0.669 0.012 0.808 0.0 0.180 0.000
#> SRR1036103     2  0.3318      0.669 0.012 0.808 0.0 0.180 0.000
#> SRR1036104     2  0.3318      0.669 0.012 0.808 0.0 0.180 0.000
#> SRR1036105     3  0.0000      1.000 0.000 0.000 1.0 0.000 0.000
#> SRR1036106     3  0.0000      1.000 0.000 0.000 1.0 0.000 0.000
#> SRR1036107     3  0.0000      1.000 0.000 0.000 1.0 0.000 0.000
#> SRR1036108     3  0.0000      1.000 0.000 0.000 1.0 0.000 0.000
#> SRR1036109     3  0.0000      1.000 0.000 0.000 1.0 0.000 0.000
#> SRR1036110     4  0.5889      0.474 0.104 0.392 0.0 0.504 0.000
#> SRR1036111     4  0.5889      0.474 0.104 0.392 0.0 0.504 0.000
#> SRR1036112     4  0.5889      0.474 0.104 0.392 0.0 0.504 0.000
#> SRR1036113     4  0.5889      0.474 0.104 0.392 0.0 0.504 0.000
#> SRR1036114     4  0.5889      0.474 0.104 0.392 0.0 0.504 0.000
#> SRR1036115     1  0.1124      0.957 0.960 0.000 0.0 0.036 0.004
#> SRR1036116     1  0.1124      0.957 0.960 0.000 0.0 0.036 0.004
#> SRR1036117     1  0.1124      0.957 0.960 0.000 0.0 0.036 0.004
#> SRR1036118     1  0.1124      0.957 0.960 0.000 0.0 0.036 0.004
#> SRR1036119     1  0.1124      0.957 0.960 0.000 0.0 0.036 0.004
#> SRR1036120     5  0.0162      1.000 0.000 0.000 0.0 0.004 0.996
#> SRR1036121     5  0.0162      1.000 0.000 0.000 0.0 0.004 0.996
#> SRR1036122     5  0.0162      1.000 0.000 0.000 0.0 0.004 0.996
#> SRR1036123     5  0.0162      1.000 0.000 0.000 0.0 0.004 0.996
#> SRR1036124     5  0.0162      1.000 0.000 0.000 0.0 0.004 0.996
#> SRR1036125     1  0.0000      0.961 1.000 0.000 0.0 0.000 0.000
#> SRR1036126     1  0.0000      0.961 1.000 0.000 0.0 0.000 0.000
#> SRR1036127     1  0.0000      0.961 1.000 0.000 0.0 0.000 0.000
#> SRR1036128     1  0.0000      0.961 1.000 0.000 0.0 0.000 0.000
#> SRR1036129     1  0.0000      0.961 1.000 0.000 0.0 0.000 0.000
#> SRR1036130     1  0.0000      0.961 1.000 0.000 0.0 0.000 0.000
#> SRR1036131     1  0.0000      0.961 1.000 0.000 0.0 0.000 0.000
#> SRR1036132     1  0.0000      0.961 1.000 0.000 0.0 0.000 0.000
#> SRR1036133     2  0.0324      0.753 0.004 0.992 0.0 0.004 0.000
#> SRR1036134     2  0.0324      0.753 0.004 0.992 0.0 0.004 0.000
#> SRR1036135     2  0.0324      0.753 0.004 0.992 0.0 0.004 0.000
#> SRR1036136     2  0.0324      0.753 0.004 0.992 0.0 0.004 0.000
#> SRR1036137     2  0.0324      0.753 0.004 0.992 0.0 0.004 0.000
#> SRR1036138     2  0.0000      0.754 0.000 1.000 0.0 0.000 0.000
#> SRR1036139     2  0.0000      0.754 0.000 1.000 0.0 0.000 0.000
#> SRR1036140     2  0.0000      0.754 0.000 1.000 0.0 0.000 0.000
#> SRR1036141     2  0.0000      0.754 0.000 1.000 0.0 0.000 0.000
#> SRR1036142     2  0.0000      0.754 0.000 1.000 0.0 0.000 0.000
#> SRR1036143     2  0.0000      0.754 0.000 1.000 0.0 0.000 0.000
#> SRR1036144     2  0.0000      0.754 0.000 1.000 0.0 0.000 0.000
#> SRR1036145     2  0.0000      0.754 0.000 1.000 0.0 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2 p3    p4 p5    p6
#> SRR1036002     6  0.0146      1.000 0.000 0.004  0 0.000  0 0.996
#> SRR1036003     6  0.0146      1.000 0.000 0.004  0 0.000  0 0.996
#> SRR1036004     6  0.0146      1.000 0.000 0.004  0 0.000  0 0.996
#> SRR1036005     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR1036006     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR1036007     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR1036008     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR1036009     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR1036013     4  0.1327      0.867 0.064 0.000  0 0.936  0 0.000
#> SRR1036014     4  0.1327      0.867 0.064 0.000  0 0.936  0 0.000
#> SRR1036015     4  0.1327      0.867 0.064 0.000  0 0.936  0 0.000
#> SRR1036016     4  0.1327      0.867 0.064 0.000  0 0.936  0 0.000
#> SRR1036017     4  0.1327      0.867 0.064 0.000  0 0.936  0 0.000
#> SRR1036018     4  0.1327      0.867 0.064 0.000  0 0.936  0 0.000
#> SRR1036010     1  0.0713      0.915 0.972 0.000  0 0.000  0 0.028
#> SRR1036011     1  0.0713      0.915 0.972 0.000  0 0.000  0 0.028
#> SRR1036012     1  0.0713      0.915 0.972 0.000  0 0.000  0 0.028
#> SRR1036019     2  0.0146      0.724 0.000 0.996  0 0.000  0 0.004
#> SRR1036020     2  0.0146      0.724 0.000 0.996  0 0.000  0 0.004
#> SRR1036021     2  0.0146      0.724 0.000 0.996  0 0.000  0 0.004
#> SRR1036022     2  0.0146      0.724 0.000 0.996  0 0.000  0 0.004
#> SRR1036023     2  0.0146      0.724 0.000 0.996  0 0.000  0 0.004
#> SRR1036024     4  0.3151      0.710 0.252 0.000  0 0.748  0 0.000
#> SRR1036025     4  0.3151      0.710 0.252 0.000  0 0.748  0 0.000
#> SRR1036026     4  0.3151      0.710 0.252 0.000  0 0.748  0 0.000
#> SRR1036027     4  0.3151      0.710 0.252 0.000  0 0.748  0 0.000
#> SRR1036028     4  0.3151      0.710 0.252 0.000  0 0.748  0 0.000
#> SRR1036029     4  0.3151      0.710 0.252 0.000  0 0.748  0 0.000
#> SRR1036030     2  0.5175      0.705 0.196 0.620  0 0.184  0 0.000
#> SRR1036031     2  0.5175      0.705 0.196 0.620  0 0.184  0 0.000
#> SRR1036032     2  0.5175      0.705 0.196 0.620  0 0.184  0 0.000
#> SRR1036033     2  0.5175      0.705 0.196 0.620  0 0.184  0 0.000
#> SRR1036034     2  0.5175      0.705 0.196 0.620  0 0.184  0 0.000
#> SRR1036035     2  0.5175      0.705 0.196 0.620  0 0.184  0 0.000
#> SRR1036036     2  0.5175      0.705 0.196 0.620  0 0.184  0 0.000
#> SRR1036037     2  0.5175      0.705 0.196 0.620  0 0.184  0 0.000
#> SRR1036038     1  0.0858      0.914 0.968 0.004  0 0.000  0 0.028
#> SRR1036039     1  0.0858      0.914 0.968 0.004  0 0.000  0 0.028
#> SRR1036040     1  0.0858      0.914 0.968 0.004  0 0.000  0 0.028
#> SRR1036041     1  0.0000      0.922 1.000 0.000  0 0.000  0 0.000
#> SRR1036042     6  0.0146      1.000 0.000 0.004  0 0.000  0 0.996
#> SRR1036043     6  0.0146      1.000 0.000 0.004  0 0.000  0 0.996
#> SRR1036044     6  0.0146      1.000 0.000 0.004  0 0.000  0 0.996
#> SRR1036045     6  0.0146      1.000 0.000 0.004  0 0.000  0 0.996
#> SRR1036046     6  0.0146      1.000 0.000 0.004  0 0.000  0 0.996
#> SRR1036047     6  0.0146      1.000 0.000 0.004  0 0.000  0 0.996
#> SRR1036048     6  0.0146      1.000 0.000 0.004  0 0.000  0 0.996
#> SRR1036049     6  0.0146      1.000 0.000 0.004  0 0.000  0 0.996
#> SRR1036050     1  0.0000      0.922 1.000 0.000  0 0.000  0 0.000
#> SRR1036051     1  0.0000      0.922 1.000 0.000  0 0.000  0 0.000
#> SRR1036052     1  0.0000      0.922 1.000 0.000  0 0.000  0 0.000
#> SRR1036053     1  0.0000      0.922 1.000 0.000  0 0.000  0 0.000
#> SRR1036054     1  0.0000      0.922 1.000 0.000  0 0.000  0 0.000
#> SRR1036055     1  0.0820      0.907 0.972 0.012  0 0.016  0 0.000
#> SRR1036056     1  0.0820      0.907 0.972 0.012  0 0.016  0 0.000
#> SRR1036057     1  0.0820      0.907 0.972 0.012  0 0.016  0 0.000
#> SRR1036058     4  0.0000      0.876 0.000 0.000  0 1.000  0 0.000
#> SRR1036059     4  0.0000      0.876 0.000 0.000  0 1.000  0 0.000
#> SRR1036060     4  0.0000      0.876 0.000 0.000  0 1.000  0 0.000
#> SRR1036061     4  0.0000      0.876 0.000 0.000  0 1.000  0 0.000
#> SRR1036062     4  0.0000      0.876 0.000 0.000  0 1.000  0 0.000
#> SRR1036063     4  0.0000      0.876 0.000 0.000  0 1.000  0 0.000
#> SRR1036064     4  0.0000      0.876 0.000 0.000  0 1.000  0 0.000
#> SRR1036065     4  0.0000      0.876 0.000 0.000  0 1.000  0 0.000
#> SRR1036066     1  0.2219      0.894 0.864 0.000  0 0.136  0 0.000
#> SRR1036067     1  0.2219      0.894 0.864 0.000  0 0.136  0 0.000
#> SRR1036068     1  0.2219      0.894 0.864 0.000  0 0.136  0 0.000
#> SRR1036069     1  0.2219      0.894 0.864 0.000  0 0.136  0 0.000
#> SRR1036070     1  0.2219      0.894 0.864 0.000  0 0.136  0 0.000
#> SRR1036071     1  0.2219      0.894 0.864 0.000  0 0.136  0 0.000
#> SRR1036072     1  0.2219      0.894 0.864 0.000  0 0.136  0 0.000
#> SRR1036073     1  0.2219      0.894 0.864 0.000  0 0.136  0 0.000
#> SRR1036074     2  0.4405      0.623 0.012 0.688  0 0.040  0 0.260
#> SRR1036075     2  0.4405      0.623 0.012 0.688  0 0.040  0 0.260
#> SRR1036076     2  0.4405      0.623 0.012 0.688  0 0.040  0 0.260
#> SRR1036077     2  0.4405      0.623 0.012 0.688  0 0.040  0 0.260
#> SRR1036078     2  0.4405      0.623 0.012 0.688  0 0.040  0 0.260
#> SRR1036079     2  0.4405      0.623 0.012 0.688  0 0.040  0 0.260
#> SRR1036080     2  0.4405      0.623 0.012 0.688  0 0.040  0 0.260
#> SRR1036081     2  0.4405      0.623 0.012 0.688  0 0.040  0 0.260
#> SRR1036082     4  0.2588      0.753 0.012 0.004  0 0.860  0 0.124
#> SRR1036083     4  0.2588      0.753 0.012 0.004  0 0.860  0 0.124
#> SRR1036084     4  0.2588      0.753 0.012 0.004  0 0.860  0 0.124
#> SRR1036090     2  0.2527      0.791 0.000 0.832  0 0.168  0 0.000
#> SRR1036091     2  0.2527      0.791 0.000 0.832  0 0.168  0 0.000
#> SRR1036092     2  0.2527      0.791 0.000 0.832  0 0.168  0 0.000
#> SRR1036093     2  0.2527      0.791 0.000 0.832  0 0.168  0 0.000
#> SRR1036094     2  0.2527      0.791 0.000 0.832  0 0.168  0 0.000
#> SRR1036085     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR1036086     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR1036087     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR1036088     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR1036089     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR1036095     1  0.1957      0.914 0.888 0.000  0 0.112  0 0.000
#> SRR1036096     1  0.1957      0.914 0.888 0.000  0 0.112  0 0.000
#> SRR1036097     1  0.1957      0.914 0.888 0.000  0 0.112  0 0.000
#> SRR1036098     1  0.1957      0.914 0.888 0.000  0 0.112  0 0.000
#> SRR1036099     1  0.1957      0.914 0.888 0.000  0 0.112  0 0.000
#> SRR1036100     2  0.4471      0.625 0.016 0.688  0 0.040  0 0.256
#> SRR1036101     2  0.4471      0.625 0.016 0.688  0 0.040  0 0.256
#> SRR1036102     2  0.4471      0.625 0.016 0.688  0 0.040  0 0.256
#> SRR1036103     2  0.4471      0.625 0.016 0.688  0 0.040  0 0.256
#> SRR1036104     2  0.4471      0.625 0.016 0.688  0 0.040  0 0.256
#> SRR1036105     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR1036106     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR1036107     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR1036108     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR1036109     3  0.0000      1.000 0.000 0.000  1 0.000  0 0.000
#> SRR1036110     4  0.0458      0.872 0.000 0.000  0 0.984  0 0.016
#> SRR1036111     4  0.0458      0.872 0.000 0.000  0 0.984  0 0.016
#> SRR1036112     4  0.0458      0.872 0.000 0.000  0 0.984  0 0.016
#> SRR1036113     4  0.0458      0.872 0.000 0.000  0 0.984  0 0.016
#> SRR1036114     4  0.0458      0.872 0.000 0.000  0 0.984  0 0.016
#> SRR1036115     1  0.1957      0.914 0.888 0.000  0 0.112  0 0.000
#> SRR1036116     1  0.1957      0.914 0.888 0.000  0 0.112  0 0.000
#> SRR1036117     1  0.1957      0.914 0.888 0.000  0 0.112  0 0.000
#> SRR1036118     1  0.1957      0.914 0.888 0.000  0 0.112  0 0.000
#> SRR1036119     1  0.1957      0.914 0.888 0.000  0 0.112  0 0.000
#> SRR1036120     5  0.0000      1.000 0.000 0.000  0 0.000  1 0.000
#> SRR1036121     5  0.0000      1.000 0.000 0.000  0 0.000  1 0.000
#> SRR1036122     5  0.0000      1.000 0.000 0.000  0 0.000  1 0.000
#> SRR1036123     5  0.0000      1.000 0.000 0.000  0 0.000  1 0.000
#> SRR1036124     5  0.0000      1.000 0.000 0.000  0 0.000  1 0.000
#> SRR1036125     1  0.0458      0.928 0.984 0.000  0 0.016  0 0.000
#> SRR1036126     1  0.0458      0.928 0.984 0.000  0 0.016  0 0.000
#> SRR1036127     1  0.0458      0.928 0.984 0.000  0 0.016  0 0.000
#> SRR1036128     1  0.0458      0.928 0.984 0.000  0 0.016  0 0.000
#> SRR1036129     1  0.0458      0.928 0.984 0.000  0 0.016  0 0.000
#> SRR1036130     1  0.0458      0.928 0.984 0.000  0 0.016  0 0.000
#> SRR1036131     1  0.0458      0.928 0.984 0.000  0 0.016  0 0.000
#> SRR1036132     1  0.0458      0.928 0.984 0.000  0 0.016  0 0.000
#> SRR1036133     2  0.2631      0.788 0.000 0.820  0 0.180  0 0.000
#> SRR1036134     2  0.2631      0.788 0.000 0.820  0 0.180  0 0.000
#> SRR1036135     2  0.2631      0.788 0.000 0.820  0 0.180  0 0.000
#> SRR1036136     2  0.2631      0.788 0.000 0.820  0 0.180  0 0.000
#> SRR1036137     2  0.2631      0.788 0.000 0.820  0 0.180  0 0.000
#> SRR1036138     2  0.2527      0.791 0.000 0.832  0 0.168  0 0.000
#> SRR1036139     2  0.2527      0.791 0.000 0.832  0 0.168  0 0.000
#> SRR1036140     2  0.2527      0.791 0.000 0.832  0 0.168  0 0.000
#> SRR1036141     2  0.2527      0.791 0.000 0.832  0 0.168  0 0.000
#> SRR1036142     2  0.2527      0.791 0.000 0.832  0 0.168  0 0.000
#> SRR1036143     2  0.2527      0.791 0.000 0.832  0 0.168  0 0.000
#> SRR1036144     2  0.2527      0.791 0.000 0.832  0 0.168  0 0.000
#> SRR1036145     2  0.2527      0.791 0.000 0.832  0 0.168  0 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15218 rows and 144 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k  1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.0762           0.554       0.656         0.3988 0.590   0.590
#> 3 3 0.0630           0.535       0.665         0.4118 0.812   0.691
#> 4 4 0.1635           0.451       0.591         0.1679 0.809   0.583
#> 5 5 0.3217           0.525       0.619         0.1001 0.847   0.570
#> 6 6 0.4475           0.488       0.610         0.0577 0.944   0.806

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1036002     2   0.904      0.497 0.320 0.680
#> SRR1036003     2   0.904      0.497 0.320 0.680
#> SRR1036004     2   0.904      0.497 0.320 0.680
#> SRR1036005     2   0.990      0.390 0.440 0.560
#> SRR1036006     2   0.990      0.390 0.440 0.560
#> SRR1036007     2   0.990      0.390 0.440 0.560
#> SRR1036008     2   0.990      0.390 0.440 0.560
#> SRR1036009     2   0.990      0.390 0.440 0.560
#> SRR1036013     2   0.753      0.579 0.216 0.784
#> SRR1036014     2   0.753      0.579 0.216 0.784
#> SRR1036015     2   0.753      0.579 0.216 0.784
#> SRR1036016     2   0.753      0.579 0.216 0.784
#> SRR1036017     2   0.753      0.579 0.216 0.784
#> SRR1036018     2   0.753      0.579 0.216 0.784
#> SRR1036010     1   0.963      0.832 0.612 0.388
#> SRR1036011     1   0.963      0.832 0.612 0.388
#> SRR1036012     1   0.963      0.832 0.612 0.388
#> SRR1036019     2   0.615      0.612 0.152 0.848
#> SRR1036020     2   0.615      0.612 0.152 0.848
#> SRR1036021     2   0.615      0.612 0.152 0.848
#> SRR1036022     2   0.615      0.612 0.152 0.848
#> SRR1036023     2   0.615      0.612 0.152 0.848
#> SRR1036024     2   0.738      0.482 0.208 0.792
#> SRR1036025     2   0.738      0.482 0.208 0.792
#> SRR1036026     2   0.738      0.482 0.208 0.792
#> SRR1036027     2   0.738      0.482 0.208 0.792
#> SRR1036028     2   0.738      0.482 0.208 0.792
#> SRR1036029     2   0.738      0.482 0.208 0.792
#> SRR1036030     2   0.895      0.103 0.312 0.688
#> SRR1036031     2   0.895      0.103 0.312 0.688
#> SRR1036032     2   0.895      0.103 0.312 0.688
#> SRR1036033     2   0.895      0.103 0.312 0.688
#> SRR1036034     2   0.895      0.103 0.312 0.688
#> SRR1036035     2   0.895      0.103 0.312 0.688
#> SRR1036036     2   0.895      0.103 0.312 0.688
#> SRR1036037     2   0.895      0.103 0.312 0.688
#> SRR1036038     1   0.995      0.762 0.540 0.460
#> SRR1036039     1   0.995      0.762 0.540 0.460
#> SRR1036040     1   0.995      0.762 0.540 0.460
#> SRR1036041     1   0.978      0.821 0.588 0.412
#> SRR1036042     2   0.697      0.597 0.188 0.812
#> SRR1036043     2   0.697      0.597 0.188 0.812
#> SRR1036044     2   0.697      0.597 0.188 0.812
#> SRR1036045     2   0.697      0.597 0.188 0.812
#> SRR1036046     2   0.697      0.597 0.188 0.812
#> SRR1036047     2   0.697      0.597 0.188 0.812
#> SRR1036048     2   0.697      0.597 0.188 0.812
#> SRR1036049     2   0.697      0.597 0.188 0.812
#> SRR1036050     1   0.966      0.826 0.608 0.392
#> SRR1036051     1   0.966      0.826 0.608 0.392
#> SRR1036052     1   0.966      0.826 0.608 0.392
#> SRR1036053     1   0.966      0.826 0.608 0.392
#> SRR1036054     1   0.966      0.826 0.608 0.392
#> SRR1036055     1   0.997      0.718 0.532 0.468
#> SRR1036056     1   0.997      0.718 0.532 0.468
#> SRR1036057     1   0.997      0.718 0.532 0.468
#> SRR1036058     2   0.730      0.492 0.204 0.796
#> SRR1036059     2   0.730      0.492 0.204 0.796
#> SRR1036060     2   0.730      0.492 0.204 0.796
#> SRR1036061     2   0.730      0.492 0.204 0.796
#> SRR1036062     2   0.730      0.492 0.204 0.796
#> SRR1036063     2   0.730      0.492 0.204 0.796
#> SRR1036064     2   0.730      0.492 0.204 0.796
#> SRR1036065     2   0.730      0.492 0.204 0.796
#> SRR1036066     1   0.997      0.762 0.532 0.468
#> SRR1036067     1   0.997      0.762 0.532 0.468
#> SRR1036068     1   0.997      0.762 0.532 0.468
#> SRR1036069     1   0.997      0.762 0.532 0.468
#> SRR1036070     1   0.997      0.762 0.532 0.468
#> SRR1036071     1   0.997      0.762 0.532 0.468
#> SRR1036072     1   0.997      0.762 0.532 0.468
#> SRR1036073     1   0.997      0.762 0.532 0.468
#> SRR1036074     2   0.358      0.635 0.068 0.932
#> SRR1036075     2   0.358      0.635 0.068 0.932
#> SRR1036076     2   0.358      0.635 0.068 0.932
#> SRR1036077     2   0.358      0.635 0.068 0.932
#> SRR1036078     2   0.358      0.635 0.068 0.932
#> SRR1036079     2   0.358      0.635 0.068 0.932
#> SRR1036080     2   0.358      0.635 0.068 0.932
#> SRR1036081     2   0.358      0.635 0.068 0.932
#> SRR1036082     2   0.373      0.617 0.072 0.928
#> SRR1036083     2   0.373      0.617 0.072 0.928
#> SRR1036084     2   0.373      0.617 0.072 0.928
#> SRR1036090     2   0.615      0.595 0.152 0.848
#> SRR1036091     2   0.615      0.595 0.152 0.848
#> SRR1036092     2   0.615      0.595 0.152 0.848
#> SRR1036093     2   0.615      0.595 0.152 0.848
#> SRR1036094     2   0.615      0.595 0.152 0.848
#> SRR1036085     2   0.997      0.350 0.468 0.532
#> SRR1036086     2   0.997      0.350 0.468 0.532
#> SRR1036087     2   0.997      0.350 0.468 0.532
#> SRR1036088     2   0.997      0.350 0.468 0.532
#> SRR1036089     2   0.997      0.350 0.468 0.532
#> SRR1036095     2   0.955     -0.173 0.376 0.624
#> SRR1036096     2   0.955     -0.173 0.376 0.624
#> SRR1036097     2   0.955     -0.173 0.376 0.624
#> SRR1036098     2   0.955     -0.173 0.376 0.624
#> SRR1036099     2   0.955     -0.173 0.376 0.624
#> SRR1036100     2   0.469      0.597 0.100 0.900
#> SRR1036101     2   0.469      0.597 0.100 0.900
#> SRR1036102     2   0.469      0.597 0.100 0.900
#> SRR1036103     2   0.469      0.597 0.100 0.900
#> SRR1036104     2   0.469      0.597 0.100 0.900
#> SRR1036105     2   0.995      0.363 0.460 0.540
#> SRR1036106     2   0.995      0.363 0.460 0.540
#> SRR1036107     2   0.995      0.363 0.460 0.540
#> SRR1036108     2   0.995      0.363 0.460 0.540
#> SRR1036109     2   0.995      0.363 0.460 0.540
#> SRR1036110     2   0.605      0.614 0.148 0.852
#> SRR1036111     2   0.605      0.614 0.148 0.852
#> SRR1036112     2   0.605      0.614 0.148 0.852
#> SRR1036113     2   0.605      0.614 0.148 0.852
#> SRR1036114     2   0.605      0.614 0.148 0.852
#> SRR1036115     1   0.981      0.817 0.580 0.420
#> SRR1036116     1   0.981      0.817 0.580 0.420
#> SRR1036117     1   0.981      0.817 0.580 0.420
#> SRR1036118     1   0.981      0.817 0.580 0.420
#> SRR1036119     1   0.981      0.817 0.580 0.420
#> SRR1036120     1   0.881      0.554 0.700 0.300
#> SRR1036121     1   0.881      0.554 0.700 0.300
#> SRR1036122     1   0.881      0.554 0.700 0.300
#> SRR1036123     1   0.881      0.554 0.700 0.300
#> SRR1036124     1   0.881      0.554 0.700 0.300
#> SRR1036125     1   0.949      0.818 0.632 0.368
#> SRR1036126     1   0.949      0.818 0.632 0.368
#> SRR1036127     1   0.949      0.818 0.632 0.368
#> SRR1036128     1   0.949      0.818 0.632 0.368
#> SRR1036129     1   0.949      0.818 0.632 0.368
#> SRR1036130     1   0.949      0.818 0.632 0.368
#> SRR1036131     1   0.949      0.818 0.632 0.368
#> SRR1036132     1   0.949      0.818 0.632 0.368
#> SRR1036133     2   0.671      0.522 0.176 0.824
#> SRR1036134     2   0.671      0.522 0.176 0.824
#> SRR1036135     2   0.671      0.522 0.176 0.824
#> SRR1036136     2   0.671      0.522 0.176 0.824
#> SRR1036137     2   0.671      0.522 0.176 0.824
#> SRR1036138     2   0.653      0.591 0.168 0.832
#> SRR1036139     2   0.653      0.591 0.168 0.832
#> SRR1036140     2   0.653      0.591 0.168 0.832
#> SRR1036141     2   0.653      0.591 0.168 0.832
#> SRR1036142     2   0.653      0.591 0.168 0.832
#> SRR1036143     2   0.653      0.591 0.168 0.832
#> SRR1036144     2   0.653      0.591 0.168 0.832
#> SRR1036145     2   0.653      0.591 0.168 0.832

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1036002     2   0.851    -0.4582 0.092 0.484 0.424
#> SRR1036003     2   0.851    -0.4582 0.092 0.484 0.424
#> SRR1036004     2   0.851    -0.4582 0.092 0.484 0.424
#> SRR1036005     3   0.807     0.9479 0.076 0.360 0.564
#> SRR1036006     3   0.807     0.9479 0.076 0.360 0.564
#> SRR1036007     3   0.807     0.9479 0.076 0.360 0.564
#> SRR1036008     3   0.807     0.9479 0.076 0.360 0.564
#> SRR1036009     3   0.807     0.9479 0.076 0.360 0.564
#> SRR1036013     2   0.713     0.4230 0.180 0.716 0.104
#> SRR1036014     2   0.713     0.4230 0.180 0.716 0.104
#> SRR1036015     2   0.713     0.4230 0.180 0.716 0.104
#> SRR1036016     2   0.713     0.4230 0.180 0.716 0.104
#> SRR1036017     2   0.713     0.4230 0.180 0.716 0.104
#> SRR1036018     2   0.713     0.4230 0.180 0.716 0.104
#> SRR1036010     1   0.468     0.7714 0.840 0.132 0.028
#> SRR1036011     1   0.468     0.7714 0.840 0.132 0.028
#> SRR1036012     1   0.468     0.7714 0.840 0.132 0.028
#> SRR1036019     2   0.731     0.4610 0.048 0.628 0.324
#> SRR1036020     2   0.731     0.4610 0.048 0.628 0.324
#> SRR1036021     2   0.731     0.4610 0.048 0.628 0.324
#> SRR1036022     2   0.731     0.4610 0.048 0.628 0.324
#> SRR1036023     2   0.731     0.4610 0.048 0.628 0.324
#> SRR1036024     2   0.660     0.4660 0.256 0.704 0.040
#> SRR1036025     2   0.660     0.4660 0.256 0.704 0.040
#> SRR1036026     2   0.660     0.4660 0.256 0.704 0.040
#> SRR1036027     2   0.660     0.4660 0.256 0.704 0.040
#> SRR1036028     2   0.660     0.4660 0.256 0.704 0.040
#> SRR1036029     2   0.660     0.4660 0.256 0.704 0.040
#> SRR1036030     2   0.903     0.2638 0.352 0.504 0.144
#> SRR1036031     2   0.903     0.2638 0.352 0.504 0.144
#> SRR1036032     2   0.903     0.2638 0.352 0.504 0.144
#> SRR1036033     2   0.903     0.2638 0.352 0.504 0.144
#> SRR1036034     2   0.903     0.2638 0.352 0.504 0.144
#> SRR1036035     2   0.903     0.2638 0.352 0.504 0.144
#> SRR1036036     2   0.903     0.2638 0.352 0.504 0.144
#> SRR1036037     2   0.903     0.2638 0.352 0.504 0.144
#> SRR1036038     1   0.615     0.7467 0.764 0.180 0.056
#> SRR1036039     1   0.615     0.7467 0.764 0.180 0.056
#> SRR1036040     1   0.615     0.7467 0.764 0.180 0.056
#> SRR1036041     1   0.448     0.7648 0.844 0.136 0.020
#> SRR1036042     2   0.723     0.2127 0.064 0.672 0.264
#> SRR1036043     2   0.723     0.2127 0.064 0.672 0.264
#> SRR1036044     2   0.723     0.2127 0.064 0.672 0.264
#> SRR1036045     2   0.723     0.2127 0.064 0.672 0.264
#> SRR1036046     2   0.723     0.2127 0.064 0.672 0.264
#> SRR1036047     2   0.723     0.2127 0.064 0.672 0.264
#> SRR1036048     2   0.723     0.2127 0.064 0.672 0.264
#> SRR1036049     2   0.723     0.2127 0.064 0.672 0.264
#> SRR1036050     1   0.432     0.7629 0.860 0.112 0.028
#> SRR1036051     1   0.432     0.7629 0.860 0.112 0.028
#> SRR1036052     1   0.432     0.7629 0.860 0.112 0.028
#> SRR1036053     1   0.432     0.7629 0.860 0.112 0.028
#> SRR1036054     1   0.432     0.7629 0.860 0.112 0.028
#> SRR1036055     1   0.630     0.6723 0.744 0.208 0.048
#> SRR1036056     1   0.630     0.6723 0.744 0.208 0.048
#> SRR1036057     1   0.630     0.6723 0.744 0.208 0.048
#> SRR1036058     2   0.824     0.4294 0.244 0.624 0.132
#> SRR1036059     2   0.824     0.4294 0.244 0.624 0.132
#> SRR1036060     2   0.824     0.4294 0.244 0.624 0.132
#> SRR1036061     2   0.824     0.4294 0.244 0.624 0.132
#> SRR1036062     2   0.824     0.4294 0.244 0.624 0.132
#> SRR1036063     2   0.824     0.4294 0.244 0.624 0.132
#> SRR1036064     2   0.824     0.4294 0.244 0.624 0.132
#> SRR1036065     2   0.824     0.4294 0.244 0.624 0.132
#> SRR1036066     1   0.748     0.5993 0.632 0.308 0.060
#> SRR1036067     1   0.748     0.5993 0.632 0.308 0.060
#> SRR1036068     1   0.748     0.5993 0.632 0.308 0.060
#> SRR1036069     1   0.748     0.5993 0.632 0.308 0.060
#> SRR1036070     1   0.748     0.5993 0.632 0.308 0.060
#> SRR1036071     1   0.748     0.5993 0.632 0.308 0.060
#> SRR1036072     1   0.748     0.5993 0.632 0.308 0.060
#> SRR1036073     1   0.748     0.5993 0.632 0.308 0.060
#> SRR1036074     2   0.594     0.5198 0.088 0.792 0.120
#> SRR1036075     2   0.594     0.5198 0.088 0.792 0.120
#> SRR1036076     2   0.594     0.5198 0.088 0.792 0.120
#> SRR1036077     2   0.594     0.5198 0.088 0.792 0.120
#> SRR1036078     2   0.594     0.5198 0.088 0.792 0.120
#> SRR1036079     2   0.594     0.5198 0.088 0.792 0.120
#> SRR1036080     2   0.594     0.5198 0.088 0.792 0.120
#> SRR1036081     2   0.594     0.5198 0.088 0.792 0.120
#> SRR1036082     2   0.582     0.5523 0.144 0.792 0.064
#> SRR1036083     2   0.582     0.5523 0.144 0.792 0.064
#> SRR1036084     2   0.582     0.5523 0.144 0.792 0.064
#> SRR1036090     2   0.780     0.5242 0.120 0.664 0.216
#> SRR1036091     2   0.780     0.5242 0.120 0.664 0.216
#> SRR1036092     2   0.780     0.5242 0.120 0.664 0.216
#> SRR1036093     2   0.780     0.5242 0.120 0.664 0.216
#> SRR1036094     2   0.780     0.5242 0.120 0.664 0.216
#> SRR1036085     3   0.844     0.9577 0.108 0.324 0.568
#> SRR1036086     3   0.844     0.9577 0.108 0.324 0.568
#> SRR1036087     3   0.844     0.9577 0.108 0.324 0.568
#> SRR1036088     3   0.844     0.9577 0.108 0.324 0.568
#> SRR1036089     3   0.844     0.9577 0.108 0.324 0.568
#> SRR1036095     1   0.806     0.0823 0.488 0.448 0.064
#> SRR1036096     1   0.806     0.0823 0.488 0.448 0.064
#> SRR1036097     1   0.806     0.0823 0.488 0.448 0.064
#> SRR1036098     1   0.806     0.0823 0.488 0.448 0.064
#> SRR1036099     1   0.806     0.0823 0.488 0.448 0.064
#> SRR1036100     2   0.661     0.5602 0.152 0.752 0.096
#> SRR1036101     2   0.661     0.5602 0.152 0.752 0.096
#> SRR1036102     2   0.661     0.5602 0.152 0.752 0.096
#> SRR1036103     2   0.661     0.5602 0.152 0.752 0.096
#> SRR1036104     2   0.661     0.5602 0.152 0.752 0.096
#> SRR1036105     3   0.839     0.9674 0.100 0.340 0.560
#> SRR1036106     3   0.839     0.9674 0.100 0.340 0.560
#> SRR1036107     3   0.839     0.9674 0.100 0.340 0.560
#> SRR1036108     3   0.839     0.9674 0.100 0.340 0.560
#> SRR1036109     3   0.839     0.9674 0.100 0.340 0.560
#> SRR1036110     2   0.666     0.4441 0.132 0.752 0.116
#> SRR1036111     2   0.666     0.4441 0.132 0.752 0.116
#> SRR1036112     2   0.666     0.4441 0.132 0.752 0.116
#> SRR1036113     2   0.666     0.4441 0.132 0.752 0.116
#> SRR1036114     2   0.666     0.4441 0.132 0.752 0.116
#> SRR1036115     1   0.454     0.7576 0.848 0.124 0.028
#> SRR1036116     1   0.454     0.7576 0.848 0.124 0.028
#> SRR1036117     1   0.454     0.7576 0.848 0.124 0.028
#> SRR1036118     1   0.454     0.7576 0.848 0.124 0.028
#> SRR1036119     1   0.454     0.7576 0.848 0.124 0.028
#> SRR1036120     1   0.830     0.5605 0.628 0.152 0.220
#> SRR1036121     1   0.830     0.5605 0.628 0.152 0.220
#> SRR1036122     1   0.830     0.5605 0.628 0.152 0.220
#> SRR1036123     1   0.830     0.5605 0.628 0.152 0.220
#> SRR1036124     1   0.830     0.5605 0.628 0.152 0.220
#> SRR1036125     1   0.551     0.7712 0.808 0.136 0.056
#> SRR1036126     1   0.551     0.7712 0.808 0.136 0.056
#> SRR1036127     1   0.551     0.7712 0.808 0.136 0.056
#> SRR1036128     1   0.551     0.7712 0.808 0.136 0.056
#> SRR1036129     1   0.551     0.7712 0.808 0.136 0.056
#> SRR1036130     1   0.551     0.7712 0.808 0.136 0.056
#> SRR1036131     1   0.551     0.7712 0.808 0.136 0.056
#> SRR1036132     1   0.551     0.7712 0.808 0.136 0.056
#> SRR1036133     2   0.808     0.5318 0.172 0.652 0.176
#> SRR1036134     2   0.808     0.5318 0.172 0.652 0.176
#> SRR1036135     2   0.808     0.5318 0.172 0.652 0.176
#> SRR1036136     2   0.808     0.5318 0.172 0.652 0.176
#> SRR1036137     2   0.808     0.5318 0.172 0.652 0.176
#> SRR1036138     2   0.802     0.4887 0.108 0.632 0.260
#> SRR1036139     2   0.802     0.4887 0.108 0.632 0.260
#> SRR1036140     2   0.802     0.4887 0.108 0.632 0.260
#> SRR1036141     2   0.802     0.4887 0.108 0.632 0.260
#> SRR1036142     2   0.802     0.4887 0.108 0.632 0.260
#> SRR1036143     2   0.802     0.4887 0.108 0.632 0.260
#> SRR1036144     2   0.802     0.4887 0.108 0.632 0.260
#> SRR1036145     2   0.802     0.4887 0.108 0.632 0.260

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1036002     3   0.788    0.54242 0.048 0.192 0.576 0.184
#> SRR1036003     3   0.788    0.54242 0.048 0.192 0.576 0.184
#> SRR1036004     3   0.788    0.54242 0.048 0.192 0.576 0.184
#> SRR1036005     3   0.285    0.72136 0.028 0.052 0.908 0.012
#> SRR1036006     3   0.285    0.72136 0.028 0.052 0.908 0.012
#> SRR1036007     3   0.285    0.72136 0.028 0.052 0.908 0.012
#> SRR1036008     3   0.285    0.72136 0.028 0.052 0.908 0.012
#> SRR1036009     3   0.285    0.72136 0.028 0.052 0.908 0.012
#> SRR1036013     4   0.967    0.70464 0.140 0.280 0.240 0.340
#> SRR1036014     4   0.967    0.70464 0.140 0.280 0.240 0.340
#> SRR1036015     4   0.967    0.70464 0.140 0.280 0.240 0.340
#> SRR1036016     4   0.967    0.70464 0.140 0.280 0.240 0.340
#> SRR1036017     4   0.967    0.70464 0.140 0.280 0.240 0.340
#> SRR1036018     4   0.967    0.70464 0.140 0.280 0.240 0.340
#> SRR1036010     1   0.350    0.72330 0.884 0.048 0.036 0.032
#> SRR1036011     1   0.350    0.72330 0.884 0.048 0.036 0.032
#> SRR1036012     1   0.350    0.72330 0.884 0.048 0.036 0.032
#> SRR1036019     2   0.568    0.42249 0.032 0.760 0.088 0.120
#> SRR1036020     2   0.568    0.42249 0.032 0.760 0.088 0.120
#> SRR1036021     2   0.568    0.42249 0.032 0.760 0.088 0.120
#> SRR1036022     2   0.568    0.42249 0.032 0.760 0.088 0.120
#> SRR1036023     2   0.568    0.42249 0.032 0.760 0.088 0.120
#> SRR1036024     2   0.983   -0.50252 0.244 0.320 0.172 0.264
#> SRR1036025     2   0.983   -0.50252 0.244 0.320 0.172 0.264
#> SRR1036026     2   0.983   -0.50252 0.244 0.320 0.172 0.264
#> SRR1036027     2   0.983   -0.50252 0.244 0.320 0.172 0.264
#> SRR1036028     2   0.983   -0.50252 0.244 0.320 0.172 0.264
#> SRR1036029     2   0.983   -0.50252 0.244 0.320 0.172 0.264
#> SRR1036030     2   0.690    0.37818 0.300 0.592 0.016 0.092
#> SRR1036031     2   0.690    0.37818 0.300 0.592 0.016 0.092
#> SRR1036032     2   0.690    0.37818 0.300 0.592 0.016 0.092
#> SRR1036033     2   0.690    0.37818 0.300 0.592 0.016 0.092
#> SRR1036034     2   0.690    0.37818 0.300 0.592 0.016 0.092
#> SRR1036035     2   0.690    0.37818 0.300 0.592 0.016 0.092
#> SRR1036036     2   0.690    0.37818 0.300 0.592 0.016 0.092
#> SRR1036037     2   0.690    0.37818 0.300 0.592 0.016 0.092
#> SRR1036038     1   0.517    0.67995 0.788 0.128 0.044 0.040
#> SRR1036039     1   0.517    0.67995 0.788 0.128 0.044 0.040
#> SRR1036040     1   0.517    0.67995 0.788 0.128 0.044 0.040
#> SRR1036041     1   0.280    0.71693 0.908 0.060 0.012 0.020
#> SRR1036042     3   0.880    0.38504 0.072 0.244 0.468 0.216
#> SRR1036043     3   0.880    0.38504 0.072 0.244 0.468 0.216
#> SRR1036044     3   0.880    0.38504 0.072 0.244 0.468 0.216
#> SRR1036045     3   0.880    0.38504 0.072 0.244 0.468 0.216
#> SRR1036046     3   0.880    0.38504 0.072 0.244 0.468 0.216
#> SRR1036047     3   0.880    0.38504 0.072 0.244 0.468 0.216
#> SRR1036048     3   0.880    0.38504 0.072 0.244 0.468 0.216
#> SRR1036049     3   0.880    0.38504 0.072 0.244 0.468 0.216
#> SRR1036050     1   0.276    0.71610 0.912 0.048 0.012 0.028
#> SRR1036051     1   0.276    0.71610 0.912 0.048 0.012 0.028
#> SRR1036052     1   0.276    0.71610 0.912 0.048 0.012 0.028
#> SRR1036053     1   0.276    0.71610 0.912 0.048 0.012 0.028
#> SRR1036054     1   0.276    0.71610 0.912 0.048 0.012 0.028
#> SRR1036055     1   0.490    0.61360 0.764 0.188 0.004 0.044
#> SRR1036056     1   0.490    0.61360 0.764 0.188 0.004 0.044
#> SRR1036057     1   0.490    0.61360 0.764 0.188 0.004 0.044
#> SRR1036058     4   0.949    0.70407 0.180 0.280 0.148 0.392
#> SRR1036059     4   0.949    0.70407 0.180 0.280 0.148 0.392
#> SRR1036060     4   0.949    0.70407 0.180 0.280 0.148 0.392
#> SRR1036061     4   0.949    0.70407 0.180 0.280 0.148 0.392
#> SRR1036062     4   0.949    0.70407 0.180 0.280 0.148 0.392
#> SRR1036063     4   0.949    0.70407 0.180 0.280 0.148 0.392
#> SRR1036064     4   0.949    0.70407 0.180 0.280 0.148 0.392
#> SRR1036065     4   0.949    0.70407 0.180 0.280 0.148 0.392
#> SRR1036066     1   0.801    0.47055 0.596 0.140 0.100 0.164
#> SRR1036067     1   0.801    0.47055 0.596 0.140 0.100 0.164
#> SRR1036068     1   0.801    0.47055 0.596 0.140 0.100 0.164
#> SRR1036069     1   0.801    0.47055 0.596 0.140 0.100 0.164
#> SRR1036070     1   0.801    0.47055 0.596 0.140 0.100 0.164
#> SRR1036071     1   0.801    0.47055 0.596 0.140 0.100 0.164
#> SRR1036072     1   0.801    0.47055 0.596 0.140 0.100 0.164
#> SRR1036073     1   0.801    0.47055 0.596 0.140 0.100 0.164
#> SRR1036074     2   0.892   -0.01589 0.088 0.468 0.204 0.240
#> SRR1036075     2   0.892   -0.01589 0.088 0.468 0.204 0.240
#> SRR1036076     2   0.892   -0.01589 0.088 0.468 0.204 0.240
#> SRR1036077     2   0.892   -0.01589 0.088 0.468 0.204 0.240
#> SRR1036078     2   0.892   -0.01589 0.088 0.468 0.204 0.240
#> SRR1036079     2   0.892   -0.01589 0.088 0.468 0.204 0.240
#> SRR1036080     2   0.892   -0.01589 0.088 0.468 0.204 0.240
#> SRR1036081     2   0.892   -0.01589 0.088 0.468 0.204 0.240
#> SRR1036082     2   0.915   -0.42840 0.116 0.412 0.156 0.316
#> SRR1036083     2   0.915   -0.42840 0.116 0.412 0.156 0.316
#> SRR1036084     2   0.915   -0.42840 0.116 0.412 0.156 0.316
#> SRR1036090     2   0.642    0.47337 0.100 0.724 0.100 0.076
#> SRR1036091     2   0.642    0.47337 0.100 0.724 0.100 0.076
#> SRR1036092     2   0.642    0.47337 0.100 0.724 0.100 0.076
#> SRR1036093     2   0.642    0.47337 0.100 0.724 0.100 0.076
#> SRR1036094     2   0.642    0.47337 0.100 0.724 0.100 0.076
#> SRR1036085     3   0.368    0.70692 0.044 0.036 0.876 0.044
#> SRR1036086     3   0.368    0.70692 0.044 0.036 0.876 0.044
#> SRR1036087     3   0.368    0.70692 0.044 0.036 0.876 0.044
#> SRR1036088     3   0.368    0.70692 0.044 0.036 0.876 0.044
#> SRR1036089     3   0.368    0.70692 0.044 0.036 0.876 0.044
#> SRR1036095     1   0.891   -0.00871 0.432 0.280 0.068 0.220
#> SRR1036096     1   0.891   -0.00871 0.432 0.280 0.068 0.220
#> SRR1036097     1   0.891   -0.00871 0.432 0.280 0.068 0.220
#> SRR1036098     1   0.891   -0.00871 0.432 0.280 0.068 0.220
#> SRR1036099     1   0.891   -0.00871 0.432 0.280 0.068 0.220
#> SRR1036100     2   0.833    0.27491 0.140 0.564 0.112 0.184
#> SRR1036101     2   0.833    0.27491 0.140 0.564 0.112 0.184
#> SRR1036102     2   0.833    0.27491 0.140 0.564 0.112 0.184
#> SRR1036103     2   0.833    0.27491 0.140 0.564 0.112 0.184
#> SRR1036104     2   0.833    0.27491 0.140 0.564 0.112 0.184
#> SRR1036105     3   0.292    0.72008 0.040 0.048 0.904 0.008
#> SRR1036106     3   0.292    0.72008 0.040 0.048 0.904 0.008
#> SRR1036107     3   0.292    0.72008 0.040 0.048 0.904 0.008
#> SRR1036108     3   0.292    0.72008 0.040 0.048 0.904 0.008
#> SRR1036109     3   0.292    0.72008 0.040 0.048 0.904 0.008
#> SRR1036110     4   0.934    0.68371 0.100 0.304 0.224 0.372
#> SRR1036111     4   0.934    0.68371 0.100 0.304 0.224 0.372
#> SRR1036112     4   0.934    0.68371 0.100 0.304 0.224 0.372
#> SRR1036113     4   0.934    0.68371 0.100 0.304 0.224 0.372
#> SRR1036114     4   0.934    0.68371 0.100 0.304 0.224 0.372
#> SRR1036115     1   0.514    0.68510 0.796 0.076 0.032 0.096
#> SRR1036116     1   0.514    0.68510 0.796 0.076 0.032 0.096
#> SRR1036117     1   0.514    0.68510 0.796 0.076 0.032 0.096
#> SRR1036118     1   0.514    0.68510 0.796 0.076 0.032 0.096
#> SRR1036119     1   0.514    0.68510 0.796 0.076 0.032 0.096
#> SRR1036120     1   0.841    0.42270 0.508 0.056 0.188 0.248
#> SRR1036121     1   0.841    0.42270 0.508 0.056 0.188 0.248
#> SRR1036122     1   0.841    0.42270 0.508 0.056 0.188 0.248
#> SRR1036123     1   0.846    0.42287 0.508 0.060 0.192 0.240
#> SRR1036124     1   0.841    0.42270 0.508 0.056 0.188 0.248
#> SRR1036125     1   0.413    0.72051 0.848 0.048 0.084 0.020
#> SRR1036126     1   0.413    0.72051 0.848 0.048 0.084 0.020
#> SRR1036127     1   0.413    0.72051 0.848 0.048 0.084 0.020
#> SRR1036128     1   0.413    0.72051 0.848 0.048 0.084 0.020
#> SRR1036129     1   0.413    0.72051 0.848 0.048 0.084 0.020
#> SRR1036130     1   0.413    0.72051 0.848 0.048 0.084 0.020
#> SRR1036131     1   0.413    0.72051 0.848 0.048 0.084 0.020
#> SRR1036132     1   0.413    0.72051 0.848 0.048 0.084 0.020
#> SRR1036133     2   0.366    0.49140 0.136 0.840 0.000 0.024
#> SRR1036134     2   0.366    0.49140 0.136 0.840 0.000 0.024
#> SRR1036135     2   0.366    0.49140 0.136 0.840 0.000 0.024
#> SRR1036136     2   0.366    0.49140 0.136 0.840 0.000 0.024
#> SRR1036137     2   0.366    0.49140 0.136 0.840 0.000 0.024
#> SRR1036138     2   0.462    0.49420 0.068 0.824 0.084 0.024
#> SRR1036139     2   0.462    0.49420 0.068 0.824 0.084 0.024
#> SRR1036140     2   0.462    0.49420 0.068 0.824 0.084 0.024
#> SRR1036141     2   0.462    0.49420 0.068 0.824 0.084 0.024
#> SRR1036142     2   0.462    0.49420 0.068 0.824 0.084 0.024
#> SRR1036143     2   0.462    0.49420 0.068 0.824 0.084 0.024
#> SRR1036144     2   0.462    0.49420 0.068 0.824 0.084 0.024
#> SRR1036145     2   0.462    0.49420 0.068 0.824 0.084 0.024

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4 p5
#> SRR1036002     3   0.773     0.2931 0.016 0.104 0.504 0.264 NA
#> SRR1036003     3   0.773     0.2931 0.016 0.104 0.504 0.264 NA
#> SRR1036004     3   0.773     0.2931 0.016 0.104 0.504 0.264 NA
#> SRR1036005     3   0.327     0.8713 0.020 0.028 0.872 0.072 NA
#> SRR1036006     3   0.327     0.8713 0.020 0.028 0.872 0.072 NA
#> SRR1036007     3   0.327     0.8713 0.020 0.028 0.872 0.072 NA
#> SRR1036008     3   0.327     0.8713 0.020 0.028 0.872 0.072 NA
#> SRR1036009     3   0.327     0.8713 0.020 0.028 0.872 0.072 NA
#> SRR1036013     4   0.715     0.5221 0.108 0.064 0.184 0.608 NA
#> SRR1036014     4   0.715     0.5221 0.108 0.064 0.184 0.608 NA
#> SRR1036015     4   0.715     0.5221 0.108 0.064 0.184 0.608 NA
#> SRR1036016     4   0.715     0.5221 0.108 0.064 0.184 0.608 NA
#> SRR1036017     4   0.715     0.5221 0.108 0.064 0.184 0.608 NA
#> SRR1036018     4   0.715     0.5221 0.108 0.064 0.184 0.608 NA
#> SRR1036010     1   0.313     0.6861 0.888 0.020 0.028 0.032 NA
#> SRR1036011     1   0.313     0.6861 0.888 0.020 0.028 0.032 NA
#> SRR1036012     1   0.313     0.6861 0.888 0.020 0.028 0.032 NA
#> SRR1036019     2   0.720     0.4331 0.012 0.576 0.080 0.208 NA
#> SRR1036020     2   0.721     0.4331 0.012 0.576 0.080 0.204 NA
#> SRR1036021     2   0.720     0.4331 0.012 0.576 0.080 0.208 NA
#> SRR1036022     2   0.721     0.4331 0.012 0.576 0.080 0.204 NA
#> SRR1036023     2   0.720     0.4331 0.012 0.576 0.080 0.208 NA
#> SRR1036024     4   0.856     0.4415 0.196 0.128 0.120 0.484 NA
#> SRR1036025     4   0.856     0.4415 0.196 0.128 0.120 0.484 NA
#> SRR1036026     4   0.856     0.4415 0.196 0.128 0.120 0.484 NA
#> SRR1036027     4   0.856     0.4415 0.196 0.128 0.120 0.484 NA
#> SRR1036028     4   0.856     0.4415 0.196 0.128 0.120 0.484 NA
#> SRR1036029     4   0.856     0.4415 0.196 0.128 0.120 0.484 NA
#> SRR1036030     2   0.741     0.5448 0.204 0.544 0.004 0.144 NA
#> SRR1036031     2   0.741     0.5448 0.204 0.544 0.004 0.144 NA
#> SRR1036032     2   0.741     0.5448 0.204 0.544 0.004 0.144 NA
#> SRR1036033     2   0.741     0.5448 0.204 0.544 0.004 0.144 NA
#> SRR1036034     2   0.741     0.5448 0.204 0.544 0.004 0.144 NA
#> SRR1036035     2   0.741     0.5448 0.204 0.544 0.004 0.144 NA
#> SRR1036036     2   0.741     0.5448 0.204 0.544 0.004 0.144 NA
#> SRR1036037     2   0.741     0.5448 0.204 0.544 0.004 0.144 NA
#> SRR1036038     1   0.558     0.6346 0.752 0.080 0.048 0.052 NA
#> SRR1036039     1   0.558     0.6346 0.752 0.080 0.048 0.052 NA
#> SRR1036040     1   0.558     0.6346 0.752 0.080 0.048 0.052 NA
#> SRR1036041     1   0.217     0.6877 0.928 0.024 0.004 0.024 NA
#> SRR1036042     4   0.853     0.2308 0.036 0.156 0.324 0.384 NA
#> SRR1036043     4   0.853     0.2308 0.036 0.156 0.324 0.384 NA
#> SRR1036044     4   0.853     0.2308 0.036 0.156 0.324 0.384 NA
#> SRR1036045     4   0.853     0.2308 0.036 0.156 0.324 0.384 NA
#> SRR1036046     4   0.853     0.2308 0.036 0.156 0.324 0.384 NA
#> SRR1036047     4   0.853     0.2308 0.036 0.156 0.324 0.384 NA
#> SRR1036048     4   0.853     0.2308 0.036 0.156 0.324 0.384 NA
#> SRR1036049     4   0.853     0.2308 0.036 0.156 0.324 0.384 NA
#> SRR1036050     1   0.267     0.6847 0.896 0.016 0.004 0.012 NA
#> SRR1036051     1   0.267     0.6847 0.896 0.016 0.004 0.012 NA
#> SRR1036052     1   0.267     0.6847 0.896 0.016 0.004 0.012 NA
#> SRR1036053     1   0.267     0.6847 0.896 0.016 0.004 0.012 NA
#> SRR1036054     1   0.267     0.6847 0.896 0.016 0.004 0.012 NA
#> SRR1036055     1   0.533     0.5235 0.712 0.172 0.000 0.028 NA
#> SRR1036056     1   0.533     0.5235 0.712 0.172 0.000 0.028 NA
#> SRR1036057     1   0.533     0.5235 0.712 0.172 0.000 0.028 NA
#> SRR1036058     4   0.643     0.5016 0.084 0.064 0.080 0.696 NA
#> SRR1036059     4   0.637     0.5016 0.084 0.064 0.080 0.700 NA
#> SRR1036060     4   0.643     0.5016 0.084 0.064 0.080 0.696 NA
#> SRR1036061     4   0.643     0.5016 0.084 0.064 0.080 0.696 NA
#> SRR1036062     4   0.637     0.5016 0.084 0.064 0.080 0.700 NA
#> SRR1036063     4   0.637     0.5016 0.084 0.064 0.080 0.700 NA
#> SRR1036064     4   0.637     0.5016 0.084 0.064 0.080 0.700 NA
#> SRR1036065     4   0.643     0.5016 0.084 0.064 0.080 0.696 NA
#> SRR1036066     1   0.759     0.4658 0.572 0.056 0.064 0.196 NA
#> SRR1036067     1   0.761     0.4659 0.572 0.060 0.064 0.196 NA
#> SRR1036068     1   0.759     0.4658 0.572 0.056 0.064 0.196 NA
#> SRR1036069     1   0.759     0.4659 0.572 0.060 0.060 0.196 NA
#> SRR1036070     1   0.757     0.4658 0.572 0.056 0.060 0.196 NA
#> SRR1036071     1   0.759     0.4658 0.572 0.056 0.064 0.196 NA
#> SRR1036072     1   0.757     0.4658 0.572 0.056 0.060 0.196 NA
#> SRR1036073     1   0.757     0.4658 0.572 0.056 0.060 0.196 NA
#> SRR1036074     4   0.745     0.3957 0.048 0.252 0.072 0.556 NA
#> SRR1036075     4   0.745     0.3957 0.048 0.252 0.072 0.556 NA
#> SRR1036076     4   0.745     0.3957 0.048 0.252 0.072 0.556 NA
#> SRR1036077     4   0.745     0.3957 0.048 0.252 0.072 0.556 NA
#> SRR1036078     4   0.745     0.3957 0.048 0.252 0.072 0.556 NA
#> SRR1036079     4   0.745     0.3957 0.048 0.252 0.072 0.556 NA
#> SRR1036080     4   0.745     0.3957 0.048 0.252 0.072 0.556 NA
#> SRR1036081     4   0.745     0.3957 0.048 0.252 0.072 0.556 NA
#> SRR1036082     4   0.676     0.4393 0.052 0.212 0.064 0.628 NA
#> SRR1036083     4   0.676     0.4393 0.052 0.212 0.064 0.628 NA
#> SRR1036084     4   0.676     0.4393 0.052 0.212 0.064 0.628 NA
#> SRR1036090     2   0.744     0.4955 0.052 0.572 0.060 0.224 NA
#> SRR1036091     2   0.744     0.4955 0.052 0.572 0.060 0.224 NA
#> SRR1036092     2   0.744     0.4955 0.052 0.572 0.060 0.224 NA
#> SRR1036093     2   0.744     0.4955 0.052 0.572 0.060 0.224 NA
#> SRR1036094     2   0.744     0.4955 0.052 0.572 0.060 0.224 NA
#> SRR1036085     3   0.395     0.8660 0.040 0.020 0.844 0.064 NA
#> SRR1036086     3   0.395     0.8660 0.040 0.020 0.844 0.064 NA
#> SRR1036087     3   0.395     0.8660 0.040 0.020 0.844 0.064 NA
#> SRR1036088     3   0.395     0.8660 0.040 0.020 0.844 0.064 NA
#> SRR1036089     3   0.395     0.8660 0.040 0.020 0.844 0.064 NA
#> SRR1036095     1   0.893     0.1647 0.360 0.112 0.052 0.292 NA
#> SRR1036096     1   0.893     0.1647 0.360 0.112 0.052 0.292 NA
#> SRR1036097     1   0.893     0.1647 0.360 0.112 0.052 0.292 NA
#> SRR1036098     1   0.893     0.1647 0.360 0.112 0.052 0.292 NA
#> SRR1036099     1   0.893     0.1647 0.360 0.112 0.052 0.292 NA
#> SRR1036100     4   0.820     0.0855 0.068 0.364 0.072 0.408 NA
#> SRR1036101     4   0.820     0.0855 0.068 0.364 0.072 0.408 NA
#> SRR1036102     4   0.820     0.0855 0.068 0.364 0.072 0.408 NA
#> SRR1036103     4   0.820     0.0855 0.068 0.364 0.072 0.408 NA
#> SRR1036104     4   0.820     0.0855 0.068 0.364 0.072 0.408 NA
#> SRR1036105     3   0.329     0.8766 0.040 0.016 0.872 0.064 NA
#> SRR1036106     3   0.329     0.8766 0.040 0.016 0.872 0.064 NA
#> SRR1036107     3   0.329     0.8766 0.040 0.016 0.872 0.064 NA
#> SRR1036108     3   0.329     0.8766 0.040 0.016 0.872 0.064 NA
#> SRR1036109     3   0.329     0.8766 0.040 0.016 0.872 0.064 NA
#> SRR1036110     4   0.649     0.5694 0.060 0.096 0.156 0.664 NA
#> SRR1036111     4   0.649     0.5694 0.060 0.096 0.156 0.664 NA
#> SRR1036112     4   0.649     0.5694 0.060 0.096 0.156 0.664 NA
#> SRR1036113     4   0.649     0.5694 0.060 0.096 0.156 0.664 NA
#> SRR1036114     4   0.649     0.5694 0.060 0.096 0.156 0.664 NA
#> SRR1036115     1   0.554     0.6232 0.700 0.044 0.000 0.076 NA
#> SRR1036116     1   0.554     0.6232 0.700 0.044 0.000 0.076 NA
#> SRR1036117     1   0.554     0.6232 0.700 0.044 0.000 0.076 NA
#> SRR1036118     1   0.554     0.6232 0.700 0.044 0.000 0.076 NA
#> SRR1036119     1   0.554     0.6232 0.700 0.044 0.000 0.076 NA
#> SRR1036120     1   0.751     0.3868 0.428 0.008 0.116 0.072 NA
#> SRR1036121     1   0.763     0.3868 0.428 0.012 0.120 0.072 NA
#> SRR1036122     1   0.763     0.3868 0.428 0.012 0.120 0.072 NA
#> SRR1036123     1   0.760     0.3869 0.428 0.012 0.116 0.072 NA
#> SRR1036124     1   0.751     0.3868 0.428 0.008 0.116 0.072 NA
#> SRR1036125     1   0.383     0.6873 0.852 0.020 0.048 0.032 NA
#> SRR1036126     1   0.383     0.6873 0.852 0.020 0.048 0.032 NA
#> SRR1036127     1   0.383     0.6873 0.852 0.020 0.048 0.032 NA
#> SRR1036128     1   0.383     0.6873 0.852 0.020 0.048 0.032 NA
#> SRR1036129     1   0.383     0.6873 0.852 0.020 0.048 0.032 NA
#> SRR1036130     1   0.383     0.6873 0.852 0.020 0.048 0.032 NA
#> SRR1036131     1   0.383     0.6873 0.852 0.020 0.048 0.032 NA
#> SRR1036132     1   0.383     0.6873 0.852 0.020 0.048 0.032 NA
#> SRR1036133     2   0.509     0.6420 0.060 0.736 0.000 0.164 NA
#> SRR1036134     2   0.509     0.6420 0.060 0.736 0.000 0.164 NA
#> SRR1036135     2   0.509     0.6420 0.060 0.736 0.000 0.164 NA
#> SRR1036136     2   0.509     0.6420 0.060 0.736 0.000 0.164 NA
#> SRR1036137     2   0.509     0.6420 0.060 0.736 0.000 0.164 NA
#> SRR1036138     2   0.464     0.6551 0.028 0.792 0.040 0.120 NA
#> SRR1036139     2   0.464     0.6551 0.028 0.792 0.040 0.120 NA
#> SRR1036140     2   0.464     0.6551 0.028 0.792 0.040 0.120 NA
#> SRR1036141     2   0.464     0.6551 0.028 0.792 0.040 0.120 NA
#> SRR1036142     2   0.464     0.6551 0.028 0.792 0.040 0.120 NA
#> SRR1036143     2   0.464     0.6551 0.028 0.792 0.040 0.120 NA
#> SRR1036144     2   0.464     0.6551 0.028 0.792 0.040 0.120 NA
#> SRR1036145     2   0.464     0.6551 0.028 0.792 0.040 0.120 NA

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1036002     4   0.804     0.1529 0.012 0.052 0.320 0.368 0.168 0.080
#> SRR1036003     4   0.804     0.1529 0.012 0.052 0.320 0.368 0.168 0.080
#> SRR1036004     4   0.804     0.1529 0.012 0.052 0.320 0.368 0.168 0.080
#> SRR1036005     3   0.226     0.9667 0.020 0.004 0.912 0.048 0.012 0.004
#> SRR1036006     3   0.226     0.9667 0.020 0.004 0.912 0.048 0.012 0.004
#> SRR1036007     3   0.226     0.9667 0.020 0.004 0.912 0.048 0.012 0.004
#> SRR1036008     3   0.226     0.9667 0.020 0.004 0.912 0.048 0.012 0.004
#> SRR1036009     3   0.226     0.9667 0.020 0.004 0.912 0.048 0.012 0.004
#> SRR1036013     4   0.857     0.2920 0.108 0.076 0.140 0.436 0.048 0.192
#> SRR1036014     4   0.857     0.2920 0.108 0.076 0.140 0.436 0.048 0.192
#> SRR1036015     4   0.857     0.2920 0.108 0.076 0.140 0.436 0.048 0.192
#> SRR1036016     4   0.857     0.2920 0.108 0.076 0.140 0.436 0.048 0.192
#> SRR1036017     4   0.857     0.2920 0.108 0.076 0.140 0.436 0.048 0.192
#> SRR1036018     4   0.857     0.2920 0.108 0.076 0.140 0.436 0.048 0.192
#> SRR1036010     1   0.325     0.4745 0.856 0.016 0.012 0.008 0.088 0.020
#> SRR1036011     1   0.325     0.4745 0.856 0.016 0.012 0.008 0.088 0.020
#> SRR1036012     1   0.325     0.4745 0.856 0.016 0.012 0.008 0.088 0.020
#> SRR1036019     2   0.656     0.4963 0.004 0.608 0.032 0.148 0.140 0.068
#> SRR1036020     2   0.659     0.4963 0.004 0.604 0.032 0.148 0.144 0.068
#> SRR1036021     2   0.654     0.4962 0.004 0.608 0.032 0.148 0.144 0.064
#> SRR1036022     2   0.659     0.4963 0.004 0.604 0.032 0.148 0.144 0.068
#> SRR1036023     2   0.656     0.4963 0.004 0.608 0.032 0.148 0.140 0.068
#> SRR1036024     4   0.887     0.1296 0.196 0.096 0.100 0.416 0.088 0.104
#> SRR1036025     4   0.887     0.1296 0.196 0.096 0.100 0.416 0.088 0.104
#> SRR1036026     4   0.887     0.1296 0.196 0.096 0.100 0.416 0.088 0.104
#> SRR1036027     4   0.887     0.1296 0.196 0.096 0.100 0.416 0.088 0.104
#> SRR1036028     4   0.887     0.1296 0.196 0.096 0.100 0.416 0.088 0.104
#> SRR1036029     4   0.887     0.1296 0.196 0.096 0.100 0.416 0.088 0.104
#> SRR1036030     2   0.718     0.5560 0.180 0.564 0.012 0.080 0.052 0.112
#> SRR1036031     2   0.718     0.5560 0.180 0.564 0.012 0.080 0.052 0.112
#> SRR1036032     2   0.718     0.5560 0.180 0.564 0.012 0.080 0.052 0.112
#> SRR1036033     2   0.718     0.5560 0.180 0.564 0.012 0.080 0.052 0.112
#> SRR1036034     2   0.718     0.5560 0.180 0.564 0.012 0.080 0.052 0.112
#> SRR1036035     2   0.718     0.5560 0.180 0.564 0.012 0.080 0.052 0.112
#> SRR1036036     2   0.718     0.5560 0.180 0.564 0.012 0.080 0.052 0.112
#> SRR1036037     2   0.718     0.5560 0.180 0.564 0.012 0.080 0.052 0.112
#> SRR1036038     1   0.588     0.4295 0.708 0.088 0.036 0.032 0.072 0.064
#> SRR1036039     1   0.588     0.4295 0.708 0.088 0.036 0.032 0.072 0.064
#> SRR1036040     1   0.588     0.4295 0.708 0.088 0.036 0.032 0.072 0.064
#> SRR1036041     1   0.264     0.5314 0.900 0.020 0.004 0.032 0.020 0.024
#> SRR1036042     4   0.783     0.3345 0.012 0.088 0.240 0.456 0.156 0.048
#> SRR1036043     4   0.783     0.3345 0.012 0.088 0.240 0.456 0.156 0.048
#> SRR1036044     4   0.783     0.3345 0.012 0.088 0.240 0.456 0.156 0.048
#> SRR1036045     4   0.783     0.3345 0.012 0.088 0.240 0.456 0.156 0.048
#> SRR1036046     4   0.783     0.3345 0.012 0.088 0.240 0.456 0.156 0.048
#> SRR1036047     4   0.783     0.3345 0.012 0.088 0.240 0.456 0.156 0.048
#> SRR1036048     4   0.783     0.3345 0.012 0.088 0.240 0.456 0.156 0.048
#> SRR1036049     4   0.783     0.3345 0.012 0.088 0.240 0.456 0.156 0.048
#> SRR1036050     1   0.261     0.4719 0.892 0.008 0.000 0.012 0.040 0.048
#> SRR1036051     1   0.261     0.4719 0.892 0.008 0.000 0.012 0.040 0.048
#> SRR1036052     1   0.261     0.4719 0.892 0.008 0.000 0.012 0.040 0.048
#> SRR1036053     1   0.261     0.4719 0.892 0.008 0.000 0.012 0.040 0.048
#> SRR1036054     1   0.261     0.4719 0.892 0.008 0.000 0.012 0.040 0.048
#> SRR1036055     1   0.604     0.3234 0.660 0.164 0.008 0.048 0.036 0.084
#> SRR1036056     1   0.604     0.3234 0.660 0.164 0.008 0.048 0.036 0.084
#> SRR1036057     1   0.604     0.3234 0.660 0.164 0.008 0.048 0.036 0.084
#> SRR1036058     4   0.755     0.2319 0.048 0.060 0.100 0.464 0.024 0.304
#> SRR1036059     4   0.749     0.2319 0.048 0.060 0.100 0.464 0.020 0.308
#> SRR1036060     4   0.755     0.2319 0.048 0.060 0.100 0.464 0.024 0.304
#> SRR1036061     4   0.755     0.2319 0.048 0.060 0.100 0.464 0.024 0.304
#> SRR1036062     4   0.749     0.2319 0.048 0.060 0.100 0.464 0.020 0.308
#> SRR1036063     4   0.749     0.2319 0.048 0.060 0.100 0.464 0.020 0.308
#> SRR1036064     4   0.755     0.2319 0.048 0.060 0.100 0.464 0.024 0.304
#> SRR1036065     4   0.749     0.2319 0.048 0.060 0.100 0.464 0.020 0.308
#> SRR1036066     1   0.803     0.1467 0.500 0.048 0.056 0.152 0.164 0.080
#> SRR1036067     1   0.803     0.1467 0.500 0.048 0.056 0.152 0.164 0.080
#> SRR1036068     1   0.804     0.1464 0.500 0.048 0.056 0.152 0.160 0.084
#> SRR1036069     1   0.803     0.1467 0.500 0.048 0.056 0.152 0.164 0.080
#> SRR1036070     1   0.804     0.1464 0.500 0.048 0.056 0.152 0.160 0.084
#> SRR1036071     1   0.804     0.1464 0.500 0.048 0.056 0.152 0.160 0.084
#> SRR1036072     1   0.803     0.1467 0.500 0.048 0.056 0.152 0.164 0.080
#> SRR1036073     1   0.803     0.1467 0.500 0.048 0.056 0.152 0.164 0.080
#> SRR1036074     4   0.511     0.3975 0.024 0.144 0.016 0.724 0.084 0.008
#> SRR1036075     4   0.511     0.3975 0.024 0.144 0.016 0.724 0.084 0.008
#> SRR1036076     4   0.511     0.3975 0.024 0.144 0.016 0.724 0.084 0.008
#> SRR1036077     4   0.511     0.3975 0.024 0.144 0.016 0.724 0.084 0.008
#> SRR1036078     4   0.511     0.3975 0.024 0.144 0.016 0.724 0.084 0.008
#> SRR1036079     4   0.511     0.3975 0.024 0.144 0.016 0.724 0.084 0.008
#> SRR1036080     4   0.511     0.3975 0.024 0.144 0.016 0.724 0.084 0.008
#> SRR1036081     4   0.511     0.3975 0.024 0.144 0.016 0.724 0.084 0.008
#> SRR1036082     4   0.551     0.4024 0.028 0.160 0.032 0.708 0.032 0.040
#> SRR1036083     4   0.551     0.4024 0.028 0.160 0.032 0.708 0.032 0.040
#> SRR1036084     4   0.551     0.4024 0.028 0.160 0.032 0.708 0.032 0.040
#> SRR1036090     2   0.702     0.5505 0.068 0.608 0.060 0.156 0.044 0.064
#> SRR1036091     2   0.702     0.5505 0.068 0.608 0.060 0.156 0.044 0.064
#> SRR1036092     2   0.702     0.5505 0.068 0.608 0.060 0.156 0.044 0.064
#> SRR1036093     2   0.702     0.5505 0.068 0.608 0.060 0.156 0.044 0.064
#> SRR1036094     2   0.702     0.5505 0.068 0.608 0.060 0.156 0.044 0.064
#> SRR1036085     3   0.310     0.9525 0.024 0.004 0.876 0.040 0.024 0.032
#> SRR1036086     3   0.310     0.9525 0.024 0.004 0.876 0.040 0.024 0.032
#> SRR1036087     3   0.310     0.9525 0.024 0.004 0.876 0.040 0.024 0.032
#> SRR1036088     3   0.310     0.9525 0.024 0.004 0.876 0.040 0.024 0.032
#> SRR1036089     3   0.310     0.9525 0.024 0.004 0.876 0.040 0.024 0.032
#> SRR1036095     6   0.756     1.0000 0.316 0.104 0.016 0.168 0.004 0.392
#> SRR1036096     6   0.756     1.0000 0.316 0.104 0.016 0.168 0.004 0.392
#> SRR1036097     6   0.756     1.0000 0.316 0.104 0.016 0.168 0.004 0.392
#> SRR1036098     6   0.756     1.0000 0.316 0.104 0.016 0.168 0.004 0.392
#> SRR1036099     6   0.756     1.0000 0.316 0.104 0.016 0.168 0.004 0.392
#> SRR1036100     4   0.771     0.0908 0.064 0.264 0.008 0.464 0.112 0.088
#> SRR1036101     4   0.771     0.0908 0.064 0.264 0.008 0.464 0.112 0.088
#> SRR1036102     4   0.771     0.0908 0.064 0.264 0.008 0.464 0.112 0.088
#> SRR1036103     4   0.771     0.0908 0.064 0.264 0.008 0.464 0.112 0.088
#> SRR1036104     4   0.771     0.0908 0.064 0.264 0.008 0.464 0.112 0.088
#> SRR1036105     3   0.244     0.9655 0.020 0.004 0.904 0.048 0.004 0.020
#> SRR1036106     3   0.244     0.9655 0.020 0.004 0.904 0.048 0.004 0.020
#> SRR1036107     3   0.244     0.9655 0.020 0.004 0.904 0.048 0.004 0.020
#> SRR1036108     3   0.244     0.9655 0.020 0.004 0.904 0.048 0.004 0.020
#> SRR1036109     3   0.244     0.9655 0.020 0.004 0.904 0.048 0.004 0.020
#> SRR1036110     4   0.550     0.4453 0.052 0.036 0.116 0.724 0.016 0.056
#> SRR1036111     4   0.550     0.4453 0.052 0.036 0.116 0.724 0.016 0.056
#> SRR1036112     4   0.550     0.4453 0.052 0.036 0.116 0.724 0.016 0.056
#> SRR1036113     4   0.550     0.4453 0.052 0.036 0.116 0.724 0.016 0.056
#> SRR1036114     4   0.550     0.4453 0.052 0.036 0.116 0.724 0.016 0.056
#> SRR1036115     1   0.478     0.1995 0.660 0.016 0.008 0.012 0.016 0.288
#> SRR1036116     1   0.478     0.1995 0.660 0.016 0.008 0.012 0.016 0.288
#> SRR1036117     1   0.478     0.1995 0.660 0.016 0.008 0.012 0.016 0.288
#> SRR1036118     1   0.478     0.1995 0.660 0.016 0.008 0.012 0.016 0.288
#> SRR1036119     1   0.478     0.1995 0.660 0.016 0.008 0.012 0.016 0.288
#> SRR1036120     5   0.622     0.9920 0.420 0.012 0.064 0.032 0.460 0.012
#> SRR1036121     5   0.637     0.9905 0.420 0.012 0.064 0.032 0.452 0.020
#> SRR1036122     5   0.622     0.9918 0.420 0.012 0.064 0.032 0.460 0.012
#> SRR1036123     5   0.650     0.9856 0.420 0.012 0.064 0.032 0.444 0.028
#> SRR1036124     5   0.622     0.9920 0.420 0.012 0.064 0.032 0.460 0.012
#> SRR1036125     1   0.387     0.5258 0.832 0.008 0.064 0.032 0.020 0.044
#> SRR1036126     1   0.387     0.5258 0.832 0.008 0.064 0.032 0.020 0.044
#> SRR1036127     1   0.387     0.5258 0.832 0.008 0.064 0.032 0.020 0.044
#> SRR1036128     1   0.387     0.5258 0.832 0.008 0.064 0.032 0.020 0.044
#> SRR1036129     1   0.387     0.5258 0.832 0.008 0.064 0.032 0.020 0.044
#> SRR1036130     1   0.387     0.5258 0.832 0.008 0.064 0.032 0.020 0.044
#> SRR1036131     1   0.387     0.5258 0.832 0.008 0.064 0.032 0.020 0.044
#> SRR1036132     1   0.387     0.5258 0.832 0.008 0.064 0.032 0.020 0.044
#> SRR1036133     2   0.540     0.6612 0.068 0.736 0.012 0.084 0.044 0.056
#> SRR1036134     2   0.540     0.6612 0.068 0.736 0.012 0.084 0.044 0.056
#> SRR1036135     2   0.540     0.6612 0.068 0.736 0.012 0.084 0.044 0.056
#> SRR1036136     2   0.540     0.6612 0.068 0.736 0.012 0.084 0.044 0.056
#> SRR1036137     2   0.540     0.6612 0.068 0.736 0.012 0.084 0.044 0.056
#> SRR1036138     2   0.342     0.6777 0.036 0.856 0.044 0.048 0.008 0.008
#> SRR1036139     2   0.342     0.6777 0.036 0.856 0.044 0.048 0.008 0.008
#> SRR1036140     2   0.342     0.6777 0.036 0.856 0.044 0.048 0.008 0.008
#> SRR1036141     2   0.342     0.6777 0.036 0.856 0.044 0.048 0.008 0.008
#> SRR1036142     2   0.342     0.6777 0.036 0.856 0.044 0.048 0.008 0.008
#> SRR1036143     2   0.342     0.6777 0.036 0.856 0.044 0.048 0.008 0.008
#> SRR1036144     2   0.342     0.6777 0.036 0.856 0.044 0.048 0.008 0.008
#> SRR1036145     2   0.342     0.6777 0.036 0.856 0.044 0.048 0.008 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15218 rows and 144 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.417           0.794       0.881         0.4896 0.528   0.528
#> 3 3 0.553           0.755       0.870         0.3524 0.688   0.466
#> 4 4 0.632           0.735       0.850         0.1228 0.849   0.589
#> 5 5 0.659           0.662       0.779         0.0626 0.921   0.709
#> 6 6 0.702           0.570       0.711         0.0401 0.970   0.864

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1036002     2  0.4161      0.808 0.084 0.916
#> SRR1036003     2  0.4161      0.808 0.084 0.916
#> SRR1036004     2  0.4161      0.808 0.084 0.916
#> SRR1036005     2  0.7376      0.778 0.208 0.792
#> SRR1036006     2  0.7376      0.778 0.208 0.792
#> SRR1036007     2  0.7376      0.778 0.208 0.792
#> SRR1036008     2  0.7376      0.778 0.208 0.792
#> SRR1036009     2  0.7376      0.778 0.208 0.792
#> SRR1036013     2  0.7139      0.783 0.196 0.804
#> SRR1036014     2  0.7139      0.783 0.196 0.804
#> SRR1036015     2  0.7139      0.783 0.196 0.804
#> SRR1036016     2  0.7139      0.783 0.196 0.804
#> SRR1036017     2  0.7139      0.783 0.196 0.804
#> SRR1036018     2  0.7139      0.783 0.196 0.804
#> SRR1036010     1  0.0000      0.919 1.000 0.000
#> SRR1036011     1  0.0000      0.919 1.000 0.000
#> SRR1036012     1  0.0000      0.919 1.000 0.000
#> SRR1036019     2  0.0000      0.833 0.000 1.000
#> SRR1036020     2  0.0000      0.833 0.000 1.000
#> SRR1036021     2  0.0000      0.833 0.000 1.000
#> SRR1036022     2  0.0000      0.833 0.000 1.000
#> SRR1036023     2  0.0000      0.833 0.000 1.000
#> SRR1036024     2  0.9963      0.413 0.464 0.536
#> SRR1036025     2  0.9963      0.413 0.464 0.536
#> SRR1036026     2  0.9963      0.413 0.464 0.536
#> SRR1036027     2  0.9963      0.413 0.464 0.536
#> SRR1036028     2  0.9963      0.413 0.464 0.536
#> SRR1036029     2  0.9963      0.413 0.464 0.536
#> SRR1036030     1  0.8016      0.748 0.756 0.244
#> SRR1036031     1  0.8016      0.748 0.756 0.244
#> SRR1036032     1  0.8016      0.748 0.756 0.244
#> SRR1036033     1  0.8016      0.748 0.756 0.244
#> SRR1036034     1  0.8016      0.748 0.756 0.244
#> SRR1036035     1  0.8016      0.748 0.756 0.244
#> SRR1036036     1  0.8016      0.748 0.756 0.244
#> SRR1036037     1  0.8016      0.748 0.756 0.244
#> SRR1036038     1  0.6247      0.818 0.844 0.156
#> SRR1036039     1  0.6247      0.818 0.844 0.156
#> SRR1036040     1  0.6247      0.818 0.844 0.156
#> SRR1036041     1  0.0672      0.919 0.992 0.008
#> SRR1036042     2  0.0672      0.833 0.008 0.992
#> SRR1036043     2  0.0672      0.833 0.008 0.992
#> SRR1036044     2  0.0672      0.833 0.008 0.992
#> SRR1036045     2  0.0672      0.833 0.008 0.992
#> SRR1036046     2  0.0672      0.833 0.008 0.992
#> SRR1036047     2  0.0672      0.833 0.008 0.992
#> SRR1036048     2  0.0672      0.833 0.008 0.992
#> SRR1036049     2  0.0672      0.833 0.008 0.992
#> SRR1036050     1  0.0672      0.919 0.992 0.008
#> SRR1036051     1  0.0672      0.919 0.992 0.008
#> SRR1036052     1  0.0672      0.919 0.992 0.008
#> SRR1036053     1  0.0672      0.919 0.992 0.008
#> SRR1036054     1  0.0672      0.919 0.992 0.008
#> SRR1036055     1  0.6247      0.819 0.844 0.156
#> SRR1036056     1  0.6247      0.819 0.844 0.156
#> SRR1036057     1  0.6247      0.819 0.844 0.156
#> SRR1036058     2  0.9754      0.521 0.408 0.592
#> SRR1036059     2  0.9754      0.521 0.408 0.592
#> SRR1036060     2  0.9754      0.521 0.408 0.592
#> SRR1036061     2  0.9754      0.521 0.408 0.592
#> SRR1036062     2  0.9754      0.521 0.408 0.592
#> SRR1036063     2  0.9754      0.521 0.408 0.592
#> SRR1036064     2  0.9754      0.521 0.408 0.592
#> SRR1036065     2  0.9754      0.521 0.408 0.592
#> SRR1036066     1  0.0000      0.919 1.000 0.000
#> SRR1036067     1  0.0000      0.919 1.000 0.000
#> SRR1036068     1  0.0000      0.919 1.000 0.000
#> SRR1036069     1  0.0000      0.919 1.000 0.000
#> SRR1036070     1  0.0000      0.919 1.000 0.000
#> SRR1036071     1  0.0000      0.919 1.000 0.000
#> SRR1036072     1  0.0000      0.919 1.000 0.000
#> SRR1036073     1  0.0000      0.919 1.000 0.000
#> SRR1036074     2  0.0000      0.833 0.000 1.000
#> SRR1036075     2  0.0000      0.833 0.000 1.000
#> SRR1036076     2  0.0000      0.833 0.000 1.000
#> SRR1036077     2  0.0000      0.833 0.000 1.000
#> SRR1036078     2  0.0000      0.833 0.000 1.000
#> SRR1036079     2  0.0000      0.833 0.000 1.000
#> SRR1036080     2  0.0000      0.833 0.000 1.000
#> SRR1036081     2  0.0000      0.833 0.000 1.000
#> SRR1036082     2  0.3431      0.819 0.064 0.936
#> SRR1036083     2  0.3431      0.819 0.064 0.936
#> SRR1036084     2  0.3431      0.819 0.064 0.936
#> SRR1036090     2  0.1633      0.829 0.024 0.976
#> SRR1036091     2  0.1633      0.829 0.024 0.976
#> SRR1036092     2  0.1633      0.829 0.024 0.976
#> SRR1036093     2  0.1633      0.829 0.024 0.976
#> SRR1036094     2  0.1633      0.829 0.024 0.976
#> SRR1036085     2  0.7674      0.768 0.224 0.776
#> SRR1036086     2  0.7674      0.768 0.224 0.776
#> SRR1036087     2  0.7674      0.768 0.224 0.776
#> SRR1036088     2  0.7674      0.768 0.224 0.776
#> SRR1036089     2  0.7674      0.768 0.224 0.776
#> SRR1036095     1  0.3733      0.879 0.928 0.072
#> SRR1036096     1  0.3733      0.879 0.928 0.072
#> SRR1036097     1  0.3733      0.879 0.928 0.072
#> SRR1036098     1  0.3733      0.879 0.928 0.072
#> SRR1036099     1  0.3733      0.879 0.928 0.072
#> SRR1036100     2  0.0672      0.834 0.008 0.992
#> SRR1036101     2  0.0672      0.834 0.008 0.992
#> SRR1036102     2  0.0672      0.834 0.008 0.992
#> SRR1036103     2  0.0672      0.834 0.008 0.992
#> SRR1036104     2  0.0672      0.834 0.008 0.992
#> SRR1036105     2  0.7376      0.778 0.208 0.792
#> SRR1036106     2  0.7376      0.778 0.208 0.792
#> SRR1036107     2  0.7376      0.778 0.208 0.792
#> SRR1036108     2  0.7376      0.778 0.208 0.792
#> SRR1036109     2  0.7376      0.778 0.208 0.792
#> SRR1036110     2  0.7056      0.786 0.192 0.808
#> SRR1036111     2  0.7056      0.786 0.192 0.808
#> SRR1036112     2  0.7056      0.786 0.192 0.808
#> SRR1036113     2  0.7056      0.786 0.192 0.808
#> SRR1036114     2  0.7056      0.786 0.192 0.808
#> SRR1036115     1  0.0672      0.919 0.992 0.008
#> SRR1036116     1  0.0672      0.919 0.992 0.008
#> SRR1036117     1  0.0672      0.919 0.992 0.008
#> SRR1036118     1  0.0672      0.919 0.992 0.008
#> SRR1036119     1  0.0672      0.919 0.992 0.008
#> SRR1036120     1  0.2236      0.900 0.964 0.036
#> SRR1036121     1  0.2236      0.900 0.964 0.036
#> SRR1036122     1  0.2236      0.900 0.964 0.036
#> SRR1036123     1  0.2236      0.900 0.964 0.036
#> SRR1036124     1  0.2236      0.900 0.964 0.036
#> SRR1036125     1  0.0000      0.919 1.000 0.000
#> SRR1036126     1  0.0000      0.919 1.000 0.000
#> SRR1036127     1  0.0000      0.919 1.000 0.000
#> SRR1036128     1  0.0000      0.919 1.000 0.000
#> SRR1036129     1  0.0000      0.919 1.000 0.000
#> SRR1036130     1  0.0000      0.919 1.000 0.000
#> SRR1036131     1  0.0000      0.919 1.000 0.000
#> SRR1036132     1  0.0000      0.919 1.000 0.000
#> SRR1036133     2  0.8713      0.538 0.292 0.708
#> SRR1036134     2  0.8713      0.538 0.292 0.708
#> SRR1036135     2  0.8713      0.538 0.292 0.708
#> SRR1036136     2  0.8713      0.538 0.292 0.708
#> SRR1036137     2  0.8713      0.538 0.292 0.708
#> SRR1036138     2  0.0672      0.833 0.008 0.992
#> SRR1036139     2  0.0672      0.833 0.008 0.992
#> SRR1036140     2  0.0672      0.833 0.008 0.992
#> SRR1036141     2  0.0672      0.833 0.008 0.992
#> SRR1036142     2  0.0672      0.833 0.008 0.992
#> SRR1036143     2  0.0672      0.833 0.008 0.992
#> SRR1036144     2  0.0672      0.833 0.008 0.992
#> SRR1036145     2  0.0672      0.833 0.008 0.992

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1036002     3  0.0892     0.8399 0.000 0.020 0.980
#> SRR1036003     3  0.0892     0.8399 0.000 0.020 0.980
#> SRR1036004     3  0.0892     0.8399 0.000 0.020 0.980
#> SRR1036005     3  0.0475     0.8441 0.004 0.004 0.992
#> SRR1036006     3  0.0475     0.8441 0.004 0.004 0.992
#> SRR1036007     3  0.0475     0.8441 0.004 0.004 0.992
#> SRR1036008     3  0.0475     0.8441 0.004 0.004 0.992
#> SRR1036009     3  0.0475     0.8441 0.004 0.004 0.992
#> SRR1036013     3  0.5744     0.7626 0.128 0.072 0.800
#> SRR1036014     3  0.5744     0.7626 0.128 0.072 0.800
#> SRR1036015     3  0.5744     0.7626 0.128 0.072 0.800
#> SRR1036016     3  0.5744     0.7626 0.128 0.072 0.800
#> SRR1036017     3  0.5744     0.7626 0.128 0.072 0.800
#> SRR1036018     3  0.5744     0.7626 0.128 0.072 0.800
#> SRR1036010     1  0.0892     0.8381 0.980 0.000 0.020
#> SRR1036011     1  0.0892     0.8381 0.980 0.000 0.020
#> SRR1036012     1  0.0892     0.8381 0.980 0.000 0.020
#> SRR1036019     2  0.1753     0.8851 0.000 0.952 0.048
#> SRR1036020     2  0.1753     0.8851 0.000 0.952 0.048
#> SRR1036021     2  0.1753     0.8851 0.000 0.952 0.048
#> SRR1036022     2  0.1753     0.8851 0.000 0.952 0.048
#> SRR1036023     2  0.1753     0.8851 0.000 0.952 0.048
#> SRR1036024     1  0.9633    -0.0696 0.424 0.208 0.368
#> SRR1036025     1  0.9633    -0.0696 0.424 0.208 0.368
#> SRR1036026     1  0.9633    -0.0696 0.424 0.208 0.368
#> SRR1036027     1  0.9633    -0.0696 0.424 0.208 0.368
#> SRR1036028     1  0.9633    -0.0696 0.424 0.208 0.368
#> SRR1036029     1  0.9633    -0.0696 0.424 0.208 0.368
#> SRR1036030     2  0.4178     0.7748 0.172 0.828 0.000
#> SRR1036031     2  0.4178     0.7748 0.172 0.828 0.000
#> SRR1036032     2  0.4178     0.7748 0.172 0.828 0.000
#> SRR1036033     2  0.4178     0.7748 0.172 0.828 0.000
#> SRR1036034     2  0.4178     0.7748 0.172 0.828 0.000
#> SRR1036035     2  0.4178     0.7748 0.172 0.828 0.000
#> SRR1036036     2  0.4178     0.7748 0.172 0.828 0.000
#> SRR1036037     2  0.4178     0.7748 0.172 0.828 0.000
#> SRR1036038     1  0.5804     0.7323 0.800 0.112 0.088
#> SRR1036039     1  0.5804     0.7323 0.800 0.112 0.088
#> SRR1036040     1  0.5804     0.7323 0.800 0.112 0.088
#> SRR1036041     1  0.0000     0.8453 1.000 0.000 0.000
#> SRR1036042     3  0.2711     0.8192 0.000 0.088 0.912
#> SRR1036043     3  0.2711     0.8192 0.000 0.088 0.912
#> SRR1036044     3  0.2711     0.8192 0.000 0.088 0.912
#> SRR1036045     3  0.2711     0.8192 0.000 0.088 0.912
#> SRR1036046     3  0.2711     0.8192 0.000 0.088 0.912
#> SRR1036047     3  0.2711     0.8192 0.000 0.088 0.912
#> SRR1036048     3  0.2711     0.8192 0.000 0.088 0.912
#> SRR1036049     3  0.2711     0.8192 0.000 0.088 0.912
#> SRR1036050     1  0.0000     0.8453 1.000 0.000 0.000
#> SRR1036051     1  0.0000     0.8453 1.000 0.000 0.000
#> SRR1036052     1  0.0000     0.8453 1.000 0.000 0.000
#> SRR1036053     1  0.0000     0.8453 1.000 0.000 0.000
#> SRR1036054     1  0.0000     0.8453 1.000 0.000 0.000
#> SRR1036055     1  0.5216     0.5994 0.740 0.260 0.000
#> SRR1036056     1  0.5216     0.5994 0.740 0.260 0.000
#> SRR1036057     1  0.5216     0.5994 0.740 0.260 0.000
#> SRR1036058     3  0.9666     0.4115 0.232 0.316 0.452
#> SRR1036059     3  0.9666     0.4115 0.232 0.316 0.452
#> SRR1036060     3  0.9666     0.4115 0.232 0.316 0.452
#> SRR1036061     3  0.9666     0.4115 0.232 0.316 0.452
#> SRR1036062     3  0.9666     0.4115 0.232 0.316 0.452
#> SRR1036063     3  0.9666     0.4115 0.232 0.316 0.452
#> SRR1036064     3  0.9666     0.4115 0.232 0.316 0.452
#> SRR1036065     3  0.9666     0.4115 0.232 0.316 0.452
#> SRR1036066     1  0.0424     0.8442 0.992 0.000 0.008
#> SRR1036067     1  0.0424     0.8442 0.992 0.000 0.008
#> SRR1036068     1  0.0424     0.8442 0.992 0.000 0.008
#> SRR1036069     1  0.0424     0.8442 0.992 0.000 0.008
#> SRR1036070     1  0.0424     0.8442 0.992 0.000 0.008
#> SRR1036071     1  0.0424     0.8442 0.992 0.000 0.008
#> SRR1036072     1  0.0424     0.8442 0.992 0.000 0.008
#> SRR1036073     1  0.0424     0.8442 0.992 0.000 0.008
#> SRR1036074     2  0.4555     0.7311 0.000 0.800 0.200
#> SRR1036075     2  0.4555     0.7311 0.000 0.800 0.200
#> SRR1036076     2  0.4555     0.7311 0.000 0.800 0.200
#> SRR1036077     2  0.4555     0.7311 0.000 0.800 0.200
#> SRR1036078     2  0.4555     0.7311 0.000 0.800 0.200
#> SRR1036079     2  0.4555     0.7311 0.000 0.800 0.200
#> SRR1036080     2  0.4555     0.7311 0.000 0.800 0.200
#> SRR1036081     2  0.4555     0.7311 0.000 0.800 0.200
#> SRR1036082     2  0.3941     0.7764 0.000 0.844 0.156
#> SRR1036083     2  0.3941     0.7764 0.000 0.844 0.156
#> SRR1036084     2  0.3941     0.7764 0.000 0.844 0.156
#> SRR1036090     2  0.2486     0.8828 0.008 0.932 0.060
#> SRR1036091     2  0.2486     0.8828 0.008 0.932 0.060
#> SRR1036092     2  0.2486     0.8828 0.008 0.932 0.060
#> SRR1036093     2  0.2486     0.8828 0.008 0.932 0.060
#> SRR1036094     2  0.2486     0.8828 0.008 0.932 0.060
#> SRR1036085     3  0.0475     0.8441 0.004 0.004 0.992
#> SRR1036086     3  0.0475     0.8441 0.004 0.004 0.992
#> SRR1036087     3  0.0475     0.8441 0.004 0.004 0.992
#> SRR1036088     3  0.0475     0.8441 0.004 0.004 0.992
#> SRR1036089     3  0.0475     0.8441 0.004 0.004 0.992
#> SRR1036095     1  0.5378     0.6600 0.756 0.236 0.008
#> SRR1036096     1  0.5378     0.6600 0.756 0.236 0.008
#> SRR1036097     1  0.5378     0.6600 0.756 0.236 0.008
#> SRR1036098     1  0.5378     0.6600 0.756 0.236 0.008
#> SRR1036099     1  0.5378     0.6600 0.756 0.236 0.008
#> SRR1036100     2  0.0000     0.8784 0.000 1.000 0.000
#> SRR1036101     2  0.0000     0.8784 0.000 1.000 0.000
#> SRR1036102     2  0.0000     0.8784 0.000 1.000 0.000
#> SRR1036103     2  0.0000     0.8784 0.000 1.000 0.000
#> SRR1036104     2  0.0000     0.8784 0.000 1.000 0.000
#> SRR1036105     3  0.0475     0.8441 0.004 0.004 0.992
#> SRR1036106     3  0.0475     0.8441 0.004 0.004 0.992
#> SRR1036107     3  0.0475     0.8441 0.004 0.004 0.992
#> SRR1036108     3  0.0475     0.8441 0.004 0.004 0.992
#> SRR1036109     3  0.0475     0.8441 0.004 0.004 0.992
#> SRR1036110     3  0.3359     0.8258 0.016 0.084 0.900
#> SRR1036111     3  0.3359     0.8258 0.016 0.084 0.900
#> SRR1036112     3  0.3359     0.8258 0.016 0.084 0.900
#> SRR1036113     3  0.3359     0.8258 0.016 0.084 0.900
#> SRR1036114     3  0.3359     0.8258 0.016 0.084 0.900
#> SRR1036115     1  0.0000     0.8453 1.000 0.000 0.000
#> SRR1036116     1  0.0000     0.8453 1.000 0.000 0.000
#> SRR1036117     1  0.0000     0.8453 1.000 0.000 0.000
#> SRR1036118     1  0.0000     0.8453 1.000 0.000 0.000
#> SRR1036119     1  0.0000     0.8453 1.000 0.000 0.000
#> SRR1036120     1  0.4121     0.7418 0.832 0.000 0.168
#> SRR1036121     1  0.4121     0.7418 0.832 0.000 0.168
#> SRR1036122     1  0.4121     0.7418 0.832 0.000 0.168
#> SRR1036123     1  0.4121     0.7418 0.832 0.000 0.168
#> SRR1036124     1  0.4121     0.7418 0.832 0.000 0.168
#> SRR1036125     1  0.0237     0.8452 0.996 0.000 0.004
#> SRR1036126     1  0.0237     0.8452 0.996 0.000 0.004
#> SRR1036127     1  0.0237     0.8452 0.996 0.000 0.004
#> SRR1036128     1  0.0237     0.8452 0.996 0.000 0.004
#> SRR1036129     1  0.0237     0.8452 0.996 0.000 0.004
#> SRR1036130     1  0.0237     0.8452 0.996 0.000 0.004
#> SRR1036131     1  0.0237     0.8452 0.996 0.000 0.004
#> SRR1036132     1  0.0237     0.8452 0.996 0.000 0.004
#> SRR1036133     2  0.0475     0.8809 0.004 0.992 0.004
#> SRR1036134     2  0.0475     0.8809 0.004 0.992 0.004
#> SRR1036135     2  0.0475     0.8809 0.004 0.992 0.004
#> SRR1036136     2  0.0475     0.8809 0.004 0.992 0.004
#> SRR1036137     2  0.0475     0.8809 0.004 0.992 0.004
#> SRR1036138     2  0.2261     0.8810 0.000 0.932 0.068
#> SRR1036139     2  0.2261     0.8810 0.000 0.932 0.068
#> SRR1036140     2  0.2261     0.8810 0.000 0.932 0.068
#> SRR1036141     2  0.2261     0.8810 0.000 0.932 0.068
#> SRR1036142     2  0.2261     0.8810 0.000 0.932 0.068
#> SRR1036143     2  0.2261     0.8810 0.000 0.932 0.068
#> SRR1036144     2  0.2261     0.8810 0.000 0.932 0.068
#> SRR1036145     2  0.2261     0.8810 0.000 0.932 0.068

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1036002     3  0.1182      0.863 0.000 0.016 0.968 0.016
#> SRR1036003     3  0.1182      0.863 0.000 0.016 0.968 0.016
#> SRR1036004     3  0.1182      0.863 0.000 0.016 0.968 0.016
#> SRR1036005     3  0.0188      0.877 0.000 0.000 0.996 0.004
#> SRR1036006     3  0.0188      0.877 0.000 0.000 0.996 0.004
#> SRR1036007     3  0.0188      0.877 0.000 0.000 0.996 0.004
#> SRR1036008     3  0.0188      0.877 0.000 0.000 0.996 0.004
#> SRR1036009     3  0.0188      0.877 0.000 0.000 0.996 0.004
#> SRR1036013     4  0.5832      0.379 0.032 0.004 0.368 0.596
#> SRR1036014     4  0.5832      0.379 0.032 0.004 0.368 0.596
#> SRR1036015     4  0.5832      0.379 0.032 0.004 0.368 0.596
#> SRR1036016     4  0.5832      0.379 0.032 0.004 0.368 0.596
#> SRR1036017     4  0.5832      0.379 0.032 0.004 0.368 0.596
#> SRR1036018     4  0.5832      0.379 0.032 0.004 0.368 0.596
#> SRR1036010     1  0.0817      0.851 0.976 0.000 0.024 0.000
#> SRR1036011     1  0.0817      0.851 0.976 0.000 0.024 0.000
#> SRR1036012     1  0.0817      0.851 0.976 0.000 0.024 0.000
#> SRR1036019     2  0.2124      0.867 0.000 0.924 0.008 0.068
#> SRR1036020     2  0.2124      0.867 0.000 0.924 0.008 0.068
#> SRR1036021     2  0.2124      0.867 0.000 0.924 0.008 0.068
#> SRR1036022     2  0.2124      0.867 0.000 0.924 0.008 0.068
#> SRR1036023     2  0.2124      0.867 0.000 0.924 0.008 0.068
#> SRR1036024     4  0.4468      0.663 0.164 0.020 0.016 0.800
#> SRR1036025     4  0.4468      0.663 0.164 0.020 0.016 0.800
#> SRR1036026     4  0.4468      0.663 0.164 0.020 0.016 0.800
#> SRR1036027     4  0.4468      0.663 0.164 0.020 0.016 0.800
#> SRR1036028     4  0.4468      0.663 0.164 0.020 0.016 0.800
#> SRR1036029     4  0.4468      0.663 0.164 0.020 0.016 0.800
#> SRR1036030     2  0.4356      0.794 0.148 0.804 0.000 0.048
#> SRR1036031     2  0.4356      0.794 0.148 0.804 0.000 0.048
#> SRR1036032     2  0.4356      0.794 0.148 0.804 0.000 0.048
#> SRR1036033     2  0.4356      0.794 0.148 0.804 0.000 0.048
#> SRR1036034     2  0.4356      0.794 0.148 0.804 0.000 0.048
#> SRR1036035     2  0.4356      0.794 0.148 0.804 0.000 0.048
#> SRR1036036     2  0.4356      0.794 0.148 0.804 0.000 0.048
#> SRR1036037     2  0.4356      0.794 0.148 0.804 0.000 0.048
#> SRR1036038     1  0.4199      0.792 0.836 0.060 0.096 0.008
#> SRR1036039     1  0.4199      0.792 0.836 0.060 0.096 0.008
#> SRR1036040     1  0.4199      0.792 0.836 0.060 0.096 0.008
#> SRR1036041     1  0.0188      0.852 0.996 0.000 0.000 0.004
#> SRR1036042     3  0.5757      0.663 0.000 0.076 0.684 0.240
#> SRR1036043     3  0.5757      0.663 0.000 0.076 0.684 0.240
#> SRR1036044     3  0.5757      0.663 0.000 0.076 0.684 0.240
#> SRR1036045     3  0.5757      0.663 0.000 0.076 0.684 0.240
#> SRR1036046     3  0.5757      0.663 0.000 0.076 0.684 0.240
#> SRR1036047     3  0.5757      0.663 0.000 0.076 0.684 0.240
#> SRR1036048     3  0.5757      0.663 0.000 0.076 0.684 0.240
#> SRR1036049     3  0.5757      0.663 0.000 0.076 0.684 0.240
#> SRR1036050     1  0.0000      0.852 1.000 0.000 0.000 0.000
#> SRR1036051     1  0.0000      0.852 1.000 0.000 0.000 0.000
#> SRR1036052     1  0.0000      0.852 1.000 0.000 0.000 0.000
#> SRR1036053     1  0.0000      0.852 1.000 0.000 0.000 0.000
#> SRR1036054     1  0.0000      0.852 1.000 0.000 0.000 0.000
#> SRR1036055     1  0.4348      0.694 0.780 0.196 0.000 0.024
#> SRR1036056     1  0.4348      0.694 0.780 0.196 0.000 0.024
#> SRR1036057     1  0.4348      0.694 0.780 0.196 0.000 0.024
#> SRR1036058     4  0.1822      0.704 0.044 0.004 0.008 0.944
#> SRR1036059     4  0.1822      0.704 0.044 0.004 0.008 0.944
#> SRR1036060     4  0.1822      0.704 0.044 0.004 0.008 0.944
#> SRR1036061     4  0.1822      0.704 0.044 0.004 0.008 0.944
#> SRR1036062     4  0.1822      0.704 0.044 0.004 0.008 0.944
#> SRR1036063     4  0.1822      0.704 0.044 0.004 0.008 0.944
#> SRR1036064     4  0.1822      0.704 0.044 0.004 0.008 0.944
#> SRR1036065     4  0.1822      0.704 0.044 0.004 0.008 0.944
#> SRR1036066     1  0.2888      0.809 0.872 0.000 0.004 0.124
#> SRR1036067     1  0.2888      0.809 0.872 0.000 0.004 0.124
#> SRR1036068     1  0.2888      0.809 0.872 0.000 0.004 0.124
#> SRR1036069     1  0.2888      0.809 0.872 0.000 0.004 0.124
#> SRR1036070     1  0.2888      0.809 0.872 0.000 0.004 0.124
#> SRR1036071     1  0.2888      0.809 0.872 0.000 0.004 0.124
#> SRR1036072     1  0.2888      0.809 0.872 0.000 0.004 0.124
#> SRR1036073     1  0.2888      0.809 0.872 0.000 0.004 0.124
#> SRR1036074     4  0.6670      0.356 0.004 0.376 0.080 0.540
#> SRR1036075     4  0.6670      0.356 0.004 0.376 0.080 0.540
#> SRR1036076     4  0.6670      0.356 0.004 0.376 0.080 0.540
#> SRR1036077     4  0.6670      0.356 0.004 0.376 0.080 0.540
#> SRR1036078     4  0.6670      0.356 0.004 0.376 0.080 0.540
#> SRR1036079     4  0.6670      0.356 0.004 0.376 0.080 0.540
#> SRR1036080     4  0.6670      0.356 0.004 0.376 0.080 0.540
#> SRR1036081     4  0.6670      0.356 0.004 0.376 0.080 0.540
#> SRR1036082     4  0.3326      0.673 0.004 0.132 0.008 0.856
#> SRR1036083     4  0.3326      0.673 0.004 0.132 0.008 0.856
#> SRR1036084     4  0.3326      0.673 0.004 0.132 0.008 0.856
#> SRR1036090     2  0.0657      0.894 0.000 0.984 0.004 0.012
#> SRR1036091     2  0.0657      0.894 0.000 0.984 0.004 0.012
#> SRR1036092     2  0.0657      0.894 0.000 0.984 0.004 0.012
#> SRR1036093     2  0.0657      0.894 0.000 0.984 0.004 0.012
#> SRR1036094     2  0.0657      0.894 0.000 0.984 0.004 0.012
#> SRR1036085     3  0.0188      0.877 0.000 0.000 0.996 0.004
#> SRR1036086     3  0.0188      0.877 0.000 0.000 0.996 0.004
#> SRR1036087     3  0.0188      0.877 0.000 0.000 0.996 0.004
#> SRR1036088     3  0.0188      0.877 0.000 0.000 0.996 0.004
#> SRR1036089     3  0.0188      0.877 0.000 0.000 0.996 0.004
#> SRR1036095     1  0.6973      0.210 0.496 0.100 0.004 0.400
#> SRR1036096     1  0.6973      0.210 0.496 0.100 0.004 0.400
#> SRR1036097     1  0.6973      0.210 0.496 0.100 0.004 0.400
#> SRR1036098     1  0.6973      0.210 0.496 0.100 0.004 0.400
#> SRR1036099     1  0.6973      0.210 0.496 0.100 0.004 0.400
#> SRR1036100     2  0.3808      0.762 0.004 0.808 0.004 0.184
#> SRR1036101     2  0.3808      0.762 0.004 0.808 0.004 0.184
#> SRR1036102     2  0.3808      0.762 0.004 0.808 0.004 0.184
#> SRR1036103     2  0.3808      0.762 0.004 0.808 0.004 0.184
#> SRR1036104     2  0.3808      0.762 0.004 0.808 0.004 0.184
#> SRR1036105     3  0.0188      0.877 0.000 0.000 0.996 0.004
#> SRR1036106     3  0.0188      0.877 0.000 0.000 0.996 0.004
#> SRR1036107     3  0.0188      0.877 0.000 0.000 0.996 0.004
#> SRR1036108     3  0.0188      0.877 0.000 0.000 0.996 0.004
#> SRR1036109     3  0.0188      0.877 0.000 0.000 0.996 0.004
#> SRR1036110     4  0.4574      0.602 0.008 0.016 0.208 0.768
#> SRR1036111     4  0.4574      0.602 0.008 0.016 0.208 0.768
#> SRR1036112     4  0.4574      0.602 0.008 0.016 0.208 0.768
#> SRR1036113     4  0.4574      0.602 0.008 0.016 0.208 0.768
#> SRR1036114     4  0.4574      0.602 0.008 0.016 0.208 0.768
#> SRR1036115     1  0.1557      0.844 0.944 0.000 0.000 0.056
#> SRR1036116     1  0.1557      0.844 0.944 0.000 0.000 0.056
#> SRR1036117     1  0.1557      0.844 0.944 0.000 0.000 0.056
#> SRR1036118     1  0.1557      0.844 0.944 0.000 0.000 0.056
#> SRR1036119     1  0.1557      0.844 0.944 0.000 0.000 0.056
#> SRR1036120     1  0.4677      0.746 0.776 0.000 0.176 0.048
#> SRR1036121     1  0.4677      0.746 0.776 0.000 0.176 0.048
#> SRR1036122     1  0.4677      0.746 0.776 0.000 0.176 0.048
#> SRR1036123     1  0.4677      0.746 0.776 0.000 0.176 0.048
#> SRR1036124     1  0.4677      0.746 0.776 0.000 0.176 0.048
#> SRR1036125     1  0.1059      0.854 0.972 0.000 0.016 0.012
#> SRR1036126     1  0.1059      0.854 0.972 0.000 0.016 0.012
#> SRR1036127     1  0.1059      0.854 0.972 0.000 0.016 0.012
#> SRR1036128     1  0.1059      0.854 0.972 0.000 0.016 0.012
#> SRR1036129     1  0.1059      0.854 0.972 0.000 0.016 0.012
#> SRR1036130     1  0.1059      0.854 0.972 0.000 0.016 0.012
#> SRR1036131     1  0.1059      0.854 0.972 0.000 0.016 0.012
#> SRR1036132     1  0.1059      0.854 0.972 0.000 0.016 0.012
#> SRR1036133     2  0.1022      0.891 0.000 0.968 0.000 0.032
#> SRR1036134     2  0.1022      0.891 0.000 0.968 0.000 0.032
#> SRR1036135     2  0.1022      0.891 0.000 0.968 0.000 0.032
#> SRR1036136     2  0.1022      0.891 0.000 0.968 0.000 0.032
#> SRR1036137     2  0.1022      0.891 0.000 0.968 0.000 0.032
#> SRR1036138     2  0.0376      0.896 0.000 0.992 0.004 0.004
#> SRR1036139     2  0.0376      0.896 0.000 0.992 0.004 0.004
#> SRR1036140     2  0.0376      0.896 0.000 0.992 0.004 0.004
#> SRR1036141     2  0.0376      0.896 0.000 0.992 0.004 0.004
#> SRR1036142     2  0.0376      0.896 0.000 0.992 0.004 0.004
#> SRR1036143     2  0.0376      0.896 0.000 0.992 0.004 0.004
#> SRR1036144     2  0.0376      0.896 0.000 0.992 0.004 0.004
#> SRR1036145     2  0.0376      0.896 0.000 0.992 0.004 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1036002     3  0.2672      0.781 0.004 0.000 0.872 0.008 0.116
#> SRR1036003     3  0.2672      0.781 0.004 0.000 0.872 0.008 0.116
#> SRR1036004     3  0.2672      0.781 0.004 0.000 0.872 0.008 0.116
#> SRR1036005     3  0.0000      0.817 0.000 0.000 1.000 0.000 0.000
#> SRR1036006     3  0.0000      0.817 0.000 0.000 1.000 0.000 0.000
#> SRR1036007     3  0.0000      0.817 0.000 0.000 1.000 0.000 0.000
#> SRR1036008     3  0.0000      0.817 0.000 0.000 1.000 0.000 0.000
#> SRR1036009     3  0.0000      0.817 0.000 0.000 1.000 0.000 0.000
#> SRR1036013     4  0.5015      0.577 0.008 0.004 0.220 0.708 0.060
#> SRR1036014     4  0.5015      0.577 0.008 0.004 0.220 0.708 0.060
#> SRR1036015     4  0.5015      0.577 0.008 0.004 0.220 0.708 0.060
#> SRR1036016     4  0.5015      0.577 0.008 0.004 0.220 0.708 0.060
#> SRR1036017     4  0.5015      0.577 0.008 0.004 0.220 0.708 0.060
#> SRR1036018     4  0.5015      0.577 0.008 0.004 0.220 0.708 0.060
#> SRR1036010     1  0.0671      0.817 0.980 0.000 0.000 0.004 0.016
#> SRR1036011     1  0.0671      0.817 0.980 0.000 0.000 0.004 0.016
#> SRR1036012     1  0.0671      0.817 0.980 0.000 0.000 0.004 0.016
#> SRR1036019     2  0.4251      0.368 0.000 0.624 0.004 0.000 0.372
#> SRR1036020     2  0.4251      0.368 0.000 0.624 0.004 0.000 0.372
#> SRR1036021     2  0.4251      0.368 0.000 0.624 0.004 0.000 0.372
#> SRR1036022     2  0.4251      0.368 0.000 0.624 0.004 0.000 0.372
#> SRR1036023     2  0.4251      0.368 0.000 0.624 0.004 0.000 0.372
#> SRR1036024     4  0.3750      0.598 0.116 0.000 0.004 0.820 0.060
#> SRR1036025     4  0.3750      0.598 0.116 0.000 0.004 0.820 0.060
#> SRR1036026     4  0.3750      0.598 0.116 0.000 0.004 0.820 0.060
#> SRR1036027     4  0.3750      0.598 0.116 0.000 0.004 0.820 0.060
#> SRR1036028     4  0.3750      0.598 0.116 0.000 0.004 0.820 0.060
#> SRR1036029     4  0.3750      0.598 0.116 0.000 0.004 0.820 0.060
#> SRR1036030     2  0.4020      0.732 0.072 0.812 0.000 0.012 0.104
#> SRR1036031     2  0.4020      0.732 0.072 0.812 0.000 0.012 0.104
#> SRR1036032     2  0.4020      0.732 0.072 0.812 0.000 0.012 0.104
#> SRR1036033     2  0.4020      0.732 0.072 0.812 0.000 0.012 0.104
#> SRR1036034     2  0.4020      0.732 0.072 0.812 0.000 0.012 0.104
#> SRR1036035     2  0.4020      0.732 0.072 0.812 0.000 0.012 0.104
#> SRR1036036     2  0.4020      0.732 0.072 0.812 0.000 0.012 0.104
#> SRR1036037     2  0.4020      0.732 0.072 0.812 0.000 0.012 0.104
#> SRR1036038     1  0.4166      0.758 0.820 0.044 0.092 0.004 0.040
#> SRR1036039     1  0.4166      0.758 0.820 0.044 0.092 0.004 0.040
#> SRR1036040     1  0.4166      0.758 0.820 0.044 0.092 0.004 0.040
#> SRR1036041     1  0.0671      0.818 0.980 0.000 0.000 0.016 0.004
#> SRR1036042     3  0.6898      0.510 0.004 0.044 0.496 0.104 0.352
#> SRR1036043     3  0.6898      0.510 0.004 0.044 0.496 0.104 0.352
#> SRR1036044     3  0.6898      0.510 0.004 0.044 0.496 0.104 0.352
#> SRR1036045     3  0.6898      0.510 0.004 0.044 0.496 0.104 0.352
#> SRR1036046     3  0.6898      0.510 0.004 0.044 0.496 0.104 0.352
#> SRR1036047     3  0.6898      0.510 0.004 0.044 0.496 0.104 0.352
#> SRR1036048     3  0.6898      0.510 0.004 0.044 0.496 0.104 0.352
#> SRR1036049     3  0.6898      0.510 0.004 0.044 0.496 0.104 0.352
#> SRR1036050     1  0.0566      0.818 0.984 0.000 0.000 0.004 0.012
#> SRR1036051     1  0.0566      0.818 0.984 0.000 0.000 0.004 0.012
#> SRR1036052     1  0.0566      0.818 0.984 0.000 0.000 0.004 0.012
#> SRR1036053     1  0.0566      0.818 0.984 0.000 0.000 0.004 0.012
#> SRR1036054     1  0.0566      0.818 0.984 0.000 0.000 0.004 0.012
#> SRR1036055     1  0.4691      0.661 0.736 0.184 0.000 0.004 0.076
#> SRR1036056     1  0.4691      0.661 0.736 0.184 0.000 0.004 0.076
#> SRR1036057     1  0.4691      0.661 0.736 0.184 0.000 0.004 0.076
#> SRR1036058     4  0.3733      0.618 0.020 0.008 0.012 0.824 0.136
#> SRR1036059     4  0.3733      0.618 0.020 0.008 0.012 0.824 0.136
#> SRR1036060     4  0.3733      0.618 0.020 0.008 0.012 0.824 0.136
#> SRR1036061     4  0.3733      0.618 0.020 0.008 0.012 0.824 0.136
#> SRR1036062     4  0.3733      0.618 0.020 0.008 0.012 0.824 0.136
#> SRR1036063     4  0.3733      0.618 0.020 0.008 0.012 0.824 0.136
#> SRR1036064     4  0.3733      0.618 0.020 0.008 0.012 0.824 0.136
#> SRR1036065     4  0.3733      0.618 0.020 0.008 0.012 0.824 0.136
#> SRR1036066     1  0.5004      0.649 0.672 0.000 0.000 0.256 0.072
#> SRR1036067     1  0.5004      0.649 0.672 0.000 0.000 0.256 0.072
#> SRR1036068     1  0.5004      0.649 0.672 0.000 0.000 0.256 0.072
#> SRR1036069     1  0.5004      0.649 0.672 0.000 0.000 0.256 0.072
#> SRR1036070     1  0.5004      0.649 0.672 0.000 0.000 0.256 0.072
#> SRR1036071     1  0.5004      0.649 0.672 0.000 0.000 0.256 0.072
#> SRR1036072     1  0.5004      0.649 0.672 0.000 0.000 0.256 0.072
#> SRR1036073     1  0.5004      0.649 0.672 0.000 0.000 0.256 0.072
#> SRR1036074     5  0.5124      0.769 0.000 0.144 0.004 0.144 0.708
#> SRR1036075     5  0.5124      0.769 0.000 0.144 0.004 0.144 0.708
#> SRR1036076     5  0.5124      0.769 0.000 0.144 0.004 0.144 0.708
#> SRR1036077     5  0.5124      0.769 0.000 0.144 0.004 0.144 0.708
#> SRR1036078     5  0.5124      0.769 0.000 0.144 0.004 0.144 0.708
#> SRR1036079     5  0.5124      0.769 0.000 0.144 0.004 0.144 0.708
#> SRR1036080     5  0.5124      0.769 0.000 0.144 0.004 0.144 0.708
#> SRR1036081     5  0.5124      0.769 0.000 0.144 0.004 0.144 0.708
#> SRR1036082     5  0.5429      0.344 0.000 0.068 0.000 0.368 0.564
#> SRR1036083     5  0.5429      0.344 0.000 0.068 0.000 0.368 0.564
#> SRR1036084     5  0.5429      0.344 0.000 0.068 0.000 0.368 0.564
#> SRR1036090     2  0.2733      0.777 0.000 0.872 0.004 0.012 0.112
#> SRR1036091     2  0.2733      0.777 0.000 0.872 0.004 0.012 0.112
#> SRR1036092     2  0.2733      0.777 0.000 0.872 0.004 0.012 0.112
#> SRR1036093     2  0.2733      0.777 0.000 0.872 0.004 0.012 0.112
#> SRR1036094     2  0.2733      0.777 0.000 0.872 0.004 0.012 0.112
#> SRR1036085     3  0.0000      0.817 0.000 0.000 1.000 0.000 0.000
#> SRR1036086     3  0.0000      0.817 0.000 0.000 1.000 0.000 0.000
#> SRR1036087     3  0.0000      0.817 0.000 0.000 1.000 0.000 0.000
#> SRR1036088     3  0.0000      0.817 0.000 0.000 1.000 0.000 0.000
#> SRR1036089     3  0.0000      0.817 0.000 0.000 1.000 0.000 0.000
#> SRR1036095     4  0.6936      0.212 0.404 0.040 0.000 0.432 0.124
#> SRR1036096     4  0.6936      0.212 0.404 0.040 0.000 0.432 0.124
#> SRR1036097     4  0.6936      0.212 0.404 0.040 0.000 0.432 0.124
#> SRR1036098     4  0.6936      0.212 0.404 0.040 0.000 0.432 0.124
#> SRR1036099     4  0.6936      0.212 0.404 0.040 0.000 0.432 0.124
#> SRR1036100     5  0.4986      0.486 0.004 0.356 0.000 0.032 0.608
#> SRR1036101     5  0.4986      0.486 0.004 0.356 0.000 0.032 0.608
#> SRR1036102     5  0.4986      0.486 0.004 0.356 0.000 0.032 0.608
#> SRR1036103     5  0.4986      0.486 0.004 0.356 0.000 0.032 0.608
#> SRR1036104     5  0.4986      0.486 0.004 0.356 0.000 0.032 0.608
#> SRR1036105     3  0.0000      0.817 0.000 0.000 1.000 0.000 0.000
#> SRR1036106     3  0.0000      0.817 0.000 0.000 1.000 0.000 0.000
#> SRR1036107     3  0.0000      0.817 0.000 0.000 1.000 0.000 0.000
#> SRR1036108     3  0.0000      0.817 0.000 0.000 1.000 0.000 0.000
#> SRR1036109     3  0.0000      0.817 0.000 0.000 1.000 0.000 0.000
#> SRR1036110     4  0.6030      0.326 0.000 0.004 0.112 0.532 0.352
#> SRR1036111     4  0.6030      0.326 0.000 0.004 0.112 0.532 0.352
#> SRR1036112     4  0.6030      0.326 0.000 0.004 0.112 0.532 0.352
#> SRR1036113     4  0.6030      0.326 0.000 0.004 0.112 0.532 0.352
#> SRR1036114     4  0.6030      0.326 0.000 0.004 0.112 0.532 0.352
#> SRR1036115     1  0.4166      0.709 0.796 0.008 0.000 0.120 0.076
#> SRR1036116     1  0.4166      0.709 0.796 0.008 0.000 0.120 0.076
#> SRR1036117     1  0.4166      0.709 0.796 0.008 0.000 0.120 0.076
#> SRR1036118     1  0.4166      0.709 0.796 0.008 0.000 0.120 0.076
#> SRR1036119     1  0.4166      0.709 0.796 0.008 0.000 0.120 0.076
#> SRR1036120     1  0.5603      0.694 0.704 0.000 0.164 0.060 0.072
#> SRR1036121     1  0.5603      0.694 0.704 0.000 0.164 0.060 0.072
#> SRR1036122     1  0.5603      0.694 0.704 0.000 0.164 0.060 0.072
#> SRR1036123     1  0.5603      0.694 0.704 0.000 0.164 0.060 0.072
#> SRR1036124     1  0.5603      0.694 0.704 0.000 0.164 0.060 0.072
#> SRR1036125     1  0.1278      0.820 0.960 0.000 0.016 0.020 0.004
#> SRR1036126     1  0.1278      0.820 0.960 0.000 0.016 0.020 0.004
#> SRR1036127     1  0.1278      0.820 0.960 0.000 0.016 0.020 0.004
#> SRR1036128     1  0.1278      0.820 0.960 0.000 0.016 0.020 0.004
#> SRR1036129     1  0.1278      0.820 0.960 0.000 0.016 0.020 0.004
#> SRR1036130     1  0.1278      0.820 0.960 0.000 0.016 0.020 0.004
#> SRR1036131     1  0.1278      0.820 0.960 0.000 0.016 0.020 0.004
#> SRR1036132     1  0.1278      0.820 0.960 0.000 0.016 0.020 0.004
#> SRR1036133     2  0.1571      0.796 0.000 0.936 0.000 0.004 0.060
#> SRR1036134     2  0.1571      0.796 0.000 0.936 0.000 0.004 0.060
#> SRR1036135     2  0.1571      0.796 0.000 0.936 0.000 0.004 0.060
#> SRR1036136     2  0.1571      0.796 0.000 0.936 0.000 0.004 0.060
#> SRR1036137     2  0.1571      0.796 0.000 0.936 0.000 0.004 0.060
#> SRR1036138     2  0.1502      0.805 0.000 0.940 0.004 0.000 0.056
#> SRR1036139     2  0.1502      0.805 0.000 0.940 0.004 0.000 0.056
#> SRR1036140     2  0.1502      0.805 0.000 0.940 0.004 0.000 0.056
#> SRR1036141     2  0.1502      0.805 0.000 0.940 0.004 0.000 0.056
#> SRR1036142     2  0.1502      0.805 0.000 0.940 0.004 0.000 0.056
#> SRR1036143     2  0.1502      0.805 0.000 0.940 0.004 0.000 0.056
#> SRR1036144     2  0.1502      0.805 0.000 0.940 0.004 0.000 0.056
#> SRR1036145     2  0.1502      0.805 0.000 0.940 0.004 0.000 0.056

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1036002     3  0.4307     0.7167 0.004 0.004 0.764 0.020 0.052 0.156
#> SRR1036003     3  0.4307     0.7167 0.004 0.004 0.764 0.020 0.052 0.156
#> SRR1036004     3  0.4307     0.7167 0.004 0.004 0.764 0.020 0.052 0.156
#> SRR1036005     3  0.0000     0.7841 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036006     3  0.0000     0.7841 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036007     3  0.0000     0.7841 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036008     3  0.0000     0.7841 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036009     3  0.0000     0.7841 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036013     4  0.6089     0.5261 0.000 0.000 0.220 0.576 0.052 0.152
#> SRR1036014     4  0.6089     0.5261 0.000 0.000 0.220 0.576 0.052 0.152
#> SRR1036015     4  0.6089     0.5261 0.000 0.000 0.220 0.576 0.052 0.152
#> SRR1036016     4  0.6089     0.5261 0.000 0.000 0.220 0.576 0.052 0.152
#> SRR1036017     4  0.6089     0.5261 0.000 0.000 0.220 0.576 0.052 0.152
#> SRR1036018     4  0.6089     0.5261 0.000 0.000 0.220 0.576 0.052 0.152
#> SRR1036010     1  0.1261     0.6363 0.956 0.004 0.004 0.008 0.000 0.028
#> SRR1036011     1  0.1261     0.6363 0.956 0.004 0.004 0.008 0.000 0.028
#> SRR1036012     1  0.1261     0.6363 0.956 0.004 0.004 0.008 0.000 0.028
#> SRR1036019     2  0.5887     0.2736 0.000 0.404 0.000 0.000 0.396 0.200
#> SRR1036020     2  0.5887     0.2736 0.000 0.404 0.000 0.000 0.396 0.200
#> SRR1036021     2  0.5887     0.2736 0.000 0.404 0.000 0.000 0.396 0.200
#> SRR1036022     2  0.5887     0.2736 0.000 0.404 0.000 0.000 0.396 0.200
#> SRR1036023     2  0.5887     0.2736 0.000 0.404 0.000 0.000 0.396 0.200
#> SRR1036024     4  0.2873     0.4595 0.068 0.000 0.004 0.872 0.044 0.012
#> SRR1036025     4  0.2873     0.4595 0.068 0.000 0.004 0.872 0.044 0.012
#> SRR1036026     4  0.2873     0.4595 0.068 0.000 0.004 0.872 0.044 0.012
#> SRR1036027     4  0.2873     0.4595 0.068 0.000 0.004 0.872 0.044 0.012
#> SRR1036028     4  0.2873     0.4595 0.068 0.000 0.004 0.872 0.044 0.012
#> SRR1036029     4  0.2873     0.4595 0.068 0.000 0.004 0.872 0.044 0.012
#> SRR1036030     2  0.3946     0.6722 0.056 0.808 0.000 0.004 0.044 0.088
#> SRR1036031     2  0.3946     0.6722 0.056 0.808 0.000 0.004 0.044 0.088
#> SRR1036032     2  0.3946     0.6722 0.056 0.808 0.000 0.004 0.044 0.088
#> SRR1036033     2  0.3946     0.6722 0.056 0.808 0.000 0.004 0.044 0.088
#> SRR1036034     2  0.3946     0.6722 0.056 0.808 0.000 0.004 0.044 0.088
#> SRR1036035     2  0.3946     0.6722 0.056 0.808 0.000 0.004 0.044 0.088
#> SRR1036036     2  0.3946     0.6722 0.056 0.808 0.000 0.004 0.044 0.088
#> SRR1036037     2  0.3946     0.6722 0.056 0.808 0.000 0.004 0.044 0.088
#> SRR1036038     1  0.4798     0.5612 0.756 0.092 0.100 0.004 0.016 0.032
#> SRR1036039     1  0.4798     0.5612 0.756 0.092 0.100 0.004 0.016 0.032
#> SRR1036040     1  0.4798     0.5612 0.756 0.092 0.100 0.004 0.016 0.032
#> SRR1036041     1  0.1218     0.6401 0.956 0.004 0.000 0.028 0.000 0.012
#> SRR1036042     3  0.7393     0.4754 0.004 0.020 0.428 0.068 0.280 0.200
#> SRR1036043     3  0.7393     0.4754 0.004 0.020 0.428 0.068 0.280 0.200
#> SRR1036044     3  0.7393     0.4754 0.004 0.020 0.428 0.068 0.280 0.200
#> SRR1036045     3  0.7393     0.4754 0.004 0.020 0.428 0.068 0.280 0.200
#> SRR1036046     3  0.7393     0.4754 0.004 0.020 0.428 0.068 0.280 0.200
#> SRR1036047     3  0.7393     0.4754 0.004 0.020 0.428 0.068 0.280 0.200
#> SRR1036048     3  0.7393     0.4754 0.004 0.020 0.428 0.068 0.280 0.200
#> SRR1036049     3  0.7393     0.4754 0.004 0.020 0.428 0.068 0.280 0.200
#> SRR1036050     1  0.0622     0.6333 0.980 0.000 0.000 0.012 0.000 0.008
#> SRR1036051     1  0.0622     0.6333 0.980 0.000 0.000 0.012 0.000 0.008
#> SRR1036052     1  0.0622     0.6333 0.980 0.000 0.000 0.012 0.000 0.008
#> SRR1036053     1  0.0622     0.6333 0.980 0.000 0.000 0.012 0.000 0.008
#> SRR1036054     1  0.0622     0.6333 0.980 0.000 0.000 0.012 0.000 0.008
#> SRR1036055     1  0.4695     0.4502 0.692 0.232 0.000 0.000 0.032 0.044
#> SRR1036056     1  0.4695     0.4502 0.692 0.232 0.000 0.000 0.032 0.044
#> SRR1036057     1  0.4695     0.4502 0.692 0.232 0.000 0.000 0.032 0.044
#> SRR1036058     4  0.6083     0.5157 0.012 0.000 0.000 0.480 0.200 0.308
#> SRR1036059     4  0.6083     0.5157 0.012 0.000 0.000 0.480 0.200 0.308
#> SRR1036060     4  0.6083     0.5157 0.012 0.000 0.000 0.480 0.200 0.308
#> SRR1036061     4  0.6083     0.5157 0.012 0.000 0.000 0.480 0.200 0.308
#> SRR1036062     4  0.6083     0.5157 0.012 0.000 0.000 0.480 0.200 0.308
#> SRR1036063     4  0.6083     0.5157 0.012 0.000 0.000 0.480 0.200 0.308
#> SRR1036064     4  0.6083     0.5157 0.012 0.000 0.000 0.480 0.200 0.308
#> SRR1036065     4  0.6083     0.5157 0.012 0.000 0.000 0.480 0.200 0.308
#> SRR1036066     1  0.5278     0.4337 0.488 0.000 0.000 0.412 0.000 0.100
#> SRR1036067     1  0.5278     0.4337 0.488 0.000 0.000 0.412 0.000 0.100
#> SRR1036068     1  0.5278     0.4337 0.488 0.000 0.000 0.412 0.000 0.100
#> SRR1036069     1  0.5278     0.4337 0.488 0.000 0.000 0.412 0.000 0.100
#> SRR1036070     1  0.5278     0.4337 0.488 0.000 0.000 0.412 0.000 0.100
#> SRR1036071     1  0.5278     0.4337 0.488 0.000 0.000 0.412 0.000 0.100
#> SRR1036072     1  0.5278     0.4337 0.488 0.000 0.000 0.412 0.000 0.100
#> SRR1036073     1  0.5278     0.4337 0.488 0.000 0.000 0.412 0.000 0.100
#> SRR1036074     5  0.0909     0.6740 0.000 0.020 0.000 0.012 0.968 0.000
#> SRR1036075     5  0.0909     0.6740 0.000 0.020 0.000 0.012 0.968 0.000
#> SRR1036076     5  0.0909     0.6740 0.000 0.020 0.000 0.012 0.968 0.000
#> SRR1036077     5  0.0909     0.6740 0.000 0.020 0.000 0.012 0.968 0.000
#> SRR1036078     5  0.0909     0.6740 0.000 0.020 0.000 0.012 0.968 0.000
#> SRR1036079     5  0.0909     0.6740 0.000 0.020 0.000 0.012 0.968 0.000
#> SRR1036080     5  0.0909     0.6740 0.000 0.020 0.000 0.012 0.968 0.000
#> SRR1036081     5  0.0909     0.6740 0.000 0.020 0.000 0.012 0.968 0.000
#> SRR1036082     5  0.5010     0.4948 0.000 0.040 0.000 0.168 0.700 0.092
#> SRR1036083     5  0.5010     0.4948 0.000 0.040 0.000 0.168 0.700 0.092
#> SRR1036084     5  0.5010     0.4948 0.000 0.040 0.000 0.168 0.700 0.092
#> SRR1036090     2  0.4329     0.7198 0.000 0.700 0.000 0.004 0.056 0.240
#> SRR1036091     2  0.4329     0.7198 0.000 0.700 0.000 0.004 0.056 0.240
#> SRR1036092     2  0.4329     0.7198 0.000 0.700 0.000 0.004 0.056 0.240
#> SRR1036093     2  0.4329     0.7198 0.000 0.700 0.000 0.004 0.056 0.240
#> SRR1036094     2  0.4329     0.7198 0.000 0.700 0.000 0.004 0.056 0.240
#> SRR1036085     3  0.0000     0.7841 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036086     3  0.0000     0.7841 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036087     3  0.0000     0.7841 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036088     3  0.0000     0.7841 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036089     3  0.0000     0.7841 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036095     6  0.6710     1.0000 0.344 0.020 0.000 0.228 0.012 0.396
#> SRR1036096     6  0.6710     1.0000 0.344 0.020 0.000 0.228 0.012 0.396
#> SRR1036097     6  0.6710     1.0000 0.344 0.020 0.000 0.228 0.012 0.396
#> SRR1036098     6  0.6710     1.0000 0.344 0.020 0.000 0.228 0.012 0.396
#> SRR1036099     6  0.6710     1.0000 0.344 0.020 0.000 0.228 0.012 0.396
#> SRR1036100     5  0.4354     0.4714 0.000 0.216 0.000 0.000 0.704 0.080
#> SRR1036101     5  0.4354     0.4714 0.000 0.216 0.000 0.000 0.704 0.080
#> SRR1036102     5  0.4354     0.4714 0.000 0.216 0.000 0.000 0.704 0.080
#> SRR1036103     5  0.4354     0.4714 0.000 0.216 0.000 0.000 0.704 0.080
#> SRR1036104     5  0.4354     0.4714 0.000 0.216 0.000 0.000 0.704 0.080
#> SRR1036105     3  0.0000     0.7841 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036106     3  0.0000     0.7841 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036107     3  0.0000     0.7841 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036108     3  0.0000     0.7841 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036109     3  0.0000     0.7841 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036110     5  0.6777    -0.0576 0.000 0.000 0.068 0.380 0.388 0.164
#> SRR1036111     5  0.6777    -0.0576 0.000 0.000 0.068 0.380 0.388 0.164
#> SRR1036112     5  0.6777    -0.0576 0.000 0.000 0.068 0.380 0.388 0.164
#> SRR1036113     5  0.6777    -0.0576 0.000 0.000 0.068 0.380 0.388 0.164
#> SRR1036114     5  0.6777    -0.0576 0.000 0.000 0.068 0.380 0.388 0.164
#> SRR1036115     1  0.4158     0.1135 0.704 0.000 0.000 0.052 0.000 0.244
#> SRR1036116     1  0.4158     0.1135 0.704 0.000 0.000 0.052 0.000 0.244
#> SRR1036117     1  0.4158     0.1135 0.704 0.000 0.000 0.052 0.000 0.244
#> SRR1036118     1  0.4158     0.1135 0.704 0.000 0.000 0.052 0.000 0.244
#> SRR1036119     1  0.4158     0.1135 0.704 0.000 0.000 0.052 0.000 0.244
#> SRR1036120     1  0.6238     0.5012 0.616 0.004 0.104 0.116 0.004 0.156
#> SRR1036121     1  0.6238     0.5012 0.616 0.004 0.104 0.116 0.004 0.156
#> SRR1036122     1  0.6238     0.5012 0.616 0.004 0.104 0.116 0.004 0.156
#> SRR1036123     1  0.6238     0.5012 0.616 0.004 0.104 0.116 0.004 0.156
#> SRR1036124     1  0.6238     0.5012 0.616 0.004 0.104 0.116 0.004 0.156
#> SRR1036125     1  0.2617     0.6460 0.880 0.000 0.032 0.080 0.004 0.004
#> SRR1036126     1  0.2617     0.6460 0.880 0.000 0.032 0.080 0.004 0.004
#> SRR1036127     1  0.2617     0.6460 0.880 0.000 0.032 0.080 0.004 0.004
#> SRR1036128     1  0.2617     0.6460 0.880 0.000 0.032 0.080 0.004 0.004
#> SRR1036129     1  0.2617     0.6460 0.880 0.000 0.032 0.080 0.004 0.004
#> SRR1036130     1  0.2617     0.6460 0.880 0.000 0.032 0.080 0.004 0.004
#> SRR1036131     1  0.2617     0.6460 0.880 0.000 0.032 0.080 0.004 0.004
#> SRR1036132     1  0.2617     0.6460 0.880 0.000 0.032 0.080 0.004 0.004
#> SRR1036133     2  0.1152     0.7275 0.000 0.952 0.000 0.000 0.044 0.004
#> SRR1036134     2  0.1152     0.7275 0.000 0.952 0.000 0.000 0.044 0.004
#> SRR1036135     2  0.1152     0.7275 0.000 0.952 0.000 0.000 0.044 0.004
#> SRR1036136     2  0.1152     0.7275 0.000 0.952 0.000 0.000 0.044 0.004
#> SRR1036137     2  0.1152     0.7275 0.000 0.952 0.000 0.000 0.044 0.004
#> SRR1036138     2  0.3381     0.7483 0.000 0.800 0.000 0.000 0.044 0.156
#> SRR1036139     2  0.3381     0.7483 0.000 0.800 0.000 0.000 0.044 0.156
#> SRR1036140     2  0.3381     0.7483 0.000 0.800 0.000 0.000 0.044 0.156
#> SRR1036141     2  0.3381     0.7483 0.000 0.800 0.000 0.000 0.044 0.156
#> SRR1036142     2  0.3381     0.7483 0.000 0.800 0.000 0.000 0.044 0.156
#> SRR1036143     2  0.3381     0.7483 0.000 0.800 0.000 0.000 0.044 0.156
#> SRR1036144     2  0.3381     0.7483 0.000 0.800 0.000 0.000 0.044 0.156
#> SRR1036145     2  0.3381     0.7483 0.000 0.800 0.000 0.000 0.044 0.156

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15218 rows and 144 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.306           0.456       0.709         0.2958 0.548   0.548
#> 3 3 0.607           0.819       0.826         0.7304 0.560   0.402
#> 4 4 0.771           0.904       0.919         0.3180 0.813   0.612
#> 5 5 0.815           0.920       0.939         0.0804 0.951   0.836
#> 6 6 0.795           0.863       0.898         0.0817 0.948   0.794

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1036002     1   0.625      0.407 0.844 0.156
#> SRR1036003     1   0.644      0.406 0.836 0.164
#> SRR1036004     1   0.662      0.406 0.828 0.172
#> SRR1036005     1   0.689      0.394 0.816 0.184
#> SRR1036006     1   0.689      0.394 0.816 0.184
#> SRR1036007     1   0.689      0.394 0.816 0.184
#> SRR1036008     1   0.689      0.394 0.816 0.184
#> SRR1036009     1   0.689      0.394 0.816 0.184
#> SRR1036013     2   0.961      0.508 0.384 0.616
#> SRR1036014     2   0.961      0.508 0.384 0.616
#> SRR1036015     2   0.961      0.508 0.384 0.616
#> SRR1036016     2   0.961      0.508 0.384 0.616
#> SRR1036017     2   0.961      0.508 0.384 0.616
#> SRR1036018     2   0.961      0.508 0.384 0.616
#> SRR1036010     2   0.000      0.418 0.000 1.000
#> SRR1036011     2   0.000      0.418 0.000 1.000
#> SRR1036012     2   0.000      0.418 0.000 1.000
#> SRR1036019     1   0.987      0.431 0.568 0.432
#> SRR1036020     1   0.987      0.431 0.568 0.432
#> SRR1036021     1   0.987      0.431 0.568 0.432
#> SRR1036022     1   0.987      0.431 0.568 0.432
#> SRR1036023     1   0.987      0.431 0.568 0.432
#> SRR1036024     2   0.961      0.508 0.384 0.616
#> SRR1036025     2   0.961      0.508 0.384 0.616
#> SRR1036026     2   0.961      0.508 0.384 0.616
#> SRR1036027     2   0.961      0.508 0.384 0.616
#> SRR1036028     2   0.961      0.508 0.384 0.616
#> SRR1036029     2   0.961      0.508 0.384 0.616
#> SRR1036030     1   0.987      0.431 0.568 0.432
#> SRR1036031     1   0.987      0.431 0.568 0.432
#> SRR1036032     1   0.987      0.431 0.568 0.432
#> SRR1036033     1   0.987      0.431 0.568 0.432
#> SRR1036034     1   0.987      0.431 0.568 0.432
#> SRR1036035     1   0.987      0.431 0.568 0.432
#> SRR1036036     1   0.987      0.431 0.568 0.432
#> SRR1036037     1   0.987      0.431 0.568 0.432
#> SRR1036038     2   0.000      0.418 0.000 1.000
#> SRR1036039     2   0.000      0.418 0.000 1.000
#> SRR1036040     2   0.000      0.418 0.000 1.000
#> SRR1036041     2   0.000      0.418 0.000 1.000
#> SRR1036042     2   0.961      0.508 0.384 0.616
#> SRR1036043     2   0.961      0.508 0.384 0.616
#> SRR1036044     2   0.961      0.508 0.384 0.616
#> SRR1036045     2   0.961      0.508 0.384 0.616
#> SRR1036046     2   0.961      0.508 0.384 0.616
#> SRR1036047     2   0.961      0.508 0.384 0.616
#> SRR1036048     2   0.961      0.508 0.384 0.616
#> SRR1036049     2   0.961      0.508 0.384 0.616
#> SRR1036050     2   0.000      0.418 0.000 1.000
#> SRR1036051     2   0.000      0.418 0.000 1.000
#> SRR1036052     2   0.000      0.418 0.000 1.000
#> SRR1036053     2   0.000      0.418 0.000 1.000
#> SRR1036054     2   0.000      0.418 0.000 1.000
#> SRR1036055     2   0.000      0.418 0.000 1.000
#> SRR1036056     2   0.000      0.418 0.000 1.000
#> SRR1036057     2   0.000      0.418 0.000 1.000
#> SRR1036058     2   0.961      0.508 0.384 0.616
#> SRR1036059     2   0.961      0.508 0.384 0.616
#> SRR1036060     2   0.961      0.508 0.384 0.616
#> SRR1036061     2   0.961      0.508 0.384 0.616
#> SRR1036062     2   0.961      0.508 0.384 0.616
#> SRR1036063     2   0.961      0.508 0.384 0.616
#> SRR1036064     2   0.961      0.508 0.384 0.616
#> SRR1036065     2   0.961      0.508 0.384 0.616
#> SRR1036066     2   0.961      0.508 0.384 0.616
#> SRR1036067     2   0.961      0.508 0.384 0.616
#> SRR1036068     2   0.961      0.508 0.384 0.616
#> SRR1036069     2   0.961      0.508 0.384 0.616
#> SRR1036070     2   0.961      0.508 0.384 0.616
#> SRR1036071     2   0.961      0.508 0.384 0.616
#> SRR1036072     2   0.961      0.508 0.384 0.616
#> SRR1036073     2   0.961      0.508 0.384 0.616
#> SRR1036074     2   0.961      0.508 0.384 0.616
#> SRR1036075     2   0.961      0.508 0.384 0.616
#> SRR1036076     2   0.961      0.508 0.384 0.616
#> SRR1036077     2   0.961      0.508 0.384 0.616
#> SRR1036078     2   0.961      0.508 0.384 0.616
#> SRR1036079     2   0.961      0.508 0.384 0.616
#> SRR1036080     2   0.961      0.508 0.384 0.616
#> SRR1036081     2   0.961      0.508 0.384 0.616
#> SRR1036082     2   0.961      0.508 0.384 0.616
#> SRR1036083     2   0.961      0.508 0.384 0.616
#> SRR1036084     2   0.961      0.508 0.384 0.616
#> SRR1036090     1   0.987      0.431 0.568 0.432
#> SRR1036091     1   0.987      0.431 0.568 0.432
#> SRR1036092     1   0.987      0.431 0.568 0.432
#> SRR1036093     1   0.987      0.431 0.568 0.432
#> SRR1036094     1   0.987      0.431 0.568 0.432
#> SRR1036085     1   0.795      0.343 0.760 0.240
#> SRR1036086     1   0.722      0.382 0.800 0.200
#> SRR1036087     1   0.745      0.372 0.788 0.212
#> SRR1036088     1   0.730      0.379 0.796 0.204
#> SRR1036089     1   0.767      0.360 0.776 0.224
#> SRR1036095     2   0.961      0.508 0.384 0.616
#> SRR1036096     2   0.961      0.508 0.384 0.616
#> SRR1036097     2   0.961      0.508 0.384 0.616
#> SRR1036098     2   0.961      0.508 0.384 0.616
#> SRR1036099     2   0.961      0.508 0.384 0.616
#> SRR1036100     2   0.961      0.508 0.384 0.616
#> SRR1036101     2   0.961      0.508 0.384 0.616
#> SRR1036102     2   0.961      0.508 0.384 0.616
#> SRR1036103     2   0.961      0.508 0.384 0.616
#> SRR1036104     2   0.961      0.508 0.384 0.616
#> SRR1036105     1   0.689      0.394 0.816 0.184
#> SRR1036106     1   0.689      0.394 0.816 0.184
#> SRR1036107     1   0.689      0.394 0.816 0.184
#> SRR1036108     1   0.689      0.394 0.816 0.184
#> SRR1036109     1   0.689      0.394 0.816 0.184
#> SRR1036110     2   0.961      0.508 0.384 0.616
#> SRR1036111     2   0.961      0.508 0.384 0.616
#> SRR1036112     2   0.961      0.508 0.384 0.616
#> SRR1036113     2   0.961      0.508 0.384 0.616
#> SRR1036114     2   0.961      0.508 0.384 0.616
#> SRR1036115     2   0.000      0.418 0.000 1.000
#> SRR1036116     2   0.000      0.418 0.000 1.000
#> SRR1036117     2   0.000      0.418 0.000 1.000
#> SRR1036118     2   0.000      0.418 0.000 1.000
#> SRR1036119     2   0.000      0.418 0.000 1.000
#> SRR1036120     2   0.000      0.418 0.000 1.000
#> SRR1036121     2   0.000      0.418 0.000 1.000
#> SRR1036122     2   0.000      0.418 0.000 1.000
#> SRR1036123     2   0.000      0.418 0.000 1.000
#> SRR1036124     2   0.000      0.418 0.000 1.000
#> SRR1036125     2   0.000      0.418 0.000 1.000
#> SRR1036126     2   0.000      0.418 0.000 1.000
#> SRR1036127     2   0.000      0.418 0.000 1.000
#> SRR1036128     2   0.000      0.418 0.000 1.000
#> SRR1036129     2   0.000      0.418 0.000 1.000
#> SRR1036130     2   0.000      0.418 0.000 1.000
#> SRR1036131     2   0.000      0.418 0.000 1.000
#> SRR1036132     2   0.000      0.418 0.000 1.000
#> SRR1036133     1   0.987      0.431 0.568 0.432
#> SRR1036134     1   0.987      0.431 0.568 0.432
#> SRR1036135     1   0.987      0.431 0.568 0.432
#> SRR1036136     1   0.987      0.431 0.568 0.432
#> SRR1036137     1   0.987      0.431 0.568 0.432
#> SRR1036138     1   0.987      0.431 0.568 0.432
#> SRR1036139     1   0.987      0.431 0.568 0.432
#> SRR1036140     1   0.987      0.431 0.568 0.432
#> SRR1036141     1   0.987      0.431 0.568 0.432
#> SRR1036142     1   0.987      0.431 0.568 0.432
#> SRR1036143     1   0.987      0.431 0.568 0.432
#> SRR1036144     1   0.987      0.431 0.568 0.432
#> SRR1036145     1   0.987      0.431 0.568 0.432

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1036002     3   0.807      0.883 0.316 0.088 0.596
#> SRR1036003     3   0.804      0.889 0.324 0.084 0.592
#> SRR1036004     3   0.820      0.864 0.304 0.100 0.596
#> SRR1036005     3   0.613      0.979 0.400 0.000 0.600
#> SRR1036006     3   0.613      0.979 0.400 0.000 0.600
#> SRR1036007     3   0.613      0.979 0.400 0.000 0.600
#> SRR1036008     3   0.613      0.979 0.400 0.000 0.600
#> SRR1036009     3   0.613      0.979 0.400 0.000 0.600
#> SRR1036013     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036014     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036015     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036016     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036017     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036018     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036010     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036011     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036012     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036019     2   0.613      0.629 0.000 0.600 0.400
#> SRR1036020     2   0.613      0.629 0.000 0.600 0.400
#> SRR1036021     2   0.613      0.629 0.000 0.600 0.400
#> SRR1036022     2   0.613      0.629 0.000 0.600 0.400
#> SRR1036023     2   0.613      0.629 0.000 0.600 0.400
#> SRR1036024     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036025     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036026     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036027     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036028     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036029     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036030     2   0.613      0.629 0.000 0.600 0.400
#> SRR1036031     2   0.613      0.629 0.000 0.600 0.400
#> SRR1036032     2   0.613      0.629 0.000 0.600 0.400
#> SRR1036033     2   0.613      0.629 0.000 0.600 0.400
#> SRR1036034     2   0.613      0.629 0.000 0.600 0.400
#> SRR1036035     2   0.613      0.629 0.000 0.600 0.400
#> SRR1036036     2   0.613      0.629 0.000 0.600 0.400
#> SRR1036037     2   0.613      0.629 0.000 0.600 0.400
#> SRR1036038     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036039     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036040     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036041     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036042     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036043     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036044     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036045     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036046     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036047     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036048     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036049     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036050     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036051     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036052     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036053     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036054     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036055     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036056     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036057     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036058     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036059     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036060     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036061     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036062     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036063     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036064     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036065     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036066     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036067     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036068     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036069     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036070     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036071     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036072     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036073     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036074     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036075     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036076     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036077     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036078     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036079     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036080     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036081     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036082     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036083     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036084     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036090     2   0.613      0.629 0.000 0.600 0.400
#> SRR1036091     2   0.613      0.629 0.000 0.600 0.400
#> SRR1036092     2   0.613      0.629 0.000 0.600 0.400
#> SRR1036093     2   0.613      0.629 0.000 0.600 0.400
#> SRR1036094     2   0.613      0.629 0.000 0.600 0.400
#> SRR1036085     3   0.613      0.979 0.400 0.000 0.600
#> SRR1036086     3   0.613      0.979 0.400 0.000 0.600
#> SRR1036087     3   0.613      0.979 0.400 0.000 0.600
#> SRR1036088     3   0.613      0.979 0.400 0.000 0.600
#> SRR1036089     3   0.613      0.979 0.400 0.000 0.600
#> SRR1036095     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036096     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036097     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036098     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036099     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036100     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036101     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036102     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036103     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036104     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036105     3   0.613      0.979 0.400 0.000 0.600
#> SRR1036106     3   0.613      0.979 0.400 0.000 0.600
#> SRR1036107     3   0.613      0.979 0.400 0.000 0.600
#> SRR1036108     3   0.613      0.979 0.400 0.000 0.600
#> SRR1036109     3   0.613      0.979 0.400 0.000 0.600
#> SRR1036110     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036111     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036112     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036113     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036114     2   0.000      0.775 0.000 1.000 0.000
#> SRR1036115     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036116     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036117     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036118     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036119     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036120     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036121     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036122     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036123     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036124     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036125     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036126     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036127     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036128     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036129     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036130     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036131     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036132     1   0.613      1.000 0.600 0.400 0.000
#> SRR1036133     2   0.613      0.629 0.000 0.600 0.400
#> SRR1036134     2   0.613      0.629 0.000 0.600 0.400
#> SRR1036135     2   0.613      0.629 0.000 0.600 0.400
#> SRR1036136     2   0.613      0.629 0.000 0.600 0.400
#> SRR1036137     2   0.613      0.629 0.000 0.600 0.400
#> SRR1036138     2   0.613      0.629 0.000 0.600 0.400
#> SRR1036139     2   0.613      0.629 0.000 0.600 0.400
#> SRR1036140     2   0.613      0.629 0.000 0.600 0.400
#> SRR1036141     2   0.613      0.629 0.000 0.600 0.400
#> SRR1036142     2   0.613      0.629 0.000 0.600 0.400
#> SRR1036143     2   0.613      0.629 0.000 0.600 0.400
#> SRR1036144     2   0.613      0.629 0.000 0.600 0.400
#> SRR1036145     2   0.613      0.629 0.000 0.600 0.400

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1036002     3  0.5636      0.761 0.236 0.004 0.700 0.060
#> SRR1036003     3  0.5706      0.758 0.236 0.004 0.696 0.064
#> SRR1036004     3  0.5774      0.753 0.236 0.004 0.692 0.068
#> SRR1036005     3  0.0000      0.955 0.000 0.000 1.000 0.000
#> SRR1036006     3  0.0000      0.955 0.000 0.000 1.000 0.000
#> SRR1036007     3  0.0000      0.955 0.000 0.000 1.000 0.000
#> SRR1036008     3  0.0000      0.955 0.000 0.000 1.000 0.000
#> SRR1036009     3  0.0000      0.955 0.000 0.000 1.000 0.000
#> SRR1036013     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036014     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036015     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036016     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036017     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036018     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036010     1  0.3688      0.929 0.792 0.000 0.000 0.208
#> SRR1036011     1  0.3688      0.929 0.792 0.000 0.000 0.208
#> SRR1036012     1  0.3688      0.929 0.792 0.000 0.000 0.208
#> SRR1036019     2  0.0188      0.909 0.000 0.996 0.000 0.004
#> SRR1036020     2  0.0188      0.909 0.000 0.996 0.000 0.004
#> SRR1036021     2  0.0188      0.909 0.000 0.996 0.000 0.004
#> SRR1036022     2  0.0188      0.909 0.000 0.996 0.000 0.004
#> SRR1036023     2  0.0188      0.909 0.000 0.996 0.000 0.004
#> SRR1036024     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036025     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036026     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036027     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036028     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036029     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036030     2  0.0188      0.909 0.000 0.996 0.000 0.004
#> SRR1036031     2  0.0188      0.909 0.000 0.996 0.000 0.004
#> SRR1036032     2  0.0188      0.909 0.000 0.996 0.000 0.004
#> SRR1036033     2  0.0188      0.909 0.000 0.996 0.000 0.004
#> SRR1036034     2  0.0188      0.909 0.000 0.996 0.000 0.004
#> SRR1036035     2  0.0188      0.909 0.000 0.996 0.000 0.004
#> SRR1036036     2  0.0188      0.909 0.000 0.996 0.000 0.004
#> SRR1036037     2  0.0188      0.909 0.000 0.996 0.000 0.004
#> SRR1036038     1  0.3942      0.952 0.764 0.000 0.000 0.236
#> SRR1036039     1  0.3942      0.952 0.764 0.000 0.000 0.236
#> SRR1036040     1  0.3942      0.952 0.764 0.000 0.000 0.236
#> SRR1036041     1  0.3942      0.952 0.764 0.000 0.000 0.236
#> SRR1036042     4  0.4122      0.718 0.236 0.004 0.000 0.760
#> SRR1036043     4  0.4122      0.718 0.236 0.004 0.000 0.760
#> SRR1036044     4  0.4122      0.718 0.236 0.004 0.000 0.760
#> SRR1036045     4  0.4122      0.718 0.236 0.004 0.000 0.760
#> SRR1036046     4  0.4122      0.718 0.236 0.004 0.000 0.760
#> SRR1036047     4  0.4122      0.718 0.236 0.004 0.000 0.760
#> SRR1036048     4  0.4122      0.718 0.236 0.004 0.000 0.760
#> SRR1036049     4  0.4122      0.718 0.236 0.004 0.000 0.760
#> SRR1036050     1  0.3942      0.952 0.764 0.000 0.000 0.236
#> SRR1036051     1  0.3942      0.952 0.764 0.000 0.000 0.236
#> SRR1036052     1  0.3942      0.952 0.764 0.000 0.000 0.236
#> SRR1036053     1  0.3942      0.952 0.764 0.000 0.000 0.236
#> SRR1036054     1  0.3942      0.952 0.764 0.000 0.000 0.236
#> SRR1036055     1  0.3942      0.952 0.764 0.000 0.000 0.236
#> SRR1036056     1  0.3942      0.952 0.764 0.000 0.000 0.236
#> SRR1036057     1  0.3942      0.952 0.764 0.000 0.000 0.236
#> SRR1036058     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036059     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036060     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036061     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036062     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036063     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036064     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036065     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036066     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036067     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036068     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036069     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036070     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036071     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036072     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036073     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036074     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036075     4  0.0188      0.956 0.004 0.000 0.000 0.996
#> SRR1036076     4  0.0188      0.956 0.004 0.000 0.000 0.996
#> SRR1036077     4  0.0188      0.956 0.004 0.000 0.000 0.996
#> SRR1036078     4  0.0188      0.956 0.004 0.000 0.000 0.996
#> SRR1036079     4  0.0188      0.956 0.004 0.000 0.000 0.996
#> SRR1036080     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036081     4  0.0188      0.956 0.004 0.000 0.000 0.996
#> SRR1036082     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036083     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036084     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036090     2  0.4855      0.408 0.000 0.600 0.000 0.400
#> SRR1036091     2  0.4817      0.437 0.000 0.612 0.000 0.388
#> SRR1036092     2  0.4679      0.511 0.000 0.648 0.000 0.352
#> SRR1036093     2  0.4817      0.437 0.000 0.612 0.000 0.388
#> SRR1036094     2  0.4746      0.480 0.000 0.632 0.000 0.368
#> SRR1036085     3  0.0000      0.955 0.000 0.000 1.000 0.000
#> SRR1036086     3  0.0000      0.955 0.000 0.000 1.000 0.000
#> SRR1036087     3  0.0000      0.955 0.000 0.000 1.000 0.000
#> SRR1036088     3  0.0000      0.955 0.000 0.000 1.000 0.000
#> SRR1036089     3  0.0000      0.955 0.000 0.000 1.000 0.000
#> SRR1036095     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036096     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036097     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036098     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036099     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036100     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036101     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036102     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036103     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036104     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036105     3  0.0000      0.955 0.000 0.000 1.000 0.000
#> SRR1036106     3  0.0000      0.955 0.000 0.000 1.000 0.000
#> SRR1036107     3  0.0000      0.955 0.000 0.000 1.000 0.000
#> SRR1036108     3  0.0000      0.955 0.000 0.000 1.000 0.000
#> SRR1036109     3  0.0000      0.955 0.000 0.000 1.000 0.000
#> SRR1036110     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036111     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036112     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036113     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036114     4  0.0000      0.959 0.000 0.000 0.000 1.000
#> SRR1036115     1  0.3942      0.952 0.764 0.000 0.000 0.236
#> SRR1036116     1  0.3942      0.952 0.764 0.000 0.000 0.236
#> SRR1036117     1  0.3942      0.952 0.764 0.000 0.000 0.236
#> SRR1036118     1  0.3942      0.952 0.764 0.000 0.000 0.236
#> SRR1036119     1  0.3942      0.952 0.764 0.000 0.000 0.236
#> SRR1036120     1  0.1302      0.718 0.956 0.000 0.000 0.044
#> SRR1036121     1  0.1302      0.718 0.956 0.000 0.000 0.044
#> SRR1036122     1  0.1302      0.718 0.956 0.000 0.000 0.044
#> SRR1036123     1  0.1211      0.717 0.960 0.000 0.000 0.040
#> SRR1036124     1  0.1302      0.718 0.956 0.000 0.000 0.044
#> SRR1036125     1  0.3942      0.952 0.764 0.000 0.000 0.236
#> SRR1036126     1  0.3942      0.952 0.764 0.000 0.000 0.236
#> SRR1036127     1  0.3942      0.952 0.764 0.000 0.000 0.236
#> SRR1036128     1  0.3942      0.952 0.764 0.000 0.000 0.236
#> SRR1036129     1  0.3942      0.952 0.764 0.000 0.000 0.236
#> SRR1036130     1  0.3942      0.952 0.764 0.000 0.000 0.236
#> SRR1036131     1  0.3942      0.952 0.764 0.000 0.000 0.236
#> SRR1036132     1  0.3942      0.952 0.764 0.000 0.000 0.236
#> SRR1036133     2  0.0188      0.909 0.000 0.996 0.000 0.004
#> SRR1036134     2  0.0188      0.909 0.000 0.996 0.000 0.004
#> SRR1036135     2  0.0188      0.909 0.000 0.996 0.000 0.004
#> SRR1036136     2  0.0188      0.909 0.000 0.996 0.000 0.004
#> SRR1036137     2  0.0188      0.909 0.000 0.996 0.000 0.004
#> SRR1036138     2  0.0188      0.909 0.000 0.996 0.000 0.004
#> SRR1036139     2  0.0188      0.909 0.000 0.996 0.000 0.004
#> SRR1036140     2  0.0188      0.909 0.000 0.996 0.000 0.004
#> SRR1036141     2  0.0188      0.909 0.000 0.996 0.000 0.004
#> SRR1036142     2  0.0188      0.909 0.000 0.996 0.000 0.004
#> SRR1036143     2  0.0188      0.909 0.000 0.996 0.000 0.004
#> SRR1036144     2  0.0188      0.909 0.000 0.996 0.000 0.004
#> SRR1036145     2  0.0188      0.909 0.000 0.996 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2 p3    p4    p5
#> SRR1036002     5  0.0000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1036003     5  0.0000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1036004     5  0.0000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1036005     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036006     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036007     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036008     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036009     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036013     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036014     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036015     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036016     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036017     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036018     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036010     1  0.3412      0.909 0.820 0.000  0 0.152 0.028
#> SRR1036011     1  0.3236      0.910 0.828 0.000  0 0.152 0.020
#> SRR1036012     1  0.3194      0.910 0.832 0.000  0 0.148 0.020
#> SRR1036019     2  0.0000      0.865 0.000 1.000  0 0.000 0.000
#> SRR1036020     2  0.0000      0.865 0.000 1.000  0 0.000 0.000
#> SRR1036021     2  0.0000      0.865 0.000 1.000  0 0.000 0.000
#> SRR1036022     2  0.0000      0.865 0.000 1.000  0 0.000 0.000
#> SRR1036023     2  0.0000      0.865 0.000 1.000  0 0.000 0.000
#> SRR1036024     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036025     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036026     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036027     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036028     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036029     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036030     2  0.2806      0.805 0.152 0.844  0 0.004 0.000
#> SRR1036031     2  0.2806      0.805 0.152 0.844  0 0.004 0.000
#> SRR1036032     2  0.2806      0.805 0.152 0.844  0 0.004 0.000
#> SRR1036033     2  0.2806      0.805 0.152 0.844  0 0.004 0.000
#> SRR1036034     2  0.2806      0.805 0.152 0.844  0 0.004 0.000
#> SRR1036035     2  0.2806      0.805 0.152 0.844  0 0.004 0.000
#> SRR1036036     2  0.2806      0.805 0.152 0.844  0 0.004 0.000
#> SRR1036037     2  0.2806      0.805 0.152 0.844  0 0.004 0.000
#> SRR1036038     1  0.2813      0.904 0.832 0.000  0 0.168 0.000
#> SRR1036039     1  0.2852      0.904 0.828 0.000  0 0.172 0.000
#> SRR1036040     1  0.2690      0.900 0.844 0.000  0 0.156 0.000
#> SRR1036041     1  0.3109      0.899 0.800 0.000  0 0.200 0.000
#> SRR1036042     5  0.0000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1036043     5  0.0000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1036044     5  0.0000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1036045     5  0.0000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1036046     5  0.0000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1036047     5  0.0000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1036048     5  0.0000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1036049     5  0.0000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1036050     1  0.2424      0.906 0.868 0.000  0 0.132 0.000
#> SRR1036051     1  0.2471      0.907 0.864 0.000  0 0.136 0.000
#> SRR1036052     1  0.2424      0.906 0.868 0.000  0 0.132 0.000
#> SRR1036053     1  0.2424      0.906 0.868 0.000  0 0.132 0.000
#> SRR1036054     1  0.2424      0.906 0.868 0.000  0 0.132 0.000
#> SRR1036055     1  0.0880      0.796 0.968 0.000  0 0.032 0.000
#> SRR1036056     1  0.0794      0.793 0.972 0.000  0 0.028 0.000
#> SRR1036057     1  0.0880      0.796 0.968 0.000  0 0.032 0.000
#> SRR1036058     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036059     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036060     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036061     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036062     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036063     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036064     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036065     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036066     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036067     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036068     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036069     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036070     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036071     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036072     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036073     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036074     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036075     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036076     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036077     4  0.0162      0.991 0.000 0.000  0 0.996 0.004
#> SRR1036078     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036079     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036080     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036081     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036082     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036083     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036084     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036090     2  0.4182      0.411 0.000 0.600  0 0.400 0.000
#> SRR1036091     2  0.4150      0.440 0.000 0.612  0 0.388 0.000
#> SRR1036092     2  0.4030      0.497 0.000 0.648  0 0.352 0.000
#> SRR1036093     2  0.4150      0.440 0.000 0.612  0 0.388 0.000
#> SRR1036094     2  0.4088      0.480 0.000 0.632  0 0.368 0.000
#> SRR1036085     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036086     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036087     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036088     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036089     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036095     4  0.1197      0.949 0.048 0.000  0 0.952 0.000
#> SRR1036096     4  0.1197      0.949 0.048 0.000  0 0.952 0.000
#> SRR1036097     4  0.1197      0.949 0.048 0.000  0 0.952 0.000
#> SRR1036098     4  0.1197      0.949 0.048 0.000  0 0.952 0.000
#> SRR1036099     4  0.1197      0.949 0.048 0.000  0 0.952 0.000
#> SRR1036100     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036101     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036102     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036103     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036104     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036105     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036106     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036107     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036108     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036109     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036110     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036111     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036112     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036113     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036114     4  0.0000      0.995 0.000 0.000  0 1.000 0.000
#> SRR1036115     1  0.2648      0.909 0.848 0.000  0 0.152 0.000
#> SRR1036116     1  0.2648      0.909 0.848 0.000  0 0.152 0.000
#> SRR1036117     1  0.2648      0.909 0.848 0.000  0 0.152 0.000
#> SRR1036118     1  0.2648      0.909 0.848 0.000  0 0.152 0.000
#> SRR1036119     1  0.2648      0.909 0.848 0.000  0 0.152 0.000
#> SRR1036120     1  0.3596      0.740 0.784 0.000  0 0.016 0.200
#> SRR1036121     1  0.3596      0.740 0.784 0.000  0 0.016 0.200
#> SRR1036122     1  0.3596      0.740 0.784 0.000  0 0.016 0.200
#> SRR1036123     1  0.3496      0.739 0.788 0.000  0 0.012 0.200
#> SRR1036124     1  0.3596      0.740 0.784 0.000  0 0.016 0.200
#> SRR1036125     1  0.3109      0.899 0.800 0.000  0 0.200 0.000
#> SRR1036126     1  0.3109      0.899 0.800 0.000  0 0.200 0.000
#> SRR1036127     1  0.3109      0.899 0.800 0.000  0 0.200 0.000
#> SRR1036128     1  0.3109      0.899 0.800 0.000  0 0.200 0.000
#> SRR1036129     1  0.3109      0.899 0.800 0.000  0 0.200 0.000
#> SRR1036130     1  0.3109      0.899 0.800 0.000  0 0.200 0.000
#> SRR1036131     1  0.3109      0.899 0.800 0.000  0 0.200 0.000
#> SRR1036132     1  0.3109      0.899 0.800 0.000  0 0.200 0.000
#> SRR1036133     2  0.0000      0.865 0.000 1.000  0 0.000 0.000
#> SRR1036134     2  0.0000      0.865 0.000 1.000  0 0.000 0.000
#> SRR1036135     2  0.0000      0.865 0.000 1.000  0 0.000 0.000
#> SRR1036136     2  0.0000      0.865 0.000 1.000  0 0.000 0.000
#> SRR1036137     2  0.0000      0.865 0.000 1.000  0 0.000 0.000
#> SRR1036138     2  0.0000      0.865 0.000 1.000  0 0.000 0.000
#> SRR1036139     2  0.0000      0.865 0.000 1.000  0 0.000 0.000
#> SRR1036140     2  0.0000      0.865 0.000 1.000  0 0.000 0.000
#> SRR1036141     2  0.0000      0.865 0.000 1.000  0 0.000 0.000
#> SRR1036142     2  0.0000      0.865 0.000 1.000  0 0.000 0.000
#> SRR1036143     2  0.0000      0.865 0.000 1.000  0 0.000 0.000
#> SRR1036144     2  0.0000      0.865 0.000 1.000  0 0.000 0.000
#> SRR1036145     2  0.0000      0.865 0.000 1.000  0 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2 p3    p4    p5    p6
#> SRR1036002     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036003     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036004     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036005     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036006     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036007     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036008     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036009     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036013     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036014     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036015     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036016     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036017     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036018     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036010     1  0.2536      0.852 0.864 0.000  0 0.116 0.000 0.020
#> SRR1036011     1  0.2212      0.852 0.880 0.000  0 0.112 0.000 0.008
#> SRR1036012     1  0.2165      0.852 0.884 0.000  0 0.108 0.000 0.008
#> SRR1036019     2  0.0458      0.830 0.000 0.984  0 0.000 0.016 0.000
#> SRR1036020     2  0.0458      0.830 0.000 0.984  0 0.000 0.016 0.000
#> SRR1036021     2  0.0458      0.830 0.000 0.984  0 0.000 0.016 0.000
#> SRR1036022     2  0.0363      0.831 0.000 0.988  0 0.000 0.012 0.000
#> SRR1036023     2  0.0458      0.830 0.000 0.984  0 0.000 0.016 0.000
#> SRR1036024     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036025     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036026     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036027     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036028     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036029     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036030     2  0.3881      0.737 0.024 0.720  0 0.004 0.252 0.000
#> SRR1036031     2  0.3881      0.737 0.024 0.720  0 0.004 0.252 0.000
#> SRR1036032     2  0.3881      0.737 0.024 0.720  0 0.004 0.252 0.000
#> SRR1036033     2  0.3881      0.737 0.024 0.720  0 0.004 0.252 0.000
#> SRR1036034     2  0.3881      0.737 0.024 0.720  0 0.004 0.252 0.000
#> SRR1036035     2  0.3881      0.737 0.024 0.720  0 0.004 0.252 0.000
#> SRR1036036     2  0.3881      0.737 0.024 0.720  0 0.004 0.252 0.000
#> SRR1036037     2  0.3881      0.737 0.024 0.720  0 0.004 0.252 0.000
#> SRR1036038     1  0.3139      0.830 0.812 0.000  0 0.160 0.028 0.000
#> SRR1036039     1  0.3139      0.830 0.812 0.000  0 0.160 0.028 0.000
#> SRR1036040     1  0.3176      0.832 0.812 0.000  0 0.156 0.032 0.000
#> SRR1036041     1  0.2793      0.816 0.800 0.000  0 0.200 0.000 0.000
#> SRR1036042     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036043     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036044     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036045     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036046     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036047     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036048     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036049     6  0.0000      1.000 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036050     1  0.0632      0.839 0.976 0.000  0 0.024 0.000 0.000
#> SRR1036051     1  0.0632      0.839 0.976 0.000  0 0.024 0.000 0.000
#> SRR1036052     1  0.0632      0.839 0.976 0.000  0 0.024 0.000 0.000
#> SRR1036053     1  0.0632      0.839 0.976 0.000  0 0.024 0.000 0.000
#> SRR1036054     1  0.0632      0.839 0.976 0.000  0 0.024 0.000 0.000
#> SRR1036055     1  0.3494      0.709 0.736 0.012  0 0.000 0.252 0.000
#> SRR1036056     1  0.3494      0.709 0.736 0.012  0 0.000 0.252 0.000
#> SRR1036057     1  0.3494      0.709 0.736 0.012  0 0.000 0.252 0.000
#> SRR1036058     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036059     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036060     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036061     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036062     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036063     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036064     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036065     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036066     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036067     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036068     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036069     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036070     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036071     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036072     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036073     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036074     5  0.3151      0.997 0.000 0.000  0 0.252 0.748 0.000
#> SRR1036075     5  0.3151      0.997 0.000 0.000  0 0.252 0.748 0.000
#> SRR1036076     5  0.3151      0.997 0.000 0.000  0 0.252 0.748 0.000
#> SRR1036077     5  0.3265      0.991 0.000 0.000  0 0.248 0.748 0.004
#> SRR1036078     5  0.3151      0.997 0.000 0.000  0 0.252 0.748 0.000
#> SRR1036079     5  0.3151      0.997 0.000 0.000  0 0.252 0.748 0.000
#> SRR1036080     5  0.3151      0.997 0.000 0.000  0 0.252 0.748 0.000
#> SRR1036081     5  0.3151      0.997 0.000 0.000  0 0.252 0.748 0.000
#> SRR1036082     4  0.3428      0.358 0.000 0.000  0 0.696 0.304 0.000
#> SRR1036083     4  0.3446      0.345 0.000 0.000  0 0.692 0.308 0.000
#> SRR1036084     4  0.3446      0.345 0.000 0.000  0 0.692 0.308 0.000
#> SRR1036090     2  0.3695      0.427 0.000 0.624  0 0.376 0.000 0.000
#> SRR1036091     2  0.3672      0.445 0.000 0.632  0 0.368 0.000 0.000
#> SRR1036092     2  0.3592      0.493 0.000 0.656  0 0.344 0.000 0.000
#> SRR1036093     2  0.3672      0.447 0.000 0.632  0 0.368 0.000 0.000
#> SRR1036094     2  0.3620      0.478 0.000 0.648  0 0.352 0.000 0.000
#> SRR1036085     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036086     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036087     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036088     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036089     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036095     4  0.2597      0.724 0.176 0.000  0 0.824 0.000 0.000
#> SRR1036096     4  0.2597      0.724 0.176 0.000  0 0.824 0.000 0.000
#> SRR1036097     4  0.2597      0.724 0.176 0.000  0 0.824 0.000 0.000
#> SRR1036098     4  0.2597      0.724 0.176 0.000  0 0.824 0.000 0.000
#> SRR1036099     4  0.2597      0.724 0.176 0.000  0 0.824 0.000 0.000
#> SRR1036100     5  0.3175      0.995 0.000 0.000  0 0.256 0.744 0.000
#> SRR1036101     5  0.3175      0.995 0.000 0.000  0 0.256 0.744 0.000
#> SRR1036102     5  0.3175      0.995 0.000 0.000  0 0.256 0.744 0.000
#> SRR1036103     5  0.3175      0.995 0.000 0.000  0 0.256 0.744 0.000
#> SRR1036104     5  0.3175      0.995 0.000 0.000  0 0.256 0.744 0.000
#> SRR1036105     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036106     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036107     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036108     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036109     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036110     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036111     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036112     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036113     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036114     4  0.0000      0.934 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036115     1  0.0632      0.839 0.976 0.000  0 0.024 0.000 0.000
#> SRR1036116     1  0.0632      0.839 0.976 0.000  0 0.024 0.000 0.000
#> SRR1036117     1  0.0632      0.839 0.976 0.000  0 0.024 0.000 0.000
#> SRR1036118     1  0.0632      0.839 0.976 0.000  0 0.024 0.000 0.000
#> SRR1036119     1  0.0632      0.839 0.976 0.000  0 0.024 0.000 0.000
#> SRR1036120     1  0.3231      0.767 0.784 0.000  0 0.016 0.000 0.200
#> SRR1036121     1  0.3231      0.767 0.784 0.000  0 0.016 0.000 0.200
#> SRR1036122     1  0.3231      0.767 0.784 0.000  0 0.016 0.000 0.200
#> SRR1036123     1  0.3141      0.767 0.788 0.000  0 0.012 0.000 0.200
#> SRR1036124     1  0.3231      0.767 0.784 0.000  0 0.016 0.000 0.200
#> SRR1036125     1  0.2793      0.816 0.800 0.000  0 0.200 0.000 0.000
#> SRR1036126     1  0.2793      0.816 0.800 0.000  0 0.200 0.000 0.000
#> SRR1036127     1  0.2793      0.816 0.800 0.000  0 0.200 0.000 0.000
#> SRR1036128     1  0.2793      0.816 0.800 0.000  0 0.200 0.000 0.000
#> SRR1036129     1  0.2793      0.816 0.800 0.000  0 0.200 0.000 0.000
#> SRR1036130     1  0.2793      0.816 0.800 0.000  0 0.200 0.000 0.000
#> SRR1036131     1  0.2793      0.816 0.800 0.000  0 0.200 0.000 0.000
#> SRR1036132     1  0.2793      0.816 0.800 0.000  0 0.200 0.000 0.000
#> SRR1036133     2  0.1141      0.829 0.000 0.948  0 0.000 0.052 0.000
#> SRR1036134     2  0.1007      0.831 0.000 0.956  0 0.000 0.044 0.000
#> SRR1036135     2  0.1075      0.830 0.000 0.952  0 0.000 0.048 0.000
#> SRR1036136     2  0.1007      0.831 0.000 0.956  0 0.000 0.044 0.000
#> SRR1036137     2  0.1075      0.830 0.000 0.952  0 0.000 0.048 0.000
#> SRR1036138     2  0.0000      0.834 0.000 1.000  0 0.000 0.000 0.000
#> SRR1036139     2  0.0000      0.834 0.000 1.000  0 0.000 0.000 0.000
#> SRR1036140     2  0.0000      0.834 0.000 1.000  0 0.000 0.000 0.000
#> SRR1036141     2  0.0000      0.834 0.000 1.000  0 0.000 0.000 0.000
#> SRR1036142     2  0.0000      0.834 0.000 1.000  0 0.000 0.000 0.000
#> SRR1036143     2  0.0000      0.834 0.000 1.000  0 0.000 0.000 0.000
#> SRR1036144     2  0.0000      0.834 0.000 1.000  0 0.000 0.000 0.000
#> SRR1036145     2  0.0000      0.834 0.000 1.000  0 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15218 rows and 144 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.294           0.587       0.694         0.3925 0.557   0.557
#> 3 3 0.324           0.616       0.774         0.4586 0.739   0.570
#> 4 4 0.567           0.688       0.821         0.2500 0.802   0.541
#> 5 5 0.669           0.702       0.819         0.0548 0.970   0.889
#> 6 6 0.724           0.721       0.783         0.0532 0.983   0.929

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1036002     1   0.494    0.63992 0.892 0.108
#> SRR1036003     1   0.494    0.63992 0.892 0.108
#> SRR1036004     1   0.494    0.63992 0.892 0.108
#> SRR1036005     1   0.943    0.48403 0.640 0.360
#> SRR1036006     1   0.943    0.48403 0.640 0.360
#> SRR1036007     1   0.943    0.48403 0.640 0.360
#> SRR1036008     1   0.943    0.48403 0.640 0.360
#> SRR1036009     1   0.943    0.48403 0.640 0.360
#> SRR1036013     1   0.990   -0.02427 0.560 0.440
#> SRR1036014     1   0.990   -0.02427 0.560 0.440
#> SRR1036015     1   0.990   -0.02427 0.560 0.440
#> SRR1036016     1   0.988   -0.00787 0.564 0.436
#> SRR1036017     1   0.990   -0.02427 0.560 0.440
#> SRR1036018     1   0.990   -0.02427 0.560 0.440
#> SRR1036010     1   0.163    0.65086 0.976 0.024
#> SRR1036011     1   0.163    0.65086 0.976 0.024
#> SRR1036012     1   0.163    0.65086 0.976 0.024
#> SRR1036019     2   0.961    0.95488 0.384 0.616
#> SRR1036020     2   0.961    0.95488 0.384 0.616
#> SRR1036021     2   0.961    0.95488 0.384 0.616
#> SRR1036022     2   0.961    0.95488 0.384 0.616
#> SRR1036023     2   0.961    0.95488 0.384 0.616
#> SRR1036024     1   0.966   -0.06195 0.608 0.392
#> SRR1036025     1   0.969   -0.07928 0.604 0.396
#> SRR1036026     1   0.966   -0.06195 0.608 0.392
#> SRR1036027     1   0.966   -0.06195 0.608 0.392
#> SRR1036028     1   0.966   -0.06195 0.608 0.392
#> SRR1036029     1   0.966   -0.06195 0.608 0.392
#> SRR1036030     2   0.971    0.95029 0.400 0.600
#> SRR1036031     2   0.971    0.95029 0.400 0.600
#> SRR1036032     2   0.971    0.95029 0.400 0.600
#> SRR1036033     2   0.971    0.95029 0.400 0.600
#> SRR1036034     2   0.971    0.95029 0.400 0.600
#> SRR1036035     2   0.971    0.95029 0.400 0.600
#> SRR1036036     2   0.971    0.95029 0.400 0.600
#> SRR1036037     2   0.971    0.95029 0.400 0.600
#> SRR1036038     1   0.224    0.64423 0.964 0.036
#> SRR1036039     1   0.224    0.64423 0.964 0.036
#> SRR1036040     1   0.224    0.64423 0.964 0.036
#> SRR1036041     1   0.118    0.64700 0.984 0.016
#> SRR1036042     1   0.985   -0.09685 0.572 0.428
#> SRR1036043     1   0.983   -0.08042 0.576 0.424
#> SRR1036044     1   0.985   -0.09685 0.572 0.428
#> SRR1036045     1   0.985   -0.09685 0.572 0.428
#> SRR1036046     1   0.985   -0.09685 0.572 0.428
#> SRR1036047     1   0.983   -0.08042 0.576 0.424
#> SRR1036048     1   0.983   -0.08042 0.576 0.424
#> SRR1036049     1   0.983   -0.08042 0.576 0.424
#> SRR1036050     1   0.118    0.64901 0.984 0.016
#> SRR1036051     1   0.118    0.64901 0.984 0.016
#> SRR1036052     1   0.118    0.64901 0.984 0.016
#> SRR1036053     1   0.118    0.64901 0.984 0.016
#> SRR1036054     1   0.118    0.64901 0.984 0.016
#> SRR1036055     1   0.373    0.61795 0.928 0.072
#> SRR1036056     1   0.388    0.61709 0.924 0.076
#> SRR1036057     1   0.373    0.61795 0.928 0.072
#> SRR1036058     1   0.925    0.44850 0.660 0.340
#> SRR1036059     1   0.925    0.44850 0.660 0.340
#> SRR1036060     1   0.925    0.44850 0.660 0.340
#> SRR1036061     1   0.925    0.44850 0.660 0.340
#> SRR1036062     1   0.925    0.44850 0.660 0.340
#> SRR1036063     1   0.925    0.44850 0.660 0.340
#> SRR1036064     1   0.925    0.44850 0.660 0.340
#> SRR1036065     1   0.925    0.44850 0.660 0.340
#> SRR1036066     1   0.327    0.64720 0.940 0.060
#> SRR1036067     1   0.327    0.64720 0.940 0.060
#> SRR1036068     1   0.327    0.64720 0.940 0.060
#> SRR1036069     1   0.327    0.64720 0.940 0.060
#> SRR1036070     1   0.327    0.64720 0.940 0.060
#> SRR1036071     1   0.327    0.64720 0.940 0.060
#> SRR1036072     1   0.327    0.64720 0.940 0.060
#> SRR1036073     1   0.327    0.64720 0.940 0.060
#> SRR1036074     2   0.943    0.92780 0.360 0.640
#> SRR1036075     2   0.943    0.92780 0.360 0.640
#> SRR1036076     2   0.943    0.92780 0.360 0.640
#> SRR1036077     2   0.943    0.92780 0.360 0.640
#> SRR1036078     2   0.943    0.92780 0.360 0.640
#> SRR1036079     2   0.943    0.92780 0.360 0.640
#> SRR1036080     2   0.943    0.92780 0.360 0.640
#> SRR1036081     2   0.943    0.92780 0.360 0.640
#> SRR1036082     2   0.952    0.93548 0.372 0.628
#> SRR1036083     2   0.952    0.93548 0.372 0.628
#> SRR1036084     2   0.952    0.93548 0.372 0.628
#> SRR1036090     2   0.971    0.95272 0.400 0.600
#> SRR1036091     2   0.971    0.95272 0.400 0.600
#> SRR1036092     2   0.971    0.95272 0.400 0.600
#> SRR1036093     2   0.969    0.95523 0.396 0.604
#> SRR1036094     2   0.971    0.95272 0.400 0.600
#> SRR1036085     1   0.943    0.48403 0.640 0.360
#> SRR1036086     1   0.943    0.48403 0.640 0.360
#> SRR1036087     1   0.943    0.48403 0.640 0.360
#> SRR1036088     1   0.943    0.48403 0.640 0.360
#> SRR1036089     1   0.943    0.48403 0.640 0.360
#> SRR1036095     1   0.680    0.47194 0.820 0.180
#> SRR1036096     1   0.680    0.47194 0.820 0.180
#> SRR1036097     1   0.680    0.47194 0.820 0.180
#> SRR1036098     1   0.680    0.47194 0.820 0.180
#> SRR1036099     1   0.680    0.47194 0.820 0.180
#> SRR1036100     2   0.969    0.94852 0.396 0.604
#> SRR1036101     2   0.969    0.94852 0.396 0.604
#> SRR1036102     2   0.969    0.94852 0.396 0.604
#> SRR1036103     2   0.969    0.94852 0.396 0.604
#> SRR1036104     2   0.969    0.94852 0.396 0.604
#> SRR1036105     1   0.943    0.48403 0.640 0.360
#> SRR1036106     1   0.943    0.48403 0.640 0.360
#> SRR1036107     1   0.943    0.48403 0.640 0.360
#> SRR1036108     1   0.943    0.48403 0.640 0.360
#> SRR1036109     1   0.943    0.48403 0.640 0.360
#> SRR1036110     1   0.999   -0.10047 0.520 0.480
#> SRR1036111     1   0.999   -0.10047 0.520 0.480
#> SRR1036112     1   0.999   -0.10047 0.520 0.480
#> SRR1036113     1   0.999   -0.10047 0.520 0.480
#> SRR1036114     1   0.999   -0.10047 0.520 0.480
#> SRR1036115     1   0.163    0.65347 0.976 0.024
#> SRR1036116     1   0.163    0.65347 0.976 0.024
#> SRR1036117     1   0.163    0.65347 0.976 0.024
#> SRR1036118     1   0.163    0.65347 0.976 0.024
#> SRR1036119     1   0.163    0.65347 0.976 0.024
#> SRR1036120     1   0.242    0.65218 0.960 0.040
#> SRR1036121     1   0.242    0.65218 0.960 0.040
#> SRR1036122     1   0.242    0.65218 0.960 0.040
#> SRR1036123     1   0.242    0.65218 0.960 0.040
#> SRR1036124     1   0.242    0.65218 0.960 0.040
#> SRR1036125     1   0.141    0.65278 0.980 0.020
#> SRR1036126     1   0.141    0.65278 0.980 0.020
#> SRR1036127     1   0.141    0.65278 0.980 0.020
#> SRR1036128     1   0.141    0.65278 0.980 0.020
#> SRR1036129     1   0.141    0.65278 0.980 0.020
#> SRR1036130     1   0.141    0.65278 0.980 0.020
#> SRR1036131     1   0.141    0.65278 0.980 0.020
#> SRR1036132     1   0.141    0.65278 0.980 0.020
#> SRR1036133     2   0.973    0.95119 0.404 0.596
#> SRR1036134     2   0.973    0.95119 0.404 0.596
#> SRR1036135     2   0.973    0.95119 0.404 0.596
#> SRR1036136     2   0.973    0.95119 0.404 0.596
#> SRR1036137     2   0.973    0.95119 0.404 0.596
#> SRR1036138     2   0.961    0.95439 0.384 0.616
#> SRR1036139     2   0.961    0.95439 0.384 0.616
#> SRR1036140     2   0.961    0.95439 0.384 0.616
#> SRR1036141     2   0.961    0.95439 0.384 0.616
#> SRR1036142     2   0.961    0.95439 0.384 0.616
#> SRR1036143     2   0.961    0.95439 0.384 0.616
#> SRR1036144     2   0.961    0.95439 0.384 0.616
#> SRR1036145     2   0.961    0.95439 0.384 0.616

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1036002     3  0.9953     -0.172 0.300 0.320 0.380
#> SRR1036003     3  0.9953     -0.172 0.300 0.320 0.380
#> SRR1036004     3  0.9953     -0.172 0.300 0.320 0.380
#> SRR1036005     3  0.0829      0.875 0.012 0.004 0.984
#> SRR1036006     3  0.0829      0.875 0.012 0.004 0.984
#> SRR1036007     3  0.0829      0.875 0.012 0.004 0.984
#> SRR1036008     3  0.0829      0.875 0.012 0.004 0.984
#> SRR1036009     3  0.0829      0.875 0.012 0.004 0.984
#> SRR1036013     1  0.6541      0.489 0.672 0.304 0.024
#> SRR1036014     1  0.6541      0.489 0.672 0.304 0.024
#> SRR1036015     1  0.6541      0.489 0.672 0.304 0.024
#> SRR1036016     1  0.6541      0.489 0.672 0.304 0.024
#> SRR1036017     1  0.6541      0.489 0.672 0.304 0.024
#> SRR1036018     1  0.6541      0.489 0.672 0.304 0.024
#> SRR1036010     1  0.6451      0.605 0.684 0.292 0.024
#> SRR1036011     1  0.6451      0.605 0.684 0.292 0.024
#> SRR1036012     1  0.6451      0.605 0.684 0.292 0.024
#> SRR1036019     2  0.0829      0.822 0.012 0.984 0.004
#> SRR1036020     2  0.0829      0.822 0.012 0.984 0.004
#> SRR1036021     2  0.0829      0.822 0.012 0.984 0.004
#> SRR1036022     2  0.0829      0.822 0.012 0.984 0.004
#> SRR1036023     2  0.0829      0.822 0.012 0.984 0.004
#> SRR1036024     1  0.5591      0.484 0.696 0.304 0.000
#> SRR1036025     1  0.5591      0.486 0.696 0.304 0.000
#> SRR1036026     1  0.5529      0.491 0.704 0.296 0.000
#> SRR1036027     1  0.5529      0.491 0.704 0.296 0.000
#> SRR1036028     1  0.5529      0.491 0.704 0.296 0.000
#> SRR1036029     1  0.5560      0.487 0.700 0.300 0.000
#> SRR1036030     2  0.2564      0.793 0.036 0.936 0.028
#> SRR1036031     2  0.2564      0.793 0.036 0.936 0.028
#> SRR1036032     2  0.2564      0.793 0.036 0.936 0.028
#> SRR1036033     2  0.2564      0.793 0.036 0.936 0.028
#> SRR1036034     2  0.2564      0.793 0.036 0.936 0.028
#> SRR1036035     2  0.2564      0.793 0.036 0.936 0.028
#> SRR1036036     2  0.2564      0.793 0.036 0.936 0.028
#> SRR1036037     2  0.2564      0.793 0.036 0.936 0.028
#> SRR1036038     1  0.7451      0.452 0.564 0.396 0.040
#> SRR1036039     1  0.7451      0.452 0.564 0.396 0.040
#> SRR1036040     1  0.7451      0.452 0.564 0.396 0.040
#> SRR1036041     1  0.6543      0.563 0.640 0.344 0.016
#> SRR1036042     2  0.9070      0.375 0.308 0.528 0.164
#> SRR1036043     2  0.9070      0.375 0.308 0.528 0.164
#> SRR1036044     2  0.9070      0.375 0.308 0.528 0.164
#> SRR1036045     2  0.9070      0.375 0.308 0.528 0.164
#> SRR1036046     2  0.9070      0.375 0.308 0.528 0.164
#> SRR1036047     2  0.9070      0.375 0.308 0.528 0.164
#> SRR1036048     2  0.9070      0.375 0.308 0.528 0.164
#> SRR1036049     2  0.9070      0.375 0.308 0.528 0.164
#> SRR1036050     1  0.6630      0.599 0.672 0.300 0.028
#> SRR1036051     1  0.6630      0.599 0.672 0.300 0.028
#> SRR1036052     1  0.6630      0.599 0.672 0.300 0.028
#> SRR1036053     1  0.6630      0.599 0.672 0.300 0.028
#> SRR1036054     1  0.6630      0.599 0.672 0.300 0.028
#> SRR1036055     2  0.7819     -0.208 0.440 0.508 0.052
#> SRR1036056     2  0.7740     -0.211 0.444 0.508 0.048
#> SRR1036057     2  0.7819     -0.208 0.440 0.508 0.052
#> SRR1036058     1  0.6994      0.377 0.612 0.360 0.028
#> SRR1036059     1  0.6994      0.377 0.612 0.360 0.028
#> SRR1036060     1  0.6994      0.377 0.612 0.360 0.028
#> SRR1036061     1  0.6994      0.377 0.612 0.360 0.028
#> SRR1036062     1  0.6994      0.377 0.612 0.360 0.028
#> SRR1036063     1  0.6994      0.377 0.612 0.360 0.028
#> SRR1036064     1  0.6994      0.377 0.612 0.360 0.028
#> SRR1036065     1  0.6994      0.377 0.612 0.360 0.028
#> SRR1036066     1  0.5574      0.627 0.784 0.184 0.032
#> SRR1036067     1  0.5574      0.627 0.784 0.184 0.032
#> SRR1036068     1  0.5574      0.627 0.784 0.184 0.032
#> SRR1036069     1  0.5574      0.627 0.784 0.184 0.032
#> SRR1036070     1  0.5574      0.627 0.784 0.184 0.032
#> SRR1036071     1  0.5574      0.627 0.784 0.184 0.032
#> SRR1036072     1  0.5574      0.627 0.784 0.184 0.032
#> SRR1036073     1  0.5574      0.627 0.784 0.184 0.032
#> SRR1036074     2  0.3921      0.752 0.112 0.872 0.016
#> SRR1036075     2  0.3921      0.752 0.112 0.872 0.016
#> SRR1036076     2  0.3921      0.752 0.112 0.872 0.016
#> SRR1036077     2  0.3846      0.755 0.108 0.876 0.016
#> SRR1036078     2  0.3846      0.755 0.108 0.876 0.016
#> SRR1036079     2  0.3846      0.755 0.108 0.876 0.016
#> SRR1036080     2  0.3846      0.755 0.108 0.876 0.016
#> SRR1036081     2  0.3846      0.755 0.108 0.876 0.016
#> SRR1036082     2  0.3607      0.756 0.112 0.880 0.008
#> SRR1036083     2  0.3607      0.756 0.112 0.880 0.008
#> SRR1036084     2  0.3607      0.756 0.112 0.880 0.008
#> SRR1036090     2  0.1919      0.821 0.024 0.956 0.020
#> SRR1036091     2  0.1919      0.821 0.024 0.956 0.020
#> SRR1036092     2  0.1919      0.821 0.024 0.956 0.020
#> SRR1036093     2  0.1919      0.821 0.024 0.956 0.020
#> SRR1036094     2  0.1919      0.821 0.024 0.956 0.020
#> SRR1036085     3  0.1015      0.874 0.012 0.008 0.980
#> SRR1036086     3  0.1015      0.874 0.012 0.008 0.980
#> SRR1036087     3  0.1015      0.874 0.012 0.008 0.980
#> SRR1036088     3  0.1015      0.874 0.012 0.008 0.980
#> SRR1036089     3  0.1015      0.874 0.012 0.008 0.980
#> SRR1036095     1  0.5502      0.564 0.744 0.248 0.008
#> SRR1036096     1  0.5656      0.554 0.728 0.264 0.008
#> SRR1036097     1  0.5580      0.559 0.736 0.256 0.008
#> SRR1036098     1  0.5618      0.556 0.732 0.260 0.008
#> SRR1036099     1  0.5502      0.564 0.744 0.248 0.008
#> SRR1036100     2  0.1031      0.819 0.024 0.976 0.000
#> SRR1036101     2  0.1031      0.819 0.024 0.976 0.000
#> SRR1036102     2  0.1031      0.819 0.024 0.976 0.000
#> SRR1036103     2  0.1031      0.819 0.024 0.976 0.000
#> SRR1036104     2  0.1031      0.819 0.024 0.976 0.000
#> SRR1036105     3  0.0829      0.875 0.012 0.004 0.984
#> SRR1036106     3  0.0829      0.875 0.012 0.004 0.984
#> SRR1036107     3  0.0829      0.875 0.012 0.004 0.984
#> SRR1036108     3  0.0829      0.875 0.012 0.004 0.984
#> SRR1036109     3  0.0829      0.875 0.012 0.004 0.984
#> SRR1036110     1  0.6129      0.469 0.668 0.324 0.008
#> SRR1036111     1  0.6155      0.463 0.664 0.328 0.008
#> SRR1036112     1  0.6129      0.469 0.668 0.324 0.008
#> SRR1036113     1  0.6129      0.469 0.668 0.324 0.008
#> SRR1036114     1  0.6155      0.463 0.664 0.328 0.008
#> SRR1036115     1  0.6420      0.606 0.688 0.288 0.024
#> SRR1036116     1  0.6420      0.606 0.688 0.288 0.024
#> SRR1036117     1  0.6451      0.604 0.684 0.292 0.024
#> SRR1036118     1  0.6451      0.604 0.684 0.292 0.024
#> SRR1036119     1  0.6451      0.604 0.684 0.292 0.024
#> SRR1036120     1  0.6850      0.507 0.720 0.072 0.208
#> SRR1036121     1  0.6850      0.507 0.720 0.072 0.208
#> SRR1036122     1  0.6850      0.507 0.720 0.072 0.208
#> SRR1036123     1  0.6850      0.507 0.720 0.072 0.208
#> SRR1036124     1  0.6850      0.507 0.720 0.072 0.208
#> SRR1036125     1  0.6937      0.605 0.680 0.272 0.048
#> SRR1036126     1  0.6937      0.605 0.680 0.272 0.048
#> SRR1036127     1  0.6937      0.605 0.680 0.272 0.048
#> SRR1036128     1  0.6937      0.605 0.680 0.272 0.048
#> SRR1036129     1  0.6937      0.605 0.680 0.272 0.048
#> SRR1036130     1  0.6937      0.605 0.680 0.272 0.048
#> SRR1036131     1  0.6937      0.605 0.680 0.272 0.048
#> SRR1036132     1  0.6937      0.605 0.680 0.272 0.048
#> SRR1036133     2  0.1289      0.814 0.000 0.968 0.032
#> SRR1036134     2  0.1289      0.814 0.000 0.968 0.032
#> SRR1036135     2  0.1289      0.814 0.000 0.968 0.032
#> SRR1036136     2  0.1289      0.814 0.000 0.968 0.032
#> SRR1036137     2  0.1289      0.814 0.000 0.968 0.032
#> SRR1036138     2  0.0000      0.819 0.000 1.000 0.000
#> SRR1036139     2  0.0000      0.819 0.000 1.000 0.000
#> SRR1036140     2  0.0000      0.819 0.000 1.000 0.000
#> SRR1036141     2  0.0000      0.819 0.000 1.000 0.000
#> SRR1036142     2  0.0000      0.819 0.000 1.000 0.000
#> SRR1036143     2  0.0000      0.819 0.000 1.000 0.000
#> SRR1036144     2  0.0000      0.819 0.000 1.000 0.000
#> SRR1036145     2  0.0000      0.819 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1036002     3  0.9137     0.0119 0.068 0.284 0.360 0.288
#> SRR1036003     3  0.9137     0.0119 0.068 0.284 0.360 0.288
#> SRR1036004     3  0.9137     0.0119 0.068 0.284 0.360 0.288
#> SRR1036005     3  0.0000     0.8752 0.000 0.000 1.000 0.000
#> SRR1036006     3  0.0000     0.8752 0.000 0.000 1.000 0.000
#> SRR1036007     3  0.0000     0.8752 0.000 0.000 1.000 0.000
#> SRR1036008     3  0.0000     0.8752 0.000 0.000 1.000 0.000
#> SRR1036009     3  0.0000     0.8752 0.000 0.000 1.000 0.000
#> SRR1036013     4  0.3404     0.6956 0.104 0.032 0.000 0.864
#> SRR1036014     4  0.3404     0.6956 0.104 0.032 0.000 0.864
#> SRR1036015     4  0.3404     0.6956 0.104 0.032 0.000 0.864
#> SRR1036016     4  0.3404     0.6956 0.104 0.032 0.000 0.864
#> SRR1036017     4  0.3404     0.6956 0.104 0.032 0.000 0.864
#> SRR1036018     4  0.3404     0.6956 0.104 0.032 0.000 0.864
#> SRR1036010     1  0.3770     0.8040 0.868 0.028 0.032 0.072
#> SRR1036011     1  0.3770     0.8040 0.868 0.028 0.032 0.072
#> SRR1036012     1  0.3770     0.8040 0.868 0.028 0.032 0.072
#> SRR1036019     2  0.2198     0.8566 0.000 0.920 0.008 0.072
#> SRR1036020     2  0.2198     0.8566 0.000 0.920 0.008 0.072
#> SRR1036021     2  0.2198     0.8566 0.000 0.920 0.008 0.072
#> SRR1036022     2  0.2198     0.8566 0.000 0.920 0.008 0.072
#> SRR1036023     2  0.2198     0.8566 0.000 0.920 0.008 0.072
#> SRR1036024     4  0.5168     0.5708 0.248 0.040 0.000 0.712
#> SRR1036025     4  0.5168     0.5708 0.248 0.040 0.000 0.712
#> SRR1036026     4  0.5168     0.5708 0.248 0.040 0.000 0.712
#> SRR1036027     4  0.5168     0.5708 0.248 0.040 0.000 0.712
#> SRR1036028     4  0.5198     0.5642 0.252 0.040 0.000 0.708
#> SRR1036029     4  0.5168     0.5708 0.248 0.040 0.000 0.712
#> SRR1036030     2  0.1798     0.8445 0.016 0.944 0.040 0.000
#> SRR1036031     2  0.1798     0.8445 0.016 0.944 0.040 0.000
#> SRR1036032     2  0.1798     0.8445 0.016 0.944 0.040 0.000
#> SRR1036033     2  0.1798     0.8445 0.016 0.944 0.040 0.000
#> SRR1036034     2  0.1798     0.8445 0.016 0.944 0.040 0.000
#> SRR1036035     2  0.1798     0.8445 0.016 0.944 0.040 0.000
#> SRR1036036     2  0.1798     0.8445 0.016 0.944 0.040 0.000
#> SRR1036037     2  0.1798     0.8445 0.016 0.944 0.040 0.000
#> SRR1036038     1  0.6217     0.7188 0.736 0.104 0.096 0.064
#> SRR1036039     1  0.6217     0.7188 0.736 0.104 0.096 0.064
#> SRR1036040     1  0.6217     0.7188 0.736 0.104 0.096 0.064
#> SRR1036041     1  0.2594     0.8133 0.920 0.036 0.012 0.032
#> SRR1036042     4  0.8002     0.1032 0.004 0.324 0.276 0.396
#> SRR1036043     4  0.8002     0.1032 0.004 0.324 0.276 0.396
#> SRR1036044     4  0.8002     0.1032 0.004 0.324 0.276 0.396
#> SRR1036045     4  0.8002     0.1032 0.004 0.324 0.276 0.396
#> SRR1036046     4  0.8002     0.1032 0.004 0.324 0.276 0.396
#> SRR1036047     4  0.8002     0.1032 0.004 0.324 0.276 0.396
#> SRR1036048     4  0.8002     0.1032 0.004 0.324 0.276 0.396
#> SRR1036049     4  0.8002     0.1032 0.004 0.324 0.276 0.396
#> SRR1036050     1  0.0992     0.8160 0.976 0.012 0.008 0.004
#> SRR1036051     1  0.0992     0.8160 0.976 0.012 0.008 0.004
#> SRR1036052     1  0.0992     0.8160 0.976 0.012 0.008 0.004
#> SRR1036053     1  0.0992     0.8160 0.976 0.012 0.008 0.004
#> SRR1036054     1  0.0992     0.8160 0.976 0.012 0.008 0.004
#> SRR1036055     1  0.6350     0.5078 0.612 0.296 0.092 0.000
#> SRR1036056     1  0.6350     0.5078 0.612 0.296 0.092 0.000
#> SRR1036057     1  0.6350     0.5078 0.612 0.296 0.092 0.000
#> SRR1036058     4  0.0524     0.6666 0.004 0.008 0.000 0.988
#> SRR1036059     4  0.0524     0.6666 0.004 0.008 0.000 0.988
#> SRR1036060     4  0.0524     0.6666 0.004 0.008 0.000 0.988
#> SRR1036061     4  0.0524     0.6666 0.004 0.008 0.000 0.988
#> SRR1036062     4  0.0524     0.6666 0.004 0.008 0.000 0.988
#> SRR1036063     4  0.0524     0.6666 0.004 0.008 0.000 0.988
#> SRR1036064     4  0.0524     0.6666 0.004 0.008 0.000 0.988
#> SRR1036065     4  0.0524     0.6666 0.004 0.008 0.000 0.988
#> SRR1036066     1  0.4074     0.7293 0.792 0.004 0.008 0.196
#> SRR1036067     1  0.4074     0.7293 0.792 0.004 0.008 0.196
#> SRR1036068     1  0.4074     0.7293 0.792 0.004 0.008 0.196
#> SRR1036069     1  0.4074     0.7293 0.792 0.004 0.008 0.196
#> SRR1036070     1  0.4074     0.7293 0.792 0.004 0.008 0.196
#> SRR1036071     1  0.4074     0.7293 0.792 0.004 0.008 0.196
#> SRR1036072     1  0.4074     0.7293 0.792 0.004 0.008 0.196
#> SRR1036073     1  0.4074     0.7293 0.792 0.004 0.008 0.196
#> SRR1036074     2  0.4720     0.6552 0.000 0.672 0.004 0.324
#> SRR1036075     2  0.4720     0.6552 0.000 0.672 0.004 0.324
#> SRR1036076     2  0.4720     0.6552 0.000 0.672 0.004 0.324
#> SRR1036077     2  0.4720     0.6552 0.000 0.672 0.004 0.324
#> SRR1036078     2  0.4720     0.6552 0.000 0.672 0.004 0.324
#> SRR1036079     2  0.4720     0.6552 0.000 0.672 0.004 0.324
#> SRR1036080     2  0.4720     0.6552 0.000 0.672 0.004 0.324
#> SRR1036081     2  0.4720     0.6552 0.000 0.672 0.004 0.324
#> SRR1036082     2  0.5252     0.6058 0.020 0.644 0.000 0.336
#> SRR1036083     2  0.5252     0.6058 0.020 0.644 0.000 0.336
#> SRR1036084     2  0.5252     0.6058 0.020 0.644 0.000 0.336
#> SRR1036090     2  0.3993     0.8283 0.020 0.848 0.028 0.104
#> SRR1036091     2  0.3993     0.8283 0.020 0.848 0.028 0.104
#> SRR1036092     2  0.3993     0.8283 0.020 0.848 0.028 0.104
#> SRR1036093     2  0.3993     0.8283 0.020 0.848 0.028 0.104
#> SRR1036094     2  0.3993     0.8283 0.020 0.848 0.028 0.104
#> SRR1036085     3  0.0000     0.8752 0.000 0.000 1.000 0.000
#> SRR1036086     3  0.0000     0.8752 0.000 0.000 1.000 0.000
#> SRR1036087     3  0.0000     0.8752 0.000 0.000 1.000 0.000
#> SRR1036088     3  0.0000     0.8752 0.000 0.000 1.000 0.000
#> SRR1036089     3  0.0000     0.8752 0.000 0.000 1.000 0.000
#> SRR1036095     4  0.5861     0.2431 0.480 0.032 0.000 0.488
#> SRR1036096     4  0.5861     0.2431 0.480 0.032 0.000 0.488
#> SRR1036097     4  0.5861     0.2431 0.480 0.032 0.000 0.488
#> SRR1036098     4  0.5861     0.2431 0.480 0.032 0.000 0.488
#> SRR1036099     4  0.5861     0.2431 0.480 0.032 0.000 0.488
#> SRR1036100     2  0.2988     0.8394 0.000 0.876 0.012 0.112
#> SRR1036101     2  0.2988     0.8394 0.000 0.876 0.012 0.112
#> SRR1036102     2  0.2988     0.8394 0.000 0.876 0.012 0.112
#> SRR1036103     2  0.2859     0.8398 0.000 0.880 0.008 0.112
#> SRR1036104     2  0.2988     0.8394 0.000 0.876 0.012 0.112
#> SRR1036105     3  0.0000     0.8752 0.000 0.000 1.000 0.000
#> SRR1036106     3  0.0000     0.8752 0.000 0.000 1.000 0.000
#> SRR1036107     3  0.0000     0.8752 0.000 0.000 1.000 0.000
#> SRR1036108     3  0.0000     0.8752 0.000 0.000 1.000 0.000
#> SRR1036109     3  0.0000     0.8752 0.000 0.000 1.000 0.000
#> SRR1036110     4  0.3342     0.6975 0.100 0.032 0.000 0.868
#> SRR1036111     4  0.3342     0.6975 0.100 0.032 0.000 0.868
#> SRR1036112     4  0.3342     0.6975 0.100 0.032 0.000 0.868
#> SRR1036113     4  0.3342     0.6975 0.100 0.032 0.000 0.868
#> SRR1036114     4  0.3342     0.6975 0.100 0.032 0.000 0.868
#> SRR1036115     1  0.1211     0.8083 0.960 0.000 0.000 0.040
#> SRR1036116     1  0.1211     0.8083 0.960 0.000 0.000 0.040
#> SRR1036117     1  0.1211     0.8083 0.960 0.000 0.000 0.040
#> SRR1036118     1  0.1211     0.8083 0.960 0.000 0.000 0.040
#> SRR1036119     1  0.1211     0.8083 0.960 0.000 0.000 0.040
#> SRR1036120     1  0.7978     0.4936 0.548 0.044 0.248 0.160
#> SRR1036121     1  0.7978     0.4936 0.548 0.044 0.248 0.160
#> SRR1036122     1  0.7978     0.4936 0.548 0.044 0.248 0.160
#> SRR1036123     1  0.7978     0.4936 0.548 0.044 0.248 0.160
#> SRR1036124     1  0.7978     0.4936 0.548 0.044 0.248 0.160
#> SRR1036125     1  0.0844     0.8148 0.980 0.004 0.004 0.012
#> SRR1036126     1  0.0844     0.8148 0.980 0.004 0.004 0.012
#> SRR1036127     1  0.0844     0.8148 0.980 0.004 0.004 0.012
#> SRR1036128     1  0.0844     0.8148 0.980 0.004 0.004 0.012
#> SRR1036129     1  0.0844     0.8148 0.980 0.004 0.004 0.012
#> SRR1036130     1  0.0844     0.8148 0.980 0.004 0.004 0.012
#> SRR1036131     1  0.0844     0.8148 0.980 0.004 0.004 0.012
#> SRR1036132     1  0.0844     0.8148 0.980 0.004 0.004 0.012
#> SRR1036133     2  0.1545     0.8472 0.008 0.952 0.040 0.000
#> SRR1036134     2  0.1545     0.8472 0.008 0.952 0.040 0.000
#> SRR1036135     2  0.1545     0.8472 0.008 0.952 0.040 0.000
#> SRR1036136     2  0.1545     0.8472 0.008 0.952 0.040 0.000
#> SRR1036137     2  0.1545     0.8472 0.008 0.952 0.040 0.000
#> SRR1036138     2  0.1118     0.8582 0.000 0.964 0.000 0.036
#> SRR1036139     2  0.1118     0.8582 0.000 0.964 0.000 0.036
#> SRR1036140     2  0.1118     0.8582 0.000 0.964 0.000 0.036
#> SRR1036141     2  0.1118     0.8582 0.000 0.964 0.000 0.036
#> SRR1036142     2  0.1118     0.8582 0.000 0.964 0.000 0.036
#> SRR1036143     2  0.1118     0.8582 0.000 0.964 0.000 0.036
#> SRR1036144     2  0.1118     0.8582 0.000 0.964 0.000 0.036
#> SRR1036145     2  0.1118     0.8582 0.000 0.964 0.000 0.036

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1036002     5  0.8841     0.6413 0.140 0.248 0.052 0.148 0.412
#> SRR1036003     5  0.8841     0.6413 0.140 0.248 0.052 0.148 0.412
#> SRR1036004     5  0.8841     0.6413 0.140 0.248 0.052 0.148 0.412
#> SRR1036005     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036006     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036007     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036008     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036009     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036013     4  0.3102     0.7117 0.084 0.000 0.000 0.860 0.056
#> SRR1036014     4  0.3102     0.7117 0.084 0.000 0.000 0.860 0.056
#> SRR1036015     4  0.3102     0.7117 0.084 0.000 0.000 0.860 0.056
#> SRR1036016     4  0.3102     0.7117 0.084 0.000 0.000 0.860 0.056
#> SRR1036017     4  0.3102     0.7117 0.084 0.000 0.000 0.860 0.056
#> SRR1036018     4  0.3102     0.7117 0.084 0.000 0.000 0.860 0.056
#> SRR1036010     1  0.3359     0.7822 0.844 0.084 0.000 0.072 0.000
#> SRR1036011     1  0.3359     0.7822 0.844 0.084 0.000 0.072 0.000
#> SRR1036012     1  0.3359     0.7822 0.844 0.084 0.000 0.072 0.000
#> SRR1036019     2  0.1891     0.8025 0.004 0.928 0.004 0.004 0.060
#> SRR1036020     2  0.1891     0.8025 0.004 0.928 0.004 0.004 0.060
#> SRR1036021     2  0.1891     0.8025 0.004 0.928 0.004 0.004 0.060
#> SRR1036022     2  0.1891     0.8025 0.004 0.928 0.004 0.004 0.060
#> SRR1036023     2  0.1891     0.8025 0.004 0.928 0.004 0.004 0.060
#> SRR1036024     4  0.2605     0.7267 0.148 0.000 0.000 0.852 0.000
#> SRR1036025     4  0.2605     0.7267 0.148 0.000 0.000 0.852 0.000
#> SRR1036026     4  0.2605     0.7267 0.148 0.000 0.000 0.852 0.000
#> SRR1036027     4  0.2605     0.7267 0.148 0.000 0.000 0.852 0.000
#> SRR1036028     4  0.2605     0.7267 0.148 0.000 0.000 0.852 0.000
#> SRR1036029     4  0.2605     0.7267 0.148 0.000 0.000 0.852 0.000
#> SRR1036030     2  0.0727     0.8087 0.012 0.980 0.004 0.000 0.004
#> SRR1036031     2  0.0727     0.8087 0.012 0.980 0.004 0.000 0.004
#> SRR1036032     2  0.0727     0.8087 0.012 0.980 0.004 0.000 0.004
#> SRR1036033     2  0.0727     0.8087 0.012 0.980 0.004 0.000 0.004
#> SRR1036034     2  0.0727     0.8087 0.012 0.980 0.004 0.000 0.004
#> SRR1036035     2  0.0727     0.8087 0.012 0.980 0.004 0.000 0.004
#> SRR1036036     2  0.0727     0.8087 0.012 0.980 0.004 0.000 0.004
#> SRR1036037     2  0.0727     0.8087 0.012 0.980 0.004 0.000 0.004
#> SRR1036038     1  0.3876     0.7653 0.812 0.116 0.000 0.068 0.004
#> SRR1036039     1  0.3876     0.7653 0.812 0.116 0.000 0.068 0.004
#> SRR1036040     1  0.3876     0.7653 0.812 0.116 0.000 0.068 0.004
#> SRR1036041     1  0.2236     0.7948 0.908 0.068 0.000 0.024 0.000
#> SRR1036042     5  0.5467     0.8764 0.000 0.104 0.020 0.184 0.692
#> SRR1036043     5  0.5467     0.8764 0.000 0.104 0.020 0.184 0.692
#> SRR1036044     5  0.5467     0.8764 0.000 0.104 0.020 0.184 0.692
#> SRR1036045     5  0.5467     0.8764 0.000 0.104 0.020 0.184 0.692
#> SRR1036046     5  0.5467     0.8764 0.000 0.104 0.020 0.184 0.692
#> SRR1036047     5  0.5467     0.8764 0.000 0.104 0.020 0.184 0.692
#> SRR1036048     5  0.5467     0.8764 0.000 0.104 0.020 0.184 0.692
#> SRR1036049     5  0.5467     0.8764 0.000 0.104 0.020 0.184 0.692
#> SRR1036050     1  0.0794     0.7995 0.972 0.028 0.000 0.000 0.000
#> SRR1036051     1  0.0794     0.7995 0.972 0.028 0.000 0.000 0.000
#> SRR1036052     1  0.0794     0.7995 0.972 0.028 0.000 0.000 0.000
#> SRR1036053     1  0.0794     0.7995 0.972 0.028 0.000 0.000 0.000
#> SRR1036054     1  0.0794     0.7995 0.972 0.028 0.000 0.000 0.000
#> SRR1036055     1  0.4047     0.5362 0.676 0.320 0.000 0.000 0.004
#> SRR1036056     1  0.4047     0.5362 0.676 0.320 0.000 0.000 0.004
#> SRR1036057     1  0.4047     0.5362 0.676 0.320 0.000 0.000 0.004
#> SRR1036058     4  0.3857     0.5631 0.000 0.000 0.000 0.688 0.312
#> SRR1036059     4  0.3857     0.5631 0.000 0.000 0.000 0.688 0.312
#> SRR1036060     4  0.3857     0.5631 0.000 0.000 0.000 0.688 0.312
#> SRR1036061     4  0.3857     0.5631 0.000 0.000 0.000 0.688 0.312
#> SRR1036062     4  0.3857     0.5631 0.000 0.000 0.000 0.688 0.312
#> SRR1036063     4  0.3857     0.5631 0.000 0.000 0.000 0.688 0.312
#> SRR1036064     4  0.3857     0.5631 0.000 0.000 0.000 0.688 0.312
#> SRR1036065     4  0.3857     0.5631 0.000 0.000 0.000 0.688 0.312
#> SRR1036066     1  0.3305     0.7039 0.776 0.000 0.000 0.224 0.000
#> SRR1036067     1  0.3305     0.7039 0.776 0.000 0.000 0.224 0.000
#> SRR1036068     1  0.3305     0.7039 0.776 0.000 0.000 0.224 0.000
#> SRR1036069     1  0.3305     0.7039 0.776 0.000 0.000 0.224 0.000
#> SRR1036070     1  0.3305     0.7039 0.776 0.000 0.000 0.224 0.000
#> SRR1036071     1  0.3305     0.7039 0.776 0.000 0.000 0.224 0.000
#> SRR1036072     1  0.3305     0.7039 0.776 0.000 0.000 0.224 0.000
#> SRR1036073     1  0.3305     0.7039 0.776 0.000 0.000 0.224 0.000
#> SRR1036074     2  0.6321    -0.0714 0.000 0.464 0.000 0.160 0.376
#> SRR1036075     2  0.6321    -0.0714 0.000 0.464 0.000 0.160 0.376
#> SRR1036076     2  0.6321    -0.0714 0.000 0.464 0.000 0.160 0.376
#> SRR1036077     2  0.6321    -0.0714 0.000 0.464 0.000 0.160 0.376
#> SRR1036078     2  0.6321    -0.0714 0.000 0.464 0.000 0.160 0.376
#> SRR1036079     2  0.6321    -0.0714 0.000 0.464 0.000 0.160 0.376
#> SRR1036080     2  0.6321    -0.0714 0.000 0.464 0.000 0.160 0.376
#> SRR1036081     2  0.6321    -0.0714 0.000 0.464 0.000 0.160 0.376
#> SRR1036082     2  0.5912     0.3364 0.004 0.616 0.000 0.196 0.184
#> SRR1036083     2  0.5912     0.3364 0.004 0.616 0.000 0.196 0.184
#> SRR1036084     2  0.5912     0.3364 0.004 0.616 0.000 0.196 0.184
#> SRR1036090     2  0.1914     0.7887 0.008 0.928 0.000 0.056 0.008
#> SRR1036091     2  0.1914     0.7887 0.008 0.928 0.000 0.056 0.008
#> SRR1036092     2  0.1914     0.7887 0.008 0.928 0.000 0.056 0.008
#> SRR1036093     2  0.2026     0.7881 0.008 0.924 0.000 0.056 0.012
#> SRR1036094     2  0.1914     0.7887 0.008 0.928 0.000 0.056 0.008
#> SRR1036085     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036086     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036087     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036088     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036089     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036095     4  0.4307     0.3411 0.496 0.000 0.000 0.504 0.000
#> SRR1036096     4  0.4307     0.3411 0.496 0.000 0.000 0.504 0.000
#> SRR1036097     4  0.4307     0.3411 0.496 0.000 0.000 0.504 0.000
#> SRR1036098     4  0.4307     0.3411 0.496 0.000 0.000 0.504 0.000
#> SRR1036099     4  0.4307     0.3411 0.496 0.000 0.000 0.504 0.000
#> SRR1036100     2  0.1444     0.7997 0.000 0.948 0.000 0.040 0.012
#> SRR1036101     2  0.1444     0.7997 0.000 0.948 0.000 0.040 0.012
#> SRR1036102     2  0.1444     0.7997 0.000 0.948 0.000 0.040 0.012
#> SRR1036103     2  0.1444     0.7997 0.000 0.948 0.000 0.040 0.012
#> SRR1036104     2  0.1444     0.7997 0.000 0.948 0.000 0.040 0.012
#> SRR1036105     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036106     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036107     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036108     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036109     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> SRR1036110     4  0.3192     0.7239 0.112 0.000 0.000 0.848 0.040
#> SRR1036111     4  0.3192     0.7239 0.112 0.000 0.000 0.848 0.040
#> SRR1036112     4  0.3192     0.7239 0.112 0.000 0.000 0.848 0.040
#> SRR1036113     4  0.3192     0.7239 0.112 0.000 0.000 0.848 0.040
#> SRR1036114     4  0.3192     0.7239 0.112 0.000 0.000 0.848 0.040
#> SRR1036115     1  0.1197     0.7896 0.952 0.000 0.000 0.048 0.000
#> SRR1036116     1  0.1197     0.7896 0.952 0.000 0.000 0.048 0.000
#> SRR1036117     1  0.1197     0.7896 0.952 0.000 0.000 0.048 0.000
#> SRR1036118     1  0.1197     0.7896 0.952 0.000 0.000 0.048 0.000
#> SRR1036119     1  0.1197     0.7896 0.952 0.000 0.000 0.048 0.000
#> SRR1036120     1  0.7512     0.4776 0.528 0.052 0.020 0.172 0.228
#> SRR1036121     1  0.7512     0.4776 0.528 0.052 0.020 0.172 0.228
#> SRR1036122     1  0.7512     0.4776 0.528 0.052 0.020 0.172 0.228
#> SRR1036123     1  0.7512     0.4776 0.528 0.052 0.020 0.172 0.228
#> SRR1036124     1  0.7512     0.4776 0.528 0.052 0.020 0.172 0.228
#> SRR1036125     1  0.0290     0.8009 0.992 0.000 0.000 0.008 0.000
#> SRR1036126     1  0.0290     0.8009 0.992 0.000 0.000 0.008 0.000
#> SRR1036127     1  0.0290     0.8009 0.992 0.000 0.000 0.008 0.000
#> SRR1036128     1  0.0290     0.8009 0.992 0.000 0.000 0.008 0.000
#> SRR1036129     1  0.0290     0.8009 0.992 0.000 0.000 0.008 0.000
#> SRR1036130     1  0.0290     0.8009 0.992 0.000 0.000 0.008 0.000
#> SRR1036131     1  0.0290     0.8009 0.992 0.000 0.000 0.008 0.000
#> SRR1036132     1  0.0290     0.8009 0.992 0.000 0.000 0.008 0.000
#> SRR1036133     2  0.0451     0.8101 0.008 0.988 0.000 0.000 0.004
#> SRR1036134     2  0.0451     0.8101 0.008 0.988 0.000 0.000 0.004
#> SRR1036135     2  0.0451     0.8101 0.008 0.988 0.000 0.000 0.004
#> SRR1036136     2  0.0451     0.8101 0.008 0.988 0.000 0.000 0.004
#> SRR1036137     2  0.0451     0.8101 0.008 0.988 0.000 0.000 0.004
#> SRR1036138     2  0.1124     0.8044 0.004 0.960 0.000 0.000 0.036
#> SRR1036139     2  0.1124     0.8044 0.004 0.960 0.000 0.000 0.036
#> SRR1036140     2  0.1124     0.8044 0.004 0.960 0.000 0.000 0.036
#> SRR1036141     2  0.1124     0.8044 0.004 0.960 0.000 0.000 0.036
#> SRR1036142     2  0.1124     0.8044 0.004 0.960 0.000 0.000 0.036
#> SRR1036143     2  0.1124     0.8044 0.004 0.960 0.000 0.000 0.036
#> SRR1036144     2  0.1124     0.8044 0.004 0.960 0.000 0.000 0.036
#> SRR1036145     2  0.1124     0.8044 0.004 0.960 0.000 0.000 0.036

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1036002     6  0.6582      0.669 0.100 0.152 0.068 0.056 0.004 0.620
#> SRR1036003     6  0.6582      0.669 0.100 0.152 0.068 0.056 0.004 0.620
#> SRR1036004     6  0.6582      0.669 0.100 0.152 0.068 0.056 0.004 0.620
#> SRR1036005     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036006     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036007     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036008     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036009     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036013     4  0.1364      0.745 0.004 0.000 0.000 0.944 0.004 0.048
#> SRR1036014     4  0.1477      0.744 0.004 0.000 0.000 0.940 0.008 0.048
#> SRR1036015     4  0.1477      0.744 0.004 0.000 0.000 0.940 0.008 0.048
#> SRR1036016     4  0.1477      0.744 0.004 0.000 0.000 0.940 0.008 0.048
#> SRR1036017     4  0.1477      0.744 0.004 0.000 0.000 0.940 0.008 0.048
#> SRR1036018     4  0.1477      0.744 0.004 0.000 0.000 0.940 0.008 0.048
#> SRR1036010     1  0.2398      0.765 0.888 0.080 0.000 0.028 0.004 0.000
#> SRR1036011     1  0.2398      0.765 0.888 0.080 0.000 0.028 0.004 0.000
#> SRR1036012     1  0.2398      0.765 0.888 0.080 0.000 0.028 0.004 0.000
#> SRR1036019     2  0.4353      0.708 0.008 0.752 0.000 0.008 0.152 0.080
#> SRR1036020     2  0.4353      0.708 0.008 0.752 0.000 0.008 0.152 0.080
#> SRR1036021     2  0.4353      0.708 0.008 0.752 0.000 0.008 0.152 0.080
#> SRR1036022     2  0.4353      0.708 0.008 0.752 0.000 0.008 0.152 0.080
#> SRR1036023     2  0.4353      0.708 0.008 0.752 0.000 0.008 0.152 0.080
#> SRR1036024     4  0.0508      0.737 0.012 0.000 0.000 0.984 0.004 0.000
#> SRR1036025     4  0.0508      0.737 0.012 0.000 0.000 0.984 0.004 0.000
#> SRR1036026     4  0.0508      0.737 0.012 0.000 0.000 0.984 0.004 0.000
#> SRR1036027     4  0.0508      0.737 0.012 0.000 0.000 0.984 0.004 0.000
#> SRR1036028     4  0.0508      0.737 0.012 0.000 0.000 0.984 0.004 0.000
#> SRR1036029     4  0.0508      0.737 0.012 0.000 0.000 0.984 0.004 0.000
#> SRR1036030     2  0.1616      0.757 0.020 0.940 0.000 0.000 0.028 0.012
#> SRR1036031     2  0.1616      0.757 0.020 0.940 0.000 0.000 0.028 0.012
#> SRR1036032     2  0.1616      0.757 0.020 0.940 0.000 0.000 0.028 0.012
#> SRR1036033     2  0.1616      0.757 0.020 0.940 0.000 0.000 0.028 0.012
#> SRR1036034     2  0.1616      0.757 0.020 0.940 0.000 0.000 0.028 0.012
#> SRR1036035     2  0.1616      0.757 0.020 0.940 0.000 0.000 0.028 0.012
#> SRR1036036     2  0.1616      0.757 0.020 0.940 0.000 0.000 0.028 0.012
#> SRR1036037     2  0.1616      0.757 0.020 0.940 0.000 0.000 0.028 0.012
#> SRR1036038     1  0.3025      0.736 0.840 0.132 0.004 0.012 0.012 0.000
#> SRR1036039     1  0.3025      0.736 0.840 0.132 0.004 0.012 0.012 0.000
#> SRR1036040     1  0.3025      0.736 0.840 0.132 0.004 0.012 0.012 0.000
#> SRR1036041     1  0.1858      0.775 0.924 0.052 0.000 0.012 0.012 0.000
#> SRR1036042     6  0.2110      0.883 0.000 0.012 0.004 0.084 0.000 0.900
#> SRR1036043     6  0.2110      0.883 0.000 0.012 0.004 0.084 0.000 0.900
#> SRR1036044     6  0.2110      0.883 0.000 0.012 0.004 0.084 0.000 0.900
#> SRR1036045     6  0.2110      0.883 0.000 0.012 0.004 0.084 0.000 0.900
#> SRR1036046     6  0.2110      0.883 0.000 0.012 0.004 0.084 0.000 0.900
#> SRR1036047     6  0.2110      0.883 0.000 0.012 0.004 0.084 0.000 0.900
#> SRR1036048     6  0.2110      0.883 0.000 0.012 0.004 0.084 0.000 0.900
#> SRR1036049     6  0.2110      0.883 0.000 0.012 0.004 0.084 0.000 0.900
#> SRR1036050     1  0.1275      0.778 0.956 0.012 0.000 0.016 0.016 0.000
#> SRR1036051     1  0.1275      0.778 0.956 0.012 0.000 0.016 0.016 0.000
#> SRR1036052     1  0.1275      0.778 0.956 0.012 0.000 0.016 0.016 0.000
#> SRR1036053     1  0.1275      0.778 0.956 0.012 0.000 0.016 0.016 0.000
#> SRR1036054     1  0.1275      0.778 0.956 0.012 0.000 0.016 0.016 0.000
#> SRR1036055     1  0.4247      0.638 0.732 0.220 0.008 0.008 0.028 0.004
#> SRR1036056     1  0.4247      0.638 0.732 0.220 0.008 0.008 0.028 0.004
#> SRR1036057     1  0.4247      0.638 0.732 0.220 0.008 0.008 0.028 0.004
#> SRR1036058     5  0.3592      1.000 0.000 0.000 0.000 0.344 0.656 0.000
#> SRR1036059     5  0.3592      1.000 0.000 0.000 0.000 0.344 0.656 0.000
#> SRR1036060     5  0.3592      1.000 0.000 0.000 0.000 0.344 0.656 0.000
#> SRR1036061     5  0.3592      1.000 0.000 0.000 0.000 0.344 0.656 0.000
#> SRR1036062     5  0.3592      1.000 0.000 0.000 0.000 0.344 0.656 0.000
#> SRR1036063     5  0.3592      1.000 0.000 0.000 0.000 0.344 0.656 0.000
#> SRR1036064     5  0.3592      1.000 0.000 0.000 0.000 0.344 0.656 0.000
#> SRR1036065     5  0.3592      1.000 0.000 0.000 0.000 0.344 0.656 0.000
#> SRR1036066     1  0.5289      0.634 0.644 0.000 0.000 0.240 0.036 0.080
#> SRR1036067     1  0.5289      0.634 0.644 0.000 0.000 0.240 0.036 0.080
#> SRR1036068     1  0.5289      0.634 0.644 0.000 0.000 0.240 0.036 0.080
#> SRR1036069     1  0.5289      0.634 0.644 0.000 0.000 0.240 0.036 0.080
#> SRR1036070     1  0.5289      0.634 0.644 0.000 0.000 0.240 0.036 0.080
#> SRR1036071     1  0.5289      0.634 0.644 0.000 0.000 0.240 0.036 0.080
#> SRR1036072     1  0.5289      0.634 0.644 0.000 0.000 0.240 0.036 0.080
#> SRR1036073     1  0.5289      0.634 0.644 0.000 0.000 0.240 0.036 0.080
#> SRR1036074     2  0.6381      0.155 0.000 0.432 0.000 0.172 0.032 0.364
#> SRR1036075     2  0.6381      0.155 0.000 0.432 0.000 0.172 0.032 0.364
#> SRR1036076     2  0.6434      0.159 0.000 0.432 0.000 0.172 0.036 0.360
#> SRR1036077     2  0.6434      0.159 0.000 0.432 0.000 0.172 0.036 0.360
#> SRR1036078     2  0.6434      0.159 0.000 0.432 0.000 0.172 0.036 0.360
#> SRR1036079     2  0.6434      0.159 0.000 0.432 0.000 0.172 0.036 0.360
#> SRR1036080     2  0.6434      0.159 0.000 0.432 0.000 0.172 0.036 0.360
#> SRR1036081     2  0.6381      0.155 0.000 0.432 0.000 0.172 0.032 0.364
#> SRR1036082     2  0.5480      0.464 0.000 0.624 0.000 0.208 0.020 0.148
#> SRR1036083     2  0.5480      0.464 0.000 0.624 0.000 0.208 0.020 0.148
#> SRR1036084     2  0.5480      0.464 0.000 0.624 0.000 0.208 0.020 0.148
#> SRR1036090     2  0.1937      0.764 0.040 0.928 0.004 0.004 0.008 0.016
#> SRR1036091     2  0.1937      0.764 0.040 0.928 0.004 0.004 0.008 0.016
#> SRR1036092     2  0.1937      0.764 0.040 0.928 0.004 0.004 0.008 0.016
#> SRR1036093     2  0.2025      0.763 0.040 0.924 0.004 0.004 0.008 0.020
#> SRR1036094     2  0.1937      0.764 0.040 0.928 0.004 0.004 0.008 0.016
#> SRR1036085     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036086     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036087     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036088     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036089     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036095     4  0.5891      0.262 0.348 0.000 0.000 0.524 0.052 0.076
#> SRR1036096     4  0.5891      0.262 0.348 0.000 0.000 0.524 0.052 0.076
#> SRR1036097     4  0.5891      0.262 0.348 0.000 0.000 0.524 0.052 0.076
#> SRR1036098     4  0.5891      0.262 0.348 0.000 0.000 0.524 0.052 0.076
#> SRR1036099     4  0.5891      0.262 0.348 0.000 0.000 0.524 0.052 0.076
#> SRR1036100     2  0.1986      0.764 0.008 0.932 0.016 0.012 0.016 0.016
#> SRR1036101     2  0.1986      0.764 0.008 0.932 0.016 0.012 0.016 0.016
#> SRR1036102     2  0.1986      0.764 0.008 0.932 0.016 0.012 0.016 0.016
#> SRR1036103     2  0.1986      0.764 0.008 0.932 0.016 0.012 0.016 0.016
#> SRR1036104     2  0.1986      0.764 0.008 0.932 0.016 0.012 0.016 0.016
#> SRR1036105     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036106     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036107     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036108     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036109     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036110     4  0.1370      0.745 0.000 0.004 0.000 0.948 0.012 0.036
#> SRR1036111     4  0.1370      0.745 0.000 0.004 0.000 0.948 0.012 0.036
#> SRR1036112     4  0.1370      0.745 0.000 0.004 0.000 0.948 0.012 0.036
#> SRR1036113     4  0.1370      0.745 0.000 0.004 0.000 0.948 0.012 0.036
#> SRR1036114     4  0.1370      0.745 0.000 0.004 0.000 0.948 0.012 0.036
#> SRR1036115     1  0.3743      0.741 0.788 0.000 0.000 0.072 0.136 0.004
#> SRR1036116     1  0.3743      0.741 0.788 0.000 0.000 0.072 0.136 0.004
#> SRR1036117     1  0.3743      0.741 0.788 0.000 0.000 0.072 0.136 0.004
#> SRR1036118     1  0.3743      0.741 0.788 0.000 0.000 0.072 0.136 0.004
#> SRR1036119     1  0.3743      0.741 0.788 0.000 0.000 0.072 0.136 0.004
#> SRR1036120     1  0.7025      0.509 0.508 0.040 0.000 0.200 0.044 0.208
#> SRR1036121     1  0.7025      0.509 0.508 0.040 0.000 0.200 0.044 0.208
#> SRR1036122     1  0.7025      0.509 0.508 0.040 0.000 0.200 0.044 0.208
#> SRR1036123     1  0.7025      0.509 0.508 0.040 0.000 0.200 0.044 0.208
#> SRR1036124     1  0.7025      0.509 0.508 0.040 0.000 0.200 0.044 0.208
#> SRR1036125     1  0.2146      0.766 0.880 0.000 0.000 0.004 0.116 0.000
#> SRR1036126     1  0.2146      0.766 0.880 0.000 0.000 0.004 0.116 0.000
#> SRR1036127     1  0.2146      0.766 0.880 0.000 0.000 0.004 0.116 0.000
#> SRR1036128     1  0.2146      0.766 0.880 0.000 0.000 0.004 0.116 0.000
#> SRR1036129     1  0.2146      0.766 0.880 0.000 0.000 0.004 0.116 0.000
#> SRR1036130     1  0.2146      0.766 0.880 0.000 0.000 0.004 0.116 0.000
#> SRR1036131     1  0.2146      0.766 0.880 0.000 0.000 0.004 0.116 0.000
#> SRR1036132     1  0.2146      0.766 0.880 0.000 0.000 0.004 0.116 0.000
#> SRR1036133     2  0.0603      0.766 0.016 0.980 0.000 0.000 0.000 0.004
#> SRR1036134     2  0.0603      0.766 0.016 0.980 0.000 0.000 0.000 0.004
#> SRR1036135     2  0.0603      0.766 0.016 0.980 0.000 0.000 0.000 0.004
#> SRR1036136     2  0.0603      0.766 0.016 0.980 0.000 0.000 0.000 0.004
#> SRR1036137     2  0.0603      0.766 0.016 0.980 0.000 0.000 0.000 0.004
#> SRR1036138     2  0.3852      0.697 0.000 0.760 0.000 0.000 0.176 0.064
#> SRR1036139     2  0.3852      0.697 0.000 0.760 0.000 0.000 0.176 0.064
#> SRR1036140     2  0.3852      0.697 0.000 0.760 0.000 0.000 0.176 0.064
#> SRR1036141     2  0.3852      0.697 0.000 0.760 0.000 0.000 0.176 0.064
#> SRR1036142     2  0.3852      0.697 0.000 0.760 0.000 0.000 0.176 0.064
#> SRR1036143     2  0.3852      0.697 0.000 0.760 0.000 0.000 0.176 0.064
#> SRR1036144     2  0.3852      0.697 0.000 0.760 0.000 0.000 0.176 0.064
#> SRR1036145     2  0.3852      0.697 0.000 0.760 0.000 0.000 0.176 0.064

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15218 rows and 144 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.471           0.698       0.868         0.4388 0.557   0.557
#> 3 3 0.764           0.836       0.921         0.4218 0.628   0.433
#> 4 4 0.815           0.797       0.905         0.1723 0.772   0.479
#> 5 5 0.756           0.700       0.841         0.0771 0.862   0.546
#> 6 6 0.751           0.693       0.780         0.0424 0.911   0.622

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1036002     1  0.0000   0.874044 1.000 0.000
#> SRR1036003     1  0.0000   0.874044 1.000 0.000
#> SRR1036004     1  0.0000   0.874044 1.000 0.000
#> SRR1036005     1  0.0000   0.874044 1.000 0.000
#> SRR1036006     1  0.0000   0.874044 1.000 0.000
#> SRR1036007     1  0.0000   0.874044 1.000 0.000
#> SRR1036008     1  0.0000   0.874044 1.000 0.000
#> SRR1036009     1  0.0000   0.874044 1.000 0.000
#> SRR1036013     1  0.1414   0.861420 0.980 0.020
#> SRR1036014     1  0.1633   0.858033 0.976 0.024
#> SRR1036015     1  0.1414   0.861420 0.980 0.020
#> SRR1036016     1  0.1414   0.861420 0.980 0.020
#> SRR1036017     1  0.1633   0.858033 0.976 0.024
#> SRR1036018     1  0.1414   0.861420 0.980 0.020
#> SRR1036010     2  0.0000   0.806479 0.000 1.000
#> SRR1036011     2  0.0000   0.806479 0.000 1.000
#> SRR1036012     2  0.0000   0.806479 0.000 1.000
#> SRR1036019     1  0.9909   0.000162 0.556 0.444
#> SRR1036020     1  0.9909   0.000162 0.556 0.444
#> SRR1036021     1  0.9896   0.017958 0.560 0.440
#> SRR1036022     1  0.9896   0.017958 0.560 0.440
#> SRR1036023     1  0.9909   0.000162 0.556 0.444
#> SRR1036024     2  0.8327   0.669466 0.264 0.736
#> SRR1036025     2  0.8267   0.672834 0.260 0.740
#> SRR1036026     2  0.8144   0.679290 0.252 0.748
#> SRR1036027     2  0.8144   0.679290 0.252 0.748
#> SRR1036028     2  0.8144   0.679290 0.252 0.748
#> SRR1036029     2  0.8327   0.669466 0.264 0.736
#> SRR1036030     2  0.0000   0.806479 0.000 1.000
#> SRR1036031     2  0.0000   0.806479 0.000 1.000
#> SRR1036032     2  0.0000   0.806479 0.000 1.000
#> SRR1036033     2  0.0000   0.806479 0.000 1.000
#> SRR1036034     2  0.0000   0.806479 0.000 1.000
#> SRR1036035     2  0.0000   0.806479 0.000 1.000
#> SRR1036036     2  0.0000   0.806479 0.000 1.000
#> SRR1036037     2  0.0000   0.806479 0.000 1.000
#> SRR1036038     2  0.0000   0.806479 0.000 1.000
#> SRR1036039     2  0.0000   0.806479 0.000 1.000
#> SRR1036040     2  0.0000   0.806479 0.000 1.000
#> SRR1036041     2  0.0000   0.806479 0.000 1.000
#> SRR1036042     1  0.0000   0.874044 1.000 0.000
#> SRR1036043     1  0.0000   0.874044 1.000 0.000
#> SRR1036044     1  0.0000   0.874044 1.000 0.000
#> SRR1036045     1  0.0000   0.874044 1.000 0.000
#> SRR1036046     1  0.0000   0.874044 1.000 0.000
#> SRR1036047     1  0.0000   0.874044 1.000 0.000
#> SRR1036048     1  0.0000   0.874044 1.000 0.000
#> SRR1036049     1  0.0000   0.874044 1.000 0.000
#> SRR1036050     2  0.0000   0.806479 0.000 1.000
#> SRR1036051     2  0.0000   0.806479 0.000 1.000
#> SRR1036052     2  0.0000   0.806479 0.000 1.000
#> SRR1036053     2  0.0000   0.806479 0.000 1.000
#> SRR1036054     2  0.0000   0.806479 0.000 1.000
#> SRR1036055     2  0.0000   0.806479 0.000 1.000
#> SRR1036056     2  0.0000   0.806479 0.000 1.000
#> SRR1036057     2  0.0000   0.806479 0.000 1.000
#> SRR1036058     2  0.8861   0.631659 0.304 0.696
#> SRR1036059     2  0.8861   0.631659 0.304 0.696
#> SRR1036060     2  0.8861   0.631659 0.304 0.696
#> SRR1036061     2  0.8861   0.631659 0.304 0.696
#> SRR1036062     2  0.8861   0.631659 0.304 0.696
#> SRR1036063     2  0.8861   0.631659 0.304 0.696
#> SRR1036064     2  0.8861   0.631659 0.304 0.696
#> SRR1036065     2  0.8861   0.631659 0.304 0.696
#> SRR1036066     2  0.0000   0.806479 0.000 1.000
#> SRR1036067     2  0.0000   0.806479 0.000 1.000
#> SRR1036068     2  0.0000   0.806479 0.000 1.000
#> SRR1036069     2  0.0000   0.806479 0.000 1.000
#> SRR1036070     2  0.0000   0.806479 0.000 1.000
#> SRR1036071     2  0.0000   0.806479 0.000 1.000
#> SRR1036072     2  0.0000   0.806479 0.000 1.000
#> SRR1036073     2  0.0000   0.806479 0.000 1.000
#> SRR1036074     2  0.9732   0.482776 0.404 0.596
#> SRR1036075     2  0.9754   0.474103 0.408 0.592
#> SRR1036076     2  0.9732   0.482776 0.404 0.596
#> SRR1036077     2  0.9732   0.482776 0.404 0.596
#> SRR1036078     2  0.9732   0.482776 0.404 0.596
#> SRR1036079     2  0.9732   0.482776 0.404 0.596
#> SRR1036080     2  0.9732   0.482776 0.404 0.596
#> SRR1036081     2  0.9732   0.482776 0.404 0.596
#> SRR1036082     2  0.9491   0.546605 0.368 0.632
#> SRR1036083     2  0.9491   0.546605 0.368 0.632
#> SRR1036084     2  0.9491   0.546605 0.368 0.632
#> SRR1036090     2  0.9580   0.527165 0.380 0.620
#> SRR1036091     2  0.9608   0.520089 0.384 0.616
#> SRR1036092     2  0.9580   0.527165 0.380 0.620
#> SRR1036093     2  0.9580   0.527165 0.380 0.620
#> SRR1036094     2  0.9522   0.540263 0.372 0.628
#> SRR1036085     1  0.0000   0.874044 1.000 0.000
#> SRR1036086     1  0.0000   0.874044 1.000 0.000
#> SRR1036087     1  0.0000   0.874044 1.000 0.000
#> SRR1036088     1  0.0000   0.874044 1.000 0.000
#> SRR1036089     1  0.0000   0.874044 1.000 0.000
#> SRR1036095     2  0.0000   0.806479 0.000 1.000
#> SRR1036096     2  0.0000   0.806479 0.000 1.000
#> SRR1036097     2  0.0000   0.806479 0.000 1.000
#> SRR1036098     2  0.0000   0.806479 0.000 1.000
#> SRR1036099     2  0.0000   0.806479 0.000 1.000
#> SRR1036100     2  0.6247   0.741810 0.156 0.844
#> SRR1036101     2  0.6438   0.737254 0.164 0.836
#> SRR1036102     2  0.6148   0.743998 0.152 0.848
#> SRR1036103     2  0.6148   0.743945 0.152 0.848
#> SRR1036104     2  0.4815   0.766628 0.104 0.896
#> SRR1036105     1  0.0000   0.874044 1.000 0.000
#> SRR1036106     1  0.0000   0.874044 1.000 0.000
#> SRR1036107     1  0.0000   0.874044 1.000 0.000
#> SRR1036108     1  0.0000   0.874044 1.000 0.000
#> SRR1036109     1  0.0000   0.874044 1.000 0.000
#> SRR1036110     1  0.9580   0.240564 0.620 0.380
#> SRR1036111     1  0.9580   0.240564 0.620 0.380
#> SRR1036112     1  0.9580   0.240564 0.620 0.380
#> SRR1036113     1  0.9580   0.240564 0.620 0.380
#> SRR1036114     1  0.9580   0.240564 0.620 0.380
#> SRR1036115     2  0.0000   0.806479 0.000 1.000
#> SRR1036116     2  0.0000   0.806479 0.000 1.000
#> SRR1036117     2  0.0000   0.806479 0.000 1.000
#> SRR1036118     2  0.0000   0.806479 0.000 1.000
#> SRR1036119     2  0.0000   0.806479 0.000 1.000
#> SRR1036120     1  0.0000   0.874044 1.000 0.000
#> SRR1036121     1  0.0000   0.874044 1.000 0.000
#> SRR1036122     1  0.0000   0.874044 1.000 0.000
#> SRR1036123     1  0.0000   0.874044 1.000 0.000
#> SRR1036124     1  0.0000   0.874044 1.000 0.000
#> SRR1036125     2  0.0672   0.802176 0.008 0.992
#> SRR1036126     2  0.0672   0.802176 0.008 0.992
#> SRR1036127     2  0.0672   0.802176 0.008 0.992
#> SRR1036128     2  0.0672   0.802176 0.008 0.992
#> SRR1036129     2  0.0672   0.802176 0.008 0.992
#> SRR1036130     2  0.0672   0.802176 0.008 0.992
#> SRR1036131     2  0.0672   0.802176 0.008 0.992
#> SRR1036132     2  0.0672   0.802176 0.008 0.992
#> SRR1036133     2  0.0000   0.806479 0.000 1.000
#> SRR1036134     2  0.0000   0.806479 0.000 1.000
#> SRR1036135     2  0.0000   0.806479 0.000 1.000
#> SRR1036136     2  0.0000   0.806479 0.000 1.000
#> SRR1036137     2  0.0000   0.806479 0.000 1.000
#> SRR1036138     2  0.9977   0.309618 0.472 0.528
#> SRR1036139     2  0.9977   0.309618 0.472 0.528
#> SRR1036140     2  0.9977   0.309618 0.472 0.528
#> SRR1036141     2  0.9977   0.309618 0.472 0.528
#> SRR1036142     2  0.9977   0.309618 0.472 0.528
#> SRR1036143     2  0.9977   0.309618 0.472 0.528
#> SRR1036144     2  0.9977   0.309618 0.472 0.528
#> SRR1036145     2  0.9977   0.309618 0.472 0.528

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1036002     3  0.1411      0.900 0.000 0.036 0.964
#> SRR1036003     3  0.1289      0.903 0.000 0.032 0.968
#> SRR1036004     3  0.1289      0.903 0.000 0.032 0.968
#> SRR1036005     3  0.0000      0.919 0.000 0.000 1.000
#> SRR1036006     3  0.0000      0.919 0.000 0.000 1.000
#> SRR1036007     3  0.0000      0.919 0.000 0.000 1.000
#> SRR1036008     3  0.0000      0.919 0.000 0.000 1.000
#> SRR1036009     3  0.0000      0.919 0.000 0.000 1.000
#> SRR1036013     3  0.7495      0.607 0.084 0.248 0.668
#> SRR1036014     3  0.7677      0.591 0.092 0.252 0.656
#> SRR1036015     3  0.7605      0.596 0.088 0.252 0.660
#> SRR1036016     3  0.7421      0.620 0.084 0.240 0.676
#> SRR1036017     3  0.7530      0.600 0.084 0.252 0.664
#> SRR1036018     3  0.7458      0.614 0.084 0.244 0.672
#> SRR1036010     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036011     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036012     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036019     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036020     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036021     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036022     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036023     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036024     2  0.6309      0.267 0.496 0.504 0.000
#> SRR1036025     2  0.6295      0.332 0.472 0.528 0.000
#> SRR1036026     2  0.6309      0.267 0.496 0.504 0.000
#> SRR1036027     2  0.6309      0.267 0.496 0.504 0.000
#> SRR1036028     2  0.6309      0.267 0.496 0.504 0.000
#> SRR1036029     2  0.6308      0.279 0.492 0.508 0.000
#> SRR1036030     2  0.2537      0.809 0.080 0.920 0.000
#> SRR1036031     2  0.2711      0.805 0.088 0.912 0.000
#> SRR1036032     2  0.2711      0.805 0.088 0.912 0.000
#> SRR1036033     2  0.2625      0.808 0.084 0.916 0.000
#> SRR1036034     2  0.2711      0.805 0.088 0.912 0.000
#> SRR1036035     2  0.2711      0.805 0.088 0.912 0.000
#> SRR1036036     2  0.2625      0.807 0.084 0.916 0.000
#> SRR1036037     2  0.2711      0.805 0.088 0.912 0.000
#> SRR1036038     1  0.0237      0.994 0.996 0.004 0.000
#> SRR1036039     1  0.0237      0.994 0.996 0.004 0.000
#> SRR1036040     1  0.0237      0.994 0.996 0.004 0.000
#> SRR1036041     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036042     2  0.0237      0.850 0.000 0.996 0.004
#> SRR1036043     2  0.0237      0.850 0.000 0.996 0.004
#> SRR1036044     2  0.0237      0.850 0.000 0.996 0.004
#> SRR1036045     2  0.0237      0.850 0.000 0.996 0.004
#> SRR1036046     2  0.0237      0.850 0.000 0.996 0.004
#> SRR1036047     2  0.0237      0.850 0.000 0.996 0.004
#> SRR1036048     2  0.0237      0.850 0.000 0.996 0.004
#> SRR1036049     2  0.0237      0.850 0.000 0.996 0.004
#> SRR1036050     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036051     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036052     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036053     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036054     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036055     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036056     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036057     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036058     2  0.6154      0.476 0.408 0.592 0.000
#> SRR1036059     2  0.6154      0.476 0.408 0.592 0.000
#> SRR1036060     2  0.6140      0.482 0.404 0.596 0.000
#> SRR1036061     2  0.6140      0.482 0.404 0.596 0.000
#> SRR1036062     2  0.6140      0.482 0.404 0.596 0.000
#> SRR1036063     2  0.6140      0.482 0.404 0.596 0.000
#> SRR1036064     2  0.6140      0.482 0.404 0.596 0.000
#> SRR1036065     2  0.6154      0.476 0.408 0.592 0.000
#> SRR1036066     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036067     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036068     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036069     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036070     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036071     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036072     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036073     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036074     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036075     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036076     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036077     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036078     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036079     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036080     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036081     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036082     2  0.4452      0.743 0.192 0.808 0.000
#> SRR1036083     2  0.4399      0.746 0.188 0.812 0.000
#> SRR1036084     2  0.4452      0.743 0.192 0.808 0.000
#> SRR1036090     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036091     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036092     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036093     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036094     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036085     3  0.0000      0.919 0.000 0.000 1.000
#> SRR1036086     3  0.0000      0.919 0.000 0.000 1.000
#> SRR1036087     3  0.0000      0.919 0.000 0.000 1.000
#> SRR1036088     3  0.0000      0.919 0.000 0.000 1.000
#> SRR1036089     3  0.0000      0.919 0.000 0.000 1.000
#> SRR1036095     1  0.0424      0.991 0.992 0.008 0.000
#> SRR1036096     1  0.0424      0.991 0.992 0.008 0.000
#> SRR1036097     1  0.0424      0.991 0.992 0.008 0.000
#> SRR1036098     1  0.0424      0.991 0.992 0.008 0.000
#> SRR1036099     1  0.0424      0.991 0.992 0.008 0.000
#> SRR1036100     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036101     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036102     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036103     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036104     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036105     3  0.0000      0.919 0.000 0.000 1.000
#> SRR1036106     3  0.0000      0.919 0.000 0.000 1.000
#> SRR1036107     3  0.0000      0.919 0.000 0.000 1.000
#> SRR1036108     3  0.0000      0.919 0.000 0.000 1.000
#> SRR1036109     3  0.0000      0.919 0.000 0.000 1.000
#> SRR1036110     2  0.7824      0.624 0.212 0.664 0.124
#> SRR1036111     2  0.7824      0.624 0.212 0.664 0.124
#> SRR1036112     2  0.7824      0.624 0.212 0.664 0.124
#> SRR1036113     2  0.7824      0.624 0.212 0.664 0.124
#> SRR1036114     2  0.7824      0.624 0.212 0.664 0.124
#> SRR1036115     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036116     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036117     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036118     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036119     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036120     3  0.0000      0.919 0.000 0.000 1.000
#> SRR1036121     3  0.0000      0.919 0.000 0.000 1.000
#> SRR1036122     3  0.0000      0.919 0.000 0.000 1.000
#> SRR1036123     3  0.0000      0.919 0.000 0.000 1.000
#> SRR1036124     3  0.0000      0.919 0.000 0.000 1.000
#> SRR1036125     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036126     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036127     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036128     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036129     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036130     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036131     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036132     1  0.0000      0.998 1.000 0.000 0.000
#> SRR1036133     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036134     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036135     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036136     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036137     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036138     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036139     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036140     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036141     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036142     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036143     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036144     2  0.0000      0.852 0.000 1.000 0.000
#> SRR1036145     2  0.0000      0.852 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1036002     3  0.0817     0.8641 0.000 0.000 0.976 0.024
#> SRR1036003     3  0.0817     0.8641 0.000 0.000 0.976 0.024
#> SRR1036004     3  0.0921     0.8615 0.000 0.000 0.972 0.028
#> SRR1036005     3  0.0000     0.8743 0.000 0.000 1.000 0.000
#> SRR1036006     3  0.0000     0.8743 0.000 0.000 1.000 0.000
#> SRR1036007     3  0.0000     0.8743 0.000 0.000 1.000 0.000
#> SRR1036008     3  0.0000     0.8743 0.000 0.000 1.000 0.000
#> SRR1036009     3  0.0000     0.8743 0.000 0.000 1.000 0.000
#> SRR1036013     4  0.1398     0.7537 0.000 0.004 0.040 0.956
#> SRR1036014     4  0.1396     0.7571 0.004 0.004 0.032 0.960
#> SRR1036015     4  0.1398     0.7537 0.000 0.004 0.040 0.956
#> SRR1036016     4  0.1398     0.7537 0.000 0.004 0.040 0.956
#> SRR1036017     4  0.1305     0.7555 0.000 0.004 0.036 0.960
#> SRR1036018     4  0.1305     0.7555 0.000 0.004 0.036 0.960
#> SRR1036010     1  0.0000     0.9492 1.000 0.000 0.000 0.000
#> SRR1036011     1  0.0000     0.9492 1.000 0.000 0.000 0.000
#> SRR1036012     1  0.0000     0.9492 1.000 0.000 0.000 0.000
#> SRR1036019     2  0.0336     0.9840 0.000 0.992 0.000 0.008
#> SRR1036020     2  0.0336     0.9840 0.000 0.992 0.000 0.008
#> SRR1036021     2  0.0336     0.9840 0.000 0.992 0.000 0.008
#> SRR1036022     2  0.0336     0.9840 0.000 0.992 0.000 0.008
#> SRR1036023     2  0.0336     0.9840 0.000 0.992 0.000 0.008
#> SRR1036024     4  0.1978     0.7429 0.068 0.004 0.000 0.928
#> SRR1036025     4  0.2124     0.7438 0.068 0.008 0.000 0.924
#> SRR1036026     4  0.1867     0.7403 0.072 0.000 0.000 0.928
#> SRR1036027     4  0.1978     0.7430 0.068 0.004 0.000 0.928
#> SRR1036028     4  0.2053     0.7405 0.072 0.004 0.000 0.924
#> SRR1036029     4  0.1792     0.7425 0.068 0.000 0.000 0.932
#> SRR1036030     2  0.1022     0.9693 0.032 0.968 0.000 0.000
#> SRR1036031     2  0.1118     0.9658 0.036 0.964 0.000 0.000
#> SRR1036032     2  0.1022     0.9693 0.032 0.968 0.000 0.000
#> SRR1036033     2  0.1022     0.9693 0.032 0.968 0.000 0.000
#> SRR1036034     2  0.1118     0.9658 0.036 0.964 0.000 0.000
#> SRR1036035     2  0.1022     0.9693 0.032 0.968 0.000 0.000
#> SRR1036036     2  0.1022     0.9693 0.032 0.968 0.000 0.000
#> SRR1036037     2  0.1118     0.9658 0.036 0.964 0.000 0.000
#> SRR1036038     1  0.1151     0.9337 0.968 0.008 0.024 0.000
#> SRR1036039     1  0.1151     0.9337 0.968 0.008 0.024 0.000
#> SRR1036040     1  0.1256     0.9304 0.964 0.008 0.028 0.000
#> SRR1036041     1  0.0000     0.9492 1.000 0.000 0.000 0.000
#> SRR1036042     4  0.4741     0.5986 0.000 0.328 0.004 0.668
#> SRR1036043     4  0.4741     0.5986 0.000 0.328 0.004 0.668
#> SRR1036044     4  0.4741     0.5986 0.000 0.328 0.004 0.668
#> SRR1036045     4  0.4741     0.5986 0.000 0.328 0.004 0.668
#> SRR1036046     4  0.4741     0.5986 0.000 0.328 0.004 0.668
#> SRR1036047     4  0.4741     0.5986 0.000 0.328 0.004 0.668
#> SRR1036048     4  0.4741     0.5986 0.000 0.328 0.004 0.668
#> SRR1036049     4  0.4741     0.5986 0.000 0.328 0.004 0.668
#> SRR1036050     1  0.0188     0.9487 0.996 0.000 0.000 0.004
#> SRR1036051     1  0.0188     0.9487 0.996 0.000 0.000 0.004
#> SRR1036052     1  0.0188     0.9487 0.996 0.000 0.000 0.004
#> SRR1036053     1  0.0188     0.9487 0.996 0.000 0.000 0.004
#> SRR1036054     1  0.0188     0.9487 0.996 0.000 0.000 0.004
#> SRR1036055     1  0.1022     0.9291 0.968 0.032 0.000 0.000
#> SRR1036056     1  0.1022     0.9291 0.968 0.032 0.000 0.000
#> SRR1036057     1  0.0921     0.9324 0.972 0.028 0.000 0.000
#> SRR1036058     4  0.0672     0.7651 0.008 0.008 0.000 0.984
#> SRR1036059     4  0.0672     0.7651 0.008 0.008 0.000 0.984
#> SRR1036060     4  0.0672     0.7651 0.008 0.008 0.000 0.984
#> SRR1036061     4  0.0672     0.7651 0.008 0.008 0.000 0.984
#> SRR1036062     4  0.0672     0.7651 0.008 0.008 0.000 0.984
#> SRR1036063     4  0.0672     0.7651 0.008 0.008 0.000 0.984
#> SRR1036064     4  0.0672     0.7651 0.008 0.008 0.000 0.984
#> SRR1036065     4  0.0672     0.7651 0.008 0.008 0.000 0.984
#> SRR1036066     4  0.4981     0.1686 0.464 0.000 0.000 0.536
#> SRR1036067     4  0.4985     0.1573 0.468 0.000 0.000 0.532
#> SRR1036068     4  0.4977     0.1819 0.460 0.000 0.000 0.540
#> SRR1036069     4  0.4989     0.1442 0.472 0.000 0.000 0.528
#> SRR1036070     4  0.4961     0.2152 0.448 0.000 0.000 0.552
#> SRR1036071     4  0.4996     0.1040 0.484 0.000 0.000 0.516
#> SRR1036072     4  0.5000     0.0596 0.496 0.000 0.000 0.504
#> SRR1036073     4  0.5000     0.0590 0.496 0.000 0.000 0.504
#> SRR1036074     4  0.4072     0.6699 0.000 0.252 0.000 0.748
#> SRR1036075     4  0.4072     0.6699 0.000 0.252 0.000 0.748
#> SRR1036076     4  0.4072     0.6699 0.000 0.252 0.000 0.748
#> SRR1036077     4  0.4072     0.6699 0.000 0.252 0.000 0.748
#> SRR1036078     4  0.4072     0.6699 0.000 0.252 0.000 0.748
#> SRR1036079     4  0.4072     0.6699 0.000 0.252 0.000 0.748
#> SRR1036080     4  0.4072     0.6699 0.000 0.252 0.000 0.748
#> SRR1036081     4  0.4072     0.6699 0.000 0.252 0.000 0.748
#> SRR1036082     4  0.0592     0.7640 0.000 0.016 0.000 0.984
#> SRR1036083     4  0.0592     0.7640 0.000 0.016 0.000 0.984
#> SRR1036084     4  0.0592     0.7640 0.000 0.016 0.000 0.984
#> SRR1036090     2  0.0000     0.9879 0.000 1.000 0.000 0.000
#> SRR1036091     2  0.0000     0.9879 0.000 1.000 0.000 0.000
#> SRR1036092     2  0.0000     0.9879 0.000 1.000 0.000 0.000
#> SRR1036093     2  0.0000     0.9879 0.000 1.000 0.000 0.000
#> SRR1036094     2  0.0000     0.9879 0.000 1.000 0.000 0.000
#> SRR1036085     3  0.0000     0.8743 0.000 0.000 1.000 0.000
#> SRR1036086     3  0.0000     0.8743 0.000 0.000 1.000 0.000
#> SRR1036087     3  0.0000     0.8743 0.000 0.000 1.000 0.000
#> SRR1036088     3  0.0000     0.8743 0.000 0.000 1.000 0.000
#> SRR1036089     3  0.0000     0.8743 0.000 0.000 1.000 0.000
#> SRR1036095     1  0.4088     0.7386 0.764 0.004 0.000 0.232
#> SRR1036096     1  0.4228     0.7350 0.760 0.008 0.000 0.232
#> SRR1036097     1  0.4088     0.7386 0.764 0.004 0.000 0.232
#> SRR1036098     1  0.4088     0.7386 0.764 0.004 0.000 0.232
#> SRR1036099     1  0.4088     0.7386 0.764 0.004 0.000 0.232
#> SRR1036100     2  0.0336     0.9858 0.000 0.992 0.000 0.008
#> SRR1036101     2  0.0336     0.9858 0.000 0.992 0.000 0.008
#> SRR1036102     2  0.0336     0.9858 0.000 0.992 0.000 0.008
#> SRR1036103     2  0.0336     0.9858 0.000 0.992 0.000 0.008
#> SRR1036104     2  0.0336     0.9858 0.000 0.992 0.000 0.008
#> SRR1036105     3  0.0000     0.8743 0.000 0.000 1.000 0.000
#> SRR1036106     3  0.0000     0.8743 0.000 0.000 1.000 0.000
#> SRR1036107     3  0.0000     0.8743 0.000 0.000 1.000 0.000
#> SRR1036108     3  0.0000     0.8743 0.000 0.000 1.000 0.000
#> SRR1036109     3  0.0000     0.8743 0.000 0.000 1.000 0.000
#> SRR1036110     4  0.0376     0.7629 0.000 0.004 0.004 0.992
#> SRR1036111     4  0.0376     0.7629 0.000 0.004 0.004 0.992
#> SRR1036112     4  0.0376     0.7629 0.000 0.004 0.004 0.992
#> SRR1036113     4  0.0376     0.7629 0.000 0.004 0.004 0.992
#> SRR1036114     4  0.0376     0.7629 0.000 0.004 0.004 0.992
#> SRR1036115     1  0.0895     0.9425 0.976 0.004 0.000 0.020
#> SRR1036116     1  0.0895     0.9425 0.976 0.004 0.000 0.020
#> SRR1036117     1  0.0895     0.9425 0.976 0.004 0.000 0.020
#> SRR1036118     1  0.0895     0.9425 0.976 0.004 0.000 0.020
#> SRR1036119     1  0.0895     0.9425 0.976 0.004 0.000 0.020
#> SRR1036120     3  0.4994     0.2303 0.000 0.000 0.520 0.480
#> SRR1036121     3  0.4996     0.2253 0.000 0.000 0.516 0.484
#> SRR1036122     3  0.4996     0.2253 0.000 0.000 0.516 0.484
#> SRR1036123     3  0.4996     0.2253 0.000 0.000 0.516 0.484
#> SRR1036124     3  0.4994     0.2303 0.000 0.000 0.520 0.480
#> SRR1036125     1  0.0000     0.9492 1.000 0.000 0.000 0.000
#> SRR1036126     1  0.0000     0.9492 1.000 0.000 0.000 0.000
#> SRR1036127     1  0.0000     0.9492 1.000 0.000 0.000 0.000
#> SRR1036128     1  0.0000     0.9492 1.000 0.000 0.000 0.000
#> SRR1036129     1  0.0000     0.9492 1.000 0.000 0.000 0.000
#> SRR1036130     1  0.0000     0.9492 1.000 0.000 0.000 0.000
#> SRR1036131     1  0.0000     0.9492 1.000 0.000 0.000 0.000
#> SRR1036132     1  0.0000     0.9492 1.000 0.000 0.000 0.000
#> SRR1036133     2  0.0188     0.9874 0.000 0.996 0.000 0.004
#> SRR1036134     2  0.0188     0.9874 0.000 0.996 0.000 0.004
#> SRR1036135     2  0.0188     0.9874 0.000 0.996 0.000 0.004
#> SRR1036136     2  0.0188     0.9874 0.000 0.996 0.000 0.004
#> SRR1036137     2  0.0188     0.9874 0.000 0.996 0.000 0.004
#> SRR1036138     2  0.0000     0.9879 0.000 1.000 0.000 0.000
#> SRR1036139     2  0.0000     0.9879 0.000 1.000 0.000 0.000
#> SRR1036140     2  0.0000     0.9879 0.000 1.000 0.000 0.000
#> SRR1036141     2  0.0000     0.9879 0.000 1.000 0.000 0.000
#> SRR1036142     2  0.0000     0.9879 0.000 1.000 0.000 0.000
#> SRR1036143     2  0.0000     0.9879 0.000 1.000 0.000 0.000
#> SRR1036144     2  0.0000     0.9879 0.000 1.000 0.000 0.000
#> SRR1036145     2  0.0000     0.9879 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1036002     4  0.4630    0.09433 0.000 0.008 0.416 0.572 0.004
#> SRR1036003     4  0.4630    0.09433 0.000 0.008 0.416 0.572 0.004
#> SRR1036004     4  0.4630    0.09433 0.000 0.008 0.416 0.572 0.004
#> SRR1036005     3  0.0000    0.85312 0.000 0.000 1.000 0.000 0.000
#> SRR1036006     3  0.0000    0.85312 0.000 0.000 1.000 0.000 0.000
#> SRR1036007     3  0.0000    0.85312 0.000 0.000 1.000 0.000 0.000
#> SRR1036008     3  0.0000    0.85312 0.000 0.000 1.000 0.000 0.000
#> SRR1036009     3  0.0000    0.85312 0.000 0.000 1.000 0.000 0.000
#> SRR1036013     5  0.2864    0.74571 0.000 0.000 0.024 0.112 0.864
#> SRR1036014     5  0.2773    0.74634 0.000 0.000 0.020 0.112 0.868
#> SRR1036015     5  0.2864    0.74571 0.000 0.000 0.024 0.112 0.864
#> SRR1036016     5  0.2900    0.74556 0.000 0.000 0.028 0.108 0.864
#> SRR1036017     5  0.2773    0.74634 0.000 0.000 0.020 0.112 0.868
#> SRR1036018     5  0.2824    0.74384 0.000 0.000 0.020 0.116 0.864
#> SRR1036010     1  0.1522    0.81899 0.944 0.000 0.000 0.044 0.012
#> SRR1036011     1  0.1522    0.81899 0.944 0.000 0.000 0.044 0.012
#> SRR1036012     1  0.1444    0.82163 0.948 0.000 0.000 0.040 0.012
#> SRR1036019     2  0.0404    0.96957 0.000 0.988 0.000 0.012 0.000
#> SRR1036020     2  0.0404    0.96957 0.000 0.988 0.000 0.012 0.000
#> SRR1036021     2  0.0404    0.96957 0.000 0.988 0.000 0.012 0.000
#> SRR1036022     2  0.0404    0.96957 0.000 0.988 0.000 0.012 0.000
#> SRR1036023     2  0.0404    0.96957 0.000 0.988 0.000 0.012 0.000
#> SRR1036024     4  0.4593    0.50142 0.184 0.000 0.000 0.736 0.080
#> SRR1036025     4  0.4593    0.50142 0.184 0.000 0.000 0.736 0.080
#> SRR1036026     4  0.4714    0.49465 0.192 0.000 0.000 0.724 0.084
#> SRR1036027     4  0.4660    0.49582 0.192 0.000 0.000 0.728 0.080
#> SRR1036028     4  0.4637    0.49432 0.196 0.000 0.000 0.728 0.076
#> SRR1036029     4  0.4681    0.49709 0.188 0.000 0.000 0.728 0.084
#> SRR1036030     2  0.1671    0.92703 0.076 0.924 0.000 0.000 0.000
#> SRR1036031     2  0.1732    0.92414 0.080 0.920 0.000 0.000 0.000
#> SRR1036032     2  0.1732    0.92414 0.080 0.920 0.000 0.000 0.000
#> SRR1036033     2  0.1792    0.91986 0.084 0.916 0.000 0.000 0.000
#> SRR1036034     2  0.1732    0.92414 0.080 0.920 0.000 0.000 0.000
#> SRR1036035     2  0.1732    0.92366 0.080 0.920 0.000 0.000 0.000
#> SRR1036036     2  0.1792    0.91986 0.084 0.916 0.000 0.000 0.000
#> SRR1036037     2  0.1732    0.92414 0.080 0.920 0.000 0.000 0.000
#> SRR1036038     1  0.0566    0.83283 0.984 0.000 0.012 0.004 0.000
#> SRR1036039     1  0.0566    0.83283 0.984 0.000 0.012 0.004 0.000
#> SRR1036040     1  0.0566    0.83283 0.984 0.000 0.012 0.004 0.000
#> SRR1036041     1  0.0510    0.83401 0.984 0.000 0.000 0.000 0.016
#> SRR1036042     4  0.3357    0.61023 0.000 0.092 0.008 0.852 0.048
#> SRR1036043     4  0.3357    0.61023 0.000 0.092 0.008 0.852 0.048
#> SRR1036044     4  0.3357    0.61023 0.000 0.092 0.008 0.852 0.048
#> SRR1036045     4  0.3357    0.61023 0.000 0.092 0.008 0.852 0.048
#> SRR1036046     4  0.3357    0.61023 0.000 0.092 0.008 0.852 0.048
#> SRR1036047     4  0.3357    0.61023 0.000 0.092 0.008 0.852 0.048
#> SRR1036048     4  0.3357    0.61023 0.000 0.092 0.008 0.852 0.048
#> SRR1036049     4  0.3357    0.61023 0.000 0.092 0.008 0.852 0.048
#> SRR1036050     1  0.0451    0.83396 0.988 0.000 0.000 0.008 0.004
#> SRR1036051     1  0.0451    0.83396 0.988 0.000 0.000 0.008 0.004
#> SRR1036052     1  0.0451    0.83396 0.988 0.000 0.000 0.008 0.004
#> SRR1036053     1  0.0451    0.83396 0.988 0.000 0.000 0.008 0.004
#> SRR1036054     1  0.0451    0.83396 0.988 0.000 0.000 0.008 0.004
#> SRR1036055     1  0.0693    0.82783 0.980 0.012 0.000 0.008 0.000
#> SRR1036056     1  0.0693    0.82783 0.980 0.012 0.000 0.008 0.000
#> SRR1036057     1  0.0693    0.82783 0.980 0.012 0.000 0.008 0.000
#> SRR1036058     5  0.0510    0.77370 0.000 0.000 0.000 0.016 0.984
#> SRR1036059     5  0.0510    0.77370 0.000 0.000 0.000 0.016 0.984
#> SRR1036060     5  0.0510    0.77370 0.000 0.000 0.000 0.016 0.984
#> SRR1036061     5  0.0510    0.77370 0.000 0.000 0.000 0.016 0.984
#> SRR1036062     5  0.0510    0.77370 0.000 0.000 0.000 0.016 0.984
#> SRR1036063     5  0.0510    0.77370 0.000 0.000 0.000 0.016 0.984
#> SRR1036064     5  0.0510    0.77370 0.000 0.000 0.000 0.016 0.984
#> SRR1036065     5  0.0510    0.77370 0.000 0.000 0.000 0.016 0.984
#> SRR1036066     1  0.4854    0.64052 0.680 0.000 0.000 0.260 0.060
#> SRR1036067     1  0.4854    0.64052 0.680 0.000 0.000 0.260 0.060
#> SRR1036068     1  0.4901    0.63005 0.672 0.000 0.000 0.268 0.060
#> SRR1036069     1  0.4878    0.63546 0.676 0.000 0.000 0.264 0.060
#> SRR1036070     1  0.4901    0.63005 0.672 0.000 0.000 0.268 0.060
#> SRR1036071     1  0.4854    0.64052 0.680 0.000 0.000 0.260 0.060
#> SRR1036072     1  0.4854    0.64052 0.680 0.000 0.000 0.260 0.060
#> SRR1036073     1  0.4854    0.64052 0.680 0.000 0.000 0.260 0.060
#> SRR1036074     4  0.6534    0.36631 0.008 0.160 0.000 0.480 0.352
#> SRR1036075     4  0.6537    0.37867 0.008 0.164 0.000 0.488 0.340
#> SRR1036076     4  0.6540    0.33750 0.008 0.156 0.000 0.464 0.372
#> SRR1036077     4  0.6518    0.37690 0.008 0.160 0.000 0.488 0.344
#> SRR1036078     4  0.6528    0.35045 0.008 0.156 0.000 0.472 0.364
#> SRR1036079     4  0.6513    0.33952 0.008 0.152 0.000 0.468 0.372
#> SRR1036080     4  0.6513    0.33952 0.008 0.152 0.000 0.468 0.372
#> SRR1036081     4  0.6522    0.35772 0.008 0.156 0.000 0.476 0.360
#> SRR1036082     4  0.4655   -0.00453 0.012 0.000 0.000 0.512 0.476
#> SRR1036083     4  0.4659   -0.04118 0.012 0.000 0.000 0.500 0.488
#> SRR1036084     4  0.4659   -0.04137 0.012 0.000 0.000 0.500 0.488
#> SRR1036090     2  0.0162    0.97263 0.000 0.996 0.000 0.004 0.000
#> SRR1036091     2  0.0162    0.97263 0.000 0.996 0.000 0.004 0.000
#> SRR1036092     2  0.0162    0.97263 0.000 0.996 0.000 0.004 0.000
#> SRR1036093     2  0.0162    0.97263 0.000 0.996 0.000 0.004 0.000
#> SRR1036094     2  0.0162    0.97263 0.000 0.996 0.000 0.004 0.000
#> SRR1036085     3  0.0000    0.85312 0.000 0.000 1.000 0.000 0.000
#> SRR1036086     3  0.0000    0.85312 0.000 0.000 1.000 0.000 0.000
#> SRR1036087     3  0.0000    0.85312 0.000 0.000 1.000 0.000 0.000
#> SRR1036088     3  0.0000    0.85312 0.000 0.000 1.000 0.000 0.000
#> SRR1036089     3  0.0000    0.85312 0.000 0.000 1.000 0.000 0.000
#> SRR1036095     5  0.2911    0.68408 0.136 0.008 0.000 0.004 0.852
#> SRR1036096     5  0.2911    0.68408 0.136 0.008 0.000 0.004 0.852
#> SRR1036097     5  0.2911    0.68408 0.136 0.008 0.000 0.004 0.852
#> SRR1036098     5  0.2911    0.68408 0.136 0.008 0.000 0.004 0.852
#> SRR1036099     5  0.2911    0.68408 0.136 0.008 0.000 0.004 0.852
#> SRR1036100     2  0.0693    0.96523 0.012 0.980 0.000 0.008 0.000
#> SRR1036101     2  0.0693    0.96523 0.012 0.980 0.000 0.008 0.000
#> SRR1036102     2  0.0693    0.96523 0.012 0.980 0.000 0.008 0.000
#> SRR1036103     2  0.0693    0.96523 0.012 0.980 0.000 0.008 0.000
#> SRR1036104     2  0.0693    0.96523 0.012 0.980 0.000 0.008 0.000
#> SRR1036105     3  0.0000    0.85312 0.000 0.000 1.000 0.000 0.000
#> SRR1036106     3  0.0000    0.85312 0.000 0.000 1.000 0.000 0.000
#> SRR1036107     3  0.0000    0.85312 0.000 0.000 1.000 0.000 0.000
#> SRR1036108     3  0.0000    0.85312 0.000 0.000 1.000 0.000 0.000
#> SRR1036109     3  0.0000    0.85312 0.000 0.000 1.000 0.000 0.000
#> SRR1036110     5  0.4249    0.21227 0.000 0.000 0.000 0.432 0.568
#> SRR1036111     5  0.4249    0.21227 0.000 0.000 0.000 0.432 0.568
#> SRR1036112     5  0.4249    0.21227 0.000 0.000 0.000 0.432 0.568
#> SRR1036113     5  0.4249    0.21227 0.000 0.000 0.000 0.432 0.568
#> SRR1036114     5  0.4249    0.21227 0.000 0.000 0.000 0.432 0.568
#> SRR1036115     1  0.4551    0.34108 0.556 0.004 0.000 0.004 0.436
#> SRR1036116     1  0.4562    0.32360 0.548 0.004 0.000 0.004 0.444
#> SRR1036117     1  0.4551    0.34108 0.556 0.004 0.000 0.004 0.436
#> SRR1036118     1  0.4557    0.33303 0.552 0.004 0.000 0.004 0.440
#> SRR1036119     1  0.4545    0.34940 0.560 0.004 0.000 0.004 0.432
#> SRR1036120     3  0.6442    0.29812 0.004 0.000 0.460 0.380 0.156
#> SRR1036121     3  0.6468    0.29138 0.004 0.000 0.456 0.380 0.160
#> SRR1036122     3  0.6391    0.30132 0.004 0.000 0.464 0.384 0.148
#> SRR1036123     3  0.6426    0.31903 0.004 0.000 0.472 0.368 0.156
#> SRR1036124     3  0.6473    0.31394 0.004 0.000 0.468 0.364 0.164
#> SRR1036125     1  0.1179    0.83529 0.964 0.000 0.004 0.016 0.016
#> SRR1036126     1  0.1179    0.83529 0.964 0.000 0.004 0.016 0.016
#> SRR1036127     1  0.1179    0.83529 0.964 0.000 0.004 0.016 0.016
#> SRR1036128     1  0.1179    0.83529 0.964 0.000 0.004 0.016 0.016
#> SRR1036129     1  0.1179    0.83529 0.964 0.000 0.004 0.016 0.016
#> SRR1036130     1  0.1018    0.83516 0.968 0.000 0.000 0.016 0.016
#> SRR1036131     1  0.1018    0.83516 0.968 0.000 0.000 0.016 0.016
#> SRR1036132     1  0.1179    0.83529 0.964 0.000 0.004 0.016 0.016
#> SRR1036133     2  0.0162    0.97175 0.004 0.996 0.000 0.000 0.000
#> SRR1036134     2  0.0162    0.97175 0.004 0.996 0.000 0.000 0.000
#> SRR1036135     2  0.0162    0.97175 0.004 0.996 0.000 0.000 0.000
#> SRR1036136     2  0.0162    0.97175 0.004 0.996 0.000 0.000 0.000
#> SRR1036137     2  0.0162    0.97175 0.004 0.996 0.000 0.000 0.000
#> SRR1036138     2  0.0162    0.97263 0.000 0.996 0.000 0.004 0.000
#> SRR1036139     2  0.0162    0.97263 0.000 0.996 0.000 0.004 0.000
#> SRR1036140     2  0.0162    0.97263 0.000 0.996 0.000 0.004 0.000
#> SRR1036141     2  0.0162    0.97263 0.000 0.996 0.000 0.004 0.000
#> SRR1036142     2  0.0162    0.97263 0.000 0.996 0.000 0.004 0.000
#> SRR1036143     2  0.0162    0.97263 0.000 0.996 0.000 0.004 0.000
#> SRR1036144     2  0.0162    0.97263 0.000 0.996 0.000 0.004 0.000
#> SRR1036145     2  0.0162    0.97263 0.000 0.996 0.000 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1036002     6  0.5937      0.207 0.000 0.004 0.188 0.000 0.360 0.448
#> SRR1036003     6  0.5937      0.207 0.000 0.004 0.188 0.000 0.360 0.448
#> SRR1036004     6  0.5937      0.207 0.000 0.004 0.188 0.000 0.360 0.448
#> SRR1036005     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036006     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036007     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036008     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036009     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036013     4  0.5017      0.605 0.008 0.000 0.032 0.692 0.060 0.208
#> SRR1036014     4  0.5000      0.603 0.008 0.000 0.028 0.688 0.060 0.216
#> SRR1036015     4  0.5000      0.603 0.008 0.000 0.028 0.688 0.060 0.216
#> SRR1036016     4  0.4990      0.606 0.008 0.000 0.032 0.696 0.060 0.204
#> SRR1036017     4  0.5000      0.603 0.008 0.000 0.028 0.688 0.060 0.216
#> SRR1036018     4  0.5001      0.604 0.008 0.000 0.028 0.692 0.064 0.208
#> SRR1036010     1  0.3601      0.789 0.816 0.000 0.000 0.016 0.068 0.100
#> SRR1036011     1  0.3553      0.794 0.820 0.000 0.000 0.016 0.068 0.096
#> SRR1036012     1  0.3553      0.794 0.820 0.000 0.000 0.016 0.068 0.096
#> SRR1036019     2  0.1364      0.890 0.000 0.944 0.000 0.004 0.048 0.004
#> SRR1036020     2  0.1364      0.890 0.000 0.944 0.000 0.004 0.048 0.004
#> SRR1036021     2  0.1364      0.890 0.000 0.944 0.000 0.004 0.048 0.004
#> SRR1036022     2  0.1296      0.892 0.000 0.948 0.000 0.004 0.044 0.004
#> SRR1036023     2  0.1364      0.890 0.000 0.944 0.000 0.004 0.048 0.004
#> SRR1036024     6  0.3470      0.527 0.156 0.000 0.000 0.020 0.020 0.804
#> SRR1036025     6  0.3433      0.525 0.152 0.000 0.000 0.020 0.020 0.808
#> SRR1036026     6  0.3586      0.527 0.160 0.000 0.000 0.024 0.020 0.796
#> SRR1036027     6  0.3506      0.528 0.160 0.000 0.000 0.020 0.020 0.800
#> SRR1036028     6  0.3506      0.528 0.160 0.000 0.000 0.020 0.020 0.800
#> SRR1036029     6  0.3586      0.527 0.160 0.000 0.000 0.024 0.020 0.796
#> SRR1036030     2  0.2501      0.874 0.056 0.896 0.000 0.004 0.028 0.016
#> SRR1036031     2  0.2501      0.874 0.056 0.896 0.000 0.004 0.028 0.016
#> SRR1036032     2  0.2501      0.874 0.056 0.896 0.000 0.004 0.028 0.016
#> SRR1036033     2  0.2501      0.874 0.056 0.896 0.000 0.004 0.028 0.016
#> SRR1036034     2  0.2501      0.874 0.056 0.896 0.000 0.004 0.028 0.016
#> SRR1036035     2  0.2501      0.874 0.056 0.896 0.000 0.004 0.028 0.016
#> SRR1036036     2  0.2501      0.874 0.056 0.896 0.000 0.004 0.028 0.016
#> SRR1036037     2  0.2501      0.874 0.056 0.896 0.000 0.004 0.028 0.016
#> SRR1036038     1  0.1741      0.893 0.940 0.012 0.004 0.004 0.020 0.020
#> SRR1036039     1  0.1652      0.895 0.944 0.012 0.004 0.004 0.016 0.020
#> SRR1036040     1  0.1652      0.895 0.944 0.012 0.004 0.004 0.016 0.020
#> SRR1036041     1  0.0909      0.904 0.968 0.000 0.000 0.012 0.000 0.020
#> SRR1036042     6  0.5227      0.308 0.000 0.060 0.004 0.012 0.364 0.560
#> SRR1036043     6  0.5227      0.308 0.000 0.060 0.004 0.012 0.364 0.560
#> SRR1036044     6  0.5227      0.308 0.000 0.060 0.004 0.012 0.364 0.560
#> SRR1036045     6  0.5227      0.308 0.000 0.060 0.004 0.012 0.364 0.560
#> SRR1036046     6  0.5227      0.308 0.000 0.060 0.004 0.012 0.364 0.560
#> SRR1036047     6  0.5227      0.308 0.000 0.060 0.004 0.012 0.364 0.560
#> SRR1036048     6  0.5227      0.308 0.000 0.060 0.004 0.012 0.364 0.560
#> SRR1036049     6  0.5227      0.308 0.000 0.060 0.004 0.012 0.364 0.560
#> SRR1036050     1  0.1708      0.895 0.932 0.000 0.000 0.040 0.024 0.004
#> SRR1036051     1  0.1708      0.895 0.932 0.000 0.000 0.040 0.024 0.004
#> SRR1036052     1  0.1708      0.895 0.932 0.000 0.000 0.040 0.024 0.004
#> SRR1036053     1  0.1624      0.896 0.936 0.000 0.000 0.040 0.020 0.004
#> SRR1036054     1  0.1708      0.895 0.932 0.000 0.000 0.040 0.024 0.004
#> SRR1036055     1  0.2228      0.875 0.912 0.024 0.000 0.004 0.044 0.016
#> SRR1036056     1  0.2228      0.875 0.912 0.024 0.000 0.004 0.044 0.016
#> SRR1036057     1  0.2228      0.875 0.912 0.024 0.000 0.004 0.044 0.016
#> SRR1036058     4  0.1957      0.630 0.000 0.000 0.000 0.888 0.112 0.000
#> SRR1036059     4  0.1957      0.630 0.000 0.000 0.000 0.888 0.112 0.000
#> SRR1036060     4  0.2100      0.629 0.000 0.000 0.000 0.884 0.112 0.004
#> SRR1036061     4  0.2100      0.629 0.000 0.000 0.000 0.884 0.112 0.004
#> SRR1036062     4  0.1957      0.630 0.000 0.000 0.000 0.888 0.112 0.000
#> SRR1036063     4  0.1957      0.630 0.000 0.000 0.000 0.888 0.112 0.000
#> SRR1036064     4  0.1957      0.630 0.000 0.000 0.000 0.888 0.112 0.000
#> SRR1036065     4  0.1957      0.630 0.000 0.000 0.000 0.888 0.112 0.000
#> SRR1036066     6  0.4292      0.351 0.388 0.000 0.000 0.000 0.024 0.588
#> SRR1036067     6  0.4283      0.357 0.384 0.000 0.000 0.000 0.024 0.592
#> SRR1036068     6  0.4292      0.351 0.388 0.000 0.000 0.000 0.024 0.588
#> SRR1036069     6  0.4292      0.351 0.388 0.000 0.000 0.000 0.024 0.588
#> SRR1036070     6  0.4273      0.362 0.380 0.000 0.000 0.000 0.024 0.596
#> SRR1036071     6  0.4326      0.316 0.404 0.000 0.000 0.000 0.024 0.572
#> SRR1036072     6  0.4301      0.343 0.392 0.000 0.000 0.000 0.024 0.584
#> SRR1036073     6  0.4301      0.343 0.392 0.000 0.000 0.000 0.024 0.584
#> SRR1036074     5  0.3125      0.754 0.000 0.080 0.000 0.084 0.836 0.000
#> SRR1036075     5  0.3227      0.750 0.000 0.088 0.000 0.084 0.828 0.000
#> SRR1036076     5  0.3072      0.752 0.000 0.084 0.000 0.076 0.840 0.000
#> SRR1036077     5  0.3072      0.751 0.000 0.084 0.000 0.076 0.840 0.000
#> SRR1036078     5  0.3073      0.754 0.000 0.080 0.000 0.080 0.840 0.000
#> SRR1036079     5  0.3073      0.754 0.000 0.080 0.000 0.080 0.840 0.000
#> SRR1036080     5  0.3073      0.754 0.000 0.080 0.000 0.080 0.840 0.000
#> SRR1036081     5  0.3125      0.753 0.000 0.084 0.000 0.080 0.836 0.000
#> SRR1036082     5  0.5960      0.482 0.004 0.000 0.000 0.220 0.480 0.296
#> SRR1036083     5  0.5960      0.483 0.004 0.000 0.000 0.228 0.484 0.284
#> SRR1036084     5  0.5972      0.480 0.004 0.000 0.000 0.228 0.480 0.288
#> SRR1036090     2  0.0665      0.903 0.000 0.980 0.000 0.008 0.008 0.004
#> SRR1036091     2  0.0665      0.903 0.000 0.980 0.000 0.008 0.008 0.004
#> SRR1036092     2  0.0665      0.903 0.000 0.980 0.000 0.008 0.008 0.004
#> SRR1036093     2  0.0665      0.903 0.000 0.980 0.000 0.008 0.008 0.004
#> SRR1036094     2  0.0665      0.903 0.000 0.980 0.000 0.008 0.008 0.004
#> SRR1036085     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036086     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036087     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036088     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036089     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036095     4  0.2936      0.617 0.144 0.004 0.000 0.836 0.004 0.012
#> SRR1036096     4  0.2896      0.618 0.140 0.004 0.000 0.840 0.004 0.012
#> SRR1036097     4  0.2896      0.618 0.140 0.004 0.000 0.840 0.004 0.012
#> SRR1036098     4  0.2896      0.618 0.140 0.004 0.000 0.840 0.004 0.012
#> SRR1036099     4  0.2936      0.617 0.144 0.004 0.000 0.836 0.004 0.012
#> SRR1036100     2  0.3986      0.537 0.004 0.648 0.000 0.004 0.340 0.004
#> SRR1036101     2  0.4000      0.529 0.004 0.644 0.000 0.004 0.344 0.004
#> SRR1036102     2  0.3892      0.519 0.004 0.640 0.000 0.000 0.352 0.004
#> SRR1036103     2  0.3971      0.544 0.004 0.652 0.000 0.004 0.336 0.004
#> SRR1036104     2  0.3986      0.537 0.004 0.648 0.000 0.004 0.340 0.004
#> SRR1036105     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036106     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036107     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036108     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036109     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036110     4  0.5667      0.293 0.000 0.000 0.000 0.520 0.192 0.288
#> SRR1036111     4  0.5658      0.295 0.000 0.000 0.000 0.520 0.188 0.292
#> SRR1036112     4  0.5658      0.295 0.000 0.000 0.000 0.520 0.188 0.292
#> SRR1036113     4  0.5635      0.301 0.000 0.000 0.000 0.524 0.184 0.292
#> SRR1036114     4  0.5689      0.284 0.000 0.000 0.000 0.516 0.196 0.288
#> SRR1036115     4  0.4517      0.204 0.440 0.004 0.000 0.536 0.008 0.012
#> SRR1036116     4  0.4502      0.232 0.428 0.004 0.000 0.548 0.008 0.012
#> SRR1036117     4  0.4517      0.204 0.440 0.004 0.000 0.536 0.008 0.012
#> SRR1036118     4  0.4507      0.222 0.432 0.004 0.000 0.544 0.008 0.012
#> SRR1036119     4  0.4517      0.204 0.440 0.004 0.000 0.536 0.008 0.012
#> SRR1036120     5  0.5208      0.664 0.000 0.000 0.180 0.076 0.684 0.060
#> SRR1036121     5  0.5249      0.666 0.000 0.000 0.172 0.080 0.684 0.064
#> SRR1036122     5  0.5182      0.662 0.000 0.000 0.176 0.072 0.688 0.064
#> SRR1036123     5  0.5256      0.665 0.000 0.000 0.180 0.080 0.680 0.060
#> SRR1036124     5  0.5226      0.665 0.000 0.000 0.176 0.080 0.684 0.060
#> SRR1036125     1  0.1141      0.901 0.948 0.000 0.000 0.000 0.000 0.052
#> SRR1036126     1  0.1075      0.902 0.952 0.000 0.000 0.000 0.000 0.048
#> SRR1036127     1  0.1141      0.901 0.948 0.000 0.000 0.000 0.000 0.052
#> SRR1036128     1  0.1141      0.901 0.948 0.000 0.000 0.000 0.000 0.052
#> SRR1036129     1  0.1141      0.901 0.948 0.000 0.000 0.000 0.000 0.052
#> SRR1036130     1  0.1141      0.901 0.948 0.000 0.000 0.000 0.000 0.052
#> SRR1036131     1  0.1075      0.902 0.952 0.000 0.000 0.000 0.000 0.048
#> SRR1036132     1  0.1204      0.897 0.944 0.000 0.000 0.000 0.000 0.056
#> SRR1036133     2  0.1312      0.900 0.008 0.956 0.000 0.004 0.020 0.012
#> SRR1036134     2  0.1312      0.900 0.008 0.956 0.000 0.004 0.020 0.012
#> SRR1036135     2  0.1312      0.900 0.008 0.956 0.000 0.004 0.020 0.012
#> SRR1036136     2  0.1312      0.900 0.008 0.956 0.000 0.004 0.020 0.012
#> SRR1036137     2  0.1312      0.900 0.008 0.956 0.000 0.004 0.020 0.012
#> SRR1036138     2  0.0260      0.905 0.000 0.992 0.000 0.000 0.008 0.000
#> SRR1036139     2  0.0260      0.905 0.000 0.992 0.000 0.000 0.008 0.000
#> SRR1036140     2  0.0260      0.905 0.000 0.992 0.000 0.000 0.008 0.000
#> SRR1036141     2  0.0260      0.905 0.000 0.992 0.000 0.000 0.008 0.000
#> SRR1036142     2  0.0260      0.905 0.000 0.992 0.000 0.000 0.008 0.000
#> SRR1036143     2  0.0260      0.905 0.000 0.992 0.000 0.000 0.008 0.000
#> SRR1036144     2  0.0260      0.905 0.000 0.992 0.000 0.000 0.008 0.000
#> SRR1036145     2  0.0260      0.905 0.000 0.992 0.000 0.000 0.008 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15218 rows and 144 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.608           0.861       0.925         0.4219 0.528   0.528
#> 3 3 0.808           0.876       0.931         0.3343 0.937   0.881
#> 4 4 0.844           0.884       0.934         0.0430 0.985   0.968
#> 5 5 0.745           0.836       0.871         0.1876 0.874   0.720
#> 6 6 0.773           0.837       0.855         0.0415 0.977   0.928

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1036002     1   0.997      0.447 0.532 0.468
#> SRR1036003     1   0.997      0.447 0.532 0.468
#> SRR1036004     1   0.997      0.447 0.532 0.468
#> SRR1036005     1   0.997      0.447 0.532 0.468
#> SRR1036006     1   0.997      0.447 0.532 0.468
#> SRR1036007     1   0.997      0.447 0.532 0.468
#> SRR1036008     1   0.997      0.447 0.532 0.468
#> SRR1036009     1   0.997      0.447 0.532 0.468
#> SRR1036013     2   0.000      0.985 0.000 1.000
#> SRR1036014     2   0.000      0.985 0.000 1.000
#> SRR1036015     2   0.000      0.985 0.000 1.000
#> SRR1036016     2   0.000      0.985 0.000 1.000
#> SRR1036017     2   0.000      0.985 0.000 1.000
#> SRR1036018     2   0.000      0.985 0.000 1.000
#> SRR1036010     1   0.000      0.802 1.000 0.000
#> SRR1036011     1   0.000      0.802 1.000 0.000
#> SRR1036012     1   0.000      0.802 1.000 0.000
#> SRR1036019     2   0.000      0.985 0.000 1.000
#> SRR1036020     2   0.000      0.985 0.000 1.000
#> SRR1036021     2   0.000      0.985 0.000 1.000
#> SRR1036022     2   0.000      0.985 0.000 1.000
#> SRR1036023     2   0.000      0.985 0.000 1.000
#> SRR1036024     2   0.000      0.985 0.000 1.000
#> SRR1036025     2   0.000      0.985 0.000 1.000
#> SRR1036026     2   0.000      0.985 0.000 1.000
#> SRR1036027     2   0.000      0.985 0.000 1.000
#> SRR1036028     2   0.000      0.985 0.000 1.000
#> SRR1036029     2   0.000      0.985 0.000 1.000
#> SRR1036030     2   0.000      0.985 0.000 1.000
#> SRR1036031     2   0.000      0.985 0.000 1.000
#> SRR1036032     2   0.000      0.985 0.000 1.000
#> SRR1036033     2   0.000      0.985 0.000 1.000
#> SRR1036034     2   0.000      0.985 0.000 1.000
#> SRR1036035     2   0.000      0.985 0.000 1.000
#> SRR1036036     2   0.000      0.985 0.000 1.000
#> SRR1036037     2   0.000      0.985 0.000 1.000
#> SRR1036038     1   0.469      0.797 0.900 0.100
#> SRR1036039     1   0.469      0.797 0.900 0.100
#> SRR1036040     1   0.469      0.797 0.900 0.100
#> SRR1036041     1   0.163      0.803 0.976 0.024
#> SRR1036042     2   0.000      0.985 0.000 1.000
#> SRR1036043     2   0.000      0.985 0.000 1.000
#> SRR1036044     2   0.000      0.985 0.000 1.000
#> SRR1036045     2   0.000      0.985 0.000 1.000
#> SRR1036046     2   0.000      0.985 0.000 1.000
#> SRR1036047     2   0.000      0.985 0.000 1.000
#> SRR1036048     2   0.000      0.985 0.000 1.000
#> SRR1036049     2   0.000      0.985 0.000 1.000
#> SRR1036050     1   0.000      0.802 1.000 0.000
#> SRR1036051     1   0.000      0.802 1.000 0.000
#> SRR1036052     1   0.000      0.802 1.000 0.000
#> SRR1036053     1   0.000      0.802 1.000 0.000
#> SRR1036054     1   0.000      0.802 1.000 0.000
#> SRR1036055     1   0.327      0.803 0.940 0.060
#> SRR1036056     1   0.327      0.803 0.940 0.060
#> SRR1036057     1   0.327      0.803 0.940 0.060
#> SRR1036058     2   0.000      0.985 0.000 1.000
#> SRR1036059     2   0.000      0.985 0.000 1.000
#> SRR1036060     2   0.000      0.985 0.000 1.000
#> SRR1036061     2   0.000      0.985 0.000 1.000
#> SRR1036062     2   0.000      0.985 0.000 1.000
#> SRR1036063     2   0.000      0.985 0.000 1.000
#> SRR1036064     2   0.000      0.985 0.000 1.000
#> SRR1036065     2   0.000      0.985 0.000 1.000
#> SRR1036066     1   0.469      0.797 0.900 0.100
#> SRR1036067     1   0.469      0.797 0.900 0.100
#> SRR1036068     1   0.469      0.797 0.900 0.100
#> SRR1036069     1   0.469      0.797 0.900 0.100
#> SRR1036070     1   0.469      0.797 0.900 0.100
#> SRR1036071     1   0.469      0.797 0.900 0.100
#> SRR1036072     1   0.469      0.797 0.900 0.100
#> SRR1036073     1   0.469      0.797 0.900 0.100
#> SRR1036074     2   0.000      0.985 0.000 1.000
#> SRR1036075     2   0.000      0.985 0.000 1.000
#> SRR1036076     2   0.000      0.985 0.000 1.000
#> SRR1036077     2   0.000      0.985 0.000 1.000
#> SRR1036078     2   0.000      0.985 0.000 1.000
#> SRR1036079     2   0.000      0.985 0.000 1.000
#> SRR1036080     2   0.000      0.985 0.000 1.000
#> SRR1036081     2   0.000      0.985 0.000 1.000
#> SRR1036082     2   0.000      0.985 0.000 1.000
#> SRR1036083     2   0.000      0.985 0.000 1.000
#> SRR1036084     2   0.000      0.985 0.000 1.000
#> SRR1036090     2   0.000      0.985 0.000 1.000
#> SRR1036091     2   0.000      0.985 0.000 1.000
#> SRR1036092     2   0.000      0.985 0.000 1.000
#> SRR1036093     2   0.000      0.985 0.000 1.000
#> SRR1036094     2   0.000      0.985 0.000 1.000
#> SRR1036085     1   0.997      0.447 0.532 0.468
#> SRR1036086     1   0.997      0.447 0.532 0.468
#> SRR1036087     1   0.997      0.447 0.532 0.468
#> SRR1036088     1   0.997      0.447 0.532 0.468
#> SRR1036089     1   0.997      0.447 0.532 0.468
#> SRR1036095     2   0.000      0.985 0.000 1.000
#> SRR1036096     2   0.000      0.985 0.000 1.000
#> SRR1036097     2   0.000      0.985 0.000 1.000
#> SRR1036098     2   0.000      0.985 0.000 1.000
#> SRR1036099     2   0.000      0.985 0.000 1.000
#> SRR1036100     2   0.000      0.985 0.000 1.000
#> SRR1036101     2   0.000      0.985 0.000 1.000
#> SRR1036102     2   0.000      0.985 0.000 1.000
#> SRR1036103     2   0.000      0.985 0.000 1.000
#> SRR1036104     2   0.000      0.985 0.000 1.000
#> SRR1036105     1   0.997      0.447 0.532 0.468
#> SRR1036106     1   0.997      0.447 0.532 0.468
#> SRR1036107     1   0.997      0.447 0.532 0.468
#> SRR1036108     1   0.997      0.447 0.532 0.468
#> SRR1036109     1   0.997      0.447 0.532 0.468
#> SRR1036110     2   0.000      0.985 0.000 1.000
#> SRR1036111     2   0.000      0.985 0.000 1.000
#> SRR1036112     2   0.000      0.985 0.000 1.000
#> SRR1036113     2   0.000      0.985 0.000 1.000
#> SRR1036114     2   0.000      0.985 0.000 1.000
#> SRR1036115     2   0.738      0.675 0.208 0.792
#> SRR1036116     2   0.738      0.675 0.208 0.792
#> SRR1036117     2   0.738      0.675 0.208 0.792
#> SRR1036118     2   0.738      0.675 0.208 0.792
#> SRR1036119     2   0.738      0.675 0.208 0.792
#> SRR1036120     1   0.000      0.802 1.000 0.000
#> SRR1036121     1   0.000      0.802 1.000 0.000
#> SRR1036122     1   0.000      0.802 1.000 0.000
#> SRR1036123     1   0.000      0.802 1.000 0.000
#> SRR1036124     1   0.000      0.802 1.000 0.000
#> SRR1036125     1   0.000      0.802 1.000 0.000
#> SRR1036126     1   0.000      0.802 1.000 0.000
#> SRR1036127     1   0.000      0.802 1.000 0.000
#> SRR1036128     1   0.000      0.802 1.000 0.000
#> SRR1036129     1   0.000      0.802 1.000 0.000
#> SRR1036130     1   0.000      0.802 1.000 0.000
#> SRR1036131     1   0.000      0.802 1.000 0.000
#> SRR1036132     1   0.000      0.802 1.000 0.000
#> SRR1036133     2   0.000      0.985 0.000 1.000
#> SRR1036134     2   0.000      0.985 0.000 1.000
#> SRR1036135     2   0.000      0.985 0.000 1.000
#> SRR1036136     2   0.000      0.985 0.000 1.000
#> SRR1036137     2   0.000      0.985 0.000 1.000
#> SRR1036138     2   0.000      0.985 0.000 1.000
#> SRR1036139     2   0.000      0.985 0.000 1.000
#> SRR1036140     2   0.000      0.985 0.000 1.000
#> SRR1036141     2   0.000      0.985 0.000 1.000
#> SRR1036142     2   0.000      0.985 0.000 1.000
#> SRR1036143     2   0.000      0.985 0.000 1.000
#> SRR1036144     2   0.000      0.985 0.000 1.000
#> SRR1036145     2   0.000      0.985 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1036002     3   0.245      1.000 0.076 0.000 0.924
#> SRR1036003     3   0.245      1.000 0.076 0.000 0.924
#> SRR1036004     3   0.245      1.000 0.076 0.000 0.924
#> SRR1036005     3   0.245      1.000 0.076 0.000 0.924
#> SRR1036006     3   0.245      1.000 0.076 0.000 0.924
#> SRR1036007     3   0.245      1.000 0.076 0.000 0.924
#> SRR1036008     3   0.245      1.000 0.076 0.000 0.924
#> SRR1036009     3   0.245      1.000 0.076 0.000 0.924
#> SRR1036013     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036014     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036015     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036016     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036017     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036018     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036010     1   0.000      0.912 1.000 0.000 0.000
#> SRR1036011     1   0.000      0.912 1.000 0.000 0.000
#> SRR1036012     1   0.000      0.912 1.000 0.000 0.000
#> SRR1036019     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036020     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036021     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036022     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036023     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036024     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036025     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036026     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036027     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036028     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036029     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036030     2   0.556      0.628 0.000 0.700 0.300
#> SRR1036031     2   0.556      0.628 0.000 0.700 0.300
#> SRR1036032     2   0.556      0.628 0.000 0.700 0.300
#> SRR1036033     2   0.556      0.628 0.000 0.700 0.300
#> SRR1036034     2   0.556      0.628 0.000 0.700 0.300
#> SRR1036035     2   0.556      0.628 0.000 0.700 0.300
#> SRR1036036     2   0.556      0.628 0.000 0.700 0.300
#> SRR1036037     2   0.556      0.628 0.000 0.700 0.300
#> SRR1036038     1   0.400      0.852 0.840 0.000 0.160
#> SRR1036039     1   0.400      0.852 0.840 0.000 0.160
#> SRR1036040     1   0.400      0.852 0.840 0.000 0.160
#> SRR1036041     1   0.153      0.903 0.960 0.000 0.040
#> SRR1036042     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036043     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036044     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036045     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036046     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036047     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036048     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036049     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036050     1   0.000      0.912 1.000 0.000 0.000
#> SRR1036051     1   0.000      0.912 1.000 0.000 0.000
#> SRR1036052     1   0.000      0.912 1.000 0.000 0.000
#> SRR1036053     1   0.000      0.912 1.000 0.000 0.000
#> SRR1036054     1   0.000      0.912 1.000 0.000 0.000
#> SRR1036055     1   0.334      0.875 0.880 0.000 0.120
#> SRR1036056     1   0.334      0.875 0.880 0.000 0.120
#> SRR1036057     1   0.334      0.875 0.880 0.000 0.120
#> SRR1036058     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036059     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036060     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036061     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036062     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036063     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036064     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036065     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036066     1   0.400      0.852 0.840 0.000 0.160
#> SRR1036067     1   0.400      0.852 0.840 0.000 0.160
#> SRR1036068     1   0.400      0.852 0.840 0.000 0.160
#> SRR1036069     1   0.400      0.852 0.840 0.000 0.160
#> SRR1036070     1   0.400      0.852 0.840 0.000 0.160
#> SRR1036071     1   0.400      0.852 0.840 0.000 0.160
#> SRR1036072     1   0.400      0.852 0.840 0.000 0.160
#> SRR1036073     1   0.400      0.852 0.840 0.000 0.160
#> SRR1036074     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036075     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036076     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036077     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036078     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036079     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036080     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036081     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036082     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036083     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036084     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036090     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036091     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036092     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036093     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036094     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036085     3   0.245      1.000 0.076 0.000 0.924
#> SRR1036086     3   0.245      1.000 0.076 0.000 0.924
#> SRR1036087     3   0.245      1.000 0.076 0.000 0.924
#> SRR1036088     3   0.245      1.000 0.076 0.000 0.924
#> SRR1036089     3   0.245      1.000 0.076 0.000 0.924
#> SRR1036095     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036096     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036097     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036098     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036099     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036100     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036101     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036102     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036103     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036104     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036105     3   0.245      1.000 0.076 0.000 0.924
#> SRR1036106     3   0.245      1.000 0.076 0.000 0.924
#> SRR1036107     3   0.245      1.000 0.076 0.000 0.924
#> SRR1036108     3   0.245      1.000 0.076 0.000 0.924
#> SRR1036109     3   0.245      1.000 0.076 0.000 0.924
#> SRR1036110     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036111     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036112     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036113     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036114     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036115     2   0.910      0.165 0.148 0.492 0.360
#> SRR1036116     2   0.910      0.165 0.148 0.492 0.360
#> SRR1036117     2   0.910      0.165 0.148 0.492 0.360
#> SRR1036118     2   0.910      0.165 0.148 0.492 0.360
#> SRR1036119     2   0.910      0.165 0.148 0.492 0.360
#> SRR1036120     1   0.245      0.861 0.924 0.000 0.076
#> SRR1036121     1   0.245      0.861 0.924 0.000 0.076
#> SRR1036122     1   0.245      0.861 0.924 0.000 0.076
#> SRR1036123     1   0.245      0.861 0.924 0.000 0.076
#> SRR1036124     1   0.245      0.861 0.924 0.000 0.076
#> SRR1036125     1   0.000      0.912 1.000 0.000 0.000
#> SRR1036126     1   0.000      0.912 1.000 0.000 0.000
#> SRR1036127     1   0.000      0.912 1.000 0.000 0.000
#> SRR1036128     1   0.000      0.912 1.000 0.000 0.000
#> SRR1036129     1   0.000      0.912 1.000 0.000 0.000
#> SRR1036130     1   0.000      0.912 1.000 0.000 0.000
#> SRR1036131     1   0.000      0.912 1.000 0.000 0.000
#> SRR1036132     1   0.000      0.912 1.000 0.000 0.000
#> SRR1036133     2   0.484      0.728 0.000 0.776 0.224
#> SRR1036134     2   0.484      0.728 0.000 0.776 0.224
#> SRR1036135     2   0.484      0.728 0.000 0.776 0.224
#> SRR1036136     2   0.484      0.728 0.000 0.776 0.224
#> SRR1036137     2   0.484      0.728 0.000 0.776 0.224
#> SRR1036138     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036139     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036140     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036141     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036142     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036143     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036144     2   0.000      0.929 0.000 1.000 0.000
#> SRR1036145     2   0.000      0.929 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1036002     3   0.000      1.000 0.000 0.000 1.000 0.000
#> SRR1036003     3   0.000      1.000 0.000 0.000 1.000 0.000
#> SRR1036004     3   0.000      1.000 0.000 0.000 1.000 0.000
#> SRR1036005     3   0.000      1.000 0.000 0.000 1.000 0.000
#> SRR1036006     3   0.000      1.000 0.000 0.000 1.000 0.000
#> SRR1036007     3   0.000      1.000 0.000 0.000 1.000 0.000
#> SRR1036008     3   0.000      1.000 0.000 0.000 1.000 0.000
#> SRR1036009     3   0.000      1.000 0.000 0.000 1.000 0.000
#> SRR1036013     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036014     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036015     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036016     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036017     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036018     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036010     1   0.000      0.881 1.000 0.000 0.000 0.000
#> SRR1036011     1   0.000      0.881 1.000 0.000 0.000 0.000
#> SRR1036012     1   0.000      0.881 1.000 0.000 0.000 0.000
#> SRR1036019     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036020     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036021     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036022     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036023     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036024     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036025     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036026     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036027     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036028     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036029     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036030     2   0.569      0.658 0.000 0.700 0.216 0.084
#> SRR1036031     2   0.569      0.658 0.000 0.700 0.216 0.084
#> SRR1036032     2   0.569      0.658 0.000 0.700 0.216 0.084
#> SRR1036033     2   0.569      0.658 0.000 0.700 0.216 0.084
#> SRR1036034     2   0.569      0.658 0.000 0.700 0.216 0.084
#> SRR1036035     2   0.569      0.658 0.000 0.700 0.216 0.084
#> SRR1036036     2   0.569      0.658 0.000 0.700 0.216 0.084
#> SRR1036037     2   0.569      0.658 0.000 0.700 0.216 0.084
#> SRR1036038     1   0.340      0.865 0.820 0.000 0.000 0.180
#> SRR1036039     1   0.340      0.865 0.820 0.000 0.000 0.180
#> SRR1036040     1   0.340      0.865 0.820 0.000 0.000 0.180
#> SRR1036041     1   0.164      0.883 0.940 0.000 0.000 0.060
#> SRR1036042     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036043     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036044     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036045     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036046     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036047     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036048     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036049     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036050     1   0.172      0.832 0.936 0.000 0.000 0.064
#> SRR1036051     1   0.172      0.832 0.936 0.000 0.000 0.064
#> SRR1036052     1   0.172      0.832 0.936 0.000 0.000 0.064
#> SRR1036053     1   0.172      0.832 0.936 0.000 0.000 0.064
#> SRR1036054     1   0.172      0.832 0.936 0.000 0.000 0.064
#> SRR1036055     1   0.292      0.876 0.860 0.000 0.000 0.140
#> SRR1036056     1   0.292      0.876 0.860 0.000 0.000 0.140
#> SRR1036057     1   0.292      0.876 0.860 0.000 0.000 0.140
#> SRR1036058     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036059     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036060     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036061     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036062     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036063     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036064     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036065     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036066     1   0.340      0.865 0.820 0.000 0.000 0.180
#> SRR1036067     1   0.340      0.865 0.820 0.000 0.000 0.180
#> SRR1036068     1   0.340      0.865 0.820 0.000 0.000 0.180
#> SRR1036069     1   0.340      0.865 0.820 0.000 0.000 0.180
#> SRR1036070     1   0.340      0.865 0.820 0.000 0.000 0.180
#> SRR1036071     1   0.340      0.865 0.820 0.000 0.000 0.180
#> SRR1036072     1   0.340      0.865 0.820 0.000 0.000 0.180
#> SRR1036073     1   0.340      0.865 0.820 0.000 0.000 0.180
#> SRR1036074     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036075     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036076     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036077     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036078     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036079     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036080     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036081     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036082     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036083     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036084     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036090     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036091     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036092     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036093     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036094     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036085     3   0.000      1.000 0.000 0.000 1.000 0.000
#> SRR1036086     3   0.000      1.000 0.000 0.000 1.000 0.000
#> SRR1036087     3   0.000      1.000 0.000 0.000 1.000 0.000
#> SRR1036088     3   0.000      1.000 0.000 0.000 1.000 0.000
#> SRR1036089     3   0.000      1.000 0.000 0.000 1.000 0.000
#> SRR1036095     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036096     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036097     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036098     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036099     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036100     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036101     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036102     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036103     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036104     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036105     3   0.000      1.000 0.000 0.000 1.000 0.000
#> SRR1036106     3   0.000      1.000 0.000 0.000 1.000 0.000
#> SRR1036107     3   0.000      1.000 0.000 0.000 1.000 0.000
#> SRR1036108     3   0.000      1.000 0.000 0.000 1.000 0.000
#> SRR1036109     3   0.000      1.000 0.000 0.000 1.000 0.000
#> SRR1036110     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036111     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036112     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036113     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036114     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036115     2   0.896      0.313 0.148 0.492 0.216 0.144
#> SRR1036116     2   0.896      0.313 0.148 0.492 0.216 0.144
#> SRR1036117     2   0.896      0.313 0.148 0.492 0.216 0.144
#> SRR1036118     2   0.896      0.313 0.148 0.492 0.216 0.144
#> SRR1036119     2   0.896      0.313 0.148 0.492 0.216 0.144
#> SRR1036120     4   0.340      1.000 0.180 0.000 0.000 0.820
#> SRR1036121     4   0.340      1.000 0.180 0.000 0.000 0.820
#> SRR1036122     4   0.340      1.000 0.180 0.000 0.000 0.820
#> SRR1036123     4   0.340      1.000 0.180 0.000 0.000 0.820
#> SRR1036124     4   0.340      1.000 0.180 0.000 0.000 0.820
#> SRR1036125     1   0.000      0.881 1.000 0.000 0.000 0.000
#> SRR1036126     1   0.000      0.881 1.000 0.000 0.000 0.000
#> SRR1036127     1   0.000      0.881 1.000 0.000 0.000 0.000
#> SRR1036128     1   0.000      0.881 1.000 0.000 0.000 0.000
#> SRR1036129     1   0.000      0.881 1.000 0.000 0.000 0.000
#> SRR1036130     1   0.000      0.881 1.000 0.000 0.000 0.000
#> SRR1036131     1   0.000      0.881 1.000 0.000 0.000 0.000
#> SRR1036132     1   0.000      0.881 1.000 0.000 0.000 0.000
#> SRR1036133     2   0.409      0.735 0.000 0.776 0.216 0.008
#> SRR1036134     2   0.409      0.735 0.000 0.776 0.216 0.008
#> SRR1036135     2   0.409      0.735 0.000 0.776 0.216 0.008
#> SRR1036136     2   0.409      0.735 0.000 0.776 0.216 0.008
#> SRR1036137     2   0.409      0.735 0.000 0.776 0.216 0.008
#> SRR1036138     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036139     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036140     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036141     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036142     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036143     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036144     2   0.000      0.929 0.000 1.000 0.000 0.000
#> SRR1036145     2   0.000      0.929 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2 p3    p4   p5
#> SRR1036002     3   0.000      1.000 0.000 0.000  1 0.000 0.00
#> SRR1036003     3   0.000      1.000 0.000 0.000  1 0.000 0.00
#> SRR1036004     3   0.000      1.000 0.000 0.000  1 0.000 0.00
#> SRR1036005     3   0.000      1.000 0.000 0.000  1 0.000 0.00
#> SRR1036006     3   0.000      1.000 0.000 0.000  1 0.000 0.00
#> SRR1036007     3   0.000      1.000 0.000 0.000  1 0.000 0.00
#> SRR1036008     3   0.000      1.000 0.000 0.000  1 0.000 0.00
#> SRR1036009     3   0.000      1.000 0.000 0.000  1 0.000 0.00
#> SRR1036013     4   0.000      0.808 0.000 0.000  0 1.000 0.00
#> SRR1036014     4   0.000      0.808 0.000 0.000  0 1.000 0.00
#> SRR1036015     4   0.000      0.808 0.000 0.000  0 1.000 0.00
#> SRR1036016     4   0.000      0.808 0.000 0.000  0 1.000 0.00
#> SRR1036017     4   0.000      0.808 0.000 0.000  0 1.000 0.00
#> SRR1036018     4   0.000      0.808 0.000 0.000  0 1.000 0.00
#> SRR1036010     1   0.202      0.889 0.900 0.000  0 0.000 0.10
#> SRR1036011     1   0.202      0.889 0.900 0.000  0 0.000 0.10
#> SRR1036012     1   0.202      0.889 0.900 0.000  0 0.000 0.10
#> SRR1036019     4   0.334      0.799 0.000 0.228  0 0.772 0.00
#> SRR1036020     4   0.334      0.799 0.000 0.228  0 0.772 0.00
#> SRR1036021     4   0.334      0.799 0.000 0.228  0 0.772 0.00
#> SRR1036022     4   0.334      0.799 0.000 0.228  0 0.772 0.00
#> SRR1036023     4   0.334      0.799 0.000 0.228  0 0.772 0.00
#> SRR1036024     4   0.000      0.808 0.000 0.000  0 1.000 0.00
#> SRR1036025     4   0.000      0.808 0.000 0.000  0 1.000 0.00
#> SRR1036026     4   0.000      0.808 0.000 0.000  0 1.000 0.00
#> SRR1036027     4   0.000      0.808 0.000 0.000  0 1.000 0.00
#> SRR1036028     4   0.000      0.808 0.000 0.000  0 1.000 0.00
#> SRR1036029     4   0.000      0.808 0.000 0.000  0 1.000 0.00
#> SRR1036030     2   0.337      0.874 0.000 0.768  0 0.232 0.00
#> SRR1036031     2   0.337      0.874 0.000 0.768  0 0.232 0.00
#> SRR1036032     2   0.337      0.874 0.000 0.768  0 0.232 0.00
#> SRR1036033     2   0.337      0.874 0.000 0.768  0 0.232 0.00
#> SRR1036034     2   0.337      0.874 0.000 0.768  0 0.232 0.00
#> SRR1036035     2   0.337      0.874 0.000 0.768  0 0.232 0.00
#> SRR1036036     2   0.337      0.874 0.000 0.768  0 0.232 0.00
#> SRR1036037     2   0.337      0.874 0.000 0.768  0 0.232 0.00
#> SRR1036038     1   0.173      0.878 0.920 0.080  0 0.000 0.00
#> SRR1036039     1   0.173      0.878 0.920 0.080  0 0.000 0.00
#> SRR1036040     1   0.173      0.878 0.920 0.080  0 0.000 0.00
#> SRR1036041     1   0.201      0.891 0.920 0.020  0 0.000 0.06
#> SRR1036042     4   0.334      0.799 0.000 0.228  0 0.772 0.00
#> SRR1036043     4   0.334      0.799 0.000 0.228  0 0.772 0.00
#> SRR1036044     4   0.334      0.799 0.000 0.228  0 0.772 0.00
#> SRR1036045     4   0.334      0.799 0.000 0.228  0 0.772 0.00
#> SRR1036046     4   0.334      0.799 0.000 0.228  0 0.772 0.00
#> SRR1036047     4   0.334      0.799 0.000 0.228  0 0.772 0.00
#> SRR1036048     4   0.334      0.799 0.000 0.228  0 0.772 0.00
#> SRR1036049     4   0.334      0.799 0.000 0.228  0 0.772 0.00
#> SRR1036050     1   0.311      0.829 0.800 0.000  0 0.000 0.20
#> SRR1036051     1   0.311      0.829 0.800 0.000  0 0.000 0.20
#> SRR1036052     1   0.311      0.829 0.800 0.000  0 0.000 0.20
#> SRR1036053     1   0.311      0.829 0.800 0.000  0 0.000 0.20
#> SRR1036054     1   0.311      0.829 0.800 0.000  0 0.000 0.20
#> SRR1036055     1   0.104      0.884 0.960 0.040  0 0.000 0.00
#> SRR1036056     1   0.104      0.884 0.960 0.040  0 0.000 0.00
#> SRR1036057     1   0.104      0.884 0.960 0.040  0 0.000 0.00
#> SRR1036058     4   0.000      0.808 0.000 0.000  0 1.000 0.00
#> SRR1036059     4   0.000      0.808 0.000 0.000  0 1.000 0.00
#> SRR1036060     4   0.000      0.808 0.000 0.000  0 1.000 0.00
#> SRR1036061     4   0.000      0.808 0.000 0.000  0 1.000 0.00
#> SRR1036062     4   0.000      0.808 0.000 0.000  0 1.000 0.00
#> SRR1036063     4   0.000      0.808 0.000 0.000  0 1.000 0.00
#> SRR1036064     4   0.000      0.808 0.000 0.000  0 1.000 0.00
#> SRR1036065     4   0.000      0.808 0.000 0.000  0 1.000 0.00
#> SRR1036066     1   0.173      0.878 0.920 0.080  0 0.000 0.00
#> SRR1036067     1   0.173      0.878 0.920 0.080  0 0.000 0.00
#> SRR1036068     1   0.173      0.878 0.920 0.080  0 0.000 0.00
#> SRR1036069     1   0.173      0.878 0.920 0.080  0 0.000 0.00
#> SRR1036070     1   0.173      0.878 0.920 0.080  0 0.000 0.00
#> SRR1036071     1   0.173      0.878 0.920 0.080  0 0.000 0.00
#> SRR1036072     1   0.173      0.878 0.920 0.080  0 0.000 0.00
#> SRR1036073     1   0.173      0.878 0.920 0.080  0 0.000 0.00
#> SRR1036074     4   0.334      0.799 0.000 0.228  0 0.772 0.00
#> SRR1036075     4   0.334      0.799 0.000 0.228  0 0.772 0.00
#> SRR1036076     4   0.334      0.799 0.000 0.228  0 0.772 0.00
#> SRR1036077     4   0.334      0.799 0.000 0.228  0 0.772 0.00
#> SRR1036078     4   0.334      0.799 0.000 0.228  0 0.772 0.00
#> SRR1036079     4   0.334      0.799 0.000 0.228  0 0.772 0.00
#> SRR1036080     4   0.334      0.799 0.000 0.228  0 0.772 0.00
#> SRR1036081     4   0.334      0.799 0.000 0.228  0 0.772 0.00
#> SRR1036082     4   0.000      0.808 0.000 0.000  0 1.000 0.00
#> SRR1036083     4   0.000      0.808 0.000 0.000  0 1.000 0.00
#> SRR1036084     4   0.000      0.808 0.000 0.000  0 1.000 0.00
#> SRR1036090     4   0.277      0.645 0.000 0.164  0 0.836 0.00
#> SRR1036091     4   0.277      0.645 0.000 0.164  0 0.836 0.00
#> SRR1036092     4   0.277      0.645 0.000 0.164  0 0.836 0.00
#> SRR1036093     4   0.277      0.645 0.000 0.164  0 0.836 0.00
#> SRR1036094     4   0.277      0.645 0.000 0.164  0 0.836 0.00
#> SRR1036085     3   0.000      1.000 0.000 0.000  1 0.000 0.00
#> SRR1036086     3   0.000      1.000 0.000 0.000  1 0.000 0.00
#> SRR1036087     3   0.000      1.000 0.000 0.000  1 0.000 0.00
#> SRR1036088     3   0.000      1.000 0.000 0.000  1 0.000 0.00
#> SRR1036089     3   0.000      1.000 0.000 0.000  1 0.000 0.00
#> SRR1036095     4   0.324      0.554 0.000 0.216  0 0.784 0.00
#> SRR1036096     4   0.324      0.554 0.000 0.216  0 0.784 0.00
#> SRR1036097     4   0.324      0.554 0.000 0.216  0 0.784 0.00
#> SRR1036098     4   0.324      0.554 0.000 0.216  0 0.784 0.00
#> SRR1036099     4   0.324      0.554 0.000 0.216  0 0.784 0.00
#> SRR1036100     4   0.334      0.799 0.000 0.228  0 0.772 0.00
#> SRR1036101     4   0.334      0.799 0.000 0.228  0 0.772 0.00
#> SRR1036102     4   0.334      0.799 0.000 0.228  0 0.772 0.00
#> SRR1036103     4   0.334      0.799 0.000 0.228  0 0.772 0.00
#> SRR1036104     4   0.334      0.799 0.000 0.228  0 0.772 0.00
#> SRR1036105     3   0.000      1.000 0.000 0.000  1 0.000 0.00
#> SRR1036106     3   0.000      1.000 0.000 0.000  1 0.000 0.00
#> SRR1036107     3   0.000      1.000 0.000 0.000  1 0.000 0.00
#> SRR1036108     3   0.000      1.000 0.000 0.000  1 0.000 0.00
#> SRR1036109     3   0.000      1.000 0.000 0.000  1 0.000 0.00
#> SRR1036110     4   0.334      0.799 0.000 0.228  0 0.772 0.00
#> SRR1036111     4   0.334      0.799 0.000 0.228  0 0.772 0.00
#> SRR1036112     4   0.334      0.799 0.000 0.228  0 0.772 0.00
#> SRR1036113     4   0.334      0.799 0.000 0.228  0 0.772 0.00
#> SRR1036114     4   0.334      0.799 0.000 0.228  0 0.772 0.00
#> SRR1036115     2   0.613      0.754 0.208 0.564  0 0.228 0.00
#> SRR1036116     2   0.613      0.754 0.208 0.564  0 0.228 0.00
#> SRR1036117     2   0.613      0.754 0.208 0.564  0 0.228 0.00
#> SRR1036118     2   0.613      0.754 0.208 0.564  0 0.228 0.00
#> SRR1036119     2   0.613      0.754 0.208 0.564  0 0.228 0.00
#> SRR1036120     5   0.000      1.000 0.000 0.000  0 0.000 1.00
#> SRR1036121     5   0.000      1.000 0.000 0.000  0 0.000 1.00
#> SRR1036122     5   0.000      1.000 0.000 0.000  0 0.000 1.00
#> SRR1036123     5   0.000      1.000 0.000 0.000  0 0.000 1.00
#> SRR1036124     5   0.000      1.000 0.000 0.000  0 0.000 1.00
#> SRR1036125     1   0.202      0.889 0.900 0.000  0 0.000 0.10
#> SRR1036126     1   0.202      0.889 0.900 0.000  0 0.000 0.10
#> SRR1036127     1   0.202      0.889 0.900 0.000  0 0.000 0.10
#> SRR1036128     1   0.202      0.889 0.900 0.000  0 0.000 0.10
#> SRR1036129     1   0.202      0.889 0.900 0.000  0 0.000 0.10
#> SRR1036130     1   0.202      0.889 0.900 0.000  0 0.000 0.10
#> SRR1036131     1   0.202      0.889 0.900 0.000  0 0.000 0.10
#> SRR1036132     1   0.202      0.889 0.900 0.000  0 0.000 0.10
#> SRR1036133     2   0.384      0.828 0.000 0.692  0 0.308 0.00
#> SRR1036134     2   0.384      0.828 0.000 0.692  0 0.308 0.00
#> SRR1036135     2   0.384      0.828 0.000 0.692  0 0.308 0.00
#> SRR1036136     2   0.384      0.828 0.000 0.692  0 0.308 0.00
#> SRR1036137     2   0.384      0.828 0.000 0.692  0 0.308 0.00
#> SRR1036138     4   0.161      0.754 0.000 0.072  0 0.928 0.00
#> SRR1036139     4   0.161      0.754 0.000 0.072  0 0.928 0.00
#> SRR1036140     4   0.161      0.754 0.000 0.072  0 0.928 0.00
#> SRR1036141     4   0.161      0.754 0.000 0.072  0 0.928 0.00
#> SRR1036142     4   0.161      0.754 0.000 0.072  0 0.928 0.00
#> SRR1036143     4   0.161      0.754 0.000 0.072  0 0.928 0.00
#> SRR1036144     4   0.161      0.754 0.000 0.072  0 0.928 0.00
#> SRR1036145     4   0.161      0.754 0.000 0.072  0 0.928 0.00

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1036002     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036003     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036004     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036005     3  0.0146      0.997 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1036006     3  0.0146      0.997 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1036007     3  0.0146      0.997 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1036008     3  0.0146      0.997 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1036009     3  0.0146      0.997 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1036013     4  0.3424      0.818 0.000 0.024 0.000 0.772 0.000 0.204
#> SRR1036014     4  0.3424      0.818 0.000 0.024 0.000 0.772 0.000 0.204
#> SRR1036015     4  0.3424      0.818 0.000 0.024 0.000 0.772 0.000 0.204
#> SRR1036016     4  0.3424      0.818 0.000 0.024 0.000 0.772 0.000 0.204
#> SRR1036017     4  0.3424      0.818 0.000 0.024 0.000 0.772 0.000 0.204
#> SRR1036018     4  0.3424      0.818 0.000 0.024 0.000 0.772 0.000 0.204
#> SRR1036010     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036011     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036012     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036019     4  0.0363      0.810 0.000 0.000 0.000 0.988 0.000 0.012
#> SRR1036020     4  0.0363      0.810 0.000 0.000 0.000 0.988 0.000 0.012
#> SRR1036021     4  0.0363      0.810 0.000 0.000 0.000 0.988 0.000 0.012
#> SRR1036022     4  0.0363      0.810 0.000 0.000 0.000 0.988 0.000 0.012
#> SRR1036023     4  0.0363      0.810 0.000 0.000 0.000 0.988 0.000 0.012
#> SRR1036024     4  0.3424      0.818 0.000 0.024 0.000 0.772 0.000 0.204
#> SRR1036025     4  0.3424      0.818 0.000 0.024 0.000 0.772 0.000 0.204
#> SRR1036026     4  0.3424      0.818 0.000 0.024 0.000 0.772 0.000 0.204
#> SRR1036027     4  0.3424      0.818 0.000 0.024 0.000 0.772 0.000 0.204
#> SRR1036028     4  0.3424      0.818 0.000 0.024 0.000 0.772 0.000 0.204
#> SRR1036029     4  0.3424      0.818 0.000 0.024 0.000 0.772 0.000 0.204
#> SRR1036030     2  0.3468      0.822 0.000 0.712 0.000 0.004 0.000 0.284
#> SRR1036031     2  0.3468      0.822 0.000 0.712 0.000 0.004 0.000 0.284
#> SRR1036032     2  0.3468      0.822 0.000 0.712 0.000 0.004 0.000 0.284
#> SRR1036033     2  0.3468      0.822 0.000 0.712 0.000 0.004 0.000 0.284
#> SRR1036034     2  0.3468      0.822 0.000 0.712 0.000 0.004 0.000 0.284
#> SRR1036035     2  0.3468      0.822 0.000 0.712 0.000 0.004 0.000 0.284
#> SRR1036036     2  0.3468      0.822 0.000 0.712 0.000 0.004 0.000 0.284
#> SRR1036037     2  0.3468      0.822 0.000 0.712 0.000 0.004 0.000 0.284
#> SRR1036038     6  0.3076      0.955 0.240 0.000 0.000 0.000 0.000 0.760
#> SRR1036039     6  0.3076      0.955 0.240 0.000 0.000 0.000 0.000 0.760
#> SRR1036040     6  0.3076      0.955 0.240 0.000 0.000 0.000 0.000 0.760
#> SRR1036041     6  0.3851      0.648 0.460 0.000 0.000 0.000 0.000 0.540
#> SRR1036042     4  0.0632      0.812 0.000 0.000 0.000 0.976 0.000 0.024
#> SRR1036043     4  0.0632      0.812 0.000 0.000 0.000 0.976 0.000 0.024
#> SRR1036044     4  0.0632      0.812 0.000 0.000 0.000 0.976 0.000 0.024
#> SRR1036045     4  0.0632      0.812 0.000 0.000 0.000 0.976 0.000 0.024
#> SRR1036046     4  0.0632      0.812 0.000 0.000 0.000 0.976 0.000 0.024
#> SRR1036047     4  0.0632      0.812 0.000 0.000 0.000 0.976 0.000 0.024
#> SRR1036048     4  0.0632      0.812 0.000 0.000 0.000 0.976 0.000 0.024
#> SRR1036049     4  0.0632      0.812 0.000 0.000 0.000 0.976 0.000 0.024
#> SRR1036050     1  0.2340      0.865 0.852 0.000 0.000 0.000 0.148 0.000
#> SRR1036051     1  0.2340      0.865 0.852 0.000 0.000 0.000 0.148 0.000
#> SRR1036052     1  0.2340      0.865 0.852 0.000 0.000 0.000 0.148 0.000
#> SRR1036053     1  0.2340      0.865 0.852 0.000 0.000 0.000 0.148 0.000
#> SRR1036054     1  0.2340      0.865 0.852 0.000 0.000 0.000 0.148 0.000
#> SRR1036055     6  0.3499      0.888 0.320 0.000 0.000 0.000 0.000 0.680
#> SRR1036056     6  0.3499      0.888 0.320 0.000 0.000 0.000 0.000 0.680
#> SRR1036057     6  0.3499      0.888 0.320 0.000 0.000 0.000 0.000 0.680
#> SRR1036058     4  0.3424      0.818 0.000 0.024 0.000 0.772 0.000 0.204
#> SRR1036059     4  0.3424      0.818 0.000 0.024 0.000 0.772 0.000 0.204
#> SRR1036060     4  0.3424      0.818 0.000 0.024 0.000 0.772 0.000 0.204
#> SRR1036061     4  0.3424      0.818 0.000 0.024 0.000 0.772 0.000 0.204
#> SRR1036062     4  0.3424      0.818 0.000 0.024 0.000 0.772 0.000 0.204
#> SRR1036063     4  0.3424      0.818 0.000 0.024 0.000 0.772 0.000 0.204
#> SRR1036064     4  0.3424      0.818 0.000 0.024 0.000 0.772 0.000 0.204
#> SRR1036065     4  0.3424      0.818 0.000 0.024 0.000 0.772 0.000 0.204
#> SRR1036066     6  0.3076      0.955 0.240 0.000 0.000 0.000 0.000 0.760
#> SRR1036067     6  0.3076      0.955 0.240 0.000 0.000 0.000 0.000 0.760
#> SRR1036068     6  0.3076      0.955 0.240 0.000 0.000 0.000 0.000 0.760
#> SRR1036069     6  0.3076      0.955 0.240 0.000 0.000 0.000 0.000 0.760
#> SRR1036070     6  0.3076      0.955 0.240 0.000 0.000 0.000 0.000 0.760
#> SRR1036071     6  0.3076      0.955 0.240 0.000 0.000 0.000 0.000 0.760
#> SRR1036072     6  0.3076      0.955 0.240 0.000 0.000 0.000 0.000 0.760
#> SRR1036073     6  0.3076      0.955 0.240 0.000 0.000 0.000 0.000 0.760
#> SRR1036074     4  0.0363      0.810 0.000 0.000 0.000 0.988 0.000 0.012
#> SRR1036075     4  0.0363      0.810 0.000 0.000 0.000 0.988 0.000 0.012
#> SRR1036076     4  0.0363      0.810 0.000 0.000 0.000 0.988 0.000 0.012
#> SRR1036077     4  0.0363      0.810 0.000 0.000 0.000 0.988 0.000 0.012
#> SRR1036078     4  0.0363      0.810 0.000 0.000 0.000 0.988 0.000 0.012
#> SRR1036079     4  0.0363      0.810 0.000 0.000 0.000 0.988 0.000 0.012
#> SRR1036080     4  0.0363      0.810 0.000 0.000 0.000 0.988 0.000 0.012
#> SRR1036081     4  0.0363      0.810 0.000 0.000 0.000 0.988 0.000 0.012
#> SRR1036082     4  0.3424      0.818 0.000 0.024 0.000 0.772 0.000 0.204
#> SRR1036083     4  0.3424      0.818 0.000 0.024 0.000 0.772 0.000 0.204
#> SRR1036084     4  0.3424      0.818 0.000 0.024 0.000 0.772 0.000 0.204
#> SRR1036090     4  0.5252      0.670 0.000 0.188 0.000 0.608 0.000 0.204
#> SRR1036091     4  0.5252      0.670 0.000 0.188 0.000 0.608 0.000 0.204
#> SRR1036092     4  0.5252      0.670 0.000 0.188 0.000 0.608 0.000 0.204
#> SRR1036093     4  0.5252      0.670 0.000 0.188 0.000 0.608 0.000 0.204
#> SRR1036094     4  0.5252      0.670 0.000 0.188 0.000 0.608 0.000 0.204
#> SRR1036085     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036086     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036087     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036088     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036089     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036095     4  0.3833      0.482 0.000 0.444 0.000 0.556 0.000 0.000
#> SRR1036096     4  0.3833      0.482 0.000 0.444 0.000 0.556 0.000 0.000
#> SRR1036097     4  0.3833      0.482 0.000 0.444 0.000 0.556 0.000 0.000
#> SRR1036098     4  0.3833      0.482 0.000 0.444 0.000 0.556 0.000 0.000
#> SRR1036099     4  0.3833      0.482 0.000 0.444 0.000 0.556 0.000 0.000
#> SRR1036100     4  0.0363      0.810 0.000 0.000 0.000 0.988 0.000 0.012
#> SRR1036101     4  0.0363      0.810 0.000 0.000 0.000 0.988 0.000 0.012
#> SRR1036102     4  0.0363      0.810 0.000 0.000 0.000 0.988 0.000 0.012
#> SRR1036103     4  0.0363      0.810 0.000 0.000 0.000 0.988 0.000 0.012
#> SRR1036104     4  0.0363      0.810 0.000 0.000 0.000 0.988 0.000 0.012
#> SRR1036105     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036106     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036107     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036108     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036109     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036110     4  0.0632      0.812 0.000 0.000 0.000 0.976 0.000 0.024
#> SRR1036111     4  0.0632      0.812 0.000 0.000 0.000 0.976 0.000 0.024
#> SRR1036112     4  0.0632      0.812 0.000 0.000 0.000 0.976 0.000 0.024
#> SRR1036113     4  0.0632      0.812 0.000 0.000 0.000 0.976 0.000 0.024
#> SRR1036114     4  0.0632      0.812 0.000 0.000 0.000 0.976 0.000 0.024
#> SRR1036115     2  0.3351      0.525 0.000 0.712 0.000 0.000 0.000 0.288
#> SRR1036116     2  0.3351      0.525 0.000 0.712 0.000 0.000 0.000 0.288
#> SRR1036117     2  0.3351      0.525 0.000 0.712 0.000 0.000 0.000 0.288
#> SRR1036118     2  0.3351      0.525 0.000 0.712 0.000 0.000 0.000 0.288
#> SRR1036119     2  0.3351      0.525 0.000 0.712 0.000 0.000 0.000 0.288
#> SRR1036120     5  0.0547      1.000 0.020 0.000 0.000 0.000 0.980 0.000
#> SRR1036121     5  0.0547      1.000 0.020 0.000 0.000 0.000 0.980 0.000
#> SRR1036122     5  0.0547      1.000 0.020 0.000 0.000 0.000 0.980 0.000
#> SRR1036123     5  0.0547      1.000 0.020 0.000 0.000 0.000 0.980 0.000
#> SRR1036124     5  0.0547      1.000 0.020 0.000 0.000 0.000 0.980 0.000
#> SRR1036125     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036126     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036127     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036128     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036129     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036130     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036131     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036132     1  0.0000      0.940 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036133     2  0.3401      0.787 0.000 0.776 0.000 0.004 0.016 0.204
#> SRR1036134     2  0.3401      0.787 0.000 0.776 0.000 0.004 0.016 0.204
#> SRR1036135     2  0.3401      0.787 0.000 0.776 0.000 0.004 0.016 0.204
#> SRR1036136     2  0.3401      0.787 0.000 0.776 0.000 0.004 0.016 0.204
#> SRR1036137     2  0.3401      0.787 0.000 0.776 0.000 0.004 0.016 0.204
#> SRR1036138     4  0.4459      0.772 0.000 0.096 0.000 0.700 0.000 0.204
#> SRR1036139     4  0.4459      0.772 0.000 0.096 0.000 0.700 0.000 0.204
#> SRR1036140     4  0.4459      0.772 0.000 0.096 0.000 0.700 0.000 0.204
#> SRR1036141     4  0.4459      0.772 0.000 0.096 0.000 0.700 0.000 0.204
#> SRR1036142     4  0.4459      0.772 0.000 0.096 0.000 0.700 0.000 0.204
#> SRR1036143     4  0.4459      0.772 0.000 0.096 0.000 0.700 0.000 0.204
#> SRR1036144     4  0.4459      0.772 0.000 0.096 0.000 0.700 0.000 0.204
#> SRR1036145     4  0.4459      0.772 0.000 0.096 0.000 0.700 0.000 0.204

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15218 rows and 144 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.820           0.948       0.958         0.4476 0.528   0.528
#> 3 3 0.536           0.789       0.852         0.2838 0.901   0.814
#> 4 4 0.540           0.695       0.781         0.1535 1.000   1.000
#> 5 5 0.539           0.624       0.724         0.0799 0.816   0.586
#> 6 6 0.519           0.590       0.652         0.0567 0.926   0.735

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1036002     1  0.6048      0.869 0.852 0.148
#> SRR1036003     1  0.6048      0.869 0.852 0.148
#> SRR1036004     1  0.6048      0.869 0.852 0.148
#> SRR1036005     2  0.2043      0.969 0.032 0.968
#> SRR1036006     2  0.2043      0.969 0.032 0.968
#> SRR1036007     2  0.2043      0.969 0.032 0.968
#> SRR1036008     2  0.2043      0.969 0.032 0.968
#> SRR1036009     2  0.2043      0.969 0.032 0.968
#> SRR1036013     2  0.0376      0.990 0.004 0.996
#> SRR1036014     2  0.0376      0.990 0.004 0.996
#> SRR1036015     2  0.0376      0.990 0.004 0.996
#> SRR1036016     2  0.0376      0.990 0.004 0.996
#> SRR1036017     2  0.0376      0.990 0.004 0.996
#> SRR1036018     2  0.0376      0.990 0.004 0.996
#> SRR1036010     1  0.2603      0.928 0.956 0.044
#> SRR1036011     1  0.2603      0.928 0.956 0.044
#> SRR1036012     1  0.2603      0.928 0.956 0.044
#> SRR1036019     2  0.0938      0.986 0.012 0.988
#> SRR1036020     2  0.0938      0.986 0.012 0.988
#> SRR1036021     2  0.0938      0.986 0.012 0.988
#> SRR1036022     2  0.0938      0.986 0.012 0.988
#> SRR1036023     2  0.0938      0.986 0.012 0.988
#> SRR1036024     2  0.0000      0.991 0.000 1.000
#> SRR1036025     2  0.0000      0.991 0.000 1.000
#> SRR1036026     2  0.0000      0.991 0.000 1.000
#> SRR1036027     2  0.0000      0.991 0.000 1.000
#> SRR1036028     2  0.0000      0.991 0.000 1.000
#> SRR1036029     2  0.0000      0.991 0.000 1.000
#> SRR1036030     2  0.0000      0.991 0.000 1.000
#> SRR1036031     2  0.0000      0.991 0.000 1.000
#> SRR1036032     2  0.0000      0.991 0.000 1.000
#> SRR1036033     2  0.0000      0.991 0.000 1.000
#> SRR1036034     2  0.0000      0.991 0.000 1.000
#> SRR1036035     2  0.0000      0.991 0.000 1.000
#> SRR1036036     2  0.0000      0.991 0.000 1.000
#> SRR1036037     2  0.0000      0.991 0.000 1.000
#> SRR1036038     1  0.2603      0.928 0.956 0.044
#> SRR1036039     1  0.2603      0.928 0.956 0.044
#> SRR1036040     1  0.2603      0.928 0.956 0.044
#> SRR1036041     1  0.2603      0.928 0.956 0.044
#> SRR1036042     2  0.2043      0.969 0.032 0.968
#> SRR1036043     2  0.2043      0.969 0.032 0.968
#> SRR1036044     2  0.2043      0.969 0.032 0.968
#> SRR1036045     2  0.2043      0.969 0.032 0.968
#> SRR1036046     2  0.2043      0.969 0.032 0.968
#> SRR1036047     2  0.2043      0.969 0.032 0.968
#> SRR1036048     2  0.2043      0.969 0.032 0.968
#> SRR1036049     2  0.2043      0.969 0.032 0.968
#> SRR1036050     1  0.2603      0.928 0.956 0.044
#> SRR1036051     1  0.2603      0.928 0.956 0.044
#> SRR1036052     1  0.2603      0.928 0.956 0.044
#> SRR1036053     1  0.2603      0.928 0.956 0.044
#> SRR1036054     1  0.2603      0.928 0.956 0.044
#> SRR1036055     1  0.2603      0.928 0.956 0.044
#> SRR1036056     1  0.2603      0.928 0.956 0.044
#> SRR1036057     1  0.2603      0.928 0.956 0.044
#> SRR1036058     2  0.0000      0.991 0.000 1.000
#> SRR1036059     2  0.0000      0.991 0.000 1.000
#> SRR1036060     2  0.0000      0.991 0.000 1.000
#> SRR1036061     2  0.0000      0.991 0.000 1.000
#> SRR1036062     2  0.0000      0.991 0.000 1.000
#> SRR1036063     2  0.0000      0.991 0.000 1.000
#> SRR1036064     2  0.0000      0.991 0.000 1.000
#> SRR1036065     2  0.0000      0.991 0.000 1.000
#> SRR1036066     1  0.4690      0.920 0.900 0.100
#> SRR1036067     1  0.4690      0.920 0.900 0.100
#> SRR1036068     1  0.4690      0.920 0.900 0.100
#> SRR1036069     1  0.4690      0.920 0.900 0.100
#> SRR1036070     1  0.4690      0.920 0.900 0.100
#> SRR1036071     1  0.4690      0.920 0.900 0.100
#> SRR1036072     1  0.4690      0.920 0.900 0.100
#> SRR1036073     1  0.4690      0.920 0.900 0.100
#> SRR1036074     2  0.0938      0.986 0.012 0.988
#> SRR1036075     2  0.0938      0.986 0.012 0.988
#> SRR1036076     2  0.0938      0.986 0.012 0.988
#> SRR1036077     2  0.0938      0.986 0.012 0.988
#> SRR1036078     2  0.0938      0.986 0.012 0.988
#> SRR1036079     2  0.0938      0.986 0.012 0.988
#> SRR1036080     2  0.0938      0.986 0.012 0.988
#> SRR1036081     2  0.0938      0.986 0.012 0.988
#> SRR1036082     2  0.0000      0.991 0.000 1.000
#> SRR1036083     2  0.0000      0.991 0.000 1.000
#> SRR1036084     2  0.0000      0.991 0.000 1.000
#> SRR1036090     2  0.0000      0.991 0.000 1.000
#> SRR1036091     2  0.0000      0.991 0.000 1.000
#> SRR1036092     2  0.0000      0.991 0.000 1.000
#> SRR1036093     2  0.0000      0.991 0.000 1.000
#> SRR1036094     2  0.0000      0.991 0.000 1.000
#> SRR1036085     1  0.6048      0.869 0.852 0.148
#> SRR1036086     1  0.6048      0.869 0.852 0.148
#> SRR1036087     1  0.6048      0.869 0.852 0.148
#> SRR1036088     1  0.6048      0.869 0.852 0.148
#> SRR1036089     1  0.6048      0.869 0.852 0.148
#> SRR1036095     2  0.0000      0.991 0.000 1.000
#> SRR1036096     2  0.0000      0.991 0.000 1.000
#> SRR1036097     2  0.0000      0.991 0.000 1.000
#> SRR1036098     2  0.0000      0.991 0.000 1.000
#> SRR1036099     2  0.0000      0.991 0.000 1.000
#> SRR1036100     2  0.0938      0.986 0.012 0.988
#> SRR1036101     2  0.0938      0.986 0.012 0.988
#> SRR1036102     2  0.0938      0.986 0.012 0.988
#> SRR1036103     2  0.0938      0.986 0.012 0.988
#> SRR1036104     2  0.0938      0.986 0.012 0.988
#> SRR1036105     1  0.9393      0.567 0.644 0.356
#> SRR1036106     1  0.9393      0.567 0.644 0.356
#> SRR1036107     1  0.9393      0.567 0.644 0.356
#> SRR1036108     1  0.9393      0.567 0.644 0.356
#> SRR1036109     1  0.9393      0.567 0.644 0.356
#> SRR1036110     2  0.0376      0.990 0.004 0.996
#> SRR1036111     2  0.0376      0.990 0.004 0.996
#> SRR1036112     2  0.0376      0.990 0.004 0.996
#> SRR1036113     2  0.0376      0.990 0.004 0.996
#> SRR1036114     2  0.0376      0.990 0.004 0.996
#> SRR1036115     1  0.4815      0.919 0.896 0.104
#> SRR1036116     1  0.4815      0.919 0.896 0.104
#> SRR1036117     1  0.4815      0.919 0.896 0.104
#> SRR1036118     1  0.4815      0.919 0.896 0.104
#> SRR1036119     1  0.4815      0.919 0.896 0.104
#> SRR1036120     1  0.1184      0.913 0.984 0.016
#> SRR1036121     1  0.1184      0.913 0.984 0.016
#> SRR1036122     1  0.1184      0.913 0.984 0.016
#> SRR1036123     1  0.1184      0.913 0.984 0.016
#> SRR1036124     1  0.1184      0.913 0.984 0.016
#> SRR1036125     1  0.2603      0.928 0.956 0.044
#> SRR1036126     1  0.2603      0.928 0.956 0.044
#> SRR1036127     1  0.2603      0.928 0.956 0.044
#> SRR1036128     1  0.2603      0.928 0.956 0.044
#> SRR1036129     1  0.2603      0.928 0.956 0.044
#> SRR1036130     1  0.2603      0.928 0.956 0.044
#> SRR1036131     1  0.2603      0.928 0.956 0.044
#> SRR1036132     1  0.2603      0.928 0.956 0.044
#> SRR1036133     2  0.0000      0.991 0.000 1.000
#> SRR1036134     2  0.0000      0.991 0.000 1.000
#> SRR1036135     2  0.0000      0.991 0.000 1.000
#> SRR1036136     2  0.0000      0.991 0.000 1.000
#> SRR1036137     2  0.0000      0.991 0.000 1.000
#> SRR1036138     2  0.0000      0.991 0.000 1.000
#> SRR1036139     2  0.0000      0.991 0.000 1.000
#> SRR1036140     2  0.0000      0.991 0.000 1.000
#> SRR1036141     2  0.0000      0.991 0.000 1.000
#> SRR1036142     2  0.0000      0.991 0.000 1.000
#> SRR1036143     2  0.0000      0.991 0.000 1.000
#> SRR1036144     2  0.0000      0.991 0.000 1.000
#> SRR1036145     2  0.0000      0.991 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1036002     3  0.7983      0.746 0.256 0.108 0.636
#> SRR1036003     3  0.7983      0.746 0.256 0.108 0.636
#> SRR1036004     3  0.7983      0.746 0.256 0.108 0.636
#> SRR1036005     3  0.6379      0.650 0.008 0.368 0.624
#> SRR1036006     3  0.6379      0.650 0.008 0.368 0.624
#> SRR1036007     3  0.6379      0.650 0.008 0.368 0.624
#> SRR1036008     3  0.6379      0.650 0.008 0.368 0.624
#> SRR1036009     3  0.6379      0.650 0.008 0.368 0.624
#> SRR1036013     2  0.0000      0.877 0.000 1.000 0.000
#> SRR1036014     2  0.0000      0.877 0.000 1.000 0.000
#> SRR1036015     2  0.0000      0.877 0.000 1.000 0.000
#> SRR1036016     2  0.0000      0.877 0.000 1.000 0.000
#> SRR1036017     2  0.0000      0.877 0.000 1.000 0.000
#> SRR1036018     2  0.0000      0.877 0.000 1.000 0.000
#> SRR1036010     1  0.1482      0.827 0.968 0.012 0.020
#> SRR1036011     1  0.1482      0.827 0.968 0.012 0.020
#> SRR1036012     1  0.1482      0.827 0.968 0.012 0.020
#> SRR1036019     2  0.5202      0.761 0.008 0.772 0.220
#> SRR1036020     2  0.5202      0.761 0.008 0.772 0.220
#> SRR1036021     2  0.5202      0.761 0.008 0.772 0.220
#> SRR1036022     2  0.5202      0.761 0.008 0.772 0.220
#> SRR1036023     2  0.5202      0.761 0.008 0.772 0.220
#> SRR1036024     2  0.0000      0.877 0.000 1.000 0.000
#> SRR1036025     2  0.0000      0.877 0.000 1.000 0.000
#> SRR1036026     2  0.0000      0.877 0.000 1.000 0.000
#> SRR1036027     2  0.0000      0.877 0.000 1.000 0.000
#> SRR1036028     2  0.0000      0.877 0.000 1.000 0.000
#> SRR1036029     2  0.0000      0.877 0.000 1.000 0.000
#> SRR1036030     2  0.5633      0.708 0.024 0.768 0.208
#> SRR1036031     2  0.5633      0.708 0.024 0.768 0.208
#> SRR1036032     2  0.5633      0.708 0.024 0.768 0.208
#> SRR1036033     2  0.5633      0.708 0.024 0.768 0.208
#> SRR1036034     2  0.5633      0.708 0.024 0.768 0.208
#> SRR1036035     2  0.5633      0.708 0.024 0.768 0.208
#> SRR1036036     2  0.5633      0.708 0.024 0.768 0.208
#> SRR1036037     2  0.5633      0.708 0.024 0.768 0.208
#> SRR1036038     1  0.4840      0.767 0.816 0.016 0.168
#> SRR1036039     1  0.4840      0.767 0.816 0.016 0.168
#> SRR1036040     1  0.4840      0.767 0.816 0.016 0.168
#> SRR1036041     1  0.1337      0.831 0.972 0.016 0.012
#> SRR1036042     2  0.4575      0.703 0.004 0.812 0.184
#> SRR1036043     2  0.4575      0.703 0.004 0.812 0.184
#> SRR1036044     2  0.4575      0.703 0.004 0.812 0.184
#> SRR1036045     2  0.4575      0.703 0.004 0.812 0.184
#> SRR1036046     2  0.4575      0.703 0.004 0.812 0.184
#> SRR1036047     2  0.4575      0.703 0.004 0.812 0.184
#> SRR1036048     2  0.4575      0.703 0.004 0.812 0.184
#> SRR1036049     2  0.4575      0.703 0.004 0.812 0.184
#> SRR1036050     1  0.1999      0.821 0.952 0.012 0.036
#> SRR1036051     1  0.1999      0.821 0.952 0.012 0.036
#> SRR1036052     1  0.1999      0.821 0.952 0.012 0.036
#> SRR1036053     1  0.1999      0.821 0.952 0.012 0.036
#> SRR1036054     1  0.1999      0.821 0.952 0.012 0.036
#> SRR1036055     1  0.2152      0.829 0.948 0.016 0.036
#> SRR1036056     1  0.2152      0.829 0.948 0.016 0.036
#> SRR1036057     1  0.2152      0.829 0.948 0.016 0.036
#> SRR1036058     2  0.1163      0.877 0.000 0.972 0.028
#> SRR1036059     2  0.1163      0.877 0.000 0.972 0.028
#> SRR1036060     2  0.1163      0.877 0.000 0.972 0.028
#> SRR1036061     2  0.1163      0.877 0.000 0.972 0.028
#> SRR1036062     2  0.1163      0.877 0.000 0.972 0.028
#> SRR1036063     2  0.1163      0.877 0.000 0.972 0.028
#> SRR1036064     2  0.1163      0.877 0.000 0.972 0.028
#> SRR1036065     2  0.1163      0.877 0.000 0.972 0.028
#> SRR1036066     1  0.6537      0.723 0.740 0.064 0.196
#> SRR1036067     1  0.6537      0.723 0.740 0.064 0.196
#> SRR1036068     1  0.6537      0.723 0.740 0.064 0.196
#> SRR1036069     1  0.6537      0.723 0.740 0.064 0.196
#> SRR1036070     1  0.6537      0.723 0.740 0.064 0.196
#> SRR1036071     1  0.6537      0.723 0.740 0.064 0.196
#> SRR1036072     1  0.6537      0.723 0.740 0.064 0.196
#> SRR1036073     1  0.6537      0.723 0.740 0.064 0.196
#> SRR1036074     2  0.4755      0.788 0.008 0.808 0.184
#> SRR1036075     2  0.4755      0.788 0.008 0.808 0.184
#> SRR1036076     2  0.4755      0.788 0.008 0.808 0.184
#> SRR1036077     2  0.4755      0.788 0.008 0.808 0.184
#> SRR1036078     2  0.4755      0.788 0.008 0.808 0.184
#> SRR1036079     2  0.4755      0.788 0.008 0.808 0.184
#> SRR1036080     2  0.4755      0.788 0.008 0.808 0.184
#> SRR1036081     2  0.4755      0.788 0.008 0.808 0.184
#> SRR1036082     2  0.0237      0.878 0.000 0.996 0.004
#> SRR1036083     2  0.0237      0.878 0.000 0.996 0.004
#> SRR1036084     2  0.0237      0.878 0.000 0.996 0.004
#> SRR1036090     2  0.1529      0.876 0.000 0.960 0.040
#> SRR1036091     2  0.1529      0.876 0.000 0.960 0.040
#> SRR1036092     2  0.1529      0.876 0.000 0.960 0.040
#> SRR1036093     2  0.1529      0.876 0.000 0.960 0.040
#> SRR1036094     2  0.1529      0.876 0.000 0.960 0.040
#> SRR1036085     3  0.7694      0.697 0.292 0.076 0.632
#> SRR1036086     3  0.7694      0.697 0.292 0.076 0.632
#> SRR1036087     3  0.7694      0.697 0.292 0.076 0.632
#> SRR1036088     3  0.7694      0.697 0.292 0.076 0.632
#> SRR1036089     3  0.7694      0.697 0.292 0.076 0.632
#> SRR1036095     2  0.2448      0.867 0.000 0.924 0.076
#> SRR1036096     2  0.2448      0.867 0.000 0.924 0.076
#> SRR1036097     2  0.2448      0.867 0.000 0.924 0.076
#> SRR1036098     2  0.2448      0.867 0.000 0.924 0.076
#> SRR1036099     2  0.2448      0.867 0.000 0.924 0.076
#> SRR1036100     2  0.4912      0.788 0.008 0.796 0.196
#> SRR1036101     2  0.4912      0.788 0.008 0.796 0.196
#> SRR1036102     2  0.4912      0.788 0.008 0.796 0.196
#> SRR1036103     2  0.4912      0.788 0.008 0.796 0.196
#> SRR1036104     2  0.4912      0.788 0.008 0.796 0.196
#> SRR1036105     3  0.8355      0.787 0.188 0.184 0.628
#> SRR1036106     3  0.8355      0.787 0.188 0.184 0.628
#> SRR1036107     3  0.8355      0.787 0.188 0.184 0.628
#> SRR1036108     3  0.8355      0.787 0.188 0.184 0.628
#> SRR1036109     3  0.8355      0.787 0.188 0.184 0.628
#> SRR1036110     2  0.0829      0.874 0.004 0.984 0.012
#> SRR1036111     2  0.0829      0.874 0.004 0.984 0.012
#> SRR1036112     2  0.0829      0.874 0.004 0.984 0.012
#> SRR1036113     2  0.0829      0.874 0.004 0.984 0.012
#> SRR1036114     2  0.0829      0.874 0.004 0.984 0.012
#> SRR1036115     1  0.8263      0.531 0.612 0.120 0.268
#> SRR1036116     1  0.8263      0.531 0.612 0.120 0.268
#> SRR1036117     1  0.8263      0.531 0.612 0.120 0.268
#> SRR1036118     1  0.8263      0.531 0.612 0.120 0.268
#> SRR1036119     1  0.8263      0.531 0.612 0.120 0.268
#> SRR1036120     1  0.4291      0.738 0.840 0.008 0.152
#> SRR1036121     1  0.4291      0.738 0.840 0.008 0.152
#> SRR1036122     1  0.4291      0.738 0.840 0.008 0.152
#> SRR1036123     1  0.4291      0.738 0.840 0.008 0.152
#> SRR1036124     1  0.4291      0.738 0.840 0.008 0.152
#> SRR1036125     1  0.0747      0.832 0.984 0.016 0.000
#> SRR1036126     1  0.0747      0.832 0.984 0.016 0.000
#> SRR1036127     1  0.0747      0.832 0.984 0.016 0.000
#> SRR1036128     1  0.0747      0.832 0.984 0.016 0.000
#> SRR1036129     1  0.0747      0.832 0.984 0.016 0.000
#> SRR1036130     1  0.0747      0.832 0.984 0.016 0.000
#> SRR1036131     1  0.0747      0.832 0.984 0.016 0.000
#> SRR1036132     1  0.0747      0.832 0.984 0.016 0.000
#> SRR1036133     2  0.3879      0.804 0.000 0.848 0.152
#> SRR1036134     2  0.3879      0.804 0.000 0.848 0.152
#> SRR1036135     2  0.3879      0.804 0.000 0.848 0.152
#> SRR1036136     2  0.3879      0.804 0.000 0.848 0.152
#> SRR1036137     2  0.3879      0.804 0.000 0.848 0.152
#> SRR1036138     2  0.0424      0.878 0.000 0.992 0.008
#> SRR1036139     2  0.0424      0.878 0.000 0.992 0.008
#> SRR1036140     2  0.0424      0.878 0.000 0.992 0.008
#> SRR1036141     2  0.0424      0.878 0.000 0.992 0.008
#> SRR1036142     2  0.0424      0.878 0.000 0.992 0.008
#> SRR1036143     2  0.0424      0.878 0.000 0.992 0.008
#> SRR1036144     2  0.0424      0.878 0.000 0.992 0.008
#> SRR1036145     2  0.0424      0.878 0.000 0.992 0.008

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3 p4
#> SRR1036002     3  0.4129      0.872 0.104 0.044 0.840 NA
#> SRR1036003     3  0.4129      0.872 0.104 0.044 0.840 NA
#> SRR1036004     3  0.4129      0.872 0.104 0.044 0.840 NA
#> SRR1036005     3  0.4579      0.798 0.000 0.200 0.768 NA
#> SRR1036006     3  0.4579      0.798 0.000 0.200 0.768 NA
#> SRR1036007     3  0.4579      0.798 0.000 0.200 0.768 NA
#> SRR1036008     3  0.4579      0.798 0.000 0.200 0.768 NA
#> SRR1036009     3  0.4579      0.798 0.000 0.200 0.768 NA
#> SRR1036013     2  0.0804      0.770 0.000 0.980 0.008 NA
#> SRR1036014     2  0.0804      0.770 0.000 0.980 0.008 NA
#> SRR1036015     2  0.0804      0.770 0.000 0.980 0.008 NA
#> SRR1036016     2  0.0804      0.770 0.000 0.980 0.008 NA
#> SRR1036017     2  0.0804      0.770 0.000 0.980 0.008 NA
#> SRR1036018     2  0.0804      0.770 0.000 0.980 0.008 NA
#> SRR1036010     1  0.2131      0.748 0.932 0.000 0.032 NA
#> SRR1036011     1  0.2131      0.748 0.932 0.000 0.032 NA
#> SRR1036012     1  0.2131      0.748 0.932 0.000 0.032 NA
#> SRR1036019     2  0.5643      0.555 0.000 0.548 0.024 NA
#> SRR1036020     2  0.5558      0.555 0.000 0.548 0.020 NA
#> SRR1036021     2  0.5558      0.555 0.000 0.548 0.020 NA
#> SRR1036022     2  0.5558      0.555 0.000 0.548 0.020 NA
#> SRR1036023     2  0.5643      0.555 0.000 0.548 0.024 NA
#> SRR1036024     2  0.0524      0.772 0.000 0.988 0.004 NA
#> SRR1036025     2  0.0524      0.772 0.000 0.988 0.004 NA
#> SRR1036026     2  0.0524      0.772 0.000 0.988 0.004 NA
#> SRR1036027     2  0.0524      0.772 0.000 0.988 0.004 NA
#> SRR1036028     2  0.0524      0.772 0.000 0.988 0.004 NA
#> SRR1036029     2  0.0524      0.772 0.000 0.988 0.004 NA
#> SRR1036030     2  0.7572      0.543 0.044 0.576 0.108 NA
#> SRR1036031     2  0.7572      0.543 0.044 0.576 0.108 NA
#> SRR1036032     2  0.7572      0.543 0.044 0.576 0.108 NA
#> SRR1036033     2  0.7572      0.543 0.044 0.576 0.108 NA
#> SRR1036034     2  0.7572      0.543 0.044 0.576 0.108 NA
#> SRR1036035     2  0.7572      0.543 0.044 0.576 0.108 NA
#> SRR1036036     2  0.7572      0.543 0.044 0.576 0.108 NA
#> SRR1036037     2  0.7572      0.543 0.044 0.576 0.108 NA
#> SRR1036038     1  0.5006      0.707 0.772 0.000 0.124 NA
#> SRR1036039     1  0.5006      0.707 0.772 0.000 0.124 NA
#> SRR1036040     1  0.5006      0.707 0.772 0.000 0.124 NA
#> SRR1036041     1  0.1489      0.762 0.952 0.000 0.004 NA
#> SRR1036042     2  0.5923      0.537 0.000 0.684 0.216 NA
#> SRR1036043     2  0.5923      0.537 0.000 0.684 0.216 NA
#> SRR1036044     2  0.5923      0.537 0.000 0.684 0.216 NA
#> SRR1036045     2  0.5923      0.537 0.000 0.684 0.216 NA
#> SRR1036046     2  0.5923      0.537 0.000 0.684 0.216 NA
#> SRR1036047     2  0.5923      0.537 0.000 0.684 0.216 NA
#> SRR1036048     2  0.5923      0.537 0.000 0.684 0.216 NA
#> SRR1036049     2  0.5923      0.537 0.000 0.684 0.216 NA
#> SRR1036050     1  0.2996      0.735 0.892 0.000 0.044 NA
#> SRR1036051     1  0.2996      0.735 0.892 0.000 0.044 NA
#> SRR1036052     1  0.2996      0.735 0.892 0.000 0.044 NA
#> SRR1036053     1  0.2996      0.735 0.892 0.000 0.044 NA
#> SRR1036054     1  0.2996      0.735 0.892 0.000 0.044 NA
#> SRR1036055     1  0.2739      0.755 0.904 0.000 0.036 NA
#> SRR1036056     1  0.2739      0.755 0.904 0.000 0.036 NA
#> SRR1036057     1  0.2739      0.755 0.904 0.000 0.036 NA
#> SRR1036058     2  0.1677      0.773 0.000 0.948 0.012 NA
#> SRR1036059     2  0.1677      0.773 0.000 0.948 0.012 NA
#> SRR1036060     2  0.1677      0.773 0.000 0.948 0.012 NA
#> SRR1036061     2  0.1677      0.773 0.000 0.948 0.012 NA
#> SRR1036062     2  0.1677      0.773 0.000 0.948 0.012 NA
#> SRR1036063     2  0.1677      0.773 0.000 0.948 0.012 NA
#> SRR1036064     2  0.1677      0.773 0.000 0.948 0.012 NA
#> SRR1036065     2  0.1677      0.773 0.000 0.948 0.012 NA
#> SRR1036066     1  0.7569      0.610 0.612 0.056 0.204 NA
#> SRR1036067     1  0.7569      0.610 0.612 0.056 0.204 NA
#> SRR1036068     1  0.7569      0.610 0.612 0.056 0.204 NA
#> SRR1036069     1  0.7569      0.610 0.612 0.056 0.204 NA
#> SRR1036070     1  0.7569      0.610 0.612 0.056 0.204 NA
#> SRR1036071     1  0.7569      0.610 0.612 0.056 0.204 NA
#> SRR1036072     1  0.7569      0.610 0.612 0.056 0.204 NA
#> SRR1036073     1  0.7569      0.610 0.612 0.056 0.204 NA
#> SRR1036074     2  0.5125      0.596 0.000 0.604 0.008 NA
#> SRR1036075     2  0.5125      0.596 0.000 0.604 0.008 NA
#> SRR1036076     2  0.5125      0.596 0.000 0.604 0.008 NA
#> SRR1036077     2  0.5125      0.596 0.000 0.604 0.008 NA
#> SRR1036078     2  0.5125      0.596 0.000 0.604 0.008 NA
#> SRR1036079     2  0.5125      0.596 0.000 0.604 0.008 NA
#> SRR1036080     2  0.5125      0.596 0.000 0.604 0.008 NA
#> SRR1036081     2  0.5125      0.596 0.000 0.604 0.008 NA
#> SRR1036082     2  0.1767      0.772 0.000 0.944 0.012 NA
#> SRR1036083     2  0.1767      0.772 0.000 0.944 0.012 NA
#> SRR1036084     2  0.1767      0.772 0.000 0.944 0.012 NA
#> SRR1036090     2  0.3390      0.756 0.000 0.852 0.016 NA
#> SRR1036091     2  0.3390      0.756 0.000 0.852 0.016 NA
#> SRR1036092     2  0.3390      0.756 0.000 0.852 0.016 NA
#> SRR1036093     2  0.3390      0.756 0.000 0.852 0.016 NA
#> SRR1036094     2  0.3390      0.756 0.000 0.852 0.016 NA
#> SRR1036085     3  0.3850      0.863 0.112 0.032 0.848 NA
#> SRR1036086     3  0.3850      0.863 0.112 0.032 0.848 NA
#> SRR1036087     3  0.3850      0.863 0.112 0.032 0.848 NA
#> SRR1036088     3  0.3850      0.863 0.112 0.032 0.848 NA
#> SRR1036089     3  0.3850      0.863 0.112 0.032 0.848 NA
#> SRR1036095     2  0.4379      0.736 0.000 0.792 0.036 NA
#> SRR1036096     2  0.4379      0.736 0.000 0.792 0.036 NA
#> SRR1036097     2  0.4379      0.736 0.000 0.792 0.036 NA
#> SRR1036098     2  0.4379      0.736 0.000 0.792 0.036 NA
#> SRR1036099     2  0.4379      0.736 0.000 0.792 0.036 NA
#> SRR1036100     2  0.5366      0.593 0.000 0.548 0.012 NA
#> SRR1036101     2  0.5366      0.593 0.000 0.548 0.012 NA
#> SRR1036102     2  0.5366      0.593 0.000 0.548 0.012 NA
#> SRR1036103     2  0.5366      0.593 0.000 0.548 0.012 NA
#> SRR1036104     2  0.5366      0.593 0.000 0.548 0.012 NA
#> SRR1036105     3  0.4011      0.886 0.068 0.084 0.844 NA
#> SRR1036106     3  0.4011      0.886 0.068 0.084 0.844 NA
#> SRR1036107     3  0.4011      0.886 0.068 0.084 0.844 NA
#> SRR1036108     3  0.4011      0.886 0.068 0.084 0.844 NA
#> SRR1036109     3  0.4011      0.886 0.068 0.084 0.844 NA
#> SRR1036110     2  0.2101      0.757 0.000 0.928 0.012 NA
#> SRR1036111     2  0.2101      0.757 0.000 0.928 0.012 NA
#> SRR1036112     2  0.2101      0.757 0.000 0.928 0.012 NA
#> SRR1036113     2  0.2101      0.757 0.000 0.928 0.012 NA
#> SRR1036114     2  0.2101      0.757 0.000 0.928 0.012 NA
#> SRR1036115     1  0.9220      0.411 0.448 0.156 0.148 NA
#> SRR1036116     1  0.9220      0.411 0.448 0.156 0.148 NA
#> SRR1036117     1  0.9220      0.411 0.448 0.156 0.148 NA
#> SRR1036118     1  0.9220      0.411 0.448 0.156 0.148 NA
#> SRR1036119     1  0.9220      0.411 0.448 0.156 0.148 NA
#> SRR1036120     1  0.5540      0.619 0.728 0.000 0.164 NA
#> SRR1036121     1  0.5540      0.619 0.728 0.000 0.164 NA
#> SRR1036122     1  0.5540      0.619 0.728 0.000 0.164 NA
#> SRR1036123     1  0.5540      0.619 0.728 0.000 0.164 NA
#> SRR1036124     1  0.5540      0.619 0.728 0.000 0.164 NA
#> SRR1036125     1  0.0927      0.763 0.976 0.000 0.008 NA
#> SRR1036126     1  0.0927      0.763 0.976 0.000 0.008 NA
#> SRR1036127     1  0.0927      0.763 0.976 0.000 0.008 NA
#> SRR1036128     1  0.0927      0.763 0.976 0.000 0.008 NA
#> SRR1036129     1  0.0927      0.763 0.976 0.000 0.008 NA
#> SRR1036130     1  0.0927      0.763 0.976 0.000 0.008 NA
#> SRR1036131     1  0.0927      0.763 0.976 0.000 0.008 NA
#> SRR1036132     1  0.0927      0.763 0.976 0.000 0.008 NA
#> SRR1036133     2  0.6111      0.639 0.000 0.652 0.092 NA
#> SRR1036134     2  0.6111      0.639 0.000 0.652 0.092 NA
#> SRR1036135     2  0.6111      0.639 0.000 0.652 0.092 NA
#> SRR1036136     2  0.6111      0.639 0.000 0.652 0.092 NA
#> SRR1036137     2  0.6111      0.639 0.000 0.652 0.092 NA
#> SRR1036138     2  0.2662      0.768 0.000 0.900 0.016 NA
#> SRR1036139     2  0.2662      0.768 0.000 0.900 0.016 NA
#> SRR1036140     2  0.2662      0.768 0.000 0.900 0.016 NA
#> SRR1036141     2  0.2662      0.768 0.000 0.900 0.016 NA
#> SRR1036142     2  0.2662      0.768 0.000 0.900 0.016 NA
#> SRR1036143     2  0.2662      0.768 0.000 0.900 0.016 NA
#> SRR1036144     2  0.2662      0.768 0.000 0.900 0.016 NA
#> SRR1036145     2  0.2662      0.768 0.000 0.900 0.016 NA

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1036002     3  0.3634      0.908 0.052 0.024 0.860 0.048 0.016
#> SRR1036003     3  0.3634      0.908 0.052 0.024 0.860 0.048 0.016
#> SRR1036004     3  0.3634      0.908 0.052 0.024 0.860 0.048 0.016
#> SRR1036005     3  0.4224      0.865 0.000 0.024 0.796 0.136 0.044
#> SRR1036006     3  0.4224      0.865 0.000 0.024 0.796 0.136 0.044
#> SRR1036007     3  0.4224      0.865 0.000 0.024 0.796 0.136 0.044
#> SRR1036008     3  0.4224      0.865 0.000 0.024 0.796 0.136 0.044
#> SRR1036009     3  0.4224      0.865 0.000 0.024 0.796 0.136 0.044
#> SRR1036013     4  0.1012      0.667 0.000 0.020 0.000 0.968 0.012
#> SRR1036014     4  0.1012      0.667 0.000 0.020 0.000 0.968 0.012
#> SRR1036015     4  0.1012      0.667 0.000 0.020 0.000 0.968 0.012
#> SRR1036016     4  0.1012      0.667 0.000 0.020 0.000 0.968 0.012
#> SRR1036017     4  0.1012      0.667 0.000 0.020 0.000 0.968 0.012
#> SRR1036018     4  0.1012      0.667 0.000 0.020 0.000 0.968 0.012
#> SRR1036010     1  0.2026      0.744 0.924 0.008 0.012 0.000 0.056
#> SRR1036011     1  0.2026      0.744 0.924 0.008 0.012 0.000 0.056
#> SRR1036012     1  0.2026      0.744 0.924 0.008 0.012 0.000 0.056
#> SRR1036019     2  0.5801      0.804 0.000 0.556 0.036 0.372 0.036
#> SRR1036020     2  0.5862      0.804 0.000 0.552 0.032 0.372 0.044
#> SRR1036021     2  0.5801      0.804 0.000 0.556 0.036 0.372 0.036
#> SRR1036022     2  0.5862      0.804 0.000 0.552 0.032 0.372 0.044
#> SRR1036023     2  0.5801      0.804 0.000 0.556 0.036 0.372 0.036
#> SRR1036024     4  0.0671      0.665 0.000 0.016 0.000 0.980 0.004
#> SRR1036025     4  0.0671      0.665 0.000 0.016 0.000 0.980 0.004
#> SRR1036026     4  0.0671      0.665 0.000 0.016 0.000 0.980 0.004
#> SRR1036027     4  0.0671      0.665 0.000 0.016 0.000 0.980 0.004
#> SRR1036028     4  0.0671      0.665 0.000 0.016 0.000 0.980 0.004
#> SRR1036029     4  0.0671      0.665 0.000 0.016 0.000 0.980 0.004
#> SRR1036030     5  0.6508      0.537 0.032 0.032 0.032 0.432 0.472
#> SRR1036031     5  0.6508      0.537 0.032 0.032 0.032 0.432 0.472
#> SRR1036032     5  0.6508      0.537 0.032 0.032 0.032 0.432 0.472
#> SRR1036033     5  0.6508      0.537 0.032 0.032 0.032 0.432 0.472
#> SRR1036034     5  0.6508      0.537 0.032 0.032 0.032 0.432 0.472
#> SRR1036035     5  0.6508      0.537 0.032 0.032 0.032 0.432 0.472
#> SRR1036036     5  0.6508      0.537 0.032 0.032 0.032 0.432 0.472
#> SRR1036037     5  0.6508      0.537 0.032 0.032 0.032 0.432 0.472
#> SRR1036038     1  0.6311      0.591 0.640 0.048 0.108 0.004 0.200
#> SRR1036039     1  0.6311      0.591 0.640 0.048 0.108 0.004 0.200
#> SRR1036040     1  0.6311      0.591 0.640 0.048 0.108 0.004 0.200
#> SRR1036041     1  0.2732      0.724 0.884 0.020 0.008 0.000 0.088
#> SRR1036042     4  0.6303      0.412 0.000 0.156 0.116 0.652 0.076
#> SRR1036043     4  0.6303      0.412 0.000 0.156 0.116 0.652 0.076
#> SRR1036044     4  0.6303      0.412 0.000 0.156 0.116 0.652 0.076
#> SRR1036045     4  0.6303      0.412 0.000 0.156 0.116 0.652 0.076
#> SRR1036046     4  0.6303      0.412 0.000 0.156 0.116 0.652 0.076
#> SRR1036047     4  0.6303      0.412 0.000 0.156 0.116 0.652 0.076
#> SRR1036048     4  0.6303      0.412 0.000 0.156 0.116 0.652 0.076
#> SRR1036049     4  0.6303      0.412 0.000 0.156 0.116 0.652 0.076
#> SRR1036050     1  0.3209      0.731 0.864 0.032 0.016 0.000 0.088
#> SRR1036051     1  0.3209      0.731 0.864 0.032 0.016 0.000 0.088
#> SRR1036052     1  0.3209      0.731 0.864 0.032 0.016 0.000 0.088
#> SRR1036053     1  0.3209      0.731 0.864 0.032 0.016 0.000 0.088
#> SRR1036054     1  0.3209      0.731 0.864 0.032 0.016 0.000 0.088
#> SRR1036055     1  0.3760      0.706 0.828 0.044 0.016 0.000 0.112
#> SRR1036056     1  0.3760      0.706 0.828 0.044 0.016 0.000 0.112
#> SRR1036057     1  0.3760      0.706 0.828 0.044 0.016 0.000 0.112
#> SRR1036058     4  0.2522      0.625 0.000 0.076 0.004 0.896 0.024
#> SRR1036059     4  0.2522      0.625 0.000 0.076 0.004 0.896 0.024
#> SRR1036060     4  0.2522      0.625 0.000 0.076 0.004 0.896 0.024
#> SRR1036061     4  0.2522      0.625 0.000 0.076 0.004 0.896 0.024
#> SRR1036062     4  0.2522      0.625 0.000 0.076 0.004 0.896 0.024
#> SRR1036063     4  0.2522      0.625 0.000 0.076 0.004 0.896 0.024
#> SRR1036064     4  0.2522      0.625 0.000 0.076 0.004 0.896 0.024
#> SRR1036065     4  0.2522      0.625 0.000 0.076 0.004 0.896 0.024
#> SRR1036066     1  0.8415      0.414 0.444 0.056 0.196 0.060 0.244
#> SRR1036067     1  0.8415      0.414 0.444 0.056 0.196 0.060 0.244
#> SRR1036068     1  0.8415      0.414 0.444 0.056 0.196 0.060 0.244
#> SRR1036069     1  0.8415      0.414 0.444 0.056 0.196 0.060 0.244
#> SRR1036070     1  0.8415      0.414 0.444 0.056 0.196 0.060 0.244
#> SRR1036071     1  0.8415      0.414 0.444 0.056 0.196 0.060 0.244
#> SRR1036072     1  0.8415      0.414 0.444 0.056 0.196 0.060 0.244
#> SRR1036073     1  0.8415      0.414 0.444 0.056 0.196 0.060 0.244
#> SRR1036074     2  0.4692      0.872 0.000 0.528 0.004 0.460 0.008
#> SRR1036075     2  0.4692      0.872 0.000 0.528 0.004 0.460 0.008
#> SRR1036076     2  0.4692      0.872 0.000 0.528 0.004 0.460 0.008
#> SRR1036077     2  0.4692      0.872 0.000 0.528 0.004 0.460 0.008
#> SRR1036078     2  0.4692      0.872 0.000 0.528 0.004 0.460 0.008
#> SRR1036079     2  0.4692      0.872 0.000 0.528 0.004 0.460 0.008
#> SRR1036080     2  0.4692      0.872 0.000 0.528 0.004 0.460 0.008
#> SRR1036081     2  0.4692      0.872 0.000 0.528 0.004 0.460 0.008
#> SRR1036082     4  0.3426      0.644 0.000 0.084 0.012 0.852 0.052
#> SRR1036083     4  0.3426      0.644 0.000 0.084 0.012 0.852 0.052
#> SRR1036084     4  0.3426      0.644 0.000 0.084 0.012 0.852 0.052
#> SRR1036090     4  0.4361      0.549 0.000 0.124 0.000 0.768 0.108
#> SRR1036091     4  0.4361      0.549 0.000 0.124 0.000 0.768 0.108
#> SRR1036092     4  0.4361      0.549 0.000 0.124 0.000 0.768 0.108
#> SRR1036093     4  0.4361      0.549 0.000 0.124 0.000 0.768 0.108
#> SRR1036094     4  0.4361      0.549 0.000 0.124 0.000 0.768 0.108
#> SRR1036085     3  0.3651      0.902 0.056 0.020 0.860 0.040 0.024
#> SRR1036086     3  0.3651      0.902 0.056 0.020 0.860 0.040 0.024
#> SRR1036087     3  0.3651      0.902 0.056 0.020 0.860 0.040 0.024
#> SRR1036088     3  0.3651      0.902 0.056 0.020 0.860 0.040 0.024
#> SRR1036089     3  0.3651      0.902 0.056 0.020 0.860 0.040 0.024
#> SRR1036095     4  0.5493      0.431 0.000 0.124 0.008 0.672 0.196
#> SRR1036096     4  0.5493      0.431 0.000 0.124 0.008 0.672 0.196
#> SRR1036097     4  0.5493      0.431 0.000 0.124 0.008 0.672 0.196
#> SRR1036098     4  0.5493      0.431 0.000 0.124 0.008 0.672 0.196
#> SRR1036099     4  0.5493      0.431 0.000 0.124 0.008 0.672 0.196
#> SRR1036100     2  0.6050      0.819 0.000 0.496 0.020 0.416 0.068
#> SRR1036101     2  0.6050      0.819 0.000 0.496 0.020 0.416 0.068
#> SRR1036102     2  0.6050      0.819 0.000 0.496 0.020 0.416 0.068
#> SRR1036103     2  0.6050      0.819 0.000 0.496 0.020 0.416 0.068
#> SRR1036104     2  0.6050      0.819 0.000 0.496 0.020 0.416 0.068
#> SRR1036105     3  0.2894      0.920 0.036 0.004 0.876 0.084 0.000
#> SRR1036106     3  0.2894      0.920 0.036 0.004 0.876 0.084 0.000
#> SRR1036107     3  0.2894      0.920 0.036 0.004 0.876 0.084 0.000
#> SRR1036108     3  0.2894      0.920 0.036 0.004 0.876 0.084 0.000
#> SRR1036109     3  0.2894      0.920 0.036 0.004 0.876 0.084 0.000
#> SRR1036110     4  0.3814      0.579 0.000 0.116 0.004 0.816 0.064
#> SRR1036111     4  0.3814      0.579 0.000 0.116 0.004 0.816 0.064
#> SRR1036112     4  0.3814      0.579 0.000 0.116 0.004 0.816 0.064
#> SRR1036113     4  0.3814      0.579 0.000 0.116 0.004 0.816 0.064
#> SRR1036114     4  0.3814      0.579 0.000 0.116 0.004 0.816 0.064
#> SRR1036115     5  0.7662      0.210 0.348 0.036 0.064 0.088 0.464
#> SRR1036116     5  0.7662      0.210 0.348 0.036 0.064 0.088 0.464
#> SRR1036117     5  0.7662      0.210 0.348 0.036 0.064 0.088 0.464
#> SRR1036118     5  0.7662      0.210 0.348 0.036 0.064 0.088 0.464
#> SRR1036119     5  0.7662      0.210 0.348 0.036 0.064 0.088 0.464
#> SRR1036120     1  0.5969      0.624 0.680 0.060 0.140 0.000 0.120
#> SRR1036121     1  0.5969      0.624 0.680 0.060 0.140 0.000 0.120
#> SRR1036122     1  0.5969      0.624 0.680 0.060 0.140 0.000 0.120
#> SRR1036123     1  0.5969      0.624 0.680 0.060 0.140 0.000 0.120
#> SRR1036124     1  0.5969      0.624 0.680 0.060 0.140 0.000 0.120
#> SRR1036125     1  0.1059      0.745 0.968 0.008 0.004 0.000 0.020
#> SRR1036126     1  0.1059      0.745 0.968 0.008 0.004 0.000 0.020
#> SRR1036127     1  0.1059      0.745 0.968 0.008 0.004 0.000 0.020
#> SRR1036128     1  0.1059      0.745 0.968 0.008 0.004 0.000 0.020
#> SRR1036129     1  0.1059      0.745 0.968 0.008 0.004 0.000 0.020
#> SRR1036130     1  0.1059      0.745 0.968 0.008 0.004 0.000 0.020
#> SRR1036131     1  0.1059      0.745 0.968 0.008 0.004 0.000 0.020
#> SRR1036132     1  0.1059      0.745 0.968 0.008 0.004 0.000 0.020
#> SRR1036133     4  0.5862     -0.161 0.000 0.076 0.008 0.512 0.404
#> SRR1036134     4  0.5862     -0.161 0.000 0.076 0.008 0.512 0.404
#> SRR1036135     4  0.5862     -0.161 0.000 0.076 0.008 0.512 0.404
#> SRR1036136     4  0.5862     -0.161 0.000 0.076 0.008 0.512 0.404
#> SRR1036137     4  0.5862     -0.161 0.000 0.076 0.008 0.512 0.404
#> SRR1036138     4  0.3759      0.639 0.000 0.092 0.000 0.816 0.092
#> SRR1036139     4  0.3759      0.639 0.000 0.092 0.000 0.816 0.092
#> SRR1036140     4  0.3759      0.639 0.000 0.092 0.000 0.816 0.092
#> SRR1036141     4  0.3759      0.639 0.000 0.092 0.000 0.816 0.092
#> SRR1036142     4  0.3759      0.639 0.000 0.092 0.000 0.816 0.092
#> SRR1036143     4  0.3759      0.639 0.000 0.092 0.000 0.816 0.092
#> SRR1036144     4  0.3759      0.639 0.000 0.092 0.000 0.816 0.092
#> SRR1036145     4  0.3759      0.639 0.000 0.092 0.000 0.816 0.092

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1036002     3   0.322      0.919 0.056 0.032 0.868 0.016 0.020 0.008
#> SRR1036003     3   0.322      0.919 0.056 0.032 0.868 0.016 0.020 0.008
#> SRR1036004     3   0.322      0.919 0.056 0.032 0.868 0.016 0.020 0.008
#> SRR1036005     3   0.355      0.883 0.004 0.028 0.848 0.064 0.036 0.020
#> SRR1036006     3   0.355      0.883 0.004 0.028 0.848 0.064 0.036 0.020
#> SRR1036007     3   0.355      0.883 0.004 0.028 0.848 0.064 0.036 0.020
#> SRR1036008     3   0.355      0.883 0.004 0.028 0.848 0.064 0.036 0.020
#> SRR1036009     3   0.355      0.883 0.004 0.028 0.848 0.064 0.036 0.020
#> SRR1036013     4   0.201      0.667 0.004 0.032 0.008 0.928 0.016 0.012
#> SRR1036014     4   0.201      0.667 0.004 0.032 0.008 0.928 0.016 0.012
#> SRR1036015     4   0.201      0.667 0.004 0.032 0.008 0.928 0.016 0.012
#> SRR1036016     4   0.201      0.667 0.004 0.032 0.008 0.928 0.016 0.012
#> SRR1036017     4   0.201      0.667 0.004 0.032 0.008 0.928 0.016 0.012
#> SRR1036018     4   0.201      0.667 0.004 0.032 0.008 0.928 0.016 0.012
#> SRR1036010     6   0.433      0.580 0.440 0.004 0.004 0.000 0.008 0.544
#> SRR1036011     6   0.433      0.580 0.440 0.004 0.004 0.000 0.008 0.544
#> SRR1036012     6   0.433      0.580 0.440 0.004 0.004 0.000 0.008 0.544
#> SRR1036019     5   0.581      0.800 0.008 0.056 0.004 0.332 0.560 0.040
#> SRR1036020     5   0.582      0.800 0.008 0.052 0.004 0.332 0.560 0.044
#> SRR1036021     5   0.581      0.800 0.008 0.056 0.004 0.332 0.560 0.040
#> SRR1036022     5   0.582      0.800 0.008 0.052 0.004 0.332 0.560 0.044
#> SRR1036023     5   0.581      0.800 0.008 0.056 0.004 0.332 0.560 0.040
#> SRR1036024     4   0.115      0.656 0.004 0.016 0.000 0.960 0.020 0.000
#> SRR1036025     4   0.115      0.656 0.004 0.016 0.000 0.960 0.020 0.000
#> SRR1036026     4   0.115      0.656 0.004 0.016 0.000 0.960 0.020 0.000
#> SRR1036027     4   0.115      0.656 0.004 0.016 0.000 0.960 0.020 0.000
#> SRR1036028     4   0.115      0.656 0.004 0.016 0.000 0.960 0.020 0.000
#> SRR1036029     4   0.115      0.656 0.004 0.016 0.000 0.960 0.020 0.000
#> SRR1036030     2   0.621      0.894 0.128 0.540 0.020 0.292 0.020 0.000
#> SRR1036031     2   0.621      0.894 0.128 0.540 0.020 0.292 0.020 0.000
#> SRR1036032     2   0.621      0.894 0.128 0.540 0.020 0.292 0.020 0.000
#> SRR1036033     2   0.621      0.894 0.128 0.540 0.020 0.292 0.020 0.000
#> SRR1036034     2   0.621      0.894 0.128 0.540 0.020 0.292 0.020 0.000
#> SRR1036035     2   0.621      0.894 0.128 0.540 0.020 0.292 0.020 0.000
#> SRR1036036     2   0.621      0.894 0.128 0.540 0.020 0.292 0.020 0.000
#> SRR1036037     2   0.621      0.894 0.128 0.540 0.020 0.292 0.020 0.000
#> SRR1036038     1   0.395      0.391 0.804 0.024 0.052 0.004 0.004 0.112
#> SRR1036039     1   0.395      0.391 0.804 0.024 0.052 0.004 0.004 0.112
#> SRR1036040     1   0.395      0.391 0.804 0.024 0.052 0.004 0.004 0.112
#> SRR1036041     1   0.460     -0.158 0.608 0.012 0.004 0.000 0.020 0.356
#> SRR1036042     4   0.705      0.426 0.020 0.068 0.136 0.592 0.132 0.052
#> SRR1036043     4   0.705      0.426 0.020 0.068 0.136 0.592 0.132 0.052
#> SRR1036044     4   0.705      0.426 0.020 0.068 0.136 0.592 0.132 0.052
#> SRR1036045     4   0.705      0.426 0.020 0.068 0.136 0.592 0.132 0.052
#> SRR1036046     4   0.705      0.426 0.020 0.068 0.136 0.592 0.132 0.052
#> SRR1036047     4   0.705      0.426 0.020 0.068 0.136 0.592 0.132 0.052
#> SRR1036048     4   0.705      0.426 0.020 0.068 0.136 0.592 0.132 0.052
#> SRR1036049     4   0.705      0.426 0.020 0.068 0.136 0.592 0.132 0.052
#> SRR1036050     6   0.355      0.745 0.332 0.000 0.000 0.000 0.000 0.668
#> SRR1036051     6   0.355      0.745 0.332 0.000 0.000 0.000 0.000 0.668
#> SRR1036052     6   0.355      0.745 0.332 0.000 0.000 0.000 0.000 0.668
#> SRR1036053     6   0.355      0.745 0.332 0.000 0.000 0.000 0.000 0.668
#> SRR1036054     6   0.355      0.745 0.332 0.000 0.000 0.000 0.000 0.668
#> SRR1036055     1   0.406      0.182 0.720 0.012 0.012 0.000 0.008 0.248
#> SRR1036056     1   0.406      0.182 0.720 0.012 0.012 0.000 0.008 0.248
#> SRR1036057     1   0.406      0.182 0.720 0.012 0.012 0.000 0.008 0.248
#> SRR1036058     4   0.324      0.617 0.004 0.056 0.000 0.852 0.068 0.020
#> SRR1036059     4   0.324      0.617 0.004 0.056 0.000 0.852 0.068 0.020
#> SRR1036060     4   0.324      0.617 0.004 0.056 0.000 0.852 0.068 0.020
#> SRR1036061     4   0.324      0.617 0.004 0.056 0.000 0.852 0.068 0.020
#> SRR1036062     4   0.324      0.617 0.004 0.056 0.000 0.852 0.068 0.020
#> SRR1036063     4   0.324      0.617 0.004 0.056 0.000 0.852 0.068 0.020
#> SRR1036064     4   0.324      0.617 0.004 0.056 0.000 0.852 0.068 0.020
#> SRR1036065     4   0.324      0.617 0.004 0.056 0.000 0.852 0.068 0.020
#> SRR1036066     1   0.364      0.459 0.832 0.072 0.068 0.016 0.004 0.008
#> SRR1036067     1   0.364      0.459 0.832 0.072 0.068 0.016 0.004 0.008
#> SRR1036068     1   0.364      0.459 0.832 0.072 0.068 0.016 0.004 0.008
#> SRR1036069     1   0.364      0.459 0.832 0.072 0.068 0.016 0.004 0.008
#> SRR1036070     1   0.364      0.459 0.832 0.072 0.068 0.016 0.004 0.008
#> SRR1036071     1   0.364      0.459 0.832 0.072 0.068 0.016 0.004 0.008
#> SRR1036072     1   0.364      0.459 0.832 0.072 0.068 0.016 0.004 0.008
#> SRR1036073     1   0.364      0.459 0.832 0.072 0.068 0.016 0.004 0.008
#> SRR1036074     5   0.395      0.857 0.000 0.000 0.000 0.432 0.564 0.004
#> SRR1036075     5   0.395      0.857 0.000 0.000 0.000 0.432 0.564 0.004
#> SRR1036076     5   0.395      0.857 0.000 0.000 0.000 0.432 0.564 0.004
#> SRR1036077     5   0.395      0.857 0.000 0.000 0.000 0.432 0.564 0.004
#> SRR1036078     5   0.395      0.857 0.000 0.000 0.000 0.432 0.564 0.004
#> SRR1036079     5   0.395      0.857 0.000 0.000 0.000 0.432 0.564 0.004
#> SRR1036080     5   0.395      0.857 0.000 0.000 0.000 0.432 0.564 0.004
#> SRR1036081     5   0.395      0.857 0.000 0.000 0.000 0.432 0.564 0.004
#> SRR1036082     4   0.418      0.631 0.016 0.040 0.016 0.816 0.056 0.056
#> SRR1036083     4   0.418      0.631 0.016 0.040 0.016 0.816 0.056 0.056
#> SRR1036084     4   0.418      0.631 0.016 0.040 0.016 0.816 0.056 0.056
#> SRR1036090     4   0.459      0.528 0.004 0.172 0.004 0.724 0.092 0.004
#> SRR1036091     4   0.459      0.528 0.004 0.172 0.004 0.724 0.092 0.004
#> SRR1036092     4   0.459      0.528 0.004 0.172 0.004 0.724 0.092 0.004
#> SRR1036093     4   0.459      0.528 0.004 0.172 0.004 0.724 0.092 0.004
#> SRR1036094     4   0.459      0.528 0.004 0.172 0.004 0.724 0.092 0.004
#> SRR1036085     3   0.249      0.918 0.068 0.028 0.892 0.008 0.004 0.000
#> SRR1036086     3   0.249      0.918 0.068 0.028 0.892 0.008 0.004 0.000
#> SRR1036087     3   0.249      0.918 0.068 0.028 0.892 0.008 0.004 0.000
#> SRR1036088     3   0.249      0.918 0.068 0.028 0.892 0.008 0.004 0.000
#> SRR1036089     3   0.249      0.918 0.068 0.028 0.892 0.008 0.004 0.000
#> SRR1036095     4   0.586      0.291 0.012 0.256 0.000 0.596 0.108 0.028
#> SRR1036096     4   0.586      0.291 0.012 0.256 0.000 0.596 0.108 0.028
#> SRR1036097     4   0.586      0.291 0.012 0.256 0.000 0.596 0.108 0.028
#> SRR1036098     4   0.586      0.291 0.012 0.256 0.000 0.596 0.108 0.028
#> SRR1036099     4   0.586      0.291 0.012 0.256 0.000 0.596 0.108 0.028
#> SRR1036100     5   0.625      0.792 0.012 0.084 0.028 0.388 0.480 0.008
#> SRR1036101     5   0.625      0.792 0.012 0.084 0.028 0.388 0.480 0.008
#> SRR1036102     5   0.625      0.792 0.012 0.084 0.028 0.388 0.480 0.008
#> SRR1036103     5   0.625      0.792 0.012 0.084 0.028 0.388 0.480 0.008
#> SRR1036104     5   0.625      0.792 0.012 0.084 0.028 0.388 0.480 0.008
#> SRR1036105     3   0.172      0.932 0.036 0.000 0.932 0.028 0.000 0.004
#> SRR1036106     3   0.172      0.932 0.036 0.000 0.932 0.028 0.000 0.004
#> SRR1036107     3   0.172      0.932 0.036 0.000 0.932 0.028 0.000 0.004
#> SRR1036108     3   0.172      0.932 0.036 0.000 0.932 0.028 0.000 0.004
#> SRR1036109     3   0.172      0.932 0.036 0.000 0.932 0.028 0.000 0.004
#> SRR1036110     4   0.494      0.576 0.016 0.064 0.024 0.768 0.072 0.056
#> SRR1036111     4   0.494      0.576 0.016 0.064 0.024 0.768 0.072 0.056
#> SRR1036112     4   0.494      0.576 0.016 0.064 0.024 0.768 0.072 0.056
#> SRR1036113     4   0.494      0.576 0.016 0.064 0.024 0.768 0.072 0.056
#> SRR1036114     4   0.494      0.576 0.016 0.064 0.024 0.768 0.072 0.056
#> SRR1036115     1   0.617      0.239 0.504 0.384 0.024 0.028 0.016 0.044
#> SRR1036116     1   0.617      0.239 0.504 0.384 0.024 0.028 0.016 0.044
#> SRR1036117     1   0.617      0.239 0.504 0.384 0.024 0.028 0.016 0.044
#> SRR1036118     1   0.617      0.239 0.504 0.384 0.024 0.028 0.016 0.044
#> SRR1036119     1   0.617      0.239 0.504 0.384 0.024 0.028 0.016 0.044
#> SRR1036120     6   0.595      0.695 0.216 0.028 0.088 0.000 0.040 0.628
#> SRR1036121     6   0.595      0.695 0.216 0.028 0.088 0.000 0.040 0.628
#> SRR1036122     6   0.595      0.695 0.216 0.028 0.088 0.000 0.040 0.628
#> SRR1036123     6   0.595      0.695 0.216 0.028 0.088 0.000 0.040 0.628
#> SRR1036124     6   0.595      0.695 0.216 0.028 0.088 0.000 0.040 0.628
#> SRR1036125     1   0.538     -0.362 0.468 0.040 0.004 0.000 0.028 0.460
#> SRR1036126     1   0.538     -0.362 0.468 0.040 0.004 0.000 0.028 0.460
#> SRR1036127     1   0.538     -0.362 0.468 0.040 0.004 0.000 0.028 0.460
#> SRR1036128     1   0.538     -0.362 0.468 0.040 0.004 0.000 0.028 0.460
#> SRR1036129     1   0.538     -0.362 0.468 0.040 0.004 0.000 0.028 0.460
#> SRR1036130     1   0.538     -0.362 0.468 0.040 0.004 0.000 0.028 0.460
#> SRR1036131     1   0.538     -0.362 0.468 0.040 0.004 0.000 0.028 0.460
#> SRR1036132     1   0.538     -0.362 0.468 0.040 0.004 0.000 0.028 0.460
#> SRR1036133     2   0.655      0.813 0.072 0.512 0.004 0.332 0.052 0.028
#> SRR1036134     2   0.655      0.813 0.072 0.512 0.004 0.332 0.052 0.028
#> SRR1036135     2   0.655      0.813 0.072 0.512 0.004 0.332 0.052 0.028
#> SRR1036136     2   0.655      0.813 0.072 0.512 0.004 0.332 0.052 0.028
#> SRR1036137     2   0.655      0.813 0.072 0.512 0.004 0.332 0.052 0.028
#> SRR1036138     4   0.460      0.607 0.016 0.132 0.012 0.768 0.048 0.024
#> SRR1036139     4   0.460      0.607 0.016 0.132 0.012 0.768 0.048 0.024
#> SRR1036140     4   0.460      0.607 0.016 0.132 0.012 0.768 0.048 0.024
#> SRR1036141     4   0.460      0.607 0.016 0.132 0.012 0.768 0.048 0.024
#> SRR1036142     4   0.460      0.607 0.016 0.132 0.012 0.768 0.048 0.024
#> SRR1036143     4   0.460      0.607 0.016 0.132 0.012 0.768 0.048 0.024
#> SRR1036144     4   0.460      0.607 0.016 0.132 0.012 0.768 0.048 0.024
#> SRR1036145     4   0.460      0.607 0.016 0.132 0.012 0.768 0.048 0.024

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15218 rows and 144 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.960       0.985         0.4811 0.513   0.513
#> 3 3 0.894           0.893       0.947         0.2183 0.837   0.700
#> 4 4 0.785           0.908       0.930         0.1545 0.929   0.831
#> 5 5 0.743           0.799       0.857         0.1198 0.874   0.641
#> 6 6 0.794           0.784       0.836         0.0519 0.950   0.803

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1036002     1  0.0000      0.962 1.000 0.000
#> SRR1036003     1  0.0000      0.962 1.000 0.000
#> SRR1036004     1  0.0000      0.962 1.000 0.000
#> SRR1036005     1  0.9881      0.281 0.564 0.436
#> SRR1036006     1  0.9881      0.281 0.564 0.436
#> SRR1036007     1  0.9881      0.281 0.564 0.436
#> SRR1036008     1  0.9881      0.281 0.564 0.436
#> SRR1036009     1  0.9881      0.281 0.564 0.436
#> SRR1036013     2  0.0000      1.000 0.000 1.000
#> SRR1036014     2  0.0000      1.000 0.000 1.000
#> SRR1036015     2  0.0000      1.000 0.000 1.000
#> SRR1036016     2  0.0000      1.000 0.000 1.000
#> SRR1036017     2  0.0000      1.000 0.000 1.000
#> SRR1036018     2  0.0000      1.000 0.000 1.000
#> SRR1036010     1  0.0000      0.962 1.000 0.000
#> SRR1036011     1  0.0000      0.962 1.000 0.000
#> SRR1036012     1  0.0000      0.962 1.000 0.000
#> SRR1036019     2  0.0000      1.000 0.000 1.000
#> SRR1036020     2  0.0000      1.000 0.000 1.000
#> SRR1036021     2  0.0000      1.000 0.000 1.000
#> SRR1036022     2  0.0000      1.000 0.000 1.000
#> SRR1036023     2  0.0000      1.000 0.000 1.000
#> SRR1036024     2  0.0000      1.000 0.000 1.000
#> SRR1036025     2  0.0000      1.000 0.000 1.000
#> SRR1036026     2  0.0000      1.000 0.000 1.000
#> SRR1036027     2  0.0000      1.000 0.000 1.000
#> SRR1036028     2  0.0000      1.000 0.000 1.000
#> SRR1036029     2  0.0000      1.000 0.000 1.000
#> SRR1036030     2  0.0376      0.996 0.004 0.996
#> SRR1036031     2  0.0376      0.996 0.004 0.996
#> SRR1036032     2  0.0376      0.996 0.004 0.996
#> SRR1036033     2  0.0376      0.996 0.004 0.996
#> SRR1036034     2  0.0376      0.996 0.004 0.996
#> SRR1036035     2  0.0376      0.996 0.004 0.996
#> SRR1036036     2  0.0376      0.996 0.004 0.996
#> SRR1036037     2  0.0376      0.996 0.004 0.996
#> SRR1036038     1  0.0000      0.962 1.000 0.000
#> SRR1036039     1  0.0000      0.962 1.000 0.000
#> SRR1036040     1  0.0000      0.962 1.000 0.000
#> SRR1036041     1  0.0000      0.962 1.000 0.000
#> SRR1036042     2  0.0000      1.000 0.000 1.000
#> SRR1036043     2  0.0000      1.000 0.000 1.000
#> SRR1036044     2  0.0000      1.000 0.000 1.000
#> SRR1036045     2  0.0000      1.000 0.000 1.000
#> SRR1036046     2  0.0000      1.000 0.000 1.000
#> SRR1036047     2  0.0000      1.000 0.000 1.000
#> SRR1036048     2  0.0000      1.000 0.000 1.000
#> SRR1036049     2  0.0000      1.000 0.000 1.000
#> SRR1036050     1  0.0000      0.962 1.000 0.000
#> SRR1036051     1  0.0000      0.962 1.000 0.000
#> SRR1036052     1  0.0000      0.962 1.000 0.000
#> SRR1036053     1  0.0000      0.962 1.000 0.000
#> SRR1036054     1  0.0000      0.962 1.000 0.000
#> SRR1036055     1  0.0000      0.962 1.000 0.000
#> SRR1036056     1  0.0000      0.962 1.000 0.000
#> SRR1036057     1  0.0000      0.962 1.000 0.000
#> SRR1036058     2  0.0000      1.000 0.000 1.000
#> SRR1036059     2  0.0000      1.000 0.000 1.000
#> SRR1036060     2  0.0000      1.000 0.000 1.000
#> SRR1036061     2  0.0000      1.000 0.000 1.000
#> SRR1036062     2  0.0000      1.000 0.000 1.000
#> SRR1036063     2  0.0000      1.000 0.000 1.000
#> SRR1036064     2  0.0000      1.000 0.000 1.000
#> SRR1036065     2  0.0000      1.000 0.000 1.000
#> SRR1036066     1  0.0000      0.962 1.000 0.000
#> SRR1036067     1  0.0000      0.962 1.000 0.000
#> SRR1036068     1  0.0000      0.962 1.000 0.000
#> SRR1036069     1  0.0000      0.962 1.000 0.000
#> SRR1036070     1  0.0000      0.962 1.000 0.000
#> SRR1036071     1  0.0000      0.962 1.000 0.000
#> SRR1036072     1  0.0000      0.962 1.000 0.000
#> SRR1036073     1  0.0000      0.962 1.000 0.000
#> SRR1036074     2  0.0000      1.000 0.000 1.000
#> SRR1036075     2  0.0000      1.000 0.000 1.000
#> SRR1036076     2  0.0000      1.000 0.000 1.000
#> SRR1036077     2  0.0000      1.000 0.000 1.000
#> SRR1036078     2  0.0000      1.000 0.000 1.000
#> SRR1036079     2  0.0000      1.000 0.000 1.000
#> SRR1036080     2  0.0000      1.000 0.000 1.000
#> SRR1036081     2  0.0000      1.000 0.000 1.000
#> SRR1036082     2  0.0000      1.000 0.000 1.000
#> SRR1036083     2  0.0000      1.000 0.000 1.000
#> SRR1036084     2  0.0000      1.000 0.000 1.000
#> SRR1036090     2  0.0000      1.000 0.000 1.000
#> SRR1036091     2  0.0000      1.000 0.000 1.000
#> SRR1036092     2  0.0000      1.000 0.000 1.000
#> SRR1036093     2  0.0000      1.000 0.000 1.000
#> SRR1036094     2  0.0000      1.000 0.000 1.000
#> SRR1036085     1  0.0000      0.962 1.000 0.000
#> SRR1036086     1  0.0000      0.962 1.000 0.000
#> SRR1036087     1  0.0000      0.962 1.000 0.000
#> SRR1036088     1  0.0000      0.962 1.000 0.000
#> SRR1036089     1  0.0000      0.962 1.000 0.000
#> SRR1036095     2  0.0000      1.000 0.000 1.000
#> SRR1036096     2  0.0000      1.000 0.000 1.000
#> SRR1036097     2  0.0000      1.000 0.000 1.000
#> SRR1036098     2  0.0000      1.000 0.000 1.000
#> SRR1036099     2  0.0000      1.000 0.000 1.000
#> SRR1036100     2  0.0000      1.000 0.000 1.000
#> SRR1036101     2  0.0000      1.000 0.000 1.000
#> SRR1036102     2  0.0000      1.000 0.000 1.000
#> SRR1036103     2  0.0000      1.000 0.000 1.000
#> SRR1036104     2  0.0000      1.000 0.000 1.000
#> SRR1036105     1  0.0000      0.962 1.000 0.000
#> SRR1036106     1  0.0000      0.962 1.000 0.000
#> SRR1036107     1  0.0000      0.962 1.000 0.000
#> SRR1036108     1  0.0000      0.962 1.000 0.000
#> SRR1036109     1  0.0000      0.962 1.000 0.000
#> SRR1036110     2  0.0000      1.000 0.000 1.000
#> SRR1036111     2  0.0000      1.000 0.000 1.000
#> SRR1036112     2  0.0000      1.000 0.000 1.000
#> SRR1036113     2  0.0000      1.000 0.000 1.000
#> SRR1036114     2  0.0000      1.000 0.000 1.000
#> SRR1036115     1  0.0000      0.962 1.000 0.000
#> SRR1036116     1  0.0000      0.962 1.000 0.000
#> SRR1036117     1  0.0000      0.962 1.000 0.000
#> SRR1036118     1  0.0000      0.962 1.000 0.000
#> SRR1036119     1  0.0000      0.962 1.000 0.000
#> SRR1036120     1  0.0000      0.962 1.000 0.000
#> SRR1036121     1  0.0000      0.962 1.000 0.000
#> SRR1036122     1  0.0000      0.962 1.000 0.000
#> SRR1036123     1  0.0000      0.962 1.000 0.000
#> SRR1036124     1  0.0000      0.962 1.000 0.000
#> SRR1036125     1  0.0000      0.962 1.000 0.000
#> SRR1036126     1  0.0000      0.962 1.000 0.000
#> SRR1036127     1  0.0000      0.962 1.000 0.000
#> SRR1036128     1  0.0000      0.962 1.000 0.000
#> SRR1036129     1  0.0000      0.962 1.000 0.000
#> SRR1036130     1  0.0000      0.962 1.000 0.000
#> SRR1036131     1  0.0000      0.962 1.000 0.000
#> SRR1036132     1  0.0000      0.962 1.000 0.000
#> SRR1036133     2  0.0000      1.000 0.000 1.000
#> SRR1036134     2  0.0000      1.000 0.000 1.000
#> SRR1036135     2  0.0000      1.000 0.000 1.000
#> SRR1036136     2  0.0000      1.000 0.000 1.000
#> SRR1036137     2  0.0000      1.000 0.000 1.000
#> SRR1036138     2  0.0000      1.000 0.000 1.000
#> SRR1036139     2  0.0000      1.000 0.000 1.000
#> SRR1036140     2  0.0000      1.000 0.000 1.000
#> SRR1036141     2  0.0000      1.000 0.000 1.000
#> SRR1036142     2  0.0000      1.000 0.000 1.000
#> SRR1036143     2  0.0000      1.000 0.000 1.000
#> SRR1036144     2  0.0000      1.000 0.000 1.000
#> SRR1036145     2  0.0000      1.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1036002     3  0.1964      0.975 0.056 0.000 0.944
#> SRR1036003     3  0.1964      0.975 0.056 0.000 0.944
#> SRR1036004     3  0.1964      0.975 0.056 0.000 0.944
#> SRR1036005     3  0.2096      0.937 0.004 0.052 0.944
#> SRR1036006     3  0.2096      0.937 0.004 0.052 0.944
#> SRR1036007     3  0.2096      0.937 0.004 0.052 0.944
#> SRR1036008     3  0.2096      0.937 0.004 0.052 0.944
#> SRR1036009     3  0.2096      0.937 0.004 0.052 0.944
#> SRR1036013     2  0.0747      0.970 0.000 0.984 0.016
#> SRR1036014     2  0.0747      0.970 0.000 0.984 0.016
#> SRR1036015     2  0.0747      0.970 0.000 0.984 0.016
#> SRR1036016     2  0.0747      0.970 0.000 0.984 0.016
#> SRR1036017     2  0.0747      0.970 0.000 0.984 0.016
#> SRR1036018     2  0.0747      0.970 0.000 0.984 0.016
#> SRR1036010     1  0.0000      0.863 1.000 0.000 0.000
#> SRR1036011     1  0.0000      0.863 1.000 0.000 0.000
#> SRR1036012     1  0.0000      0.863 1.000 0.000 0.000
#> SRR1036019     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036020     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036021     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036022     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036023     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036024     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036025     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036026     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036027     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036028     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036029     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036030     1  0.7770      0.407 0.560 0.384 0.056
#> SRR1036031     1  0.7770      0.407 0.560 0.384 0.056
#> SRR1036032     1  0.7770      0.407 0.560 0.384 0.056
#> SRR1036033     1  0.7770      0.407 0.560 0.384 0.056
#> SRR1036034     1  0.7770      0.407 0.560 0.384 0.056
#> SRR1036035     1  0.7770      0.407 0.560 0.384 0.056
#> SRR1036036     1  0.7770      0.407 0.560 0.384 0.056
#> SRR1036037     1  0.7770      0.407 0.560 0.384 0.056
#> SRR1036038     1  0.0000      0.863 1.000 0.000 0.000
#> SRR1036039     1  0.0000      0.863 1.000 0.000 0.000
#> SRR1036040     1  0.0000      0.863 1.000 0.000 0.000
#> SRR1036041     1  0.0000      0.863 1.000 0.000 0.000
#> SRR1036042     2  0.3340      0.883 0.000 0.880 0.120
#> SRR1036043     2  0.3340      0.883 0.000 0.880 0.120
#> SRR1036044     2  0.3340      0.883 0.000 0.880 0.120
#> SRR1036045     2  0.3340      0.883 0.000 0.880 0.120
#> SRR1036046     2  0.3340      0.883 0.000 0.880 0.120
#> SRR1036047     2  0.3340      0.883 0.000 0.880 0.120
#> SRR1036048     2  0.3340      0.883 0.000 0.880 0.120
#> SRR1036049     2  0.3340      0.883 0.000 0.880 0.120
#> SRR1036050     1  0.0000      0.863 1.000 0.000 0.000
#> SRR1036051     1  0.0000      0.863 1.000 0.000 0.000
#> SRR1036052     1  0.0000      0.863 1.000 0.000 0.000
#> SRR1036053     1  0.0000      0.863 1.000 0.000 0.000
#> SRR1036054     1  0.0000      0.863 1.000 0.000 0.000
#> SRR1036055     1  0.0000      0.863 1.000 0.000 0.000
#> SRR1036056     1  0.0000      0.863 1.000 0.000 0.000
#> SRR1036057     1  0.0000      0.863 1.000 0.000 0.000
#> SRR1036058     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036059     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036060     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036061     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036062     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036063     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036064     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036065     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036066     1  0.0000      0.863 1.000 0.000 0.000
#> SRR1036067     1  0.0000      0.863 1.000 0.000 0.000
#> SRR1036068     1  0.0000      0.863 1.000 0.000 0.000
#> SRR1036069     1  0.0000      0.863 1.000 0.000 0.000
#> SRR1036070     1  0.0000      0.863 1.000 0.000 0.000
#> SRR1036071     1  0.0000      0.863 1.000 0.000 0.000
#> SRR1036072     1  0.0000      0.863 1.000 0.000 0.000
#> SRR1036073     1  0.0000      0.863 1.000 0.000 0.000
#> SRR1036074     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036075     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036076     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036077     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036078     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036079     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036080     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036081     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036082     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036083     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036084     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036090     2  0.0237      0.976 0.000 0.996 0.004
#> SRR1036091     2  0.0237      0.976 0.000 0.996 0.004
#> SRR1036092     2  0.0237      0.976 0.000 0.996 0.004
#> SRR1036093     2  0.0237      0.976 0.000 0.996 0.004
#> SRR1036094     2  0.0237      0.976 0.000 0.996 0.004
#> SRR1036085     3  0.1964      0.975 0.056 0.000 0.944
#> SRR1036086     3  0.1964      0.975 0.056 0.000 0.944
#> SRR1036087     3  0.1964      0.975 0.056 0.000 0.944
#> SRR1036088     3  0.1964      0.975 0.056 0.000 0.944
#> SRR1036089     3  0.1964      0.975 0.056 0.000 0.944
#> SRR1036095     2  0.0424      0.974 0.000 0.992 0.008
#> SRR1036096     2  0.0424      0.974 0.000 0.992 0.008
#> SRR1036097     2  0.0424      0.974 0.000 0.992 0.008
#> SRR1036098     2  0.0424      0.974 0.000 0.992 0.008
#> SRR1036099     2  0.0424      0.974 0.000 0.992 0.008
#> SRR1036100     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036101     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036102     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036103     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036104     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036105     3  0.1964      0.975 0.056 0.000 0.944
#> SRR1036106     3  0.1964      0.975 0.056 0.000 0.944
#> SRR1036107     3  0.1964      0.975 0.056 0.000 0.944
#> SRR1036108     3  0.1964      0.975 0.056 0.000 0.944
#> SRR1036109     3  0.1964      0.975 0.056 0.000 0.944
#> SRR1036110     2  0.1860      0.945 0.000 0.948 0.052
#> SRR1036111     2  0.1860      0.945 0.000 0.948 0.052
#> SRR1036112     2  0.1860      0.945 0.000 0.948 0.052
#> SRR1036113     2  0.1860      0.945 0.000 0.948 0.052
#> SRR1036114     2  0.1860      0.945 0.000 0.948 0.052
#> SRR1036115     1  0.1163      0.848 0.972 0.000 0.028
#> SRR1036116     1  0.1163      0.848 0.972 0.000 0.028
#> SRR1036117     1  0.1163      0.848 0.972 0.000 0.028
#> SRR1036118     1  0.1163      0.848 0.972 0.000 0.028
#> SRR1036119     1  0.1163      0.848 0.972 0.000 0.028
#> SRR1036120     1  0.5178      0.573 0.744 0.000 0.256
#> SRR1036121     1  0.5178      0.573 0.744 0.000 0.256
#> SRR1036122     1  0.5178      0.573 0.744 0.000 0.256
#> SRR1036123     1  0.5178      0.573 0.744 0.000 0.256
#> SRR1036124     1  0.5178      0.573 0.744 0.000 0.256
#> SRR1036125     1  0.0000      0.863 1.000 0.000 0.000
#> SRR1036126     1  0.0000      0.863 1.000 0.000 0.000
#> SRR1036127     1  0.0000      0.863 1.000 0.000 0.000
#> SRR1036128     1  0.0000      0.863 1.000 0.000 0.000
#> SRR1036129     1  0.0000      0.863 1.000 0.000 0.000
#> SRR1036130     1  0.0000      0.863 1.000 0.000 0.000
#> SRR1036131     1  0.0000      0.863 1.000 0.000 0.000
#> SRR1036132     1  0.0000      0.863 1.000 0.000 0.000
#> SRR1036133     2  0.1964      0.939 0.000 0.944 0.056
#> SRR1036134     2  0.1964      0.939 0.000 0.944 0.056
#> SRR1036135     2  0.1964      0.939 0.000 0.944 0.056
#> SRR1036136     2  0.1964      0.939 0.000 0.944 0.056
#> SRR1036137     2  0.1964      0.939 0.000 0.944 0.056
#> SRR1036138     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036139     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036140     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036141     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036142     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036143     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036144     2  0.0000      0.978 0.000 1.000 0.000
#> SRR1036145     2  0.0000      0.978 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1036002     3  0.0336      0.996 0.008 0.000 0.992 0.000
#> SRR1036003     3  0.0336      0.996 0.008 0.000 0.992 0.000
#> SRR1036004     3  0.0336      0.996 0.008 0.000 0.992 0.000
#> SRR1036005     3  0.0188      0.989 0.000 0.004 0.996 0.000
#> SRR1036006     3  0.0188      0.989 0.000 0.004 0.996 0.000
#> SRR1036007     3  0.0188      0.989 0.000 0.004 0.996 0.000
#> SRR1036008     3  0.0188      0.989 0.000 0.004 0.996 0.000
#> SRR1036009     3  0.0188      0.989 0.000 0.004 0.996 0.000
#> SRR1036013     2  0.1059      0.882 0.000 0.972 0.012 0.016
#> SRR1036014     2  0.1059      0.882 0.000 0.972 0.012 0.016
#> SRR1036015     2  0.1059      0.882 0.000 0.972 0.012 0.016
#> SRR1036016     2  0.1059      0.882 0.000 0.972 0.012 0.016
#> SRR1036017     2  0.1059      0.882 0.000 0.972 0.012 0.016
#> SRR1036018     2  0.1059      0.882 0.000 0.972 0.012 0.016
#> SRR1036010     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036011     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036012     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036019     2  0.2944      0.877 0.000 0.868 0.004 0.128
#> SRR1036020     2  0.2944      0.877 0.000 0.868 0.004 0.128
#> SRR1036021     2  0.2944      0.877 0.000 0.868 0.004 0.128
#> SRR1036022     2  0.2944      0.877 0.000 0.868 0.004 0.128
#> SRR1036023     2  0.2944      0.877 0.000 0.868 0.004 0.128
#> SRR1036024     2  0.0657      0.889 0.000 0.984 0.004 0.012
#> SRR1036025     2  0.0657      0.889 0.000 0.984 0.004 0.012
#> SRR1036026     2  0.0657      0.889 0.000 0.984 0.004 0.012
#> SRR1036027     2  0.0657      0.889 0.000 0.984 0.004 0.012
#> SRR1036028     2  0.0657      0.889 0.000 0.984 0.004 0.012
#> SRR1036029     2  0.0657      0.889 0.000 0.984 0.004 0.012
#> SRR1036030     4  0.1677      0.970 0.040 0.012 0.000 0.948
#> SRR1036031     4  0.1677      0.970 0.040 0.012 0.000 0.948
#> SRR1036032     4  0.1677      0.970 0.040 0.012 0.000 0.948
#> SRR1036033     4  0.1677      0.970 0.040 0.012 0.000 0.948
#> SRR1036034     4  0.1677      0.970 0.040 0.012 0.000 0.948
#> SRR1036035     4  0.1677      0.970 0.040 0.012 0.000 0.948
#> SRR1036036     4  0.1677      0.970 0.040 0.012 0.000 0.948
#> SRR1036037     4  0.1677      0.970 0.040 0.012 0.000 0.948
#> SRR1036038     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036039     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036040     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036041     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036042     2  0.2593      0.850 0.000 0.904 0.080 0.016
#> SRR1036043     2  0.2593      0.850 0.000 0.904 0.080 0.016
#> SRR1036044     2  0.2593      0.850 0.000 0.904 0.080 0.016
#> SRR1036045     2  0.2593      0.850 0.000 0.904 0.080 0.016
#> SRR1036046     2  0.2593      0.850 0.000 0.904 0.080 0.016
#> SRR1036047     2  0.2593      0.850 0.000 0.904 0.080 0.016
#> SRR1036048     2  0.2593      0.850 0.000 0.904 0.080 0.016
#> SRR1036049     2  0.2593      0.850 0.000 0.904 0.080 0.016
#> SRR1036050     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036051     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036052     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036053     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036054     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036055     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036056     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036057     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036058     2  0.1209      0.890 0.000 0.964 0.004 0.032
#> SRR1036059     2  0.1209      0.890 0.000 0.964 0.004 0.032
#> SRR1036060     2  0.1209      0.890 0.000 0.964 0.004 0.032
#> SRR1036061     2  0.1209      0.890 0.000 0.964 0.004 0.032
#> SRR1036062     2  0.1209      0.890 0.000 0.964 0.004 0.032
#> SRR1036063     2  0.1209      0.890 0.000 0.964 0.004 0.032
#> SRR1036064     2  0.1209      0.890 0.000 0.964 0.004 0.032
#> SRR1036065     2  0.1209      0.890 0.000 0.964 0.004 0.032
#> SRR1036066     1  0.0336      0.968 0.992 0.000 0.000 0.008
#> SRR1036067     1  0.0336      0.968 0.992 0.000 0.000 0.008
#> SRR1036068     1  0.0336      0.968 0.992 0.000 0.000 0.008
#> SRR1036069     1  0.0336      0.968 0.992 0.000 0.000 0.008
#> SRR1036070     1  0.0336      0.968 0.992 0.000 0.000 0.008
#> SRR1036071     1  0.0336      0.968 0.992 0.000 0.000 0.008
#> SRR1036072     1  0.0336      0.968 0.992 0.000 0.000 0.008
#> SRR1036073     1  0.0336      0.968 0.992 0.000 0.000 0.008
#> SRR1036074     2  0.2831      0.880 0.000 0.876 0.004 0.120
#> SRR1036075     2  0.2831      0.880 0.000 0.876 0.004 0.120
#> SRR1036076     2  0.2831      0.880 0.000 0.876 0.004 0.120
#> SRR1036077     2  0.2831      0.880 0.000 0.876 0.004 0.120
#> SRR1036078     2  0.2831      0.880 0.000 0.876 0.004 0.120
#> SRR1036079     2  0.2831      0.880 0.000 0.876 0.004 0.120
#> SRR1036080     2  0.2831      0.880 0.000 0.876 0.004 0.120
#> SRR1036081     2  0.2831      0.880 0.000 0.876 0.004 0.120
#> SRR1036082     2  0.0469      0.887 0.000 0.988 0.000 0.012
#> SRR1036083     2  0.0469      0.887 0.000 0.988 0.000 0.012
#> SRR1036084     2  0.0469      0.887 0.000 0.988 0.000 0.012
#> SRR1036090     2  0.3831      0.839 0.000 0.792 0.004 0.204
#> SRR1036091     2  0.3831      0.839 0.000 0.792 0.004 0.204
#> SRR1036092     2  0.3831      0.839 0.000 0.792 0.004 0.204
#> SRR1036093     2  0.3831      0.839 0.000 0.792 0.004 0.204
#> SRR1036094     2  0.3831      0.839 0.000 0.792 0.004 0.204
#> SRR1036085     3  0.0336      0.996 0.008 0.000 0.992 0.000
#> SRR1036086     3  0.0336      0.996 0.008 0.000 0.992 0.000
#> SRR1036087     3  0.0336      0.996 0.008 0.000 0.992 0.000
#> SRR1036088     3  0.0336      0.996 0.008 0.000 0.992 0.000
#> SRR1036089     3  0.0336      0.996 0.008 0.000 0.992 0.000
#> SRR1036095     2  0.4800      0.656 0.000 0.656 0.004 0.340
#> SRR1036096     2  0.4800      0.656 0.000 0.656 0.004 0.340
#> SRR1036097     2  0.4800      0.656 0.000 0.656 0.004 0.340
#> SRR1036098     2  0.4800      0.656 0.000 0.656 0.004 0.340
#> SRR1036099     2  0.4800      0.656 0.000 0.656 0.004 0.340
#> SRR1036100     2  0.3208      0.869 0.000 0.848 0.004 0.148
#> SRR1036101     2  0.3208      0.869 0.000 0.848 0.004 0.148
#> SRR1036102     2  0.3208      0.869 0.000 0.848 0.004 0.148
#> SRR1036103     2  0.3208      0.869 0.000 0.848 0.004 0.148
#> SRR1036104     2  0.3208      0.869 0.000 0.848 0.004 0.148
#> SRR1036105     3  0.0336      0.996 0.008 0.000 0.992 0.000
#> SRR1036106     3  0.0336      0.996 0.008 0.000 0.992 0.000
#> SRR1036107     3  0.0336      0.996 0.008 0.000 0.992 0.000
#> SRR1036108     3  0.0336      0.996 0.008 0.000 0.992 0.000
#> SRR1036109     3  0.0336      0.996 0.008 0.000 0.992 0.000
#> SRR1036110     2  0.1297      0.880 0.000 0.964 0.020 0.016
#> SRR1036111     2  0.1297      0.880 0.000 0.964 0.020 0.016
#> SRR1036112     2  0.1297      0.880 0.000 0.964 0.020 0.016
#> SRR1036113     2  0.1297      0.880 0.000 0.964 0.020 0.016
#> SRR1036114     2  0.1297      0.880 0.000 0.964 0.020 0.016
#> SRR1036115     1  0.2973      0.840 0.856 0.000 0.000 0.144
#> SRR1036116     1  0.2973      0.840 0.856 0.000 0.000 0.144
#> SRR1036117     1  0.2973      0.840 0.856 0.000 0.000 0.144
#> SRR1036118     1  0.2973      0.840 0.856 0.000 0.000 0.144
#> SRR1036119     1  0.2973      0.840 0.856 0.000 0.000 0.144
#> SRR1036120     1  0.1716      0.924 0.936 0.000 0.064 0.000
#> SRR1036121     1  0.1716      0.924 0.936 0.000 0.064 0.000
#> SRR1036122     1  0.1716      0.924 0.936 0.000 0.064 0.000
#> SRR1036123     1  0.1716      0.924 0.936 0.000 0.064 0.000
#> SRR1036124     1  0.1716      0.924 0.936 0.000 0.064 0.000
#> SRR1036125     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036126     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036127     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036128     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036129     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036130     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036131     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036132     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036133     4  0.1022      0.951 0.000 0.032 0.000 0.968
#> SRR1036134     4  0.1022      0.951 0.000 0.032 0.000 0.968
#> SRR1036135     4  0.1022      0.951 0.000 0.032 0.000 0.968
#> SRR1036136     4  0.1022      0.951 0.000 0.032 0.000 0.968
#> SRR1036137     4  0.1022      0.951 0.000 0.032 0.000 0.968
#> SRR1036138     2  0.3569      0.836 0.000 0.804 0.000 0.196
#> SRR1036139     2  0.3569      0.836 0.000 0.804 0.000 0.196
#> SRR1036140     2  0.3569      0.836 0.000 0.804 0.000 0.196
#> SRR1036141     2  0.3569      0.836 0.000 0.804 0.000 0.196
#> SRR1036142     2  0.3569      0.836 0.000 0.804 0.000 0.196
#> SRR1036143     2  0.3569      0.836 0.000 0.804 0.000 0.196
#> SRR1036144     2  0.3569      0.836 0.000 0.804 0.000 0.196
#> SRR1036145     2  0.3569      0.836 0.000 0.804 0.000 0.196

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1036002     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036003     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036004     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036005     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036006     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036007     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036008     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036009     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036013     4  0.3480      0.783 0.000 0.248 0.000 0.752 0.000
#> SRR1036014     4  0.3480      0.783 0.000 0.248 0.000 0.752 0.000
#> SRR1036015     4  0.3480      0.783 0.000 0.248 0.000 0.752 0.000
#> SRR1036016     4  0.3480      0.783 0.000 0.248 0.000 0.752 0.000
#> SRR1036017     4  0.3480      0.783 0.000 0.248 0.000 0.752 0.000
#> SRR1036018     4  0.3480      0.783 0.000 0.248 0.000 0.752 0.000
#> SRR1036010     1  0.0162      0.943 0.996 0.000 0.000 0.000 0.004
#> SRR1036011     1  0.0162      0.943 0.996 0.000 0.000 0.000 0.004
#> SRR1036012     1  0.0162      0.943 0.996 0.000 0.000 0.000 0.004
#> SRR1036019     2  0.1197      0.760 0.000 0.952 0.000 0.048 0.000
#> SRR1036020     2  0.1197      0.760 0.000 0.952 0.000 0.048 0.000
#> SRR1036021     2  0.1197      0.760 0.000 0.952 0.000 0.048 0.000
#> SRR1036022     2  0.1197      0.760 0.000 0.952 0.000 0.048 0.000
#> SRR1036023     2  0.1197      0.760 0.000 0.952 0.000 0.048 0.000
#> SRR1036024     4  0.4375      0.695 0.000 0.420 0.000 0.576 0.004
#> SRR1036025     4  0.4375      0.695 0.000 0.420 0.000 0.576 0.004
#> SRR1036026     4  0.4375      0.695 0.000 0.420 0.000 0.576 0.004
#> SRR1036027     4  0.4375      0.695 0.000 0.420 0.000 0.576 0.004
#> SRR1036028     4  0.4375      0.695 0.000 0.420 0.000 0.576 0.004
#> SRR1036029     4  0.4375      0.695 0.000 0.420 0.000 0.576 0.004
#> SRR1036030     5  0.0693      0.944 0.008 0.012 0.000 0.000 0.980
#> SRR1036031     5  0.0693      0.944 0.008 0.012 0.000 0.000 0.980
#> SRR1036032     5  0.0693      0.944 0.008 0.012 0.000 0.000 0.980
#> SRR1036033     5  0.0693      0.944 0.008 0.012 0.000 0.000 0.980
#> SRR1036034     5  0.0693      0.944 0.008 0.012 0.000 0.000 0.980
#> SRR1036035     5  0.0693      0.944 0.008 0.012 0.000 0.000 0.980
#> SRR1036036     5  0.0693      0.944 0.008 0.012 0.000 0.000 0.980
#> SRR1036037     5  0.0693      0.944 0.008 0.012 0.000 0.000 0.980
#> SRR1036038     1  0.0671      0.944 0.980 0.000 0.000 0.016 0.004
#> SRR1036039     1  0.0671      0.944 0.980 0.000 0.000 0.016 0.004
#> SRR1036040     1  0.0671      0.944 0.980 0.000 0.000 0.016 0.004
#> SRR1036041     1  0.0671      0.944 0.980 0.000 0.000 0.016 0.004
#> SRR1036042     4  0.4062      0.747 0.000 0.196 0.040 0.764 0.000
#> SRR1036043     4  0.4062      0.747 0.000 0.196 0.040 0.764 0.000
#> SRR1036044     4  0.4062      0.747 0.000 0.196 0.040 0.764 0.000
#> SRR1036045     4  0.4062      0.747 0.000 0.196 0.040 0.764 0.000
#> SRR1036046     4  0.4062      0.747 0.000 0.196 0.040 0.764 0.000
#> SRR1036047     4  0.4062      0.747 0.000 0.196 0.040 0.764 0.000
#> SRR1036048     4  0.4062      0.747 0.000 0.196 0.040 0.764 0.000
#> SRR1036049     4  0.4062      0.747 0.000 0.196 0.040 0.764 0.000
#> SRR1036050     1  0.0162      0.943 0.996 0.000 0.000 0.000 0.004
#> SRR1036051     1  0.0162      0.943 0.996 0.000 0.000 0.000 0.004
#> SRR1036052     1  0.0162      0.943 0.996 0.000 0.000 0.000 0.004
#> SRR1036053     1  0.0162      0.943 0.996 0.000 0.000 0.000 0.004
#> SRR1036054     1  0.0162      0.943 0.996 0.000 0.000 0.000 0.004
#> SRR1036055     1  0.0566      0.944 0.984 0.000 0.000 0.012 0.004
#> SRR1036056     1  0.0566      0.944 0.984 0.000 0.000 0.012 0.004
#> SRR1036057     1  0.0566      0.944 0.984 0.000 0.000 0.012 0.004
#> SRR1036058     4  0.4713      0.646 0.000 0.440 0.000 0.544 0.016
#> SRR1036059     4  0.4713      0.646 0.000 0.440 0.000 0.544 0.016
#> SRR1036060     4  0.4713      0.646 0.000 0.440 0.000 0.544 0.016
#> SRR1036061     4  0.4713      0.646 0.000 0.440 0.000 0.544 0.016
#> SRR1036062     4  0.4713      0.646 0.000 0.440 0.000 0.544 0.016
#> SRR1036063     4  0.4713      0.646 0.000 0.440 0.000 0.544 0.016
#> SRR1036064     4  0.4713      0.646 0.000 0.440 0.000 0.544 0.016
#> SRR1036065     4  0.4713      0.646 0.000 0.440 0.000 0.544 0.016
#> SRR1036066     1  0.2233      0.907 0.904 0.000 0.000 0.080 0.016
#> SRR1036067     1  0.2233      0.907 0.904 0.000 0.000 0.080 0.016
#> SRR1036068     1  0.2233      0.907 0.904 0.000 0.000 0.080 0.016
#> SRR1036069     1  0.2233      0.907 0.904 0.000 0.000 0.080 0.016
#> SRR1036070     1  0.2233      0.907 0.904 0.000 0.000 0.080 0.016
#> SRR1036071     1  0.2233      0.907 0.904 0.000 0.000 0.080 0.016
#> SRR1036072     1  0.2233      0.907 0.904 0.000 0.000 0.080 0.016
#> SRR1036073     1  0.2233      0.907 0.904 0.000 0.000 0.080 0.016
#> SRR1036074     2  0.1197      0.760 0.000 0.952 0.000 0.048 0.000
#> SRR1036075     2  0.1197      0.760 0.000 0.952 0.000 0.048 0.000
#> SRR1036076     2  0.1197      0.760 0.000 0.952 0.000 0.048 0.000
#> SRR1036077     2  0.1197      0.760 0.000 0.952 0.000 0.048 0.000
#> SRR1036078     2  0.1197      0.760 0.000 0.952 0.000 0.048 0.000
#> SRR1036079     2  0.1197      0.760 0.000 0.952 0.000 0.048 0.000
#> SRR1036080     2  0.1197      0.760 0.000 0.952 0.000 0.048 0.000
#> SRR1036081     2  0.1197      0.760 0.000 0.952 0.000 0.048 0.000
#> SRR1036082     4  0.4276      0.696 0.000 0.380 0.000 0.616 0.004
#> SRR1036083     4  0.4276      0.696 0.000 0.380 0.000 0.616 0.004
#> SRR1036084     4  0.4276      0.696 0.000 0.380 0.000 0.616 0.004
#> SRR1036090     2  0.2300      0.737 0.000 0.908 0.000 0.040 0.052
#> SRR1036091     2  0.2300      0.737 0.000 0.908 0.000 0.040 0.052
#> SRR1036092     2  0.2300      0.737 0.000 0.908 0.000 0.040 0.052
#> SRR1036093     2  0.2300      0.737 0.000 0.908 0.000 0.040 0.052
#> SRR1036094     2  0.2300      0.737 0.000 0.908 0.000 0.040 0.052
#> SRR1036085     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036086     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036087     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036088     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036089     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036095     2  0.4258      0.638 0.000 0.768 0.000 0.072 0.160
#> SRR1036096     2  0.4258      0.638 0.000 0.768 0.000 0.072 0.160
#> SRR1036097     2  0.4258      0.638 0.000 0.768 0.000 0.072 0.160
#> SRR1036098     2  0.4258      0.638 0.000 0.768 0.000 0.072 0.160
#> SRR1036099     2  0.4258      0.638 0.000 0.768 0.000 0.072 0.160
#> SRR1036100     2  0.0404      0.758 0.000 0.988 0.000 0.012 0.000
#> SRR1036101     2  0.0404      0.758 0.000 0.988 0.000 0.012 0.000
#> SRR1036102     2  0.0404      0.758 0.000 0.988 0.000 0.012 0.000
#> SRR1036103     2  0.0404      0.758 0.000 0.988 0.000 0.012 0.000
#> SRR1036104     2  0.0404      0.758 0.000 0.988 0.000 0.012 0.000
#> SRR1036105     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036106     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036107     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036108     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036109     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1036110     4  0.2929      0.766 0.000 0.180 0.000 0.820 0.000
#> SRR1036111     4  0.2929      0.766 0.000 0.180 0.000 0.820 0.000
#> SRR1036112     4  0.2929      0.766 0.000 0.180 0.000 0.820 0.000
#> SRR1036113     4  0.2929      0.766 0.000 0.180 0.000 0.820 0.000
#> SRR1036114     4  0.2929      0.766 0.000 0.180 0.000 0.820 0.000
#> SRR1036115     1  0.3694      0.796 0.796 0.000 0.000 0.032 0.172
#> SRR1036116     1  0.3694      0.796 0.796 0.000 0.000 0.032 0.172
#> SRR1036117     1  0.3694      0.796 0.796 0.000 0.000 0.032 0.172
#> SRR1036118     1  0.3694      0.796 0.796 0.000 0.000 0.032 0.172
#> SRR1036119     1  0.3694      0.796 0.796 0.000 0.000 0.032 0.172
#> SRR1036120     1  0.1430      0.921 0.944 0.000 0.052 0.000 0.004
#> SRR1036121     1  0.1430      0.921 0.944 0.000 0.052 0.000 0.004
#> SRR1036122     1  0.1430      0.921 0.944 0.000 0.052 0.000 0.004
#> SRR1036123     1  0.1430      0.921 0.944 0.000 0.052 0.000 0.004
#> SRR1036124     1  0.1430      0.921 0.944 0.000 0.052 0.000 0.004
#> SRR1036125     1  0.0671      0.944 0.980 0.000 0.000 0.016 0.004
#> SRR1036126     1  0.0671      0.944 0.980 0.000 0.000 0.016 0.004
#> SRR1036127     1  0.0671      0.944 0.980 0.000 0.000 0.016 0.004
#> SRR1036128     1  0.0671      0.944 0.980 0.000 0.000 0.016 0.004
#> SRR1036129     1  0.0671      0.944 0.980 0.000 0.000 0.016 0.004
#> SRR1036130     1  0.0671      0.944 0.980 0.000 0.000 0.016 0.004
#> SRR1036131     1  0.0671      0.944 0.980 0.000 0.000 0.016 0.004
#> SRR1036132     1  0.0671      0.944 0.980 0.000 0.000 0.016 0.004
#> SRR1036133     5  0.3216      0.909 0.000 0.108 0.000 0.044 0.848
#> SRR1036134     5  0.3216      0.909 0.000 0.108 0.000 0.044 0.848
#> SRR1036135     5  0.3216      0.909 0.000 0.108 0.000 0.044 0.848
#> SRR1036136     5  0.3216      0.909 0.000 0.108 0.000 0.044 0.848
#> SRR1036137     5  0.3216      0.909 0.000 0.108 0.000 0.044 0.848
#> SRR1036138     2  0.6194      0.124 0.000 0.472 0.000 0.388 0.140
#> SRR1036139     2  0.6194      0.124 0.000 0.472 0.000 0.388 0.140
#> SRR1036140     2  0.6194      0.124 0.000 0.472 0.000 0.388 0.140
#> SRR1036141     2  0.6194      0.124 0.000 0.472 0.000 0.388 0.140
#> SRR1036142     2  0.6194      0.124 0.000 0.472 0.000 0.388 0.140
#> SRR1036143     2  0.6194      0.124 0.000 0.472 0.000 0.388 0.140
#> SRR1036144     2  0.6194      0.124 0.000 0.472 0.000 0.388 0.140
#> SRR1036145     2  0.6194      0.124 0.000 0.472 0.000 0.388 0.140

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5 p6
#> SRR1036002     3  0.0363      0.991 0.000 0.000 0.988 0.000 0.000 NA
#> SRR1036003     3  0.0363      0.991 0.000 0.000 0.988 0.000 0.000 NA
#> SRR1036004     3  0.0363      0.991 0.000 0.000 0.988 0.000 0.000 NA
#> SRR1036005     3  0.0291      0.994 0.000 0.000 0.992 0.004 0.000 NA
#> SRR1036006     3  0.0291      0.994 0.000 0.000 0.992 0.004 0.000 NA
#> SRR1036007     3  0.0291      0.994 0.000 0.000 0.992 0.004 0.000 NA
#> SRR1036008     3  0.0291      0.994 0.000 0.000 0.992 0.004 0.000 NA
#> SRR1036009     3  0.0291      0.994 0.000 0.000 0.992 0.004 0.000 NA
#> SRR1036013     4  0.3522      0.687 0.000 0.000 0.000 0.800 0.072 NA
#> SRR1036014     4  0.3522      0.687 0.000 0.000 0.000 0.800 0.072 NA
#> SRR1036015     4  0.3522      0.687 0.000 0.000 0.000 0.800 0.072 NA
#> SRR1036016     4  0.3522      0.687 0.000 0.000 0.000 0.800 0.072 NA
#> SRR1036017     4  0.3522      0.687 0.000 0.000 0.000 0.800 0.072 NA
#> SRR1036018     4  0.3522      0.687 0.000 0.000 0.000 0.800 0.072 NA
#> SRR1036010     1  0.0146      0.905 0.996 0.000 0.000 0.004 0.000 NA
#> SRR1036011     1  0.0146      0.905 0.996 0.000 0.000 0.004 0.000 NA
#> SRR1036012     1  0.0146      0.905 0.996 0.000 0.000 0.004 0.000 NA
#> SRR1036019     5  0.1719      0.857 0.000 0.000 0.000 0.060 0.924 NA
#> SRR1036020     5  0.1719      0.857 0.000 0.000 0.000 0.060 0.924 NA
#> SRR1036021     5  0.1719      0.857 0.000 0.000 0.000 0.060 0.924 NA
#> SRR1036022     5  0.1719      0.857 0.000 0.000 0.000 0.060 0.924 NA
#> SRR1036023     5  0.1719      0.857 0.000 0.000 0.000 0.060 0.924 NA
#> SRR1036024     4  0.5609      0.612 0.000 0.000 0.000 0.544 0.220 NA
#> SRR1036025     4  0.5609      0.612 0.000 0.000 0.000 0.544 0.220 NA
#> SRR1036026     4  0.5609      0.612 0.000 0.000 0.000 0.544 0.220 NA
#> SRR1036027     4  0.5609      0.612 0.000 0.000 0.000 0.544 0.220 NA
#> SRR1036028     4  0.5609      0.612 0.000 0.000 0.000 0.544 0.220 NA
#> SRR1036029     4  0.5609      0.612 0.000 0.000 0.000 0.544 0.220 NA
#> SRR1036030     2  0.0000      0.927 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1036031     2  0.0000      0.927 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1036032     2  0.0000      0.927 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1036033     2  0.0000      0.927 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1036034     2  0.0000      0.927 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1036035     2  0.0000      0.927 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1036036     2  0.0000      0.927 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1036037     2  0.0000      0.927 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1036038     1  0.0935      0.907 0.964 0.000 0.000 0.004 0.000 NA
#> SRR1036039     1  0.0935      0.907 0.964 0.000 0.000 0.004 0.000 NA
#> SRR1036040     1  0.0935      0.907 0.964 0.000 0.000 0.004 0.000 NA
#> SRR1036041     1  0.0935      0.906 0.964 0.000 0.000 0.004 0.000 NA
#> SRR1036042     4  0.1785      0.682 0.000 0.000 0.016 0.928 0.048 NA
#> SRR1036043     4  0.1785      0.682 0.000 0.000 0.016 0.928 0.048 NA
#> SRR1036044     4  0.1785      0.682 0.000 0.000 0.016 0.928 0.048 NA
#> SRR1036045     4  0.1785      0.682 0.000 0.000 0.016 0.928 0.048 NA
#> SRR1036046     4  0.1785      0.682 0.000 0.000 0.016 0.928 0.048 NA
#> SRR1036047     4  0.1785      0.682 0.000 0.000 0.016 0.928 0.048 NA
#> SRR1036048     4  0.1785      0.682 0.000 0.000 0.016 0.928 0.048 NA
#> SRR1036049     4  0.1785      0.682 0.000 0.000 0.016 0.928 0.048 NA
#> SRR1036050     1  0.0146      0.905 0.996 0.000 0.000 0.004 0.000 NA
#> SRR1036051     1  0.0146      0.905 0.996 0.000 0.000 0.004 0.000 NA
#> SRR1036052     1  0.0146      0.905 0.996 0.000 0.000 0.004 0.000 NA
#> SRR1036053     1  0.0146      0.905 0.996 0.000 0.000 0.004 0.000 NA
#> SRR1036054     1  0.0146      0.905 0.996 0.000 0.000 0.004 0.000 NA
#> SRR1036055     1  0.0858      0.907 0.968 0.000 0.000 0.004 0.000 NA
#> SRR1036056     1  0.0858      0.907 0.968 0.000 0.000 0.004 0.000 NA
#> SRR1036057     1  0.0858      0.907 0.968 0.000 0.000 0.004 0.000 NA
#> SRR1036058     4  0.6005      0.569 0.000 0.012 0.000 0.516 0.232 NA
#> SRR1036059     4  0.6005      0.569 0.000 0.012 0.000 0.516 0.232 NA
#> SRR1036060     4  0.6005      0.569 0.000 0.012 0.000 0.516 0.232 NA
#> SRR1036061     4  0.6005      0.569 0.000 0.012 0.000 0.516 0.232 NA
#> SRR1036062     4  0.6005      0.569 0.000 0.012 0.000 0.516 0.232 NA
#> SRR1036063     4  0.6005      0.569 0.000 0.012 0.000 0.516 0.232 NA
#> SRR1036064     4  0.6005      0.569 0.000 0.012 0.000 0.516 0.232 NA
#> SRR1036065     4  0.6005      0.569 0.000 0.012 0.000 0.516 0.232 NA
#> SRR1036066     1  0.2854      0.807 0.792 0.000 0.000 0.000 0.000 NA
#> SRR1036067     1  0.2854      0.807 0.792 0.000 0.000 0.000 0.000 NA
#> SRR1036068     1  0.2854      0.807 0.792 0.000 0.000 0.000 0.000 NA
#> SRR1036069     1  0.2854      0.807 0.792 0.000 0.000 0.000 0.000 NA
#> SRR1036070     1  0.2854      0.807 0.792 0.000 0.000 0.000 0.000 NA
#> SRR1036071     1  0.2854      0.807 0.792 0.000 0.000 0.000 0.000 NA
#> SRR1036072     1  0.2854      0.807 0.792 0.000 0.000 0.000 0.000 NA
#> SRR1036073     1  0.2854      0.807 0.792 0.000 0.000 0.000 0.000 NA
#> SRR1036074     5  0.1204      0.862 0.000 0.000 0.000 0.056 0.944 NA
#> SRR1036075     5  0.1204      0.862 0.000 0.000 0.000 0.056 0.944 NA
#> SRR1036076     5  0.1204      0.862 0.000 0.000 0.000 0.056 0.944 NA
#> SRR1036077     5  0.1204      0.862 0.000 0.000 0.000 0.056 0.944 NA
#> SRR1036078     5  0.1204      0.862 0.000 0.000 0.000 0.056 0.944 NA
#> SRR1036079     5  0.1204      0.862 0.000 0.000 0.000 0.056 0.944 NA
#> SRR1036080     5  0.1204      0.862 0.000 0.000 0.000 0.056 0.944 NA
#> SRR1036081     5  0.1204      0.862 0.000 0.000 0.000 0.056 0.944 NA
#> SRR1036082     4  0.5562      0.518 0.000 0.000 0.000 0.532 0.300 NA
#> SRR1036083     4  0.5562      0.518 0.000 0.000 0.000 0.532 0.300 NA
#> SRR1036084     4  0.5562      0.518 0.000 0.000 0.000 0.532 0.300 NA
#> SRR1036090     5  0.3724      0.772 0.000 0.020 0.000 0.024 0.780 NA
#> SRR1036091     5  0.3724      0.772 0.000 0.020 0.000 0.024 0.780 NA
#> SRR1036092     5  0.3724      0.772 0.000 0.020 0.000 0.024 0.780 NA
#> SRR1036093     5  0.3724      0.772 0.000 0.020 0.000 0.024 0.780 NA
#> SRR1036094     5  0.3724      0.772 0.000 0.020 0.000 0.024 0.780 NA
#> SRR1036085     3  0.0146      0.995 0.000 0.000 0.996 0.000 0.000 NA
#> SRR1036086     3  0.0146      0.995 0.000 0.000 0.996 0.000 0.000 NA
#> SRR1036087     3  0.0146      0.995 0.000 0.000 0.996 0.000 0.000 NA
#> SRR1036088     3  0.0146      0.995 0.000 0.000 0.996 0.000 0.000 NA
#> SRR1036089     3  0.0146      0.995 0.000 0.000 0.996 0.000 0.000 NA
#> SRR1036095     5  0.5219      0.647 0.000 0.080 0.000 0.028 0.640 NA
#> SRR1036096     5  0.5219      0.647 0.000 0.080 0.000 0.028 0.640 NA
#> SRR1036097     5  0.5219      0.647 0.000 0.080 0.000 0.028 0.640 NA
#> SRR1036098     5  0.5219      0.647 0.000 0.080 0.000 0.028 0.640 NA
#> SRR1036099     5  0.5219      0.647 0.000 0.080 0.000 0.028 0.640 NA
#> SRR1036100     5  0.1059      0.857 0.000 0.004 0.000 0.016 0.964 NA
#> SRR1036101     5  0.1059      0.857 0.000 0.004 0.000 0.016 0.964 NA
#> SRR1036102     5  0.1059      0.857 0.000 0.004 0.000 0.016 0.964 NA
#> SRR1036103     5  0.1059      0.857 0.000 0.004 0.000 0.016 0.964 NA
#> SRR1036104     5  0.1059      0.857 0.000 0.004 0.000 0.016 0.964 NA
#> SRR1036105     3  0.0000      0.995 0.000 0.000 1.000 0.000 0.000 NA
#> SRR1036106     3  0.0000      0.995 0.000 0.000 1.000 0.000 0.000 NA
#> SRR1036107     3  0.0000      0.995 0.000 0.000 1.000 0.000 0.000 NA
#> SRR1036108     3  0.0000      0.995 0.000 0.000 1.000 0.000 0.000 NA
#> SRR1036109     3  0.0000      0.995 0.000 0.000 1.000 0.000 0.000 NA
#> SRR1036110     4  0.1168      0.690 0.000 0.000 0.000 0.956 0.028 NA
#> SRR1036111     4  0.1168      0.690 0.000 0.000 0.000 0.956 0.028 NA
#> SRR1036112     4  0.1168      0.690 0.000 0.000 0.000 0.956 0.028 NA
#> SRR1036113     4  0.1168      0.690 0.000 0.000 0.000 0.956 0.028 NA
#> SRR1036114     4  0.1168      0.690 0.000 0.000 0.000 0.956 0.028 NA
#> SRR1036115     1  0.5136      0.677 0.684 0.176 0.000 0.016 0.008 NA
#> SRR1036116     1  0.5136      0.677 0.684 0.176 0.000 0.016 0.008 NA
#> SRR1036117     1  0.5136      0.677 0.684 0.176 0.000 0.016 0.008 NA
#> SRR1036118     1  0.5136      0.677 0.684 0.176 0.000 0.016 0.008 NA
#> SRR1036119     1  0.5136      0.677 0.684 0.176 0.000 0.016 0.008 NA
#> SRR1036120     1  0.1296      0.892 0.952 0.000 0.032 0.004 0.000 NA
#> SRR1036121     1  0.1296      0.892 0.952 0.000 0.032 0.004 0.000 NA
#> SRR1036122     1  0.1296      0.892 0.952 0.000 0.032 0.004 0.000 NA
#> SRR1036123     1  0.1296      0.892 0.952 0.000 0.032 0.004 0.000 NA
#> SRR1036124     1  0.1296      0.892 0.952 0.000 0.032 0.004 0.000 NA
#> SRR1036125     1  0.1010      0.907 0.960 0.000 0.000 0.004 0.000 NA
#> SRR1036126     1  0.1010      0.907 0.960 0.000 0.000 0.004 0.000 NA
#> SRR1036127     1  0.1010      0.907 0.960 0.000 0.000 0.004 0.000 NA
#> SRR1036128     1  0.1010      0.907 0.960 0.000 0.000 0.004 0.000 NA
#> SRR1036129     1  0.1010      0.907 0.960 0.000 0.000 0.004 0.000 NA
#> SRR1036130     1  0.1010      0.907 0.960 0.000 0.000 0.004 0.000 NA
#> SRR1036131     1  0.1010      0.907 0.960 0.000 0.000 0.004 0.000 NA
#> SRR1036132     1  0.1010      0.907 0.960 0.000 0.000 0.004 0.000 NA
#> SRR1036133     2  0.3752      0.880 0.000 0.760 0.000 0.004 0.036 NA
#> SRR1036134     2  0.3752      0.880 0.000 0.760 0.000 0.004 0.036 NA
#> SRR1036135     2  0.3752      0.880 0.000 0.760 0.000 0.004 0.036 NA
#> SRR1036136     2  0.3752      0.880 0.000 0.760 0.000 0.004 0.036 NA
#> SRR1036137     2  0.3752      0.880 0.000 0.760 0.000 0.004 0.036 NA
#> SRR1036138     4  0.7152      0.330 0.000 0.080 0.000 0.364 0.284 NA
#> SRR1036139     4  0.7152      0.330 0.000 0.080 0.000 0.364 0.284 NA
#> SRR1036140     4  0.7152      0.330 0.000 0.080 0.000 0.364 0.284 NA
#> SRR1036141     4  0.7152      0.330 0.000 0.080 0.000 0.364 0.284 NA
#> SRR1036142     4  0.7152      0.330 0.000 0.080 0.000 0.364 0.284 NA
#> SRR1036143     4  0.7152      0.330 0.000 0.080 0.000 0.364 0.284 NA
#> SRR1036144     4  0.7152      0.330 0.000 0.080 0.000 0.364 0.284 NA
#> SRR1036145     4  0.7152      0.330 0.000 0.080 0.000 0.364 0.284 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15218 rows and 144 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.757           0.839       0.936          0.376 0.676   0.676
#> 3 3 0.879           0.915       0.962          0.407 0.783   0.684
#> 4 4 0.978           0.927       0.957          0.125 0.902   0.800
#> 5 5 0.881           0.884       0.914          0.103 0.896   0.744
#> 6 6 0.800           0.915       0.912          0.150 0.906   0.695

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1036002     2   0.939     0.4798 0.356 0.644
#> SRR1036003     2   0.946     0.4646 0.364 0.636
#> SRR1036004     2   0.917     0.5230 0.332 0.668
#> SRR1036005     2   0.000     0.9199 0.000 1.000
#> SRR1036006     2   0.000     0.9199 0.000 1.000
#> SRR1036007     2   0.000     0.9199 0.000 1.000
#> SRR1036008     2   0.000     0.9199 0.000 1.000
#> SRR1036009     2   0.000     0.9199 0.000 1.000
#> SRR1036013     2   0.000     0.9199 0.000 1.000
#> SRR1036014     2   0.000     0.9199 0.000 1.000
#> SRR1036015     2   0.000     0.9199 0.000 1.000
#> SRR1036016     2   0.000     0.9199 0.000 1.000
#> SRR1036017     2   0.000     0.9199 0.000 1.000
#> SRR1036018     2   0.000     0.9199 0.000 1.000
#> SRR1036010     1   0.000     0.9669 1.000 0.000
#> SRR1036011     1   0.000     0.9669 1.000 0.000
#> SRR1036012     1   0.000     0.9669 1.000 0.000
#> SRR1036019     2   0.000     0.9199 0.000 1.000
#> SRR1036020     2   0.000     0.9199 0.000 1.000
#> SRR1036021     2   0.000     0.9199 0.000 1.000
#> SRR1036022     2   0.000     0.9199 0.000 1.000
#> SRR1036023     2   0.000     0.9199 0.000 1.000
#> SRR1036024     2   0.000     0.9199 0.000 1.000
#> SRR1036025     2   0.000     0.9199 0.000 1.000
#> SRR1036026     2   0.000     0.9199 0.000 1.000
#> SRR1036027     2   0.000     0.9199 0.000 1.000
#> SRR1036028     2   0.000     0.9199 0.000 1.000
#> SRR1036029     2   0.000     0.9199 0.000 1.000
#> SRR1036030     2   0.000     0.9199 0.000 1.000
#> SRR1036031     2   0.000     0.9199 0.000 1.000
#> SRR1036032     2   0.000     0.9199 0.000 1.000
#> SRR1036033     2   0.000     0.9199 0.000 1.000
#> SRR1036034     2   0.000     0.9199 0.000 1.000
#> SRR1036035     2   0.000     0.9199 0.000 1.000
#> SRR1036036     2   0.000     0.9199 0.000 1.000
#> SRR1036037     2   0.000     0.9199 0.000 1.000
#> SRR1036038     1   0.574     0.8219 0.864 0.136
#> SRR1036039     1   0.574     0.8219 0.864 0.136
#> SRR1036040     1   0.574     0.8219 0.864 0.136
#> SRR1036041     1   0.000     0.9669 1.000 0.000
#> SRR1036042     2   0.000     0.9199 0.000 1.000
#> SRR1036043     2   0.000     0.9199 0.000 1.000
#> SRR1036044     2   0.000     0.9199 0.000 1.000
#> SRR1036045     2   0.000     0.9199 0.000 1.000
#> SRR1036046     2   0.000     0.9199 0.000 1.000
#> SRR1036047     2   0.000     0.9199 0.000 1.000
#> SRR1036048     2   0.000     0.9199 0.000 1.000
#> SRR1036049     2   0.000     0.9199 0.000 1.000
#> SRR1036050     1   0.000     0.9669 1.000 0.000
#> SRR1036051     1   0.000     0.9669 1.000 0.000
#> SRR1036052     1   0.000     0.9669 1.000 0.000
#> SRR1036053     1   0.000     0.9669 1.000 0.000
#> SRR1036054     1   0.000     0.9669 1.000 0.000
#> SRR1036055     1   0.000     0.9669 1.000 0.000
#> SRR1036056     1   0.000     0.9669 1.000 0.000
#> SRR1036057     1   0.000     0.9669 1.000 0.000
#> SRR1036058     2   0.000     0.9199 0.000 1.000
#> SRR1036059     2   0.000     0.9199 0.000 1.000
#> SRR1036060     2   0.000     0.9199 0.000 1.000
#> SRR1036061     2   0.000     0.9199 0.000 1.000
#> SRR1036062     2   0.000     0.9199 0.000 1.000
#> SRR1036063     2   0.000     0.9199 0.000 1.000
#> SRR1036064     2   0.000     0.9199 0.000 1.000
#> SRR1036065     2   0.000     0.9199 0.000 1.000
#> SRR1036066     2   0.983     0.3383 0.424 0.576
#> SRR1036067     2   0.983     0.3383 0.424 0.576
#> SRR1036068     2   0.983     0.3383 0.424 0.576
#> SRR1036069     2   0.983     0.3383 0.424 0.576
#> SRR1036070     2   0.983     0.3383 0.424 0.576
#> SRR1036071     2   0.983     0.3383 0.424 0.576
#> SRR1036072     2   0.983     0.3383 0.424 0.576
#> SRR1036073     2   0.983     0.3383 0.424 0.576
#> SRR1036074     2   0.000     0.9199 0.000 1.000
#> SRR1036075     2   0.000     0.9199 0.000 1.000
#> SRR1036076     2   0.000     0.9199 0.000 1.000
#> SRR1036077     2   0.000     0.9199 0.000 1.000
#> SRR1036078     2   0.000     0.9199 0.000 1.000
#> SRR1036079     2   0.000     0.9199 0.000 1.000
#> SRR1036080     2   0.000     0.9199 0.000 1.000
#> SRR1036081     2   0.000     0.9199 0.000 1.000
#> SRR1036082     2   0.000     0.9199 0.000 1.000
#> SRR1036083     2   0.000     0.9199 0.000 1.000
#> SRR1036084     2   0.000     0.9199 0.000 1.000
#> SRR1036090     2   0.000     0.9199 0.000 1.000
#> SRR1036091     2   0.000     0.9199 0.000 1.000
#> SRR1036092     2   0.000     0.9199 0.000 1.000
#> SRR1036093     2   0.000     0.9199 0.000 1.000
#> SRR1036094     2   0.000     0.9199 0.000 1.000
#> SRR1036085     2   0.983     0.3383 0.424 0.576
#> SRR1036086     2   0.983     0.3383 0.424 0.576
#> SRR1036087     2   0.983     0.3383 0.424 0.576
#> SRR1036088     2   0.983     0.3383 0.424 0.576
#> SRR1036089     2   0.983     0.3383 0.424 0.576
#> SRR1036095     2   0.000     0.9199 0.000 1.000
#> SRR1036096     2   0.000     0.9199 0.000 1.000
#> SRR1036097     2   0.000     0.9199 0.000 1.000
#> SRR1036098     2   0.000     0.9199 0.000 1.000
#> SRR1036099     2   0.000     0.9199 0.000 1.000
#> SRR1036100     2   0.000     0.9199 0.000 1.000
#> SRR1036101     2   0.000     0.9199 0.000 1.000
#> SRR1036102     2   0.000     0.9199 0.000 1.000
#> SRR1036103     2   0.000     0.9199 0.000 1.000
#> SRR1036104     2   0.000     0.9199 0.000 1.000
#> SRR1036105     2   0.000     0.9199 0.000 1.000
#> SRR1036106     2   0.000     0.9199 0.000 1.000
#> SRR1036107     2   0.000     0.9199 0.000 1.000
#> SRR1036108     2   0.000     0.9199 0.000 1.000
#> SRR1036109     2   0.000     0.9199 0.000 1.000
#> SRR1036110     2   0.000     0.9199 0.000 1.000
#> SRR1036111     2   0.000     0.9199 0.000 1.000
#> SRR1036112     2   0.000     0.9199 0.000 1.000
#> SRR1036113     2   0.000     0.9199 0.000 1.000
#> SRR1036114     2   0.000     0.9199 0.000 1.000
#> SRR1036115     2   0.995     0.1543 0.460 0.540
#> SRR1036116     2   0.991     0.2115 0.444 0.556
#> SRR1036117     2   0.999     0.0773 0.484 0.516
#> SRR1036118     2   0.987     0.2482 0.432 0.568
#> SRR1036119     1   0.980     0.2429 0.584 0.416
#> SRR1036120     1   0.000     0.9669 1.000 0.000
#> SRR1036121     1   0.000     0.9669 1.000 0.000
#> SRR1036122     1   0.000     0.9669 1.000 0.000
#> SRR1036123     1   0.000     0.9669 1.000 0.000
#> SRR1036124     1   0.000     0.9669 1.000 0.000
#> SRR1036125     1   0.000     0.9669 1.000 0.000
#> SRR1036126     1   0.000     0.9669 1.000 0.000
#> SRR1036127     1   0.000     0.9669 1.000 0.000
#> SRR1036128     1   0.000     0.9669 1.000 0.000
#> SRR1036129     1   0.000     0.9669 1.000 0.000
#> SRR1036130     1   0.000     0.9669 1.000 0.000
#> SRR1036131     1   0.000     0.9669 1.000 0.000
#> SRR1036132     1   0.000     0.9669 1.000 0.000
#> SRR1036133     2   0.000     0.9199 0.000 1.000
#> SRR1036134     2   0.000     0.9199 0.000 1.000
#> SRR1036135     2   0.000     0.9199 0.000 1.000
#> SRR1036136     2   0.000     0.9199 0.000 1.000
#> SRR1036137     2   0.000     0.9199 0.000 1.000
#> SRR1036138     2   0.000     0.9199 0.000 1.000
#> SRR1036139     2   0.000     0.9199 0.000 1.000
#> SRR1036140     2   0.000     0.9199 0.000 1.000
#> SRR1036141     2   0.000     0.9199 0.000 1.000
#> SRR1036142     2   0.000     0.9199 0.000 1.000
#> SRR1036143     2   0.000     0.9199 0.000 1.000
#> SRR1036144     2   0.000     0.9199 0.000 1.000
#> SRR1036145     2   0.000     0.9199 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1036002     3   0.000      1.000 0.000 0.000 1.000
#> SRR1036003     3   0.000      1.000 0.000 0.000 1.000
#> SRR1036004     3   0.000      1.000 0.000 0.000 1.000
#> SRR1036005     3   0.000      1.000 0.000 0.000 1.000
#> SRR1036006     3   0.000      1.000 0.000 0.000 1.000
#> SRR1036007     3   0.000      1.000 0.000 0.000 1.000
#> SRR1036008     3   0.000      1.000 0.000 0.000 1.000
#> SRR1036009     3   0.000      1.000 0.000 0.000 1.000
#> SRR1036013     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036014     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036015     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036016     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036017     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036018     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036010     1   0.000      0.889 1.000 0.000 0.000
#> SRR1036011     1   0.000      0.889 1.000 0.000 0.000
#> SRR1036012     1   0.000      0.889 1.000 0.000 0.000
#> SRR1036019     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036020     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036021     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036022     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036023     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036024     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036025     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036026     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036027     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036028     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036029     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036030     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036031     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036032     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036033     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036034     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036035     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036036     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036037     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036038     1   0.343      0.839 0.904 0.032 0.064
#> SRR1036039     1   0.343      0.839 0.904 0.032 0.064
#> SRR1036040     1   0.343      0.839 0.904 0.032 0.064
#> SRR1036041     1   0.000      0.889 1.000 0.000 0.000
#> SRR1036042     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036043     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036044     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036045     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036046     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036047     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036048     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036049     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036050     1   0.000      0.889 1.000 0.000 0.000
#> SRR1036051     1   0.000      0.889 1.000 0.000 0.000
#> SRR1036052     1   0.000      0.889 1.000 0.000 0.000
#> SRR1036053     1   0.000      0.889 1.000 0.000 0.000
#> SRR1036054     1   0.000      0.889 1.000 0.000 0.000
#> SRR1036055     1   0.000      0.889 1.000 0.000 0.000
#> SRR1036056     1   0.000      0.889 1.000 0.000 0.000
#> SRR1036057     1   0.000      0.889 1.000 0.000 0.000
#> SRR1036058     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036059     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036060     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036061     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036062     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036063     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036064     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036065     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036066     2   0.689      0.616 0.228 0.708 0.064
#> SRR1036067     2   0.698      0.602 0.236 0.700 0.064
#> SRR1036068     2   0.694      0.609 0.232 0.704 0.064
#> SRR1036069     2   0.698      0.602 0.236 0.700 0.064
#> SRR1036070     2   0.694      0.609 0.232 0.704 0.064
#> SRR1036071     2   0.720      0.555 0.260 0.676 0.064
#> SRR1036072     2   0.716      0.564 0.256 0.680 0.064
#> SRR1036073     2   0.694      0.609 0.232 0.704 0.064
#> SRR1036074     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036075     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036076     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036077     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036078     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036079     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036080     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036081     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036082     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036083     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036084     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036090     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036091     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036092     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036093     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036094     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036085     3   0.000      1.000 0.000 0.000 1.000
#> SRR1036086     3   0.000      1.000 0.000 0.000 1.000
#> SRR1036087     3   0.000      1.000 0.000 0.000 1.000
#> SRR1036088     3   0.000      1.000 0.000 0.000 1.000
#> SRR1036089     3   0.000      1.000 0.000 0.000 1.000
#> SRR1036095     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036096     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036097     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036098     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036099     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036100     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036101     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036102     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036103     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036104     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036105     3   0.000      1.000 0.000 0.000 1.000
#> SRR1036106     3   0.000      1.000 0.000 0.000 1.000
#> SRR1036107     3   0.000      1.000 0.000 0.000 1.000
#> SRR1036108     3   0.000      1.000 0.000 0.000 1.000
#> SRR1036109     3   0.000      1.000 0.000 0.000 1.000
#> SRR1036110     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036111     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036112     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036113     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036114     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036115     1   0.588      0.715 0.788 0.148 0.064
#> SRR1036116     1   0.612      0.692 0.772 0.164 0.064
#> SRR1036117     1   0.529      0.761 0.824 0.112 0.064
#> SRR1036118     1   0.617      0.686 0.768 0.168 0.064
#> SRR1036119     1   0.419      0.817 0.876 0.060 0.064
#> SRR1036120     1   0.597      0.480 0.636 0.000 0.364
#> SRR1036121     1   0.597      0.480 0.636 0.000 0.364
#> SRR1036122     1   0.597      0.480 0.636 0.000 0.364
#> SRR1036123     1   0.597      0.480 0.636 0.000 0.364
#> SRR1036124     1   0.597      0.480 0.636 0.000 0.364
#> SRR1036125     1   0.000      0.889 1.000 0.000 0.000
#> SRR1036126     1   0.000      0.889 1.000 0.000 0.000
#> SRR1036127     1   0.000      0.889 1.000 0.000 0.000
#> SRR1036128     1   0.000      0.889 1.000 0.000 0.000
#> SRR1036129     1   0.000      0.889 1.000 0.000 0.000
#> SRR1036130     1   0.000      0.889 1.000 0.000 0.000
#> SRR1036131     1   0.000      0.889 1.000 0.000 0.000
#> SRR1036132     1   0.000      0.889 1.000 0.000 0.000
#> SRR1036133     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036134     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036135     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036136     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036137     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036138     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036139     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036140     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036141     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036142     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036143     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036144     2   0.000      0.973 0.000 1.000 0.000
#> SRR1036145     2   0.000      0.973 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1036002     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1036003     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1036004     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1036005     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1036006     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1036007     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1036008     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1036009     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1036013     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036014     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036015     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036016     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036017     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036018     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036010     1  0.0000      0.866 1.000 0.000 0.000 0.000
#> SRR1036011     1  0.0000      0.866 1.000 0.000 0.000 0.000
#> SRR1036012     1  0.0000      0.866 1.000 0.000 0.000 0.000
#> SRR1036019     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036020     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036021     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036022     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036023     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036024     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036025     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036026     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036027     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036028     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036029     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036030     2  0.0336      0.993 0.000 0.992 0.000 0.008
#> SRR1036031     2  0.0336      0.993 0.000 0.992 0.000 0.008
#> SRR1036032     2  0.0336      0.993 0.000 0.992 0.000 0.008
#> SRR1036033     2  0.0336      0.993 0.000 0.992 0.000 0.008
#> SRR1036034     2  0.0336      0.993 0.000 0.992 0.000 0.008
#> SRR1036035     2  0.0336      0.993 0.000 0.992 0.000 0.008
#> SRR1036036     2  0.0336      0.993 0.000 0.992 0.000 0.008
#> SRR1036037     2  0.0336      0.993 0.000 0.992 0.000 0.008
#> SRR1036038     4  0.4522      0.734 0.320 0.000 0.000 0.680
#> SRR1036039     4  0.4406      0.739 0.300 0.000 0.000 0.700
#> SRR1036040     4  0.4543      0.732 0.324 0.000 0.000 0.676
#> SRR1036041     1  0.0000      0.866 1.000 0.000 0.000 0.000
#> SRR1036042     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036043     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036044     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036045     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036046     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036047     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036048     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036049     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036050     1  0.0000      0.866 1.000 0.000 0.000 0.000
#> SRR1036051     1  0.0000      0.866 1.000 0.000 0.000 0.000
#> SRR1036052     1  0.0000      0.866 1.000 0.000 0.000 0.000
#> SRR1036053     1  0.0000      0.866 1.000 0.000 0.000 0.000
#> SRR1036054     1  0.0000      0.866 1.000 0.000 0.000 0.000
#> SRR1036055     4  0.4948      0.622 0.440 0.000 0.000 0.560
#> SRR1036056     4  0.4981      0.582 0.464 0.000 0.000 0.536
#> SRR1036057     4  0.4994      0.551 0.480 0.000 0.000 0.520
#> SRR1036058     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036059     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036060     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036061     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036062     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036063     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036064     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036065     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036066     4  0.0000      0.744 0.000 0.000 0.000 1.000
#> SRR1036067     4  0.0000      0.744 0.000 0.000 0.000 1.000
#> SRR1036068     4  0.0000      0.744 0.000 0.000 0.000 1.000
#> SRR1036069     4  0.0000      0.744 0.000 0.000 0.000 1.000
#> SRR1036070     4  0.0000      0.744 0.000 0.000 0.000 1.000
#> SRR1036071     4  0.0000      0.744 0.000 0.000 0.000 1.000
#> SRR1036072     4  0.0000      0.744 0.000 0.000 0.000 1.000
#> SRR1036073     4  0.0000      0.744 0.000 0.000 0.000 1.000
#> SRR1036074     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036075     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036076     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036077     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036078     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036079     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036080     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036081     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036082     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036083     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036084     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036090     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036091     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036092     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036093     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036094     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036085     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1036086     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1036087     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1036088     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1036089     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1036095     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036096     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036097     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036098     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036099     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036100     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036101     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036102     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036103     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036104     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036105     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1036106     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1036107     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1036108     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1036109     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1036110     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036111     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036112     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036113     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036114     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036115     4  0.5855      0.707 0.356 0.044 0.000 0.600
#> SRR1036116     4  0.5746      0.716 0.348 0.040 0.000 0.612
#> SRR1036117     4  0.5746      0.716 0.348 0.040 0.000 0.612
#> SRR1036118     4  0.5807      0.715 0.344 0.044 0.000 0.612
#> SRR1036119     4  0.5855      0.707 0.356 0.044 0.000 0.600
#> SRR1036120     1  0.4697      0.499 0.644 0.000 0.356 0.000
#> SRR1036121     1  0.4697      0.499 0.644 0.000 0.356 0.000
#> SRR1036122     1  0.4697      0.499 0.644 0.000 0.356 0.000
#> SRR1036123     1  0.4697      0.499 0.644 0.000 0.356 0.000
#> SRR1036124     1  0.4697      0.499 0.644 0.000 0.356 0.000
#> SRR1036125     1  0.0000      0.866 1.000 0.000 0.000 0.000
#> SRR1036126     1  0.0000      0.866 1.000 0.000 0.000 0.000
#> SRR1036127     1  0.0000      0.866 1.000 0.000 0.000 0.000
#> SRR1036128     1  0.0000      0.866 1.000 0.000 0.000 0.000
#> SRR1036129     1  0.0000      0.866 1.000 0.000 0.000 0.000
#> SRR1036130     1  0.0000      0.866 1.000 0.000 0.000 0.000
#> SRR1036131     1  0.0000      0.866 1.000 0.000 0.000 0.000
#> SRR1036132     1  0.0000      0.866 1.000 0.000 0.000 0.000
#> SRR1036133     2  0.0336      0.993 0.000 0.992 0.000 0.008
#> SRR1036134     2  0.0336      0.993 0.000 0.992 0.000 0.008
#> SRR1036135     2  0.0336      0.993 0.000 0.992 0.000 0.008
#> SRR1036136     2  0.0336      0.993 0.000 0.992 0.000 0.008
#> SRR1036137     2  0.0336      0.993 0.000 0.992 0.000 0.008
#> SRR1036138     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036139     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036140     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036141     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036142     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036143     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036144     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1036145     2  0.0000      0.999 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2 p3    p4    p5
#> SRR1036002     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036003     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036004     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036005     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036006     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036007     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036008     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036009     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036013     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036014     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036015     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036016     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036017     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036018     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036010     1  0.0000      0.887 1.000 0.000  0 0.000 0.000
#> SRR1036011     1  0.0000      0.887 1.000 0.000  0 0.000 0.000
#> SRR1036012     1  0.0000      0.887 1.000 0.000  0 0.000 0.000
#> SRR1036019     4  0.0963      0.960 0.000 0.036  0 0.964 0.000
#> SRR1036020     4  0.0963      0.960 0.000 0.036  0 0.964 0.000
#> SRR1036021     4  0.0963      0.960 0.000 0.036  0 0.964 0.000
#> SRR1036022     4  0.0963      0.960 0.000 0.036  0 0.964 0.000
#> SRR1036023     4  0.0963      0.960 0.000 0.036  0 0.964 0.000
#> SRR1036024     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036025     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036026     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036027     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036028     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036029     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036030     2  0.4219      0.778 0.000 0.584  0 0.416 0.000
#> SRR1036031     2  0.4219      0.778 0.000 0.584  0 0.416 0.000
#> SRR1036032     2  0.4219      0.778 0.000 0.584  0 0.416 0.000
#> SRR1036033     2  0.4219      0.778 0.000 0.584  0 0.416 0.000
#> SRR1036034     2  0.4219      0.778 0.000 0.584  0 0.416 0.000
#> SRR1036035     2  0.4219      0.778 0.000 0.584  0 0.416 0.000
#> SRR1036036     2  0.4219      0.778 0.000 0.584  0 0.416 0.000
#> SRR1036037     2  0.4219      0.778 0.000 0.584  0 0.416 0.000
#> SRR1036038     5  0.4268      0.628 0.344 0.008  0 0.000 0.648
#> SRR1036039     5  0.4183      0.644 0.324 0.008  0 0.000 0.668
#> SRR1036040     5  0.4283      0.624 0.348 0.008  0 0.000 0.644
#> SRR1036041     1  0.0000      0.887 1.000 0.000  0 0.000 0.000
#> SRR1036042     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036043     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036044     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036045     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036046     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036047     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036048     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036049     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036050     1  0.0000      0.887 1.000 0.000  0 0.000 0.000
#> SRR1036051     1  0.0000      0.887 1.000 0.000  0 0.000 0.000
#> SRR1036052     1  0.0000      0.887 1.000 0.000  0 0.000 0.000
#> SRR1036053     1  0.0000      0.887 1.000 0.000  0 0.000 0.000
#> SRR1036054     1  0.0000      0.887 1.000 0.000  0 0.000 0.000
#> SRR1036055     5  0.4256      0.512 0.436 0.000  0 0.000 0.564
#> SRR1036056     5  0.4273      0.491 0.448 0.000  0 0.000 0.552
#> SRR1036057     5  0.4291      0.457 0.464 0.000  0 0.000 0.536
#> SRR1036058     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036059     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036060     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036061     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036062     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036063     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036064     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036065     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036066     5  0.0000      0.794 0.000 0.000  0 0.000 1.000
#> SRR1036067     5  0.0000      0.794 0.000 0.000  0 0.000 1.000
#> SRR1036068     5  0.0000      0.794 0.000 0.000  0 0.000 1.000
#> SRR1036069     5  0.0000      0.794 0.000 0.000  0 0.000 1.000
#> SRR1036070     5  0.0000      0.794 0.000 0.000  0 0.000 1.000
#> SRR1036071     5  0.0000      0.794 0.000 0.000  0 0.000 1.000
#> SRR1036072     5  0.0000      0.794 0.000 0.000  0 0.000 1.000
#> SRR1036073     5  0.0000      0.794 0.000 0.000  0 0.000 1.000
#> SRR1036074     4  0.0963      0.960 0.000 0.036  0 0.964 0.000
#> SRR1036075     4  0.0963      0.960 0.000 0.036  0 0.964 0.000
#> SRR1036076     4  0.0963      0.960 0.000 0.036  0 0.964 0.000
#> SRR1036077     4  0.0963      0.960 0.000 0.036  0 0.964 0.000
#> SRR1036078     4  0.0963      0.960 0.000 0.036  0 0.964 0.000
#> SRR1036079     4  0.0963      0.960 0.000 0.036  0 0.964 0.000
#> SRR1036080     4  0.0963      0.960 0.000 0.036  0 0.964 0.000
#> SRR1036081     4  0.0963      0.960 0.000 0.036  0 0.964 0.000
#> SRR1036082     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036083     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036084     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036090     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036091     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036092     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036093     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036094     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036085     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036086     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036087     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036088     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036089     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036095     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036096     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036097     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036098     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036099     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036100     4  0.0963      0.960 0.000 0.036  0 0.964 0.000
#> SRR1036101     4  0.0963      0.960 0.000 0.036  0 0.964 0.000
#> SRR1036102     4  0.0963      0.960 0.000 0.036  0 0.964 0.000
#> SRR1036103     4  0.0963      0.960 0.000 0.036  0 0.964 0.000
#> SRR1036104     4  0.0963      0.960 0.000 0.036  0 0.964 0.000
#> SRR1036105     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036106     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036107     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036108     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036109     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1036110     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036111     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036112     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036113     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036114     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036115     2  0.5122      0.175 0.380 0.584  0 0.012 0.024
#> SRR1036116     2  0.5333      0.193 0.368 0.584  0 0.016 0.032
#> SRR1036117     2  0.5251      0.182 0.372 0.584  0 0.012 0.032
#> SRR1036118     2  0.5408      0.201 0.364 0.584  0 0.020 0.032
#> SRR1036119     2  0.5122      0.175 0.380 0.584  0 0.012 0.024
#> SRR1036120     1  0.4126      0.590 0.620 0.380  0 0.000 0.000
#> SRR1036121     1  0.4126      0.590 0.620 0.380  0 0.000 0.000
#> SRR1036122     1  0.4126      0.590 0.620 0.380  0 0.000 0.000
#> SRR1036123     1  0.4126      0.590 0.620 0.380  0 0.000 0.000
#> SRR1036124     1  0.4126      0.590 0.620 0.380  0 0.000 0.000
#> SRR1036125     1  0.0000      0.887 1.000 0.000  0 0.000 0.000
#> SRR1036126     1  0.0000      0.887 1.000 0.000  0 0.000 0.000
#> SRR1036127     1  0.0000      0.887 1.000 0.000  0 0.000 0.000
#> SRR1036128     1  0.0000      0.887 1.000 0.000  0 0.000 0.000
#> SRR1036129     1  0.0000      0.887 1.000 0.000  0 0.000 0.000
#> SRR1036130     1  0.0000      0.887 1.000 0.000  0 0.000 0.000
#> SRR1036131     1  0.0000      0.887 1.000 0.000  0 0.000 0.000
#> SRR1036132     1  0.0000      0.887 1.000 0.000  0 0.000 0.000
#> SRR1036133     2  0.4219      0.778 0.000 0.584  0 0.416 0.000
#> SRR1036134     2  0.4219      0.778 0.000 0.584  0 0.416 0.000
#> SRR1036135     2  0.4219      0.778 0.000 0.584  0 0.416 0.000
#> SRR1036136     2  0.4219      0.778 0.000 0.584  0 0.416 0.000
#> SRR1036137     2  0.4219      0.778 0.000 0.584  0 0.416 0.000
#> SRR1036138     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036139     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036140     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036141     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036142     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036143     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036144     4  0.0000      0.987 0.000 0.000  0 1.000 0.000
#> SRR1036145     4  0.0000      0.987 0.000 0.000  0 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2 p3    p4    p5    p6
#> SRR1036002     3   0.000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036003     3   0.000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036004     3   0.000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036005     3   0.000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036006     3   0.000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036007     3   0.000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036008     3   0.000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036009     3   0.000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036013     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036014     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036015     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036016     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036017     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036018     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036010     1   0.000      0.888 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036011     1   0.000      0.888 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036012     1   0.000      0.888 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036019     5   0.218      1.000 0.000 0.000  0 0.132 0.868 0.000
#> SRR1036020     5   0.218      1.000 0.000 0.000  0 0.132 0.868 0.000
#> SRR1036021     5   0.218      1.000 0.000 0.000  0 0.132 0.868 0.000
#> SRR1036022     5   0.218      1.000 0.000 0.000  0 0.132 0.868 0.000
#> SRR1036023     5   0.218      1.000 0.000 0.000  0 0.132 0.868 0.000
#> SRR1036024     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036025     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036026     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036027     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036028     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036029     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036030     2   0.322      0.861 0.000 0.736  0 0.264 0.000 0.000
#> SRR1036031     2   0.322      0.861 0.000 0.736  0 0.264 0.000 0.000
#> SRR1036032     2   0.322      0.861 0.000 0.736  0 0.264 0.000 0.000
#> SRR1036033     2   0.322      0.861 0.000 0.736  0 0.264 0.000 0.000
#> SRR1036034     2   0.322      0.861 0.000 0.736  0 0.264 0.000 0.000
#> SRR1036035     2   0.322      0.861 0.000 0.736  0 0.264 0.000 0.000
#> SRR1036036     2   0.322      0.861 0.000 0.736  0 0.264 0.000 0.000
#> SRR1036037     2   0.322      0.861 0.000 0.736  0 0.264 0.000 0.000
#> SRR1036038     6   0.462      0.640 0.304 0.064  0 0.000 0.000 0.632
#> SRR1036039     6   0.462      0.640 0.304 0.064  0 0.000 0.000 0.632
#> SRR1036040     6   0.475      0.627 0.312 0.072  0 0.000 0.000 0.616
#> SRR1036041     1   0.000      0.888 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036042     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036043     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036044     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036045     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036046     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036047     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036048     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036049     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036050     1   0.000      0.888 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036051     1   0.000      0.888 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036052     1   0.000      0.888 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036053     1   0.000      0.888 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036054     1   0.000      0.888 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036055     6   0.383      0.504 0.440 0.000  0 0.000 0.000 0.560
#> SRR1036056     6   0.384      0.483 0.452 0.000  0 0.000 0.000 0.548
#> SRR1036057     6   0.386      0.448 0.468 0.000  0 0.000 0.000 0.532
#> SRR1036058     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036059     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036060     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036061     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036062     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036063     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036064     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036065     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036066     6   0.000      0.797 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036067     6   0.000      0.797 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036068     6   0.000      0.797 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036069     6   0.000      0.797 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036070     6   0.000      0.797 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036071     6   0.000      0.797 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036072     6   0.000      0.797 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036073     6   0.000      0.797 0.000 0.000  0 0.000 0.000 1.000
#> SRR1036074     5   0.218      1.000 0.000 0.000  0 0.132 0.868 0.000
#> SRR1036075     5   0.218      1.000 0.000 0.000  0 0.132 0.868 0.000
#> SRR1036076     5   0.218      1.000 0.000 0.000  0 0.132 0.868 0.000
#> SRR1036077     5   0.218      1.000 0.000 0.000  0 0.132 0.868 0.000
#> SRR1036078     5   0.218      1.000 0.000 0.000  0 0.132 0.868 0.000
#> SRR1036079     5   0.218      1.000 0.000 0.000  0 0.132 0.868 0.000
#> SRR1036080     5   0.218      1.000 0.000 0.000  0 0.132 0.868 0.000
#> SRR1036081     5   0.218      1.000 0.000 0.000  0 0.132 0.868 0.000
#> SRR1036082     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036083     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036084     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036090     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036091     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036092     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036093     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036094     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036085     3   0.000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036086     3   0.000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036087     3   0.000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036088     3   0.000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036089     3   0.000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036095     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036096     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036097     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036098     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036099     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036100     5   0.218      1.000 0.000 0.000  0 0.132 0.868 0.000
#> SRR1036101     5   0.218      1.000 0.000 0.000  0 0.132 0.868 0.000
#> SRR1036102     5   0.218      1.000 0.000 0.000  0 0.132 0.868 0.000
#> SRR1036103     5   0.218      1.000 0.000 0.000  0 0.132 0.868 0.000
#> SRR1036104     5   0.218      1.000 0.000 0.000  0 0.132 0.868 0.000
#> SRR1036105     3   0.000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036106     3   0.000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036107     3   0.000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036108     3   0.000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036109     3   0.000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1036110     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036111     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036112     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036113     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036114     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036115     2   0.334      0.548 0.260 0.736  0 0.004 0.000 0.000
#> SRR1036116     2   0.342      0.555 0.256 0.736  0 0.008 0.000 0.000
#> SRR1036117     2   0.334      0.548 0.260 0.736  0 0.004 0.000 0.000
#> SRR1036118     2   0.349      0.561 0.252 0.736  0 0.012 0.000 0.000
#> SRR1036119     2   0.322      0.539 0.264 0.736  0 0.000 0.000 0.000
#> SRR1036120     1   0.515      0.590 0.604 0.264  0 0.000 0.132 0.000
#> SRR1036121     1   0.515      0.590 0.604 0.264  0 0.000 0.132 0.000
#> SRR1036122     1   0.515      0.590 0.604 0.264  0 0.000 0.132 0.000
#> SRR1036123     1   0.515      0.590 0.604 0.264  0 0.000 0.132 0.000
#> SRR1036124     1   0.515      0.590 0.604 0.264  0 0.000 0.132 0.000
#> SRR1036125     1   0.000      0.888 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036126     1   0.000      0.888 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036127     1   0.000      0.888 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036128     1   0.000      0.888 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036129     1   0.000      0.888 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036130     1   0.000      0.888 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036131     1   0.000      0.888 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036132     1   0.000      0.888 1.000 0.000  0 0.000 0.000 0.000
#> SRR1036133     2   0.322      0.861 0.000 0.736  0 0.264 0.000 0.000
#> SRR1036134     2   0.322      0.861 0.000 0.736  0 0.264 0.000 0.000
#> SRR1036135     2   0.322      0.861 0.000 0.736  0 0.264 0.000 0.000
#> SRR1036136     2   0.322      0.861 0.000 0.736  0 0.264 0.000 0.000
#> SRR1036137     2   0.322      0.861 0.000 0.736  0 0.264 0.000 0.000
#> SRR1036138     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036139     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036140     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036141     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036142     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036143     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036144     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000
#> SRR1036145     4   0.000      1.000 0.000 0.000  0 1.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15218 rows and 144 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.510           0.898       0.914         0.4385 0.539   0.539
#> 3 3 0.711           0.907       0.922         0.3926 0.777   0.615
#> 4 4 0.798           0.898       0.935         0.1465 0.916   0.787
#> 5 5 0.818           0.917       0.955         0.0294 0.982   0.943
#> 6 6 0.767           0.595       0.773         0.0962 0.892   0.633

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1036002     1  0.0000      0.964 1.000 0.000
#> SRR1036003     1  0.0000      0.964 1.000 0.000
#> SRR1036004     1  0.0000      0.964 1.000 0.000
#> SRR1036005     1  0.0000      0.964 1.000 0.000
#> SRR1036006     1  0.0000      0.964 1.000 0.000
#> SRR1036007     1  0.0000      0.964 1.000 0.000
#> SRR1036008     1  0.0000      0.964 1.000 0.000
#> SRR1036009     1  0.0000      0.964 1.000 0.000
#> SRR1036013     2  0.6712      0.905 0.176 0.824
#> SRR1036014     2  0.6712      0.905 0.176 0.824
#> SRR1036015     2  0.6712      0.905 0.176 0.824
#> SRR1036016     2  0.6712      0.905 0.176 0.824
#> SRR1036017     2  0.6712      0.905 0.176 0.824
#> SRR1036018     2  0.6712      0.905 0.176 0.824
#> SRR1036010     1  0.0000      0.964 1.000 0.000
#> SRR1036011     1  0.0000      0.964 1.000 0.000
#> SRR1036012     1  0.0000      0.964 1.000 0.000
#> SRR1036019     2  0.7056      0.903 0.192 0.808
#> SRR1036020     2  0.7056      0.903 0.192 0.808
#> SRR1036021     2  0.7056      0.903 0.192 0.808
#> SRR1036022     2  0.7056      0.903 0.192 0.808
#> SRR1036023     2  0.7056      0.903 0.192 0.808
#> SRR1036024     2  0.0000      0.859 0.000 1.000
#> SRR1036025     2  0.0000      0.859 0.000 1.000
#> SRR1036026     2  0.0000      0.859 0.000 1.000
#> SRR1036027     2  0.0000      0.859 0.000 1.000
#> SRR1036028     2  0.0000      0.859 0.000 1.000
#> SRR1036029     2  0.0000      0.859 0.000 1.000
#> SRR1036030     2  0.6887      0.906 0.184 0.816
#> SRR1036031     2  0.6887      0.906 0.184 0.816
#> SRR1036032     2  0.6887      0.906 0.184 0.816
#> SRR1036033     2  0.6887      0.906 0.184 0.816
#> SRR1036034     2  0.6887      0.906 0.184 0.816
#> SRR1036035     2  0.6887      0.906 0.184 0.816
#> SRR1036036     2  0.6887      0.906 0.184 0.816
#> SRR1036037     2  0.6887      0.906 0.184 0.816
#> SRR1036038     1  0.0000      0.964 1.000 0.000
#> SRR1036039     1  0.0000      0.964 1.000 0.000
#> SRR1036040     1  0.0000      0.964 1.000 0.000
#> SRR1036041     1  0.0000      0.964 1.000 0.000
#> SRR1036042     2  0.6887      0.906 0.184 0.816
#> SRR1036043     2  0.6887      0.906 0.184 0.816
#> SRR1036044     2  0.6887      0.906 0.184 0.816
#> SRR1036045     2  0.6887      0.906 0.184 0.816
#> SRR1036046     2  0.6887      0.906 0.184 0.816
#> SRR1036047     2  0.6887      0.906 0.184 0.816
#> SRR1036048     2  0.6887      0.906 0.184 0.816
#> SRR1036049     2  0.6887      0.906 0.184 0.816
#> SRR1036050     1  0.0000      0.964 1.000 0.000
#> SRR1036051     1  0.0000      0.964 1.000 0.000
#> SRR1036052     1  0.0000      0.964 1.000 0.000
#> SRR1036053     1  0.0000      0.964 1.000 0.000
#> SRR1036054     1  0.0000      0.964 1.000 0.000
#> SRR1036055     1  0.0000      0.964 1.000 0.000
#> SRR1036056     1  0.0000      0.964 1.000 0.000
#> SRR1036057     1  0.0000      0.964 1.000 0.000
#> SRR1036058     2  0.0000      0.859 0.000 1.000
#> SRR1036059     2  0.0000      0.859 0.000 1.000
#> SRR1036060     2  0.0000      0.859 0.000 1.000
#> SRR1036061     2  0.0000      0.859 0.000 1.000
#> SRR1036062     2  0.0000      0.859 0.000 1.000
#> SRR1036063     2  0.0000      0.859 0.000 1.000
#> SRR1036064     2  0.0000      0.859 0.000 1.000
#> SRR1036065     2  0.0000      0.859 0.000 1.000
#> SRR1036066     2  0.7056      0.903 0.192 0.808
#> SRR1036067     2  0.7056      0.903 0.192 0.808
#> SRR1036068     2  0.7056      0.903 0.192 0.808
#> SRR1036069     2  0.7056      0.903 0.192 0.808
#> SRR1036070     2  0.7056      0.903 0.192 0.808
#> SRR1036071     2  0.7056      0.903 0.192 0.808
#> SRR1036072     2  0.7056      0.903 0.192 0.808
#> SRR1036073     2  0.7056      0.903 0.192 0.808
#> SRR1036074     2  0.7056      0.903 0.192 0.808
#> SRR1036075     2  0.7056      0.903 0.192 0.808
#> SRR1036076     2  0.7056      0.903 0.192 0.808
#> SRR1036077     2  0.7056      0.903 0.192 0.808
#> SRR1036078     2  0.7056      0.903 0.192 0.808
#> SRR1036079     2  0.7056      0.903 0.192 0.808
#> SRR1036080     2  0.7056      0.903 0.192 0.808
#> SRR1036081     2  0.7056      0.903 0.192 0.808
#> SRR1036082     2  0.0000      0.859 0.000 1.000
#> SRR1036083     2  0.0000      0.859 0.000 1.000
#> SRR1036084     2  0.0000      0.859 0.000 1.000
#> SRR1036090     2  0.0000      0.859 0.000 1.000
#> SRR1036091     2  0.0000      0.859 0.000 1.000
#> SRR1036092     2  0.0000      0.859 0.000 1.000
#> SRR1036093     2  0.0000      0.859 0.000 1.000
#> SRR1036094     2  0.0376      0.860 0.004 0.996
#> SRR1036085     1  0.0000      0.964 1.000 0.000
#> SRR1036086     1  0.0000      0.964 1.000 0.000
#> SRR1036087     1  0.0000      0.964 1.000 0.000
#> SRR1036088     1  0.0000      0.964 1.000 0.000
#> SRR1036089     1  0.0000      0.964 1.000 0.000
#> SRR1036095     2  0.7056      0.903 0.192 0.808
#> SRR1036096     2  0.7056      0.903 0.192 0.808
#> SRR1036097     2  0.7056      0.903 0.192 0.808
#> SRR1036098     2  0.7056      0.903 0.192 0.808
#> SRR1036099     2  0.7056      0.903 0.192 0.808
#> SRR1036100     2  0.7056      0.903 0.192 0.808
#> SRR1036101     2  0.7056      0.903 0.192 0.808
#> SRR1036102     2  0.7056      0.903 0.192 0.808
#> SRR1036103     2  0.7056      0.903 0.192 0.808
#> SRR1036104     2  0.7056      0.903 0.192 0.808
#> SRR1036105     1  0.0000      0.964 1.000 0.000
#> SRR1036106     1  0.0000      0.964 1.000 0.000
#> SRR1036107     1  0.0000      0.964 1.000 0.000
#> SRR1036108     1  0.0000      0.964 1.000 0.000
#> SRR1036109     1  0.0000      0.964 1.000 0.000
#> SRR1036110     2  0.0000      0.859 0.000 1.000
#> SRR1036111     2  0.0000      0.859 0.000 1.000
#> SRR1036112     2  0.0000      0.859 0.000 1.000
#> SRR1036113     2  0.0000      0.859 0.000 1.000
#> SRR1036114     2  0.0000      0.859 0.000 1.000
#> SRR1036115     1  0.8661      0.515 0.712 0.288
#> SRR1036116     1  0.8713      0.506 0.708 0.292
#> SRR1036117     1  0.8763      0.496 0.704 0.296
#> SRR1036118     1  0.8763      0.496 0.704 0.296
#> SRR1036119     1  0.8661      0.515 0.712 0.288
#> SRR1036120     1  0.0000      0.964 1.000 0.000
#> SRR1036121     1  0.0000      0.964 1.000 0.000
#> SRR1036122     1  0.0000      0.964 1.000 0.000
#> SRR1036123     1  0.0000      0.964 1.000 0.000
#> SRR1036124     1  0.0000      0.964 1.000 0.000
#> SRR1036125     1  0.0000      0.964 1.000 0.000
#> SRR1036126     1  0.0000      0.964 1.000 0.000
#> SRR1036127     1  0.0000      0.964 1.000 0.000
#> SRR1036128     1  0.0000      0.964 1.000 0.000
#> SRR1036129     1  0.0000      0.964 1.000 0.000
#> SRR1036130     1  0.0000      0.964 1.000 0.000
#> SRR1036131     1  0.0000      0.964 1.000 0.000
#> SRR1036132     1  0.0000      0.964 1.000 0.000
#> SRR1036133     2  0.6887      0.906 0.184 0.816
#> SRR1036134     2  0.6887      0.906 0.184 0.816
#> SRR1036135     2  0.6887      0.906 0.184 0.816
#> SRR1036136     2  0.6887      0.906 0.184 0.816
#> SRR1036137     2  0.6887      0.906 0.184 0.816
#> SRR1036138     2  0.0000      0.859 0.000 1.000
#> SRR1036139     2  0.0000      0.859 0.000 1.000
#> SRR1036140     2  0.0000      0.859 0.000 1.000
#> SRR1036141     2  0.0000      0.859 0.000 1.000
#> SRR1036142     2  0.0000      0.859 0.000 1.000
#> SRR1036143     2  0.0000      0.859 0.000 1.000
#> SRR1036144     2  0.0000      0.859 0.000 1.000
#> SRR1036145     2  0.0000      0.859 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1036002     1   0.000      0.944 1.000 0.000 0.000
#> SRR1036003     1   0.000      0.944 1.000 0.000 0.000
#> SRR1036004     1   0.000      0.944 1.000 0.000 0.000
#> SRR1036005     1   0.000      0.944 1.000 0.000 0.000
#> SRR1036006     1   0.000      0.944 1.000 0.000 0.000
#> SRR1036007     1   0.000      0.944 1.000 0.000 0.000
#> SRR1036008     1   0.000      0.944 1.000 0.000 0.000
#> SRR1036009     1   0.000      0.944 1.000 0.000 0.000
#> SRR1036013     2   0.427      0.881 0.024 0.860 0.116
#> SRR1036014     2   0.427      0.881 0.024 0.860 0.116
#> SRR1036015     2   0.427      0.881 0.024 0.860 0.116
#> SRR1036016     2   0.427      0.881 0.024 0.860 0.116
#> SRR1036017     2   0.427      0.881 0.024 0.860 0.116
#> SRR1036018     2   0.427      0.881 0.024 0.860 0.116
#> SRR1036010     1   0.164      0.944 0.956 0.000 0.044
#> SRR1036011     1   0.164      0.944 0.956 0.000 0.044
#> SRR1036012     1   0.164      0.944 0.956 0.000 0.044
#> SRR1036019     3   0.388      0.990 0.000 0.152 0.848
#> SRR1036020     3   0.388      0.990 0.000 0.152 0.848
#> SRR1036021     3   0.388      0.990 0.000 0.152 0.848
#> SRR1036022     3   0.388      0.990 0.000 0.152 0.848
#> SRR1036023     3   0.388      0.990 0.000 0.152 0.848
#> SRR1036024     2   0.000      0.905 0.000 1.000 0.000
#> SRR1036025     2   0.000      0.905 0.000 1.000 0.000
#> SRR1036026     2   0.000      0.905 0.000 1.000 0.000
#> SRR1036027     2   0.000      0.905 0.000 1.000 0.000
#> SRR1036028     2   0.000      0.905 0.000 1.000 0.000
#> SRR1036029     2   0.000      0.905 0.000 1.000 0.000
#> SRR1036030     2   0.514      0.869 0.052 0.828 0.120
#> SRR1036031     2   0.514      0.869 0.052 0.828 0.120
#> SRR1036032     2   0.514      0.869 0.052 0.828 0.120
#> SRR1036033     2   0.514      0.869 0.052 0.828 0.120
#> SRR1036034     2   0.514      0.869 0.052 0.828 0.120
#> SRR1036035     2   0.514      0.869 0.052 0.828 0.120
#> SRR1036036     2   0.514      0.869 0.052 0.828 0.120
#> SRR1036037     2   0.514      0.869 0.052 0.828 0.120
#> SRR1036038     1   0.196      0.943 0.944 0.000 0.056
#> SRR1036039     1   0.196      0.943 0.944 0.000 0.056
#> SRR1036040     1   0.196      0.943 0.944 0.000 0.056
#> SRR1036041     1   0.196      0.943 0.944 0.000 0.056
#> SRR1036042     2   0.478      0.875 0.036 0.840 0.124
#> SRR1036043     2   0.478      0.875 0.036 0.840 0.124
#> SRR1036044     2   0.478      0.875 0.036 0.840 0.124
#> SRR1036045     2   0.478      0.875 0.036 0.840 0.124
#> SRR1036046     2   0.478      0.875 0.036 0.840 0.124
#> SRR1036047     2   0.478      0.875 0.036 0.840 0.124
#> SRR1036048     2   0.478      0.875 0.036 0.840 0.124
#> SRR1036049     2   0.478      0.875 0.036 0.840 0.124
#> SRR1036050     1   0.164      0.944 0.956 0.000 0.044
#> SRR1036051     1   0.164      0.944 0.956 0.000 0.044
#> SRR1036052     1   0.164      0.944 0.956 0.000 0.044
#> SRR1036053     1   0.164      0.944 0.956 0.000 0.044
#> SRR1036054     1   0.164      0.944 0.956 0.000 0.044
#> SRR1036055     1   0.196      0.943 0.944 0.000 0.056
#> SRR1036056     1   0.196      0.943 0.944 0.000 0.056
#> SRR1036057     1   0.196      0.943 0.944 0.000 0.056
#> SRR1036058     2   0.000      0.905 0.000 1.000 0.000
#> SRR1036059     2   0.000      0.905 0.000 1.000 0.000
#> SRR1036060     2   0.000      0.905 0.000 1.000 0.000
#> SRR1036061     2   0.000      0.905 0.000 1.000 0.000
#> SRR1036062     2   0.000      0.905 0.000 1.000 0.000
#> SRR1036063     2   0.000      0.905 0.000 1.000 0.000
#> SRR1036064     2   0.000      0.905 0.000 1.000 0.000
#> SRR1036065     2   0.000      0.905 0.000 1.000 0.000
#> SRR1036066     1   0.410      0.831 0.852 0.140 0.008
#> SRR1036067     1   0.410      0.831 0.852 0.140 0.008
#> SRR1036068     1   0.410      0.831 0.852 0.140 0.008
#> SRR1036069     1   0.410      0.831 0.852 0.140 0.008
#> SRR1036070     1   0.410      0.831 0.852 0.140 0.008
#> SRR1036071     1   0.410      0.831 0.852 0.140 0.008
#> SRR1036072     1   0.410      0.831 0.852 0.140 0.008
#> SRR1036073     1   0.410      0.831 0.852 0.140 0.008
#> SRR1036074     3   0.388      0.990 0.000 0.152 0.848
#> SRR1036075     3   0.388      0.990 0.000 0.152 0.848
#> SRR1036076     3   0.388      0.990 0.000 0.152 0.848
#> SRR1036077     3   0.388      0.990 0.000 0.152 0.848
#> SRR1036078     3   0.388      0.990 0.000 0.152 0.848
#> SRR1036079     3   0.388      0.990 0.000 0.152 0.848
#> SRR1036080     3   0.388      0.990 0.000 0.152 0.848
#> SRR1036081     3   0.388      0.990 0.000 0.152 0.848
#> SRR1036082     2   0.000      0.905 0.000 1.000 0.000
#> SRR1036083     2   0.000      0.905 0.000 1.000 0.000
#> SRR1036084     2   0.000      0.905 0.000 1.000 0.000
#> SRR1036090     2   0.000      0.905 0.000 1.000 0.000
#> SRR1036091     2   0.000      0.905 0.000 1.000 0.000
#> SRR1036092     2   0.000      0.905 0.000 1.000 0.000
#> SRR1036093     2   0.000      0.905 0.000 1.000 0.000
#> SRR1036094     2   0.000      0.905 0.000 1.000 0.000
#> SRR1036085     1   0.000      0.944 1.000 0.000 0.000
#> SRR1036086     1   0.000      0.944 1.000 0.000 0.000
#> SRR1036087     1   0.000      0.944 1.000 0.000 0.000
#> SRR1036088     1   0.000      0.944 1.000 0.000 0.000
#> SRR1036089     1   0.000      0.944 1.000 0.000 0.000
#> SRR1036095     2   0.507      0.682 0.012 0.792 0.196
#> SRR1036096     2   0.507      0.682 0.012 0.792 0.196
#> SRR1036097     2   0.507      0.682 0.012 0.792 0.196
#> SRR1036098     2   0.507      0.682 0.012 0.792 0.196
#> SRR1036099     2   0.512      0.675 0.012 0.788 0.200
#> SRR1036100     3   0.348      0.973 0.000 0.128 0.872
#> SRR1036101     3   0.348      0.973 0.000 0.128 0.872
#> SRR1036102     3   0.348      0.973 0.000 0.128 0.872
#> SRR1036103     3   0.348      0.973 0.000 0.128 0.872
#> SRR1036104     3   0.348      0.973 0.000 0.128 0.872
#> SRR1036105     1   0.000      0.944 1.000 0.000 0.000
#> SRR1036106     1   0.000      0.944 1.000 0.000 0.000
#> SRR1036107     1   0.000      0.944 1.000 0.000 0.000
#> SRR1036108     1   0.000      0.944 1.000 0.000 0.000
#> SRR1036109     1   0.000      0.944 1.000 0.000 0.000
#> SRR1036110     2   0.327      0.880 0.000 0.884 0.116
#> SRR1036111     2   0.327      0.880 0.000 0.884 0.116
#> SRR1036112     2   0.327      0.880 0.000 0.884 0.116
#> SRR1036113     2   0.327      0.880 0.000 0.884 0.116
#> SRR1036114     2   0.327      0.880 0.000 0.884 0.116
#> SRR1036115     1   0.518      0.841 0.812 0.032 0.156
#> SRR1036116     1   0.518      0.841 0.812 0.032 0.156
#> SRR1036117     1   0.518      0.841 0.812 0.032 0.156
#> SRR1036118     1   0.518      0.841 0.812 0.032 0.156
#> SRR1036119     1   0.518      0.841 0.812 0.032 0.156
#> SRR1036120     1   0.000      0.944 1.000 0.000 0.000
#> SRR1036121     1   0.000      0.944 1.000 0.000 0.000
#> SRR1036122     1   0.000      0.944 1.000 0.000 0.000
#> SRR1036123     1   0.000      0.944 1.000 0.000 0.000
#> SRR1036124     1   0.000      0.944 1.000 0.000 0.000
#> SRR1036125     1   0.196      0.943 0.944 0.000 0.056
#> SRR1036126     1   0.196      0.943 0.944 0.000 0.056
#> SRR1036127     1   0.196      0.943 0.944 0.000 0.056
#> SRR1036128     1   0.196      0.943 0.944 0.000 0.056
#> SRR1036129     1   0.196      0.943 0.944 0.000 0.056
#> SRR1036130     1   0.196      0.943 0.944 0.000 0.056
#> SRR1036131     1   0.196      0.943 0.944 0.000 0.056
#> SRR1036132     1   0.196      0.943 0.944 0.000 0.056
#> SRR1036133     2   0.210      0.885 0.052 0.944 0.004
#> SRR1036134     2   0.210      0.885 0.052 0.944 0.004
#> SRR1036135     2   0.210      0.885 0.052 0.944 0.004
#> SRR1036136     2   0.210      0.885 0.052 0.944 0.004
#> SRR1036137     2   0.210      0.885 0.052 0.944 0.004
#> SRR1036138     2   0.000      0.905 0.000 1.000 0.000
#> SRR1036139     2   0.000      0.905 0.000 1.000 0.000
#> SRR1036140     2   0.000      0.905 0.000 1.000 0.000
#> SRR1036141     2   0.000      0.905 0.000 1.000 0.000
#> SRR1036142     2   0.000      0.905 0.000 1.000 0.000
#> SRR1036143     2   0.000      0.905 0.000 1.000 0.000
#> SRR1036144     2   0.000      0.905 0.000 1.000 0.000
#> SRR1036145     2   0.000      0.905 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1036002     3  0.0000      0.894 0.000 0.000 1.000 0.000
#> SRR1036003     3  0.0000      0.894 0.000 0.000 1.000 0.000
#> SRR1036004     3  0.0000      0.894 0.000 0.000 1.000 0.000
#> SRR1036005     3  0.0000      0.894 0.000 0.000 1.000 0.000
#> SRR1036006     3  0.0000      0.894 0.000 0.000 1.000 0.000
#> SRR1036007     3  0.0000      0.894 0.000 0.000 1.000 0.000
#> SRR1036008     3  0.0000      0.894 0.000 0.000 1.000 0.000
#> SRR1036009     3  0.0000      0.894 0.000 0.000 1.000 0.000
#> SRR1036013     2  0.0336      0.901 0.008 0.992 0.000 0.000
#> SRR1036014     2  0.0336      0.901 0.008 0.992 0.000 0.000
#> SRR1036015     2  0.0336      0.901 0.008 0.992 0.000 0.000
#> SRR1036016     2  0.0336      0.901 0.008 0.992 0.000 0.000
#> SRR1036017     2  0.0336      0.901 0.008 0.992 0.000 0.000
#> SRR1036018     2  0.0336      0.901 0.008 0.992 0.000 0.000
#> SRR1036010     1  0.0188      0.995 0.996 0.000 0.000 0.004
#> SRR1036011     1  0.0188      0.995 0.996 0.000 0.000 0.004
#> SRR1036012     1  0.0188      0.995 0.996 0.000 0.000 0.004
#> SRR1036019     4  0.0336      0.994 0.000 0.008 0.000 0.992
#> SRR1036020     4  0.0336      0.994 0.000 0.008 0.000 0.992
#> SRR1036021     4  0.0336      0.994 0.000 0.008 0.000 0.992
#> SRR1036022     4  0.0336      0.994 0.000 0.008 0.000 0.992
#> SRR1036023     4  0.0336      0.994 0.000 0.008 0.000 0.992
#> SRR1036024     2  0.0188      0.903 0.000 0.996 0.000 0.004
#> SRR1036025     2  0.0188      0.903 0.000 0.996 0.000 0.004
#> SRR1036026     2  0.0188      0.903 0.000 0.996 0.000 0.004
#> SRR1036027     2  0.0188      0.903 0.000 0.996 0.000 0.004
#> SRR1036028     2  0.0188      0.903 0.000 0.996 0.000 0.004
#> SRR1036029     2  0.0188      0.903 0.000 0.996 0.000 0.004
#> SRR1036030     2  0.4158      0.768 0.224 0.768 0.000 0.008
#> SRR1036031     2  0.4158      0.768 0.224 0.768 0.000 0.008
#> SRR1036032     2  0.4158      0.768 0.224 0.768 0.000 0.008
#> SRR1036033     2  0.4158      0.768 0.224 0.768 0.000 0.008
#> SRR1036034     2  0.4158      0.768 0.224 0.768 0.000 0.008
#> SRR1036035     2  0.4158      0.768 0.224 0.768 0.000 0.008
#> SRR1036036     2  0.4158      0.768 0.224 0.768 0.000 0.008
#> SRR1036037     2  0.4158      0.768 0.224 0.768 0.000 0.008
#> SRR1036038     1  0.0188      0.995 0.996 0.000 0.000 0.004
#> SRR1036039     1  0.0188      0.995 0.996 0.000 0.000 0.004
#> SRR1036040     1  0.0188      0.995 0.996 0.000 0.000 0.004
#> SRR1036041     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR1036042     2  0.3942      0.736 0.000 0.764 0.236 0.000
#> SRR1036043     2  0.3942      0.736 0.000 0.764 0.236 0.000
#> SRR1036044     2  0.3942      0.736 0.000 0.764 0.236 0.000
#> SRR1036045     2  0.3942      0.736 0.000 0.764 0.236 0.000
#> SRR1036046     2  0.3942      0.736 0.000 0.764 0.236 0.000
#> SRR1036047     2  0.3942      0.736 0.000 0.764 0.236 0.000
#> SRR1036048     2  0.3942      0.736 0.000 0.764 0.236 0.000
#> SRR1036049     2  0.3942      0.736 0.000 0.764 0.236 0.000
#> SRR1036050     1  0.0336      0.992 0.992 0.000 0.000 0.008
#> SRR1036051     1  0.0336      0.992 0.992 0.000 0.000 0.008
#> SRR1036052     1  0.0336      0.992 0.992 0.000 0.000 0.008
#> SRR1036053     1  0.0336      0.992 0.992 0.000 0.000 0.008
#> SRR1036054     1  0.0336      0.992 0.992 0.000 0.000 0.008
#> SRR1036055     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR1036056     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR1036057     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR1036058     2  0.0188      0.903 0.000 0.996 0.000 0.004
#> SRR1036059     2  0.0188      0.903 0.000 0.996 0.000 0.004
#> SRR1036060     2  0.0188      0.903 0.000 0.996 0.000 0.004
#> SRR1036061     2  0.0188      0.903 0.000 0.996 0.000 0.004
#> SRR1036062     2  0.0188      0.903 0.000 0.996 0.000 0.004
#> SRR1036063     2  0.0188      0.903 0.000 0.996 0.000 0.004
#> SRR1036064     2  0.0188      0.903 0.000 0.996 0.000 0.004
#> SRR1036065     2  0.0188      0.903 0.000 0.996 0.000 0.004
#> SRR1036066     3  0.4098      0.839 0.204 0.000 0.784 0.012
#> SRR1036067     3  0.4098      0.839 0.204 0.000 0.784 0.012
#> SRR1036068     3  0.4098      0.839 0.204 0.000 0.784 0.012
#> SRR1036069     3  0.4098      0.839 0.204 0.000 0.784 0.012
#> SRR1036070     3  0.4098      0.839 0.204 0.000 0.784 0.012
#> SRR1036071     3  0.4098      0.839 0.204 0.000 0.784 0.012
#> SRR1036072     3  0.4098      0.839 0.204 0.000 0.784 0.012
#> SRR1036073     3  0.4098      0.839 0.204 0.000 0.784 0.012
#> SRR1036074     4  0.0336      0.994 0.000 0.008 0.000 0.992
#> SRR1036075     4  0.0336      0.994 0.000 0.008 0.000 0.992
#> SRR1036076     4  0.0336      0.994 0.000 0.008 0.000 0.992
#> SRR1036077     4  0.0336      0.994 0.000 0.008 0.000 0.992
#> SRR1036078     4  0.0336      0.994 0.000 0.008 0.000 0.992
#> SRR1036079     4  0.0336      0.994 0.000 0.008 0.000 0.992
#> SRR1036080     4  0.0336      0.994 0.000 0.008 0.000 0.992
#> SRR1036081     4  0.0336      0.994 0.000 0.008 0.000 0.992
#> SRR1036082     2  0.0188      0.903 0.000 0.996 0.000 0.004
#> SRR1036083     2  0.0188      0.903 0.000 0.996 0.000 0.004
#> SRR1036084     2  0.0188      0.903 0.000 0.996 0.000 0.004
#> SRR1036090     2  0.0188      0.903 0.000 0.996 0.000 0.004
#> SRR1036091     2  0.0188      0.903 0.000 0.996 0.000 0.004
#> SRR1036092     2  0.0188      0.903 0.000 0.996 0.000 0.004
#> SRR1036093     2  0.0188      0.903 0.000 0.996 0.000 0.004
#> SRR1036094     2  0.0188      0.903 0.000 0.996 0.000 0.004
#> SRR1036085     3  0.0000      0.894 0.000 0.000 1.000 0.000
#> SRR1036086     3  0.0000      0.894 0.000 0.000 1.000 0.000
#> SRR1036087     3  0.0000      0.894 0.000 0.000 1.000 0.000
#> SRR1036088     3  0.0000      0.894 0.000 0.000 1.000 0.000
#> SRR1036089     3  0.0000      0.894 0.000 0.000 1.000 0.000
#> SRR1036095     2  0.4307      0.738 0.024 0.784 0.000 0.192
#> SRR1036096     2  0.4307      0.738 0.024 0.784 0.000 0.192
#> SRR1036097     2  0.4307      0.738 0.024 0.784 0.000 0.192
#> SRR1036098     2  0.4307      0.738 0.024 0.784 0.000 0.192
#> SRR1036099     2  0.4307      0.738 0.024 0.784 0.000 0.192
#> SRR1036100     4  0.0817      0.984 0.000 0.024 0.000 0.976
#> SRR1036101     4  0.0817      0.984 0.000 0.024 0.000 0.976
#> SRR1036102     4  0.0817      0.984 0.000 0.024 0.000 0.976
#> SRR1036103     4  0.0817      0.984 0.000 0.024 0.000 0.976
#> SRR1036104     4  0.0817      0.984 0.000 0.024 0.000 0.976
#> SRR1036105     3  0.0000      0.894 0.000 0.000 1.000 0.000
#> SRR1036106     3  0.0000      0.894 0.000 0.000 1.000 0.000
#> SRR1036107     3  0.0000      0.894 0.000 0.000 1.000 0.000
#> SRR1036108     3  0.0000      0.894 0.000 0.000 1.000 0.000
#> SRR1036109     3  0.0000      0.894 0.000 0.000 1.000 0.000
#> SRR1036110     2  0.0336      0.900 0.000 0.992 0.008 0.000
#> SRR1036111     2  0.0336      0.900 0.000 0.992 0.008 0.000
#> SRR1036112     2  0.0336      0.900 0.000 0.992 0.008 0.000
#> SRR1036113     2  0.0336      0.900 0.000 0.992 0.008 0.000
#> SRR1036114     2  0.0336      0.900 0.000 0.992 0.008 0.000
#> SRR1036115     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR1036116     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR1036117     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR1036118     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR1036119     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR1036120     3  0.4137      0.835 0.208 0.000 0.780 0.012
#> SRR1036121     3  0.4137      0.835 0.208 0.000 0.780 0.012
#> SRR1036122     3  0.4137      0.835 0.208 0.000 0.780 0.012
#> SRR1036123     3  0.4137      0.835 0.208 0.000 0.780 0.012
#> SRR1036124     3  0.4137      0.835 0.208 0.000 0.780 0.012
#> SRR1036125     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR1036126     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR1036127     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR1036128     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR1036129     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR1036130     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR1036131     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR1036132     1  0.0000      0.997 1.000 0.000 0.000 0.000
#> SRR1036133     2  0.4137      0.785 0.208 0.780 0.000 0.012
#> SRR1036134     2  0.4137      0.785 0.208 0.780 0.000 0.012
#> SRR1036135     2  0.4137      0.785 0.208 0.780 0.000 0.012
#> SRR1036136     2  0.4137      0.785 0.208 0.780 0.000 0.012
#> SRR1036137     2  0.4137      0.785 0.208 0.780 0.000 0.012
#> SRR1036138     2  0.0188      0.903 0.000 0.996 0.000 0.004
#> SRR1036139     2  0.0188      0.903 0.000 0.996 0.000 0.004
#> SRR1036140     2  0.0188      0.903 0.000 0.996 0.000 0.004
#> SRR1036141     2  0.0188      0.903 0.000 0.996 0.000 0.004
#> SRR1036142     2  0.0188      0.903 0.000 0.996 0.000 0.004
#> SRR1036143     2  0.0188      0.903 0.000 0.996 0.000 0.004
#> SRR1036144     2  0.0188      0.903 0.000 0.996 0.000 0.004
#> SRR1036145     2  0.0188      0.903 0.000 0.996 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4 p5
#> SRR1036002     3  0.0000      0.934 0.000 0.000 1.000 0.000  0
#> SRR1036003     3  0.0000      0.934 0.000 0.000 1.000 0.000  0
#> SRR1036004     3  0.0000      0.934 0.000 0.000 1.000 0.000  0
#> SRR1036005     3  0.0000      0.934 0.000 0.000 1.000 0.000  0
#> SRR1036006     3  0.0000      0.934 0.000 0.000 1.000 0.000  0
#> SRR1036007     3  0.0000      0.934 0.000 0.000 1.000 0.000  0
#> SRR1036008     3  0.0000      0.934 0.000 0.000 1.000 0.000  0
#> SRR1036009     3  0.0000      0.934 0.000 0.000 1.000 0.000  0
#> SRR1036013     4  0.0324      0.911 0.004 0.000 0.004 0.992  0
#> SRR1036014     4  0.0324      0.911 0.004 0.000 0.004 0.992  0
#> SRR1036015     4  0.0324      0.911 0.004 0.000 0.004 0.992  0
#> SRR1036016     4  0.0324      0.911 0.004 0.000 0.004 0.992  0
#> SRR1036017     4  0.0324      0.911 0.004 0.000 0.004 0.992  0
#> SRR1036018     4  0.0324      0.911 0.004 0.000 0.004 0.992  0
#> SRR1036010     1  0.0000      0.999 1.000 0.000 0.000 0.000  0
#> SRR1036011     1  0.0000      0.999 1.000 0.000 0.000 0.000  0
#> SRR1036012     1  0.0000      0.999 1.000 0.000 0.000 0.000  0
#> SRR1036019     2  0.0000      1.000 0.000 1.000 0.000 0.000  0
#> SRR1036020     2  0.0000      1.000 0.000 1.000 0.000 0.000  0
#> SRR1036021     2  0.0000      1.000 0.000 1.000 0.000 0.000  0
#> SRR1036022     2  0.0000      1.000 0.000 1.000 0.000 0.000  0
#> SRR1036023     2  0.0000      1.000 0.000 1.000 0.000 0.000  0
#> SRR1036024     4  0.0000      0.912 0.000 0.000 0.000 1.000  0
#> SRR1036025     4  0.0000      0.912 0.000 0.000 0.000 1.000  0
#> SRR1036026     4  0.0000      0.912 0.000 0.000 0.000 1.000  0
#> SRR1036027     4  0.0000      0.912 0.000 0.000 0.000 1.000  0
#> SRR1036028     4  0.0000      0.912 0.000 0.000 0.000 1.000  0
#> SRR1036029     4  0.0000      0.912 0.000 0.000 0.000 1.000  0
#> SRR1036030     4  0.3160      0.803 0.188 0.004 0.000 0.808  0
#> SRR1036031     4  0.3160      0.803 0.188 0.004 0.000 0.808  0
#> SRR1036032     4  0.3160      0.803 0.188 0.004 0.000 0.808  0
#> SRR1036033     4  0.3160      0.803 0.188 0.004 0.000 0.808  0
#> SRR1036034     4  0.3160      0.803 0.188 0.004 0.000 0.808  0
#> SRR1036035     4  0.3160      0.803 0.188 0.004 0.000 0.808  0
#> SRR1036036     4  0.3160      0.803 0.188 0.004 0.000 0.808  0
#> SRR1036037     4  0.3160      0.803 0.188 0.004 0.000 0.808  0
#> SRR1036038     1  0.0000      0.999 1.000 0.000 0.000 0.000  0
#> SRR1036039     1  0.0000      0.999 1.000 0.000 0.000 0.000  0
#> SRR1036040     1  0.0000      0.999 1.000 0.000 0.000 0.000  0
#> SRR1036041     1  0.0000      0.999 1.000 0.000 0.000 0.000  0
#> SRR1036042     4  0.3143      0.777 0.000 0.000 0.204 0.796  0
#> SRR1036043     4  0.3143      0.777 0.000 0.000 0.204 0.796  0
#> SRR1036044     4  0.3143      0.777 0.000 0.000 0.204 0.796  0
#> SRR1036045     4  0.3143      0.777 0.000 0.000 0.204 0.796  0
#> SRR1036046     4  0.3143      0.777 0.000 0.000 0.204 0.796  0
#> SRR1036047     4  0.3143      0.777 0.000 0.000 0.204 0.796  0
#> SRR1036048     4  0.3143      0.777 0.000 0.000 0.204 0.796  0
#> SRR1036049     4  0.3143      0.777 0.000 0.000 0.204 0.796  0
#> SRR1036050     1  0.0000      0.999 1.000 0.000 0.000 0.000  0
#> SRR1036051     1  0.0000      0.999 1.000 0.000 0.000 0.000  0
#> SRR1036052     1  0.0000      0.999 1.000 0.000 0.000 0.000  0
#> SRR1036053     1  0.0000      0.999 1.000 0.000 0.000 0.000  0
#> SRR1036054     1  0.0000      0.999 1.000 0.000 0.000 0.000  0
#> SRR1036055     1  0.0000      0.999 1.000 0.000 0.000 0.000  0
#> SRR1036056     1  0.0000      0.999 1.000 0.000 0.000 0.000  0
#> SRR1036057     1  0.0000      0.999 1.000 0.000 0.000 0.000  0
#> SRR1036058     4  0.0000      0.912 0.000 0.000 0.000 1.000  0
#> SRR1036059     4  0.0000      0.912 0.000 0.000 0.000 1.000  0
#> SRR1036060     4  0.0000      0.912 0.000 0.000 0.000 1.000  0
#> SRR1036061     4  0.0000      0.912 0.000 0.000 0.000 1.000  0
#> SRR1036062     4  0.0000      0.912 0.000 0.000 0.000 1.000  0
#> SRR1036063     4  0.0000      0.912 0.000 0.000 0.000 1.000  0
#> SRR1036064     4  0.0000      0.912 0.000 0.000 0.000 1.000  0
#> SRR1036065     4  0.0000      0.912 0.000 0.000 0.000 1.000  0
#> SRR1036066     5  0.0000      1.000 0.000 0.000 0.000 0.000  1
#> SRR1036067     5  0.0000      1.000 0.000 0.000 0.000 0.000  1
#> SRR1036068     5  0.0000      1.000 0.000 0.000 0.000 0.000  1
#> SRR1036069     5  0.0000      1.000 0.000 0.000 0.000 0.000  1
#> SRR1036070     5  0.0000      1.000 0.000 0.000 0.000 0.000  1
#> SRR1036071     5  0.0000      1.000 0.000 0.000 0.000 0.000  1
#> SRR1036072     5  0.0000      1.000 0.000 0.000 0.000 0.000  1
#> SRR1036073     5  0.0000      1.000 0.000 0.000 0.000 0.000  1
#> SRR1036074     2  0.0000      1.000 0.000 1.000 0.000 0.000  0
#> SRR1036075     2  0.0000      1.000 0.000 1.000 0.000 0.000  0
#> SRR1036076     2  0.0000      1.000 0.000 1.000 0.000 0.000  0
#> SRR1036077     2  0.0000      1.000 0.000 1.000 0.000 0.000  0
#> SRR1036078     2  0.0000      1.000 0.000 1.000 0.000 0.000  0
#> SRR1036079     2  0.0000      1.000 0.000 1.000 0.000 0.000  0
#> SRR1036080     2  0.0000      1.000 0.000 1.000 0.000 0.000  0
#> SRR1036081     2  0.0000      1.000 0.000 1.000 0.000 0.000  0
#> SRR1036082     4  0.0000      0.912 0.000 0.000 0.000 1.000  0
#> SRR1036083     4  0.0000      0.912 0.000 0.000 0.000 1.000  0
#> SRR1036084     4  0.0000      0.912 0.000 0.000 0.000 1.000  0
#> SRR1036090     4  0.0000      0.912 0.000 0.000 0.000 1.000  0
#> SRR1036091     4  0.0000      0.912 0.000 0.000 0.000 1.000  0
#> SRR1036092     4  0.0000      0.912 0.000 0.000 0.000 1.000  0
#> SRR1036093     4  0.0000      0.912 0.000 0.000 0.000 1.000  0
#> SRR1036094     4  0.0000      0.912 0.000 0.000 0.000 1.000  0
#> SRR1036085     3  0.0000      0.934 0.000 0.000 1.000 0.000  0
#> SRR1036086     3  0.0000      0.934 0.000 0.000 1.000 0.000  0
#> SRR1036087     3  0.0000      0.934 0.000 0.000 1.000 0.000  0
#> SRR1036088     3  0.0000      0.934 0.000 0.000 1.000 0.000  0
#> SRR1036089     3  0.0000      0.934 0.000 0.000 1.000 0.000  0
#> SRR1036095     4  0.4221      0.684 0.032 0.236 0.000 0.732  0
#> SRR1036096     4  0.4221      0.684 0.032 0.236 0.000 0.732  0
#> SRR1036097     4  0.4221      0.684 0.032 0.236 0.000 0.732  0
#> SRR1036098     4  0.4221      0.684 0.032 0.236 0.000 0.732  0
#> SRR1036099     4  0.4221      0.684 0.032 0.236 0.000 0.732  0
#> SRR1036100     2  0.0000      1.000 0.000 1.000 0.000 0.000  0
#> SRR1036101     2  0.0000      1.000 0.000 1.000 0.000 0.000  0
#> SRR1036102     2  0.0000      1.000 0.000 1.000 0.000 0.000  0
#> SRR1036103     2  0.0000      1.000 0.000 1.000 0.000 0.000  0
#> SRR1036104     2  0.0000      1.000 0.000 1.000 0.000 0.000  0
#> SRR1036105     3  0.0000      0.934 0.000 0.000 1.000 0.000  0
#> SRR1036106     3  0.0000      0.934 0.000 0.000 1.000 0.000  0
#> SRR1036107     3  0.0000      0.934 0.000 0.000 1.000 0.000  0
#> SRR1036108     3  0.0000      0.934 0.000 0.000 1.000 0.000  0
#> SRR1036109     3  0.0000      0.934 0.000 0.000 1.000 0.000  0
#> SRR1036110     4  0.0162      0.911 0.000 0.000 0.004 0.996  0
#> SRR1036111     4  0.0162      0.911 0.000 0.000 0.004 0.996  0
#> SRR1036112     4  0.0162      0.911 0.000 0.000 0.004 0.996  0
#> SRR1036113     4  0.0162      0.911 0.000 0.000 0.004 0.996  0
#> SRR1036114     4  0.0162      0.911 0.000 0.000 0.004 0.996  0
#> SRR1036115     1  0.0162      0.995 0.996 0.000 0.000 0.004  0
#> SRR1036116     1  0.0162      0.995 0.996 0.000 0.000 0.004  0
#> SRR1036117     1  0.0162      0.995 0.996 0.000 0.000 0.004  0
#> SRR1036118     1  0.0162      0.995 0.996 0.000 0.000 0.004  0
#> SRR1036119     1  0.0162      0.995 0.996 0.000 0.000 0.004  0
#> SRR1036120     3  0.3274      0.745 0.220 0.000 0.780 0.000  0
#> SRR1036121     3  0.3274      0.745 0.220 0.000 0.780 0.000  0
#> SRR1036122     3  0.3274      0.745 0.220 0.000 0.780 0.000  0
#> SRR1036123     3  0.3274      0.745 0.220 0.000 0.780 0.000  0
#> SRR1036124     3  0.3274      0.745 0.220 0.000 0.780 0.000  0
#> SRR1036125     1  0.0000      0.999 1.000 0.000 0.000 0.000  0
#> SRR1036126     1  0.0000      0.999 1.000 0.000 0.000 0.000  0
#> SRR1036127     1  0.0000      0.999 1.000 0.000 0.000 0.000  0
#> SRR1036128     1  0.0000      0.999 1.000 0.000 0.000 0.000  0
#> SRR1036129     1  0.0000      0.999 1.000 0.000 0.000 0.000  0
#> SRR1036130     1  0.0000      0.999 1.000 0.000 0.000 0.000  0
#> SRR1036131     1  0.0000      0.999 1.000 0.000 0.000 0.000  0
#> SRR1036132     1  0.0000      0.999 1.000 0.000 0.000 0.000  0
#> SRR1036133     4  0.2848      0.828 0.156 0.004 0.000 0.840  0
#> SRR1036134     4  0.2848      0.828 0.156 0.004 0.000 0.840  0
#> SRR1036135     4  0.2848      0.828 0.156 0.004 0.000 0.840  0
#> SRR1036136     4  0.2848      0.828 0.156 0.004 0.000 0.840  0
#> SRR1036137     4  0.2848      0.828 0.156 0.004 0.000 0.840  0
#> SRR1036138     4  0.0000      0.912 0.000 0.000 0.000 1.000  0
#> SRR1036139     4  0.0000      0.912 0.000 0.000 0.000 1.000  0
#> SRR1036140     4  0.0000      0.912 0.000 0.000 0.000 1.000  0
#> SRR1036141     4  0.0000      0.912 0.000 0.000 0.000 1.000  0
#> SRR1036142     4  0.0000      0.912 0.000 0.000 0.000 1.000  0
#> SRR1036143     4  0.0000      0.912 0.000 0.000 0.000 1.000  0
#> SRR1036144     4  0.0000      0.912 0.000 0.000 0.000 1.000  0
#> SRR1036145     4  0.0000      0.912 0.000 0.000 0.000 1.000  0

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5 p6
#> SRR1036002     3   0.000     0.9351 0.000 0.000 1.000 0.000 0.000  0
#> SRR1036003     3   0.000     0.9351 0.000 0.000 1.000 0.000 0.000  0
#> SRR1036004     3   0.000     0.9351 0.000 0.000 1.000 0.000 0.000  0
#> SRR1036005     3   0.000     0.9351 0.000 0.000 1.000 0.000 0.000  0
#> SRR1036006     3   0.000     0.9351 0.000 0.000 1.000 0.000 0.000  0
#> SRR1036007     3   0.000     0.9351 0.000 0.000 1.000 0.000 0.000  0
#> SRR1036008     3   0.000     0.9351 0.000 0.000 1.000 0.000 0.000  0
#> SRR1036009     3   0.000     0.9351 0.000 0.000 1.000 0.000 0.000  0
#> SRR1036013     4   0.377     0.3998 0.000 0.408 0.000 0.592 0.000  0
#> SRR1036014     4   0.377     0.3998 0.000 0.408 0.000 0.592 0.000  0
#> SRR1036015     4   0.377     0.3998 0.000 0.408 0.000 0.592 0.000  0
#> SRR1036016     4   0.377     0.3998 0.000 0.408 0.000 0.592 0.000  0
#> SRR1036017     4   0.377     0.3998 0.000 0.408 0.000 0.592 0.000  0
#> SRR1036018     4   0.377     0.3998 0.000 0.408 0.000 0.592 0.000  0
#> SRR1036010     1   0.026     0.9955 0.992 0.008 0.000 0.000 0.000  0
#> SRR1036011     1   0.026     0.9955 0.992 0.008 0.000 0.000 0.000  0
#> SRR1036012     1   0.026     0.9955 0.992 0.008 0.000 0.000 0.000  0
#> SRR1036019     5   0.000     1.0000 0.000 0.000 0.000 0.000 1.000  0
#> SRR1036020     5   0.000     1.0000 0.000 0.000 0.000 0.000 1.000  0
#> SRR1036021     5   0.000     1.0000 0.000 0.000 0.000 0.000 1.000  0
#> SRR1036022     5   0.000     1.0000 0.000 0.000 0.000 0.000 1.000  0
#> SRR1036023     5   0.000     1.0000 0.000 0.000 0.000 0.000 1.000  0
#> SRR1036024     2   0.386    -0.2632 0.000 0.520 0.000 0.480 0.000  0
#> SRR1036025     2   0.386    -0.2632 0.000 0.520 0.000 0.480 0.000  0
#> SRR1036026     2   0.386    -0.2632 0.000 0.520 0.000 0.480 0.000  0
#> SRR1036027     2   0.386    -0.2632 0.000 0.520 0.000 0.480 0.000  0
#> SRR1036028     2   0.386    -0.2632 0.000 0.520 0.000 0.480 0.000  0
#> SRR1036029     2   0.386    -0.2632 0.000 0.520 0.000 0.480 0.000  0
#> SRR1036030     2   0.276     0.4483 0.196 0.804 0.000 0.000 0.000  0
#> SRR1036031     2   0.276     0.4483 0.196 0.804 0.000 0.000 0.000  0
#> SRR1036032     2   0.276     0.4483 0.196 0.804 0.000 0.000 0.000  0
#> SRR1036033     2   0.276     0.4483 0.196 0.804 0.000 0.000 0.000  0
#> SRR1036034     2   0.276     0.4483 0.196 0.804 0.000 0.000 0.000  0
#> SRR1036035     2   0.276     0.4483 0.196 0.804 0.000 0.000 0.000  0
#> SRR1036036     2   0.276     0.4483 0.196 0.804 0.000 0.000 0.000  0
#> SRR1036037     2   0.276     0.4483 0.196 0.804 0.000 0.000 0.000  0
#> SRR1036038     1   0.026     0.9955 0.992 0.008 0.000 0.000 0.000  0
#> SRR1036039     1   0.026     0.9955 0.992 0.008 0.000 0.000 0.000  0
#> SRR1036040     1   0.026     0.9955 0.992 0.008 0.000 0.000 0.000  0
#> SRR1036041     1   0.026     0.9955 0.992 0.008 0.000 0.000 0.000  0
#> SRR1036042     4   0.362    -0.1662 0.000 0.000 0.352 0.648 0.000  0
#> SRR1036043     4   0.362    -0.1662 0.000 0.000 0.352 0.648 0.000  0
#> SRR1036044     4   0.362    -0.1662 0.000 0.000 0.352 0.648 0.000  0
#> SRR1036045     4   0.362    -0.1662 0.000 0.000 0.352 0.648 0.000  0
#> SRR1036046     4   0.362    -0.1662 0.000 0.000 0.352 0.648 0.000  0
#> SRR1036047     4   0.362    -0.1662 0.000 0.000 0.352 0.648 0.000  0
#> SRR1036048     4   0.362    -0.1662 0.000 0.000 0.352 0.648 0.000  0
#> SRR1036049     4   0.362    -0.1662 0.000 0.000 0.352 0.648 0.000  0
#> SRR1036050     1   0.000     0.9948 1.000 0.000 0.000 0.000 0.000  0
#> SRR1036051     1   0.000     0.9948 1.000 0.000 0.000 0.000 0.000  0
#> SRR1036052     1   0.000     0.9948 1.000 0.000 0.000 0.000 0.000  0
#> SRR1036053     1   0.000     0.9948 1.000 0.000 0.000 0.000 0.000  0
#> SRR1036054     1   0.000     0.9948 1.000 0.000 0.000 0.000 0.000  0
#> SRR1036055     1   0.026     0.9955 0.992 0.008 0.000 0.000 0.000  0
#> SRR1036056     1   0.026     0.9955 0.992 0.008 0.000 0.000 0.000  0
#> SRR1036057     1   0.026     0.9955 0.992 0.008 0.000 0.000 0.000  0
#> SRR1036058     2   0.377    -0.0756 0.000 0.592 0.000 0.408 0.000  0
#> SRR1036059     2   0.377    -0.0756 0.000 0.592 0.000 0.408 0.000  0
#> SRR1036060     2   0.377    -0.0756 0.000 0.592 0.000 0.408 0.000  0
#> SRR1036061     2   0.377    -0.0756 0.000 0.592 0.000 0.408 0.000  0
#> SRR1036062     2   0.377    -0.0756 0.000 0.592 0.000 0.408 0.000  0
#> SRR1036063     2   0.377    -0.0756 0.000 0.592 0.000 0.408 0.000  0
#> SRR1036064     2   0.377    -0.0756 0.000 0.592 0.000 0.408 0.000  0
#> SRR1036065     2   0.377    -0.0756 0.000 0.592 0.000 0.408 0.000  0
#> SRR1036066     6   0.000     1.0000 0.000 0.000 0.000 0.000 0.000  1
#> SRR1036067     6   0.000     1.0000 0.000 0.000 0.000 0.000 0.000  1
#> SRR1036068     6   0.000     1.0000 0.000 0.000 0.000 0.000 0.000  1
#> SRR1036069     6   0.000     1.0000 0.000 0.000 0.000 0.000 0.000  1
#> SRR1036070     6   0.000     1.0000 0.000 0.000 0.000 0.000 0.000  1
#> SRR1036071     6   0.000     1.0000 0.000 0.000 0.000 0.000 0.000  1
#> SRR1036072     6   0.000     1.0000 0.000 0.000 0.000 0.000 0.000  1
#> SRR1036073     6   0.000     1.0000 0.000 0.000 0.000 0.000 0.000  1
#> SRR1036074     5   0.000     1.0000 0.000 0.000 0.000 0.000 1.000  0
#> SRR1036075     5   0.000     1.0000 0.000 0.000 0.000 0.000 1.000  0
#> SRR1036076     5   0.000     1.0000 0.000 0.000 0.000 0.000 1.000  0
#> SRR1036077     5   0.000     1.0000 0.000 0.000 0.000 0.000 1.000  0
#> SRR1036078     5   0.000     1.0000 0.000 0.000 0.000 0.000 1.000  0
#> SRR1036079     5   0.000     1.0000 0.000 0.000 0.000 0.000 1.000  0
#> SRR1036080     5   0.000     1.0000 0.000 0.000 0.000 0.000 1.000  0
#> SRR1036081     5   0.000     1.0000 0.000 0.000 0.000 0.000 1.000  0
#> SRR1036082     4   0.386     0.3394 0.000 0.468 0.000 0.532 0.000  0
#> SRR1036083     4   0.386     0.3394 0.000 0.468 0.000 0.532 0.000  0
#> SRR1036084     4   0.386     0.3394 0.000 0.468 0.000 0.532 0.000  0
#> SRR1036090     2   0.377    -0.0756 0.000 0.592 0.000 0.408 0.000  0
#> SRR1036091     2   0.377    -0.0756 0.000 0.592 0.000 0.408 0.000  0
#> SRR1036092     2   0.377    -0.0756 0.000 0.592 0.000 0.408 0.000  0
#> SRR1036093     2   0.379    -0.0992 0.000 0.584 0.000 0.416 0.000  0
#> SRR1036094     2   0.377    -0.0756 0.000 0.592 0.000 0.408 0.000  0
#> SRR1036085     3   0.000     0.9351 0.000 0.000 1.000 0.000 0.000  0
#> SRR1036086     3   0.000     0.9351 0.000 0.000 1.000 0.000 0.000  0
#> SRR1036087     3   0.000     0.9351 0.000 0.000 1.000 0.000 0.000  0
#> SRR1036088     3   0.000     0.9351 0.000 0.000 1.000 0.000 0.000  0
#> SRR1036089     3   0.000     0.9351 0.000 0.000 1.000 0.000 0.000  0
#> SRR1036095     2   0.525     0.3384 0.176 0.624 0.000 0.004 0.196  0
#> SRR1036096     2   0.525     0.3384 0.176 0.624 0.000 0.004 0.196  0
#> SRR1036097     2   0.525     0.3384 0.176 0.624 0.000 0.004 0.196  0
#> SRR1036098     2   0.525     0.3384 0.176 0.624 0.000 0.004 0.196  0
#> SRR1036099     2   0.525     0.3384 0.176 0.624 0.000 0.004 0.196  0
#> SRR1036100     5   0.000     1.0000 0.000 0.000 0.000 0.000 1.000  0
#> SRR1036101     5   0.000     1.0000 0.000 0.000 0.000 0.000 1.000  0
#> SRR1036102     5   0.000     1.0000 0.000 0.000 0.000 0.000 1.000  0
#> SRR1036103     5   0.000     1.0000 0.000 0.000 0.000 0.000 1.000  0
#> SRR1036104     5   0.000     1.0000 0.000 0.000 0.000 0.000 1.000  0
#> SRR1036105     3   0.000     0.9351 0.000 0.000 1.000 0.000 0.000  0
#> SRR1036106     3   0.000     0.9351 0.000 0.000 1.000 0.000 0.000  0
#> SRR1036107     3   0.000     0.9351 0.000 0.000 1.000 0.000 0.000  0
#> SRR1036108     3   0.000     0.9351 0.000 0.000 1.000 0.000 0.000  0
#> SRR1036109     3   0.000     0.9351 0.000 0.000 1.000 0.000 0.000  0
#> SRR1036110     4   0.365     0.4053 0.000 0.360 0.000 0.640 0.000  0
#> SRR1036111     4   0.365     0.4053 0.000 0.360 0.000 0.640 0.000  0
#> SRR1036112     4   0.365     0.4053 0.000 0.360 0.000 0.640 0.000  0
#> SRR1036113     4   0.365     0.4053 0.000 0.360 0.000 0.640 0.000  0
#> SRR1036114     4   0.365     0.4053 0.000 0.360 0.000 0.640 0.000  0
#> SRR1036115     1   0.026     0.9955 0.992 0.008 0.000 0.000 0.000  0
#> SRR1036116     1   0.026     0.9955 0.992 0.008 0.000 0.000 0.000  0
#> SRR1036117     1   0.026     0.9955 0.992 0.008 0.000 0.000 0.000  0
#> SRR1036118     1   0.026     0.9955 0.992 0.008 0.000 0.000 0.000  0
#> SRR1036119     1   0.026     0.9955 0.992 0.008 0.000 0.000 0.000  0
#> SRR1036120     3   0.294     0.7500 0.220 0.000 0.780 0.000 0.000  0
#> SRR1036121     3   0.294     0.7500 0.220 0.000 0.780 0.000 0.000  0
#> SRR1036122     3   0.294     0.7500 0.220 0.000 0.780 0.000 0.000  0
#> SRR1036123     3   0.294     0.7500 0.220 0.000 0.780 0.000 0.000  0
#> SRR1036124     3   0.294     0.7500 0.220 0.000 0.780 0.000 0.000  0
#> SRR1036125     1   0.000     0.9948 1.000 0.000 0.000 0.000 0.000  0
#> SRR1036126     1   0.000     0.9948 1.000 0.000 0.000 0.000 0.000  0
#> SRR1036127     1   0.000     0.9948 1.000 0.000 0.000 0.000 0.000  0
#> SRR1036128     1   0.000     0.9948 1.000 0.000 0.000 0.000 0.000  0
#> SRR1036129     1   0.000     0.9948 1.000 0.000 0.000 0.000 0.000  0
#> SRR1036130     1   0.000     0.9948 1.000 0.000 0.000 0.000 0.000  0
#> SRR1036131     1   0.000     0.9948 1.000 0.000 0.000 0.000 0.000  0
#> SRR1036132     1   0.000     0.9948 1.000 0.000 0.000 0.000 0.000  0
#> SRR1036133     2   0.440     0.4153 0.208 0.704 0.000 0.088 0.000  0
#> SRR1036134     2   0.440     0.4153 0.208 0.704 0.000 0.088 0.000  0
#> SRR1036135     2   0.440     0.4153 0.208 0.704 0.000 0.088 0.000  0
#> SRR1036136     2   0.440     0.4153 0.208 0.704 0.000 0.088 0.000  0
#> SRR1036137     2   0.440     0.4153 0.208 0.704 0.000 0.088 0.000  0
#> SRR1036138     4   0.387     0.3026 0.000 0.492 0.000 0.508 0.000  0
#> SRR1036139     4   0.387     0.2945 0.000 0.496 0.000 0.504 0.000  0
#> SRR1036140     4   0.387     0.2945 0.000 0.496 0.000 0.504 0.000  0
#> SRR1036141     4   0.387     0.2945 0.000 0.496 0.000 0.504 0.000  0
#> SRR1036142     4   0.387     0.3026 0.000 0.492 0.000 0.508 0.000  0
#> SRR1036143     4   0.387     0.3026 0.000 0.492 0.000 0.508 0.000  0
#> SRR1036144     4   0.387     0.3026 0.000 0.492 0.000 0.508 0.000  0
#> SRR1036145     4   0.387     0.2945 0.000 0.496 0.000 0.504 0.000  0

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15218 rows and 144 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.960       0.979         0.4111 0.573   0.573
#> 3 3 0.725           0.664       0.849         0.3783 0.788   0.669
#> 4 4 0.791           0.855       0.925         0.1858 0.723   0.504
#> 5 5 0.684           0.749       0.809         0.0854 0.933   0.817
#> 6 6 0.672           0.640       0.737         0.0710 0.828   0.506

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1036002     2  0.0000      0.998 0.000 1.000
#> SRR1036003     2  0.0000      0.998 0.000 1.000
#> SRR1036004     2  0.0000      0.998 0.000 1.000
#> SRR1036005     2  0.0000      0.998 0.000 1.000
#> SRR1036006     2  0.0000      0.998 0.000 1.000
#> SRR1036007     2  0.0000      0.998 0.000 1.000
#> SRR1036008     2  0.0000      0.998 0.000 1.000
#> SRR1036009     2  0.0000      0.998 0.000 1.000
#> SRR1036013     2  0.0000      0.998 0.000 1.000
#> SRR1036014     2  0.0000      0.998 0.000 1.000
#> SRR1036015     2  0.0000      0.998 0.000 1.000
#> SRR1036016     2  0.0000      0.998 0.000 1.000
#> SRR1036017     2  0.0000      0.998 0.000 1.000
#> SRR1036018     2  0.0000      0.998 0.000 1.000
#> SRR1036010     1  0.0000      0.934 1.000 0.000
#> SRR1036011     1  0.0000      0.934 1.000 0.000
#> SRR1036012     1  0.0000      0.934 1.000 0.000
#> SRR1036019     2  0.0000      0.998 0.000 1.000
#> SRR1036020     2  0.0000      0.998 0.000 1.000
#> SRR1036021     2  0.0000      0.998 0.000 1.000
#> SRR1036022     2  0.0000      0.998 0.000 1.000
#> SRR1036023     2  0.0000      0.998 0.000 1.000
#> SRR1036024     2  0.0000      0.998 0.000 1.000
#> SRR1036025     2  0.0000      0.998 0.000 1.000
#> SRR1036026     2  0.0000      0.998 0.000 1.000
#> SRR1036027     2  0.0000      0.998 0.000 1.000
#> SRR1036028     2  0.0000      0.998 0.000 1.000
#> SRR1036029     2  0.0000      0.998 0.000 1.000
#> SRR1036030     1  0.1184      0.930 0.984 0.016
#> SRR1036031     1  0.1184      0.930 0.984 0.016
#> SRR1036032     1  0.1184      0.930 0.984 0.016
#> SRR1036033     1  0.1184      0.930 0.984 0.016
#> SRR1036034     1  0.0672      0.932 0.992 0.008
#> SRR1036035     1  0.1843      0.924 0.972 0.028
#> SRR1036036     1  0.1843      0.924 0.972 0.028
#> SRR1036037     1  0.1184      0.930 0.984 0.016
#> SRR1036038     1  0.4161      0.887 0.916 0.084
#> SRR1036039     1  0.3879      0.893 0.924 0.076
#> SRR1036040     1  0.3114      0.907 0.944 0.056
#> SRR1036041     1  0.0000      0.934 1.000 0.000
#> SRR1036042     2  0.0000      0.998 0.000 1.000
#> SRR1036043     2  0.0000      0.998 0.000 1.000
#> SRR1036044     2  0.0000      0.998 0.000 1.000
#> SRR1036045     2  0.0000      0.998 0.000 1.000
#> SRR1036046     2  0.0000      0.998 0.000 1.000
#> SRR1036047     2  0.0000      0.998 0.000 1.000
#> SRR1036048     2  0.0000      0.998 0.000 1.000
#> SRR1036049     2  0.0000      0.998 0.000 1.000
#> SRR1036050     1  0.0000      0.934 1.000 0.000
#> SRR1036051     1  0.0000      0.934 1.000 0.000
#> SRR1036052     1  0.0000      0.934 1.000 0.000
#> SRR1036053     1  0.0000      0.934 1.000 0.000
#> SRR1036054     1  0.0000      0.934 1.000 0.000
#> SRR1036055     1  0.0000      0.934 1.000 0.000
#> SRR1036056     1  0.0000      0.934 1.000 0.000
#> SRR1036057     1  0.0000      0.934 1.000 0.000
#> SRR1036058     2  0.0000      0.998 0.000 1.000
#> SRR1036059     2  0.0000      0.998 0.000 1.000
#> SRR1036060     2  0.0000      0.998 0.000 1.000
#> SRR1036061     2  0.0000      0.998 0.000 1.000
#> SRR1036062     2  0.0000      0.998 0.000 1.000
#> SRR1036063     2  0.0000      0.998 0.000 1.000
#> SRR1036064     2  0.0000      0.998 0.000 1.000
#> SRR1036065     2  0.0000      0.998 0.000 1.000
#> SRR1036066     1  0.8909      0.643 0.692 0.308
#> SRR1036067     1  0.8909      0.644 0.692 0.308
#> SRR1036068     1  0.8608      0.678 0.716 0.284
#> SRR1036069     1  0.9129      0.607 0.672 0.328
#> SRR1036070     1  0.8813      0.656 0.700 0.300
#> SRR1036071     1  0.8909      0.644 0.692 0.308
#> SRR1036072     1  0.8813      0.656 0.700 0.300
#> SRR1036073     1  0.8955      0.637 0.688 0.312
#> SRR1036074     2  0.0000      0.998 0.000 1.000
#> SRR1036075     2  0.0000      0.998 0.000 1.000
#> SRR1036076     2  0.0000      0.998 0.000 1.000
#> SRR1036077     2  0.0000      0.998 0.000 1.000
#> SRR1036078     2  0.0000      0.998 0.000 1.000
#> SRR1036079     2  0.0000      0.998 0.000 1.000
#> SRR1036080     2  0.0000      0.998 0.000 1.000
#> SRR1036081     2  0.0000      0.998 0.000 1.000
#> SRR1036082     2  0.0000      0.998 0.000 1.000
#> SRR1036083     2  0.0000      0.998 0.000 1.000
#> SRR1036084     2  0.0000      0.998 0.000 1.000
#> SRR1036090     2  0.0000      0.998 0.000 1.000
#> SRR1036091     2  0.0000      0.998 0.000 1.000
#> SRR1036092     2  0.0000      0.998 0.000 1.000
#> SRR1036093     2  0.0000      0.998 0.000 1.000
#> SRR1036094     2  0.0000      0.998 0.000 1.000
#> SRR1036085     2  0.0000      0.998 0.000 1.000
#> SRR1036086     2  0.0000      0.998 0.000 1.000
#> SRR1036087     2  0.0000      0.998 0.000 1.000
#> SRR1036088     2  0.0000      0.998 0.000 1.000
#> SRR1036089     2  0.0000      0.998 0.000 1.000
#> SRR1036095     2  0.1414      0.979 0.020 0.980
#> SRR1036096     2  0.1414      0.979 0.020 0.980
#> SRR1036097     2  0.1414      0.979 0.020 0.980
#> SRR1036098     2  0.1414      0.979 0.020 0.980
#> SRR1036099     2  0.2603      0.953 0.044 0.956
#> SRR1036100     2  0.0000      0.998 0.000 1.000
#> SRR1036101     2  0.0000      0.998 0.000 1.000
#> SRR1036102     2  0.0000      0.998 0.000 1.000
#> SRR1036103     2  0.0000      0.998 0.000 1.000
#> SRR1036104     2  0.0000      0.998 0.000 1.000
#> SRR1036105     2  0.0000      0.998 0.000 1.000
#> SRR1036106     2  0.0000      0.998 0.000 1.000
#> SRR1036107     2  0.0000      0.998 0.000 1.000
#> SRR1036108     2  0.0000      0.998 0.000 1.000
#> SRR1036109     2  0.0000      0.998 0.000 1.000
#> SRR1036110     2  0.0000      0.998 0.000 1.000
#> SRR1036111     2  0.0000      0.998 0.000 1.000
#> SRR1036112     2  0.0000      0.998 0.000 1.000
#> SRR1036113     2  0.0000      0.998 0.000 1.000
#> SRR1036114     2  0.0000      0.998 0.000 1.000
#> SRR1036115     1  0.0000      0.934 1.000 0.000
#> SRR1036116     1  0.0000      0.934 1.000 0.000
#> SRR1036117     1  0.0000      0.934 1.000 0.000
#> SRR1036118     1  0.0000      0.934 1.000 0.000
#> SRR1036119     1  0.0000      0.934 1.000 0.000
#> SRR1036120     2  0.0000      0.998 0.000 1.000
#> SRR1036121     2  0.0000      0.998 0.000 1.000
#> SRR1036122     2  0.0000      0.998 0.000 1.000
#> SRR1036123     2  0.0000      0.998 0.000 1.000
#> SRR1036124     2  0.0000      0.998 0.000 1.000
#> SRR1036125     1  0.0000      0.934 1.000 0.000
#> SRR1036126     1  0.0000      0.934 1.000 0.000
#> SRR1036127     1  0.0000      0.934 1.000 0.000
#> SRR1036128     1  0.0000      0.934 1.000 0.000
#> SRR1036129     1  0.0000      0.934 1.000 0.000
#> SRR1036130     1  0.0000      0.934 1.000 0.000
#> SRR1036131     1  0.0000      0.934 1.000 0.000
#> SRR1036132     1  0.0000      0.934 1.000 0.000
#> SRR1036133     2  0.0672      0.991 0.008 0.992
#> SRR1036134     2  0.0672      0.991 0.008 0.992
#> SRR1036135     2  0.0672      0.991 0.008 0.992
#> SRR1036136     2  0.0376      0.995 0.004 0.996
#> SRR1036137     2  0.0672      0.991 0.008 0.992
#> SRR1036138     2  0.0000      0.998 0.000 1.000
#> SRR1036139     2  0.0000      0.998 0.000 1.000
#> SRR1036140     2  0.0000      0.998 0.000 1.000
#> SRR1036141     2  0.0000      0.998 0.000 1.000
#> SRR1036142     2  0.0000      0.998 0.000 1.000
#> SRR1036143     2  0.0000      0.998 0.000 1.000
#> SRR1036144     2  0.0000      0.998 0.000 1.000
#> SRR1036145     2  0.0000      0.998 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1036002     3  0.6309      0.994 0.000 0.500 0.500
#> SRR1036003     3  0.6309      0.994 0.000 0.500 0.500
#> SRR1036004     2  0.6309     -0.995 0.000 0.500 0.500
#> SRR1036005     2  0.6309     -0.990 0.000 0.504 0.496
#> SRR1036006     2  0.6309     -0.990 0.000 0.504 0.496
#> SRR1036007     2  0.6309     -0.990 0.000 0.504 0.496
#> SRR1036008     2  0.6309     -0.990 0.000 0.504 0.496
#> SRR1036009     2  0.6309     -0.990 0.000 0.504 0.496
#> SRR1036013     2  0.6225      0.819 0.000 0.568 0.432
#> SRR1036014     2  0.6215      0.817 0.000 0.572 0.428
#> SRR1036015     2  0.6225      0.819 0.000 0.568 0.432
#> SRR1036016     2  0.6204      0.816 0.000 0.576 0.424
#> SRR1036017     2  0.6225      0.819 0.000 0.568 0.432
#> SRR1036018     2  0.6225      0.819 0.000 0.568 0.432
#> SRR1036010     1  0.2537      0.809 0.920 0.000 0.080
#> SRR1036011     1  0.2356      0.808 0.928 0.000 0.072
#> SRR1036012     1  0.2537      0.809 0.920 0.000 0.080
#> SRR1036019     2  0.6225      0.818 0.000 0.568 0.432
#> SRR1036020     2  0.6225      0.818 0.000 0.568 0.432
#> SRR1036021     2  0.6225      0.818 0.000 0.568 0.432
#> SRR1036022     2  0.6225      0.818 0.000 0.568 0.432
#> SRR1036023     2  0.6225      0.818 0.000 0.568 0.432
#> SRR1036024     2  0.6291      0.816 0.000 0.532 0.468
#> SRR1036025     2  0.6291      0.816 0.000 0.532 0.468
#> SRR1036026     2  0.6291      0.816 0.000 0.532 0.468
#> SRR1036027     2  0.6291      0.816 0.000 0.532 0.468
#> SRR1036028     2  0.6291      0.816 0.000 0.532 0.468
#> SRR1036029     2  0.6291      0.816 0.000 0.532 0.468
#> SRR1036030     2  0.7186      0.798 0.024 0.500 0.476
#> SRR1036031     2  0.7186      0.798 0.024 0.500 0.476
#> SRR1036032     2  0.7186      0.798 0.024 0.500 0.476
#> SRR1036033     2  0.7186      0.798 0.024 0.500 0.476
#> SRR1036034     2  0.7186      0.798 0.024 0.500 0.476
#> SRR1036035     2  0.7186      0.798 0.024 0.500 0.476
#> SRR1036036     2  0.7184      0.801 0.024 0.504 0.472
#> SRR1036037     2  0.7186      0.798 0.024 0.500 0.476
#> SRR1036038     1  0.1315      0.802 0.972 0.020 0.008
#> SRR1036039     1  0.1315      0.802 0.972 0.020 0.008
#> SRR1036040     1  0.1315      0.802 0.972 0.020 0.008
#> SRR1036041     1  0.0747      0.800 0.984 0.000 0.016
#> SRR1036042     2  0.0592      0.142 0.000 0.988 0.012
#> SRR1036043     2  0.0000      0.177 0.000 1.000 0.000
#> SRR1036044     2  0.0237      0.166 0.000 0.996 0.004
#> SRR1036045     2  0.0592      0.142 0.000 0.988 0.012
#> SRR1036046     2  0.0000      0.177 0.000 1.000 0.000
#> SRR1036047     2  0.0747      0.129 0.000 0.984 0.016
#> SRR1036048     2  0.0892      0.116 0.000 0.980 0.020
#> SRR1036049     2  0.1031      0.103 0.000 0.976 0.024
#> SRR1036050     1  0.1289      0.805 0.968 0.000 0.032
#> SRR1036051     1  0.1411      0.804 0.964 0.000 0.036
#> SRR1036052     1  0.1411      0.804 0.964 0.000 0.036
#> SRR1036053     1  0.1411      0.804 0.964 0.000 0.036
#> SRR1036054     1  0.1163      0.803 0.972 0.000 0.028
#> SRR1036055     1  0.3038      0.805 0.896 0.000 0.104
#> SRR1036056     1  0.3116      0.804 0.892 0.000 0.108
#> SRR1036057     1  0.2878      0.807 0.904 0.000 0.096
#> SRR1036058     2  0.6274      0.820 0.000 0.544 0.456
#> SRR1036059     2  0.6267      0.820 0.000 0.548 0.452
#> SRR1036060     2  0.6267      0.820 0.000 0.548 0.452
#> SRR1036061     2  0.6274      0.820 0.000 0.544 0.456
#> SRR1036062     2  0.6274      0.820 0.000 0.544 0.456
#> SRR1036063     2  0.6274      0.820 0.000 0.544 0.456
#> SRR1036064     2  0.6274      0.820 0.000 0.544 0.456
#> SRR1036065     2  0.6274      0.820 0.000 0.544 0.456
#> SRR1036066     1  0.7815      0.675 0.644 0.096 0.260
#> SRR1036067     1  0.7848      0.669 0.640 0.096 0.264
#> SRR1036068     1  0.7815      0.675 0.644 0.096 0.260
#> SRR1036069     1  0.7530      0.702 0.664 0.084 0.252
#> SRR1036070     1  0.7782      0.679 0.648 0.096 0.256
#> SRR1036071     1  0.7411      0.703 0.668 0.076 0.256
#> SRR1036072     1  0.7605      0.694 0.660 0.088 0.252
#> SRR1036073     1  0.7599      0.691 0.656 0.084 0.260
#> SRR1036074     2  0.6235      0.819 0.000 0.564 0.436
#> SRR1036075     2  0.6225      0.818 0.000 0.568 0.432
#> SRR1036076     2  0.6235      0.819 0.000 0.564 0.436
#> SRR1036077     2  0.6235      0.819 0.000 0.564 0.436
#> SRR1036078     2  0.6235      0.819 0.000 0.564 0.436
#> SRR1036079     2  0.6235      0.819 0.000 0.564 0.436
#> SRR1036080     2  0.6235      0.819 0.000 0.564 0.436
#> SRR1036081     2  0.6235      0.819 0.000 0.564 0.436
#> SRR1036082     2  0.6779      0.803 0.012 0.544 0.444
#> SRR1036083     2  0.6779      0.803 0.012 0.544 0.444
#> SRR1036084     2  0.6779      0.803 0.012 0.544 0.444
#> SRR1036090     2  0.6299      0.816 0.000 0.524 0.476
#> SRR1036091     2  0.6299      0.816 0.000 0.524 0.476
#> SRR1036092     2  0.6299      0.816 0.000 0.524 0.476
#> SRR1036093     2  0.6299      0.816 0.000 0.524 0.476
#> SRR1036094     2  0.6299      0.816 0.000 0.524 0.476
#> SRR1036085     3  0.6309      0.994 0.000 0.500 0.500
#> SRR1036086     3  0.6309      0.994 0.000 0.500 0.500
#> SRR1036087     3  0.6309      0.994 0.000 0.500 0.500
#> SRR1036088     3  0.6309      0.994 0.000 0.500 0.500
#> SRR1036089     3  0.6309      0.994 0.000 0.500 0.500
#> SRR1036095     2  0.6931      0.816 0.016 0.528 0.456
#> SRR1036096     2  0.6799      0.817 0.012 0.532 0.456
#> SRR1036097     2  0.6931      0.816 0.016 0.528 0.456
#> SRR1036098     2  0.6659      0.818 0.008 0.532 0.460
#> SRR1036099     2  0.7164      0.813 0.024 0.524 0.452
#> SRR1036100     2  0.6451      0.818 0.004 0.560 0.436
#> SRR1036101     2  0.6451      0.818 0.004 0.560 0.436
#> SRR1036102     2  0.6451      0.818 0.004 0.560 0.436
#> SRR1036103     2  0.6451      0.818 0.004 0.560 0.436
#> SRR1036104     2  0.6451      0.818 0.004 0.560 0.436
#> SRR1036105     2  0.6309     -0.995 0.000 0.500 0.500
#> SRR1036106     2  0.6309     -0.995 0.000 0.500 0.500
#> SRR1036107     2  0.6309     -0.995 0.000 0.500 0.500
#> SRR1036108     3  0.6309      0.994 0.000 0.500 0.500
#> SRR1036109     3  0.6309      0.994 0.000 0.500 0.500
#> SRR1036110     2  0.5785      0.752 0.000 0.668 0.332
#> SRR1036111     2  0.5835      0.758 0.000 0.660 0.340
#> SRR1036112     2  0.5835      0.758 0.000 0.660 0.340
#> SRR1036113     2  0.5859      0.759 0.000 0.656 0.344
#> SRR1036114     2  0.5835      0.756 0.000 0.660 0.340
#> SRR1036115     1  0.6490      0.623 0.628 0.012 0.360
#> SRR1036116     1  0.6629      0.617 0.624 0.016 0.360
#> SRR1036117     1  0.6490      0.623 0.628 0.012 0.360
#> SRR1036118     1  0.6490      0.623 0.628 0.012 0.360
#> SRR1036119     1  0.6490      0.623 0.628 0.012 0.360
#> SRR1036120     3  0.6307      0.989 0.000 0.488 0.512
#> SRR1036121     3  0.6307      0.989 0.000 0.488 0.512
#> SRR1036122     3  0.6307      0.989 0.000 0.488 0.512
#> SRR1036123     3  0.6307      0.989 0.000 0.488 0.512
#> SRR1036124     3  0.6307      0.989 0.000 0.488 0.512
#> SRR1036125     1  0.1031      0.800 0.976 0.000 0.024
#> SRR1036126     1  0.1031      0.800 0.976 0.000 0.024
#> SRR1036127     1  0.1031      0.800 0.976 0.000 0.024
#> SRR1036128     1  0.1031      0.800 0.976 0.000 0.024
#> SRR1036129     1  0.1031      0.800 0.976 0.000 0.024
#> SRR1036130     1  0.1031      0.800 0.976 0.000 0.024
#> SRR1036131     1  0.1031      0.800 0.976 0.000 0.024
#> SRR1036132     1  0.1031      0.800 0.976 0.000 0.024
#> SRR1036133     2  0.6513      0.815 0.004 0.520 0.476
#> SRR1036134     2  0.6302      0.815 0.000 0.520 0.480
#> SRR1036135     2  0.6513      0.815 0.004 0.520 0.476
#> SRR1036136     2  0.6302      0.815 0.000 0.520 0.480
#> SRR1036137     2  0.6513      0.815 0.004 0.520 0.476
#> SRR1036138     2  0.6291      0.816 0.000 0.532 0.468
#> SRR1036139     2  0.6291      0.816 0.000 0.532 0.468
#> SRR1036140     2  0.6291      0.816 0.000 0.532 0.468
#> SRR1036141     2  0.6291      0.816 0.000 0.532 0.468
#> SRR1036142     2  0.6291      0.816 0.000 0.532 0.468
#> SRR1036143     2  0.6291      0.816 0.000 0.532 0.468
#> SRR1036144     2  0.6291      0.816 0.000 0.532 0.468
#> SRR1036145     2  0.6291      0.816 0.000 0.532 0.468

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1036002     3  0.0000      0.883 0.000 0.000 1.000 0.000
#> SRR1036003     3  0.0000      0.883 0.000 0.000 1.000 0.000
#> SRR1036004     3  0.0000      0.883 0.000 0.000 1.000 0.000
#> SRR1036005     3  0.0000      0.883 0.000 0.000 1.000 0.000
#> SRR1036006     3  0.0000      0.883 0.000 0.000 1.000 0.000
#> SRR1036007     3  0.0000      0.883 0.000 0.000 1.000 0.000
#> SRR1036008     3  0.0000      0.883 0.000 0.000 1.000 0.000
#> SRR1036009     3  0.0000      0.883 0.000 0.000 1.000 0.000
#> SRR1036013     2  0.1118      0.910 0.000 0.964 0.000 0.036
#> SRR1036014     2  0.1022      0.912 0.000 0.968 0.000 0.032
#> SRR1036015     2  0.1022      0.912 0.000 0.968 0.000 0.032
#> SRR1036016     2  0.1022      0.912 0.000 0.968 0.000 0.032
#> SRR1036017     2  0.1118      0.910 0.000 0.964 0.000 0.036
#> SRR1036018     2  0.1022      0.912 0.000 0.968 0.000 0.032
#> SRR1036010     1  0.2281      0.924 0.904 0.000 0.000 0.096
#> SRR1036011     1  0.1940      0.938 0.924 0.000 0.000 0.076
#> SRR1036012     1  0.2216      0.927 0.908 0.000 0.000 0.092
#> SRR1036019     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1036020     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1036021     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1036022     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1036023     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1036024     2  0.3942      0.737 0.000 0.764 0.000 0.236
#> SRR1036025     2  0.3873      0.747 0.000 0.772 0.000 0.228
#> SRR1036026     2  0.3610      0.777 0.000 0.800 0.000 0.200
#> SRR1036027     2  0.3801      0.756 0.000 0.780 0.000 0.220
#> SRR1036028     2  0.3837      0.752 0.000 0.776 0.000 0.224
#> SRR1036029     2  0.3942      0.737 0.000 0.764 0.000 0.236
#> SRR1036030     2  0.0921      0.914 0.000 0.972 0.000 0.028
#> SRR1036031     2  0.1022      0.912 0.000 0.968 0.000 0.032
#> SRR1036032     2  0.1022      0.912 0.000 0.968 0.000 0.032
#> SRR1036033     2  0.1022      0.912 0.000 0.968 0.000 0.032
#> SRR1036034     2  0.0921      0.914 0.000 0.972 0.000 0.028
#> SRR1036035     2  0.1022      0.912 0.000 0.968 0.000 0.032
#> SRR1036036     2  0.0921      0.914 0.000 0.972 0.000 0.028
#> SRR1036037     2  0.0921      0.914 0.000 0.972 0.000 0.028
#> SRR1036038     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036039     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036040     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036041     1  0.0188      0.969 0.996 0.000 0.000 0.004
#> SRR1036042     3  0.5339      0.507 0.000 0.020 0.624 0.356
#> SRR1036043     3  0.5371      0.491 0.000 0.020 0.616 0.364
#> SRR1036044     3  0.5339      0.507 0.000 0.020 0.624 0.356
#> SRR1036045     3  0.5371      0.492 0.000 0.020 0.616 0.364
#> SRR1036046     3  0.5371      0.491 0.000 0.020 0.616 0.364
#> SRR1036047     3  0.5339      0.507 0.000 0.020 0.624 0.356
#> SRR1036048     3  0.5306      0.519 0.000 0.020 0.632 0.348
#> SRR1036049     3  0.5323      0.514 0.000 0.020 0.628 0.352
#> SRR1036050     1  0.0817      0.965 0.976 0.000 0.000 0.024
#> SRR1036051     1  0.0921      0.964 0.972 0.000 0.000 0.028
#> SRR1036052     1  0.0921      0.964 0.972 0.000 0.000 0.028
#> SRR1036053     1  0.1022      0.963 0.968 0.000 0.000 0.032
#> SRR1036054     1  0.0817      0.965 0.976 0.000 0.000 0.024
#> SRR1036055     1  0.2578      0.906 0.912 0.052 0.000 0.036
#> SRR1036056     1  0.3392      0.863 0.872 0.072 0.000 0.056
#> SRR1036057     1  0.2408      0.917 0.920 0.044 0.000 0.036
#> SRR1036058     2  0.0188      0.918 0.000 0.996 0.000 0.004
#> SRR1036059     2  0.0188      0.918 0.000 0.996 0.000 0.004
#> SRR1036060     2  0.0188      0.918 0.000 0.996 0.000 0.004
#> SRR1036061     2  0.0188      0.918 0.000 0.996 0.000 0.004
#> SRR1036062     2  0.0188      0.918 0.000 0.996 0.000 0.004
#> SRR1036063     2  0.0188      0.918 0.000 0.996 0.000 0.004
#> SRR1036064     2  0.0188      0.918 0.000 0.996 0.000 0.004
#> SRR1036065     2  0.0188      0.918 0.000 0.996 0.000 0.004
#> SRR1036066     4  0.0000      0.876 0.000 0.000 0.000 1.000
#> SRR1036067     4  0.0000      0.876 0.000 0.000 0.000 1.000
#> SRR1036068     4  0.0000      0.876 0.000 0.000 0.000 1.000
#> SRR1036069     4  0.0000      0.876 0.000 0.000 0.000 1.000
#> SRR1036070     4  0.0000      0.876 0.000 0.000 0.000 1.000
#> SRR1036071     4  0.0000      0.876 0.000 0.000 0.000 1.000
#> SRR1036072     4  0.0000      0.876 0.000 0.000 0.000 1.000
#> SRR1036073     4  0.0000      0.876 0.000 0.000 0.000 1.000
#> SRR1036074     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1036075     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1036076     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1036077     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1036078     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1036079     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1036080     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1036081     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1036082     4  0.1716      0.864 0.000 0.064 0.000 0.936
#> SRR1036083     4  0.1716      0.864 0.000 0.064 0.000 0.936
#> SRR1036084     4  0.1792      0.861 0.000 0.068 0.000 0.932
#> SRR1036090     2  0.0817      0.915 0.000 0.976 0.000 0.024
#> SRR1036091     2  0.1022      0.912 0.000 0.968 0.000 0.032
#> SRR1036092     2  0.0817      0.915 0.000 0.976 0.000 0.024
#> SRR1036093     2  0.1389      0.904 0.000 0.952 0.000 0.048
#> SRR1036094     2  0.0469      0.917 0.000 0.988 0.000 0.012
#> SRR1036085     3  0.0000      0.883 0.000 0.000 1.000 0.000
#> SRR1036086     3  0.0000      0.883 0.000 0.000 1.000 0.000
#> SRR1036087     3  0.0000      0.883 0.000 0.000 1.000 0.000
#> SRR1036088     3  0.0000      0.883 0.000 0.000 1.000 0.000
#> SRR1036089     3  0.0000      0.883 0.000 0.000 1.000 0.000
#> SRR1036095     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1036096     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1036097     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1036098     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1036099     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1036100     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1036101     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1036102     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1036103     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1036104     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1036105     3  0.0000      0.883 0.000 0.000 1.000 0.000
#> SRR1036106     3  0.0000      0.883 0.000 0.000 1.000 0.000
#> SRR1036107     3  0.0000      0.883 0.000 0.000 1.000 0.000
#> SRR1036108     3  0.0000      0.883 0.000 0.000 1.000 0.000
#> SRR1036109     3  0.0000      0.883 0.000 0.000 1.000 0.000
#> SRR1036110     4  0.5948      0.721 0.000 0.144 0.160 0.696
#> SRR1036111     4  0.5423      0.760 0.000 0.116 0.144 0.740
#> SRR1036112     4  0.5533      0.755 0.000 0.132 0.136 0.732
#> SRR1036113     4  0.4931      0.783 0.000 0.092 0.132 0.776
#> SRR1036114     4  0.6683      0.628 0.000 0.204 0.176 0.620
#> SRR1036115     2  0.4072      0.658 0.252 0.748 0.000 0.000
#> SRR1036116     2  0.4331      0.607 0.288 0.712 0.000 0.000
#> SRR1036117     2  0.4277      0.619 0.280 0.720 0.000 0.000
#> SRR1036118     2  0.4331      0.607 0.288 0.712 0.000 0.000
#> SRR1036119     2  0.4103      0.653 0.256 0.744 0.000 0.000
#> SRR1036120     3  0.0336      0.880 0.000 0.000 0.992 0.008
#> SRR1036121     3  0.0336      0.880 0.000 0.000 0.992 0.008
#> SRR1036122     3  0.0336      0.880 0.000 0.000 0.992 0.008
#> SRR1036123     3  0.0336      0.880 0.000 0.000 0.992 0.008
#> SRR1036124     3  0.0336      0.880 0.000 0.000 0.992 0.008
#> SRR1036125     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036126     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036127     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036128     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036129     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036130     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036131     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036132     1  0.0000      0.970 1.000 0.000 0.000 0.000
#> SRR1036133     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1036134     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1036135     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1036136     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1036137     2  0.0000      0.918 0.000 1.000 0.000 0.000
#> SRR1036138     2  0.4356      0.656 0.000 0.708 0.000 0.292
#> SRR1036139     2  0.4008      0.727 0.000 0.756 0.000 0.244
#> SRR1036140     2  0.3942      0.737 0.000 0.764 0.000 0.236
#> SRR1036141     2  0.4222      0.688 0.000 0.728 0.000 0.272
#> SRR1036142     2  0.4277      0.676 0.000 0.720 0.000 0.280
#> SRR1036143     2  0.4193      0.695 0.000 0.732 0.000 0.268
#> SRR1036144     2  0.4277      0.676 0.000 0.720 0.000 0.280
#> SRR1036145     2  0.4008      0.727 0.000 0.756 0.000 0.244

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1036002     3  0.3201     0.8070 0.000 0.000 0.852 0.096 0.052
#> SRR1036003     3  0.3201     0.8070 0.000 0.000 0.852 0.096 0.052
#> SRR1036004     3  0.3201     0.8070 0.000 0.000 0.852 0.096 0.052
#> SRR1036005     3  0.0000     0.9220 0.000 0.000 1.000 0.000 0.000
#> SRR1036006     3  0.0000     0.9220 0.000 0.000 1.000 0.000 0.000
#> SRR1036007     3  0.0000     0.9220 0.000 0.000 1.000 0.000 0.000
#> SRR1036008     3  0.0000     0.9220 0.000 0.000 1.000 0.000 0.000
#> SRR1036009     3  0.0000     0.9220 0.000 0.000 1.000 0.000 0.000
#> SRR1036013     2  0.4316     0.7313 0.000 0.772 0.000 0.108 0.120
#> SRR1036014     2  0.4437     0.7263 0.000 0.760 0.000 0.100 0.140
#> SRR1036015     2  0.4300     0.7346 0.000 0.772 0.000 0.096 0.132
#> SRR1036016     2  0.4557     0.7242 0.000 0.760 0.004 0.104 0.132
#> SRR1036017     2  0.4317     0.7326 0.000 0.772 0.000 0.112 0.116
#> SRR1036018     2  0.4364     0.7297 0.000 0.768 0.000 0.112 0.120
#> SRR1036010     1  0.4465     0.8406 0.672 0.000 0.000 0.024 0.304
#> SRR1036011     1  0.4380     0.8416 0.676 0.000 0.000 0.020 0.304
#> SRR1036012     1  0.4380     0.8416 0.676 0.000 0.000 0.020 0.304
#> SRR1036019     2  0.3720     0.7448 0.000 0.760 0.000 0.012 0.228
#> SRR1036020     2  0.3690     0.7476 0.000 0.764 0.000 0.012 0.224
#> SRR1036021     2  0.3720     0.7448 0.000 0.760 0.000 0.012 0.228
#> SRR1036022     2  0.3690     0.7476 0.000 0.764 0.000 0.012 0.224
#> SRR1036023     2  0.3720     0.7448 0.000 0.760 0.000 0.012 0.228
#> SRR1036024     4  0.5697     0.2458 0.000 0.360 0.000 0.548 0.092
#> SRR1036025     2  0.6070     0.0568 0.000 0.444 0.000 0.436 0.120
#> SRR1036026     2  0.6245     0.0891 0.000 0.440 0.000 0.416 0.144
#> SRR1036027     4  0.5729     0.1438 0.000 0.396 0.000 0.516 0.088
#> SRR1036028     4  0.5867     0.0819 0.000 0.404 0.000 0.496 0.100
#> SRR1036029     4  0.5470     0.2587 0.000 0.364 0.000 0.564 0.072
#> SRR1036030     2  0.2806     0.7781 0.004 0.844 0.000 0.000 0.152
#> SRR1036031     2  0.2806     0.7781 0.004 0.844 0.000 0.000 0.152
#> SRR1036032     2  0.2848     0.7762 0.004 0.840 0.000 0.000 0.156
#> SRR1036033     2  0.2806     0.7781 0.004 0.844 0.000 0.000 0.152
#> SRR1036034     2  0.2763     0.7784 0.004 0.848 0.000 0.000 0.148
#> SRR1036035     2  0.2806     0.7781 0.004 0.844 0.000 0.000 0.152
#> SRR1036036     2  0.2719     0.7799 0.004 0.852 0.000 0.000 0.144
#> SRR1036037     2  0.2763     0.7784 0.004 0.848 0.000 0.000 0.148
#> SRR1036038     1  0.0162     0.8571 0.996 0.000 0.004 0.000 0.000
#> SRR1036039     1  0.0162     0.8571 0.996 0.000 0.004 0.000 0.000
#> SRR1036040     1  0.0162     0.8571 0.996 0.000 0.004 0.000 0.000
#> SRR1036041     1  0.3039     0.8566 0.808 0.000 0.000 0.000 0.192
#> SRR1036042     4  0.5805     0.6133 0.000 0.004 0.224 0.624 0.148
#> SRR1036043     4  0.5726     0.6249 0.000 0.004 0.212 0.636 0.148
#> SRR1036044     4  0.6036     0.5801 0.000 0.004 0.252 0.588 0.156
#> SRR1036045     4  0.5779     0.6175 0.000 0.004 0.220 0.628 0.148
#> SRR1036046     4  0.5753     0.6210 0.000 0.004 0.216 0.632 0.148
#> SRR1036047     4  0.6013     0.5957 0.000 0.004 0.236 0.596 0.164
#> SRR1036048     4  0.6121     0.5701 0.000 0.004 0.256 0.576 0.164
#> SRR1036049     4  0.6004     0.5943 0.000 0.004 0.240 0.596 0.160
#> SRR1036050     1  0.4211     0.8317 0.636 0.000 0.000 0.004 0.360
#> SRR1036051     1  0.4225     0.8305 0.632 0.000 0.000 0.004 0.364
#> SRR1036052     1  0.4238     0.8291 0.628 0.000 0.000 0.004 0.368
#> SRR1036053     1  0.4251     0.8274 0.624 0.000 0.000 0.004 0.372
#> SRR1036054     1  0.4211     0.8317 0.636 0.000 0.000 0.004 0.360
#> SRR1036055     1  0.4898     0.8120 0.632 0.032 0.000 0.004 0.332
#> SRR1036056     1  0.5056     0.8019 0.620 0.040 0.000 0.004 0.336
#> SRR1036057     1  0.4726     0.8212 0.644 0.024 0.000 0.004 0.328
#> SRR1036058     2  0.0671     0.8073 0.000 0.980 0.000 0.004 0.016
#> SRR1036059     2  0.0771     0.8074 0.000 0.976 0.000 0.004 0.020
#> SRR1036060     2  0.0771     0.8074 0.000 0.976 0.000 0.004 0.020
#> SRR1036061     2  0.0671     0.8073 0.000 0.980 0.000 0.004 0.016
#> SRR1036062     2  0.0771     0.8078 0.000 0.976 0.000 0.004 0.020
#> SRR1036063     2  0.0865     0.8075 0.000 0.972 0.000 0.004 0.024
#> SRR1036064     2  0.0671     0.8073 0.000 0.980 0.000 0.004 0.016
#> SRR1036065     2  0.0771     0.8074 0.000 0.976 0.000 0.004 0.020
#> SRR1036066     4  0.2179     0.7116 0.000 0.000 0.000 0.888 0.112
#> SRR1036067     4  0.2179     0.7116 0.000 0.000 0.000 0.888 0.112
#> SRR1036068     4  0.2179     0.7116 0.000 0.000 0.000 0.888 0.112
#> SRR1036069     4  0.2179     0.7116 0.000 0.000 0.000 0.888 0.112
#> SRR1036070     4  0.2179     0.7116 0.000 0.000 0.000 0.888 0.112
#> SRR1036071     4  0.2179     0.7116 0.000 0.000 0.000 0.888 0.112
#> SRR1036072     4  0.2179     0.7116 0.000 0.000 0.000 0.888 0.112
#> SRR1036073     4  0.2179     0.7116 0.000 0.000 0.000 0.888 0.112
#> SRR1036074     2  0.3659     0.7496 0.000 0.768 0.000 0.012 0.220
#> SRR1036075     2  0.3659     0.7496 0.000 0.768 0.000 0.012 0.220
#> SRR1036076     2  0.3659     0.7496 0.000 0.768 0.000 0.012 0.220
#> SRR1036077     2  0.3659     0.7496 0.000 0.768 0.000 0.012 0.220
#> SRR1036078     2  0.3659     0.7496 0.000 0.768 0.000 0.012 0.220
#> SRR1036079     2  0.3659     0.7496 0.000 0.768 0.000 0.012 0.220
#> SRR1036080     2  0.3659     0.7496 0.000 0.768 0.000 0.012 0.220
#> SRR1036081     2  0.3659     0.7496 0.000 0.768 0.000 0.012 0.220
#> SRR1036082     4  0.1106     0.7376 0.000 0.012 0.000 0.964 0.024
#> SRR1036083     4  0.1106     0.7376 0.000 0.012 0.000 0.964 0.024
#> SRR1036084     4  0.1300     0.7376 0.000 0.016 0.000 0.956 0.028
#> SRR1036090     2  0.0404     0.8069 0.000 0.988 0.000 0.000 0.012
#> SRR1036091     2  0.0703     0.8076 0.000 0.976 0.000 0.000 0.024
#> SRR1036092     2  0.0609     0.8073 0.000 0.980 0.000 0.000 0.020
#> SRR1036093     2  0.0609     0.8073 0.000 0.980 0.000 0.000 0.020
#> SRR1036094     2  0.0290     0.8064 0.000 0.992 0.000 0.000 0.008
#> SRR1036085     3  0.0404     0.9190 0.000 0.000 0.988 0.000 0.012
#> SRR1036086     3  0.0510     0.9190 0.000 0.000 0.984 0.000 0.016
#> SRR1036087     3  0.0404     0.9190 0.000 0.000 0.988 0.000 0.012
#> SRR1036088     3  0.0404     0.9190 0.000 0.000 0.988 0.000 0.012
#> SRR1036089     3  0.0404     0.9190 0.000 0.000 0.988 0.000 0.012
#> SRR1036095     2  0.1732     0.7985 0.000 0.920 0.000 0.000 0.080
#> SRR1036096     2  0.1732     0.7985 0.000 0.920 0.000 0.000 0.080
#> SRR1036097     2  0.1732     0.7985 0.000 0.920 0.000 0.000 0.080
#> SRR1036098     2  0.1732     0.7985 0.000 0.920 0.000 0.000 0.080
#> SRR1036099     2  0.1732     0.7985 0.000 0.920 0.000 0.000 0.080
#> SRR1036100     2  0.3430     0.7536 0.000 0.776 0.000 0.004 0.220
#> SRR1036101     2  0.3430     0.7536 0.000 0.776 0.000 0.004 0.220
#> SRR1036102     2  0.3430     0.7536 0.000 0.776 0.000 0.004 0.220
#> SRR1036103     2  0.3430     0.7536 0.000 0.776 0.000 0.004 0.220
#> SRR1036104     2  0.3430     0.7536 0.000 0.776 0.000 0.004 0.220
#> SRR1036105     3  0.0000     0.9220 0.000 0.000 1.000 0.000 0.000
#> SRR1036106     3  0.0000     0.9220 0.000 0.000 1.000 0.000 0.000
#> SRR1036107     3  0.0000     0.9220 0.000 0.000 1.000 0.000 0.000
#> SRR1036108     3  0.0000     0.9220 0.000 0.000 1.000 0.000 0.000
#> SRR1036109     3  0.0000     0.9220 0.000 0.000 1.000 0.000 0.000
#> SRR1036110     4  0.4214     0.7265 0.000 0.056 0.056 0.816 0.072
#> SRR1036111     4  0.3318     0.7354 0.000 0.048 0.048 0.868 0.036
#> SRR1036112     4  0.3398     0.7353 0.000 0.048 0.044 0.864 0.044
#> SRR1036113     4  0.2931     0.7356 0.000 0.028 0.044 0.888 0.040
#> SRR1036114     4  0.5011     0.7016 0.000 0.100 0.052 0.760 0.088
#> SRR1036115     2  0.4367     0.7055 0.060 0.748 0.000 0.000 0.192
#> SRR1036116     2  0.4400     0.7018 0.060 0.744 0.000 0.000 0.196
#> SRR1036117     2  0.4400     0.7018 0.060 0.744 0.000 0.000 0.196
#> SRR1036118     2  0.4462     0.6976 0.064 0.740 0.000 0.000 0.196
#> SRR1036119     2  0.4367     0.7052 0.060 0.748 0.000 0.000 0.192
#> SRR1036120     3  0.3844     0.7933 0.000 0.004 0.736 0.004 0.256
#> SRR1036121     3  0.3844     0.7933 0.000 0.004 0.736 0.004 0.256
#> SRR1036122     3  0.3844     0.7933 0.000 0.004 0.736 0.004 0.256
#> SRR1036123     3  0.3844     0.7933 0.000 0.004 0.736 0.004 0.256
#> SRR1036124     3  0.3817     0.7959 0.000 0.004 0.740 0.004 0.252
#> SRR1036125     1  0.0000     0.8582 1.000 0.000 0.000 0.000 0.000
#> SRR1036126     1  0.0000     0.8582 1.000 0.000 0.000 0.000 0.000
#> SRR1036127     1  0.0000     0.8582 1.000 0.000 0.000 0.000 0.000
#> SRR1036128     1  0.0000     0.8582 1.000 0.000 0.000 0.000 0.000
#> SRR1036129     1  0.0000     0.8582 1.000 0.000 0.000 0.000 0.000
#> SRR1036130     1  0.0000     0.8582 1.000 0.000 0.000 0.000 0.000
#> SRR1036131     1  0.0000     0.8582 1.000 0.000 0.000 0.000 0.000
#> SRR1036132     1  0.0000     0.8582 1.000 0.000 0.000 0.000 0.000
#> SRR1036133     2  0.2516     0.7815 0.000 0.860 0.000 0.000 0.140
#> SRR1036134     2  0.2561     0.7807 0.000 0.856 0.000 0.000 0.144
#> SRR1036135     2  0.2516     0.7815 0.000 0.860 0.000 0.000 0.140
#> SRR1036136     2  0.2561     0.7807 0.000 0.856 0.000 0.000 0.144
#> SRR1036137     2  0.2516     0.7815 0.000 0.860 0.000 0.000 0.140
#> SRR1036138     2  0.3980     0.5906 0.000 0.708 0.000 0.284 0.008
#> SRR1036139     2  0.3700     0.6450 0.000 0.752 0.000 0.240 0.008
#> SRR1036140     2  0.3551     0.6691 0.000 0.772 0.000 0.220 0.008
#> SRR1036141     2  0.3809     0.6255 0.000 0.736 0.000 0.256 0.008
#> SRR1036142     2  0.3934     0.5975 0.000 0.716 0.000 0.276 0.008
#> SRR1036143     2  0.3783     0.6305 0.000 0.740 0.000 0.252 0.008
#> SRR1036144     2  0.4025     0.5777 0.000 0.700 0.000 0.292 0.008
#> SRR1036145     2  0.3807     0.6462 0.000 0.748 0.000 0.240 0.012

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1036002     3  0.5452    0.59534 0.000 0.000 0.628 0.056 0.252 0.064
#> SRR1036003     3  0.5431    0.59811 0.000 0.000 0.632 0.056 0.248 0.064
#> SRR1036004     3  0.5400    0.59821 0.000 0.000 0.632 0.056 0.252 0.060
#> SRR1036005     3  0.0000    0.85010 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036006     3  0.0260    0.84854 0.000 0.000 0.992 0.000 0.008 0.000
#> SRR1036007     3  0.0000    0.85010 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036008     3  0.0146    0.84935 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1036009     3  0.0146    0.84960 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1036013     2  0.5708    0.03258 0.000 0.552 0.000 0.092 0.324 0.032
#> SRR1036014     2  0.5878   -0.09024 0.000 0.512 0.000 0.088 0.360 0.040
#> SRR1036015     2  0.5723    0.00886 0.000 0.544 0.000 0.084 0.336 0.036
#> SRR1036016     2  0.5870    0.00360 0.000 0.532 0.000 0.100 0.332 0.036
#> SRR1036017     2  0.5708    0.03006 0.000 0.552 0.000 0.092 0.324 0.032
#> SRR1036018     2  0.5819   -0.00281 0.000 0.532 0.000 0.100 0.336 0.032
#> SRR1036010     6  0.4089    0.80721 0.468 0.000 0.000 0.008 0.000 0.524
#> SRR1036011     6  0.3989    0.80955 0.468 0.000 0.000 0.004 0.000 0.528
#> SRR1036012     6  0.4086    0.81213 0.464 0.000 0.000 0.008 0.000 0.528
#> SRR1036019     5  0.4192    0.92246 0.000 0.412 0.000 0.000 0.572 0.016
#> SRR1036020     5  0.4192    0.92246 0.000 0.412 0.000 0.000 0.572 0.016
#> SRR1036021     5  0.4192    0.92246 0.000 0.412 0.000 0.000 0.572 0.016
#> SRR1036022     5  0.4199    0.91801 0.000 0.416 0.000 0.000 0.568 0.016
#> SRR1036023     5  0.4184    0.92694 0.000 0.408 0.000 0.000 0.576 0.016
#> SRR1036024     4  0.5119    0.60446 0.000 0.148 0.000 0.680 0.148 0.024
#> SRR1036025     4  0.5359    0.56639 0.000 0.180 0.000 0.644 0.156 0.020
#> SRR1036026     4  0.5617    0.52927 0.000 0.188 0.000 0.608 0.184 0.020
#> SRR1036027     4  0.5235    0.58544 0.000 0.172 0.000 0.660 0.148 0.020
#> SRR1036028     4  0.5207    0.58625 0.000 0.164 0.000 0.664 0.152 0.020
#> SRR1036029     4  0.5059    0.59646 0.000 0.164 0.000 0.676 0.144 0.016
#> SRR1036030     2  0.3865    0.58124 0.000 0.788 0.004 0.008 0.140 0.060
#> SRR1036031     2  0.3865    0.58124 0.000 0.788 0.004 0.008 0.140 0.060
#> SRR1036032     2  0.3922    0.57941 0.000 0.784 0.004 0.008 0.140 0.064
#> SRR1036033     2  0.3826    0.58477 0.000 0.792 0.004 0.008 0.136 0.060
#> SRR1036034     2  0.3977    0.57577 0.000 0.780 0.004 0.008 0.140 0.068
#> SRR1036035     2  0.3903    0.58200 0.000 0.784 0.004 0.008 0.144 0.060
#> SRR1036036     2  0.3865    0.58243 0.000 0.788 0.004 0.008 0.140 0.060
#> SRR1036037     2  0.3865    0.58124 0.000 0.788 0.004 0.008 0.140 0.060
#> SRR1036038     1  0.0458    0.91343 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1036039     1  0.0260    0.92474 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1036040     1  0.0458    0.91343 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1036041     1  0.3607   -0.36196 0.652 0.000 0.000 0.000 0.000 0.348
#> SRR1036042     4  0.5728    0.58211 0.000 0.000 0.056 0.548 0.336 0.060
#> SRR1036043     4  0.5543    0.59620 0.000 0.000 0.044 0.568 0.328 0.060
#> SRR1036044     4  0.5622    0.59160 0.000 0.000 0.048 0.556 0.336 0.060
#> SRR1036045     4  0.5530    0.59737 0.000 0.000 0.044 0.572 0.324 0.060
#> SRR1036046     4  0.5543    0.59620 0.000 0.000 0.044 0.568 0.328 0.060
#> SRR1036047     4  0.5567    0.59287 0.000 0.000 0.044 0.560 0.336 0.060
#> SRR1036048     4  0.5555    0.59510 0.000 0.000 0.044 0.564 0.332 0.060
#> SRR1036049     4  0.5622    0.59018 0.000 0.000 0.048 0.556 0.336 0.060
#> SRR1036050     6  0.4082    0.83643 0.432 0.004 0.000 0.004 0.000 0.560
#> SRR1036051     6  0.4082    0.83643 0.432 0.004 0.000 0.004 0.000 0.560
#> SRR1036052     6  0.4082    0.83643 0.432 0.004 0.000 0.004 0.000 0.560
#> SRR1036053     6  0.4172    0.83501 0.424 0.008 0.000 0.004 0.000 0.564
#> SRR1036054     6  0.4082    0.83643 0.432 0.004 0.000 0.004 0.000 0.560
#> SRR1036055     6  0.6164    0.68110 0.328 0.040 0.000 0.016 0.084 0.532
#> SRR1036056     6  0.6228    0.67923 0.324 0.040 0.000 0.020 0.084 0.532
#> SRR1036057     6  0.6103    0.68529 0.336 0.040 0.000 0.012 0.084 0.528
#> SRR1036058     2  0.2737    0.62114 0.000 0.868 0.000 0.012 0.096 0.024
#> SRR1036059     2  0.2786    0.61834 0.000 0.864 0.000 0.012 0.100 0.024
#> SRR1036060     2  0.2833    0.61450 0.000 0.860 0.000 0.012 0.104 0.024
#> SRR1036061     2  0.2737    0.62114 0.000 0.868 0.000 0.012 0.096 0.024
#> SRR1036062     2  0.2786    0.61802 0.000 0.864 0.000 0.012 0.100 0.024
#> SRR1036063     2  0.2880    0.61018 0.000 0.856 0.000 0.012 0.108 0.024
#> SRR1036064     2  0.2737    0.62114 0.000 0.868 0.000 0.012 0.096 0.024
#> SRR1036065     2  0.2833    0.61450 0.000 0.860 0.000 0.012 0.104 0.024
#> SRR1036066     4  0.1806    0.60378 0.000 0.000 0.000 0.908 0.004 0.088
#> SRR1036067     4  0.1806    0.60378 0.000 0.000 0.000 0.908 0.004 0.088
#> SRR1036068     4  0.1806    0.60378 0.000 0.000 0.000 0.908 0.004 0.088
#> SRR1036069     4  0.1806    0.60378 0.000 0.000 0.000 0.908 0.004 0.088
#> SRR1036070     4  0.1806    0.60378 0.000 0.000 0.000 0.908 0.004 0.088
#> SRR1036071     4  0.1806    0.60378 0.000 0.000 0.000 0.908 0.004 0.088
#> SRR1036072     4  0.1806    0.60378 0.000 0.000 0.000 0.908 0.004 0.088
#> SRR1036073     4  0.1806    0.60378 0.000 0.000 0.000 0.908 0.004 0.088
#> SRR1036074     5  0.3727    0.94040 0.000 0.388 0.000 0.000 0.612 0.000
#> SRR1036075     5  0.3727    0.93490 0.000 0.388 0.000 0.000 0.612 0.000
#> SRR1036076     5  0.3737    0.93775 0.000 0.392 0.000 0.000 0.608 0.000
#> SRR1036077     5  0.3727    0.93743 0.000 0.388 0.000 0.000 0.612 0.000
#> SRR1036078     5  0.3717    0.93230 0.000 0.384 0.000 0.000 0.616 0.000
#> SRR1036079     5  0.3717    0.93900 0.000 0.384 0.000 0.000 0.616 0.000
#> SRR1036080     5  0.3727    0.93490 0.000 0.388 0.000 0.000 0.612 0.000
#> SRR1036081     5  0.3727    0.94040 0.000 0.388 0.000 0.000 0.612 0.000
#> SRR1036082     4  0.1421    0.63514 0.000 0.000 0.000 0.944 0.028 0.028
#> SRR1036083     4  0.1421    0.63514 0.000 0.000 0.000 0.944 0.028 0.028
#> SRR1036084     4  0.1421    0.63514 0.000 0.000 0.000 0.944 0.028 0.028
#> SRR1036090     2  0.3835    0.06292 0.000 0.684 0.000 0.000 0.300 0.016
#> SRR1036091     2  0.3348    0.38037 0.000 0.768 0.000 0.000 0.216 0.016
#> SRR1036092     2  0.3483    0.32624 0.000 0.748 0.000 0.000 0.236 0.016
#> SRR1036093     2  0.3281    0.42233 0.000 0.784 0.000 0.004 0.200 0.012
#> SRR1036094     2  0.3984   -0.13135 0.000 0.648 0.000 0.000 0.336 0.016
#> SRR1036085     3  0.0622    0.84594 0.000 0.000 0.980 0.000 0.012 0.008
#> SRR1036086     3  0.0622    0.84594 0.000 0.000 0.980 0.000 0.012 0.008
#> SRR1036087     3  0.0622    0.84594 0.000 0.000 0.980 0.000 0.012 0.008
#> SRR1036088     3  0.0622    0.84594 0.000 0.000 0.980 0.000 0.012 0.008
#> SRR1036089     3  0.0622    0.84594 0.000 0.000 0.980 0.000 0.012 0.008
#> SRR1036095     2  0.1196    0.65257 0.000 0.952 0.000 0.000 0.040 0.008
#> SRR1036096     2  0.1049    0.65519 0.000 0.960 0.000 0.000 0.032 0.008
#> SRR1036097     2  0.1196    0.65257 0.000 0.952 0.000 0.000 0.040 0.008
#> SRR1036098     2  0.1049    0.65519 0.000 0.960 0.000 0.000 0.032 0.008
#> SRR1036099     2  0.1285    0.64744 0.000 0.944 0.000 0.000 0.052 0.004
#> SRR1036100     5  0.4310    0.92526 0.000 0.396 0.000 0.000 0.580 0.024
#> SRR1036101     5  0.4310    0.92798 0.000 0.396 0.000 0.000 0.580 0.024
#> SRR1036102     5  0.4310    0.92798 0.000 0.396 0.000 0.000 0.580 0.024
#> SRR1036103     5  0.4326    0.92543 0.000 0.404 0.000 0.000 0.572 0.024
#> SRR1036104     5  0.4301    0.92475 0.000 0.392 0.000 0.000 0.584 0.024
#> SRR1036105     3  0.0000    0.85010 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036106     3  0.0000    0.85010 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036107     3  0.0000    0.85010 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036108     3  0.0000    0.85010 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036109     3  0.0000    0.85010 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1036110     4  0.5180    0.64371 0.000 0.036 0.008 0.668 0.232 0.056
#> SRR1036111     4  0.4672    0.64924 0.000 0.028 0.004 0.716 0.200 0.052
#> SRR1036112     4  0.4714    0.64922 0.000 0.032 0.004 0.716 0.196 0.052
#> SRR1036113     4  0.4569    0.64819 0.000 0.024 0.004 0.724 0.196 0.052
#> SRR1036114     4  0.5476    0.63678 0.000 0.044 0.008 0.628 0.264 0.056
#> SRR1036115     2  0.2468    0.63018 0.012 0.884 0.004 0.000 0.008 0.092
#> SRR1036116     2  0.2715    0.62230 0.012 0.868 0.004 0.000 0.012 0.104
#> SRR1036117     2  0.2619    0.62601 0.012 0.876 0.004 0.000 0.012 0.096
#> SRR1036118     2  0.2596    0.62397 0.016 0.872 0.004 0.000 0.004 0.104
#> SRR1036119     2  0.2586    0.62429 0.020 0.876 0.004 0.000 0.004 0.096
#> SRR1036120     3  0.5834    0.59993 0.000 0.000 0.516 0.004 0.212 0.268
#> SRR1036121     3  0.5842    0.59440 0.000 0.000 0.512 0.004 0.208 0.276
#> SRR1036122     3  0.5828    0.59844 0.000 0.000 0.516 0.004 0.208 0.272
#> SRR1036123     3  0.5842    0.59440 0.000 0.000 0.512 0.004 0.208 0.276
#> SRR1036124     3  0.5834    0.59993 0.000 0.000 0.516 0.004 0.212 0.268
#> SRR1036125     1  0.0000    0.93319 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036126     1  0.0000    0.93319 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036127     1  0.0000    0.93319 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036128     1  0.0000    0.93319 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036129     1  0.0000    0.93319 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036130     1  0.0000    0.93319 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036131     1  0.0000    0.93319 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036132     1  0.0000    0.93319 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1036133     2  0.2653    0.63458 0.000 0.868 0.004 0.000 0.100 0.028
#> SRR1036134     2  0.2630    0.63777 0.000 0.872 0.004 0.000 0.092 0.032
#> SRR1036135     2  0.2462    0.63749 0.000 0.876 0.000 0.000 0.096 0.028
#> SRR1036136     2  0.2579    0.63974 0.000 0.876 0.004 0.000 0.088 0.032
#> SRR1036137     2  0.2653    0.62966 0.000 0.868 0.004 0.000 0.100 0.028
#> SRR1036138     4  0.6135    0.24705 0.000 0.284 0.000 0.492 0.208 0.016
#> SRR1036139     4  0.6403    0.09344 0.000 0.328 0.000 0.420 0.232 0.020
#> SRR1036140     4  0.6354   -0.00361 0.000 0.368 0.000 0.388 0.228 0.016
#> SRR1036141     4  0.6301    0.11546 0.000 0.336 0.000 0.428 0.220 0.016
#> SRR1036142     4  0.6252    0.17313 0.000 0.316 0.000 0.452 0.216 0.016
#> SRR1036143     4  0.6366    0.10871 0.000 0.332 0.000 0.428 0.220 0.020
#> SRR1036144     4  0.6283    0.16286 0.000 0.308 0.000 0.448 0.228 0.016
#> SRR1036145     4  0.6417    0.06347 0.000 0.340 0.000 0.408 0.232 0.020

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0