cola Report for recount2:SRP040070

Date: 2019-12-26 00:00:36 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 15363 rows and 131 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 15363   131

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
SD:pam 4 1.000 0.961 0.985 ** 2,3
CV:hclust 4 1.000 1.000 1.000 ** 2,3
CV:skmeans 3 1.000 1.000 1.000 ** 2
CV:pam 5 1.000 1.000 1.000 ** 2,3,4
CV:mclust 5 1.000 0.967 0.984 ** 2,3,4
CV:NMF 4 1.000 0.984 0.974 ** 2,3
MAD:hclust 6 1.000 1.000 1.000 ** 2,3,5
MAD:pam 5 1.000 1.000 1.000 ** 2,3,4
MAD:NMF 3 1.000 1.000 1.000 ** 2
ATC:kmeans 2 1.000 1.000 1.000 **
ATC:pam 6 1.000 1.000 1.000 ** 2,3,4
ATC:mclust 5 1.000 0.991 0.994 ** 2,4
ATC:NMF 3 1.000 0.956 0.981 ** 2
SD:skmeans 6 0.974 0.947 0.956 ** 3,5
SD:NMF 4 0.960 0.986 0.964 ** 2,3
SD:hclust 6 0.951 0.975 0.987 ** 2,3,5
ATC:hclust 6 0.924 0.917 0.963 * 2,3
MAD:skmeans 5 0.911 0.932 0.956 * 2,3,4
ATC:skmeans 5 0.903 0.954 0.943 * 2,3,4
SD:mclust 6 0.902 0.873 0.936 *
SD:kmeans 3 0.810 0.974 0.938
CV:kmeans 3 0.810 0.972 0.943
MAD:kmeans 2 0.784 0.857 0.941
MAD:mclust 2 0.703 0.928 0.957

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 1.000           1.000       1.000          0.428 0.573   0.573
#> CV:NMF      2 1.000           1.000       1.000          0.428 0.573   0.573
#> MAD:NMF     2 0.953           0.917       0.968          0.480 0.512   0.512
#> ATC:NMF     2 1.000           1.000       1.000          0.428 0.573   0.573
#> SD:skmeans  2 0.784           0.974       0.985          0.436 0.573   0.573
#> CV:skmeans  2 1.000           0.993       0.996          0.491 0.507   0.507
#> MAD:skmeans 2 1.000           1.000       1.000          0.494 0.507   0.507
#> ATC:skmeans 2 1.000           1.000       1.000          0.428 0.573   0.573
#> SD:mclust   2 0.718           0.958       0.975          0.439 0.573   0.573
#> CV:mclust   2 1.000           0.985       0.991          0.432 0.573   0.573
#> MAD:mclust  2 0.703           0.928       0.957          0.489 0.496   0.496
#> ATC:mclust  2 1.000           1.000       1.000          0.428 0.573   0.573
#> SD:kmeans   2 0.507           0.959       0.936          0.405 0.573   0.573
#> CV:kmeans   2 0.432           0.888       0.884          0.399 0.573   0.573
#> MAD:kmeans  2 0.784           0.857       0.941          0.458 0.573   0.573
#> ATC:kmeans  2 1.000           1.000       1.000          0.428 0.573   0.573
#> SD:pam      2 1.000           1.000       1.000          0.428 0.573   0.573
#> CV:pam      2 1.000           1.000       1.000          0.428 0.573   0.573
#> MAD:pam     2 1.000           1.000       1.000          0.428 0.573   0.573
#> ATC:pam     2 1.000           1.000       1.000          0.428 0.573   0.573
#> SD:hclust   2 1.000           1.000       1.000          0.428 0.573   0.573
#> CV:hclust   2 1.000           1.000       1.000          0.217 0.784   0.784
#> MAD:hclust  2 1.000           1.000       1.000          0.428 0.573   0.573
#> ATC:hclust  2 1.000           1.000       1.000          0.428 0.573   0.573
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 1.000           1.000       1.000          0.416 0.822   0.689
#> CV:NMF      3 1.000           1.000       1.000          0.416 0.822   0.689
#> MAD:NMF     3 1.000           1.000       1.000          0.263 0.856   0.726
#> ATC:NMF     3 1.000           0.956       0.981          0.358 0.846   0.730
#> SD:skmeans  3 1.000           1.000       1.000          0.391 0.822   0.689
#> CV:skmeans  3 1.000           1.000       1.000          0.233 0.865   0.739
#> MAD:skmeans 3 1.000           0.995       0.995          0.228 0.865   0.739
#> ATC:skmeans 3 1.000           1.000       1.000          0.329 0.859   0.754
#> SD:mclust   3 0.878           0.955       0.979          0.364 0.723   0.556
#> CV:mclust   3 0.917           0.871       0.924          0.361 0.775   0.630
#> MAD:mclust  3 0.891           0.902       0.928          0.263 0.882   0.762
#> ATC:mclust  3 0.766           0.952       0.966          0.357 0.723   0.556
#> SD:kmeans   3 0.810           0.974       0.938          0.333 0.859   0.754
#> CV:kmeans   3 0.810           0.972       0.943          0.371 0.859   0.754
#> MAD:kmeans  3 0.592           0.919       0.893          0.222 0.859   0.754
#> ATC:kmeans  3 0.810           0.971       0.936          0.270 0.859   0.754
#> SD:pam      3 1.000           1.000       1.000          0.329 0.859   0.754
#> CV:pam      3 1.000           1.000       1.000          0.329 0.859   0.754
#> MAD:pam     3 1.000           1.000       1.000          0.329 0.859   0.754
#> ATC:pam     3 1.000           1.000       1.000          0.329 0.859   0.754
#> SD:hclust   3 1.000           1.000       1.000          0.329 0.859   0.754
#> CV:hclust   3 1.000           1.000       1.000          1.623 0.648   0.551
#> MAD:hclust  3 1.000           1.000       1.000          0.329 0.859   0.754
#> ATC:hclust  3 1.000           1.000       1.000          0.329 0.859   0.754
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.960           0.986       0.964         0.0659 0.953   0.881
#> CV:NMF      4 1.000           0.984       0.974         0.0863 0.953   0.881
#> MAD:NMF     4 0.942           0.935       0.937         0.0424 1.000   1.000
#> ATC:NMF     4 0.935           0.888       0.896         0.0561 1.000   1.000
#> SD:skmeans  4 0.834           0.964       0.926         0.1783 0.879   0.692
#> CV:skmeans  4 0.828           0.966       0.941         0.0904 0.953   0.881
#> MAD:skmeans 4 0.956           0.858       0.924         0.1848 0.834   0.595
#> ATC:skmeans 4 1.000           0.994       0.990         0.2360 0.863   0.683
#> SD:mclust   4 0.743           0.912       0.930         0.1020 0.951   0.878
#> CV:mclust   4 1.000           0.930       0.974         0.0828 0.903   0.775
#> MAD:mclust  4 0.759           0.774       0.820         0.0831 0.903   0.765
#> ATC:mclust  4 0.936           0.897       0.959         0.0938 0.951   0.878
#> SD:kmeans   4 0.788           0.312       0.814         0.1873 0.951   0.887
#> CV:kmeans   4 0.783           0.826       0.856         0.1693 1.000   1.000
#> MAD:kmeans  4 0.742           0.893       0.832         0.1761 0.863   0.683
#> ATC:kmeans  4 0.639           0.793       0.841         0.1901 1.000   1.000
#> SD:pam      4 1.000           0.961       0.985         0.0808 0.955   0.896
#> CV:pam      4 1.000           1.000       1.000         0.0825 0.953   0.891
#> MAD:pam     4 1.000           1.000       1.000         0.0792 0.955   0.896
#> ATC:pam     4 1.000           1.000       1.000         0.0825 0.953   0.891
#> SD:hclust   4 1.000           0.985       0.988         0.0347 0.983   0.961
#> CV:hclust   4 1.000           1.000       1.000         0.0825 0.953   0.891
#> MAD:hclust  4 1.000           0.992       0.994         0.0362 0.983   0.961
#> ATC:hclust  4 1.000           1.000       1.000         0.0297 0.983   0.961
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.775           0.835       0.848         0.0991 1.000   1.000
#> CV:NMF      5 0.819           0.925       0.917         0.1243 0.871   0.633
#> MAD:NMF     5 0.762           0.778       0.869         0.1134 0.904   0.758
#> ATC:NMF     5 0.797           0.858       0.854         0.0966 0.905   0.776
#> SD:skmeans  5 0.914           0.941       0.916         0.0650 0.955   0.835
#> CV:skmeans  5 0.844           0.961       0.902         0.1153 0.879   0.650
#> MAD:skmeans 5 0.911           0.932       0.956         0.0593 0.965   0.872
#> ATC:skmeans 5 0.903           0.954       0.943         0.0643 0.958   0.857
#> SD:mclust   5 0.847           0.786       0.859         0.1055 0.934   0.817
#> CV:mclust   5 1.000           0.967       0.984         0.0742 0.948   0.851
#> MAD:mclust  5 0.725           0.488       0.670         0.1024 0.822   0.528
#> ATC:mclust  5 1.000           0.991       0.994         0.0567 0.981   0.946
#> SD:kmeans   5 0.719           0.850       0.823         0.1111 0.845   0.629
#> CV:kmeans   5 0.739           0.842       0.816         0.1243 0.863   0.683
#> MAD:kmeans  5 0.719           0.812       0.811         0.0936 1.000   1.000
#> ATC:kmeans  5 0.719           0.841       0.817         0.0976 0.863   0.683
#> SD:pam      5 0.854           0.972       0.930         0.1575 0.846   0.610
#> CV:pam      5 1.000           1.000       1.000         0.2222 0.863   0.644
#> MAD:pam     5 1.000           1.000       1.000         0.2229 0.863   0.646
#> ATC:pam     5 1.000           1.000       1.000         0.0122 0.992   0.980
#> SD:hclust   5 1.000           0.996       0.995         0.0613 0.962   0.909
#> CV:hclust   5 0.992           0.990       0.982         0.0120 0.993   0.981
#> MAD:hclust  5 1.000           1.000       1.000         0.1443 0.911   0.786
#> ATC:hclust  5 0.825           0.946       0.936         0.0984 0.962   0.909
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.767           0.783       0.832         0.0695 0.865   0.613
#> CV:NMF      6 0.895           0.899       0.925         0.0572 0.962   0.849
#> MAD:NMF     6 0.758           0.682       0.819         0.0926 0.856   0.555
#> ATC:NMF     6 0.710           0.834       0.831         0.0997 0.829   0.526
#> SD:skmeans  6 0.974           0.947       0.956         0.0390 0.977   0.899
#> CV:skmeans  6 0.943           0.963       0.963         0.0720 0.989   0.950
#> MAD:skmeans 6 0.892           0.908       0.917         0.0510 0.949   0.791
#> ATC:skmeans 6 0.866           0.925       0.908         0.0495 0.955   0.821
#> SD:mclust   6 0.902           0.873       0.936         0.0571 0.887   0.638
#> CV:mclust   6 0.955           0.941       0.951         0.0154 0.996   0.988
#> MAD:mclust  6 0.739           0.724       0.805         0.0726 0.858   0.496
#> ATC:mclust  6 0.891           0.931       0.949         0.0472 0.997   0.991
#> SD:kmeans   6 0.653           0.600       0.739         0.0646 0.928   0.754
#> CV:kmeans   6 0.690           0.839       0.802         0.0525 0.920   0.728
#> MAD:kmeans  6 0.683           0.769       0.774         0.0604 0.904   0.676
#> ATC:kmeans  6 0.677           0.734       0.743         0.0754 0.913   0.703
#> SD:pam      6 1.000           0.998       0.999         0.0684 0.992   0.970
#> CV:pam      6 1.000           1.000       1.000         0.0101 0.992   0.970
#> MAD:pam     6 1.000           1.000       1.000         0.0125 0.991   0.962
#> ATC:pam     6 1.000           1.000       1.000         0.2195 0.863   0.637
#> SD:hclust   6 0.951           0.975       0.987         0.1296 0.911   0.765
#> CV:hclust   6 0.992           0.984       0.984         0.0220 0.992   0.980
#> MAD:hclust  6 1.000           1.000       1.000         0.0557 0.962   0.885
#> ATC:hclust  6 0.924           0.917       0.963         0.1452 0.863   0.637

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Results for each method


SD:hclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15363 rows and 131 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.4281 0.573   0.573
#> 3 3 1.000           1.000       1.000         0.3289 0.859   0.754
#> 4 4 1.000           0.985       0.988         0.0347 0.983   0.961
#> 5 5 1.000           0.996       0.995         0.0613 0.962   0.909
#> 6 6 0.951           0.975       0.987         0.1296 0.911   0.765

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 5

There is also optional best \(k\) = 2 3 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1190372     2       0          1  0  1
#> SRR1190371     2       0          1  0  1
#> SRR1190370     2       0          1  0  1
#> SRR1190368     2       0          1  0  1
#> SRR1190369     2       0          1  0  1
#> SRR1190366     2       0          1  0  1
#> SRR1190367     2       0          1  0  1
#> SRR1190365     2       0          1  0  1
#> SRR1190467     1       0          1  1  0
#> SRR1190466     1       0          1  1  0
#> SRR1190465     1       0          1  1  0
#> SRR1190464     1       0          1  1  0
#> SRR1190462     1       0          1  1  0
#> SRR1190461     1       0          1  1  0
#> SRR1190460     1       0          1  1  0
#> SRR1190509     1       0          1  1  0
#> SRR1190504     1       0          1  1  0
#> SRR1190503     1       0          1  1  0
#> SRR1190502     1       0          1  1  0
#> SRR1190508     1       0          1  1  0
#> SRR1190507     1       0          1  1  0
#> SRR1190506     1       0          1  1  0
#> SRR1190505     1       0          1  1  0
#> SRR1191342     2       0          1  0  1
#> SRR1191344     2       0          1  0  1
#> SRR1191343     2       0          1  0  1
#> SRR1191349     2       0          1  0  1
#> SRR1191345     2       0          1  0  1
#> SRR1191346     2       0          1  0  1
#> SRR1191347     2       0          1  0  1
#> SRR1191348     2       0          1  0  1
#> SRR1191668     1       0          1  1  0
#> SRR1191667     1       0          1  1  0
#> SRR1191673     1       0          1  1  0
#> SRR1191672     1       0          1  1  0
#> SRR1191695     1       0          1  1  0
#> SRR1191694     1       0          1  1  0
#> SRR1191783     1       0          1  1  0
#> SRR1191876     1       0          1  1  0
#> SRR1191914     1       0          1  1  0
#> SRR1191915     1       0          1  1  0
#> SRR1191953     1       0          1  1  0
#> SRR1191954     1       0          1  1  0
#> SRR1191990     1       0          1  1  0
#> SRR1191991     1       0          1  1  0
#> SRR1192016     1       0          1  1  0
#> SRR1192017     1       0          1  1  0
#> SRR1192073     1       0          1  1  0
#> SRR1192072     1       0          1  1  0
#> SRR1192167     1       0          1  1  0
#> SRR1192166     1       0          1  1  0
#> SRR1192321     1       0          1  1  0
#> SRR1192353     1       0          1  1  0
#> SRR1192354     1       0          1  1  0
#> SRR1192370     1       0          1  1  0
#> SRR1192371     1       0          1  1  0
#> SRR1192399     1       0          1  1  0
#> SRR1192398     1       0          1  1  0
#> SRR1192417     2       0          1  0  1
#> SRR1192418     2       0          1  0  1
#> SRR1192415     2       0          1  0  1
#> SRR1192416     2       0          1  0  1
#> SRR1192413     2       0          1  0  1
#> SRR1192414     2       0          1  0  1
#> SRR1192420     2       0          1  0  1
#> SRR1192419     2       0          1  0  1
#> SRR1192471     1       0          1  1  0
#> SRR1192470     1       0          1  1  0
#> SRR1192469     1       0          1  1  0
#> SRR1192468     1       0          1  1  0
#> SRR1192467     1       0          1  1  0
#> SRR1192466     1       0          1  1  0
#> SRR1192465     1       0          1  1  0
#> SRR1192500     1       0          1  1  0
#> SRR1192501     1       0          1  1  0
#> SRR1192502     1       0          1  1  0
#> SRR1192503     1       0          1  1  0
#> SRR1192496     1       0          1  1  0
#> SRR1192497     1       0          1  1  0
#> SRR1192499     1       0          1  1  0
#> SRR1192641     2       0          1  0  1
#> SRR1192640     2       0          1  0  1
#> SRR1192643     2       0          1  0  1
#> SRR1192642     2       0          1  0  1
#> SRR1192644     2       0          1  0  1
#> SRR1192645     2       0          1  0  1
#> SRR1192646     2       0          1  0  1
#> SRR1192647     2       0          1  0  1
#> SRR1192836     2       0          1  0  1
#> SRR1192838     2       0          1  0  1
#> SRR1192837     2       0          1  0  1
#> SRR1192839     2       0          1  0  1
#> SRR1192963     2       0          1  0  1
#> SRR1192966     2       0          1  0  1
#> SRR1192965     2       0          1  0  1
#> SRR1192964     2       0          1  0  1
#> SRR1193005     1       0          1  1  0
#> SRR1193006     1       0          1  1  0
#> SRR1193007     1       0          1  1  0
#> SRR1193008     1       0          1  1  0
#> SRR1193011     1       0          1  1  0
#> SRR1193012     1       0          1  1  0
#> SRR1193009     1       0          1  1  0
#> SRR1193010     1       0          1  1  0
#> SRR1193014     1       0          1  1  0
#> SRR1193015     1       0          1  1  0
#> SRR1193013     1       0          1  1  0
#> SRR1193018     1       0          1  1  0
#> SRR1193016     1       0          1  1  0
#> SRR1193017     1       0          1  1  0
#> SRR1193100     1       0          1  1  0
#> SRR1193101     1       0          1  1  0
#> SRR1193102     1       0          1  1  0
#> SRR1193104     1       0          1  1  0
#> SRR1193103     1       0          1  1  0
#> SRR1193105     1       0          1  1  0
#> SRR1193106     1       0          1  1  0
#> SRR1193198     1       0          1  1  0
#> SRR1193197     1       0          1  1  0
#> SRR1193199     1       0          1  1  0
#> SRR1193405     1       0          1  1  0
#> SRR1193404     1       0          1  1  0
#> SRR1193403     1       0          1  1  0
#> SRR1193522     1       0          1  1  0
#> SRR1193523     1       0          1  1  0
#> SRR1193524     1       0          1  1  0
#> SRR1193638     1       0          1  1  0
#> SRR1193639     1       0          1  1  0
#> SRR1195621     1       0          1  1  0
#> SRR1195619     1       0          1  1  0
#> SRR1195620     1       0          1  1  0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette p1 p2 p3
#> SRR1190372     2       0          1  0  1  0
#> SRR1190371     2       0          1  0  1  0
#> SRR1190370     2       0          1  0  1  0
#> SRR1190368     2       0          1  0  1  0
#> SRR1190369     2       0          1  0  1  0
#> SRR1190366     2       0          1  0  1  0
#> SRR1190367     2       0          1  0  1  0
#> SRR1190365     2       0          1  0  1  0
#> SRR1190467     3       0          1  0  0  1
#> SRR1190466     3       0          1  0  0  1
#> SRR1190465     3       0          1  0  0  1
#> SRR1190464     3       0          1  0  0  1
#> SRR1190462     3       0          1  0  0  1
#> SRR1190461     3       0          1  0  0  1
#> SRR1190460     3       0          1  0  0  1
#> SRR1190509     1       0          1  1  0  0
#> SRR1190504     1       0          1  1  0  0
#> SRR1190503     1       0          1  1  0  0
#> SRR1190502     1       0          1  1  0  0
#> SRR1190508     1       0          1  1  0  0
#> SRR1190507     1       0          1  1  0  0
#> SRR1190506     1       0          1  1  0  0
#> SRR1190505     1       0          1  1  0  0
#> SRR1191342     2       0          1  0  1  0
#> SRR1191344     2       0          1  0  1  0
#> SRR1191343     2       0          1  0  1  0
#> SRR1191349     2       0          1  0  1  0
#> SRR1191345     2       0          1  0  1  0
#> SRR1191346     2       0          1  0  1  0
#> SRR1191347     2       0          1  0  1  0
#> SRR1191348     2       0          1  0  1  0
#> SRR1191668     1       0          1  1  0  0
#> SRR1191667     1       0          1  1  0  0
#> SRR1191673     1       0          1  1  0  0
#> SRR1191672     1       0          1  1  0  0
#> SRR1191695     3       0          1  0  0  1
#> SRR1191694     3       0          1  0  0  1
#> SRR1191783     3       0          1  0  0  1
#> SRR1191876     3       0          1  0  0  1
#> SRR1191914     1       0          1  1  0  0
#> SRR1191915     1       0          1  1  0  0
#> SRR1191953     1       0          1  1  0  0
#> SRR1191954     1       0          1  1  0  0
#> SRR1191990     1       0          1  1  0  0
#> SRR1191991     1       0          1  1  0  0
#> SRR1192016     3       0          1  0  0  1
#> SRR1192017     3       0          1  0  0  1
#> SRR1192073     3       0          1  0  0  1
#> SRR1192072     3       0          1  0  0  1
#> SRR1192167     1       0          1  1  0  0
#> SRR1192166     1       0          1  1  0  0
#> SRR1192321     3       0          1  0  0  1
#> SRR1192353     1       0          1  1  0  0
#> SRR1192354     1       0          1  1  0  0
#> SRR1192370     1       0          1  1  0  0
#> SRR1192371     1       0          1  1  0  0
#> SRR1192399     1       0          1  1  0  0
#> SRR1192398     1       0          1  1  0  0
#> SRR1192417     2       0          1  0  1  0
#> SRR1192418     2       0          1  0  1  0
#> SRR1192415     2       0          1  0  1  0
#> SRR1192416     2       0          1  0  1  0
#> SRR1192413     2       0          1  0  1  0
#> SRR1192414     2       0          1  0  1  0
#> SRR1192420     2       0          1  0  1  0
#> SRR1192419     2       0          1  0  1  0
#> SRR1192471     1       0          1  1  0  0
#> SRR1192470     1       0          1  1  0  0
#> SRR1192469     1       0          1  1  0  0
#> SRR1192468     1       0          1  1  0  0
#> SRR1192467     1       0          1  1  0  0
#> SRR1192466     1       0          1  1  0  0
#> SRR1192465     1       0          1  1  0  0
#> SRR1192500     1       0          1  1  0  0
#> SRR1192501     1       0          1  1  0  0
#> SRR1192502     1       0          1  1  0  0
#> SRR1192503     1       0          1  1  0  0
#> SRR1192496     1       0          1  1  0  0
#> SRR1192497     1       0          1  1  0  0
#> SRR1192499     1       0          1  1  0  0
#> SRR1192641     2       0          1  0  1  0
#> SRR1192640     2       0          1  0  1  0
#> SRR1192643     2       0          1  0  1  0
#> SRR1192642     2       0          1  0  1  0
#> SRR1192644     2       0          1  0  1  0
#> SRR1192645     2       0          1  0  1  0
#> SRR1192646     2       0          1  0  1  0
#> SRR1192647     2       0          1  0  1  0
#> SRR1192836     2       0          1  0  1  0
#> SRR1192838     2       0          1  0  1  0
#> SRR1192837     2       0          1  0  1  0
#> SRR1192839     2       0          1  0  1  0
#> SRR1192963     2       0          1  0  1  0
#> SRR1192966     2       0          1  0  1  0
#> SRR1192965     2       0          1  0  1  0
#> SRR1192964     2       0          1  0  1  0
#> SRR1193005     1       0          1  1  0  0
#> SRR1193006     1       0          1  1  0  0
#> SRR1193007     1       0          1  1  0  0
#> SRR1193008     1       0          1  1  0  0
#> SRR1193011     1       0          1  1  0  0
#> SRR1193012     1       0          1  1  0  0
#> SRR1193009     1       0          1  1  0  0
#> SRR1193010     1       0          1  1  0  0
#> SRR1193014     1       0          1  1  0  0
#> SRR1193015     1       0          1  1  0  0
#> SRR1193013     1       0          1  1  0  0
#> SRR1193018     1       0          1  1  0  0
#> SRR1193016     1       0          1  1  0  0
#> SRR1193017     1       0          1  1  0  0
#> SRR1193100     1       0          1  1  0  0
#> SRR1193101     1       0          1  1  0  0
#> SRR1193102     1       0          1  1  0  0
#> SRR1193104     1       0          1  1  0  0
#> SRR1193103     1       0          1  1  0  0
#> SRR1193105     1       0          1  1  0  0
#> SRR1193106     1       0          1  1  0  0
#> SRR1193198     1       0          1  1  0  0
#> SRR1193197     1       0          1  1  0  0
#> SRR1193199     1       0          1  1  0  0
#> SRR1193405     1       0          1  1  0  0
#> SRR1193404     1       0          1  1  0  0
#> SRR1193403     1       0          1  1  0  0
#> SRR1193522     1       0          1  1  0  0
#> SRR1193523     1       0          1  1  0  0
#> SRR1193524     1       0          1  1  0  0
#> SRR1193638     1       0          1  1  0  0
#> SRR1193639     1       0          1  1  0  0
#> SRR1195621     1       0          1  1  0  0
#> SRR1195619     1       0          1  1  0  0
#> SRR1195620     1       0          1  1  0  0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette p1    p2 p3    p4
#> SRR1190372     2   0.000      0.953  0 1.000  0 0.000
#> SRR1190371     2   0.000      0.953  0 1.000  0 0.000
#> SRR1190370     2   0.000      0.953  0 1.000  0 0.000
#> SRR1190368     2   0.000      0.953  0 1.000  0 0.000
#> SRR1190369     2   0.000      0.953  0 1.000  0 0.000
#> SRR1190366     2   0.000      0.953  0 1.000  0 0.000
#> SRR1190367     2   0.000      0.953  0 1.000  0 0.000
#> SRR1190365     2   0.000      0.953  0 1.000  0 0.000
#> SRR1190467     3   0.000      1.000  0 0.000  1 0.000
#> SRR1190466     3   0.000      1.000  0 0.000  1 0.000
#> SRR1190465     3   0.000      1.000  0 0.000  1 0.000
#> SRR1190464     3   0.000      1.000  0 0.000  1 0.000
#> SRR1190462     3   0.000      1.000  0 0.000  1 0.000
#> SRR1190461     3   0.000      1.000  0 0.000  1 0.000
#> SRR1190460     3   0.000      1.000  0 0.000  1 0.000
#> SRR1190509     1   0.000      1.000  1 0.000  0 0.000
#> SRR1190504     1   0.000      1.000  1 0.000  0 0.000
#> SRR1190503     1   0.000      1.000  1 0.000  0 0.000
#> SRR1190502     1   0.000      1.000  1 0.000  0 0.000
#> SRR1190508     1   0.000      1.000  1 0.000  0 0.000
#> SRR1190507     1   0.000      1.000  1 0.000  0 0.000
#> SRR1190506     1   0.000      1.000  1 0.000  0 0.000
#> SRR1190505     1   0.000      1.000  1 0.000  0 0.000
#> SRR1191342     2   0.228      0.939  0 0.904  0 0.096
#> SRR1191344     2   0.228      0.939  0 0.904  0 0.096
#> SRR1191343     2   0.228      0.939  0 0.904  0 0.096
#> SRR1191349     2   0.228      0.939  0 0.904  0 0.096
#> SRR1191345     2   0.228      0.939  0 0.904  0 0.096
#> SRR1191346     2   0.228      0.939  0 0.904  0 0.096
#> SRR1191347     2   0.228      0.939  0 0.904  0 0.096
#> SRR1191348     2   0.228      0.939  0 0.904  0 0.096
#> SRR1191668     1   0.000      1.000  1 0.000  0 0.000
#> SRR1191667     1   0.000      1.000  1 0.000  0 0.000
#> SRR1191673     1   0.000      1.000  1 0.000  0 0.000
#> SRR1191672     1   0.000      1.000  1 0.000  0 0.000
#> SRR1191695     3   0.000      1.000  0 0.000  1 0.000
#> SRR1191694     3   0.000      1.000  0 0.000  1 0.000
#> SRR1191783     3   0.000      1.000  0 0.000  1 0.000
#> SRR1191876     3   0.000      1.000  0 0.000  1 0.000
#> SRR1191914     1   0.000      1.000  1 0.000  0 0.000
#> SRR1191915     1   0.000      1.000  1 0.000  0 0.000
#> SRR1191953     1   0.000      1.000  1 0.000  0 0.000
#> SRR1191954     1   0.000      1.000  1 0.000  0 0.000
#> SRR1191990     1   0.000      1.000  1 0.000  0 0.000
#> SRR1191991     1   0.000      1.000  1 0.000  0 0.000
#> SRR1192016     3   0.000      1.000  0 0.000  1 0.000
#> SRR1192017     3   0.000      1.000  0 0.000  1 0.000
#> SRR1192073     3   0.000      1.000  0 0.000  1 0.000
#> SRR1192072     3   0.000      1.000  0 0.000  1 0.000
#> SRR1192167     1   0.000      1.000  1 0.000  0 0.000
#> SRR1192166     1   0.000      1.000  1 0.000  0 0.000
#> SRR1192321     3   0.000      1.000  0 0.000  1 0.000
#> SRR1192353     1   0.000      1.000  1 0.000  0 0.000
#> SRR1192354     1   0.000      1.000  1 0.000  0 0.000
#> SRR1192370     1   0.000      1.000  1 0.000  0 0.000
#> SRR1192371     1   0.000      1.000  1 0.000  0 0.000
#> SRR1192399     1   0.000      1.000  1 0.000  0 0.000
#> SRR1192398     1   0.000      1.000  1 0.000  0 0.000
#> SRR1192417     2   0.228      0.939  0 0.904  0 0.096
#> SRR1192418     2   0.228      0.939  0 0.904  0 0.096
#> SRR1192415     2   0.228      0.939  0 0.904  0 0.096
#> SRR1192416     2   0.228      0.939  0 0.904  0 0.096
#> SRR1192413     2   0.228      0.939  0 0.904  0 0.096
#> SRR1192414     2   0.228      0.939  0 0.904  0 0.096
#> SRR1192420     2   0.228      0.939  0 0.904  0 0.096
#> SRR1192419     2   0.228      0.939  0 0.904  0 0.096
#> SRR1192471     1   0.000      1.000  1 0.000  0 0.000
#> SRR1192470     1   0.000      1.000  1 0.000  0 0.000
#> SRR1192469     1   0.000      1.000  1 0.000  0 0.000
#> SRR1192468     1   0.000      1.000  1 0.000  0 0.000
#> SRR1192467     1   0.000      1.000  1 0.000  0 0.000
#> SRR1192466     1   0.000      1.000  1 0.000  0 0.000
#> SRR1192465     1   0.000      1.000  1 0.000  0 0.000
#> SRR1192500     1   0.000      1.000  1 0.000  0 0.000
#> SRR1192501     1   0.000      1.000  1 0.000  0 0.000
#> SRR1192502     1   0.000      1.000  1 0.000  0 0.000
#> SRR1192503     1   0.000      1.000  1 0.000  0 0.000
#> SRR1192496     1   0.000      1.000  1 0.000  0 0.000
#> SRR1192497     1   0.000      1.000  1 0.000  0 0.000
#> SRR1192499     1   0.000      1.000  1 0.000  0 0.000
#> SRR1192641     2   0.000      0.953  0 1.000  0 0.000
#> SRR1192640     2   0.000      0.953  0 1.000  0 0.000
#> SRR1192643     2   0.000      0.953  0 1.000  0 0.000
#> SRR1192642     2   0.000      0.953  0 1.000  0 0.000
#> SRR1192644     2   0.000      0.953  0 1.000  0 0.000
#> SRR1192645     2   0.000      0.953  0 1.000  0 0.000
#> SRR1192646     2   0.000      0.953  0 1.000  0 0.000
#> SRR1192647     2   0.000      0.953  0 1.000  0 0.000
#> SRR1192836     4   0.000      1.000  0 0.000  0 1.000
#> SRR1192838     4   0.000      1.000  0 0.000  0 1.000
#> SRR1192837     4   0.000      1.000  0 0.000  0 1.000
#> SRR1192839     4   0.000      1.000  0 0.000  0 1.000
#> SRR1192963     2   0.000      0.953  0 1.000  0 0.000
#> SRR1192966     2   0.000      0.953  0 1.000  0 0.000
#> SRR1192965     2   0.000      0.953  0 1.000  0 0.000
#> SRR1192964     2   0.000      0.953  0 1.000  0 0.000
#> SRR1193005     1   0.000      1.000  1 0.000  0 0.000
#> SRR1193006     1   0.000      1.000  1 0.000  0 0.000
#> SRR1193007     1   0.000      1.000  1 0.000  0 0.000
#> SRR1193008     1   0.000      1.000  1 0.000  0 0.000
#> SRR1193011     1   0.000      1.000  1 0.000  0 0.000
#> SRR1193012     1   0.000      1.000  1 0.000  0 0.000
#> SRR1193009     1   0.000      1.000  1 0.000  0 0.000
#> SRR1193010     1   0.000      1.000  1 0.000  0 0.000
#> SRR1193014     1   0.000      1.000  1 0.000  0 0.000
#> SRR1193015     1   0.000      1.000  1 0.000  0 0.000
#> SRR1193013     1   0.000      1.000  1 0.000  0 0.000
#> SRR1193018     1   0.000      1.000  1 0.000  0 0.000
#> SRR1193016     1   0.000      1.000  1 0.000  0 0.000
#> SRR1193017     1   0.000      1.000  1 0.000  0 0.000
#> SRR1193100     1   0.000      1.000  1 0.000  0 0.000
#> SRR1193101     1   0.000      1.000  1 0.000  0 0.000
#> SRR1193102     1   0.000      1.000  1 0.000  0 0.000
#> SRR1193104     1   0.000      1.000  1 0.000  0 0.000
#> SRR1193103     1   0.000      1.000  1 0.000  0 0.000
#> SRR1193105     1   0.000      1.000  1 0.000  0 0.000
#> SRR1193106     1   0.000      1.000  1 0.000  0 0.000
#> SRR1193198     1   0.000      1.000  1 0.000  0 0.000
#> SRR1193197     1   0.000      1.000  1 0.000  0 0.000
#> SRR1193199     1   0.000      1.000  1 0.000  0 0.000
#> SRR1193405     1   0.000      1.000  1 0.000  0 0.000
#> SRR1193404     1   0.000      1.000  1 0.000  0 0.000
#> SRR1193403     1   0.000      1.000  1 0.000  0 0.000
#> SRR1193522     1   0.000      1.000  1 0.000  0 0.000
#> SRR1193523     1   0.000      1.000  1 0.000  0 0.000
#> SRR1193524     1   0.000      1.000  1 0.000  0 0.000
#> SRR1193638     1   0.000      1.000  1 0.000  0 0.000
#> SRR1193639     1   0.000      1.000  1 0.000  0 0.000
#> SRR1195621     1   0.000      1.000  1 0.000  0 0.000
#> SRR1195619     1   0.000      1.000  1 0.000  0 0.000
#> SRR1195620     1   0.000      1.000  1 0.000  0 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1   p2 p3    p4    p5
#> SRR1190372     2  0.0000      1.000 0.000 1.00  0 0.000 0.000
#> SRR1190371     2  0.0000      1.000 0.000 1.00  0 0.000 0.000
#> SRR1190370     2  0.0000      1.000 0.000 1.00  0 0.000 0.000
#> SRR1190368     2  0.0000      1.000 0.000 1.00  0 0.000 0.000
#> SRR1190369     2  0.0000      1.000 0.000 1.00  0 0.000 0.000
#> SRR1190366     2  0.0000      1.000 0.000 1.00  0 0.000 0.000
#> SRR1190367     2  0.0000      1.000 0.000 1.00  0 0.000 0.000
#> SRR1190365     2  0.0000      1.000 0.000 1.00  0 0.000 0.000
#> SRR1190467     3  0.0000      1.000 0.000 0.00  1 0.000 0.000
#> SRR1190466     3  0.0000      1.000 0.000 0.00  1 0.000 0.000
#> SRR1190465     3  0.0000      1.000 0.000 0.00  1 0.000 0.000
#> SRR1190464     3  0.0000      1.000 0.000 0.00  1 0.000 0.000
#> SRR1190462     3  0.0000      1.000 0.000 0.00  1 0.000 0.000
#> SRR1190461     3  0.0000      1.000 0.000 0.00  1 0.000 0.000
#> SRR1190460     3  0.0000      1.000 0.000 0.00  1 0.000 0.000
#> SRR1190509     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1190504     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1190503     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1190502     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1190508     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1190507     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1190506     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1190505     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1191342     4  0.0609      1.000 0.000 0.02  0 0.980 0.000
#> SRR1191344     4  0.0609      1.000 0.000 0.02  0 0.980 0.000
#> SRR1191343     4  0.0609      1.000 0.000 0.02  0 0.980 0.000
#> SRR1191349     4  0.0609      1.000 0.000 0.02  0 0.980 0.000
#> SRR1191345     4  0.0609      1.000 0.000 0.02  0 0.980 0.000
#> SRR1191346     4  0.0609      1.000 0.000 0.02  0 0.980 0.000
#> SRR1191347     4  0.0609      1.000 0.000 0.02  0 0.980 0.000
#> SRR1191348     4  0.0609      1.000 0.000 0.02  0 0.980 0.000
#> SRR1191668     1  0.0912      0.976 0.972 0.00  0 0.016 0.012
#> SRR1191667     1  0.0912      0.976 0.972 0.00  0 0.016 0.012
#> SRR1191673     1  0.0912      0.976 0.972 0.00  0 0.016 0.012
#> SRR1191672     1  0.0912      0.976 0.972 0.00  0 0.016 0.012
#> SRR1191695     3  0.0000      1.000 0.000 0.00  1 0.000 0.000
#> SRR1191694     3  0.0000      1.000 0.000 0.00  1 0.000 0.000
#> SRR1191783     3  0.0000      1.000 0.000 0.00  1 0.000 0.000
#> SRR1191876     3  0.0000      1.000 0.000 0.00  1 0.000 0.000
#> SRR1191914     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1191915     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1191953     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1191954     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1191990     1  0.0404      0.989 0.988 0.00  0 0.012 0.000
#> SRR1191991     1  0.0404      0.989 0.988 0.00  0 0.012 0.000
#> SRR1192016     3  0.0000      1.000 0.000 0.00  1 0.000 0.000
#> SRR1192017     3  0.0000      1.000 0.000 0.00  1 0.000 0.000
#> SRR1192073     3  0.0000      1.000 0.000 0.00  1 0.000 0.000
#> SRR1192072     3  0.0000      1.000 0.000 0.00  1 0.000 0.000
#> SRR1192167     1  0.0912      0.976 0.972 0.00  0 0.016 0.012
#> SRR1192166     1  0.0912      0.976 0.972 0.00  0 0.016 0.012
#> SRR1192321     3  0.0000      1.000 0.000 0.00  1 0.000 0.000
#> SRR1192353     1  0.0404      0.989 0.988 0.00  0 0.012 0.000
#> SRR1192354     1  0.0404      0.989 0.988 0.00  0 0.012 0.000
#> SRR1192370     1  0.0162      0.995 0.996 0.00  0 0.004 0.000
#> SRR1192371     1  0.0162      0.995 0.996 0.00  0 0.004 0.000
#> SRR1192399     1  0.0404      0.989 0.988 0.00  0 0.012 0.000
#> SRR1192398     1  0.0404      0.989 0.988 0.00  0 0.012 0.000
#> SRR1192417     4  0.0609      1.000 0.000 0.02  0 0.980 0.000
#> SRR1192418     4  0.0609      1.000 0.000 0.02  0 0.980 0.000
#> SRR1192415     4  0.0609      1.000 0.000 0.02  0 0.980 0.000
#> SRR1192416     4  0.0609      1.000 0.000 0.02  0 0.980 0.000
#> SRR1192413     4  0.0609      1.000 0.000 0.02  0 0.980 0.000
#> SRR1192414     4  0.0609      1.000 0.000 0.02  0 0.980 0.000
#> SRR1192420     4  0.0609      1.000 0.000 0.02  0 0.980 0.000
#> SRR1192419     4  0.0609      1.000 0.000 0.02  0 0.980 0.000
#> SRR1192471     1  0.0162      0.995 0.996 0.00  0 0.004 0.000
#> SRR1192470     1  0.0162      0.995 0.996 0.00  0 0.004 0.000
#> SRR1192469     1  0.0162      0.995 0.996 0.00  0 0.004 0.000
#> SRR1192468     1  0.0162      0.995 0.996 0.00  0 0.004 0.000
#> SRR1192467     1  0.0162      0.995 0.996 0.00  0 0.004 0.000
#> SRR1192466     1  0.0162      0.995 0.996 0.00  0 0.004 0.000
#> SRR1192465     1  0.0162      0.995 0.996 0.00  0 0.004 0.000
#> SRR1192500     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1192501     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1192502     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1192503     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1192496     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1192497     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1192499     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1192641     2  0.0000      1.000 0.000 1.00  0 0.000 0.000
#> SRR1192640     2  0.0000      1.000 0.000 1.00  0 0.000 0.000
#> SRR1192643     2  0.0000      1.000 0.000 1.00  0 0.000 0.000
#> SRR1192642     2  0.0000      1.000 0.000 1.00  0 0.000 0.000
#> SRR1192644     2  0.0000      1.000 0.000 1.00  0 0.000 0.000
#> SRR1192645     2  0.0000      1.000 0.000 1.00  0 0.000 0.000
#> SRR1192646     2  0.0000      1.000 0.000 1.00  0 0.000 0.000
#> SRR1192647     2  0.0000      1.000 0.000 1.00  0 0.000 0.000
#> SRR1192836     5  0.0404      1.000 0.000 0.00  0 0.012 0.988
#> SRR1192838     5  0.0404      1.000 0.000 0.00  0 0.012 0.988
#> SRR1192837     5  0.0404      1.000 0.000 0.00  0 0.012 0.988
#> SRR1192839     5  0.0404      1.000 0.000 0.00  0 0.012 0.988
#> SRR1192963     2  0.0000      1.000 0.000 1.00  0 0.000 0.000
#> SRR1192966     2  0.0000      1.000 0.000 1.00  0 0.000 0.000
#> SRR1192965     2  0.0000      1.000 0.000 1.00  0 0.000 0.000
#> SRR1192964     2  0.0000      1.000 0.000 1.00  0 0.000 0.000
#> SRR1193005     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1193006     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1193007     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1193008     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1193011     1  0.0162      0.995 0.996 0.00  0 0.004 0.000
#> SRR1193012     1  0.0162      0.995 0.996 0.00  0 0.004 0.000
#> SRR1193009     1  0.0162      0.995 0.996 0.00  0 0.004 0.000
#> SRR1193010     1  0.0162      0.995 0.996 0.00  0 0.004 0.000
#> SRR1193014     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1193015     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1193013     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1193018     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1193016     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1193017     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1193100     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1193101     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1193102     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1193104     1  0.0162      0.995 0.996 0.00  0 0.004 0.000
#> SRR1193103     1  0.0162      0.995 0.996 0.00  0 0.004 0.000
#> SRR1193105     1  0.0162      0.995 0.996 0.00  0 0.004 0.000
#> SRR1193106     1  0.0162      0.995 0.996 0.00  0 0.004 0.000
#> SRR1193198     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1193197     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1193199     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1193405     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1193404     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1193403     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1193522     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1193523     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1193524     1  0.0000      0.996 1.000 0.00  0 0.000 0.000
#> SRR1193638     1  0.0162      0.995 0.996 0.00  0 0.004 0.000
#> SRR1193639     1  0.0162      0.995 0.996 0.00  0 0.004 0.000
#> SRR1195621     1  0.0162      0.995 0.996 0.00  0 0.004 0.000
#> SRR1195619     1  0.0162      0.995 0.996 0.00  0 0.004 0.000
#> SRR1195620     1  0.0162      0.995 0.996 0.00  0 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette   p1 p2 p3 p4   p5 p6
#> SRR1190372     2  0.0000      1.000 0.00  1  0  0 0.00  0
#> SRR1190371     2  0.0000      1.000 0.00  1  0  0 0.00  0
#> SRR1190370     2  0.0000      1.000 0.00  1  0  0 0.00  0
#> SRR1190368     2  0.0000      1.000 0.00  1  0  0 0.00  0
#> SRR1190369     2  0.0000      1.000 0.00  1  0  0 0.00  0
#> SRR1190366     2  0.0000      1.000 0.00  1  0  0 0.00  0
#> SRR1190367     2  0.0000      1.000 0.00  1  0  0 0.00  0
#> SRR1190365     2  0.0000      1.000 0.00  1  0  0 0.00  0
#> SRR1190467     3  0.0000      1.000 0.00  0  1  0 0.00  0
#> SRR1190466     3  0.0000      1.000 0.00  0  1  0 0.00  0
#> SRR1190465     3  0.0000      1.000 0.00  0  1  0 0.00  0
#> SRR1190464     3  0.0000      1.000 0.00  0  1  0 0.00  0
#> SRR1190462     3  0.0000      1.000 0.00  0  1  0 0.00  0
#> SRR1190461     3  0.0000      1.000 0.00  0  1  0 0.00  0
#> SRR1190460     3  0.0000      1.000 0.00  0  1  0 0.00  0
#> SRR1190509     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1190504     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1190503     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1190502     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1190508     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1190507     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1190506     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1190505     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1191342     4  0.0000      1.000 0.00  0  0  1 0.00  0
#> SRR1191344     4  0.0000      1.000 0.00  0  0  1 0.00  0
#> SRR1191343     4  0.0000      1.000 0.00  0  0  1 0.00  0
#> SRR1191349     4  0.0000      1.000 0.00  0  0  1 0.00  0
#> SRR1191345     4  0.0000      1.000 0.00  0  0  1 0.00  0
#> SRR1191346     4  0.0000      1.000 0.00  0  0  1 0.00  0
#> SRR1191347     4  0.0000      1.000 0.00  0  0  1 0.00  0
#> SRR1191348     4  0.0000      1.000 0.00  0  0  1 0.00  0
#> SRR1191668     5  0.0547      0.773 0.02  0  0  0 0.98  0
#> SRR1191667     5  0.0547      0.773 0.02  0  0  0 0.98  0
#> SRR1191673     5  0.0547      0.773 0.02  0  0  0 0.98  0
#> SRR1191672     5  0.0547      0.773 0.02  0  0  0 0.98  0
#> SRR1191695     3  0.0000      1.000 0.00  0  1  0 0.00  0
#> SRR1191694     3  0.0000      1.000 0.00  0  1  0 0.00  0
#> SRR1191783     3  0.0000      1.000 0.00  0  1  0 0.00  0
#> SRR1191876     3  0.0000      1.000 0.00  0  1  0 0.00  0
#> SRR1191914     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1191915     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1191953     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1191954     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1191990     5  0.2793      0.790 0.20  0  0  0 0.80  0
#> SRR1191991     5  0.2793      0.790 0.20  0  0  0 0.80  0
#> SRR1192016     3  0.0000      1.000 0.00  0  1  0 0.00  0
#> SRR1192017     3  0.0000      1.000 0.00  0  1  0 0.00  0
#> SRR1192073     3  0.0000      1.000 0.00  0  1  0 0.00  0
#> SRR1192072     3  0.0000      1.000 0.00  0  1  0 0.00  0
#> SRR1192167     5  0.0547      0.773 0.02  0  0  0 0.98  0
#> SRR1192166     5  0.0547      0.773 0.02  0  0  0 0.98  0
#> SRR1192321     3  0.0000      1.000 0.00  0  1  0 0.00  0
#> SRR1192353     5  0.2793      0.790 0.20  0  0  0 0.80  0
#> SRR1192354     5  0.2793      0.790 0.20  0  0  0 0.80  0
#> SRR1192370     1  0.0547      0.985 0.98  0  0  0 0.02  0
#> SRR1192371     1  0.0547      0.985 0.98  0  0  0 0.02  0
#> SRR1192399     5  0.2793      0.790 0.20  0  0  0 0.80  0
#> SRR1192398     5  0.2793      0.790 0.20  0  0  0 0.80  0
#> SRR1192417     4  0.0000      1.000 0.00  0  0  1 0.00  0
#> SRR1192418     4  0.0000      1.000 0.00  0  0  1 0.00  0
#> SRR1192415     4  0.0000      1.000 0.00  0  0  1 0.00  0
#> SRR1192416     4  0.0000      1.000 0.00  0  0  1 0.00  0
#> SRR1192413     4  0.0000      1.000 0.00  0  0  1 0.00  0
#> SRR1192414     4  0.0000      1.000 0.00  0  0  1 0.00  0
#> SRR1192420     4  0.0000      1.000 0.00  0  0  1 0.00  0
#> SRR1192419     4  0.0000      1.000 0.00  0  0  1 0.00  0
#> SRR1192471     1  0.0547      0.985 0.98  0  0  0 0.02  0
#> SRR1192470     1  0.0547      0.985 0.98  0  0  0 0.02  0
#> SRR1192469     1  0.0547      0.985 0.98  0  0  0 0.02  0
#> SRR1192468     1  0.0547      0.985 0.98  0  0  0 0.02  0
#> SRR1192467     1  0.0547      0.985 0.98  0  0  0 0.02  0
#> SRR1192466     1  0.0547      0.985 0.98  0  0  0 0.02  0
#> SRR1192465     1  0.0547      0.985 0.98  0  0  0 0.02  0
#> SRR1192500     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1192501     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1192502     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1192503     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1192496     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1192497     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1192499     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1192641     2  0.0000      1.000 0.00  1  0  0 0.00  0
#> SRR1192640     2  0.0000      1.000 0.00  1  0  0 0.00  0
#> SRR1192643     2  0.0000      1.000 0.00  1  0  0 0.00  0
#> SRR1192642     2  0.0000      1.000 0.00  1  0  0 0.00  0
#> SRR1192644     2  0.0000      1.000 0.00  1  0  0 0.00  0
#> SRR1192645     2  0.0000      1.000 0.00  1  0  0 0.00  0
#> SRR1192646     2  0.0000      1.000 0.00  1  0  0 0.00  0
#> SRR1192647     2  0.0000      1.000 0.00  1  0  0 0.00  0
#> SRR1192836     6  0.0000      1.000 0.00  0  0  0 0.00  1
#> SRR1192838     6  0.0000      1.000 0.00  0  0  0 0.00  1
#> SRR1192837     6  0.0000      1.000 0.00  0  0  0 0.00  1
#> SRR1192839     6  0.0000      1.000 0.00  0  0  0 0.00  1
#> SRR1192963     2  0.0000      1.000 0.00  1  0  0 0.00  0
#> SRR1192966     2  0.0000      1.000 0.00  1  0  0 0.00  0
#> SRR1192965     2  0.0000      1.000 0.00  1  0  0 0.00  0
#> SRR1192964     2  0.0000      1.000 0.00  1  0  0 0.00  0
#> SRR1193005     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1193006     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1193007     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1193008     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1193011     1  0.0547      0.985 0.98  0  0  0 0.02  0
#> SRR1193012     1  0.0547      0.985 0.98  0  0  0 0.02  0
#> SRR1193009     1  0.0547      0.985 0.98  0  0  0 0.02  0
#> SRR1193010     1  0.0547      0.985 0.98  0  0  0 0.02  0
#> SRR1193014     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1193015     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1193013     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1193018     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1193016     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1193017     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1193100     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1193101     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1193102     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1193104     1  0.0547      0.985 0.98  0  0  0 0.02  0
#> SRR1193103     1  0.0547      0.985 0.98  0  0  0 0.02  0
#> SRR1193105     1  0.0547      0.985 0.98  0  0  0 0.02  0
#> SRR1193106     1  0.0547      0.985 0.98  0  0  0 0.02  0
#> SRR1193198     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1193197     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1193199     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1193405     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1193404     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1193403     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1193522     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1193523     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1193524     1  0.0000      0.992 1.00  0  0  0 0.00  0
#> SRR1193638     1  0.0547      0.985 0.98  0  0  0 0.02  0
#> SRR1193639     1  0.0547      0.985 0.98  0  0  0 0.02  0
#> SRR1195621     1  0.0547      0.985 0.98  0  0  0 0.02  0
#> SRR1195619     1  0.0547      0.985 0.98  0  0  0 0.02  0
#> SRR1195620     1  0.0547      0.985 0.98  0  0  0 0.02  0

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15363 rows and 131 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.507           0.959       0.936         0.4051 0.573   0.573
#> 3 3 0.810           0.974       0.938         0.3334 0.859   0.754
#> 4 4 0.788           0.312       0.814         0.1873 0.951   0.887
#> 5 5 0.719           0.850       0.823         0.1111 0.845   0.629
#> 6 6 0.653           0.600       0.739         0.0646 0.928   0.754

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1190372     2  0.5629      1.000 0.132 0.868
#> SRR1190371     2  0.5629      1.000 0.132 0.868
#> SRR1190370     2  0.5629      1.000 0.132 0.868
#> SRR1190368     2  0.5629      1.000 0.132 0.868
#> SRR1190369     2  0.5629      1.000 0.132 0.868
#> SRR1190366     2  0.5629      1.000 0.132 0.868
#> SRR1190367     2  0.5629      1.000 0.132 0.868
#> SRR1190365     2  0.5629      1.000 0.132 0.868
#> SRR1190467     1  0.7056      0.830 0.808 0.192
#> SRR1190466     1  0.7056      0.830 0.808 0.192
#> SRR1190465     1  0.7056      0.830 0.808 0.192
#> SRR1190464     1  0.7056      0.830 0.808 0.192
#> SRR1190462     1  0.7056      0.830 0.808 0.192
#> SRR1190461     1  0.7056      0.830 0.808 0.192
#> SRR1190460     1  0.7056      0.830 0.808 0.192
#> SRR1190509     1  0.0000      0.965 1.000 0.000
#> SRR1190504     1  0.0000      0.965 1.000 0.000
#> SRR1190503     1  0.0000      0.965 1.000 0.000
#> SRR1190502     1  0.0000      0.965 1.000 0.000
#> SRR1190508     1  0.0000      0.965 1.000 0.000
#> SRR1190507     1  0.0000      0.965 1.000 0.000
#> SRR1190506     1  0.0000      0.965 1.000 0.000
#> SRR1190505     1  0.0000      0.965 1.000 0.000
#> SRR1191342     2  0.5629      1.000 0.132 0.868
#> SRR1191344     2  0.5629      1.000 0.132 0.868
#> SRR1191343     2  0.5629      1.000 0.132 0.868
#> SRR1191349     2  0.5629      1.000 0.132 0.868
#> SRR1191345     2  0.5629      1.000 0.132 0.868
#> SRR1191346     2  0.5629      1.000 0.132 0.868
#> SRR1191347     2  0.5629      1.000 0.132 0.868
#> SRR1191348     2  0.5629      1.000 0.132 0.868
#> SRR1191668     1  0.0938      0.957 0.988 0.012
#> SRR1191667     1  0.0938      0.957 0.988 0.012
#> SRR1191673     1  0.0938      0.957 0.988 0.012
#> SRR1191672     1  0.0938      0.957 0.988 0.012
#> SRR1191695     1  0.7056      0.830 0.808 0.192
#> SRR1191694     1  0.7056      0.830 0.808 0.192
#> SRR1191783     1  0.7056      0.830 0.808 0.192
#> SRR1191876     1  0.7056      0.830 0.808 0.192
#> SRR1191914     1  0.0000      0.965 1.000 0.000
#> SRR1191915     1  0.0000      0.965 1.000 0.000
#> SRR1191953     1  0.0000      0.965 1.000 0.000
#> SRR1191954     1  0.0000      0.965 1.000 0.000
#> SRR1191990     1  0.0000      0.965 1.000 0.000
#> SRR1191991     1  0.0000      0.965 1.000 0.000
#> SRR1192016     1  0.7056      0.830 0.808 0.192
#> SRR1192017     1  0.7056      0.830 0.808 0.192
#> SRR1192073     1  0.7056      0.830 0.808 0.192
#> SRR1192072     1  0.7056      0.830 0.808 0.192
#> SRR1192167     1  0.0938      0.957 0.988 0.012
#> SRR1192166     1  0.0938      0.957 0.988 0.012
#> SRR1192321     1  0.7056      0.830 0.808 0.192
#> SRR1192353     1  0.0000      0.965 1.000 0.000
#> SRR1192354     1  0.0000      0.965 1.000 0.000
#> SRR1192370     1  0.0000      0.965 1.000 0.000
#> SRR1192371     1  0.0000      0.965 1.000 0.000
#> SRR1192399     1  0.0000      0.965 1.000 0.000
#> SRR1192398     1  0.0000      0.965 1.000 0.000
#> SRR1192417     2  0.5629      1.000 0.132 0.868
#> SRR1192418     2  0.5629      1.000 0.132 0.868
#> SRR1192415     2  0.5629      1.000 0.132 0.868
#> SRR1192416     2  0.5629      1.000 0.132 0.868
#> SRR1192413     2  0.5629      1.000 0.132 0.868
#> SRR1192414     2  0.5629      1.000 0.132 0.868
#> SRR1192420     2  0.5629      1.000 0.132 0.868
#> SRR1192419     2  0.5629      1.000 0.132 0.868
#> SRR1192471     1  0.0000      0.965 1.000 0.000
#> SRR1192470     1  0.0000      0.965 1.000 0.000
#> SRR1192469     1  0.0000      0.965 1.000 0.000
#> SRR1192468     1  0.0000      0.965 1.000 0.000
#> SRR1192467     1  0.0000      0.965 1.000 0.000
#> SRR1192466     1  0.0000      0.965 1.000 0.000
#> SRR1192465     1  0.0000      0.965 1.000 0.000
#> SRR1192500     1  0.0000      0.965 1.000 0.000
#> SRR1192501     1  0.0000      0.965 1.000 0.000
#> SRR1192502     1  0.0000      0.965 1.000 0.000
#> SRR1192503     1  0.0000      0.965 1.000 0.000
#> SRR1192496     1  0.0000      0.965 1.000 0.000
#> SRR1192497     1  0.0000      0.965 1.000 0.000
#> SRR1192499     1  0.0000      0.965 1.000 0.000
#> SRR1192641     2  0.5629      1.000 0.132 0.868
#> SRR1192640     2  0.5629      1.000 0.132 0.868
#> SRR1192643     2  0.5629      1.000 0.132 0.868
#> SRR1192642     2  0.5629      1.000 0.132 0.868
#> SRR1192644     2  0.5629      1.000 0.132 0.868
#> SRR1192645     2  0.5629      1.000 0.132 0.868
#> SRR1192646     2  0.5629      1.000 0.132 0.868
#> SRR1192647     2  0.5629      1.000 0.132 0.868
#> SRR1192836     2  0.5629      1.000 0.132 0.868
#> SRR1192838     2  0.5629      1.000 0.132 0.868
#> SRR1192837     2  0.5629      1.000 0.132 0.868
#> SRR1192839     2  0.5629      1.000 0.132 0.868
#> SRR1192963     2  0.5629      1.000 0.132 0.868
#> SRR1192966     2  0.5629      1.000 0.132 0.868
#> SRR1192965     2  0.5629      1.000 0.132 0.868
#> SRR1192964     2  0.5629      1.000 0.132 0.868
#> SRR1193005     1  0.0000      0.965 1.000 0.000
#> SRR1193006     1  0.0000      0.965 1.000 0.000
#> SRR1193007     1  0.0000      0.965 1.000 0.000
#> SRR1193008     1  0.0000      0.965 1.000 0.000
#> SRR1193011     1  0.0000      0.965 1.000 0.000
#> SRR1193012     1  0.0000      0.965 1.000 0.000
#> SRR1193009     1  0.0000      0.965 1.000 0.000
#> SRR1193010     1  0.0000      0.965 1.000 0.000
#> SRR1193014     1  0.0000      0.965 1.000 0.000
#> SRR1193015     1  0.0000      0.965 1.000 0.000
#> SRR1193013     1  0.0000      0.965 1.000 0.000
#> SRR1193018     1  0.0000      0.965 1.000 0.000
#> SRR1193016     1  0.0000      0.965 1.000 0.000
#> SRR1193017     1  0.0000      0.965 1.000 0.000
#> SRR1193100     1  0.0000      0.965 1.000 0.000
#> SRR1193101     1  0.0000      0.965 1.000 0.000
#> SRR1193102     1  0.0000      0.965 1.000 0.000
#> SRR1193104     1  0.0000      0.965 1.000 0.000
#> SRR1193103     1  0.0000      0.965 1.000 0.000
#> SRR1193105     1  0.0000      0.965 1.000 0.000
#> SRR1193106     1  0.0000      0.965 1.000 0.000
#> SRR1193198     1  0.0000      0.965 1.000 0.000
#> SRR1193197     1  0.0000      0.965 1.000 0.000
#> SRR1193199     1  0.0000      0.965 1.000 0.000
#> SRR1193405     1  0.0000      0.965 1.000 0.000
#> SRR1193404     1  0.0000      0.965 1.000 0.000
#> SRR1193403     1  0.0000      0.965 1.000 0.000
#> SRR1193522     1  0.0000      0.965 1.000 0.000
#> SRR1193523     1  0.0000      0.965 1.000 0.000
#> SRR1193524     1  0.0000      0.965 1.000 0.000
#> SRR1193638     1  0.0000      0.965 1.000 0.000
#> SRR1193639     1  0.0000      0.965 1.000 0.000
#> SRR1195621     1  0.0000      0.965 1.000 0.000
#> SRR1195619     1  0.0000      0.965 1.000 0.000
#> SRR1195620     1  0.0000      0.965 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1190372     2  0.0892      0.935 0.020 0.980 0.000
#> SRR1190371     2  0.0892      0.935 0.020 0.980 0.000
#> SRR1190370     2  0.0892      0.935 0.020 0.980 0.000
#> SRR1190368     2  0.0892      0.935 0.020 0.980 0.000
#> SRR1190369     2  0.0892      0.935 0.020 0.980 0.000
#> SRR1190366     2  0.0892      0.935 0.020 0.980 0.000
#> SRR1190367     2  0.0892      0.935 0.020 0.980 0.000
#> SRR1190365     2  0.0892      0.935 0.020 0.980 0.000
#> SRR1190467     3  0.5726      0.997 0.216 0.024 0.760
#> SRR1190466     3  0.5726      0.997 0.216 0.024 0.760
#> SRR1190465     3  0.5726      0.997 0.216 0.024 0.760
#> SRR1190464     3  0.5726      0.997 0.216 0.024 0.760
#> SRR1190462     3  0.5726      0.997 0.216 0.024 0.760
#> SRR1190461     3  0.5726      0.997 0.216 0.024 0.760
#> SRR1190460     3  0.5726      0.997 0.216 0.024 0.760
#> SRR1190509     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1190504     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1190503     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1190502     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1190508     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1190507     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1190506     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1190505     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1191342     2  0.4802      0.922 0.020 0.824 0.156
#> SRR1191344     2  0.4802      0.922 0.020 0.824 0.156
#> SRR1191343     2  0.4802      0.922 0.020 0.824 0.156
#> SRR1191349     2  0.4802      0.922 0.020 0.824 0.156
#> SRR1191345     2  0.4802      0.922 0.020 0.824 0.156
#> SRR1191346     2  0.4802      0.922 0.020 0.824 0.156
#> SRR1191347     2  0.4802      0.922 0.020 0.824 0.156
#> SRR1191348     2  0.4802      0.922 0.020 0.824 0.156
#> SRR1191668     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1191667     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1191673     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1191672     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1191695     3  0.6292      0.991 0.216 0.044 0.740
#> SRR1191694     3  0.6292      0.991 0.216 0.044 0.740
#> SRR1191783     3  0.6292      0.991 0.216 0.044 0.740
#> SRR1191876     3  0.6292      0.991 0.216 0.044 0.740
#> SRR1191914     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1191915     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1191953     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1191954     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1191990     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1191991     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1192016     3  0.5726      0.997 0.216 0.024 0.760
#> SRR1192017     3  0.5726      0.997 0.216 0.024 0.760
#> SRR1192073     3  0.5726      0.997 0.216 0.024 0.760
#> SRR1192072     3  0.5726      0.997 0.216 0.024 0.760
#> SRR1192167     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1192166     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1192321     3  0.5726      0.997 0.216 0.024 0.760
#> SRR1192353     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1192354     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1192370     1  0.0592      0.990 0.988 0.000 0.012
#> SRR1192371     1  0.0592      0.990 0.988 0.000 0.012
#> SRR1192399     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1192398     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1192417     2  0.4802      0.922 0.020 0.824 0.156
#> SRR1192418     2  0.4802      0.922 0.020 0.824 0.156
#> SRR1192415     2  0.4802      0.922 0.020 0.824 0.156
#> SRR1192416     2  0.4802      0.922 0.020 0.824 0.156
#> SRR1192413     2  0.4802      0.922 0.020 0.824 0.156
#> SRR1192414     2  0.4802      0.922 0.020 0.824 0.156
#> SRR1192420     2  0.4802      0.922 0.020 0.824 0.156
#> SRR1192419     2  0.4802      0.922 0.020 0.824 0.156
#> SRR1192471     1  0.0592      0.990 0.988 0.000 0.012
#> SRR1192470     1  0.0592      0.990 0.988 0.000 0.012
#> SRR1192469     1  0.0592      0.990 0.988 0.000 0.012
#> SRR1192468     1  0.0592      0.990 0.988 0.000 0.012
#> SRR1192467     1  0.0592      0.990 0.988 0.000 0.012
#> SRR1192466     1  0.0592      0.990 0.988 0.000 0.012
#> SRR1192465     1  0.0592      0.990 0.988 0.000 0.012
#> SRR1192500     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1192501     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1192502     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1192503     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1192496     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1192497     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1192499     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1192641     2  0.0892      0.935 0.020 0.980 0.000
#> SRR1192640     2  0.0892      0.935 0.020 0.980 0.000
#> SRR1192643     2  0.0892      0.935 0.020 0.980 0.000
#> SRR1192642     2  0.0892      0.935 0.020 0.980 0.000
#> SRR1192644     2  0.0892      0.935 0.020 0.980 0.000
#> SRR1192645     2  0.0892      0.935 0.020 0.980 0.000
#> SRR1192646     2  0.0892      0.935 0.020 0.980 0.000
#> SRR1192647     2  0.0892      0.935 0.020 0.980 0.000
#> SRR1192836     2  0.4802      0.904 0.020 0.824 0.156
#> SRR1192838     2  0.4802      0.904 0.020 0.824 0.156
#> SRR1192837     2  0.4802      0.904 0.020 0.824 0.156
#> SRR1192839     2  0.4802      0.904 0.020 0.824 0.156
#> SRR1192963     2  0.0892      0.935 0.020 0.980 0.000
#> SRR1192966     2  0.0892      0.935 0.020 0.980 0.000
#> SRR1192965     2  0.0892      0.935 0.020 0.980 0.000
#> SRR1192964     2  0.0892      0.935 0.020 0.980 0.000
#> SRR1193005     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1193006     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1193007     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1193008     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1193011     1  0.0592      0.990 0.988 0.000 0.012
#> SRR1193012     1  0.0592      0.990 0.988 0.000 0.012
#> SRR1193009     1  0.0592      0.990 0.988 0.000 0.012
#> SRR1193010     1  0.0592      0.990 0.988 0.000 0.012
#> SRR1193014     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1193015     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1193013     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1193018     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1193016     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1193017     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1193100     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1193101     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1193102     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1193104     1  0.0592      0.990 0.988 0.000 0.012
#> SRR1193103     1  0.0592      0.990 0.988 0.000 0.012
#> SRR1193105     1  0.0592      0.990 0.988 0.000 0.012
#> SRR1193106     1  0.0592      0.990 0.988 0.000 0.012
#> SRR1193198     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1193197     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1193199     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1193405     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1193404     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1193403     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1193522     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1193523     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1193524     1  0.0000      0.996 1.000 0.000 0.000
#> SRR1193638     1  0.0592      0.990 0.988 0.000 0.012
#> SRR1193639     1  0.0592      0.990 0.988 0.000 0.012
#> SRR1195621     1  0.0592      0.990 0.988 0.000 0.012
#> SRR1195619     1  0.0592      0.990 0.988 0.000 0.012
#> SRR1195620     1  0.0592      0.990 0.988 0.000 0.012

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1190372     2  0.4718      0.865 0.000 0.708 0.012 0.280
#> SRR1190371     2  0.4718      0.865 0.000 0.708 0.012 0.280
#> SRR1190370     2  0.4718      0.865 0.000 0.708 0.012 0.280
#> SRR1190368     2  0.4718      0.865 0.000 0.708 0.012 0.280
#> SRR1190369     2  0.4718      0.865 0.000 0.708 0.012 0.280
#> SRR1190366     2  0.4718      0.865 0.000 0.708 0.012 0.280
#> SRR1190367     2  0.4718      0.865 0.000 0.708 0.012 0.280
#> SRR1190365     2  0.4718      0.865 0.000 0.708 0.012 0.280
#> SRR1190467     3  0.3961      0.979 0.096 0.008 0.848 0.048
#> SRR1190466     3  0.3961      0.979 0.096 0.008 0.848 0.048
#> SRR1190465     3  0.3961      0.979 0.096 0.008 0.848 0.048
#> SRR1190464     3  0.3961      0.979 0.096 0.008 0.848 0.048
#> SRR1190462     3  0.3961      0.979 0.096 0.008 0.848 0.048
#> SRR1190461     3  0.3961      0.979 0.096 0.008 0.848 0.048
#> SRR1190460     3  0.3961      0.979 0.096 0.008 0.848 0.048
#> SRR1190509     1  0.4972     -0.459 0.544 0.000 0.000 0.456
#> SRR1190504     1  0.4972     -0.459 0.544 0.000 0.000 0.456
#> SRR1190503     1  0.4972     -0.459 0.544 0.000 0.000 0.456
#> SRR1190502     1  0.4972     -0.459 0.544 0.000 0.000 0.456
#> SRR1190508     1  0.4972     -0.459 0.544 0.000 0.000 0.456
#> SRR1190507     1  0.4972     -0.459 0.544 0.000 0.000 0.456
#> SRR1190506     1  0.4972     -0.459 0.544 0.000 0.000 0.456
#> SRR1190505     1  0.4972     -0.459 0.544 0.000 0.000 0.456
#> SRR1191342     2  0.0469      0.842 0.000 0.988 0.000 0.012
#> SRR1191344     2  0.0469      0.842 0.000 0.988 0.000 0.012
#> SRR1191343     2  0.0469      0.842 0.000 0.988 0.000 0.012
#> SRR1191349     2  0.0469      0.842 0.000 0.988 0.000 0.012
#> SRR1191345     2  0.0469      0.842 0.000 0.988 0.000 0.012
#> SRR1191346     2  0.0469      0.842 0.000 0.988 0.000 0.012
#> SRR1191347     2  0.0469      0.842 0.000 0.988 0.000 0.012
#> SRR1191348     2  0.0469      0.842 0.000 0.988 0.000 0.012
#> SRR1191668     4  0.4977      1.000 0.460 0.000 0.000 0.540
#> SRR1191667     4  0.4977      1.000 0.460 0.000 0.000 0.540
#> SRR1191673     4  0.4977      1.000 0.460 0.000 0.000 0.540
#> SRR1191672     4  0.4977      1.000 0.460 0.000 0.000 0.540
#> SRR1191695     3  0.3607      0.974 0.096 0.008 0.864 0.032
#> SRR1191694     3  0.3607      0.974 0.096 0.008 0.864 0.032
#> SRR1191783     3  0.3607      0.974 0.096 0.008 0.864 0.032
#> SRR1191876     3  0.3607      0.974 0.096 0.008 0.864 0.032
#> SRR1191914     1  0.4977     -0.511 0.540 0.000 0.000 0.460
#> SRR1191915     1  0.4977     -0.511 0.540 0.000 0.000 0.460
#> SRR1191953     1  0.4977     -0.511 0.540 0.000 0.000 0.460
#> SRR1191954     1  0.4977     -0.511 0.540 0.000 0.000 0.460
#> SRR1191990     1  0.4989     -0.720 0.528 0.000 0.000 0.472
#> SRR1191991     1  0.4989     -0.720 0.528 0.000 0.000 0.472
#> SRR1192016     3  0.2611      0.981 0.096 0.008 0.896 0.000
#> SRR1192017     3  0.2611      0.981 0.096 0.008 0.896 0.000
#> SRR1192073     3  0.2611      0.981 0.096 0.008 0.896 0.000
#> SRR1192072     3  0.2611      0.981 0.096 0.008 0.896 0.000
#> SRR1192167     4  0.4977      1.000 0.460 0.000 0.000 0.540
#> SRR1192166     4  0.4977      1.000 0.460 0.000 0.000 0.540
#> SRR1192321     3  0.2611      0.981 0.096 0.008 0.896 0.000
#> SRR1192353     1  0.4898     -0.476 0.584 0.000 0.000 0.416
#> SRR1192354     1  0.4898     -0.476 0.584 0.000 0.000 0.416
#> SRR1192370     1  0.0000      0.312 1.000 0.000 0.000 0.000
#> SRR1192371     1  0.0000      0.312 1.000 0.000 0.000 0.000
#> SRR1192399     1  0.4898     -0.489 0.584 0.000 0.000 0.416
#> SRR1192398     1  0.4898     -0.489 0.584 0.000 0.000 0.416
#> SRR1192417     2  0.0469      0.842 0.000 0.988 0.012 0.000
#> SRR1192418     2  0.0469      0.842 0.000 0.988 0.012 0.000
#> SRR1192415     2  0.0469      0.842 0.000 0.988 0.012 0.000
#> SRR1192416     2  0.0469      0.842 0.000 0.988 0.012 0.000
#> SRR1192413     2  0.0469      0.842 0.000 0.988 0.012 0.000
#> SRR1192414     2  0.0469      0.842 0.000 0.988 0.012 0.000
#> SRR1192420     2  0.0469      0.842 0.000 0.988 0.012 0.000
#> SRR1192419     2  0.0469      0.842 0.000 0.988 0.012 0.000
#> SRR1192471     1  0.0188      0.312 0.996 0.000 0.000 0.004
#> SRR1192470     1  0.0188      0.312 0.996 0.000 0.000 0.004
#> SRR1192469     1  0.0188      0.312 0.996 0.000 0.000 0.004
#> SRR1192468     1  0.0188      0.312 0.996 0.000 0.000 0.004
#> SRR1192467     1  0.0188      0.312 0.996 0.000 0.000 0.004
#> SRR1192466     1  0.0188      0.312 0.996 0.000 0.000 0.004
#> SRR1192465     1  0.0188      0.312 0.996 0.000 0.000 0.004
#> SRR1192500     1  0.4961     -0.421 0.552 0.000 0.000 0.448
#> SRR1192501     1  0.4961     -0.421 0.552 0.000 0.000 0.448
#> SRR1192502     1  0.4961     -0.421 0.552 0.000 0.000 0.448
#> SRR1192503     1  0.4961     -0.421 0.552 0.000 0.000 0.448
#> SRR1192496     1  0.4961     -0.421 0.552 0.000 0.000 0.448
#> SRR1192497     1  0.4961     -0.421 0.552 0.000 0.000 0.448
#> SRR1192499     1  0.4961     -0.421 0.552 0.000 0.000 0.448
#> SRR1192641     2  0.4356      0.865 0.000 0.708 0.000 0.292
#> SRR1192640     2  0.4356      0.865 0.000 0.708 0.000 0.292
#> SRR1192643     2  0.4356      0.865 0.000 0.708 0.000 0.292
#> SRR1192642     2  0.4356      0.865 0.000 0.708 0.000 0.292
#> SRR1192644     2  0.4356      0.865 0.000 0.708 0.000 0.292
#> SRR1192645     2  0.4356      0.865 0.000 0.708 0.000 0.292
#> SRR1192646     2  0.4356      0.865 0.000 0.708 0.000 0.292
#> SRR1192647     2  0.4356      0.865 0.000 0.708 0.000 0.292
#> SRR1192836     2  0.4872      0.811 0.000 0.776 0.076 0.148
#> SRR1192838     2  0.4890      0.811 0.000 0.776 0.080 0.144
#> SRR1192837     2  0.4872      0.811 0.000 0.776 0.076 0.148
#> SRR1192839     2  0.4890      0.811 0.000 0.776 0.080 0.144
#> SRR1192963     2  0.4356      0.865 0.000 0.708 0.000 0.292
#> SRR1192966     2  0.4356      0.865 0.000 0.708 0.000 0.292
#> SRR1192965     2  0.4356      0.865 0.000 0.708 0.000 0.292
#> SRR1192964     2  0.4356      0.865 0.000 0.708 0.000 0.292
#> SRR1193005     1  0.4961     -0.421 0.552 0.000 0.000 0.448
#> SRR1193006     1  0.4961     -0.421 0.552 0.000 0.000 0.448
#> SRR1193007     1  0.4961     -0.421 0.552 0.000 0.000 0.448
#> SRR1193008     1  0.4961     -0.421 0.552 0.000 0.000 0.448
#> SRR1193011     1  0.0188      0.312 0.996 0.000 0.000 0.004
#> SRR1193012     1  0.0188      0.312 0.996 0.000 0.000 0.004
#> SRR1193009     1  0.0188      0.312 0.996 0.000 0.000 0.004
#> SRR1193010     1  0.0188      0.312 0.996 0.000 0.000 0.004
#> SRR1193014     1  0.4977     -0.511 0.540 0.000 0.000 0.460
#> SRR1193015     1  0.4977     -0.511 0.540 0.000 0.000 0.460
#> SRR1193013     1  0.4977     -0.511 0.540 0.000 0.000 0.460
#> SRR1193018     1  0.4948     -0.411 0.560 0.000 0.000 0.440
#> SRR1193016     1  0.4948     -0.411 0.560 0.000 0.000 0.440
#> SRR1193017     1  0.4948     -0.411 0.560 0.000 0.000 0.440
#> SRR1193100     1  0.4948     -0.411 0.560 0.000 0.000 0.440
#> SRR1193101     1  0.4948     -0.411 0.560 0.000 0.000 0.440
#> SRR1193102     1  0.4948     -0.411 0.560 0.000 0.000 0.440
#> SRR1193104     1  0.0000      0.312 1.000 0.000 0.000 0.000
#> SRR1193103     1  0.0000      0.312 1.000 0.000 0.000 0.000
#> SRR1193105     1  0.0000      0.312 1.000 0.000 0.000 0.000
#> SRR1193106     1  0.0000      0.312 1.000 0.000 0.000 0.000
#> SRR1193198     1  0.4977     -0.511 0.540 0.000 0.000 0.460
#> SRR1193197     1  0.4977     -0.511 0.540 0.000 0.000 0.460
#> SRR1193199     1  0.4977     -0.511 0.540 0.000 0.000 0.460
#> SRR1193405     1  0.4948     -0.411 0.560 0.000 0.000 0.440
#> SRR1193404     1  0.4948     -0.411 0.560 0.000 0.000 0.440
#> SRR1193403     1  0.4948     -0.411 0.560 0.000 0.000 0.440
#> SRR1193522     1  0.4948     -0.411 0.560 0.000 0.000 0.440
#> SRR1193523     1  0.4948     -0.411 0.560 0.000 0.000 0.440
#> SRR1193524     1  0.4948     -0.411 0.560 0.000 0.000 0.440
#> SRR1193638     1  0.0000      0.312 1.000 0.000 0.000 0.000
#> SRR1193639     1  0.0000      0.312 1.000 0.000 0.000 0.000
#> SRR1195621     1  0.0000      0.312 1.000 0.000 0.000 0.000
#> SRR1195619     1  0.0000      0.312 1.000 0.000 0.000 0.000
#> SRR1195620     1  0.0000      0.312 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3 p4    p5
#> SRR1190372     2  0.5046      0.783 0.020 0.540 0.008 NA 0.000
#> SRR1190371     2  0.5046      0.783 0.020 0.540 0.008 NA 0.000
#> SRR1190370     2  0.5046      0.783 0.020 0.540 0.008 NA 0.000
#> SRR1190368     2  0.5046      0.783 0.020 0.540 0.008 NA 0.000
#> SRR1190369     2  0.5046      0.783 0.020 0.540 0.008 NA 0.000
#> SRR1190366     2  0.5046      0.783 0.020 0.540 0.008 NA 0.000
#> SRR1190367     2  0.5046      0.783 0.020 0.540 0.008 NA 0.000
#> SRR1190365     2  0.5046      0.783 0.020 0.540 0.008 NA 0.000
#> SRR1190467     3  0.2138      0.971 0.012 0.004 0.928 NA 0.024
#> SRR1190466     3  0.2138      0.971 0.012 0.004 0.928 NA 0.024
#> SRR1190465     3  0.2138      0.971 0.012 0.004 0.928 NA 0.024
#> SRR1190464     3  0.2138      0.971 0.012 0.004 0.928 NA 0.024
#> SRR1190462     3  0.2138      0.971 0.012 0.004 0.928 NA 0.024
#> SRR1190461     3  0.2138      0.971 0.012 0.004 0.928 NA 0.024
#> SRR1190460     3  0.2138      0.971 0.012 0.004 0.928 NA 0.024
#> SRR1190509     1  0.4400      0.873 0.672 0.000 0.000 NA 0.308
#> SRR1190504     1  0.4400      0.873 0.672 0.000 0.000 NA 0.308
#> SRR1190503     1  0.4400      0.873 0.672 0.000 0.000 NA 0.308
#> SRR1190502     1  0.4400      0.873 0.672 0.000 0.000 NA 0.308
#> SRR1190508     1  0.4400      0.873 0.672 0.000 0.000 NA 0.308
#> SRR1190507     1  0.4400      0.873 0.672 0.000 0.000 NA 0.308
#> SRR1190506     1  0.4400      0.873 0.672 0.000 0.000 NA 0.308
#> SRR1190505     1  0.4400      0.873 0.672 0.000 0.000 NA 0.308
#> SRR1191342     2  0.0000      0.743 0.000 1.000 0.000 NA 0.000
#> SRR1191344     2  0.0000      0.743 0.000 1.000 0.000 NA 0.000
#> SRR1191343     2  0.0000      0.743 0.000 1.000 0.000 NA 0.000
#> SRR1191349     2  0.0000      0.743 0.000 1.000 0.000 NA 0.000
#> SRR1191345     2  0.0000      0.743 0.000 1.000 0.000 NA 0.000
#> SRR1191346     2  0.0000      0.743 0.000 1.000 0.000 NA 0.000
#> SRR1191347     2  0.0000      0.743 0.000 1.000 0.000 NA 0.000
#> SRR1191348     2  0.0000      0.743 0.000 1.000 0.000 NA 0.000
#> SRR1191668     1  0.6083      0.721 0.572 0.000 0.000 NA 0.224
#> SRR1191667     1  0.6083      0.721 0.572 0.000 0.000 NA 0.224
#> SRR1191673     1  0.6083      0.721 0.572 0.000 0.000 NA 0.224
#> SRR1191672     1  0.6083      0.721 0.572 0.000 0.000 NA 0.224
#> SRR1191695     3  0.2604      0.959 0.036 0.004 0.908 NA 0.024
#> SRR1191694     3  0.2604      0.959 0.036 0.004 0.908 NA 0.024
#> SRR1191783     3  0.2604      0.959 0.036 0.004 0.908 NA 0.024
#> SRR1191876     3  0.2604      0.959 0.036 0.004 0.908 NA 0.024
#> SRR1191914     1  0.5353      0.851 0.636 0.000 0.000 NA 0.272
#> SRR1191915     1  0.5353      0.851 0.636 0.000 0.000 NA 0.272
#> SRR1191953     1  0.5353      0.851 0.636 0.000 0.000 NA 0.272
#> SRR1191954     1  0.5353      0.851 0.636 0.000 0.000 NA 0.272
#> SRR1191990     1  0.6237      0.694 0.536 0.000 0.000 NA 0.276
#> SRR1191991     1  0.6237      0.694 0.536 0.000 0.000 NA 0.276
#> SRR1192016     3  0.1533      0.972 0.004 0.004 0.952 NA 0.024
#> SRR1192017     3  0.1533      0.972 0.004 0.004 0.952 NA 0.024
#> SRR1192073     3  0.1533      0.972 0.004 0.004 0.952 NA 0.024
#> SRR1192072     3  0.1533      0.972 0.004 0.004 0.952 NA 0.024
#> SRR1192167     1  0.6083      0.721 0.572 0.000 0.000 NA 0.224
#> SRR1192166     1  0.6083      0.721 0.572 0.000 0.000 NA 0.224
#> SRR1192321     3  0.1533      0.972 0.004 0.004 0.952 NA 0.024
#> SRR1192353     1  0.5640      0.820 0.592 0.000 0.000 NA 0.304
#> SRR1192354     1  0.5640      0.820 0.592 0.000 0.000 NA 0.304
#> SRR1192370     5  0.0912      0.968 0.012 0.000 0.000 NA 0.972
#> SRR1192371     5  0.0912      0.968 0.012 0.000 0.000 NA 0.972
#> SRR1192399     1  0.5811      0.794 0.568 0.000 0.000 NA 0.316
#> SRR1192398     1  0.5811      0.794 0.568 0.000 0.000 NA 0.316
#> SRR1192417     2  0.0693      0.743 0.008 0.980 0.012 NA 0.000
#> SRR1192418     2  0.0693      0.743 0.008 0.980 0.012 NA 0.000
#> SRR1192415     2  0.0693      0.743 0.008 0.980 0.012 NA 0.000
#> SRR1192416     2  0.0693      0.743 0.008 0.980 0.012 NA 0.000
#> SRR1192413     2  0.0693      0.743 0.008 0.980 0.012 NA 0.000
#> SRR1192414     2  0.0693      0.743 0.008 0.980 0.012 NA 0.000
#> SRR1192420     2  0.0693      0.743 0.008 0.980 0.012 NA 0.000
#> SRR1192419     2  0.0693      0.743 0.008 0.980 0.012 NA 0.000
#> SRR1192471     5  0.0865      0.969 0.004 0.000 0.000 NA 0.972
#> SRR1192470     5  0.0865      0.969 0.004 0.000 0.000 NA 0.972
#> SRR1192469     5  0.0865      0.969 0.004 0.000 0.000 NA 0.972
#> SRR1192468     5  0.0865      0.969 0.004 0.000 0.000 NA 0.972
#> SRR1192467     5  0.0865      0.969 0.004 0.000 0.000 NA 0.972
#> SRR1192466     5  0.0865      0.969 0.004 0.000 0.000 NA 0.972
#> SRR1192465     5  0.0865      0.969 0.004 0.000 0.000 NA 0.972
#> SRR1192500     1  0.4329      0.873 0.672 0.000 0.000 NA 0.312
#> SRR1192501     1  0.4329      0.873 0.672 0.000 0.000 NA 0.312
#> SRR1192502     1  0.4329      0.873 0.672 0.000 0.000 NA 0.312
#> SRR1192503     1  0.4329      0.873 0.672 0.000 0.000 NA 0.312
#> SRR1192496     1  0.4329      0.873 0.672 0.000 0.000 NA 0.312
#> SRR1192497     1  0.4329      0.873 0.672 0.000 0.000 NA 0.312
#> SRR1192499     1  0.4329      0.873 0.672 0.000 0.000 NA 0.312
#> SRR1192641     2  0.4287      0.784 0.000 0.540 0.000 NA 0.000
#> SRR1192640     2  0.4287      0.784 0.000 0.540 0.000 NA 0.000
#> SRR1192643     2  0.4287      0.784 0.000 0.540 0.000 NA 0.000
#> SRR1192642     2  0.4287      0.784 0.000 0.540 0.000 NA 0.000
#> SRR1192644     2  0.4287      0.784 0.000 0.540 0.000 NA 0.000
#> SRR1192645     2  0.4287      0.784 0.000 0.540 0.000 NA 0.000
#> SRR1192646     2  0.4287      0.784 0.000 0.540 0.000 NA 0.000
#> SRR1192647     2  0.4287      0.784 0.000 0.540 0.000 NA 0.000
#> SRR1192836     2  0.5716      0.672 0.144 0.616 0.000 NA 0.000
#> SRR1192838     2  0.5716      0.672 0.144 0.616 0.000 NA 0.000
#> SRR1192837     2  0.5716      0.672 0.144 0.616 0.000 NA 0.000
#> SRR1192839     2  0.5716      0.672 0.144 0.616 0.000 NA 0.000
#> SRR1192963     2  0.4430      0.784 0.000 0.540 0.004 NA 0.000
#> SRR1192966     2  0.4430      0.784 0.000 0.540 0.004 NA 0.000
#> SRR1192965     2  0.4430      0.784 0.000 0.540 0.004 NA 0.000
#> SRR1192964     2  0.4430      0.784 0.000 0.540 0.004 NA 0.000
#> SRR1193005     1  0.4329      0.873 0.672 0.000 0.000 NA 0.312
#> SRR1193006     1  0.4329      0.873 0.672 0.000 0.000 NA 0.312
#> SRR1193007     1  0.4329      0.873 0.672 0.000 0.000 NA 0.312
#> SRR1193008     1  0.4329      0.873 0.672 0.000 0.000 NA 0.312
#> SRR1193011     5  0.1357      0.962 0.004 0.000 0.000 NA 0.948
#> SRR1193012     5  0.1357      0.962 0.004 0.000 0.000 NA 0.948
#> SRR1193009     5  0.1357      0.962 0.004 0.000 0.000 NA 0.948
#> SRR1193010     5  0.1357      0.962 0.004 0.000 0.000 NA 0.948
#> SRR1193014     1  0.5353      0.851 0.636 0.000 0.000 NA 0.272
#> SRR1193015     1  0.5353      0.851 0.636 0.000 0.000 NA 0.272
#> SRR1193013     1  0.5353      0.851 0.636 0.000 0.000 NA 0.272
#> SRR1193018     1  0.5086      0.859 0.636 0.000 0.000 NA 0.304
#> SRR1193016     1  0.5086      0.859 0.636 0.000 0.000 NA 0.304
#> SRR1193017     1  0.5086      0.859 0.636 0.000 0.000 NA 0.304
#> SRR1193100     1  0.5086      0.859 0.636 0.000 0.000 NA 0.304
#> SRR1193101     1  0.5086      0.859 0.636 0.000 0.000 NA 0.304
#> SRR1193102     1  0.5086      0.859 0.636 0.000 0.000 NA 0.304
#> SRR1193104     5  0.0898      0.965 0.008 0.000 0.000 NA 0.972
#> SRR1193103     5  0.0898      0.965 0.008 0.000 0.000 NA 0.972
#> SRR1193105     5  0.0798      0.967 0.008 0.000 0.000 NA 0.976
#> SRR1193106     5  0.0798      0.967 0.008 0.000 0.000 NA 0.976
#> SRR1193198     1  0.5353      0.851 0.636 0.000 0.000 NA 0.272
#> SRR1193197     1  0.5353      0.851 0.636 0.000 0.000 NA 0.272
#> SRR1193199     1  0.5353      0.851 0.636 0.000 0.000 NA 0.272
#> SRR1193405     1  0.5144      0.858 0.632 0.000 0.000 NA 0.304
#> SRR1193404     1  0.5144      0.858 0.632 0.000 0.000 NA 0.304
#> SRR1193403     1  0.5144      0.858 0.632 0.000 0.000 NA 0.304
#> SRR1193522     1  0.5144      0.858 0.632 0.000 0.000 NA 0.304
#> SRR1193523     1  0.5144      0.858 0.632 0.000 0.000 NA 0.304
#> SRR1193524     1  0.5144      0.858 0.632 0.000 0.000 NA 0.304
#> SRR1193638     5  0.1329      0.960 0.008 0.000 0.004 NA 0.956
#> SRR1193639     5  0.1329      0.960 0.008 0.000 0.004 NA 0.956
#> SRR1195621     5  0.1243      0.962 0.008 0.000 0.004 NA 0.960
#> SRR1195619     5  0.1243      0.962 0.008 0.000 0.004 NA 0.960
#> SRR1195620     5  0.1243      0.962 0.008 0.000 0.004 NA 0.960

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1190372     4  0.5500     -0.769 0.000 0.412 0.000 0.496 0.068 0.024
#> SRR1190371     4  0.5537     -0.769 0.000 0.412 0.000 0.496 0.060 0.032
#> SRR1190370     4  0.5537     -0.769 0.000 0.412 0.000 0.496 0.060 0.032
#> SRR1190368     4  0.5537     -0.769 0.000 0.412 0.000 0.496 0.060 0.032
#> SRR1190369     4  0.5500     -0.769 0.000 0.412 0.000 0.496 0.068 0.024
#> SRR1190366     4  0.5500     -0.769 0.000 0.412 0.000 0.496 0.068 0.024
#> SRR1190367     4  0.5537     -0.769 0.000 0.412 0.000 0.496 0.060 0.032
#> SRR1190365     4  0.5500     -0.769 0.000 0.412 0.000 0.496 0.068 0.024
#> SRR1190467     3  0.1836      0.968 0.012 0.048 0.928 0.000 0.008 0.004
#> SRR1190466     3  0.1836      0.968 0.012 0.048 0.928 0.000 0.008 0.004
#> SRR1190465     3  0.1881      0.968 0.012 0.044 0.928 0.000 0.008 0.008
#> SRR1190464     3  0.1881      0.968 0.012 0.044 0.928 0.000 0.008 0.008
#> SRR1190462     3  0.1881      0.968 0.012 0.044 0.928 0.000 0.008 0.008
#> SRR1190461     3  0.1881      0.968 0.012 0.044 0.928 0.000 0.008 0.008
#> SRR1190460     3  0.1836      0.968 0.012 0.048 0.928 0.000 0.008 0.004
#> SRR1190509     1  0.0405      0.746 0.988 0.004 0.000 0.000 0.008 0.000
#> SRR1190504     1  0.0405      0.746 0.988 0.004 0.000 0.000 0.008 0.000
#> SRR1190503     1  0.0405      0.746 0.988 0.004 0.000 0.000 0.008 0.000
#> SRR1190502     1  0.0405      0.746 0.988 0.004 0.000 0.000 0.008 0.000
#> SRR1190508     1  0.0405      0.746 0.988 0.004 0.000 0.000 0.008 0.000
#> SRR1190507     1  0.0405      0.746 0.988 0.004 0.000 0.000 0.008 0.000
#> SRR1190506     1  0.0405      0.746 0.988 0.004 0.000 0.000 0.008 0.000
#> SRR1190505     1  0.0405      0.746 0.988 0.004 0.000 0.000 0.008 0.000
#> SRR1191342     4  0.0000      0.517 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191344     4  0.0000      0.517 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191343     4  0.0000      0.517 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191349     4  0.0000      0.517 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191345     4  0.0000      0.517 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191346     4  0.0000      0.517 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191347     4  0.0000      0.517 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191348     4  0.0000      0.517 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191668     6  0.5724      0.919 0.376 0.168 0.000 0.000 0.000 0.456
#> SRR1191667     6  0.5724      0.919 0.376 0.168 0.000 0.000 0.000 0.456
#> SRR1191673     6  0.5724      0.919 0.376 0.168 0.000 0.000 0.000 0.456
#> SRR1191672     6  0.5724      0.919 0.376 0.168 0.000 0.000 0.000 0.456
#> SRR1191695     3  0.1527      0.962 0.012 0.012 0.948 0.000 0.008 0.020
#> SRR1191694     3  0.1527      0.962 0.012 0.012 0.948 0.000 0.008 0.020
#> SRR1191783     3  0.1527      0.962 0.012 0.012 0.948 0.000 0.008 0.020
#> SRR1191876     3  0.1527      0.962 0.012 0.012 0.948 0.000 0.008 0.020
#> SRR1191914     1  0.3360      0.588 0.732 0.000 0.000 0.000 0.004 0.264
#> SRR1191915     1  0.3360      0.588 0.732 0.000 0.000 0.000 0.004 0.264
#> SRR1191953     1  0.3360      0.588 0.732 0.000 0.000 0.000 0.004 0.264
#> SRR1191954     1  0.3360      0.588 0.732 0.000 0.000 0.000 0.004 0.264
#> SRR1191990     6  0.5411      0.726 0.384 0.040 0.000 0.000 0.044 0.532
#> SRR1191991     6  0.5411      0.726 0.384 0.040 0.000 0.000 0.044 0.532
#> SRR1192016     3  0.0508      0.971 0.012 0.000 0.984 0.000 0.004 0.000
#> SRR1192017     3  0.0508      0.971 0.012 0.000 0.984 0.000 0.004 0.000
#> SRR1192073     3  0.0508      0.971 0.012 0.000 0.984 0.000 0.004 0.000
#> SRR1192072     3  0.0508      0.971 0.012 0.000 0.984 0.000 0.004 0.000
#> SRR1192167     6  0.5724      0.919 0.376 0.168 0.000 0.000 0.000 0.456
#> SRR1192166     6  0.5724      0.919 0.376 0.168 0.000 0.000 0.000 0.456
#> SRR1192321     3  0.0508      0.971 0.012 0.000 0.984 0.000 0.004 0.000
#> SRR1192353     1  0.4778      0.187 0.588 0.008 0.000 0.000 0.044 0.360
#> SRR1192354     1  0.4778      0.187 0.588 0.008 0.000 0.000 0.044 0.360
#> SRR1192370     5  0.4441      0.932 0.180 0.056 0.000 0.000 0.736 0.028
#> SRR1192371     5  0.4441      0.932 0.180 0.056 0.000 0.000 0.736 0.028
#> SRR1192399     1  0.5216     -0.128 0.520 0.008 0.000 0.000 0.072 0.400
#> SRR1192398     1  0.5216     -0.128 0.520 0.008 0.000 0.000 0.072 0.400
#> SRR1192417     4  0.1053      0.516 0.000 0.000 0.004 0.964 0.020 0.012
#> SRR1192418     4  0.1053      0.516 0.000 0.000 0.004 0.964 0.020 0.012
#> SRR1192415     4  0.1078      0.516 0.000 0.000 0.008 0.964 0.016 0.012
#> SRR1192416     4  0.1078      0.516 0.000 0.000 0.008 0.964 0.016 0.012
#> SRR1192413     4  0.1053      0.516 0.000 0.000 0.004 0.964 0.020 0.012
#> SRR1192414     4  0.1078      0.516 0.000 0.000 0.008 0.964 0.016 0.012
#> SRR1192420     4  0.1053      0.516 0.000 0.000 0.004 0.964 0.020 0.012
#> SRR1192419     4  0.1053      0.516 0.000 0.000 0.004 0.964 0.020 0.012
#> SRR1192471     5  0.3329      0.937 0.184 0.004 0.000 0.000 0.792 0.020
#> SRR1192470     5  0.3329      0.937 0.184 0.004 0.000 0.000 0.792 0.020
#> SRR1192469     5  0.3329      0.937 0.184 0.004 0.000 0.000 0.792 0.020
#> SRR1192468     5  0.3329      0.937 0.184 0.004 0.000 0.000 0.792 0.020
#> SRR1192467     5  0.3329      0.937 0.184 0.004 0.000 0.000 0.792 0.020
#> SRR1192466     5  0.3329      0.937 0.184 0.004 0.000 0.000 0.792 0.020
#> SRR1192465     5  0.3329      0.937 0.184 0.004 0.000 0.000 0.792 0.020
#> SRR1192500     1  0.0458      0.747 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1192501     1  0.0458      0.747 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1192502     1  0.0458      0.747 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1192503     1  0.0458      0.747 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1192496     1  0.0458      0.747 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1192497     1  0.0458      0.747 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1192499     1  0.0458      0.747 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1192641     2  0.3999      1.000 0.000 0.500 0.000 0.496 0.004 0.000
#> SRR1192640     2  0.3999      1.000 0.000 0.500 0.000 0.496 0.004 0.000
#> SRR1192643     2  0.3999      1.000 0.000 0.500 0.000 0.496 0.004 0.000
#> SRR1192642     2  0.3999      1.000 0.000 0.500 0.000 0.496 0.004 0.000
#> SRR1192644     2  0.3999      1.000 0.000 0.500 0.000 0.496 0.004 0.000
#> SRR1192645     2  0.3999      1.000 0.000 0.500 0.000 0.496 0.004 0.000
#> SRR1192646     2  0.3999      1.000 0.000 0.500 0.000 0.496 0.004 0.000
#> SRR1192647     2  0.3999      1.000 0.000 0.500 0.000 0.496 0.004 0.000
#> SRR1192836     4  0.6166      0.178 0.000 0.228 0.000 0.544 0.036 0.192
#> SRR1192838     4  0.6127      0.178 0.000 0.228 0.000 0.544 0.032 0.196
#> SRR1192837     4  0.6202      0.178 0.000 0.228 0.000 0.544 0.040 0.188
#> SRR1192839     4  0.6127      0.178 0.000 0.228 0.000 0.544 0.032 0.196
#> SRR1192963     4  0.4227     -0.970 0.000 0.492 0.004 0.496 0.008 0.000
#> SRR1192966     4  0.4227     -0.970 0.000 0.492 0.004 0.496 0.008 0.000
#> SRR1192965     4  0.4227     -0.970 0.000 0.492 0.004 0.496 0.008 0.000
#> SRR1192964     4  0.4227     -0.970 0.000 0.492 0.004 0.496 0.008 0.000
#> SRR1193005     1  0.0458      0.747 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1193006     1  0.0458      0.747 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1193007     1  0.0458      0.747 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1193008     1  0.0458      0.747 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1193011     5  0.3628      0.933 0.184 0.036 0.000 0.000 0.776 0.004
#> SRR1193012     5  0.3628      0.933 0.184 0.036 0.000 0.000 0.776 0.004
#> SRR1193009     5  0.3628      0.933 0.184 0.036 0.000 0.000 0.776 0.004
#> SRR1193010     5  0.3628      0.933 0.184 0.036 0.000 0.000 0.776 0.004
#> SRR1193014     1  0.3360      0.588 0.732 0.000 0.000 0.000 0.004 0.264
#> SRR1193015     1  0.3360      0.588 0.732 0.000 0.000 0.000 0.004 0.264
#> SRR1193013     1  0.3360      0.588 0.732 0.000 0.000 0.000 0.004 0.264
#> SRR1193018     1  0.3633      0.711 0.808 0.052 0.000 0.000 0.016 0.124
#> SRR1193016     1  0.3633      0.711 0.808 0.052 0.000 0.000 0.016 0.124
#> SRR1193017     1  0.3633      0.711 0.808 0.052 0.000 0.000 0.016 0.124
#> SRR1193100     1  0.3633      0.711 0.808 0.052 0.000 0.000 0.016 0.124
#> SRR1193101     1  0.3633      0.711 0.808 0.052 0.000 0.000 0.016 0.124
#> SRR1193102     1  0.3633      0.711 0.808 0.052 0.000 0.000 0.016 0.124
#> SRR1193104     5  0.4022      0.938 0.188 0.040 0.000 0.000 0.756 0.016
#> SRR1193103     5  0.4022      0.938 0.188 0.040 0.000 0.000 0.756 0.016
#> SRR1193105     5  0.4209      0.937 0.188 0.052 0.000 0.000 0.744 0.016
#> SRR1193106     5  0.4209      0.937 0.188 0.052 0.000 0.000 0.744 0.016
#> SRR1193198     1  0.3360      0.588 0.732 0.000 0.000 0.000 0.004 0.264
#> SRR1193197     1  0.3360      0.588 0.732 0.000 0.000 0.000 0.004 0.264
#> SRR1193199     1  0.3360      0.588 0.732 0.000 0.000 0.000 0.004 0.264
#> SRR1193405     1  0.3633      0.711 0.808 0.052 0.000 0.000 0.016 0.124
#> SRR1193404     1  0.3633      0.711 0.808 0.052 0.000 0.000 0.016 0.124
#> SRR1193403     1  0.3633      0.711 0.808 0.052 0.000 0.000 0.016 0.124
#> SRR1193522     1  0.3633      0.711 0.808 0.052 0.000 0.000 0.016 0.124
#> SRR1193523     1  0.3633      0.711 0.808 0.052 0.000 0.000 0.016 0.124
#> SRR1193524     1  0.3633      0.711 0.808 0.052 0.000 0.000 0.016 0.124
#> SRR1193638     5  0.4668      0.926 0.188 0.068 0.000 0.000 0.716 0.028
#> SRR1193639     5  0.4668      0.926 0.188 0.068 0.000 0.000 0.716 0.028
#> SRR1195621     5  0.4614      0.928 0.188 0.064 0.000 0.000 0.720 0.028
#> SRR1195619     5  0.4614      0.928 0.188 0.064 0.000 0.000 0.720 0.028
#> SRR1195620     5  0.4614      0.928 0.188 0.064 0.000 0.000 0.720 0.028

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15363 rows and 131 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.784           0.974       0.985          0.436 0.573   0.573
#> 3 3 1.000           1.000       1.000          0.391 0.822   0.689
#> 4 4 0.834           0.964       0.926          0.178 0.879   0.692
#> 5 5 0.914           0.941       0.916          0.065 0.955   0.835
#> 6 6 0.974           0.947       0.956          0.039 0.977   0.899

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 3 5

There is also optional best \(k\) = 3 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette   p1   p2
#> SRR1190372     2   0.000      1.000 0.00 1.00
#> SRR1190371     2   0.000      1.000 0.00 1.00
#> SRR1190370     2   0.000      1.000 0.00 1.00
#> SRR1190368     2   0.000      1.000 0.00 1.00
#> SRR1190369     2   0.000      1.000 0.00 1.00
#> SRR1190366     2   0.000      1.000 0.00 1.00
#> SRR1190367     2   0.000      1.000 0.00 1.00
#> SRR1190365     2   0.000      1.000 0.00 1.00
#> SRR1190467     1   0.529      0.886 0.88 0.12
#> SRR1190466     1   0.529      0.886 0.88 0.12
#> SRR1190465     1   0.529      0.886 0.88 0.12
#> SRR1190464     1   0.529      0.886 0.88 0.12
#> SRR1190462     1   0.529      0.886 0.88 0.12
#> SRR1190461     1   0.529      0.886 0.88 0.12
#> SRR1190460     1   0.529      0.886 0.88 0.12
#> SRR1190509     1   0.000      0.978 1.00 0.00
#> SRR1190504     1   0.000      0.978 1.00 0.00
#> SRR1190503     1   0.000      0.978 1.00 0.00
#> SRR1190502     1   0.000      0.978 1.00 0.00
#> SRR1190508     1   0.000      0.978 1.00 0.00
#> SRR1190507     1   0.000      0.978 1.00 0.00
#> SRR1190506     1   0.000      0.978 1.00 0.00
#> SRR1190505     1   0.000      0.978 1.00 0.00
#> SRR1191342     2   0.000      1.000 0.00 1.00
#> SRR1191344     2   0.000      1.000 0.00 1.00
#> SRR1191343     2   0.000      1.000 0.00 1.00
#> SRR1191349     2   0.000      1.000 0.00 1.00
#> SRR1191345     2   0.000      1.000 0.00 1.00
#> SRR1191346     2   0.000      1.000 0.00 1.00
#> SRR1191347     2   0.000      1.000 0.00 1.00
#> SRR1191348     2   0.000      1.000 0.00 1.00
#> SRR1191668     1   0.000      0.978 1.00 0.00
#> SRR1191667     1   0.000      0.978 1.00 0.00
#> SRR1191673     1   0.000      0.978 1.00 0.00
#> SRR1191672     1   0.000      0.978 1.00 0.00
#> SRR1191695     1   0.529      0.886 0.88 0.12
#> SRR1191694     1   0.529      0.886 0.88 0.12
#> SRR1191783     1   0.529      0.886 0.88 0.12
#> SRR1191876     1   0.529      0.886 0.88 0.12
#> SRR1191914     1   0.000      0.978 1.00 0.00
#> SRR1191915     1   0.000      0.978 1.00 0.00
#> SRR1191953     1   0.000      0.978 1.00 0.00
#> SRR1191954     1   0.000      0.978 1.00 0.00
#> SRR1191990     1   0.000      0.978 1.00 0.00
#> SRR1191991     1   0.000      0.978 1.00 0.00
#> SRR1192016     1   0.529      0.886 0.88 0.12
#> SRR1192017     1   0.529      0.886 0.88 0.12
#> SRR1192073     1   0.529      0.886 0.88 0.12
#> SRR1192072     1   0.529      0.886 0.88 0.12
#> SRR1192167     1   0.000      0.978 1.00 0.00
#> SRR1192166     1   0.000      0.978 1.00 0.00
#> SRR1192321     1   0.529      0.886 0.88 0.12
#> SRR1192353     1   0.000      0.978 1.00 0.00
#> SRR1192354     1   0.000      0.978 1.00 0.00
#> SRR1192370     1   0.000      0.978 1.00 0.00
#> SRR1192371     1   0.000      0.978 1.00 0.00
#> SRR1192399     1   0.000      0.978 1.00 0.00
#> SRR1192398     1   0.000      0.978 1.00 0.00
#> SRR1192417     2   0.000      1.000 0.00 1.00
#> SRR1192418     2   0.000      1.000 0.00 1.00
#> SRR1192415     2   0.000      1.000 0.00 1.00
#> SRR1192416     2   0.000      1.000 0.00 1.00
#> SRR1192413     2   0.000      1.000 0.00 1.00
#> SRR1192414     2   0.000      1.000 0.00 1.00
#> SRR1192420     2   0.000      1.000 0.00 1.00
#> SRR1192419     2   0.000      1.000 0.00 1.00
#> SRR1192471     1   0.000      0.978 1.00 0.00
#> SRR1192470     1   0.000      0.978 1.00 0.00
#> SRR1192469     1   0.000      0.978 1.00 0.00
#> SRR1192468     1   0.000      0.978 1.00 0.00
#> SRR1192467     1   0.000      0.978 1.00 0.00
#> SRR1192466     1   0.000      0.978 1.00 0.00
#> SRR1192465     1   0.000      0.978 1.00 0.00
#> SRR1192500     1   0.000      0.978 1.00 0.00
#> SRR1192501     1   0.000      0.978 1.00 0.00
#> SRR1192502     1   0.000      0.978 1.00 0.00
#> SRR1192503     1   0.000      0.978 1.00 0.00
#> SRR1192496     1   0.000      0.978 1.00 0.00
#> SRR1192497     1   0.000      0.978 1.00 0.00
#> SRR1192499     1   0.000      0.978 1.00 0.00
#> SRR1192641     2   0.000      1.000 0.00 1.00
#> SRR1192640     2   0.000      1.000 0.00 1.00
#> SRR1192643     2   0.000      1.000 0.00 1.00
#> SRR1192642     2   0.000      1.000 0.00 1.00
#> SRR1192644     2   0.000      1.000 0.00 1.00
#> SRR1192645     2   0.000      1.000 0.00 1.00
#> SRR1192646     2   0.000      1.000 0.00 1.00
#> SRR1192647     2   0.000      1.000 0.00 1.00
#> SRR1192836     2   0.000      1.000 0.00 1.00
#> SRR1192838     2   0.000      1.000 0.00 1.00
#> SRR1192837     2   0.000      1.000 0.00 1.00
#> SRR1192839     2   0.000      1.000 0.00 1.00
#> SRR1192963     2   0.000      1.000 0.00 1.00
#> SRR1192966     2   0.000      1.000 0.00 1.00
#> SRR1192965     2   0.000      1.000 0.00 1.00
#> SRR1192964     2   0.000      1.000 0.00 1.00
#> SRR1193005     1   0.000      0.978 1.00 0.00
#> SRR1193006     1   0.000      0.978 1.00 0.00
#> SRR1193007     1   0.000      0.978 1.00 0.00
#> SRR1193008     1   0.000      0.978 1.00 0.00
#> SRR1193011     1   0.000      0.978 1.00 0.00
#> SRR1193012     1   0.000      0.978 1.00 0.00
#> SRR1193009     1   0.000      0.978 1.00 0.00
#> SRR1193010     1   0.000      0.978 1.00 0.00
#> SRR1193014     1   0.000      0.978 1.00 0.00
#> SRR1193015     1   0.000      0.978 1.00 0.00
#> SRR1193013     1   0.000      0.978 1.00 0.00
#> SRR1193018     1   0.000      0.978 1.00 0.00
#> SRR1193016     1   0.000      0.978 1.00 0.00
#> SRR1193017     1   0.000      0.978 1.00 0.00
#> SRR1193100     1   0.000      0.978 1.00 0.00
#> SRR1193101     1   0.000      0.978 1.00 0.00
#> SRR1193102     1   0.000      0.978 1.00 0.00
#> SRR1193104     1   0.000      0.978 1.00 0.00
#> SRR1193103     1   0.000      0.978 1.00 0.00
#> SRR1193105     1   0.000      0.978 1.00 0.00
#> SRR1193106     1   0.000      0.978 1.00 0.00
#> SRR1193198     1   0.000      0.978 1.00 0.00
#> SRR1193197     1   0.000      0.978 1.00 0.00
#> SRR1193199     1   0.000      0.978 1.00 0.00
#> SRR1193405     1   0.000      0.978 1.00 0.00
#> SRR1193404     1   0.000      0.978 1.00 0.00
#> SRR1193403     1   0.000      0.978 1.00 0.00
#> SRR1193522     1   0.000      0.978 1.00 0.00
#> SRR1193523     1   0.000      0.978 1.00 0.00
#> SRR1193524     1   0.000      0.978 1.00 0.00
#> SRR1193638     1   0.000      0.978 1.00 0.00
#> SRR1193639     1   0.000      0.978 1.00 0.00
#> SRR1195621     1   0.000      0.978 1.00 0.00
#> SRR1195619     1   0.000      0.978 1.00 0.00
#> SRR1195620     1   0.000      0.978 1.00 0.00

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette p1 p2 p3
#> SRR1190372     2       0          1  0  1  0
#> SRR1190371     2       0          1  0  1  0
#> SRR1190370     2       0          1  0  1  0
#> SRR1190368     2       0          1  0  1  0
#> SRR1190369     2       0          1  0  1  0
#> SRR1190366     2       0          1  0  1  0
#> SRR1190367     2       0          1  0  1  0
#> SRR1190365     2       0          1  0  1  0
#> SRR1190467     3       0          1  0  0  1
#> SRR1190466     3       0          1  0  0  1
#> SRR1190465     3       0          1  0  0  1
#> SRR1190464     3       0          1  0  0  1
#> SRR1190462     3       0          1  0  0  1
#> SRR1190461     3       0          1  0  0  1
#> SRR1190460     3       0          1  0  0  1
#> SRR1190509     1       0          1  1  0  0
#> SRR1190504     1       0          1  1  0  0
#> SRR1190503     1       0          1  1  0  0
#> SRR1190502     1       0          1  1  0  0
#> SRR1190508     1       0          1  1  0  0
#> SRR1190507     1       0          1  1  0  0
#> SRR1190506     1       0          1  1  0  0
#> SRR1190505     1       0          1  1  0  0
#> SRR1191342     2       0          1  0  1  0
#> SRR1191344     2       0          1  0  1  0
#> SRR1191343     2       0          1  0  1  0
#> SRR1191349     2       0          1  0  1  0
#> SRR1191345     2       0          1  0  1  0
#> SRR1191346     2       0          1  0  1  0
#> SRR1191347     2       0          1  0  1  0
#> SRR1191348     2       0          1  0  1  0
#> SRR1191668     3       0          1  0  0  1
#> SRR1191667     3       0          1  0  0  1
#> SRR1191673     3       0          1  0  0  1
#> SRR1191672     3       0          1  0  0  1
#> SRR1191695     3       0          1  0  0  1
#> SRR1191694     3       0          1  0  0  1
#> SRR1191783     3       0          1  0  0  1
#> SRR1191876     3       0          1  0  0  1
#> SRR1191914     1       0          1  1  0  0
#> SRR1191915     1       0          1  1  0  0
#> SRR1191953     1       0          1  1  0  0
#> SRR1191954     1       0          1  1  0  0
#> SRR1191990     1       0          1  1  0  0
#> SRR1191991     1       0          1  1  0  0
#> SRR1192016     3       0          1  0  0  1
#> SRR1192017     3       0          1  0  0  1
#> SRR1192073     3       0          1  0  0  1
#> SRR1192072     3       0          1  0  0  1
#> SRR1192167     3       0          1  0  0  1
#> SRR1192166     3       0          1  0  0  1
#> SRR1192321     3       0          1  0  0  1
#> SRR1192353     1       0          1  1  0  0
#> SRR1192354     1       0          1  1  0  0
#> SRR1192370     1       0          1  1  0  0
#> SRR1192371     1       0          1  1  0  0
#> SRR1192399     1       0          1  1  0  0
#> SRR1192398     1       0          1  1  0  0
#> SRR1192417     2       0          1  0  1  0
#> SRR1192418     2       0          1  0  1  0
#> SRR1192415     2       0          1  0  1  0
#> SRR1192416     2       0          1  0  1  0
#> SRR1192413     2       0          1  0  1  0
#> SRR1192414     2       0          1  0  1  0
#> SRR1192420     2       0          1  0  1  0
#> SRR1192419     2       0          1  0  1  0
#> SRR1192471     1       0          1  1  0  0
#> SRR1192470     1       0          1  1  0  0
#> SRR1192469     1       0          1  1  0  0
#> SRR1192468     1       0          1  1  0  0
#> SRR1192467     1       0          1  1  0  0
#> SRR1192466     1       0          1  1  0  0
#> SRR1192465     1       0          1  1  0  0
#> SRR1192500     1       0          1  1  0  0
#> SRR1192501     1       0          1  1  0  0
#> SRR1192502     1       0          1  1  0  0
#> SRR1192503     1       0          1  1  0  0
#> SRR1192496     1       0          1  1  0  0
#> SRR1192497     1       0          1  1  0  0
#> SRR1192499     1       0          1  1  0  0
#> SRR1192641     2       0          1  0  1  0
#> SRR1192640     2       0          1  0  1  0
#> SRR1192643     2       0          1  0  1  0
#> SRR1192642     2       0          1  0  1  0
#> SRR1192644     2       0          1  0  1  0
#> SRR1192645     2       0          1  0  1  0
#> SRR1192646     2       0          1  0  1  0
#> SRR1192647     2       0          1  0  1  0
#> SRR1192836     2       0          1  0  1  0
#> SRR1192838     2       0          1  0  1  0
#> SRR1192837     2       0          1  0  1  0
#> SRR1192839     2       0          1  0  1  0
#> SRR1192963     2       0          1  0  1  0
#> SRR1192966     2       0          1  0  1  0
#> SRR1192965     2       0          1  0  1  0
#> SRR1192964     2       0          1  0  1  0
#> SRR1193005     1       0          1  1  0  0
#> SRR1193006     1       0          1  1  0  0
#> SRR1193007     1       0          1  1  0  0
#> SRR1193008     1       0          1  1  0  0
#> SRR1193011     1       0          1  1  0  0
#> SRR1193012     1       0          1  1  0  0
#> SRR1193009     1       0          1  1  0  0
#> SRR1193010     1       0          1  1  0  0
#> SRR1193014     1       0          1  1  0  0
#> SRR1193015     1       0          1  1  0  0
#> SRR1193013     1       0          1  1  0  0
#> SRR1193018     1       0          1  1  0  0
#> SRR1193016     1       0          1  1  0  0
#> SRR1193017     1       0          1  1  0  0
#> SRR1193100     1       0          1  1  0  0
#> SRR1193101     1       0          1  1  0  0
#> SRR1193102     1       0          1  1  0  0
#> SRR1193104     1       0          1  1  0  0
#> SRR1193103     1       0          1  1  0  0
#> SRR1193105     1       0          1  1  0  0
#> SRR1193106     1       0          1  1  0  0
#> SRR1193198     1       0          1  1  0  0
#> SRR1193197     1       0          1  1  0  0
#> SRR1193199     1       0          1  1  0  0
#> SRR1193405     1       0          1  1  0  0
#> SRR1193404     1       0          1  1  0  0
#> SRR1193403     1       0          1  1  0  0
#> SRR1193522     1       0          1  1  0  0
#> SRR1193523     1       0          1  1  0  0
#> SRR1193524     1       0          1  1  0  0
#> SRR1193638     1       0          1  1  0  0
#> SRR1193639     1       0          1  1  0  0
#> SRR1195621     1       0          1  1  0  0
#> SRR1195619     1       0          1  1  0  0
#> SRR1195620     1       0          1  1  0  0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1190372     2   0.000      0.937 0.000 1.000 0.000 0.000
#> SRR1190371     2   0.000      0.937 0.000 1.000 0.000 0.000
#> SRR1190370     2   0.000      0.937 0.000 1.000 0.000 0.000
#> SRR1190368     2   0.000      0.937 0.000 1.000 0.000 0.000
#> SRR1190369     2   0.000      0.937 0.000 1.000 0.000 0.000
#> SRR1190366     2   0.000      0.937 0.000 1.000 0.000 0.000
#> SRR1190367     2   0.000      0.937 0.000 1.000 0.000 0.000
#> SRR1190365     2   0.000      0.937 0.000 1.000 0.000 0.000
#> SRR1190467     3   0.000      0.991 0.000 0.000 1.000 0.000
#> SRR1190466     3   0.000      0.991 0.000 0.000 1.000 0.000
#> SRR1190465     3   0.000      0.991 0.000 0.000 1.000 0.000
#> SRR1190464     3   0.000      0.991 0.000 0.000 1.000 0.000
#> SRR1190462     3   0.000      0.991 0.000 0.000 1.000 0.000
#> SRR1190461     3   0.000      0.991 0.000 0.000 1.000 0.000
#> SRR1190460     3   0.000      0.991 0.000 0.000 1.000 0.000
#> SRR1190509     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1190504     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1190503     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1190502     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1190508     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1190507     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1190506     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1190505     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1191342     2   0.336      0.915 0.000 0.824 0.000 0.176
#> SRR1191344     2   0.336      0.915 0.000 0.824 0.000 0.176
#> SRR1191343     2   0.336      0.915 0.000 0.824 0.000 0.176
#> SRR1191349     2   0.336      0.915 0.000 0.824 0.000 0.176
#> SRR1191345     2   0.336      0.915 0.000 0.824 0.000 0.176
#> SRR1191346     2   0.336      0.915 0.000 0.824 0.000 0.176
#> SRR1191347     2   0.336      0.915 0.000 0.824 0.000 0.176
#> SRR1191348     2   0.336      0.915 0.000 0.824 0.000 0.176
#> SRR1191668     3   0.115      0.974 0.024 0.000 0.968 0.008
#> SRR1191667     3   0.115      0.974 0.024 0.000 0.968 0.008
#> SRR1191673     3   0.115      0.974 0.024 0.000 0.968 0.008
#> SRR1191672     3   0.115      0.974 0.024 0.000 0.968 0.008
#> SRR1191695     3   0.000      0.991 0.000 0.000 1.000 0.000
#> SRR1191694     3   0.000      0.991 0.000 0.000 1.000 0.000
#> SRR1191783     3   0.000      0.991 0.000 0.000 1.000 0.000
#> SRR1191876     3   0.000      0.991 0.000 0.000 1.000 0.000
#> SRR1191914     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1191915     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1191953     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1191954     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1191990     1   0.253      0.862 0.888 0.000 0.000 0.112
#> SRR1191991     1   0.253      0.862 0.888 0.000 0.000 0.112
#> SRR1192016     3   0.000      0.991 0.000 0.000 1.000 0.000
#> SRR1192017     3   0.000      0.991 0.000 0.000 1.000 0.000
#> SRR1192073     3   0.000      0.991 0.000 0.000 1.000 0.000
#> SRR1192072     3   0.000      0.991 0.000 0.000 1.000 0.000
#> SRR1192167     3   0.115      0.974 0.024 0.000 0.968 0.008
#> SRR1192166     3   0.115      0.974 0.024 0.000 0.968 0.008
#> SRR1192321     3   0.000      0.991 0.000 0.000 1.000 0.000
#> SRR1192353     1   0.222      0.884 0.908 0.000 0.000 0.092
#> SRR1192354     1   0.222      0.884 0.908 0.000 0.000 0.092
#> SRR1192370     4   0.344      1.000 0.184 0.000 0.000 0.816
#> SRR1192371     4   0.344      1.000 0.184 0.000 0.000 0.816
#> SRR1192399     1   0.247      0.864 0.892 0.000 0.000 0.108
#> SRR1192398     1   0.247      0.864 0.892 0.000 0.000 0.108
#> SRR1192417     2   0.336      0.915 0.000 0.824 0.000 0.176
#> SRR1192418     2   0.336      0.915 0.000 0.824 0.000 0.176
#> SRR1192415     2   0.336      0.915 0.000 0.824 0.000 0.176
#> SRR1192416     2   0.336      0.915 0.000 0.824 0.000 0.176
#> SRR1192413     2   0.336      0.915 0.000 0.824 0.000 0.176
#> SRR1192414     2   0.336      0.915 0.000 0.824 0.000 0.176
#> SRR1192420     2   0.336      0.915 0.000 0.824 0.000 0.176
#> SRR1192419     2   0.336      0.915 0.000 0.824 0.000 0.176
#> SRR1192471     4   0.344      1.000 0.184 0.000 0.000 0.816
#> SRR1192470     4   0.344      1.000 0.184 0.000 0.000 0.816
#> SRR1192469     4   0.344      1.000 0.184 0.000 0.000 0.816
#> SRR1192468     4   0.344      1.000 0.184 0.000 0.000 0.816
#> SRR1192467     4   0.344      1.000 0.184 0.000 0.000 0.816
#> SRR1192466     4   0.344      1.000 0.184 0.000 0.000 0.816
#> SRR1192465     4   0.344      1.000 0.184 0.000 0.000 0.816
#> SRR1192500     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1192501     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1192502     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1192503     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1192496     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1192497     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1192499     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1192641     2   0.000      0.937 0.000 1.000 0.000 0.000
#> SRR1192640     2   0.000      0.937 0.000 1.000 0.000 0.000
#> SRR1192643     2   0.000      0.937 0.000 1.000 0.000 0.000
#> SRR1192642     2   0.000      0.937 0.000 1.000 0.000 0.000
#> SRR1192644     2   0.000      0.937 0.000 1.000 0.000 0.000
#> SRR1192645     2   0.000      0.937 0.000 1.000 0.000 0.000
#> SRR1192646     2   0.000      0.937 0.000 1.000 0.000 0.000
#> SRR1192647     2   0.000      0.937 0.000 1.000 0.000 0.000
#> SRR1192836     2   0.156      0.934 0.000 0.944 0.000 0.056
#> SRR1192838     2   0.156      0.934 0.000 0.944 0.000 0.056
#> SRR1192837     2   0.156      0.934 0.000 0.944 0.000 0.056
#> SRR1192839     2   0.156      0.934 0.000 0.944 0.000 0.056
#> SRR1192963     2   0.000      0.937 0.000 1.000 0.000 0.000
#> SRR1192966     2   0.000      0.937 0.000 1.000 0.000 0.000
#> SRR1192965     2   0.000      0.937 0.000 1.000 0.000 0.000
#> SRR1192964     2   0.000      0.937 0.000 1.000 0.000 0.000
#> SRR1193005     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1193006     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1193007     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1193008     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1193011     4   0.344      1.000 0.184 0.000 0.000 0.816
#> SRR1193012     4   0.344      1.000 0.184 0.000 0.000 0.816
#> SRR1193009     4   0.344      1.000 0.184 0.000 0.000 0.816
#> SRR1193010     4   0.344      1.000 0.184 0.000 0.000 0.816
#> SRR1193014     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1193015     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1193013     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1193018     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1193016     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1193017     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1193100     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1193101     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1193102     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1193104     4   0.344      1.000 0.184 0.000 0.000 0.816
#> SRR1193103     4   0.344      1.000 0.184 0.000 0.000 0.816
#> SRR1193105     4   0.344      1.000 0.184 0.000 0.000 0.816
#> SRR1193106     4   0.344      1.000 0.184 0.000 0.000 0.816
#> SRR1193198     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1193197     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1193199     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1193405     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1193404     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1193403     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1193522     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1193523     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1193524     1   0.000      0.983 1.000 0.000 0.000 0.000
#> SRR1193638     4   0.344      1.000 0.184 0.000 0.000 0.816
#> SRR1193639     4   0.344      1.000 0.184 0.000 0.000 0.816
#> SRR1195621     4   0.344      1.000 0.184 0.000 0.000 0.816
#> SRR1195619     4   0.344      1.000 0.184 0.000 0.000 0.816
#> SRR1195620     4   0.344      1.000 0.184 0.000 0.000 0.816

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1190372     2   0.000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1190371     2   0.000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1190370     2   0.000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1190368     2   0.000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1190369     2   0.000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1190366     2   0.000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1190367     2   0.000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1190365     2   0.000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1190467     3   0.000      0.915 0.000 0.000 1.000 0.000 0.000
#> SRR1190466     3   0.000      0.915 0.000 0.000 1.000 0.000 0.000
#> SRR1190465     3   0.000      0.915 0.000 0.000 1.000 0.000 0.000
#> SRR1190464     3   0.000      0.915 0.000 0.000 1.000 0.000 0.000
#> SRR1190462     3   0.000      0.915 0.000 0.000 1.000 0.000 0.000
#> SRR1190461     3   0.000      0.915 0.000 0.000 1.000 0.000 0.000
#> SRR1190460     3   0.000      0.915 0.000 0.000 1.000 0.000 0.000
#> SRR1190509     1   0.029      0.964 0.992 0.000 0.000 0.008 0.000
#> SRR1190504     1   0.029      0.964 0.992 0.000 0.000 0.008 0.000
#> SRR1190503     1   0.029      0.964 0.992 0.000 0.000 0.008 0.000
#> SRR1190502     1   0.029      0.964 0.992 0.000 0.000 0.008 0.000
#> SRR1190508     1   0.029      0.964 0.992 0.000 0.000 0.008 0.000
#> SRR1190507     1   0.029      0.964 0.992 0.000 0.000 0.008 0.000
#> SRR1190506     1   0.029      0.964 0.992 0.000 0.000 0.008 0.000
#> SRR1190505     1   0.029      0.964 0.992 0.000 0.000 0.008 0.000
#> SRR1191342     4   0.395      1.000 0.000 0.332 0.000 0.668 0.000
#> SRR1191344     4   0.395      1.000 0.000 0.332 0.000 0.668 0.000
#> SRR1191343     4   0.395      1.000 0.000 0.332 0.000 0.668 0.000
#> SRR1191349     4   0.395      1.000 0.000 0.332 0.000 0.668 0.000
#> SRR1191345     4   0.395      1.000 0.000 0.332 0.000 0.668 0.000
#> SRR1191346     4   0.395      1.000 0.000 0.332 0.000 0.668 0.000
#> SRR1191347     4   0.395      1.000 0.000 0.332 0.000 0.668 0.000
#> SRR1191348     4   0.395      1.000 0.000 0.332 0.000 0.668 0.000
#> SRR1191668     3   0.532      0.752 0.008 0.000 0.616 0.324 0.052
#> SRR1191667     3   0.532      0.752 0.008 0.000 0.616 0.324 0.052
#> SRR1191673     3   0.532      0.752 0.008 0.000 0.616 0.324 0.052
#> SRR1191672     3   0.532      0.752 0.008 0.000 0.616 0.324 0.052
#> SRR1191695     3   0.000      0.915 0.000 0.000 1.000 0.000 0.000
#> SRR1191694     3   0.000      0.915 0.000 0.000 1.000 0.000 0.000
#> SRR1191783     3   0.000      0.915 0.000 0.000 1.000 0.000 0.000
#> SRR1191876     3   0.000      0.915 0.000 0.000 1.000 0.000 0.000
#> SRR1191914     1   0.000      0.965 1.000 0.000 0.000 0.000 0.000
#> SRR1191915     1   0.000      0.965 1.000 0.000 0.000 0.000 0.000
#> SRR1191953     1   0.000      0.965 1.000 0.000 0.000 0.000 0.000
#> SRR1191954     1   0.000      0.965 1.000 0.000 0.000 0.000 0.000
#> SRR1191990     1   0.559      0.573 0.632 0.000 0.000 0.136 0.232
#> SRR1191991     1   0.559      0.573 0.632 0.000 0.000 0.136 0.232
#> SRR1192016     3   0.000      0.915 0.000 0.000 1.000 0.000 0.000
#> SRR1192017     3   0.000      0.915 0.000 0.000 1.000 0.000 0.000
#> SRR1192073     3   0.000      0.915 0.000 0.000 1.000 0.000 0.000
#> SRR1192072     3   0.000      0.915 0.000 0.000 1.000 0.000 0.000
#> SRR1192167     3   0.532      0.752 0.008 0.000 0.616 0.324 0.052
#> SRR1192166     3   0.532      0.752 0.008 0.000 0.616 0.324 0.052
#> SRR1192321     3   0.000      0.915 0.000 0.000 1.000 0.000 0.000
#> SRR1192353     1   0.285      0.788 0.828 0.000 0.000 0.000 0.172
#> SRR1192354     1   0.285      0.788 0.828 0.000 0.000 0.000 0.172
#> SRR1192370     5   0.127      1.000 0.052 0.000 0.000 0.000 0.948
#> SRR1192371     5   0.127      1.000 0.052 0.000 0.000 0.000 0.948
#> SRR1192399     1   0.318      0.739 0.792 0.000 0.000 0.000 0.208
#> SRR1192398     1   0.318      0.739 0.792 0.000 0.000 0.000 0.208
#> SRR1192417     4   0.395      1.000 0.000 0.332 0.000 0.668 0.000
#> SRR1192418     4   0.395      1.000 0.000 0.332 0.000 0.668 0.000
#> SRR1192415     4   0.395      1.000 0.000 0.332 0.000 0.668 0.000
#> SRR1192416     4   0.395      1.000 0.000 0.332 0.000 0.668 0.000
#> SRR1192413     4   0.395      1.000 0.000 0.332 0.000 0.668 0.000
#> SRR1192414     4   0.395      1.000 0.000 0.332 0.000 0.668 0.000
#> SRR1192420     4   0.395      1.000 0.000 0.332 0.000 0.668 0.000
#> SRR1192419     4   0.395      1.000 0.000 0.332 0.000 0.668 0.000
#> SRR1192471     5   0.127      1.000 0.052 0.000 0.000 0.000 0.948
#> SRR1192470     5   0.127      1.000 0.052 0.000 0.000 0.000 0.948
#> SRR1192469     5   0.127      1.000 0.052 0.000 0.000 0.000 0.948
#> SRR1192468     5   0.127      1.000 0.052 0.000 0.000 0.000 0.948
#> SRR1192467     5   0.127      1.000 0.052 0.000 0.000 0.000 0.948
#> SRR1192466     5   0.127      1.000 0.052 0.000 0.000 0.000 0.948
#> SRR1192465     5   0.127      1.000 0.052 0.000 0.000 0.000 0.948
#> SRR1192500     1   0.029      0.964 0.992 0.000 0.000 0.008 0.000
#> SRR1192501     1   0.029      0.964 0.992 0.000 0.000 0.008 0.000
#> SRR1192502     1   0.029      0.964 0.992 0.000 0.000 0.008 0.000
#> SRR1192503     1   0.029      0.964 0.992 0.000 0.000 0.008 0.000
#> SRR1192496     1   0.029      0.964 0.992 0.000 0.000 0.008 0.000
#> SRR1192497     1   0.029      0.964 0.992 0.000 0.000 0.008 0.000
#> SRR1192499     1   0.029      0.964 0.992 0.000 0.000 0.008 0.000
#> SRR1192641     2   0.000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1192640     2   0.000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1192643     2   0.000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1192642     2   0.000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1192644     2   0.000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1192645     2   0.000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1192646     2   0.000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1192647     2   0.000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1192836     2   0.252      0.769 0.000 0.860 0.000 0.140 0.000
#> SRR1192838     2   0.252      0.769 0.000 0.860 0.000 0.140 0.000
#> SRR1192837     2   0.252      0.769 0.000 0.860 0.000 0.140 0.000
#> SRR1192839     2   0.252      0.769 0.000 0.860 0.000 0.140 0.000
#> SRR1192963     2   0.000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1192966     2   0.000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1192965     2   0.000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1192964     2   0.000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1193005     1   0.029      0.964 0.992 0.000 0.000 0.008 0.000
#> SRR1193006     1   0.029      0.964 0.992 0.000 0.000 0.008 0.000
#> SRR1193007     1   0.029      0.964 0.992 0.000 0.000 0.008 0.000
#> SRR1193008     1   0.029      0.964 0.992 0.000 0.000 0.008 0.000
#> SRR1193011     5   0.127      1.000 0.052 0.000 0.000 0.000 0.948
#> SRR1193012     5   0.127      1.000 0.052 0.000 0.000 0.000 0.948
#> SRR1193009     5   0.127      1.000 0.052 0.000 0.000 0.000 0.948
#> SRR1193010     5   0.127      1.000 0.052 0.000 0.000 0.000 0.948
#> SRR1193014     1   0.000      0.965 1.000 0.000 0.000 0.000 0.000
#> SRR1193015     1   0.000      0.965 1.000 0.000 0.000 0.000 0.000
#> SRR1193013     1   0.000      0.965 1.000 0.000 0.000 0.000 0.000
#> SRR1193018     1   0.000      0.965 1.000 0.000 0.000 0.000 0.000
#> SRR1193016     1   0.000      0.965 1.000 0.000 0.000 0.000 0.000
#> SRR1193017     1   0.000      0.965 1.000 0.000 0.000 0.000 0.000
#> SRR1193100     1   0.000      0.965 1.000 0.000 0.000 0.000 0.000
#> SRR1193101     1   0.000      0.965 1.000 0.000 0.000 0.000 0.000
#> SRR1193102     1   0.000      0.965 1.000 0.000 0.000 0.000 0.000
#> SRR1193104     5   0.127      1.000 0.052 0.000 0.000 0.000 0.948
#> SRR1193103     5   0.127      1.000 0.052 0.000 0.000 0.000 0.948
#> SRR1193105     5   0.127      1.000 0.052 0.000 0.000 0.000 0.948
#> SRR1193106     5   0.127      1.000 0.052 0.000 0.000 0.000 0.948
#> SRR1193198     1   0.000      0.965 1.000 0.000 0.000 0.000 0.000
#> SRR1193197     1   0.000      0.965 1.000 0.000 0.000 0.000 0.000
#> SRR1193199     1   0.000      0.965 1.000 0.000 0.000 0.000 0.000
#> SRR1193405     1   0.000      0.965 1.000 0.000 0.000 0.000 0.000
#> SRR1193404     1   0.000      0.965 1.000 0.000 0.000 0.000 0.000
#> SRR1193403     1   0.000      0.965 1.000 0.000 0.000 0.000 0.000
#> SRR1193522     1   0.000      0.965 1.000 0.000 0.000 0.000 0.000
#> SRR1193523     1   0.000      0.965 1.000 0.000 0.000 0.000 0.000
#> SRR1193524     1   0.000      0.965 1.000 0.000 0.000 0.000 0.000
#> SRR1193638     5   0.127      1.000 0.052 0.000 0.000 0.000 0.948
#> SRR1193639     5   0.127      1.000 0.052 0.000 0.000 0.000 0.948
#> SRR1195621     5   0.127      1.000 0.052 0.000 0.000 0.000 0.948
#> SRR1195619     5   0.127      1.000 0.052 0.000 0.000 0.000 0.948
#> SRR1195620     5   0.127      1.000 0.052 0.000 0.000 0.000 0.948

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1190372     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1190371     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1190370     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1190368     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1190369     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1190366     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1190367     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1190365     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1190467     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190466     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190465     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190464     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190462     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190461     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190460     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190509     1  0.1218      0.951 0.956 0.000 0.000 0.028 0.004 0.012
#> SRR1190504     1  0.1218      0.951 0.956 0.000 0.000 0.028 0.004 0.012
#> SRR1190503     1  0.1218      0.951 0.956 0.000 0.000 0.028 0.004 0.012
#> SRR1190502     1  0.1218      0.951 0.956 0.000 0.000 0.028 0.004 0.012
#> SRR1190508     1  0.1218      0.951 0.956 0.000 0.000 0.028 0.004 0.012
#> SRR1190507     1  0.1218      0.951 0.956 0.000 0.000 0.028 0.004 0.012
#> SRR1190506     1  0.1218      0.951 0.956 0.000 0.000 0.028 0.004 0.012
#> SRR1190505     1  0.1218      0.951 0.956 0.000 0.000 0.028 0.004 0.012
#> SRR1191342     4  0.1663      1.000 0.000 0.088 0.000 0.912 0.000 0.000
#> SRR1191344     4  0.1663      1.000 0.000 0.088 0.000 0.912 0.000 0.000
#> SRR1191343     4  0.1663      1.000 0.000 0.088 0.000 0.912 0.000 0.000
#> SRR1191349     4  0.1663      1.000 0.000 0.088 0.000 0.912 0.000 0.000
#> SRR1191345     4  0.1663      1.000 0.000 0.088 0.000 0.912 0.000 0.000
#> SRR1191346     4  0.1663      1.000 0.000 0.088 0.000 0.912 0.000 0.000
#> SRR1191347     4  0.1663      1.000 0.000 0.088 0.000 0.912 0.000 0.000
#> SRR1191348     4  0.1663      1.000 0.000 0.088 0.000 0.912 0.000 0.000
#> SRR1191668     6  0.1007      0.820 0.000 0.000 0.044 0.000 0.000 0.956
#> SRR1191667     6  0.1007      0.820 0.000 0.000 0.044 0.000 0.000 0.956
#> SRR1191673     6  0.1075      0.820 0.000 0.000 0.048 0.000 0.000 0.952
#> SRR1191672     6  0.1075      0.820 0.000 0.000 0.048 0.000 0.000 0.952
#> SRR1191695     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1191694     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1191783     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1191876     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1191914     1  0.0806      0.942 0.972 0.000 0.000 0.008 0.000 0.020
#> SRR1191915     1  0.0806      0.942 0.972 0.000 0.000 0.008 0.000 0.020
#> SRR1191953     1  0.0806      0.942 0.972 0.000 0.000 0.008 0.000 0.020
#> SRR1191954     1  0.0806      0.942 0.972 0.000 0.000 0.008 0.000 0.020
#> SRR1191990     6  0.4735      0.409 0.392 0.000 0.000 0.036 0.008 0.564
#> SRR1191991     6  0.4735      0.409 0.392 0.000 0.000 0.036 0.008 0.564
#> SRR1192016     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192017     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192073     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192072     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192167     6  0.1075      0.820 0.000 0.000 0.048 0.000 0.000 0.952
#> SRR1192166     6  0.1075      0.820 0.000 0.000 0.048 0.000 0.000 0.952
#> SRR1192321     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192353     1  0.2051      0.898 0.916 0.000 0.000 0.036 0.008 0.040
#> SRR1192354     1  0.2051      0.898 0.916 0.000 0.000 0.036 0.008 0.040
#> SRR1192370     5  0.0547      0.994 0.020 0.000 0.000 0.000 0.980 0.000
#> SRR1192371     5  0.0547      0.994 0.020 0.000 0.000 0.000 0.980 0.000
#> SRR1192399     1  0.4485      0.640 0.740 0.000 0.000 0.036 0.168 0.056
#> SRR1192398     1  0.4485      0.640 0.740 0.000 0.000 0.036 0.168 0.056
#> SRR1192417     4  0.1663      1.000 0.000 0.088 0.000 0.912 0.000 0.000
#> SRR1192418     4  0.1663      1.000 0.000 0.088 0.000 0.912 0.000 0.000
#> SRR1192415     4  0.1663      1.000 0.000 0.088 0.000 0.912 0.000 0.000
#> SRR1192416     4  0.1663      1.000 0.000 0.088 0.000 0.912 0.000 0.000
#> SRR1192413     4  0.1663      1.000 0.000 0.088 0.000 0.912 0.000 0.000
#> SRR1192414     4  0.1663      1.000 0.000 0.088 0.000 0.912 0.000 0.000
#> SRR1192420     4  0.1663      1.000 0.000 0.088 0.000 0.912 0.000 0.000
#> SRR1192419     4  0.1663      1.000 0.000 0.088 0.000 0.912 0.000 0.000
#> SRR1192471     5  0.0458      0.999 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1192470     5  0.0458      0.999 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1192469     5  0.0458      0.999 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1192468     5  0.0458      0.999 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1192467     5  0.0458      0.999 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1192466     5  0.0458      0.999 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1192465     5  0.0458      0.999 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1192500     1  0.1218      0.951 0.956 0.000 0.000 0.028 0.004 0.012
#> SRR1192501     1  0.1218      0.951 0.956 0.000 0.000 0.028 0.004 0.012
#> SRR1192502     1  0.1218      0.951 0.956 0.000 0.000 0.028 0.004 0.012
#> SRR1192503     1  0.1218      0.951 0.956 0.000 0.000 0.028 0.004 0.012
#> SRR1192496     1  0.1218      0.951 0.956 0.000 0.000 0.028 0.004 0.012
#> SRR1192497     1  0.1218      0.951 0.956 0.000 0.000 0.028 0.004 0.012
#> SRR1192499     1  0.1218      0.951 0.956 0.000 0.000 0.028 0.004 0.012
#> SRR1192641     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192640     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192643     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192642     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192644     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192645     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192646     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192647     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192836     2  0.3419      0.788 0.000 0.792 0.000 0.180 0.016 0.012
#> SRR1192838     2  0.3419      0.788 0.000 0.792 0.000 0.180 0.016 0.012
#> SRR1192837     2  0.3419      0.788 0.000 0.792 0.000 0.180 0.016 0.012
#> SRR1192839     2  0.3419      0.788 0.000 0.792 0.000 0.180 0.016 0.012
#> SRR1192963     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192966     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192965     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192964     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1193005     1  0.1218      0.951 0.956 0.000 0.000 0.028 0.004 0.012
#> SRR1193006     1  0.1218      0.951 0.956 0.000 0.000 0.028 0.004 0.012
#> SRR1193007     1  0.1218      0.951 0.956 0.000 0.000 0.028 0.004 0.012
#> SRR1193008     1  0.1218      0.951 0.956 0.000 0.000 0.028 0.004 0.012
#> SRR1193011     5  0.0458      0.999 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1193012     5  0.0458      0.999 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1193009     5  0.0458      0.999 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1193010     5  0.0458      0.999 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1193014     1  0.0806      0.942 0.972 0.000 0.000 0.008 0.000 0.020
#> SRR1193015     1  0.0806      0.942 0.972 0.000 0.000 0.008 0.000 0.020
#> SRR1193013     1  0.0806      0.942 0.972 0.000 0.000 0.008 0.000 0.020
#> SRR1193018     1  0.0603      0.950 0.980 0.000 0.000 0.000 0.004 0.016
#> SRR1193016     1  0.0603      0.950 0.980 0.000 0.000 0.000 0.004 0.016
#> SRR1193017     1  0.0603      0.950 0.980 0.000 0.000 0.000 0.004 0.016
#> SRR1193100     1  0.0603      0.950 0.980 0.000 0.000 0.000 0.004 0.016
#> SRR1193101     1  0.0603      0.950 0.980 0.000 0.000 0.000 0.004 0.016
#> SRR1193102     1  0.0603      0.950 0.980 0.000 0.000 0.000 0.004 0.016
#> SRR1193104     5  0.0458      0.999 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1193103     5  0.0458      0.999 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1193105     5  0.0458      0.999 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1193106     5  0.0458      0.999 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1193198     1  0.0806      0.942 0.972 0.000 0.000 0.008 0.000 0.020
#> SRR1193197     1  0.0806      0.942 0.972 0.000 0.000 0.008 0.000 0.020
#> SRR1193199     1  0.0806      0.942 0.972 0.000 0.000 0.008 0.000 0.020
#> SRR1193405     1  0.0603      0.950 0.980 0.000 0.000 0.000 0.004 0.016
#> SRR1193404     1  0.0603      0.950 0.980 0.000 0.000 0.000 0.004 0.016
#> SRR1193403     1  0.0603      0.950 0.980 0.000 0.000 0.000 0.004 0.016
#> SRR1193522     1  0.0603      0.950 0.980 0.000 0.000 0.000 0.004 0.016
#> SRR1193523     1  0.0603      0.950 0.980 0.000 0.000 0.000 0.004 0.016
#> SRR1193524     1  0.0603      0.950 0.980 0.000 0.000 0.000 0.004 0.016
#> SRR1193638     5  0.0458      0.999 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1193639     5  0.0458      0.999 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1195621     5  0.0458      0.999 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1195619     5  0.0458      0.999 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1195620     5  0.0458      0.999 0.016 0.000 0.000 0.000 0.984 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15363 rows and 131 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.4281 0.573   0.573
#> 3 3 1.000           1.000       1.000         0.3289 0.859   0.754
#> 4 4 1.000           0.961       0.985         0.0808 0.955   0.896
#> 5 5 0.854           0.972       0.930         0.1575 0.846   0.610
#> 6 6 1.000           0.998       0.999         0.0684 0.992   0.970

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1190372     2       0          1  0  1
#> SRR1190371     2       0          1  0  1
#> SRR1190370     2       0          1  0  1
#> SRR1190368     2       0          1  0  1
#> SRR1190369     2       0          1  0  1
#> SRR1190366     2       0          1  0  1
#> SRR1190367     2       0          1  0  1
#> SRR1190365     2       0          1  0  1
#> SRR1190467     1       0          1  1  0
#> SRR1190466     1       0          1  1  0
#> SRR1190465     1       0          1  1  0
#> SRR1190464     1       0          1  1  0
#> SRR1190462     1       0          1  1  0
#> SRR1190461     1       0          1  1  0
#> SRR1190460     1       0          1  1  0
#> SRR1190509     1       0          1  1  0
#> SRR1190504     1       0          1  1  0
#> SRR1190503     1       0          1  1  0
#> SRR1190502     1       0          1  1  0
#> SRR1190508     1       0          1  1  0
#> SRR1190507     1       0          1  1  0
#> SRR1190506     1       0          1  1  0
#> SRR1190505     1       0          1  1  0
#> SRR1191342     2       0          1  0  1
#> SRR1191344     2       0          1  0  1
#> SRR1191343     2       0          1  0  1
#> SRR1191349     2       0          1  0  1
#> SRR1191345     2       0          1  0  1
#> SRR1191346     2       0          1  0  1
#> SRR1191347     2       0          1  0  1
#> SRR1191348     2       0          1  0  1
#> SRR1191668     1       0          1  1  0
#> SRR1191667     1       0          1  1  0
#> SRR1191673     1       0          1  1  0
#> SRR1191672     1       0          1  1  0
#> SRR1191695     1       0          1  1  0
#> SRR1191694     1       0          1  1  0
#> SRR1191783     1       0          1  1  0
#> SRR1191876     1       0          1  1  0
#> SRR1191914     1       0          1  1  0
#> SRR1191915     1       0          1  1  0
#> SRR1191953     1       0          1  1  0
#> SRR1191954     1       0          1  1  0
#> SRR1191990     1       0          1  1  0
#> SRR1191991     1       0          1  1  0
#> SRR1192016     1       0          1  1  0
#> SRR1192017     1       0          1  1  0
#> SRR1192073     1       0          1  1  0
#> SRR1192072     1       0          1  1  0
#> SRR1192167     1       0          1  1  0
#> SRR1192166     1       0          1  1  0
#> SRR1192321     1       0          1  1  0
#> SRR1192353     1       0          1  1  0
#> SRR1192354     1       0          1  1  0
#> SRR1192370     1       0          1  1  0
#> SRR1192371     1       0          1  1  0
#> SRR1192399     1       0          1  1  0
#> SRR1192398     1       0          1  1  0
#> SRR1192417     2       0          1  0  1
#> SRR1192418     2       0          1  0  1
#> SRR1192415     2       0          1  0  1
#> SRR1192416     2       0          1  0  1
#> SRR1192413     2       0          1  0  1
#> SRR1192414     2       0          1  0  1
#> SRR1192420     2       0          1  0  1
#> SRR1192419     2       0          1  0  1
#> SRR1192471     1       0          1  1  0
#> SRR1192470     1       0          1  1  0
#> SRR1192469     1       0          1  1  0
#> SRR1192468     1       0          1  1  0
#> SRR1192467     1       0          1  1  0
#> SRR1192466     1       0          1  1  0
#> SRR1192465     1       0          1  1  0
#> SRR1192500     1       0          1  1  0
#> SRR1192501     1       0          1  1  0
#> SRR1192502     1       0          1  1  0
#> SRR1192503     1       0          1  1  0
#> SRR1192496     1       0          1  1  0
#> SRR1192497     1       0          1  1  0
#> SRR1192499     1       0          1  1  0
#> SRR1192641     2       0          1  0  1
#> SRR1192640     2       0          1  0  1
#> SRR1192643     2       0          1  0  1
#> SRR1192642     2       0          1  0  1
#> SRR1192644     2       0          1  0  1
#> SRR1192645     2       0          1  0  1
#> SRR1192646     2       0          1  0  1
#> SRR1192647     2       0          1  0  1
#> SRR1192836     2       0          1  0  1
#> SRR1192838     2       0          1  0  1
#> SRR1192837     2       0          1  0  1
#> SRR1192839     2       0          1  0  1
#> SRR1192963     2       0          1  0  1
#> SRR1192966     2       0          1  0  1
#> SRR1192965     2       0          1  0  1
#> SRR1192964     2       0          1  0  1
#> SRR1193005     1       0          1  1  0
#> SRR1193006     1       0          1  1  0
#> SRR1193007     1       0          1  1  0
#> SRR1193008     1       0          1  1  0
#> SRR1193011     1       0          1  1  0
#> SRR1193012     1       0          1  1  0
#> SRR1193009     1       0          1  1  0
#> SRR1193010     1       0          1  1  0
#> SRR1193014     1       0          1  1  0
#> SRR1193015     1       0          1  1  0
#> SRR1193013     1       0          1  1  0
#> SRR1193018     1       0          1  1  0
#> SRR1193016     1       0          1  1  0
#> SRR1193017     1       0          1  1  0
#> SRR1193100     1       0          1  1  0
#> SRR1193101     1       0          1  1  0
#> SRR1193102     1       0          1  1  0
#> SRR1193104     1       0          1  1  0
#> SRR1193103     1       0          1  1  0
#> SRR1193105     1       0          1  1  0
#> SRR1193106     1       0          1  1  0
#> SRR1193198     1       0          1  1  0
#> SRR1193197     1       0          1  1  0
#> SRR1193199     1       0          1  1  0
#> SRR1193405     1       0          1  1  0
#> SRR1193404     1       0          1  1  0
#> SRR1193403     1       0          1  1  0
#> SRR1193522     1       0          1  1  0
#> SRR1193523     1       0          1  1  0
#> SRR1193524     1       0          1  1  0
#> SRR1193638     1       0          1  1  0
#> SRR1193639     1       0          1  1  0
#> SRR1195621     1       0          1  1  0
#> SRR1195619     1       0          1  1  0
#> SRR1195620     1       0          1  1  0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette p1 p2 p3
#> SRR1190372     2       0          1  0  1  0
#> SRR1190371     2       0          1  0  1  0
#> SRR1190370     2       0          1  0  1  0
#> SRR1190368     2       0          1  0  1  0
#> SRR1190369     2       0          1  0  1  0
#> SRR1190366     2       0          1  0  1  0
#> SRR1190367     2       0          1  0  1  0
#> SRR1190365     2       0          1  0  1  0
#> SRR1190467     3       0          1  0  0  1
#> SRR1190466     3       0          1  0  0  1
#> SRR1190465     3       0          1  0  0  1
#> SRR1190464     3       0          1  0  0  1
#> SRR1190462     3       0          1  0  0  1
#> SRR1190461     3       0          1  0  0  1
#> SRR1190460     3       0          1  0  0  1
#> SRR1190509     1       0          1  1  0  0
#> SRR1190504     1       0          1  1  0  0
#> SRR1190503     1       0          1  1  0  0
#> SRR1190502     1       0          1  1  0  0
#> SRR1190508     1       0          1  1  0  0
#> SRR1190507     1       0          1  1  0  0
#> SRR1190506     1       0          1  1  0  0
#> SRR1190505     1       0          1  1  0  0
#> SRR1191342     2       0          1  0  1  0
#> SRR1191344     2       0          1  0  1  0
#> SRR1191343     2       0          1  0  1  0
#> SRR1191349     2       0          1  0  1  0
#> SRR1191345     2       0          1  0  1  0
#> SRR1191346     2       0          1  0  1  0
#> SRR1191347     2       0          1  0  1  0
#> SRR1191348     2       0          1  0  1  0
#> SRR1191668     1       0          1  1  0  0
#> SRR1191667     1       0          1  1  0  0
#> SRR1191673     1       0          1  1  0  0
#> SRR1191672     1       0          1  1  0  0
#> SRR1191695     3       0          1  0  0  1
#> SRR1191694     3       0          1  0  0  1
#> SRR1191783     3       0          1  0  0  1
#> SRR1191876     3       0          1  0  0  1
#> SRR1191914     1       0          1  1  0  0
#> SRR1191915     1       0          1  1  0  0
#> SRR1191953     1       0          1  1  0  0
#> SRR1191954     1       0          1  1  0  0
#> SRR1191990     1       0          1  1  0  0
#> SRR1191991     1       0          1  1  0  0
#> SRR1192016     3       0          1  0  0  1
#> SRR1192017     3       0          1  0  0  1
#> SRR1192073     3       0          1  0  0  1
#> SRR1192072     3       0          1  0  0  1
#> SRR1192167     1       0          1  1  0  0
#> SRR1192166     1       0          1  1  0  0
#> SRR1192321     3       0          1  0  0  1
#> SRR1192353     1       0          1  1  0  0
#> SRR1192354     1       0          1  1  0  0
#> SRR1192370     1       0          1  1  0  0
#> SRR1192371     1       0          1  1  0  0
#> SRR1192399     1       0          1  1  0  0
#> SRR1192398     1       0          1  1  0  0
#> SRR1192417     2       0          1  0  1  0
#> SRR1192418     2       0          1  0  1  0
#> SRR1192415     2       0          1  0  1  0
#> SRR1192416     2       0          1  0  1  0
#> SRR1192413     2       0          1  0  1  0
#> SRR1192414     2       0          1  0  1  0
#> SRR1192420     2       0          1  0  1  0
#> SRR1192419     2       0          1  0  1  0
#> SRR1192471     1       0          1  1  0  0
#> SRR1192470     1       0          1  1  0  0
#> SRR1192469     1       0          1  1  0  0
#> SRR1192468     1       0          1  1  0  0
#> SRR1192467     1       0          1  1  0  0
#> SRR1192466     1       0          1  1  0  0
#> SRR1192465     1       0          1  1  0  0
#> SRR1192500     1       0          1  1  0  0
#> SRR1192501     1       0          1  1  0  0
#> SRR1192502     1       0          1  1  0  0
#> SRR1192503     1       0          1  1  0  0
#> SRR1192496     1       0          1  1  0  0
#> SRR1192497     1       0          1  1  0  0
#> SRR1192499     1       0          1  1  0  0
#> SRR1192641     2       0          1  0  1  0
#> SRR1192640     2       0          1  0  1  0
#> SRR1192643     2       0          1  0  1  0
#> SRR1192642     2       0          1  0  1  0
#> SRR1192644     2       0          1  0  1  0
#> SRR1192645     2       0          1  0  1  0
#> SRR1192646     2       0          1  0  1  0
#> SRR1192647     2       0          1  0  1  0
#> SRR1192836     2       0          1  0  1  0
#> SRR1192838     2       0          1  0  1  0
#> SRR1192837     2       0          1  0  1  0
#> SRR1192839     2       0          1  0  1  0
#> SRR1192963     2       0          1  0  1  0
#> SRR1192966     2       0          1  0  1  0
#> SRR1192965     2       0          1  0  1  0
#> SRR1192964     2       0          1  0  1  0
#> SRR1193005     1       0          1  1  0  0
#> SRR1193006     1       0          1  1  0  0
#> SRR1193007     1       0          1  1  0  0
#> SRR1193008     1       0          1  1  0  0
#> SRR1193011     1       0          1  1  0  0
#> SRR1193012     1       0          1  1  0  0
#> SRR1193009     1       0          1  1  0  0
#> SRR1193010     1       0          1  1  0  0
#> SRR1193014     1       0          1  1  0  0
#> SRR1193015     1       0          1  1  0  0
#> SRR1193013     1       0          1  1  0  0
#> SRR1193018     1       0          1  1  0  0
#> SRR1193016     1       0          1  1  0  0
#> SRR1193017     1       0          1  1  0  0
#> SRR1193100     1       0          1  1  0  0
#> SRR1193101     1       0          1  1  0  0
#> SRR1193102     1       0          1  1  0  0
#> SRR1193104     1       0          1  1  0  0
#> SRR1193103     1       0          1  1  0  0
#> SRR1193105     1       0          1  1  0  0
#> SRR1193106     1       0          1  1  0  0
#> SRR1193198     1       0          1  1  0  0
#> SRR1193197     1       0          1  1  0  0
#> SRR1193199     1       0          1  1  0  0
#> SRR1193405     1       0          1  1  0  0
#> SRR1193404     1       0          1  1  0  0
#> SRR1193403     1       0          1  1  0  0
#> SRR1193522     1       0          1  1  0  0
#> SRR1193523     1       0          1  1  0  0
#> SRR1193524     1       0          1  1  0  0
#> SRR1193638     1       0          1  1  0  0
#> SRR1193639     1       0          1  1  0  0
#> SRR1195621     1       0          1  1  0  0
#> SRR1195619     1       0          1  1  0  0
#> SRR1195620     1       0          1  1  0  0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette p1    p2 p3    p4
#> SRR1190372     2     0.0      0.910  0 1.000  0 0.000
#> SRR1190371     2     0.0      0.910  0 1.000  0 0.000
#> SRR1190370     2     0.0      0.910  0 1.000  0 0.000
#> SRR1190368     2     0.0      0.910  0 1.000  0 0.000
#> SRR1190369     2     0.0      0.910  0 1.000  0 0.000
#> SRR1190366     2     0.0      0.910  0 1.000  0 0.000
#> SRR1190367     2     0.0      0.910  0 1.000  0 0.000
#> SRR1190365     2     0.0      0.910  0 1.000  0 0.000
#> SRR1190467     3     0.0      1.000  0 0.000  1 0.000
#> SRR1190466     3     0.0      1.000  0 0.000  1 0.000
#> SRR1190465     3     0.0      1.000  0 0.000  1 0.000
#> SRR1190464     3     0.0      1.000  0 0.000  1 0.000
#> SRR1190462     3     0.0      1.000  0 0.000  1 0.000
#> SRR1190461     3     0.0      1.000  0 0.000  1 0.000
#> SRR1190460     3     0.0      1.000  0 0.000  1 0.000
#> SRR1190509     1     0.0      1.000  1 0.000  0 0.000
#> SRR1190504     1     0.0      1.000  1 0.000  0 0.000
#> SRR1190503     1     0.0      1.000  1 0.000  0 0.000
#> SRR1190502     1     0.0      1.000  1 0.000  0 0.000
#> SRR1190508     1     0.0      1.000  1 0.000  0 0.000
#> SRR1190507     1     0.0      1.000  1 0.000  0 0.000
#> SRR1190506     1     0.0      1.000  1 0.000  0 0.000
#> SRR1190505     1     0.0      1.000  1 0.000  0 0.000
#> SRR1191342     4     0.0      1.000  0 0.000  0 1.000
#> SRR1191344     4     0.0      1.000  0 0.000  0 1.000
#> SRR1191343     4     0.0      1.000  0 0.000  0 1.000
#> SRR1191349     4     0.0      1.000  0 0.000  0 1.000
#> SRR1191345     4     0.0      1.000  0 0.000  0 1.000
#> SRR1191346     4     0.0      1.000  0 0.000  0 1.000
#> SRR1191347     4     0.0      1.000  0 0.000  0 1.000
#> SRR1191348     4     0.0      1.000  0 0.000  0 1.000
#> SRR1191668     1     0.0      1.000  1 0.000  0 0.000
#> SRR1191667     1     0.0      1.000  1 0.000  0 0.000
#> SRR1191673     1     0.0      1.000  1 0.000  0 0.000
#> SRR1191672     1     0.0      1.000  1 0.000  0 0.000
#> SRR1191695     3     0.0      1.000  0 0.000  1 0.000
#> SRR1191694     3     0.0      1.000  0 0.000  1 0.000
#> SRR1191783     3     0.0      1.000  0 0.000  1 0.000
#> SRR1191876     3     0.0      1.000  0 0.000  1 0.000
#> SRR1191914     1     0.0      1.000  1 0.000  0 0.000
#> SRR1191915     1     0.0      1.000  1 0.000  0 0.000
#> SRR1191953     1     0.0      1.000  1 0.000  0 0.000
#> SRR1191954     1     0.0      1.000  1 0.000  0 0.000
#> SRR1191990     1     0.0      1.000  1 0.000  0 0.000
#> SRR1191991     1     0.0      1.000  1 0.000  0 0.000
#> SRR1192016     3     0.0      1.000  0 0.000  1 0.000
#> SRR1192017     3     0.0      1.000  0 0.000  1 0.000
#> SRR1192073     3     0.0      1.000  0 0.000  1 0.000
#> SRR1192072     3     0.0      1.000  0 0.000  1 0.000
#> SRR1192167     1     0.0      1.000  1 0.000  0 0.000
#> SRR1192166     1     0.0      1.000  1 0.000  0 0.000
#> SRR1192321     3     0.0      1.000  0 0.000  1 0.000
#> SRR1192353     1     0.0      1.000  1 0.000  0 0.000
#> SRR1192354     1     0.0      1.000  1 0.000  0 0.000
#> SRR1192370     1     0.0      1.000  1 0.000  0 0.000
#> SRR1192371     1     0.0      1.000  1 0.000  0 0.000
#> SRR1192399     1     0.0      1.000  1 0.000  0 0.000
#> SRR1192398     1     0.0      1.000  1 0.000  0 0.000
#> SRR1192417     4     0.0      1.000  0 0.000  0 1.000
#> SRR1192418     4     0.0      1.000  0 0.000  0 1.000
#> SRR1192415     4     0.0      1.000  0 0.000  0 1.000
#> SRR1192416     4     0.0      1.000  0 0.000  0 1.000
#> SRR1192413     4     0.0      1.000  0 0.000  0 1.000
#> SRR1192414     4     0.0      1.000  0 0.000  0 1.000
#> SRR1192420     4     0.0      1.000  0 0.000  0 1.000
#> SRR1192419     4     0.0      1.000  0 0.000  0 1.000
#> SRR1192471     1     0.0      1.000  1 0.000  0 0.000
#> SRR1192470     1     0.0      1.000  1 0.000  0 0.000
#> SRR1192469     1     0.0      1.000  1 0.000  0 0.000
#> SRR1192468     1     0.0      1.000  1 0.000  0 0.000
#> SRR1192467     1     0.0      1.000  1 0.000  0 0.000
#> SRR1192466     1     0.0      1.000  1 0.000  0 0.000
#> SRR1192465     1     0.0      1.000  1 0.000  0 0.000
#> SRR1192500     1     0.0      1.000  1 0.000  0 0.000
#> SRR1192501     1     0.0      1.000  1 0.000  0 0.000
#> SRR1192502     1     0.0      1.000  1 0.000  0 0.000
#> SRR1192503     1     0.0      1.000  1 0.000  0 0.000
#> SRR1192496     1     0.0      1.000  1 0.000  0 0.000
#> SRR1192497     1     0.0      1.000  1 0.000  0 0.000
#> SRR1192499     1     0.0      1.000  1 0.000  0 0.000
#> SRR1192641     2     0.0      0.910  0 1.000  0 0.000
#> SRR1192640     2     0.0      0.910  0 1.000  0 0.000
#> SRR1192643     2     0.0      0.910  0 1.000  0 0.000
#> SRR1192642     2     0.0      0.910  0 1.000  0 0.000
#> SRR1192644     2     0.0      0.910  0 1.000  0 0.000
#> SRR1192645     2     0.0      0.910  0 1.000  0 0.000
#> SRR1192646     2     0.0      0.910  0 1.000  0 0.000
#> SRR1192647     2     0.0      0.910  0 1.000  0 0.000
#> SRR1192836     2     0.5      0.158  0 0.508  0 0.492
#> SRR1192838     2     0.5      0.158  0 0.508  0 0.492
#> SRR1192837     2     0.5      0.158  0 0.508  0 0.492
#> SRR1192839     2     0.5      0.158  0 0.508  0 0.492
#> SRR1192963     2     0.0      0.910  0 1.000  0 0.000
#> SRR1192966     2     0.0      0.910  0 1.000  0 0.000
#> SRR1192965     2     0.0      0.910  0 1.000  0 0.000
#> SRR1192964     2     0.0      0.910  0 1.000  0 0.000
#> SRR1193005     1     0.0      1.000  1 0.000  0 0.000
#> SRR1193006     1     0.0      1.000  1 0.000  0 0.000
#> SRR1193007     1     0.0      1.000  1 0.000  0 0.000
#> SRR1193008     1     0.0      1.000  1 0.000  0 0.000
#> SRR1193011     1     0.0      1.000  1 0.000  0 0.000
#> SRR1193012     1     0.0      1.000  1 0.000  0 0.000
#> SRR1193009     1     0.0      1.000  1 0.000  0 0.000
#> SRR1193010     1     0.0      1.000  1 0.000  0 0.000
#> SRR1193014     1     0.0      1.000  1 0.000  0 0.000
#> SRR1193015     1     0.0      1.000  1 0.000  0 0.000
#> SRR1193013     1     0.0      1.000  1 0.000  0 0.000
#> SRR1193018     1     0.0      1.000  1 0.000  0 0.000
#> SRR1193016     1     0.0      1.000  1 0.000  0 0.000
#> SRR1193017     1     0.0      1.000  1 0.000  0 0.000
#> SRR1193100     1     0.0      1.000  1 0.000  0 0.000
#> SRR1193101     1     0.0      1.000  1 0.000  0 0.000
#> SRR1193102     1     0.0      1.000  1 0.000  0 0.000
#> SRR1193104     1     0.0      1.000  1 0.000  0 0.000
#> SRR1193103     1     0.0      1.000  1 0.000  0 0.000
#> SRR1193105     1     0.0      1.000  1 0.000  0 0.000
#> SRR1193106     1     0.0      1.000  1 0.000  0 0.000
#> SRR1193198     1     0.0      1.000  1 0.000  0 0.000
#> SRR1193197     1     0.0      1.000  1 0.000  0 0.000
#> SRR1193199     1     0.0      1.000  1 0.000  0 0.000
#> SRR1193405     1     0.0      1.000  1 0.000  0 0.000
#> SRR1193404     1     0.0      1.000  1 0.000  0 0.000
#> SRR1193403     1     0.0      1.000  1 0.000  0 0.000
#> SRR1193522     1     0.0      1.000  1 0.000  0 0.000
#> SRR1193523     1     0.0      1.000  1 0.000  0 0.000
#> SRR1193524     1     0.0      1.000  1 0.000  0 0.000
#> SRR1193638     1     0.0      1.000  1 0.000  0 0.000
#> SRR1193639     1     0.0      1.000  1 0.000  0 0.000
#> SRR1195621     1     0.0      1.000  1 0.000  0 0.000
#> SRR1195619     1     0.0      1.000  1 0.000  0 0.000
#> SRR1195620     1     0.0      1.000  1 0.000  0 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2 p3    p4    p5
#> SRR1190372     2   0.000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1190371     2   0.000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1190370     2   0.000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1190368     2   0.000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1190369     2   0.000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1190366     2   0.000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1190367     2   0.000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1190365     2   0.000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1190467     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1190466     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1190465     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1190464     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1190462     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1190461     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1190460     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1190509     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1190504     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1190503     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1190502     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1190508     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1190507     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1190506     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1190505     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1191342     4   0.000      0.907 0.000 0.000  0 1.000 0.000
#> SRR1191344     4   0.000      0.907 0.000 0.000  0 1.000 0.000
#> SRR1191343     4   0.000      0.907 0.000 0.000  0 1.000 0.000
#> SRR1191349     4   0.000      0.907 0.000 0.000  0 1.000 0.000
#> SRR1191345     4   0.000      0.907 0.000 0.000  0 1.000 0.000
#> SRR1191346     4   0.000      0.907 0.000 0.000  0 1.000 0.000
#> SRR1191347     4   0.000      0.907 0.000 0.000  0 1.000 0.000
#> SRR1191348     4   0.000      0.907 0.000 0.000  0 1.000 0.000
#> SRR1191668     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1191667     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1191673     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1191672     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1191695     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1191694     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1191783     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1191876     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1191914     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1191915     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1191953     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1191954     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1191990     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1191991     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1192016     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1192017     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1192073     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1192072     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1192167     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1192166     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1192321     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1192353     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1192354     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1192370     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1192371     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1192399     1   0.406      0.933 0.640 0.000  0 0.000 0.360
#> SRR1192398     1   0.406      0.933 0.640 0.000  0 0.000 0.360
#> SRR1192417     4   0.000      0.907 0.000 0.000  0 1.000 0.000
#> SRR1192418     4   0.000      0.907 0.000 0.000  0 1.000 0.000
#> SRR1192415     4   0.000      0.907 0.000 0.000  0 1.000 0.000
#> SRR1192416     4   0.000      0.907 0.000 0.000  0 1.000 0.000
#> SRR1192413     4   0.000      0.907 0.000 0.000  0 1.000 0.000
#> SRR1192414     4   0.000      0.907 0.000 0.000  0 1.000 0.000
#> SRR1192420     4   0.000      0.907 0.000 0.000  0 1.000 0.000
#> SRR1192419     4   0.000      0.907 0.000 0.000  0 1.000 0.000
#> SRR1192471     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1192470     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1192469     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1192468     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1192467     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1192466     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1192465     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1192500     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1192501     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1192502     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1192503     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1192496     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1192497     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1192499     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1192641     2   0.000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1192640     2   0.000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1192643     2   0.000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1192642     2   0.000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1192644     2   0.000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1192645     2   0.000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1192646     2   0.000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1192647     2   0.000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1192836     4   0.649      0.509 0.316 0.208  0 0.476 0.000
#> SRR1192838     4   0.649      0.509 0.316 0.208  0 0.476 0.000
#> SRR1192837     4   0.649      0.509 0.316 0.208  0 0.476 0.000
#> SRR1192839     4   0.649      0.509 0.316 0.208  0 0.476 0.000
#> SRR1192963     2   0.000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1192966     2   0.000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1192965     2   0.000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1192964     2   0.000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1193005     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1193006     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1193007     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1193008     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1193011     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1193012     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1193009     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1193010     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1193014     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1193015     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1193013     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1193018     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1193016     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1193017     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1193100     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1193101     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1193102     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1193104     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1193103     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1193105     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1193106     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1193198     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1193197     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1193199     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1193405     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1193404     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1193403     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1193522     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1193523     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1193524     1   0.388      0.998 0.684 0.000  0 0.000 0.316
#> SRR1193638     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1193639     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1195621     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1195619     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1195620     5   0.000      1.000 0.000 0.000  0 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1 p2 p3 p4    p5 p6
#> SRR1190372     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1190371     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1190370     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1190368     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1190369     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1190366     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1190367     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1190365     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1190467     3   0.000      1.000 0.000  0  1  0 0.000  0
#> SRR1190466     3   0.000      1.000 0.000  0  1  0 0.000  0
#> SRR1190465     3   0.000      1.000 0.000  0  1  0 0.000  0
#> SRR1190464     3   0.000      1.000 0.000  0  1  0 0.000  0
#> SRR1190462     3   0.000      1.000 0.000  0  1  0 0.000  0
#> SRR1190461     3   0.000      1.000 0.000  0  1  0 0.000  0
#> SRR1190460     3   0.000      1.000 0.000  0  1  0 0.000  0
#> SRR1190509     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1190504     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1190503     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1190502     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1190508     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1190507     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1190506     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1190505     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1191342     4   0.000      1.000 0.000  0  0  1 0.000  0
#> SRR1191344     4   0.000      1.000 0.000  0  0  1 0.000  0
#> SRR1191343     4   0.000      1.000 0.000  0  0  1 0.000  0
#> SRR1191349     4   0.000      1.000 0.000  0  0  1 0.000  0
#> SRR1191345     4   0.000      1.000 0.000  0  0  1 0.000  0
#> SRR1191346     4   0.000      1.000 0.000  0  0  1 0.000  0
#> SRR1191347     4   0.000      1.000 0.000  0  0  1 0.000  0
#> SRR1191348     4   0.000      1.000 0.000  0  0  1 0.000  0
#> SRR1191668     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1191667     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1191673     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1191672     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1191695     3   0.000      1.000 0.000  0  1  0 0.000  0
#> SRR1191694     3   0.000      1.000 0.000  0  1  0 0.000  0
#> SRR1191783     3   0.000      1.000 0.000  0  1  0 0.000  0
#> SRR1191876     3   0.000      1.000 0.000  0  1  0 0.000  0
#> SRR1191914     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1191915     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1191953     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1191954     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1191990     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1191991     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1192016     3   0.000      1.000 0.000  0  1  0 0.000  0
#> SRR1192017     3   0.000      1.000 0.000  0  1  0 0.000  0
#> SRR1192073     3   0.000      1.000 0.000  0  1  0 0.000  0
#> SRR1192072     3   0.000      1.000 0.000  0  1  0 0.000  0
#> SRR1192167     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1192166     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1192321     3   0.000      1.000 0.000  0  1  0 0.000  0
#> SRR1192353     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1192354     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1192370     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1192371     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1192399     1   0.101      0.948 0.956  0  0  0 0.044  0
#> SRR1192398     1   0.101      0.948 0.956  0  0  0 0.044  0
#> SRR1192417     4   0.000      1.000 0.000  0  0  1 0.000  0
#> SRR1192418     4   0.000      1.000 0.000  0  0  1 0.000  0
#> SRR1192415     4   0.000      1.000 0.000  0  0  1 0.000  0
#> SRR1192416     4   0.000      1.000 0.000  0  0  1 0.000  0
#> SRR1192413     4   0.000      1.000 0.000  0  0  1 0.000  0
#> SRR1192414     4   0.000      1.000 0.000  0  0  1 0.000  0
#> SRR1192420     4   0.000      1.000 0.000  0  0  1 0.000  0
#> SRR1192419     4   0.000      1.000 0.000  0  0  1 0.000  0
#> SRR1192471     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1192470     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1192469     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1192468     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1192467     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1192466     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1192465     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1192500     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1192501     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1192502     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1192503     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1192496     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1192497     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1192499     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1192641     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1192640     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1192643     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1192642     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1192644     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1192645     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1192646     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1192647     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1192836     6   0.000      1.000 0.000  0  0  0 0.000  1
#> SRR1192838     6   0.000      1.000 0.000  0  0  0 0.000  1
#> SRR1192837     6   0.000      1.000 0.000  0  0  0 0.000  1
#> SRR1192839     6   0.000      1.000 0.000  0  0  0 0.000  1
#> SRR1192963     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1192966     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1192965     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1192964     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1193005     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1193006     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1193007     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1193008     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1193011     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193012     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193009     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193010     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193014     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1193015     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1193013     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1193018     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1193016     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1193017     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1193100     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1193101     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1193102     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1193104     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193103     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193105     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193106     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193198     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1193197     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1193199     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1193405     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1193404     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1193403     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1193522     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1193523     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1193524     1   0.000      0.998 1.000  0  0  0 0.000  0
#> SRR1193638     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193639     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1195621     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1195619     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1195620     5   0.000      1.000 0.000  0  0  0 1.000  0

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15363 rows and 131 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.718           0.958       0.975         0.4392 0.573   0.573
#> 3 3 0.878           0.955       0.979         0.3638 0.723   0.556
#> 4 4 0.743           0.912       0.930         0.1020 0.951   0.878
#> 5 5 0.847           0.786       0.859         0.1055 0.934   0.817
#> 6 6 0.902           0.873       0.936         0.0571 0.887   0.638

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1190372     2   0.000      1.000 0.000 1.000
#> SRR1190371     2   0.000      1.000 0.000 1.000
#> SRR1190370     2   0.000      1.000 0.000 1.000
#> SRR1190368     2   0.000      1.000 0.000 1.000
#> SRR1190369     2   0.000      1.000 0.000 1.000
#> SRR1190366     2   0.000      1.000 0.000 1.000
#> SRR1190367     2   0.000      1.000 0.000 1.000
#> SRR1190365     2   0.000      1.000 0.000 1.000
#> SRR1190467     1   0.615      0.863 0.848 0.152
#> SRR1190466     1   0.615      0.863 0.848 0.152
#> SRR1190465     1   0.615      0.863 0.848 0.152
#> SRR1190464     1   0.615      0.863 0.848 0.152
#> SRR1190462     1   0.615      0.863 0.848 0.152
#> SRR1190461     1   0.615      0.863 0.848 0.152
#> SRR1190460     1   0.615      0.863 0.848 0.152
#> SRR1190509     1   0.000      0.963 1.000 0.000
#> SRR1190504     1   0.000      0.963 1.000 0.000
#> SRR1190503     1   0.000      0.963 1.000 0.000
#> SRR1190502     1   0.000      0.963 1.000 0.000
#> SRR1190508     1   0.000      0.963 1.000 0.000
#> SRR1190507     1   0.000      0.963 1.000 0.000
#> SRR1190506     1   0.000      0.963 1.000 0.000
#> SRR1190505     1   0.000      0.963 1.000 0.000
#> SRR1191342     2   0.000      1.000 0.000 1.000
#> SRR1191344     2   0.000      1.000 0.000 1.000
#> SRR1191343     2   0.000      1.000 0.000 1.000
#> SRR1191349     2   0.000      1.000 0.000 1.000
#> SRR1191345     2   0.000      1.000 0.000 1.000
#> SRR1191346     2   0.000      1.000 0.000 1.000
#> SRR1191347     2   0.000      1.000 0.000 1.000
#> SRR1191348     2   0.000      1.000 0.000 1.000
#> SRR1191668     1   0.574      0.875 0.864 0.136
#> SRR1191667     1   0.574      0.875 0.864 0.136
#> SRR1191673     1   0.574      0.875 0.864 0.136
#> SRR1191672     1   0.574      0.875 0.864 0.136
#> SRR1191695     1   0.615      0.863 0.848 0.152
#> SRR1191694     1   0.615      0.863 0.848 0.152
#> SRR1191783     1   0.615      0.863 0.848 0.152
#> SRR1191876     1   0.615      0.863 0.848 0.152
#> SRR1191914     1   0.000      0.963 1.000 0.000
#> SRR1191915     1   0.000      0.963 1.000 0.000
#> SRR1191953     1   0.000      0.963 1.000 0.000
#> SRR1191954     1   0.000      0.963 1.000 0.000
#> SRR1191990     1   0.000      0.963 1.000 0.000
#> SRR1191991     1   0.000      0.963 1.000 0.000
#> SRR1192016     1   0.615      0.863 0.848 0.152
#> SRR1192017     1   0.615      0.863 0.848 0.152
#> SRR1192073     1   0.615      0.863 0.848 0.152
#> SRR1192072     1   0.615      0.863 0.848 0.152
#> SRR1192167     1   0.574      0.875 0.864 0.136
#> SRR1192166     1   0.574      0.875 0.864 0.136
#> SRR1192321     1   0.615      0.863 0.848 0.152
#> SRR1192353     1   0.000      0.963 1.000 0.000
#> SRR1192354     1   0.000      0.963 1.000 0.000
#> SRR1192370     1   0.000      0.963 1.000 0.000
#> SRR1192371     1   0.000      0.963 1.000 0.000
#> SRR1192399     1   0.000      0.963 1.000 0.000
#> SRR1192398     1   0.000      0.963 1.000 0.000
#> SRR1192417     2   0.000      1.000 0.000 1.000
#> SRR1192418     2   0.000      1.000 0.000 1.000
#> SRR1192415     2   0.000      1.000 0.000 1.000
#> SRR1192416     2   0.000      1.000 0.000 1.000
#> SRR1192413     2   0.000      1.000 0.000 1.000
#> SRR1192414     2   0.000      1.000 0.000 1.000
#> SRR1192420     2   0.000      1.000 0.000 1.000
#> SRR1192419     2   0.000      1.000 0.000 1.000
#> SRR1192471     1   0.000      0.963 1.000 0.000
#> SRR1192470     1   0.000      0.963 1.000 0.000
#> SRR1192469     1   0.000      0.963 1.000 0.000
#> SRR1192468     1   0.000      0.963 1.000 0.000
#> SRR1192467     1   0.000      0.963 1.000 0.000
#> SRR1192466     1   0.000      0.963 1.000 0.000
#> SRR1192465     1   0.000      0.963 1.000 0.000
#> SRR1192500     1   0.000      0.963 1.000 0.000
#> SRR1192501     1   0.000      0.963 1.000 0.000
#> SRR1192502     1   0.000      0.963 1.000 0.000
#> SRR1192503     1   0.000      0.963 1.000 0.000
#> SRR1192496     1   0.000      0.963 1.000 0.000
#> SRR1192497     1   0.000      0.963 1.000 0.000
#> SRR1192499     1   0.000      0.963 1.000 0.000
#> SRR1192641     2   0.000      1.000 0.000 1.000
#> SRR1192640     2   0.000      1.000 0.000 1.000
#> SRR1192643     2   0.000      1.000 0.000 1.000
#> SRR1192642     2   0.000      1.000 0.000 1.000
#> SRR1192644     2   0.000      1.000 0.000 1.000
#> SRR1192645     2   0.000      1.000 0.000 1.000
#> SRR1192646     2   0.000      1.000 0.000 1.000
#> SRR1192647     2   0.000      1.000 0.000 1.000
#> SRR1192836     2   0.000      1.000 0.000 1.000
#> SRR1192838     2   0.000      1.000 0.000 1.000
#> SRR1192837     2   0.000      1.000 0.000 1.000
#> SRR1192839     2   0.000      1.000 0.000 1.000
#> SRR1192963     2   0.000      1.000 0.000 1.000
#> SRR1192966     2   0.000      1.000 0.000 1.000
#> SRR1192965     2   0.000      1.000 0.000 1.000
#> SRR1192964     2   0.000      1.000 0.000 1.000
#> SRR1193005     1   0.000      0.963 1.000 0.000
#> SRR1193006     1   0.000      0.963 1.000 0.000
#> SRR1193007     1   0.000      0.963 1.000 0.000
#> SRR1193008     1   0.000      0.963 1.000 0.000
#> SRR1193011     1   0.000      0.963 1.000 0.000
#> SRR1193012     1   0.000      0.963 1.000 0.000
#> SRR1193009     1   0.000      0.963 1.000 0.000
#> SRR1193010     1   0.000      0.963 1.000 0.000
#> SRR1193014     1   0.000      0.963 1.000 0.000
#> SRR1193015     1   0.000      0.963 1.000 0.000
#> SRR1193013     1   0.000      0.963 1.000 0.000
#> SRR1193018     1   0.000      0.963 1.000 0.000
#> SRR1193016     1   0.000      0.963 1.000 0.000
#> SRR1193017     1   0.000      0.963 1.000 0.000
#> SRR1193100     1   0.000      0.963 1.000 0.000
#> SRR1193101     1   0.000      0.963 1.000 0.000
#> SRR1193102     1   0.000      0.963 1.000 0.000
#> SRR1193104     1   0.000      0.963 1.000 0.000
#> SRR1193103     1   0.000      0.963 1.000 0.000
#> SRR1193105     1   0.000      0.963 1.000 0.000
#> SRR1193106     1   0.000      0.963 1.000 0.000
#> SRR1193198     1   0.000      0.963 1.000 0.000
#> SRR1193197     1   0.000      0.963 1.000 0.000
#> SRR1193199     1   0.000      0.963 1.000 0.000
#> SRR1193405     1   0.000      0.963 1.000 0.000
#> SRR1193404     1   0.000      0.963 1.000 0.000
#> SRR1193403     1   0.000      0.963 1.000 0.000
#> SRR1193522     1   0.000      0.963 1.000 0.000
#> SRR1193523     1   0.000      0.963 1.000 0.000
#> SRR1193524     1   0.000      0.963 1.000 0.000
#> SRR1193638     1   0.000      0.963 1.000 0.000
#> SRR1193639     1   0.000      0.963 1.000 0.000
#> SRR1195621     1   0.000      0.963 1.000 0.000
#> SRR1195619     1   0.000      0.963 1.000 0.000
#> SRR1195620     1   0.000      0.963 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1190372     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1190371     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1190370     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1190368     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1190369     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1190366     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1190367     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1190365     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1190467     3  0.0000      0.953 0.000 0.000 1.000
#> SRR1190466     3  0.0000      0.953 0.000 0.000 1.000
#> SRR1190465     3  0.0000      0.953 0.000 0.000 1.000
#> SRR1190464     3  0.0000      0.953 0.000 0.000 1.000
#> SRR1190462     3  0.0000      0.953 0.000 0.000 1.000
#> SRR1190461     3  0.0000      0.953 0.000 0.000 1.000
#> SRR1190460     3  0.0000      0.953 0.000 0.000 1.000
#> SRR1190509     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1190504     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1190503     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1190502     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1190508     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1190507     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1190506     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1190505     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1191342     3  0.0237      0.953 0.000 0.004 0.996
#> SRR1191344     3  0.0237      0.953 0.000 0.004 0.996
#> SRR1191343     3  0.0237      0.953 0.000 0.004 0.996
#> SRR1191349     3  0.0237      0.953 0.000 0.004 0.996
#> SRR1191345     3  0.0237      0.953 0.000 0.004 0.996
#> SRR1191346     3  0.0237      0.953 0.000 0.004 0.996
#> SRR1191347     3  0.0237      0.953 0.000 0.004 0.996
#> SRR1191348     3  0.0237      0.953 0.000 0.004 0.996
#> SRR1191668     3  0.3686      0.843 0.140 0.000 0.860
#> SRR1191667     3  0.3686      0.843 0.140 0.000 0.860
#> SRR1191673     3  0.3686      0.843 0.140 0.000 0.860
#> SRR1191672     3  0.3686      0.843 0.140 0.000 0.860
#> SRR1191695     3  0.0000      0.953 0.000 0.000 1.000
#> SRR1191694     3  0.0000      0.953 0.000 0.000 1.000
#> SRR1191783     3  0.0000      0.953 0.000 0.000 1.000
#> SRR1191876     3  0.0000      0.953 0.000 0.000 1.000
#> SRR1191914     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1191915     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1191953     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1191954     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1191990     1  0.0592      0.969 0.988 0.000 0.012
#> SRR1191991     1  0.0592      0.969 0.988 0.000 0.012
#> SRR1192016     3  0.0000      0.953 0.000 0.000 1.000
#> SRR1192017     3  0.0000      0.953 0.000 0.000 1.000
#> SRR1192073     3  0.0000      0.953 0.000 0.000 1.000
#> SRR1192072     3  0.0000      0.953 0.000 0.000 1.000
#> SRR1192167     3  0.3686      0.843 0.140 0.000 0.860
#> SRR1192166     3  0.3686      0.843 0.140 0.000 0.860
#> SRR1192321     3  0.0000      0.953 0.000 0.000 1.000
#> SRR1192353     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1192354     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1192370     1  0.0237      0.977 0.996 0.000 0.004
#> SRR1192371     1  0.0237      0.977 0.996 0.000 0.004
#> SRR1192399     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1192398     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1192417     3  0.0237      0.953 0.000 0.004 0.996
#> SRR1192418     3  0.0237      0.953 0.000 0.004 0.996
#> SRR1192415     3  0.0237      0.953 0.000 0.004 0.996
#> SRR1192416     3  0.0237      0.953 0.000 0.004 0.996
#> SRR1192413     3  0.0237      0.953 0.000 0.004 0.996
#> SRR1192414     3  0.0237      0.953 0.000 0.004 0.996
#> SRR1192420     3  0.0237      0.953 0.000 0.004 0.996
#> SRR1192419     3  0.0237      0.953 0.000 0.004 0.996
#> SRR1192471     1  0.0237      0.977 0.996 0.000 0.004
#> SRR1192470     1  0.0237      0.977 0.996 0.000 0.004
#> SRR1192469     1  0.0237      0.977 0.996 0.000 0.004
#> SRR1192468     1  0.0237      0.977 0.996 0.000 0.004
#> SRR1192467     1  0.0237      0.977 0.996 0.000 0.004
#> SRR1192466     1  0.0237      0.977 0.996 0.000 0.004
#> SRR1192465     1  0.0237      0.977 0.996 0.000 0.004
#> SRR1192500     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1192501     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1192502     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1192503     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1192496     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1192497     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1192499     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1192641     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192640     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192643     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192642     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192644     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192645     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192646     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192647     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192836     3  0.4342      0.853 0.120 0.024 0.856
#> SRR1192838     3  0.4342      0.853 0.120 0.024 0.856
#> SRR1192837     3  0.4342      0.853 0.120 0.024 0.856
#> SRR1192839     3  0.4342      0.853 0.120 0.024 0.856
#> SRR1192963     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192966     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192965     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192964     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1193005     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1193006     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1193007     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1193008     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1193011     1  0.0237      0.977 0.996 0.000 0.004
#> SRR1193012     1  0.0237      0.977 0.996 0.000 0.004
#> SRR1193009     1  0.0237      0.977 0.996 0.000 0.004
#> SRR1193010     1  0.0237      0.977 0.996 0.000 0.004
#> SRR1193014     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1193015     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1193013     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1193018     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1193016     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1193017     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1193100     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1193101     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1193102     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1193104     1  0.0237      0.977 0.996 0.000 0.004
#> SRR1193103     1  0.0237      0.977 0.996 0.000 0.004
#> SRR1193105     1  0.0237      0.977 0.996 0.000 0.004
#> SRR1193106     1  0.0237      0.977 0.996 0.000 0.004
#> SRR1193198     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1193197     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1193199     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1193405     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1193404     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1193403     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1193522     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1193523     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1193524     1  0.0000      0.979 1.000 0.000 0.000
#> SRR1193638     1  0.4974      0.693 0.764 0.000 0.236
#> SRR1193639     1  0.4974      0.693 0.764 0.000 0.236
#> SRR1195621     1  0.4974      0.693 0.764 0.000 0.236
#> SRR1195619     1  0.4974      0.693 0.764 0.000 0.236
#> SRR1195620     1  0.4974      0.693 0.764 0.000 0.236

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1190372     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1190371     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1190370     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1190368     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1190369     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1190366     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1190367     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1190365     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1190467     3  0.0000      0.896 0.000 0.000 1.000 0.000
#> SRR1190466     3  0.0000      0.896 0.000 0.000 1.000 0.000
#> SRR1190465     3  0.0000      0.896 0.000 0.000 1.000 0.000
#> SRR1190464     3  0.0000      0.896 0.000 0.000 1.000 0.000
#> SRR1190462     3  0.0000      0.896 0.000 0.000 1.000 0.000
#> SRR1190461     3  0.0000      0.896 0.000 0.000 1.000 0.000
#> SRR1190460     3  0.0000      0.896 0.000 0.000 1.000 0.000
#> SRR1190509     1  0.0188      0.930 0.996 0.000 0.000 0.004
#> SRR1190504     1  0.0188      0.930 0.996 0.000 0.000 0.004
#> SRR1190503     1  0.0188      0.930 0.996 0.000 0.000 0.004
#> SRR1190502     1  0.0188      0.930 0.996 0.000 0.000 0.004
#> SRR1190508     1  0.0188      0.930 0.996 0.000 0.000 0.004
#> SRR1190507     1  0.0188      0.930 0.996 0.000 0.000 0.004
#> SRR1190506     1  0.0188      0.930 0.996 0.000 0.000 0.004
#> SRR1190505     1  0.0188      0.930 0.996 0.000 0.000 0.004
#> SRR1191342     4  0.3123      1.000 0.000 0.000 0.156 0.844
#> SRR1191344     4  0.3123      1.000 0.000 0.000 0.156 0.844
#> SRR1191343     4  0.3123      1.000 0.000 0.000 0.156 0.844
#> SRR1191349     4  0.3123      1.000 0.000 0.000 0.156 0.844
#> SRR1191345     4  0.3123      1.000 0.000 0.000 0.156 0.844
#> SRR1191346     4  0.3123      1.000 0.000 0.000 0.156 0.844
#> SRR1191347     4  0.3123      1.000 0.000 0.000 0.156 0.844
#> SRR1191348     4  0.3123      1.000 0.000 0.000 0.156 0.844
#> SRR1191668     3  0.2814      0.826 0.132 0.000 0.868 0.000
#> SRR1191667     3  0.2814      0.826 0.132 0.000 0.868 0.000
#> SRR1191673     3  0.2814      0.826 0.132 0.000 0.868 0.000
#> SRR1191672     3  0.2814      0.826 0.132 0.000 0.868 0.000
#> SRR1191695     3  0.0000      0.896 0.000 0.000 1.000 0.000
#> SRR1191694     3  0.0000      0.896 0.000 0.000 1.000 0.000
#> SRR1191783     3  0.0000      0.896 0.000 0.000 1.000 0.000
#> SRR1191876     3  0.0000      0.896 0.000 0.000 1.000 0.000
#> SRR1191914     1  0.0188      0.930 0.996 0.000 0.000 0.004
#> SRR1191915     1  0.0188      0.930 0.996 0.000 0.000 0.004
#> SRR1191953     1  0.0188      0.930 0.996 0.000 0.000 0.004
#> SRR1191954     1  0.0188      0.930 0.996 0.000 0.000 0.004
#> SRR1191990     1  0.3266      0.772 0.832 0.000 0.168 0.000
#> SRR1191991     1  0.3266      0.772 0.832 0.000 0.168 0.000
#> SRR1192016     3  0.0000      0.896 0.000 0.000 1.000 0.000
#> SRR1192017     3  0.0000      0.896 0.000 0.000 1.000 0.000
#> SRR1192073     3  0.0000      0.896 0.000 0.000 1.000 0.000
#> SRR1192072     3  0.0000      0.896 0.000 0.000 1.000 0.000
#> SRR1192167     3  0.2814      0.826 0.132 0.000 0.868 0.000
#> SRR1192166     3  0.2814      0.826 0.132 0.000 0.868 0.000
#> SRR1192321     3  0.0000      0.896 0.000 0.000 1.000 0.000
#> SRR1192353     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1192354     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1192370     1  0.3074      0.870 0.848 0.000 0.000 0.152
#> SRR1192371     1  0.3074      0.870 0.848 0.000 0.000 0.152
#> SRR1192399     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1192398     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1192417     4  0.3123      1.000 0.000 0.000 0.156 0.844
#> SRR1192418     4  0.3123      1.000 0.000 0.000 0.156 0.844
#> SRR1192415     4  0.3123      1.000 0.000 0.000 0.156 0.844
#> SRR1192416     4  0.3123      1.000 0.000 0.000 0.156 0.844
#> SRR1192413     4  0.3123      1.000 0.000 0.000 0.156 0.844
#> SRR1192414     4  0.3123      1.000 0.000 0.000 0.156 0.844
#> SRR1192420     4  0.3123      1.000 0.000 0.000 0.156 0.844
#> SRR1192419     4  0.3123      1.000 0.000 0.000 0.156 0.844
#> SRR1192471     1  0.3074      0.870 0.848 0.000 0.000 0.152
#> SRR1192470     1  0.3074      0.870 0.848 0.000 0.000 0.152
#> SRR1192469     1  0.3074      0.870 0.848 0.000 0.000 0.152
#> SRR1192468     1  0.3074      0.870 0.848 0.000 0.000 0.152
#> SRR1192467     1  0.3074      0.870 0.848 0.000 0.000 0.152
#> SRR1192466     1  0.3074      0.870 0.848 0.000 0.000 0.152
#> SRR1192465     1  0.3074      0.870 0.848 0.000 0.000 0.152
#> SRR1192500     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1192501     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1192502     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1192503     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1192496     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1192497     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1192499     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1192641     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192640     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192643     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192642     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192644     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192645     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192646     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192647     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192836     3  0.4934      0.776 0.128 0.004 0.784 0.084
#> SRR1192838     3  0.4934      0.776 0.128 0.004 0.784 0.084
#> SRR1192837     3  0.4934      0.776 0.128 0.004 0.784 0.084
#> SRR1192839     3  0.4934      0.776 0.128 0.004 0.784 0.084
#> SRR1192963     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192966     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192965     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192964     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1193005     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1193006     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1193007     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1193008     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1193011     1  0.3074      0.870 0.848 0.000 0.000 0.152
#> SRR1193012     1  0.3074      0.870 0.848 0.000 0.000 0.152
#> SRR1193009     1  0.3074      0.870 0.848 0.000 0.000 0.152
#> SRR1193010     1  0.3074      0.870 0.848 0.000 0.000 0.152
#> SRR1193014     1  0.0188      0.930 0.996 0.000 0.000 0.004
#> SRR1193015     1  0.0188      0.930 0.996 0.000 0.000 0.004
#> SRR1193013     1  0.0188      0.930 0.996 0.000 0.000 0.004
#> SRR1193018     1  0.0188      0.930 0.996 0.000 0.000 0.004
#> SRR1193016     1  0.0188      0.930 0.996 0.000 0.000 0.004
#> SRR1193017     1  0.0188      0.930 0.996 0.000 0.000 0.004
#> SRR1193100     1  0.0188      0.930 0.996 0.000 0.000 0.004
#> SRR1193101     1  0.0188      0.930 0.996 0.000 0.000 0.004
#> SRR1193102     1  0.0188      0.930 0.996 0.000 0.000 0.004
#> SRR1193104     1  0.3074      0.870 0.848 0.000 0.000 0.152
#> SRR1193103     1  0.3074      0.870 0.848 0.000 0.000 0.152
#> SRR1193105     1  0.3074      0.870 0.848 0.000 0.000 0.152
#> SRR1193106     1  0.3074      0.870 0.848 0.000 0.000 0.152
#> SRR1193198     1  0.0188      0.930 0.996 0.000 0.000 0.004
#> SRR1193197     1  0.0188      0.930 0.996 0.000 0.000 0.004
#> SRR1193199     1  0.0188      0.930 0.996 0.000 0.000 0.004
#> SRR1193405     1  0.0188      0.930 0.996 0.000 0.000 0.004
#> SRR1193404     1  0.0188      0.930 0.996 0.000 0.000 0.004
#> SRR1193403     1  0.0188      0.930 0.996 0.000 0.000 0.004
#> SRR1193522     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1193523     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1193524     1  0.0188      0.930 0.996 0.000 0.000 0.004
#> SRR1193638     1  0.6664      0.578 0.616 0.000 0.232 0.152
#> SRR1193639     1  0.6664      0.578 0.616 0.000 0.232 0.152
#> SRR1195621     1  0.6664      0.578 0.616 0.000 0.232 0.152
#> SRR1195619     1  0.6664      0.578 0.616 0.000 0.232 0.152
#> SRR1195620     1  0.6664      0.578 0.616 0.000 0.232 0.152

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1 p2    p3 p4    p5
#> SRR1190372     2  0.0000     1.0000 0.000  1 0.000  0 0.000
#> SRR1190371     2  0.0000     1.0000 0.000  1 0.000  0 0.000
#> SRR1190370     2  0.0000     1.0000 0.000  1 0.000  0 0.000
#> SRR1190368     2  0.0000     1.0000 0.000  1 0.000  0 0.000
#> SRR1190369     2  0.0000     1.0000 0.000  1 0.000  0 0.000
#> SRR1190366     2  0.0000     1.0000 0.000  1 0.000  0 0.000
#> SRR1190367     2  0.0000     1.0000 0.000  1 0.000  0 0.000
#> SRR1190365     2  0.0000     1.0000 0.000  1 0.000  0 0.000
#> SRR1190467     3  0.4300     0.5657 0.000  0 0.524  0 0.476
#> SRR1190466     3  0.4300     0.5657 0.000  0 0.524  0 0.476
#> SRR1190465     3  0.4300     0.5657 0.000  0 0.524  0 0.476
#> SRR1190464     3  0.4300     0.5657 0.000  0 0.524  0 0.476
#> SRR1190462     3  0.4300     0.5657 0.000  0 0.524  0 0.476
#> SRR1190461     3  0.4300     0.5657 0.000  0 0.524  0 0.476
#> SRR1190460     3  0.4300     0.5657 0.000  0 0.524  0 0.476
#> SRR1190509     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1190504     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1190503     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1190502     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1190508     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1190507     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1190506     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1190505     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1191342     4  0.0000     1.0000 0.000  0 0.000  1 0.000
#> SRR1191344     4  0.0000     1.0000 0.000  0 0.000  1 0.000
#> SRR1191343     4  0.0000     1.0000 0.000  0 0.000  1 0.000
#> SRR1191349     4  0.0000     1.0000 0.000  0 0.000  1 0.000
#> SRR1191345     4  0.0000     1.0000 0.000  0 0.000  1 0.000
#> SRR1191346     4  0.0000     1.0000 0.000  0 0.000  1 0.000
#> SRR1191347     4  0.0000     1.0000 0.000  0 0.000  1 0.000
#> SRR1191348     4  0.0000     1.0000 0.000  0 0.000  1 0.000
#> SRR1191668     5  0.1851     0.9971 0.000  0 0.088  0 0.912
#> SRR1191667     5  0.1851     0.9971 0.000  0 0.088  0 0.912
#> SRR1191673     5  0.1851     0.9971 0.000  0 0.088  0 0.912
#> SRR1191672     5  0.1851     0.9971 0.000  0 0.088  0 0.912
#> SRR1191695     3  0.4300     0.5657 0.000  0 0.524  0 0.476
#> SRR1191694     3  0.4300     0.5657 0.000  0 0.524  0 0.476
#> SRR1191783     3  0.4300     0.5657 0.000  0 0.524  0 0.476
#> SRR1191876     3  0.4300     0.5657 0.000  0 0.524  0 0.476
#> SRR1191914     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1191915     1  0.0162     0.8359 0.996  0 0.004  0 0.000
#> SRR1191953     1  0.0290     0.8343 0.992  0 0.008  0 0.000
#> SRR1191954     1  0.0290     0.8343 0.992  0 0.008  0 0.000
#> SRR1191990     1  0.3661     0.7079 0.724  0 0.276  0 0.000
#> SRR1191991     1  0.3661     0.7079 0.724  0 0.276  0 0.000
#> SRR1192016     3  0.4300     0.5657 0.000  0 0.524  0 0.476
#> SRR1192017     3  0.4300     0.5657 0.000  0 0.524  0 0.476
#> SRR1192073     3  0.4300     0.5657 0.000  0 0.524  0 0.476
#> SRR1192072     3  0.4300     0.5657 0.000  0 0.524  0 0.476
#> SRR1192167     5  0.1851     0.9971 0.000  0 0.088  0 0.912
#> SRR1192166     5  0.1851     0.9971 0.000  0 0.088  0 0.912
#> SRR1192321     3  0.4300     0.5657 0.000  0 0.524  0 0.476
#> SRR1192353     1  0.3424     0.7287 0.760  0 0.240  0 0.000
#> SRR1192354     1  0.3424     0.7287 0.760  0 0.240  0 0.000
#> SRR1192370     1  0.4297     0.5749 0.528  0 0.472  0 0.000
#> SRR1192371     1  0.4297     0.5749 0.528  0 0.472  0 0.000
#> SRR1192399     1  0.3684     0.7056 0.720  0 0.280  0 0.000
#> SRR1192398     1  0.3684     0.7056 0.720  0 0.280  0 0.000
#> SRR1192417     4  0.0000     1.0000 0.000  0 0.000  1 0.000
#> SRR1192418     4  0.0000     1.0000 0.000  0 0.000  1 0.000
#> SRR1192415     4  0.0000     1.0000 0.000  0 0.000  1 0.000
#> SRR1192416     4  0.0000     1.0000 0.000  0 0.000  1 0.000
#> SRR1192413     4  0.0000     1.0000 0.000  0 0.000  1 0.000
#> SRR1192414     4  0.0000     1.0000 0.000  0 0.000  1 0.000
#> SRR1192420     4  0.0000     1.0000 0.000  0 0.000  1 0.000
#> SRR1192419     4  0.0000     1.0000 0.000  0 0.000  1 0.000
#> SRR1192471     1  0.4297     0.5749 0.528  0 0.472  0 0.000
#> SRR1192470     1  0.4297     0.5749 0.528  0 0.472  0 0.000
#> SRR1192469     1  0.4297     0.5749 0.528  0 0.472  0 0.000
#> SRR1192468     1  0.4297     0.5749 0.528  0 0.472  0 0.000
#> SRR1192467     1  0.4297     0.5749 0.528  0 0.472  0 0.000
#> SRR1192466     1  0.4297     0.5749 0.528  0 0.472  0 0.000
#> SRR1192465     1  0.4297     0.5749 0.528  0 0.472  0 0.000
#> SRR1192500     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1192501     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1192502     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1192503     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1192496     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1192497     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1192499     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1192641     2  0.0000     1.0000 0.000  1 0.000  0 0.000
#> SRR1192640     2  0.0000     1.0000 0.000  1 0.000  0 0.000
#> SRR1192643     2  0.0000     1.0000 0.000  1 0.000  0 0.000
#> SRR1192642     2  0.0000     1.0000 0.000  1 0.000  0 0.000
#> SRR1192644     2  0.0000     1.0000 0.000  1 0.000  0 0.000
#> SRR1192645     2  0.0000     1.0000 0.000  1 0.000  0 0.000
#> SRR1192646     2  0.0000     1.0000 0.000  1 0.000  0 0.000
#> SRR1192647     2  0.0000     1.0000 0.000  1 0.000  0 0.000
#> SRR1192836     5  0.1908     0.9957 0.000  0 0.092  0 0.908
#> SRR1192838     5  0.1908     0.9957 0.000  0 0.092  0 0.908
#> SRR1192837     5  0.1908     0.9957 0.000  0 0.092  0 0.908
#> SRR1192839     5  0.1908     0.9957 0.000  0 0.092  0 0.908
#> SRR1192963     2  0.0000     1.0000 0.000  1 0.000  0 0.000
#> SRR1192966     2  0.0000     1.0000 0.000  1 0.000  0 0.000
#> SRR1192965     2  0.0000     1.0000 0.000  1 0.000  0 0.000
#> SRR1192964     2  0.0000     1.0000 0.000  1 0.000  0 0.000
#> SRR1193005     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1193006     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1193007     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1193008     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1193011     1  0.4297     0.5749 0.528  0 0.472  0 0.000
#> SRR1193012     1  0.4297     0.5749 0.528  0 0.472  0 0.000
#> SRR1193009     1  0.4297     0.5749 0.528  0 0.472  0 0.000
#> SRR1193010     1  0.4297     0.5749 0.528  0 0.472  0 0.000
#> SRR1193014     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1193015     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1193013     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1193018     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1193016     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1193017     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1193100     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1193101     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1193102     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1193104     1  0.4297     0.5749 0.528  0 0.472  0 0.000
#> SRR1193103     1  0.4297     0.5749 0.528  0 0.472  0 0.000
#> SRR1193105     1  0.4297     0.5749 0.528  0 0.472  0 0.000
#> SRR1193106     1  0.4297     0.5749 0.528  0 0.472  0 0.000
#> SRR1193198     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1193197     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1193199     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1193405     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1193404     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1193403     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1193522     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1193523     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1193524     1  0.0000     0.8374 1.000  0 0.000  0 0.000
#> SRR1193638     3  0.6506    -0.0986 0.216  0 0.476  0 0.308
#> SRR1193639     3  0.6506    -0.0986 0.216  0 0.476  0 0.308
#> SRR1195621     3  0.6506    -0.0986 0.216  0 0.476  0 0.308
#> SRR1195619     3  0.6506    -0.0986 0.216  0 0.476  0 0.308
#> SRR1195620     3  0.6506    -0.0986 0.216  0 0.476  0 0.308

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1 p2 p3 p4    p5    p6
#> SRR1190372     2  0.0000     1.0000 0.000  1  0  0 0.000 0.000
#> SRR1190371     2  0.0000     1.0000 0.000  1  0  0 0.000 0.000
#> SRR1190370     2  0.0000     1.0000 0.000  1  0  0 0.000 0.000
#> SRR1190368     2  0.0000     1.0000 0.000  1  0  0 0.000 0.000
#> SRR1190369     2  0.0000     1.0000 0.000  1  0  0 0.000 0.000
#> SRR1190366     2  0.0000     1.0000 0.000  1  0  0 0.000 0.000
#> SRR1190367     2  0.0000     1.0000 0.000  1  0  0 0.000 0.000
#> SRR1190365     2  0.0000     1.0000 0.000  1  0  0 0.000 0.000
#> SRR1190467     3  0.0000     1.0000 0.000  0  1  0 0.000 0.000
#> SRR1190466     3  0.0000     1.0000 0.000  0  1  0 0.000 0.000
#> SRR1190465     3  0.0000     1.0000 0.000  0  1  0 0.000 0.000
#> SRR1190464     3  0.0000     1.0000 0.000  0  1  0 0.000 0.000
#> SRR1190462     3  0.0000     1.0000 0.000  0  1  0 0.000 0.000
#> SRR1190461     3  0.0000     1.0000 0.000  0  1  0 0.000 0.000
#> SRR1190460     3  0.0000     1.0000 0.000  0  1  0 0.000 0.000
#> SRR1190509     1  0.0000     0.9125 1.000  0  0  0 0.000 0.000
#> SRR1190504     1  0.0000     0.9125 1.000  0  0  0 0.000 0.000
#> SRR1190503     1  0.0000     0.9125 1.000  0  0  0 0.000 0.000
#> SRR1190502     1  0.0000     0.9125 1.000  0  0  0 0.000 0.000
#> SRR1190508     1  0.0000     0.9125 1.000  0  0  0 0.000 0.000
#> SRR1190507     1  0.0000     0.9125 1.000  0  0  0 0.000 0.000
#> SRR1190506     1  0.0000     0.9125 1.000  0  0  0 0.000 0.000
#> SRR1190505     1  0.0000     0.9125 1.000  0  0  0 0.000 0.000
#> SRR1191342     4  0.0000     1.0000 0.000  0  0  1 0.000 0.000
#> SRR1191344     4  0.0000     1.0000 0.000  0  0  1 0.000 0.000
#> SRR1191343     4  0.0000     1.0000 0.000  0  0  1 0.000 0.000
#> SRR1191349     4  0.0000     1.0000 0.000  0  0  1 0.000 0.000
#> SRR1191345     4  0.0000     1.0000 0.000  0  0  1 0.000 0.000
#> SRR1191346     4  0.0000     1.0000 0.000  0  0  1 0.000 0.000
#> SRR1191347     4  0.0000     1.0000 0.000  0  0  1 0.000 0.000
#> SRR1191348     4  0.0000     1.0000 0.000  0  0  1 0.000 0.000
#> SRR1191668     6  0.0547     0.9839 0.000  0  0  0 0.020 0.980
#> SRR1191667     6  0.0547     0.9839 0.000  0  0  0 0.020 0.980
#> SRR1191673     6  0.0547     0.9839 0.000  0  0  0 0.020 0.980
#> SRR1191672     6  0.0547     0.9839 0.000  0  0  0 0.020 0.980
#> SRR1191695     3  0.0000     1.0000 0.000  0  1  0 0.000 0.000
#> SRR1191694     3  0.0000     1.0000 0.000  0  1  0 0.000 0.000
#> SRR1191783     3  0.0000     1.0000 0.000  0  1  0 0.000 0.000
#> SRR1191876     3  0.0000     1.0000 0.000  0  1  0 0.000 0.000
#> SRR1191914     1  0.1267     0.8591 0.940  0  0  0 0.060 0.000
#> SRR1191915     1  0.1327     0.8544 0.936  0  0  0 0.064 0.000
#> SRR1191953     1  0.2664     0.6747 0.816  0  0  0 0.184 0.000
#> SRR1191954     1  0.2664     0.6747 0.816  0  0  0 0.184 0.000
#> SRR1191990     1  0.3351     0.4209 0.712  0  0  0 0.288 0.000
#> SRR1191991     1  0.3351     0.4209 0.712  0  0  0 0.288 0.000
#> SRR1192016     3  0.0000     1.0000 0.000  0  1  0 0.000 0.000
#> SRR1192017     3  0.0000     1.0000 0.000  0  1  0 0.000 0.000
#> SRR1192073     3  0.0000     1.0000 0.000  0  1  0 0.000 0.000
#> SRR1192072     3  0.0000     1.0000 0.000  0  1  0 0.000 0.000
#> SRR1192167     6  0.0547     0.9839 0.000  0  0  0 0.020 0.980
#> SRR1192166     6  0.0547     0.9839 0.000  0  0  0 0.020 0.980
#> SRR1192321     3  0.0000     1.0000 0.000  0  1  0 0.000 0.000
#> SRR1192353     1  0.3737     0.0371 0.608  0  0  0 0.392 0.000
#> SRR1192354     1  0.3747     0.0175 0.604  0  0  0 0.396 0.000
#> SRR1192370     5  0.1075     0.6539 0.048  0  0  0 0.952 0.000
#> SRR1192371     5  0.1075     0.6539 0.048  0  0  0 0.952 0.000
#> SRR1192399     1  0.3797    -0.1008 0.580  0  0  0 0.420 0.000
#> SRR1192398     1  0.3797    -0.1008 0.580  0  0  0 0.420 0.000
#> SRR1192417     4  0.0000     1.0000 0.000  0  0  1 0.000 0.000
#> SRR1192418     4  0.0000     1.0000 0.000  0  0  1 0.000 0.000
#> SRR1192415     4  0.0000     1.0000 0.000  0  0  1 0.000 0.000
#> SRR1192416     4  0.0000     1.0000 0.000  0  0  1 0.000 0.000
#> SRR1192413     4  0.0000     1.0000 0.000  0  0  1 0.000 0.000
#> SRR1192414     4  0.0000     1.0000 0.000  0  0  1 0.000 0.000
#> SRR1192420     4  0.0000     1.0000 0.000  0  0  1 0.000 0.000
#> SRR1192419     4  0.0000     1.0000 0.000  0  0  1 0.000 0.000
#> SRR1192471     5  0.3717     0.7171 0.384  0  0  0 0.616 0.000
#> SRR1192470     5  0.3717     0.7171 0.384  0  0  0 0.616 0.000
#> SRR1192469     5  0.3717     0.7171 0.384  0  0  0 0.616 0.000
#> SRR1192468     5  0.3717     0.7171 0.384  0  0  0 0.616 0.000
#> SRR1192467     5  0.3717     0.7171 0.384  0  0  0 0.616 0.000
#> SRR1192466     5  0.3717     0.7171 0.384  0  0  0 0.616 0.000
#> SRR1192465     5  0.3717     0.7171 0.384  0  0  0 0.616 0.000
#> SRR1192500     1  0.0000     0.9125 1.000  0  0  0 0.000 0.000
#> SRR1192501     1  0.0000     0.9125 1.000  0  0  0 0.000 0.000
#> SRR1192502     1  0.0000     0.9125 1.000  0  0  0 0.000 0.000
#> SRR1192503     1  0.0000     0.9125 1.000  0  0  0 0.000 0.000
#> SRR1192496     1  0.0000     0.9125 1.000  0  0  0 0.000 0.000
#> SRR1192497     1  0.0000     0.9125 1.000  0  0  0 0.000 0.000
#> SRR1192499     1  0.0000     0.9125 1.000  0  0  0 0.000 0.000
#> SRR1192641     2  0.0000     1.0000 0.000  1  0  0 0.000 0.000
#> SRR1192640     2  0.0000     1.0000 0.000  1  0  0 0.000 0.000
#> SRR1192643     2  0.0000     1.0000 0.000  1  0  0 0.000 0.000
#> SRR1192642     2  0.0000     1.0000 0.000  1  0  0 0.000 0.000
#> SRR1192644     2  0.0000     1.0000 0.000  1  0  0 0.000 0.000
#> SRR1192645     2  0.0000     1.0000 0.000  1  0  0 0.000 0.000
#> SRR1192646     2  0.0000     1.0000 0.000  1  0  0 0.000 0.000
#> SRR1192647     2  0.0000     1.0000 0.000  1  0  0 0.000 0.000
#> SRR1192836     6  0.0865     0.9757 0.000  0  0  0 0.036 0.964
#> SRR1192838     6  0.0865     0.9757 0.000  0  0  0 0.036 0.964
#> SRR1192837     6  0.0865     0.9757 0.000  0  0  0 0.036 0.964
#> SRR1192839     6  0.0865     0.9757 0.000  0  0  0 0.036 0.964
#> SRR1192963     2  0.0000     1.0000 0.000  1  0  0 0.000 0.000
#> SRR1192966     2  0.0000     1.0000 0.000  1  0  0 0.000 0.000
#> SRR1192965     2  0.0000     1.0000 0.000  1  0  0 0.000 0.000
#> SRR1192964     2  0.0000     1.0000 0.000  1  0  0 0.000 0.000
#> SRR1193005     1  0.0000     0.9125 1.000  0  0  0 0.000 0.000
#> SRR1193006     1  0.0000     0.9125 1.000  0  0  0 0.000 0.000
#> SRR1193007     1  0.0000     0.9125 1.000  0  0  0 0.000 0.000
#> SRR1193008     1  0.0000     0.9125 1.000  0  0  0 0.000 0.000
#> SRR1193011     5  0.3717     0.7171 0.384  0  0  0 0.616 0.000
#> SRR1193012     5  0.3717     0.7171 0.384  0  0  0 0.616 0.000
#> SRR1193009     5  0.3717     0.7171 0.384  0  0  0 0.616 0.000
#> SRR1193010     5  0.3717     0.7171 0.384  0  0  0 0.616 0.000
#> SRR1193014     1  0.0458     0.9028 0.984  0  0  0 0.016 0.000
#> SRR1193015     1  0.0458     0.9028 0.984  0  0  0 0.016 0.000
#> SRR1193013     1  0.0458     0.9028 0.984  0  0  0 0.016 0.000
#> SRR1193018     1  0.0146     0.9106 0.996  0  0  0 0.004 0.000
#> SRR1193016     1  0.0146     0.9106 0.996  0  0  0 0.004 0.000
#> SRR1193017     1  0.0146     0.9106 0.996  0  0  0 0.004 0.000
#> SRR1193100     1  0.0000     0.9125 1.000  0  0  0 0.000 0.000
#> SRR1193101     1  0.0000     0.9125 1.000  0  0  0 0.000 0.000
#> SRR1193102     1  0.0000     0.9125 1.000  0  0  0 0.000 0.000
#> SRR1193104     5  0.3672     0.7215 0.368  0  0  0 0.632 0.000
#> SRR1193103     5  0.3672     0.7215 0.368  0  0  0 0.632 0.000
#> SRR1193105     5  0.1075     0.6539 0.048  0  0  0 0.952 0.000
#> SRR1193106     5  0.1075     0.6539 0.048  0  0  0 0.952 0.000
#> SRR1193198     1  0.0713     0.8928 0.972  0  0  0 0.028 0.000
#> SRR1193197     1  0.0547     0.8999 0.980  0  0  0 0.020 0.000
#> SRR1193199     1  0.0547     0.8999 0.980  0  0  0 0.020 0.000
#> SRR1193405     1  0.0000     0.9125 1.000  0  0  0 0.000 0.000
#> SRR1193404     1  0.0000     0.9125 1.000  0  0  0 0.000 0.000
#> SRR1193403     1  0.0000     0.9125 1.000  0  0  0 0.000 0.000
#> SRR1193522     1  0.0000     0.9125 1.000  0  0  0 0.000 0.000
#> SRR1193523     1  0.0000     0.9125 1.000  0  0  0 0.000 0.000
#> SRR1193524     1  0.0000     0.9125 1.000  0  0  0 0.000 0.000
#> SRR1193638     5  0.0865     0.6408 0.036  0  0  0 0.964 0.000
#> SRR1193639     5  0.0865     0.6408 0.036  0  0  0 0.964 0.000
#> SRR1195621     5  0.0865     0.6408 0.036  0  0  0 0.964 0.000
#> SRR1195619     5  0.0865     0.6408 0.036  0  0  0 0.964 0.000
#> SRR1195620     5  0.0865     0.6408 0.036  0  0  0 0.964 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15363 rows and 131 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.4281 0.573   0.573
#> 3 3 1.000           1.000       1.000         0.4161 0.822   0.689
#> 4 4 0.960           0.986       0.964         0.0659 0.953   0.881
#> 5 5 0.775           0.835       0.848         0.0991 1.000   1.000
#> 6 6 0.767           0.783       0.832         0.0695 0.865   0.613

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1190372     2       0          1  0  1
#> SRR1190371     2       0          1  0  1
#> SRR1190370     2       0          1  0  1
#> SRR1190368     2       0          1  0  1
#> SRR1190369     2       0          1  0  1
#> SRR1190366     2       0          1  0  1
#> SRR1190367     2       0          1  0  1
#> SRR1190365     2       0          1  0  1
#> SRR1190467     1       0          1  1  0
#> SRR1190466     1       0          1  1  0
#> SRR1190465     1       0          1  1  0
#> SRR1190464     1       0          1  1  0
#> SRR1190462     1       0          1  1  0
#> SRR1190461     1       0          1  1  0
#> SRR1190460     1       0          1  1  0
#> SRR1190509     1       0          1  1  0
#> SRR1190504     1       0          1  1  0
#> SRR1190503     1       0          1  1  0
#> SRR1190502     1       0          1  1  0
#> SRR1190508     1       0          1  1  0
#> SRR1190507     1       0          1  1  0
#> SRR1190506     1       0          1  1  0
#> SRR1190505     1       0          1  1  0
#> SRR1191342     2       0          1  0  1
#> SRR1191344     2       0          1  0  1
#> SRR1191343     2       0          1  0  1
#> SRR1191349     2       0          1  0  1
#> SRR1191345     2       0          1  0  1
#> SRR1191346     2       0          1  0  1
#> SRR1191347     2       0          1  0  1
#> SRR1191348     2       0          1  0  1
#> SRR1191668     1       0          1  1  0
#> SRR1191667     1       0          1  1  0
#> SRR1191673     1       0          1  1  0
#> SRR1191672     1       0          1  1  0
#> SRR1191695     1       0          1  1  0
#> SRR1191694     1       0          1  1  0
#> SRR1191783     1       0          1  1  0
#> SRR1191876     1       0          1  1  0
#> SRR1191914     1       0          1  1  0
#> SRR1191915     1       0          1  1  0
#> SRR1191953     1       0          1  1  0
#> SRR1191954     1       0          1  1  0
#> SRR1191990     1       0          1  1  0
#> SRR1191991     1       0          1  1  0
#> SRR1192016     1       0          1  1  0
#> SRR1192017     1       0          1  1  0
#> SRR1192073     1       0          1  1  0
#> SRR1192072     1       0          1  1  0
#> SRR1192167     1       0          1  1  0
#> SRR1192166     1       0          1  1  0
#> SRR1192321     1       0          1  1  0
#> SRR1192353     1       0          1  1  0
#> SRR1192354     1       0          1  1  0
#> SRR1192370     1       0          1  1  0
#> SRR1192371     1       0          1  1  0
#> SRR1192399     1       0          1  1  0
#> SRR1192398     1       0          1  1  0
#> SRR1192417     2       0          1  0  1
#> SRR1192418     2       0          1  0  1
#> SRR1192415     2       0          1  0  1
#> SRR1192416     2       0          1  0  1
#> SRR1192413     2       0          1  0  1
#> SRR1192414     2       0          1  0  1
#> SRR1192420     2       0          1  0  1
#> SRR1192419     2       0          1  0  1
#> SRR1192471     1       0          1  1  0
#> SRR1192470     1       0          1  1  0
#> SRR1192469     1       0          1  1  0
#> SRR1192468     1       0          1  1  0
#> SRR1192467     1       0          1  1  0
#> SRR1192466     1       0          1  1  0
#> SRR1192465     1       0          1  1  0
#> SRR1192500     1       0          1  1  0
#> SRR1192501     1       0          1  1  0
#> SRR1192502     1       0          1  1  0
#> SRR1192503     1       0          1  1  0
#> SRR1192496     1       0          1  1  0
#> SRR1192497     1       0          1  1  0
#> SRR1192499     1       0          1  1  0
#> SRR1192641     2       0          1  0  1
#> SRR1192640     2       0          1  0  1
#> SRR1192643     2       0          1  0  1
#> SRR1192642     2       0          1  0  1
#> SRR1192644     2       0          1  0  1
#> SRR1192645     2       0          1  0  1
#> SRR1192646     2       0          1  0  1
#> SRR1192647     2       0          1  0  1
#> SRR1192836     2       0          1  0  1
#> SRR1192838     2       0          1  0  1
#> SRR1192837     2       0          1  0  1
#> SRR1192839     2       0          1  0  1
#> SRR1192963     2       0          1  0  1
#> SRR1192966     2       0          1  0  1
#> SRR1192965     2       0          1  0  1
#> SRR1192964     2       0          1  0  1
#> SRR1193005     1       0          1  1  0
#> SRR1193006     1       0          1  1  0
#> SRR1193007     1       0          1  1  0
#> SRR1193008     1       0          1  1  0
#> SRR1193011     1       0          1  1  0
#> SRR1193012     1       0          1  1  0
#> SRR1193009     1       0          1  1  0
#> SRR1193010     1       0          1  1  0
#> SRR1193014     1       0          1  1  0
#> SRR1193015     1       0          1  1  0
#> SRR1193013     1       0          1  1  0
#> SRR1193018     1       0          1  1  0
#> SRR1193016     1       0          1  1  0
#> SRR1193017     1       0          1  1  0
#> SRR1193100     1       0          1  1  0
#> SRR1193101     1       0          1  1  0
#> SRR1193102     1       0          1  1  0
#> SRR1193104     1       0          1  1  0
#> SRR1193103     1       0          1  1  0
#> SRR1193105     1       0          1  1  0
#> SRR1193106     1       0          1  1  0
#> SRR1193198     1       0          1  1  0
#> SRR1193197     1       0          1  1  0
#> SRR1193199     1       0          1  1  0
#> SRR1193405     1       0          1  1  0
#> SRR1193404     1       0          1  1  0
#> SRR1193403     1       0          1  1  0
#> SRR1193522     1       0          1  1  0
#> SRR1193523     1       0          1  1  0
#> SRR1193524     1       0          1  1  0
#> SRR1193638     1       0          1  1  0
#> SRR1193639     1       0          1  1  0
#> SRR1195621     1       0          1  1  0
#> SRR1195619     1       0          1  1  0
#> SRR1195620     1       0          1  1  0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette p1 p2 p3
#> SRR1190372     2       0          1  0  1  0
#> SRR1190371     2       0          1  0  1  0
#> SRR1190370     2       0          1  0  1  0
#> SRR1190368     2       0          1  0  1  0
#> SRR1190369     2       0          1  0  1  0
#> SRR1190366     2       0          1  0  1  0
#> SRR1190367     2       0          1  0  1  0
#> SRR1190365     2       0          1  0  1  0
#> SRR1190467     3       0          1  0  0  1
#> SRR1190466     3       0          1  0  0  1
#> SRR1190465     3       0          1  0  0  1
#> SRR1190464     3       0          1  0  0  1
#> SRR1190462     3       0          1  0  0  1
#> SRR1190461     3       0          1  0  0  1
#> SRR1190460     3       0          1  0  0  1
#> SRR1190509     1       0          1  1  0  0
#> SRR1190504     1       0          1  1  0  0
#> SRR1190503     1       0          1  1  0  0
#> SRR1190502     1       0          1  1  0  0
#> SRR1190508     1       0          1  1  0  0
#> SRR1190507     1       0          1  1  0  0
#> SRR1190506     1       0          1  1  0  0
#> SRR1190505     1       0          1  1  0  0
#> SRR1191342     2       0          1  0  1  0
#> SRR1191344     2       0          1  0  1  0
#> SRR1191343     2       0          1  0  1  0
#> SRR1191349     2       0          1  0  1  0
#> SRR1191345     2       0          1  0  1  0
#> SRR1191346     2       0          1  0  1  0
#> SRR1191347     2       0          1  0  1  0
#> SRR1191348     2       0          1  0  1  0
#> SRR1191668     3       0          1  0  0  1
#> SRR1191667     3       0          1  0  0  1
#> SRR1191673     3       0          1  0  0  1
#> SRR1191672     3       0          1  0  0  1
#> SRR1191695     3       0          1  0  0  1
#> SRR1191694     3       0          1  0  0  1
#> SRR1191783     3       0          1  0  0  1
#> SRR1191876     3       0          1  0  0  1
#> SRR1191914     1       0          1  1  0  0
#> SRR1191915     1       0          1  1  0  0
#> SRR1191953     1       0          1  1  0  0
#> SRR1191954     1       0          1  1  0  0
#> SRR1191990     1       0          1  1  0  0
#> SRR1191991     1       0          1  1  0  0
#> SRR1192016     3       0          1  0  0  1
#> SRR1192017     3       0          1  0  0  1
#> SRR1192073     3       0          1  0  0  1
#> SRR1192072     3       0          1  0  0  1
#> SRR1192167     3       0          1  0  0  1
#> SRR1192166     3       0          1  0  0  1
#> SRR1192321     3       0          1  0  0  1
#> SRR1192353     1       0          1  1  0  0
#> SRR1192354     1       0          1  1  0  0
#> SRR1192370     1       0          1  1  0  0
#> SRR1192371     1       0          1  1  0  0
#> SRR1192399     1       0          1  1  0  0
#> SRR1192398     1       0          1  1  0  0
#> SRR1192417     2       0          1  0  1  0
#> SRR1192418     2       0          1  0  1  0
#> SRR1192415     2       0          1  0  1  0
#> SRR1192416     2       0          1  0  1  0
#> SRR1192413     2       0          1  0  1  0
#> SRR1192414     2       0          1  0  1  0
#> SRR1192420     2       0          1  0  1  0
#> SRR1192419     2       0          1  0  1  0
#> SRR1192471     1       0          1  1  0  0
#> SRR1192470     1       0          1  1  0  0
#> SRR1192469     1       0          1  1  0  0
#> SRR1192468     1       0          1  1  0  0
#> SRR1192467     1       0          1  1  0  0
#> SRR1192466     1       0          1  1  0  0
#> SRR1192465     1       0          1  1  0  0
#> SRR1192500     1       0          1  1  0  0
#> SRR1192501     1       0          1  1  0  0
#> SRR1192502     1       0          1  1  0  0
#> SRR1192503     1       0          1  1  0  0
#> SRR1192496     1       0          1  1  0  0
#> SRR1192497     1       0          1  1  0  0
#> SRR1192499     1       0          1  1  0  0
#> SRR1192641     2       0          1  0  1  0
#> SRR1192640     2       0          1  0  1  0
#> SRR1192643     2       0          1  0  1  0
#> SRR1192642     2       0          1  0  1  0
#> SRR1192644     2       0          1  0  1  0
#> SRR1192645     2       0          1  0  1  0
#> SRR1192646     2       0          1  0  1  0
#> SRR1192647     2       0          1  0  1  0
#> SRR1192836     2       0          1  0  1  0
#> SRR1192838     2       0          1  0  1  0
#> SRR1192837     2       0          1  0  1  0
#> SRR1192839     2       0          1  0  1  0
#> SRR1192963     2       0          1  0  1  0
#> SRR1192966     2       0          1  0  1  0
#> SRR1192965     2       0          1  0  1  0
#> SRR1192964     2       0          1  0  1  0
#> SRR1193005     1       0          1  1  0  0
#> SRR1193006     1       0          1  1  0  0
#> SRR1193007     1       0          1  1  0  0
#> SRR1193008     1       0          1  1  0  0
#> SRR1193011     1       0          1  1  0  0
#> SRR1193012     1       0          1  1  0  0
#> SRR1193009     1       0          1  1  0  0
#> SRR1193010     1       0          1  1  0  0
#> SRR1193014     1       0          1  1  0  0
#> SRR1193015     1       0          1  1  0  0
#> SRR1193013     1       0          1  1  0  0
#> SRR1193018     1       0          1  1  0  0
#> SRR1193016     1       0          1  1  0  0
#> SRR1193017     1       0          1  1  0  0
#> SRR1193100     1       0          1  1  0  0
#> SRR1193101     1       0          1  1  0  0
#> SRR1193102     1       0          1  1  0  0
#> SRR1193104     1       0          1  1  0  0
#> SRR1193103     1       0          1  1  0  0
#> SRR1193105     1       0          1  1  0  0
#> SRR1193106     1       0          1  1  0  0
#> SRR1193198     1       0          1  1  0  0
#> SRR1193197     1       0          1  1  0  0
#> SRR1193199     1       0          1  1  0  0
#> SRR1193405     1       0          1  1  0  0
#> SRR1193404     1       0          1  1  0  0
#> SRR1193403     1       0          1  1  0  0
#> SRR1193522     1       0          1  1  0  0
#> SRR1193523     1       0          1  1  0  0
#> SRR1193524     1       0          1  1  0  0
#> SRR1193638     1       0          1  1  0  0
#> SRR1193639     1       0          1  1  0  0
#> SRR1195621     1       0          1  1  0  0
#> SRR1195619     1       0          1  1  0  0
#> SRR1195620     1       0          1  1  0  0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1190372     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1190371     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1190370     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1190368     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1190369     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1190366     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1190367     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1190365     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1190467     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> SRR1190466     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> SRR1190465     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> SRR1190464     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> SRR1190462     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> SRR1190461     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> SRR1190460     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> SRR1190509     1  0.0188      0.995 0.996 0.000 0.000 0.004
#> SRR1190504     1  0.0188      0.995 0.996 0.000 0.000 0.004
#> SRR1190503     1  0.0188      0.995 0.996 0.000 0.000 0.004
#> SRR1190502     1  0.0188      0.995 0.996 0.000 0.000 0.004
#> SRR1190508     1  0.0336      0.994 0.992 0.000 0.000 0.008
#> SRR1190507     1  0.0188      0.995 0.996 0.000 0.000 0.004
#> SRR1190506     1  0.0188      0.995 0.996 0.000 0.000 0.004
#> SRR1190505     1  0.0336      0.994 0.992 0.000 0.000 0.008
#> SRR1191342     4  0.3444      0.962 0.000 0.184 0.000 0.816
#> SRR1191344     4  0.3444      0.962 0.000 0.184 0.000 0.816
#> SRR1191343     4  0.3444      0.962 0.000 0.184 0.000 0.816
#> SRR1191349     4  0.3444      0.962 0.000 0.184 0.000 0.816
#> SRR1191345     4  0.3444      0.962 0.000 0.184 0.000 0.816
#> SRR1191346     4  0.3444      0.962 0.000 0.184 0.000 0.816
#> SRR1191347     4  0.3444      0.962 0.000 0.184 0.000 0.816
#> SRR1191348     4  0.3444      0.962 0.000 0.184 0.000 0.816
#> SRR1191668     3  0.0336      0.994 0.000 0.000 0.992 0.008
#> SRR1191667     3  0.0336      0.994 0.000 0.000 0.992 0.008
#> SRR1191673     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> SRR1191672     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> SRR1191695     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> SRR1191694     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> SRR1191783     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> SRR1191876     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> SRR1191914     1  0.0188      0.995 0.996 0.000 0.000 0.004
#> SRR1191915     1  0.0188      0.995 0.996 0.000 0.000 0.004
#> SRR1191953     1  0.0188      0.995 0.996 0.000 0.000 0.004
#> SRR1191954     1  0.0188      0.995 0.996 0.000 0.000 0.004
#> SRR1191990     1  0.0921      0.982 0.972 0.000 0.000 0.028
#> SRR1191991     1  0.0921      0.982 0.972 0.000 0.000 0.028
#> SRR1192016     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> SRR1192017     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> SRR1192073     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> SRR1192072     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> SRR1192167     3  0.0188      0.997 0.000 0.000 0.996 0.004
#> SRR1192166     3  0.0188      0.997 0.000 0.000 0.996 0.004
#> SRR1192321     3  0.0000      0.999 0.000 0.000 1.000 0.000
#> SRR1192353     1  0.0817      0.985 0.976 0.000 0.000 0.024
#> SRR1192354     1  0.0817      0.985 0.976 0.000 0.000 0.024
#> SRR1192370     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1192371     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1192399     1  0.0817      0.985 0.976 0.000 0.000 0.024
#> SRR1192398     1  0.0817      0.985 0.976 0.000 0.000 0.024
#> SRR1192417     4  0.3444      0.962 0.000 0.184 0.000 0.816
#> SRR1192418     4  0.3444      0.962 0.000 0.184 0.000 0.816
#> SRR1192415     4  0.3444      0.962 0.000 0.184 0.000 0.816
#> SRR1192416     4  0.3444      0.962 0.000 0.184 0.000 0.816
#> SRR1192413     4  0.3444      0.962 0.000 0.184 0.000 0.816
#> SRR1192414     4  0.3444      0.962 0.000 0.184 0.000 0.816
#> SRR1192420     4  0.3444      0.962 0.000 0.184 0.000 0.816
#> SRR1192419     4  0.3444      0.962 0.000 0.184 0.000 0.816
#> SRR1192471     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1192470     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1192469     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1192468     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1192467     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1192466     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1192465     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1192500     1  0.0336      0.994 0.992 0.000 0.000 0.008
#> SRR1192501     1  0.0336      0.994 0.992 0.000 0.000 0.008
#> SRR1192502     1  0.0336      0.994 0.992 0.000 0.000 0.008
#> SRR1192503     1  0.0336      0.994 0.992 0.000 0.000 0.008
#> SRR1192496     1  0.0336      0.994 0.992 0.000 0.000 0.008
#> SRR1192497     1  0.0336      0.994 0.992 0.000 0.000 0.008
#> SRR1192499     1  0.0336      0.994 0.992 0.000 0.000 0.008
#> SRR1192641     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192640     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192643     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192642     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192644     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192645     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192646     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192647     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192836     4  0.4564      0.820 0.000 0.328 0.000 0.672
#> SRR1192838     4  0.4564      0.820 0.000 0.328 0.000 0.672
#> SRR1192837     4  0.4564      0.820 0.000 0.328 0.000 0.672
#> SRR1192839     4  0.4564      0.820 0.000 0.328 0.000 0.672
#> SRR1192963     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192966     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192965     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192964     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1193005     1  0.0336      0.994 0.992 0.000 0.000 0.008
#> SRR1193006     1  0.0336      0.994 0.992 0.000 0.000 0.008
#> SRR1193007     1  0.0336      0.994 0.992 0.000 0.000 0.008
#> SRR1193008     1  0.0336      0.994 0.992 0.000 0.000 0.008
#> SRR1193011     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1193012     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1193009     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1193010     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1193014     1  0.0469      0.993 0.988 0.000 0.000 0.012
#> SRR1193015     1  0.0469      0.993 0.988 0.000 0.000 0.012
#> SRR1193013     1  0.0469      0.993 0.988 0.000 0.000 0.012
#> SRR1193018     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1193016     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1193017     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1193100     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1193101     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1193102     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1193104     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1193103     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1193105     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1193106     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1193198     1  0.0592      0.991 0.984 0.000 0.000 0.016
#> SRR1193197     1  0.0592      0.991 0.984 0.000 0.000 0.016
#> SRR1193199     1  0.0592      0.991 0.984 0.000 0.000 0.016
#> SRR1193405     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1193404     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1193403     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1193522     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1193523     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1193524     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1193638     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1193639     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1195621     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1195619     1  0.0000      0.996 1.000 0.000 0.000 0.000
#> SRR1195620     1  0.0000      0.996 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4 p5
#> SRR1190372     2  0.0162      0.998 0.000 0.996 0.000 0.000 NA
#> SRR1190371     2  0.0162      0.998 0.000 0.996 0.000 0.000 NA
#> SRR1190370     2  0.0162      0.998 0.000 0.996 0.000 0.000 NA
#> SRR1190368     2  0.0162      0.998 0.000 0.996 0.000 0.000 NA
#> SRR1190369     2  0.0162      0.998 0.000 0.996 0.000 0.000 NA
#> SRR1190366     2  0.0162      0.998 0.000 0.996 0.000 0.000 NA
#> SRR1190367     2  0.0162      0.998 0.000 0.996 0.000 0.000 NA
#> SRR1190365     2  0.0162      0.998 0.000 0.996 0.000 0.000 NA
#> SRR1190467     3  0.0000      0.894 0.000 0.000 1.000 0.000 NA
#> SRR1190466     3  0.0000      0.894 0.000 0.000 1.000 0.000 NA
#> SRR1190465     3  0.0000      0.894 0.000 0.000 1.000 0.000 NA
#> SRR1190464     3  0.0000      0.894 0.000 0.000 1.000 0.000 NA
#> SRR1190462     3  0.0000      0.894 0.000 0.000 1.000 0.000 NA
#> SRR1190461     3  0.0000      0.894 0.000 0.000 1.000 0.000 NA
#> SRR1190460     3  0.0000      0.894 0.000 0.000 1.000 0.000 NA
#> SRR1190509     1  0.1197      0.837 0.952 0.000 0.000 0.000 NA
#> SRR1190504     1  0.1043      0.839 0.960 0.000 0.000 0.000 NA
#> SRR1190503     1  0.1043      0.839 0.960 0.000 0.000 0.000 NA
#> SRR1190502     1  0.0963      0.840 0.964 0.000 0.000 0.000 NA
#> SRR1190508     1  0.1121      0.838 0.956 0.000 0.000 0.000 NA
#> SRR1190507     1  0.1043      0.839 0.960 0.000 0.000 0.000 NA
#> SRR1190506     1  0.1043      0.839 0.960 0.000 0.000 0.000 NA
#> SRR1190505     1  0.1043      0.839 0.960 0.000 0.000 0.000 NA
#> SRR1191342     4  0.0510      0.907 0.000 0.016 0.000 0.984 NA
#> SRR1191344     4  0.0510      0.907 0.000 0.016 0.000 0.984 NA
#> SRR1191343     4  0.0510      0.907 0.000 0.016 0.000 0.984 NA
#> SRR1191349     4  0.0510      0.907 0.000 0.016 0.000 0.984 NA
#> SRR1191345     4  0.0510      0.907 0.000 0.016 0.000 0.984 NA
#> SRR1191346     4  0.0510      0.907 0.000 0.016 0.000 0.984 NA
#> SRR1191347     4  0.0510      0.907 0.000 0.016 0.000 0.984 NA
#> SRR1191348     4  0.0510      0.907 0.000 0.016 0.000 0.984 NA
#> SRR1191668     3  0.6088      0.573 0.156 0.000 0.548 0.000 NA
#> SRR1191667     3  0.6056      0.578 0.152 0.000 0.552 0.000 NA
#> SRR1191673     3  0.3749      0.777 0.104 0.000 0.816 0.000 NA
#> SRR1191672     3  0.3697      0.780 0.100 0.000 0.820 0.000 NA
#> SRR1191695     3  0.0000      0.894 0.000 0.000 1.000 0.000 NA
#> SRR1191694     3  0.0000      0.894 0.000 0.000 1.000 0.000 NA
#> SRR1191783     3  0.0000      0.894 0.000 0.000 1.000 0.000 NA
#> SRR1191876     3  0.0000      0.894 0.000 0.000 1.000 0.000 NA
#> SRR1191914     1  0.3305      0.738 0.776 0.000 0.000 0.000 NA
#> SRR1191915     1  0.3336      0.735 0.772 0.000 0.000 0.000 NA
#> SRR1191953     1  0.3074      0.757 0.804 0.000 0.000 0.000 NA
#> SRR1191954     1  0.3074      0.757 0.804 0.000 0.000 0.000 NA
#> SRR1191990     1  0.3796      0.677 0.700 0.000 0.000 0.000 NA
#> SRR1191991     1  0.3796      0.677 0.700 0.000 0.000 0.000 NA
#> SRR1192016     3  0.0000      0.894 0.000 0.000 1.000 0.000 NA
#> SRR1192017     3  0.0000      0.894 0.000 0.000 1.000 0.000 NA
#> SRR1192073     3  0.0000      0.894 0.000 0.000 1.000 0.000 NA
#> SRR1192072     3  0.0000      0.894 0.000 0.000 1.000 0.000 NA
#> SRR1192167     3  0.5778      0.618 0.128 0.000 0.592 0.000 NA
#> SRR1192166     3  0.5816      0.614 0.132 0.000 0.588 0.000 NA
#> SRR1192321     3  0.0000      0.894 0.000 0.000 1.000 0.000 NA
#> SRR1192353     1  0.3774      0.681 0.704 0.000 0.000 0.000 NA
#> SRR1192354     1  0.3774      0.681 0.704 0.000 0.000 0.000 NA
#> SRR1192370     1  0.3366      0.795 0.768 0.000 0.000 0.000 NA
#> SRR1192371     1  0.3366      0.795 0.768 0.000 0.000 0.000 NA
#> SRR1192399     1  0.3774      0.681 0.704 0.000 0.000 0.000 NA
#> SRR1192398     1  0.3774      0.681 0.704 0.000 0.000 0.000 NA
#> SRR1192417     4  0.0510      0.907 0.000 0.016 0.000 0.984 NA
#> SRR1192418     4  0.0510      0.907 0.000 0.016 0.000 0.984 NA
#> SRR1192415     4  0.0510      0.907 0.000 0.016 0.000 0.984 NA
#> SRR1192416     4  0.0510      0.907 0.000 0.016 0.000 0.984 NA
#> SRR1192413     4  0.0510      0.907 0.000 0.016 0.000 0.984 NA
#> SRR1192414     4  0.0510      0.907 0.000 0.016 0.000 0.984 NA
#> SRR1192420     4  0.0510      0.907 0.000 0.016 0.000 0.984 NA
#> SRR1192419     4  0.0510      0.907 0.000 0.016 0.000 0.984 NA
#> SRR1192471     1  0.3452      0.787 0.756 0.000 0.000 0.000 NA
#> SRR1192470     1  0.3452      0.787 0.756 0.000 0.000 0.000 NA
#> SRR1192469     1  0.3452      0.787 0.756 0.000 0.000 0.000 NA
#> SRR1192468     1  0.3452      0.787 0.756 0.000 0.000 0.000 NA
#> SRR1192467     1  0.3452      0.787 0.756 0.000 0.000 0.000 NA
#> SRR1192466     1  0.3452      0.787 0.756 0.000 0.000 0.000 NA
#> SRR1192465     1  0.3452      0.787 0.756 0.000 0.000 0.000 NA
#> SRR1192500     1  0.0000      0.848 1.000 0.000 0.000 0.000 NA
#> SRR1192501     1  0.0000      0.848 1.000 0.000 0.000 0.000 NA
#> SRR1192502     1  0.0000      0.848 1.000 0.000 0.000 0.000 NA
#> SRR1192503     1  0.0000      0.848 1.000 0.000 0.000 0.000 NA
#> SRR1192496     1  0.0000      0.848 1.000 0.000 0.000 0.000 NA
#> SRR1192497     1  0.0000      0.848 1.000 0.000 0.000 0.000 NA
#> SRR1192499     1  0.0162      0.847 0.996 0.000 0.000 0.000 NA
#> SRR1192641     2  0.0000      0.999 0.000 1.000 0.000 0.000 NA
#> SRR1192640     2  0.0000      0.999 0.000 1.000 0.000 0.000 NA
#> SRR1192643     2  0.0000      0.999 0.000 1.000 0.000 0.000 NA
#> SRR1192642     2  0.0000      0.999 0.000 1.000 0.000 0.000 NA
#> SRR1192644     2  0.0000      0.999 0.000 1.000 0.000 0.000 NA
#> SRR1192645     2  0.0000      0.999 0.000 1.000 0.000 0.000 NA
#> SRR1192646     2  0.0000      0.999 0.000 1.000 0.000 0.000 NA
#> SRR1192647     2  0.0000      0.999 0.000 1.000 0.000 0.000 NA
#> SRR1192836     4  0.6623      0.470 0.000 0.236 0.000 0.444 NA
#> SRR1192838     4  0.6607      0.477 0.000 0.232 0.000 0.448 NA
#> SRR1192837     4  0.6638      0.463 0.000 0.240 0.000 0.440 NA
#> SRR1192839     4  0.6607      0.477 0.000 0.232 0.000 0.448 NA
#> SRR1192963     2  0.0000      0.999 0.000 1.000 0.000 0.000 NA
#> SRR1192966     2  0.0000      0.999 0.000 1.000 0.000 0.000 NA
#> SRR1192965     2  0.0000      0.999 0.000 1.000 0.000 0.000 NA
#> SRR1192964     2  0.0000      0.999 0.000 1.000 0.000 0.000 NA
#> SRR1193005     1  0.0162      0.848 0.996 0.000 0.000 0.000 NA
#> SRR1193006     1  0.0000      0.848 1.000 0.000 0.000 0.000 NA
#> SRR1193007     1  0.0000      0.848 1.000 0.000 0.000 0.000 NA
#> SRR1193008     1  0.0000      0.848 1.000 0.000 0.000 0.000 NA
#> SRR1193011     1  0.3395      0.790 0.764 0.000 0.000 0.000 NA
#> SRR1193012     1  0.3395      0.790 0.764 0.000 0.000 0.000 NA
#> SRR1193009     1  0.3395      0.790 0.764 0.000 0.000 0.000 NA
#> SRR1193010     1  0.3395      0.790 0.764 0.000 0.000 0.000 NA
#> SRR1193014     1  0.3424      0.727 0.760 0.000 0.000 0.000 NA
#> SRR1193015     1  0.3395      0.730 0.764 0.000 0.000 0.000 NA
#> SRR1193013     1  0.3424      0.727 0.760 0.000 0.000 0.000 NA
#> SRR1193018     1  0.1270      0.845 0.948 0.000 0.000 0.000 NA
#> SRR1193016     1  0.1197      0.846 0.952 0.000 0.000 0.000 NA
#> SRR1193017     1  0.1197      0.846 0.952 0.000 0.000 0.000 NA
#> SRR1193100     1  0.0963      0.847 0.964 0.000 0.000 0.000 NA
#> SRR1193101     1  0.0794      0.847 0.972 0.000 0.000 0.000 NA
#> SRR1193102     1  0.0963      0.847 0.964 0.000 0.000 0.000 NA
#> SRR1193104     1  0.3452      0.787 0.756 0.000 0.000 0.000 NA
#> SRR1193103     1  0.3452      0.787 0.756 0.000 0.000 0.000 NA
#> SRR1193105     1  0.3424      0.789 0.760 0.000 0.000 0.000 NA
#> SRR1193106     1  0.3452      0.787 0.756 0.000 0.000 0.000 NA
#> SRR1193198     1  0.3730      0.684 0.712 0.000 0.000 0.000 NA
#> SRR1193197     1  0.3774      0.677 0.704 0.000 0.000 0.000 NA
#> SRR1193199     1  0.3730      0.684 0.712 0.000 0.000 0.000 NA
#> SRR1193405     1  0.1197      0.845 0.952 0.000 0.000 0.000 NA
#> SRR1193404     1  0.0963      0.847 0.964 0.000 0.000 0.000 NA
#> SRR1193403     1  0.1121      0.846 0.956 0.000 0.000 0.000 NA
#> SRR1193522     1  0.0000      0.848 1.000 0.000 0.000 0.000 NA
#> SRR1193523     1  0.0404      0.846 0.988 0.000 0.000 0.000 NA
#> SRR1193524     1  0.0162      0.847 0.996 0.000 0.000 0.000 NA
#> SRR1193638     1  0.3452      0.787 0.756 0.000 0.000 0.000 NA
#> SRR1193639     1  0.3452      0.787 0.756 0.000 0.000 0.000 NA
#> SRR1195621     1  0.3452      0.787 0.756 0.000 0.000 0.000 NA
#> SRR1195619     1  0.3452      0.787 0.756 0.000 0.000 0.000 NA
#> SRR1195620     1  0.3452      0.787 0.756 0.000 0.000 0.000 NA

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1190372     2  0.0458    0.98996 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1190371     2  0.0458    0.98996 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1190370     2  0.0458    0.98996 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1190368     2  0.0458    0.98996 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1190369     2  0.0458    0.98996 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1190366     2  0.0458    0.98996 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1190367     2  0.0458    0.98996 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1190365     2  0.0458    0.98996 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1190467     3  0.0000    0.84676 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190466     3  0.0000    0.84676 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190465     3  0.0000    0.84676 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190464     3  0.0000    0.84676 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190462     3  0.0000    0.84676 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190461     3  0.0000    0.84676 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190460     3  0.0000    0.84676 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190509     1  0.2664    0.70853 0.816 0.000 0.000 0.000 0.000 0.184
#> SRR1190504     1  0.2597    0.70933 0.824 0.000 0.000 0.000 0.000 0.176
#> SRR1190503     1  0.2597    0.70933 0.824 0.000 0.000 0.000 0.000 0.176
#> SRR1190502     1  0.2454    0.70668 0.840 0.000 0.000 0.000 0.000 0.160
#> SRR1190508     1  0.2762    0.70692 0.804 0.000 0.000 0.000 0.000 0.196
#> SRR1190507     1  0.2597    0.70933 0.824 0.000 0.000 0.000 0.000 0.176
#> SRR1190506     1  0.2597    0.70933 0.824 0.000 0.000 0.000 0.000 0.176
#> SRR1190505     1  0.2597    0.70933 0.824 0.000 0.000 0.000 0.000 0.176
#> SRR1191342     4  0.0146    0.98923 0.000 0.000 0.000 0.996 0.000 0.004
#> SRR1191344     4  0.0146    0.98923 0.000 0.000 0.000 0.996 0.000 0.004
#> SRR1191343     4  0.0146    0.98923 0.000 0.000 0.000 0.996 0.000 0.004
#> SRR1191349     4  0.0146    0.98923 0.000 0.000 0.000 0.996 0.000 0.004
#> SRR1191345     4  0.0146    0.98923 0.000 0.000 0.000 0.996 0.000 0.004
#> SRR1191346     4  0.0146    0.98923 0.000 0.000 0.000 0.996 0.000 0.004
#> SRR1191347     4  0.0146    0.98923 0.000 0.000 0.000 0.996 0.000 0.004
#> SRR1191348     4  0.0000    0.98960 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191668     6  0.6327    0.00595 0.304 0.000 0.324 0.000 0.008 0.364
#> SRR1191667     6  0.6327    0.00595 0.304 0.000 0.324 0.000 0.008 0.364
#> SRR1191673     3  0.5351    0.27657 0.200 0.000 0.592 0.000 0.000 0.208
#> SRR1191672     3  0.5225    0.31334 0.184 0.000 0.612 0.000 0.000 0.204
#> SRR1191695     3  0.0000    0.84676 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1191694     3  0.0000    0.84676 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1191783     3  0.0000    0.84676 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1191876     3  0.0000    0.84676 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1191914     1  0.4012    0.63692 0.640 0.000 0.000 0.000 0.016 0.344
#> SRR1191915     1  0.4026    0.63210 0.636 0.000 0.000 0.000 0.016 0.348
#> SRR1191953     1  0.3953    0.65106 0.656 0.000 0.000 0.000 0.016 0.328
#> SRR1191954     1  0.3984    0.64525 0.648 0.000 0.000 0.000 0.016 0.336
#> SRR1191990     1  0.4823    0.55767 0.552 0.000 0.000 0.000 0.060 0.388
#> SRR1191991     1  0.4823    0.55767 0.552 0.000 0.000 0.000 0.060 0.388
#> SRR1192016     3  0.0000    0.84676 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192017     3  0.0000    0.84676 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192073     3  0.0000    0.84676 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192072     3  0.0000    0.84676 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192167     3  0.6027   -0.07300 0.248 0.000 0.400 0.000 0.000 0.352
#> SRR1192166     3  0.6047   -0.08948 0.256 0.000 0.392 0.000 0.000 0.352
#> SRR1192321     3  0.0000    0.84676 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192353     1  0.4653    0.60413 0.588 0.000 0.000 0.000 0.052 0.360
#> SRR1192354     1  0.4653    0.60413 0.588 0.000 0.000 0.000 0.052 0.360
#> SRR1192370     5  0.4096    0.97055 0.484 0.000 0.000 0.000 0.508 0.008
#> SRR1192371     5  0.4096    0.97055 0.484 0.000 0.000 0.000 0.508 0.008
#> SRR1192399     1  0.4846    0.59566 0.576 0.000 0.000 0.000 0.068 0.356
#> SRR1192398     1  0.4846    0.59566 0.576 0.000 0.000 0.000 0.068 0.356
#> SRR1192417     4  0.0458    0.98920 0.000 0.000 0.000 0.984 0.000 0.016
#> SRR1192418     4  0.0458    0.98920 0.000 0.000 0.000 0.984 0.000 0.016
#> SRR1192415     4  0.0458    0.98920 0.000 0.000 0.000 0.984 0.000 0.016
#> SRR1192416     4  0.0458    0.98920 0.000 0.000 0.000 0.984 0.000 0.016
#> SRR1192413     4  0.0363    0.98958 0.000 0.000 0.000 0.988 0.000 0.012
#> SRR1192414     4  0.0458    0.98920 0.000 0.000 0.000 0.984 0.000 0.016
#> SRR1192420     4  0.0458    0.98920 0.000 0.000 0.000 0.984 0.000 0.016
#> SRR1192419     4  0.0458    0.98920 0.000 0.000 0.000 0.984 0.000 0.016
#> SRR1192471     5  0.3862    0.99523 0.476 0.000 0.000 0.000 0.524 0.000
#> SRR1192470     5  0.3862    0.99523 0.476 0.000 0.000 0.000 0.524 0.000
#> SRR1192469     5  0.3862    0.99523 0.476 0.000 0.000 0.000 0.524 0.000
#> SRR1192468     5  0.3862    0.99523 0.476 0.000 0.000 0.000 0.524 0.000
#> SRR1192467     5  0.3862    0.99523 0.476 0.000 0.000 0.000 0.524 0.000
#> SRR1192466     5  0.3862    0.99523 0.476 0.000 0.000 0.000 0.524 0.000
#> SRR1192465     5  0.3862    0.99523 0.476 0.000 0.000 0.000 0.524 0.000
#> SRR1192500     1  0.0603    0.65524 0.980 0.000 0.000 0.000 0.004 0.016
#> SRR1192501     1  0.0291    0.64650 0.992 0.000 0.000 0.000 0.004 0.004
#> SRR1192502     1  0.0692    0.65770 0.976 0.000 0.000 0.000 0.004 0.020
#> SRR1192503     1  0.0405    0.64307 0.988 0.000 0.000 0.000 0.008 0.004
#> SRR1192496     1  0.0603    0.63518 0.980 0.000 0.000 0.000 0.016 0.004
#> SRR1192497     1  0.0458    0.65582 0.984 0.000 0.000 0.000 0.000 0.016
#> SRR1192499     1  0.0790    0.66346 0.968 0.000 0.000 0.000 0.000 0.032
#> SRR1192641     2  0.0000    0.99273 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192640     2  0.0000    0.99273 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192643     2  0.0000    0.99273 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192642     2  0.0000    0.99273 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192644     2  0.0000    0.99273 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192645     2  0.0000    0.99273 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192646     2  0.0000    0.99273 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192647     2  0.0000    0.99273 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192836     6  0.6810    0.48231 0.000 0.064 0.000 0.188 0.328 0.420
#> SRR1192838     6  0.6810    0.48231 0.000 0.064 0.000 0.188 0.328 0.420
#> SRR1192837     6  0.6810    0.48231 0.000 0.064 0.000 0.188 0.328 0.420
#> SRR1192839     6  0.6810    0.48231 0.000 0.064 0.000 0.188 0.328 0.420
#> SRR1192963     2  0.0146    0.99121 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1192966     2  0.0146    0.99121 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1192965     2  0.0146    0.99121 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1192964     2  0.0146    0.99121 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1193005     1  0.0935    0.61574 0.964 0.000 0.000 0.000 0.032 0.004
#> SRR1193006     1  0.1010    0.60988 0.960 0.000 0.000 0.000 0.036 0.004
#> SRR1193007     1  0.0935    0.61574 0.964 0.000 0.000 0.000 0.032 0.004
#> SRR1193008     1  0.0858    0.62111 0.968 0.000 0.000 0.000 0.028 0.004
#> SRR1193011     5  0.3864    0.99155 0.480 0.000 0.000 0.000 0.520 0.000
#> SRR1193012     5  0.3864    0.99155 0.480 0.000 0.000 0.000 0.520 0.000
#> SRR1193009     5  0.3864    0.99155 0.480 0.000 0.000 0.000 0.520 0.000
#> SRR1193010     5  0.3864    0.99155 0.480 0.000 0.000 0.000 0.520 0.000
#> SRR1193014     1  0.3984    0.64378 0.648 0.000 0.000 0.000 0.016 0.336
#> SRR1193015     1  0.3984    0.64378 0.648 0.000 0.000 0.000 0.016 0.336
#> SRR1193013     1  0.3984    0.64378 0.648 0.000 0.000 0.000 0.016 0.336
#> SRR1193018     1  0.2218    0.46040 0.884 0.000 0.000 0.000 0.104 0.012
#> SRR1193016     1  0.2170    0.47241 0.888 0.000 0.000 0.000 0.100 0.012
#> SRR1193017     1  0.2170    0.47241 0.888 0.000 0.000 0.000 0.100 0.012
#> SRR1193100     1  0.1757    0.53771 0.916 0.000 0.000 0.000 0.076 0.008
#> SRR1193101     1  0.1701    0.54550 0.920 0.000 0.000 0.000 0.072 0.008
#> SRR1193102     1  0.1866    0.51954 0.908 0.000 0.000 0.000 0.084 0.008
#> SRR1193104     5  0.3862    0.99523 0.476 0.000 0.000 0.000 0.524 0.000
#> SRR1193103     5  0.3862    0.99523 0.476 0.000 0.000 0.000 0.524 0.000
#> SRR1193105     5  0.3862    0.99523 0.476 0.000 0.000 0.000 0.524 0.000
#> SRR1193106     5  0.3862    0.99523 0.476 0.000 0.000 0.000 0.524 0.000
#> SRR1193198     1  0.3998    0.64119 0.644 0.000 0.000 0.000 0.016 0.340
#> SRR1193197     1  0.4012    0.63692 0.640 0.000 0.000 0.000 0.016 0.344
#> SRR1193199     1  0.3998    0.64119 0.644 0.000 0.000 0.000 0.016 0.340
#> SRR1193405     1  0.1812    0.52885 0.912 0.000 0.000 0.000 0.080 0.008
#> SRR1193404     1  0.1866    0.52656 0.908 0.000 0.000 0.000 0.084 0.008
#> SRR1193403     1  0.1866    0.52656 0.908 0.000 0.000 0.000 0.084 0.008
#> SRR1193522     1  0.0891    0.63360 0.968 0.000 0.000 0.000 0.024 0.008
#> SRR1193523     1  0.0820    0.64537 0.972 0.000 0.000 0.000 0.016 0.012
#> SRR1193524     1  0.0891    0.63360 0.968 0.000 0.000 0.000 0.024 0.008
#> SRR1193638     5  0.3862    0.99523 0.476 0.000 0.000 0.000 0.524 0.000
#> SRR1193639     5  0.3862    0.99523 0.476 0.000 0.000 0.000 0.524 0.000
#> SRR1195621     5  0.3860    0.98918 0.472 0.000 0.000 0.000 0.528 0.000
#> SRR1195619     5  0.3862    0.99523 0.476 0.000 0.000 0.000 0.524 0.000
#> SRR1195620     5  0.3862    0.99523 0.476 0.000 0.000 0.000 0.524 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15363 rows and 131 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.2169 0.784   0.784
#> 3 3 1.000           1.000       1.000         1.6229 0.648   0.551
#> 4 4 1.000           1.000       1.000         0.0825 0.953   0.891
#> 5 5 0.992           0.990       0.982         0.0120 0.993   0.981
#> 6 6 0.992           0.984       0.984         0.0220 0.992   0.980

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1190372     1       0          1  1  0
#> SRR1190371     1       0          1  1  0
#> SRR1190370     1       0          1  1  0
#> SRR1190368     1       0          1  1  0
#> SRR1190369     1       0          1  1  0
#> SRR1190366     1       0          1  1  0
#> SRR1190367     1       0          1  1  0
#> SRR1190365     1       0          1  1  0
#> SRR1190467     2       0          1  0  1
#> SRR1190466     2       0          1  0  1
#> SRR1190465     2       0          1  0  1
#> SRR1190464     2       0          1  0  1
#> SRR1190462     2       0          1  0  1
#> SRR1190461     2       0          1  0  1
#> SRR1190460     2       0          1  0  1
#> SRR1190509     1       0          1  1  0
#> SRR1190504     1       0          1  1  0
#> SRR1190503     1       0          1  1  0
#> SRR1190502     1       0          1  1  0
#> SRR1190508     1       0          1  1  0
#> SRR1190507     1       0          1  1  0
#> SRR1190506     1       0          1  1  0
#> SRR1190505     1       0          1  1  0
#> SRR1191342     1       0          1  1  0
#> SRR1191344     1       0          1  1  0
#> SRR1191343     1       0          1  1  0
#> SRR1191349     1       0          1  1  0
#> SRR1191345     1       0          1  1  0
#> SRR1191346     1       0          1  1  0
#> SRR1191347     1       0          1  1  0
#> SRR1191348     1       0          1  1  0
#> SRR1191668     1       0          1  1  0
#> SRR1191667     1       0          1  1  0
#> SRR1191673     1       0          1  1  0
#> SRR1191672     1       0          1  1  0
#> SRR1191695     2       0          1  0  1
#> SRR1191694     2       0          1  0  1
#> SRR1191783     2       0          1  0  1
#> SRR1191876     2       0          1  0  1
#> SRR1191914     1       0          1  1  0
#> SRR1191915     1       0          1  1  0
#> SRR1191953     1       0          1  1  0
#> SRR1191954     1       0          1  1  0
#> SRR1191990     1       0          1  1  0
#> SRR1191991     1       0          1  1  0
#> SRR1192016     2       0          1  0  1
#> SRR1192017     2       0          1  0  1
#> SRR1192073     2       0          1  0  1
#> SRR1192072     2       0          1  0  1
#> SRR1192167     1       0          1  1  0
#> SRR1192166     1       0          1  1  0
#> SRR1192321     2       0          1  0  1
#> SRR1192353     1       0          1  1  0
#> SRR1192354     1       0          1  1  0
#> SRR1192370     1       0          1  1  0
#> SRR1192371     1       0          1  1  0
#> SRR1192399     1       0          1  1  0
#> SRR1192398     1       0          1  1  0
#> SRR1192417     1       0          1  1  0
#> SRR1192418     1       0          1  1  0
#> SRR1192415     1       0          1  1  0
#> SRR1192416     1       0          1  1  0
#> SRR1192413     1       0          1  1  0
#> SRR1192414     1       0          1  1  0
#> SRR1192420     1       0          1  1  0
#> SRR1192419     1       0          1  1  0
#> SRR1192471     1       0          1  1  0
#> SRR1192470     1       0          1  1  0
#> SRR1192469     1       0          1  1  0
#> SRR1192468     1       0          1  1  0
#> SRR1192467     1       0          1  1  0
#> SRR1192466     1       0          1  1  0
#> SRR1192465     1       0          1  1  0
#> SRR1192500     1       0          1  1  0
#> SRR1192501     1       0          1  1  0
#> SRR1192502     1       0          1  1  0
#> SRR1192503     1       0          1  1  0
#> SRR1192496     1       0          1  1  0
#> SRR1192497     1       0          1  1  0
#> SRR1192499     1       0          1  1  0
#> SRR1192641     1       0          1  1  0
#> SRR1192640     1       0          1  1  0
#> SRR1192643     1       0          1  1  0
#> SRR1192642     1       0          1  1  0
#> SRR1192644     1       0          1  1  0
#> SRR1192645     1       0          1  1  0
#> SRR1192646     1       0          1  1  0
#> SRR1192647     1       0          1  1  0
#> SRR1192836     1       0          1  1  0
#> SRR1192838     1       0          1  1  0
#> SRR1192837     1       0          1  1  0
#> SRR1192839     1       0          1  1  0
#> SRR1192963     1       0          1  1  0
#> SRR1192966     1       0          1  1  0
#> SRR1192965     1       0          1  1  0
#> SRR1192964     1       0          1  1  0
#> SRR1193005     1       0          1  1  0
#> SRR1193006     1       0          1  1  0
#> SRR1193007     1       0          1  1  0
#> SRR1193008     1       0          1  1  0
#> SRR1193011     1       0          1  1  0
#> SRR1193012     1       0          1  1  0
#> SRR1193009     1       0          1  1  0
#> SRR1193010     1       0          1  1  0
#> SRR1193014     1       0          1  1  0
#> SRR1193015     1       0          1  1  0
#> SRR1193013     1       0          1  1  0
#> SRR1193018     1       0          1  1  0
#> SRR1193016     1       0          1  1  0
#> SRR1193017     1       0          1  1  0
#> SRR1193100     1       0          1  1  0
#> SRR1193101     1       0          1  1  0
#> SRR1193102     1       0          1  1  0
#> SRR1193104     1       0          1  1  0
#> SRR1193103     1       0          1  1  0
#> SRR1193105     1       0          1  1  0
#> SRR1193106     1       0          1  1  0
#> SRR1193198     1       0          1  1  0
#> SRR1193197     1       0          1  1  0
#> SRR1193199     1       0          1  1  0
#> SRR1193405     1       0          1  1  0
#> SRR1193404     1       0          1  1  0
#> SRR1193403     1       0          1  1  0
#> SRR1193522     1       0          1  1  0
#> SRR1193523     1       0          1  1  0
#> SRR1193524     1       0          1  1  0
#> SRR1193638     1       0          1  1  0
#> SRR1193639     1       0          1  1  0
#> SRR1195621     1       0          1  1  0
#> SRR1195619     1       0          1  1  0
#> SRR1195620     1       0          1  1  0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette p1 p2 p3
#> SRR1190372     2       0          1  0  1  0
#> SRR1190371     2       0          1  0  1  0
#> SRR1190370     2       0          1  0  1  0
#> SRR1190368     2       0          1  0  1  0
#> SRR1190369     2       0          1  0  1  0
#> SRR1190366     2       0          1  0  1  0
#> SRR1190367     2       0          1  0  1  0
#> SRR1190365     2       0          1  0  1  0
#> SRR1190467     3       0          1  0  0  1
#> SRR1190466     3       0          1  0  0  1
#> SRR1190465     3       0          1  0  0  1
#> SRR1190464     3       0          1  0  0  1
#> SRR1190462     3       0          1  0  0  1
#> SRR1190461     3       0          1  0  0  1
#> SRR1190460     3       0          1  0  0  1
#> SRR1190509     1       0          1  1  0  0
#> SRR1190504     1       0          1  1  0  0
#> SRR1190503     1       0          1  1  0  0
#> SRR1190502     1       0          1  1  0  0
#> SRR1190508     1       0          1  1  0  0
#> SRR1190507     1       0          1  1  0  0
#> SRR1190506     1       0          1  1  0  0
#> SRR1190505     1       0          1  1  0  0
#> SRR1191342     2       0          1  0  1  0
#> SRR1191344     2       0          1  0  1  0
#> SRR1191343     2       0          1  0  1  0
#> SRR1191349     2       0          1  0  1  0
#> SRR1191345     2       0          1  0  1  0
#> SRR1191346     2       0          1  0  1  0
#> SRR1191347     2       0          1  0  1  0
#> SRR1191348     2       0          1  0  1  0
#> SRR1191668     1       0          1  1  0  0
#> SRR1191667     1       0          1  1  0  0
#> SRR1191673     1       0          1  1  0  0
#> SRR1191672     1       0          1  1  0  0
#> SRR1191695     3       0          1  0  0  1
#> SRR1191694     3       0          1  0  0  1
#> SRR1191783     3       0          1  0  0  1
#> SRR1191876     3       0          1  0  0  1
#> SRR1191914     1       0          1  1  0  0
#> SRR1191915     1       0          1  1  0  0
#> SRR1191953     1       0          1  1  0  0
#> SRR1191954     1       0          1  1  0  0
#> SRR1191990     1       0          1  1  0  0
#> SRR1191991     1       0          1  1  0  0
#> SRR1192016     3       0          1  0  0  1
#> SRR1192017     3       0          1  0  0  1
#> SRR1192073     3       0          1  0  0  1
#> SRR1192072     3       0          1  0  0  1
#> SRR1192167     1       0          1  1  0  0
#> SRR1192166     1       0          1  1  0  0
#> SRR1192321     3       0          1  0  0  1
#> SRR1192353     1       0          1  1  0  0
#> SRR1192354     1       0          1  1  0  0
#> SRR1192370     1       0          1  1  0  0
#> SRR1192371     1       0          1  1  0  0
#> SRR1192399     1       0          1  1  0  0
#> SRR1192398     1       0          1  1  0  0
#> SRR1192417     2       0          1  0  1  0
#> SRR1192418     2       0          1  0  1  0
#> SRR1192415     2       0          1  0  1  0
#> SRR1192416     2       0          1  0  1  0
#> SRR1192413     2       0          1  0  1  0
#> SRR1192414     2       0          1  0  1  0
#> SRR1192420     2       0          1  0  1  0
#> SRR1192419     2       0          1  0  1  0
#> SRR1192471     1       0          1  1  0  0
#> SRR1192470     1       0          1  1  0  0
#> SRR1192469     1       0          1  1  0  0
#> SRR1192468     1       0          1  1  0  0
#> SRR1192467     1       0          1  1  0  0
#> SRR1192466     1       0          1  1  0  0
#> SRR1192465     1       0          1  1  0  0
#> SRR1192500     1       0          1  1  0  0
#> SRR1192501     1       0          1  1  0  0
#> SRR1192502     1       0          1  1  0  0
#> SRR1192503     1       0          1  1  0  0
#> SRR1192496     1       0          1  1  0  0
#> SRR1192497     1       0          1  1  0  0
#> SRR1192499     1       0          1  1  0  0
#> SRR1192641     2       0          1  0  1  0
#> SRR1192640     2       0          1  0  1  0
#> SRR1192643     2       0          1  0  1  0
#> SRR1192642     2       0          1  0  1  0
#> SRR1192644     2       0          1  0  1  0
#> SRR1192645     2       0          1  0  1  0
#> SRR1192646     2       0          1  0  1  0
#> SRR1192647     2       0          1  0  1  0
#> SRR1192836     2       0          1  0  1  0
#> SRR1192838     2       0          1  0  1  0
#> SRR1192837     2       0          1  0  1  0
#> SRR1192839     2       0          1  0  1  0
#> SRR1192963     2       0          1  0  1  0
#> SRR1192966     2       0          1  0  1  0
#> SRR1192965     2       0          1  0  1  0
#> SRR1192964     2       0          1  0  1  0
#> SRR1193005     1       0          1  1  0  0
#> SRR1193006     1       0          1  1  0  0
#> SRR1193007     1       0          1  1  0  0
#> SRR1193008     1       0          1  1  0  0
#> SRR1193011     1       0          1  1  0  0
#> SRR1193012     1       0          1  1  0  0
#> SRR1193009     1       0          1  1  0  0
#> SRR1193010     1       0          1  1  0  0
#> SRR1193014     1       0          1  1  0  0
#> SRR1193015     1       0          1  1  0  0
#> SRR1193013     1       0          1  1  0  0
#> SRR1193018     1       0          1  1  0  0
#> SRR1193016     1       0          1  1  0  0
#> SRR1193017     1       0          1  1  0  0
#> SRR1193100     1       0          1  1  0  0
#> SRR1193101     1       0          1  1  0  0
#> SRR1193102     1       0          1  1  0  0
#> SRR1193104     1       0          1  1  0  0
#> SRR1193103     1       0          1  1  0  0
#> SRR1193105     1       0          1  1  0  0
#> SRR1193106     1       0          1  1  0  0
#> SRR1193198     1       0          1  1  0  0
#> SRR1193197     1       0          1  1  0  0
#> SRR1193199     1       0          1  1  0  0
#> SRR1193405     1       0          1  1  0  0
#> SRR1193404     1       0          1  1  0  0
#> SRR1193403     1       0          1  1  0  0
#> SRR1193522     1       0          1  1  0  0
#> SRR1193523     1       0          1  1  0  0
#> SRR1193524     1       0          1  1  0  0
#> SRR1193638     1       0          1  1  0  0
#> SRR1193639     1       0          1  1  0  0
#> SRR1195621     1       0          1  1  0  0
#> SRR1195619     1       0          1  1  0  0
#> SRR1195620     1       0          1  1  0  0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette p1 p2 p3 p4
#> SRR1190372     2       0          1  0  1  0  0
#> SRR1190371     2       0          1  0  1  0  0
#> SRR1190370     2       0          1  0  1  0  0
#> SRR1190368     2       0          1  0  1  0  0
#> SRR1190369     2       0          1  0  1  0  0
#> SRR1190366     2       0          1  0  1  0  0
#> SRR1190367     2       0          1  0  1  0  0
#> SRR1190365     2       0          1  0  1  0  0
#> SRR1190467     3       0          1  0  0  1  0
#> SRR1190466     3       0          1  0  0  1  0
#> SRR1190465     3       0          1  0  0  1  0
#> SRR1190464     3       0          1  0  0  1  0
#> SRR1190462     3       0          1  0  0  1  0
#> SRR1190461     3       0          1  0  0  1  0
#> SRR1190460     3       0          1  0  0  1  0
#> SRR1190509     1       0          1  1  0  0  0
#> SRR1190504     1       0          1  1  0  0  0
#> SRR1190503     1       0          1  1  0  0  0
#> SRR1190502     1       0          1  1  0  0  0
#> SRR1190508     1       0          1  1  0  0  0
#> SRR1190507     1       0          1  1  0  0  0
#> SRR1190506     1       0          1  1  0  0  0
#> SRR1190505     1       0          1  1  0  0  0
#> SRR1191342     4       0          1  0  0  0  1
#> SRR1191344     4       0          1  0  0  0  1
#> SRR1191343     4       0          1  0  0  0  1
#> SRR1191349     4       0          1  0  0  0  1
#> SRR1191345     4       0          1  0  0  0  1
#> SRR1191346     4       0          1  0  0  0  1
#> SRR1191347     4       0          1  0  0  0  1
#> SRR1191348     4       0          1  0  0  0  1
#> SRR1191668     1       0          1  1  0  0  0
#> SRR1191667     1       0          1  1  0  0  0
#> SRR1191673     1       0          1  1  0  0  0
#> SRR1191672     1       0          1  1  0  0  0
#> SRR1191695     3       0          1  0  0  1  0
#> SRR1191694     3       0          1  0  0  1  0
#> SRR1191783     3       0          1  0  0  1  0
#> SRR1191876     3       0          1  0  0  1  0
#> SRR1191914     1       0          1  1  0  0  0
#> SRR1191915     1       0          1  1  0  0  0
#> SRR1191953     1       0          1  1  0  0  0
#> SRR1191954     1       0          1  1  0  0  0
#> SRR1191990     1       0          1  1  0  0  0
#> SRR1191991     1       0          1  1  0  0  0
#> SRR1192016     3       0          1  0  0  1  0
#> SRR1192017     3       0          1  0  0  1  0
#> SRR1192073     3       0          1  0  0  1  0
#> SRR1192072     3       0          1  0  0  1  0
#> SRR1192167     1       0          1  1  0  0  0
#> SRR1192166     1       0          1  1  0  0  0
#> SRR1192321     3       0          1  0  0  1  0
#> SRR1192353     1       0          1  1  0  0  0
#> SRR1192354     1       0          1  1  0  0  0
#> SRR1192370     1       0          1  1  0  0  0
#> SRR1192371     1       0          1  1  0  0  0
#> SRR1192399     1       0          1  1  0  0  0
#> SRR1192398     1       0          1  1  0  0  0
#> SRR1192417     4       0          1  0  0  0  1
#> SRR1192418     4       0          1  0  0  0  1
#> SRR1192415     4       0          1  0  0  0  1
#> SRR1192416     4       0          1  0  0  0  1
#> SRR1192413     4       0          1  0  0  0  1
#> SRR1192414     4       0          1  0  0  0  1
#> SRR1192420     4       0          1  0  0  0  1
#> SRR1192419     4       0          1  0  0  0  1
#> SRR1192471     1       0          1  1  0  0  0
#> SRR1192470     1       0          1  1  0  0  0
#> SRR1192469     1       0          1  1  0  0  0
#> SRR1192468     1       0          1  1  0  0  0
#> SRR1192467     1       0          1  1  0  0  0
#> SRR1192466     1       0          1  1  0  0  0
#> SRR1192465     1       0          1  1  0  0  0
#> SRR1192500     1       0          1  1  0  0  0
#> SRR1192501     1       0          1  1  0  0  0
#> SRR1192502     1       0          1  1  0  0  0
#> SRR1192503     1       0          1  1  0  0  0
#> SRR1192496     1       0          1  1  0  0  0
#> SRR1192497     1       0          1  1  0  0  0
#> SRR1192499     1       0          1  1  0  0  0
#> SRR1192641     2       0          1  0  1  0  0
#> SRR1192640     2       0          1  0  1  0  0
#> SRR1192643     2       0          1  0  1  0  0
#> SRR1192642     2       0          1  0  1  0  0
#> SRR1192644     2       0          1  0  1  0  0
#> SRR1192645     2       0          1  0  1  0  0
#> SRR1192646     2       0          1  0  1  0  0
#> SRR1192647     2       0          1  0  1  0  0
#> SRR1192836     4       0          1  0  0  0  1
#> SRR1192838     4       0          1  0  0  0  1
#> SRR1192837     4       0          1  0  0  0  1
#> SRR1192839     4       0          1  0  0  0  1
#> SRR1192963     2       0          1  0  1  0  0
#> SRR1192966     2       0          1  0  1  0  0
#> SRR1192965     2       0          1  0  1  0  0
#> SRR1192964     2       0          1  0  1  0  0
#> SRR1193005     1       0          1  1  0  0  0
#> SRR1193006     1       0          1  1  0  0  0
#> SRR1193007     1       0          1  1  0  0  0
#> SRR1193008     1       0          1  1  0  0  0
#> SRR1193011     1       0          1  1  0  0  0
#> SRR1193012     1       0          1  1  0  0  0
#> SRR1193009     1       0          1  1  0  0  0
#> SRR1193010     1       0          1  1  0  0  0
#> SRR1193014     1       0          1  1  0  0  0
#> SRR1193015     1       0          1  1  0  0  0
#> SRR1193013     1       0          1  1  0  0  0
#> SRR1193018     1       0          1  1  0  0  0
#> SRR1193016     1       0          1  1  0  0  0
#> SRR1193017     1       0          1  1  0  0  0
#> SRR1193100     1       0          1  1  0  0  0
#> SRR1193101     1       0          1  1  0  0  0
#> SRR1193102     1       0          1  1  0  0  0
#> SRR1193104     1       0          1  1  0  0  0
#> SRR1193103     1       0          1  1  0  0  0
#> SRR1193105     1       0          1  1  0  0  0
#> SRR1193106     1       0          1  1  0  0  0
#> SRR1193198     1       0          1  1  0  0  0
#> SRR1193197     1       0          1  1  0  0  0
#> SRR1193199     1       0          1  1  0  0  0
#> SRR1193405     1       0          1  1  0  0  0
#> SRR1193404     1       0          1  1  0  0  0
#> SRR1193403     1       0          1  1  0  0  0
#> SRR1193522     1       0          1  1  0  0  0
#> SRR1193523     1       0          1  1  0  0  0
#> SRR1193524     1       0          1  1  0  0  0
#> SRR1193638     1       0          1  1  0  0  0
#> SRR1193639     1       0          1  1  0  0  0
#> SRR1195621     1       0          1  1  0  0  0
#> SRR1195619     1       0          1  1  0  0  0
#> SRR1195620     1       0          1  1  0  0  0

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette p1 p2    p3    p4    p5
#> SRR1190372     2   0.000      1.000  0  1 0.000 0.000 0.000
#> SRR1190371     2   0.000      1.000  0  1 0.000 0.000 0.000
#> SRR1190370     2   0.000      1.000  0  1 0.000 0.000 0.000
#> SRR1190368     2   0.000      1.000  0  1 0.000 0.000 0.000
#> SRR1190369     2   0.000      1.000  0  1 0.000 0.000 0.000
#> SRR1190366     2   0.000      1.000  0  1 0.000 0.000 0.000
#> SRR1190367     2   0.000      1.000  0  1 0.000 0.000 0.000
#> SRR1190365     2   0.000      1.000  0  1 0.000 0.000 0.000
#> SRR1190467     5   0.324      1.000  0  0 0.216 0.000 0.784
#> SRR1190466     5   0.324      1.000  0  0 0.216 0.000 0.784
#> SRR1190465     5   0.324      1.000  0  0 0.216 0.000 0.784
#> SRR1190464     5   0.324      1.000  0  0 0.216 0.000 0.784
#> SRR1190462     5   0.324      1.000  0  0 0.216 0.000 0.784
#> SRR1190461     5   0.324      1.000  0  0 0.216 0.000 0.784
#> SRR1190460     5   0.324      1.000  0  0 0.216 0.000 0.784
#> SRR1190509     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1190504     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1190503     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1190502     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1190508     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1190507     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1190506     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1190505     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1191342     4   0.000      0.960  0  0 0.000 1.000 0.000
#> SRR1191344     4   0.000      0.960  0  0 0.000 1.000 0.000
#> SRR1191343     4   0.000      0.960  0  0 0.000 1.000 0.000
#> SRR1191349     4   0.000      0.960  0  0 0.000 1.000 0.000
#> SRR1191345     4   0.000      0.960  0  0 0.000 1.000 0.000
#> SRR1191346     4   0.000      0.960  0  0 0.000 1.000 0.000
#> SRR1191347     4   0.000      0.960  0  0 0.000 1.000 0.000
#> SRR1191348     4   0.000      0.960  0  0 0.000 1.000 0.000
#> SRR1191668     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1191667     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1191673     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1191672     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1191695     3   0.000      1.000  0  0 1.000 0.000 0.000
#> SRR1191694     3   0.000      1.000  0  0 1.000 0.000 0.000
#> SRR1191783     3   0.000      1.000  0  0 1.000 0.000 0.000
#> SRR1191876     3   0.000      1.000  0  0 1.000 0.000 0.000
#> SRR1191914     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1191915     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1191953     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1191954     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1191990     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1191991     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1192016     3   0.000      1.000  0  0 1.000 0.000 0.000
#> SRR1192017     3   0.000      1.000  0  0 1.000 0.000 0.000
#> SRR1192073     3   0.000      1.000  0  0 1.000 0.000 0.000
#> SRR1192072     3   0.000      1.000  0  0 1.000 0.000 0.000
#> SRR1192167     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1192166     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1192321     3   0.000      1.000  0  0 1.000 0.000 0.000
#> SRR1192353     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1192354     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1192370     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1192371     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1192399     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1192398     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1192417     4   0.000      0.960  0  0 0.000 1.000 0.000
#> SRR1192418     4   0.000      0.960  0  0 0.000 1.000 0.000
#> SRR1192415     4   0.000      0.960  0  0 0.000 1.000 0.000
#> SRR1192416     4   0.000      0.960  0  0 0.000 1.000 0.000
#> SRR1192413     4   0.000      0.960  0  0 0.000 1.000 0.000
#> SRR1192414     4   0.000      0.960  0  0 0.000 1.000 0.000
#> SRR1192420     4   0.000      0.960  0  0 0.000 1.000 0.000
#> SRR1192419     4   0.000      0.960  0  0 0.000 1.000 0.000
#> SRR1192471     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1192470     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1192469     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1192468     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1192467     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1192466     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1192465     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1192500     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1192501     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1192502     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1192503     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1192496     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1192497     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1192499     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1192641     2   0.000      1.000  0  1 0.000 0.000 0.000
#> SRR1192640     2   0.000      1.000  0  1 0.000 0.000 0.000
#> SRR1192643     2   0.000      1.000  0  1 0.000 0.000 0.000
#> SRR1192642     2   0.000      1.000  0  1 0.000 0.000 0.000
#> SRR1192644     2   0.000      1.000  0  1 0.000 0.000 0.000
#> SRR1192645     2   0.000      1.000  0  1 0.000 0.000 0.000
#> SRR1192646     2   0.000      1.000  0  1 0.000 0.000 0.000
#> SRR1192647     2   0.000      1.000  0  1 0.000 0.000 0.000
#> SRR1192836     4   0.324      0.824  0  0 0.000 0.784 0.216
#> SRR1192838     4   0.324      0.824  0  0 0.000 0.784 0.216
#> SRR1192837     4   0.324      0.824  0  0 0.000 0.784 0.216
#> SRR1192839     4   0.324      0.824  0  0 0.000 0.784 0.216
#> SRR1192963     2   0.000      1.000  0  1 0.000 0.000 0.000
#> SRR1192966     2   0.000      1.000  0  1 0.000 0.000 0.000
#> SRR1192965     2   0.000      1.000  0  1 0.000 0.000 0.000
#> SRR1192964     2   0.000      1.000  0  1 0.000 0.000 0.000
#> SRR1193005     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1193006     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1193007     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1193008     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1193011     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1193012     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1193009     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1193010     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1193014     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1193015     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1193013     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1193018     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1193016     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1193017     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1193100     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1193101     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1193102     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1193104     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1193103     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1193105     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1193106     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1193198     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1193197     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1193199     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1193405     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1193404     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1193403     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1193522     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1193523     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1193524     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1193638     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1193639     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1195621     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1195619     1   0.000      1.000  1  0 0.000 0.000 0.000
#> SRR1195620     1   0.000      1.000  1  0 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1 p2 p3    p4    p5    p6
#> SRR1190372     2  0.0000      1.000 0.000  1  0 0.000 0.000 0.000
#> SRR1190371     2  0.0000      1.000 0.000  1  0 0.000 0.000 0.000
#> SRR1190370     2  0.0000      1.000 0.000  1  0 0.000 0.000 0.000
#> SRR1190368     2  0.0000      1.000 0.000  1  0 0.000 0.000 0.000
#> SRR1190369     2  0.0000      1.000 0.000  1  0 0.000 0.000 0.000
#> SRR1190366     2  0.0000      1.000 0.000  1  0 0.000 0.000 0.000
#> SRR1190367     2  0.0000      1.000 0.000  1  0 0.000 0.000 0.000
#> SRR1190365     2  0.0000      1.000 0.000  1  0 0.000 0.000 0.000
#> SRR1190467     5  0.0000      0.986 0.000  0  0 0.000 1.000 0.000
#> SRR1190466     5  0.0146      0.986 0.000  0  0 0.000 0.996 0.004
#> SRR1190465     5  0.0146      0.986 0.000  0  0 0.000 0.996 0.004
#> SRR1190464     5  0.0865      0.972 0.000  0  0 0.000 0.964 0.036
#> SRR1190462     5  0.1387      0.954 0.000  0  0 0.000 0.932 0.068
#> SRR1190461     5  0.0146      0.986 0.000  0  0 0.000 0.996 0.004
#> SRR1190460     5  0.0000      0.986 0.000  0  0 0.000 1.000 0.000
#> SRR1190509     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1190504     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1190503     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1190502     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1190508     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1190507     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1190506     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1190505     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1191342     4  0.0000      1.000 0.000  0  0 1.000 0.000 0.000
#> SRR1191344     4  0.0000      1.000 0.000  0  0 1.000 0.000 0.000
#> SRR1191343     4  0.0000      1.000 0.000  0  0 1.000 0.000 0.000
#> SRR1191349     4  0.0000      1.000 0.000  0  0 1.000 0.000 0.000
#> SRR1191345     4  0.0000      1.000 0.000  0  0 1.000 0.000 0.000
#> SRR1191346     4  0.0000      1.000 0.000  0  0 1.000 0.000 0.000
#> SRR1191347     4  0.0000      1.000 0.000  0  0 1.000 0.000 0.000
#> SRR1191348     4  0.0000      1.000 0.000  0  0 1.000 0.000 0.000
#> SRR1191668     1  0.2491      0.828 0.836  0  0 0.000 0.000 0.164
#> SRR1191667     1  0.2491      0.828 0.836  0  0 0.000 0.000 0.164
#> SRR1191673     1  0.2491      0.828 0.836  0  0 0.000 0.000 0.164
#> SRR1191672     1  0.2491      0.828 0.836  0  0 0.000 0.000 0.164
#> SRR1191695     3  0.0000      1.000 0.000  0  1 0.000 0.000 0.000
#> SRR1191694     3  0.0000      1.000 0.000  0  1 0.000 0.000 0.000
#> SRR1191783     3  0.0000      1.000 0.000  0  1 0.000 0.000 0.000
#> SRR1191876     3  0.0000      1.000 0.000  0  1 0.000 0.000 0.000
#> SRR1191914     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1191915     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1191953     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1191954     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1191990     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1191991     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1192016     3  0.0000      1.000 0.000  0  1 0.000 0.000 0.000
#> SRR1192017     3  0.0000      1.000 0.000  0  1 0.000 0.000 0.000
#> SRR1192073     3  0.0000      1.000 0.000  0  1 0.000 0.000 0.000
#> SRR1192072     3  0.0000      1.000 0.000  0  1 0.000 0.000 0.000
#> SRR1192167     1  0.2491      0.828 0.836  0  0 0.000 0.000 0.164
#> SRR1192166     1  0.2491      0.828 0.836  0  0 0.000 0.000 0.164
#> SRR1192321     3  0.0000      1.000 0.000  0  1 0.000 0.000 0.000
#> SRR1192353     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1192354     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1192370     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1192371     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1192399     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1192398     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1192417     4  0.0000      1.000 0.000  0  0 1.000 0.000 0.000
#> SRR1192418     4  0.0000      1.000 0.000  0  0 1.000 0.000 0.000
#> SRR1192415     4  0.0000      1.000 0.000  0  0 1.000 0.000 0.000
#> SRR1192416     4  0.0000      1.000 0.000  0  0 1.000 0.000 0.000
#> SRR1192413     4  0.0000      1.000 0.000  0  0 1.000 0.000 0.000
#> SRR1192414     4  0.0000      1.000 0.000  0  0 1.000 0.000 0.000
#> SRR1192420     4  0.0000      1.000 0.000  0  0 1.000 0.000 0.000
#> SRR1192419     4  0.0000      1.000 0.000  0  0 1.000 0.000 0.000
#> SRR1192471     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1192470     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1192469     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1192468     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1192467     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1192466     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1192465     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1192500     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1192501     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1192502     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1192503     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1192496     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1192497     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1192499     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1192641     2  0.0000      1.000 0.000  1  0 0.000 0.000 0.000
#> SRR1192640     2  0.0000      1.000 0.000  1  0 0.000 0.000 0.000
#> SRR1192643     2  0.0000      1.000 0.000  1  0 0.000 0.000 0.000
#> SRR1192642     2  0.0000      1.000 0.000  1  0 0.000 0.000 0.000
#> SRR1192644     2  0.0000      1.000 0.000  1  0 0.000 0.000 0.000
#> SRR1192645     2  0.0000      1.000 0.000  1  0 0.000 0.000 0.000
#> SRR1192646     2  0.0000      1.000 0.000  1  0 0.000 0.000 0.000
#> SRR1192647     2  0.0000      1.000 0.000  1  0 0.000 0.000 0.000
#> SRR1192836     6  0.3050      1.000 0.000  0  0 0.236 0.000 0.764
#> SRR1192838     6  0.3050      1.000 0.000  0  0 0.236 0.000 0.764
#> SRR1192837     6  0.3050      1.000 0.000  0  0 0.236 0.000 0.764
#> SRR1192839     6  0.3050      1.000 0.000  0  0 0.236 0.000 0.764
#> SRR1192963     2  0.0000      1.000 0.000  1  0 0.000 0.000 0.000
#> SRR1192966     2  0.0000      1.000 0.000  1  0 0.000 0.000 0.000
#> SRR1192965     2  0.0000      1.000 0.000  1  0 0.000 0.000 0.000
#> SRR1192964     2  0.0000      1.000 0.000  1  0 0.000 0.000 0.000
#> SRR1193005     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1193006     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1193007     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1193008     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1193011     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1193012     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1193009     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1193010     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1193014     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1193015     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1193013     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1193018     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1193016     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1193017     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1193100     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1193101     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1193102     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1193104     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1193103     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1193105     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1193106     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1193198     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1193197     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1193199     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1193405     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1193404     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1193403     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1193522     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1193523     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1193524     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1193638     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1193639     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1195621     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1195619     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000
#> SRR1195620     1  0.0000      0.987 1.000  0  0 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15363 rows and 131 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.432           0.888       0.884         0.3991 0.573   0.573
#> 3 3 0.810           0.972       0.943         0.3715 0.859   0.754
#> 4 4 0.783           0.826       0.856         0.1693 1.000   1.000
#> 5 5 0.739           0.842       0.816         0.1243 0.863   0.683
#> 6 6 0.690           0.839       0.802         0.0525 0.920   0.728

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1190372     2   0.738      1.000 0.208 0.792
#> SRR1190371     2   0.738      1.000 0.208 0.792
#> SRR1190370     2   0.738      1.000 0.208 0.792
#> SRR1190368     2   0.738      1.000 0.208 0.792
#> SRR1190369     2   0.738      1.000 0.208 0.792
#> SRR1190366     2   0.738      1.000 0.208 0.792
#> SRR1190367     2   0.738      1.000 0.208 0.792
#> SRR1190365     2   0.738      1.000 0.208 0.792
#> SRR1190467     1   0.987      0.479 0.568 0.432
#> SRR1190466     1   0.987      0.479 0.568 0.432
#> SRR1190465     1   0.987      0.479 0.568 0.432
#> SRR1190464     1   0.987      0.479 0.568 0.432
#> SRR1190462     1   0.987      0.479 0.568 0.432
#> SRR1190461     1   0.987      0.479 0.568 0.432
#> SRR1190460     1   0.987      0.479 0.568 0.432
#> SRR1190509     1   0.000      0.915 1.000 0.000
#> SRR1190504     1   0.000      0.915 1.000 0.000
#> SRR1190503     1   0.000      0.915 1.000 0.000
#> SRR1190502     1   0.000      0.915 1.000 0.000
#> SRR1190508     1   0.000      0.915 1.000 0.000
#> SRR1190507     1   0.000      0.915 1.000 0.000
#> SRR1190506     1   0.000      0.915 1.000 0.000
#> SRR1190505     1   0.000      0.915 1.000 0.000
#> SRR1191342     2   0.738      1.000 0.208 0.792
#> SRR1191344     2   0.738      1.000 0.208 0.792
#> SRR1191343     2   0.738      1.000 0.208 0.792
#> SRR1191349     2   0.738      1.000 0.208 0.792
#> SRR1191345     2   0.738      1.000 0.208 0.792
#> SRR1191346     2   0.738      1.000 0.208 0.792
#> SRR1191347     2   0.738      1.000 0.208 0.792
#> SRR1191348     2   0.738      1.000 0.208 0.792
#> SRR1191668     1   0.000      0.915 1.000 0.000
#> SRR1191667     1   0.000      0.915 1.000 0.000
#> SRR1191673     1   0.000      0.915 1.000 0.000
#> SRR1191672     1   0.000      0.915 1.000 0.000
#> SRR1191695     1   0.987      0.479 0.568 0.432
#> SRR1191694     1   0.987      0.479 0.568 0.432
#> SRR1191783     1   0.987      0.479 0.568 0.432
#> SRR1191876     1   0.987      0.479 0.568 0.432
#> SRR1191914     1   0.000      0.915 1.000 0.000
#> SRR1191915     1   0.000      0.915 1.000 0.000
#> SRR1191953     1   0.000      0.915 1.000 0.000
#> SRR1191954     1   0.000      0.915 1.000 0.000
#> SRR1191990     1   0.000      0.915 1.000 0.000
#> SRR1191991     1   0.000      0.915 1.000 0.000
#> SRR1192016     1   0.987      0.479 0.568 0.432
#> SRR1192017     1   0.987      0.479 0.568 0.432
#> SRR1192073     1   0.987      0.479 0.568 0.432
#> SRR1192072     1   0.987      0.479 0.568 0.432
#> SRR1192167     1   0.000      0.915 1.000 0.000
#> SRR1192166     1   0.000      0.915 1.000 0.000
#> SRR1192321     1   0.987      0.479 0.568 0.432
#> SRR1192353     1   0.000      0.915 1.000 0.000
#> SRR1192354     1   0.000      0.915 1.000 0.000
#> SRR1192370     1   0.000      0.915 1.000 0.000
#> SRR1192371     1   0.000      0.915 1.000 0.000
#> SRR1192399     1   0.000      0.915 1.000 0.000
#> SRR1192398     1   0.000      0.915 1.000 0.000
#> SRR1192417     2   0.738      1.000 0.208 0.792
#> SRR1192418     2   0.738      1.000 0.208 0.792
#> SRR1192415     2   0.738      1.000 0.208 0.792
#> SRR1192416     2   0.738      1.000 0.208 0.792
#> SRR1192413     2   0.738      1.000 0.208 0.792
#> SRR1192414     2   0.738      1.000 0.208 0.792
#> SRR1192420     2   0.738      1.000 0.208 0.792
#> SRR1192419     2   0.738      1.000 0.208 0.792
#> SRR1192471     1   0.000      0.915 1.000 0.000
#> SRR1192470     1   0.000      0.915 1.000 0.000
#> SRR1192469     1   0.000      0.915 1.000 0.000
#> SRR1192468     1   0.000      0.915 1.000 0.000
#> SRR1192467     1   0.000      0.915 1.000 0.000
#> SRR1192466     1   0.000      0.915 1.000 0.000
#> SRR1192465     1   0.000      0.915 1.000 0.000
#> SRR1192500     1   0.000      0.915 1.000 0.000
#> SRR1192501     1   0.000      0.915 1.000 0.000
#> SRR1192502     1   0.000      0.915 1.000 0.000
#> SRR1192503     1   0.000      0.915 1.000 0.000
#> SRR1192496     1   0.000      0.915 1.000 0.000
#> SRR1192497     1   0.000      0.915 1.000 0.000
#> SRR1192499     1   0.000      0.915 1.000 0.000
#> SRR1192641     2   0.738      1.000 0.208 0.792
#> SRR1192640     2   0.738      1.000 0.208 0.792
#> SRR1192643     2   0.738      1.000 0.208 0.792
#> SRR1192642     2   0.738      1.000 0.208 0.792
#> SRR1192644     2   0.738      1.000 0.208 0.792
#> SRR1192645     2   0.738      1.000 0.208 0.792
#> SRR1192646     2   0.738      1.000 0.208 0.792
#> SRR1192647     2   0.738      1.000 0.208 0.792
#> SRR1192836     2   0.738      1.000 0.208 0.792
#> SRR1192838     2   0.738      1.000 0.208 0.792
#> SRR1192837     2   0.738      1.000 0.208 0.792
#> SRR1192839     2   0.738      1.000 0.208 0.792
#> SRR1192963     2   0.738      1.000 0.208 0.792
#> SRR1192966     2   0.738      1.000 0.208 0.792
#> SRR1192965     2   0.738      1.000 0.208 0.792
#> SRR1192964     2   0.738      1.000 0.208 0.792
#> SRR1193005     1   0.000      0.915 1.000 0.000
#> SRR1193006     1   0.000      0.915 1.000 0.000
#> SRR1193007     1   0.000      0.915 1.000 0.000
#> SRR1193008     1   0.000      0.915 1.000 0.000
#> SRR1193011     1   0.000      0.915 1.000 0.000
#> SRR1193012     1   0.000      0.915 1.000 0.000
#> SRR1193009     1   0.000      0.915 1.000 0.000
#> SRR1193010     1   0.000      0.915 1.000 0.000
#> SRR1193014     1   0.000      0.915 1.000 0.000
#> SRR1193015     1   0.000      0.915 1.000 0.000
#> SRR1193013     1   0.000      0.915 1.000 0.000
#> SRR1193018     1   0.000      0.915 1.000 0.000
#> SRR1193016     1   0.000      0.915 1.000 0.000
#> SRR1193017     1   0.000      0.915 1.000 0.000
#> SRR1193100     1   0.000      0.915 1.000 0.000
#> SRR1193101     1   0.000      0.915 1.000 0.000
#> SRR1193102     1   0.000      0.915 1.000 0.000
#> SRR1193104     1   0.000      0.915 1.000 0.000
#> SRR1193103     1   0.000      0.915 1.000 0.000
#> SRR1193105     1   0.000      0.915 1.000 0.000
#> SRR1193106     1   0.000      0.915 1.000 0.000
#> SRR1193198     1   0.000      0.915 1.000 0.000
#> SRR1193197     1   0.000      0.915 1.000 0.000
#> SRR1193199     1   0.000      0.915 1.000 0.000
#> SRR1193405     1   0.000      0.915 1.000 0.000
#> SRR1193404     1   0.000      0.915 1.000 0.000
#> SRR1193403     1   0.000      0.915 1.000 0.000
#> SRR1193522     1   0.000      0.915 1.000 0.000
#> SRR1193523     1   0.000      0.915 1.000 0.000
#> SRR1193524     1   0.000      0.915 1.000 0.000
#> SRR1193638     1   0.000      0.915 1.000 0.000
#> SRR1193639     1   0.000      0.915 1.000 0.000
#> SRR1195621     1   0.000      0.915 1.000 0.000
#> SRR1195619     1   0.000      0.915 1.000 0.000
#> SRR1195620     1   0.000      0.915 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1190372     2   0.474      0.936 0.028 0.836 0.136
#> SRR1190371     2   0.474      0.936 0.028 0.836 0.136
#> SRR1190370     2   0.474      0.936 0.028 0.836 0.136
#> SRR1190368     2   0.474      0.936 0.028 0.836 0.136
#> SRR1190369     2   0.474      0.936 0.028 0.836 0.136
#> SRR1190366     2   0.474      0.936 0.028 0.836 0.136
#> SRR1190367     2   0.474      0.936 0.028 0.836 0.136
#> SRR1190365     2   0.474      0.936 0.028 0.836 0.136
#> SRR1190467     3   0.563      0.990 0.144 0.056 0.800
#> SRR1190466     3   0.563      0.990 0.144 0.056 0.800
#> SRR1190465     3   0.563      0.990 0.144 0.056 0.800
#> SRR1190464     3   0.563      0.990 0.144 0.056 0.800
#> SRR1190462     3   0.563      0.990 0.144 0.056 0.800
#> SRR1190461     3   0.563      0.990 0.144 0.056 0.800
#> SRR1190460     3   0.563      0.990 0.144 0.056 0.800
#> SRR1190509     1   0.000      0.991 1.000 0.000 0.000
#> SRR1190504     1   0.000      0.991 1.000 0.000 0.000
#> SRR1190503     1   0.000      0.991 1.000 0.000 0.000
#> SRR1190502     1   0.000      0.991 1.000 0.000 0.000
#> SRR1190508     1   0.000      0.991 1.000 0.000 0.000
#> SRR1190507     1   0.000      0.991 1.000 0.000 0.000
#> SRR1190506     1   0.000      0.991 1.000 0.000 0.000
#> SRR1190505     1   0.000      0.991 1.000 0.000 0.000
#> SRR1191342     2   0.116      0.935 0.028 0.972 0.000
#> SRR1191344     2   0.116      0.935 0.028 0.972 0.000
#> SRR1191343     2   0.116      0.935 0.028 0.972 0.000
#> SRR1191349     2   0.116      0.935 0.028 0.972 0.000
#> SRR1191345     2   0.116      0.935 0.028 0.972 0.000
#> SRR1191346     2   0.116      0.935 0.028 0.972 0.000
#> SRR1191347     2   0.116      0.935 0.028 0.972 0.000
#> SRR1191348     2   0.116      0.935 0.028 0.972 0.000
#> SRR1191668     1   0.000      0.991 1.000 0.000 0.000
#> SRR1191667     1   0.000      0.991 1.000 0.000 0.000
#> SRR1191673     1   0.000      0.991 1.000 0.000 0.000
#> SRR1191672     1   0.000      0.991 1.000 0.000 0.000
#> SRR1191695     3   0.487      0.992 0.144 0.028 0.828
#> SRR1191694     3   0.487      0.992 0.144 0.028 0.828
#> SRR1191783     3   0.487      0.992 0.144 0.028 0.828
#> SRR1191876     3   0.487      0.992 0.144 0.028 0.828
#> SRR1191914     1   0.000      0.991 1.000 0.000 0.000
#> SRR1191915     1   0.000      0.991 1.000 0.000 0.000
#> SRR1191953     1   0.000      0.991 1.000 0.000 0.000
#> SRR1191954     1   0.000      0.991 1.000 0.000 0.000
#> SRR1191990     1   0.000      0.991 1.000 0.000 0.000
#> SRR1191991     1   0.000      0.991 1.000 0.000 0.000
#> SRR1192016     3   0.487      0.992 0.144 0.028 0.828
#> SRR1192017     3   0.487      0.992 0.144 0.028 0.828
#> SRR1192073     3   0.487      0.992 0.144 0.028 0.828
#> SRR1192072     3   0.487      0.992 0.144 0.028 0.828
#> SRR1192167     1   0.000      0.991 1.000 0.000 0.000
#> SRR1192166     1   0.000      0.991 1.000 0.000 0.000
#> SRR1192321     3   0.487      0.992 0.144 0.028 0.828
#> SRR1192353     1   0.000      0.991 1.000 0.000 0.000
#> SRR1192354     1   0.000      0.991 1.000 0.000 0.000
#> SRR1192370     1   0.116      0.978 0.972 0.000 0.028
#> SRR1192371     1   0.116      0.978 0.972 0.000 0.028
#> SRR1192399     1   0.000      0.991 1.000 0.000 0.000
#> SRR1192398     1   0.000      0.991 1.000 0.000 0.000
#> SRR1192417     2   0.116      0.935 0.028 0.972 0.000
#> SRR1192418     2   0.116      0.935 0.028 0.972 0.000
#> SRR1192415     2   0.116      0.935 0.028 0.972 0.000
#> SRR1192416     2   0.116      0.935 0.028 0.972 0.000
#> SRR1192413     2   0.116      0.935 0.028 0.972 0.000
#> SRR1192414     2   0.116      0.935 0.028 0.972 0.000
#> SRR1192420     2   0.116      0.935 0.028 0.972 0.000
#> SRR1192419     2   0.116      0.935 0.028 0.972 0.000
#> SRR1192471     1   0.116      0.978 0.972 0.000 0.028
#> SRR1192470     1   0.116      0.978 0.972 0.000 0.028
#> SRR1192469     1   0.116      0.978 0.972 0.000 0.028
#> SRR1192468     1   0.116      0.978 0.972 0.000 0.028
#> SRR1192467     1   0.116      0.978 0.972 0.000 0.028
#> SRR1192466     1   0.116      0.978 0.972 0.000 0.028
#> SRR1192465     1   0.116      0.978 0.972 0.000 0.028
#> SRR1192500     1   0.000      0.991 1.000 0.000 0.000
#> SRR1192501     1   0.000      0.991 1.000 0.000 0.000
#> SRR1192502     1   0.000      0.991 1.000 0.000 0.000
#> SRR1192503     1   0.000      0.991 1.000 0.000 0.000
#> SRR1192496     1   0.000      0.991 1.000 0.000 0.000
#> SRR1192497     1   0.000      0.991 1.000 0.000 0.000
#> SRR1192499     1   0.000      0.991 1.000 0.000 0.000
#> SRR1192641     2   0.474      0.936 0.028 0.836 0.136
#> SRR1192640     2   0.474      0.936 0.028 0.836 0.136
#> SRR1192643     2   0.474      0.936 0.028 0.836 0.136
#> SRR1192642     2   0.474      0.936 0.028 0.836 0.136
#> SRR1192644     2   0.474      0.936 0.028 0.836 0.136
#> SRR1192645     2   0.474      0.936 0.028 0.836 0.136
#> SRR1192646     2   0.474      0.936 0.028 0.836 0.136
#> SRR1192647     2   0.474      0.936 0.028 0.836 0.136
#> SRR1192836     2   0.191      0.928 0.028 0.956 0.016
#> SRR1192838     2   0.191      0.928 0.028 0.956 0.016
#> SRR1192837     2   0.191      0.928 0.028 0.956 0.016
#> SRR1192839     2   0.191      0.928 0.028 0.956 0.016
#> SRR1192963     2   0.474      0.936 0.028 0.836 0.136
#> SRR1192966     2   0.474      0.936 0.028 0.836 0.136
#> SRR1192965     2   0.474      0.936 0.028 0.836 0.136
#> SRR1192964     2   0.474      0.936 0.028 0.836 0.136
#> SRR1193005     1   0.000      0.991 1.000 0.000 0.000
#> SRR1193006     1   0.000      0.991 1.000 0.000 0.000
#> SRR1193007     1   0.000      0.991 1.000 0.000 0.000
#> SRR1193008     1   0.000      0.991 1.000 0.000 0.000
#> SRR1193011     1   0.116      0.978 0.972 0.000 0.028
#> SRR1193012     1   0.116      0.978 0.972 0.000 0.028
#> SRR1193009     1   0.116      0.978 0.972 0.000 0.028
#> SRR1193010     1   0.116      0.978 0.972 0.000 0.028
#> SRR1193014     1   0.000      0.991 1.000 0.000 0.000
#> SRR1193015     1   0.000      0.991 1.000 0.000 0.000
#> SRR1193013     1   0.000      0.991 1.000 0.000 0.000
#> SRR1193018     1   0.000      0.991 1.000 0.000 0.000
#> SRR1193016     1   0.000      0.991 1.000 0.000 0.000
#> SRR1193017     1   0.000      0.991 1.000 0.000 0.000
#> SRR1193100     1   0.000      0.991 1.000 0.000 0.000
#> SRR1193101     1   0.000      0.991 1.000 0.000 0.000
#> SRR1193102     1   0.000      0.991 1.000 0.000 0.000
#> SRR1193104     1   0.116      0.978 0.972 0.000 0.028
#> SRR1193103     1   0.116      0.978 0.972 0.000 0.028
#> SRR1193105     1   0.116      0.978 0.972 0.000 0.028
#> SRR1193106     1   0.116      0.978 0.972 0.000 0.028
#> SRR1193198     1   0.000      0.991 1.000 0.000 0.000
#> SRR1193197     1   0.000      0.991 1.000 0.000 0.000
#> SRR1193199     1   0.000      0.991 1.000 0.000 0.000
#> SRR1193405     1   0.000      0.991 1.000 0.000 0.000
#> SRR1193404     1   0.000      0.991 1.000 0.000 0.000
#> SRR1193403     1   0.000      0.991 1.000 0.000 0.000
#> SRR1193522     1   0.000      0.991 1.000 0.000 0.000
#> SRR1193523     1   0.000      0.991 1.000 0.000 0.000
#> SRR1193524     1   0.000      0.991 1.000 0.000 0.000
#> SRR1193638     1   0.116      0.978 0.972 0.000 0.028
#> SRR1193639     1   0.116      0.978 0.972 0.000 0.028
#> SRR1195621     1   0.116      0.978 0.972 0.000 0.028
#> SRR1195619     1   0.116      0.978 0.972 0.000 0.028
#> SRR1195620     1   0.116      0.978 0.972 0.000 0.028

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3 p4
#> SRR1190372     2  0.1042      0.813 0.008 0.972 0.020 NA
#> SRR1190371     2  0.1042      0.813 0.008 0.972 0.020 NA
#> SRR1190370     2  0.1042      0.813 0.008 0.972 0.020 NA
#> SRR1190368     2  0.1042      0.813 0.008 0.972 0.020 NA
#> SRR1190369     2  0.1042      0.813 0.008 0.972 0.020 NA
#> SRR1190366     2  0.1042      0.813 0.008 0.972 0.020 NA
#> SRR1190367     2  0.1042      0.813 0.008 0.972 0.020 NA
#> SRR1190365     2  0.1042      0.813 0.008 0.972 0.020 NA
#> SRR1190467     3  0.3004      0.977 0.048 0.000 0.892 NA
#> SRR1190466     3  0.3004      0.977 0.048 0.000 0.892 NA
#> SRR1190465     3  0.3004      0.977 0.048 0.000 0.892 NA
#> SRR1190464     3  0.3110      0.977 0.048 0.004 0.892 NA
#> SRR1190462     3  0.3110      0.977 0.048 0.004 0.892 NA
#> SRR1190461     3  0.3004      0.977 0.048 0.000 0.892 NA
#> SRR1190460     3  0.3004      0.977 0.048 0.000 0.892 NA
#> SRR1190509     1  0.1022      0.859 0.968 0.000 0.000 NA
#> SRR1190504     1  0.1022      0.859 0.968 0.000 0.000 NA
#> SRR1190503     1  0.1022      0.859 0.968 0.000 0.000 NA
#> SRR1190502     1  0.1022      0.859 0.968 0.000 0.000 NA
#> SRR1190508     1  0.1022      0.859 0.968 0.000 0.000 NA
#> SRR1190507     1  0.1022      0.859 0.968 0.000 0.000 NA
#> SRR1190506     1  0.1022      0.859 0.968 0.000 0.000 NA
#> SRR1190505     1  0.1022      0.859 0.968 0.000 0.000 NA
#> SRR1191342     2  0.5230      0.811 0.008 0.620 0.004 NA
#> SRR1191344     2  0.5230      0.811 0.008 0.620 0.004 NA
#> SRR1191343     2  0.5230      0.811 0.008 0.620 0.004 NA
#> SRR1191349     2  0.5230      0.811 0.008 0.620 0.004 NA
#> SRR1191345     2  0.5230      0.811 0.008 0.620 0.004 NA
#> SRR1191346     2  0.5230      0.811 0.008 0.620 0.004 NA
#> SRR1191347     2  0.5230      0.811 0.008 0.620 0.004 NA
#> SRR1191348     2  0.5230      0.811 0.008 0.620 0.004 NA
#> SRR1191668     1  0.2704      0.796 0.876 0.000 0.000 NA
#> SRR1191667     1  0.2704      0.796 0.876 0.000 0.000 NA
#> SRR1191673     1  0.2704      0.796 0.876 0.000 0.000 NA
#> SRR1191672     1  0.2704      0.796 0.876 0.000 0.000 NA
#> SRR1191695     3  0.1576      0.981 0.048 0.000 0.948 NA
#> SRR1191694     3  0.1576      0.981 0.048 0.000 0.948 NA
#> SRR1191783     3  0.1576      0.981 0.048 0.000 0.948 NA
#> SRR1191876     3  0.1576      0.981 0.048 0.000 0.948 NA
#> SRR1191914     1  0.0000      0.864 1.000 0.000 0.000 NA
#> SRR1191915     1  0.0188      0.864 0.996 0.000 0.000 NA
#> SRR1191953     1  0.0336      0.864 0.992 0.000 0.000 NA
#> SRR1191954     1  0.0336      0.864 0.992 0.000 0.000 NA
#> SRR1191990     1  0.1022      0.858 0.968 0.000 0.000 NA
#> SRR1191991     1  0.1022      0.858 0.968 0.000 0.000 NA
#> SRR1192016     3  0.1576      0.982 0.048 0.004 0.948 NA
#> SRR1192017     3  0.1576      0.982 0.048 0.004 0.948 NA
#> SRR1192073     3  0.1576      0.982 0.048 0.004 0.948 NA
#> SRR1192072     3  0.1576      0.982 0.048 0.004 0.948 NA
#> SRR1192167     1  0.2704      0.796 0.876 0.000 0.000 NA
#> SRR1192166     1  0.2704      0.796 0.876 0.000 0.000 NA
#> SRR1192321     3  0.1576      0.982 0.048 0.004 0.948 NA
#> SRR1192353     1  0.0000      0.864 1.000 0.000 0.000 NA
#> SRR1192354     1  0.0000      0.864 1.000 0.000 0.000 NA
#> SRR1192370     1  0.4746      0.676 0.632 0.000 0.000 NA
#> SRR1192371     1  0.4746      0.676 0.632 0.000 0.000 NA
#> SRR1192399     1  0.0188      0.864 0.996 0.000 0.000 NA
#> SRR1192398     1  0.0188      0.864 0.996 0.000 0.000 NA
#> SRR1192417     2  0.5230      0.811 0.008 0.620 0.004 NA
#> SRR1192418     2  0.5230      0.811 0.008 0.620 0.004 NA
#> SRR1192415     2  0.5230      0.811 0.008 0.620 0.004 NA
#> SRR1192416     2  0.5230      0.811 0.008 0.620 0.004 NA
#> SRR1192413     2  0.5230      0.811 0.008 0.620 0.004 NA
#> SRR1192414     2  0.5230      0.811 0.008 0.620 0.004 NA
#> SRR1192420     2  0.5230      0.811 0.008 0.620 0.004 NA
#> SRR1192419     2  0.5230      0.811 0.008 0.620 0.004 NA
#> SRR1192471     1  0.4746      0.676 0.632 0.000 0.000 NA
#> SRR1192470     1  0.4746      0.676 0.632 0.000 0.000 NA
#> SRR1192469     1  0.4746      0.676 0.632 0.000 0.000 NA
#> SRR1192468     1  0.4746      0.676 0.632 0.000 0.000 NA
#> SRR1192467     1  0.4746      0.676 0.632 0.000 0.000 NA
#> SRR1192466     1  0.4746      0.676 0.632 0.000 0.000 NA
#> SRR1192465     1  0.4746      0.676 0.632 0.000 0.000 NA
#> SRR1192500     1  0.0817      0.861 0.976 0.000 0.000 NA
#> SRR1192501     1  0.0817      0.861 0.976 0.000 0.000 NA
#> SRR1192502     1  0.0817      0.861 0.976 0.000 0.000 NA
#> SRR1192503     1  0.0817      0.861 0.976 0.000 0.000 NA
#> SRR1192496     1  0.0817      0.861 0.976 0.000 0.000 NA
#> SRR1192497     1  0.0817      0.861 0.976 0.000 0.000 NA
#> SRR1192499     1  0.0817      0.861 0.976 0.000 0.000 NA
#> SRR1192641     2  0.0336      0.814 0.008 0.992 0.000 NA
#> SRR1192640     2  0.0336      0.814 0.008 0.992 0.000 NA
#> SRR1192643     2  0.0336      0.814 0.008 0.992 0.000 NA
#> SRR1192642     2  0.0336      0.814 0.008 0.992 0.000 NA
#> SRR1192644     2  0.0336      0.814 0.008 0.992 0.000 NA
#> SRR1192645     2  0.0336      0.814 0.008 0.992 0.000 NA
#> SRR1192646     2  0.0336      0.814 0.008 0.992 0.000 NA
#> SRR1192647     2  0.0336      0.814 0.008 0.992 0.000 NA
#> SRR1192836     2  0.6039      0.781 0.008 0.568 0.032 NA
#> SRR1192838     2  0.6039      0.781 0.008 0.568 0.032 NA
#> SRR1192837     2  0.6039      0.781 0.008 0.568 0.032 NA
#> SRR1192839     2  0.6039      0.781 0.008 0.568 0.032 NA
#> SRR1192963     2  0.0672      0.812 0.008 0.984 0.000 NA
#> SRR1192966     2  0.0672      0.812 0.008 0.984 0.000 NA
#> SRR1192965     2  0.0672      0.812 0.008 0.984 0.000 NA
#> SRR1192964     2  0.0672      0.812 0.008 0.984 0.000 NA
#> SRR1193005     1  0.0921      0.861 0.972 0.000 0.000 NA
#> SRR1193006     1  0.0921      0.861 0.972 0.000 0.000 NA
#> SRR1193007     1  0.0921      0.861 0.972 0.000 0.000 NA
#> SRR1193008     1  0.0921      0.861 0.972 0.000 0.000 NA
#> SRR1193011     1  0.4761      0.674 0.628 0.000 0.000 NA
#> SRR1193012     1  0.4761      0.674 0.628 0.000 0.000 NA
#> SRR1193009     1  0.4761      0.674 0.628 0.000 0.000 NA
#> SRR1193010     1  0.4761      0.674 0.628 0.000 0.000 NA
#> SRR1193014     1  0.0000      0.864 1.000 0.000 0.000 NA
#> SRR1193015     1  0.0000      0.864 1.000 0.000 0.000 NA
#> SRR1193013     1  0.0000      0.864 1.000 0.000 0.000 NA
#> SRR1193018     1  0.0336      0.864 0.992 0.000 0.000 NA
#> SRR1193016     1  0.0336      0.864 0.992 0.000 0.000 NA
#> SRR1193017     1  0.0336      0.864 0.992 0.000 0.000 NA
#> SRR1193100     1  0.0336      0.864 0.992 0.000 0.000 NA
#> SRR1193101     1  0.0336      0.864 0.992 0.000 0.000 NA
#> SRR1193102     1  0.0336      0.864 0.992 0.000 0.000 NA
#> SRR1193104     1  0.4776      0.673 0.624 0.000 0.000 NA
#> SRR1193103     1  0.4776      0.673 0.624 0.000 0.000 NA
#> SRR1193105     1  0.4776      0.673 0.624 0.000 0.000 NA
#> SRR1193106     1  0.4776      0.673 0.624 0.000 0.000 NA
#> SRR1193198     1  0.0000      0.864 1.000 0.000 0.000 NA
#> SRR1193197     1  0.0000      0.864 1.000 0.000 0.000 NA
#> SRR1193199     1  0.0000      0.864 1.000 0.000 0.000 NA
#> SRR1193405     1  0.0336      0.864 0.992 0.000 0.000 NA
#> SRR1193404     1  0.0336      0.864 0.992 0.000 0.000 NA
#> SRR1193403     1  0.0336      0.864 0.992 0.000 0.000 NA
#> SRR1193522     1  0.0336      0.864 0.992 0.000 0.000 NA
#> SRR1193523     1  0.0336      0.864 0.992 0.000 0.000 NA
#> SRR1193524     1  0.0336      0.864 0.992 0.000 0.000 NA
#> SRR1193638     1  0.4776      0.673 0.624 0.000 0.000 NA
#> SRR1193639     1  0.4776      0.673 0.624 0.000 0.000 NA
#> SRR1195621     1  0.4776      0.673 0.624 0.000 0.000 NA
#> SRR1195619     1  0.4776      0.673 0.624 0.000 0.000 NA
#> SRR1195620     1  0.4776      0.673 0.624 0.000 0.000 NA

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1190372     2  0.5442      0.759 0.052 0.536 0.004 0.408 0.000
#> SRR1190371     2  0.5442      0.759 0.052 0.536 0.004 0.408 0.000
#> SRR1190370     2  0.5442      0.759 0.052 0.536 0.004 0.408 0.000
#> SRR1190368     2  0.5442      0.759 0.052 0.536 0.004 0.408 0.000
#> SRR1190369     2  0.5442      0.759 0.052 0.536 0.004 0.408 0.000
#> SRR1190366     2  0.5442      0.759 0.052 0.536 0.004 0.408 0.000
#> SRR1190367     2  0.5442      0.759 0.052 0.536 0.004 0.408 0.000
#> SRR1190365     2  0.5442      0.759 0.052 0.536 0.004 0.408 0.000
#> SRR1190467     3  0.2110      0.964 0.016 0.000 0.912 0.072 0.000
#> SRR1190466     3  0.2110      0.964 0.016 0.000 0.912 0.072 0.000
#> SRR1190465     3  0.2110      0.964 0.016 0.000 0.912 0.072 0.000
#> SRR1190464     3  0.2110      0.964 0.016 0.000 0.912 0.072 0.000
#> SRR1190462     3  0.2110      0.964 0.016 0.000 0.912 0.072 0.000
#> SRR1190461     3  0.2110      0.964 0.016 0.000 0.912 0.072 0.000
#> SRR1190460     3  0.2110      0.964 0.016 0.000 0.912 0.072 0.000
#> SRR1190509     1  0.5039      0.841 0.676 0.000 0.000 0.080 0.244
#> SRR1190504     1  0.5039      0.841 0.676 0.000 0.000 0.080 0.244
#> SRR1190503     1  0.5039      0.841 0.676 0.000 0.000 0.080 0.244
#> SRR1190502     1  0.5039      0.841 0.676 0.000 0.000 0.080 0.244
#> SRR1190508     1  0.5039      0.841 0.676 0.000 0.000 0.080 0.244
#> SRR1190507     1  0.5039      0.841 0.676 0.000 0.000 0.080 0.244
#> SRR1190506     1  0.5039      0.841 0.676 0.000 0.000 0.080 0.244
#> SRR1190505     1  0.5039      0.841 0.676 0.000 0.000 0.080 0.244
#> SRR1191342     2  0.0000      0.765 0.000 1.000 0.000 0.000 0.000
#> SRR1191344     2  0.0000      0.765 0.000 1.000 0.000 0.000 0.000
#> SRR1191343     2  0.0000      0.765 0.000 1.000 0.000 0.000 0.000
#> SRR1191349     2  0.0000      0.765 0.000 1.000 0.000 0.000 0.000
#> SRR1191345     2  0.0000      0.765 0.000 1.000 0.000 0.000 0.000
#> SRR1191346     2  0.0000      0.765 0.000 1.000 0.000 0.000 0.000
#> SRR1191347     2  0.0000      0.765 0.000 1.000 0.000 0.000 0.000
#> SRR1191348     2  0.0000      0.765 0.000 1.000 0.000 0.000 0.000
#> SRR1191668     1  0.6183      0.563 0.544 0.000 0.000 0.276 0.180
#> SRR1191667     1  0.6183      0.563 0.544 0.000 0.000 0.276 0.180
#> SRR1191673     1  0.6200      0.563 0.540 0.000 0.000 0.280 0.180
#> SRR1191672     1  0.6200      0.563 0.540 0.000 0.000 0.280 0.180
#> SRR1191695     3  0.0290      0.971 0.008 0.000 0.992 0.000 0.000
#> SRR1191694     3  0.0290      0.971 0.008 0.000 0.992 0.000 0.000
#> SRR1191783     3  0.0290      0.971 0.008 0.000 0.992 0.000 0.000
#> SRR1191876     3  0.0290      0.971 0.008 0.000 0.992 0.000 0.000
#> SRR1191914     1  0.3774      0.859 0.704 0.000 0.000 0.000 0.296
#> SRR1191915     1  0.3796      0.859 0.700 0.000 0.000 0.000 0.300
#> SRR1191953     1  0.3730      0.861 0.712 0.000 0.000 0.000 0.288
#> SRR1191954     1  0.3730      0.861 0.712 0.000 0.000 0.000 0.288
#> SRR1191990     1  0.5163      0.812 0.636 0.000 0.000 0.068 0.296
#> SRR1191991     1  0.5163      0.812 0.636 0.000 0.000 0.068 0.296
#> SRR1192016     3  0.0290      0.971 0.000 0.000 0.992 0.008 0.000
#> SRR1192017     3  0.0290      0.971 0.000 0.000 0.992 0.008 0.000
#> SRR1192073     3  0.0290      0.971 0.000 0.000 0.992 0.008 0.000
#> SRR1192072     3  0.0290      0.971 0.000 0.000 0.992 0.008 0.000
#> SRR1192167     1  0.6183      0.563 0.544 0.000 0.000 0.276 0.180
#> SRR1192166     1  0.6183      0.563 0.544 0.000 0.000 0.276 0.180
#> SRR1192321     3  0.0290      0.971 0.000 0.000 0.992 0.008 0.000
#> SRR1192353     1  0.4360      0.855 0.680 0.000 0.000 0.020 0.300
#> SRR1192354     1  0.4360      0.855 0.680 0.000 0.000 0.020 0.300
#> SRR1192370     5  0.0912      0.969 0.016 0.000 0.000 0.012 0.972
#> SRR1192371     5  0.0912      0.969 0.016 0.000 0.000 0.012 0.972
#> SRR1192399     1  0.4558      0.836 0.652 0.000 0.000 0.024 0.324
#> SRR1192398     1  0.4558      0.836 0.652 0.000 0.000 0.024 0.324
#> SRR1192417     2  0.0000      0.765 0.000 1.000 0.000 0.000 0.000
#> SRR1192418     2  0.0000      0.765 0.000 1.000 0.000 0.000 0.000
#> SRR1192415     2  0.0000      0.765 0.000 1.000 0.000 0.000 0.000
#> SRR1192416     2  0.0000      0.765 0.000 1.000 0.000 0.000 0.000
#> SRR1192413     2  0.0000      0.765 0.000 1.000 0.000 0.000 0.000
#> SRR1192414     2  0.0000      0.765 0.000 1.000 0.000 0.000 0.000
#> SRR1192420     2  0.0000      0.765 0.000 1.000 0.000 0.000 0.000
#> SRR1192419     2  0.0000      0.765 0.000 1.000 0.000 0.000 0.000
#> SRR1192471     5  0.0693      0.971 0.012 0.000 0.000 0.008 0.980
#> SRR1192470     5  0.0693      0.971 0.012 0.000 0.000 0.008 0.980
#> SRR1192469     5  0.0693      0.971 0.012 0.000 0.000 0.008 0.980
#> SRR1192468     5  0.0693      0.971 0.012 0.000 0.000 0.008 0.980
#> SRR1192467     5  0.0693      0.971 0.012 0.000 0.000 0.008 0.980
#> SRR1192466     5  0.0693      0.971 0.012 0.000 0.000 0.008 0.980
#> SRR1192465     5  0.0693      0.971 0.012 0.000 0.000 0.008 0.980
#> SRR1192500     1  0.5164      0.842 0.660 0.000 0.000 0.084 0.256
#> SRR1192501     1  0.5164      0.842 0.660 0.000 0.000 0.084 0.256
#> SRR1192502     1  0.5164      0.842 0.660 0.000 0.000 0.084 0.256
#> SRR1192503     1  0.5164      0.842 0.660 0.000 0.000 0.084 0.256
#> SRR1192496     1  0.5164      0.842 0.660 0.000 0.000 0.084 0.256
#> SRR1192497     1  0.5164      0.842 0.660 0.000 0.000 0.084 0.256
#> SRR1192499     1  0.5164      0.842 0.660 0.000 0.000 0.084 0.256
#> SRR1192641     2  0.4684      0.760 0.008 0.536 0.004 0.452 0.000
#> SRR1192640     2  0.4684      0.760 0.008 0.536 0.004 0.452 0.000
#> SRR1192643     2  0.4684      0.760 0.008 0.536 0.004 0.452 0.000
#> SRR1192642     2  0.4684      0.760 0.008 0.536 0.004 0.452 0.000
#> SRR1192644     2  0.4684      0.760 0.008 0.536 0.004 0.452 0.000
#> SRR1192645     2  0.4684      0.760 0.008 0.536 0.004 0.452 0.000
#> SRR1192646     2  0.4684      0.760 0.008 0.536 0.004 0.452 0.000
#> SRR1192647     2  0.4684      0.760 0.008 0.536 0.004 0.452 0.000
#> SRR1192836     2  0.2300      0.740 0.072 0.904 0.000 0.024 0.000
#> SRR1192838     2  0.2300      0.740 0.072 0.904 0.000 0.024 0.000
#> SRR1192837     2  0.2300      0.740 0.072 0.904 0.000 0.024 0.000
#> SRR1192839     2  0.2300      0.740 0.072 0.904 0.000 0.024 0.000
#> SRR1192963     2  0.4865      0.760 0.016 0.536 0.004 0.444 0.000
#> SRR1192966     2  0.4865      0.760 0.016 0.536 0.004 0.444 0.000
#> SRR1192965     2  0.4865      0.760 0.016 0.536 0.004 0.444 0.000
#> SRR1192964     2  0.4865      0.760 0.016 0.536 0.004 0.444 0.000
#> SRR1193005     1  0.5312      0.837 0.648 0.000 0.000 0.096 0.256
#> SRR1193006     1  0.5312      0.837 0.648 0.000 0.000 0.096 0.256
#> SRR1193007     1  0.5312      0.837 0.648 0.000 0.000 0.096 0.256
#> SRR1193008     1  0.5312      0.837 0.648 0.000 0.000 0.096 0.256
#> SRR1193011     5  0.0912      0.968 0.012 0.000 0.000 0.016 0.972
#> SRR1193012     5  0.0912      0.968 0.012 0.000 0.000 0.016 0.972
#> SRR1193009     5  0.0912      0.968 0.012 0.000 0.000 0.016 0.972
#> SRR1193010     5  0.0912      0.968 0.012 0.000 0.000 0.016 0.972
#> SRR1193014     1  0.4088      0.859 0.688 0.000 0.000 0.008 0.304
#> SRR1193015     1  0.4088      0.859 0.688 0.000 0.000 0.008 0.304
#> SRR1193013     1  0.4088      0.859 0.688 0.000 0.000 0.008 0.304
#> SRR1193018     1  0.4309      0.857 0.676 0.000 0.000 0.016 0.308
#> SRR1193016     1  0.4309      0.857 0.676 0.000 0.000 0.016 0.308
#> SRR1193017     1  0.4309      0.857 0.676 0.000 0.000 0.016 0.308
#> SRR1193100     1  0.4309      0.857 0.676 0.000 0.000 0.016 0.308
#> SRR1193101     1  0.4309      0.857 0.676 0.000 0.000 0.016 0.308
#> SRR1193102     1  0.4309      0.857 0.676 0.000 0.000 0.016 0.308
#> SRR1193104     5  0.0992      0.966 0.008 0.000 0.000 0.024 0.968
#> SRR1193103     5  0.0992      0.966 0.008 0.000 0.000 0.024 0.968
#> SRR1193105     5  0.0693      0.968 0.008 0.000 0.000 0.012 0.980
#> SRR1193106     5  0.0693      0.968 0.008 0.000 0.000 0.012 0.980
#> SRR1193198     1  0.4088      0.859 0.688 0.000 0.000 0.008 0.304
#> SRR1193197     1  0.4088      0.859 0.688 0.000 0.000 0.008 0.304
#> SRR1193199     1  0.4088      0.859 0.688 0.000 0.000 0.008 0.304
#> SRR1193405     1  0.4697      0.848 0.660 0.000 0.000 0.036 0.304
#> SRR1193404     1  0.4697      0.848 0.660 0.000 0.000 0.036 0.304
#> SRR1193403     1  0.4697      0.848 0.660 0.000 0.000 0.036 0.304
#> SRR1193522     1  0.4697      0.848 0.660 0.000 0.000 0.036 0.304
#> SRR1193523     1  0.4697      0.848 0.660 0.000 0.000 0.036 0.304
#> SRR1193524     1  0.4697      0.848 0.660 0.000 0.000 0.036 0.304
#> SRR1193638     5  0.1877      0.943 0.012 0.000 0.000 0.064 0.924
#> SRR1193639     5  0.1877      0.943 0.012 0.000 0.000 0.064 0.924
#> SRR1195621     5  0.1484      0.956 0.008 0.000 0.000 0.048 0.944
#> SRR1195619     5  0.1484      0.956 0.008 0.000 0.000 0.048 0.944
#> SRR1195620     5  0.1484      0.956 0.008 0.000 0.000 0.048 0.944

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1190372     2  0.5643      0.910 0.000 0.488 0.000 0.412 0.064 0.036
#> SRR1190371     2  0.5643      0.910 0.000 0.488 0.000 0.412 0.064 0.036
#> SRR1190370     2  0.5643      0.910 0.000 0.488 0.000 0.412 0.064 0.036
#> SRR1190368     2  0.5643      0.910 0.000 0.488 0.000 0.412 0.064 0.036
#> SRR1190369     2  0.5643      0.910 0.000 0.488 0.000 0.412 0.064 0.036
#> SRR1190366     2  0.5643      0.910 0.000 0.488 0.000 0.412 0.064 0.036
#> SRR1190367     2  0.5643      0.910 0.000 0.488 0.000 0.412 0.064 0.036
#> SRR1190365     2  0.5643      0.910 0.000 0.488 0.000 0.412 0.064 0.036
#> SRR1190467     3  0.3228      0.932 0.004 0.076 0.852 0.000 0.020 0.048
#> SRR1190466     3  0.3237      0.932 0.004 0.072 0.852 0.000 0.020 0.052
#> SRR1190465     3  0.3237      0.932 0.004 0.072 0.852 0.000 0.020 0.052
#> SRR1190464     3  0.3228      0.932 0.004 0.076 0.852 0.000 0.020 0.048
#> SRR1190462     3  0.3228      0.932 0.004 0.076 0.852 0.000 0.020 0.048
#> SRR1190461     3  0.3237      0.932 0.004 0.072 0.852 0.000 0.020 0.052
#> SRR1190460     3  0.3237      0.932 0.004 0.072 0.852 0.000 0.020 0.052
#> SRR1190509     1  0.0777      0.640 0.972 0.004 0.000 0.000 0.000 0.024
#> SRR1190504     1  0.0777      0.640 0.972 0.004 0.000 0.000 0.000 0.024
#> SRR1190503     1  0.0777      0.640 0.972 0.004 0.000 0.000 0.000 0.024
#> SRR1190502     1  0.0777      0.640 0.972 0.004 0.000 0.000 0.000 0.024
#> SRR1190508     1  0.0777      0.640 0.972 0.004 0.000 0.000 0.000 0.024
#> SRR1190507     1  0.0777      0.640 0.972 0.004 0.000 0.000 0.000 0.024
#> SRR1190506     1  0.0777      0.640 0.972 0.004 0.000 0.000 0.000 0.024
#> SRR1190505     1  0.0777      0.640 0.972 0.004 0.000 0.000 0.000 0.024
#> SRR1191342     4  0.0000      0.935 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191344     4  0.0000      0.935 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191343     4  0.0000      0.935 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191349     4  0.0000      0.935 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191345     4  0.0000      0.935 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191346     4  0.0000      0.935 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191347     4  0.0000      0.935 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191348     4  0.0000      0.935 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191668     6  0.5670      0.996 0.392 0.136 0.000 0.000 0.004 0.468
#> SRR1191667     6  0.5670      0.996 0.392 0.136 0.000 0.000 0.004 0.468
#> SRR1191673     6  0.5739      0.996 0.392 0.132 0.000 0.000 0.008 0.468
#> SRR1191672     6  0.5739      0.996 0.392 0.132 0.000 0.000 0.008 0.468
#> SRR1191695     3  0.0405      0.947 0.004 0.000 0.988 0.000 0.008 0.000
#> SRR1191694     3  0.0405      0.947 0.004 0.000 0.988 0.000 0.008 0.000
#> SRR1191783     3  0.0405      0.947 0.004 0.000 0.988 0.000 0.008 0.000
#> SRR1191876     3  0.0405      0.947 0.004 0.000 0.988 0.000 0.008 0.000
#> SRR1191914     1  0.3755      0.736 0.744 0.000 0.000 0.000 0.036 0.220
#> SRR1191915     1  0.3755      0.736 0.744 0.000 0.000 0.000 0.036 0.220
#> SRR1191953     1  0.3848      0.732 0.736 0.000 0.000 0.000 0.040 0.224
#> SRR1191954     1  0.3848      0.732 0.736 0.000 0.000 0.000 0.040 0.224
#> SRR1191990     1  0.5605      0.394 0.596 0.044 0.000 0.000 0.080 0.280
#> SRR1191991     1  0.5605      0.394 0.596 0.044 0.000 0.000 0.080 0.280
#> SRR1192016     3  0.0405      0.947 0.004 0.008 0.988 0.000 0.000 0.000
#> SRR1192017     3  0.0405      0.947 0.004 0.008 0.988 0.000 0.000 0.000
#> SRR1192073     3  0.0405      0.947 0.004 0.008 0.988 0.000 0.000 0.000
#> SRR1192072     3  0.0405      0.947 0.004 0.008 0.988 0.000 0.000 0.000
#> SRR1192167     6  0.5670      0.996 0.392 0.136 0.000 0.000 0.004 0.468
#> SRR1192166     6  0.5670      0.996 0.392 0.136 0.000 0.000 0.004 0.468
#> SRR1192321     3  0.0405      0.947 0.004 0.008 0.988 0.000 0.000 0.000
#> SRR1192353     1  0.4441      0.700 0.700 0.016 0.000 0.000 0.044 0.240
#> SRR1192354     1  0.4441      0.700 0.700 0.016 0.000 0.000 0.044 0.240
#> SRR1192370     5  0.2632      0.948 0.164 0.000 0.000 0.000 0.832 0.004
#> SRR1192371     5  0.2632      0.948 0.164 0.000 0.000 0.000 0.832 0.004
#> SRR1192399     1  0.4901      0.643 0.664 0.016 0.000 0.000 0.076 0.244
#> SRR1192398     1  0.4901      0.643 0.664 0.016 0.000 0.000 0.076 0.244
#> SRR1192417     4  0.0458      0.935 0.000 0.000 0.000 0.984 0.016 0.000
#> SRR1192418     4  0.0458      0.935 0.000 0.000 0.000 0.984 0.016 0.000
#> SRR1192415     4  0.0458      0.935 0.000 0.000 0.000 0.984 0.016 0.000
#> SRR1192416     4  0.0458      0.935 0.000 0.000 0.000 0.984 0.016 0.000
#> SRR1192413     4  0.0458      0.935 0.000 0.000 0.000 0.984 0.016 0.000
#> SRR1192414     4  0.0458      0.935 0.000 0.000 0.000 0.984 0.016 0.000
#> SRR1192420     4  0.0458      0.935 0.000 0.000 0.000 0.984 0.016 0.000
#> SRR1192419     4  0.0458      0.935 0.000 0.000 0.000 0.984 0.016 0.000
#> SRR1192471     5  0.3908      0.946 0.164 0.040 0.000 0.000 0.776 0.020
#> SRR1192470     5  0.3908      0.946 0.164 0.040 0.000 0.000 0.776 0.020
#> SRR1192469     5  0.3908      0.946 0.164 0.040 0.000 0.000 0.776 0.020
#> SRR1192468     5  0.3908      0.946 0.164 0.040 0.000 0.000 0.776 0.020
#> SRR1192467     5  0.3908      0.946 0.164 0.040 0.000 0.000 0.776 0.020
#> SRR1192466     5  0.3908      0.946 0.164 0.040 0.000 0.000 0.776 0.020
#> SRR1192465     5  0.3908      0.946 0.164 0.040 0.000 0.000 0.776 0.020
#> SRR1192500     1  0.0000      0.665 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1192501     1  0.0000      0.665 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1192502     1  0.0000      0.665 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1192503     1  0.0000      0.665 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1192496     1  0.0000      0.665 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1192497     1  0.0000      0.665 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1192499     1  0.0000      0.665 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1192641     2  0.4151      0.927 0.000 0.576 0.000 0.412 0.008 0.004
#> SRR1192640     2  0.4151      0.927 0.000 0.576 0.000 0.412 0.008 0.004
#> SRR1192643     2  0.4151      0.927 0.000 0.576 0.000 0.412 0.008 0.004
#> SRR1192642     2  0.4151      0.927 0.000 0.576 0.000 0.412 0.008 0.004
#> SRR1192644     2  0.4151      0.927 0.000 0.576 0.000 0.412 0.008 0.004
#> SRR1192645     2  0.4151      0.927 0.000 0.576 0.000 0.412 0.008 0.004
#> SRR1192646     2  0.4151      0.927 0.000 0.576 0.000 0.412 0.008 0.004
#> SRR1192647     2  0.4151      0.927 0.000 0.576 0.000 0.412 0.008 0.004
#> SRR1192836     4  0.3614      0.758 0.000 0.028 0.000 0.792 0.016 0.164
#> SRR1192838     4  0.3614      0.758 0.000 0.028 0.000 0.792 0.016 0.164
#> SRR1192837     4  0.3663      0.758 0.000 0.028 0.000 0.792 0.020 0.160
#> SRR1192839     4  0.3707      0.758 0.000 0.028 0.000 0.792 0.024 0.156
#> SRR1192963     2  0.4986      0.907 0.000 0.540 0.004 0.408 0.012 0.036
#> SRR1192966     2  0.4986      0.907 0.000 0.540 0.004 0.408 0.012 0.036
#> SRR1192965     2  0.4986      0.907 0.000 0.540 0.004 0.408 0.012 0.036
#> SRR1192964     2  0.4986      0.907 0.000 0.540 0.004 0.408 0.012 0.036
#> SRR1193005     1  0.0713      0.638 0.972 0.028 0.000 0.000 0.000 0.000
#> SRR1193006     1  0.0713      0.638 0.972 0.028 0.000 0.000 0.000 0.000
#> SRR1193007     1  0.0713      0.638 0.972 0.028 0.000 0.000 0.000 0.000
#> SRR1193008     1  0.0713      0.638 0.972 0.028 0.000 0.000 0.000 0.000
#> SRR1193011     5  0.4204      0.934 0.164 0.072 0.000 0.000 0.752 0.012
#> SRR1193012     5  0.4204      0.934 0.164 0.072 0.000 0.000 0.752 0.012
#> SRR1193009     5  0.4204      0.934 0.164 0.072 0.000 0.000 0.752 0.012
#> SRR1193010     5  0.4204      0.934 0.164 0.072 0.000 0.000 0.752 0.012
#> SRR1193014     1  0.3808      0.738 0.736 0.000 0.000 0.000 0.036 0.228
#> SRR1193015     1  0.3808      0.738 0.736 0.000 0.000 0.000 0.036 0.228
#> SRR1193013     1  0.3808      0.738 0.736 0.000 0.000 0.000 0.036 0.228
#> SRR1193018     1  0.3794      0.741 0.744 0.000 0.000 0.000 0.040 0.216
#> SRR1193016     1  0.3794      0.741 0.744 0.000 0.000 0.000 0.040 0.216
#> SRR1193017     1  0.3794      0.741 0.744 0.000 0.000 0.000 0.040 0.216
#> SRR1193100     1  0.3794      0.741 0.744 0.000 0.000 0.000 0.040 0.216
#> SRR1193101     1  0.3794      0.741 0.744 0.000 0.000 0.000 0.040 0.216
#> SRR1193102     1  0.3794      0.741 0.744 0.000 0.000 0.000 0.040 0.216
#> SRR1193104     5  0.2994      0.946 0.164 0.008 0.000 0.000 0.820 0.008
#> SRR1193103     5  0.2994      0.946 0.164 0.008 0.000 0.000 0.820 0.008
#> SRR1193105     5  0.2632      0.948 0.164 0.000 0.000 0.000 0.832 0.004
#> SRR1193106     5  0.2632      0.948 0.164 0.000 0.000 0.000 0.832 0.004
#> SRR1193198     1  0.3808      0.738 0.736 0.000 0.000 0.000 0.036 0.228
#> SRR1193197     1  0.3808      0.738 0.736 0.000 0.000 0.000 0.036 0.228
#> SRR1193199     1  0.3808      0.738 0.736 0.000 0.000 0.000 0.036 0.228
#> SRR1193405     1  0.4171      0.728 0.716 0.008 0.000 0.000 0.040 0.236
#> SRR1193404     1  0.4171      0.728 0.716 0.008 0.000 0.000 0.040 0.236
#> SRR1193403     1  0.4171      0.728 0.716 0.008 0.000 0.000 0.040 0.236
#> SRR1193522     1  0.4064      0.731 0.720 0.004 0.000 0.000 0.040 0.236
#> SRR1193523     1  0.4064      0.731 0.720 0.004 0.000 0.000 0.040 0.236
#> SRR1193524     1  0.4064      0.731 0.720 0.004 0.000 0.000 0.040 0.236
#> SRR1193638     5  0.4491      0.907 0.160 0.048 0.000 0.000 0.744 0.048
#> SRR1193639     5  0.4491      0.907 0.160 0.048 0.000 0.000 0.744 0.048
#> SRR1195621     5  0.4365      0.916 0.160 0.048 0.000 0.000 0.752 0.040
#> SRR1195619     5  0.4365      0.916 0.160 0.048 0.000 0.000 0.752 0.040
#> SRR1195620     5  0.4365      0.916 0.160 0.048 0.000 0.000 0.752 0.040

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15363 rows and 131 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.993       0.996         0.4915 0.507   0.507
#> 3 3 1.000           1.000       1.000         0.2334 0.865   0.739
#> 4 4 0.828           0.966       0.941         0.0904 0.953   0.881
#> 5 5 0.844           0.961       0.902         0.1153 0.879   0.650
#> 6 6 0.943           0.963       0.963         0.0720 0.989   0.950

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1190372     2   0.000      0.989 0.000 1.000
#> SRR1190371     2   0.000      0.989 0.000 1.000
#> SRR1190370     2   0.000      0.989 0.000 1.000
#> SRR1190368     2   0.000      0.989 0.000 1.000
#> SRR1190369     2   0.000      0.989 0.000 1.000
#> SRR1190366     2   0.000      0.989 0.000 1.000
#> SRR1190367     2   0.000      0.989 0.000 1.000
#> SRR1190365     2   0.000      0.989 0.000 1.000
#> SRR1190467     2   0.224      0.973 0.036 0.964
#> SRR1190466     2   0.224      0.973 0.036 0.964
#> SRR1190465     2   0.224      0.973 0.036 0.964
#> SRR1190464     2   0.224      0.973 0.036 0.964
#> SRR1190462     2   0.224      0.973 0.036 0.964
#> SRR1190461     2   0.224      0.973 0.036 0.964
#> SRR1190460     2   0.224      0.973 0.036 0.964
#> SRR1190509     1   0.000      1.000 1.000 0.000
#> SRR1190504     1   0.000      1.000 1.000 0.000
#> SRR1190503     1   0.000      1.000 1.000 0.000
#> SRR1190502     1   0.000      1.000 1.000 0.000
#> SRR1190508     1   0.000      1.000 1.000 0.000
#> SRR1190507     1   0.000      1.000 1.000 0.000
#> SRR1190506     1   0.000      1.000 1.000 0.000
#> SRR1190505     1   0.000      1.000 1.000 0.000
#> SRR1191342     2   0.000      0.989 0.000 1.000
#> SRR1191344     2   0.000      0.989 0.000 1.000
#> SRR1191343     2   0.000      0.989 0.000 1.000
#> SRR1191349     2   0.000      0.989 0.000 1.000
#> SRR1191345     2   0.000      0.989 0.000 1.000
#> SRR1191346     2   0.000      0.989 0.000 1.000
#> SRR1191347     2   0.000      0.989 0.000 1.000
#> SRR1191348     2   0.000      0.989 0.000 1.000
#> SRR1191668     1   0.000      1.000 1.000 0.000
#> SRR1191667     1   0.000      1.000 1.000 0.000
#> SRR1191673     1   0.000      1.000 1.000 0.000
#> SRR1191672     1   0.000      1.000 1.000 0.000
#> SRR1191695     2   0.224      0.973 0.036 0.964
#> SRR1191694     2   0.224      0.973 0.036 0.964
#> SRR1191783     2   0.224      0.973 0.036 0.964
#> SRR1191876     2   0.224      0.973 0.036 0.964
#> SRR1191914     1   0.000      1.000 1.000 0.000
#> SRR1191915     1   0.000      1.000 1.000 0.000
#> SRR1191953     1   0.000      1.000 1.000 0.000
#> SRR1191954     1   0.000      1.000 1.000 0.000
#> SRR1191990     1   0.000      1.000 1.000 0.000
#> SRR1191991     1   0.000      1.000 1.000 0.000
#> SRR1192016     2   0.224      0.973 0.036 0.964
#> SRR1192017     2   0.224      0.973 0.036 0.964
#> SRR1192073     2   0.224      0.973 0.036 0.964
#> SRR1192072     2   0.224      0.973 0.036 0.964
#> SRR1192167     1   0.000      1.000 1.000 0.000
#> SRR1192166     1   0.000      1.000 1.000 0.000
#> SRR1192321     2   0.224      0.973 0.036 0.964
#> SRR1192353     1   0.000      1.000 1.000 0.000
#> SRR1192354     1   0.000      1.000 1.000 0.000
#> SRR1192370     1   0.000      1.000 1.000 0.000
#> SRR1192371     1   0.000      1.000 1.000 0.000
#> SRR1192399     1   0.000      1.000 1.000 0.000
#> SRR1192398     1   0.000      1.000 1.000 0.000
#> SRR1192417     2   0.000      0.989 0.000 1.000
#> SRR1192418     2   0.000      0.989 0.000 1.000
#> SRR1192415     2   0.000      0.989 0.000 1.000
#> SRR1192416     2   0.000      0.989 0.000 1.000
#> SRR1192413     2   0.000      0.989 0.000 1.000
#> SRR1192414     2   0.000      0.989 0.000 1.000
#> SRR1192420     2   0.000      0.989 0.000 1.000
#> SRR1192419     2   0.000      0.989 0.000 1.000
#> SRR1192471     1   0.000      1.000 1.000 0.000
#> SRR1192470     1   0.000      1.000 1.000 0.000
#> SRR1192469     1   0.000      1.000 1.000 0.000
#> SRR1192468     1   0.000      1.000 1.000 0.000
#> SRR1192467     1   0.000      1.000 1.000 0.000
#> SRR1192466     1   0.000      1.000 1.000 0.000
#> SRR1192465     1   0.000      1.000 1.000 0.000
#> SRR1192500     1   0.000      1.000 1.000 0.000
#> SRR1192501     1   0.000      1.000 1.000 0.000
#> SRR1192502     1   0.000      1.000 1.000 0.000
#> SRR1192503     1   0.000      1.000 1.000 0.000
#> SRR1192496     1   0.000      1.000 1.000 0.000
#> SRR1192497     1   0.000      1.000 1.000 0.000
#> SRR1192499     1   0.000      1.000 1.000 0.000
#> SRR1192641     2   0.000      0.989 0.000 1.000
#> SRR1192640     2   0.000      0.989 0.000 1.000
#> SRR1192643     2   0.000      0.989 0.000 1.000
#> SRR1192642     2   0.000      0.989 0.000 1.000
#> SRR1192644     2   0.000      0.989 0.000 1.000
#> SRR1192645     2   0.000      0.989 0.000 1.000
#> SRR1192646     2   0.000      0.989 0.000 1.000
#> SRR1192647     2   0.000      0.989 0.000 1.000
#> SRR1192836     2   0.000      0.989 0.000 1.000
#> SRR1192838     2   0.000      0.989 0.000 1.000
#> SRR1192837     2   0.000      0.989 0.000 1.000
#> SRR1192839     2   0.000      0.989 0.000 1.000
#> SRR1192963     2   0.000      0.989 0.000 1.000
#> SRR1192966     2   0.000      0.989 0.000 1.000
#> SRR1192965     2   0.000      0.989 0.000 1.000
#> SRR1192964     2   0.000      0.989 0.000 1.000
#> SRR1193005     1   0.000      1.000 1.000 0.000
#> SRR1193006     1   0.000      1.000 1.000 0.000
#> SRR1193007     1   0.000      1.000 1.000 0.000
#> SRR1193008     1   0.000      1.000 1.000 0.000
#> SRR1193011     1   0.000      1.000 1.000 0.000
#> SRR1193012     1   0.000      1.000 1.000 0.000
#> SRR1193009     1   0.000      1.000 1.000 0.000
#> SRR1193010     1   0.000      1.000 1.000 0.000
#> SRR1193014     1   0.000      1.000 1.000 0.000
#> SRR1193015     1   0.000      1.000 1.000 0.000
#> SRR1193013     1   0.000      1.000 1.000 0.000
#> SRR1193018     1   0.000      1.000 1.000 0.000
#> SRR1193016     1   0.000      1.000 1.000 0.000
#> SRR1193017     1   0.000      1.000 1.000 0.000
#> SRR1193100     1   0.000      1.000 1.000 0.000
#> SRR1193101     1   0.000      1.000 1.000 0.000
#> SRR1193102     1   0.000      1.000 1.000 0.000
#> SRR1193104     1   0.000      1.000 1.000 0.000
#> SRR1193103     1   0.000      1.000 1.000 0.000
#> SRR1193105     1   0.000      1.000 1.000 0.000
#> SRR1193106     1   0.000      1.000 1.000 0.000
#> SRR1193198     1   0.000      1.000 1.000 0.000
#> SRR1193197     1   0.000      1.000 1.000 0.000
#> SRR1193199     1   0.000      1.000 1.000 0.000
#> SRR1193405     1   0.000      1.000 1.000 0.000
#> SRR1193404     1   0.000      1.000 1.000 0.000
#> SRR1193403     1   0.000      1.000 1.000 0.000
#> SRR1193522     1   0.000      1.000 1.000 0.000
#> SRR1193523     1   0.000      1.000 1.000 0.000
#> SRR1193524     1   0.000      1.000 1.000 0.000
#> SRR1193638     1   0.000      1.000 1.000 0.000
#> SRR1193639     1   0.000      1.000 1.000 0.000
#> SRR1195621     1   0.000      1.000 1.000 0.000
#> SRR1195619     1   0.000      1.000 1.000 0.000
#> SRR1195620     1   0.000      1.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette p1 p2 p3
#> SRR1190372     2       0          1  0  1  0
#> SRR1190371     2       0          1  0  1  0
#> SRR1190370     2       0          1  0  1  0
#> SRR1190368     2       0          1  0  1  0
#> SRR1190369     2       0          1  0  1  0
#> SRR1190366     2       0          1  0  1  0
#> SRR1190367     2       0          1  0  1  0
#> SRR1190365     2       0          1  0  1  0
#> SRR1190467     3       0          1  0  0  1
#> SRR1190466     3       0          1  0  0  1
#> SRR1190465     3       0          1  0  0  1
#> SRR1190464     3       0          1  0  0  1
#> SRR1190462     3       0          1  0  0  1
#> SRR1190461     3       0          1  0  0  1
#> SRR1190460     3       0          1  0  0  1
#> SRR1190509     1       0          1  1  0  0
#> SRR1190504     1       0          1  1  0  0
#> SRR1190503     1       0          1  1  0  0
#> SRR1190502     1       0          1  1  0  0
#> SRR1190508     1       0          1  1  0  0
#> SRR1190507     1       0          1  1  0  0
#> SRR1190506     1       0          1  1  0  0
#> SRR1190505     1       0          1  1  0  0
#> SRR1191342     2       0          1  0  1  0
#> SRR1191344     2       0          1  0  1  0
#> SRR1191343     2       0          1  0  1  0
#> SRR1191349     2       0          1  0  1  0
#> SRR1191345     2       0          1  0  1  0
#> SRR1191346     2       0          1  0  1  0
#> SRR1191347     2       0          1  0  1  0
#> SRR1191348     2       0          1  0  1  0
#> SRR1191668     3       0          1  0  0  1
#> SRR1191667     3       0          1  0  0  1
#> SRR1191673     3       0          1  0  0  1
#> SRR1191672     3       0          1  0  0  1
#> SRR1191695     3       0          1  0  0  1
#> SRR1191694     3       0          1  0  0  1
#> SRR1191783     3       0          1  0  0  1
#> SRR1191876     3       0          1  0  0  1
#> SRR1191914     1       0          1  1  0  0
#> SRR1191915     1       0          1  1  0  0
#> SRR1191953     1       0          1  1  0  0
#> SRR1191954     1       0          1  1  0  0
#> SRR1191990     1       0          1  1  0  0
#> SRR1191991     1       0          1  1  0  0
#> SRR1192016     3       0          1  0  0  1
#> SRR1192017     3       0          1  0  0  1
#> SRR1192073     3       0          1  0  0  1
#> SRR1192072     3       0          1  0  0  1
#> SRR1192167     3       0          1  0  0  1
#> SRR1192166     3       0          1  0  0  1
#> SRR1192321     3       0          1  0  0  1
#> SRR1192353     1       0          1  1  0  0
#> SRR1192354     1       0          1  1  0  0
#> SRR1192370     1       0          1  1  0  0
#> SRR1192371     1       0          1  1  0  0
#> SRR1192399     1       0          1  1  0  0
#> SRR1192398     1       0          1  1  0  0
#> SRR1192417     2       0          1  0  1  0
#> SRR1192418     2       0          1  0  1  0
#> SRR1192415     2       0          1  0  1  0
#> SRR1192416     2       0          1  0  1  0
#> SRR1192413     2       0          1  0  1  0
#> SRR1192414     2       0          1  0  1  0
#> SRR1192420     2       0          1  0  1  0
#> SRR1192419     2       0          1  0  1  0
#> SRR1192471     1       0          1  1  0  0
#> SRR1192470     1       0          1  1  0  0
#> SRR1192469     1       0          1  1  0  0
#> SRR1192468     1       0          1  1  0  0
#> SRR1192467     1       0          1  1  0  0
#> SRR1192466     1       0          1  1  0  0
#> SRR1192465     1       0          1  1  0  0
#> SRR1192500     1       0          1  1  0  0
#> SRR1192501     1       0          1  1  0  0
#> SRR1192502     1       0          1  1  0  0
#> SRR1192503     1       0          1  1  0  0
#> SRR1192496     1       0          1  1  0  0
#> SRR1192497     1       0          1  1  0  0
#> SRR1192499     1       0          1  1  0  0
#> SRR1192641     2       0          1  0  1  0
#> SRR1192640     2       0          1  0  1  0
#> SRR1192643     2       0          1  0  1  0
#> SRR1192642     2       0          1  0  1  0
#> SRR1192644     2       0          1  0  1  0
#> SRR1192645     2       0          1  0  1  0
#> SRR1192646     2       0          1  0  1  0
#> SRR1192647     2       0          1  0  1  0
#> SRR1192836     2       0          1  0  1  0
#> SRR1192838     2       0          1  0  1  0
#> SRR1192837     2       0          1  0  1  0
#> SRR1192839     2       0          1  0  1  0
#> SRR1192963     2       0          1  0  1  0
#> SRR1192966     2       0          1  0  1  0
#> SRR1192965     2       0          1  0  1  0
#> SRR1192964     2       0          1  0  1  0
#> SRR1193005     1       0          1  1  0  0
#> SRR1193006     1       0          1  1  0  0
#> SRR1193007     1       0          1  1  0  0
#> SRR1193008     1       0          1  1  0  0
#> SRR1193011     1       0          1  1  0  0
#> SRR1193012     1       0          1  1  0  0
#> SRR1193009     1       0          1  1  0  0
#> SRR1193010     1       0          1  1  0  0
#> SRR1193014     1       0          1  1  0  0
#> SRR1193015     1       0          1  1  0  0
#> SRR1193013     1       0          1  1  0  0
#> SRR1193018     1       0          1  1  0  0
#> SRR1193016     1       0          1  1  0  0
#> SRR1193017     1       0          1  1  0  0
#> SRR1193100     1       0          1  1  0  0
#> SRR1193101     1       0          1  1  0  0
#> SRR1193102     1       0          1  1  0  0
#> SRR1193104     1       0          1  1  0  0
#> SRR1193103     1       0          1  1  0  0
#> SRR1193105     1       0          1  1  0  0
#> SRR1193106     1       0          1  1  0  0
#> SRR1193198     1       0          1  1  0  0
#> SRR1193197     1       0          1  1  0  0
#> SRR1193199     1       0          1  1  0  0
#> SRR1193405     1       0          1  1  0  0
#> SRR1193404     1       0          1  1  0  0
#> SRR1193403     1       0          1  1  0  0
#> SRR1193522     1       0          1  1  0  0
#> SRR1193523     1       0          1  1  0  0
#> SRR1193524     1       0          1  1  0  0
#> SRR1193638     1       0          1  1  0  0
#> SRR1193639     1       0          1  1  0  0
#> SRR1195621     1       0          1  1  0  0
#> SRR1195619     1       0          1  1  0  0
#> SRR1195620     1       0          1  1  0  0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1190372     2  0.3688      1.000 0.000 0.792 0.000 0.208
#> SRR1190371     2  0.3688      1.000 0.000 0.792 0.000 0.208
#> SRR1190370     2  0.3688      1.000 0.000 0.792 0.000 0.208
#> SRR1190368     2  0.3688      1.000 0.000 0.792 0.000 0.208
#> SRR1190369     2  0.3688      1.000 0.000 0.792 0.000 0.208
#> SRR1190366     2  0.3688      1.000 0.000 0.792 0.000 0.208
#> SRR1190367     2  0.3688      1.000 0.000 0.792 0.000 0.208
#> SRR1190365     2  0.3688      1.000 0.000 0.792 0.000 0.208
#> SRR1190467     3  0.0000      0.984 0.000 0.000 1.000 0.000
#> SRR1190466     3  0.0000      0.984 0.000 0.000 1.000 0.000
#> SRR1190465     3  0.0000      0.984 0.000 0.000 1.000 0.000
#> SRR1190464     3  0.0000      0.984 0.000 0.000 1.000 0.000
#> SRR1190462     3  0.0000      0.984 0.000 0.000 1.000 0.000
#> SRR1190461     3  0.0000      0.984 0.000 0.000 1.000 0.000
#> SRR1190460     3  0.0000      0.984 0.000 0.000 1.000 0.000
#> SRR1190509     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1190504     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1190503     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1190502     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1190508     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1190507     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1190506     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1190505     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1191342     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1191344     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1191343     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1191349     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1191345     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1191346     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1191347     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1191348     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1191668     3  0.2797      0.933 0.032 0.068 0.900 0.000
#> SRR1191667     3  0.2797      0.933 0.032 0.068 0.900 0.000
#> SRR1191673     3  0.1792      0.958 0.000 0.068 0.932 0.000
#> SRR1191672     3  0.1792      0.958 0.000 0.068 0.932 0.000
#> SRR1191695     3  0.0000      0.984 0.000 0.000 1.000 0.000
#> SRR1191694     3  0.0000      0.984 0.000 0.000 1.000 0.000
#> SRR1191783     3  0.0000      0.984 0.000 0.000 1.000 0.000
#> SRR1191876     3  0.0000      0.984 0.000 0.000 1.000 0.000
#> SRR1191914     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1191915     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1191953     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1191954     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1191990     1  0.0592      0.954 0.984 0.016 0.000 0.000
#> SRR1191991     1  0.0592      0.954 0.984 0.016 0.000 0.000
#> SRR1192016     3  0.0000      0.984 0.000 0.000 1.000 0.000
#> SRR1192017     3  0.0000      0.984 0.000 0.000 1.000 0.000
#> SRR1192073     3  0.0000      0.984 0.000 0.000 1.000 0.000
#> SRR1192072     3  0.0000      0.984 0.000 0.000 1.000 0.000
#> SRR1192167     3  0.1792      0.958 0.000 0.068 0.932 0.000
#> SRR1192166     3  0.1792      0.958 0.000 0.068 0.932 0.000
#> SRR1192321     3  0.0000      0.984 0.000 0.000 1.000 0.000
#> SRR1192353     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1192354     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1192370     1  0.2921      0.910 0.860 0.140 0.000 0.000
#> SRR1192371     1  0.2921      0.910 0.860 0.140 0.000 0.000
#> SRR1192399     1  0.0592      0.954 0.984 0.016 0.000 0.000
#> SRR1192398     1  0.0592      0.954 0.984 0.016 0.000 0.000
#> SRR1192417     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192418     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192415     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192416     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192413     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192414     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192420     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192419     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192471     1  0.2921      0.910 0.860 0.140 0.000 0.000
#> SRR1192470     1  0.2921      0.910 0.860 0.140 0.000 0.000
#> SRR1192469     1  0.2921      0.910 0.860 0.140 0.000 0.000
#> SRR1192468     1  0.2921      0.910 0.860 0.140 0.000 0.000
#> SRR1192467     1  0.2921      0.910 0.860 0.140 0.000 0.000
#> SRR1192466     1  0.2921      0.910 0.860 0.140 0.000 0.000
#> SRR1192465     1  0.2921      0.910 0.860 0.140 0.000 0.000
#> SRR1192500     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1192501     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1192502     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1192503     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1192496     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1192497     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1192499     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1192641     2  0.3688      1.000 0.000 0.792 0.000 0.208
#> SRR1192640     2  0.3688      1.000 0.000 0.792 0.000 0.208
#> SRR1192643     2  0.3688      1.000 0.000 0.792 0.000 0.208
#> SRR1192642     2  0.3688      1.000 0.000 0.792 0.000 0.208
#> SRR1192644     2  0.3688      1.000 0.000 0.792 0.000 0.208
#> SRR1192645     2  0.3688      1.000 0.000 0.792 0.000 0.208
#> SRR1192646     2  0.3688      1.000 0.000 0.792 0.000 0.208
#> SRR1192647     2  0.3688      1.000 0.000 0.792 0.000 0.208
#> SRR1192836     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192838     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192837     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192839     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192963     2  0.3688      1.000 0.000 0.792 0.000 0.208
#> SRR1192966     2  0.3688      1.000 0.000 0.792 0.000 0.208
#> SRR1192965     2  0.3688      1.000 0.000 0.792 0.000 0.208
#> SRR1192964     2  0.3688      1.000 0.000 0.792 0.000 0.208
#> SRR1193005     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1193006     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1193007     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1193008     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1193011     1  0.2921      0.910 0.860 0.140 0.000 0.000
#> SRR1193012     1  0.2921      0.910 0.860 0.140 0.000 0.000
#> SRR1193009     1  0.2921      0.910 0.860 0.140 0.000 0.000
#> SRR1193010     1  0.2921      0.910 0.860 0.140 0.000 0.000
#> SRR1193014     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1193015     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1193013     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1193018     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1193016     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1193017     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1193100     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1193101     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1193102     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1193104     1  0.2921      0.910 0.860 0.140 0.000 0.000
#> SRR1193103     1  0.2921      0.910 0.860 0.140 0.000 0.000
#> SRR1193105     1  0.2921      0.910 0.860 0.140 0.000 0.000
#> SRR1193106     1  0.2921      0.910 0.860 0.140 0.000 0.000
#> SRR1193198     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1193197     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1193199     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1193405     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1193404     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1193403     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1193522     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1193523     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1193524     1  0.0000      0.958 1.000 0.000 0.000 0.000
#> SRR1193638     1  0.2921      0.910 0.860 0.140 0.000 0.000
#> SRR1193639     1  0.2921      0.910 0.860 0.140 0.000 0.000
#> SRR1195621     1  0.2921      0.910 0.860 0.140 0.000 0.000
#> SRR1195619     1  0.2921      0.910 0.860 0.140 0.000 0.000
#> SRR1195620     1  0.2921      0.910 0.860 0.140 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1190372     2  0.1671      1.000 0.000 0.924 0.000 0.076 0.000
#> SRR1190371     2  0.1671      1.000 0.000 0.924 0.000 0.076 0.000
#> SRR1190370     2  0.1671      1.000 0.000 0.924 0.000 0.076 0.000
#> SRR1190368     2  0.1671      1.000 0.000 0.924 0.000 0.076 0.000
#> SRR1190369     2  0.1671      1.000 0.000 0.924 0.000 0.076 0.000
#> SRR1190366     2  0.1671      1.000 0.000 0.924 0.000 0.076 0.000
#> SRR1190367     2  0.1671      1.000 0.000 0.924 0.000 0.076 0.000
#> SRR1190365     2  0.1671      1.000 0.000 0.924 0.000 0.076 0.000
#> SRR1190467     3  0.0000      0.905 0.000 0.000 1.000 0.000 0.000
#> SRR1190466     3  0.0000      0.905 0.000 0.000 1.000 0.000 0.000
#> SRR1190465     3  0.0000      0.905 0.000 0.000 1.000 0.000 0.000
#> SRR1190464     3  0.0000      0.905 0.000 0.000 1.000 0.000 0.000
#> SRR1190462     3  0.0000      0.905 0.000 0.000 1.000 0.000 0.000
#> SRR1190461     3  0.0000      0.905 0.000 0.000 1.000 0.000 0.000
#> SRR1190460     3  0.0000      0.905 0.000 0.000 1.000 0.000 0.000
#> SRR1190509     1  0.0324      0.978 0.992 0.004 0.000 0.000 0.004
#> SRR1190504     1  0.0324      0.978 0.992 0.004 0.000 0.000 0.004
#> SRR1190503     1  0.0324      0.978 0.992 0.004 0.000 0.000 0.004
#> SRR1190502     1  0.0324      0.978 0.992 0.004 0.000 0.000 0.004
#> SRR1190508     1  0.0324      0.978 0.992 0.004 0.000 0.000 0.004
#> SRR1190507     1  0.0324      0.978 0.992 0.004 0.000 0.000 0.004
#> SRR1190506     1  0.0324      0.978 0.992 0.004 0.000 0.000 0.004
#> SRR1190505     1  0.0324      0.978 0.992 0.004 0.000 0.000 0.004
#> SRR1191342     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR1191344     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR1191343     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR1191349     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR1191345     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR1191346     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR1191347     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR1191348     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR1191668     3  0.7299      0.619 0.132 0.072 0.476 0.000 0.320
#> SRR1191667     3  0.7299      0.619 0.132 0.072 0.476 0.000 0.320
#> SRR1191673     3  0.5472      0.730 0.004 0.072 0.604 0.000 0.320
#> SRR1191672     3  0.5472      0.730 0.004 0.072 0.604 0.000 0.320
#> SRR1191695     3  0.0000      0.905 0.000 0.000 1.000 0.000 0.000
#> SRR1191694     3  0.0000      0.905 0.000 0.000 1.000 0.000 0.000
#> SRR1191783     3  0.0000      0.905 0.000 0.000 1.000 0.000 0.000
#> SRR1191876     3  0.0000      0.905 0.000 0.000 1.000 0.000 0.000
#> SRR1191914     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> SRR1191915     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> SRR1191953     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> SRR1191954     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> SRR1191990     1  0.2612      0.796 0.868 0.008 0.000 0.000 0.124
#> SRR1191991     1  0.2612      0.796 0.868 0.008 0.000 0.000 0.124
#> SRR1192016     3  0.0000      0.905 0.000 0.000 1.000 0.000 0.000
#> SRR1192017     3  0.0000      0.905 0.000 0.000 1.000 0.000 0.000
#> SRR1192073     3  0.0000      0.905 0.000 0.000 1.000 0.000 0.000
#> SRR1192072     3  0.0000      0.905 0.000 0.000 1.000 0.000 0.000
#> SRR1192167     3  0.5472      0.730 0.004 0.072 0.604 0.000 0.320
#> SRR1192166     3  0.5472      0.730 0.004 0.072 0.604 0.000 0.320
#> SRR1192321     3  0.0000      0.905 0.000 0.000 1.000 0.000 0.000
#> SRR1192353     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> SRR1192354     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> SRR1192370     5  0.3932      0.997 0.328 0.000 0.000 0.000 0.672
#> SRR1192371     5  0.3932      0.997 0.328 0.000 0.000 0.000 0.672
#> SRR1192399     1  0.2179      0.811 0.888 0.000 0.000 0.000 0.112
#> SRR1192398     1  0.2179      0.811 0.888 0.000 0.000 0.000 0.112
#> SRR1192417     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR1192418     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR1192415     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR1192416     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR1192413     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR1192414     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR1192420     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR1192419     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR1192471     5  0.3932      0.997 0.328 0.000 0.000 0.000 0.672
#> SRR1192470     5  0.3932      0.997 0.328 0.000 0.000 0.000 0.672
#> SRR1192469     5  0.3932      0.997 0.328 0.000 0.000 0.000 0.672
#> SRR1192468     5  0.3932      0.997 0.328 0.000 0.000 0.000 0.672
#> SRR1192467     5  0.3932      0.997 0.328 0.000 0.000 0.000 0.672
#> SRR1192466     5  0.3932      0.997 0.328 0.000 0.000 0.000 0.672
#> SRR1192465     5  0.3932      0.997 0.328 0.000 0.000 0.000 0.672
#> SRR1192500     1  0.0324      0.978 0.992 0.004 0.000 0.000 0.004
#> SRR1192501     1  0.0324      0.978 0.992 0.004 0.000 0.000 0.004
#> SRR1192502     1  0.0324      0.978 0.992 0.004 0.000 0.000 0.004
#> SRR1192503     1  0.0324      0.978 0.992 0.004 0.000 0.000 0.004
#> SRR1192496     1  0.0324      0.978 0.992 0.004 0.000 0.000 0.004
#> SRR1192497     1  0.0324      0.978 0.992 0.004 0.000 0.000 0.004
#> SRR1192499     1  0.0324      0.978 0.992 0.004 0.000 0.000 0.004
#> SRR1192641     2  0.1671      1.000 0.000 0.924 0.000 0.076 0.000
#> SRR1192640     2  0.1671      1.000 0.000 0.924 0.000 0.076 0.000
#> SRR1192643     2  0.1671      1.000 0.000 0.924 0.000 0.076 0.000
#> SRR1192642     2  0.1671      1.000 0.000 0.924 0.000 0.076 0.000
#> SRR1192644     2  0.1671      1.000 0.000 0.924 0.000 0.076 0.000
#> SRR1192645     2  0.1671      1.000 0.000 0.924 0.000 0.076 0.000
#> SRR1192646     2  0.1671      1.000 0.000 0.924 0.000 0.076 0.000
#> SRR1192647     2  0.1671      1.000 0.000 0.924 0.000 0.076 0.000
#> SRR1192836     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR1192838     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR1192837     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR1192839     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> SRR1192963     2  0.1671      1.000 0.000 0.924 0.000 0.076 0.000
#> SRR1192966     2  0.1671      1.000 0.000 0.924 0.000 0.076 0.000
#> SRR1192965     2  0.1671      1.000 0.000 0.924 0.000 0.076 0.000
#> SRR1192964     2  0.1671      1.000 0.000 0.924 0.000 0.076 0.000
#> SRR1193005     1  0.0324      0.978 0.992 0.004 0.000 0.000 0.004
#> SRR1193006     1  0.0324      0.978 0.992 0.004 0.000 0.000 0.004
#> SRR1193007     1  0.0324      0.978 0.992 0.004 0.000 0.000 0.004
#> SRR1193008     1  0.0324      0.978 0.992 0.004 0.000 0.000 0.004
#> SRR1193011     5  0.3932      0.997 0.328 0.000 0.000 0.000 0.672
#> SRR1193012     5  0.3932      0.997 0.328 0.000 0.000 0.000 0.672
#> SRR1193009     5  0.3932      0.997 0.328 0.000 0.000 0.000 0.672
#> SRR1193010     5  0.3932      0.997 0.328 0.000 0.000 0.000 0.672
#> SRR1193014     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> SRR1193015     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> SRR1193013     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> SRR1193018     1  0.0162      0.978 0.996 0.000 0.000 0.000 0.004
#> SRR1193016     1  0.0162      0.978 0.996 0.000 0.000 0.000 0.004
#> SRR1193017     1  0.0162      0.978 0.996 0.000 0.000 0.000 0.004
#> SRR1193100     1  0.0162      0.978 0.996 0.000 0.000 0.000 0.004
#> SRR1193101     1  0.0162      0.978 0.996 0.000 0.000 0.000 0.004
#> SRR1193102     1  0.0162      0.978 0.996 0.000 0.000 0.000 0.004
#> SRR1193104     5  0.3913      0.996 0.324 0.000 0.000 0.000 0.676
#> SRR1193103     5  0.3913      0.996 0.324 0.000 0.000 0.000 0.676
#> SRR1193105     5  0.3913      0.996 0.324 0.000 0.000 0.000 0.676
#> SRR1193106     5  0.3913      0.996 0.324 0.000 0.000 0.000 0.676
#> SRR1193198     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> SRR1193197     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> SRR1193199     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> SRR1193405     1  0.0162      0.978 0.996 0.000 0.000 0.000 0.004
#> SRR1193404     1  0.0162      0.978 0.996 0.000 0.000 0.000 0.004
#> SRR1193403     1  0.0162      0.978 0.996 0.000 0.000 0.000 0.004
#> SRR1193522     1  0.0162      0.978 0.996 0.000 0.000 0.000 0.004
#> SRR1193523     1  0.0162      0.978 0.996 0.000 0.000 0.000 0.004
#> SRR1193524     1  0.0162      0.978 0.996 0.000 0.000 0.000 0.004
#> SRR1193638     5  0.3913      0.996 0.324 0.000 0.000 0.000 0.676
#> SRR1193639     5  0.3913      0.996 0.324 0.000 0.000 0.000 0.676
#> SRR1195621     5  0.3913      0.996 0.324 0.000 0.000 0.000 0.676
#> SRR1195619     5  0.3913      0.996 0.324 0.000 0.000 0.000 0.676
#> SRR1195620     5  0.3913      0.996 0.324 0.000 0.000 0.000 0.676

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1190372     2  0.0260      1.000 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR1190371     2  0.0260      1.000 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR1190370     2  0.0260      1.000 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR1190368     2  0.0260      1.000 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR1190369     2  0.0260      1.000 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR1190366     2  0.0260      1.000 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR1190367     2  0.0260      1.000 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR1190365     2  0.0260      1.000 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR1190467     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190466     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190465     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190464     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190462     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190461     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190460     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190509     1  0.1501      0.910 0.924 0.000 0.000 0.000 0.000 0.076
#> SRR1190504     1  0.1501      0.910 0.924 0.000 0.000 0.000 0.000 0.076
#> SRR1190503     1  0.1501      0.910 0.924 0.000 0.000 0.000 0.000 0.076
#> SRR1190502     1  0.1501      0.910 0.924 0.000 0.000 0.000 0.000 0.076
#> SRR1190508     1  0.1501      0.910 0.924 0.000 0.000 0.000 0.000 0.076
#> SRR1190507     1  0.1501      0.910 0.924 0.000 0.000 0.000 0.000 0.076
#> SRR1190506     1  0.1501      0.910 0.924 0.000 0.000 0.000 0.000 0.076
#> SRR1190505     1  0.1501      0.910 0.924 0.000 0.000 0.000 0.000 0.076
#> SRR1191342     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191344     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191343     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191349     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191345     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191346     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191347     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191348     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191668     6  0.2190      0.965 0.060 0.000 0.040 0.000 0.000 0.900
#> SRR1191667     6  0.2190      0.965 0.060 0.000 0.040 0.000 0.000 0.900
#> SRR1191673     6  0.2164      0.982 0.032 0.000 0.068 0.000 0.000 0.900
#> SRR1191672     6  0.2164      0.982 0.032 0.000 0.068 0.000 0.000 0.900
#> SRR1191695     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1191694     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1191783     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1191876     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1191914     1  0.1196      0.926 0.952 0.000 0.000 0.000 0.040 0.008
#> SRR1191915     1  0.1196      0.926 0.952 0.000 0.000 0.000 0.040 0.008
#> SRR1191953     1  0.1082      0.927 0.956 0.000 0.000 0.000 0.040 0.004
#> SRR1191954     1  0.1082      0.927 0.956 0.000 0.000 0.000 0.040 0.004
#> SRR1191990     1  0.4554      0.675 0.716 0.008 0.000 0.000 0.104 0.172
#> SRR1191991     1  0.4554      0.675 0.716 0.008 0.000 0.000 0.104 0.172
#> SRR1192016     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192017     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192073     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192072     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192167     6  0.2164      0.982 0.032 0.000 0.068 0.000 0.000 0.900
#> SRR1192166     6  0.2164      0.982 0.032 0.000 0.068 0.000 0.000 0.900
#> SRR1192321     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192353     1  0.1523      0.922 0.940 0.008 0.000 0.000 0.044 0.008
#> SRR1192354     1  0.1523      0.922 0.940 0.008 0.000 0.000 0.044 0.008
#> SRR1192370     5  0.0458      0.996 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1192371     5  0.0458      0.996 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1192399     1  0.2766      0.833 0.844 0.008 0.000 0.000 0.140 0.008
#> SRR1192398     1  0.2766      0.833 0.844 0.008 0.000 0.000 0.140 0.008
#> SRR1192417     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1192418     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1192415     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1192416     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1192413     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1192414     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1192420     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1192419     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1192471     5  0.0458      0.996 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1192470     5  0.0458      0.996 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1192469     5  0.0458      0.996 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1192468     5  0.0458      0.996 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1192467     5  0.0458      0.996 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1192466     5  0.0458      0.996 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1192465     5  0.0458      0.996 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1192500     1  0.1501      0.910 0.924 0.000 0.000 0.000 0.000 0.076
#> SRR1192501     1  0.1501      0.910 0.924 0.000 0.000 0.000 0.000 0.076
#> SRR1192502     1  0.1501      0.910 0.924 0.000 0.000 0.000 0.000 0.076
#> SRR1192503     1  0.1501      0.910 0.924 0.000 0.000 0.000 0.000 0.076
#> SRR1192496     1  0.1501      0.910 0.924 0.000 0.000 0.000 0.000 0.076
#> SRR1192497     1  0.1501      0.910 0.924 0.000 0.000 0.000 0.000 0.076
#> SRR1192499     1  0.1501      0.910 0.924 0.000 0.000 0.000 0.000 0.076
#> SRR1192641     2  0.0260      1.000 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR1192640     2  0.0260      1.000 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR1192643     2  0.0260      1.000 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR1192642     2  0.0260      1.000 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR1192644     2  0.0260      1.000 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR1192645     2  0.0260      1.000 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR1192646     2  0.0260      1.000 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR1192647     2  0.0260      1.000 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR1192836     4  0.0622      0.985 0.000 0.000 0.000 0.980 0.012 0.008
#> SRR1192838     4  0.0622      0.985 0.000 0.000 0.000 0.980 0.012 0.008
#> SRR1192837     4  0.0622      0.985 0.000 0.000 0.000 0.980 0.012 0.008
#> SRR1192839     4  0.0622      0.985 0.000 0.000 0.000 0.980 0.012 0.008
#> SRR1192963     2  0.0260      1.000 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR1192966     2  0.0260      1.000 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR1192965     2  0.0260      1.000 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR1192964     2  0.0260      1.000 0.000 0.992 0.000 0.008 0.000 0.000
#> SRR1193005     1  0.1501      0.910 0.924 0.000 0.000 0.000 0.000 0.076
#> SRR1193006     1  0.1501      0.910 0.924 0.000 0.000 0.000 0.000 0.076
#> SRR1193007     1  0.1501      0.910 0.924 0.000 0.000 0.000 0.000 0.076
#> SRR1193008     1  0.1501      0.910 0.924 0.000 0.000 0.000 0.000 0.076
#> SRR1193011     5  0.0458      0.996 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1193012     5  0.0458      0.996 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1193009     5  0.0458      0.996 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1193010     5  0.0458      0.996 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1193014     1  0.1152      0.927 0.952 0.000 0.000 0.000 0.044 0.004
#> SRR1193015     1  0.1152      0.927 0.952 0.000 0.000 0.000 0.044 0.004
#> SRR1193013     1  0.1152      0.927 0.952 0.000 0.000 0.000 0.044 0.004
#> SRR1193018     1  0.1152      0.927 0.952 0.000 0.000 0.000 0.044 0.004
#> SRR1193016     1  0.1152      0.927 0.952 0.000 0.000 0.000 0.044 0.004
#> SRR1193017     1  0.1152      0.927 0.952 0.000 0.000 0.000 0.044 0.004
#> SRR1193100     1  0.1265      0.926 0.948 0.000 0.000 0.000 0.044 0.008
#> SRR1193101     1  0.1265      0.926 0.948 0.000 0.000 0.000 0.044 0.008
#> SRR1193102     1  0.1265      0.926 0.948 0.000 0.000 0.000 0.044 0.008
#> SRR1193104     5  0.0508      0.993 0.012 0.000 0.000 0.000 0.984 0.004
#> SRR1193103     5  0.0508      0.993 0.012 0.000 0.000 0.000 0.984 0.004
#> SRR1193105     5  0.0458      0.996 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1193106     5  0.0458      0.996 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1193198     1  0.1152      0.927 0.952 0.000 0.000 0.000 0.044 0.004
#> SRR1193197     1  0.1152      0.927 0.952 0.000 0.000 0.000 0.044 0.004
#> SRR1193199     1  0.1152      0.927 0.952 0.000 0.000 0.000 0.044 0.004
#> SRR1193405     1  0.1367      0.925 0.944 0.000 0.000 0.000 0.044 0.012
#> SRR1193404     1  0.1367      0.925 0.944 0.000 0.000 0.000 0.044 0.012
#> SRR1193403     1  0.1367      0.925 0.944 0.000 0.000 0.000 0.044 0.012
#> SRR1193522     1  0.1367      0.925 0.944 0.000 0.000 0.000 0.044 0.012
#> SRR1193523     1  0.1367      0.925 0.944 0.000 0.000 0.000 0.044 0.012
#> SRR1193524     1  0.1367      0.925 0.944 0.000 0.000 0.000 0.044 0.012
#> SRR1193638     5  0.0622      0.991 0.012 0.000 0.000 0.000 0.980 0.008
#> SRR1193639     5  0.0622      0.991 0.012 0.000 0.000 0.000 0.980 0.008
#> SRR1195621     5  0.0622      0.991 0.012 0.000 0.000 0.000 0.980 0.008
#> SRR1195619     5  0.0622      0.991 0.012 0.000 0.000 0.000 0.980 0.008
#> SRR1195620     5  0.0622      0.991 0.012 0.000 0.000 0.000 0.980 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15363 rows and 131 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2     1               1           1         0.4281 0.573   0.573
#> 3 3     1               1           1         0.3289 0.859   0.754
#> 4 4     1               1           1         0.0825 0.953   0.891
#> 5 5     1               1           1         0.2222 0.863   0.644
#> 6 6     1               1           1         0.0101 0.992   0.970

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2 3 4

There is also optional best \(k\) = 2 3 4 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1190372     2       0          1  0  1
#> SRR1190371     2       0          1  0  1
#> SRR1190370     2       0          1  0  1
#> SRR1190368     2       0          1  0  1
#> SRR1190369     2       0          1  0  1
#> SRR1190366     2       0          1  0  1
#> SRR1190367     2       0          1  0  1
#> SRR1190365     2       0          1  0  1
#> SRR1190467     1       0          1  1  0
#> SRR1190466     1       0          1  1  0
#> SRR1190465     1       0          1  1  0
#> SRR1190464     1       0          1  1  0
#> SRR1190462     1       0          1  1  0
#> SRR1190461     1       0          1  1  0
#> SRR1190460     1       0          1  1  0
#> SRR1190509     1       0          1  1  0
#> SRR1190504     1       0          1  1  0
#> SRR1190503     1       0          1  1  0
#> SRR1190502     1       0          1  1  0
#> SRR1190508     1       0          1  1  0
#> SRR1190507     1       0          1  1  0
#> SRR1190506     1       0          1  1  0
#> SRR1190505     1       0          1  1  0
#> SRR1191342     2       0          1  0  1
#> SRR1191344     2       0          1  0  1
#> SRR1191343     2       0          1  0  1
#> SRR1191349     2       0          1  0  1
#> SRR1191345     2       0          1  0  1
#> SRR1191346     2       0          1  0  1
#> SRR1191347     2       0          1  0  1
#> SRR1191348     2       0          1  0  1
#> SRR1191668     1       0          1  1  0
#> SRR1191667     1       0          1  1  0
#> SRR1191673     1       0          1  1  0
#> SRR1191672     1       0          1  1  0
#> SRR1191695     1       0          1  1  0
#> SRR1191694     1       0          1  1  0
#> SRR1191783     1       0          1  1  0
#> SRR1191876     1       0          1  1  0
#> SRR1191914     1       0          1  1  0
#> SRR1191915     1       0          1  1  0
#> SRR1191953     1       0          1  1  0
#> SRR1191954     1       0          1  1  0
#> SRR1191990     1       0          1  1  0
#> SRR1191991     1       0          1  1  0
#> SRR1192016     1       0          1  1  0
#> SRR1192017     1       0          1  1  0
#> SRR1192073     1       0          1  1  0
#> SRR1192072     1       0          1  1  0
#> SRR1192167     1       0          1  1  0
#> SRR1192166     1       0          1  1  0
#> SRR1192321     1       0          1  1  0
#> SRR1192353     1       0          1  1  0
#> SRR1192354     1       0          1  1  0
#> SRR1192370     1       0          1  1  0
#> SRR1192371     1       0          1  1  0
#> SRR1192399     1       0          1  1  0
#> SRR1192398     1       0          1  1  0
#> SRR1192417     2       0          1  0  1
#> SRR1192418     2       0          1  0  1
#> SRR1192415     2       0          1  0  1
#> SRR1192416     2       0          1  0  1
#> SRR1192413     2       0          1  0  1
#> SRR1192414     2       0          1  0  1
#> SRR1192420     2       0          1  0  1
#> SRR1192419     2       0          1  0  1
#> SRR1192471     1       0          1  1  0
#> SRR1192470     1       0          1  1  0
#> SRR1192469     1       0          1  1  0
#> SRR1192468     1       0          1  1  0
#> SRR1192467     1       0          1  1  0
#> SRR1192466     1       0          1  1  0
#> SRR1192465     1       0          1  1  0
#> SRR1192500     1       0          1  1  0
#> SRR1192501     1       0          1  1  0
#> SRR1192502     1       0          1  1  0
#> SRR1192503     1       0          1  1  0
#> SRR1192496     1       0          1  1  0
#> SRR1192497     1       0          1  1  0
#> SRR1192499     1       0          1  1  0
#> SRR1192641     2       0          1  0  1
#> SRR1192640     2       0          1  0  1
#> SRR1192643     2       0          1  0  1
#> SRR1192642     2       0          1  0  1
#> SRR1192644     2       0          1  0  1
#> SRR1192645     2       0          1  0  1
#> SRR1192646     2       0          1  0  1
#> SRR1192647     2       0          1  0  1
#> SRR1192836     2       0          1  0  1
#> SRR1192838     2       0          1  0  1
#> SRR1192837     2       0          1  0  1
#> SRR1192839     2       0          1  0  1
#> SRR1192963     2       0          1  0  1
#> SRR1192966     2       0          1  0  1
#> SRR1192965     2       0          1  0  1
#> SRR1192964     2       0          1  0  1
#> SRR1193005     1       0          1  1  0
#> SRR1193006     1       0          1  1  0
#> SRR1193007     1       0          1  1  0
#> SRR1193008     1       0          1  1  0
#> SRR1193011     1       0          1  1  0
#> SRR1193012     1       0          1  1  0
#> SRR1193009     1       0          1  1  0
#> SRR1193010     1       0          1  1  0
#> SRR1193014     1       0          1  1  0
#> SRR1193015     1       0          1  1  0
#> SRR1193013     1       0          1  1  0
#> SRR1193018     1       0          1  1  0
#> SRR1193016     1       0          1  1  0
#> SRR1193017     1       0          1  1  0
#> SRR1193100     1       0          1  1  0
#> SRR1193101     1       0          1  1  0
#> SRR1193102     1       0          1  1  0
#> SRR1193104     1       0          1  1  0
#> SRR1193103     1       0          1  1  0
#> SRR1193105     1       0          1  1  0
#> SRR1193106     1       0          1  1  0
#> SRR1193198     1       0          1  1  0
#> SRR1193197     1       0          1  1  0
#> SRR1193199     1       0          1  1  0
#> SRR1193405     1       0          1  1  0
#> SRR1193404     1       0          1  1  0
#> SRR1193403     1       0          1  1  0
#> SRR1193522     1       0          1  1  0
#> SRR1193523     1       0          1  1  0
#> SRR1193524     1       0          1  1  0
#> SRR1193638     1       0          1  1  0
#> SRR1193639     1       0          1  1  0
#> SRR1195621     1       0          1  1  0
#> SRR1195619     1       0          1  1  0
#> SRR1195620     1       0          1  1  0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette p1 p2 p3
#> SRR1190372     2       0          1  0  1  0
#> SRR1190371     2       0          1  0  1  0
#> SRR1190370     2       0          1  0  1  0
#> SRR1190368     2       0          1  0  1  0
#> SRR1190369     2       0          1  0  1  0
#> SRR1190366     2       0          1  0  1  0
#> SRR1190367     2       0          1  0  1  0
#> SRR1190365     2       0          1  0  1  0
#> SRR1190467     3       0          1  0  0  1
#> SRR1190466     3       0          1  0  0  1
#> SRR1190465     3       0          1  0  0  1
#> SRR1190464     3       0          1  0  0  1
#> SRR1190462     3       0          1  0  0  1
#> SRR1190461     3       0          1  0  0  1
#> SRR1190460     3       0          1  0  0  1
#> SRR1190509     1       0          1  1  0  0
#> SRR1190504     1       0          1  1  0  0
#> SRR1190503     1       0          1  1  0  0
#> SRR1190502     1       0          1  1  0  0
#> SRR1190508     1       0          1  1  0  0
#> SRR1190507     1       0          1  1  0  0
#> SRR1190506     1       0          1  1  0  0
#> SRR1190505     1       0          1  1  0  0
#> SRR1191342     2       0          1  0  1  0
#> SRR1191344     2       0          1  0  1  0
#> SRR1191343     2       0          1  0  1  0
#> SRR1191349     2       0          1  0  1  0
#> SRR1191345     2       0          1  0  1  0
#> SRR1191346     2       0          1  0  1  0
#> SRR1191347     2       0          1  0  1  0
#> SRR1191348     2       0          1  0  1  0
#> SRR1191668     1       0          1  1  0  0
#> SRR1191667     1       0          1  1  0  0
#> SRR1191673     1       0          1  1  0  0
#> SRR1191672     1       0          1  1  0  0
#> SRR1191695     3       0          1  0  0  1
#> SRR1191694     3       0          1  0  0  1
#> SRR1191783     3       0          1  0  0  1
#> SRR1191876     3       0          1  0  0  1
#> SRR1191914     1       0          1  1  0  0
#> SRR1191915     1       0          1  1  0  0
#> SRR1191953     1       0          1  1  0  0
#> SRR1191954     1       0          1  1  0  0
#> SRR1191990     1       0          1  1  0  0
#> SRR1191991     1       0          1  1  0  0
#> SRR1192016     3       0          1  0  0  1
#> SRR1192017     3       0          1  0  0  1
#> SRR1192073     3       0          1  0  0  1
#> SRR1192072     3       0          1  0  0  1
#> SRR1192167     1       0          1  1  0  0
#> SRR1192166     1       0          1  1  0  0
#> SRR1192321     3       0          1  0  0  1
#> SRR1192353     1       0          1  1  0  0
#> SRR1192354     1       0          1  1  0  0
#> SRR1192370     1       0          1  1  0  0
#> SRR1192371     1       0          1  1  0  0
#> SRR1192399     1       0          1  1  0  0
#> SRR1192398     1       0          1  1  0  0
#> SRR1192417     2       0          1  0  1  0
#> SRR1192418     2       0          1  0  1  0
#> SRR1192415     2       0          1  0  1  0
#> SRR1192416     2       0          1  0  1  0
#> SRR1192413     2       0          1  0  1  0
#> SRR1192414     2       0          1  0  1  0
#> SRR1192420     2       0          1  0  1  0
#> SRR1192419     2       0          1  0  1  0
#> SRR1192471     1       0          1  1  0  0
#> SRR1192470     1       0          1  1  0  0
#> SRR1192469     1       0          1  1  0  0
#> SRR1192468     1       0          1  1  0  0
#> SRR1192467     1       0          1  1  0  0
#> SRR1192466     1       0          1  1  0  0
#> SRR1192465     1       0          1  1  0  0
#> SRR1192500     1       0          1  1  0  0
#> SRR1192501     1       0          1  1  0  0
#> SRR1192502     1       0          1  1  0  0
#> SRR1192503     1       0          1  1  0  0
#> SRR1192496     1       0          1  1  0  0
#> SRR1192497     1       0          1  1  0  0
#> SRR1192499     1       0          1  1  0  0
#> SRR1192641     2       0          1  0  1  0
#> SRR1192640     2       0          1  0  1  0
#> SRR1192643     2       0          1  0  1  0
#> SRR1192642     2       0          1  0  1  0
#> SRR1192644     2       0          1  0  1  0
#> SRR1192645     2       0          1  0  1  0
#> SRR1192646     2       0          1  0  1  0
#> SRR1192647     2       0          1  0  1  0
#> SRR1192836     2       0          1  0  1  0
#> SRR1192838     2       0          1  0  1  0
#> SRR1192837     2       0          1  0  1  0
#> SRR1192839     2       0          1  0  1  0
#> SRR1192963     2       0          1  0  1  0
#> SRR1192966     2       0          1  0  1  0
#> SRR1192965     2       0          1  0  1  0
#> SRR1192964     2       0          1  0  1  0
#> SRR1193005     1       0          1  1  0  0
#> SRR1193006     1       0          1  1  0  0
#> SRR1193007     1       0          1  1  0  0
#> SRR1193008     1       0          1  1  0  0
#> SRR1193011     1       0          1  1  0  0
#> SRR1193012     1       0          1  1  0  0
#> SRR1193009     1       0          1  1  0  0
#> SRR1193010     1       0          1  1  0  0
#> SRR1193014     1       0          1  1  0  0
#> SRR1193015     1       0          1  1  0  0
#> SRR1193013     1       0          1  1  0  0
#> SRR1193018     1       0          1  1  0  0
#> SRR1193016     1       0          1  1  0  0
#> SRR1193017     1       0          1  1  0  0
#> SRR1193100     1       0          1  1  0  0
#> SRR1193101     1       0          1  1  0  0
#> SRR1193102     1       0          1  1  0  0
#> SRR1193104     1       0          1  1  0  0
#> SRR1193103     1       0          1  1  0  0
#> SRR1193105     1       0          1  1  0  0
#> SRR1193106     1       0          1  1  0  0
#> SRR1193198     1       0          1  1  0  0
#> SRR1193197     1       0          1  1  0  0
#> SRR1193199     1       0          1  1  0  0
#> SRR1193405     1       0          1  1  0  0
#> SRR1193404     1       0          1  1  0  0
#> SRR1193403     1       0          1  1  0  0
#> SRR1193522     1       0          1  1  0  0
#> SRR1193523     1       0          1  1  0  0
#> SRR1193524     1       0          1  1  0  0
#> SRR1193638     1       0          1  1  0  0
#> SRR1193639     1       0          1  1  0  0
#> SRR1195621     1       0          1  1  0  0
#> SRR1195619     1       0          1  1  0  0
#> SRR1195620     1       0          1  1  0  0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette p1 p2 p3 p4
#> SRR1190372     2       0          1  0  1  0  0
#> SRR1190371     2       0          1  0  1  0  0
#> SRR1190370     2       0          1  0  1  0  0
#> SRR1190368     2       0          1  0  1  0  0
#> SRR1190369     2       0          1  0  1  0  0
#> SRR1190366     2       0          1  0  1  0  0
#> SRR1190367     2       0          1  0  1  0  0
#> SRR1190365     2       0          1  0  1  0  0
#> SRR1190467     3       0          1  0  0  1  0
#> SRR1190466     3       0          1  0  0  1  0
#> SRR1190465     3       0          1  0  0  1  0
#> SRR1190464     3       0          1  0  0  1  0
#> SRR1190462     3       0          1  0  0  1  0
#> SRR1190461     3       0          1  0  0  1  0
#> SRR1190460     3       0          1  0  0  1  0
#> SRR1190509     1       0          1  1  0  0  0
#> SRR1190504     1       0          1  1  0  0  0
#> SRR1190503     1       0          1  1  0  0  0
#> SRR1190502     1       0          1  1  0  0  0
#> SRR1190508     1       0          1  1  0  0  0
#> SRR1190507     1       0          1  1  0  0  0
#> SRR1190506     1       0          1  1  0  0  0
#> SRR1190505     1       0          1  1  0  0  0
#> SRR1191342     4       0          1  0  0  0  1
#> SRR1191344     4       0          1  0  0  0  1
#> SRR1191343     4       0          1  0  0  0  1
#> SRR1191349     4       0          1  0  0  0  1
#> SRR1191345     4       0          1  0  0  0  1
#> SRR1191346     4       0          1  0  0  0  1
#> SRR1191347     4       0          1  0  0  0  1
#> SRR1191348     4       0          1  0  0  0  1
#> SRR1191668     1       0          1  1  0  0  0
#> SRR1191667     1       0          1  1  0  0  0
#> SRR1191673     1       0          1  1  0  0  0
#> SRR1191672     1       0          1  1  0  0  0
#> SRR1191695     3       0          1  0  0  1  0
#> SRR1191694     3       0          1  0  0  1  0
#> SRR1191783     3       0          1  0  0  1  0
#> SRR1191876     3       0          1  0  0  1  0
#> SRR1191914     1       0          1  1  0  0  0
#> SRR1191915     1       0          1  1  0  0  0
#> SRR1191953     1       0          1  1  0  0  0
#> SRR1191954     1       0          1  1  0  0  0
#> SRR1191990     1       0          1  1  0  0  0
#> SRR1191991     1       0          1  1  0  0  0
#> SRR1192016     3       0          1  0  0  1  0
#> SRR1192017     3       0          1  0  0  1  0
#> SRR1192073     3       0          1  0  0  1  0
#> SRR1192072     3       0          1  0  0  1  0
#> SRR1192167     1       0          1  1  0  0  0
#> SRR1192166     1       0          1  1  0  0  0
#> SRR1192321     3       0          1  0  0  1  0
#> SRR1192353     1       0          1  1  0  0  0
#> SRR1192354     1       0          1  1  0  0  0
#> SRR1192370     1       0          1  1  0  0  0
#> SRR1192371     1       0          1  1  0  0  0
#> SRR1192399     1       0          1  1  0  0  0
#> SRR1192398     1       0          1  1  0  0  0
#> SRR1192417     4       0          1  0  0  0  1
#> SRR1192418     4       0          1  0  0  0  1
#> SRR1192415     4       0          1  0  0  0  1
#> SRR1192416     4       0          1  0  0  0  1
#> SRR1192413     4       0          1  0  0  0  1
#> SRR1192414     4       0          1  0  0  0  1
#> SRR1192420     4       0          1  0  0  0  1
#> SRR1192419     4       0          1  0  0  0  1
#> SRR1192471     1       0          1  1  0  0  0
#> SRR1192470     1       0          1  1  0  0  0
#> SRR1192469     1       0          1  1  0  0  0
#> SRR1192468     1       0          1  1  0  0  0
#> SRR1192467     1       0          1  1  0  0  0
#> SRR1192466     1       0          1  1  0  0  0
#> SRR1192465     1       0          1  1  0  0  0
#> SRR1192500     1       0          1  1  0  0  0
#> SRR1192501     1       0          1  1  0  0  0
#> SRR1192502     1       0          1  1  0  0  0
#> SRR1192503     1       0          1  1  0  0  0
#> SRR1192496     1       0          1  1  0  0  0
#> SRR1192497     1       0          1  1  0  0  0
#> SRR1192499     1       0          1  1  0  0  0
#> SRR1192641     2       0          1  0  1  0  0
#> SRR1192640     2       0          1  0  1  0  0
#> SRR1192643     2       0          1  0  1  0  0
#> SRR1192642     2       0          1  0  1  0  0
#> SRR1192644     2       0          1  0  1  0  0
#> SRR1192645     2       0          1  0  1  0  0
#> SRR1192646     2       0          1  0  1  0  0
#> SRR1192647     2       0          1  0  1  0  0
#> SRR1192836     4       0          1  0  0  0  1
#> SRR1192838     4       0          1  0  0  0  1
#> SRR1192837     4       0          1  0  0  0  1
#> SRR1192839     4       0          1  0  0  0  1
#> SRR1192963     2       0          1  0  1  0  0
#> SRR1192966     2       0          1  0  1  0  0
#> SRR1192965     2       0          1  0  1  0  0
#> SRR1192964     2       0          1  0  1  0  0
#> SRR1193005     1       0          1  1  0  0  0
#> SRR1193006     1       0          1  1  0  0  0
#> SRR1193007     1       0          1  1  0  0  0
#> SRR1193008     1       0          1  1  0  0  0
#> SRR1193011     1       0          1  1  0  0  0
#> SRR1193012     1       0          1  1  0  0  0
#> SRR1193009     1       0          1  1  0  0  0
#> SRR1193010     1       0          1  1  0  0  0
#> SRR1193014     1       0          1  1  0  0  0
#> SRR1193015     1       0          1  1  0  0  0
#> SRR1193013     1       0          1  1  0  0  0
#> SRR1193018     1       0          1  1  0  0  0
#> SRR1193016     1       0          1  1  0  0  0
#> SRR1193017     1       0          1  1  0  0  0
#> SRR1193100     1       0          1  1  0  0  0
#> SRR1193101     1       0          1  1  0  0  0
#> SRR1193102     1       0          1  1  0  0  0
#> SRR1193104     1       0          1  1  0  0  0
#> SRR1193103     1       0          1  1  0  0  0
#> SRR1193105     1       0          1  1  0  0  0
#> SRR1193106     1       0          1  1  0  0  0
#> SRR1193198     1       0          1  1  0  0  0
#> SRR1193197     1       0          1  1  0  0  0
#> SRR1193199     1       0          1  1  0  0  0
#> SRR1193405     1       0          1  1  0  0  0
#> SRR1193404     1       0          1  1  0  0  0
#> SRR1193403     1       0          1  1  0  0  0
#> SRR1193522     1       0          1  1  0  0  0
#> SRR1193523     1       0          1  1  0  0  0
#> SRR1193524     1       0          1  1  0  0  0
#> SRR1193638     1       0          1  1  0  0  0
#> SRR1193639     1       0          1  1  0  0  0
#> SRR1195621     1       0          1  1  0  0  0
#> SRR1195619     1       0          1  1  0  0  0
#> SRR1195620     1       0          1  1  0  0  0

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette p1 p2 p3 p4 p5
#> SRR1190372     2       0          1  0  1  0  0  0
#> SRR1190371     2       0          1  0  1  0  0  0
#> SRR1190370     2       0          1  0  1  0  0  0
#> SRR1190368     2       0          1  0  1  0  0  0
#> SRR1190369     2       0          1  0  1  0  0  0
#> SRR1190366     2       0          1  0  1  0  0  0
#> SRR1190367     2       0          1  0  1  0  0  0
#> SRR1190365     2       0          1  0  1  0  0  0
#> SRR1190467     3       0          1  0  0  1  0  0
#> SRR1190466     3       0          1  0  0  1  0  0
#> SRR1190465     3       0          1  0  0  1  0  0
#> SRR1190464     3       0          1  0  0  1  0  0
#> SRR1190462     3       0          1  0  0  1  0  0
#> SRR1190461     3       0          1  0  0  1  0  0
#> SRR1190460     3       0          1  0  0  1  0  0
#> SRR1190509     1       0          1  1  0  0  0  0
#> SRR1190504     1       0          1  1  0  0  0  0
#> SRR1190503     1       0          1  1  0  0  0  0
#> SRR1190502     1       0          1  1  0  0  0  0
#> SRR1190508     1       0          1  1  0  0  0  0
#> SRR1190507     1       0          1  1  0  0  0  0
#> SRR1190506     1       0          1  1  0  0  0  0
#> SRR1190505     1       0          1  1  0  0  0  0
#> SRR1191342     4       0          1  0  0  0  1  0
#> SRR1191344     4       0          1  0  0  0  1  0
#> SRR1191343     4       0          1  0  0  0  1  0
#> SRR1191349     4       0          1  0  0  0  1  0
#> SRR1191345     4       0          1  0  0  0  1  0
#> SRR1191346     4       0          1  0  0  0  1  0
#> SRR1191347     4       0          1  0  0  0  1  0
#> SRR1191348     4       0          1  0  0  0  1  0
#> SRR1191668     1       0          1  1  0  0  0  0
#> SRR1191667     1       0          1  1  0  0  0  0
#> SRR1191673     1       0          1  1  0  0  0  0
#> SRR1191672     1       0          1  1  0  0  0  0
#> SRR1191695     3       0          1  0  0  1  0  0
#> SRR1191694     3       0          1  0  0  1  0  0
#> SRR1191783     3       0          1  0  0  1  0  0
#> SRR1191876     3       0          1  0  0  1  0  0
#> SRR1191914     1       0          1  1  0  0  0  0
#> SRR1191915     1       0          1  1  0  0  0  0
#> SRR1191953     1       0          1  1  0  0  0  0
#> SRR1191954     1       0          1  1  0  0  0  0
#> SRR1191990     1       0          1  1  0  0  0  0
#> SRR1191991     1       0          1  1  0  0  0  0
#> SRR1192016     3       0          1  0  0  1  0  0
#> SRR1192017     3       0          1  0  0  1  0  0
#> SRR1192073     3       0          1  0  0  1  0  0
#> SRR1192072     3       0          1  0  0  1  0  0
#> SRR1192167     1       0          1  1  0  0  0  0
#> SRR1192166     1       0          1  1  0  0  0  0
#> SRR1192321     3       0          1  0  0  1  0  0
#> SRR1192353     1       0          1  1  0  0  0  0
#> SRR1192354     1       0          1  1  0  0  0  0
#> SRR1192370     5       0          1  0  0  0  0  1
#> SRR1192371     5       0          1  0  0  0  0  1
#> SRR1192399     1       0          1  1  0  0  0  0
#> SRR1192398     1       0          1  1  0  0  0  0
#> SRR1192417     4       0          1  0  0  0  1  0
#> SRR1192418     4       0          1  0  0  0  1  0
#> SRR1192415     4       0          1  0  0  0  1  0
#> SRR1192416     4       0          1  0  0  0  1  0
#> SRR1192413     4       0          1  0  0  0  1  0
#> SRR1192414     4       0          1  0  0  0  1  0
#> SRR1192420     4       0          1  0  0  0  1  0
#> SRR1192419     4       0          1  0  0  0  1  0
#> SRR1192471     5       0          1  0  0  0  0  1
#> SRR1192470     5       0          1  0  0  0  0  1
#> SRR1192469     5       0          1  0  0  0  0  1
#> SRR1192468     5       0          1  0  0  0  0  1
#> SRR1192467     5       0          1  0  0  0  0  1
#> SRR1192466     5       0          1  0  0  0  0  1
#> SRR1192465     5       0          1  0  0  0  0  1
#> SRR1192500     1       0          1  1  0  0  0  0
#> SRR1192501     1       0          1  1  0  0  0  0
#> SRR1192502     1       0          1  1  0  0  0  0
#> SRR1192503     1       0          1  1  0  0  0  0
#> SRR1192496     1       0          1  1  0  0  0  0
#> SRR1192497     1       0          1  1  0  0  0  0
#> SRR1192499     1       0          1  1  0  0  0  0
#> SRR1192641     2       0          1  0  1  0  0  0
#> SRR1192640     2       0          1  0  1  0  0  0
#> SRR1192643     2       0          1  0  1  0  0  0
#> SRR1192642     2       0          1  0  1  0  0  0
#> SRR1192644     2       0          1  0  1  0  0  0
#> SRR1192645     2       0          1  0  1  0  0  0
#> SRR1192646     2       0          1  0  1  0  0  0
#> SRR1192647     2       0          1  0  1  0  0  0
#> SRR1192836     4       0          1  0  0  0  1  0
#> SRR1192838     4       0          1  0  0  0  1  0
#> SRR1192837     4       0          1  0  0  0  1  0
#> SRR1192839     4       0          1  0  0  0  1  0
#> SRR1192963     2       0          1  0  1  0  0  0
#> SRR1192966     2       0          1  0  1  0  0  0
#> SRR1192965     2       0          1  0  1  0  0  0
#> SRR1192964     2       0          1  0  1  0  0  0
#> SRR1193005     1       0          1  1  0  0  0  0
#> SRR1193006     1       0          1  1  0  0  0  0
#> SRR1193007     1       0          1  1  0  0  0  0
#> SRR1193008     1       0          1  1  0  0  0  0
#> SRR1193011     5       0          1  0  0  0  0  1
#> SRR1193012     5       0          1  0  0  0  0  1
#> SRR1193009     5       0          1  0  0  0  0  1
#> SRR1193010     5       0          1  0  0  0  0  1
#> SRR1193014     1       0          1  1  0  0  0  0
#> SRR1193015     1       0          1  1  0  0  0  0
#> SRR1193013     1       0          1  1  0  0  0  0
#> SRR1193018     1       0          1  1  0  0  0  0
#> SRR1193016     1       0          1  1  0  0  0  0
#> SRR1193017     1       0          1  1  0  0  0  0
#> SRR1193100     1       0          1  1  0  0  0  0
#> SRR1193101     1       0          1  1  0  0  0  0
#> SRR1193102     1       0          1  1  0  0  0  0
#> SRR1193104     5       0          1  0  0  0  0  1
#> SRR1193103     5       0          1  0  0  0  0  1
#> SRR1193105     5       0          1  0  0  0  0  1
#> SRR1193106     5       0          1  0  0  0  0  1
#> SRR1193198     1       0          1  1  0  0  0  0
#> SRR1193197     1       0          1  1  0  0  0  0
#> SRR1193199     1       0          1  1  0  0  0  0
#> SRR1193405     1       0          1  1  0  0  0  0
#> SRR1193404     1       0          1  1  0  0  0  0
#> SRR1193403     1       0          1  1  0  0  0  0
#> SRR1193522     1       0          1  1  0  0  0  0
#> SRR1193523     1       0          1  1  0  0  0  0
#> SRR1193524     1       0          1  1  0  0  0  0
#> SRR1193638     5       0          1  0  0  0  0  1
#> SRR1193639     5       0          1  0  0  0  0  1
#> SRR1195621     5       0          1  0  0  0  0  1
#> SRR1195619     5       0          1  0  0  0  0  1
#> SRR1195620     5       0          1  0  0  0  0  1

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1 p2 p3    p4 p5    p6
#> SRR1190372     2  0.0000      1.000 0.000  1  0 0.000  0 0.000
#> SRR1190371     2  0.0000      1.000 0.000  1  0 0.000  0 0.000
#> SRR1190370     2  0.0000      1.000 0.000  1  0 0.000  0 0.000
#> SRR1190368     2  0.0000      1.000 0.000  1  0 0.000  0 0.000
#> SRR1190369     2  0.0000      1.000 0.000  1  0 0.000  0 0.000
#> SRR1190366     2  0.0000      1.000 0.000  1  0 0.000  0 0.000
#> SRR1190367     2  0.0000      1.000 0.000  1  0 0.000  0 0.000
#> SRR1190365     2  0.0000      1.000 0.000  1  0 0.000  0 0.000
#> SRR1190467     3  0.0000      1.000 0.000  0  1 0.000  0 0.000
#> SRR1190466     3  0.0000      1.000 0.000  0  1 0.000  0 0.000
#> SRR1190465     3  0.0000      1.000 0.000  0  1 0.000  0 0.000
#> SRR1190464     3  0.0000      1.000 0.000  0  1 0.000  0 0.000
#> SRR1190462     3  0.0000      1.000 0.000  0  1 0.000  0 0.000
#> SRR1190461     3  0.0000      1.000 0.000  0  1 0.000  0 0.000
#> SRR1190460     3  0.0000      1.000 0.000  0  1 0.000  0 0.000
#> SRR1190509     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1190504     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1190503     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1190502     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1190508     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1190507     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1190506     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1190505     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1191342     4  0.0000      1.000 0.000  0  0 1.000  0 0.000
#> SRR1191344     4  0.0000      1.000 0.000  0  0 1.000  0 0.000
#> SRR1191343     4  0.0000      1.000 0.000  0  0 1.000  0 0.000
#> SRR1191349     4  0.0000      1.000 0.000  0  0 1.000  0 0.000
#> SRR1191345     4  0.0000      1.000 0.000  0  0 1.000  0 0.000
#> SRR1191346     4  0.0000      1.000 0.000  0  0 1.000  0 0.000
#> SRR1191347     4  0.0000      1.000 0.000  0  0 1.000  0 0.000
#> SRR1191348     4  0.0000      1.000 0.000  0  0 1.000  0 0.000
#> SRR1191668     1  0.0146      0.997 0.996  0  0 0.000  0 0.004
#> SRR1191667     1  0.0146      0.997 0.996  0  0 0.000  0 0.004
#> SRR1191673     1  0.0146      0.997 0.996  0  0 0.000  0 0.004
#> SRR1191672     1  0.0146      0.997 0.996  0  0 0.000  0 0.004
#> SRR1191695     3  0.0000      1.000 0.000  0  1 0.000  0 0.000
#> SRR1191694     3  0.0000      1.000 0.000  0  1 0.000  0 0.000
#> SRR1191783     3  0.0000      1.000 0.000  0  1 0.000  0 0.000
#> SRR1191876     3  0.0000      1.000 0.000  0  1 0.000  0 0.000
#> SRR1191914     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1191915     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1191953     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1191954     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1191990     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1191991     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1192016     3  0.0000      1.000 0.000  0  1 0.000  0 0.000
#> SRR1192017     3  0.0000      1.000 0.000  0  1 0.000  0 0.000
#> SRR1192073     3  0.0000      1.000 0.000  0  1 0.000  0 0.000
#> SRR1192072     3  0.0000      1.000 0.000  0  1 0.000  0 0.000
#> SRR1192167     1  0.0146      0.997 0.996  0  0 0.000  0 0.004
#> SRR1192166     1  0.0146      0.997 0.996  0  0 0.000  0 0.004
#> SRR1192321     3  0.0000      1.000 0.000  0  1 0.000  0 0.000
#> SRR1192353     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1192354     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1192370     5  0.0000      1.000 0.000  0  0 0.000  1 0.000
#> SRR1192371     5  0.0000      1.000 0.000  0  0 0.000  1 0.000
#> SRR1192399     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1192398     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1192417     4  0.0000      1.000 0.000  0  0 1.000  0 0.000
#> SRR1192418     4  0.0000      1.000 0.000  0  0 1.000  0 0.000
#> SRR1192415     4  0.0000      1.000 0.000  0  0 1.000  0 0.000
#> SRR1192416     4  0.0000      1.000 0.000  0  0 1.000  0 0.000
#> SRR1192413     4  0.0000      1.000 0.000  0  0 1.000  0 0.000
#> SRR1192414     4  0.0000      1.000 0.000  0  0 1.000  0 0.000
#> SRR1192420     4  0.0000      1.000 0.000  0  0 1.000  0 0.000
#> SRR1192419     4  0.0000      1.000 0.000  0  0 1.000  0 0.000
#> SRR1192471     5  0.0000      1.000 0.000  0  0 0.000  1 0.000
#> SRR1192470     5  0.0000      1.000 0.000  0  0 0.000  1 0.000
#> SRR1192469     5  0.0000      1.000 0.000  0  0 0.000  1 0.000
#> SRR1192468     5  0.0000      1.000 0.000  0  0 0.000  1 0.000
#> SRR1192467     5  0.0000      1.000 0.000  0  0 0.000  1 0.000
#> SRR1192466     5  0.0000      1.000 0.000  0  0 0.000  1 0.000
#> SRR1192465     5  0.0000      1.000 0.000  0  0 0.000  1 0.000
#> SRR1192500     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1192501     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1192502     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1192503     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1192496     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1192497     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1192499     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1192641     2  0.0000      1.000 0.000  1  0 0.000  0 0.000
#> SRR1192640     2  0.0000      1.000 0.000  1  0 0.000  0 0.000
#> SRR1192643     2  0.0000      1.000 0.000  1  0 0.000  0 0.000
#> SRR1192642     2  0.0000      1.000 0.000  1  0 0.000  0 0.000
#> SRR1192644     2  0.0000      1.000 0.000  1  0 0.000  0 0.000
#> SRR1192645     2  0.0000      1.000 0.000  1  0 0.000  0 0.000
#> SRR1192646     2  0.0000      1.000 0.000  1  0 0.000  0 0.000
#> SRR1192647     2  0.0000      1.000 0.000  1  0 0.000  0 0.000
#> SRR1192836     6  0.0146      1.000 0.000  0  0 0.004  0 0.996
#> SRR1192838     6  0.0146      1.000 0.000  0  0 0.004  0 0.996
#> SRR1192837     6  0.0146      1.000 0.000  0  0 0.004  0 0.996
#> SRR1192839     6  0.0146      1.000 0.000  0  0 0.004  0 0.996
#> SRR1192963     2  0.0000      1.000 0.000  1  0 0.000  0 0.000
#> SRR1192966     2  0.0000      1.000 0.000  1  0 0.000  0 0.000
#> SRR1192965     2  0.0000      1.000 0.000  1  0 0.000  0 0.000
#> SRR1192964     2  0.0000      1.000 0.000  1  0 0.000  0 0.000
#> SRR1193005     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1193006     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1193007     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1193008     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1193011     5  0.0000      1.000 0.000  0  0 0.000  1 0.000
#> SRR1193012     5  0.0000      1.000 0.000  0  0 0.000  1 0.000
#> SRR1193009     5  0.0000      1.000 0.000  0  0 0.000  1 0.000
#> SRR1193010     5  0.0000      1.000 0.000  0  0 0.000  1 0.000
#> SRR1193014     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1193015     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1193013     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1193018     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1193016     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1193017     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1193100     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1193101     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1193102     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1193104     5  0.0000      1.000 0.000  0  0 0.000  1 0.000
#> SRR1193103     5  0.0000      1.000 0.000  0  0 0.000  1 0.000
#> SRR1193105     5  0.0000      1.000 0.000  0  0 0.000  1 0.000
#> SRR1193106     5  0.0000      1.000 0.000  0  0 0.000  1 0.000
#> SRR1193198     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1193197     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1193199     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1193405     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1193404     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1193403     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1193522     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1193523     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1193524     1  0.0000      1.000 1.000  0  0 0.000  0 0.000
#> SRR1193638     5  0.0000      1.000 0.000  0  0 0.000  1 0.000
#> SRR1193639     5  0.0000      1.000 0.000  0  0 0.000  1 0.000
#> SRR1195621     5  0.0000      1.000 0.000  0  0 0.000  1 0.000
#> SRR1195619     5  0.0000      1.000 0.000  0  0 0.000  1 0.000
#> SRR1195620     5  0.0000      1.000 0.000  0  0 0.000  1 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15363 rows and 131 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.985       0.991         0.4322 0.573   0.573
#> 3 3 0.917           0.871       0.924         0.3614 0.775   0.630
#> 4 4 1.000           0.930       0.974         0.0828 0.903   0.775
#> 5 5 1.000           0.967       0.984         0.0742 0.948   0.851
#> 6 6 0.955           0.941       0.951         0.0154 0.996   0.988

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2 3 4

There is also optional best \(k\) = 2 3 4 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1190372     2   0.000      1.000 0.000 1.000
#> SRR1190371     2   0.000      1.000 0.000 1.000
#> SRR1190370     2   0.000      1.000 0.000 1.000
#> SRR1190368     2   0.000      1.000 0.000 1.000
#> SRR1190369     2   0.000      1.000 0.000 1.000
#> SRR1190366     2   0.000      1.000 0.000 1.000
#> SRR1190367     2   0.000      1.000 0.000 1.000
#> SRR1190365     2   0.000      1.000 0.000 1.000
#> SRR1190467     1   0.311      0.955 0.944 0.056
#> SRR1190466     1   0.311      0.955 0.944 0.056
#> SRR1190465     1   0.311      0.955 0.944 0.056
#> SRR1190464     1   0.311      0.955 0.944 0.056
#> SRR1190462     1   0.311      0.955 0.944 0.056
#> SRR1190461     1   0.311      0.955 0.944 0.056
#> SRR1190460     1   0.311      0.955 0.944 0.056
#> SRR1190509     1   0.000      0.986 1.000 0.000
#> SRR1190504     1   0.000      0.986 1.000 0.000
#> SRR1190503     1   0.000      0.986 1.000 0.000
#> SRR1190502     1   0.000      0.986 1.000 0.000
#> SRR1190508     1   0.000      0.986 1.000 0.000
#> SRR1190507     1   0.000      0.986 1.000 0.000
#> SRR1190506     1   0.000      0.986 1.000 0.000
#> SRR1190505     1   0.000      0.986 1.000 0.000
#> SRR1191342     2   0.000      1.000 0.000 1.000
#> SRR1191344     2   0.000      1.000 0.000 1.000
#> SRR1191343     2   0.000      1.000 0.000 1.000
#> SRR1191349     2   0.000      1.000 0.000 1.000
#> SRR1191345     2   0.000      1.000 0.000 1.000
#> SRR1191346     2   0.000      1.000 0.000 1.000
#> SRR1191347     2   0.000      1.000 0.000 1.000
#> SRR1191348     2   0.000      1.000 0.000 1.000
#> SRR1191668     1   0.311      0.955 0.944 0.056
#> SRR1191667     1   0.311      0.955 0.944 0.056
#> SRR1191673     1   0.311      0.955 0.944 0.056
#> SRR1191672     1   0.311      0.955 0.944 0.056
#> SRR1191695     1   0.311      0.955 0.944 0.056
#> SRR1191694     1   0.311      0.955 0.944 0.056
#> SRR1191783     1   0.311      0.955 0.944 0.056
#> SRR1191876     1   0.311      0.955 0.944 0.056
#> SRR1191914     1   0.000      0.986 1.000 0.000
#> SRR1191915     1   0.000      0.986 1.000 0.000
#> SRR1191953     1   0.000      0.986 1.000 0.000
#> SRR1191954     1   0.000      0.986 1.000 0.000
#> SRR1191990     1   0.000      0.986 1.000 0.000
#> SRR1191991     1   0.000      0.986 1.000 0.000
#> SRR1192016     1   0.311      0.955 0.944 0.056
#> SRR1192017     1   0.311      0.955 0.944 0.056
#> SRR1192073     1   0.311      0.955 0.944 0.056
#> SRR1192072     1   0.311      0.955 0.944 0.056
#> SRR1192167     1   0.311      0.955 0.944 0.056
#> SRR1192166     1   0.311      0.955 0.944 0.056
#> SRR1192321     1   0.311      0.955 0.944 0.056
#> SRR1192353     1   0.000      0.986 1.000 0.000
#> SRR1192354     1   0.000      0.986 1.000 0.000
#> SRR1192370     1   0.000      0.986 1.000 0.000
#> SRR1192371     1   0.000      0.986 1.000 0.000
#> SRR1192399     1   0.000      0.986 1.000 0.000
#> SRR1192398     1   0.000      0.986 1.000 0.000
#> SRR1192417     2   0.000      1.000 0.000 1.000
#> SRR1192418     2   0.000      1.000 0.000 1.000
#> SRR1192415     2   0.000      1.000 0.000 1.000
#> SRR1192416     2   0.000      1.000 0.000 1.000
#> SRR1192413     2   0.000      1.000 0.000 1.000
#> SRR1192414     2   0.000      1.000 0.000 1.000
#> SRR1192420     2   0.000      1.000 0.000 1.000
#> SRR1192419     2   0.000      1.000 0.000 1.000
#> SRR1192471     1   0.000      0.986 1.000 0.000
#> SRR1192470     1   0.000      0.986 1.000 0.000
#> SRR1192469     1   0.000      0.986 1.000 0.000
#> SRR1192468     1   0.000      0.986 1.000 0.000
#> SRR1192467     1   0.000      0.986 1.000 0.000
#> SRR1192466     1   0.000      0.986 1.000 0.000
#> SRR1192465     1   0.000      0.986 1.000 0.000
#> SRR1192500     1   0.000      0.986 1.000 0.000
#> SRR1192501     1   0.000      0.986 1.000 0.000
#> SRR1192502     1   0.000      0.986 1.000 0.000
#> SRR1192503     1   0.000      0.986 1.000 0.000
#> SRR1192496     1   0.000      0.986 1.000 0.000
#> SRR1192497     1   0.000      0.986 1.000 0.000
#> SRR1192499     1   0.000      0.986 1.000 0.000
#> SRR1192641     2   0.000      1.000 0.000 1.000
#> SRR1192640     2   0.000      1.000 0.000 1.000
#> SRR1192643     2   0.000      1.000 0.000 1.000
#> SRR1192642     2   0.000      1.000 0.000 1.000
#> SRR1192644     2   0.000      1.000 0.000 1.000
#> SRR1192645     2   0.000      1.000 0.000 1.000
#> SRR1192646     2   0.000      1.000 0.000 1.000
#> SRR1192647     2   0.000      1.000 0.000 1.000
#> SRR1192836     2   0.000      1.000 0.000 1.000
#> SRR1192838     2   0.000      1.000 0.000 1.000
#> SRR1192837     2   0.000      1.000 0.000 1.000
#> SRR1192839     2   0.000      1.000 0.000 1.000
#> SRR1192963     2   0.000      1.000 0.000 1.000
#> SRR1192966     2   0.000      1.000 0.000 1.000
#> SRR1192965     2   0.000      1.000 0.000 1.000
#> SRR1192964     2   0.000      1.000 0.000 1.000
#> SRR1193005     1   0.000      0.986 1.000 0.000
#> SRR1193006     1   0.000      0.986 1.000 0.000
#> SRR1193007     1   0.000      0.986 1.000 0.000
#> SRR1193008     1   0.000      0.986 1.000 0.000
#> SRR1193011     1   0.000      0.986 1.000 0.000
#> SRR1193012     1   0.000      0.986 1.000 0.000
#> SRR1193009     1   0.000      0.986 1.000 0.000
#> SRR1193010     1   0.000      0.986 1.000 0.000
#> SRR1193014     1   0.000      0.986 1.000 0.000
#> SRR1193015     1   0.000      0.986 1.000 0.000
#> SRR1193013     1   0.000      0.986 1.000 0.000
#> SRR1193018     1   0.000      0.986 1.000 0.000
#> SRR1193016     1   0.000      0.986 1.000 0.000
#> SRR1193017     1   0.000      0.986 1.000 0.000
#> SRR1193100     1   0.000      0.986 1.000 0.000
#> SRR1193101     1   0.000      0.986 1.000 0.000
#> SRR1193102     1   0.000      0.986 1.000 0.000
#> SRR1193104     1   0.000      0.986 1.000 0.000
#> SRR1193103     1   0.000      0.986 1.000 0.000
#> SRR1193105     1   0.000      0.986 1.000 0.000
#> SRR1193106     1   0.000      0.986 1.000 0.000
#> SRR1193198     1   0.000      0.986 1.000 0.000
#> SRR1193197     1   0.000      0.986 1.000 0.000
#> SRR1193199     1   0.000      0.986 1.000 0.000
#> SRR1193405     1   0.000      0.986 1.000 0.000
#> SRR1193404     1   0.000      0.986 1.000 0.000
#> SRR1193403     1   0.000      0.986 1.000 0.000
#> SRR1193522     1   0.000      0.986 1.000 0.000
#> SRR1193523     1   0.000      0.986 1.000 0.000
#> SRR1193524     1   0.000      0.986 1.000 0.000
#> SRR1193638     1   0.000      0.986 1.000 0.000
#> SRR1193639     1   0.000      0.986 1.000 0.000
#> SRR1195621     1   0.000      0.986 1.000 0.000
#> SRR1195619     1   0.000      0.986 1.000 0.000
#> SRR1195620     1   0.000      0.986 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1190372     3   0.618      0.785 0.000 0.416 0.584
#> SRR1190371     3   0.618      0.785 0.000 0.416 0.584
#> SRR1190370     3   0.618      0.785 0.000 0.416 0.584
#> SRR1190368     3   0.618      0.785 0.000 0.416 0.584
#> SRR1190369     3   0.618      0.785 0.000 0.416 0.584
#> SRR1190366     3   0.618      0.785 0.000 0.416 0.584
#> SRR1190367     3   0.618      0.785 0.000 0.416 0.584
#> SRR1190365     3   0.618      0.785 0.000 0.416 0.584
#> SRR1190467     3   0.000      0.658 0.000 0.000 1.000
#> SRR1190466     3   0.000      0.658 0.000 0.000 1.000
#> SRR1190465     3   0.000      0.658 0.000 0.000 1.000
#> SRR1190464     3   0.000      0.658 0.000 0.000 1.000
#> SRR1190462     3   0.000      0.658 0.000 0.000 1.000
#> SRR1190461     3   0.000      0.658 0.000 0.000 1.000
#> SRR1190460     3   0.000      0.658 0.000 0.000 1.000
#> SRR1190509     1   0.000      0.958 1.000 0.000 0.000
#> SRR1190504     1   0.000      0.958 1.000 0.000 0.000
#> SRR1190503     1   0.000      0.958 1.000 0.000 0.000
#> SRR1190502     1   0.000      0.958 1.000 0.000 0.000
#> SRR1190508     1   0.000      0.958 1.000 0.000 0.000
#> SRR1190507     1   0.000      0.958 1.000 0.000 0.000
#> SRR1190506     1   0.000      0.958 1.000 0.000 0.000
#> SRR1190505     1   0.000      0.958 1.000 0.000 0.000
#> SRR1191342     2   0.579      1.000 0.000 0.668 0.332
#> SRR1191344     2   0.579      1.000 0.000 0.668 0.332
#> SRR1191343     2   0.579      1.000 0.000 0.668 0.332
#> SRR1191349     2   0.579      1.000 0.000 0.668 0.332
#> SRR1191345     2   0.579      1.000 0.000 0.668 0.332
#> SRR1191346     2   0.579      1.000 0.000 0.668 0.332
#> SRR1191347     2   0.579      1.000 0.000 0.668 0.332
#> SRR1191348     2   0.579      1.000 0.000 0.668 0.332
#> SRR1191668     1   0.620      0.357 0.576 0.000 0.424
#> SRR1191667     1   0.620      0.357 0.576 0.000 0.424
#> SRR1191673     1   0.620      0.357 0.576 0.000 0.424
#> SRR1191672     1   0.620      0.357 0.576 0.000 0.424
#> SRR1191695     3   0.000      0.658 0.000 0.000 1.000
#> SRR1191694     3   0.000      0.658 0.000 0.000 1.000
#> SRR1191783     3   0.000      0.658 0.000 0.000 1.000
#> SRR1191876     3   0.000      0.658 0.000 0.000 1.000
#> SRR1191914     1   0.000      0.958 1.000 0.000 0.000
#> SRR1191915     1   0.000      0.958 1.000 0.000 0.000
#> SRR1191953     1   0.000      0.958 1.000 0.000 0.000
#> SRR1191954     1   0.000      0.958 1.000 0.000 0.000
#> SRR1191990     1   0.000      0.958 1.000 0.000 0.000
#> SRR1191991     1   0.000      0.958 1.000 0.000 0.000
#> SRR1192016     3   0.000      0.658 0.000 0.000 1.000
#> SRR1192017     3   0.000      0.658 0.000 0.000 1.000
#> SRR1192073     3   0.000      0.658 0.000 0.000 1.000
#> SRR1192072     3   0.000      0.658 0.000 0.000 1.000
#> SRR1192167     1   0.620      0.357 0.576 0.000 0.424
#> SRR1192166     1   0.620      0.357 0.576 0.000 0.424
#> SRR1192321     3   0.000      0.658 0.000 0.000 1.000
#> SRR1192353     1   0.000      0.958 1.000 0.000 0.000
#> SRR1192354     1   0.000      0.958 1.000 0.000 0.000
#> SRR1192370     1   0.000      0.958 1.000 0.000 0.000
#> SRR1192371     1   0.000      0.958 1.000 0.000 0.000
#> SRR1192399     1   0.000      0.958 1.000 0.000 0.000
#> SRR1192398     1   0.000      0.958 1.000 0.000 0.000
#> SRR1192417     2   0.579      1.000 0.000 0.668 0.332
#> SRR1192418     2   0.579      1.000 0.000 0.668 0.332
#> SRR1192415     2   0.579      1.000 0.000 0.668 0.332
#> SRR1192416     2   0.579      1.000 0.000 0.668 0.332
#> SRR1192413     2   0.579      1.000 0.000 0.668 0.332
#> SRR1192414     2   0.579      1.000 0.000 0.668 0.332
#> SRR1192420     2   0.579      1.000 0.000 0.668 0.332
#> SRR1192419     2   0.579      1.000 0.000 0.668 0.332
#> SRR1192471     1   0.000      0.958 1.000 0.000 0.000
#> SRR1192470     1   0.000      0.958 1.000 0.000 0.000
#> SRR1192469     1   0.000      0.958 1.000 0.000 0.000
#> SRR1192468     1   0.000      0.958 1.000 0.000 0.000
#> SRR1192467     1   0.000      0.958 1.000 0.000 0.000
#> SRR1192466     1   0.000      0.958 1.000 0.000 0.000
#> SRR1192465     1   0.000      0.958 1.000 0.000 0.000
#> SRR1192500     1   0.000      0.958 1.000 0.000 0.000
#> SRR1192501     1   0.000      0.958 1.000 0.000 0.000
#> SRR1192502     1   0.000      0.958 1.000 0.000 0.000
#> SRR1192503     1   0.000      0.958 1.000 0.000 0.000
#> SRR1192496     1   0.000      0.958 1.000 0.000 0.000
#> SRR1192497     1   0.000      0.958 1.000 0.000 0.000
#> SRR1192499     1   0.000      0.958 1.000 0.000 0.000
#> SRR1192641     3   0.618      0.785 0.000 0.416 0.584
#> SRR1192640     3   0.618      0.785 0.000 0.416 0.584
#> SRR1192643     3   0.618      0.785 0.000 0.416 0.584
#> SRR1192642     3   0.618      0.785 0.000 0.416 0.584
#> SRR1192644     3   0.618      0.785 0.000 0.416 0.584
#> SRR1192645     3   0.618      0.785 0.000 0.416 0.584
#> SRR1192646     3   0.618      0.785 0.000 0.416 0.584
#> SRR1192647     3   0.618      0.785 0.000 0.416 0.584
#> SRR1192836     2   0.579      1.000 0.000 0.668 0.332
#> SRR1192838     2   0.579      1.000 0.000 0.668 0.332
#> SRR1192837     2   0.579      1.000 0.000 0.668 0.332
#> SRR1192839     2   0.579      1.000 0.000 0.668 0.332
#> SRR1192963     3   0.618      0.785 0.000 0.416 0.584
#> SRR1192966     3   0.618      0.785 0.000 0.416 0.584
#> SRR1192965     3   0.618      0.785 0.000 0.416 0.584
#> SRR1192964     3   0.618      0.785 0.000 0.416 0.584
#> SRR1193005     1   0.000      0.958 1.000 0.000 0.000
#> SRR1193006     1   0.000      0.958 1.000 0.000 0.000
#> SRR1193007     1   0.000      0.958 1.000 0.000 0.000
#> SRR1193008     1   0.000      0.958 1.000 0.000 0.000
#> SRR1193011     1   0.000      0.958 1.000 0.000 0.000
#> SRR1193012     1   0.000      0.958 1.000 0.000 0.000
#> SRR1193009     1   0.000      0.958 1.000 0.000 0.000
#> SRR1193010     1   0.000      0.958 1.000 0.000 0.000
#> SRR1193014     1   0.000      0.958 1.000 0.000 0.000
#> SRR1193015     1   0.000      0.958 1.000 0.000 0.000
#> SRR1193013     1   0.000      0.958 1.000 0.000 0.000
#> SRR1193018     1   0.000      0.958 1.000 0.000 0.000
#> SRR1193016     1   0.000      0.958 1.000 0.000 0.000
#> SRR1193017     1   0.000      0.958 1.000 0.000 0.000
#> SRR1193100     1   0.000      0.958 1.000 0.000 0.000
#> SRR1193101     1   0.000      0.958 1.000 0.000 0.000
#> SRR1193102     1   0.000      0.958 1.000 0.000 0.000
#> SRR1193104     1   0.000      0.958 1.000 0.000 0.000
#> SRR1193103     1   0.000      0.958 1.000 0.000 0.000
#> SRR1193105     1   0.000      0.958 1.000 0.000 0.000
#> SRR1193106     1   0.000      0.958 1.000 0.000 0.000
#> SRR1193198     1   0.000      0.958 1.000 0.000 0.000
#> SRR1193197     1   0.000      0.958 1.000 0.000 0.000
#> SRR1193199     1   0.000      0.958 1.000 0.000 0.000
#> SRR1193405     1   0.000      0.958 1.000 0.000 0.000
#> SRR1193404     1   0.000      0.958 1.000 0.000 0.000
#> SRR1193403     1   0.000      0.958 1.000 0.000 0.000
#> SRR1193522     1   0.000      0.958 1.000 0.000 0.000
#> SRR1193523     1   0.000      0.958 1.000 0.000 0.000
#> SRR1193524     1   0.000      0.958 1.000 0.000 0.000
#> SRR1193638     1   0.254      0.887 0.920 0.000 0.080
#> SRR1193639     1   0.254      0.887 0.920 0.000 0.080
#> SRR1195621     1   0.254      0.887 0.920 0.000 0.080
#> SRR1195619     1   0.254      0.887 0.920 0.000 0.080
#> SRR1195620     1   0.254      0.887 0.920 0.000 0.080

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1 p2    p3 p4
#> SRR1190372     2   0.000      1.000 0.000  1 0.000  0
#> SRR1190371     2   0.000      1.000 0.000  1 0.000  0
#> SRR1190370     2   0.000      1.000 0.000  1 0.000  0
#> SRR1190368     2   0.000      1.000 0.000  1 0.000  0
#> SRR1190369     2   0.000      1.000 0.000  1 0.000  0
#> SRR1190366     2   0.000      1.000 0.000  1 0.000  0
#> SRR1190367     2   0.000      1.000 0.000  1 0.000  0
#> SRR1190365     2   0.000      1.000 0.000  1 0.000  0
#> SRR1190467     3   0.000      0.781 0.000  0 1.000  0
#> SRR1190466     3   0.000      0.781 0.000  0 1.000  0
#> SRR1190465     3   0.000      0.781 0.000  0 1.000  0
#> SRR1190464     3   0.000      0.781 0.000  0 1.000  0
#> SRR1190462     3   0.000      0.781 0.000  0 1.000  0
#> SRR1190461     3   0.000      0.781 0.000  0 1.000  0
#> SRR1190460     3   0.000      0.781 0.000  0 1.000  0
#> SRR1190509     1   0.000      0.992 1.000  0 0.000  0
#> SRR1190504     1   0.000      0.992 1.000  0 0.000  0
#> SRR1190503     1   0.000      0.992 1.000  0 0.000  0
#> SRR1190502     1   0.000      0.992 1.000  0 0.000  0
#> SRR1190508     1   0.000      0.992 1.000  0 0.000  0
#> SRR1190507     1   0.000      0.992 1.000  0 0.000  0
#> SRR1190506     1   0.000      0.992 1.000  0 0.000  0
#> SRR1190505     1   0.000      0.992 1.000  0 0.000  0
#> SRR1191342     4   0.000      1.000 0.000  0 0.000  1
#> SRR1191344     4   0.000      1.000 0.000  0 0.000  1
#> SRR1191343     4   0.000      1.000 0.000  0 0.000  1
#> SRR1191349     4   0.000      1.000 0.000  0 0.000  1
#> SRR1191345     4   0.000      1.000 0.000  0 0.000  1
#> SRR1191346     4   0.000      1.000 0.000  0 0.000  1
#> SRR1191347     4   0.000      1.000 0.000  0 0.000  1
#> SRR1191348     4   0.000      1.000 0.000  0 0.000  1
#> SRR1191668     3   0.500      0.240 0.492  0 0.508  0
#> SRR1191667     3   0.500      0.240 0.492  0 0.508  0
#> SRR1191673     3   0.500      0.240 0.492  0 0.508  0
#> SRR1191672     3   0.500      0.240 0.492  0 0.508  0
#> SRR1191695     3   0.000      0.781 0.000  0 1.000  0
#> SRR1191694     3   0.000      0.781 0.000  0 1.000  0
#> SRR1191783     3   0.000      0.781 0.000  0 1.000  0
#> SRR1191876     3   0.000      0.781 0.000  0 1.000  0
#> SRR1191914     1   0.000      0.992 1.000  0 0.000  0
#> SRR1191915     1   0.000      0.992 1.000  0 0.000  0
#> SRR1191953     1   0.000      0.992 1.000  0 0.000  0
#> SRR1191954     1   0.000      0.992 1.000  0 0.000  0
#> SRR1191990     1   0.000      0.992 1.000  0 0.000  0
#> SRR1191991     1   0.000      0.992 1.000  0 0.000  0
#> SRR1192016     3   0.000      0.781 0.000  0 1.000  0
#> SRR1192017     3   0.000      0.781 0.000  0 1.000  0
#> SRR1192073     3   0.000      0.781 0.000  0 1.000  0
#> SRR1192072     3   0.000      0.781 0.000  0 1.000  0
#> SRR1192167     3   0.500      0.240 0.492  0 0.508  0
#> SRR1192166     3   0.500      0.240 0.492  0 0.508  0
#> SRR1192321     3   0.000      0.781 0.000  0 1.000  0
#> SRR1192353     1   0.000      0.992 1.000  0 0.000  0
#> SRR1192354     1   0.000      0.992 1.000  0 0.000  0
#> SRR1192370     1   0.000      0.992 1.000  0 0.000  0
#> SRR1192371     1   0.000      0.992 1.000  0 0.000  0
#> SRR1192399     1   0.000      0.992 1.000  0 0.000  0
#> SRR1192398     1   0.000      0.992 1.000  0 0.000  0
#> SRR1192417     4   0.000      1.000 0.000  0 0.000  1
#> SRR1192418     4   0.000      1.000 0.000  0 0.000  1
#> SRR1192415     4   0.000      1.000 0.000  0 0.000  1
#> SRR1192416     4   0.000      1.000 0.000  0 0.000  1
#> SRR1192413     4   0.000      1.000 0.000  0 0.000  1
#> SRR1192414     4   0.000      1.000 0.000  0 0.000  1
#> SRR1192420     4   0.000      1.000 0.000  0 0.000  1
#> SRR1192419     4   0.000      1.000 0.000  0 0.000  1
#> SRR1192471     1   0.000      0.992 1.000  0 0.000  0
#> SRR1192470     1   0.000      0.992 1.000  0 0.000  0
#> SRR1192469     1   0.000      0.992 1.000  0 0.000  0
#> SRR1192468     1   0.000      0.992 1.000  0 0.000  0
#> SRR1192467     1   0.000      0.992 1.000  0 0.000  0
#> SRR1192466     1   0.000      0.992 1.000  0 0.000  0
#> SRR1192465     1   0.000      0.992 1.000  0 0.000  0
#> SRR1192500     1   0.000      0.992 1.000  0 0.000  0
#> SRR1192501     1   0.000      0.992 1.000  0 0.000  0
#> SRR1192502     1   0.000      0.992 1.000  0 0.000  0
#> SRR1192503     1   0.000      0.992 1.000  0 0.000  0
#> SRR1192496     1   0.000      0.992 1.000  0 0.000  0
#> SRR1192497     1   0.000      0.992 1.000  0 0.000  0
#> SRR1192499     1   0.000      0.992 1.000  0 0.000  0
#> SRR1192641     2   0.000      1.000 0.000  1 0.000  0
#> SRR1192640     2   0.000      1.000 0.000  1 0.000  0
#> SRR1192643     2   0.000      1.000 0.000  1 0.000  0
#> SRR1192642     2   0.000      1.000 0.000  1 0.000  0
#> SRR1192644     2   0.000      1.000 0.000  1 0.000  0
#> SRR1192645     2   0.000      1.000 0.000  1 0.000  0
#> SRR1192646     2   0.000      1.000 0.000  1 0.000  0
#> SRR1192647     2   0.000      1.000 0.000  1 0.000  0
#> SRR1192836     4   0.000      1.000 0.000  0 0.000  1
#> SRR1192838     4   0.000      1.000 0.000  0 0.000  1
#> SRR1192837     4   0.000      1.000 0.000  0 0.000  1
#> SRR1192839     4   0.000      1.000 0.000  0 0.000  1
#> SRR1192963     2   0.000      1.000 0.000  1 0.000  0
#> SRR1192966     2   0.000      1.000 0.000  1 0.000  0
#> SRR1192965     2   0.000      1.000 0.000  1 0.000  0
#> SRR1192964     2   0.000      1.000 0.000  1 0.000  0
#> SRR1193005     1   0.000      0.992 1.000  0 0.000  0
#> SRR1193006     1   0.000      0.992 1.000  0 0.000  0
#> SRR1193007     1   0.000      0.992 1.000  0 0.000  0
#> SRR1193008     1   0.000      0.992 1.000  0 0.000  0
#> SRR1193011     1   0.000      0.992 1.000  0 0.000  0
#> SRR1193012     1   0.000      0.992 1.000  0 0.000  0
#> SRR1193009     1   0.000      0.992 1.000  0 0.000  0
#> SRR1193010     1   0.000      0.992 1.000  0 0.000  0
#> SRR1193014     1   0.000      0.992 1.000  0 0.000  0
#> SRR1193015     1   0.000      0.992 1.000  0 0.000  0
#> SRR1193013     1   0.000      0.992 1.000  0 0.000  0
#> SRR1193018     1   0.000      0.992 1.000  0 0.000  0
#> SRR1193016     1   0.000      0.992 1.000  0 0.000  0
#> SRR1193017     1   0.000      0.992 1.000  0 0.000  0
#> SRR1193100     1   0.000      0.992 1.000  0 0.000  0
#> SRR1193101     1   0.000      0.992 1.000  0 0.000  0
#> SRR1193102     1   0.000      0.992 1.000  0 0.000  0
#> SRR1193104     1   0.000      0.992 1.000  0 0.000  0
#> SRR1193103     1   0.000      0.992 1.000  0 0.000  0
#> SRR1193105     1   0.000      0.992 1.000  0 0.000  0
#> SRR1193106     1   0.000      0.992 1.000  0 0.000  0
#> SRR1193198     1   0.000      0.992 1.000  0 0.000  0
#> SRR1193197     1   0.000      0.992 1.000  0 0.000  0
#> SRR1193199     1   0.000      0.992 1.000  0 0.000  0
#> SRR1193405     1   0.000      0.992 1.000  0 0.000  0
#> SRR1193404     1   0.000      0.992 1.000  0 0.000  0
#> SRR1193403     1   0.000      0.992 1.000  0 0.000  0
#> SRR1193522     1   0.000      0.992 1.000  0 0.000  0
#> SRR1193523     1   0.000      0.992 1.000  0 0.000  0
#> SRR1193524     1   0.000      0.992 1.000  0 0.000  0
#> SRR1193638     1   0.228      0.879 0.904  0 0.096  0
#> SRR1193639     1   0.228      0.879 0.904  0 0.096  0
#> SRR1195621     1   0.228      0.879 0.904  0 0.096  0
#> SRR1195619     1   0.228      0.879 0.904  0 0.096  0
#> SRR1195620     1   0.228      0.879 0.904  0 0.096  0

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1 p2 p3 p4    p5
#> SRR1190372     2   0.000      1.000 0.000  1  0  0 0.000
#> SRR1190371     2   0.000      1.000 0.000  1  0  0 0.000
#> SRR1190370     2   0.000      1.000 0.000  1  0  0 0.000
#> SRR1190368     2   0.000      1.000 0.000  1  0  0 0.000
#> SRR1190369     2   0.000      1.000 0.000  1  0  0 0.000
#> SRR1190366     2   0.000      1.000 0.000  1  0  0 0.000
#> SRR1190367     2   0.000      1.000 0.000  1  0  0 0.000
#> SRR1190365     2   0.000      1.000 0.000  1  0  0 0.000
#> SRR1190467     3   0.000      1.000 0.000  0  1  0 0.000
#> SRR1190466     3   0.000      1.000 0.000  0  1  0 0.000
#> SRR1190465     3   0.000      1.000 0.000  0  1  0 0.000
#> SRR1190464     3   0.000      1.000 0.000  0  1  0 0.000
#> SRR1190462     3   0.000      1.000 0.000  0  1  0 0.000
#> SRR1190461     3   0.000      1.000 0.000  0  1  0 0.000
#> SRR1190460     3   0.000      1.000 0.000  0  1  0 0.000
#> SRR1190509     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1190504     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1190503     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1190502     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1190508     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1190507     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1190506     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1190505     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1191342     4   0.000      1.000 0.000  0  0  1 0.000
#> SRR1191344     4   0.000      1.000 0.000  0  0  1 0.000
#> SRR1191343     4   0.000      1.000 0.000  0  0  1 0.000
#> SRR1191349     4   0.000      1.000 0.000  0  0  1 0.000
#> SRR1191345     4   0.000      1.000 0.000  0  0  1 0.000
#> SRR1191346     4   0.000      1.000 0.000  0  0  1 0.000
#> SRR1191347     4   0.000      1.000 0.000  0  0  1 0.000
#> SRR1191348     4   0.000      1.000 0.000  0  0  1 0.000
#> SRR1191668     5   0.000      0.634 0.000  0  0  0 1.000
#> SRR1191667     5   0.000      0.634 0.000  0  0  0 1.000
#> SRR1191673     5   0.000      0.634 0.000  0  0  0 1.000
#> SRR1191672     5   0.000      0.634 0.000  0  0  0 1.000
#> SRR1191695     3   0.000      1.000 0.000  0  1  0 0.000
#> SRR1191694     3   0.000      1.000 0.000  0  1  0 0.000
#> SRR1191783     3   0.000      1.000 0.000  0  1  0 0.000
#> SRR1191876     3   0.000      1.000 0.000  0  1  0 0.000
#> SRR1191914     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1191915     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1191953     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1191954     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1191990     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1191991     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1192016     3   0.000      1.000 0.000  0  1  0 0.000
#> SRR1192017     3   0.000      1.000 0.000  0  1  0 0.000
#> SRR1192073     3   0.000      1.000 0.000  0  1  0 0.000
#> SRR1192072     3   0.000      1.000 0.000  0  1  0 0.000
#> SRR1192167     5   0.000      0.634 0.000  0  0  0 1.000
#> SRR1192166     5   0.000      0.634 0.000  0  0  0 1.000
#> SRR1192321     3   0.000      1.000 0.000  0  1  0 0.000
#> SRR1192353     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1192354     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1192370     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1192371     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1192399     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1192398     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1192417     4   0.000      1.000 0.000  0  0  1 0.000
#> SRR1192418     4   0.000      1.000 0.000  0  0  1 0.000
#> SRR1192415     4   0.000      1.000 0.000  0  0  1 0.000
#> SRR1192416     4   0.000      1.000 0.000  0  0  1 0.000
#> SRR1192413     4   0.000      1.000 0.000  0  0  1 0.000
#> SRR1192414     4   0.000      1.000 0.000  0  0  1 0.000
#> SRR1192420     4   0.000      1.000 0.000  0  0  1 0.000
#> SRR1192419     4   0.000      1.000 0.000  0  0  1 0.000
#> SRR1192471     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1192470     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1192469     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1192468     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1192467     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1192466     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1192465     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1192500     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1192501     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1192502     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1192503     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1192496     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1192497     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1192499     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1192641     2   0.000      1.000 0.000  1  0  0 0.000
#> SRR1192640     2   0.000      1.000 0.000  1  0  0 0.000
#> SRR1192643     2   0.000      1.000 0.000  1  0  0 0.000
#> SRR1192642     2   0.000      1.000 0.000  1  0  0 0.000
#> SRR1192644     2   0.000      1.000 0.000  1  0  0 0.000
#> SRR1192645     2   0.000      1.000 0.000  1  0  0 0.000
#> SRR1192646     2   0.000      1.000 0.000  1  0  0 0.000
#> SRR1192647     2   0.000      1.000 0.000  1  0  0 0.000
#> SRR1192836     4   0.000      1.000 0.000  0  0  1 0.000
#> SRR1192838     4   0.000      1.000 0.000  0  0  1 0.000
#> SRR1192837     4   0.000      1.000 0.000  0  0  1 0.000
#> SRR1192839     4   0.000      1.000 0.000  0  0  1 0.000
#> SRR1192963     2   0.000      1.000 0.000  1  0  0 0.000
#> SRR1192966     2   0.000      1.000 0.000  1  0  0 0.000
#> SRR1192965     2   0.000      1.000 0.000  1  0  0 0.000
#> SRR1192964     2   0.000      1.000 0.000  1  0  0 0.000
#> SRR1193005     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1193006     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1193007     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1193008     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1193011     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1193012     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1193009     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1193010     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1193014     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1193015     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1193013     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1193018     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1193016     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1193017     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1193100     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1193101     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1193102     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1193104     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1193103     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1193105     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1193106     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1193198     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1193197     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1193199     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1193405     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1193404     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1193403     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1193522     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1193523     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1193524     1   0.000      1.000 1.000  0  0  0 0.000
#> SRR1193638     5   0.421      0.580 0.412  0  0  0 0.588
#> SRR1193639     5   0.421      0.580 0.412  0  0  0 0.588
#> SRR1195621     5   0.421      0.580 0.412  0  0  0 0.588
#> SRR1195619     5   0.421      0.580 0.412  0  0  0 0.588
#> SRR1195620     5   0.421      0.580 0.412  0  0  0 0.588

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1 p2    p3 p4    p5    p6
#> SRR1190372     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> SRR1190371     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> SRR1190370     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> SRR1190368     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> SRR1190369     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> SRR1190366     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> SRR1190367     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> SRR1190365     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> SRR1190467     3  0.0000      0.710 0.000  0 1.000  0 0.000 0.000
#> SRR1190466     3  0.0000      0.710 0.000  0 1.000  0 0.000 0.000
#> SRR1190465     3  0.0000      0.710 0.000  0 1.000  0 0.000 0.000
#> SRR1190464     3  0.0000      0.710 0.000  0 1.000  0 0.000 0.000
#> SRR1190462     3  0.0000      0.710 0.000  0 1.000  0 0.000 0.000
#> SRR1190461     3  0.0000      0.710 0.000  0 1.000  0 0.000 0.000
#> SRR1190460     3  0.0000      0.710 0.000  0 1.000  0 0.000 0.000
#> SRR1190509     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1190504     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1190503     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1190502     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1190508     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1190507     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1190506     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1190505     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1191342     4  0.0000      1.000 0.000  0 0.000  1 0.000 0.000
#> SRR1191344     4  0.0000      1.000 0.000  0 0.000  1 0.000 0.000
#> SRR1191343     4  0.0000      1.000 0.000  0 0.000  1 0.000 0.000
#> SRR1191349     4  0.0000      1.000 0.000  0 0.000  1 0.000 0.000
#> SRR1191345     4  0.0000      1.000 0.000  0 0.000  1 0.000 0.000
#> SRR1191346     4  0.0000      1.000 0.000  0 0.000  1 0.000 0.000
#> SRR1191347     4  0.0000      1.000 0.000  0 0.000  1 0.000 0.000
#> SRR1191348     4  0.0000      1.000 0.000  0 0.000  1 0.000 0.000
#> SRR1191668     6  0.3862      1.000 0.000  0 0.000  0 0.476 0.524
#> SRR1191667     6  0.3862      1.000 0.000  0 0.000  0 0.476 0.524
#> SRR1191673     6  0.3862      1.000 0.000  0 0.000  0 0.476 0.524
#> SRR1191672     6  0.3862      1.000 0.000  0 0.000  0 0.476 0.524
#> SRR1191695     3  0.3862      0.784 0.000  0 0.524  0 0.000 0.476
#> SRR1191694     3  0.3862      0.784 0.000  0 0.524  0 0.000 0.476
#> SRR1191783     3  0.3862      0.784 0.000  0 0.524  0 0.000 0.476
#> SRR1191876     3  0.3862      0.784 0.000  0 0.524  0 0.000 0.476
#> SRR1191914     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1191915     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1191953     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1191954     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1191990     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1191991     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1192016     3  0.3862      0.784 0.000  0 0.524  0 0.000 0.476
#> SRR1192017     3  0.3862      0.784 0.000  0 0.524  0 0.000 0.476
#> SRR1192073     3  0.3862      0.784 0.000  0 0.524  0 0.000 0.476
#> SRR1192072     3  0.3862      0.784 0.000  0 0.524  0 0.000 0.476
#> SRR1192167     6  0.3862      1.000 0.000  0 0.000  0 0.476 0.524
#> SRR1192166     6  0.3862      1.000 0.000  0 0.000  0 0.476 0.524
#> SRR1192321     3  0.3862      0.784 0.000  0 0.524  0 0.000 0.476
#> SRR1192353     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1192354     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1192370     1  0.0146      0.974 0.996  0 0.000  0 0.004 0.000
#> SRR1192371     1  0.0146      0.974 0.996  0 0.000  0 0.004 0.000
#> SRR1192399     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1192398     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1192417     4  0.0000      1.000 0.000  0 0.000  1 0.000 0.000
#> SRR1192418     4  0.0000      1.000 0.000  0 0.000  1 0.000 0.000
#> SRR1192415     4  0.0000      1.000 0.000  0 0.000  1 0.000 0.000
#> SRR1192416     4  0.0000      1.000 0.000  0 0.000  1 0.000 0.000
#> SRR1192413     4  0.0000      1.000 0.000  0 0.000  1 0.000 0.000
#> SRR1192414     4  0.0000      1.000 0.000  0 0.000  1 0.000 0.000
#> SRR1192420     4  0.0000      1.000 0.000  0 0.000  1 0.000 0.000
#> SRR1192419     4  0.0000      1.000 0.000  0 0.000  1 0.000 0.000
#> SRR1192471     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1192470     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1192469     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1192468     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1192467     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1192466     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1192465     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1192500     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1192501     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1192502     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1192503     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1192496     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1192497     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1192499     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1192641     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> SRR1192640     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> SRR1192643     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> SRR1192642     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> SRR1192644     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> SRR1192645     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> SRR1192646     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> SRR1192647     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> SRR1192836     4  0.0000      1.000 0.000  0 0.000  1 0.000 0.000
#> SRR1192838     4  0.0000      1.000 0.000  0 0.000  1 0.000 0.000
#> SRR1192837     4  0.0000      1.000 0.000  0 0.000  1 0.000 0.000
#> SRR1192839     4  0.0000      1.000 0.000  0 0.000  1 0.000 0.000
#> SRR1192963     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> SRR1192966     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> SRR1192965     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> SRR1192964     2  0.0000      1.000 0.000  1 0.000  0 0.000 0.000
#> SRR1193005     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1193006     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1193007     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1193008     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1193011     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1193012     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1193009     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1193010     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1193014     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1193015     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1193013     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1193018     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1193016     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1193017     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1193100     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1193101     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1193102     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1193104     1  0.3578     -0.226 0.660  0 0.000  0 0.340 0.000
#> SRR1193103     1  0.3578     -0.226 0.660  0 0.000  0 0.340 0.000
#> SRR1193105     1  0.1007      0.906 0.956  0 0.000  0 0.044 0.000
#> SRR1193106     1  0.0363      0.962 0.988  0 0.000  0 0.012 0.000
#> SRR1193198     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1193197     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1193199     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1193405     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1193404     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1193403     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1193522     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1193523     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1193524     1  0.0000      0.980 1.000  0 0.000  0 0.000 0.000
#> SRR1193638     5  0.3765      1.000 0.404  0 0.000  0 0.596 0.000
#> SRR1193639     5  0.3765      1.000 0.404  0 0.000  0 0.596 0.000
#> SRR1195621     5  0.3765      1.000 0.404  0 0.000  0 0.596 0.000
#> SRR1195619     5  0.3765      1.000 0.404  0 0.000  0 0.596 0.000
#> SRR1195620     5  0.3765      1.000 0.404  0 0.000  0 0.596 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15363 rows and 131 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.4281 0.573   0.573
#> 3 3 1.000           1.000       1.000         0.4161 0.822   0.689
#> 4 4 1.000           0.984       0.974         0.0863 0.953   0.881
#> 5 5 0.819           0.925       0.917         0.1243 0.871   0.633
#> 6 6 0.895           0.899       0.925         0.0572 0.962   0.849

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1190372     2       0          1  0  1
#> SRR1190371     2       0          1  0  1
#> SRR1190370     2       0          1  0  1
#> SRR1190368     2       0          1  0  1
#> SRR1190369     2       0          1  0  1
#> SRR1190366     2       0          1  0  1
#> SRR1190367     2       0          1  0  1
#> SRR1190365     2       0          1  0  1
#> SRR1190467     1       0          1  1  0
#> SRR1190466     1       0          1  1  0
#> SRR1190465     1       0          1  1  0
#> SRR1190464     1       0          1  1  0
#> SRR1190462     1       0          1  1  0
#> SRR1190461     1       0          1  1  0
#> SRR1190460     1       0          1  1  0
#> SRR1190509     1       0          1  1  0
#> SRR1190504     1       0          1  1  0
#> SRR1190503     1       0          1  1  0
#> SRR1190502     1       0          1  1  0
#> SRR1190508     1       0          1  1  0
#> SRR1190507     1       0          1  1  0
#> SRR1190506     1       0          1  1  0
#> SRR1190505     1       0          1  1  0
#> SRR1191342     2       0          1  0  1
#> SRR1191344     2       0          1  0  1
#> SRR1191343     2       0          1  0  1
#> SRR1191349     2       0          1  0  1
#> SRR1191345     2       0          1  0  1
#> SRR1191346     2       0          1  0  1
#> SRR1191347     2       0          1  0  1
#> SRR1191348     2       0          1  0  1
#> SRR1191668     1       0          1  1  0
#> SRR1191667     1       0          1  1  0
#> SRR1191673     1       0          1  1  0
#> SRR1191672     1       0          1  1  0
#> SRR1191695     1       0          1  1  0
#> SRR1191694     1       0          1  1  0
#> SRR1191783     1       0          1  1  0
#> SRR1191876     1       0          1  1  0
#> SRR1191914     1       0          1  1  0
#> SRR1191915     1       0          1  1  0
#> SRR1191953     1       0          1  1  0
#> SRR1191954     1       0          1  1  0
#> SRR1191990     1       0          1  1  0
#> SRR1191991     1       0          1  1  0
#> SRR1192016     1       0          1  1  0
#> SRR1192017     1       0          1  1  0
#> SRR1192073     1       0          1  1  0
#> SRR1192072     1       0          1  1  0
#> SRR1192167     1       0          1  1  0
#> SRR1192166     1       0          1  1  0
#> SRR1192321     1       0          1  1  0
#> SRR1192353     1       0          1  1  0
#> SRR1192354     1       0          1  1  0
#> SRR1192370     1       0          1  1  0
#> SRR1192371     1       0          1  1  0
#> SRR1192399     1       0          1  1  0
#> SRR1192398     1       0          1  1  0
#> SRR1192417     2       0          1  0  1
#> SRR1192418     2       0          1  0  1
#> SRR1192415     2       0          1  0  1
#> SRR1192416     2       0          1  0  1
#> SRR1192413     2       0          1  0  1
#> SRR1192414     2       0          1  0  1
#> SRR1192420     2       0          1  0  1
#> SRR1192419     2       0          1  0  1
#> SRR1192471     1       0          1  1  0
#> SRR1192470     1       0          1  1  0
#> SRR1192469     1       0          1  1  0
#> SRR1192468     1       0          1  1  0
#> SRR1192467     1       0          1  1  0
#> SRR1192466     1       0          1  1  0
#> SRR1192465     1       0          1  1  0
#> SRR1192500     1       0          1  1  0
#> SRR1192501     1       0          1  1  0
#> SRR1192502     1       0          1  1  0
#> SRR1192503     1       0          1  1  0
#> SRR1192496     1       0          1  1  0
#> SRR1192497     1       0          1  1  0
#> SRR1192499     1       0          1  1  0
#> SRR1192641     2       0          1  0  1
#> SRR1192640     2       0          1  0  1
#> SRR1192643     2       0          1  0  1
#> SRR1192642     2       0          1  0  1
#> SRR1192644     2       0          1  0  1
#> SRR1192645     2       0          1  0  1
#> SRR1192646     2       0          1  0  1
#> SRR1192647     2       0          1  0  1
#> SRR1192836     2       0          1  0  1
#> SRR1192838     2       0          1  0  1
#> SRR1192837     2       0          1  0  1
#> SRR1192839     2       0          1  0  1
#> SRR1192963     2       0          1  0  1
#> SRR1192966     2       0          1  0  1
#> SRR1192965     2       0          1  0  1
#> SRR1192964     2       0          1  0  1
#> SRR1193005     1       0          1  1  0
#> SRR1193006     1       0          1  1  0
#> SRR1193007     1       0          1  1  0
#> SRR1193008     1       0          1  1  0
#> SRR1193011     1       0          1  1  0
#> SRR1193012     1       0          1  1  0
#> SRR1193009     1       0          1  1  0
#> SRR1193010     1       0          1  1  0
#> SRR1193014     1       0          1  1  0
#> SRR1193015     1       0          1  1  0
#> SRR1193013     1       0          1  1  0
#> SRR1193018     1       0          1  1  0
#> SRR1193016     1       0          1  1  0
#> SRR1193017     1       0          1  1  0
#> SRR1193100     1       0          1  1  0
#> SRR1193101     1       0          1  1  0
#> SRR1193102     1       0          1  1  0
#> SRR1193104     1       0          1  1  0
#> SRR1193103     1       0          1  1  0
#> SRR1193105     1       0          1  1  0
#> SRR1193106     1       0          1  1  0
#> SRR1193198     1       0          1  1  0
#> SRR1193197     1       0          1  1  0
#> SRR1193199     1       0          1  1  0
#> SRR1193405     1       0          1  1  0
#> SRR1193404     1       0          1  1  0
#> SRR1193403     1       0          1  1  0
#> SRR1193522     1       0          1  1  0
#> SRR1193523     1       0          1  1  0
#> SRR1193524     1       0          1  1  0
#> SRR1193638     1       0          1  1  0
#> SRR1193639     1       0          1  1  0
#> SRR1195621     1       0          1  1  0
#> SRR1195619     1       0          1  1  0
#> SRR1195620     1       0          1  1  0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette p1 p2 p3
#> SRR1190372     2       0          1  0  1  0
#> SRR1190371     2       0          1  0  1  0
#> SRR1190370     2       0          1  0  1  0
#> SRR1190368     2       0          1  0  1  0
#> SRR1190369     2       0          1  0  1  0
#> SRR1190366     2       0          1  0  1  0
#> SRR1190367     2       0          1  0  1  0
#> SRR1190365     2       0          1  0  1  0
#> SRR1190467     3       0          1  0  0  1
#> SRR1190466     3       0          1  0  0  1
#> SRR1190465     3       0          1  0  0  1
#> SRR1190464     3       0          1  0  0  1
#> SRR1190462     3       0          1  0  0  1
#> SRR1190461     3       0          1  0  0  1
#> SRR1190460     3       0          1  0  0  1
#> SRR1190509     1       0          1  1  0  0
#> SRR1190504     1       0          1  1  0  0
#> SRR1190503     1       0          1  1  0  0
#> SRR1190502     1       0          1  1  0  0
#> SRR1190508     1       0          1  1  0  0
#> SRR1190507     1       0          1  1  0  0
#> SRR1190506     1       0          1  1  0  0
#> SRR1190505     1       0          1  1  0  0
#> SRR1191342     2       0          1  0  1  0
#> SRR1191344     2       0          1  0  1  0
#> SRR1191343     2       0          1  0  1  0
#> SRR1191349     2       0          1  0  1  0
#> SRR1191345     2       0          1  0  1  0
#> SRR1191346     2       0          1  0  1  0
#> SRR1191347     2       0          1  0  1  0
#> SRR1191348     2       0          1  0  1  0
#> SRR1191668     3       0          1  0  0  1
#> SRR1191667     3       0          1  0  0  1
#> SRR1191673     3       0          1  0  0  1
#> SRR1191672     3       0          1  0  0  1
#> SRR1191695     3       0          1  0  0  1
#> SRR1191694     3       0          1  0  0  1
#> SRR1191783     3       0          1  0  0  1
#> SRR1191876     3       0          1  0  0  1
#> SRR1191914     1       0          1  1  0  0
#> SRR1191915     1       0          1  1  0  0
#> SRR1191953     1       0          1  1  0  0
#> SRR1191954     1       0          1  1  0  0
#> SRR1191990     1       0          1  1  0  0
#> SRR1191991     1       0          1  1  0  0
#> SRR1192016     3       0          1  0  0  1
#> SRR1192017     3       0          1  0  0  1
#> SRR1192073     3       0          1  0  0  1
#> SRR1192072     3       0          1  0  0  1
#> SRR1192167     3       0          1  0  0  1
#> SRR1192166     3       0          1  0  0  1
#> SRR1192321     3       0          1  0  0  1
#> SRR1192353     1       0          1  1  0  0
#> SRR1192354     1       0          1  1  0  0
#> SRR1192370     1       0          1  1  0  0
#> SRR1192371     1       0          1  1  0  0
#> SRR1192399     1       0          1  1  0  0
#> SRR1192398     1       0          1  1  0  0
#> SRR1192417     2       0          1  0  1  0
#> SRR1192418     2       0          1  0  1  0
#> SRR1192415     2       0          1  0  1  0
#> SRR1192416     2       0          1  0  1  0
#> SRR1192413     2       0          1  0  1  0
#> SRR1192414     2       0          1  0  1  0
#> SRR1192420     2       0          1  0  1  0
#> SRR1192419     2       0          1  0  1  0
#> SRR1192471     1       0          1  1  0  0
#> SRR1192470     1       0          1  1  0  0
#> SRR1192469     1       0          1  1  0  0
#> SRR1192468     1       0          1  1  0  0
#> SRR1192467     1       0          1  1  0  0
#> SRR1192466     1       0          1  1  0  0
#> SRR1192465     1       0          1  1  0  0
#> SRR1192500     1       0          1  1  0  0
#> SRR1192501     1       0          1  1  0  0
#> SRR1192502     1       0          1  1  0  0
#> SRR1192503     1       0          1  1  0  0
#> SRR1192496     1       0          1  1  0  0
#> SRR1192497     1       0          1  1  0  0
#> SRR1192499     1       0          1  1  0  0
#> SRR1192641     2       0          1  0  1  0
#> SRR1192640     2       0          1  0  1  0
#> SRR1192643     2       0          1  0  1  0
#> SRR1192642     2       0          1  0  1  0
#> SRR1192644     2       0          1  0  1  0
#> SRR1192645     2       0          1  0  1  0
#> SRR1192646     2       0          1  0  1  0
#> SRR1192647     2       0          1  0  1  0
#> SRR1192836     2       0          1  0  1  0
#> SRR1192838     2       0          1  0  1  0
#> SRR1192837     2       0          1  0  1  0
#> SRR1192839     2       0          1  0  1  0
#> SRR1192963     2       0          1  0  1  0
#> SRR1192966     2       0          1  0  1  0
#> SRR1192965     2       0          1  0  1  0
#> SRR1192964     2       0          1  0  1  0
#> SRR1193005     1       0          1  1  0  0
#> SRR1193006     1       0          1  1  0  0
#> SRR1193007     1       0          1  1  0  0
#> SRR1193008     1       0          1  1  0  0
#> SRR1193011     1       0          1  1  0  0
#> SRR1193012     1       0          1  1  0  0
#> SRR1193009     1       0          1  1  0  0
#> SRR1193010     1       0          1  1  0  0
#> SRR1193014     1       0          1  1  0  0
#> SRR1193015     1       0          1  1  0  0
#> SRR1193013     1       0          1  1  0  0
#> SRR1193018     1       0          1  1  0  0
#> SRR1193016     1       0          1  1  0  0
#> SRR1193017     1       0          1  1  0  0
#> SRR1193100     1       0          1  1  0  0
#> SRR1193101     1       0          1  1  0  0
#> SRR1193102     1       0          1  1  0  0
#> SRR1193104     1       0          1  1  0  0
#> SRR1193103     1       0          1  1  0  0
#> SRR1193105     1       0          1  1  0  0
#> SRR1193106     1       0          1  1  0  0
#> SRR1193198     1       0          1  1  0  0
#> SRR1193197     1       0          1  1  0  0
#> SRR1193199     1       0          1  1  0  0
#> SRR1193405     1       0          1  1  0  0
#> SRR1193404     1       0          1  1  0  0
#> SRR1193403     1       0          1  1  0  0
#> SRR1193522     1       0          1  1  0  0
#> SRR1193523     1       0          1  1  0  0
#> SRR1193524     1       0          1  1  0  0
#> SRR1193638     1       0          1  1  0  0
#> SRR1193639     1       0          1  1  0  0
#> SRR1195621     1       0          1  1  0  0
#> SRR1195619     1       0          1  1  0  0
#> SRR1195620     1       0          1  1  0  0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1190372     2  0.1792      1.000 0.000 0.932 0.000 0.068
#> SRR1190371     2  0.1792      1.000 0.000 0.932 0.000 0.068
#> SRR1190370     2  0.1792      1.000 0.000 0.932 0.000 0.068
#> SRR1190368     2  0.1792      1.000 0.000 0.932 0.000 0.068
#> SRR1190369     2  0.1792      1.000 0.000 0.932 0.000 0.068
#> SRR1190366     2  0.1792      1.000 0.000 0.932 0.000 0.068
#> SRR1190367     2  0.1792      1.000 0.000 0.932 0.000 0.068
#> SRR1190365     2  0.1792      1.000 0.000 0.932 0.000 0.068
#> SRR1190467     3  0.0000      0.994 0.000 0.000 1.000 0.000
#> SRR1190466     3  0.0000      0.994 0.000 0.000 1.000 0.000
#> SRR1190465     3  0.0000      0.994 0.000 0.000 1.000 0.000
#> SRR1190464     3  0.0000      0.994 0.000 0.000 1.000 0.000
#> SRR1190462     3  0.0000      0.994 0.000 0.000 1.000 0.000
#> SRR1190461     3  0.0000      0.994 0.000 0.000 1.000 0.000
#> SRR1190460     3  0.0000      0.994 0.000 0.000 1.000 0.000
#> SRR1190509     1  0.0188      0.976 0.996 0.004 0.000 0.000
#> SRR1190504     1  0.0000      0.976 1.000 0.000 0.000 0.000
#> SRR1190503     1  0.0000      0.976 1.000 0.000 0.000 0.000
#> SRR1190502     1  0.0188      0.976 0.996 0.004 0.000 0.000
#> SRR1190508     1  0.0000      0.976 1.000 0.000 0.000 0.000
#> SRR1190507     1  0.0188      0.976 0.996 0.004 0.000 0.000
#> SRR1190506     1  0.0188      0.976 0.996 0.004 0.000 0.000
#> SRR1190505     1  0.0000      0.976 1.000 0.000 0.000 0.000
#> SRR1191342     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1191344     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1191343     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1191349     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1191345     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1191346     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1191347     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1191348     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1191668     3  0.1716      0.921 0.064 0.000 0.936 0.000
#> SRR1191667     3  0.0469      0.985 0.012 0.000 0.988 0.000
#> SRR1191673     3  0.0188      0.991 0.004 0.000 0.996 0.000
#> SRR1191672     3  0.0000      0.994 0.000 0.000 1.000 0.000
#> SRR1191695     3  0.0000      0.994 0.000 0.000 1.000 0.000
#> SRR1191694     3  0.0000      0.994 0.000 0.000 1.000 0.000
#> SRR1191783     3  0.0000      0.994 0.000 0.000 1.000 0.000
#> SRR1191876     3  0.0000      0.994 0.000 0.000 1.000 0.000
#> SRR1191914     1  0.0188      0.976 0.996 0.004 0.000 0.000
#> SRR1191915     1  0.0188      0.976 0.996 0.004 0.000 0.000
#> SRR1191953     1  0.0188      0.976 0.996 0.004 0.000 0.000
#> SRR1191954     1  0.0188      0.976 0.996 0.004 0.000 0.000
#> SRR1191990     1  0.0188      0.976 0.996 0.004 0.000 0.000
#> SRR1191991     1  0.0188      0.976 0.996 0.004 0.000 0.000
#> SRR1192016     3  0.0000      0.994 0.000 0.000 1.000 0.000
#> SRR1192017     3  0.0000      0.994 0.000 0.000 1.000 0.000
#> SRR1192073     3  0.0000      0.994 0.000 0.000 1.000 0.000
#> SRR1192072     3  0.0000      0.994 0.000 0.000 1.000 0.000
#> SRR1192167     3  0.0469      0.984 0.012 0.000 0.988 0.000
#> SRR1192166     3  0.0336      0.988 0.008 0.000 0.992 0.000
#> SRR1192321     3  0.0000      0.994 0.000 0.000 1.000 0.000
#> SRR1192353     1  0.0188      0.976 0.996 0.004 0.000 0.000
#> SRR1192354     1  0.0188      0.976 0.996 0.004 0.000 0.000
#> SRR1192370     1  0.1716      0.965 0.936 0.064 0.000 0.000
#> SRR1192371     1  0.1716      0.965 0.936 0.064 0.000 0.000
#> SRR1192399     1  0.0188      0.976 0.996 0.004 0.000 0.000
#> SRR1192398     1  0.0188      0.976 0.996 0.004 0.000 0.000
#> SRR1192417     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192418     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192415     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192416     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192413     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192414     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192420     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192419     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192471     1  0.1716      0.965 0.936 0.064 0.000 0.000
#> SRR1192470     1  0.1716      0.965 0.936 0.064 0.000 0.000
#> SRR1192469     1  0.1716      0.965 0.936 0.064 0.000 0.000
#> SRR1192468     1  0.1716      0.965 0.936 0.064 0.000 0.000
#> SRR1192467     1  0.1716      0.965 0.936 0.064 0.000 0.000
#> SRR1192466     1  0.1716      0.965 0.936 0.064 0.000 0.000
#> SRR1192465     1  0.1716      0.965 0.936 0.064 0.000 0.000
#> SRR1192500     1  0.0000      0.976 1.000 0.000 0.000 0.000
#> SRR1192501     1  0.0817      0.974 0.976 0.024 0.000 0.000
#> SRR1192502     1  0.1118      0.972 0.964 0.036 0.000 0.000
#> SRR1192503     1  0.1022      0.973 0.968 0.032 0.000 0.000
#> SRR1192496     1  0.1118      0.972 0.964 0.036 0.000 0.000
#> SRR1192497     1  0.1022      0.973 0.968 0.032 0.000 0.000
#> SRR1192499     1  0.0921      0.974 0.972 0.028 0.000 0.000
#> SRR1192641     2  0.1792      1.000 0.000 0.932 0.000 0.068
#> SRR1192640     2  0.1792      1.000 0.000 0.932 0.000 0.068
#> SRR1192643     2  0.1792      1.000 0.000 0.932 0.000 0.068
#> SRR1192642     2  0.1792      1.000 0.000 0.932 0.000 0.068
#> SRR1192644     2  0.1792      1.000 0.000 0.932 0.000 0.068
#> SRR1192645     2  0.1792      1.000 0.000 0.932 0.000 0.068
#> SRR1192646     2  0.1792      1.000 0.000 0.932 0.000 0.068
#> SRR1192647     2  0.1792      1.000 0.000 0.932 0.000 0.068
#> SRR1192836     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192838     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192837     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192839     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192963     2  0.1792      1.000 0.000 0.932 0.000 0.068
#> SRR1192966     2  0.1792      1.000 0.000 0.932 0.000 0.068
#> SRR1192965     2  0.1792      1.000 0.000 0.932 0.000 0.068
#> SRR1192964     2  0.1792      1.000 0.000 0.932 0.000 0.068
#> SRR1193005     1  0.1211      0.972 0.960 0.040 0.000 0.000
#> SRR1193006     1  0.1211      0.972 0.960 0.040 0.000 0.000
#> SRR1193007     1  0.1211      0.972 0.960 0.040 0.000 0.000
#> SRR1193008     1  0.1211      0.972 0.960 0.040 0.000 0.000
#> SRR1193011     1  0.1716      0.965 0.936 0.064 0.000 0.000
#> SRR1193012     1  0.1716      0.965 0.936 0.064 0.000 0.000
#> SRR1193009     1  0.1716      0.965 0.936 0.064 0.000 0.000
#> SRR1193010     1  0.1716      0.965 0.936 0.064 0.000 0.000
#> SRR1193014     1  0.0188      0.976 0.996 0.004 0.000 0.000
#> SRR1193015     1  0.0188      0.976 0.996 0.004 0.000 0.000
#> SRR1193013     1  0.0188      0.976 0.996 0.004 0.000 0.000
#> SRR1193018     1  0.0188      0.976 0.996 0.004 0.000 0.000
#> SRR1193016     1  0.0188      0.976 0.996 0.004 0.000 0.000
#> SRR1193017     1  0.0188      0.976 0.996 0.004 0.000 0.000
#> SRR1193100     1  0.0188      0.976 0.996 0.004 0.000 0.000
#> SRR1193101     1  0.0188      0.976 0.996 0.004 0.000 0.000
#> SRR1193102     1  0.0188      0.976 0.996 0.004 0.000 0.000
#> SRR1193104     1  0.1716      0.965 0.936 0.064 0.000 0.000
#> SRR1193103     1  0.1716      0.965 0.936 0.064 0.000 0.000
#> SRR1193105     1  0.1716      0.965 0.936 0.064 0.000 0.000
#> SRR1193106     1  0.1716      0.965 0.936 0.064 0.000 0.000
#> SRR1193198     1  0.0188      0.976 0.996 0.004 0.000 0.000
#> SRR1193197     1  0.0188      0.976 0.996 0.004 0.000 0.000
#> SRR1193199     1  0.0188      0.976 0.996 0.004 0.000 0.000
#> SRR1193405     1  0.0188      0.976 0.996 0.004 0.000 0.000
#> SRR1193404     1  0.0188      0.976 0.996 0.004 0.000 0.000
#> SRR1193403     1  0.0188      0.976 0.996 0.004 0.000 0.000
#> SRR1193522     1  0.0188      0.976 0.996 0.004 0.000 0.000
#> SRR1193523     1  0.0188      0.976 0.996 0.004 0.000 0.000
#> SRR1193524     1  0.0188      0.976 0.996 0.004 0.000 0.000
#> SRR1193638     1  0.1716      0.965 0.936 0.064 0.000 0.000
#> SRR1193639     1  0.1716      0.965 0.936 0.064 0.000 0.000
#> SRR1195621     1  0.1716      0.965 0.936 0.064 0.000 0.000
#> SRR1195619     1  0.1716      0.965 0.936 0.064 0.000 0.000
#> SRR1195620     1  0.1716      0.965 0.936 0.064 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1190372     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1190371     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1190370     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1190368     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1190369     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1190366     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1190367     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1190365     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1190467     3  0.0000     0.8992 0.000 0.000 1.000 0.000 0.000
#> SRR1190466     3  0.0000     0.8992 0.000 0.000 1.000 0.000 0.000
#> SRR1190465     3  0.0000     0.8992 0.000 0.000 1.000 0.000 0.000
#> SRR1190464     3  0.0000     0.8992 0.000 0.000 1.000 0.000 0.000
#> SRR1190462     3  0.0000     0.8992 0.000 0.000 1.000 0.000 0.000
#> SRR1190461     3  0.0000     0.8992 0.000 0.000 1.000 0.000 0.000
#> SRR1190460     3  0.0000     0.8992 0.000 0.000 1.000 0.000 0.000
#> SRR1190509     1  0.0451     0.9335 0.988 0.000 0.000 0.008 0.004
#> SRR1190504     1  0.0912     0.9318 0.972 0.000 0.000 0.012 0.016
#> SRR1190503     1  0.1106     0.9286 0.964 0.000 0.000 0.012 0.024
#> SRR1190502     1  0.0579     0.9320 0.984 0.000 0.000 0.008 0.008
#> SRR1190508     1  0.0451     0.9335 0.988 0.000 0.000 0.008 0.004
#> SRR1190507     1  0.0912     0.9320 0.972 0.000 0.000 0.012 0.016
#> SRR1190506     1  0.0451     0.9335 0.988 0.000 0.000 0.008 0.004
#> SRR1190505     1  0.0451     0.9335 0.988 0.000 0.000 0.008 0.004
#> SRR1191342     4  0.0404     0.9664 0.000 0.012 0.000 0.988 0.000
#> SRR1191344     4  0.0404     0.9664 0.000 0.012 0.000 0.988 0.000
#> SRR1191343     4  0.0404     0.9664 0.000 0.012 0.000 0.988 0.000
#> SRR1191349     4  0.0404     0.9664 0.000 0.012 0.000 0.988 0.000
#> SRR1191345     4  0.0404     0.9664 0.000 0.012 0.000 0.988 0.000
#> SRR1191346     4  0.0404     0.9664 0.000 0.012 0.000 0.988 0.000
#> SRR1191347     4  0.0404     0.9664 0.000 0.012 0.000 0.988 0.000
#> SRR1191348     4  0.0404     0.9664 0.000 0.012 0.000 0.988 0.000
#> SRR1191668     1  0.4533    -0.0376 0.544 0.000 0.448 0.000 0.008
#> SRR1191667     3  0.4211     0.5261 0.360 0.000 0.636 0.000 0.004
#> SRR1191673     3  0.3730     0.6551 0.288 0.000 0.712 0.000 0.000
#> SRR1191672     3  0.3395     0.7130 0.236 0.000 0.764 0.000 0.000
#> SRR1191695     3  0.0000     0.8992 0.000 0.000 1.000 0.000 0.000
#> SRR1191694     3  0.0000     0.8992 0.000 0.000 1.000 0.000 0.000
#> SRR1191783     3  0.0000     0.8992 0.000 0.000 1.000 0.000 0.000
#> SRR1191876     3  0.0000     0.8992 0.000 0.000 1.000 0.000 0.000
#> SRR1191914     1  0.0404     0.9347 0.988 0.000 0.000 0.000 0.012
#> SRR1191915     1  0.0404     0.9345 0.988 0.000 0.000 0.000 0.012
#> SRR1191953     1  0.0404     0.9330 0.988 0.000 0.000 0.000 0.012
#> SRR1191954     1  0.0290     0.9317 0.992 0.000 0.000 0.000 0.008
#> SRR1191990     1  0.0703     0.9328 0.976 0.000 0.000 0.000 0.024
#> SRR1191991     1  0.0703     0.9328 0.976 0.000 0.000 0.000 0.024
#> SRR1192016     3  0.0000     0.8992 0.000 0.000 1.000 0.000 0.000
#> SRR1192017     3  0.0000     0.8992 0.000 0.000 1.000 0.000 0.000
#> SRR1192073     3  0.0000     0.8992 0.000 0.000 1.000 0.000 0.000
#> SRR1192072     3  0.0000     0.8992 0.000 0.000 1.000 0.000 0.000
#> SRR1192167     3  0.4009     0.6210 0.312 0.000 0.684 0.000 0.004
#> SRR1192166     3  0.3949     0.6348 0.300 0.000 0.696 0.000 0.004
#> SRR1192321     3  0.0000     0.8992 0.000 0.000 1.000 0.000 0.000
#> SRR1192353     1  0.0794     0.9283 0.972 0.000 0.000 0.000 0.028
#> SRR1192354     1  0.0963     0.9225 0.964 0.000 0.000 0.000 0.036
#> SRR1192370     5  0.3612     0.9983 0.268 0.000 0.000 0.000 0.732
#> SRR1192371     5  0.3612     0.9983 0.268 0.000 0.000 0.000 0.732
#> SRR1192399     1  0.1965     0.8536 0.904 0.000 0.000 0.000 0.096
#> SRR1192398     1  0.2280     0.8155 0.880 0.000 0.000 0.000 0.120
#> SRR1192417     4  0.0404     0.9664 0.000 0.012 0.000 0.988 0.000
#> SRR1192418     4  0.0404     0.9664 0.000 0.012 0.000 0.988 0.000
#> SRR1192415     4  0.0404     0.9664 0.000 0.012 0.000 0.988 0.000
#> SRR1192416     4  0.0404     0.9664 0.000 0.012 0.000 0.988 0.000
#> SRR1192413     4  0.0404     0.9664 0.000 0.012 0.000 0.988 0.000
#> SRR1192414     4  0.0404     0.9664 0.000 0.012 0.000 0.988 0.000
#> SRR1192420     4  0.0404     0.9664 0.000 0.012 0.000 0.988 0.000
#> SRR1192419     4  0.0404     0.9664 0.000 0.012 0.000 0.988 0.000
#> SRR1192471     5  0.3612     0.9983 0.268 0.000 0.000 0.000 0.732
#> SRR1192470     5  0.3612     0.9983 0.268 0.000 0.000 0.000 0.732
#> SRR1192469     5  0.3612     0.9983 0.268 0.000 0.000 0.000 0.732
#> SRR1192468     5  0.3612     0.9983 0.268 0.000 0.000 0.000 0.732
#> SRR1192467     5  0.3612     0.9983 0.268 0.000 0.000 0.000 0.732
#> SRR1192466     5  0.3612     0.9983 0.268 0.000 0.000 0.000 0.732
#> SRR1192465     5  0.3885     0.9922 0.268 0.000 0.000 0.008 0.724
#> SRR1192500     1  0.0807     0.9320 0.976 0.000 0.000 0.012 0.012
#> SRR1192501     1  0.1877     0.8947 0.924 0.000 0.000 0.012 0.064
#> SRR1192502     1  0.2470     0.8573 0.884 0.000 0.000 0.012 0.104
#> SRR1192503     1  0.2189     0.8755 0.904 0.000 0.000 0.012 0.084
#> SRR1192496     1  0.2574     0.8404 0.876 0.000 0.000 0.012 0.112
#> SRR1192497     1  0.2189     0.8750 0.904 0.000 0.000 0.012 0.084
#> SRR1192499     1  0.2189     0.8750 0.904 0.000 0.000 0.012 0.084
#> SRR1192641     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1192640     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1192643     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1192642     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1192644     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1192645     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1192646     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1192647     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1192836     4  0.3628     0.8564 0.000 0.012 0.000 0.772 0.216
#> SRR1192838     4  0.3628     0.8564 0.000 0.012 0.000 0.772 0.216
#> SRR1192837     4  0.3628     0.8564 0.000 0.012 0.000 0.772 0.216
#> SRR1192839     4  0.3628     0.8564 0.000 0.012 0.000 0.772 0.216
#> SRR1192963     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1192966     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1192965     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1192964     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1193005     1  0.2674     0.8304 0.868 0.000 0.000 0.012 0.120
#> SRR1193006     1  0.2624     0.8405 0.872 0.000 0.000 0.012 0.116
#> SRR1193007     1  0.2771     0.8259 0.860 0.000 0.000 0.012 0.128
#> SRR1193008     1  0.2624     0.8348 0.872 0.000 0.000 0.012 0.116
#> SRR1193011     5  0.3885     0.9922 0.268 0.000 0.000 0.008 0.724
#> SRR1193012     5  0.3885     0.9922 0.268 0.000 0.000 0.008 0.724
#> SRR1193009     5  0.3766     0.9956 0.268 0.000 0.000 0.004 0.728
#> SRR1193010     5  0.3766     0.9956 0.268 0.000 0.000 0.004 0.728
#> SRR1193014     1  0.0290     0.9317 0.992 0.000 0.000 0.000 0.008
#> SRR1193015     1  0.0290     0.9317 0.992 0.000 0.000 0.000 0.008
#> SRR1193013     1  0.0290     0.9317 0.992 0.000 0.000 0.000 0.008
#> SRR1193018     1  0.1121     0.9226 0.956 0.000 0.000 0.000 0.044
#> SRR1193016     1  0.0703     0.9329 0.976 0.000 0.000 0.000 0.024
#> SRR1193017     1  0.0703     0.9321 0.976 0.000 0.000 0.000 0.024
#> SRR1193100     1  0.0000     0.9344 1.000 0.000 0.000 0.000 0.000
#> SRR1193101     1  0.0000     0.9344 1.000 0.000 0.000 0.000 0.000
#> SRR1193102     1  0.0000     0.9344 1.000 0.000 0.000 0.000 0.000
#> SRR1193104     5  0.3612     0.9983 0.268 0.000 0.000 0.000 0.732
#> SRR1193103     5  0.3612     0.9983 0.268 0.000 0.000 0.000 0.732
#> SRR1193105     5  0.3612     0.9983 0.268 0.000 0.000 0.000 0.732
#> SRR1193106     5  0.3612     0.9983 0.268 0.000 0.000 0.000 0.732
#> SRR1193198     1  0.0290     0.9349 0.992 0.000 0.000 0.000 0.008
#> SRR1193197     1  0.0510     0.9352 0.984 0.000 0.000 0.000 0.016
#> SRR1193199     1  0.0290     0.9349 0.992 0.000 0.000 0.000 0.008
#> SRR1193405     1  0.0703     0.9327 0.976 0.000 0.000 0.000 0.024
#> SRR1193404     1  0.0510     0.9344 0.984 0.000 0.000 0.000 0.016
#> SRR1193403     1  0.0703     0.9327 0.976 0.000 0.000 0.000 0.024
#> SRR1193522     1  0.0510     0.9352 0.984 0.000 0.000 0.000 0.016
#> SRR1193523     1  0.0404     0.9354 0.988 0.000 0.000 0.000 0.012
#> SRR1193524     1  0.0404     0.9347 0.988 0.000 0.000 0.000 0.012
#> SRR1193638     5  0.3612     0.9983 0.268 0.000 0.000 0.000 0.732
#> SRR1193639     5  0.3612     0.9983 0.268 0.000 0.000 0.000 0.732
#> SRR1195621     5  0.3612     0.9983 0.268 0.000 0.000 0.000 0.732
#> SRR1195619     5  0.3612     0.9983 0.268 0.000 0.000 0.000 0.732
#> SRR1195620     5  0.3612     0.9983 0.268 0.000 0.000 0.000 0.732

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1 p2    p3    p4    p5    p6
#> SRR1190372     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> SRR1190371     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> SRR1190370     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> SRR1190368     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> SRR1190369     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> SRR1190366     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> SRR1190367     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> SRR1190365     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> SRR1190467     3  0.0363     0.9415 0.000  0 0.988 0.000 0.000 0.012
#> SRR1190466     3  0.0260     0.9434 0.000  0 0.992 0.000 0.000 0.008
#> SRR1190465     3  0.0363     0.9415 0.000  0 0.988 0.000 0.000 0.012
#> SRR1190464     3  0.0260     0.9434 0.000  0 0.992 0.000 0.000 0.008
#> SRR1190462     3  0.0146     0.9446 0.000  0 0.996 0.000 0.000 0.004
#> SRR1190461     3  0.0146     0.9446 0.000  0 0.996 0.000 0.000 0.004
#> SRR1190460     3  0.0363     0.9415 0.000  0 0.988 0.000 0.000 0.012
#> SRR1190509     1  0.2092     0.8481 0.876  0 0.000 0.000 0.000 0.124
#> SRR1190504     1  0.3094     0.8348 0.824  0 0.000 0.000 0.036 0.140
#> SRR1190503     1  0.2983     0.8381 0.832  0 0.000 0.000 0.032 0.136
#> SRR1190502     1  0.2178     0.8470 0.868  0 0.000 0.000 0.000 0.132
#> SRR1190508     1  0.2473     0.8437 0.856  0 0.000 0.000 0.008 0.136
#> SRR1190507     1  0.2830     0.8392 0.836  0 0.000 0.000 0.020 0.144
#> SRR1190506     1  0.2178     0.8466 0.868  0 0.000 0.000 0.000 0.132
#> SRR1190505     1  0.2618     0.8476 0.860  0 0.000 0.000 0.024 0.116
#> SRR1191342     4  0.0260     0.9768 0.000  0 0.000 0.992 0.000 0.008
#> SRR1191344     4  0.0146     0.9790 0.000  0 0.000 0.996 0.000 0.004
#> SRR1191343     4  0.0000     0.9802 0.000  0 0.000 1.000 0.000 0.000
#> SRR1191349     4  0.0260     0.9768 0.000  0 0.000 0.992 0.000 0.008
#> SRR1191345     4  0.0146     0.9790 0.000  0 0.000 0.996 0.000 0.004
#> SRR1191346     4  0.0260     0.9768 0.000  0 0.000 0.992 0.000 0.008
#> SRR1191347     4  0.0000     0.9802 0.000  0 0.000 1.000 0.000 0.000
#> SRR1191348     4  0.0260     0.9768 0.000  0 0.000 0.992 0.000 0.008
#> SRR1191668     1  0.3548     0.7435 0.796  0 0.152 0.000 0.004 0.048
#> SRR1191667     1  0.4602     0.4832 0.628  0 0.320 0.000 0.004 0.048
#> SRR1191673     1  0.4748     0.1648 0.504  0 0.448 0.000 0.000 0.048
#> SRR1191672     3  0.4753    -0.0523 0.456  0 0.496 0.000 0.000 0.048
#> SRR1191695     3  0.0146     0.9453 0.000  0 0.996 0.000 0.000 0.004
#> SRR1191694     3  0.0146     0.9453 0.000  0 0.996 0.000 0.000 0.004
#> SRR1191783     3  0.0146     0.9453 0.000  0 0.996 0.000 0.000 0.004
#> SRR1191876     3  0.0146     0.9453 0.000  0 0.996 0.000 0.000 0.004
#> SRR1191914     1  0.1168     0.8620 0.956  0 0.000 0.000 0.016 0.028
#> SRR1191915     1  0.1151     0.8599 0.956  0 0.000 0.000 0.012 0.032
#> SRR1191953     1  0.1320     0.8577 0.948  0 0.000 0.000 0.016 0.036
#> SRR1191954     1  0.1245     0.8586 0.952  0 0.000 0.000 0.016 0.032
#> SRR1191990     1  0.1320     0.8577 0.948  0 0.000 0.000 0.016 0.036
#> SRR1191991     1  0.1320     0.8577 0.948  0 0.000 0.000 0.016 0.036
#> SRR1192016     3  0.0146     0.9453 0.000  0 0.996 0.000 0.000 0.004
#> SRR1192017     3  0.0146     0.9453 0.000  0 0.996 0.000 0.000 0.004
#> SRR1192073     3  0.0146     0.9453 0.000  0 0.996 0.000 0.000 0.004
#> SRR1192072     3  0.0000     0.9451 0.000  0 1.000 0.000 0.000 0.000
#> SRR1192167     1  0.4847     0.2331 0.532  0 0.416 0.000 0.004 0.048
#> SRR1192166     1  0.4841     0.2606 0.536  0 0.412 0.000 0.004 0.048
#> SRR1192321     3  0.0146     0.9453 0.000  0 0.996 0.000 0.000 0.004
#> SRR1192353     1  0.1572     0.8580 0.936  0 0.000 0.000 0.028 0.036
#> SRR1192354     1  0.1720     0.8584 0.928  0 0.000 0.000 0.040 0.032
#> SRR1192370     5  0.0405     0.9797 0.008  0 0.000 0.000 0.988 0.004
#> SRR1192371     5  0.0291     0.9820 0.004  0 0.000 0.000 0.992 0.004
#> SRR1192399     1  0.2843     0.8085 0.848  0 0.000 0.000 0.116 0.036
#> SRR1192398     1  0.2887     0.8044 0.844  0 0.000 0.000 0.120 0.036
#> SRR1192417     4  0.0547     0.9808 0.000  0 0.000 0.980 0.000 0.020
#> SRR1192418     4  0.0547     0.9808 0.000  0 0.000 0.980 0.000 0.020
#> SRR1192415     4  0.0547     0.9808 0.000  0 0.000 0.980 0.000 0.020
#> SRR1192416     4  0.0547     0.9808 0.000  0 0.000 0.980 0.000 0.020
#> SRR1192413     4  0.0547     0.9808 0.000  0 0.000 0.980 0.000 0.020
#> SRR1192414     4  0.0547     0.9808 0.000  0 0.000 0.980 0.000 0.020
#> SRR1192420     4  0.0547     0.9808 0.000  0 0.000 0.980 0.000 0.020
#> SRR1192419     4  0.0547     0.9808 0.000  0 0.000 0.980 0.000 0.020
#> SRR1192471     5  0.0777     0.9784 0.004  0 0.000 0.000 0.972 0.024
#> SRR1192470     5  0.0603     0.9813 0.004  0 0.000 0.000 0.980 0.016
#> SRR1192469     5  0.0603     0.9813 0.004  0 0.000 0.000 0.980 0.016
#> SRR1192468     5  0.0603     0.9813 0.004  0 0.000 0.000 0.980 0.016
#> SRR1192467     5  0.0692     0.9801 0.004  0 0.000 0.000 0.976 0.020
#> SRR1192466     5  0.0692     0.9801 0.004  0 0.000 0.000 0.976 0.020
#> SRR1192465     5  0.1219     0.9596 0.004  0 0.000 0.000 0.948 0.048
#> SRR1192500     1  0.3240     0.8318 0.812  0 0.000 0.000 0.040 0.148
#> SRR1192501     1  0.3530     0.8224 0.792  0 0.000 0.000 0.056 0.152
#> SRR1192502     1  0.3700     0.8156 0.780  0 0.000 0.000 0.068 0.152
#> SRR1192503     1  0.3645     0.8181 0.784  0 0.000 0.000 0.064 0.152
#> SRR1192496     1  0.3907     0.8051 0.764  0 0.000 0.000 0.084 0.152
#> SRR1192497     1  0.3588     0.8205 0.788  0 0.000 0.000 0.060 0.152
#> SRR1192499     1  0.3588     0.8202 0.788  0 0.000 0.000 0.060 0.152
#> SRR1192641     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> SRR1192640     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> SRR1192643     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> SRR1192642     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> SRR1192644     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> SRR1192645     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> SRR1192646     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> SRR1192647     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> SRR1192836     6  0.3482     1.0000 0.000  0 0.000 0.316 0.000 0.684
#> SRR1192838     6  0.3482     1.0000 0.000  0 0.000 0.316 0.000 0.684
#> SRR1192837     6  0.3482     1.0000 0.000  0 0.000 0.316 0.000 0.684
#> SRR1192839     6  0.3482     1.0000 0.000  0 0.000 0.316 0.000 0.684
#> SRR1192963     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> SRR1192966     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> SRR1192965     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> SRR1192964     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> SRR1193005     1  0.3956     0.8032 0.760  0 0.000 0.000 0.088 0.152
#> SRR1193006     1  0.3907     0.8061 0.764  0 0.000 0.000 0.084 0.152
#> SRR1193007     1  0.4183     0.7854 0.740  0 0.000 0.000 0.108 0.152
#> SRR1193008     1  0.3857     0.8091 0.768  0 0.000 0.000 0.080 0.152
#> SRR1193011     5  0.0935     0.9739 0.004  0 0.000 0.000 0.964 0.032
#> SRR1193012     5  0.1082     0.9678 0.004  0 0.000 0.000 0.956 0.040
#> SRR1193009     5  0.0935     0.9739 0.004  0 0.000 0.000 0.964 0.032
#> SRR1193010     5  0.1082     0.9676 0.004  0 0.000 0.000 0.956 0.040
#> SRR1193014     1  0.0717     0.8640 0.976  0 0.000 0.000 0.008 0.016
#> SRR1193015     1  0.0717     0.8640 0.976  0 0.000 0.000 0.008 0.016
#> SRR1193013     1  0.0717     0.8640 0.976  0 0.000 0.000 0.008 0.016
#> SRR1193018     1  0.2860     0.8434 0.852  0 0.000 0.000 0.100 0.048
#> SRR1193016     1  0.2294     0.8577 0.892  0 0.000 0.000 0.072 0.036
#> SRR1193017     1  0.2442     0.8575 0.884  0 0.000 0.000 0.068 0.048
#> SRR1193100     1  0.0909     0.8663 0.968  0 0.000 0.000 0.012 0.020
#> SRR1193101     1  0.0806     0.8658 0.972  0 0.000 0.000 0.008 0.020
#> SRR1193102     1  0.0909     0.8663 0.968  0 0.000 0.000 0.012 0.020
#> SRR1193104     5  0.0291     0.9820 0.004  0 0.000 0.000 0.992 0.004
#> SRR1193103     5  0.0291     0.9820 0.004  0 0.000 0.000 0.992 0.004
#> SRR1193105     5  0.0291     0.9820 0.004  0 0.000 0.000 0.992 0.004
#> SRR1193106     5  0.0146     0.9818 0.004  0 0.000 0.000 0.996 0.000
#> SRR1193198     1  0.1088     0.8637 0.960  0 0.000 0.000 0.016 0.024
#> SRR1193197     1  0.1334     0.8623 0.948  0 0.000 0.000 0.020 0.032
#> SRR1193199     1  0.0993     0.8621 0.964  0 0.000 0.000 0.012 0.024
#> SRR1193405     1  0.1219     0.8628 0.948  0 0.000 0.000 0.048 0.004
#> SRR1193404     1  0.1434     0.8634 0.940  0 0.000 0.000 0.048 0.012
#> SRR1193403     1  0.1196     0.8643 0.952  0 0.000 0.000 0.040 0.008
#> SRR1193522     1  0.0858     0.8655 0.968  0 0.000 0.000 0.028 0.004
#> SRR1193523     1  0.0858     0.8655 0.968  0 0.000 0.000 0.028 0.004
#> SRR1193524     1  0.0632     0.8661 0.976  0 0.000 0.000 0.024 0.000
#> SRR1193638     5  0.0291     0.9820 0.004  0 0.000 0.000 0.992 0.004
#> SRR1193639     5  0.0291     0.9820 0.004  0 0.000 0.000 0.992 0.004
#> SRR1195621     5  0.0291     0.9820 0.004  0 0.000 0.000 0.992 0.004
#> SRR1195619     5  0.0291     0.9820 0.004  0 0.000 0.000 0.992 0.004
#> SRR1195620     5  0.0291     0.9820 0.004  0 0.000 0.000 0.992 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15363 rows and 131 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2     1           1.000       1.000         0.4281 0.573   0.573
#> 3 3     1           1.000       1.000         0.3289 0.859   0.754
#> 4 4     1           0.992       0.994         0.0362 0.983   0.961
#> 5 5     1           1.000       1.000         0.1443 0.911   0.786
#> 6 6     1           1.000       1.000         0.0557 0.962   0.885

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 5

There is also optional best \(k\) = 2 3 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1190372     2       0          1  0  1
#> SRR1190371     2       0          1  0  1
#> SRR1190370     2       0          1  0  1
#> SRR1190368     2       0          1  0  1
#> SRR1190369     2       0          1  0  1
#> SRR1190366     2       0          1  0  1
#> SRR1190367     2       0          1  0  1
#> SRR1190365     2       0          1  0  1
#> SRR1190467     1       0          1  1  0
#> SRR1190466     1       0          1  1  0
#> SRR1190465     1       0          1  1  0
#> SRR1190464     1       0          1  1  0
#> SRR1190462     1       0          1  1  0
#> SRR1190461     1       0          1  1  0
#> SRR1190460     1       0          1  1  0
#> SRR1190509     1       0          1  1  0
#> SRR1190504     1       0          1  1  0
#> SRR1190503     1       0          1  1  0
#> SRR1190502     1       0          1  1  0
#> SRR1190508     1       0          1  1  0
#> SRR1190507     1       0          1  1  0
#> SRR1190506     1       0          1  1  0
#> SRR1190505     1       0          1  1  0
#> SRR1191342     2       0          1  0  1
#> SRR1191344     2       0          1  0  1
#> SRR1191343     2       0          1  0  1
#> SRR1191349     2       0          1  0  1
#> SRR1191345     2       0          1  0  1
#> SRR1191346     2       0          1  0  1
#> SRR1191347     2       0          1  0  1
#> SRR1191348     2       0          1  0  1
#> SRR1191668     1       0          1  1  0
#> SRR1191667     1       0          1  1  0
#> SRR1191673     1       0          1  1  0
#> SRR1191672     1       0          1  1  0
#> SRR1191695     1       0          1  1  0
#> SRR1191694     1       0          1  1  0
#> SRR1191783     1       0          1  1  0
#> SRR1191876     1       0          1  1  0
#> SRR1191914     1       0          1  1  0
#> SRR1191915     1       0          1  1  0
#> SRR1191953     1       0          1  1  0
#> SRR1191954     1       0          1  1  0
#> SRR1191990     1       0          1  1  0
#> SRR1191991     1       0          1  1  0
#> SRR1192016     1       0          1  1  0
#> SRR1192017     1       0          1  1  0
#> SRR1192073     1       0          1  1  0
#> SRR1192072     1       0          1  1  0
#> SRR1192167     1       0          1  1  0
#> SRR1192166     1       0          1  1  0
#> SRR1192321     1       0          1  1  0
#> SRR1192353     1       0          1  1  0
#> SRR1192354     1       0          1  1  0
#> SRR1192370     1       0          1  1  0
#> SRR1192371     1       0          1  1  0
#> SRR1192399     1       0          1  1  0
#> SRR1192398     1       0          1  1  0
#> SRR1192417     2       0          1  0  1
#> SRR1192418     2       0          1  0  1
#> SRR1192415     2       0          1  0  1
#> SRR1192416     2       0          1  0  1
#> SRR1192413     2       0          1  0  1
#> SRR1192414     2       0          1  0  1
#> SRR1192420     2       0          1  0  1
#> SRR1192419     2       0          1  0  1
#> SRR1192471     1       0          1  1  0
#> SRR1192470     1       0          1  1  0
#> SRR1192469     1       0          1  1  0
#> SRR1192468     1       0          1  1  0
#> SRR1192467     1       0          1  1  0
#> SRR1192466     1       0          1  1  0
#> SRR1192465     1       0          1  1  0
#> SRR1192500     1       0          1  1  0
#> SRR1192501     1       0          1  1  0
#> SRR1192502     1       0          1  1  0
#> SRR1192503     1       0          1  1  0
#> SRR1192496     1       0          1  1  0
#> SRR1192497     1       0          1  1  0
#> SRR1192499     1       0          1  1  0
#> SRR1192641     2       0          1  0  1
#> SRR1192640     2       0          1  0  1
#> SRR1192643     2       0          1  0  1
#> SRR1192642     2       0          1  0  1
#> SRR1192644     2       0          1  0  1
#> SRR1192645     2       0          1  0  1
#> SRR1192646     2       0          1  0  1
#> SRR1192647     2       0          1  0  1
#> SRR1192836     2       0          1  0  1
#> SRR1192838     2       0          1  0  1
#> SRR1192837     2       0          1  0  1
#> SRR1192839     2       0          1  0  1
#> SRR1192963     2       0          1  0  1
#> SRR1192966     2       0          1  0  1
#> SRR1192965     2       0          1  0  1
#> SRR1192964     2       0          1  0  1
#> SRR1193005     1       0          1  1  0
#> SRR1193006     1       0          1  1  0
#> SRR1193007     1       0          1  1  0
#> SRR1193008     1       0          1  1  0
#> SRR1193011     1       0          1  1  0
#> SRR1193012     1       0          1  1  0
#> SRR1193009     1       0          1  1  0
#> SRR1193010     1       0          1  1  0
#> SRR1193014     1       0          1  1  0
#> SRR1193015     1       0          1  1  0
#> SRR1193013     1       0          1  1  0
#> SRR1193018     1       0          1  1  0
#> SRR1193016     1       0          1  1  0
#> SRR1193017     1       0          1  1  0
#> SRR1193100     1       0          1  1  0
#> SRR1193101     1       0          1  1  0
#> SRR1193102     1       0          1  1  0
#> SRR1193104     1       0          1  1  0
#> SRR1193103     1       0          1  1  0
#> SRR1193105     1       0          1  1  0
#> SRR1193106     1       0          1  1  0
#> SRR1193198     1       0          1  1  0
#> SRR1193197     1       0          1  1  0
#> SRR1193199     1       0          1  1  0
#> SRR1193405     1       0          1  1  0
#> SRR1193404     1       0          1  1  0
#> SRR1193403     1       0          1  1  0
#> SRR1193522     1       0          1  1  0
#> SRR1193523     1       0          1  1  0
#> SRR1193524     1       0          1  1  0
#> SRR1193638     1       0          1  1  0
#> SRR1193639     1       0          1  1  0
#> SRR1195621     1       0          1  1  0
#> SRR1195619     1       0          1  1  0
#> SRR1195620     1       0          1  1  0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette p1 p2 p3
#> SRR1190372     2       0          1  0  1  0
#> SRR1190371     2       0          1  0  1  0
#> SRR1190370     2       0          1  0  1  0
#> SRR1190368     2       0          1  0  1  0
#> SRR1190369     2       0          1  0  1  0
#> SRR1190366     2       0          1  0  1  0
#> SRR1190367     2       0          1  0  1  0
#> SRR1190365     2       0          1  0  1  0
#> SRR1190467     3       0          1  0  0  1
#> SRR1190466     3       0          1  0  0  1
#> SRR1190465     3       0          1  0  0  1
#> SRR1190464     3       0          1  0  0  1
#> SRR1190462     3       0          1  0  0  1
#> SRR1190461     3       0          1  0  0  1
#> SRR1190460     3       0          1  0  0  1
#> SRR1190509     1       0          1  1  0  0
#> SRR1190504     1       0          1  1  0  0
#> SRR1190503     1       0          1  1  0  0
#> SRR1190502     1       0          1  1  0  0
#> SRR1190508     1       0          1  1  0  0
#> SRR1190507     1       0          1  1  0  0
#> SRR1190506     1       0          1  1  0  0
#> SRR1190505     1       0          1  1  0  0
#> SRR1191342     2       0          1  0  1  0
#> SRR1191344     2       0          1  0  1  0
#> SRR1191343     2       0          1  0  1  0
#> SRR1191349     2       0          1  0  1  0
#> SRR1191345     2       0          1  0  1  0
#> SRR1191346     2       0          1  0  1  0
#> SRR1191347     2       0          1  0  1  0
#> SRR1191348     2       0          1  0  1  0
#> SRR1191668     1       0          1  1  0  0
#> SRR1191667     1       0          1  1  0  0
#> SRR1191673     1       0          1  1  0  0
#> SRR1191672     1       0          1  1  0  0
#> SRR1191695     3       0          1  0  0  1
#> SRR1191694     3       0          1  0  0  1
#> SRR1191783     3       0          1  0  0  1
#> SRR1191876     3       0          1  0  0  1
#> SRR1191914     1       0          1  1  0  0
#> SRR1191915     1       0          1  1  0  0
#> SRR1191953     1       0          1  1  0  0
#> SRR1191954     1       0          1  1  0  0
#> SRR1191990     1       0          1  1  0  0
#> SRR1191991     1       0          1  1  0  0
#> SRR1192016     3       0          1  0  0  1
#> SRR1192017     3       0          1  0  0  1
#> SRR1192073     3       0          1  0  0  1
#> SRR1192072     3       0          1  0  0  1
#> SRR1192167     1       0          1  1  0  0
#> SRR1192166     1       0          1  1  0  0
#> SRR1192321     3       0          1  0  0  1
#> SRR1192353     1       0          1  1  0  0
#> SRR1192354     1       0          1  1  0  0
#> SRR1192370     1       0          1  1  0  0
#> SRR1192371     1       0          1  1  0  0
#> SRR1192399     1       0          1  1  0  0
#> SRR1192398     1       0          1  1  0  0
#> SRR1192417     2       0          1  0  1  0
#> SRR1192418     2       0          1  0  1  0
#> SRR1192415     2       0          1  0  1  0
#> SRR1192416     2       0          1  0  1  0
#> SRR1192413     2       0          1  0  1  0
#> SRR1192414     2       0          1  0  1  0
#> SRR1192420     2       0          1  0  1  0
#> SRR1192419     2       0          1  0  1  0
#> SRR1192471     1       0          1  1  0  0
#> SRR1192470     1       0          1  1  0  0
#> SRR1192469     1       0          1  1  0  0
#> SRR1192468     1       0          1  1  0  0
#> SRR1192467     1       0          1  1  0  0
#> SRR1192466     1       0          1  1  0  0
#> SRR1192465     1       0          1  1  0  0
#> SRR1192500     1       0          1  1  0  0
#> SRR1192501     1       0          1  1  0  0
#> SRR1192502     1       0          1  1  0  0
#> SRR1192503     1       0          1  1  0  0
#> SRR1192496     1       0          1  1  0  0
#> SRR1192497     1       0          1  1  0  0
#> SRR1192499     1       0          1  1  0  0
#> SRR1192641     2       0          1  0  1  0
#> SRR1192640     2       0          1  0  1  0
#> SRR1192643     2       0          1  0  1  0
#> SRR1192642     2       0          1  0  1  0
#> SRR1192644     2       0          1  0  1  0
#> SRR1192645     2       0          1  0  1  0
#> SRR1192646     2       0          1  0  1  0
#> SRR1192647     2       0          1  0  1  0
#> SRR1192836     2       0          1  0  1  0
#> SRR1192838     2       0          1  0  1  0
#> SRR1192837     2       0          1  0  1  0
#> SRR1192839     2       0          1  0  1  0
#> SRR1192963     2       0          1  0  1  0
#> SRR1192966     2       0          1  0  1  0
#> SRR1192965     2       0          1  0  1  0
#> SRR1192964     2       0          1  0  1  0
#> SRR1193005     1       0          1  1  0  0
#> SRR1193006     1       0          1  1  0  0
#> SRR1193007     1       0          1  1  0  0
#> SRR1193008     1       0          1  1  0  0
#> SRR1193011     1       0          1  1  0  0
#> SRR1193012     1       0          1  1  0  0
#> SRR1193009     1       0          1  1  0  0
#> SRR1193010     1       0          1  1  0  0
#> SRR1193014     1       0          1  1  0  0
#> SRR1193015     1       0          1  1  0  0
#> SRR1193013     1       0          1  1  0  0
#> SRR1193018     1       0          1  1  0  0
#> SRR1193016     1       0          1  1  0  0
#> SRR1193017     1       0          1  1  0  0
#> SRR1193100     1       0          1  1  0  0
#> SRR1193101     1       0          1  1  0  0
#> SRR1193102     1       0          1  1  0  0
#> SRR1193104     1       0          1  1  0  0
#> SRR1193103     1       0          1  1  0  0
#> SRR1193105     1       0          1  1  0  0
#> SRR1193106     1       0          1  1  0  0
#> SRR1193198     1       0          1  1  0  0
#> SRR1193197     1       0          1  1  0  0
#> SRR1193199     1       0          1  1  0  0
#> SRR1193405     1       0          1  1  0  0
#> SRR1193404     1       0          1  1  0  0
#> SRR1193403     1       0          1  1  0  0
#> SRR1193522     1       0          1  1  0  0
#> SRR1193523     1       0          1  1  0  0
#> SRR1193524     1       0          1  1  0  0
#> SRR1193638     1       0          1  1  0  0
#> SRR1193639     1       0          1  1  0  0
#> SRR1195621     1       0          1  1  0  0
#> SRR1195619     1       0          1  1  0  0
#> SRR1195620     1       0          1  1  0  0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2 p3    p4
#> SRR1190372     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1190371     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1190370     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1190368     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1190369     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1190366     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1190367     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1190365     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1190467     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR1190466     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR1190465     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR1190464     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR1190462     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR1190461     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR1190460     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR1190509     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1190504     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1190503     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1190502     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1190508     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1190507     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1190506     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1190505     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1191342     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1191344     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1191343     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1191349     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1191345     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1191346     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1191347     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1191348     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1191668     1   0.147      0.955 0.948 0.000  0 0.052
#> SRR1191667     1   0.147      0.955 0.948 0.000  0 0.052
#> SRR1191673     1   0.147      0.955 0.948 0.000  0 0.052
#> SRR1191672     1   0.147      0.955 0.948 0.000  0 0.052
#> SRR1191695     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR1191694     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR1191783     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR1191876     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR1191914     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1191915     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1191953     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1191954     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1191990     1   0.147      0.955 0.948 0.000  0 0.052
#> SRR1191991     1   0.147      0.955 0.948 0.000  0 0.052
#> SRR1192016     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR1192017     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR1192073     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR1192072     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR1192167     1   0.147      0.955 0.948 0.000  0 0.052
#> SRR1192166     1   0.147      0.955 0.948 0.000  0 0.052
#> SRR1192321     3   0.000      1.000 0.000 0.000  1 0.000
#> SRR1192353     1   0.147      0.955 0.948 0.000  0 0.052
#> SRR1192354     1   0.147      0.955 0.948 0.000  0 0.052
#> SRR1192370     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1192371     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1192399     1   0.147      0.955 0.948 0.000  0 0.052
#> SRR1192398     1   0.147      0.955 0.948 0.000  0 0.052
#> SRR1192417     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1192418     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1192415     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1192416     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1192413     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1192414     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1192420     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1192419     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1192471     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1192470     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1192469     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1192468     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1192467     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1192466     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1192465     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1192500     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1192501     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1192502     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1192503     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1192496     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1192497     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1192499     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1192641     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1192640     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1192643     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1192642     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1192644     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1192645     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1192646     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1192647     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1192836     4   0.147      1.000 0.000 0.052  0 0.948
#> SRR1192838     4   0.147      1.000 0.000 0.052  0 0.948
#> SRR1192837     4   0.147      1.000 0.000 0.052  0 0.948
#> SRR1192839     4   0.147      1.000 0.000 0.052  0 0.948
#> SRR1192963     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1192966     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1192965     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1192964     2   0.000      1.000 0.000 1.000  0 0.000
#> SRR1193005     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1193006     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1193007     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1193008     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1193011     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1193012     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1193009     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1193010     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1193014     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1193015     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1193013     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1193018     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1193016     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1193017     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1193100     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1193101     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1193102     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1193104     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1193103     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1193105     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1193106     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1193198     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1193197     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1193199     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1193405     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1193404     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1193403     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1193522     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1193523     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1193524     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1193638     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1193639     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1195621     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1195619     1   0.000      0.992 1.000 0.000  0 0.000
#> SRR1195620     1   0.000      0.992 1.000 0.000  0 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette p1 p2 p3 p4 p5
#> SRR1190372     2       0          1  0  1  0  0  0
#> SRR1190371     2       0          1  0  1  0  0  0
#> SRR1190370     2       0          1  0  1  0  0  0
#> SRR1190368     2       0          1  0  1  0  0  0
#> SRR1190369     2       0          1  0  1  0  0  0
#> SRR1190366     2       0          1  0  1  0  0  0
#> SRR1190367     2       0          1  0  1  0  0  0
#> SRR1190365     2       0          1  0  1  0  0  0
#> SRR1190467     3       0          1  0  0  1  0  0
#> SRR1190466     3       0          1  0  0  1  0  0
#> SRR1190465     3       0          1  0  0  1  0  0
#> SRR1190464     3       0          1  0  0  1  0  0
#> SRR1190462     3       0          1  0  0  1  0  0
#> SRR1190461     3       0          1  0  0  1  0  0
#> SRR1190460     3       0          1  0  0  1  0  0
#> SRR1190509     1       0          1  1  0  0  0  0
#> SRR1190504     1       0          1  1  0  0  0  0
#> SRR1190503     1       0          1  1  0  0  0  0
#> SRR1190502     1       0          1  1  0  0  0  0
#> SRR1190508     1       0          1  1  0  0  0  0
#> SRR1190507     1       0          1  1  0  0  0  0
#> SRR1190506     1       0          1  1  0  0  0  0
#> SRR1190505     1       0          1  1  0  0  0  0
#> SRR1191342     2       0          1  0  1  0  0  0
#> SRR1191344     2       0          1  0  1  0  0  0
#> SRR1191343     2       0          1  0  1  0  0  0
#> SRR1191349     2       0          1  0  1  0  0  0
#> SRR1191345     2       0          1  0  1  0  0  0
#> SRR1191346     2       0          1  0  1  0  0  0
#> SRR1191347     2       0          1  0  1  0  0  0
#> SRR1191348     2       0          1  0  1  0  0  0
#> SRR1191668     4       0          1  0  0  0  1  0
#> SRR1191667     4       0          1  0  0  0  1  0
#> SRR1191673     4       0          1  0  0  0  1  0
#> SRR1191672     4       0          1  0  0  0  1  0
#> SRR1191695     3       0          1  0  0  1  0  0
#> SRR1191694     3       0          1  0  0  1  0  0
#> SRR1191783     3       0          1  0  0  1  0  0
#> SRR1191876     3       0          1  0  0  1  0  0
#> SRR1191914     1       0          1  1  0  0  0  0
#> SRR1191915     1       0          1  1  0  0  0  0
#> SRR1191953     1       0          1  1  0  0  0  0
#> SRR1191954     1       0          1  1  0  0  0  0
#> SRR1191990     4       0          1  0  0  0  1  0
#> SRR1191991     4       0          1  0  0  0  1  0
#> SRR1192016     3       0          1  0  0  1  0  0
#> SRR1192017     3       0          1  0  0  1  0  0
#> SRR1192073     3       0          1  0  0  1  0  0
#> SRR1192072     3       0          1  0  0  1  0  0
#> SRR1192167     4       0          1  0  0  0  1  0
#> SRR1192166     4       0          1  0  0  0  1  0
#> SRR1192321     3       0          1  0  0  1  0  0
#> SRR1192353     4       0          1  0  0  0  1  0
#> SRR1192354     4       0          1  0  0  0  1  0
#> SRR1192370     1       0          1  1  0  0  0  0
#> SRR1192371     1       0          1  1  0  0  0  0
#> SRR1192399     4       0          1  0  0  0  1  0
#> SRR1192398     4       0          1  0  0  0  1  0
#> SRR1192417     2       0          1  0  1  0  0  0
#> SRR1192418     2       0          1  0  1  0  0  0
#> SRR1192415     2       0          1  0  1  0  0  0
#> SRR1192416     2       0          1  0  1  0  0  0
#> SRR1192413     2       0          1  0  1  0  0  0
#> SRR1192414     2       0          1  0  1  0  0  0
#> SRR1192420     2       0          1  0  1  0  0  0
#> SRR1192419     2       0          1  0  1  0  0  0
#> SRR1192471     1       0          1  1  0  0  0  0
#> SRR1192470     1       0          1  1  0  0  0  0
#> SRR1192469     1       0          1  1  0  0  0  0
#> SRR1192468     1       0          1  1  0  0  0  0
#> SRR1192467     1       0          1  1  0  0  0  0
#> SRR1192466     1       0          1  1  0  0  0  0
#> SRR1192465     1       0          1  1  0  0  0  0
#> SRR1192500     1       0          1  1  0  0  0  0
#> SRR1192501     1       0          1  1  0  0  0  0
#> SRR1192502     1       0          1  1  0  0  0  0
#> SRR1192503     1       0          1  1  0  0  0  0
#> SRR1192496     1       0          1  1  0  0  0  0
#> SRR1192497     1       0          1  1  0  0  0  0
#> SRR1192499     1       0          1  1  0  0  0  0
#> SRR1192641     2       0          1  0  1  0  0  0
#> SRR1192640     2       0          1  0  1  0  0  0
#> SRR1192643     2       0          1  0  1  0  0  0
#> SRR1192642     2       0          1  0  1  0  0  0
#> SRR1192644     2       0          1  0  1  0  0  0
#> SRR1192645     2       0          1  0  1  0  0  0
#> SRR1192646     2       0          1  0  1  0  0  0
#> SRR1192647     2       0          1  0  1  0  0  0
#> SRR1192836     5       0          1  0  0  0  0  1
#> SRR1192838     5       0          1  0  0  0  0  1
#> SRR1192837     5       0          1  0  0  0  0  1
#> SRR1192839     5       0          1  0  0  0  0  1
#> SRR1192963     2       0          1  0  1  0  0  0
#> SRR1192966     2       0          1  0  1  0  0  0
#> SRR1192965     2       0          1  0  1  0  0  0
#> SRR1192964     2       0          1  0  1  0  0  0
#> SRR1193005     1       0          1  1  0  0  0  0
#> SRR1193006     1       0          1  1  0  0  0  0
#> SRR1193007     1       0          1  1  0  0  0  0
#> SRR1193008     1       0          1  1  0  0  0  0
#> SRR1193011     1       0          1  1  0  0  0  0
#> SRR1193012     1       0          1  1  0  0  0  0
#> SRR1193009     1       0          1  1  0  0  0  0
#> SRR1193010     1       0          1  1  0  0  0  0
#> SRR1193014     1       0          1  1  0  0  0  0
#> SRR1193015     1       0          1  1  0  0  0  0
#> SRR1193013     1       0          1  1  0  0  0  0
#> SRR1193018     1       0          1  1  0  0  0  0
#> SRR1193016     1       0          1  1  0  0  0  0
#> SRR1193017     1       0          1  1  0  0  0  0
#> SRR1193100     1       0          1  1  0  0  0  0
#> SRR1193101     1       0          1  1  0  0  0  0
#> SRR1193102     1       0          1  1  0  0  0  0
#> SRR1193104     1       0          1  1  0  0  0  0
#> SRR1193103     1       0          1  1  0  0  0  0
#> SRR1193105     1       0          1  1  0  0  0  0
#> SRR1193106     1       0          1  1  0  0  0  0
#> SRR1193198     1       0          1  1  0  0  0  0
#> SRR1193197     1       0          1  1  0  0  0  0
#> SRR1193199     1       0          1  1  0  0  0  0
#> SRR1193405     1       0          1  1  0  0  0  0
#> SRR1193404     1       0          1  1  0  0  0  0
#> SRR1193403     1       0          1  1  0  0  0  0
#> SRR1193522     1       0          1  1  0  0  0  0
#> SRR1193523     1       0          1  1  0  0  0  0
#> SRR1193524     1       0          1  1  0  0  0  0
#> SRR1193638     1       0          1  1  0  0  0  0
#> SRR1193639     1       0          1  1  0  0  0  0
#> SRR1195621     1       0          1  1  0  0  0  0
#> SRR1195619     1       0          1  1  0  0  0  0
#> SRR1195620     1       0          1  1  0  0  0  0

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1190372     2       0          1  0  1  0  0  0  0
#> SRR1190371     2       0          1  0  1  0  0  0  0
#> SRR1190370     2       0          1  0  1  0  0  0  0
#> SRR1190368     2       0          1  0  1  0  0  0  0
#> SRR1190369     2       0          1  0  1  0  0  0  0
#> SRR1190366     2       0          1  0  1  0  0  0  0
#> SRR1190367     2       0          1  0  1  0  0  0  0
#> SRR1190365     2       0          1  0  1  0  0  0  0
#> SRR1190467     3       0          1  0  0  1  0  0  0
#> SRR1190466     3       0          1  0  0  1  0  0  0
#> SRR1190465     3       0          1  0  0  1  0  0  0
#> SRR1190464     3       0          1  0  0  1  0  0  0
#> SRR1190462     3       0          1  0  0  1  0  0  0
#> SRR1190461     3       0          1  0  0  1  0  0  0
#> SRR1190460     3       0          1  0  0  1  0  0  0
#> SRR1190509     1       0          1  1  0  0  0  0  0
#> SRR1190504     1       0          1  1  0  0  0  0  0
#> SRR1190503     1       0          1  1  0  0  0  0  0
#> SRR1190502     1       0          1  1  0  0  0  0  0
#> SRR1190508     1       0          1  1  0  0  0  0  0
#> SRR1190507     1       0          1  1  0  0  0  0  0
#> SRR1190506     1       0          1  1  0  0  0  0  0
#> SRR1190505     1       0          1  1  0  0  0  0  0
#> SRR1191342     4       0          1  0  0  0  1  0  0
#> SRR1191344     4       0          1  0  0  0  1  0  0
#> SRR1191343     4       0          1  0  0  0  1  0  0
#> SRR1191349     4       0          1  0  0  0  1  0  0
#> SRR1191345     4       0          1  0  0  0  1  0  0
#> SRR1191346     4       0          1  0  0  0  1  0  0
#> SRR1191347     4       0          1  0  0  0  1  0  0
#> SRR1191348     4       0          1  0  0  0  1  0  0
#> SRR1191668     5       0          1  0  0  0  0  1  0
#> SRR1191667     5       0          1  0  0  0  0  1  0
#> SRR1191673     5       0          1  0  0  0  0  1  0
#> SRR1191672     5       0          1  0  0  0  0  1  0
#> SRR1191695     3       0          1  0  0  1  0  0  0
#> SRR1191694     3       0          1  0  0  1  0  0  0
#> SRR1191783     3       0          1  0  0  1  0  0  0
#> SRR1191876     3       0          1  0  0  1  0  0  0
#> SRR1191914     1       0          1  1  0  0  0  0  0
#> SRR1191915     1       0          1  1  0  0  0  0  0
#> SRR1191953     1       0          1  1  0  0  0  0  0
#> SRR1191954     1       0          1  1  0  0  0  0  0
#> SRR1191990     5       0          1  0  0  0  0  1  0
#> SRR1191991     5       0          1  0  0  0  0  1  0
#> SRR1192016     3       0          1  0  0  1  0  0  0
#> SRR1192017     3       0          1  0  0  1  0  0  0
#> SRR1192073     3       0          1  0  0  1  0  0  0
#> SRR1192072     3       0          1  0  0  1  0  0  0
#> SRR1192167     5       0          1  0  0  0  0  1  0
#> SRR1192166     5       0          1  0  0  0  0  1  0
#> SRR1192321     3       0          1  0  0  1  0  0  0
#> SRR1192353     5       0          1  0  0  0  0  1  0
#> SRR1192354     5       0          1  0  0  0  0  1  0
#> SRR1192370     1       0          1  1  0  0  0  0  0
#> SRR1192371     1       0          1  1  0  0  0  0  0
#> SRR1192399     5       0          1  0  0  0  0  1  0
#> SRR1192398     5       0          1  0  0  0  0  1  0
#> SRR1192417     4       0          1  0  0  0  1  0  0
#> SRR1192418     4       0          1  0  0  0  1  0  0
#> SRR1192415     4       0          1  0  0  0  1  0  0
#> SRR1192416     4       0          1  0  0  0  1  0  0
#> SRR1192413     4       0          1  0  0  0  1  0  0
#> SRR1192414     4       0          1  0  0  0  1  0  0
#> SRR1192420     4       0          1  0  0  0  1  0  0
#> SRR1192419     4       0          1  0  0  0  1  0  0
#> SRR1192471     1       0          1  1  0  0  0  0  0
#> SRR1192470     1       0          1  1  0  0  0  0  0
#> SRR1192469     1       0          1  1  0  0  0  0  0
#> SRR1192468     1       0          1  1  0  0  0  0  0
#> SRR1192467     1       0          1  1  0  0  0  0  0
#> SRR1192466     1       0          1  1  0  0  0  0  0
#> SRR1192465     1       0          1  1  0  0  0  0  0
#> SRR1192500     1       0          1  1  0  0  0  0  0
#> SRR1192501     1       0          1  1  0  0  0  0  0
#> SRR1192502     1       0          1  1  0  0  0  0  0
#> SRR1192503     1       0          1  1  0  0  0  0  0
#> SRR1192496     1       0          1  1  0  0  0  0  0
#> SRR1192497     1       0          1  1  0  0  0  0  0
#> SRR1192499     1       0          1  1  0  0  0  0  0
#> SRR1192641     2       0          1  0  1  0  0  0  0
#> SRR1192640     2       0          1  0  1  0  0  0  0
#> SRR1192643     2       0          1  0  1  0  0  0  0
#> SRR1192642     2       0          1  0  1  0  0  0  0
#> SRR1192644     2       0          1  0  1  0  0  0  0
#> SRR1192645     2       0          1  0  1  0  0  0  0
#> SRR1192646     2       0          1  0  1  0  0  0  0
#> SRR1192647     2       0          1  0  1  0  0  0  0
#> SRR1192836     6       0          1  0  0  0  0  0  1
#> SRR1192838     6       0          1  0  0  0  0  0  1
#> SRR1192837     6       0          1  0  0  0  0  0  1
#> SRR1192839     6       0          1  0  0  0  0  0  1
#> SRR1192963     2       0          1  0  1  0  0  0  0
#> SRR1192966     2       0          1  0  1  0  0  0  0
#> SRR1192965     2       0          1  0  1  0  0  0  0
#> SRR1192964     2       0          1  0  1  0  0  0  0
#> SRR1193005     1       0          1  1  0  0  0  0  0
#> SRR1193006     1       0          1  1  0  0  0  0  0
#> SRR1193007     1       0          1  1  0  0  0  0  0
#> SRR1193008     1       0          1  1  0  0  0  0  0
#> SRR1193011     1       0          1  1  0  0  0  0  0
#> SRR1193012     1       0          1  1  0  0  0  0  0
#> SRR1193009     1       0          1  1  0  0  0  0  0
#> SRR1193010     1       0          1  1  0  0  0  0  0
#> SRR1193014     1       0          1  1  0  0  0  0  0
#> SRR1193015     1       0          1  1  0  0  0  0  0
#> SRR1193013     1       0          1  1  0  0  0  0  0
#> SRR1193018     1       0          1  1  0  0  0  0  0
#> SRR1193016     1       0          1  1  0  0  0  0  0
#> SRR1193017     1       0          1  1  0  0  0  0  0
#> SRR1193100     1       0          1  1  0  0  0  0  0
#> SRR1193101     1       0          1  1  0  0  0  0  0
#> SRR1193102     1       0          1  1  0  0  0  0  0
#> SRR1193104     1       0          1  1  0  0  0  0  0
#> SRR1193103     1       0          1  1  0  0  0  0  0
#> SRR1193105     1       0          1  1  0  0  0  0  0
#> SRR1193106     1       0          1  1  0  0  0  0  0
#> SRR1193198     1       0          1  1  0  0  0  0  0
#> SRR1193197     1       0          1  1  0  0  0  0  0
#> SRR1193199     1       0          1  1  0  0  0  0  0
#> SRR1193405     1       0          1  1  0  0  0  0  0
#> SRR1193404     1       0          1  1  0  0  0  0  0
#> SRR1193403     1       0          1  1  0  0  0  0  0
#> SRR1193522     1       0          1  1  0  0  0  0  0
#> SRR1193523     1       0          1  1  0  0  0  0  0
#> SRR1193524     1       0          1  1  0  0  0  0  0
#> SRR1193638     1       0          1  1  0  0  0  0  0
#> SRR1193639     1       0          1  1  0  0  0  0  0
#> SRR1195621     1       0          1  1  0  0  0  0  0
#> SRR1195619     1       0          1  1  0  0  0  0  0
#> SRR1195620     1       0          1  1  0  0  0  0  0

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15363 rows and 131 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.784           0.857       0.941         0.4585 0.573   0.573
#> 3 3 0.592           0.919       0.893         0.2225 0.859   0.754
#> 4 4 0.742           0.893       0.832         0.1761 0.863   0.683
#> 5 5 0.719           0.812       0.811         0.0936 1.000   1.000
#> 6 6 0.683           0.769       0.774         0.0604 0.904   0.676

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1190372     2  0.9970      1.000 0.468 0.532
#> SRR1190371     2  0.9970      1.000 0.468 0.532
#> SRR1190370     2  0.9970      1.000 0.468 0.532
#> SRR1190368     2  0.9970      1.000 0.468 0.532
#> SRR1190369     2  0.9970      1.000 0.468 0.532
#> SRR1190366     2  0.9970      1.000 0.468 0.532
#> SRR1190367     2  0.9970      1.000 0.468 0.532
#> SRR1190365     2  0.9970      1.000 0.468 0.532
#> SRR1190467     1  0.0000      0.257 1.000 0.000
#> SRR1190466     1  0.0000      0.257 1.000 0.000
#> SRR1190465     1  0.0000      0.257 1.000 0.000
#> SRR1190464     1  0.0000      0.257 1.000 0.000
#> SRR1190462     1  0.0000      0.257 1.000 0.000
#> SRR1190461     1  0.0000      0.257 1.000 0.000
#> SRR1190460     1  0.0000      0.257 1.000 0.000
#> SRR1190509     1  0.9977      0.910 0.528 0.472
#> SRR1190504     1  0.9977      0.910 0.528 0.472
#> SRR1190503     1  0.9977      0.910 0.528 0.472
#> SRR1190502     1  0.9977      0.910 0.528 0.472
#> SRR1190508     1  0.9977      0.910 0.528 0.472
#> SRR1190507     1  0.9977      0.910 0.528 0.472
#> SRR1190506     1  0.9977      0.910 0.528 0.472
#> SRR1190505     1  0.9977      0.910 0.528 0.472
#> SRR1191342     2  0.9970      1.000 0.468 0.532
#> SRR1191344     2  0.9970      1.000 0.468 0.532
#> SRR1191343     2  0.9970      1.000 0.468 0.532
#> SRR1191349     2  0.9970      1.000 0.468 0.532
#> SRR1191345     2  0.9970      1.000 0.468 0.532
#> SRR1191346     2  0.9970      1.000 0.468 0.532
#> SRR1191347     2  0.9970      1.000 0.468 0.532
#> SRR1191348     2  0.9970      1.000 0.468 0.532
#> SRR1191668     1  0.9977      0.910 0.528 0.472
#> SRR1191667     1  0.9977      0.910 0.528 0.472
#> SRR1191673     1  0.9977      0.910 0.528 0.472
#> SRR1191672     1  0.9977      0.910 0.528 0.472
#> SRR1191695     1  0.0376      0.246 0.996 0.004
#> SRR1191694     1  0.0376      0.246 0.996 0.004
#> SRR1191783     1  0.0376      0.246 0.996 0.004
#> SRR1191876     1  0.0376      0.246 0.996 0.004
#> SRR1191914     1  0.9977      0.910 0.528 0.472
#> SRR1191915     1  0.9977      0.910 0.528 0.472
#> SRR1191953     1  0.9977      0.910 0.528 0.472
#> SRR1191954     1  0.9977      0.910 0.528 0.472
#> SRR1191990     1  0.9977      0.910 0.528 0.472
#> SRR1191991     1  0.9977      0.910 0.528 0.472
#> SRR1192016     1  0.0376      0.246 0.996 0.004
#> SRR1192017     1  0.0376      0.246 0.996 0.004
#> SRR1192073     1  0.0376      0.246 0.996 0.004
#> SRR1192072     1  0.0376      0.246 0.996 0.004
#> SRR1192167     1  0.9977      0.910 0.528 0.472
#> SRR1192166     1  0.9977      0.910 0.528 0.472
#> SRR1192321     1  0.0376      0.246 0.996 0.004
#> SRR1192353     1  0.9977      0.910 0.528 0.472
#> SRR1192354     1  0.9977      0.910 0.528 0.472
#> SRR1192370     1  0.9977      0.910 0.528 0.472
#> SRR1192371     1  0.9977      0.910 0.528 0.472
#> SRR1192399     1  0.9977      0.910 0.528 0.472
#> SRR1192398     1  0.9977      0.910 0.528 0.472
#> SRR1192417     2  0.9970      1.000 0.468 0.532
#> SRR1192418     2  0.9970      1.000 0.468 0.532
#> SRR1192415     2  0.9970      1.000 0.468 0.532
#> SRR1192416     2  0.9970      1.000 0.468 0.532
#> SRR1192413     2  0.9970      1.000 0.468 0.532
#> SRR1192414     2  0.9970      1.000 0.468 0.532
#> SRR1192420     2  0.9970      1.000 0.468 0.532
#> SRR1192419     2  0.9970      1.000 0.468 0.532
#> SRR1192471     1  0.9977      0.910 0.528 0.472
#> SRR1192470     1  0.9977      0.910 0.528 0.472
#> SRR1192469     1  0.9977      0.910 0.528 0.472
#> SRR1192468     1  0.9977      0.910 0.528 0.472
#> SRR1192467     1  0.9977      0.910 0.528 0.472
#> SRR1192466     1  0.9977      0.910 0.528 0.472
#> SRR1192465     1  0.9977      0.910 0.528 0.472
#> SRR1192500     1  0.9977      0.910 0.528 0.472
#> SRR1192501     1  0.9977      0.910 0.528 0.472
#> SRR1192502     1  0.9977      0.910 0.528 0.472
#> SRR1192503     1  0.9977      0.910 0.528 0.472
#> SRR1192496     1  0.9977      0.910 0.528 0.472
#> SRR1192497     1  0.9977      0.910 0.528 0.472
#> SRR1192499     1  0.9977      0.910 0.528 0.472
#> SRR1192641     2  0.9970      1.000 0.468 0.532
#> SRR1192640     2  0.9970      1.000 0.468 0.532
#> SRR1192643     2  0.9970      1.000 0.468 0.532
#> SRR1192642     2  0.9970      1.000 0.468 0.532
#> SRR1192644     2  0.9970      1.000 0.468 0.532
#> SRR1192645     2  0.9970      1.000 0.468 0.532
#> SRR1192646     2  0.9970      1.000 0.468 0.532
#> SRR1192647     2  0.9970      1.000 0.468 0.532
#> SRR1192836     2  0.9970      1.000 0.468 0.532
#> SRR1192838     2  0.9970      1.000 0.468 0.532
#> SRR1192837     2  0.9970      1.000 0.468 0.532
#> SRR1192839     2  0.9970      1.000 0.468 0.532
#> SRR1192963     2  0.9970      1.000 0.468 0.532
#> SRR1192966     2  0.9970      1.000 0.468 0.532
#> SRR1192965     2  0.9970      1.000 0.468 0.532
#> SRR1192964     2  0.9970      1.000 0.468 0.532
#> SRR1193005     1  0.9977      0.910 0.528 0.472
#> SRR1193006     1  0.9977      0.910 0.528 0.472
#> SRR1193007     1  0.9977      0.910 0.528 0.472
#> SRR1193008     1  0.9977      0.910 0.528 0.472
#> SRR1193011     1  0.9977      0.910 0.528 0.472
#> SRR1193012     1  0.9977      0.910 0.528 0.472
#> SRR1193009     1  0.9977      0.910 0.528 0.472
#> SRR1193010     1  0.9977      0.910 0.528 0.472
#> SRR1193014     1  0.9977      0.910 0.528 0.472
#> SRR1193015     1  0.9977      0.910 0.528 0.472
#> SRR1193013     1  0.9977      0.910 0.528 0.472
#> SRR1193018     1  0.9977      0.910 0.528 0.472
#> SRR1193016     1  0.9977      0.910 0.528 0.472
#> SRR1193017     1  0.9977      0.910 0.528 0.472
#> SRR1193100     1  0.9977      0.910 0.528 0.472
#> SRR1193101     1  0.9977      0.910 0.528 0.472
#> SRR1193102     1  0.9977      0.910 0.528 0.472
#> SRR1193104     1  0.9977      0.910 0.528 0.472
#> SRR1193103     1  0.9977      0.910 0.528 0.472
#> SRR1193105     1  0.9977      0.910 0.528 0.472
#> SRR1193106     1  0.9977      0.910 0.528 0.472
#> SRR1193198     1  0.9977      0.910 0.528 0.472
#> SRR1193197     1  0.9977      0.910 0.528 0.472
#> SRR1193199     1  0.9977      0.910 0.528 0.472
#> SRR1193405     1  0.9977      0.910 0.528 0.472
#> SRR1193404     1  0.9977      0.910 0.528 0.472
#> SRR1193403     1  0.9977      0.910 0.528 0.472
#> SRR1193522     1  0.9977      0.910 0.528 0.472
#> SRR1193523     1  0.9977      0.910 0.528 0.472
#> SRR1193524     1  0.9977      0.910 0.528 0.472
#> SRR1193638     1  0.9977      0.910 0.528 0.472
#> SRR1193639     1  0.9977      0.910 0.528 0.472
#> SRR1195621     1  0.9977      0.910 0.528 0.472
#> SRR1195619     1  0.9977      0.910 0.528 0.472
#> SRR1195620     1  0.9977      0.910 0.528 0.472

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1190372     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1190371     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1190370     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1190368     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1190369     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1190366     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1190367     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1190365     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1190467     3  0.8722      1.000 0.216 0.192 0.592
#> SRR1190466     3  0.8722      1.000 0.216 0.192 0.592
#> SRR1190465     3  0.8722      1.000 0.216 0.192 0.592
#> SRR1190464     3  0.8722      1.000 0.216 0.192 0.592
#> SRR1190462     3  0.8722      1.000 0.216 0.192 0.592
#> SRR1190461     3  0.8722      1.000 0.216 0.192 0.592
#> SRR1190460     3  0.8722      1.000 0.216 0.192 0.592
#> SRR1190509     1  0.0237      0.930 0.996 0.000 0.004
#> SRR1190504     1  0.0237      0.930 0.996 0.000 0.004
#> SRR1190503     1  0.0237      0.930 0.996 0.000 0.004
#> SRR1190502     1  0.0237      0.930 0.996 0.000 0.004
#> SRR1190508     1  0.0237      0.930 0.996 0.000 0.004
#> SRR1190507     1  0.0237      0.930 0.996 0.000 0.004
#> SRR1190506     1  0.0237      0.930 0.996 0.000 0.004
#> SRR1190505     1  0.0237      0.930 0.996 0.000 0.004
#> SRR1191342     2  0.3816      0.908 0.000 0.852 0.148
#> SRR1191344     2  0.3816      0.908 0.000 0.852 0.148
#> SRR1191343     2  0.3816      0.908 0.000 0.852 0.148
#> SRR1191349     2  0.3816      0.908 0.000 0.852 0.148
#> SRR1191345     2  0.3816      0.908 0.000 0.852 0.148
#> SRR1191346     2  0.3816      0.908 0.000 0.852 0.148
#> SRR1191347     2  0.3816      0.908 0.000 0.852 0.148
#> SRR1191348     2  0.3816      0.908 0.000 0.852 0.148
#> SRR1191668     1  0.0892      0.923 0.980 0.000 0.020
#> SRR1191667     1  0.0892      0.923 0.980 0.000 0.020
#> SRR1191673     1  0.0892      0.923 0.980 0.000 0.020
#> SRR1191672     1  0.0892      0.923 0.980 0.000 0.020
#> SRR1191695     3  0.8722      1.000 0.216 0.192 0.592
#> SRR1191694     3  0.8722      1.000 0.216 0.192 0.592
#> SRR1191783     3  0.8722      1.000 0.216 0.192 0.592
#> SRR1191876     3  0.8722      1.000 0.216 0.192 0.592
#> SRR1191914     1  0.0592      0.927 0.988 0.000 0.012
#> SRR1191915     1  0.0592      0.927 0.988 0.000 0.012
#> SRR1191953     1  0.0592      0.927 0.988 0.000 0.012
#> SRR1191954     1  0.0592      0.927 0.988 0.000 0.012
#> SRR1191990     1  0.2066      0.915 0.940 0.000 0.060
#> SRR1191991     1  0.2066      0.915 0.940 0.000 0.060
#> SRR1192016     3  0.8722      1.000 0.216 0.192 0.592
#> SRR1192017     3  0.8722      1.000 0.216 0.192 0.592
#> SRR1192073     3  0.8722      1.000 0.216 0.192 0.592
#> SRR1192072     3  0.8722      1.000 0.216 0.192 0.592
#> SRR1192167     1  0.0892      0.923 0.980 0.000 0.020
#> SRR1192166     1  0.0892      0.923 0.980 0.000 0.020
#> SRR1192321     3  0.8722      1.000 0.216 0.192 0.592
#> SRR1192353     1  0.1964      0.916 0.944 0.000 0.056
#> SRR1192354     1  0.1964      0.916 0.944 0.000 0.056
#> SRR1192370     1  0.4178      0.852 0.828 0.000 0.172
#> SRR1192371     1  0.4178      0.852 0.828 0.000 0.172
#> SRR1192399     1  0.2165      0.913 0.936 0.000 0.064
#> SRR1192398     1  0.2165      0.913 0.936 0.000 0.064
#> SRR1192417     2  0.3816      0.908 0.000 0.852 0.148
#> SRR1192418     2  0.3816      0.908 0.000 0.852 0.148
#> SRR1192415     2  0.3816      0.908 0.000 0.852 0.148
#> SRR1192416     2  0.3816      0.908 0.000 0.852 0.148
#> SRR1192413     2  0.3816      0.908 0.000 0.852 0.148
#> SRR1192414     2  0.3816      0.908 0.000 0.852 0.148
#> SRR1192420     2  0.3816      0.908 0.000 0.852 0.148
#> SRR1192419     2  0.3816      0.908 0.000 0.852 0.148
#> SRR1192471     1  0.4178      0.852 0.828 0.000 0.172
#> SRR1192470     1  0.4178      0.852 0.828 0.000 0.172
#> SRR1192469     1  0.4178      0.852 0.828 0.000 0.172
#> SRR1192468     1  0.4178      0.852 0.828 0.000 0.172
#> SRR1192467     1  0.4178      0.852 0.828 0.000 0.172
#> SRR1192466     1  0.4178      0.852 0.828 0.000 0.172
#> SRR1192465     1  0.4178      0.852 0.828 0.000 0.172
#> SRR1192500     1  0.0237      0.930 0.996 0.000 0.004
#> SRR1192501     1  0.0237      0.930 0.996 0.000 0.004
#> SRR1192502     1  0.0237      0.930 0.996 0.000 0.004
#> SRR1192503     1  0.0237      0.930 0.996 0.000 0.004
#> SRR1192496     1  0.0237      0.930 0.996 0.000 0.004
#> SRR1192497     1  0.0237      0.930 0.996 0.000 0.004
#> SRR1192499     1  0.0237      0.930 0.996 0.000 0.004
#> SRR1192641     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1192640     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1192643     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1192642     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1192644     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1192645     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1192646     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1192647     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1192836     2  0.3941      0.876 0.000 0.844 0.156
#> SRR1192838     2  0.3941      0.876 0.000 0.844 0.156
#> SRR1192837     2  0.3941      0.876 0.000 0.844 0.156
#> SRR1192839     2  0.3941      0.876 0.000 0.844 0.156
#> SRR1192963     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1192966     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1192965     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1192964     2  0.0000      0.925 0.000 1.000 0.000
#> SRR1193005     1  0.0237      0.930 0.996 0.000 0.004
#> SRR1193006     1  0.0237      0.930 0.996 0.000 0.004
#> SRR1193007     1  0.0237      0.930 0.996 0.000 0.004
#> SRR1193008     1  0.0237      0.930 0.996 0.000 0.004
#> SRR1193011     1  0.4178      0.852 0.828 0.000 0.172
#> SRR1193012     1  0.4178      0.852 0.828 0.000 0.172
#> SRR1193009     1  0.4178      0.852 0.828 0.000 0.172
#> SRR1193010     1  0.4178      0.852 0.828 0.000 0.172
#> SRR1193014     1  0.0592      0.927 0.988 0.000 0.012
#> SRR1193015     1  0.0592      0.927 0.988 0.000 0.012
#> SRR1193013     1  0.0592      0.927 0.988 0.000 0.012
#> SRR1193018     1  0.0424      0.930 0.992 0.000 0.008
#> SRR1193016     1  0.0424      0.930 0.992 0.000 0.008
#> SRR1193017     1  0.0424      0.930 0.992 0.000 0.008
#> SRR1193100     1  0.0424      0.930 0.992 0.000 0.008
#> SRR1193101     1  0.0424      0.930 0.992 0.000 0.008
#> SRR1193102     1  0.0424      0.930 0.992 0.000 0.008
#> SRR1193104     1  0.4178      0.852 0.828 0.000 0.172
#> SRR1193103     1  0.4178      0.852 0.828 0.000 0.172
#> SRR1193105     1  0.4178      0.852 0.828 0.000 0.172
#> SRR1193106     1  0.4178      0.852 0.828 0.000 0.172
#> SRR1193198     1  0.0592      0.927 0.988 0.000 0.012
#> SRR1193197     1  0.0592      0.927 0.988 0.000 0.012
#> SRR1193199     1  0.0592      0.927 0.988 0.000 0.012
#> SRR1193405     1  0.0424      0.930 0.992 0.000 0.008
#> SRR1193404     1  0.0424      0.930 0.992 0.000 0.008
#> SRR1193403     1  0.0424      0.930 0.992 0.000 0.008
#> SRR1193522     1  0.0237      0.930 0.996 0.000 0.004
#> SRR1193523     1  0.0237      0.930 0.996 0.000 0.004
#> SRR1193524     1  0.0237      0.930 0.996 0.000 0.004
#> SRR1193638     1  0.4178      0.852 0.828 0.000 0.172
#> SRR1193639     1  0.4178      0.852 0.828 0.000 0.172
#> SRR1195621     1  0.4178      0.852 0.828 0.000 0.172
#> SRR1195619     1  0.4178      0.852 0.828 0.000 0.172
#> SRR1195620     1  0.4178      0.852 0.828 0.000 0.172

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1190372     2  0.4262      0.855 0.000 0.756 0.008 0.236
#> SRR1190371     2  0.4262      0.855 0.000 0.756 0.008 0.236
#> SRR1190370     2  0.4262      0.855 0.000 0.756 0.008 0.236
#> SRR1190368     2  0.4262      0.855 0.000 0.756 0.008 0.236
#> SRR1190369     2  0.4262      0.855 0.000 0.756 0.008 0.236
#> SRR1190366     2  0.4262      0.855 0.000 0.756 0.008 0.236
#> SRR1190367     2  0.4262      0.855 0.000 0.756 0.008 0.236
#> SRR1190365     2  0.4262      0.855 0.000 0.756 0.008 0.236
#> SRR1190467     3  0.4071      0.991 0.052 0.076 0.852 0.020
#> SRR1190466     3  0.4071      0.991 0.052 0.076 0.852 0.020
#> SRR1190465     3  0.4071      0.991 0.052 0.076 0.852 0.020
#> SRR1190464     3  0.4071      0.991 0.052 0.076 0.852 0.020
#> SRR1190462     3  0.4071      0.991 0.052 0.076 0.852 0.020
#> SRR1190461     3  0.4071      0.991 0.052 0.076 0.852 0.020
#> SRR1190460     3  0.4071      0.991 0.052 0.076 0.852 0.020
#> SRR1190509     1  0.0188      0.904 0.996 0.000 0.000 0.004
#> SRR1190504     1  0.0188      0.904 0.996 0.000 0.000 0.004
#> SRR1190503     1  0.0188      0.904 0.996 0.000 0.000 0.004
#> SRR1190502     1  0.0188      0.904 0.996 0.000 0.000 0.004
#> SRR1190508     1  0.0188      0.904 0.996 0.000 0.000 0.004
#> SRR1190507     1  0.0188      0.904 0.996 0.000 0.000 0.004
#> SRR1190506     1  0.0188      0.904 0.996 0.000 0.000 0.004
#> SRR1190505     1  0.0188      0.904 0.996 0.000 0.000 0.004
#> SRR1191342     2  0.1938      0.806 0.000 0.936 0.052 0.012
#> SRR1191344     2  0.1938      0.806 0.000 0.936 0.052 0.012
#> SRR1191343     2  0.1938      0.806 0.000 0.936 0.052 0.012
#> SRR1191349     2  0.1938      0.806 0.000 0.936 0.052 0.012
#> SRR1191345     2  0.1938      0.806 0.000 0.936 0.052 0.012
#> SRR1191346     2  0.1938      0.806 0.000 0.936 0.052 0.012
#> SRR1191347     2  0.1938      0.806 0.000 0.936 0.052 0.012
#> SRR1191348     2  0.1938      0.806 0.000 0.936 0.052 0.012
#> SRR1191668     1  0.3421      0.820 0.868 0.000 0.044 0.088
#> SRR1191667     1  0.3421      0.820 0.868 0.000 0.044 0.088
#> SRR1191673     1  0.3421      0.820 0.868 0.000 0.044 0.088
#> SRR1191672     1  0.3421      0.820 0.868 0.000 0.044 0.088
#> SRR1191695     3  0.3840      0.989 0.052 0.076 0.860 0.012
#> SRR1191694     3  0.3840      0.989 0.052 0.076 0.860 0.012
#> SRR1191783     3  0.3840      0.989 0.052 0.076 0.860 0.012
#> SRR1191876     3  0.3840      0.989 0.052 0.076 0.860 0.012
#> SRR1191914     1  0.1929      0.885 0.940 0.000 0.024 0.036
#> SRR1191915     1  0.1929      0.885 0.940 0.000 0.024 0.036
#> SRR1191953     1  0.1929      0.885 0.940 0.000 0.024 0.036
#> SRR1191954     1  0.1929      0.885 0.940 0.000 0.024 0.036
#> SRR1191990     1  0.4188      0.755 0.812 0.000 0.040 0.148
#> SRR1191991     1  0.4188      0.755 0.812 0.000 0.040 0.148
#> SRR1192016     3  0.3383      0.992 0.052 0.076 0.872 0.000
#> SRR1192017     3  0.3383      0.992 0.052 0.076 0.872 0.000
#> SRR1192073     3  0.3383      0.992 0.052 0.076 0.872 0.000
#> SRR1192072     3  0.3383      0.992 0.052 0.076 0.872 0.000
#> SRR1192167     1  0.3421      0.820 0.868 0.000 0.044 0.088
#> SRR1192166     1  0.3421      0.820 0.868 0.000 0.044 0.088
#> SRR1192321     3  0.3383      0.992 0.052 0.076 0.872 0.000
#> SRR1192353     1  0.3876      0.787 0.836 0.000 0.040 0.124
#> SRR1192354     1  0.3876      0.787 0.836 0.000 0.040 0.124
#> SRR1192370     4  0.4992      0.993 0.476 0.000 0.000 0.524
#> SRR1192371     4  0.4992      0.993 0.476 0.000 0.000 0.524
#> SRR1192399     1  0.4188      0.752 0.812 0.000 0.040 0.148
#> SRR1192398     1  0.4188      0.752 0.812 0.000 0.040 0.148
#> SRR1192417     2  0.1716      0.806 0.000 0.936 0.064 0.000
#> SRR1192418     2  0.1716      0.806 0.000 0.936 0.064 0.000
#> SRR1192415     2  0.1716      0.806 0.000 0.936 0.064 0.000
#> SRR1192416     2  0.1716      0.806 0.000 0.936 0.064 0.000
#> SRR1192413     2  0.1716      0.806 0.000 0.936 0.064 0.000
#> SRR1192414     2  0.1716      0.806 0.000 0.936 0.064 0.000
#> SRR1192420     2  0.1716      0.806 0.000 0.936 0.064 0.000
#> SRR1192419     2  0.1716      0.806 0.000 0.936 0.064 0.000
#> SRR1192471     4  0.4989      0.993 0.472 0.000 0.000 0.528
#> SRR1192470     4  0.4989      0.993 0.472 0.000 0.000 0.528
#> SRR1192469     4  0.4989      0.993 0.472 0.000 0.000 0.528
#> SRR1192468     4  0.4989      0.993 0.472 0.000 0.000 0.528
#> SRR1192467     4  0.4989      0.993 0.472 0.000 0.000 0.528
#> SRR1192466     4  0.4989      0.993 0.472 0.000 0.000 0.528
#> SRR1192465     4  0.4989      0.993 0.472 0.000 0.000 0.528
#> SRR1192500     1  0.0707      0.901 0.980 0.000 0.000 0.020
#> SRR1192501     1  0.0707      0.901 0.980 0.000 0.000 0.020
#> SRR1192502     1  0.0707      0.901 0.980 0.000 0.000 0.020
#> SRR1192503     1  0.0707      0.901 0.980 0.000 0.000 0.020
#> SRR1192496     1  0.0707      0.901 0.980 0.000 0.000 0.020
#> SRR1192497     1  0.0707      0.901 0.980 0.000 0.000 0.020
#> SRR1192499     1  0.0707      0.901 0.980 0.000 0.000 0.020
#> SRR1192641     2  0.4155      0.855 0.000 0.756 0.004 0.240
#> SRR1192640     2  0.4155      0.855 0.000 0.756 0.004 0.240
#> SRR1192643     2  0.4155      0.855 0.000 0.756 0.004 0.240
#> SRR1192642     2  0.4155      0.855 0.000 0.756 0.004 0.240
#> SRR1192644     2  0.4155      0.855 0.000 0.756 0.004 0.240
#> SRR1192645     2  0.4155      0.855 0.000 0.756 0.004 0.240
#> SRR1192646     2  0.4155      0.855 0.000 0.756 0.004 0.240
#> SRR1192647     2  0.4155      0.855 0.000 0.756 0.004 0.240
#> SRR1192836     2  0.5431      0.777 0.000 0.712 0.064 0.224
#> SRR1192838     2  0.5431      0.777 0.000 0.712 0.064 0.224
#> SRR1192837     2  0.5431      0.777 0.000 0.712 0.064 0.224
#> SRR1192839     2  0.5431      0.777 0.000 0.712 0.064 0.224
#> SRR1192963     2  0.4155      0.855 0.000 0.756 0.004 0.240
#> SRR1192966     2  0.4155      0.855 0.000 0.756 0.004 0.240
#> SRR1192965     2  0.4155      0.855 0.000 0.756 0.004 0.240
#> SRR1192964     2  0.4155      0.855 0.000 0.756 0.004 0.240
#> SRR1193005     1  0.0707      0.901 0.980 0.000 0.000 0.020
#> SRR1193006     1  0.0707      0.901 0.980 0.000 0.000 0.020
#> SRR1193007     1  0.0707      0.901 0.980 0.000 0.000 0.020
#> SRR1193008     1  0.0707      0.901 0.980 0.000 0.000 0.020
#> SRR1193011     4  0.4989      0.993 0.472 0.000 0.000 0.528
#> SRR1193012     4  0.4989      0.993 0.472 0.000 0.000 0.528
#> SRR1193009     4  0.4989      0.993 0.472 0.000 0.000 0.528
#> SRR1193010     4  0.4989      0.993 0.472 0.000 0.000 0.528
#> SRR1193014     1  0.1929      0.885 0.940 0.000 0.024 0.036
#> SRR1193015     1  0.1929      0.885 0.940 0.000 0.024 0.036
#> SRR1193013     1  0.1929      0.885 0.940 0.000 0.024 0.036
#> SRR1193018     1  0.1209      0.893 0.964 0.000 0.004 0.032
#> SRR1193016     1  0.1209      0.893 0.964 0.000 0.004 0.032
#> SRR1193017     1  0.1209      0.893 0.964 0.000 0.004 0.032
#> SRR1193100     1  0.1209      0.893 0.964 0.000 0.004 0.032
#> SRR1193101     1  0.1209      0.893 0.964 0.000 0.004 0.032
#> SRR1193102     1  0.1209      0.893 0.964 0.000 0.004 0.032
#> SRR1193104     4  0.4989      0.992 0.472 0.000 0.000 0.528
#> SRR1193103     4  0.4989      0.992 0.472 0.000 0.000 0.528
#> SRR1193105     4  0.4989      0.992 0.472 0.000 0.000 0.528
#> SRR1193106     4  0.4989      0.992 0.472 0.000 0.000 0.528
#> SRR1193198     1  0.1929      0.885 0.940 0.000 0.024 0.036
#> SRR1193197     1  0.1929      0.885 0.940 0.000 0.024 0.036
#> SRR1193199     1  0.1929      0.885 0.940 0.000 0.024 0.036
#> SRR1193405     1  0.1209      0.893 0.964 0.000 0.004 0.032
#> SRR1193404     1  0.1209      0.893 0.964 0.000 0.004 0.032
#> SRR1193403     1  0.1209      0.893 0.964 0.000 0.004 0.032
#> SRR1193522     1  0.1109      0.896 0.968 0.000 0.004 0.028
#> SRR1193523     1  0.1109      0.896 0.968 0.000 0.004 0.028
#> SRR1193524     1  0.1109      0.896 0.968 0.000 0.004 0.028
#> SRR1193638     4  0.4989      0.992 0.472 0.000 0.000 0.528
#> SRR1193639     4  0.4989      0.992 0.472 0.000 0.000 0.528
#> SRR1195621     4  0.4989      0.992 0.472 0.000 0.000 0.528
#> SRR1195619     4  0.4989      0.992 0.472 0.000 0.000 0.528
#> SRR1195620     4  0.4989      0.992 0.472 0.000 0.000 0.528

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3 p4    p5
#> SRR1190372     2  0.4960      0.786 0.000 0.584 0.008 NA 0.020
#> SRR1190371     2  0.4960      0.786 0.000 0.584 0.008 NA 0.020
#> SRR1190370     2  0.4960      0.786 0.000 0.584 0.008 NA 0.020
#> SRR1190368     2  0.4960      0.786 0.000 0.584 0.008 NA 0.020
#> SRR1190369     2  0.4960      0.786 0.000 0.584 0.008 NA 0.020
#> SRR1190366     2  0.4960      0.786 0.000 0.584 0.008 NA 0.020
#> SRR1190367     2  0.4960      0.786 0.000 0.584 0.008 NA 0.020
#> SRR1190365     2  0.4960      0.786 0.000 0.584 0.008 NA 0.020
#> SRR1190467     3  0.2284      0.978 0.012 0.032 0.924 NA 0.020
#> SRR1190466     3  0.2284      0.978 0.012 0.032 0.924 NA 0.020
#> SRR1190465     3  0.2284      0.978 0.012 0.032 0.924 NA 0.020
#> SRR1190464     3  0.2284      0.978 0.012 0.032 0.924 NA 0.020
#> SRR1190462     3  0.2284      0.978 0.012 0.032 0.924 NA 0.020
#> SRR1190461     3  0.2284      0.978 0.012 0.032 0.924 NA 0.020
#> SRR1190460     3  0.2284      0.978 0.012 0.032 0.924 NA 0.020
#> SRR1190509     1  0.0162      0.804 0.996 0.000 0.004 NA 0.000
#> SRR1190504     1  0.0162      0.804 0.996 0.000 0.004 NA 0.000
#> SRR1190503     1  0.0162      0.804 0.996 0.000 0.004 NA 0.000
#> SRR1190502     1  0.0162      0.804 0.996 0.000 0.004 NA 0.000
#> SRR1190508     1  0.0162      0.804 0.996 0.000 0.004 NA 0.000
#> SRR1190507     1  0.0162      0.804 0.996 0.000 0.004 NA 0.000
#> SRR1190506     1  0.0162      0.804 0.996 0.000 0.004 NA 0.000
#> SRR1190505     1  0.0162      0.804 0.996 0.000 0.004 NA 0.000
#> SRR1191342     2  0.1386      0.736 0.000 0.952 0.032 NA 0.016
#> SRR1191344     2  0.1386      0.736 0.000 0.952 0.032 NA 0.016
#> SRR1191343     2  0.1386      0.736 0.000 0.952 0.032 NA 0.016
#> SRR1191349     2  0.1386      0.736 0.000 0.952 0.032 NA 0.016
#> SRR1191345     2  0.1386      0.736 0.000 0.952 0.032 NA 0.016
#> SRR1191346     2  0.1386      0.736 0.000 0.952 0.032 NA 0.016
#> SRR1191347     2  0.1386      0.736 0.000 0.952 0.032 NA 0.016
#> SRR1191348     2  0.1386      0.736 0.000 0.952 0.032 NA 0.016
#> SRR1191668     1  0.5406      0.594 0.572 0.000 0.000 NA 0.068
#> SRR1191667     1  0.5406      0.594 0.572 0.000 0.000 NA 0.068
#> SRR1191673     1  0.5406      0.594 0.572 0.000 0.000 NA 0.068
#> SRR1191672     1  0.5406      0.594 0.572 0.000 0.000 NA 0.068
#> SRR1191695     3  0.3013      0.959 0.012 0.032 0.892 NA 0.036
#> SRR1191694     3  0.3013      0.959 0.012 0.032 0.892 NA 0.036
#> SRR1191783     3  0.3013      0.959 0.012 0.032 0.892 NA 0.036
#> SRR1191876     3  0.3013      0.959 0.012 0.032 0.892 NA 0.036
#> SRR1191914     1  0.3876      0.741 0.776 0.000 0.000 NA 0.032
#> SRR1191915     1  0.3876      0.741 0.776 0.000 0.000 NA 0.032
#> SRR1191953     1  0.3876      0.741 0.776 0.000 0.000 NA 0.032
#> SRR1191954     1  0.3876      0.741 0.776 0.000 0.000 NA 0.032
#> SRR1191990     1  0.5845      0.551 0.540 0.000 0.000 NA 0.108
#> SRR1191991     1  0.5845      0.551 0.540 0.000 0.000 NA 0.108
#> SRR1192016     3  0.1281      0.978 0.012 0.032 0.956 NA 0.000
#> SRR1192017     3  0.1281      0.978 0.012 0.032 0.956 NA 0.000
#> SRR1192073     3  0.1281      0.978 0.012 0.032 0.956 NA 0.000
#> SRR1192072     3  0.1281      0.978 0.012 0.032 0.956 NA 0.000
#> SRR1192167     1  0.5406      0.594 0.572 0.000 0.000 NA 0.068
#> SRR1192166     1  0.5406      0.594 0.572 0.000 0.000 NA 0.068
#> SRR1192321     3  0.1281      0.978 0.012 0.032 0.956 NA 0.000
#> SRR1192353     1  0.5433      0.631 0.620 0.000 0.000 NA 0.092
#> SRR1192354     1  0.5433      0.631 0.620 0.000 0.000 NA 0.092
#> SRR1192370     5  0.4560      0.970 0.304 0.000 0.008 NA 0.672
#> SRR1192371     5  0.4560      0.970 0.304 0.000 0.008 NA 0.672
#> SRR1192399     1  0.5613      0.602 0.592 0.000 0.000 NA 0.100
#> SRR1192398     1  0.5613      0.602 0.592 0.000 0.000 NA 0.100
#> SRR1192417     2  0.0794      0.736 0.000 0.972 0.028 NA 0.000
#> SRR1192418     2  0.0794      0.736 0.000 0.972 0.028 NA 0.000
#> SRR1192415     2  0.0794      0.736 0.000 0.972 0.028 NA 0.000
#> SRR1192416     2  0.0794      0.736 0.000 0.972 0.028 NA 0.000
#> SRR1192413     2  0.0794      0.736 0.000 0.972 0.028 NA 0.000
#> SRR1192414     2  0.0794      0.736 0.000 0.972 0.028 NA 0.000
#> SRR1192420     2  0.0794      0.736 0.000 0.972 0.028 NA 0.000
#> SRR1192419     2  0.0794      0.736 0.000 0.972 0.028 NA 0.000
#> SRR1192471     5  0.3857      0.976 0.312 0.000 0.000 NA 0.688
#> SRR1192470     5  0.3857      0.976 0.312 0.000 0.000 NA 0.688
#> SRR1192469     5  0.3857      0.976 0.312 0.000 0.000 NA 0.688
#> SRR1192468     5  0.3857      0.976 0.312 0.000 0.000 NA 0.688
#> SRR1192467     5  0.3857      0.976 0.312 0.000 0.000 NA 0.688
#> SRR1192466     5  0.3857      0.976 0.312 0.000 0.000 NA 0.688
#> SRR1192465     5  0.3857      0.976 0.312 0.000 0.000 NA 0.688
#> SRR1192500     1  0.0324      0.803 0.992 0.000 0.004 NA 0.004
#> SRR1192501     1  0.0324      0.803 0.992 0.000 0.004 NA 0.004
#> SRR1192502     1  0.0324      0.803 0.992 0.000 0.004 NA 0.004
#> SRR1192503     1  0.0324      0.803 0.992 0.000 0.004 NA 0.004
#> SRR1192496     1  0.0324      0.803 0.992 0.000 0.004 NA 0.004
#> SRR1192497     1  0.0324      0.803 0.992 0.000 0.004 NA 0.004
#> SRR1192499     1  0.0324      0.803 0.992 0.000 0.004 NA 0.004
#> SRR1192641     2  0.4219      0.788 0.000 0.584 0.000 NA 0.000
#> SRR1192640     2  0.4219      0.788 0.000 0.584 0.000 NA 0.000
#> SRR1192643     2  0.4219      0.788 0.000 0.584 0.000 NA 0.000
#> SRR1192642     2  0.4219      0.788 0.000 0.584 0.000 NA 0.000
#> SRR1192644     2  0.4219      0.788 0.000 0.584 0.000 NA 0.000
#> SRR1192645     2  0.4219      0.788 0.000 0.584 0.000 NA 0.000
#> SRR1192646     2  0.4219      0.788 0.000 0.584 0.000 NA 0.000
#> SRR1192647     2  0.4219      0.788 0.000 0.584 0.000 NA 0.000
#> SRR1192836     2  0.5965      0.674 0.000 0.596 0.008 NA 0.124
#> SRR1192838     2  0.5984      0.674 0.000 0.596 0.008 NA 0.128
#> SRR1192837     2  0.5965      0.674 0.000 0.596 0.008 NA 0.124
#> SRR1192839     2  0.6002      0.674 0.000 0.596 0.008 NA 0.132
#> SRR1192963     2  0.4219      0.788 0.000 0.584 0.000 NA 0.000
#> SRR1192966     2  0.4219      0.788 0.000 0.584 0.000 NA 0.000
#> SRR1192965     2  0.4219      0.788 0.000 0.584 0.000 NA 0.000
#> SRR1192964     2  0.4219      0.788 0.000 0.584 0.000 NA 0.000
#> SRR1193005     1  0.0324      0.803 0.992 0.000 0.004 NA 0.004
#> SRR1193006     1  0.0324      0.803 0.992 0.000 0.004 NA 0.004
#> SRR1193007     1  0.0324      0.803 0.992 0.000 0.004 NA 0.004
#> SRR1193008     1  0.0324      0.803 0.992 0.000 0.004 NA 0.004
#> SRR1193011     5  0.4385      0.973 0.312 0.000 0.004 NA 0.672
#> SRR1193012     5  0.4385      0.973 0.312 0.000 0.004 NA 0.672
#> SRR1193009     5  0.4385      0.973 0.312 0.000 0.004 NA 0.672
#> SRR1193010     5  0.4385      0.973 0.312 0.000 0.004 NA 0.672
#> SRR1193014     1  0.3876      0.741 0.776 0.000 0.000 NA 0.032
#> SRR1193015     1  0.3876      0.741 0.776 0.000 0.000 NA 0.032
#> SRR1193013     1  0.3876      0.741 0.776 0.000 0.000 NA 0.032
#> SRR1193018     1  0.1701      0.782 0.944 0.000 0.012 NA 0.028
#> SRR1193016     1  0.1701      0.782 0.944 0.000 0.012 NA 0.028
#> SRR1193017     1  0.1701      0.782 0.944 0.000 0.012 NA 0.028
#> SRR1193100     1  0.1701      0.782 0.944 0.000 0.012 NA 0.028
#> SRR1193101     1  0.1701      0.782 0.944 0.000 0.012 NA 0.028
#> SRR1193102     1  0.1701      0.782 0.944 0.000 0.012 NA 0.028
#> SRR1193104     5  0.4755      0.969 0.300 0.000 0.004 NA 0.664
#> SRR1193103     5  0.4755      0.969 0.300 0.000 0.004 NA 0.664
#> SRR1193105     5  0.4873      0.970 0.300 0.000 0.008 NA 0.660
#> SRR1193106     5  0.4873      0.970 0.300 0.000 0.008 NA 0.660
#> SRR1193198     1  0.3876      0.741 0.776 0.000 0.000 NA 0.032
#> SRR1193197     1  0.3876      0.741 0.776 0.000 0.000 NA 0.032
#> SRR1193199     1  0.3876      0.741 0.776 0.000 0.000 NA 0.032
#> SRR1193405     1  0.1701      0.782 0.944 0.000 0.012 NA 0.028
#> SRR1193404     1  0.1701      0.782 0.944 0.000 0.012 NA 0.028
#> SRR1193403     1  0.1701      0.782 0.944 0.000 0.012 NA 0.028
#> SRR1193522     1  0.1518      0.787 0.952 0.000 0.012 NA 0.020
#> SRR1193523     1  0.1518      0.787 0.952 0.000 0.012 NA 0.020
#> SRR1193524     1  0.1518      0.787 0.952 0.000 0.012 NA 0.020
#> SRR1193638     5  0.4829      0.967 0.300 0.000 0.004 NA 0.660
#> SRR1193639     5  0.4829      0.967 0.300 0.000 0.004 NA 0.660
#> SRR1195621     5  0.4829      0.967 0.300 0.000 0.004 NA 0.660
#> SRR1195619     5  0.4829      0.967 0.300 0.000 0.004 NA 0.660
#> SRR1195620     5  0.4829      0.967 0.300 0.000 0.004 NA 0.660

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1190372     2  0.1296      0.855 0.000 0.952 0.004 0.000 0.032 0.012
#> SRR1190371     2  0.1296      0.855 0.000 0.952 0.004 0.000 0.032 0.012
#> SRR1190370     2  0.1296      0.855 0.000 0.952 0.004 0.000 0.032 0.012
#> SRR1190368     2  0.1296      0.855 0.000 0.952 0.004 0.000 0.032 0.012
#> SRR1190369     2  0.1296      0.855 0.000 0.952 0.004 0.000 0.032 0.012
#> SRR1190366     2  0.1296      0.855 0.000 0.952 0.004 0.000 0.032 0.012
#> SRR1190367     2  0.1296      0.855 0.000 0.952 0.004 0.000 0.032 0.012
#> SRR1190365     2  0.1296      0.855 0.000 0.952 0.004 0.000 0.032 0.012
#> SRR1190467     3  0.1980      0.972 0.012 0.016 0.932 0.008 0.020 0.012
#> SRR1190466     3  0.1980      0.972 0.012 0.016 0.932 0.008 0.020 0.012
#> SRR1190465     3  0.1980      0.972 0.012 0.016 0.932 0.008 0.020 0.012
#> SRR1190464     3  0.1980      0.972 0.012 0.016 0.932 0.008 0.020 0.012
#> SRR1190462     3  0.1980      0.972 0.012 0.016 0.932 0.008 0.020 0.012
#> SRR1190461     3  0.1980      0.972 0.012 0.016 0.932 0.008 0.020 0.012
#> SRR1190460     3  0.1980      0.972 0.012 0.016 0.932 0.008 0.020 0.012
#> SRR1190509     1  0.0146      0.729 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1190504     1  0.0146      0.729 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1190503     1  0.0146      0.729 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1190502     1  0.0146      0.729 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1190508     1  0.0146      0.729 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1190507     1  0.0146      0.729 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1190506     1  0.0146      0.729 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1190505     1  0.0146      0.729 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1191342     4  0.5542      0.958 0.000 0.408 0.016 0.512 0.040 0.024
#> SRR1191344     4  0.5542      0.958 0.000 0.408 0.016 0.512 0.040 0.024
#> SRR1191343     4  0.5542      0.958 0.000 0.408 0.016 0.512 0.040 0.024
#> SRR1191349     4  0.5542      0.958 0.000 0.408 0.016 0.512 0.040 0.024
#> SRR1191345     4  0.5542      0.958 0.000 0.408 0.016 0.512 0.040 0.024
#> SRR1191346     4  0.5542      0.958 0.000 0.408 0.016 0.512 0.040 0.024
#> SRR1191347     4  0.5542      0.958 0.000 0.408 0.016 0.512 0.040 0.024
#> SRR1191348     4  0.5542      0.958 0.000 0.408 0.016 0.512 0.040 0.024
#> SRR1191668     6  0.4338      0.905 0.420 0.000 0.000 0.016 0.004 0.560
#> SRR1191667     6  0.4338      0.905 0.420 0.000 0.000 0.016 0.004 0.560
#> SRR1191673     6  0.4039      0.904 0.424 0.000 0.000 0.008 0.000 0.568
#> SRR1191672     6  0.4039      0.904 0.424 0.000 0.000 0.008 0.000 0.568
#> SRR1191695     3  0.2585      0.954 0.012 0.016 0.904 0.012 0.024 0.032
#> SRR1191694     3  0.2585      0.954 0.012 0.016 0.904 0.012 0.024 0.032
#> SRR1191783     3  0.2595      0.954 0.012 0.016 0.904 0.016 0.020 0.032
#> SRR1191876     3  0.2595      0.954 0.012 0.016 0.904 0.016 0.020 0.032
#> SRR1191914     1  0.4022      0.262 0.708 0.000 0.000 0.040 0.000 0.252
#> SRR1191915     1  0.4022      0.262 0.708 0.000 0.000 0.040 0.000 0.252
#> SRR1191953     1  0.4022      0.262 0.708 0.000 0.000 0.040 0.000 0.252
#> SRR1191954     1  0.4022      0.262 0.708 0.000 0.000 0.040 0.000 0.252
#> SRR1191990     6  0.5438      0.858 0.372 0.000 0.000 0.024 0.068 0.536
#> SRR1191991     6  0.5438      0.858 0.372 0.000 0.000 0.024 0.068 0.536
#> SRR1192016     3  0.1078      0.973 0.012 0.016 0.964 0.008 0.000 0.000
#> SRR1192017     3  0.1078      0.973 0.012 0.016 0.964 0.008 0.000 0.000
#> SRR1192073     3  0.1078      0.973 0.012 0.016 0.964 0.008 0.000 0.000
#> SRR1192072     3  0.1078      0.973 0.012 0.016 0.964 0.008 0.000 0.000
#> SRR1192167     6  0.4039      0.904 0.424 0.000 0.000 0.008 0.000 0.568
#> SRR1192166     6  0.4039      0.904 0.424 0.000 0.000 0.008 0.000 0.568
#> SRR1192321     3  0.1078      0.973 0.012 0.016 0.964 0.008 0.000 0.000
#> SRR1192353     1  0.5933     -0.691 0.484 0.000 0.000 0.064 0.060 0.392
#> SRR1192354     1  0.5933     -0.691 0.484 0.000 0.000 0.064 0.060 0.392
#> SRR1192370     5  0.4108      0.927 0.172 0.000 0.000 0.060 0.756 0.012
#> SRR1192371     5  0.4108      0.927 0.172 0.000 0.000 0.060 0.756 0.012
#> SRR1192399     6  0.6088      0.789 0.428 0.000 0.000 0.068 0.068 0.436
#> SRR1192398     6  0.6088      0.789 0.428 0.000 0.000 0.068 0.068 0.436
#> SRR1192417     4  0.4184      0.958 0.000 0.408 0.016 0.576 0.000 0.000
#> SRR1192418     4  0.4184      0.958 0.000 0.408 0.016 0.576 0.000 0.000
#> SRR1192415     4  0.4184      0.958 0.000 0.408 0.016 0.576 0.000 0.000
#> SRR1192416     4  0.4184      0.958 0.000 0.408 0.016 0.576 0.000 0.000
#> SRR1192413     4  0.4184      0.958 0.000 0.408 0.016 0.576 0.000 0.000
#> SRR1192414     4  0.4184      0.958 0.000 0.408 0.016 0.576 0.000 0.000
#> SRR1192420     4  0.4184      0.958 0.000 0.408 0.016 0.576 0.000 0.000
#> SRR1192419     4  0.4184      0.958 0.000 0.408 0.016 0.576 0.000 0.000
#> SRR1192471     5  0.3121      0.933 0.192 0.000 0.000 0.004 0.796 0.008
#> SRR1192470     5  0.3121      0.933 0.192 0.000 0.000 0.004 0.796 0.008
#> SRR1192469     5  0.3121      0.933 0.192 0.000 0.000 0.004 0.796 0.008
#> SRR1192468     5  0.3121      0.933 0.192 0.000 0.000 0.004 0.796 0.008
#> SRR1192467     5  0.3121      0.933 0.192 0.000 0.000 0.004 0.796 0.008
#> SRR1192466     5  0.3121      0.933 0.192 0.000 0.000 0.004 0.796 0.008
#> SRR1192465     5  0.3121      0.933 0.192 0.000 0.000 0.004 0.796 0.008
#> SRR1192500     1  0.0000      0.730 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1192501     1  0.0000      0.730 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1192502     1  0.0000      0.730 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1192503     1  0.0000      0.730 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1192496     1  0.0000      0.730 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1192497     1  0.0000      0.730 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1192499     1  0.0000      0.730 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1192641     2  0.0000      0.863 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192640     2  0.0000      0.863 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192643     2  0.0000      0.863 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192642     2  0.0000      0.863 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192644     2  0.0000      0.863 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192645     2  0.0000      0.863 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192646     2  0.0000      0.863 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192647     2  0.0000      0.863 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192836     2  0.6413      0.214 0.000 0.532 0.008 0.188 0.036 0.236
#> SRR1192838     2  0.6413      0.214 0.000 0.532 0.008 0.188 0.036 0.236
#> SRR1192837     2  0.6453      0.213 0.000 0.532 0.008 0.188 0.040 0.232
#> SRR1192839     2  0.6413      0.214 0.000 0.532 0.008 0.188 0.036 0.236
#> SRR1192963     2  0.0551      0.859 0.000 0.984 0.008 0.000 0.004 0.004
#> SRR1192966     2  0.0551      0.859 0.000 0.984 0.008 0.000 0.004 0.004
#> SRR1192965     2  0.0551      0.859 0.000 0.984 0.008 0.000 0.004 0.004
#> SRR1192964     2  0.0551      0.859 0.000 0.984 0.008 0.000 0.004 0.004
#> SRR1193005     1  0.0000      0.730 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1193006     1  0.0000      0.730 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1193007     1  0.0000      0.730 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1193008     1  0.0000      0.730 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1193011     5  0.3253      0.931 0.192 0.000 0.000 0.020 0.788 0.000
#> SRR1193012     5  0.3253      0.931 0.192 0.000 0.000 0.020 0.788 0.000
#> SRR1193009     5  0.3253      0.931 0.192 0.000 0.000 0.020 0.788 0.000
#> SRR1193010     5  0.3253      0.931 0.192 0.000 0.000 0.020 0.788 0.000
#> SRR1193014     1  0.4022      0.262 0.708 0.000 0.000 0.040 0.000 0.252
#> SRR1193015     1  0.4022      0.262 0.708 0.000 0.000 0.040 0.000 0.252
#> SRR1193013     1  0.4022      0.262 0.708 0.000 0.000 0.040 0.000 0.252
#> SRR1193018     1  0.3735      0.648 0.800 0.000 0.004 0.144 0.024 0.028
#> SRR1193016     1  0.3735      0.648 0.800 0.000 0.004 0.144 0.024 0.028
#> SRR1193017     1  0.3735      0.648 0.800 0.000 0.004 0.144 0.024 0.028
#> SRR1193100     1  0.3735      0.648 0.800 0.000 0.004 0.144 0.024 0.028
#> SRR1193101     1  0.3735      0.648 0.800 0.000 0.004 0.144 0.024 0.028
#> SRR1193102     1  0.3735      0.648 0.800 0.000 0.004 0.144 0.024 0.028
#> SRR1193104     5  0.4844      0.920 0.176 0.000 0.000 0.068 0.712 0.044
#> SRR1193103     5  0.4844      0.920 0.176 0.000 0.000 0.068 0.712 0.044
#> SRR1193105     5  0.4727      0.923 0.176 0.000 0.000 0.064 0.720 0.040
#> SRR1193106     5  0.4727      0.923 0.176 0.000 0.000 0.064 0.720 0.040
#> SRR1193198     1  0.4022      0.262 0.708 0.000 0.000 0.040 0.000 0.252
#> SRR1193197     1  0.4022      0.262 0.708 0.000 0.000 0.040 0.000 0.252
#> SRR1193199     1  0.4022      0.262 0.708 0.000 0.000 0.040 0.000 0.252
#> SRR1193405     1  0.3586      0.647 0.796 0.000 0.000 0.160 0.024 0.020
#> SRR1193404     1  0.3586      0.647 0.796 0.000 0.000 0.160 0.024 0.020
#> SRR1193403     1  0.3586      0.647 0.796 0.000 0.000 0.160 0.024 0.020
#> SRR1193522     1  0.3457      0.652 0.800 0.000 0.000 0.164 0.016 0.020
#> SRR1193523     1  0.3457      0.652 0.800 0.000 0.000 0.164 0.016 0.020
#> SRR1193524     1  0.3457      0.652 0.800 0.000 0.000 0.164 0.016 0.020
#> SRR1193638     5  0.5420      0.907 0.176 0.000 0.004 0.076 0.676 0.068
#> SRR1193639     5  0.5420      0.907 0.176 0.000 0.004 0.076 0.676 0.068
#> SRR1195621     5  0.5410      0.908 0.176 0.000 0.004 0.084 0.676 0.060
#> SRR1195619     5  0.5410      0.908 0.176 0.000 0.004 0.084 0.676 0.060
#> SRR1195620     5  0.5410      0.908 0.176 0.000 0.004 0.084 0.676 0.060

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15363 rows and 131 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.4938 0.507   0.507
#> 3 3 1.000           0.995       0.995         0.2284 0.865   0.739
#> 4 4 0.956           0.858       0.924         0.1848 0.834   0.595
#> 5 5 0.911           0.932       0.956         0.0593 0.965   0.872
#> 6 6 0.892           0.908       0.917         0.0510 0.949   0.791

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2 3 4

There is also optional best \(k\) = 2 3 4 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1190372     2       0          1  0  1
#> SRR1190371     2       0          1  0  1
#> SRR1190370     2       0          1  0  1
#> SRR1190368     2       0          1  0  1
#> SRR1190369     2       0          1  0  1
#> SRR1190366     2       0          1  0  1
#> SRR1190367     2       0          1  0  1
#> SRR1190365     2       0          1  0  1
#> SRR1190467     2       0          1  0  1
#> SRR1190466     2       0          1  0  1
#> SRR1190465     2       0          1  0  1
#> SRR1190464     2       0          1  0  1
#> SRR1190462     2       0          1  0  1
#> SRR1190461     2       0          1  0  1
#> SRR1190460     2       0          1  0  1
#> SRR1190509     1       0          1  1  0
#> SRR1190504     1       0          1  1  0
#> SRR1190503     1       0          1  1  0
#> SRR1190502     1       0          1  1  0
#> SRR1190508     1       0          1  1  0
#> SRR1190507     1       0          1  1  0
#> SRR1190506     1       0          1  1  0
#> SRR1190505     1       0          1  1  0
#> SRR1191342     2       0          1  0  1
#> SRR1191344     2       0          1  0  1
#> SRR1191343     2       0          1  0  1
#> SRR1191349     2       0          1  0  1
#> SRR1191345     2       0          1  0  1
#> SRR1191346     2       0          1  0  1
#> SRR1191347     2       0          1  0  1
#> SRR1191348     2       0          1  0  1
#> SRR1191668     1       0          1  1  0
#> SRR1191667     1       0          1  1  0
#> SRR1191673     1       0          1  1  0
#> SRR1191672     1       0          1  1  0
#> SRR1191695     2       0          1  0  1
#> SRR1191694     2       0          1  0  1
#> SRR1191783     2       0          1  0  1
#> SRR1191876     2       0          1  0  1
#> SRR1191914     1       0          1  1  0
#> SRR1191915     1       0          1  1  0
#> SRR1191953     1       0          1  1  0
#> SRR1191954     1       0          1  1  0
#> SRR1191990     1       0          1  1  0
#> SRR1191991     1       0          1  1  0
#> SRR1192016     2       0          1  0  1
#> SRR1192017     2       0          1  0  1
#> SRR1192073     2       0          1  0  1
#> SRR1192072     2       0          1  0  1
#> SRR1192167     1       0          1  1  0
#> SRR1192166     1       0          1  1  0
#> SRR1192321     2       0          1  0  1
#> SRR1192353     1       0          1  1  0
#> SRR1192354     1       0          1  1  0
#> SRR1192370     1       0          1  1  0
#> SRR1192371     1       0          1  1  0
#> SRR1192399     1       0          1  1  0
#> SRR1192398     1       0          1  1  0
#> SRR1192417     2       0          1  0  1
#> SRR1192418     2       0          1  0  1
#> SRR1192415     2       0          1  0  1
#> SRR1192416     2       0          1  0  1
#> SRR1192413     2       0          1  0  1
#> SRR1192414     2       0          1  0  1
#> SRR1192420     2       0          1  0  1
#> SRR1192419     2       0          1  0  1
#> SRR1192471     1       0          1  1  0
#> SRR1192470     1       0          1  1  0
#> SRR1192469     1       0          1  1  0
#> SRR1192468     1       0          1  1  0
#> SRR1192467     1       0          1  1  0
#> SRR1192466     1       0          1  1  0
#> SRR1192465     1       0          1  1  0
#> SRR1192500     1       0          1  1  0
#> SRR1192501     1       0          1  1  0
#> SRR1192502     1       0          1  1  0
#> SRR1192503     1       0          1  1  0
#> SRR1192496     1       0          1  1  0
#> SRR1192497     1       0          1  1  0
#> SRR1192499     1       0          1  1  0
#> SRR1192641     2       0          1  0  1
#> SRR1192640     2       0          1  0  1
#> SRR1192643     2       0          1  0  1
#> SRR1192642     2       0          1  0  1
#> SRR1192644     2       0          1  0  1
#> SRR1192645     2       0          1  0  1
#> SRR1192646     2       0          1  0  1
#> SRR1192647     2       0          1  0  1
#> SRR1192836     2       0          1  0  1
#> SRR1192838     2       0          1  0  1
#> SRR1192837     2       0          1  0  1
#> SRR1192839     2       0          1  0  1
#> SRR1192963     2       0          1  0  1
#> SRR1192966     2       0          1  0  1
#> SRR1192965     2       0          1  0  1
#> SRR1192964     2       0          1  0  1
#> SRR1193005     1       0          1  1  0
#> SRR1193006     1       0          1  1  0
#> SRR1193007     1       0          1  1  0
#> SRR1193008     1       0          1  1  0
#> SRR1193011     1       0          1  1  0
#> SRR1193012     1       0          1  1  0
#> SRR1193009     1       0          1  1  0
#> SRR1193010     1       0          1  1  0
#> SRR1193014     1       0          1  1  0
#> SRR1193015     1       0          1  1  0
#> SRR1193013     1       0          1  1  0
#> SRR1193018     1       0          1  1  0
#> SRR1193016     1       0          1  1  0
#> SRR1193017     1       0          1  1  0
#> SRR1193100     1       0          1  1  0
#> SRR1193101     1       0          1  1  0
#> SRR1193102     1       0          1  1  0
#> SRR1193104     1       0          1  1  0
#> SRR1193103     1       0          1  1  0
#> SRR1193105     1       0          1  1  0
#> SRR1193106     1       0          1  1  0
#> SRR1193198     1       0          1  1  0
#> SRR1193197     1       0          1  1  0
#> SRR1193199     1       0          1  1  0
#> SRR1193405     1       0          1  1  0
#> SRR1193404     1       0          1  1  0
#> SRR1193403     1       0          1  1  0
#> SRR1193522     1       0          1  1  0
#> SRR1193523     1       0          1  1  0
#> SRR1193524     1       0          1  1  0
#> SRR1193638     1       0          1  1  0
#> SRR1193639     1       0          1  1  0
#> SRR1195621     1       0          1  1  0
#> SRR1195619     1       0          1  1  0
#> SRR1195620     1       0          1  1  0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1190372     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1190371     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1190370     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1190368     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1190369     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1190366     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1190367     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1190365     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1190467     3  0.0747      0.994 0.000 0.016 0.984
#> SRR1190466     3  0.0747      0.994 0.000 0.016 0.984
#> SRR1190465     3  0.0747      0.994 0.000 0.016 0.984
#> SRR1190464     3  0.0747      0.994 0.000 0.016 0.984
#> SRR1190462     3  0.0747      0.994 0.000 0.016 0.984
#> SRR1190461     3  0.0747      0.994 0.000 0.016 0.984
#> SRR1190460     3  0.0747      0.994 0.000 0.016 0.984
#> SRR1190509     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1190504     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1190503     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1190502     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1190508     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1190507     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1190506     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1190505     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1191342     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1191344     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1191343     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1191349     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1191345     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1191346     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1191347     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1191348     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1191668     3  0.0747      0.984 0.016 0.000 0.984
#> SRR1191667     3  0.0747      0.984 0.016 0.000 0.984
#> SRR1191673     3  0.0747      0.984 0.016 0.000 0.984
#> SRR1191672     3  0.0747      0.984 0.016 0.000 0.984
#> SRR1191695     3  0.0747      0.994 0.000 0.016 0.984
#> SRR1191694     3  0.0747      0.994 0.000 0.016 0.984
#> SRR1191783     3  0.0747      0.994 0.000 0.016 0.984
#> SRR1191876     3  0.0747      0.994 0.000 0.016 0.984
#> SRR1191914     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1191915     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1191953     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1191954     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1191990     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1191991     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1192016     3  0.0747      0.994 0.000 0.016 0.984
#> SRR1192017     3  0.0747      0.994 0.000 0.016 0.984
#> SRR1192073     3  0.0747      0.994 0.000 0.016 0.984
#> SRR1192072     3  0.0747      0.994 0.000 0.016 0.984
#> SRR1192167     3  0.0747      0.984 0.016 0.000 0.984
#> SRR1192166     3  0.0747      0.984 0.016 0.000 0.984
#> SRR1192321     3  0.0747      0.994 0.000 0.016 0.984
#> SRR1192353     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1192354     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1192370     1  0.0747      0.990 0.984 0.000 0.016
#> SRR1192371     1  0.0747      0.990 0.984 0.000 0.016
#> SRR1192399     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1192398     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1192417     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192418     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192415     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192416     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192413     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192414     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192420     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192419     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192471     1  0.0747      0.990 0.984 0.000 0.016
#> SRR1192470     1  0.0747      0.990 0.984 0.000 0.016
#> SRR1192469     1  0.0747      0.990 0.984 0.000 0.016
#> SRR1192468     1  0.0747      0.990 0.984 0.000 0.016
#> SRR1192467     1  0.0747      0.990 0.984 0.000 0.016
#> SRR1192466     1  0.0747      0.990 0.984 0.000 0.016
#> SRR1192465     1  0.0747      0.990 0.984 0.000 0.016
#> SRR1192500     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1192501     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1192502     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1192503     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1192496     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1192497     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1192499     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1192641     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192640     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192643     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192642     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192644     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192645     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192646     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192647     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192836     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192838     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192837     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192839     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192963     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192966     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192965     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1192964     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1193005     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1193006     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1193007     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1193008     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1193011     1  0.0747      0.990 0.984 0.000 0.016
#> SRR1193012     1  0.0747      0.990 0.984 0.000 0.016
#> SRR1193009     1  0.0747      0.990 0.984 0.000 0.016
#> SRR1193010     1  0.0747      0.990 0.984 0.000 0.016
#> SRR1193014     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1193015     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1193013     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1193018     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1193016     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1193017     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1193100     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1193101     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1193102     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1193104     1  0.0747      0.990 0.984 0.000 0.016
#> SRR1193103     1  0.0747      0.990 0.984 0.000 0.016
#> SRR1193105     1  0.0747      0.990 0.984 0.000 0.016
#> SRR1193106     1  0.0747      0.990 0.984 0.000 0.016
#> SRR1193198     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1193197     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1193199     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1193405     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1193404     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1193403     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1193522     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1193523     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1193524     1  0.0000      0.995 1.000 0.000 0.000
#> SRR1193638     1  0.0747      0.990 0.984 0.000 0.016
#> SRR1193639     1  0.0747      0.990 0.984 0.000 0.016
#> SRR1195621     1  0.0747      0.990 0.984 0.000 0.016
#> SRR1195619     1  0.0747      0.990 0.984 0.000 0.016
#> SRR1195620     1  0.0747      0.990 0.984 0.000 0.016

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1190372     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1190371     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1190370     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1190368     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1190369     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1190366     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1190367     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1190365     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1190467     3  0.4996      0.638 0.484 0.000 0.516 0.000
#> SRR1190466     3  0.4996      0.638 0.484 0.000 0.516 0.000
#> SRR1190465     3  0.4996      0.638 0.484 0.000 0.516 0.000
#> SRR1190464     3  0.4996      0.638 0.484 0.000 0.516 0.000
#> SRR1190462     3  0.4996      0.638 0.484 0.000 0.516 0.000
#> SRR1190461     3  0.4996      0.638 0.484 0.000 0.516 0.000
#> SRR1190460     3  0.4996      0.638 0.484 0.000 0.516 0.000
#> SRR1190509     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1190504     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1190503     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1190502     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1190508     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1190507     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1190506     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1190505     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1191342     2  0.0336      0.996 0.008 0.992 0.000 0.000
#> SRR1191344     2  0.0336      0.996 0.008 0.992 0.000 0.000
#> SRR1191343     2  0.0336      0.996 0.008 0.992 0.000 0.000
#> SRR1191349     2  0.0336      0.996 0.008 0.992 0.000 0.000
#> SRR1191345     2  0.0336      0.996 0.008 0.992 0.000 0.000
#> SRR1191346     2  0.0336      0.996 0.008 0.992 0.000 0.000
#> SRR1191347     2  0.0336      0.996 0.008 0.992 0.000 0.000
#> SRR1191348     2  0.0336      0.996 0.008 0.992 0.000 0.000
#> SRR1191668     3  0.0000      0.293 0.000 0.000 1.000 0.000
#> SRR1191667     3  0.0000      0.293 0.000 0.000 1.000 0.000
#> SRR1191673     3  0.0000      0.293 0.000 0.000 1.000 0.000
#> SRR1191672     3  0.0000      0.293 0.000 0.000 1.000 0.000
#> SRR1191695     3  0.4996      0.638 0.484 0.000 0.516 0.000
#> SRR1191694     3  0.4996      0.638 0.484 0.000 0.516 0.000
#> SRR1191783     3  0.4996      0.638 0.484 0.000 0.516 0.000
#> SRR1191876     3  0.4996      0.638 0.484 0.000 0.516 0.000
#> SRR1191914     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1191915     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1191953     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1191954     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1191990     3  0.7366     -0.372 0.172 0.000 0.484 0.344
#> SRR1191991     3  0.7366     -0.372 0.172 0.000 0.484 0.344
#> SRR1192016     3  0.4996      0.638 0.484 0.000 0.516 0.000
#> SRR1192017     3  0.4996      0.638 0.484 0.000 0.516 0.000
#> SRR1192073     3  0.4996      0.638 0.484 0.000 0.516 0.000
#> SRR1192072     3  0.4996      0.638 0.484 0.000 0.516 0.000
#> SRR1192167     3  0.0000      0.293 0.000 0.000 1.000 0.000
#> SRR1192166     3  0.0000      0.293 0.000 0.000 1.000 0.000
#> SRR1192321     3  0.4996      0.638 0.484 0.000 0.516 0.000
#> SRR1192353     3  0.7544     -0.455 0.196 0.000 0.452 0.352
#> SRR1192354     3  0.7544     -0.455 0.196 0.000 0.452 0.352
#> SRR1192370     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192371     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192399     3  0.7400     -0.390 0.172 0.000 0.468 0.360
#> SRR1192398     3  0.7400     -0.390 0.172 0.000 0.468 0.360
#> SRR1192417     2  0.0336      0.996 0.008 0.992 0.000 0.000
#> SRR1192418     2  0.0336      0.996 0.008 0.992 0.000 0.000
#> SRR1192415     2  0.0336      0.996 0.008 0.992 0.000 0.000
#> SRR1192416     2  0.0336      0.996 0.008 0.992 0.000 0.000
#> SRR1192413     2  0.0336      0.996 0.008 0.992 0.000 0.000
#> SRR1192414     2  0.0336      0.996 0.008 0.992 0.000 0.000
#> SRR1192420     2  0.0336      0.996 0.008 0.992 0.000 0.000
#> SRR1192419     2  0.0336      0.996 0.008 0.992 0.000 0.000
#> SRR1192471     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192470     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192469     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192468     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192467     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192466     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192465     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1192500     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1192501     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1192502     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1192503     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1192496     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1192497     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1192499     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1192641     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1192640     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1192643     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1192642     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1192644     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1192645     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1192646     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1192647     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1192836     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1192838     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1192837     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1192839     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1192963     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1192966     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1192965     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1192964     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1193005     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1193006     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1193007     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1193008     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1193011     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1193012     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1193009     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1193010     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1193014     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1193015     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1193013     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1193018     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1193016     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1193017     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1193100     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1193101     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1193102     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1193104     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1193103     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1193105     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1193106     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1193198     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1193197     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1193199     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1193405     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1193404     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1193403     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1193522     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1193523     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1193524     1  0.6000      1.000 0.508 0.000 0.452 0.040
#> SRR1193638     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1193639     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1195621     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1195619     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1195620     4  0.0000      1.000 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1190372     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1190371     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1190370     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1190368     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1190369     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1190366     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1190367     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1190365     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1190467     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1190466     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1190465     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1190464     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1190462     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1190461     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1190460     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1190509     1  0.0000      0.936 1.000 0.000 0.000 0.000 0.000
#> SRR1190504     1  0.0000      0.936 1.000 0.000 0.000 0.000 0.000
#> SRR1190503     1  0.0000      0.936 1.000 0.000 0.000 0.000 0.000
#> SRR1190502     1  0.0000      0.936 1.000 0.000 0.000 0.000 0.000
#> SRR1190508     1  0.0000      0.936 1.000 0.000 0.000 0.000 0.000
#> SRR1190507     1  0.0000      0.936 1.000 0.000 0.000 0.000 0.000
#> SRR1190506     1  0.0000      0.936 1.000 0.000 0.000 0.000 0.000
#> SRR1190505     1  0.0000      0.936 1.000 0.000 0.000 0.000 0.000
#> SRR1191342     2  0.2293      0.944 0.000 0.900 0.000 0.084 0.016
#> SRR1191344     2  0.2293      0.944 0.000 0.900 0.000 0.084 0.016
#> SRR1191343     2  0.2293      0.944 0.000 0.900 0.000 0.084 0.016
#> SRR1191349     2  0.2293      0.944 0.000 0.900 0.000 0.084 0.016
#> SRR1191345     2  0.2293      0.944 0.000 0.900 0.000 0.084 0.016
#> SRR1191346     2  0.2293      0.944 0.000 0.900 0.000 0.084 0.016
#> SRR1191347     2  0.2293      0.944 0.000 0.900 0.000 0.084 0.016
#> SRR1191348     2  0.2293      0.944 0.000 0.900 0.000 0.084 0.016
#> SRR1191668     4  0.2069      0.880 0.012 0.000 0.076 0.912 0.000
#> SRR1191667     4  0.2069      0.880 0.012 0.000 0.076 0.912 0.000
#> SRR1191673     4  0.2069      0.880 0.012 0.000 0.076 0.912 0.000
#> SRR1191672     4  0.2069      0.880 0.012 0.000 0.076 0.912 0.000
#> SRR1191695     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191694     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191783     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191876     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191914     1  0.2471      0.848 0.864 0.000 0.000 0.136 0.000
#> SRR1191915     1  0.2471      0.848 0.864 0.000 0.000 0.136 0.000
#> SRR1191953     1  0.2471      0.848 0.864 0.000 0.000 0.136 0.000
#> SRR1191954     1  0.2471      0.848 0.864 0.000 0.000 0.136 0.000
#> SRR1191990     4  0.2193      0.852 0.028 0.000 0.000 0.912 0.060
#> SRR1191991     4  0.2193      0.852 0.028 0.000 0.000 0.912 0.060
#> SRR1192016     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1192017     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1192073     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1192072     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1192167     4  0.2069      0.880 0.012 0.000 0.076 0.912 0.000
#> SRR1192166     4  0.2069      0.880 0.012 0.000 0.076 0.912 0.000
#> SRR1192321     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1192353     1  0.5267      0.116 0.524 0.000 0.000 0.428 0.048
#> SRR1192354     1  0.5267      0.116 0.524 0.000 0.000 0.428 0.048
#> SRR1192370     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1192371     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1192399     4  0.4946      0.612 0.276 0.000 0.000 0.664 0.060
#> SRR1192398     4  0.4946      0.612 0.276 0.000 0.000 0.664 0.060
#> SRR1192417     2  0.2293      0.944 0.000 0.900 0.000 0.084 0.016
#> SRR1192418     2  0.2293      0.944 0.000 0.900 0.000 0.084 0.016
#> SRR1192415     2  0.2293      0.944 0.000 0.900 0.000 0.084 0.016
#> SRR1192416     2  0.2293      0.944 0.000 0.900 0.000 0.084 0.016
#> SRR1192413     2  0.2293      0.944 0.000 0.900 0.000 0.084 0.016
#> SRR1192414     2  0.2293      0.944 0.000 0.900 0.000 0.084 0.016
#> SRR1192420     2  0.2293      0.944 0.000 0.900 0.000 0.084 0.016
#> SRR1192419     2  0.2293      0.944 0.000 0.900 0.000 0.084 0.016
#> SRR1192471     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1192470     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1192469     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1192468     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1192467     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1192466     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1192465     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1192500     1  0.0000      0.936 1.000 0.000 0.000 0.000 0.000
#> SRR1192501     1  0.0000      0.936 1.000 0.000 0.000 0.000 0.000
#> SRR1192502     1  0.0000      0.936 1.000 0.000 0.000 0.000 0.000
#> SRR1192503     1  0.0000      0.936 1.000 0.000 0.000 0.000 0.000
#> SRR1192496     1  0.0000      0.936 1.000 0.000 0.000 0.000 0.000
#> SRR1192497     1  0.0000      0.936 1.000 0.000 0.000 0.000 0.000
#> SRR1192499     1  0.0000      0.936 1.000 0.000 0.000 0.000 0.000
#> SRR1192641     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1192640     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1192643     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1192642     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1192644     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1192645     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1192646     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1192647     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1192836     2  0.0290      0.961 0.000 0.992 0.000 0.008 0.000
#> SRR1192838     2  0.0290      0.961 0.000 0.992 0.000 0.008 0.000
#> SRR1192837     2  0.0290      0.961 0.000 0.992 0.000 0.008 0.000
#> SRR1192839     2  0.0290      0.961 0.000 0.992 0.000 0.008 0.000
#> SRR1192963     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1192966     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1192965     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1192964     2  0.0000      0.962 0.000 1.000 0.000 0.000 0.000
#> SRR1193005     1  0.0000      0.936 1.000 0.000 0.000 0.000 0.000
#> SRR1193006     1  0.0000      0.936 1.000 0.000 0.000 0.000 0.000
#> SRR1193007     1  0.0000      0.936 1.000 0.000 0.000 0.000 0.000
#> SRR1193008     1  0.0000      0.936 1.000 0.000 0.000 0.000 0.000
#> SRR1193011     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1193012     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1193009     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1193010     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1193014     1  0.2471      0.848 0.864 0.000 0.000 0.136 0.000
#> SRR1193015     1  0.2471      0.848 0.864 0.000 0.000 0.136 0.000
#> SRR1193013     1  0.2471      0.848 0.864 0.000 0.000 0.136 0.000
#> SRR1193018     1  0.0162      0.935 0.996 0.000 0.000 0.004 0.000
#> SRR1193016     1  0.0162      0.935 0.996 0.000 0.000 0.004 0.000
#> SRR1193017     1  0.0162      0.935 0.996 0.000 0.000 0.004 0.000
#> SRR1193100     1  0.0162      0.935 0.996 0.000 0.000 0.004 0.000
#> SRR1193101     1  0.0162      0.935 0.996 0.000 0.000 0.004 0.000
#> SRR1193102     1  0.0162      0.935 0.996 0.000 0.000 0.004 0.000
#> SRR1193104     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1193103     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1193105     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1193106     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1193198     1  0.2471      0.848 0.864 0.000 0.000 0.136 0.000
#> SRR1193197     1  0.2471      0.848 0.864 0.000 0.000 0.136 0.000
#> SRR1193199     1  0.2471      0.848 0.864 0.000 0.000 0.136 0.000
#> SRR1193405     1  0.0162      0.935 0.996 0.000 0.000 0.004 0.000
#> SRR1193404     1  0.0162      0.935 0.996 0.000 0.000 0.004 0.000
#> SRR1193403     1  0.0162      0.935 0.996 0.000 0.000 0.004 0.000
#> SRR1193522     1  0.0162      0.935 0.996 0.000 0.000 0.004 0.000
#> SRR1193523     1  0.0162      0.935 0.996 0.000 0.000 0.004 0.000
#> SRR1193524     1  0.0162      0.935 0.996 0.000 0.000 0.004 0.000
#> SRR1193638     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1193639     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1195621     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1195619     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1195620     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1190372     2  0.2260     0.9513 0.000 0.860 0.000 0.140 0.000 0.000
#> SRR1190371     2  0.2260     0.9513 0.000 0.860 0.000 0.140 0.000 0.000
#> SRR1190370     2  0.2260     0.9513 0.000 0.860 0.000 0.140 0.000 0.000
#> SRR1190368     2  0.2260     0.9513 0.000 0.860 0.000 0.140 0.000 0.000
#> SRR1190369     2  0.2260     0.9513 0.000 0.860 0.000 0.140 0.000 0.000
#> SRR1190366     2  0.2260     0.9513 0.000 0.860 0.000 0.140 0.000 0.000
#> SRR1190367     2  0.2260     0.9513 0.000 0.860 0.000 0.140 0.000 0.000
#> SRR1190365     2  0.2260     0.9513 0.000 0.860 0.000 0.140 0.000 0.000
#> SRR1190467     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190466     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190465     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190464     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190462     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190461     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190460     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190509     1  0.0632     0.9058 0.976 0.000 0.000 0.024 0.000 0.000
#> SRR1190504     1  0.0632     0.9058 0.976 0.000 0.000 0.024 0.000 0.000
#> SRR1190503     1  0.0632     0.9058 0.976 0.000 0.000 0.024 0.000 0.000
#> SRR1190502     1  0.0632     0.9058 0.976 0.000 0.000 0.024 0.000 0.000
#> SRR1190508     1  0.0632     0.9058 0.976 0.000 0.000 0.024 0.000 0.000
#> SRR1190507     1  0.0632     0.9058 0.976 0.000 0.000 0.024 0.000 0.000
#> SRR1190506     1  0.0632     0.9058 0.976 0.000 0.000 0.024 0.000 0.000
#> SRR1190505     1  0.0632     0.9058 0.976 0.000 0.000 0.024 0.000 0.000
#> SRR1191342     4  0.2260     1.0000 0.000 0.140 0.000 0.860 0.000 0.000
#> SRR1191344     4  0.2260     1.0000 0.000 0.140 0.000 0.860 0.000 0.000
#> SRR1191343     4  0.2260     1.0000 0.000 0.140 0.000 0.860 0.000 0.000
#> SRR1191349     4  0.2260     1.0000 0.000 0.140 0.000 0.860 0.000 0.000
#> SRR1191345     4  0.2260     1.0000 0.000 0.140 0.000 0.860 0.000 0.000
#> SRR1191346     4  0.2260     1.0000 0.000 0.140 0.000 0.860 0.000 0.000
#> SRR1191347     4  0.2260     1.0000 0.000 0.140 0.000 0.860 0.000 0.000
#> SRR1191348     4  0.2260     1.0000 0.000 0.140 0.000 0.860 0.000 0.000
#> SRR1191668     6  0.2630     0.8141 0.004 0.000 0.032 0.092 0.000 0.872
#> SRR1191667     6  0.2630     0.8141 0.004 0.000 0.032 0.092 0.000 0.872
#> SRR1191673     6  0.2630     0.8141 0.004 0.000 0.032 0.092 0.000 0.872
#> SRR1191672     6  0.2630     0.8141 0.004 0.000 0.032 0.092 0.000 0.872
#> SRR1191695     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1191694     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1191783     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1191876     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1191914     1  0.2969     0.7351 0.776 0.000 0.000 0.000 0.000 0.224
#> SRR1191915     1  0.2969     0.7351 0.776 0.000 0.000 0.000 0.000 0.224
#> SRR1191953     1  0.2969     0.7351 0.776 0.000 0.000 0.000 0.000 0.224
#> SRR1191954     1  0.2969     0.7351 0.776 0.000 0.000 0.000 0.000 0.224
#> SRR1191990     6  0.1251     0.7932 0.012 0.000 0.000 0.008 0.024 0.956
#> SRR1191991     6  0.1251     0.7932 0.012 0.000 0.000 0.008 0.024 0.956
#> SRR1192016     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192017     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192073     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192072     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192167     6  0.2630     0.8141 0.004 0.000 0.032 0.092 0.000 0.872
#> SRR1192166     6  0.2630     0.8141 0.004 0.000 0.032 0.092 0.000 0.872
#> SRR1192321     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192353     6  0.4636    -0.0759 0.484 0.000 0.000 0.008 0.024 0.484
#> SRR1192354     1  0.4636    -0.0396 0.484 0.000 0.000 0.008 0.024 0.484
#> SRR1192370     5  0.0146     1.0000 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1192371     5  0.0146     1.0000 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1192399     6  0.4012     0.5993 0.256 0.000 0.000 0.008 0.024 0.712
#> SRR1192398     6  0.4012     0.5993 0.256 0.000 0.000 0.008 0.024 0.712
#> SRR1192417     4  0.2260     1.0000 0.000 0.140 0.000 0.860 0.000 0.000
#> SRR1192418     4  0.2260     1.0000 0.000 0.140 0.000 0.860 0.000 0.000
#> SRR1192415     4  0.2260     1.0000 0.000 0.140 0.000 0.860 0.000 0.000
#> SRR1192416     4  0.2260     1.0000 0.000 0.140 0.000 0.860 0.000 0.000
#> SRR1192413     4  0.2260     1.0000 0.000 0.140 0.000 0.860 0.000 0.000
#> SRR1192414     4  0.2260     1.0000 0.000 0.140 0.000 0.860 0.000 0.000
#> SRR1192420     4  0.2260     1.0000 0.000 0.140 0.000 0.860 0.000 0.000
#> SRR1192419     4  0.2260     1.0000 0.000 0.140 0.000 0.860 0.000 0.000
#> SRR1192471     5  0.0146     1.0000 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1192470     5  0.0146     1.0000 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1192469     5  0.0146     1.0000 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1192468     5  0.0146     1.0000 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1192467     5  0.0146     1.0000 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1192466     5  0.0146     1.0000 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1192465     5  0.0146     1.0000 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1192500     1  0.0632     0.9058 0.976 0.000 0.000 0.024 0.000 0.000
#> SRR1192501     1  0.0632     0.9058 0.976 0.000 0.000 0.024 0.000 0.000
#> SRR1192502     1  0.0632     0.9058 0.976 0.000 0.000 0.024 0.000 0.000
#> SRR1192503     1  0.0632     0.9058 0.976 0.000 0.000 0.024 0.000 0.000
#> SRR1192496     1  0.0632     0.9058 0.976 0.000 0.000 0.024 0.000 0.000
#> SRR1192497     1  0.0632     0.9058 0.976 0.000 0.000 0.024 0.000 0.000
#> SRR1192499     1  0.0632     0.9058 0.976 0.000 0.000 0.024 0.000 0.000
#> SRR1192641     2  0.2260     0.9513 0.000 0.860 0.000 0.140 0.000 0.000
#> SRR1192640     2  0.2260     0.9513 0.000 0.860 0.000 0.140 0.000 0.000
#> SRR1192643     2  0.2260     0.9513 0.000 0.860 0.000 0.140 0.000 0.000
#> SRR1192642     2  0.2260     0.9513 0.000 0.860 0.000 0.140 0.000 0.000
#> SRR1192644     2  0.2260     0.9513 0.000 0.860 0.000 0.140 0.000 0.000
#> SRR1192645     2  0.2260     0.9513 0.000 0.860 0.000 0.140 0.000 0.000
#> SRR1192646     2  0.2260     0.9513 0.000 0.860 0.000 0.140 0.000 0.000
#> SRR1192647     2  0.2260     0.9513 0.000 0.860 0.000 0.140 0.000 0.000
#> SRR1192836     2  0.2380     0.7367 0.000 0.892 0.000 0.068 0.004 0.036
#> SRR1192838     2  0.2380     0.7367 0.000 0.892 0.000 0.068 0.004 0.036
#> SRR1192837     2  0.2380     0.7367 0.000 0.892 0.000 0.068 0.004 0.036
#> SRR1192839     2  0.2380     0.7367 0.000 0.892 0.000 0.068 0.004 0.036
#> SRR1192963     2  0.2260     0.9513 0.000 0.860 0.000 0.140 0.000 0.000
#> SRR1192966     2  0.2260     0.9513 0.000 0.860 0.000 0.140 0.000 0.000
#> SRR1192965     2  0.2260     0.9513 0.000 0.860 0.000 0.140 0.000 0.000
#> SRR1192964     2  0.2260     0.9513 0.000 0.860 0.000 0.140 0.000 0.000
#> SRR1193005     1  0.0632     0.9058 0.976 0.000 0.000 0.024 0.000 0.000
#> SRR1193006     1  0.0632     0.9058 0.976 0.000 0.000 0.024 0.000 0.000
#> SRR1193007     1  0.0632     0.9058 0.976 0.000 0.000 0.024 0.000 0.000
#> SRR1193008     1  0.0632     0.9058 0.976 0.000 0.000 0.024 0.000 0.000
#> SRR1193011     5  0.0146     1.0000 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1193012     5  0.0146     1.0000 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1193009     5  0.0146     1.0000 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1193010     5  0.0146     1.0000 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1193014     1  0.2969     0.7351 0.776 0.000 0.000 0.000 0.000 0.224
#> SRR1193015     1  0.2969     0.7351 0.776 0.000 0.000 0.000 0.000 0.224
#> SRR1193013     1  0.2969     0.7351 0.776 0.000 0.000 0.000 0.000 0.224
#> SRR1193018     1  0.0458     0.9011 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1193016     1  0.0458     0.9011 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1193017     1  0.0458     0.9011 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1193100     1  0.0458     0.9011 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1193101     1  0.0458     0.9011 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1193102     1  0.0458     0.9011 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1193104     5  0.0146     1.0000 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1193103     5  0.0146     1.0000 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1193105     5  0.0146     1.0000 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1193106     5  0.0146     1.0000 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1193198     1  0.2969     0.7351 0.776 0.000 0.000 0.000 0.000 0.224
#> SRR1193197     1  0.2969     0.7351 0.776 0.000 0.000 0.000 0.000 0.224
#> SRR1193199     1  0.2969     0.7351 0.776 0.000 0.000 0.000 0.000 0.224
#> SRR1193405     1  0.0458     0.9011 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1193404     1  0.0458     0.9011 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1193403     1  0.0458     0.9011 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1193522     1  0.0458     0.9011 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1193523     1  0.0458     0.9011 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1193524     1  0.0458     0.9011 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1193638     5  0.0146     1.0000 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1193639     5  0.0146     1.0000 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1195621     5  0.0146     1.0000 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1195619     5  0.0146     1.0000 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1195620     5  0.0146     1.0000 0.004 0.000 0.000 0.000 0.996 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15363 rows and 131 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2     1               1           1         0.4281 0.573   0.573
#> 3 3     1               1           1         0.3289 0.859   0.754
#> 4 4     1               1           1         0.0792 0.955   0.896
#> 5 5     1               1           1         0.2229 0.863   0.646
#> 6 6     1               1           1         0.0125 0.991   0.962

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2 3 4

There is also optional best \(k\) = 2 3 4 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1190372     2       0          1  0  1
#> SRR1190371     2       0          1  0  1
#> SRR1190370     2       0          1  0  1
#> SRR1190368     2       0          1  0  1
#> SRR1190369     2       0          1  0  1
#> SRR1190366     2       0          1  0  1
#> SRR1190367     2       0          1  0  1
#> SRR1190365     2       0          1  0  1
#> SRR1190467     1       0          1  1  0
#> SRR1190466     1       0          1  1  0
#> SRR1190465     1       0          1  1  0
#> SRR1190464     1       0          1  1  0
#> SRR1190462     1       0          1  1  0
#> SRR1190461     1       0          1  1  0
#> SRR1190460     1       0          1  1  0
#> SRR1190509     1       0          1  1  0
#> SRR1190504     1       0          1  1  0
#> SRR1190503     1       0          1  1  0
#> SRR1190502     1       0          1  1  0
#> SRR1190508     1       0          1  1  0
#> SRR1190507     1       0          1  1  0
#> SRR1190506     1       0          1  1  0
#> SRR1190505     1       0          1  1  0
#> SRR1191342     2       0          1  0  1
#> SRR1191344     2       0          1  0  1
#> SRR1191343     2       0          1  0  1
#> SRR1191349     2       0          1  0  1
#> SRR1191345     2       0          1  0  1
#> SRR1191346     2       0          1  0  1
#> SRR1191347     2       0          1  0  1
#> SRR1191348     2       0          1  0  1
#> SRR1191668     1       0          1  1  0
#> SRR1191667     1       0          1  1  0
#> SRR1191673     1       0          1  1  0
#> SRR1191672     1       0          1  1  0
#> SRR1191695     1       0          1  1  0
#> SRR1191694     1       0          1  1  0
#> SRR1191783     1       0          1  1  0
#> SRR1191876     1       0          1  1  0
#> SRR1191914     1       0          1  1  0
#> SRR1191915     1       0          1  1  0
#> SRR1191953     1       0          1  1  0
#> SRR1191954     1       0          1  1  0
#> SRR1191990     1       0          1  1  0
#> SRR1191991     1       0          1  1  0
#> SRR1192016     1       0          1  1  0
#> SRR1192017     1       0          1  1  0
#> SRR1192073     1       0          1  1  0
#> SRR1192072     1       0          1  1  0
#> SRR1192167     1       0          1  1  0
#> SRR1192166     1       0          1  1  0
#> SRR1192321     1       0          1  1  0
#> SRR1192353     1       0          1  1  0
#> SRR1192354     1       0          1  1  0
#> SRR1192370     1       0          1  1  0
#> SRR1192371     1       0          1  1  0
#> SRR1192399     1       0          1  1  0
#> SRR1192398     1       0          1  1  0
#> SRR1192417     2       0          1  0  1
#> SRR1192418     2       0          1  0  1
#> SRR1192415     2       0          1  0  1
#> SRR1192416     2       0          1  0  1
#> SRR1192413     2       0          1  0  1
#> SRR1192414     2       0          1  0  1
#> SRR1192420     2       0          1  0  1
#> SRR1192419     2       0          1  0  1
#> SRR1192471     1       0          1  1  0
#> SRR1192470     1       0          1  1  0
#> SRR1192469     1       0          1  1  0
#> SRR1192468     1       0          1  1  0
#> SRR1192467     1       0          1  1  0
#> SRR1192466     1       0          1  1  0
#> SRR1192465     1       0          1  1  0
#> SRR1192500     1       0          1  1  0
#> SRR1192501     1       0          1  1  0
#> SRR1192502     1       0          1  1  0
#> SRR1192503     1       0          1  1  0
#> SRR1192496     1       0          1  1  0
#> SRR1192497     1       0          1  1  0
#> SRR1192499     1       0          1  1  0
#> SRR1192641     2       0          1  0  1
#> SRR1192640     2       0          1  0  1
#> SRR1192643     2       0          1  0  1
#> SRR1192642     2       0          1  0  1
#> SRR1192644     2       0          1  0  1
#> SRR1192645     2       0          1  0  1
#> SRR1192646     2       0          1  0  1
#> SRR1192647     2       0          1  0  1
#> SRR1192836     2       0          1  0  1
#> SRR1192838     2       0          1  0  1
#> SRR1192837     2       0          1  0  1
#> SRR1192839     2       0          1  0  1
#> SRR1192963     2       0          1  0  1
#> SRR1192966     2       0          1  0  1
#> SRR1192965     2       0          1  0  1
#> SRR1192964     2       0          1  0  1
#> SRR1193005     1       0          1  1  0
#> SRR1193006     1       0          1  1  0
#> SRR1193007     1       0          1  1  0
#> SRR1193008     1       0          1  1  0
#> SRR1193011     1       0          1  1  0
#> SRR1193012     1       0          1  1  0
#> SRR1193009     1       0          1  1  0
#> SRR1193010     1       0          1  1  0
#> SRR1193014     1       0          1  1  0
#> SRR1193015     1       0          1  1  0
#> SRR1193013     1       0          1  1  0
#> SRR1193018     1       0          1  1  0
#> SRR1193016     1       0          1  1  0
#> SRR1193017     1       0          1  1  0
#> SRR1193100     1       0          1  1  0
#> SRR1193101     1       0          1  1  0
#> SRR1193102     1       0          1  1  0
#> SRR1193104     1       0          1  1  0
#> SRR1193103     1       0          1  1  0
#> SRR1193105     1       0          1  1  0
#> SRR1193106     1       0          1  1  0
#> SRR1193198     1       0          1  1  0
#> SRR1193197     1       0          1  1  0
#> SRR1193199     1       0          1  1  0
#> SRR1193405     1       0          1  1  0
#> SRR1193404     1       0          1  1  0
#> SRR1193403     1       0          1  1  0
#> SRR1193522     1       0          1  1  0
#> SRR1193523     1       0          1  1  0
#> SRR1193524     1       0          1  1  0
#> SRR1193638     1       0          1  1  0
#> SRR1193639     1       0          1  1  0
#> SRR1195621     1       0          1  1  0
#> SRR1195619     1       0          1  1  0
#> SRR1195620     1       0          1  1  0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette p1 p2 p3
#> SRR1190372     2       0          1  0  1  0
#> SRR1190371     2       0          1  0  1  0
#> SRR1190370     2       0          1  0  1  0
#> SRR1190368     2       0          1  0  1  0
#> SRR1190369     2       0          1  0  1  0
#> SRR1190366     2       0          1  0  1  0
#> SRR1190367     2       0          1  0  1  0
#> SRR1190365     2       0          1  0  1  0
#> SRR1190467     3       0          1  0  0  1
#> SRR1190466     3       0          1  0  0  1
#> SRR1190465     3       0          1  0  0  1
#> SRR1190464     3       0          1  0  0  1
#> SRR1190462     3       0          1  0  0  1
#> SRR1190461     3       0          1  0  0  1
#> SRR1190460     3       0          1  0  0  1
#> SRR1190509     1       0          1  1  0  0
#> SRR1190504     1       0          1  1  0  0
#> SRR1190503     1       0          1  1  0  0
#> SRR1190502     1       0          1  1  0  0
#> SRR1190508     1       0          1  1  0  0
#> SRR1190507     1       0          1  1  0  0
#> SRR1190506     1       0          1  1  0  0
#> SRR1190505     1       0          1  1  0  0
#> SRR1191342     2       0          1  0  1  0
#> SRR1191344     2       0          1  0  1  0
#> SRR1191343     2       0          1  0  1  0
#> SRR1191349     2       0          1  0  1  0
#> SRR1191345     2       0          1  0  1  0
#> SRR1191346     2       0          1  0  1  0
#> SRR1191347     2       0          1  0  1  0
#> SRR1191348     2       0          1  0  1  0
#> SRR1191668     1       0          1  1  0  0
#> SRR1191667     1       0          1  1  0  0
#> SRR1191673     1       0          1  1  0  0
#> SRR1191672     1       0          1  1  0  0
#> SRR1191695     3       0          1  0  0  1
#> SRR1191694     3       0          1  0  0  1
#> SRR1191783     3       0          1  0  0  1
#> SRR1191876     3       0          1  0  0  1
#> SRR1191914     1       0          1  1  0  0
#> SRR1191915     1       0          1  1  0  0
#> SRR1191953     1       0          1  1  0  0
#> SRR1191954     1       0          1  1  0  0
#> SRR1191990     1       0          1  1  0  0
#> SRR1191991     1       0          1  1  0  0
#> SRR1192016     3       0          1  0  0  1
#> SRR1192017     3       0          1  0  0  1
#> SRR1192073     3       0          1  0  0  1
#> SRR1192072     3       0          1  0  0  1
#> SRR1192167     1       0          1  1  0  0
#> SRR1192166     1       0          1  1  0  0
#> SRR1192321     3       0          1  0  0  1
#> SRR1192353     1       0          1  1  0  0
#> SRR1192354     1       0          1  1  0  0
#> SRR1192370     1       0          1  1  0  0
#> SRR1192371     1       0          1  1  0  0
#> SRR1192399     1       0          1  1  0  0
#> SRR1192398     1       0          1  1  0  0
#> SRR1192417     2       0          1  0  1  0
#> SRR1192418     2       0          1  0  1  0
#> SRR1192415     2       0          1  0  1  0
#> SRR1192416     2       0          1  0  1  0
#> SRR1192413     2       0          1  0  1  0
#> SRR1192414     2       0          1  0  1  0
#> SRR1192420     2       0          1  0  1  0
#> SRR1192419     2       0          1  0  1  0
#> SRR1192471     1       0          1  1  0  0
#> SRR1192470     1       0          1  1  0  0
#> SRR1192469     1       0          1  1  0  0
#> SRR1192468     1       0          1  1  0  0
#> SRR1192467     1       0          1  1  0  0
#> SRR1192466     1       0          1  1  0  0
#> SRR1192465     1       0          1  1  0  0
#> SRR1192500     1       0          1  1  0  0
#> SRR1192501     1       0          1  1  0  0
#> SRR1192502     1       0          1  1  0  0
#> SRR1192503     1       0          1  1  0  0
#> SRR1192496     1       0          1  1  0  0
#> SRR1192497     1       0          1  1  0  0
#> SRR1192499     1       0          1  1  0  0
#> SRR1192641     2       0          1  0  1  0
#> SRR1192640     2       0          1  0  1  0
#> SRR1192643     2       0          1  0  1  0
#> SRR1192642     2       0          1  0  1  0
#> SRR1192644     2       0          1  0  1  0
#> SRR1192645     2       0          1  0  1  0
#> SRR1192646     2       0          1  0  1  0
#> SRR1192647     2       0          1  0  1  0
#> SRR1192836     2       0          1  0  1  0
#> SRR1192838     2       0          1  0  1  0
#> SRR1192837     2       0          1  0  1  0
#> SRR1192839     2       0          1  0  1  0
#> SRR1192963     2       0          1  0  1  0
#> SRR1192966     2       0          1  0  1  0
#> SRR1192965     2       0          1  0  1  0
#> SRR1192964     2       0          1  0  1  0
#> SRR1193005     1       0          1  1  0  0
#> SRR1193006     1       0          1  1  0  0
#> SRR1193007     1       0          1  1  0  0
#> SRR1193008     1       0          1  1  0  0
#> SRR1193011     1       0          1  1  0  0
#> SRR1193012     1       0          1  1  0  0
#> SRR1193009     1       0          1  1  0  0
#> SRR1193010     1       0          1  1  0  0
#> SRR1193014     1       0          1  1  0  0
#> SRR1193015     1       0          1  1  0  0
#> SRR1193013     1       0          1  1  0  0
#> SRR1193018     1       0          1  1  0  0
#> SRR1193016     1       0          1  1  0  0
#> SRR1193017     1       0          1  1  0  0
#> SRR1193100     1       0          1  1  0  0
#> SRR1193101     1       0          1  1  0  0
#> SRR1193102     1       0          1  1  0  0
#> SRR1193104     1       0          1  1  0  0
#> SRR1193103     1       0          1  1  0  0
#> SRR1193105     1       0          1  1  0  0
#> SRR1193106     1       0          1  1  0  0
#> SRR1193198     1       0          1  1  0  0
#> SRR1193197     1       0          1  1  0  0
#> SRR1193199     1       0          1  1  0  0
#> SRR1193405     1       0          1  1  0  0
#> SRR1193404     1       0          1  1  0  0
#> SRR1193403     1       0          1  1  0  0
#> SRR1193522     1       0          1  1  0  0
#> SRR1193523     1       0          1  1  0  0
#> SRR1193524     1       0          1  1  0  0
#> SRR1193638     1       0          1  1  0  0
#> SRR1193639     1       0          1  1  0  0
#> SRR1195621     1       0          1  1  0  0
#> SRR1195619     1       0          1  1  0  0
#> SRR1195620     1       0          1  1  0  0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette p1 p2 p3 p4
#> SRR1190372     2       0          1  0  1  0  0
#> SRR1190371     2       0          1  0  1  0  0
#> SRR1190370     2       0          1  0  1  0  0
#> SRR1190368     2       0          1  0  1  0  0
#> SRR1190369     2       0          1  0  1  0  0
#> SRR1190366     2       0          1  0  1  0  0
#> SRR1190367     2       0          1  0  1  0  0
#> SRR1190365     2       0          1  0  1  0  0
#> SRR1190467     3       0          1  0  0  1  0
#> SRR1190466     3       0          1  0  0  1  0
#> SRR1190465     3       0          1  0  0  1  0
#> SRR1190464     3       0          1  0  0  1  0
#> SRR1190462     3       0          1  0  0  1  0
#> SRR1190461     3       0          1  0  0  1  0
#> SRR1190460     3       0          1  0  0  1  0
#> SRR1190509     1       0          1  1  0  0  0
#> SRR1190504     1       0          1  1  0  0  0
#> SRR1190503     1       0          1  1  0  0  0
#> SRR1190502     1       0          1  1  0  0  0
#> SRR1190508     1       0          1  1  0  0  0
#> SRR1190507     1       0          1  1  0  0  0
#> SRR1190506     1       0          1  1  0  0  0
#> SRR1190505     1       0          1  1  0  0  0
#> SRR1191342     4       0          1  0  0  0  1
#> SRR1191344     4       0          1  0  0  0  1
#> SRR1191343     4       0          1  0  0  0  1
#> SRR1191349     4       0          1  0  0  0  1
#> SRR1191345     4       0          1  0  0  0  1
#> SRR1191346     4       0          1  0  0  0  1
#> SRR1191347     4       0          1  0  0  0  1
#> SRR1191348     4       0          1  0  0  0  1
#> SRR1191668     1       0          1  1  0  0  0
#> SRR1191667     1       0          1  1  0  0  0
#> SRR1191673     1       0          1  1  0  0  0
#> SRR1191672     1       0          1  1  0  0  0
#> SRR1191695     3       0          1  0  0  1  0
#> SRR1191694     3       0          1  0  0  1  0
#> SRR1191783     3       0          1  0  0  1  0
#> SRR1191876     3       0          1  0  0  1  0
#> SRR1191914     1       0          1  1  0  0  0
#> SRR1191915     1       0          1  1  0  0  0
#> SRR1191953     1       0          1  1  0  0  0
#> SRR1191954     1       0          1  1  0  0  0
#> SRR1191990     1       0          1  1  0  0  0
#> SRR1191991     1       0          1  1  0  0  0
#> SRR1192016     3       0          1  0  0  1  0
#> SRR1192017     3       0          1  0  0  1  0
#> SRR1192073     3       0          1  0  0  1  0
#> SRR1192072     3       0          1  0  0  1  0
#> SRR1192167     1       0          1  1  0  0  0
#> SRR1192166     1       0          1  1  0  0  0
#> SRR1192321     3       0          1  0  0  1  0
#> SRR1192353     1       0          1  1  0  0  0
#> SRR1192354     1       0          1  1  0  0  0
#> SRR1192370     1       0          1  1  0  0  0
#> SRR1192371     1       0          1  1  0  0  0
#> SRR1192399     1       0          1  1  0  0  0
#> SRR1192398     1       0          1  1  0  0  0
#> SRR1192417     4       0          1  0  0  0  1
#> SRR1192418     4       0          1  0  0  0  1
#> SRR1192415     4       0          1  0  0  0  1
#> SRR1192416     4       0          1  0  0  0  1
#> SRR1192413     4       0          1  0  0  0  1
#> SRR1192414     4       0          1  0  0  0  1
#> SRR1192420     4       0          1  0  0  0  1
#> SRR1192419     4       0          1  0  0  0  1
#> SRR1192471     1       0          1  1  0  0  0
#> SRR1192470     1       0          1  1  0  0  0
#> SRR1192469     1       0          1  1  0  0  0
#> SRR1192468     1       0          1  1  0  0  0
#> SRR1192467     1       0          1  1  0  0  0
#> SRR1192466     1       0          1  1  0  0  0
#> SRR1192465     1       0          1  1  0  0  0
#> SRR1192500     1       0          1  1  0  0  0
#> SRR1192501     1       0          1  1  0  0  0
#> SRR1192502     1       0          1  1  0  0  0
#> SRR1192503     1       0          1  1  0  0  0
#> SRR1192496     1       0          1  1  0  0  0
#> SRR1192497     1       0          1  1  0  0  0
#> SRR1192499     1       0          1  1  0  0  0
#> SRR1192641     2       0          1  0  1  0  0
#> SRR1192640     2       0          1  0  1  0  0
#> SRR1192643     2       0          1  0  1  0  0
#> SRR1192642     2       0          1  0  1  0  0
#> SRR1192644     2       0          1  0  1  0  0
#> SRR1192645     2       0          1  0  1  0  0
#> SRR1192646     2       0          1  0  1  0  0
#> SRR1192647     2       0          1  0  1  0  0
#> SRR1192836     2       0          1  0  1  0  0
#> SRR1192838     2       0          1  0  1  0  0
#> SRR1192837     2       0          1  0  1  0  0
#> SRR1192839     2       0          1  0  1  0  0
#> SRR1192963     2       0          1  0  1  0  0
#> SRR1192966     2       0          1  0  1  0  0
#> SRR1192965     2       0          1  0  1  0  0
#> SRR1192964     2       0          1  0  1  0  0
#> SRR1193005     1       0          1  1  0  0  0
#> SRR1193006     1       0          1  1  0  0  0
#> SRR1193007     1       0          1  1  0  0  0
#> SRR1193008     1       0          1  1  0  0  0
#> SRR1193011     1       0          1  1  0  0  0
#> SRR1193012     1       0          1  1  0  0  0
#> SRR1193009     1       0          1  1  0  0  0
#> SRR1193010     1       0          1  1  0  0  0
#> SRR1193014     1       0          1  1  0  0  0
#> SRR1193015     1       0          1  1  0  0  0
#> SRR1193013     1       0          1  1  0  0  0
#> SRR1193018     1       0          1  1  0  0  0
#> SRR1193016     1       0          1  1  0  0  0
#> SRR1193017     1       0          1  1  0  0  0
#> SRR1193100     1       0          1  1  0  0  0
#> SRR1193101     1       0          1  1  0  0  0
#> SRR1193102     1       0          1  1  0  0  0
#> SRR1193104     1       0          1  1  0  0  0
#> SRR1193103     1       0          1  1  0  0  0
#> SRR1193105     1       0          1  1  0  0  0
#> SRR1193106     1       0          1  1  0  0  0
#> SRR1193198     1       0          1  1  0  0  0
#> SRR1193197     1       0          1  1  0  0  0
#> SRR1193199     1       0          1  1  0  0  0
#> SRR1193405     1       0          1  1  0  0  0
#> SRR1193404     1       0          1  1  0  0  0
#> SRR1193403     1       0          1  1  0  0  0
#> SRR1193522     1       0          1  1  0  0  0
#> SRR1193523     1       0          1  1  0  0  0
#> SRR1193524     1       0          1  1  0  0  0
#> SRR1193638     1       0          1  1  0  0  0
#> SRR1193639     1       0          1  1  0  0  0
#> SRR1195621     1       0          1  1  0  0  0
#> SRR1195619     1       0          1  1  0  0  0
#> SRR1195620     1       0          1  1  0  0  0

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1 p2 p3 p4    p5
#> SRR1190372     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1190371     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1190370     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1190368     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1190369     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1190366     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1190367     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1190365     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1190467     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1190466     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1190465     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1190464     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1190462     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1190461     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1190460     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1190509     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1190504     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1190503     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1190502     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1190508     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1190507     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1190506     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1190505     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1191342     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1191344     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1191343     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1191349     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1191345     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1191346     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1191347     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1191348     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1191668     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1191667     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1191673     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1191672     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1191695     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1191694     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1191783     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1191876     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1191914     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1191915     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1191953     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1191954     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1191990     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1191991     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1192016     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1192017     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1192073     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1192072     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1192167     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1192166     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1192321     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1192353     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1192354     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1192370     5  0.0000      1.000 0.000  0  0  0 1.000
#> SRR1192371     5  0.0000      1.000 0.000  0  0  0 1.000
#> SRR1192399     1  0.0162      0.996 0.996  0  0  0 0.004
#> SRR1192398     1  0.0162      0.996 0.996  0  0  0 0.004
#> SRR1192417     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1192418     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1192415     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1192416     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1192413     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1192414     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1192420     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1192419     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1192471     5  0.0000      1.000 0.000  0  0  0 1.000
#> SRR1192470     5  0.0000      1.000 0.000  0  0  0 1.000
#> SRR1192469     5  0.0000      1.000 0.000  0  0  0 1.000
#> SRR1192468     5  0.0000      1.000 0.000  0  0  0 1.000
#> SRR1192467     5  0.0000      1.000 0.000  0  0  0 1.000
#> SRR1192466     5  0.0000      1.000 0.000  0  0  0 1.000
#> SRR1192465     5  0.0000      1.000 0.000  0  0  0 1.000
#> SRR1192500     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1192501     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1192502     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1192503     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1192496     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1192497     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1192499     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1192641     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1192640     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1192643     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1192642     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1192644     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1192645     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1192646     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1192647     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1192836     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1192838     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1192837     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1192839     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1192963     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1192966     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1192965     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1192964     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1193005     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1193006     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1193007     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1193008     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1193011     5  0.0000      1.000 0.000  0  0  0 1.000
#> SRR1193012     5  0.0000      1.000 0.000  0  0  0 1.000
#> SRR1193009     5  0.0000      1.000 0.000  0  0  0 1.000
#> SRR1193010     5  0.0000      1.000 0.000  0  0  0 1.000
#> SRR1193014     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1193015     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1193013     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1193018     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1193016     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1193017     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1193100     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1193101     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1193102     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1193104     5  0.0000      1.000 0.000  0  0  0 1.000
#> SRR1193103     5  0.0000      1.000 0.000  0  0  0 1.000
#> SRR1193105     5  0.0000      1.000 0.000  0  0  0 1.000
#> SRR1193106     5  0.0000      1.000 0.000  0  0  0 1.000
#> SRR1193198     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1193197     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1193199     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1193405     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1193404     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1193403     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1193522     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1193523     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1193524     1  0.0000      1.000 1.000  0  0  0 0.000
#> SRR1193638     5  0.0000      1.000 0.000  0  0  0 1.000
#> SRR1193639     5  0.0000      1.000 0.000  0  0  0 1.000
#> SRR1195621     5  0.0000      1.000 0.000  0  0  0 1.000
#> SRR1195619     5  0.0000      1.000 0.000  0  0  0 1.000
#> SRR1195620     5  0.0000      1.000 0.000  0  0  0 1.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1 p2 p3 p4    p5 p6
#> SRR1190372     2  0.0000      1.000 0.000  1  0  0 0.000  0
#> SRR1190371     2  0.0000      1.000 0.000  1  0  0 0.000  0
#> SRR1190370     2  0.0000      1.000 0.000  1  0  0 0.000  0
#> SRR1190368     2  0.0000      1.000 0.000  1  0  0 0.000  0
#> SRR1190369     2  0.0000      1.000 0.000  1  0  0 0.000  0
#> SRR1190366     2  0.0000      1.000 0.000  1  0  0 0.000  0
#> SRR1190367     2  0.0000      1.000 0.000  1  0  0 0.000  0
#> SRR1190365     2  0.0000      1.000 0.000  1  0  0 0.000  0
#> SRR1190467     3  0.0000      1.000 0.000  0  1  0 0.000  0
#> SRR1190466     3  0.0000      1.000 0.000  0  1  0 0.000  0
#> SRR1190465     3  0.0000      1.000 0.000  0  1  0 0.000  0
#> SRR1190464     3  0.0000      1.000 0.000  0  1  0 0.000  0
#> SRR1190462     3  0.0000      1.000 0.000  0  1  0 0.000  0
#> SRR1190461     3  0.0000      1.000 0.000  0  1  0 0.000  0
#> SRR1190460     3  0.0000      1.000 0.000  0  1  0 0.000  0
#> SRR1190509     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1190504     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1190503     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1190502     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1190508     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1190507     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1190506     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1190505     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1191342     4  0.0000      1.000 0.000  0  0  1 0.000  0
#> SRR1191344     4  0.0000      1.000 0.000  0  0  1 0.000  0
#> SRR1191343     4  0.0000      1.000 0.000  0  0  1 0.000  0
#> SRR1191349     4  0.0000      1.000 0.000  0  0  1 0.000  0
#> SRR1191345     4  0.0000      1.000 0.000  0  0  1 0.000  0
#> SRR1191346     4  0.0000      1.000 0.000  0  0  1 0.000  0
#> SRR1191347     4  0.0000      1.000 0.000  0  0  1 0.000  0
#> SRR1191348     4  0.0000      1.000 0.000  0  0  1 0.000  0
#> SRR1191668     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1191667     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1191673     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1191672     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1191695     3  0.0000      1.000 0.000  0  1  0 0.000  0
#> SRR1191694     3  0.0000      1.000 0.000  0  1  0 0.000  0
#> SRR1191783     3  0.0000      1.000 0.000  0  1  0 0.000  0
#> SRR1191876     3  0.0000      1.000 0.000  0  1  0 0.000  0
#> SRR1191914     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1191915     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1191953     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1191954     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1191990     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1191991     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1192016     3  0.0000      1.000 0.000  0  1  0 0.000  0
#> SRR1192017     3  0.0000      1.000 0.000  0  1  0 0.000  0
#> SRR1192073     3  0.0000      1.000 0.000  0  1  0 0.000  0
#> SRR1192072     3  0.0000      1.000 0.000  0  1  0 0.000  0
#> SRR1192167     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1192166     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1192321     3  0.0000      1.000 0.000  0  1  0 0.000  0
#> SRR1192353     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1192354     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1192370     5  0.0000      1.000 0.000  0  0  0 1.000  0
#> SRR1192371     5  0.0000      1.000 0.000  0  0  0 1.000  0
#> SRR1192399     1  0.0146      0.995 0.996  0  0  0 0.004  0
#> SRR1192398     1  0.0146      0.995 0.996  0  0  0 0.004  0
#> SRR1192417     4  0.0000      1.000 0.000  0  0  1 0.000  0
#> SRR1192418     4  0.0000      1.000 0.000  0  0  1 0.000  0
#> SRR1192415     4  0.0000      1.000 0.000  0  0  1 0.000  0
#> SRR1192416     4  0.0000      1.000 0.000  0  0  1 0.000  0
#> SRR1192413     4  0.0000      1.000 0.000  0  0  1 0.000  0
#> SRR1192414     4  0.0000      1.000 0.000  0  0  1 0.000  0
#> SRR1192420     4  0.0000      1.000 0.000  0  0  1 0.000  0
#> SRR1192419     4  0.0000      1.000 0.000  0  0  1 0.000  0
#> SRR1192471     5  0.0000      1.000 0.000  0  0  0 1.000  0
#> SRR1192470     5  0.0000      1.000 0.000  0  0  0 1.000  0
#> SRR1192469     5  0.0000      1.000 0.000  0  0  0 1.000  0
#> SRR1192468     5  0.0000      1.000 0.000  0  0  0 1.000  0
#> SRR1192467     5  0.0000      1.000 0.000  0  0  0 1.000  0
#> SRR1192466     5  0.0000      1.000 0.000  0  0  0 1.000  0
#> SRR1192465     5  0.0000      1.000 0.000  0  0  0 1.000  0
#> SRR1192500     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1192501     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1192502     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1192503     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1192496     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1192497     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1192499     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1192641     2  0.0000      1.000 0.000  1  0  0 0.000  0
#> SRR1192640     2  0.0000      1.000 0.000  1  0  0 0.000  0
#> SRR1192643     2  0.0000      1.000 0.000  1  0  0 0.000  0
#> SRR1192642     2  0.0000      1.000 0.000  1  0  0 0.000  0
#> SRR1192644     2  0.0000      1.000 0.000  1  0  0 0.000  0
#> SRR1192645     2  0.0000      1.000 0.000  1  0  0 0.000  0
#> SRR1192646     2  0.0000      1.000 0.000  1  0  0 0.000  0
#> SRR1192647     2  0.0000      1.000 0.000  1  0  0 0.000  0
#> SRR1192836     6  0.0000      1.000 0.000  0  0  0 0.000  1
#> SRR1192838     6  0.0000      1.000 0.000  0  0  0 0.000  1
#> SRR1192837     6  0.0000      1.000 0.000  0  0  0 0.000  1
#> SRR1192839     6  0.0000      1.000 0.000  0  0  0 0.000  1
#> SRR1192963     2  0.0000      1.000 0.000  1  0  0 0.000  0
#> SRR1192966     2  0.0000      1.000 0.000  1  0  0 0.000  0
#> SRR1192965     2  0.0000      1.000 0.000  1  0  0 0.000  0
#> SRR1192964     2  0.0000      1.000 0.000  1  0  0 0.000  0
#> SRR1193005     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1193006     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1193007     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1193008     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1193011     5  0.0000      1.000 0.000  0  0  0 1.000  0
#> SRR1193012     5  0.0000      1.000 0.000  0  0  0 1.000  0
#> SRR1193009     5  0.0000      1.000 0.000  0  0  0 1.000  0
#> SRR1193010     5  0.0000      1.000 0.000  0  0  0 1.000  0
#> SRR1193014     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1193015     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1193013     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1193018     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1193016     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1193017     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1193100     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1193101     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1193102     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1193104     5  0.0000      1.000 0.000  0  0  0 1.000  0
#> SRR1193103     5  0.0000      1.000 0.000  0  0  0 1.000  0
#> SRR1193105     5  0.0000      1.000 0.000  0  0  0 1.000  0
#> SRR1193106     5  0.0000      1.000 0.000  0  0  0 1.000  0
#> SRR1193198     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1193197     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1193199     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1193405     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1193404     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1193403     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1193522     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1193523     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1193524     1  0.0000      1.000 1.000  0  0  0 0.000  0
#> SRR1193638     5  0.0000      1.000 0.000  0  0  0 1.000  0
#> SRR1193639     5  0.0000      1.000 0.000  0  0  0 1.000  0
#> SRR1195621     5  0.0000      1.000 0.000  0  0  0 1.000  0
#> SRR1195619     5  0.0000      1.000 0.000  0  0  0 1.000  0
#> SRR1195620     5  0.0000      1.000 0.000  0  0  0 1.000  0

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15363 rows and 131 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.703           0.928       0.957         0.4888 0.496   0.496
#> 3 3 0.891           0.902       0.928         0.2628 0.882   0.762
#> 4 4 0.759           0.774       0.820         0.0831 0.903   0.765
#> 5 5 0.725           0.488       0.670         0.1024 0.822   0.528
#> 6 6 0.739           0.724       0.805         0.0726 0.858   0.496

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1190372     2  0.0000      0.909 0.000 1.000
#> SRR1190371     2  0.0000      0.909 0.000 1.000
#> SRR1190370     2  0.0000      0.909 0.000 1.000
#> SRR1190368     2  0.0000      0.909 0.000 1.000
#> SRR1190369     2  0.0000      0.909 0.000 1.000
#> SRR1190366     2  0.0000      0.909 0.000 1.000
#> SRR1190367     2  0.0000      0.909 0.000 1.000
#> SRR1190365     2  0.0000      0.909 0.000 1.000
#> SRR1190467     2  0.6712      0.835 0.176 0.824
#> SRR1190466     2  0.6712      0.835 0.176 0.824
#> SRR1190465     2  0.6712      0.835 0.176 0.824
#> SRR1190464     2  0.6712      0.835 0.176 0.824
#> SRR1190462     2  0.6712      0.835 0.176 0.824
#> SRR1190461     2  0.6712      0.835 0.176 0.824
#> SRR1190460     2  0.6712      0.835 0.176 0.824
#> SRR1190509     1  0.0000      0.998 1.000 0.000
#> SRR1190504     1  0.0000      0.998 1.000 0.000
#> SRR1190503     1  0.0000      0.998 1.000 0.000
#> SRR1190502     1  0.0000      0.998 1.000 0.000
#> SRR1190508     1  0.0000      0.998 1.000 0.000
#> SRR1190507     1  0.0000      0.998 1.000 0.000
#> SRR1190506     1  0.0000      0.998 1.000 0.000
#> SRR1190505     1  0.0000      0.998 1.000 0.000
#> SRR1191342     2  0.0000      0.909 0.000 1.000
#> SRR1191344     2  0.0000      0.909 0.000 1.000
#> SRR1191343     2  0.0000      0.909 0.000 1.000
#> SRR1191349     2  0.0000      0.909 0.000 1.000
#> SRR1191345     2  0.0000      0.909 0.000 1.000
#> SRR1191346     2  0.0000      0.909 0.000 1.000
#> SRR1191347     2  0.0000      0.909 0.000 1.000
#> SRR1191348     2  0.0000      0.909 0.000 1.000
#> SRR1191668     2  0.9209      0.635 0.336 0.664
#> SRR1191667     2  0.9209      0.635 0.336 0.664
#> SRR1191673     2  0.9209      0.635 0.336 0.664
#> SRR1191672     2  0.9209      0.635 0.336 0.664
#> SRR1191695     2  0.6712      0.835 0.176 0.824
#> SRR1191694     2  0.6712      0.835 0.176 0.824
#> SRR1191783     2  0.6712      0.835 0.176 0.824
#> SRR1191876     2  0.6712      0.835 0.176 0.824
#> SRR1191914     1  0.0000      0.998 1.000 0.000
#> SRR1191915     1  0.0000      0.998 1.000 0.000
#> SRR1191953     1  0.0000      0.998 1.000 0.000
#> SRR1191954     1  0.0000      0.998 1.000 0.000
#> SRR1191990     2  0.9393      0.598 0.356 0.644
#> SRR1191991     2  0.9393      0.598 0.356 0.644
#> SRR1192016     2  0.6712      0.835 0.176 0.824
#> SRR1192017     2  0.6712      0.835 0.176 0.824
#> SRR1192073     2  0.6712      0.835 0.176 0.824
#> SRR1192072     2  0.6712      0.835 0.176 0.824
#> SRR1192167     2  0.9209      0.635 0.336 0.664
#> SRR1192166     2  0.9209      0.635 0.336 0.664
#> SRR1192321     2  0.6712      0.835 0.176 0.824
#> SRR1192353     1  0.0376      0.997 0.996 0.004
#> SRR1192354     1  0.0376      0.997 0.996 0.004
#> SRR1192370     1  0.0376      0.997 0.996 0.004
#> SRR1192371     1  0.0376      0.997 0.996 0.004
#> SRR1192399     1  0.0376      0.997 0.996 0.004
#> SRR1192398     1  0.0376      0.997 0.996 0.004
#> SRR1192417     2  0.0000      0.909 0.000 1.000
#> SRR1192418     2  0.0000      0.909 0.000 1.000
#> SRR1192415     2  0.0000      0.909 0.000 1.000
#> SRR1192416     2  0.0000      0.909 0.000 1.000
#> SRR1192413     2  0.0000      0.909 0.000 1.000
#> SRR1192414     2  0.0000      0.909 0.000 1.000
#> SRR1192420     2  0.0000      0.909 0.000 1.000
#> SRR1192419     2  0.0000      0.909 0.000 1.000
#> SRR1192471     1  0.0376      0.997 0.996 0.004
#> SRR1192470     1  0.0376      0.997 0.996 0.004
#> SRR1192469     1  0.0376      0.997 0.996 0.004
#> SRR1192468     1  0.0376      0.997 0.996 0.004
#> SRR1192467     1  0.0376      0.997 0.996 0.004
#> SRR1192466     1  0.0376      0.997 0.996 0.004
#> SRR1192465     1  0.0376      0.997 0.996 0.004
#> SRR1192500     1  0.0000      0.998 1.000 0.000
#> SRR1192501     1  0.0000      0.998 1.000 0.000
#> SRR1192502     1  0.0000      0.998 1.000 0.000
#> SRR1192503     1  0.0000      0.998 1.000 0.000
#> SRR1192496     1  0.0000      0.998 1.000 0.000
#> SRR1192497     1  0.0000      0.998 1.000 0.000
#> SRR1192499     1  0.0000      0.998 1.000 0.000
#> SRR1192641     2  0.0000      0.909 0.000 1.000
#> SRR1192640     2  0.0000      0.909 0.000 1.000
#> SRR1192643     2  0.0000      0.909 0.000 1.000
#> SRR1192642     2  0.0000      0.909 0.000 1.000
#> SRR1192644     2  0.0000      0.909 0.000 1.000
#> SRR1192645     2  0.0000      0.909 0.000 1.000
#> SRR1192646     2  0.0000      0.909 0.000 1.000
#> SRR1192647     2  0.0000      0.909 0.000 1.000
#> SRR1192836     2  0.0000      0.909 0.000 1.000
#> SRR1192838     2  0.0000      0.909 0.000 1.000
#> SRR1192837     2  0.0000      0.909 0.000 1.000
#> SRR1192839     2  0.0000      0.909 0.000 1.000
#> SRR1192963     2  0.0000      0.909 0.000 1.000
#> SRR1192966     2  0.0000      0.909 0.000 1.000
#> SRR1192965     2  0.0000      0.909 0.000 1.000
#> SRR1192964     2  0.0000      0.909 0.000 1.000
#> SRR1193005     1  0.0000      0.998 1.000 0.000
#> SRR1193006     1  0.0000      0.998 1.000 0.000
#> SRR1193007     1  0.0000      0.998 1.000 0.000
#> SRR1193008     1  0.0000      0.998 1.000 0.000
#> SRR1193011     1  0.0376      0.997 0.996 0.004
#> SRR1193012     1  0.0376      0.997 0.996 0.004
#> SRR1193009     1  0.0376      0.997 0.996 0.004
#> SRR1193010     1  0.0376      0.997 0.996 0.004
#> SRR1193014     1  0.0000      0.998 1.000 0.000
#> SRR1193015     1  0.0000      0.998 1.000 0.000
#> SRR1193013     1  0.0000      0.998 1.000 0.000
#> SRR1193018     1  0.0000      0.998 1.000 0.000
#> SRR1193016     1  0.0000      0.998 1.000 0.000
#> SRR1193017     1  0.0000      0.998 1.000 0.000
#> SRR1193100     1  0.0000      0.998 1.000 0.000
#> SRR1193101     1  0.0000      0.998 1.000 0.000
#> SRR1193102     1  0.0000      0.998 1.000 0.000
#> SRR1193104     1  0.0376      0.997 0.996 0.004
#> SRR1193103     1  0.0376      0.997 0.996 0.004
#> SRR1193105     1  0.0376      0.997 0.996 0.004
#> SRR1193106     1  0.0376      0.997 0.996 0.004
#> SRR1193198     1  0.0000      0.998 1.000 0.000
#> SRR1193197     1  0.0000      0.998 1.000 0.000
#> SRR1193199     1  0.0000      0.998 1.000 0.000
#> SRR1193405     1  0.0000      0.998 1.000 0.000
#> SRR1193404     1  0.0000      0.998 1.000 0.000
#> SRR1193403     1  0.0000      0.998 1.000 0.000
#> SRR1193522     1  0.0000      0.998 1.000 0.000
#> SRR1193523     1  0.0000      0.998 1.000 0.000
#> SRR1193524     1  0.0000      0.998 1.000 0.000
#> SRR1193638     1  0.0376      0.997 0.996 0.004
#> SRR1193639     1  0.0376      0.997 0.996 0.004
#> SRR1195621     1  0.0376      0.997 0.996 0.004
#> SRR1195619     1  0.0376      0.997 0.996 0.004
#> SRR1195620     1  0.0376      0.997 0.996 0.004

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1190372     2  0.0000      0.877 0.000 1.000 0.000
#> SRR1190371     2  0.0000      0.877 0.000 1.000 0.000
#> SRR1190370     2  0.0000      0.877 0.000 1.000 0.000
#> SRR1190368     2  0.0000      0.877 0.000 1.000 0.000
#> SRR1190369     2  0.0000      0.877 0.000 1.000 0.000
#> SRR1190366     2  0.0000      0.877 0.000 1.000 0.000
#> SRR1190367     2  0.0000      0.877 0.000 1.000 0.000
#> SRR1190365     2  0.0000      0.877 0.000 1.000 0.000
#> SRR1190467     3  0.2356      0.908 0.000 0.072 0.928
#> SRR1190466     3  0.2356      0.908 0.000 0.072 0.928
#> SRR1190465     3  0.2356      0.908 0.000 0.072 0.928
#> SRR1190464     3  0.2356      0.908 0.000 0.072 0.928
#> SRR1190462     3  0.2356      0.908 0.000 0.072 0.928
#> SRR1190461     3  0.2356      0.908 0.000 0.072 0.928
#> SRR1190460     3  0.2356      0.908 0.000 0.072 0.928
#> SRR1190509     1  0.2711      0.920 0.912 0.000 0.088
#> SRR1190504     1  0.2356      0.934 0.928 0.000 0.072
#> SRR1190503     1  0.2625      0.924 0.916 0.000 0.084
#> SRR1190502     1  0.2711      0.920 0.912 0.000 0.088
#> SRR1190508     1  0.2625      0.924 0.916 0.000 0.084
#> SRR1190507     1  0.2625      0.924 0.916 0.000 0.084
#> SRR1190506     1  0.2625      0.924 0.916 0.000 0.084
#> SRR1190505     1  0.2537      0.927 0.920 0.000 0.080
#> SRR1191342     2  0.4702      0.820 0.000 0.788 0.212
#> SRR1191344     2  0.4702      0.820 0.000 0.788 0.212
#> SRR1191343     2  0.4702      0.820 0.000 0.788 0.212
#> SRR1191349     2  0.4702      0.820 0.000 0.788 0.212
#> SRR1191345     2  0.4702      0.820 0.000 0.788 0.212
#> SRR1191346     2  0.4702      0.820 0.000 0.788 0.212
#> SRR1191347     2  0.4702      0.820 0.000 0.788 0.212
#> SRR1191348     2  0.4702      0.820 0.000 0.788 0.212
#> SRR1191668     3  0.3234      0.897 0.020 0.072 0.908
#> SRR1191667     3  0.3234      0.897 0.020 0.072 0.908
#> SRR1191673     3  0.3234      0.897 0.020 0.072 0.908
#> SRR1191672     3  0.3234      0.897 0.020 0.072 0.908
#> SRR1191695     3  0.2356      0.908 0.000 0.072 0.928
#> SRR1191694     3  0.2356      0.908 0.000 0.072 0.928
#> SRR1191783     3  0.2356      0.908 0.000 0.072 0.928
#> SRR1191876     3  0.2356      0.908 0.000 0.072 0.928
#> SRR1191914     1  0.0000      0.969 1.000 0.000 0.000
#> SRR1191915     1  0.0000      0.969 1.000 0.000 0.000
#> SRR1191953     1  0.0000      0.969 1.000 0.000 0.000
#> SRR1191954     1  0.0000      0.969 1.000 0.000 0.000
#> SRR1191990     3  0.6908      0.558 0.308 0.036 0.656
#> SRR1191991     3  0.6908      0.558 0.308 0.036 0.656
#> SRR1192016     3  0.2356      0.908 0.000 0.072 0.928
#> SRR1192017     3  0.2356      0.908 0.000 0.072 0.928
#> SRR1192073     3  0.2356      0.908 0.000 0.072 0.928
#> SRR1192072     3  0.2356      0.908 0.000 0.072 0.928
#> SRR1192167     3  0.3234      0.897 0.020 0.072 0.908
#> SRR1192166     3  0.3234      0.897 0.020 0.072 0.908
#> SRR1192321     3  0.2356      0.908 0.000 0.072 0.928
#> SRR1192353     1  0.0000      0.969 1.000 0.000 0.000
#> SRR1192354     1  0.0000      0.969 1.000 0.000 0.000
#> SRR1192370     1  0.1964      0.957 0.944 0.000 0.056
#> SRR1192371     1  0.1964      0.957 0.944 0.000 0.056
#> SRR1192399     1  0.0000      0.969 1.000 0.000 0.000
#> SRR1192398     1  0.0000      0.969 1.000 0.000 0.000
#> SRR1192417     2  0.4702      0.820 0.000 0.788 0.212
#> SRR1192418     2  0.4702      0.820 0.000 0.788 0.212
#> SRR1192415     2  0.4702      0.820 0.000 0.788 0.212
#> SRR1192416     2  0.4702      0.820 0.000 0.788 0.212
#> SRR1192413     2  0.4702      0.820 0.000 0.788 0.212
#> SRR1192414     2  0.4702      0.820 0.000 0.788 0.212
#> SRR1192420     2  0.4702      0.820 0.000 0.788 0.212
#> SRR1192419     2  0.4702      0.820 0.000 0.788 0.212
#> SRR1192471     1  0.1964      0.957 0.944 0.000 0.056
#> SRR1192470     1  0.1964      0.957 0.944 0.000 0.056
#> SRR1192469     1  0.1964      0.957 0.944 0.000 0.056
#> SRR1192468     1  0.1964      0.957 0.944 0.000 0.056
#> SRR1192467     1  0.1964      0.957 0.944 0.000 0.056
#> SRR1192466     1  0.1964      0.957 0.944 0.000 0.056
#> SRR1192465     1  0.1964      0.957 0.944 0.000 0.056
#> SRR1192500     1  0.0747      0.968 0.984 0.000 0.016
#> SRR1192501     1  0.0747      0.968 0.984 0.000 0.016
#> SRR1192502     1  0.0747      0.968 0.984 0.000 0.016
#> SRR1192503     1  0.0747      0.968 0.984 0.000 0.016
#> SRR1192496     1  0.0747      0.968 0.984 0.000 0.016
#> SRR1192497     1  0.0747      0.968 0.984 0.000 0.016
#> SRR1192499     1  0.0747      0.968 0.984 0.000 0.016
#> SRR1192641     2  0.0000      0.877 0.000 1.000 0.000
#> SRR1192640     2  0.0000      0.877 0.000 1.000 0.000
#> SRR1192643     2  0.0000      0.877 0.000 1.000 0.000
#> SRR1192642     2  0.0000      0.877 0.000 1.000 0.000
#> SRR1192644     2  0.0000      0.877 0.000 1.000 0.000
#> SRR1192645     2  0.0000      0.877 0.000 1.000 0.000
#> SRR1192646     2  0.0000      0.877 0.000 1.000 0.000
#> SRR1192647     2  0.0000      0.877 0.000 1.000 0.000
#> SRR1192836     3  0.5859      0.548 0.000 0.344 0.656
#> SRR1192838     3  0.5859      0.548 0.000 0.344 0.656
#> SRR1192837     3  0.5859      0.548 0.000 0.344 0.656
#> SRR1192839     3  0.5859      0.548 0.000 0.344 0.656
#> SRR1192963     2  0.0000      0.877 0.000 1.000 0.000
#> SRR1192966     2  0.0000      0.877 0.000 1.000 0.000
#> SRR1192965     2  0.0000      0.877 0.000 1.000 0.000
#> SRR1192964     2  0.0000      0.877 0.000 1.000 0.000
#> SRR1193005     1  0.0747      0.968 0.984 0.000 0.016
#> SRR1193006     1  0.0747      0.968 0.984 0.000 0.016
#> SRR1193007     1  0.0747      0.968 0.984 0.000 0.016
#> SRR1193008     1  0.0747      0.968 0.984 0.000 0.016
#> SRR1193011     1  0.1964      0.957 0.944 0.000 0.056
#> SRR1193012     1  0.1964      0.957 0.944 0.000 0.056
#> SRR1193009     1  0.1964      0.957 0.944 0.000 0.056
#> SRR1193010     1  0.1964      0.957 0.944 0.000 0.056
#> SRR1193014     1  0.0000      0.969 1.000 0.000 0.000
#> SRR1193015     1  0.0000      0.969 1.000 0.000 0.000
#> SRR1193013     1  0.0000      0.969 1.000 0.000 0.000
#> SRR1193018     1  0.0747      0.968 0.984 0.000 0.016
#> SRR1193016     1  0.0747      0.968 0.984 0.000 0.016
#> SRR1193017     1  0.0747      0.968 0.984 0.000 0.016
#> SRR1193100     1  0.0747      0.968 0.984 0.000 0.016
#> SRR1193101     1  0.0747      0.968 0.984 0.000 0.016
#> SRR1193102     1  0.0747      0.968 0.984 0.000 0.016
#> SRR1193104     1  0.1964      0.957 0.944 0.000 0.056
#> SRR1193103     1  0.1964      0.957 0.944 0.000 0.056
#> SRR1193105     1  0.1964      0.957 0.944 0.000 0.056
#> SRR1193106     1  0.1964      0.957 0.944 0.000 0.056
#> SRR1193198     1  0.0000      0.969 1.000 0.000 0.000
#> SRR1193197     1  0.0000      0.969 1.000 0.000 0.000
#> SRR1193199     1  0.0000      0.969 1.000 0.000 0.000
#> SRR1193405     1  0.0747      0.968 0.984 0.000 0.016
#> SRR1193404     1  0.0747      0.968 0.984 0.000 0.016
#> SRR1193403     1  0.0747      0.968 0.984 0.000 0.016
#> SRR1193522     1  0.0747      0.968 0.984 0.000 0.016
#> SRR1193523     1  0.0747      0.968 0.984 0.000 0.016
#> SRR1193524     1  0.0747      0.968 0.984 0.000 0.016
#> SRR1193638     1  0.1964      0.957 0.944 0.000 0.056
#> SRR1193639     1  0.1964      0.957 0.944 0.000 0.056
#> SRR1195621     1  0.1964      0.957 0.944 0.000 0.056
#> SRR1195619     1  0.1964      0.957 0.944 0.000 0.056
#> SRR1195620     1  0.1964      0.957 0.944 0.000 0.056

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1190372     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1190371     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1190370     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1190368     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1190369     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1190366     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1190367     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1190365     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1190467     3  0.4250      1.000 0.000 0.000 0.724 0.276
#> SRR1190466     3  0.4250      1.000 0.000 0.000 0.724 0.276
#> SRR1190465     3  0.4250      1.000 0.000 0.000 0.724 0.276
#> SRR1190464     3  0.4250      1.000 0.000 0.000 0.724 0.276
#> SRR1190462     3  0.4250      1.000 0.000 0.000 0.724 0.276
#> SRR1190461     3  0.4250      1.000 0.000 0.000 0.724 0.276
#> SRR1190460     3  0.4250      1.000 0.000 0.000 0.724 0.276
#> SRR1190509     1  0.1510      0.880 0.956 0.000 0.028 0.016
#> SRR1190504     1  0.1510      0.880 0.956 0.000 0.028 0.016
#> SRR1190503     1  0.1510      0.880 0.956 0.000 0.028 0.016
#> SRR1190502     1  0.1510      0.880 0.956 0.000 0.028 0.016
#> SRR1190508     1  0.1510      0.880 0.956 0.000 0.028 0.016
#> SRR1190507     1  0.1510      0.880 0.956 0.000 0.028 0.016
#> SRR1190506     1  0.1510      0.880 0.956 0.000 0.028 0.016
#> SRR1190505     1  0.1510      0.880 0.956 0.000 0.028 0.016
#> SRR1191342     4  0.4989      0.543 0.000 0.472 0.000 0.528
#> SRR1191344     4  0.4989      0.543 0.000 0.472 0.000 0.528
#> SRR1191343     4  0.4989      0.543 0.000 0.472 0.000 0.528
#> SRR1191349     4  0.4989      0.543 0.000 0.472 0.000 0.528
#> SRR1191345     4  0.4989      0.543 0.000 0.472 0.000 0.528
#> SRR1191346     4  0.4989      0.543 0.000 0.472 0.000 0.528
#> SRR1191347     4  0.4989      0.543 0.000 0.472 0.000 0.528
#> SRR1191348     4  0.4989      0.543 0.000 0.472 0.000 0.528
#> SRR1191668     4  0.5376     -0.486 0.016 0.000 0.396 0.588
#> SRR1191667     4  0.5376     -0.486 0.016 0.000 0.396 0.588
#> SRR1191673     4  0.5478     -0.559 0.016 0.000 0.444 0.540
#> SRR1191672     4  0.5478     -0.559 0.016 0.000 0.444 0.540
#> SRR1191695     3  0.4250      1.000 0.000 0.000 0.724 0.276
#> SRR1191694     3  0.4250      1.000 0.000 0.000 0.724 0.276
#> SRR1191783     3  0.4250      1.000 0.000 0.000 0.724 0.276
#> SRR1191876     3  0.4250      1.000 0.000 0.000 0.724 0.276
#> SRR1191914     1  0.0524      0.892 0.988 0.000 0.008 0.004
#> SRR1191915     1  0.0524      0.892 0.988 0.000 0.008 0.004
#> SRR1191953     1  0.0524      0.892 0.988 0.000 0.008 0.004
#> SRR1191954     1  0.0524      0.892 0.988 0.000 0.008 0.004
#> SRR1191990     1  0.5645      0.459 0.604 0.000 0.032 0.364
#> SRR1191991     1  0.5645      0.459 0.604 0.000 0.032 0.364
#> SRR1192016     3  0.4250      1.000 0.000 0.000 0.724 0.276
#> SRR1192017     3  0.4250      1.000 0.000 0.000 0.724 0.276
#> SRR1192073     3  0.4250      1.000 0.000 0.000 0.724 0.276
#> SRR1192072     3  0.4250      1.000 0.000 0.000 0.724 0.276
#> SRR1192167     4  0.4908     -0.336 0.016 0.000 0.292 0.692
#> SRR1192166     4  0.4908     -0.336 0.016 0.000 0.292 0.692
#> SRR1192321     3  0.4250      1.000 0.000 0.000 0.724 0.276
#> SRR1192353     1  0.0524      0.893 0.988 0.000 0.004 0.008
#> SRR1192354     1  0.0524      0.893 0.988 0.000 0.004 0.008
#> SRR1192370     1  0.4250      0.802 0.724 0.000 0.276 0.000
#> SRR1192371     1  0.4250      0.802 0.724 0.000 0.276 0.000
#> SRR1192399     1  0.0895      0.891 0.976 0.000 0.004 0.020
#> SRR1192398     1  0.0895      0.891 0.976 0.000 0.004 0.020
#> SRR1192417     4  0.4989      0.543 0.000 0.472 0.000 0.528
#> SRR1192418     4  0.4989      0.543 0.000 0.472 0.000 0.528
#> SRR1192415     4  0.4989      0.543 0.000 0.472 0.000 0.528
#> SRR1192416     4  0.4989      0.543 0.000 0.472 0.000 0.528
#> SRR1192413     4  0.4989      0.543 0.000 0.472 0.000 0.528
#> SRR1192414     4  0.4989      0.543 0.000 0.472 0.000 0.528
#> SRR1192420     4  0.4989      0.543 0.000 0.472 0.000 0.528
#> SRR1192419     4  0.4989      0.543 0.000 0.472 0.000 0.528
#> SRR1192471     1  0.4250      0.802 0.724 0.000 0.276 0.000
#> SRR1192470     1  0.4250      0.802 0.724 0.000 0.276 0.000
#> SRR1192469     1  0.4250      0.802 0.724 0.000 0.276 0.000
#> SRR1192468     1  0.4250      0.802 0.724 0.000 0.276 0.000
#> SRR1192467     1  0.4250      0.802 0.724 0.000 0.276 0.000
#> SRR1192466     1  0.4250      0.802 0.724 0.000 0.276 0.000
#> SRR1192465     1  0.4250      0.802 0.724 0.000 0.276 0.000
#> SRR1192500     1  0.0188      0.894 0.996 0.000 0.004 0.000
#> SRR1192501     1  0.0188      0.894 0.996 0.000 0.004 0.000
#> SRR1192502     1  0.0188      0.894 0.996 0.000 0.004 0.000
#> SRR1192503     1  0.0188      0.894 0.996 0.000 0.004 0.000
#> SRR1192496     1  0.0188      0.894 0.996 0.000 0.004 0.000
#> SRR1192497     1  0.0188      0.894 0.996 0.000 0.004 0.000
#> SRR1192499     1  0.0188      0.894 0.996 0.000 0.004 0.000
#> SRR1192641     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192640     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192643     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192642     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192644     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192645     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192646     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192647     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192836     4  0.2075      0.198 0.016 0.004 0.044 0.936
#> SRR1192838     4  0.2075      0.198 0.016 0.004 0.044 0.936
#> SRR1192837     4  0.2075      0.198 0.016 0.004 0.044 0.936
#> SRR1192839     4  0.2075      0.198 0.016 0.004 0.044 0.936
#> SRR1192963     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192966     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192965     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1192964     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1193005     1  0.0376      0.893 0.992 0.000 0.004 0.004
#> SRR1193006     1  0.0188      0.894 0.996 0.000 0.004 0.000
#> SRR1193007     1  0.0376      0.893 0.992 0.000 0.004 0.004
#> SRR1193008     1  0.0188      0.894 0.996 0.000 0.004 0.000
#> SRR1193011     1  0.4250      0.802 0.724 0.000 0.276 0.000
#> SRR1193012     1  0.4250      0.802 0.724 0.000 0.276 0.000
#> SRR1193009     1  0.4250      0.802 0.724 0.000 0.276 0.000
#> SRR1193010     1  0.4250      0.802 0.724 0.000 0.276 0.000
#> SRR1193014     1  0.0524      0.893 0.988 0.000 0.004 0.008
#> SRR1193015     1  0.0779      0.891 0.980 0.000 0.004 0.016
#> SRR1193013     1  0.0779      0.891 0.980 0.000 0.004 0.016
#> SRR1193018     1  0.0707      0.894 0.980 0.000 0.020 0.000
#> SRR1193016     1  0.0707      0.894 0.980 0.000 0.020 0.000
#> SRR1193017     1  0.0707      0.894 0.980 0.000 0.020 0.000
#> SRR1193100     1  0.0895      0.894 0.976 0.000 0.020 0.004
#> SRR1193101     1  0.0895      0.894 0.976 0.000 0.020 0.004
#> SRR1193102     1  0.0895      0.894 0.976 0.000 0.020 0.004
#> SRR1193104     1  0.4250      0.802 0.724 0.000 0.276 0.000
#> SRR1193103     1  0.4250      0.802 0.724 0.000 0.276 0.000
#> SRR1193105     1  0.4250      0.802 0.724 0.000 0.276 0.000
#> SRR1193106     1  0.4250      0.802 0.724 0.000 0.276 0.000
#> SRR1193198     1  0.0524      0.893 0.988 0.000 0.004 0.008
#> SRR1193197     1  0.0524      0.893 0.988 0.000 0.004 0.008
#> SRR1193199     1  0.0524      0.893 0.988 0.000 0.004 0.008
#> SRR1193405     1  0.0707      0.894 0.980 0.000 0.020 0.000
#> SRR1193404     1  0.0707      0.894 0.980 0.000 0.020 0.000
#> SRR1193403     1  0.0707      0.894 0.980 0.000 0.020 0.000
#> SRR1193522     1  0.0188      0.894 0.996 0.000 0.004 0.000
#> SRR1193523     1  0.0188      0.894 0.996 0.000 0.004 0.000
#> SRR1193524     1  0.0188      0.894 0.996 0.000 0.004 0.000
#> SRR1193638     1  0.4277      0.799 0.720 0.000 0.280 0.000
#> SRR1193639     1  0.4277      0.799 0.720 0.000 0.280 0.000
#> SRR1195621     1  0.4277      0.799 0.720 0.000 0.280 0.000
#> SRR1195619     1  0.4277      0.799 0.720 0.000 0.280 0.000
#> SRR1195620     1  0.4277      0.799 0.720 0.000 0.280 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1190372     2  0.4171    0.71330 0.000 0.604 0.000 0.396 0.000
#> SRR1190371     2  0.4171    0.71330 0.000 0.604 0.000 0.396 0.000
#> SRR1190370     2  0.4171    0.71330 0.000 0.604 0.000 0.396 0.000
#> SRR1190368     2  0.4171    0.71330 0.000 0.604 0.000 0.396 0.000
#> SRR1190369     2  0.4171    0.71330 0.000 0.604 0.000 0.396 0.000
#> SRR1190366     2  0.4171    0.71330 0.000 0.604 0.000 0.396 0.000
#> SRR1190367     2  0.4171    0.71330 0.000 0.604 0.000 0.396 0.000
#> SRR1190365     2  0.4171    0.71330 0.000 0.604 0.000 0.396 0.000
#> SRR1190467     3  0.0000    1.00000 0.000 0.000 1.000 0.000 0.000
#> SRR1190466     3  0.0000    1.00000 0.000 0.000 1.000 0.000 0.000
#> SRR1190465     3  0.0000    1.00000 0.000 0.000 1.000 0.000 0.000
#> SRR1190464     3  0.0000    1.00000 0.000 0.000 1.000 0.000 0.000
#> SRR1190462     3  0.0000    1.00000 0.000 0.000 1.000 0.000 0.000
#> SRR1190461     3  0.0000    1.00000 0.000 0.000 1.000 0.000 0.000
#> SRR1190460     3  0.0000    1.00000 0.000 0.000 1.000 0.000 0.000
#> SRR1190509     5  0.4268    0.18829 0.444 0.000 0.000 0.000 0.556
#> SRR1190504     5  0.4268    0.18829 0.444 0.000 0.000 0.000 0.556
#> SRR1190503     5  0.4268    0.18829 0.444 0.000 0.000 0.000 0.556
#> SRR1190502     5  0.4268    0.18829 0.444 0.000 0.000 0.000 0.556
#> SRR1190508     5  0.4268    0.18829 0.444 0.000 0.000 0.000 0.556
#> SRR1190507     5  0.4268    0.18829 0.444 0.000 0.000 0.000 0.556
#> SRR1190506     5  0.4268    0.18829 0.444 0.000 0.000 0.000 0.556
#> SRR1190505     5  0.4268    0.18829 0.444 0.000 0.000 0.000 0.556
#> SRR1191342     4  0.0000    1.00000 0.000 0.000 0.000 1.000 0.000
#> SRR1191344     4  0.0000    1.00000 0.000 0.000 0.000 1.000 0.000
#> SRR1191343     4  0.0000    1.00000 0.000 0.000 0.000 1.000 0.000
#> SRR1191349     4  0.0000    1.00000 0.000 0.000 0.000 1.000 0.000
#> SRR1191345     4  0.0000    1.00000 0.000 0.000 0.000 1.000 0.000
#> SRR1191346     4  0.0000    1.00000 0.000 0.000 0.000 1.000 0.000
#> SRR1191347     4  0.0000    1.00000 0.000 0.000 0.000 1.000 0.000
#> SRR1191348     4  0.0000    1.00000 0.000 0.000 0.000 1.000 0.000
#> SRR1191668     5  0.8781   -0.27223 0.020 0.148 0.272 0.216 0.344
#> SRR1191667     5  0.8781   -0.27223 0.020 0.148 0.272 0.216 0.344
#> SRR1191673     5  0.8625   -0.29873 0.020 0.116 0.304 0.216 0.344
#> SRR1191672     5  0.8625   -0.29873 0.020 0.116 0.304 0.216 0.344
#> SRR1191695     3  0.0000    1.00000 0.000 0.000 1.000 0.000 0.000
#> SRR1191694     3  0.0000    1.00000 0.000 0.000 1.000 0.000 0.000
#> SRR1191783     3  0.0000    1.00000 0.000 0.000 1.000 0.000 0.000
#> SRR1191876     3  0.0000    1.00000 0.000 0.000 1.000 0.000 0.000
#> SRR1191914     5  0.4273    0.16220 0.448 0.000 0.000 0.000 0.552
#> SRR1191915     5  0.4268    0.16826 0.444 0.000 0.000 0.000 0.556
#> SRR1191953     5  0.4278    0.15846 0.452 0.000 0.000 0.000 0.548
#> SRR1191954     5  0.4273    0.16220 0.448 0.000 0.000 0.000 0.552
#> SRR1191990     5  0.5522    0.14300 0.028 0.164 0.072 0.016 0.720
#> SRR1191991     5  0.5522    0.14300 0.028 0.164 0.072 0.016 0.720
#> SRR1192016     3  0.0000    1.00000 0.000 0.000 1.000 0.000 0.000
#> SRR1192017     3  0.0000    1.00000 0.000 0.000 1.000 0.000 0.000
#> SRR1192073     3  0.0000    1.00000 0.000 0.000 1.000 0.000 0.000
#> SRR1192072     3  0.0000    1.00000 0.000 0.000 1.000 0.000 0.000
#> SRR1192167     5  0.8882   -0.24486 0.020 0.188 0.232 0.216 0.344
#> SRR1192166     5  0.8882   -0.24486 0.020 0.188 0.232 0.216 0.344
#> SRR1192321     3  0.0000    1.00000 0.000 0.000 1.000 0.000 0.000
#> SRR1192353     5  0.5157   -0.03457 0.440 0.000 0.040 0.000 0.520
#> SRR1192354     5  0.5157   -0.03457 0.440 0.000 0.040 0.000 0.520
#> SRR1192370     1  0.1571    0.57304 0.936 0.000 0.004 0.000 0.060
#> SRR1192371     1  0.1571    0.57304 0.936 0.000 0.004 0.000 0.060
#> SRR1192399     5  0.5167    0.04454 0.404 0.000 0.044 0.000 0.552
#> SRR1192398     5  0.5167    0.04454 0.404 0.000 0.044 0.000 0.552
#> SRR1192417     4  0.0000    1.00000 0.000 0.000 0.000 1.000 0.000
#> SRR1192418     4  0.0000    1.00000 0.000 0.000 0.000 1.000 0.000
#> SRR1192415     4  0.0000    1.00000 0.000 0.000 0.000 1.000 0.000
#> SRR1192416     4  0.0000    1.00000 0.000 0.000 0.000 1.000 0.000
#> SRR1192413     4  0.0000    1.00000 0.000 0.000 0.000 1.000 0.000
#> SRR1192414     4  0.0000    1.00000 0.000 0.000 0.000 1.000 0.000
#> SRR1192420     4  0.0000    1.00000 0.000 0.000 0.000 1.000 0.000
#> SRR1192419     4  0.0000    1.00000 0.000 0.000 0.000 1.000 0.000
#> SRR1192471     1  0.0162    0.59947 0.996 0.000 0.000 0.000 0.004
#> SRR1192470     1  0.0000    0.60032 1.000 0.000 0.000 0.000 0.000
#> SRR1192469     1  0.0000    0.60032 1.000 0.000 0.000 0.000 0.000
#> SRR1192468     1  0.0000    0.60032 1.000 0.000 0.000 0.000 0.000
#> SRR1192467     1  0.0162    0.59947 0.996 0.000 0.000 0.000 0.004
#> SRR1192466     1  0.0162    0.59947 0.996 0.000 0.000 0.000 0.004
#> SRR1192465     1  0.0000    0.60032 1.000 0.000 0.000 0.000 0.000
#> SRR1192500     5  0.4304    0.10402 0.484 0.000 0.000 0.000 0.516
#> SRR1192501     5  0.4305    0.09210 0.488 0.000 0.000 0.000 0.512
#> SRR1192502     5  0.4302    0.11014 0.480 0.000 0.000 0.000 0.520
#> SRR1192503     5  0.4306    0.08145 0.492 0.000 0.000 0.000 0.508
#> SRR1192496     5  0.4306    0.08145 0.492 0.000 0.000 0.000 0.508
#> SRR1192497     5  0.4302    0.11014 0.480 0.000 0.000 0.000 0.520
#> SRR1192499     5  0.4306    0.08667 0.492 0.000 0.000 0.000 0.508
#> SRR1192641     2  0.4015    0.73758 0.000 0.652 0.000 0.348 0.000
#> SRR1192640     2  0.4015    0.73758 0.000 0.652 0.000 0.348 0.000
#> SRR1192643     2  0.4015    0.73758 0.000 0.652 0.000 0.348 0.000
#> SRR1192642     2  0.4015    0.73758 0.000 0.652 0.000 0.348 0.000
#> SRR1192644     2  0.4015    0.73758 0.000 0.652 0.000 0.348 0.000
#> SRR1192645     2  0.4015    0.73758 0.000 0.652 0.000 0.348 0.000
#> SRR1192646     2  0.4015    0.73758 0.000 0.652 0.000 0.348 0.000
#> SRR1192647     2  0.4015    0.73758 0.000 0.652 0.000 0.348 0.000
#> SRR1192836     2  0.8366   -0.11865 0.020 0.348 0.072 0.260 0.300
#> SRR1192838     2  0.8366   -0.11865 0.020 0.348 0.072 0.260 0.300
#> SRR1192837     2  0.8366   -0.11865 0.020 0.348 0.072 0.260 0.300
#> SRR1192839     2  0.8366   -0.11865 0.020 0.348 0.072 0.260 0.300
#> SRR1192963     2  0.4015    0.73758 0.000 0.652 0.000 0.348 0.000
#> SRR1192966     2  0.4015    0.73758 0.000 0.652 0.000 0.348 0.000
#> SRR1192965     2  0.4015    0.73758 0.000 0.652 0.000 0.348 0.000
#> SRR1192964     2  0.4015    0.73758 0.000 0.652 0.000 0.348 0.000
#> SRR1193005     1  0.4294   -0.00329 0.532 0.000 0.000 0.000 0.468
#> SRR1193006     1  0.4291    0.00438 0.536 0.000 0.000 0.000 0.464
#> SRR1193007     1  0.4302   -0.03590 0.520 0.000 0.000 0.000 0.480
#> SRR1193008     1  0.4291    0.00473 0.536 0.000 0.000 0.000 0.464
#> SRR1193011     1  0.0000    0.60032 1.000 0.000 0.000 0.000 0.000
#> SRR1193012     1  0.0000    0.60032 1.000 0.000 0.000 0.000 0.000
#> SRR1193009     1  0.0290    0.59807 0.992 0.000 0.000 0.000 0.008
#> SRR1193010     1  0.0000    0.60032 1.000 0.000 0.000 0.000 0.000
#> SRR1193014     1  0.4306    0.17799 0.508 0.000 0.000 0.000 0.492
#> SRR1193015     1  0.4307    0.17274 0.504 0.000 0.000 0.000 0.496
#> SRR1193013     1  0.4307    0.17274 0.504 0.000 0.000 0.000 0.496
#> SRR1193018     1  0.4219    0.20687 0.584 0.000 0.000 0.000 0.416
#> SRR1193016     1  0.4219    0.20687 0.584 0.000 0.000 0.000 0.416
#> SRR1193017     1  0.4219    0.20687 0.584 0.000 0.000 0.000 0.416
#> SRR1193100     1  0.4249    0.16591 0.568 0.000 0.000 0.000 0.432
#> SRR1193101     1  0.4249    0.16591 0.568 0.000 0.000 0.000 0.432
#> SRR1193102     1  0.4256    0.15276 0.564 0.000 0.000 0.000 0.436
#> SRR1193104     1  0.0290    0.59754 0.992 0.000 0.000 0.000 0.008
#> SRR1193103     1  0.0290    0.59754 0.992 0.000 0.000 0.000 0.008
#> SRR1193105     1  0.0963    0.58520 0.964 0.000 0.000 0.000 0.036
#> SRR1193106     1  0.0963    0.58520 0.964 0.000 0.000 0.000 0.036
#> SRR1193198     1  0.4306    0.17283 0.508 0.000 0.000 0.000 0.492
#> SRR1193197     1  0.4305    0.17748 0.512 0.000 0.000 0.000 0.488
#> SRR1193199     1  0.4306    0.17283 0.508 0.000 0.000 0.000 0.492
#> SRR1193405     1  0.4210    0.21505 0.588 0.000 0.000 0.000 0.412
#> SRR1193404     1  0.4210    0.21505 0.588 0.000 0.000 0.000 0.412
#> SRR1193403     1  0.4210    0.21505 0.588 0.000 0.000 0.000 0.412
#> SRR1193522     1  0.4192    0.21013 0.596 0.000 0.000 0.000 0.404
#> SRR1193523     1  0.4192    0.21013 0.596 0.000 0.000 0.000 0.404
#> SRR1193524     1  0.4192    0.21013 0.596 0.000 0.000 0.000 0.404
#> SRR1193638     1  0.1270    0.56539 0.948 0.000 0.000 0.000 0.052
#> SRR1193639     1  0.1270    0.56539 0.948 0.000 0.000 0.000 0.052
#> SRR1195621     1  0.1270    0.56539 0.948 0.000 0.000 0.000 0.052
#> SRR1195619     1  0.1270    0.56539 0.948 0.000 0.000 0.000 0.052
#> SRR1195620     1  0.1270    0.56539 0.948 0.000 0.000 0.000 0.052

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1190372     2  0.3330      0.912 0.000 0.716 0.000 0.284 0.000 0.000
#> SRR1190371     2  0.3330      0.912 0.000 0.716 0.000 0.284 0.000 0.000
#> SRR1190370     2  0.3330      0.912 0.000 0.716 0.000 0.284 0.000 0.000
#> SRR1190368     2  0.3330      0.912 0.000 0.716 0.000 0.284 0.000 0.000
#> SRR1190369     2  0.3330      0.912 0.000 0.716 0.000 0.284 0.000 0.000
#> SRR1190366     2  0.3330      0.912 0.000 0.716 0.000 0.284 0.000 0.000
#> SRR1190367     2  0.3330      0.912 0.000 0.716 0.000 0.284 0.000 0.000
#> SRR1190365     2  0.3330      0.912 0.000 0.716 0.000 0.284 0.000 0.000
#> SRR1190467     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190466     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190465     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190464     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190462     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190461     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190460     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190509     1  0.3782      0.639 0.636 0.004 0.000 0.000 0.360 0.000
#> SRR1190504     1  0.3782      0.639 0.636 0.004 0.000 0.000 0.360 0.000
#> SRR1190503     1  0.3782      0.639 0.636 0.004 0.000 0.000 0.360 0.000
#> SRR1190502     1  0.3782      0.639 0.636 0.004 0.000 0.000 0.360 0.000
#> SRR1190508     1  0.3782      0.639 0.636 0.004 0.000 0.000 0.360 0.000
#> SRR1190507     1  0.3782      0.639 0.636 0.004 0.000 0.000 0.360 0.000
#> SRR1190506     1  0.3782      0.639 0.636 0.004 0.000 0.000 0.360 0.000
#> SRR1190505     1  0.3782      0.639 0.636 0.004 0.000 0.000 0.360 0.000
#> SRR1191342     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191344     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191343     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191349     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191345     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191346     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191347     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191348     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191668     6  0.1418      0.909 0.032 0.000 0.024 0.000 0.000 0.944
#> SRR1191667     6  0.1418      0.909 0.032 0.000 0.024 0.000 0.000 0.944
#> SRR1191673     6  0.1972      0.903 0.056 0.004 0.024 0.000 0.000 0.916
#> SRR1191672     6  0.1972      0.903 0.056 0.004 0.024 0.000 0.000 0.916
#> SRR1191695     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1191694     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1191783     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1191876     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1191914     1  0.4787      0.602 0.620 0.064 0.000 0.000 0.312 0.004
#> SRR1191915     1  0.4736      0.604 0.624 0.060 0.000 0.000 0.312 0.004
#> SRR1191953     1  0.4728      0.605 0.616 0.056 0.000 0.000 0.324 0.004
#> SRR1191954     1  0.4713      0.604 0.620 0.056 0.000 0.000 0.320 0.004
#> SRR1191990     6  0.4000      0.621 0.228 0.048 0.000 0.000 0.000 0.724
#> SRR1191991     6  0.4000      0.621 0.228 0.048 0.000 0.000 0.000 0.724
#> SRR1192016     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192017     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192073     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192072     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192167     6  0.1536      0.910 0.040 0.004 0.016 0.000 0.000 0.940
#> SRR1192166     6  0.1536      0.910 0.040 0.004 0.016 0.000 0.000 0.940
#> SRR1192321     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192353     1  0.6595      0.437 0.432 0.064 0.000 0.000 0.364 0.140
#> SRR1192354     1  0.6595      0.437 0.432 0.064 0.000 0.000 0.364 0.140
#> SRR1192370     5  0.3521      0.561 0.116 0.024 0.000 0.000 0.820 0.040
#> SRR1192371     5  0.3521      0.561 0.116 0.024 0.000 0.000 0.820 0.040
#> SRR1192399     1  0.6947      0.376 0.404 0.068 0.000 0.000 0.308 0.220
#> SRR1192398     1  0.6947      0.376 0.404 0.068 0.000 0.000 0.308 0.220
#> SRR1192417     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1192418     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1192415     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1192416     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1192413     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1192414     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1192420     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1192419     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1192471     5  0.0713      0.688 0.028 0.000 0.000 0.000 0.972 0.000
#> SRR1192470     5  0.0713      0.688 0.028 0.000 0.000 0.000 0.972 0.000
#> SRR1192469     5  0.0713      0.688 0.028 0.000 0.000 0.000 0.972 0.000
#> SRR1192468     5  0.0790      0.687 0.032 0.000 0.000 0.000 0.968 0.000
#> SRR1192467     5  0.0713      0.688 0.028 0.000 0.000 0.000 0.972 0.000
#> SRR1192466     5  0.0713      0.688 0.028 0.000 0.000 0.000 0.972 0.000
#> SRR1192465     5  0.0713      0.688 0.028 0.000 0.000 0.000 0.972 0.000
#> SRR1192500     1  0.3890      0.627 0.596 0.004 0.000 0.000 0.400 0.000
#> SRR1192501     1  0.3890      0.627 0.596 0.004 0.000 0.000 0.400 0.000
#> SRR1192502     1  0.3890      0.627 0.596 0.004 0.000 0.000 0.400 0.000
#> SRR1192503     1  0.3890      0.627 0.596 0.004 0.000 0.000 0.400 0.000
#> SRR1192496     1  0.3890      0.627 0.596 0.004 0.000 0.000 0.400 0.000
#> SRR1192497     1  0.3890      0.627 0.596 0.004 0.000 0.000 0.400 0.000
#> SRR1192499     1  0.3899      0.625 0.592 0.004 0.000 0.000 0.404 0.000
#> SRR1192641     2  0.2664      0.946 0.000 0.816 0.000 0.184 0.000 0.000
#> SRR1192640     2  0.2664      0.946 0.000 0.816 0.000 0.184 0.000 0.000
#> SRR1192643     2  0.2664      0.946 0.000 0.816 0.000 0.184 0.000 0.000
#> SRR1192642     2  0.2664      0.946 0.000 0.816 0.000 0.184 0.000 0.000
#> SRR1192644     2  0.2664      0.946 0.000 0.816 0.000 0.184 0.000 0.000
#> SRR1192645     2  0.2664      0.946 0.000 0.816 0.000 0.184 0.000 0.000
#> SRR1192646     2  0.2664      0.946 0.000 0.816 0.000 0.184 0.000 0.000
#> SRR1192647     2  0.2664      0.946 0.000 0.816 0.000 0.184 0.000 0.000
#> SRR1192836     6  0.0508      0.902 0.012 0.004 0.000 0.000 0.000 0.984
#> SRR1192838     6  0.0508      0.902 0.012 0.004 0.000 0.000 0.000 0.984
#> SRR1192837     6  0.0508      0.902 0.012 0.004 0.000 0.000 0.000 0.984
#> SRR1192839     6  0.0508      0.902 0.012 0.004 0.000 0.000 0.000 0.984
#> SRR1192963     2  0.2664      0.946 0.000 0.816 0.000 0.184 0.000 0.000
#> SRR1192966     2  0.2664      0.946 0.000 0.816 0.000 0.184 0.000 0.000
#> SRR1192965     2  0.2664      0.946 0.000 0.816 0.000 0.184 0.000 0.000
#> SRR1192964     2  0.2664      0.946 0.000 0.816 0.000 0.184 0.000 0.000
#> SRR1193005     1  0.3979      0.596 0.540 0.004 0.000 0.000 0.456 0.000
#> SRR1193006     1  0.3986      0.590 0.532 0.004 0.000 0.000 0.464 0.000
#> SRR1193007     1  0.3986      0.591 0.532 0.004 0.000 0.000 0.464 0.000
#> SRR1193008     1  0.3986      0.590 0.532 0.004 0.000 0.000 0.464 0.000
#> SRR1193011     5  0.0790      0.685 0.032 0.000 0.000 0.000 0.968 0.000
#> SRR1193012     5  0.0865      0.684 0.036 0.000 0.000 0.000 0.964 0.000
#> SRR1193009     5  0.0937      0.680 0.040 0.000 0.000 0.000 0.960 0.000
#> SRR1193010     5  0.0790      0.685 0.032 0.000 0.000 0.000 0.968 0.000
#> SRR1193014     1  0.4834      0.592 0.596 0.060 0.000 0.000 0.340 0.004
#> SRR1193015     1  0.4834      0.592 0.596 0.060 0.000 0.000 0.340 0.004
#> SRR1193013     1  0.4834      0.592 0.596 0.060 0.000 0.000 0.340 0.004
#> SRR1193018     1  0.4996      0.159 0.604 0.100 0.000 0.000 0.296 0.000
#> SRR1193016     1  0.4996      0.159 0.604 0.100 0.000 0.000 0.296 0.000
#> SRR1193017     1  0.5019      0.163 0.604 0.104 0.000 0.000 0.292 0.000
#> SRR1193100     1  0.4913      0.206 0.636 0.112 0.000 0.000 0.252 0.000
#> SRR1193101     1  0.4913      0.206 0.636 0.112 0.000 0.000 0.252 0.000
#> SRR1193102     1  0.4913      0.206 0.636 0.112 0.000 0.000 0.252 0.000
#> SRR1193104     5  0.4513      0.569 0.212 0.096 0.000 0.000 0.692 0.000
#> SRR1193103     5  0.4513      0.569 0.212 0.096 0.000 0.000 0.692 0.000
#> SRR1193105     5  0.1524      0.655 0.060 0.008 0.000 0.000 0.932 0.000
#> SRR1193106     5  0.1524      0.655 0.060 0.008 0.000 0.000 0.932 0.000
#> SRR1193198     1  0.4872      0.592 0.596 0.064 0.000 0.000 0.336 0.004
#> SRR1193197     1  0.4872      0.592 0.596 0.064 0.000 0.000 0.336 0.004
#> SRR1193199     1  0.4872      0.592 0.596 0.064 0.000 0.000 0.336 0.004
#> SRR1193405     1  0.5056      0.176 0.588 0.100 0.000 0.000 0.312 0.000
#> SRR1193404     1  0.5042      0.182 0.592 0.100 0.000 0.000 0.308 0.000
#> SRR1193403     1  0.5042      0.182 0.592 0.100 0.000 0.000 0.308 0.000
#> SRR1193522     5  0.3899     -0.401 0.404 0.004 0.000 0.000 0.592 0.000
#> SRR1193523     5  0.3881     -0.389 0.396 0.004 0.000 0.000 0.600 0.000
#> SRR1193524     5  0.3890     -0.394 0.400 0.004 0.000 0.000 0.596 0.000
#> SRR1193638     5  0.4529      0.565 0.180 0.096 0.000 0.000 0.716 0.008
#> SRR1193639     5  0.4529      0.565 0.180 0.096 0.000 0.000 0.716 0.008
#> SRR1195621     5  0.4529      0.565 0.180 0.096 0.000 0.000 0.716 0.008
#> SRR1195619     5  0.4529      0.565 0.180 0.096 0.000 0.000 0.716 0.008
#> SRR1195620     5  0.4529      0.565 0.180 0.096 0.000 0.000 0.716 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15363 rows and 131 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.953           0.917       0.968         0.4800 0.512   0.512
#> 3 3 1.000           1.000       1.000         0.2627 0.856   0.726
#> 4 4 0.942           0.935       0.937         0.0424 1.000   1.000
#> 5 5 0.762           0.778       0.869         0.1134 0.904   0.758
#> 6 6 0.758           0.682       0.819         0.0926 0.856   0.555

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1190372     2   0.000      0.939 0.000 1.000
#> SRR1190371     2   0.000      0.939 0.000 1.000
#> SRR1190370     2   0.000      0.939 0.000 1.000
#> SRR1190368     2   0.000      0.939 0.000 1.000
#> SRR1190369     2   0.000      0.939 0.000 1.000
#> SRR1190366     2   0.000      0.939 0.000 1.000
#> SRR1190367     2   0.000      0.939 0.000 1.000
#> SRR1190365     2   0.000      0.939 0.000 1.000
#> SRR1190467     2   0.973      0.383 0.404 0.596
#> SRR1190466     1   1.000     -0.125 0.500 0.500
#> SRR1190465     2   1.000      0.140 0.488 0.512
#> SRR1190464     2   0.995      0.231 0.460 0.540
#> SRR1190462     2   0.992      0.267 0.448 0.552
#> SRR1190461     2   1.000      0.111 0.496 0.504
#> SRR1190460     1   1.000     -0.110 0.504 0.496
#> SRR1190509     1   0.000      0.986 1.000 0.000
#> SRR1190504     1   0.000      0.986 1.000 0.000
#> SRR1190503     1   0.000      0.986 1.000 0.000
#> SRR1190502     1   0.000      0.986 1.000 0.000
#> SRR1190508     1   0.000      0.986 1.000 0.000
#> SRR1190507     1   0.000      0.986 1.000 0.000
#> SRR1190506     1   0.000      0.986 1.000 0.000
#> SRR1190505     1   0.000      0.986 1.000 0.000
#> SRR1191342     2   0.000      0.939 0.000 1.000
#> SRR1191344     2   0.000      0.939 0.000 1.000
#> SRR1191343     2   0.000      0.939 0.000 1.000
#> SRR1191349     2   0.000      0.939 0.000 1.000
#> SRR1191345     2   0.000      0.939 0.000 1.000
#> SRR1191346     2   0.000      0.939 0.000 1.000
#> SRR1191347     2   0.000      0.939 0.000 1.000
#> SRR1191348     2   0.000      0.939 0.000 1.000
#> SRR1191668     1   0.000      0.986 1.000 0.000
#> SRR1191667     1   0.000      0.986 1.000 0.000
#> SRR1191673     1   0.000      0.986 1.000 0.000
#> SRR1191672     1   0.000      0.986 1.000 0.000
#> SRR1191695     2   0.141      0.927 0.020 0.980
#> SRR1191694     2   0.141      0.927 0.020 0.980
#> SRR1191783     2   0.118      0.929 0.016 0.984
#> SRR1191876     2   0.295      0.903 0.052 0.948
#> SRR1191914     1   0.000      0.986 1.000 0.000
#> SRR1191915     1   0.000      0.986 1.000 0.000
#> SRR1191953     1   0.000      0.986 1.000 0.000
#> SRR1191954     1   0.000      0.986 1.000 0.000
#> SRR1191990     1   0.000      0.986 1.000 0.000
#> SRR1191991     1   0.000      0.986 1.000 0.000
#> SRR1192016     2   0.443      0.870 0.092 0.908
#> SRR1192017     2   0.443      0.870 0.092 0.908
#> SRR1192073     2   0.671      0.782 0.176 0.824
#> SRR1192072     2   0.671      0.782 0.176 0.824
#> SRR1192167     1   0.000      0.986 1.000 0.000
#> SRR1192166     1   0.000      0.986 1.000 0.000
#> SRR1192321     2   0.714      0.757 0.196 0.804
#> SRR1192353     1   0.000      0.986 1.000 0.000
#> SRR1192354     1   0.000      0.986 1.000 0.000
#> SRR1192370     1   0.000      0.986 1.000 0.000
#> SRR1192371     1   0.000      0.986 1.000 0.000
#> SRR1192399     1   0.000      0.986 1.000 0.000
#> SRR1192398     1   0.000      0.986 1.000 0.000
#> SRR1192417     2   0.000      0.939 0.000 1.000
#> SRR1192418     2   0.000      0.939 0.000 1.000
#> SRR1192415     2   0.000      0.939 0.000 1.000
#> SRR1192416     2   0.000      0.939 0.000 1.000
#> SRR1192413     2   0.000      0.939 0.000 1.000
#> SRR1192414     2   0.000      0.939 0.000 1.000
#> SRR1192420     2   0.000      0.939 0.000 1.000
#> SRR1192419     2   0.000      0.939 0.000 1.000
#> SRR1192471     1   0.000      0.986 1.000 0.000
#> SRR1192470     1   0.000      0.986 1.000 0.000
#> SRR1192469     1   0.000      0.986 1.000 0.000
#> SRR1192468     1   0.000      0.986 1.000 0.000
#> SRR1192467     1   0.000      0.986 1.000 0.000
#> SRR1192466     1   0.000      0.986 1.000 0.000
#> SRR1192465     1   0.000      0.986 1.000 0.000
#> SRR1192500     1   0.000      0.986 1.000 0.000
#> SRR1192501     1   0.000      0.986 1.000 0.000
#> SRR1192502     1   0.000      0.986 1.000 0.000
#> SRR1192503     1   0.000      0.986 1.000 0.000
#> SRR1192496     1   0.000      0.986 1.000 0.000
#> SRR1192497     1   0.000      0.986 1.000 0.000
#> SRR1192499     1   0.000      0.986 1.000 0.000
#> SRR1192641     2   0.000      0.939 0.000 1.000
#> SRR1192640     2   0.000      0.939 0.000 1.000
#> SRR1192643     2   0.000      0.939 0.000 1.000
#> SRR1192642     2   0.000      0.939 0.000 1.000
#> SRR1192644     2   0.000      0.939 0.000 1.000
#> SRR1192645     2   0.000      0.939 0.000 1.000
#> SRR1192646     2   0.000      0.939 0.000 1.000
#> SRR1192647     2   0.000      0.939 0.000 1.000
#> SRR1192836     2   0.000      0.939 0.000 1.000
#> SRR1192838     2   0.000      0.939 0.000 1.000
#> SRR1192837     2   0.000      0.939 0.000 1.000
#> SRR1192839     2   0.000      0.939 0.000 1.000
#> SRR1192963     2   0.000      0.939 0.000 1.000
#> SRR1192966     2   0.000      0.939 0.000 1.000
#> SRR1192965     2   0.000      0.939 0.000 1.000
#> SRR1192964     2   0.000      0.939 0.000 1.000
#> SRR1193005     1   0.000      0.986 1.000 0.000
#> SRR1193006     1   0.000      0.986 1.000 0.000
#> SRR1193007     1   0.000      0.986 1.000 0.000
#> SRR1193008     1   0.000      0.986 1.000 0.000
#> SRR1193011     1   0.000      0.986 1.000 0.000
#> SRR1193012     1   0.000      0.986 1.000 0.000
#> SRR1193009     1   0.000      0.986 1.000 0.000
#> SRR1193010     1   0.000      0.986 1.000 0.000
#> SRR1193014     1   0.000      0.986 1.000 0.000
#> SRR1193015     1   0.000      0.986 1.000 0.000
#> SRR1193013     1   0.000      0.986 1.000 0.000
#> SRR1193018     1   0.000      0.986 1.000 0.000
#> SRR1193016     1   0.000      0.986 1.000 0.000
#> SRR1193017     1   0.000      0.986 1.000 0.000
#> SRR1193100     1   0.000      0.986 1.000 0.000
#> SRR1193101     1   0.000      0.986 1.000 0.000
#> SRR1193102     1   0.000      0.986 1.000 0.000
#> SRR1193104     1   0.000      0.986 1.000 0.000
#> SRR1193103     1   0.000      0.986 1.000 0.000
#> SRR1193105     1   0.000      0.986 1.000 0.000
#> SRR1193106     1   0.000      0.986 1.000 0.000
#> SRR1193198     1   0.000      0.986 1.000 0.000
#> SRR1193197     1   0.000      0.986 1.000 0.000
#> SRR1193199     1   0.000      0.986 1.000 0.000
#> SRR1193405     1   0.000      0.986 1.000 0.000
#> SRR1193404     1   0.000      0.986 1.000 0.000
#> SRR1193403     1   0.000      0.986 1.000 0.000
#> SRR1193522     1   0.000      0.986 1.000 0.000
#> SRR1193523     1   0.000      0.986 1.000 0.000
#> SRR1193524     1   0.000      0.986 1.000 0.000
#> SRR1193638     1   0.000      0.986 1.000 0.000
#> SRR1193639     1   0.000      0.986 1.000 0.000
#> SRR1195621     1   0.000      0.986 1.000 0.000
#> SRR1195619     1   0.000      0.986 1.000 0.000
#> SRR1195620     1   0.000      0.986 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette p1 p2 p3
#> SRR1190372     2       0          1  0  1  0
#> SRR1190371     2       0          1  0  1  0
#> SRR1190370     2       0          1  0  1  0
#> SRR1190368     2       0          1  0  1  0
#> SRR1190369     2       0          1  0  1  0
#> SRR1190366     2       0          1  0  1  0
#> SRR1190367     2       0          1  0  1  0
#> SRR1190365     2       0          1  0  1  0
#> SRR1190467     3       0          1  0  0  1
#> SRR1190466     3       0          1  0  0  1
#> SRR1190465     3       0          1  0  0  1
#> SRR1190464     3       0          1  0  0  1
#> SRR1190462     3       0          1  0  0  1
#> SRR1190461     3       0          1  0  0  1
#> SRR1190460     3       0          1  0  0  1
#> SRR1190509     1       0          1  1  0  0
#> SRR1190504     1       0          1  1  0  0
#> SRR1190503     1       0          1  1  0  0
#> SRR1190502     1       0          1  1  0  0
#> SRR1190508     1       0          1  1  0  0
#> SRR1190507     1       0          1  1  0  0
#> SRR1190506     1       0          1  1  0  0
#> SRR1190505     1       0          1  1  0  0
#> SRR1191342     2       0          1  0  1  0
#> SRR1191344     2       0          1  0  1  0
#> SRR1191343     2       0          1  0  1  0
#> SRR1191349     2       0          1  0  1  0
#> SRR1191345     2       0          1  0  1  0
#> SRR1191346     2       0          1  0  1  0
#> SRR1191347     2       0          1  0  1  0
#> SRR1191348     2       0          1  0  1  0
#> SRR1191668     3       0          1  0  0  1
#> SRR1191667     3       0          1  0  0  1
#> SRR1191673     3       0          1  0  0  1
#> SRR1191672     3       0          1  0  0  1
#> SRR1191695     3       0          1  0  0  1
#> SRR1191694     3       0          1  0  0  1
#> SRR1191783     3       0          1  0  0  1
#> SRR1191876     3       0          1  0  0  1
#> SRR1191914     1       0          1  1  0  0
#> SRR1191915     1       0          1  1  0  0
#> SRR1191953     1       0          1  1  0  0
#> SRR1191954     1       0          1  1  0  0
#> SRR1191990     1       0          1  1  0  0
#> SRR1191991     1       0          1  1  0  0
#> SRR1192016     3       0          1  0  0  1
#> SRR1192017     3       0          1  0  0  1
#> SRR1192073     3       0          1  0  0  1
#> SRR1192072     3       0          1  0  0  1
#> SRR1192167     3       0          1  0  0  1
#> SRR1192166     3       0          1  0  0  1
#> SRR1192321     3       0          1  0  0  1
#> SRR1192353     1       0          1  1  0  0
#> SRR1192354     1       0          1  1  0  0
#> SRR1192370     1       0          1  1  0  0
#> SRR1192371     1       0          1  1  0  0
#> SRR1192399     1       0          1  1  0  0
#> SRR1192398     1       0          1  1  0  0
#> SRR1192417     2       0          1  0  1  0
#> SRR1192418     2       0          1  0  1  0
#> SRR1192415     2       0          1  0  1  0
#> SRR1192416     2       0          1  0  1  0
#> SRR1192413     2       0          1  0  1  0
#> SRR1192414     2       0          1  0  1  0
#> SRR1192420     2       0          1  0  1  0
#> SRR1192419     2       0          1  0  1  0
#> SRR1192471     1       0          1  1  0  0
#> SRR1192470     1       0          1  1  0  0
#> SRR1192469     1       0          1  1  0  0
#> SRR1192468     1       0          1  1  0  0
#> SRR1192467     1       0          1  1  0  0
#> SRR1192466     1       0          1  1  0  0
#> SRR1192465     1       0          1  1  0  0
#> SRR1192500     1       0          1  1  0  0
#> SRR1192501     1       0          1  1  0  0
#> SRR1192502     1       0          1  1  0  0
#> SRR1192503     1       0          1  1  0  0
#> SRR1192496     1       0          1  1  0  0
#> SRR1192497     1       0          1  1  0  0
#> SRR1192499     1       0          1  1  0  0
#> SRR1192641     2       0          1  0  1  0
#> SRR1192640     2       0          1  0  1  0
#> SRR1192643     2       0          1  0  1  0
#> SRR1192642     2       0          1  0  1  0
#> SRR1192644     2       0          1  0  1  0
#> SRR1192645     2       0          1  0  1  0
#> SRR1192646     2       0          1  0  1  0
#> SRR1192647     2       0          1  0  1  0
#> SRR1192836     2       0          1  0  1  0
#> SRR1192838     2       0          1  0  1  0
#> SRR1192837     2       0          1  0  1  0
#> SRR1192839     2       0          1  0  1  0
#> SRR1192963     2       0          1  0  1  0
#> SRR1192966     2       0          1  0  1  0
#> SRR1192965     2       0          1  0  1  0
#> SRR1192964     2       0          1  0  1  0
#> SRR1193005     1       0          1  1  0  0
#> SRR1193006     1       0          1  1  0  0
#> SRR1193007     1       0          1  1  0  0
#> SRR1193008     1       0          1  1  0  0
#> SRR1193011     1       0          1  1  0  0
#> SRR1193012     1       0          1  1  0  0
#> SRR1193009     1       0          1  1  0  0
#> SRR1193010     1       0          1  1  0  0
#> SRR1193014     1       0          1  1  0  0
#> SRR1193015     1       0          1  1  0  0
#> SRR1193013     1       0          1  1  0  0
#> SRR1193018     1       0          1  1  0  0
#> SRR1193016     1       0          1  1  0  0
#> SRR1193017     1       0          1  1  0  0
#> SRR1193100     1       0          1  1  0  0
#> SRR1193101     1       0          1  1  0  0
#> SRR1193102     1       0          1  1  0  0
#> SRR1193104     1       0          1  1  0  0
#> SRR1193103     1       0          1  1  0  0
#> SRR1193105     1       0          1  1  0  0
#> SRR1193106     1       0          1  1  0  0
#> SRR1193198     1       0          1  1  0  0
#> SRR1193197     1       0          1  1  0  0
#> SRR1193199     1       0          1  1  0  0
#> SRR1193405     1       0          1  1  0  0
#> SRR1193404     1       0          1  1  0  0
#> SRR1193403     1       0          1  1  0  0
#> SRR1193522     1       0          1  1  0  0
#> SRR1193523     1       0          1  1  0  0
#> SRR1193524     1       0          1  1  0  0
#> SRR1193638     1       0          1  1  0  0
#> SRR1193639     1       0          1  1  0  0
#> SRR1195621     1       0          1  1  0  0
#> SRR1195619     1       0          1  1  0  0
#> SRR1195620     1       0          1  1  0  0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3 p4
#> SRR1190372     2  0.0188      0.873 0.000 0.996 0.000 NA
#> SRR1190371     2  0.0188      0.873 0.000 0.996 0.000 NA
#> SRR1190370     2  0.0000      0.872 0.000 1.000 0.000 NA
#> SRR1190368     2  0.0188      0.873 0.000 0.996 0.000 NA
#> SRR1190369     2  0.0188      0.873 0.000 0.996 0.000 NA
#> SRR1190366     2  0.0188      0.873 0.000 0.996 0.000 NA
#> SRR1190367     2  0.0188      0.873 0.000 0.996 0.000 NA
#> SRR1190365     2  0.0188      0.873 0.000 0.996 0.000 NA
#> SRR1190467     3  0.0000      0.986 0.000 0.000 1.000 NA
#> SRR1190466     3  0.0000      0.986 0.000 0.000 1.000 NA
#> SRR1190465     3  0.0000      0.986 0.000 0.000 1.000 NA
#> SRR1190464     3  0.0000      0.986 0.000 0.000 1.000 NA
#> SRR1190462     3  0.0000      0.986 0.000 0.000 1.000 NA
#> SRR1190461     3  0.0000      0.986 0.000 0.000 1.000 NA
#> SRR1190460     3  0.0000      0.986 0.000 0.000 1.000 NA
#> SRR1190509     1  0.0336      0.982 0.992 0.000 0.000 NA
#> SRR1190504     1  0.0336      0.982 0.992 0.000 0.000 NA
#> SRR1190503     1  0.0336      0.982 0.992 0.000 0.000 NA
#> SRR1190502     1  0.0336      0.982 0.992 0.000 0.000 NA
#> SRR1190508     1  0.0336      0.982 0.992 0.000 0.000 NA
#> SRR1190507     1  0.0336      0.982 0.992 0.000 0.000 NA
#> SRR1190506     1  0.0336      0.982 0.992 0.000 0.000 NA
#> SRR1190505     1  0.0336      0.982 0.992 0.000 0.000 NA
#> SRR1191342     2  0.4406      0.828 0.000 0.700 0.000 NA
#> SRR1191344     2  0.4406      0.828 0.000 0.700 0.000 NA
#> SRR1191343     2  0.4406      0.828 0.000 0.700 0.000 NA
#> SRR1191349     2  0.4406      0.828 0.000 0.700 0.000 NA
#> SRR1191345     2  0.4406      0.828 0.000 0.700 0.000 NA
#> SRR1191346     2  0.4406      0.828 0.000 0.700 0.000 NA
#> SRR1191347     2  0.4406      0.828 0.000 0.700 0.000 NA
#> SRR1191348     2  0.4406      0.828 0.000 0.700 0.000 NA
#> SRR1191668     3  0.2861      0.926 0.016 0.000 0.888 NA
#> SRR1191667     3  0.2861      0.926 0.016 0.000 0.888 NA
#> SRR1191673     3  0.0895      0.977 0.004 0.000 0.976 NA
#> SRR1191672     3  0.0895      0.977 0.004 0.000 0.976 NA
#> SRR1191695     3  0.0000      0.986 0.000 0.000 1.000 NA
#> SRR1191694     3  0.0000      0.986 0.000 0.000 1.000 NA
#> SRR1191783     3  0.0000      0.986 0.000 0.000 1.000 NA
#> SRR1191876     3  0.0000      0.986 0.000 0.000 1.000 NA
#> SRR1191914     1  0.0469      0.980 0.988 0.000 0.000 NA
#> SRR1191915     1  0.0469      0.980 0.988 0.000 0.000 NA
#> SRR1191953     1  0.0469      0.980 0.988 0.000 0.000 NA
#> SRR1191954     1  0.0469      0.980 0.988 0.000 0.000 NA
#> SRR1191990     1  0.3486      0.834 0.812 0.000 0.000 NA
#> SRR1191991     1  0.3486      0.834 0.812 0.000 0.000 NA
#> SRR1192016     3  0.0000      0.986 0.000 0.000 1.000 NA
#> SRR1192017     3  0.0000      0.986 0.000 0.000 1.000 NA
#> SRR1192073     3  0.0000      0.986 0.000 0.000 1.000 NA
#> SRR1192072     3  0.0000      0.986 0.000 0.000 1.000 NA
#> SRR1192167     3  0.1902      0.954 0.004 0.000 0.932 NA
#> SRR1192166     3  0.1902      0.954 0.004 0.000 0.932 NA
#> SRR1192321     3  0.0000      0.986 0.000 0.000 1.000 NA
#> SRR1192353     1  0.1792      0.945 0.932 0.000 0.000 NA
#> SRR1192354     1  0.1792      0.945 0.932 0.000 0.000 NA
#> SRR1192370     1  0.0469      0.983 0.988 0.000 0.000 NA
#> SRR1192371     1  0.0469      0.983 0.988 0.000 0.000 NA
#> SRR1192399     1  0.1792      0.945 0.932 0.000 0.000 NA
#> SRR1192398     1  0.1792      0.945 0.932 0.000 0.000 NA
#> SRR1192417     2  0.4431      0.826 0.000 0.696 0.000 NA
#> SRR1192418     2  0.4431      0.826 0.000 0.696 0.000 NA
#> SRR1192415     2  0.4406      0.828 0.000 0.700 0.000 NA
#> SRR1192416     2  0.4406      0.828 0.000 0.700 0.000 NA
#> SRR1192413     2  0.4406      0.828 0.000 0.700 0.000 NA
#> SRR1192414     2  0.4406      0.828 0.000 0.700 0.000 NA
#> SRR1192420     2  0.4406      0.828 0.000 0.700 0.000 NA
#> SRR1192419     2  0.4406      0.828 0.000 0.700 0.000 NA
#> SRR1192471     1  0.0469      0.982 0.988 0.000 0.000 NA
#> SRR1192470     1  0.0469      0.982 0.988 0.000 0.000 NA
#> SRR1192469     1  0.0469      0.982 0.988 0.000 0.000 NA
#> SRR1192468     1  0.0469      0.982 0.988 0.000 0.000 NA
#> SRR1192467     1  0.0469      0.982 0.988 0.000 0.000 NA
#> SRR1192466     1  0.0469      0.982 0.988 0.000 0.000 NA
#> SRR1192465     1  0.0469      0.982 0.988 0.000 0.000 NA
#> SRR1192500     1  0.0000      0.983 1.000 0.000 0.000 NA
#> SRR1192501     1  0.0000      0.983 1.000 0.000 0.000 NA
#> SRR1192502     1  0.0000      0.983 1.000 0.000 0.000 NA
#> SRR1192503     1  0.0000      0.983 1.000 0.000 0.000 NA
#> SRR1192496     1  0.0000      0.983 1.000 0.000 0.000 NA
#> SRR1192497     1  0.0000      0.983 1.000 0.000 0.000 NA
#> SRR1192499     1  0.0000      0.983 1.000 0.000 0.000 NA
#> SRR1192641     2  0.0336      0.871 0.000 0.992 0.000 NA
#> SRR1192640     2  0.0336      0.871 0.000 0.992 0.000 NA
#> SRR1192643     2  0.0336      0.871 0.000 0.992 0.000 NA
#> SRR1192642     2  0.0336      0.871 0.000 0.992 0.000 NA
#> SRR1192644     2  0.0336      0.871 0.000 0.992 0.000 NA
#> SRR1192645     2  0.0336      0.871 0.000 0.992 0.000 NA
#> SRR1192646     2  0.0336      0.871 0.000 0.992 0.000 NA
#> SRR1192647     2  0.0336      0.871 0.000 0.992 0.000 NA
#> SRR1192836     2  0.3688      0.767 0.000 0.792 0.000 NA
#> SRR1192838     2  0.3688      0.767 0.000 0.792 0.000 NA
#> SRR1192837     2  0.3688      0.767 0.000 0.792 0.000 NA
#> SRR1192839     2  0.3688      0.767 0.000 0.792 0.000 NA
#> SRR1192963     2  0.0336      0.871 0.000 0.992 0.000 NA
#> SRR1192966     2  0.0336      0.871 0.000 0.992 0.000 NA
#> SRR1192965     2  0.0336      0.871 0.000 0.992 0.000 NA
#> SRR1192964     2  0.0336      0.871 0.000 0.992 0.000 NA
#> SRR1193005     1  0.0000      0.983 1.000 0.000 0.000 NA
#> SRR1193006     1  0.0000      0.983 1.000 0.000 0.000 NA
#> SRR1193007     1  0.0000      0.983 1.000 0.000 0.000 NA
#> SRR1193008     1  0.0000      0.983 1.000 0.000 0.000 NA
#> SRR1193011     1  0.0336      0.983 0.992 0.000 0.000 NA
#> SRR1193012     1  0.0336      0.983 0.992 0.000 0.000 NA
#> SRR1193009     1  0.0336      0.983 0.992 0.000 0.000 NA
#> SRR1193010     1  0.0336      0.983 0.992 0.000 0.000 NA
#> SRR1193014     1  0.1022      0.970 0.968 0.000 0.000 NA
#> SRR1193015     1  0.1022      0.970 0.968 0.000 0.000 NA
#> SRR1193013     1  0.1022      0.970 0.968 0.000 0.000 NA
#> SRR1193018     1  0.0188      0.983 0.996 0.000 0.000 NA
#> SRR1193016     1  0.0188      0.983 0.996 0.000 0.000 NA
#> SRR1193017     1  0.0188      0.983 0.996 0.000 0.000 NA
#> SRR1193100     1  0.0188      0.983 0.996 0.000 0.000 NA
#> SRR1193101     1  0.0188      0.983 0.996 0.000 0.000 NA
#> SRR1193102     1  0.0188      0.983 0.996 0.000 0.000 NA
#> SRR1193104     1  0.0469      0.982 0.988 0.000 0.000 NA
#> SRR1193103     1  0.0469      0.982 0.988 0.000 0.000 NA
#> SRR1193105     1  0.0469      0.982 0.988 0.000 0.000 NA
#> SRR1193106     1  0.0469      0.982 0.988 0.000 0.000 NA
#> SRR1193198     1  0.1792      0.945 0.932 0.000 0.000 NA
#> SRR1193197     1  0.1792      0.945 0.932 0.000 0.000 NA
#> SRR1193199     1  0.1792      0.945 0.932 0.000 0.000 NA
#> SRR1193405     1  0.0188      0.983 0.996 0.000 0.000 NA
#> SRR1193404     1  0.0188      0.983 0.996 0.000 0.000 NA
#> SRR1193403     1  0.0188      0.983 0.996 0.000 0.000 NA
#> SRR1193522     1  0.0000      0.983 1.000 0.000 0.000 NA
#> SRR1193523     1  0.0000      0.983 1.000 0.000 0.000 NA
#> SRR1193524     1  0.0000      0.983 1.000 0.000 0.000 NA
#> SRR1193638     1  0.0469      0.982 0.988 0.000 0.000 NA
#> SRR1193639     1  0.0469      0.982 0.988 0.000 0.000 NA
#> SRR1195621     1  0.0469      0.982 0.988 0.000 0.000 NA
#> SRR1195619     1  0.0469      0.982 0.988 0.000 0.000 NA
#> SRR1195620     1  0.0469      0.982 0.988 0.000 0.000 NA

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1190372     2  0.0162      0.918 0.000 0.996 0.000 0.004 0.000
#> SRR1190371     2  0.0162      0.918 0.000 0.996 0.000 0.004 0.000
#> SRR1190370     2  0.0162      0.918 0.000 0.996 0.000 0.004 0.000
#> SRR1190368     2  0.0162      0.918 0.000 0.996 0.000 0.004 0.000
#> SRR1190369     2  0.0162      0.918 0.000 0.996 0.000 0.004 0.000
#> SRR1190366     2  0.0162      0.918 0.000 0.996 0.000 0.004 0.000
#> SRR1190367     2  0.0162      0.918 0.000 0.996 0.000 0.004 0.000
#> SRR1190365     2  0.0162      0.918 0.000 0.996 0.000 0.004 0.000
#> SRR1190467     3  0.0000      0.940 0.000 0.000 1.000 0.000 0.000
#> SRR1190466     3  0.0000      0.940 0.000 0.000 1.000 0.000 0.000
#> SRR1190465     3  0.0000      0.940 0.000 0.000 1.000 0.000 0.000
#> SRR1190464     3  0.0000      0.940 0.000 0.000 1.000 0.000 0.000
#> SRR1190462     3  0.0000      0.940 0.000 0.000 1.000 0.000 0.000
#> SRR1190461     3  0.0000      0.940 0.000 0.000 1.000 0.000 0.000
#> SRR1190460     3  0.0000      0.940 0.000 0.000 1.000 0.000 0.000
#> SRR1190509     1  0.1768      0.785 0.924 0.000 0.000 0.004 0.072
#> SRR1190504     1  0.1544      0.794 0.932 0.000 0.000 0.000 0.068
#> SRR1190503     1  0.1768      0.785 0.924 0.000 0.000 0.004 0.072
#> SRR1190502     1  0.1544      0.794 0.932 0.000 0.000 0.000 0.068
#> SRR1190508     1  0.1768      0.785 0.924 0.000 0.000 0.004 0.072
#> SRR1190507     1  0.1544      0.794 0.932 0.000 0.000 0.000 0.068
#> SRR1190506     1  0.1704      0.789 0.928 0.000 0.000 0.004 0.068
#> SRR1190505     1  0.1768      0.785 0.924 0.000 0.000 0.004 0.072
#> SRR1191342     4  0.3305      0.991 0.000 0.224 0.000 0.776 0.000
#> SRR1191344     4  0.3274      0.990 0.000 0.220 0.000 0.780 0.000
#> SRR1191343     4  0.3305      0.991 0.000 0.224 0.000 0.776 0.000
#> SRR1191349     4  0.3305      0.991 0.000 0.224 0.000 0.776 0.000
#> SRR1191345     4  0.3305      0.991 0.000 0.224 0.000 0.776 0.000
#> SRR1191346     4  0.3305      0.991 0.000 0.224 0.000 0.776 0.000
#> SRR1191347     4  0.3305      0.991 0.000 0.224 0.000 0.776 0.000
#> SRR1191348     4  0.3305      0.991 0.000 0.224 0.000 0.776 0.000
#> SRR1191668     5  0.5047     -0.264 0.032 0.000 0.472 0.000 0.496
#> SRR1191667     5  0.5047     -0.264 0.032 0.000 0.472 0.000 0.496
#> SRR1191673     3  0.2278      0.855 0.032 0.000 0.908 0.000 0.060
#> SRR1191672     3  0.2209      0.859 0.032 0.000 0.912 0.000 0.056
#> SRR1191695     3  0.0000      0.940 0.000 0.000 1.000 0.000 0.000
#> SRR1191694     3  0.0000      0.940 0.000 0.000 1.000 0.000 0.000
#> SRR1191783     3  0.0000      0.940 0.000 0.000 1.000 0.000 0.000
#> SRR1191876     3  0.0000      0.940 0.000 0.000 1.000 0.000 0.000
#> SRR1191914     1  0.3366      0.506 0.768 0.000 0.000 0.000 0.232
#> SRR1191915     1  0.3424      0.472 0.760 0.000 0.000 0.000 0.240
#> SRR1191953     1  0.2929      0.623 0.820 0.000 0.000 0.000 0.180
#> SRR1191954     1  0.3074      0.587 0.804 0.000 0.000 0.000 0.196
#> SRR1191990     5  0.4219      0.649 0.416 0.000 0.000 0.000 0.584
#> SRR1191991     5  0.4219      0.649 0.416 0.000 0.000 0.000 0.584
#> SRR1192016     3  0.0000      0.940 0.000 0.000 1.000 0.000 0.000
#> SRR1192017     3  0.0000      0.940 0.000 0.000 1.000 0.000 0.000
#> SRR1192073     3  0.0162      0.939 0.000 0.000 0.996 0.004 0.000
#> SRR1192072     3  0.0162      0.939 0.000 0.000 0.996 0.004 0.000
#> SRR1192167     3  0.4966      0.345 0.032 0.000 0.564 0.000 0.404
#> SRR1192166     3  0.5111      0.316 0.040 0.000 0.552 0.000 0.408
#> SRR1192321     3  0.0162      0.939 0.000 0.000 0.996 0.004 0.000
#> SRR1192353     5  0.4297      0.599 0.472 0.000 0.000 0.000 0.528
#> SRR1192354     5  0.4297      0.599 0.472 0.000 0.000 0.000 0.528
#> SRR1192370     1  0.2462      0.808 0.880 0.000 0.000 0.008 0.112
#> SRR1192371     1  0.2462      0.808 0.880 0.000 0.000 0.008 0.112
#> SRR1192399     5  0.4542      0.624 0.456 0.000 0.000 0.008 0.536
#> SRR1192398     5  0.4538      0.629 0.452 0.000 0.000 0.008 0.540
#> SRR1192417     4  0.3461      0.989 0.000 0.224 0.000 0.772 0.004
#> SRR1192418     4  0.3398      0.981 0.000 0.216 0.000 0.780 0.004
#> SRR1192415     4  0.3491      0.990 0.000 0.228 0.000 0.768 0.004
#> SRR1192416     4  0.3461      0.989 0.000 0.224 0.000 0.772 0.004
#> SRR1192413     4  0.3491      0.990 0.000 0.228 0.000 0.768 0.004
#> SRR1192414     4  0.3491      0.990 0.000 0.228 0.000 0.768 0.004
#> SRR1192420     4  0.3491      0.990 0.000 0.228 0.000 0.768 0.004
#> SRR1192419     4  0.3491      0.990 0.000 0.228 0.000 0.768 0.004
#> SRR1192471     1  0.2411      0.810 0.884 0.000 0.000 0.008 0.108
#> SRR1192470     1  0.2411      0.810 0.884 0.000 0.000 0.008 0.108
#> SRR1192469     1  0.2411      0.810 0.884 0.000 0.000 0.008 0.108
#> SRR1192468     1  0.2411      0.810 0.884 0.000 0.000 0.008 0.108
#> SRR1192467     1  0.2411      0.810 0.884 0.000 0.000 0.008 0.108
#> SRR1192466     1  0.2411      0.810 0.884 0.000 0.000 0.008 0.108
#> SRR1192465     1  0.2411      0.810 0.884 0.000 0.000 0.008 0.108
#> SRR1192500     1  0.0510      0.831 0.984 0.000 0.000 0.000 0.016
#> SRR1192501     1  0.0510      0.831 0.984 0.000 0.000 0.000 0.016
#> SRR1192502     1  0.0510      0.831 0.984 0.000 0.000 0.000 0.016
#> SRR1192503     1  0.0510      0.831 0.984 0.000 0.000 0.000 0.016
#> SRR1192496     1  0.0510      0.831 0.984 0.000 0.000 0.000 0.016
#> SRR1192497     1  0.0510      0.831 0.984 0.000 0.000 0.000 0.016
#> SRR1192499     1  0.0510      0.831 0.984 0.000 0.000 0.000 0.016
#> SRR1192641     2  0.0000      0.919 0.000 1.000 0.000 0.000 0.000
#> SRR1192640     2  0.0000      0.919 0.000 1.000 0.000 0.000 0.000
#> SRR1192643     2  0.0000      0.919 0.000 1.000 0.000 0.000 0.000
#> SRR1192642     2  0.0000      0.919 0.000 1.000 0.000 0.000 0.000
#> SRR1192644     2  0.0000      0.919 0.000 1.000 0.000 0.000 0.000
#> SRR1192645     2  0.0000      0.919 0.000 1.000 0.000 0.000 0.000
#> SRR1192646     2  0.0000      0.919 0.000 1.000 0.000 0.000 0.000
#> SRR1192647     2  0.0000      0.919 0.000 1.000 0.000 0.000 0.000
#> SRR1192836     2  0.5858      0.534 0.000 0.568 0.000 0.124 0.308
#> SRR1192838     2  0.5858      0.534 0.000 0.568 0.000 0.124 0.308
#> SRR1192837     2  0.5858      0.534 0.000 0.568 0.000 0.124 0.308
#> SRR1192839     2  0.5858      0.534 0.000 0.568 0.000 0.124 0.308
#> SRR1192963     2  0.0000      0.919 0.000 1.000 0.000 0.000 0.000
#> SRR1192966     2  0.0000      0.919 0.000 1.000 0.000 0.000 0.000
#> SRR1192965     2  0.0000      0.919 0.000 1.000 0.000 0.000 0.000
#> SRR1192964     2  0.0000      0.919 0.000 1.000 0.000 0.000 0.000
#> SRR1193005     1  0.0290      0.833 0.992 0.000 0.000 0.000 0.008
#> SRR1193006     1  0.0404      0.832 0.988 0.000 0.000 0.000 0.012
#> SRR1193007     1  0.0404      0.832 0.988 0.000 0.000 0.000 0.012
#> SRR1193008     1  0.0404      0.832 0.988 0.000 0.000 0.000 0.012
#> SRR1193011     1  0.2411      0.810 0.884 0.000 0.000 0.008 0.108
#> SRR1193012     1  0.2411      0.810 0.884 0.000 0.000 0.008 0.108
#> SRR1193009     1  0.2411      0.810 0.884 0.000 0.000 0.008 0.108
#> SRR1193010     1  0.2411      0.810 0.884 0.000 0.000 0.008 0.108
#> SRR1193014     1  0.3837      0.232 0.692 0.000 0.000 0.000 0.308
#> SRR1193015     1  0.3774      0.281 0.704 0.000 0.000 0.000 0.296
#> SRR1193013     1  0.3707      0.321 0.716 0.000 0.000 0.000 0.284
#> SRR1193018     1  0.0510      0.834 0.984 0.000 0.000 0.000 0.016
#> SRR1193016     1  0.0510      0.834 0.984 0.000 0.000 0.000 0.016
#> SRR1193017     1  0.0510      0.834 0.984 0.000 0.000 0.000 0.016
#> SRR1193100     1  0.0404      0.835 0.988 0.000 0.000 0.000 0.012
#> SRR1193101     1  0.0510      0.835 0.984 0.000 0.000 0.000 0.016
#> SRR1193102     1  0.0404      0.835 0.988 0.000 0.000 0.000 0.012
#> SRR1193104     1  0.2411      0.810 0.884 0.000 0.000 0.008 0.108
#> SRR1193103     1  0.2411      0.810 0.884 0.000 0.000 0.008 0.108
#> SRR1193105     1  0.2411      0.810 0.884 0.000 0.000 0.008 0.108
#> SRR1193106     1  0.2411      0.810 0.884 0.000 0.000 0.008 0.108
#> SRR1193198     1  0.4278     -0.455 0.548 0.000 0.000 0.000 0.452
#> SRR1193197     1  0.4291     -0.497 0.536 0.000 0.000 0.000 0.464
#> SRR1193199     1  0.4278     -0.455 0.548 0.000 0.000 0.000 0.452
#> SRR1193405     1  0.0404      0.835 0.988 0.000 0.000 0.000 0.012
#> SRR1193404     1  0.0404      0.835 0.988 0.000 0.000 0.000 0.012
#> SRR1193403     1  0.0404      0.835 0.988 0.000 0.000 0.000 0.012
#> SRR1193522     1  0.0404      0.834 0.988 0.000 0.000 0.000 0.012
#> SRR1193523     1  0.0404      0.834 0.988 0.000 0.000 0.000 0.012
#> SRR1193524     1  0.0404      0.834 0.988 0.000 0.000 0.000 0.012
#> SRR1193638     1  0.2411      0.810 0.884 0.000 0.000 0.008 0.108
#> SRR1193639     1  0.2411      0.810 0.884 0.000 0.000 0.008 0.108
#> SRR1195621     1  0.2411      0.810 0.884 0.000 0.000 0.008 0.108
#> SRR1195619     1  0.2411      0.810 0.884 0.000 0.000 0.008 0.108
#> SRR1195620     1  0.2411      0.810 0.884 0.000 0.000 0.008 0.108

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1190372     2  0.0692     0.9639 0.000 0.976 0.000 0.004 0.000 0.020
#> SRR1190371     2  0.0692     0.9639 0.000 0.976 0.000 0.004 0.000 0.020
#> SRR1190370     2  0.0692     0.9639 0.000 0.976 0.000 0.004 0.000 0.020
#> SRR1190368     2  0.0692     0.9639 0.000 0.976 0.000 0.004 0.000 0.020
#> SRR1190369     2  0.0692     0.9639 0.000 0.976 0.000 0.004 0.000 0.020
#> SRR1190366     2  0.0692     0.9639 0.000 0.976 0.000 0.004 0.000 0.020
#> SRR1190367     2  0.0692     0.9639 0.000 0.976 0.000 0.004 0.000 0.020
#> SRR1190365     2  0.0692     0.9639 0.000 0.976 0.000 0.004 0.000 0.020
#> SRR1190467     3  0.0000     0.9103 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190466     3  0.0000     0.9103 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190465     3  0.0000     0.9103 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190464     3  0.0000     0.9103 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190462     3  0.0000     0.9103 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190461     3  0.0000     0.9103 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190460     3  0.0000     0.9103 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1190509     1  0.3109     0.6371 0.772 0.000 0.000 0.000 0.224 0.004
#> SRR1190504     1  0.3101     0.6156 0.756 0.000 0.000 0.000 0.244 0.000
#> SRR1190503     1  0.2969     0.6354 0.776 0.000 0.000 0.000 0.224 0.000
#> SRR1190502     1  0.3151     0.6050 0.748 0.000 0.000 0.000 0.252 0.000
#> SRR1190508     1  0.3109     0.6371 0.772 0.000 0.000 0.000 0.224 0.004
#> SRR1190507     1  0.3290     0.6084 0.744 0.000 0.000 0.000 0.252 0.004
#> SRR1190506     1  0.3050     0.6245 0.764 0.000 0.000 0.000 0.236 0.000
#> SRR1190505     1  0.3163     0.6306 0.764 0.000 0.000 0.000 0.232 0.004
#> SRR1191342     4  0.1444     0.9858 0.000 0.072 0.000 0.928 0.000 0.000
#> SRR1191344     4  0.1444     0.9858 0.000 0.072 0.000 0.928 0.000 0.000
#> SRR1191343     4  0.1444     0.9858 0.000 0.072 0.000 0.928 0.000 0.000
#> SRR1191349     4  0.1444     0.9858 0.000 0.072 0.000 0.928 0.000 0.000
#> SRR1191345     4  0.1444     0.9858 0.000 0.072 0.000 0.928 0.000 0.000
#> SRR1191346     4  0.1444     0.9858 0.000 0.072 0.000 0.928 0.000 0.000
#> SRR1191347     4  0.1444     0.9858 0.000 0.072 0.000 0.928 0.000 0.000
#> SRR1191348     4  0.1444     0.9858 0.000 0.072 0.000 0.928 0.000 0.000
#> SRR1191668     1  0.5956     0.1014 0.544 0.000 0.304 0.000 0.040 0.112
#> SRR1191667     1  0.5956     0.1014 0.544 0.000 0.304 0.000 0.040 0.112
#> SRR1191673     3  0.2377     0.7834 0.124 0.000 0.868 0.000 0.004 0.004
#> SRR1191672     3  0.2488     0.7798 0.124 0.000 0.864 0.000 0.004 0.008
#> SRR1191695     3  0.0000     0.9103 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1191694     3  0.0000     0.9103 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1191783     3  0.0000     0.9103 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1191876     3  0.0000     0.9103 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1191914     1  0.3516     0.6770 0.788 0.000 0.000 0.000 0.164 0.048
#> SRR1191915     1  0.3516     0.6770 0.788 0.000 0.000 0.000 0.164 0.048
#> SRR1191953     1  0.3864     0.6676 0.744 0.000 0.000 0.000 0.208 0.048
#> SRR1191954     1  0.3715     0.6735 0.764 0.000 0.000 0.000 0.188 0.048
#> SRR1191990     1  0.5227     0.5279 0.612 0.000 0.000 0.000 0.200 0.188
#> SRR1191991     1  0.5227     0.5279 0.612 0.000 0.000 0.000 0.200 0.188
#> SRR1192016     3  0.0000     0.9103 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192017     3  0.0000     0.9103 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192073     3  0.0000     0.9103 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192072     3  0.0000     0.9103 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192167     3  0.5293     0.2746 0.432 0.000 0.484 0.000 0.008 0.076
#> SRR1192166     3  0.5298     0.2411 0.444 0.000 0.472 0.000 0.008 0.076
#> SRR1192321     3  0.0000     0.9103 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192353     1  0.4933     0.5381 0.624 0.000 0.000 0.000 0.272 0.104
#> SRR1192354     1  0.4933     0.5381 0.624 0.000 0.000 0.000 0.272 0.104
#> SRR1192370     5  0.0260     0.6761 0.008 0.000 0.000 0.000 0.992 0.000
#> SRR1192371     5  0.0260     0.6761 0.008 0.000 0.000 0.000 0.992 0.000
#> SRR1192399     1  0.4929     0.5104 0.608 0.000 0.000 0.000 0.300 0.092
#> SRR1192398     1  0.4929     0.5104 0.608 0.000 0.000 0.000 0.300 0.092
#> SRR1192417     4  0.1983     0.9824 0.000 0.072 0.000 0.908 0.000 0.020
#> SRR1192418     4  0.1983     0.9824 0.000 0.072 0.000 0.908 0.000 0.020
#> SRR1192415     4  0.1895     0.9837 0.000 0.072 0.000 0.912 0.000 0.016
#> SRR1192416     4  0.1983     0.9824 0.000 0.072 0.000 0.908 0.000 0.020
#> SRR1192413     4  0.1757     0.9847 0.000 0.076 0.000 0.916 0.000 0.008
#> SRR1192414     4  0.1983     0.9824 0.000 0.072 0.000 0.908 0.000 0.020
#> SRR1192420     4  0.1895     0.9837 0.000 0.072 0.000 0.912 0.000 0.016
#> SRR1192419     4  0.1983     0.9824 0.000 0.072 0.000 0.908 0.000 0.020
#> SRR1192471     5  0.0146     0.6784 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1192470     5  0.0146     0.6784 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1192469     5  0.0146     0.6784 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1192468     5  0.0146     0.6784 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1192467     5  0.0146     0.6784 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1192466     5  0.0146     0.6784 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1192465     5  0.0146     0.6784 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1192500     1  0.4325     0.0416 0.524 0.000 0.000 0.000 0.456 0.020
#> SRR1192501     1  0.4322     0.0581 0.528 0.000 0.000 0.000 0.452 0.020
#> SRR1192502     1  0.4318     0.0735 0.532 0.000 0.000 0.000 0.448 0.020
#> SRR1192503     1  0.4325     0.0416 0.524 0.000 0.000 0.000 0.456 0.020
#> SRR1192496     1  0.4396     0.0298 0.520 0.000 0.000 0.000 0.456 0.024
#> SRR1192497     1  0.4310     0.1026 0.540 0.000 0.000 0.000 0.440 0.020
#> SRR1192499     1  0.4325     0.0416 0.524 0.000 0.000 0.000 0.456 0.020
#> SRR1192641     2  0.0547     0.9760 0.000 0.980 0.000 0.020 0.000 0.000
#> SRR1192640     2  0.0547     0.9760 0.000 0.980 0.000 0.020 0.000 0.000
#> SRR1192643     2  0.0547     0.9760 0.000 0.980 0.000 0.020 0.000 0.000
#> SRR1192642     2  0.0547     0.9760 0.000 0.980 0.000 0.020 0.000 0.000
#> SRR1192644     2  0.0547     0.9760 0.000 0.980 0.000 0.020 0.000 0.000
#> SRR1192645     2  0.0547     0.9760 0.000 0.980 0.000 0.020 0.000 0.000
#> SRR1192646     2  0.0547     0.9760 0.000 0.980 0.000 0.020 0.000 0.000
#> SRR1192647     2  0.0547     0.9760 0.000 0.980 0.000 0.020 0.000 0.000
#> SRR1192836     6  0.4549     0.9977 0.000 0.232 0.000 0.088 0.000 0.680
#> SRR1192838     6  0.4527     0.9932 0.000 0.236 0.000 0.084 0.000 0.680
#> SRR1192837     6  0.4549     0.9977 0.000 0.232 0.000 0.088 0.000 0.680
#> SRR1192839     6  0.4549     0.9977 0.000 0.232 0.000 0.088 0.000 0.680
#> SRR1192963     2  0.0547     0.9760 0.000 0.980 0.000 0.020 0.000 0.000
#> SRR1192966     2  0.0547     0.9760 0.000 0.980 0.000 0.020 0.000 0.000
#> SRR1192965     2  0.0547     0.9760 0.000 0.980 0.000 0.020 0.000 0.000
#> SRR1192964     2  0.0547     0.9760 0.000 0.980 0.000 0.020 0.000 0.000
#> SRR1193005     5  0.4471     0.1148 0.472 0.000 0.000 0.000 0.500 0.028
#> SRR1193006     5  0.4406     0.1066 0.476 0.000 0.000 0.000 0.500 0.024
#> SRR1193007     5  0.4471     0.1148 0.472 0.000 0.000 0.000 0.500 0.028
#> SRR1193008     5  0.4406     0.1066 0.476 0.000 0.000 0.000 0.500 0.024
#> SRR1193011     5  0.0000     0.6801 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1193012     5  0.0000     0.6801 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1193009     5  0.0000     0.6801 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1193010     5  0.0000     0.6801 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1193014     1  0.3307     0.6776 0.808 0.000 0.000 0.000 0.148 0.044
#> SRR1193015     1  0.3307     0.6776 0.808 0.000 0.000 0.000 0.148 0.044
#> SRR1193013     1  0.3307     0.6776 0.808 0.000 0.000 0.000 0.148 0.044
#> SRR1193018     5  0.4488     0.2857 0.420 0.000 0.000 0.000 0.548 0.032
#> SRR1193016     5  0.4494     0.2787 0.424 0.000 0.000 0.000 0.544 0.032
#> SRR1193017     5  0.4488     0.2857 0.420 0.000 0.000 0.000 0.548 0.032
#> SRR1193100     5  0.4488     0.2737 0.420 0.000 0.000 0.000 0.548 0.032
#> SRR1193101     5  0.4494     0.2647 0.424 0.000 0.000 0.000 0.544 0.032
#> SRR1193102     5  0.4482     0.2811 0.416 0.000 0.000 0.000 0.552 0.032
#> SRR1193104     5  0.0000     0.6801 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1193103     5  0.0000     0.6801 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1193105     5  0.0000     0.6801 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1193106     5  0.0000     0.6801 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1193198     1  0.3530     0.6765 0.792 0.000 0.000 0.000 0.152 0.056
#> SRR1193197     1  0.3588     0.6752 0.788 0.000 0.000 0.000 0.152 0.060
#> SRR1193199     1  0.3530     0.6765 0.792 0.000 0.000 0.000 0.152 0.056
#> SRR1193405     5  0.4488     0.2737 0.420 0.000 0.000 0.000 0.548 0.032
#> SRR1193404     5  0.4494     0.2646 0.424 0.000 0.000 0.000 0.544 0.032
#> SRR1193403     5  0.4499     0.2544 0.428 0.000 0.000 0.000 0.540 0.032
#> SRR1193522     5  0.4472     0.1011 0.476 0.000 0.000 0.000 0.496 0.028
#> SRR1193523     5  0.4473     0.0661 0.484 0.000 0.000 0.000 0.488 0.028
#> SRR1193524     5  0.4473     0.0842 0.480 0.000 0.000 0.000 0.492 0.028
#> SRR1193638     5  0.0000     0.6801 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1193639     5  0.0000     0.6801 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1195621     5  0.0458     0.6729 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1195619     5  0.0260     0.6775 0.008 0.000 0.000 0.000 0.992 0.000
#> SRR1195620     5  0.0260     0.6775 0.008 0.000 0.000 0.000 0.992 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15363 rows and 131 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.4281 0.573   0.573
#> 3 3 1.000           1.000       1.000         0.3289 0.859   0.754
#> 4 4 1.000           1.000       1.000         0.0297 0.983   0.961
#> 5 5 0.825           0.946       0.936         0.0984 0.962   0.909
#> 6 6 0.924           0.917       0.963         0.1452 0.863   0.637

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1190372     2       0          1  0  1
#> SRR1190371     2       0          1  0  1
#> SRR1190370     2       0          1  0  1
#> SRR1190368     2       0          1  0  1
#> SRR1190369     2       0          1  0  1
#> SRR1190366     2       0          1  0  1
#> SRR1190367     2       0          1  0  1
#> SRR1190365     2       0          1  0  1
#> SRR1190467     1       0          1  1  0
#> SRR1190466     1       0          1  1  0
#> SRR1190465     1       0          1  1  0
#> SRR1190464     1       0          1  1  0
#> SRR1190462     1       0          1  1  0
#> SRR1190461     1       0          1  1  0
#> SRR1190460     1       0          1  1  0
#> SRR1190509     1       0          1  1  0
#> SRR1190504     1       0          1  1  0
#> SRR1190503     1       0          1  1  0
#> SRR1190502     1       0          1  1  0
#> SRR1190508     1       0          1  1  0
#> SRR1190507     1       0          1  1  0
#> SRR1190506     1       0          1  1  0
#> SRR1190505     1       0          1  1  0
#> SRR1191342     2       0          1  0  1
#> SRR1191344     2       0          1  0  1
#> SRR1191343     2       0          1  0  1
#> SRR1191349     2       0          1  0  1
#> SRR1191345     2       0          1  0  1
#> SRR1191346     2       0          1  0  1
#> SRR1191347     2       0          1  0  1
#> SRR1191348     2       0          1  0  1
#> SRR1191668     1       0          1  1  0
#> SRR1191667     1       0          1  1  0
#> SRR1191673     1       0          1  1  0
#> SRR1191672     1       0          1  1  0
#> SRR1191695     1       0          1  1  0
#> SRR1191694     1       0          1  1  0
#> SRR1191783     1       0          1  1  0
#> SRR1191876     1       0          1  1  0
#> SRR1191914     1       0          1  1  0
#> SRR1191915     1       0          1  1  0
#> SRR1191953     1       0          1  1  0
#> SRR1191954     1       0          1  1  0
#> SRR1191990     1       0          1  1  0
#> SRR1191991     1       0          1  1  0
#> SRR1192016     1       0          1  1  0
#> SRR1192017     1       0          1  1  0
#> SRR1192073     1       0          1  1  0
#> SRR1192072     1       0          1  1  0
#> SRR1192167     1       0          1  1  0
#> SRR1192166     1       0          1  1  0
#> SRR1192321     1       0          1  1  0
#> SRR1192353     1       0          1  1  0
#> SRR1192354     1       0          1  1  0
#> SRR1192370     1       0          1  1  0
#> SRR1192371     1       0          1  1  0
#> SRR1192399     1       0          1  1  0
#> SRR1192398     1       0          1  1  0
#> SRR1192417     2       0          1  0  1
#> SRR1192418     2       0          1  0  1
#> SRR1192415     2       0          1  0  1
#> SRR1192416     2       0          1  0  1
#> SRR1192413     2       0          1  0  1
#> SRR1192414     2       0          1  0  1
#> SRR1192420     2       0          1  0  1
#> SRR1192419     2       0          1  0  1
#> SRR1192471     1       0          1  1  0
#> SRR1192470     1       0          1  1  0
#> SRR1192469     1       0          1  1  0
#> SRR1192468     1       0          1  1  0
#> SRR1192467     1       0          1  1  0
#> SRR1192466     1       0          1  1  0
#> SRR1192465     1       0          1  1  0
#> SRR1192500     1       0          1  1  0
#> SRR1192501     1       0          1  1  0
#> SRR1192502     1       0          1  1  0
#> SRR1192503     1       0          1  1  0
#> SRR1192496     1       0          1  1  0
#> SRR1192497     1       0          1  1  0
#> SRR1192499     1       0          1  1  0
#> SRR1192641     2       0          1  0  1
#> SRR1192640     2       0          1  0  1
#> SRR1192643     2       0          1  0  1
#> SRR1192642     2       0          1  0  1
#> SRR1192644     2       0          1  0  1
#> SRR1192645     2       0          1  0  1
#> SRR1192646     2       0          1  0  1
#> SRR1192647     2       0          1  0  1
#> SRR1192836     2       0          1  0  1
#> SRR1192838     2       0          1  0  1
#> SRR1192837     2       0          1  0  1
#> SRR1192839     2       0          1  0  1
#> SRR1192963     2       0          1  0  1
#> SRR1192966     2       0          1  0  1
#> SRR1192965     2       0          1  0  1
#> SRR1192964     2       0          1  0  1
#> SRR1193005     1       0          1  1  0
#> SRR1193006     1       0          1  1  0
#> SRR1193007     1       0          1  1  0
#> SRR1193008     1       0          1  1  0
#> SRR1193011     1       0          1  1  0
#> SRR1193012     1       0          1  1  0
#> SRR1193009     1       0          1  1  0
#> SRR1193010     1       0          1  1  0
#> SRR1193014     1       0          1  1  0
#> SRR1193015     1       0          1  1  0
#> SRR1193013     1       0          1  1  0
#> SRR1193018     1       0          1  1  0
#> SRR1193016     1       0          1  1  0
#> SRR1193017     1       0          1  1  0
#> SRR1193100     1       0          1  1  0
#> SRR1193101     1       0          1  1  0
#> SRR1193102     1       0          1  1  0
#> SRR1193104     1       0          1  1  0
#> SRR1193103     1       0          1  1  0
#> SRR1193105     1       0          1  1  0
#> SRR1193106     1       0          1  1  0
#> SRR1193198     1       0          1  1  0
#> SRR1193197     1       0          1  1  0
#> SRR1193199     1       0          1  1  0
#> SRR1193405     1       0          1  1  0
#> SRR1193404     1       0          1  1  0
#> SRR1193403     1       0          1  1  0
#> SRR1193522     1       0          1  1  0
#> SRR1193523     1       0          1  1  0
#> SRR1193524     1       0          1  1  0
#> SRR1193638     1       0          1  1  0
#> SRR1193639     1       0          1  1  0
#> SRR1195621     1       0          1  1  0
#> SRR1195619     1       0          1  1  0
#> SRR1195620     1       0          1  1  0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette p1 p2 p3
#> SRR1190372     2       0          1  0  1  0
#> SRR1190371     2       0          1  0  1  0
#> SRR1190370     2       0          1  0  1  0
#> SRR1190368     2       0          1  0  1  0
#> SRR1190369     2       0          1  0  1  0
#> SRR1190366     2       0          1  0  1  0
#> SRR1190367     2       0          1  0  1  0
#> SRR1190365     2       0          1  0  1  0
#> SRR1190467     3       0          1  0  0  1
#> SRR1190466     3       0          1  0  0  1
#> SRR1190465     3       0          1  0  0  1
#> SRR1190464     3       0          1  0  0  1
#> SRR1190462     3       0          1  0  0  1
#> SRR1190461     3       0          1  0  0  1
#> SRR1190460     3       0          1  0  0  1
#> SRR1190509     1       0          1  1  0  0
#> SRR1190504     1       0          1  1  0  0
#> SRR1190503     1       0          1  1  0  0
#> SRR1190502     1       0          1  1  0  0
#> SRR1190508     1       0          1  1  0  0
#> SRR1190507     1       0          1  1  0  0
#> SRR1190506     1       0          1  1  0  0
#> SRR1190505     1       0          1  1  0  0
#> SRR1191342     2       0          1  0  1  0
#> SRR1191344     2       0          1  0  1  0
#> SRR1191343     2       0          1  0  1  0
#> SRR1191349     2       0          1  0  1  0
#> SRR1191345     2       0          1  0  1  0
#> SRR1191346     2       0          1  0  1  0
#> SRR1191347     2       0          1  0  1  0
#> SRR1191348     2       0          1  0  1  0
#> SRR1191668     1       0          1  1  0  0
#> SRR1191667     1       0          1  1  0  0
#> SRR1191673     1       0          1  1  0  0
#> SRR1191672     1       0          1  1  0  0
#> SRR1191695     3       0          1  0  0  1
#> SRR1191694     3       0          1  0  0  1
#> SRR1191783     3       0          1  0  0  1
#> SRR1191876     3       0          1  0  0  1
#> SRR1191914     1       0          1  1  0  0
#> SRR1191915     1       0          1  1  0  0
#> SRR1191953     1       0          1  1  0  0
#> SRR1191954     1       0          1  1  0  0
#> SRR1191990     1       0          1  1  0  0
#> SRR1191991     1       0          1  1  0  0
#> SRR1192016     3       0          1  0  0  1
#> SRR1192017     3       0          1  0  0  1
#> SRR1192073     3       0          1  0  0  1
#> SRR1192072     3       0          1  0  0  1
#> SRR1192167     1       0          1  1  0  0
#> SRR1192166     1       0          1  1  0  0
#> SRR1192321     3       0          1  0  0  1
#> SRR1192353     1       0          1  1  0  0
#> SRR1192354     1       0          1  1  0  0
#> SRR1192370     1       0          1  1  0  0
#> SRR1192371     1       0          1  1  0  0
#> SRR1192399     1       0          1  1  0  0
#> SRR1192398     1       0          1  1  0  0
#> SRR1192417     2       0          1  0  1  0
#> SRR1192418     2       0          1  0  1  0
#> SRR1192415     2       0          1  0  1  0
#> SRR1192416     2       0          1  0  1  0
#> SRR1192413     2       0          1  0  1  0
#> SRR1192414     2       0          1  0  1  0
#> SRR1192420     2       0          1  0  1  0
#> SRR1192419     2       0          1  0  1  0
#> SRR1192471     1       0          1  1  0  0
#> SRR1192470     1       0          1  1  0  0
#> SRR1192469     1       0          1  1  0  0
#> SRR1192468     1       0          1  1  0  0
#> SRR1192467     1       0          1  1  0  0
#> SRR1192466     1       0          1  1  0  0
#> SRR1192465     1       0          1  1  0  0
#> SRR1192500     1       0          1  1  0  0
#> SRR1192501     1       0          1  1  0  0
#> SRR1192502     1       0          1  1  0  0
#> SRR1192503     1       0          1  1  0  0
#> SRR1192496     1       0          1  1  0  0
#> SRR1192497     1       0          1  1  0  0
#> SRR1192499     1       0          1  1  0  0
#> SRR1192641     2       0          1  0  1  0
#> SRR1192640     2       0          1  0  1  0
#> SRR1192643     2       0          1  0  1  0
#> SRR1192642     2       0          1  0  1  0
#> SRR1192644     2       0          1  0  1  0
#> SRR1192645     2       0          1  0  1  0
#> SRR1192646     2       0          1  0  1  0
#> SRR1192647     2       0          1  0  1  0
#> SRR1192836     2       0          1  0  1  0
#> SRR1192838     2       0          1  0  1  0
#> SRR1192837     2       0          1  0  1  0
#> SRR1192839     2       0          1  0  1  0
#> SRR1192963     2       0          1  0  1  0
#> SRR1192966     2       0          1  0  1  0
#> SRR1192965     2       0          1  0  1  0
#> SRR1192964     2       0          1  0  1  0
#> SRR1193005     1       0          1  1  0  0
#> SRR1193006     1       0          1  1  0  0
#> SRR1193007     1       0          1  1  0  0
#> SRR1193008     1       0          1  1  0  0
#> SRR1193011     1       0          1  1  0  0
#> SRR1193012     1       0          1  1  0  0
#> SRR1193009     1       0          1  1  0  0
#> SRR1193010     1       0          1  1  0  0
#> SRR1193014     1       0          1  1  0  0
#> SRR1193015     1       0          1  1  0  0
#> SRR1193013     1       0          1  1  0  0
#> SRR1193018     1       0          1  1  0  0
#> SRR1193016     1       0          1  1  0  0
#> SRR1193017     1       0          1  1  0  0
#> SRR1193100     1       0          1  1  0  0
#> SRR1193101     1       0          1  1  0  0
#> SRR1193102     1       0          1  1  0  0
#> SRR1193104     1       0          1  1  0  0
#> SRR1193103     1       0          1  1  0  0
#> SRR1193105     1       0          1  1  0  0
#> SRR1193106     1       0          1  1  0  0
#> SRR1193198     1       0          1  1  0  0
#> SRR1193197     1       0          1  1  0  0
#> SRR1193199     1       0          1  1  0  0
#> SRR1193405     1       0          1  1  0  0
#> SRR1193404     1       0          1  1  0  0
#> SRR1193403     1       0          1  1  0  0
#> SRR1193522     1       0          1  1  0  0
#> SRR1193523     1       0          1  1  0  0
#> SRR1193524     1       0          1  1  0  0
#> SRR1193638     1       0          1  1  0  0
#> SRR1193639     1       0          1  1  0  0
#> SRR1195621     1       0          1  1  0  0
#> SRR1195619     1       0          1  1  0  0
#> SRR1195620     1       0          1  1  0  0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette p1 p2 p3 p4
#> SRR1190372     2       0          1  0  1  0  0
#> SRR1190371     2       0          1  0  1  0  0
#> SRR1190370     2       0          1  0  1  0  0
#> SRR1190368     2       0          1  0  1  0  0
#> SRR1190369     2       0          1  0  1  0  0
#> SRR1190366     2       0          1  0  1  0  0
#> SRR1190367     2       0          1  0  1  0  0
#> SRR1190365     2       0          1  0  1  0  0
#> SRR1190467     3       0          1  0  0  1  0
#> SRR1190466     3       0          1  0  0  1  0
#> SRR1190465     3       0          1  0  0  1  0
#> SRR1190464     3       0          1  0  0  1  0
#> SRR1190462     3       0          1  0  0  1  0
#> SRR1190461     3       0          1  0  0  1  0
#> SRR1190460     3       0          1  0  0  1  0
#> SRR1190509     1       0          1  1  0  0  0
#> SRR1190504     1       0          1  1  0  0  0
#> SRR1190503     1       0          1  1  0  0  0
#> SRR1190502     1       0          1  1  0  0  0
#> SRR1190508     1       0          1  1  0  0  0
#> SRR1190507     1       0          1  1  0  0  0
#> SRR1190506     1       0          1  1  0  0  0
#> SRR1190505     1       0          1  1  0  0  0
#> SRR1191342     2       0          1  0  1  0  0
#> SRR1191344     2       0          1  0  1  0  0
#> SRR1191343     2       0          1  0  1  0  0
#> SRR1191349     2       0          1  0  1  0  0
#> SRR1191345     2       0          1  0  1  0  0
#> SRR1191346     2       0          1  0  1  0  0
#> SRR1191347     2       0          1  0  1  0  0
#> SRR1191348     2       0          1  0  1  0  0
#> SRR1191668     1       0          1  1  0  0  0
#> SRR1191667     1       0          1  1  0  0  0
#> SRR1191673     1       0          1  1  0  0  0
#> SRR1191672     1       0          1  1  0  0  0
#> SRR1191695     3       0          1  0  0  1  0
#> SRR1191694     3       0          1  0  0  1  0
#> SRR1191783     3       0          1  0  0  1  0
#> SRR1191876     3       0          1  0  0  1  0
#> SRR1191914     1       0          1  1  0  0  0
#> SRR1191915     1       0          1  1  0  0  0
#> SRR1191953     1       0          1  1  0  0  0
#> SRR1191954     1       0          1  1  0  0  0
#> SRR1191990     1       0          1  1  0  0  0
#> SRR1191991     1       0          1  1  0  0  0
#> SRR1192016     3       0          1  0  0  1  0
#> SRR1192017     3       0          1  0  0  1  0
#> SRR1192073     3       0          1  0  0  1  0
#> SRR1192072     3       0          1  0  0  1  0
#> SRR1192167     1       0          1  1  0  0  0
#> SRR1192166     1       0          1  1  0  0  0
#> SRR1192321     3       0          1  0  0  1  0
#> SRR1192353     1       0          1  1  0  0  0
#> SRR1192354     1       0          1  1  0  0  0
#> SRR1192370     1       0          1  1  0  0  0
#> SRR1192371     1       0          1  1  0  0  0
#> SRR1192399     1       0          1  1  0  0  0
#> SRR1192398     1       0          1  1  0  0  0
#> SRR1192417     2       0          1  0  1  0  0
#> SRR1192418     2       0          1  0  1  0  0
#> SRR1192415     2       0          1  0  1  0  0
#> SRR1192416     2       0          1  0  1  0  0
#> SRR1192413     2       0          1  0  1  0  0
#> SRR1192414     2       0          1  0  1  0  0
#> SRR1192420     2       0          1  0  1  0  0
#> SRR1192419     2       0          1  0  1  0  0
#> SRR1192471     1       0          1  1  0  0  0
#> SRR1192470     1       0          1  1  0  0  0
#> SRR1192469     1       0          1  1  0  0  0
#> SRR1192468     1       0          1  1  0  0  0
#> SRR1192467     1       0          1  1  0  0  0
#> SRR1192466     1       0          1  1  0  0  0
#> SRR1192465     1       0          1  1  0  0  0
#> SRR1192500     1       0          1  1  0  0  0
#> SRR1192501     1       0          1  1  0  0  0
#> SRR1192502     1       0          1  1  0  0  0
#> SRR1192503     1       0          1  1  0  0  0
#> SRR1192496     1       0          1  1  0  0  0
#> SRR1192497     1       0          1  1  0  0  0
#> SRR1192499     1       0          1  1  0  0  0
#> SRR1192641     2       0          1  0  1  0  0
#> SRR1192640     2       0          1  0  1  0  0
#> SRR1192643     2       0          1  0  1  0  0
#> SRR1192642     2       0          1  0  1  0  0
#> SRR1192644     2       0          1  0  1  0  0
#> SRR1192645     2       0          1  0  1  0  0
#> SRR1192646     2       0          1  0  1  0  0
#> SRR1192647     2       0          1  0  1  0  0
#> SRR1192836     4       0          1  0  0  0  1
#> SRR1192838     4       0          1  0  0  0  1
#> SRR1192837     4       0          1  0  0  0  1
#> SRR1192839     4       0          1  0  0  0  1
#> SRR1192963     2       0          1  0  1  0  0
#> SRR1192966     2       0          1  0  1  0  0
#> SRR1192965     2       0          1  0  1  0  0
#> SRR1192964     2       0          1  0  1  0  0
#> SRR1193005     1       0          1  1  0  0  0
#> SRR1193006     1       0          1  1  0  0  0
#> SRR1193007     1       0          1  1  0  0  0
#> SRR1193008     1       0          1  1  0  0  0
#> SRR1193011     1       0          1  1  0  0  0
#> SRR1193012     1       0          1  1  0  0  0
#> SRR1193009     1       0          1  1  0  0  0
#> SRR1193010     1       0          1  1  0  0  0
#> SRR1193014     1       0          1  1  0  0  0
#> SRR1193015     1       0          1  1  0  0  0
#> SRR1193013     1       0          1  1  0  0  0
#> SRR1193018     1       0          1  1  0  0  0
#> SRR1193016     1       0          1  1  0  0  0
#> SRR1193017     1       0          1  1  0  0  0
#> SRR1193100     1       0          1  1  0  0  0
#> SRR1193101     1       0          1  1  0  0  0
#> SRR1193102     1       0          1  1  0  0  0
#> SRR1193104     1       0          1  1  0  0  0
#> SRR1193103     1       0          1  1  0  0  0
#> SRR1193105     1       0          1  1  0  0  0
#> SRR1193106     1       0          1  1  0  0  0
#> SRR1193198     1       0          1  1  0  0  0
#> SRR1193197     1       0          1  1  0  0  0
#> SRR1193199     1       0          1  1  0  0  0
#> SRR1193405     1       0          1  1  0  0  0
#> SRR1193404     1       0          1  1  0  0  0
#> SRR1193403     1       0          1  1  0  0  0
#> SRR1193522     1       0          1  1  0  0  0
#> SRR1193523     1       0          1  1  0  0  0
#> SRR1193524     1       0          1  1  0  0  0
#> SRR1193638     1       0          1  1  0  0  0
#> SRR1193639     1       0          1  1  0  0  0
#> SRR1195621     1       0          1  1  0  0  0
#> SRR1195619     1       0          1  1  0  0  0
#> SRR1195620     1       0          1  1  0  0  0

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2 p3   p4 p5
#> SRR1190372     2   0.342      1.000 0.000 0.760  0 0.24  0
#> SRR1190371     2   0.342      1.000 0.000 0.760  0 0.24  0
#> SRR1190370     2   0.342      1.000 0.000 0.760  0 0.24  0
#> SRR1190368     2   0.342      1.000 0.000 0.760  0 0.24  0
#> SRR1190369     2   0.342      1.000 0.000 0.760  0 0.24  0
#> SRR1190366     2   0.342      1.000 0.000 0.760  0 0.24  0
#> SRR1190367     2   0.342      1.000 0.000 0.760  0 0.24  0
#> SRR1190365     2   0.342      1.000 0.000 0.760  0 0.24  0
#> SRR1190467     3   0.000      1.000 0.000 0.000  1 0.00  0
#> SRR1190466     3   0.000      1.000 0.000 0.000  1 0.00  0
#> SRR1190465     3   0.000      1.000 0.000 0.000  1 0.00  0
#> SRR1190464     3   0.000      1.000 0.000 0.000  1 0.00  0
#> SRR1190462     3   0.000      1.000 0.000 0.000  1 0.00  0
#> SRR1190461     3   0.000      1.000 0.000 0.000  1 0.00  0
#> SRR1190460     3   0.000      1.000 0.000 0.000  1 0.00  0
#> SRR1190509     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1190504     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1190503     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1190502     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1190508     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1190507     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1190506     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1190505     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1191342     4   0.000      1.000 0.000 0.000  0 1.00  0
#> SRR1191344     4   0.000      1.000 0.000 0.000  0 1.00  0
#> SRR1191343     4   0.000      1.000 0.000 0.000  0 1.00  0
#> SRR1191349     4   0.000      1.000 0.000 0.000  0 1.00  0
#> SRR1191345     4   0.000      1.000 0.000 0.000  0 1.00  0
#> SRR1191346     4   0.000      1.000 0.000 0.000  0 1.00  0
#> SRR1191347     4   0.000      1.000 0.000 0.000  0 1.00  0
#> SRR1191348     4   0.000      1.000 0.000 0.000  0 1.00  0
#> SRR1191668     1   0.342      0.799 0.760 0.240  0 0.00  0
#> SRR1191667     1   0.342      0.799 0.760 0.240  0 0.00  0
#> SRR1191673     1   0.342      0.799 0.760 0.240  0 0.00  0
#> SRR1191672     1   0.342      0.799 0.760 0.240  0 0.00  0
#> SRR1191695     3   0.000      1.000 0.000 0.000  1 0.00  0
#> SRR1191694     3   0.000      1.000 0.000 0.000  1 0.00  0
#> SRR1191783     3   0.000      1.000 0.000 0.000  1 0.00  0
#> SRR1191876     3   0.000      1.000 0.000 0.000  1 0.00  0
#> SRR1191914     1   0.277      0.856 0.836 0.164  0 0.00  0
#> SRR1191915     1   0.277      0.856 0.836 0.164  0 0.00  0
#> SRR1191953     1   0.277      0.856 0.836 0.164  0 0.00  0
#> SRR1191954     1   0.277      0.856 0.836 0.164  0 0.00  0
#> SRR1191990     1   0.342      0.799 0.760 0.240  0 0.00  0
#> SRR1191991     1   0.342      0.799 0.760 0.240  0 0.00  0
#> SRR1192016     3   0.000      1.000 0.000 0.000  1 0.00  0
#> SRR1192017     3   0.000      1.000 0.000 0.000  1 0.00  0
#> SRR1192073     3   0.000      1.000 0.000 0.000  1 0.00  0
#> SRR1192072     3   0.000      1.000 0.000 0.000  1 0.00  0
#> SRR1192167     1   0.342      0.799 0.760 0.240  0 0.00  0
#> SRR1192166     1   0.342      0.799 0.760 0.240  0 0.00  0
#> SRR1192321     3   0.000      1.000 0.000 0.000  1 0.00  0
#> SRR1192353     1   0.342      0.799 0.760 0.240  0 0.00  0
#> SRR1192354     1   0.342      0.799 0.760 0.240  0 0.00  0
#> SRR1192370     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1192371     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1192399     1   0.342      0.799 0.760 0.240  0 0.00  0
#> SRR1192398     1   0.342      0.799 0.760 0.240  0 0.00  0
#> SRR1192417     4   0.000      1.000 0.000 0.000  0 1.00  0
#> SRR1192418     4   0.000      1.000 0.000 0.000  0 1.00  0
#> SRR1192415     4   0.000      1.000 0.000 0.000  0 1.00  0
#> SRR1192416     4   0.000      1.000 0.000 0.000  0 1.00  0
#> SRR1192413     4   0.000      1.000 0.000 0.000  0 1.00  0
#> SRR1192414     4   0.000      1.000 0.000 0.000  0 1.00  0
#> SRR1192420     4   0.000      1.000 0.000 0.000  0 1.00  0
#> SRR1192419     4   0.000      1.000 0.000 0.000  0 1.00  0
#> SRR1192471     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1192470     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1192469     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1192468     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1192467     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1192466     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1192465     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1192500     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1192501     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1192502     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1192503     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1192496     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1192497     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1192499     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1192641     2   0.342      1.000 0.000 0.760  0 0.24  0
#> SRR1192640     2   0.342      1.000 0.000 0.760  0 0.24  0
#> SRR1192643     2   0.342      1.000 0.000 0.760  0 0.24  0
#> SRR1192642     2   0.342      1.000 0.000 0.760  0 0.24  0
#> SRR1192644     2   0.342      1.000 0.000 0.760  0 0.24  0
#> SRR1192645     2   0.342      1.000 0.000 0.760  0 0.24  0
#> SRR1192646     2   0.342      1.000 0.000 0.760  0 0.24  0
#> SRR1192647     2   0.342      1.000 0.000 0.760  0 0.24  0
#> SRR1192836     5   0.000      1.000 0.000 0.000  0 0.00  1
#> SRR1192838     5   0.000      1.000 0.000 0.000  0 0.00  1
#> SRR1192837     5   0.000      1.000 0.000 0.000  0 0.00  1
#> SRR1192839     5   0.000      1.000 0.000 0.000  0 0.00  1
#> SRR1192963     2   0.342      1.000 0.000 0.760  0 0.24  0
#> SRR1192966     2   0.342      1.000 0.000 0.760  0 0.24  0
#> SRR1192965     2   0.342      1.000 0.000 0.760  0 0.24  0
#> SRR1192964     2   0.342      1.000 0.000 0.760  0 0.24  0
#> SRR1193005     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1193006     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1193007     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1193008     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1193011     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1193012     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1193009     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1193010     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1193014     1   0.277      0.856 0.836 0.164  0 0.00  0
#> SRR1193015     1   0.277      0.856 0.836 0.164  0 0.00  0
#> SRR1193013     1   0.277      0.856 0.836 0.164  0 0.00  0
#> SRR1193018     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1193016     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1193017     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1193100     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1193101     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1193102     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1193104     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1193103     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1193105     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1193106     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1193198     1   0.277      0.856 0.836 0.164  0 0.00  0
#> SRR1193197     1   0.277      0.856 0.836 0.164  0 0.00  0
#> SRR1193199     1   0.277      0.856 0.836 0.164  0 0.00  0
#> SRR1193405     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1193404     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1193403     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1193522     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1193523     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1193524     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1193638     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1193639     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1195621     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1195619     1   0.000      0.940 1.000 0.000  0 0.00  0
#> SRR1195620     1   0.000      0.940 1.000 0.000  0 0.00  0

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1 p2 p3 p4    p5 p6
#> SRR1190372     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1190371     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1190370     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1190368     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1190369     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1190366     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1190367     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1190365     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1190467     3   0.000      1.000 0.000  0  1  0 0.000  0
#> SRR1190466     3   0.000      1.000 0.000  0  1  0 0.000  0
#> SRR1190465     3   0.000      1.000 0.000  0  1  0 0.000  0
#> SRR1190464     3   0.000      1.000 0.000  0  1  0 0.000  0
#> SRR1190462     3   0.000      1.000 0.000  0  1  0 0.000  0
#> SRR1190461     3   0.000      1.000 0.000  0  1  0 0.000  0
#> SRR1190460     3   0.000      1.000 0.000  0  1  0 0.000  0
#> SRR1190509     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1190504     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1190503     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1190502     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1190508     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1190507     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1190506     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1190505     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1191342     4   0.000      1.000 0.000  0  0  1 0.000  0
#> SRR1191344     4   0.000      1.000 0.000  0  0  1 0.000  0
#> SRR1191343     4   0.000      1.000 0.000  0  0  1 0.000  0
#> SRR1191349     4   0.000      1.000 0.000  0  0  1 0.000  0
#> SRR1191345     4   0.000      1.000 0.000  0  0  1 0.000  0
#> SRR1191346     4   0.000      1.000 0.000  0  0  1 0.000  0
#> SRR1191347     4   0.000      1.000 0.000  0  0  1 0.000  0
#> SRR1191348     4   0.000      1.000 0.000  0  0  1 0.000  0
#> SRR1191668     1   0.000      0.538 1.000  0  0  0 0.000  0
#> SRR1191667     1   0.000      0.538 1.000  0  0  0 0.000  0
#> SRR1191673     1   0.000      0.538 1.000  0  0  0 0.000  0
#> SRR1191672     1   0.000      0.538 1.000  0  0  0 0.000  0
#> SRR1191695     3   0.000      1.000 0.000  0  1  0 0.000  0
#> SRR1191694     3   0.000      1.000 0.000  0  1  0 0.000  0
#> SRR1191783     3   0.000      1.000 0.000  0  1  0 0.000  0
#> SRR1191876     3   0.000      1.000 0.000  0  1  0 0.000  0
#> SRR1191914     1   0.387      0.464 0.516  0  0  0 0.484  0
#> SRR1191915     1   0.387      0.464 0.516  0  0  0 0.484  0
#> SRR1191953     1   0.387      0.464 0.516  0  0  0 0.484  0
#> SRR1191954     1   0.387      0.464 0.516  0  0  0 0.484  0
#> SRR1191990     1   0.000      0.538 1.000  0  0  0 0.000  0
#> SRR1191991     1   0.000      0.538 1.000  0  0  0 0.000  0
#> SRR1192016     3   0.000      1.000 0.000  0  1  0 0.000  0
#> SRR1192017     3   0.000      1.000 0.000  0  1  0 0.000  0
#> SRR1192073     3   0.000      1.000 0.000  0  1  0 0.000  0
#> SRR1192072     3   0.000      1.000 0.000  0  1  0 0.000  0
#> SRR1192167     1   0.000      0.538 1.000  0  0  0 0.000  0
#> SRR1192166     1   0.000      0.538 1.000  0  0  0 0.000  0
#> SRR1192321     3   0.000      1.000 0.000  0  1  0 0.000  0
#> SRR1192353     1   0.000      0.538 1.000  0  0  0 0.000  0
#> SRR1192354     1   0.000      0.538 1.000  0  0  0 0.000  0
#> SRR1192370     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1192371     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1192399     1   0.000      0.538 1.000  0  0  0 0.000  0
#> SRR1192398     1   0.000      0.538 1.000  0  0  0 0.000  0
#> SRR1192417     4   0.000      1.000 0.000  0  0  1 0.000  0
#> SRR1192418     4   0.000      1.000 0.000  0  0  1 0.000  0
#> SRR1192415     4   0.000      1.000 0.000  0  0  1 0.000  0
#> SRR1192416     4   0.000      1.000 0.000  0  0  1 0.000  0
#> SRR1192413     4   0.000      1.000 0.000  0  0  1 0.000  0
#> SRR1192414     4   0.000      1.000 0.000  0  0  1 0.000  0
#> SRR1192420     4   0.000      1.000 0.000  0  0  1 0.000  0
#> SRR1192419     4   0.000      1.000 0.000  0  0  1 0.000  0
#> SRR1192471     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1192470     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1192469     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1192468     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1192467     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1192466     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1192465     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1192500     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1192501     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1192502     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1192503     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1192496     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1192497     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1192499     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1192641     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1192640     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1192643     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1192642     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1192644     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1192645     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1192646     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1192647     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1192836     6   0.000      1.000 0.000  0  0  0 0.000  1
#> SRR1192838     6   0.000      1.000 0.000  0  0  0 0.000  1
#> SRR1192837     6   0.000      1.000 0.000  0  0  0 0.000  1
#> SRR1192839     6   0.000      1.000 0.000  0  0  0 0.000  1
#> SRR1192963     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1192966     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1192965     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1192964     2   0.000      1.000 0.000  1  0  0 0.000  0
#> SRR1193005     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193006     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193007     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193008     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193011     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193012     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193009     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193010     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193014     1   0.387      0.464 0.516  0  0  0 0.484  0
#> SRR1193015     1   0.387      0.464 0.516  0  0  0 0.484  0
#> SRR1193013     1   0.387      0.464 0.516  0  0  0 0.484  0
#> SRR1193018     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193016     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193017     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193100     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193101     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193102     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193104     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193103     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193105     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193106     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193198     1   0.387      0.464 0.516  0  0  0 0.484  0
#> SRR1193197     1   0.387      0.464 0.516  0  0  0 0.484  0
#> SRR1193199     1   0.387      0.464 0.516  0  0  0 0.484  0
#> SRR1193405     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193404     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193403     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193522     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193523     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193524     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193638     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1193639     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1195621     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1195619     5   0.000      1.000 0.000  0  0  0 1.000  0
#> SRR1195620     5   0.000      1.000 0.000  0  0  0 1.000  0

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15363 rows and 131 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.4281 0.573   0.573
#> 3 3 0.810           0.971       0.936         0.2696 0.859   0.754
#> 4 4 0.639           0.793       0.841         0.1901 1.000   1.000
#> 5 5 0.719           0.841       0.817         0.0976 0.863   0.683
#> 6 6 0.677           0.734       0.743         0.0754 0.913   0.703

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1190372     2       0          1  0  1
#> SRR1190371     2       0          1  0  1
#> SRR1190370     2       0          1  0  1
#> SRR1190368     2       0          1  0  1
#> SRR1190369     2       0          1  0  1
#> SRR1190366     2       0          1  0  1
#> SRR1190367     2       0          1  0  1
#> SRR1190365     2       0          1  0  1
#> SRR1190467     1       0          1  1  0
#> SRR1190466     1       0          1  1  0
#> SRR1190465     1       0          1  1  0
#> SRR1190464     1       0          1  1  0
#> SRR1190462     1       0          1  1  0
#> SRR1190461     1       0          1  1  0
#> SRR1190460     1       0          1  1  0
#> SRR1190509     1       0          1  1  0
#> SRR1190504     1       0          1  1  0
#> SRR1190503     1       0          1  1  0
#> SRR1190502     1       0          1  1  0
#> SRR1190508     1       0          1  1  0
#> SRR1190507     1       0          1  1  0
#> SRR1190506     1       0          1  1  0
#> SRR1190505     1       0          1  1  0
#> SRR1191342     2       0          1  0  1
#> SRR1191344     2       0          1  0  1
#> SRR1191343     2       0          1  0  1
#> SRR1191349     2       0          1  0  1
#> SRR1191345     2       0          1  0  1
#> SRR1191346     2       0          1  0  1
#> SRR1191347     2       0          1  0  1
#> SRR1191348     2       0          1  0  1
#> SRR1191668     1       0          1  1  0
#> SRR1191667     1       0          1  1  0
#> SRR1191673     1       0          1  1  0
#> SRR1191672     1       0          1  1  0
#> SRR1191695     1       0          1  1  0
#> SRR1191694     1       0          1  1  0
#> SRR1191783     1       0          1  1  0
#> SRR1191876     1       0          1  1  0
#> SRR1191914     1       0          1  1  0
#> SRR1191915     1       0          1  1  0
#> SRR1191953     1       0          1  1  0
#> SRR1191954     1       0          1  1  0
#> SRR1191990     1       0          1  1  0
#> SRR1191991     1       0          1  1  0
#> SRR1192016     1       0          1  1  0
#> SRR1192017     1       0          1  1  0
#> SRR1192073     1       0          1  1  0
#> SRR1192072     1       0          1  1  0
#> SRR1192167     1       0          1  1  0
#> SRR1192166     1       0          1  1  0
#> SRR1192321     1       0          1  1  0
#> SRR1192353     1       0          1  1  0
#> SRR1192354     1       0          1  1  0
#> SRR1192370     1       0          1  1  0
#> SRR1192371     1       0          1  1  0
#> SRR1192399     1       0          1  1  0
#> SRR1192398     1       0          1  1  0
#> SRR1192417     2       0          1  0  1
#> SRR1192418     2       0          1  0  1
#> SRR1192415     2       0          1  0  1
#> SRR1192416     2       0          1  0  1
#> SRR1192413     2       0          1  0  1
#> SRR1192414     2       0          1  0  1
#> SRR1192420     2       0          1  0  1
#> SRR1192419     2       0          1  0  1
#> SRR1192471     1       0          1  1  0
#> SRR1192470     1       0          1  1  0
#> SRR1192469     1       0          1  1  0
#> SRR1192468     1       0          1  1  0
#> SRR1192467     1       0          1  1  0
#> SRR1192466     1       0          1  1  0
#> SRR1192465     1       0          1  1  0
#> SRR1192500     1       0          1  1  0
#> SRR1192501     1       0          1  1  0
#> SRR1192502     1       0          1  1  0
#> SRR1192503     1       0          1  1  0
#> SRR1192496     1       0          1  1  0
#> SRR1192497     1       0          1  1  0
#> SRR1192499     1       0          1  1  0
#> SRR1192641     2       0          1  0  1
#> SRR1192640     2       0          1  0  1
#> SRR1192643     2       0          1  0  1
#> SRR1192642     2       0          1  0  1
#> SRR1192644     2       0          1  0  1
#> SRR1192645     2       0          1  0  1
#> SRR1192646     2       0          1  0  1
#> SRR1192647     2       0          1  0  1
#> SRR1192836     2       0          1  0  1
#> SRR1192838     2       0          1  0  1
#> SRR1192837     2       0          1  0  1
#> SRR1192839     2       0          1  0  1
#> SRR1192963     2       0          1  0  1
#> SRR1192966     2       0          1  0  1
#> SRR1192965     2       0          1  0  1
#> SRR1192964     2       0          1  0  1
#> SRR1193005     1       0          1  1  0
#> SRR1193006     1       0          1  1  0
#> SRR1193007     1       0          1  1  0
#> SRR1193008     1       0          1  1  0
#> SRR1193011     1       0          1  1  0
#> SRR1193012     1       0          1  1  0
#> SRR1193009     1       0          1  1  0
#> SRR1193010     1       0          1  1  0
#> SRR1193014     1       0          1  1  0
#> SRR1193015     1       0          1  1  0
#> SRR1193013     1       0          1  1  0
#> SRR1193018     1       0          1  1  0
#> SRR1193016     1       0          1  1  0
#> SRR1193017     1       0          1  1  0
#> SRR1193100     1       0          1  1  0
#> SRR1193101     1       0          1  1  0
#> SRR1193102     1       0          1  1  0
#> SRR1193104     1       0          1  1  0
#> SRR1193103     1       0          1  1  0
#> SRR1193105     1       0          1  1  0
#> SRR1193106     1       0          1  1  0
#> SRR1193198     1       0          1  1  0
#> SRR1193197     1       0          1  1  0
#> SRR1193199     1       0          1  1  0
#> SRR1193405     1       0          1  1  0
#> SRR1193404     1       0          1  1  0
#> SRR1193403     1       0          1  1  0
#> SRR1193522     1       0          1  1  0
#> SRR1193523     1       0          1  1  0
#> SRR1193524     1       0          1  1  0
#> SRR1193638     1       0          1  1  0
#> SRR1193639     1       0          1  1  0
#> SRR1195621     1       0          1  1  0
#> SRR1195619     1       0          1  1  0
#> SRR1195620     1       0          1  1  0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1190372     2   0.000      0.909 0.000 1.000 0.000
#> SRR1190371     2   0.000      0.909 0.000 1.000 0.000
#> SRR1190370     2   0.000      0.909 0.000 1.000 0.000
#> SRR1190368     2   0.000      0.909 0.000 1.000 0.000
#> SRR1190369     2   0.000      0.909 0.000 1.000 0.000
#> SRR1190366     2   0.000      0.909 0.000 1.000 0.000
#> SRR1190367     2   0.000      0.909 0.000 1.000 0.000
#> SRR1190365     2   0.000      0.909 0.000 1.000 0.000
#> SRR1190467     3   0.518      1.000 0.256 0.000 0.744
#> SRR1190466     3   0.518      1.000 0.256 0.000 0.744
#> SRR1190465     3   0.518      1.000 0.256 0.000 0.744
#> SRR1190464     3   0.518      1.000 0.256 0.000 0.744
#> SRR1190462     3   0.518      1.000 0.256 0.000 0.744
#> SRR1190461     3   0.518      1.000 0.256 0.000 0.744
#> SRR1190460     3   0.518      1.000 0.256 0.000 0.744
#> SRR1190509     1   0.000      1.000 1.000 0.000 0.000
#> SRR1190504     1   0.000      1.000 1.000 0.000 0.000
#> SRR1190503     1   0.000      1.000 1.000 0.000 0.000
#> SRR1190502     1   0.000      1.000 1.000 0.000 0.000
#> SRR1190508     1   0.000      1.000 1.000 0.000 0.000
#> SRR1190507     1   0.000      1.000 1.000 0.000 0.000
#> SRR1190506     1   0.000      1.000 1.000 0.000 0.000
#> SRR1190505     1   0.000      1.000 1.000 0.000 0.000
#> SRR1191342     2   0.470      0.903 0.000 0.788 0.212
#> SRR1191344     2   0.470      0.903 0.000 0.788 0.212
#> SRR1191343     2   0.470      0.903 0.000 0.788 0.212
#> SRR1191349     2   0.470      0.903 0.000 0.788 0.212
#> SRR1191345     2   0.470      0.903 0.000 0.788 0.212
#> SRR1191346     2   0.470      0.903 0.000 0.788 0.212
#> SRR1191347     2   0.470      0.903 0.000 0.788 0.212
#> SRR1191348     2   0.470      0.903 0.000 0.788 0.212
#> SRR1191668     1   0.000      1.000 1.000 0.000 0.000
#> SRR1191667     1   0.000      1.000 1.000 0.000 0.000
#> SRR1191673     1   0.000      1.000 1.000 0.000 0.000
#> SRR1191672     1   0.000      1.000 1.000 0.000 0.000
#> SRR1191695     3   0.518      1.000 0.256 0.000 0.744
#> SRR1191694     3   0.518      1.000 0.256 0.000 0.744
#> SRR1191783     3   0.518      1.000 0.256 0.000 0.744
#> SRR1191876     3   0.518      1.000 0.256 0.000 0.744
#> SRR1191914     1   0.000      1.000 1.000 0.000 0.000
#> SRR1191915     1   0.000      1.000 1.000 0.000 0.000
#> SRR1191953     1   0.000      1.000 1.000 0.000 0.000
#> SRR1191954     1   0.000      1.000 1.000 0.000 0.000
#> SRR1191990     1   0.000      1.000 1.000 0.000 0.000
#> SRR1191991     1   0.000      1.000 1.000 0.000 0.000
#> SRR1192016     3   0.518      1.000 0.256 0.000 0.744
#> SRR1192017     3   0.518      1.000 0.256 0.000 0.744
#> SRR1192073     3   0.518      1.000 0.256 0.000 0.744
#> SRR1192072     3   0.518      1.000 0.256 0.000 0.744
#> SRR1192167     1   0.000      1.000 1.000 0.000 0.000
#> SRR1192166     1   0.000      1.000 1.000 0.000 0.000
#> SRR1192321     3   0.518      1.000 0.256 0.000 0.744
#> SRR1192353     1   0.000      1.000 1.000 0.000 0.000
#> SRR1192354     1   0.000      1.000 1.000 0.000 0.000
#> SRR1192370     1   0.000      1.000 1.000 0.000 0.000
#> SRR1192371     1   0.000      1.000 1.000 0.000 0.000
#> SRR1192399     1   0.000      1.000 1.000 0.000 0.000
#> SRR1192398     1   0.000      1.000 1.000 0.000 0.000
#> SRR1192417     2   0.470      0.903 0.000 0.788 0.212
#> SRR1192418     2   0.470      0.903 0.000 0.788 0.212
#> SRR1192415     2   0.470      0.903 0.000 0.788 0.212
#> SRR1192416     2   0.470      0.903 0.000 0.788 0.212
#> SRR1192413     2   0.470      0.903 0.000 0.788 0.212
#> SRR1192414     2   0.470      0.903 0.000 0.788 0.212
#> SRR1192420     2   0.470      0.903 0.000 0.788 0.212
#> SRR1192419     2   0.470      0.903 0.000 0.788 0.212
#> SRR1192471     1   0.000      1.000 1.000 0.000 0.000
#> SRR1192470     1   0.000      1.000 1.000 0.000 0.000
#> SRR1192469     1   0.000      1.000 1.000 0.000 0.000
#> SRR1192468     1   0.000      1.000 1.000 0.000 0.000
#> SRR1192467     1   0.000      1.000 1.000 0.000 0.000
#> SRR1192466     1   0.000      1.000 1.000 0.000 0.000
#> SRR1192465     1   0.000      1.000 1.000 0.000 0.000
#> SRR1192500     1   0.000      1.000 1.000 0.000 0.000
#> SRR1192501     1   0.000      1.000 1.000 0.000 0.000
#> SRR1192502     1   0.000      1.000 1.000 0.000 0.000
#> SRR1192503     1   0.000      1.000 1.000 0.000 0.000
#> SRR1192496     1   0.000      1.000 1.000 0.000 0.000
#> SRR1192497     1   0.000      1.000 1.000 0.000 0.000
#> SRR1192499     1   0.000      1.000 1.000 0.000 0.000
#> SRR1192641     2   0.000      0.909 0.000 1.000 0.000
#> SRR1192640     2   0.000      0.909 0.000 1.000 0.000
#> SRR1192643     2   0.000      0.909 0.000 1.000 0.000
#> SRR1192642     2   0.000      0.909 0.000 1.000 0.000
#> SRR1192644     2   0.000      0.909 0.000 1.000 0.000
#> SRR1192645     2   0.000      0.909 0.000 1.000 0.000
#> SRR1192646     2   0.000      0.909 0.000 1.000 0.000
#> SRR1192647     2   0.000      0.909 0.000 1.000 0.000
#> SRR1192836     2   0.484      0.892 0.000 0.776 0.224
#> SRR1192838     2   0.484      0.892 0.000 0.776 0.224
#> SRR1192837     2   0.484      0.892 0.000 0.776 0.224
#> SRR1192839     2   0.484      0.892 0.000 0.776 0.224
#> SRR1192963     2   0.000      0.909 0.000 1.000 0.000
#> SRR1192966     2   0.000      0.909 0.000 1.000 0.000
#> SRR1192965     2   0.000      0.909 0.000 1.000 0.000
#> SRR1192964     2   0.000      0.909 0.000 1.000 0.000
#> SRR1193005     1   0.000      1.000 1.000 0.000 0.000
#> SRR1193006     1   0.000      1.000 1.000 0.000 0.000
#> SRR1193007     1   0.000      1.000 1.000 0.000 0.000
#> SRR1193008     1   0.000      1.000 1.000 0.000 0.000
#> SRR1193011     1   0.000      1.000 1.000 0.000 0.000
#> SRR1193012     1   0.000      1.000 1.000 0.000 0.000
#> SRR1193009     1   0.000      1.000 1.000 0.000 0.000
#> SRR1193010     1   0.000      1.000 1.000 0.000 0.000
#> SRR1193014     1   0.000      1.000 1.000 0.000 0.000
#> SRR1193015     1   0.000      1.000 1.000 0.000 0.000
#> SRR1193013     1   0.000      1.000 1.000 0.000 0.000
#> SRR1193018     1   0.000      1.000 1.000 0.000 0.000
#> SRR1193016     1   0.000      1.000 1.000 0.000 0.000
#> SRR1193017     1   0.000      1.000 1.000 0.000 0.000
#> SRR1193100     1   0.000      1.000 1.000 0.000 0.000
#> SRR1193101     1   0.000      1.000 1.000 0.000 0.000
#> SRR1193102     1   0.000      1.000 1.000 0.000 0.000
#> SRR1193104     1   0.000      1.000 1.000 0.000 0.000
#> SRR1193103     1   0.000      1.000 1.000 0.000 0.000
#> SRR1193105     1   0.000      1.000 1.000 0.000 0.000
#> SRR1193106     1   0.000      1.000 1.000 0.000 0.000
#> SRR1193198     1   0.000      1.000 1.000 0.000 0.000
#> SRR1193197     1   0.000      1.000 1.000 0.000 0.000
#> SRR1193199     1   0.000      1.000 1.000 0.000 0.000
#> SRR1193405     1   0.000      1.000 1.000 0.000 0.000
#> SRR1193404     1   0.000      1.000 1.000 0.000 0.000
#> SRR1193403     1   0.000      1.000 1.000 0.000 0.000
#> SRR1193522     1   0.000      1.000 1.000 0.000 0.000
#> SRR1193523     1   0.000      1.000 1.000 0.000 0.000
#> SRR1193524     1   0.000      1.000 1.000 0.000 0.000
#> SRR1193638     1   0.000      1.000 1.000 0.000 0.000
#> SRR1193639     1   0.000      1.000 1.000 0.000 0.000
#> SRR1195621     1   0.000      1.000 1.000 0.000 0.000
#> SRR1195619     1   0.000      1.000 1.000 0.000 0.000
#> SRR1195620     1   0.000      1.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1   p2    p3 p4
#> SRR1190372     2  0.5137      0.855 0.000 0.68 0.024 NA
#> SRR1190371     2  0.5137      0.855 0.000 0.68 0.024 NA
#> SRR1190370     2  0.5137      0.855 0.000 0.68 0.024 NA
#> SRR1190368     2  0.5137      0.855 0.000 0.68 0.024 NA
#> SRR1190369     2  0.5137      0.855 0.000 0.68 0.024 NA
#> SRR1190366     2  0.5137      0.855 0.000 0.68 0.024 NA
#> SRR1190367     2  0.5137      0.855 0.000 0.68 0.024 NA
#> SRR1190365     2  0.5137      0.855 0.000 0.68 0.024 NA
#> SRR1190467     3  0.2799      0.996 0.108 0.00 0.884 NA
#> SRR1190466     3  0.2799      0.996 0.108 0.00 0.884 NA
#> SRR1190465     3  0.2799      0.996 0.108 0.00 0.884 NA
#> SRR1190464     3  0.2799      0.996 0.108 0.00 0.884 NA
#> SRR1190462     3  0.2799      0.996 0.108 0.00 0.884 NA
#> SRR1190461     3  0.2799      0.996 0.108 0.00 0.884 NA
#> SRR1190460     3  0.2799      0.996 0.108 0.00 0.884 NA
#> SRR1190509     1  0.0592      0.811 0.984 0.00 0.000 NA
#> SRR1190504     1  0.0592      0.811 0.984 0.00 0.000 NA
#> SRR1190503     1  0.0592      0.811 0.984 0.00 0.000 NA
#> SRR1190502     1  0.0592      0.811 0.984 0.00 0.000 NA
#> SRR1190508     1  0.0592      0.811 0.984 0.00 0.000 NA
#> SRR1190507     1  0.0592      0.811 0.984 0.00 0.000 NA
#> SRR1190506     1  0.0592      0.811 0.984 0.00 0.000 NA
#> SRR1190505     1  0.0592      0.811 0.984 0.00 0.000 NA
#> SRR1191342     2  0.0000      0.840 0.000 1.00 0.000 NA
#> SRR1191344     2  0.0000      0.840 0.000 1.00 0.000 NA
#> SRR1191343     2  0.0000      0.840 0.000 1.00 0.000 NA
#> SRR1191349     2  0.0000      0.840 0.000 1.00 0.000 NA
#> SRR1191345     2  0.0000      0.840 0.000 1.00 0.000 NA
#> SRR1191346     2  0.0000      0.840 0.000 1.00 0.000 NA
#> SRR1191347     2  0.0000      0.840 0.000 1.00 0.000 NA
#> SRR1191348     2  0.0000      0.840 0.000 1.00 0.000 NA
#> SRR1191668     1  0.2814      0.745 0.868 0.00 0.000 NA
#> SRR1191667     1  0.2814      0.745 0.868 0.00 0.000 NA
#> SRR1191673     1  0.2814      0.745 0.868 0.00 0.000 NA
#> SRR1191672     1  0.2814      0.745 0.868 0.00 0.000 NA
#> SRR1191695     3  0.2928      0.993 0.108 0.00 0.880 NA
#> SRR1191694     3  0.2928      0.993 0.108 0.00 0.880 NA
#> SRR1191783     3  0.2928      0.993 0.108 0.00 0.880 NA
#> SRR1191876     3  0.2928      0.993 0.108 0.00 0.880 NA
#> SRR1191914     1  0.1302      0.804 0.956 0.00 0.000 NA
#> SRR1191915     1  0.1302      0.804 0.956 0.00 0.000 NA
#> SRR1191953     1  0.1302      0.804 0.956 0.00 0.000 NA
#> SRR1191954     1  0.1302      0.804 0.956 0.00 0.000 NA
#> SRR1191990     1  0.2814      0.745 0.868 0.00 0.000 NA
#> SRR1191991     1  0.2814      0.745 0.868 0.00 0.000 NA
#> SRR1192016     3  0.2469      0.996 0.108 0.00 0.892 NA
#> SRR1192017     3  0.2469      0.996 0.108 0.00 0.892 NA
#> SRR1192073     3  0.2469      0.996 0.108 0.00 0.892 NA
#> SRR1192072     3  0.2469      0.996 0.108 0.00 0.892 NA
#> SRR1192167     1  0.2814      0.745 0.868 0.00 0.000 NA
#> SRR1192166     1  0.2814      0.745 0.868 0.00 0.000 NA
#> SRR1192321     3  0.2469      0.996 0.108 0.00 0.892 NA
#> SRR1192353     1  0.1474      0.801 0.948 0.00 0.000 NA
#> SRR1192354     1  0.1474      0.801 0.948 0.00 0.000 NA
#> SRR1192370     1  0.4981      0.538 0.536 0.00 0.000 NA
#> SRR1192371     1  0.4981      0.538 0.536 0.00 0.000 NA
#> SRR1192399     1  0.1474      0.801 0.948 0.00 0.000 NA
#> SRR1192398     1  0.1474      0.801 0.948 0.00 0.000 NA
#> SRR1192417     2  0.0000      0.840 0.000 1.00 0.000 NA
#> SRR1192418     2  0.0000      0.840 0.000 1.00 0.000 NA
#> SRR1192415     2  0.0000      0.840 0.000 1.00 0.000 NA
#> SRR1192416     2  0.0000      0.840 0.000 1.00 0.000 NA
#> SRR1192413     2  0.0000      0.840 0.000 1.00 0.000 NA
#> SRR1192414     2  0.0000      0.840 0.000 1.00 0.000 NA
#> SRR1192420     2  0.0000      0.840 0.000 1.00 0.000 NA
#> SRR1192419     2  0.0000      0.840 0.000 1.00 0.000 NA
#> SRR1192471     1  0.4977      0.538 0.540 0.00 0.000 NA
#> SRR1192470     1  0.4977      0.538 0.540 0.00 0.000 NA
#> SRR1192469     1  0.4977      0.538 0.540 0.00 0.000 NA
#> SRR1192468     1  0.4977      0.538 0.540 0.00 0.000 NA
#> SRR1192467     1  0.4977      0.538 0.540 0.00 0.000 NA
#> SRR1192466     1  0.4977      0.538 0.540 0.00 0.000 NA
#> SRR1192465     1  0.4977      0.538 0.540 0.00 0.000 NA
#> SRR1192500     1  0.0000      0.813 1.000 0.00 0.000 NA
#> SRR1192501     1  0.0000      0.813 1.000 0.00 0.000 NA
#> SRR1192502     1  0.0000      0.813 1.000 0.00 0.000 NA
#> SRR1192503     1  0.0000      0.813 1.000 0.00 0.000 NA
#> SRR1192496     1  0.0000      0.813 1.000 0.00 0.000 NA
#> SRR1192497     1  0.0000      0.813 1.000 0.00 0.000 NA
#> SRR1192499     1  0.0000      0.813 1.000 0.00 0.000 NA
#> SRR1192641     2  0.4522      0.856 0.000 0.68 0.000 NA
#> SRR1192640     2  0.4522      0.856 0.000 0.68 0.000 NA
#> SRR1192643     2  0.4522      0.856 0.000 0.68 0.000 NA
#> SRR1192642     2  0.4522      0.856 0.000 0.68 0.000 NA
#> SRR1192644     2  0.4522      0.856 0.000 0.68 0.000 NA
#> SRR1192645     2  0.4522      0.856 0.000 0.68 0.000 NA
#> SRR1192646     2  0.4522      0.856 0.000 0.68 0.000 NA
#> SRR1192647     2  0.4522      0.856 0.000 0.68 0.000 NA
#> SRR1192836     2  0.4581      0.810 0.000 0.80 0.080 NA
#> SRR1192838     2  0.4581      0.810 0.000 0.80 0.080 NA
#> SRR1192837     2  0.4581      0.810 0.000 0.80 0.080 NA
#> SRR1192839     2  0.4581      0.810 0.000 0.80 0.080 NA
#> SRR1192963     2  0.4677      0.856 0.000 0.68 0.004 NA
#> SRR1192966     2  0.4677      0.856 0.000 0.68 0.004 NA
#> SRR1192965     2  0.4677      0.856 0.000 0.68 0.004 NA
#> SRR1192964     2  0.4677      0.856 0.000 0.68 0.004 NA
#> SRR1193005     1  0.0000      0.813 1.000 0.00 0.000 NA
#> SRR1193006     1  0.0000      0.813 1.000 0.00 0.000 NA
#> SRR1193007     1  0.0000      0.813 1.000 0.00 0.000 NA
#> SRR1193008     1  0.0000      0.813 1.000 0.00 0.000 NA
#> SRR1193011     1  0.4977      0.538 0.540 0.00 0.000 NA
#> SRR1193012     1  0.4977      0.538 0.540 0.00 0.000 NA
#> SRR1193009     1  0.4977      0.538 0.540 0.00 0.000 NA
#> SRR1193010     1  0.4977      0.538 0.540 0.00 0.000 NA
#> SRR1193014     1  0.1302      0.804 0.956 0.00 0.000 NA
#> SRR1193015     1  0.1302      0.804 0.956 0.00 0.000 NA
#> SRR1193013     1  0.1302      0.804 0.956 0.00 0.000 NA
#> SRR1193018     1  0.0469      0.813 0.988 0.00 0.000 NA
#> SRR1193016     1  0.0469      0.813 0.988 0.00 0.000 NA
#> SRR1193017     1  0.0469      0.813 0.988 0.00 0.000 NA
#> SRR1193100     1  0.0469      0.813 0.988 0.00 0.000 NA
#> SRR1193101     1  0.0469      0.813 0.988 0.00 0.000 NA
#> SRR1193102     1  0.0469      0.813 0.988 0.00 0.000 NA
#> SRR1193104     1  0.4981      0.538 0.536 0.00 0.000 NA
#> SRR1193103     1  0.4981      0.538 0.536 0.00 0.000 NA
#> SRR1193105     1  0.4981      0.538 0.536 0.00 0.000 NA
#> SRR1193106     1  0.4981      0.538 0.536 0.00 0.000 NA
#> SRR1193198     1  0.1557      0.799 0.944 0.00 0.000 NA
#> SRR1193197     1  0.1557      0.799 0.944 0.00 0.000 NA
#> SRR1193199     1  0.1557      0.799 0.944 0.00 0.000 NA
#> SRR1193405     1  0.0469      0.813 0.988 0.00 0.000 NA
#> SRR1193404     1  0.0469      0.813 0.988 0.00 0.000 NA
#> SRR1193403     1  0.0469      0.813 0.988 0.00 0.000 NA
#> SRR1193522     1  0.0188      0.813 0.996 0.00 0.000 NA
#> SRR1193523     1  0.0188      0.813 0.996 0.00 0.000 NA
#> SRR1193524     1  0.0188      0.813 0.996 0.00 0.000 NA
#> SRR1193638     1  0.4981      0.538 0.536 0.00 0.000 NA
#> SRR1193639     1  0.4981      0.538 0.536 0.00 0.000 NA
#> SRR1195621     1  0.4981      0.538 0.536 0.00 0.000 NA
#> SRR1195619     1  0.4981      0.538 0.536 0.00 0.000 NA
#> SRR1195620     1  0.4981      0.538 0.536 0.00 0.000 NA

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3 p4    p5
#> SRR1190372     2  0.5423      0.769 0.000 0.532 0.012 NA 0.036
#> SRR1190371     2  0.5423      0.769 0.000 0.532 0.012 NA 0.036
#> SRR1190370     2  0.5423      0.769 0.000 0.532 0.012 NA 0.036
#> SRR1190368     2  0.5423      0.769 0.000 0.532 0.012 NA 0.036
#> SRR1190369     2  0.5423      0.769 0.000 0.532 0.012 NA 0.036
#> SRR1190366     2  0.5423      0.769 0.000 0.532 0.012 NA 0.036
#> SRR1190367     2  0.5423      0.769 0.000 0.532 0.012 NA 0.036
#> SRR1190365     2  0.5423      0.769 0.000 0.532 0.012 NA 0.036
#> SRR1190467     3  0.1612      0.976 0.016 0.000 0.948 NA 0.012
#> SRR1190466     3  0.1612      0.976 0.016 0.000 0.948 NA 0.012
#> SRR1190465     3  0.1612      0.976 0.016 0.000 0.948 NA 0.012
#> SRR1190464     3  0.1612      0.976 0.016 0.000 0.948 NA 0.012
#> SRR1190462     3  0.1612      0.976 0.016 0.000 0.948 NA 0.012
#> SRR1190461     3  0.1612      0.976 0.016 0.000 0.948 NA 0.012
#> SRR1190460     3  0.1612      0.976 0.016 0.000 0.948 NA 0.012
#> SRR1190509     1  0.0451      0.860 0.988 0.000 0.000 NA 0.004
#> SRR1190504     1  0.0451      0.860 0.988 0.000 0.000 NA 0.004
#> SRR1190503     1  0.0451      0.860 0.988 0.000 0.000 NA 0.004
#> SRR1190502     1  0.0451      0.860 0.988 0.000 0.000 NA 0.004
#> SRR1190508     1  0.0451      0.860 0.988 0.000 0.000 NA 0.004
#> SRR1190507     1  0.0451      0.860 0.988 0.000 0.000 NA 0.004
#> SRR1190506     1  0.0451      0.860 0.988 0.000 0.000 NA 0.004
#> SRR1190505     1  0.0451      0.860 0.988 0.000 0.000 NA 0.004
#> SRR1191342     2  0.0162      0.746 0.000 0.996 0.000 NA 0.004
#> SRR1191344     2  0.0162      0.746 0.000 0.996 0.000 NA 0.004
#> SRR1191343     2  0.0162      0.746 0.000 0.996 0.000 NA 0.004
#> SRR1191349     2  0.0162      0.746 0.000 0.996 0.000 NA 0.004
#> SRR1191345     2  0.0162      0.746 0.000 0.996 0.000 NA 0.004
#> SRR1191346     2  0.0162      0.746 0.000 0.996 0.000 NA 0.004
#> SRR1191347     2  0.0162      0.746 0.000 0.996 0.000 NA 0.004
#> SRR1191348     2  0.0162      0.746 0.000 0.996 0.000 NA 0.004
#> SRR1191668     1  0.4701      0.681 0.704 0.000 0.000 NA 0.060
#> SRR1191667     1  0.4701      0.681 0.704 0.000 0.000 NA 0.060
#> SRR1191673     1  0.4701      0.681 0.704 0.000 0.000 NA 0.060
#> SRR1191672     1  0.4701      0.681 0.704 0.000 0.000 NA 0.060
#> SRR1191695     3  0.2494      0.954 0.016 0.000 0.908 NA 0.044
#> SRR1191694     3  0.2494      0.954 0.016 0.000 0.908 NA 0.044
#> SRR1191783     3  0.2494      0.954 0.016 0.000 0.908 NA 0.044
#> SRR1191876     3  0.2494      0.954 0.016 0.000 0.908 NA 0.044
#> SRR1191914     1  0.3165      0.837 0.848 0.000 0.000 NA 0.036
#> SRR1191915     1  0.3165      0.837 0.848 0.000 0.000 NA 0.036
#> SRR1191953     1  0.3165      0.837 0.848 0.000 0.000 NA 0.036
#> SRR1191954     1  0.3165      0.837 0.848 0.000 0.000 NA 0.036
#> SRR1191990     1  0.4850      0.679 0.696 0.000 0.000 NA 0.072
#> SRR1191991     1  0.4850      0.679 0.696 0.000 0.000 NA 0.072
#> SRR1192016     3  0.0510      0.976 0.016 0.000 0.984 NA 0.000
#> SRR1192017     3  0.0510      0.976 0.016 0.000 0.984 NA 0.000
#> SRR1192073     3  0.0510      0.976 0.016 0.000 0.984 NA 0.000
#> SRR1192072     3  0.0510      0.976 0.016 0.000 0.984 NA 0.000
#> SRR1192167     1  0.4701      0.681 0.704 0.000 0.000 NA 0.060
#> SRR1192166     1  0.4701      0.681 0.704 0.000 0.000 NA 0.060
#> SRR1192321     3  0.0510      0.976 0.016 0.000 0.984 NA 0.000
#> SRR1192353     1  0.3242      0.832 0.844 0.000 0.000 NA 0.040
#> SRR1192354     1  0.3242      0.832 0.844 0.000 0.000 NA 0.040
#> SRR1192370     5  0.3983      0.967 0.340 0.000 0.000 NA 0.660
#> SRR1192371     5  0.3983      0.967 0.340 0.000 0.000 NA 0.660
#> SRR1192399     1  0.3242      0.832 0.844 0.000 0.000 NA 0.040
#> SRR1192398     1  0.3242      0.832 0.844 0.000 0.000 NA 0.040
#> SRR1192417     2  0.0000      0.746 0.000 1.000 0.000 NA 0.000
#> SRR1192418     2  0.0000      0.746 0.000 1.000 0.000 NA 0.000
#> SRR1192415     2  0.0000      0.746 0.000 1.000 0.000 NA 0.000
#> SRR1192416     2  0.0000      0.746 0.000 1.000 0.000 NA 0.000
#> SRR1192413     2  0.0000      0.746 0.000 1.000 0.000 NA 0.000
#> SRR1192414     2  0.0000      0.746 0.000 1.000 0.000 NA 0.000
#> SRR1192420     2  0.0000      0.746 0.000 1.000 0.000 NA 0.000
#> SRR1192419     2  0.0000      0.746 0.000 1.000 0.000 NA 0.000
#> SRR1192471     5  0.4045      0.972 0.356 0.000 0.000 NA 0.644
#> SRR1192470     5  0.4045      0.972 0.356 0.000 0.000 NA 0.644
#> SRR1192469     5  0.4045      0.972 0.356 0.000 0.000 NA 0.644
#> SRR1192468     5  0.4045      0.972 0.356 0.000 0.000 NA 0.644
#> SRR1192467     5  0.4045      0.972 0.356 0.000 0.000 NA 0.644
#> SRR1192466     5  0.4045      0.972 0.356 0.000 0.000 NA 0.644
#> SRR1192465     5  0.4045      0.972 0.356 0.000 0.000 NA 0.644
#> SRR1192500     1  0.0451      0.860 0.988 0.000 0.000 NA 0.004
#> SRR1192501     1  0.0451      0.860 0.988 0.000 0.000 NA 0.004
#> SRR1192502     1  0.0451      0.860 0.988 0.000 0.000 NA 0.004
#> SRR1192503     1  0.0451      0.860 0.988 0.000 0.000 NA 0.004
#> SRR1192496     1  0.0451      0.860 0.988 0.000 0.000 NA 0.004
#> SRR1192497     1  0.0451      0.860 0.988 0.000 0.000 NA 0.004
#> SRR1192499     1  0.0451      0.860 0.988 0.000 0.000 NA 0.004
#> SRR1192641     2  0.4294      0.771 0.000 0.532 0.000 NA 0.000
#> SRR1192640     2  0.4294      0.771 0.000 0.532 0.000 NA 0.000
#> SRR1192643     2  0.4294      0.771 0.000 0.532 0.000 NA 0.000
#> SRR1192642     2  0.4294      0.771 0.000 0.532 0.000 NA 0.000
#> SRR1192644     2  0.4294      0.771 0.000 0.532 0.000 NA 0.000
#> SRR1192645     2  0.4294      0.771 0.000 0.532 0.000 NA 0.000
#> SRR1192646     2  0.4294      0.771 0.000 0.532 0.000 NA 0.000
#> SRR1192647     2  0.4294      0.771 0.000 0.532 0.000 NA 0.000
#> SRR1192836     2  0.5555      0.648 0.000 0.644 0.000 NA 0.152
#> SRR1192838     2  0.5555      0.648 0.000 0.644 0.000 NA 0.152
#> SRR1192837     2  0.5562      0.648 0.000 0.644 0.000 NA 0.156
#> SRR1192839     2  0.5555      0.648 0.000 0.644 0.000 NA 0.152
#> SRR1192963     2  0.4949      0.770 0.000 0.532 0.004 NA 0.020
#> SRR1192966     2  0.4949      0.770 0.000 0.532 0.004 NA 0.020
#> SRR1192965     2  0.4949      0.770 0.000 0.532 0.004 NA 0.020
#> SRR1192964     2  0.4949      0.770 0.000 0.532 0.004 NA 0.020
#> SRR1193005     1  0.0566      0.859 0.984 0.000 0.000 NA 0.004
#> SRR1193006     1  0.0566      0.859 0.984 0.000 0.000 NA 0.004
#> SRR1193007     1  0.0566      0.859 0.984 0.000 0.000 NA 0.004
#> SRR1193008     1  0.0566      0.859 0.984 0.000 0.000 NA 0.004
#> SRR1193011     5  0.4196      0.972 0.356 0.000 0.000 NA 0.640
#> SRR1193012     5  0.4196      0.972 0.356 0.000 0.000 NA 0.640
#> SRR1193009     5  0.4196      0.972 0.356 0.000 0.000 NA 0.640
#> SRR1193010     5  0.4196      0.972 0.356 0.000 0.000 NA 0.640
#> SRR1193014     1  0.3165      0.837 0.848 0.000 0.000 NA 0.036
#> SRR1193015     1  0.3165      0.837 0.848 0.000 0.000 NA 0.036
#> SRR1193013     1  0.3165      0.837 0.848 0.000 0.000 NA 0.036
#> SRR1193018     1  0.2139      0.840 0.916 0.000 0.000 NA 0.032
#> SRR1193016     1  0.2139      0.840 0.916 0.000 0.000 NA 0.032
#> SRR1193017     1  0.2139      0.840 0.916 0.000 0.000 NA 0.032
#> SRR1193100     1  0.2139      0.840 0.916 0.000 0.000 NA 0.032
#> SRR1193101     1  0.2139      0.840 0.916 0.000 0.000 NA 0.032
#> SRR1193102     1  0.2139      0.840 0.916 0.000 0.000 NA 0.032
#> SRR1193104     5  0.4467      0.966 0.344 0.000 0.000 NA 0.640
#> SRR1193103     5  0.4467      0.966 0.344 0.000 0.000 NA 0.640
#> SRR1193105     5  0.4151      0.969 0.344 0.000 0.000 NA 0.652
#> SRR1193106     5  0.4151      0.969 0.344 0.000 0.000 NA 0.652
#> SRR1193198     1  0.3165      0.837 0.848 0.000 0.000 NA 0.036
#> SRR1193197     1  0.3165      0.837 0.848 0.000 0.000 NA 0.036
#> SRR1193199     1  0.3165      0.837 0.848 0.000 0.000 NA 0.036
#> SRR1193405     1  0.2139      0.840 0.916 0.000 0.000 NA 0.032
#> SRR1193404     1  0.2139      0.840 0.916 0.000 0.000 NA 0.032
#> SRR1193403     1  0.2139      0.840 0.916 0.000 0.000 NA 0.032
#> SRR1193522     1  0.2139      0.840 0.916 0.000 0.000 NA 0.032
#> SRR1193523     1  0.2139      0.840 0.916 0.000 0.000 NA 0.032
#> SRR1193524     1  0.2139      0.840 0.916 0.000 0.000 NA 0.032
#> SRR1193638     5  0.5246      0.948 0.344 0.000 0.000 NA 0.596
#> SRR1193639     5  0.5246      0.948 0.344 0.000 0.000 NA 0.596
#> SRR1195621     5  0.5246      0.948 0.344 0.000 0.000 NA 0.596
#> SRR1195619     5  0.5246      0.948 0.344 0.000 0.000 NA 0.596
#> SRR1195620     5  0.5246      0.948 0.344 0.000 0.000 NA 0.596

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1190372     2  0.2145      0.768 0.000 0.900 0.000 0.000 0.072 0.028
#> SRR1190371     2  0.2145      0.768 0.000 0.900 0.000 0.000 0.072 0.028
#> SRR1190370     2  0.2145      0.768 0.000 0.900 0.000 0.000 0.072 0.028
#> SRR1190368     2  0.2145      0.768 0.000 0.900 0.000 0.000 0.072 0.028
#> SRR1190369     2  0.2145      0.768 0.000 0.900 0.000 0.000 0.072 0.028
#> SRR1190366     2  0.2231      0.768 0.000 0.900 0.004 0.000 0.068 0.028
#> SRR1190367     2  0.2231      0.768 0.000 0.900 0.004 0.000 0.068 0.028
#> SRR1190365     2  0.2145      0.768 0.000 0.900 0.000 0.000 0.072 0.028
#> SRR1190467     3  0.1570      0.976 0.016 0.000 0.944 0.004 0.008 0.028
#> SRR1190466     3  0.1570      0.976 0.016 0.000 0.944 0.008 0.004 0.028
#> SRR1190465     3  0.1534      0.976 0.016 0.000 0.944 0.004 0.004 0.032
#> SRR1190464     3  0.1570      0.976 0.016 0.000 0.944 0.004 0.008 0.028
#> SRR1190462     3  0.1592      0.977 0.016 0.000 0.944 0.012 0.004 0.024
#> SRR1190461     3  0.1570      0.976 0.016 0.000 0.944 0.004 0.008 0.028
#> SRR1190460     3  0.1534      0.976 0.016 0.000 0.944 0.004 0.004 0.032
#> SRR1190509     1  0.1442      0.630 0.944 0.000 0.000 0.040 0.012 0.004
#> SRR1190504     1  0.1442      0.630 0.944 0.000 0.000 0.040 0.012 0.004
#> SRR1190503     1  0.1442      0.630 0.944 0.000 0.000 0.040 0.012 0.004
#> SRR1190502     1  0.1442      0.630 0.944 0.000 0.000 0.040 0.012 0.004
#> SRR1190508     1  0.1442      0.630 0.944 0.000 0.000 0.040 0.012 0.004
#> SRR1190507     1  0.1442      0.630 0.944 0.000 0.000 0.040 0.012 0.004
#> SRR1190506     1  0.1442      0.630 0.944 0.000 0.000 0.040 0.012 0.004
#> SRR1190505     1  0.1442      0.630 0.944 0.000 0.000 0.040 0.012 0.004
#> SRR1191342     4  0.3862      0.978 0.000 0.476 0.000 0.524 0.000 0.000
#> SRR1191344     4  0.3862      0.978 0.000 0.476 0.000 0.524 0.000 0.000
#> SRR1191343     4  0.3862      0.978 0.000 0.476 0.000 0.524 0.000 0.000
#> SRR1191349     4  0.3862      0.978 0.000 0.476 0.000 0.524 0.000 0.000
#> SRR1191345     4  0.3862      0.978 0.000 0.476 0.000 0.524 0.000 0.000
#> SRR1191346     4  0.3862      0.978 0.000 0.476 0.000 0.524 0.000 0.000
#> SRR1191347     4  0.3862      0.978 0.000 0.476 0.000 0.524 0.000 0.000
#> SRR1191348     4  0.3862      0.978 0.000 0.476 0.000 0.524 0.000 0.000
#> SRR1191668     6  0.4337      0.962 0.480 0.000 0.000 0.020 0.000 0.500
#> SRR1191667     6  0.4337      0.962 0.480 0.000 0.000 0.020 0.000 0.500
#> SRR1191673     6  0.4337      0.962 0.480 0.000 0.000 0.020 0.000 0.500
#> SRR1191672     6  0.4337      0.962 0.480 0.000 0.000 0.020 0.000 0.500
#> SRR1191695     3  0.1627      0.969 0.016 0.000 0.944 0.008 0.016 0.016
#> SRR1191694     3  0.1627      0.969 0.016 0.000 0.944 0.008 0.016 0.016
#> SRR1191783     3  0.1621      0.969 0.016 0.000 0.944 0.008 0.020 0.012
#> SRR1191876     3  0.1621      0.969 0.016 0.000 0.944 0.008 0.020 0.012
#> SRR1191914     1  0.4260      0.313 0.692 0.000 0.000 0.024 0.016 0.268
#> SRR1191915     1  0.4260      0.313 0.692 0.000 0.000 0.024 0.016 0.268
#> SRR1191953     1  0.4260      0.313 0.692 0.000 0.000 0.024 0.016 0.268
#> SRR1191954     1  0.4260      0.313 0.692 0.000 0.000 0.024 0.016 0.268
#> SRR1191990     6  0.4466      0.887 0.440 0.000 0.000 0.008 0.016 0.536
#> SRR1191991     6  0.4466      0.887 0.440 0.000 0.000 0.008 0.016 0.536
#> SRR1192016     3  0.0862      0.978 0.016 0.000 0.972 0.004 0.000 0.008
#> SRR1192017     3  0.0862      0.978 0.016 0.000 0.972 0.004 0.000 0.008
#> SRR1192073     3  0.0862      0.978 0.016 0.000 0.972 0.004 0.000 0.008
#> SRR1192072     3  0.0862      0.978 0.016 0.000 0.972 0.004 0.000 0.008
#> SRR1192167     6  0.4337      0.962 0.480 0.000 0.000 0.020 0.000 0.500
#> SRR1192166     6  0.4337      0.962 0.480 0.000 0.000 0.020 0.000 0.500
#> SRR1192321     3  0.0862      0.978 0.016 0.000 0.972 0.004 0.000 0.008
#> SRR1192353     1  0.4693      0.191 0.660 0.000 0.000 0.032 0.028 0.280
#> SRR1192354     1  0.4693      0.191 0.660 0.000 0.000 0.032 0.028 0.280
#> SRR1192370     5  0.3702      0.921 0.164 0.000 0.000 0.024 0.788 0.024
#> SRR1192371     5  0.3702      0.921 0.164 0.000 0.000 0.024 0.788 0.024
#> SRR1192399     1  0.4693      0.191 0.660 0.000 0.000 0.032 0.028 0.280
#> SRR1192398     1  0.4693      0.191 0.660 0.000 0.000 0.032 0.028 0.280
#> SRR1192417     4  0.4621      0.978 0.000 0.476 0.008 0.496 0.016 0.004
#> SRR1192418     4  0.4621      0.978 0.000 0.476 0.008 0.496 0.016 0.004
#> SRR1192415     4  0.4621      0.978 0.000 0.476 0.008 0.496 0.016 0.004
#> SRR1192416     4  0.4621      0.978 0.000 0.476 0.008 0.496 0.016 0.004
#> SRR1192413     4  0.4621      0.978 0.000 0.476 0.008 0.496 0.016 0.004
#> SRR1192414     4  0.4621      0.978 0.000 0.476 0.008 0.496 0.016 0.004
#> SRR1192420     4  0.4621      0.978 0.000 0.476 0.008 0.496 0.016 0.004
#> SRR1192419     4  0.4621      0.978 0.000 0.476 0.008 0.496 0.016 0.004
#> SRR1192471     5  0.2768      0.929 0.156 0.000 0.000 0.000 0.832 0.012
#> SRR1192470     5  0.2768      0.929 0.156 0.000 0.000 0.000 0.832 0.012
#> SRR1192469     5  0.2768      0.929 0.156 0.000 0.000 0.000 0.832 0.012
#> SRR1192468     5  0.2768      0.929 0.156 0.000 0.000 0.000 0.832 0.012
#> SRR1192467     5  0.2768      0.929 0.156 0.000 0.000 0.000 0.832 0.012
#> SRR1192466     5  0.2768      0.929 0.156 0.000 0.000 0.000 0.832 0.012
#> SRR1192465     5  0.2768      0.929 0.156 0.000 0.000 0.000 0.832 0.012
#> SRR1192500     1  0.1408      0.633 0.944 0.000 0.000 0.036 0.020 0.000
#> SRR1192501     1  0.1408      0.633 0.944 0.000 0.000 0.036 0.020 0.000
#> SRR1192502     1  0.1408      0.633 0.944 0.000 0.000 0.036 0.020 0.000
#> SRR1192503     1  0.1408      0.633 0.944 0.000 0.000 0.036 0.020 0.000
#> SRR1192496     1  0.1408      0.633 0.944 0.000 0.000 0.036 0.020 0.000
#> SRR1192497     1  0.1408      0.633 0.944 0.000 0.000 0.036 0.020 0.000
#> SRR1192499     1  0.1408      0.633 0.944 0.000 0.000 0.036 0.020 0.000
#> SRR1192641     2  0.0000      0.788 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192640     2  0.0000      0.788 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192643     2  0.0000      0.788 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192642     2  0.0000      0.788 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192644     2  0.0000      0.788 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192645     2  0.0000      0.788 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192646     2  0.0000      0.788 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192647     2  0.0000      0.788 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1192836     2  0.6040     -0.286 0.000 0.436 0.000 0.384 0.012 0.168
#> SRR1192838     2  0.6040     -0.286 0.000 0.436 0.000 0.384 0.012 0.168
#> SRR1192837     2  0.6132     -0.287 0.000 0.436 0.000 0.376 0.016 0.172
#> SRR1192839     2  0.6132     -0.287 0.000 0.436 0.000 0.376 0.016 0.172
#> SRR1192963     2  0.1003      0.777 0.000 0.964 0.004 0.000 0.004 0.028
#> SRR1192966     2  0.1003      0.777 0.000 0.964 0.004 0.000 0.004 0.028
#> SRR1192965     2  0.1003      0.777 0.000 0.964 0.004 0.000 0.004 0.028
#> SRR1192964     2  0.1003      0.777 0.000 0.964 0.004 0.000 0.004 0.028
#> SRR1193005     1  0.1873      0.629 0.924 0.000 0.000 0.048 0.020 0.008
#> SRR1193006     1  0.1873      0.629 0.924 0.000 0.000 0.048 0.020 0.008
#> SRR1193007     1  0.1873      0.629 0.924 0.000 0.000 0.048 0.020 0.008
#> SRR1193008     1  0.1873      0.629 0.924 0.000 0.000 0.048 0.020 0.008
#> SRR1193011     5  0.3176      0.923 0.156 0.000 0.000 0.032 0.812 0.000
#> SRR1193012     5  0.3176      0.923 0.156 0.000 0.000 0.032 0.812 0.000
#> SRR1193009     5  0.3176      0.923 0.156 0.000 0.000 0.032 0.812 0.000
#> SRR1193010     5  0.3176      0.923 0.156 0.000 0.000 0.032 0.812 0.000
#> SRR1193014     1  0.4260      0.313 0.692 0.000 0.000 0.024 0.016 0.268
#> SRR1193015     1  0.4260      0.313 0.692 0.000 0.000 0.024 0.016 0.268
#> SRR1193013     1  0.4260      0.313 0.692 0.000 0.000 0.024 0.016 0.268
#> SRR1193018     1  0.4131      0.589 0.784 0.000 0.000 0.108 0.036 0.072
#> SRR1193016     1  0.4131      0.589 0.784 0.000 0.000 0.108 0.036 0.072
#> SRR1193017     1  0.4131      0.589 0.784 0.000 0.000 0.108 0.036 0.072
#> SRR1193100     1  0.4131      0.589 0.784 0.000 0.000 0.108 0.036 0.072
#> SRR1193101     1  0.4131      0.589 0.784 0.000 0.000 0.108 0.036 0.072
#> SRR1193102     1  0.4131      0.589 0.784 0.000 0.000 0.108 0.036 0.072
#> SRR1193104     5  0.4068      0.913 0.156 0.000 0.000 0.036 0.772 0.036
#> SRR1193103     5  0.4068      0.913 0.156 0.000 0.000 0.036 0.772 0.036
#> SRR1193105     5  0.4066      0.915 0.156 0.000 0.000 0.032 0.772 0.040
#> SRR1193106     5  0.4066      0.915 0.156 0.000 0.000 0.032 0.772 0.040
#> SRR1193198     1  0.4215      0.291 0.688 0.000 0.000 0.024 0.012 0.276
#> SRR1193197     1  0.4215      0.291 0.688 0.000 0.000 0.024 0.012 0.276
#> SRR1193199     1  0.4215      0.291 0.688 0.000 0.000 0.024 0.012 0.276
#> SRR1193405     1  0.4175      0.587 0.780 0.000 0.000 0.112 0.036 0.072
#> SRR1193404     1  0.4175      0.587 0.780 0.000 0.000 0.112 0.036 0.072
#> SRR1193403     1  0.4175      0.587 0.780 0.000 0.000 0.112 0.036 0.072
#> SRR1193522     1  0.4143      0.589 0.780 0.000 0.000 0.108 0.028 0.084
#> SRR1193523     1  0.4143      0.589 0.780 0.000 0.000 0.108 0.028 0.084
#> SRR1193524     1  0.4143      0.589 0.780 0.000 0.000 0.108 0.028 0.084
#> SRR1193638     5  0.5590      0.865 0.156 0.000 0.000 0.104 0.660 0.080
#> SRR1193639     5  0.5590      0.865 0.156 0.000 0.000 0.104 0.660 0.080
#> SRR1195621     5  0.5583      0.865 0.156 0.000 0.000 0.108 0.660 0.076
#> SRR1195619     5  0.5583      0.865 0.156 0.000 0.000 0.108 0.660 0.076
#> SRR1195620     5  0.5583      0.865 0.156 0.000 0.000 0.108 0.660 0.076

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15363 rows and 131 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.4281 0.573   0.573
#> 3 3 1.000           1.000       1.000         0.3289 0.859   0.754
#> 4 4 1.000           0.994       0.990         0.2360 0.863   0.683
#> 5 5 0.903           0.954       0.943         0.0643 0.958   0.857
#> 6 6 0.866           0.925       0.908         0.0495 0.955   0.821

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2 3 4

There is also optional best \(k\) = 2 3 4 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1190372     2       0          1  0  1
#> SRR1190371     2       0          1  0  1
#> SRR1190370     2       0          1  0  1
#> SRR1190368     2       0          1  0  1
#> SRR1190369     2       0          1  0  1
#> SRR1190366     2       0          1  0  1
#> SRR1190367     2       0          1  0  1
#> SRR1190365     2       0          1  0  1
#> SRR1190467     1       0          1  1  0
#> SRR1190466     1       0          1  1  0
#> SRR1190465     1       0          1  1  0
#> SRR1190464     1       0          1  1  0
#> SRR1190462     1       0          1  1  0
#> SRR1190461     1       0          1  1  0
#> SRR1190460     1       0          1  1  0
#> SRR1190509     1       0          1  1  0
#> SRR1190504     1       0          1  1  0
#> SRR1190503     1       0          1  1  0
#> SRR1190502     1       0          1  1  0
#> SRR1190508     1       0          1  1  0
#> SRR1190507     1       0          1  1  0
#> SRR1190506     1       0          1  1  0
#> SRR1190505     1       0          1  1  0
#> SRR1191342     2       0          1  0  1
#> SRR1191344     2       0          1  0  1
#> SRR1191343     2       0          1  0  1
#> SRR1191349     2       0          1  0  1
#> SRR1191345     2       0          1  0  1
#> SRR1191346     2       0          1  0  1
#> SRR1191347     2       0          1  0  1
#> SRR1191348     2       0          1  0  1
#> SRR1191668     1       0          1  1  0
#> SRR1191667     1       0          1  1  0
#> SRR1191673     1       0          1  1  0
#> SRR1191672     1       0          1  1  0
#> SRR1191695     1       0          1  1  0
#> SRR1191694     1       0          1  1  0
#> SRR1191783     1       0          1  1  0
#> SRR1191876     1       0          1  1  0
#> SRR1191914     1       0          1  1  0
#> SRR1191915     1       0          1  1  0
#> SRR1191953     1       0          1  1  0
#> SRR1191954     1       0          1  1  0
#> SRR1191990     1       0          1  1  0
#> SRR1191991     1       0          1  1  0
#> SRR1192016     1       0          1  1  0
#> SRR1192017     1       0          1  1  0
#> SRR1192073     1       0          1  1  0
#> SRR1192072     1       0          1  1  0
#> SRR1192167     1       0          1  1  0
#> SRR1192166     1       0          1  1  0
#> SRR1192321     1       0          1  1  0
#> SRR1192353     1       0          1  1  0
#> SRR1192354     1       0          1  1  0
#> SRR1192370     1       0          1  1  0
#> SRR1192371     1       0          1  1  0
#> SRR1192399     1       0          1  1  0
#> SRR1192398     1       0          1  1  0
#> SRR1192417     2       0          1  0  1
#> SRR1192418     2       0          1  0  1
#> SRR1192415     2       0          1  0  1
#> SRR1192416     2       0          1  0  1
#> SRR1192413     2       0          1  0  1
#> SRR1192414     2       0          1  0  1
#> SRR1192420     2       0          1  0  1
#> SRR1192419     2       0          1  0  1
#> SRR1192471     1       0          1  1  0
#> SRR1192470     1       0          1  1  0
#> SRR1192469     1       0          1  1  0
#> SRR1192468     1       0          1  1  0
#> SRR1192467     1       0          1  1  0
#> SRR1192466     1       0          1  1  0
#> SRR1192465     1       0          1  1  0
#> SRR1192500     1       0          1  1  0
#> SRR1192501     1       0          1  1  0
#> SRR1192502     1       0          1  1  0
#> SRR1192503     1       0          1  1  0
#> SRR1192496     1       0          1  1  0
#> SRR1192497     1       0          1  1  0
#> SRR1192499     1       0          1  1  0
#> SRR1192641     2       0          1  0  1
#> SRR1192640     2       0          1  0  1
#> SRR1192643     2       0          1  0  1
#> SRR1192642     2       0          1  0  1
#> SRR1192644     2       0          1  0  1
#> SRR1192645     2       0          1  0  1
#> SRR1192646     2       0          1  0  1
#> SRR1192647     2       0          1  0  1
#> SRR1192836     2       0          1  0  1
#> SRR1192838     2       0          1  0  1
#> SRR1192837     2       0          1  0  1
#> SRR1192839     2       0          1  0  1
#> SRR1192963     2       0          1  0  1
#> SRR1192966     2       0          1  0  1
#> SRR1192965     2       0          1  0  1
#> SRR1192964     2       0          1  0  1
#> SRR1193005     1       0          1  1  0
#> SRR1193006     1       0          1  1  0
#> SRR1193007     1       0          1  1  0
#> SRR1193008     1       0          1  1  0
#> SRR1193011     1       0          1  1  0
#> SRR1193012     1       0          1  1  0
#> SRR1193009     1       0          1  1  0
#> SRR1193010     1       0          1  1  0
#> SRR1193014     1       0          1  1  0
#> SRR1193015     1       0          1  1  0
#> SRR1193013     1       0          1  1  0
#> SRR1193018     1       0          1  1  0
#> SRR1193016     1       0          1  1  0
#> SRR1193017     1       0          1  1  0
#> SRR1193100     1       0          1  1  0
#> SRR1193101     1       0          1  1  0
#> SRR1193102     1       0          1  1  0
#> SRR1193104     1       0          1  1  0
#> SRR1193103     1       0          1  1  0
#> SRR1193105     1       0          1  1  0
#> SRR1193106     1       0          1  1  0
#> SRR1193198     1       0          1  1  0
#> SRR1193197     1       0          1  1  0
#> SRR1193199     1       0          1  1  0
#> SRR1193405     1       0          1  1  0
#> SRR1193404     1       0          1  1  0
#> SRR1193403     1       0          1  1  0
#> SRR1193522     1       0          1  1  0
#> SRR1193523     1       0          1  1  0
#> SRR1193524     1       0          1  1  0
#> SRR1193638     1       0          1  1  0
#> SRR1193639     1       0          1  1  0
#> SRR1195621     1       0          1  1  0
#> SRR1195619     1       0          1  1  0
#> SRR1195620     1       0          1  1  0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette p1 p2 p3
#> SRR1190372     2       0          1  0  1  0
#> SRR1190371     2       0          1  0  1  0
#> SRR1190370     2       0          1  0  1  0
#> SRR1190368     2       0          1  0  1  0
#> SRR1190369     2       0          1  0  1  0
#> SRR1190366     2       0          1  0  1  0
#> SRR1190367     2       0          1  0  1  0
#> SRR1190365     2       0          1  0  1  0
#> SRR1190467     3       0          1  0  0  1
#> SRR1190466     3       0          1  0  0  1
#> SRR1190465     3       0          1  0  0  1
#> SRR1190464     3       0          1  0  0  1
#> SRR1190462     3       0          1  0  0  1
#> SRR1190461     3       0          1  0  0  1
#> SRR1190460     3       0          1  0  0  1
#> SRR1190509     1       0          1  1  0  0
#> SRR1190504     1       0          1  1  0  0
#> SRR1190503     1       0          1  1  0  0
#> SRR1190502     1       0          1  1  0  0
#> SRR1190508     1       0          1  1  0  0
#> SRR1190507     1       0          1  1  0  0
#> SRR1190506     1       0          1  1  0  0
#> SRR1190505     1       0          1  1  0  0
#> SRR1191342     2       0          1  0  1  0
#> SRR1191344     2       0          1  0  1  0
#> SRR1191343     2       0          1  0  1  0
#> SRR1191349     2       0          1  0  1  0
#> SRR1191345     2       0          1  0  1  0
#> SRR1191346     2       0          1  0  1  0
#> SRR1191347     2       0          1  0  1  0
#> SRR1191348     2       0          1  0  1  0
#> SRR1191668     1       0          1  1  0  0
#> SRR1191667     1       0          1  1  0  0
#> SRR1191673     1       0          1  1  0  0
#> SRR1191672     1       0          1  1  0  0
#> SRR1191695     3       0          1  0  0  1
#> SRR1191694     3       0          1  0  0  1
#> SRR1191783     3       0          1  0  0  1
#> SRR1191876     3       0          1  0  0  1
#> SRR1191914     1       0          1  1  0  0
#> SRR1191915     1       0          1  1  0  0
#> SRR1191953     1       0          1  1  0  0
#> SRR1191954     1       0          1  1  0  0
#> SRR1191990     1       0          1  1  0  0
#> SRR1191991     1       0          1  1  0  0
#> SRR1192016     3       0          1  0  0  1
#> SRR1192017     3       0          1  0  0  1
#> SRR1192073     3       0          1  0  0  1
#> SRR1192072     3       0          1  0  0  1
#> SRR1192167     1       0          1  1  0  0
#> SRR1192166     1       0          1  1  0  0
#> SRR1192321     3       0          1  0  0  1
#> SRR1192353     1       0          1  1  0  0
#> SRR1192354     1       0          1  1  0  0
#> SRR1192370     1       0          1  1  0  0
#> SRR1192371     1       0          1  1  0  0
#> SRR1192399     1       0          1  1  0  0
#> SRR1192398     1       0          1  1  0  0
#> SRR1192417     2       0          1  0  1  0
#> SRR1192418     2       0          1  0  1  0
#> SRR1192415     2       0          1  0  1  0
#> SRR1192416     2       0          1  0  1  0
#> SRR1192413     2       0          1  0  1  0
#> SRR1192414     2       0          1  0  1  0
#> SRR1192420     2       0          1  0  1  0
#> SRR1192419     2       0          1  0  1  0
#> SRR1192471     1       0          1  1  0  0
#> SRR1192470     1       0          1  1  0  0
#> SRR1192469     1       0          1  1  0  0
#> SRR1192468     1       0          1  1  0  0
#> SRR1192467     1       0          1  1  0  0
#> SRR1192466     1       0          1  1  0  0
#> SRR1192465     1       0          1  1  0  0
#> SRR1192500     1       0          1  1  0  0
#> SRR1192501     1       0          1  1  0  0
#> SRR1192502     1       0          1  1  0  0
#> SRR1192503     1       0          1  1  0  0
#> SRR1192496     1       0          1  1  0  0
#> SRR1192497     1       0          1  1  0  0
#> SRR1192499     1       0          1  1  0  0
#> SRR1192641     2       0          1  0  1  0
#> SRR1192640     2       0          1  0  1  0
#> SRR1192643     2       0          1  0  1  0
#> SRR1192642     2       0          1  0  1  0
#> SRR1192644     2       0          1  0  1  0
#> SRR1192645     2       0          1  0  1  0
#> SRR1192646     2       0          1  0  1  0
#> SRR1192647     2       0          1  0  1  0
#> SRR1192836     2       0          1  0  1  0
#> SRR1192838     2       0          1  0  1  0
#> SRR1192837     2       0          1  0  1  0
#> SRR1192839     2       0          1  0  1  0
#> SRR1192963     2       0          1  0  1  0
#> SRR1192966     2       0          1  0  1  0
#> SRR1192965     2       0          1  0  1  0
#> SRR1192964     2       0          1  0  1  0
#> SRR1193005     1       0          1  1  0  0
#> SRR1193006     1       0          1  1  0  0
#> SRR1193007     1       0          1  1  0  0
#> SRR1193008     1       0          1  1  0  0
#> SRR1193011     1       0          1  1  0  0
#> SRR1193012     1       0          1  1  0  0
#> SRR1193009     1       0          1  1  0  0
#> SRR1193010     1       0          1  1  0  0
#> SRR1193014     1       0          1  1  0  0
#> SRR1193015     1       0          1  1  0  0
#> SRR1193013     1       0          1  1  0  0
#> SRR1193018     1       0          1  1  0  0
#> SRR1193016     1       0          1  1  0  0
#> SRR1193017     1       0          1  1  0  0
#> SRR1193100     1       0          1  1  0  0
#> SRR1193101     1       0          1  1  0  0
#> SRR1193102     1       0          1  1  0  0
#> SRR1193104     1       0          1  1  0  0
#> SRR1193103     1       0          1  1  0  0
#> SRR1193105     1       0          1  1  0  0
#> SRR1193106     1       0          1  1  0  0
#> SRR1193198     1       0          1  1  0  0
#> SRR1193197     1       0          1  1  0  0
#> SRR1193199     1       0          1  1  0  0
#> SRR1193405     1       0          1  1  0  0
#> SRR1193404     1       0          1  1  0  0
#> SRR1193403     1       0          1  1  0  0
#> SRR1193522     1       0          1  1  0  0
#> SRR1193523     1       0          1  1  0  0
#> SRR1193524     1       0          1  1  0  0
#> SRR1193638     1       0          1  1  0  0
#> SRR1193639     1       0          1  1  0  0
#> SRR1195621     1       0          1  1  0  0
#> SRR1195619     1       0          1  1  0  0
#> SRR1195620     1       0          1  1  0  0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2 p3    p4
#> SRR1190372     2  0.0336      0.995 0.000 0.992  0 0.008
#> SRR1190371     2  0.0336      0.995 0.000 0.992  0 0.008
#> SRR1190370     2  0.0336      0.995 0.000 0.992  0 0.008
#> SRR1190368     2  0.0336      0.995 0.000 0.992  0 0.008
#> SRR1190369     2  0.0336      0.995 0.000 0.992  0 0.008
#> SRR1190366     2  0.0336      0.995 0.000 0.992  0 0.008
#> SRR1190367     2  0.0336      0.995 0.000 0.992  0 0.008
#> SRR1190365     2  0.0336      0.995 0.000 0.992  0 0.008
#> SRR1190467     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1190466     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1190465     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1190464     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1190462     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1190461     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1190460     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1190509     1  0.0336      0.993 0.992 0.000  0 0.008
#> SRR1190504     1  0.0336      0.993 0.992 0.000  0 0.008
#> SRR1190503     1  0.0336      0.993 0.992 0.000  0 0.008
#> SRR1190502     1  0.0336      0.993 0.992 0.000  0 0.008
#> SRR1190508     1  0.0336      0.993 0.992 0.000  0 0.008
#> SRR1190507     1  0.0336      0.993 0.992 0.000  0 0.008
#> SRR1190506     1  0.0336      0.993 0.992 0.000  0 0.008
#> SRR1190505     1  0.0336      0.993 0.992 0.000  0 0.008
#> SRR1191342     2  0.0188      0.995 0.000 0.996  0 0.004
#> SRR1191344     2  0.0188      0.995 0.000 0.996  0 0.004
#> SRR1191343     2  0.0188      0.995 0.000 0.996  0 0.004
#> SRR1191349     2  0.0188      0.995 0.000 0.996  0 0.004
#> SRR1191345     2  0.0188      0.995 0.000 0.996  0 0.004
#> SRR1191346     2  0.0188      0.995 0.000 0.996  0 0.004
#> SRR1191347     2  0.0188      0.995 0.000 0.996  0 0.004
#> SRR1191348     2  0.0188      0.995 0.000 0.996  0 0.004
#> SRR1191668     1  0.0707      0.978 0.980 0.000  0 0.020
#> SRR1191667     1  0.0707      0.978 0.980 0.000  0 0.020
#> SRR1191673     1  0.0707      0.978 0.980 0.000  0 0.020
#> SRR1191672     1  0.0707      0.978 0.980 0.000  0 0.020
#> SRR1191695     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1191694     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1191783     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1191876     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1191914     1  0.0000      0.992 1.000 0.000  0 0.000
#> SRR1191915     1  0.0000      0.992 1.000 0.000  0 0.000
#> SRR1191953     1  0.0000      0.992 1.000 0.000  0 0.000
#> SRR1191954     1  0.0000      0.992 1.000 0.000  0 0.000
#> SRR1191990     1  0.0707      0.978 0.980 0.000  0 0.020
#> SRR1191991     1  0.0707      0.978 0.980 0.000  0 0.020
#> SRR1192016     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1192017     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1192073     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1192072     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1192167     1  0.0707      0.978 0.980 0.000  0 0.020
#> SRR1192166     1  0.0707      0.978 0.980 0.000  0 0.020
#> SRR1192321     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1192353     1  0.0000      0.992 1.000 0.000  0 0.000
#> SRR1192354     1  0.0000      0.992 1.000 0.000  0 0.000
#> SRR1192370     4  0.1022      1.000 0.032 0.000  0 0.968
#> SRR1192371     4  0.1022      1.000 0.032 0.000  0 0.968
#> SRR1192399     1  0.0000      0.992 1.000 0.000  0 0.000
#> SRR1192398     1  0.0000      0.992 1.000 0.000  0 0.000
#> SRR1192417     2  0.0188      0.995 0.000 0.996  0 0.004
#> SRR1192418     2  0.0188      0.995 0.000 0.996  0 0.004
#> SRR1192415     2  0.0188      0.995 0.000 0.996  0 0.004
#> SRR1192416     2  0.0188      0.995 0.000 0.996  0 0.004
#> SRR1192413     2  0.0188      0.995 0.000 0.996  0 0.004
#> SRR1192414     2  0.0188      0.995 0.000 0.996  0 0.004
#> SRR1192420     2  0.0188      0.995 0.000 0.996  0 0.004
#> SRR1192419     2  0.0188      0.995 0.000 0.996  0 0.004
#> SRR1192471     4  0.1022      1.000 0.032 0.000  0 0.968
#> SRR1192470     4  0.1022      1.000 0.032 0.000  0 0.968
#> SRR1192469     4  0.1022      1.000 0.032 0.000  0 0.968
#> SRR1192468     4  0.1022      1.000 0.032 0.000  0 0.968
#> SRR1192467     4  0.1022      1.000 0.032 0.000  0 0.968
#> SRR1192466     4  0.1022      1.000 0.032 0.000  0 0.968
#> SRR1192465     4  0.1022      1.000 0.032 0.000  0 0.968
#> SRR1192500     1  0.0336      0.993 0.992 0.000  0 0.008
#> SRR1192501     1  0.0336      0.993 0.992 0.000  0 0.008
#> SRR1192502     1  0.0336      0.993 0.992 0.000  0 0.008
#> SRR1192503     1  0.0336      0.993 0.992 0.000  0 0.008
#> SRR1192496     1  0.0336      0.993 0.992 0.000  0 0.008
#> SRR1192497     1  0.0336      0.993 0.992 0.000  0 0.008
#> SRR1192499     1  0.0336      0.993 0.992 0.000  0 0.008
#> SRR1192641     2  0.0336      0.995 0.000 0.992  0 0.008
#> SRR1192640     2  0.0336      0.995 0.000 0.992  0 0.008
#> SRR1192643     2  0.0336      0.995 0.000 0.992  0 0.008
#> SRR1192642     2  0.0336      0.995 0.000 0.992  0 0.008
#> SRR1192644     2  0.0336      0.995 0.000 0.992  0 0.008
#> SRR1192645     2  0.0336      0.995 0.000 0.992  0 0.008
#> SRR1192646     2  0.0336      0.995 0.000 0.992  0 0.008
#> SRR1192647     2  0.0336      0.995 0.000 0.992  0 0.008
#> SRR1192836     2  0.0000      0.995 0.000 1.000  0 0.000
#> SRR1192838     2  0.0000      0.995 0.000 1.000  0 0.000
#> SRR1192837     2  0.0000      0.995 0.000 1.000  0 0.000
#> SRR1192839     2  0.0000      0.995 0.000 1.000  0 0.000
#> SRR1192963     2  0.0336      0.995 0.000 0.992  0 0.008
#> SRR1192966     2  0.0336      0.995 0.000 0.992  0 0.008
#> SRR1192965     2  0.0336      0.995 0.000 0.992  0 0.008
#> SRR1192964     2  0.0336      0.995 0.000 0.992  0 0.008
#> SRR1193005     1  0.0336      0.993 0.992 0.000  0 0.008
#> SRR1193006     1  0.0336      0.993 0.992 0.000  0 0.008
#> SRR1193007     1  0.0336      0.993 0.992 0.000  0 0.008
#> SRR1193008     1  0.0336      0.993 0.992 0.000  0 0.008
#> SRR1193011     4  0.1022      1.000 0.032 0.000  0 0.968
#> SRR1193012     4  0.1022      1.000 0.032 0.000  0 0.968
#> SRR1193009     4  0.1022      1.000 0.032 0.000  0 0.968
#> SRR1193010     4  0.1022      1.000 0.032 0.000  0 0.968
#> SRR1193014     1  0.0000      0.992 1.000 0.000  0 0.000
#> SRR1193015     1  0.0000      0.992 1.000 0.000  0 0.000
#> SRR1193013     1  0.0000      0.992 1.000 0.000  0 0.000
#> SRR1193018     1  0.0469      0.991 0.988 0.000  0 0.012
#> SRR1193016     1  0.0469      0.991 0.988 0.000  0 0.012
#> SRR1193017     1  0.0469      0.991 0.988 0.000  0 0.012
#> SRR1193100     1  0.0469      0.991 0.988 0.000  0 0.012
#> SRR1193101     1  0.0469      0.991 0.988 0.000  0 0.012
#> SRR1193102     1  0.0469      0.991 0.988 0.000  0 0.012
#> SRR1193104     4  0.1022      1.000 0.032 0.000  0 0.968
#> SRR1193103     4  0.1022      1.000 0.032 0.000  0 0.968
#> SRR1193105     4  0.1022      1.000 0.032 0.000  0 0.968
#> SRR1193106     4  0.1022      1.000 0.032 0.000  0 0.968
#> SRR1193198     1  0.0000      0.992 1.000 0.000  0 0.000
#> SRR1193197     1  0.0000      0.992 1.000 0.000  0 0.000
#> SRR1193199     1  0.0000      0.992 1.000 0.000  0 0.000
#> SRR1193405     1  0.0336      0.993 0.992 0.000  0 0.008
#> SRR1193404     1  0.0336      0.993 0.992 0.000  0 0.008
#> SRR1193403     1  0.0336      0.993 0.992 0.000  0 0.008
#> SRR1193522     1  0.0336      0.993 0.992 0.000  0 0.008
#> SRR1193523     1  0.0336      0.993 0.992 0.000  0 0.008
#> SRR1193524     1  0.0336      0.993 0.992 0.000  0 0.008
#> SRR1193638     4  0.1022      1.000 0.032 0.000  0 0.968
#> SRR1193639     4  0.1022      1.000 0.032 0.000  0 0.968
#> SRR1195621     4  0.1022      1.000 0.032 0.000  0 0.968
#> SRR1195619     4  0.1022      1.000 0.032 0.000  0 0.968
#> SRR1195620     4  0.1022      1.000 0.032 0.000  0 0.968

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1190372     2  0.3430      0.902 0.000 0.776 0.000 0.220 0.004
#> SRR1190371     2  0.3430      0.902 0.000 0.776 0.000 0.220 0.004
#> SRR1190370     2  0.3430      0.902 0.000 0.776 0.000 0.220 0.004
#> SRR1190368     2  0.3430      0.902 0.000 0.776 0.000 0.220 0.004
#> SRR1190369     2  0.3430      0.902 0.000 0.776 0.000 0.220 0.004
#> SRR1190366     2  0.3430      0.902 0.000 0.776 0.000 0.220 0.004
#> SRR1190367     2  0.3430      0.902 0.000 0.776 0.000 0.220 0.004
#> SRR1190365     2  0.3430      0.902 0.000 0.776 0.000 0.220 0.004
#> SRR1190467     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000
#> SRR1190466     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000
#> SRR1190465     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000
#> SRR1190464     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000
#> SRR1190462     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000
#> SRR1190461     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000
#> SRR1190460     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000
#> SRR1190509     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> SRR1190504     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> SRR1190503     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> SRR1190502     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> SRR1190508     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> SRR1190507     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> SRR1190506     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> SRR1190505     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> SRR1191342     2  0.0404      0.872 0.000 0.988 0.000 0.000 0.012
#> SRR1191344     2  0.0404      0.872 0.000 0.988 0.000 0.000 0.012
#> SRR1191343     2  0.0404      0.872 0.000 0.988 0.000 0.000 0.012
#> SRR1191349     2  0.0404      0.872 0.000 0.988 0.000 0.000 0.012
#> SRR1191345     2  0.0404      0.872 0.000 0.988 0.000 0.000 0.012
#> SRR1191346     2  0.0404      0.872 0.000 0.988 0.000 0.000 0.012
#> SRR1191347     2  0.0404      0.872 0.000 0.988 0.000 0.000 0.012
#> SRR1191348     2  0.0404      0.872 0.000 0.988 0.000 0.000 0.012
#> SRR1191668     4  0.3586      1.000 0.264 0.000 0.000 0.736 0.000
#> SRR1191667     4  0.3586      1.000 0.264 0.000 0.000 0.736 0.000
#> SRR1191673     4  0.3586      1.000 0.264 0.000 0.000 0.736 0.000
#> SRR1191672     4  0.3586      1.000 0.264 0.000 0.000 0.736 0.000
#> SRR1191695     3  0.0290      0.995 0.000 0.000 0.992 0.008 0.000
#> SRR1191694     3  0.0290      0.995 0.000 0.000 0.992 0.008 0.000
#> SRR1191783     3  0.0290      0.995 0.000 0.000 0.992 0.008 0.000
#> SRR1191876     3  0.0290      0.995 0.000 0.000 0.992 0.008 0.000
#> SRR1191914     1  0.1197      0.950 0.952 0.000 0.000 0.048 0.000
#> SRR1191915     1  0.1197      0.950 0.952 0.000 0.000 0.048 0.000
#> SRR1191953     1  0.1197      0.950 0.952 0.000 0.000 0.048 0.000
#> SRR1191954     1  0.1197      0.950 0.952 0.000 0.000 0.048 0.000
#> SRR1191990     4  0.3586      1.000 0.264 0.000 0.000 0.736 0.000
#> SRR1191991     4  0.3586      1.000 0.264 0.000 0.000 0.736 0.000
#> SRR1192016     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000
#> SRR1192017     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000
#> SRR1192073     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000
#> SRR1192072     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000
#> SRR1192167     4  0.3586      1.000 0.264 0.000 0.000 0.736 0.000
#> SRR1192166     4  0.3586      1.000 0.264 0.000 0.000 0.736 0.000
#> SRR1192321     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000
#> SRR1192353     1  0.1270      0.946 0.948 0.000 0.000 0.052 0.000
#> SRR1192354     1  0.1270      0.946 0.948 0.000 0.000 0.052 0.000
#> SRR1192370     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1192371     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1192399     1  0.1410      0.937 0.940 0.000 0.000 0.060 0.000
#> SRR1192398     1  0.1410      0.937 0.940 0.000 0.000 0.060 0.000
#> SRR1192417     2  0.0404      0.872 0.000 0.988 0.000 0.000 0.012
#> SRR1192418     2  0.0404      0.872 0.000 0.988 0.000 0.000 0.012
#> SRR1192415     2  0.0404      0.872 0.000 0.988 0.000 0.000 0.012
#> SRR1192416     2  0.0404      0.872 0.000 0.988 0.000 0.000 0.012
#> SRR1192413     2  0.0404      0.872 0.000 0.988 0.000 0.000 0.012
#> SRR1192414     2  0.0404      0.872 0.000 0.988 0.000 0.000 0.012
#> SRR1192420     2  0.0404      0.872 0.000 0.988 0.000 0.000 0.012
#> SRR1192419     2  0.0404      0.872 0.000 0.988 0.000 0.000 0.012
#> SRR1192471     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1192470     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1192469     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1192468     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1192467     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1192466     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1192465     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1192500     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> SRR1192501     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> SRR1192502     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> SRR1192503     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> SRR1192496     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> SRR1192497     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> SRR1192499     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> SRR1192641     2  0.3430      0.902 0.000 0.776 0.000 0.220 0.004
#> SRR1192640     2  0.3430      0.902 0.000 0.776 0.000 0.220 0.004
#> SRR1192643     2  0.3430      0.902 0.000 0.776 0.000 0.220 0.004
#> SRR1192642     2  0.3430      0.902 0.000 0.776 0.000 0.220 0.004
#> SRR1192644     2  0.3430      0.902 0.000 0.776 0.000 0.220 0.004
#> SRR1192645     2  0.3430      0.902 0.000 0.776 0.000 0.220 0.004
#> SRR1192646     2  0.3430      0.902 0.000 0.776 0.000 0.220 0.004
#> SRR1192647     2  0.3430      0.902 0.000 0.776 0.000 0.220 0.004
#> SRR1192836     2  0.2852      0.888 0.000 0.828 0.000 0.172 0.000
#> SRR1192838     2  0.2852      0.888 0.000 0.828 0.000 0.172 0.000
#> SRR1192837     2  0.2852      0.888 0.000 0.828 0.000 0.172 0.000
#> SRR1192839     2  0.2852      0.888 0.000 0.828 0.000 0.172 0.000
#> SRR1192963     2  0.3430      0.902 0.000 0.776 0.000 0.220 0.004
#> SRR1192966     2  0.3430      0.902 0.000 0.776 0.000 0.220 0.004
#> SRR1192965     2  0.3430      0.902 0.000 0.776 0.000 0.220 0.004
#> SRR1192964     2  0.3430      0.902 0.000 0.776 0.000 0.220 0.004
#> SRR1193005     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> SRR1193006     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> SRR1193007     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> SRR1193008     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> SRR1193011     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1193012     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1193009     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1193010     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1193014     1  0.1197      0.950 0.952 0.000 0.000 0.048 0.000
#> SRR1193015     1  0.1197      0.950 0.952 0.000 0.000 0.048 0.000
#> SRR1193013     1  0.1197      0.950 0.952 0.000 0.000 0.048 0.000
#> SRR1193018     1  0.0162      0.974 0.996 0.000 0.000 0.000 0.004
#> SRR1193016     1  0.0162      0.974 0.996 0.000 0.000 0.000 0.004
#> SRR1193017     1  0.0162      0.974 0.996 0.000 0.000 0.000 0.004
#> SRR1193100     1  0.0162      0.974 0.996 0.000 0.000 0.000 0.004
#> SRR1193101     1  0.0162      0.974 0.996 0.000 0.000 0.000 0.004
#> SRR1193102     1  0.0162      0.974 0.996 0.000 0.000 0.000 0.004
#> SRR1193104     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1193103     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1193105     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1193106     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1193198     1  0.1197      0.950 0.952 0.000 0.000 0.048 0.000
#> SRR1193197     1  0.1197      0.950 0.952 0.000 0.000 0.048 0.000
#> SRR1193199     1  0.1197      0.950 0.952 0.000 0.000 0.048 0.000
#> SRR1193405     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> SRR1193404     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> SRR1193403     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> SRR1193522     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> SRR1193523     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> SRR1193524     1  0.0000      0.977 1.000 0.000 0.000 0.000 0.000
#> SRR1193638     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1193639     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1195621     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1195619     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984
#> SRR1195620     5  0.0510      1.000 0.016 0.000 0.000 0.000 0.984

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1190372     2  0.3175      0.895 0.000 0.744 0.000 0.256 0.000 0.000
#> SRR1190371     2  0.3175      0.895 0.000 0.744 0.000 0.256 0.000 0.000
#> SRR1190370     2  0.3175      0.895 0.000 0.744 0.000 0.256 0.000 0.000
#> SRR1190368     2  0.3175      0.895 0.000 0.744 0.000 0.256 0.000 0.000
#> SRR1190369     2  0.3175      0.895 0.000 0.744 0.000 0.256 0.000 0.000
#> SRR1190366     2  0.3175      0.895 0.000 0.744 0.000 0.256 0.000 0.000
#> SRR1190367     2  0.3175      0.895 0.000 0.744 0.000 0.256 0.000 0.000
#> SRR1190365     2  0.3175      0.895 0.000 0.744 0.000 0.256 0.000 0.000
#> SRR1190467     3  0.0146      0.992 0.000 0.004 0.996 0.000 0.000 0.000
#> SRR1190466     3  0.0146      0.992 0.000 0.004 0.996 0.000 0.000 0.000
#> SRR1190465     3  0.0146      0.992 0.000 0.004 0.996 0.000 0.000 0.000
#> SRR1190464     3  0.0146      0.992 0.000 0.004 0.996 0.000 0.000 0.000
#> SRR1190462     3  0.0146      0.992 0.000 0.004 0.996 0.000 0.000 0.000
#> SRR1190461     3  0.0146      0.992 0.000 0.004 0.996 0.000 0.000 0.000
#> SRR1190460     3  0.0146      0.992 0.000 0.004 0.996 0.000 0.000 0.000
#> SRR1190509     1  0.0790      0.925 0.968 0.032 0.000 0.000 0.000 0.000
#> SRR1190504     1  0.0790      0.925 0.968 0.032 0.000 0.000 0.000 0.000
#> SRR1190503     1  0.0790      0.925 0.968 0.032 0.000 0.000 0.000 0.000
#> SRR1190502     1  0.0790      0.925 0.968 0.032 0.000 0.000 0.000 0.000
#> SRR1190508     1  0.0790      0.925 0.968 0.032 0.000 0.000 0.000 0.000
#> SRR1190507     1  0.0790      0.925 0.968 0.032 0.000 0.000 0.000 0.000
#> SRR1190506     1  0.0790      0.925 0.968 0.032 0.000 0.000 0.000 0.000
#> SRR1190505     1  0.0790      0.925 0.968 0.032 0.000 0.000 0.000 0.000
#> SRR1191342     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191344     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191343     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191349     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191345     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191346     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191347     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191348     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1191668     6  0.2597      0.992 0.176 0.000 0.000 0.000 0.000 0.824
#> SRR1191667     6  0.2597      0.992 0.176 0.000 0.000 0.000 0.000 0.824
#> SRR1191673     6  0.2597      0.992 0.176 0.000 0.000 0.000 0.000 0.824
#> SRR1191672     6  0.2597      0.992 0.176 0.000 0.000 0.000 0.000 0.824
#> SRR1191695     3  0.0914      0.979 0.000 0.016 0.968 0.000 0.000 0.016
#> SRR1191694     3  0.0914      0.979 0.000 0.016 0.968 0.000 0.000 0.016
#> SRR1191783     3  0.0914      0.979 0.000 0.016 0.968 0.000 0.000 0.016
#> SRR1191876     3  0.0914      0.979 0.000 0.016 0.968 0.000 0.000 0.016
#> SRR1191914     1  0.2527      0.853 0.868 0.024 0.000 0.000 0.000 0.108
#> SRR1191915     1  0.2527      0.853 0.868 0.024 0.000 0.000 0.000 0.108
#> SRR1191953     1  0.2527      0.853 0.868 0.024 0.000 0.000 0.000 0.108
#> SRR1191954     1  0.2527      0.853 0.868 0.024 0.000 0.000 0.000 0.108
#> SRR1191990     6  0.3352      0.977 0.176 0.032 0.000 0.000 0.000 0.792
#> SRR1191991     6  0.3352      0.977 0.176 0.032 0.000 0.000 0.000 0.792
#> SRR1192016     3  0.0000      0.992 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192017     3  0.0000      0.992 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192073     3  0.0000      0.992 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192072     3  0.0000      0.992 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192167     6  0.2597      0.992 0.176 0.000 0.000 0.000 0.000 0.824
#> SRR1192166     6  0.2597      0.992 0.176 0.000 0.000 0.000 0.000 0.824
#> SRR1192321     3  0.0000      0.992 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1192353     1  0.2815      0.833 0.848 0.032 0.000 0.000 0.000 0.120
#> SRR1192354     1  0.2815      0.833 0.848 0.032 0.000 0.000 0.000 0.120
#> SRR1192370     5  0.0458      1.000 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1192371     5  0.0458      1.000 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1192399     1  0.2858      0.829 0.844 0.032 0.000 0.000 0.000 0.124
#> SRR1192398     1  0.2858      0.829 0.844 0.032 0.000 0.000 0.000 0.124
#> SRR1192417     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1192418     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1192415     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1192416     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1192413     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1192414     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1192420     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1192419     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1192471     5  0.0458      1.000 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1192470     5  0.0458      1.000 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1192469     5  0.0458      1.000 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1192468     5  0.0458      1.000 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1192467     5  0.0458      1.000 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1192466     5  0.0458      1.000 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1192465     5  0.0458      1.000 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1192500     1  0.0790      0.925 0.968 0.032 0.000 0.000 0.000 0.000
#> SRR1192501     1  0.0790      0.925 0.968 0.032 0.000 0.000 0.000 0.000
#> SRR1192502     1  0.0790      0.925 0.968 0.032 0.000 0.000 0.000 0.000
#> SRR1192503     1  0.0790      0.925 0.968 0.032 0.000 0.000 0.000 0.000
#> SRR1192496     1  0.0790      0.925 0.968 0.032 0.000 0.000 0.000 0.000
#> SRR1192497     1  0.0790      0.925 0.968 0.032 0.000 0.000 0.000 0.000
#> SRR1192499     1  0.0790      0.925 0.968 0.032 0.000 0.000 0.000 0.000
#> SRR1192641     2  0.3175      0.895 0.000 0.744 0.000 0.256 0.000 0.000
#> SRR1192640     2  0.3175      0.895 0.000 0.744 0.000 0.256 0.000 0.000
#> SRR1192643     2  0.3175      0.895 0.000 0.744 0.000 0.256 0.000 0.000
#> SRR1192642     2  0.3175      0.895 0.000 0.744 0.000 0.256 0.000 0.000
#> SRR1192644     2  0.3175      0.895 0.000 0.744 0.000 0.256 0.000 0.000
#> SRR1192645     2  0.3175      0.895 0.000 0.744 0.000 0.256 0.000 0.000
#> SRR1192646     2  0.3175      0.895 0.000 0.744 0.000 0.256 0.000 0.000
#> SRR1192647     2  0.3175      0.895 0.000 0.744 0.000 0.256 0.000 0.000
#> SRR1192836     2  0.5859      0.282 0.000 0.536 0.000 0.292 0.016 0.156
#> SRR1192838     2  0.5859      0.282 0.000 0.536 0.000 0.292 0.016 0.156
#> SRR1192837     2  0.5859      0.282 0.000 0.536 0.000 0.292 0.016 0.156
#> SRR1192839     2  0.5859      0.282 0.000 0.536 0.000 0.292 0.016 0.156
#> SRR1192963     2  0.3175      0.895 0.000 0.744 0.000 0.256 0.000 0.000
#> SRR1192966     2  0.3175      0.895 0.000 0.744 0.000 0.256 0.000 0.000
#> SRR1192965     2  0.3175      0.895 0.000 0.744 0.000 0.256 0.000 0.000
#> SRR1192964     2  0.3175      0.895 0.000 0.744 0.000 0.256 0.000 0.000
#> SRR1193005     1  0.0935      0.923 0.964 0.032 0.000 0.000 0.000 0.004
#> SRR1193006     1  0.0935      0.923 0.964 0.032 0.000 0.000 0.000 0.004
#> SRR1193007     1  0.0935      0.923 0.964 0.032 0.000 0.000 0.000 0.004
#> SRR1193008     1  0.0935      0.923 0.964 0.032 0.000 0.000 0.000 0.004
#> SRR1193011     5  0.0458      1.000 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1193012     5  0.0458      1.000 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1193009     5  0.0458      1.000 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1193010     5  0.0458      1.000 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1193014     1  0.2527      0.853 0.868 0.024 0.000 0.000 0.000 0.108
#> SRR1193015     1  0.2527      0.853 0.868 0.024 0.000 0.000 0.000 0.108
#> SRR1193013     1  0.2527      0.853 0.868 0.024 0.000 0.000 0.000 0.108
#> SRR1193018     1  0.0405      0.921 0.988 0.000 0.000 0.000 0.008 0.004
#> SRR1193016     1  0.0405      0.921 0.988 0.000 0.000 0.000 0.008 0.004
#> SRR1193017     1  0.0405      0.921 0.988 0.000 0.000 0.000 0.008 0.004
#> SRR1193100     1  0.0405      0.921 0.988 0.000 0.000 0.000 0.008 0.004
#> SRR1193101     1  0.0405      0.921 0.988 0.000 0.000 0.000 0.008 0.004
#> SRR1193102     1  0.0405      0.921 0.988 0.000 0.000 0.000 0.008 0.004
#> SRR1193104     5  0.0458      1.000 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1193103     5  0.0458      1.000 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1193105     5  0.0458      1.000 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1193106     5  0.0458      1.000 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1193198     1  0.2527      0.853 0.868 0.024 0.000 0.000 0.000 0.108
#> SRR1193197     1  0.2527      0.853 0.868 0.024 0.000 0.000 0.000 0.108
#> SRR1193199     1  0.2527      0.853 0.868 0.024 0.000 0.000 0.000 0.108
#> SRR1193405     1  0.0291      0.923 0.992 0.000 0.000 0.000 0.004 0.004
#> SRR1193404     1  0.0291      0.923 0.992 0.000 0.000 0.000 0.004 0.004
#> SRR1193403     1  0.0291      0.923 0.992 0.000 0.000 0.000 0.004 0.004
#> SRR1193522     1  0.0146      0.923 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1193523     1  0.0146      0.923 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1193524     1  0.0146      0.923 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1193638     5  0.0458      1.000 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1193639     5  0.0458      1.000 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1195621     5  0.0458      1.000 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1195619     5  0.0458      1.000 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1195620     5  0.0458      1.000 0.016 0.000 0.000 0.000 0.984 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15363 rows and 131 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2     1               1           1         0.4281 0.573   0.573
#> 3 3     1               1           1         0.3289 0.859   0.754
#> 4 4     1               1           1         0.0825 0.953   0.891
#> 5 5     1               1           1         0.0122 0.992   0.980
#> 6 6     1               1           1         0.2195 0.863   0.637

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 4

There is also optional best \(k\) = 2 3 4 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1190372     2       0          1  0  1
#> SRR1190371     2       0          1  0  1
#> SRR1190370     2       0          1  0  1
#> SRR1190368     2       0          1  0  1
#> SRR1190369     2       0          1  0  1
#> SRR1190366     2       0          1  0  1
#> SRR1190367     2       0          1  0  1
#> SRR1190365     2       0          1  0  1
#> SRR1190467     1       0          1  1  0
#> SRR1190466     1       0          1  1  0
#> SRR1190465     1       0          1  1  0
#> SRR1190464     1       0          1  1  0
#> SRR1190462     1       0          1  1  0
#> SRR1190461     1       0          1  1  0
#> SRR1190460     1       0          1  1  0
#> SRR1190509     1       0          1  1  0
#> SRR1190504     1       0          1  1  0
#> SRR1190503     1       0          1  1  0
#> SRR1190502     1       0          1  1  0
#> SRR1190508     1       0          1  1  0
#> SRR1190507     1       0          1  1  0
#> SRR1190506     1       0          1  1  0
#> SRR1190505     1       0          1  1  0
#> SRR1191342     2       0          1  0  1
#> SRR1191344     2       0          1  0  1
#> SRR1191343     2       0          1  0  1
#> SRR1191349     2       0          1  0  1
#> SRR1191345     2       0          1  0  1
#> SRR1191346     2       0          1  0  1
#> SRR1191347     2       0          1  0  1
#> SRR1191348     2       0          1  0  1
#> SRR1191668     1       0          1  1  0
#> SRR1191667     1       0          1  1  0
#> SRR1191673     1       0          1  1  0
#> SRR1191672     1       0          1  1  0
#> SRR1191695     1       0          1  1  0
#> SRR1191694     1       0          1  1  0
#> SRR1191783     1       0          1  1  0
#> SRR1191876     1       0          1  1  0
#> SRR1191914     1       0          1  1  0
#> SRR1191915     1       0          1  1  0
#> SRR1191953     1       0          1  1  0
#> SRR1191954     1       0          1  1  0
#> SRR1191990     1       0          1  1  0
#> SRR1191991     1       0          1  1  0
#> SRR1192016     1       0          1  1  0
#> SRR1192017     1       0          1  1  0
#> SRR1192073     1       0          1  1  0
#> SRR1192072     1       0          1  1  0
#> SRR1192167     1       0          1  1  0
#> SRR1192166     1       0          1  1  0
#> SRR1192321     1       0          1  1  0
#> SRR1192353     1       0          1  1  0
#> SRR1192354     1       0          1  1  0
#> SRR1192370     1       0          1  1  0
#> SRR1192371     1       0          1  1  0
#> SRR1192399     1       0          1  1  0
#> SRR1192398     1       0          1  1  0
#> SRR1192417     2       0          1  0  1
#> SRR1192418     2       0          1  0  1
#> SRR1192415     2       0          1  0  1
#> SRR1192416     2       0          1  0  1
#> SRR1192413     2       0          1  0  1
#> SRR1192414     2       0          1  0  1
#> SRR1192420     2       0          1  0  1
#> SRR1192419     2       0          1  0  1
#> SRR1192471     1       0          1  1  0
#> SRR1192470     1       0          1  1  0
#> SRR1192469     1       0          1  1  0
#> SRR1192468     1       0          1  1  0
#> SRR1192467     1       0          1  1  0
#> SRR1192466     1       0          1  1  0
#> SRR1192465     1       0          1  1  0
#> SRR1192500     1       0          1  1  0
#> SRR1192501     1       0          1  1  0
#> SRR1192502     1       0          1  1  0
#> SRR1192503     1       0          1  1  0
#> SRR1192496     1       0          1  1  0
#> SRR1192497     1       0          1  1  0
#> SRR1192499     1       0          1  1  0
#> SRR1192641     2       0          1  0  1
#> SRR1192640     2       0          1  0  1
#> SRR1192643     2       0          1  0  1
#> SRR1192642     2       0          1  0  1
#> SRR1192644     2       0          1  0  1
#> SRR1192645     2       0          1  0  1
#> SRR1192646     2       0          1  0  1
#> SRR1192647     2       0          1  0  1
#> SRR1192836     2       0          1  0  1
#> SRR1192838     2       0          1  0  1
#> SRR1192837     2       0          1  0  1
#> SRR1192839     2       0          1  0  1
#> SRR1192963     2       0          1  0  1
#> SRR1192966     2       0          1  0  1
#> SRR1192965     2       0          1  0  1
#> SRR1192964     2       0          1  0  1
#> SRR1193005     1       0          1  1  0
#> SRR1193006     1       0          1  1  0
#> SRR1193007     1       0          1  1  0
#> SRR1193008     1       0          1  1  0
#> SRR1193011     1       0          1  1  0
#> SRR1193012     1       0          1  1  0
#> SRR1193009     1       0          1  1  0
#> SRR1193010     1       0          1  1  0
#> SRR1193014     1       0          1  1  0
#> SRR1193015     1       0          1  1  0
#> SRR1193013     1       0          1  1  0
#> SRR1193018     1       0          1  1  0
#> SRR1193016     1       0          1  1  0
#> SRR1193017     1       0          1  1  0
#> SRR1193100     1       0          1  1  0
#> SRR1193101     1       0          1  1  0
#> SRR1193102     1       0          1  1  0
#> SRR1193104     1       0          1  1  0
#> SRR1193103     1       0          1  1  0
#> SRR1193105     1       0          1  1  0
#> SRR1193106     1       0          1  1  0
#> SRR1193198     1       0          1  1  0
#> SRR1193197     1       0          1  1  0
#> SRR1193199     1       0          1  1  0
#> SRR1193405     1       0          1  1  0
#> SRR1193404     1       0          1  1  0
#> SRR1193403     1       0          1  1  0
#> SRR1193522     1       0          1  1  0
#> SRR1193523     1       0          1  1  0
#> SRR1193524     1       0          1  1  0
#> SRR1193638     1       0          1  1  0
#> SRR1193639     1       0          1  1  0
#> SRR1195621     1       0          1  1  0
#> SRR1195619     1       0          1  1  0
#> SRR1195620     1       0          1  1  0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette p1 p2 p3
#> SRR1190372     2       0          1  0  1  0
#> SRR1190371     2       0          1  0  1  0
#> SRR1190370     2       0          1  0  1  0
#> SRR1190368     2       0          1  0  1  0
#> SRR1190369     2       0          1  0  1  0
#> SRR1190366     2       0          1  0  1  0
#> SRR1190367     2       0          1  0  1  0
#> SRR1190365     2       0          1  0  1  0
#> SRR1190467     3       0          1  0  0  1
#> SRR1190466     3       0          1  0  0  1
#> SRR1190465     3       0          1  0  0  1
#> SRR1190464     3       0          1  0  0  1
#> SRR1190462     3       0          1  0  0  1
#> SRR1190461     3       0          1  0  0  1
#> SRR1190460     3       0          1  0  0  1
#> SRR1190509     1       0          1  1  0  0
#> SRR1190504     1       0          1  1  0  0
#> SRR1190503     1       0          1  1  0  0
#> SRR1190502     1       0          1  1  0  0
#> SRR1190508     1       0          1  1  0  0
#> SRR1190507     1       0          1  1  0  0
#> SRR1190506     1       0          1  1  0  0
#> SRR1190505     1       0          1  1  0  0
#> SRR1191342     2       0          1  0  1  0
#> SRR1191344     2       0          1  0  1  0
#> SRR1191343     2       0          1  0  1  0
#> SRR1191349     2       0          1  0  1  0
#> SRR1191345     2       0          1  0  1  0
#> SRR1191346     2       0          1  0  1  0
#> SRR1191347     2       0          1  0  1  0
#> SRR1191348     2       0          1  0  1  0
#> SRR1191668     1       0          1  1  0  0
#> SRR1191667     1       0          1  1  0  0
#> SRR1191673     1       0          1  1  0  0
#> SRR1191672     1       0          1  1  0  0
#> SRR1191695     3       0          1  0  0  1
#> SRR1191694     3       0          1  0  0  1
#> SRR1191783     3       0          1  0  0  1
#> SRR1191876     3       0          1  0  0  1
#> SRR1191914     1       0          1  1  0  0
#> SRR1191915     1       0          1  1  0  0
#> SRR1191953     1       0          1  1  0  0
#> SRR1191954     1       0          1  1  0  0
#> SRR1191990     1       0          1  1  0  0
#> SRR1191991     1       0          1  1  0  0
#> SRR1192016     3       0          1  0  0  1
#> SRR1192017     3       0          1  0  0  1
#> SRR1192073     3       0          1  0  0  1
#> SRR1192072     3       0          1  0  0  1
#> SRR1192167     1       0          1  1  0  0
#> SRR1192166     1       0          1  1  0  0
#> SRR1192321     3       0          1  0  0  1
#> SRR1192353     1       0          1  1  0  0
#> SRR1192354     1       0          1  1  0  0
#> SRR1192370     1       0          1  1  0  0
#> SRR1192371     1       0          1  1  0  0
#> SRR1192399     1       0          1  1  0  0
#> SRR1192398     1       0          1  1  0  0
#> SRR1192417     2       0          1  0  1  0
#> SRR1192418     2       0          1  0  1  0
#> SRR1192415     2       0          1  0  1  0
#> SRR1192416     2       0          1  0  1  0
#> SRR1192413     2       0          1  0  1  0
#> SRR1192414     2       0          1  0  1  0
#> SRR1192420     2       0          1  0  1  0
#> SRR1192419     2       0          1  0  1  0
#> SRR1192471     1       0          1  1  0  0
#> SRR1192470     1       0          1  1  0  0
#> SRR1192469     1       0          1  1  0  0
#> SRR1192468     1       0          1  1  0  0
#> SRR1192467     1       0          1  1  0  0
#> SRR1192466     1       0          1  1  0  0
#> SRR1192465     1       0          1  1  0  0
#> SRR1192500     1       0          1  1  0  0
#> SRR1192501     1       0          1  1  0  0
#> SRR1192502     1       0          1  1  0  0
#> SRR1192503     1       0          1  1  0  0
#> SRR1192496     1       0          1  1  0  0
#> SRR1192497     1       0          1  1  0  0
#> SRR1192499     1       0          1  1  0  0
#> SRR1192641     2       0          1  0  1  0
#> SRR1192640     2       0          1  0  1  0
#> SRR1192643     2       0          1  0  1  0
#> SRR1192642     2       0          1  0  1  0
#> SRR1192644     2       0          1  0  1  0
#> SRR1192645     2       0          1  0  1  0
#> SRR1192646     2       0          1  0  1  0
#> SRR1192647     2       0          1  0  1  0
#> SRR1192836     2       0          1  0  1  0
#> SRR1192838     2       0          1  0  1  0
#> SRR1192837     2       0          1  0  1  0
#> SRR1192839     2       0          1  0  1  0
#> SRR1192963     2       0          1  0  1  0
#> SRR1192966     2       0          1  0  1  0
#> SRR1192965     2       0          1  0  1  0
#> SRR1192964     2       0          1  0  1  0
#> SRR1193005     1       0          1  1  0  0
#> SRR1193006     1       0          1  1  0  0
#> SRR1193007     1       0          1  1  0  0
#> SRR1193008     1       0          1  1  0  0
#> SRR1193011     1       0          1  1  0  0
#> SRR1193012     1       0          1  1  0  0
#> SRR1193009     1       0          1  1  0  0
#> SRR1193010     1       0          1  1  0  0
#> SRR1193014     1       0          1  1  0  0
#> SRR1193015     1       0          1  1  0  0
#> SRR1193013     1       0          1  1  0  0
#> SRR1193018     1       0          1  1  0  0
#> SRR1193016     1       0          1  1  0  0
#> SRR1193017     1       0          1  1  0  0
#> SRR1193100     1       0          1  1  0  0
#> SRR1193101     1       0          1  1  0  0
#> SRR1193102     1       0          1  1  0  0
#> SRR1193104     1       0          1  1  0  0
#> SRR1193103     1       0          1  1  0  0
#> SRR1193105     1       0          1  1  0  0
#> SRR1193106     1       0          1  1  0  0
#> SRR1193198     1       0          1  1  0  0
#> SRR1193197     1       0          1  1  0  0
#> SRR1193199     1       0          1  1  0  0
#> SRR1193405     1       0          1  1  0  0
#> SRR1193404     1       0          1  1  0  0
#> SRR1193403     1       0          1  1  0  0
#> SRR1193522     1       0          1  1  0  0
#> SRR1193523     1       0          1  1  0  0
#> SRR1193524     1       0          1  1  0  0
#> SRR1193638     1       0          1  1  0  0
#> SRR1193639     1       0          1  1  0  0
#> SRR1195621     1       0          1  1  0  0
#> SRR1195619     1       0          1  1  0  0
#> SRR1195620     1       0          1  1  0  0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette p1 p2 p3 p4
#> SRR1190372     2       0          1  0  1  0  0
#> SRR1190371     2       0          1  0  1  0  0
#> SRR1190370     2       0          1  0  1  0  0
#> SRR1190368     2       0          1  0  1  0  0
#> SRR1190369     2       0          1  0  1  0  0
#> SRR1190366     2       0          1  0  1  0  0
#> SRR1190367     2       0          1  0  1  0  0
#> SRR1190365     2       0          1  0  1  0  0
#> SRR1190467     3       0          1  0  0  1  0
#> SRR1190466     3       0          1  0  0  1  0
#> SRR1190465     3       0          1  0  0  1  0
#> SRR1190464     3       0          1  0  0  1  0
#> SRR1190462     3       0          1  0  0  1  0
#> SRR1190461     3       0          1  0  0  1  0
#> SRR1190460     3       0          1  0  0  1  0
#> SRR1190509     1       0          1  1  0  0  0
#> SRR1190504     1       0          1  1  0  0  0
#> SRR1190503     1       0          1  1  0  0  0
#> SRR1190502     1       0          1  1  0  0  0
#> SRR1190508     1       0          1  1  0  0  0
#> SRR1190507     1       0          1  1  0  0  0
#> SRR1190506     1       0          1  1  0  0  0
#> SRR1190505     1       0          1  1  0  0  0
#> SRR1191342     4       0          1  0  0  0  1
#> SRR1191344     4       0          1  0  0  0  1
#> SRR1191343     4       0          1  0  0  0  1
#> SRR1191349     4       0          1  0  0  0  1
#> SRR1191345     4       0          1  0  0  0  1
#> SRR1191346     4       0          1  0  0  0  1
#> SRR1191347     4       0          1  0  0  0  1
#> SRR1191348     4       0          1  0  0  0  1
#> SRR1191668     1       0          1  1  0  0  0
#> SRR1191667     1       0          1  1  0  0  0
#> SRR1191673     1       0          1  1  0  0  0
#> SRR1191672     1       0          1  1  0  0  0
#> SRR1191695     3       0          1  0  0  1  0
#> SRR1191694     3       0          1  0  0  1  0
#> SRR1191783     3       0          1  0  0  1  0
#> SRR1191876     3       0          1  0  0  1  0
#> SRR1191914     1       0          1  1  0  0  0
#> SRR1191915     1       0          1  1  0  0  0
#> SRR1191953     1       0          1  1  0  0  0
#> SRR1191954     1       0          1  1  0  0  0
#> SRR1191990     1       0          1  1  0  0  0
#> SRR1191991     1       0          1  1  0  0  0
#> SRR1192016     3       0          1  0  0  1  0
#> SRR1192017     3       0          1  0  0  1  0
#> SRR1192073     3       0          1  0  0  1  0
#> SRR1192072     3       0          1  0  0  1  0
#> SRR1192167     1       0          1  1  0  0  0
#> SRR1192166     1       0          1  1  0  0  0
#> SRR1192321     3       0          1  0  0  1  0
#> SRR1192353     1       0          1  1  0  0  0
#> SRR1192354     1       0          1  1  0  0  0
#> SRR1192370     1       0          1  1  0  0  0
#> SRR1192371     1       0          1  1  0  0  0
#> SRR1192399     1       0          1  1  0  0  0
#> SRR1192398     1       0          1  1  0  0  0
#> SRR1192417     4       0          1  0  0  0  1
#> SRR1192418     4       0          1  0  0  0  1
#> SRR1192415     4       0          1  0  0  0  1
#> SRR1192416     4       0          1  0  0  0  1
#> SRR1192413     4       0          1  0  0  0  1
#> SRR1192414     4       0          1  0  0  0  1
#> SRR1192420     4       0          1  0  0  0  1
#> SRR1192419     4       0          1  0  0  0  1
#> SRR1192471     1       0          1  1  0  0  0
#> SRR1192470     1       0          1  1  0  0  0
#> SRR1192469     1       0          1  1  0  0  0
#> SRR1192468     1       0          1  1  0  0  0
#> SRR1192467     1       0          1  1  0  0  0
#> SRR1192466     1       0          1  1  0  0  0
#> SRR1192465     1       0          1  1  0  0  0
#> SRR1192500     1       0          1  1  0  0  0
#> SRR1192501     1       0          1  1  0  0  0
#> SRR1192502     1       0          1  1  0  0  0
#> SRR1192503     1       0          1  1  0  0  0
#> SRR1192496     1       0          1  1  0  0  0
#> SRR1192497     1       0          1  1  0  0  0
#> SRR1192499     1       0          1  1  0  0  0
#> SRR1192641     2       0          1  0  1  0  0
#> SRR1192640     2       0          1  0  1  0  0
#> SRR1192643     2       0          1  0  1  0  0
#> SRR1192642     2       0          1  0  1  0  0
#> SRR1192644     2       0          1  0  1  0  0
#> SRR1192645     2       0          1  0  1  0  0
#> SRR1192646     2       0          1  0  1  0  0
#> SRR1192647     2       0          1  0  1  0  0
#> SRR1192836     4       0          1  0  0  0  1
#> SRR1192838     4       0          1  0  0  0  1
#> SRR1192837     4       0          1  0  0  0  1
#> SRR1192839     4       0          1  0  0  0  1
#> SRR1192963     2       0          1  0  1  0  0
#> SRR1192966     2       0          1  0  1  0  0
#> SRR1192965     2       0          1  0  1  0  0
#> SRR1192964     2       0          1  0  1  0  0
#> SRR1193005     1       0          1  1  0  0  0
#> SRR1193006     1       0          1  1  0  0  0
#> SRR1193007     1       0          1  1  0  0  0
#> SRR1193008     1       0          1  1  0  0  0
#> SRR1193011     1       0          1  1  0  0  0
#> SRR1193012     1       0          1  1  0  0  0
#> SRR1193009     1       0          1  1  0  0  0
#> SRR1193010     1       0          1  1  0  0  0
#> SRR1193014     1       0          1  1  0  0  0
#> SRR1193015     1       0          1  1  0  0  0
#> SRR1193013     1       0          1  1  0  0  0
#> SRR1193018     1       0          1  1  0  0  0
#> SRR1193016     1       0          1  1  0  0  0
#> SRR1193017     1       0          1  1  0  0  0
#> SRR1193100     1       0          1  1  0  0  0
#> SRR1193101     1       0          1  1  0  0  0
#> SRR1193102     1       0          1  1  0  0  0
#> SRR1193104     1       0          1  1  0  0  0
#> SRR1193103     1       0          1  1  0  0  0
#> SRR1193105     1       0          1  1  0  0  0
#> SRR1193106     1       0          1  1  0  0  0
#> SRR1193198     1       0          1  1  0  0  0
#> SRR1193197     1       0          1  1  0  0  0
#> SRR1193199     1       0          1  1  0  0  0
#> SRR1193405     1       0          1  1  0  0  0
#> SRR1193404     1       0          1  1  0  0  0
#> SRR1193403     1       0          1  1  0  0  0
#> SRR1193522     1       0          1  1  0  0  0
#> SRR1193523     1       0          1  1  0  0  0
#> SRR1193524     1       0          1  1  0  0  0
#> SRR1193638     1       0          1  1  0  0  0
#> SRR1193639     1       0          1  1  0  0  0
#> SRR1195621     1       0          1  1  0  0  0
#> SRR1195619     1       0          1  1  0  0  0
#> SRR1195620     1       0          1  1  0  0  0

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette p1 p2 p3 p4 p5
#> SRR1190372     2       0          1  0  1  0  0  0
#> SRR1190371     2       0          1  0  1  0  0  0
#> SRR1190370     2       0          1  0  1  0  0  0
#> SRR1190368     2       0          1  0  1  0  0  0
#> SRR1190369     2       0          1  0  1  0  0  0
#> SRR1190366     2       0          1  0  1  0  0  0
#> SRR1190367     2       0          1  0  1  0  0  0
#> SRR1190365     2       0          1  0  1  0  0  0
#> SRR1190467     3       0          1  0  0  1  0  0
#> SRR1190466     3       0          1  0  0  1  0  0
#> SRR1190465     3       0          1  0  0  1  0  0
#> SRR1190464     3       0          1  0  0  1  0  0
#> SRR1190462     3       0          1  0  0  1  0  0
#> SRR1190461     3       0          1  0  0  1  0  0
#> SRR1190460     3       0          1  0  0  1  0  0
#> SRR1190509     1       0          1  1  0  0  0  0
#> SRR1190504     1       0          1  1  0  0  0  0
#> SRR1190503     1       0          1  1  0  0  0  0
#> SRR1190502     1       0          1  1  0  0  0  0
#> SRR1190508     1       0          1  1  0  0  0  0
#> SRR1190507     1       0          1  1  0  0  0  0
#> SRR1190506     1       0          1  1  0  0  0  0
#> SRR1190505     1       0          1  1  0  0  0  0
#> SRR1191342     4       0          1  0  0  0  1  0
#> SRR1191344     4       0          1  0  0  0  1  0
#> SRR1191343     4       0          1  0  0  0  1  0
#> SRR1191349     4       0          1  0  0  0  1  0
#> SRR1191345     4       0          1  0  0  0  1  0
#> SRR1191346     4       0          1  0  0  0  1  0
#> SRR1191347     4       0          1  0  0  0  1  0
#> SRR1191348     4       0          1  0  0  0  1  0
#> SRR1191668     1       0          1  1  0  0  0  0
#> SRR1191667     1       0          1  1  0  0  0  0
#> SRR1191673     1       0          1  1  0  0  0  0
#> SRR1191672     1       0          1  1  0  0  0  0
#> SRR1191695     3       0          1  0  0  1  0  0
#> SRR1191694     3       0          1  0  0  1  0  0
#> SRR1191783     3       0          1  0  0  1  0  0
#> SRR1191876     3       0          1  0  0  1  0  0
#> SRR1191914     1       0          1  1  0  0  0  0
#> SRR1191915     1       0          1  1  0  0  0  0
#> SRR1191953     1       0          1  1  0  0  0  0
#> SRR1191954     1       0          1  1  0  0  0  0
#> SRR1191990     1       0          1  1  0  0  0  0
#> SRR1191991     1       0          1  1  0  0  0  0
#> SRR1192016     3       0          1  0  0  1  0  0
#> SRR1192017     3       0          1  0  0  1  0  0
#> SRR1192073     3       0          1  0  0  1  0  0
#> SRR1192072     3       0          1  0  0  1  0  0
#> SRR1192167     1       0          1  1  0  0  0  0
#> SRR1192166     1       0          1  1  0  0  0  0
#> SRR1192321     3       0          1  0  0  1  0  0
#> SRR1192353     1       0          1  1  0  0  0  0
#> SRR1192354     1       0          1  1  0  0  0  0
#> SRR1192370     1       0          1  1  0  0  0  0
#> SRR1192371     1       0          1  1  0  0  0  0
#> SRR1192399     1       0          1  1  0  0  0  0
#> SRR1192398     1       0          1  1  0  0  0  0
#> SRR1192417     4       0          1  0  0  0  1  0
#> SRR1192418     4       0          1  0  0  0  1  0
#> SRR1192415     4       0          1  0  0  0  1  0
#> SRR1192416     4       0          1  0  0  0  1  0
#> SRR1192413     4       0          1  0  0  0  1  0
#> SRR1192414     4       0          1  0  0  0  1  0
#> SRR1192420     4       0          1  0  0  0  1  0
#> SRR1192419     4       0          1  0  0  0  1  0
#> SRR1192471     1       0          1  1  0  0  0  0
#> SRR1192470     1       0          1  1  0  0  0  0
#> SRR1192469     1       0          1  1  0  0  0  0
#> SRR1192468     1       0          1  1  0  0  0  0
#> SRR1192467     1       0          1  1  0  0  0  0
#> SRR1192466     1       0          1  1  0  0  0  0
#> SRR1192465     1       0          1  1  0  0  0  0
#> SRR1192500     1       0          1  1  0  0  0  0
#> SRR1192501     1       0          1  1  0  0  0  0
#> SRR1192502     1       0          1  1  0  0  0  0
#> SRR1192503     1       0          1  1  0  0  0  0
#> SRR1192496     1       0          1  1  0  0  0  0
#> SRR1192497     1       0          1  1  0  0  0  0
#> SRR1192499     1       0          1  1  0  0  0  0
#> SRR1192641     2       0          1  0  1  0  0  0
#> SRR1192640     2       0          1  0  1  0  0  0
#> SRR1192643     2       0          1  0  1  0  0  0
#> SRR1192642     2       0          1  0  1  0  0  0
#> SRR1192644     2       0          1  0  1  0  0  0
#> SRR1192645     2       0          1  0  1  0  0  0
#> SRR1192646     2       0          1  0  1  0  0  0
#> SRR1192647     2       0          1  0  1  0  0  0
#> SRR1192836     5       0          1  0  0  0  0  1
#> SRR1192838     5       0          1  0  0  0  0  1
#> SRR1192837     5       0          1  0  0  0  0  1
#> SRR1192839     5       0          1  0  0  0  0  1
#> SRR1192963     2       0          1  0  1  0  0  0
#> SRR1192966     2       0          1  0  1  0  0  0
#> SRR1192965     2       0          1  0  1  0  0  0
#> SRR1192964     2       0          1  0  1  0  0  0
#> SRR1193005     1       0          1  1  0  0  0  0
#> SRR1193006     1       0          1  1  0  0  0  0
#> SRR1193007     1       0          1  1  0  0  0  0
#> SRR1193008     1       0          1  1  0  0  0  0
#> SRR1193011     1       0          1  1  0  0  0  0
#> SRR1193012     1       0          1  1  0  0  0  0
#> SRR1193009     1       0          1  1  0  0  0  0
#> SRR1193010     1       0          1  1  0  0  0  0
#> SRR1193014     1       0          1  1  0  0  0  0
#> SRR1193015     1       0          1  1  0  0  0  0
#> SRR1193013     1       0          1  1  0  0  0  0
#> SRR1193018     1       0          1  1  0  0  0  0
#> SRR1193016     1       0          1  1  0  0  0  0
#> SRR1193017     1       0          1  1  0  0  0  0
#> SRR1193100     1       0          1  1  0  0  0  0
#> SRR1193101     1       0          1  1  0  0  0  0
#> SRR1193102     1       0          1  1  0  0  0  0
#> SRR1193104     1       0          1  1  0  0  0  0
#> SRR1193103     1       0          1  1  0  0  0  0
#> SRR1193105     1       0          1  1  0  0  0  0
#> SRR1193106     1       0          1  1  0  0  0  0
#> SRR1193198     1       0          1  1  0  0  0  0
#> SRR1193197     1       0          1  1  0  0  0  0
#> SRR1193199     1       0          1  1  0  0  0  0
#> SRR1193405     1       0          1  1  0  0  0  0
#> SRR1193404     1       0          1  1  0  0  0  0
#> SRR1193403     1       0          1  1  0  0  0  0
#> SRR1193522     1       0          1  1  0  0  0  0
#> SRR1193523     1       0          1  1  0  0  0  0
#> SRR1193524     1       0          1  1  0  0  0  0
#> SRR1193638     1       0          1  1  0  0  0  0
#> SRR1193639     1       0          1  1  0  0  0  0
#> SRR1195621     1       0          1  1  0  0  0  0
#> SRR1195619     1       0          1  1  0  0  0  0
#> SRR1195620     1       0          1  1  0  0  0  0

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1190372     2       0          1  0  1  0  0  0  0
#> SRR1190371     2       0          1  0  1  0  0  0  0
#> SRR1190370     2       0          1  0  1  0  0  0  0
#> SRR1190368     2       0          1  0  1  0  0  0  0
#> SRR1190369     2       0          1  0  1  0  0  0  0
#> SRR1190366     2       0          1  0  1  0  0  0  0
#> SRR1190367     2       0          1  0  1  0  0  0  0
#> SRR1190365     2       0          1  0  1  0  0  0  0
#> SRR1190467     3       0          1  0  0  1  0  0  0
#> SRR1190466     3       0          1  0  0  1  0  0  0
#> SRR1190465     3       0          1  0  0  1  0  0  0
#> SRR1190464     3       0          1  0  0  1  0  0  0
#> SRR1190462     3       0          1  0  0  1  0  0  0
#> SRR1190461     3       0          1  0  0  1  0  0  0
#> SRR1190460     3       0          1  0  0  1  0  0  0
#> SRR1190509     1       0          1  1  0  0  0  0  0
#> SRR1190504     1       0          1  1  0  0  0  0  0
#> SRR1190503     1       0          1  1  0  0  0  0  0
#> SRR1190502     1       0          1  1  0  0  0  0  0
#> SRR1190508     1       0          1  1  0  0  0  0  0
#> SRR1190507     1       0          1  1  0  0  0  0  0
#> SRR1190506     1       0          1  1  0  0  0  0  0
#> SRR1190505     1       0          1  1  0  0  0  0  0
#> SRR1191342     4       0          1  0  0  0  1  0  0
#> SRR1191344     4       0          1  0  0  0  1  0  0
#> SRR1191343     4       0          1  0  0  0  1  0  0
#> SRR1191349     4       0          1  0  0  0  1  0  0
#> SRR1191345     4       0          1  0  0  0  1  0  0
#> SRR1191346     4       0          1  0  0  0  1  0  0
#> SRR1191347     4       0          1  0  0  0  1  0  0
#> SRR1191348     4       0          1  0  0  0  1  0  0
#> SRR1191668     1       0          1  1  0  0  0  0  0
#> SRR1191667     1       0          1  1  0  0  0  0  0
#> SRR1191673     1       0          1  1  0  0  0  0  0
#> SRR1191672     1       0          1  1  0  0  0  0  0
#> SRR1191695     3       0          1  0  0  1  0  0  0
#> SRR1191694     3       0          1  0  0  1  0  0  0
#> SRR1191783     3       0          1  0  0  1  0  0  0
#> SRR1191876     3       0          1  0  0  1  0  0  0
#> SRR1191914     1       0          1  1  0  0  0  0  0
#> SRR1191915     1       0          1  1  0  0  0  0  0
#> SRR1191953     1       0          1  1  0  0  0  0  0
#> SRR1191954     1       0          1  1  0  0  0  0  0
#> SRR1191990     1       0          1  1  0  0  0  0  0
#> SRR1191991     1       0          1  1  0  0  0  0  0
#> SRR1192016     3       0          1  0  0  1  0  0  0
#> SRR1192017     3       0          1  0  0  1  0  0  0
#> SRR1192073     3       0          1  0  0  1  0  0  0
#> SRR1192072     3       0          1  0  0  1  0  0  0
#> SRR1192167     1       0          1  1  0  0  0  0  0
#> SRR1192166     1       0          1  1  0  0  0  0  0
#> SRR1192321     3       0          1  0  0  1  0  0  0
#> SRR1192353     1       0          1  1  0  0  0  0  0
#> SRR1192354     1       0          1  1  0  0  0  0  0
#> SRR1192370     5       0          1  0  0  0  0  1  0
#> SRR1192371     5       0          1  0  0  0  0  1  0
#> SRR1192399     1       0          1  1  0  0  0  0  0
#> SRR1192398     1       0          1  1  0  0  0  0  0
#> SRR1192417     4       0          1  0  0  0  1  0  0
#> SRR1192418     4       0          1  0  0  0  1  0  0
#> SRR1192415     4       0          1  0  0  0  1  0  0
#> SRR1192416     4       0          1  0  0  0  1  0  0
#> SRR1192413     4       0          1  0  0  0  1  0  0
#> SRR1192414     4       0          1  0  0  0  1  0  0
#> SRR1192420     4       0          1  0  0  0  1  0  0
#> SRR1192419     4       0          1  0  0  0  1  0  0
#> SRR1192471     5       0          1  0  0  0  0  1  0
#> SRR1192470     5       0          1  0  0  0  0  1  0
#> SRR1192469     5       0          1  0  0  0  0  1  0
#> SRR1192468     5       0          1  0  0  0  0  1  0
#> SRR1192467     5       0          1  0  0  0  0  1  0
#> SRR1192466     5       0          1  0  0  0  0  1  0
#> SRR1192465     5       0          1  0  0  0  0  1  0
#> SRR1192500     1       0          1  1  0  0  0  0  0
#> SRR1192501     1       0          1  1  0  0  0  0  0
#> SRR1192502     1       0          1  1  0  0  0  0  0
#> SRR1192503     1       0          1  1  0  0  0  0  0
#> SRR1192496     1       0          1  1  0  0  0  0  0
#> SRR1192497     1       0          1  1  0  0  0  0  0
#> SRR1192499     1       0          1  1  0  0  0  0  0
#> SRR1192641     2       0          1  0  1  0  0  0  0
#> SRR1192640     2       0          1  0  1  0  0  0  0
#> SRR1192643     2       0          1  0  1  0  0  0  0
#> SRR1192642     2       0          1  0  1  0  0  0  0
#> SRR1192644     2       0          1  0  1  0  0  0  0
#> SRR1192645     2       0          1  0  1  0  0  0  0
#> SRR1192646     2       0          1  0  1  0  0  0  0
#> SRR1192647     2       0          1  0  1  0  0  0  0
#> SRR1192836     6       0          1  0  0  0  0  0  1
#> SRR1192838     6       0          1  0  0  0  0  0  1
#> SRR1192837     6       0          1  0  0  0  0  0  1
#> SRR1192839     6       0          1  0  0  0  0  0  1
#> SRR1192963     2       0          1  0  1  0  0  0  0
#> SRR1192966     2       0          1  0  1  0  0  0  0
#> SRR1192965     2       0          1  0  1  0  0  0  0
#> SRR1192964     2       0          1  0  1  0  0  0  0
#> SRR1193005     1       0          1  1  0  0  0  0  0
#> SRR1193006     1       0          1  1  0  0  0  0  0
#> SRR1193007     1       0          1  1  0  0  0  0  0
#> SRR1193008     1       0          1  1  0  0  0  0  0
#> SRR1193011     5       0          1  0  0  0  0  1  0
#> SRR1193012     5       0          1  0  0  0  0  1  0
#> SRR1193009     5       0          1  0  0  0  0  1  0
#> SRR1193010     5       0          1  0  0  0  0  1  0
#> SRR1193014     1       0          1  1  0  0  0  0  0
#> SRR1193015     1       0          1  1  0  0  0  0  0
#> SRR1193013     1       0          1  1  0  0  0  0  0
#> SRR1193018     1       0          1  1  0  0  0  0  0
#> SRR1193016     1       0          1  1  0  0  0  0  0
#> SRR1193017     1       0          1  1  0  0  0  0  0
#> SRR1193100     1       0          1  1  0  0  0  0  0
#> SRR1193101     1       0          1  1  0  0  0  0  0
#> SRR1193102     1       0          1  1  0  0  0  0  0
#> SRR1193104     5       0          1  0  0  0  0  1  0
#> SRR1193103     5       0          1  0  0  0  0  1  0
#> SRR1193105     5       0          1  0  0  0  0  1  0
#> SRR1193106     5       0          1  0  0  0  0  1  0
#> SRR1193198     1       0          1  1  0  0  0  0  0
#> SRR1193197     1       0          1  1  0  0  0  0  0
#> SRR1193199     1       0          1  1  0  0  0  0  0
#> SRR1193405     1       0          1  1  0  0  0  0  0
#> SRR1193404     1       0          1  1  0  0  0  0  0
#> SRR1193403     1       0          1  1  0  0  0  0  0
#> SRR1193522     1       0          1  1  0  0  0  0  0
#> SRR1193523     1       0          1  1  0  0  0  0  0
#> SRR1193524     1       0          1  1  0  0  0  0  0
#> SRR1193638     5       0          1  0  0  0  0  1  0
#> SRR1193639     5       0          1  0  0  0  0  1  0
#> SRR1195621     5       0          1  0  0  0  0  1  0
#> SRR1195619     5       0          1  0  0  0  0  1  0
#> SRR1195620     5       0          1  0  0  0  0  1  0

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15363 rows and 131 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.4281 0.573   0.573
#> 3 3 0.766           0.952       0.966         0.3571 0.723   0.556
#> 4 4 0.936           0.897       0.959         0.0938 0.951   0.878
#> 5 5 1.000           0.991       0.994         0.0567 0.981   0.946
#> 6 6 0.891           0.931       0.949         0.0472 0.997   0.991

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2 4

There is also optional best \(k\) = 2 4 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1190372     2       0          1  0  1
#> SRR1190371     2       0          1  0  1
#> SRR1190370     2       0          1  0  1
#> SRR1190368     2       0          1  0  1
#> SRR1190369     2       0          1  0  1
#> SRR1190366     2       0          1  0  1
#> SRR1190367     2       0          1  0  1
#> SRR1190365     2       0          1  0  1
#> SRR1190467     1       0          1  1  0
#> SRR1190466     1       0          1  1  0
#> SRR1190465     1       0          1  1  0
#> SRR1190464     1       0          1  1  0
#> SRR1190462     1       0          1  1  0
#> SRR1190461     1       0          1  1  0
#> SRR1190460     1       0          1  1  0
#> SRR1190509     1       0          1  1  0
#> SRR1190504     1       0          1  1  0
#> SRR1190503     1       0          1  1  0
#> SRR1190502     1       0          1  1  0
#> SRR1190508     1       0          1  1  0
#> SRR1190507     1       0          1  1  0
#> SRR1190506     1       0          1  1  0
#> SRR1190505     1       0          1  1  0
#> SRR1191342     2       0          1  0  1
#> SRR1191344     2       0          1  0  1
#> SRR1191343     2       0          1  0  1
#> SRR1191349     2       0          1  0  1
#> SRR1191345     2       0          1  0  1
#> SRR1191346     2       0          1  0  1
#> SRR1191347     2       0          1  0  1
#> SRR1191348     2       0          1  0  1
#> SRR1191668     1       0          1  1  0
#> SRR1191667     1       0          1  1  0
#> SRR1191673     1       0          1  1  0
#> SRR1191672     1       0          1  1  0
#> SRR1191695     1       0          1  1  0
#> SRR1191694     1       0          1  1  0
#> SRR1191783     1       0          1  1  0
#> SRR1191876     1       0          1  1  0
#> SRR1191914     1       0          1  1  0
#> SRR1191915     1       0          1  1  0
#> SRR1191953     1       0          1  1  0
#> SRR1191954     1       0          1  1  0
#> SRR1191990     1       0          1  1  0
#> SRR1191991     1       0          1  1  0
#> SRR1192016     1       0          1  1  0
#> SRR1192017     1       0          1  1  0
#> SRR1192073     1       0          1  1  0
#> SRR1192072     1       0          1  1  0
#> SRR1192167     1       0          1  1  0
#> SRR1192166     1       0          1  1  0
#> SRR1192321     1       0          1  1  0
#> SRR1192353     1       0          1  1  0
#> SRR1192354     1       0          1  1  0
#> SRR1192370     1       0          1  1  0
#> SRR1192371     1       0          1  1  0
#> SRR1192399     1       0          1  1  0
#> SRR1192398     1       0          1  1  0
#> SRR1192417     2       0          1  0  1
#> SRR1192418     2       0          1  0  1
#> SRR1192415     2       0          1  0  1
#> SRR1192416     2       0          1  0  1
#> SRR1192413     2       0          1  0  1
#> SRR1192414     2       0          1  0  1
#> SRR1192420     2       0          1  0  1
#> SRR1192419     2       0          1  0  1
#> SRR1192471     1       0          1  1  0
#> SRR1192470     1       0          1  1  0
#> SRR1192469     1       0          1  1  0
#> SRR1192468     1       0          1  1  0
#> SRR1192467     1       0          1  1  0
#> SRR1192466     1       0          1  1  0
#> SRR1192465     1       0          1  1  0
#> SRR1192500     1       0          1  1  0
#> SRR1192501     1       0          1  1  0
#> SRR1192502     1       0          1  1  0
#> SRR1192503     1       0          1  1  0
#> SRR1192496     1       0          1  1  0
#> SRR1192497     1       0          1  1  0
#> SRR1192499     1       0          1  1  0
#> SRR1192641     2       0          1  0  1
#> SRR1192640     2       0          1  0  1
#> SRR1192643     2       0          1  0  1
#> SRR1192642     2       0          1  0  1
#> SRR1192644     2       0          1  0  1
#> SRR1192645     2       0          1  0  1
#> SRR1192646     2       0          1  0  1
#> SRR1192647     2       0          1  0  1
#> SRR1192836     2       0          1  0  1
#> SRR1192838     2       0          1  0  1
#> SRR1192837     2       0          1  0  1
#> SRR1192839     2       0          1  0  1
#> SRR1192963     2       0          1  0  1
#> SRR1192966     2       0          1  0  1
#> SRR1192965     2       0          1  0  1
#> SRR1192964     2       0          1  0  1
#> SRR1193005     1       0          1  1  0
#> SRR1193006     1       0          1  1  0
#> SRR1193007     1       0          1  1  0
#> SRR1193008     1       0          1  1  0
#> SRR1193011     1       0          1  1  0
#> SRR1193012     1       0          1  1  0
#> SRR1193009     1       0          1  1  0
#> SRR1193010     1       0          1  1  0
#> SRR1193014     1       0          1  1  0
#> SRR1193015     1       0          1  1  0
#> SRR1193013     1       0          1  1  0
#> SRR1193018     1       0          1  1  0
#> SRR1193016     1       0          1  1  0
#> SRR1193017     1       0          1  1  0
#> SRR1193100     1       0          1  1  0
#> SRR1193101     1       0          1  1  0
#> SRR1193102     1       0          1  1  0
#> SRR1193104     1       0          1  1  0
#> SRR1193103     1       0          1  1  0
#> SRR1193105     1       0          1  1  0
#> SRR1193106     1       0          1  1  0
#> SRR1193198     1       0          1  1  0
#> SRR1193197     1       0          1  1  0
#> SRR1193199     1       0          1  1  0
#> SRR1193405     1       0          1  1  0
#> SRR1193404     1       0          1  1  0
#> SRR1193403     1       0          1  1  0
#> SRR1193522     1       0          1  1  0
#> SRR1193523     1       0          1  1  0
#> SRR1193524     1       0          1  1  0
#> SRR1193638     1       0          1  1  0
#> SRR1193639     1       0          1  1  0
#> SRR1195621     1       0          1  1  0
#> SRR1195619     1       0          1  1  0
#> SRR1195620     1       0          1  1  0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1190372     2  0.0000      0.998 0.000 1.000 0.000
#> SRR1190371     2  0.0000      0.998 0.000 1.000 0.000
#> SRR1190370     2  0.0000      0.998 0.000 1.000 0.000
#> SRR1190368     2  0.0000      0.998 0.000 1.000 0.000
#> SRR1190369     2  0.0000      0.998 0.000 1.000 0.000
#> SRR1190366     2  0.0000      0.998 0.000 1.000 0.000
#> SRR1190367     2  0.0000      0.998 0.000 1.000 0.000
#> SRR1190365     2  0.0000      0.998 0.000 1.000 0.000
#> SRR1190467     3  0.4531      0.880 0.168 0.008 0.824
#> SRR1190466     3  0.4531      0.880 0.168 0.008 0.824
#> SRR1190465     3  0.4531      0.880 0.168 0.008 0.824
#> SRR1190464     3  0.4531      0.880 0.168 0.008 0.824
#> SRR1190462     3  0.4531      0.880 0.168 0.008 0.824
#> SRR1190461     3  0.4531      0.880 0.168 0.008 0.824
#> SRR1190460     3  0.4531      0.880 0.168 0.008 0.824
#> SRR1190509     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1190504     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1190503     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1190502     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1190508     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1190507     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1190506     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1190505     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1191342     3  0.0000      0.866 0.000 0.000 1.000
#> SRR1191344     3  0.0000      0.866 0.000 0.000 1.000
#> SRR1191343     3  0.0000      0.866 0.000 0.000 1.000
#> SRR1191349     3  0.0000      0.866 0.000 0.000 1.000
#> SRR1191345     3  0.0000      0.866 0.000 0.000 1.000
#> SRR1191346     3  0.0000      0.866 0.000 0.000 1.000
#> SRR1191347     3  0.0000      0.866 0.000 0.000 1.000
#> SRR1191348     3  0.0000      0.866 0.000 0.000 1.000
#> SRR1191668     3  0.4399      0.864 0.188 0.000 0.812
#> SRR1191667     3  0.4399      0.864 0.188 0.000 0.812
#> SRR1191673     3  0.4399      0.864 0.188 0.000 0.812
#> SRR1191672     3  0.4399      0.864 0.188 0.000 0.812
#> SRR1191695     3  0.4413      0.881 0.160 0.008 0.832
#> SRR1191694     3  0.4413      0.881 0.160 0.008 0.832
#> SRR1191783     3  0.4413      0.881 0.160 0.008 0.832
#> SRR1191876     3  0.4413      0.881 0.160 0.008 0.832
#> SRR1191914     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1191915     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1191953     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1191954     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1191990     1  0.1964      0.938 0.944 0.000 0.056
#> SRR1191991     1  0.1964      0.938 0.944 0.000 0.056
#> SRR1192016     3  0.4531      0.880 0.168 0.008 0.824
#> SRR1192017     3  0.4531      0.880 0.168 0.008 0.824
#> SRR1192073     3  0.4531      0.880 0.168 0.008 0.824
#> SRR1192072     3  0.4531      0.880 0.168 0.008 0.824
#> SRR1192167     3  0.4399      0.864 0.188 0.000 0.812
#> SRR1192166     3  0.4399      0.864 0.188 0.000 0.812
#> SRR1192321     3  0.4531      0.880 0.168 0.008 0.824
#> SRR1192353     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1192354     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1192370     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1192371     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1192399     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1192398     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1192417     3  0.0000      0.866 0.000 0.000 1.000
#> SRR1192418     3  0.0000      0.866 0.000 0.000 1.000
#> SRR1192415     3  0.0000      0.866 0.000 0.000 1.000
#> SRR1192416     3  0.0000      0.866 0.000 0.000 1.000
#> SRR1192413     3  0.0000      0.866 0.000 0.000 1.000
#> SRR1192414     3  0.0000      0.866 0.000 0.000 1.000
#> SRR1192420     3  0.0000      0.866 0.000 0.000 1.000
#> SRR1192419     3  0.0000      0.866 0.000 0.000 1.000
#> SRR1192471     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1192470     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1192469     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1192468     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1192467     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1192466     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1192465     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1192500     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1192501     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1192502     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1192503     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1192496     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1192497     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1192499     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1192641     2  0.0237      0.999 0.000 0.996 0.004
#> SRR1192640     2  0.0237      0.999 0.000 0.996 0.004
#> SRR1192643     2  0.0237      0.999 0.000 0.996 0.004
#> SRR1192642     2  0.0237      0.999 0.000 0.996 0.004
#> SRR1192644     2  0.0237      0.999 0.000 0.996 0.004
#> SRR1192645     2  0.0237      0.999 0.000 0.996 0.004
#> SRR1192646     2  0.0237      0.999 0.000 0.996 0.004
#> SRR1192647     2  0.0237      0.999 0.000 0.996 0.004
#> SRR1192836     3  0.1163      0.860 0.000 0.028 0.972
#> SRR1192838     3  0.1163      0.860 0.000 0.028 0.972
#> SRR1192837     3  0.1163      0.860 0.000 0.028 0.972
#> SRR1192839     3  0.1163      0.860 0.000 0.028 0.972
#> SRR1192963     2  0.0237      0.999 0.000 0.996 0.004
#> SRR1192966     2  0.0237      0.999 0.000 0.996 0.004
#> SRR1192965     2  0.0237      0.999 0.000 0.996 0.004
#> SRR1192964     2  0.0237      0.999 0.000 0.996 0.004
#> SRR1193005     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1193006     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1193007     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1193008     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1193011     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1193012     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1193009     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1193010     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1193014     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1193015     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1193013     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1193018     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1193016     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1193017     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1193100     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1193101     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1193102     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1193104     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1193103     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1193105     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1193106     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1193198     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1193197     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1193199     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1193405     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1193404     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1193403     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1193522     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1193523     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1193524     1  0.0000      0.993 1.000 0.000 0.000
#> SRR1193638     1  0.2066      0.933 0.940 0.000 0.060
#> SRR1193639     1  0.2066      0.933 0.940 0.000 0.060
#> SRR1195621     1  0.2066      0.933 0.940 0.000 0.060
#> SRR1195619     1  0.2066      0.933 0.940 0.000 0.060
#> SRR1195620     1  0.2066      0.933 0.940 0.000 0.060

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1190372     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> SRR1190371     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> SRR1190370     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> SRR1190368     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> SRR1190369     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> SRR1190366     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> SRR1190367     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> SRR1190365     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> SRR1190467     3   0.000     0.7280 0.000 0.000 1.000 0.000
#> SRR1190466     3   0.000     0.7280 0.000 0.000 1.000 0.000
#> SRR1190465     3   0.000     0.7280 0.000 0.000 1.000 0.000
#> SRR1190464     3   0.000     0.7280 0.000 0.000 1.000 0.000
#> SRR1190462     3   0.000     0.7280 0.000 0.000 1.000 0.000
#> SRR1190461     3   0.000     0.7280 0.000 0.000 1.000 0.000
#> SRR1190460     3   0.000     0.7280 0.000 0.000 1.000 0.000
#> SRR1190509     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1190504     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1190503     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1190502     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1190508     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1190507     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1190506     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1190505     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1191342     4   0.000     1.0000 0.000 0.000 0.000 1.000
#> SRR1191344     4   0.000     1.0000 0.000 0.000 0.000 1.000
#> SRR1191343     4   0.000     1.0000 0.000 0.000 0.000 1.000
#> SRR1191349     4   0.000     1.0000 0.000 0.000 0.000 1.000
#> SRR1191345     4   0.000     1.0000 0.000 0.000 0.000 1.000
#> SRR1191346     4   0.000     1.0000 0.000 0.000 0.000 1.000
#> SRR1191347     4   0.000     1.0000 0.000 0.000 0.000 1.000
#> SRR1191348     4   0.000     1.0000 0.000 0.000 0.000 1.000
#> SRR1191668     3   0.500     0.2414 0.484 0.000 0.516 0.000
#> SRR1191667     3   0.500     0.2414 0.484 0.000 0.516 0.000
#> SRR1191673     3   0.500     0.2414 0.484 0.000 0.516 0.000
#> SRR1191672     3   0.500     0.2414 0.484 0.000 0.516 0.000
#> SRR1191695     3   0.000     0.7280 0.000 0.000 1.000 0.000
#> SRR1191694     3   0.000     0.7280 0.000 0.000 1.000 0.000
#> SRR1191783     3   0.000     0.7280 0.000 0.000 1.000 0.000
#> SRR1191876     3   0.000     0.7280 0.000 0.000 1.000 0.000
#> SRR1191914     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1191915     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1191953     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1191954     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1191990     1   0.164     0.9302 0.940 0.000 0.060 0.000
#> SRR1191991     1   0.164     0.9302 0.940 0.000 0.060 0.000
#> SRR1192016     3   0.000     0.7280 0.000 0.000 1.000 0.000
#> SRR1192017     3   0.000     0.7280 0.000 0.000 1.000 0.000
#> SRR1192073     3   0.000     0.7280 0.000 0.000 1.000 0.000
#> SRR1192072     3   0.000     0.7280 0.000 0.000 1.000 0.000
#> SRR1192167     3   0.500     0.2414 0.484 0.000 0.516 0.000
#> SRR1192166     3   0.500     0.2414 0.484 0.000 0.516 0.000
#> SRR1192321     3   0.000     0.7280 0.000 0.000 1.000 0.000
#> SRR1192353     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1192354     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1192370     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1192371     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1192399     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1192398     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1192417     4   0.000     1.0000 0.000 0.000 0.000 1.000
#> SRR1192418     4   0.000     1.0000 0.000 0.000 0.000 1.000
#> SRR1192415     4   0.000     1.0000 0.000 0.000 0.000 1.000
#> SRR1192416     4   0.000     1.0000 0.000 0.000 0.000 1.000
#> SRR1192413     4   0.000     1.0000 0.000 0.000 0.000 1.000
#> SRR1192414     4   0.000     1.0000 0.000 0.000 0.000 1.000
#> SRR1192420     4   0.000     1.0000 0.000 0.000 0.000 1.000
#> SRR1192419     4   0.000     1.0000 0.000 0.000 0.000 1.000
#> SRR1192471     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1192470     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1192469     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1192468     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1192467     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1192466     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1192465     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1192500     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1192501     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1192502     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1192503     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1192496     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1192497     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1192499     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1192641     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> SRR1192640     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> SRR1192643     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> SRR1192642     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> SRR1192644     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> SRR1192645     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> SRR1192646     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> SRR1192647     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> SRR1192836     3   0.529     0.0937 0.000 0.008 0.508 0.484
#> SRR1192838     3   0.529     0.0937 0.000 0.008 0.508 0.484
#> SRR1192837     3   0.529     0.0937 0.000 0.008 0.508 0.484
#> SRR1192839     3   0.529     0.0937 0.000 0.008 0.508 0.484
#> SRR1192963     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> SRR1192966     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> SRR1192965     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> SRR1192964     2   0.000     1.0000 0.000 1.000 0.000 0.000
#> SRR1193005     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1193006     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1193007     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1193008     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1193011     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1193012     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1193009     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1193010     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1193014     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1193015     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1193013     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1193018     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1193016     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1193017     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1193100     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1193101     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1193102     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1193104     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1193103     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1193105     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1193106     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1193198     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1193197     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1193199     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1193405     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1193404     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1193403     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1193522     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1193523     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1193524     1   0.000     0.9923 1.000 0.000 0.000 0.000
#> SRR1193638     1   0.172     0.9257 0.936 0.000 0.064 0.000
#> SRR1193639     1   0.172     0.9257 0.936 0.000 0.064 0.000
#> SRR1195621     1   0.172     0.9257 0.936 0.000 0.064 0.000
#> SRR1195619     1   0.172     0.9257 0.936 0.000 0.064 0.000
#> SRR1195620     1   0.172     0.9257 0.936 0.000 0.064 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2 p3    p4    p5
#> SRR1190372     2  0.0000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1190371     2  0.0000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1190370     2  0.0000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1190368     2  0.0000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1190369     2  0.0000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1190366     2  0.0000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1190367     2  0.0000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1190365     2  0.0000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1190467     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1190466     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1190465     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1190464     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1190462     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1190461     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1190460     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1190509     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1190504     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1190503     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1190502     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1190508     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1190507     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1190506     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1190505     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1191342     4  0.0000      1.000 0.000 0.000  0 1.000 0.000
#> SRR1191344     4  0.0000      1.000 0.000 0.000  0 1.000 0.000
#> SRR1191343     4  0.0000      1.000 0.000 0.000  0 1.000 0.000
#> SRR1191349     4  0.0000      1.000 0.000 0.000  0 1.000 0.000
#> SRR1191345     4  0.0000      1.000 0.000 0.000  0 1.000 0.000
#> SRR1191346     4  0.0000      1.000 0.000 0.000  0 1.000 0.000
#> SRR1191347     4  0.0000      1.000 0.000 0.000  0 1.000 0.000
#> SRR1191348     4  0.0000      1.000 0.000 0.000  0 1.000 0.000
#> SRR1191668     5  0.0510      0.982 0.016 0.000  0 0.000 0.984
#> SRR1191667     5  0.0510      0.982 0.016 0.000  0 0.000 0.984
#> SRR1191673     5  0.0510      0.982 0.016 0.000  0 0.000 0.984
#> SRR1191672     5  0.0510      0.982 0.016 0.000  0 0.000 0.984
#> SRR1191695     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1191694     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1191783     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1191876     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1191914     1  0.0290      0.989 0.992 0.000  0 0.000 0.008
#> SRR1191915     1  0.0290      0.989 0.992 0.000  0 0.000 0.008
#> SRR1191953     1  0.0290      0.989 0.992 0.000  0 0.000 0.008
#> SRR1191954     1  0.0290      0.989 0.992 0.000  0 0.000 0.008
#> SRR1191990     1  0.0609      0.982 0.980 0.000  0 0.000 0.020
#> SRR1191991     1  0.0609      0.982 0.980 0.000  0 0.000 0.020
#> SRR1192016     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1192017     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1192073     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1192072     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1192167     5  0.0510      0.982 0.016 0.000  0 0.000 0.984
#> SRR1192166     5  0.0510      0.982 0.016 0.000  0 0.000 0.984
#> SRR1192321     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1192353     1  0.0404      0.987 0.988 0.000  0 0.000 0.012
#> SRR1192354     1  0.0404      0.987 0.988 0.000  0 0.000 0.012
#> SRR1192370     1  0.0404      0.987 0.988 0.000  0 0.000 0.012
#> SRR1192371     1  0.0404      0.987 0.988 0.000  0 0.000 0.012
#> SRR1192399     1  0.0404      0.987 0.988 0.000  0 0.000 0.012
#> SRR1192398     1  0.0404      0.987 0.988 0.000  0 0.000 0.012
#> SRR1192417     4  0.0000      1.000 0.000 0.000  0 1.000 0.000
#> SRR1192418     4  0.0000      1.000 0.000 0.000  0 1.000 0.000
#> SRR1192415     4  0.0000      1.000 0.000 0.000  0 1.000 0.000
#> SRR1192416     4  0.0000      1.000 0.000 0.000  0 1.000 0.000
#> SRR1192413     4  0.0000      1.000 0.000 0.000  0 1.000 0.000
#> SRR1192414     4  0.0000      1.000 0.000 0.000  0 1.000 0.000
#> SRR1192420     4  0.0000      1.000 0.000 0.000  0 1.000 0.000
#> SRR1192419     4  0.0000      1.000 0.000 0.000  0 1.000 0.000
#> SRR1192471     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1192470     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1192469     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1192468     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1192467     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1192466     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1192465     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1192500     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1192501     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1192502     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1192503     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1192496     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1192497     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1192499     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1192641     2  0.0000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1192640     2  0.0000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1192643     2  0.0000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1192642     2  0.0000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1192644     2  0.0000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1192645     2  0.0000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1192646     2  0.0000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1192647     2  0.0000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1192836     5  0.0579      0.973 0.000 0.008  0 0.008 0.984
#> SRR1192838     5  0.0579      0.973 0.000 0.008  0 0.008 0.984
#> SRR1192837     5  0.0579      0.973 0.000 0.008  0 0.008 0.984
#> SRR1192839     5  0.0579      0.973 0.000 0.008  0 0.008 0.984
#> SRR1192963     2  0.0000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1192966     2  0.0000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1192965     2  0.0000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1192964     2  0.0000      1.000 0.000 1.000  0 0.000 0.000
#> SRR1193005     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1193006     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1193007     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1193008     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1193011     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1193012     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1193009     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1193010     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1193014     1  0.0290      0.989 0.992 0.000  0 0.000 0.008
#> SRR1193015     1  0.0290      0.989 0.992 0.000  0 0.000 0.008
#> SRR1193013     1  0.0290      0.989 0.992 0.000  0 0.000 0.008
#> SRR1193018     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1193016     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1193017     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1193100     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1193101     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1193102     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1193104     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1193103     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1193105     1  0.0404      0.987 0.988 0.000  0 0.000 0.012
#> SRR1193106     1  0.0404      0.987 0.988 0.000  0 0.000 0.012
#> SRR1193198     1  0.0290      0.989 0.992 0.000  0 0.000 0.008
#> SRR1193197     1  0.0290      0.989 0.992 0.000  0 0.000 0.008
#> SRR1193199     1  0.0290      0.989 0.992 0.000  0 0.000 0.008
#> SRR1193405     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1193404     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1193403     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1193522     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1193523     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1193524     1  0.0000      0.992 1.000 0.000  0 0.000 0.000
#> SRR1193638     1  0.1544      0.933 0.932 0.000  0 0.000 0.068
#> SRR1193639     1  0.1544      0.933 0.932 0.000  0 0.000 0.068
#> SRR1195621     1  0.1608      0.931 0.928 0.000  0 0.000 0.072
#> SRR1195619     1  0.1671      0.929 0.924 0.000  0 0.000 0.076
#> SRR1195620     1  0.1671      0.929 0.924 0.000  0 0.000 0.076

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1 p2 p3 p4    p5    p6
#> SRR1190372     2  0.0000      1.000 0.000  1  0  0 0.000 0.000
#> SRR1190371     2  0.0000      1.000 0.000  1  0  0 0.000 0.000
#> SRR1190370     2  0.0000      1.000 0.000  1  0  0 0.000 0.000
#> SRR1190368     2  0.0000      1.000 0.000  1  0  0 0.000 0.000
#> SRR1190369     2  0.0000      1.000 0.000  1  0  0 0.000 0.000
#> SRR1190366     2  0.0000      1.000 0.000  1  0  0 0.000 0.000
#> SRR1190367     2  0.0000      1.000 0.000  1  0  0 0.000 0.000
#> SRR1190365     2  0.0000      1.000 0.000  1  0  0 0.000 0.000
#> SRR1190467     3  0.0000      1.000 0.000  0  1  0 0.000 0.000
#> SRR1190466     3  0.0000      1.000 0.000  0  1  0 0.000 0.000
#> SRR1190465     3  0.0000      1.000 0.000  0  1  0 0.000 0.000
#> SRR1190464     3  0.0000      1.000 0.000  0  1  0 0.000 0.000
#> SRR1190462     3  0.0000      1.000 0.000  0  1  0 0.000 0.000
#> SRR1190461     3  0.0000      1.000 0.000  0  1  0 0.000 0.000
#> SRR1190460     3  0.0000      1.000 0.000  0  1  0 0.000 0.000
#> SRR1190509     1  0.0000      0.919 1.000  0  0  0 0.000 0.000
#> SRR1190504     1  0.0000      0.919 1.000  0  0  0 0.000 0.000
#> SRR1190503     1  0.0000      0.919 1.000  0  0  0 0.000 0.000
#> SRR1190502     1  0.0000      0.919 1.000  0  0  0 0.000 0.000
#> SRR1190508     1  0.0000      0.919 1.000  0  0  0 0.000 0.000
#> SRR1190507     1  0.0000      0.919 1.000  0  0  0 0.000 0.000
#> SRR1190506     1  0.0000      0.919 1.000  0  0  0 0.000 0.000
#> SRR1190505     1  0.0000      0.919 1.000  0  0  0 0.000 0.000
#> SRR1191342     4  0.0000      1.000 0.000  0  0  1 0.000 0.000
#> SRR1191344     4  0.0000      1.000 0.000  0  0  1 0.000 0.000
#> SRR1191343     4  0.0000      1.000 0.000  0  0  1 0.000 0.000
#> SRR1191349     4  0.0000      1.000 0.000  0  0  1 0.000 0.000
#> SRR1191345     4  0.0000      1.000 0.000  0  0  1 0.000 0.000
#> SRR1191346     4  0.0000      1.000 0.000  0  0  1 0.000 0.000
#> SRR1191347     4  0.0000      1.000 0.000  0  0  1 0.000 0.000
#> SRR1191348     4  0.0000      1.000 0.000  0  0  1 0.000 0.000
#> SRR1191668     5  0.0146      1.000 0.004  0  0  0 0.996 0.000
#> SRR1191667     5  0.0146      1.000 0.004  0  0  0 0.996 0.000
#> SRR1191673     5  0.0146      1.000 0.004  0  0  0 0.996 0.000
#> SRR1191672     5  0.0146      1.000 0.004  0  0  0 0.996 0.000
#> SRR1191695     3  0.0000      1.000 0.000  0  1  0 0.000 0.000
#> SRR1191694     3  0.0000      1.000 0.000  0  1  0 0.000 0.000
#> SRR1191783     3  0.0000      1.000 0.000  0  1  0 0.000 0.000
#> SRR1191876     3  0.0000      1.000 0.000  0  1  0 0.000 0.000
#> SRR1191914     1  0.1812      0.888 0.912  0  0  0 0.080 0.008
#> SRR1191915     1  0.1866      0.886 0.908  0  0  0 0.084 0.008
#> SRR1191953     1  0.2165      0.874 0.884  0  0  0 0.108 0.008
#> SRR1191954     1  0.2118      0.876 0.888  0  0  0 0.104 0.008
#> SRR1191990     1  0.4815      0.689 0.668  0  0  0 0.144 0.188
#> SRR1191991     1  0.4815      0.689 0.668  0  0  0 0.144 0.188
#> SRR1192016     3  0.0000      1.000 0.000  0  1  0 0.000 0.000
#> SRR1192017     3  0.0000      1.000 0.000  0  1  0 0.000 0.000
#> SRR1192073     3  0.0000      1.000 0.000  0  1  0 0.000 0.000
#> SRR1192072     3  0.0000      1.000 0.000  0  1  0 0.000 0.000
#> SRR1192167     5  0.0146      1.000 0.004  0  0  0 0.996 0.000
#> SRR1192166     5  0.0146      1.000 0.004  0  0  0 0.996 0.000
#> SRR1192321     3  0.0000      1.000 0.000  0  1  0 0.000 0.000
#> SRR1192353     1  0.2513      0.854 0.852  0  0  0 0.140 0.008
#> SRR1192354     1  0.2513      0.854 0.852  0  0  0 0.140 0.008
#> SRR1192370     1  0.4634      0.712 0.688  0  0  0 0.124 0.188
#> SRR1192371     1  0.4634      0.712 0.688  0  0  0 0.124 0.188
#> SRR1192399     1  0.4815      0.689 0.668  0  0  0 0.144 0.188
#> SRR1192398     1  0.4815      0.689 0.668  0  0  0 0.144 0.188
#> SRR1192417     4  0.0000      1.000 0.000  0  0  1 0.000 0.000
#> SRR1192418     4  0.0000      1.000 0.000  0  0  1 0.000 0.000
#> SRR1192415     4  0.0000      1.000 0.000  0  0  1 0.000 0.000
#> SRR1192416     4  0.0000      1.000 0.000  0  0  1 0.000 0.000
#> SRR1192413     4  0.0000      1.000 0.000  0  0  1 0.000 0.000
#> SRR1192414     4  0.0000      1.000 0.000  0  0  1 0.000 0.000
#> SRR1192420     4  0.0000      1.000 0.000  0  0  1 0.000 0.000
#> SRR1192419     4  0.0000      1.000 0.000  0  0  1 0.000 0.000
#> SRR1192471     1  0.0146      0.918 0.996  0  0  0 0.004 0.000
#> SRR1192470     1  0.0146      0.918 0.996  0  0  0 0.004 0.000
#> SRR1192469     1  0.0146      0.918 0.996  0  0  0 0.004 0.000
#> SRR1192468     1  0.0146      0.918 0.996  0  0  0 0.004 0.000
#> SRR1192467     1  0.0146      0.918 0.996  0  0  0 0.004 0.000
#> SRR1192466     1  0.0146      0.918 0.996  0  0  0 0.004 0.000
#> SRR1192465     1  0.0146      0.918 0.996  0  0  0 0.004 0.000
#> SRR1192500     1  0.0000      0.919 1.000  0  0  0 0.000 0.000
#> SRR1192501     1  0.0000      0.919 1.000  0  0  0 0.000 0.000
#> SRR1192502     1  0.0000      0.919 1.000  0  0  0 0.000 0.000
#> SRR1192503     1  0.0000      0.919 1.000  0  0  0 0.000 0.000
#> SRR1192496     1  0.0000      0.919 1.000  0  0  0 0.000 0.000
#> SRR1192497     1  0.0000      0.919 1.000  0  0  0 0.000 0.000
#> SRR1192499     1  0.0000      0.919 1.000  0  0  0 0.000 0.000
#> SRR1192641     2  0.0000      1.000 0.000  1  0  0 0.000 0.000
#> SRR1192640     2  0.0000      1.000 0.000  1  0  0 0.000 0.000
#> SRR1192643     2  0.0000      1.000 0.000  1  0  0 0.000 0.000
#> SRR1192642     2  0.0000      1.000 0.000  1  0  0 0.000 0.000
#> SRR1192644     2  0.0000      1.000 0.000  1  0  0 0.000 0.000
#> SRR1192645     2  0.0000      1.000 0.000  1  0  0 0.000 0.000
#> SRR1192646     2  0.0000      1.000 0.000  1  0  0 0.000 0.000
#> SRR1192647     2  0.0000      1.000 0.000  1  0  0 0.000 0.000
#> SRR1192836     6  0.2697      1.000 0.000  0  0  0 0.188 0.812
#> SRR1192838     6  0.2697      1.000 0.000  0  0  0 0.188 0.812
#> SRR1192837     6  0.2697      1.000 0.000  0  0  0 0.188 0.812
#> SRR1192839     6  0.2697      1.000 0.000  0  0  0 0.188 0.812
#> SRR1192963     2  0.0000      1.000 0.000  1  0  0 0.000 0.000
#> SRR1192966     2  0.0000      1.000 0.000  1  0  0 0.000 0.000
#> SRR1192965     2  0.0000      1.000 0.000  1  0  0 0.000 0.000
#> SRR1192964     2  0.0000      1.000 0.000  1  0  0 0.000 0.000
#> SRR1193005     1  0.0000      0.919 1.000  0  0  0 0.000 0.000
#> SRR1193006     1  0.0000      0.919 1.000  0  0  0 0.000 0.000
#> SRR1193007     1  0.0000      0.919 1.000  0  0  0 0.000 0.000
#> SRR1193008     1  0.0000      0.919 1.000  0  0  0 0.000 0.000
#> SRR1193011     1  0.0146      0.918 0.996  0  0  0 0.004 0.000
#> SRR1193012     1  0.0146      0.918 0.996  0  0  0 0.004 0.000
#> SRR1193009     1  0.0146      0.918 0.996  0  0  0 0.004 0.000
#> SRR1193010     1  0.0146      0.918 0.996  0  0  0 0.004 0.000
#> SRR1193014     1  0.1918      0.885 0.904  0  0  0 0.088 0.008
#> SRR1193015     1  0.1918      0.885 0.904  0  0  0 0.088 0.008
#> SRR1193013     1  0.1970      0.883 0.900  0  0  0 0.092 0.008
#> SRR1193018     1  0.0363      0.916 0.988  0  0  0 0.012 0.000
#> SRR1193016     1  0.0458      0.915 0.984  0  0  0 0.016 0.000
#> SRR1193017     1  0.0260      0.917 0.992  0  0  0 0.008 0.000
#> SRR1193100     1  0.1124      0.907 0.956  0  0  0 0.036 0.008
#> SRR1193101     1  0.1333      0.902 0.944  0  0  0 0.048 0.008
#> SRR1193102     1  0.1196      0.905 0.952  0  0  0 0.040 0.008
#> SRR1193104     1  0.0260      0.918 0.992  0  0  0 0.008 0.000
#> SRR1193103     1  0.0260      0.918 0.992  0  0  0 0.008 0.000
#> SRR1193105     1  0.4432      0.731 0.708  0  0  0 0.104 0.188
#> SRR1193106     1  0.4432      0.731 0.708  0  0  0 0.104 0.188
#> SRR1193198     1  0.1970      0.883 0.900  0  0  0 0.092 0.008
#> SRR1193197     1  0.1918      0.885 0.904  0  0  0 0.088 0.008
#> SRR1193199     1  0.1970      0.883 0.900  0  0  0 0.092 0.008
#> SRR1193405     1  0.0000      0.919 1.000  0  0  0 0.000 0.000
#> SRR1193404     1  0.0000      0.919 1.000  0  0  0 0.000 0.000
#> SRR1193403     1  0.0000      0.919 1.000  0  0  0 0.000 0.000
#> SRR1193522     1  0.0000      0.919 1.000  0  0  0 0.000 0.000
#> SRR1193523     1  0.0000      0.919 1.000  0  0  0 0.000 0.000
#> SRR1193524     1  0.0000      0.919 1.000  0  0  0 0.000 0.000
#> SRR1193638     1  0.4716      0.684 0.680  0  0  0 0.136 0.184
#> SRR1193639     1  0.4716      0.684 0.680  0  0  0 0.136 0.184
#> SRR1195621     1  0.4882      0.672 0.660  0  0  0 0.152 0.188
#> SRR1195619     1  0.4882      0.672 0.660  0  0  0 0.152 0.188
#> SRR1195620     1  0.4882      0.672 0.660  0  0  0 0.152 0.188

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15363 rows and 131 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.4281 0.573   0.573
#> 3 3 1.000           0.956       0.981         0.3579 0.846   0.730
#> 4 4 0.935           0.888       0.896         0.0561 1.000   1.000
#> 5 5 0.797           0.858       0.854         0.0966 0.905   0.776
#> 6 6 0.710           0.834       0.831         0.0997 0.829   0.526

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1190372     2       0          1  0  1
#> SRR1190371     2       0          1  0  1
#> SRR1190370     2       0          1  0  1
#> SRR1190368     2       0          1  0  1
#> SRR1190369     2       0          1  0  1
#> SRR1190366     2       0          1  0  1
#> SRR1190367     2       0          1  0  1
#> SRR1190365     2       0          1  0  1
#> SRR1190467     1       0          1  1  0
#> SRR1190466     1       0          1  1  0
#> SRR1190465     1       0          1  1  0
#> SRR1190464     1       0          1  1  0
#> SRR1190462     1       0          1  1  0
#> SRR1190461     1       0          1  1  0
#> SRR1190460     1       0          1  1  0
#> SRR1190509     1       0          1  1  0
#> SRR1190504     1       0          1  1  0
#> SRR1190503     1       0          1  1  0
#> SRR1190502     1       0          1  1  0
#> SRR1190508     1       0          1  1  0
#> SRR1190507     1       0          1  1  0
#> SRR1190506     1       0          1  1  0
#> SRR1190505     1       0          1  1  0
#> SRR1191342     2       0          1  0  1
#> SRR1191344     2       0          1  0  1
#> SRR1191343     2       0          1  0  1
#> SRR1191349     2       0          1  0  1
#> SRR1191345     2       0          1  0  1
#> SRR1191346     2       0          1  0  1
#> SRR1191347     2       0          1  0  1
#> SRR1191348     2       0          1  0  1
#> SRR1191668     1       0          1  1  0
#> SRR1191667     1       0          1  1  0
#> SRR1191673     1       0          1  1  0
#> SRR1191672     1       0          1  1  0
#> SRR1191695     1       0          1  1  0
#> SRR1191694     1       0          1  1  0
#> SRR1191783     1       0          1  1  0
#> SRR1191876     1       0          1  1  0
#> SRR1191914     1       0          1  1  0
#> SRR1191915     1       0          1  1  0
#> SRR1191953     1       0          1  1  0
#> SRR1191954     1       0          1  1  0
#> SRR1191990     1       0          1  1  0
#> SRR1191991     1       0          1  1  0
#> SRR1192016     1       0          1  1  0
#> SRR1192017     1       0          1  1  0
#> SRR1192073     1       0          1  1  0
#> SRR1192072     1       0          1  1  0
#> SRR1192167     1       0          1  1  0
#> SRR1192166     1       0          1  1  0
#> SRR1192321     1       0          1  1  0
#> SRR1192353     1       0          1  1  0
#> SRR1192354     1       0          1  1  0
#> SRR1192370     1       0          1  1  0
#> SRR1192371     1       0          1  1  0
#> SRR1192399     1       0          1  1  0
#> SRR1192398     1       0          1  1  0
#> SRR1192417     2       0          1  0  1
#> SRR1192418     2       0          1  0  1
#> SRR1192415     2       0          1  0  1
#> SRR1192416     2       0          1  0  1
#> SRR1192413     2       0          1  0  1
#> SRR1192414     2       0          1  0  1
#> SRR1192420     2       0          1  0  1
#> SRR1192419     2       0          1  0  1
#> SRR1192471     1       0          1  1  0
#> SRR1192470     1       0          1  1  0
#> SRR1192469     1       0          1  1  0
#> SRR1192468     1       0          1  1  0
#> SRR1192467     1       0          1  1  0
#> SRR1192466     1       0          1  1  0
#> SRR1192465     1       0          1  1  0
#> SRR1192500     1       0          1  1  0
#> SRR1192501     1       0          1  1  0
#> SRR1192502     1       0          1  1  0
#> SRR1192503     1       0          1  1  0
#> SRR1192496     1       0          1  1  0
#> SRR1192497     1       0          1  1  0
#> SRR1192499     1       0          1  1  0
#> SRR1192641     2       0          1  0  1
#> SRR1192640     2       0          1  0  1
#> SRR1192643     2       0          1  0  1
#> SRR1192642     2       0          1  0  1
#> SRR1192644     2       0          1  0  1
#> SRR1192645     2       0          1  0  1
#> SRR1192646     2       0          1  0  1
#> SRR1192647     2       0          1  0  1
#> SRR1192836     2       0          1  0  1
#> SRR1192838     2       0          1  0  1
#> SRR1192837     2       0          1  0  1
#> SRR1192839     2       0          1  0  1
#> SRR1192963     2       0          1  0  1
#> SRR1192966     2       0          1  0  1
#> SRR1192965     2       0          1  0  1
#> SRR1192964     2       0          1  0  1
#> SRR1193005     1       0          1  1  0
#> SRR1193006     1       0          1  1  0
#> SRR1193007     1       0          1  1  0
#> SRR1193008     1       0          1  1  0
#> SRR1193011     1       0          1  1  0
#> SRR1193012     1       0          1  1  0
#> SRR1193009     1       0          1  1  0
#> SRR1193010     1       0          1  1  0
#> SRR1193014     1       0          1  1  0
#> SRR1193015     1       0          1  1  0
#> SRR1193013     1       0          1  1  0
#> SRR1193018     1       0          1  1  0
#> SRR1193016     1       0          1  1  0
#> SRR1193017     1       0          1  1  0
#> SRR1193100     1       0          1  1  0
#> SRR1193101     1       0          1  1  0
#> SRR1193102     1       0          1  1  0
#> SRR1193104     1       0          1  1  0
#> SRR1193103     1       0          1  1  0
#> SRR1193105     1       0          1  1  0
#> SRR1193106     1       0          1  1  0
#> SRR1193198     1       0          1  1  0
#> SRR1193197     1       0          1  1  0
#> SRR1193199     1       0          1  1  0
#> SRR1193405     1       0          1  1  0
#> SRR1193404     1       0          1  1  0
#> SRR1193403     1       0          1  1  0
#> SRR1193522     1       0          1  1  0
#> SRR1193523     1       0          1  1  0
#> SRR1193524     1       0          1  1  0
#> SRR1193638     1       0          1  1  0
#> SRR1193639     1       0          1  1  0
#> SRR1195621     1       0          1  1  0
#> SRR1195619     1       0          1  1  0
#> SRR1195620     1       0          1  1  0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1 p2    p3
#> SRR1190372     2  0.0000      1.000 0.000  1 0.000
#> SRR1190371     2  0.0000      1.000 0.000  1 0.000
#> SRR1190370     2  0.0000      1.000 0.000  1 0.000
#> SRR1190368     2  0.0000      1.000 0.000  1 0.000
#> SRR1190369     2  0.0000      1.000 0.000  1 0.000
#> SRR1190366     2  0.0000      1.000 0.000  1 0.000
#> SRR1190367     2  0.0000      1.000 0.000  1 0.000
#> SRR1190365     2  0.0000      1.000 0.000  1 0.000
#> SRR1190467     3  0.0892      0.939 0.020  0 0.980
#> SRR1190466     3  0.0892      0.939 0.020  0 0.980
#> SRR1190465     3  0.0892      0.939 0.020  0 0.980
#> SRR1190464     3  0.0892      0.939 0.020  0 0.980
#> SRR1190462     3  0.0892      0.939 0.020  0 0.980
#> SRR1190461     3  0.0892      0.939 0.020  0 0.980
#> SRR1190460     3  0.0892      0.939 0.020  0 0.980
#> SRR1190509     1  0.0237      0.979 0.996  0 0.004
#> SRR1190504     1  0.0237      0.979 0.996  0 0.004
#> SRR1190503     1  0.0237      0.979 0.996  0 0.004
#> SRR1190502     1  0.0237      0.979 0.996  0 0.004
#> SRR1190508     1  0.0237      0.979 0.996  0 0.004
#> SRR1190507     1  0.0237      0.979 0.996  0 0.004
#> SRR1190506     1  0.0237      0.979 0.996  0 0.004
#> SRR1190505     1  0.0237      0.979 0.996  0 0.004
#> SRR1191342     2  0.0000      1.000 0.000  1 0.000
#> SRR1191344     2  0.0000      1.000 0.000  1 0.000
#> SRR1191343     2  0.0000      1.000 0.000  1 0.000
#> SRR1191349     2  0.0000      1.000 0.000  1 0.000
#> SRR1191345     2  0.0000      1.000 0.000  1 0.000
#> SRR1191346     2  0.0000      1.000 0.000  1 0.000
#> SRR1191347     2  0.0000      1.000 0.000  1 0.000
#> SRR1191348     2  0.0000      1.000 0.000  1 0.000
#> SRR1191668     1  0.5327      0.602 0.728  0 0.272
#> SRR1191667     1  0.5058      0.655 0.756  0 0.244
#> SRR1191673     3  0.6204      0.300 0.424  0 0.576
#> SRR1191672     3  0.6235      0.264 0.436  0 0.564
#> SRR1191695     3  0.0892      0.939 0.020  0 0.980
#> SRR1191694     3  0.0892      0.939 0.020  0 0.980
#> SRR1191783     3  0.0892      0.939 0.020  0 0.980
#> SRR1191876     3  0.0892      0.939 0.020  0 0.980
#> SRR1191914     1  0.0237      0.979 0.996  0 0.004
#> SRR1191915     1  0.0237      0.979 0.996  0 0.004
#> SRR1191953     1  0.0237      0.979 0.996  0 0.004
#> SRR1191954     1  0.0237      0.979 0.996  0 0.004
#> SRR1191990     1  0.0000      0.980 1.000  0 0.000
#> SRR1191991     1  0.0000      0.980 1.000  0 0.000
#> SRR1192016     3  0.0892      0.939 0.020  0 0.980
#> SRR1192017     3  0.0892      0.939 0.020  0 0.980
#> SRR1192073     3  0.0892      0.939 0.020  0 0.980
#> SRR1192072     3  0.0892      0.939 0.020  0 0.980
#> SRR1192167     1  0.5785      0.471 0.668  0 0.332
#> SRR1192166     1  0.6026      0.355 0.624  0 0.376
#> SRR1192321     3  0.0892      0.939 0.020  0 0.980
#> SRR1192353     1  0.0000      0.980 1.000  0 0.000
#> SRR1192354     1  0.0000      0.980 1.000  0 0.000
#> SRR1192370     1  0.0000      0.980 1.000  0 0.000
#> SRR1192371     1  0.0000      0.980 1.000  0 0.000
#> SRR1192399     1  0.0000      0.980 1.000  0 0.000
#> SRR1192398     1  0.0000      0.980 1.000  0 0.000
#> SRR1192417     2  0.0000      1.000 0.000  1 0.000
#> SRR1192418     2  0.0000      1.000 0.000  1 0.000
#> SRR1192415     2  0.0000      1.000 0.000  1 0.000
#> SRR1192416     2  0.0000      1.000 0.000  1 0.000
#> SRR1192413     2  0.0000      1.000 0.000  1 0.000
#> SRR1192414     2  0.0000      1.000 0.000  1 0.000
#> SRR1192420     2  0.0000      1.000 0.000  1 0.000
#> SRR1192419     2  0.0000      1.000 0.000  1 0.000
#> SRR1192471     1  0.0000      0.980 1.000  0 0.000
#> SRR1192470     1  0.0000      0.980 1.000  0 0.000
#> SRR1192469     1  0.0237      0.979 0.996  0 0.004
#> SRR1192468     1  0.0000      0.980 1.000  0 0.000
#> SRR1192467     1  0.0000      0.980 1.000  0 0.000
#> SRR1192466     1  0.0000      0.980 1.000  0 0.000
#> SRR1192465     1  0.0000      0.980 1.000  0 0.000
#> SRR1192500     1  0.0000      0.980 1.000  0 0.000
#> SRR1192501     1  0.0000      0.980 1.000  0 0.000
#> SRR1192502     1  0.0000      0.980 1.000  0 0.000
#> SRR1192503     1  0.0000      0.980 1.000  0 0.000
#> SRR1192496     1  0.0000      0.980 1.000  0 0.000
#> SRR1192497     1  0.0000      0.980 1.000  0 0.000
#> SRR1192499     1  0.0000      0.980 1.000  0 0.000
#> SRR1192641     2  0.0000      1.000 0.000  1 0.000
#> SRR1192640     2  0.0000      1.000 0.000  1 0.000
#> SRR1192643     2  0.0000      1.000 0.000  1 0.000
#> SRR1192642     2  0.0000      1.000 0.000  1 0.000
#> SRR1192644     2  0.0000      1.000 0.000  1 0.000
#> SRR1192645     2  0.0000      1.000 0.000  1 0.000
#> SRR1192646     2  0.0000      1.000 0.000  1 0.000
#> SRR1192647     2  0.0000      1.000 0.000  1 0.000
#> SRR1192836     2  0.0000      1.000 0.000  1 0.000
#> SRR1192838     2  0.0000      1.000 0.000  1 0.000
#> SRR1192837     2  0.0000      1.000 0.000  1 0.000
#> SRR1192839     2  0.0000      1.000 0.000  1 0.000
#> SRR1192963     2  0.0000      1.000 0.000  1 0.000
#> SRR1192966     2  0.0000      1.000 0.000  1 0.000
#> SRR1192965     2  0.0000      1.000 0.000  1 0.000
#> SRR1192964     2  0.0000      1.000 0.000  1 0.000
#> SRR1193005     1  0.0000      0.980 1.000  0 0.000
#> SRR1193006     1  0.0000      0.980 1.000  0 0.000
#> SRR1193007     1  0.0000      0.980 1.000  0 0.000
#> SRR1193008     1  0.0000      0.980 1.000  0 0.000
#> SRR1193011     1  0.0000      0.980 1.000  0 0.000
#> SRR1193012     1  0.0000      0.980 1.000  0 0.000
#> SRR1193009     1  0.0000      0.980 1.000  0 0.000
#> SRR1193010     1  0.0000      0.980 1.000  0 0.000
#> SRR1193014     1  0.0000      0.980 1.000  0 0.000
#> SRR1193015     1  0.0000      0.980 1.000  0 0.000
#> SRR1193013     1  0.0000      0.980 1.000  0 0.000
#> SRR1193018     1  0.0237      0.979 0.996  0 0.004
#> SRR1193016     1  0.0237      0.979 0.996  0 0.004
#> SRR1193017     1  0.0237      0.979 0.996  0 0.004
#> SRR1193100     1  0.0237      0.979 0.996  0 0.004
#> SRR1193101     1  0.0237      0.979 0.996  0 0.004
#> SRR1193102     1  0.0237      0.979 0.996  0 0.004
#> SRR1193104     1  0.0237      0.979 0.996  0 0.004
#> SRR1193103     1  0.0237      0.979 0.996  0 0.004
#> SRR1193105     1  0.0000      0.980 1.000  0 0.000
#> SRR1193106     1  0.0000      0.980 1.000  0 0.000
#> SRR1193198     1  0.0000      0.980 1.000  0 0.000
#> SRR1193197     1  0.0000      0.980 1.000  0 0.000
#> SRR1193199     1  0.0000      0.980 1.000  0 0.000
#> SRR1193405     1  0.0237      0.979 0.996  0 0.004
#> SRR1193404     1  0.0237      0.979 0.996  0 0.004
#> SRR1193403     1  0.0237      0.979 0.996  0 0.004
#> SRR1193522     1  0.0237      0.979 0.996  0 0.004
#> SRR1193523     1  0.0237      0.979 0.996  0 0.004
#> SRR1193524     1  0.0237      0.979 0.996  0 0.004
#> SRR1193638     1  0.0000      0.980 1.000  0 0.000
#> SRR1193639     1  0.0000      0.980 1.000  0 0.000
#> SRR1195621     1  0.0237      0.979 0.996  0 0.004
#> SRR1195619     1  0.0237      0.979 0.996  0 0.004
#> SRR1195620     1  0.0237      0.979 0.996  0 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3 p4
#> SRR1190372     2  0.4564     0.8493 0.000 0.672 0.000 NA
#> SRR1190371     2  0.4564     0.8493 0.000 0.672 0.000 NA
#> SRR1190370     2  0.4564     0.8493 0.000 0.672 0.000 NA
#> SRR1190368     2  0.4564     0.8493 0.000 0.672 0.000 NA
#> SRR1190369     2  0.4564     0.8493 0.000 0.672 0.000 NA
#> SRR1190366     2  0.4564     0.8493 0.000 0.672 0.000 NA
#> SRR1190367     2  0.4564     0.8493 0.000 0.672 0.000 NA
#> SRR1190365     2  0.4564     0.8493 0.000 0.672 0.000 NA
#> SRR1190467     3  0.0000     0.9425 0.000 0.000 1.000 NA
#> SRR1190466     3  0.0000     0.9425 0.000 0.000 1.000 NA
#> SRR1190465     3  0.0000     0.9425 0.000 0.000 1.000 NA
#> SRR1190464     3  0.0000     0.9425 0.000 0.000 1.000 NA
#> SRR1190462     3  0.0000     0.9425 0.000 0.000 1.000 NA
#> SRR1190461     3  0.0000     0.9425 0.000 0.000 1.000 NA
#> SRR1190460     3  0.0000     0.9425 0.000 0.000 1.000 NA
#> SRR1190509     1  0.0000     0.9562 1.000 0.000 0.000 NA
#> SRR1190504     1  0.0000     0.9562 1.000 0.000 0.000 NA
#> SRR1190503     1  0.0000     0.9562 1.000 0.000 0.000 NA
#> SRR1190502     1  0.0000     0.9562 1.000 0.000 0.000 NA
#> SRR1190508     1  0.0000     0.9562 1.000 0.000 0.000 NA
#> SRR1190507     1  0.0000     0.9562 1.000 0.000 0.000 NA
#> SRR1190506     1  0.0000     0.9562 1.000 0.000 0.000 NA
#> SRR1190505     1  0.0000     0.9562 1.000 0.000 0.000 NA
#> SRR1191342     2  0.0000     0.8405 0.000 1.000 0.000 NA
#> SRR1191344     2  0.0000     0.8405 0.000 1.000 0.000 NA
#> SRR1191343     2  0.0000     0.8405 0.000 1.000 0.000 NA
#> SRR1191349     2  0.0000     0.8405 0.000 1.000 0.000 NA
#> SRR1191345     2  0.0000     0.8405 0.000 1.000 0.000 NA
#> SRR1191346     2  0.0000     0.8405 0.000 1.000 0.000 NA
#> SRR1191347     2  0.0000     0.8405 0.000 1.000 0.000 NA
#> SRR1191348     2  0.0000     0.8405 0.000 1.000 0.000 NA
#> SRR1191668     1  0.5404     0.4659 0.644 0.000 0.328 NA
#> SRR1191667     1  0.5184     0.5244 0.672 0.000 0.304 NA
#> SRR1191673     3  0.5736     0.4632 0.328 0.000 0.628 NA
#> SRR1191672     3  0.5884     0.4553 0.328 0.000 0.620 NA
#> SRR1191695     3  0.0188     0.9414 0.000 0.000 0.996 NA
#> SRR1191694     3  0.0188     0.9414 0.000 0.000 0.996 NA
#> SRR1191783     3  0.0188     0.9414 0.000 0.000 0.996 NA
#> SRR1191876     3  0.0188     0.9414 0.000 0.000 0.996 NA
#> SRR1191914     1  0.0188     0.9555 0.996 0.000 0.000 NA
#> SRR1191915     1  0.0188     0.9555 0.996 0.000 0.000 NA
#> SRR1191953     1  0.0188     0.9555 0.996 0.000 0.000 NA
#> SRR1191954     1  0.0188     0.9555 0.996 0.000 0.000 NA
#> SRR1191990     1  0.2011     0.9092 0.920 0.000 0.000 NA
#> SRR1191991     1  0.2011     0.9092 0.920 0.000 0.000 NA
#> SRR1192016     3  0.0000     0.9425 0.000 0.000 1.000 NA
#> SRR1192017     3  0.0000     0.9425 0.000 0.000 1.000 NA
#> SRR1192073     3  0.0000     0.9425 0.000 0.000 1.000 NA
#> SRR1192072     3  0.0000     0.9425 0.000 0.000 1.000 NA
#> SRR1192167     1  0.6120     0.1399 0.520 0.000 0.432 NA
#> SRR1192166     1  0.6147     0.0139 0.488 0.000 0.464 NA
#> SRR1192321     3  0.0000     0.9425 0.000 0.000 1.000 NA
#> SRR1192353     1  0.1474     0.9305 0.948 0.000 0.000 NA
#> SRR1192354     1  0.1557     0.9277 0.944 0.000 0.000 NA
#> SRR1192370     1  0.0188     0.9554 0.996 0.000 0.000 NA
#> SRR1192371     1  0.0188     0.9554 0.996 0.000 0.000 NA
#> SRR1192399     1  0.1637     0.9248 0.940 0.000 0.000 NA
#> SRR1192398     1  0.1637     0.9248 0.940 0.000 0.000 NA
#> SRR1192417     2  0.0000     0.8405 0.000 1.000 0.000 NA
#> SRR1192418     2  0.0000     0.8405 0.000 1.000 0.000 NA
#> SRR1192415     2  0.0000     0.8405 0.000 1.000 0.000 NA
#> SRR1192416     2  0.0000     0.8405 0.000 1.000 0.000 NA
#> SRR1192413     2  0.0000     0.8405 0.000 1.000 0.000 NA
#> SRR1192414     2  0.0000     0.8405 0.000 1.000 0.000 NA
#> SRR1192420     2  0.0000     0.8405 0.000 1.000 0.000 NA
#> SRR1192419     2  0.0000     0.8405 0.000 1.000 0.000 NA
#> SRR1192471     1  0.0707     0.9546 0.980 0.000 0.000 NA
#> SRR1192470     1  0.0707     0.9546 0.980 0.000 0.000 NA
#> SRR1192469     1  0.0707     0.9546 0.980 0.000 0.000 NA
#> SRR1192468     1  0.0707     0.9546 0.980 0.000 0.000 NA
#> SRR1192467     1  0.0707     0.9546 0.980 0.000 0.000 NA
#> SRR1192466     1  0.0707     0.9546 0.980 0.000 0.000 NA
#> SRR1192465     1  0.0707     0.9546 0.980 0.000 0.000 NA
#> SRR1192500     1  0.0000     0.9562 1.000 0.000 0.000 NA
#> SRR1192501     1  0.0000     0.9562 1.000 0.000 0.000 NA
#> SRR1192502     1  0.0000     0.9562 1.000 0.000 0.000 NA
#> SRR1192503     1  0.0000     0.9562 1.000 0.000 0.000 NA
#> SRR1192496     1  0.0000     0.9562 1.000 0.000 0.000 NA
#> SRR1192497     1  0.0000     0.9562 1.000 0.000 0.000 NA
#> SRR1192499     1  0.0000     0.9562 1.000 0.000 0.000 NA
#> SRR1192641     2  0.4564     0.8493 0.000 0.672 0.000 NA
#> SRR1192640     2  0.4564     0.8493 0.000 0.672 0.000 NA
#> SRR1192643     2  0.4564     0.8493 0.000 0.672 0.000 NA
#> SRR1192642     2  0.4564     0.8493 0.000 0.672 0.000 NA
#> SRR1192644     2  0.4564     0.8493 0.000 0.672 0.000 NA
#> SRR1192645     2  0.4564     0.8493 0.000 0.672 0.000 NA
#> SRR1192646     2  0.4564     0.8493 0.000 0.672 0.000 NA
#> SRR1192647     2  0.4564     0.8493 0.000 0.672 0.000 NA
#> SRR1192836     2  0.2081     0.8296 0.000 0.916 0.000 NA
#> SRR1192838     2  0.2081     0.8296 0.000 0.916 0.000 NA
#> SRR1192837     2  0.2081     0.8296 0.000 0.916 0.000 NA
#> SRR1192839     2  0.2081     0.8296 0.000 0.916 0.000 NA
#> SRR1192963     2  0.4564     0.8493 0.000 0.672 0.000 NA
#> SRR1192966     2  0.4564     0.8493 0.000 0.672 0.000 NA
#> SRR1192965     2  0.4564     0.8493 0.000 0.672 0.000 NA
#> SRR1192964     2  0.4564     0.8493 0.000 0.672 0.000 NA
#> SRR1193005     1  0.0000     0.9562 1.000 0.000 0.000 NA
#> SRR1193006     1  0.0000     0.9562 1.000 0.000 0.000 NA
#> SRR1193007     1  0.0000     0.9562 1.000 0.000 0.000 NA
#> SRR1193008     1  0.0000     0.9562 1.000 0.000 0.000 NA
#> SRR1193011     1  0.0336     0.9561 0.992 0.000 0.000 NA
#> SRR1193012     1  0.0336     0.9561 0.992 0.000 0.000 NA
#> SRR1193009     1  0.0592     0.9552 0.984 0.000 0.000 NA
#> SRR1193010     1  0.0336     0.9561 0.992 0.000 0.000 NA
#> SRR1193014     1  0.0469     0.9529 0.988 0.000 0.000 NA
#> SRR1193015     1  0.0469     0.9529 0.988 0.000 0.000 NA
#> SRR1193013     1  0.0469     0.9529 0.988 0.000 0.000 NA
#> SRR1193018     1  0.1557     0.9409 0.944 0.000 0.000 NA
#> SRR1193016     1  0.1557     0.9409 0.944 0.000 0.000 NA
#> SRR1193017     1  0.1557     0.9409 0.944 0.000 0.000 NA
#> SRR1193100     1  0.1118     0.9497 0.964 0.000 0.000 NA
#> SRR1193101     1  0.1211     0.9481 0.960 0.000 0.000 NA
#> SRR1193102     1  0.1211     0.9481 0.960 0.000 0.000 NA
#> SRR1193104     1  0.1474     0.9429 0.948 0.000 0.000 NA
#> SRR1193103     1  0.1474     0.9429 0.948 0.000 0.000 NA
#> SRR1193105     1  0.0707     0.9546 0.980 0.000 0.000 NA
#> SRR1193106     1  0.0707     0.9546 0.980 0.000 0.000 NA
#> SRR1193198     1  0.1211     0.9384 0.960 0.000 0.000 NA
#> SRR1193197     1  0.1211     0.9384 0.960 0.000 0.000 NA
#> SRR1193199     1  0.1211     0.9384 0.960 0.000 0.000 NA
#> SRR1193405     1  0.1211     0.9481 0.960 0.000 0.000 NA
#> SRR1193404     1  0.1211     0.9481 0.960 0.000 0.000 NA
#> SRR1193403     1  0.1211     0.9481 0.960 0.000 0.000 NA
#> SRR1193522     1  0.0469     0.9558 0.988 0.000 0.000 NA
#> SRR1193523     1  0.0592     0.9552 0.984 0.000 0.000 NA
#> SRR1193524     1  0.0707     0.9546 0.980 0.000 0.000 NA
#> SRR1193638     1  0.1474     0.9429 0.948 0.000 0.000 NA
#> SRR1193639     1  0.1474     0.9429 0.948 0.000 0.000 NA
#> SRR1195621     1  0.1637     0.9387 0.940 0.000 0.000 NA
#> SRR1195619     1  0.1557     0.9411 0.944 0.000 0.000 NA
#> SRR1195620     1  0.1557     0.9411 0.944 0.000 0.000 NA

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1190372     2  0.4101      0.993 0.000 0.664 0.000 0.332 0.004
#> SRR1190371     2  0.4101      0.993 0.000 0.664 0.000 0.332 0.004
#> SRR1190370     2  0.4101      0.993 0.000 0.664 0.000 0.332 0.004
#> SRR1190368     2  0.4101      0.993 0.000 0.664 0.000 0.332 0.004
#> SRR1190369     2  0.4101      0.993 0.000 0.664 0.000 0.332 0.004
#> SRR1190366     2  0.4101      0.993 0.000 0.664 0.000 0.332 0.004
#> SRR1190367     2  0.4101      0.993 0.000 0.664 0.000 0.332 0.004
#> SRR1190365     2  0.4101      0.993 0.000 0.664 0.000 0.332 0.004
#> SRR1190467     3  0.0000      0.768 0.000 0.000 1.000 0.000 0.000
#> SRR1190466     3  0.0000      0.768 0.000 0.000 1.000 0.000 0.000
#> SRR1190465     3  0.0000      0.768 0.000 0.000 1.000 0.000 0.000
#> SRR1190464     3  0.0000      0.768 0.000 0.000 1.000 0.000 0.000
#> SRR1190462     3  0.0162      0.767 0.000 0.000 0.996 0.000 0.004
#> SRR1190461     3  0.0000      0.768 0.000 0.000 1.000 0.000 0.000
#> SRR1190460     3  0.0000      0.768 0.000 0.000 1.000 0.000 0.000
#> SRR1190509     1  0.3366      0.802 0.768 0.000 0.000 0.000 0.232
#> SRR1190504     1  0.3210      0.813 0.788 0.000 0.000 0.000 0.212
#> SRR1190503     1  0.3305      0.806 0.776 0.000 0.000 0.000 0.224
#> SRR1190502     1  0.3039      0.822 0.808 0.000 0.000 0.000 0.192
#> SRR1190508     1  0.3424      0.797 0.760 0.000 0.000 0.000 0.240
#> SRR1190507     1  0.3305      0.806 0.776 0.000 0.000 0.000 0.224
#> SRR1190506     1  0.3336      0.804 0.772 0.000 0.000 0.000 0.228
#> SRR1190505     1  0.3210      0.813 0.788 0.000 0.000 0.000 0.212
#> SRR1191342     4  0.0000      0.992 0.000 0.000 0.000 1.000 0.000
#> SRR1191344     4  0.0000      0.992 0.000 0.000 0.000 1.000 0.000
#> SRR1191343     4  0.0000      0.992 0.000 0.000 0.000 1.000 0.000
#> SRR1191349     4  0.0000      0.992 0.000 0.000 0.000 1.000 0.000
#> SRR1191345     4  0.0000      0.992 0.000 0.000 0.000 1.000 0.000
#> SRR1191346     4  0.0000      0.992 0.000 0.000 0.000 1.000 0.000
#> SRR1191347     4  0.0000      0.992 0.000 0.000 0.000 1.000 0.000
#> SRR1191348     4  0.0000      0.992 0.000 0.000 0.000 1.000 0.000
#> SRR1191668     3  0.7039      0.168 0.332 0.008 0.364 0.000 0.296
#> SRR1191667     3  0.7043      0.126 0.344 0.008 0.352 0.000 0.296
#> SRR1191673     3  0.6328      0.438 0.164 0.008 0.552 0.000 0.276
#> SRR1191672     3  0.6358      0.435 0.168 0.008 0.548 0.000 0.276
#> SRR1191695     3  0.0451      0.764 0.000 0.004 0.988 0.000 0.008
#> SRR1191694     3  0.0579      0.763 0.000 0.008 0.984 0.000 0.008
#> SRR1191783     3  0.0693      0.760 0.000 0.012 0.980 0.000 0.008
#> SRR1191876     3  0.0162      0.766 0.000 0.000 0.996 0.000 0.004
#> SRR1191914     1  0.3684      0.768 0.720 0.000 0.000 0.000 0.280
#> SRR1191915     1  0.3684      0.768 0.720 0.000 0.000 0.000 0.280
#> SRR1191953     1  0.3636      0.774 0.728 0.000 0.000 0.000 0.272
#> SRR1191954     1  0.3636      0.774 0.728 0.000 0.000 0.000 0.272
#> SRR1191990     1  0.4122      0.748 0.688 0.004 0.004 0.000 0.304
#> SRR1191991     1  0.4122      0.748 0.688 0.004 0.004 0.000 0.304
#> SRR1192016     3  0.0162      0.766 0.000 0.000 0.996 0.000 0.004
#> SRR1192017     3  0.0162      0.766 0.000 0.000 0.996 0.000 0.004
#> SRR1192073     3  0.0162      0.767 0.000 0.000 0.996 0.000 0.004
#> SRR1192072     3  0.0162      0.767 0.000 0.000 0.996 0.000 0.004
#> SRR1192167     3  0.6919      0.347 0.268 0.008 0.432 0.000 0.292
#> SRR1192166     3  0.6852      0.364 0.248 0.008 0.452 0.000 0.292
#> SRR1192321     3  0.0162      0.767 0.000 0.000 0.996 0.000 0.004
#> SRR1192353     1  0.3906      0.762 0.704 0.004 0.000 0.000 0.292
#> SRR1192354     1  0.3906      0.762 0.704 0.004 0.000 0.000 0.292
#> SRR1192370     1  0.1012      0.887 0.968 0.012 0.000 0.000 0.020
#> SRR1192371     1  0.0912      0.887 0.972 0.012 0.000 0.000 0.016
#> SRR1192399     1  0.4067      0.752 0.692 0.008 0.000 0.000 0.300
#> SRR1192398     1  0.4067      0.752 0.692 0.008 0.000 0.000 0.300
#> SRR1192417     4  0.0290      0.991 0.000 0.008 0.000 0.992 0.000
#> SRR1192418     4  0.0290      0.991 0.000 0.008 0.000 0.992 0.000
#> SRR1192415     4  0.0162      0.992 0.000 0.004 0.000 0.996 0.000
#> SRR1192416     4  0.0290      0.991 0.000 0.008 0.000 0.992 0.000
#> SRR1192413     4  0.0290      0.991 0.000 0.008 0.000 0.992 0.000
#> SRR1192414     4  0.0290      0.991 0.000 0.008 0.000 0.992 0.000
#> SRR1192420     4  0.0290      0.991 0.000 0.008 0.000 0.992 0.000
#> SRR1192419     4  0.0290      0.991 0.000 0.008 0.000 0.992 0.000
#> SRR1192471     1  0.0932      0.884 0.972 0.020 0.004 0.000 0.004
#> SRR1192470     1  0.1059      0.884 0.968 0.020 0.004 0.000 0.008
#> SRR1192469     1  0.0932      0.884 0.972 0.020 0.004 0.000 0.004
#> SRR1192468     1  0.0932      0.884 0.972 0.020 0.004 0.000 0.004
#> SRR1192467     1  0.0932      0.884 0.972 0.020 0.004 0.000 0.004
#> SRR1192466     1  0.0932      0.884 0.972 0.020 0.004 0.000 0.004
#> SRR1192465     1  0.1059      0.884 0.968 0.020 0.004 0.000 0.008
#> SRR1192500     1  0.1121      0.881 0.956 0.000 0.000 0.000 0.044
#> SRR1192501     1  0.1043      0.882 0.960 0.000 0.000 0.000 0.040
#> SRR1192502     1  0.0880      0.883 0.968 0.000 0.000 0.000 0.032
#> SRR1192503     1  0.1121      0.881 0.956 0.000 0.000 0.000 0.044
#> SRR1192496     1  0.0290      0.886 0.992 0.000 0.000 0.000 0.008
#> SRR1192497     1  0.0794      0.884 0.972 0.000 0.000 0.000 0.028
#> SRR1192499     1  0.1544      0.873 0.932 0.000 0.000 0.000 0.068
#> SRR1192641     2  0.3966      0.995 0.000 0.664 0.000 0.336 0.000
#> SRR1192640     2  0.3966      0.995 0.000 0.664 0.000 0.336 0.000
#> SRR1192643     2  0.3966      0.995 0.000 0.664 0.000 0.336 0.000
#> SRR1192642     2  0.3966      0.995 0.000 0.664 0.000 0.336 0.000
#> SRR1192644     2  0.3966      0.995 0.000 0.664 0.000 0.336 0.000
#> SRR1192645     2  0.3966      0.995 0.000 0.664 0.000 0.336 0.000
#> SRR1192646     2  0.3966      0.995 0.000 0.664 0.000 0.336 0.000
#> SRR1192647     2  0.3966      0.995 0.000 0.664 0.000 0.336 0.000
#> SRR1192836     5  0.5626      1.000 0.000 0.092 0.000 0.336 0.572
#> SRR1192838     5  0.5626      1.000 0.000 0.092 0.000 0.336 0.572
#> SRR1192837     5  0.5626      1.000 0.000 0.092 0.000 0.336 0.572
#> SRR1192839     5  0.5626      1.000 0.000 0.092 0.000 0.336 0.572
#> SRR1192963     2  0.3966      0.995 0.000 0.664 0.000 0.336 0.000
#> SRR1192966     2  0.3966      0.995 0.000 0.664 0.000 0.336 0.000
#> SRR1192965     2  0.3966      0.995 0.000 0.664 0.000 0.336 0.000
#> SRR1192964     2  0.3966      0.995 0.000 0.664 0.000 0.336 0.000
#> SRR1193005     1  0.0324      0.886 0.992 0.004 0.000 0.000 0.004
#> SRR1193006     1  0.0324      0.886 0.992 0.004 0.000 0.000 0.004
#> SRR1193007     1  0.0324      0.886 0.992 0.004 0.000 0.000 0.004
#> SRR1193008     1  0.0324      0.886 0.992 0.004 0.000 0.000 0.004
#> SRR1193011     1  0.1074      0.884 0.968 0.016 0.004 0.000 0.012
#> SRR1193012     1  0.1074      0.884 0.968 0.016 0.004 0.000 0.012
#> SRR1193009     1  0.1074      0.884 0.968 0.016 0.004 0.000 0.012
#> SRR1193010     1  0.1074      0.884 0.968 0.016 0.004 0.000 0.012
#> SRR1193014     1  0.3707      0.765 0.716 0.000 0.000 0.000 0.284
#> SRR1193015     1  0.3707      0.765 0.716 0.000 0.000 0.000 0.284
#> SRR1193013     1  0.3707      0.765 0.716 0.000 0.000 0.000 0.284
#> SRR1193018     1  0.0854      0.884 0.976 0.012 0.004 0.000 0.008
#> SRR1193016     1  0.0854      0.884 0.976 0.012 0.004 0.000 0.008
#> SRR1193017     1  0.0854      0.884 0.976 0.012 0.004 0.000 0.008
#> SRR1193100     1  0.0740      0.885 0.980 0.008 0.004 0.000 0.008
#> SRR1193101     1  0.0740      0.885 0.980 0.008 0.004 0.000 0.008
#> SRR1193102     1  0.0740      0.885 0.980 0.008 0.004 0.000 0.008
#> SRR1193104     1  0.0960      0.884 0.972 0.016 0.004 0.000 0.008
#> SRR1193103     1  0.0960      0.884 0.972 0.016 0.004 0.000 0.008
#> SRR1193105     1  0.0932      0.884 0.972 0.020 0.004 0.000 0.004
#> SRR1193106     1  0.0932      0.884 0.972 0.020 0.004 0.000 0.004
#> SRR1193198     1  0.3730      0.762 0.712 0.000 0.000 0.000 0.288
#> SRR1193197     1  0.3730      0.762 0.712 0.000 0.000 0.000 0.288
#> SRR1193199     1  0.3730      0.762 0.712 0.000 0.000 0.000 0.288
#> SRR1193405     1  0.0727      0.886 0.980 0.004 0.004 0.000 0.012
#> SRR1193404     1  0.0727      0.886 0.980 0.004 0.004 0.000 0.012
#> SRR1193403     1  0.0613      0.885 0.984 0.004 0.004 0.000 0.008
#> SRR1193522     1  0.0703      0.885 0.976 0.000 0.000 0.000 0.024
#> SRR1193523     1  0.0609      0.886 0.980 0.000 0.000 0.000 0.020
#> SRR1193524     1  0.0510      0.886 0.984 0.000 0.000 0.000 0.016
#> SRR1193638     1  0.0960      0.884 0.972 0.016 0.004 0.000 0.008
#> SRR1193639     1  0.0960      0.884 0.972 0.016 0.004 0.000 0.008
#> SRR1195621     1  0.0960      0.884 0.972 0.016 0.004 0.000 0.008
#> SRR1195619     1  0.0960      0.884 0.972 0.016 0.004 0.000 0.008
#> SRR1195620     1  0.0960      0.884 0.972 0.016 0.004 0.000 0.008

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1190372     2  0.3187     0.9868 0.004 0.796 0.000 0.188 0.000 0.012
#> SRR1190371     2  0.3187     0.9868 0.004 0.796 0.000 0.188 0.000 0.012
#> SRR1190370     2  0.3187     0.9868 0.004 0.796 0.000 0.188 0.000 0.012
#> SRR1190368     2  0.3187     0.9868 0.004 0.796 0.000 0.188 0.000 0.012
#> SRR1190369     2  0.3187     0.9868 0.004 0.796 0.000 0.188 0.000 0.012
#> SRR1190366     2  0.3187     0.9868 0.004 0.796 0.000 0.188 0.000 0.012
#> SRR1190367     2  0.3187     0.9868 0.004 0.796 0.000 0.188 0.000 0.012
#> SRR1190365     2  0.3187     0.9868 0.004 0.796 0.000 0.188 0.000 0.012
#> SRR1190467     3  0.0291     0.9930 0.000 0.004 0.992 0.000 0.004 0.000
#> SRR1190466     3  0.0291     0.9930 0.000 0.004 0.992 0.000 0.004 0.000
#> SRR1190465     3  0.0146     0.9925 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1190464     3  0.0551     0.9919 0.004 0.008 0.984 0.000 0.004 0.000
#> SRR1190462     3  0.0551     0.9919 0.004 0.008 0.984 0.000 0.004 0.000
#> SRR1190461     3  0.0436     0.9922 0.004 0.004 0.988 0.000 0.004 0.000
#> SRR1190460     3  0.0291     0.9930 0.000 0.004 0.992 0.000 0.004 0.000
#> SRR1190509     1  0.3595     0.8141 0.704 0.000 0.000 0.000 0.288 0.008
#> SRR1190504     1  0.3615     0.8130 0.700 0.000 0.000 0.000 0.292 0.008
#> SRR1190503     1  0.3615     0.8130 0.700 0.000 0.000 0.000 0.292 0.008
#> SRR1190502     1  0.3615     0.8130 0.700 0.000 0.000 0.000 0.292 0.008
#> SRR1190508     1  0.3615     0.8130 0.700 0.000 0.000 0.000 0.292 0.008
#> SRR1190507     1  0.3615     0.8130 0.700 0.000 0.000 0.000 0.292 0.008
#> SRR1190506     1  0.3615     0.8130 0.700 0.000 0.000 0.000 0.292 0.008
#> SRR1190505     1  0.3615     0.8130 0.700 0.000 0.000 0.000 0.292 0.008
#> SRR1191342     4  0.0260     0.9872 0.000 0.008 0.000 0.992 0.000 0.000
#> SRR1191344     4  0.0146     0.9884 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR1191343     4  0.0146     0.9884 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR1191349     4  0.0146     0.9884 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR1191345     4  0.0146     0.9884 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR1191346     4  0.0146     0.9884 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR1191347     4  0.0146     0.9884 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR1191348     4  0.0146     0.9884 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR1191668     1  0.5040     0.6637 0.684 0.000 0.140 0.000 0.156 0.020
#> SRR1191667     1  0.5005     0.6650 0.688 0.000 0.136 0.000 0.156 0.020
#> SRR1191673     1  0.5038     0.6182 0.668 0.000 0.208 0.000 0.108 0.016
#> SRR1191672     1  0.5038     0.6182 0.668 0.000 0.208 0.000 0.108 0.016
#> SRR1191695     3  0.0260     0.9871 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1191694     3  0.0146     0.9888 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR1191783     3  0.0260     0.9871 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1191876     3  0.0000     0.9898 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1191914     1  0.3707     0.8208 0.680 0.000 0.000 0.000 0.312 0.008
#> SRR1191915     1  0.3802     0.8213 0.676 0.000 0.000 0.000 0.312 0.012
#> SRR1191953     1  0.3758     0.8180 0.668 0.000 0.000 0.000 0.324 0.008
#> SRR1191954     1  0.3652     0.8177 0.672 0.000 0.000 0.000 0.324 0.004
#> SRR1191990     1  0.4165     0.7740 0.672 0.000 0.000 0.000 0.292 0.036
#> SRR1191991     1  0.4165     0.7740 0.672 0.000 0.000 0.000 0.292 0.036
#> SRR1192016     3  0.0291     0.9930 0.000 0.004 0.992 0.000 0.004 0.000
#> SRR1192017     3  0.0291     0.9930 0.000 0.004 0.992 0.000 0.004 0.000
#> SRR1192073     3  0.0508     0.9921 0.000 0.012 0.984 0.000 0.004 0.000
#> SRR1192072     3  0.0508     0.9921 0.000 0.012 0.984 0.000 0.004 0.000
#> SRR1192167     1  0.4982     0.6512 0.688 0.000 0.172 0.000 0.120 0.020
#> SRR1192166     1  0.4974     0.6466 0.688 0.000 0.176 0.000 0.116 0.020
#> SRR1192321     3  0.0748     0.9885 0.004 0.016 0.976 0.000 0.004 0.000
#> SRR1192353     1  0.4078     0.7915 0.656 0.000 0.000 0.000 0.320 0.024
#> SRR1192354     1  0.4078     0.7915 0.656 0.000 0.000 0.000 0.320 0.024
#> SRR1192370     5  0.0935     0.8117 0.032 0.000 0.000 0.000 0.964 0.004
#> SRR1192371     5  0.0935     0.8117 0.032 0.000 0.000 0.000 0.964 0.004
#> SRR1192399     1  0.4109     0.7883 0.648 0.000 0.000 0.000 0.328 0.024
#> SRR1192398     1  0.4109     0.7883 0.648 0.000 0.000 0.000 0.328 0.024
#> SRR1192417     4  0.0508     0.9877 0.000 0.004 0.000 0.984 0.000 0.012
#> SRR1192418     4  0.0603     0.9852 0.000 0.004 0.000 0.980 0.000 0.016
#> SRR1192415     4  0.0405     0.9884 0.000 0.004 0.000 0.988 0.000 0.008
#> SRR1192416     4  0.0508     0.9877 0.000 0.004 0.000 0.984 0.000 0.012
#> SRR1192413     4  0.0508     0.9877 0.000 0.004 0.000 0.984 0.000 0.012
#> SRR1192414     4  0.0603     0.9852 0.000 0.004 0.000 0.980 0.000 0.016
#> SRR1192420     4  0.0603     0.9852 0.000 0.004 0.000 0.980 0.000 0.016
#> SRR1192419     4  0.0508     0.9877 0.000 0.004 0.000 0.984 0.000 0.012
#> SRR1192471     5  0.0146     0.8148 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1192470     5  0.0260     0.8163 0.008 0.000 0.000 0.000 0.992 0.000
#> SRR1192469     5  0.0146     0.8148 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1192468     5  0.0260     0.8163 0.008 0.000 0.000 0.000 0.992 0.000
#> SRR1192467     5  0.0146     0.8148 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1192466     5  0.0260     0.8163 0.008 0.000 0.000 0.000 0.992 0.000
#> SRR1192465     5  0.0260     0.8163 0.008 0.000 0.000 0.000 0.992 0.000
#> SRR1192500     1  0.4010     0.6342 0.584 0.000 0.000 0.000 0.408 0.008
#> SRR1192501     1  0.4002     0.6400 0.588 0.000 0.000 0.000 0.404 0.008
#> SRR1192502     1  0.4025     0.6117 0.576 0.000 0.000 0.000 0.416 0.008
#> SRR1192503     1  0.4032     0.6002 0.572 0.000 0.000 0.000 0.420 0.008
#> SRR1192496     1  0.4086     0.4742 0.528 0.000 0.000 0.000 0.464 0.008
#> SRR1192497     1  0.3984     0.6578 0.596 0.000 0.000 0.000 0.396 0.008
#> SRR1192499     1  0.3955     0.6800 0.608 0.000 0.000 0.000 0.384 0.008
#> SRR1192641     2  0.2730     0.9912 0.000 0.808 0.000 0.192 0.000 0.000
#> SRR1192640     2  0.2730     0.9912 0.000 0.808 0.000 0.192 0.000 0.000
#> SRR1192643     2  0.2730     0.9912 0.000 0.808 0.000 0.192 0.000 0.000
#> SRR1192642     2  0.2730     0.9912 0.000 0.808 0.000 0.192 0.000 0.000
#> SRR1192644     2  0.2730     0.9912 0.000 0.808 0.000 0.192 0.000 0.000
#> SRR1192645     2  0.2730     0.9912 0.000 0.808 0.000 0.192 0.000 0.000
#> SRR1192646     2  0.2730     0.9912 0.000 0.808 0.000 0.192 0.000 0.000
#> SRR1192647     2  0.2730     0.9912 0.000 0.808 0.000 0.192 0.000 0.000
#> SRR1192836     6  0.2888     1.0000 0.000 0.056 0.000 0.092 0.000 0.852
#> SRR1192838     6  0.2888     1.0000 0.000 0.056 0.000 0.092 0.000 0.852
#> SRR1192837     6  0.2888     1.0000 0.000 0.056 0.000 0.092 0.000 0.852
#> SRR1192839     6  0.2888     1.0000 0.000 0.056 0.000 0.092 0.000 0.852
#> SRR1192963     2  0.2730     0.9912 0.000 0.808 0.000 0.192 0.000 0.000
#> SRR1192966     2  0.2730     0.9912 0.000 0.808 0.000 0.192 0.000 0.000
#> SRR1192965     2  0.2730     0.9912 0.000 0.808 0.000 0.192 0.000 0.000
#> SRR1192964     2  0.2730     0.9912 0.000 0.808 0.000 0.192 0.000 0.000
#> SRR1193005     5  0.3707     0.4747 0.312 0.000 0.000 0.000 0.680 0.008
#> SRR1193006     5  0.3707     0.4633 0.312 0.000 0.000 0.000 0.680 0.008
#> SRR1193007     5  0.3672     0.4853 0.304 0.000 0.000 0.000 0.688 0.008
#> SRR1193008     5  0.3819     0.3842 0.340 0.000 0.000 0.000 0.652 0.008
#> SRR1193011     5  0.0858     0.8126 0.028 0.000 0.000 0.000 0.968 0.004
#> SRR1193012     5  0.0858     0.8126 0.028 0.000 0.000 0.000 0.968 0.004
#> SRR1193009     5  0.0777     0.8132 0.024 0.000 0.000 0.000 0.972 0.004
#> SRR1193010     5  0.0858     0.8126 0.028 0.000 0.000 0.000 0.968 0.004
#> SRR1193014     1  0.3575     0.8242 0.708 0.000 0.000 0.000 0.284 0.008
#> SRR1193015     1  0.3575     0.8246 0.708 0.000 0.000 0.000 0.284 0.008
#> SRR1193013     1  0.3595     0.8245 0.704 0.000 0.000 0.000 0.288 0.008
#> SRR1193018     5  0.2882     0.7277 0.180 0.000 0.000 0.000 0.812 0.008
#> SRR1193016     5  0.2882     0.7277 0.180 0.000 0.000 0.000 0.812 0.008
#> SRR1193017     5  0.2882     0.7277 0.180 0.000 0.000 0.000 0.812 0.008
#> SRR1193100     5  0.3012     0.7128 0.196 0.000 0.000 0.000 0.796 0.008
#> SRR1193101     5  0.2980     0.7171 0.192 0.000 0.000 0.000 0.800 0.008
#> SRR1193102     5  0.3012     0.7128 0.196 0.000 0.000 0.000 0.796 0.008
#> SRR1193104     5  0.0000     0.8153 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1193103     5  0.0000     0.8153 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1193105     5  0.0146     0.8148 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1193106     5  0.0146     0.8148 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1193198     1  0.3897     0.8198 0.696 0.000 0.000 0.000 0.280 0.024
#> SRR1193197     1  0.3917     0.8196 0.692 0.000 0.000 0.000 0.284 0.024
#> SRR1193199     1  0.3917     0.8196 0.692 0.000 0.000 0.000 0.284 0.024
#> SRR1193405     5  0.3103     0.6931 0.208 0.000 0.000 0.000 0.784 0.008
#> SRR1193404     5  0.3103     0.6931 0.208 0.000 0.000 0.000 0.784 0.008
#> SRR1193403     5  0.3103     0.6931 0.208 0.000 0.000 0.000 0.784 0.008
#> SRR1193522     5  0.4025    -0.0103 0.416 0.000 0.000 0.000 0.576 0.008
#> SRR1193523     5  0.4039    -0.0587 0.424 0.000 0.000 0.000 0.568 0.008
#> SRR1193524     5  0.3923     0.2259 0.372 0.000 0.000 0.000 0.620 0.008
#> SRR1193638     5  0.0146     0.8166 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1193639     5  0.0000     0.8153 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1195621     5  0.0547     0.8071 0.020 0.000 0.000 0.000 0.980 0.000
#> SRR1195619     5  0.0458     0.8059 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1195620     5  0.0458     0.8059 0.016 0.000 0.000 0.000 0.984 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0