cola Report for recount2:SRP041675

Date: 2019-12-26 00:10:38 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 14577 rows and 143 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 14577   143

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
SD:kmeans 2 1.000 0.995 0.989 **
SD:pam 6 1.000 0.977 0.989 ** 2,3,4,5
SD:mclust 6 1.000 1.000 1.000 ** 2,3,4,5
CV:hclust 6 1.000 0.995 0.997 ** 2,5
CV:kmeans 2 1.000 1.000 1.000 **
CV:pam 6 1.000 0.999 0.997 ** 2,5
CV:mclust 6 1.000 0.999 0.997 ** 2,5
MAD:kmeans 2 1.000 0.997 0.993 **
MAD:pam 6 1.000 0.983 0.993 ** 2,3,4
MAD:mclust 6 1.000 1.000 1.000 ** 3,4,5
ATC:kmeans 2 1.000 1.000 1.000 **
ATC:pam 6 1.000 0.999 0.999 ** 2,3,4
ATC:mclust 6 1.000 1.000 1.000 ** 3,4,5
ATC:NMF 2 1.000 1.000 1.000 **
SD:hclust 6 0.979 0.960 0.983 ** 2,3,4,5
ATC:hclust 6 0.953 0.957 0.956 ** 2,3,4,5
CV:NMF 5 0.940 0.989 0.974 * 2,3,4
CV:skmeans 6 0.927 0.942 0.911 * 2,3,5
SD:skmeans 6 0.922 0.898 0.886 * 2,4,5
MAD:hclust 6 0.922 0.971 0.953 * 2,3,4,5
ATC:skmeans 6 0.915 0.909 0.921 * 2,3,5
MAD:skmeans 6 0.912 0.914 0.921 * 2,4,5
SD:NMF 6 0.909 0.960 0.934 * 2,3,4,5
MAD:NMF 6 0.905 0.807 0.904 * 2,3,4

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 1.000           1.000       1.000          0.445 0.556   0.556
#> CV:NMF      2 1.000           1.000       1.000          0.445 0.556   0.556
#> MAD:NMF     2 1.000           0.986       0.993          0.449 0.556   0.556
#> ATC:NMF     2 1.000           1.000       1.000          0.445 0.556   0.556
#> SD:skmeans  2 1.000           1.000       1.000          0.445 0.556   0.556
#> CV:skmeans  2 1.000           1.000       1.000          0.445 0.556   0.556
#> MAD:skmeans 2 1.000           1.000       1.000          0.445 0.556   0.556
#> ATC:skmeans 2 1.000           1.000       1.000          0.445 0.556   0.556
#> SD:mclust   2 1.000           0.996       0.997          0.499 0.501   0.501
#> CV:mclust   2 1.000           0.993       0.996          0.447 0.556   0.556
#> MAD:mclust  2 0.511           0.930       0.948          0.452 0.556   0.556
#> ATC:mclust  2 0.683           0.811       0.908          0.477 0.542   0.542
#> SD:kmeans   2 1.000           0.995       0.989          0.440 0.556   0.556
#> CV:kmeans   2 1.000           1.000       1.000          0.445 0.556   0.556
#> MAD:kmeans  2 1.000           0.997       0.993          0.442 0.556   0.556
#> ATC:kmeans  2 1.000           1.000       1.000          0.445 0.556   0.556
#> SD:pam      2 1.000           1.000       1.000          0.445 0.556   0.556
#> CV:pam      2 1.000           1.000       1.000          0.445 0.556   0.556
#> MAD:pam     2 1.000           1.000       1.000          0.445 0.556   0.556
#> ATC:pam     2 1.000           1.000       1.000          0.445 0.556   0.556
#> SD:hclust   2 1.000           1.000       1.000          0.445 0.556   0.556
#> CV:hclust   2 1.000           1.000       1.000          0.445 0.556   0.556
#> MAD:hclust  2 1.000           1.000       1.000          0.445 0.556   0.556
#> ATC:hclust  2 1.000           1.000       1.000          0.445 0.556   0.556
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.918           0.936       0.967          0.501 0.775   0.594
#> CV:NMF      3 0.972           0.975       0.985          0.502 0.773   0.592
#> MAD:NMF     3 0.927           0.910       0.962          0.484 0.774   0.593
#> ATC:NMF     3 0.895           0.901       0.958          0.473 0.785   0.613
#> SD:skmeans  3 0.689           0.615       0.840          0.441 0.809   0.656
#> CV:skmeans  3 1.000           1.000       1.000          0.509 0.773   0.592
#> MAD:skmeans 3 0.814           0.950       0.961          0.350 0.862   0.751
#> ATC:skmeans 3 1.000           0.991       0.990          0.314 0.862   0.751
#> SD:mclust   3 1.000           1.000       1.000          0.345 0.729   0.508
#> CV:mclust   3 0.856           0.962       0.972          0.485 0.773   0.592
#> MAD:mclust  3 1.000           1.000       1.000          0.484 0.773   0.592
#> ATC:mclust  3 1.000           1.000       1.000          0.408 0.787   0.607
#> SD:kmeans   3 0.671           0.907       0.835          0.353 0.812   0.662
#> CV:kmeans   3 0.671           0.918       0.836          0.368 0.773   0.592
#> MAD:kmeans  3 0.671           0.917       0.872          0.351 0.812   0.662
#> ATC:kmeans  3 0.754           0.957       0.907          0.343 0.812   0.662
#> SD:pam      3 1.000           1.000       1.000          0.421 0.812   0.662
#> CV:pam      3 0.857           0.917       0.953          0.478 0.773   0.592
#> MAD:pam     3 1.000           1.000       1.000          0.421 0.812   0.662
#> ATC:pam     3 1.000           1.000       1.000          0.421 0.812   0.662
#> SD:hclust   3 1.000           1.000       1.000          0.421 0.812   0.662
#> CV:hclust   3 0.862           0.917       0.951          0.475 0.773   0.592
#> MAD:hclust  3 1.000           1.000       1.000          0.421 0.812   0.662
#> ATC:hclust  3 1.000           1.000       1.000          0.421 0.812   0.662
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 1.000           0.997       0.998         0.0802 0.842   0.588
#> CV:NMF      4 0.956           0.998       0.986         0.0718 0.950   0.849
#> MAD:NMF     4 1.000           0.995       0.995         0.0808 0.828   0.559
#> ATC:NMF     4 0.859           0.841       0.932         0.1004 0.852   0.609
#> SD:skmeans  4 1.000           0.998       0.996         0.1240 0.831   0.583
#> CV:skmeans  4 0.887           0.963       0.914         0.0773 0.950   0.849
#> MAD:skmeans 4 1.000           0.991       0.992         0.2003 0.862   0.670
#> ATC:skmeans 4 0.872           0.951       0.961         0.2096 0.879   0.709
#> SD:mclust   4 1.000           1.000       1.000         0.0739 0.950   0.849
#> CV:mclust   4 0.897           0.970       0.946         0.0870 0.950   0.849
#> MAD:mclust  4 1.000           1.000       1.000         0.0739 0.950   0.849
#> ATC:mclust  4 1.000           1.000       1.000         0.0739 0.950   0.849
#> SD:kmeans   4 0.654           0.930       0.850         0.1468 0.911   0.759
#> CV:kmeans   4 0.588           0.905       0.816         0.1373 0.950   0.849
#> MAD:kmeans  4 0.658           0.927       0.824         0.1400 0.911   0.759
#> ATC:kmeans  4 0.596           0.896       0.798         0.1360 0.911   0.759
#> SD:pam      4 1.000           0.996       0.993         0.1385 0.911   0.759
#> CV:pam      4 0.897           0.939       0.894         0.0980 0.950   0.849
#> MAD:pam     4 1.000           1.000       1.000         0.1401 0.911   0.759
#> ATC:pam     4 1.000           1.000       1.000         0.1401 0.911   0.759
#> SD:hclust   4 1.000           1.000       1.000         0.1401 0.911   0.759
#> CV:hclust   4 0.897           0.971       0.948         0.0997 0.950   0.849
#> MAD:hclust  4 1.000           1.000       1.000         0.1401 0.911   0.759
#> ATC:hclust  4 0.919           0.946       0.958         0.1468 0.911   0.759
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.952           0.814       0.911        0.04726 0.961   0.860
#> CV:NMF      5 0.940           0.989       0.974        0.07514 0.947   0.810
#> MAD:NMF     5 0.922           0.934       0.935        0.03760 1.000   1.000
#> ATC:NMF     5 0.859           0.808       0.910        0.00202 0.985   0.946
#> SD:skmeans  5 1.000           0.985       0.984        0.07376 0.946   0.808
#> CV:skmeans  5 0.915           0.942       0.944        0.07518 0.943   0.797
#> MAD:skmeans 5 1.000           0.956       0.966        0.07517 0.946   0.808
#> ATC:skmeans 5 0.925           0.967       0.958        0.08986 0.897   0.670
#> SD:mclust   5 1.000           0.979       0.991        0.07425 0.947   0.810
#> CV:mclust   5 1.000           0.999       0.999        0.07248 0.947   0.810
#> MAD:mclust  5 1.000           0.989       0.994        0.07404 0.947   0.810
#> ATC:mclust  5 1.000           1.000       1.000        0.07371 0.947   0.810
#> SD:kmeans   5 0.745           0.618       0.788        0.07588 0.983   0.939
#> CV:kmeans   5 0.794           0.835       0.807        0.08828 1.000   1.000
#> MAD:kmeans  5 0.764           0.897       0.788        0.08334 0.947   0.810
#> ATC:kmeans  5 0.763           0.819       0.804        0.10015 1.000   1.000
#> SD:pam      5 1.000           1.000       1.000        0.07514 0.947   0.810
#> CV:pam      5 1.000           0.998       0.999        0.07194 0.947   0.810
#> MAD:pam     5 0.888           0.929       0.880        0.07731 0.947   0.810
#> ATC:pam     5 0.886           0.948       0.908        0.07698 0.947   0.810
#> SD:hclust   5 0.964           0.964       0.981        0.07297 0.950   0.822
#> CV:hclust   5 0.914           0.931       0.921        0.05656 0.967   0.882
#> MAD:hclust  5 1.000           0.984       0.992        0.07200 0.946   0.808
#> ATC:hclust  5 0.953           0.957       0.956        0.06467 0.938   0.780
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.909           0.960       0.934         0.0271 0.966   0.865
#> CV:NMF      6 0.909           0.916       0.928         0.0311 1.000   1.000
#> MAD:NMF     6 0.905           0.807       0.904         0.0198 0.964   0.870
#> ATC:NMF     6 0.847           0.916       0.911         0.0359 0.927   0.766
#> SD:skmeans  6 0.922           0.898       0.886         0.0467 0.978   0.902
#> CV:skmeans  6 0.927           0.942       0.911         0.0533 0.947   0.761
#> MAD:skmeans 6 0.912           0.914       0.921         0.0405 0.978   0.902
#> ATC:skmeans 6 0.915           0.909       0.921         0.0417 0.967   0.856
#> SD:mclust   6 1.000           1.000       1.000         0.0789 0.938   0.728
#> CV:mclust   6 1.000           0.999       0.997         0.0792 0.938   0.728
#> MAD:mclust  6 1.000           1.000       1.000         0.0791 0.938   0.728
#> ATC:mclust  6 1.000           1.000       1.000         0.0795 0.938   0.728
#> SD:kmeans   6 0.778           0.846       0.797         0.0660 0.951   0.818
#> CV:kmeans   6 0.793           0.874       0.748         0.0509 0.885   0.589
#> MAD:kmeans  6 0.748           0.853       0.808         0.0582 1.000   1.000
#> ATC:kmeans  6 0.738           0.914       0.763         0.0625 0.885   0.589
#> SD:pam      6 1.000           0.977       0.989         0.0773 0.941   0.739
#> CV:pam      6 1.000           0.999       0.997         0.0784 0.938   0.728
#> MAD:pam     6 1.000           0.983       0.993         0.0736 0.941   0.739
#> ATC:pam     6 1.000           0.999       0.999         0.0751 0.939   0.732
#> SD:hclust   6 0.979           0.960       0.983         0.0688 0.937   0.731
#> CV:hclust   6 1.000           0.995       0.997         0.0597 0.947   0.784
#> MAD:hclust  6 0.922           0.971       0.953         0.0616 0.947   0.765
#> ATC:hclust  6 0.953           0.957       0.956         0.0688 0.947   0.756

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Results for each method


SD:hclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14577 rows and 143 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.4450 0.556   0.556
#> 3 3 1.000           1.000       1.000         0.4210 0.812   0.662
#> 4 4 1.000           1.000       1.000         0.1401 0.911   0.759
#> 5 5 0.964           0.964       0.981         0.0730 0.950   0.822
#> 6 6 0.979           0.960       0.983         0.0688 0.937   0.731

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 4 5

There is also optional best \(k\) = 2 3 4 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1270715     1       0          1  1  0
#> SRR1270716     1       0          1  1  0
#> SRR1270717     1       0          1  1  0
#> SRR1270718     1       0          1  1  0
#> SRR1270719     1       0          1  1  0
#> SRR1270720     1       0          1  1  0
#> SRR1270721     1       0          1  1  0
#> SRR1270722     1       0          1  1  0
#> SRR1270723     1       0          1  1  0
#> SRR1270724     1       0          1  1  0
#> SRR1270725     1       0          1  1  0
#> SRR1270726     1       0          1  1  0
#> SRR1270727     1       0          1  1  0
#> SRR1270728     1       0          1  1  0
#> SRR1270729     1       0          1  1  0
#> SRR1270730     1       0          1  1  0
#> SRR1270731     1       0          1  1  0
#> SRR1270732     1       0          1  1  0
#> SRR1270733     1       0          1  1  0
#> SRR1270734     1       0          1  1  0
#> SRR1270735     1       0          1  1  0
#> SRR1270736     1       0          1  1  0
#> SRR1270737     1       0          1  1  0
#> SRR1270738     1       0          1  1  0
#> SRR1270739     1       0          1  1  0
#> SRR1270740     1       0          1  1  0
#> SRR1270741     1       0          1  1  0
#> SRR1270742     1       0          1  1  0
#> SRR1270743     1       0          1  1  0
#> SRR1270744     1       0          1  1  0
#> SRR1270745     1       0          1  1  0
#> SRR1270746     1       0          1  1  0
#> SRR1270747     1       0          1  1  0
#> SRR1270748     1       0          1  1  0
#> SRR1270749     1       0          1  1  0
#> SRR1270750     1       0          1  1  0
#> SRR1270751     1       0          1  1  0
#> SRR1270752     1       0          1  1  0
#> SRR1270753     1       0          1  1  0
#> SRR1270754     1       0          1  1  0
#> SRR1270755     1       0          1  1  0
#> SRR1270756     1       0          1  1  0
#> SRR1270757     1       0          1  1  0
#> SRR1270758     1       0          1  1  0
#> SRR1270759     1       0          1  1  0
#> SRR1270760     1       0          1  1  0
#> SRR1270761     1       0          1  1  0
#> SRR1270762     1       0          1  1  0
#> SRR1270763     1       0          1  1  0
#> SRR1270764     1       0          1  1  0
#> SRR1270765     2       0          1  0  1
#> SRR1270766     2       0          1  0  1
#> SRR1270767     2       0          1  0  1
#> SRR1270768     2       0          1  0  1
#> SRR1270769     2       0          1  0  1
#> SRR1270770     2       0          1  0  1
#> SRR1270771     2       0          1  0  1
#> SRR1270772     2       0          1  0  1
#> SRR1270773     2       0          1  0  1
#> SRR1270774     2       0          1  0  1
#> SRR1270775     2       0          1  0  1
#> SRR1270776     2       0          1  0  1
#> SRR1270777     2       0          1  0  1
#> SRR1270778     2       0          1  0  1
#> SRR1270779     2       0          1  0  1
#> SRR1270780     2       0          1  0  1
#> SRR1270781     2       0          1  0  1
#> SRR1270782     2       0          1  0  1
#> SRR1270783     2       0          1  0  1
#> SRR1270784     2       0          1  0  1
#> SRR1270785     2       0          1  0  1
#> SRR1270786     2       0          1  0  1
#> SRR1270787     2       0          1  0  1
#> SRR1270788     2       0          1  0  1
#> SRR1270789     2       0          1  0  1
#> SRR1270790     2       0          1  0  1
#> SRR1270791     2       0          1  0  1
#> SRR1270792     2       0          1  0  1
#> SRR1270793     2       0          1  0  1
#> SRR1270794     2       0          1  0  1
#> SRR1270795     2       0          1  0  1
#> SRR1270796     2       0          1  0  1
#> SRR1270797     2       0          1  0  1
#> SRR1270798     2       0          1  0  1
#> SRR1270799     2       0          1  0  1
#> SRR1270800     2       0          1  0  1
#> SRR1270801     2       0          1  0  1
#> SRR1270802     2       0          1  0  1
#> SRR1270803     2       0          1  0  1
#> SRR1270804     2       0          1  0  1
#> SRR1270805     1       0          1  1  0
#> SRR1270806     1       0          1  1  0
#> SRR1270807     1       0          1  1  0
#> SRR1270808     1       0          1  1  0
#> SRR1270809     1       0          1  1  0
#> SRR1270810     1       0          1  1  0
#> SRR1270811     1       0          1  1  0
#> SRR1270812     1       0          1  1  0
#> SRR1270813     1       0          1  1  0
#> SRR1270814     1       0          1  1  0
#> SRR1270815     1       0          1  1  0
#> SRR1270816     1       0          1  1  0
#> SRR1270817     1       0          1  1  0
#> SRR1270818     1       0          1  1  0
#> SRR1270819     1       0          1  1  0
#> SRR1270820     1       0          1  1  0
#> SRR1270821     1       0          1  1  0
#> SRR1270822     1       0          1  1  0
#> SRR1270823     1       0          1  1  0
#> SRR1270824     1       0          1  1  0
#> SRR1270825     1       0          1  1  0
#> SRR1270826     1       0          1  1  0
#> SRR1270827     1       0          1  1  0
#> SRR1270828     1       0          1  1  0
#> SRR1270829     1       0          1  1  0
#> SRR1270830     1       0          1  1  0
#> SRR1270831     1       0          1  1  0
#> SRR1270832     1       0          1  1  0
#> SRR1270833     1       0          1  1  0
#> SRR1270834     1       0          1  1  0
#> SRR1270835     1       0          1  1  0
#> SRR1270836     1       0          1  1  0
#> SRR1270837     1       0          1  1  0
#> SRR1270838     1       0          1  1  0
#> SRR1270839     1       0          1  1  0
#> SRR1270840     1       0          1  1  0
#> SRR1270841     1       0          1  1  0
#> SRR1270842     1       0          1  1  0
#> SRR1270843     1       0          1  1  0
#> SRR1270844     1       0          1  1  0
#> SRR1270845     1       0          1  1  0
#> SRR1270846     1       0          1  1  0
#> SRR1270847     1       0          1  1  0
#> SRR1270848     1       0          1  1  0
#> SRR1270849     1       0          1  1  0
#> SRR1270850     1       0          1  1  0
#> SRR1270851     2       0          1  0  1
#> SRR1270852     2       0          1  0  1
#> SRR1270853     2       0          1  0  1
#> SRR1270854     2       0          1  0  1
#> SRR1270855     2       0          1  0  1
#> SRR1270856     2       0          1  0  1
#> SRR1270857     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette p1 p2 p3
#> SRR1270715     1       0          1  1  0  0
#> SRR1270716     1       0          1  1  0  0
#> SRR1270717     1       0          1  1  0  0
#> SRR1270718     1       0          1  1  0  0
#> SRR1270719     1       0          1  1  0  0
#> SRR1270720     1       0          1  1  0  0
#> SRR1270721     1       0          1  1  0  0
#> SRR1270722     1       0          1  1  0  0
#> SRR1270723     1       0          1  1  0  0
#> SRR1270724     1       0          1  1  0  0
#> SRR1270725     1       0          1  1  0  0
#> SRR1270726     1       0          1  1  0  0
#> SRR1270727     1       0          1  1  0  0
#> SRR1270728     1       0          1  1  0  0
#> SRR1270729     1       0          1  1  0  0
#> SRR1270730     1       0          1  1  0  0
#> SRR1270731     1       0          1  1  0  0
#> SRR1270732     1       0          1  1  0  0
#> SRR1270733     1       0          1  1  0  0
#> SRR1270734     1       0          1  1  0  0
#> SRR1270735     1       0          1  1  0  0
#> SRR1270736     1       0          1  1  0  0
#> SRR1270737     1       0          1  1  0  0
#> SRR1270738     1       0          1  1  0  0
#> SRR1270739     1       0          1  1  0  0
#> SRR1270740     1       0          1  1  0  0
#> SRR1270741     1       0          1  1  0  0
#> SRR1270742     1       0          1  1  0  0
#> SRR1270743     1       0          1  1  0  0
#> SRR1270744     1       0          1  1  0  0
#> SRR1270745     1       0          1  1  0  0
#> SRR1270746     1       0          1  1  0  0
#> SRR1270747     1       0          1  1  0  0
#> SRR1270748     1       0          1  1  0  0
#> SRR1270749     1       0          1  1  0  0
#> SRR1270750     1       0          1  1  0  0
#> SRR1270751     1       0          1  1  0  0
#> SRR1270752     1       0          1  1  0  0
#> SRR1270753     1       0          1  1  0  0
#> SRR1270754     1       0          1  1  0  0
#> SRR1270755     1       0          1  1  0  0
#> SRR1270756     1       0          1  1  0  0
#> SRR1270757     1       0          1  1  0  0
#> SRR1270758     1       0          1  1  0  0
#> SRR1270759     1       0          1  1  0  0
#> SRR1270760     1       0          1  1  0  0
#> SRR1270761     1       0          1  1  0  0
#> SRR1270762     1       0          1  1  0  0
#> SRR1270763     1       0          1  1  0  0
#> SRR1270764     1       0          1  1  0  0
#> SRR1270765     2       0          1  0  1  0
#> SRR1270766     2       0          1  0  1  0
#> SRR1270767     2       0          1  0  1  0
#> SRR1270768     2       0          1  0  1  0
#> SRR1270769     2       0          1  0  1  0
#> SRR1270770     2       0          1  0  1  0
#> SRR1270771     2       0          1  0  1  0
#> SRR1270772     2       0          1  0  1  0
#> SRR1270773     2       0          1  0  1  0
#> SRR1270774     2       0          1  0  1  0
#> SRR1270775     2       0          1  0  1  0
#> SRR1270776     2       0          1  0  1  0
#> SRR1270777     2       0          1  0  1  0
#> SRR1270778     2       0          1  0  1  0
#> SRR1270779     2       0          1  0  1  0
#> SRR1270780     2       0          1  0  1  0
#> SRR1270781     2       0          1  0  1  0
#> SRR1270782     2       0          1  0  1  0
#> SRR1270783     2       0          1  0  1  0
#> SRR1270784     2       0          1  0  1  0
#> SRR1270785     2       0          1  0  1  0
#> SRR1270786     2       0          1  0  1  0
#> SRR1270787     2       0          1  0  1  0
#> SRR1270788     2       0          1  0  1  0
#> SRR1270789     2       0          1  0  1  0
#> SRR1270790     2       0          1  0  1  0
#> SRR1270791     2       0          1  0  1  0
#> SRR1270792     2       0          1  0  1  0
#> SRR1270793     2       0          1  0  1  0
#> SRR1270794     2       0          1  0  1  0
#> SRR1270795     2       0          1  0  1  0
#> SRR1270796     2       0          1  0  1  0
#> SRR1270797     2       0          1  0  1  0
#> SRR1270798     2       0          1  0  1  0
#> SRR1270799     2       0          1  0  1  0
#> SRR1270800     2       0          1  0  1  0
#> SRR1270801     2       0          1  0  1  0
#> SRR1270802     2       0          1  0  1  0
#> SRR1270803     2       0          1  0  1  0
#> SRR1270804     2       0          1  0  1  0
#> SRR1270805     3       0          1  0  0  1
#> SRR1270806     3       0          1  0  0  1
#> SRR1270807     3       0          1  0  0  1
#> SRR1270808     3       0          1  0  0  1
#> SRR1270809     3       0          1  0  0  1
#> SRR1270810     3       0          1  0  0  1
#> SRR1270811     3       0          1  0  0  1
#> SRR1270812     3       0          1  0  0  1
#> SRR1270813     3       0          1  0  0  1
#> SRR1270814     3       0          1  0  0  1
#> SRR1270815     3       0          1  0  0  1
#> SRR1270816     3       0          1  0  0  1
#> SRR1270817     3       0          1  0  0  1
#> SRR1270818     3       0          1  0  0  1
#> SRR1270819     3       0          1  0  0  1
#> SRR1270820     3       0          1  0  0  1
#> SRR1270821     3       0          1  0  0  1
#> SRR1270822     3       0          1  0  0  1
#> SRR1270823     3       0          1  0  0  1
#> SRR1270824     3       0          1  0  0  1
#> SRR1270825     3       0          1  0  0  1
#> SRR1270826     3       0          1  0  0  1
#> SRR1270827     3       0          1  0  0  1
#> SRR1270828     3       0          1  0  0  1
#> SRR1270829     3       0          1  0  0  1
#> SRR1270830     3       0          1  0  0  1
#> SRR1270831     3       0          1  0  0  1
#> SRR1270832     3       0          1  0  0  1
#> SRR1270833     1       0          1  1  0  0
#> SRR1270834     1       0          1  1  0  0
#> SRR1270835     1       0          1  1  0  0
#> SRR1270836     1       0          1  1  0  0
#> SRR1270837     1       0          1  1  0  0
#> SRR1270838     1       0          1  1  0  0
#> SRR1270839     1       0          1  1  0  0
#> SRR1270840     1       0          1  1  0  0
#> SRR1270841     1       0          1  1  0  0
#> SRR1270842     1       0          1  1  0  0
#> SRR1270843     1       0          1  1  0  0
#> SRR1270844     1       0          1  1  0  0
#> SRR1270845     1       0          1  1  0  0
#> SRR1270846     1       0          1  1  0  0
#> SRR1270847     1       0          1  1  0  0
#> SRR1270848     1       0          1  1  0  0
#> SRR1270849     1       0          1  1  0  0
#> SRR1270850     1       0          1  1  0  0
#> SRR1270851     2       0          1  0  1  0
#> SRR1270852     2       0          1  0  1  0
#> SRR1270853     2       0          1  0  1  0
#> SRR1270854     2       0          1  0  1  0
#> SRR1270855     2       0          1  0  1  0
#> SRR1270856     2       0          1  0  1  0
#> SRR1270857     2       0          1  0  1  0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette p1 p2 p3 p4
#> SRR1270715     1       0          1  1  0  0  0
#> SRR1270716     1       0          1  1  0  0  0
#> SRR1270717     1       0          1  1  0  0  0
#> SRR1270718     1       0          1  1  0  0  0
#> SRR1270719     1       0          1  1  0  0  0
#> SRR1270720     1       0          1  1  0  0  0
#> SRR1270721     1       0          1  1  0  0  0
#> SRR1270722     1       0          1  1  0  0  0
#> SRR1270723     1       0          1  1  0  0  0
#> SRR1270724     1       0          1  1  0  0  0
#> SRR1270725     1       0          1  1  0  0  0
#> SRR1270726     1       0          1  1  0  0  0
#> SRR1270727     1       0          1  1  0  0  0
#> SRR1270728     1       0          1  1  0  0  0
#> SRR1270729     1       0          1  1  0  0  0
#> SRR1270730     1       0          1  1  0  0  0
#> SRR1270731     1       0          1  1  0  0  0
#> SRR1270732     1       0          1  1  0  0  0
#> SRR1270733     1       0          1  1  0  0  0
#> SRR1270734     1       0          1  1  0  0  0
#> SRR1270735     1       0          1  1  0  0  0
#> SRR1270736     1       0          1  1  0  0  0
#> SRR1270737     1       0          1  1  0  0  0
#> SRR1270738     1       0          1  1  0  0  0
#> SRR1270739     1       0          1  1  0  0  0
#> SRR1270740     1       0          1  1  0  0  0
#> SRR1270741     1       0          1  1  0  0  0
#> SRR1270742     1       0          1  1  0  0  0
#> SRR1270743     1       0          1  1  0  0  0
#> SRR1270744     1       0          1  1  0  0  0
#> SRR1270745     1       0          1  1  0  0  0
#> SRR1270746     1       0          1  1  0  0  0
#> SRR1270747     1       0          1  1  0  0  0
#> SRR1270748     1       0          1  1  0  0  0
#> SRR1270749     1       0          1  1  0  0  0
#> SRR1270750     1       0          1  1  0  0  0
#> SRR1270751     1       0          1  1  0  0  0
#> SRR1270752     1       0          1  1  0  0  0
#> SRR1270753     1       0          1  1  0  0  0
#> SRR1270754     1       0          1  1  0  0  0
#> SRR1270755     1       0          1  1  0  0  0
#> SRR1270756     1       0          1  1  0  0  0
#> SRR1270757     1       0          1  1  0  0  0
#> SRR1270758     1       0          1  1  0  0  0
#> SRR1270759     1       0          1  1  0  0  0
#> SRR1270760     1       0          1  1  0  0  0
#> SRR1270761     1       0          1  1  0  0  0
#> SRR1270762     1       0          1  1  0  0  0
#> SRR1270763     1       0          1  1  0  0  0
#> SRR1270764     1       0          1  1  0  0  0
#> SRR1270765     2       0          1  0  1  0  0
#> SRR1270766     2       0          1  0  1  0  0
#> SRR1270767     2       0          1  0  1  0  0
#> SRR1270768     2       0          1  0  1  0  0
#> SRR1270769     2       0          1  0  1  0  0
#> SRR1270770     2       0          1  0  1  0  0
#> SRR1270771     2       0          1  0  1  0  0
#> SRR1270772     2       0          1  0  1  0  0
#> SRR1270773     2       0          1  0  1  0  0
#> SRR1270774     2       0          1  0  1  0  0
#> SRR1270775     2       0          1  0  1  0  0
#> SRR1270776     2       0          1  0  1  0  0
#> SRR1270777     2       0          1  0  1  0  0
#> SRR1270778     2       0          1  0  1  0  0
#> SRR1270779     2       0          1  0  1  0  0
#> SRR1270780     2       0          1  0  1  0  0
#> SRR1270781     2       0          1  0  1  0  0
#> SRR1270782     2       0          1  0  1  0  0
#> SRR1270783     2       0          1  0  1  0  0
#> SRR1270784     2       0          1  0  1  0  0
#> SRR1270785     2       0          1  0  1  0  0
#> SRR1270786     2       0          1  0  1  0  0
#> SRR1270787     2       0          1  0  1  0  0
#> SRR1270788     2       0          1  0  1  0  0
#> SRR1270789     2       0          1  0  1  0  0
#> SRR1270790     2       0          1  0  1  0  0
#> SRR1270791     2       0          1  0  1  0  0
#> SRR1270792     2       0          1  0  1  0  0
#> SRR1270793     2       0          1  0  1  0  0
#> SRR1270794     2       0          1  0  1  0  0
#> SRR1270795     2       0          1  0  1  0  0
#> SRR1270796     2       0          1  0  1  0  0
#> SRR1270797     2       0          1  0  1  0  0
#> SRR1270798     2       0          1  0  1  0  0
#> SRR1270799     2       0          1  0  1  0  0
#> SRR1270800     2       0          1  0  1  0  0
#> SRR1270801     2       0          1  0  1  0  0
#> SRR1270802     2       0          1  0  1  0  0
#> SRR1270803     2       0          1  0  1  0  0
#> SRR1270804     2       0          1  0  1  0  0
#> SRR1270805     3       0          1  0  0  1  0
#> SRR1270806     3       0          1  0  0  1  0
#> SRR1270807     3       0          1  0  0  1  0
#> SRR1270808     3       0          1  0  0  1  0
#> SRR1270809     3       0          1  0  0  1  0
#> SRR1270810     3       0          1  0  0  1  0
#> SRR1270811     3       0          1  0  0  1  0
#> SRR1270812     3       0          1  0  0  1  0
#> SRR1270813     3       0          1  0  0  1  0
#> SRR1270814     3       0          1  0  0  1  0
#> SRR1270815     3       0          1  0  0  1  0
#> SRR1270816     3       0          1  0  0  1  0
#> SRR1270817     3       0          1  0  0  1  0
#> SRR1270818     3       0          1  0  0  1  0
#> SRR1270819     3       0          1  0  0  1  0
#> SRR1270820     3       0          1  0  0  1  0
#> SRR1270821     3       0          1  0  0  1  0
#> SRR1270822     3       0          1  0  0  1  0
#> SRR1270823     3       0          1  0  0  1  0
#> SRR1270824     3       0          1  0  0  1  0
#> SRR1270825     3       0          1  0  0  1  0
#> SRR1270826     3       0          1  0  0  1  0
#> SRR1270827     3       0          1  0  0  1  0
#> SRR1270828     3       0          1  0  0  1  0
#> SRR1270829     3       0          1  0  0  1  0
#> SRR1270830     3       0          1  0  0  1  0
#> SRR1270831     3       0          1  0  0  1  0
#> SRR1270832     3       0          1  0  0  1  0
#> SRR1270833     4       0          1  0  0  0  1
#> SRR1270834     4       0          1  0  0  0  1
#> SRR1270835     4       0          1  0  0  0  1
#> SRR1270836     4       0          1  0  0  0  1
#> SRR1270837     4       0          1  0  0  0  1
#> SRR1270838     4       0          1  0  0  0  1
#> SRR1270839     4       0          1  0  0  0  1
#> SRR1270840     4       0          1  0  0  0  1
#> SRR1270841     4       0          1  0  0  0  1
#> SRR1270842     4       0          1  0  0  0  1
#> SRR1270843     4       0          1  0  0  0  1
#> SRR1270844     4       0          1  0  0  0  1
#> SRR1270845     4       0          1  0  0  0  1
#> SRR1270846     4       0          1  0  0  0  1
#> SRR1270847     4       0          1  0  0  0  1
#> SRR1270848     4       0          1  0  0  0  1
#> SRR1270849     4       0          1  0  0  0  1
#> SRR1270850     4       0          1  0  0  0  1
#> SRR1270851     2       0          1  0  1  0  0
#> SRR1270852     2       0          1  0  1  0  0
#> SRR1270853     2       0          1  0  1  0  0
#> SRR1270854     2       0          1  0  1  0  0
#> SRR1270855     2       0          1  0  1  0  0
#> SRR1270856     2       0          1  0  1  0  0
#> SRR1270857     2       0          1  0  1  0  0

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2 p3 p4    p5
#> SRR1270715     5  0.0609      0.994 0.020 0.000  0  0 0.980
#> SRR1270716     5  0.0609      0.994 0.020 0.000  0  0 0.980
#> SRR1270717     5  0.0609      0.994 0.020 0.000  0  0 0.980
#> SRR1270718     5  0.0404      0.995 0.012 0.000  0  0 0.988
#> SRR1270719     5  0.0404      0.995 0.012 0.000  0  0 0.988
#> SRR1270720     5  0.0404      0.995 0.012 0.000  0  0 0.988
#> SRR1270721     5  0.0404      0.995 0.012 0.000  0  0 0.988
#> SRR1270722     1  0.2605      0.847 0.852 0.000  0  0 0.148
#> SRR1270723     1  0.2605      0.847 0.852 0.000  0  0 0.148
#> SRR1270724     1  0.2605      0.847 0.852 0.000  0  0 0.148
#> SRR1270725     1  0.2605      0.847 0.852 0.000  0  0 0.148
#> SRR1270726     1  0.2605      0.847 0.852 0.000  0  0 0.148
#> SRR1270727     1  0.2605      0.847 0.852 0.000  0  0 0.148
#> SRR1270728     1  0.2605      0.847 0.852 0.000  0  0 0.148
#> SRR1270729     5  0.0609      0.994 0.020 0.000  0  0 0.980
#> SRR1270730     5  0.0609      0.994 0.020 0.000  0  0 0.980
#> SRR1270731     5  0.0609      0.994 0.020 0.000  0  0 0.980
#> SRR1270732     5  0.0404      0.995 0.012 0.000  0  0 0.988
#> SRR1270733     5  0.0404      0.995 0.012 0.000  0  0 0.988
#> SRR1270734     5  0.0404      0.995 0.012 0.000  0  0 0.988
#> SRR1270735     5  0.0404      0.995 0.012 0.000  0  0 0.988
#> SRR1270736     1  0.2605      0.847 0.852 0.000  0  0 0.148
#> SRR1270737     1  0.2605      0.847 0.852 0.000  0  0 0.148
#> SRR1270738     1  0.4307      0.147 0.504 0.000  0  0 0.496
#> SRR1270739     1  0.4307      0.147 0.504 0.000  0  0 0.496
#> SRR1270740     1  0.0000      0.930 1.000 0.000  0  0 0.000
#> SRR1270741     1  0.0000      0.930 1.000 0.000  0  0 0.000
#> SRR1270742     1  0.0000      0.930 1.000 0.000  0  0 0.000
#> SRR1270743     1  0.0000      0.930 1.000 0.000  0  0 0.000
#> SRR1270744     1  0.0000      0.930 1.000 0.000  0  0 0.000
#> SRR1270745     1  0.0000      0.930 1.000 0.000  0  0 0.000
#> SRR1270746     1  0.0000      0.930 1.000 0.000  0  0 0.000
#> SRR1270747     1  0.0000      0.930 1.000 0.000  0  0 0.000
#> SRR1270748     1  0.0000      0.930 1.000 0.000  0  0 0.000
#> SRR1270749     1  0.0000      0.930 1.000 0.000  0  0 0.000
#> SRR1270750     1  0.0000      0.930 1.000 0.000  0  0 0.000
#> SRR1270751     1  0.0000      0.930 1.000 0.000  0  0 0.000
#> SRR1270752     1  0.0000      0.930 1.000 0.000  0  0 0.000
#> SRR1270753     1  0.0000      0.930 1.000 0.000  0  0 0.000
#> SRR1270754     1  0.0000      0.930 1.000 0.000  0  0 0.000
#> SRR1270755     1  0.0000      0.930 1.000 0.000  0  0 0.000
#> SRR1270756     1  0.0000      0.930 1.000 0.000  0  0 0.000
#> SRR1270757     1  0.0000      0.930 1.000 0.000  0  0 0.000
#> SRR1270758     1  0.0000      0.930 1.000 0.000  0  0 0.000
#> SRR1270759     1  0.0000      0.930 1.000 0.000  0  0 0.000
#> SRR1270760     1  0.0000      0.930 1.000 0.000  0  0 0.000
#> SRR1270761     1  0.0000      0.930 1.000 0.000  0  0 0.000
#> SRR1270762     1  0.0000      0.930 1.000 0.000  0  0 0.000
#> SRR1270763     1  0.0000      0.930 1.000 0.000  0  0 0.000
#> SRR1270764     1  0.0000      0.930 1.000 0.000  0  0 0.000
#> SRR1270765     2  0.0000      0.995 0.000 1.000  0  0 0.000
#> SRR1270766     2  0.0000      0.995 0.000 1.000  0  0 0.000
#> SRR1270767     2  0.0000      0.995 0.000 1.000  0  0 0.000
#> SRR1270768     2  0.0000      0.995 0.000 1.000  0  0 0.000
#> SRR1270769     2  0.0000      0.995 0.000 1.000  0  0 0.000
#> SRR1270770     2  0.0000      0.995 0.000 1.000  0  0 0.000
#> SRR1270771     2  0.0000      0.995 0.000 1.000  0  0 0.000
#> SRR1270772     2  0.0000      0.995 0.000 1.000  0  0 0.000
#> SRR1270773     2  0.0000      0.995 0.000 1.000  0  0 0.000
#> SRR1270774     2  0.0000      0.995 0.000 1.000  0  0 0.000
#> SRR1270775     2  0.0000      0.995 0.000 1.000  0  0 0.000
#> SRR1270776     2  0.0000      0.995 0.000 1.000  0  0 0.000
#> SRR1270777     2  0.0000      0.995 0.000 1.000  0  0 0.000
#> SRR1270778     2  0.0000      0.995 0.000 1.000  0  0 0.000
#> SRR1270779     2  0.0000      0.995 0.000 1.000  0  0 0.000
#> SRR1270780     2  0.0000      0.995 0.000 1.000  0  0 0.000
#> SRR1270781     2  0.0000      0.995 0.000 1.000  0  0 0.000
#> SRR1270782     2  0.0000      0.995 0.000 1.000  0  0 0.000
#> SRR1270783     2  0.0000      0.995 0.000 1.000  0  0 0.000
#> SRR1270784     2  0.0000      0.995 0.000 1.000  0  0 0.000
#> SRR1270785     2  0.0404      0.994 0.000 0.988  0  0 0.012
#> SRR1270786     2  0.0404      0.994 0.000 0.988  0  0 0.012
#> SRR1270787     2  0.0404      0.994 0.000 0.988  0  0 0.012
#> SRR1270788     2  0.0404      0.994 0.000 0.988  0  0 0.012
#> SRR1270789     2  0.0404      0.994 0.000 0.988  0  0 0.012
#> SRR1270790     2  0.0404      0.994 0.000 0.988  0  0 0.012
#> SRR1270791     2  0.0404      0.994 0.000 0.988  0  0 0.012
#> SRR1270792     2  0.0404      0.994 0.000 0.988  0  0 0.012
#> SRR1270793     2  0.0404      0.994 0.000 0.988  0  0 0.012
#> SRR1270794     2  0.0404      0.994 0.000 0.988  0  0 0.012
#> SRR1270795     2  0.0404      0.994 0.000 0.988  0  0 0.012
#> SRR1270796     2  0.0404      0.994 0.000 0.988  0  0 0.012
#> SRR1270797     2  0.0404      0.994 0.000 0.988  0  0 0.012
#> SRR1270798     2  0.0404      0.994 0.000 0.988  0  0 0.012
#> SRR1270799     2  0.0404      0.994 0.000 0.988  0  0 0.012
#> SRR1270800     2  0.0404      0.994 0.000 0.988  0  0 0.012
#> SRR1270801     2  0.0404      0.994 0.000 0.988  0  0 0.012
#> SRR1270802     2  0.0404      0.994 0.000 0.988  0  0 0.012
#> SRR1270803     2  0.0404      0.994 0.000 0.988  0  0 0.012
#> SRR1270804     2  0.0404      0.994 0.000 0.988  0  0 0.012
#> SRR1270805     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270806     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270807     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270808     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270809     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270810     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270811     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270812     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270813     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270814     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270815     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270816     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270817     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270818     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270819     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270820     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270821     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270822     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270823     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270824     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270825     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270826     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270827     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270828     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270829     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270830     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270831     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270832     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270833     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270834     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270835     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270836     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270837     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270838     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270839     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270840     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270841     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270842     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270843     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270844     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270845     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270846     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270847     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270848     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270849     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270850     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270851     2  0.0000      0.995 0.000 1.000  0  0 0.000
#> SRR1270852     2  0.0000      0.995 0.000 1.000  0  0 0.000
#> SRR1270853     2  0.0000      0.995 0.000 1.000  0  0 0.000
#> SRR1270854     2  0.0000      0.995 0.000 1.000  0  0 0.000
#> SRR1270855     2  0.0000      0.995 0.000 1.000  0  0 0.000
#> SRR1270856     2  0.0000      0.995 0.000 1.000  0  0 0.000
#> SRR1270857     2  0.0000      0.995 0.000 1.000  0  0 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1 p2 p3 p4 p5    p6
#> SRR1270715     6   0.026     0.9148 0.008  0  0  0  0 0.992
#> SRR1270716     6   0.026     0.9148 0.008  0  0  0  0 0.992
#> SRR1270717     6   0.026     0.9148 0.008  0  0  0  0 0.992
#> SRR1270718     6   0.000     0.9151 0.000  0  0  0  0 1.000
#> SRR1270719     6   0.000     0.9151 0.000  0  0  0  0 1.000
#> SRR1270720     6   0.000     0.9151 0.000  0  0  0  0 1.000
#> SRR1270721     6   0.000     0.9151 0.000  0  0  0  0 1.000
#> SRR1270722     1   0.234     0.8540 0.852  0  0  0  0 0.148
#> SRR1270723     1   0.234     0.8540 0.852  0  0  0  0 0.148
#> SRR1270724     1   0.234     0.8540 0.852  0  0  0  0 0.148
#> SRR1270725     1   0.238     0.8500 0.848  0  0  0  0 0.152
#> SRR1270726     1   0.238     0.8500 0.848  0  0  0  0 0.152
#> SRR1270727     1   0.238     0.8500 0.848  0  0  0  0 0.152
#> SRR1270728     1   0.238     0.8500 0.848  0  0  0  0 0.152
#> SRR1270729     6   0.026     0.9148 0.008  0  0  0  0 0.992
#> SRR1270730     6   0.026     0.9148 0.008  0  0  0  0 0.992
#> SRR1270731     6   0.026     0.9148 0.008  0  0  0  0 0.992
#> SRR1270732     6   0.000     0.9151 0.000  0  0  0  0 1.000
#> SRR1270733     6   0.000     0.9151 0.000  0  0  0  0 1.000
#> SRR1270734     6   0.000     0.9151 0.000  0  0  0  0 1.000
#> SRR1270735     6   0.000     0.9151 0.000  0  0  0  0 1.000
#> SRR1270736     1   0.234     0.8540 0.852  0  0  0  0 0.148
#> SRR1270737     1   0.234     0.8540 0.852  0  0  0  0 0.148
#> SRR1270738     6   0.387    -0.0348 0.492  0  0  0  0 0.508
#> SRR1270739     6   0.387    -0.0348 0.492  0  0  0  0 0.508
#> SRR1270740     1   0.000     0.9532 1.000  0  0  0  0 0.000
#> SRR1270741     1   0.000     0.9532 1.000  0  0  0  0 0.000
#> SRR1270742     1   0.000     0.9532 1.000  0  0  0  0 0.000
#> SRR1270743     1   0.000     0.9532 1.000  0  0  0  0 0.000
#> SRR1270744     1   0.000     0.9532 1.000  0  0  0  0 0.000
#> SRR1270745     1   0.000     0.9532 1.000  0  0  0  0 0.000
#> SRR1270746     1   0.000     0.9532 1.000  0  0  0  0 0.000
#> SRR1270747     1   0.000     0.9532 1.000  0  0  0  0 0.000
#> SRR1270748     1   0.000     0.9532 1.000  0  0  0  0 0.000
#> SRR1270749     1   0.000     0.9532 1.000  0  0  0  0 0.000
#> SRR1270750     1   0.000     0.9532 1.000  0  0  0  0 0.000
#> SRR1270751     1   0.000     0.9532 1.000  0  0  0  0 0.000
#> SRR1270752     1   0.000     0.9532 1.000  0  0  0  0 0.000
#> SRR1270753     1   0.000     0.9532 1.000  0  0  0  0 0.000
#> SRR1270754     1   0.000     0.9532 1.000  0  0  0  0 0.000
#> SRR1270755     1   0.000     0.9532 1.000  0  0  0  0 0.000
#> SRR1270756     1   0.000     0.9532 1.000  0  0  0  0 0.000
#> SRR1270757     1   0.000     0.9532 1.000  0  0  0  0 0.000
#> SRR1270758     1   0.000     0.9532 1.000  0  0  0  0 0.000
#> SRR1270759     1   0.000     0.9532 1.000  0  0  0  0 0.000
#> SRR1270760     1   0.000     0.9532 1.000  0  0  0  0 0.000
#> SRR1270761     1   0.000     0.9532 1.000  0  0  0  0 0.000
#> SRR1270762     1   0.000     0.9532 1.000  0  0  0  0 0.000
#> SRR1270763     1   0.000     0.9532 1.000  0  0  0  0 0.000
#> SRR1270764     1   0.000     0.9532 1.000  0  0  0  0 0.000
#> SRR1270765     2   0.000     1.0000 0.000  1  0  0  0 0.000
#> SRR1270766     2   0.000     1.0000 0.000  1  0  0  0 0.000
#> SRR1270767     2   0.000     1.0000 0.000  1  0  0  0 0.000
#> SRR1270768     2   0.000     1.0000 0.000  1  0  0  0 0.000
#> SRR1270769     2   0.000     1.0000 0.000  1  0  0  0 0.000
#> SRR1270770     2   0.000     1.0000 0.000  1  0  0  0 0.000
#> SRR1270771     2   0.000     1.0000 0.000  1  0  0  0 0.000
#> SRR1270772     2   0.000     1.0000 0.000  1  0  0  0 0.000
#> SRR1270773     2   0.000     1.0000 0.000  1  0  0  0 0.000
#> SRR1270774     2   0.000     1.0000 0.000  1  0  0  0 0.000
#> SRR1270775     2   0.000     1.0000 0.000  1  0  0  0 0.000
#> SRR1270776     2   0.000     1.0000 0.000  1  0  0  0 0.000
#> SRR1270777     2   0.000     1.0000 0.000  1  0  0  0 0.000
#> SRR1270778     2   0.000     1.0000 0.000  1  0  0  0 0.000
#> SRR1270779     2   0.000     1.0000 0.000  1  0  0  0 0.000
#> SRR1270780     2   0.000     1.0000 0.000  1  0  0  0 0.000
#> SRR1270781     2   0.000     1.0000 0.000  1  0  0  0 0.000
#> SRR1270782     2   0.000     1.0000 0.000  1  0  0  0 0.000
#> SRR1270783     2   0.000     1.0000 0.000  1  0  0  0 0.000
#> SRR1270784     2   0.000     1.0000 0.000  1  0  0  0 0.000
#> SRR1270785     5   0.000     1.0000 0.000  0  0  0  1 0.000
#> SRR1270786     5   0.000     1.0000 0.000  0  0  0  1 0.000
#> SRR1270787     5   0.000     1.0000 0.000  0  0  0  1 0.000
#> SRR1270788     5   0.000     1.0000 0.000  0  0  0  1 0.000
#> SRR1270789     5   0.000     1.0000 0.000  0  0  0  1 0.000
#> SRR1270790     5   0.000     1.0000 0.000  0  0  0  1 0.000
#> SRR1270791     5   0.000     1.0000 0.000  0  0  0  1 0.000
#> SRR1270792     5   0.000     1.0000 0.000  0  0  0  1 0.000
#> SRR1270793     5   0.000     1.0000 0.000  0  0  0  1 0.000
#> SRR1270794     5   0.000     1.0000 0.000  0  0  0  1 0.000
#> SRR1270795     5   0.000     1.0000 0.000  0  0  0  1 0.000
#> SRR1270796     5   0.000     1.0000 0.000  0  0  0  1 0.000
#> SRR1270797     5   0.000     1.0000 0.000  0  0  0  1 0.000
#> SRR1270798     5   0.000     1.0000 0.000  0  0  0  1 0.000
#> SRR1270799     5   0.000     1.0000 0.000  0  0  0  1 0.000
#> SRR1270800     5   0.000     1.0000 0.000  0  0  0  1 0.000
#> SRR1270801     5   0.000     1.0000 0.000  0  0  0  1 0.000
#> SRR1270802     5   0.000     1.0000 0.000  0  0  0  1 0.000
#> SRR1270803     5   0.000     1.0000 0.000  0  0  0  1 0.000
#> SRR1270804     5   0.000     1.0000 0.000  0  0  0  1 0.000
#> SRR1270805     3   0.000     1.0000 0.000  0  1  0  0 0.000
#> SRR1270806     3   0.000     1.0000 0.000  0  1  0  0 0.000
#> SRR1270807     3   0.000     1.0000 0.000  0  1  0  0 0.000
#> SRR1270808     3   0.000     1.0000 0.000  0  1  0  0 0.000
#> SRR1270809     3   0.000     1.0000 0.000  0  1  0  0 0.000
#> SRR1270810     3   0.000     1.0000 0.000  0  1  0  0 0.000
#> SRR1270811     3   0.000     1.0000 0.000  0  1  0  0 0.000
#> SRR1270812     3   0.000     1.0000 0.000  0  1  0  0 0.000
#> SRR1270813     3   0.000     1.0000 0.000  0  1  0  0 0.000
#> SRR1270814     3   0.000     1.0000 0.000  0  1  0  0 0.000
#> SRR1270815     3   0.000     1.0000 0.000  0  1  0  0 0.000
#> SRR1270816     3   0.000     1.0000 0.000  0  1  0  0 0.000
#> SRR1270817     3   0.000     1.0000 0.000  0  1  0  0 0.000
#> SRR1270818     3   0.000     1.0000 0.000  0  1  0  0 0.000
#> SRR1270819     3   0.000     1.0000 0.000  0  1  0  0 0.000
#> SRR1270820     3   0.000     1.0000 0.000  0  1  0  0 0.000
#> SRR1270821     3   0.000     1.0000 0.000  0  1  0  0 0.000
#> SRR1270822     3   0.000     1.0000 0.000  0  1  0  0 0.000
#> SRR1270823     3   0.000     1.0000 0.000  0  1  0  0 0.000
#> SRR1270824     3   0.000     1.0000 0.000  0  1  0  0 0.000
#> SRR1270825     3   0.000     1.0000 0.000  0  1  0  0 0.000
#> SRR1270826     3   0.000     1.0000 0.000  0  1  0  0 0.000
#> SRR1270827     3   0.000     1.0000 0.000  0  1  0  0 0.000
#> SRR1270828     3   0.000     1.0000 0.000  0  1  0  0 0.000
#> SRR1270829     3   0.000     1.0000 0.000  0  1  0  0 0.000
#> SRR1270830     3   0.000     1.0000 0.000  0  1  0  0 0.000
#> SRR1270831     3   0.000     1.0000 0.000  0  1  0  0 0.000
#> SRR1270832     3   0.000     1.0000 0.000  0  1  0  0 0.000
#> SRR1270833     4   0.000     1.0000 0.000  0  0  1  0 0.000
#> SRR1270834     4   0.000     1.0000 0.000  0  0  1  0 0.000
#> SRR1270835     4   0.000     1.0000 0.000  0  0  1  0 0.000
#> SRR1270836     4   0.000     1.0000 0.000  0  0  1  0 0.000
#> SRR1270837     4   0.000     1.0000 0.000  0  0  1  0 0.000
#> SRR1270838     4   0.000     1.0000 0.000  0  0  1  0 0.000
#> SRR1270839     4   0.000     1.0000 0.000  0  0  1  0 0.000
#> SRR1270840     4   0.000     1.0000 0.000  0  0  1  0 0.000
#> SRR1270841     4   0.000     1.0000 0.000  0  0  1  0 0.000
#> SRR1270842     4   0.000     1.0000 0.000  0  0  1  0 0.000
#> SRR1270843     4   0.000     1.0000 0.000  0  0  1  0 0.000
#> SRR1270844     4   0.000     1.0000 0.000  0  0  1  0 0.000
#> SRR1270845     4   0.000     1.0000 0.000  0  0  1  0 0.000
#> SRR1270846     4   0.000     1.0000 0.000  0  0  1  0 0.000
#> SRR1270847     4   0.000     1.0000 0.000  0  0  1  0 0.000
#> SRR1270848     4   0.000     1.0000 0.000  0  0  1  0 0.000
#> SRR1270849     4   0.000     1.0000 0.000  0  0  1  0 0.000
#> SRR1270850     4   0.000     1.0000 0.000  0  0  1  0 0.000
#> SRR1270851     2   0.000     1.0000 0.000  1  0  0  0 0.000
#> SRR1270852     2   0.000     1.0000 0.000  1  0  0  0 0.000
#> SRR1270853     2   0.000     1.0000 0.000  1  0  0  0 0.000
#> SRR1270854     2   0.000     1.0000 0.000  1  0  0  0 0.000
#> SRR1270855     2   0.000     1.0000 0.000  1  0  0  0 0.000
#> SRR1270856     2   0.000     1.0000 0.000  1  0  0  0 0.000
#> SRR1270857     2   0.000     1.0000 0.000  1  0  0  0 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14577 rows and 143 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.995       0.989         0.4398 0.556   0.556
#> 3 3 0.671           0.907       0.835         0.3532 0.812   0.662
#> 4 4 0.654           0.930       0.850         0.1468 0.911   0.759
#> 5 5 0.745           0.618       0.788         0.0759 0.983   0.939
#> 6 6 0.778           0.846       0.797         0.0660 0.951   0.818

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1270715     1   0.000      0.995 1.000 0.000
#> SRR1270716     1   0.000      0.995 1.000 0.000
#> SRR1270717     1   0.000      0.995 1.000 0.000
#> SRR1270718     1   0.000      0.995 1.000 0.000
#> SRR1270719     1   0.000      0.995 1.000 0.000
#> SRR1270720     1   0.000      0.995 1.000 0.000
#> SRR1270721     1   0.000      0.995 1.000 0.000
#> SRR1270722     1   0.000      0.995 1.000 0.000
#> SRR1270723     1   0.000      0.995 1.000 0.000
#> SRR1270724     1   0.000      0.995 1.000 0.000
#> SRR1270725     1   0.000      0.995 1.000 0.000
#> SRR1270726     1   0.000      0.995 1.000 0.000
#> SRR1270727     1   0.000      0.995 1.000 0.000
#> SRR1270728     1   0.000      0.995 1.000 0.000
#> SRR1270729     1   0.000      0.995 1.000 0.000
#> SRR1270730     1   0.000      0.995 1.000 0.000
#> SRR1270731     1   0.000      0.995 1.000 0.000
#> SRR1270732     1   0.000      0.995 1.000 0.000
#> SRR1270733     1   0.000      0.995 1.000 0.000
#> SRR1270734     1   0.000      0.995 1.000 0.000
#> SRR1270735     1   0.000      0.995 1.000 0.000
#> SRR1270736     1   0.000      0.995 1.000 0.000
#> SRR1270737     1   0.000      0.995 1.000 0.000
#> SRR1270738     1   0.000      0.995 1.000 0.000
#> SRR1270739     1   0.000      0.995 1.000 0.000
#> SRR1270740     1   0.000      0.995 1.000 0.000
#> SRR1270741     1   0.000      0.995 1.000 0.000
#> SRR1270742     1   0.000      0.995 1.000 0.000
#> SRR1270743     1   0.000      0.995 1.000 0.000
#> SRR1270744     1   0.000      0.995 1.000 0.000
#> SRR1270745     1   0.000      0.995 1.000 0.000
#> SRR1270746     1   0.000      0.995 1.000 0.000
#> SRR1270747     1   0.000      0.995 1.000 0.000
#> SRR1270748     1   0.000      0.995 1.000 0.000
#> SRR1270749     1   0.000      0.995 1.000 0.000
#> SRR1270750     1   0.000      0.995 1.000 0.000
#> SRR1270751     1   0.000      0.995 1.000 0.000
#> SRR1270752     1   0.000      0.995 1.000 0.000
#> SRR1270753     1   0.000      0.995 1.000 0.000
#> SRR1270754     1   0.000      0.995 1.000 0.000
#> SRR1270755     1   0.000      0.995 1.000 0.000
#> SRR1270756     1   0.000      0.995 1.000 0.000
#> SRR1270757     1   0.000      0.995 1.000 0.000
#> SRR1270758     1   0.000      0.995 1.000 0.000
#> SRR1270759     1   0.000      0.995 1.000 0.000
#> SRR1270760     1   0.000      0.995 1.000 0.000
#> SRR1270761     1   0.000      0.995 1.000 0.000
#> SRR1270762     1   0.000      0.995 1.000 0.000
#> SRR1270763     1   0.000      0.995 1.000 0.000
#> SRR1270764     1   0.000      0.995 1.000 0.000
#> SRR1270765     2   0.163      1.000 0.024 0.976
#> SRR1270766     2   0.163      1.000 0.024 0.976
#> SRR1270767     2   0.163      1.000 0.024 0.976
#> SRR1270768     2   0.163      1.000 0.024 0.976
#> SRR1270769     2   0.163      1.000 0.024 0.976
#> SRR1270770     2   0.163      1.000 0.024 0.976
#> SRR1270771     2   0.163      1.000 0.024 0.976
#> SRR1270772     2   0.163      1.000 0.024 0.976
#> SRR1270773     2   0.163      1.000 0.024 0.976
#> SRR1270774     2   0.163      1.000 0.024 0.976
#> SRR1270775     2   0.163      1.000 0.024 0.976
#> SRR1270776     2   0.163      1.000 0.024 0.976
#> SRR1270777     2   0.163      1.000 0.024 0.976
#> SRR1270778     2   0.163      1.000 0.024 0.976
#> SRR1270779     2   0.163      1.000 0.024 0.976
#> SRR1270780     2   0.163      1.000 0.024 0.976
#> SRR1270781     2   0.163      1.000 0.024 0.976
#> SRR1270782     2   0.163      1.000 0.024 0.976
#> SRR1270783     2   0.163      1.000 0.024 0.976
#> SRR1270784     2   0.163      1.000 0.024 0.976
#> SRR1270785     2   0.163      1.000 0.024 0.976
#> SRR1270786     2   0.163      1.000 0.024 0.976
#> SRR1270787     2   0.163      1.000 0.024 0.976
#> SRR1270788     2   0.163      1.000 0.024 0.976
#> SRR1270789     2   0.163      1.000 0.024 0.976
#> SRR1270790     2   0.163      1.000 0.024 0.976
#> SRR1270791     2   0.163      1.000 0.024 0.976
#> SRR1270792     2   0.163      1.000 0.024 0.976
#> SRR1270793     2   0.163      1.000 0.024 0.976
#> SRR1270794     2   0.163      1.000 0.024 0.976
#> SRR1270795     2   0.163      1.000 0.024 0.976
#> SRR1270796     2   0.163      1.000 0.024 0.976
#> SRR1270797     2   0.163      1.000 0.024 0.976
#> SRR1270798     2   0.163      1.000 0.024 0.976
#> SRR1270799     2   0.163      1.000 0.024 0.976
#> SRR1270800     2   0.163      1.000 0.024 0.976
#> SRR1270801     2   0.163      1.000 0.024 0.976
#> SRR1270802     2   0.163      1.000 0.024 0.976
#> SRR1270803     2   0.163      1.000 0.024 0.976
#> SRR1270804     2   0.163      1.000 0.024 0.976
#> SRR1270805     1   0.000      0.995 1.000 0.000
#> SRR1270806     1   0.000      0.995 1.000 0.000
#> SRR1270807     1   0.000      0.995 1.000 0.000
#> SRR1270808     1   0.000      0.995 1.000 0.000
#> SRR1270809     1   0.000      0.995 1.000 0.000
#> SRR1270810     1   0.000      0.995 1.000 0.000
#> SRR1270811     1   0.000      0.995 1.000 0.000
#> SRR1270812     1   0.000      0.995 1.000 0.000
#> SRR1270813     1   0.000      0.995 1.000 0.000
#> SRR1270814     1   0.000      0.995 1.000 0.000
#> SRR1270815     1   0.000      0.995 1.000 0.000
#> SRR1270816     1   0.000      0.995 1.000 0.000
#> SRR1270817     1   0.000      0.995 1.000 0.000
#> SRR1270818     1   0.000      0.995 1.000 0.000
#> SRR1270819     1   0.000      0.995 1.000 0.000
#> SRR1270820     1   0.000      0.995 1.000 0.000
#> SRR1270821     1   0.000      0.995 1.000 0.000
#> SRR1270822     1   0.000      0.995 1.000 0.000
#> SRR1270823     1   0.000      0.995 1.000 0.000
#> SRR1270824     1   0.000      0.995 1.000 0.000
#> SRR1270825     1   0.000      0.995 1.000 0.000
#> SRR1270826     1   0.000      0.995 1.000 0.000
#> SRR1270827     1   0.000      0.995 1.000 0.000
#> SRR1270828     1   0.000      0.995 1.000 0.000
#> SRR1270829     1   0.000      0.995 1.000 0.000
#> SRR1270830     1   0.000      0.995 1.000 0.000
#> SRR1270831     1   0.000      0.995 1.000 0.000
#> SRR1270832     1   0.000      0.995 1.000 0.000
#> SRR1270833     1   0.163      0.980 0.976 0.024
#> SRR1270834     1   0.163      0.980 0.976 0.024
#> SRR1270835     1   0.163      0.980 0.976 0.024
#> SRR1270836     1   0.163      0.980 0.976 0.024
#> SRR1270837     1   0.163      0.980 0.976 0.024
#> SRR1270838     1   0.163      0.980 0.976 0.024
#> SRR1270839     1   0.163      0.980 0.976 0.024
#> SRR1270840     1   0.163      0.980 0.976 0.024
#> SRR1270841     1   0.163      0.980 0.976 0.024
#> SRR1270842     1   0.163      0.980 0.976 0.024
#> SRR1270843     1   0.163      0.980 0.976 0.024
#> SRR1270844     1   0.163      0.980 0.976 0.024
#> SRR1270845     1   0.163      0.980 0.976 0.024
#> SRR1270846     1   0.163      0.980 0.976 0.024
#> SRR1270847     1   0.163      0.980 0.976 0.024
#> SRR1270848     1   0.163      0.980 0.976 0.024
#> SRR1270849     1   0.163      0.980 0.976 0.024
#> SRR1270850     1   0.163      0.980 0.976 0.024
#> SRR1270851     2   0.163      1.000 0.024 0.976
#> SRR1270852     2   0.163      1.000 0.024 0.976
#> SRR1270853     2   0.163      1.000 0.024 0.976
#> SRR1270854     2   0.163      1.000 0.024 0.976
#> SRR1270855     2   0.163      1.000 0.024 0.976
#> SRR1270856     2   0.163      1.000 0.024 0.976
#> SRR1270857     2   0.163      1.000 0.024 0.976

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1270715     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270716     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270717     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270718     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270719     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270720     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270721     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270722     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270723     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270724     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270725     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270726     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270727     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270728     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270729     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270730     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270731     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270732     1  0.0592      0.904 0.988 0.000 0.012
#> SRR1270733     1  0.0592      0.904 0.988 0.000 0.012
#> SRR1270734     1  0.0592      0.904 0.988 0.000 0.012
#> SRR1270735     1  0.0592      0.904 0.988 0.000 0.012
#> SRR1270736     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270737     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270738     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270739     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270740     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270741     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270742     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270743     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270744     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270745     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270746     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270747     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270748     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270749     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270750     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270751     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270752     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270753     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270754     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270755     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270756     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270757     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270758     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270759     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270760     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270761     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270762     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270763     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270764     1  0.0000      0.912 1.000 0.000 0.000
#> SRR1270765     2  0.4974      0.919 0.000 0.764 0.236
#> SRR1270766     2  0.4974      0.919 0.000 0.764 0.236
#> SRR1270767     2  0.4974      0.919 0.000 0.764 0.236
#> SRR1270768     2  0.4974      0.919 0.000 0.764 0.236
#> SRR1270769     2  0.4974      0.919 0.000 0.764 0.236
#> SRR1270770     2  0.4974      0.919 0.000 0.764 0.236
#> SRR1270771     2  0.4974      0.919 0.000 0.764 0.236
#> SRR1270772     2  0.4974      0.919 0.000 0.764 0.236
#> SRR1270773     2  0.4974      0.919 0.000 0.764 0.236
#> SRR1270774     2  0.4974      0.919 0.000 0.764 0.236
#> SRR1270775     2  0.4974      0.919 0.000 0.764 0.236
#> SRR1270776     2  0.4974      0.919 0.000 0.764 0.236
#> SRR1270777     2  0.4974      0.919 0.000 0.764 0.236
#> SRR1270778     2  0.4974      0.919 0.000 0.764 0.236
#> SRR1270779     2  0.4974      0.919 0.000 0.764 0.236
#> SRR1270780     2  0.4974      0.919 0.000 0.764 0.236
#> SRR1270781     2  0.4974      0.919 0.000 0.764 0.236
#> SRR1270782     2  0.4974      0.919 0.000 0.764 0.236
#> SRR1270783     2  0.4974      0.919 0.000 0.764 0.236
#> SRR1270784     2  0.4974      0.919 0.000 0.764 0.236
#> SRR1270785     2  0.0000      0.889 0.000 1.000 0.000
#> SRR1270786     2  0.0000      0.889 0.000 1.000 0.000
#> SRR1270787     2  0.0000      0.889 0.000 1.000 0.000
#> SRR1270788     2  0.0000      0.889 0.000 1.000 0.000
#> SRR1270789     2  0.0000      0.889 0.000 1.000 0.000
#> SRR1270790     2  0.0000      0.889 0.000 1.000 0.000
#> SRR1270791     2  0.0000      0.889 0.000 1.000 0.000
#> SRR1270792     2  0.0000      0.889 0.000 1.000 0.000
#> SRR1270793     2  0.0000      0.889 0.000 1.000 0.000
#> SRR1270794     2  0.0000      0.889 0.000 1.000 0.000
#> SRR1270795     2  0.0000      0.889 0.000 1.000 0.000
#> SRR1270796     2  0.0000      0.889 0.000 1.000 0.000
#> SRR1270797     2  0.0000      0.889 0.000 1.000 0.000
#> SRR1270798     2  0.0000      0.889 0.000 1.000 0.000
#> SRR1270799     2  0.0000      0.889 0.000 1.000 0.000
#> SRR1270800     2  0.0000      0.889 0.000 1.000 0.000
#> SRR1270801     2  0.0000      0.889 0.000 1.000 0.000
#> SRR1270802     2  0.0000      0.889 0.000 1.000 0.000
#> SRR1270803     2  0.0000      0.889 0.000 1.000 0.000
#> SRR1270804     2  0.0000      0.889 0.000 1.000 0.000
#> SRR1270805     3  0.6111      1.000 0.396 0.000 0.604
#> SRR1270806     3  0.6111      1.000 0.396 0.000 0.604
#> SRR1270807     3  0.6111      1.000 0.396 0.000 0.604
#> SRR1270808     3  0.6111      1.000 0.396 0.000 0.604
#> SRR1270809     3  0.6111      1.000 0.396 0.000 0.604
#> SRR1270810     3  0.6111      1.000 0.396 0.000 0.604
#> SRR1270811     3  0.6111      1.000 0.396 0.000 0.604
#> SRR1270812     3  0.6111      1.000 0.396 0.000 0.604
#> SRR1270813     3  0.6111      1.000 0.396 0.000 0.604
#> SRR1270814     3  0.6111      1.000 0.396 0.000 0.604
#> SRR1270815     3  0.6111      1.000 0.396 0.000 0.604
#> SRR1270816     3  0.6111      1.000 0.396 0.000 0.604
#> SRR1270817     3  0.6111      1.000 0.396 0.000 0.604
#> SRR1270818     3  0.6111      1.000 0.396 0.000 0.604
#> SRR1270819     3  0.6111      1.000 0.396 0.000 0.604
#> SRR1270820     3  0.6111      1.000 0.396 0.000 0.604
#> SRR1270821     3  0.6111      1.000 0.396 0.000 0.604
#> SRR1270822     3  0.6111      1.000 0.396 0.000 0.604
#> SRR1270823     3  0.6111      1.000 0.396 0.000 0.604
#> SRR1270824     3  0.6111      1.000 0.396 0.000 0.604
#> SRR1270825     3  0.6111      1.000 0.396 0.000 0.604
#> SRR1270826     3  0.6111      1.000 0.396 0.000 0.604
#> SRR1270827     3  0.6111      1.000 0.396 0.000 0.604
#> SRR1270828     3  0.6111      1.000 0.396 0.000 0.604
#> SRR1270829     3  0.6111      1.000 0.396 0.000 0.604
#> SRR1270830     3  0.6111      1.000 0.396 0.000 0.604
#> SRR1270831     3  0.6111      1.000 0.396 0.000 0.604
#> SRR1270832     3  0.6111      1.000 0.396 0.000 0.604
#> SRR1270833     1  0.4750      0.751 0.784 0.000 0.216
#> SRR1270834     1  0.4750      0.751 0.784 0.000 0.216
#> SRR1270835     1  0.4750      0.751 0.784 0.000 0.216
#> SRR1270836     1  0.4750      0.751 0.784 0.000 0.216
#> SRR1270837     1  0.4750      0.751 0.784 0.000 0.216
#> SRR1270838     1  0.4750      0.751 0.784 0.000 0.216
#> SRR1270839     1  0.4750      0.751 0.784 0.000 0.216
#> SRR1270840     1  0.4750      0.751 0.784 0.000 0.216
#> SRR1270841     1  0.4750      0.751 0.784 0.000 0.216
#> SRR1270842     1  0.4750      0.751 0.784 0.000 0.216
#> SRR1270843     1  0.4750      0.751 0.784 0.000 0.216
#> SRR1270844     1  0.4750      0.751 0.784 0.000 0.216
#> SRR1270845     1  0.4750      0.751 0.784 0.000 0.216
#> SRR1270846     1  0.4750      0.751 0.784 0.000 0.216
#> SRR1270847     1  0.4750      0.751 0.784 0.000 0.216
#> SRR1270848     1  0.4750      0.751 0.784 0.000 0.216
#> SRR1270849     1  0.4750      0.751 0.784 0.000 0.216
#> SRR1270850     1  0.4750      0.751 0.784 0.000 0.216
#> SRR1270851     2  0.4974      0.919 0.000 0.764 0.236
#> SRR1270852     2  0.4974      0.919 0.000 0.764 0.236
#> SRR1270853     2  0.4974      0.919 0.000 0.764 0.236
#> SRR1270854     2  0.4974      0.919 0.000 0.764 0.236
#> SRR1270855     2  0.4974      0.919 0.000 0.764 0.236
#> SRR1270856     2  0.4974      0.919 0.000 0.764 0.236
#> SRR1270857     2  0.4974      0.919 0.000 0.764 0.236

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1270715     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1270716     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1270717     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1270718     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1270719     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1270720     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1270721     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1270722     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1270723     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1270724     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1270725     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1270726     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1270727     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1270728     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1270729     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1270730     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1270731     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1270732     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1270733     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1270734     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1270735     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1270736     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1270737     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1270738     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1270739     1  0.0000      0.977 1.000 0.000 0.000 0.000
#> SRR1270740     1  0.0921      0.976 0.972 0.000 0.000 0.028
#> SRR1270741     1  0.0921      0.976 0.972 0.000 0.000 0.028
#> SRR1270742     1  0.0921      0.976 0.972 0.000 0.000 0.028
#> SRR1270743     1  0.0921      0.976 0.972 0.000 0.000 0.028
#> SRR1270744     1  0.0921      0.976 0.972 0.000 0.000 0.028
#> SRR1270745     1  0.0921      0.976 0.972 0.000 0.000 0.028
#> SRR1270746     1  0.0921      0.976 0.972 0.000 0.000 0.028
#> SRR1270747     1  0.0921      0.976 0.972 0.000 0.000 0.028
#> SRR1270748     1  0.0921      0.976 0.972 0.000 0.000 0.028
#> SRR1270749     1  0.0921      0.976 0.972 0.000 0.000 0.028
#> SRR1270750     1  0.0921      0.976 0.972 0.000 0.000 0.028
#> SRR1270751     1  0.0921      0.976 0.972 0.000 0.000 0.028
#> SRR1270752     1  0.0921      0.976 0.972 0.000 0.000 0.028
#> SRR1270753     1  0.0921      0.976 0.972 0.000 0.000 0.028
#> SRR1270754     1  0.0921      0.976 0.972 0.000 0.000 0.028
#> SRR1270755     1  0.0921      0.976 0.972 0.000 0.000 0.028
#> SRR1270756     1  0.0921      0.976 0.972 0.000 0.000 0.028
#> SRR1270757     1  0.0921      0.976 0.972 0.000 0.000 0.028
#> SRR1270758     1  0.0921      0.976 0.972 0.000 0.000 0.028
#> SRR1270759     1  0.0921      0.976 0.972 0.000 0.000 0.028
#> SRR1270760     1  0.0921      0.976 0.972 0.000 0.000 0.028
#> SRR1270761     1  0.0921      0.976 0.972 0.000 0.000 0.028
#> SRR1270762     1  0.0921      0.976 0.972 0.000 0.000 0.028
#> SRR1270763     1  0.0921      0.976 0.972 0.000 0.000 0.028
#> SRR1270764     1  0.0921      0.976 0.972 0.000 0.000 0.028
#> SRR1270765     2  0.0000      0.861 0.000 1.000 0.000 0.000
#> SRR1270766     2  0.0000      0.861 0.000 1.000 0.000 0.000
#> SRR1270767     2  0.0000      0.861 0.000 1.000 0.000 0.000
#> SRR1270768     2  0.0188      0.861 0.000 0.996 0.004 0.000
#> SRR1270769     2  0.0188      0.861 0.000 0.996 0.004 0.000
#> SRR1270770     2  0.0188      0.861 0.000 0.996 0.004 0.000
#> SRR1270771     2  0.0188      0.861 0.000 0.996 0.004 0.000
#> SRR1270772     2  0.1474      0.857 0.000 0.948 0.052 0.000
#> SRR1270773     2  0.1474      0.857 0.000 0.948 0.052 0.000
#> SRR1270774     2  0.1474      0.857 0.000 0.948 0.052 0.000
#> SRR1270775     2  0.0000      0.861 0.000 1.000 0.000 0.000
#> SRR1270776     2  0.0188      0.861 0.000 0.996 0.004 0.000
#> SRR1270777     2  0.0188      0.861 0.000 0.996 0.004 0.000
#> SRR1270778     2  0.0000      0.861 0.000 1.000 0.000 0.000
#> SRR1270779     2  0.0188      0.861 0.000 0.996 0.004 0.000
#> SRR1270780     2  0.0188      0.861 0.000 0.996 0.004 0.000
#> SRR1270781     2  0.1474      0.857 0.000 0.948 0.052 0.000
#> SRR1270782     2  0.1474      0.857 0.000 0.948 0.052 0.000
#> SRR1270783     2  0.0188      0.861 0.000 0.996 0.004 0.000
#> SRR1270784     2  0.0188      0.861 0.000 0.996 0.004 0.000
#> SRR1270785     2  0.6013      0.813 0.000 0.640 0.072 0.288
#> SRR1270786     2  0.6013      0.813 0.000 0.640 0.072 0.288
#> SRR1270787     2  0.6013      0.813 0.000 0.640 0.072 0.288
#> SRR1270788     2  0.5678      0.814 0.000 0.640 0.044 0.316
#> SRR1270789     2  0.5678      0.814 0.000 0.640 0.044 0.316
#> SRR1270790     2  0.5678      0.814 0.000 0.640 0.044 0.316
#> SRR1270791     2  0.5678      0.814 0.000 0.640 0.044 0.316
#> SRR1270792     2  0.6013      0.813 0.000 0.640 0.072 0.288
#> SRR1270793     2  0.6013      0.813 0.000 0.640 0.072 0.288
#> SRR1270794     2  0.6013      0.813 0.000 0.640 0.072 0.288
#> SRR1270795     2  0.5619      0.814 0.000 0.640 0.040 0.320
#> SRR1270796     2  0.5619      0.814 0.000 0.640 0.040 0.320
#> SRR1270797     2  0.5619      0.814 0.000 0.640 0.040 0.320
#> SRR1270798     2  0.5619      0.814 0.000 0.640 0.040 0.320
#> SRR1270799     2  0.5678      0.814 0.000 0.640 0.044 0.316
#> SRR1270800     2  0.5678      0.814 0.000 0.640 0.044 0.316
#> SRR1270801     2  0.5733      0.814 0.000 0.640 0.048 0.312
#> SRR1270802     2  0.5733      0.814 0.000 0.640 0.048 0.312
#> SRR1270803     2  0.5678      0.814 0.000 0.640 0.044 0.316
#> SRR1270804     2  0.5678      0.814 0.000 0.640 0.044 0.316
#> SRR1270805     3  0.5174      0.958 0.152 0.000 0.756 0.092
#> SRR1270806     3  0.5174      0.958 0.152 0.000 0.756 0.092
#> SRR1270807     3  0.5174      0.958 0.152 0.000 0.756 0.092
#> SRR1270808     3  0.5174      0.958 0.152 0.000 0.756 0.092
#> SRR1270809     3  0.5174      0.958 0.152 0.000 0.756 0.092
#> SRR1270810     3  0.5174      0.958 0.152 0.000 0.756 0.092
#> SRR1270811     3  0.5174      0.958 0.152 0.000 0.756 0.092
#> SRR1270812     3  0.3074      0.958 0.152 0.000 0.848 0.000
#> SRR1270813     3  0.3074      0.958 0.152 0.000 0.848 0.000
#> SRR1270814     3  0.3074      0.958 0.152 0.000 0.848 0.000
#> SRR1270815     3  0.3074      0.958 0.152 0.000 0.848 0.000
#> SRR1270816     3  0.3074      0.958 0.152 0.000 0.848 0.000
#> SRR1270817     3  0.3074      0.958 0.152 0.000 0.848 0.000
#> SRR1270818     3  0.3074      0.958 0.152 0.000 0.848 0.000
#> SRR1270819     3  0.3074      0.958 0.152 0.000 0.848 0.000
#> SRR1270820     3  0.3074      0.958 0.152 0.000 0.848 0.000
#> SRR1270821     3  0.3074      0.958 0.152 0.000 0.848 0.000
#> SRR1270822     3  0.3074      0.958 0.152 0.000 0.848 0.000
#> SRR1270823     3  0.3074      0.958 0.152 0.000 0.848 0.000
#> SRR1270824     3  0.3074      0.958 0.152 0.000 0.848 0.000
#> SRR1270825     3  0.3074      0.958 0.152 0.000 0.848 0.000
#> SRR1270826     3  0.5174      0.958 0.152 0.000 0.756 0.092
#> SRR1270827     3  0.5174      0.958 0.152 0.000 0.756 0.092
#> SRR1270828     3  0.5174      0.958 0.152 0.000 0.756 0.092
#> SRR1270829     3  0.5174      0.958 0.152 0.000 0.756 0.092
#> SRR1270830     3  0.5174      0.958 0.152 0.000 0.756 0.092
#> SRR1270831     3  0.5174      0.958 0.152 0.000 0.756 0.092
#> SRR1270832     3  0.5174      0.958 0.152 0.000 0.756 0.092
#> SRR1270833     4  0.5959      0.992 0.388 0.000 0.044 0.568
#> SRR1270834     4  0.5959      0.992 0.388 0.000 0.044 0.568
#> SRR1270835     4  0.5638      0.992 0.388 0.000 0.028 0.584
#> SRR1270836     4  0.5638      0.992 0.388 0.000 0.028 0.584
#> SRR1270837     4  0.5723      0.991 0.388 0.000 0.032 0.580
#> SRR1270838     4  0.5723      0.991 0.388 0.000 0.032 0.580
#> SRR1270839     4  0.5723      0.991 0.388 0.000 0.032 0.580
#> SRR1270840     4  0.5638      0.992 0.388 0.000 0.028 0.584
#> SRR1270841     4  0.5638      0.992 0.388 0.000 0.028 0.584
#> SRR1270842     4  0.5638      0.992 0.388 0.000 0.028 0.584
#> SRR1270843     4  0.5638      0.992 0.388 0.000 0.028 0.584
#> SRR1270844     4  0.6031      0.991 0.388 0.000 0.048 0.564
#> SRR1270845     4  0.6031      0.991 0.388 0.000 0.048 0.564
#> SRR1270846     4  0.6031      0.991 0.388 0.000 0.048 0.564
#> SRR1270847     4  0.5959      0.992 0.388 0.000 0.044 0.568
#> SRR1270848     4  0.5959      0.992 0.388 0.000 0.044 0.568
#> SRR1270849     4  0.5959      0.992 0.388 0.000 0.044 0.568
#> SRR1270850     4  0.5959      0.992 0.388 0.000 0.044 0.568
#> SRR1270851     2  0.1474      0.857 0.000 0.948 0.052 0.000
#> SRR1270852     2  0.1474      0.857 0.000 0.948 0.052 0.000
#> SRR1270853     2  0.1474      0.857 0.000 0.948 0.052 0.000
#> SRR1270854     2  0.0000      0.861 0.000 1.000 0.000 0.000
#> SRR1270855     2  0.0000      0.861 0.000 1.000 0.000 0.000
#> SRR1270856     2  0.0000      0.861 0.000 1.000 0.000 0.000
#> SRR1270857     2  0.0000      0.861 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1270715     1  0.2648      0.794 0.848 0.000 0.000 0.000 0.152
#> SRR1270716     1  0.2648      0.794 0.848 0.000 0.000 0.000 0.152
#> SRR1270717     1  0.2648      0.794 0.848 0.000 0.000 0.000 0.152
#> SRR1270718     1  0.2648      0.794 0.848 0.000 0.000 0.000 0.152
#> SRR1270719     1  0.2648      0.794 0.848 0.000 0.000 0.000 0.152
#> SRR1270720     1  0.2648      0.794 0.848 0.000 0.000 0.000 0.152
#> SRR1270721     1  0.2648      0.794 0.848 0.000 0.000 0.000 0.152
#> SRR1270722     1  0.0404      0.843 0.988 0.000 0.000 0.012 0.000
#> SRR1270723     1  0.0404      0.843 0.988 0.000 0.000 0.012 0.000
#> SRR1270724     1  0.0404      0.843 0.988 0.000 0.000 0.012 0.000
#> SRR1270725     1  0.1195      0.838 0.960 0.000 0.000 0.012 0.028
#> SRR1270726     1  0.1195      0.838 0.960 0.000 0.000 0.012 0.028
#> SRR1270727     1  0.1195      0.838 0.960 0.000 0.000 0.012 0.028
#> SRR1270728     1  0.1195      0.838 0.960 0.000 0.000 0.012 0.028
#> SRR1270729     1  0.2648      0.794 0.848 0.000 0.000 0.000 0.152
#> SRR1270730     1  0.2648      0.794 0.848 0.000 0.000 0.000 0.152
#> SRR1270731     1  0.2648      0.794 0.848 0.000 0.000 0.000 0.152
#> SRR1270732     1  0.2648      0.794 0.848 0.000 0.000 0.000 0.152
#> SRR1270733     1  0.2648      0.794 0.848 0.000 0.000 0.000 0.152
#> SRR1270734     1  0.2648      0.794 0.848 0.000 0.000 0.000 0.152
#> SRR1270735     1  0.2648      0.794 0.848 0.000 0.000 0.000 0.152
#> SRR1270736     1  0.1195      0.838 0.960 0.000 0.000 0.012 0.028
#> SRR1270737     1  0.1195      0.838 0.960 0.000 0.000 0.012 0.028
#> SRR1270738     1  0.2909      0.794 0.848 0.000 0.000 0.012 0.140
#> SRR1270739     1  0.2909      0.794 0.848 0.000 0.000 0.012 0.140
#> SRR1270740     1  0.2795      0.851 0.872 0.000 0.000 0.028 0.100
#> SRR1270741     1  0.2795      0.851 0.872 0.000 0.000 0.028 0.100
#> SRR1270742     1  0.2795      0.851 0.872 0.000 0.000 0.028 0.100
#> SRR1270743     1  0.2900      0.851 0.864 0.000 0.000 0.028 0.108
#> SRR1270744     1  0.2900      0.851 0.864 0.000 0.000 0.028 0.108
#> SRR1270745     1  0.2900      0.851 0.864 0.000 0.000 0.028 0.108
#> SRR1270746     1  0.2900      0.851 0.864 0.000 0.000 0.028 0.108
#> SRR1270747     1  0.2953      0.849 0.868 0.000 0.004 0.028 0.100
#> SRR1270748     1  0.2953      0.849 0.868 0.000 0.004 0.028 0.100
#> SRR1270749     1  0.2953      0.849 0.868 0.000 0.004 0.028 0.100
#> SRR1270750     1  0.2795      0.851 0.872 0.000 0.000 0.028 0.100
#> SRR1270751     1  0.2795      0.851 0.872 0.000 0.000 0.028 0.100
#> SRR1270752     1  0.2795      0.851 0.872 0.000 0.000 0.028 0.100
#> SRR1270753     1  0.2795      0.851 0.872 0.000 0.000 0.028 0.100
#> SRR1270754     1  0.2953      0.849 0.868 0.000 0.004 0.028 0.100
#> SRR1270755     1  0.2953      0.849 0.868 0.000 0.004 0.028 0.100
#> SRR1270756     1  0.2953      0.849 0.868 0.000 0.004 0.028 0.100
#> SRR1270757     1  0.2795      0.851 0.872 0.000 0.000 0.028 0.100
#> SRR1270758     1  0.2795      0.851 0.872 0.000 0.000 0.028 0.100
#> SRR1270759     1  0.2795      0.851 0.872 0.000 0.000 0.028 0.100
#> SRR1270760     1  0.2795      0.851 0.872 0.000 0.000 0.028 0.100
#> SRR1270761     1  0.2795      0.851 0.872 0.000 0.000 0.028 0.100
#> SRR1270762     1  0.2795      0.851 0.872 0.000 0.000 0.028 0.100
#> SRR1270763     1  0.2795      0.851 0.872 0.000 0.000 0.028 0.100
#> SRR1270764     1  0.2795      0.851 0.872 0.000 0.000 0.028 0.100
#> SRR1270765     2  0.0000      0.572 0.000 1.000 0.000 0.000 0.000
#> SRR1270766     2  0.0000      0.572 0.000 1.000 0.000 0.000 0.000
#> SRR1270767     2  0.0000      0.572 0.000 1.000 0.000 0.000 0.000
#> SRR1270768     2  0.0510      0.569 0.000 0.984 0.016 0.000 0.000
#> SRR1270769     2  0.0510      0.569 0.000 0.984 0.016 0.000 0.000
#> SRR1270770     2  0.0510      0.569 0.000 0.984 0.016 0.000 0.000
#> SRR1270771     2  0.0510      0.569 0.000 0.984 0.016 0.000 0.000
#> SRR1270772     2  0.3145      0.505 0.000 0.844 0.012 0.136 0.008
#> SRR1270773     2  0.3145      0.505 0.000 0.844 0.012 0.136 0.008
#> SRR1270774     2  0.3145      0.505 0.000 0.844 0.012 0.136 0.008
#> SRR1270775     2  0.0000      0.572 0.000 1.000 0.000 0.000 0.000
#> SRR1270776     2  0.0000      0.572 0.000 1.000 0.000 0.000 0.000
#> SRR1270777     2  0.0000      0.572 0.000 1.000 0.000 0.000 0.000
#> SRR1270778     2  0.0000      0.572 0.000 1.000 0.000 0.000 0.000
#> SRR1270779     2  0.0000      0.572 0.000 1.000 0.000 0.000 0.000
#> SRR1270780     2  0.0000      0.572 0.000 1.000 0.000 0.000 0.000
#> SRR1270781     2  0.3145      0.505 0.000 0.844 0.012 0.136 0.008
#> SRR1270782     2  0.3145      0.505 0.000 0.844 0.012 0.136 0.008
#> SRR1270783     2  0.0162      0.572 0.000 0.996 0.004 0.000 0.000
#> SRR1270784     2  0.0162      0.572 0.000 0.996 0.004 0.000 0.000
#> SRR1270785     2  0.5778     -0.872 0.000 0.484 0.036 0.028 0.452
#> SRR1270786     2  0.5778     -0.872 0.000 0.484 0.036 0.028 0.452
#> SRR1270787     2  0.5778     -0.872 0.000 0.484 0.036 0.028 0.452
#> SRR1270788     2  0.5160     -0.934 0.000 0.492 0.008 0.024 0.476
#> SRR1270789     2  0.5160     -0.934 0.000 0.492 0.008 0.024 0.476
#> SRR1270790     2  0.5160     -0.934 0.000 0.492 0.008 0.024 0.476
#> SRR1270791     2  0.5160     -0.934 0.000 0.492 0.008 0.024 0.476
#> SRR1270792     2  0.5551     -0.877 0.000 0.484 0.036 0.016 0.464
#> SRR1270793     2  0.5551     -0.877 0.000 0.484 0.036 0.016 0.464
#> SRR1270794     2  0.5551     -0.877 0.000 0.484 0.036 0.016 0.464
#> SRR1270795     5  0.4451      1.000 0.000 0.492 0.000 0.004 0.504
#> SRR1270796     5  0.4451      1.000 0.000 0.492 0.000 0.004 0.504
#> SRR1270797     5  0.4451      1.000 0.000 0.492 0.000 0.004 0.504
#> SRR1270798     5  0.4451      1.000 0.000 0.492 0.000 0.004 0.504
#> SRR1270799     2  0.5160     -0.934 0.000 0.492 0.008 0.024 0.476
#> SRR1270800     2  0.5160     -0.934 0.000 0.492 0.008 0.024 0.476
#> SRR1270801     2  0.4816     -0.974 0.000 0.492 0.008 0.008 0.492
#> SRR1270802     2  0.4816     -0.974 0.000 0.492 0.008 0.008 0.492
#> SRR1270803     2  0.4913     -0.951 0.000 0.492 0.008 0.012 0.488
#> SRR1270804     2  0.4913     -0.951 0.000 0.492 0.008 0.012 0.488
#> SRR1270805     3  0.2011      0.902 0.088 0.000 0.908 0.000 0.004
#> SRR1270806     3  0.2011      0.902 0.088 0.000 0.908 0.000 0.004
#> SRR1270807     3  0.2011      0.902 0.088 0.000 0.908 0.000 0.004
#> SRR1270808     3  0.2011      0.902 0.088 0.000 0.908 0.004 0.000
#> SRR1270809     3  0.2011      0.902 0.088 0.000 0.908 0.004 0.000
#> SRR1270810     3  0.2011      0.902 0.088 0.000 0.908 0.004 0.000
#> SRR1270811     3  0.2011      0.902 0.088 0.000 0.908 0.004 0.000
#> SRR1270812     3  0.5807      0.901 0.088 0.000 0.696 0.072 0.144
#> SRR1270813     3  0.5807      0.901 0.088 0.000 0.696 0.072 0.144
#> SRR1270814     3  0.5807      0.901 0.088 0.000 0.696 0.072 0.144
#> SRR1270815     3  0.5807      0.901 0.088 0.000 0.696 0.072 0.144
#> SRR1270816     3  0.5807      0.901 0.088 0.000 0.696 0.072 0.144
#> SRR1270817     3  0.5807      0.901 0.088 0.000 0.696 0.072 0.144
#> SRR1270818     3  0.5807      0.901 0.088 0.000 0.696 0.072 0.144
#> SRR1270819     3  0.5544      0.901 0.088 0.000 0.712 0.052 0.148
#> SRR1270820     3  0.5544      0.901 0.088 0.000 0.712 0.052 0.148
#> SRR1270821     3  0.5544      0.901 0.088 0.000 0.712 0.052 0.148
#> SRR1270822     3  0.5568      0.901 0.088 0.000 0.712 0.056 0.144
#> SRR1270823     3  0.5568      0.901 0.088 0.000 0.712 0.056 0.144
#> SRR1270824     3  0.5568      0.901 0.088 0.000 0.712 0.056 0.144
#> SRR1270825     3  0.5568      0.901 0.088 0.000 0.712 0.056 0.144
#> SRR1270826     3  0.2644      0.903 0.088 0.000 0.888 0.012 0.012
#> SRR1270827     3  0.2644      0.903 0.088 0.000 0.888 0.012 0.012
#> SRR1270828     3  0.2644      0.903 0.088 0.000 0.888 0.012 0.012
#> SRR1270829     3  0.2532      0.902 0.088 0.000 0.892 0.012 0.008
#> SRR1270830     3  0.2532      0.902 0.088 0.000 0.892 0.012 0.008
#> SRR1270831     3  0.2532      0.902 0.088 0.000 0.892 0.012 0.008
#> SRR1270832     3  0.2532      0.902 0.088 0.000 0.892 0.012 0.008
#> SRR1270833     4  0.5623      0.968 0.252 0.000 0.036 0.656 0.056
#> SRR1270834     4  0.5623      0.968 0.252 0.000 0.036 0.656 0.056
#> SRR1270835     4  0.4250      0.968 0.252 0.000 0.028 0.720 0.000
#> SRR1270836     4  0.4250      0.968 0.252 0.000 0.028 0.720 0.000
#> SRR1270837     4  0.4644      0.966 0.252 0.000 0.024 0.708 0.016
#> SRR1270838     4  0.4644      0.966 0.252 0.000 0.024 0.708 0.016
#> SRR1270839     4  0.4644      0.966 0.252 0.000 0.024 0.708 0.016
#> SRR1270840     4  0.4250      0.968 0.252 0.000 0.028 0.720 0.000
#> SRR1270841     4  0.4250      0.968 0.252 0.000 0.028 0.720 0.000
#> SRR1270842     4  0.4250      0.968 0.252 0.000 0.028 0.720 0.000
#> SRR1270843     4  0.4250      0.968 0.252 0.000 0.028 0.720 0.000
#> SRR1270844     4  0.5798      0.966 0.252 0.000 0.036 0.644 0.068
#> SRR1270845     4  0.5798      0.966 0.252 0.000 0.036 0.644 0.068
#> SRR1270846     4  0.5798      0.966 0.252 0.000 0.036 0.644 0.068
#> SRR1270847     4  0.5623      0.968 0.252 0.000 0.036 0.656 0.056
#> SRR1270848     4  0.5623      0.968 0.252 0.000 0.036 0.656 0.056
#> SRR1270849     4  0.5623      0.968 0.252 0.000 0.036 0.656 0.056
#> SRR1270850     4  0.5623      0.968 0.252 0.000 0.036 0.656 0.056
#> SRR1270851     2  0.3145      0.505 0.000 0.844 0.012 0.136 0.008
#> SRR1270852     2  0.3145      0.505 0.000 0.844 0.012 0.136 0.008
#> SRR1270853     2  0.3145      0.505 0.000 0.844 0.012 0.136 0.008
#> SRR1270854     2  0.0162      0.572 0.000 0.996 0.000 0.004 0.000
#> SRR1270855     2  0.0162      0.572 0.000 0.996 0.000 0.004 0.000
#> SRR1270856     2  0.0000      0.572 0.000 1.000 0.000 0.000 0.000
#> SRR1270857     2  0.0162      0.572 0.000 0.996 0.000 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5 p6
#> SRR1270715     1  0.0000      0.704 1.000 0.000 0.000 0.000 0.000 NA
#> SRR1270716     1  0.0000      0.704 1.000 0.000 0.000 0.000 0.000 NA
#> SRR1270717     1  0.0000      0.704 1.000 0.000 0.000 0.000 0.000 NA
#> SRR1270718     1  0.0000      0.704 1.000 0.000 0.000 0.000 0.000 NA
#> SRR1270719     1  0.0000      0.704 1.000 0.000 0.000 0.000 0.000 NA
#> SRR1270720     1  0.0000      0.704 1.000 0.000 0.000 0.000 0.000 NA
#> SRR1270721     1  0.0000      0.704 1.000 0.000 0.000 0.000 0.000 NA
#> SRR1270722     1  0.4122      0.761 0.724 0.000 0.000 0.000 0.064 NA
#> SRR1270723     1  0.4122      0.761 0.724 0.000 0.000 0.000 0.064 NA
#> SRR1270724     1  0.4122      0.761 0.724 0.000 0.000 0.000 0.064 NA
#> SRR1270725     1  0.3624      0.754 0.784 0.000 0.000 0.000 0.060 NA
#> SRR1270726     1  0.3624      0.754 0.784 0.000 0.000 0.000 0.060 NA
#> SRR1270727     1  0.3624      0.754 0.784 0.000 0.000 0.000 0.060 NA
#> SRR1270728     1  0.3624      0.754 0.784 0.000 0.000 0.000 0.060 NA
#> SRR1270729     1  0.0000      0.704 1.000 0.000 0.000 0.000 0.000 NA
#> SRR1270730     1  0.0000      0.704 1.000 0.000 0.000 0.000 0.000 NA
#> SRR1270731     1  0.0000      0.704 1.000 0.000 0.000 0.000 0.000 NA
#> SRR1270732     1  0.0146      0.704 0.996 0.000 0.000 0.000 0.004 NA
#> SRR1270733     1  0.0146      0.704 0.996 0.000 0.000 0.000 0.004 NA
#> SRR1270734     1  0.0146      0.704 0.996 0.000 0.000 0.000 0.004 NA
#> SRR1270735     1  0.0146      0.704 0.996 0.000 0.000 0.000 0.004 NA
#> SRR1270736     1  0.3695      0.754 0.776 0.000 0.000 0.000 0.060 NA
#> SRR1270737     1  0.3695      0.754 0.776 0.000 0.000 0.000 0.060 NA
#> SRR1270738     1  0.1434      0.704 0.940 0.000 0.000 0.000 0.048 NA
#> SRR1270739     1  0.1434      0.704 0.940 0.000 0.000 0.000 0.048 NA
#> SRR1270740     1  0.4561      0.774 0.536 0.000 0.000 0.036 0.000 NA
#> SRR1270741     1  0.4561      0.774 0.536 0.000 0.000 0.036 0.000 NA
#> SRR1270742     1  0.4561      0.774 0.536 0.000 0.000 0.036 0.000 NA
#> SRR1270743     1  0.5173      0.772 0.548 0.000 0.000 0.036 0.032 NA
#> SRR1270744     1  0.5173      0.772 0.548 0.000 0.000 0.036 0.032 NA
#> SRR1270745     1  0.5173      0.772 0.548 0.000 0.000 0.036 0.032 NA
#> SRR1270746     1  0.5173      0.772 0.548 0.000 0.000 0.036 0.032 NA
#> SRR1270747     1  0.5023      0.773 0.528 0.000 0.000 0.036 0.020 NA
#> SRR1270748     1  0.5023      0.773 0.528 0.000 0.000 0.036 0.020 NA
#> SRR1270749     1  0.5023      0.773 0.528 0.000 0.000 0.036 0.020 NA
#> SRR1270750     1  0.5366      0.773 0.528 0.000 0.000 0.036 0.044 NA
#> SRR1270751     1  0.5366      0.773 0.528 0.000 0.000 0.036 0.044 NA
#> SRR1270752     1  0.5366      0.773 0.528 0.000 0.000 0.036 0.044 NA
#> SRR1270753     1  0.5366      0.773 0.528 0.000 0.000 0.036 0.044 NA
#> SRR1270754     1  0.4561      0.774 0.536 0.000 0.000 0.036 0.000 NA
#> SRR1270755     1  0.4561      0.774 0.536 0.000 0.000 0.036 0.000 NA
#> SRR1270756     1  0.4561      0.774 0.536 0.000 0.000 0.036 0.000 NA
#> SRR1270757     1  0.5196      0.772 0.536 0.000 0.000 0.036 0.032 NA
#> SRR1270758     1  0.5196      0.772 0.536 0.000 0.000 0.036 0.032 NA
#> SRR1270759     1  0.5196      0.772 0.536 0.000 0.000 0.036 0.032 NA
#> SRR1270760     1  0.5196      0.772 0.536 0.000 0.000 0.036 0.032 NA
#> SRR1270761     1  0.5023      0.773 0.528 0.000 0.000 0.036 0.020 NA
#> SRR1270762     1  0.5023      0.773 0.528 0.000 0.000 0.036 0.020 NA
#> SRR1270763     1  0.5414      0.772 0.528 0.000 0.000 0.036 0.048 NA
#> SRR1270764     1  0.5414      0.772 0.528 0.000 0.000 0.036 0.048 NA
#> SRR1270765     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270766     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270767     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270768     2  0.0767      0.910 0.000 0.976 0.008 0.012 0.000 NA
#> SRR1270769     2  0.0767      0.910 0.000 0.976 0.008 0.012 0.000 NA
#> SRR1270770     2  0.0767      0.910 0.000 0.976 0.008 0.012 0.000 NA
#> SRR1270771     2  0.0767      0.910 0.000 0.976 0.008 0.012 0.000 NA
#> SRR1270772     2  0.3141      0.805 0.000 0.788 0.000 0.012 0.000 NA
#> SRR1270773     2  0.3141      0.805 0.000 0.788 0.000 0.012 0.000 NA
#> SRR1270774     2  0.3141      0.805 0.000 0.788 0.000 0.012 0.000 NA
#> SRR1270775     2  0.0146      0.913 0.000 0.996 0.000 0.004 0.000 NA
#> SRR1270776     2  0.0146      0.912 0.000 0.996 0.000 0.000 0.000 NA
#> SRR1270777     2  0.0146      0.912 0.000 0.996 0.000 0.000 0.000 NA
#> SRR1270778     2  0.0146      0.913 0.000 0.996 0.000 0.004 0.000 NA
#> SRR1270779     2  0.0291      0.912 0.000 0.992 0.000 0.004 0.000 NA
#> SRR1270780     2  0.0291      0.912 0.000 0.992 0.000 0.004 0.000 NA
#> SRR1270781     2  0.3141      0.805 0.000 0.788 0.000 0.012 0.000 NA
#> SRR1270782     2  0.3141      0.805 0.000 0.788 0.000 0.012 0.000 NA
#> SRR1270783     2  0.0291      0.912 0.000 0.992 0.000 0.004 0.000 NA
#> SRR1270784     2  0.0291      0.912 0.000 0.992 0.000 0.004 0.000 NA
#> SRR1270785     5  0.5281      0.920 0.000 0.324 0.000 0.028 0.588 NA
#> SRR1270786     5  0.5281      0.920 0.000 0.324 0.000 0.028 0.588 NA
#> SRR1270787     5  0.5281      0.920 0.000 0.324 0.000 0.028 0.588 NA
#> SRR1270788     5  0.5313      0.925 0.000 0.324 0.000 0.040 0.588 NA
#> SRR1270789     5  0.5313      0.925 0.000 0.324 0.000 0.040 0.588 NA
#> SRR1270790     5  0.5313      0.925 0.000 0.324 0.000 0.040 0.588 NA
#> SRR1270791     5  0.5313      0.925 0.000 0.324 0.000 0.040 0.588 NA
#> SRR1270792     5  0.5032      0.918 0.000 0.324 0.000 0.020 0.604 NA
#> SRR1270793     5  0.5032      0.918 0.000 0.324 0.000 0.020 0.604 NA
#> SRR1270794     5  0.5032      0.918 0.000 0.324 0.000 0.020 0.604 NA
#> SRR1270795     5  0.3758      0.936 0.000 0.324 0.008 0.000 0.668 NA
#> SRR1270796     5  0.3758      0.936 0.000 0.324 0.008 0.000 0.668 NA
#> SRR1270797     5  0.3758      0.936 0.000 0.324 0.008 0.000 0.668 NA
#> SRR1270798     5  0.3758      0.936 0.000 0.324 0.008 0.000 0.668 NA
#> SRR1270799     5  0.5385      0.924 0.000 0.324 0.004 0.036 0.588 NA
#> SRR1270800     5  0.5385      0.924 0.000 0.324 0.004 0.036 0.588 NA
#> SRR1270801     5  0.4438      0.931 0.000 0.324 0.000 0.016 0.640 NA
#> SRR1270802     5  0.4438      0.931 0.000 0.324 0.000 0.016 0.640 NA
#> SRR1270803     5  0.5333      0.925 0.000 0.324 0.012 0.028 0.596 NA
#> SRR1270804     5  0.5333      0.925 0.000 0.324 0.012 0.028 0.596 NA
#> SRR1270805     3  0.1844      0.868 0.040 0.000 0.928 0.000 0.016 NA
#> SRR1270806     3  0.1844      0.868 0.040 0.000 0.928 0.000 0.016 NA
#> SRR1270807     3  0.1844      0.868 0.040 0.000 0.928 0.000 0.016 NA
#> SRR1270808     3  0.2016      0.868 0.040 0.000 0.920 0.000 0.024 NA
#> SRR1270809     3  0.2016      0.868 0.040 0.000 0.920 0.000 0.024 NA
#> SRR1270810     3  0.2016      0.868 0.040 0.000 0.920 0.000 0.024 NA
#> SRR1270811     3  0.2016      0.868 0.040 0.000 0.920 0.000 0.024 NA
#> SRR1270812     3  0.5026      0.870 0.040 0.000 0.696 0.000 0.088 NA
#> SRR1270813     3  0.5026      0.870 0.040 0.000 0.696 0.000 0.088 NA
#> SRR1270814     3  0.5026      0.870 0.040 0.000 0.696 0.000 0.088 NA
#> SRR1270815     3  0.5133      0.870 0.040 0.000 0.696 0.004 0.088 NA
#> SRR1270816     3  0.5133      0.870 0.040 0.000 0.696 0.004 0.088 NA
#> SRR1270817     3  0.5133      0.870 0.040 0.000 0.696 0.004 0.088 NA
#> SRR1270818     3  0.5133      0.870 0.040 0.000 0.696 0.004 0.088 NA
#> SRR1270819     3  0.5161      0.870 0.040 0.000 0.680 0.000 0.092 NA
#> SRR1270820     3  0.5161      0.870 0.040 0.000 0.680 0.000 0.092 NA
#> SRR1270821     3  0.5161      0.870 0.040 0.000 0.680 0.000 0.092 NA
#> SRR1270822     3  0.5219      0.870 0.040 0.000 0.676 0.000 0.100 NA
#> SRR1270823     3  0.5219      0.870 0.040 0.000 0.676 0.000 0.100 NA
#> SRR1270824     3  0.5219      0.870 0.040 0.000 0.676 0.000 0.100 NA
#> SRR1270825     3  0.5219      0.870 0.040 0.000 0.676 0.000 0.100 NA
#> SRR1270826     3  0.1340      0.868 0.040 0.000 0.948 0.008 0.000 NA
#> SRR1270827     3  0.1340      0.868 0.040 0.000 0.948 0.008 0.000 NA
#> SRR1270828     3  0.1340      0.868 0.040 0.000 0.948 0.008 0.000 NA
#> SRR1270829     3  0.1484      0.868 0.040 0.000 0.944 0.008 0.004 NA
#> SRR1270830     3  0.1484      0.868 0.040 0.000 0.944 0.008 0.004 NA
#> SRR1270831     3  0.1484      0.868 0.040 0.000 0.944 0.008 0.004 NA
#> SRR1270832     3  0.1484      0.868 0.040 0.000 0.944 0.008 0.004 NA
#> SRR1270833     4  0.4911      0.942 0.092 0.000 0.024 0.748 0.096 NA
#> SRR1270834     4  0.4911      0.942 0.092 0.000 0.024 0.748 0.096 NA
#> SRR1270835     4  0.2214      0.942 0.092 0.000 0.012 0.892 0.000 NA
#> SRR1270836     4  0.2214      0.942 0.092 0.000 0.012 0.892 0.000 NA
#> SRR1270837     4  0.2426      0.940 0.092 0.000 0.012 0.884 0.000 NA
#> SRR1270838     4  0.2426      0.940 0.092 0.000 0.012 0.884 0.000 NA
#> SRR1270839     4  0.2426      0.940 0.092 0.000 0.012 0.884 0.000 NA
#> SRR1270840     4  0.2070      0.942 0.092 0.000 0.012 0.896 0.000 NA
#> SRR1270841     4  0.2070      0.942 0.092 0.000 0.012 0.896 0.000 NA
#> SRR1270842     4  0.2070      0.942 0.092 0.000 0.012 0.896 0.000 NA
#> SRR1270843     4  0.2070      0.942 0.092 0.000 0.012 0.896 0.000 NA
#> SRR1270844     4  0.5097      0.941 0.092 0.000 0.024 0.736 0.096 NA
#> SRR1270845     4  0.5097      0.941 0.092 0.000 0.024 0.736 0.096 NA
#> SRR1270846     4  0.5097      0.941 0.092 0.000 0.024 0.736 0.096 NA
#> SRR1270847     4  0.4911      0.942 0.092 0.000 0.024 0.748 0.096 NA
#> SRR1270848     4  0.4911      0.942 0.092 0.000 0.024 0.748 0.096 NA
#> SRR1270849     4  0.4911      0.942 0.092 0.000 0.024 0.748 0.096 NA
#> SRR1270850     4  0.4911      0.942 0.092 0.000 0.024 0.748 0.096 NA
#> SRR1270851     2  0.3200      0.805 0.000 0.788 0.000 0.016 0.000 NA
#> SRR1270852     2  0.3200      0.805 0.000 0.788 0.000 0.016 0.000 NA
#> SRR1270853     2  0.3200      0.805 0.000 0.788 0.000 0.016 0.000 NA
#> SRR1270854     2  0.0692      0.910 0.000 0.976 0.000 0.004 0.000 NA
#> SRR1270855     2  0.0692      0.910 0.000 0.976 0.000 0.004 0.000 NA
#> SRR1270856     2  0.0603      0.911 0.000 0.980 0.000 0.004 0.000 NA
#> SRR1270857     2  0.0692      0.910 0.000 0.976 0.000 0.004 0.000 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14577 rows and 143 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.4450 0.556   0.556
#> 3 3 0.689           0.615       0.840         0.4406 0.809   0.656
#> 4 4 1.000           0.998       0.996         0.1240 0.831   0.583
#> 5 5 1.000           0.985       0.984         0.0738 0.946   0.808
#> 6 6 0.922           0.898       0.886         0.0467 0.978   0.902

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 4 5

There is also optional best \(k\) = 2 4 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1270715     1       0          1  1  0
#> SRR1270716     1       0          1  1  0
#> SRR1270717     1       0          1  1  0
#> SRR1270718     1       0          1  1  0
#> SRR1270719     1       0          1  1  0
#> SRR1270720     1       0          1  1  0
#> SRR1270721     1       0          1  1  0
#> SRR1270722     1       0          1  1  0
#> SRR1270723     1       0          1  1  0
#> SRR1270724     1       0          1  1  0
#> SRR1270725     1       0          1  1  0
#> SRR1270726     1       0          1  1  0
#> SRR1270727     1       0          1  1  0
#> SRR1270728     1       0          1  1  0
#> SRR1270729     1       0          1  1  0
#> SRR1270730     1       0          1  1  0
#> SRR1270731     1       0          1  1  0
#> SRR1270732     1       0          1  1  0
#> SRR1270733     1       0          1  1  0
#> SRR1270734     1       0          1  1  0
#> SRR1270735     1       0          1  1  0
#> SRR1270736     1       0          1  1  0
#> SRR1270737     1       0          1  1  0
#> SRR1270738     1       0          1  1  0
#> SRR1270739     1       0          1  1  0
#> SRR1270740     1       0          1  1  0
#> SRR1270741     1       0          1  1  0
#> SRR1270742     1       0          1  1  0
#> SRR1270743     1       0          1  1  0
#> SRR1270744     1       0          1  1  0
#> SRR1270745     1       0          1  1  0
#> SRR1270746     1       0          1  1  0
#> SRR1270747     1       0          1  1  0
#> SRR1270748     1       0          1  1  0
#> SRR1270749     1       0          1  1  0
#> SRR1270750     1       0          1  1  0
#> SRR1270751     1       0          1  1  0
#> SRR1270752     1       0          1  1  0
#> SRR1270753     1       0          1  1  0
#> SRR1270754     1       0          1  1  0
#> SRR1270755     1       0          1  1  0
#> SRR1270756     1       0          1  1  0
#> SRR1270757     1       0          1  1  0
#> SRR1270758     1       0          1  1  0
#> SRR1270759     1       0          1  1  0
#> SRR1270760     1       0          1  1  0
#> SRR1270761     1       0          1  1  0
#> SRR1270762     1       0          1  1  0
#> SRR1270763     1       0          1  1  0
#> SRR1270764     1       0          1  1  0
#> SRR1270765     2       0          1  0  1
#> SRR1270766     2       0          1  0  1
#> SRR1270767     2       0          1  0  1
#> SRR1270768     2       0          1  0  1
#> SRR1270769     2       0          1  0  1
#> SRR1270770     2       0          1  0  1
#> SRR1270771     2       0          1  0  1
#> SRR1270772     2       0          1  0  1
#> SRR1270773     2       0          1  0  1
#> SRR1270774     2       0          1  0  1
#> SRR1270775     2       0          1  0  1
#> SRR1270776     2       0          1  0  1
#> SRR1270777     2       0          1  0  1
#> SRR1270778     2       0          1  0  1
#> SRR1270779     2       0          1  0  1
#> SRR1270780     2       0          1  0  1
#> SRR1270781     2       0          1  0  1
#> SRR1270782     2       0          1  0  1
#> SRR1270783     2       0          1  0  1
#> SRR1270784     2       0          1  0  1
#> SRR1270785     2       0          1  0  1
#> SRR1270786     2       0          1  0  1
#> SRR1270787     2       0          1  0  1
#> SRR1270788     2       0          1  0  1
#> SRR1270789     2       0          1  0  1
#> SRR1270790     2       0          1  0  1
#> SRR1270791     2       0          1  0  1
#> SRR1270792     2       0          1  0  1
#> SRR1270793     2       0          1  0  1
#> SRR1270794     2       0          1  0  1
#> SRR1270795     2       0          1  0  1
#> SRR1270796     2       0          1  0  1
#> SRR1270797     2       0          1  0  1
#> SRR1270798     2       0          1  0  1
#> SRR1270799     2       0          1  0  1
#> SRR1270800     2       0          1  0  1
#> SRR1270801     2       0          1  0  1
#> SRR1270802     2       0          1  0  1
#> SRR1270803     2       0          1  0  1
#> SRR1270804     2       0          1  0  1
#> SRR1270805     1       0          1  1  0
#> SRR1270806     1       0          1  1  0
#> SRR1270807     1       0          1  1  0
#> SRR1270808     1       0          1  1  0
#> SRR1270809     1       0          1  1  0
#> SRR1270810     1       0          1  1  0
#> SRR1270811     1       0          1  1  0
#> SRR1270812     1       0          1  1  0
#> SRR1270813     1       0          1  1  0
#> SRR1270814     1       0          1  1  0
#> SRR1270815     1       0          1  1  0
#> SRR1270816     1       0          1  1  0
#> SRR1270817     1       0          1  1  0
#> SRR1270818     1       0          1  1  0
#> SRR1270819     1       0          1  1  0
#> SRR1270820     1       0          1  1  0
#> SRR1270821     1       0          1  1  0
#> SRR1270822     1       0          1  1  0
#> SRR1270823     1       0          1  1  0
#> SRR1270824     1       0          1  1  0
#> SRR1270825     1       0          1  1  0
#> SRR1270826     1       0          1  1  0
#> SRR1270827     1       0          1  1  0
#> SRR1270828     1       0          1  1  0
#> SRR1270829     1       0          1  1  0
#> SRR1270830     1       0          1  1  0
#> SRR1270831     1       0          1  1  0
#> SRR1270832     1       0          1  1  0
#> SRR1270833     1       0          1  1  0
#> SRR1270834     1       0          1  1  0
#> SRR1270835     1       0          1  1  0
#> SRR1270836     1       0          1  1  0
#> SRR1270837     1       0          1  1  0
#> SRR1270838     1       0          1  1  0
#> SRR1270839     1       0          1  1  0
#> SRR1270840     1       0          1  1  0
#> SRR1270841     1       0          1  1  0
#> SRR1270842     1       0          1  1  0
#> SRR1270843     1       0          1  1  0
#> SRR1270844     1       0          1  1  0
#> SRR1270845     1       0          1  1  0
#> SRR1270846     1       0          1  1  0
#> SRR1270847     1       0          1  1  0
#> SRR1270848     1       0          1  1  0
#> SRR1270849     1       0          1  1  0
#> SRR1270850     1       0          1  1  0
#> SRR1270851     2       0          1  0  1
#> SRR1270852     2       0          1  0  1
#> SRR1270853     2       0          1  0  1
#> SRR1270854     2       0          1  0  1
#> SRR1270855     2       0          1  0  1
#> SRR1270856     2       0          1  0  1
#> SRR1270857     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1 p2    p3
#> SRR1270715     3  0.6267     0.0373 0.452  0 0.548
#> SRR1270716     3  0.6267     0.0373 0.452  0 0.548
#> SRR1270717     3  0.6267     0.0373 0.452  0 0.548
#> SRR1270718     1  0.6291     0.2229 0.532  0 0.468
#> SRR1270719     1  0.6291     0.2229 0.532  0 0.468
#> SRR1270720     1  0.6291     0.2229 0.532  0 0.468
#> SRR1270721     1  0.6291     0.2229 0.532  0 0.468
#> SRR1270722     3  0.0424     0.5473 0.008  0 0.992
#> SRR1270723     3  0.0424     0.5473 0.008  0 0.992
#> SRR1270724     3  0.0424     0.5473 0.008  0 0.992
#> SRR1270725     3  0.6126     0.1965 0.400  0 0.600
#> SRR1270726     3  0.6126     0.1965 0.400  0 0.600
#> SRR1270727     3  0.6126     0.1965 0.400  0 0.600
#> SRR1270728     3  0.6126     0.1965 0.400  0 0.600
#> SRR1270729     1  0.6302     0.1835 0.520  0 0.480
#> SRR1270730     1  0.6302     0.1835 0.520  0 0.480
#> SRR1270731     1  0.6302     0.1835 0.520  0 0.480
#> SRR1270732     1  0.6008     0.4308 0.628  0 0.372
#> SRR1270733     1  0.6008     0.4308 0.628  0 0.372
#> SRR1270734     1  0.6008     0.4308 0.628  0 0.372
#> SRR1270735     1  0.6008     0.4308 0.628  0 0.372
#> SRR1270736     3  0.5810     0.2787 0.336  0 0.664
#> SRR1270737     3  0.5760     0.2878 0.328  0 0.672
#> SRR1270738     3  0.6307    -0.0975 0.488  0 0.512
#> SRR1270739     3  0.6307    -0.0975 0.488  0 0.512
#> SRR1270740     3  0.6095     0.2039 0.392  0 0.608
#> SRR1270741     3  0.6095     0.2039 0.392  0 0.608
#> SRR1270742     3  0.6095     0.2039 0.392  0 0.608
#> SRR1270743     3  0.6305    -0.1036 0.484  0 0.516
#> SRR1270744     3  0.6305    -0.1036 0.484  0 0.516
#> SRR1270745     3  0.6305    -0.1036 0.484  0 0.516
#> SRR1270746     3  0.6305    -0.1036 0.484  0 0.516
#> SRR1270747     3  0.0000     0.5506 0.000  0 1.000
#> SRR1270748     3  0.0000     0.5506 0.000  0 1.000
#> SRR1270749     3  0.0000     0.5506 0.000  0 1.000
#> SRR1270750     3  0.6095     0.2039 0.392  0 0.608
#> SRR1270751     3  0.6095     0.2039 0.392  0 0.608
#> SRR1270752     3  0.6095     0.2039 0.392  0 0.608
#> SRR1270753     3  0.6095     0.2039 0.392  0 0.608
#> SRR1270754     3  0.0000     0.5506 0.000  0 1.000
#> SRR1270755     3  0.0000     0.5506 0.000  0 1.000
#> SRR1270756     3  0.0000     0.5506 0.000  0 1.000
#> SRR1270757     3  0.6095     0.2039 0.392  0 0.608
#> SRR1270758     3  0.6095     0.2039 0.392  0 0.608
#> SRR1270759     3  0.6095     0.2039 0.392  0 0.608
#> SRR1270760     3  0.6095     0.2039 0.392  0 0.608
#> SRR1270761     3  0.6095     0.2039 0.392  0 0.608
#> SRR1270762     3  0.6095     0.2039 0.392  0 0.608
#> SRR1270763     3  0.6305    -0.1036 0.484  0 0.516
#> SRR1270764     3  0.6305    -0.1036 0.484  0 0.516
#> SRR1270765     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270766     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270767     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270768     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270769     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270770     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270771     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270772     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270773     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270774     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270775     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270776     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270777     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270778     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270779     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270780     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270781     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270782     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270783     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270784     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270785     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270786     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270787     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270788     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270789     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270790     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270791     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270792     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270793     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270794     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270795     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270796     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270797     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270798     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270799     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270800     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270801     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270802     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270803     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270804     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270805     3  0.4291     0.5778 0.180  0 0.820
#> SRR1270806     3  0.4291     0.5778 0.180  0 0.820
#> SRR1270807     3  0.4291     0.5778 0.180  0 0.820
#> SRR1270808     3  0.4291     0.5778 0.180  0 0.820
#> SRR1270809     3  0.4291     0.5778 0.180  0 0.820
#> SRR1270810     3  0.4291     0.5778 0.180  0 0.820
#> SRR1270811     3  0.4291     0.5778 0.180  0 0.820
#> SRR1270812     3  0.4291     0.5778 0.180  0 0.820
#> SRR1270813     3  0.4291     0.5778 0.180  0 0.820
#> SRR1270814     3  0.4291     0.5778 0.180  0 0.820
#> SRR1270815     3  0.4291     0.5778 0.180  0 0.820
#> SRR1270816     3  0.4291     0.5778 0.180  0 0.820
#> SRR1270817     3  0.4291     0.5778 0.180  0 0.820
#> SRR1270818     3  0.4291     0.5778 0.180  0 0.820
#> SRR1270819     3  0.4291     0.5778 0.180  0 0.820
#> SRR1270820     3  0.4291     0.5778 0.180  0 0.820
#> SRR1270821     3  0.4291     0.5778 0.180  0 0.820
#> SRR1270822     3  0.4291     0.5778 0.180  0 0.820
#> SRR1270823     3  0.4291     0.5778 0.180  0 0.820
#> SRR1270824     3  0.4291     0.5778 0.180  0 0.820
#> SRR1270825     3  0.4291     0.5778 0.180  0 0.820
#> SRR1270826     3  0.4291     0.5778 0.180  0 0.820
#> SRR1270827     3  0.4291     0.5778 0.180  0 0.820
#> SRR1270828     3  0.4291     0.5778 0.180  0 0.820
#> SRR1270829     3  0.4291     0.5778 0.180  0 0.820
#> SRR1270830     3  0.4291     0.5778 0.180  0 0.820
#> SRR1270831     3  0.4291     0.5778 0.180  0 0.820
#> SRR1270832     3  0.4291     0.5778 0.180  0 0.820
#> SRR1270833     1  0.0424     0.7389 0.992  0 0.008
#> SRR1270834     1  0.0424     0.7389 0.992  0 0.008
#> SRR1270835     1  0.0424     0.7389 0.992  0 0.008
#> SRR1270836     1  0.0424     0.7389 0.992  0 0.008
#> SRR1270837     1  0.0424     0.7389 0.992  0 0.008
#> SRR1270838     1  0.0424     0.7389 0.992  0 0.008
#> SRR1270839     1  0.0424     0.7389 0.992  0 0.008
#> SRR1270840     1  0.0424     0.7389 0.992  0 0.008
#> SRR1270841     1  0.0424     0.7389 0.992  0 0.008
#> SRR1270842     1  0.0424     0.7389 0.992  0 0.008
#> SRR1270843     1  0.0424     0.7389 0.992  0 0.008
#> SRR1270844     1  0.0424     0.7389 0.992  0 0.008
#> SRR1270845     1  0.0424     0.7389 0.992  0 0.008
#> SRR1270846     1  0.0424     0.7389 0.992  0 0.008
#> SRR1270847     1  0.0424     0.7389 0.992  0 0.008
#> SRR1270848     1  0.0424     0.7389 0.992  0 0.008
#> SRR1270849     1  0.0424     0.7389 0.992  0 0.008
#> SRR1270850     1  0.0424     0.7389 0.992  0 0.008
#> SRR1270851     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270852     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270853     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270854     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270855     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270856     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270857     2  0.0000     1.0000 0.000  1 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1270715     1  0.0188      0.994 0.996 0.000 0.000 0.004
#> SRR1270716     1  0.0188      0.994 0.996 0.000 0.000 0.004
#> SRR1270717     1  0.0188      0.994 0.996 0.000 0.000 0.004
#> SRR1270718     1  0.0188      0.994 0.996 0.000 0.000 0.004
#> SRR1270719     1  0.0188      0.994 0.996 0.000 0.000 0.004
#> SRR1270720     1  0.0188      0.994 0.996 0.000 0.000 0.004
#> SRR1270721     1  0.0188      0.994 0.996 0.000 0.000 0.004
#> SRR1270722     1  0.0188      0.995 0.996 0.000 0.004 0.000
#> SRR1270723     1  0.0188      0.995 0.996 0.000 0.004 0.000
#> SRR1270724     1  0.0188      0.995 0.996 0.000 0.004 0.000
#> SRR1270725     1  0.0000      0.994 1.000 0.000 0.000 0.000
#> SRR1270726     1  0.0000      0.994 1.000 0.000 0.000 0.000
#> SRR1270727     1  0.0000      0.994 1.000 0.000 0.000 0.000
#> SRR1270728     1  0.0000      0.994 1.000 0.000 0.000 0.000
#> SRR1270729     1  0.0188      0.994 0.996 0.000 0.000 0.004
#> SRR1270730     1  0.0188      0.994 0.996 0.000 0.000 0.004
#> SRR1270731     1  0.0188      0.994 0.996 0.000 0.000 0.004
#> SRR1270732     1  0.0188      0.994 0.996 0.000 0.000 0.004
#> SRR1270733     1  0.0188      0.994 0.996 0.000 0.000 0.004
#> SRR1270734     1  0.0188      0.994 0.996 0.000 0.000 0.004
#> SRR1270735     1  0.0188      0.994 0.996 0.000 0.000 0.004
#> SRR1270736     1  0.0000      0.994 1.000 0.000 0.000 0.000
#> SRR1270737     1  0.0000      0.994 1.000 0.000 0.000 0.000
#> SRR1270738     1  0.0000      0.994 1.000 0.000 0.000 0.000
#> SRR1270739     1  0.0000      0.994 1.000 0.000 0.000 0.000
#> SRR1270740     1  0.0336      0.995 0.992 0.000 0.008 0.000
#> SRR1270741     1  0.0336      0.995 0.992 0.000 0.008 0.000
#> SRR1270742     1  0.0336      0.995 0.992 0.000 0.008 0.000
#> SRR1270743     1  0.0336      0.995 0.992 0.000 0.008 0.000
#> SRR1270744     1  0.0336      0.995 0.992 0.000 0.008 0.000
#> SRR1270745     1  0.0336      0.995 0.992 0.000 0.008 0.000
#> SRR1270746     1  0.0336      0.995 0.992 0.000 0.008 0.000
#> SRR1270747     1  0.0336      0.995 0.992 0.000 0.008 0.000
#> SRR1270748     1  0.0336      0.995 0.992 0.000 0.008 0.000
#> SRR1270749     1  0.0336      0.995 0.992 0.000 0.008 0.000
#> SRR1270750     1  0.0336      0.995 0.992 0.000 0.008 0.000
#> SRR1270751     1  0.0336      0.995 0.992 0.000 0.008 0.000
#> SRR1270752     1  0.0336      0.995 0.992 0.000 0.008 0.000
#> SRR1270753     1  0.0336      0.995 0.992 0.000 0.008 0.000
#> SRR1270754     1  0.0336      0.995 0.992 0.000 0.008 0.000
#> SRR1270755     1  0.0336      0.995 0.992 0.000 0.008 0.000
#> SRR1270756     1  0.0336      0.995 0.992 0.000 0.008 0.000
#> SRR1270757     1  0.0336      0.995 0.992 0.000 0.008 0.000
#> SRR1270758     1  0.0336      0.995 0.992 0.000 0.008 0.000
#> SRR1270759     1  0.0336      0.995 0.992 0.000 0.008 0.000
#> SRR1270760     1  0.0336      0.995 0.992 0.000 0.008 0.000
#> SRR1270761     1  0.0336      0.995 0.992 0.000 0.008 0.000
#> SRR1270762     1  0.0336      0.995 0.992 0.000 0.008 0.000
#> SRR1270763     1  0.0336      0.995 0.992 0.000 0.008 0.000
#> SRR1270764     1  0.0336      0.995 0.992 0.000 0.008 0.000
#> SRR1270765     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270766     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270767     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270768     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270769     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270770     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270771     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270772     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270773     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270774     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270775     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270776     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270777     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270778     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270779     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270780     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270781     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270782     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270783     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270784     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270785     2  0.0188      0.998 0.000 0.996 0.004 0.000
#> SRR1270786     2  0.0188      0.998 0.000 0.996 0.004 0.000
#> SRR1270787     2  0.0188      0.998 0.000 0.996 0.004 0.000
#> SRR1270788     2  0.0188      0.998 0.000 0.996 0.004 0.000
#> SRR1270789     2  0.0188      0.998 0.000 0.996 0.004 0.000
#> SRR1270790     2  0.0188      0.998 0.000 0.996 0.004 0.000
#> SRR1270791     2  0.0188      0.998 0.000 0.996 0.004 0.000
#> SRR1270792     2  0.0188      0.998 0.000 0.996 0.004 0.000
#> SRR1270793     2  0.0188      0.998 0.000 0.996 0.004 0.000
#> SRR1270794     2  0.0188      0.998 0.000 0.996 0.004 0.000
#> SRR1270795     2  0.0188      0.998 0.000 0.996 0.004 0.000
#> SRR1270796     2  0.0188      0.998 0.000 0.996 0.004 0.000
#> SRR1270797     2  0.0188      0.998 0.000 0.996 0.004 0.000
#> SRR1270798     2  0.0188      0.998 0.000 0.996 0.004 0.000
#> SRR1270799     2  0.0188      0.998 0.000 0.996 0.004 0.000
#> SRR1270800     2  0.0188      0.998 0.000 0.996 0.004 0.000
#> SRR1270801     2  0.0188      0.998 0.000 0.996 0.004 0.000
#> SRR1270802     2  0.0188      0.998 0.000 0.996 0.004 0.000
#> SRR1270803     2  0.0188      0.998 0.000 0.996 0.004 0.000
#> SRR1270804     2  0.0188      0.998 0.000 0.996 0.004 0.000
#> SRR1270805     3  0.0188      1.000 0.004 0.000 0.996 0.000
#> SRR1270806     3  0.0188      1.000 0.004 0.000 0.996 0.000
#> SRR1270807     3  0.0188      1.000 0.004 0.000 0.996 0.000
#> SRR1270808     3  0.0188      1.000 0.004 0.000 0.996 0.000
#> SRR1270809     3  0.0188      1.000 0.004 0.000 0.996 0.000
#> SRR1270810     3  0.0188      1.000 0.004 0.000 0.996 0.000
#> SRR1270811     3  0.0188      1.000 0.004 0.000 0.996 0.000
#> SRR1270812     3  0.0188      1.000 0.004 0.000 0.996 0.000
#> SRR1270813     3  0.0188      1.000 0.004 0.000 0.996 0.000
#> SRR1270814     3  0.0188      1.000 0.004 0.000 0.996 0.000
#> SRR1270815     3  0.0188      1.000 0.004 0.000 0.996 0.000
#> SRR1270816     3  0.0188      1.000 0.004 0.000 0.996 0.000
#> SRR1270817     3  0.0188      1.000 0.004 0.000 0.996 0.000
#> SRR1270818     3  0.0188      1.000 0.004 0.000 0.996 0.000
#> SRR1270819     3  0.0188      1.000 0.004 0.000 0.996 0.000
#> SRR1270820     3  0.0188      1.000 0.004 0.000 0.996 0.000
#> SRR1270821     3  0.0188      1.000 0.004 0.000 0.996 0.000
#> SRR1270822     3  0.0188      1.000 0.004 0.000 0.996 0.000
#> SRR1270823     3  0.0188      1.000 0.004 0.000 0.996 0.000
#> SRR1270824     3  0.0188      1.000 0.004 0.000 0.996 0.000
#> SRR1270825     3  0.0188      1.000 0.004 0.000 0.996 0.000
#> SRR1270826     3  0.0188      1.000 0.004 0.000 0.996 0.000
#> SRR1270827     3  0.0188      1.000 0.004 0.000 0.996 0.000
#> SRR1270828     3  0.0188      1.000 0.004 0.000 0.996 0.000
#> SRR1270829     3  0.0188      1.000 0.004 0.000 0.996 0.000
#> SRR1270830     3  0.0188      1.000 0.004 0.000 0.996 0.000
#> SRR1270831     3  0.0188      1.000 0.004 0.000 0.996 0.000
#> SRR1270832     3  0.0188      1.000 0.004 0.000 0.996 0.000
#> SRR1270833     4  0.0188      1.000 0.000 0.000 0.004 0.996
#> SRR1270834     4  0.0188      1.000 0.000 0.000 0.004 0.996
#> SRR1270835     4  0.0188      1.000 0.000 0.000 0.004 0.996
#> SRR1270836     4  0.0188      1.000 0.000 0.000 0.004 0.996
#> SRR1270837     4  0.0188      1.000 0.000 0.000 0.004 0.996
#> SRR1270838     4  0.0188      1.000 0.000 0.000 0.004 0.996
#> SRR1270839     4  0.0188      1.000 0.000 0.000 0.004 0.996
#> SRR1270840     4  0.0188      1.000 0.000 0.000 0.004 0.996
#> SRR1270841     4  0.0188      1.000 0.000 0.000 0.004 0.996
#> SRR1270842     4  0.0188      1.000 0.000 0.000 0.004 0.996
#> SRR1270843     4  0.0188      1.000 0.000 0.000 0.004 0.996
#> SRR1270844     4  0.0188      1.000 0.000 0.000 0.004 0.996
#> SRR1270845     4  0.0188      1.000 0.000 0.000 0.004 0.996
#> SRR1270846     4  0.0188      1.000 0.000 0.000 0.004 0.996
#> SRR1270847     4  0.0188      1.000 0.000 0.000 0.004 0.996
#> SRR1270848     4  0.0188      1.000 0.000 0.000 0.004 0.996
#> SRR1270849     4  0.0188      1.000 0.000 0.000 0.004 0.996
#> SRR1270850     4  0.0188      1.000 0.000 0.000 0.004 0.996
#> SRR1270851     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270852     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270853     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270854     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270855     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270856     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270857     2  0.0000      0.999 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2 p3    p4    p5
#> SRR1270715     5  0.1197      0.969 0.048 0.000  0 0.000 0.952
#> SRR1270716     5  0.1197      0.969 0.048 0.000  0 0.000 0.952
#> SRR1270717     5  0.1197      0.969 0.048 0.000  0 0.000 0.952
#> SRR1270718     5  0.1197      0.969 0.048 0.000  0 0.000 0.952
#> SRR1270719     5  0.1197      0.969 0.048 0.000  0 0.000 0.952
#> SRR1270720     5  0.1197      0.969 0.048 0.000  0 0.000 0.952
#> SRR1270721     5  0.1197      0.969 0.048 0.000  0 0.000 0.952
#> SRR1270722     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> SRR1270723     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> SRR1270724     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> SRR1270725     1  0.0880      0.969 0.968 0.000  0 0.000 0.032
#> SRR1270726     1  0.0880      0.969 0.968 0.000  0 0.000 0.032
#> SRR1270727     1  0.0880      0.969 0.968 0.000  0 0.000 0.032
#> SRR1270728     1  0.0880      0.969 0.968 0.000  0 0.000 0.032
#> SRR1270729     5  0.1197      0.969 0.048 0.000  0 0.000 0.952
#> SRR1270730     5  0.1197      0.969 0.048 0.000  0 0.000 0.952
#> SRR1270731     5  0.1197      0.969 0.048 0.000  0 0.000 0.952
#> SRR1270732     5  0.1197      0.969 0.048 0.000  0 0.000 0.952
#> SRR1270733     5  0.1197      0.969 0.048 0.000  0 0.000 0.952
#> SRR1270734     5  0.1197      0.969 0.048 0.000  0 0.000 0.952
#> SRR1270735     5  0.1197      0.969 0.048 0.000  0 0.000 0.952
#> SRR1270736     1  0.0794      0.973 0.972 0.000  0 0.000 0.028
#> SRR1270737     1  0.0794      0.973 0.972 0.000  0 0.000 0.028
#> SRR1270738     5  0.3424      0.761 0.240 0.000  0 0.000 0.760
#> SRR1270739     5  0.3424      0.761 0.240 0.000  0 0.000 0.760
#> SRR1270740     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> SRR1270741     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> SRR1270742     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> SRR1270743     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> SRR1270744     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> SRR1270745     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> SRR1270746     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> SRR1270747     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> SRR1270748     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> SRR1270749     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> SRR1270750     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> SRR1270751     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> SRR1270752     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> SRR1270753     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> SRR1270754     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> SRR1270755     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> SRR1270756     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> SRR1270757     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> SRR1270758     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> SRR1270759     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> SRR1270760     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> SRR1270761     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> SRR1270762     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> SRR1270763     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> SRR1270764     1  0.0000      0.994 1.000 0.000  0 0.000 0.000
#> SRR1270765     2  0.0000      0.983 0.000 1.000  0 0.000 0.000
#> SRR1270766     2  0.0000      0.983 0.000 1.000  0 0.000 0.000
#> SRR1270767     2  0.0000      0.983 0.000 1.000  0 0.000 0.000
#> SRR1270768     2  0.0000      0.983 0.000 1.000  0 0.000 0.000
#> SRR1270769     2  0.0000      0.983 0.000 1.000  0 0.000 0.000
#> SRR1270770     2  0.0000      0.983 0.000 1.000  0 0.000 0.000
#> SRR1270771     2  0.0000      0.983 0.000 1.000  0 0.000 0.000
#> SRR1270772     2  0.0000      0.983 0.000 1.000  0 0.000 0.000
#> SRR1270773     2  0.0000      0.983 0.000 1.000  0 0.000 0.000
#> SRR1270774     2  0.0000      0.983 0.000 1.000  0 0.000 0.000
#> SRR1270775     2  0.0000      0.983 0.000 1.000  0 0.000 0.000
#> SRR1270776     2  0.0000      0.983 0.000 1.000  0 0.000 0.000
#> SRR1270777     2  0.0000      0.983 0.000 1.000  0 0.000 0.000
#> SRR1270778     2  0.0000      0.983 0.000 1.000  0 0.000 0.000
#> SRR1270779     2  0.0000      0.983 0.000 1.000  0 0.000 0.000
#> SRR1270780     2  0.0000      0.983 0.000 1.000  0 0.000 0.000
#> SRR1270781     2  0.0000      0.983 0.000 1.000  0 0.000 0.000
#> SRR1270782     2  0.0000      0.983 0.000 1.000  0 0.000 0.000
#> SRR1270783     2  0.0000      0.983 0.000 1.000  0 0.000 0.000
#> SRR1270784     2  0.0000      0.983 0.000 1.000  0 0.000 0.000
#> SRR1270785     2  0.1121      0.977 0.000 0.956  0 0.000 0.044
#> SRR1270786     2  0.1121      0.977 0.000 0.956  0 0.000 0.044
#> SRR1270787     2  0.1121      0.977 0.000 0.956  0 0.000 0.044
#> SRR1270788     2  0.1121      0.977 0.000 0.956  0 0.000 0.044
#> SRR1270789     2  0.1121      0.977 0.000 0.956  0 0.000 0.044
#> SRR1270790     2  0.1121      0.977 0.000 0.956  0 0.000 0.044
#> SRR1270791     2  0.1121      0.977 0.000 0.956  0 0.000 0.044
#> SRR1270792     2  0.1121      0.977 0.000 0.956  0 0.000 0.044
#> SRR1270793     2  0.1121      0.977 0.000 0.956  0 0.000 0.044
#> SRR1270794     2  0.1121      0.977 0.000 0.956  0 0.000 0.044
#> SRR1270795     2  0.1121      0.977 0.000 0.956  0 0.000 0.044
#> SRR1270796     2  0.1121      0.977 0.000 0.956  0 0.000 0.044
#> SRR1270797     2  0.1121      0.977 0.000 0.956  0 0.000 0.044
#> SRR1270798     2  0.1121      0.977 0.000 0.956  0 0.000 0.044
#> SRR1270799     2  0.1121      0.977 0.000 0.956  0 0.000 0.044
#> SRR1270800     2  0.1121      0.977 0.000 0.956  0 0.000 0.044
#> SRR1270801     2  0.1121      0.977 0.000 0.956  0 0.000 0.044
#> SRR1270802     2  0.1121      0.977 0.000 0.956  0 0.000 0.044
#> SRR1270803     2  0.1121      0.977 0.000 0.956  0 0.000 0.044
#> SRR1270804     2  0.1121      0.977 0.000 0.956  0 0.000 0.044
#> SRR1270805     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270806     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270807     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270808     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270809     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270810     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270811     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270812     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270813     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270814     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270815     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270816     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270817     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270818     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270819     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270820     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270821     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270822     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270823     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270824     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270825     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270826     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270827     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270828     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270829     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270830     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270831     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270832     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270833     4  0.0000      0.998 0.000 0.000  0 1.000 0.000
#> SRR1270834     4  0.0000      0.998 0.000 0.000  0 1.000 0.000
#> SRR1270835     4  0.0162      0.998 0.000 0.000  0 0.996 0.004
#> SRR1270836     4  0.0162      0.998 0.000 0.000  0 0.996 0.004
#> SRR1270837     4  0.0162      0.998 0.000 0.000  0 0.996 0.004
#> SRR1270838     4  0.0162      0.998 0.000 0.000  0 0.996 0.004
#> SRR1270839     4  0.0162      0.998 0.000 0.000  0 0.996 0.004
#> SRR1270840     4  0.0162      0.998 0.000 0.000  0 0.996 0.004
#> SRR1270841     4  0.0162      0.998 0.000 0.000  0 0.996 0.004
#> SRR1270842     4  0.0162      0.998 0.000 0.000  0 0.996 0.004
#> SRR1270843     4  0.0162      0.998 0.000 0.000  0 0.996 0.004
#> SRR1270844     4  0.0000      0.998 0.000 0.000  0 1.000 0.000
#> SRR1270845     4  0.0000      0.998 0.000 0.000  0 1.000 0.000
#> SRR1270846     4  0.0000      0.998 0.000 0.000  0 1.000 0.000
#> SRR1270847     4  0.0000      0.998 0.000 0.000  0 1.000 0.000
#> SRR1270848     4  0.0000      0.998 0.000 0.000  0 1.000 0.000
#> SRR1270849     4  0.0000      0.998 0.000 0.000  0 1.000 0.000
#> SRR1270850     4  0.0000      0.998 0.000 0.000  0 1.000 0.000
#> SRR1270851     2  0.0000      0.983 0.000 1.000  0 0.000 0.000
#> SRR1270852     2  0.0000      0.983 0.000 1.000  0 0.000 0.000
#> SRR1270853     2  0.0000      0.983 0.000 1.000  0 0.000 0.000
#> SRR1270854     2  0.0000      0.983 0.000 1.000  0 0.000 0.000
#> SRR1270855     2  0.0000      0.983 0.000 1.000  0 0.000 0.000
#> SRR1270856     2  0.0000      0.983 0.000 1.000  0 0.000 0.000
#> SRR1270857     2  0.0000      0.983 0.000 1.000  0 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1270715     6  0.0146      0.935 0.000 0.000 0.000 0.000 0.004 0.996
#> SRR1270716     6  0.0146      0.935 0.000 0.000 0.000 0.000 0.004 0.996
#> SRR1270717     6  0.0146      0.935 0.000 0.000 0.000 0.000 0.004 0.996
#> SRR1270718     6  0.0000      0.936 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1270719     6  0.0000      0.936 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1270720     6  0.0000      0.936 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1270721     6  0.0000      0.936 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1270722     5  0.3843      0.968 0.452 0.000 0.000 0.000 0.548 0.000
#> SRR1270723     5  0.3843      0.968 0.452 0.000 0.000 0.000 0.548 0.000
#> SRR1270724     5  0.3843      0.968 0.452 0.000 0.000 0.000 0.548 0.000
#> SRR1270725     5  0.4305      0.982 0.436 0.000 0.000 0.000 0.544 0.020
#> SRR1270726     5  0.4305      0.982 0.436 0.000 0.000 0.000 0.544 0.020
#> SRR1270727     5  0.4305      0.982 0.436 0.000 0.000 0.000 0.544 0.020
#> SRR1270728     5  0.4305      0.982 0.436 0.000 0.000 0.000 0.544 0.020
#> SRR1270729     6  0.0000      0.936 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1270730     6  0.0000      0.936 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1270731     6  0.0000      0.936 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1270732     6  0.0000      0.936 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1270733     6  0.0000      0.936 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1270734     6  0.0000      0.936 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1270735     6  0.0000      0.936 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1270736     5  0.4229      0.982 0.436 0.000 0.000 0.000 0.548 0.016
#> SRR1270737     5  0.4229      0.982 0.436 0.000 0.000 0.000 0.548 0.016
#> SRR1270738     6  0.4967      0.255 0.068 0.000 0.000 0.000 0.420 0.512
#> SRR1270739     6  0.4967      0.255 0.068 0.000 0.000 0.000 0.420 0.512
#> SRR1270740     1  0.0146      0.946 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1270741     1  0.0146      0.946 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1270742     1  0.0146      0.946 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1270743     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1270744     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1270745     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1270746     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1270747     1  0.1327      0.926 0.936 0.000 0.000 0.000 0.064 0.000
#> SRR1270748     1  0.1327      0.926 0.936 0.000 0.000 0.000 0.064 0.000
#> SRR1270749     1  0.1327      0.926 0.936 0.000 0.000 0.000 0.064 0.000
#> SRR1270750     1  0.1267      0.927 0.940 0.000 0.000 0.000 0.060 0.000
#> SRR1270751     1  0.1267      0.927 0.940 0.000 0.000 0.000 0.060 0.000
#> SRR1270752     1  0.1267      0.927 0.940 0.000 0.000 0.000 0.060 0.000
#> SRR1270753     1  0.1267      0.927 0.940 0.000 0.000 0.000 0.060 0.000
#> SRR1270754     1  0.0146      0.946 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1270755     1  0.0146      0.946 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1270756     1  0.0146      0.946 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1270757     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1270758     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1270759     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1270760     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1270761     1  0.1267      0.929 0.940 0.000 0.000 0.000 0.060 0.000
#> SRR1270762     1  0.1267      0.929 0.940 0.000 0.000 0.000 0.060 0.000
#> SRR1270763     1  0.1204      0.930 0.944 0.000 0.000 0.000 0.056 0.000
#> SRR1270764     1  0.1204      0.930 0.944 0.000 0.000 0.000 0.056 0.000
#> SRR1270765     2  0.3804      0.816 0.000 0.576 0.000 0.424 0.000 0.000
#> SRR1270766     2  0.3804      0.816 0.000 0.576 0.000 0.424 0.000 0.000
#> SRR1270767     2  0.3804      0.816 0.000 0.576 0.000 0.424 0.000 0.000
#> SRR1270768     2  0.3804      0.816 0.000 0.576 0.000 0.424 0.000 0.000
#> SRR1270769     2  0.3804      0.816 0.000 0.576 0.000 0.424 0.000 0.000
#> SRR1270770     2  0.3804      0.816 0.000 0.576 0.000 0.424 0.000 0.000
#> SRR1270771     2  0.3804      0.816 0.000 0.576 0.000 0.424 0.000 0.000
#> SRR1270772     2  0.3804      0.816 0.000 0.576 0.000 0.424 0.000 0.000
#> SRR1270773     2  0.3804      0.816 0.000 0.576 0.000 0.424 0.000 0.000
#> SRR1270774     2  0.3804      0.816 0.000 0.576 0.000 0.424 0.000 0.000
#> SRR1270775     2  0.3804      0.816 0.000 0.576 0.000 0.424 0.000 0.000
#> SRR1270776     2  0.3804      0.816 0.000 0.576 0.000 0.424 0.000 0.000
#> SRR1270777     2  0.3804      0.816 0.000 0.576 0.000 0.424 0.000 0.000
#> SRR1270778     2  0.3804      0.816 0.000 0.576 0.000 0.424 0.000 0.000
#> SRR1270779     2  0.3804      0.816 0.000 0.576 0.000 0.424 0.000 0.000
#> SRR1270780     2  0.3804      0.816 0.000 0.576 0.000 0.424 0.000 0.000
#> SRR1270781     2  0.3804      0.816 0.000 0.576 0.000 0.424 0.000 0.000
#> SRR1270782     2  0.3804      0.816 0.000 0.576 0.000 0.424 0.000 0.000
#> SRR1270783     2  0.3804      0.816 0.000 0.576 0.000 0.424 0.000 0.000
#> SRR1270784     2  0.3804      0.816 0.000 0.576 0.000 0.424 0.000 0.000
#> SRR1270785     2  0.0000      0.739 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270786     2  0.0000      0.739 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270787     2  0.0000      0.739 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270788     2  0.0000      0.739 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270789     2  0.0000      0.739 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270790     2  0.0000      0.739 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270791     2  0.0000      0.739 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270792     2  0.0000      0.739 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270793     2  0.0000      0.739 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270794     2  0.0000      0.739 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270795     2  0.0000      0.739 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270796     2  0.0000      0.739 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270797     2  0.0000      0.739 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270798     2  0.0000      0.739 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270799     2  0.0000      0.739 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270800     2  0.0000      0.739 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270801     2  0.0000      0.739 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270802     2  0.0000      0.739 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270803     2  0.0000      0.739 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270804     2  0.0000      0.739 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270805     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270806     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270807     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270808     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270809     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270810     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270811     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270812     3  0.0146      0.998 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1270813     3  0.0146      0.998 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1270814     3  0.0146      0.998 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1270815     3  0.0146      0.998 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1270816     3  0.0146      0.998 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1270817     3  0.0146      0.998 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1270818     3  0.0146      0.998 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1270819     3  0.0146      0.998 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1270820     3  0.0146      0.998 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1270821     3  0.0146      0.998 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1270822     3  0.0146      0.998 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1270823     3  0.0146      0.998 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1270824     3  0.0146      0.998 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1270825     3  0.0146      0.998 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1270826     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270827     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270828     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270829     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270830     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270831     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270832     3  0.0000      0.998 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270833     4  0.3838      0.990 0.000 0.000 0.000 0.552 0.448 0.000
#> SRR1270834     4  0.3838      0.990 0.000 0.000 0.000 0.552 0.448 0.000
#> SRR1270835     4  0.3804      0.990 0.000 0.000 0.000 0.576 0.424 0.000
#> SRR1270836     4  0.3804      0.990 0.000 0.000 0.000 0.576 0.424 0.000
#> SRR1270837     4  0.3804      0.990 0.000 0.000 0.000 0.576 0.424 0.000
#> SRR1270838     4  0.3804      0.990 0.000 0.000 0.000 0.576 0.424 0.000
#> SRR1270839     4  0.3804      0.990 0.000 0.000 0.000 0.576 0.424 0.000
#> SRR1270840     4  0.3804      0.990 0.000 0.000 0.000 0.576 0.424 0.000
#> SRR1270841     4  0.3804      0.990 0.000 0.000 0.000 0.576 0.424 0.000
#> SRR1270842     4  0.3804      0.990 0.000 0.000 0.000 0.576 0.424 0.000
#> SRR1270843     4  0.3804      0.990 0.000 0.000 0.000 0.576 0.424 0.000
#> SRR1270844     4  0.3838      0.990 0.000 0.000 0.000 0.552 0.448 0.000
#> SRR1270845     4  0.3838      0.990 0.000 0.000 0.000 0.552 0.448 0.000
#> SRR1270846     4  0.3838      0.990 0.000 0.000 0.000 0.552 0.448 0.000
#> SRR1270847     4  0.3838      0.990 0.000 0.000 0.000 0.552 0.448 0.000
#> SRR1270848     4  0.3838      0.990 0.000 0.000 0.000 0.552 0.448 0.000
#> SRR1270849     4  0.3838      0.990 0.000 0.000 0.000 0.552 0.448 0.000
#> SRR1270850     4  0.3838      0.990 0.000 0.000 0.000 0.552 0.448 0.000
#> SRR1270851     2  0.3804      0.816 0.000 0.576 0.000 0.424 0.000 0.000
#> SRR1270852     2  0.3804      0.816 0.000 0.576 0.000 0.424 0.000 0.000
#> SRR1270853     2  0.3804      0.816 0.000 0.576 0.000 0.424 0.000 0.000
#> SRR1270854     2  0.3804      0.816 0.000 0.576 0.000 0.424 0.000 0.000
#> SRR1270855     2  0.3804      0.816 0.000 0.576 0.000 0.424 0.000 0.000
#> SRR1270856     2  0.3804      0.816 0.000 0.576 0.000 0.424 0.000 0.000
#> SRR1270857     2  0.3804      0.816 0.000 0.576 0.000 0.424 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14577 rows and 143 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2     1           1.000       1.000         0.4450 0.556   0.556
#> 3 3     1           1.000       1.000         0.4210 0.812   0.662
#> 4 4     1           0.996       0.993         0.1385 0.911   0.759
#> 5 5     1           1.000       1.000         0.0751 0.947   0.810
#> 6 6     1           0.977       0.989         0.0773 0.941   0.739

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 4 5

There is also optional best \(k\) = 2 3 4 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1270715     1       0          1  1  0
#> SRR1270716     1       0          1  1  0
#> SRR1270717     1       0          1  1  0
#> SRR1270718     1       0          1  1  0
#> SRR1270719     1       0          1  1  0
#> SRR1270720     1       0          1  1  0
#> SRR1270721     1       0          1  1  0
#> SRR1270722     1       0          1  1  0
#> SRR1270723     1       0          1  1  0
#> SRR1270724     1       0          1  1  0
#> SRR1270725     1       0          1  1  0
#> SRR1270726     1       0          1  1  0
#> SRR1270727     1       0          1  1  0
#> SRR1270728     1       0          1  1  0
#> SRR1270729     1       0          1  1  0
#> SRR1270730     1       0          1  1  0
#> SRR1270731     1       0          1  1  0
#> SRR1270732     1       0          1  1  0
#> SRR1270733     1       0          1  1  0
#> SRR1270734     1       0          1  1  0
#> SRR1270735     1       0          1  1  0
#> SRR1270736     1       0          1  1  0
#> SRR1270737     1       0          1  1  0
#> SRR1270738     1       0          1  1  0
#> SRR1270739     1       0          1  1  0
#> SRR1270740     1       0          1  1  0
#> SRR1270741     1       0          1  1  0
#> SRR1270742     1       0          1  1  0
#> SRR1270743     1       0          1  1  0
#> SRR1270744     1       0          1  1  0
#> SRR1270745     1       0          1  1  0
#> SRR1270746     1       0          1  1  0
#> SRR1270747     1       0          1  1  0
#> SRR1270748     1       0          1  1  0
#> SRR1270749     1       0          1  1  0
#> SRR1270750     1       0          1  1  0
#> SRR1270751     1       0          1  1  0
#> SRR1270752     1       0          1  1  0
#> SRR1270753     1       0          1  1  0
#> SRR1270754     1       0          1  1  0
#> SRR1270755     1       0          1  1  0
#> SRR1270756     1       0          1  1  0
#> SRR1270757     1       0          1  1  0
#> SRR1270758     1       0          1  1  0
#> SRR1270759     1       0          1  1  0
#> SRR1270760     1       0          1  1  0
#> SRR1270761     1       0          1  1  0
#> SRR1270762     1       0          1  1  0
#> SRR1270763     1       0          1  1  0
#> SRR1270764     1       0          1  1  0
#> SRR1270765     2       0          1  0  1
#> SRR1270766     2       0          1  0  1
#> SRR1270767     2       0          1  0  1
#> SRR1270768     2       0          1  0  1
#> SRR1270769     2       0          1  0  1
#> SRR1270770     2       0          1  0  1
#> SRR1270771     2       0          1  0  1
#> SRR1270772     2       0          1  0  1
#> SRR1270773     2       0          1  0  1
#> SRR1270774     2       0          1  0  1
#> SRR1270775     2       0          1  0  1
#> SRR1270776     2       0          1  0  1
#> SRR1270777     2       0          1  0  1
#> SRR1270778     2       0          1  0  1
#> SRR1270779     2       0          1  0  1
#> SRR1270780     2       0          1  0  1
#> SRR1270781     2       0          1  0  1
#> SRR1270782     2       0          1  0  1
#> SRR1270783     2       0          1  0  1
#> SRR1270784     2       0          1  0  1
#> SRR1270785     2       0          1  0  1
#> SRR1270786     2       0          1  0  1
#> SRR1270787     2       0          1  0  1
#> SRR1270788     2       0          1  0  1
#> SRR1270789     2       0          1  0  1
#> SRR1270790     2       0          1  0  1
#> SRR1270791     2       0          1  0  1
#> SRR1270792     2       0          1  0  1
#> SRR1270793     2       0          1  0  1
#> SRR1270794     2       0          1  0  1
#> SRR1270795     2       0          1  0  1
#> SRR1270796     2       0          1  0  1
#> SRR1270797     2       0          1  0  1
#> SRR1270798     2       0          1  0  1
#> SRR1270799     2       0          1  0  1
#> SRR1270800     2       0          1  0  1
#> SRR1270801     2       0          1  0  1
#> SRR1270802     2       0          1  0  1
#> SRR1270803     2       0          1  0  1
#> SRR1270804     2       0          1  0  1
#> SRR1270805     1       0          1  1  0
#> SRR1270806     1       0          1  1  0
#> SRR1270807     1       0          1  1  0
#> SRR1270808     1       0          1  1  0
#> SRR1270809     1       0          1  1  0
#> SRR1270810     1       0          1  1  0
#> SRR1270811     1       0          1  1  0
#> SRR1270812     1       0          1  1  0
#> SRR1270813     1       0          1  1  0
#> SRR1270814     1       0          1  1  0
#> SRR1270815     1       0          1  1  0
#> SRR1270816     1       0          1  1  0
#> SRR1270817     1       0          1  1  0
#> SRR1270818     1       0          1  1  0
#> SRR1270819     1       0          1  1  0
#> SRR1270820     1       0          1  1  0
#> SRR1270821     1       0          1  1  0
#> SRR1270822     1       0          1  1  0
#> SRR1270823     1       0          1  1  0
#> SRR1270824     1       0          1  1  0
#> SRR1270825     1       0          1  1  0
#> SRR1270826     1       0          1  1  0
#> SRR1270827     1       0          1  1  0
#> SRR1270828     1       0          1  1  0
#> SRR1270829     1       0          1  1  0
#> SRR1270830     1       0          1  1  0
#> SRR1270831     1       0          1  1  0
#> SRR1270832     1       0          1  1  0
#> SRR1270833     1       0          1  1  0
#> SRR1270834     1       0          1  1  0
#> SRR1270835     1       0          1  1  0
#> SRR1270836     1       0          1  1  0
#> SRR1270837     1       0          1  1  0
#> SRR1270838     1       0          1  1  0
#> SRR1270839     1       0          1  1  0
#> SRR1270840     1       0          1  1  0
#> SRR1270841     1       0          1  1  0
#> SRR1270842     1       0          1  1  0
#> SRR1270843     1       0          1  1  0
#> SRR1270844     1       0          1  1  0
#> SRR1270845     1       0          1  1  0
#> SRR1270846     1       0          1  1  0
#> SRR1270847     1       0          1  1  0
#> SRR1270848     1       0          1  1  0
#> SRR1270849     1       0          1  1  0
#> SRR1270850     1       0          1  1  0
#> SRR1270851     2       0          1  0  1
#> SRR1270852     2       0          1  0  1
#> SRR1270853     2       0          1  0  1
#> SRR1270854     2       0          1  0  1
#> SRR1270855     2       0          1  0  1
#> SRR1270856     2       0          1  0  1
#> SRR1270857     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette p1 p2 p3
#> SRR1270715     1       0          1  1  0  0
#> SRR1270716     1       0          1  1  0  0
#> SRR1270717     1       0          1  1  0  0
#> SRR1270718     1       0          1  1  0  0
#> SRR1270719     1       0          1  1  0  0
#> SRR1270720     1       0          1  1  0  0
#> SRR1270721     1       0          1  1  0  0
#> SRR1270722     1       0          1  1  0  0
#> SRR1270723     1       0          1  1  0  0
#> SRR1270724     1       0          1  1  0  0
#> SRR1270725     1       0          1  1  0  0
#> SRR1270726     1       0          1  1  0  0
#> SRR1270727     1       0          1  1  0  0
#> SRR1270728     1       0          1  1  0  0
#> SRR1270729     1       0          1  1  0  0
#> SRR1270730     1       0          1  1  0  0
#> SRR1270731     1       0          1  1  0  0
#> SRR1270732     1       0          1  1  0  0
#> SRR1270733     1       0          1  1  0  0
#> SRR1270734     1       0          1  1  0  0
#> SRR1270735     1       0          1  1  0  0
#> SRR1270736     1       0          1  1  0  0
#> SRR1270737     1       0          1  1  0  0
#> SRR1270738     1       0          1  1  0  0
#> SRR1270739     1       0          1  1  0  0
#> SRR1270740     1       0          1  1  0  0
#> SRR1270741     1       0          1  1  0  0
#> SRR1270742     1       0          1  1  0  0
#> SRR1270743     1       0          1  1  0  0
#> SRR1270744     1       0          1  1  0  0
#> SRR1270745     1       0          1  1  0  0
#> SRR1270746     1       0          1  1  0  0
#> SRR1270747     1       0          1  1  0  0
#> SRR1270748     1       0          1  1  0  0
#> SRR1270749     1       0          1  1  0  0
#> SRR1270750     1       0          1  1  0  0
#> SRR1270751     1       0          1  1  0  0
#> SRR1270752     1       0          1  1  0  0
#> SRR1270753     1       0          1  1  0  0
#> SRR1270754     1       0          1  1  0  0
#> SRR1270755     1       0          1  1  0  0
#> SRR1270756     1       0          1  1  0  0
#> SRR1270757     1       0          1  1  0  0
#> SRR1270758     1       0          1  1  0  0
#> SRR1270759     1       0          1  1  0  0
#> SRR1270760     1       0          1  1  0  0
#> SRR1270761     1       0          1  1  0  0
#> SRR1270762     1       0          1  1  0  0
#> SRR1270763     1       0          1  1  0  0
#> SRR1270764     1       0          1  1  0  0
#> SRR1270765     2       0          1  0  1  0
#> SRR1270766     2       0          1  0  1  0
#> SRR1270767     2       0          1  0  1  0
#> SRR1270768     2       0          1  0  1  0
#> SRR1270769     2       0          1  0  1  0
#> SRR1270770     2       0          1  0  1  0
#> SRR1270771     2       0          1  0  1  0
#> SRR1270772     2       0          1  0  1  0
#> SRR1270773     2       0          1  0  1  0
#> SRR1270774     2       0          1  0  1  0
#> SRR1270775     2       0          1  0  1  0
#> SRR1270776     2       0          1  0  1  0
#> SRR1270777     2       0          1  0  1  0
#> SRR1270778     2       0          1  0  1  0
#> SRR1270779     2       0          1  0  1  0
#> SRR1270780     2       0          1  0  1  0
#> SRR1270781     2       0          1  0  1  0
#> SRR1270782     2       0          1  0  1  0
#> SRR1270783     2       0          1  0  1  0
#> SRR1270784     2       0          1  0  1  0
#> SRR1270785     2       0          1  0  1  0
#> SRR1270786     2       0          1  0  1  0
#> SRR1270787     2       0          1  0  1  0
#> SRR1270788     2       0          1  0  1  0
#> SRR1270789     2       0          1  0  1  0
#> SRR1270790     2       0          1  0  1  0
#> SRR1270791     2       0          1  0  1  0
#> SRR1270792     2       0          1  0  1  0
#> SRR1270793     2       0          1  0  1  0
#> SRR1270794     2       0          1  0  1  0
#> SRR1270795     2       0          1  0  1  0
#> SRR1270796     2       0          1  0  1  0
#> SRR1270797     2       0          1  0  1  0
#> SRR1270798     2       0          1  0  1  0
#> SRR1270799     2       0          1  0  1  0
#> SRR1270800     2       0          1  0  1  0
#> SRR1270801     2       0          1  0  1  0
#> SRR1270802     2       0          1  0  1  0
#> SRR1270803     2       0          1  0  1  0
#> SRR1270804     2       0          1  0  1  0
#> SRR1270805     3       0          1  0  0  1
#> SRR1270806     3       0          1  0  0  1
#> SRR1270807     3       0          1  0  0  1
#> SRR1270808     3       0          1  0  0  1
#> SRR1270809     3       0          1  0  0  1
#> SRR1270810     3       0          1  0  0  1
#> SRR1270811     3       0          1  0  0  1
#> SRR1270812     3       0          1  0  0  1
#> SRR1270813     3       0          1  0  0  1
#> SRR1270814     3       0          1  0  0  1
#> SRR1270815     3       0          1  0  0  1
#> SRR1270816     3       0          1  0  0  1
#> SRR1270817     3       0          1  0  0  1
#> SRR1270818     3       0          1  0  0  1
#> SRR1270819     3       0          1  0  0  1
#> SRR1270820     3       0          1  0  0  1
#> SRR1270821     3       0          1  0  0  1
#> SRR1270822     3       0          1  0  0  1
#> SRR1270823     3       0          1  0  0  1
#> SRR1270824     3       0          1  0  0  1
#> SRR1270825     3       0          1  0  0  1
#> SRR1270826     3       0          1  0  0  1
#> SRR1270827     3       0          1  0  0  1
#> SRR1270828     3       0          1  0  0  1
#> SRR1270829     3       0          1  0  0  1
#> SRR1270830     3       0          1  0  0  1
#> SRR1270831     3       0          1  0  0  1
#> SRR1270832     3       0          1  0  0  1
#> SRR1270833     1       0          1  1  0  0
#> SRR1270834     1       0          1  1  0  0
#> SRR1270835     1       0          1  1  0  0
#> SRR1270836     1       0          1  1  0  0
#> SRR1270837     1       0          1  1  0  0
#> SRR1270838     1       0          1  1  0  0
#> SRR1270839     1       0          1  1  0  0
#> SRR1270840     1       0          1  1  0  0
#> SRR1270841     1       0          1  1  0  0
#> SRR1270842     1       0          1  1  0  0
#> SRR1270843     1       0          1  1  0  0
#> SRR1270844     1       0          1  1  0  0
#> SRR1270845     1       0          1  1  0  0
#> SRR1270846     1       0          1  1  0  0
#> SRR1270847     1       0          1  1  0  0
#> SRR1270848     1       0          1  1  0  0
#> SRR1270849     1       0          1  1  0  0
#> SRR1270850     1       0          1  1  0  0
#> SRR1270851     2       0          1  0  1  0
#> SRR1270852     2       0          1  0  1  0
#> SRR1270853     2       0          1  0  1  0
#> SRR1270854     2       0          1  0  1  0
#> SRR1270855     2       0          1  0  1  0
#> SRR1270856     2       0          1  0  1  0
#> SRR1270857     2       0          1  0  1  0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2 p3    p4
#> SRR1270715     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270716     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270717     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270718     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270719     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270720     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270721     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270722     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270723     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270724     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270725     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270726     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270727     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270728     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270729     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270730     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270731     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270732     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270733     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270734     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270735     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270736     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270737     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270738     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270739     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270740     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270741     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270742     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270743     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270744     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270745     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270746     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270747     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270748     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270749     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270750     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270751     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270752     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270753     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270754     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270755     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270756     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270757     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270758     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270759     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270760     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270761     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270762     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270763     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270764     1  0.0000      1.000 1.000 0.000  0 0.000
#> SRR1270765     2  0.0000      0.990 0.000 1.000  0 0.000
#> SRR1270766     2  0.0000      0.990 0.000 1.000  0 0.000
#> SRR1270767     2  0.0000      0.990 0.000 1.000  0 0.000
#> SRR1270768     2  0.0000      0.990 0.000 1.000  0 0.000
#> SRR1270769     2  0.0000      0.990 0.000 1.000  0 0.000
#> SRR1270770     2  0.0000      0.990 0.000 1.000  0 0.000
#> SRR1270771     2  0.0000      0.990 0.000 1.000  0 0.000
#> SRR1270772     2  0.0000      0.990 0.000 1.000  0 0.000
#> SRR1270773     2  0.0000      0.990 0.000 1.000  0 0.000
#> SRR1270774     2  0.0000      0.990 0.000 1.000  0 0.000
#> SRR1270775     2  0.0000      0.990 0.000 1.000  0 0.000
#> SRR1270776     2  0.0000      0.990 0.000 1.000  0 0.000
#> SRR1270777     2  0.0000      0.990 0.000 1.000  0 0.000
#> SRR1270778     2  0.0000      0.990 0.000 1.000  0 0.000
#> SRR1270779     2  0.0000      0.990 0.000 1.000  0 0.000
#> SRR1270780     2  0.0000      0.990 0.000 1.000  0 0.000
#> SRR1270781     2  0.0000      0.990 0.000 1.000  0 0.000
#> SRR1270782     2  0.0000      0.990 0.000 1.000  0 0.000
#> SRR1270783     2  0.0000      0.990 0.000 1.000  0 0.000
#> SRR1270784     2  0.0000      0.990 0.000 1.000  0 0.000
#> SRR1270785     2  0.0921      0.986 0.000 0.972  0 0.028
#> SRR1270786     2  0.0921      0.986 0.000 0.972  0 0.028
#> SRR1270787     2  0.0921      0.986 0.000 0.972  0 0.028
#> SRR1270788     2  0.0921      0.986 0.000 0.972  0 0.028
#> SRR1270789     2  0.0921      0.986 0.000 0.972  0 0.028
#> SRR1270790     2  0.0921      0.986 0.000 0.972  0 0.028
#> SRR1270791     2  0.0921      0.986 0.000 0.972  0 0.028
#> SRR1270792     2  0.0921      0.986 0.000 0.972  0 0.028
#> SRR1270793     2  0.0921      0.986 0.000 0.972  0 0.028
#> SRR1270794     2  0.0921      0.986 0.000 0.972  0 0.028
#> SRR1270795     2  0.0921      0.986 0.000 0.972  0 0.028
#> SRR1270796     2  0.0921      0.986 0.000 0.972  0 0.028
#> SRR1270797     2  0.0921      0.986 0.000 0.972  0 0.028
#> SRR1270798     2  0.0921      0.986 0.000 0.972  0 0.028
#> SRR1270799     2  0.0921      0.986 0.000 0.972  0 0.028
#> SRR1270800     2  0.0921      0.986 0.000 0.972  0 0.028
#> SRR1270801     2  0.0921      0.986 0.000 0.972  0 0.028
#> SRR1270802     2  0.0921      0.986 0.000 0.972  0 0.028
#> SRR1270803     2  0.0921      0.986 0.000 0.972  0 0.028
#> SRR1270804     2  0.0921      0.986 0.000 0.972  0 0.028
#> SRR1270805     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1270806     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1270807     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1270808     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1270809     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1270810     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1270811     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1270812     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1270813     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1270814     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1270815     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1270816     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1270817     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1270818     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1270819     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1270820     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1270821     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1270822     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1270823     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1270824     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1270825     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1270826     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1270827     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1270828     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1270829     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1270830     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1270831     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1270832     3  0.0000      1.000 0.000 0.000  1 0.000
#> SRR1270833     4  0.0921      1.000 0.028 0.000  0 0.972
#> SRR1270834     4  0.0921      1.000 0.028 0.000  0 0.972
#> SRR1270835     4  0.0921      1.000 0.028 0.000  0 0.972
#> SRR1270836     4  0.0921      1.000 0.028 0.000  0 0.972
#> SRR1270837     4  0.0921      1.000 0.028 0.000  0 0.972
#> SRR1270838     4  0.0921      1.000 0.028 0.000  0 0.972
#> SRR1270839     4  0.0921      1.000 0.028 0.000  0 0.972
#> SRR1270840     4  0.0921      1.000 0.028 0.000  0 0.972
#> SRR1270841     4  0.0921      1.000 0.028 0.000  0 0.972
#> SRR1270842     4  0.0921      1.000 0.028 0.000  0 0.972
#> SRR1270843     4  0.0921      1.000 0.028 0.000  0 0.972
#> SRR1270844     4  0.0921      1.000 0.028 0.000  0 0.972
#> SRR1270845     4  0.0921      1.000 0.028 0.000  0 0.972
#> SRR1270846     4  0.0921      1.000 0.028 0.000  0 0.972
#> SRR1270847     4  0.0921      1.000 0.028 0.000  0 0.972
#> SRR1270848     4  0.0921      1.000 0.028 0.000  0 0.972
#> SRR1270849     4  0.0921      1.000 0.028 0.000  0 0.972
#> SRR1270850     4  0.0921      1.000 0.028 0.000  0 0.972
#> SRR1270851     2  0.0000      0.990 0.000 1.000  0 0.000
#> SRR1270852     2  0.0000      0.990 0.000 1.000  0 0.000
#> SRR1270853     2  0.0000      0.990 0.000 1.000  0 0.000
#> SRR1270854     2  0.0000      0.990 0.000 1.000  0 0.000
#> SRR1270855     2  0.0000      0.990 0.000 1.000  0 0.000
#> SRR1270856     2  0.0000      0.990 0.000 1.000  0 0.000
#> SRR1270857     2  0.0000      0.990 0.000 1.000  0 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette p1 p2 p3 p4 p5
#> SRR1270715     1       0          1  1  0  0  0  0
#> SRR1270716     1       0          1  1  0  0  0  0
#> SRR1270717     1       0          1  1  0  0  0  0
#> SRR1270718     1       0          1  1  0  0  0  0
#> SRR1270719     1       0          1  1  0  0  0  0
#> SRR1270720     1       0          1  1  0  0  0  0
#> SRR1270721     1       0          1  1  0  0  0  0
#> SRR1270722     1       0          1  1  0  0  0  0
#> SRR1270723     1       0          1  1  0  0  0  0
#> SRR1270724     1       0          1  1  0  0  0  0
#> SRR1270725     1       0          1  1  0  0  0  0
#> SRR1270726     1       0          1  1  0  0  0  0
#> SRR1270727     1       0          1  1  0  0  0  0
#> SRR1270728     1       0          1  1  0  0  0  0
#> SRR1270729     1       0          1  1  0  0  0  0
#> SRR1270730     1       0          1  1  0  0  0  0
#> SRR1270731     1       0          1  1  0  0  0  0
#> SRR1270732     1       0          1  1  0  0  0  0
#> SRR1270733     1       0          1  1  0  0  0  0
#> SRR1270734     1       0          1  1  0  0  0  0
#> SRR1270735     1       0          1  1  0  0  0  0
#> SRR1270736     1       0          1  1  0  0  0  0
#> SRR1270737     1       0          1  1  0  0  0  0
#> SRR1270738     1       0          1  1  0  0  0  0
#> SRR1270739     1       0          1  1  0  0  0  0
#> SRR1270740     1       0          1  1  0  0  0  0
#> SRR1270741     1       0          1  1  0  0  0  0
#> SRR1270742     1       0          1  1  0  0  0  0
#> SRR1270743     1       0          1  1  0  0  0  0
#> SRR1270744     1       0          1  1  0  0  0  0
#> SRR1270745     1       0          1  1  0  0  0  0
#> SRR1270746     1       0          1  1  0  0  0  0
#> SRR1270747     1       0          1  1  0  0  0  0
#> SRR1270748     1       0          1  1  0  0  0  0
#> SRR1270749     1       0          1  1  0  0  0  0
#> SRR1270750     1       0          1  1  0  0  0  0
#> SRR1270751     1       0          1  1  0  0  0  0
#> SRR1270752     1       0          1  1  0  0  0  0
#> SRR1270753     1       0          1  1  0  0  0  0
#> SRR1270754     1       0          1  1  0  0  0  0
#> SRR1270755     1       0          1  1  0  0  0  0
#> SRR1270756     1       0          1  1  0  0  0  0
#> SRR1270757     1       0          1  1  0  0  0  0
#> SRR1270758     1       0          1  1  0  0  0  0
#> SRR1270759     1       0          1  1  0  0  0  0
#> SRR1270760     1       0          1  1  0  0  0  0
#> SRR1270761     1       0          1  1  0  0  0  0
#> SRR1270762     1       0          1  1  0  0  0  0
#> SRR1270763     1       0          1  1  0  0  0  0
#> SRR1270764     1       0          1  1  0  0  0  0
#> SRR1270765     2       0          1  0  1  0  0  0
#> SRR1270766     2       0          1  0  1  0  0  0
#> SRR1270767     2       0          1  0  1  0  0  0
#> SRR1270768     2       0          1  0  1  0  0  0
#> SRR1270769     2       0          1  0  1  0  0  0
#> SRR1270770     2       0          1  0  1  0  0  0
#> SRR1270771     2       0          1  0  1  0  0  0
#> SRR1270772     2       0          1  0  1  0  0  0
#> SRR1270773     2       0          1  0  1  0  0  0
#> SRR1270774     2       0          1  0  1  0  0  0
#> SRR1270775     2       0          1  0  1  0  0  0
#> SRR1270776     2       0          1  0  1  0  0  0
#> SRR1270777     2       0          1  0  1  0  0  0
#> SRR1270778     2       0          1  0  1  0  0  0
#> SRR1270779     2       0          1  0  1  0  0  0
#> SRR1270780     2       0          1  0  1  0  0  0
#> SRR1270781     2       0          1  0  1  0  0  0
#> SRR1270782     2       0          1  0  1  0  0  0
#> SRR1270783     2       0          1  0  1  0  0  0
#> SRR1270784     2       0          1  0  1  0  0  0
#> SRR1270785     5       0          1  0  0  0  0  1
#> SRR1270786     5       0          1  0  0  0  0  1
#> SRR1270787     5       0          1  0  0  0  0  1
#> SRR1270788     5       0          1  0  0  0  0  1
#> SRR1270789     5       0          1  0  0  0  0  1
#> SRR1270790     5       0          1  0  0  0  0  1
#> SRR1270791     5       0          1  0  0  0  0  1
#> SRR1270792     5       0          1  0  0  0  0  1
#> SRR1270793     5       0          1  0  0  0  0  1
#> SRR1270794     5       0          1  0  0  0  0  1
#> SRR1270795     5       0          1  0  0  0  0  1
#> SRR1270796     5       0          1  0  0  0  0  1
#> SRR1270797     5       0          1  0  0  0  0  1
#> SRR1270798     5       0          1  0  0  0  0  1
#> SRR1270799     5       0          1  0  0  0  0  1
#> SRR1270800     5       0          1  0  0  0  0  1
#> SRR1270801     5       0          1  0  0  0  0  1
#> SRR1270802     5       0          1  0  0  0  0  1
#> SRR1270803     5       0          1  0  0  0  0  1
#> SRR1270804     5       0          1  0  0  0  0  1
#> SRR1270805     3       0          1  0  0  1  0  0
#> SRR1270806     3       0          1  0  0  1  0  0
#> SRR1270807     3       0          1  0  0  1  0  0
#> SRR1270808     3       0          1  0  0  1  0  0
#> SRR1270809     3       0          1  0  0  1  0  0
#> SRR1270810     3       0          1  0  0  1  0  0
#> SRR1270811     3       0          1  0  0  1  0  0
#> SRR1270812     3       0          1  0  0  1  0  0
#> SRR1270813     3       0          1  0  0  1  0  0
#> SRR1270814     3       0          1  0  0  1  0  0
#> SRR1270815     3       0          1  0  0  1  0  0
#> SRR1270816     3       0          1  0  0  1  0  0
#> SRR1270817     3       0          1  0  0  1  0  0
#> SRR1270818     3       0          1  0  0  1  0  0
#> SRR1270819     3       0          1  0  0  1  0  0
#> SRR1270820     3       0          1  0  0  1  0  0
#> SRR1270821     3       0          1  0  0  1  0  0
#> SRR1270822     3       0          1  0  0  1  0  0
#> SRR1270823     3       0          1  0  0  1  0  0
#> SRR1270824     3       0          1  0  0  1  0  0
#> SRR1270825     3       0          1  0  0  1  0  0
#> SRR1270826     3       0          1  0  0  1  0  0
#> SRR1270827     3       0          1  0  0  1  0  0
#> SRR1270828     3       0          1  0  0  1  0  0
#> SRR1270829     3       0          1  0  0  1  0  0
#> SRR1270830     3       0          1  0  0  1  0  0
#> SRR1270831     3       0          1  0  0  1  0  0
#> SRR1270832     3       0          1  0  0  1  0  0
#> SRR1270833     4       0          1  0  0  0  1  0
#> SRR1270834     4       0          1  0  0  0  1  0
#> SRR1270835     4       0          1  0  0  0  1  0
#> SRR1270836     4       0          1  0  0  0  1  0
#> SRR1270837     4       0          1  0  0  0  1  0
#> SRR1270838     4       0          1  0  0  0  1  0
#> SRR1270839     4       0          1  0  0  0  1  0
#> SRR1270840     4       0          1  0  0  0  1  0
#> SRR1270841     4       0          1  0  0  0  1  0
#> SRR1270842     4       0          1  0  0  0  1  0
#> SRR1270843     4       0          1  0  0  0  1  0
#> SRR1270844     4       0          1  0  0  0  1  0
#> SRR1270845     4       0          1  0  0  0  1  0
#> SRR1270846     4       0          1  0  0  0  1  0
#> SRR1270847     4       0          1  0  0  0  1  0
#> SRR1270848     4       0          1  0  0  0  1  0
#> SRR1270849     4       0          1  0  0  0  1  0
#> SRR1270850     4       0          1  0  0  0  1  0
#> SRR1270851     2       0          1  0  1  0  0  0
#> SRR1270852     2       0          1  0  1  0  0  0
#> SRR1270853     2       0          1  0  1  0  0  0
#> SRR1270854     2       0          1  0  1  0  0  0
#> SRR1270855     2       0          1  0  1  0  0  0
#> SRR1270856     2       0          1  0  1  0  0  0
#> SRR1270857     2       0          1  0  1  0  0  0

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1 p2 p3 p4 p5    p6
#> SRR1270715     6   0.000      1.000 0.000  0  0  0  0 1.000
#> SRR1270716     6   0.000      1.000 0.000  0  0  0  0 1.000
#> SRR1270717     6   0.000      1.000 0.000  0  0  0  0 1.000
#> SRR1270718     6   0.000      1.000 0.000  0  0  0  0 1.000
#> SRR1270719     6   0.000      1.000 0.000  0  0  0  0 1.000
#> SRR1270720     6   0.000      1.000 0.000  0  0  0  0 1.000
#> SRR1270721     6   0.000      1.000 0.000  0  0  0  0 1.000
#> SRR1270722     1   0.341      0.628 0.700  0  0  0  0 0.300
#> SRR1270723     1   0.341      0.628 0.700  0  0  0  0 0.300
#> SRR1270724     1   0.341      0.628 0.700  0  0  0  0 0.300
#> SRR1270725     6   0.000      1.000 0.000  0  0  0  0 1.000
#> SRR1270726     6   0.000      1.000 0.000  0  0  0  0 1.000
#> SRR1270727     6   0.000      1.000 0.000  0  0  0  0 1.000
#> SRR1270728     6   0.000      1.000 0.000  0  0  0  0 1.000
#> SRR1270729     6   0.000      1.000 0.000  0  0  0  0 1.000
#> SRR1270730     6   0.000      1.000 0.000  0  0  0  0 1.000
#> SRR1270731     6   0.000      1.000 0.000  0  0  0  0 1.000
#> SRR1270732     6   0.000      1.000 0.000  0  0  0  0 1.000
#> SRR1270733     6   0.000      1.000 0.000  0  0  0  0 1.000
#> SRR1270734     6   0.000      1.000 0.000  0  0  0  0 1.000
#> SRR1270735     6   0.000      1.000 0.000  0  0  0  0 1.000
#> SRR1270736     1   0.346      0.608 0.688  0  0  0  0 0.312
#> SRR1270737     1   0.352      0.587 0.676  0  0  0  0 0.324
#> SRR1270738     6   0.000      1.000 0.000  0  0  0  0 1.000
#> SRR1270739     6   0.000      1.000 0.000  0  0  0  0 1.000
#> SRR1270740     1   0.000      0.945 1.000  0  0  0  0 0.000
#> SRR1270741     1   0.000      0.945 1.000  0  0  0  0 0.000
#> SRR1270742     1   0.000      0.945 1.000  0  0  0  0 0.000
#> SRR1270743     1   0.000      0.945 1.000  0  0  0  0 0.000
#> SRR1270744     1   0.000      0.945 1.000  0  0  0  0 0.000
#> SRR1270745     1   0.000      0.945 1.000  0  0  0  0 0.000
#> SRR1270746     1   0.000      0.945 1.000  0  0  0  0 0.000
#> SRR1270747     1   0.000      0.945 1.000  0  0  0  0 0.000
#> SRR1270748     1   0.000      0.945 1.000  0  0  0  0 0.000
#> SRR1270749     1   0.000      0.945 1.000  0  0  0  0 0.000
#> SRR1270750     1   0.000      0.945 1.000  0  0  0  0 0.000
#> SRR1270751     1   0.000      0.945 1.000  0  0  0  0 0.000
#> SRR1270752     1   0.000      0.945 1.000  0  0  0  0 0.000
#> SRR1270753     1   0.000      0.945 1.000  0  0  0  0 0.000
#> SRR1270754     1   0.000      0.945 1.000  0  0  0  0 0.000
#> SRR1270755     1   0.000      0.945 1.000  0  0  0  0 0.000
#> SRR1270756     1   0.000      0.945 1.000  0  0  0  0 0.000
#> SRR1270757     1   0.000      0.945 1.000  0  0  0  0 0.000
#> SRR1270758     1   0.000      0.945 1.000  0  0  0  0 0.000
#> SRR1270759     1   0.000      0.945 1.000  0  0  0  0 0.000
#> SRR1270760     1   0.000      0.945 1.000  0  0  0  0 0.000
#> SRR1270761     1   0.000      0.945 1.000  0  0  0  0 0.000
#> SRR1270762     1   0.000      0.945 1.000  0  0  0  0 0.000
#> SRR1270763     1   0.000      0.945 1.000  0  0  0  0 0.000
#> SRR1270764     1   0.000      0.945 1.000  0  0  0  0 0.000
#> SRR1270765     2   0.000      1.000 0.000  1  0  0  0 0.000
#> SRR1270766     2   0.000      1.000 0.000  1  0  0  0 0.000
#> SRR1270767     2   0.000      1.000 0.000  1  0  0  0 0.000
#> SRR1270768     2   0.000      1.000 0.000  1  0  0  0 0.000
#> SRR1270769     2   0.000      1.000 0.000  1  0  0  0 0.000
#> SRR1270770     2   0.000      1.000 0.000  1  0  0  0 0.000
#> SRR1270771     2   0.000      1.000 0.000  1  0  0  0 0.000
#> SRR1270772     2   0.000      1.000 0.000  1  0  0  0 0.000
#> SRR1270773     2   0.000      1.000 0.000  1  0  0  0 0.000
#> SRR1270774     2   0.000      1.000 0.000  1  0  0  0 0.000
#> SRR1270775     2   0.000      1.000 0.000  1  0  0  0 0.000
#> SRR1270776     2   0.000      1.000 0.000  1  0  0  0 0.000
#> SRR1270777     2   0.000      1.000 0.000  1  0  0  0 0.000
#> SRR1270778     2   0.000      1.000 0.000  1  0  0  0 0.000
#> SRR1270779     2   0.000      1.000 0.000  1  0  0  0 0.000
#> SRR1270780     2   0.000      1.000 0.000  1  0  0  0 0.000
#> SRR1270781     2   0.000      1.000 0.000  1  0  0  0 0.000
#> SRR1270782     2   0.000      1.000 0.000  1  0  0  0 0.000
#> SRR1270783     2   0.000      1.000 0.000  1  0  0  0 0.000
#> SRR1270784     2   0.000      1.000 0.000  1  0  0  0 0.000
#> SRR1270785     5   0.000      1.000 0.000  0  0  0  1 0.000
#> SRR1270786     5   0.000      1.000 0.000  0  0  0  1 0.000
#> SRR1270787     5   0.000      1.000 0.000  0  0  0  1 0.000
#> SRR1270788     5   0.000      1.000 0.000  0  0  0  1 0.000
#> SRR1270789     5   0.000      1.000 0.000  0  0  0  1 0.000
#> SRR1270790     5   0.000      1.000 0.000  0  0  0  1 0.000
#> SRR1270791     5   0.000      1.000 0.000  0  0  0  1 0.000
#> SRR1270792     5   0.000      1.000 0.000  0  0  0  1 0.000
#> SRR1270793     5   0.000      1.000 0.000  0  0  0  1 0.000
#> SRR1270794     5   0.000      1.000 0.000  0  0  0  1 0.000
#> SRR1270795     5   0.000      1.000 0.000  0  0  0  1 0.000
#> SRR1270796     5   0.000      1.000 0.000  0  0  0  1 0.000
#> SRR1270797     5   0.000      1.000 0.000  0  0  0  1 0.000
#> SRR1270798     5   0.000      1.000 0.000  0  0  0  1 0.000
#> SRR1270799     5   0.000      1.000 0.000  0  0  0  1 0.000
#> SRR1270800     5   0.000      1.000 0.000  0  0  0  1 0.000
#> SRR1270801     5   0.000      1.000 0.000  0  0  0  1 0.000
#> SRR1270802     5   0.000      1.000 0.000  0  0  0  1 0.000
#> SRR1270803     5   0.000      1.000 0.000  0  0  0  1 0.000
#> SRR1270804     5   0.000      1.000 0.000  0  0  0  1 0.000
#> SRR1270805     3   0.000      1.000 0.000  0  1  0  0 0.000
#> SRR1270806     3   0.000      1.000 0.000  0  1  0  0 0.000
#> SRR1270807     3   0.000      1.000 0.000  0  1  0  0 0.000
#> SRR1270808     3   0.000      1.000 0.000  0  1  0  0 0.000
#> SRR1270809     3   0.000      1.000 0.000  0  1  0  0 0.000
#> SRR1270810     3   0.000      1.000 0.000  0  1  0  0 0.000
#> SRR1270811     3   0.000      1.000 0.000  0  1  0  0 0.000
#> SRR1270812     3   0.000      1.000 0.000  0  1  0  0 0.000
#> SRR1270813     3   0.000      1.000 0.000  0  1  0  0 0.000
#> SRR1270814     3   0.000      1.000 0.000  0  1  0  0 0.000
#> SRR1270815     3   0.000      1.000 0.000  0  1  0  0 0.000
#> SRR1270816     3   0.000      1.000 0.000  0  1  0  0 0.000
#> SRR1270817     3   0.000      1.000 0.000  0  1  0  0 0.000
#> SRR1270818     3   0.000      1.000 0.000  0  1  0  0 0.000
#> SRR1270819     3   0.000      1.000 0.000  0  1  0  0 0.000
#> SRR1270820     3   0.000      1.000 0.000  0  1  0  0 0.000
#> SRR1270821     3   0.000      1.000 0.000  0  1  0  0 0.000
#> SRR1270822     3   0.000      1.000 0.000  0  1  0  0 0.000
#> SRR1270823     3   0.000      1.000 0.000  0  1  0  0 0.000
#> SRR1270824     3   0.000      1.000 0.000  0  1  0  0 0.000
#> SRR1270825     3   0.000      1.000 0.000  0  1  0  0 0.000
#> SRR1270826     3   0.000      1.000 0.000  0  1  0  0 0.000
#> SRR1270827     3   0.000      1.000 0.000  0  1  0  0 0.000
#> SRR1270828     3   0.000      1.000 0.000  0  1  0  0 0.000
#> SRR1270829     3   0.000      1.000 0.000  0  1  0  0 0.000
#> SRR1270830     3   0.000      1.000 0.000  0  1  0  0 0.000
#> SRR1270831     3   0.000      1.000 0.000  0  1  0  0 0.000
#> SRR1270832     3   0.000      1.000 0.000  0  1  0  0 0.000
#> SRR1270833     4   0.000      1.000 0.000  0  0  1  0 0.000
#> SRR1270834     4   0.000      1.000 0.000  0  0  1  0 0.000
#> SRR1270835     4   0.000      1.000 0.000  0  0  1  0 0.000
#> SRR1270836     4   0.000      1.000 0.000  0  0  1  0 0.000
#> SRR1270837     4   0.000      1.000 0.000  0  0  1  0 0.000
#> SRR1270838     4   0.000      1.000 0.000  0  0  1  0 0.000
#> SRR1270839     4   0.000      1.000 0.000  0  0  1  0 0.000
#> SRR1270840     4   0.000      1.000 0.000  0  0  1  0 0.000
#> SRR1270841     4   0.000      1.000 0.000  0  0  1  0 0.000
#> SRR1270842     4   0.000      1.000 0.000  0  0  1  0 0.000
#> SRR1270843     4   0.000      1.000 0.000  0  0  1  0 0.000
#> SRR1270844     4   0.000      1.000 0.000  0  0  1  0 0.000
#> SRR1270845     4   0.000      1.000 0.000  0  0  1  0 0.000
#> SRR1270846     4   0.000      1.000 0.000  0  0  1  0 0.000
#> SRR1270847     4   0.000      1.000 0.000  0  0  1  0 0.000
#> SRR1270848     4   0.000      1.000 0.000  0  0  1  0 0.000
#> SRR1270849     4   0.000      1.000 0.000  0  0  1  0 0.000
#> SRR1270850     4   0.000      1.000 0.000  0  0  1  0 0.000
#> SRR1270851     2   0.000      1.000 0.000  1  0  0  0 0.000
#> SRR1270852     2   0.000      1.000 0.000  1  0  0  0 0.000
#> SRR1270853     2   0.000      1.000 0.000  1  0  0  0 0.000
#> SRR1270854     2   0.000      1.000 0.000  1  0  0  0 0.000
#> SRR1270855     2   0.000      1.000 0.000  1  0  0  0 0.000
#> SRR1270856     2   0.000      1.000 0.000  1  0  0  0 0.000
#> SRR1270857     2   0.000      1.000 0.000  1  0  0  0 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14577 rows and 143 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2     1           0.996       0.997         0.4992 0.501   0.501
#> 3 3     1           1.000       1.000         0.3447 0.729   0.508
#> 4 4     1           1.000       1.000         0.0739 0.950   0.849
#> 5 5     1           0.979       0.991         0.0742 0.947   0.810
#> 6 6     1           1.000       1.000         0.0789 0.938   0.728

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 4 5

There is also optional best \(k\) = 2 3 4 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1270715     1  0.0000      0.996 1.000 0.000
#> SRR1270716     1  0.0000      0.996 1.000 0.000
#> SRR1270717     1  0.0000      0.996 1.000 0.000
#> SRR1270718     1  0.0000      0.996 1.000 0.000
#> SRR1270719     1  0.0000      0.996 1.000 0.000
#> SRR1270720     1  0.0000      0.996 1.000 0.000
#> SRR1270721     1  0.0000      0.996 1.000 0.000
#> SRR1270722     1  0.0000      0.996 1.000 0.000
#> SRR1270723     1  0.0000      0.996 1.000 0.000
#> SRR1270724     1  0.0000      0.996 1.000 0.000
#> SRR1270725     1  0.0000      0.996 1.000 0.000
#> SRR1270726     1  0.0000      0.996 1.000 0.000
#> SRR1270727     1  0.0000      0.996 1.000 0.000
#> SRR1270728     1  0.0000      0.996 1.000 0.000
#> SRR1270729     1  0.0000      0.996 1.000 0.000
#> SRR1270730     1  0.0000      0.996 1.000 0.000
#> SRR1270731     1  0.0000      0.996 1.000 0.000
#> SRR1270732     1  0.0000      0.996 1.000 0.000
#> SRR1270733     1  0.0000      0.996 1.000 0.000
#> SRR1270734     1  0.0000      0.996 1.000 0.000
#> SRR1270735     1  0.0000      0.996 1.000 0.000
#> SRR1270736     1  0.0000      0.996 1.000 0.000
#> SRR1270737     1  0.0000      0.996 1.000 0.000
#> SRR1270738     1  0.0000      0.996 1.000 0.000
#> SRR1270739     1  0.0000      0.996 1.000 0.000
#> SRR1270740     1  0.0000      0.996 1.000 0.000
#> SRR1270741     1  0.0000      0.996 1.000 0.000
#> SRR1270742     1  0.0000      0.996 1.000 0.000
#> SRR1270743     1  0.0000      0.996 1.000 0.000
#> SRR1270744     1  0.0000      0.996 1.000 0.000
#> SRR1270745     1  0.0000      0.996 1.000 0.000
#> SRR1270746     1  0.0000      0.996 1.000 0.000
#> SRR1270747     1  0.0000      0.996 1.000 0.000
#> SRR1270748     1  0.0000      0.996 1.000 0.000
#> SRR1270749     1  0.0000      0.996 1.000 0.000
#> SRR1270750     1  0.0000      0.996 1.000 0.000
#> SRR1270751     1  0.0000      0.996 1.000 0.000
#> SRR1270752     1  0.0000      0.996 1.000 0.000
#> SRR1270753     1  0.0000      0.996 1.000 0.000
#> SRR1270754     1  0.0000      0.996 1.000 0.000
#> SRR1270755     1  0.0000      0.996 1.000 0.000
#> SRR1270756     1  0.0000      0.996 1.000 0.000
#> SRR1270757     1  0.0000      0.996 1.000 0.000
#> SRR1270758     1  0.0000      0.996 1.000 0.000
#> SRR1270759     1  0.0000      0.996 1.000 0.000
#> SRR1270760     1  0.0000      0.996 1.000 0.000
#> SRR1270761     1  0.0000      0.996 1.000 0.000
#> SRR1270762     1  0.0000      0.996 1.000 0.000
#> SRR1270763     1  0.0000      0.996 1.000 0.000
#> SRR1270764     1  0.0000      0.996 1.000 0.000
#> SRR1270765     2  0.0000      0.999 0.000 1.000
#> SRR1270766     2  0.0000      0.999 0.000 1.000
#> SRR1270767     2  0.0000      0.999 0.000 1.000
#> SRR1270768     2  0.0000      0.999 0.000 1.000
#> SRR1270769     2  0.0000      0.999 0.000 1.000
#> SRR1270770     2  0.0000      0.999 0.000 1.000
#> SRR1270771     2  0.0000      0.999 0.000 1.000
#> SRR1270772     2  0.0000      0.999 0.000 1.000
#> SRR1270773     2  0.0000      0.999 0.000 1.000
#> SRR1270774     2  0.0000      0.999 0.000 1.000
#> SRR1270775     2  0.0000      0.999 0.000 1.000
#> SRR1270776     2  0.0000      0.999 0.000 1.000
#> SRR1270777     2  0.0000      0.999 0.000 1.000
#> SRR1270778     2  0.0000      0.999 0.000 1.000
#> SRR1270779     2  0.0000      0.999 0.000 1.000
#> SRR1270780     2  0.0000      0.999 0.000 1.000
#> SRR1270781     2  0.0000      0.999 0.000 1.000
#> SRR1270782     2  0.0000      0.999 0.000 1.000
#> SRR1270783     2  0.0000      0.999 0.000 1.000
#> SRR1270784     2  0.0000      0.999 0.000 1.000
#> SRR1270785     2  0.0000      0.999 0.000 1.000
#> SRR1270786     2  0.0000      0.999 0.000 1.000
#> SRR1270787     2  0.0000      0.999 0.000 1.000
#> SRR1270788     2  0.0000      0.999 0.000 1.000
#> SRR1270789     2  0.0000      0.999 0.000 1.000
#> SRR1270790     2  0.0000      0.999 0.000 1.000
#> SRR1270791     2  0.0000      0.999 0.000 1.000
#> SRR1270792     2  0.0000      0.999 0.000 1.000
#> SRR1270793     2  0.0000      0.999 0.000 1.000
#> SRR1270794     2  0.0000      0.999 0.000 1.000
#> SRR1270795     2  0.0000      0.999 0.000 1.000
#> SRR1270796     2  0.0000      0.999 0.000 1.000
#> SRR1270797     2  0.0000      0.999 0.000 1.000
#> SRR1270798     2  0.0000      0.999 0.000 1.000
#> SRR1270799     2  0.0000      0.999 0.000 1.000
#> SRR1270800     2  0.0000      0.999 0.000 1.000
#> SRR1270801     2  0.0000      0.999 0.000 1.000
#> SRR1270802     2  0.0000      0.999 0.000 1.000
#> SRR1270803     2  0.0000      0.999 0.000 1.000
#> SRR1270804     2  0.0000      0.999 0.000 1.000
#> SRR1270805     1  0.0938      0.992 0.988 0.012
#> SRR1270806     1  0.0938      0.992 0.988 0.012
#> SRR1270807     1  0.0938      0.992 0.988 0.012
#> SRR1270808     1  0.0938      0.992 0.988 0.012
#> SRR1270809     1  0.0938      0.992 0.988 0.012
#> SRR1270810     1  0.0938      0.992 0.988 0.012
#> SRR1270811     1  0.0938      0.992 0.988 0.012
#> SRR1270812     1  0.0938      0.992 0.988 0.012
#> SRR1270813     1  0.0938      0.992 0.988 0.012
#> SRR1270814     1  0.0938      0.992 0.988 0.012
#> SRR1270815     1  0.0938      0.992 0.988 0.012
#> SRR1270816     1  0.0938      0.992 0.988 0.012
#> SRR1270817     1  0.0938      0.992 0.988 0.012
#> SRR1270818     1  0.0938      0.992 0.988 0.012
#> SRR1270819     1  0.0938      0.992 0.988 0.012
#> SRR1270820     1  0.0938      0.992 0.988 0.012
#> SRR1270821     1  0.0938      0.992 0.988 0.012
#> SRR1270822     1  0.0938      0.992 0.988 0.012
#> SRR1270823     1  0.0938      0.992 0.988 0.012
#> SRR1270824     1  0.0938      0.992 0.988 0.012
#> SRR1270825     1  0.0938      0.992 0.988 0.012
#> SRR1270826     1  0.0938      0.992 0.988 0.012
#> SRR1270827     1  0.0938      0.992 0.988 0.012
#> SRR1270828     1  0.0938      0.992 0.988 0.012
#> SRR1270829     1  0.0938      0.992 0.988 0.012
#> SRR1270830     1  0.0938      0.992 0.988 0.012
#> SRR1270831     1  0.0938      0.992 0.988 0.012
#> SRR1270832     1  0.0938      0.992 0.988 0.012
#> SRR1270833     2  0.0376      0.997 0.004 0.996
#> SRR1270834     2  0.0376      0.997 0.004 0.996
#> SRR1270835     2  0.0376      0.997 0.004 0.996
#> SRR1270836     2  0.0376      0.997 0.004 0.996
#> SRR1270837     2  0.0376      0.997 0.004 0.996
#> SRR1270838     2  0.0376      0.997 0.004 0.996
#> SRR1270839     2  0.0376      0.997 0.004 0.996
#> SRR1270840     2  0.0376      0.997 0.004 0.996
#> SRR1270841     2  0.0376      0.997 0.004 0.996
#> SRR1270842     2  0.0376      0.997 0.004 0.996
#> SRR1270843     2  0.0376      0.997 0.004 0.996
#> SRR1270844     2  0.0376      0.997 0.004 0.996
#> SRR1270845     2  0.0376      0.997 0.004 0.996
#> SRR1270846     2  0.0376      0.997 0.004 0.996
#> SRR1270847     2  0.0376      0.997 0.004 0.996
#> SRR1270848     2  0.0376      0.997 0.004 0.996
#> SRR1270849     2  0.0376      0.997 0.004 0.996
#> SRR1270850     2  0.0376      0.997 0.004 0.996
#> SRR1270851     2  0.0000      0.999 0.000 1.000
#> SRR1270852     2  0.0000      0.999 0.000 1.000
#> SRR1270853     2  0.0000      0.999 0.000 1.000
#> SRR1270854     2  0.0000      0.999 0.000 1.000
#> SRR1270855     2  0.0000      0.999 0.000 1.000
#> SRR1270856     2  0.0000      0.999 0.000 1.000
#> SRR1270857     2  0.0000      0.999 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette p1 p2 p3
#> SRR1270715     1       0          1  1  0  0
#> SRR1270716     1       0          1  1  0  0
#> SRR1270717     1       0          1  1  0  0
#> SRR1270718     1       0          1  1  0  0
#> SRR1270719     1       0          1  1  0  0
#> SRR1270720     1       0          1  1  0  0
#> SRR1270721     1       0          1  1  0  0
#> SRR1270722     1       0          1  1  0  0
#> SRR1270723     1       0          1  1  0  0
#> SRR1270724     1       0          1  1  0  0
#> SRR1270725     1       0          1  1  0  0
#> SRR1270726     1       0          1  1  0  0
#> SRR1270727     1       0          1  1  0  0
#> SRR1270728     1       0          1  1  0  0
#> SRR1270729     1       0          1  1  0  0
#> SRR1270730     1       0          1  1  0  0
#> SRR1270731     1       0          1  1  0  0
#> SRR1270732     1       0          1  1  0  0
#> SRR1270733     1       0          1  1  0  0
#> SRR1270734     1       0          1  1  0  0
#> SRR1270735     1       0          1  1  0  0
#> SRR1270736     1       0          1  1  0  0
#> SRR1270737     1       0          1  1  0  0
#> SRR1270738     1       0          1  1  0  0
#> SRR1270739     1       0          1  1  0  0
#> SRR1270740     1       0          1  1  0  0
#> SRR1270741     1       0          1  1  0  0
#> SRR1270742     1       0          1  1  0  0
#> SRR1270743     1       0          1  1  0  0
#> SRR1270744     1       0          1  1  0  0
#> SRR1270745     1       0          1  1  0  0
#> SRR1270746     1       0          1  1  0  0
#> SRR1270747     1       0          1  1  0  0
#> SRR1270748     1       0          1  1  0  0
#> SRR1270749     1       0          1  1  0  0
#> SRR1270750     1       0          1  1  0  0
#> SRR1270751     1       0          1  1  0  0
#> SRR1270752     1       0          1  1  0  0
#> SRR1270753     1       0          1  1  0  0
#> SRR1270754     1       0          1  1  0  0
#> SRR1270755     1       0          1  1  0  0
#> SRR1270756     1       0          1  1  0  0
#> SRR1270757     1       0          1  1  0  0
#> SRR1270758     1       0          1  1  0  0
#> SRR1270759     1       0          1  1  0  0
#> SRR1270760     1       0          1  1  0  0
#> SRR1270761     1       0          1  1  0  0
#> SRR1270762     1       0          1  1  0  0
#> SRR1270763     1       0          1  1  0  0
#> SRR1270764     1       0          1  1  0  0
#> SRR1270765     2       0          1  0  1  0
#> SRR1270766     2       0          1  0  1  0
#> SRR1270767     2       0          1  0  1  0
#> SRR1270768     2       0          1  0  1  0
#> SRR1270769     2       0          1  0  1  0
#> SRR1270770     2       0          1  0  1  0
#> SRR1270771     2       0          1  0  1  0
#> SRR1270772     2       0          1  0  1  0
#> SRR1270773     2       0          1  0  1  0
#> SRR1270774     2       0          1  0  1  0
#> SRR1270775     2       0          1  0  1  0
#> SRR1270776     2       0          1  0  1  0
#> SRR1270777     2       0          1  0  1  0
#> SRR1270778     2       0          1  0  1  0
#> SRR1270779     2       0          1  0  1  0
#> SRR1270780     2       0          1  0  1  0
#> SRR1270781     2       0          1  0  1  0
#> SRR1270782     2       0          1  0  1  0
#> SRR1270783     2       0          1  0  1  0
#> SRR1270784     2       0          1  0  1  0
#> SRR1270785     2       0          1  0  1  0
#> SRR1270786     2       0          1  0  1  0
#> SRR1270787     2       0          1  0  1  0
#> SRR1270788     2       0          1  0  1  0
#> SRR1270789     2       0          1  0  1  0
#> SRR1270790     2       0          1  0  1  0
#> SRR1270791     2       0          1  0  1  0
#> SRR1270792     2       0          1  0  1  0
#> SRR1270793     2       0          1  0  1  0
#> SRR1270794     2       0          1  0  1  0
#> SRR1270795     2       0          1  0  1  0
#> SRR1270796     2       0          1  0  1  0
#> SRR1270797     2       0          1  0  1  0
#> SRR1270798     2       0          1  0  1  0
#> SRR1270799     2       0          1  0  1  0
#> SRR1270800     2       0          1  0  1  0
#> SRR1270801     2       0          1  0  1  0
#> SRR1270802     2       0          1  0  1  0
#> SRR1270803     2       0          1  0  1  0
#> SRR1270804     2       0          1  0  1  0
#> SRR1270805     3       0          1  0  0  1
#> SRR1270806     3       0          1  0  0  1
#> SRR1270807     3       0          1  0  0  1
#> SRR1270808     3       0          1  0  0  1
#> SRR1270809     3       0          1  0  0  1
#> SRR1270810     3       0          1  0  0  1
#> SRR1270811     3       0          1  0  0  1
#> SRR1270812     3       0          1  0  0  1
#> SRR1270813     3       0          1  0  0  1
#> SRR1270814     3       0          1  0  0  1
#> SRR1270815     3       0          1  0  0  1
#> SRR1270816     3       0          1  0  0  1
#> SRR1270817     3       0          1  0  0  1
#> SRR1270818     3       0          1  0  0  1
#> SRR1270819     3       0          1  0  0  1
#> SRR1270820     3       0          1  0  0  1
#> SRR1270821     3       0          1  0  0  1
#> SRR1270822     3       0          1  0  0  1
#> SRR1270823     3       0          1  0  0  1
#> SRR1270824     3       0          1  0  0  1
#> SRR1270825     3       0          1  0  0  1
#> SRR1270826     3       0          1  0  0  1
#> SRR1270827     3       0          1  0  0  1
#> SRR1270828     3       0          1  0  0  1
#> SRR1270829     3       0          1  0  0  1
#> SRR1270830     3       0          1  0  0  1
#> SRR1270831     3       0          1  0  0  1
#> SRR1270832     3       0          1  0  0  1
#> SRR1270833     3       0          1  0  0  1
#> SRR1270834     3       0          1  0  0  1
#> SRR1270835     3       0          1  0  0  1
#> SRR1270836     3       0          1  0  0  1
#> SRR1270837     3       0          1  0  0  1
#> SRR1270838     3       0          1  0  0  1
#> SRR1270839     3       0          1  0  0  1
#> SRR1270840     3       0          1  0  0  1
#> SRR1270841     3       0          1  0  0  1
#> SRR1270842     3       0          1  0  0  1
#> SRR1270843     3       0          1  0  0  1
#> SRR1270844     3       0          1  0  0  1
#> SRR1270845     3       0          1  0  0  1
#> SRR1270846     3       0          1  0  0  1
#> SRR1270847     3       0          1  0  0  1
#> SRR1270848     3       0          1  0  0  1
#> SRR1270849     3       0          1  0  0  1
#> SRR1270850     3       0          1  0  0  1
#> SRR1270851     2       0          1  0  1  0
#> SRR1270852     2       0          1  0  1  0
#> SRR1270853     2       0          1  0  1  0
#> SRR1270854     2       0          1  0  1  0
#> SRR1270855     2       0          1  0  1  0
#> SRR1270856     2       0          1  0  1  0
#> SRR1270857     2       0          1  0  1  0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette p1 p2 p3 p4
#> SRR1270715     1       0          1  1  0  0  0
#> SRR1270716     1       0          1  1  0  0  0
#> SRR1270717     1       0          1  1  0  0  0
#> SRR1270718     1       0          1  1  0  0  0
#> SRR1270719     1       0          1  1  0  0  0
#> SRR1270720     1       0          1  1  0  0  0
#> SRR1270721     1       0          1  1  0  0  0
#> SRR1270722     1       0          1  1  0  0  0
#> SRR1270723     1       0          1  1  0  0  0
#> SRR1270724     1       0          1  1  0  0  0
#> SRR1270725     1       0          1  1  0  0  0
#> SRR1270726     1       0          1  1  0  0  0
#> SRR1270727     1       0          1  1  0  0  0
#> SRR1270728     1       0          1  1  0  0  0
#> SRR1270729     1       0          1  1  0  0  0
#> SRR1270730     1       0          1  1  0  0  0
#> SRR1270731     1       0          1  1  0  0  0
#> SRR1270732     1       0          1  1  0  0  0
#> SRR1270733     1       0          1  1  0  0  0
#> SRR1270734     1       0          1  1  0  0  0
#> SRR1270735     1       0          1  1  0  0  0
#> SRR1270736     1       0          1  1  0  0  0
#> SRR1270737     1       0          1  1  0  0  0
#> SRR1270738     1       0          1  1  0  0  0
#> SRR1270739     1       0          1  1  0  0  0
#> SRR1270740     1       0          1  1  0  0  0
#> SRR1270741     1       0          1  1  0  0  0
#> SRR1270742     1       0          1  1  0  0  0
#> SRR1270743     1       0          1  1  0  0  0
#> SRR1270744     1       0          1  1  0  0  0
#> SRR1270745     1       0          1  1  0  0  0
#> SRR1270746     1       0          1  1  0  0  0
#> SRR1270747     1       0          1  1  0  0  0
#> SRR1270748     1       0          1  1  0  0  0
#> SRR1270749     1       0          1  1  0  0  0
#> SRR1270750     1       0          1  1  0  0  0
#> SRR1270751     1       0          1  1  0  0  0
#> SRR1270752     1       0          1  1  0  0  0
#> SRR1270753     1       0          1  1  0  0  0
#> SRR1270754     1       0          1  1  0  0  0
#> SRR1270755     1       0          1  1  0  0  0
#> SRR1270756     1       0          1  1  0  0  0
#> SRR1270757     1       0          1  1  0  0  0
#> SRR1270758     1       0          1  1  0  0  0
#> SRR1270759     1       0          1  1  0  0  0
#> SRR1270760     1       0          1  1  0  0  0
#> SRR1270761     1       0          1  1  0  0  0
#> SRR1270762     1       0          1  1  0  0  0
#> SRR1270763     1       0          1  1  0  0  0
#> SRR1270764     1       0          1  1  0  0  0
#> SRR1270765     2       0          1  0  1  0  0
#> SRR1270766     2       0          1  0  1  0  0
#> SRR1270767     2       0          1  0  1  0  0
#> SRR1270768     2       0          1  0  1  0  0
#> SRR1270769     2       0          1  0  1  0  0
#> SRR1270770     2       0          1  0  1  0  0
#> SRR1270771     2       0          1  0  1  0  0
#> SRR1270772     2       0          1  0  1  0  0
#> SRR1270773     2       0          1  0  1  0  0
#> SRR1270774     2       0          1  0  1  0  0
#> SRR1270775     2       0          1  0  1  0  0
#> SRR1270776     2       0          1  0  1  0  0
#> SRR1270777     2       0          1  0  1  0  0
#> SRR1270778     2       0          1  0  1  0  0
#> SRR1270779     2       0          1  0  1  0  0
#> SRR1270780     2       0          1  0  1  0  0
#> SRR1270781     2       0          1  0  1  0  0
#> SRR1270782     2       0          1  0  1  0  0
#> SRR1270783     2       0          1  0  1  0  0
#> SRR1270784     2       0          1  0  1  0  0
#> SRR1270785     2       0          1  0  1  0  0
#> SRR1270786     2       0          1  0  1  0  0
#> SRR1270787     2       0          1  0  1  0  0
#> SRR1270788     2       0          1  0  1  0  0
#> SRR1270789     2       0          1  0  1  0  0
#> SRR1270790     2       0          1  0  1  0  0
#> SRR1270791     2       0          1  0  1  0  0
#> SRR1270792     2       0          1  0  1  0  0
#> SRR1270793     2       0          1  0  1  0  0
#> SRR1270794     2       0          1  0  1  0  0
#> SRR1270795     2       0          1  0  1  0  0
#> SRR1270796     2       0          1  0  1  0  0
#> SRR1270797     2       0          1  0  1  0  0
#> SRR1270798     2       0          1  0  1  0  0
#> SRR1270799     2       0          1  0  1  0  0
#> SRR1270800     2       0          1  0  1  0  0
#> SRR1270801     2       0          1  0  1  0  0
#> SRR1270802     2       0          1  0  1  0  0
#> SRR1270803     2       0          1  0  1  0  0
#> SRR1270804     2       0          1  0  1  0  0
#> SRR1270805     3       0          1  0  0  1  0
#> SRR1270806     3       0          1  0  0  1  0
#> SRR1270807     3       0          1  0  0  1  0
#> SRR1270808     3       0          1  0  0  1  0
#> SRR1270809     3       0          1  0  0  1  0
#> SRR1270810     3       0          1  0  0  1  0
#> SRR1270811     3       0          1  0  0  1  0
#> SRR1270812     3       0          1  0  0  1  0
#> SRR1270813     3       0          1  0  0  1  0
#> SRR1270814     3       0          1  0  0  1  0
#> SRR1270815     3       0          1  0  0  1  0
#> SRR1270816     3       0          1  0  0  1  0
#> SRR1270817     3       0          1  0  0  1  0
#> SRR1270818     3       0          1  0  0  1  0
#> SRR1270819     3       0          1  0  0  1  0
#> SRR1270820     3       0          1  0  0  1  0
#> SRR1270821     3       0          1  0  0  1  0
#> SRR1270822     3       0          1  0  0  1  0
#> SRR1270823     3       0          1  0  0  1  0
#> SRR1270824     3       0          1  0  0  1  0
#> SRR1270825     3       0          1  0  0  1  0
#> SRR1270826     3       0          1  0  0  1  0
#> SRR1270827     3       0          1  0  0  1  0
#> SRR1270828     3       0          1  0  0  1  0
#> SRR1270829     3       0          1  0  0  1  0
#> SRR1270830     3       0          1  0  0  1  0
#> SRR1270831     3       0          1  0  0  1  0
#> SRR1270832     3       0          1  0  0  1  0
#> SRR1270833     4       0          1  0  0  0  1
#> SRR1270834     4       0          1  0  0  0  1
#> SRR1270835     4       0          1  0  0  0  1
#> SRR1270836     4       0          1  0  0  0  1
#> SRR1270837     4       0          1  0  0  0  1
#> SRR1270838     4       0          1  0  0  0  1
#> SRR1270839     4       0          1  0  0  0  1
#> SRR1270840     4       0          1  0  0  0  1
#> SRR1270841     4       0          1  0  0  0  1
#> SRR1270842     4       0          1  0  0  0  1
#> SRR1270843     4       0          1  0  0  0  1
#> SRR1270844     4       0          1  0  0  0  1
#> SRR1270845     4       0          1  0  0  0  1
#> SRR1270846     4       0          1  0  0  0  1
#> SRR1270847     4       0          1  0  0  0  1
#> SRR1270848     4       0          1  0  0  0  1
#> SRR1270849     4       0          1  0  0  0  1
#> SRR1270850     4       0          1  0  0  0  1
#> SRR1270851     2       0          1  0  1  0  0
#> SRR1270852     2       0          1  0  1  0  0
#> SRR1270853     2       0          1  0  1  0  0
#> SRR1270854     2       0          1  0  1  0  0
#> SRR1270855     2       0          1  0  1  0  0
#> SRR1270856     2       0          1  0  1  0  0
#> SRR1270857     2       0          1  0  1  0  0

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette p1    p2 p3 p4    p5
#> SRR1270715     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270716     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270717     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270718     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270719     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270720     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270721     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270722     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270723     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270724     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270725     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270726     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270727     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270728     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270729     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270730     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270731     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270732     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270733     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270734     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270735     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270736     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270737     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270738     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270739     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270740     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270741     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270742     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270743     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270744     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270745     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270746     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270747     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270748     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270749     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270750     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270751     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270752     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270753     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270754     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270755     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270756     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270757     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270758     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270759     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270760     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270761     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270762     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270763     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270764     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270765     2   0.000      0.947  0 1.000  0  0 0.000
#> SRR1270766     2   0.000      0.947  0 1.000  0  0 0.000
#> SRR1270767     2   0.000      0.947  0 1.000  0  0 0.000
#> SRR1270768     2   0.393      0.568  0 0.672  0  0 0.328
#> SRR1270769     2   0.393      0.568  0 0.672  0  0 0.328
#> SRR1270770     2   0.393      0.568  0 0.672  0  0 0.328
#> SRR1270771     2   0.393      0.568  0 0.672  0  0 0.328
#> SRR1270772     2   0.000      0.947  0 1.000  0  0 0.000
#> SRR1270773     2   0.000      0.947  0 1.000  0  0 0.000
#> SRR1270774     2   0.000      0.947  0 1.000  0  0 0.000
#> SRR1270775     2   0.000      0.947  0 1.000  0  0 0.000
#> SRR1270776     2   0.000      0.947  0 1.000  0  0 0.000
#> SRR1270777     2   0.000      0.947  0 1.000  0  0 0.000
#> SRR1270778     2   0.000      0.947  0 1.000  0  0 0.000
#> SRR1270779     2   0.000      0.947  0 1.000  0  0 0.000
#> SRR1270780     2   0.000      0.947  0 1.000  0  0 0.000
#> SRR1270781     2   0.000      0.947  0 1.000  0  0 0.000
#> SRR1270782     2   0.000      0.947  0 1.000  0  0 0.000
#> SRR1270783     2   0.000      0.947  0 1.000  0  0 0.000
#> SRR1270784     2   0.000      0.947  0 1.000  0  0 0.000
#> SRR1270785     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270786     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270787     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270788     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270789     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270790     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270791     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270792     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270793     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270794     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270795     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270796     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270797     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270798     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270799     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270800     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270801     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270802     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270803     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270804     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270805     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270806     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270807     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270808     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270809     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270810     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270811     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270812     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270813     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270814     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270815     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270816     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270817     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270818     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270819     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270820     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270821     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270822     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270823     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270824     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270825     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270826     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270827     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270828     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270829     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270830     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270831     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270832     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270833     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270834     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270835     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270836     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270837     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270838     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270839     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270840     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270841     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270842     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270843     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270844     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270845     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270846     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270847     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270848     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270849     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270850     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270851     2   0.000      0.947  0 1.000  0  0 0.000
#> SRR1270852     2   0.000      0.947  0 1.000  0  0 0.000
#> SRR1270853     2   0.000      0.947  0 1.000  0  0 0.000
#> SRR1270854     2   0.000      0.947  0 1.000  0  0 0.000
#> SRR1270855     2   0.000      0.947  0 1.000  0  0 0.000
#> SRR1270856     2   0.000      0.947  0 1.000  0  0 0.000
#> SRR1270857     2   0.000      0.947  0 1.000  0  0 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1270715     6       0          1  0  0  0  0  0  1
#> SRR1270716     6       0          1  0  0  0  0  0  1
#> SRR1270717     6       0          1  0  0  0  0  0  1
#> SRR1270718     6       0          1  0  0  0  0  0  1
#> SRR1270719     6       0          1  0  0  0  0  0  1
#> SRR1270720     6       0          1  0  0  0  0  0  1
#> SRR1270721     6       0          1  0  0  0  0  0  1
#> SRR1270722     6       0          1  0  0  0  0  0  1
#> SRR1270723     6       0          1  0  0  0  0  0  1
#> SRR1270724     6       0          1  0  0  0  0  0  1
#> SRR1270725     6       0          1  0  0  0  0  0  1
#> SRR1270726     6       0          1  0  0  0  0  0  1
#> SRR1270727     6       0          1  0  0  0  0  0  1
#> SRR1270728     6       0          1  0  0  0  0  0  1
#> SRR1270729     6       0          1  0  0  0  0  0  1
#> SRR1270730     6       0          1  0  0  0  0  0  1
#> SRR1270731     6       0          1  0  0  0  0  0  1
#> SRR1270732     6       0          1  0  0  0  0  0  1
#> SRR1270733     6       0          1  0  0  0  0  0  1
#> SRR1270734     6       0          1  0  0  0  0  0  1
#> SRR1270735     6       0          1  0  0  0  0  0  1
#> SRR1270736     6       0          1  0  0  0  0  0  1
#> SRR1270737     6       0          1  0  0  0  0  0  1
#> SRR1270738     6       0          1  0  0  0  0  0  1
#> SRR1270739     6       0          1  0  0  0  0  0  1
#> SRR1270740     1       0          1  1  0  0  0  0  0
#> SRR1270741     1       0          1  1  0  0  0  0  0
#> SRR1270742     1       0          1  1  0  0  0  0  0
#> SRR1270743     1       0          1  1  0  0  0  0  0
#> SRR1270744     1       0          1  1  0  0  0  0  0
#> SRR1270745     1       0          1  1  0  0  0  0  0
#> SRR1270746     1       0          1  1  0  0  0  0  0
#> SRR1270747     1       0          1  1  0  0  0  0  0
#> SRR1270748     1       0          1  1  0  0  0  0  0
#> SRR1270749     1       0          1  1  0  0  0  0  0
#> SRR1270750     1       0          1  1  0  0  0  0  0
#> SRR1270751     1       0          1  1  0  0  0  0  0
#> SRR1270752     1       0          1  1  0  0  0  0  0
#> SRR1270753     1       0          1  1  0  0  0  0  0
#> SRR1270754     1       0          1  1  0  0  0  0  0
#> SRR1270755     1       0          1  1  0  0  0  0  0
#> SRR1270756     1       0          1  1  0  0  0  0  0
#> SRR1270757     1       0          1  1  0  0  0  0  0
#> SRR1270758     1       0          1  1  0  0  0  0  0
#> SRR1270759     1       0          1  1  0  0  0  0  0
#> SRR1270760     1       0          1  1  0  0  0  0  0
#> SRR1270761     1       0          1  1  0  0  0  0  0
#> SRR1270762     1       0          1  1  0  0  0  0  0
#> SRR1270763     1       0          1  1  0  0  0  0  0
#> SRR1270764     1       0          1  1  0  0  0  0  0
#> SRR1270765     2       0          1  0  1  0  0  0  0
#> SRR1270766     2       0          1  0  1  0  0  0  0
#> SRR1270767     2       0          1  0  1  0  0  0  0
#> SRR1270768     2       0          1  0  1  0  0  0  0
#> SRR1270769     2       0          1  0  1  0  0  0  0
#> SRR1270770     2       0          1  0  1  0  0  0  0
#> SRR1270771     2       0          1  0  1  0  0  0  0
#> SRR1270772     2       0          1  0  1  0  0  0  0
#> SRR1270773     2       0          1  0  1  0  0  0  0
#> SRR1270774     2       0          1  0  1  0  0  0  0
#> SRR1270775     2       0          1  0  1  0  0  0  0
#> SRR1270776     2       0          1  0  1  0  0  0  0
#> SRR1270777     2       0          1  0  1  0  0  0  0
#> SRR1270778     2       0          1  0  1  0  0  0  0
#> SRR1270779     2       0          1  0  1  0  0  0  0
#> SRR1270780     2       0          1  0  1  0  0  0  0
#> SRR1270781     2       0          1  0  1  0  0  0  0
#> SRR1270782     2       0          1  0  1  0  0  0  0
#> SRR1270783     2       0          1  0  1  0  0  0  0
#> SRR1270784     2       0          1  0  1  0  0  0  0
#> SRR1270785     5       0          1  0  0  0  0  1  0
#> SRR1270786     5       0          1  0  0  0  0  1  0
#> SRR1270787     5       0          1  0  0  0  0  1  0
#> SRR1270788     5       0          1  0  0  0  0  1  0
#> SRR1270789     5       0          1  0  0  0  0  1  0
#> SRR1270790     5       0          1  0  0  0  0  1  0
#> SRR1270791     5       0          1  0  0  0  0  1  0
#> SRR1270792     5       0          1  0  0  0  0  1  0
#> SRR1270793     5       0          1  0  0  0  0  1  0
#> SRR1270794     5       0          1  0  0  0  0  1  0
#> SRR1270795     5       0          1  0  0  0  0  1  0
#> SRR1270796     5       0          1  0  0  0  0  1  0
#> SRR1270797     5       0          1  0  0  0  0  1  0
#> SRR1270798     5       0          1  0  0  0  0  1  0
#> SRR1270799     5       0          1  0  0  0  0  1  0
#> SRR1270800     5       0          1  0  0  0  0  1  0
#> SRR1270801     5       0          1  0  0  0  0  1  0
#> SRR1270802     5       0          1  0  0  0  0  1  0
#> SRR1270803     5       0          1  0  0  0  0  1  0
#> SRR1270804     5       0          1  0  0  0  0  1  0
#> SRR1270805     3       0          1  0  0  1  0  0  0
#> SRR1270806     3       0          1  0  0  1  0  0  0
#> SRR1270807     3       0          1  0  0  1  0  0  0
#> SRR1270808     3       0          1  0  0  1  0  0  0
#> SRR1270809     3       0          1  0  0  1  0  0  0
#> SRR1270810     3       0          1  0  0  1  0  0  0
#> SRR1270811     3       0          1  0  0  1  0  0  0
#> SRR1270812     3       0          1  0  0  1  0  0  0
#> SRR1270813     3       0          1  0  0  1  0  0  0
#> SRR1270814     3       0          1  0  0  1  0  0  0
#> SRR1270815     3       0          1  0  0  1  0  0  0
#> SRR1270816     3       0          1  0  0  1  0  0  0
#> SRR1270817     3       0          1  0  0  1  0  0  0
#> SRR1270818     3       0          1  0  0  1  0  0  0
#> SRR1270819     3       0          1  0  0  1  0  0  0
#> SRR1270820     3       0          1  0  0  1  0  0  0
#> SRR1270821     3       0          1  0  0  1  0  0  0
#> SRR1270822     3       0          1  0  0  1  0  0  0
#> SRR1270823     3       0          1  0  0  1  0  0  0
#> SRR1270824     3       0          1  0  0  1  0  0  0
#> SRR1270825     3       0          1  0  0  1  0  0  0
#> SRR1270826     3       0          1  0  0  1  0  0  0
#> SRR1270827     3       0          1  0  0  1  0  0  0
#> SRR1270828     3       0          1  0  0  1  0  0  0
#> SRR1270829     3       0          1  0  0  1  0  0  0
#> SRR1270830     3       0          1  0  0  1  0  0  0
#> SRR1270831     3       0          1  0  0  1  0  0  0
#> SRR1270832     3       0          1  0  0  1  0  0  0
#> SRR1270833     4       0          1  0  0  0  1  0  0
#> SRR1270834     4       0          1  0  0  0  1  0  0
#> SRR1270835     4       0          1  0  0  0  1  0  0
#> SRR1270836     4       0          1  0  0  0  1  0  0
#> SRR1270837     4       0          1  0  0  0  1  0  0
#> SRR1270838     4       0          1  0  0  0  1  0  0
#> SRR1270839     4       0          1  0  0  0  1  0  0
#> SRR1270840     4       0          1  0  0  0  1  0  0
#> SRR1270841     4       0          1  0  0  0  1  0  0
#> SRR1270842     4       0          1  0  0  0  1  0  0
#> SRR1270843     4       0          1  0  0  0  1  0  0
#> SRR1270844     4       0          1  0  0  0  1  0  0
#> SRR1270845     4       0          1  0  0  0  1  0  0
#> SRR1270846     4       0          1  0  0  0  1  0  0
#> SRR1270847     4       0          1  0  0  0  1  0  0
#> SRR1270848     4       0          1  0  0  0  1  0  0
#> SRR1270849     4       0          1  0  0  0  1  0  0
#> SRR1270850     4       0          1  0  0  0  1  0  0
#> SRR1270851     2       0          1  0  1  0  0  0  0
#> SRR1270852     2       0          1  0  1  0  0  0  0
#> SRR1270853     2       0          1  0  1  0  0  0  0
#> SRR1270854     2       0          1  0  1  0  0  0  0
#> SRR1270855     2       0          1  0  1  0  0  0  0
#> SRR1270856     2       0          1  0  1  0  0  0  0
#> SRR1270857     2       0          1  0  1  0  0  0  0

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14577 rows and 143 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.4450 0.556   0.556
#> 3 3 0.918           0.936       0.967         0.5006 0.775   0.594
#> 4 4 1.000           0.997       0.998         0.0802 0.842   0.588
#> 5 5 0.952           0.814       0.911         0.0473 0.961   0.860
#> 6 6 0.909           0.960       0.934         0.0271 0.966   0.865

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 4 5

There is also optional best \(k\) = 2 3 4 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1270715     1       0          1  1  0
#> SRR1270716     1       0          1  1  0
#> SRR1270717     1       0          1  1  0
#> SRR1270718     1       0          1  1  0
#> SRR1270719     1       0          1  1  0
#> SRR1270720     1       0          1  1  0
#> SRR1270721     1       0          1  1  0
#> SRR1270722     1       0          1  1  0
#> SRR1270723     1       0          1  1  0
#> SRR1270724     1       0          1  1  0
#> SRR1270725     1       0          1  1  0
#> SRR1270726     1       0          1  1  0
#> SRR1270727     1       0          1  1  0
#> SRR1270728     1       0          1  1  0
#> SRR1270729     1       0          1  1  0
#> SRR1270730     1       0          1  1  0
#> SRR1270731     1       0          1  1  0
#> SRR1270732     1       0          1  1  0
#> SRR1270733     1       0          1  1  0
#> SRR1270734     1       0          1  1  0
#> SRR1270735     1       0          1  1  0
#> SRR1270736     1       0          1  1  0
#> SRR1270737     1       0          1  1  0
#> SRR1270738     1       0          1  1  0
#> SRR1270739     1       0          1  1  0
#> SRR1270740     1       0          1  1  0
#> SRR1270741     1       0          1  1  0
#> SRR1270742     1       0          1  1  0
#> SRR1270743     1       0          1  1  0
#> SRR1270744     1       0          1  1  0
#> SRR1270745     1       0          1  1  0
#> SRR1270746     1       0          1  1  0
#> SRR1270747     1       0          1  1  0
#> SRR1270748     1       0          1  1  0
#> SRR1270749     1       0          1  1  0
#> SRR1270750     1       0          1  1  0
#> SRR1270751     1       0          1  1  0
#> SRR1270752     1       0          1  1  0
#> SRR1270753     1       0          1  1  0
#> SRR1270754     1       0          1  1  0
#> SRR1270755     1       0          1  1  0
#> SRR1270756     1       0          1  1  0
#> SRR1270757     1       0          1  1  0
#> SRR1270758     1       0          1  1  0
#> SRR1270759     1       0          1  1  0
#> SRR1270760     1       0          1  1  0
#> SRR1270761     1       0          1  1  0
#> SRR1270762     1       0          1  1  0
#> SRR1270763     1       0          1  1  0
#> SRR1270764     1       0          1  1  0
#> SRR1270765     2       0          1  0  1
#> SRR1270766     2       0          1  0  1
#> SRR1270767     2       0          1  0  1
#> SRR1270768     2       0          1  0  1
#> SRR1270769     2       0          1  0  1
#> SRR1270770     2       0          1  0  1
#> SRR1270771     2       0          1  0  1
#> SRR1270772     2       0          1  0  1
#> SRR1270773     2       0          1  0  1
#> SRR1270774     2       0          1  0  1
#> SRR1270775     2       0          1  0  1
#> SRR1270776     2       0          1  0  1
#> SRR1270777     2       0          1  0  1
#> SRR1270778     2       0          1  0  1
#> SRR1270779     2       0          1  0  1
#> SRR1270780     2       0          1  0  1
#> SRR1270781     2       0          1  0  1
#> SRR1270782     2       0          1  0  1
#> SRR1270783     2       0          1  0  1
#> SRR1270784     2       0          1  0  1
#> SRR1270785     2       0          1  0  1
#> SRR1270786     2       0          1  0  1
#> SRR1270787     2       0          1  0  1
#> SRR1270788     2       0          1  0  1
#> SRR1270789     2       0          1  0  1
#> SRR1270790     2       0          1  0  1
#> SRR1270791     2       0          1  0  1
#> SRR1270792     2       0          1  0  1
#> SRR1270793     2       0          1  0  1
#> SRR1270794     2       0          1  0  1
#> SRR1270795     2       0          1  0  1
#> SRR1270796     2       0          1  0  1
#> SRR1270797     2       0          1  0  1
#> SRR1270798     2       0          1  0  1
#> SRR1270799     2       0          1  0  1
#> SRR1270800     2       0          1  0  1
#> SRR1270801     2       0          1  0  1
#> SRR1270802     2       0          1  0  1
#> SRR1270803     2       0          1  0  1
#> SRR1270804     2       0          1  0  1
#> SRR1270805     1       0          1  1  0
#> SRR1270806     1       0          1  1  0
#> SRR1270807     1       0          1  1  0
#> SRR1270808     1       0          1  1  0
#> SRR1270809     1       0          1  1  0
#> SRR1270810     1       0          1  1  0
#> SRR1270811     1       0          1  1  0
#> SRR1270812     1       0          1  1  0
#> SRR1270813     1       0          1  1  0
#> SRR1270814     1       0          1  1  0
#> SRR1270815     1       0          1  1  0
#> SRR1270816     1       0          1  1  0
#> SRR1270817     1       0          1  1  0
#> SRR1270818     1       0          1  1  0
#> SRR1270819     1       0          1  1  0
#> SRR1270820     1       0          1  1  0
#> SRR1270821     1       0          1  1  0
#> SRR1270822     1       0          1  1  0
#> SRR1270823     1       0          1  1  0
#> SRR1270824     1       0          1  1  0
#> SRR1270825     1       0          1  1  0
#> SRR1270826     1       0          1  1  0
#> SRR1270827     1       0          1  1  0
#> SRR1270828     1       0          1  1  0
#> SRR1270829     1       0          1  1  0
#> SRR1270830     1       0          1  1  0
#> SRR1270831     1       0          1  1  0
#> SRR1270832     1       0          1  1  0
#> SRR1270833     1       0          1  1  0
#> SRR1270834     1       0          1  1  0
#> SRR1270835     1       0          1  1  0
#> SRR1270836     1       0          1  1  0
#> SRR1270837     1       0          1  1  0
#> SRR1270838     1       0          1  1  0
#> SRR1270839     1       0          1  1  0
#> SRR1270840     1       0          1  1  0
#> SRR1270841     1       0          1  1  0
#> SRR1270842     1       0          1  1  0
#> SRR1270843     1       0          1  1  0
#> SRR1270844     1       0          1  1  0
#> SRR1270845     1       0          1  1  0
#> SRR1270846     1       0          1  1  0
#> SRR1270847     1       0          1  1  0
#> SRR1270848     1       0          1  1  0
#> SRR1270849     1       0          1  1  0
#> SRR1270850     1       0          1  1  0
#> SRR1270851     2       0          1  0  1
#> SRR1270852     2       0          1  0  1
#> SRR1270853     2       0          1  0  1
#> SRR1270854     2       0          1  0  1
#> SRR1270855     2       0          1  0  1
#> SRR1270856     2       0          1  0  1
#> SRR1270857     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1 p2    p3
#> SRR1270715     1  0.4121      0.816 0.832  0 0.168
#> SRR1270716     1  0.3267      0.857 0.884  0 0.116
#> SRR1270717     1  0.2448      0.884 0.924  0 0.076
#> SRR1270718     1  0.0000      0.921 1.000  0 0.000
#> SRR1270719     1  0.0000      0.921 1.000  0 0.000
#> SRR1270720     1  0.0000      0.921 1.000  0 0.000
#> SRR1270721     1  0.0000      0.921 1.000  0 0.000
#> SRR1270722     3  0.0000      0.978 0.000  0 1.000
#> SRR1270723     3  0.0000      0.978 0.000  0 1.000
#> SRR1270724     3  0.0000      0.978 0.000  0 1.000
#> SRR1270725     1  0.5810      0.597 0.664  0 0.336
#> SRR1270726     1  0.5327      0.704 0.728  0 0.272
#> SRR1270727     1  0.5138      0.732 0.748  0 0.252
#> SRR1270728     1  0.6045      0.504 0.620  0 0.380
#> SRR1270729     1  0.0000      0.921 1.000  0 0.000
#> SRR1270730     1  0.0000      0.921 1.000  0 0.000
#> SRR1270731     1  0.0000      0.921 1.000  0 0.000
#> SRR1270732     1  0.0000      0.921 1.000  0 0.000
#> SRR1270733     1  0.0000      0.921 1.000  0 0.000
#> SRR1270734     1  0.0000      0.921 1.000  0 0.000
#> SRR1270735     1  0.0000      0.921 1.000  0 0.000
#> SRR1270736     3  0.0000      0.978 0.000  0 1.000
#> SRR1270737     3  0.0000      0.978 0.000  0 1.000
#> SRR1270738     1  0.0592      0.918 0.988  0 0.012
#> SRR1270739     1  0.0237      0.921 0.996  0 0.004
#> SRR1270740     3  0.2625      0.892 0.084  0 0.916
#> SRR1270741     3  0.2625      0.892 0.084  0 0.916
#> SRR1270742     3  0.4346      0.752 0.184  0 0.816
#> SRR1270743     1  0.0424      0.919 0.992  0 0.008
#> SRR1270744     1  0.0000      0.921 1.000  0 0.000
#> SRR1270745     1  0.0000      0.921 1.000  0 0.000
#> SRR1270746     1  0.0000      0.921 1.000  0 0.000
#> SRR1270747     3  0.0000      0.978 0.000  0 1.000
#> SRR1270748     3  0.0000      0.978 0.000  0 1.000
#> SRR1270749     3  0.0000      0.978 0.000  0 1.000
#> SRR1270750     1  0.5733      0.618 0.676  0 0.324
#> SRR1270751     1  0.5254      0.715 0.736  0 0.264
#> SRR1270752     1  0.4555      0.786 0.800  0 0.200
#> SRR1270753     1  0.5016      0.744 0.760  0 0.240
#> SRR1270754     3  0.0000      0.978 0.000  0 1.000
#> SRR1270755     3  0.0000      0.978 0.000  0 1.000
#> SRR1270756     3  0.0000      0.978 0.000  0 1.000
#> SRR1270757     1  0.5327      0.705 0.728  0 0.272
#> SRR1270758     1  0.5138      0.731 0.748  0 0.252
#> SRR1270759     1  0.5098      0.736 0.752  0 0.248
#> SRR1270760     1  0.5497      0.675 0.708  0 0.292
#> SRR1270761     3  0.5098      0.636 0.248  0 0.752
#> SRR1270762     3  0.4796      0.690 0.220  0 0.780
#> SRR1270763     1  0.1529      0.905 0.960  0 0.040
#> SRR1270764     1  0.1753      0.901 0.952  0 0.048
#> SRR1270765     2  0.0000      1.000 0.000  1 0.000
#> SRR1270766     2  0.0000      1.000 0.000  1 0.000
#> SRR1270767     2  0.0000      1.000 0.000  1 0.000
#> SRR1270768     2  0.0000      1.000 0.000  1 0.000
#> SRR1270769     2  0.0000      1.000 0.000  1 0.000
#> SRR1270770     2  0.0000      1.000 0.000  1 0.000
#> SRR1270771     2  0.0000      1.000 0.000  1 0.000
#> SRR1270772     2  0.0000      1.000 0.000  1 0.000
#> SRR1270773     2  0.0000      1.000 0.000  1 0.000
#> SRR1270774     2  0.0000      1.000 0.000  1 0.000
#> SRR1270775     2  0.0000      1.000 0.000  1 0.000
#> SRR1270776     2  0.0000      1.000 0.000  1 0.000
#> SRR1270777     2  0.0000      1.000 0.000  1 0.000
#> SRR1270778     2  0.0000      1.000 0.000  1 0.000
#> SRR1270779     2  0.0000      1.000 0.000  1 0.000
#> SRR1270780     2  0.0000      1.000 0.000  1 0.000
#> SRR1270781     2  0.0000      1.000 0.000  1 0.000
#> SRR1270782     2  0.0000      1.000 0.000  1 0.000
#> SRR1270783     2  0.0000      1.000 0.000  1 0.000
#> SRR1270784     2  0.0000      1.000 0.000  1 0.000
#> SRR1270785     2  0.0000      1.000 0.000  1 0.000
#> SRR1270786     2  0.0000      1.000 0.000  1 0.000
#> SRR1270787     2  0.0000      1.000 0.000  1 0.000
#> SRR1270788     2  0.0000      1.000 0.000  1 0.000
#> SRR1270789     2  0.0000      1.000 0.000  1 0.000
#> SRR1270790     2  0.0000      1.000 0.000  1 0.000
#> SRR1270791     2  0.0000      1.000 0.000  1 0.000
#> SRR1270792     2  0.0000      1.000 0.000  1 0.000
#> SRR1270793     2  0.0000      1.000 0.000  1 0.000
#> SRR1270794     2  0.0000      1.000 0.000  1 0.000
#> SRR1270795     2  0.0000      1.000 0.000  1 0.000
#> SRR1270796     2  0.0000      1.000 0.000  1 0.000
#> SRR1270797     2  0.0000      1.000 0.000  1 0.000
#> SRR1270798     2  0.0000      1.000 0.000  1 0.000
#> SRR1270799     2  0.0000      1.000 0.000  1 0.000
#> SRR1270800     2  0.0000      1.000 0.000  1 0.000
#> SRR1270801     2  0.0000      1.000 0.000  1 0.000
#> SRR1270802     2  0.0000      1.000 0.000  1 0.000
#> SRR1270803     2  0.0000      1.000 0.000  1 0.000
#> SRR1270804     2  0.0000      1.000 0.000  1 0.000
#> SRR1270805     3  0.0000      0.978 0.000  0 1.000
#> SRR1270806     3  0.0000      0.978 0.000  0 1.000
#> SRR1270807     3  0.0000      0.978 0.000  0 1.000
#> SRR1270808     3  0.0000      0.978 0.000  0 1.000
#> SRR1270809     3  0.0000      0.978 0.000  0 1.000
#> SRR1270810     3  0.0000      0.978 0.000  0 1.000
#> SRR1270811     3  0.0000      0.978 0.000  0 1.000
#> SRR1270812     3  0.0000      0.978 0.000  0 1.000
#> SRR1270813     3  0.0000      0.978 0.000  0 1.000
#> SRR1270814     3  0.0000      0.978 0.000  0 1.000
#> SRR1270815     3  0.0000      0.978 0.000  0 1.000
#> SRR1270816     3  0.0000      0.978 0.000  0 1.000
#> SRR1270817     3  0.0000      0.978 0.000  0 1.000
#> SRR1270818     3  0.0000      0.978 0.000  0 1.000
#> SRR1270819     3  0.0000      0.978 0.000  0 1.000
#> SRR1270820     3  0.0000      0.978 0.000  0 1.000
#> SRR1270821     3  0.0000      0.978 0.000  0 1.000
#> SRR1270822     3  0.0000      0.978 0.000  0 1.000
#> SRR1270823     3  0.0000      0.978 0.000  0 1.000
#> SRR1270824     3  0.0000      0.978 0.000  0 1.000
#> SRR1270825     3  0.0000      0.978 0.000  0 1.000
#> SRR1270826     3  0.0000      0.978 0.000  0 1.000
#> SRR1270827     3  0.0000      0.978 0.000  0 1.000
#> SRR1270828     3  0.0000      0.978 0.000  0 1.000
#> SRR1270829     3  0.0000      0.978 0.000  0 1.000
#> SRR1270830     3  0.0000      0.978 0.000  0 1.000
#> SRR1270831     3  0.0000      0.978 0.000  0 1.000
#> SRR1270832     3  0.0000      0.978 0.000  0 1.000
#> SRR1270833     1  0.0000      0.921 1.000  0 0.000
#> SRR1270834     1  0.0000      0.921 1.000  0 0.000
#> SRR1270835     1  0.0000      0.921 1.000  0 0.000
#> SRR1270836     1  0.0000      0.921 1.000  0 0.000
#> SRR1270837     1  0.0592      0.918 0.988  0 0.012
#> SRR1270838     1  0.0592      0.918 0.988  0 0.012
#> SRR1270839     1  0.0424      0.920 0.992  0 0.008
#> SRR1270840     1  0.0000      0.921 1.000  0 0.000
#> SRR1270841     1  0.0000      0.921 1.000  0 0.000
#> SRR1270842     1  0.0000      0.921 1.000  0 0.000
#> SRR1270843     1  0.0000      0.921 1.000  0 0.000
#> SRR1270844     1  0.0592      0.918 0.988  0 0.012
#> SRR1270845     1  0.0424      0.920 0.992  0 0.008
#> SRR1270846     1  0.0000      0.921 1.000  0 0.000
#> SRR1270847     1  0.0000      0.921 1.000  0 0.000
#> SRR1270848     1  0.0000      0.921 1.000  0 0.000
#> SRR1270849     1  0.0000      0.921 1.000  0 0.000
#> SRR1270850     1  0.0000      0.921 1.000  0 0.000
#> SRR1270851     2  0.0000      1.000 0.000  1 0.000
#> SRR1270852     2  0.0000      1.000 0.000  1 0.000
#> SRR1270853     2  0.0000      1.000 0.000  1 0.000
#> SRR1270854     2  0.0000      1.000 0.000  1 0.000
#> SRR1270855     2  0.0000      1.000 0.000  1 0.000
#> SRR1270856     2  0.0000      1.000 0.000  1 0.000
#> SRR1270857     2  0.0000      1.000 0.000  1 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1 p2    p3 p4
#> SRR1270715     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270716     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270717     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270718     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270719     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270720     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270721     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270722     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270723     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270724     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270725     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270726     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270727     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270728     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270729     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270730     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270731     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270732     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270733     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270734     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270735     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270736     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270737     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270738     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270739     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270740     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270741     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270742     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270743     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270744     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270745     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270746     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270747     1  0.1940      0.919 0.924  0 0.076  0
#> SRR1270748     1  0.1716      0.933 0.936  0 0.064  0
#> SRR1270749     1  0.1474      0.946 0.948  0 0.052  0
#> SRR1270750     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270751     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270752     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270753     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270754     1  0.0469      0.985 0.988  0 0.012  0
#> SRR1270755     1  0.0469      0.985 0.988  0 0.012  0
#> SRR1270756     1  0.0592      0.981 0.984  0 0.016  0
#> SRR1270757     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270758     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270759     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270760     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270761     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270762     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270763     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270764     1  0.0000      0.995 1.000  0 0.000  0
#> SRR1270765     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270766     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270767     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270768     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270769     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270770     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270771     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270772     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270773     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270774     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270775     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270776     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270777     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270778     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270779     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270780     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270781     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270782     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270783     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270784     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270785     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270786     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270787     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270788     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270789     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270790     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270791     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270792     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270793     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270794     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270795     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270796     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270797     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270798     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270799     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270800     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270801     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270802     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270803     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270804     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270805     3  0.0000      1.000 0.000  0 1.000  0
#> SRR1270806     3  0.0000      1.000 0.000  0 1.000  0
#> SRR1270807     3  0.0000      1.000 0.000  0 1.000  0
#> SRR1270808     3  0.0000      1.000 0.000  0 1.000  0
#> SRR1270809     3  0.0000      1.000 0.000  0 1.000  0
#> SRR1270810     3  0.0000      1.000 0.000  0 1.000  0
#> SRR1270811     3  0.0000      1.000 0.000  0 1.000  0
#> SRR1270812     3  0.0000      1.000 0.000  0 1.000  0
#> SRR1270813     3  0.0000      1.000 0.000  0 1.000  0
#> SRR1270814     3  0.0000      1.000 0.000  0 1.000  0
#> SRR1270815     3  0.0000      1.000 0.000  0 1.000  0
#> SRR1270816     3  0.0000      1.000 0.000  0 1.000  0
#> SRR1270817     3  0.0000      1.000 0.000  0 1.000  0
#> SRR1270818     3  0.0000      1.000 0.000  0 1.000  0
#> SRR1270819     3  0.0000      1.000 0.000  0 1.000  0
#> SRR1270820     3  0.0000      1.000 0.000  0 1.000  0
#> SRR1270821     3  0.0000      1.000 0.000  0 1.000  0
#> SRR1270822     3  0.0000      1.000 0.000  0 1.000  0
#> SRR1270823     3  0.0000      1.000 0.000  0 1.000  0
#> SRR1270824     3  0.0000      1.000 0.000  0 1.000  0
#> SRR1270825     3  0.0000      1.000 0.000  0 1.000  0
#> SRR1270826     3  0.0000      1.000 0.000  0 1.000  0
#> SRR1270827     3  0.0000      1.000 0.000  0 1.000  0
#> SRR1270828     3  0.0000      1.000 0.000  0 1.000  0
#> SRR1270829     3  0.0000      1.000 0.000  0 1.000  0
#> SRR1270830     3  0.0000      1.000 0.000  0 1.000  0
#> SRR1270831     3  0.0000      1.000 0.000  0 1.000  0
#> SRR1270832     3  0.0000      1.000 0.000  0 1.000  0
#> SRR1270833     4  0.0000      1.000 0.000  0 0.000  1
#> SRR1270834     4  0.0000      1.000 0.000  0 0.000  1
#> SRR1270835     4  0.0000      1.000 0.000  0 0.000  1
#> SRR1270836     4  0.0000      1.000 0.000  0 0.000  1
#> SRR1270837     4  0.0000      1.000 0.000  0 0.000  1
#> SRR1270838     4  0.0000      1.000 0.000  0 0.000  1
#> SRR1270839     4  0.0000      1.000 0.000  0 0.000  1
#> SRR1270840     4  0.0000      1.000 0.000  0 0.000  1
#> SRR1270841     4  0.0000      1.000 0.000  0 0.000  1
#> SRR1270842     4  0.0000      1.000 0.000  0 0.000  1
#> SRR1270843     4  0.0000      1.000 0.000  0 0.000  1
#> SRR1270844     4  0.0000      1.000 0.000  0 0.000  1
#> SRR1270845     4  0.0000      1.000 0.000  0 0.000  1
#> SRR1270846     4  0.0000      1.000 0.000  0 0.000  1
#> SRR1270847     4  0.0000      1.000 0.000  0 0.000  1
#> SRR1270848     4  0.0000      1.000 0.000  0 0.000  1
#> SRR1270849     4  0.0000      1.000 0.000  0 0.000  1
#> SRR1270850     4  0.0000      1.000 0.000  0 0.000  1
#> SRR1270851     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270852     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270853     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270854     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270855     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270856     2  0.0000      1.000 0.000  1 0.000  0
#> SRR1270857     2  0.0000      1.000 0.000  1 0.000  0

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1270715     1  0.0963      0.970 0.964 0.000 0.000 0.000 0.036
#> SRR1270716     1  0.0963      0.970 0.964 0.000 0.000 0.000 0.036
#> SRR1270717     1  0.0963      0.970 0.964 0.000 0.000 0.000 0.036
#> SRR1270718     1  0.0794      0.970 0.972 0.000 0.000 0.000 0.028
#> SRR1270719     1  0.0794      0.970 0.972 0.000 0.000 0.000 0.028
#> SRR1270720     1  0.0703      0.971 0.976 0.000 0.000 0.000 0.024
#> SRR1270721     1  0.0794      0.970 0.972 0.000 0.000 0.000 0.028
#> SRR1270722     1  0.1399      0.967 0.952 0.000 0.020 0.000 0.028
#> SRR1270723     1  0.1399      0.967 0.952 0.000 0.020 0.000 0.028
#> SRR1270724     1  0.1399      0.967 0.952 0.000 0.020 0.000 0.028
#> SRR1270725     1  0.0162      0.973 0.996 0.000 0.000 0.000 0.004
#> SRR1270726     1  0.0290      0.973 0.992 0.000 0.000 0.000 0.008
#> SRR1270727     1  0.0162      0.973 0.996 0.000 0.000 0.000 0.004
#> SRR1270728     1  0.0162      0.973 0.996 0.000 0.000 0.000 0.004
#> SRR1270729     1  0.0880      0.969 0.968 0.000 0.000 0.000 0.032
#> SRR1270730     1  0.0963      0.970 0.964 0.000 0.000 0.000 0.036
#> SRR1270731     1  0.0963      0.970 0.964 0.000 0.000 0.000 0.036
#> SRR1270732     1  0.0880      0.971 0.968 0.000 0.000 0.000 0.032
#> SRR1270733     1  0.0880      0.971 0.968 0.000 0.000 0.000 0.032
#> SRR1270734     1  0.0880      0.971 0.968 0.000 0.000 0.000 0.032
#> SRR1270735     1  0.0880      0.971 0.968 0.000 0.000 0.000 0.032
#> SRR1270736     1  0.0609      0.972 0.980 0.000 0.000 0.000 0.020
#> SRR1270737     1  0.0794      0.972 0.972 0.000 0.000 0.000 0.028
#> SRR1270738     1  0.0290      0.973 0.992 0.000 0.000 0.000 0.008
#> SRR1270739     1  0.0404      0.973 0.988 0.000 0.000 0.000 0.012
#> SRR1270740     1  0.0771      0.973 0.976 0.000 0.004 0.000 0.020
#> SRR1270741     1  0.0771      0.973 0.976 0.000 0.004 0.000 0.020
#> SRR1270742     1  0.0671      0.973 0.980 0.000 0.004 0.000 0.016
#> SRR1270743     1  0.0671      0.972 0.980 0.000 0.004 0.000 0.016
#> SRR1270744     1  0.0609      0.972 0.980 0.000 0.000 0.000 0.020
#> SRR1270745     1  0.0609      0.972 0.980 0.000 0.000 0.000 0.020
#> SRR1270746     1  0.0771      0.972 0.976 0.000 0.004 0.000 0.020
#> SRR1270747     1  0.2504      0.928 0.896 0.000 0.064 0.000 0.040
#> SRR1270748     1  0.2504      0.928 0.896 0.000 0.064 0.000 0.040
#> SRR1270749     1  0.2438      0.931 0.900 0.000 0.060 0.000 0.040
#> SRR1270750     1  0.1648      0.962 0.940 0.000 0.020 0.000 0.040
#> SRR1270751     1  0.1549      0.964 0.944 0.000 0.016 0.000 0.040
#> SRR1270752     1  0.1774      0.959 0.932 0.000 0.016 0.000 0.052
#> SRR1270753     1  0.1800      0.958 0.932 0.000 0.020 0.000 0.048
#> SRR1270754     1  0.1597      0.957 0.940 0.000 0.048 0.000 0.012
#> SRR1270755     1  0.1597      0.957 0.940 0.000 0.048 0.000 0.012
#> SRR1270756     1  0.1597      0.957 0.940 0.000 0.048 0.000 0.012
#> SRR1270757     1  0.1300      0.968 0.956 0.000 0.016 0.000 0.028
#> SRR1270758     1  0.1300      0.968 0.956 0.000 0.016 0.000 0.028
#> SRR1270759     1  0.1195      0.969 0.960 0.000 0.012 0.000 0.028
#> SRR1270760     1  0.1300      0.968 0.956 0.000 0.016 0.000 0.028
#> SRR1270761     1  0.1484      0.963 0.944 0.000 0.008 0.000 0.048
#> SRR1270762     1  0.1484      0.963 0.944 0.000 0.008 0.000 0.048
#> SRR1270763     1  0.1197      0.965 0.952 0.000 0.000 0.000 0.048
#> SRR1270764     1  0.1124      0.968 0.960 0.000 0.004 0.000 0.036
#> SRR1270765     2  0.0000      0.760 0.000 1.000 0.000 0.000 0.000
#> SRR1270766     2  0.0000      0.760 0.000 1.000 0.000 0.000 0.000
#> SRR1270767     2  0.0000      0.760 0.000 1.000 0.000 0.000 0.000
#> SRR1270768     2  0.0000      0.760 0.000 1.000 0.000 0.000 0.000
#> SRR1270769     2  0.0000      0.760 0.000 1.000 0.000 0.000 0.000
#> SRR1270770     2  0.0000      0.760 0.000 1.000 0.000 0.000 0.000
#> SRR1270771     2  0.0000      0.760 0.000 1.000 0.000 0.000 0.000
#> SRR1270772     2  0.0000      0.760 0.000 1.000 0.000 0.000 0.000
#> SRR1270773     2  0.0000      0.760 0.000 1.000 0.000 0.000 0.000
#> SRR1270774     2  0.0000      0.760 0.000 1.000 0.000 0.000 0.000
#> SRR1270775     2  0.0000      0.760 0.000 1.000 0.000 0.000 0.000
#> SRR1270776     2  0.0000      0.760 0.000 1.000 0.000 0.000 0.000
#> SRR1270777     2  0.0000      0.760 0.000 1.000 0.000 0.000 0.000
#> SRR1270778     2  0.0000      0.760 0.000 1.000 0.000 0.000 0.000
#> SRR1270779     2  0.0000      0.760 0.000 1.000 0.000 0.000 0.000
#> SRR1270780     2  0.0000      0.760 0.000 1.000 0.000 0.000 0.000
#> SRR1270781     2  0.0000      0.760 0.000 1.000 0.000 0.000 0.000
#> SRR1270782     2  0.0000      0.760 0.000 1.000 0.000 0.000 0.000
#> SRR1270783     2  0.0000      0.760 0.000 1.000 0.000 0.000 0.000
#> SRR1270784     2  0.0000      0.760 0.000 1.000 0.000 0.000 0.000
#> SRR1270785     5  0.4287      0.966 0.000 0.460 0.000 0.000 0.540
#> SRR1270786     5  0.4287      0.966 0.000 0.460 0.000 0.000 0.540
#> SRR1270787     5  0.4291      0.969 0.000 0.464 0.000 0.000 0.536
#> SRR1270788     5  0.4287      0.966 0.000 0.460 0.000 0.000 0.540
#> SRR1270789     5  0.4283      0.960 0.000 0.456 0.000 0.000 0.544
#> SRR1270790     5  0.4294      0.968 0.000 0.468 0.000 0.000 0.532
#> SRR1270791     5  0.4291      0.969 0.000 0.464 0.000 0.000 0.536
#> SRR1270792     2  0.4302     -0.886 0.000 0.520 0.000 0.000 0.480
#> SRR1270793     2  0.4304     -0.896 0.000 0.516 0.000 0.000 0.484
#> SRR1270794     2  0.4307     -0.932 0.000 0.500 0.000 0.000 0.500
#> SRR1270795     5  0.4307      0.934 0.000 0.496 0.000 0.000 0.504
#> SRR1270796     2  0.4307     -0.933 0.000 0.500 0.000 0.000 0.500
#> SRR1270797     5  0.4306      0.942 0.000 0.492 0.000 0.000 0.508
#> SRR1270798     2  0.4305     -0.906 0.000 0.512 0.000 0.000 0.488
#> SRR1270799     2  0.4262     -0.773 0.000 0.560 0.000 0.000 0.440
#> SRR1270800     2  0.4268     -0.782 0.000 0.556 0.000 0.000 0.444
#> SRR1270801     5  0.4304      0.957 0.000 0.484 0.000 0.000 0.516
#> SRR1270802     5  0.4304      0.957 0.000 0.484 0.000 0.000 0.516
#> SRR1270803     2  0.4307     -0.921 0.000 0.504 0.000 0.000 0.496
#> SRR1270804     2  0.4306     -0.913 0.000 0.508 0.000 0.000 0.492
#> SRR1270805     3  0.0880      0.979 0.000 0.000 0.968 0.000 0.032
#> SRR1270806     3  0.0880      0.979 0.000 0.000 0.968 0.000 0.032
#> SRR1270807     3  0.0880      0.979 0.000 0.000 0.968 0.000 0.032
#> SRR1270808     3  0.1082      0.975 0.000 0.000 0.964 0.008 0.028
#> SRR1270809     3  0.0703      0.979 0.000 0.000 0.976 0.000 0.024
#> SRR1270810     3  0.1082      0.975 0.000 0.000 0.964 0.008 0.028
#> SRR1270811     3  0.1082      0.975 0.000 0.000 0.964 0.008 0.028
#> SRR1270812     3  0.0404      0.979 0.000 0.000 0.988 0.000 0.012
#> SRR1270813     3  0.0404      0.979 0.000 0.000 0.988 0.000 0.012
#> SRR1270814     3  0.0404      0.979 0.000 0.000 0.988 0.000 0.012
#> SRR1270815     3  0.0162      0.980 0.000 0.000 0.996 0.000 0.004
#> SRR1270816     3  0.0162      0.980 0.000 0.000 0.996 0.000 0.004
#> SRR1270817     3  0.0162      0.980 0.000 0.000 0.996 0.000 0.004
#> SRR1270818     3  0.0162      0.980 0.000 0.000 0.996 0.000 0.004
#> SRR1270819     3  0.0404      0.979 0.000 0.000 0.988 0.000 0.012
#> SRR1270820     3  0.0404      0.979 0.000 0.000 0.988 0.000 0.012
#> SRR1270821     3  0.0404      0.979 0.000 0.000 0.988 0.000 0.012
#> SRR1270822     3  0.0000      0.980 0.000 0.000 1.000 0.000 0.000
#> SRR1270823     3  0.0324      0.978 0.004 0.000 0.992 0.000 0.004
#> SRR1270824     3  0.0162      0.979 0.000 0.000 0.996 0.000 0.004
#> SRR1270825     3  0.0162      0.979 0.000 0.000 0.996 0.000 0.004
#> SRR1270826     3  0.1502      0.971 0.000 0.000 0.940 0.004 0.056
#> SRR1270827     3  0.1502      0.971 0.000 0.000 0.940 0.004 0.056
#> SRR1270828     3  0.1502      0.971 0.000 0.000 0.940 0.004 0.056
#> SRR1270829     3  0.1430      0.970 0.000 0.000 0.944 0.004 0.052
#> SRR1270830     3  0.1628      0.966 0.000 0.000 0.936 0.008 0.056
#> SRR1270831     3  0.1430      0.970 0.000 0.000 0.944 0.004 0.052
#> SRR1270832     3  0.1628      0.966 0.000 0.000 0.936 0.008 0.056
#> SRR1270833     4  0.0000      0.983 0.000 0.000 0.000 1.000 0.000
#> SRR1270834     4  0.0000      0.983 0.000 0.000 0.000 1.000 0.000
#> SRR1270835     4  0.0794      0.983 0.000 0.000 0.000 0.972 0.028
#> SRR1270836     4  0.0794      0.983 0.000 0.000 0.000 0.972 0.028
#> SRR1270837     4  0.1124      0.981 0.000 0.000 0.004 0.960 0.036
#> SRR1270838     4  0.1124      0.981 0.000 0.000 0.004 0.960 0.036
#> SRR1270839     4  0.1124      0.981 0.000 0.000 0.004 0.960 0.036
#> SRR1270840     4  0.0794      0.983 0.000 0.000 0.000 0.972 0.028
#> SRR1270841     4  0.0963      0.982 0.000 0.000 0.000 0.964 0.036
#> SRR1270842     4  0.0794      0.983 0.000 0.000 0.000 0.972 0.028
#> SRR1270843     4  0.0880      0.983 0.000 0.000 0.000 0.968 0.032
#> SRR1270844     4  0.0880      0.976 0.000 0.000 0.000 0.968 0.032
#> SRR1270845     4  0.0880      0.976 0.000 0.000 0.000 0.968 0.032
#> SRR1270846     4  0.0880      0.976 0.000 0.000 0.000 0.968 0.032
#> SRR1270847     4  0.0510      0.981 0.000 0.000 0.000 0.984 0.016
#> SRR1270848     4  0.0404      0.982 0.000 0.000 0.000 0.988 0.012
#> SRR1270849     4  0.0510      0.981 0.000 0.000 0.000 0.984 0.016
#> SRR1270850     4  0.0510      0.981 0.000 0.000 0.000 0.984 0.016
#> SRR1270851     2  0.0000      0.760 0.000 1.000 0.000 0.000 0.000
#> SRR1270852     2  0.0000      0.760 0.000 1.000 0.000 0.000 0.000
#> SRR1270853     2  0.0000      0.760 0.000 1.000 0.000 0.000 0.000
#> SRR1270854     2  0.0000      0.760 0.000 1.000 0.000 0.000 0.000
#> SRR1270855     2  0.0000      0.760 0.000 1.000 0.000 0.000 0.000
#> SRR1270856     2  0.0000      0.760 0.000 1.000 0.000 0.000 0.000
#> SRR1270857     2  0.0000      0.760 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5 p6
#> SRR1270715     1  0.1074      0.959 0.960 0.000 0.000 0.000 0.012 NA
#> SRR1270716     1  0.1088      0.959 0.960 0.000 0.000 0.000 0.016 NA
#> SRR1270717     1  0.0909      0.959 0.968 0.000 0.000 0.000 0.012 NA
#> SRR1270718     1  0.1644      0.948 0.920 0.000 0.000 0.000 0.004 NA
#> SRR1270719     1  0.1531      0.951 0.928 0.000 0.000 0.000 0.004 NA
#> SRR1270720     1  0.1285      0.956 0.944 0.000 0.000 0.000 0.004 NA
#> SRR1270721     1  0.1531      0.951 0.928 0.000 0.000 0.000 0.004 NA
#> SRR1270722     1  0.1714      0.938 0.908 0.000 0.000 0.000 0.000 NA
#> SRR1270723     1  0.1663      0.938 0.912 0.000 0.000 0.000 0.000 NA
#> SRR1270724     1  0.1714      0.938 0.908 0.000 0.000 0.000 0.000 NA
#> SRR1270725     1  0.0603      0.960 0.980 0.000 0.000 0.000 0.004 NA
#> SRR1270726     1  0.0458      0.960 0.984 0.000 0.000 0.000 0.000 NA
#> SRR1270727     1  0.0547      0.960 0.980 0.000 0.000 0.000 0.000 NA
#> SRR1270728     1  0.0363      0.960 0.988 0.000 0.000 0.000 0.000 NA
#> SRR1270729     1  0.0692      0.960 0.976 0.000 0.000 0.000 0.004 NA
#> SRR1270730     1  0.0692      0.960 0.976 0.000 0.000 0.000 0.004 NA
#> SRR1270731     1  0.0692      0.960 0.976 0.000 0.000 0.000 0.004 NA
#> SRR1270732     1  0.1610      0.944 0.916 0.000 0.000 0.000 0.000 NA
#> SRR1270733     1  0.1610      0.944 0.916 0.000 0.000 0.000 0.000 NA
#> SRR1270734     1  0.1663      0.943 0.912 0.000 0.000 0.000 0.000 NA
#> SRR1270735     1  0.1610      0.944 0.916 0.000 0.000 0.000 0.000 NA
#> SRR1270736     1  0.1007      0.956 0.956 0.000 0.000 0.000 0.000 NA
#> SRR1270737     1  0.1007      0.956 0.956 0.000 0.000 0.000 0.000 NA
#> SRR1270738     1  0.1204      0.959 0.944 0.000 0.000 0.000 0.000 NA
#> SRR1270739     1  0.1610      0.952 0.916 0.000 0.000 0.000 0.000 NA
#> SRR1270740     1  0.0858      0.957 0.968 0.000 0.004 0.000 0.000 NA
#> SRR1270741     1  0.0858      0.957 0.968 0.000 0.004 0.000 0.000 NA
#> SRR1270742     1  0.0858      0.957 0.968 0.000 0.004 0.000 0.000 NA
#> SRR1270743     1  0.1007      0.957 0.956 0.000 0.000 0.000 0.000 NA
#> SRR1270744     1  0.1075      0.956 0.952 0.000 0.000 0.000 0.000 NA
#> SRR1270745     1  0.1007      0.957 0.956 0.000 0.000 0.000 0.000 NA
#> SRR1270746     1  0.1007      0.957 0.956 0.000 0.000 0.000 0.000 NA
#> SRR1270747     1  0.2101      0.928 0.892 0.000 0.004 0.000 0.004 NA
#> SRR1270748     1  0.2051      0.931 0.896 0.000 0.004 0.000 0.004 NA
#> SRR1270749     1  0.2001      0.933 0.900 0.000 0.004 0.000 0.004 NA
#> SRR1270750     1  0.1007      0.960 0.956 0.000 0.000 0.000 0.000 NA
#> SRR1270751     1  0.1141      0.960 0.948 0.000 0.000 0.000 0.000 NA
#> SRR1270752     1  0.1141      0.960 0.948 0.000 0.000 0.000 0.000 NA
#> SRR1270753     1  0.1141      0.960 0.948 0.000 0.000 0.000 0.000 NA
#> SRR1270754     1  0.1594      0.945 0.932 0.000 0.016 0.000 0.000 NA
#> SRR1270755     1  0.1594      0.945 0.932 0.000 0.016 0.000 0.000 NA
#> SRR1270756     1  0.1594      0.945 0.932 0.000 0.016 0.000 0.000 NA
#> SRR1270757     1  0.1588      0.950 0.924 0.000 0.004 0.000 0.000 NA
#> SRR1270758     1  0.1700      0.947 0.916 0.000 0.004 0.000 0.000 NA
#> SRR1270759     1  0.1501      0.949 0.924 0.000 0.000 0.000 0.000 NA
#> SRR1270760     1  0.1531      0.951 0.928 0.000 0.004 0.000 0.000 NA
#> SRR1270761     1  0.1531      0.948 0.928 0.000 0.004 0.000 0.000 NA
#> SRR1270762     1  0.1531      0.948 0.928 0.000 0.004 0.000 0.000 NA
#> SRR1270763     1  0.1007      0.961 0.956 0.000 0.000 0.000 0.000 NA
#> SRR1270764     1  0.0937      0.961 0.960 0.000 0.000 0.000 0.000 NA
#> SRR1270765     2  0.0146      0.998 0.000 0.996 0.000 0.000 0.004 NA
#> SRR1270766     2  0.0146      0.998 0.000 0.996 0.000 0.000 0.004 NA
#> SRR1270767     2  0.0146      0.998 0.000 0.996 0.000 0.000 0.004 NA
#> SRR1270768     2  0.0260      0.994 0.000 0.992 0.000 0.000 0.008 NA
#> SRR1270769     2  0.0260      0.994 0.000 0.992 0.000 0.000 0.008 NA
#> SRR1270770     2  0.0260      0.994 0.000 0.992 0.000 0.000 0.008 NA
#> SRR1270771     2  0.0260      0.994 0.000 0.992 0.000 0.000 0.008 NA
#> SRR1270772     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270773     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270774     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270775     2  0.0146      0.998 0.000 0.996 0.000 0.000 0.004 NA
#> SRR1270776     2  0.0146      0.998 0.000 0.996 0.000 0.000 0.004 NA
#> SRR1270777     2  0.0146      0.998 0.000 0.996 0.000 0.000 0.004 NA
#> SRR1270778     2  0.0146      0.998 0.000 0.996 0.000 0.000 0.004 NA
#> SRR1270779     2  0.0146      0.998 0.000 0.996 0.000 0.000 0.004 NA
#> SRR1270780     2  0.0146      0.998 0.000 0.996 0.000 0.000 0.004 NA
#> SRR1270781     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270782     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270783     2  0.0146      0.998 0.000 0.996 0.000 0.000 0.004 NA
#> SRR1270784     2  0.0146      0.998 0.000 0.996 0.000 0.000 0.004 NA
#> SRR1270785     5  0.2664      0.951 0.000 0.184 0.000 0.000 0.816 NA
#> SRR1270786     5  0.2664      0.951 0.000 0.184 0.000 0.000 0.816 NA
#> SRR1270787     5  0.2664      0.951 0.000 0.184 0.000 0.000 0.816 NA
#> SRR1270788     5  0.2491      0.946 0.000 0.164 0.000 0.000 0.836 NA
#> SRR1270789     5  0.2416      0.940 0.000 0.156 0.000 0.000 0.844 NA
#> SRR1270790     5  0.2597      0.953 0.000 0.176 0.000 0.000 0.824 NA
#> SRR1270791     5  0.2562      0.951 0.000 0.172 0.000 0.000 0.828 NA
#> SRR1270792     5  0.3221      0.915 0.000 0.264 0.000 0.000 0.736 NA
#> SRR1270793     5  0.3151      0.928 0.000 0.252 0.000 0.000 0.748 NA
#> SRR1270794     5  0.3050      0.939 0.000 0.236 0.000 0.000 0.764 NA
#> SRR1270795     5  0.2854      0.957 0.000 0.208 0.000 0.000 0.792 NA
#> SRR1270796     5  0.2854      0.957 0.000 0.208 0.000 0.000 0.792 NA
#> SRR1270797     5  0.2823      0.958 0.000 0.204 0.000 0.000 0.796 NA
#> SRR1270798     5  0.2941      0.953 0.000 0.220 0.000 0.000 0.780 NA
#> SRR1270799     5  0.3151      0.929 0.000 0.252 0.000 0.000 0.748 NA
#> SRR1270800     5  0.3126      0.931 0.000 0.248 0.000 0.000 0.752 NA
#> SRR1270801     5  0.2730      0.958 0.000 0.192 0.000 0.000 0.808 NA
#> SRR1270802     5  0.2697      0.957 0.000 0.188 0.000 0.000 0.812 NA
#> SRR1270803     5  0.2854      0.942 0.000 0.208 0.000 0.000 0.792 NA
#> SRR1270804     5  0.2854      0.942 0.000 0.208 0.000 0.000 0.792 NA
#> SRR1270805     3  0.0458      0.956 0.000 0.000 0.984 0.000 0.000 NA
#> SRR1270806     3  0.0363      0.956 0.000 0.000 0.988 0.000 0.000 NA
#> SRR1270807     3  0.0260      0.957 0.000 0.000 0.992 0.000 0.000 NA
#> SRR1270808     3  0.0000      0.958 0.000 0.000 1.000 0.000 0.000 NA
#> SRR1270809     3  0.0000      0.958 0.000 0.000 1.000 0.000 0.000 NA
#> SRR1270810     3  0.0260      0.957 0.000 0.000 0.992 0.000 0.000 NA
#> SRR1270811     3  0.0260      0.957 0.000 0.000 0.992 0.000 0.000 NA
#> SRR1270812     3  0.1501      0.955 0.000 0.000 0.924 0.000 0.000 NA
#> SRR1270813     3  0.1644      0.953 0.004 0.000 0.920 0.000 0.000 NA
#> SRR1270814     3  0.1501      0.955 0.000 0.000 0.924 0.000 0.000 NA
#> SRR1270815     3  0.1387      0.957 0.000 0.000 0.932 0.000 0.000 NA
#> SRR1270816     3  0.1387      0.957 0.000 0.000 0.932 0.000 0.000 NA
#> SRR1270817     3  0.1327      0.958 0.000 0.000 0.936 0.000 0.000 NA
#> SRR1270818     3  0.1267      0.959 0.000 0.000 0.940 0.000 0.000 NA
#> SRR1270819     3  0.1387      0.957 0.000 0.000 0.932 0.000 0.000 NA
#> SRR1270820     3  0.1387      0.957 0.000 0.000 0.932 0.000 0.000 NA
#> SRR1270821     3  0.1387      0.957 0.000 0.000 0.932 0.000 0.000 NA
#> SRR1270822     3  0.1204      0.959 0.000 0.000 0.944 0.000 0.000 NA
#> SRR1270823     3  0.1204      0.959 0.000 0.000 0.944 0.000 0.000 NA
#> SRR1270824     3  0.1204      0.959 0.000 0.000 0.944 0.000 0.000 NA
#> SRR1270825     3  0.1204      0.959 0.000 0.000 0.944 0.000 0.000 NA
#> SRR1270826     3  0.1327      0.939 0.000 0.000 0.936 0.000 0.000 NA
#> SRR1270827     3  0.1327      0.939 0.000 0.000 0.936 0.000 0.000 NA
#> SRR1270828     3  0.1327      0.939 0.000 0.000 0.936 0.000 0.000 NA
#> SRR1270829     3  0.1267      0.940 0.000 0.000 0.940 0.000 0.000 NA
#> SRR1270830     3  0.1444      0.934 0.000 0.000 0.928 0.000 0.000 NA
#> SRR1270831     3  0.1327      0.938 0.000 0.000 0.936 0.000 0.000 NA
#> SRR1270832     3  0.1327      0.938 0.000 0.000 0.936 0.000 0.000 NA
#> SRR1270833     4  0.1152      0.961 0.000 0.000 0.000 0.952 0.004 NA
#> SRR1270834     4  0.1152      0.961 0.000 0.000 0.000 0.952 0.004 NA
#> SRR1270835     4  0.0260      0.962 0.000 0.000 0.000 0.992 0.000 NA
#> SRR1270836     4  0.0260      0.962 0.000 0.000 0.000 0.992 0.000 NA
#> SRR1270837     4  0.0436      0.962 0.000 0.000 0.004 0.988 0.004 NA
#> SRR1270838     4  0.0436      0.962 0.000 0.000 0.004 0.988 0.004 NA
#> SRR1270839     4  0.0436      0.962 0.000 0.000 0.004 0.988 0.004 NA
#> SRR1270840     4  0.0260      0.962 0.000 0.000 0.000 0.992 0.000 NA
#> SRR1270841     4  0.0260      0.962 0.000 0.000 0.000 0.992 0.000 NA
#> SRR1270842     4  0.0260      0.962 0.000 0.000 0.000 0.992 0.000 NA
#> SRR1270843     4  0.0260      0.962 0.000 0.000 0.000 0.992 0.000 NA
#> SRR1270844     4  0.2838      0.928 0.000 0.000 0.028 0.852 0.004 NA
#> SRR1270845     4  0.2793      0.931 0.000 0.000 0.028 0.856 0.004 NA
#> SRR1270846     4  0.2701      0.935 0.000 0.000 0.028 0.864 0.004 NA
#> SRR1270847     4  0.2011      0.954 0.000 0.000 0.020 0.912 0.004 NA
#> SRR1270848     4  0.2011      0.954 0.000 0.000 0.020 0.912 0.004 NA
#> SRR1270849     4  0.1951      0.956 0.000 0.000 0.020 0.916 0.004 NA
#> SRR1270850     4  0.1889      0.956 0.000 0.000 0.020 0.920 0.004 NA
#> SRR1270851     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270852     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270853     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270854     2  0.0146      0.998 0.000 0.996 0.000 0.000 0.004 NA
#> SRR1270855     2  0.0146      0.998 0.000 0.996 0.000 0.000 0.004 NA
#> SRR1270856     2  0.0146      0.998 0.000 0.996 0.000 0.000 0.004 NA
#> SRR1270857     2  0.0146      0.998 0.000 0.996 0.000 0.000 0.004 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14577 rows and 143 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.4450 0.556   0.556
#> 3 3 0.862           0.917       0.951         0.4746 0.773   0.592
#> 4 4 0.897           0.971       0.948         0.0997 0.950   0.849
#> 5 5 0.914           0.931       0.921         0.0566 0.967   0.882
#> 6 6 1.000           0.995       0.997         0.0597 0.947   0.784

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 5

There is also optional best \(k\) = 2 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1270715     1       0          1  1  0
#> SRR1270716     1       0          1  1  0
#> SRR1270717     1       0          1  1  0
#> SRR1270718     1       0          1  1  0
#> SRR1270719     1       0          1  1  0
#> SRR1270720     1       0          1  1  0
#> SRR1270721     1       0          1  1  0
#> SRR1270722     1       0          1  1  0
#> SRR1270723     1       0          1  1  0
#> SRR1270724     1       0          1  1  0
#> SRR1270725     1       0          1  1  0
#> SRR1270726     1       0          1  1  0
#> SRR1270727     1       0          1  1  0
#> SRR1270728     1       0          1  1  0
#> SRR1270729     1       0          1  1  0
#> SRR1270730     1       0          1  1  0
#> SRR1270731     1       0          1  1  0
#> SRR1270732     1       0          1  1  0
#> SRR1270733     1       0          1  1  0
#> SRR1270734     1       0          1  1  0
#> SRR1270735     1       0          1  1  0
#> SRR1270736     1       0          1  1  0
#> SRR1270737     1       0          1  1  0
#> SRR1270738     1       0          1  1  0
#> SRR1270739     1       0          1  1  0
#> SRR1270740     1       0          1  1  0
#> SRR1270741     1       0          1  1  0
#> SRR1270742     1       0          1  1  0
#> SRR1270743     1       0          1  1  0
#> SRR1270744     1       0          1  1  0
#> SRR1270745     1       0          1  1  0
#> SRR1270746     1       0          1  1  0
#> SRR1270747     1       0          1  1  0
#> SRR1270748     1       0          1  1  0
#> SRR1270749     1       0          1  1  0
#> SRR1270750     1       0          1  1  0
#> SRR1270751     1       0          1  1  0
#> SRR1270752     1       0          1  1  0
#> SRR1270753     1       0          1  1  0
#> SRR1270754     1       0          1  1  0
#> SRR1270755     1       0          1  1  0
#> SRR1270756     1       0          1  1  0
#> SRR1270757     1       0          1  1  0
#> SRR1270758     1       0          1  1  0
#> SRR1270759     1       0          1  1  0
#> SRR1270760     1       0          1  1  0
#> SRR1270761     1       0          1  1  0
#> SRR1270762     1       0          1  1  0
#> SRR1270763     1       0          1  1  0
#> SRR1270764     1       0          1  1  0
#> SRR1270765     2       0          1  0  1
#> SRR1270766     2       0          1  0  1
#> SRR1270767     2       0          1  0  1
#> SRR1270768     2       0          1  0  1
#> SRR1270769     2       0          1  0  1
#> SRR1270770     2       0          1  0  1
#> SRR1270771     2       0          1  0  1
#> SRR1270772     2       0          1  0  1
#> SRR1270773     2       0          1  0  1
#> SRR1270774     2       0          1  0  1
#> SRR1270775     2       0          1  0  1
#> SRR1270776     2       0          1  0  1
#> SRR1270777     2       0          1  0  1
#> SRR1270778     2       0          1  0  1
#> SRR1270779     2       0          1  0  1
#> SRR1270780     2       0          1  0  1
#> SRR1270781     2       0          1  0  1
#> SRR1270782     2       0          1  0  1
#> SRR1270783     2       0          1  0  1
#> SRR1270784     2       0          1  0  1
#> SRR1270785     2       0          1  0  1
#> SRR1270786     2       0          1  0  1
#> SRR1270787     2       0          1  0  1
#> SRR1270788     2       0          1  0  1
#> SRR1270789     2       0          1  0  1
#> SRR1270790     2       0          1  0  1
#> SRR1270791     2       0          1  0  1
#> SRR1270792     2       0          1  0  1
#> SRR1270793     2       0          1  0  1
#> SRR1270794     2       0          1  0  1
#> SRR1270795     2       0          1  0  1
#> SRR1270796     2       0          1  0  1
#> SRR1270797     2       0          1  0  1
#> SRR1270798     2       0          1  0  1
#> SRR1270799     2       0          1  0  1
#> SRR1270800     2       0          1  0  1
#> SRR1270801     2       0          1  0  1
#> SRR1270802     2       0          1  0  1
#> SRR1270803     2       0          1  0  1
#> SRR1270804     2       0          1  0  1
#> SRR1270805     1       0          1  1  0
#> SRR1270806     1       0          1  1  0
#> SRR1270807     1       0          1  1  0
#> SRR1270808     1       0          1  1  0
#> SRR1270809     1       0          1  1  0
#> SRR1270810     1       0          1  1  0
#> SRR1270811     1       0          1  1  0
#> SRR1270812     1       0          1  1  0
#> SRR1270813     1       0          1  1  0
#> SRR1270814     1       0          1  1  0
#> SRR1270815     1       0          1  1  0
#> SRR1270816     1       0          1  1  0
#> SRR1270817     1       0          1  1  0
#> SRR1270818     1       0          1  1  0
#> SRR1270819     1       0          1  1  0
#> SRR1270820     1       0          1  1  0
#> SRR1270821     1       0          1  1  0
#> SRR1270822     1       0          1  1  0
#> SRR1270823     1       0          1  1  0
#> SRR1270824     1       0          1  1  0
#> SRR1270825     1       0          1  1  0
#> SRR1270826     1       0          1  1  0
#> SRR1270827     1       0          1  1  0
#> SRR1270828     1       0          1  1  0
#> SRR1270829     1       0          1  1  0
#> SRR1270830     1       0          1  1  0
#> SRR1270831     1       0          1  1  0
#> SRR1270832     1       0          1  1  0
#> SRR1270833     1       0          1  1  0
#> SRR1270834     1       0          1  1  0
#> SRR1270835     1       0          1  1  0
#> SRR1270836     1       0          1  1  0
#> SRR1270837     1       0          1  1  0
#> SRR1270838     1       0          1  1  0
#> SRR1270839     1       0          1  1  0
#> SRR1270840     1       0          1  1  0
#> SRR1270841     1       0          1  1  0
#> SRR1270842     1       0          1  1  0
#> SRR1270843     1       0          1  1  0
#> SRR1270844     1       0          1  1  0
#> SRR1270845     1       0          1  1  0
#> SRR1270846     1       0          1  1  0
#> SRR1270847     1       0          1  1  0
#> SRR1270848     1       0          1  1  0
#> SRR1270849     1       0          1  1  0
#> SRR1270850     1       0          1  1  0
#> SRR1270851     2       0          1  0  1
#> SRR1270852     2       0          1  0  1
#> SRR1270853     2       0          1  0  1
#> SRR1270854     2       0          1  0  1
#> SRR1270855     2       0          1  0  1
#> SRR1270856     2       0          1  0  1
#> SRR1270857     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1 p2    p3
#> SRR1270715     1   0.000      1.000 1.000  0 0.000
#> SRR1270716     1   0.000      1.000 1.000  0 0.000
#> SRR1270717     1   0.000      1.000 1.000  0 0.000
#> SRR1270718     1   0.000      1.000 1.000  0 0.000
#> SRR1270719     1   0.000      1.000 1.000  0 0.000
#> SRR1270720     1   0.000      1.000 1.000  0 0.000
#> SRR1270721     1   0.000      1.000 1.000  0 0.000
#> SRR1270722     1   0.000      1.000 1.000  0 0.000
#> SRR1270723     1   0.000      1.000 1.000  0 0.000
#> SRR1270724     1   0.000      1.000 1.000  0 0.000
#> SRR1270725     1   0.000      1.000 1.000  0 0.000
#> SRR1270726     1   0.000      1.000 1.000  0 0.000
#> SRR1270727     1   0.000      1.000 1.000  0 0.000
#> SRR1270728     1   0.000      1.000 1.000  0 0.000
#> SRR1270729     1   0.000      1.000 1.000  0 0.000
#> SRR1270730     1   0.000      1.000 1.000  0 0.000
#> SRR1270731     1   0.000      1.000 1.000  0 0.000
#> SRR1270732     1   0.000      1.000 1.000  0 0.000
#> SRR1270733     1   0.000      1.000 1.000  0 0.000
#> SRR1270734     1   0.000      1.000 1.000  0 0.000
#> SRR1270735     1   0.000      1.000 1.000  0 0.000
#> SRR1270736     1   0.000      1.000 1.000  0 0.000
#> SRR1270737     1   0.000      1.000 1.000  0 0.000
#> SRR1270738     1   0.000      1.000 1.000  0 0.000
#> SRR1270739     1   0.000      1.000 1.000  0 0.000
#> SRR1270740     1   0.000      1.000 1.000  0 0.000
#> SRR1270741     1   0.000      1.000 1.000  0 0.000
#> SRR1270742     1   0.000      1.000 1.000  0 0.000
#> SRR1270743     1   0.000      1.000 1.000  0 0.000
#> SRR1270744     1   0.000      1.000 1.000  0 0.000
#> SRR1270745     1   0.000      1.000 1.000  0 0.000
#> SRR1270746     1   0.000      1.000 1.000  0 0.000
#> SRR1270747     1   0.000      1.000 1.000  0 0.000
#> SRR1270748     1   0.000      1.000 1.000  0 0.000
#> SRR1270749     1   0.000      1.000 1.000  0 0.000
#> SRR1270750     1   0.000      1.000 1.000  0 0.000
#> SRR1270751     1   0.000      1.000 1.000  0 0.000
#> SRR1270752     1   0.000      1.000 1.000  0 0.000
#> SRR1270753     1   0.000      1.000 1.000  0 0.000
#> SRR1270754     1   0.000      1.000 1.000  0 0.000
#> SRR1270755     1   0.000      1.000 1.000  0 0.000
#> SRR1270756     1   0.000      1.000 1.000  0 0.000
#> SRR1270757     1   0.000      1.000 1.000  0 0.000
#> SRR1270758     1   0.000      1.000 1.000  0 0.000
#> SRR1270759     1   0.000      1.000 1.000  0 0.000
#> SRR1270760     1   0.000      1.000 1.000  0 0.000
#> SRR1270761     1   0.000      1.000 1.000  0 0.000
#> SRR1270762     1   0.000      1.000 1.000  0 0.000
#> SRR1270763     1   0.000      1.000 1.000  0 0.000
#> SRR1270764     1   0.000      1.000 1.000  0 0.000
#> SRR1270765     2   0.000      1.000 0.000  1 0.000
#> SRR1270766     2   0.000      1.000 0.000  1 0.000
#> SRR1270767     2   0.000      1.000 0.000  1 0.000
#> SRR1270768     2   0.000      1.000 0.000  1 0.000
#> SRR1270769     2   0.000      1.000 0.000  1 0.000
#> SRR1270770     2   0.000      1.000 0.000  1 0.000
#> SRR1270771     2   0.000      1.000 0.000  1 0.000
#> SRR1270772     2   0.000      1.000 0.000  1 0.000
#> SRR1270773     2   0.000      1.000 0.000  1 0.000
#> SRR1270774     2   0.000      1.000 0.000  1 0.000
#> SRR1270775     2   0.000      1.000 0.000  1 0.000
#> SRR1270776     2   0.000      1.000 0.000  1 0.000
#> SRR1270777     2   0.000      1.000 0.000  1 0.000
#> SRR1270778     2   0.000      1.000 0.000  1 0.000
#> SRR1270779     2   0.000      1.000 0.000  1 0.000
#> SRR1270780     2   0.000      1.000 0.000  1 0.000
#> SRR1270781     2   0.000      1.000 0.000  1 0.000
#> SRR1270782     2   0.000      1.000 0.000  1 0.000
#> SRR1270783     2   0.000      1.000 0.000  1 0.000
#> SRR1270784     2   0.000      1.000 0.000  1 0.000
#> SRR1270785     2   0.000      1.000 0.000  1 0.000
#> SRR1270786     2   0.000      1.000 0.000  1 0.000
#> SRR1270787     2   0.000      1.000 0.000  1 0.000
#> SRR1270788     2   0.000      1.000 0.000  1 0.000
#> SRR1270789     2   0.000      1.000 0.000  1 0.000
#> SRR1270790     2   0.000      1.000 0.000  1 0.000
#> SRR1270791     2   0.000      1.000 0.000  1 0.000
#> SRR1270792     2   0.000      1.000 0.000  1 0.000
#> SRR1270793     2   0.000      1.000 0.000  1 0.000
#> SRR1270794     2   0.000      1.000 0.000  1 0.000
#> SRR1270795     2   0.000      1.000 0.000  1 0.000
#> SRR1270796     2   0.000      1.000 0.000  1 0.000
#> SRR1270797     2   0.000      1.000 0.000  1 0.000
#> SRR1270798     2   0.000      1.000 0.000  1 0.000
#> SRR1270799     2   0.000      1.000 0.000  1 0.000
#> SRR1270800     2   0.000      1.000 0.000  1 0.000
#> SRR1270801     2   0.000      1.000 0.000  1 0.000
#> SRR1270802     2   0.000      1.000 0.000  1 0.000
#> SRR1270803     2   0.000      1.000 0.000  1 0.000
#> SRR1270804     2   0.000      1.000 0.000  1 0.000
#> SRR1270805     3   0.000      0.829 0.000  0 1.000
#> SRR1270806     3   0.000      0.829 0.000  0 1.000
#> SRR1270807     3   0.000      0.829 0.000  0 1.000
#> SRR1270808     3   0.000      0.829 0.000  0 1.000
#> SRR1270809     3   0.000      0.829 0.000  0 1.000
#> SRR1270810     3   0.000      0.829 0.000  0 1.000
#> SRR1270811     3   0.000      0.829 0.000  0 1.000
#> SRR1270812     3   0.000      0.829 0.000  0 1.000
#> SRR1270813     3   0.000      0.829 0.000  0 1.000
#> SRR1270814     3   0.000      0.829 0.000  0 1.000
#> SRR1270815     3   0.000      0.829 0.000  0 1.000
#> SRR1270816     3   0.000      0.829 0.000  0 1.000
#> SRR1270817     3   0.000      0.829 0.000  0 1.000
#> SRR1270818     3   0.000      0.829 0.000  0 1.000
#> SRR1270819     3   0.000      0.829 0.000  0 1.000
#> SRR1270820     3   0.000      0.829 0.000  0 1.000
#> SRR1270821     3   0.000      0.829 0.000  0 1.000
#> SRR1270822     3   0.000      0.829 0.000  0 1.000
#> SRR1270823     3   0.000      0.829 0.000  0 1.000
#> SRR1270824     3   0.000      0.829 0.000  0 1.000
#> SRR1270825     3   0.000      0.829 0.000  0 1.000
#> SRR1270826     3   0.000      0.829 0.000  0 1.000
#> SRR1270827     3   0.000      0.829 0.000  0 1.000
#> SRR1270828     3   0.000      0.829 0.000  0 1.000
#> SRR1270829     3   0.000      0.829 0.000  0 1.000
#> SRR1270830     3   0.000      0.829 0.000  0 1.000
#> SRR1270831     3   0.000      0.829 0.000  0 1.000
#> SRR1270832     3   0.000      0.829 0.000  0 1.000
#> SRR1270833     3   0.608      0.606 0.388  0 0.612
#> SRR1270834     3   0.608      0.606 0.388  0 0.612
#> SRR1270835     3   0.608      0.606 0.388  0 0.612
#> SRR1270836     3   0.608      0.606 0.388  0 0.612
#> SRR1270837     3   0.608      0.606 0.388  0 0.612
#> SRR1270838     3   0.608      0.606 0.388  0 0.612
#> SRR1270839     3   0.608      0.606 0.388  0 0.612
#> SRR1270840     3   0.608      0.606 0.388  0 0.612
#> SRR1270841     3   0.608      0.606 0.388  0 0.612
#> SRR1270842     3   0.608      0.606 0.388  0 0.612
#> SRR1270843     3   0.608      0.606 0.388  0 0.612
#> SRR1270844     3   0.608      0.606 0.388  0 0.612
#> SRR1270845     3   0.608      0.606 0.388  0 0.612
#> SRR1270846     3   0.608      0.606 0.388  0 0.612
#> SRR1270847     3   0.608      0.606 0.388  0 0.612
#> SRR1270848     3   0.608      0.606 0.388  0 0.612
#> SRR1270849     3   0.608      0.606 0.388  0 0.612
#> SRR1270850     3   0.608      0.606 0.388  0 0.612
#> SRR1270851     2   0.000      1.000 0.000  1 0.000
#> SRR1270852     2   0.000      1.000 0.000  1 0.000
#> SRR1270853     2   0.000      1.000 0.000  1 0.000
#> SRR1270854     2   0.000      1.000 0.000  1 0.000
#> SRR1270855     2   0.000      1.000 0.000  1 0.000
#> SRR1270856     2   0.000      1.000 0.000  1 0.000
#> SRR1270857     2   0.000      1.000 0.000  1 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette p1    p2    p3    p4
#> SRR1270715     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270716     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270717     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270718     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270719     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270720     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270721     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270722     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270723     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270724     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270725     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270726     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270727     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270728     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270729     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270730     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270731     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270732     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270733     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270734     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270735     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270736     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270737     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270738     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270739     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270740     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270741     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270742     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270743     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270744     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270745     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270746     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270747     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270748     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270749     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270750     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270751     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270752     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270753     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270754     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270755     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270756     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270757     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270758     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270759     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270760     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270761     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270762     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270763     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270764     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270765     2   0.357      0.924  0 0.804 0.000 0.196
#> SRR1270766     2   0.357      0.924  0 0.804 0.000 0.196
#> SRR1270767     2   0.357      0.924  0 0.804 0.000 0.196
#> SRR1270768     2   0.357      0.924  0 0.804 0.000 0.196
#> SRR1270769     2   0.357      0.924  0 0.804 0.000 0.196
#> SRR1270770     2   0.357      0.924  0 0.804 0.000 0.196
#> SRR1270771     2   0.357      0.924  0 0.804 0.000 0.196
#> SRR1270772     2   0.357      0.924  0 0.804 0.000 0.196
#> SRR1270773     2   0.357      0.924  0 0.804 0.000 0.196
#> SRR1270774     2   0.357      0.924  0 0.804 0.000 0.196
#> SRR1270775     2   0.357      0.924  0 0.804 0.000 0.196
#> SRR1270776     2   0.357      0.924  0 0.804 0.000 0.196
#> SRR1270777     2   0.357      0.924  0 0.804 0.000 0.196
#> SRR1270778     2   0.357      0.924  0 0.804 0.000 0.196
#> SRR1270779     2   0.357      0.924  0 0.804 0.000 0.196
#> SRR1270780     2   0.357      0.924  0 0.804 0.000 0.196
#> SRR1270781     2   0.357      0.924  0 0.804 0.000 0.196
#> SRR1270782     2   0.357      0.924  0 0.804 0.000 0.196
#> SRR1270783     2   0.357      0.924  0 0.804 0.000 0.196
#> SRR1270784     2   0.357      0.924  0 0.804 0.000 0.196
#> SRR1270785     2   0.000      0.895  0 1.000 0.000 0.000
#> SRR1270786     2   0.000      0.895  0 1.000 0.000 0.000
#> SRR1270787     2   0.000      0.895  0 1.000 0.000 0.000
#> SRR1270788     2   0.000      0.895  0 1.000 0.000 0.000
#> SRR1270789     2   0.000      0.895  0 1.000 0.000 0.000
#> SRR1270790     2   0.000      0.895  0 1.000 0.000 0.000
#> SRR1270791     2   0.000      0.895  0 1.000 0.000 0.000
#> SRR1270792     2   0.000      0.895  0 1.000 0.000 0.000
#> SRR1270793     2   0.000      0.895  0 1.000 0.000 0.000
#> SRR1270794     2   0.000      0.895  0 1.000 0.000 0.000
#> SRR1270795     2   0.000      0.895  0 1.000 0.000 0.000
#> SRR1270796     2   0.000      0.895  0 1.000 0.000 0.000
#> SRR1270797     2   0.000      0.895  0 1.000 0.000 0.000
#> SRR1270798     2   0.000      0.895  0 1.000 0.000 0.000
#> SRR1270799     2   0.000      0.895  0 1.000 0.000 0.000
#> SRR1270800     2   0.000      0.895  0 1.000 0.000 0.000
#> SRR1270801     2   0.000      0.895  0 1.000 0.000 0.000
#> SRR1270802     2   0.000      0.895  0 1.000 0.000 0.000
#> SRR1270803     2   0.000      0.895  0 1.000 0.000 0.000
#> SRR1270804     2   0.000      0.895  0 1.000 0.000 0.000
#> SRR1270805     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270806     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270807     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270808     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270809     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270810     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270811     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270812     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270813     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270814     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270815     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270816     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270817     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270818     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270819     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270820     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270821     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270822     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270823     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270824     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270825     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270826     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270827     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270828     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270829     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270830     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270831     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270832     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270833     4   0.357      1.000  0 0.000 0.196 0.804
#> SRR1270834     4   0.357      1.000  0 0.000 0.196 0.804
#> SRR1270835     4   0.357      1.000  0 0.000 0.196 0.804
#> SRR1270836     4   0.357      1.000  0 0.000 0.196 0.804
#> SRR1270837     4   0.357      1.000  0 0.000 0.196 0.804
#> SRR1270838     4   0.357      1.000  0 0.000 0.196 0.804
#> SRR1270839     4   0.357      1.000  0 0.000 0.196 0.804
#> SRR1270840     4   0.357      1.000  0 0.000 0.196 0.804
#> SRR1270841     4   0.357      1.000  0 0.000 0.196 0.804
#> SRR1270842     4   0.357      1.000  0 0.000 0.196 0.804
#> SRR1270843     4   0.357      1.000  0 0.000 0.196 0.804
#> SRR1270844     4   0.357      1.000  0 0.000 0.196 0.804
#> SRR1270845     4   0.357      1.000  0 0.000 0.196 0.804
#> SRR1270846     4   0.357      1.000  0 0.000 0.196 0.804
#> SRR1270847     4   0.357      1.000  0 0.000 0.196 0.804
#> SRR1270848     4   0.357      1.000  0 0.000 0.196 0.804
#> SRR1270849     4   0.357      1.000  0 0.000 0.196 0.804
#> SRR1270850     4   0.357      1.000  0 0.000 0.196 0.804
#> SRR1270851     2   0.357      0.924  0 0.804 0.000 0.196
#> SRR1270852     2   0.357      0.924  0 0.804 0.000 0.196
#> SRR1270853     2   0.357      0.924  0 0.804 0.000 0.196
#> SRR1270854     2   0.357      0.924  0 0.804 0.000 0.196
#> SRR1270855     2   0.357      0.924  0 0.804 0.000 0.196
#> SRR1270856     2   0.357      0.924  0 0.804 0.000 0.196
#> SRR1270857     2   0.357      0.924  0 0.804 0.000 0.196

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2 p3 p4    p5
#> SRR1270715     1   0.423      0.964 0.580 0.000  0  0 0.420
#> SRR1270716     1   0.423      0.964 0.580 0.000  0  0 0.420
#> SRR1270717     1   0.423      0.964 0.580 0.000  0  0 0.420
#> SRR1270718     5   0.000      1.000 0.000 0.000  0  0 1.000
#> SRR1270719     5   0.000      1.000 0.000 0.000  0  0 1.000
#> SRR1270720     5   0.000      1.000 0.000 0.000  0  0 1.000
#> SRR1270721     5   0.000      1.000 0.000 0.000  0  0 1.000
#> SRR1270722     1   0.417      0.988 0.604 0.000  0  0 0.396
#> SRR1270723     1   0.417      0.988 0.604 0.000  0  0 0.396
#> SRR1270724     1   0.417      0.988 0.604 0.000  0  0 0.396
#> SRR1270725     1   0.417      0.988 0.604 0.000  0  0 0.396
#> SRR1270726     1   0.417      0.988 0.604 0.000  0  0 0.396
#> SRR1270727     1   0.417      0.988 0.604 0.000  0  0 0.396
#> SRR1270728     1   0.417      0.988 0.604 0.000  0  0 0.396
#> SRR1270729     1   0.423      0.964 0.580 0.000  0  0 0.420
#> SRR1270730     1   0.423      0.964 0.580 0.000  0  0 0.420
#> SRR1270731     1   0.423      0.964 0.580 0.000  0  0 0.420
#> SRR1270732     5   0.000      1.000 0.000 0.000  0  0 1.000
#> SRR1270733     5   0.000      1.000 0.000 0.000  0  0 1.000
#> SRR1270734     5   0.000      1.000 0.000 0.000  0  0 1.000
#> SRR1270735     5   0.000      1.000 0.000 0.000  0  0 1.000
#> SRR1270736     1   0.419      0.981 0.596 0.000  0  0 0.404
#> SRR1270737     1   0.419      0.981 0.596 0.000  0  0 0.404
#> SRR1270738     1   0.423      0.964 0.580 0.000  0  0 0.420
#> SRR1270739     1   0.423      0.964 0.580 0.000  0  0 0.420
#> SRR1270740     1   0.416      0.989 0.608 0.000  0  0 0.392
#> SRR1270741     1   0.416      0.989 0.608 0.000  0  0 0.392
#> SRR1270742     1   0.416      0.989 0.608 0.000  0  0 0.392
#> SRR1270743     1   0.416      0.989 0.608 0.000  0  0 0.392
#> SRR1270744     1   0.416      0.989 0.608 0.000  0  0 0.392
#> SRR1270745     1   0.416      0.989 0.608 0.000  0  0 0.392
#> SRR1270746     1   0.416      0.989 0.608 0.000  0  0 0.392
#> SRR1270747     1   0.416      0.989 0.608 0.000  0  0 0.392
#> SRR1270748     1   0.416      0.989 0.608 0.000  0  0 0.392
#> SRR1270749     1   0.416      0.989 0.608 0.000  0  0 0.392
#> SRR1270750     1   0.416      0.989 0.608 0.000  0  0 0.392
#> SRR1270751     1   0.416      0.989 0.608 0.000  0  0 0.392
#> SRR1270752     1   0.416      0.989 0.608 0.000  0  0 0.392
#> SRR1270753     1   0.416      0.989 0.608 0.000  0  0 0.392
#> SRR1270754     1   0.416      0.989 0.608 0.000  0  0 0.392
#> SRR1270755     1   0.416      0.989 0.608 0.000  0  0 0.392
#> SRR1270756     1   0.416      0.989 0.608 0.000  0  0 0.392
#> SRR1270757     1   0.416      0.989 0.608 0.000  0  0 0.392
#> SRR1270758     1   0.416      0.989 0.608 0.000  0  0 0.392
#> SRR1270759     1   0.416      0.989 0.608 0.000  0  0 0.392
#> SRR1270760     1   0.416      0.989 0.608 0.000  0  0 0.392
#> SRR1270761     1   0.416      0.989 0.608 0.000  0  0 0.392
#> SRR1270762     1   0.416      0.989 0.608 0.000  0  0 0.392
#> SRR1270763     1   0.416      0.989 0.608 0.000  0  0 0.392
#> SRR1270764     1   0.416      0.989 0.608 0.000  0  0 0.392
#> SRR1270765     2   0.000      0.833 0.000 1.000  0  0 0.000
#> SRR1270766     2   0.000      0.833 0.000 1.000  0  0 0.000
#> SRR1270767     2   0.000      0.833 0.000 1.000  0  0 0.000
#> SRR1270768     2   0.000      0.833 0.000 1.000  0  0 0.000
#> SRR1270769     2   0.000      0.833 0.000 1.000  0  0 0.000
#> SRR1270770     2   0.000      0.833 0.000 1.000  0  0 0.000
#> SRR1270771     2   0.000      0.833 0.000 1.000  0  0 0.000
#> SRR1270772     2   0.000      0.833 0.000 1.000  0  0 0.000
#> SRR1270773     2   0.000      0.833 0.000 1.000  0  0 0.000
#> SRR1270774     2   0.000      0.833 0.000 1.000  0  0 0.000
#> SRR1270775     2   0.000      0.833 0.000 1.000  0  0 0.000
#> SRR1270776     2   0.000      0.833 0.000 1.000  0  0 0.000
#> SRR1270777     2   0.000      0.833 0.000 1.000  0  0 0.000
#> SRR1270778     2   0.000      0.833 0.000 1.000  0  0 0.000
#> SRR1270779     2   0.000      0.833 0.000 1.000  0  0 0.000
#> SRR1270780     2   0.000      0.833 0.000 1.000  0  0 0.000
#> SRR1270781     2   0.000      0.833 0.000 1.000  0  0 0.000
#> SRR1270782     2   0.000      0.833 0.000 1.000  0  0 0.000
#> SRR1270783     2   0.000      0.833 0.000 1.000  0  0 0.000
#> SRR1270784     2   0.000      0.833 0.000 1.000  0  0 0.000
#> SRR1270785     2   0.416      0.764 0.392 0.608  0  0 0.000
#> SRR1270786     2   0.416      0.764 0.392 0.608  0  0 0.000
#> SRR1270787     2   0.416      0.764 0.392 0.608  0  0 0.000
#> SRR1270788     2   0.416      0.764 0.392 0.608  0  0 0.000
#> SRR1270789     2   0.416      0.764 0.392 0.608  0  0 0.000
#> SRR1270790     2   0.416      0.764 0.392 0.608  0  0 0.000
#> SRR1270791     2   0.416      0.764 0.392 0.608  0  0 0.000
#> SRR1270792     2   0.416      0.764 0.392 0.608  0  0 0.000
#> SRR1270793     2   0.416      0.764 0.392 0.608  0  0 0.000
#> SRR1270794     2   0.416      0.764 0.392 0.608  0  0 0.000
#> SRR1270795     2   0.416      0.764 0.392 0.608  0  0 0.000
#> SRR1270796     2   0.416      0.764 0.392 0.608  0  0 0.000
#> SRR1270797     2   0.416      0.764 0.392 0.608  0  0 0.000
#> SRR1270798     2   0.416      0.764 0.392 0.608  0  0 0.000
#> SRR1270799     2   0.416      0.764 0.392 0.608  0  0 0.000
#> SRR1270800     2   0.416      0.764 0.392 0.608  0  0 0.000
#> SRR1270801     2   0.416      0.764 0.392 0.608  0  0 0.000
#> SRR1270802     2   0.416      0.764 0.392 0.608  0  0 0.000
#> SRR1270803     2   0.416      0.764 0.392 0.608  0  0 0.000
#> SRR1270804     2   0.416      0.764 0.392 0.608  0  0 0.000
#> SRR1270805     3   0.000      1.000 0.000 0.000  1  0 0.000
#> SRR1270806     3   0.000      1.000 0.000 0.000  1  0 0.000
#> SRR1270807     3   0.000      1.000 0.000 0.000  1  0 0.000
#> SRR1270808     3   0.000      1.000 0.000 0.000  1  0 0.000
#> SRR1270809     3   0.000      1.000 0.000 0.000  1  0 0.000
#> SRR1270810     3   0.000      1.000 0.000 0.000  1  0 0.000
#> SRR1270811     3   0.000      1.000 0.000 0.000  1  0 0.000
#> SRR1270812     3   0.000      1.000 0.000 0.000  1  0 0.000
#> SRR1270813     3   0.000      1.000 0.000 0.000  1  0 0.000
#> SRR1270814     3   0.000      1.000 0.000 0.000  1  0 0.000
#> SRR1270815     3   0.000      1.000 0.000 0.000  1  0 0.000
#> SRR1270816     3   0.000      1.000 0.000 0.000  1  0 0.000
#> SRR1270817     3   0.000      1.000 0.000 0.000  1  0 0.000
#> SRR1270818     3   0.000      1.000 0.000 0.000  1  0 0.000
#> SRR1270819     3   0.000      1.000 0.000 0.000  1  0 0.000
#> SRR1270820     3   0.000      1.000 0.000 0.000  1  0 0.000
#> SRR1270821     3   0.000      1.000 0.000 0.000  1  0 0.000
#> SRR1270822     3   0.000      1.000 0.000 0.000  1  0 0.000
#> SRR1270823     3   0.000      1.000 0.000 0.000  1  0 0.000
#> SRR1270824     3   0.000      1.000 0.000 0.000  1  0 0.000
#> SRR1270825     3   0.000      1.000 0.000 0.000  1  0 0.000
#> SRR1270826     3   0.000      1.000 0.000 0.000  1  0 0.000
#> SRR1270827     3   0.000      1.000 0.000 0.000  1  0 0.000
#> SRR1270828     3   0.000      1.000 0.000 0.000  1  0 0.000
#> SRR1270829     3   0.000      1.000 0.000 0.000  1  0 0.000
#> SRR1270830     3   0.000      1.000 0.000 0.000  1  0 0.000
#> SRR1270831     3   0.000      1.000 0.000 0.000  1  0 0.000
#> SRR1270832     3   0.000      1.000 0.000 0.000  1  0 0.000
#> SRR1270833     4   0.000      1.000 0.000 0.000  0  1 0.000
#> SRR1270834     4   0.000      1.000 0.000 0.000  0  1 0.000
#> SRR1270835     4   0.000      1.000 0.000 0.000  0  1 0.000
#> SRR1270836     4   0.000      1.000 0.000 0.000  0  1 0.000
#> SRR1270837     4   0.000      1.000 0.000 0.000  0  1 0.000
#> SRR1270838     4   0.000      1.000 0.000 0.000  0  1 0.000
#> SRR1270839     4   0.000      1.000 0.000 0.000  0  1 0.000
#> SRR1270840     4   0.000      1.000 0.000 0.000  0  1 0.000
#> SRR1270841     4   0.000      1.000 0.000 0.000  0  1 0.000
#> SRR1270842     4   0.000      1.000 0.000 0.000  0  1 0.000
#> SRR1270843     4   0.000      1.000 0.000 0.000  0  1 0.000
#> SRR1270844     4   0.000      1.000 0.000 0.000  0  1 0.000
#> SRR1270845     4   0.000      1.000 0.000 0.000  0  1 0.000
#> SRR1270846     4   0.000      1.000 0.000 0.000  0  1 0.000
#> SRR1270847     4   0.000      1.000 0.000 0.000  0  1 0.000
#> SRR1270848     4   0.000      1.000 0.000 0.000  0  1 0.000
#> SRR1270849     4   0.000      1.000 0.000 0.000  0  1 0.000
#> SRR1270850     4   0.000      1.000 0.000 0.000  0  1 0.000
#> SRR1270851     2   0.000      0.833 0.000 1.000  0  0 0.000
#> SRR1270852     2   0.000      0.833 0.000 1.000  0  0 0.000
#> SRR1270853     2   0.000      0.833 0.000 1.000  0  0 0.000
#> SRR1270854     2   0.000      0.833 0.000 1.000  0  0 0.000
#> SRR1270855     2   0.000      0.833 0.000 1.000  0  0 0.000
#> SRR1270856     2   0.000      0.833 0.000 1.000  0  0 0.000
#> SRR1270857     2   0.000      0.833 0.000 1.000  0  0 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1 p2 p3 p4 p5    p6
#> SRR1270715     1  0.1075      0.961 0.952  0  0  0  0 0.048
#> SRR1270716     1  0.1075      0.961 0.952  0  0  0  0 0.048
#> SRR1270717     1  0.1075      0.961 0.952  0  0  0  0 0.048
#> SRR1270718     6  0.0000      0.995 0.000  0  0  0  0 1.000
#> SRR1270719     6  0.0000      0.995 0.000  0  0  0  0 1.000
#> SRR1270720     6  0.0000      0.995 0.000  0  0  0  0 1.000
#> SRR1270721     6  0.0000      0.995 0.000  0  0  0  0 1.000
#> SRR1270722     1  0.0146      0.989 0.996  0  0  0  0 0.004
#> SRR1270723     1  0.0146      0.989 0.996  0  0  0  0 0.004
#> SRR1270724     1  0.0146      0.989 0.996  0  0  0  0 0.004
#> SRR1270725     1  0.0146      0.989 0.996  0  0  0  0 0.004
#> SRR1270726     1  0.0146      0.989 0.996  0  0  0  0 0.004
#> SRR1270727     1  0.0146      0.989 0.996  0  0  0  0 0.004
#> SRR1270728     1  0.0146      0.989 0.996  0  0  0  0 0.004
#> SRR1270729     1  0.1075      0.961 0.952  0  0  0  0 0.048
#> SRR1270730     1  0.1075      0.961 0.952  0  0  0  0 0.048
#> SRR1270731     1  0.1075      0.961 0.952  0  0  0  0 0.048
#> SRR1270732     6  0.0146      0.994 0.004  0  0  0  0 0.996
#> SRR1270733     6  0.0363      0.987 0.012  0  0  0  0 0.988
#> SRR1270734     6  0.0260      0.991 0.008  0  0  0  0 0.992
#> SRR1270735     6  0.0146      0.994 0.004  0  0  0  0 0.996
#> SRR1270736     1  0.0458      0.983 0.984  0  0  0  0 0.016
#> SRR1270737     1  0.0458      0.983 0.984  0  0  0  0 0.016
#> SRR1270738     1  0.0790      0.973 0.968  0  0  0  0 0.032
#> SRR1270739     1  0.0790      0.973 0.968  0  0  0  0 0.032
#> SRR1270740     1  0.0000      0.990 1.000  0  0  0  0 0.000
#> SRR1270741     1  0.0000      0.990 1.000  0  0  0  0 0.000
#> SRR1270742     1  0.0000      0.990 1.000  0  0  0  0 0.000
#> SRR1270743     1  0.0000      0.990 1.000  0  0  0  0 0.000
#> SRR1270744     1  0.0000      0.990 1.000  0  0  0  0 0.000
#> SRR1270745     1  0.0000      0.990 1.000  0  0  0  0 0.000
#> SRR1270746     1  0.0000      0.990 1.000  0  0  0  0 0.000
#> SRR1270747     1  0.0000      0.990 1.000  0  0  0  0 0.000
#> SRR1270748     1  0.0000      0.990 1.000  0  0  0  0 0.000
#> SRR1270749     1  0.0000      0.990 1.000  0  0  0  0 0.000
#> SRR1270750     1  0.0000      0.990 1.000  0  0  0  0 0.000
#> SRR1270751     1  0.0000      0.990 1.000  0  0  0  0 0.000
#> SRR1270752     1  0.0000      0.990 1.000  0  0  0  0 0.000
#> SRR1270753     1  0.0000      0.990 1.000  0  0  0  0 0.000
#> SRR1270754     1  0.0000      0.990 1.000  0  0  0  0 0.000
#> SRR1270755     1  0.0000      0.990 1.000  0  0  0  0 0.000
#> SRR1270756     1  0.0000      0.990 1.000  0  0  0  0 0.000
#> SRR1270757     1  0.0000      0.990 1.000  0  0  0  0 0.000
#> SRR1270758     1  0.0000      0.990 1.000  0  0  0  0 0.000
#> SRR1270759     1  0.0000      0.990 1.000  0  0  0  0 0.000
#> SRR1270760     1  0.0000      0.990 1.000  0  0  0  0 0.000
#> SRR1270761     1  0.0000      0.990 1.000  0  0  0  0 0.000
#> SRR1270762     1  0.0000      0.990 1.000  0  0  0  0 0.000
#> SRR1270763     1  0.0000      0.990 1.000  0  0  0  0 0.000
#> SRR1270764     1  0.0000      0.990 1.000  0  0  0  0 0.000
#> SRR1270765     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270766     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270767     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270768     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270769     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270770     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270771     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270772     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270773     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270774     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270775     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270776     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270777     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270778     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270779     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270780     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270781     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270782     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270783     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270784     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270785     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270786     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270787     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270788     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270789     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270790     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270791     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270792     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270793     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270794     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270795     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270796     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270797     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270798     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270799     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270800     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270801     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270802     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270803     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270804     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270805     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270806     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270807     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270808     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270809     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270810     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270811     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270812     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270813     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270814     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270815     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270816     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270817     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270818     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270819     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270820     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270821     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270822     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270823     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270824     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270825     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270826     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270827     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270828     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270829     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270830     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270831     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270832     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270833     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270834     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270835     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270836     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270837     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270838     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270839     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270840     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270841     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270842     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270843     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270844     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270845     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270846     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270847     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270848     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270849     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270850     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270851     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270852     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270853     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270854     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270855     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270856     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270857     2  0.0000      1.000 0.000  1  0  0  0 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14577 rows and 143 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.4450 0.556   0.556
#> 3 3 0.671           0.918       0.836         0.3679 0.773   0.592
#> 4 4 0.588           0.905       0.816         0.1373 0.950   0.849
#> 5 5 0.794           0.835       0.807         0.0883 1.000   1.000
#> 6 6 0.793           0.874       0.748         0.0509 0.885   0.589

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1270715     1       0          1  1  0
#> SRR1270716     1       0          1  1  0
#> SRR1270717     1       0          1  1  0
#> SRR1270718     1       0          1  1  0
#> SRR1270719     1       0          1  1  0
#> SRR1270720     1       0          1  1  0
#> SRR1270721     1       0          1  1  0
#> SRR1270722     1       0          1  1  0
#> SRR1270723     1       0          1  1  0
#> SRR1270724     1       0          1  1  0
#> SRR1270725     1       0          1  1  0
#> SRR1270726     1       0          1  1  0
#> SRR1270727     1       0          1  1  0
#> SRR1270728     1       0          1  1  0
#> SRR1270729     1       0          1  1  0
#> SRR1270730     1       0          1  1  0
#> SRR1270731     1       0          1  1  0
#> SRR1270732     1       0          1  1  0
#> SRR1270733     1       0          1  1  0
#> SRR1270734     1       0          1  1  0
#> SRR1270735     1       0          1  1  0
#> SRR1270736     1       0          1  1  0
#> SRR1270737     1       0          1  1  0
#> SRR1270738     1       0          1  1  0
#> SRR1270739     1       0          1  1  0
#> SRR1270740     1       0          1  1  0
#> SRR1270741     1       0          1  1  0
#> SRR1270742     1       0          1  1  0
#> SRR1270743     1       0          1  1  0
#> SRR1270744     1       0          1  1  0
#> SRR1270745     1       0          1  1  0
#> SRR1270746     1       0          1  1  0
#> SRR1270747     1       0          1  1  0
#> SRR1270748     1       0          1  1  0
#> SRR1270749     1       0          1  1  0
#> SRR1270750     1       0          1  1  0
#> SRR1270751     1       0          1  1  0
#> SRR1270752     1       0          1  1  0
#> SRR1270753     1       0          1  1  0
#> SRR1270754     1       0          1  1  0
#> SRR1270755     1       0          1  1  0
#> SRR1270756     1       0          1  1  0
#> SRR1270757     1       0          1  1  0
#> SRR1270758     1       0          1  1  0
#> SRR1270759     1       0          1  1  0
#> SRR1270760     1       0          1  1  0
#> SRR1270761     1       0          1  1  0
#> SRR1270762     1       0          1  1  0
#> SRR1270763     1       0          1  1  0
#> SRR1270764     1       0          1  1  0
#> SRR1270765     2       0          1  0  1
#> SRR1270766     2       0          1  0  1
#> SRR1270767     2       0          1  0  1
#> SRR1270768     2       0          1  0  1
#> SRR1270769     2       0          1  0  1
#> SRR1270770     2       0          1  0  1
#> SRR1270771     2       0          1  0  1
#> SRR1270772     2       0          1  0  1
#> SRR1270773     2       0          1  0  1
#> SRR1270774     2       0          1  0  1
#> SRR1270775     2       0          1  0  1
#> SRR1270776     2       0          1  0  1
#> SRR1270777     2       0          1  0  1
#> SRR1270778     2       0          1  0  1
#> SRR1270779     2       0          1  0  1
#> SRR1270780     2       0          1  0  1
#> SRR1270781     2       0          1  0  1
#> SRR1270782     2       0          1  0  1
#> SRR1270783     2       0          1  0  1
#> SRR1270784     2       0          1  0  1
#> SRR1270785     2       0          1  0  1
#> SRR1270786     2       0          1  0  1
#> SRR1270787     2       0          1  0  1
#> SRR1270788     2       0          1  0  1
#> SRR1270789     2       0          1  0  1
#> SRR1270790     2       0          1  0  1
#> SRR1270791     2       0          1  0  1
#> SRR1270792     2       0          1  0  1
#> SRR1270793     2       0          1  0  1
#> SRR1270794     2       0          1  0  1
#> SRR1270795     2       0          1  0  1
#> SRR1270796     2       0          1  0  1
#> SRR1270797     2       0          1  0  1
#> SRR1270798     2       0          1  0  1
#> SRR1270799     2       0          1  0  1
#> SRR1270800     2       0          1  0  1
#> SRR1270801     2       0          1  0  1
#> SRR1270802     2       0          1  0  1
#> SRR1270803     2       0          1  0  1
#> SRR1270804     2       0          1  0  1
#> SRR1270805     1       0          1  1  0
#> SRR1270806     1       0          1  1  0
#> SRR1270807     1       0          1  1  0
#> SRR1270808     1       0          1  1  0
#> SRR1270809     1       0          1  1  0
#> SRR1270810     1       0          1  1  0
#> SRR1270811     1       0          1  1  0
#> SRR1270812     1       0          1  1  0
#> SRR1270813     1       0          1  1  0
#> SRR1270814     1       0          1  1  0
#> SRR1270815     1       0          1  1  0
#> SRR1270816     1       0          1  1  0
#> SRR1270817     1       0          1  1  0
#> SRR1270818     1       0          1  1  0
#> SRR1270819     1       0          1  1  0
#> SRR1270820     1       0          1  1  0
#> SRR1270821     1       0          1  1  0
#> SRR1270822     1       0          1  1  0
#> SRR1270823     1       0          1  1  0
#> SRR1270824     1       0          1  1  0
#> SRR1270825     1       0          1  1  0
#> SRR1270826     1       0          1  1  0
#> SRR1270827     1       0          1  1  0
#> SRR1270828     1       0          1  1  0
#> SRR1270829     1       0          1  1  0
#> SRR1270830     1       0          1  1  0
#> SRR1270831     1       0          1  1  0
#> SRR1270832     1       0          1  1  0
#> SRR1270833     1       0          1  1  0
#> SRR1270834     1       0          1  1  0
#> SRR1270835     1       0          1  1  0
#> SRR1270836     1       0          1  1  0
#> SRR1270837     1       0          1  1  0
#> SRR1270838     1       0          1  1  0
#> SRR1270839     1       0          1  1  0
#> SRR1270840     1       0          1  1  0
#> SRR1270841     1       0          1  1  0
#> SRR1270842     1       0          1  1  0
#> SRR1270843     1       0          1  1  0
#> SRR1270844     1       0          1  1  0
#> SRR1270845     1       0          1  1  0
#> SRR1270846     1       0          1  1  0
#> SRR1270847     1       0          1  1  0
#> SRR1270848     1       0          1  1  0
#> SRR1270849     1       0          1  1  0
#> SRR1270850     1       0          1  1  0
#> SRR1270851     2       0          1  0  1
#> SRR1270852     2       0          1  0  1
#> SRR1270853     2       0          1  0  1
#> SRR1270854     2       0          1  0  1
#> SRR1270855     2       0          1  0  1
#> SRR1270856     2       0          1  0  1
#> SRR1270857     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1270715     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270716     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270717     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270718     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270719     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270720     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270721     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270722     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270723     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270724     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270725     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270726     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270727     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270728     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270729     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270730     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270731     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270732     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270733     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270734     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270735     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270736     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270737     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270738     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270739     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270740     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270741     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270742     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270743     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270744     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270745     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270746     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270747     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270748     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270749     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270750     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270751     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270752     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270753     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270754     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270755     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270756     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270757     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270758     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270759     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270760     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270761     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270762     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270763     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270764     1   0.000      1.000 1.000 0.000 0.000
#> SRR1270765     2   0.000      0.912 0.000 1.000 0.000
#> SRR1270766     2   0.000      0.912 0.000 1.000 0.000
#> SRR1270767     2   0.000      0.912 0.000 1.000 0.000
#> SRR1270768     2   0.000      0.912 0.000 1.000 0.000
#> SRR1270769     2   0.000      0.912 0.000 1.000 0.000
#> SRR1270770     2   0.000      0.912 0.000 1.000 0.000
#> SRR1270771     2   0.000      0.912 0.000 1.000 0.000
#> SRR1270772     2   0.000      0.912 0.000 1.000 0.000
#> SRR1270773     2   0.000      0.912 0.000 1.000 0.000
#> SRR1270774     2   0.000      0.912 0.000 1.000 0.000
#> SRR1270775     2   0.000      0.912 0.000 1.000 0.000
#> SRR1270776     2   0.000      0.912 0.000 1.000 0.000
#> SRR1270777     2   0.000      0.912 0.000 1.000 0.000
#> SRR1270778     2   0.000      0.912 0.000 1.000 0.000
#> SRR1270779     2   0.000      0.912 0.000 1.000 0.000
#> SRR1270780     2   0.000      0.912 0.000 1.000 0.000
#> SRR1270781     2   0.000      0.912 0.000 1.000 0.000
#> SRR1270782     2   0.000      0.912 0.000 1.000 0.000
#> SRR1270783     2   0.000      0.912 0.000 1.000 0.000
#> SRR1270784     2   0.000      0.912 0.000 1.000 0.000
#> SRR1270785     2   0.529      0.878 0.000 0.732 0.268
#> SRR1270786     2   0.529      0.878 0.000 0.732 0.268
#> SRR1270787     2   0.529      0.878 0.000 0.732 0.268
#> SRR1270788     2   0.529      0.878 0.000 0.732 0.268
#> SRR1270789     2   0.529      0.878 0.000 0.732 0.268
#> SRR1270790     2   0.529      0.878 0.000 0.732 0.268
#> SRR1270791     2   0.529      0.878 0.000 0.732 0.268
#> SRR1270792     2   0.529      0.878 0.000 0.732 0.268
#> SRR1270793     2   0.529      0.878 0.000 0.732 0.268
#> SRR1270794     2   0.529      0.878 0.000 0.732 0.268
#> SRR1270795     2   0.529      0.878 0.000 0.732 0.268
#> SRR1270796     2   0.529      0.878 0.000 0.732 0.268
#> SRR1270797     2   0.529      0.878 0.000 0.732 0.268
#> SRR1270798     2   0.529      0.878 0.000 0.732 0.268
#> SRR1270799     2   0.529      0.878 0.000 0.732 0.268
#> SRR1270800     2   0.529      0.878 0.000 0.732 0.268
#> SRR1270801     2   0.529      0.878 0.000 0.732 0.268
#> SRR1270802     2   0.529      0.878 0.000 0.732 0.268
#> SRR1270803     2   0.529      0.878 0.000 0.732 0.268
#> SRR1270804     2   0.529      0.878 0.000 0.732 0.268
#> SRR1270805     3   0.614      0.879 0.404 0.000 0.596
#> SRR1270806     3   0.614      0.879 0.404 0.000 0.596
#> SRR1270807     3   0.614      0.879 0.404 0.000 0.596
#> SRR1270808     3   0.614      0.879 0.404 0.000 0.596
#> SRR1270809     3   0.614      0.879 0.404 0.000 0.596
#> SRR1270810     3   0.614      0.879 0.404 0.000 0.596
#> SRR1270811     3   0.614      0.879 0.404 0.000 0.596
#> SRR1270812     3   0.614      0.879 0.404 0.000 0.596
#> SRR1270813     3   0.614      0.879 0.404 0.000 0.596
#> SRR1270814     3   0.614      0.879 0.404 0.000 0.596
#> SRR1270815     3   0.614      0.879 0.404 0.000 0.596
#> SRR1270816     3   0.614      0.879 0.404 0.000 0.596
#> SRR1270817     3   0.614      0.879 0.404 0.000 0.596
#> SRR1270818     3   0.614      0.879 0.404 0.000 0.596
#> SRR1270819     3   0.614      0.879 0.404 0.000 0.596
#> SRR1270820     3   0.614      0.879 0.404 0.000 0.596
#> SRR1270821     3   0.614      0.879 0.404 0.000 0.596
#> SRR1270822     3   0.614      0.879 0.404 0.000 0.596
#> SRR1270823     3   0.614      0.879 0.404 0.000 0.596
#> SRR1270824     3   0.614      0.879 0.404 0.000 0.596
#> SRR1270825     3   0.614      0.879 0.404 0.000 0.596
#> SRR1270826     3   0.614      0.879 0.404 0.000 0.596
#> SRR1270827     3   0.614      0.879 0.404 0.000 0.596
#> SRR1270828     3   0.614      0.879 0.404 0.000 0.596
#> SRR1270829     3   0.614      0.879 0.404 0.000 0.596
#> SRR1270830     3   0.614      0.879 0.404 0.000 0.596
#> SRR1270831     3   0.614      0.879 0.404 0.000 0.596
#> SRR1270832     3   0.614      0.879 0.404 0.000 0.596
#> SRR1270833     3   0.604      0.806 0.380 0.000 0.620
#> SRR1270834     3   0.604      0.806 0.380 0.000 0.620
#> SRR1270835     3   0.603      0.809 0.376 0.000 0.624
#> SRR1270836     3   0.603      0.809 0.376 0.000 0.624
#> SRR1270837     3   0.601      0.810 0.372 0.000 0.628
#> SRR1270838     3   0.601      0.810 0.372 0.000 0.628
#> SRR1270839     3   0.601      0.810 0.372 0.000 0.628
#> SRR1270840     3   0.603      0.809 0.376 0.000 0.624
#> SRR1270841     3   0.603      0.809 0.376 0.000 0.624
#> SRR1270842     3   0.603      0.809 0.376 0.000 0.624
#> SRR1270843     3   0.603      0.809 0.376 0.000 0.624
#> SRR1270844     3   0.604      0.806 0.380 0.000 0.620
#> SRR1270845     3   0.604      0.806 0.380 0.000 0.620
#> SRR1270846     3   0.604      0.806 0.380 0.000 0.620
#> SRR1270847     3   0.604      0.806 0.380 0.000 0.620
#> SRR1270848     3   0.604      0.806 0.380 0.000 0.620
#> SRR1270849     3   0.604      0.806 0.380 0.000 0.620
#> SRR1270850     3   0.604      0.806 0.380 0.000 0.620
#> SRR1270851     2   0.000      0.912 0.000 1.000 0.000
#> SRR1270852     2   0.000      0.912 0.000 1.000 0.000
#> SRR1270853     2   0.000      0.912 0.000 1.000 0.000
#> SRR1270854     2   0.000      0.912 0.000 1.000 0.000
#> SRR1270855     2   0.000      0.912 0.000 1.000 0.000
#> SRR1270856     2   0.000      0.912 0.000 1.000 0.000
#> SRR1270857     2   0.000      0.912 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1270715     1  0.1211      0.919 0.960 0.000 0.040 0.000
#> SRR1270716     1  0.1211      0.919 0.960 0.000 0.040 0.000
#> SRR1270717     1  0.1211      0.919 0.960 0.000 0.040 0.000
#> SRR1270718     1  0.1211      0.919 0.960 0.000 0.040 0.000
#> SRR1270719     1  0.1211      0.919 0.960 0.000 0.040 0.000
#> SRR1270720     1  0.1211      0.919 0.960 0.000 0.040 0.000
#> SRR1270721     1  0.1211      0.919 0.960 0.000 0.040 0.000
#> SRR1270722     1  0.0188      0.926 0.996 0.000 0.004 0.000
#> SRR1270723     1  0.0188      0.926 0.996 0.000 0.004 0.000
#> SRR1270724     1  0.0188      0.926 0.996 0.000 0.004 0.000
#> SRR1270725     1  0.0336      0.926 0.992 0.000 0.008 0.000
#> SRR1270726     1  0.0469      0.925 0.988 0.000 0.012 0.000
#> SRR1270727     1  0.0336      0.926 0.992 0.000 0.008 0.000
#> SRR1270728     1  0.0336      0.926 0.992 0.000 0.008 0.000
#> SRR1270729     1  0.1211      0.919 0.960 0.000 0.040 0.000
#> SRR1270730     1  0.1211      0.919 0.960 0.000 0.040 0.000
#> SRR1270731     1  0.1211      0.919 0.960 0.000 0.040 0.000
#> SRR1270732     1  0.1211      0.919 0.960 0.000 0.040 0.000
#> SRR1270733     1  0.1211      0.919 0.960 0.000 0.040 0.000
#> SRR1270734     1  0.1211      0.919 0.960 0.000 0.040 0.000
#> SRR1270735     1  0.1211      0.919 0.960 0.000 0.040 0.000
#> SRR1270736     1  0.1302      0.918 0.956 0.000 0.044 0.000
#> SRR1270737     1  0.1302      0.918 0.956 0.000 0.044 0.000
#> SRR1270738     1  0.1302      0.918 0.956 0.000 0.044 0.000
#> SRR1270739     1  0.1302      0.918 0.956 0.000 0.044 0.000
#> SRR1270740     1  0.2796      0.928 0.892 0.000 0.092 0.016
#> SRR1270741     1  0.2796      0.928 0.892 0.000 0.092 0.016
#> SRR1270742     1  0.2796      0.928 0.892 0.000 0.092 0.016
#> SRR1270743     1  0.2730      0.929 0.896 0.000 0.088 0.016
#> SRR1270744     1  0.2796      0.928 0.892 0.000 0.092 0.016
#> SRR1270745     1  0.2796      0.928 0.892 0.000 0.092 0.016
#> SRR1270746     1  0.2796      0.928 0.892 0.000 0.092 0.016
#> SRR1270747     1  0.2861      0.928 0.888 0.000 0.096 0.016
#> SRR1270748     1  0.2861      0.928 0.888 0.000 0.096 0.016
#> SRR1270749     1  0.2861      0.928 0.888 0.000 0.096 0.016
#> SRR1270750     1  0.2861      0.928 0.888 0.000 0.096 0.016
#> SRR1270751     1  0.2861      0.928 0.888 0.000 0.096 0.016
#> SRR1270752     1  0.2861      0.928 0.888 0.000 0.096 0.016
#> SRR1270753     1  0.2861      0.928 0.888 0.000 0.096 0.016
#> SRR1270754     1  0.2796      0.928 0.892 0.000 0.092 0.016
#> SRR1270755     1  0.2796      0.928 0.892 0.000 0.092 0.016
#> SRR1270756     1  0.2796      0.928 0.892 0.000 0.092 0.016
#> SRR1270757     1  0.2796      0.928 0.892 0.000 0.092 0.016
#> SRR1270758     1  0.2796      0.928 0.892 0.000 0.092 0.016
#> SRR1270759     1  0.2796      0.928 0.892 0.000 0.092 0.016
#> SRR1270760     1  0.2796      0.928 0.892 0.000 0.092 0.016
#> SRR1270761     1  0.2861      0.928 0.888 0.000 0.096 0.016
#> SRR1270762     1  0.2861      0.928 0.888 0.000 0.096 0.016
#> SRR1270763     1  0.2861      0.928 0.888 0.000 0.096 0.016
#> SRR1270764     1  0.2861      0.928 0.888 0.000 0.096 0.016
#> SRR1270765     2  0.0000      0.851 0.000 1.000 0.000 0.000
#> SRR1270766     2  0.0000      0.851 0.000 1.000 0.000 0.000
#> SRR1270767     2  0.0000      0.851 0.000 1.000 0.000 0.000
#> SRR1270768     2  0.1211      0.847 0.000 0.960 0.000 0.040
#> SRR1270769     2  0.1389      0.846 0.000 0.952 0.000 0.048
#> SRR1270770     2  0.1389      0.846 0.000 0.952 0.000 0.048
#> SRR1270771     2  0.1389      0.846 0.000 0.952 0.000 0.048
#> SRR1270772     2  0.0469      0.851 0.000 0.988 0.000 0.012
#> SRR1270773     2  0.0469      0.851 0.000 0.988 0.000 0.012
#> SRR1270774     2  0.0469      0.851 0.000 0.988 0.000 0.012
#> SRR1270775     2  0.0188      0.852 0.000 0.996 0.000 0.004
#> SRR1270776     2  0.0000      0.851 0.000 1.000 0.000 0.000
#> SRR1270777     2  0.0921      0.851 0.000 0.972 0.000 0.028
#> SRR1270778     2  0.0188      0.852 0.000 0.996 0.000 0.004
#> SRR1270779     2  0.0000      0.851 0.000 1.000 0.000 0.000
#> SRR1270780     2  0.0000      0.851 0.000 1.000 0.000 0.000
#> SRR1270781     2  0.0469      0.851 0.000 0.988 0.000 0.012
#> SRR1270782     2  0.0469      0.851 0.000 0.988 0.000 0.012
#> SRR1270783     2  0.0336      0.851 0.000 0.992 0.000 0.008
#> SRR1270784     2  0.0336      0.851 0.000 0.992 0.000 0.008
#> SRR1270785     2  0.4936      0.801 0.000 0.624 0.372 0.004
#> SRR1270786     2  0.4936      0.801 0.000 0.624 0.372 0.004
#> SRR1270787     2  0.4936      0.801 0.000 0.624 0.372 0.004
#> SRR1270788     2  0.5253      0.801 0.000 0.624 0.360 0.016
#> SRR1270789     2  0.5420      0.800 0.000 0.624 0.352 0.024
#> SRR1270790     2  0.5055      0.801 0.000 0.624 0.368 0.008
#> SRR1270791     2  0.5159      0.801 0.000 0.624 0.364 0.012
#> SRR1270792     2  0.4776      0.801 0.000 0.624 0.376 0.000
#> SRR1270793     2  0.4776      0.801 0.000 0.624 0.376 0.000
#> SRR1270794     2  0.4776      0.801 0.000 0.624 0.376 0.000
#> SRR1270795     2  0.4776      0.801 0.000 0.624 0.376 0.000
#> SRR1270796     2  0.5159      0.801 0.000 0.624 0.364 0.012
#> SRR1270797     2  0.4776      0.801 0.000 0.624 0.376 0.000
#> SRR1270798     2  0.4776      0.801 0.000 0.624 0.376 0.000
#> SRR1270799     2  0.5055      0.801 0.000 0.624 0.368 0.008
#> SRR1270800     2  0.5055      0.801 0.000 0.624 0.368 0.008
#> SRR1270801     2  0.4776      0.801 0.000 0.624 0.376 0.000
#> SRR1270802     2  0.4776      0.801 0.000 0.624 0.376 0.000
#> SRR1270803     2  0.4936      0.801 0.000 0.624 0.372 0.004
#> SRR1270804     2  0.4936      0.801 0.000 0.624 0.372 0.004
#> SRR1270805     3  0.7492      0.969 0.180 0.000 0.432 0.388
#> SRR1270806     3  0.7492      0.969 0.180 0.000 0.432 0.388
#> SRR1270807     3  0.7492      0.969 0.180 0.000 0.432 0.388
#> SRR1270808     3  0.7492      0.969 0.180 0.000 0.432 0.388
#> SRR1270809     3  0.7492      0.969 0.180 0.000 0.432 0.388
#> SRR1270810     3  0.7492      0.969 0.180 0.000 0.432 0.388
#> SRR1270811     3  0.7492      0.969 0.180 0.000 0.432 0.388
#> SRR1270812     3  0.7449      0.971 0.180 0.000 0.464 0.356
#> SRR1270813     3  0.7449      0.971 0.180 0.000 0.464 0.356
#> SRR1270814     3  0.7449      0.971 0.180 0.000 0.464 0.356
#> SRR1270815     3  0.7449      0.971 0.180 0.000 0.464 0.356
#> SRR1270816     3  0.7449      0.971 0.180 0.000 0.464 0.356
#> SRR1270817     3  0.7449      0.971 0.180 0.000 0.464 0.356
#> SRR1270818     3  0.7449      0.971 0.180 0.000 0.464 0.356
#> SRR1270819     3  0.7449      0.971 0.180 0.000 0.464 0.356
#> SRR1270820     3  0.7449      0.971 0.180 0.000 0.464 0.356
#> SRR1270821     3  0.7449      0.971 0.180 0.000 0.464 0.356
#> SRR1270822     3  0.7449      0.971 0.180 0.000 0.464 0.356
#> SRR1270823     3  0.7449      0.971 0.180 0.000 0.464 0.356
#> SRR1270824     3  0.7449      0.971 0.180 0.000 0.464 0.356
#> SRR1270825     3  0.7449      0.971 0.180 0.000 0.464 0.356
#> SRR1270826     3  0.7497      0.964 0.180 0.000 0.424 0.396
#> SRR1270827     3  0.7497      0.964 0.180 0.000 0.424 0.396
#> SRR1270828     3  0.7497      0.964 0.180 0.000 0.424 0.396
#> SRR1270829     3  0.7497      0.964 0.180 0.000 0.424 0.396
#> SRR1270830     3  0.7497      0.964 0.180 0.000 0.424 0.396
#> SRR1270831     3  0.7497      0.964 0.180 0.000 0.424 0.396
#> SRR1270832     3  0.7497      0.964 0.180 0.000 0.424 0.396
#> SRR1270833     4  0.2868      0.952 0.136 0.000 0.000 0.864
#> SRR1270834     4  0.2868      0.952 0.136 0.000 0.000 0.864
#> SRR1270835     4  0.4462      0.951 0.132 0.000 0.064 0.804
#> SRR1270836     4  0.4462      0.951 0.132 0.000 0.064 0.804
#> SRR1270837     4  0.4462      0.951 0.132 0.000 0.064 0.804
#> SRR1270838     4  0.4462      0.951 0.132 0.000 0.064 0.804
#> SRR1270839     4  0.4462      0.951 0.132 0.000 0.064 0.804
#> SRR1270840     4  0.4462      0.951 0.132 0.000 0.064 0.804
#> SRR1270841     4  0.4462      0.951 0.132 0.000 0.064 0.804
#> SRR1270842     4  0.4462      0.951 0.132 0.000 0.064 0.804
#> SRR1270843     4  0.4462      0.951 0.132 0.000 0.064 0.804
#> SRR1270844     4  0.2868      0.952 0.136 0.000 0.000 0.864
#> SRR1270845     4  0.2868      0.952 0.136 0.000 0.000 0.864
#> SRR1270846     4  0.2868      0.952 0.136 0.000 0.000 0.864
#> SRR1270847     4  0.2868      0.952 0.136 0.000 0.000 0.864
#> SRR1270848     4  0.2868      0.952 0.136 0.000 0.000 0.864
#> SRR1270849     4  0.2868      0.952 0.136 0.000 0.000 0.864
#> SRR1270850     4  0.2868      0.952 0.136 0.000 0.000 0.864
#> SRR1270851     2  0.0469      0.851 0.000 0.988 0.000 0.012
#> SRR1270852     2  0.0469      0.851 0.000 0.988 0.000 0.012
#> SRR1270853     2  0.0469      0.851 0.000 0.988 0.000 0.012
#> SRR1270854     2  0.0707      0.851 0.000 0.980 0.000 0.020
#> SRR1270855     2  0.0921      0.851 0.000 0.972 0.000 0.028
#> SRR1270856     2  0.1022      0.851 0.000 0.968 0.000 0.032
#> SRR1270857     2  0.0921      0.851 0.000 0.972 0.000 0.028

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4 p5
#> SRR1270715     1  0.0510      0.832 0.984 0.000 0.000 0.016 NA
#> SRR1270716     1  0.0510      0.832 0.984 0.000 0.000 0.016 NA
#> SRR1270717     1  0.0510      0.832 0.984 0.000 0.000 0.016 NA
#> SRR1270718     1  0.0510      0.832 0.984 0.000 0.000 0.016 NA
#> SRR1270719     1  0.0510      0.832 0.984 0.000 0.000 0.016 NA
#> SRR1270720     1  0.0510      0.832 0.984 0.000 0.000 0.016 NA
#> SRR1270721     1  0.0510      0.832 0.984 0.000 0.000 0.016 NA
#> SRR1270722     1  0.3085      0.861 0.852 0.000 0.000 0.032 NA
#> SRR1270723     1  0.3085      0.861 0.852 0.000 0.000 0.032 NA
#> SRR1270724     1  0.3085      0.861 0.852 0.000 0.000 0.032 NA
#> SRR1270725     1  0.2824      0.859 0.872 0.000 0.000 0.032 NA
#> SRR1270726     1  0.2769      0.858 0.876 0.000 0.000 0.032 NA
#> SRR1270727     1  0.2824      0.859 0.872 0.000 0.000 0.032 NA
#> SRR1270728     1  0.2824      0.859 0.872 0.000 0.000 0.032 NA
#> SRR1270729     1  0.0510      0.832 0.984 0.000 0.000 0.016 NA
#> SRR1270730     1  0.0510      0.832 0.984 0.000 0.000 0.016 NA
#> SRR1270731     1  0.0510      0.832 0.984 0.000 0.000 0.016 NA
#> SRR1270732     1  0.0510      0.832 0.984 0.000 0.000 0.016 NA
#> SRR1270733     1  0.0510      0.832 0.984 0.000 0.000 0.016 NA
#> SRR1270734     1  0.0510      0.832 0.984 0.000 0.000 0.016 NA
#> SRR1270735     1  0.0510      0.832 0.984 0.000 0.000 0.016 NA
#> SRR1270736     1  0.1124      0.832 0.960 0.000 0.000 0.036 NA
#> SRR1270737     1  0.1124      0.832 0.960 0.000 0.000 0.036 NA
#> SRR1270738     1  0.1041      0.832 0.964 0.000 0.000 0.032 NA
#> SRR1270739     1  0.1041      0.832 0.964 0.000 0.000 0.032 NA
#> SRR1270740     1  0.4522      0.868 0.708 0.000 0.000 0.044 NA
#> SRR1270741     1  0.4522      0.868 0.708 0.000 0.000 0.044 NA
#> SRR1270742     1  0.4522      0.868 0.708 0.000 0.000 0.044 NA
#> SRR1270743     1  0.4522      0.868 0.708 0.000 0.000 0.044 NA
#> SRR1270744     1  0.4522      0.868 0.708 0.000 0.000 0.044 NA
#> SRR1270745     1  0.4522      0.868 0.708 0.000 0.000 0.044 NA
#> SRR1270746     1  0.4522      0.868 0.708 0.000 0.000 0.044 NA
#> SRR1270747     1  0.4655      0.867 0.700 0.000 0.000 0.052 NA
#> SRR1270748     1  0.4655      0.867 0.700 0.000 0.000 0.052 NA
#> SRR1270749     1  0.4655      0.867 0.700 0.000 0.000 0.052 NA
#> SRR1270750     1  0.4655      0.867 0.700 0.000 0.000 0.052 NA
#> SRR1270751     1  0.4655      0.867 0.700 0.000 0.000 0.052 NA
#> SRR1270752     1  0.4655      0.867 0.700 0.000 0.000 0.052 NA
#> SRR1270753     1  0.4655      0.867 0.700 0.000 0.000 0.052 NA
#> SRR1270754     1  0.4477      0.868 0.708 0.000 0.000 0.040 NA
#> SRR1270755     1  0.4477      0.868 0.708 0.000 0.000 0.040 NA
#> SRR1270756     1  0.4477      0.868 0.708 0.000 0.000 0.040 NA
#> SRR1270757     1  0.4477      0.868 0.708 0.000 0.000 0.040 NA
#> SRR1270758     1  0.4477      0.868 0.708 0.000 0.000 0.040 NA
#> SRR1270759     1  0.4477      0.868 0.708 0.000 0.000 0.040 NA
#> SRR1270760     1  0.4477      0.868 0.708 0.000 0.000 0.040 NA
#> SRR1270761     1  0.4693      0.867 0.700 0.000 0.000 0.056 NA
#> SRR1270762     1  0.4693      0.867 0.700 0.000 0.000 0.056 NA
#> SRR1270763     1  0.4693      0.867 0.700 0.000 0.000 0.056 NA
#> SRR1270764     1  0.4693      0.867 0.700 0.000 0.000 0.056 NA
#> SRR1270765     2  0.4306      0.786 0.000 0.508 0.000 0.000 NA
#> SRR1270766     2  0.4306      0.786 0.000 0.508 0.000 0.000 NA
#> SRR1270767     2  0.4306      0.786 0.000 0.508 0.000 0.000 NA
#> SRR1270768     2  0.5310      0.783 0.000 0.508 0.004 0.040 NA
#> SRR1270769     2  0.5283      0.782 0.000 0.508 0.000 0.048 NA
#> SRR1270770     2  0.5283      0.782 0.000 0.508 0.000 0.048 NA
#> SRR1270771     2  0.5227      0.782 0.000 0.508 0.000 0.044 NA
#> SRR1270772     2  0.5320      0.785 0.000 0.508 0.012 0.028 NA
#> SRR1270773     2  0.5320      0.785 0.000 0.508 0.012 0.028 NA
#> SRR1270774     2  0.5320      0.785 0.000 0.508 0.012 0.028 NA
#> SRR1270775     2  0.4704      0.786 0.000 0.508 0.004 0.008 NA
#> SRR1270776     2  0.4909      0.787 0.000 0.508 0.008 0.012 NA
#> SRR1270777     2  0.5225      0.786 0.000 0.508 0.008 0.028 NA
#> SRR1270778     2  0.4704      0.786 0.000 0.508 0.004 0.008 NA
#> SRR1270779     2  0.4560      0.785 0.000 0.508 0.000 0.008 NA
#> SRR1270780     2  0.4560      0.785 0.000 0.508 0.000 0.008 NA
#> SRR1270781     2  0.5320      0.785 0.000 0.508 0.012 0.028 NA
#> SRR1270782     2  0.5320      0.785 0.000 0.508 0.012 0.028 NA
#> SRR1270783     2  0.4744      0.785 0.000 0.508 0.000 0.016 NA
#> SRR1270784     2  0.4656      0.785 0.000 0.508 0.000 0.012 NA
#> SRR1270785     2  0.0324      0.714 0.000 0.992 0.004 0.004 NA
#> SRR1270786     2  0.0324      0.714 0.000 0.992 0.004 0.004 NA
#> SRR1270787     2  0.0324      0.714 0.000 0.992 0.004 0.004 NA
#> SRR1270788     2  0.0865      0.713 0.000 0.972 0.004 0.024 NA
#> SRR1270789     2  0.1282      0.712 0.000 0.952 0.004 0.044 NA
#> SRR1270790     2  0.0771      0.713 0.000 0.976 0.004 0.020 NA
#> SRR1270791     2  0.0865      0.713 0.000 0.972 0.004 0.024 NA
#> SRR1270792     2  0.0162      0.714 0.000 0.996 0.000 0.004 NA
#> SRR1270793     2  0.0162      0.714 0.000 0.996 0.000 0.004 NA
#> SRR1270794     2  0.0162      0.714 0.000 0.996 0.000 0.004 NA
#> SRR1270795     2  0.0162      0.714 0.000 0.996 0.000 0.004 NA
#> SRR1270796     2  0.0609      0.714 0.000 0.980 0.000 0.020 NA
#> SRR1270797     2  0.0290      0.714 0.000 0.992 0.000 0.008 NA
#> SRR1270798     2  0.0290      0.714 0.000 0.992 0.000 0.008 NA
#> SRR1270799     2  0.0771      0.713 0.000 0.976 0.004 0.020 NA
#> SRR1270800     2  0.0771      0.713 0.000 0.976 0.004 0.020 NA
#> SRR1270801     2  0.0000      0.714 0.000 1.000 0.000 0.000 NA
#> SRR1270802     2  0.0000      0.714 0.000 1.000 0.000 0.000 NA
#> SRR1270803     2  0.0510      0.714 0.000 0.984 0.000 0.016 NA
#> SRR1270804     2  0.0510      0.714 0.000 0.984 0.000 0.016 NA
#> SRR1270805     3  0.4446      0.884 0.040 0.000 0.776 0.028 NA
#> SRR1270806     3  0.4446      0.884 0.040 0.000 0.776 0.028 NA
#> SRR1270807     3  0.4446      0.884 0.040 0.000 0.776 0.028 NA
#> SRR1270808     3  0.4446      0.884 0.040 0.000 0.776 0.028 NA
#> SRR1270809     3  0.4446      0.884 0.040 0.000 0.776 0.028 NA
#> SRR1270810     3  0.4446      0.884 0.040 0.000 0.776 0.028 NA
#> SRR1270811     3  0.4446      0.884 0.040 0.000 0.776 0.028 NA
#> SRR1270812     3  0.1205      0.886 0.040 0.000 0.956 0.000 NA
#> SRR1270813     3  0.1205      0.886 0.040 0.000 0.956 0.000 NA
#> SRR1270814     3  0.1205      0.886 0.040 0.000 0.956 0.000 NA
#> SRR1270815     3  0.1205      0.886 0.040 0.000 0.956 0.000 NA
#> SRR1270816     3  0.1205      0.886 0.040 0.000 0.956 0.000 NA
#> SRR1270817     3  0.1205      0.886 0.040 0.000 0.956 0.000 NA
#> SRR1270818     3  0.1205      0.886 0.040 0.000 0.956 0.000 NA
#> SRR1270819     3  0.1205      0.886 0.040 0.000 0.956 0.000 NA
#> SRR1270820     3  0.1205      0.886 0.040 0.000 0.956 0.000 NA
#> SRR1270821     3  0.1205      0.886 0.040 0.000 0.956 0.000 NA
#> SRR1270822     3  0.1205      0.886 0.040 0.000 0.956 0.000 NA
#> SRR1270823     3  0.1205      0.886 0.040 0.000 0.956 0.000 NA
#> SRR1270824     3  0.1205      0.886 0.040 0.000 0.956 0.000 NA
#> SRR1270825     3  0.1205      0.886 0.040 0.000 0.956 0.000 NA
#> SRR1270826     3  0.4604      0.880 0.040 0.000 0.768 0.036 NA
#> SRR1270827     3  0.4604      0.880 0.040 0.000 0.768 0.036 NA
#> SRR1270828     3  0.4604      0.880 0.040 0.000 0.768 0.036 NA
#> SRR1270829     3  0.4604      0.880 0.040 0.000 0.768 0.036 NA
#> SRR1270830     3  0.4604      0.880 0.040 0.000 0.768 0.036 NA
#> SRR1270831     3  0.4604      0.880 0.040 0.000 0.768 0.036 NA
#> SRR1270832     3  0.4604      0.880 0.040 0.000 0.768 0.036 NA
#> SRR1270833     4  0.3779      0.919 0.024 0.000 0.200 0.776 NA
#> SRR1270834     4  0.3779      0.919 0.024 0.000 0.200 0.776 NA
#> SRR1270835     4  0.5927      0.921 0.024 0.000 0.252 0.628 NA
#> SRR1270836     4  0.5927      0.921 0.024 0.000 0.252 0.628 NA
#> SRR1270837     4  0.5927      0.921 0.024 0.000 0.252 0.628 NA
#> SRR1270838     4  0.5927      0.921 0.024 0.000 0.252 0.628 NA
#> SRR1270839     4  0.5927      0.921 0.024 0.000 0.252 0.628 NA
#> SRR1270840     4  0.5927      0.921 0.024 0.000 0.252 0.628 NA
#> SRR1270841     4  0.5927      0.921 0.024 0.000 0.252 0.628 NA
#> SRR1270842     4  0.5927      0.921 0.024 0.000 0.252 0.628 NA
#> SRR1270843     4  0.5927      0.921 0.024 0.000 0.252 0.628 NA
#> SRR1270844     4  0.4089      0.918 0.024 0.000 0.204 0.764 NA
#> SRR1270845     4  0.4089      0.918 0.024 0.000 0.204 0.764 NA
#> SRR1270846     4  0.4089      0.918 0.024 0.000 0.204 0.764 NA
#> SRR1270847     4  0.4089      0.918 0.024 0.000 0.204 0.764 NA
#> SRR1270848     4  0.4089      0.918 0.024 0.000 0.204 0.764 NA
#> SRR1270849     4  0.4089      0.918 0.024 0.000 0.204 0.764 NA
#> SRR1270850     4  0.4089      0.918 0.024 0.000 0.204 0.764 NA
#> SRR1270851     2  0.5320      0.785 0.000 0.508 0.012 0.028 NA
#> SRR1270852     2  0.5320      0.785 0.000 0.508 0.012 0.028 NA
#> SRR1270853     2  0.5320      0.785 0.000 0.508 0.012 0.028 NA
#> SRR1270854     2  0.5553      0.785 0.000 0.508 0.020 0.032 NA
#> SRR1270855     2  0.5916      0.782 0.000 0.508 0.024 0.052 NA
#> SRR1270856     2  0.5967      0.782 0.000 0.508 0.024 0.056 NA
#> SRR1270857     2  0.5512      0.785 0.000 0.508 0.012 0.040 NA

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1270715     6  0.0000      0.810 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1270716     6  0.0000      0.810 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1270717     6  0.0000      0.810 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1270718     6  0.0622      0.804 0.000 0.008 0.000 0.012 0.000 0.980
#> SRR1270719     6  0.0622      0.804 0.000 0.008 0.000 0.012 0.000 0.980
#> SRR1270720     6  0.1003      0.799 0.000 0.020 0.000 0.016 0.000 0.964
#> SRR1270721     6  0.0622      0.804 0.000 0.008 0.000 0.012 0.000 0.980
#> SRR1270722     6  0.5376      0.284 0.248 0.064 0.000 0.052 0.000 0.636
#> SRR1270723     6  0.5376      0.284 0.248 0.064 0.000 0.052 0.000 0.636
#> SRR1270724     6  0.5376      0.284 0.248 0.064 0.000 0.052 0.000 0.636
#> SRR1270725     6  0.5311      0.332 0.236 0.064 0.000 0.052 0.000 0.648
#> SRR1270726     6  0.5314      0.330 0.236 0.060 0.000 0.056 0.000 0.648
#> SRR1270727     6  0.5311      0.332 0.236 0.064 0.000 0.052 0.000 0.648
#> SRR1270728     6  0.5311      0.332 0.236 0.064 0.000 0.052 0.000 0.648
#> SRR1270729     6  0.0000      0.810 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1270730     6  0.0000      0.810 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1270731     6  0.0000      0.810 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1270732     6  0.0405      0.808 0.000 0.008 0.000 0.004 0.000 0.988
#> SRR1270733     6  0.0405      0.808 0.000 0.008 0.000 0.004 0.000 0.988
#> SRR1270734     6  0.0405      0.808 0.000 0.008 0.000 0.004 0.000 0.988
#> SRR1270735     6  0.0405      0.808 0.000 0.008 0.000 0.004 0.000 0.988
#> SRR1270736     6  0.2316      0.772 0.016 0.040 0.000 0.040 0.000 0.904
#> SRR1270737     6  0.2316      0.772 0.016 0.040 0.000 0.040 0.000 0.904
#> SRR1270738     6  0.2171      0.776 0.016 0.032 0.000 0.040 0.000 0.912
#> SRR1270739     6  0.2171      0.776 0.016 0.032 0.000 0.040 0.000 0.912
#> SRR1270740     1  0.4423      0.943 0.552 0.028 0.000 0.000 0.000 0.420
#> SRR1270741     1  0.4423      0.943 0.552 0.028 0.000 0.000 0.000 0.420
#> SRR1270742     1  0.4423      0.943 0.552 0.028 0.000 0.000 0.000 0.420
#> SRR1270743     1  0.4423      0.943 0.552 0.028 0.000 0.000 0.000 0.420
#> SRR1270744     1  0.4423      0.943 0.552 0.028 0.000 0.000 0.000 0.420
#> SRR1270745     1  0.4423      0.943 0.552 0.028 0.000 0.000 0.000 0.420
#> SRR1270746     1  0.4423      0.943 0.552 0.028 0.000 0.000 0.000 0.420
#> SRR1270747     1  0.4594      0.935 0.560 0.032 0.000 0.004 0.000 0.404
#> SRR1270748     1  0.4594      0.935 0.560 0.032 0.000 0.004 0.000 0.404
#> SRR1270749     1  0.4594      0.935 0.560 0.032 0.000 0.004 0.000 0.404
#> SRR1270750     1  0.4594      0.935 0.560 0.032 0.000 0.004 0.000 0.404
#> SRR1270751     1  0.4594      0.935 0.560 0.032 0.000 0.004 0.000 0.404
#> SRR1270752     1  0.4594      0.935 0.560 0.032 0.000 0.004 0.000 0.404
#> SRR1270753     1  0.4594      0.935 0.560 0.032 0.000 0.004 0.000 0.404
#> SRR1270754     1  0.3797      0.947 0.580 0.000 0.000 0.000 0.000 0.420
#> SRR1270755     1  0.3797      0.947 0.580 0.000 0.000 0.000 0.000 0.420
#> SRR1270756     1  0.3797      0.947 0.580 0.000 0.000 0.000 0.000 0.420
#> SRR1270757     1  0.3930      0.947 0.576 0.004 0.000 0.000 0.000 0.420
#> SRR1270758     1  0.3930      0.947 0.576 0.004 0.000 0.000 0.000 0.420
#> SRR1270759     1  0.3930      0.947 0.576 0.004 0.000 0.000 0.000 0.420
#> SRR1270760     1  0.3930      0.947 0.576 0.004 0.000 0.000 0.000 0.420
#> SRR1270761     1  0.4882      0.936 0.540 0.052 0.000 0.004 0.000 0.404
#> SRR1270762     1  0.4882      0.936 0.540 0.052 0.000 0.004 0.000 0.404
#> SRR1270763     1  0.4933      0.937 0.536 0.056 0.000 0.004 0.000 0.404
#> SRR1270764     1  0.4933      0.937 0.536 0.056 0.000 0.004 0.000 0.404
#> SRR1270765     2  0.3672      0.958 0.008 0.688 0.000 0.000 0.304 0.000
#> SRR1270766     2  0.3565      0.958 0.004 0.692 0.000 0.000 0.304 0.000
#> SRR1270767     2  0.3565      0.958 0.004 0.692 0.000 0.000 0.304 0.000
#> SRR1270768     2  0.5736      0.867 0.116 0.556 0.000 0.024 0.304 0.000
#> SRR1270769     2  0.5770      0.864 0.120 0.552 0.000 0.024 0.304 0.000
#> SRR1270770     2  0.5770      0.864 0.120 0.552 0.000 0.024 0.304 0.000
#> SRR1270771     2  0.5736      0.867 0.116 0.556 0.000 0.024 0.304 0.000
#> SRR1270772     2  0.3903      0.957 0.004 0.680 0.000 0.012 0.304 0.000
#> SRR1270773     2  0.3903      0.957 0.004 0.680 0.000 0.012 0.304 0.000
#> SRR1270774     2  0.3903      0.957 0.004 0.680 0.000 0.012 0.304 0.000
#> SRR1270775     2  0.3903      0.958 0.012 0.680 0.000 0.004 0.304 0.000
#> SRR1270776     2  0.4009      0.958 0.008 0.676 0.000 0.012 0.304 0.000
#> SRR1270777     2  0.4437      0.952 0.020 0.656 0.000 0.020 0.304 0.000
#> SRR1270778     2  0.4009      0.956 0.012 0.676 0.000 0.008 0.304 0.000
#> SRR1270779     2  0.3903      0.956 0.012 0.680 0.000 0.004 0.304 0.000
#> SRR1270780     2  0.3903      0.956 0.012 0.680 0.000 0.004 0.304 0.000
#> SRR1270781     2  0.3903      0.957 0.004 0.680 0.000 0.012 0.304 0.000
#> SRR1270782     2  0.3903      0.957 0.004 0.680 0.000 0.012 0.304 0.000
#> SRR1270783     2  0.4347      0.948 0.024 0.660 0.000 0.012 0.304 0.000
#> SRR1270784     2  0.4096      0.954 0.016 0.672 0.000 0.008 0.304 0.000
#> SRR1270785     5  0.0665      0.979 0.008 0.000 0.004 0.008 0.980 0.000
#> SRR1270786     5  0.0665      0.979 0.008 0.000 0.004 0.008 0.980 0.000
#> SRR1270787     5  0.0665      0.979 0.008 0.000 0.004 0.008 0.980 0.000
#> SRR1270788     5  0.1777      0.959 0.032 0.000 0.012 0.024 0.932 0.000
#> SRR1270789     5  0.1434      0.969 0.020 0.000 0.008 0.024 0.948 0.000
#> SRR1270790     5  0.1528      0.966 0.028 0.000 0.012 0.016 0.944 0.000
#> SRR1270791     5  0.1599      0.963 0.024 0.000 0.008 0.028 0.940 0.000
#> SRR1270792     5  0.0146      0.980 0.000 0.000 0.000 0.004 0.996 0.000
#> SRR1270793     5  0.0146      0.980 0.000 0.000 0.000 0.004 0.996 0.000
#> SRR1270794     5  0.0146      0.980 0.000 0.000 0.000 0.004 0.996 0.000
#> SRR1270795     5  0.0146      0.980 0.000 0.000 0.000 0.004 0.996 0.000
#> SRR1270796     5  0.0551      0.978 0.004 0.000 0.004 0.008 0.984 0.000
#> SRR1270797     5  0.0363      0.978 0.012 0.000 0.000 0.000 0.988 0.000
#> SRR1270798     5  0.0436      0.980 0.004 0.000 0.004 0.004 0.988 0.000
#> SRR1270799     5  0.0976      0.976 0.016 0.000 0.008 0.008 0.968 0.000
#> SRR1270800     5  0.0976      0.976 0.016 0.000 0.008 0.008 0.968 0.000
#> SRR1270801     5  0.0146      0.980 0.000 0.000 0.000 0.004 0.996 0.000
#> SRR1270802     5  0.0146      0.980 0.000 0.000 0.000 0.004 0.996 0.000
#> SRR1270803     5  0.0665      0.979 0.008 0.000 0.004 0.008 0.980 0.000
#> SRR1270804     5  0.0551      0.980 0.008 0.000 0.004 0.004 0.984 0.000
#> SRR1270805     3  0.0692      0.851 0.000 0.004 0.976 0.000 0.000 0.020
#> SRR1270806     3  0.0692      0.851 0.000 0.004 0.976 0.000 0.000 0.020
#> SRR1270807     3  0.0692      0.851 0.000 0.004 0.976 0.000 0.000 0.020
#> SRR1270808     3  0.0806      0.852 0.000 0.008 0.972 0.000 0.000 0.020
#> SRR1270809     3  0.0806      0.852 0.000 0.008 0.972 0.000 0.000 0.020
#> SRR1270810     3  0.0909      0.852 0.000 0.012 0.968 0.000 0.000 0.020
#> SRR1270811     3  0.0806      0.852 0.000 0.008 0.972 0.000 0.000 0.020
#> SRR1270812     3  0.5147      0.852 0.124 0.088 0.724 0.044 0.000 0.020
#> SRR1270813     3  0.5147      0.852 0.124 0.088 0.724 0.044 0.000 0.020
#> SRR1270814     3  0.5147      0.852 0.124 0.088 0.724 0.044 0.000 0.020
#> SRR1270815     3  0.5147      0.852 0.124 0.088 0.724 0.044 0.000 0.020
#> SRR1270816     3  0.5147      0.852 0.124 0.088 0.724 0.044 0.000 0.020
#> SRR1270817     3  0.5147      0.852 0.124 0.088 0.724 0.044 0.000 0.020
#> SRR1270818     3  0.5147      0.852 0.124 0.088 0.724 0.044 0.000 0.020
#> SRR1270819     3  0.4934      0.852 0.108 0.084 0.744 0.044 0.000 0.020
#> SRR1270820     3  0.4934      0.852 0.108 0.084 0.744 0.044 0.000 0.020
#> SRR1270821     3  0.4934      0.852 0.108 0.084 0.744 0.044 0.000 0.020
#> SRR1270822     3  0.4953      0.852 0.104 0.084 0.744 0.048 0.000 0.020
#> SRR1270823     3  0.4953      0.852 0.104 0.084 0.744 0.048 0.000 0.020
#> SRR1270824     3  0.4953      0.852 0.104 0.084 0.744 0.048 0.000 0.020
#> SRR1270825     3  0.4953      0.852 0.104 0.084 0.744 0.048 0.000 0.020
#> SRR1270826     3  0.1262      0.851 0.016 0.008 0.956 0.000 0.000 0.020
#> SRR1270827     3  0.1262      0.851 0.016 0.008 0.956 0.000 0.000 0.020
#> SRR1270828     3  0.1262      0.851 0.016 0.008 0.956 0.000 0.000 0.020
#> SRR1270829     3  0.1262      0.851 0.016 0.008 0.956 0.000 0.000 0.020
#> SRR1270830     3  0.1262      0.851 0.016 0.008 0.956 0.000 0.000 0.020
#> SRR1270831     3  0.1262      0.851 0.016 0.008 0.956 0.000 0.000 0.020
#> SRR1270832     3  0.1262      0.851 0.016 0.008 0.956 0.000 0.000 0.020
#> SRR1270833     4  0.5994      0.899 0.092 0.068 0.204 0.624 0.000 0.012
#> SRR1270834     4  0.5994      0.899 0.092 0.068 0.204 0.624 0.000 0.012
#> SRR1270835     4  0.3187      0.898 0.004 0.000 0.188 0.796 0.000 0.012
#> SRR1270836     4  0.3187      0.898 0.004 0.000 0.188 0.796 0.000 0.012
#> SRR1270837     4  0.3187      0.898 0.004 0.000 0.188 0.796 0.000 0.012
#> SRR1270838     4  0.3187      0.898 0.004 0.000 0.188 0.796 0.000 0.012
#> SRR1270839     4  0.3187      0.898 0.004 0.000 0.188 0.796 0.000 0.012
#> SRR1270840     4  0.3187      0.898 0.004 0.000 0.188 0.796 0.000 0.012
#> SRR1270841     4  0.3187      0.898 0.004 0.000 0.188 0.796 0.000 0.012
#> SRR1270842     4  0.3187      0.898 0.004 0.000 0.188 0.796 0.000 0.012
#> SRR1270843     4  0.3187      0.898 0.004 0.000 0.188 0.796 0.000 0.012
#> SRR1270844     4  0.6019      0.898 0.092 0.068 0.208 0.620 0.000 0.012
#> SRR1270845     4  0.6019      0.898 0.092 0.068 0.208 0.620 0.000 0.012
#> SRR1270846     4  0.6019      0.898 0.092 0.068 0.208 0.620 0.000 0.012
#> SRR1270847     4  0.6019      0.898 0.092 0.068 0.208 0.620 0.000 0.012
#> SRR1270848     4  0.6027      0.898 0.084 0.076 0.208 0.620 0.000 0.012
#> SRR1270849     4  0.6019      0.898 0.092 0.068 0.208 0.620 0.000 0.012
#> SRR1270850     4  0.6019      0.898 0.092 0.068 0.208 0.620 0.000 0.012
#> SRR1270851     2  0.4009      0.956 0.008 0.676 0.000 0.012 0.304 0.000
#> SRR1270852     2  0.4009      0.956 0.008 0.676 0.000 0.012 0.304 0.000
#> SRR1270853     2  0.4009      0.956 0.008 0.676 0.000 0.012 0.304 0.000
#> SRR1270854     2  0.4357      0.953 0.016 0.660 0.000 0.020 0.304 0.000
#> SRR1270855     2  0.4868      0.936 0.032 0.632 0.000 0.032 0.304 0.000
#> SRR1270856     2  0.5131      0.928 0.032 0.620 0.004 0.040 0.304 0.000
#> SRR1270857     2  0.4357      0.954 0.016 0.660 0.000 0.020 0.304 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14577 rows and 143 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.4450 0.556   0.556
#> 3 3 1.000           1.000       1.000         0.5086 0.773   0.592
#> 4 4 0.887           0.963       0.914         0.0773 0.950   0.849
#> 5 5 0.915           0.942       0.944         0.0752 0.943   0.797
#> 6 6 0.927           0.942       0.911         0.0533 0.947   0.761

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 5

There is also optional best \(k\) = 2 3 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1270715     1       0          1  1  0
#> SRR1270716     1       0          1  1  0
#> SRR1270717     1       0          1  1  0
#> SRR1270718     1       0          1  1  0
#> SRR1270719     1       0          1  1  0
#> SRR1270720     1       0          1  1  0
#> SRR1270721     1       0          1  1  0
#> SRR1270722     1       0          1  1  0
#> SRR1270723     1       0          1  1  0
#> SRR1270724     1       0          1  1  0
#> SRR1270725     1       0          1  1  0
#> SRR1270726     1       0          1  1  0
#> SRR1270727     1       0          1  1  0
#> SRR1270728     1       0          1  1  0
#> SRR1270729     1       0          1  1  0
#> SRR1270730     1       0          1  1  0
#> SRR1270731     1       0          1  1  0
#> SRR1270732     1       0          1  1  0
#> SRR1270733     1       0          1  1  0
#> SRR1270734     1       0          1  1  0
#> SRR1270735     1       0          1  1  0
#> SRR1270736     1       0          1  1  0
#> SRR1270737     1       0          1  1  0
#> SRR1270738     1       0          1  1  0
#> SRR1270739     1       0          1  1  0
#> SRR1270740     1       0          1  1  0
#> SRR1270741     1       0          1  1  0
#> SRR1270742     1       0          1  1  0
#> SRR1270743     1       0          1  1  0
#> SRR1270744     1       0          1  1  0
#> SRR1270745     1       0          1  1  0
#> SRR1270746     1       0          1  1  0
#> SRR1270747     1       0          1  1  0
#> SRR1270748     1       0          1  1  0
#> SRR1270749     1       0          1  1  0
#> SRR1270750     1       0          1  1  0
#> SRR1270751     1       0          1  1  0
#> SRR1270752     1       0          1  1  0
#> SRR1270753     1       0          1  1  0
#> SRR1270754     1       0          1  1  0
#> SRR1270755     1       0          1  1  0
#> SRR1270756     1       0          1  1  0
#> SRR1270757     1       0          1  1  0
#> SRR1270758     1       0          1  1  0
#> SRR1270759     1       0          1  1  0
#> SRR1270760     1       0          1  1  0
#> SRR1270761     1       0          1  1  0
#> SRR1270762     1       0          1  1  0
#> SRR1270763     1       0          1  1  0
#> SRR1270764     1       0          1  1  0
#> SRR1270765     2       0          1  0  1
#> SRR1270766     2       0          1  0  1
#> SRR1270767     2       0          1  0  1
#> SRR1270768     2       0          1  0  1
#> SRR1270769     2       0          1  0  1
#> SRR1270770     2       0          1  0  1
#> SRR1270771     2       0          1  0  1
#> SRR1270772     2       0          1  0  1
#> SRR1270773     2       0          1  0  1
#> SRR1270774     2       0          1  0  1
#> SRR1270775     2       0          1  0  1
#> SRR1270776     2       0          1  0  1
#> SRR1270777     2       0          1  0  1
#> SRR1270778     2       0          1  0  1
#> SRR1270779     2       0          1  0  1
#> SRR1270780     2       0          1  0  1
#> SRR1270781     2       0          1  0  1
#> SRR1270782     2       0          1  0  1
#> SRR1270783     2       0          1  0  1
#> SRR1270784     2       0          1  0  1
#> SRR1270785     2       0          1  0  1
#> SRR1270786     2       0          1  0  1
#> SRR1270787     2       0          1  0  1
#> SRR1270788     2       0          1  0  1
#> SRR1270789     2       0          1  0  1
#> SRR1270790     2       0          1  0  1
#> SRR1270791     2       0          1  0  1
#> SRR1270792     2       0          1  0  1
#> SRR1270793     2       0          1  0  1
#> SRR1270794     2       0          1  0  1
#> SRR1270795     2       0          1  0  1
#> SRR1270796     2       0          1  0  1
#> SRR1270797     2       0          1  0  1
#> SRR1270798     2       0          1  0  1
#> SRR1270799     2       0          1  0  1
#> SRR1270800     2       0          1  0  1
#> SRR1270801     2       0          1  0  1
#> SRR1270802     2       0          1  0  1
#> SRR1270803     2       0          1  0  1
#> SRR1270804     2       0          1  0  1
#> SRR1270805     1       0          1  1  0
#> SRR1270806     1       0          1  1  0
#> SRR1270807     1       0          1  1  0
#> SRR1270808     1       0          1  1  0
#> SRR1270809     1       0          1  1  0
#> SRR1270810     1       0          1  1  0
#> SRR1270811     1       0          1  1  0
#> SRR1270812     1       0          1  1  0
#> SRR1270813     1       0          1  1  0
#> SRR1270814     1       0          1  1  0
#> SRR1270815     1       0          1  1  0
#> SRR1270816     1       0          1  1  0
#> SRR1270817     1       0          1  1  0
#> SRR1270818     1       0          1  1  0
#> SRR1270819     1       0          1  1  0
#> SRR1270820     1       0          1  1  0
#> SRR1270821     1       0          1  1  0
#> SRR1270822     1       0          1  1  0
#> SRR1270823     1       0          1  1  0
#> SRR1270824     1       0          1  1  0
#> SRR1270825     1       0          1  1  0
#> SRR1270826     1       0          1  1  0
#> SRR1270827     1       0          1  1  0
#> SRR1270828     1       0          1  1  0
#> SRR1270829     1       0          1  1  0
#> SRR1270830     1       0          1  1  0
#> SRR1270831     1       0          1  1  0
#> SRR1270832     1       0          1  1  0
#> SRR1270833     1       0          1  1  0
#> SRR1270834     1       0          1  1  0
#> SRR1270835     1       0          1  1  0
#> SRR1270836     1       0          1  1  0
#> SRR1270837     1       0          1  1  0
#> SRR1270838     1       0          1  1  0
#> SRR1270839     1       0          1  1  0
#> SRR1270840     1       0          1  1  0
#> SRR1270841     1       0          1  1  0
#> SRR1270842     1       0          1  1  0
#> SRR1270843     1       0          1  1  0
#> SRR1270844     1       0          1  1  0
#> SRR1270845     1       0          1  1  0
#> SRR1270846     1       0          1  1  0
#> SRR1270847     1       0          1  1  0
#> SRR1270848     1       0          1  1  0
#> SRR1270849     1       0          1  1  0
#> SRR1270850     1       0          1  1  0
#> SRR1270851     2       0          1  0  1
#> SRR1270852     2       0          1  0  1
#> SRR1270853     2       0          1  0  1
#> SRR1270854     2       0          1  0  1
#> SRR1270855     2       0          1  0  1
#> SRR1270856     2       0          1  0  1
#> SRR1270857     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette p1 p2 p3
#> SRR1270715     1       0          1  1  0  0
#> SRR1270716     1       0          1  1  0  0
#> SRR1270717     1       0          1  1  0  0
#> SRR1270718     1       0          1  1  0  0
#> SRR1270719     1       0          1  1  0  0
#> SRR1270720     1       0          1  1  0  0
#> SRR1270721     1       0          1  1  0  0
#> SRR1270722     1       0          1  1  0  0
#> SRR1270723     1       0          1  1  0  0
#> SRR1270724     1       0          1  1  0  0
#> SRR1270725     1       0          1  1  0  0
#> SRR1270726     1       0          1  1  0  0
#> SRR1270727     1       0          1  1  0  0
#> SRR1270728     1       0          1  1  0  0
#> SRR1270729     1       0          1  1  0  0
#> SRR1270730     1       0          1  1  0  0
#> SRR1270731     1       0          1  1  0  0
#> SRR1270732     1       0          1  1  0  0
#> SRR1270733     1       0          1  1  0  0
#> SRR1270734     1       0          1  1  0  0
#> SRR1270735     1       0          1  1  0  0
#> SRR1270736     1       0          1  1  0  0
#> SRR1270737     1       0          1  1  0  0
#> SRR1270738     1       0          1  1  0  0
#> SRR1270739     1       0          1  1  0  0
#> SRR1270740     1       0          1  1  0  0
#> SRR1270741     1       0          1  1  0  0
#> SRR1270742     1       0          1  1  0  0
#> SRR1270743     1       0          1  1  0  0
#> SRR1270744     1       0          1  1  0  0
#> SRR1270745     1       0          1  1  0  0
#> SRR1270746     1       0          1  1  0  0
#> SRR1270747     1       0          1  1  0  0
#> SRR1270748     1       0          1  1  0  0
#> SRR1270749     1       0          1  1  0  0
#> SRR1270750     1       0          1  1  0  0
#> SRR1270751     1       0          1  1  0  0
#> SRR1270752     1       0          1  1  0  0
#> SRR1270753     1       0          1  1  0  0
#> SRR1270754     1       0          1  1  0  0
#> SRR1270755     1       0          1  1  0  0
#> SRR1270756     1       0          1  1  0  0
#> SRR1270757     1       0          1  1  0  0
#> SRR1270758     1       0          1  1  0  0
#> SRR1270759     1       0          1  1  0  0
#> SRR1270760     1       0          1  1  0  0
#> SRR1270761     1       0          1  1  0  0
#> SRR1270762     1       0          1  1  0  0
#> SRR1270763     1       0          1  1  0  0
#> SRR1270764     1       0          1  1  0  0
#> SRR1270765     2       0          1  0  1  0
#> SRR1270766     2       0          1  0  1  0
#> SRR1270767     2       0          1  0  1  0
#> SRR1270768     2       0          1  0  1  0
#> SRR1270769     2       0          1  0  1  0
#> SRR1270770     2       0          1  0  1  0
#> SRR1270771     2       0          1  0  1  0
#> SRR1270772     2       0          1  0  1  0
#> SRR1270773     2       0          1  0  1  0
#> SRR1270774     2       0          1  0  1  0
#> SRR1270775     2       0          1  0  1  0
#> SRR1270776     2       0          1  0  1  0
#> SRR1270777     2       0          1  0  1  0
#> SRR1270778     2       0          1  0  1  0
#> SRR1270779     2       0          1  0  1  0
#> SRR1270780     2       0          1  0  1  0
#> SRR1270781     2       0          1  0  1  0
#> SRR1270782     2       0          1  0  1  0
#> SRR1270783     2       0          1  0  1  0
#> SRR1270784     2       0          1  0  1  0
#> SRR1270785     2       0          1  0  1  0
#> SRR1270786     2       0          1  0  1  0
#> SRR1270787     2       0          1  0  1  0
#> SRR1270788     2       0          1  0  1  0
#> SRR1270789     2       0          1  0  1  0
#> SRR1270790     2       0          1  0  1  0
#> SRR1270791     2       0          1  0  1  0
#> SRR1270792     2       0          1  0  1  0
#> SRR1270793     2       0          1  0  1  0
#> SRR1270794     2       0          1  0  1  0
#> SRR1270795     2       0          1  0  1  0
#> SRR1270796     2       0          1  0  1  0
#> SRR1270797     2       0          1  0  1  0
#> SRR1270798     2       0          1  0  1  0
#> SRR1270799     2       0          1  0  1  0
#> SRR1270800     2       0          1  0  1  0
#> SRR1270801     2       0          1  0  1  0
#> SRR1270802     2       0          1  0  1  0
#> SRR1270803     2       0          1  0  1  0
#> SRR1270804     2       0          1  0  1  0
#> SRR1270805     3       0          1  0  0  1
#> SRR1270806     3       0          1  0  0  1
#> SRR1270807     3       0          1  0  0  1
#> SRR1270808     3       0          1  0  0  1
#> SRR1270809     3       0          1  0  0  1
#> SRR1270810     3       0          1  0  0  1
#> SRR1270811     3       0          1  0  0  1
#> SRR1270812     3       0          1  0  0  1
#> SRR1270813     3       0          1  0  0  1
#> SRR1270814     3       0          1  0  0  1
#> SRR1270815     3       0          1  0  0  1
#> SRR1270816     3       0          1  0  0  1
#> SRR1270817     3       0          1  0  0  1
#> SRR1270818     3       0          1  0  0  1
#> SRR1270819     3       0          1  0  0  1
#> SRR1270820     3       0          1  0  0  1
#> SRR1270821     3       0          1  0  0  1
#> SRR1270822     3       0          1  0  0  1
#> SRR1270823     3       0          1  0  0  1
#> SRR1270824     3       0          1  0  0  1
#> SRR1270825     3       0          1  0  0  1
#> SRR1270826     3       0          1  0  0  1
#> SRR1270827     3       0          1  0  0  1
#> SRR1270828     3       0          1  0  0  1
#> SRR1270829     3       0          1  0  0  1
#> SRR1270830     3       0          1  0  0  1
#> SRR1270831     3       0          1  0  0  1
#> SRR1270832     3       0          1  0  0  1
#> SRR1270833     3       0          1  0  0  1
#> SRR1270834     3       0          1  0  0  1
#> SRR1270835     3       0          1  0  0  1
#> SRR1270836     3       0          1  0  0  1
#> SRR1270837     3       0          1  0  0  1
#> SRR1270838     3       0          1  0  0  1
#> SRR1270839     3       0          1  0  0  1
#> SRR1270840     3       0          1  0  0  1
#> SRR1270841     3       0          1  0  0  1
#> SRR1270842     3       0          1  0  0  1
#> SRR1270843     3       0          1  0  0  1
#> SRR1270844     3       0          1  0  0  1
#> SRR1270845     3       0          1  0  0  1
#> SRR1270846     3       0          1  0  0  1
#> SRR1270847     3       0          1  0  0  1
#> SRR1270848     3       0          1  0  0  1
#> SRR1270849     3       0          1  0  0  1
#> SRR1270850     3       0          1  0  0  1
#> SRR1270851     2       0          1  0  1  0
#> SRR1270852     2       0          1  0  1  0
#> SRR1270853     2       0          1  0  1  0
#> SRR1270854     2       0          1  0  1  0
#> SRR1270855     2       0          1  0  1  0
#> SRR1270856     2       0          1  0  1  0
#> SRR1270857     2       0          1  0  1  0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1270715     1  0.3688      0.888 0.792 0.000 0.000 0.208
#> SRR1270716     1  0.3688      0.888 0.792 0.000 0.000 0.208
#> SRR1270717     1  0.3688      0.888 0.792 0.000 0.000 0.208
#> SRR1270718     1  0.3688      0.888 0.792 0.000 0.000 0.208
#> SRR1270719     1  0.3688      0.888 0.792 0.000 0.000 0.208
#> SRR1270720     1  0.3688      0.888 0.792 0.000 0.000 0.208
#> SRR1270721     1  0.3688      0.888 0.792 0.000 0.000 0.208
#> SRR1270722     1  0.2408      0.908 0.896 0.000 0.000 0.104
#> SRR1270723     1  0.2408      0.908 0.896 0.000 0.000 0.104
#> SRR1270724     1  0.2408      0.908 0.896 0.000 0.000 0.104
#> SRR1270725     1  0.2530      0.908 0.888 0.000 0.000 0.112
#> SRR1270726     1  0.2589      0.907 0.884 0.000 0.000 0.116
#> SRR1270727     1  0.2530      0.908 0.888 0.000 0.000 0.112
#> SRR1270728     1  0.2530      0.908 0.888 0.000 0.000 0.112
#> SRR1270729     1  0.3688      0.888 0.792 0.000 0.000 0.208
#> SRR1270730     1  0.3688      0.888 0.792 0.000 0.000 0.208
#> SRR1270731     1  0.3688      0.888 0.792 0.000 0.000 0.208
#> SRR1270732     1  0.3688      0.888 0.792 0.000 0.000 0.208
#> SRR1270733     1  0.3688      0.888 0.792 0.000 0.000 0.208
#> SRR1270734     1  0.3688      0.888 0.792 0.000 0.000 0.208
#> SRR1270735     1  0.3688      0.888 0.792 0.000 0.000 0.208
#> SRR1270736     1  0.3356      0.896 0.824 0.000 0.000 0.176
#> SRR1270737     1  0.3444      0.894 0.816 0.000 0.000 0.184
#> SRR1270738     1  0.3649      0.889 0.796 0.000 0.000 0.204
#> SRR1270739     1  0.3649      0.889 0.796 0.000 0.000 0.204
#> SRR1270740     1  0.0469      0.909 0.988 0.000 0.012 0.000
#> SRR1270741     1  0.0469      0.909 0.988 0.000 0.012 0.000
#> SRR1270742     1  0.0469      0.909 0.988 0.000 0.012 0.000
#> SRR1270743     1  0.0469      0.909 0.988 0.000 0.012 0.000
#> SRR1270744     1  0.0469      0.909 0.988 0.000 0.012 0.000
#> SRR1270745     1  0.0469      0.909 0.988 0.000 0.012 0.000
#> SRR1270746     1  0.0469      0.909 0.988 0.000 0.012 0.000
#> SRR1270747     1  0.2081      0.864 0.916 0.000 0.084 0.000
#> SRR1270748     1  0.2081      0.864 0.916 0.000 0.084 0.000
#> SRR1270749     1  0.2081      0.864 0.916 0.000 0.084 0.000
#> SRR1270750     1  0.0817      0.905 0.976 0.000 0.024 0.000
#> SRR1270751     1  0.1211      0.897 0.960 0.000 0.040 0.000
#> SRR1270752     1  0.0921      0.903 0.972 0.000 0.028 0.000
#> SRR1270753     1  0.1302      0.894 0.956 0.000 0.044 0.000
#> SRR1270754     1  0.0921      0.903 0.972 0.000 0.028 0.000
#> SRR1270755     1  0.0921      0.903 0.972 0.000 0.028 0.000
#> SRR1270756     1  0.0921      0.903 0.972 0.000 0.028 0.000
#> SRR1270757     1  0.0469      0.909 0.988 0.000 0.012 0.000
#> SRR1270758     1  0.0469      0.909 0.988 0.000 0.012 0.000
#> SRR1270759     1  0.0469      0.909 0.988 0.000 0.012 0.000
#> SRR1270760     1  0.0469      0.909 0.988 0.000 0.012 0.000
#> SRR1270761     1  0.0469      0.909 0.988 0.000 0.012 0.000
#> SRR1270762     1  0.0469      0.909 0.988 0.000 0.012 0.000
#> SRR1270763     1  0.0469      0.909 0.988 0.000 0.012 0.000
#> SRR1270764     1  0.0469      0.909 0.988 0.000 0.012 0.000
#> SRR1270765     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270766     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270767     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270768     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270769     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270770     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270771     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270772     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270773     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270774     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270775     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270776     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270777     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270778     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270779     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270780     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270781     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270782     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270783     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270784     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270785     2  0.0188      0.998 0.000 0.996 0.000 0.004
#> SRR1270786     2  0.0188      0.998 0.000 0.996 0.000 0.004
#> SRR1270787     2  0.0188      0.998 0.000 0.996 0.000 0.004
#> SRR1270788     2  0.0188      0.998 0.000 0.996 0.000 0.004
#> SRR1270789     2  0.0188      0.998 0.000 0.996 0.000 0.004
#> SRR1270790     2  0.0188      0.998 0.000 0.996 0.000 0.004
#> SRR1270791     2  0.0188      0.998 0.000 0.996 0.000 0.004
#> SRR1270792     2  0.0188      0.998 0.000 0.996 0.000 0.004
#> SRR1270793     2  0.0188      0.998 0.000 0.996 0.000 0.004
#> SRR1270794     2  0.0188      0.998 0.000 0.996 0.000 0.004
#> SRR1270795     2  0.0188      0.998 0.000 0.996 0.000 0.004
#> SRR1270796     2  0.0188      0.998 0.000 0.996 0.000 0.004
#> SRR1270797     2  0.0188      0.998 0.000 0.996 0.000 0.004
#> SRR1270798     2  0.0188      0.998 0.000 0.996 0.000 0.004
#> SRR1270799     2  0.0188      0.998 0.000 0.996 0.000 0.004
#> SRR1270800     2  0.0188      0.998 0.000 0.996 0.000 0.004
#> SRR1270801     2  0.0188      0.998 0.000 0.996 0.000 0.004
#> SRR1270802     2  0.0188      0.998 0.000 0.996 0.000 0.004
#> SRR1270803     2  0.0188      0.998 0.000 0.996 0.000 0.004
#> SRR1270804     2  0.0188      0.998 0.000 0.996 0.000 0.004
#> SRR1270805     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> SRR1270806     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> SRR1270807     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> SRR1270808     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> SRR1270809     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> SRR1270810     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> SRR1270811     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> SRR1270812     3  0.0188      0.997 0.000 0.000 0.996 0.004
#> SRR1270813     3  0.0188      0.997 0.000 0.000 0.996 0.004
#> SRR1270814     3  0.0188      0.997 0.000 0.000 0.996 0.004
#> SRR1270815     3  0.0188      0.997 0.000 0.000 0.996 0.004
#> SRR1270816     3  0.0188      0.997 0.000 0.000 0.996 0.004
#> SRR1270817     3  0.0188      0.997 0.000 0.000 0.996 0.004
#> SRR1270818     3  0.0188      0.997 0.000 0.000 0.996 0.004
#> SRR1270819     3  0.0188      0.997 0.000 0.000 0.996 0.004
#> SRR1270820     3  0.0188      0.997 0.000 0.000 0.996 0.004
#> SRR1270821     3  0.0188      0.997 0.000 0.000 0.996 0.004
#> SRR1270822     3  0.0188      0.997 0.000 0.000 0.996 0.004
#> SRR1270823     3  0.0188      0.997 0.000 0.000 0.996 0.004
#> SRR1270824     3  0.0188      0.997 0.000 0.000 0.996 0.004
#> SRR1270825     3  0.0188      0.997 0.000 0.000 0.996 0.004
#> SRR1270826     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> SRR1270827     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> SRR1270828     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> SRR1270829     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> SRR1270830     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> SRR1270831     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> SRR1270832     3  0.0000      0.997 0.000 0.000 1.000 0.000
#> SRR1270833     4  0.3764      0.997 0.000 0.000 0.216 0.784
#> SRR1270834     4  0.3764      0.997 0.000 0.000 0.216 0.784
#> SRR1270835     4  0.3726      0.997 0.000 0.000 0.212 0.788
#> SRR1270836     4  0.3726      0.997 0.000 0.000 0.212 0.788
#> SRR1270837     4  0.3726      0.997 0.000 0.000 0.212 0.788
#> SRR1270838     4  0.3726      0.997 0.000 0.000 0.212 0.788
#> SRR1270839     4  0.3726      0.997 0.000 0.000 0.212 0.788
#> SRR1270840     4  0.3726      0.997 0.000 0.000 0.212 0.788
#> SRR1270841     4  0.3726      0.997 0.000 0.000 0.212 0.788
#> SRR1270842     4  0.3726      0.997 0.000 0.000 0.212 0.788
#> SRR1270843     4  0.3726      0.997 0.000 0.000 0.212 0.788
#> SRR1270844     4  0.3764      0.997 0.000 0.000 0.216 0.784
#> SRR1270845     4  0.3764      0.997 0.000 0.000 0.216 0.784
#> SRR1270846     4  0.3764      0.997 0.000 0.000 0.216 0.784
#> SRR1270847     4  0.3764      0.997 0.000 0.000 0.216 0.784
#> SRR1270848     4  0.3764      0.997 0.000 0.000 0.216 0.784
#> SRR1270849     4  0.3764      0.997 0.000 0.000 0.216 0.784
#> SRR1270850     4  0.3764      0.997 0.000 0.000 0.216 0.784
#> SRR1270851     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270852     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270853     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270854     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270855     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270856     2  0.0000      0.999 0.000 1.000 0.000 0.000
#> SRR1270857     2  0.0000      0.999 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1270715     5  0.1851      0.995 0.088 0.000 0.000 0.000 0.912
#> SRR1270716     5  0.1851      0.995 0.088 0.000 0.000 0.000 0.912
#> SRR1270717     5  0.1851      0.995 0.088 0.000 0.000 0.000 0.912
#> SRR1270718     5  0.1851      0.995 0.088 0.000 0.000 0.000 0.912
#> SRR1270719     5  0.1851      0.995 0.088 0.000 0.000 0.000 0.912
#> SRR1270720     5  0.1851      0.995 0.088 0.000 0.000 0.000 0.912
#> SRR1270721     5  0.1851      0.995 0.088 0.000 0.000 0.000 0.912
#> SRR1270722     1  0.3461      0.710 0.772 0.000 0.000 0.004 0.224
#> SRR1270723     1  0.3461      0.710 0.772 0.000 0.000 0.004 0.224
#> SRR1270724     1  0.3461      0.710 0.772 0.000 0.000 0.004 0.224
#> SRR1270725     1  0.4066      0.544 0.672 0.000 0.000 0.004 0.324
#> SRR1270726     1  0.4264      0.418 0.620 0.000 0.000 0.004 0.376
#> SRR1270727     1  0.4047      0.552 0.676 0.000 0.000 0.004 0.320
#> SRR1270728     1  0.4084      0.535 0.668 0.000 0.000 0.004 0.328
#> SRR1270729     5  0.1851      0.995 0.088 0.000 0.000 0.000 0.912
#> SRR1270730     5  0.1851      0.995 0.088 0.000 0.000 0.000 0.912
#> SRR1270731     5  0.1851      0.995 0.088 0.000 0.000 0.000 0.912
#> SRR1270732     5  0.1851      0.995 0.088 0.000 0.000 0.000 0.912
#> SRR1270733     5  0.1851      0.995 0.088 0.000 0.000 0.000 0.912
#> SRR1270734     5  0.1851      0.995 0.088 0.000 0.000 0.000 0.912
#> SRR1270735     5  0.1851      0.995 0.088 0.000 0.000 0.000 0.912
#> SRR1270736     5  0.2439      0.962 0.120 0.000 0.000 0.004 0.876
#> SRR1270737     5  0.2389      0.966 0.116 0.000 0.000 0.004 0.880
#> SRR1270738     5  0.2068      0.990 0.092 0.000 0.000 0.004 0.904
#> SRR1270739     5  0.2068      0.990 0.092 0.000 0.000 0.004 0.904
#> SRR1270740     1  0.0510      0.913 0.984 0.000 0.000 0.000 0.016
#> SRR1270741     1  0.0510      0.913 0.984 0.000 0.000 0.000 0.016
#> SRR1270742     1  0.0510      0.913 0.984 0.000 0.000 0.000 0.016
#> SRR1270743     1  0.0510      0.913 0.984 0.000 0.000 0.000 0.016
#> SRR1270744     1  0.0510      0.913 0.984 0.000 0.000 0.000 0.016
#> SRR1270745     1  0.0510      0.913 0.984 0.000 0.000 0.000 0.016
#> SRR1270746     1  0.0510      0.913 0.984 0.000 0.000 0.000 0.016
#> SRR1270747     1  0.0609      0.901 0.980 0.000 0.020 0.000 0.000
#> SRR1270748     1  0.0609      0.901 0.980 0.000 0.020 0.000 0.000
#> SRR1270749     1  0.0609      0.901 0.980 0.000 0.020 0.000 0.000
#> SRR1270750     1  0.0404      0.907 0.988 0.000 0.012 0.000 0.000
#> SRR1270751     1  0.0404      0.907 0.988 0.000 0.012 0.000 0.000
#> SRR1270752     1  0.0404      0.907 0.988 0.000 0.012 0.000 0.000
#> SRR1270753     1  0.0404      0.907 0.988 0.000 0.012 0.000 0.000
#> SRR1270754     1  0.0566      0.907 0.984 0.000 0.012 0.000 0.004
#> SRR1270755     1  0.0566      0.907 0.984 0.000 0.012 0.000 0.004
#> SRR1270756     1  0.0566      0.907 0.984 0.000 0.012 0.000 0.004
#> SRR1270757     1  0.0510      0.913 0.984 0.000 0.000 0.000 0.016
#> SRR1270758     1  0.0290      0.912 0.992 0.000 0.000 0.000 0.008
#> SRR1270759     1  0.0162      0.911 0.996 0.000 0.000 0.000 0.004
#> SRR1270760     1  0.0290      0.912 0.992 0.000 0.000 0.000 0.008
#> SRR1270761     1  0.0404      0.912 0.988 0.000 0.000 0.000 0.012
#> SRR1270762     1  0.0404      0.912 0.988 0.000 0.000 0.000 0.012
#> SRR1270763     1  0.0404      0.912 0.988 0.000 0.000 0.000 0.012
#> SRR1270764     1  0.0404      0.912 0.988 0.000 0.000 0.000 0.012
#> SRR1270765     2  0.0000      0.960 0.000 1.000 0.000 0.000 0.000
#> SRR1270766     2  0.0000      0.960 0.000 1.000 0.000 0.000 0.000
#> SRR1270767     2  0.0000      0.960 0.000 1.000 0.000 0.000 0.000
#> SRR1270768     2  0.0000      0.960 0.000 1.000 0.000 0.000 0.000
#> SRR1270769     2  0.0000      0.960 0.000 1.000 0.000 0.000 0.000
#> SRR1270770     2  0.0000      0.960 0.000 1.000 0.000 0.000 0.000
#> SRR1270771     2  0.0000      0.960 0.000 1.000 0.000 0.000 0.000
#> SRR1270772     2  0.0000      0.960 0.000 1.000 0.000 0.000 0.000
#> SRR1270773     2  0.0000      0.960 0.000 1.000 0.000 0.000 0.000
#> SRR1270774     2  0.0000      0.960 0.000 1.000 0.000 0.000 0.000
#> SRR1270775     2  0.0000      0.960 0.000 1.000 0.000 0.000 0.000
#> SRR1270776     2  0.0000      0.960 0.000 1.000 0.000 0.000 0.000
#> SRR1270777     2  0.0000      0.960 0.000 1.000 0.000 0.000 0.000
#> SRR1270778     2  0.0000      0.960 0.000 1.000 0.000 0.000 0.000
#> SRR1270779     2  0.0000      0.960 0.000 1.000 0.000 0.000 0.000
#> SRR1270780     2  0.0000      0.960 0.000 1.000 0.000 0.000 0.000
#> SRR1270781     2  0.0000      0.960 0.000 1.000 0.000 0.000 0.000
#> SRR1270782     2  0.0000      0.960 0.000 1.000 0.000 0.000 0.000
#> SRR1270783     2  0.0000      0.960 0.000 1.000 0.000 0.000 0.000
#> SRR1270784     2  0.0000      0.960 0.000 1.000 0.000 0.000 0.000
#> SRR1270785     2  0.2514      0.945 0.000 0.896 0.000 0.044 0.060
#> SRR1270786     2  0.2514      0.945 0.000 0.896 0.000 0.044 0.060
#> SRR1270787     2  0.2514      0.945 0.000 0.896 0.000 0.044 0.060
#> SRR1270788     2  0.2514      0.945 0.000 0.896 0.000 0.044 0.060
#> SRR1270789     2  0.2514      0.945 0.000 0.896 0.000 0.044 0.060
#> SRR1270790     2  0.2514      0.945 0.000 0.896 0.000 0.044 0.060
#> SRR1270791     2  0.2514      0.945 0.000 0.896 0.000 0.044 0.060
#> SRR1270792     2  0.2514      0.945 0.000 0.896 0.000 0.044 0.060
#> SRR1270793     2  0.2514      0.945 0.000 0.896 0.000 0.044 0.060
#> SRR1270794     2  0.2514      0.945 0.000 0.896 0.000 0.044 0.060
#> SRR1270795     2  0.2514      0.945 0.000 0.896 0.000 0.044 0.060
#> SRR1270796     2  0.2514      0.945 0.000 0.896 0.000 0.044 0.060
#> SRR1270797     2  0.2514      0.945 0.000 0.896 0.000 0.044 0.060
#> SRR1270798     2  0.2514      0.945 0.000 0.896 0.000 0.044 0.060
#> SRR1270799     2  0.2514      0.945 0.000 0.896 0.000 0.044 0.060
#> SRR1270800     2  0.2514      0.945 0.000 0.896 0.000 0.044 0.060
#> SRR1270801     2  0.2514      0.945 0.000 0.896 0.000 0.044 0.060
#> SRR1270802     2  0.2514      0.945 0.000 0.896 0.000 0.044 0.060
#> SRR1270803     2  0.2514      0.945 0.000 0.896 0.000 0.044 0.060
#> SRR1270804     2  0.2514      0.945 0.000 0.896 0.000 0.044 0.060
#> SRR1270805     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000
#> SRR1270806     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000
#> SRR1270807     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000
#> SRR1270808     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000
#> SRR1270809     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000
#> SRR1270810     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000
#> SRR1270811     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000
#> SRR1270812     3  0.1012      0.984 0.012 0.000 0.968 0.020 0.000
#> SRR1270813     3  0.1012      0.984 0.012 0.000 0.968 0.020 0.000
#> SRR1270814     3  0.1012      0.984 0.012 0.000 0.968 0.020 0.000
#> SRR1270815     3  0.1012      0.984 0.012 0.000 0.968 0.020 0.000
#> SRR1270816     3  0.1012      0.984 0.012 0.000 0.968 0.020 0.000
#> SRR1270817     3  0.1012      0.984 0.012 0.000 0.968 0.020 0.000
#> SRR1270818     3  0.1012      0.984 0.012 0.000 0.968 0.020 0.000
#> SRR1270819     3  0.1012      0.984 0.012 0.000 0.968 0.020 0.000
#> SRR1270820     3  0.1012      0.984 0.012 0.000 0.968 0.020 0.000
#> SRR1270821     3  0.1012      0.984 0.012 0.000 0.968 0.020 0.000
#> SRR1270822     3  0.1012      0.984 0.012 0.000 0.968 0.020 0.000
#> SRR1270823     3  0.1012      0.984 0.012 0.000 0.968 0.020 0.000
#> SRR1270824     3  0.1012      0.984 0.012 0.000 0.968 0.020 0.000
#> SRR1270825     3  0.1012      0.984 0.012 0.000 0.968 0.020 0.000
#> SRR1270826     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000
#> SRR1270827     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000
#> SRR1270828     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000
#> SRR1270829     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000
#> SRR1270830     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000
#> SRR1270831     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000
#> SRR1270832     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.000
#> SRR1270833     4  0.1544      0.980 0.000 0.000 0.068 0.932 0.000
#> SRR1270834     4  0.1544      0.980 0.000 0.000 0.068 0.932 0.000
#> SRR1270835     4  0.1981      0.980 0.000 0.000 0.048 0.924 0.028
#> SRR1270836     4  0.1981      0.980 0.000 0.000 0.048 0.924 0.028
#> SRR1270837     4  0.1981      0.980 0.000 0.000 0.048 0.924 0.028
#> SRR1270838     4  0.1981      0.980 0.000 0.000 0.048 0.924 0.028
#> SRR1270839     4  0.1981      0.980 0.000 0.000 0.048 0.924 0.028
#> SRR1270840     4  0.1981      0.980 0.000 0.000 0.048 0.924 0.028
#> SRR1270841     4  0.1981      0.980 0.000 0.000 0.048 0.924 0.028
#> SRR1270842     4  0.1981      0.980 0.000 0.000 0.048 0.924 0.028
#> SRR1270843     4  0.1981      0.980 0.000 0.000 0.048 0.924 0.028
#> SRR1270844     4  0.1544      0.980 0.000 0.000 0.068 0.932 0.000
#> SRR1270845     4  0.1544      0.980 0.000 0.000 0.068 0.932 0.000
#> SRR1270846     4  0.1544      0.980 0.000 0.000 0.068 0.932 0.000
#> SRR1270847     4  0.1544      0.980 0.000 0.000 0.068 0.932 0.000
#> SRR1270848     4  0.1544      0.980 0.000 0.000 0.068 0.932 0.000
#> SRR1270849     4  0.1544      0.980 0.000 0.000 0.068 0.932 0.000
#> SRR1270850     4  0.1544      0.980 0.000 0.000 0.068 0.932 0.000
#> SRR1270851     2  0.0000      0.960 0.000 1.000 0.000 0.000 0.000
#> SRR1270852     2  0.0000      0.960 0.000 1.000 0.000 0.000 0.000
#> SRR1270853     2  0.0000      0.960 0.000 1.000 0.000 0.000 0.000
#> SRR1270854     2  0.0000      0.960 0.000 1.000 0.000 0.000 0.000
#> SRR1270855     2  0.0000      0.960 0.000 1.000 0.000 0.000 0.000
#> SRR1270856     2  0.0000      0.960 0.000 1.000 0.000 0.000 0.000
#> SRR1270857     2  0.0000      0.960 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1270715     6  0.0000      0.972 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1270716     6  0.0000      0.972 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1270717     6  0.0000      0.972 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1270718     6  0.0146      0.970 0.000 0.000 0.000 0.000 0.004 0.996
#> SRR1270719     6  0.0000      0.972 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1270720     6  0.0146      0.970 0.000 0.000 0.000 0.000 0.004 0.996
#> SRR1270721     6  0.0000      0.972 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1270722     1  0.5102      0.648 0.656 0.000 0.000 0.008 0.176 0.160
#> SRR1270723     1  0.5102      0.648 0.656 0.000 0.000 0.008 0.176 0.160
#> SRR1270724     1  0.5102      0.648 0.656 0.000 0.000 0.008 0.176 0.160
#> SRR1270725     1  0.5902      0.395 0.504 0.000 0.000 0.008 0.184 0.304
#> SRR1270726     1  0.5955      0.293 0.468 0.000 0.000 0.008 0.176 0.348
#> SRR1270727     1  0.5890      0.404 0.508 0.000 0.000 0.008 0.184 0.300
#> SRR1270728     1  0.5855      0.418 0.516 0.000 0.000 0.008 0.180 0.296
#> SRR1270729     6  0.0000      0.972 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1270730     6  0.0000      0.972 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1270731     6  0.0000      0.972 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1270732     6  0.0000      0.972 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1270733     6  0.0000      0.972 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1270734     6  0.0000      0.972 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1270735     6  0.0000      0.972 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1270736     6  0.3296      0.861 0.048 0.000 0.000 0.008 0.116 0.828
#> SRR1270737     6  0.3231      0.866 0.044 0.000 0.000 0.008 0.116 0.832
#> SRR1270738     6  0.2174      0.916 0.008 0.000 0.000 0.008 0.088 0.896
#> SRR1270739     6  0.2122      0.918 0.008 0.000 0.000 0.008 0.084 0.900
#> SRR1270740     1  0.0717      0.891 0.976 0.000 0.000 0.000 0.016 0.008
#> SRR1270741     1  0.0717      0.891 0.976 0.000 0.000 0.000 0.016 0.008
#> SRR1270742     1  0.0717      0.891 0.976 0.000 0.000 0.000 0.016 0.008
#> SRR1270743     1  0.0717      0.891 0.976 0.000 0.000 0.000 0.016 0.008
#> SRR1270744     1  0.0717      0.891 0.976 0.000 0.000 0.000 0.016 0.008
#> SRR1270745     1  0.0717      0.891 0.976 0.000 0.000 0.000 0.016 0.008
#> SRR1270746     1  0.0806      0.891 0.972 0.000 0.000 0.000 0.020 0.008
#> SRR1270747     1  0.0865      0.891 0.964 0.000 0.000 0.000 0.036 0.000
#> SRR1270748     1  0.0865      0.891 0.964 0.000 0.000 0.000 0.036 0.000
#> SRR1270749     1  0.0865      0.891 0.964 0.000 0.000 0.000 0.036 0.000
#> SRR1270750     1  0.0937      0.891 0.960 0.000 0.000 0.000 0.040 0.000
#> SRR1270751     1  0.0865      0.891 0.964 0.000 0.000 0.000 0.036 0.000
#> SRR1270752     1  0.0865      0.891 0.964 0.000 0.000 0.000 0.036 0.000
#> SRR1270753     1  0.0865      0.891 0.964 0.000 0.000 0.000 0.036 0.000
#> SRR1270754     1  0.0405      0.894 0.988 0.000 0.000 0.000 0.004 0.008
#> SRR1270755     1  0.0405      0.894 0.988 0.000 0.000 0.000 0.004 0.008
#> SRR1270756     1  0.0405      0.894 0.988 0.000 0.000 0.000 0.004 0.008
#> SRR1270757     1  0.0520      0.893 0.984 0.000 0.000 0.000 0.008 0.008
#> SRR1270758     1  0.0260      0.894 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR1270759     1  0.0260      0.894 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR1270760     1  0.0260      0.894 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR1270761     1  0.0865      0.893 0.964 0.000 0.000 0.000 0.036 0.000
#> SRR1270762     1  0.0865      0.893 0.964 0.000 0.000 0.000 0.036 0.000
#> SRR1270763     1  0.0865      0.893 0.964 0.000 0.000 0.000 0.036 0.000
#> SRR1270764     1  0.0937      0.893 0.960 0.000 0.000 0.000 0.040 0.000
#> SRR1270765     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270766     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270767     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270768     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270769     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270770     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270771     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270772     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270773     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270774     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270775     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270776     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270777     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270778     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270779     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270780     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270781     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270782     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270783     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270784     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270785     5  0.3592      1.000 0.000 0.344 0.000 0.000 0.656 0.000
#> SRR1270786     5  0.3592      1.000 0.000 0.344 0.000 0.000 0.656 0.000
#> SRR1270787     5  0.3592      1.000 0.000 0.344 0.000 0.000 0.656 0.000
#> SRR1270788     5  0.3592      1.000 0.000 0.344 0.000 0.000 0.656 0.000
#> SRR1270789     5  0.3592      1.000 0.000 0.344 0.000 0.000 0.656 0.000
#> SRR1270790     5  0.3592      1.000 0.000 0.344 0.000 0.000 0.656 0.000
#> SRR1270791     5  0.3592      1.000 0.000 0.344 0.000 0.000 0.656 0.000
#> SRR1270792     5  0.3592      1.000 0.000 0.344 0.000 0.000 0.656 0.000
#> SRR1270793     5  0.3592      1.000 0.000 0.344 0.000 0.000 0.656 0.000
#> SRR1270794     5  0.3592      1.000 0.000 0.344 0.000 0.000 0.656 0.000
#> SRR1270795     5  0.3592      1.000 0.000 0.344 0.000 0.000 0.656 0.000
#> SRR1270796     5  0.3592      1.000 0.000 0.344 0.000 0.000 0.656 0.000
#> SRR1270797     5  0.3592      1.000 0.000 0.344 0.000 0.000 0.656 0.000
#> SRR1270798     5  0.3592      1.000 0.000 0.344 0.000 0.000 0.656 0.000
#> SRR1270799     5  0.3592      1.000 0.000 0.344 0.000 0.000 0.656 0.000
#> SRR1270800     5  0.3592      1.000 0.000 0.344 0.000 0.000 0.656 0.000
#> SRR1270801     5  0.3592      1.000 0.000 0.344 0.000 0.000 0.656 0.000
#> SRR1270802     5  0.3592      1.000 0.000 0.344 0.000 0.000 0.656 0.000
#> SRR1270803     5  0.3592      1.000 0.000 0.344 0.000 0.000 0.656 0.000
#> SRR1270804     5  0.3592      1.000 0.000 0.344 0.000 0.000 0.656 0.000
#> SRR1270805     3  0.0000      0.981 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270806     3  0.0000      0.981 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270807     3  0.0000      0.981 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270808     3  0.0000      0.981 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270809     3  0.0000      0.981 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270810     3  0.0000      0.981 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270811     3  0.0000      0.981 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270812     3  0.1124      0.981 0.000 0.000 0.956 0.008 0.036 0.000
#> SRR1270813     3  0.1124      0.981 0.000 0.000 0.956 0.008 0.036 0.000
#> SRR1270814     3  0.1124      0.981 0.000 0.000 0.956 0.008 0.036 0.000
#> SRR1270815     3  0.1124      0.981 0.000 0.000 0.956 0.008 0.036 0.000
#> SRR1270816     3  0.1124      0.981 0.000 0.000 0.956 0.008 0.036 0.000
#> SRR1270817     3  0.1124      0.981 0.000 0.000 0.956 0.008 0.036 0.000
#> SRR1270818     3  0.1124      0.981 0.000 0.000 0.956 0.008 0.036 0.000
#> SRR1270819     3  0.1124      0.981 0.000 0.000 0.956 0.008 0.036 0.000
#> SRR1270820     3  0.1124      0.981 0.000 0.000 0.956 0.008 0.036 0.000
#> SRR1270821     3  0.1124      0.981 0.000 0.000 0.956 0.008 0.036 0.000
#> SRR1270822     3  0.1124      0.981 0.000 0.000 0.956 0.008 0.036 0.000
#> SRR1270823     3  0.1124      0.981 0.000 0.000 0.956 0.008 0.036 0.000
#> SRR1270824     3  0.1124      0.981 0.000 0.000 0.956 0.008 0.036 0.000
#> SRR1270825     3  0.1124      0.981 0.000 0.000 0.956 0.008 0.036 0.000
#> SRR1270826     3  0.0000      0.981 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270827     3  0.0000      0.981 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270828     3  0.0000      0.981 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270829     3  0.0000      0.981 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270830     3  0.0000      0.981 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270831     3  0.0000      0.981 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270832     3  0.0000      0.981 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270833     4  0.2218      0.958 0.000 0.000 0.012 0.884 0.104 0.000
#> SRR1270834     4  0.2218      0.958 0.000 0.000 0.012 0.884 0.104 0.000
#> SRR1270835     4  0.0260      0.958 0.000 0.000 0.008 0.992 0.000 0.000
#> SRR1270836     4  0.0260      0.958 0.000 0.000 0.008 0.992 0.000 0.000
#> SRR1270837     4  0.0260      0.958 0.000 0.000 0.008 0.992 0.000 0.000
#> SRR1270838     4  0.0260      0.958 0.000 0.000 0.008 0.992 0.000 0.000
#> SRR1270839     4  0.0260      0.958 0.000 0.000 0.008 0.992 0.000 0.000
#> SRR1270840     4  0.0260      0.958 0.000 0.000 0.008 0.992 0.000 0.000
#> SRR1270841     4  0.0260      0.958 0.000 0.000 0.008 0.992 0.000 0.000
#> SRR1270842     4  0.0260      0.958 0.000 0.000 0.008 0.992 0.000 0.000
#> SRR1270843     4  0.0260      0.958 0.000 0.000 0.008 0.992 0.000 0.000
#> SRR1270844     4  0.2218      0.958 0.000 0.000 0.012 0.884 0.104 0.000
#> SRR1270845     4  0.2218      0.958 0.000 0.000 0.012 0.884 0.104 0.000
#> SRR1270846     4  0.2218      0.958 0.000 0.000 0.012 0.884 0.104 0.000
#> SRR1270847     4  0.2218      0.958 0.000 0.000 0.012 0.884 0.104 0.000
#> SRR1270848     4  0.2218      0.958 0.000 0.000 0.012 0.884 0.104 0.000
#> SRR1270849     4  0.2218      0.958 0.000 0.000 0.012 0.884 0.104 0.000
#> SRR1270850     4  0.2218      0.958 0.000 0.000 0.012 0.884 0.104 0.000
#> SRR1270851     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270852     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270853     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270854     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270855     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270856     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270857     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14577 rows and 143 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.4450 0.556   0.556
#> 3 3 0.857           0.917       0.953         0.4784 0.773   0.592
#> 4 4 0.897           0.939       0.894         0.0980 0.950   0.849
#> 5 5 1.000           0.998       0.999         0.0719 0.947   0.810
#> 6 6 1.000           0.999       0.997         0.0784 0.938   0.728

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 5

There is also optional best \(k\) = 2 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1270715     1       0          1  1  0
#> SRR1270716     1       0          1  1  0
#> SRR1270717     1       0          1  1  0
#> SRR1270718     1       0          1  1  0
#> SRR1270719     1       0          1  1  0
#> SRR1270720     1       0          1  1  0
#> SRR1270721     1       0          1  1  0
#> SRR1270722     1       0          1  1  0
#> SRR1270723     1       0          1  1  0
#> SRR1270724     1       0          1  1  0
#> SRR1270725     1       0          1  1  0
#> SRR1270726     1       0          1  1  0
#> SRR1270727     1       0          1  1  0
#> SRR1270728     1       0          1  1  0
#> SRR1270729     1       0          1  1  0
#> SRR1270730     1       0          1  1  0
#> SRR1270731     1       0          1  1  0
#> SRR1270732     1       0          1  1  0
#> SRR1270733     1       0          1  1  0
#> SRR1270734     1       0          1  1  0
#> SRR1270735     1       0          1  1  0
#> SRR1270736     1       0          1  1  0
#> SRR1270737     1       0          1  1  0
#> SRR1270738     1       0          1  1  0
#> SRR1270739     1       0          1  1  0
#> SRR1270740     1       0          1  1  0
#> SRR1270741     1       0          1  1  0
#> SRR1270742     1       0          1  1  0
#> SRR1270743     1       0          1  1  0
#> SRR1270744     1       0          1  1  0
#> SRR1270745     1       0          1  1  0
#> SRR1270746     1       0          1  1  0
#> SRR1270747     1       0          1  1  0
#> SRR1270748     1       0          1  1  0
#> SRR1270749     1       0          1  1  0
#> SRR1270750     1       0          1  1  0
#> SRR1270751     1       0          1  1  0
#> SRR1270752     1       0          1  1  0
#> SRR1270753     1       0          1  1  0
#> SRR1270754     1       0          1  1  0
#> SRR1270755     1       0          1  1  0
#> SRR1270756     1       0          1  1  0
#> SRR1270757     1       0          1  1  0
#> SRR1270758     1       0          1  1  0
#> SRR1270759     1       0          1  1  0
#> SRR1270760     1       0          1  1  0
#> SRR1270761     1       0          1  1  0
#> SRR1270762     1       0          1  1  0
#> SRR1270763     1       0          1  1  0
#> SRR1270764     1       0          1  1  0
#> SRR1270765     2       0          1  0  1
#> SRR1270766     2       0          1  0  1
#> SRR1270767     2       0          1  0  1
#> SRR1270768     2       0          1  0  1
#> SRR1270769     2       0          1  0  1
#> SRR1270770     2       0          1  0  1
#> SRR1270771     2       0          1  0  1
#> SRR1270772     2       0          1  0  1
#> SRR1270773     2       0          1  0  1
#> SRR1270774     2       0          1  0  1
#> SRR1270775     2       0          1  0  1
#> SRR1270776     2       0          1  0  1
#> SRR1270777     2       0          1  0  1
#> SRR1270778     2       0          1  0  1
#> SRR1270779     2       0          1  0  1
#> SRR1270780     2       0          1  0  1
#> SRR1270781     2       0          1  0  1
#> SRR1270782     2       0          1  0  1
#> SRR1270783     2       0          1  0  1
#> SRR1270784     2       0          1  0  1
#> SRR1270785     2       0          1  0  1
#> SRR1270786     2       0          1  0  1
#> SRR1270787     2       0          1  0  1
#> SRR1270788     2       0          1  0  1
#> SRR1270789     2       0          1  0  1
#> SRR1270790     2       0          1  0  1
#> SRR1270791     2       0          1  0  1
#> SRR1270792     2       0          1  0  1
#> SRR1270793     2       0          1  0  1
#> SRR1270794     2       0          1  0  1
#> SRR1270795     2       0          1  0  1
#> SRR1270796     2       0          1  0  1
#> SRR1270797     2       0          1  0  1
#> SRR1270798     2       0          1  0  1
#> SRR1270799     2       0          1  0  1
#> SRR1270800     2       0          1  0  1
#> SRR1270801     2       0          1  0  1
#> SRR1270802     2       0          1  0  1
#> SRR1270803     2       0          1  0  1
#> SRR1270804     2       0          1  0  1
#> SRR1270805     1       0          1  1  0
#> SRR1270806     1       0          1  1  0
#> SRR1270807     1       0          1  1  0
#> SRR1270808     1       0          1  1  0
#> SRR1270809     1       0          1  1  0
#> SRR1270810     1       0          1  1  0
#> SRR1270811     1       0          1  1  0
#> SRR1270812     1       0          1  1  0
#> SRR1270813     1       0          1  1  0
#> SRR1270814     1       0          1  1  0
#> SRR1270815     1       0          1  1  0
#> SRR1270816     1       0          1  1  0
#> SRR1270817     1       0          1  1  0
#> SRR1270818     1       0          1  1  0
#> SRR1270819     1       0          1  1  0
#> SRR1270820     1       0          1  1  0
#> SRR1270821     1       0          1  1  0
#> SRR1270822     1       0          1  1  0
#> SRR1270823     1       0          1  1  0
#> SRR1270824     1       0          1  1  0
#> SRR1270825     1       0          1  1  0
#> SRR1270826     1       0          1  1  0
#> SRR1270827     1       0          1  1  0
#> SRR1270828     1       0          1  1  0
#> SRR1270829     1       0          1  1  0
#> SRR1270830     1       0          1  1  0
#> SRR1270831     1       0          1  1  0
#> SRR1270832     1       0          1  1  0
#> SRR1270833     1       0          1  1  0
#> SRR1270834     1       0          1  1  0
#> SRR1270835     1       0          1  1  0
#> SRR1270836     1       0          1  1  0
#> SRR1270837     1       0          1  1  0
#> SRR1270838     1       0          1  1  0
#> SRR1270839     1       0          1  1  0
#> SRR1270840     1       0          1  1  0
#> SRR1270841     1       0          1  1  0
#> SRR1270842     1       0          1  1  0
#> SRR1270843     1       0          1  1  0
#> SRR1270844     1       0          1  1  0
#> SRR1270845     1       0          1  1  0
#> SRR1270846     1       0          1  1  0
#> SRR1270847     1       0          1  1  0
#> SRR1270848     1       0          1  1  0
#> SRR1270849     1       0          1  1  0
#> SRR1270850     1       0          1  1  0
#> SRR1270851     2       0          1  0  1
#> SRR1270852     2       0          1  0  1
#> SRR1270853     2       0          1  0  1
#> SRR1270854     2       0          1  0  1
#> SRR1270855     2       0          1  0  1
#> SRR1270856     2       0          1  0  1
#> SRR1270857     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1 p2    p3
#> SRR1270715     1  0.0000      1.000 1.000  0 0.000
#> SRR1270716     1  0.0000      1.000 1.000  0 0.000
#> SRR1270717     1  0.0000      1.000 1.000  0 0.000
#> SRR1270718     1  0.0000      1.000 1.000  0 0.000
#> SRR1270719     1  0.0000      1.000 1.000  0 0.000
#> SRR1270720     1  0.0000      1.000 1.000  0 0.000
#> SRR1270721     1  0.0000      1.000 1.000  0 0.000
#> SRR1270722     1  0.0000      1.000 1.000  0 0.000
#> SRR1270723     1  0.0000      1.000 1.000  0 0.000
#> SRR1270724     1  0.0000      1.000 1.000  0 0.000
#> SRR1270725     1  0.0000      1.000 1.000  0 0.000
#> SRR1270726     1  0.0000      1.000 1.000  0 0.000
#> SRR1270727     1  0.0000      1.000 1.000  0 0.000
#> SRR1270728     1  0.0000      1.000 1.000  0 0.000
#> SRR1270729     1  0.0000      1.000 1.000  0 0.000
#> SRR1270730     1  0.0000      1.000 1.000  0 0.000
#> SRR1270731     1  0.0000      1.000 1.000  0 0.000
#> SRR1270732     1  0.0000      1.000 1.000  0 0.000
#> SRR1270733     1  0.0000      1.000 1.000  0 0.000
#> SRR1270734     1  0.0000      1.000 1.000  0 0.000
#> SRR1270735     1  0.0000      1.000 1.000  0 0.000
#> SRR1270736     1  0.0000      1.000 1.000  0 0.000
#> SRR1270737     1  0.0000      1.000 1.000  0 0.000
#> SRR1270738     1  0.0000      1.000 1.000  0 0.000
#> SRR1270739     1  0.0000      1.000 1.000  0 0.000
#> SRR1270740     1  0.0000      1.000 1.000  0 0.000
#> SRR1270741     1  0.0000      1.000 1.000  0 0.000
#> SRR1270742     1  0.0000      1.000 1.000  0 0.000
#> SRR1270743     1  0.0000      1.000 1.000  0 0.000
#> SRR1270744     1  0.0000      1.000 1.000  0 0.000
#> SRR1270745     1  0.0000      1.000 1.000  0 0.000
#> SRR1270746     1  0.0000      1.000 1.000  0 0.000
#> SRR1270747     1  0.0000      1.000 1.000  0 0.000
#> SRR1270748     1  0.0000      1.000 1.000  0 0.000
#> SRR1270749     1  0.0000      1.000 1.000  0 0.000
#> SRR1270750     1  0.0000      1.000 1.000  0 0.000
#> SRR1270751     1  0.0000      1.000 1.000  0 0.000
#> SRR1270752     1  0.0000      1.000 1.000  0 0.000
#> SRR1270753     1  0.0000      1.000 1.000  0 0.000
#> SRR1270754     1  0.0000      1.000 1.000  0 0.000
#> SRR1270755     1  0.0237      0.995 0.996  0 0.004
#> SRR1270756     1  0.0000      1.000 1.000  0 0.000
#> SRR1270757     1  0.0000      1.000 1.000  0 0.000
#> SRR1270758     1  0.0000      1.000 1.000  0 0.000
#> SRR1270759     1  0.0000      1.000 1.000  0 0.000
#> SRR1270760     1  0.0000      1.000 1.000  0 0.000
#> SRR1270761     1  0.0000      1.000 1.000  0 0.000
#> SRR1270762     1  0.0000      1.000 1.000  0 0.000
#> SRR1270763     1  0.0000      1.000 1.000  0 0.000
#> SRR1270764     1  0.0000      1.000 1.000  0 0.000
#> SRR1270765     2  0.0000      1.000 0.000  1 0.000
#> SRR1270766     2  0.0000      1.000 0.000  1 0.000
#> SRR1270767     2  0.0000      1.000 0.000  1 0.000
#> SRR1270768     2  0.0000      1.000 0.000  1 0.000
#> SRR1270769     2  0.0000      1.000 0.000  1 0.000
#> SRR1270770     2  0.0000      1.000 0.000  1 0.000
#> SRR1270771     2  0.0000      1.000 0.000  1 0.000
#> SRR1270772     2  0.0000      1.000 0.000  1 0.000
#> SRR1270773     2  0.0000      1.000 0.000  1 0.000
#> SRR1270774     2  0.0000      1.000 0.000  1 0.000
#> SRR1270775     2  0.0000      1.000 0.000  1 0.000
#> SRR1270776     2  0.0000      1.000 0.000  1 0.000
#> SRR1270777     2  0.0000      1.000 0.000  1 0.000
#> SRR1270778     2  0.0000      1.000 0.000  1 0.000
#> SRR1270779     2  0.0000      1.000 0.000  1 0.000
#> SRR1270780     2  0.0000      1.000 0.000  1 0.000
#> SRR1270781     2  0.0000      1.000 0.000  1 0.000
#> SRR1270782     2  0.0000      1.000 0.000  1 0.000
#> SRR1270783     2  0.0000      1.000 0.000  1 0.000
#> SRR1270784     2  0.0000      1.000 0.000  1 0.000
#> SRR1270785     2  0.0000      1.000 0.000  1 0.000
#> SRR1270786     2  0.0000      1.000 0.000  1 0.000
#> SRR1270787     2  0.0000      1.000 0.000  1 0.000
#> SRR1270788     2  0.0000      1.000 0.000  1 0.000
#> SRR1270789     2  0.0000      1.000 0.000  1 0.000
#> SRR1270790     2  0.0000      1.000 0.000  1 0.000
#> SRR1270791     2  0.0000      1.000 0.000  1 0.000
#> SRR1270792     2  0.0000      1.000 0.000  1 0.000
#> SRR1270793     2  0.0000      1.000 0.000  1 0.000
#> SRR1270794     2  0.0000      1.000 0.000  1 0.000
#> SRR1270795     2  0.0000      1.000 0.000  1 0.000
#> SRR1270796     2  0.0000      1.000 0.000  1 0.000
#> SRR1270797     2  0.0000      1.000 0.000  1 0.000
#> SRR1270798     2  0.0000      1.000 0.000  1 0.000
#> SRR1270799     2  0.0000      1.000 0.000  1 0.000
#> SRR1270800     2  0.0000      1.000 0.000  1 0.000
#> SRR1270801     2  0.0000      1.000 0.000  1 0.000
#> SRR1270802     2  0.0000      1.000 0.000  1 0.000
#> SRR1270803     2  0.0000      1.000 0.000  1 0.000
#> SRR1270804     2  0.0000      1.000 0.000  1 0.000
#> SRR1270805     3  0.0000      0.840 0.000  0 1.000
#> SRR1270806     3  0.0000      0.840 0.000  0 1.000
#> SRR1270807     3  0.0000      0.840 0.000  0 1.000
#> SRR1270808     3  0.0000      0.840 0.000  0 1.000
#> SRR1270809     3  0.0000      0.840 0.000  0 1.000
#> SRR1270810     3  0.0000      0.840 0.000  0 1.000
#> SRR1270811     3  0.0000      0.840 0.000  0 1.000
#> SRR1270812     3  0.0000      0.840 0.000  0 1.000
#> SRR1270813     3  0.0000      0.840 0.000  0 1.000
#> SRR1270814     3  0.0000      0.840 0.000  0 1.000
#> SRR1270815     3  0.0000      0.840 0.000  0 1.000
#> SRR1270816     3  0.0000      0.840 0.000  0 1.000
#> SRR1270817     3  0.0000      0.840 0.000  0 1.000
#> SRR1270818     3  0.0000      0.840 0.000  0 1.000
#> SRR1270819     3  0.0000      0.840 0.000  0 1.000
#> SRR1270820     3  0.0000      0.840 0.000  0 1.000
#> SRR1270821     3  0.0000      0.840 0.000  0 1.000
#> SRR1270822     3  0.0000      0.840 0.000  0 1.000
#> SRR1270823     3  0.0000      0.840 0.000  0 1.000
#> SRR1270824     3  0.0000      0.840 0.000  0 1.000
#> SRR1270825     3  0.0000      0.840 0.000  0 1.000
#> SRR1270826     3  0.0000      0.840 0.000  0 1.000
#> SRR1270827     3  0.0000      0.840 0.000  0 1.000
#> SRR1270828     3  0.0000      0.840 0.000  0 1.000
#> SRR1270829     3  0.0000      0.840 0.000  0 1.000
#> SRR1270830     3  0.0000      0.840 0.000  0 1.000
#> SRR1270831     3  0.0000      0.840 0.000  0 1.000
#> SRR1270832     3  0.0000      0.840 0.000  0 1.000
#> SRR1270833     3  0.6154      0.553 0.408  0 0.592
#> SRR1270834     3  0.6154      0.553 0.408  0 0.592
#> SRR1270835     3  0.6140      0.559 0.404  0 0.596
#> SRR1270836     3  0.6140      0.559 0.404  0 0.596
#> SRR1270837     3  0.4555      0.744 0.200  0 0.800
#> SRR1270838     3  0.4555      0.744 0.200  0 0.800
#> SRR1270839     3  0.4555      0.744 0.200  0 0.800
#> SRR1270840     3  0.6095      0.575 0.392  0 0.608
#> SRR1270841     3  0.6095      0.575 0.392  0 0.608
#> SRR1270842     3  0.6095      0.575 0.392  0 0.608
#> SRR1270843     3  0.6111      0.570 0.396  0 0.604
#> SRR1270844     3  0.6154      0.553 0.408  0 0.592
#> SRR1270845     3  0.6154      0.553 0.408  0 0.592
#> SRR1270846     3  0.6154      0.553 0.408  0 0.592
#> SRR1270847     3  0.6154      0.553 0.408  0 0.592
#> SRR1270848     3  0.6154      0.553 0.408  0 0.592
#> SRR1270849     3  0.6154      0.553 0.408  0 0.592
#> SRR1270850     3  0.6154      0.553 0.408  0 0.592
#> SRR1270851     2  0.0000      1.000 0.000  1 0.000
#> SRR1270852     2  0.0000      1.000 0.000  1 0.000
#> SRR1270853     2  0.0000      1.000 0.000  1 0.000
#> SRR1270854     2  0.0000      1.000 0.000  1 0.000
#> SRR1270855     2  0.0000      1.000 0.000  1 0.000
#> SRR1270856     2  0.0000      1.000 0.000  1 0.000
#> SRR1270857     2  0.0000      1.000 0.000  1 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1  p2    p3  p4
#> SRR1270715     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270716     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270717     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270718     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270719     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270720     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270721     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270722     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270723     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270724     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270725     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270726     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270727     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270728     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270729     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270730     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270731     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270732     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270733     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270734     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270735     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270736     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270737     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270738     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270739     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270740     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270741     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270742     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270743     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270744     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270745     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270746     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270747     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270748     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270749     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270750     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270751     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270752     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270753     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270754     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270755     1  0.0188      0.995 0.996 0.0 0.004 0.0
#> SRR1270756     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270757     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270758     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270759     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270760     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270761     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270762     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270763     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270764     1  0.0000      1.000 1.000 0.0 0.000 0.0
#> SRR1270765     2  0.0000      0.842 0.000 1.0 0.000 0.0
#> SRR1270766     2  0.0000      0.842 0.000 1.0 0.000 0.0
#> SRR1270767     2  0.0000      0.842 0.000 1.0 0.000 0.0
#> SRR1270768     2  0.0000      0.842 0.000 1.0 0.000 0.0
#> SRR1270769     2  0.0000      0.842 0.000 1.0 0.000 0.0
#> SRR1270770     2  0.0000      0.842 0.000 1.0 0.000 0.0
#> SRR1270771     2  0.0000      0.842 0.000 1.0 0.000 0.0
#> SRR1270772     2  0.0000      0.842 0.000 1.0 0.000 0.0
#> SRR1270773     2  0.0000      0.842 0.000 1.0 0.000 0.0
#> SRR1270774     2  0.0000      0.842 0.000 1.0 0.000 0.0
#> SRR1270775     2  0.0000      0.842 0.000 1.0 0.000 0.0
#> SRR1270776     2  0.0000      0.842 0.000 1.0 0.000 0.0
#> SRR1270777     2  0.0000      0.842 0.000 1.0 0.000 0.0
#> SRR1270778     2  0.0000      0.842 0.000 1.0 0.000 0.0
#> SRR1270779     2  0.0000      0.842 0.000 1.0 0.000 0.0
#> SRR1270780     2  0.0000      0.842 0.000 1.0 0.000 0.0
#> SRR1270781     2  0.0000      0.842 0.000 1.0 0.000 0.0
#> SRR1270782     2  0.0000      0.842 0.000 1.0 0.000 0.0
#> SRR1270783     2  0.0000      0.842 0.000 1.0 0.000 0.0
#> SRR1270784     2  0.0000      0.842 0.000 1.0 0.000 0.0
#> SRR1270785     2  0.4855      0.777 0.000 0.6 0.000 0.4
#> SRR1270786     2  0.4855      0.777 0.000 0.6 0.000 0.4
#> SRR1270787     2  0.4855      0.777 0.000 0.6 0.000 0.4
#> SRR1270788     2  0.4855      0.777 0.000 0.6 0.000 0.4
#> SRR1270789     2  0.4855      0.777 0.000 0.6 0.000 0.4
#> SRR1270790     2  0.4855      0.777 0.000 0.6 0.000 0.4
#> SRR1270791     2  0.4855      0.777 0.000 0.6 0.000 0.4
#> SRR1270792     2  0.4855      0.777 0.000 0.6 0.000 0.4
#> SRR1270793     2  0.4855      0.777 0.000 0.6 0.000 0.4
#> SRR1270794     2  0.4855      0.777 0.000 0.6 0.000 0.4
#> SRR1270795     2  0.4855      0.777 0.000 0.6 0.000 0.4
#> SRR1270796     2  0.4855      0.777 0.000 0.6 0.000 0.4
#> SRR1270797     2  0.4855      0.777 0.000 0.6 0.000 0.4
#> SRR1270798     2  0.4855      0.777 0.000 0.6 0.000 0.4
#> SRR1270799     2  0.4855      0.777 0.000 0.6 0.000 0.4
#> SRR1270800     2  0.4855      0.777 0.000 0.6 0.000 0.4
#> SRR1270801     2  0.4855      0.777 0.000 0.6 0.000 0.4
#> SRR1270802     2  0.4855      0.777 0.000 0.6 0.000 0.4
#> SRR1270803     2  0.4855      0.777 0.000 0.6 0.000 0.4
#> SRR1270804     2  0.4855      0.777 0.000 0.6 0.000 0.4
#> SRR1270805     3  0.0000      1.000 0.000 0.0 1.000 0.0
#> SRR1270806     3  0.0000      1.000 0.000 0.0 1.000 0.0
#> SRR1270807     3  0.0000      1.000 0.000 0.0 1.000 0.0
#> SRR1270808     3  0.0000      1.000 0.000 0.0 1.000 0.0
#> SRR1270809     3  0.0000      1.000 0.000 0.0 1.000 0.0
#> SRR1270810     3  0.0000      1.000 0.000 0.0 1.000 0.0
#> SRR1270811     3  0.0000      1.000 0.000 0.0 1.000 0.0
#> SRR1270812     3  0.0000      1.000 0.000 0.0 1.000 0.0
#> SRR1270813     3  0.0000      1.000 0.000 0.0 1.000 0.0
#> SRR1270814     3  0.0000      1.000 0.000 0.0 1.000 0.0
#> SRR1270815     3  0.0000      1.000 0.000 0.0 1.000 0.0
#> SRR1270816     3  0.0000      1.000 0.000 0.0 1.000 0.0
#> SRR1270817     3  0.0000      1.000 0.000 0.0 1.000 0.0
#> SRR1270818     3  0.0000      1.000 0.000 0.0 1.000 0.0
#> SRR1270819     3  0.0000      1.000 0.000 0.0 1.000 0.0
#> SRR1270820     3  0.0000      1.000 0.000 0.0 1.000 0.0
#> SRR1270821     3  0.0000      1.000 0.000 0.0 1.000 0.0
#> SRR1270822     3  0.0000      1.000 0.000 0.0 1.000 0.0
#> SRR1270823     3  0.0000      1.000 0.000 0.0 1.000 0.0
#> SRR1270824     3  0.0000      1.000 0.000 0.0 1.000 0.0
#> SRR1270825     3  0.0000      1.000 0.000 0.0 1.000 0.0
#> SRR1270826     3  0.0000      1.000 0.000 0.0 1.000 0.0
#> SRR1270827     3  0.0000      1.000 0.000 0.0 1.000 0.0
#> SRR1270828     3  0.0000      1.000 0.000 0.0 1.000 0.0
#> SRR1270829     3  0.0000      1.000 0.000 0.0 1.000 0.0
#> SRR1270830     3  0.0000      1.000 0.000 0.0 1.000 0.0
#> SRR1270831     3  0.0000      1.000 0.000 0.0 1.000 0.0
#> SRR1270832     3  0.0000      1.000 0.000 0.0 1.000 0.0
#> SRR1270833     4  0.4855      1.000 0.000 0.0 0.400 0.6
#> SRR1270834     4  0.4855      1.000 0.000 0.0 0.400 0.6
#> SRR1270835     4  0.4855      1.000 0.000 0.0 0.400 0.6
#> SRR1270836     4  0.4855      1.000 0.000 0.0 0.400 0.6
#> SRR1270837     4  0.4855      1.000 0.000 0.0 0.400 0.6
#> SRR1270838     4  0.4855      1.000 0.000 0.0 0.400 0.6
#> SRR1270839     4  0.4855      1.000 0.000 0.0 0.400 0.6
#> SRR1270840     4  0.4855      1.000 0.000 0.0 0.400 0.6
#> SRR1270841     4  0.4855      1.000 0.000 0.0 0.400 0.6
#> SRR1270842     4  0.4855      1.000 0.000 0.0 0.400 0.6
#> SRR1270843     4  0.4855      1.000 0.000 0.0 0.400 0.6
#> SRR1270844     4  0.4855      1.000 0.000 0.0 0.400 0.6
#> SRR1270845     4  0.4855      1.000 0.000 0.0 0.400 0.6
#> SRR1270846     4  0.4855      1.000 0.000 0.0 0.400 0.6
#> SRR1270847     4  0.4855      1.000 0.000 0.0 0.400 0.6
#> SRR1270848     4  0.4855      1.000 0.000 0.0 0.400 0.6
#> SRR1270849     4  0.4855      1.000 0.000 0.0 0.400 0.6
#> SRR1270850     4  0.4855      1.000 0.000 0.0 0.400 0.6
#> SRR1270851     2  0.0000      0.842 0.000 1.0 0.000 0.0
#> SRR1270852     2  0.0000      0.842 0.000 1.0 0.000 0.0
#> SRR1270853     2  0.0000      0.842 0.000 1.0 0.000 0.0
#> SRR1270854     2  0.0000      0.842 0.000 1.0 0.000 0.0
#> SRR1270855     2  0.0000      0.842 0.000 1.0 0.000 0.0
#> SRR1270856     2  0.0000      0.842 0.000 1.0 0.000 0.0
#> SRR1270857     2  0.0000      0.842 0.000 1.0 0.000 0.0

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette   p1 p2   p3 p4 p5
#> SRR1270715     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270716     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270717     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270718     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270719     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270720     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270721     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270722     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270723     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270724     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270725     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270726     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270727     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270728     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270729     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270730     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270731     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270732     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270733     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270734     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270735     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270736     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270737     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270738     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270739     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270740     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270741     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270742     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270743     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270744     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270745     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270746     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270747     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270748     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270749     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270750     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270751     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270752     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270753     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270754     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270755     1   0.228      0.860 0.88  0 0.12  0  0
#> SRR1270756     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270757     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270758     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270759     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270760     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270761     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270762     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270763     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270764     1   0.000      0.997 1.00  0 0.00  0  0
#> SRR1270765     2   0.000      1.000 0.00  1 0.00  0  0
#> SRR1270766     2   0.000      1.000 0.00  1 0.00  0  0
#> SRR1270767     2   0.000      1.000 0.00  1 0.00  0  0
#> SRR1270768     2   0.000      1.000 0.00  1 0.00  0  0
#> SRR1270769     2   0.000      1.000 0.00  1 0.00  0  0
#> SRR1270770     2   0.000      1.000 0.00  1 0.00  0  0
#> SRR1270771     2   0.000      1.000 0.00  1 0.00  0  0
#> SRR1270772     2   0.000      1.000 0.00  1 0.00  0  0
#> SRR1270773     2   0.000      1.000 0.00  1 0.00  0  0
#> SRR1270774     2   0.000      1.000 0.00  1 0.00  0  0
#> SRR1270775     2   0.000      1.000 0.00  1 0.00  0  0
#> SRR1270776     2   0.000      1.000 0.00  1 0.00  0  0
#> SRR1270777     2   0.000      1.000 0.00  1 0.00  0  0
#> SRR1270778     2   0.000      1.000 0.00  1 0.00  0  0
#> SRR1270779     2   0.000      1.000 0.00  1 0.00  0  0
#> SRR1270780     2   0.000      1.000 0.00  1 0.00  0  0
#> SRR1270781     2   0.000      1.000 0.00  1 0.00  0  0
#> SRR1270782     2   0.000      1.000 0.00  1 0.00  0  0
#> SRR1270783     2   0.000      1.000 0.00  1 0.00  0  0
#> SRR1270784     2   0.000      1.000 0.00  1 0.00  0  0
#> SRR1270785     5   0.000      1.000 0.00  0 0.00  0  1
#> SRR1270786     5   0.000      1.000 0.00  0 0.00  0  1
#> SRR1270787     5   0.000      1.000 0.00  0 0.00  0  1
#> SRR1270788     5   0.000      1.000 0.00  0 0.00  0  1
#> SRR1270789     5   0.000      1.000 0.00  0 0.00  0  1
#> SRR1270790     5   0.000      1.000 0.00  0 0.00  0  1
#> SRR1270791     5   0.000      1.000 0.00  0 0.00  0  1
#> SRR1270792     5   0.000      1.000 0.00  0 0.00  0  1
#> SRR1270793     5   0.000      1.000 0.00  0 0.00  0  1
#> SRR1270794     5   0.000      1.000 0.00  0 0.00  0  1
#> SRR1270795     5   0.000      1.000 0.00  0 0.00  0  1
#> SRR1270796     5   0.000      1.000 0.00  0 0.00  0  1
#> SRR1270797     5   0.000      1.000 0.00  0 0.00  0  1
#> SRR1270798     5   0.000      1.000 0.00  0 0.00  0  1
#> SRR1270799     5   0.000      1.000 0.00  0 0.00  0  1
#> SRR1270800     5   0.000      1.000 0.00  0 0.00  0  1
#> SRR1270801     5   0.000      1.000 0.00  0 0.00  0  1
#> SRR1270802     5   0.000      1.000 0.00  0 0.00  0  1
#> SRR1270803     5   0.000      1.000 0.00  0 0.00  0  1
#> SRR1270804     5   0.000      1.000 0.00  0 0.00  0  1
#> SRR1270805     3   0.000      1.000 0.00  0 1.00  0  0
#> SRR1270806     3   0.000      1.000 0.00  0 1.00  0  0
#> SRR1270807     3   0.000      1.000 0.00  0 1.00  0  0
#> SRR1270808     3   0.000      1.000 0.00  0 1.00  0  0
#> SRR1270809     3   0.000      1.000 0.00  0 1.00  0  0
#> SRR1270810     3   0.000      1.000 0.00  0 1.00  0  0
#> SRR1270811     3   0.000      1.000 0.00  0 1.00  0  0
#> SRR1270812     3   0.000      1.000 0.00  0 1.00  0  0
#> SRR1270813     3   0.000      1.000 0.00  0 1.00  0  0
#> SRR1270814     3   0.000      1.000 0.00  0 1.00  0  0
#> SRR1270815     3   0.000      1.000 0.00  0 1.00  0  0
#> SRR1270816     3   0.000      1.000 0.00  0 1.00  0  0
#> SRR1270817     3   0.000      1.000 0.00  0 1.00  0  0
#> SRR1270818     3   0.000      1.000 0.00  0 1.00  0  0
#> SRR1270819     3   0.000      1.000 0.00  0 1.00  0  0
#> SRR1270820     3   0.000      1.000 0.00  0 1.00  0  0
#> SRR1270821     3   0.000      1.000 0.00  0 1.00  0  0
#> SRR1270822     3   0.000      1.000 0.00  0 1.00  0  0
#> SRR1270823     3   0.000      1.000 0.00  0 1.00  0  0
#> SRR1270824     3   0.000      1.000 0.00  0 1.00  0  0
#> SRR1270825     3   0.000      1.000 0.00  0 1.00  0  0
#> SRR1270826     3   0.000      1.000 0.00  0 1.00  0  0
#> SRR1270827     3   0.000      1.000 0.00  0 1.00  0  0
#> SRR1270828     3   0.000      1.000 0.00  0 1.00  0  0
#> SRR1270829     3   0.000      1.000 0.00  0 1.00  0  0
#> SRR1270830     3   0.000      1.000 0.00  0 1.00  0  0
#> SRR1270831     3   0.000      1.000 0.00  0 1.00  0  0
#> SRR1270832     3   0.000      1.000 0.00  0 1.00  0  0
#> SRR1270833     4   0.000      1.000 0.00  0 0.00  1  0
#> SRR1270834     4   0.000      1.000 0.00  0 0.00  1  0
#> SRR1270835     4   0.000      1.000 0.00  0 0.00  1  0
#> SRR1270836     4   0.000      1.000 0.00  0 0.00  1  0
#> SRR1270837     4   0.000      1.000 0.00  0 0.00  1  0
#> SRR1270838     4   0.000      1.000 0.00  0 0.00  1  0
#> SRR1270839     4   0.000      1.000 0.00  0 0.00  1  0
#> SRR1270840     4   0.000      1.000 0.00  0 0.00  1  0
#> SRR1270841     4   0.000      1.000 0.00  0 0.00  1  0
#> SRR1270842     4   0.000      1.000 0.00  0 0.00  1  0
#> SRR1270843     4   0.000      1.000 0.00  0 0.00  1  0
#> SRR1270844     4   0.000      1.000 0.00  0 0.00  1  0
#> SRR1270845     4   0.000      1.000 0.00  0 0.00  1  0
#> SRR1270846     4   0.000      1.000 0.00  0 0.00  1  0
#> SRR1270847     4   0.000      1.000 0.00  0 0.00  1  0
#> SRR1270848     4   0.000      1.000 0.00  0 0.00  1  0
#> SRR1270849     4   0.000      1.000 0.00  0 0.00  1  0
#> SRR1270850     4   0.000      1.000 0.00  0 0.00  1  0
#> SRR1270851     2   0.000      1.000 0.00  1 0.00  0  0
#> SRR1270852     2   0.000      1.000 0.00  1 0.00  0  0
#> SRR1270853     2   0.000      1.000 0.00  1 0.00  0  0
#> SRR1270854     2   0.000      1.000 0.00  1 0.00  0  0
#> SRR1270855     2   0.000      1.000 0.00  1 0.00  0  0
#> SRR1270856     2   0.000      1.000 0.00  1 0.00  0  0
#> SRR1270857     2   0.000      1.000 0.00  1 0.00  0  0

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1 p2    p3    p4 p5    p6
#> SRR1270715     6  0.0260      1.000 0.008  0 0.000 0.000  0 0.992
#> SRR1270716     6  0.0260      1.000 0.008  0 0.000 0.000  0 0.992
#> SRR1270717     6  0.0260      1.000 0.008  0 0.000 0.000  0 0.992
#> SRR1270718     6  0.0260      1.000 0.008  0 0.000 0.000  0 0.992
#> SRR1270719     6  0.0260      1.000 0.008  0 0.000 0.000  0 0.992
#> SRR1270720     6  0.0260      1.000 0.008  0 0.000 0.000  0 0.992
#> SRR1270721     6  0.0260      1.000 0.008  0 0.000 0.000  0 0.992
#> SRR1270722     6  0.0260      1.000 0.008  0 0.000 0.000  0 0.992
#> SRR1270723     6  0.0260      1.000 0.008  0 0.000 0.000  0 0.992
#> SRR1270724     6  0.0260      1.000 0.008  0 0.000 0.000  0 0.992
#> SRR1270725     6  0.0363      0.996 0.012  0 0.000 0.000  0 0.988
#> SRR1270726     6  0.0260      1.000 0.008  0 0.000 0.000  0 0.992
#> SRR1270727     6  0.0260      1.000 0.008  0 0.000 0.000  0 0.992
#> SRR1270728     6  0.0260      1.000 0.008  0 0.000 0.000  0 0.992
#> SRR1270729     6  0.0260      1.000 0.008  0 0.000 0.000  0 0.992
#> SRR1270730     6  0.0260      1.000 0.008  0 0.000 0.000  0 0.992
#> SRR1270731     6  0.0260      1.000 0.008  0 0.000 0.000  0 0.992
#> SRR1270732     6  0.0260      1.000 0.008  0 0.000 0.000  0 0.992
#> SRR1270733     6  0.0260      1.000 0.008  0 0.000 0.000  0 0.992
#> SRR1270734     6  0.0260      1.000 0.008  0 0.000 0.000  0 0.992
#> SRR1270735     6  0.0260      1.000 0.008  0 0.000 0.000  0 0.992
#> SRR1270736     6  0.0260      1.000 0.008  0 0.000 0.000  0 0.992
#> SRR1270737     6  0.0260      1.000 0.008  0 0.000 0.000  0 0.992
#> SRR1270738     6  0.0363      0.996 0.012  0 0.000 0.000  0 0.988
#> SRR1270739     6  0.0260      1.000 0.008  0 0.000 0.000  0 0.992
#> SRR1270740     1  0.0146      1.000 0.996  0 0.000 0.000  0 0.004
#> SRR1270741     1  0.0146      1.000 0.996  0 0.000 0.000  0 0.004
#> SRR1270742     1  0.0146      1.000 0.996  0 0.000 0.000  0 0.004
#> SRR1270743     1  0.0146      1.000 0.996  0 0.000 0.000  0 0.004
#> SRR1270744     1  0.0146      1.000 0.996  0 0.000 0.000  0 0.004
#> SRR1270745     1  0.0146      1.000 0.996  0 0.000 0.000  0 0.004
#> SRR1270746     1  0.0146      1.000 0.996  0 0.000 0.000  0 0.004
#> SRR1270747     1  0.0146      1.000 0.996  0 0.000 0.000  0 0.004
#> SRR1270748     1  0.0146      1.000 0.996  0 0.000 0.000  0 0.004
#> SRR1270749     1  0.0146      1.000 0.996  0 0.000 0.000  0 0.004
#> SRR1270750     1  0.0146      1.000 0.996  0 0.000 0.000  0 0.004
#> SRR1270751     1  0.0146      1.000 0.996  0 0.000 0.000  0 0.004
#> SRR1270752     1  0.0146      1.000 0.996  0 0.000 0.000  0 0.004
#> SRR1270753     1  0.0146      1.000 0.996  0 0.000 0.000  0 0.004
#> SRR1270754     1  0.0146      1.000 0.996  0 0.000 0.000  0 0.004
#> SRR1270755     1  0.0146      0.995 0.996  0 0.004 0.000  0 0.000
#> SRR1270756     1  0.0146      1.000 0.996  0 0.000 0.000  0 0.004
#> SRR1270757     1  0.0146      1.000 0.996  0 0.000 0.000  0 0.004
#> SRR1270758     1  0.0146      1.000 0.996  0 0.000 0.000  0 0.004
#> SRR1270759     1  0.0146      1.000 0.996  0 0.000 0.000  0 0.004
#> SRR1270760     1  0.0146      1.000 0.996  0 0.000 0.000  0 0.004
#> SRR1270761     1  0.0146      1.000 0.996  0 0.000 0.000  0 0.004
#> SRR1270762     1  0.0146      1.000 0.996  0 0.000 0.000  0 0.004
#> SRR1270763     1  0.0146      1.000 0.996  0 0.000 0.000  0 0.004
#> SRR1270764     1  0.0146      1.000 0.996  0 0.000 0.000  0 0.004
#> SRR1270765     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270766     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270767     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270768     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270769     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270770     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270771     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270772     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270773     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270774     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270775     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270776     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270777     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270778     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270779     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270780     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270781     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270782     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270783     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270784     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270785     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270786     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270787     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270788     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270789     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270790     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270791     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270792     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270793     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270794     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270795     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270796     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270797     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270798     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270799     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270800     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270801     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270802     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270803     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270804     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270805     3  0.0000      0.999 0.000  0 1.000 0.000  0 0.000
#> SRR1270806     3  0.0000      0.999 0.000  0 1.000 0.000  0 0.000
#> SRR1270807     3  0.0000      0.999 0.000  0 1.000 0.000  0 0.000
#> SRR1270808     3  0.0000      0.999 0.000  0 1.000 0.000  0 0.000
#> SRR1270809     3  0.0000      0.999 0.000  0 1.000 0.000  0 0.000
#> SRR1270810     3  0.0000      0.999 0.000  0 1.000 0.000  0 0.000
#> SRR1270811     3  0.0000      0.999 0.000  0 1.000 0.000  0 0.000
#> SRR1270812     3  0.0000      0.999 0.000  0 1.000 0.000  0 0.000
#> SRR1270813     3  0.0000      0.999 0.000  0 1.000 0.000  0 0.000
#> SRR1270814     3  0.0000      0.999 0.000  0 1.000 0.000  0 0.000
#> SRR1270815     3  0.0000      0.999 0.000  0 1.000 0.000  0 0.000
#> SRR1270816     3  0.0000      0.999 0.000  0 1.000 0.000  0 0.000
#> SRR1270817     3  0.0000      0.999 0.000  0 1.000 0.000  0 0.000
#> SRR1270818     3  0.0000      0.999 0.000  0 1.000 0.000  0 0.000
#> SRR1270819     3  0.0000      0.999 0.000  0 1.000 0.000  0 0.000
#> SRR1270820     3  0.0000      0.999 0.000  0 1.000 0.000  0 0.000
#> SRR1270821     3  0.0000      0.999 0.000  0 1.000 0.000  0 0.000
#> SRR1270822     3  0.0000      0.999 0.000  0 1.000 0.000  0 0.000
#> SRR1270823     3  0.0000      0.999 0.000  0 1.000 0.000  0 0.000
#> SRR1270824     3  0.0000      0.999 0.000  0 1.000 0.000  0 0.000
#> SRR1270825     3  0.0000      0.999 0.000  0 1.000 0.000  0 0.000
#> SRR1270826     3  0.0000      0.999 0.000  0 1.000 0.000  0 0.000
#> SRR1270827     3  0.0000      0.999 0.000  0 1.000 0.000  0 0.000
#> SRR1270828     3  0.0146      0.996 0.000  0 0.996 0.004  0 0.000
#> SRR1270829     3  0.0146      0.996 0.000  0 0.996 0.004  0 0.000
#> SRR1270830     3  0.0260      0.993 0.000  0 0.992 0.008  0 0.000
#> SRR1270831     3  0.0508      0.987 0.004  0 0.984 0.012  0 0.000
#> SRR1270832     3  0.0260      0.993 0.000  0 0.992 0.008  0 0.000
#> SRR1270833     4  0.0000      0.995 0.000  0 0.000 1.000  0 0.000
#> SRR1270834     4  0.0000      0.995 0.000  0 0.000 1.000  0 0.000
#> SRR1270835     4  0.0405      0.995 0.004  0 0.000 0.988  0 0.008
#> SRR1270836     4  0.0405      0.995 0.004  0 0.000 0.988  0 0.008
#> SRR1270837     4  0.0405      0.995 0.004  0 0.000 0.988  0 0.008
#> SRR1270838     4  0.0405      0.995 0.004  0 0.000 0.988  0 0.008
#> SRR1270839     4  0.0405      0.995 0.004  0 0.000 0.988  0 0.008
#> SRR1270840     4  0.0405      0.995 0.004  0 0.000 0.988  0 0.008
#> SRR1270841     4  0.0405      0.995 0.004  0 0.000 0.988  0 0.008
#> SRR1270842     4  0.0405      0.995 0.004  0 0.000 0.988  0 0.008
#> SRR1270843     4  0.0405      0.995 0.004  0 0.000 0.988  0 0.008
#> SRR1270844     4  0.0000      0.995 0.000  0 0.000 1.000  0 0.000
#> SRR1270845     4  0.0000      0.995 0.000  0 0.000 1.000  0 0.000
#> SRR1270846     4  0.0000      0.995 0.000  0 0.000 1.000  0 0.000
#> SRR1270847     4  0.0000      0.995 0.000  0 0.000 1.000  0 0.000
#> SRR1270848     4  0.0000      0.995 0.000  0 0.000 1.000  0 0.000
#> SRR1270849     4  0.0000      0.995 0.000  0 0.000 1.000  0 0.000
#> SRR1270850     4  0.0000      0.995 0.000  0 0.000 1.000  0 0.000
#> SRR1270851     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270852     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270853     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270854     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270855     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270856     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270857     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14577 rows and 143 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.993       0.996         0.4469 0.556   0.556
#> 3 3 0.856           0.962       0.972         0.4854 0.773   0.592
#> 4 4 0.897           0.970       0.946         0.0870 0.950   0.849
#> 5 5 1.000           0.999       0.999         0.0725 0.947   0.810
#> 6 6 1.000           0.999       0.997         0.0792 0.938   0.728

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 5

There is also optional best \(k\) = 2 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1270715     1  0.0000      0.994 1.000 0.000
#> SRR1270716     1  0.0000      0.994 1.000 0.000
#> SRR1270717     1  0.0000      0.994 1.000 0.000
#> SRR1270718     1  0.0000      0.994 1.000 0.000
#> SRR1270719     1  0.0000      0.994 1.000 0.000
#> SRR1270720     1  0.0000      0.994 1.000 0.000
#> SRR1270721     1  0.0000      0.994 1.000 0.000
#> SRR1270722     1  0.0000      0.994 1.000 0.000
#> SRR1270723     1  0.0000      0.994 1.000 0.000
#> SRR1270724     1  0.0000      0.994 1.000 0.000
#> SRR1270725     1  0.0000      0.994 1.000 0.000
#> SRR1270726     1  0.0000      0.994 1.000 0.000
#> SRR1270727     1  0.0000      0.994 1.000 0.000
#> SRR1270728     1  0.0000      0.994 1.000 0.000
#> SRR1270729     1  0.0000      0.994 1.000 0.000
#> SRR1270730     1  0.0000      0.994 1.000 0.000
#> SRR1270731     1  0.0000      0.994 1.000 0.000
#> SRR1270732     1  0.0000      0.994 1.000 0.000
#> SRR1270733     1  0.0000      0.994 1.000 0.000
#> SRR1270734     1  0.0000      0.994 1.000 0.000
#> SRR1270735     1  0.0000      0.994 1.000 0.000
#> SRR1270736     1  0.0000      0.994 1.000 0.000
#> SRR1270737     1  0.0000      0.994 1.000 0.000
#> SRR1270738     1  0.0000      0.994 1.000 0.000
#> SRR1270739     1  0.0000      0.994 1.000 0.000
#> SRR1270740     1  0.0000      0.994 1.000 0.000
#> SRR1270741     1  0.0000      0.994 1.000 0.000
#> SRR1270742     1  0.0000      0.994 1.000 0.000
#> SRR1270743     1  0.0000      0.994 1.000 0.000
#> SRR1270744     1  0.0000      0.994 1.000 0.000
#> SRR1270745     1  0.0000      0.994 1.000 0.000
#> SRR1270746     1  0.0000      0.994 1.000 0.000
#> SRR1270747     1  0.0000      0.994 1.000 0.000
#> SRR1270748     1  0.0000      0.994 1.000 0.000
#> SRR1270749     1  0.0000      0.994 1.000 0.000
#> SRR1270750     1  0.0000      0.994 1.000 0.000
#> SRR1270751     1  0.0000      0.994 1.000 0.000
#> SRR1270752     1  0.0000      0.994 1.000 0.000
#> SRR1270753     1  0.0000      0.994 1.000 0.000
#> SRR1270754     1  0.0000      0.994 1.000 0.000
#> SRR1270755     1  0.0000      0.994 1.000 0.000
#> SRR1270756     1  0.0000      0.994 1.000 0.000
#> SRR1270757     1  0.0000      0.994 1.000 0.000
#> SRR1270758     1  0.0000      0.994 1.000 0.000
#> SRR1270759     1  0.0000      0.994 1.000 0.000
#> SRR1270760     1  0.0000      0.994 1.000 0.000
#> SRR1270761     1  0.0000      0.994 1.000 0.000
#> SRR1270762     1  0.0000      0.994 1.000 0.000
#> SRR1270763     1  0.0000      0.994 1.000 0.000
#> SRR1270764     1  0.0000      0.994 1.000 0.000
#> SRR1270765     2  0.0000      1.000 0.000 1.000
#> SRR1270766     2  0.0000      1.000 0.000 1.000
#> SRR1270767     2  0.0000      1.000 0.000 1.000
#> SRR1270768     2  0.0000      1.000 0.000 1.000
#> SRR1270769     2  0.0000      1.000 0.000 1.000
#> SRR1270770     2  0.0000      1.000 0.000 1.000
#> SRR1270771     2  0.0000      1.000 0.000 1.000
#> SRR1270772     2  0.0000      1.000 0.000 1.000
#> SRR1270773     2  0.0000      1.000 0.000 1.000
#> SRR1270774     2  0.0000      1.000 0.000 1.000
#> SRR1270775     2  0.0000      1.000 0.000 1.000
#> SRR1270776     2  0.0000      1.000 0.000 1.000
#> SRR1270777     2  0.0000      1.000 0.000 1.000
#> SRR1270778     2  0.0000      1.000 0.000 1.000
#> SRR1270779     2  0.0000      1.000 0.000 1.000
#> SRR1270780     2  0.0000      1.000 0.000 1.000
#> SRR1270781     2  0.0000      1.000 0.000 1.000
#> SRR1270782     2  0.0000      1.000 0.000 1.000
#> SRR1270783     2  0.0000      1.000 0.000 1.000
#> SRR1270784     2  0.0000      1.000 0.000 1.000
#> SRR1270785     2  0.0000      1.000 0.000 1.000
#> SRR1270786     2  0.0000      1.000 0.000 1.000
#> SRR1270787     2  0.0000      1.000 0.000 1.000
#> SRR1270788     2  0.0000      1.000 0.000 1.000
#> SRR1270789     2  0.0000      1.000 0.000 1.000
#> SRR1270790     2  0.0000      1.000 0.000 1.000
#> SRR1270791     2  0.0000      1.000 0.000 1.000
#> SRR1270792     2  0.0000      1.000 0.000 1.000
#> SRR1270793     2  0.0000      1.000 0.000 1.000
#> SRR1270794     2  0.0000      1.000 0.000 1.000
#> SRR1270795     2  0.0000      1.000 0.000 1.000
#> SRR1270796     2  0.0000      1.000 0.000 1.000
#> SRR1270797     2  0.0000      1.000 0.000 1.000
#> SRR1270798     2  0.0000      1.000 0.000 1.000
#> SRR1270799     2  0.0000      1.000 0.000 1.000
#> SRR1270800     2  0.0000      1.000 0.000 1.000
#> SRR1270801     2  0.0000      1.000 0.000 1.000
#> SRR1270802     2  0.0000      1.000 0.000 1.000
#> SRR1270803     2  0.0000      1.000 0.000 1.000
#> SRR1270804     2  0.0000      1.000 0.000 1.000
#> SRR1270805     1  0.0000      0.994 1.000 0.000
#> SRR1270806     1  0.0000      0.994 1.000 0.000
#> SRR1270807     1  0.0000      0.994 1.000 0.000
#> SRR1270808     1  0.0000      0.994 1.000 0.000
#> SRR1270809     1  0.0000      0.994 1.000 0.000
#> SRR1270810     1  0.0000      0.994 1.000 0.000
#> SRR1270811     1  0.0000      0.994 1.000 0.000
#> SRR1270812     1  0.0000      0.994 1.000 0.000
#> SRR1270813     1  0.0000      0.994 1.000 0.000
#> SRR1270814     1  0.0000      0.994 1.000 0.000
#> SRR1270815     1  0.0000      0.994 1.000 0.000
#> SRR1270816     1  0.0000      0.994 1.000 0.000
#> SRR1270817     1  0.0000      0.994 1.000 0.000
#> SRR1270818     1  0.0000      0.994 1.000 0.000
#> SRR1270819     1  0.0000      0.994 1.000 0.000
#> SRR1270820     1  0.0000      0.994 1.000 0.000
#> SRR1270821     1  0.0000      0.994 1.000 0.000
#> SRR1270822     1  0.0000      0.994 1.000 0.000
#> SRR1270823     1  0.0000      0.994 1.000 0.000
#> SRR1270824     1  0.0000      0.994 1.000 0.000
#> SRR1270825     1  0.0000      0.994 1.000 0.000
#> SRR1270826     1  0.0000      0.994 1.000 0.000
#> SRR1270827     1  0.0000      0.994 1.000 0.000
#> SRR1270828     1  0.0000      0.994 1.000 0.000
#> SRR1270829     1  0.0000      0.994 1.000 0.000
#> SRR1270830     1  0.0000      0.994 1.000 0.000
#> SRR1270831     1  0.0000      0.994 1.000 0.000
#> SRR1270832     1  0.0000      0.994 1.000 0.000
#> SRR1270833     1  0.2948      0.951 0.948 0.052
#> SRR1270834     1  0.2948      0.951 0.948 0.052
#> SRR1270835     1  0.0672      0.989 0.992 0.008
#> SRR1270836     1  0.0672      0.989 0.992 0.008
#> SRR1270837     1  0.0672      0.989 0.992 0.008
#> SRR1270838     1  0.0672      0.989 0.992 0.008
#> SRR1270839     1  0.0672      0.989 0.992 0.008
#> SRR1270840     1  0.0672      0.989 0.992 0.008
#> SRR1270841     1  0.0672      0.989 0.992 0.008
#> SRR1270842     1  0.0672      0.989 0.992 0.008
#> SRR1270843     1  0.0672      0.989 0.992 0.008
#> SRR1270844     1  0.2948      0.951 0.948 0.052
#> SRR1270845     1  0.2948      0.951 0.948 0.052
#> SRR1270846     1  0.2948      0.951 0.948 0.052
#> SRR1270847     1  0.2948      0.951 0.948 0.052
#> SRR1270848     1  0.2948      0.951 0.948 0.052
#> SRR1270849     1  0.2948      0.951 0.948 0.052
#> SRR1270850     1  0.2948      0.951 0.948 0.052
#> SRR1270851     2  0.0000      1.000 0.000 1.000
#> SRR1270852     2  0.0000      1.000 0.000 1.000
#> SRR1270853     2  0.0000      1.000 0.000 1.000
#> SRR1270854     2  0.0000      1.000 0.000 1.000
#> SRR1270855     2  0.0000      1.000 0.000 1.000
#> SRR1270856     2  0.0000      1.000 0.000 1.000
#> SRR1270857     2  0.0000      1.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette p1  p2  p3
#> SRR1270715     1   0.000      1.000  1 0.0 0.0
#> SRR1270716     1   0.000      1.000  1 0.0 0.0
#> SRR1270717     1   0.000      1.000  1 0.0 0.0
#> SRR1270718     1   0.000      1.000  1 0.0 0.0
#> SRR1270719     1   0.000      1.000  1 0.0 0.0
#> SRR1270720     1   0.000      1.000  1 0.0 0.0
#> SRR1270721     1   0.000      1.000  1 0.0 0.0
#> SRR1270722     1   0.000      1.000  1 0.0 0.0
#> SRR1270723     1   0.000      1.000  1 0.0 0.0
#> SRR1270724     1   0.000      1.000  1 0.0 0.0
#> SRR1270725     1   0.000      1.000  1 0.0 0.0
#> SRR1270726     1   0.000      1.000  1 0.0 0.0
#> SRR1270727     1   0.000      1.000  1 0.0 0.0
#> SRR1270728     1   0.000      1.000  1 0.0 0.0
#> SRR1270729     1   0.000      1.000  1 0.0 0.0
#> SRR1270730     1   0.000      1.000  1 0.0 0.0
#> SRR1270731     1   0.000      1.000  1 0.0 0.0
#> SRR1270732     1   0.000      1.000  1 0.0 0.0
#> SRR1270733     1   0.000      1.000  1 0.0 0.0
#> SRR1270734     1   0.000      1.000  1 0.0 0.0
#> SRR1270735     1   0.000      1.000  1 0.0 0.0
#> SRR1270736     1   0.000      1.000  1 0.0 0.0
#> SRR1270737     1   0.000      1.000  1 0.0 0.0
#> SRR1270738     1   0.000      1.000  1 0.0 0.0
#> SRR1270739     1   0.000      1.000  1 0.0 0.0
#> SRR1270740     1   0.000      1.000  1 0.0 0.0
#> SRR1270741     1   0.000      1.000  1 0.0 0.0
#> SRR1270742     1   0.000      1.000  1 0.0 0.0
#> SRR1270743     1   0.000      1.000  1 0.0 0.0
#> SRR1270744     1   0.000      1.000  1 0.0 0.0
#> SRR1270745     1   0.000      1.000  1 0.0 0.0
#> SRR1270746     1   0.000      1.000  1 0.0 0.0
#> SRR1270747     1   0.000      1.000  1 0.0 0.0
#> SRR1270748     1   0.000      1.000  1 0.0 0.0
#> SRR1270749     1   0.000      1.000  1 0.0 0.0
#> SRR1270750     1   0.000      1.000  1 0.0 0.0
#> SRR1270751     1   0.000      1.000  1 0.0 0.0
#> SRR1270752     1   0.000      1.000  1 0.0 0.0
#> SRR1270753     1   0.000      1.000  1 0.0 0.0
#> SRR1270754     1   0.000      1.000  1 0.0 0.0
#> SRR1270755     1   0.000      1.000  1 0.0 0.0
#> SRR1270756     1   0.000      1.000  1 0.0 0.0
#> SRR1270757     1   0.000      1.000  1 0.0 0.0
#> SRR1270758     1   0.000      1.000  1 0.0 0.0
#> SRR1270759     1   0.000      1.000  1 0.0 0.0
#> SRR1270760     1   0.000      1.000  1 0.0 0.0
#> SRR1270761     1   0.000      1.000  1 0.0 0.0
#> SRR1270762     1   0.000      1.000  1 0.0 0.0
#> SRR1270763     1   0.000      1.000  1 0.0 0.0
#> SRR1270764     1   0.000      1.000  1 0.0 0.0
#> SRR1270765     2   0.000      0.906  0 1.0 0.0
#> SRR1270766     2   0.000      0.906  0 1.0 0.0
#> SRR1270767     2   0.000      0.906  0 1.0 0.0
#> SRR1270768     2   0.000      0.906  0 1.0 0.0
#> SRR1270769     2   0.000      0.906  0 1.0 0.0
#> SRR1270770     2   0.000      0.906  0 1.0 0.0
#> SRR1270771     2   0.000      0.906  0 1.0 0.0
#> SRR1270772     2   0.000      0.906  0 1.0 0.0
#> SRR1270773     2   0.000      0.906  0 1.0 0.0
#> SRR1270774     2   0.000      0.906  0 1.0 0.0
#> SRR1270775     2   0.000      0.906  0 1.0 0.0
#> SRR1270776     2   0.000      0.906  0 1.0 0.0
#> SRR1270777     2   0.000      0.906  0 1.0 0.0
#> SRR1270778     2   0.000      0.906  0 1.0 0.0
#> SRR1270779     2   0.000      0.906  0 1.0 0.0
#> SRR1270780     2   0.000      0.906  0 1.0 0.0
#> SRR1270781     2   0.000      0.906  0 1.0 0.0
#> SRR1270782     2   0.000      0.906  0 1.0 0.0
#> SRR1270783     2   0.000      0.906  0 1.0 0.0
#> SRR1270784     2   0.000      0.906  0 1.0 0.0
#> SRR1270785     2   0.455      0.853  0 0.8 0.2
#> SRR1270786     2   0.455      0.853  0 0.8 0.2
#> SRR1270787     2   0.455      0.853  0 0.8 0.2
#> SRR1270788     2   0.455      0.853  0 0.8 0.2
#> SRR1270789     2   0.455      0.853  0 0.8 0.2
#> SRR1270790     2   0.455      0.853  0 0.8 0.2
#> SRR1270791     2   0.455      0.853  0 0.8 0.2
#> SRR1270792     2   0.455      0.853  0 0.8 0.2
#> SRR1270793     2   0.455      0.853  0 0.8 0.2
#> SRR1270794     2   0.455      0.853  0 0.8 0.2
#> SRR1270795     2   0.455      0.853  0 0.8 0.2
#> SRR1270796     2   0.455      0.853  0 0.8 0.2
#> SRR1270797     2   0.455      0.853  0 0.8 0.2
#> SRR1270798     2   0.455      0.853  0 0.8 0.2
#> SRR1270799     2   0.455      0.853  0 0.8 0.2
#> SRR1270800     2   0.455      0.853  0 0.8 0.2
#> SRR1270801     2   0.455      0.853  0 0.8 0.2
#> SRR1270802     2   0.455      0.853  0 0.8 0.2
#> SRR1270803     2   0.455      0.853  0 0.8 0.2
#> SRR1270804     2   0.455      0.853  0 0.8 0.2
#> SRR1270805     3   0.000      1.000  0 0.0 1.0
#> SRR1270806     3   0.000      1.000  0 0.0 1.0
#> SRR1270807     3   0.000      1.000  0 0.0 1.0
#> SRR1270808     3   0.000      1.000  0 0.0 1.0
#> SRR1270809     3   0.000      1.000  0 0.0 1.0
#> SRR1270810     3   0.000      1.000  0 0.0 1.0
#> SRR1270811     3   0.000      1.000  0 0.0 1.0
#> SRR1270812     3   0.000      1.000  0 0.0 1.0
#> SRR1270813     3   0.000      1.000  0 0.0 1.0
#> SRR1270814     3   0.000      1.000  0 0.0 1.0
#> SRR1270815     3   0.000      1.000  0 0.0 1.0
#> SRR1270816     3   0.000      1.000  0 0.0 1.0
#> SRR1270817     3   0.000      1.000  0 0.0 1.0
#> SRR1270818     3   0.000      1.000  0 0.0 1.0
#> SRR1270819     3   0.000      1.000  0 0.0 1.0
#> SRR1270820     3   0.000      1.000  0 0.0 1.0
#> SRR1270821     3   0.000      1.000  0 0.0 1.0
#> SRR1270822     3   0.000      1.000  0 0.0 1.0
#> SRR1270823     3   0.000      1.000  0 0.0 1.0
#> SRR1270824     3   0.000      1.000  0 0.0 1.0
#> SRR1270825     3   0.000      1.000  0 0.0 1.0
#> SRR1270826     3   0.000      1.000  0 0.0 1.0
#> SRR1270827     3   0.000      1.000  0 0.0 1.0
#> SRR1270828     3   0.000      1.000  0 0.0 1.0
#> SRR1270829     3   0.000      1.000  0 0.0 1.0
#> SRR1270830     3   0.000      1.000  0 0.0 1.0
#> SRR1270831     3   0.000      1.000  0 0.0 1.0
#> SRR1270832     3   0.000      1.000  0 0.0 1.0
#> SRR1270833     3   0.000      1.000  0 0.0 1.0
#> SRR1270834     3   0.000      1.000  0 0.0 1.0
#> SRR1270835     3   0.000      1.000  0 0.0 1.0
#> SRR1270836     3   0.000      1.000  0 0.0 1.0
#> SRR1270837     3   0.000      1.000  0 0.0 1.0
#> SRR1270838     3   0.000      1.000  0 0.0 1.0
#> SRR1270839     3   0.000      1.000  0 0.0 1.0
#> SRR1270840     3   0.000      1.000  0 0.0 1.0
#> SRR1270841     3   0.000      1.000  0 0.0 1.0
#> SRR1270842     3   0.000      1.000  0 0.0 1.0
#> SRR1270843     3   0.000      1.000  0 0.0 1.0
#> SRR1270844     3   0.000      1.000  0 0.0 1.0
#> SRR1270845     3   0.000      1.000  0 0.0 1.0
#> SRR1270846     3   0.000      1.000  0 0.0 1.0
#> SRR1270847     3   0.000      1.000  0 0.0 1.0
#> SRR1270848     3   0.000      1.000  0 0.0 1.0
#> SRR1270849     3   0.000      1.000  0 0.0 1.0
#> SRR1270850     3   0.000      1.000  0 0.0 1.0
#> SRR1270851     2   0.000      0.906  0 1.0 0.0
#> SRR1270852     2   0.000      0.906  0 1.0 0.0
#> SRR1270853     2   0.000      0.906  0 1.0 0.0
#> SRR1270854     2   0.000      0.906  0 1.0 0.0
#> SRR1270855     2   0.000      0.906  0 1.0 0.0
#> SRR1270856     2   0.000      0.906  0 1.0 0.0
#> SRR1270857     2   0.000      0.906  0 1.0 0.0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette p1    p2    p3    p4
#> SRR1270715     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270716     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270717     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270718     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270719     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270720     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270721     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270722     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270723     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270724     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270725     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270726     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270727     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270728     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270729     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270730     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270731     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270732     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270733     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270734     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270735     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270736     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270737     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270738     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270739     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270740     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270741     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270742     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270743     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270744     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270745     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270746     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270747     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270748     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270749     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270750     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270751     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270752     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270753     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270754     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270755     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270756     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270757     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270758     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270759     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270760     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270761     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270762     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270763     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270764     1   0.000      1.000  1 0.000 0.000 0.000
#> SRR1270765     2   0.000      0.921  0 1.000 0.000 0.000
#> SRR1270766     2   0.000      0.921  0 1.000 0.000 0.000
#> SRR1270767     2   0.000      0.921  0 1.000 0.000 0.000
#> SRR1270768     2   0.000      0.921  0 1.000 0.000 0.000
#> SRR1270769     2   0.000      0.921  0 1.000 0.000 0.000
#> SRR1270770     2   0.000      0.921  0 1.000 0.000 0.000
#> SRR1270771     2   0.000      0.921  0 1.000 0.000 0.000
#> SRR1270772     2   0.000      0.921  0 1.000 0.000 0.000
#> SRR1270773     2   0.000      0.921  0 1.000 0.000 0.000
#> SRR1270774     2   0.000      0.921  0 1.000 0.000 0.000
#> SRR1270775     2   0.000      0.921  0 1.000 0.000 0.000
#> SRR1270776     2   0.000      0.921  0 1.000 0.000 0.000
#> SRR1270777     2   0.000      0.921  0 1.000 0.000 0.000
#> SRR1270778     2   0.000      0.921  0 1.000 0.000 0.000
#> SRR1270779     2   0.000      0.921  0 1.000 0.000 0.000
#> SRR1270780     2   0.000      0.921  0 1.000 0.000 0.000
#> SRR1270781     2   0.000      0.921  0 1.000 0.000 0.000
#> SRR1270782     2   0.000      0.921  0 1.000 0.000 0.000
#> SRR1270783     2   0.000      0.921  0 1.000 0.000 0.000
#> SRR1270784     2   0.000      0.921  0 1.000 0.000 0.000
#> SRR1270785     2   0.365      0.891  0 0.796 0.000 0.204
#> SRR1270786     2   0.365      0.891  0 0.796 0.000 0.204
#> SRR1270787     2   0.365      0.891  0 0.796 0.000 0.204
#> SRR1270788     2   0.365      0.891  0 0.796 0.000 0.204
#> SRR1270789     2   0.365      0.891  0 0.796 0.000 0.204
#> SRR1270790     2   0.365      0.891  0 0.796 0.000 0.204
#> SRR1270791     2   0.365      0.891  0 0.796 0.000 0.204
#> SRR1270792     2   0.365      0.891  0 0.796 0.000 0.204
#> SRR1270793     2   0.365      0.891  0 0.796 0.000 0.204
#> SRR1270794     2   0.365      0.891  0 0.796 0.000 0.204
#> SRR1270795     2   0.365      0.891  0 0.796 0.000 0.204
#> SRR1270796     2   0.365      0.891  0 0.796 0.000 0.204
#> SRR1270797     2   0.365      0.891  0 0.796 0.000 0.204
#> SRR1270798     2   0.365      0.891  0 0.796 0.000 0.204
#> SRR1270799     2   0.365      0.891  0 0.796 0.000 0.204
#> SRR1270800     2   0.365      0.891  0 0.796 0.000 0.204
#> SRR1270801     2   0.365      0.891  0 0.796 0.000 0.204
#> SRR1270802     2   0.365      0.891  0 0.796 0.000 0.204
#> SRR1270803     2   0.365      0.891  0 0.796 0.000 0.204
#> SRR1270804     2   0.365      0.891  0 0.796 0.000 0.204
#> SRR1270805     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270806     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270807     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270808     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270809     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270810     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270811     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270812     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270813     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270814     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270815     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270816     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270817     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270818     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270819     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270820     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270821     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270822     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270823     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270824     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270825     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270826     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270827     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270828     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270829     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270830     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270831     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270832     3   0.000      1.000  0 0.000 1.000 0.000
#> SRR1270833     4   0.365      1.000  0 0.000 0.204 0.796
#> SRR1270834     4   0.365      1.000  0 0.000 0.204 0.796
#> SRR1270835     4   0.365      1.000  0 0.000 0.204 0.796
#> SRR1270836     4   0.365      1.000  0 0.000 0.204 0.796
#> SRR1270837     4   0.365      1.000  0 0.000 0.204 0.796
#> SRR1270838     4   0.365      1.000  0 0.000 0.204 0.796
#> SRR1270839     4   0.365      1.000  0 0.000 0.204 0.796
#> SRR1270840     4   0.365      1.000  0 0.000 0.204 0.796
#> SRR1270841     4   0.365      1.000  0 0.000 0.204 0.796
#> SRR1270842     4   0.365      1.000  0 0.000 0.204 0.796
#> SRR1270843     4   0.365      1.000  0 0.000 0.204 0.796
#> SRR1270844     4   0.365      1.000  0 0.000 0.204 0.796
#> SRR1270845     4   0.365      1.000  0 0.000 0.204 0.796
#> SRR1270846     4   0.365      1.000  0 0.000 0.204 0.796
#> SRR1270847     4   0.365      1.000  0 0.000 0.204 0.796
#> SRR1270848     4   0.365      1.000  0 0.000 0.204 0.796
#> SRR1270849     4   0.365      1.000  0 0.000 0.204 0.796
#> SRR1270850     4   0.365      1.000  0 0.000 0.204 0.796
#> SRR1270851     2   0.000      0.921  0 1.000 0.000 0.000
#> SRR1270852     2   0.000      0.921  0 1.000 0.000 0.000
#> SRR1270853     2   0.000      0.921  0 1.000 0.000 0.000
#> SRR1270854     2   0.000      0.921  0 1.000 0.000 0.000
#> SRR1270855     2   0.000      0.921  0 1.000 0.000 0.000
#> SRR1270856     2   0.000      0.921  0 1.000 0.000 0.000
#> SRR1270857     2   0.000      0.921  0 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette p1    p2    p3    p4    p5
#> SRR1270715     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270716     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270717     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270718     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270719     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270720     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270721     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270722     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270723     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270724     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270725     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270726     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270727     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270728     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270729     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270730     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270731     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270732     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270733     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270734     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270735     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270736     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270737     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270738     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270739     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270740     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270741     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270742     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270743     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270744     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270745     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270746     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270747     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270748     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270749     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270750     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270751     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270752     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270753     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270754     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270755     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270756     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270757     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270758     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270759     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270760     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270761     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270762     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270763     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270764     1  0.0000      1.000  1 0.000 0.000 0.000 0.000
#> SRR1270765     2  0.0000      0.999  0 1.000 0.000 0.000 0.000
#> SRR1270766     2  0.0000      0.999  0 1.000 0.000 0.000 0.000
#> SRR1270767     2  0.0000      0.999  0 1.000 0.000 0.000 0.000
#> SRR1270768     2  0.0290      0.993  0 0.992 0.000 0.000 0.008
#> SRR1270769     2  0.0290      0.993  0 0.992 0.000 0.000 0.008
#> SRR1270770     2  0.0290      0.993  0 0.992 0.000 0.000 0.008
#> SRR1270771     2  0.0000      0.999  0 1.000 0.000 0.000 0.000
#> SRR1270772     2  0.0000      0.999  0 1.000 0.000 0.000 0.000
#> SRR1270773     2  0.0000      0.999  0 1.000 0.000 0.000 0.000
#> SRR1270774     2  0.0000      0.999  0 1.000 0.000 0.000 0.000
#> SRR1270775     2  0.0000      0.999  0 1.000 0.000 0.000 0.000
#> SRR1270776     2  0.0000      0.999  0 1.000 0.000 0.000 0.000
#> SRR1270777     2  0.0000      0.999  0 1.000 0.000 0.000 0.000
#> SRR1270778     2  0.0000      0.999  0 1.000 0.000 0.000 0.000
#> SRR1270779     2  0.0000      0.999  0 1.000 0.000 0.000 0.000
#> SRR1270780     2  0.0000      0.999  0 1.000 0.000 0.000 0.000
#> SRR1270781     2  0.0000      0.999  0 1.000 0.000 0.000 0.000
#> SRR1270782     2  0.0000      0.999  0 1.000 0.000 0.000 0.000
#> SRR1270783     2  0.0000      0.999  0 1.000 0.000 0.000 0.000
#> SRR1270784     2  0.0000      0.999  0 1.000 0.000 0.000 0.000
#> SRR1270785     5  0.0000      1.000  0 0.000 0.000 0.000 1.000
#> SRR1270786     5  0.0000      1.000  0 0.000 0.000 0.000 1.000
#> SRR1270787     5  0.0000      1.000  0 0.000 0.000 0.000 1.000
#> SRR1270788     5  0.0000      1.000  0 0.000 0.000 0.000 1.000
#> SRR1270789     5  0.0000      1.000  0 0.000 0.000 0.000 1.000
#> SRR1270790     5  0.0000      1.000  0 0.000 0.000 0.000 1.000
#> SRR1270791     5  0.0000      1.000  0 0.000 0.000 0.000 1.000
#> SRR1270792     5  0.0000      1.000  0 0.000 0.000 0.000 1.000
#> SRR1270793     5  0.0000      1.000  0 0.000 0.000 0.000 1.000
#> SRR1270794     5  0.0000      1.000  0 0.000 0.000 0.000 1.000
#> SRR1270795     5  0.0000      1.000  0 0.000 0.000 0.000 1.000
#> SRR1270796     5  0.0000      1.000  0 0.000 0.000 0.000 1.000
#> SRR1270797     5  0.0000      1.000  0 0.000 0.000 0.000 1.000
#> SRR1270798     5  0.0000      1.000  0 0.000 0.000 0.000 1.000
#> SRR1270799     5  0.0000      1.000  0 0.000 0.000 0.000 1.000
#> SRR1270800     5  0.0000      1.000  0 0.000 0.000 0.000 1.000
#> SRR1270801     5  0.0000      1.000  0 0.000 0.000 0.000 1.000
#> SRR1270802     5  0.0000      1.000  0 0.000 0.000 0.000 1.000
#> SRR1270803     5  0.0000      1.000  0 0.000 0.000 0.000 1.000
#> SRR1270804     5  0.0000      1.000  0 0.000 0.000 0.000 1.000
#> SRR1270805     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> SRR1270806     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> SRR1270807     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> SRR1270808     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> SRR1270809     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> SRR1270810     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> SRR1270811     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> SRR1270812     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> SRR1270813     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> SRR1270814     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> SRR1270815     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> SRR1270816     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> SRR1270817     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> SRR1270818     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> SRR1270819     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> SRR1270820     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> SRR1270821     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> SRR1270822     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> SRR1270823     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> SRR1270824     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> SRR1270825     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> SRR1270826     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> SRR1270827     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> SRR1270828     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> SRR1270829     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> SRR1270830     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> SRR1270831     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> SRR1270832     3  0.0000      1.000  0 0.000 1.000 0.000 0.000
#> SRR1270833     4  0.0000      0.995  0 0.000 0.000 1.000 0.000
#> SRR1270834     4  0.0000      0.995  0 0.000 0.000 1.000 0.000
#> SRR1270835     4  0.0290      0.995  0 0.000 0.008 0.992 0.000
#> SRR1270836     4  0.0290      0.995  0 0.000 0.008 0.992 0.000
#> SRR1270837     4  0.0290      0.995  0 0.000 0.008 0.992 0.000
#> SRR1270838     4  0.0290      0.995  0 0.000 0.008 0.992 0.000
#> SRR1270839     4  0.0290      0.995  0 0.000 0.008 0.992 0.000
#> SRR1270840     4  0.0290      0.995  0 0.000 0.008 0.992 0.000
#> SRR1270841     4  0.0290      0.995  0 0.000 0.008 0.992 0.000
#> SRR1270842     4  0.0290      0.995  0 0.000 0.008 0.992 0.000
#> SRR1270843     4  0.0290      0.995  0 0.000 0.008 0.992 0.000
#> SRR1270844     4  0.0000      0.995  0 0.000 0.000 1.000 0.000
#> SRR1270845     4  0.0000      0.995  0 0.000 0.000 1.000 0.000
#> SRR1270846     4  0.0000      0.995  0 0.000 0.000 1.000 0.000
#> SRR1270847     4  0.0000      0.995  0 0.000 0.000 1.000 0.000
#> SRR1270848     4  0.0000      0.995  0 0.000 0.000 1.000 0.000
#> SRR1270849     4  0.0000      0.995  0 0.000 0.000 1.000 0.000
#> SRR1270850     4  0.0000      0.995  0 0.000 0.000 1.000 0.000
#> SRR1270851     2  0.0000      0.999  0 1.000 0.000 0.000 0.000
#> SRR1270852     2  0.0000      0.999  0 1.000 0.000 0.000 0.000
#> SRR1270853     2  0.0000      0.999  0 1.000 0.000 0.000 0.000
#> SRR1270854     2  0.0000      0.999  0 1.000 0.000 0.000 0.000
#> SRR1270855     2  0.0000      0.999  0 1.000 0.000 0.000 0.000
#> SRR1270856     2  0.0162      0.996  0 0.996 0.000 0.000 0.004
#> SRR1270857     2  0.0000      0.999  0 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1 p2    p3    p4 p5    p6
#> SRR1270715     6  0.0000      1.000 0.000  0 0.000 0.000  0 1.000
#> SRR1270716     6  0.0000      1.000 0.000  0 0.000 0.000  0 1.000
#> SRR1270717     6  0.0000      1.000 0.000  0 0.000 0.000  0 1.000
#> SRR1270718     6  0.0000      1.000 0.000  0 0.000 0.000  0 1.000
#> SRR1270719     6  0.0000      1.000 0.000  0 0.000 0.000  0 1.000
#> SRR1270720     6  0.0000      1.000 0.000  0 0.000 0.000  0 1.000
#> SRR1270721     6  0.0000      1.000 0.000  0 0.000 0.000  0 1.000
#> SRR1270722     6  0.0000      1.000 0.000  0 0.000 0.000  0 1.000
#> SRR1270723     6  0.0000      1.000 0.000  0 0.000 0.000  0 1.000
#> SRR1270724     6  0.0000      1.000 0.000  0 0.000 0.000  0 1.000
#> SRR1270725     6  0.0000      1.000 0.000  0 0.000 0.000  0 1.000
#> SRR1270726     6  0.0000      1.000 0.000  0 0.000 0.000  0 1.000
#> SRR1270727     6  0.0000      1.000 0.000  0 0.000 0.000  0 1.000
#> SRR1270728     6  0.0000      1.000 0.000  0 0.000 0.000  0 1.000
#> SRR1270729     6  0.0000      1.000 0.000  0 0.000 0.000  0 1.000
#> SRR1270730     6  0.0000      1.000 0.000  0 0.000 0.000  0 1.000
#> SRR1270731     6  0.0000      1.000 0.000  0 0.000 0.000  0 1.000
#> SRR1270732     6  0.0000      1.000 0.000  0 0.000 0.000  0 1.000
#> SRR1270733     6  0.0000      1.000 0.000  0 0.000 0.000  0 1.000
#> SRR1270734     6  0.0000      1.000 0.000  0 0.000 0.000  0 1.000
#> SRR1270735     6  0.0000      1.000 0.000  0 0.000 0.000  0 1.000
#> SRR1270736     6  0.0000      1.000 0.000  0 0.000 0.000  0 1.000
#> SRR1270737     6  0.0000      1.000 0.000  0 0.000 0.000  0 1.000
#> SRR1270738     6  0.0000      1.000 0.000  0 0.000 0.000  0 1.000
#> SRR1270739     6  0.0000      1.000 0.000  0 0.000 0.000  0 1.000
#> SRR1270740     1  0.0260      1.000 0.992  0 0.000 0.000  0 0.008
#> SRR1270741     1  0.0260      1.000 0.992  0 0.000 0.000  0 0.008
#> SRR1270742     1  0.0260      1.000 0.992  0 0.000 0.000  0 0.008
#> SRR1270743     1  0.0260      1.000 0.992  0 0.000 0.000  0 0.008
#> SRR1270744     1  0.0260      1.000 0.992  0 0.000 0.000  0 0.008
#> SRR1270745     1  0.0260      1.000 0.992  0 0.000 0.000  0 0.008
#> SRR1270746     1  0.0260      1.000 0.992  0 0.000 0.000  0 0.008
#> SRR1270747     1  0.0260      1.000 0.992  0 0.000 0.000  0 0.008
#> SRR1270748     1  0.0260      1.000 0.992  0 0.000 0.000  0 0.008
#> SRR1270749     1  0.0260      1.000 0.992  0 0.000 0.000  0 0.008
#> SRR1270750     1  0.0260      1.000 0.992  0 0.000 0.000  0 0.008
#> SRR1270751     1  0.0260      1.000 0.992  0 0.000 0.000  0 0.008
#> SRR1270752     1  0.0260      1.000 0.992  0 0.000 0.000  0 0.008
#> SRR1270753     1  0.0260      1.000 0.992  0 0.000 0.000  0 0.008
#> SRR1270754     1  0.0260      1.000 0.992  0 0.000 0.000  0 0.008
#> SRR1270755     1  0.0260      1.000 0.992  0 0.000 0.000  0 0.008
#> SRR1270756     1  0.0260      1.000 0.992  0 0.000 0.000  0 0.008
#> SRR1270757     1  0.0260      1.000 0.992  0 0.000 0.000  0 0.008
#> SRR1270758     1  0.0260      1.000 0.992  0 0.000 0.000  0 0.008
#> SRR1270759     1  0.0260      1.000 0.992  0 0.000 0.000  0 0.008
#> SRR1270760     1  0.0260      1.000 0.992  0 0.000 0.000  0 0.008
#> SRR1270761     1  0.0260      1.000 0.992  0 0.000 0.000  0 0.008
#> SRR1270762     1  0.0260      1.000 0.992  0 0.000 0.000  0 0.008
#> SRR1270763     1  0.0260      1.000 0.992  0 0.000 0.000  0 0.008
#> SRR1270764     1  0.0260      1.000 0.992  0 0.000 0.000  0 0.008
#> SRR1270765     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270766     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270767     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270768     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270769     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270770     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270771     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270772     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270773     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270774     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270775     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270776     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270777     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270778     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270779     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270780     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270781     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270782     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270783     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270784     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270785     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270786     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270787     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270788     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270789     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270790     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270791     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270792     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270793     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270794     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270795     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270796     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270797     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270798     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270799     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270800     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270801     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270802     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270803     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270804     5  0.0000      1.000 0.000  0 0.000 0.000  1 0.000
#> SRR1270805     3  0.0260      0.996 0.000  0 0.992 0.008  0 0.000
#> SRR1270806     3  0.0260      0.996 0.000  0 0.992 0.008  0 0.000
#> SRR1270807     3  0.0260      0.996 0.000  0 0.992 0.008  0 0.000
#> SRR1270808     3  0.0260      0.996 0.000  0 0.992 0.008  0 0.000
#> SRR1270809     3  0.0260      0.996 0.000  0 0.992 0.008  0 0.000
#> SRR1270810     3  0.0260      0.996 0.000  0 0.992 0.008  0 0.000
#> SRR1270811     3  0.0260      0.996 0.000  0 0.992 0.008  0 0.000
#> SRR1270812     3  0.0000      0.996 0.000  0 1.000 0.000  0 0.000
#> SRR1270813     3  0.0000      0.996 0.000  0 1.000 0.000  0 0.000
#> SRR1270814     3  0.0000      0.996 0.000  0 1.000 0.000  0 0.000
#> SRR1270815     3  0.0000      0.996 0.000  0 1.000 0.000  0 0.000
#> SRR1270816     3  0.0000      0.996 0.000  0 1.000 0.000  0 0.000
#> SRR1270817     3  0.0000      0.996 0.000  0 1.000 0.000  0 0.000
#> SRR1270818     3  0.0000      0.996 0.000  0 1.000 0.000  0 0.000
#> SRR1270819     3  0.0000      0.996 0.000  0 1.000 0.000  0 0.000
#> SRR1270820     3  0.0000      0.996 0.000  0 1.000 0.000  0 0.000
#> SRR1270821     3  0.0000      0.996 0.000  0 1.000 0.000  0 0.000
#> SRR1270822     3  0.0000      0.996 0.000  0 1.000 0.000  0 0.000
#> SRR1270823     3  0.0000      0.996 0.000  0 1.000 0.000  0 0.000
#> SRR1270824     3  0.0000      0.996 0.000  0 1.000 0.000  0 0.000
#> SRR1270825     3  0.0000      0.996 0.000  0 1.000 0.000  0 0.000
#> SRR1270826     3  0.0260      0.996 0.000  0 0.992 0.008  0 0.000
#> SRR1270827     3  0.0260      0.996 0.000  0 0.992 0.008  0 0.000
#> SRR1270828     3  0.0260      0.996 0.000  0 0.992 0.008  0 0.000
#> SRR1270829     3  0.0260      0.996 0.000  0 0.992 0.008  0 0.000
#> SRR1270830     3  0.0260      0.996 0.000  0 0.992 0.008  0 0.000
#> SRR1270831     3  0.0260      0.996 0.000  0 0.992 0.008  0 0.000
#> SRR1270832     3  0.0260      0.996 0.000  0 0.992 0.008  0 0.000
#> SRR1270833     4  0.0260      0.996 0.008  0 0.000 0.992  0 0.000
#> SRR1270834     4  0.0260      0.996 0.008  0 0.000 0.992  0 0.000
#> SRR1270835     4  0.0000      0.996 0.000  0 0.000 1.000  0 0.000
#> SRR1270836     4  0.0000      0.996 0.000  0 0.000 1.000  0 0.000
#> SRR1270837     4  0.0000      0.996 0.000  0 0.000 1.000  0 0.000
#> SRR1270838     4  0.0000      0.996 0.000  0 0.000 1.000  0 0.000
#> SRR1270839     4  0.0000      0.996 0.000  0 0.000 1.000  0 0.000
#> SRR1270840     4  0.0000      0.996 0.000  0 0.000 1.000  0 0.000
#> SRR1270841     4  0.0000      0.996 0.000  0 0.000 1.000  0 0.000
#> SRR1270842     4  0.0000      0.996 0.000  0 0.000 1.000  0 0.000
#> SRR1270843     4  0.0146      0.993 0.000  0 0.004 0.996  0 0.000
#> SRR1270844     4  0.0260      0.996 0.008  0 0.000 0.992  0 0.000
#> SRR1270845     4  0.0260      0.996 0.008  0 0.000 0.992  0 0.000
#> SRR1270846     4  0.0260      0.996 0.008  0 0.000 0.992  0 0.000
#> SRR1270847     4  0.0260      0.996 0.008  0 0.000 0.992  0 0.000
#> SRR1270848     4  0.0260      0.996 0.008  0 0.000 0.992  0 0.000
#> SRR1270849     4  0.0260      0.996 0.008  0 0.000 0.992  0 0.000
#> SRR1270850     4  0.0260      0.996 0.008  0 0.000 0.992  0 0.000
#> SRR1270851     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270852     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270853     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270854     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270855     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270856     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000
#> SRR1270857     2  0.0000      1.000 0.000  1 0.000 0.000  0 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14577 rows and 143 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.4450 0.556   0.556
#> 3 3 0.972           0.975       0.985         0.5018 0.773   0.592
#> 4 4 0.956           0.998       0.986         0.0718 0.950   0.849
#> 5 5 0.940           0.989       0.974         0.0751 0.947   0.810
#> 6 6 0.909           0.916       0.928         0.0311 1.000   1.000

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2 3 4

There is also optional best \(k\) = 2 3 4 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1270715     1       0          1  1  0
#> SRR1270716     1       0          1  1  0
#> SRR1270717     1       0          1  1  0
#> SRR1270718     1       0          1  1  0
#> SRR1270719     1       0          1  1  0
#> SRR1270720     1       0          1  1  0
#> SRR1270721     1       0          1  1  0
#> SRR1270722     1       0          1  1  0
#> SRR1270723     1       0          1  1  0
#> SRR1270724     1       0          1  1  0
#> SRR1270725     1       0          1  1  0
#> SRR1270726     1       0          1  1  0
#> SRR1270727     1       0          1  1  0
#> SRR1270728     1       0          1  1  0
#> SRR1270729     1       0          1  1  0
#> SRR1270730     1       0          1  1  0
#> SRR1270731     1       0          1  1  0
#> SRR1270732     1       0          1  1  0
#> SRR1270733     1       0          1  1  0
#> SRR1270734     1       0          1  1  0
#> SRR1270735     1       0          1  1  0
#> SRR1270736     1       0          1  1  0
#> SRR1270737     1       0          1  1  0
#> SRR1270738     1       0          1  1  0
#> SRR1270739     1       0          1  1  0
#> SRR1270740     1       0          1  1  0
#> SRR1270741     1       0          1  1  0
#> SRR1270742     1       0          1  1  0
#> SRR1270743     1       0          1  1  0
#> SRR1270744     1       0          1  1  0
#> SRR1270745     1       0          1  1  0
#> SRR1270746     1       0          1  1  0
#> SRR1270747     1       0          1  1  0
#> SRR1270748     1       0          1  1  0
#> SRR1270749     1       0          1  1  0
#> SRR1270750     1       0          1  1  0
#> SRR1270751     1       0          1  1  0
#> SRR1270752     1       0          1  1  0
#> SRR1270753     1       0          1  1  0
#> SRR1270754     1       0          1  1  0
#> SRR1270755     1       0          1  1  0
#> SRR1270756     1       0          1  1  0
#> SRR1270757     1       0          1  1  0
#> SRR1270758     1       0          1  1  0
#> SRR1270759     1       0          1  1  0
#> SRR1270760     1       0          1  1  0
#> SRR1270761     1       0          1  1  0
#> SRR1270762     1       0          1  1  0
#> SRR1270763     1       0          1  1  0
#> SRR1270764     1       0          1  1  0
#> SRR1270765     2       0          1  0  1
#> SRR1270766     2       0          1  0  1
#> SRR1270767     2       0          1  0  1
#> SRR1270768     2       0          1  0  1
#> SRR1270769     2       0          1  0  1
#> SRR1270770     2       0          1  0  1
#> SRR1270771     2       0          1  0  1
#> SRR1270772     2       0          1  0  1
#> SRR1270773     2       0          1  0  1
#> SRR1270774     2       0          1  0  1
#> SRR1270775     2       0          1  0  1
#> SRR1270776     2       0          1  0  1
#> SRR1270777     2       0          1  0  1
#> SRR1270778     2       0          1  0  1
#> SRR1270779     2       0          1  0  1
#> SRR1270780     2       0          1  0  1
#> SRR1270781     2       0          1  0  1
#> SRR1270782     2       0          1  0  1
#> SRR1270783     2       0          1  0  1
#> SRR1270784     2       0          1  0  1
#> SRR1270785     2       0          1  0  1
#> SRR1270786     2       0          1  0  1
#> SRR1270787     2       0          1  0  1
#> SRR1270788     2       0          1  0  1
#> SRR1270789     2       0          1  0  1
#> SRR1270790     2       0          1  0  1
#> SRR1270791     2       0          1  0  1
#> SRR1270792     2       0          1  0  1
#> SRR1270793     2       0          1  0  1
#> SRR1270794     2       0          1  0  1
#> SRR1270795     2       0          1  0  1
#> SRR1270796     2       0          1  0  1
#> SRR1270797     2       0          1  0  1
#> SRR1270798     2       0          1  0  1
#> SRR1270799     2       0          1  0  1
#> SRR1270800     2       0          1  0  1
#> SRR1270801     2       0          1  0  1
#> SRR1270802     2       0          1  0  1
#> SRR1270803     2       0          1  0  1
#> SRR1270804     2       0          1  0  1
#> SRR1270805     1       0          1  1  0
#> SRR1270806     1       0          1  1  0
#> SRR1270807     1       0          1  1  0
#> SRR1270808     1       0          1  1  0
#> SRR1270809     1       0          1  1  0
#> SRR1270810     1       0          1  1  0
#> SRR1270811     1       0          1  1  0
#> SRR1270812     1       0          1  1  0
#> SRR1270813     1       0          1  1  0
#> SRR1270814     1       0          1  1  0
#> SRR1270815     1       0          1  1  0
#> SRR1270816     1       0          1  1  0
#> SRR1270817     1       0          1  1  0
#> SRR1270818     1       0          1  1  0
#> SRR1270819     1       0          1  1  0
#> SRR1270820     1       0          1  1  0
#> SRR1270821     1       0          1  1  0
#> SRR1270822     1       0          1  1  0
#> SRR1270823     1       0          1  1  0
#> SRR1270824     1       0          1  1  0
#> SRR1270825     1       0          1  1  0
#> SRR1270826     1       0          1  1  0
#> SRR1270827     1       0          1  1  0
#> SRR1270828     1       0          1  1  0
#> SRR1270829     1       0          1  1  0
#> SRR1270830     1       0          1  1  0
#> SRR1270831     1       0          1  1  0
#> SRR1270832     1       0          1  1  0
#> SRR1270833     1       0          1  1  0
#> SRR1270834     1       0          1  1  0
#> SRR1270835     1       0          1  1  0
#> SRR1270836     1       0          1  1  0
#> SRR1270837     1       0          1  1  0
#> SRR1270838     1       0          1  1  0
#> SRR1270839     1       0          1  1  0
#> SRR1270840     1       0          1  1  0
#> SRR1270841     1       0          1  1  0
#> SRR1270842     1       0          1  1  0
#> SRR1270843     1       0          1  1  0
#> SRR1270844     1       0          1  1  0
#> SRR1270845     1       0          1  1  0
#> SRR1270846     1       0          1  1  0
#> SRR1270847     1       0          1  1  0
#> SRR1270848     1       0          1  1  0
#> SRR1270849     1       0          1  1  0
#> SRR1270850     1       0          1  1  0
#> SRR1270851     2       0          1  0  1
#> SRR1270852     2       0          1  0  1
#> SRR1270853     2       0          1  0  1
#> SRR1270854     2       0          1  0  1
#> SRR1270855     2       0          1  0  1
#> SRR1270856     2       0          1  0  1
#> SRR1270857     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1 p2    p3
#> SRR1270715     1   0.000      1.000 1.000  0 0.000
#> SRR1270716     1   0.000      1.000 1.000  0 0.000
#> SRR1270717     1   0.000      1.000 1.000  0 0.000
#> SRR1270718     1   0.000      1.000 1.000  0 0.000
#> SRR1270719     1   0.000      1.000 1.000  0 0.000
#> SRR1270720     1   0.000      1.000 1.000  0 0.000
#> SRR1270721     1   0.000      1.000 1.000  0 0.000
#> SRR1270722     1   0.000      1.000 1.000  0 0.000
#> SRR1270723     1   0.000      1.000 1.000  0 0.000
#> SRR1270724     1   0.000      1.000 1.000  0 0.000
#> SRR1270725     1   0.000      1.000 1.000  0 0.000
#> SRR1270726     1   0.000      1.000 1.000  0 0.000
#> SRR1270727     1   0.000      1.000 1.000  0 0.000
#> SRR1270728     1   0.000      1.000 1.000  0 0.000
#> SRR1270729     1   0.000      1.000 1.000  0 0.000
#> SRR1270730     1   0.000      1.000 1.000  0 0.000
#> SRR1270731     1   0.000      1.000 1.000  0 0.000
#> SRR1270732     1   0.000      1.000 1.000  0 0.000
#> SRR1270733     1   0.000      1.000 1.000  0 0.000
#> SRR1270734     1   0.000      1.000 1.000  0 0.000
#> SRR1270735     1   0.000      1.000 1.000  0 0.000
#> SRR1270736     1   0.000      1.000 1.000  0 0.000
#> SRR1270737     1   0.000      1.000 1.000  0 0.000
#> SRR1270738     1   0.000      1.000 1.000  0 0.000
#> SRR1270739     1   0.000      1.000 1.000  0 0.000
#> SRR1270740     1   0.000      1.000 1.000  0 0.000
#> SRR1270741     1   0.000      1.000 1.000  0 0.000
#> SRR1270742     1   0.000      1.000 1.000  0 0.000
#> SRR1270743     1   0.000      1.000 1.000  0 0.000
#> SRR1270744     1   0.000      1.000 1.000  0 0.000
#> SRR1270745     1   0.000      1.000 1.000  0 0.000
#> SRR1270746     1   0.000      1.000 1.000  0 0.000
#> SRR1270747     1   0.000      1.000 1.000  0 0.000
#> SRR1270748     1   0.000      1.000 1.000  0 0.000
#> SRR1270749     1   0.000      1.000 1.000  0 0.000
#> SRR1270750     1   0.000      1.000 1.000  0 0.000
#> SRR1270751     1   0.000      1.000 1.000  0 0.000
#> SRR1270752     1   0.000      1.000 1.000  0 0.000
#> SRR1270753     1   0.000      1.000 1.000  0 0.000
#> SRR1270754     1   0.000      1.000 1.000  0 0.000
#> SRR1270755     1   0.000      1.000 1.000  0 0.000
#> SRR1270756     1   0.000      1.000 1.000  0 0.000
#> SRR1270757     1   0.000      1.000 1.000  0 0.000
#> SRR1270758     1   0.000      1.000 1.000  0 0.000
#> SRR1270759     1   0.000      1.000 1.000  0 0.000
#> SRR1270760     1   0.000      1.000 1.000  0 0.000
#> SRR1270761     1   0.000      1.000 1.000  0 0.000
#> SRR1270762     1   0.000      1.000 1.000  0 0.000
#> SRR1270763     1   0.000      1.000 1.000  0 0.000
#> SRR1270764     1   0.000      1.000 1.000  0 0.000
#> SRR1270765     2   0.000      1.000 0.000  1 0.000
#> SRR1270766     2   0.000      1.000 0.000  1 0.000
#> SRR1270767     2   0.000      1.000 0.000  1 0.000
#> SRR1270768     2   0.000      1.000 0.000  1 0.000
#> SRR1270769     2   0.000      1.000 0.000  1 0.000
#> SRR1270770     2   0.000      1.000 0.000  1 0.000
#> SRR1270771     2   0.000      1.000 0.000  1 0.000
#> SRR1270772     2   0.000      1.000 0.000  1 0.000
#> SRR1270773     2   0.000      1.000 0.000  1 0.000
#> SRR1270774     2   0.000      1.000 0.000  1 0.000
#> SRR1270775     2   0.000      1.000 0.000  1 0.000
#> SRR1270776     2   0.000      1.000 0.000  1 0.000
#> SRR1270777     2   0.000      1.000 0.000  1 0.000
#> SRR1270778     2   0.000      1.000 0.000  1 0.000
#> SRR1270779     2   0.000      1.000 0.000  1 0.000
#> SRR1270780     2   0.000      1.000 0.000  1 0.000
#> SRR1270781     2   0.000      1.000 0.000  1 0.000
#> SRR1270782     2   0.000      1.000 0.000  1 0.000
#> SRR1270783     2   0.000      1.000 0.000  1 0.000
#> SRR1270784     2   0.000      1.000 0.000  1 0.000
#> SRR1270785     2   0.000      1.000 0.000  1 0.000
#> SRR1270786     2   0.000      1.000 0.000  1 0.000
#> SRR1270787     2   0.000      1.000 0.000  1 0.000
#> SRR1270788     2   0.000      1.000 0.000  1 0.000
#> SRR1270789     2   0.000      1.000 0.000  1 0.000
#> SRR1270790     2   0.000      1.000 0.000  1 0.000
#> SRR1270791     2   0.000      1.000 0.000  1 0.000
#> SRR1270792     2   0.000      1.000 0.000  1 0.000
#> SRR1270793     2   0.000      1.000 0.000  1 0.000
#> SRR1270794     2   0.000      1.000 0.000  1 0.000
#> SRR1270795     2   0.000      1.000 0.000  1 0.000
#> SRR1270796     2   0.000      1.000 0.000  1 0.000
#> SRR1270797     2   0.000      1.000 0.000  1 0.000
#> SRR1270798     2   0.000      1.000 0.000  1 0.000
#> SRR1270799     2   0.000      1.000 0.000  1 0.000
#> SRR1270800     2   0.000      1.000 0.000  1 0.000
#> SRR1270801     2   0.000      1.000 0.000  1 0.000
#> SRR1270802     2   0.000      1.000 0.000  1 0.000
#> SRR1270803     2   0.000      1.000 0.000  1 0.000
#> SRR1270804     2   0.000      1.000 0.000  1 0.000
#> SRR1270805     3   0.000      0.953 0.000  0 1.000
#> SRR1270806     3   0.000      0.953 0.000  0 1.000
#> SRR1270807     3   0.000      0.953 0.000  0 1.000
#> SRR1270808     3   0.000      0.953 0.000  0 1.000
#> SRR1270809     3   0.000      0.953 0.000  0 1.000
#> SRR1270810     3   0.000      0.953 0.000  0 1.000
#> SRR1270811     3   0.000      0.953 0.000  0 1.000
#> SRR1270812     3   0.000      0.953 0.000  0 1.000
#> SRR1270813     3   0.000      0.953 0.000  0 1.000
#> SRR1270814     3   0.000      0.953 0.000  0 1.000
#> SRR1270815     3   0.000      0.953 0.000  0 1.000
#> SRR1270816     3   0.000      0.953 0.000  0 1.000
#> SRR1270817     3   0.000      0.953 0.000  0 1.000
#> SRR1270818     3   0.000      0.953 0.000  0 1.000
#> SRR1270819     3   0.000      0.953 0.000  0 1.000
#> SRR1270820     3   0.000      0.953 0.000  0 1.000
#> SRR1270821     3   0.000      0.953 0.000  0 1.000
#> SRR1270822     3   0.000      0.953 0.000  0 1.000
#> SRR1270823     3   0.000      0.953 0.000  0 1.000
#> SRR1270824     3   0.000      0.953 0.000  0 1.000
#> SRR1270825     3   0.000      0.953 0.000  0 1.000
#> SRR1270826     3   0.000      0.953 0.000  0 1.000
#> SRR1270827     3   0.000      0.953 0.000  0 1.000
#> SRR1270828     3   0.000      0.953 0.000  0 1.000
#> SRR1270829     3   0.000      0.953 0.000  0 1.000
#> SRR1270830     3   0.000      0.953 0.000  0 1.000
#> SRR1270831     3   0.000      0.953 0.000  0 1.000
#> SRR1270832     3   0.000      0.953 0.000  0 1.000
#> SRR1270833     3   0.450      0.811 0.196  0 0.804
#> SRR1270834     3   0.450      0.811 0.196  0 0.804
#> SRR1270835     3   0.263      0.903 0.084  0 0.916
#> SRR1270836     3   0.263      0.903 0.084  0 0.916
#> SRR1270837     3   0.000      0.953 0.000  0 1.000
#> SRR1270838     3   0.000      0.953 0.000  0 1.000
#> SRR1270839     3   0.000      0.953 0.000  0 1.000
#> SRR1270840     3   0.450      0.811 0.196  0 0.804
#> SRR1270841     3   0.450      0.811 0.196  0 0.804
#> SRR1270842     3   0.445      0.815 0.192  0 0.808
#> SRR1270843     3   0.450      0.811 0.196  0 0.804
#> SRR1270844     3   0.000      0.953 0.000  0 1.000
#> SRR1270845     3   0.000      0.953 0.000  0 1.000
#> SRR1270846     3   0.000      0.953 0.000  0 1.000
#> SRR1270847     3   0.435      0.824 0.184  0 0.816
#> SRR1270848     3   0.440      0.820 0.188  0 0.812
#> SRR1270849     3   0.429      0.827 0.180  0 0.820
#> SRR1270850     3   0.435      0.824 0.184  0 0.816
#> SRR1270851     2   0.000      1.000 0.000  1 0.000
#> SRR1270852     2   0.000      1.000 0.000  1 0.000
#> SRR1270853     2   0.000      1.000 0.000  1 0.000
#> SRR1270854     2   0.000      1.000 0.000  1 0.000
#> SRR1270855     2   0.000      1.000 0.000  1 0.000
#> SRR1270856     2   0.000      1.000 0.000  1 0.000
#> SRR1270857     2   0.000      1.000 0.000  1 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1270715     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270716     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270717     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270718     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270719     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270720     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270721     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270722     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270723     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270724     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270725     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270726     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270727     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270728     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270729     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270730     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270731     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270732     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270733     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270734     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270735     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270736     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270737     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270738     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270739     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270740     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270741     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270742     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270743     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270744     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270745     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270746     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270747     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270748     1  0.0188      0.996 0.996 0.000 0.004 0.000
#> SRR1270749     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270750     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270751     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270752     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270753     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270754     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270755     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270756     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270757     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270758     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270759     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270760     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270761     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270762     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270763     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270764     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1270765     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1270766     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1270767     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1270768     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1270769     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1270770     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1270771     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1270772     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1270773     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1270774     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1270775     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1270776     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1270777     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1270778     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1270779     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1270780     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1270781     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1270782     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1270783     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1270784     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1270785     2  0.0336      0.996 0.000 0.992 0.000 0.008
#> SRR1270786     2  0.0336      0.996 0.000 0.992 0.000 0.008
#> SRR1270787     2  0.0336      0.996 0.000 0.992 0.000 0.008
#> SRR1270788     2  0.0336      0.996 0.000 0.992 0.000 0.008
#> SRR1270789     2  0.0336      0.996 0.000 0.992 0.000 0.008
#> SRR1270790     2  0.0336      0.996 0.000 0.992 0.000 0.008
#> SRR1270791     2  0.0336      0.996 0.000 0.992 0.000 0.008
#> SRR1270792     2  0.0336      0.996 0.000 0.992 0.000 0.008
#> SRR1270793     2  0.0336      0.996 0.000 0.992 0.000 0.008
#> SRR1270794     2  0.0336      0.996 0.000 0.992 0.000 0.008
#> SRR1270795     2  0.0336      0.996 0.000 0.992 0.000 0.008
#> SRR1270796     2  0.0336      0.996 0.000 0.992 0.000 0.008
#> SRR1270797     2  0.0336      0.996 0.000 0.992 0.000 0.008
#> SRR1270798     2  0.0336      0.996 0.000 0.992 0.000 0.008
#> SRR1270799     2  0.0336      0.996 0.000 0.992 0.000 0.008
#> SRR1270800     2  0.0336      0.996 0.000 0.992 0.000 0.008
#> SRR1270801     2  0.0336      0.996 0.000 0.992 0.000 0.008
#> SRR1270802     2  0.0336      0.996 0.000 0.992 0.000 0.008
#> SRR1270803     2  0.0336      0.996 0.000 0.992 0.000 0.008
#> SRR1270804     2  0.0336      0.996 0.000 0.992 0.000 0.008
#> SRR1270805     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1270806     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1270807     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1270808     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1270809     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1270810     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1270811     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1270812     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1270813     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1270814     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1270815     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1270816     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1270817     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1270818     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1270819     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1270820     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1270821     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1270822     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1270823     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1270824     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1270825     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1270826     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1270827     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1270828     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1270829     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1270830     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1270831     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1270832     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1270833     4  0.2345      0.996 0.000 0.000 0.100 0.900
#> SRR1270834     4  0.2345      0.996 0.000 0.000 0.100 0.900
#> SRR1270835     4  0.2408      0.996 0.000 0.000 0.104 0.896
#> SRR1270836     4  0.2408      0.996 0.000 0.000 0.104 0.896
#> SRR1270837     4  0.2530      0.990 0.000 0.000 0.112 0.888
#> SRR1270838     4  0.2530      0.990 0.000 0.000 0.112 0.888
#> SRR1270839     4  0.2530      0.990 0.000 0.000 0.112 0.888
#> SRR1270840     4  0.2408      0.996 0.000 0.000 0.104 0.896
#> SRR1270841     4  0.2408      0.996 0.000 0.000 0.104 0.896
#> SRR1270842     4  0.2408      0.996 0.000 0.000 0.104 0.896
#> SRR1270843     4  0.2345      0.996 0.000 0.000 0.100 0.900
#> SRR1270844     4  0.2408      0.996 0.000 0.000 0.104 0.896
#> SRR1270845     4  0.2345      0.996 0.000 0.000 0.100 0.900
#> SRR1270846     4  0.2345      0.996 0.000 0.000 0.100 0.900
#> SRR1270847     4  0.2345      0.996 0.000 0.000 0.100 0.900
#> SRR1270848     4  0.2345      0.996 0.000 0.000 0.100 0.900
#> SRR1270849     4  0.2345      0.996 0.000 0.000 0.100 0.900
#> SRR1270850     4  0.2345      0.996 0.000 0.000 0.100 0.900
#> SRR1270851     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1270852     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1270853     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1270854     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1270855     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1270856     2  0.0000      0.997 0.000 1.000 0.000 0.000
#> SRR1270857     2  0.0000      0.997 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1270715     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270716     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270717     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270718     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270719     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270720     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270721     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270722     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270723     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270724     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270725     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270726     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270727     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270728     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270729     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270730     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270731     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270732     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270733     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270734     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270735     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270736     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270737     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270738     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270739     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270740     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270741     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270742     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270743     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270744     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270745     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270746     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270747     1  0.0609      0.986 0.980 0.000 0.000 0.000 0.020
#> SRR1270748     1  0.0609      0.986 0.980 0.000 0.000 0.000 0.020
#> SRR1270749     1  0.0609      0.986 0.980 0.000 0.000 0.000 0.020
#> SRR1270750     1  0.0290      0.993 0.992 0.000 0.000 0.000 0.008
#> SRR1270751     1  0.0609      0.986 0.980 0.000 0.000 0.000 0.020
#> SRR1270752     1  0.0609      0.986 0.980 0.000 0.000 0.000 0.020
#> SRR1270753     1  0.0609      0.986 0.980 0.000 0.000 0.000 0.020
#> SRR1270754     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270755     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270756     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270757     1  0.0162      0.995 0.996 0.000 0.000 0.000 0.004
#> SRR1270758     1  0.0162      0.995 0.996 0.000 0.000 0.000 0.004
#> SRR1270759     1  0.0162      0.995 0.996 0.000 0.000 0.000 0.004
#> SRR1270760     1  0.0000      0.997 1.000 0.000 0.000 0.000 0.000
#> SRR1270761     1  0.0510      0.989 0.984 0.000 0.000 0.000 0.016
#> SRR1270762     1  0.0510      0.989 0.984 0.000 0.000 0.000 0.016
#> SRR1270763     1  0.0404      0.991 0.988 0.000 0.000 0.000 0.012
#> SRR1270764     1  0.0510      0.989 0.984 0.000 0.000 0.000 0.016
#> SRR1270765     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270766     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270767     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270768     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270769     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270770     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270771     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270772     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270773     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270774     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270775     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270776     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270777     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270778     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270779     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270780     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270781     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270782     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270783     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270784     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270785     5  0.2074      0.994 0.000 0.104 0.000 0.000 0.896
#> SRR1270786     5  0.2074      0.994 0.000 0.104 0.000 0.000 0.896
#> SRR1270787     5  0.2127      0.995 0.000 0.108 0.000 0.000 0.892
#> SRR1270788     5  0.2074      0.994 0.000 0.104 0.000 0.000 0.896
#> SRR1270789     5  0.2074      0.994 0.000 0.104 0.000 0.000 0.896
#> SRR1270790     5  0.2074      0.994 0.000 0.104 0.000 0.000 0.896
#> SRR1270791     5  0.2074      0.994 0.000 0.104 0.000 0.000 0.896
#> SRR1270792     5  0.2230      0.993 0.000 0.116 0.000 0.000 0.884
#> SRR1270793     5  0.2230      0.993 0.000 0.116 0.000 0.000 0.884
#> SRR1270794     5  0.2230      0.993 0.000 0.116 0.000 0.000 0.884
#> SRR1270795     5  0.2230      0.993 0.000 0.116 0.000 0.000 0.884
#> SRR1270796     5  0.2127      0.995 0.000 0.108 0.000 0.000 0.892
#> SRR1270797     5  0.2127      0.995 0.000 0.108 0.000 0.000 0.892
#> SRR1270798     5  0.2127      0.995 0.000 0.108 0.000 0.000 0.892
#> SRR1270799     5  0.2230      0.993 0.000 0.116 0.000 0.000 0.884
#> SRR1270800     5  0.2230      0.993 0.000 0.116 0.000 0.000 0.884
#> SRR1270801     5  0.2127      0.995 0.000 0.108 0.000 0.000 0.892
#> SRR1270802     5  0.2127      0.995 0.000 0.108 0.000 0.000 0.892
#> SRR1270803     5  0.2179      0.994 0.000 0.112 0.000 0.000 0.888
#> SRR1270804     5  0.2179      0.994 0.000 0.112 0.000 0.000 0.888
#> SRR1270805     3  0.1270      0.973 0.000 0.000 0.948 0.000 0.052
#> SRR1270806     3  0.1270      0.973 0.000 0.000 0.948 0.000 0.052
#> SRR1270807     3  0.1270      0.973 0.000 0.000 0.948 0.000 0.052
#> SRR1270808     3  0.1341      0.972 0.000 0.000 0.944 0.000 0.056
#> SRR1270809     3  0.1341      0.972 0.000 0.000 0.944 0.000 0.056
#> SRR1270810     3  0.1341      0.972 0.000 0.000 0.944 0.000 0.056
#> SRR1270811     3  0.1410      0.971 0.000 0.000 0.940 0.000 0.060
#> SRR1270812     3  0.0000      0.974 0.000 0.000 1.000 0.000 0.000
#> SRR1270813     3  0.0000      0.974 0.000 0.000 1.000 0.000 0.000
#> SRR1270814     3  0.0000      0.974 0.000 0.000 1.000 0.000 0.000
#> SRR1270815     3  0.0000      0.974 0.000 0.000 1.000 0.000 0.000
#> SRR1270816     3  0.0000      0.974 0.000 0.000 1.000 0.000 0.000
#> SRR1270817     3  0.0000      0.974 0.000 0.000 1.000 0.000 0.000
#> SRR1270818     3  0.0000      0.974 0.000 0.000 1.000 0.000 0.000
#> SRR1270819     3  0.0000      0.974 0.000 0.000 1.000 0.000 0.000
#> SRR1270820     3  0.0000      0.974 0.000 0.000 1.000 0.000 0.000
#> SRR1270821     3  0.0000      0.974 0.000 0.000 1.000 0.000 0.000
#> SRR1270822     3  0.0000      0.974 0.000 0.000 1.000 0.000 0.000
#> SRR1270823     3  0.0000      0.974 0.000 0.000 1.000 0.000 0.000
#> SRR1270824     3  0.0000      0.974 0.000 0.000 1.000 0.000 0.000
#> SRR1270825     3  0.0000      0.974 0.000 0.000 1.000 0.000 0.000
#> SRR1270826     3  0.1544      0.969 0.000 0.000 0.932 0.000 0.068
#> SRR1270827     3  0.1478      0.971 0.000 0.000 0.936 0.000 0.064
#> SRR1270828     3  0.1410      0.971 0.000 0.000 0.940 0.000 0.060
#> SRR1270829     3  0.1544      0.969 0.000 0.000 0.932 0.000 0.068
#> SRR1270830     3  0.1544      0.969 0.000 0.000 0.932 0.000 0.068
#> SRR1270831     3  0.1608      0.967 0.000 0.000 0.928 0.000 0.072
#> SRR1270832     3  0.1608      0.967 0.000 0.000 0.928 0.000 0.072
#> SRR1270833     4  0.0162      0.983 0.000 0.000 0.004 0.996 0.000
#> SRR1270834     4  0.0162      0.983 0.000 0.000 0.004 0.996 0.000
#> SRR1270835     4  0.0290      0.984 0.000 0.000 0.008 0.992 0.000
#> SRR1270836     4  0.0290      0.984 0.000 0.000 0.008 0.992 0.000
#> SRR1270837     4  0.0290      0.984 0.000 0.000 0.008 0.992 0.000
#> SRR1270838     4  0.0290      0.984 0.000 0.000 0.008 0.992 0.000
#> SRR1270839     4  0.0290      0.984 0.000 0.000 0.008 0.992 0.000
#> SRR1270840     4  0.0290      0.984 0.000 0.000 0.008 0.992 0.000
#> SRR1270841     4  0.0290      0.984 0.000 0.000 0.008 0.992 0.000
#> SRR1270842     4  0.0162      0.983 0.000 0.000 0.004 0.996 0.000
#> SRR1270843     4  0.0162      0.983 0.000 0.000 0.004 0.996 0.000
#> SRR1270844     4  0.1430      0.967 0.000 0.000 0.004 0.944 0.052
#> SRR1270845     4  0.1502      0.966 0.000 0.000 0.004 0.940 0.056
#> SRR1270846     4  0.1430      0.967 0.000 0.000 0.004 0.944 0.052
#> SRR1270847     4  0.1282      0.972 0.000 0.000 0.004 0.952 0.044
#> SRR1270848     4  0.0955      0.978 0.000 0.000 0.004 0.968 0.028
#> SRR1270849     4  0.1282      0.972 0.000 0.000 0.004 0.952 0.044
#> SRR1270850     4  0.0865      0.979 0.000 0.000 0.004 0.972 0.024
#> SRR1270851     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270852     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270853     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270854     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270855     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270856     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270857     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5 p6
#> SRR1270715     1  0.2416      0.881 0.844 0.000 0.000 0.000 0.000 NA
#> SRR1270716     1  0.2416      0.881 0.844 0.000 0.000 0.000 0.000 NA
#> SRR1270717     1  0.2378      0.883 0.848 0.000 0.000 0.000 0.000 NA
#> SRR1270718     1  0.2416      0.881 0.844 0.000 0.000 0.000 0.000 NA
#> SRR1270719     1  0.2416      0.881 0.844 0.000 0.000 0.000 0.000 NA
#> SRR1270720     1  0.2454      0.879 0.840 0.000 0.000 0.000 0.000 NA
#> SRR1270721     1  0.2416      0.881 0.844 0.000 0.000 0.000 0.000 NA
#> SRR1270722     1  0.0790      0.933 0.968 0.000 0.000 0.000 0.000 NA
#> SRR1270723     1  0.0790      0.933 0.968 0.000 0.000 0.000 0.000 NA
#> SRR1270724     1  0.0790      0.933 0.968 0.000 0.000 0.000 0.000 NA
#> SRR1270725     1  0.0547      0.935 0.980 0.000 0.000 0.000 0.000 NA
#> SRR1270726     1  0.0713      0.934 0.972 0.000 0.000 0.000 0.000 NA
#> SRR1270727     1  0.0790      0.933 0.968 0.000 0.000 0.000 0.000 NA
#> SRR1270728     1  0.0790      0.933 0.968 0.000 0.000 0.000 0.000 NA
#> SRR1270729     1  0.2378      0.884 0.848 0.000 0.000 0.000 0.000 NA
#> SRR1270730     1  0.2340      0.885 0.852 0.000 0.000 0.000 0.000 NA
#> SRR1270731     1  0.2416      0.881 0.844 0.000 0.000 0.000 0.000 NA
#> SRR1270732     1  0.2416      0.881 0.844 0.000 0.000 0.000 0.000 NA
#> SRR1270733     1  0.2378      0.883 0.848 0.000 0.000 0.000 0.000 NA
#> SRR1270734     1  0.2378      0.883 0.848 0.000 0.000 0.000 0.000 NA
#> SRR1270735     1  0.2416      0.881 0.844 0.000 0.000 0.000 0.000 NA
#> SRR1270736     1  0.0547      0.938 0.980 0.000 0.000 0.000 0.000 NA
#> SRR1270737     1  0.0363      0.937 0.988 0.000 0.000 0.000 0.000 NA
#> SRR1270738     1  0.0260      0.937 0.992 0.000 0.000 0.000 0.000 NA
#> SRR1270739     1  0.0458      0.936 0.984 0.000 0.000 0.000 0.000 NA
#> SRR1270740     1  0.0146      0.937 0.996 0.000 0.000 0.000 0.000 NA
#> SRR1270741     1  0.0146      0.937 0.996 0.000 0.000 0.000 0.000 NA
#> SRR1270742     1  0.0146      0.937 0.996 0.000 0.000 0.000 0.000 NA
#> SRR1270743     1  0.0146      0.937 0.996 0.000 0.000 0.000 0.000 NA
#> SRR1270744     1  0.0146      0.937 0.996 0.000 0.000 0.000 0.000 NA
#> SRR1270745     1  0.0260      0.937 0.992 0.000 0.000 0.000 0.000 NA
#> SRR1270746     1  0.0146      0.937 0.996 0.000 0.000 0.000 0.000 NA
#> SRR1270747     1  0.1908      0.906 0.900 0.000 0.000 0.000 0.004 NA
#> SRR1270748     1  0.1958      0.904 0.896 0.000 0.000 0.000 0.004 NA
#> SRR1270749     1  0.1958      0.904 0.896 0.000 0.000 0.000 0.004 NA
#> SRR1270750     1  0.1285      0.926 0.944 0.000 0.000 0.000 0.004 NA
#> SRR1270751     1  0.2234      0.888 0.872 0.000 0.000 0.000 0.004 NA
#> SRR1270752     1  0.1958      0.904 0.896 0.000 0.000 0.000 0.004 NA
#> SRR1270753     1  0.2053      0.899 0.888 0.000 0.000 0.000 0.004 NA
#> SRR1270754     1  0.0146      0.937 0.996 0.000 0.000 0.000 0.000 NA
#> SRR1270755     1  0.0146      0.937 0.996 0.000 0.000 0.000 0.000 NA
#> SRR1270756     1  0.0000      0.937 1.000 0.000 0.000 0.000 0.000 NA
#> SRR1270757     1  0.0146      0.937 0.996 0.000 0.000 0.000 0.000 NA
#> SRR1270758     1  0.0146      0.937 0.996 0.000 0.000 0.000 0.000 NA
#> SRR1270759     1  0.0146      0.937 0.996 0.000 0.000 0.000 0.000 NA
#> SRR1270760     1  0.0146      0.937 0.996 0.000 0.000 0.000 0.000 NA
#> SRR1270761     1  0.1663      0.912 0.912 0.000 0.000 0.000 0.000 NA
#> SRR1270762     1  0.1765      0.908 0.904 0.000 0.000 0.000 0.000 NA
#> SRR1270763     1  0.1349      0.924 0.940 0.000 0.000 0.000 0.004 NA
#> SRR1270764     1  0.1267      0.924 0.940 0.000 0.000 0.000 0.000 NA
#> SRR1270765     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270766     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270767     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270768     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270769     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270770     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270771     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270772     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270773     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270774     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270775     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270776     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270777     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270778     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270779     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270780     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270781     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270782     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270783     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270784     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270785     5  0.0260      1.000 0.000 0.008 0.000 0.000 0.992 NA
#> SRR1270786     5  0.0260      1.000 0.000 0.008 0.000 0.000 0.992 NA
#> SRR1270787     5  0.0260      1.000 0.000 0.008 0.000 0.000 0.992 NA
#> SRR1270788     5  0.0260      1.000 0.000 0.008 0.000 0.000 0.992 NA
#> SRR1270789     5  0.0260      1.000 0.000 0.008 0.000 0.000 0.992 NA
#> SRR1270790     5  0.0260      1.000 0.000 0.008 0.000 0.000 0.992 NA
#> SRR1270791     5  0.0260      1.000 0.000 0.008 0.000 0.000 0.992 NA
#> SRR1270792     5  0.0260      1.000 0.000 0.008 0.000 0.000 0.992 NA
#> SRR1270793     5  0.0260      1.000 0.000 0.008 0.000 0.000 0.992 NA
#> SRR1270794     5  0.0260      1.000 0.000 0.008 0.000 0.000 0.992 NA
#> SRR1270795     5  0.0260      1.000 0.000 0.008 0.000 0.000 0.992 NA
#> SRR1270796     5  0.0260      1.000 0.000 0.008 0.000 0.000 0.992 NA
#> SRR1270797     5  0.0260      1.000 0.000 0.008 0.000 0.000 0.992 NA
#> SRR1270798     5  0.0260      1.000 0.000 0.008 0.000 0.000 0.992 NA
#> SRR1270799     5  0.0260      1.000 0.000 0.008 0.000 0.000 0.992 NA
#> SRR1270800     5  0.0260      1.000 0.000 0.008 0.000 0.000 0.992 NA
#> SRR1270801     5  0.0260      1.000 0.000 0.008 0.000 0.000 0.992 NA
#> SRR1270802     5  0.0260      1.000 0.000 0.008 0.000 0.000 0.992 NA
#> SRR1270803     5  0.0260      1.000 0.000 0.008 0.000 0.000 0.992 NA
#> SRR1270804     5  0.0260      1.000 0.000 0.008 0.000 0.000 0.992 NA
#> SRR1270805     3  0.2340      0.845 0.000 0.000 0.852 0.000 0.000 NA
#> SRR1270806     3  0.2219      0.847 0.000 0.000 0.864 0.000 0.000 NA
#> SRR1270807     3  0.2300      0.846 0.000 0.000 0.856 0.000 0.000 NA
#> SRR1270808     3  0.3578      0.768 0.000 0.000 0.660 0.000 0.000 NA
#> SRR1270809     3  0.3547      0.773 0.000 0.000 0.668 0.000 0.000 NA
#> SRR1270810     3  0.3547      0.774 0.000 0.000 0.668 0.000 0.000 NA
#> SRR1270811     3  0.3578      0.770 0.000 0.000 0.660 0.000 0.000 NA
#> SRR1270812     3  0.0000      0.861 0.000 0.000 1.000 0.000 0.000 NA
#> SRR1270813     3  0.0000      0.861 0.000 0.000 1.000 0.000 0.000 NA
#> SRR1270814     3  0.0000      0.861 0.000 0.000 1.000 0.000 0.000 NA
#> SRR1270815     3  0.0146      0.860 0.000 0.000 0.996 0.000 0.000 NA
#> SRR1270816     3  0.0146      0.860 0.000 0.000 0.996 0.000 0.000 NA
#> SRR1270817     3  0.0260      0.860 0.000 0.000 0.992 0.000 0.000 NA
#> SRR1270818     3  0.0260      0.860 0.000 0.000 0.992 0.000 0.000 NA
#> SRR1270819     3  0.0000      0.861 0.000 0.000 1.000 0.000 0.000 NA
#> SRR1270820     3  0.0000      0.861 0.000 0.000 1.000 0.000 0.000 NA
#> SRR1270821     3  0.0000      0.861 0.000 0.000 1.000 0.000 0.000 NA
#> SRR1270822     3  0.0000      0.861 0.000 0.000 1.000 0.000 0.000 NA
#> SRR1270823     3  0.0000      0.861 0.000 0.000 1.000 0.000 0.000 NA
#> SRR1270824     3  0.0000      0.861 0.000 0.000 1.000 0.000 0.000 NA
#> SRR1270825     3  0.0000      0.861 0.000 0.000 1.000 0.000 0.000 NA
#> SRR1270826     3  0.3151      0.820 0.000 0.000 0.748 0.000 0.000 NA
#> SRR1270827     3  0.3221      0.815 0.000 0.000 0.736 0.000 0.000 NA
#> SRR1270828     3  0.3126      0.821 0.000 0.000 0.752 0.000 0.000 NA
#> SRR1270829     3  0.3857      0.686 0.000 0.000 0.532 0.000 0.000 NA
#> SRR1270830     3  0.3868      0.663 0.000 0.000 0.508 0.000 0.000 NA
#> SRR1270831     3  0.3867      0.667 0.000 0.000 0.512 0.000 0.000 NA
#> SRR1270832     3  0.3828      0.707 0.000 0.000 0.560 0.000 0.000 NA
#> SRR1270833     4  0.0260      0.897 0.000 0.000 0.000 0.992 0.000 NA
#> SRR1270834     4  0.0260      0.897 0.000 0.000 0.000 0.992 0.000 NA
#> SRR1270835     4  0.0000      0.897 0.000 0.000 0.000 1.000 0.000 NA
#> SRR1270836     4  0.0000      0.897 0.000 0.000 0.000 1.000 0.000 NA
#> SRR1270837     4  0.0146      0.897 0.000 0.000 0.004 0.996 0.000 NA
#> SRR1270838     4  0.0146      0.897 0.000 0.000 0.004 0.996 0.000 NA
#> SRR1270839     4  0.0146      0.897 0.000 0.000 0.004 0.996 0.000 NA
#> SRR1270840     4  0.0146      0.897 0.000 0.000 0.000 0.996 0.000 NA
#> SRR1270841     4  0.0000      0.897 0.000 0.000 0.000 1.000 0.000 NA
#> SRR1270842     4  0.0146      0.897 0.000 0.000 0.000 0.996 0.000 NA
#> SRR1270843     4  0.0146      0.897 0.000 0.000 0.000 0.996 0.000 NA
#> SRR1270844     4  0.3634      0.752 0.000 0.000 0.000 0.644 0.000 NA
#> SRR1270845     4  0.3659      0.745 0.000 0.000 0.000 0.636 0.000 NA
#> SRR1270846     4  0.3607      0.758 0.000 0.000 0.000 0.652 0.000 NA
#> SRR1270847     4  0.3198      0.823 0.000 0.000 0.000 0.740 0.000 NA
#> SRR1270848     4  0.3101      0.831 0.000 0.000 0.000 0.756 0.000 NA
#> SRR1270849     4  0.3244      0.818 0.000 0.000 0.000 0.732 0.000 NA
#> SRR1270850     4  0.2883      0.843 0.000 0.000 0.000 0.788 0.000 NA
#> SRR1270851     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270852     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270853     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270854     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270855     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270856     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270857     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14577 rows and 143 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.4450 0.556   0.556
#> 3 3 1.000           1.000       1.000         0.4210 0.812   0.662
#> 4 4 1.000           1.000       1.000         0.1401 0.911   0.759
#> 5 5 1.000           0.984       0.992         0.0720 0.946   0.808
#> 6 6 0.922           0.971       0.953         0.0616 0.947   0.765

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 4 5

There is also optional best \(k\) = 2 3 4 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1270715     1       0          1  1  0
#> SRR1270716     1       0          1  1  0
#> SRR1270717     1       0          1  1  0
#> SRR1270718     1       0          1  1  0
#> SRR1270719     1       0          1  1  0
#> SRR1270720     1       0          1  1  0
#> SRR1270721     1       0          1  1  0
#> SRR1270722     1       0          1  1  0
#> SRR1270723     1       0          1  1  0
#> SRR1270724     1       0          1  1  0
#> SRR1270725     1       0          1  1  0
#> SRR1270726     1       0          1  1  0
#> SRR1270727     1       0          1  1  0
#> SRR1270728     1       0          1  1  0
#> SRR1270729     1       0          1  1  0
#> SRR1270730     1       0          1  1  0
#> SRR1270731     1       0          1  1  0
#> SRR1270732     1       0          1  1  0
#> SRR1270733     1       0          1  1  0
#> SRR1270734     1       0          1  1  0
#> SRR1270735     1       0          1  1  0
#> SRR1270736     1       0          1  1  0
#> SRR1270737     1       0          1  1  0
#> SRR1270738     1       0          1  1  0
#> SRR1270739     1       0          1  1  0
#> SRR1270740     1       0          1  1  0
#> SRR1270741     1       0          1  1  0
#> SRR1270742     1       0          1  1  0
#> SRR1270743     1       0          1  1  0
#> SRR1270744     1       0          1  1  0
#> SRR1270745     1       0          1  1  0
#> SRR1270746     1       0          1  1  0
#> SRR1270747     1       0          1  1  0
#> SRR1270748     1       0          1  1  0
#> SRR1270749     1       0          1  1  0
#> SRR1270750     1       0          1  1  0
#> SRR1270751     1       0          1  1  0
#> SRR1270752     1       0          1  1  0
#> SRR1270753     1       0          1  1  0
#> SRR1270754     1       0          1  1  0
#> SRR1270755     1       0          1  1  0
#> SRR1270756     1       0          1  1  0
#> SRR1270757     1       0          1  1  0
#> SRR1270758     1       0          1  1  0
#> SRR1270759     1       0          1  1  0
#> SRR1270760     1       0          1  1  0
#> SRR1270761     1       0          1  1  0
#> SRR1270762     1       0          1  1  0
#> SRR1270763     1       0          1  1  0
#> SRR1270764     1       0          1  1  0
#> SRR1270765     2       0          1  0  1
#> SRR1270766     2       0          1  0  1
#> SRR1270767     2       0          1  0  1
#> SRR1270768     2       0          1  0  1
#> SRR1270769     2       0          1  0  1
#> SRR1270770     2       0          1  0  1
#> SRR1270771     2       0          1  0  1
#> SRR1270772     2       0          1  0  1
#> SRR1270773     2       0          1  0  1
#> SRR1270774     2       0          1  0  1
#> SRR1270775     2       0          1  0  1
#> SRR1270776     2       0          1  0  1
#> SRR1270777     2       0          1  0  1
#> SRR1270778     2       0          1  0  1
#> SRR1270779     2       0          1  0  1
#> SRR1270780     2       0          1  0  1
#> SRR1270781     2       0          1  0  1
#> SRR1270782     2       0          1  0  1
#> SRR1270783     2       0          1  0  1
#> SRR1270784     2       0          1  0  1
#> SRR1270785     2       0          1  0  1
#> SRR1270786     2       0          1  0  1
#> SRR1270787     2       0          1  0  1
#> SRR1270788     2       0          1  0  1
#> SRR1270789     2       0          1  0  1
#> SRR1270790     2       0          1  0  1
#> SRR1270791     2       0          1  0  1
#> SRR1270792     2       0          1  0  1
#> SRR1270793     2       0          1  0  1
#> SRR1270794     2       0          1  0  1
#> SRR1270795     2       0          1  0  1
#> SRR1270796     2       0          1  0  1
#> SRR1270797     2       0          1  0  1
#> SRR1270798     2       0          1  0  1
#> SRR1270799     2       0          1  0  1
#> SRR1270800     2       0          1  0  1
#> SRR1270801     2       0          1  0  1
#> SRR1270802     2       0          1  0  1
#> SRR1270803     2       0          1  0  1
#> SRR1270804     2       0          1  0  1
#> SRR1270805     1       0          1  1  0
#> SRR1270806     1       0          1  1  0
#> SRR1270807     1       0          1  1  0
#> SRR1270808     1       0          1  1  0
#> SRR1270809     1       0          1  1  0
#> SRR1270810     1       0          1  1  0
#> SRR1270811     1       0          1  1  0
#> SRR1270812     1       0          1  1  0
#> SRR1270813     1       0          1  1  0
#> SRR1270814     1       0          1  1  0
#> SRR1270815     1       0          1  1  0
#> SRR1270816     1       0          1  1  0
#> SRR1270817     1       0          1  1  0
#> SRR1270818     1       0          1  1  0
#> SRR1270819     1       0          1  1  0
#> SRR1270820     1       0          1  1  0
#> SRR1270821     1       0          1  1  0
#> SRR1270822     1       0          1  1  0
#> SRR1270823     1       0          1  1  0
#> SRR1270824     1       0          1  1  0
#> SRR1270825     1       0          1  1  0
#> SRR1270826     1       0          1  1  0
#> SRR1270827     1       0          1  1  0
#> SRR1270828     1       0          1  1  0
#> SRR1270829     1       0          1  1  0
#> SRR1270830     1       0          1  1  0
#> SRR1270831     1       0          1  1  0
#> SRR1270832     1       0          1  1  0
#> SRR1270833     1       0          1  1  0
#> SRR1270834     1       0          1  1  0
#> SRR1270835     1       0          1  1  0
#> SRR1270836     1       0          1  1  0
#> SRR1270837     1       0          1  1  0
#> SRR1270838     1       0          1  1  0
#> SRR1270839     1       0          1  1  0
#> SRR1270840     1       0          1  1  0
#> SRR1270841     1       0          1  1  0
#> SRR1270842     1       0          1  1  0
#> SRR1270843     1       0          1  1  0
#> SRR1270844     1       0          1  1  0
#> SRR1270845     1       0          1  1  0
#> SRR1270846     1       0          1  1  0
#> SRR1270847     1       0          1  1  0
#> SRR1270848     1       0          1  1  0
#> SRR1270849     1       0          1  1  0
#> SRR1270850     1       0          1  1  0
#> SRR1270851     2       0          1  0  1
#> SRR1270852     2       0          1  0  1
#> SRR1270853     2       0          1  0  1
#> SRR1270854     2       0          1  0  1
#> SRR1270855     2       0          1  0  1
#> SRR1270856     2       0          1  0  1
#> SRR1270857     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette p1 p2 p3
#> SRR1270715     1       0          1  1  0  0
#> SRR1270716     1       0          1  1  0  0
#> SRR1270717     1       0          1  1  0  0
#> SRR1270718     1       0          1  1  0  0
#> SRR1270719     1       0          1  1  0  0
#> SRR1270720     1       0          1  1  0  0
#> SRR1270721     1       0          1  1  0  0
#> SRR1270722     1       0          1  1  0  0
#> SRR1270723     1       0          1  1  0  0
#> SRR1270724     1       0          1  1  0  0
#> SRR1270725     1       0          1  1  0  0
#> SRR1270726     1       0          1  1  0  0
#> SRR1270727     1       0          1  1  0  0
#> SRR1270728     1       0          1  1  0  0
#> SRR1270729     1       0          1  1  0  0
#> SRR1270730     1       0          1  1  0  0
#> SRR1270731     1       0          1  1  0  0
#> SRR1270732     1       0          1  1  0  0
#> SRR1270733     1       0          1  1  0  0
#> SRR1270734     1       0          1  1  0  0
#> SRR1270735     1       0          1  1  0  0
#> SRR1270736     1       0          1  1  0  0
#> SRR1270737     1       0          1  1  0  0
#> SRR1270738     1       0          1  1  0  0
#> SRR1270739     1       0          1  1  0  0
#> SRR1270740     1       0          1  1  0  0
#> SRR1270741     1       0          1  1  0  0
#> SRR1270742     1       0          1  1  0  0
#> SRR1270743     1       0          1  1  0  0
#> SRR1270744     1       0          1  1  0  0
#> SRR1270745     1       0          1  1  0  0
#> SRR1270746     1       0          1  1  0  0
#> SRR1270747     1       0          1  1  0  0
#> SRR1270748     1       0          1  1  0  0
#> SRR1270749     1       0          1  1  0  0
#> SRR1270750     1       0          1  1  0  0
#> SRR1270751     1       0          1  1  0  0
#> SRR1270752     1       0          1  1  0  0
#> SRR1270753     1       0          1  1  0  0
#> SRR1270754     1       0          1  1  0  0
#> SRR1270755     1       0          1  1  0  0
#> SRR1270756     1       0          1  1  0  0
#> SRR1270757     1       0          1  1  0  0
#> SRR1270758     1       0          1  1  0  0
#> SRR1270759     1       0          1  1  0  0
#> SRR1270760     1       0          1  1  0  0
#> SRR1270761     1       0          1  1  0  0
#> SRR1270762     1       0          1  1  0  0
#> SRR1270763     1       0          1  1  0  0
#> SRR1270764     1       0          1  1  0  0
#> SRR1270765     2       0          1  0  1  0
#> SRR1270766     2       0          1  0  1  0
#> SRR1270767     2       0          1  0  1  0
#> SRR1270768     2       0          1  0  1  0
#> SRR1270769     2       0          1  0  1  0
#> SRR1270770     2       0          1  0  1  0
#> SRR1270771     2       0          1  0  1  0
#> SRR1270772     2       0          1  0  1  0
#> SRR1270773     2       0          1  0  1  0
#> SRR1270774     2       0          1  0  1  0
#> SRR1270775     2       0          1  0  1  0
#> SRR1270776     2       0          1  0  1  0
#> SRR1270777     2       0          1  0  1  0
#> SRR1270778     2       0          1  0  1  0
#> SRR1270779     2       0          1  0  1  0
#> SRR1270780     2       0          1  0  1  0
#> SRR1270781     2       0          1  0  1  0
#> SRR1270782     2       0          1  0  1  0
#> SRR1270783     2       0          1  0  1  0
#> SRR1270784     2       0          1  0  1  0
#> SRR1270785     2       0          1  0  1  0
#> SRR1270786     2       0          1  0  1  0
#> SRR1270787     2       0          1  0  1  0
#> SRR1270788     2       0          1  0  1  0
#> SRR1270789     2       0          1  0  1  0
#> SRR1270790     2       0          1  0  1  0
#> SRR1270791     2       0          1  0  1  0
#> SRR1270792     2       0          1  0  1  0
#> SRR1270793     2       0          1  0  1  0
#> SRR1270794     2       0          1  0  1  0
#> SRR1270795     2       0          1  0  1  0
#> SRR1270796     2       0          1  0  1  0
#> SRR1270797     2       0          1  0  1  0
#> SRR1270798     2       0          1  0  1  0
#> SRR1270799     2       0          1  0  1  0
#> SRR1270800     2       0          1  0  1  0
#> SRR1270801     2       0          1  0  1  0
#> SRR1270802     2       0          1  0  1  0
#> SRR1270803     2       0          1  0  1  0
#> SRR1270804     2       0          1  0  1  0
#> SRR1270805     3       0          1  0  0  1
#> SRR1270806     3       0          1  0  0  1
#> SRR1270807     3       0          1  0  0  1
#> SRR1270808     3       0          1  0  0  1
#> SRR1270809     3       0          1  0  0  1
#> SRR1270810     3       0          1  0  0  1
#> SRR1270811     3       0          1  0  0  1
#> SRR1270812     3       0          1  0  0  1
#> SRR1270813     3       0          1  0  0  1
#> SRR1270814     3       0          1  0  0  1
#> SRR1270815     3       0          1  0  0  1
#> SRR1270816     3       0          1  0  0  1
#> SRR1270817     3       0          1  0  0  1
#> SRR1270818     3       0          1  0  0  1
#> SRR1270819     3       0          1  0  0  1
#> SRR1270820     3       0          1  0  0  1
#> SRR1270821     3       0          1  0  0  1
#> SRR1270822     3       0          1  0  0  1
#> SRR1270823     3       0          1  0  0  1
#> SRR1270824     3       0          1  0  0  1
#> SRR1270825     3       0          1  0  0  1
#> SRR1270826     3       0          1  0  0  1
#> SRR1270827     3       0          1  0  0  1
#> SRR1270828     3       0          1  0  0  1
#> SRR1270829     3       0          1  0  0  1
#> SRR1270830     3       0          1  0  0  1
#> SRR1270831     3       0          1  0  0  1
#> SRR1270832     3       0          1  0  0  1
#> SRR1270833     1       0          1  1  0  0
#> SRR1270834     1       0          1  1  0  0
#> SRR1270835     1       0          1  1  0  0
#> SRR1270836     1       0          1  1  0  0
#> SRR1270837     1       0          1  1  0  0
#> SRR1270838     1       0          1  1  0  0
#> SRR1270839     1       0          1  1  0  0
#> SRR1270840     1       0          1  1  0  0
#> SRR1270841     1       0          1  1  0  0
#> SRR1270842     1       0          1  1  0  0
#> SRR1270843     1       0          1  1  0  0
#> SRR1270844     1       0          1  1  0  0
#> SRR1270845     1       0          1  1  0  0
#> SRR1270846     1       0          1  1  0  0
#> SRR1270847     1       0          1  1  0  0
#> SRR1270848     1       0          1  1  0  0
#> SRR1270849     1       0          1  1  0  0
#> SRR1270850     1       0          1  1  0  0
#> SRR1270851     2       0          1  0  1  0
#> SRR1270852     2       0          1  0  1  0
#> SRR1270853     2       0          1  0  1  0
#> SRR1270854     2       0          1  0  1  0
#> SRR1270855     2       0          1  0  1  0
#> SRR1270856     2       0          1  0  1  0
#> SRR1270857     2       0          1  0  1  0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette p1 p2 p3 p4
#> SRR1270715     1       0          1  1  0  0  0
#> SRR1270716     1       0          1  1  0  0  0
#> SRR1270717     1       0          1  1  0  0  0
#> SRR1270718     1       0          1  1  0  0  0
#> SRR1270719     1       0          1  1  0  0  0
#> SRR1270720     1       0          1  1  0  0  0
#> SRR1270721     1       0          1  1  0  0  0
#> SRR1270722     1       0          1  1  0  0  0
#> SRR1270723     1       0          1  1  0  0  0
#> SRR1270724     1       0          1  1  0  0  0
#> SRR1270725     1       0          1  1  0  0  0
#> SRR1270726     1       0          1  1  0  0  0
#> SRR1270727     1       0          1  1  0  0  0
#> SRR1270728     1       0          1  1  0  0  0
#> SRR1270729     1       0          1  1  0  0  0
#> SRR1270730     1       0          1  1  0  0  0
#> SRR1270731     1       0          1  1  0  0  0
#> SRR1270732     1       0          1  1  0  0  0
#> SRR1270733     1       0          1  1  0  0  0
#> SRR1270734     1       0          1  1  0  0  0
#> SRR1270735     1       0          1  1  0  0  0
#> SRR1270736     1       0          1  1  0  0  0
#> SRR1270737     1       0          1  1  0  0  0
#> SRR1270738     1       0          1  1  0  0  0
#> SRR1270739     1       0          1  1  0  0  0
#> SRR1270740     1       0          1  1  0  0  0
#> SRR1270741     1       0          1  1  0  0  0
#> SRR1270742     1       0          1  1  0  0  0
#> SRR1270743     1       0          1  1  0  0  0
#> SRR1270744     1       0          1  1  0  0  0
#> SRR1270745     1       0          1  1  0  0  0
#> SRR1270746     1       0          1  1  0  0  0
#> SRR1270747     1       0          1  1  0  0  0
#> SRR1270748     1       0          1  1  0  0  0
#> SRR1270749     1       0          1  1  0  0  0
#> SRR1270750     1       0          1  1  0  0  0
#> SRR1270751     1       0          1  1  0  0  0
#> SRR1270752     1       0          1  1  0  0  0
#> SRR1270753     1       0          1  1  0  0  0
#> SRR1270754     1       0          1  1  0  0  0
#> SRR1270755     1       0          1  1  0  0  0
#> SRR1270756     1       0          1  1  0  0  0
#> SRR1270757     1       0          1  1  0  0  0
#> SRR1270758     1       0          1  1  0  0  0
#> SRR1270759     1       0          1  1  0  0  0
#> SRR1270760     1       0          1  1  0  0  0
#> SRR1270761     1       0          1  1  0  0  0
#> SRR1270762     1       0          1  1  0  0  0
#> SRR1270763     1       0          1  1  0  0  0
#> SRR1270764     1       0          1  1  0  0  0
#> SRR1270765     2       0          1  0  1  0  0
#> SRR1270766     2       0          1  0  1  0  0
#> SRR1270767     2       0          1  0  1  0  0
#> SRR1270768     2       0          1  0  1  0  0
#> SRR1270769     2       0          1  0  1  0  0
#> SRR1270770     2       0          1  0  1  0  0
#> SRR1270771     2       0          1  0  1  0  0
#> SRR1270772     2       0          1  0  1  0  0
#> SRR1270773     2       0          1  0  1  0  0
#> SRR1270774     2       0          1  0  1  0  0
#> SRR1270775     2       0          1  0  1  0  0
#> SRR1270776     2       0          1  0  1  0  0
#> SRR1270777     2       0          1  0  1  0  0
#> SRR1270778     2       0          1  0  1  0  0
#> SRR1270779     2       0          1  0  1  0  0
#> SRR1270780     2       0          1  0  1  0  0
#> SRR1270781     2       0          1  0  1  0  0
#> SRR1270782     2       0          1  0  1  0  0
#> SRR1270783     2       0          1  0  1  0  0
#> SRR1270784     2       0          1  0  1  0  0
#> SRR1270785     2       0          1  0  1  0  0
#> SRR1270786     2       0          1  0  1  0  0
#> SRR1270787     2       0          1  0  1  0  0
#> SRR1270788     2       0          1  0  1  0  0
#> SRR1270789     2       0          1  0  1  0  0
#> SRR1270790     2       0          1  0  1  0  0
#> SRR1270791     2       0          1  0  1  0  0
#> SRR1270792     2       0          1  0  1  0  0
#> SRR1270793     2       0          1  0  1  0  0
#> SRR1270794     2       0          1  0  1  0  0
#> SRR1270795     2       0          1  0  1  0  0
#> SRR1270796     2       0          1  0  1  0  0
#> SRR1270797     2       0          1  0  1  0  0
#> SRR1270798     2       0          1  0  1  0  0
#> SRR1270799     2       0          1  0  1  0  0
#> SRR1270800     2       0          1  0  1  0  0
#> SRR1270801     2       0          1  0  1  0  0
#> SRR1270802     2       0          1  0  1  0  0
#> SRR1270803     2       0          1  0  1  0  0
#> SRR1270804     2       0          1  0  1  0  0
#> SRR1270805     3       0          1  0  0  1  0
#> SRR1270806     3       0          1  0  0  1  0
#> SRR1270807     3       0          1  0  0  1  0
#> SRR1270808     3       0          1  0  0  1  0
#> SRR1270809     3       0          1  0  0  1  0
#> SRR1270810     3       0          1  0  0  1  0
#> SRR1270811     3       0          1  0  0  1  0
#> SRR1270812     3       0          1  0  0  1  0
#> SRR1270813     3       0          1  0  0  1  0
#> SRR1270814     3       0          1  0  0  1  0
#> SRR1270815     3       0          1  0  0  1  0
#> SRR1270816     3       0          1  0  0  1  0
#> SRR1270817     3       0          1  0  0  1  0
#> SRR1270818     3       0          1  0  0  1  0
#> SRR1270819     3       0          1  0  0  1  0
#> SRR1270820     3       0          1  0  0  1  0
#> SRR1270821     3       0          1  0  0  1  0
#> SRR1270822     3       0          1  0  0  1  0
#> SRR1270823     3       0          1  0  0  1  0
#> SRR1270824     3       0          1  0  0  1  0
#> SRR1270825     3       0          1  0  0  1  0
#> SRR1270826     3       0          1  0  0  1  0
#> SRR1270827     3       0          1  0  0  1  0
#> SRR1270828     3       0          1  0  0  1  0
#> SRR1270829     3       0          1  0  0  1  0
#> SRR1270830     3       0          1  0  0  1  0
#> SRR1270831     3       0          1  0  0  1  0
#> SRR1270832     3       0          1  0  0  1  0
#> SRR1270833     4       0          1  0  0  0  1
#> SRR1270834     4       0          1  0  0  0  1
#> SRR1270835     4       0          1  0  0  0  1
#> SRR1270836     4       0          1  0  0  0  1
#> SRR1270837     4       0          1  0  0  0  1
#> SRR1270838     4       0          1  0  0  0  1
#> SRR1270839     4       0          1  0  0  0  1
#> SRR1270840     4       0          1  0  0  0  1
#> SRR1270841     4       0          1  0  0  0  1
#> SRR1270842     4       0          1  0  0  0  1
#> SRR1270843     4       0          1  0  0  0  1
#> SRR1270844     4       0          1  0  0  0  1
#> SRR1270845     4       0          1  0  0  0  1
#> SRR1270846     4       0          1  0  0  0  1
#> SRR1270847     4       0          1  0  0  0  1
#> SRR1270848     4       0          1  0  0  0  1
#> SRR1270849     4       0          1  0  0  0  1
#> SRR1270850     4       0          1  0  0  0  1
#> SRR1270851     2       0          1  0  1  0  0
#> SRR1270852     2       0          1  0  1  0  0
#> SRR1270853     2       0          1  0  1  0  0
#> SRR1270854     2       0          1  0  1  0  0
#> SRR1270855     2       0          1  0  1  0  0
#> SRR1270856     2       0          1  0  1  0  0
#> SRR1270857     2       0          1  0  1  0  0

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1 p2 p3 p4    p5
#> SRR1270715     5  0.0963      0.928 0.036  0  0  0 0.964
#> SRR1270716     5  0.0963      0.928 0.036  0  0  0 0.964
#> SRR1270717     5  0.0963      0.928 0.036  0  0  0 0.964
#> SRR1270718     5  0.0000      0.930 0.000  0  0  0 1.000
#> SRR1270719     5  0.0000      0.930 0.000  0  0  0 1.000
#> SRR1270720     5  0.0000      0.930 0.000  0  0  0 1.000
#> SRR1270721     5  0.0000      0.930 0.000  0  0  0 1.000
#> SRR1270722     1  0.0794      0.976 0.972  0  0  0 0.028
#> SRR1270723     1  0.0794      0.976 0.972  0  0  0 0.028
#> SRR1270724     1  0.0794      0.976 0.972  0  0  0 0.028
#> SRR1270725     1  0.0794      0.976 0.972  0  0  0 0.028
#> SRR1270726     1  0.0794      0.976 0.972  0  0  0 0.028
#> SRR1270727     1  0.0794      0.976 0.972  0  0  0 0.028
#> SRR1270728     1  0.0794      0.976 0.972  0  0  0 0.028
#> SRR1270729     5  0.0963      0.928 0.036  0  0  0 0.964
#> SRR1270730     5  0.0963      0.928 0.036  0  0  0 0.964
#> SRR1270731     5  0.0963      0.928 0.036  0  0  0 0.964
#> SRR1270732     5  0.0000      0.930 0.000  0  0  0 1.000
#> SRR1270733     5  0.0000      0.930 0.000  0  0  0 1.000
#> SRR1270734     5  0.0000      0.930 0.000  0  0  0 1.000
#> SRR1270735     5  0.0000      0.930 0.000  0  0  0 1.000
#> SRR1270736     1  0.0794      0.976 0.972  0  0  0 0.028
#> SRR1270737     1  0.0794      0.976 0.972  0  0  0 0.028
#> SRR1270738     5  0.3913      0.567 0.324  0  0  0 0.676
#> SRR1270739     5  0.3913      0.567 0.324  0  0  0 0.676
#> SRR1270740     1  0.0000      0.992 1.000  0  0  0 0.000
#> SRR1270741     1  0.0000      0.992 1.000  0  0  0 0.000
#> SRR1270742     1  0.0000      0.992 1.000  0  0  0 0.000
#> SRR1270743     1  0.0000      0.992 1.000  0  0  0 0.000
#> SRR1270744     1  0.0000      0.992 1.000  0  0  0 0.000
#> SRR1270745     1  0.0000      0.992 1.000  0  0  0 0.000
#> SRR1270746     1  0.0000      0.992 1.000  0  0  0 0.000
#> SRR1270747     1  0.0000      0.992 1.000  0  0  0 0.000
#> SRR1270748     1  0.0000      0.992 1.000  0  0  0 0.000
#> SRR1270749     1  0.0000      0.992 1.000  0  0  0 0.000
#> SRR1270750     1  0.0000      0.992 1.000  0  0  0 0.000
#> SRR1270751     1  0.0000      0.992 1.000  0  0  0 0.000
#> SRR1270752     1  0.0000      0.992 1.000  0  0  0 0.000
#> SRR1270753     1  0.0000      0.992 1.000  0  0  0 0.000
#> SRR1270754     1  0.0000      0.992 1.000  0  0  0 0.000
#> SRR1270755     1  0.0000      0.992 1.000  0  0  0 0.000
#> SRR1270756     1  0.0000      0.992 1.000  0  0  0 0.000
#> SRR1270757     1  0.0000      0.992 1.000  0  0  0 0.000
#> SRR1270758     1  0.0000      0.992 1.000  0  0  0 0.000
#> SRR1270759     1  0.0000      0.992 1.000  0  0  0 0.000
#> SRR1270760     1  0.0000      0.992 1.000  0  0  0 0.000
#> SRR1270761     1  0.0000      0.992 1.000  0  0  0 0.000
#> SRR1270762     1  0.0000      0.992 1.000  0  0  0 0.000
#> SRR1270763     1  0.0000      0.992 1.000  0  0  0 0.000
#> SRR1270764     1  0.0000      0.992 1.000  0  0  0 0.000
#> SRR1270765     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270766     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270767     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270768     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270769     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270770     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270771     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270772     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270773     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270774     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270775     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270776     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270777     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270778     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270779     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270780     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270781     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270782     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270783     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270784     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270785     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270786     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270787     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270788     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270789     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270790     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270791     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270792     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270793     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270794     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270795     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270796     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270797     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270798     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270799     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270800     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270801     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270802     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270803     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270804     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270805     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270806     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270807     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270808     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270809     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270810     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270811     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270812     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270813     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270814     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270815     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270816     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270817     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270818     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270819     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270820     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270821     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270822     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270823     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270824     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270825     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270826     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270827     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270828     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270829     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270830     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270831     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270832     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270833     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270834     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270835     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270836     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270837     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270838     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270839     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270840     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270841     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270842     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270843     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270844     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270845     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270846     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270847     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270848     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270849     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270850     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270851     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270852     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270853     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270854     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270855     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270856     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270857     2  0.0000      1.000 0.000  1  0  0 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1  p2 p3 p4  p5    p6
#> SRR1270715     6  0.0865      0.936 0.036 0.0  0  0 0.0 0.964
#> SRR1270716     6  0.0865      0.936 0.036 0.0  0  0 0.0 0.964
#> SRR1270717     6  0.0865      0.936 0.036 0.0  0  0 0.0 0.964
#> SRR1270718     6  0.0000      0.939 0.000 0.0  0  0 0.0 1.000
#> SRR1270719     6  0.0000      0.939 0.000 0.0  0  0 0.0 1.000
#> SRR1270720     6  0.0000      0.939 0.000 0.0  0  0 0.0 1.000
#> SRR1270721     6  0.0000      0.939 0.000 0.0  0  0 0.0 1.000
#> SRR1270722     1  0.2793      0.846 0.800 0.0  0  0 0.2 0.000
#> SRR1270723     1  0.2793      0.846 0.800 0.0  0  0 0.2 0.000
#> SRR1270724     1  0.2793      0.846 0.800 0.0  0  0 0.2 0.000
#> SRR1270725     1  0.2793      0.846 0.800 0.0  0  0 0.2 0.000
#> SRR1270726     1  0.2793      0.846 0.800 0.0  0  0 0.2 0.000
#> SRR1270727     1  0.2793      0.846 0.800 0.0  0  0 0.2 0.000
#> SRR1270728     1  0.2793      0.846 0.800 0.0  0  0 0.2 0.000
#> SRR1270729     6  0.0865      0.936 0.036 0.0  0  0 0.0 0.964
#> SRR1270730     6  0.0865      0.936 0.036 0.0  0  0 0.0 0.964
#> SRR1270731     6  0.0865      0.936 0.036 0.0  0  0 0.0 0.964
#> SRR1270732     6  0.0000      0.939 0.000 0.0  0  0 0.0 1.000
#> SRR1270733     6  0.0000      0.939 0.000 0.0  0  0 0.0 1.000
#> SRR1270734     6  0.0000      0.939 0.000 0.0  0  0 0.0 1.000
#> SRR1270735     6  0.0000      0.939 0.000 0.0  0  0 0.0 1.000
#> SRR1270736     1  0.2793      0.846 0.800 0.0  0  0 0.2 0.000
#> SRR1270737     1  0.2793      0.846 0.800 0.0  0  0 0.2 0.000
#> SRR1270738     6  0.4964      0.667 0.152 0.0  0  0 0.2 0.648
#> SRR1270739     6  0.4964      0.667 0.152 0.0  0  0 0.2 0.648
#> SRR1270740     1  0.0000      0.949 1.000 0.0  0  0 0.0 0.000
#> SRR1270741     1  0.0000      0.949 1.000 0.0  0  0 0.0 0.000
#> SRR1270742     1  0.0000      0.949 1.000 0.0  0  0 0.0 0.000
#> SRR1270743     1  0.0000      0.949 1.000 0.0  0  0 0.0 0.000
#> SRR1270744     1  0.0000      0.949 1.000 0.0  0  0 0.0 0.000
#> SRR1270745     1  0.0000      0.949 1.000 0.0  0  0 0.0 0.000
#> SRR1270746     1  0.0000      0.949 1.000 0.0  0  0 0.0 0.000
#> SRR1270747     1  0.0000      0.949 1.000 0.0  0  0 0.0 0.000
#> SRR1270748     1  0.0000      0.949 1.000 0.0  0  0 0.0 0.000
#> SRR1270749     1  0.0000      0.949 1.000 0.0  0  0 0.0 0.000
#> SRR1270750     1  0.0000      0.949 1.000 0.0  0  0 0.0 0.000
#> SRR1270751     1  0.0000      0.949 1.000 0.0  0  0 0.0 0.000
#> SRR1270752     1  0.0000      0.949 1.000 0.0  0  0 0.0 0.000
#> SRR1270753     1  0.0000      0.949 1.000 0.0  0  0 0.0 0.000
#> SRR1270754     1  0.0000      0.949 1.000 0.0  0  0 0.0 0.000
#> SRR1270755     1  0.0000      0.949 1.000 0.0  0  0 0.0 0.000
#> SRR1270756     1  0.0000      0.949 1.000 0.0  0  0 0.0 0.000
#> SRR1270757     1  0.0000      0.949 1.000 0.0  0  0 0.0 0.000
#> SRR1270758     1  0.0000      0.949 1.000 0.0  0  0 0.0 0.000
#> SRR1270759     1  0.0000      0.949 1.000 0.0  0  0 0.0 0.000
#> SRR1270760     1  0.0000      0.949 1.000 0.0  0  0 0.0 0.000
#> SRR1270761     1  0.0000      0.949 1.000 0.0  0  0 0.0 0.000
#> SRR1270762     1  0.0000      0.949 1.000 0.0  0  0 0.0 0.000
#> SRR1270763     1  0.0000      0.949 1.000 0.0  0  0 0.0 0.000
#> SRR1270764     1  0.0000      0.949 1.000 0.0  0  0 0.0 0.000
#> SRR1270765     2  0.0000      1.000 0.000 1.0  0  0 0.0 0.000
#> SRR1270766     2  0.0000      1.000 0.000 1.0  0  0 0.0 0.000
#> SRR1270767     2  0.0000      1.000 0.000 1.0  0  0 0.0 0.000
#> SRR1270768     2  0.0000      1.000 0.000 1.0  0  0 0.0 0.000
#> SRR1270769     2  0.0000      1.000 0.000 1.0  0  0 0.0 0.000
#> SRR1270770     2  0.0000      1.000 0.000 1.0  0  0 0.0 0.000
#> SRR1270771     2  0.0000      1.000 0.000 1.0  0  0 0.0 0.000
#> SRR1270772     2  0.0000      1.000 0.000 1.0  0  0 0.0 0.000
#> SRR1270773     2  0.0000      1.000 0.000 1.0  0  0 0.0 0.000
#> SRR1270774     2  0.0000      1.000 0.000 1.0  0  0 0.0 0.000
#> SRR1270775     2  0.0000      1.000 0.000 1.0  0  0 0.0 0.000
#> SRR1270776     2  0.0000      1.000 0.000 1.0  0  0 0.0 0.000
#> SRR1270777     2  0.0000      1.000 0.000 1.0  0  0 0.0 0.000
#> SRR1270778     2  0.0000      1.000 0.000 1.0  0  0 0.0 0.000
#> SRR1270779     2  0.0000      1.000 0.000 1.0  0  0 0.0 0.000
#> SRR1270780     2  0.0000      1.000 0.000 1.0  0  0 0.0 0.000
#> SRR1270781     2  0.0000      1.000 0.000 1.0  0  0 0.0 0.000
#> SRR1270782     2  0.0000      1.000 0.000 1.0  0  0 0.0 0.000
#> SRR1270783     2  0.0000      1.000 0.000 1.0  0  0 0.0 0.000
#> SRR1270784     2  0.0000      1.000 0.000 1.0  0  0 0.0 0.000
#> SRR1270785     5  0.2793      1.000 0.000 0.2  0  0 0.8 0.000
#> SRR1270786     5  0.2793      1.000 0.000 0.2  0  0 0.8 0.000
#> SRR1270787     5  0.2793      1.000 0.000 0.2  0  0 0.8 0.000
#> SRR1270788     5  0.2793      1.000 0.000 0.2  0  0 0.8 0.000
#> SRR1270789     5  0.2793      1.000 0.000 0.2  0  0 0.8 0.000
#> SRR1270790     5  0.2793      1.000 0.000 0.2  0  0 0.8 0.000
#> SRR1270791     5  0.2793      1.000 0.000 0.2  0  0 0.8 0.000
#> SRR1270792     5  0.2793      1.000 0.000 0.2  0  0 0.8 0.000
#> SRR1270793     5  0.2793      1.000 0.000 0.2  0  0 0.8 0.000
#> SRR1270794     5  0.2793      1.000 0.000 0.2  0  0 0.8 0.000
#> SRR1270795     5  0.2793      1.000 0.000 0.2  0  0 0.8 0.000
#> SRR1270796     5  0.2793      1.000 0.000 0.2  0  0 0.8 0.000
#> SRR1270797     5  0.2793      1.000 0.000 0.2  0  0 0.8 0.000
#> SRR1270798     5  0.2793      1.000 0.000 0.2  0  0 0.8 0.000
#> SRR1270799     5  0.2793      1.000 0.000 0.2  0  0 0.8 0.000
#> SRR1270800     5  0.2793      1.000 0.000 0.2  0  0 0.8 0.000
#> SRR1270801     5  0.2793      1.000 0.000 0.2  0  0 0.8 0.000
#> SRR1270802     5  0.2793      1.000 0.000 0.2  0  0 0.8 0.000
#> SRR1270803     5  0.2793      1.000 0.000 0.2  0  0 0.8 0.000
#> SRR1270804     5  0.2793      1.000 0.000 0.2  0  0 0.8 0.000
#> SRR1270805     3  0.0000      1.000 0.000 0.0  1  0 0.0 0.000
#> SRR1270806     3  0.0000      1.000 0.000 0.0  1  0 0.0 0.000
#> SRR1270807     3  0.0000      1.000 0.000 0.0  1  0 0.0 0.000
#> SRR1270808     3  0.0000      1.000 0.000 0.0  1  0 0.0 0.000
#> SRR1270809     3  0.0000      1.000 0.000 0.0  1  0 0.0 0.000
#> SRR1270810     3  0.0000      1.000 0.000 0.0  1  0 0.0 0.000
#> SRR1270811     3  0.0000      1.000 0.000 0.0  1  0 0.0 0.000
#> SRR1270812     3  0.0000      1.000 0.000 0.0  1  0 0.0 0.000
#> SRR1270813     3  0.0000      1.000 0.000 0.0  1  0 0.0 0.000
#> SRR1270814     3  0.0000      1.000 0.000 0.0  1  0 0.0 0.000
#> SRR1270815     3  0.0000      1.000 0.000 0.0  1  0 0.0 0.000
#> SRR1270816     3  0.0000      1.000 0.000 0.0  1  0 0.0 0.000
#> SRR1270817     3  0.0000      1.000 0.000 0.0  1  0 0.0 0.000
#> SRR1270818     3  0.0000      1.000 0.000 0.0  1  0 0.0 0.000
#> SRR1270819     3  0.0000      1.000 0.000 0.0  1  0 0.0 0.000
#> SRR1270820     3  0.0000      1.000 0.000 0.0  1  0 0.0 0.000
#> SRR1270821     3  0.0000      1.000 0.000 0.0  1  0 0.0 0.000
#> SRR1270822     3  0.0000      1.000 0.000 0.0  1  0 0.0 0.000
#> SRR1270823     3  0.0000      1.000 0.000 0.0  1  0 0.0 0.000
#> SRR1270824     3  0.0000      1.000 0.000 0.0  1  0 0.0 0.000
#> SRR1270825     3  0.0000      1.000 0.000 0.0  1  0 0.0 0.000
#> SRR1270826     3  0.0000      1.000 0.000 0.0  1  0 0.0 0.000
#> SRR1270827     3  0.0000      1.000 0.000 0.0  1  0 0.0 0.000
#> SRR1270828     3  0.0000      1.000 0.000 0.0  1  0 0.0 0.000
#> SRR1270829     3  0.0000      1.000 0.000 0.0  1  0 0.0 0.000
#> SRR1270830     3  0.0000      1.000 0.000 0.0  1  0 0.0 0.000
#> SRR1270831     3  0.0000      1.000 0.000 0.0  1  0 0.0 0.000
#> SRR1270832     3  0.0000      1.000 0.000 0.0  1  0 0.0 0.000
#> SRR1270833     4  0.0000      1.000 0.000 0.0  0  1 0.0 0.000
#> SRR1270834     4  0.0000      1.000 0.000 0.0  0  1 0.0 0.000
#> SRR1270835     4  0.0000      1.000 0.000 0.0  0  1 0.0 0.000
#> SRR1270836     4  0.0000      1.000 0.000 0.0  0  1 0.0 0.000
#> SRR1270837     4  0.0000      1.000 0.000 0.0  0  1 0.0 0.000
#> SRR1270838     4  0.0000      1.000 0.000 0.0  0  1 0.0 0.000
#> SRR1270839     4  0.0000      1.000 0.000 0.0  0  1 0.0 0.000
#> SRR1270840     4  0.0000      1.000 0.000 0.0  0  1 0.0 0.000
#> SRR1270841     4  0.0000      1.000 0.000 0.0  0  1 0.0 0.000
#> SRR1270842     4  0.0000      1.000 0.000 0.0  0  1 0.0 0.000
#> SRR1270843     4  0.0000      1.000 0.000 0.0  0  1 0.0 0.000
#> SRR1270844     4  0.0000      1.000 0.000 0.0  0  1 0.0 0.000
#> SRR1270845     4  0.0000      1.000 0.000 0.0  0  1 0.0 0.000
#> SRR1270846     4  0.0000      1.000 0.000 0.0  0  1 0.0 0.000
#> SRR1270847     4  0.0000      1.000 0.000 0.0  0  1 0.0 0.000
#> SRR1270848     4  0.0000      1.000 0.000 0.0  0  1 0.0 0.000
#> SRR1270849     4  0.0000      1.000 0.000 0.0  0  1 0.0 0.000
#> SRR1270850     4  0.0000      1.000 0.000 0.0  0  1 0.0 0.000
#> SRR1270851     2  0.0000      1.000 0.000 1.0  0  0 0.0 0.000
#> SRR1270852     2  0.0000      1.000 0.000 1.0  0  0 0.0 0.000
#> SRR1270853     2  0.0000      1.000 0.000 1.0  0  0 0.0 0.000
#> SRR1270854     2  0.0000      1.000 0.000 1.0  0  0 0.0 0.000
#> SRR1270855     2  0.0000      1.000 0.000 1.0  0  0 0.0 0.000
#> SRR1270856     2  0.0000      1.000 0.000 1.0  0  0 0.0 0.000
#> SRR1270857     2  0.0000      1.000 0.000 1.0  0  0 0.0 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14577 rows and 143 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.997       0.993         0.4416 0.556   0.556
#> 3 3 0.671           0.917       0.872         0.3512 0.812   0.662
#> 4 4 0.658           0.927       0.824         0.1400 0.911   0.759
#> 5 5 0.764           0.897       0.788         0.0833 0.947   0.810
#> 6 6 0.748           0.853       0.808         0.0582 1.000   1.000

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1270715     1   0.000      0.997 1.000 0.000
#> SRR1270716     1   0.000      0.997 1.000 0.000
#> SRR1270717     1   0.000      0.997 1.000 0.000
#> SRR1270718     1   0.000      0.997 1.000 0.000
#> SRR1270719     1   0.000      0.997 1.000 0.000
#> SRR1270720     1   0.000      0.997 1.000 0.000
#> SRR1270721     1   0.000      0.997 1.000 0.000
#> SRR1270722     1   0.000      0.997 1.000 0.000
#> SRR1270723     1   0.000      0.997 1.000 0.000
#> SRR1270724     1   0.000      0.997 1.000 0.000
#> SRR1270725     1   0.000      0.997 1.000 0.000
#> SRR1270726     1   0.000      0.997 1.000 0.000
#> SRR1270727     1   0.000      0.997 1.000 0.000
#> SRR1270728     1   0.000      0.997 1.000 0.000
#> SRR1270729     1   0.000      0.997 1.000 0.000
#> SRR1270730     1   0.000      0.997 1.000 0.000
#> SRR1270731     1   0.000      0.997 1.000 0.000
#> SRR1270732     1   0.000      0.997 1.000 0.000
#> SRR1270733     1   0.000      0.997 1.000 0.000
#> SRR1270734     1   0.000      0.997 1.000 0.000
#> SRR1270735     1   0.000      0.997 1.000 0.000
#> SRR1270736     1   0.000      0.997 1.000 0.000
#> SRR1270737     1   0.000      0.997 1.000 0.000
#> SRR1270738     1   0.000      0.997 1.000 0.000
#> SRR1270739     1   0.000      0.997 1.000 0.000
#> SRR1270740     1   0.000      0.997 1.000 0.000
#> SRR1270741     1   0.000      0.997 1.000 0.000
#> SRR1270742     1   0.000      0.997 1.000 0.000
#> SRR1270743     1   0.000      0.997 1.000 0.000
#> SRR1270744     1   0.000      0.997 1.000 0.000
#> SRR1270745     1   0.000      0.997 1.000 0.000
#> SRR1270746     1   0.000      0.997 1.000 0.000
#> SRR1270747     1   0.000      0.997 1.000 0.000
#> SRR1270748     1   0.000      0.997 1.000 0.000
#> SRR1270749     1   0.000      0.997 1.000 0.000
#> SRR1270750     1   0.000      0.997 1.000 0.000
#> SRR1270751     1   0.000      0.997 1.000 0.000
#> SRR1270752     1   0.000      0.997 1.000 0.000
#> SRR1270753     1   0.000      0.997 1.000 0.000
#> SRR1270754     1   0.000      0.997 1.000 0.000
#> SRR1270755     1   0.000      0.997 1.000 0.000
#> SRR1270756     1   0.000      0.997 1.000 0.000
#> SRR1270757     1   0.000      0.997 1.000 0.000
#> SRR1270758     1   0.000      0.997 1.000 0.000
#> SRR1270759     1   0.000      0.997 1.000 0.000
#> SRR1270760     1   0.000      0.997 1.000 0.000
#> SRR1270761     1   0.000      0.997 1.000 0.000
#> SRR1270762     1   0.000      0.997 1.000 0.000
#> SRR1270763     1   0.000      0.997 1.000 0.000
#> SRR1270764     1   0.000      0.997 1.000 0.000
#> SRR1270765     2   0.118      1.000 0.016 0.984
#> SRR1270766     2   0.118      1.000 0.016 0.984
#> SRR1270767     2   0.118      1.000 0.016 0.984
#> SRR1270768     2   0.118      1.000 0.016 0.984
#> SRR1270769     2   0.118      1.000 0.016 0.984
#> SRR1270770     2   0.118      1.000 0.016 0.984
#> SRR1270771     2   0.118      1.000 0.016 0.984
#> SRR1270772     2   0.118      1.000 0.016 0.984
#> SRR1270773     2   0.118      1.000 0.016 0.984
#> SRR1270774     2   0.118      1.000 0.016 0.984
#> SRR1270775     2   0.118      1.000 0.016 0.984
#> SRR1270776     2   0.118      1.000 0.016 0.984
#> SRR1270777     2   0.118      1.000 0.016 0.984
#> SRR1270778     2   0.118      1.000 0.016 0.984
#> SRR1270779     2   0.118      1.000 0.016 0.984
#> SRR1270780     2   0.118      1.000 0.016 0.984
#> SRR1270781     2   0.118      1.000 0.016 0.984
#> SRR1270782     2   0.118      1.000 0.016 0.984
#> SRR1270783     2   0.118      1.000 0.016 0.984
#> SRR1270784     2   0.118      1.000 0.016 0.984
#> SRR1270785     2   0.118      1.000 0.016 0.984
#> SRR1270786     2   0.118      1.000 0.016 0.984
#> SRR1270787     2   0.118      1.000 0.016 0.984
#> SRR1270788     2   0.118      1.000 0.016 0.984
#> SRR1270789     2   0.118      1.000 0.016 0.984
#> SRR1270790     2   0.118      1.000 0.016 0.984
#> SRR1270791     2   0.118      1.000 0.016 0.984
#> SRR1270792     2   0.118      1.000 0.016 0.984
#> SRR1270793     2   0.118      1.000 0.016 0.984
#> SRR1270794     2   0.118      1.000 0.016 0.984
#> SRR1270795     2   0.118      1.000 0.016 0.984
#> SRR1270796     2   0.118      1.000 0.016 0.984
#> SRR1270797     2   0.118      1.000 0.016 0.984
#> SRR1270798     2   0.118      1.000 0.016 0.984
#> SRR1270799     2   0.118      1.000 0.016 0.984
#> SRR1270800     2   0.118      1.000 0.016 0.984
#> SRR1270801     2   0.118      1.000 0.016 0.984
#> SRR1270802     2   0.118      1.000 0.016 0.984
#> SRR1270803     2   0.118      1.000 0.016 0.984
#> SRR1270804     2   0.118      1.000 0.016 0.984
#> SRR1270805     1   0.000      0.997 1.000 0.000
#> SRR1270806     1   0.000      0.997 1.000 0.000
#> SRR1270807     1   0.000      0.997 1.000 0.000
#> SRR1270808     1   0.000      0.997 1.000 0.000
#> SRR1270809     1   0.000      0.997 1.000 0.000
#> SRR1270810     1   0.000      0.997 1.000 0.000
#> SRR1270811     1   0.000      0.997 1.000 0.000
#> SRR1270812     1   0.000      0.997 1.000 0.000
#> SRR1270813     1   0.000      0.997 1.000 0.000
#> SRR1270814     1   0.000      0.997 1.000 0.000
#> SRR1270815     1   0.000      0.997 1.000 0.000
#> SRR1270816     1   0.000      0.997 1.000 0.000
#> SRR1270817     1   0.000      0.997 1.000 0.000
#> SRR1270818     1   0.000      0.997 1.000 0.000
#> SRR1270819     1   0.000      0.997 1.000 0.000
#> SRR1270820     1   0.000      0.997 1.000 0.000
#> SRR1270821     1   0.000      0.997 1.000 0.000
#> SRR1270822     1   0.000      0.997 1.000 0.000
#> SRR1270823     1   0.000      0.997 1.000 0.000
#> SRR1270824     1   0.000      0.997 1.000 0.000
#> SRR1270825     1   0.000      0.997 1.000 0.000
#> SRR1270826     1   0.000      0.997 1.000 0.000
#> SRR1270827     1   0.000      0.997 1.000 0.000
#> SRR1270828     1   0.000      0.997 1.000 0.000
#> SRR1270829     1   0.000      0.997 1.000 0.000
#> SRR1270830     1   0.000      0.997 1.000 0.000
#> SRR1270831     1   0.000      0.997 1.000 0.000
#> SRR1270832     1   0.000      0.997 1.000 0.000
#> SRR1270833     1   0.118      0.987 0.984 0.016
#> SRR1270834     1   0.118      0.987 0.984 0.016
#> SRR1270835     1   0.118      0.987 0.984 0.016
#> SRR1270836     1   0.118      0.987 0.984 0.016
#> SRR1270837     1   0.118      0.987 0.984 0.016
#> SRR1270838     1   0.118      0.987 0.984 0.016
#> SRR1270839     1   0.118      0.987 0.984 0.016
#> SRR1270840     1   0.118      0.987 0.984 0.016
#> SRR1270841     1   0.118      0.987 0.984 0.016
#> SRR1270842     1   0.118      0.987 0.984 0.016
#> SRR1270843     1   0.118      0.987 0.984 0.016
#> SRR1270844     1   0.118      0.987 0.984 0.016
#> SRR1270845     1   0.118      0.987 0.984 0.016
#> SRR1270846     1   0.118      0.987 0.984 0.016
#> SRR1270847     1   0.118      0.987 0.984 0.016
#> SRR1270848     1   0.118      0.987 0.984 0.016
#> SRR1270849     1   0.118      0.987 0.984 0.016
#> SRR1270850     1   0.118      0.987 0.984 0.016
#> SRR1270851     2   0.118      1.000 0.016 0.984
#> SRR1270852     2   0.118      1.000 0.016 0.984
#> SRR1270853     2   0.118      1.000 0.016 0.984
#> SRR1270854     2   0.118      1.000 0.016 0.984
#> SRR1270855     2   0.118      1.000 0.016 0.984
#> SRR1270856     2   0.118      1.000 0.016 0.984
#> SRR1270857     2   0.118      1.000 0.016 0.984

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1270715     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270716     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270717     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270718     1  0.0424      0.918 0.992 0.000 0.008
#> SRR1270719     1  0.0424      0.918 0.992 0.000 0.008
#> SRR1270720     1  0.0424      0.918 0.992 0.000 0.008
#> SRR1270721     1  0.0424      0.918 0.992 0.000 0.008
#> SRR1270722     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270723     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270724     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270725     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270726     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270727     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270728     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270729     1  0.0424      0.918 0.992 0.000 0.008
#> SRR1270730     1  0.0424      0.918 0.992 0.000 0.008
#> SRR1270731     1  0.0424      0.918 0.992 0.000 0.008
#> SRR1270732     1  0.0592      0.915 0.988 0.000 0.012
#> SRR1270733     1  0.0592      0.915 0.988 0.000 0.012
#> SRR1270734     1  0.0592      0.915 0.988 0.000 0.012
#> SRR1270735     1  0.0592      0.915 0.988 0.000 0.012
#> SRR1270736     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270737     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270738     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270739     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270740     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270741     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270742     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270743     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270744     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270745     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270746     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270747     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270748     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270749     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270750     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270751     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270752     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270753     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270754     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270755     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270756     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270757     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270758     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270759     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270760     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270761     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270762     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270763     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270764     1  0.0000      0.920 1.000 0.000 0.000
#> SRR1270765     2  0.4702      0.927 0.000 0.788 0.212
#> SRR1270766     2  0.4702      0.927 0.000 0.788 0.212
#> SRR1270767     2  0.4702      0.927 0.000 0.788 0.212
#> SRR1270768     2  0.4702      0.927 0.000 0.788 0.212
#> SRR1270769     2  0.4702      0.927 0.000 0.788 0.212
#> SRR1270770     2  0.4702      0.927 0.000 0.788 0.212
#> SRR1270771     2  0.4702      0.927 0.000 0.788 0.212
#> SRR1270772     2  0.4750      0.926 0.000 0.784 0.216
#> SRR1270773     2  0.4750      0.926 0.000 0.784 0.216
#> SRR1270774     2  0.4750      0.926 0.000 0.784 0.216
#> SRR1270775     2  0.4702      0.927 0.000 0.788 0.212
#> SRR1270776     2  0.4702      0.927 0.000 0.788 0.212
#> SRR1270777     2  0.4702      0.927 0.000 0.788 0.212
#> SRR1270778     2  0.4702      0.927 0.000 0.788 0.212
#> SRR1270779     2  0.4702      0.927 0.000 0.788 0.212
#> SRR1270780     2  0.4702      0.927 0.000 0.788 0.212
#> SRR1270781     2  0.4750      0.926 0.000 0.784 0.216
#> SRR1270782     2  0.4750      0.926 0.000 0.784 0.216
#> SRR1270783     2  0.4702      0.927 0.000 0.788 0.212
#> SRR1270784     2  0.4702      0.927 0.000 0.788 0.212
#> SRR1270785     2  0.0237      0.899 0.000 0.996 0.004
#> SRR1270786     2  0.0237      0.899 0.000 0.996 0.004
#> SRR1270787     2  0.0237      0.899 0.000 0.996 0.004
#> SRR1270788     2  0.0000      0.900 0.000 1.000 0.000
#> SRR1270789     2  0.0000      0.900 0.000 1.000 0.000
#> SRR1270790     2  0.0000      0.900 0.000 1.000 0.000
#> SRR1270791     2  0.0000      0.900 0.000 1.000 0.000
#> SRR1270792     2  0.0237      0.899 0.000 0.996 0.004
#> SRR1270793     2  0.0237      0.899 0.000 0.996 0.004
#> SRR1270794     2  0.0237      0.899 0.000 0.996 0.004
#> SRR1270795     2  0.0000      0.900 0.000 1.000 0.000
#> SRR1270796     2  0.0000      0.900 0.000 1.000 0.000
#> SRR1270797     2  0.0000      0.900 0.000 1.000 0.000
#> SRR1270798     2  0.0000      0.900 0.000 1.000 0.000
#> SRR1270799     2  0.0000      0.900 0.000 1.000 0.000
#> SRR1270800     2  0.0000      0.900 0.000 1.000 0.000
#> SRR1270801     2  0.0000      0.900 0.000 1.000 0.000
#> SRR1270802     2  0.0000      0.900 0.000 1.000 0.000
#> SRR1270803     2  0.0000      0.900 0.000 1.000 0.000
#> SRR1270804     2  0.0000      0.900 0.000 1.000 0.000
#> SRR1270805     3  0.6045      1.000 0.380 0.000 0.620
#> SRR1270806     3  0.6045      1.000 0.380 0.000 0.620
#> SRR1270807     3  0.6045      1.000 0.380 0.000 0.620
#> SRR1270808     3  0.6045      1.000 0.380 0.000 0.620
#> SRR1270809     3  0.6045      1.000 0.380 0.000 0.620
#> SRR1270810     3  0.6045      1.000 0.380 0.000 0.620
#> SRR1270811     3  0.6045      1.000 0.380 0.000 0.620
#> SRR1270812     3  0.6045      1.000 0.380 0.000 0.620
#> SRR1270813     3  0.6045      1.000 0.380 0.000 0.620
#> SRR1270814     3  0.6045      1.000 0.380 0.000 0.620
#> SRR1270815     3  0.6045      1.000 0.380 0.000 0.620
#> SRR1270816     3  0.6045      1.000 0.380 0.000 0.620
#> SRR1270817     3  0.6045      1.000 0.380 0.000 0.620
#> SRR1270818     3  0.6045      1.000 0.380 0.000 0.620
#> SRR1270819     3  0.6045      1.000 0.380 0.000 0.620
#> SRR1270820     3  0.6045      1.000 0.380 0.000 0.620
#> SRR1270821     3  0.6045      1.000 0.380 0.000 0.620
#> SRR1270822     3  0.6045      1.000 0.380 0.000 0.620
#> SRR1270823     3  0.6045      1.000 0.380 0.000 0.620
#> SRR1270824     3  0.6045      1.000 0.380 0.000 0.620
#> SRR1270825     3  0.6045      1.000 0.380 0.000 0.620
#> SRR1270826     3  0.6045      1.000 0.380 0.000 0.620
#> SRR1270827     3  0.6045      1.000 0.380 0.000 0.620
#> SRR1270828     3  0.6045      1.000 0.380 0.000 0.620
#> SRR1270829     3  0.6045      1.000 0.380 0.000 0.620
#> SRR1270830     3  0.6045      1.000 0.380 0.000 0.620
#> SRR1270831     3  0.6045      1.000 0.380 0.000 0.620
#> SRR1270832     3  0.6045      1.000 0.380 0.000 0.620
#> SRR1270833     1  0.4452      0.787 0.808 0.000 0.192
#> SRR1270834     1  0.4452      0.787 0.808 0.000 0.192
#> SRR1270835     1  0.4452      0.787 0.808 0.000 0.192
#> SRR1270836     1  0.4452      0.787 0.808 0.000 0.192
#> SRR1270837     1  0.4452      0.787 0.808 0.000 0.192
#> SRR1270838     1  0.4452      0.787 0.808 0.000 0.192
#> SRR1270839     1  0.4452      0.787 0.808 0.000 0.192
#> SRR1270840     1  0.4452      0.787 0.808 0.000 0.192
#> SRR1270841     1  0.4452      0.787 0.808 0.000 0.192
#> SRR1270842     1  0.4452      0.787 0.808 0.000 0.192
#> SRR1270843     1  0.4452      0.787 0.808 0.000 0.192
#> SRR1270844     1  0.4452      0.787 0.808 0.000 0.192
#> SRR1270845     1  0.4452      0.787 0.808 0.000 0.192
#> SRR1270846     1  0.4452      0.787 0.808 0.000 0.192
#> SRR1270847     1  0.4452      0.787 0.808 0.000 0.192
#> SRR1270848     1  0.4452      0.787 0.808 0.000 0.192
#> SRR1270849     1  0.4452      0.787 0.808 0.000 0.192
#> SRR1270850     1  0.4452      0.787 0.808 0.000 0.192
#> SRR1270851     2  0.4750      0.926 0.000 0.784 0.216
#> SRR1270852     2  0.4750      0.926 0.000 0.784 0.216
#> SRR1270853     2  0.4750      0.926 0.000 0.784 0.216
#> SRR1270854     2  0.4702      0.927 0.000 0.788 0.212
#> SRR1270855     2  0.4702      0.927 0.000 0.788 0.212
#> SRR1270856     2  0.4702      0.927 0.000 0.788 0.212
#> SRR1270857     2  0.4702      0.927 0.000 0.788 0.212

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1270715     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> SRR1270716     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> SRR1270717     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> SRR1270718     1  0.0188      0.969 0.996 0.000 0.000 0.004
#> SRR1270719     1  0.0188      0.969 0.996 0.000 0.000 0.004
#> SRR1270720     1  0.0188      0.969 0.996 0.000 0.000 0.004
#> SRR1270721     1  0.0188      0.969 0.996 0.000 0.000 0.004
#> SRR1270722     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> SRR1270723     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> SRR1270724     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> SRR1270725     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> SRR1270726     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> SRR1270727     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> SRR1270728     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> SRR1270729     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> SRR1270730     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> SRR1270731     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> SRR1270732     1  0.0188      0.969 0.996 0.000 0.000 0.004
#> SRR1270733     1  0.0188      0.969 0.996 0.000 0.000 0.004
#> SRR1270734     1  0.0188      0.969 0.996 0.000 0.000 0.004
#> SRR1270735     1  0.0188      0.969 0.996 0.000 0.000 0.004
#> SRR1270736     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> SRR1270737     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> SRR1270738     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> SRR1270739     1  0.0000      0.971 1.000 0.000 0.000 0.000
#> SRR1270740     1  0.1022      0.972 0.968 0.000 0.000 0.032
#> SRR1270741     1  0.1022      0.972 0.968 0.000 0.000 0.032
#> SRR1270742     1  0.1022      0.972 0.968 0.000 0.000 0.032
#> SRR1270743     1  0.1022      0.972 0.968 0.000 0.000 0.032
#> SRR1270744     1  0.1022      0.972 0.968 0.000 0.000 0.032
#> SRR1270745     1  0.1022      0.972 0.968 0.000 0.000 0.032
#> SRR1270746     1  0.1022      0.972 0.968 0.000 0.000 0.032
#> SRR1270747     1  0.1022      0.972 0.968 0.000 0.000 0.032
#> SRR1270748     1  0.1022      0.972 0.968 0.000 0.000 0.032
#> SRR1270749     1  0.1022      0.972 0.968 0.000 0.000 0.032
#> SRR1270750     1  0.1022      0.972 0.968 0.000 0.000 0.032
#> SRR1270751     1  0.1022      0.972 0.968 0.000 0.000 0.032
#> SRR1270752     1  0.1022      0.972 0.968 0.000 0.000 0.032
#> SRR1270753     1  0.1022      0.972 0.968 0.000 0.000 0.032
#> SRR1270754     1  0.1022      0.972 0.968 0.000 0.000 0.032
#> SRR1270755     1  0.1022      0.972 0.968 0.000 0.000 0.032
#> SRR1270756     1  0.1022      0.972 0.968 0.000 0.000 0.032
#> SRR1270757     1  0.1022      0.972 0.968 0.000 0.000 0.032
#> SRR1270758     1  0.1022      0.972 0.968 0.000 0.000 0.032
#> SRR1270759     1  0.1022      0.972 0.968 0.000 0.000 0.032
#> SRR1270760     1  0.1022      0.972 0.968 0.000 0.000 0.032
#> SRR1270761     1  0.1022      0.972 0.968 0.000 0.000 0.032
#> SRR1270762     1  0.1022      0.972 0.968 0.000 0.000 0.032
#> SRR1270763     1  0.1022      0.972 0.968 0.000 0.000 0.032
#> SRR1270764     1  0.1022      0.972 0.968 0.000 0.000 0.032
#> SRR1270765     2  0.6182      0.850 0.000 0.616 0.076 0.308
#> SRR1270766     2  0.6182      0.850 0.000 0.616 0.076 0.308
#> SRR1270767     2  0.6182      0.850 0.000 0.616 0.076 0.308
#> SRR1270768     2  0.5903      0.850 0.000 0.616 0.052 0.332
#> SRR1270769     2  0.5903      0.850 0.000 0.616 0.052 0.332
#> SRR1270770     2  0.5903      0.850 0.000 0.616 0.052 0.332
#> SRR1270771     2  0.5903      0.850 0.000 0.616 0.052 0.332
#> SRR1270772     2  0.6587      0.845 0.000 0.616 0.132 0.252
#> SRR1270773     2  0.6587      0.845 0.000 0.616 0.132 0.252
#> SRR1270774     2  0.6587      0.845 0.000 0.616 0.132 0.252
#> SRR1270775     2  0.5955      0.850 0.000 0.616 0.056 0.328
#> SRR1270776     2  0.5903      0.850 0.000 0.616 0.052 0.332
#> SRR1270777     2  0.5903      0.850 0.000 0.616 0.052 0.332
#> SRR1270778     2  0.5903      0.850 0.000 0.616 0.052 0.332
#> SRR1270779     2  0.5903      0.850 0.000 0.616 0.052 0.332
#> SRR1270780     2  0.5903      0.850 0.000 0.616 0.052 0.332
#> SRR1270781     2  0.6587      0.845 0.000 0.616 0.132 0.252
#> SRR1270782     2  0.6587      0.845 0.000 0.616 0.132 0.252
#> SRR1270783     2  0.5903      0.850 0.000 0.616 0.052 0.332
#> SRR1270784     2  0.5903      0.850 0.000 0.616 0.052 0.332
#> SRR1270785     2  0.0707      0.805 0.000 0.980 0.020 0.000
#> SRR1270786     2  0.0707      0.805 0.000 0.980 0.020 0.000
#> SRR1270787     2  0.0707      0.805 0.000 0.980 0.020 0.000
#> SRR1270788     2  0.0592      0.805 0.000 0.984 0.016 0.000
#> SRR1270789     2  0.0592      0.805 0.000 0.984 0.016 0.000
#> SRR1270790     2  0.0592      0.805 0.000 0.984 0.016 0.000
#> SRR1270791     2  0.0592      0.805 0.000 0.984 0.016 0.000
#> SRR1270792     2  0.0592      0.804 0.000 0.984 0.016 0.000
#> SRR1270793     2  0.0592      0.804 0.000 0.984 0.016 0.000
#> SRR1270794     2  0.0592      0.804 0.000 0.984 0.016 0.000
#> SRR1270795     2  0.0000      0.805 0.000 1.000 0.000 0.000
#> SRR1270796     2  0.0000      0.805 0.000 1.000 0.000 0.000
#> SRR1270797     2  0.0000      0.805 0.000 1.000 0.000 0.000
#> SRR1270798     2  0.0000      0.805 0.000 1.000 0.000 0.000
#> SRR1270799     2  0.0592      0.805 0.000 0.984 0.016 0.000
#> SRR1270800     2  0.0592      0.805 0.000 0.984 0.016 0.000
#> SRR1270801     2  0.0188      0.805 0.000 0.996 0.004 0.000
#> SRR1270802     2  0.0188      0.805 0.000 0.996 0.004 0.000
#> SRR1270803     2  0.0469      0.805 0.000 0.988 0.012 0.000
#> SRR1270804     2  0.0469      0.805 0.000 0.988 0.012 0.000
#> SRR1270805     3  0.5007      0.967 0.172 0.000 0.760 0.068
#> SRR1270806     3  0.5007      0.967 0.172 0.000 0.760 0.068
#> SRR1270807     3  0.5007      0.967 0.172 0.000 0.760 0.068
#> SRR1270808     3  0.5076      0.966 0.172 0.000 0.756 0.072
#> SRR1270809     3  0.5076      0.966 0.172 0.000 0.756 0.072
#> SRR1270810     3  0.5076      0.966 0.172 0.000 0.756 0.072
#> SRR1270811     3  0.5076      0.966 0.172 0.000 0.756 0.072
#> SRR1270812     3  0.3494      0.967 0.172 0.000 0.824 0.004
#> SRR1270813     3  0.3494      0.967 0.172 0.000 0.824 0.004
#> SRR1270814     3  0.3494      0.967 0.172 0.000 0.824 0.004
#> SRR1270815     3  0.3494      0.967 0.172 0.000 0.824 0.004
#> SRR1270816     3  0.3494      0.967 0.172 0.000 0.824 0.004
#> SRR1270817     3  0.3494      0.967 0.172 0.000 0.824 0.004
#> SRR1270818     3  0.3494      0.967 0.172 0.000 0.824 0.004
#> SRR1270819     3  0.3311      0.967 0.172 0.000 0.828 0.000
#> SRR1270820     3  0.3311      0.967 0.172 0.000 0.828 0.000
#> SRR1270821     3  0.3311      0.967 0.172 0.000 0.828 0.000
#> SRR1270822     3  0.3311      0.967 0.172 0.000 0.828 0.000
#> SRR1270823     3  0.3311      0.967 0.172 0.000 0.828 0.000
#> SRR1270824     3  0.3311      0.967 0.172 0.000 0.828 0.000
#> SRR1270825     3  0.3311      0.967 0.172 0.000 0.828 0.000
#> SRR1270826     3  0.5076      0.967 0.172 0.000 0.756 0.072
#> SRR1270827     3  0.5076      0.967 0.172 0.000 0.756 0.072
#> SRR1270828     3  0.5076      0.967 0.172 0.000 0.756 0.072
#> SRR1270829     3  0.5143      0.966 0.172 0.000 0.752 0.076
#> SRR1270830     3  0.5143      0.966 0.172 0.000 0.752 0.076
#> SRR1270831     3  0.5143      0.966 0.172 0.000 0.752 0.076
#> SRR1270832     3  0.5143      0.966 0.172 0.000 0.752 0.076
#> SRR1270833     4  0.5465      0.997 0.392 0.000 0.020 0.588
#> SRR1270834     4  0.5465      0.997 0.392 0.000 0.020 0.588
#> SRR1270835     4  0.5364      0.997 0.392 0.000 0.016 0.592
#> SRR1270836     4  0.5364      0.997 0.392 0.000 0.016 0.592
#> SRR1270837     4  0.5465      0.996 0.392 0.000 0.020 0.588
#> SRR1270838     4  0.5465      0.996 0.392 0.000 0.020 0.588
#> SRR1270839     4  0.5465      0.996 0.392 0.000 0.020 0.588
#> SRR1270840     4  0.5364      0.997 0.392 0.000 0.016 0.592
#> SRR1270841     4  0.5364      0.997 0.392 0.000 0.016 0.592
#> SRR1270842     4  0.5364      0.997 0.392 0.000 0.016 0.592
#> SRR1270843     4  0.5364      0.997 0.392 0.000 0.016 0.592
#> SRR1270844     4  0.5560      0.996 0.392 0.000 0.024 0.584
#> SRR1270845     4  0.5560      0.996 0.392 0.000 0.024 0.584
#> SRR1270846     4  0.5560      0.996 0.392 0.000 0.024 0.584
#> SRR1270847     4  0.5465      0.997 0.392 0.000 0.020 0.588
#> SRR1270848     4  0.5465      0.997 0.392 0.000 0.020 0.588
#> SRR1270849     4  0.5465      0.997 0.392 0.000 0.020 0.588
#> SRR1270850     4  0.5465      0.997 0.392 0.000 0.020 0.588
#> SRR1270851     2  0.6587      0.845 0.000 0.616 0.132 0.252
#> SRR1270852     2  0.6587      0.845 0.000 0.616 0.132 0.252
#> SRR1270853     2  0.6587      0.845 0.000 0.616 0.132 0.252
#> SRR1270854     2  0.6182      0.850 0.000 0.616 0.076 0.308
#> SRR1270855     2  0.6182      0.850 0.000 0.616 0.076 0.308
#> SRR1270856     2  0.6182      0.850 0.000 0.616 0.076 0.308
#> SRR1270857     2  0.6182      0.850 0.000 0.616 0.076 0.308

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1270715     1  0.3424      0.806 0.760 0.000 0.000 0.000 0.240
#> SRR1270716     1  0.3424      0.806 0.760 0.000 0.000 0.000 0.240
#> SRR1270717     1  0.3424      0.806 0.760 0.000 0.000 0.000 0.240
#> SRR1270718     1  0.3607      0.803 0.752 0.000 0.000 0.004 0.244
#> SRR1270719     1  0.3607      0.803 0.752 0.000 0.000 0.004 0.244
#> SRR1270720     1  0.3607      0.803 0.752 0.000 0.000 0.004 0.244
#> SRR1270721     1  0.3607      0.803 0.752 0.000 0.000 0.004 0.244
#> SRR1270722     1  0.1792      0.855 0.916 0.000 0.000 0.000 0.084
#> SRR1270723     1  0.1792      0.855 0.916 0.000 0.000 0.000 0.084
#> SRR1270724     1  0.1792      0.855 0.916 0.000 0.000 0.000 0.084
#> SRR1270725     1  0.2424      0.847 0.868 0.000 0.000 0.000 0.132
#> SRR1270726     1  0.2424      0.847 0.868 0.000 0.000 0.000 0.132
#> SRR1270727     1  0.2424      0.847 0.868 0.000 0.000 0.000 0.132
#> SRR1270728     1  0.2424      0.847 0.868 0.000 0.000 0.000 0.132
#> SRR1270729     1  0.3424      0.806 0.760 0.000 0.000 0.000 0.240
#> SRR1270730     1  0.3424      0.806 0.760 0.000 0.000 0.000 0.240
#> SRR1270731     1  0.3424      0.806 0.760 0.000 0.000 0.000 0.240
#> SRR1270732     1  0.3607      0.803 0.752 0.000 0.000 0.004 0.244
#> SRR1270733     1  0.3607      0.803 0.752 0.000 0.000 0.004 0.244
#> SRR1270734     1  0.3607      0.803 0.752 0.000 0.000 0.004 0.244
#> SRR1270735     1  0.3607      0.803 0.752 0.000 0.000 0.004 0.244
#> SRR1270736     1  0.2424      0.847 0.868 0.000 0.000 0.000 0.132
#> SRR1270737     1  0.2424      0.847 0.868 0.000 0.000 0.000 0.132
#> SRR1270738     1  0.3424      0.806 0.760 0.000 0.000 0.000 0.240
#> SRR1270739     1  0.3424      0.806 0.760 0.000 0.000 0.000 0.240
#> SRR1270740     1  0.1041      0.861 0.964 0.000 0.000 0.032 0.004
#> SRR1270741     1  0.1041      0.861 0.964 0.000 0.000 0.032 0.004
#> SRR1270742     1  0.1041      0.861 0.964 0.000 0.000 0.032 0.004
#> SRR1270743     1  0.1168      0.861 0.960 0.000 0.000 0.032 0.008
#> SRR1270744     1  0.1168      0.861 0.960 0.000 0.000 0.032 0.008
#> SRR1270745     1  0.1168      0.861 0.960 0.000 0.000 0.032 0.008
#> SRR1270746     1  0.1168      0.861 0.960 0.000 0.000 0.032 0.008
#> SRR1270747     1  0.1041      0.859 0.964 0.000 0.000 0.032 0.004
#> SRR1270748     1  0.1041      0.859 0.964 0.000 0.000 0.032 0.004
#> SRR1270749     1  0.1041      0.859 0.964 0.000 0.000 0.032 0.004
#> SRR1270750     1  0.1041      0.860 0.964 0.000 0.000 0.032 0.004
#> SRR1270751     1  0.1041      0.860 0.964 0.000 0.000 0.032 0.004
#> SRR1270752     1  0.1041      0.860 0.964 0.000 0.000 0.032 0.004
#> SRR1270753     1  0.1041      0.860 0.964 0.000 0.000 0.032 0.004
#> SRR1270754     1  0.1041      0.859 0.964 0.000 0.000 0.032 0.004
#> SRR1270755     1  0.1041      0.859 0.964 0.000 0.000 0.032 0.004
#> SRR1270756     1  0.1041      0.859 0.964 0.000 0.000 0.032 0.004
#> SRR1270757     1  0.1168      0.861 0.960 0.000 0.000 0.032 0.008
#> SRR1270758     1  0.1168      0.861 0.960 0.000 0.000 0.032 0.008
#> SRR1270759     1  0.1168      0.861 0.960 0.000 0.000 0.032 0.008
#> SRR1270760     1  0.1168      0.861 0.960 0.000 0.000 0.032 0.008
#> SRR1270761     1  0.0880      0.860 0.968 0.000 0.000 0.032 0.000
#> SRR1270762     1  0.0880      0.860 0.968 0.000 0.000 0.032 0.000
#> SRR1270763     1  0.1041      0.860 0.964 0.000 0.000 0.032 0.004
#> SRR1270764     1  0.1041      0.860 0.964 0.000 0.000 0.032 0.004
#> SRR1270765     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000
#> SRR1270766     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000
#> SRR1270767     2  0.0000      0.916 0.000 1.000 0.000 0.000 0.000
#> SRR1270768     2  0.1628      0.911 0.000 0.936 0.008 0.056 0.000
#> SRR1270769     2  0.1628      0.911 0.000 0.936 0.008 0.056 0.000
#> SRR1270770     2  0.1628      0.911 0.000 0.936 0.008 0.056 0.000
#> SRR1270771     2  0.1628      0.911 0.000 0.936 0.008 0.056 0.000
#> SRR1270772     2  0.2438      0.869 0.000 0.908 0.040 0.044 0.008
#> SRR1270773     2  0.2438      0.869 0.000 0.908 0.040 0.044 0.008
#> SRR1270774     2  0.2438      0.869 0.000 0.908 0.040 0.044 0.008
#> SRR1270775     2  0.1331      0.915 0.000 0.952 0.008 0.040 0.000
#> SRR1270776     2  0.1557      0.913 0.000 0.940 0.008 0.052 0.000
#> SRR1270777     2  0.1557      0.913 0.000 0.940 0.008 0.052 0.000
#> SRR1270778     2  0.1557      0.913 0.000 0.940 0.008 0.052 0.000
#> SRR1270779     2  0.1484      0.912 0.000 0.944 0.008 0.048 0.000
#> SRR1270780     2  0.1484      0.912 0.000 0.944 0.008 0.048 0.000
#> SRR1270781     2  0.2438      0.869 0.000 0.908 0.040 0.044 0.008
#> SRR1270782     2  0.2438      0.869 0.000 0.908 0.040 0.044 0.008
#> SRR1270783     2  0.1557      0.912 0.000 0.940 0.008 0.052 0.000
#> SRR1270784     2  0.1557      0.912 0.000 0.940 0.008 0.052 0.000
#> SRR1270785     5  0.5229      0.950 0.000 0.464 0.008 0.028 0.500
#> SRR1270786     5  0.5229      0.950 0.000 0.464 0.008 0.028 0.500
#> SRR1270787     5  0.5229      0.950 0.000 0.464 0.008 0.028 0.500
#> SRR1270788     5  0.5232      0.954 0.000 0.472 0.008 0.028 0.492
#> SRR1270789     5  0.5232      0.954 0.000 0.472 0.008 0.028 0.492
#> SRR1270790     5  0.5232      0.954 0.000 0.472 0.008 0.028 0.492
#> SRR1270791     5  0.5232      0.954 0.000 0.472 0.008 0.028 0.492
#> SRR1270792     5  0.5156      0.949 0.000 0.464 0.008 0.024 0.504
#> SRR1270793     5  0.5156      0.949 0.000 0.464 0.008 0.024 0.504
#> SRR1270794     5  0.5156      0.949 0.000 0.464 0.008 0.024 0.504
#> SRR1270795     5  0.4443      0.960 0.000 0.472 0.004 0.000 0.524
#> SRR1270796     5  0.4443      0.960 0.000 0.472 0.004 0.000 0.524
#> SRR1270797     5  0.4443      0.960 0.000 0.472 0.004 0.000 0.524
#> SRR1270798     5  0.4443      0.960 0.000 0.472 0.004 0.000 0.524
#> SRR1270799     5  0.5232      0.954 0.000 0.472 0.008 0.028 0.492
#> SRR1270800     5  0.5232      0.954 0.000 0.472 0.008 0.028 0.492
#> SRR1270801     5  0.5096      0.955 0.000 0.472 0.012 0.016 0.500
#> SRR1270802     5  0.5096      0.955 0.000 0.472 0.012 0.016 0.500
#> SRR1270803     5  0.5159      0.954 0.000 0.472 0.008 0.024 0.496
#> SRR1270804     5  0.5159      0.954 0.000 0.472 0.008 0.024 0.496
#> SRR1270805     3  0.5585      0.913 0.096 0.000 0.716 0.064 0.124
#> SRR1270806     3  0.5585      0.913 0.096 0.000 0.716 0.064 0.124
#> SRR1270807     3  0.5585      0.913 0.096 0.000 0.716 0.064 0.124
#> SRR1270808     3  0.5630      0.911 0.096 0.000 0.708 0.056 0.140
#> SRR1270809     3  0.5630      0.911 0.096 0.000 0.708 0.056 0.140
#> SRR1270810     3  0.5630      0.911 0.096 0.000 0.708 0.056 0.140
#> SRR1270811     3  0.5630      0.911 0.096 0.000 0.708 0.056 0.140
#> SRR1270812     3  0.1965      0.915 0.096 0.000 0.904 0.000 0.000
#> SRR1270813     3  0.1965      0.915 0.096 0.000 0.904 0.000 0.000
#> SRR1270814     3  0.1965      0.915 0.096 0.000 0.904 0.000 0.000
#> SRR1270815     3  0.1965      0.915 0.096 0.000 0.904 0.000 0.000
#> SRR1270816     3  0.1965      0.915 0.096 0.000 0.904 0.000 0.000
#> SRR1270817     3  0.1965      0.915 0.096 0.000 0.904 0.000 0.000
#> SRR1270818     3  0.1965      0.915 0.096 0.000 0.904 0.000 0.000
#> SRR1270819     3  0.2124      0.915 0.096 0.000 0.900 0.004 0.000
#> SRR1270820     3  0.2124      0.915 0.096 0.000 0.900 0.004 0.000
#> SRR1270821     3  0.2124      0.915 0.096 0.000 0.900 0.004 0.000
#> SRR1270822     3  0.2408      0.915 0.096 0.000 0.892 0.008 0.004
#> SRR1270823     3  0.2408      0.915 0.096 0.000 0.892 0.008 0.004
#> SRR1270824     3  0.2408      0.915 0.096 0.000 0.892 0.008 0.004
#> SRR1270825     3  0.2408      0.915 0.096 0.000 0.892 0.008 0.004
#> SRR1270826     3  0.5505      0.913 0.096 0.000 0.720 0.056 0.128
#> SRR1270827     3  0.5505      0.913 0.096 0.000 0.720 0.056 0.128
#> SRR1270828     3  0.5505      0.913 0.096 0.000 0.720 0.056 0.128
#> SRR1270829     3  0.5579      0.911 0.096 0.000 0.708 0.048 0.148
#> SRR1270830     3  0.5579      0.911 0.096 0.000 0.708 0.048 0.148
#> SRR1270831     3  0.5579      0.911 0.096 0.000 0.708 0.048 0.148
#> SRR1270832     3  0.5579      0.911 0.096 0.000 0.708 0.048 0.148
#> SRR1270833     4  0.3727      0.964 0.216 0.000 0.016 0.768 0.000
#> SRR1270834     4  0.3727      0.964 0.216 0.000 0.016 0.768 0.000
#> SRR1270835     4  0.5386      0.964 0.216 0.000 0.036 0.692 0.056
#> SRR1270836     4  0.5386      0.964 0.216 0.000 0.036 0.692 0.056
#> SRR1270837     4  0.5566      0.962 0.216 0.000 0.036 0.680 0.068
#> SRR1270838     4  0.5566      0.962 0.216 0.000 0.036 0.680 0.068
#> SRR1270839     4  0.5566      0.962 0.216 0.000 0.036 0.680 0.068
#> SRR1270840     4  0.5386      0.964 0.216 0.000 0.036 0.692 0.056
#> SRR1270841     4  0.5386      0.964 0.216 0.000 0.036 0.692 0.056
#> SRR1270842     4  0.5386      0.964 0.216 0.000 0.036 0.692 0.056
#> SRR1270843     4  0.5386      0.964 0.216 0.000 0.036 0.692 0.056
#> SRR1270844     4  0.4111      0.962 0.216 0.000 0.012 0.756 0.016
#> SRR1270845     4  0.4111      0.962 0.216 0.000 0.012 0.756 0.016
#> SRR1270846     4  0.4111      0.962 0.216 0.000 0.012 0.756 0.016
#> SRR1270847     4  0.3727      0.964 0.216 0.000 0.016 0.768 0.000
#> SRR1270848     4  0.3727      0.964 0.216 0.000 0.016 0.768 0.000
#> SRR1270849     4  0.3727      0.964 0.216 0.000 0.016 0.768 0.000
#> SRR1270850     4  0.3727      0.964 0.216 0.000 0.016 0.768 0.000
#> SRR1270851     2  0.2438      0.869 0.000 0.908 0.040 0.044 0.008
#> SRR1270852     2  0.2438      0.869 0.000 0.908 0.040 0.044 0.008
#> SRR1270853     2  0.2438      0.869 0.000 0.908 0.040 0.044 0.008
#> SRR1270854     2  0.0162      0.916 0.000 0.996 0.000 0.004 0.000
#> SRR1270855     2  0.0162      0.916 0.000 0.996 0.000 0.004 0.000
#> SRR1270856     2  0.0162      0.916 0.000 0.996 0.000 0.004 0.000
#> SRR1270857     2  0.0162      0.916 0.000 0.996 0.000 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5 p6
#> SRR1270715     1  0.4158      0.715 0.572 0.000 0.000 0.004 0.008 NA
#> SRR1270716     1  0.4158      0.715 0.572 0.000 0.000 0.004 0.008 NA
#> SRR1270717     1  0.4158      0.715 0.572 0.000 0.000 0.004 0.008 NA
#> SRR1270718     1  0.3937      0.714 0.572 0.000 0.000 0.004 0.000 NA
#> SRR1270719     1  0.3937      0.714 0.572 0.000 0.000 0.004 0.000 NA
#> SRR1270720     1  0.3937      0.714 0.572 0.000 0.000 0.004 0.000 NA
#> SRR1270721     1  0.3937      0.714 0.572 0.000 0.000 0.004 0.000 NA
#> SRR1270722     1  0.3309      0.794 0.824 0.000 0.000 0.004 0.056 NA
#> SRR1270723     1  0.3309      0.794 0.824 0.000 0.000 0.004 0.056 NA
#> SRR1270724     1  0.3309      0.794 0.824 0.000 0.000 0.004 0.056 NA
#> SRR1270725     1  0.3975      0.779 0.744 0.000 0.000 0.004 0.048 NA
#> SRR1270726     1  0.3975      0.779 0.744 0.000 0.000 0.004 0.048 NA
#> SRR1270727     1  0.3975      0.779 0.744 0.000 0.000 0.004 0.048 NA
#> SRR1270728     1  0.3975      0.779 0.744 0.000 0.000 0.004 0.048 NA
#> SRR1270729     1  0.4158      0.715 0.572 0.000 0.000 0.004 0.008 NA
#> SRR1270730     1  0.4158      0.715 0.572 0.000 0.000 0.004 0.008 NA
#> SRR1270731     1  0.4158      0.715 0.572 0.000 0.000 0.004 0.008 NA
#> SRR1270732     1  0.3937      0.714 0.572 0.000 0.000 0.004 0.000 NA
#> SRR1270733     1  0.3937      0.714 0.572 0.000 0.000 0.004 0.000 NA
#> SRR1270734     1  0.3937      0.714 0.572 0.000 0.000 0.004 0.000 NA
#> SRR1270735     1  0.3937      0.714 0.572 0.000 0.000 0.004 0.000 NA
#> SRR1270736     1  0.3975      0.779 0.744 0.000 0.000 0.004 0.048 NA
#> SRR1270737     1  0.3975      0.779 0.744 0.000 0.000 0.004 0.048 NA
#> SRR1270738     1  0.4495      0.715 0.580 0.000 0.000 0.004 0.028 NA
#> SRR1270739     1  0.4495      0.715 0.580 0.000 0.000 0.004 0.028 NA
#> SRR1270740     1  0.0520      0.810 0.984 0.000 0.000 0.000 0.008 NA
#> SRR1270741     1  0.0520      0.810 0.984 0.000 0.000 0.000 0.008 NA
#> SRR1270742     1  0.0520      0.810 0.984 0.000 0.000 0.000 0.008 NA
#> SRR1270743     1  0.0405      0.809 0.988 0.000 0.000 0.000 0.004 NA
#> SRR1270744     1  0.0405      0.809 0.988 0.000 0.000 0.000 0.004 NA
#> SRR1270745     1  0.0405      0.809 0.988 0.000 0.000 0.000 0.004 NA
#> SRR1270746     1  0.0405      0.809 0.988 0.000 0.000 0.000 0.004 NA
#> SRR1270747     1  0.0260      0.809 0.992 0.000 0.000 0.000 0.008 NA
#> SRR1270748     1  0.0260      0.809 0.992 0.000 0.000 0.000 0.008 NA
#> SRR1270749     1  0.0260      0.809 0.992 0.000 0.000 0.000 0.008 NA
#> SRR1270750     1  0.0146      0.809 0.996 0.000 0.000 0.000 0.004 NA
#> SRR1270751     1  0.0146      0.809 0.996 0.000 0.000 0.000 0.004 NA
#> SRR1270752     1  0.0146      0.809 0.996 0.000 0.000 0.000 0.004 NA
#> SRR1270753     1  0.0146      0.809 0.996 0.000 0.000 0.000 0.004 NA
#> SRR1270754     1  0.0405      0.810 0.988 0.000 0.000 0.000 0.004 NA
#> SRR1270755     1  0.0405      0.810 0.988 0.000 0.000 0.000 0.004 NA
#> SRR1270756     1  0.0405      0.810 0.988 0.000 0.000 0.000 0.004 NA
#> SRR1270757     1  0.0405      0.809 0.988 0.000 0.000 0.000 0.004 NA
#> SRR1270758     1  0.0405      0.809 0.988 0.000 0.000 0.000 0.004 NA
#> SRR1270759     1  0.0405      0.809 0.988 0.000 0.000 0.000 0.004 NA
#> SRR1270760     1  0.0405      0.809 0.988 0.000 0.000 0.000 0.004 NA
#> SRR1270761     1  0.0260      0.809 0.992 0.000 0.000 0.000 0.008 NA
#> SRR1270762     1  0.0260      0.809 0.992 0.000 0.000 0.000 0.008 NA
#> SRR1270763     1  0.0260      0.809 0.992 0.000 0.000 0.000 0.008 NA
#> SRR1270764     1  0.0260      0.809 0.992 0.000 0.000 0.000 0.008 NA
#> SRR1270765     2  0.0000      0.902 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270766     2  0.0000      0.902 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270767     2  0.0000      0.902 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270768     2  0.1718      0.898 0.000 0.932 0.008 0.016 0.000 NA
#> SRR1270769     2  0.1718      0.898 0.000 0.932 0.008 0.016 0.000 NA
#> SRR1270770     2  0.1718      0.898 0.000 0.932 0.008 0.016 0.000 NA
#> SRR1270771     2  0.1718      0.898 0.000 0.932 0.008 0.016 0.000 NA
#> SRR1270772     2  0.3503      0.813 0.000 0.808 0.000 0.032 0.016 NA
#> SRR1270773     2  0.3503      0.813 0.000 0.808 0.000 0.032 0.016 NA
#> SRR1270774     2  0.3503      0.813 0.000 0.808 0.000 0.032 0.016 NA
#> SRR1270775     2  0.1155      0.902 0.000 0.956 0.004 0.004 0.000 NA
#> SRR1270776     2  0.1007      0.900 0.000 0.956 0.000 0.000 0.000 NA
#> SRR1270777     2  0.1007      0.900 0.000 0.956 0.000 0.000 0.000 NA
#> SRR1270778     2  0.1007      0.900 0.000 0.956 0.000 0.000 0.000 NA
#> SRR1270779     2  0.1007      0.900 0.000 0.956 0.000 0.000 0.000 NA
#> SRR1270780     2  0.1007      0.900 0.000 0.956 0.000 0.000 0.000 NA
#> SRR1270781     2  0.3503      0.813 0.000 0.808 0.000 0.032 0.016 NA
#> SRR1270782     2  0.3503      0.813 0.000 0.808 0.000 0.032 0.016 NA
#> SRR1270783     2  0.1605      0.898 0.000 0.936 0.004 0.016 0.000 NA
#> SRR1270784     2  0.1265      0.900 0.000 0.948 0.000 0.008 0.000 NA
#> SRR1270785     5  0.4943      0.926 0.000 0.296 0.000 0.024 0.632 NA
#> SRR1270786     5  0.4943      0.926 0.000 0.296 0.000 0.024 0.632 NA
#> SRR1270787     5  0.4943      0.926 0.000 0.296 0.000 0.024 0.632 NA
#> SRR1270788     5  0.4724      0.940 0.000 0.312 0.012 0.016 0.640 NA
#> SRR1270789     5  0.4724      0.940 0.000 0.312 0.012 0.016 0.640 NA
#> SRR1270790     5  0.4724      0.940 0.000 0.312 0.012 0.016 0.640 NA
#> SRR1270791     5  0.4724      0.940 0.000 0.312 0.012 0.016 0.640 NA
#> SRR1270792     5  0.4943      0.926 0.000 0.296 0.000 0.024 0.632 NA
#> SRR1270793     5  0.4943      0.926 0.000 0.296 0.000 0.024 0.632 NA
#> SRR1270794     5  0.4943      0.926 0.000 0.296 0.000 0.024 0.632 NA
#> SRR1270795     5  0.3888      0.944 0.000 0.312 0.000 0.016 0.672 NA
#> SRR1270796     5  0.3888      0.944 0.000 0.312 0.000 0.016 0.672 NA
#> SRR1270797     5  0.3888      0.944 0.000 0.312 0.000 0.016 0.672 NA
#> SRR1270798     5  0.3888      0.944 0.000 0.312 0.000 0.016 0.672 NA
#> SRR1270799     5  0.4724      0.940 0.000 0.312 0.012 0.016 0.640 NA
#> SRR1270800     5  0.4724      0.940 0.000 0.312 0.012 0.016 0.640 NA
#> SRR1270801     5  0.4649      0.937 0.000 0.312 0.000 0.012 0.636 NA
#> SRR1270802     5  0.4649      0.937 0.000 0.312 0.000 0.012 0.636 NA
#> SRR1270803     5  0.4606      0.940 0.000 0.312 0.004 0.020 0.644 NA
#> SRR1270804     5  0.4606      0.940 0.000 0.312 0.004 0.020 0.644 NA
#> SRR1270805     3  0.5523      0.863 0.040 0.000 0.676 0.016 0.100 NA
#> SRR1270806     3  0.5523      0.863 0.040 0.000 0.676 0.016 0.100 NA
#> SRR1270807     3  0.5523      0.863 0.040 0.000 0.676 0.016 0.100 NA
#> SRR1270808     3  0.5657      0.858 0.040 0.000 0.656 0.020 0.084 NA
#> SRR1270809     3  0.5657      0.858 0.040 0.000 0.656 0.020 0.084 NA
#> SRR1270810     3  0.5657      0.858 0.040 0.000 0.656 0.020 0.084 NA
#> SRR1270811     3  0.5657      0.858 0.040 0.000 0.656 0.020 0.084 NA
#> SRR1270812     3  0.1340      0.867 0.040 0.000 0.948 0.000 0.008 NA
#> SRR1270813     3  0.1340      0.867 0.040 0.000 0.948 0.000 0.008 NA
#> SRR1270814     3  0.1340      0.867 0.040 0.000 0.948 0.000 0.008 NA
#> SRR1270815     3  0.0937      0.868 0.040 0.000 0.960 0.000 0.000 NA
#> SRR1270816     3  0.0937      0.868 0.040 0.000 0.960 0.000 0.000 NA
#> SRR1270817     3  0.0937      0.868 0.040 0.000 0.960 0.000 0.000 NA
#> SRR1270818     3  0.0937      0.868 0.040 0.000 0.960 0.000 0.000 NA
#> SRR1270819     3  0.1624      0.867 0.040 0.000 0.936 0.000 0.020 NA
#> SRR1270820     3  0.1624      0.867 0.040 0.000 0.936 0.000 0.020 NA
#> SRR1270821     3  0.1624      0.867 0.040 0.000 0.936 0.000 0.020 NA
#> SRR1270822     3  0.1965      0.867 0.040 0.000 0.924 0.004 0.024 NA
#> SRR1270823     3  0.1965      0.867 0.040 0.000 0.924 0.004 0.024 NA
#> SRR1270824     3  0.1965      0.867 0.040 0.000 0.924 0.004 0.024 NA
#> SRR1270825     3  0.1965      0.867 0.040 0.000 0.924 0.004 0.024 NA
#> SRR1270826     3  0.5407      0.863 0.040 0.000 0.676 0.012 0.084 NA
#> SRR1270827     3  0.5407      0.863 0.040 0.000 0.676 0.012 0.084 NA
#> SRR1270828     3  0.5407      0.863 0.040 0.000 0.676 0.012 0.084 NA
#> SRR1270829     3  0.5379      0.859 0.040 0.000 0.656 0.008 0.068 NA
#> SRR1270830     3  0.5379      0.859 0.040 0.000 0.656 0.008 0.068 NA
#> SRR1270831     3  0.5379      0.859 0.040 0.000 0.656 0.008 0.068 NA
#> SRR1270832     3  0.5379      0.859 0.040 0.000 0.656 0.008 0.068 NA
#> SRR1270833     4  0.5384      0.932 0.120 0.000 0.024 0.712 0.072 NA
#> SRR1270834     4  0.5384      0.932 0.120 0.000 0.024 0.712 0.072 NA
#> SRR1270835     4  0.2976      0.931 0.128 0.000 0.016 0.844 0.008 NA
#> SRR1270836     4  0.2976      0.931 0.128 0.000 0.016 0.844 0.008 NA
#> SRR1270837     4  0.3627      0.928 0.128 0.000 0.024 0.816 0.012 NA
#> SRR1270838     4  0.3627      0.928 0.128 0.000 0.024 0.816 0.012 NA
#> SRR1270839     4  0.3627      0.928 0.128 0.000 0.024 0.816 0.012 NA
#> SRR1270840     4  0.2933      0.931 0.128 0.000 0.016 0.844 0.012 NA
#> SRR1270841     4  0.2933      0.931 0.128 0.000 0.016 0.844 0.012 NA
#> SRR1270842     4  0.2933      0.931 0.128 0.000 0.016 0.844 0.012 NA
#> SRR1270843     4  0.2933      0.931 0.128 0.000 0.016 0.844 0.012 NA
#> SRR1270844     4  0.5722      0.929 0.120 0.000 0.032 0.688 0.088 NA
#> SRR1270845     4  0.5722      0.929 0.120 0.000 0.032 0.688 0.088 NA
#> SRR1270846     4  0.5722      0.929 0.120 0.000 0.032 0.688 0.088 NA
#> SRR1270847     4  0.5384      0.932 0.120 0.000 0.024 0.712 0.072 NA
#> SRR1270848     4  0.5384      0.932 0.120 0.000 0.024 0.712 0.072 NA
#> SRR1270849     4  0.5384      0.932 0.120 0.000 0.024 0.712 0.072 NA
#> SRR1270850     4  0.5384      0.932 0.120 0.000 0.024 0.712 0.072 NA
#> SRR1270851     2  0.3503      0.813 0.000 0.808 0.000 0.032 0.016 NA
#> SRR1270852     2  0.3503      0.813 0.000 0.808 0.000 0.032 0.016 NA
#> SRR1270853     2  0.3503      0.813 0.000 0.808 0.000 0.032 0.016 NA
#> SRR1270854     2  0.0405      0.901 0.000 0.988 0.004 0.008 0.000 NA
#> SRR1270855     2  0.0405      0.901 0.000 0.988 0.004 0.008 0.000 NA
#> SRR1270856     2  0.0405      0.901 0.000 0.988 0.004 0.008 0.000 NA
#> SRR1270857     2  0.0405      0.901 0.000 0.988 0.004 0.008 0.000 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14577 rows and 143 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.4450 0.556   0.556
#> 3 3 0.814           0.950       0.961         0.3503 0.862   0.751
#> 4 4 1.000           0.991       0.992         0.2003 0.862   0.670
#> 5 5 1.000           0.956       0.966         0.0752 0.946   0.808
#> 6 6 0.912           0.914       0.921         0.0405 0.978   0.902

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 4 5

There is also optional best \(k\) = 2 4 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1270715     1       0          1  1  0
#> SRR1270716     1       0          1  1  0
#> SRR1270717     1       0          1  1  0
#> SRR1270718     1       0          1  1  0
#> SRR1270719     1       0          1  1  0
#> SRR1270720     1       0          1  1  0
#> SRR1270721     1       0          1  1  0
#> SRR1270722     1       0          1  1  0
#> SRR1270723     1       0          1  1  0
#> SRR1270724     1       0          1  1  0
#> SRR1270725     1       0          1  1  0
#> SRR1270726     1       0          1  1  0
#> SRR1270727     1       0          1  1  0
#> SRR1270728     1       0          1  1  0
#> SRR1270729     1       0          1  1  0
#> SRR1270730     1       0          1  1  0
#> SRR1270731     1       0          1  1  0
#> SRR1270732     1       0          1  1  0
#> SRR1270733     1       0          1  1  0
#> SRR1270734     1       0          1  1  0
#> SRR1270735     1       0          1  1  0
#> SRR1270736     1       0          1  1  0
#> SRR1270737     1       0          1  1  0
#> SRR1270738     1       0          1  1  0
#> SRR1270739     1       0          1  1  0
#> SRR1270740     1       0          1  1  0
#> SRR1270741     1       0          1  1  0
#> SRR1270742     1       0          1  1  0
#> SRR1270743     1       0          1  1  0
#> SRR1270744     1       0          1  1  0
#> SRR1270745     1       0          1  1  0
#> SRR1270746     1       0          1  1  0
#> SRR1270747     1       0          1  1  0
#> SRR1270748     1       0          1  1  0
#> SRR1270749     1       0          1  1  0
#> SRR1270750     1       0          1  1  0
#> SRR1270751     1       0          1  1  0
#> SRR1270752     1       0          1  1  0
#> SRR1270753     1       0          1  1  0
#> SRR1270754     1       0          1  1  0
#> SRR1270755     1       0          1  1  0
#> SRR1270756     1       0          1  1  0
#> SRR1270757     1       0          1  1  0
#> SRR1270758     1       0          1  1  0
#> SRR1270759     1       0          1  1  0
#> SRR1270760     1       0          1  1  0
#> SRR1270761     1       0          1  1  0
#> SRR1270762     1       0          1  1  0
#> SRR1270763     1       0          1  1  0
#> SRR1270764     1       0          1  1  0
#> SRR1270765     2       0          1  0  1
#> SRR1270766     2       0          1  0  1
#> SRR1270767     2       0          1  0  1
#> SRR1270768     2       0          1  0  1
#> SRR1270769     2       0          1  0  1
#> SRR1270770     2       0          1  0  1
#> SRR1270771     2       0          1  0  1
#> SRR1270772     2       0          1  0  1
#> SRR1270773     2       0          1  0  1
#> SRR1270774     2       0          1  0  1
#> SRR1270775     2       0          1  0  1
#> SRR1270776     2       0          1  0  1
#> SRR1270777     2       0          1  0  1
#> SRR1270778     2       0          1  0  1
#> SRR1270779     2       0          1  0  1
#> SRR1270780     2       0          1  0  1
#> SRR1270781     2       0          1  0  1
#> SRR1270782     2       0          1  0  1
#> SRR1270783     2       0          1  0  1
#> SRR1270784     2       0          1  0  1
#> SRR1270785     2       0          1  0  1
#> SRR1270786     2       0          1  0  1
#> SRR1270787     2       0          1  0  1
#> SRR1270788     2       0          1  0  1
#> SRR1270789     2       0          1  0  1
#> SRR1270790     2       0          1  0  1
#> SRR1270791     2       0          1  0  1
#> SRR1270792     2       0          1  0  1
#> SRR1270793     2       0          1  0  1
#> SRR1270794     2       0          1  0  1
#> SRR1270795     2       0          1  0  1
#> SRR1270796     2       0          1  0  1
#> SRR1270797     2       0          1  0  1
#> SRR1270798     2       0          1  0  1
#> SRR1270799     2       0          1  0  1
#> SRR1270800     2       0          1  0  1
#> SRR1270801     2       0          1  0  1
#> SRR1270802     2       0          1  0  1
#> SRR1270803     2       0          1  0  1
#> SRR1270804     2       0          1  0  1
#> SRR1270805     1       0          1  1  0
#> SRR1270806     1       0          1  1  0
#> SRR1270807     1       0          1  1  0
#> SRR1270808     1       0          1  1  0
#> SRR1270809     1       0          1  1  0
#> SRR1270810     1       0          1  1  0
#> SRR1270811     1       0          1  1  0
#> SRR1270812     1       0          1  1  0
#> SRR1270813     1       0          1  1  0
#> SRR1270814     1       0          1  1  0
#> SRR1270815     1       0          1  1  0
#> SRR1270816     1       0          1  1  0
#> SRR1270817     1       0          1  1  0
#> SRR1270818     1       0          1  1  0
#> SRR1270819     1       0          1  1  0
#> SRR1270820     1       0          1  1  0
#> SRR1270821     1       0          1  1  0
#> SRR1270822     1       0          1  1  0
#> SRR1270823     1       0          1  1  0
#> SRR1270824     1       0          1  1  0
#> SRR1270825     1       0          1  1  0
#> SRR1270826     1       0          1  1  0
#> SRR1270827     1       0          1  1  0
#> SRR1270828     1       0          1  1  0
#> SRR1270829     1       0          1  1  0
#> SRR1270830     1       0          1  1  0
#> SRR1270831     1       0          1  1  0
#> SRR1270832     1       0          1  1  0
#> SRR1270833     1       0          1  1  0
#> SRR1270834     1       0          1  1  0
#> SRR1270835     1       0          1  1  0
#> SRR1270836     1       0          1  1  0
#> SRR1270837     1       0          1  1  0
#> SRR1270838     1       0          1  1  0
#> SRR1270839     1       0          1  1  0
#> SRR1270840     1       0          1  1  0
#> SRR1270841     1       0          1  1  0
#> SRR1270842     1       0          1  1  0
#> SRR1270843     1       0          1  1  0
#> SRR1270844     1       0          1  1  0
#> SRR1270845     1       0          1  1  0
#> SRR1270846     1       0          1  1  0
#> SRR1270847     1       0          1  1  0
#> SRR1270848     1       0          1  1  0
#> SRR1270849     1       0          1  1  0
#> SRR1270850     1       0          1  1  0
#> SRR1270851     2       0          1  0  1
#> SRR1270852     2       0          1  0  1
#> SRR1270853     2       0          1  0  1
#> SRR1270854     2       0          1  0  1
#> SRR1270855     2       0          1  0  1
#> SRR1270856     2       0          1  0  1
#> SRR1270857     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1 p2    p3
#> SRR1270715     1  0.1529      0.923 0.960  0 0.040
#> SRR1270716     1  0.1529      0.923 0.960  0 0.040
#> SRR1270717     1  0.1529      0.923 0.960  0 0.040
#> SRR1270718     1  0.2878      0.899 0.904  0 0.096
#> SRR1270719     1  0.2878      0.899 0.904  0 0.096
#> SRR1270720     1  0.2878      0.899 0.904  0 0.096
#> SRR1270721     1  0.2878      0.899 0.904  0 0.096
#> SRR1270722     1  0.0000      0.923 1.000  0 0.000
#> SRR1270723     1  0.0000      0.923 1.000  0 0.000
#> SRR1270724     1  0.0000      0.923 1.000  0 0.000
#> SRR1270725     1  0.1289      0.925 0.968  0 0.032
#> SRR1270726     1  0.1289      0.925 0.968  0 0.032
#> SRR1270727     1  0.1289      0.925 0.968  0 0.032
#> SRR1270728     1  0.1289      0.925 0.968  0 0.032
#> SRR1270729     1  0.2537      0.908 0.920  0 0.080
#> SRR1270730     1  0.2537      0.908 0.920  0 0.080
#> SRR1270731     1  0.2537      0.908 0.920  0 0.080
#> SRR1270732     1  0.3619      0.866 0.864  0 0.136
#> SRR1270733     1  0.3619      0.866 0.864  0 0.136
#> SRR1270734     1  0.3619      0.866 0.864  0 0.136
#> SRR1270735     1  0.3619      0.866 0.864  0 0.136
#> SRR1270736     1  0.0592      0.925 0.988  0 0.012
#> SRR1270737     1  0.0592      0.925 0.988  0 0.012
#> SRR1270738     1  0.2537      0.908 0.920  0 0.080
#> SRR1270739     1  0.2537      0.908 0.920  0 0.080
#> SRR1270740     1  0.0592      0.925 0.988  0 0.012
#> SRR1270741     1  0.0592      0.925 0.988  0 0.012
#> SRR1270742     1  0.0592      0.925 0.988  0 0.012
#> SRR1270743     1  0.2537      0.908 0.920  0 0.080
#> SRR1270744     1  0.2537      0.908 0.920  0 0.080
#> SRR1270745     1  0.2537      0.908 0.920  0 0.080
#> SRR1270746     1  0.2537      0.908 0.920  0 0.080
#> SRR1270747     1  0.0000      0.923 1.000  0 0.000
#> SRR1270748     1  0.0000      0.923 1.000  0 0.000
#> SRR1270749     1  0.0000      0.923 1.000  0 0.000
#> SRR1270750     1  0.1289      0.925 0.968  0 0.032
#> SRR1270751     1  0.1289      0.925 0.968  0 0.032
#> SRR1270752     1  0.1289      0.925 0.968  0 0.032
#> SRR1270753     1  0.1289      0.925 0.968  0 0.032
#> SRR1270754     1  0.0000      0.923 1.000  0 0.000
#> SRR1270755     1  0.0000      0.923 1.000  0 0.000
#> SRR1270756     1  0.0000      0.923 1.000  0 0.000
#> SRR1270757     1  0.1289      0.925 0.968  0 0.032
#> SRR1270758     1  0.1289      0.925 0.968  0 0.032
#> SRR1270759     1  0.1289      0.925 0.968  0 0.032
#> SRR1270760     1  0.1289      0.925 0.968  0 0.032
#> SRR1270761     1  0.0592      0.925 0.988  0 0.012
#> SRR1270762     1  0.0592      0.925 0.988  0 0.012
#> SRR1270763     1  0.2537      0.908 0.920  0 0.080
#> SRR1270764     1  0.2537      0.908 0.920  0 0.080
#> SRR1270765     2  0.0000      1.000 0.000  1 0.000
#> SRR1270766     2  0.0000      1.000 0.000  1 0.000
#> SRR1270767     2  0.0000      1.000 0.000  1 0.000
#> SRR1270768     2  0.0000      1.000 0.000  1 0.000
#> SRR1270769     2  0.0000      1.000 0.000  1 0.000
#> SRR1270770     2  0.0000      1.000 0.000  1 0.000
#> SRR1270771     2  0.0000      1.000 0.000  1 0.000
#> SRR1270772     2  0.0000      1.000 0.000  1 0.000
#> SRR1270773     2  0.0000      1.000 0.000  1 0.000
#> SRR1270774     2  0.0000      1.000 0.000  1 0.000
#> SRR1270775     2  0.0000      1.000 0.000  1 0.000
#> SRR1270776     2  0.0000      1.000 0.000  1 0.000
#> SRR1270777     2  0.0000      1.000 0.000  1 0.000
#> SRR1270778     2  0.0000      1.000 0.000  1 0.000
#> SRR1270779     2  0.0000      1.000 0.000  1 0.000
#> SRR1270780     2  0.0000      1.000 0.000  1 0.000
#> SRR1270781     2  0.0000      1.000 0.000  1 0.000
#> SRR1270782     2  0.0000      1.000 0.000  1 0.000
#> SRR1270783     2  0.0000      1.000 0.000  1 0.000
#> SRR1270784     2  0.0000      1.000 0.000  1 0.000
#> SRR1270785     2  0.0000      1.000 0.000  1 0.000
#> SRR1270786     2  0.0000      1.000 0.000  1 0.000
#> SRR1270787     2  0.0000      1.000 0.000  1 0.000
#> SRR1270788     2  0.0000      1.000 0.000  1 0.000
#> SRR1270789     2  0.0000      1.000 0.000  1 0.000
#> SRR1270790     2  0.0000      1.000 0.000  1 0.000
#> SRR1270791     2  0.0000      1.000 0.000  1 0.000
#> SRR1270792     2  0.0000      1.000 0.000  1 0.000
#> SRR1270793     2  0.0000      1.000 0.000  1 0.000
#> SRR1270794     2  0.0000      1.000 0.000  1 0.000
#> SRR1270795     2  0.0000      1.000 0.000  1 0.000
#> SRR1270796     2  0.0000      1.000 0.000  1 0.000
#> SRR1270797     2  0.0000      1.000 0.000  1 0.000
#> SRR1270798     2  0.0000      1.000 0.000  1 0.000
#> SRR1270799     2  0.0000      1.000 0.000  1 0.000
#> SRR1270800     2  0.0000      1.000 0.000  1 0.000
#> SRR1270801     2  0.0000      1.000 0.000  1 0.000
#> SRR1270802     2  0.0000      1.000 0.000  1 0.000
#> SRR1270803     2  0.0000      1.000 0.000  1 0.000
#> SRR1270804     2  0.0000      1.000 0.000  1 0.000
#> SRR1270805     1  0.3192      0.900 0.888  0 0.112
#> SRR1270806     1  0.3192      0.900 0.888  0 0.112
#> SRR1270807     1  0.3192      0.900 0.888  0 0.112
#> SRR1270808     1  0.3192      0.900 0.888  0 0.112
#> SRR1270809     1  0.3192      0.900 0.888  0 0.112
#> SRR1270810     1  0.3192      0.900 0.888  0 0.112
#> SRR1270811     1  0.3192      0.900 0.888  0 0.112
#> SRR1270812     1  0.3192      0.900 0.888  0 0.112
#> SRR1270813     1  0.3192      0.900 0.888  0 0.112
#> SRR1270814     1  0.3192      0.900 0.888  0 0.112
#> SRR1270815     1  0.3192      0.900 0.888  0 0.112
#> SRR1270816     1  0.3192      0.900 0.888  0 0.112
#> SRR1270817     1  0.3192      0.900 0.888  0 0.112
#> SRR1270818     1  0.3192      0.900 0.888  0 0.112
#> SRR1270819     1  0.3192      0.900 0.888  0 0.112
#> SRR1270820     1  0.3192      0.900 0.888  0 0.112
#> SRR1270821     1  0.3192      0.900 0.888  0 0.112
#> SRR1270822     1  0.3192      0.900 0.888  0 0.112
#> SRR1270823     1  0.3192      0.900 0.888  0 0.112
#> SRR1270824     1  0.3192      0.900 0.888  0 0.112
#> SRR1270825     1  0.3192      0.900 0.888  0 0.112
#> SRR1270826     1  0.3192      0.900 0.888  0 0.112
#> SRR1270827     1  0.3192      0.900 0.888  0 0.112
#> SRR1270828     1  0.3192      0.900 0.888  0 0.112
#> SRR1270829     1  0.3192      0.900 0.888  0 0.112
#> SRR1270830     1  0.3192      0.900 0.888  0 0.112
#> SRR1270831     1  0.3192      0.900 0.888  0 0.112
#> SRR1270832     1  0.3192      0.900 0.888  0 0.112
#> SRR1270833     3  0.0000      1.000 0.000  0 1.000
#> SRR1270834     3  0.0000      1.000 0.000  0 1.000
#> SRR1270835     3  0.0000      1.000 0.000  0 1.000
#> SRR1270836     3  0.0000      1.000 0.000  0 1.000
#> SRR1270837     3  0.0000      1.000 0.000  0 1.000
#> SRR1270838     3  0.0000      1.000 0.000  0 1.000
#> SRR1270839     3  0.0000      1.000 0.000  0 1.000
#> SRR1270840     3  0.0000      1.000 0.000  0 1.000
#> SRR1270841     3  0.0000      1.000 0.000  0 1.000
#> SRR1270842     3  0.0000      1.000 0.000  0 1.000
#> SRR1270843     3  0.0000      1.000 0.000  0 1.000
#> SRR1270844     3  0.0000      1.000 0.000  0 1.000
#> SRR1270845     3  0.0000      1.000 0.000  0 1.000
#> SRR1270846     3  0.0000      1.000 0.000  0 1.000
#> SRR1270847     3  0.0000      1.000 0.000  0 1.000
#> SRR1270848     3  0.0000      1.000 0.000  0 1.000
#> SRR1270849     3  0.0000      1.000 0.000  0 1.000
#> SRR1270850     3  0.0000      1.000 0.000  0 1.000
#> SRR1270851     2  0.0000      1.000 0.000  1 0.000
#> SRR1270852     2  0.0000      1.000 0.000  1 0.000
#> SRR1270853     2  0.0000      1.000 0.000  1 0.000
#> SRR1270854     2  0.0000      1.000 0.000  1 0.000
#> SRR1270855     2  0.0000      1.000 0.000  1 0.000
#> SRR1270856     2  0.0000      1.000 0.000  1 0.000
#> SRR1270857     2  0.0000      1.000 0.000  1 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1 p2    p3    p4
#> SRR1270715     1  0.0188      0.977 0.996  0 0.000 0.004
#> SRR1270716     1  0.0188      0.977 0.996  0 0.000 0.004
#> SRR1270717     1  0.0188      0.977 0.996  0 0.000 0.004
#> SRR1270718     1  0.0188      0.977 0.996  0 0.000 0.004
#> SRR1270719     1  0.0188      0.977 0.996  0 0.000 0.004
#> SRR1270720     1  0.0188      0.977 0.996  0 0.000 0.004
#> SRR1270721     1  0.0188      0.977 0.996  0 0.000 0.004
#> SRR1270722     1  0.1302      0.970 0.956  0 0.044 0.000
#> SRR1270723     1  0.1302      0.970 0.956  0 0.044 0.000
#> SRR1270724     1  0.1302      0.970 0.956  0 0.044 0.000
#> SRR1270725     1  0.0000      0.978 1.000  0 0.000 0.000
#> SRR1270726     1  0.0000      0.978 1.000  0 0.000 0.000
#> SRR1270727     1  0.0000      0.978 1.000  0 0.000 0.000
#> SRR1270728     1  0.0000      0.978 1.000  0 0.000 0.000
#> SRR1270729     1  0.0188      0.977 0.996  0 0.000 0.004
#> SRR1270730     1  0.0188      0.977 0.996  0 0.000 0.004
#> SRR1270731     1  0.0188      0.977 0.996  0 0.000 0.004
#> SRR1270732     1  0.0188      0.977 0.996  0 0.000 0.004
#> SRR1270733     1  0.0188      0.977 0.996  0 0.000 0.004
#> SRR1270734     1  0.0188      0.977 0.996  0 0.000 0.004
#> SRR1270735     1  0.0188      0.977 0.996  0 0.000 0.004
#> SRR1270736     1  0.0000      0.978 1.000  0 0.000 0.000
#> SRR1270737     1  0.0000      0.978 1.000  0 0.000 0.000
#> SRR1270738     1  0.0188      0.977 0.996  0 0.000 0.004
#> SRR1270739     1  0.0188      0.977 0.996  0 0.000 0.004
#> SRR1270740     1  0.1118      0.973 0.964  0 0.036 0.000
#> SRR1270741     1  0.1118      0.973 0.964  0 0.036 0.000
#> SRR1270742     1  0.1118      0.973 0.964  0 0.036 0.000
#> SRR1270743     1  0.0000      0.978 1.000  0 0.000 0.000
#> SRR1270744     1  0.0000      0.978 1.000  0 0.000 0.000
#> SRR1270745     1  0.0000      0.978 1.000  0 0.000 0.000
#> SRR1270746     1  0.0000      0.978 1.000  0 0.000 0.000
#> SRR1270747     1  0.2011      0.939 0.920  0 0.080 0.000
#> SRR1270748     1  0.2011      0.939 0.920  0 0.080 0.000
#> SRR1270749     1  0.2011      0.939 0.920  0 0.080 0.000
#> SRR1270750     1  0.1302      0.970 0.956  0 0.044 0.000
#> SRR1270751     1  0.1302      0.970 0.956  0 0.044 0.000
#> SRR1270752     1  0.1302      0.970 0.956  0 0.044 0.000
#> SRR1270753     1  0.1302      0.970 0.956  0 0.044 0.000
#> SRR1270754     1  0.1302      0.970 0.956  0 0.044 0.000
#> SRR1270755     1  0.1302      0.970 0.956  0 0.044 0.000
#> SRR1270756     1  0.1302      0.970 0.956  0 0.044 0.000
#> SRR1270757     1  0.0817      0.976 0.976  0 0.024 0.000
#> SRR1270758     1  0.0817      0.976 0.976  0 0.024 0.000
#> SRR1270759     1  0.0817      0.976 0.976  0 0.024 0.000
#> SRR1270760     1  0.0817      0.976 0.976  0 0.024 0.000
#> SRR1270761     1  0.1302      0.970 0.956  0 0.044 0.000
#> SRR1270762     1  0.1302      0.970 0.956  0 0.044 0.000
#> SRR1270763     1  0.0817      0.976 0.976  0 0.024 0.000
#> SRR1270764     1  0.0817      0.976 0.976  0 0.024 0.000
#> SRR1270765     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270766     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270767     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270768     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270769     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270770     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270771     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270772     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270773     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270774     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270775     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270776     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270777     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270778     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270779     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270780     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270781     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270782     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270783     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270784     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270785     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270786     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270787     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270788     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270789     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270790     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270791     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270792     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270793     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270794     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270795     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270796     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270797     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270798     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270799     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270800     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270801     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270802     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270803     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270804     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270805     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270806     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270807     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270808     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270809     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270810     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270811     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270812     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270813     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270814     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270815     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270816     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270817     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270818     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270819     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270820     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270821     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270822     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270823     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270824     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270825     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270826     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270827     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270828     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270829     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270830     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270831     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270832     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270833     4  0.0188      1.000 0.000  0 0.004 0.996
#> SRR1270834     4  0.0188      1.000 0.000  0 0.004 0.996
#> SRR1270835     4  0.0188      1.000 0.000  0 0.004 0.996
#> SRR1270836     4  0.0188      1.000 0.000  0 0.004 0.996
#> SRR1270837     4  0.0188      1.000 0.000  0 0.004 0.996
#> SRR1270838     4  0.0188      1.000 0.000  0 0.004 0.996
#> SRR1270839     4  0.0188      1.000 0.000  0 0.004 0.996
#> SRR1270840     4  0.0188      1.000 0.000  0 0.004 0.996
#> SRR1270841     4  0.0188      1.000 0.000  0 0.004 0.996
#> SRR1270842     4  0.0188      1.000 0.000  0 0.004 0.996
#> SRR1270843     4  0.0188      1.000 0.000  0 0.004 0.996
#> SRR1270844     4  0.0188      1.000 0.000  0 0.004 0.996
#> SRR1270845     4  0.0188      1.000 0.000  0 0.004 0.996
#> SRR1270846     4  0.0188      1.000 0.000  0 0.004 0.996
#> SRR1270847     4  0.0188      1.000 0.000  0 0.004 0.996
#> SRR1270848     4  0.0188      1.000 0.000  0 0.004 0.996
#> SRR1270849     4  0.0188      1.000 0.000  0 0.004 0.996
#> SRR1270850     4  0.0188      1.000 0.000  0 0.004 0.996
#> SRR1270851     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270852     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270853     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270854     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270855     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270856     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270857     2  0.0000      1.000 0.000  1 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1   p2    p3 p4    p5
#> SRR1270715     5  0.1671      0.968 0.076 0.00 0.000  0 0.924
#> SRR1270716     5  0.1671      0.968 0.076 0.00 0.000  0 0.924
#> SRR1270717     5  0.1671      0.968 0.076 0.00 0.000  0 0.924
#> SRR1270718     5  0.1671      0.968 0.076 0.00 0.000  0 0.924
#> SRR1270719     5  0.1671      0.968 0.076 0.00 0.000  0 0.924
#> SRR1270720     5  0.1671      0.968 0.076 0.00 0.000  0 0.924
#> SRR1270721     5  0.1671      0.968 0.076 0.00 0.000  0 0.924
#> SRR1270722     1  0.0162      0.945 0.996 0.00 0.004  0 0.000
#> SRR1270723     1  0.0162      0.945 0.996 0.00 0.004  0 0.000
#> SRR1270724     1  0.0162      0.945 0.996 0.00 0.004  0 0.000
#> SRR1270725     1  0.3508      0.666 0.748 0.00 0.000  0 0.252
#> SRR1270726     1  0.3508      0.666 0.748 0.00 0.000  0 0.252
#> SRR1270727     1  0.3508      0.666 0.748 0.00 0.000  0 0.252
#> SRR1270728     1  0.3508      0.666 0.748 0.00 0.000  0 0.252
#> SRR1270729     5  0.1671      0.968 0.076 0.00 0.000  0 0.924
#> SRR1270730     5  0.1671      0.968 0.076 0.00 0.000  0 0.924
#> SRR1270731     5  0.1671      0.968 0.076 0.00 0.000  0 0.924
#> SRR1270732     5  0.1671      0.968 0.076 0.00 0.000  0 0.924
#> SRR1270733     5  0.1671      0.968 0.076 0.00 0.000  0 0.924
#> SRR1270734     5  0.1671      0.968 0.076 0.00 0.000  0 0.924
#> SRR1270735     5  0.1671      0.968 0.076 0.00 0.000  0 0.924
#> SRR1270736     1  0.3508      0.666 0.748 0.00 0.000  0 0.252
#> SRR1270737     1  0.3508      0.666 0.748 0.00 0.000  0 0.252
#> SRR1270738     5  0.3636      0.718 0.272 0.00 0.000  0 0.728
#> SRR1270739     5  0.3636      0.718 0.272 0.00 0.000  0 0.728
#> SRR1270740     1  0.0162      0.945 0.996 0.00 0.004  0 0.000
#> SRR1270741     1  0.0162      0.945 0.996 0.00 0.004  0 0.000
#> SRR1270742     1  0.0162      0.945 0.996 0.00 0.004  0 0.000
#> SRR1270743     1  0.0162      0.942 0.996 0.00 0.000  0 0.004
#> SRR1270744     1  0.0162      0.942 0.996 0.00 0.000  0 0.004
#> SRR1270745     1  0.0162      0.942 0.996 0.00 0.000  0 0.004
#> SRR1270746     1  0.0162      0.942 0.996 0.00 0.000  0 0.004
#> SRR1270747     1  0.0162      0.945 0.996 0.00 0.004  0 0.000
#> SRR1270748     1  0.0162      0.945 0.996 0.00 0.004  0 0.000
#> SRR1270749     1  0.0162      0.945 0.996 0.00 0.004  0 0.000
#> SRR1270750     1  0.0162      0.945 0.996 0.00 0.004  0 0.000
#> SRR1270751     1  0.0162      0.945 0.996 0.00 0.004  0 0.000
#> SRR1270752     1  0.0162      0.945 0.996 0.00 0.004  0 0.000
#> SRR1270753     1  0.0162      0.945 0.996 0.00 0.004  0 0.000
#> SRR1270754     1  0.0162      0.945 0.996 0.00 0.004  0 0.000
#> SRR1270755     1  0.0162      0.945 0.996 0.00 0.004  0 0.000
#> SRR1270756     1  0.0162      0.945 0.996 0.00 0.004  0 0.000
#> SRR1270757     1  0.0162      0.945 0.996 0.00 0.004  0 0.000
#> SRR1270758     1  0.0162      0.945 0.996 0.00 0.004  0 0.000
#> SRR1270759     1  0.0162      0.945 0.996 0.00 0.004  0 0.000
#> SRR1270760     1  0.0162      0.945 0.996 0.00 0.004  0 0.000
#> SRR1270761     1  0.0162      0.945 0.996 0.00 0.004  0 0.000
#> SRR1270762     1  0.0162      0.945 0.996 0.00 0.004  0 0.000
#> SRR1270763     1  0.0162      0.945 0.996 0.00 0.004  0 0.000
#> SRR1270764     1  0.0162      0.945 0.996 0.00 0.004  0 0.000
#> SRR1270765     2  0.0000      0.969 0.000 1.00 0.000  0 0.000
#> SRR1270766     2  0.0000      0.969 0.000 1.00 0.000  0 0.000
#> SRR1270767     2  0.0000      0.969 0.000 1.00 0.000  0 0.000
#> SRR1270768     2  0.0000      0.969 0.000 1.00 0.000  0 0.000
#> SRR1270769     2  0.0000      0.969 0.000 1.00 0.000  0 0.000
#> SRR1270770     2  0.0000      0.969 0.000 1.00 0.000  0 0.000
#> SRR1270771     2  0.0000      0.969 0.000 1.00 0.000  0 0.000
#> SRR1270772     2  0.0000      0.969 0.000 1.00 0.000  0 0.000
#> SRR1270773     2  0.0000      0.969 0.000 1.00 0.000  0 0.000
#> SRR1270774     2  0.0000      0.969 0.000 1.00 0.000  0 0.000
#> SRR1270775     2  0.0000      0.969 0.000 1.00 0.000  0 0.000
#> SRR1270776     2  0.0000      0.969 0.000 1.00 0.000  0 0.000
#> SRR1270777     2  0.0000      0.969 0.000 1.00 0.000  0 0.000
#> SRR1270778     2  0.0000      0.969 0.000 1.00 0.000  0 0.000
#> SRR1270779     2  0.0000      0.969 0.000 1.00 0.000  0 0.000
#> SRR1270780     2  0.0000      0.969 0.000 1.00 0.000  0 0.000
#> SRR1270781     2  0.0000      0.969 0.000 1.00 0.000  0 0.000
#> SRR1270782     2  0.0000      0.969 0.000 1.00 0.000  0 0.000
#> SRR1270783     2  0.0000      0.969 0.000 1.00 0.000  0 0.000
#> SRR1270784     2  0.0000      0.969 0.000 1.00 0.000  0 0.000
#> SRR1270785     2  0.1831      0.958 0.004 0.92 0.000  0 0.076
#> SRR1270786     2  0.1831      0.958 0.004 0.92 0.000  0 0.076
#> SRR1270787     2  0.1831      0.958 0.004 0.92 0.000  0 0.076
#> SRR1270788     2  0.1831      0.958 0.004 0.92 0.000  0 0.076
#> SRR1270789     2  0.1831      0.958 0.004 0.92 0.000  0 0.076
#> SRR1270790     2  0.1831      0.958 0.004 0.92 0.000  0 0.076
#> SRR1270791     2  0.1831      0.958 0.004 0.92 0.000  0 0.076
#> SRR1270792     2  0.1831      0.958 0.004 0.92 0.000  0 0.076
#> SRR1270793     2  0.1831      0.958 0.004 0.92 0.000  0 0.076
#> SRR1270794     2  0.1831      0.958 0.004 0.92 0.000  0 0.076
#> SRR1270795     2  0.1831      0.958 0.004 0.92 0.000  0 0.076
#> SRR1270796     2  0.1831      0.958 0.004 0.92 0.000  0 0.076
#> SRR1270797     2  0.1831      0.958 0.004 0.92 0.000  0 0.076
#> SRR1270798     2  0.1831      0.958 0.004 0.92 0.000  0 0.076
#> SRR1270799     2  0.1831      0.958 0.004 0.92 0.000  0 0.076
#> SRR1270800     2  0.1831      0.958 0.004 0.92 0.000  0 0.076
#> SRR1270801     2  0.1831      0.958 0.004 0.92 0.000  0 0.076
#> SRR1270802     2  0.1831      0.958 0.004 0.92 0.000  0 0.076
#> SRR1270803     2  0.1831      0.958 0.004 0.92 0.000  0 0.076
#> SRR1270804     2  0.1831      0.958 0.004 0.92 0.000  0 0.076
#> SRR1270805     3  0.0000      1.000 0.000 0.00 1.000  0 0.000
#> SRR1270806     3  0.0000      1.000 0.000 0.00 1.000  0 0.000
#> SRR1270807     3  0.0000      1.000 0.000 0.00 1.000  0 0.000
#> SRR1270808     3  0.0000      1.000 0.000 0.00 1.000  0 0.000
#> SRR1270809     3  0.0000      1.000 0.000 0.00 1.000  0 0.000
#> SRR1270810     3  0.0000      1.000 0.000 0.00 1.000  0 0.000
#> SRR1270811     3  0.0000      1.000 0.000 0.00 1.000  0 0.000
#> SRR1270812     3  0.0000      1.000 0.000 0.00 1.000  0 0.000
#> SRR1270813     3  0.0000      1.000 0.000 0.00 1.000  0 0.000
#> SRR1270814     3  0.0000      1.000 0.000 0.00 1.000  0 0.000
#> SRR1270815     3  0.0000      1.000 0.000 0.00 1.000  0 0.000
#> SRR1270816     3  0.0000      1.000 0.000 0.00 1.000  0 0.000
#> SRR1270817     3  0.0000      1.000 0.000 0.00 1.000  0 0.000
#> SRR1270818     3  0.0000      1.000 0.000 0.00 1.000  0 0.000
#> SRR1270819     3  0.0000      1.000 0.000 0.00 1.000  0 0.000
#> SRR1270820     3  0.0000      1.000 0.000 0.00 1.000  0 0.000
#> SRR1270821     3  0.0000      1.000 0.000 0.00 1.000  0 0.000
#> SRR1270822     3  0.0000      1.000 0.000 0.00 1.000  0 0.000
#> SRR1270823     3  0.0000      1.000 0.000 0.00 1.000  0 0.000
#> SRR1270824     3  0.0000      1.000 0.000 0.00 1.000  0 0.000
#> SRR1270825     3  0.0000      1.000 0.000 0.00 1.000  0 0.000
#> SRR1270826     3  0.0000      1.000 0.000 0.00 1.000  0 0.000
#> SRR1270827     3  0.0000      1.000 0.000 0.00 1.000  0 0.000
#> SRR1270828     3  0.0000      1.000 0.000 0.00 1.000  0 0.000
#> SRR1270829     3  0.0000      1.000 0.000 0.00 1.000  0 0.000
#> SRR1270830     3  0.0000      1.000 0.000 0.00 1.000  0 0.000
#> SRR1270831     3  0.0000      1.000 0.000 0.00 1.000  0 0.000
#> SRR1270832     3  0.0000      1.000 0.000 0.00 1.000  0 0.000
#> SRR1270833     4  0.0000      1.000 0.000 0.00 0.000  1 0.000
#> SRR1270834     4  0.0000      1.000 0.000 0.00 0.000  1 0.000
#> SRR1270835     4  0.0000      1.000 0.000 0.00 0.000  1 0.000
#> SRR1270836     4  0.0000      1.000 0.000 0.00 0.000  1 0.000
#> SRR1270837     4  0.0000      1.000 0.000 0.00 0.000  1 0.000
#> SRR1270838     4  0.0000      1.000 0.000 0.00 0.000  1 0.000
#> SRR1270839     4  0.0000      1.000 0.000 0.00 0.000  1 0.000
#> SRR1270840     4  0.0000      1.000 0.000 0.00 0.000  1 0.000
#> SRR1270841     4  0.0000      1.000 0.000 0.00 0.000  1 0.000
#> SRR1270842     4  0.0000      1.000 0.000 0.00 0.000  1 0.000
#> SRR1270843     4  0.0000      1.000 0.000 0.00 0.000  1 0.000
#> SRR1270844     4  0.0000      1.000 0.000 0.00 0.000  1 0.000
#> SRR1270845     4  0.0000      1.000 0.000 0.00 0.000  1 0.000
#> SRR1270846     4  0.0000      1.000 0.000 0.00 0.000  1 0.000
#> SRR1270847     4  0.0000      1.000 0.000 0.00 0.000  1 0.000
#> SRR1270848     4  0.0000      1.000 0.000 0.00 0.000  1 0.000
#> SRR1270849     4  0.0000      1.000 0.000 0.00 0.000  1 0.000
#> SRR1270850     4  0.0000      1.000 0.000 0.00 0.000  1 0.000
#> SRR1270851     2  0.0000      0.969 0.000 1.00 0.000  0 0.000
#> SRR1270852     2  0.0000      0.969 0.000 1.00 0.000  0 0.000
#> SRR1270853     2  0.0000      0.969 0.000 1.00 0.000  0 0.000
#> SRR1270854     2  0.0000      0.969 0.000 1.00 0.000  0 0.000
#> SRR1270855     2  0.0000      0.969 0.000 1.00 0.000  0 0.000
#> SRR1270856     2  0.0000      0.969 0.000 1.00 0.000  0 0.000
#> SRR1270857     2  0.0000      0.969 0.000 1.00 0.000  0 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2 p3    p4    p5    p6
#> SRR1270715     6  0.0547      0.920 0.000 0.000  0 0.000 0.020 0.980
#> SRR1270716     6  0.0547      0.920 0.000 0.000  0 0.000 0.020 0.980
#> SRR1270717     6  0.0547      0.920 0.000 0.000  0 0.000 0.020 0.980
#> SRR1270718     6  0.0000      0.929 0.000 0.000  0 0.000 0.000 1.000
#> SRR1270719     6  0.0000      0.929 0.000 0.000  0 0.000 0.000 1.000
#> SRR1270720     6  0.0000      0.929 0.000 0.000  0 0.000 0.000 1.000
#> SRR1270721     6  0.0000      0.929 0.000 0.000  0 0.000 0.000 1.000
#> SRR1270722     5  0.3659      0.816 0.364 0.000  0 0.000 0.636 0.000
#> SRR1270723     5  0.3659      0.816 0.364 0.000  0 0.000 0.636 0.000
#> SRR1270724     5  0.3659      0.816 0.364 0.000  0 0.000 0.636 0.000
#> SRR1270725     5  0.4963      0.920 0.240 0.000  0 0.000 0.636 0.124
#> SRR1270726     5  0.4963      0.920 0.240 0.000  0 0.000 0.636 0.124
#> SRR1270727     5  0.4963      0.920 0.240 0.000  0 0.000 0.636 0.124
#> SRR1270728     5  0.4963      0.920 0.240 0.000  0 0.000 0.636 0.124
#> SRR1270729     6  0.0146      0.928 0.000 0.000  0 0.000 0.004 0.996
#> SRR1270730     6  0.0146      0.928 0.000 0.000  0 0.000 0.004 0.996
#> SRR1270731     6  0.0146      0.928 0.000 0.000  0 0.000 0.004 0.996
#> SRR1270732     6  0.0000      0.929 0.000 0.000  0 0.000 0.000 1.000
#> SRR1270733     6  0.0000      0.929 0.000 0.000  0 0.000 0.000 1.000
#> SRR1270734     6  0.0000      0.929 0.000 0.000  0 0.000 0.000 1.000
#> SRR1270735     6  0.0000      0.929 0.000 0.000  0 0.000 0.000 1.000
#> SRR1270736     5  0.4963      0.920 0.240 0.000  0 0.000 0.636 0.124
#> SRR1270737     5  0.4963      0.920 0.240 0.000  0 0.000 0.636 0.124
#> SRR1270738     6  0.4885      0.177 0.068 0.000  0 0.000 0.372 0.560
#> SRR1270739     6  0.4885      0.177 0.068 0.000  0 0.000 0.372 0.560
#> SRR1270740     1  0.0000      0.976 1.000 0.000  0 0.000 0.000 0.000
#> SRR1270741     1  0.0000      0.976 1.000 0.000  0 0.000 0.000 0.000
#> SRR1270742     1  0.0000      0.976 1.000 0.000  0 0.000 0.000 0.000
#> SRR1270743     1  0.0000      0.976 1.000 0.000  0 0.000 0.000 0.000
#> SRR1270744     1  0.0000      0.976 1.000 0.000  0 0.000 0.000 0.000
#> SRR1270745     1  0.0000      0.976 1.000 0.000  0 0.000 0.000 0.000
#> SRR1270746     1  0.0000      0.976 1.000 0.000  0 0.000 0.000 0.000
#> SRR1270747     1  0.0865      0.968 0.964 0.000  0 0.000 0.036 0.000
#> SRR1270748     1  0.0865      0.968 0.964 0.000  0 0.000 0.036 0.000
#> SRR1270749     1  0.0865      0.968 0.964 0.000  0 0.000 0.036 0.000
#> SRR1270750     1  0.0865      0.968 0.964 0.000  0 0.000 0.036 0.000
#> SRR1270751     1  0.0865      0.968 0.964 0.000  0 0.000 0.036 0.000
#> SRR1270752     1  0.0865      0.968 0.964 0.000  0 0.000 0.036 0.000
#> SRR1270753     1  0.0865      0.968 0.964 0.000  0 0.000 0.036 0.000
#> SRR1270754     1  0.0000      0.976 1.000 0.000  0 0.000 0.000 0.000
#> SRR1270755     1  0.0000      0.976 1.000 0.000  0 0.000 0.000 0.000
#> SRR1270756     1  0.0000      0.976 1.000 0.000  0 0.000 0.000 0.000
#> SRR1270757     1  0.0000      0.976 1.000 0.000  0 0.000 0.000 0.000
#> SRR1270758     1  0.0000      0.976 1.000 0.000  0 0.000 0.000 0.000
#> SRR1270759     1  0.0000      0.976 1.000 0.000  0 0.000 0.000 0.000
#> SRR1270760     1  0.0000      0.976 1.000 0.000  0 0.000 0.000 0.000
#> SRR1270761     1  0.0865      0.968 0.964 0.000  0 0.000 0.036 0.000
#> SRR1270762     1  0.0865      0.968 0.964 0.000  0 0.000 0.036 0.000
#> SRR1270763     1  0.0790      0.970 0.968 0.000  0 0.000 0.032 0.000
#> SRR1270764     1  0.0790      0.970 0.968 0.000  0 0.000 0.032 0.000
#> SRR1270765     2  0.0000      0.863 0.000 1.000  0 0.000 0.000 0.000
#> SRR1270766     2  0.0000      0.863 0.000 1.000  0 0.000 0.000 0.000
#> SRR1270767     2  0.0000      0.863 0.000 1.000  0 0.000 0.000 0.000
#> SRR1270768     2  0.0000      0.863 0.000 1.000  0 0.000 0.000 0.000
#> SRR1270769     2  0.0000      0.863 0.000 1.000  0 0.000 0.000 0.000
#> SRR1270770     2  0.0000      0.863 0.000 1.000  0 0.000 0.000 0.000
#> SRR1270771     2  0.0000      0.863 0.000 1.000  0 0.000 0.000 0.000
#> SRR1270772     2  0.0000      0.863 0.000 1.000  0 0.000 0.000 0.000
#> SRR1270773     2  0.0000      0.863 0.000 1.000  0 0.000 0.000 0.000
#> SRR1270774     2  0.0000      0.863 0.000 1.000  0 0.000 0.000 0.000
#> SRR1270775     2  0.0000      0.863 0.000 1.000  0 0.000 0.000 0.000
#> SRR1270776     2  0.0000      0.863 0.000 1.000  0 0.000 0.000 0.000
#> SRR1270777     2  0.0000      0.863 0.000 1.000  0 0.000 0.000 0.000
#> SRR1270778     2  0.0000      0.863 0.000 1.000  0 0.000 0.000 0.000
#> SRR1270779     2  0.0000      0.863 0.000 1.000  0 0.000 0.000 0.000
#> SRR1270780     2  0.0000      0.863 0.000 1.000  0 0.000 0.000 0.000
#> SRR1270781     2  0.0000      0.863 0.000 1.000  0 0.000 0.000 0.000
#> SRR1270782     2  0.0000      0.863 0.000 1.000  0 0.000 0.000 0.000
#> SRR1270783     2  0.0000      0.863 0.000 1.000  0 0.000 0.000 0.000
#> SRR1270784     2  0.0000      0.863 0.000 1.000  0 0.000 0.000 0.000
#> SRR1270785     2  0.3482      0.808 0.000 0.684  0 0.000 0.316 0.000
#> SRR1270786     2  0.3482      0.808 0.000 0.684  0 0.000 0.316 0.000
#> SRR1270787     2  0.3482      0.808 0.000 0.684  0 0.000 0.316 0.000
#> SRR1270788     2  0.3482      0.808 0.000 0.684  0 0.000 0.316 0.000
#> SRR1270789     2  0.3482      0.808 0.000 0.684  0 0.000 0.316 0.000
#> SRR1270790     2  0.3482      0.808 0.000 0.684  0 0.000 0.316 0.000
#> SRR1270791     2  0.3482      0.808 0.000 0.684  0 0.000 0.316 0.000
#> SRR1270792     2  0.3482      0.808 0.000 0.684  0 0.000 0.316 0.000
#> SRR1270793     2  0.3482      0.808 0.000 0.684  0 0.000 0.316 0.000
#> SRR1270794     2  0.3482      0.808 0.000 0.684  0 0.000 0.316 0.000
#> SRR1270795     2  0.3482      0.808 0.000 0.684  0 0.000 0.316 0.000
#> SRR1270796     2  0.3482      0.808 0.000 0.684  0 0.000 0.316 0.000
#> SRR1270797     2  0.3482      0.808 0.000 0.684  0 0.000 0.316 0.000
#> SRR1270798     2  0.3482      0.808 0.000 0.684  0 0.000 0.316 0.000
#> SRR1270799     2  0.3482      0.808 0.000 0.684  0 0.000 0.316 0.000
#> SRR1270800     2  0.3482      0.808 0.000 0.684  0 0.000 0.316 0.000
#> SRR1270801     2  0.3482      0.808 0.000 0.684  0 0.000 0.316 0.000
#> SRR1270802     2  0.3482      0.808 0.000 0.684  0 0.000 0.316 0.000
#> SRR1270803     2  0.3482      0.808 0.000 0.684  0 0.000 0.316 0.000
#> SRR1270804     2  0.3482      0.808 0.000 0.684  0 0.000 0.316 0.000
#> SRR1270805     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1270806     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1270807     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1270808     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1270809     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1270810     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1270811     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1270812     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1270813     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1270814     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1270815     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1270816     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1270817     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1270818     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1270819     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1270820     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1270821     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1270822     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1270823     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1270824     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1270825     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1270826     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1270827     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1270828     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1270829     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1270830     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1270831     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1270832     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> SRR1270833     4  0.0000      0.980 0.000 0.000  0 1.000 0.000 0.000
#> SRR1270834     4  0.0000      0.980 0.000 0.000  0 1.000 0.000 0.000
#> SRR1270835     4  0.1075      0.980 0.000 0.000  0 0.952 0.048 0.000
#> SRR1270836     4  0.1075      0.980 0.000 0.000  0 0.952 0.048 0.000
#> SRR1270837     4  0.1075      0.980 0.000 0.000  0 0.952 0.048 0.000
#> SRR1270838     4  0.1075      0.980 0.000 0.000  0 0.952 0.048 0.000
#> SRR1270839     4  0.1075      0.980 0.000 0.000  0 0.952 0.048 0.000
#> SRR1270840     4  0.1075      0.980 0.000 0.000  0 0.952 0.048 0.000
#> SRR1270841     4  0.1075      0.980 0.000 0.000  0 0.952 0.048 0.000
#> SRR1270842     4  0.1075      0.980 0.000 0.000  0 0.952 0.048 0.000
#> SRR1270843     4  0.1075      0.980 0.000 0.000  0 0.952 0.048 0.000
#> SRR1270844     4  0.0000      0.980 0.000 0.000  0 1.000 0.000 0.000
#> SRR1270845     4  0.0000      0.980 0.000 0.000  0 1.000 0.000 0.000
#> SRR1270846     4  0.0000      0.980 0.000 0.000  0 1.000 0.000 0.000
#> SRR1270847     4  0.0000      0.980 0.000 0.000  0 1.000 0.000 0.000
#> SRR1270848     4  0.0000      0.980 0.000 0.000  0 1.000 0.000 0.000
#> SRR1270849     4  0.0000      0.980 0.000 0.000  0 1.000 0.000 0.000
#> SRR1270850     4  0.0000      0.980 0.000 0.000  0 1.000 0.000 0.000
#> SRR1270851     2  0.0000      0.863 0.000 1.000  0 0.000 0.000 0.000
#> SRR1270852     2  0.0000      0.863 0.000 1.000  0 0.000 0.000 0.000
#> SRR1270853     2  0.0000      0.863 0.000 1.000  0 0.000 0.000 0.000
#> SRR1270854     2  0.0000      0.863 0.000 1.000  0 0.000 0.000 0.000
#> SRR1270855     2  0.0000      0.863 0.000 1.000  0 0.000 0.000 0.000
#> SRR1270856     2  0.0000      0.863 0.000 1.000  0 0.000 0.000 0.000
#> SRR1270857     2  0.0000      0.863 0.000 1.000  0 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14577 rows and 143 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.4450 0.556   0.556
#> 3 3 1.000           1.000       1.000         0.4210 0.812   0.662
#> 4 4 1.000           1.000       1.000         0.1401 0.911   0.759
#> 5 5 0.888           0.929       0.880         0.0773 0.947   0.810
#> 6 6 1.000           0.983       0.993         0.0736 0.941   0.739

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 4

There is also optional best \(k\) = 2 3 4 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1270715     1       0          1  1  0
#> SRR1270716     1       0          1  1  0
#> SRR1270717     1       0          1  1  0
#> SRR1270718     1       0          1  1  0
#> SRR1270719     1       0          1  1  0
#> SRR1270720     1       0          1  1  0
#> SRR1270721     1       0          1  1  0
#> SRR1270722     1       0          1  1  0
#> SRR1270723     1       0          1  1  0
#> SRR1270724     1       0          1  1  0
#> SRR1270725     1       0          1  1  0
#> SRR1270726     1       0          1  1  0
#> SRR1270727     1       0          1  1  0
#> SRR1270728     1       0          1  1  0
#> SRR1270729     1       0          1  1  0
#> SRR1270730     1       0          1  1  0
#> SRR1270731     1       0          1  1  0
#> SRR1270732     1       0          1  1  0
#> SRR1270733     1       0          1  1  0
#> SRR1270734     1       0          1  1  0
#> SRR1270735     1       0          1  1  0
#> SRR1270736     1       0          1  1  0
#> SRR1270737     1       0          1  1  0
#> SRR1270738     1       0          1  1  0
#> SRR1270739     1       0          1  1  0
#> SRR1270740     1       0          1  1  0
#> SRR1270741     1       0          1  1  0
#> SRR1270742     1       0          1  1  0
#> SRR1270743     1       0          1  1  0
#> SRR1270744     1       0          1  1  0
#> SRR1270745     1       0          1  1  0
#> SRR1270746     1       0          1  1  0
#> SRR1270747     1       0          1  1  0
#> SRR1270748     1       0          1  1  0
#> SRR1270749     1       0          1  1  0
#> SRR1270750     1       0          1  1  0
#> SRR1270751     1       0          1  1  0
#> SRR1270752     1       0          1  1  0
#> SRR1270753     1       0          1  1  0
#> SRR1270754     1       0          1  1  0
#> SRR1270755     1       0          1  1  0
#> SRR1270756     1       0          1  1  0
#> SRR1270757     1       0          1  1  0
#> SRR1270758     1       0          1  1  0
#> SRR1270759     1       0          1  1  0
#> SRR1270760     1       0          1  1  0
#> SRR1270761     1       0          1  1  0
#> SRR1270762     1       0          1  1  0
#> SRR1270763     1       0          1  1  0
#> SRR1270764     1       0          1  1  0
#> SRR1270765     2       0          1  0  1
#> SRR1270766     2       0          1  0  1
#> SRR1270767     2       0          1  0  1
#> SRR1270768     2       0          1  0  1
#> SRR1270769     2       0          1  0  1
#> SRR1270770     2       0          1  0  1
#> SRR1270771     2       0          1  0  1
#> SRR1270772     2       0          1  0  1
#> SRR1270773     2       0          1  0  1
#> SRR1270774     2       0          1  0  1
#> SRR1270775     2       0          1  0  1
#> SRR1270776     2       0          1  0  1
#> SRR1270777     2       0          1  0  1
#> SRR1270778     2       0          1  0  1
#> SRR1270779     2       0          1  0  1
#> SRR1270780     2       0          1  0  1
#> SRR1270781     2       0          1  0  1
#> SRR1270782     2       0          1  0  1
#> SRR1270783     2       0          1  0  1
#> SRR1270784     2       0          1  0  1
#> SRR1270785     2       0          1  0  1
#> SRR1270786     2       0          1  0  1
#> SRR1270787     2       0          1  0  1
#> SRR1270788     2       0          1  0  1
#> SRR1270789     2       0          1  0  1
#> SRR1270790     2       0          1  0  1
#> SRR1270791     2       0          1  0  1
#> SRR1270792     2       0          1  0  1
#> SRR1270793     2       0          1  0  1
#> SRR1270794     2       0          1  0  1
#> SRR1270795     2       0          1  0  1
#> SRR1270796     2       0          1  0  1
#> SRR1270797     2       0          1  0  1
#> SRR1270798     2       0          1  0  1
#> SRR1270799     2       0          1  0  1
#> SRR1270800     2       0          1  0  1
#> SRR1270801     2       0          1  0  1
#> SRR1270802     2       0          1  0  1
#> SRR1270803     2       0          1  0  1
#> SRR1270804     2       0          1  0  1
#> SRR1270805     1       0          1  1  0
#> SRR1270806     1       0          1  1  0
#> SRR1270807     1       0          1  1  0
#> SRR1270808     1       0          1  1  0
#> SRR1270809     1       0          1  1  0
#> SRR1270810     1       0          1  1  0
#> SRR1270811     1       0          1  1  0
#> SRR1270812     1       0          1  1  0
#> SRR1270813     1       0          1  1  0
#> SRR1270814     1       0          1  1  0
#> SRR1270815     1       0          1  1  0
#> SRR1270816     1       0          1  1  0
#> SRR1270817     1       0          1  1  0
#> SRR1270818     1       0          1  1  0
#> SRR1270819     1       0          1  1  0
#> SRR1270820     1       0          1  1  0
#> SRR1270821     1       0          1  1  0
#> SRR1270822     1       0          1  1  0
#> SRR1270823     1       0          1  1  0
#> SRR1270824     1       0          1  1  0
#> SRR1270825     1       0          1  1  0
#> SRR1270826     1       0          1  1  0
#> SRR1270827     1       0          1  1  0
#> SRR1270828     1       0          1  1  0
#> SRR1270829     1       0          1  1  0
#> SRR1270830     1       0          1  1  0
#> SRR1270831     1       0          1  1  0
#> SRR1270832     1       0          1  1  0
#> SRR1270833     1       0          1  1  0
#> SRR1270834     1       0          1  1  0
#> SRR1270835     1       0          1  1  0
#> SRR1270836     1       0          1  1  0
#> SRR1270837     1       0          1  1  0
#> SRR1270838     1       0          1  1  0
#> SRR1270839     1       0          1  1  0
#> SRR1270840     1       0          1  1  0
#> SRR1270841     1       0          1  1  0
#> SRR1270842     1       0          1  1  0
#> SRR1270843     1       0          1  1  0
#> SRR1270844     1       0          1  1  0
#> SRR1270845     1       0          1  1  0
#> SRR1270846     1       0          1  1  0
#> SRR1270847     1       0          1  1  0
#> SRR1270848     1       0          1  1  0
#> SRR1270849     1       0          1  1  0
#> SRR1270850     1       0          1  1  0
#> SRR1270851     2       0          1  0  1
#> SRR1270852     2       0          1  0  1
#> SRR1270853     2       0          1  0  1
#> SRR1270854     2       0          1  0  1
#> SRR1270855     2       0          1  0  1
#> SRR1270856     2       0          1  0  1
#> SRR1270857     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette p1 p2 p3
#> SRR1270715     1       0          1  1  0  0
#> SRR1270716     1       0          1  1  0  0
#> SRR1270717     1       0          1  1  0  0
#> SRR1270718     1       0          1  1  0  0
#> SRR1270719     1       0          1  1  0  0
#> SRR1270720     1       0          1  1  0  0
#> SRR1270721     1       0          1  1  0  0
#> SRR1270722     1       0          1  1  0  0
#> SRR1270723     1       0          1  1  0  0
#> SRR1270724     1       0          1  1  0  0
#> SRR1270725     1       0          1  1  0  0
#> SRR1270726     1       0          1  1  0  0
#> SRR1270727     1       0          1  1  0  0
#> SRR1270728     1       0          1  1  0  0
#> SRR1270729     1       0          1  1  0  0
#> SRR1270730     1       0          1  1  0  0
#> SRR1270731     1       0          1  1  0  0
#> SRR1270732     1       0          1  1  0  0
#> SRR1270733     1       0          1  1  0  0
#> SRR1270734     1       0          1  1  0  0
#> SRR1270735     1       0          1  1  0  0
#> SRR1270736     1       0          1  1  0  0
#> SRR1270737     1       0          1  1  0  0
#> SRR1270738     1       0          1  1  0  0
#> SRR1270739     1       0          1  1  0  0
#> SRR1270740     1       0          1  1  0  0
#> SRR1270741     1       0          1  1  0  0
#> SRR1270742     1       0          1  1  0  0
#> SRR1270743     1       0          1  1  0  0
#> SRR1270744     1       0          1  1  0  0
#> SRR1270745     1       0          1  1  0  0
#> SRR1270746     1       0          1  1  0  0
#> SRR1270747     1       0          1  1  0  0
#> SRR1270748     1       0          1  1  0  0
#> SRR1270749     1       0          1  1  0  0
#> SRR1270750     1       0          1  1  0  0
#> SRR1270751     1       0          1  1  0  0
#> SRR1270752     1       0          1  1  0  0
#> SRR1270753     1       0          1  1  0  0
#> SRR1270754     1       0          1  1  0  0
#> SRR1270755     1       0          1  1  0  0
#> SRR1270756     1       0          1  1  0  0
#> SRR1270757     1       0          1  1  0  0
#> SRR1270758     1       0          1  1  0  0
#> SRR1270759     1       0          1  1  0  0
#> SRR1270760     1       0          1  1  0  0
#> SRR1270761     1       0          1  1  0  0
#> SRR1270762     1       0          1  1  0  0
#> SRR1270763     1       0          1  1  0  0
#> SRR1270764     1       0          1  1  0  0
#> SRR1270765     2       0          1  0  1  0
#> SRR1270766     2       0          1  0  1  0
#> SRR1270767     2       0          1  0  1  0
#> SRR1270768     2       0          1  0  1  0
#> SRR1270769     2       0          1  0  1  0
#> SRR1270770     2       0          1  0  1  0
#> SRR1270771     2       0          1  0  1  0
#> SRR1270772     2       0          1  0  1  0
#> SRR1270773     2       0          1  0  1  0
#> SRR1270774     2       0          1  0  1  0
#> SRR1270775     2       0          1  0  1  0
#> SRR1270776     2       0          1  0  1  0
#> SRR1270777     2       0          1  0  1  0
#> SRR1270778     2       0          1  0  1  0
#> SRR1270779     2       0          1  0  1  0
#> SRR1270780     2       0          1  0  1  0
#> SRR1270781     2       0          1  0  1  0
#> SRR1270782     2       0          1  0  1  0
#> SRR1270783     2       0          1  0  1  0
#> SRR1270784     2       0          1  0  1  0
#> SRR1270785     2       0          1  0  1  0
#> SRR1270786     2       0          1  0  1  0
#> SRR1270787     2       0          1  0  1  0
#> SRR1270788     2       0          1  0  1  0
#> SRR1270789     2       0          1  0  1  0
#> SRR1270790     2       0          1  0  1  0
#> SRR1270791     2       0          1  0  1  0
#> SRR1270792     2       0          1  0  1  0
#> SRR1270793     2       0          1  0  1  0
#> SRR1270794     2       0          1  0  1  0
#> SRR1270795     2       0          1  0  1  0
#> SRR1270796     2       0          1  0  1  0
#> SRR1270797     2       0          1  0  1  0
#> SRR1270798     2       0          1  0  1  0
#> SRR1270799     2       0          1  0  1  0
#> SRR1270800     2       0          1  0  1  0
#> SRR1270801     2       0          1  0  1  0
#> SRR1270802     2       0          1  0  1  0
#> SRR1270803     2       0          1  0  1  0
#> SRR1270804     2       0          1  0  1  0
#> SRR1270805     3       0          1  0  0  1
#> SRR1270806     3       0          1  0  0  1
#> SRR1270807     3       0          1  0  0  1
#> SRR1270808     3       0          1  0  0  1
#> SRR1270809     3       0          1  0  0  1
#> SRR1270810     3       0          1  0  0  1
#> SRR1270811     3       0          1  0  0  1
#> SRR1270812     3       0          1  0  0  1
#> SRR1270813     3       0          1  0  0  1
#> SRR1270814     3       0          1  0  0  1
#> SRR1270815     3       0          1  0  0  1
#> SRR1270816     3       0          1  0  0  1
#> SRR1270817     3       0          1  0  0  1
#> SRR1270818     3       0          1  0  0  1
#> SRR1270819     3       0          1  0  0  1
#> SRR1270820     3       0          1  0  0  1
#> SRR1270821     3       0          1  0  0  1
#> SRR1270822     3       0          1  0  0  1
#> SRR1270823     3       0          1  0  0  1
#> SRR1270824     3       0          1  0  0  1
#> SRR1270825     3       0          1  0  0  1
#> SRR1270826     3       0          1  0  0  1
#> SRR1270827     3       0          1  0  0  1
#> SRR1270828     3       0          1  0  0  1
#> SRR1270829     3       0          1  0  0  1
#> SRR1270830     3       0          1  0  0  1
#> SRR1270831     3       0          1  0  0  1
#> SRR1270832     3       0          1  0  0  1
#> SRR1270833     1       0          1  1  0  0
#> SRR1270834     1       0          1  1  0  0
#> SRR1270835     1       0          1  1  0  0
#> SRR1270836     1       0          1  1  0  0
#> SRR1270837     1       0          1  1  0  0
#> SRR1270838     1       0          1  1  0  0
#> SRR1270839     1       0          1  1  0  0
#> SRR1270840     1       0          1  1  0  0
#> SRR1270841     1       0          1  1  0  0
#> SRR1270842     1       0          1  1  0  0
#> SRR1270843     1       0          1  1  0  0
#> SRR1270844     1       0          1  1  0  0
#> SRR1270845     1       0          1  1  0  0
#> SRR1270846     1       0          1  1  0  0
#> SRR1270847     1       0          1  1  0  0
#> SRR1270848     1       0          1  1  0  0
#> SRR1270849     1       0          1  1  0  0
#> SRR1270850     1       0          1  1  0  0
#> SRR1270851     2       0          1  0  1  0
#> SRR1270852     2       0          1  0  1  0
#> SRR1270853     2       0          1  0  1  0
#> SRR1270854     2       0          1  0  1  0
#> SRR1270855     2       0          1  0  1  0
#> SRR1270856     2       0          1  0  1  0
#> SRR1270857     2       0          1  0  1  0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette p1 p2 p3 p4
#> SRR1270715     1       0          1  1  0  0  0
#> SRR1270716     1       0          1  1  0  0  0
#> SRR1270717     1       0          1  1  0  0  0
#> SRR1270718     1       0          1  1  0  0  0
#> SRR1270719     1       0          1  1  0  0  0
#> SRR1270720     1       0          1  1  0  0  0
#> SRR1270721     1       0          1  1  0  0  0
#> SRR1270722     1       0          1  1  0  0  0
#> SRR1270723     1       0          1  1  0  0  0
#> SRR1270724     1       0          1  1  0  0  0
#> SRR1270725     1       0          1  1  0  0  0
#> SRR1270726     1       0          1  1  0  0  0
#> SRR1270727     1       0          1  1  0  0  0
#> SRR1270728     1       0          1  1  0  0  0
#> SRR1270729     1       0          1  1  0  0  0
#> SRR1270730     1       0          1  1  0  0  0
#> SRR1270731     1       0          1  1  0  0  0
#> SRR1270732     1       0          1  1  0  0  0
#> SRR1270733     1       0          1  1  0  0  0
#> SRR1270734     1       0          1  1  0  0  0
#> SRR1270735     1       0          1  1  0  0  0
#> SRR1270736     1       0          1  1  0  0  0
#> SRR1270737     1       0          1  1  0  0  0
#> SRR1270738     1       0          1  1  0  0  0
#> SRR1270739     1       0          1  1  0  0  0
#> SRR1270740     1       0          1  1  0  0  0
#> SRR1270741     1       0          1  1  0  0  0
#> SRR1270742     1       0          1  1  0  0  0
#> SRR1270743     1       0          1  1  0  0  0
#> SRR1270744     1       0          1  1  0  0  0
#> SRR1270745     1       0          1  1  0  0  0
#> SRR1270746     1       0          1  1  0  0  0
#> SRR1270747     1       0          1  1  0  0  0
#> SRR1270748     1       0          1  1  0  0  0
#> SRR1270749     1       0          1  1  0  0  0
#> SRR1270750     1       0          1  1  0  0  0
#> SRR1270751     1       0          1  1  0  0  0
#> SRR1270752     1       0          1  1  0  0  0
#> SRR1270753     1       0          1  1  0  0  0
#> SRR1270754     1       0          1  1  0  0  0
#> SRR1270755     1       0          1  1  0  0  0
#> SRR1270756     1       0          1  1  0  0  0
#> SRR1270757     1       0          1  1  0  0  0
#> SRR1270758     1       0          1  1  0  0  0
#> SRR1270759     1       0          1  1  0  0  0
#> SRR1270760     1       0          1  1  0  0  0
#> SRR1270761     1       0          1  1  0  0  0
#> SRR1270762     1       0          1  1  0  0  0
#> SRR1270763     1       0          1  1  0  0  0
#> SRR1270764     1       0          1  1  0  0  0
#> SRR1270765     2       0          1  0  1  0  0
#> SRR1270766     2       0          1  0  1  0  0
#> SRR1270767     2       0          1  0  1  0  0
#> SRR1270768     2       0          1  0  1  0  0
#> SRR1270769     2       0          1  0  1  0  0
#> SRR1270770     2       0          1  0  1  0  0
#> SRR1270771     2       0          1  0  1  0  0
#> SRR1270772     2       0          1  0  1  0  0
#> SRR1270773     2       0          1  0  1  0  0
#> SRR1270774     2       0          1  0  1  0  0
#> SRR1270775     2       0          1  0  1  0  0
#> SRR1270776     2       0          1  0  1  0  0
#> SRR1270777     2       0          1  0  1  0  0
#> SRR1270778     2       0          1  0  1  0  0
#> SRR1270779     2       0          1  0  1  0  0
#> SRR1270780     2       0          1  0  1  0  0
#> SRR1270781     2       0          1  0  1  0  0
#> SRR1270782     2       0          1  0  1  0  0
#> SRR1270783     2       0          1  0  1  0  0
#> SRR1270784     2       0          1  0  1  0  0
#> SRR1270785     2       0          1  0  1  0  0
#> SRR1270786     2       0          1  0  1  0  0
#> SRR1270787     2       0          1  0  1  0  0
#> SRR1270788     2       0          1  0  1  0  0
#> SRR1270789     2       0          1  0  1  0  0
#> SRR1270790     2       0          1  0  1  0  0
#> SRR1270791     2       0          1  0  1  0  0
#> SRR1270792     2       0          1  0  1  0  0
#> SRR1270793     2       0          1  0  1  0  0
#> SRR1270794     2       0          1  0  1  0  0
#> SRR1270795     2       0          1  0  1  0  0
#> SRR1270796     2       0          1  0  1  0  0
#> SRR1270797     2       0          1  0  1  0  0
#> SRR1270798     2       0          1  0  1  0  0
#> SRR1270799     2       0          1  0  1  0  0
#> SRR1270800     2       0          1  0  1  0  0
#> SRR1270801     2       0          1  0  1  0  0
#> SRR1270802     2       0          1  0  1  0  0
#> SRR1270803     2       0          1  0  1  0  0
#> SRR1270804     2       0          1  0  1  0  0
#> SRR1270805     3       0          1  0  0  1  0
#> SRR1270806     3       0          1  0  0  1  0
#> SRR1270807     3       0          1  0  0  1  0
#> SRR1270808     3       0          1  0  0  1  0
#> SRR1270809     3       0          1  0  0  1  0
#> SRR1270810     3       0          1  0  0  1  0
#> SRR1270811     3       0          1  0  0  1  0
#> SRR1270812     3       0          1  0  0  1  0
#> SRR1270813     3       0          1  0  0  1  0
#> SRR1270814     3       0          1  0  0  1  0
#> SRR1270815     3       0          1  0  0  1  0
#> SRR1270816     3       0          1  0  0  1  0
#> SRR1270817     3       0          1  0  0  1  0
#> SRR1270818     3       0          1  0  0  1  0
#> SRR1270819     3       0          1  0  0  1  0
#> SRR1270820     3       0          1  0  0  1  0
#> SRR1270821     3       0          1  0  0  1  0
#> SRR1270822     3       0          1  0  0  1  0
#> SRR1270823     3       0          1  0  0  1  0
#> SRR1270824     3       0          1  0  0  1  0
#> SRR1270825     3       0          1  0  0  1  0
#> SRR1270826     3       0          1  0  0  1  0
#> SRR1270827     3       0          1  0  0  1  0
#> SRR1270828     3       0          1  0  0  1  0
#> SRR1270829     3       0          1  0  0  1  0
#> SRR1270830     3       0          1  0  0  1  0
#> SRR1270831     3       0          1  0  0  1  0
#> SRR1270832     3       0          1  0  0  1  0
#> SRR1270833     4       0          1  0  0  0  1
#> SRR1270834     4       0          1  0  0  0  1
#> SRR1270835     4       0          1  0  0  0  1
#> SRR1270836     4       0          1  0  0  0  1
#> SRR1270837     4       0          1  0  0  0  1
#> SRR1270838     4       0          1  0  0  0  1
#> SRR1270839     4       0          1  0  0  0  1
#> SRR1270840     4       0          1  0  0  0  1
#> SRR1270841     4       0          1  0  0  0  1
#> SRR1270842     4       0          1  0  0  0  1
#> SRR1270843     4       0          1  0  0  0  1
#> SRR1270844     4       0          1  0  0  0  1
#> SRR1270845     4       0          1  0  0  0  1
#> SRR1270846     4       0          1  0  0  0  1
#> SRR1270847     4       0          1  0  0  0  1
#> SRR1270848     4       0          1  0  0  0  1
#> SRR1270849     4       0          1  0  0  0  1
#> SRR1270850     4       0          1  0  0  0  1
#> SRR1270851     2       0          1  0  1  0  0
#> SRR1270852     2       0          1  0  1  0  0
#> SRR1270853     2       0          1  0  1  0  0
#> SRR1270854     2       0          1  0  1  0  0
#> SRR1270855     2       0          1  0  1  0  0
#> SRR1270856     2       0          1  0  1  0  0
#> SRR1270857     2       0          1  0  1  0  0

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2 p3    p4    p5
#> SRR1270715     1   0.423      0.744 0.576 0.000  0 0.424 0.000
#> SRR1270716     1   0.423      0.744 0.576 0.000  0 0.424 0.000
#> SRR1270717     1   0.423      0.744 0.576 0.000  0 0.424 0.000
#> SRR1270718     1   0.423      0.744 0.576 0.000  0 0.424 0.000
#> SRR1270719     1   0.423      0.744 0.576 0.000  0 0.424 0.000
#> SRR1270720     1   0.423      0.744 0.576 0.000  0 0.424 0.000
#> SRR1270721     1   0.423      0.744 0.576 0.000  0 0.424 0.000
#> SRR1270722     1   0.104      0.829 0.960 0.000  0 0.040 0.000
#> SRR1270723     1   0.104      0.829 0.960 0.000  0 0.040 0.000
#> SRR1270724     1   0.104      0.829 0.960 0.000  0 0.040 0.000
#> SRR1270725     1   0.423      0.744 0.576 0.000  0 0.424 0.000
#> SRR1270726     1   0.423      0.744 0.576 0.000  0 0.424 0.000
#> SRR1270727     1   0.423      0.744 0.576 0.000  0 0.424 0.000
#> SRR1270728     1   0.423      0.744 0.576 0.000  0 0.424 0.000
#> SRR1270729     1   0.423      0.744 0.576 0.000  0 0.424 0.000
#> SRR1270730     1   0.423      0.744 0.576 0.000  0 0.424 0.000
#> SRR1270731     1   0.423      0.744 0.576 0.000  0 0.424 0.000
#> SRR1270732     1   0.423      0.744 0.576 0.000  0 0.424 0.000
#> SRR1270733     1   0.423      0.744 0.576 0.000  0 0.424 0.000
#> SRR1270734     1   0.423      0.744 0.576 0.000  0 0.424 0.000
#> SRR1270735     1   0.423      0.744 0.576 0.000  0 0.424 0.000
#> SRR1270736     1   0.112      0.828 0.956 0.000  0 0.044 0.000
#> SRR1270737     1   0.120      0.828 0.952 0.000  0 0.048 0.000
#> SRR1270738     1   0.423      0.744 0.576 0.000  0 0.424 0.000
#> SRR1270739     1   0.423      0.744 0.576 0.000  0 0.424 0.000
#> SRR1270740     1   0.000      0.833 1.000 0.000  0 0.000 0.000
#> SRR1270741     1   0.000      0.833 1.000 0.000  0 0.000 0.000
#> SRR1270742     1   0.000      0.833 1.000 0.000  0 0.000 0.000
#> SRR1270743     1   0.000      0.833 1.000 0.000  0 0.000 0.000
#> SRR1270744     1   0.000      0.833 1.000 0.000  0 0.000 0.000
#> SRR1270745     1   0.000      0.833 1.000 0.000  0 0.000 0.000
#> SRR1270746     1   0.000      0.833 1.000 0.000  0 0.000 0.000
#> SRR1270747     1   0.000      0.833 1.000 0.000  0 0.000 0.000
#> SRR1270748     1   0.000      0.833 1.000 0.000  0 0.000 0.000
#> SRR1270749     1   0.000      0.833 1.000 0.000  0 0.000 0.000
#> SRR1270750     1   0.000      0.833 1.000 0.000  0 0.000 0.000
#> SRR1270751     1   0.000      0.833 1.000 0.000  0 0.000 0.000
#> SRR1270752     1   0.000      0.833 1.000 0.000  0 0.000 0.000
#> SRR1270753     1   0.000      0.833 1.000 0.000  0 0.000 0.000
#> SRR1270754     1   0.000      0.833 1.000 0.000  0 0.000 0.000
#> SRR1270755     1   0.000      0.833 1.000 0.000  0 0.000 0.000
#> SRR1270756     1   0.000      0.833 1.000 0.000  0 0.000 0.000
#> SRR1270757     1   0.000      0.833 1.000 0.000  0 0.000 0.000
#> SRR1270758     1   0.000      0.833 1.000 0.000  0 0.000 0.000
#> SRR1270759     1   0.000      0.833 1.000 0.000  0 0.000 0.000
#> SRR1270760     1   0.000      0.833 1.000 0.000  0 0.000 0.000
#> SRR1270761     1   0.000      0.833 1.000 0.000  0 0.000 0.000
#> SRR1270762     1   0.000      0.833 1.000 0.000  0 0.000 0.000
#> SRR1270763     1   0.000      0.833 1.000 0.000  0 0.000 0.000
#> SRR1270764     1   0.000      0.833 1.000 0.000  0 0.000 0.000
#> SRR1270765     2   0.423      1.000 0.000 0.576  0 0.000 0.424
#> SRR1270766     2   0.423      1.000 0.000 0.576  0 0.000 0.424
#> SRR1270767     2   0.423      1.000 0.000 0.576  0 0.000 0.424
#> SRR1270768     2   0.423      1.000 0.000 0.576  0 0.000 0.424
#> SRR1270769     2   0.423      1.000 0.000 0.576  0 0.000 0.424
#> SRR1270770     2   0.423      1.000 0.000 0.576  0 0.000 0.424
#> SRR1270771     2   0.423      1.000 0.000 0.576  0 0.000 0.424
#> SRR1270772     2   0.423      1.000 0.000 0.576  0 0.000 0.424
#> SRR1270773     2   0.423      1.000 0.000 0.576  0 0.000 0.424
#> SRR1270774     2   0.423      1.000 0.000 0.576  0 0.000 0.424
#> SRR1270775     2   0.423      1.000 0.000 0.576  0 0.000 0.424
#> SRR1270776     2   0.423      1.000 0.000 0.576  0 0.000 0.424
#> SRR1270777     2   0.423      1.000 0.000 0.576  0 0.000 0.424
#> SRR1270778     2   0.423      1.000 0.000 0.576  0 0.000 0.424
#> SRR1270779     2   0.423      1.000 0.000 0.576  0 0.000 0.424
#> SRR1270780     2   0.423      1.000 0.000 0.576  0 0.000 0.424
#> SRR1270781     2   0.423      1.000 0.000 0.576  0 0.000 0.424
#> SRR1270782     2   0.423      1.000 0.000 0.576  0 0.000 0.424
#> SRR1270783     2   0.423      1.000 0.000 0.576  0 0.000 0.424
#> SRR1270784     2   0.423      1.000 0.000 0.576  0 0.000 0.424
#> SRR1270785     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1270786     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1270787     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1270788     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1270789     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1270790     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1270791     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1270792     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1270793     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1270794     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1270795     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1270796     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1270797     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1270798     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1270799     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1270800     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1270801     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1270802     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1270803     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1270804     5   0.000      1.000 0.000 0.000  0 0.000 1.000
#> SRR1270805     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270806     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270807     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270808     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270809     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270810     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270811     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270812     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270813     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270814     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270815     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270816     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270817     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270818     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270819     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270820     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270821     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270822     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270823     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270824     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270825     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270826     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270827     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270828     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270829     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270830     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270831     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270832     3   0.000      1.000 0.000 0.000  1 0.000 0.000
#> SRR1270833     4   0.423      1.000 0.000 0.424  0 0.576 0.000
#> SRR1270834     4   0.423      1.000 0.000 0.424  0 0.576 0.000
#> SRR1270835     4   0.423      1.000 0.000 0.424  0 0.576 0.000
#> SRR1270836     4   0.423      1.000 0.000 0.424  0 0.576 0.000
#> SRR1270837     4   0.423      1.000 0.000 0.424  0 0.576 0.000
#> SRR1270838     4   0.423      1.000 0.000 0.424  0 0.576 0.000
#> SRR1270839     4   0.423      1.000 0.000 0.424  0 0.576 0.000
#> SRR1270840     4   0.423      1.000 0.000 0.424  0 0.576 0.000
#> SRR1270841     4   0.423      1.000 0.000 0.424  0 0.576 0.000
#> SRR1270842     4   0.423      1.000 0.000 0.424  0 0.576 0.000
#> SRR1270843     4   0.423      1.000 0.000 0.424  0 0.576 0.000
#> SRR1270844     4   0.423      1.000 0.000 0.424  0 0.576 0.000
#> SRR1270845     4   0.423      1.000 0.000 0.424  0 0.576 0.000
#> SRR1270846     4   0.423      1.000 0.000 0.424  0 0.576 0.000
#> SRR1270847     4   0.423      1.000 0.000 0.424  0 0.576 0.000
#> SRR1270848     4   0.423      1.000 0.000 0.424  0 0.576 0.000
#> SRR1270849     4   0.423      1.000 0.000 0.424  0 0.576 0.000
#> SRR1270850     4   0.423      1.000 0.000 0.424  0 0.576 0.000
#> SRR1270851     2   0.423      1.000 0.000 0.576  0 0.000 0.424
#> SRR1270852     2   0.423      1.000 0.000 0.576  0 0.000 0.424
#> SRR1270853     2   0.423      1.000 0.000 0.576  0 0.000 0.424
#> SRR1270854     2   0.423      1.000 0.000 0.576  0 0.000 0.424
#> SRR1270855     2   0.423      1.000 0.000 0.576  0 0.000 0.424
#> SRR1270856     2   0.423      1.000 0.000 0.576  0 0.000 0.424
#> SRR1270857     2   0.423      1.000 0.000 0.576  0 0.000 0.424

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1 p2 p3 p4 p5    p6
#> SRR1270715     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270716     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270717     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270718     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270719     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270720     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270721     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270722     1  0.0937      0.936 0.960  0  0  0  0 0.040
#> SRR1270723     1  0.0937      0.936 0.960  0  0  0  0 0.040
#> SRR1270724     1  0.0937      0.936 0.960  0  0  0  0 0.040
#> SRR1270725     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270726     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270727     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270728     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270729     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270730     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270731     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270732     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270733     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270734     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270735     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270736     1  0.3804      0.303 0.576  0  0  0  0 0.424
#> SRR1270737     1  0.3789      0.325 0.584  0  0  0  0 0.416
#> SRR1270738     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270739     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270740     1  0.0000      0.966 1.000  0  0  0  0 0.000
#> SRR1270741     1  0.0000      0.966 1.000  0  0  0  0 0.000
#> SRR1270742     1  0.0000      0.966 1.000  0  0  0  0 0.000
#> SRR1270743     1  0.0000      0.966 1.000  0  0  0  0 0.000
#> SRR1270744     1  0.0000      0.966 1.000  0  0  0  0 0.000
#> SRR1270745     1  0.0000      0.966 1.000  0  0  0  0 0.000
#> SRR1270746     1  0.0000      0.966 1.000  0  0  0  0 0.000
#> SRR1270747     1  0.0000      0.966 1.000  0  0  0  0 0.000
#> SRR1270748     1  0.0000      0.966 1.000  0  0  0  0 0.000
#> SRR1270749     1  0.0000      0.966 1.000  0  0  0  0 0.000
#> SRR1270750     1  0.0000      0.966 1.000  0  0  0  0 0.000
#> SRR1270751     1  0.0000      0.966 1.000  0  0  0  0 0.000
#> SRR1270752     1  0.0000      0.966 1.000  0  0  0  0 0.000
#> SRR1270753     1  0.0000      0.966 1.000  0  0  0  0 0.000
#> SRR1270754     1  0.0000      0.966 1.000  0  0  0  0 0.000
#> SRR1270755     1  0.0000      0.966 1.000  0  0  0  0 0.000
#> SRR1270756     1  0.0000      0.966 1.000  0  0  0  0 0.000
#> SRR1270757     1  0.0000      0.966 1.000  0  0  0  0 0.000
#> SRR1270758     1  0.0000      0.966 1.000  0  0  0  0 0.000
#> SRR1270759     1  0.0000      0.966 1.000  0  0  0  0 0.000
#> SRR1270760     1  0.0000      0.966 1.000  0  0  0  0 0.000
#> SRR1270761     1  0.0000      0.966 1.000  0  0  0  0 0.000
#> SRR1270762     1  0.0000      0.966 1.000  0  0  0  0 0.000
#> SRR1270763     1  0.0000      0.966 1.000  0  0  0  0 0.000
#> SRR1270764     1  0.0000      0.966 1.000  0  0  0  0 0.000
#> SRR1270765     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270766     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270767     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270768     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270769     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270770     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270771     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270772     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270773     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270774     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270775     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270776     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270777     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270778     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270779     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270780     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270781     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270782     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270783     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270784     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270785     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270786     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270787     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270788     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270789     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270790     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270791     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270792     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270793     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270794     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270795     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270796     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270797     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270798     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270799     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270800     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270801     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270802     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270803     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270804     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270805     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270806     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270807     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270808     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270809     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270810     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270811     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270812     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270813     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270814     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270815     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270816     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270817     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270818     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270819     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270820     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270821     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270822     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270823     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270824     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270825     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270826     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270827     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270828     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270829     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270830     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270831     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270832     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270833     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270834     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270835     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270836     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270837     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270838     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270839     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270840     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270841     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270842     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270843     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270844     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270845     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270846     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270847     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270848     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270849     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270850     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270851     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270852     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270853     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270854     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270855     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270856     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270857     2  0.0000      1.000 0.000  1  0  0  0 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14577 rows and 143 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.511           0.930       0.948         0.4525 0.556   0.556
#> 3 3 1.000           1.000       1.000         0.4836 0.773   0.592
#> 4 4 1.000           1.000       1.000         0.0739 0.950   0.849
#> 5 5 1.000           0.989       0.994         0.0740 0.947   0.810
#> 6 6 1.000           1.000       1.000         0.0791 0.938   0.728

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 3 4 5

There is also optional best \(k\) = 3 4 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1270715     1   0.000      0.919 1.000 0.000
#> SRR1270716     1   0.000      0.919 1.000 0.000
#> SRR1270717     1   0.000      0.919 1.000 0.000
#> SRR1270718     1   0.000      0.919 1.000 0.000
#> SRR1270719     1   0.000      0.919 1.000 0.000
#> SRR1270720     1   0.000      0.919 1.000 0.000
#> SRR1270721     1   0.000      0.919 1.000 0.000
#> SRR1270722     1   0.000      0.919 1.000 0.000
#> SRR1270723     1   0.000      0.919 1.000 0.000
#> SRR1270724     1   0.000      0.919 1.000 0.000
#> SRR1270725     1   0.000      0.919 1.000 0.000
#> SRR1270726     1   0.000      0.919 1.000 0.000
#> SRR1270727     1   0.000      0.919 1.000 0.000
#> SRR1270728     1   0.000      0.919 1.000 0.000
#> SRR1270729     1   0.000      0.919 1.000 0.000
#> SRR1270730     1   0.000      0.919 1.000 0.000
#> SRR1270731     1   0.000      0.919 1.000 0.000
#> SRR1270732     1   0.000      0.919 1.000 0.000
#> SRR1270733     1   0.000      0.919 1.000 0.000
#> SRR1270734     1   0.000      0.919 1.000 0.000
#> SRR1270735     1   0.000      0.919 1.000 0.000
#> SRR1270736     1   0.000      0.919 1.000 0.000
#> SRR1270737     1   0.000      0.919 1.000 0.000
#> SRR1270738     1   0.000      0.919 1.000 0.000
#> SRR1270739     1   0.000      0.919 1.000 0.000
#> SRR1270740     1   0.000      0.919 1.000 0.000
#> SRR1270741     1   0.000      0.919 1.000 0.000
#> SRR1270742     1   0.000      0.919 1.000 0.000
#> SRR1270743     1   0.000      0.919 1.000 0.000
#> SRR1270744     1   0.000      0.919 1.000 0.000
#> SRR1270745     1   0.000      0.919 1.000 0.000
#> SRR1270746     1   0.000      0.919 1.000 0.000
#> SRR1270747     1   0.000      0.919 1.000 0.000
#> SRR1270748     1   0.000      0.919 1.000 0.000
#> SRR1270749     1   0.000      0.919 1.000 0.000
#> SRR1270750     1   0.000      0.919 1.000 0.000
#> SRR1270751     1   0.000      0.919 1.000 0.000
#> SRR1270752     1   0.000      0.919 1.000 0.000
#> SRR1270753     1   0.000      0.919 1.000 0.000
#> SRR1270754     1   0.000      0.919 1.000 0.000
#> SRR1270755     1   0.000      0.919 1.000 0.000
#> SRR1270756     1   0.000      0.919 1.000 0.000
#> SRR1270757     1   0.000      0.919 1.000 0.000
#> SRR1270758     1   0.000      0.919 1.000 0.000
#> SRR1270759     1   0.000      0.919 1.000 0.000
#> SRR1270760     1   0.000      0.919 1.000 0.000
#> SRR1270761     1   0.000      0.919 1.000 0.000
#> SRR1270762     1   0.000      0.919 1.000 0.000
#> SRR1270763     1   0.000      0.919 1.000 0.000
#> SRR1270764     1   0.000      0.919 1.000 0.000
#> SRR1270765     2   0.000      1.000 0.000 1.000
#> SRR1270766     2   0.000      1.000 0.000 1.000
#> SRR1270767     2   0.000      1.000 0.000 1.000
#> SRR1270768     2   0.000      1.000 0.000 1.000
#> SRR1270769     2   0.000      1.000 0.000 1.000
#> SRR1270770     2   0.000      1.000 0.000 1.000
#> SRR1270771     2   0.000      1.000 0.000 1.000
#> SRR1270772     2   0.000      1.000 0.000 1.000
#> SRR1270773     2   0.000      1.000 0.000 1.000
#> SRR1270774     2   0.000      1.000 0.000 1.000
#> SRR1270775     2   0.000      1.000 0.000 1.000
#> SRR1270776     2   0.000      1.000 0.000 1.000
#> SRR1270777     2   0.000      1.000 0.000 1.000
#> SRR1270778     2   0.000      1.000 0.000 1.000
#> SRR1270779     2   0.000      1.000 0.000 1.000
#> SRR1270780     2   0.000      1.000 0.000 1.000
#> SRR1270781     2   0.000      1.000 0.000 1.000
#> SRR1270782     2   0.000      1.000 0.000 1.000
#> SRR1270783     2   0.000      1.000 0.000 1.000
#> SRR1270784     2   0.000      1.000 0.000 1.000
#> SRR1270785     2   0.000      1.000 0.000 1.000
#> SRR1270786     2   0.000      1.000 0.000 1.000
#> SRR1270787     2   0.000      1.000 0.000 1.000
#> SRR1270788     2   0.000      1.000 0.000 1.000
#> SRR1270789     2   0.000      1.000 0.000 1.000
#> SRR1270790     2   0.000      1.000 0.000 1.000
#> SRR1270791     2   0.000      1.000 0.000 1.000
#> SRR1270792     2   0.000      1.000 0.000 1.000
#> SRR1270793     2   0.000      1.000 0.000 1.000
#> SRR1270794     2   0.000      1.000 0.000 1.000
#> SRR1270795     2   0.000      1.000 0.000 1.000
#> SRR1270796     2   0.000      1.000 0.000 1.000
#> SRR1270797     2   0.000      1.000 0.000 1.000
#> SRR1270798     2   0.000      1.000 0.000 1.000
#> SRR1270799     2   0.000      1.000 0.000 1.000
#> SRR1270800     2   0.000      1.000 0.000 1.000
#> SRR1270801     2   0.000      1.000 0.000 1.000
#> SRR1270802     2   0.000      1.000 0.000 1.000
#> SRR1270803     2   0.000      1.000 0.000 1.000
#> SRR1270804     2   0.000      1.000 0.000 1.000
#> SRR1270805     1   0.529      0.902 0.880 0.120
#> SRR1270806     1   0.529      0.902 0.880 0.120
#> SRR1270807     1   0.529      0.902 0.880 0.120
#> SRR1270808     1   0.529      0.902 0.880 0.120
#> SRR1270809     1   0.529      0.902 0.880 0.120
#> SRR1270810     1   0.529      0.902 0.880 0.120
#> SRR1270811     1   0.529      0.902 0.880 0.120
#> SRR1270812     1   0.529      0.902 0.880 0.120
#> SRR1270813     1   0.529      0.902 0.880 0.120
#> SRR1270814     1   0.529      0.902 0.880 0.120
#> SRR1270815     1   0.529      0.902 0.880 0.120
#> SRR1270816     1   0.529      0.902 0.880 0.120
#> SRR1270817     1   0.529      0.902 0.880 0.120
#> SRR1270818     1   0.529      0.902 0.880 0.120
#> SRR1270819     1   0.529      0.902 0.880 0.120
#> SRR1270820     1   0.529      0.902 0.880 0.120
#> SRR1270821     1   0.529      0.902 0.880 0.120
#> SRR1270822     1   0.529      0.902 0.880 0.120
#> SRR1270823     1   0.529      0.902 0.880 0.120
#> SRR1270824     1   0.529      0.902 0.880 0.120
#> SRR1270825     1   0.529      0.902 0.880 0.120
#> SRR1270826     1   0.529      0.902 0.880 0.120
#> SRR1270827     1   0.529      0.902 0.880 0.120
#> SRR1270828     1   0.529      0.902 0.880 0.120
#> SRR1270829     1   0.529      0.902 0.880 0.120
#> SRR1270830     1   0.529      0.902 0.880 0.120
#> SRR1270831     1   0.529      0.902 0.880 0.120
#> SRR1270832     1   0.529      0.902 0.880 0.120
#> SRR1270833     1   0.775      0.819 0.772 0.228
#> SRR1270834     1   0.775      0.819 0.772 0.228
#> SRR1270835     1   0.775      0.819 0.772 0.228
#> SRR1270836     1   0.775      0.819 0.772 0.228
#> SRR1270837     1   0.775      0.819 0.772 0.228
#> SRR1270838     1   0.775      0.819 0.772 0.228
#> SRR1270839     1   0.775      0.819 0.772 0.228
#> SRR1270840     1   0.775      0.819 0.772 0.228
#> SRR1270841     1   0.775      0.819 0.772 0.228
#> SRR1270842     1   0.775      0.819 0.772 0.228
#> SRR1270843     1   0.775      0.819 0.772 0.228
#> SRR1270844     1   0.775      0.819 0.772 0.228
#> SRR1270845     1   0.775      0.819 0.772 0.228
#> SRR1270846     1   0.775      0.819 0.772 0.228
#> SRR1270847     1   0.775      0.819 0.772 0.228
#> SRR1270848     1   0.775      0.819 0.772 0.228
#> SRR1270849     1   0.775      0.819 0.772 0.228
#> SRR1270850     1   0.775      0.819 0.772 0.228
#> SRR1270851     2   0.000      1.000 0.000 1.000
#> SRR1270852     2   0.000      1.000 0.000 1.000
#> SRR1270853     2   0.000      1.000 0.000 1.000
#> SRR1270854     2   0.000      1.000 0.000 1.000
#> SRR1270855     2   0.000      1.000 0.000 1.000
#> SRR1270856     2   0.000      1.000 0.000 1.000
#> SRR1270857     2   0.000      1.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette p1 p2 p3
#> SRR1270715     1       0          1  1  0  0
#> SRR1270716     1       0          1  1  0  0
#> SRR1270717     1       0          1  1  0  0
#> SRR1270718     1       0          1  1  0  0
#> SRR1270719     1       0          1  1  0  0
#> SRR1270720     1       0          1  1  0  0
#> SRR1270721     1       0          1  1  0  0
#> SRR1270722     1       0          1  1  0  0
#> SRR1270723     1       0          1  1  0  0
#> SRR1270724     1       0          1  1  0  0
#> SRR1270725     1       0          1  1  0  0
#> SRR1270726     1       0          1  1  0  0
#> SRR1270727     1       0          1  1  0  0
#> SRR1270728     1       0          1  1  0  0
#> SRR1270729     1       0          1  1  0  0
#> SRR1270730     1       0          1  1  0  0
#> SRR1270731     1       0          1  1  0  0
#> SRR1270732     1       0          1  1  0  0
#> SRR1270733     1       0          1  1  0  0
#> SRR1270734     1       0          1  1  0  0
#> SRR1270735     1       0          1  1  0  0
#> SRR1270736     1       0          1  1  0  0
#> SRR1270737     1       0          1  1  0  0
#> SRR1270738     1       0          1  1  0  0
#> SRR1270739     1       0          1  1  0  0
#> SRR1270740     1       0          1  1  0  0
#> SRR1270741     1       0          1  1  0  0
#> SRR1270742     1       0          1  1  0  0
#> SRR1270743     1       0          1  1  0  0
#> SRR1270744     1       0          1  1  0  0
#> SRR1270745     1       0          1  1  0  0
#> SRR1270746     1       0          1  1  0  0
#> SRR1270747     1       0          1  1  0  0
#> SRR1270748     1       0          1  1  0  0
#> SRR1270749     1       0          1  1  0  0
#> SRR1270750     1       0          1  1  0  0
#> SRR1270751     1       0          1  1  0  0
#> SRR1270752     1       0          1  1  0  0
#> SRR1270753     1       0          1  1  0  0
#> SRR1270754     1       0          1  1  0  0
#> SRR1270755     1       0          1  1  0  0
#> SRR1270756     1       0          1  1  0  0
#> SRR1270757     1       0          1  1  0  0
#> SRR1270758     1       0          1  1  0  0
#> SRR1270759     1       0          1  1  0  0
#> SRR1270760     1       0          1  1  0  0
#> SRR1270761     1       0          1  1  0  0
#> SRR1270762     1       0          1  1  0  0
#> SRR1270763     1       0          1  1  0  0
#> SRR1270764     1       0          1  1  0  0
#> SRR1270765     2       0          1  0  1  0
#> SRR1270766     2       0          1  0  1  0
#> SRR1270767     2       0          1  0  1  0
#> SRR1270768     2       0          1  0  1  0
#> SRR1270769     2       0          1  0  1  0
#> SRR1270770     2       0          1  0  1  0
#> SRR1270771     2       0          1  0  1  0
#> SRR1270772     2       0          1  0  1  0
#> SRR1270773     2       0          1  0  1  0
#> SRR1270774     2       0          1  0  1  0
#> SRR1270775     2       0          1  0  1  0
#> SRR1270776     2       0          1  0  1  0
#> SRR1270777     2       0          1  0  1  0
#> SRR1270778     2       0          1  0  1  0
#> SRR1270779     2       0          1  0  1  0
#> SRR1270780     2       0          1  0  1  0
#> SRR1270781     2       0          1  0  1  0
#> SRR1270782     2       0          1  0  1  0
#> SRR1270783     2       0          1  0  1  0
#> SRR1270784     2       0          1  0  1  0
#> SRR1270785     2       0          1  0  1  0
#> SRR1270786     2       0          1  0  1  0
#> SRR1270787     2       0          1  0  1  0
#> SRR1270788     2       0          1  0  1  0
#> SRR1270789     2       0          1  0  1  0
#> SRR1270790     2       0          1  0  1  0
#> SRR1270791     2       0          1  0  1  0
#> SRR1270792     2       0          1  0  1  0
#> SRR1270793     2       0          1  0  1  0
#> SRR1270794     2       0          1  0  1  0
#> SRR1270795     2       0          1  0  1  0
#> SRR1270796     2       0          1  0  1  0
#> SRR1270797     2       0          1  0  1  0
#> SRR1270798     2       0          1  0  1  0
#> SRR1270799     2       0          1  0  1  0
#> SRR1270800     2       0          1  0  1  0
#> SRR1270801     2       0          1  0  1  0
#> SRR1270802     2       0          1  0  1  0
#> SRR1270803     2       0          1  0  1  0
#> SRR1270804     2       0          1  0  1  0
#> SRR1270805     3       0          1  0  0  1
#> SRR1270806     3       0          1  0  0  1
#> SRR1270807     3       0          1  0  0  1
#> SRR1270808     3       0          1  0  0  1
#> SRR1270809     3       0          1  0  0  1
#> SRR1270810     3       0          1  0  0  1
#> SRR1270811     3       0          1  0  0  1
#> SRR1270812     3       0          1  0  0  1
#> SRR1270813     3       0          1  0  0  1
#> SRR1270814     3       0          1  0  0  1
#> SRR1270815     3       0          1  0  0  1
#> SRR1270816     3       0          1  0  0  1
#> SRR1270817     3       0          1  0  0  1
#> SRR1270818     3       0          1  0  0  1
#> SRR1270819     3       0          1  0  0  1
#> SRR1270820     3       0          1  0  0  1
#> SRR1270821     3       0          1  0  0  1
#> SRR1270822     3       0          1  0  0  1
#> SRR1270823     3       0          1  0  0  1
#> SRR1270824     3       0          1  0  0  1
#> SRR1270825     3       0          1  0  0  1
#> SRR1270826     3       0          1  0  0  1
#> SRR1270827     3       0          1  0  0  1
#> SRR1270828     3       0          1  0  0  1
#> SRR1270829     3       0          1  0  0  1
#> SRR1270830     3       0          1  0  0  1
#> SRR1270831     3       0          1  0  0  1
#> SRR1270832     3       0          1  0  0  1
#> SRR1270833     3       0          1  0  0  1
#> SRR1270834     3       0          1  0  0  1
#> SRR1270835     3       0          1  0  0  1
#> SRR1270836     3       0          1  0  0  1
#> SRR1270837     3       0          1  0  0  1
#> SRR1270838     3       0          1  0  0  1
#> SRR1270839     3       0          1  0  0  1
#> SRR1270840     3       0          1  0  0  1
#> SRR1270841     3       0          1  0  0  1
#> SRR1270842     3       0          1  0  0  1
#> SRR1270843     3       0          1  0  0  1
#> SRR1270844     3       0          1  0  0  1
#> SRR1270845     3       0          1  0  0  1
#> SRR1270846     3       0          1  0  0  1
#> SRR1270847     3       0          1  0  0  1
#> SRR1270848     3       0          1  0  0  1
#> SRR1270849     3       0          1  0  0  1
#> SRR1270850     3       0          1  0  0  1
#> SRR1270851     2       0          1  0  1  0
#> SRR1270852     2       0          1  0  1  0
#> SRR1270853     2       0          1  0  1  0
#> SRR1270854     2       0          1  0  1  0
#> SRR1270855     2       0          1  0  1  0
#> SRR1270856     2       0          1  0  1  0
#> SRR1270857     2       0          1  0  1  0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette p1 p2 p3 p4
#> SRR1270715     1       0          1  1  0  0  0
#> SRR1270716     1       0          1  1  0  0  0
#> SRR1270717     1       0          1  1  0  0  0
#> SRR1270718     1       0          1  1  0  0  0
#> SRR1270719     1       0          1  1  0  0  0
#> SRR1270720     1       0          1  1  0  0  0
#> SRR1270721     1       0          1  1  0  0  0
#> SRR1270722     1       0          1  1  0  0  0
#> SRR1270723     1       0          1  1  0  0  0
#> SRR1270724     1       0          1  1  0  0  0
#> SRR1270725     1       0          1  1  0  0  0
#> SRR1270726     1       0          1  1  0  0  0
#> SRR1270727     1       0          1  1  0  0  0
#> SRR1270728     1       0          1  1  0  0  0
#> SRR1270729     1       0          1  1  0  0  0
#> SRR1270730     1       0          1  1  0  0  0
#> SRR1270731     1       0          1  1  0  0  0
#> SRR1270732     1       0          1  1  0  0  0
#> SRR1270733     1       0          1  1  0  0  0
#> SRR1270734     1       0          1  1  0  0  0
#> SRR1270735     1       0          1  1  0  0  0
#> SRR1270736     1       0          1  1  0  0  0
#> SRR1270737     1       0          1  1  0  0  0
#> SRR1270738     1       0          1  1  0  0  0
#> SRR1270739     1       0          1  1  0  0  0
#> SRR1270740     1       0          1  1  0  0  0
#> SRR1270741     1       0          1  1  0  0  0
#> SRR1270742     1       0          1  1  0  0  0
#> SRR1270743     1       0          1  1  0  0  0
#> SRR1270744     1       0          1  1  0  0  0
#> SRR1270745     1       0          1  1  0  0  0
#> SRR1270746     1       0          1  1  0  0  0
#> SRR1270747     1       0          1  1  0  0  0
#> SRR1270748     1       0          1  1  0  0  0
#> SRR1270749     1       0          1  1  0  0  0
#> SRR1270750     1       0          1  1  0  0  0
#> SRR1270751     1       0          1  1  0  0  0
#> SRR1270752     1       0          1  1  0  0  0
#> SRR1270753     1       0          1  1  0  0  0
#> SRR1270754     1       0          1  1  0  0  0
#> SRR1270755     1       0          1  1  0  0  0
#> SRR1270756     1       0          1  1  0  0  0
#> SRR1270757     1       0          1  1  0  0  0
#> SRR1270758     1       0          1  1  0  0  0
#> SRR1270759     1       0          1  1  0  0  0
#> SRR1270760     1       0          1  1  0  0  0
#> SRR1270761     1       0          1  1  0  0  0
#> SRR1270762     1       0          1  1  0  0  0
#> SRR1270763     1       0          1  1  0  0  0
#> SRR1270764     1       0          1  1  0  0  0
#> SRR1270765     2       0          1  0  1  0  0
#> SRR1270766     2       0          1  0  1  0  0
#> SRR1270767     2       0          1  0  1  0  0
#> SRR1270768     2       0          1  0  1  0  0
#> SRR1270769     2       0          1  0  1  0  0
#> SRR1270770     2       0          1  0  1  0  0
#> SRR1270771     2       0          1  0  1  0  0
#> SRR1270772     2       0          1  0  1  0  0
#> SRR1270773     2       0          1  0  1  0  0
#> SRR1270774     2       0          1  0  1  0  0
#> SRR1270775     2       0          1  0  1  0  0
#> SRR1270776     2       0          1  0  1  0  0
#> SRR1270777     2       0          1  0  1  0  0
#> SRR1270778     2       0          1  0  1  0  0
#> SRR1270779     2       0          1  0  1  0  0
#> SRR1270780     2       0          1  0  1  0  0
#> SRR1270781     2       0          1  0  1  0  0
#> SRR1270782     2       0          1  0  1  0  0
#> SRR1270783     2       0          1  0  1  0  0
#> SRR1270784     2       0          1  0  1  0  0
#> SRR1270785     2       0          1  0  1  0  0
#> SRR1270786     2       0          1  0  1  0  0
#> SRR1270787     2       0          1  0  1  0  0
#> SRR1270788     2       0          1  0  1  0  0
#> SRR1270789     2       0          1  0  1  0  0
#> SRR1270790     2       0          1  0  1  0  0
#> SRR1270791     2       0          1  0  1  0  0
#> SRR1270792     2       0          1  0  1  0  0
#> SRR1270793     2       0          1  0  1  0  0
#> SRR1270794     2       0          1  0  1  0  0
#> SRR1270795     2       0          1  0  1  0  0
#> SRR1270796     2       0          1  0  1  0  0
#> SRR1270797     2       0          1  0  1  0  0
#> SRR1270798     2       0          1  0  1  0  0
#> SRR1270799     2       0          1  0  1  0  0
#> SRR1270800     2       0          1  0  1  0  0
#> SRR1270801     2       0          1  0  1  0  0
#> SRR1270802     2       0          1  0  1  0  0
#> SRR1270803     2       0          1  0  1  0  0
#> SRR1270804     2       0          1  0  1  0  0
#> SRR1270805     3       0          1  0  0  1  0
#> SRR1270806     3       0          1  0  0  1  0
#> SRR1270807     3       0          1  0  0  1  0
#> SRR1270808     3       0          1  0  0  1  0
#> SRR1270809     3       0          1  0  0  1  0
#> SRR1270810     3       0          1  0  0  1  0
#> SRR1270811     3       0          1  0  0  1  0
#> SRR1270812     3       0          1  0  0  1  0
#> SRR1270813     3       0          1  0  0  1  0
#> SRR1270814     3       0          1  0  0  1  0
#> SRR1270815     3       0          1  0  0  1  0
#> SRR1270816     3       0          1  0  0  1  0
#> SRR1270817     3       0          1  0  0  1  0
#> SRR1270818     3       0          1  0  0  1  0
#> SRR1270819     3       0          1  0  0  1  0
#> SRR1270820     3       0          1  0  0  1  0
#> SRR1270821     3       0          1  0  0  1  0
#> SRR1270822     3       0          1  0  0  1  0
#> SRR1270823     3       0          1  0  0  1  0
#> SRR1270824     3       0          1  0  0  1  0
#> SRR1270825     3       0          1  0  0  1  0
#> SRR1270826     3       0          1  0  0  1  0
#> SRR1270827     3       0          1  0  0  1  0
#> SRR1270828     3       0          1  0  0  1  0
#> SRR1270829     3       0          1  0  0  1  0
#> SRR1270830     3       0          1  0  0  1  0
#> SRR1270831     3       0          1  0  0  1  0
#> SRR1270832     3       0          1  0  0  1  0
#> SRR1270833     4       0          1  0  0  0  1
#> SRR1270834     4       0          1  0  0  0  1
#> SRR1270835     4       0          1  0  0  0  1
#> SRR1270836     4       0          1  0  0  0  1
#> SRR1270837     4       0          1  0  0  0  1
#> SRR1270838     4       0          1  0  0  0  1
#> SRR1270839     4       0          1  0  0  0  1
#> SRR1270840     4       0          1  0  0  0  1
#> SRR1270841     4       0          1  0  0  0  1
#> SRR1270842     4       0          1  0  0  0  1
#> SRR1270843     4       0          1  0  0  0  1
#> SRR1270844     4       0          1  0  0  0  1
#> SRR1270845     4       0          1  0  0  0  1
#> SRR1270846     4       0          1  0  0  0  1
#> SRR1270847     4       0          1  0  0  0  1
#> SRR1270848     4       0          1  0  0  0  1
#> SRR1270849     4       0          1  0  0  0  1
#> SRR1270850     4       0          1  0  0  0  1
#> SRR1270851     2       0          1  0  1  0  0
#> SRR1270852     2       0          1  0  1  0  0
#> SRR1270853     2       0          1  0  1  0  0
#> SRR1270854     2       0          1  0  1  0  0
#> SRR1270855     2       0          1  0  1  0  0
#> SRR1270856     2       0          1  0  1  0  0
#> SRR1270857     2       0          1  0  1  0  0

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette p1    p2 p3 p4    p5
#> SRR1270715     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270716     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270717     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270718     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270719     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270720     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270721     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270722     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270723     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270724     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270725     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270726     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270727     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270728     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270729     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270730     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270731     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270732     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270733     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270734     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270735     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270736     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270737     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270738     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270739     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270740     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270741     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270742     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270743     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270744     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270745     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270746     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270747     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270748     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270749     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270750     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270751     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270752     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270753     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270754     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270755     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270756     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270757     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270758     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270759     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270760     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270761     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270762     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270763     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270764     1   0.000      1.000  1 0.000  0  0 0.000
#> SRR1270765     2   0.000      0.968  0 1.000  0  0 0.000
#> SRR1270766     2   0.000      0.968  0 1.000  0  0 0.000
#> SRR1270767     2   0.000      0.968  0 1.000  0  0 0.000
#> SRR1270768     2   0.311      0.779  0 0.800  0  0 0.200
#> SRR1270769     2   0.311      0.779  0 0.800  0  0 0.200
#> SRR1270770     2   0.314      0.773  0 0.796  0  0 0.204
#> SRR1270771     2   0.311      0.779  0 0.800  0  0 0.200
#> SRR1270772     2   0.000      0.968  0 1.000  0  0 0.000
#> SRR1270773     2   0.000      0.968  0 1.000  0  0 0.000
#> SRR1270774     2   0.000      0.968  0 1.000  0  0 0.000
#> SRR1270775     2   0.000      0.968  0 1.000  0  0 0.000
#> SRR1270776     2   0.000      0.968  0 1.000  0  0 0.000
#> SRR1270777     2   0.000      0.968  0 1.000  0  0 0.000
#> SRR1270778     2   0.000      0.968  0 1.000  0  0 0.000
#> SRR1270779     2   0.000      0.968  0 1.000  0  0 0.000
#> SRR1270780     2   0.000      0.968  0 1.000  0  0 0.000
#> SRR1270781     2   0.000      0.968  0 1.000  0  0 0.000
#> SRR1270782     2   0.000      0.968  0 1.000  0  0 0.000
#> SRR1270783     2   0.000      0.968  0 1.000  0  0 0.000
#> SRR1270784     2   0.000      0.968  0 1.000  0  0 0.000
#> SRR1270785     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270786     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270787     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270788     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270789     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270790     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270791     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270792     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270793     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270794     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270795     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270796     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270797     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270798     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270799     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270800     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270801     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270802     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270803     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270804     5   0.000      1.000  0 0.000  0  0 1.000
#> SRR1270805     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270806     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270807     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270808     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270809     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270810     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270811     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270812     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270813     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270814     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270815     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270816     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270817     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270818     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270819     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270820     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270821     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270822     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270823     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270824     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270825     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270826     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270827     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270828     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270829     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270830     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270831     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270832     3   0.000      1.000  0 0.000  1  0 0.000
#> SRR1270833     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270834     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270835     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270836     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270837     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270838     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270839     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270840     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270841     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270842     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270843     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270844     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270845     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270846     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270847     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270848     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270849     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270850     4   0.000      1.000  0 0.000  0  1 0.000
#> SRR1270851     2   0.000      0.968  0 1.000  0  0 0.000
#> SRR1270852     2   0.000      0.968  0 1.000  0  0 0.000
#> SRR1270853     2   0.000      0.968  0 1.000  0  0 0.000
#> SRR1270854     2   0.000      0.968  0 1.000  0  0 0.000
#> SRR1270855     2   0.000      0.968  0 1.000  0  0 0.000
#> SRR1270856     2   0.000      0.968  0 1.000  0  0 0.000
#> SRR1270857     2   0.000      0.968  0 1.000  0  0 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1270715     6       0          1  0  0  0  0  0  1
#> SRR1270716     6       0          1  0  0  0  0  0  1
#> SRR1270717     6       0          1  0  0  0  0  0  1
#> SRR1270718     6       0          1  0  0  0  0  0  1
#> SRR1270719     6       0          1  0  0  0  0  0  1
#> SRR1270720     6       0          1  0  0  0  0  0  1
#> SRR1270721     6       0          1  0  0  0  0  0  1
#> SRR1270722     6       0          1  0  0  0  0  0  1
#> SRR1270723     6       0          1  0  0  0  0  0  1
#> SRR1270724     6       0          1  0  0  0  0  0  1
#> SRR1270725     6       0          1  0  0  0  0  0  1
#> SRR1270726     6       0          1  0  0  0  0  0  1
#> SRR1270727     6       0          1  0  0  0  0  0  1
#> SRR1270728     6       0          1  0  0  0  0  0  1
#> SRR1270729     6       0          1  0  0  0  0  0  1
#> SRR1270730     6       0          1  0  0  0  0  0  1
#> SRR1270731     6       0          1  0  0  0  0  0  1
#> SRR1270732     6       0          1  0  0  0  0  0  1
#> SRR1270733     6       0          1  0  0  0  0  0  1
#> SRR1270734     6       0          1  0  0  0  0  0  1
#> SRR1270735     6       0          1  0  0  0  0  0  1
#> SRR1270736     6       0          1  0  0  0  0  0  1
#> SRR1270737     6       0          1  0  0  0  0  0  1
#> SRR1270738     6       0          1  0  0  0  0  0  1
#> SRR1270739     6       0          1  0  0  0  0  0  1
#> SRR1270740     1       0          1  1  0  0  0  0  0
#> SRR1270741     1       0          1  1  0  0  0  0  0
#> SRR1270742     1       0          1  1  0  0  0  0  0
#> SRR1270743     1       0          1  1  0  0  0  0  0
#> SRR1270744     1       0          1  1  0  0  0  0  0
#> SRR1270745     1       0          1  1  0  0  0  0  0
#> SRR1270746     1       0          1  1  0  0  0  0  0
#> SRR1270747     1       0          1  1  0  0  0  0  0
#> SRR1270748     1       0          1  1  0  0  0  0  0
#> SRR1270749     1       0          1  1  0  0  0  0  0
#> SRR1270750     1       0          1  1  0  0  0  0  0
#> SRR1270751     1       0          1  1  0  0  0  0  0
#> SRR1270752     1       0          1  1  0  0  0  0  0
#> SRR1270753     1       0          1  1  0  0  0  0  0
#> SRR1270754     1       0          1  1  0  0  0  0  0
#> SRR1270755     1       0          1  1  0  0  0  0  0
#> SRR1270756     1       0          1  1  0  0  0  0  0
#> SRR1270757     1       0          1  1  0  0  0  0  0
#> SRR1270758     1       0          1  1  0  0  0  0  0
#> SRR1270759     1       0          1  1  0  0  0  0  0
#> SRR1270760     1       0          1  1  0  0  0  0  0
#> SRR1270761     1       0          1  1  0  0  0  0  0
#> SRR1270762     1       0          1  1  0  0  0  0  0
#> SRR1270763     1       0          1  1  0  0  0  0  0
#> SRR1270764     1       0          1  1  0  0  0  0  0
#> SRR1270765     2       0          1  0  1  0  0  0  0
#> SRR1270766     2       0          1  0  1  0  0  0  0
#> SRR1270767     2       0          1  0  1  0  0  0  0
#> SRR1270768     2       0          1  0  1  0  0  0  0
#> SRR1270769     2       0          1  0  1  0  0  0  0
#> SRR1270770     2       0          1  0  1  0  0  0  0
#> SRR1270771     2       0          1  0  1  0  0  0  0
#> SRR1270772     2       0          1  0  1  0  0  0  0
#> SRR1270773     2       0          1  0  1  0  0  0  0
#> SRR1270774     2       0          1  0  1  0  0  0  0
#> SRR1270775     2       0          1  0  1  0  0  0  0
#> SRR1270776     2       0          1  0  1  0  0  0  0
#> SRR1270777     2       0          1  0  1  0  0  0  0
#> SRR1270778     2       0          1  0  1  0  0  0  0
#> SRR1270779     2       0          1  0  1  0  0  0  0
#> SRR1270780     2       0          1  0  1  0  0  0  0
#> SRR1270781     2       0          1  0  1  0  0  0  0
#> SRR1270782     2       0          1  0  1  0  0  0  0
#> SRR1270783     2       0          1  0  1  0  0  0  0
#> SRR1270784     2       0          1  0  1  0  0  0  0
#> SRR1270785     5       0          1  0  0  0  0  1  0
#> SRR1270786     5       0          1  0  0  0  0  1  0
#> SRR1270787     5       0          1  0  0  0  0  1  0
#> SRR1270788     5       0          1  0  0  0  0  1  0
#> SRR1270789     5       0          1  0  0  0  0  1  0
#> SRR1270790     5       0          1  0  0  0  0  1  0
#> SRR1270791     5       0          1  0  0  0  0  1  0
#> SRR1270792     5       0          1  0  0  0  0  1  0
#> SRR1270793     5       0          1  0  0  0  0  1  0
#> SRR1270794     5       0          1  0  0  0  0  1  0
#> SRR1270795     5       0          1  0  0  0  0  1  0
#> SRR1270796     5       0          1  0  0  0  0  1  0
#> SRR1270797     5       0          1  0  0  0  0  1  0
#> SRR1270798     5       0          1  0  0  0  0  1  0
#> SRR1270799     5       0          1  0  0  0  0  1  0
#> SRR1270800     5       0          1  0  0  0  0  1  0
#> SRR1270801     5       0          1  0  0  0  0  1  0
#> SRR1270802     5       0          1  0  0  0  0  1  0
#> SRR1270803     5       0          1  0  0  0  0  1  0
#> SRR1270804     5       0          1  0  0  0  0  1  0
#> SRR1270805     3       0          1  0  0  1  0  0  0
#> SRR1270806     3       0          1  0  0  1  0  0  0
#> SRR1270807     3       0          1  0  0  1  0  0  0
#> SRR1270808     3       0          1  0  0  1  0  0  0
#> SRR1270809     3       0          1  0  0  1  0  0  0
#> SRR1270810     3       0          1  0  0  1  0  0  0
#> SRR1270811     3       0          1  0  0  1  0  0  0
#> SRR1270812     3       0          1  0  0  1  0  0  0
#> SRR1270813     3       0          1  0  0  1  0  0  0
#> SRR1270814     3       0          1  0  0  1  0  0  0
#> SRR1270815     3       0          1  0  0  1  0  0  0
#> SRR1270816     3       0          1  0  0  1  0  0  0
#> SRR1270817     3       0          1  0  0  1  0  0  0
#> SRR1270818     3       0          1  0  0  1  0  0  0
#> SRR1270819     3       0          1  0  0  1  0  0  0
#> SRR1270820     3       0          1  0  0  1  0  0  0
#> SRR1270821     3       0          1  0  0  1  0  0  0
#> SRR1270822     3       0          1  0  0  1  0  0  0
#> SRR1270823     3       0          1  0  0  1  0  0  0
#> SRR1270824     3       0          1  0  0  1  0  0  0
#> SRR1270825     3       0          1  0  0  1  0  0  0
#> SRR1270826     3       0          1  0  0  1  0  0  0
#> SRR1270827     3       0          1  0  0  1  0  0  0
#> SRR1270828     3       0          1  0  0  1  0  0  0
#> SRR1270829     3       0          1  0  0  1  0  0  0
#> SRR1270830     3       0          1  0  0  1  0  0  0
#> SRR1270831     3       0          1  0  0  1  0  0  0
#> SRR1270832     3       0          1  0  0  1  0  0  0
#> SRR1270833     4       0          1  0  0  0  1  0  0
#> SRR1270834     4       0          1  0  0  0  1  0  0
#> SRR1270835     4       0          1  0  0  0  1  0  0
#> SRR1270836     4       0          1  0  0  0  1  0  0
#> SRR1270837     4       0          1  0  0  0  1  0  0
#> SRR1270838     4       0          1  0  0  0  1  0  0
#> SRR1270839     4       0          1  0  0  0  1  0  0
#> SRR1270840     4       0          1  0  0  0  1  0  0
#> SRR1270841     4       0          1  0  0  0  1  0  0
#> SRR1270842     4       0          1  0  0  0  1  0  0
#> SRR1270843     4       0          1  0  0  0  1  0  0
#> SRR1270844     4       0          1  0  0  0  1  0  0
#> SRR1270845     4       0          1  0  0  0  1  0  0
#> SRR1270846     4       0          1  0  0  0  1  0  0
#> SRR1270847     4       0          1  0  0  0  1  0  0
#> SRR1270848     4       0          1  0  0  0  1  0  0
#> SRR1270849     4       0          1  0  0  0  1  0  0
#> SRR1270850     4       0          1  0  0  0  1  0  0
#> SRR1270851     2       0          1  0  1  0  0  0  0
#> SRR1270852     2       0          1  0  1  0  0  0  0
#> SRR1270853     2       0          1  0  1  0  0  0  0
#> SRR1270854     2       0          1  0  1  0  0  0  0
#> SRR1270855     2       0          1  0  1  0  0  0  0
#> SRR1270856     2       0          1  0  1  0  0  0  0
#> SRR1270857     2       0          1  0  1  0  0  0  0

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14577 rows and 143 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.986       0.993         0.4490 0.556   0.556
#> 3 3 0.927           0.910       0.962         0.4836 0.774   0.593
#> 4 4 1.000           0.995       0.995         0.0808 0.828   0.559
#> 5 5 0.922           0.934       0.935         0.0376 1.000   1.000
#> 6 6 0.905           0.807       0.904         0.0198 0.964   0.870

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 4

There is also optional best \(k\) = 2 3 4 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1270715     1   0.000      0.990 1.000 0.000
#> SRR1270716     1   0.000      0.990 1.000 0.000
#> SRR1270717     1   0.000      0.990 1.000 0.000
#> SRR1270718     1   0.388      0.919 0.924 0.076
#> SRR1270719     1   0.311      0.939 0.944 0.056
#> SRR1270720     1   0.402      0.915 0.920 0.080
#> SRR1270721     1   0.443      0.902 0.908 0.092
#> SRR1270722     1   0.000      0.990 1.000 0.000
#> SRR1270723     1   0.000      0.990 1.000 0.000
#> SRR1270724     1   0.000      0.990 1.000 0.000
#> SRR1270725     1   0.000      0.990 1.000 0.000
#> SRR1270726     1   0.000      0.990 1.000 0.000
#> SRR1270727     1   0.000      0.990 1.000 0.000
#> SRR1270728     1   0.000      0.990 1.000 0.000
#> SRR1270729     1   0.000      0.990 1.000 0.000
#> SRR1270730     1   0.000      0.990 1.000 0.000
#> SRR1270731     1   0.000      0.990 1.000 0.000
#> SRR1270732     1   0.653      0.811 0.832 0.168
#> SRR1270733     1   0.644      0.816 0.836 0.164
#> SRR1270734     1   0.671      0.800 0.824 0.176
#> SRR1270735     1   0.653      0.811 0.832 0.168
#> SRR1270736     1   0.000      0.990 1.000 0.000
#> SRR1270737     1   0.000      0.990 1.000 0.000
#> SRR1270738     1   0.000      0.990 1.000 0.000
#> SRR1270739     1   0.000      0.990 1.000 0.000
#> SRR1270740     1   0.000      0.990 1.000 0.000
#> SRR1270741     1   0.000      0.990 1.000 0.000
#> SRR1270742     1   0.000      0.990 1.000 0.000
#> SRR1270743     1   0.000      0.990 1.000 0.000
#> SRR1270744     1   0.000      0.990 1.000 0.000
#> SRR1270745     1   0.000      0.990 1.000 0.000
#> SRR1270746     1   0.000      0.990 1.000 0.000
#> SRR1270747     1   0.000      0.990 1.000 0.000
#> SRR1270748     1   0.000      0.990 1.000 0.000
#> SRR1270749     1   0.000      0.990 1.000 0.000
#> SRR1270750     1   0.000      0.990 1.000 0.000
#> SRR1270751     1   0.000      0.990 1.000 0.000
#> SRR1270752     1   0.000      0.990 1.000 0.000
#> SRR1270753     1   0.000      0.990 1.000 0.000
#> SRR1270754     1   0.000      0.990 1.000 0.000
#> SRR1270755     1   0.000      0.990 1.000 0.000
#> SRR1270756     1   0.000      0.990 1.000 0.000
#> SRR1270757     1   0.000      0.990 1.000 0.000
#> SRR1270758     1   0.000      0.990 1.000 0.000
#> SRR1270759     1   0.000      0.990 1.000 0.000
#> SRR1270760     1   0.000      0.990 1.000 0.000
#> SRR1270761     1   0.000      0.990 1.000 0.000
#> SRR1270762     1   0.000      0.990 1.000 0.000
#> SRR1270763     1   0.000      0.990 1.000 0.000
#> SRR1270764     1   0.000      0.990 1.000 0.000
#> SRR1270765     2   0.000      1.000 0.000 1.000
#> SRR1270766     2   0.000      1.000 0.000 1.000
#> SRR1270767     2   0.000      1.000 0.000 1.000
#> SRR1270768     2   0.000      1.000 0.000 1.000
#> SRR1270769     2   0.000      1.000 0.000 1.000
#> SRR1270770     2   0.000      1.000 0.000 1.000
#> SRR1270771     2   0.000      1.000 0.000 1.000
#> SRR1270772     2   0.000      1.000 0.000 1.000
#> SRR1270773     2   0.000      1.000 0.000 1.000
#> SRR1270774     2   0.000      1.000 0.000 1.000
#> SRR1270775     2   0.000      1.000 0.000 1.000
#> SRR1270776     2   0.000      1.000 0.000 1.000
#> SRR1270777     2   0.000      1.000 0.000 1.000
#> SRR1270778     2   0.000      1.000 0.000 1.000
#> SRR1270779     2   0.000      1.000 0.000 1.000
#> SRR1270780     2   0.000      1.000 0.000 1.000
#> SRR1270781     2   0.000      1.000 0.000 1.000
#> SRR1270782     2   0.000      1.000 0.000 1.000
#> SRR1270783     2   0.000      1.000 0.000 1.000
#> SRR1270784     2   0.000      1.000 0.000 1.000
#> SRR1270785     2   0.000      1.000 0.000 1.000
#> SRR1270786     2   0.000      1.000 0.000 1.000
#> SRR1270787     2   0.000      1.000 0.000 1.000
#> SRR1270788     2   0.000      1.000 0.000 1.000
#> SRR1270789     2   0.000      1.000 0.000 1.000
#> SRR1270790     2   0.000      1.000 0.000 1.000
#> SRR1270791     2   0.000      1.000 0.000 1.000
#> SRR1270792     2   0.000      1.000 0.000 1.000
#> SRR1270793     2   0.000      1.000 0.000 1.000
#> SRR1270794     2   0.000      1.000 0.000 1.000
#> SRR1270795     2   0.000      1.000 0.000 1.000
#> SRR1270796     2   0.000      1.000 0.000 1.000
#> SRR1270797     2   0.000      1.000 0.000 1.000
#> SRR1270798     2   0.000      1.000 0.000 1.000
#> SRR1270799     2   0.000      1.000 0.000 1.000
#> SRR1270800     2   0.000      1.000 0.000 1.000
#> SRR1270801     2   0.000      1.000 0.000 1.000
#> SRR1270802     2   0.000      1.000 0.000 1.000
#> SRR1270803     2   0.000      1.000 0.000 1.000
#> SRR1270804     2   0.000      1.000 0.000 1.000
#> SRR1270805     1   0.000      0.990 1.000 0.000
#> SRR1270806     1   0.000      0.990 1.000 0.000
#> SRR1270807     1   0.000      0.990 1.000 0.000
#> SRR1270808     1   0.000      0.990 1.000 0.000
#> SRR1270809     1   0.000      0.990 1.000 0.000
#> SRR1270810     1   0.000      0.990 1.000 0.000
#> SRR1270811     1   0.000      0.990 1.000 0.000
#> SRR1270812     1   0.000      0.990 1.000 0.000
#> SRR1270813     1   0.000      0.990 1.000 0.000
#> SRR1270814     1   0.000      0.990 1.000 0.000
#> SRR1270815     1   0.000      0.990 1.000 0.000
#> SRR1270816     1   0.000      0.990 1.000 0.000
#> SRR1270817     1   0.000      0.990 1.000 0.000
#> SRR1270818     1   0.000      0.990 1.000 0.000
#> SRR1270819     1   0.000      0.990 1.000 0.000
#> SRR1270820     1   0.000      0.990 1.000 0.000
#> SRR1270821     1   0.000      0.990 1.000 0.000
#> SRR1270822     1   0.000      0.990 1.000 0.000
#> SRR1270823     1   0.000      0.990 1.000 0.000
#> SRR1270824     1   0.000      0.990 1.000 0.000
#> SRR1270825     1   0.000      0.990 1.000 0.000
#> SRR1270826     1   0.000      0.990 1.000 0.000
#> SRR1270827     1   0.000      0.990 1.000 0.000
#> SRR1270828     1   0.000      0.990 1.000 0.000
#> SRR1270829     1   0.000      0.990 1.000 0.000
#> SRR1270830     1   0.000      0.990 1.000 0.000
#> SRR1270831     1   0.000      0.990 1.000 0.000
#> SRR1270832     1   0.000      0.990 1.000 0.000
#> SRR1270833     1   0.000      0.990 1.000 0.000
#> SRR1270834     1   0.000      0.990 1.000 0.000
#> SRR1270835     1   0.000      0.990 1.000 0.000
#> SRR1270836     1   0.000      0.990 1.000 0.000
#> SRR1270837     1   0.000      0.990 1.000 0.000
#> SRR1270838     1   0.000      0.990 1.000 0.000
#> SRR1270839     1   0.000      0.990 1.000 0.000
#> SRR1270840     1   0.000      0.990 1.000 0.000
#> SRR1270841     1   0.000      0.990 1.000 0.000
#> SRR1270842     1   0.000      0.990 1.000 0.000
#> SRR1270843     1   0.000      0.990 1.000 0.000
#> SRR1270844     1   0.000      0.990 1.000 0.000
#> SRR1270845     1   0.000      0.990 1.000 0.000
#> SRR1270846     1   0.000      0.990 1.000 0.000
#> SRR1270847     1   0.000      0.990 1.000 0.000
#> SRR1270848     1   0.000      0.990 1.000 0.000
#> SRR1270849     1   0.000      0.990 1.000 0.000
#> SRR1270850     1   0.000      0.990 1.000 0.000
#> SRR1270851     2   0.000      1.000 0.000 1.000
#> SRR1270852     2   0.000      1.000 0.000 1.000
#> SRR1270853     2   0.000      1.000 0.000 1.000
#> SRR1270854     2   0.000      1.000 0.000 1.000
#> SRR1270855     2   0.000      1.000 0.000 1.000
#> SRR1270856     2   0.000      1.000 0.000 1.000
#> SRR1270857     2   0.000      1.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1 p2    p3
#> SRR1270715     3  0.5216      0.636 0.260  0 0.740
#> SRR1270716     3  0.5497      0.572 0.292  0 0.708
#> SRR1270717     3  0.6095      0.316 0.392  0 0.608
#> SRR1270718     1  0.0000      0.908 1.000  0 0.000
#> SRR1270719     1  0.0000      0.908 1.000  0 0.000
#> SRR1270720     1  0.0000      0.908 1.000  0 0.000
#> SRR1270721     1  0.0000      0.908 1.000  0 0.000
#> SRR1270722     3  0.0000      0.964 0.000  0 1.000
#> SRR1270723     3  0.0000      0.964 0.000  0 1.000
#> SRR1270724     3  0.0000      0.964 0.000  0 1.000
#> SRR1270725     3  0.4605      0.730 0.204  0 0.796
#> SRR1270726     3  0.3551      0.829 0.132  0 0.868
#> SRR1270727     3  0.4346      0.759 0.184  0 0.816
#> SRR1270728     3  0.2796      0.876 0.092  0 0.908
#> SRR1270729     1  0.0000      0.908 1.000  0 0.000
#> SRR1270730     1  0.0000      0.908 1.000  0 0.000
#> SRR1270731     1  0.0000      0.908 1.000  0 0.000
#> SRR1270732     1  0.0000      0.908 1.000  0 0.000
#> SRR1270733     1  0.0000      0.908 1.000  0 0.000
#> SRR1270734     1  0.0000      0.908 1.000  0 0.000
#> SRR1270735     1  0.0000      0.908 1.000  0 0.000
#> SRR1270736     3  0.0000      0.964 0.000  0 1.000
#> SRR1270737     3  0.0000      0.964 0.000  0 1.000
#> SRR1270738     1  0.5058      0.676 0.756  0 0.244
#> SRR1270739     1  0.4702      0.715 0.788  0 0.212
#> SRR1270740     3  0.0592      0.955 0.012  0 0.988
#> SRR1270741     3  0.0592      0.955 0.012  0 0.988
#> SRR1270742     3  0.0747      0.952 0.016  0 0.984
#> SRR1270743     1  0.0000      0.908 1.000  0 0.000
#> SRR1270744     1  0.0000      0.908 1.000  0 0.000
#> SRR1270745     1  0.0000      0.908 1.000  0 0.000
#> SRR1270746     1  0.0000      0.908 1.000  0 0.000
#> SRR1270747     3  0.0000      0.964 0.000  0 1.000
#> SRR1270748     3  0.0000      0.964 0.000  0 1.000
#> SRR1270749     3  0.0000      0.964 0.000  0 1.000
#> SRR1270750     1  0.6295      0.215 0.528  0 0.472
#> SRR1270751     1  0.6111      0.421 0.604  0 0.396
#> SRR1270752     1  0.5785      0.549 0.668  0 0.332
#> SRR1270753     1  0.5968      0.491 0.636  0 0.364
#> SRR1270754     3  0.0000      0.964 0.000  0 1.000
#> SRR1270755     3  0.0000      0.964 0.000  0 1.000
#> SRR1270756     3  0.0000      0.964 0.000  0 1.000
#> SRR1270757     1  0.6305      0.153 0.516  0 0.484
#> SRR1270758     1  0.6079      0.427 0.612  0 0.388
#> SRR1270759     1  0.6215      0.327 0.572  0 0.428
#> SRR1270760     1  0.6204      0.337 0.576  0 0.424
#> SRR1270761     3  0.0592      0.955 0.012  0 0.988
#> SRR1270762     3  0.0237      0.961 0.004  0 0.996
#> SRR1270763     1  0.1031      0.892 0.976  0 0.024
#> SRR1270764     1  0.0000      0.908 1.000  0 0.000
#> SRR1270765     2  0.0000      1.000 0.000  1 0.000
#> SRR1270766     2  0.0000      1.000 0.000  1 0.000
#> SRR1270767     2  0.0000      1.000 0.000  1 0.000
#> SRR1270768     2  0.0000      1.000 0.000  1 0.000
#> SRR1270769     2  0.0000      1.000 0.000  1 0.000
#> SRR1270770     2  0.0000      1.000 0.000  1 0.000
#> SRR1270771     2  0.0000      1.000 0.000  1 0.000
#> SRR1270772     2  0.0000      1.000 0.000  1 0.000
#> SRR1270773     2  0.0000      1.000 0.000  1 0.000
#> SRR1270774     2  0.0000      1.000 0.000  1 0.000
#> SRR1270775     2  0.0000      1.000 0.000  1 0.000
#> SRR1270776     2  0.0000      1.000 0.000  1 0.000
#> SRR1270777     2  0.0000      1.000 0.000  1 0.000
#> SRR1270778     2  0.0000      1.000 0.000  1 0.000
#> SRR1270779     2  0.0000      1.000 0.000  1 0.000
#> SRR1270780     2  0.0000      1.000 0.000  1 0.000
#> SRR1270781     2  0.0000      1.000 0.000  1 0.000
#> SRR1270782     2  0.0000      1.000 0.000  1 0.000
#> SRR1270783     2  0.0000      1.000 0.000  1 0.000
#> SRR1270784     2  0.0000      1.000 0.000  1 0.000
#> SRR1270785     2  0.0000      1.000 0.000  1 0.000
#> SRR1270786     2  0.0000      1.000 0.000  1 0.000
#> SRR1270787     2  0.0000      1.000 0.000  1 0.000
#> SRR1270788     2  0.0000      1.000 0.000  1 0.000
#> SRR1270789     2  0.0000      1.000 0.000  1 0.000
#> SRR1270790     2  0.0000      1.000 0.000  1 0.000
#> SRR1270791     2  0.0000      1.000 0.000  1 0.000
#> SRR1270792     2  0.0000      1.000 0.000  1 0.000
#> SRR1270793     2  0.0000      1.000 0.000  1 0.000
#> SRR1270794     2  0.0000      1.000 0.000  1 0.000
#> SRR1270795     2  0.0000      1.000 0.000  1 0.000
#> SRR1270796     2  0.0000      1.000 0.000  1 0.000
#> SRR1270797     2  0.0000      1.000 0.000  1 0.000
#> SRR1270798     2  0.0000      1.000 0.000  1 0.000
#> SRR1270799     2  0.0000      1.000 0.000  1 0.000
#> SRR1270800     2  0.0000      1.000 0.000  1 0.000
#> SRR1270801     2  0.0000      1.000 0.000  1 0.000
#> SRR1270802     2  0.0000      1.000 0.000  1 0.000
#> SRR1270803     2  0.0000      1.000 0.000  1 0.000
#> SRR1270804     2  0.0000      1.000 0.000  1 0.000
#> SRR1270805     3  0.0000      0.964 0.000  0 1.000
#> SRR1270806     3  0.0000      0.964 0.000  0 1.000
#> SRR1270807     3  0.0000      0.964 0.000  0 1.000
#> SRR1270808     3  0.0000      0.964 0.000  0 1.000
#> SRR1270809     3  0.0000      0.964 0.000  0 1.000
#> SRR1270810     3  0.0000      0.964 0.000  0 1.000
#> SRR1270811     3  0.0000      0.964 0.000  0 1.000
#> SRR1270812     3  0.0000      0.964 0.000  0 1.000
#> SRR1270813     3  0.0000      0.964 0.000  0 1.000
#> SRR1270814     3  0.0000      0.964 0.000  0 1.000
#> SRR1270815     3  0.0000      0.964 0.000  0 1.000
#> SRR1270816     3  0.0000      0.964 0.000  0 1.000
#> SRR1270817     3  0.0000      0.964 0.000  0 1.000
#> SRR1270818     3  0.0000      0.964 0.000  0 1.000
#> SRR1270819     3  0.0000      0.964 0.000  0 1.000
#> SRR1270820     3  0.0000      0.964 0.000  0 1.000
#> SRR1270821     3  0.0000      0.964 0.000  0 1.000
#> SRR1270822     3  0.0000      0.964 0.000  0 1.000
#> SRR1270823     3  0.0000      0.964 0.000  0 1.000
#> SRR1270824     3  0.0000      0.964 0.000  0 1.000
#> SRR1270825     3  0.0000      0.964 0.000  0 1.000
#> SRR1270826     3  0.0000      0.964 0.000  0 1.000
#> SRR1270827     3  0.0000      0.964 0.000  0 1.000
#> SRR1270828     3  0.0000      0.964 0.000  0 1.000
#> SRR1270829     3  0.0000      0.964 0.000  0 1.000
#> SRR1270830     3  0.0000      0.964 0.000  0 1.000
#> SRR1270831     3  0.0000      0.964 0.000  0 1.000
#> SRR1270832     3  0.0000      0.964 0.000  0 1.000
#> SRR1270833     1  0.0000      0.908 1.000  0 0.000
#> SRR1270834     1  0.0000      0.908 1.000  0 0.000
#> SRR1270835     1  0.0000      0.908 1.000  0 0.000
#> SRR1270836     1  0.0000      0.908 1.000  0 0.000
#> SRR1270837     1  0.0000      0.908 1.000  0 0.000
#> SRR1270838     1  0.0000      0.908 1.000  0 0.000
#> SRR1270839     1  0.0000      0.908 1.000  0 0.000
#> SRR1270840     1  0.0000      0.908 1.000  0 0.000
#> SRR1270841     1  0.0000      0.908 1.000  0 0.000
#> SRR1270842     1  0.0000      0.908 1.000  0 0.000
#> SRR1270843     1  0.0000      0.908 1.000  0 0.000
#> SRR1270844     1  0.0000      0.908 1.000  0 0.000
#> SRR1270845     1  0.0000      0.908 1.000  0 0.000
#> SRR1270846     1  0.0000      0.908 1.000  0 0.000
#> SRR1270847     1  0.0000      0.908 1.000  0 0.000
#> SRR1270848     1  0.0000      0.908 1.000  0 0.000
#> SRR1270849     1  0.0000      0.908 1.000  0 0.000
#> SRR1270850     1  0.0000      0.908 1.000  0 0.000
#> SRR1270851     2  0.0000      1.000 0.000  1 0.000
#> SRR1270852     2  0.0000      1.000 0.000  1 0.000
#> SRR1270853     2  0.0000      1.000 0.000  1 0.000
#> SRR1270854     2  0.0000      1.000 0.000  1 0.000
#> SRR1270855     2  0.0000      1.000 0.000  1 0.000
#> SRR1270856     2  0.0000      1.000 0.000  1 0.000
#> SRR1270857     2  0.0000      1.000 0.000  1 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1 p2    p3    p4
#> SRR1270715     1  0.0000      0.992 1.000  0 0.000 0.000
#> SRR1270716     1  0.0000      0.992 1.000  0 0.000 0.000
#> SRR1270717     1  0.0000      0.992 1.000  0 0.000 0.000
#> SRR1270718     1  0.0000      0.992 1.000  0 0.000 0.000
#> SRR1270719     1  0.0000      0.992 1.000  0 0.000 0.000
#> SRR1270720     1  0.0000      0.992 1.000  0 0.000 0.000
#> SRR1270721     1  0.0000      0.992 1.000  0 0.000 0.000
#> SRR1270722     1  0.0592      0.987 0.984  0 0.016 0.000
#> SRR1270723     1  0.0469      0.989 0.988  0 0.012 0.000
#> SRR1270724     1  0.0469      0.989 0.988  0 0.012 0.000
#> SRR1270725     1  0.0000      0.992 1.000  0 0.000 0.000
#> SRR1270726     1  0.0000      0.992 1.000  0 0.000 0.000
#> SRR1270727     1  0.0000      0.992 1.000  0 0.000 0.000
#> SRR1270728     1  0.0188      0.991 0.996  0 0.004 0.000
#> SRR1270729     1  0.0000      0.992 1.000  0 0.000 0.000
#> SRR1270730     1  0.0000      0.992 1.000  0 0.000 0.000
#> SRR1270731     1  0.0000      0.992 1.000  0 0.000 0.000
#> SRR1270732     1  0.0000      0.992 1.000  0 0.000 0.000
#> SRR1270733     1  0.0000      0.992 1.000  0 0.000 0.000
#> SRR1270734     1  0.0000      0.992 1.000  0 0.000 0.000
#> SRR1270735     1  0.0000      0.992 1.000  0 0.000 0.000
#> SRR1270736     1  0.0336      0.990 0.992  0 0.008 0.000
#> SRR1270737     1  0.0336      0.990 0.992  0 0.008 0.000
#> SRR1270738     1  0.0000      0.992 1.000  0 0.000 0.000
#> SRR1270739     1  0.0000      0.992 1.000  0 0.000 0.000
#> SRR1270740     1  0.0469      0.990 0.988  0 0.012 0.000
#> SRR1270741     1  0.0592      0.988 0.984  0 0.016 0.000
#> SRR1270742     1  0.0592      0.988 0.984  0 0.016 0.000
#> SRR1270743     1  0.0188      0.991 0.996  0 0.000 0.004
#> SRR1270744     1  0.0188      0.991 0.996  0 0.000 0.004
#> SRR1270745     1  0.0188      0.991 0.996  0 0.000 0.004
#> SRR1270746     1  0.0188      0.991 0.996  0 0.000 0.004
#> SRR1270747     1  0.1022      0.975 0.968  0 0.032 0.000
#> SRR1270748     1  0.1022      0.975 0.968  0 0.032 0.000
#> SRR1270749     1  0.0921      0.979 0.972  0 0.028 0.000
#> SRR1270750     1  0.0336      0.991 0.992  0 0.008 0.000
#> SRR1270751     1  0.0336      0.990 0.992  0 0.008 0.000
#> SRR1270752     1  0.0188      0.991 0.996  0 0.004 0.000
#> SRR1270753     1  0.0188      0.991 0.996  0 0.004 0.000
#> SRR1270754     1  0.0921      0.979 0.972  0 0.028 0.000
#> SRR1270755     1  0.0921      0.979 0.972  0 0.028 0.000
#> SRR1270756     1  0.0921      0.979 0.972  0 0.028 0.000
#> SRR1270757     1  0.0469      0.990 0.988  0 0.012 0.000
#> SRR1270758     1  0.0469      0.990 0.988  0 0.012 0.000
#> SRR1270759     1  0.0469      0.990 0.988  0 0.012 0.000
#> SRR1270760     1  0.0469      0.990 0.988  0 0.012 0.000
#> SRR1270761     1  0.0592      0.988 0.984  0 0.016 0.000
#> SRR1270762     1  0.0592      0.988 0.984  0 0.016 0.000
#> SRR1270763     1  0.0188      0.991 0.996  0 0.000 0.004
#> SRR1270764     1  0.0188      0.991 0.996  0 0.000 0.004
#> SRR1270765     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270766     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270767     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270768     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270769     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270770     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270771     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270772     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270773     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270774     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270775     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270776     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270777     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270778     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270779     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270780     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270781     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270782     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270783     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270784     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270785     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270786     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270787     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270788     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270789     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270790     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270791     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270792     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270793     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270794     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270795     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270796     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270797     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270798     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270799     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270800     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270801     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270802     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270803     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270804     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270805     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270806     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270807     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270808     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270809     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270810     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270811     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270812     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270813     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270814     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270815     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270816     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270817     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270818     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270819     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270820     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270821     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270822     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270823     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270824     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270825     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270826     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270827     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270828     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270829     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270830     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270831     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270832     3  0.0000      1.000 0.000  0 1.000 0.000
#> SRR1270833     4  0.0707      0.993 0.020  0 0.000 0.980
#> SRR1270834     4  0.0707      0.993 0.020  0 0.000 0.980
#> SRR1270835     4  0.0707      0.993 0.020  0 0.000 0.980
#> SRR1270836     4  0.0707      0.993 0.020  0 0.000 0.980
#> SRR1270837     4  0.0927      0.992 0.016  0 0.008 0.976
#> SRR1270838     4  0.0927      0.992 0.016  0 0.008 0.976
#> SRR1270839     4  0.0927      0.992 0.016  0 0.008 0.976
#> SRR1270840     4  0.0707      0.993 0.020  0 0.000 0.980
#> SRR1270841     4  0.0817      0.990 0.024  0 0.000 0.976
#> SRR1270842     4  0.0707      0.993 0.020  0 0.000 0.980
#> SRR1270843     4  0.0817      0.990 0.024  0 0.000 0.976
#> SRR1270844     4  0.0927      0.985 0.008  0 0.016 0.976
#> SRR1270845     4  0.0927      0.985 0.008  0 0.016 0.976
#> SRR1270846     4  0.0804      0.987 0.008  0 0.012 0.980
#> SRR1270847     4  0.0469      0.991 0.012  0 0.000 0.988
#> SRR1270848     4  0.0469      0.991 0.012  0 0.000 0.988
#> SRR1270849     4  0.0469      0.991 0.012  0 0.000 0.988
#> SRR1270850     4  0.0469      0.991 0.012  0 0.000 0.988
#> SRR1270851     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270852     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270853     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270854     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270855     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270856     2  0.0000      1.000 0.000  1 0.000 0.000
#> SRR1270857     2  0.0000      1.000 0.000  1 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1270715     1  0.2127      0.936 0.892 0.000 0.000 0.000 0.108
#> SRR1270716     1  0.2020      0.940 0.900 0.000 0.000 0.000 0.100
#> SRR1270717     1  0.1908      0.944 0.908 0.000 0.000 0.000 0.092
#> SRR1270718     1  0.1341      0.953 0.944 0.000 0.000 0.000 0.056
#> SRR1270719     1  0.1341      0.953 0.944 0.000 0.000 0.000 0.056
#> SRR1270720     1  0.1270      0.955 0.948 0.000 0.000 0.000 0.052
#> SRR1270721     1  0.1478      0.952 0.936 0.000 0.000 0.000 0.064
#> SRR1270722     1  0.2012      0.946 0.920 0.000 0.020 0.000 0.060
#> SRR1270723     1  0.2012      0.946 0.920 0.000 0.020 0.000 0.060
#> SRR1270724     1  0.2012      0.946 0.920 0.000 0.020 0.000 0.060
#> SRR1270725     1  0.0703      0.959 0.976 0.000 0.000 0.000 0.024
#> SRR1270726     1  0.0510      0.960 0.984 0.000 0.000 0.000 0.016
#> SRR1270727     1  0.0290      0.960 0.992 0.000 0.000 0.000 0.008
#> SRR1270728     1  0.0609      0.959 0.980 0.000 0.000 0.000 0.020
#> SRR1270729     1  0.1732      0.949 0.920 0.000 0.000 0.000 0.080
#> SRR1270730     1  0.1544      0.953 0.932 0.000 0.000 0.000 0.068
#> SRR1270731     1  0.1671      0.950 0.924 0.000 0.000 0.000 0.076
#> SRR1270732     1  0.1478      0.951 0.936 0.000 0.000 0.000 0.064
#> SRR1270733     1  0.1478      0.951 0.936 0.000 0.000 0.000 0.064
#> SRR1270734     1  0.1608      0.950 0.928 0.000 0.000 0.000 0.072
#> SRR1270735     1  0.1544      0.951 0.932 0.000 0.000 0.000 0.068
#> SRR1270736     1  0.1205      0.957 0.956 0.000 0.004 0.000 0.040
#> SRR1270737     1  0.1205      0.957 0.956 0.000 0.004 0.000 0.040
#> SRR1270738     1  0.0290      0.960 0.992 0.000 0.000 0.000 0.008
#> SRR1270739     1  0.0290      0.960 0.992 0.000 0.000 0.000 0.008
#> SRR1270740     1  0.0992      0.959 0.968 0.000 0.008 0.000 0.024
#> SRR1270741     1  0.0898      0.959 0.972 0.000 0.008 0.000 0.020
#> SRR1270742     1  0.0898      0.959 0.972 0.000 0.008 0.000 0.020
#> SRR1270743     1  0.0880      0.958 0.968 0.000 0.000 0.000 0.032
#> SRR1270744     1  0.0880      0.958 0.968 0.000 0.000 0.000 0.032
#> SRR1270745     1  0.0880      0.958 0.968 0.000 0.000 0.000 0.032
#> SRR1270746     1  0.0880      0.958 0.968 0.000 0.000 0.000 0.032
#> SRR1270747     1  0.2344      0.927 0.904 0.000 0.064 0.000 0.032
#> SRR1270748     1  0.2409      0.924 0.900 0.000 0.068 0.000 0.032
#> SRR1270749     1  0.2193      0.933 0.912 0.000 0.060 0.000 0.028
#> SRR1270750     1  0.1205      0.957 0.956 0.000 0.004 0.000 0.040
#> SRR1270751     1  0.1251      0.957 0.956 0.000 0.008 0.000 0.036
#> SRR1270752     1  0.1282      0.956 0.952 0.000 0.004 0.000 0.044
#> SRR1270753     1  0.1205      0.957 0.956 0.000 0.004 0.000 0.040
#> SRR1270754     1  0.1774      0.944 0.932 0.000 0.052 0.000 0.016
#> SRR1270755     1  0.1740      0.944 0.932 0.000 0.056 0.000 0.012
#> SRR1270756     1  0.1740      0.944 0.932 0.000 0.056 0.000 0.012
#> SRR1270757     1  0.1357      0.955 0.948 0.000 0.004 0.000 0.048
#> SRR1270758     1  0.1357      0.955 0.948 0.000 0.004 0.000 0.048
#> SRR1270759     1  0.1430      0.953 0.944 0.000 0.004 0.000 0.052
#> SRR1270760     1  0.1357      0.955 0.948 0.000 0.004 0.000 0.048
#> SRR1270761     1  0.1281      0.958 0.956 0.000 0.012 0.000 0.032
#> SRR1270762     1  0.1364      0.957 0.952 0.000 0.012 0.000 0.036
#> SRR1270763     1  0.0794      0.959 0.972 0.000 0.000 0.000 0.028
#> SRR1270764     1  0.0794      0.959 0.972 0.000 0.000 0.000 0.028
#> SRR1270765     2  0.0000      0.899 0.000 1.000 0.000 0.000 0.000
#> SRR1270766     2  0.0000      0.899 0.000 1.000 0.000 0.000 0.000
#> SRR1270767     2  0.0000      0.899 0.000 1.000 0.000 0.000 0.000
#> SRR1270768     2  0.0000      0.899 0.000 1.000 0.000 0.000 0.000
#> SRR1270769     2  0.0000      0.899 0.000 1.000 0.000 0.000 0.000
#> SRR1270770     2  0.0000      0.899 0.000 1.000 0.000 0.000 0.000
#> SRR1270771     2  0.0000      0.899 0.000 1.000 0.000 0.000 0.000
#> SRR1270772     2  0.0000      0.899 0.000 1.000 0.000 0.000 0.000
#> SRR1270773     2  0.0000      0.899 0.000 1.000 0.000 0.000 0.000
#> SRR1270774     2  0.0000      0.899 0.000 1.000 0.000 0.000 0.000
#> SRR1270775     2  0.0000      0.899 0.000 1.000 0.000 0.000 0.000
#> SRR1270776     2  0.0000      0.899 0.000 1.000 0.000 0.000 0.000
#> SRR1270777     2  0.0000      0.899 0.000 1.000 0.000 0.000 0.000
#> SRR1270778     2  0.0000      0.899 0.000 1.000 0.000 0.000 0.000
#> SRR1270779     2  0.0000      0.899 0.000 1.000 0.000 0.000 0.000
#> SRR1270780     2  0.0000      0.899 0.000 1.000 0.000 0.000 0.000
#> SRR1270781     2  0.0000      0.899 0.000 1.000 0.000 0.000 0.000
#> SRR1270782     2  0.0000      0.899 0.000 1.000 0.000 0.000 0.000
#> SRR1270783     2  0.0000      0.899 0.000 1.000 0.000 0.000 0.000
#> SRR1270784     2  0.0000      0.899 0.000 1.000 0.000 0.000 0.000
#> SRR1270785     2  0.3966      0.795 0.000 0.664 0.000 0.000 0.336
#> SRR1270786     2  0.3949      0.797 0.000 0.668 0.000 0.000 0.332
#> SRR1270787     2  0.3949      0.797 0.000 0.668 0.000 0.000 0.332
#> SRR1270788     2  0.4161      0.754 0.000 0.608 0.000 0.000 0.392
#> SRR1270789     2  0.4150      0.757 0.000 0.612 0.000 0.000 0.388
#> SRR1270790     2  0.4088      0.773 0.000 0.632 0.000 0.000 0.368
#> SRR1270791     2  0.4161      0.754 0.000 0.608 0.000 0.000 0.392
#> SRR1270792     2  0.3074      0.860 0.000 0.804 0.000 0.000 0.196
#> SRR1270793     2  0.3305      0.852 0.000 0.776 0.000 0.000 0.224
#> SRR1270794     2  0.3274      0.853 0.000 0.780 0.000 0.000 0.220
#> SRR1270795     2  0.3274      0.852 0.000 0.780 0.000 0.000 0.220
#> SRR1270796     2  0.3274      0.852 0.000 0.780 0.000 0.000 0.220
#> SRR1270797     2  0.3424      0.844 0.000 0.760 0.000 0.000 0.240
#> SRR1270798     2  0.3109      0.858 0.000 0.800 0.000 0.000 0.200
#> SRR1270799     2  0.3305      0.851 0.000 0.776 0.000 0.000 0.224
#> SRR1270800     2  0.3305      0.851 0.000 0.776 0.000 0.000 0.224
#> SRR1270801     2  0.3837      0.812 0.000 0.692 0.000 0.000 0.308
#> SRR1270802     2  0.3857      0.809 0.000 0.688 0.000 0.000 0.312
#> SRR1270803     2  0.3612      0.833 0.000 0.732 0.000 0.000 0.268
#> SRR1270804     2  0.3684      0.827 0.000 0.720 0.000 0.000 0.280
#> SRR1270805     3  0.0963      0.983 0.000 0.000 0.964 0.000 0.036
#> SRR1270806     3  0.0963      0.983 0.000 0.000 0.964 0.000 0.036
#> SRR1270807     3  0.0880      0.983 0.000 0.000 0.968 0.000 0.032
#> SRR1270808     3  0.1012      0.979 0.000 0.000 0.968 0.012 0.020
#> SRR1270809     3  0.0898      0.981 0.000 0.000 0.972 0.008 0.020
#> SRR1270810     3  0.1012      0.979 0.000 0.000 0.968 0.012 0.020
#> SRR1270811     3  0.1012      0.979 0.000 0.000 0.968 0.012 0.020
#> SRR1270812     3  0.0609      0.982 0.000 0.000 0.980 0.000 0.020
#> SRR1270813     3  0.0609      0.982 0.000 0.000 0.980 0.000 0.020
#> SRR1270814     3  0.0609      0.982 0.000 0.000 0.980 0.000 0.020
#> SRR1270815     3  0.0162      0.984 0.000 0.000 0.996 0.000 0.004
#> SRR1270816     3  0.0162      0.984 0.000 0.000 0.996 0.000 0.004
#> SRR1270817     3  0.0162      0.984 0.000 0.000 0.996 0.000 0.004
#> SRR1270818     3  0.0162      0.984 0.000 0.000 0.996 0.000 0.004
#> SRR1270819     3  0.0510      0.983 0.000 0.000 0.984 0.000 0.016
#> SRR1270820     3  0.0510      0.983 0.000 0.000 0.984 0.000 0.016
#> SRR1270821     3  0.0510      0.983 0.000 0.000 0.984 0.000 0.016
#> SRR1270822     3  0.0162      0.984 0.000 0.000 0.996 0.000 0.004
#> SRR1270823     3  0.0162      0.984 0.000 0.000 0.996 0.000 0.004
#> SRR1270824     3  0.0162      0.984 0.000 0.000 0.996 0.000 0.004
#> SRR1270825     3  0.0162      0.984 0.000 0.000 0.996 0.000 0.004
#> SRR1270826     3  0.0963      0.983 0.000 0.000 0.964 0.000 0.036
#> SRR1270827     3  0.0880      0.983 0.000 0.000 0.968 0.000 0.032
#> SRR1270828     3  0.0963      0.983 0.000 0.000 0.964 0.000 0.036
#> SRR1270829     3  0.0898      0.981 0.000 0.000 0.972 0.008 0.020
#> SRR1270830     3  0.1082      0.979 0.000 0.000 0.964 0.008 0.028
#> SRR1270831     3  0.1082      0.979 0.000 0.000 0.964 0.008 0.028
#> SRR1270832     3  0.0992      0.980 0.000 0.000 0.968 0.008 0.024
#> SRR1270833     4  0.0162      0.988 0.000 0.000 0.000 0.996 0.004
#> SRR1270834     4  0.0000      0.988 0.000 0.000 0.000 1.000 0.000
#> SRR1270835     4  0.0880      0.987 0.000 0.000 0.000 0.968 0.032
#> SRR1270836     4  0.0880      0.987 0.000 0.000 0.000 0.968 0.032
#> SRR1270837     4  0.0703      0.988 0.000 0.000 0.000 0.976 0.024
#> SRR1270838     4  0.0703      0.988 0.000 0.000 0.000 0.976 0.024
#> SRR1270839     4  0.0703      0.988 0.000 0.000 0.000 0.976 0.024
#> SRR1270840     4  0.0880      0.987 0.000 0.000 0.000 0.968 0.032
#> SRR1270841     4  0.0880      0.987 0.000 0.000 0.000 0.968 0.032
#> SRR1270842     4  0.0880      0.987 0.000 0.000 0.000 0.968 0.032
#> SRR1270843     4  0.0880      0.987 0.000 0.000 0.000 0.968 0.032
#> SRR1270844     4  0.0404      0.986 0.000 0.000 0.000 0.988 0.012
#> SRR1270845     4  0.0404      0.986 0.000 0.000 0.000 0.988 0.012
#> SRR1270846     4  0.0404      0.986 0.000 0.000 0.000 0.988 0.012
#> SRR1270847     4  0.0162      0.988 0.000 0.000 0.000 0.996 0.004
#> SRR1270848     4  0.0162      0.988 0.000 0.000 0.000 0.996 0.004
#> SRR1270849     4  0.0162      0.988 0.000 0.000 0.000 0.996 0.004
#> SRR1270850     4  0.0162      0.988 0.000 0.000 0.000 0.996 0.004
#> SRR1270851     2  0.0000      0.899 0.000 1.000 0.000 0.000 0.000
#> SRR1270852     2  0.0000      0.899 0.000 1.000 0.000 0.000 0.000
#> SRR1270853     2  0.0000      0.899 0.000 1.000 0.000 0.000 0.000
#> SRR1270854     2  0.0000      0.899 0.000 1.000 0.000 0.000 0.000
#> SRR1270855     2  0.0000      0.899 0.000 1.000 0.000 0.000 0.000
#> SRR1270856     2  0.0000      0.899 0.000 1.000 0.000 0.000 0.000
#> SRR1270857     2  0.0000      0.899 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5 p6
#> SRR1270715     1  0.1480      0.948 0.940 0.000 0.000 0.000 0.040 NA
#> SRR1270716     1  0.1480      0.948 0.940 0.000 0.000 0.000 0.040 NA
#> SRR1270717     1  0.1480      0.948 0.940 0.000 0.000 0.000 0.040 NA
#> SRR1270718     1  0.2147      0.941 0.896 0.000 0.000 0.000 0.020 NA
#> SRR1270719     1  0.1983      0.944 0.908 0.000 0.000 0.000 0.020 NA
#> SRR1270720     1  0.1895      0.945 0.912 0.000 0.000 0.000 0.016 NA
#> SRR1270721     1  0.2006      0.943 0.904 0.000 0.000 0.000 0.016 NA
#> SRR1270722     1  0.1477      0.946 0.940 0.000 0.008 0.000 0.004 NA
#> SRR1270723     1  0.1477      0.946 0.940 0.000 0.008 0.000 0.004 NA
#> SRR1270724     1  0.1477      0.946 0.940 0.000 0.008 0.000 0.004 NA
#> SRR1270725     1  0.0000      0.955 1.000 0.000 0.000 0.000 0.000 NA
#> SRR1270726     1  0.0000      0.955 1.000 0.000 0.000 0.000 0.000 NA
#> SRR1270727     1  0.0146      0.956 0.996 0.000 0.000 0.000 0.000 NA
#> SRR1270728     1  0.0000      0.955 1.000 0.000 0.000 0.000 0.000 NA
#> SRR1270729     1  0.1257      0.952 0.952 0.000 0.000 0.000 0.028 NA
#> SRR1270730     1  0.1176      0.952 0.956 0.000 0.000 0.000 0.024 NA
#> SRR1270731     1  0.1168      0.953 0.956 0.000 0.000 0.000 0.028 NA
#> SRR1270732     1  0.1918      0.942 0.904 0.000 0.000 0.000 0.008 NA
#> SRR1270733     1  0.1918      0.942 0.904 0.000 0.000 0.000 0.008 NA
#> SRR1270734     1  0.2121      0.937 0.892 0.000 0.000 0.000 0.012 NA
#> SRR1270735     1  0.2121      0.937 0.892 0.000 0.000 0.000 0.012 NA
#> SRR1270736     1  0.1007      0.950 0.956 0.000 0.000 0.000 0.000 NA
#> SRR1270737     1  0.1007      0.950 0.956 0.000 0.000 0.000 0.000 NA
#> SRR1270738     1  0.1588      0.949 0.924 0.000 0.000 0.000 0.004 NA
#> SRR1270739     1  0.1753      0.946 0.912 0.000 0.000 0.000 0.004 NA
#> SRR1270740     1  0.0865      0.950 0.964 0.000 0.000 0.000 0.000 NA
#> SRR1270741     1  0.0865      0.950 0.964 0.000 0.000 0.000 0.000 NA
#> SRR1270742     1  0.0790      0.951 0.968 0.000 0.000 0.000 0.000 NA
#> SRR1270743     1  0.1327      0.950 0.936 0.000 0.000 0.000 0.000 NA
#> SRR1270744     1  0.1327      0.950 0.936 0.000 0.000 0.000 0.000 NA
#> SRR1270745     1  0.1327      0.950 0.936 0.000 0.000 0.000 0.000 NA
#> SRR1270746     1  0.1387      0.949 0.932 0.000 0.000 0.000 0.000 NA
#> SRR1270747     1  0.1972      0.934 0.916 0.000 0.024 0.000 0.004 NA
#> SRR1270748     1  0.1844      0.939 0.924 0.000 0.024 0.000 0.004 NA
#> SRR1270749     1  0.1909      0.937 0.920 0.000 0.024 0.000 0.004 NA
#> SRR1270750     1  0.1477      0.954 0.940 0.000 0.008 0.004 0.000 NA
#> SRR1270751     1  0.1410      0.955 0.944 0.000 0.008 0.004 0.000 NA
#> SRR1270752     1  0.1477      0.954 0.940 0.000 0.008 0.004 0.000 NA
#> SRR1270753     1  0.1477      0.954 0.940 0.000 0.008 0.004 0.000 NA
#> SRR1270754     1  0.1225      0.948 0.952 0.000 0.012 0.000 0.000 NA
#> SRR1270755     1  0.1320      0.947 0.948 0.000 0.016 0.000 0.000 NA
#> SRR1270756     1  0.1320      0.947 0.948 0.000 0.016 0.000 0.000 NA
#> SRR1270757     1  0.1753      0.944 0.912 0.000 0.004 0.000 0.000 NA
#> SRR1270758     1  0.1866      0.944 0.908 0.000 0.008 0.000 0.000 NA
#> SRR1270759     1  0.1753      0.944 0.912 0.000 0.004 0.000 0.000 NA
#> SRR1270760     1  0.1866      0.944 0.908 0.000 0.008 0.000 0.000 NA
#> SRR1270761     1  0.0937      0.950 0.960 0.000 0.000 0.000 0.000 NA
#> SRR1270762     1  0.1152      0.949 0.952 0.000 0.004 0.000 0.000 NA
#> SRR1270763     1  0.0713      0.955 0.972 0.000 0.000 0.000 0.000 NA
#> SRR1270764     1  0.1080      0.956 0.960 0.000 0.004 0.004 0.000 NA
#> SRR1270765     2  0.0146      0.764 0.000 0.996 0.000 0.000 0.004 NA
#> SRR1270766     2  0.0146      0.764 0.000 0.996 0.000 0.000 0.004 NA
#> SRR1270767     2  0.0146      0.764 0.000 0.996 0.000 0.000 0.004 NA
#> SRR1270768     2  0.0458      0.757 0.000 0.984 0.000 0.000 0.016 NA
#> SRR1270769     2  0.0458      0.757 0.000 0.984 0.000 0.000 0.016 NA
#> SRR1270770     2  0.0458      0.757 0.000 0.984 0.000 0.000 0.016 NA
#> SRR1270771     2  0.0458      0.757 0.000 0.984 0.000 0.000 0.016 NA
#> SRR1270772     2  0.0405      0.761 0.000 0.988 0.000 0.000 0.008 NA
#> SRR1270773     2  0.0405      0.761 0.000 0.988 0.000 0.000 0.008 NA
#> SRR1270774     2  0.0405      0.761 0.000 0.988 0.000 0.000 0.008 NA
#> SRR1270775     2  0.0146      0.764 0.000 0.996 0.000 0.000 0.004 NA
#> SRR1270776     2  0.0146      0.764 0.000 0.996 0.000 0.000 0.004 NA
#> SRR1270777     2  0.0146      0.764 0.000 0.996 0.000 0.000 0.004 NA
#> SRR1270778     2  0.0146      0.764 0.000 0.996 0.000 0.000 0.004 NA
#> SRR1270779     2  0.0146      0.764 0.000 0.996 0.000 0.000 0.004 NA
#> SRR1270780     2  0.0146      0.764 0.000 0.996 0.000 0.000 0.004 NA
#> SRR1270781     2  0.0405      0.761 0.000 0.988 0.000 0.000 0.008 NA
#> SRR1270782     2  0.0405      0.761 0.000 0.988 0.000 0.000 0.008 NA
#> SRR1270783     2  0.0363      0.759 0.000 0.988 0.000 0.000 0.012 NA
#> SRR1270784     2  0.0363      0.759 0.000 0.988 0.000 0.000 0.012 NA
#> SRR1270785     5  0.3930      0.879 0.000 0.420 0.000 0.000 0.576 NA
#> SRR1270786     5  0.3930      0.879 0.000 0.420 0.000 0.000 0.576 NA
#> SRR1270787     5  0.3937      0.875 0.000 0.424 0.000 0.000 0.572 NA
#> SRR1270788     5  0.3717      0.884 0.000 0.384 0.000 0.000 0.616 NA
#> SRR1270789     5  0.3747      0.893 0.000 0.396 0.000 0.000 0.604 NA
#> SRR1270790     5  0.3774      0.892 0.000 0.408 0.000 0.000 0.592 NA
#> SRR1270791     5  0.3737      0.890 0.000 0.392 0.000 0.000 0.608 NA
#> SRR1270792     2  0.3841     -0.404 0.000 0.616 0.000 0.000 0.380 NA
#> SRR1270793     2  0.3890     -0.478 0.000 0.596 0.000 0.000 0.400 NA
#> SRR1270794     2  0.3907     -0.507 0.000 0.588 0.000 0.000 0.408 NA
#> SRR1270795     2  0.3864     -0.720 0.000 0.520 0.000 0.000 0.480 NA
#> SRR1270796     2  0.3867     -0.743 0.000 0.512 0.000 0.000 0.488 NA
#> SRR1270797     5  0.3864      0.804 0.000 0.480 0.000 0.000 0.520 NA
#> SRR1270798     2  0.3833     -0.616 0.000 0.556 0.000 0.000 0.444 NA
#> SRR1270799     2  0.3810     -0.556 0.000 0.572 0.000 0.000 0.428 NA
#> SRR1270800     2  0.3823     -0.577 0.000 0.564 0.000 0.000 0.436 NA
#> SRR1270801     5  0.3971      0.876 0.000 0.448 0.000 0.000 0.548 NA
#> SRR1270802     5  0.3971      0.875 0.000 0.448 0.000 0.000 0.548 NA
#> SRR1270803     2  0.3843     -0.614 0.000 0.548 0.000 0.000 0.452 NA
#> SRR1270804     2  0.3862     -0.673 0.000 0.524 0.000 0.000 0.476 NA
#> SRR1270805     3  0.1141      0.975 0.000 0.000 0.948 0.000 0.000 NA
#> SRR1270806     3  0.1075      0.976 0.000 0.000 0.952 0.000 0.000 NA
#> SRR1270807     3  0.1075      0.976 0.000 0.000 0.952 0.000 0.000 NA
#> SRR1270808     3  0.1075      0.976 0.000 0.000 0.952 0.000 0.000 NA
#> SRR1270809     3  0.1075      0.976 0.000 0.000 0.952 0.000 0.000 NA
#> SRR1270810     3  0.1204      0.973 0.000 0.000 0.944 0.000 0.000 NA
#> SRR1270811     3  0.1141      0.975 0.000 0.000 0.948 0.000 0.000 NA
#> SRR1270812     3  0.0363      0.974 0.000 0.000 0.988 0.000 0.000 NA
#> SRR1270813     3  0.0363      0.974 0.000 0.000 0.988 0.000 0.000 NA
#> SRR1270814     3  0.0363      0.974 0.000 0.000 0.988 0.000 0.000 NA
#> SRR1270815     3  0.0146      0.977 0.000 0.000 0.996 0.000 0.000 NA
#> SRR1270816     3  0.0146      0.977 0.000 0.000 0.996 0.000 0.000 NA
#> SRR1270817     3  0.0146      0.977 0.000 0.000 0.996 0.000 0.000 NA
#> SRR1270818     3  0.0146      0.977 0.000 0.000 0.996 0.000 0.000 NA
#> SRR1270819     3  0.0000      0.977 0.000 0.000 1.000 0.000 0.000 NA
#> SRR1270820     3  0.0000      0.977 0.000 0.000 1.000 0.000 0.000 NA
#> SRR1270821     3  0.0000      0.977 0.000 0.000 1.000 0.000 0.000 NA
#> SRR1270822     3  0.0000      0.977 0.000 0.000 1.000 0.000 0.000 NA
#> SRR1270823     3  0.0000      0.977 0.000 0.000 1.000 0.000 0.000 NA
#> SRR1270824     3  0.0000      0.977 0.000 0.000 1.000 0.000 0.000 NA
#> SRR1270825     3  0.0000      0.977 0.000 0.000 1.000 0.000 0.000 NA
#> SRR1270826     3  0.1141      0.976 0.000 0.000 0.948 0.000 0.000 NA
#> SRR1270827     3  0.1007      0.977 0.000 0.000 0.956 0.000 0.000 NA
#> SRR1270828     3  0.1141      0.976 0.000 0.000 0.948 0.000 0.000 NA
#> SRR1270829     3  0.1387      0.970 0.000 0.000 0.932 0.000 0.000 NA
#> SRR1270830     3  0.1387      0.970 0.000 0.000 0.932 0.000 0.000 NA
#> SRR1270831     3  0.1327      0.972 0.000 0.000 0.936 0.000 0.000 NA
#> SRR1270832     3  0.1327      0.972 0.000 0.000 0.936 0.000 0.000 NA
#> SRR1270833     4  0.1265      0.964 0.000 0.000 0.000 0.948 0.008 NA
#> SRR1270834     4  0.1265      0.964 0.000 0.000 0.000 0.948 0.008 NA
#> SRR1270835     4  0.0692      0.962 0.000 0.000 0.000 0.976 0.004 NA
#> SRR1270836     4  0.0692      0.962 0.000 0.000 0.000 0.976 0.004 NA
#> SRR1270837     4  0.0000      0.965 0.000 0.000 0.000 1.000 0.000 NA
#> SRR1270838     4  0.0146      0.965 0.000 0.000 0.000 0.996 0.004 NA
#> SRR1270839     4  0.0000      0.965 0.000 0.000 0.000 1.000 0.000 NA
#> SRR1270840     4  0.0858      0.960 0.000 0.000 0.000 0.968 0.004 NA
#> SRR1270841     4  0.0858      0.960 0.000 0.000 0.000 0.968 0.004 NA
#> SRR1270842     4  0.0858      0.960 0.000 0.000 0.000 0.968 0.004 NA
#> SRR1270843     4  0.0858      0.960 0.000 0.000 0.000 0.968 0.004 NA
#> SRR1270844     4  0.2212      0.943 0.000 0.000 0.000 0.880 0.008 NA
#> SRR1270845     4  0.2212      0.943 0.000 0.000 0.000 0.880 0.008 NA
#> SRR1270846     4  0.2118      0.947 0.000 0.000 0.000 0.888 0.008 NA
#> SRR1270847     4  0.1524      0.962 0.000 0.000 0.000 0.932 0.008 NA
#> SRR1270848     4  0.1524      0.962 0.000 0.000 0.000 0.932 0.008 NA
#> SRR1270849     4  0.1584      0.961 0.000 0.000 0.000 0.928 0.008 NA
#> SRR1270850     4  0.1524      0.962 0.000 0.000 0.000 0.932 0.008 NA
#> SRR1270851     2  0.0405      0.761 0.000 0.988 0.000 0.000 0.008 NA
#> SRR1270852     2  0.0405      0.761 0.000 0.988 0.000 0.000 0.008 NA
#> SRR1270853     2  0.0405      0.761 0.000 0.988 0.000 0.000 0.008 NA
#> SRR1270854     2  0.0000      0.764 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270855     2  0.0000      0.764 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270856     2  0.0000      0.764 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1270857     2  0.0000      0.764 0.000 1.000 0.000 0.000 0.000 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14577 rows and 143 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.4450 0.556   0.556
#> 3 3 1.000           1.000       1.000         0.4210 0.812   0.662
#> 4 4 0.919           0.946       0.958         0.1468 0.911   0.759
#> 5 5 0.953           0.957       0.956         0.0647 0.938   0.780
#> 6 6 0.953           0.957       0.956         0.0688 0.947   0.756

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 4 5

There is also optional best \(k\) = 2 3 4 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1270715     1       0          1  1  0
#> SRR1270716     1       0          1  1  0
#> SRR1270717     1       0          1  1  0
#> SRR1270718     1       0          1  1  0
#> SRR1270719     1       0          1  1  0
#> SRR1270720     1       0          1  1  0
#> SRR1270721     1       0          1  1  0
#> SRR1270722     1       0          1  1  0
#> SRR1270723     1       0          1  1  0
#> SRR1270724     1       0          1  1  0
#> SRR1270725     1       0          1  1  0
#> SRR1270726     1       0          1  1  0
#> SRR1270727     1       0          1  1  0
#> SRR1270728     1       0          1  1  0
#> SRR1270729     1       0          1  1  0
#> SRR1270730     1       0          1  1  0
#> SRR1270731     1       0          1  1  0
#> SRR1270732     1       0          1  1  0
#> SRR1270733     1       0          1  1  0
#> SRR1270734     1       0          1  1  0
#> SRR1270735     1       0          1  1  0
#> SRR1270736     1       0          1  1  0
#> SRR1270737     1       0          1  1  0
#> SRR1270738     1       0          1  1  0
#> SRR1270739     1       0          1  1  0
#> SRR1270740     1       0          1  1  0
#> SRR1270741     1       0          1  1  0
#> SRR1270742     1       0          1  1  0
#> SRR1270743     1       0          1  1  0
#> SRR1270744     1       0          1  1  0
#> SRR1270745     1       0          1  1  0
#> SRR1270746     1       0          1  1  0
#> SRR1270747     1       0          1  1  0
#> SRR1270748     1       0          1  1  0
#> SRR1270749     1       0          1  1  0
#> SRR1270750     1       0          1  1  0
#> SRR1270751     1       0          1  1  0
#> SRR1270752     1       0          1  1  0
#> SRR1270753     1       0          1  1  0
#> SRR1270754     1       0          1  1  0
#> SRR1270755     1       0          1  1  0
#> SRR1270756     1       0          1  1  0
#> SRR1270757     1       0          1  1  0
#> SRR1270758     1       0          1  1  0
#> SRR1270759     1       0          1  1  0
#> SRR1270760     1       0          1  1  0
#> SRR1270761     1       0          1  1  0
#> SRR1270762     1       0          1  1  0
#> SRR1270763     1       0          1  1  0
#> SRR1270764     1       0          1  1  0
#> SRR1270765     2       0          1  0  1
#> SRR1270766     2       0          1  0  1
#> SRR1270767     2       0          1  0  1
#> SRR1270768     2       0          1  0  1
#> SRR1270769     2       0          1  0  1
#> SRR1270770     2       0          1  0  1
#> SRR1270771     2       0          1  0  1
#> SRR1270772     2       0          1  0  1
#> SRR1270773     2       0          1  0  1
#> SRR1270774     2       0          1  0  1
#> SRR1270775     2       0          1  0  1
#> SRR1270776     2       0          1  0  1
#> SRR1270777     2       0          1  0  1
#> SRR1270778     2       0          1  0  1
#> SRR1270779     2       0          1  0  1
#> SRR1270780     2       0          1  0  1
#> SRR1270781     2       0          1  0  1
#> SRR1270782     2       0          1  0  1
#> SRR1270783     2       0          1  0  1
#> SRR1270784     2       0          1  0  1
#> SRR1270785     2       0          1  0  1
#> SRR1270786     2       0          1  0  1
#> SRR1270787     2       0          1  0  1
#> SRR1270788     2       0          1  0  1
#> SRR1270789     2       0          1  0  1
#> SRR1270790     2       0          1  0  1
#> SRR1270791     2       0          1  0  1
#> SRR1270792     2       0          1  0  1
#> SRR1270793     2       0          1  0  1
#> SRR1270794     2       0          1  0  1
#> SRR1270795     2       0          1  0  1
#> SRR1270796     2       0          1  0  1
#> SRR1270797     2       0          1  0  1
#> SRR1270798     2       0          1  0  1
#> SRR1270799     2       0          1  0  1
#> SRR1270800     2       0          1  0  1
#> SRR1270801     2       0          1  0  1
#> SRR1270802     2       0          1  0  1
#> SRR1270803     2       0          1  0  1
#> SRR1270804     2       0          1  0  1
#> SRR1270805     1       0          1  1  0
#> SRR1270806     1       0          1  1  0
#> SRR1270807     1       0          1  1  0
#> SRR1270808     1       0          1  1  0
#> SRR1270809     1       0          1  1  0
#> SRR1270810     1       0          1  1  0
#> SRR1270811     1       0          1  1  0
#> SRR1270812     1       0          1  1  0
#> SRR1270813     1       0          1  1  0
#> SRR1270814     1       0          1  1  0
#> SRR1270815     1       0          1  1  0
#> SRR1270816     1       0          1  1  0
#> SRR1270817     1       0          1  1  0
#> SRR1270818     1       0          1  1  0
#> SRR1270819     1       0          1  1  0
#> SRR1270820     1       0          1  1  0
#> SRR1270821     1       0          1  1  0
#> SRR1270822     1       0          1  1  0
#> SRR1270823     1       0          1  1  0
#> SRR1270824     1       0          1  1  0
#> SRR1270825     1       0          1  1  0
#> SRR1270826     1       0          1  1  0
#> SRR1270827     1       0          1  1  0
#> SRR1270828     1       0          1  1  0
#> SRR1270829     1       0          1  1  0
#> SRR1270830     1       0          1  1  0
#> SRR1270831     1       0          1  1  0
#> SRR1270832     1       0          1  1  0
#> SRR1270833     1       0          1  1  0
#> SRR1270834     1       0          1  1  0
#> SRR1270835     1       0          1  1  0
#> SRR1270836     1       0          1  1  0
#> SRR1270837     1       0          1  1  0
#> SRR1270838     1       0          1  1  0
#> SRR1270839     1       0          1  1  0
#> SRR1270840     1       0          1  1  0
#> SRR1270841     1       0          1  1  0
#> SRR1270842     1       0          1  1  0
#> SRR1270843     1       0          1  1  0
#> SRR1270844     1       0          1  1  0
#> SRR1270845     1       0          1  1  0
#> SRR1270846     1       0          1  1  0
#> SRR1270847     1       0          1  1  0
#> SRR1270848     1       0          1  1  0
#> SRR1270849     1       0          1  1  0
#> SRR1270850     1       0          1  1  0
#> SRR1270851     2       0          1  0  1
#> SRR1270852     2       0          1  0  1
#> SRR1270853     2       0          1  0  1
#> SRR1270854     2       0          1  0  1
#> SRR1270855     2       0          1  0  1
#> SRR1270856     2       0          1  0  1
#> SRR1270857     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette p1 p2 p3
#> SRR1270715     1       0          1  1  0  0
#> SRR1270716     1       0          1  1  0  0
#> SRR1270717     1       0          1  1  0  0
#> SRR1270718     1       0          1  1  0  0
#> SRR1270719     1       0          1  1  0  0
#> SRR1270720     1       0          1  1  0  0
#> SRR1270721     1       0          1  1  0  0
#> SRR1270722     1       0          1  1  0  0
#> SRR1270723     1       0          1  1  0  0
#> SRR1270724     1       0          1  1  0  0
#> SRR1270725     1       0          1  1  0  0
#> SRR1270726     1       0          1  1  0  0
#> SRR1270727     1       0          1  1  0  0
#> SRR1270728     1       0          1  1  0  0
#> SRR1270729     1       0          1  1  0  0
#> SRR1270730     1       0          1  1  0  0
#> SRR1270731     1       0          1  1  0  0
#> SRR1270732     1       0          1  1  0  0
#> SRR1270733     1       0          1  1  0  0
#> SRR1270734     1       0          1  1  0  0
#> SRR1270735     1       0          1  1  0  0
#> SRR1270736     1       0          1  1  0  0
#> SRR1270737     1       0          1  1  0  0
#> SRR1270738     1       0          1  1  0  0
#> SRR1270739     1       0          1  1  0  0
#> SRR1270740     1       0          1  1  0  0
#> SRR1270741     1       0          1  1  0  0
#> SRR1270742     1       0          1  1  0  0
#> SRR1270743     1       0          1  1  0  0
#> SRR1270744     1       0          1  1  0  0
#> SRR1270745     1       0          1  1  0  0
#> SRR1270746     1       0          1  1  0  0
#> SRR1270747     1       0          1  1  0  0
#> SRR1270748     1       0          1  1  0  0
#> SRR1270749     1       0          1  1  0  0
#> SRR1270750     1       0          1  1  0  0
#> SRR1270751     1       0          1  1  0  0
#> SRR1270752     1       0          1  1  0  0
#> SRR1270753     1       0          1  1  0  0
#> SRR1270754     1       0          1  1  0  0
#> SRR1270755     1       0          1  1  0  0
#> SRR1270756     1       0          1  1  0  0
#> SRR1270757     1       0          1  1  0  0
#> SRR1270758     1       0          1  1  0  0
#> SRR1270759     1       0          1  1  0  0
#> SRR1270760     1       0          1  1  0  0
#> SRR1270761     1       0          1  1  0  0
#> SRR1270762     1       0          1  1  0  0
#> SRR1270763     1       0          1  1  0  0
#> SRR1270764     1       0          1  1  0  0
#> SRR1270765     2       0          1  0  1  0
#> SRR1270766     2       0          1  0  1  0
#> SRR1270767     2       0          1  0  1  0
#> SRR1270768     2       0          1  0  1  0
#> SRR1270769     2       0          1  0  1  0
#> SRR1270770     2       0          1  0  1  0
#> SRR1270771     2       0          1  0  1  0
#> SRR1270772     2       0          1  0  1  0
#> SRR1270773     2       0          1  0  1  0
#> SRR1270774     2       0          1  0  1  0
#> SRR1270775     2       0          1  0  1  0
#> SRR1270776     2       0          1  0  1  0
#> SRR1270777     2       0          1  0  1  0
#> SRR1270778     2       0          1  0  1  0
#> SRR1270779     2       0          1  0  1  0
#> SRR1270780     2       0          1  0  1  0
#> SRR1270781     2       0          1  0  1  0
#> SRR1270782     2       0          1  0  1  0
#> SRR1270783     2       0          1  0  1  0
#> SRR1270784     2       0          1  0  1  0
#> SRR1270785     2       0          1  0  1  0
#> SRR1270786     2       0          1  0  1  0
#> SRR1270787     2       0          1  0  1  0
#> SRR1270788     2       0          1  0  1  0
#> SRR1270789     2       0          1  0  1  0
#> SRR1270790     2       0          1  0  1  0
#> SRR1270791     2       0          1  0  1  0
#> SRR1270792     2       0          1  0  1  0
#> SRR1270793     2       0          1  0  1  0
#> SRR1270794     2       0          1  0  1  0
#> SRR1270795     2       0          1  0  1  0
#> SRR1270796     2       0          1  0  1  0
#> SRR1270797     2       0          1  0  1  0
#> SRR1270798     2       0          1  0  1  0
#> SRR1270799     2       0          1  0  1  0
#> SRR1270800     2       0          1  0  1  0
#> SRR1270801     2       0          1  0  1  0
#> SRR1270802     2       0          1  0  1  0
#> SRR1270803     2       0          1  0  1  0
#> SRR1270804     2       0          1  0  1  0
#> SRR1270805     3       0          1  0  0  1
#> SRR1270806     3       0          1  0  0  1
#> SRR1270807     3       0          1  0  0  1
#> SRR1270808     3       0          1  0  0  1
#> SRR1270809     3       0          1  0  0  1
#> SRR1270810     3       0          1  0  0  1
#> SRR1270811     3       0          1  0  0  1
#> SRR1270812     3       0          1  0  0  1
#> SRR1270813     3       0          1  0  0  1
#> SRR1270814     3       0          1  0  0  1
#> SRR1270815     3       0          1  0  0  1
#> SRR1270816     3       0          1  0  0  1
#> SRR1270817     3       0          1  0  0  1
#> SRR1270818     3       0          1  0  0  1
#> SRR1270819     3       0          1  0  0  1
#> SRR1270820     3       0          1  0  0  1
#> SRR1270821     3       0          1  0  0  1
#> SRR1270822     3       0          1  0  0  1
#> SRR1270823     3       0          1  0  0  1
#> SRR1270824     3       0          1  0  0  1
#> SRR1270825     3       0          1  0  0  1
#> SRR1270826     3       0          1  0  0  1
#> SRR1270827     3       0          1  0  0  1
#> SRR1270828     3       0          1  0  0  1
#> SRR1270829     3       0          1  0  0  1
#> SRR1270830     3       0          1  0  0  1
#> SRR1270831     3       0          1  0  0  1
#> SRR1270832     3       0          1  0  0  1
#> SRR1270833     1       0          1  1  0  0
#> SRR1270834     1       0          1  1  0  0
#> SRR1270835     1       0          1  1  0  0
#> SRR1270836     1       0          1  1  0  0
#> SRR1270837     1       0          1  1  0  0
#> SRR1270838     1       0          1  1  0  0
#> SRR1270839     1       0          1  1  0  0
#> SRR1270840     1       0          1  1  0  0
#> SRR1270841     1       0          1  1  0  0
#> SRR1270842     1       0          1  1  0  0
#> SRR1270843     1       0          1  1  0  0
#> SRR1270844     1       0          1  1  0  0
#> SRR1270845     1       0          1  1  0  0
#> SRR1270846     1       0          1  1  0  0
#> SRR1270847     1       0          1  1  0  0
#> SRR1270848     1       0          1  1  0  0
#> SRR1270849     1       0          1  1  0  0
#> SRR1270850     1       0          1  1  0  0
#> SRR1270851     2       0          1  0  1  0
#> SRR1270852     2       0          1  0  1  0
#> SRR1270853     2       0          1  0  1  0
#> SRR1270854     2       0          1  0  1  0
#> SRR1270855     2       0          1  0  1  0
#> SRR1270856     2       0          1  0  1  0
#> SRR1270857     2       0          1  0  1  0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1 p2 p3    p4
#> SRR1270715     1   0.398      0.837 0.760  0  0 0.240
#> SRR1270716     1   0.398      0.837 0.760  0  0 0.240
#> SRR1270717     1   0.398      0.837 0.760  0  0 0.240
#> SRR1270718     1   0.404      0.831 0.752  0  0 0.248
#> SRR1270719     1   0.404      0.831 0.752  0  0 0.248
#> SRR1270720     1   0.404      0.831 0.752  0  0 0.248
#> SRR1270721     1   0.404      0.831 0.752  0  0 0.248
#> SRR1270722     1   0.398      0.837 0.760  0  0 0.240
#> SRR1270723     1   0.398      0.837 0.760  0  0 0.240
#> SRR1270724     1   0.398      0.837 0.760  0  0 0.240
#> SRR1270725     1   0.398      0.837 0.760  0  0 0.240
#> SRR1270726     1   0.398      0.837 0.760  0  0 0.240
#> SRR1270727     1   0.398      0.837 0.760  0  0 0.240
#> SRR1270728     1   0.398      0.837 0.760  0  0 0.240
#> SRR1270729     1   0.398      0.837 0.760  0  0 0.240
#> SRR1270730     1   0.398      0.837 0.760  0  0 0.240
#> SRR1270731     1   0.398      0.837 0.760  0  0 0.240
#> SRR1270732     1   0.404      0.831 0.752  0  0 0.248
#> SRR1270733     1   0.404      0.831 0.752  0  0 0.248
#> SRR1270734     1   0.404      0.831 0.752  0  0 0.248
#> SRR1270735     1   0.404      0.831 0.752  0  0 0.248
#> SRR1270736     1   0.398      0.837 0.760  0  0 0.240
#> SRR1270737     1   0.398      0.837 0.760  0  0 0.240
#> SRR1270738     1   0.398      0.837 0.760  0  0 0.240
#> SRR1270739     1   0.398      0.837 0.760  0  0 0.240
#> SRR1270740     1   0.000      0.856 1.000  0  0 0.000
#> SRR1270741     1   0.000      0.856 1.000  0  0 0.000
#> SRR1270742     1   0.000      0.856 1.000  0  0 0.000
#> SRR1270743     1   0.000      0.856 1.000  0  0 0.000
#> SRR1270744     1   0.000      0.856 1.000  0  0 0.000
#> SRR1270745     1   0.000      0.856 1.000  0  0 0.000
#> SRR1270746     1   0.000      0.856 1.000  0  0 0.000
#> SRR1270747     1   0.000      0.856 1.000  0  0 0.000
#> SRR1270748     1   0.000      0.856 1.000  0  0 0.000
#> SRR1270749     1   0.000      0.856 1.000  0  0 0.000
#> SRR1270750     1   0.000      0.856 1.000  0  0 0.000
#> SRR1270751     1   0.000      0.856 1.000  0  0 0.000
#> SRR1270752     1   0.000      0.856 1.000  0  0 0.000
#> SRR1270753     1   0.000      0.856 1.000  0  0 0.000
#> SRR1270754     1   0.000      0.856 1.000  0  0 0.000
#> SRR1270755     1   0.000      0.856 1.000  0  0 0.000
#> SRR1270756     1   0.000      0.856 1.000  0  0 0.000
#> SRR1270757     1   0.000      0.856 1.000  0  0 0.000
#> SRR1270758     1   0.000      0.856 1.000  0  0 0.000
#> SRR1270759     1   0.000      0.856 1.000  0  0 0.000
#> SRR1270760     1   0.000      0.856 1.000  0  0 0.000
#> SRR1270761     1   0.000      0.856 1.000  0  0 0.000
#> SRR1270762     1   0.000      0.856 1.000  0  0 0.000
#> SRR1270763     1   0.000      0.856 1.000  0  0 0.000
#> SRR1270764     1   0.000      0.856 1.000  0  0 0.000
#> SRR1270765     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270766     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270767     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270768     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270769     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270770     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270771     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270772     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270773     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270774     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270775     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270776     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270777     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270778     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270779     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270780     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270781     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270782     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270783     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270784     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270785     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270786     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270787     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270788     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270789     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270790     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270791     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270792     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270793     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270794     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270795     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270796     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270797     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270798     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270799     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270800     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270801     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270802     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270803     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270804     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270805     3   0.000      1.000 0.000  0  1 0.000
#> SRR1270806     3   0.000      1.000 0.000  0  1 0.000
#> SRR1270807     3   0.000      1.000 0.000  0  1 0.000
#> SRR1270808     3   0.000      1.000 0.000  0  1 0.000
#> SRR1270809     3   0.000      1.000 0.000  0  1 0.000
#> SRR1270810     3   0.000      1.000 0.000  0  1 0.000
#> SRR1270811     3   0.000      1.000 0.000  0  1 0.000
#> SRR1270812     3   0.000      1.000 0.000  0  1 0.000
#> SRR1270813     3   0.000      1.000 0.000  0  1 0.000
#> SRR1270814     3   0.000      1.000 0.000  0  1 0.000
#> SRR1270815     3   0.000      1.000 0.000  0  1 0.000
#> SRR1270816     3   0.000      1.000 0.000  0  1 0.000
#> SRR1270817     3   0.000      1.000 0.000  0  1 0.000
#> SRR1270818     3   0.000      1.000 0.000  0  1 0.000
#> SRR1270819     3   0.000      1.000 0.000  0  1 0.000
#> SRR1270820     3   0.000      1.000 0.000  0  1 0.000
#> SRR1270821     3   0.000      1.000 0.000  0  1 0.000
#> SRR1270822     3   0.000      1.000 0.000  0  1 0.000
#> SRR1270823     3   0.000      1.000 0.000  0  1 0.000
#> SRR1270824     3   0.000      1.000 0.000  0  1 0.000
#> SRR1270825     3   0.000      1.000 0.000  0  1 0.000
#> SRR1270826     3   0.000      1.000 0.000  0  1 0.000
#> SRR1270827     3   0.000      1.000 0.000  0  1 0.000
#> SRR1270828     3   0.000      1.000 0.000  0  1 0.000
#> SRR1270829     3   0.000      1.000 0.000  0  1 0.000
#> SRR1270830     3   0.000      1.000 0.000  0  1 0.000
#> SRR1270831     3   0.000      1.000 0.000  0  1 0.000
#> SRR1270832     3   0.000      1.000 0.000  0  1 0.000
#> SRR1270833     4   0.000      1.000 0.000  0  0 1.000
#> SRR1270834     4   0.000      1.000 0.000  0  0 1.000
#> SRR1270835     4   0.000      1.000 0.000  0  0 1.000
#> SRR1270836     4   0.000      1.000 0.000  0  0 1.000
#> SRR1270837     4   0.000      1.000 0.000  0  0 1.000
#> SRR1270838     4   0.000      1.000 0.000  0  0 1.000
#> SRR1270839     4   0.000      1.000 0.000  0  0 1.000
#> SRR1270840     4   0.000      1.000 0.000  0  0 1.000
#> SRR1270841     4   0.000      1.000 0.000  0  0 1.000
#> SRR1270842     4   0.000      1.000 0.000  0  0 1.000
#> SRR1270843     4   0.000      1.000 0.000  0  0 1.000
#> SRR1270844     4   0.000      1.000 0.000  0  0 1.000
#> SRR1270845     4   0.000      1.000 0.000  0  0 1.000
#> SRR1270846     4   0.000      1.000 0.000  0  0 1.000
#> SRR1270847     4   0.000      1.000 0.000  0  0 1.000
#> SRR1270848     4   0.000      1.000 0.000  0  0 1.000
#> SRR1270849     4   0.000      1.000 0.000  0  0 1.000
#> SRR1270850     4   0.000      1.000 0.000  0  0 1.000
#> SRR1270851     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270852     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270853     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270854     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270855     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270856     2   0.000      1.000 0.000  1  0 0.000
#> SRR1270857     2   0.000      1.000 0.000  1  0 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1 p2 p3 p4    p5
#> SRR1270715     1  0.0000      0.795 1.000  0  0  0 0.000
#> SRR1270716     1  0.0000      0.795 1.000  0  0  0 0.000
#> SRR1270717     1  0.0000      0.795 1.000  0  0  0 0.000
#> SRR1270718     1  0.4030      0.680 0.648  0  0  0 0.352
#> SRR1270719     1  0.4030      0.680 0.648  0  0  0 0.352
#> SRR1270720     1  0.4030      0.680 0.648  0  0  0 0.352
#> SRR1270721     1  0.4030      0.680 0.648  0  0  0 0.352
#> SRR1270722     1  0.0794      0.788 0.972  0  0  0 0.028
#> SRR1270723     1  0.0794      0.788 0.972  0  0  0 0.028
#> SRR1270724     1  0.0794      0.788 0.972  0  0  0 0.028
#> SRR1270725     1  0.0794      0.788 0.972  0  0  0 0.028
#> SRR1270726     1  0.0794      0.788 0.972  0  0  0 0.028
#> SRR1270727     1  0.0794      0.788 0.972  0  0  0 0.028
#> SRR1270728     1  0.0794      0.788 0.972  0  0  0 0.028
#> SRR1270729     1  0.0000      0.795 1.000  0  0  0 0.000
#> SRR1270730     1  0.0000      0.795 1.000  0  0  0 0.000
#> SRR1270731     1  0.0000      0.795 1.000  0  0  0 0.000
#> SRR1270732     1  0.4030      0.680 0.648  0  0  0 0.352
#> SRR1270733     1  0.4030      0.680 0.648  0  0  0 0.352
#> SRR1270734     1  0.4030      0.680 0.648  0  0  0 0.352
#> SRR1270735     1  0.4030      0.680 0.648  0  0  0 0.352
#> SRR1270736     1  0.0794      0.788 0.972  0  0  0 0.028
#> SRR1270737     1  0.0794      0.788 0.972  0  0  0 0.028
#> SRR1270738     1  0.0794      0.788 0.972  0  0  0 0.028
#> SRR1270739     1  0.0794      0.788 0.972  0  0  0 0.028
#> SRR1270740     5  0.4030      1.000 0.352  0  0  0 0.648
#> SRR1270741     5  0.4030      1.000 0.352  0  0  0 0.648
#> SRR1270742     5  0.4030      1.000 0.352  0  0  0 0.648
#> SRR1270743     5  0.4030      1.000 0.352  0  0  0 0.648
#> SRR1270744     5  0.4030      1.000 0.352  0  0  0 0.648
#> SRR1270745     5  0.4030      1.000 0.352  0  0  0 0.648
#> SRR1270746     5  0.4030      1.000 0.352  0  0  0 0.648
#> SRR1270747     5  0.4030      1.000 0.352  0  0  0 0.648
#> SRR1270748     5  0.4030      1.000 0.352  0  0  0 0.648
#> SRR1270749     5  0.4030      1.000 0.352  0  0  0 0.648
#> SRR1270750     5  0.4030      1.000 0.352  0  0  0 0.648
#> SRR1270751     5  0.4030      1.000 0.352  0  0  0 0.648
#> SRR1270752     5  0.4030      1.000 0.352  0  0  0 0.648
#> SRR1270753     5  0.4030      1.000 0.352  0  0  0 0.648
#> SRR1270754     5  0.4030      1.000 0.352  0  0  0 0.648
#> SRR1270755     5  0.4030      1.000 0.352  0  0  0 0.648
#> SRR1270756     5  0.4030      1.000 0.352  0  0  0 0.648
#> SRR1270757     5  0.4030      1.000 0.352  0  0  0 0.648
#> SRR1270758     5  0.4030      1.000 0.352  0  0  0 0.648
#> SRR1270759     5  0.4030      1.000 0.352  0  0  0 0.648
#> SRR1270760     5  0.4030      1.000 0.352  0  0  0 0.648
#> SRR1270761     5  0.4030      1.000 0.352  0  0  0 0.648
#> SRR1270762     5  0.4030      1.000 0.352  0  0  0 0.648
#> SRR1270763     5  0.4030      1.000 0.352  0  0  0 0.648
#> SRR1270764     5  0.4030      1.000 0.352  0  0  0 0.648
#> SRR1270765     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270766     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270767     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270768     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270769     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270770     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270771     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270772     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270773     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270774     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270775     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270776     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270777     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270778     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270779     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270780     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270781     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270782     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270783     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270784     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270785     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270786     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270787     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270788     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270789     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270790     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270791     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270792     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270793     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270794     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270795     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270796     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270797     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270798     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270799     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270800     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270801     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270802     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270803     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270804     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270805     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270806     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270807     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270808     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270809     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270810     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270811     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270812     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270813     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270814     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270815     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270816     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270817     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270818     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270819     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270820     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270821     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270822     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270823     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270824     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270825     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270826     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270827     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270828     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270829     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270830     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270831     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270832     3  0.0000      1.000 0.000  0  1  0 0.000
#> SRR1270833     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270834     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270835     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270836     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270837     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270838     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270839     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270840     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270841     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270842     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270843     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270844     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270845     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270846     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270847     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270848     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270849     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270850     4  0.0000      1.000 0.000  0  0  1 0.000
#> SRR1270851     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270852     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270853     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270854     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270855     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270856     2  0.0000      1.000 0.000  1  0  0 0.000
#> SRR1270857     2  0.0000      1.000 0.000  1  0  0 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1 p2 p3 p4 p5    p6
#> SRR1270715     6  0.0000      0.795 0.000  0  0  0  0 1.000
#> SRR1270716     6  0.0000      0.795 0.000  0  0  0  0 1.000
#> SRR1270717     6  0.0000      0.795 0.000  0  0  0  0 1.000
#> SRR1270718     6  0.3620      0.680 0.352  0  0  0  0 0.648
#> SRR1270719     6  0.3620      0.680 0.352  0  0  0  0 0.648
#> SRR1270720     6  0.3620      0.680 0.352  0  0  0  0 0.648
#> SRR1270721     6  0.3620      0.680 0.352  0  0  0  0 0.648
#> SRR1270722     6  0.0713      0.788 0.028  0  0  0  0 0.972
#> SRR1270723     6  0.0713      0.788 0.028  0  0  0  0 0.972
#> SRR1270724     6  0.0713      0.788 0.028  0  0  0  0 0.972
#> SRR1270725     6  0.0713      0.788 0.028  0  0  0  0 0.972
#> SRR1270726     6  0.0713      0.788 0.028  0  0  0  0 0.972
#> SRR1270727     6  0.0713      0.788 0.028  0  0  0  0 0.972
#> SRR1270728     6  0.0713      0.788 0.028  0  0  0  0 0.972
#> SRR1270729     6  0.0000      0.795 0.000  0  0  0  0 1.000
#> SRR1270730     6  0.0000      0.795 0.000  0  0  0  0 1.000
#> SRR1270731     6  0.0000      0.795 0.000  0  0  0  0 1.000
#> SRR1270732     6  0.3620      0.680 0.352  0  0  0  0 0.648
#> SRR1270733     6  0.3620      0.680 0.352  0  0  0  0 0.648
#> SRR1270734     6  0.3620      0.680 0.352  0  0  0  0 0.648
#> SRR1270735     6  0.3620      0.680 0.352  0  0  0  0 0.648
#> SRR1270736     6  0.0713      0.788 0.028  0  0  0  0 0.972
#> SRR1270737     6  0.0713      0.788 0.028  0  0  0  0 0.972
#> SRR1270738     6  0.0713      0.788 0.028  0  0  0  0 0.972
#> SRR1270739     6  0.0713      0.788 0.028  0  0  0  0 0.972
#> SRR1270740     1  0.3620      1.000 0.648  0  0  0  0 0.352
#> SRR1270741     1  0.3620      1.000 0.648  0  0  0  0 0.352
#> SRR1270742     1  0.3620      1.000 0.648  0  0  0  0 0.352
#> SRR1270743     1  0.3620      1.000 0.648  0  0  0  0 0.352
#> SRR1270744     1  0.3620      1.000 0.648  0  0  0  0 0.352
#> SRR1270745     1  0.3620      1.000 0.648  0  0  0  0 0.352
#> SRR1270746     1  0.3620      1.000 0.648  0  0  0  0 0.352
#> SRR1270747     1  0.3620      1.000 0.648  0  0  0  0 0.352
#> SRR1270748     1  0.3620      1.000 0.648  0  0  0  0 0.352
#> SRR1270749     1  0.3620      1.000 0.648  0  0  0  0 0.352
#> SRR1270750     1  0.3620      1.000 0.648  0  0  0  0 0.352
#> SRR1270751     1  0.3620      1.000 0.648  0  0  0  0 0.352
#> SRR1270752     1  0.3620      1.000 0.648  0  0  0  0 0.352
#> SRR1270753     1  0.3620      1.000 0.648  0  0  0  0 0.352
#> SRR1270754     1  0.3620      1.000 0.648  0  0  0  0 0.352
#> SRR1270755     1  0.3620      1.000 0.648  0  0  0  0 0.352
#> SRR1270756     1  0.3620      1.000 0.648  0  0  0  0 0.352
#> SRR1270757     1  0.3620      1.000 0.648  0  0  0  0 0.352
#> SRR1270758     1  0.3620      1.000 0.648  0  0  0  0 0.352
#> SRR1270759     1  0.3620      1.000 0.648  0  0  0  0 0.352
#> SRR1270760     1  0.3620      1.000 0.648  0  0  0  0 0.352
#> SRR1270761     1  0.3620      1.000 0.648  0  0  0  0 0.352
#> SRR1270762     1  0.3620      1.000 0.648  0  0  0  0 0.352
#> SRR1270763     1  0.3620      1.000 0.648  0  0  0  0 0.352
#> SRR1270764     1  0.3620      1.000 0.648  0  0  0  0 0.352
#> SRR1270765     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270766     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270767     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270768     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270769     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270770     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270771     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270772     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270773     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270774     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270775     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270776     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270777     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270778     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270779     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270780     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270781     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270782     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270783     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270784     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270785     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270786     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270787     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270788     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270789     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270790     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270791     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270792     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270793     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270794     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270795     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270796     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270797     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270798     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270799     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270800     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270801     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270802     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270803     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270804     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270805     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270806     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270807     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270808     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270809     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270810     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270811     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270812     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270813     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270814     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270815     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270816     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270817     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270818     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270819     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270820     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270821     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270822     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270823     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270824     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270825     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270826     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270827     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270828     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270829     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270830     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270831     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270832     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270833     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270834     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270835     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270836     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270837     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270838     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270839     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270840     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270841     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270842     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270843     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270844     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270845     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270846     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270847     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270848     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270849     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270850     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270851     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270852     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270853     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270854     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270855     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270856     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270857     2  0.0000      1.000 0.000  1  0  0  0 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14577 rows and 143 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.4450 0.556   0.556
#> 3 3 0.754           0.957       0.907         0.3426 0.812   0.662
#> 4 4 0.596           0.896       0.798         0.1360 0.911   0.759
#> 5 5 0.763           0.819       0.804         0.1001 1.000   1.000
#> 6 6 0.738           0.914       0.763         0.0625 0.885   0.589

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1270715     1       0          1  1  0
#> SRR1270716     1       0          1  1  0
#> SRR1270717     1       0          1  1  0
#> SRR1270718     1       0          1  1  0
#> SRR1270719     1       0          1  1  0
#> SRR1270720     1       0          1  1  0
#> SRR1270721     1       0          1  1  0
#> SRR1270722     1       0          1  1  0
#> SRR1270723     1       0          1  1  0
#> SRR1270724     1       0          1  1  0
#> SRR1270725     1       0          1  1  0
#> SRR1270726     1       0          1  1  0
#> SRR1270727     1       0          1  1  0
#> SRR1270728     1       0          1  1  0
#> SRR1270729     1       0          1  1  0
#> SRR1270730     1       0          1  1  0
#> SRR1270731     1       0          1  1  0
#> SRR1270732     1       0          1  1  0
#> SRR1270733     1       0          1  1  0
#> SRR1270734     1       0          1  1  0
#> SRR1270735     1       0          1  1  0
#> SRR1270736     1       0          1  1  0
#> SRR1270737     1       0          1  1  0
#> SRR1270738     1       0          1  1  0
#> SRR1270739     1       0          1  1  0
#> SRR1270740     1       0          1  1  0
#> SRR1270741     1       0          1  1  0
#> SRR1270742     1       0          1  1  0
#> SRR1270743     1       0          1  1  0
#> SRR1270744     1       0          1  1  0
#> SRR1270745     1       0          1  1  0
#> SRR1270746     1       0          1  1  0
#> SRR1270747     1       0          1  1  0
#> SRR1270748     1       0          1  1  0
#> SRR1270749     1       0          1  1  0
#> SRR1270750     1       0          1  1  0
#> SRR1270751     1       0          1  1  0
#> SRR1270752     1       0          1  1  0
#> SRR1270753     1       0          1  1  0
#> SRR1270754     1       0          1  1  0
#> SRR1270755     1       0          1  1  0
#> SRR1270756     1       0          1  1  0
#> SRR1270757     1       0          1  1  0
#> SRR1270758     1       0          1  1  0
#> SRR1270759     1       0          1  1  0
#> SRR1270760     1       0          1  1  0
#> SRR1270761     1       0          1  1  0
#> SRR1270762     1       0          1  1  0
#> SRR1270763     1       0          1  1  0
#> SRR1270764     1       0          1  1  0
#> SRR1270765     2       0          1  0  1
#> SRR1270766     2       0          1  0  1
#> SRR1270767     2       0          1  0  1
#> SRR1270768     2       0          1  0  1
#> SRR1270769     2       0          1  0  1
#> SRR1270770     2       0          1  0  1
#> SRR1270771     2       0          1  0  1
#> SRR1270772     2       0          1  0  1
#> SRR1270773     2       0          1  0  1
#> SRR1270774     2       0          1  0  1
#> SRR1270775     2       0          1  0  1
#> SRR1270776     2       0          1  0  1
#> SRR1270777     2       0          1  0  1
#> SRR1270778     2       0          1  0  1
#> SRR1270779     2       0          1  0  1
#> SRR1270780     2       0          1  0  1
#> SRR1270781     2       0          1  0  1
#> SRR1270782     2       0          1  0  1
#> SRR1270783     2       0          1  0  1
#> SRR1270784     2       0          1  0  1
#> SRR1270785     2       0          1  0  1
#> SRR1270786     2       0          1  0  1
#> SRR1270787     2       0          1  0  1
#> SRR1270788     2       0          1  0  1
#> SRR1270789     2       0          1  0  1
#> SRR1270790     2       0          1  0  1
#> SRR1270791     2       0          1  0  1
#> SRR1270792     2       0          1  0  1
#> SRR1270793     2       0          1  0  1
#> SRR1270794     2       0          1  0  1
#> SRR1270795     2       0          1  0  1
#> SRR1270796     2       0          1  0  1
#> SRR1270797     2       0          1  0  1
#> SRR1270798     2       0          1  0  1
#> SRR1270799     2       0          1  0  1
#> SRR1270800     2       0          1  0  1
#> SRR1270801     2       0          1  0  1
#> SRR1270802     2       0          1  0  1
#> SRR1270803     2       0          1  0  1
#> SRR1270804     2       0          1  0  1
#> SRR1270805     1       0          1  1  0
#> SRR1270806     1       0          1  1  0
#> SRR1270807     1       0          1  1  0
#> SRR1270808     1       0          1  1  0
#> SRR1270809     1       0          1  1  0
#> SRR1270810     1       0          1  1  0
#> SRR1270811     1       0          1  1  0
#> SRR1270812     1       0          1  1  0
#> SRR1270813     1       0          1  1  0
#> SRR1270814     1       0          1  1  0
#> SRR1270815     1       0          1  1  0
#> SRR1270816     1       0          1  1  0
#> SRR1270817     1       0          1  1  0
#> SRR1270818     1       0          1  1  0
#> SRR1270819     1       0          1  1  0
#> SRR1270820     1       0          1  1  0
#> SRR1270821     1       0          1  1  0
#> SRR1270822     1       0          1  1  0
#> SRR1270823     1       0          1  1  0
#> SRR1270824     1       0          1  1  0
#> SRR1270825     1       0          1  1  0
#> SRR1270826     1       0          1  1  0
#> SRR1270827     1       0          1  1  0
#> SRR1270828     1       0          1  1  0
#> SRR1270829     1       0          1  1  0
#> SRR1270830     1       0          1  1  0
#> SRR1270831     1       0          1  1  0
#> SRR1270832     1       0          1  1  0
#> SRR1270833     1       0          1  1  0
#> SRR1270834     1       0          1  1  0
#> SRR1270835     1       0          1  1  0
#> SRR1270836     1       0          1  1  0
#> SRR1270837     1       0          1  1  0
#> SRR1270838     1       0          1  1  0
#> SRR1270839     1       0          1  1  0
#> SRR1270840     1       0          1  1  0
#> SRR1270841     1       0          1  1  0
#> SRR1270842     1       0          1  1  0
#> SRR1270843     1       0          1  1  0
#> SRR1270844     1       0          1  1  0
#> SRR1270845     1       0          1  1  0
#> SRR1270846     1       0          1  1  0
#> SRR1270847     1       0          1  1  0
#> SRR1270848     1       0          1  1  0
#> SRR1270849     1       0          1  1  0
#> SRR1270850     1       0          1  1  0
#> SRR1270851     2       0          1  0  1
#> SRR1270852     2       0          1  0  1
#> SRR1270853     2       0          1  0  1
#> SRR1270854     2       0          1  0  1
#> SRR1270855     2       0          1  0  1
#> SRR1270856     2       0          1  0  1
#> SRR1270857     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1270715     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270716     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270717     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270718     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270719     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270720     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270721     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270722     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270723     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270724     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270725     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270726     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270727     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270728     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270729     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270730     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270731     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270732     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270733     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270734     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270735     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270736     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270737     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270738     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270739     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270740     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270741     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270742     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270743     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270744     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270745     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270746     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270747     1  0.1860      0.928 0.948 0.000 0.052
#> SRR1270748     1  0.1860      0.928 0.948 0.000 0.052
#> SRR1270749     1  0.1860      0.928 0.948 0.000 0.052
#> SRR1270750     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270751     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270752     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270753     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270754     1  0.1860      0.928 0.948 0.000 0.052
#> SRR1270755     1  0.1860      0.928 0.948 0.000 0.052
#> SRR1270756     1  0.1860      0.928 0.948 0.000 0.052
#> SRR1270757     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270758     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270759     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270760     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270761     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270762     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270763     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270764     1  0.0000      0.991 1.000 0.000 0.000
#> SRR1270765     2  0.0000      0.909 0.000 1.000 0.000
#> SRR1270766     2  0.0000      0.909 0.000 1.000 0.000
#> SRR1270767     2  0.0000      0.909 0.000 1.000 0.000
#> SRR1270768     2  0.0000      0.909 0.000 1.000 0.000
#> SRR1270769     2  0.0000      0.909 0.000 1.000 0.000
#> SRR1270770     2  0.0000      0.909 0.000 1.000 0.000
#> SRR1270771     2  0.0000      0.909 0.000 1.000 0.000
#> SRR1270772     2  0.0592      0.907 0.000 0.988 0.012
#> SRR1270773     2  0.0592      0.907 0.000 0.988 0.012
#> SRR1270774     2  0.0592      0.907 0.000 0.988 0.012
#> SRR1270775     2  0.0000      0.909 0.000 1.000 0.000
#> SRR1270776     2  0.0000      0.909 0.000 1.000 0.000
#> SRR1270777     2  0.0000      0.909 0.000 1.000 0.000
#> SRR1270778     2  0.0000      0.909 0.000 1.000 0.000
#> SRR1270779     2  0.0000      0.909 0.000 1.000 0.000
#> SRR1270780     2  0.0000      0.909 0.000 1.000 0.000
#> SRR1270781     2  0.0592      0.907 0.000 0.988 0.012
#> SRR1270782     2  0.0592      0.907 0.000 0.988 0.012
#> SRR1270783     2  0.0000      0.909 0.000 1.000 0.000
#> SRR1270784     2  0.0000      0.909 0.000 1.000 0.000
#> SRR1270785     2  0.5254      0.873 0.000 0.736 0.264
#> SRR1270786     2  0.5254      0.873 0.000 0.736 0.264
#> SRR1270787     2  0.5254      0.873 0.000 0.736 0.264
#> SRR1270788     2  0.5138      0.875 0.000 0.748 0.252
#> SRR1270789     2  0.5138      0.875 0.000 0.748 0.252
#> SRR1270790     2  0.5138      0.875 0.000 0.748 0.252
#> SRR1270791     2  0.5138      0.875 0.000 0.748 0.252
#> SRR1270792     2  0.5254      0.873 0.000 0.736 0.264
#> SRR1270793     2  0.5254      0.873 0.000 0.736 0.264
#> SRR1270794     2  0.5254      0.873 0.000 0.736 0.264
#> SRR1270795     2  0.5138      0.875 0.000 0.748 0.252
#> SRR1270796     2  0.5138      0.875 0.000 0.748 0.252
#> SRR1270797     2  0.5138      0.875 0.000 0.748 0.252
#> SRR1270798     2  0.5138      0.875 0.000 0.748 0.252
#> SRR1270799     2  0.5138      0.875 0.000 0.748 0.252
#> SRR1270800     2  0.5138      0.875 0.000 0.748 0.252
#> SRR1270801     2  0.5254      0.873 0.000 0.736 0.264
#> SRR1270802     2  0.5254      0.873 0.000 0.736 0.264
#> SRR1270803     2  0.5138      0.875 0.000 0.748 0.252
#> SRR1270804     2  0.5138      0.875 0.000 0.748 0.252
#> SRR1270805     3  0.5327      1.000 0.272 0.000 0.728
#> SRR1270806     3  0.5327      1.000 0.272 0.000 0.728
#> SRR1270807     3  0.5327      1.000 0.272 0.000 0.728
#> SRR1270808     3  0.5327      1.000 0.272 0.000 0.728
#> SRR1270809     3  0.5327      1.000 0.272 0.000 0.728
#> SRR1270810     3  0.5327      1.000 0.272 0.000 0.728
#> SRR1270811     3  0.5327      1.000 0.272 0.000 0.728
#> SRR1270812     3  0.5327      1.000 0.272 0.000 0.728
#> SRR1270813     3  0.5327      1.000 0.272 0.000 0.728
#> SRR1270814     3  0.5327      1.000 0.272 0.000 0.728
#> SRR1270815     3  0.5327      1.000 0.272 0.000 0.728
#> SRR1270816     3  0.5327      1.000 0.272 0.000 0.728
#> SRR1270817     3  0.5327      1.000 0.272 0.000 0.728
#> SRR1270818     3  0.5327      1.000 0.272 0.000 0.728
#> SRR1270819     3  0.5327      1.000 0.272 0.000 0.728
#> SRR1270820     3  0.5327      1.000 0.272 0.000 0.728
#> SRR1270821     3  0.5327      1.000 0.272 0.000 0.728
#> SRR1270822     3  0.5327      1.000 0.272 0.000 0.728
#> SRR1270823     3  0.5327      1.000 0.272 0.000 0.728
#> SRR1270824     3  0.5327      1.000 0.272 0.000 0.728
#> SRR1270825     3  0.5327      1.000 0.272 0.000 0.728
#> SRR1270826     3  0.5327      1.000 0.272 0.000 0.728
#> SRR1270827     3  0.5327      1.000 0.272 0.000 0.728
#> SRR1270828     3  0.5327      1.000 0.272 0.000 0.728
#> SRR1270829     3  0.5327      1.000 0.272 0.000 0.728
#> SRR1270830     3  0.5327      1.000 0.272 0.000 0.728
#> SRR1270831     3  0.5327      1.000 0.272 0.000 0.728
#> SRR1270832     3  0.5327      1.000 0.272 0.000 0.728
#> SRR1270833     1  0.0424      0.986 0.992 0.000 0.008
#> SRR1270834     1  0.0424      0.986 0.992 0.000 0.008
#> SRR1270835     1  0.0424      0.986 0.992 0.000 0.008
#> SRR1270836     1  0.0424      0.986 0.992 0.000 0.008
#> SRR1270837     1  0.0424      0.986 0.992 0.000 0.008
#> SRR1270838     1  0.0424      0.986 0.992 0.000 0.008
#> SRR1270839     1  0.0424      0.986 0.992 0.000 0.008
#> SRR1270840     1  0.0424      0.986 0.992 0.000 0.008
#> SRR1270841     1  0.0424      0.986 0.992 0.000 0.008
#> SRR1270842     1  0.0424      0.986 0.992 0.000 0.008
#> SRR1270843     1  0.0424      0.986 0.992 0.000 0.008
#> SRR1270844     1  0.0424      0.986 0.992 0.000 0.008
#> SRR1270845     1  0.0424      0.986 0.992 0.000 0.008
#> SRR1270846     1  0.0424      0.986 0.992 0.000 0.008
#> SRR1270847     1  0.0424      0.986 0.992 0.000 0.008
#> SRR1270848     1  0.0424      0.986 0.992 0.000 0.008
#> SRR1270849     1  0.0424      0.986 0.992 0.000 0.008
#> SRR1270850     1  0.0424      0.986 0.992 0.000 0.008
#> SRR1270851     2  0.0592      0.907 0.000 0.988 0.012
#> SRR1270852     2  0.0592      0.907 0.000 0.988 0.012
#> SRR1270853     2  0.0592      0.907 0.000 0.988 0.012
#> SRR1270854     2  0.0000      0.909 0.000 1.000 0.000
#> SRR1270855     2  0.0000      0.909 0.000 1.000 0.000
#> SRR1270856     2  0.0000      0.909 0.000 1.000 0.000
#> SRR1270857     2  0.0000      0.909 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1270715     1  0.1302      0.885 0.956 0.000 0.000 0.044
#> SRR1270716     1  0.1302      0.885 0.956 0.000 0.000 0.044
#> SRR1270717     1  0.1302      0.885 0.956 0.000 0.000 0.044
#> SRR1270718     1  0.1389      0.881 0.952 0.000 0.000 0.048
#> SRR1270719     1  0.1389      0.881 0.952 0.000 0.000 0.048
#> SRR1270720     1  0.1389      0.881 0.952 0.000 0.000 0.048
#> SRR1270721     1  0.1389      0.881 0.952 0.000 0.000 0.048
#> SRR1270722     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> SRR1270723     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> SRR1270724     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> SRR1270725     1  0.0336      0.903 0.992 0.000 0.000 0.008
#> SRR1270726     1  0.0336      0.903 0.992 0.000 0.000 0.008
#> SRR1270727     1  0.0336      0.903 0.992 0.000 0.000 0.008
#> SRR1270728     1  0.0336      0.903 0.992 0.000 0.000 0.008
#> SRR1270729     1  0.1302      0.885 0.956 0.000 0.000 0.044
#> SRR1270730     1  0.1302      0.885 0.956 0.000 0.000 0.044
#> SRR1270731     1  0.1302      0.885 0.956 0.000 0.000 0.044
#> SRR1270732     1  0.1389      0.881 0.952 0.000 0.000 0.048
#> SRR1270733     1  0.1389      0.881 0.952 0.000 0.000 0.048
#> SRR1270734     1  0.1389      0.881 0.952 0.000 0.000 0.048
#> SRR1270735     1  0.1389      0.881 0.952 0.000 0.000 0.048
#> SRR1270736     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> SRR1270737     1  0.0000      0.903 1.000 0.000 0.000 0.000
#> SRR1270738     1  0.0592      0.902 0.984 0.000 0.000 0.016
#> SRR1270739     1  0.0592      0.902 0.984 0.000 0.000 0.016
#> SRR1270740     1  0.1557      0.907 0.944 0.000 0.000 0.056
#> SRR1270741     1  0.1557      0.907 0.944 0.000 0.000 0.056
#> SRR1270742     1  0.1557      0.907 0.944 0.000 0.000 0.056
#> SRR1270743     1  0.1557      0.907 0.944 0.000 0.000 0.056
#> SRR1270744     1  0.1557      0.907 0.944 0.000 0.000 0.056
#> SRR1270745     1  0.1557      0.907 0.944 0.000 0.000 0.056
#> SRR1270746     1  0.1557      0.907 0.944 0.000 0.000 0.056
#> SRR1270747     1  0.2722      0.861 0.904 0.000 0.032 0.064
#> SRR1270748     1  0.2722      0.861 0.904 0.000 0.032 0.064
#> SRR1270749     1  0.2722      0.861 0.904 0.000 0.032 0.064
#> SRR1270750     1  0.1557      0.907 0.944 0.000 0.000 0.056
#> SRR1270751     1  0.1557      0.907 0.944 0.000 0.000 0.056
#> SRR1270752     1  0.1557      0.907 0.944 0.000 0.000 0.056
#> SRR1270753     1  0.1557      0.907 0.944 0.000 0.000 0.056
#> SRR1270754     1  0.2722      0.861 0.904 0.000 0.032 0.064
#> SRR1270755     1  0.2722      0.861 0.904 0.000 0.032 0.064
#> SRR1270756     1  0.2722      0.861 0.904 0.000 0.032 0.064
#> SRR1270757     1  0.1557      0.907 0.944 0.000 0.000 0.056
#> SRR1270758     1  0.1557      0.907 0.944 0.000 0.000 0.056
#> SRR1270759     1  0.1557      0.907 0.944 0.000 0.000 0.056
#> SRR1270760     1  0.1557      0.907 0.944 0.000 0.000 0.056
#> SRR1270761     1  0.1557      0.907 0.944 0.000 0.000 0.056
#> SRR1270762     1  0.1557      0.907 0.944 0.000 0.000 0.056
#> SRR1270763     1  0.1557      0.907 0.944 0.000 0.000 0.056
#> SRR1270764     1  0.1557      0.907 0.944 0.000 0.000 0.056
#> SRR1270765     2  0.5548      0.836 0.000 0.588 0.024 0.388
#> SRR1270766     2  0.5548      0.836 0.000 0.588 0.024 0.388
#> SRR1270767     2  0.5465      0.837 0.000 0.588 0.020 0.392
#> SRR1270768     2  0.5626      0.837 0.000 0.588 0.028 0.384
#> SRR1270769     2  0.5626      0.837 0.000 0.588 0.028 0.384
#> SRR1270770     2  0.5626      0.837 0.000 0.588 0.028 0.384
#> SRR1270771     2  0.5626      0.837 0.000 0.588 0.028 0.384
#> SRR1270772     2  0.6637      0.826 0.000 0.572 0.104 0.324
#> SRR1270773     2  0.6637      0.826 0.000 0.572 0.104 0.324
#> SRR1270774     2  0.6637      0.826 0.000 0.572 0.104 0.324
#> SRR1270775     2  0.5626      0.837 0.000 0.588 0.028 0.384
#> SRR1270776     2  0.5626      0.837 0.000 0.588 0.028 0.384
#> SRR1270777     2  0.5626      0.837 0.000 0.588 0.028 0.384
#> SRR1270778     2  0.5626      0.837 0.000 0.588 0.028 0.384
#> SRR1270779     2  0.5626      0.837 0.000 0.588 0.028 0.384
#> SRR1270780     2  0.5626      0.837 0.000 0.588 0.028 0.384
#> SRR1270781     2  0.6637      0.826 0.000 0.572 0.104 0.324
#> SRR1270782     2  0.6637      0.826 0.000 0.572 0.104 0.324
#> SRR1270783     2  0.5626      0.837 0.000 0.588 0.028 0.384
#> SRR1270784     2  0.5626      0.837 0.000 0.588 0.028 0.384
#> SRR1270785     2  0.1888      0.783 0.000 0.940 0.044 0.016
#> SRR1270786     2  0.1888      0.783 0.000 0.940 0.044 0.016
#> SRR1270787     2  0.1888      0.783 0.000 0.940 0.044 0.016
#> SRR1270788     2  0.0000      0.787 0.000 1.000 0.000 0.000
#> SRR1270789     2  0.0000      0.787 0.000 1.000 0.000 0.000
#> SRR1270790     2  0.0000      0.787 0.000 1.000 0.000 0.000
#> SRR1270791     2  0.0000      0.787 0.000 1.000 0.000 0.000
#> SRR1270792     2  0.1888      0.783 0.000 0.940 0.044 0.016
#> SRR1270793     2  0.1888      0.783 0.000 0.940 0.044 0.016
#> SRR1270794     2  0.1888      0.783 0.000 0.940 0.044 0.016
#> SRR1270795     2  0.0000      0.787 0.000 1.000 0.000 0.000
#> SRR1270796     2  0.0000      0.787 0.000 1.000 0.000 0.000
#> SRR1270797     2  0.0000      0.787 0.000 1.000 0.000 0.000
#> SRR1270798     2  0.0000      0.787 0.000 1.000 0.000 0.000
#> SRR1270799     2  0.0000      0.787 0.000 1.000 0.000 0.000
#> SRR1270800     2  0.0000      0.787 0.000 1.000 0.000 0.000
#> SRR1270801     2  0.1888      0.783 0.000 0.940 0.044 0.016
#> SRR1270802     2  0.1888      0.783 0.000 0.940 0.044 0.016
#> SRR1270803     2  0.0000      0.787 0.000 1.000 0.000 0.000
#> SRR1270804     2  0.0000      0.787 0.000 1.000 0.000 0.000
#> SRR1270805     3  0.3806      0.973 0.156 0.000 0.824 0.020
#> SRR1270806     3  0.3806      0.973 0.156 0.000 0.824 0.020
#> SRR1270807     3  0.3806      0.973 0.156 0.000 0.824 0.020
#> SRR1270808     3  0.4010      0.970 0.156 0.000 0.816 0.028
#> SRR1270809     3  0.4010      0.970 0.156 0.000 0.816 0.028
#> SRR1270810     3  0.4010      0.970 0.156 0.000 0.816 0.028
#> SRR1270811     3  0.4010      0.970 0.156 0.000 0.816 0.028
#> SRR1270812     3  0.4452      0.974 0.156 0.000 0.796 0.048
#> SRR1270813     3  0.4452      0.974 0.156 0.000 0.796 0.048
#> SRR1270814     3  0.4452      0.974 0.156 0.000 0.796 0.048
#> SRR1270815     3  0.4197      0.975 0.156 0.000 0.808 0.036
#> SRR1270816     3  0.4197      0.975 0.156 0.000 0.808 0.036
#> SRR1270817     3  0.4197      0.975 0.156 0.000 0.808 0.036
#> SRR1270818     3  0.4197      0.975 0.156 0.000 0.808 0.036
#> SRR1270819     3  0.4452      0.974 0.156 0.000 0.796 0.048
#> SRR1270820     3  0.4452      0.974 0.156 0.000 0.796 0.048
#> SRR1270821     3  0.4452      0.974 0.156 0.000 0.796 0.048
#> SRR1270822     3  0.4452      0.974 0.156 0.000 0.796 0.048
#> SRR1270823     3  0.4452      0.974 0.156 0.000 0.796 0.048
#> SRR1270824     3  0.4452      0.974 0.156 0.000 0.796 0.048
#> SRR1270825     3  0.4452      0.974 0.156 0.000 0.796 0.048
#> SRR1270826     3  0.3577      0.974 0.156 0.000 0.832 0.012
#> SRR1270827     3  0.3577      0.974 0.156 0.000 0.832 0.012
#> SRR1270828     3  0.3577      0.974 0.156 0.000 0.832 0.012
#> SRR1270829     3  0.4010      0.970 0.156 0.000 0.816 0.028
#> SRR1270830     3  0.4010      0.970 0.156 0.000 0.816 0.028
#> SRR1270831     3  0.4010      0.970 0.156 0.000 0.816 0.028
#> SRR1270832     3  0.4010      0.970 0.156 0.000 0.816 0.028
#> SRR1270833     4  0.4996      1.000 0.484 0.000 0.000 0.516
#> SRR1270834     4  0.4996      1.000 0.484 0.000 0.000 0.516
#> SRR1270835     4  0.4996      1.000 0.484 0.000 0.000 0.516
#> SRR1270836     4  0.4996      1.000 0.484 0.000 0.000 0.516
#> SRR1270837     4  0.4996      1.000 0.484 0.000 0.000 0.516
#> SRR1270838     4  0.4996      1.000 0.484 0.000 0.000 0.516
#> SRR1270839     4  0.4996      1.000 0.484 0.000 0.000 0.516
#> SRR1270840     4  0.4996      1.000 0.484 0.000 0.000 0.516
#> SRR1270841     4  0.4996      1.000 0.484 0.000 0.000 0.516
#> SRR1270842     4  0.4996      1.000 0.484 0.000 0.000 0.516
#> SRR1270843     4  0.4996      1.000 0.484 0.000 0.000 0.516
#> SRR1270844     4  0.4996      1.000 0.484 0.000 0.000 0.516
#> SRR1270845     4  0.4996      1.000 0.484 0.000 0.000 0.516
#> SRR1270846     4  0.4996      1.000 0.484 0.000 0.000 0.516
#> SRR1270847     4  0.4996      1.000 0.484 0.000 0.000 0.516
#> SRR1270848     4  0.4996      1.000 0.484 0.000 0.000 0.516
#> SRR1270849     4  0.4996      1.000 0.484 0.000 0.000 0.516
#> SRR1270850     4  0.4996      1.000 0.484 0.000 0.000 0.516
#> SRR1270851     2  0.6637      0.826 0.000 0.572 0.104 0.324
#> SRR1270852     2  0.6637      0.826 0.000 0.572 0.104 0.324
#> SRR1270853     2  0.6637      0.826 0.000 0.572 0.104 0.324
#> SRR1270854     2  0.5465      0.837 0.000 0.588 0.020 0.392
#> SRR1270855     2  0.5465      0.837 0.000 0.588 0.020 0.392
#> SRR1270856     2  0.5465      0.837 0.000 0.588 0.020 0.392
#> SRR1270857     2  0.5465      0.837 0.000 0.588 0.020 0.392

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4 p5
#> SRR1270715     1  0.5029      0.747 0.648 0.000 0.000 0.060 NA
#> SRR1270716     1  0.5029      0.747 0.648 0.000 0.000 0.060 NA
#> SRR1270717     1  0.5029      0.747 0.648 0.000 0.000 0.060 NA
#> SRR1270718     1  0.5067      0.744 0.648 0.000 0.000 0.064 NA
#> SRR1270719     1  0.5067      0.744 0.648 0.000 0.000 0.064 NA
#> SRR1270720     1  0.5067      0.744 0.648 0.000 0.000 0.064 NA
#> SRR1270721     1  0.5067      0.744 0.648 0.000 0.000 0.064 NA
#> SRR1270722     1  0.4374      0.763 0.700 0.000 0.000 0.028 NA
#> SRR1270723     1  0.4374      0.763 0.700 0.000 0.000 0.028 NA
#> SRR1270724     1  0.4374      0.763 0.700 0.000 0.000 0.028 NA
#> SRR1270725     1  0.4616      0.758 0.676 0.000 0.000 0.036 NA
#> SRR1270726     1  0.4616      0.758 0.676 0.000 0.000 0.036 NA
#> SRR1270727     1  0.4616      0.758 0.676 0.000 0.000 0.036 NA
#> SRR1270728     1  0.4616      0.758 0.676 0.000 0.000 0.036 NA
#> SRR1270729     1  0.5087      0.744 0.644 0.000 0.000 0.064 NA
#> SRR1270730     1  0.5087      0.744 0.644 0.000 0.000 0.064 NA
#> SRR1270731     1  0.5087      0.744 0.644 0.000 0.000 0.064 NA
#> SRR1270732     1  0.5067      0.744 0.648 0.000 0.000 0.064 NA
#> SRR1270733     1  0.5067      0.744 0.648 0.000 0.000 0.064 NA
#> SRR1270734     1  0.5067      0.744 0.648 0.000 0.000 0.064 NA
#> SRR1270735     1  0.5067      0.744 0.648 0.000 0.000 0.064 NA
#> SRR1270736     1  0.4485      0.760 0.680 0.000 0.000 0.028 NA
#> SRR1270737     1  0.4485      0.760 0.680 0.000 0.000 0.028 NA
#> SRR1270738     1  0.4822      0.754 0.664 0.000 0.000 0.048 NA
#> SRR1270739     1  0.4822      0.754 0.664 0.000 0.000 0.048 NA
#> SRR1270740     1  0.0162      0.763 0.996 0.000 0.000 0.000 NA
#> SRR1270741     1  0.0162      0.763 0.996 0.000 0.000 0.000 NA
#> SRR1270742     1  0.0162      0.763 0.996 0.000 0.000 0.000 NA
#> SRR1270743     1  0.0000      0.764 1.000 0.000 0.000 0.000 NA
#> SRR1270744     1  0.0000      0.764 1.000 0.000 0.000 0.000 NA
#> SRR1270745     1  0.0000      0.764 1.000 0.000 0.000 0.000 NA
#> SRR1270746     1  0.0000      0.764 1.000 0.000 0.000 0.000 NA
#> SRR1270747     1  0.0854      0.750 0.976 0.000 0.012 0.004 NA
#> SRR1270748     1  0.0854      0.750 0.976 0.000 0.012 0.004 NA
#> SRR1270749     1  0.0854      0.750 0.976 0.000 0.012 0.004 NA
#> SRR1270750     1  0.0000      0.764 1.000 0.000 0.000 0.000 NA
#> SRR1270751     1  0.0000      0.764 1.000 0.000 0.000 0.000 NA
#> SRR1270752     1  0.0000      0.764 1.000 0.000 0.000 0.000 NA
#> SRR1270753     1  0.0000      0.764 1.000 0.000 0.000 0.000 NA
#> SRR1270754     1  0.0854      0.750 0.976 0.000 0.012 0.004 NA
#> SRR1270755     1  0.0854      0.750 0.976 0.000 0.012 0.004 NA
#> SRR1270756     1  0.0854      0.750 0.976 0.000 0.012 0.004 NA
#> SRR1270757     1  0.0000      0.764 1.000 0.000 0.000 0.000 NA
#> SRR1270758     1  0.0000      0.764 1.000 0.000 0.000 0.000 NA
#> SRR1270759     1  0.0000      0.764 1.000 0.000 0.000 0.000 NA
#> SRR1270760     1  0.0000      0.764 1.000 0.000 0.000 0.000 NA
#> SRR1270761     1  0.0162      0.763 0.996 0.000 0.000 0.000 NA
#> SRR1270762     1  0.0162      0.763 0.996 0.000 0.000 0.000 NA
#> SRR1270763     1  0.0000      0.764 1.000 0.000 0.000 0.000 NA
#> SRR1270764     1  0.0000      0.764 1.000 0.000 0.000 0.000 NA
#> SRR1270765     2  0.4300      0.800 0.000 0.524 0.000 0.000 NA
#> SRR1270766     2  0.4300      0.800 0.000 0.524 0.000 0.000 NA
#> SRR1270767     2  0.4300      0.800 0.000 0.524 0.000 0.000 NA
#> SRR1270768     2  0.4994      0.800 0.000 0.524 0.012 0.012 NA
#> SRR1270769     2  0.4994      0.800 0.000 0.524 0.012 0.012 NA
#> SRR1270770     2  0.4994      0.800 0.000 0.524 0.012 0.012 NA
#> SRR1270771     2  0.4994      0.800 0.000 0.524 0.012 0.012 NA
#> SRR1270772     2  0.5690      0.789 0.000 0.496 0.012 0.052 NA
#> SRR1270773     2  0.5690      0.789 0.000 0.496 0.012 0.052 NA
#> SRR1270774     2  0.5690      0.789 0.000 0.496 0.012 0.052 NA
#> SRR1270775     2  0.4648      0.800 0.000 0.524 0.000 0.012 NA
#> SRR1270776     2  0.4648      0.800 0.000 0.524 0.000 0.012 NA
#> SRR1270777     2  0.4648      0.800 0.000 0.524 0.000 0.012 NA
#> SRR1270778     2  0.4648      0.800 0.000 0.524 0.000 0.012 NA
#> SRR1270779     2  0.4648      0.800 0.000 0.524 0.000 0.012 NA
#> SRR1270780     2  0.4648      0.800 0.000 0.524 0.000 0.012 NA
#> SRR1270781     2  0.5690      0.789 0.000 0.496 0.012 0.052 NA
#> SRR1270782     2  0.5690      0.789 0.000 0.496 0.012 0.052 NA
#> SRR1270783     2  0.4899      0.800 0.000 0.524 0.008 0.012 NA
#> SRR1270784     2  0.4899      0.800 0.000 0.524 0.008 0.012 NA
#> SRR1270785     2  0.3077      0.711 0.000 0.864 0.008 0.100 NA
#> SRR1270786     2  0.3077      0.711 0.000 0.864 0.008 0.100 NA
#> SRR1270787     2  0.3077      0.711 0.000 0.864 0.008 0.100 NA
#> SRR1270788     2  0.0000      0.722 0.000 1.000 0.000 0.000 NA
#> SRR1270789     2  0.0000      0.722 0.000 1.000 0.000 0.000 NA
#> SRR1270790     2  0.0000      0.722 0.000 1.000 0.000 0.000 NA
#> SRR1270791     2  0.0000      0.722 0.000 1.000 0.000 0.000 NA
#> SRR1270792     2  0.3077      0.711 0.000 0.864 0.008 0.100 NA
#> SRR1270793     2  0.3077      0.711 0.000 0.864 0.008 0.100 NA
#> SRR1270794     2  0.3077      0.711 0.000 0.864 0.008 0.100 NA
#> SRR1270795     2  0.0000      0.722 0.000 1.000 0.000 0.000 NA
#> SRR1270796     2  0.0000      0.722 0.000 1.000 0.000 0.000 NA
#> SRR1270797     2  0.0000      0.722 0.000 1.000 0.000 0.000 NA
#> SRR1270798     2  0.0000      0.722 0.000 1.000 0.000 0.000 NA
#> SRR1270799     2  0.0000      0.722 0.000 1.000 0.000 0.000 NA
#> SRR1270800     2  0.0000      0.722 0.000 1.000 0.000 0.000 NA
#> SRR1270801     2  0.3077      0.711 0.000 0.864 0.008 0.100 NA
#> SRR1270802     2  0.3077      0.711 0.000 0.864 0.008 0.100 NA
#> SRR1270803     2  0.0162      0.722 0.000 0.996 0.004 0.000 NA
#> SRR1270804     2  0.0162      0.722 0.000 0.996 0.004 0.000 NA
#> SRR1270805     3  0.4282      0.928 0.036 0.000 0.804 0.052 NA
#> SRR1270806     3  0.4282      0.928 0.036 0.000 0.804 0.052 NA
#> SRR1270807     3  0.4282      0.928 0.036 0.000 0.804 0.052 NA
#> SRR1270808     3  0.4017      0.926 0.036 0.000 0.820 0.040 NA
#> SRR1270809     3  0.4017      0.926 0.036 0.000 0.820 0.040 NA
#> SRR1270810     3  0.4017      0.926 0.036 0.000 0.820 0.040 NA
#> SRR1270811     3  0.4017      0.926 0.036 0.000 0.820 0.040 NA
#> SRR1270812     3  0.2518      0.927 0.036 0.000 0.908 0.020 NA
#> SRR1270813     3  0.2518      0.927 0.036 0.000 0.908 0.020 NA
#> SRR1270814     3  0.2518      0.927 0.036 0.000 0.908 0.020 NA
#> SRR1270815     3  0.1568      0.931 0.036 0.000 0.944 0.020 NA
#> SRR1270816     3  0.1568      0.931 0.036 0.000 0.944 0.020 NA
#> SRR1270817     3  0.1568      0.931 0.036 0.000 0.944 0.020 NA
#> SRR1270818     3  0.1568      0.931 0.036 0.000 0.944 0.020 NA
#> SRR1270819     3  0.2518      0.927 0.036 0.000 0.908 0.020 NA
#> SRR1270820     3  0.2518      0.927 0.036 0.000 0.908 0.020 NA
#> SRR1270821     3  0.2518      0.927 0.036 0.000 0.908 0.020 NA
#> SRR1270822     3  0.1822      0.931 0.036 0.000 0.936 0.024 NA
#> SRR1270823     3  0.1822      0.931 0.036 0.000 0.936 0.024 NA
#> SRR1270824     3  0.1822      0.931 0.036 0.000 0.936 0.024 NA
#> SRR1270825     3  0.1822      0.931 0.036 0.000 0.936 0.024 NA
#> SRR1270826     3  0.4111      0.930 0.036 0.000 0.816 0.048 NA
#> SRR1270827     3  0.4111      0.930 0.036 0.000 0.816 0.048 NA
#> SRR1270828     3  0.4111      0.930 0.036 0.000 0.816 0.048 NA
#> SRR1270829     3  0.4039      0.926 0.036 0.000 0.820 0.044 NA
#> SRR1270830     3  0.4039      0.926 0.036 0.000 0.820 0.044 NA
#> SRR1270831     3  0.4039      0.926 0.036 0.000 0.820 0.044 NA
#> SRR1270832     3  0.4039      0.926 0.036 0.000 0.820 0.044 NA
#> SRR1270833     4  0.4622      0.974 0.264 0.000 0.000 0.692 NA
#> SRR1270834     4  0.4622      0.974 0.264 0.000 0.000 0.692 NA
#> SRR1270835     4  0.3636      0.974 0.272 0.000 0.000 0.728 NA
#> SRR1270836     4  0.3636      0.974 0.272 0.000 0.000 0.728 NA
#> SRR1270837     4  0.4114      0.971 0.272 0.000 0.000 0.712 NA
#> SRR1270838     4  0.4114      0.971 0.272 0.000 0.000 0.712 NA
#> SRR1270839     4  0.4114      0.971 0.272 0.000 0.000 0.712 NA
#> SRR1270840     4  0.3636      0.974 0.272 0.000 0.000 0.728 NA
#> SRR1270841     4  0.3636      0.974 0.272 0.000 0.000 0.728 NA
#> SRR1270842     4  0.3636      0.974 0.272 0.000 0.000 0.728 NA
#> SRR1270843     4  0.3636      0.974 0.272 0.000 0.000 0.728 NA
#> SRR1270844     4  0.4878      0.971 0.264 0.000 0.000 0.676 NA
#> SRR1270845     4  0.4878      0.971 0.264 0.000 0.000 0.676 NA
#> SRR1270846     4  0.4878      0.971 0.264 0.000 0.000 0.676 NA
#> SRR1270847     4  0.4622      0.974 0.264 0.000 0.000 0.692 NA
#> SRR1270848     4  0.4622      0.974 0.264 0.000 0.000 0.692 NA
#> SRR1270849     4  0.4622      0.974 0.264 0.000 0.000 0.692 NA
#> SRR1270850     4  0.4622      0.974 0.264 0.000 0.000 0.692 NA
#> SRR1270851     2  0.5690      0.789 0.000 0.496 0.012 0.052 NA
#> SRR1270852     2  0.5690      0.789 0.000 0.496 0.012 0.052 NA
#> SRR1270853     2  0.5690      0.789 0.000 0.496 0.012 0.052 NA
#> SRR1270854     2  0.4300      0.800 0.000 0.524 0.000 0.000 NA
#> SRR1270855     2  0.4300      0.800 0.000 0.524 0.000 0.000 NA
#> SRR1270856     2  0.4300      0.800 0.000 0.524 0.000 0.000 NA
#> SRR1270857     2  0.4300      0.800 0.000 0.524 0.000 0.000 NA

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1270715     6  0.4445      0.950 0.396 0.000 0.000 0.032 0.000 0.572
#> SRR1270716     6  0.4445      0.950 0.396 0.000 0.000 0.032 0.000 0.572
#> SRR1270717     6  0.4445      0.950 0.396 0.000 0.000 0.032 0.000 0.572
#> SRR1270718     6  0.4735      0.949 0.392 0.000 0.000 0.036 0.008 0.564
#> SRR1270719     6  0.4735      0.949 0.392 0.000 0.000 0.036 0.008 0.564
#> SRR1270720     6  0.4735      0.949 0.392 0.000 0.000 0.036 0.008 0.564
#> SRR1270721     6  0.4735      0.949 0.392 0.000 0.000 0.036 0.008 0.564
#> SRR1270722     6  0.4757      0.841 0.468 0.000 0.000 0.000 0.048 0.484
#> SRR1270723     6  0.4757      0.841 0.468 0.000 0.000 0.000 0.048 0.484
#> SRR1270724     6  0.4757      0.841 0.468 0.000 0.000 0.000 0.048 0.484
#> SRR1270725     6  0.4516      0.936 0.420 0.000 0.000 0.008 0.020 0.552
#> SRR1270726     6  0.4516      0.936 0.420 0.000 0.000 0.008 0.020 0.552
#> SRR1270727     6  0.4516      0.936 0.420 0.000 0.000 0.008 0.020 0.552
#> SRR1270728     6  0.4516      0.936 0.420 0.000 0.000 0.008 0.020 0.552
#> SRR1270729     6  0.4500      0.949 0.392 0.000 0.000 0.036 0.000 0.572
#> SRR1270730     6  0.4500      0.949 0.392 0.000 0.000 0.036 0.000 0.572
#> SRR1270731     6  0.4500      0.949 0.392 0.000 0.000 0.036 0.000 0.572
#> SRR1270732     6  0.4735      0.949 0.392 0.000 0.000 0.036 0.008 0.564
#> SRR1270733     6  0.4735      0.949 0.392 0.000 0.000 0.036 0.008 0.564
#> SRR1270734     6  0.4735      0.949 0.392 0.000 0.000 0.036 0.008 0.564
#> SRR1270735     6  0.4735      0.949 0.392 0.000 0.000 0.036 0.008 0.564
#> SRR1270736     6  0.4499      0.918 0.428 0.000 0.000 0.000 0.032 0.540
#> SRR1270737     6  0.4499      0.918 0.428 0.000 0.000 0.000 0.032 0.540
#> SRR1270738     6  0.4672      0.941 0.416 0.000 0.000 0.012 0.024 0.548
#> SRR1270739     6  0.4672      0.941 0.416 0.000 0.000 0.012 0.024 0.548
#> SRR1270740     1  0.0865      0.963 0.964 0.000 0.000 0.000 0.036 0.000
#> SRR1270741     1  0.0865      0.963 0.964 0.000 0.000 0.000 0.036 0.000
#> SRR1270742     1  0.0865      0.963 0.964 0.000 0.000 0.000 0.036 0.000
#> SRR1270743     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1270744     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1270745     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1270746     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1270747     1  0.1370      0.953 0.948 0.000 0.012 0.004 0.036 0.000
#> SRR1270748     1  0.1370      0.953 0.948 0.000 0.012 0.004 0.036 0.000
#> SRR1270749     1  0.1370      0.953 0.948 0.000 0.012 0.004 0.036 0.000
#> SRR1270750     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1270751     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1270752     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1270753     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1270754     1  0.1370      0.953 0.948 0.000 0.012 0.004 0.036 0.000
#> SRR1270755     1  0.1370      0.953 0.948 0.000 0.012 0.004 0.036 0.000
#> SRR1270756     1  0.1370      0.953 0.948 0.000 0.012 0.004 0.036 0.000
#> SRR1270757     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1270758     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1270759     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1270760     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1270761     1  0.0865      0.963 0.964 0.000 0.000 0.000 0.036 0.000
#> SRR1270762     1  0.0865      0.963 0.964 0.000 0.000 0.000 0.036 0.000
#> SRR1270763     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1270764     1  0.0000      0.973 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1270765     2  0.0260      0.901 0.000 0.992 0.000 0.000 0.000 0.008
#> SRR1270766     2  0.0260      0.901 0.000 0.992 0.000 0.000 0.000 0.008
#> SRR1270767     2  0.0000      0.902 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270768     2  0.0820      0.902 0.000 0.972 0.000 0.016 0.000 0.012
#> SRR1270769     2  0.0820      0.902 0.000 0.972 0.000 0.016 0.000 0.012
#> SRR1270770     2  0.0820      0.902 0.000 0.972 0.000 0.016 0.000 0.012
#> SRR1270771     2  0.0820      0.902 0.000 0.972 0.000 0.016 0.000 0.012
#> SRR1270772     2  0.3851      0.782 0.000 0.780 0.000 0.024 0.032 0.164
#> SRR1270773     2  0.3851      0.782 0.000 0.780 0.000 0.024 0.032 0.164
#> SRR1270774     2  0.3851      0.782 0.000 0.780 0.000 0.024 0.032 0.164
#> SRR1270775     2  0.0622      0.903 0.000 0.980 0.000 0.008 0.000 0.012
#> SRR1270776     2  0.0622      0.903 0.000 0.980 0.000 0.008 0.000 0.012
#> SRR1270777     2  0.0622      0.903 0.000 0.980 0.000 0.008 0.000 0.012
#> SRR1270778     2  0.0622      0.903 0.000 0.980 0.000 0.008 0.000 0.012
#> SRR1270779     2  0.0622      0.903 0.000 0.980 0.000 0.008 0.000 0.012
#> SRR1270780     2  0.0622      0.903 0.000 0.980 0.000 0.008 0.000 0.012
#> SRR1270781     2  0.3851      0.782 0.000 0.780 0.000 0.024 0.032 0.164
#> SRR1270782     2  0.3851      0.782 0.000 0.780 0.000 0.024 0.032 0.164
#> SRR1270783     2  0.0820      0.902 0.000 0.972 0.000 0.016 0.000 0.012
#> SRR1270784     2  0.0820      0.902 0.000 0.972 0.000 0.016 0.000 0.012
#> SRR1270785     5  0.5947      0.874 0.000 0.300 0.000 0.080 0.556 0.064
#> SRR1270786     5  0.5947      0.874 0.000 0.300 0.000 0.080 0.556 0.064
#> SRR1270787     5  0.5947      0.874 0.000 0.300 0.000 0.080 0.556 0.064
#> SRR1270788     5  0.3547      0.918 0.000 0.332 0.000 0.000 0.668 0.000
#> SRR1270789     5  0.3547      0.918 0.000 0.332 0.000 0.000 0.668 0.000
#> SRR1270790     5  0.3547      0.918 0.000 0.332 0.000 0.000 0.668 0.000
#> SRR1270791     5  0.3547      0.918 0.000 0.332 0.000 0.000 0.668 0.000
#> SRR1270792     5  0.5941      0.875 0.000 0.300 0.000 0.084 0.556 0.060
#> SRR1270793     5  0.5941      0.875 0.000 0.300 0.000 0.084 0.556 0.060
#> SRR1270794     5  0.5941      0.875 0.000 0.300 0.000 0.084 0.556 0.060
#> SRR1270795     5  0.3547      0.918 0.000 0.332 0.000 0.000 0.668 0.000
#> SRR1270796     5  0.3547      0.918 0.000 0.332 0.000 0.000 0.668 0.000
#> SRR1270797     5  0.3547      0.918 0.000 0.332 0.000 0.000 0.668 0.000
#> SRR1270798     5  0.3547      0.918 0.000 0.332 0.000 0.000 0.668 0.000
#> SRR1270799     5  0.3547      0.918 0.000 0.332 0.000 0.000 0.668 0.000
#> SRR1270800     5  0.3547      0.918 0.000 0.332 0.000 0.000 0.668 0.000
#> SRR1270801     5  0.5941      0.875 0.000 0.300 0.000 0.084 0.556 0.060
#> SRR1270802     5  0.5941      0.875 0.000 0.300 0.000 0.084 0.556 0.060
#> SRR1270803     5  0.3547      0.918 0.000 0.332 0.000 0.000 0.668 0.000
#> SRR1270804     5  0.3547      0.918 0.000 0.332 0.000 0.000 0.668 0.000
#> SRR1270805     3  0.4244      0.890 0.008 0.000 0.780 0.020 0.100 0.092
#> SRR1270806     3  0.4244      0.890 0.008 0.000 0.780 0.020 0.100 0.092
#> SRR1270807     3  0.4244      0.890 0.008 0.000 0.780 0.020 0.100 0.092
#> SRR1270808     3  0.4435      0.881 0.008 0.000 0.764 0.024 0.080 0.124
#> SRR1270809     3  0.4435      0.881 0.008 0.000 0.764 0.024 0.080 0.124
#> SRR1270810     3  0.4435      0.881 0.008 0.000 0.764 0.024 0.080 0.124
#> SRR1270811     3  0.4435      0.881 0.008 0.000 0.764 0.024 0.080 0.124
#> SRR1270812     3  0.1819      0.890 0.008 0.000 0.932 0.004 0.024 0.032
#> SRR1270813     3  0.1819      0.890 0.008 0.000 0.932 0.004 0.024 0.032
#> SRR1270814     3  0.1819      0.890 0.008 0.000 0.932 0.004 0.024 0.032
#> SRR1270815     3  0.1167      0.893 0.008 0.000 0.960 0.012 0.020 0.000
#> SRR1270816     3  0.1167      0.893 0.008 0.000 0.960 0.012 0.020 0.000
#> SRR1270817     3  0.1167      0.893 0.008 0.000 0.960 0.012 0.020 0.000
#> SRR1270818     3  0.1167      0.893 0.008 0.000 0.960 0.012 0.020 0.000
#> SRR1270819     3  0.1819      0.890 0.008 0.000 0.932 0.004 0.024 0.032
#> SRR1270820     3  0.1819      0.890 0.008 0.000 0.932 0.004 0.024 0.032
#> SRR1270821     3  0.1819      0.890 0.008 0.000 0.932 0.004 0.024 0.032
#> SRR1270822     3  0.1251      0.893 0.008 0.000 0.956 0.012 0.024 0.000
#> SRR1270823     3  0.1251      0.893 0.008 0.000 0.956 0.012 0.024 0.000
#> SRR1270824     3  0.1251      0.893 0.008 0.000 0.956 0.012 0.024 0.000
#> SRR1270825     3  0.1251      0.893 0.008 0.000 0.956 0.012 0.024 0.000
#> SRR1270826     3  0.4157      0.891 0.008 0.000 0.784 0.016 0.104 0.088
#> SRR1270827     3  0.4157      0.891 0.008 0.000 0.784 0.016 0.104 0.088
#> SRR1270828     3  0.4157      0.891 0.008 0.000 0.784 0.016 0.104 0.088
#> SRR1270829     3  0.4451      0.882 0.008 0.000 0.764 0.024 0.088 0.116
#> SRR1270830     3  0.4451      0.882 0.008 0.000 0.764 0.024 0.088 0.116
#> SRR1270831     3  0.4451      0.882 0.008 0.000 0.764 0.024 0.088 0.116
#> SRR1270832     3  0.4451      0.882 0.008 0.000 0.764 0.024 0.088 0.116
#> SRR1270833     4  0.3053      0.946 0.144 0.000 0.004 0.828 0.000 0.024
#> SRR1270834     4  0.3053      0.946 0.144 0.000 0.004 0.828 0.000 0.024
#> SRR1270835     4  0.4496      0.946 0.168 0.000 0.004 0.740 0.068 0.020
#> SRR1270836     4  0.4496      0.946 0.168 0.000 0.004 0.740 0.068 0.020
#> SRR1270837     4  0.4969      0.940 0.168 0.000 0.004 0.708 0.088 0.032
#> SRR1270838     4  0.4969      0.940 0.168 0.000 0.004 0.708 0.088 0.032
#> SRR1270839     4  0.4969      0.940 0.168 0.000 0.004 0.708 0.088 0.032
#> SRR1270840     4  0.4496      0.946 0.168 0.000 0.004 0.740 0.068 0.020
#> SRR1270841     4  0.4496      0.946 0.168 0.000 0.004 0.740 0.068 0.020
#> SRR1270842     4  0.4496      0.946 0.168 0.000 0.004 0.740 0.068 0.020
#> SRR1270843     4  0.4496      0.946 0.168 0.000 0.004 0.740 0.068 0.020
#> SRR1270844     4  0.3809      0.941 0.144 0.000 0.004 0.796 0.024 0.032
#> SRR1270845     4  0.3809      0.941 0.144 0.000 0.004 0.796 0.024 0.032
#> SRR1270846     4  0.3809      0.941 0.144 0.000 0.004 0.796 0.024 0.032
#> SRR1270847     4  0.3053      0.946 0.144 0.000 0.004 0.828 0.000 0.024
#> SRR1270848     4  0.3053      0.946 0.144 0.000 0.004 0.828 0.000 0.024
#> SRR1270849     4  0.3053      0.946 0.144 0.000 0.004 0.828 0.000 0.024
#> SRR1270850     4  0.3053      0.946 0.144 0.000 0.004 0.828 0.000 0.024
#> SRR1270851     2  0.3892      0.782 0.000 0.780 0.000 0.028 0.032 0.160
#> SRR1270852     2  0.3892      0.782 0.000 0.780 0.000 0.028 0.032 0.160
#> SRR1270853     2  0.3892      0.782 0.000 0.780 0.000 0.028 0.032 0.160
#> SRR1270854     2  0.0260      0.902 0.000 0.992 0.008 0.000 0.000 0.000
#> SRR1270855     2  0.0260      0.902 0.000 0.992 0.008 0.000 0.000 0.000
#> SRR1270856     2  0.0260      0.902 0.000 0.992 0.008 0.000 0.000 0.000
#> SRR1270857     2  0.0260      0.902 0.000 0.992 0.008 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14577 rows and 143 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.4450 0.556   0.556
#> 3 3 1.000           0.991       0.990         0.3141 0.862   0.751
#> 4 4 0.872           0.951       0.961         0.2096 0.879   0.709
#> 5 5 0.925           0.967       0.958         0.0899 0.897   0.670
#> 6 6 0.915           0.909       0.921         0.0417 0.967   0.856

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 5

There is also optional best \(k\) = 2 3 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1270715     1       0          1  1  0
#> SRR1270716     1       0          1  1  0
#> SRR1270717     1       0          1  1  0
#> SRR1270718     1       0          1  1  0
#> SRR1270719     1       0          1  1  0
#> SRR1270720     1       0          1  1  0
#> SRR1270721     1       0          1  1  0
#> SRR1270722     1       0          1  1  0
#> SRR1270723     1       0          1  1  0
#> SRR1270724     1       0          1  1  0
#> SRR1270725     1       0          1  1  0
#> SRR1270726     1       0          1  1  0
#> SRR1270727     1       0          1  1  0
#> SRR1270728     1       0          1  1  0
#> SRR1270729     1       0          1  1  0
#> SRR1270730     1       0          1  1  0
#> SRR1270731     1       0          1  1  0
#> SRR1270732     1       0          1  1  0
#> SRR1270733     1       0          1  1  0
#> SRR1270734     1       0          1  1  0
#> SRR1270735     1       0          1  1  0
#> SRR1270736     1       0          1  1  0
#> SRR1270737     1       0          1  1  0
#> SRR1270738     1       0          1  1  0
#> SRR1270739     1       0          1  1  0
#> SRR1270740     1       0          1  1  0
#> SRR1270741     1       0          1  1  0
#> SRR1270742     1       0          1  1  0
#> SRR1270743     1       0          1  1  0
#> SRR1270744     1       0          1  1  0
#> SRR1270745     1       0          1  1  0
#> SRR1270746     1       0          1  1  0
#> SRR1270747     1       0          1  1  0
#> SRR1270748     1       0          1  1  0
#> SRR1270749     1       0          1  1  0
#> SRR1270750     1       0          1  1  0
#> SRR1270751     1       0          1  1  0
#> SRR1270752     1       0          1  1  0
#> SRR1270753     1       0          1  1  0
#> SRR1270754     1       0          1  1  0
#> SRR1270755     1       0          1  1  0
#> SRR1270756     1       0          1  1  0
#> SRR1270757     1       0          1  1  0
#> SRR1270758     1       0          1  1  0
#> SRR1270759     1       0          1  1  0
#> SRR1270760     1       0          1  1  0
#> SRR1270761     1       0          1  1  0
#> SRR1270762     1       0          1  1  0
#> SRR1270763     1       0          1  1  0
#> SRR1270764     1       0          1  1  0
#> SRR1270765     2       0          1  0  1
#> SRR1270766     2       0          1  0  1
#> SRR1270767     2       0          1  0  1
#> SRR1270768     2       0          1  0  1
#> SRR1270769     2       0          1  0  1
#> SRR1270770     2       0          1  0  1
#> SRR1270771     2       0          1  0  1
#> SRR1270772     2       0          1  0  1
#> SRR1270773     2       0          1  0  1
#> SRR1270774     2       0          1  0  1
#> SRR1270775     2       0          1  0  1
#> SRR1270776     2       0          1  0  1
#> SRR1270777     2       0          1  0  1
#> SRR1270778     2       0          1  0  1
#> SRR1270779     2       0          1  0  1
#> SRR1270780     2       0          1  0  1
#> SRR1270781     2       0          1  0  1
#> SRR1270782     2       0          1  0  1
#> SRR1270783     2       0          1  0  1
#> SRR1270784     2       0          1  0  1
#> SRR1270785     2       0          1  0  1
#> SRR1270786     2       0          1  0  1
#> SRR1270787     2       0          1  0  1
#> SRR1270788     2       0          1  0  1
#> SRR1270789     2       0          1  0  1
#> SRR1270790     2       0          1  0  1
#> SRR1270791     2       0          1  0  1
#> SRR1270792     2       0          1  0  1
#> SRR1270793     2       0          1  0  1
#> SRR1270794     2       0          1  0  1
#> SRR1270795     2       0          1  0  1
#> SRR1270796     2       0          1  0  1
#> SRR1270797     2       0          1  0  1
#> SRR1270798     2       0          1  0  1
#> SRR1270799     2       0          1  0  1
#> SRR1270800     2       0          1  0  1
#> SRR1270801     2       0          1  0  1
#> SRR1270802     2       0          1  0  1
#> SRR1270803     2       0          1  0  1
#> SRR1270804     2       0          1  0  1
#> SRR1270805     1       0          1  1  0
#> SRR1270806     1       0          1  1  0
#> SRR1270807     1       0          1  1  0
#> SRR1270808     1       0          1  1  0
#> SRR1270809     1       0          1  1  0
#> SRR1270810     1       0          1  1  0
#> SRR1270811     1       0          1  1  0
#> SRR1270812     1       0          1  1  0
#> SRR1270813     1       0          1  1  0
#> SRR1270814     1       0          1  1  0
#> SRR1270815     1       0          1  1  0
#> SRR1270816     1       0          1  1  0
#> SRR1270817     1       0          1  1  0
#> SRR1270818     1       0          1  1  0
#> SRR1270819     1       0          1  1  0
#> SRR1270820     1       0          1  1  0
#> SRR1270821     1       0          1  1  0
#> SRR1270822     1       0          1  1  0
#> SRR1270823     1       0          1  1  0
#> SRR1270824     1       0          1  1  0
#> SRR1270825     1       0          1  1  0
#> SRR1270826     1       0          1  1  0
#> SRR1270827     1       0          1  1  0
#> SRR1270828     1       0          1  1  0
#> SRR1270829     1       0          1  1  0
#> SRR1270830     1       0          1  1  0
#> SRR1270831     1       0          1  1  0
#> SRR1270832     1       0          1  1  0
#> SRR1270833     1       0          1  1  0
#> SRR1270834     1       0          1  1  0
#> SRR1270835     1       0          1  1  0
#> SRR1270836     1       0          1  1  0
#> SRR1270837     1       0          1  1  0
#> SRR1270838     1       0          1  1  0
#> SRR1270839     1       0          1  1  0
#> SRR1270840     1       0          1  1  0
#> SRR1270841     1       0          1  1  0
#> SRR1270842     1       0          1  1  0
#> SRR1270843     1       0          1  1  0
#> SRR1270844     1       0          1  1  0
#> SRR1270845     1       0          1  1  0
#> SRR1270846     1       0          1  1  0
#> SRR1270847     1       0          1  1  0
#> SRR1270848     1       0          1  1  0
#> SRR1270849     1       0          1  1  0
#> SRR1270850     1       0          1  1  0
#> SRR1270851     2       0          1  0  1
#> SRR1270852     2       0          1  0  1
#> SRR1270853     2       0          1  0  1
#> SRR1270854     2       0          1  0  1
#> SRR1270855     2       0          1  0  1
#> SRR1270856     2       0          1  0  1
#> SRR1270857     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1 p2    p3
#> SRR1270715     1  0.1163      0.978 0.972  0 0.028
#> SRR1270716     1  0.1163      0.978 0.972  0 0.028
#> SRR1270717     1  0.1163      0.978 0.972  0 0.028
#> SRR1270718     1  0.1163      0.978 0.972  0 0.028
#> SRR1270719     1  0.1163      0.978 0.972  0 0.028
#> SRR1270720     1  0.1163      0.978 0.972  0 0.028
#> SRR1270721     1  0.1163      0.978 0.972  0 0.028
#> SRR1270722     1  0.1163      0.978 0.972  0 0.028
#> SRR1270723     1  0.1163      0.978 0.972  0 0.028
#> SRR1270724     1  0.1163      0.978 0.972  0 0.028
#> SRR1270725     1  0.1163      0.978 0.972  0 0.028
#> SRR1270726     1  0.1163      0.978 0.972  0 0.028
#> SRR1270727     1  0.1163      0.978 0.972  0 0.028
#> SRR1270728     1  0.1163      0.978 0.972  0 0.028
#> SRR1270729     1  0.1163      0.978 0.972  0 0.028
#> SRR1270730     1  0.1163      0.978 0.972  0 0.028
#> SRR1270731     1  0.1163      0.978 0.972  0 0.028
#> SRR1270732     1  0.1163      0.978 0.972  0 0.028
#> SRR1270733     1  0.1163      0.978 0.972  0 0.028
#> SRR1270734     1  0.1163      0.978 0.972  0 0.028
#> SRR1270735     1  0.1163      0.978 0.972  0 0.028
#> SRR1270736     1  0.1163      0.978 0.972  0 0.028
#> SRR1270737     1  0.1163      0.978 0.972  0 0.028
#> SRR1270738     1  0.1163      0.978 0.972  0 0.028
#> SRR1270739     1  0.1163      0.978 0.972  0 0.028
#> SRR1270740     1  0.0000      0.988 1.000  0 0.000
#> SRR1270741     1  0.0000      0.988 1.000  0 0.000
#> SRR1270742     1  0.0000      0.988 1.000  0 0.000
#> SRR1270743     1  0.0000      0.988 1.000  0 0.000
#> SRR1270744     1  0.0000      0.988 1.000  0 0.000
#> SRR1270745     1  0.0000      0.988 1.000  0 0.000
#> SRR1270746     1  0.0000      0.988 1.000  0 0.000
#> SRR1270747     1  0.0000      0.988 1.000  0 0.000
#> SRR1270748     1  0.0000      0.988 1.000  0 0.000
#> SRR1270749     1  0.0000      0.988 1.000  0 0.000
#> SRR1270750     1  0.0000      0.988 1.000  0 0.000
#> SRR1270751     1  0.0000      0.988 1.000  0 0.000
#> SRR1270752     1  0.0000      0.988 1.000  0 0.000
#> SRR1270753     1  0.0000      0.988 1.000  0 0.000
#> SRR1270754     1  0.0000      0.988 1.000  0 0.000
#> SRR1270755     1  0.0000      0.988 1.000  0 0.000
#> SRR1270756     1  0.0000      0.988 1.000  0 0.000
#> SRR1270757     1  0.0000      0.988 1.000  0 0.000
#> SRR1270758     1  0.0000      0.988 1.000  0 0.000
#> SRR1270759     1  0.0000      0.988 1.000  0 0.000
#> SRR1270760     1  0.0000      0.988 1.000  0 0.000
#> SRR1270761     1  0.0000      0.988 1.000  0 0.000
#> SRR1270762     1  0.0000      0.988 1.000  0 0.000
#> SRR1270763     1  0.0000      0.988 1.000  0 0.000
#> SRR1270764     1  0.0000      0.988 1.000  0 0.000
#> SRR1270765     2  0.0000      1.000 0.000  1 0.000
#> SRR1270766     2  0.0000      1.000 0.000  1 0.000
#> SRR1270767     2  0.0000      1.000 0.000  1 0.000
#> SRR1270768     2  0.0000      1.000 0.000  1 0.000
#> SRR1270769     2  0.0000      1.000 0.000  1 0.000
#> SRR1270770     2  0.0000      1.000 0.000  1 0.000
#> SRR1270771     2  0.0000      1.000 0.000  1 0.000
#> SRR1270772     2  0.0000      1.000 0.000  1 0.000
#> SRR1270773     2  0.0000      1.000 0.000  1 0.000
#> SRR1270774     2  0.0000      1.000 0.000  1 0.000
#> SRR1270775     2  0.0000      1.000 0.000  1 0.000
#> SRR1270776     2  0.0000      1.000 0.000  1 0.000
#> SRR1270777     2  0.0000      1.000 0.000  1 0.000
#> SRR1270778     2  0.0000      1.000 0.000  1 0.000
#> SRR1270779     2  0.0000      1.000 0.000  1 0.000
#> SRR1270780     2  0.0000      1.000 0.000  1 0.000
#> SRR1270781     2  0.0000      1.000 0.000  1 0.000
#> SRR1270782     2  0.0000      1.000 0.000  1 0.000
#> SRR1270783     2  0.0000      1.000 0.000  1 0.000
#> SRR1270784     2  0.0000      1.000 0.000  1 0.000
#> SRR1270785     2  0.0000      1.000 0.000  1 0.000
#> SRR1270786     2  0.0000      1.000 0.000  1 0.000
#> SRR1270787     2  0.0000      1.000 0.000  1 0.000
#> SRR1270788     2  0.0000      1.000 0.000  1 0.000
#> SRR1270789     2  0.0000      1.000 0.000  1 0.000
#> SRR1270790     2  0.0000      1.000 0.000  1 0.000
#> SRR1270791     2  0.0000      1.000 0.000  1 0.000
#> SRR1270792     2  0.0000      1.000 0.000  1 0.000
#> SRR1270793     2  0.0000      1.000 0.000  1 0.000
#> SRR1270794     2  0.0000      1.000 0.000  1 0.000
#> SRR1270795     2  0.0000      1.000 0.000  1 0.000
#> SRR1270796     2  0.0000      1.000 0.000  1 0.000
#> SRR1270797     2  0.0000      1.000 0.000  1 0.000
#> SRR1270798     2  0.0000      1.000 0.000  1 0.000
#> SRR1270799     2  0.0000      1.000 0.000  1 0.000
#> SRR1270800     2  0.0000      1.000 0.000  1 0.000
#> SRR1270801     2  0.0000      1.000 0.000  1 0.000
#> SRR1270802     2  0.0000      1.000 0.000  1 0.000
#> SRR1270803     2  0.0000      1.000 0.000  1 0.000
#> SRR1270804     2  0.0000      1.000 0.000  1 0.000
#> SRR1270805     1  0.0424      0.986 0.992  0 0.008
#> SRR1270806     1  0.0424      0.986 0.992  0 0.008
#> SRR1270807     1  0.0424      0.986 0.992  0 0.008
#> SRR1270808     1  0.0424      0.986 0.992  0 0.008
#> SRR1270809     1  0.0424      0.986 0.992  0 0.008
#> SRR1270810     1  0.0424      0.986 0.992  0 0.008
#> SRR1270811     1  0.0424      0.986 0.992  0 0.008
#> SRR1270812     1  0.0424      0.986 0.992  0 0.008
#> SRR1270813     1  0.0424      0.986 0.992  0 0.008
#> SRR1270814     1  0.0424      0.986 0.992  0 0.008
#> SRR1270815     1  0.0424      0.986 0.992  0 0.008
#> SRR1270816     1  0.0424      0.986 0.992  0 0.008
#> SRR1270817     1  0.0424      0.986 0.992  0 0.008
#> SRR1270818     1  0.0424      0.986 0.992  0 0.008
#> SRR1270819     1  0.0424      0.986 0.992  0 0.008
#> SRR1270820     1  0.0424      0.986 0.992  0 0.008
#> SRR1270821     1  0.0424      0.986 0.992  0 0.008
#> SRR1270822     1  0.0424      0.986 0.992  0 0.008
#> SRR1270823     1  0.0424      0.986 0.992  0 0.008
#> SRR1270824     1  0.0424      0.986 0.992  0 0.008
#> SRR1270825     1  0.0424      0.986 0.992  0 0.008
#> SRR1270826     1  0.0424      0.986 0.992  0 0.008
#> SRR1270827     1  0.0424      0.986 0.992  0 0.008
#> SRR1270828     1  0.0424      0.986 0.992  0 0.008
#> SRR1270829     1  0.0424      0.986 0.992  0 0.008
#> SRR1270830     1  0.0424      0.986 0.992  0 0.008
#> SRR1270831     1  0.0424      0.986 0.992  0 0.008
#> SRR1270832     1  0.0424      0.986 0.992  0 0.008
#> SRR1270833     3  0.1163      1.000 0.028  0 0.972
#> SRR1270834     3  0.1163      1.000 0.028  0 0.972
#> SRR1270835     3  0.1163      1.000 0.028  0 0.972
#> SRR1270836     3  0.1163      1.000 0.028  0 0.972
#> SRR1270837     3  0.1163      1.000 0.028  0 0.972
#> SRR1270838     3  0.1163      1.000 0.028  0 0.972
#> SRR1270839     3  0.1163      1.000 0.028  0 0.972
#> SRR1270840     3  0.1163      1.000 0.028  0 0.972
#> SRR1270841     3  0.1163      1.000 0.028  0 0.972
#> SRR1270842     3  0.1163      1.000 0.028  0 0.972
#> SRR1270843     3  0.1163      1.000 0.028  0 0.972
#> SRR1270844     3  0.1163      1.000 0.028  0 0.972
#> SRR1270845     3  0.1163      1.000 0.028  0 0.972
#> SRR1270846     3  0.1163      1.000 0.028  0 0.972
#> SRR1270847     3  0.1163      1.000 0.028  0 0.972
#> SRR1270848     3  0.1163      1.000 0.028  0 0.972
#> SRR1270849     3  0.1163      1.000 0.028  0 0.972
#> SRR1270850     3  0.1163      1.000 0.028  0 0.972
#> SRR1270851     2  0.0000      1.000 0.000  1 0.000
#> SRR1270852     2  0.0000      1.000 0.000  1 0.000
#> SRR1270853     2  0.0000      1.000 0.000  1 0.000
#> SRR1270854     2  0.0000      1.000 0.000  1 0.000
#> SRR1270855     2  0.0000      1.000 0.000  1 0.000
#> SRR1270856     2  0.0000      1.000 0.000  1 0.000
#> SRR1270857     2  0.0000      1.000 0.000  1 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3 p4
#> SRR1270715     1  0.0188      0.991 0.996 0.000 0.004  0
#> SRR1270716     1  0.0188      0.991 0.996 0.000 0.004  0
#> SRR1270717     1  0.0188      0.991 0.996 0.000 0.004  0
#> SRR1270718     1  0.0188      0.991 0.996 0.000 0.004  0
#> SRR1270719     1  0.0188      0.991 0.996 0.000 0.004  0
#> SRR1270720     1  0.0188      0.991 0.996 0.000 0.004  0
#> SRR1270721     1  0.0188      0.991 0.996 0.000 0.004  0
#> SRR1270722     3  0.3688      0.859 0.208 0.000 0.792  0
#> SRR1270723     3  0.3688      0.859 0.208 0.000 0.792  0
#> SRR1270724     3  0.3688      0.859 0.208 0.000 0.792  0
#> SRR1270725     1  0.0188      0.991 0.996 0.000 0.004  0
#> SRR1270726     1  0.0188      0.991 0.996 0.000 0.004  0
#> SRR1270727     1  0.0188      0.991 0.996 0.000 0.004  0
#> SRR1270728     1  0.0188      0.991 0.996 0.000 0.004  0
#> SRR1270729     1  0.0188      0.991 0.996 0.000 0.004  0
#> SRR1270730     1  0.0188      0.991 0.996 0.000 0.004  0
#> SRR1270731     1  0.0188      0.991 0.996 0.000 0.004  0
#> SRR1270732     1  0.0188      0.991 0.996 0.000 0.004  0
#> SRR1270733     1  0.0188      0.991 0.996 0.000 0.004  0
#> SRR1270734     1  0.0188      0.991 0.996 0.000 0.004  0
#> SRR1270735     1  0.0188      0.991 0.996 0.000 0.004  0
#> SRR1270736     1  0.1867      0.909 0.928 0.000 0.072  0
#> SRR1270737     1  0.1867      0.909 0.928 0.000 0.072  0
#> SRR1270738     1  0.0188      0.991 0.996 0.000 0.004  0
#> SRR1270739     1  0.0188      0.991 0.996 0.000 0.004  0
#> SRR1270740     3  0.3356      0.880 0.176 0.000 0.824  0
#> SRR1270741     3  0.3356      0.880 0.176 0.000 0.824  0
#> SRR1270742     3  0.3356      0.880 0.176 0.000 0.824  0
#> SRR1270743     3  0.3569      0.871 0.196 0.000 0.804  0
#> SRR1270744     3  0.3569      0.871 0.196 0.000 0.804  0
#> SRR1270745     3  0.3569      0.871 0.196 0.000 0.804  0
#> SRR1270746     3  0.3569      0.871 0.196 0.000 0.804  0
#> SRR1270747     3  0.3356      0.880 0.176 0.000 0.824  0
#> SRR1270748     3  0.3356      0.880 0.176 0.000 0.824  0
#> SRR1270749     3  0.3356      0.880 0.176 0.000 0.824  0
#> SRR1270750     3  0.3569      0.871 0.196 0.000 0.804  0
#> SRR1270751     3  0.3569      0.871 0.196 0.000 0.804  0
#> SRR1270752     3  0.3569      0.871 0.196 0.000 0.804  0
#> SRR1270753     3  0.3569      0.871 0.196 0.000 0.804  0
#> SRR1270754     3  0.3356      0.880 0.176 0.000 0.824  0
#> SRR1270755     3  0.3356      0.880 0.176 0.000 0.824  0
#> SRR1270756     3  0.3356      0.880 0.176 0.000 0.824  0
#> SRR1270757     3  0.3569      0.871 0.196 0.000 0.804  0
#> SRR1270758     3  0.3569      0.871 0.196 0.000 0.804  0
#> SRR1270759     3  0.3569      0.871 0.196 0.000 0.804  0
#> SRR1270760     3  0.3569      0.871 0.196 0.000 0.804  0
#> SRR1270761     3  0.3356      0.880 0.176 0.000 0.824  0
#> SRR1270762     3  0.3356      0.880 0.176 0.000 0.824  0
#> SRR1270763     3  0.3569      0.871 0.196 0.000 0.804  0
#> SRR1270764     3  0.3569      0.871 0.196 0.000 0.804  0
#> SRR1270765     2  0.0000      0.999 0.000 1.000 0.000  0
#> SRR1270766     2  0.0000      0.999 0.000 1.000 0.000  0
#> SRR1270767     2  0.0000      0.999 0.000 1.000 0.000  0
#> SRR1270768     2  0.0000      0.999 0.000 1.000 0.000  0
#> SRR1270769     2  0.0000      0.999 0.000 1.000 0.000  0
#> SRR1270770     2  0.0000      0.999 0.000 1.000 0.000  0
#> SRR1270771     2  0.0000      0.999 0.000 1.000 0.000  0
#> SRR1270772     2  0.0000      0.999 0.000 1.000 0.000  0
#> SRR1270773     2  0.0000      0.999 0.000 1.000 0.000  0
#> SRR1270774     2  0.0000      0.999 0.000 1.000 0.000  0
#> SRR1270775     2  0.0000      0.999 0.000 1.000 0.000  0
#> SRR1270776     2  0.0000      0.999 0.000 1.000 0.000  0
#> SRR1270777     2  0.0000      0.999 0.000 1.000 0.000  0
#> SRR1270778     2  0.0000      0.999 0.000 1.000 0.000  0
#> SRR1270779     2  0.0000      0.999 0.000 1.000 0.000  0
#> SRR1270780     2  0.0000      0.999 0.000 1.000 0.000  0
#> SRR1270781     2  0.0000      0.999 0.000 1.000 0.000  0
#> SRR1270782     2  0.0000      0.999 0.000 1.000 0.000  0
#> SRR1270783     2  0.0000      0.999 0.000 1.000 0.000  0
#> SRR1270784     2  0.0000      0.999 0.000 1.000 0.000  0
#> SRR1270785     2  0.0188      0.998 0.004 0.996 0.000  0
#> SRR1270786     2  0.0188      0.998 0.004 0.996 0.000  0
#> SRR1270787     2  0.0188      0.998 0.004 0.996 0.000  0
#> SRR1270788     2  0.0188      0.998 0.004 0.996 0.000  0
#> SRR1270789     2  0.0188      0.998 0.004 0.996 0.000  0
#> SRR1270790     2  0.0188      0.998 0.004 0.996 0.000  0
#> SRR1270791     2  0.0188      0.998 0.004 0.996 0.000  0
#> SRR1270792     2  0.0188      0.998 0.004 0.996 0.000  0
#> SRR1270793     2  0.0188      0.998 0.004 0.996 0.000  0
#> SRR1270794     2  0.0188      0.998 0.004 0.996 0.000  0
#> SRR1270795     2  0.0188      0.998 0.004 0.996 0.000  0
#> SRR1270796     2  0.0188      0.998 0.004 0.996 0.000  0
#> SRR1270797     2  0.0188      0.998 0.004 0.996 0.000  0
#> SRR1270798     2  0.0188      0.998 0.004 0.996 0.000  0
#> SRR1270799     2  0.0188      0.998 0.004 0.996 0.000  0
#> SRR1270800     2  0.0188      0.998 0.004 0.996 0.000  0
#> SRR1270801     2  0.0188      0.998 0.004 0.996 0.000  0
#> SRR1270802     2  0.0188      0.998 0.004 0.996 0.000  0
#> SRR1270803     2  0.0188      0.998 0.004 0.996 0.000  0
#> SRR1270804     2  0.0188      0.998 0.004 0.996 0.000  0
#> SRR1270805     3  0.0000      0.892 0.000 0.000 1.000  0
#> SRR1270806     3  0.0000      0.892 0.000 0.000 1.000  0
#> SRR1270807     3  0.0000      0.892 0.000 0.000 1.000  0
#> SRR1270808     3  0.0000      0.892 0.000 0.000 1.000  0
#> SRR1270809     3  0.0000      0.892 0.000 0.000 1.000  0
#> SRR1270810     3  0.0000      0.892 0.000 0.000 1.000  0
#> SRR1270811     3  0.0000      0.892 0.000 0.000 1.000  0
#> SRR1270812     3  0.0000      0.892 0.000 0.000 1.000  0
#> SRR1270813     3  0.0000      0.892 0.000 0.000 1.000  0
#> SRR1270814     3  0.0000      0.892 0.000 0.000 1.000  0
#> SRR1270815     3  0.0000      0.892 0.000 0.000 1.000  0
#> SRR1270816     3  0.0000      0.892 0.000 0.000 1.000  0
#> SRR1270817     3  0.0000      0.892 0.000 0.000 1.000  0
#> SRR1270818     3  0.0000      0.892 0.000 0.000 1.000  0
#> SRR1270819     3  0.0000      0.892 0.000 0.000 1.000  0
#> SRR1270820     3  0.0000      0.892 0.000 0.000 1.000  0
#> SRR1270821     3  0.0000      0.892 0.000 0.000 1.000  0
#> SRR1270822     3  0.0000      0.892 0.000 0.000 1.000  0
#> SRR1270823     3  0.0000      0.892 0.000 0.000 1.000  0
#> SRR1270824     3  0.0000      0.892 0.000 0.000 1.000  0
#> SRR1270825     3  0.0000      0.892 0.000 0.000 1.000  0
#> SRR1270826     3  0.0000      0.892 0.000 0.000 1.000  0
#> SRR1270827     3  0.0000      0.892 0.000 0.000 1.000  0
#> SRR1270828     3  0.0000      0.892 0.000 0.000 1.000  0
#> SRR1270829     3  0.0000      0.892 0.000 0.000 1.000  0
#> SRR1270830     3  0.0000      0.892 0.000 0.000 1.000  0
#> SRR1270831     3  0.0000      0.892 0.000 0.000 1.000  0
#> SRR1270832     3  0.0000      0.892 0.000 0.000 1.000  0
#> SRR1270833     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1270834     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1270835     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1270836     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1270837     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1270838     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1270839     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1270840     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1270841     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1270842     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1270843     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1270844     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1270845     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1270846     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1270847     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1270848     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1270849     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1270850     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1270851     2  0.0000      0.999 0.000 1.000 0.000  0
#> SRR1270852     2  0.0000      0.999 0.000 1.000 0.000  0
#> SRR1270853     2  0.0000      0.999 0.000 1.000 0.000  0
#> SRR1270854     2  0.0000      0.999 0.000 1.000 0.000  0
#> SRR1270855     2  0.0000      0.999 0.000 1.000 0.000  0
#> SRR1270856     2  0.0000      0.999 0.000 1.000 0.000  0
#> SRR1270857     2  0.0000      0.999 0.000 1.000 0.000  0

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1270715     5  0.1608      0.960 0.072 0.000 0.000 0.000 0.928
#> SRR1270716     5  0.1608      0.960 0.072 0.000 0.000 0.000 0.928
#> SRR1270717     5  0.1608      0.960 0.072 0.000 0.000 0.000 0.928
#> SRR1270718     5  0.0510      0.968 0.016 0.000 0.000 0.000 0.984
#> SRR1270719     5  0.0510      0.968 0.016 0.000 0.000 0.000 0.984
#> SRR1270720     5  0.0510      0.968 0.016 0.000 0.000 0.000 0.984
#> SRR1270721     5  0.0510      0.968 0.016 0.000 0.000 0.000 0.984
#> SRR1270722     1  0.2036      0.902 0.920 0.000 0.056 0.000 0.024
#> SRR1270723     1  0.2036      0.902 0.920 0.000 0.056 0.000 0.024
#> SRR1270724     1  0.2036      0.902 0.920 0.000 0.056 0.000 0.024
#> SRR1270725     1  0.2813      0.769 0.832 0.000 0.000 0.000 0.168
#> SRR1270726     1  0.2732      0.779 0.840 0.000 0.000 0.000 0.160
#> SRR1270727     1  0.2852      0.764 0.828 0.000 0.000 0.000 0.172
#> SRR1270728     1  0.2732      0.779 0.840 0.000 0.000 0.000 0.160
#> SRR1270729     5  0.1608      0.960 0.072 0.000 0.000 0.000 0.928
#> SRR1270730     5  0.1608      0.960 0.072 0.000 0.000 0.000 0.928
#> SRR1270731     5  0.1608      0.960 0.072 0.000 0.000 0.000 0.928
#> SRR1270732     5  0.0510      0.968 0.016 0.000 0.000 0.000 0.984
#> SRR1270733     5  0.0510      0.968 0.016 0.000 0.000 0.000 0.984
#> SRR1270734     5  0.0510      0.968 0.016 0.000 0.000 0.000 0.984
#> SRR1270735     5  0.0510      0.968 0.016 0.000 0.000 0.000 0.984
#> SRR1270736     1  0.2439      0.815 0.876 0.000 0.004 0.000 0.120
#> SRR1270737     1  0.2439      0.815 0.876 0.000 0.004 0.000 0.120
#> SRR1270738     5  0.1608      0.961 0.072 0.000 0.000 0.000 0.928
#> SRR1270739     5  0.1608      0.961 0.072 0.000 0.000 0.000 0.928
#> SRR1270740     1  0.2439      0.942 0.876 0.000 0.120 0.000 0.004
#> SRR1270741     1  0.2439      0.942 0.876 0.000 0.120 0.000 0.004
#> SRR1270742     1  0.2439      0.942 0.876 0.000 0.120 0.000 0.004
#> SRR1270743     1  0.2574      0.945 0.876 0.000 0.112 0.000 0.012
#> SRR1270744     1  0.2574      0.945 0.876 0.000 0.112 0.000 0.012
#> SRR1270745     1  0.2574      0.945 0.876 0.000 0.112 0.000 0.012
#> SRR1270746     1  0.2574      0.945 0.876 0.000 0.112 0.000 0.012
#> SRR1270747     1  0.2329      0.941 0.876 0.000 0.124 0.000 0.000
#> SRR1270748     1  0.2329      0.941 0.876 0.000 0.124 0.000 0.000
#> SRR1270749     1  0.2329      0.941 0.876 0.000 0.124 0.000 0.000
#> SRR1270750     1  0.2574      0.945 0.876 0.000 0.112 0.000 0.012
#> SRR1270751     1  0.2574      0.945 0.876 0.000 0.112 0.000 0.012
#> SRR1270752     1  0.2574      0.945 0.876 0.000 0.112 0.000 0.012
#> SRR1270753     1  0.2574      0.945 0.876 0.000 0.112 0.000 0.012
#> SRR1270754     1  0.2329      0.941 0.876 0.000 0.124 0.000 0.000
#> SRR1270755     1  0.2329      0.941 0.876 0.000 0.124 0.000 0.000
#> SRR1270756     1  0.2329      0.941 0.876 0.000 0.124 0.000 0.000
#> SRR1270757     1  0.2574      0.945 0.876 0.000 0.112 0.000 0.012
#> SRR1270758     1  0.2574      0.945 0.876 0.000 0.112 0.000 0.012
#> SRR1270759     1  0.2574      0.945 0.876 0.000 0.112 0.000 0.012
#> SRR1270760     1  0.2574      0.945 0.876 0.000 0.112 0.000 0.012
#> SRR1270761     1  0.2439      0.942 0.876 0.000 0.120 0.000 0.004
#> SRR1270762     1  0.2439      0.942 0.876 0.000 0.120 0.000 0.004
#> SRR1270763     1  0.2574      0.945 0.876 0.000 0.112 0.000 0.012
#> SRR1270764     1  0.2574      0.945 0.876 0.000 0.112 0.000 0.012
#> SRR1270765     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> SRR1270766     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> SRR1270767     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> SRR1270768     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> SRR1270769     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> SRR1270770     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> SRR1270771     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> SRR1270772     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> SRR1270773     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> SRR1270774     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> SRR1270775     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> SRR1270776     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> SRR1270777     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> SRR1270778     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> SRR1270779     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> SRR1270780     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> SRR1270781     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> SRR1270782     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> SRR1270783     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> SRR1270784     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> SRR1270785     2  0.1282      0.975 0.044 0.952 0.000 0.000 0.004
#> SRR1270786     2  0.1282      0.975 0.044 0.952 0.000 0.000 0.004
#> SRR1270787     2  0.1282      0.975 0.044 0.952 0.000 0.000 0.004
#> SRR1270788     2  0.1282      0.975 0.044 0.952 0.000 0.000 0.004
#> SRR1270789     2  0.1282      0.975 0.044 0.952 0.000 0.000 0.004
#> SRR1270790     2  0.1282      0.975 0.044 0.952 0.000 0.000 0.004
#> SRR1270791     2  0.1282      0.975 0.044 0.952 0.000 0.000 0.004
#> SRR1270792     2  0.1282      0.975 0.044 0.952 0.000 0.000 0.004
#> SRR1270793     2  0.1282      0.975 0.044 0.952 0.000 0.000 0.004
#> SRR1270794     2  0.1282      0.975 0.044 0.952 0.000 0.000 0.004
#> SRR1270795     2  0.1282      0.975 0.044 0.952 0.000 0.000 0.004
#> SRR1270796     2  0.1282      0.975 0.044 0.952 0.000 0.000 0.004
#> SRR1270797     2  0.1282      0.975 0.044 0.952 0.000 0.000 0.004
#> SRR1270798     2  0.1282      0.975 0.044 0.952 0.000 0.000 0.004
#> SRR1270799     2  0.1282      0.975 0.044 0.952 0.000 0.000 0.004
#> SRR1270800     2  0.1282      0.975 0.044 0.952 0.000 0.000 0.004
#> SRR1270801     2  0.1282      0.975 0.044 0.952 0.000 0.000 0.004
#> SRR1270802     2  0.1282      0.975 0.044 0.952 0.000 0.000 0.004
#> SRR1270803     2  0.1282      0.975 0.044 0.952 0.000 0.000 0.004
#> SRR1270804     2  0.1282      0.975 0.044 0.952 0.000 0.000 0.004
#> SRR1270805     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270806     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270807     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270808     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270809     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270810     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270811     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270812     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270813     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270814     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270815     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270816     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270817     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270818     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270819     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270820     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270821     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270822     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270823     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270824     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270825     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270826     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270827     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270828     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270829     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270830     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270831     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270832     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270833     4  0.0404      0.995 0.012 0.000 0.000 0.988 0.000
#> SRR1270834     4  0.0404      0.995 0.012 0.000 0.000 0.988 0.000
#> SRR1270835     4  0.0000      0.995 0.000 0.000 0.000 1.000 0.000
#> SRR1270836     4  0.0000      0.995 0.000 0.000 0.000 1.000 0.000
#> SRR1270837     4  0.0000      0.995 0.000 0.000 0.000 1.000 0.000
#> SRR1270838     4  0.0000      0.995 0.000 0.000 0.000 1.000 0.000
#> SRR1270839     4  0.0000      0.995 0.000 0.000 0.000 1.000 0.000
#> SRR1270840     4  0.0000      0.995 0.000 0.000 0.000 1.000 0.000
#> SRR1270841     4  0.0000      0.995 0.000 0.000 0.000 1.000 0.000
#> SRR1270842     4  0.0000      0.995 0.000 0.000 0.000 1.000 0.000
#> SRR1270843     4  0.0000      0.995 0.000 0.000 0.000 1.000 0.000
#> SRR1270844     4  0.0404      0.995 0.012 0.000 0.000 0.988 0.000
#> SRR1270845     4  0.0404      0.995 0.012 0.000 0.000 0.988 0.000
#> SRR1270846     4  0.0404      0.995 0.012 0.000 0.000 0.988 0.000
#> SRR1270847     4  0.0404      0.995 0.012 0.000 0.000 0.988 0.000
#> SRR1270848     4  0.0404      0.995 0.012 0.000 0.000 0.988 0.000
#> SRR1270849     4  0.0404      0.995 0.012 0.000 0.000 0.988 0.000
#> SRR1270850     4  0.0404      0.995 0.012 0.000 0.000 0.988 0.000
#> SRR1270851     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> SRR1270852     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> SRR1270853     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> SRR1270854     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> SRR1270855     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> SRR1270856     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000
#> SRR1270857     2  0.0000      0.982 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1270715     6  0.3547      0.585 0.004 0.000 0.000 0.000 0.300 0.696
#> SRR1270716     6  0.3547      0.585 0.004 0.000 0.000 0.000 0.300 0.696
#> SRR1270717     6  0.3547      0.585 0.004 0.000 0.000 0.000 0.300 0.696
#> SRR1270718     5  0.0000      0.911 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1270719     5  0.0000      0.911 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1270720     5  0.0000      0.911 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1270721     5  0.0000      0.911 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1270722     6  0.3244      0.766 0.268 0.000 0.000 0.000 0.000 0.732
#> SRR1270723     6  0.3244      0.766 0.268 0.000 0.000 0.000 0.000 0.732
#> SRR1270724     6  0.3244      0.766 0.268 0.000 0.000 0.000 0.000 0.732
#> SRR1270725     6  0.4087      0.774 0.276 0.000 0.000 0.000 0.036 0.688
#> SRR1270726     6  0.4087      0.774 0.276 0.000 0.000 0.000 0.036 0.688
#> SRR1270727     6  0.4087      0.774 0.276 0.000 0.000 0.000 0.036 0.688
#> SRR1270728     6  0.4087      0.774 0.276 0.000 0.000 0.000 0.036 0.688
#> SRR1270729     6  0.3584      0.576 0.004 0.000 0.000 0.000 0.308 0.688
#> SRR1270730     6  0.3584      0.576 0.004 0.000 0.000 0.000 0.308 0.688
#> SRR1270731     6  0.3584      0.576 0.004 0.000 0.000 0.000 0.308 0.688
#> SRR1270732     5  0.0000      0.911 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1270733     5  0.0000      0.911 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1270734     5  0.0000      0.911 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1270735     5  0.0000      0.911 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1270736     6  0.3518      0.773 0.256 0.000 0.000 0.000 0.012 0.732
#> SRR1270737     6  0.3518      0.773 0.256 0.000 0.000 0.000 0.012 0.732
#> SRR1270738     5  0.3871      0.470 0.016 0.000 0.000 0.000 0.676 0.308
#> SRR1270739     5  0.3871      0.470 0.016 0.000 0.000 0.000 0.676 0.308
#> SRR1270740     1  0.1625      0.960 0.928 0.000 0.012 0.000 0.000 0.060
#> SRR1270741     1  0.1625      0.960 0.928 0.000 0.012 0.000 0.000 0.060
#> SRR1270742     1  0.1625      0.960 0.928 0.000 0.012 0.000 0.000 0.060
#> SRR1270743     1  0.0363      0.969 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1270744     1  0.0363      0.969 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1270745     1  0.0363      0.969 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1270746     1  0.0363      0.969 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1270747     1  0.1625      0.960 0.928 0.000 0.012 0.000 0.000 0.060
#> SRR1270748     1  0.1625      0.960 0.928 0.000 0.012 0.000 0.000 0.060
#> SRR1270749     1  0.1625      0.960 0.928 0.000 0.012 0.000 0.000 0.060
#> SRR1270750     1  0.0363      0.969 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1270751     1  0.0363      0.969 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1270752     1  0.0363      0.969 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1270753     1  0.0363      0.969 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1270754     1  0.1625      0.960 0.928 0.000 0.012 0.000 0.000 0.060
#> SRR1270755     1  0.1625      0.960 0.928 0.000 0.012 0.000 0.000 0.060
#> SRR1270756     1  0.1625      0.960 0.928 0.000 0.012 0.000 0.000 0.060
#> SRR1270757     1  0.0363      0.969 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1270758     1  0.0363      0.969 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1270759     1  0.0363      0.969 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1270760     1  0.0363      0.969 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1270761     1  0.1625      0.960 0.928 0.000 0.012 0.000 0.000 0.060
#> SRR1270762     1  0.1625      0.960 0.928 0.000 0.012 0.000 0.000 0.060
#> SRR1270763     1  0.0363      0.969 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1270764     1  0.0363      0.969 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1270765     2  0.0000      0.900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270766     2  0.0000      0.900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270767     2  0.0000      0.900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270768     2  0.0000      0.900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270769     2  0.0000      0.900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270770     2  0.0000      0.900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270771     2  0.0000      0.900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270772     2  0.0000      0.900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270773     2  0.0000      0.900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270774     2  0.0000      0.900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270775     2  0.0000      0.900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270776     2  0.0000      0.900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270777     2  0.0000      0.900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270778     2  0.0000      0.900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270779     2  0.0000      0.900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270780     2  0.0000      0.900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270781     2  0.0000      0.900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270782     2  0.0000      0.900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270783     2  0.0000      0.900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270784     2  0.0000      0.900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270785     2  0.3217      0.861 0.008 0.768 0.000 0.000 0.000 0.224
#> SRR1270786     2  0.3217      0.861 0.008 0.768 0.000 0.000 0.000 0.224
#> SRR1270787     2  0.3217      0.861 0.008 0.768 0.000 0.000 0.000 0.224
#> SRR1270788     2  0.3217      0.861 0.008 0.768 0.000 0.000 0.000 0.224
#> SRR1270789     2  0.3217      0.861 0.008 0.768 0.000 0.000 0.000 0.224
#> SRR1270790     2  0.3217      0.861 0.008 0.768 0.000 0.000 0.000 0.224
#> SRR1270791     2  0.3217      0.861 0.008 0.768 0.000 0.000 0.000 0.224
#> SRR1270792     2  0.3217      0.861 0.008 0.768 0.000 0.000 0.000 0.224
#> SRR1270793     2  0.3217      0.861 0.008 0.768 0.000 0.000 0.000 0.224
#> SRR1270794     2  0.3217      0.861 0.008 0.768 0.000 0.000 0.000 0.224
#> SRR1270795     2  0.3217      0.861 0.008 0.768 0.000 0.000 0.000 0.224
#> SRR1270796     2  0.3217      0.861 0.008 0.768 0.000 0.000 0.000 0.224
#> SRR1270797     2  0.3217      0.861 0.008 0.768 0.000 0.000 0.000 0.224
#> SRR1270798     2  0.3217      0.861 0.008 0.768 0.000 0.000 0.000 0.224
#> SRR1270799     2  0.3217      0.861 0.008 0.768 0.000 0.000 0.000 0.224
#> SRR1270800     2  0.3217      0.861 0.008 0.768 0.000 0.000 0.000 0.224
#> SRR1270801     2  0.3217      0.861 0.008 0.768 0.000 0.000 0.000 0.224
#> SRR1270802     2  0.3217      0.861 0.008 0.768 0.000 0.000 0.000 0.224
#> SRR1270803     2  0.3217      0.861 0.008 0.768 0.000 0.000 0.000 0.224
#> SRR1270804     2  0.3217      0.861 0.008 0.768 0.000 0.000 0.000 0.224
#> SRR1270805     3  0.0146      0.995 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR1270806     3  0.0146      0.995 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR1270807     3  0.0146      0.995 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR1270808     3  0.0000      0.995 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270809     3  0.0000      0.995 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270810     3  0.0000      0.995 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270811     3  0.0000      0.995 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270812     3  0.0363      0.995 0.000 0.000 0.988 0.000 0.000 0.012
#> SRR1270813     3  0.0363      0.995 0.000 0.000 0.988 0.000 0.000 0.012
#> SRR1270814     3  0.0363      0.995 0.000 0.000 0.988 0.000 0.000 0.012
#> SRR1270815     3  0.0260      0.995 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1270816     3  0.0260      0.995 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1270817     3  0.0260      0.995 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1270818     3  0.0260      0.995 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1270819     3  0.0363      0.995 0.000 0.000 0.988 0.000 0.000 0.012
#> SRR1270820     3  0.0363      0.995 0.000 0.000 0.988 0.000 0.000 0.012
#> SRR1270821     3  0.0363      0.995 0.000 0.000 0.988 0.000 0.000 0.012
#> SRR1270822     3  0.0260      0.995 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1270823     3  0.0260      0.995 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1270824     3  0.0260      0.995 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1270825     3  0.0260      0.995 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1270826     3  0.0146      0.995 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR1270827     3  0.0146      0.995 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR1270828     3  0.0146      0.995 0.000 0.000 0.996 0.000 0.000 0.004
#> SRR1270829     3  0.0000      0.995 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270830     3  0.0000      0.995 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270831     3  0.0000      0.995 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270832     3  0.0000      0.995 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1270833     4  0.0000      0.986 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270834     4  0.0000      0.986 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270835     4  0.0790      0.986 0.000 0.000 0.000 0.968 0.000 0.032
#> SRR1270836     4  0.0790      0.986 0.000 0.000 0.000 0.968 0.000 0.032
#> SRR1270837     4  0.0790      0.986 0.000 0.000 0.000 0.968 0.000 0.032
#> SRR1270838     4  0.0790      0.986 0.000 0.000 0.000 0.968 0.000 0.032
#> SRR1270839     4  0.0790      0.986 0.000 0.000 0.000 0.968 0.000 0.032
#> SRR1270840     4  0.0790      0.986 0.000 0.000 0.000 0.968 0.000 0.032
#> SRR1270841     4  0.0790      0.986 0.000 0.000 0.000 0.968 0.000 0.032
#> SRR1270842     4  0.0790      0.986 0.000 0.000 0.000 0.968 0.000 0.032
#> SRR1270843     4  0.0790      0.986 0.000 0.000 0.000 0.968 0.000 0.032
#> SRR1270844     4  0.0000      0.986 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270845     4  0.0000      0.986 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270846     4  0.0000      0.986 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270847     4  0.0000      0.986 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270848     4  0.0000      0.986 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270849     4  0.0000      0.986 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270850     4  0.0000      0.986 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1270851     2  0.0000      0.900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270852     2  0.0000      0.900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270853     2  0.0000      0.900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270854     2  0.0000      0.900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270855     2  0.0000      0.900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270856     2  0.0000      0.900 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1270857     2  0.0000      0.900 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14577 rows and 143 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.4450 0.556   0.556
#> 3 3 1.000           1.000       1.000         0.4210 0.812   0.662
#> 4 4 1.000           1.000       1.000         0.1401 0.911   0.759
#> 5 5 0.886           0.948       0.908         0.0770 0.947   0.810
#> 6 6 1.000           0.999       0.999         0.0751 0.939   0.732

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 4

There is also optional best \(k\) = 2 3 4 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1270715     1       0          1  1  0
#> SRR1270716     1       0          1  1  0
#> SRR1270717     1       0          1  1  0
#> SRR1270718     1       0          1  1  0
#> SRR1270719     1       0          1  1  0
#> SRR1270720     1       0          1  1  0
#> SRR1270721     1       0          1  1  0
#> SRR1270722     1       0          1  1  0
#> SRR1270723     1       0          1  1  0
#> SRR1270724     1       0          1  1  0
#> SRR1270725     1       0          1  1  0
#> SRR1270726     1       0          1  1  0
#> SRR1270727     1       0          1  1  0
#> SRR1270728     1       0          1  1  0
#> SRR1270729     1       0          1  1  0
#> SRR1270730     1       0          1  1  0
#> SRR1270731     1       0          1  1  0
#> SRR1270732     1       0          1  1  0
#> SRR1270733     1       0          1  1  0
#> SRR1270734     1       0          1  1  0
#> SRR1270735     1       0          1  1  0
#> SRR1270736     1       0          1  1  0
#> SRR1270737     1       0          1  1  0
#> SRR1270738     1       0          1  1  0
#> SRR1270739     1       0          1  1  0
#> SRR1270740     1       0          1  1  0
#> SRR1270741     1       0          1  1  0
#> SRR1270742     1       0          1  1  0
#> SRR1270743     1       0          1  1  0
#> SRR1270744     1       0          1  1  0
#> SRR1270745     1       0          1  1  0
#> SRR1270746     1       0          1  1  0
#> SRR1270747     1       0          1  1  0
#> SRR1270748     1       0          1  1  0
#> SRR1270749     1       0          1  1  0
#> SRR1270750     1       0          1  1  0
#> SRR1270751     1       0          1  1  0
#> SRR1270752     1       0          1  1  0
#> SRR1270753     1       0          1  1  0
#> SRR1270754     1       0          1  1  0
#> SRR1270755     1       0          1  1  0
#> SRR1270756     1       0          1  1  0
#> SRR1270757     1       0          1  1  0
#> SRR1270758     1       0          1  1  0
#> SRR1270759     1       0          1  1  0
#> SRR1270760     1       0          1  1  0
#> SRR1270761     1       0          1  1  0
#> SRR1270762     1       0          1  1  0
#> SRR1270763     1       0          1  1  0
#> SRR1270764     1       0          1  1  0
#> SRR1270765     2       0          1  0  1
#> SRR1270766     2       0          1  0  1
#> SRR1270767     2       0          1  0  1
#> SRR1270768     2       0          1  0  1
#> SRR1270769     2       0          1  0  1
#> SRR1270770     2       0          1  0  1
#> SRR1270771     2       0          1  0  1
#> SRR1270772     2       0          1  0  1
#> SRR1270773     2       0          1  0  1
#> SRR1270774     2       0          1  0  1
#> SRR1270775     2       0          1  0  1
#> SRR1270776     2       0          1  0  1
#> SRR1270777     2       0          1  0  1
#> SRR1270778     2       0          1  0  1
#> SRR1270779     2       0          1  0  1
#> SRR1270780     2       0          1  0  1
#> SRR1270781     2       0          1  0  1
#> SRR1270782     2       0          1  0  1
#> SRR1270783     2       0          1  0  1
#> SRR1270784     2       0          1  0  1
#> SRR1270785     2       0          1  0  1
#> SRR1270786     2       0          1  0  1
#> SRR1270787     2       0          1  0  1
#> SRR1270788     2       0          1  0  1
#> SRR1270789     2       0          1  0  1
#> SRR1270790     2       0          1  0  1
#> SRR1270791     2       0          1  0  1
#> SRR1270792     2       0          1  0  1
#> SRR1270793     2       0          1  0  1
#> SRR1270794     2       0          1  0  1
#> SRR1270795     2       0          1  0  1
#> SRR1270796     2       0          1  0  1
#> SRR1270797     2       0          1  0  1
#> SRR1270798     2       0          1  0  1
#> SRR1270799     2       0          1  0  1
#> SRR1270800     2       0          1  0  1
#> SRR1270801     2       0          1  0  1
#> SRR1270802     2       0          1  0  1
#> SRR1270803     2       0          1  0  1
#> SRR1270804     2       0          1  0  1
#> SRR1270805     1       0          1  1  0
#> SRR1270806     1       0          1  1  0
#> SRR1270807     1       0          1  1  0
#> SRR1270808     1       0          1  1  0
#> SRR1270809     1       0          1  1  0
#> SRR1270810     1       0          1  1  0
#> SRR1270811     1       0          1  1  0
#> SRR1270812     1       0          1  1  0
#> SRR1270813     1       0          1  1  0
#> SRR1270814     1       0          1  1  0
#> SRR1270815     1       0          1  1  0
#> SRR1270816     1       0          1  1  0
#> SRR1270817     1       0          1  1  0
#> SRR1270818     1       0          1  1  0
#> SRR1270819     1       0          1  1  0
#> SRR1270820     1       0          1  1  0
#> SRR1270821     1       0          1  1  0
#> SRR1270822     1       0          1  1  0
#> SRR1270823     1       0          1  1  0
#> SRR1270824     1       0          1  1  0
#> SRR1270825     1       0          1  1  0
#> SRR1270826     1       0          1  1  0
#> SRR1270827     1       0          1  1  0
#> SRR1270828     1       0          1  1  0
#> SRR1270829     1       0          1  1  0
#> SRR1270830     1       0          1  1  0
#> SRR1270831     1       0          1  1  0
#> SRR1270832     1       0          1  1  0
#> SRR1270833     1       0          1  1  0
#> SRR1270834     1       0          1  1  0
#> SRR1270835     1       0          1  1  0
#> SRR1270836     1       0          1  1  0
#> SRR1270837     1       0          1  1  0
#> SRR1270838     1       0          1  1  0
#> SRR1270839     1       0          1  1  0
#> SRR1270840     1       0          1  1  0
#> SRR1270841     1       0          1  1  0
#> SRR1270842     1       0          1  1  0
#> SRR1270843     1       0          1  1  0
#> SRR1270844     1       0          1  1  0
#> SRR1270845     1       0          1  1  0
#> SRR1270846     1       0          1  1  0
#> SRR1270847     1       0          1  1  0
#> SRR1270848     1       0          1  1  0
#> SRR1270849     1       0          1  1  0
#> SRR1270850     1       0          1  1  0
#> SRR1270851     2       0          1  0  1
#> SRR1270852     2       0          1  0  1
#> SRR1270853     2       0          1  0  1
#> SRR1270854     2       0          1  0  1
#> SRR1270855     2       0          1  0  1
#> SRR1270856     2       0          1  0  1
#> SRR1270857     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette p1 p2 p3
#> SRR1270715     1       0          1  1  0  0
#> SRR1270716     1       0          1  1  0  0
#> SRR1270717     1       0          1  1  0  0
#> SRR1270718     1       0          1  1  0  0
#> SRR1270719     1       0          1  1  0  0
#> SRR1270720     1       0          1  1  0  0
#> SRR1270721     1       0          1  1  0  0
#> SRR1270722     1       0          1  1  0  0
#> SRR1270723     1       0          1  1  0  0
#> SRR1270724     1       0          1  1  0  0
#> SRR1270725     1       0          1  1  0  0
#> SRR1270726     1       0          1  1  0  0
#> SRR1270727     1       0          1  1  0  0
#> SRR1270728     1       0          1  1  0  0
#> SRR1270729     1       0          1  1  0  0
#> SRR1270730     1       0          1  1  0  0
#> SRR1270731     1       0          1  1  0  0
#> SRR1270732     1       0          1  1  0  0
#> SRR1270733     1       0          1  1  0  0
#> SRR1270734     1       0          1  1  0  0
#> SRR1270735     1       0          1  1  0  0
#> SRR1270736     1       0          1  1  0  0
#> SRR1270737     1       0          1  1  0  0
#> SRR1270738     1       0          1  1  0  0
#> SRR1270739     1       0          1  1  0  0
#> SRR1270740     1       0          1  1  0  0
#> SRR1270741     1       0          1  1  0  0
#> SRR1270742     1       0          1  1  0  0
#> SRR1270743     1       0          1  1  0  0
#> SRR1270744     1       0          1  1  0  0
#> SRR1270745     1       0          1  1  0  0
#> SRR1270746     1       0          1  1  0  0
#> SRR1270747     1       0          1  1  0  0
#> SRR1270748     1       0          1  1  0  0
#> SRR1270749     1       0          1  1  0  0
#> SRR1270750     1       0          1  1  0  0
#> SRR1270751     1       0          1  1  0  0
#> SRR1270752     1       0          1  1  0  0
#> SRR1270753     1       0          1  1  0  0
#> SRR1270754     1       0          1  1  0  0
#> SRR1270755     1       0          1  1  0  0
#> SRR1270756     1       0          1  1  0  0
#> SRR1270757     1       0          1  1  0  0
#> SRR1270758     1       0          1  1  0  0
#> SRR1270759     1       0          1  1  0  0
#> SRR1270760     1       0          1  1  0  0
#> SRR1270761     1       0          1  1  0  0
#> SRR1270762     1       0          1  1  0  0
#> SRR1270763     1       0          1  1  0  0
#> SRR1270764     1       0          1  1  0  0
#> SRR1270765     2       0          1  0  1  0
#> SRR1270766     2       0          1  0  1  0
#> SRR1270767     2       0          1  0  1  0
#> SRR1270768     2       0          1  0  1  0
#> SRR1270769     2       0          1  0  1  0
#> SRR1270770     2       0          1  0  1  0
#> SRR1270771     2       0          1  0  1  0
#> SRR1270772     2       0          1  0  1  0
#> SRR1270773     2       0          1  0  1  0
#> SRR1270774     2       0          1  0  1  0
#> SRR1270775     2       0          1  0  1  0
#> SRR1270776     2       0          1  0  1  0
#> SRR1270777     2       0          1  0  1  0
#> SRR1270778     2       0          1  0  1  0
#> SRR1270779     2       0          1  0  1  0
#> SRR1270780     2       0          1  0  1  0
#> SRR1270781     2       0          1  0  1  0
#> SRR1270782     2       0          1  0  1  0
#> SRR1270783     2       0          1  0  1  0
#> SRR1270784     2       0          1  0  1  0
#> SRR1270785     2       0          1  0  1  0
#> SRR1270786     2       0          1  0  1  0
#> SRR1270787     2       0          1  0  1  0
#> SRR1270788     2       0          1  0  1  0
#> SRR1270789     2       0          1  0  1  0
#> SRR1270790     2       0          1  0  1  0
#> SRR1270791     2       0          1  0  1  0
#> SRR1270792     2       0          1  0  1  0
#> SRR1270793     2       0          1  0  1  0
#> SRR1270794     2       0          1  0  1  0
#> SRR1270795     2       0          1  0  1  0
#> SRR1270796     2       0          1  0  1  0
#> SRR1270797     2       0          1  0  1  0
#> SRR1270798     2       0          1  0  1  0
#> SRR1270799     2       0          1  0  1  0
#> SRR1270800     2       0          1  0  1  0
#> SRR1270801     2       0          1  0  1  0
#> SRR1270802     2       0          1  0  1  0
#> SRR1270803     2       0          1  0  1  0
#> SRR1270804     2       0          1  0  1  0
#> SRR1270805     3       0          1  0  0  1
#> SRR1270806     3       0          1  0  0  1
#> SRR1270807     3       0          1  0  0  1
#> SRR1270808     3       0          1  0  0  1
#> SRR1270809     3       0          1  0  0  1
#> SRR1270810     3       0          1  0  0  1
#> SRR1270811     3       0          1  0  0  1
#> SRR1270812     3       0          1  0  0  1
#> SRR1270813     3       0          1  0  0  1
#> SRR1270814     3       0          1  0  0  1
#> SRR1270815     3       0          1  0  0  1
#> SRR1270816     3       0          1  0  0  1
#> SRR1270817     3       0          1  0  0  1
#> SRR1270818     3       0          1  0  0  1
#> SRR1270819     3       0          1  0  0  1
#> SRR1270820     3       0          1  0  0  1
#> SRR1270821     3       0          1  0  0  1
#> SRR1270822     3       0          1  0  0  1
#> SRR1270823     3       0          1  0  0  1
#> SRR1270824     3       0          1  0  0  1
#> SRR1270825     3       0          1  0  0  1
#> SRR1270826     3       0          1  0  0  1
#> SRR1270827     3       0          1  0  0  1
#> SRR1270828     3       0          1  0  0  1
#> SRR1270829     3       0          1  0  0  1
#> SRR1270830     3       0          1  0  0  1
#> SRR1270831     3       0          1  0  0  1
#> SRR1270832     3       0          1  0  0  1
#> SRR1270833     1       0          1  1  0  0
#> SRR1270834     1       0          1  1  0  0
#> SRR1270835     1       0          1  1  0  0
#> SRR1270836     1       0          1  1  0  0
#> SRR1270837     1       0          1  1  0  0
#> SRR1270838     1       0          1  1  0  0
#> SRR1270839     1       0          1  1  0  0
#> SRR1270840     1       0          1  1  0  0
#> SRR1270841     1       0          1  1  0  0
#> SRR1270842     1       0          1  1  0  0
#> SRR1270843     1       0          1  1  0  0
#> SRR1270844     1       0          1  1  0  0
#> SRR1270845     1       0          1  1  0  0
#> SRR1270846     1       0          1  1  0  0
#> SRR1270847     1       0          1  1  0  0
#> SRR1270848     1       0          1  1  0  0
#> SRR1270849     1       0          1  1  0  0
#> SRR1270850     1       0          1  1  0  0
#> SRR1270851     2       0          1  0  1  0
#> SRR1270852     2       0          1  0  1  0
#> SRR1270853     2       0          1  0  1  0
#> SRR1270854     2       0          1  0  1  0
#> SRR1270855     2       0          1  0  1  0
#> SRR1270856     2       0          1  0  1  0
#> SRR1270857     2       0          1  0  1  0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette p1 p2 p3 p4
#> SRR1270715     1       0          1  1  0  0  0
#> SRR1270716     1       0          1  1  0  0  0
#> SRR1270717     1       0          1  1  0  0  0
#> SRR1270718     1       0          1  1  0  0  0
#> SRR1270719     1       0          1  1  0  0  0
#> SRR1270720     1       0          1  1  0  0  0
#> SRR1270721     1       0          1  1  0  0  0
#> SRR1270722     1       0          1  1  0  0  0
#> SRR1270723     1       0          1  1  0  0  0
#> SRR1270724     1       0          1  1  0  0  0
#> SRR1270725     1       0          1  1  0  0  0
#> SRR1270726     1       0          1  1  0  0  0
#> SRR1270727     1       0          1  1  0  0  0
#> SRR1270728     1       0          1  1  0  0  0
#> SRR1270729     1       0          1  1  0  0  0
#> SRR1270730     1       0          1  1  0  0  0
#> SRR1270731     1       0          1  1  0  0  0
#> SRR1270732     1       0          1  1  0  0  0
#> SRR1270733     1       0          1  1  0  0  0
#> SRR1270734     1       0          1  1  0  0  0
#> SRR1270735     1       0          1  1  0  0  0
#> SRR1270736     1       0          1  1  0  0  0
#> SRR1270737     1       0          1  1  0  0  0
#> SRR1270738     1       0          1  1  0  0  0
#> SRR1270739     1       0          1  1  0  0  0
#> SRR1270740     1       0          1  1  0  0  0
#> SRR1270741     1       0          1  1  0  0  0
#> SRR1270742     1       0          1  1  0  0  0
#> SRR1270743     1       0          1  1  0  0  0
#> SRR1270744     1       0          1  1  0  0  0
#> SRR1270745     1       0          1  1  0  0  0
#> SRR1270746     1       0          1  1  0  0  0
#> SRR1270747     1       0          1  1  0  0  0
#> SRR1270748     1       0          1  1  0  0  0
#> SRR1270749     1       0          1  1  0  0  0
#> SRR1270750     1       0          1  1  0  0  0
#> SRR1270751     1       0          1  1  0  0  0
#> SRR1270752     1       0          1  1  0  0  0
#> SRR1270753     1       0          1  1  0  0  0
#> SRR1270754     1       0          1  1  0  0  0
#> SRR1270755     1       0          1  1  0  0  0
#> SRR1270756     1       0          1  1  0  0  0
#> SRR1270757     1       0          1  1  0  0  0
#> SRR1270758     1       0          1  1  0  0  0
#> SRR1270759     1       0          1  1  0  0  0
#> SRR1270760     1       0          1  1  0  0  0
#> SRR1270761     1       0          1  1  0  0  0
#> SRR1270762     1       0          1  1  0  0  0
#> SRR1270763     1       0          1  1  0  0  0
#> SRR1270764     1       0          1  1  0  0  0
#> SRR1270765     2       0          1  0  1  0  0
#> SRR1270766     2       0          1  0  1  0  0
#> SRR1270767     2       0          1  0  1  0  0
#> SRR1270768     2       0          1  0  1  0  0
#> SRR1270769     2       0          1  0  1  0  0
#> SRR1270770     2       0          1  0  1  0  0
#> SRR1270771     2       0          1  0  1  0  0
#> SRR1270772     2       0          1  0  1  0  0
#> SRR1270773     2       0          1  0  1  0  0
#> SRR1270774     2       0          1  0  1  0  0
#> SRR1270775     2       0          1  0  1  0  0
#> SRR1270776     2       0          1  0  1  0  0
#> SRR1270777     2       0          1  0  1  0  0
#> SRR1270778     2       0          1  0  1  0  0
#> SRR1270779     2       0          1  0  1  0  0
#> SRR1270780     2       0          1  0  1  0  0
#> SRR1270781     2       0          1  0  1  0  0
#> SRR1270782     2       0          1  0  1  0  0
#> SRR1270783     2       0          1  0  1  0  0
#> SRR1270784     2       0          1  0  1  0  0
#> SRR1270785     2       0          1  0  1  0  0
#> SRR1270786     2       0          1  0  1  0  0
#> SRR1270787     2       0          1  0  1  0  0
#> SRR1270788     2       0          1  0  1  0  0
#> SRR1270789     2       0          1  0  1  0  0
#> SRR1270790     2       0          1  0  1  0  0
#> SRR1270791     2       0          1  0  1  0  0
#> SRR1270792     2       0          1  0  1  0  0
#> SRR1270793     2       0          1  0  1  0  0
#> SRR1270794     2       0          1  0  1  0  0
#> SRR1270795     2       0          1  0  1  0  0
#> SRR1270796     2       0          1  0  1  0  0
#> SRR1270797     2       0          1  0  1  0  0
#> SRR1270798     2       0          1  0  1  0  0
#> SRR1270799     2       0          1  0  1  0  0
#> SRR1270800     2       0          1  0  1  0  0
#> SRR1270801     2       0          1  0  1  0  0
#> SRR1270802     2       0          1  0  1  0  0
#> SRR1270803     2       0          1  0  1  0  0
#> SRR1270804     2       0          1  0  1  0  0
#> SRR1270805     3       0          1  0  0  1  0
#> SRR1270806     3       0          1  0  0  1  0
#> SRR1270807     3       0          1  0  0  1  0
#> SRR1270808     3       0          1  0  0  1  0
#> SRR1270809     3       0          1  0  0  1  0
#> SRR1270810     3       0          1  0  0  1  0
#> SRR1270811     3       0          1  0  0  1  0
#> SRR1270812     3       0          1  0  0  1  0
#> SRR1270813     3       0          1  0  0  1  0
#> SRR1270814     3       0          1  0  0  1  0
#> SRR1270815     3       0          1  0  0  1  0
#> SRR1270816     3       0          1  0  0  1  0
#> SRR1270817     3       0          1  0  0  1  0
#> SRR1270818     3       0          1  0  0  1  0
#> SRR1270819     3       0          1  0  0  1  0
#> SRR1270820     3       0          1  0  0  1  0
#> SRR1270821     3       0          1  0  0  1  0
#> SRR1270822     3       0          1  0  0  1  0
#> SRR1270823     3       0          1  0  0  1  0
#> SRR1270824     3       0          1  0  0  1  0
#> SRR1270825     3       0          1  0  0  1  0
#> SRR1270826     3       0          1  0  0  1  0
#> SRR1270827     3       0          1  0  0  1  0
#> SRR1270828     3       0          1  0  0  1  0
#> SRR1270829     3       0          1  0  0  1  0
#> SRR1270830     3       0          1  0  0  1  0
#> SRR1270831     3       0          1  0  0  1  0
#> SRR1270832     3       0          1  0  0  1  0
#> SRR1270833     4       0          1  0  0  0  1
#> SRR1270834     4       0          1  0  0  0  1
#> SRR1270835     4       0          1  0  0  0  1
#> SRR1270836     4       0          1  0  0  0  1
#> SRR1270837     4       0          1  0  0  0  1
#> SRR1270838     4       0          1  0  0  0  1
#> SRR1270839     4       0          1  0  0  0  1
#> SRR1270840     4       0          1  0  0  0  1
#> SRR1270841     4       0          1  0  0  0  1
#> SRR1270842     4       0          1  0  0  0  1
#> SRR1270843     4       0          1  0  0  0  1
#> SRR1270844     4       0          1  0  0  0  1
#> SRR1270845     4       0          1  0  0  0  1
#> SRR1270846     4       0          1  0  0  0  1
#> SRR1270847     4       0          1  0  0  0  1
#> SRR1270848     4       0          1  0  0  0  1
#> SRR1270849     4       0          1  0  0  0  1
#> SRR1270850     4       0          1  0  0  0  1
#> SRR1270851     2       0          1  0  1  0  0
#> SRR1270852     2       0          1  0  1  0  0
#> SRR1270853     2       0          1  0  1  0  0
#> SRR1270854     2       0          1  0  1  0  0
#> SRR1270855     2       0          1  0  1  0  0
#> SRR1270856     2       0          1  0  1  0  0
#> SRR1270857     2       0          1  0  1  0  0

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2 p3 p4    p5
#> SRR1270715     1  0.3857      0.830 0.688 0.312  0  0 0.000
#> SRR1270716     1  0.3857      0.830 0.688 0.312  0  0 0.000
#> SRR1270717     1  0.3857      0.830 0.688 0.312  0  0 0.000
#> SRR1270718     1  0.3857      0.830 0.688 0.312  0  0 0.000
#> SRR1270719     1  0.3857      0.830 0.688 0.312  0  0 0.000
#> SRR1270720     1  0.3857      0.830 0.688 0.312  0  0 0.000
#> SRR1270721     1  0.3857      0.830 0.688 0.312  0  0 0.000
#> SRR1270722     1  0.0000      0.868 1.000 0.000  0  0 0.000
#> SRR1270723     1  0.0609      0.866 0.980 0.020  0  0 0.000
#> SRR1270724     1  0.1197      0.863 0.952 0.048  0  0 0.000
#> SRR1270725     1  0.3857      0.830 0.688 0.312  0  0 0.000
#> SRR1270726     1  0.3857      0.830 0.688 0.312  0  0 0.000
#> SRR1270727     1  0.3857      0.830 0.688 0.312  0  0 0.000
#> SRR1270728     1  0.3857      0.830 0.688 0.312  0  0 0.000
#> SRR1270729     1  0.3857      0.830 0.688 0.312  0  0 0.000
#> SRR1270730     1  0.3857      0.830 0.688 0.312  0  0 0.000
#> SRR1270731     1  0.3857      0.830 0.688 0.312  0  0 0.000
#> SRR1270732     1  0.3857      0.830 0.688 0.312  0  0 0.000
#> SRR1270733     1  0.3857      0.830 0.688 0.312  0  0 0.000
#> SRR1270734     1  0.3857      0.830 0.688 0.312  0  0 0.000
#> SRR1270735     1  0.3857      0.830 0.688 0.312  0  0 0.000
#> SRR1270736     1  0.3857      0.830 0.688 0.312  0  0 0.000
#> SRR1270737     1  0.3857      0.830 0.688 0.312  0  0 0.000
#> SRR1270738     1  0.3857      0.830 0.688 0.312  0  0 0.000
#> SRR1270739     1  0.3857      0.830 0.688 0.312  0  0 0.000
#> SRR1270740     1  0.0000      0.868 1.000 0.000  0  0 0.000
#> SRR1270741     1  0.0000      0.868 1.000 0.000  0  0 0.000
#> SRR1270742     1  0.0000      0.868 1.000 0.000  0  0 0.000
#> SRR1270743     1  0.0000      0.868 1.000 0.000  0  0 0.000
#> SRR1270744     1  0.0000      0.868 1.000 0.000  0  0 0.000
#> SRR1270745     1  0.0000      0.868 1.000 0.000  0  0 0.000
#> SRR1270746     1  0.0000      0.868 1.000 0.000  0  0 0.000
#> SRR1270747     1  0.0000      0.868 1.000 0.000  0  0 0.000
#> SRR1270748     1  0.0000      0.868 1.000 0.000  0  0 0.000
#> SRR1270749     1  0.0000      0.868 1.000 0.000  0  0 0.000
#> SRR1270750     1  0.0000      0.868 1.000 0.000  0  0 0.000
#> SRR1270751     1  0.0000      0.868 1.000 0.000  0  0 0.000
#> SRR1270752     1  0.0000      0.868 1.000 0.000  0  0 0.000
#> SRR1270753     1  0.0000      0.868 1.000 0.000  0  0 0.000
#> SRR1270754     1  0.0000      0.868 1.000 0.000  0  0 0.000
#> SRR1270755     1  0.0000      0.868 1.000 0.000  0  0 0.000
#> SRR1270756     1  0.0000      0.868 1.000 0.000  0  0 0.000
#> SRR1270757     1  0.0000      0.868 1.000 0.000  0  0 0.000
#> SRR1270758     1  0.0000      0.868 1.000 0.000  0  0 0.000
#> SRR1270759     1  0.0000      0.868 1.000 0.000  0  0 0.000
#> SRR1270760     1  0.0000      0.868 1.000 0.000  0  0 0.000
#> SRR1270761     1  0.0000      0.868 1.000 0.000  0  0 0.000
#> SRR1270762     1  0.0000      0.868 1.000 0.000  0  0 0.000
#> SRR1270763     1  0.0000      0.868 1.000 0.000  0  0 0.000
#> SRR1270764     1  0.0000      0.868 1.000 0.000  0  0 0.000
#> SRR1270765     2  0.3857      1.000 0.000 0.688  0  0 0.312
#> SRR1270766     2  0.3857      1.000 0.000 0.688  0  0 0.312
#> SRR1270767     2  0.3857      1.000 0.000 0.688  0  0 0.312
#> SRR1270768     2  0.3857      1.000 0.000 0.688  0  0 0.312
#> SRR1270769     2  0.3857      1.000 0.000 0.688  0  0 0.312
#> SRR1270770     2  0.3857      1.000 0.000 0.688  0  0 0.312
#> SRR1270771     2  0.3857      1.000 0.000 0.688  0  0 0.312
#> SRR1270772     2  0.3857      1.000 0.000 0.688  0  0 0.312
#> SRR1270773     2  0.3857      1.000 0.000 0.688  0  0 0.312
#> SRR1270774     2  0.3857      1.000 0.000 0.688  0  0 0.312
#> SRR1270775     2  0.3857      1.000 0.000 0.688  0  0 0.312
#> SRR1270776     2  0.3857      1.000 0.000 0.688  0  0 0.312
#> SRR1270777     2  0.3857      1.000 0.000 0.688  0  0 0.312
#> SRR1270778     2  0.3857      1.000 0.000 0.688  0  0 0.312
#> SRR1270779     2  0.3857      1.000 0.000 0.688  0  0 0.312
#> SRR1270780     2  0.3857      1.000 0.000 0.688  0  0 0.312
#> SRR1270781     2  0.3857      1.000 0.000 0.688  0  0 0.312
#> SRR1270782     2  0.3857      1.000 0.000 0.688  0  0 0.312
#> SRR1270783     2  0.3857      1.000 0.000 0.688  0  0 0.312
#> SRR1270784     2  0.3857      1.000 0.000 0.688  0  0 0.312
#> SRR1270785     5  0.0000      1.000 0.000 0.000  0  0 1.000
#> SRR1270786     5  0.0000      1.000 0.000 0.000  0  0 1.000
#> SRR1270787     5  0.0000      1.000 0.000 0.000  0  0 1.000
#> SRR1270788     5  0.0000      1.000 0.000 0.000  0  0 1.000
#> SRR1270789     5  0.0000      1.000 0.000 0.000  0  0 1.000
#> SRR1270790     5  0.0000      1.000 0.000 0.000  0  0 1.000
#> SRR1270791     5  0.0000      1.000 0.000 0.000  0  0 1.000
#> SRR1270792     5  0.0000      1.000 0.000 0.000  0  0 1.000
#> SRR1270793     5  0.0000      1.000 0.000 0.000  0  0 1.000
#> SRR1270794     5  0.0000      1.000 0.000 0.000  0  0 1.000
#> SRR1270795     5  0.0000      1.000 0.000 0.000  0  0 1.000
#> SRR1270796     5  0.0000      1.000 0.000 0.000  0  0 1.000
#> SRR1270797     5  0.0000      1.000 0.000 0.000  0  0 1.000
#> SRR1270798     5  0.0000      1.000 0.000 0.000  0  0 1.000
#> SRR1270799     5  0.0000      1.000 0.000 0.000  0  0 1.000
#> SRR1270800     5  0.0000      1.000 0.000 0.000  0  0 1.000
#> SRR1270801     5  0.0000      1.000 0.000 0.000  0  0 1.000
#> SRR1270802     5  0.0000      1.000 0.000 0.000  0  0 1.000
#> SRR1270803     5  0.0000      1.000 0.000 0.000  0  0 1.000
#> SRR1270804     5  0.0000      1.000 0.000 0.000  0  0 1.000
#> SRR1270805     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270806     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270807     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270808     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270809     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270810     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270811     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270812     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270813     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270814     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270815     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270816     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270817     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270818     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270819     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270820     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270821     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270822     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270823     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270824     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270825     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270826     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270827     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270828     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270829     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270830     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270831     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270832     3  0.0000      1.000 0.000 0.000  1  0 0.000
#> SRR1270833     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270834     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270835     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270836     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270837     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270838     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270839     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270840     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270841     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270842     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270843     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270844     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270845     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270846     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270847     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270848     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270849     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270850     4  0.0000      1.000 0.000 0.000  0  1 0.000
#> SRR1270851     2  0.3857      1.000 0.000 0.688  0  0 0.312
#> SRR1270852     2  0.3857      1.000 0.000 0.688  0  0 0.312
#> SRR1270853     2  0.3857      1.000 0.000 0.688  0  0 0.312
#> SRR1270854     2  0.3857      1.000 0.000 0.688  0  0 0.312
#> SRR1270855     2  0.3857      1.000 0.000 0.688  0  0 0.312
#> SRR1270856     2  0.3857      1.000 0.000 0.688  0  0 0.312
#> SRR1270857     2  0.3857      1.000 0.000 0.688  0  0 0.312

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1 p2 p3 p4 p5    p6
#> SRR1270715     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270716     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270717     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270718     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270719     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270720     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270721     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270722     1  0.0000      0.997 1.000  0  0  0  0 0.000
#> SRR1270723     1  0.0713      0.971 0.972  0  0  0  0 0.028
#> SRR1270724     1  0.1075      0.950 0.952  0  0  0  0 0.048
#> SRR1270725     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270726     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270727     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270728     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270729     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270730     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270731     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270732     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270733     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270734     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270735     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270736     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270737     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270738     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270739     6  0.0000      1.000 0.000  0  0  0  0 1.000
#> SRR1270740     1  0.0000      0.997 1.000  0  0  0  0 0.000
#> SRR1270741     1  0.0000      0.997 1.000  0  0  0  0 0.000
#> SRR1270742     1  0.0000      0.997 1.000  0  0  0  0 0.000
#> SRR1270743     1  0.0000      0.997 1.000  0  0  0  0 0.000
#> SRR1270744     1  0.0000      0.997 1.000  0  0  0  0 0.000
#> SRR1270745     1  0.0000      0.997 1.000  0  0  0  0 0.000
#> SRR1270746     1  0.0000      0.997 1.000  0  0  0  0 0.000
#> SRR1270747     1  0.0000      0.997 1.000  0  0  0  0 0.000
#> SRR1270748     1  0.0000      0.997 1.000  0  0  0  0 0.000
#> SRR1270749     1  0.0000      0.997 1.000  0  0  0  0 0.000
#> SRR1270750     1  0.0000      0.997 1.000  0  0  0  0 0.000
#> SRR1270751     1  0.0000      0.997 1.000  0  0  0  0 0.000
#> SRR1270752     1  0.0000      0.997 1.000  0  0  0  0 0.000
#> SRR1270753     1  0.0000      0.997 1.000  0  0  0  0 0.000
#> SRR1270754     1  0.0000      0.997 1.000  0  0  0  0 0.000
#> SRR1270755     1  0.0000      0.997 1.000  0  0  0  0 0.000
#> SRR1270756     1  0.0000      0.997 1.000  0  0  0  0 0.000
#> SRR1270757     1  0.0000      0.997 1.000  0  0  0  0 0.000
#> SRR1270758     1  0.0000      0.997 1.000  0  0  0  0 0.000
#> SRR1270759     1  0.0000      0.997 1.000  0  0  0  0 0.000
#> SRR1270760     1  0.0000      0.997 1.000  0  0  0  0 0.000
#> SRR1270761     1  0.0000      0.997 1.000  0  0  0  0 0.000
#> SRR1270762     1  0.0000      0.997 1.000  0  0  0  0 0.000
#> SRR1270763     1  0.0000      0.997 1.000  0  0  0  0 0.000
#> SRR1270764     1  0.0000      0.997 1.000  0  0  0  0 0.000
#> SRR1270765     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270766     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270767     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270768     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270769     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270770     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270771     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270772     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270773     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270774     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270775     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270776     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270777     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270778     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270779     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270780     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270781     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270782     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270783     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270784     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270785     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270786     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270787     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270788     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270789     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270790     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270791     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270792     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270793     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270794     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270795     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270796     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270797     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270798     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270799     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270800     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270801     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270802     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270803     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270804     5  0.0000      1.000 0.000  0  0  0  1 0.000
#> SRR1270805     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270806     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270807     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270808     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270809     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270810     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270811     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270812     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270813     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270814     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270815     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270816     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270817     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270818     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270819     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270820     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270821     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270822     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270823     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270824     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270825     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270826     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270827     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270828     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270829     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270830     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270831     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270832     3  0.0000      1.000 0.000  0  1  0  0 0.000
#> SRR1270833     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270834     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270835     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270836     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270837     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270838     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270839     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270840     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270841     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270842     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270843     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270844     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270845     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270846     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270847     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270848     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270849     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270850     4  0.0000      1.000 0.000  0  0  1  0 0.000
#> SRR1270851     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270852     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270853     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270854     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270855     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270856     2  0.0000      1.000 0.000  1  0  0  0 0.000
#> SRR1270857     2  0.0000      1.000 0.000  1  0  0  0 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14577 rows and 143 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.683           0.811       0.908         0.4767 0.542   0.542
#> 3 3 1.000           1.000       1.000         0.4082 0.787   0.607
#> 4 4 1.000           1.000       1.000         0.0739 0.950   0.849
#> 5 5 1.000           1.000       1.000         0.0737 0.947   0.810
#> 6 6 1.000           1.000       1.000         0.0795 0.938   0.728

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 3 4 5

There is also optional best \(k\) = 3 4 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1270715     1   0.000      1.000 1.000 0.000
#> SRR1270716     1   0.000      1.000 1.000 0.000
#> SRR1270717     1   0.000      1.000 1.000 0.000
#> SRR1270718     1   0.000      1.000 1.000 0.000
#> SRR1270719     1   0.000      1.000 1.000 0.000
#> SRR1270720     1   0.000      1.000 1.000 0.000
#> SRR1270721     1   0.000      1.000 1.000 0.000
#> SRR1270722     1   0.000      1.000 1.000 0.000
#> SRR1270723     1   0.000      1.000 1.000 0.000
#> SRR1270724     1   0.000      1.000 1.000 0.000
#> SRR1270725     1   0.000      1.000 1.000 0.000
#> SRR1270726     1   0.000      1.000 1.000 0.000
#> SRR1270727     1   0.000      1.000 1.000 0.000
#> SRR1270728     1   0.000      1.000 1.000 0.000
#> SRR1270729     1   0.000      1.000 1.000 0.000
#> SRR1270730     1   0.000      1.000 1.000 0.000
#> SRR1270731     1   0.000      1.000 1.000 0.000
#> SRR1270732     1   0.000      1.000 1.000 0.000
#> SRR1270733     1   0.000      1.000 1.000 0.000
#> SRR1270734     1   0.000      1.000 1.000 0.000
#> SRR1270735     1   0.000      1.000 1.000 0.000
#> SRR1270736     1   0.000      1.000 1.000 0.000
#> SRR1270737     1   0.000      1.000 1.000 0.000
#> SRR1270738     1   0.000      1.000 1.000 0.000
#> SRR1270739     1   0.000      1.000 1.000 0.000
#> SRR1270740     1   0.000      1.000 1.000 0.000
#> SRR1270741     1   0.000      1.000 1.000 0.000
#> SRR1270742     1   0.000      1.000 1.000 0.000
#> SRR1270743     1   0.000      1.000 1.000 0.000
#> SRR1270744     1   0.000      1.000 1.000 0.000
#> SRR1270745     1   0.000      1.000 1.000 0.000
#> SRR1270746     1   0.000      1.000 1.000 0.000
#> SRR1270747     1   0.000      1.000 1.000 0.000
#> SRR1270748     1   0.000      1.000 1.000 0.000
#> SRR1270749     1   0.000      1.000 1.000 0.000
#> SRR1270750     1   0.000      1.000 1.000 0.000
#> SRR1270751     1   0.000      1.000 1.000 0.000
#> SRR1270752     1   0.000      1.000 1.000 0.000
#> SRR1270753     1   0.000      1.000 1.000 0.000
#> SRR1270754     1   0.000      1.000 1.000 0.000
#> SRR1270755     1   0.000      1.000 1.000 0.000
#> SRR1270756     1   0.000      1.000 1.000 0.000
#> SRR1270757     1   0.000      1.000 1.000 0.000
#> SRR1270758     1   0.000      1.000 1.000 0.000
#> SRR1270759     1   0.000      1.000 1.000 0.000
#> SRR1270760     1   0.000      1.000 1.000 0.000
#> SRR1270761     1   0.000      1.000 1.000 0.000
#> SRR1270762     1   0.000      1.000 1.000 0.000
#> SRR1270763     1   0.000      1.000 1.000 0.000
#> SRR1270764     1   0.000      1.000 1.000 0.000
#> SRR1270765     2   0.000      0.841 0.000 1.000
#> SRR1270766     2   0.000      0.841 0.000 1.000
#> SRR1270767     2   0.000      0.841 0.000 1.000
#> SRR1270768     2   0.000      0.841 0.000 1.000
#> SRR1270769     2   0.000      0.841 0.000 1.000
#> SRR1270770     2   0.000      0.841 0.000 1.000
#> SRR1270771     2   0.000      0.841 0.000 1.000
#> SRR1270772     2   0.000      0.841 0.000 1.000
#> SRR1270773     2   0.000      0.841 0.000 1.000
#> SRR1270774     2   0.000      0.841 0.000 1.000
#> SRR1270775     2   0.000      0.841 0.000 1.000
#> SRR1270776     2   0.000      0.841 0.000 1.000
#> SRR1270777     2   0.000      0.841 0.000 1.000
#> SRR1270778     2   0.000      0.841 0.000 1.000
#> SRR1270779     2   0.000      0.841 0.000 1.000
#> SRR1270780     2   0.000      0.841 0.000 1.000
#> SRR1270781     2   0.000      0.841 0.000 1.000
#> SRR1270782     2   0.000      0.841 0.000 1.000
#> SRR1270783     2   0.000      0.841 0.000 1.000
#> SRR1270784     2   0.000      0.841 0.000 1.000
#> SRR1270785     2   0.000      0.841 0.000 1.000
#> SRR1270786     2   0.000      0.841 0.000 1.000
#> SRR1270787     2   0.000      0.841 0.000 1.000
#> SRR1270788     2   0.000      0.841 0.000 1.000
#> SRR1270789     2   0.000      0.841 0.000 1.000
#> SRR1270790     2   0.000      0.841 0.000 1.000
#> SRR1270791     2   0.000      0.841 0.000 1.000
#> SRR1270792     2   0.000      0.841 0.000 1.000
#> SRR1270793     2   0.000      0.841 0.000 1.000
#> SRR1270794     2   0.000      0.841 0.000 1.000
#> SRR1270795     2   0.000      0.841 0.000 1.000
#> SRR1270796     2   0.000      0.841 0.000 1.000
#> SRR1270797     2   0.000      0.841 0.000 1.000
#> SRR1270798     2   0.000      0.841 0.000 1.000
#> SRR1270799     2   0.000      0.841 0.000 1.000
#> SRR1270800     2   0.000      0.841 0.000 1.000
#> SRR1270801     2   0.000      0.841 0.000 1.000
#> SRR1270802     2   0.000      0.841 0.000 1.000
#> SRR1270803     2   0.000      0.841 0.000 1.000
#> SRR1270804     2   0.000      0.841 0.000 1.000
#> SRR1270805     2   0.995      0.408 0.460 0.540
#> SRR1270806     2   0.995      0.408 0.460 0.540
#> SRR1270807     2   0.995      0.408 0.460 0.540
#> SRR1270808     2   0.995      0.408 0.460 0.540
#> SRR1270809     2   0.995      0.408 0.460 0.540
#> SRR1270810     2   0.995      0.408 0.460 0.540
#> SRR1270811     2   0.995      0.408 0.460 0.540
#> SRR1270812     2   0.995      0.408 0.460 0.540
#> SRR1270813     2   0.995      0.408 0.460 0.540
#> SRR1270814     2   0.995      0.408 0.460 0.540
#> SRR1270815     2   0.995      0.408 0.460 0.540
#> SRR1270816     2   0.995      0.408 0.460 0.540
#> SRR1270817     2   0.995      0.408 0.460 0.540
#> SRR1270818     2   0.995      0.408 0.460 0.540
#> SRR1270819     2   0.995      0.408 0.460 0.540
#> SRR1270820     2   0.995      0.408 0.460 0.540
#> SRR1270821     2   0.995      0.408 0.460 0.540
#> SRR1270822     2   0.995      0.408 0.460 0.540
#> SRR1270823     2   0.995      0.408 0.460 0.540
#> SRR1270824     2   0.995      0.408 0.460 0.540
#> SRR1270825     2   0.995      0.408 0.460 0.540
#> SRR1270826     2   0.995      0.408 0.460 0.540
#> SRR1270827     2   0.995      0.408 0.460 0.540
#> SRR1270828     2   0.995      0.408 0.460 0.540
#> SRR1270829     2   0.995      0.408 0.460 0.540
#> SRR1270830     2   0.995      0.408 0.460 0.540
#> SRR1270831     2   0.995      0.408 0.460 0.540
#> SRR1270832     2   0.995      0.408 0.460 0.540
#> SRR1270833     2   0.118      0.838 0.016 0.984
#> SRR1270834     2   0.118      0.838 0.016 0.984
#> SRR1270835     2   0.118      0.838 0.016 0.984
#> SRR1270836     2   0.118      0.838 0.016 0.984
#> SRR1270837     2   0.118      0.838 0.016 0.984
#> SRR1270838     2   0.118      0.838 0.016 0.984
#> SRR1270839     2   0.118      0.838 0.016 0.984
#> SRR1270840     2   0.118      0.838 0.016 0.984
#> SRR1270841     2   0.118      0.838 0.016 0.984
#> SRR1270842     2   0.118      0.838 0.016 0.984
#> SRR1270843     2   0.118      0.838 0.016 0.984
#> SRR1270844     2   0.118      0.838 0.016 0.984
#> SRR1270845     2   0.118      0.838 0.016 0.984
#> SRR1270846     2   0.118      0.838 0.016 0.984
#> SRR1270847     2   0.118      0.838 0.016 0.984
#> SRR1270848     2   0.118      0.838 0.016 0.984
#> SRR1270849     2   0.118      0.838 0.016 0.984
#> SRR1270850     2   0.118      0.838 0.016 0.984
#> SRR1270851     2   0.000      0.841 0.000 1.000
#> SRR1270852     2   0.000      0.841 0.000 1.000
#> SRR1270853     2   0.000      0.841 0.000 1.000
#> SRR1270854     2   0.000      0.841 0.000 1.000
#> SRR1270855     2   0.000      0.841 0.000 1.000
#> SRR1270856     2   0.000      0.841 0.000 1.000
#> SRR1270857     2   0.000      0.841 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette p1 p2 p3
#> SRR1270715     1       0          1  1  0  0
#> SRR1270716     1       0          1  1  0  0
#> SRR1270717     1       0          1  1  0  0
#> SRR1270718     1       0          1  1  0  0
#> SRR1270719     1       0          1  1  0  0
#> SRR1270720     1       0          1  1  0  0
#> SRR1270721     1       0          1  1  0  0
#> SRR1270722     1       0          1  1  0  0
#> SRR1270723     1       0          1  1  0  0
#> SRR1270724     1       0          1  1  0  0
#> SRR1270725     1       0          1  1  0  0
#> SRR1270726     1       0          1  1  0  0
#> SRR1270727     1       0          1  1  0  0
#> SRR1270728     1       0          1  1  0  0
#> SRR1270729     1       0          1  1  0  0
#> SRR1270730     1       0          1  1  0  0
#> SRR1270731     1       0          1  1  0  0
#> SRR1270732     1       0          1  1  0  0
#> SRR1270733     1       0          1  1  0  0
#> SRR1270734     1       0          1  1  0  0
#> SRR1270735     1       0          1  1  0  0
#> SRR1270736     1       0          1  1  0  0
#> SRR1270737     1       0          1  1  0  0
#> SRR1270738     1       0          1  1  0  0
#> SRR1270739     1       0          1  1  0  0
#> SRR1270740     1       0          1  1  0  0
#> SRR1270741     1       0          1  1  0  0
#> SRR1270742     1       0          1  1  0  0
#> SRR1270743     1       0          1  1  0  0
#> SRR1270744     1       0          1  1  0  0
#> SRR1270745     1       0          1  1  0  0
#> SRR1270746     1       0          1  1  0  0
#> SRR1270747     1       0          1  1  0  0
#> SRR1270748     1       0          1  1  0  0
#> SRR1270749     1       0          1  1  0  0
#> SRR1270750     1       0          1  1  0  0
#> SRR1270751     1       0          1  1  0  0
#> SRR1270752     1       0          1  1  0  0
#> SRR1270753     1       0          1  1  0  0
#> SRR1270754     1       0          1  1  0  0
#> SRR1270755     1       0          1  1  0  0
#> SRR1270756     1       0          1  1  0  0
#> SRR1270757     1       0          1  1  0  0
#> SRR1270758     1       0          1  1  0  0
#> SRR1270759     1       0          1  1  0  0
#> SRR1270760     1       0          1  1  0  0
#> SRR1270761     1       0          1  1  0  0
#> SRR1270762     1       0          1  1  0  0
#> SRR1270763     1       0          1  1  0  0
#> SRR1270764     1       0          1  1  0  0
#> SRR1270765     2       0          1  0  1  0
#> SRR1270766     2       0          1  0  1  0
#> SRR1270767     2       0          1  0  1  0
#> SRR1270768     2       0          1  0  1  0
#> SRR1270769     2       0          1  0  1  0
#> SRR1270770     2       0          1  0  1  0
#> SRR1270771     2       0          1  0  1  0
#> SRR1270772     2       0          1  0  1  0
#> SRR1270773     2       0          1  0  1  0
#> SRR1270774     2       0          1  0  1  0
#> SRR1270775     2       0          1  0  1  0
#> SRR1270776     2       0          1  0  1  0
#> SRR1270777     2       0          1  0  1  0
#> SRR1270778     2       0          1  0  1  0
#> SRR1270779     2       0          1  0  1  0
#> SRR1270780     2       0          1  0  1  0
#> SRR1270781     2       0          1  0  1  0
#> SRR1270782     2       0          1  0  1  0
#> SRR1270783     2       0          1  0  1  0
#> SRR1270784     2       0          1  0  1  0
#> SRR1270785     2       0          1  0  1  0
#> SRR1270786     2       0          1  0  1  0
#> SRR1270787     2       0          1  0  1  0
#> SRR1270788     2       0          1  0  1  0
#> SRR1270789     2       0          1  0  1  0
#> SRR1270790     2       0          1  0  1  0
#> SRR1270791     2       0          1  0  1  0
#> SRR1270792     2       0          1  0  1  0
#> SRR1270793     2       0          1  0  1  0
#> SRR1270794     2       0          1  0  1  0
#> SRR1270795     2       0          1  0  1  0
#> SRR1270796     2       0          1  0  1  0
#> SRR1270797     2       0          1  0  1  0
#> SRR1270798     2       0          1  0  1  0
#> SRR1270799     2       0          1  0  1  0
#> SRR1270800     2       0          1  0  1  0
#> SRR1270801     2       0          1  0  1  0
#> SRR1270802     2       0          1  0  1  0
#> SRR1270803     2       0          1  0  1  0
#> SRR1270804     2       0          1  0  1  0
#> SRR1270805     3       0          1  0  0  1
#> SRR1270806     3       0          1  0  0  1
#> SRR1270807     3       0          1  0  0  1
#> SRR1270808     3       0          1  0  0  1
#> SRR1270809     3       0          1  0  0  1
#> SRR1270810     3       0          1  0  0  1
#> SRR1270811     3       0          1  0  0  1
#> SRR1270812     3       0          1  0  0  1
#> SRR1270813     3       0          1  0  0  1
#> SRR1270814     3       0          1  0  0  1
#> SRR1270815     3       0          1  0  0  1
#> SRR1270816     3       0          1  0  0  1
#> SRR1270817     3       0          1  0  0  1
#> SRR1270818     3       0          1  0  0  1
#> SRR1270819     3       0          1  0  0  1
#> SRR1270820     3       0          1  0  0  1
#> SRR1270821     3       0          1  0  0  1
#> SRR1270822     3       0          1  0  0  1
#> SRR1270823     3       0          1  0  0  1
#> SRR1270824     3       0          1  0  0  1
#> SRR1270825     3       0          1  0  0  1
#> SRR1270826     3       0          1  0  0  1
#> SRR1270827     3       0          1  0  0  1
#> SRR1270828     3       0          1  0  0  1
#> SRR1270829     3       0          1  0  0  1
#> SRR1270830     3       0          1  0  0  1
#> SRR1270831     3       0          1  0  0  1
#> SRR1270832     3       0          1  0  0  1
#> SRR1270833     3       0          1  0  0  1
#> SRR1270834     3       0          1  0  0  1
#> SRR1270835     3       0          1  0  0  1
#> SRR1270836     3       0          1  0  0  1
#> SRR1270837     3       0          1  0  0  1
#> SRR1270838     3       0          1  0  0  1
#> SRR1270839     3       0          1  0  0  1
#> SRR1270840     3       0          1  0  0  1
#> SRR1270841     3       0          1  0  0  1
#> SRR1270842     3       0          1  0  0  1
#> SRR1270843     3       0          1  0  0  1
#> SRR1270844     3       0          1  0  0  1
#> SRR1270845     3       0          1  0  0  1
#> SRR1270846     3       0          1  0  0  1
#> SRR1270847     3       0          1  0  0  1
#> SRR1270848     3       0          1  0  0  1
#> SRR1270849     3       0          1  0  0  1
#> SRR1270850     3       0          1  0  0  1
#> SRR1270851     2       0          1  0  1  0
#> SRR1270852     2       0          1  0  1  0
#> SRR1270853     2       0          1  0  1  0
#> SRR1270854     2       0          1  0  1  0
#> SRR1270855     2       0          1  0  1  0
#> SRR1270856     2       0          1  0  1  0
#> SRR1270857     2       0          1  0  1  0

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette p1 p2 p3 p4
#> SRR1270715     1       0          1  1  0  0  0
#> SRR1270716     1       0          1  1  0  0  0
#> SRR1270717     1       0          1  1  0  0  0
#> SRR1270718     1       0          1  1  0  0  0
#> SRR1270719     1       0          1  1  0  0  0
#> SRR1270720     1       0          1  1  0  0  0
#> SRR1270721     1       0          1  1  0  0  0
#> SRR1270722     1       0          1  1  0  0  0
#> SRR1270723     1       0          1  1  0  0  0
#> SRR1270724     1       0          1  1  0  0  0
#> SRR1270725     1       0          1  1  0  0  0
#> SRR1270726     1       0          1  1  0  0  0
#> SRR1270727     1       0          1  1  0  0  0
#> SRR1270728     1       0          1  1  0  0  0
#> SRR1270729     1       0          1  1  0  0  0
#> SRR1270730     1       0          1  1  0  0  0
#> SRR1270731     1       0          1  1  0  0  0
#> SRR1270732     1       0          1  1  0  0  0
#> SRR1270733     1       0          1  1  0  0  0
#> SRR1270734     1       0          1  1  0  0  0
#> SRR1270735     1       0          1  1  0  0  0
#> SRR1270736     1       0          1  1  0  0  0
#> SRR1270737     1       0          1  1  0  0  0
#> SRR1270738     1       0          1  1  0  0  0
#> SRR1270739     1       0          1  1  0  0  0
#> SRR1270740     1       0          1  1  0  0  0
#> SRR1270741     1       0          1  1  0  0  0
#> SRR1270742     1       0          1  1  0  0  0
#> SRR1270743     1       0          1  1  0  0  0
#> SRR1270744     1       0          1  1  0  0  0
#> SRR1270745     1       0          1  1  0  0  0
#> SRR1270746     1       0          1  1  0  0  0
#> SRR1270747     1       0          1  1  0  0  0
#> SRR1270748     1       0          1  1  0  0  0
#> SRR1270749     1       0          1  1  0  0  0
#> SRR1270750     1       0          1  1  0  0  0
#> SRR1270751     1       0          1  1  0  0  0
#> SRR1270752     1       0          1  1  0  0  0
#> SRR1270753     1       0          1  1  0  0  0
#> SRR1270754     1       0          1  1  0  0  0
#> SRR1270755     1       0          1  1  0  0  0
#> SRR1270756     1       0          1  1  0  0  0
#> SRR1270757     1       0          1  1  0  0  0
#> SRR1270758     1       0          1  1  0  0  0
#> SRR1270759     1       0          1  1  0  0  0
#> SRR1270760     1       0          1  1  0  0  0
#> SRR1270761     1       0          1  1  0  0  0
#> SRR1270762     1       0          1  1  0  0  0
#> SRR1270763     1       0          1  1  0  0  0
#> SRR1270764     1       0          1  1  0  0  0
#> SRR1270765     2       0          1  0  1  0  0
#> SRR1270766     2       0          1  0  1  0  0
#> SRR1270767     2       0          1  0  1  0  0
#> SRR1270768     2       0          1  0  1  0  0
#> SRR1270769     2       0          1  0  1  0  0
#> SRR1270770     2       0          1  0  1  0  0
#> SRR1270771     2       0          1  0  1  0  0
#> SRR1270772     2       0          1  0  1  0  0
#> SRR1270773     2       0          1  0  1  0  0
#> SRR1270774     2       0          1  0  1  0  0
#> SRR1270775     2       0          1  0  1  0  0
#> SRR1270776     2       0          1  0  1  0  0
#> SRR1270777     2       0          1  0  1  0  0
#> SRR1270778     2       0          1  0  1  0  0
#> SRR1270779     2       0          1  0  1  0  0
#> SRR1270780     2       0          1  0  1  0  0
#> SRR1270781     2       0          1  0  1  0  0
#> SRR1270782     2       0          1  0  1  0  0
#> SRR1270783     2       0          1  0  1  0  0
#> SRR1270784     2       0          1  0  1  0  0
#> SRR1270785     2       0          1  0  1  0  0
#> SRR1270786     2       0          1  0  1  0  0
#> SRR1270787     2       0          1  0  1  0  0
#> SRR1270788     2       0          1  0  1  0  0
#> SRR1270789     2       0          1  0  1  0  0
#> SRR1270790     2       0          1  0  1  0  0
#> SRR1270791     2       0          1  0  1  0  0
#> SRR1270792     2       0          1  0  1  0  0
#> SRR1270793     2       0          1  0  1  0  0
#> SRR1270794     2       0          1  0  1  0  0
#> SRR1270795     2       0          1  0  1  0  0
#> SRR1270796     2       0          1  0  1  0  0
#> SRR1270797     2       0          1  0  1  0  0
#> SRR1270798     2       0          1  0  1  0  0
#> SRR1270799     2       0          1  0  1  0  0
#> SRR1270800     2       0          1  0  1  0  0
#> SRR1270801     2       0          1  0  1  0  0
#> SRR1270802     2       0          1  0  1  0  0
#> SRR1270803     2       0          1  0  1  0  0
#> SRR1270804     2       0          1  0  1  0  0
#> SRR1270805     3       0          1  0  0  1  0
#> SRR1270806     3       0          1  0  0  1  0
#> SRR1270807     3       0          1  0  0  1  0
#> SRR1270808     3       0          1  0  0  1  0
#> SRR1270809     3       0          1  0  0  1  0
#> SRR1270810     3       0          1  0  0  1  0
#> SRR1270811     3       0          1  0  0  1  0
#> SRR1270812     3       0          1  0  0  1  0
#> SRR1270813     3       0          1  0  0  1  0
#> SRR1270814     3       0          1  0  0  1  0
#> SRR1270815     3       0          1  0  0  1  0
#> SRR1270816     3       0          1  0  0  1  0
#> SRR1270817     3       0          1  0  0  1  0
#> SRR1270818     3       0          1  0  0  1  0
#> SRR1270819     3       0          1  0  0  1  0
#> SRR1270820     3       0          1  0  0  1  0
#> SRR1270821     3       0          1  0  0  1  0
#> SRR1270822     3       0          1  0  0  1  0
#> SRR1270823     3       0          1  0  0  1  0
#> SRR1270824     3       0          1  0  0  1  0
#> SRR1270825     3       0          1  0  0  1  0
#> SRR1270826     3       0          1  0  0  1  0
#> SRR1270827     3       0          1  0  0  1  0
#> SRR1270828     3       0          1  0  0  1  0
#> SRR1270829     3       0          1  0  0  1  0
#> SRR1270830     3       0          1  0  0  1  0
#> SRR1270831     3       0          1  0  0  1  0
#> SRR1270832     3       0          1  0  0  1  0
#> SRR1270833     4       0          1  0  0  0  1
#> SRR1270834     4       0          1  0  0  0  1
#> SRR1270835     4       0          1  0  0  0  1
#> SRR1270836     4       0          1  0  0  0  1
#> SRR1270837     4       0          1  0  0  0  1
#> SRR1270838     4       0          1  0  0  0  1
#> SRR1270839     4       0          1  0  0  0  1
#> SRR1270840     4       0          1  0  0  0  1
#> SRR1270841     4       0          1  0  0  0  1
#> SRR1270842     4       0          1  0  0  0  1
#> SRR1270843     4       0          1  0  0  0  1
#> SRR1270844     4       0          1  0  0  0  1
#> SRR1270845     4       0          1  0  0  0  1
#> SRR1270846     4       0          1  0  0  0  1
#> SRR1270847     4       0          1  0  0  0  1
#> SRR1270848     4       0          1  0  0  0  1
#> SRR1270849     4       0          1  0  0  0  1
#> SRR1270850     4       0          1  0  0  0  1
#> SRR1270851     2       0          1  0  1  0  0
#> SRR1270852     2       0          1  0  1  0  0
#> SRR1270853     2       0          1  0  1  0  0
#> SRR1270854     2       0          1  0  1  0  0
#> SRR1270855     2       0          1  0  1  0  0
#> SRR1270856     2       0          1  0  1  0  0
#> SRR1270857     2       0          1  0  1  0  0

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette p1 p2 p3 p4 p5
#> SRR1270715     1       0          1  1  0  0  0  0
#> SRR1270716     1       0          1  1  0  0  0  0
#> SRR1270717     1       0          1  1  0  0  0  0
#> SRR1270718     1       0          1  1  0  0  0  0
#> SRR1270719     1       0          1  1  0  0  0  0
#> SRR1270720     1       0          1  1  0  0  0  0
#> SRR1270721     1       0          1  1  0  0  0  0
#> SRR1270722     1       0          1  1  0  0  0  0
#> SRR1270723     1       0          1  1  0  0  0  0
#> SRR1270724     1       0          1  1  0  0  0  0
#> SRR1270725     1       0          1  1  0  0  0  0
#> SRR1270726     1       0          1  1  0  0  0  0
#> SRR1270727     1       0          1  1  0  0  0  0
#> SRR1270728     1       0          1  1  0  0  0  0
#> SRR1270729     1       0          1  1  0  0  0  0
#> SRR1270730     1       0          1  1  0  0  0  0
#> SRR1270731     1       0          1  1  0  0  0  0
#> SRR1270732     1       0          1  1  0  0  0  0
#> SRR1270733     1       0          1  1  0  0  0  0
#> SRR1270734     1       0          1  1  0  0  0  0
#> SRR1270735     1       0          1  1  0  0  0  0
#> SRR1270736     1       0          1  1  0  0  0  0
#> SRR1270737     1       0          1  1  0  0  0  0
#> SRR1270738     1       0          1  1  0  0  0  0
#> SRR1270739     1       0          1  1  0  0  0  0
#> SRR1270740     1       0          1  1  0  0  0  0
#> SRR1270741     1       0          1  1  0  0  0  0
#> SRR1270742     1       0          1  1  0  0  0  0
#> SRR1270743     1       0          1  1  0  0  0  0
#> SRR1270744     1       0          1  1  0  0  0  0
#> SRR1270745     1       0          1  1  0  0  0  0
#> SRR1270746     1       0          1  1  0  0  0  0
#> SRR1270747     1       0          1  1  0  0  0  0
#> SRR1270748     1       0          1  1  0  0  0  0
#> SRR1270749     1       0          1  1  0  0  0  0
#> SRR1270750     1       0          1  1  0  0  0  0
#> SRR1270751     1       0          1  1  0  0  0  0
#> SRR1270752     1       0          1  1  0  0  0  0
#> SRR1270753     1       0          1  1  0  0  0  0
#> SRR1270754     1       0          1  1  0  0  0  0
#> SRR1270755     1       0          1  1  0  0  0  0
#> SRR1270756     1       0          1  1  0  0  0  0
#> SRR1270757     1       0          1  1  0  0  0  0
#> SRR1270758     1       0          1  1  0  0  0  0
#> SRR1270759     1       0          1  1  0  0  0  0
#> SRR1270760     1       0          1  1  0  0  0  0
#> SRR1270761     1       0          1  1  0  0  0  0
#> SRR1270762     1       0          1  1  0  0  0  0
#> SRR1270763     1       0          1  1  0  0  0  0
#> SRR1270764     1       0          1  1  0  0  0  0
#> SRR1270765     2       0          1  0  1  0  0  0
#> SRR1270766     2       0          1  0  1  0  0  0
#> SRR1270767     2       0          1  0  1  0  0  0
#> SRR1270768     2       0          1  0  1  0  0  0
#> SRR1270769     2       0          1  0  1  0  0  0
#> SRR1270770     2       0          1  0  1  0  0  0
#> SRR1270771     2       0          1  0  1  0  0  0
#> SRR1270772     2       0          1  0  1  0  0  0
#> SRR1270773     2       0          1  0  1  0  0  0
#> SRR1270774     2       0          1  0  1  0  0  0
#> SRR1270775     2       0          1  0  1  0  0  0
#> SRR1270776     2       0          1  0  1  0  0  0
#> SRR1270777     2       0          1  0  1  0  0  0
#> SRR1270778     2       0          1  0  1  0  0  0
#> SRR1270779     2       0          1  0  1  0  0  0
#> SRR1270780     2       0          1  0  1  0  0  0
#> SRR1270781     2       0          1  0  1  0  0  0
#> SRR1270782     2       0          1  0  1  0  0  0
#> SRR1270783     2       0          1  0  1  0  0  0
#> SRR1270784     2       0          1  0  1  0  0  0
#> SRR1270785     5       0          1  0  0  0  0  1
#> SRR1270786     5       0          1  0  0  0  0  1
#> SRR1270787     5       0          1  0  0  0  0  1
#> SRR1270788     5       0          1  0  0  0  0  1
#> SRR1270789     5       0          1  0  0  0  0  1
#> SRR1270790     5       0          1  0  0  0  0  1
#> SRR1270791     5       0          1  0  0  0  0  1
#> SRR1270792     5       0          1  0  0  0  0  1
#> SRR1270793     5       0          1  0  0  0  0  1
#> SRR1270794     5       0          1  0  0  0  0  1
#> SRR1270795     5       0          1  0  0  0  0  1
#> SRR1270796     5       0          1  0  0  0  0  1
#> SRR1270797     5       0          1  0  0  0  0  1
#> SRR1270798     5       0          1  0  0  0  0  1
#> SRR1270799     5       0          1  0  0  0  0  1
#> SRR1270800     5       0          1  0  0  0  0  1
#> SRR1270801     5       0          1  0  0  0  0  1
#> SRR1270802     5       0          1  0  0  0  0  1
#> SRR1270803     5       0          1  0  0  0  0  1
#> SRR1270804     5       0          1  0  0  0  0  1
#> SRR1270805     3       0          1  0  0  1  0  0
#> SRR1270806     3       0          1  0  0  1  0  0
#> SRR1270807     3       0          1  0  0  1  0  0
#> SRR1270808     3       0          1  0  0  1  0  0
#> SRR1270809     3       0          1  0  0  1  0  0
#> SRR1270810     3       0          1  0  0  1  0  0
#> SRR1270811     3       0          1  0  0  1  0  0
#> SRR1270812     3       0          1  0  0  1  0  0
#> SRR1270813     3       0          1  0  0  1  0  0
#> SRR1270814     3       0          1  0  0  1  0  0
#> SRR1270815     3       0          1  0  0  1  0  0
#> SRR1270816     3       0          1  0  0  1  0  0
#> SRR1270817     3       0          1  0  0  1  0  0
#> SRR1270818     3       0          1  0  0  1  0  0
#> SRR1270819     3       0          1  0  0  1  0  0
#> SRR1270820     3       0          1  0  0  1  0  0
#> SRR1270821     3       0          1  0  0  1  0  0
#> SRR1270822     3       0          1  0  0  1  0  0
#> SRR1270823     3       0          1  0  0  1  0  0
#> SRR1270824     3       0          1  0  0  1  0  0
#> SRR1270825     3       0          1  0  0  1  0  0
#> SRR1270826     3       0          1  0  0  1  0  0
#> SRR1270827     3       0          1  0  0  1  0  0
#> SRR1270828     3       0          1  0  0  1  0  0
#> SRR1270829     3       0          1  0  0  1  0  0
#> SRR1270830     3       0          1  0  0  1  0  0
#> SRR1270831     3       0          1  0  0  1  0  0
#> SRR1270832     3       0          1  0  0  1  0  0
#> SRR1270833     4       0          1  0  0  0  1  0
#> SRR1270834     4       0          1  0  0  0  1  0
#> SRR1270835     4       0          1  0  0  0  1  0
#> SRR1270836     4       0          1  0  0  0  1  0
#> SRR1270837     4       0          1  0  0  0  1  0
#> SRR1270838     4       0          1  0  0  0  1  0
#> SRR1270839     4       0          1  0  0  0  1  0
#> SRR1270840     4       0          1  0  0  0  1  0
#> SRR1270841     4       0          1  0  0  0  1  0
#> SRR1270842     4       0          1  0  0  0  1  0
#> SRR1270843     4       0          1  0  0  0  1  0
#> SRR1270844     4       0          1  0  0  0  1  0
#> SRR1270845     4       0          1  0  0  0  1  0
#> SRR1270846     4       0          1  0  0  0  1  0
#> SRR1270847     4       0          1  0  0  0  1  0
#> SRR1270848     4       0          1  0  0  0  1  0
#> SRR1270849     4       0          1  0  0  0  1  0
#> SRR1270850     4       0          1  0  0  0  1  0
#> SRR1270851     2       0          1  0  1  0  0  0
#> SRR1270852     2       0          1  0  1  0  0  0
#> SRR1270853     2       0          1  0  1  0  0  0
#> SRR1270854     2       0          1  0  1  0  0  0
#> SRR1270855     2       0          1  0  1  0  0  0
#> SRR1270856     2       0          1  0  1  0  0  0
#> SRR1270857     2       0          1  0  1  0  0  0

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1270715     6       0          1  0  0  0  0  0  1
#> SRR1270716     6       0          1  0  0  0  0  0  1
#> SRR1270717     6       0          1  0  0  0  0  0  1
#> SRR1270718     6       0          1  0  0  0  0  0  1
#> SRR1270719     6       0          1  0  0  0  0  0  1
#> SRR1270720     6       0          1  0  0  0  0  0  1
#> SRR1270721     6       0          1  0  0  0  0  0  1
#> SRR1270722     6       0          1  0  0  0  0  0  1
#> SRR1270723     6       0          1  0  0  0  0  0  1
#> SRR1270724     6       0          1  0  0  0  0  0  1
#> SRR1270725     6       0          1  0  0  0  0  0  1
#> SRR1270726     6       0          1  0  0  0  0  0  1
#> SRR1270727     6       0          1  0  0  0  0  0  1
#> SRR1270728     6       0          1  0  0  0  0  0  1
#> SRR1270729     6       0          1  0  0  0  0  0  1
#> SRR1270730     6       0          1  0  0  0  0  0  1
#> SRR1270731     6       0          1  0  0  0  0  0  1
#> SRR1270732     6       0          1  0  0  0  0  0  1
#> SRR1270733     6       0          1  0  0  0  0  0  1
#> SRR1270734     6       0          1  0  0  0  0  0  1
#> SRR1270735     6       0          1  0  0  0  0  0  1
#> SRR1270736     6       0          1  0  0  0  0  0  1
#> SRR1270737     6       0          1  0  0  0  0  0  1
#> SRR1270738     6       0          1  0  0  0  0  0  1
#> SRR1270739     6       0          1  0  0  0  0  0  1
#> SRR1270740     1       0          1  1  0  0  0  0  0
#> SRR1270741     1       0          1  1  0  0  0  0  0
#> SRR1270742     1       0          1  1  0  0  0  0  0
#> SRR1270743     1       0          1  1  0  0  0  0  0
#> SRR1270744     1       0          1  1  0  0  0  0  0
#> SRR1270745     1       0          1  1  0  0  0  0  0
#> SRR1270746     1       0          1  1  0  0  0  0  0
#> SRR1270747     1       0          1  1  0  0  0  0  0
#> SRR1270748     1       0          1  1  0  0  0  0  0
#> SRR1270749     1       0          1  1  0  0  0  0  0
#> SRR1270750     1       0          1  1  0  0  0  0  0
#> SRR1270751     1       0          1  1  0  0  0  0  0
#> SRR1270752     1       0          1  1  0  0  0  0  0
#> SRR1270753     1       0          1  1  0  0  0  0  0
#> SRR1270754     1       0          1  1  0  0  0  0  0
#> SRR1270755     1       0          1  1  0  0  0  0  0
#> SRR1270756     1       0          1  1  0  0  0  0  0
#> SRR1270757     1       0          1  1  0  0  0  0  0
#> SRR1270758     1       0          1  1  0  0  0  0  0
#> SRR1270759     1       0          1  1  0  0  0  0  0
#> SRR1270760     1       0          1  1  0  0  0  0  0
#> SRR1270761     1       0          1  1  0  0  0  0  0
#> SRR1270762     1       0          1  1  0  0  0  0  0
#> SRR1270763     1       0          1  1  0  0  0  0  0
#> SRR1270764     1       0          1  1  0  0  0  0  0
#> SRR1270765     2       0          1  0  1  0  0  0  0
#> SRR1270766     2       0          1  0  1  0  0  0  0
#> SRR1270767     2       0          1  0  1  0  0  0  0
#> SRR1270768     2       0          1  0  1  0  0  0  0
#> SRR1270769     2       0          1  0  1  0  0  0  0
#> SRR1270770     2       0          1  0  1  0  0  0  0
#> SRR1270771     2       0          1  0  1  0  0  0  0
#> SRR1270772     2       0          1  0  1  0  0  0  0
#> SRR1270773     2       0          1  0  1  0  0  0  0
#> SRR1270774     2       0          1  0  1  0  0  0  0
#> SRR1270775     2       0          1  0  1  0  0  0  0
#> SRR1270776     2       0          1  0  1  0  0  0  0
#> SRR1270777     2       0          1  0  1  0  0  0  0
#> SRR1270778     2       0          1  0  1  0  0  0  0
#> SRR1270779     2       0          1  0  1  0  0  0  0
#> SRR1270780     2       0          1  0  1  0  0  0  0
#> SRR1270781     2       0          1  0  1  0  0  0  0
#> SRR1270782     2       0          1  0  1  0  0  0  0
#> SRR1270783     2       0          1  0  1  0  0  0  0
#> SRR1270784     2       0          1  0  1  0  0  0  0
#> SRR1270785     5       0          1  0  0  0  0  1  0
#> SRR1270786     5       0          1  0  0  0  0  1  0
#> SRR1270787     5       0          1  0  0  0  0  1  0
#> SRR1270788     5       0          1  0  0  0  0  1  0
#> SRR1270789     5       0          1  0  0  0  0  1  0
#> SRR1270790     5       0          1  0  0  0  0  1  0
#> SRR1270791     5       0          1  0  0  0  0  1  0
#> SRR1270792     5       0          1  0  0  0  0  1  0
#> SRR1270793     5       0          1  0  0  0  0  1  0
#> SRR1270794     5       0          1  0  0  0  0  1  0
#> SRR1270795     5       0          1  0  0  0  0  1  0
#> SRR1270796     5       0          1  0  0  0  0  1  0
#> SRR1270797     5       0          1  0  0  0  0  1  0
#> SRR1270798     5       0          1  0  0  0  0  1  0
#> SRR1270799     5       0          1  0  0  0  0  1  0
#> SRR1270800     5       0          1  0  0  0  0  1  0
#> SRR1270801     5       0          1  0  0  0  0  1  0
#> SRR1270802     5       0          1  0  0  0  0  1  0
#> SRR1270803     5       0          1  0  0  0  0  1  0
#> SRR1270804     5       0          1  0  0  0  0  1  0
#> SRR1270805     3       0          1  0  0  1  0  0  0
#> SRR1270806     3       0          1  0  0  1  0  0  0
#> SRR1270807     3       0          1  0  0  1  0  0  0
#> SRR1270808     3       0          1  0  0  1  0  0  0
#> SRR1270809     3       0          1  0  0  1  0  0  0
#> SRR1270810     3       0          1  0  0  1  0  0  0
#> SRR1270811     3       0          1  0  0  1  0  0  0
#> SRR1270812     3       0          1  0  0  1  0  0  0
#> SRR1270813     3       0          1  0  0  1  0  0  0
#> SRR1270814     3       0          1  0  0  1  0  0  0
#> SRR1270815     3       0          1  0  0  1  0  0  0
#> SRR1270816     3       0          1  0  0  1  0  0  0
#> SRR1270817     3       0          1  0  0  1  0  0  0
#> SRR1270818     3       0          1  0  0  1  0  0  0
#> SRR1270819     3       0          1  0  0  1  0  0  0
#> SRR1270820     3       0          1  0  0  1  0  0  0
#> SRR1270821     3       0          1  0  0  1  0  0  0
#> SRR1270822     3       0          1  0  0  1  0  0  0
#> SRR1270823     3       0          1  0  0  1  0  0  0
#> SRR1270824     3       0          1  0  0  1  0  0  0
#> SRR1270825     3       0          1  0  0  1  0  0  0
#> SRR1270826     3       0          1  0  0  1  0  0  0
#> SRR1270827     3       0          1  0  0  1  0  0  0
#> SRR1270828     3       0          1  0  0  1  0  0  0
#> SRR1270829     3       0          1  0  0  1  0  0  0
#> SRR1270830     3       0          1  0  0  1  0  0  0
#> SRR1270831     3       0          1  0  0  1  0  0  0
#> SRR1270832     3       0          1  0  0  1  0  0  0
#> SRR1270833     4       0          1  0  0  0  1  0  0
#> SRR1270834     4       0          1  0  0  0  1  0  0
#> SRR1270835     4       0          1  0  0  0  1  0  0
#> SRR1270836     4       0          1  0  0  0  1  0  0
#> SRR1270837     4       0          1  0  0  0  1  0  0
#> SRR1270838     4       0          1  0  0  0  1  0  0
#> SRR1270839     4       0          1  0  0  0  1  0  0
#> SRR1270840     4       0          1  0  0  0  1  0  0
#> SRR1270841     4       0          1  0  0  0  1  0  0
#> SRR1270842     4       0          1  0  0  0  1  0  0
#> SRR1270843     4       0          1  0  0  0  1  0  0
#> SRR1270844     4       0          1  0  0  0  1  0  0
#> SRR1270845     4       0          1  0  0  0  1  0  0
#> SRR1270846     4       0          1  0  0  0  1  0  0
#> SRR1270847     4       0          1  0  0  0  1  0  0
#> SRR1270848     4       0          1  0  0  0  1  0  0
#> SRR1270849     4       0          1  0  0  0  1  0  0
#> SRR1270850     4       0          1  0  0  0  1  0  0
#> SRR1270851     2       0          1  0  1  0  0  0  0
#> SRR1270852     2       0          1  0  1  0  0  0  0
#> SRR1270853     2       0          1  0  1  0  0  0  0
#> SRR1270854     2       0          1  0  1  0  0  0  0
#> SRR1270855     2       0          1  0  1  0  0  0  0
#> SRR1270856     2       0          1  0  1  0  0  0  0
#> SRR1270857     2       0          1  0  1  0  0  0  0

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 14577 rows and 143 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000        0.44496 0.556   0.556
#> 3 3 0.895           0.901       0.958        0.47284 0.785   0.613
#> 4 4 0.859           0.841       0.932        0.10041 0.852   0.609
#> 5 5 0.859           0.808       0.910        0.00202 0.985   0.946
#> 6 6 0.847           0.916       0.911        0.03594 0.927   0.766

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1270715     1       0          1  1  0
#> SRR1270716     1       0          1  1  0
#> SRR1270717     1       0          1  1  0
#> SRR1270718     1       0          1  1  0
#> SRR1270719     1       0          1  1  0
#> SRR1270720     1       0          1  1  0
#> SRR1270721     1       0          1  1  0
#> SRR1270722     1       0          1  1  0
#> SRR1270723     1       0          1  1  0
#> SRR1270724     1       0          1  1  0
#> SRR1270725     1       0          1  1  0
#> SRR1270726     1       0          1  1  0
#> SRR1270727     1       0          1  1  0
#> SRR1270728     1       0          1  1  0
#> SRR1270729     1       0          1  1  0
#> SRR1270730     1       0          1  1  0
#> SRR1270731     1       0          1  1  0
#> SRR1270732     1       0          1  1  0
#> SRR1270733     1       0          1  1  0
#> SRR1270734     1       0          1  1  0
#> SRR1270735     1       0          1  1  0
#> SRR1270736     1       0          1  1  0
#> SRR1270737     1       0          1  1  0
#> SRR1270738     1       0          1  1  0
#> SRR1270739     1       0          1  1  0
#> SRR1270740     1       0          1  1  0
#> SRR1270741     1       0          1  1  0
#> SRR1270742     1       0          1  1  0
#> SRR1270743     1       0          1  1  0
#> SRR1270744     1       0          1  1  0
#> SRR1270745     1       0          1  1  0
#> SRR1270746     1       0          1  1  0
#> SRR1270747     1       0          1  1  0
#> SRR1270748     1       0          1  1  0
#> SRR1270749     1       0          1  1  0
#> SRR1270750     1       0          1  1  0
#> SRR1270751     1       0          1  1  0
#> SRR1270752     1       0          1  1  0
#> SRR1270753     1       0          1  1  0
#> SRR1270754     1       0          1  1  0
#> SRR1270755     1       0          1  1  0
#> SRR1270756     1       0          1  1  0
#> SRR1270757     1       0          1  1  0
#> SRR1270758     1       0          1  1  0
#> SRR1270759     1       0          1  1  0
#> SRR1270760     1       0          1  1  0
#> SRR1270761     1       0          1  1  0
#> SRR1270762     1       0          1  1  0
#> SRR1270763     1       0          1  1  0
#> SRR1270764     1       0          1  1  0
#> SRR1270765     2       0          1  0  1
#> SRR1270766     2       0          1  0  1
#> SRR1270767     2       0          1  0  1
#> SRR1270768     2       0          1  0  1
#> SRR1270769     2       0          1  0  1
#> SRR1270770     2       0          1  0  1
#> SRR1270771     2       0          1  0  1
#> SRR1270772     2       0          1  0  1
#> SRR1270773     2       0          1  0  1
#> SRR1270774     2       0          1  0  1
#> SRR1270775     2       0          1  0  1
#> SRR1270776     2       0          1  0  1
#> SRR1270777     2       0          1  0  1
#> SRR1270778     2       0          1  0  1
#> SRR1270779     2       0          1  0  1
#> SRR1270780     2       0          1  0  1
#> SRR1270781     2       0          1  0  1
#> SRR1270782     2       0          1  0  1
#> SRR1270783     2       0          1  0  1
#> SRR1270784     2       0          1  0  1
#> SRR1270785     2       0          1  0  1
#> SRR1270786     2       0          1  0  1
#> SRR1270787     2       0          1  0  1
#> SRR1270788     2       0          1  0  1
#> SRR1270789     2       0          1  0  1
#> SRR1270790     2       0          1  0  1
#> SRR1270791     2       0          1  0  1
#> SRR1270792     2       0          1  0  1
#> SRR1270793     2       0          1  0  1
#> SRR1270794     2       0          1  0  1
#> SRR1270795     2       0          1  0  1
#> SRR1270796     2       0          1  0  1
#> SRR1270797     2       0          1  0  1
#> SRR1270798     2       0          1  0  1
#> SRR1270799     2       0          1  0  1
#> SRR1270800     2       0          1  0  1
#> SRR1270801     2       0          1  0  1
#> SRR1270802     2       0          1  0  1
#> SRR1270803     2       0          1  0  1
#> SRR1270804     2       0          1  0  1
#> SRR1270805     1       0          1  1  0
#> SRR1270806     1       0          1  1  0
#> SRR1270807     1       0          1  1  0
#> SRR1270808     1       0          1  1  0
#> SRR1270809     1       0          1  1  0
#> SRR1270810     1       0          1  1  0
#> SRR1270811     1       0          1  1  0
#> SRR1270812     1       0          1  1  0
#> SRR1270813     1       0          1  1  0
#> SRR1270814     1       0          1  1  0
#> SRR1270815     1       0          1  1  0
#> SRR1270816     1       0          1  1  0
#> SRR1270817     1       0          1  1  0
#> SRR1270818     1       0          1  1  0
#> SRR1270819     1       0          1  1  0
#> SRR1270820     1       0          1  1  0
#> SRR1270821     1       0          1  1  0
#> SRR1270822     1       0          1  1  0
#> SRR1270823     1       0          1  1  0
#> SRR1270824     1       0          1  1  0
#> SRR1270825     1       0          1  1  0
#> SRR1270826     1       0          1  1  0
#> SRR1270827     1       0          1  1  0
#> SRR1270828     1       0          1  1  0
#> SRR1270829     1       0          1  1  0
#> SRR1270830     1       0          1  1  0
#> SRR1270831     1       0          1  1  0
#> SRR1270832     1       0          1  1  0
#> SRR1270833     1       0          1  1  0
#> SRR1270834     1       0          1  1  0
#> SRR1270835     1       0          1  1  0
#> SRR1270836     1       0          1  1  0
#> SRR1270837     1       0          1  1  0
#> SRR1270838     1       0          1  1  0
#> SRR1270839     1       0          1  1  0
#> SRR1270840     1       0          1  1  0
#> SRR1270841     1       0          1  1  0
#> SRR1270842     1       0          1  1  0
#> SRR1270843     1       0          1  1  0
#> SRR1270844     1       0          1  1  0
#> SRR1270845     1       0          1  1  0
#> SRR1270846     1       0          1  1  0
#> SRR1270847     1       0          1  1  0
#> SRR1270848     1       0          1  1  0
#> SRR1270849     1       0          1  1  0
#> SRR1270850     1       0          1  1  0
#> SRR1270851     2       0          1  0  1
#> SRR1270852     2       0          1  0  1
#> SRR1270853     2       0          1  0  1
#> SRR1270854     2       0          1  0  1
#> SRR1270855     2       0          1  0  1
#> SRR1270856     2       0          1  0  1
#> SRR1270857     2       0          1  0  1

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1 p2    p3
#> SRR1270715     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270716     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270717     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270718     1  0.0592     0.9062 0.988  0 0.012
#> SRR1270719     1  0.0237     0.9098 0.996  0 0.004
#> SRR1270720     1  0.1031     0.9000 0.976  0 0.024
#> SRR1270721     1  0.0237     0.9098 0.996  0 0.004
#> SRR1270722     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270723     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270724     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270725     3  0.2066     0.8865 0.060  0 0.940
#> SRR1270726     3  0.1643     0.9007 0.044  0 0.956
#> SRR1270727     3  0.3340     0.8217 0.120  0 0.880
#> SRR1270728     3  0.0747     0.9249 0.016  0 0.984
#> SRR1270729     1  0.4605     0.7671 0.796  0 0.204
#> SRR1270730     1  0.4605     0.7675 0.796  0 0.204
#> SRR1270731     1  0.3752     0.8199 0.856  0 0.144
#> SRR1270732     1  0.0000     0.9112 1.000  0 0.000
#> SRR1270733     1  0.0000     0.9112 1.000  0 0.000
#> SRR1270734     1  0.0000     0.9112 1.000  0 0.000
#> SRR1270735     1  0.0000     0.9112 1.000  0 0.000
#> SRR1270736     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270737     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270738     1  0.5968     0.4932 0.636  0 0.364
#> SRR1270739     1  0.5785     0.5671 0.668  0 0.332
#> SRR1270740     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270741     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270742     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270743     1  0.5397     0.6662 0.720  0 0.280
#> SRR1270744     1  0.5465     0.6530 0.712  0 0.288
#> SRR1270745     1  0.5058     0.7188 0.756  0 0.244
#> SRR1270746     1  0.5138     0.7081 0.748  0 0.252
#> SRR1270747     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270748     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270749     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270750     3  0.6026     0.3632 0.376  0 0.624
#> SRR1270751     3  0.6225     0.1908 0.432  0 0.568
#> SRR1270752     3  0.6286     0.0713 0.464  0 0.536
#> SRR1270753     3  0.6280     0.0875 0.460  0 0.540
#> SRR1270754     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270755     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270756     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270757     3  0.5560     0.5436 0.300  0 0.700
#> SRR1270758     3  0.5948     0.4056 0.360  0 0.640
#> SRR1270759     3  0.5178     0.6263 0.256  0 0.744
#> SRR1270760     3  0.5138     0.6329 0.252  0 0.748
#> SRR1270761     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270762     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270763     1  0.4654     0.7618 0.792  0 0.208
#> SRR1270764     1  0.5397     0.6662 0.720  0 0.280
#> SRR1270765     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270766     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270767     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270768     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270769     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270770     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270771     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270772     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270773     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270774     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270775     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270776     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270777     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270778     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270779     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270780     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270781     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270782     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270783     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270784     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270785     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270786     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270787     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270788     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270789     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270790     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270791     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270792     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270793     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270794     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270795     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270796     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270797     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270798     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270799     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270800     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270801     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270802     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270803     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270804     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270805     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270806     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270807     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270808     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270809     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270810     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270811     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270812     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270813     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270814     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270815     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270816     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270817     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270818     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270819     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270820     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270821     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270822     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270823     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270824     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270825     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270826     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270827     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270828     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270829     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270830     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270831     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270832     3  0.0000     0.9377 0.000  0 1.000
#> SRR1270833     1  0.0000     0.9112 1.000  0 0.000
#> SRR1270834     1  0.0000     0.9112 1.000  0 0.000
#> SRR1270835     1  0.0000     0.9112 1.000  0 0.000
#> SRR1270836     1  0.0000     0.9112 1.000  0 0.000
#> SRR1270837     1  0.0000     0.9112 1.000  0 0.000
#> SRR1270838     1  0.0000     0.9112 1.000  0 0.000
#> SRR1270839     1  0.0000     0.9112 1.000  0 0.000
#> SRR1270840     1  0.0000     0.9112 1.000  0 0.000
#> SRR1270841     1  0.0000     0.9112 1.000  0 0.000
#> SRR1270842     1  0.0000     0.9112 1.000  0 0.000
#> SRR1270843     1  0.0000     0.9112 1.000  0 0.000
#> SRR1270844     1  0.0000     0.9112 1.000  0 0.000
#> SRR1270845     1  0.0000     0.9112 1.000  0 0.000
#> SRR1270846     1  0.0000     0.9112 1.000  0 0.000
#> SRR1270847     1  0.0000     0.9112 1.000  0 0.000
#> SRR1270848     1  0.0000     0.9112 1.000  0 0.000
#> SRR1270849     1  0.0000     0.9112 1.000  0 0.000
#> SRR1270850     1  0.0000     0.9112 1.000  0 0.000
#> SRR1270851     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270852     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270853     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270854     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270855     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270856     2  0.0000     1.0000 0.000  1 0.000
#> SRR1270857     2  0.0000     1.0000 0.000  1 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1 p2    p3    p4
#> SRR1270715     1  0.0707     0.8411 0.980  0 0.020 0.000
#> SRR1270716     1  0.0707     0.8411 0.980  0 0.020 0.000
#> SRR1270717     1  0.0707     0.8411 0.980  0 0.020 0.000
#> SRR1270718     1  0.0336     0.8381 0.992  0 0.008 0.000
#> SRR1270719     1  0.0336     0.8381 0.992  0 0.008 0.000
#> SRR1270720     1  0.0336     0.8381 0.992  0 0.008 0.000
#> SRR1270721     1  0.0336     0.8381 0.992  0 0.008 0.000
#> SRR1270722     3  0.4999    -0.0642 0.492  0 0.508 0.000
#> SRR1270723     1  0.4697     0.5078 0.644  0 0.356 0.000
#> SRR1270724     1  0.4877     0.3732 0.592  0 0.408 0.000
#> SRR1270725     1  0.0469     0.8400 0.988  0 0.012 0.000
#> SRR1270726     1  0.0707     0.8411 0.980  0 0.020 0.000
#> SRR1270727     1  0.0707     0.8411 0.980  0 0.020 0.000
#> SRR1270728     1  0.0921     0.8399 0.972  0 0.028 0.000
#> SRR1270729     1  0.0469     0.8400 0.988  0 0.012 0.000
#> SRR1270730     1  0.0469     0.8400 0.988  0 0.012 0.000
#> SRR1270731     1  0.0469     0.8400 0.988  0 0.012 0.000
#> SRR1270732     1  0.0188     0.8354 0.996  0 0.004 0.000
#> SRR1270733     1  0.0188     0.8354 0.996  0 0.004 0.000
#> SRR1270734     1  0.0188     0.8354 0.996  0 0.004 0.000
#> SRR1270735     1  0.0188     0.8354 0.996  0 0.004 0.000
#> SRR1270736     1  0.3528     0.7574 0.808  0 0.192 0.000
#> SRR1270737     1  0.3528     0.7541 0.808  0 0.192 0.000
#> SRR1270738     1  0.0469     0.8400 0.988  0 0.012 0.000
#> SRR1270739     1  0.0469     0.8400 0.988  0 0.012 0.000
#> SRR1270740     3  0.4998    -0.0856 0.488  0 0.512 0.000
#> SRR1270741     3  0.4955     0.0983 0.444  0 0.556 0.000
#> SRR1270742     3  0.4994    -0.0519 0.480  0 0.520 0.000
#> SRR1270743     1  0.2704     0.8128 0.876  0 0.124 0.000
#> SRR1270744     1  0.2704     0.8129 0.876  0 0.124 0.000
#> SRR1270745     1  0.2647     0.8147 0.880  0 0.120 0.000
#> SRR1270746     1  0.2647     0.8146 0.880  0 0.120 0.000
#> SRR1270747     3  0.4585     0.4381 0.332  0 0.668 0.000
#> SRR1270748     3  0.4543     0.4553 0.324  0 0.676 0.000
#> SRR1270749     3  0.4585     0.4381 0.332  0 0.668 0.000
#> SRR1270750     1  0.4543     0.6069 0.676  0 0.324 0.000
#> SRR1270751     1  0.4697     0.5457 0.644  0 0.356 0.000
#> SRR1270752     1  0.4356     0.6583 0.708  0 0.292 0.000
#> SRR1270753     1  0.4746     0.5186 0.632  0 0.368 0.000
#> SRR1270754     3  0.4522     0.4626 0.320  0 0.680 0.000
#> SRR1270755     3  0.4543     0.4549 0.324  0 0.676 0.000
#> SRR1270756     3  0.4564     0.4470 0.328  0 0.672 0.000
#> SRR1270757     1  0.3975     0.7242 0.760  0 0.240 0.000
#> SRR1270758     1  0.4454     0.6346 0.692  0 0.308 0.000
#> SRR1270759     1  0.4103     0.7064 0.744  0 0.256 0.000
#> SRR1270760     1  0.4697     0.5455 0.644  0 0.356 0.000
#> SRR1270761     1  0.4998     0.1421 0.512  0 0.488 0.000
#> SRR1270762     3  0.4996    -0.0681 0.484  0 0.516 0.000
#> SRR1270763     1  0.3219     0.7883 0.836  0 0.164 0.000
#> SRR1270764     1  0.3942     0.7281 0.764  0 0.236 0.000
#> SRR1270765     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270766     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270767     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270768     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270769     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270770     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270771     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270772     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270773     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270774     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270775     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270776     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270777     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270778     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270779     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270780     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270781     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270782     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270783     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270784     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270785     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270786     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270787     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270788     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270789     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270790     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270791     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270792     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270793     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270794     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270795     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270796     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270797     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270798     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270799     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270800     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270801     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270802     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270803     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270804     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270805     3  0.0000     0.8494 0.000  0 1.000 0.000
#> SRR1270806     3  0.0000     0.8494 0.000  0 1.000 0.000
#> SRR1270807     3  0.0000     0.8494 0.000  0 1.000 0.000
#> SRR1270808     3  0.0000     0.8494 0.000  0 1.000 0.000
#> SRR1270809     3  0.0000     0.8494 0.000  0 1.000 0.000
#> SRR1270810     3  0.0000     0.8494 0.000  0 1.000 0.000
#> SRR1270811     3  0.0000     0.8494 0.000  0 1.000 0.000
#> SRR1270812     3  0.0000     0.8494 0.000  0 1.000 0.000
#> SRR1270813     3  0.0000     0.8494 0.000  0 1.000 0.000
#> SRR1270814     3  0.0000     0.8494 0.000  0 1.000 0.000
#> SRR1270815     3  0.0000     0.8494 0.000  0 1.000 0.000
#> SRR1270816     3  0.0000     0.8494 0.000  0 1.000 0.000
#> SRR1270817     3  0.0000     0.8494 0.000  0 1.000 0.000
#> SRR1270818     3  0.0000     0.8494 0.000  0 1.000 0.000
#> SRR1270819     3  0.0000     0.8494 0.000  0 1.000 0.000
#> SRR1270820     3  0.0000     0.8494 0.000  0 1.000 0.000
#> SRR1270821     3  0.0000     0.8494 0.000  0 1.000 0.000
#> SRR1270822     3  0.0000     0.8494 0.000  0 1.000 0.000
#> SRR1270823     3  0.0000     0.8494 0.000  0 1.000 0.000
#> SRR1270824     3  0.0000     0.8494 0.000  0 1.000 0.000
#> SRR1270825     3  0.0000     0.8494 0.000  0 1.000 0.000
#> SRR1270826     3  0.0000     0.8494 0.000  0 1.000 0.000
#> SRR1270827     3  0.0000     0.8494 0.000  0 1.000 0.000
#> SRR1270828     3  0.0000     0.8494 0.000  0 1.000 0.000
#> SRR1270829     3  0.0000     0.8494 0.000  0 1.000 0.000
#> SRR1270830     3  0.0000     0.8494 0.000  0 1.000 0.000
#> SRR1270831     3  0.0000     0.8494 0.000  0 1.000 0.000
#> SRR1270832     3  0.0000     0.8494 0.000  0 1.000 0.000
#> SRR1270833     4  0.0188     1.0000 0.000  0 0.004 0.996
#> SRR1270834     4  0.0188     1.0000 0.000  0 0.004 0.996
#> SRR1270835     4  0.0188     1.0000 0.000  0 0.004 0.996
#> SRR1270836     4  0.0188     1.0000 0.000  0 0.004 0.996
#> SRR1270837     4  0.0188     1.0000 0.000  0 0.004 0.996
#> SRR1270838     4  0.0188     1.0000 0.000  0 0.004 0.996
#> SRR1270839     4  0.0188     1.0000 0.000  0 0.004 0.996
#> SRR1270840     4  0.0188     1.0000 0.000  0 0.004 0.996
#> SRR1270841     4  0.0188     1.0000 0.000  0 0.004 0.996
#> SRR1270842     4  0.0188     1.0000 0.000  0 0.004 0.996
#> SRR1270843     4  0.0188     1.0000 0.000  0 0.004 0.996
#> SRR1270844     4  0.0188     1.0000 0.000  0 0.004 0.996
#> SRR1270845     4  0.0188     1.0000 0.000  0 0.004 0.996
#> SRR1270846     4  0.0188     1.0000 0.000  0 0.004 0.996
#> SRR1270847     4  0.0188     1.0000 0.000  0 0.004 0.996
#> SRR1270848     4  0.0188     1.0000 0.000  0 0.004 0.996
#> SRR1270849     4  0.0188     1.0000 0.000  0 0.004 0.996
#> SRR1270850     4  0.0188     1.0000 0.000  0 0.004 0.996
#> SRR1270851     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270852     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270853     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270854     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270855     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270856     2  0.0000     1.0000 0.000  1 0.000 0.000
#> SRR1270857     2  0.0000     1.0000 0.000  1 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1270715     1  0.3146     0.7800 0.856 0.000 0.052 0.000 0.092
#> SRR1270716     1  0.2946     0.7789 0.868 0.000 0.044 0.000 0.088
#> SRR1270717     1  0.2708     0.7838 0.884 0.000 0.044 0.000 0.072
#> SRR1270718     1  0.0771     0.7973 0.976 0.000 0.020 0.000 0.004
#> SRR1270719     1  0.0609     0.7973 0.980 0.000 0.020 0.000 0.000
#> SRR1270720     1  0.0671     0.7956 0.980 0.000 0.016 0.000 0.004
#> SRR1270721     1  0.0609     0.7973 0.980 0.000 0.020 0.000 0.000
#> SRR1270722     1  0.5546     0.2840 0.496 0.000 0.436 0.000 0.068
#> SRR1270723     1  0.5500     0.4417 0.552 0.000 0.376 0.000 0.072
#> SRR1270724     1  0.5513     0.3697 0.524 0.000 0.408 0.000 0.068
#> SRR1270725     1  0.1124     0.8019 0.960 0.000 0.036 0.000 0.004
#> SRR1270726     1  0.1357     0.8031 0.948 0.000 0.048 0.000 0.004
#> SRR1270727     1  0.1704     0.8026 0.928 0.000 0.068 0.000 0.004
#> SRR1270728     1  0.1892     0.8012 0.916 0.000 0.080 0.000 0.004
#> SRR1270729     1  0.2104     0.7878 0.916 0.000 0.024 0.000 0.060
#> SRR1270730     1  0.2104     0.7878 0.916 0.000 0.024 0.000 0.060
#> SRR1270731     1  0.1943     0.7885 0.924 0.000 0.020 0.000 0.056
#> SRR1270732     1  0.0404     0.7931 0.988 0.000 0.012 0.000 0.000
#> SRR1270733     1  0.0510     0.7956 0.984 0.000 0.016 0.000 0.000
#> SRR1270734     1  0.0510     0.7956 0.984 0.000 0.016 0.000 0.000
#> SRR1270735     1  0.0510     0.7956 0.984 0.000 0.016 0.000 0.000
#> SRR1270736     1  0.4946     0.6233 0.648 0.000 0.300 0.000 0.052
#> SRR1270737     1  0.4946     0.6452 0.664 0.000 0.276 0.000 0.060
#> SRR1270738     1  0.1041     0.8009 0.964 0.000 0.032 0.000 0.004
#> SRR1270739     1  0.1041     0.8009 0.964 0.000 0.032 0.000 0.004
#> SRR1270740     3  0.5106    -0.0999 0.456 0.000 0.508 0.000 0.036
#> SRR1270741     3  0.5161    -0.0666 0.444 0.000 0.516 0.000 0.040
#> SRR1270742     3  0.5100    -0.0719 0.448 0.000 0.516 0.000 0.036
#> SRR1270743     1  0.2732     0.7759 0.840 0.000 0.160 0.000 0.000
#> SRR1270744     1  0.2605     0.7819 0.852 0.000 0.148 0.000 0.000
#> SRR1270745     1  0.2516     0.7850 0.860 0.000 0.140 0.000 0.000
#> SRR1270746     1  0.2648     0.7802 0.848 0.000 0.152 0.000 0.000
#> SRR1270747     3  0.4564     0.2441 0.372 0.000 0.612 0.000 0.016
#> SRR1270748     3  0.4525     0.2752 0.360 0.000 0.624 0.000 0.016
#> SRR1270749     3  0.4599     0.2119 0.384 0.000 0.600 0.000 0.016
#> SRR1270750     1  0.4060     0.5657 0.640 0.000 0.360 0.000 0.000
#> SRR1270751     1  0.4126     0.5272 0.620 0.000 0.380 0.000 0.000
#> SRR1270752     1  0.4030     0.5799 0.648 0.000 0.352 0.000 0.000
#> SRR1270753     1  0.4182     0.4810 0.600 0.000 0.400 0.000 0.000
#> SRR1270754     3  0.4576     0.2337 0.376 0.000 0.608 0.000 0.016
#> SRR1270755     3  0.4551     0.2539 0.368 0.000 0.616 0.000 0.016
#> SRR1270756     3  0.4588     0.2217 0.380 0.000 0.604 0.000 0.016
#> SRR1270757     1  0.3949     0.6116 0.668 0.000 0.332 0.000 0.000
#> SRR1270758     1  0.4060     0.5668 0.640 0.000 0.360 0.000 0.000
#> SRR1270759     1  0.3999     0.5940 0.656 0.000 0.344 0.000 0.000
#> SRR1270760     1  0.4161     0.5003 0.608 0.000 0.392 0.000 0.000
#> SRR1270761     3  0.4965    -0.0704 0.452 0.000 0.520 0.000 0.028
#> SRR1270762     3  0.4953    -0.0253 0.440 0.000 0.532 0.000 0.028
#> SRR1270763     1  0.2852     0.7689 0.828 0.000 0.172 0.000 0.000
#> SRR1270764     1  0.3305     0.7307 0.776 0.000 0.224 0.000 0.000
#> SRR1270765     2  0.0000     0.9925 0.000 1.000 0.000 0.000 0.000
#> SRR1270766     2  0.0000     0.9925 0.000 1.000 0.000 0.000 0.000
#> SRR1270767     2  0.0000     0.9925 0.000 1.000 0.000 0.000 0.000
#> SRR1270768     2  0.0000     0.9925 0.000 1.000 0.000 0.000 0.000
#> SRR1270769     2  0.0000     0.9925 0.000 1.000 0.000 0.000 0.000
#> SRR1270770     2  0.0000     0.9925 0.000 1.000 0.000 0.000 0.000
#> SRR1270771     2  0.0000     0.9925 0.000 1.000 0.000 0.000 0.000
#> SRR1270772     2  0.0000     0.9925 0.000 1.000 0.000 0.000 0.000
#> SRR1270773     2  0.0000     0.9925 0.000 1.000 0.000 0.000 0.000
#> SRR1270774     2  0.0000     0.9925 0.000 1.000 0.000 0.000 0.000
#> SRR1270775     2  0.0000     0.9925 0.000 1.000 0.000 0.000 0.000
#> SRR1270776     2  0.0000     0.9925 0.000 1.000 0.000 0.000 0.000
#> SRR1270777     2  0.0000     0.9925 0.000 1.000 0.000 0.000 0.000
#> SRR1270778     2  0.0000     0.9925 0.000 1.000 0.000 0.000 0.000
#> SRR1270779     2  0.0000     0.9925 0.000 1.000 0.000 0.000 0.000
#> SRR1270780     2  0.0000     0.9925 0.000 1.000 0.000 0.000 0.000
#> SRR1270781     2  0.0000     0.9925 0.000 1.000 0.000 0.000 0.000
#> SRR1270782     2  0.0000     0.9925 0.000 1.000 0.000 0.000 0.000
#> SRR1270783     2  0.0000     0.9925 0.000 1.000 0.000 0.000 0.000
#> SRR1270784     2  0.0000     0.9925 0.000 1.000 0.000 0.000 0.000
#> SRR1270785     2  0.1121     0.9727 0.000 0.956 0.000 0.000 0.044
#> SRR1270786     2  0.1121     0.9727 0.000 0.956 0.000 0.000 0.044
#> SRR1270787     2  0.1043     0.9753 0.000 0.960 0.000 0.000 0.040
#> SRR1270788     2  0.0404     0.9901 0.000 0.988 0.000 0.000 0.012
#> SRR1270789     2  0.0404     0.9901 0.000 0.988 0.000 0.000 0.012
#> SRR1270790     2  0.0404     0.9901 0.000 0.988 0.000 0.000 0.012
#> SRR1270791     2  0.0404     0.9901 0.000 0.988 0.000 0.000 0.012
#> SRR1270792     2  0.0963     0.9778 0.000 0.964 0.000 0.000 0.036
#> SRR1270793     2  0.1121     0.9727 0.000 0.956 0.000 0.000 0.044
#> SRR1270794     2  0.1043     0.9753 0.000 0.960 0.000 0.000 0.040
#> SRR1270795     2  0.0404     0.9901 0.000 0.988 0.000 0.000 0.012
#> SRR1270796     2  0.0404     0.9901 0.000 0.988 0.000 0.000 0.012
#> SRR1270797     2  0.0404     0.9901 0.000 0.988 0.000 0.000 0.012
#> SRR1270798     2  0.0404     0.9901 0.000 0.988 0.000 0.000 0.012
#> SRR1270799     2  0.0404     0.9901 0.000 0.988 0.000 0.000 0.012
#> SRR1270800     2  0.0404     0.9901 0.000 0.988 0.000 0.000 0.012
#> SRR1270801     2  0.0794     0.9824 0.000 0.972 0.000 0.000 0.028
#> SRR1270802     2  0.0794     0.9824 0.000 0.972 0.000 0.000 0.028
#> SRR1270803     2  0.0290     0.9911 0.000 0.992 0.000 0.000 0.008
#> SRR1270804     2  0.0290     0.9911 0.000 0.992 0.000 0.000 0.008
#> SRR1270805     3  0.1018     0.8008 0.000 0.000 0.968 0.016 0.016
#> SRR1270806     3  0.1018     0.8008 0.000 0.000 0.968 0.016 0.016
#> SRR1270807     3  0.1018     0.8008 0.000 0.000 0.968 0.016 0.016
#> SRR1270808     3  0.0162     0.8228 0.000 0.000 0.996 0.000 0.004
#> SRR1270809     3  0.0162     0.8228 0.000 0.000 0.996 0.000 0.004
#> SRR1270810     3  0.0290     0.8209 0.000 0.000 0.992 0.000 0.008
#> SRR1270811     3  0.0162     0.8228 0.000 0.000 0.996 0.000 0.004
#> SRR1270812     3  0.0000     0.8225 0.000 0.000 1.000 0.000 0.000
#> SRR1270813     3  0.0000     0.8225 0.000 0.000 1.000 0.000 0.000
#> SRR1270814     3  0.0000     0.8225 0.000 0.000 1.000 0.000 0.000
#> SRR1270815     3  0.0162     0.8228 0.000 0.000 0.996 0.000 0.004
#> SRR1270816     3  0.0162     0.8228 0.000 0.000 0.996 0.000 0.004
#> SRR1270817     3  0.0162     0.8228 0.000 0.000 0.996 0.000 0.004
#> SRR1270818     3  0.0162     0.8228 0.000 0.000 0.996 0.000 0.004
#> SRR1270819     3  0.0000     0.8225 0.000 0.000 1.000 0.000 0.000
#> SRR1270820     3  0.0000     0.8225 0.000 0.000 1.000 0.000 0.000
#> SRR1270821     3  0.0000     0.8225 0.000 0.000 1.000 0.000 0.000
#> SRR1270822     3  0.0162     0.8228 0.000 0.000 0.996 0.000 0.004
#> SRR1270823     3  0.0162     0.8228 0.000 0.000 0.996 0.000 0.004
#> SRR1270824     3  0.0290     0.8209 0.000 0.000 0.992 0.000 0.008
#> SRR1270825     3  0.0162     0.8228 0.000 0.000 0.996 0.000 0.004
#> SRR1270826     3  0.0000     0.8225 0.000 0.000 1.000 0.000 0.000
#> SRR1270827     3  0.0000     0.8225 0.000 0.000 1.000 0.000 0.000
#> SRR1270828     3  0.0000     0.8225 0.000 0.000 1.000 0.000 0.000
#> SRR1270829     3  0.0162     0.8228 0.000 0.000 0.996 0.000 0.004
#> SRR1270830     3  0.0162     0.8228 0.000 0.000 0.996 0.000 0.004
#> SRR1270831     3  0.0290     0.8209 0.000 0.000 0.992 0.000 0.008
#> SRR1270832     3  0.0162     0.8228 0.000 0.000 0.996 0.000 0.004
#> SRR1270833     4  0.0000     0.9888 0.000 0.000 0.000 1.000 0.000
#> SRR1270834     4  0.0000     0.9888 0.000 0.000 0.000 1.000 0.000
#> SRR1270835     4  0.1041     0.9832 0.004 0.000 0.000 0.964 0.032
#> SRR1270836     4  0.1124     0.9823 0.004 0.000 0.000 0.960 0.036
#> SRR1270837     4  0.0162     0.9882 0.000 0.000 0.000 0.996 0.004
#> SRR1270838     4  0.0162     0.9882 0.000 0.000 0.000 0.996 0.004
#> SRR1270839     4  0.0566     0.9876 0.004 0.000 0.000 0.984 0.012
#> SRR1270840     4  0.1124     0.9823 0.004 0.000 0.000 0.960 0.036
#> SRR1270841     4  0.1205     0.9810 0.004 0.000 0.000 0.956 0.040
#> SRR1270842     4  0.1124     0.9823 0.004 0.000 0.000 0.960 0.036
#> SRR1270843     4  0.1124     0.9823 0.004 0.000 0.000 0.960 0.036
#> SRR1270844     4  0.0609     0.9842 0.000 0.000 0.000 0.980 0.020
#> SRR1270845     4  0.0609     0.9842 0.000 0.000 0.000 0.980 0.020
#> SRR1270846     4  0.0609     0.9842 0.000 0.000 0.000 0.980 0.020
#> SRR1270847     4  0.0000     0.9888 0.000 0.000 0.000 1.000 0.000
#> SRR1270848     4  0.0000     0.9888 0.000 0.000 0.000 1.000 0.000
#> SRR1270849     4  0.0000     0.9888 0.000 0.000 0.000 1.000 0.000
#> SRR1270850     4  0.0000     0.9888 0.000 0.000 0.000 1.000 0.000
#> SRR1270851     2  0.0000     0.9925 0.000 1.000 0.000 0.000 0.000
#> SRR1270852     2  0.0162     0.9913 0.000 0.996 0.000 0.000 0.004
#> SRR1270853     2  0.0000     0.9925 0.000 1.000 0.000 0.000 0.000
#> SRR1270854     2  0.0000     0.9925 0.000 1.000 0.000 0.000 0.000
#> SRR1270855     2  0.0000     0.9925 0.000 1.000 0.000 0.000 0.000
#> SRR1270856     2  0.0000     0.9925 0.000 1.000 0.000 0.000 0.000
#> SRR1270857     2  0.0000     0.9925 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4 p5    p6
#> SRR1270715     1  0.2531      0.885 0.856 0.000 0.000 0.000 NA 0.132
#> SRR1270716     1  0.2531      0.885 0.856 0.000 0.000 0.000 NA 0.132
#> SRR1270717     1  0.2389      0.887 0.864 0.000 0.000 0.000 NA 0.128
#> SRR1270718     1  0.2095      0.885 0.904 0.000 0.004 0.000 NA 0.016
#> SRR1270719     1  0.1524      0.892 0.932 0.000 0.000 0.000 NA 0.008
#> SRR1270720     1  0.1946      0.887 0.912 0.000 0.004 0.000 NA 0.012
#> SRR1270721     1  0.1845      0.889 0.916 0.000 0.004 0.000 NA 0.008
#> SRR1270722     1  0.4017      0.869 0.760 0.000 0.076 0.000 NA 0.160
#> SRR1270723     1  0.3588      0.879 0.788 0.000 0.060 0.000 NA 0.152
#> SRR1270724     1  0.3587      0.883 0.792 0.000 0.068 0.000 NA 0.140
#> SRR1270725     1  0.0881      0.904 0.972 0.000 0.008 0.000 NA 0.008
#> SRR1270726     1  0.0964      0.906 0.968 0.000 0.016 0.000 NA 0.004
#> SRR1270727     1  0.1755      0.907 0.932 0.000 0.032 0.000 NA 0.008
#> SRR1270728     1  0.1350      0.906 0.952 0.000 0.020 0.000 NA 0.008
#> SRR1270729     1  0.1814      0.894 0.900 0.000 0.000 0.000 NA 0.100
#> SRR1270730     1  0.1714      0.895 0.908 0.000 0.000 0.000 NA 0.092
#> SRR1270731     1  0.1714      0.896 0.908 0.000 0.000 0.000 NA 0.092
#> SRR1270732     1  0.1285      0.893 0.944 0.000 0.000 0.000 NA 0.004
#> SRR1270733     1  0.1398      0.893 0.940 0.000 0.000 0.000 NA 0.008
#> SRR1270734     1  0.1219      0.894 0.948 0.000 0.000 0.000 NA 0.004
#> SRR1270735     1  0.1434      0.892 0.940 0.000 0.000 0.000 NA 0.012
#> SRR1270736     1  0.2747      0.900 0.860 0.000 0.044 0.000 NA 0.096
#> SRR1270737     1  0.2706      0.897 0.860 0.000 0.036 0.000 NA 0.104
#> SRR1270738     1  0.1738      0.899 0.928 0.000 0.016 0.000 NA 0.004
#> SRR1270739     1  0.1644      0.897 0.932 0.000 0.012 0.000 NA 0.004
#> SRR1270740     1  0.3655      0.883 0.788 0.000 0.076 0.000 NA 0.136
#> SRR1270741     1  0.3947      0.871 0.764 0.000 0.100 0.000 NA 0.136
#> SRR1270742     1  0.3869      0.874 0.772 0.000 0.100 0.000 NA 0.128
#> SRR1270743     1  0.1836      0.909 0.928 0.000 0.048 0.012 NA 0.004
#> SRR1270744     1  0.1722      0.909 0.936 0.000 0.036 0.016 NA 0.008
#> SRR1270745     1  0.1768      0.909 0.932 0.000 0.044 0.012 NA 0.004
#> SRR1270746     1  0.1586      0.909 0.940 0.000 0.040 0.012 NA 0.004
#> SRR1270747     1  0.4264      0.815 0.720 0.000 0.196 0.000 NA 0.084
#> SRR1270748     1  0.4282      0.817 0.720 0.000 0.192 0.000 NA 0.088
#> SRR1270749     1  0.4191      0.830 0.732 0.000 0.180 0.000 NA 0.088
#> SRR1270750     1  0.2295      0.906 0.900 0.000 0.072 0.016 NA 0.008
#> SRR1270751     1  0.2295      0.905 0.900 0.000 0.072 0.016 NA 0.004
#> SRR1270752     1  0.2401      0.904 0.892 0.000 0.076 0.016 NA 0.000
#> SRR1270753     1  0.2367      0.901 0.888 0.000 0.088 0.016 NA 0.000
#> SRR1270754     1  0.3991      0.851 0.756 0.000 0.156 0.000 NA 0.088
#> SRR1270755     1  0.4079      0.840 0.744 0.000 0.172 0.000 NA 0.084
#> SRR1270756     1  0.3992      0.839 0.748 0.000 0.180 0.000 NA 0.072
#> SRR1270757     1  0.2302      0.906 0.900 0.000 0.072 0.012 NA 0.004
#> SRR1270758     1  0.2505      0.904 0.888 0.000 0.080 0.012 NA 0.004
#> SRR1270759     1  0.2451      0.905 0.892 0.000 0.076 0.012 NA 0.004
#> SRR1270760     1  0.2222      0.905 0.896 0.000 0.084 0.012 NA 0.000
#> SRR1270761     1  0.3613      0.885 0.804 0.000 0.096 0.004 NA 0.096
#> SRR1270762     1  0.3887      0.874 0.780 0.000 0.112 0.004 NA 0.104
#> SRR1270763     1  0.2107      0.908 0.916 0.000 0.052 0.016 NA 0.008
#> SRR1270764     1  0.2107      0.908 0.916 0.000 0.052 0.016 NA 0.008
#> SRR1270765     2  0.0000      0.906 0.000 1.000 0.000 0.000 NA 0.000
#> SRR1270766     2  0.0000      0.906 0.000 1.000 0.000 0.000 NA 0.000
#> SRR1270767     2  0.0000      0.906 0.000 1.000 0.000 0.000 NA 0.000
#> SRR1270768     2  0.0000      0.906 0.000 1.000 0.000 0.000 NA 0.000
#> SRR1270769     2  0.0000      0.906 0.000 1.000 0.000 0.000 NA 0.000
#> SRR1270770     2  0.0000      0.906 0.000 1.000 0.000 0.000 NA 0.000
#> SRR1270771     2  0.0000      0.906 0.000 1.000 0.000 0.000 NA 0.000
#> SRR1270772     2  0.0146      0.906 0.000 0.996 0.000 0.000 NA 0.000
#> SRR1270773     2  0.0146      0.906 0.000 0.996 0.000 0.000 NA 0.000
#> SRR1270774     2  0.0146      0.906 0.000 0.996 0.000 0.000 NA 0.000
#> SRR1270775     2  0.0000      0.906 0.000 1.000 0.000 0.000 NA 0.000
#> SRR1270776     2  0.0000      0.906 0.000 1.000 0.000 0.000 NA 0.000
#> SRR1270777     2  0.0000      0.906 0.000 1.000 0.000 0.000 NA 0.000
#> SRR1270778     2  0.0000      0.906 0.000 1.000 0.000 0.000 NA 0.000
#> SRR1270779     2  0.0000      0.906 0.000 1.000 0.000 0.000 NA 0.000
#> SRR1270780     2  0.0000      0.906 0.000 1.000 0.000 0.000 NA 0.000
#> SRR1270781     2  0.0146      0.906 0.000 0.996 0.000 0.000 NA 0.000
#> SRR1270782     2  0.0146      0.906 0.000 0.996 0.000 0.000 NA 0.000
#> SRR1270783     2  0.0000      0.906 0.000 1.000 0.000 0.000 NA 0.000
#> SRR1270784     2  0.0000      0.906 0.000 1.000 0.000 0.000 NA 0.000
#> SRR1270785     2  0.3371      0.831 0.000 0.708 0.000 0.000 NA 0.000
#> SRR1270786     2  0.3390      0.828 0.000 0.704 0.000 0.000 NA 0.000
#> SRR1270787     2  0.3508      0.828 0.000 0.704 0.000 0.000 NA 0.004
#> SRR1270788     2  0.3198      0.849 0.000 0.740 0.000 0.000 NA 0.000
#> SRR1270789     2  0.3221      0.848 0.000 0.736 0.000 0.000 NA 0.000
#> SRR1270790     2  0.3050      0.858 0.000 0.764 0.000 0.000 NA 0.000
#> SRR1270791     2  0.3390      0.831 0.000 0.704 0.000 0.000 NA 0.000
#> SRR1270792     2  0.3151      0.851 0.000 0.748 0.000 0.000 NA 0.000
#> SRR1270793     2  0.3266      0.841 0.000 0.728 0.000 0.000 NA 0.000
#> SRR1270794     2  0.3266      0.842 0.000 0.728 0.000 0.000 NA 0.000
#> SRR1270795     2  0.3126      0.854 0.000 0.752 0.000 0.000 NA 0.000
#> SRR1270796     2  0.3126      0.854 0.000 0.752 0.000 0.000 NA 0.000
#> SRR1270797     2  0.3175      0.851 0.000 0.744 0.000 0.000 NA 0.000
#> SRR1270798     2  0.3023      0.859 0.000 0.768 0.000 0.000 NA 0.000
#> SRR1270799     2  0.2912      0.865 0.000 0.784 0.000 0.000 NA 0.000
#> SRR1270800     2  0.2912      0.865 0.000 0.784 0.000 0.000 NA 0.000
#> SRR1270801     2  0.3288      0.841 0.000 0.724 0.000 0.000 NA 0.000
#> SRR1270802     2  0.3309      0.839 0.000 0.720 0.000 0.000 NA 0.000
#> SRR1270803     2  0.3076      0.856 0.000 0.760 0.000 0.000 NA 0.000
#> SRR1270804     2  0.3050      0.858 0.000 0.764 0.000 0.000 NA 0.000
#> SRR1270805     3  0.0790      0.983 0.000 0.000 0.968 0.000 NA 0.032
#> SRR1270806     3  0.0790      0.983 0.000 0.000 0.968 0.000 NA 0.032
#> SRR1270807     3  0.0790      0.983 0.000 0.000 0.968 0.000 NA 0.032
#> SRR1270808     3  0.0458      0.988 0.000 0.000 0.984 0.000 NA 0.016
#> SRR1270809     3  0.0363      0.990 0.000 0.000 0.988 0.000 NA 0.012
#> SRR1270810     3  0.0363      0.990 0.000 0.000 0.988 0.000 NA 0.012
#> SRR1270811     3  0.0363      0.990 0.000 0.000 0.988 0.000 NA 0.012
#> SRR1270812     3  0.0508      0.989 0.004 0.000 0.984 0.000 NA 0.012
#> SRR1270813     3  0.0508      0.989 0.004 0.000 0.984 0.000 NA 0.012
#> SRR1270814     3  0.0405      0.989 0.004 0.000 0.988 0.000 NA 0.008
#> SRR1270815     3  0.0291      0.988 0.004 0.000 0.992 0.000 NA 0.004
#> SRR1270816     3  0.0291      0.988 0.004 0.000 0.992 0.000 NA 0.004
#> SRR1270817     3  0.0291      0.988 0.004 0.000 0.992 0.000 NA 0.004
#> SRR1270818     3  0.0146      0.989 0.004 0.000 0.996 0.000 NA 0.000
#> SRR1270819     3  0.0291      0.989 0.004 0.000 0.992 0.000 NA 0.004
#> SRR1270820     3  0.0291      0.989 0.004 0.000 0.992 0.000 NA 0.004
#> SRR1270821     3  0.0291      0.989 0.004 0.000 0.992 0.000 NA 0.004
#> SRR1270822     3  0.0405      0.987 0.004 0.000 0.988 0.000 NA 0.008
#> SRR1270823     3  0.0405      0.987 0.004 0.000 0.988 0.000 NA 0.008
#> SRR1270824     3  0.0405      0.987 0.004 0.000 0.988 0.000 NA 0.008
#> SRR1270825     3  0.0405      0.987 0.004 0.000 0.988 0.000 NA 0.008
#> SRR1270826     3  0.0458      0.989 0.000 0.000 0.984 0.000 NA 0.016
#> SRR1270827     3  0.0547      0.988 0.000 0.000 0.980 0.000 NA 0.020
#> SRR1270828     3  0.0547      0.988 0.000 0.000 0.980 0.000 NA 0.020
#> SRR1270829     3  0.0146      0.990 0.000 0.000 0.996 0.000 NA 0.004
#> SRR1270830     3  0.0146      0.990 0.000 0.000 0.996 0.000 NA 0.004
#> SRR1270831     3  0.0146      0.990 0.000 0.000 0.996 0.000 NA 0.004
#> SRR1270832     3  0.0146      0.990 0.000 0.000 0.996 0.000 NA 0.004
#> SRR1270833     4  0.0993      0.975 0.000 0.000 0.000 0.964 NA 0.024
#> SRR1270834     4  0.0993      0.975 0.000 0.000 0.000 0.964 NA 0.024
#> SRR1270835     4  0.0692      0.973 0.000 0.000 0.000 0.976 NA 0.020
#> SRR1270836     4  0.0692      0.973 0.000 0.000 0.000 0.976 NA 0.020
#> SRR1270837     4  0.0692      0.974 0.000 0.000 0.000 0.976 NA 0.020
#> SRR1270838     4  0.0547      0.974 0.000 0.000 0.000 0.980 NA 0.020
#> SRR1270839     4  0.0508      0.975 0.000 0.000 0.000 0.984 NA 0.012
#> SRR1270840     4  0.0806      0.972 0.000 0.000 0.000 0.972 NA 0.020
#> SRR1270841     4  0.0891      0.971 0.000 0.000 0.000 0.968 NA 0.024
#> SRR1270842     4  0.0806      0.972 0.000 0.000 0.000 0.972 NA 0.020
#> SRR1270843     4  0.0891      0.971 0.000 0.000 0.000 0.968 NA 0.024
#> SRR1270844     4  0.1967      0.959 0.000 0.000 0.000 0.904 NA 0.084
#> SRR1270845     4  0.1967      0.959 0.000 0.000 0.000 0.904 NA 0.084
#> SRR1270846     4  0.1913      0.961 0.000 0.000 0.000 0.908 NA 0.080
#> SRR1270847     4  0.1074      0.975 0.000 0.000 0.000 0.960 NA 0.028
#> SRR1270848     4  0.1074      0.975 0.000 0.000 0.000 0.960 NA 0.028
#> SRR1270849     4  0.1074      0.975 0.000 0.000 0.000 0.960 NA 0.028
#> SRR1270850     4  0.1074      0.975 0.000 0.000 0.000 0.960 NA 0.028
#> SRR1270851     2  0.0260      0.906 0.000 0.992 0.000 0.000 NA 0.000
#> SRR1270852     2  0.0260      0.906 0.000 0.992 0.000 0.000 NA 0.000
#> SRR1270853     2  0.0260      0.906 0.000 0.992 0.000 0.000 NA 0.000
#> SRR1270854     2  0.0000      0.906 0.000 1.000 0.000 0.000 NA 0.000
#> SRR1270855     2  0.0000      0.906 0.000 1.000 0.000 0.000 NA 0.000
#> SRR1270856     2  0.0000      0.906 0.000 1.000 0.000 0.000 NA 0.000
#> SRR1270857     2  0.0000      0.906 0.000 1.000 0.000 0.000 NA 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0