cola Report for recount2:SRP045500

Date: 2019-12-26 00:21:44 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 15028 rows and 134 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 15028   134

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
SD:hclust 6 1.000 0.993 0.995 ** 3
SD:skmeans 6 1.000 0.985 0.987 ** 2,3,5
SD:pam 6 1.000 0.995 0.998 ** 3,4,5
CV:hclust 6 1.000 0.991 0.996 ** 2
CV:skmeans 6 1.000 0.972 0.973 ** 2,3
CV:pam 6 1.000 0.985 0.994 ** 2,3,4,5
CV:NMF 6 1.000 0.989 0.984 ** 2
MAD:kmeans 2 1.000 0.979 0.983 **
MAD:skmeans 6 1.000 0.986 0.979 ** 2,3
MAD:pam 6 1.000 0.992 0.997 ** 2,4,5
ATC:hclust 5 1.000 0.959 0.985 **
ATC:kmeans 3 1.000 0.980 0.984 **
ATC:mclust 4 1.000 0.999 0.999 ** 3
SD:NMF 6 0.960 0.972 0.958 **
ATC:NMF 4 0.959 0.963 0.959 ** 2,3
MAD:NMF 6 0.941 0.956 0.949 * 2,5
ATC:pam 6 0.936 0.992 0.966 * 3,4,5
MAD:hclust 6 0.935 0.987 0.972 * 3
ATC:skmeans 6 0.932 0.980 0.938 * 2,3
MAD:mclust 6 0.920 0.893 0.932 * 2,4,5
CV:mclust 6 0.916 0.929 0.932 *
SD:mclust 6 0.915 0.921 0.957 * 4,5
SD:kmeans 2 0.613 0.880 0.902
CV:kmeans 2 0.494 0.927 0.922

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.878           0.901       0.962          0.471 0.533   0.533
#> CV:NMF      2 0.998           0.954       0.974          0.494 0.502   0.502
#> MAD:NMF     2 0.985           0.953       0.981          0.489 0.510   0.510
#> ATC:NMF     2 1.000           0.996       0.998          0.285 0.714   0.714
#> SD:skmeans  2 1.000           0.998       0.999          0.499 0.502   0.502
#> CV:skmeans  2 1.000           0.997       0.999          0.499 0.502   0.502
#> MAD:skmeans 2 1.000           1.000       1.000          0.499 0.502   0.502
#> ATC:skmeans 2 1.000           0.992       0.996          0.496 0.503   0.503
#> SD:mclust   2 0.741           0.898       0.948          0.453 0.566   0.566
#> CV:mclust   2 0.695           0.917       0.945          0.486 0.502   0.502
#> MAD:mclust  2 1.000           0.983       0.984          0.490 0.502   0.502
#> ATC:mclust  2 0.777           0.926       0.960          0.480 0.502   0.502
#> SD:kmeans   2 0.613           0.880       0.902          0.430 0.503   0.503
#> CV:kmeans   2 0.494           0.927       0.922          0.473 0.502   0.502
#> MAD:kmeans  2 1.000           0.979       0.983          0.491 0.503   0.503
#> ATC:kmeans  2 0.710           0.936       0.950          0.414 0.541   0.541
#> SD:pam      2 0.607           0.881       0.934          0.342 0.704   0.704
#> CV:pam      2 1.000           0.992       0.996          0.498 0.502   0.502
#> MAD:pam     2 1.000           0.953       0.982          0.492 0.503   0.503
#> ATC:pam     2 0.626           0.860       0.897          0.413 0.510   0.510
#> SD:hclust   2 0.585           0.906       0.939          0.305 0.744   0.744
#> CV:hclust   2 1.000           0.992       0.995          0.496 0.502   0.502
#> MAD:hclust  2 0.777           0.974       0.984          0.491 0.502   0.502
#> ATC:hclust  2 0.704           0.933       0.964          0.322 0.714   0.714
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.850           0.878       0.934          0.367 0.678   0.463
#> CV:NMF      3 0.784           0.959       0.944          0.241 0.879   0.758
#> MAD:NMF     3 0.853           0.886       0.931          0.285 0.857   0.723
#> ATC:NMF     3 1.000           0.977       0.991          1.037 0.683   0.563
#> SD:skmeans  3 1.000           0.995       0.991          0.241 0.879   0.758
#> CV:skmeans  3 1.000           0.985       0.982          0.242 0.879   0.758
#> MAD:skmeans 3 1.000           0.991       0.985          0.238 0.879   0.758
#> ATC:skmeans 3 1.000           0.974       0.983          0.167 0.913   0.827
#> SD:mclust   3 0.713           0.823       0.893          0.382 0.627   0.434
#> CV:mclust   3 0.788           0.839       0.928          0.252 0.873   0.753
#> MAD:mclust  3 0.810           0.933       0.962          0.257 0.699   0.492
#> ATC:mclust  3 0.910           0.952       0.962          0.226 0.910   0.821
#> SD:kmeans   3 0.641           0.775       0.791          0.409 0.985   0.971
#> CV:kmeans   3 0.671           0.799       0.825          0.272 1.000   1.000
#> MAD:kmeans  3 0.669           0.624       0.754          0.231 0.913   0.827
#> ATC:kmeans  3 1.000           0.980       0.984          0.420 0.804   0.658
#> SD:pam      3 1.000           0.989       0.996          0.718 0.687   0.562
#> CV:pam      3 1.000           0.979       0.977          0.240 0.879   0.758
#> MAD:pam     3 0.772           0.840       0.829          0.217 0.906   0.813
#> ATC:pam     3 1.000           0.996       0.998          0.420 0.880   0.771
#> SD:hclust   3 1.000           0.996       0.998          0.929 0.668   0.554
#> CV:hclust   3 0.745           0.933       0.875          0.221 0.879   0.758
#> MAD:hclust  3 0.912           0.958       0.945          0.202 0.910   0.821
#> ATC:hclust  3 0.850           0.951       0.974          0.793 0.693   0.569
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.771           0.813       0.888         0.0960 0.914   0.762
#> CV:NMF      4 0.799           0.840       0.839         0.1416 0.910   0.764
#> MAD:NMF     4 0.788           0.878       0.914         0.1080 0.873   0.685
#> ATC:NMF     4 0.959           0.963       0.959         0.0871 0.949   0.880
#> SD:skmeans  4 0.894           0.900       0.920         0.1436 0.906   0.753
#> CV:skmeans  4 0.802           0.888       0.903         0.1380 0.918   0.784
#> MAD:skmeans 4 0.869           0.960       0.957         0.1371 0.918   0.784
#> ATC:skmeans 4 0.825           0.944       0.927         0.1142 0.948   0.877
#> SD:mclust   4 1.000           0.976       0.991         0.1337 0.890   0.717
#> CV:mclust   4 0.764           0.886       0.930         0.1611 0.795   0.542
#> MAD:mclust  4 1.000           0.969       0.984         0.1459 0.910   0.764
#> ATC:mclust  4 1.000           0.999       0.999         0.0769 0.955   0.891
#> SD:kmeans   4 0.670           0.827       0.815         0.1272 0.789   0.580
#> CV:kmeans   4 0.678           0.763       0.740         0.1326 0.789   0.580
#> MAD:kmeans  4 0.674           0.775       0.742         0.1285 0.783   0.533
#> ATC:kmeans  4 0.771           0.801       0.859         0.1546 0.904   0.767
#> SD:pam      4 1.000           0.991       0.997         0.2075 0.877   0.702
#> CV:pam      4 0.952           0.931       0.971         0.1462 0.855   0.648
#> MAD:pam     4 1.000           0.994       0.997         0.1850 0.858   0.662
#> ATC:pam     4 1.000           0.996       0.998         0.0775 0.950   0.881
#> SD:hclust   4 0.874           0.979       0.930         0.1310 0.879   0.706
#> CV:hclust   4 0.866           0.930       0.938         0.1640 0.918   0.784
#> MAD:hclust  4 0.775           0.893       0.853         0.1479 0.879   0.706
#> ATC:hclust  4 0.957           0.956       0.966         0.0525 0.993   0.983
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.894           0.841       0.918         0.1022 0.885   0.632
#> CV:NMF      5 0.868           0.890       0.898         0.1035 0.926   0.748
#> MAD:NMF     5 0.920           0.907       0.953         0.1102 0.856   0.576
#> ATC:NMF     5 0.754           0.859       0.861         0.1940 0.873   0.659
#> SD:skmeans  5 0.936           0.968       0.961         0.0690 0.960   0.859
#> CV:skmeans  5 0.880           0.896       0.870         0.0780 0.948   0.827
#> MAD:skmeans 5 0.886           0.901       0.874         0.0827 0.931   0.770
#> ATC:skmeans 5 0.805           0.910       0.893         0.1347 0.879   0.671
#> SD:mclust   5 1.000           0.969       0.987         0.0705 0.951   0.829
#> CV:mclust   5 0.896           0.898       0.955         0.0827 0.940   0.796
#> MAD:mclust  5 1.000           0.944       0.974         0.0750 0.947   0.819
#> ATC:mclust  5 0.812           0.862       0.919         0.2154 0.858   0.612
#> SD:kmeans   5 0.698           0.589       0.677         0.0853 0.816   0.496
#> CV:kmeans   5 0.672           0.830       0.713         0.0799 0.937   0.784
#> MAD:kmeans  5 0.664           0.730       0.715         0.0836 0.867   0.580
#> ATC:kmeans  5 0.763           0.920       0.860         0.0962 0.906   0.702
#> SD:pam      5 1.000           0.997       0.999         0.0630 0.947   0.821
#> CV:pam      5 1.000           0.986       0.994         0.0657 0.930   0.772
#> MAD:pam     5 1.000           0.993       0.997         0.0628 0.952   0.834
#> ATC:pam     5 1.000           0.996       0.998         0.1914 0.879   0.671
#> SD:hclust   5 0.942           0.907       0.938         0.1047 0.988   0.957
#> CV:hclust   5 0.887           0.946       0.922         0.0726 0.948   0.827
#> MAD:hclust  5 0.887           0.981       0.938         0.1135 0.956   0.849
#> ATC:hclust  5 1.000           0.959       0.985         0.0479 0.962   0.904
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.960           0.972       0.958        0.04702 0.933   0.706
#> CV:NMF      6 1.000           0.989       0.984        0.05999 0.951   0.784
#> MAD:NMF     6 0.941           0.956       0.949        0.05782 0.914   0.651
#> ATC:NMF     6 0.780           0.886       0.870        0.05702 0.937   0.745
#> SD:skmeans  6 1.000           0.985       0.987        0.07709 0.937   0.745
#> CV:skmeans  6 1.000           0.972       0.973        0.07338 0.933   0.730
#> MAD:skmeans 6 1.000           0.986       0.979        0.07229 0.947   0.773
#> ATC:skmeans 6 0.932           0.980       0.938        0.08489 0.937   0.745
#> SD:mclust   6 0.915           0.921       0.957        0.02784 0.983   0.928
#> CV:mclust   6 0.916           0.929       0.932        0.05433 0.932   0.719
#> MAD:mclust  6 0.920           0.893       0.932        0.03566 0.981   0.925
#> ATC:mclust  6 0.795           0.852       0.904        0.00850 0.983   0.928
#> SD:kmeans   6 0.778           0.718       0.698        0.06020 0.837   0.444
#> CV:kmeans   6 0.663           0.903       0.822        0.06218 0.956   0.805
#> MAD:kmeans  6 0.704           0.883       0.768        0.05189 0.969   0.854
#> ATC:kmeans  6 0.723           0.920       0.859        0.05109 0.954   0.795
#> SD:pam      6 1.000           0.995       0.998        0.08312 0.937   0.744
#> CV:pam      6 1.000           0.985       0.994        0.08325 0.937   0.745
#> MAD:pam     6 1.000           0.992       0.997        0.08629 0.934   0.733
#> ATC:pam     6 0.936           0.992       0.966        0.07634 0.937   0.745
#> SD:hclust   6 1.000           0.993       0.995        0.03559 0.962   0.863
#> CV:hclust   6 1.000           0.991       0.996        0.07845 0.937   0.745
#> MAD:hclust  6 0.935           0.987       0.972        0.06712 0.937   0.745
#> ATC:hclust  6 0.998           0.908       0.964        0.00967 0.994   0.984

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Results for each method


SD:hclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15028 rows and 134 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.585           0.906       0.939         0.3055 0.744   0.744
#> 3 3 1.000           0.996       0.998         0.9285 0.668   0.554
#> 4 4 0.874           0.979       0.930         0.1310 0.879   0.706
#> 5 5 0.942           0.907       0.938         0.1047 0.988   0.957
#> 6 6 1.000           0.993       0.995         0.0356 0.962   0.863

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 3

There is also optional best \(k\) = 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1550981     2   0.722      0.838 0.200 0.800
#> SRR1550982     2   0.722      0.838 0.200 0.800
#> SRR1550983     2   0.722      0.838 0.200 0.800
#> SRR1550984     2   0.722      0.838 0.200 0.800
#> SRR1550986     1   0.000      1.000 1.000 0.000
#> SRR1550985     2   0.722      0.838 0.200 0.800
#> SRR1550988     2   0.000      0.919 0.000 1.000
#> SRR1550987     2   0.722      0.838 0.200 0.800
#> SRR1550989     2   0.000      0.919 0.000 1.000
#> SRR1550990     2   0.000      0.919 0.000 1.000
#> SRR1550991     2   0.000      0.919 0.000 1.000
#> SRR1550992     1   0.000      1.000 1.000 0.000
#> SRR1550994     2   0.000      0.919 0.000 1.000
#> SRR1550993     2   0.722      0.838 0.200 0.800
#> SRR1550995     2   0.000      0.919 0.000 1.000
#> SRR1550996     2   0.000      0.919 0.000 1.000
#> SRR1550997     1   0.000      1.000 1.000 0.000
#> SRR1550998     2   0.722      0.838 0.200 0.800
#> SRR1551000     2   0.000      0.919 0.000 1.000
#> SRR1550999     2   0.000      0.919 0.000 1.000
#> SRR1551001     2   0.000      0.919 0.000 1.000
#> SRR1551002     1   0.000      1.000 1.000 0.000
#> SRR1551003     2   0.722      0.838 0.200 0.800
#> SRR1551004     2   0.000      0.919 0.000 1.000
#> SRR1551006     2   0.000      0.919 0.000 1.000
#> SRR1551005     2   0.000      0.919 0.000 1.000
#> SRR1551007     2   0.000      0.919 0.000 1.000
#> SRR1551008     1   0.000      1.000 1.000 0.000
#> SRR1551009     2   0.722      0.838 0.200 0.800
#> SRR1551010     2   0.000      0.919 0.000 1.000
#> SRR1551012     2   0.000      0.919 0.000 1.000
#> SRR1551011     2   0.000      0.919 0.000 1.000
#> SRR1551013     1   0.000      1.000 1.000 0.000
#> SRR1551014     2   0.722      0.838 0.200 0.800
#> SRR1551015     2   0.000      0.919 0.000 1.000
#> SRR1551016     2   0.000      0.919 0.000 1.000
#> SRR1551017     2   0.000      0.919 0.000 1.000
#> SRR1551018     2   0.000      0.919 0.000 1.000
#> SRR1551019     2   0.745      0.826 0.212 0.788
#> SRR1551021     2   0.722      0.838 0.200 0.800
#> SRR1551022     2   0.000      0.919 0.000 1.000
#> SRR1551023     2   0.000      0.919 0.000 1.000
#> SRR1551020     1   0.000      1.000 1.000 0.000
#> SRR1551024     2   0.662      0.851 0.172 0.828
#> SRR1551026     1   0.000      1.000 1.000 0.000
#> SRR1551025     2   0.745      0.826 0.212 0.788
#> SRR1551027     2   0.722      0.838 0.200 0.800
#> SRR1551028     2   0.000      0.919 0.000 1.000
#> SRR1551029     2   0.000      0.919 0.000 1.000
#> SRR1551030     2   0.000      0.919 0.000 1.000
#> SRR1551031     2   0.000      0.919 0.000 1.000
#> SRR1551032     2   0.745      0.826 0.212 0.788
#> SRR1551034     2   0.722      0.838 0.200 0.800
#> SRR1551033     1   0.000      1.000 1.000 0.000
#> SRR1551035     2   0.000      0.919 0.000 1.000
#> SRR1551036     2   0.000      0.919 0.000 1.000
#> SRR1551037     2   0.000      0.919 0.000 1.000
#> SRR1551038     2   0.000      0.919 0.000 1.000
#> SRR1551039     2   0.722      0.838 0.200 0.800
#> SRR1551040     1   0.000      1.000 1.000 0.000
#> SRR1551041     2   0.722      0.838 0.200 0.800
#> SRR1551042     2   0.000      0.919 0.000 1.000
#> SRR1551043     2   0.000      0.919 0.000 1.000
#> SRR1551044     2   0.000      0.919 0.000 1.000
#> SRR1551045     2   0.000      0.919 0.000 1.000
#> SRR1551046     2   0.722      0.838 0.200 0.800
#> SRR1551047     1   0.000      1.000 1.000 0.000
#> SRR1551048     2   0.722      0.838 0.200 0.800
#> SRR1551049     2   0.000      0.919 0.000 1.000
#> SRR1551050     2   0.000      0.919 0.000 1.000
#> SRR1551051     2   0.000      0.919 0.000 1.000
#> SRR1551052     2   0.000      0.919 0.000 1.000
#> SRR1551053     2   0.722      0.838 0.200 0.800
#> SRR1551054     1   0.000      1.000 1.000 0.000
#> SRR1551055     2   0.722      0.838 0.200 0.800
#> SRR1551056     2   0.000      0.919 0.000 1.000
#> SRR1551057     2   0.000      0.919 0.000 1.000
#> SRR1551058     2   0.000      0.919 0.000 1.000
#> SRR1551059     2   0.000      0.919 0.000 1.000
#> SRR1551060     2   0.722      0.838 0.200 0.800
#> SRR1551061     1   0.000      1.000 1.000 0.000
#> SRR1551062     2   0.722      0.838 0.200 0.800
#> SRR1551063     2   0.000      0.919 0.000 1.000
#> SRR1551064     2   0.000      0.919 0.000 1.000
#> SRR1551065     2   0.000      0.919 0.000 1.000
#> SRR1551066     2   0.000      0.919 0.000 1.000
#> SRR1551067     2   0.722      0.838 0.200 0.800
#> SRR1551068     1   0.000      1.000 1.000 0.000
#> SRR1551069     2   0.722      0.838 0.200 0.800
#> SRR1551070     2   0.000      0.919 0.000 1.000
#> SRR1551071     2   0.000      0.919 0.000 1.000
#> SRR1551072     2   0.000      0.919 0.000 1.000
#> SRR1551073     2   0.000      0.919 0.000 1.000
#> SRR1551074     2   0.722      0.838 0.200 0.800
#> SRR1551075     1   0.000      1.000 1.000 0.000
#> SRR1551076     2   0.722      0.838 0.200 0.800
#> SRR1551077     2   0.000      0.919 0.000 1.000
#> SRR1551078     2   0.000      0.919 0.000 1.000
#> SRR1551079     2   0.000      0.919 0.000 1.000
#> SRR1551080     2   0.000      0.919 0.000 1.000
#> SRR1551081     2   0.722      0.838 0.200 0.800
#> SRR1551082     1   0.000      1.000 1.000 0.000
#> SRR1551083     2   0.722      0.838 0.200 0.800
#> SRR1551084     2   0.000      0.919 0.000 1.000
#> SRR1551085     2   0.000      0.919 0.000 1.000
#> SRR1551086     2   0.000      0.919 0.000 1.000
#> SRR1551088     1   0.000      1.000 1.000 0.000
#> SRR1551087     2   0.722      0.838 0.200 0.800
#> SRR1551089     2   0.722      0.838 0.200 0.800
#> SRR1551090     2   0.000      0.919 0.000 1.000
#> SRR1551091     2   0.000      0.919 0.000 1.000
#> SRR1551092     2   0.000      0.919 0.000 1.000
#> SRR1551093     2   0.000      0.919 0.000 1.000
#> SRR1551094     2   0.722      0.838 0.200 0.800
#> SRR1551095     1   0.000      1.000 1.000 0.000
#> SRR1551096     2   0.722      0.838 0.200 0.800
#> SRR1551097     2   0.000      0.919 0.000 1.000
#> SRR1551098     2   0.000      0.919 0.000 1.000
#> SRR1551099     2   0.000      0.919 0.000 1.000
#> SRR1551101     1   0.000      1.000 1.000 0.000
#> SRR1551100     2   0.722      0.838 0.200 0.800
#> SRR1551102     2   0.722      0.838 0.200 0.800
#> SRR1551103     2   0.000      0.919 0.000 1.000
#> SRR1551104     2   0.000      0.919 0.000 1.000
#> SRR1551105     2   0.000      0.919 0.000 1.000
#> SRR1551106     2   0.000      0.919 0.000 1.000
#> SRR1551107     2   0.722      0.838 0.200 0.800
#> SRR1551108     1   0.000      1.000 1.000 0.000
#> SRR1551109     2   0.722      0.838 0.200 0.800
#> SRR1551110     2   0.000      0.919 0.000 1.000
#> SRR1551111     2   0.000      0.919 0.000 1.000
#> SRR1551112     2   0.000      0.919 0.000 1.000
#> SRR1551113     2   0.000      0.919 0.000 1.000
#> SRR1551114     2   0.722      0.838 0.200 0.800

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1550981     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1550982     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1550983     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1550984     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1550986     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1550985     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1550988     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1550987     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1550989     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1550990     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1550991     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1550992     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1550994     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1550993     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1550995     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1550996     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1550997     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1550998     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551000     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1550999     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551001     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551002     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551003     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551004     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551006     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551005     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551007     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551008     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551009     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551010     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551012     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551011     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551013     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551014     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551015     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551016     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551017     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551018     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551019     1  0.0592      0.988 0.988 0.000 0.012
#> SRR1551021     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551022     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551023     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551020     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551024     2  0.4178      0.784 0.172 0.828 0.000
#> SRR1551026     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551025     1  0.0592      0.988 0.988 0.000 0.012
#> SRR1551027     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551028     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551029     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551030     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551031     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551032     1  0.0592      0.988 0.988 0.000 0.012
#> SRR1551034     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551033     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551035     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551036     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551037     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551038     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551039     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551040     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551041     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551042     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551043     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551044     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551045     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551046     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551047     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551048     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551049     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551050     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551051     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551052     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551053     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551054     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551055     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551056     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551057     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551058     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551059     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551060     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551061     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551062     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551063     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551064     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551065     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551066     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551067     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551068     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551069     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551070     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551071     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551072     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551073     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551074     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551075     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551076     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551077     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551078     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551079     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551080     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551081     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551082     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551083     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551084     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551085     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551086     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551088     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551087     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551089     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551090     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551091     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551092     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551093     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551094     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551095     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551096     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551097     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551098     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551099     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551101     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551100     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551102     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551103     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551104     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551105     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551106     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551107     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551108     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551109     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551110     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551111     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551112     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551113     2  0.0000      0.997 0.000 1.000 0.000
#> SRR1551114     1  0.0000      0.999 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2 p3  p4
#> SRR1550981     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1550982     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1550983     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1550984     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1550986     3   0.000      1.000 0.000 0.000  1 0.0
#> SRR1550985     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1550988     4   0.000      1.000 0.000 0.000  0 1.0
#> SRR1550987     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1550989     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1550990     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1550991     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1550992     3   0.000      1.000 0.000 0.000  1 0.0
#> SRR1550994     4   0.000      1.000 0.000 0.000  0 1.0
#> SRR1550993     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1550995     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1550996     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1550997     3   0.000      1.000 0.000 0.000  1 0.0
#> SRR1550998     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1551000     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1550999     4   0.000      1.000 0.000 0.000  0 1.0
#> SRR1551001     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551002     3   0.000      1.000 0.000 0.000  1 0.0
#> SRR1551003     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1551004     4   0.000      1.000 0.000 0.000  0 1.0
#> SRR1551006     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551005     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551007     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551008     3   0.000      1.000 0.000 0.000  1 0.0
#> SRR1551009     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1551010     4   0.000      1.000 0.000 0.000  0 1.0
#> SRR1551012     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551011     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551013     3   0.000      1.000 0.000 0.000  1 0.0
#> SRR1551014     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1551015     4   0.000      1.000 0.000 0.000  0 1.0
#> SRR1551016     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551017     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551018     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551019     1   0.485      0.602 0.600 0.400  0 0.0
#> SRR1551021     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1551022     4   0.000      1.000 0.000 0.000  0 1.0
#> SRR1551023     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551020     3   0.000      1.000 0.000 0.000  1 0.0
#> SRR1551024     2   0.745      0.612 0.172 0.428  0 0.4
#> SRR1551026     3   0.000      1.000 0.000 0.000  1 0.0
#> SRR1551025     1   0.485      0.602 0.600 0.400  0 0.0
#> SRR1551027     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1551028     4   0.000      1.000 0.000 0.000  0 1.0
#> SRR1551029     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551030     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551031     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551032     1   0.485      0.602 0.600 0.400  0 0.0
#> SRR1551034     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1551033     3   0.000      1.000 0.000 0.000  1 0.0
#> SRR1551035     4   0.000      1.000 0.000 0.000  0 1.0
#> SRR1551036     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551037     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551038     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551039     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1551040     3   0.000      1.000 0.000 0.000  1 0.0
#> SRR1551041     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1551042     4   0.000      1.000 0.000 0.000  0 1.0
#> SRR1551043     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551044     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551045     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551046     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1551047     3   0.000      1.000 0.000 0.000  1 0.0
#> SRR1551048     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1551049     4   0.000      1.000 0.000 0.000  0 1.0
#> SRR1551050     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551051     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551052     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551053     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1551054     3   0.000      1.000 0.000 0.000  1 0.0
#> SRR1551055     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1551056     4   0.000      1.000 0.000 0.000  0 1.0
#> SRR1551057     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551058     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551059     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551060     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1551061     3   0.000      1.000 0.000 0.000  1 0.0
#> SRR1551062     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1551063     4   0.000      1.000 0.000 0.000  0 1.0
#> SRR1551064     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551065     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551066     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551067     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1551068     3   0.000      1.000 0.000 0.000  1 0.0
#> SRR1551069     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1551070     4   0.000      1.000 0.000 0.000  0 1.0
#> SRR1551071     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551072     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551073     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551074     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1551075     3   0.000      1.000 0.000 0.000  1 0.0
#> SRR1551076     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1551077     4   0.000      1.000 0.000 0.000  0 1.0
#> SRR1551078     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551079     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551080     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551081     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1551082     3   0.000      1.000 0.000 0.000  1 0.0
#> SRR1551083     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1551084     4   0.000      1.000 0.000 0.000  0 1.0
#> SRR1551085     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551086     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551088     3   0.000      1.000 0.000 0.000  1 0.0
#> SRR1551087     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1551089     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1551090     4   0.000      1.000 0.000 0.000  0 1.0
#> SRR1551091     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551092     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551093     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551094     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1551095     3   0.000      1.000 0.000 0.000  1 0.0
#> SRR1551096     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1551097     4   0.000      1.000 0.000 0.000  0 1.0
#> SRR1551098     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551099     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551101     3   0.000      1.000 0.000 0.000  1 0.0
#> SRR1551100     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1551102     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1551103     4   0.000      1.000 0.000 0.000  0 1.0
#> SRR1551104     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551105     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551106     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551107     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1551108     3   0.000      1.000 0.000 0.000  1 0.0
#> SRR1551109     1   0.000      0.974 1.000 0.000  0 0.0
#> SRR1551110     4   0.000      1.000 0.000 0.000  0 1.0
#> SRR1551111     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551112     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551113     2   0.485      0.994 0.000 0.600  0 0.4
#> SRR1551114     1   0.000      0.974 1.000 0.000  0 0.0

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette   p1    p2 p3    p4   p5
#> SRR1550981     1   0.423      0.618 0.58 0.000  0 0.420 0.00
#> SRR1550982     1   0.423      0.618 0.58 0.000  0 0.420 0.00
#> SRR1550983     1   0.423      0.618 0.58 0.000  0 0.420 0.00
#> SRR1550984     1   0.423      0.618 0.58 0.000  0 0.420 0.00
#> SRR1550986     3   0.000      1.000 0.00 0.000  1 0.000 0.00
#> SRR1550985     1   0.423      0.618 0.58 0.000  0 0.420 0.00
#> SRR1550988     4   0.423      1.000 0.00 0.000  0 0.580 0.42
#> SRR1550987     1   0.000      0.722 1.00 0.000  0 0.000 0.00
#> SRR1550989     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1550990     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1550991     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1550992     3   0.000      1.000 0.00 0.000  1 0.000 0.00
#> SRR1550994     4   0.423      1.000 0.00 0.000  0 0.580 0.42
#> SRR1550993     1   0.000      0.722 1.00 0.000  0 0.000 0.00
#> SRR1550995     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1550996     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1550997     3   0.000      1.000 0.00 0.000  1 0.000 0.00
#> SRR1550998     1   0.000      0.722 1.00 0.000  0 0.000 0.00
#> SRR1551000     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1550999     4   0.423      1.000 0.00 0.000  0 0.580 0.42
#> SRR1551001     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551002     3   0.000      1.000 0.00 0.000  1 0.000 0.00
#> SRR1551003     1   0.000      0.722 1.00 0.000  0 0.000 0.00
#> SRR1551004     4   0.423      1.000 0.00 0.000  0 0.580 0.42
#> SRR1551006     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551005     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551007     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551008     3   0.000      1.000 0.00 0.000  1 0.000 0.00
#> SRR1551009     1   0.000      0.722 1.00 0.000  0 0.000 0.00
#> SRR1551010     4   0.423      1.000 0.00 0.000  0 0.580 0.42
#> SRR1551012     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551011     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551013     3   0.000      1.000 0.00 0.000  1 0.000 0.00
#> SRR1551014     1   0.000      0.722 1.00 0.000  0 0.000 0.00
#> SRR1551015     4   0.423      1.000 0.00 0.000  0 0.580 0.42
#> SRR1551016     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551017     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551018     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551019     5   0.579      1.000 0.12 0.000  0 0.300 0.58
#> SRR1551021     1   0.000      0.722 1.00 0.000  0 0.000 0.00
#> SRR1551022     4   0.423      1.000 0.00 0.000  0 0.580 0.42
#> SRR1551023     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551020     3   0.000      1.000 0.00 0.000  1 0.000 0.00
#> SRR1551024     2   0.285      0.771 0.00 0.828  0 0.172 0.00
#> SRR1551026     3   0.000      1.000 0.00 0.000  1 0.000 0.00
#> SRR1551025     5   0.579      1.000 0.12 0.000  0 0.300 0.58
#> SRR1551027     1   0.000      0.722 1.00 0.000  0 0.000 0.00
#> SRR1551028     4   0.423      1.000 0.00 0.000  0 0.580 0.42
#> SRR1551029     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551030     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551031     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551032     5   0.579      1.000 0.12 0.000  0 0.300 0.58
#> SRR1551034     1   0.000      0.722 1.00 0.000  0 0.000 0.00
#> SRR1551033     3   0.000      1.000 0.00 0.000  1 0.000 0.00
#> SRR1551035     4   0.423      1.000 0.00 0.000  0 0.580 0.42
#> SRR1551036     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551037     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551038     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551039     1   0.423      0.618 0.58 0.000  0 0.420 0.00
#> SRR1551040     3   0.000      1.000 0.00 0.000  1 0.000 0.00
#> SRR1551041     1   0.000      0.722 1.00 0.000  0 0.000 0.00
#> SRR1551042     4   0.423      1.000 0.00 0.000  0 0.580 0.42
#> SRR1551043     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551044     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551045     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551046     1   0.423      0.618 0.58 0.000  0 0.420 0.00
#> SRR1551047     3   0.000      1.000 0.00 0.000  1 0.000 0.00
#> SRR1551048     1   0.000      0.722 1.00 0.000  0 0.000 0.00
#> SRR1551049     4   0.423      1.000 0.00 0.000  0 0.580 0.42
#> SRR1551050     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551051     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551052     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551053     1   0.423      0.618 0.58 0.000  0 0.420 0.00
#> SRR1551054     3   0.000      1.000 0.00 0.000  1 0.000 0.00
#> SRR1551055     1   0.000      0.722 1.00 0.000  0 0.000 0.00
#> SRR1551056     4   0.423      1.000 0.00 0.000  0 0.580 0.42
#> SRR1551057     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551058     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551059     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551060     1   0.423      0.618 0.58 0.000  0 0.420 0.00
#> SRR1551061     3   0.000      1.000 0.00 0.000  1 0.000 0.00
#> SRR1551062     1   0.000      0.722 1.00 0.000  0 0.000 0.00
#> SRR1551063     4   0.423      1.000 0.00 0.000  0 0.580 0.42
#> SRR1551064     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551065     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551066     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551067     1   0.423      0.618 0.58 0.000  0 0.420 0.00
#> SRR1551068     3   0.000      1.000 0.00 0.000  1 0.000 0.00
#> SRR1551069     1   0.000      0.722 1.00 0.000  0 0.000 0.00
#> SRR1551070     4   0.423      1.000 0.00 0.000  0 0.580 0.42
#> SRR1551071     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551072     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551073     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551074     1   0.423      0.618 0.58 0.000  0 0.420 0.00
#> SRR1551075     3   0.000      1.000 0.00 0.000  1 0.000 0.00
#> SRR1551076     1   0.000      0.722 1.00 0.000  0 0.000 0.00
#> SRR1551077     4   0.423      1.000 0.00 0.000  0 0.580 0.42
#> SRR1551078     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551079     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551080     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551081     1   0.423      0.618 0.58 0.000  0 0.420 0.00
#> SRR1551082     3   0.000      1.000 0.00 0.000  1 0.000 0.00
#> SRR1551083     1   0.000      0.722 1.00 0.000  0 0.000 0.00
#> SRR1551084     4   0.423      1.000 0.00 0.000  0 0.580 0.42
#> SRR1551085     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551086     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551088     3   0.000      1.000 0.00 0.000  1 0.000 0.00
#> SRR1551087     1   0.423      0.618 0.58 0.000  0 0.420 0.00
#> SRR1551089     1   0.000      0.722 1.00 0.000  0 0.000 0.00
#> SRR1551090     4   0.423      1.000 0.00 0.000  0 0.580 0.42
#> SRR1551091     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551092     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551093     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551094     1   0.423      0.618 0.58 0.000  0 0.420 0.00
#> SRR1551095     3   0.000      1.000 0.00 0.000  1 0.000 0.00
#> SRR1551096     1   0.000      0.722 1.00 0.000  0 0.000 0.00
#> SRR1551097     4   0.423      1.000 0.00 0.000  0 0.580 0.42
#> SRR1551098     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551099     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551101     3   0.000      1.000 0.00 0.000  1 0.000 0.00
#> SRR1551100     1   0.423      0.618 0.58 0.000  0 0.420 0.00
#> SRR1551102     1   0.000      0.722 1.00 0.000  0 0.000 0.00
#> SRR1551103     4   0.423      1.000 0.00 0.000  0 0.580 0.42
#> SRR1551104     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551105     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551106     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551107     1   0.423      0.618 0.58 0.000  0 0.420 0.00
#> SRR1551108     3   0.000      1.000 0.00 0.000  1 0.000 0.00
#> SRR1551109     1   0.000      0.722 1.00 0.000  0 0.000 0.00
#> SRR1551110     4   0.423      1.000 0.00 0.000  0 0.580 0.42
#> SRR1551111     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551112     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551113     2   0.000      0.996 0.00 1.000  0 0.000 0.00
#> SRR1551114     1   0.423      0.618 0.58 0.000  0 0.420 0.00

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette p1    p2 p3 p4    p5    p6
#> SRR1550981     5  0.0000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1550982     5  0.0000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1550983     5  0.0000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1550984     5  0.0000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1550986     3  0.0000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1550985     5  0.0000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1550988     4  0.0000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1550987     1  0.0000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1550989     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1550990     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1550991     2  0.0713      0.976  0 0.972  0  0 0.000 0.028
#> SRR1550992     3  0.0000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1550994     4  0.0000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1550993     1  0.0000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1550995     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1550996     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1550997     3  0.0000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1550998     1  0.0000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551000     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1550999     4  0.0000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551001     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551002     3  0.0000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551003     1  0.0000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551004     4  0.0000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551006     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551005     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551007     2  0.0713      0.976  0 0.972  0  0 0.000 0.028
#> SRR1551008     3  0.0000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551009     1  0.0000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551010     4  0.0000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551012     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551011     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551013     3  0.0000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551014     1  0.0000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551015     4  0.0000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551016     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551017     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551018     2  0.0713      0.976  0 0.972  0  0 0.000 0.028
#> SRR1551019     6  0.0713      1.000  0 0.000  0  0 0.028 0.972
#> SRR1551021     1  0.0000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551022     4  0.0000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551023     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551020     3  0.0000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551024     2  0.2562      0.774  0 0.828  0  0 0.172 0.000
#> SRR1551026     3  0.0000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551025     6  0.0713      1.000  0 0.000  0  0 0.028 0.972
#> SRR1551027     1  0.0000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551028     4  0.0000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551029     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551030     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551031     2  0.0713      0.976  0 0.972  0  0 0.000 0.028
#> SRR1551032     6  0.0713      1.000  0 0.000  0  0 0.028 0.972
#> SRR1551034     1  0.0000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551033     3  0.0000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551035     4  0.0000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551036     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551037     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551038     2  0.0713      0.976  0 0.972  0  0 0.000 0.028
#> SRR1551039     5  0.0000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1551040     3  0.0000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551041     1  0.0000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551042     4  0.0000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551043     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551044     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551045     2  0.0713      0.976  0 0.972  0  0 0.000 0.028
#> SRR1551046     5  0.0000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1551047     3  0.0000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551048     1  0.0000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551049     4  0.0000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551050     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551051     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551052     2  0.0713      0.976  0 0.972  0  0 0.000 0.028
#> SRR1551053     5  0.0000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1551054     3  0.0000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551055     1  0.0000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551056     4  0.0000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551057     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551058     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551059     2  0.0713      0.976  0 0.972  0  0 0.000 0.028
#> SRR1551060     5  0.0000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1551061     3  0.0000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551062     1  0.0000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551063     4  0.0000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551064     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551065     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551066     2  0.0713      0.976  0 0.972  0  0 0.000 0.028
#> SRR1551067     5  0.0000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1551068     3  0.0000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551069     1  0.0000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551070     4  0.0000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551071     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551072     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551073     2  0.0713      0.976  0 0.972  0  0 0.000 0.028
#> SRR1551074     5  0.0000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1551075     3  0.0000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551076     1  0.0000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551077     4  0.0000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551078     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551079     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551080     2  0.0713      0.976  0 0.972  0  0 0.000 0.028
#> SRR1551081     5  0.0000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1551082     3  0.0000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551083     1  0.0000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551084     4  0.0000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551085     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551086     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551088     3  0.0000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551087     5  0.0000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1551089     1  0.0000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551090     4  0.0000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551091     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551092     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551093     2  0.0713      0.976  0 0.972  0  0 0.000 0.028
#> SRR1551094     5  0.0000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1551095     3  0.0000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551096     1  0.0000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551097     4  0.0000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551098     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551099     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551101     3  0.0000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551100     5  0.0000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1551102     1  0.0000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551103     4  0.0000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551104     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551105     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551106     2  0.0713      0.976  0 0.972  0  0 0.000 0.028
#> SRR1551107     5  0.0000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1551108     3  0.0000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551109     1  0.0000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551110     4  0.0000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551111     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551112     2  0.0000      0.989  0 1.000  0  0 0.000 0.000
#> SRR1551113     2  0.0713      0.976  0 0.972  0  0 0.000 0.028
#> SRR1551114     5  0.0000      1.000  0 0.000  0  0 1.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15028 rows and 134 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.613           0.880       0.902         0.4302 0.503   0.503
#> 3 3 0.641           0.775       0.791         0.4085 0.985   0.971
#> 4 4 0.670           0.827       0.815         0.1272 0.789   0.580
#> 5 5 0.698           0.589       0.677         0.0853 0.816   0.496
#> 6 6 0.778           0.718       0.698         0.0602 0.837   0.444

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1550981     1  0.8661      0.807 0.712 0.288
#> SRR1550982     1  0.9209      0.763 0.664 0.336
#> SRR1550983     1  0.8763      0.802 0.704 0.296
#> SRR1550984     1  0.9209      0.763 0.664 0.336
#> SRR1550986     1  0.0672      0.781 0.992 0.008
#> SRR1550985     1  0.9977      0.482 0.528 0.472
#> SRR1550988     2  0.0672      0.962 0.008 0.992
#> SRR1550987     1  0.8555      0.811 0.720 0.280
#> SRR1550989     2  0.1633      0.981 0.024 0.976
#> SRR1550990     2  0.1633      0.981 0.024 0.976
#> SRR1550991     2  0.1633      0.981 0.024 0.976
#> SRR1550992     1  0.0672      0.781 0.992 0.008
#> SRR1550994     2  0.0672      0.962 0.008 0.992
#> SRR1550993     1  0.8555      0.811 0.720 0.280
#> SRR1550995     2  0.1633      0.981 0.024 0.976
#> SRR1550996     2  0.1633      0.981 0.024 0.976
#> SRR1550997     1  0.0672      0.781 0.992 0.008
#> SRR1550998     1  0.8555      0.811 0.720 0.280
#> SRR1551000     2  0.1633      0.981 0.024 0.976
#> SRR1550999     2  0.0672      0.962 0.008 0.992
#> SRR1551001     2  0.1633      0.981 0.024 0.976
#> SRR1551002     1  0.0672      0.781 0.992 0.008
#> SRR1551003     1  0.8555      0.811 0.720 0.280
#> SRR1551004     2  0.0672      0.962 0.008 0.992
#> SRR1551006     2  0.1633      0.981 0.024 0.976
#> SRR1551005     2  0.1633      0.981 0.024 0.976
#> SRR1551007     2  0.1633      0.981 0.024 0.976
#> SRR1551008     1  0.0672      0.781 0.992 0.008
#> SRR1551009     1  0.8555      0.811 0.720 0.280
#> SRR1551010     2  0.0672      0.962 0.008 0.992
#> SRR1551012     2  0.1633      0.981 0.024 0.976
#> SRR1551011     2  0.1633      0.981 0.024 0.976
#> SRR1551013     1  0.0672      0.781 0.992 0.008
#> SRR1551014     1  0.8555      0.811 0.720 0.280
#> SRR1551015     2  0.0672      0.962 0.008 0.992
#> SRR1551016     2  0.1633      0.981 0.024 0.976
#> SRR1551017     2  0.1633      0.981 0.024 0.976
#> SRR1551018     2  0.1633      0.981 0.024 0.976
#> SRR1551019     1  0.0672      0.781 0.992 0.008
#> SRR1551021     1  0.8499      0.811 0.724 0.276
#> SRR1551022     2  0.0672      0.962 0.008 0.992
#> SRR1551023     2  0.1633      0.981 0.024 0.976
#> SRR1551020     1  0.0672      0.781 0.992 0.008
#> SRR1551024     2  0.1633      0.981 0.024 0.976
#> SRR1551026     1  0.0672      0.781 0.992 0.008
#> SRR1551025     1  0.0672      0.781 0.992 0.008
#> SRR1551027     1  0.8555      0.811 0.720 0.280
#> SRR1551028     2  0.0672      0.962 0.008 0.992
#> SRR1551029     2  0.1633      0.981 0.024 0.976
#> SRR1551030     2  0.1633      0.981 0.024 0.976
#> SRR1551031     2  0.1633      0.981 0.024 0.976
#> SRR1551032     1  0.0672      0.781 0.992 0.008
#> SRR1551034     1  0.8555      0.811 0.720 0.280
#> SRR1551033     1  0.0672      0.781 0.992 0.008
#> SRR1551035     2  0.0672      0.962 0.008 0.992
#> SRR1551036     2  0.1633      0.981 0.024 0.976
#> SRR1551037     2  0.1633      0.981 0.024 0.976
#> SRR1551038     2  0.1633      0.981 0.024 0.976
#> SRR1551039     1  0.9209      0.763 0.664 0.336
#> SRR1551040     1  0.0672      0.781 0.992 0.008
#> SRR1551041     1  0.8555      0.811 0.720 0.280
#> SRR1551042     2  0.0672      0.962 0.008 0.992
#> SRR1551043     2  0.1633      0.981 0.024 0.976
#> SRR1551044     2  0.1633      0.981 0.024 0.976
#> SRR1551045     2  0.1633      0.981 0.024 0.976
#> SRR1551046     1  0.9000      0.784 0.684 0.316
#> SRR1551047     1  0.0672      0.781 0.992 0.008
#> SRR1551048     1  0.8555      0.811 0.720 0.280
#> SRR1551049     2  0.0672      0.962 0.008 0.992
#> SRR1551050     2  0.1633      0.981 0.024 0.976
#> SRR1551051     2  0.1633      0.981 0.024 0.976
#> SRR1551052     2  0.1633      0.981 0.024 0.976
#> SRR1551053     2  0.9909     -0.218 0.444 0.556
#> SRR1551054     1  0.0672      0.781 0.992 0.008
#> SRR1551055     1  0.8555      0.811 0.720 0.280
#> SRR1551056     2  0.0672      0.962 0.008 0.992
#> SRR1551057     2  0.1633      0.981 0.024 0.976
#> SRR1551058     2  0.1633      0.981 0.024 0.976
#> SRR1551059     2  0.1633      0.981 0.024 0.976
#> SRR1551060     1  0.9209      0.763 0.664 0.336
#> SRR1551061     1  0.0672      0.781 0.992 0.008
#> SRR1551062     1  0.8555      0.811 0.720 0.280
#> SRR1551063     2  0.0672      0.962 0.008 0.992
#> SRR1551064     2  0.1633      0.981 0.024 0.976
#> SRR1551065     2  0.1633      0.981 0.024 0.976
#> SRR1551066     2  0.1633      0.981 0.024 0.976
#> SRR1551067     1  0.9209      0.763 0.664 0.336
#> SRR1551068     1  0.0672      0.781 0.992 0.008
#> SRR1551069     1  0.8555      0.811 0.720 0.280
#> SRR1551070     2  0.0672      0.962 0.008 0.992
#> SRR1551071     2  0.1633      0.981 0.024 0.976
#> SRR1551072     2  0.1633      0.981 0.024 0.976
#> SRR1551073     2  0.1633      0.981 0.024 0.976
#> SRR1551074     1  0.8763      0.802 0.704 0.296
#> SRR1551075     1  0.0672      0.781 0.992 0.008
#> SRR1551076     1  0.8555      0.811 0.720 0.280
#> SRR1551077     2  0.0672      0.962 0.008 0.992
#> SRR1551078     2  0.1633      0.981 0.024 0.976
#> SRR1551079     2  0.1633      0.981 0.024 0.976
#> SRR1551080     2  0.1633      0.981 0.024 0.976
#> SRR1551081     1  0.9977      0.482 0.528 0.472
#> SRR1551082     1  0.0672      0.781 0.992 0.008
#> SRR1551083     1  0.8555      0.811 0.720 0.280
#> SRR1551084     2  0.0672      0.962 0.008 0.992
#> SRR1551085     2  0.1633      0.981 0.024 0.976
#> SRR1551086     2  0.1633      0.981 0.024 0.976
#> SRR1551088     1  0.0672      0.781 0.992 0.008
#> SRR1551087     1  0.9209      0.763 0.664 0.336
#> SRR1551089     1  0.8555      0.811 0.720 0.280
#> SRR1551090     2  0.0672      0.962 0.008 0.992
#> SRR1551091     2  0.1633      0.981 0.024 0.976
#> SRR1551092     2  0.1633      0.981 0.024 0.976
#> SRR1551093     2  0.1633      0.981 0.024 0.976
#> SRR1551094     1  0.9209      0.763 0.664 0.336
#> SRR1551095     1  0.0672      0.781 0.992 0.008
#> SRR1551096     1  0.8555      0.811 0.720 0.280
#> SRR1551097     2  0.0672      0.962 0.008 0.992
#> SRR1551098     2  0.1633      0.981 0.024 0.976
#> SRR1551099     2  0.1633      0.981 0.024 0.976
#> SRR1551101     1  0.0672      0.781 0.992 0.008
#> SRR1551100     1  0.9209      0.763 0.664 0.336
#> SRR1551102     1  0.8555      0.811 0.720 0.280
#> SRR1551103     2  0.0672      0.962 0.008 0.992
#> SRR1551104     2  0.1633      0.981 0.024 0.976
#> SRR1551105     2  0.1633      0.981 0.024 0.976
#> SRR1551106     2  0.1633      0.981 0.024 0.976
#> SRR1551107     1  0.9209      0.763 0.664 0.336
#> SRR1551108     1  0.0672      0.781 0.992 0.008
#> SRR1551109     1  0.8555      0.811 0.720 0.280
#> SRR1551110     2  0.0672      0.962 0.008 0.992
#> SRR1551111     2  0.1633      0.981 0.024 0.976
#> SRR1551112     2  0.1633      0.981 0.024 0.976
#> SRR1551113     2  0.1633      0.981 0.024 0.976
#> SRR1551114     1  0.9209      0.763 0.664 0.336

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2 p3
#> SRR1550981     1  0.4821      0.783 0.840 0.040 NA
#> SRR1550982     1  0.5393      0.769 0.808 0.044 NA
#> SRR1550983     1  0.5393      0.769 0.808 0.044 NA
#> SRR1550984     1  0.5393      0.769 0.808 0.044 NA
#> SRR1550986     1  0.6244      0.718 0.560 0.000 NA
#> SRR1550985     1  0.5719      0.753 0.792 0.052 NA
#> SRR1550988     2  0.2537      0.596 0.080 0.920 NA
#> SRR1550987     1  0.0237      0.821 0.996 0.004 NA
#> SRR1550989     2  0.6769      0.858 0.016 0.592 NA
#> SRR1550990     2  0.6769      0.858 0.016 0.592 NA
#> SRR1550991     2  0.6944      0.824 0.016 0.516 NA
#> SRR1550992     1  0.6244      0.718 0.560 0.000 NA
#> SRR1550994     2  0.2537      0.596 0.080 0.920 NA
#> SRR1550993     1  0.0237      0.821 0.996 0.004 NA
#> SRR1550995     2  0.6769      0.858 0.016 0.592 NA
#> SRR1550996     2  0.6769      0.858 0.016 0.592 NA
#> SRR1550997     1  0.6244      0.718 0.560 0.000 NA
#> SRR1550998     1  0.0237      0.821 0.996 0.004 NA
#> SRR1551000     2  0.6769      0.858 0.016 0.592 NA
#> SRR1550999     2  0.2537      0.596 0.080 0.920 NA
#> SRR1551001     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551002     1  0.6244      0.718 0.560 0.000 NA
#> SRR1551003     1  0.0237      0.821 0.996 0.004 NA
#> SRR1551004     2  0.2537      0.596 0.080 0.920 NA
#> SRR1551006     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551005     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551007     2  0.6944      0.824 0.016 0.516 NA
#> SRR1551008     1  0.6244      0.718 0.560 0.000 NA
#> SRR1551009     1  0.0237      0.821 0.996 0.004 NA
#> SRR1551010     2  0.2537      0.596 0.080 0.920 NA
#> SRR1551012     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551011     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551013     1  0.6244      0.718 0.560 0.000 NA
#> SRR1551014     1  0.0237      0.821 0.996 0.004 NA
#> SRR1551015     2  0.2537      0.596 0.080 0.920 NA
#> SRR1551016     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551017     2  0.6925      0.836 0.016 0.532 NA
#> SRR1551018     2  0.6944      0.824 0.016 0.516 NA
#> SRR1551019     1  0.2537      0.808 0.920 0.000 NA
#> SRR1551021     1  0.0000      0.821 1.000 0.000 NA
#> SRR1551022     2  0.2537      0.596 0.080 0.920 NA
#> SRR1551023     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551020     1  0.6244      0.718 0.560 0.000 NA
#> SRR1551024     2  0.7248      0.833 0.028 0.536 NA
#> SRR1551026     1  0.6244      0.718 0.560 0.000 NA
#> SRR1551025     1  0.2711      0.811 0.912 0.000 NA
#> SRR1551027     1  0.0237      0.821 0.996 0.004 NA
#> SRR1551028     2  0.2537      0.596 0.080 0.920 NA
#> SRR1551029     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551030     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551031     2  0.6948      0.824 0.016 0.512 NA
#> SRR1551032     1  0.1753      0.819 0.952 0.000 NA
#> SRR1551034     1  0.0237      0.821 0.996 0.004 NA
#> SRR1551033     1  0.6244      0.718 0.560 0.000 NA
#> SRR1551035     2  0.2537      0.596 0.080 0.920 NA
#> SRR1551036     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551037     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551038     2  0.6944      0.824 0.016 0.516 NA
#> SRR1551039     1  0.5393      0.769 0.808 0.044 NA
#> SRR1551040     1  0.6244      0.718 0.560 0.000 NA
#> SRR1551041     1  0.0237      0.821 0.996 0.004 NA
#> SRR1551042     2  0.2537      0.596 0.080 0.920 NA
#> SRR1551043     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551044     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551045     2  0.6944      0.824 0.016 0.516 NA
#> SRR1551046     1  0.5393      0.769 0.808 0.044 NA
#> SRR1551047     1  0.6244      0.718 0.560 0.000 NA
#> SRR1551048     1  0.0237      0.821 0.996 0.004 NA
#> SRR1551049     2  0.2537      0.596 0.080 0.920 NA
#> SRR1551050     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551051     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551052     2  0.6944      0.824 0.016 0.516 NA
#> SRR1551053     1  0.7147      0.641 0.696 0.076 NA
#> SRR1551054     1  0.6244      0.718 0.560 0.000 NA
#> SRR1551055     1  0.0237      0.821 0.996 0.004 NA
#> SRR1551056     2  0.2537      0.596 0.080 0.920 NA
#> SRR1551057     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551058     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551059     2  0.6944      0.824 0.016 0.516 NA
#> SRR1551060     1  0.5393      0.769 0.808 0.044 NA
#> SRR1551061     1  0.6244      0.718 0.560 0.000 NA
#> SRR1551062     1  0.0237      0.821 0.996 0.004 NA
#> SRR1551063     2  0.2537      0.596 0.080 0.920 NA
#> SRR1551064     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551065     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551066     2  0.6944      0.824 0.016 0.516 NA
#> SRR1551067     1  0.5393      0.769 0.808 0.044 NA
#> SRR1551068     1  0.6244      0.718 0.560 0.000 NA
#> SRR1551069     1  0.0237      0.821 0.996 0.004 NA
#> SRR1551070     2  0.2537      0.596 0.080 0.920 NA
#> SRR1551071     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551072     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551073     2  0.6944      0.824 0.016 0.516 NA
#> SRR1551074     1  0.5267      0.773 0.816 0.044 NA
#> SRR1551075     1  0.6244      0.718 0.560 0.000 NA
#> SRR1551076     1  0.0237      0.821 0.996 0.004 NA
#> SRR1551077     2  0.2537      0.596 0.080 0.920 NA
#> SRR1551078     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551079     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551080     2  0.6944      0.824 0.016 0.516 NA
#> SRR1551081     1  0.5719      0.753 0.792 0.052 NA
#> SRR1551082     1  0.6244      0.718 0.560 0.000 NA
#> SRR1551083     1  0.0237      0.821 0.996 0.004 NA
#> SRR1551084     2  0.2537      0.596 0.080 0.920 NA
#> SRR1551085     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551086     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551088     1  0.6244      0.718 0.560 0.000 NA
#> SRR1551087     1  0.5393      0.769 0.808 0.044 NA
#> SRR1551089     1  0.0237      0.821 0.996 0.004 NA
#> SRR1551090     2  0.2537      0.596 0.080 0.920 NA
#> SRR1551091     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551092     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551093     2  0.6944      0.824 0.016 0.516 NA
#> SRR1551094     1  0.5393      0.769 0.808 0.044 NA
#> SRR1551095     1  0.6244      0.718 0.560 0.000 NA
#> SRR1551096     1  0.0237      0.821 0.996 0.004 NA
#> SRR1551097     2  0.2537      0.596 0.080 0.920 NA
#> SRR1551098     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551099     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551101     1  0.6244      0.718 0.560 0.000 NA
#> SRR1551100     1  0.5393      0.769 0.808 0.044 NA
#> SRR1551102     1  0.0237      0.821 0.996 0.004 NA
#> SRR1551103     2  0.2537      0.596 0.080 0.920 NA
#> SRR1551104     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551105     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551106     2  0.6944      0.824 0.016 0.516 NA
#> SRR1551107     1  0.5393      0.769 0.808 0.044 NA
#> SRR1551108     1  0.6244      0.718 0.560 0.000 NA
#> SRR1551109     1  0.0237      0.821 0.996 0.004 NA
#> SRR1551110     2  0.2537      0.596 0.080 0.920 NA
#> SRR1551111     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551112     2  0.6769      0.858 0.016 0.592 NA
#> SRR1551113     2  0.6944      0.824 0.016 0.516 NA
#> SRR1551114     1  0.5393      0.769 0.808 0.044 NA

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1550981     1  0.1271      0.693 0.968 0.012 0.012 0.008
#> SRR1550982     1  0.1271      0.693 0.968 0.012 0.012 0.008
#> SRR1550983     1  0.1271      0.693 0.968 0.012 0.012 0.008
#> SRR1550984     1  0.1271      0.693 0.968 0.012 0.012 0.008
#> SRR1550986     3  0.3266      0.989 0.168 0.000 0.832 0.000
#> SRR1550985     1  0.1394      0.689 0.964 0.016 0.012 0.008
#> SRR1550988     4  0.5173      0.999 0.020 0.320 0.000 0.660
#> SRR1550987     1  0.7179      0.674 0.576 0.004 0.208 0.212
#> SRR1550989     2  0.0188      0.878 0.004 0.996 0.000 0.000
#> SRR1550990     2  0.0000      0.878 0.000 1.000 0.000 0.000
#> SRR1550991     2  0.6729      0.649 0.036 0.680 0.164 0.120
#> SRR1550992     3  0.3266      0.989 0.168 0.000 0.832 0.000
#> SRR1550994     4  0.5349      0.997 0.020 0.320 0.004 0.656
#> SRR1550993     1  0.7179      0.674 0.576 0.004 0.208 0.212
#> SRR1550995     2  0.0188      0.878 0.004 0.996 0.000 0.000
#> SRR1550996     2  0.0188      0.878 0.004 0.996 0.000 0.000
#> SRR1550997     3  0.4507      0.966 0.168 0.000 0.788 0.044
#> SRR1550998     1  0.7179      0.674 0.576 0.004 0.208 0.212
#> SRR1551000     2  0.0188      0.878 0.004 0.996 0.000 0.000
#> SRR1550999     4  0.5447      0.994 0.024 0.320 0.004 0.652
#> SRR1551001     2  0.0000      0.878 0.000 1.000 0.000 0.000
#> SRR1551002     3  0.3266      0.989 0.168 0.000 0.832 0.000
#> SRR1551003     1  0.7179      0.674 0.576 0.004 0.208 0.212
#> SRR1551004     4  0.5349      0.997 0.020 0.320 0.004 0.656
#> SRR1551006     2  0.0000      0.878 0.000 1.000 0.000 0.000
#> SRR1551005     2  0.0188      0.878 0.004 0.996 0.000 0.000
#> SRR1551007     2  0.6729      0.649 0.036 0.680 0.164 0.120
#> SRR1551008     3  0.3266      0.989 0.168 0.000 0.832 0.000
#> SRR1551009     1  0.7179      0.674 0.576 0.004 0.208 0.212
#> SRR1551010     4  0.5173      0.999 0.020 0.320 0.000 0.660
#> SRR1551012     2  0.0000      0.878 0.000 1.000 0.000 0.000
#> SRR1551011     2  0.0188      0.878 0.004 0.996 0.000 0.000
#> SRR1551013     3  0.3266      0.989 0.168 0.000 0.832 0.000
#> SRR1551014     1  0.7179      0.674 0.576 0.004 0.208 0.212
#> SRR1551015     4  0.5447      0.994 0.024 0.320 0.004 0.652
#> SRR1551016     2  0.0188      0.878 0.004 0.996 0.000 0.000
#> SRR1551017     2  0.2480      0.811 0.008 0.904 0.000 0.088
#> SRR1551018     2  0.6729      0.649 0.036 0.680 0.164 0.120
#> SRR1551019     1  0.3222      0.675 0.884 0.004 0.076 0.036
#> SRR1551021     1  0.7150      0.673 0.580 0.004 0.208 0.208
#> SRR1551022     4  0.5173      0.999 0.020 0.320 0.000 0.660
#> SRR1551023     2  0.0188      0.878 0.004 0.996 0.000 0.000
#> SRR1551020     3  0.3266      0.989 0.168 0.000 0.832 0.000
#> SRR1551024     2  0.2760      0.743 0.128 0.872 0.000 0.000
#> SRR1551026     3  0.3266      0.989 0.168 0.000 0.832 0.000
#> SRR1551025     1  0.4956      0.600 0.732 0.000 0.232 0.036
#> SRR1551027     1  0.7179      0.674 0.576 0.004 0.208 0.212
#> SRR1551028     4  0.5173      0.999 0.020 0.320 0.000 0.660
#> SRR1551029     2  0.0188      0.878 0.004 0.996 0.000 0.000
#> SRR1551030     2  0.0000      0.878 0.000 1.000 0.000 0.000
#> SRR1551031     2  0.6729      0.649 0.036 0.680 0.164 0.120
#> SRR1551032     1  0.4466      0.640 0.784 0.000 0.180 0.036
#> SRR1551034     1  0.7179      0.674 0.576 0.004 0.208 0.212
#> SRR1551033     3  0.3266      0.989 0.168 0.000 0.832 0.000
#> SRR1551035     4  0.5173      0.999 0.020 0.320 0.000 0.660
#> SRR1551036     2  0.0188      0.878 0.004 0.996 0.000 0.000
#> SRR1551037     2  0.0000      0.878 0.000 1.000 0.000 0.000
#> SRR1551038     2  0.6729      0.649 0.036 0.680 0.164 0.120
#> SRR1551039     1  0.1271      0.693 0.968 0.012 0.012 0.008
#> SRR1551040     3  0.4507      0.966 0.168 0.000 0.788 0.044
#> SRR1551041     1  0.7179      0.674 0.576 0.004 0.208 0.212
#> SRR1551042     4  0.5173      0.999 0.020 0.320 0.000 0.660
#> SRR1551043     2  0.0188      0.878 0.004 0.996 0.000 0.000
#> SRR1551044     2  0.0000      0.878 0.000 1.000 0.000 0.000
#> SRR1551045     2  0.6729      0.649 0.036 0.680 0.164 0.120
#> SRR1551046     1  0.1271      0.693 0.968 0.012 0.012 0.008
#> SRR1551047     3  0.4507      0.966 0.168 0.000 0.788 0.044
#> SRR1551048     1  0.7179      0.674 0.576 0.004 0.208 0.212
#> SRR1551049     4  0.5173      0.999 0.020 0.320 0.000 0.660
#> SRR1551050     2  0.0188      0.878 0.004 0.996 0.000 0.000
#> SRR1551051     2  0.0000      0.878 0.000 1.000 0.000 0.000
#> SRR1551052     2  0.6729      0.649 0.036 0.680 0.164 0.120
#> SRR1551053     1  0.2099      0.659 0.936 0.044 0.012 0.008
#> SRR1551054     3  0.4507      0.966 0.168 0.000 0.788 0.044
#> SRR1551055     1  0.7179      0.674 0.576 0.004 0.208 0.212
#> SRR1551056     4  0.5173      0.999 0.020 0.320 0.000 0.660
#> SRR1551057     2  0.0188      0.878 0.004 0.996 0.000 0.000
#> SRR1551058     2  0.0336      0.875 0.000 0.992 0.000 0.008
#> SRR1551059     2  0.6729      0.649 0.036 0.680 0.164 0.120
#> SRR1551060     1  0.1271      0.693 0.968 0.012 0.012 0.008
#> SRR1551061     3  0.3266      0.989 0.168 0.000 0.832 0.000
#> SRR1551062     1  0.7179      0.674 0.576 0.004 0.208 0.212
#> SRR1551063     4  0.5173      0.999 0.020 0.320 0.000 0.660
#> SRR1551064     2  0.0188      0.878 0.004 0.996 0.000 0.000
#> SRR1551065     2  0.0000      0.878 0.000 1.000 0.000 0.000
#> SRR1551066     2  0.6729      0.649 0.036 0.680 0.164 0.120
#> SRR1551067     1  0.1271      0.693 0.968 0.012 0.012 0.008
#> SRR1551068     3  0.3266      0.989 0.168 0.000 0.832 0.000
#> SRR1551069     1  0.7179      0.674 0.576 0.004 0.208 0.212
#> SRR1551070     4  0.5173      0.999 0.020 0.320 0.000 0.660
#> SRR1551071     2  0.0188      0.878 0.004 0.996 0.000 0.000
#> SRR1551072     2  0.0000      0.878 0.000 1.000 0.000 0.000
#> SRR1551073     2  0.6729      0.649 0.036 0.680 0.164 0.120
#> SRR1551074     1  0.1271      0.693 0.968 0.012 0.012 0.008
#> SRR1551075     3  0.3266      0.989 0.168 0.000 0.832 0.000
#> SRR1551076     1  0.7179      0.674 0.576 0.004 0.208 0.212
#> SRR1551077     4  0.5173      0.999 0.020 0.320 0.000 0.660
#> SRR1551078     2  0.0188      0.878 0.004 0.996 0.000 0.000
#> SRR1551079     2  0.0336      0.875 0.000 0.992 0.000 0.008
#> SRR1551080     2  0.6729      0.649 0.036 0.680 0.164 0.120
#> SRR1551081     1  0.1394      0.689 0.964 0.016 0.012 0.008
#> SRR1551082     3  0.3266      0.989 0.168 0.000 0.832 0.000
#> SRR1551083     1  0.7179      0.674 0.576 0.004 0.208 0.212
#> SRR1551084     4  0.5173      0.999 0.020 0.320 0.000 0.660
#> SRR1551085     2  0.0188      0.878 0.004 0.996 0.000 0.000
#> SRR1551086     2  0.0000      0.878 0.000 1.000 0.000 0.000
#> SRR1551088     3  0.3266      0.989 0.168 0.000 0.832 0.000
#> SRR1551087     1  0.1271      0.693 0.968 0.012 0.012 0.008
#> SRR1551089     1  0.7179      0.674 0.576 0.004 0.208 0.212
#> SRR1551090     4  0.5173      0.999 0.020 0.320 0.000 0.660
#> SRR1551091     2  0.0188      0.878 0.004 0.996 0.000 0.000
#> SRR1551092     2  0.0000      0.878 0.000 1.000 0.000 0.000
#> SRR1551093     2  0.6729      0.649 0.036 0.680 0.164 0.120
#> SRR1551094     1  0.1271      0.693 0.968 0.012 0.012 0.008
#> SRR1551095     3  0.3266      0.989 0.168 0.000 0.832 0.000
#> SRR1551096     1  0.7179      0.674 0.576 0.004 0.208 0.212
#> SRR1551097     4  0.5173      0.999 0.020 0.320 0.000 0.660
#> SRR1551098     2  0.0188      0.878 0.004 0.996 0.000 0.000
#> SRR1551099     2  0.0000      0.878 0.000 1.000 0.000 0.000
#> SRR1551101     3  0.4507      0.966 0.168 0.000 0.788 0.044
#> SRR1551100     1  0.1271      0.693 0.968 0.012 0.012 0.008
#> SRR1551102     1  0.7179      0.674 0.576 0.004 0.208 0.212
#> SRR1551103     4  0.5173      0.999 0.020 0.320 0.000 0.660
#> SRR1551104     2  0.0188      0.878 0.004 0.996 0.000 0.000
#> SRR1551105     2  0.0000      0.878 0.000 1.000 0.000 0.000
#> SRR1551106     2  0.6729      0.649 0.036 0.680 0.164 0.120
#> SRR1551107     1  0.1271      0.693 0.968 0.012 0.012 0.008
#> SRR1551108     3  0.3266      0.989 0.168 0.000 0.832 0.000
#> SRR1551109     1  0.7179      0.674 0.576 0.004 0.208 0.212
#> SRR1551110     4  0.5173      0.999 0.020 0.320 0.000 0.660
#> SRR1551111     2  0.0188      0.878 0.004 0.996 0.000 0.000
#> SRR1551112     2  0.0000      0.878 0.000 1.000 0.000 0.000
#> SRR1551113     2  0.6729      0.649 0.036 0.680 0.164 0.120
#> SRR1551114     1  0.1271      0.693 0.968 0.012 0.012 0.008

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1550981     2  0.6858     -0.307 0.352 0.428 0.212 0.004 0.004
#> SRR1550982     2  0.6858     -0.307 0.352 0.428 0.212 0.004 0.004
#> SRR1550983     2  0.6858     -0.307 0.352 0.428 0.212 0.004 0.004
#> SRR1550984     2  0.6875     -0.308 0.352 0.424 0.216 0.004 0.004
#> SRR1550986     3  0.3895      0.990 0.320 0.000 0.680 0.000 0.000
#> SRR1550985     2  0.6875     -0.308 0.352 0.424 0.216 0.004 0.004
#> SRR1550988     4  0.2127      0.994 0.000 0.000 0.000 0.892 0.108
#> SRR1550987     1  0.0510      0.900 0.984 0.000 0.000 0.016 0.000
#> SRR1550989     2  0.5622      0.329 0.000 0.508 0.000 0.076 0.416
#> SRR1550990     2  0.6954      0.324 0.000 0.432 0.076 0.076 0.416
#> SRR1550991     5  0.0000      0.946 0.000 0.000 0.000 0.000 1.000
#> SRR1550992     3  0.3895      0.990 0.320 0.000 0.680 0.000 0.000
#> SRR1550994     4  0.2570      0.989 0.000 0.008 0.004 0.880 0.108
#> SRR1550993     1  0.0510      0.900 0.984 0.000 0.000 0.016 0.000
#> SRR1550995     2  0.5622      0.329 0.000 0.508 0.000 0.076 0.416
#> SRR1550996     2  0.6954      0.324 0.000 0.432 0.076 0.076 0.416
#> SRR1550997     3  0.4809      0.974 0.320 0.008 0.648 0.024 0.000
#> SRR1550998     1  0.0794      0.895 0.972 0.000 0.000 0.028 0.000
#> SRR1551000     2  0.5622      0.329 0.000 0.508 0.000 0.076 0.416
#> SRR1550999     4  0.2805      0.985 0.000 0.012 0.008 0.872 0.108
#> SRR1551001     2  0.6954      0.324 0.000 0.432 0.076 0.076 0.416
#> SRR1551002     3  0.3895      0.990 0.320 0.000 0.680 0.000 0.000
#> SRR1551003     1  0.0510      0.900 0.984 0.000 0.000 0.016 0.000
#> SRR1551004     4  0.2570      0.989 0.000 0.008 0.004 0.880 0.108
#> SRR1551006     2  0.6954      0.324 0.000 0.432 0.076 0.076 0.416
#> SRR1551005     2  0.5622      0.329 0.000 0.508 0.000 0.076 0.416
#> SRR1551007     5  0.0000      0.946 0.000 0.000 0.000 0.000 1.000
#> SRR1551008     3  0.3895      0.990 0.320 0.000 0.680 0.000 0.000
#> SRR1551009     1  0.0510      0.900 0.984 0.000 0.000 0.016 0.000
#> SRR1551010     4  0.2127      0.994 0.000 0.000 0.000 0.892 0.108
#> SRR1551012     2  0.6954      0.324 0.000 0.432 0.076 0.076 0.416
#> SRR1551011     2  0.5622      0.329 0.000 0.508 0.000 0.076 0.416
#> SRR1551013     3  0.4317      0.984 0.320 0.008 0.668 0.004 0.000
#> SRR1551014     1  0.0609      0.899 0.980 0.000 0.000 0.020 0.000
#> SRR1551015     4  0.3582      0.964 0.000 0.028 0.024 0.840 0.108
#> SRR1551016     2  0.6063      0.328 0.000 0.492 0.016 0.076 0.416
#> SRR1551017     5  0.5638     -0.209 0.000 0.432 0.076 0.000 0.492
#> SRR1551018     5  0.0162      0.946 0.000 0.000 0.004 0.000 0.996
#> SRR1551019     1  0.7496      0.325 0.404 0.368 0.164 0.064 0.000
#> SRR1551021     1  0.0609      0.899 0.980 0.000 0.000 0.020 0.000
#> SRR1551022     4  0.3019      0.979 0.000 0.012 0.016 0.864 0.108
#> SRR1551023     2  0.5856      0.318 0.000 0.516 0.008 0.076 0.400
#> SRR1551020     3  0.4317      0.984 0.320 0.008 0.668 0.004 0.000
#> SRR1551024     2  0.7894      0.147 0.016 0.424 0.136 0.080 0.344
#> SRR1551026     3  0.4317      0.984 0.320 0.008 0.668 0.004 0.000
#> SRR1551025     1  0.6326      0.407 0.548 0.340 0.048 0.064 0.000
#> SRR1551027     1  0.0609      0.899 0.980 0.000 0.000 0.020 0.000
#> SRR1551028     4  0.2127      0.994 0.000 0.000 0.000 0.892 0.108
#> SRR1551029     2  0.5622      0.329 0.000 0.508 0.000 0.076 0.416
#> SRR1551030     2  0.6954      0.324 0.000 0.432 0.076 0.076 0.416
#> SRR1551031     5  0.0000      0.946 0.000 0.000 0.000 0.000 1.000
#> SRR1551032     1  0.6778      0.384 0.504 0.352 0.080 0.064 0.000
#> SRR1551034     1  0.0510      0.900 0.984 0.000 0.000 0.016 0.000
#> SRR1551033     3  0.3895      0.990 0.320 0.000 0.680 0.000 0.000
#> SRR1551035     4  0.2127      0.994 0.000 0.000 0.000 0.892 0.108
#> SRR1551036     2  0.5622      0.329 0.000 0.508 0.000 0.076 0.416
#> SRR1551037     2  0.6954      0.324 0.000 0.432 0.076 0.076 0.416
#> SRR1551038     5  0.0000      0.946 0.000 0.000 0.000 0.000 1.000
#> SRR1551039     2  0.6858     -0.307 0.352 0.428 0.212 0.004 0.004
#> SRR1551040     3  0.4809      0.974 0.320 0.008 0.648 0.024 0.000
#> SRR1551041     1  0.0794      0.895 0.972 0.000 0.000 0.028 0.000
#> SRR1551042     4  0.2127      0.994 0.000 0.000 0.000 0.892 0.108
#> SRR1551043     2  0.5622      0.329 0.000 0.508 0.000 0.076 0.416
#> SRR1551044     2  0.6954      0.324 0.000 0.432 0.076 0.076 0.416
#> SRR1551045     5  0.0000      0.946 0.000 0.000 0.000 0.000 1.000
#> SRR1551046     2  0.6858     -0.307 0.352 0.428 0.212 0.004 0.004
#> SRR1551047     3  0.4809      0.974 0.320 0.008 0.648 0.024 0.000
#> SRR1551048     1  0.0510      0.900 0.984 0.000 0.000 0.016 0.000
#> SRR1551049     4  0.2127      0.994 0.000 0.000 0.000 0.892 0.108
#> SRR1551050     2  0.5622      0.329 0.000 0.508 0.000 0.076 0.416
#> SRR1551051     2  0.6954      0.324 0.000 0.432 0.076 0.076 0.416
#> SRR1551052     5  0.0000      0.946 0.000 0.000 0.000 0.000 1.000
#> SRR1551053     2  0.6870     -0.305 0.348 0.428 0.216 0.004 0.004
#> SRR1551054     3  0.4809      0.974 0.320 0.008 0.648 0.024 0.000
#> SRR1551055     1  0.0794      0.895 0.972 0.000 0.000 0.028 0.000
#> SRR1551056     4  0.2127      0.994 0.000 0.000 0.000 0.892 0.108
#> SRR1551057     2  0.5622      0.329 0.000 0.508 0.000 0.076 0.416
#> SRR1551058     2  0.6911      0.318 0.000 0.432 0.076 0.072 0.420
#> SRR1551059     5  0.0162      0.946 0.000 0.000 0.004 0.000 0.996
#> SRR1551060     2  0.6875     -0.308 0.352 0.424 0.216 0.004 0.004
#> SRR1551061     3  0.3895      0.990 0.320 0.000 0.680 0.000 0.000
#> SRR1551062     1  0.0510      0.900 0.984 0.000 0.000 0.016 0.000
#> SRR1551063     4  0.2286      0.993 0.000 0.004 0.000 0.888 0.108
#> SRR1551064     2  0.5622      0.329 0.000 0.508 0.000 0.076 0.416
#> SRR1551065     2  0.6954      0.324 0.000 0.432 0.076 0.076 0.416
#> SRR1551066     5  0.0162      0.946 0.000 0.000 0.004 0.000 0.996
#> SRR1551067     2  0.6858     -0.307 0.352 0.428 0.212 0.004 0.004
#> SRR1551068     3  0.3895      0.990 0.320 0.000 0.680 0.000 0.000
#> SRR1551069     1  0.0510      0.900 0.984 0.000 0.000 0.016 0.000
#> SRR1551070     4  0.2127      0.994 0.000 0.000 0.000 0.892 0.108
#> SRR1551071     2  0.5622      0.329 0.000 0.508 0.000 0.076 0.416
#> SRR1551072     2  0.6954      0.324 0.000 0.432 0.076 0.076 0.416
#> SRR1551073     5  0.0162      0.946 0.000 0.000 0.004 0.000 0.996
#> SRR1551074     2  0.6858     -0.307 0.352 0.428 0.212 0.004 0.004
#> SRR1551075     3  0.3895      0.990 0.320 0.000 0.680 0.000 0.000
#> SRR1551076     1  0.0510      0.900 0.984 0.000 0.000 0.016 0.000
#> SRR1551077     4  0.2286      0.993 0.000 0.004 0.000 0.888 0.108
#> SRR1551078     2  0.5622      0.329 0.000 0.508 0.000 0.076 0.416
#> SRR1551079     2  0.6911      0.318 0.000 0.432 0.076 0.072 0.420
#> SRR1551080     5  0.0000      0.946 0.000 0.000 0.000 0.000 1.000
#> SRR1551081     2  0.6875     -0.308 0.352 0.424 0.216 0.004 0.004
#> SRR1551082     3  0.3895      0.990 0.320 0.000 0.680 0.000 0.000
#> SRR1551083     1  0.0510      0.900 0.984 0.000 0.000 0.016 0.000
#> SRR1551084     4  0.2286      0.993 0.000 0.004 0.000 0.888 0.108
#> SRR1551085     2  0.5622      0.329 0.000 0.508 0.000 0.076 0.416
#> SRR1551086     2  0.6954      0.324 0.000 0.432 0.076 0.076 0.416
#> SRR1551088     3  0.3895      0.990 0.320 0.000 0.680 0.000 0.000
#> SRR1551087     2  0.6858     -0.307 0.352 0.428 0.212 0.004 0.004
#> SRR1551089     1  0.0510      0.900 0.984 0.000 0.000 0.016 0.000
#> SRR1551090     4  0.2127      0.994 0.000 0.000 0.000 0.892 0.108
#> SRR1551091     2  0.5622      0.329 0.000 0.508 0.000 0.076 0.416
#> SRR1551092     2  0.6954      0.324 0.000 0.432 0.076 0.076 0.416
#> SRR1551093     5  0.0162      0.946 0.000 0.000 0.004 0.000 0.996
#> SRR1551094     2  0.6858     -0.307 0.352 0.428 0.212 0.004 0.004
#> SRR1551095     3  0.3895      0.990 0.320 0.000 0.680 0.000 0.000
#> SRR1551096     1  0.0510      0.900 0.984 0.000 0.000 0.016 0.000
#> SRR1551097     4  0.2127      0.994 0.000 0.000 0.000 0.892 0.108
#> SRR1551098     2  0.5622      0.329 0.000 0.508 0.000 0.076 0.416
#> SRR1551099     2  0.6954      0.324 0.000 0.432 0.076 0.076 0.416
#> SRR1551101     3  0.4809      0.974 0.320 0.008 0.648 0.024 0.000
#> SRR1551100     2  0.6858     -0.307 0.352 0.428 0.212 0.004 0.004
#> SRR1551102     1  0.0794      0.895 0.972 0.000 0.000 0.028 0.000
#> SRR1551103     4  0.2127      0.994 0.000 0.000 0.000 0.892 0.108
#> SRR1551104     2  0.5622      0.329 0.000 0.508 0.000 0.076 0.416
#> SRR1551105     2  0.6954      0.324 0.000 0.432 0.076 0.076 0.416
#> SRR1551106     5  0.0000      0.946 0.000 0.000 0.000 0.000 1.000
#> SRR1551107     2  0.6858     -0.307 0.352 0.428 0.212 0.004 0.004
#> SRR1551108     3  0.3895      0.990 0.320 0.000 0.680 0.000 0.000
#> SRR1551109     1  0.0510      0.900 0.984 0.000 0.000 0.016 0.000
#> SRR1551110     4  0.2286      0.993 0.000 0.004 0.000 0.888 0.108
#> SRR1551111     2  0.5622      0.329 0.000 0.508 0.000 0.076 0.416
#> SRR1551112     2  0.6954      0.324 0.000 0.432 0.076 0.076 0.416
#> SRR1551113     5  0.0162      0.946 0.000 0.000 0.004 0.000 0.996
#> SRR1551114     2  0.6858     -0.307 0.352 0.428 0.212 0.004 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1550981     5  0.0291      0.950 0.000 0.000 0.004 0.004 0.992 0.000
#> SRR1550982     5  0.0291      0.950 0.000 0.000 0.004 0.004 0.992 0.000
#> SRR1550983     5  0.0291      0.950 0.000 0.000 0.004 0.004 0.992 0.000
#> SRR1550984     5  0.0146      0.951 0.000 0.000 0.004 0.000 0.996 0.000
#> SRR1550986     3  0.0363      0.975 0.000 0.000 0.988 0.000 0.012 0.000
#> SRR1550985     5  0.0146      0.951 0.000 0.000 0.004 0.000 0.996 0.000
#> SRR1550988     4  0.1934      0.985 0.000 0.044 0.000 0.916 0.000 0.040
#> SRR1550987     1  0.5594      0.994 0.556 0.000 0.168 0.004 0.272 0.000
#> SRR1550989     6  0.3996     -0.253 0.000 0.484 0.000 0.000 0.004 0.512
#> SRR1550990     2  0.3198      0.948 0.000 0.740 0.000 0.000 0.000 0.260
#> SRR1550991     6  0.3151      0.397 0.252 0.000 0.000 0.000 0.000 0.748
#> SRR1550992     3  0.0363      0.975 0.000 0.000 0.988 0.000 0.012 0.000
#> SRR1550994     4  0.3029      0.965 0.028 0.060 0.004 0.868 0.000 0.040
#> SRR1550993     1  0.5594      0.994 0.556 0.000 0.168 0.004 0.272 0.000
#> SRR1550995     6  0.3996     -0.253 0.000 0.484 0.000 0.000 0.004 0.512
#> SRR1550996     2  0.3198      0.948 0.000 0.740 0.000 0.000 0.000 0.260
#> SRR1550997     3  0.2823      0.927 0.048 0.036 0.884 0.020 0.012 0.000
#> SRR1550998     1  0.6099      0.982 0.536 0.008 0.168 0.016 0.272 0.000
#> SRR1551000     6  0.3996     -0.253 0.000 0.484 0.000 0.000 0.004 0.512
#> SRR1550999     4  0.3484      0.952 0.044 0.072 0.004 0.840 0.000 0.040
#> SRR1551001     2  0.3198      0.948 0.000 0.740 0.000 0.000 0.000 0.260
#> SRR1551002     3  0.0363      0.975 0.000 0.000 0.988 0.000 0.012 0.000
#> SRR1551003     1  0.5594      0.994 0.556 0.000 0.168 0.004 0.272 0.000
#> SRR1551004     4  0.3029      0.965 0.028 0.060 0.004 0.868 0.000 0.040
#> SRR1551006     2  0.3198      0.948 0.000 0.740 0.000 0.000 0.000 0.260
#> SRR1551005     6  0.3996     -0.253 0.000 0.484 0.000 0.000 0.004 0.512
#> SRR1551007     6  0.3151      0.397 0.252 0.000 0.000 0.000 0.000 0.748
#> SRR1551008     3  0.0363      0.975 0.000 0.000 0.988 0.000 0.012 0.000
#> SRR1551009     1  0.5594      0.994 0.556 0.000 0.168 0.004 0.272 0.000
#> SRR1551010     4  0.2001      0.985 0.000 0.048 0.000 0.912 0.000 0.040
#> SRR1551012     2  0.3198      0.948 0.000 0.740 0.000 0.000 0.000 0.260
#> SRR1551011     6  0.3996     -0.253 0.000 0.484 0.000 0.000 0.004 0.512
#> SRR1551013     3  0.0767      0.970 0.008 0.004 0.976 0.000 0.012 0.000
#> SRR1551014     1  0.5943      0.984 0.540 0.000 0.168 0.020 0.272 0.000
#> SRR1551015     4  0.4497      0.903 0.088 0.104 0.004 0.764 0.000 0.040
#> SRR1551016     2  0.3860      0.372 0.000 0.528 0.000 0.000 0.000 0.472
#> SRR1551017     2  0.3565      0.834 0.004 0.692 0.000 0.000 0.000 0.304
#> SRR1551018     6  0.3468      0.395 0.264 0.000 0.008 0.000 0.000 0.728
#> SRR1551019     5  0.4286      0.757 0.016 0.140 0.036 0.032 0.776 0.000
#> SRR1551021     1  0.5882      0.980 0.540 0.000 0.168 0.016 0.276 0.000
#> SRR1551022     4  0.3171      0.957 0.044 0.060 0.000 0.856 0.000 0.040
#> SRR1551023     6  0.3997     -0.258 0.000 0.488 0.000 0.000 0.004 0.508
#> SRR1551020     3  0.0767      0.970 0.008 0.004 0.976 0.000 0.012 0.000
#> SRR1551024     2  0.5199      0.593 0.004 0.628 0.000 0.000 0.152 0.216
#> SRR1551026     3  0.0767      0.970 0.008 0.004 0.976 0.000 0.012 0.000
#> SRR1551025     5  0.5512      0.556 0.016 0.140 0.136 0.032 0.676 0.000
#> SRR1551027     1  0.5943      0.984 0.540 0.000 0.168 0.020 0.272 0.000
#> SRR1551028     4  0.1934      0.985 0.000 0.044 0.000 0.916 0.000 0.040
#> SRR1551029     6  0.3996     -0.253 0.000 0.484 0.000 0.000 0.004 0.512
#> SRR1551030     2  0.3198      0.948 0.000 0.740 0.000 0.000 0.000 0.260
#> SRR1551031     6  0.3314      0.396 0.256 0.000 0.004 0.000 0.000 0.740
#> SRR1551032     5  0.5282      0.617 0.016 0.140 0.112 0.032 0.700 0.000
#> SRR1551034     1  0.5594      0.994 0.556 0.000 0.168 0.004 0.272 0.000
#> SRR1551033     3  0.0363      0.975 0.000 0.000 0.988 0.000 0.012 0.000
#> SRR1551035     4  0.1934      0.985 0.000 0.044 0.000 0.916 0.000 0.040
#> SRR1551036     6  0.3996     -0.253 0.000 0.484 0.000 0.000 0.004 0.512
#> SRR1551037     2  0.3198      0.948 0.000 0.740 0.000 0.000 0.000 0.260
#> SRR1551038     6  0.3151      0.397 0.252 0.000 0.000 0.000 0.000 0.748
#> SRR1551039     5  0.0146      0.951 0.000 0.000 0.004 0.000 0.996 0.000
#> SRR1551040     3  0.2823      0.927 0.048 0.036 0.884 0.020 0.012 0.000
#> SRR1551041     1  0.6099      0.982 0.536 0.008 0.168 0.016 0.272 0.000
#> SRR1551042     4  0.2001      0.985 0.000 0.048 0.000 0.912 0.000 0.040
#> SRR1551043     6  0.3996     -0.253 0.000 0.484 0.000 0.000 0.004 0.512
#> SRR1551044     2  0.3198      0.948 0.000 0.740 0.000 0.000 0.000 0.260
#> SRR1551045     6  0.3151      0.397 0.252 0.000 0.000 0.000 0.000 0.748
#> SRR1551046     5  0.0291      0.950 0.000 0.000 0.004 0.004 0.992 0.000
#> SRR1551047     3  0.2823      0.927 0.048 0.036 0.884 0.020 0.012 0.000
#> SRR1551048     1  0.5594      0.994 0.556 0.000 0.168 0.004 0.272 0.000
#> SRR1551049     4  0.1934      0.985 0.000 0.044 0.000 0.916 0.000 0.040
#> SRR1551050     6  0.3996     -0.253 0.000 0.484 0.000 0.000 0.004 0.512
#> SRR1551051     2  0.3198      0.948 0.000 0.740 0.000 0.000 0.000 0.260
#> SRR1551052     6  0.3151      0.397 0.252 0.000 0.000 0.000 0.000 0.748
#> SRR1551053     5  0.0291      0.946 0.000 0.000 0.004 0.000 0.992 0.004
#> SRR1551054     3  0.2823      0.927 0.048 0.036 0.884 0.020 0.012 0.000
#> SRR1551055     1  0.5827      0.990 0.548 0.004 0.168 0.008 0.272 0.000
#> SRR1551056     4  0.1934      0.985 0.000 0.044 0.000 0.916 0.000 0.040
#> SRR1551057     6  0.3996     -0.253 0.000 0.484 0.000 0.000 0.004 0.512
#> SRR1551058     2  0.3244      0.933 0.000 0.732 0.000 0.000 0.000 0.268
#> SRR1551059     6  0.3360      0.395 0.264 0.000 0.004 0.000 0.000 0.732
#> SRR1551060     5  0.0146      0.951 0.000 0.000 0.004 0.000 0.996 0.000
#> SRR1551061     3  0.0363      0.975 0.000 0.000 0.988 0.000 0.012 0.000
#> SRR1551062     1  0.5594      0.994 0.556 0.000 0.168 0.004 0.272 0.000
#> SRR1551063     4  0.2001      0.984 0.000 0.048 0.000 0.912 0.000 0.040
#> SRR1551064     6  0.3996     -0.253 0.000 0.484 0.000 0.000 0.004 0.512
#> SRR1551065     2  0.3198      0.948 0.000 0.740 0.000 0.000 0.000 0.260
#> SRR1551066     6  0.3360      0.396 0.264 0.000 0.004 0.000 0.000 0.732
#> SRR1551067     5  0.0146      0.951 0.000 0.000 0.004 0.000 0.996 0.000
#> SRR1551068     3  0.0363      0.975 0.000 0.000 0.988 0.000 0.012 0.000
#> SRR1551069     1  0.5594      0.994 0.556 0.000 0.168 0.004 0.272 0.000
#> SRR1551070     4  0.2001      0.985 0.000 0.048 0.000 0.912 0.000 0.040
#> SRR1551071     6  0.3996     -0.253 0.000 0.484 0.000 0.000 0.004 0.512
#> SRR1551072     2  0.3198      0.948 0.000 0.740 0.000 0.000 0.000 0.260
#> SRR1551073     6  0.3360      0.395 0.264 0.000 0.004 0.000 0.000 0.732
#> SRR1551074     5  0.0146      0.951 0.000 0.000 0.004 0.000 0.996 0.000
#> SRR1551075     3  0.0363      0.975 0.000 0.000 0.988 0.000 0.012 0.000
#> SRR1551076     1  0.5594      0.994 0.556 0.000 0.168 0.004 0.272 0.000
#> SRR1551077     4  0.2001      0.984 0.000 0.048 0.000 0.912 0.000 0.040
#> SRR1551078     6  0.3996     -0.253 0.000 0.484 0.000 0.000 0.004 0.512
#> SRR1551079     2  0.3244      0.933 0.000 0.732 0.000 0.000 0.000 0.268
#> SRR1551080     6  0.3314      0.396 0.256 0.000 0.004 0.000 0.000 0.740
#> SRR1551081     5  0.0146      0.951 0.000 0.000 0.004 0.000 0.996 0.000
#> SRR1551082     3  0.0363      0.975 0.000 0.000 0.988 0.000 0.012 0.000
#> SRR1551083     1  0.5594      0.994 0.556 0.000 0.168 0.004 0.272 0.000
#> SRR1551084     4  0.2001      0.984 0.000 0.048 0.000 0.912 0.000 0.040
#> SRR1551085     6  0.3996     -0.253 0.000 0.484 0.000 0.000 0.004 0.512
#> SRR1551086     2  0.3198      0.948 0.000 0.740 0.000 0.000 0.000 0.260
#> SRR1551088     3  0.0363      0.975 0.000 0.000 0.988 0.000 0.012 0.000
#> SRR1551087     5  0.0146      0.951 0.000 0.000 0.004 0.000 0.996 0.000
#> SRR1551089     1  0.5594      0.994 0.556 0.000 0.168 0.004 0.272 0.000
#> SRR1551090     4  0.1934      0.985 0.000 0.044 0.000 0.916 0.000 0.040
#> SRR1551091     6  0.3996     -0.253 0.000 0.484 0.000 0.000 0.004 0.512
#> SRR1551092     2  0.3198      0.948 0.000 0.740 0.000 0.000 0.000 0.260
#> SRR1551093     6  0.3360      0.395 0.264 0.000 0.004 0.000 0.000 0.732
#> SRR1551094     5  0.0146      0.951 0.000 0.000 0.004 0.000 0.996 0.000
#> SRR1551095     3  0.0363      0.975 0.000 0.000 0.988 0.000 0.012 0.000
#> SRR1551096     1  0.5594      0.994 0.556 0.000 0.168 0.004 0.272 0.000
#> SRR1551097     4  0.1934      0.985 0.000 0.044 0.000 0.916 0.000 0.040
#> SRR1551098     6  0.3996     -0.253 0.000 0.484 0.000 0.000 0.004 0.512
#> SRR1551099     2  0.3198      0.948 0.000 0.740 0.000 0.000 0.000 0.260
#> SRR1551101     3  0.2823      0.927 0.048 0.036 0.884 0.020 0.012 0.000
#> SRR1551100     5  0.0146      0.951 0.000 0.000 0.004 0.000 0.996 0.000
#> SRR1551102     1  0.6099      0.982 0.536 0.008 0.168 0.016 0.272 0.000
#> SRR1551103     4  0.2001      0.985 0.000 0.048 0.000 0.912 0.000 0.040
#> SRR1551104     6  0.3996     -0.253 0.000 0.484 0.000 0.000 0.004 0.512
#> SRR1551105     2  0.3198      0.948 0.000 0.740 0.000 0.000 0.000 0.260
#> SRR1551106     6  0.3198      0.396 0.260 0.000 0.000 0.000 0.000 0.740
#> SRR1551107     5  0.0291      0.950 0.000 0.000 0.004 0.004 0.992 0.000
#> SRR1551108     3  0.0363      0.975 0.000 0.000 0.988 0.000 0.012 0.000
#> SRR1551109     1  0.5594      0.994 0.556 0.000 0.168 0.004 0.272 0.000
#> SRR1551110     4  0.2001      0.984 0.000 0.048 0.000 0.912 0.000 0.040
#> SRR1551111     6  0.3996     -0.253 0.000 0.484 0.000 0.000 0.004 0.512
#> SRR1551112     2  0.3198      0.948 0.000 0.740 0.000 0.000 0.000 0.260
#> SRR1551113     6  0.3468      0.395 0.264 0.000 0.008 0.000 0.000 0.728
#> SRR1551114     5  0.0146      0.951 0.000 0.000 0.004 0.000 0.996 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15028 rows and 134 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.998       0.999         0.4989 0.502   0.502
#> 3 3 1.000           0.995       0.991         0.2409 0.879   0.758
#> 4 4 0.894           0.900       0.920         0.1436 0.906   0.753
#> 5 5 0.936           0.968       0.961         0.0690 0.960   0.859
#> 6 6 1.000           0.985       0.987         0.0771 0.937   0.745

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 5

There is also optional best \(k\) = 2 3 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette  p1  p2
#> SRR1550981     1   0.000      1.000 1.0 0.0
#> SRR1550982     1   0.000      1.000 1.0 0.0
#> SRR1550983     1   0.000      1.000 1.0 0.0
#> SRR1550984     1   0.000      1.000 1.0 0.0
#> SRR1550986     1   0.000      1.000 1.0 0.0
#> SRR1550985     1   0.000      1.000 1.0 0.0
#> SRR1550988     2   0.000      0.999 0.0 1.0
#> SRR1550987     1   0.000      1.000 1.0 0.0
#> SRR1550989     2   0.000      0.999 0.0 1.0
#> SRR1550990     2   0.000      0.999 0.0 1.0
#> SRR1550991     2   0.000      0.999 0.0 1.0
#> SRR1550992     1   0.000      1.000 1.0 0.0
#> SRR1550994     2   0.000      0.999 0.0 1.0
#> SRR1550993     1   0.000      1.000 1.0 0.0
#> SRR1550995     2   0.000      0.999 0.0 1.0
#> SRR1550996     2   0.000      0.999 0.0 1.0
#> SRR1550997     1   0.000      1.000 1.0 0.0
#> SRR1550998     1   0.000      1.000 1.0 0.0
#> SRR1551000     2   0.000      0.999 0.0 1.0
#> SRR1550999     2   0.000      0.999 0.0 1.0
#> SRR1551001     2   0.000      0.999 0.0 1.0
#> SRR1551002     1   0.000      1.000 1.0 0.0
#> SRR1551003     1   0.000      1.000 1.0 0.0
#> SRR1551004     2   0.000      0.999 0.0 1.0
#> SRR1551006     2   0.000      0.999 0.0 1.0
#> SRR1551005     2   0.000      0.999 0.0 1.0
#> SRR1551007     2   0.000      0.999 0.0 1.0
#> SRR1551008     1   0.000      1.000 1.0 0.0
#> SRR1551009     1   0.000      1.000 1.0 0.0
#> SRR1551010     2   0.000      0.999 0.0 1.0
#> SRR1551012     2   0.000      0.999 0.0 1.0
#> SRR1551011     2   0.000      0.999 0.0 1.0
#> SRR1551013     1   0.000      1.000 1.0 0.0
#> SRR1551014     1   0.000      1.000 1.0 0.0
#> SRR1551015     2   0.000      0.999 0.0 1.0
#> SRR1551016     2   0.000      0.999 0.0 1.0
#> SRR1551017     2   0.000      0.999 0.0 1.0
#> SRR1551018     2   0.000      0.999 0.0 1.0
#> SRR1551019     1   0.000      1.000 1.0 0.0
#> SRR1551021     1   0.000      1.000 1.0 0.0
#> SRR1551022     2   0.000      0.999 0.0 1.0
#> SRR1551023     2   0.000      0.999 0.0 1.0
#> SRR1551020     1   0.000      1.000 1.0 0.0
#> SRR1551024     2   0.469      0.889 0.1 0.9
#> SRR1551026     1   0.000      1.000 1.0 0.0
#> SRR1551025     1   0.000      1.000 1.0 0.0
#> SRR1551027     1   0.000      1.000 1.0 0.0
#> SRR1551028     2   0.000      0.999 0.0 1.0
#> SRR1551029     2   0.000      0.999 0.0 1.0
#> SRR1551030     2   0.000      0.999 0.0 1.0
#> SRR1551031     2   0.000      0.999 0.0 1.0
#> SRR1551032     1   0.000      1.000 1.0 0.0
#> SRR1551034     1   0.000      1.000 1.0 0.0
#> SRR1551033     1   0.000      1.000 1.0 0.0
#> SRR1551035     2   0.000      0.999 0.0 1.0
#> SRR1551036     2   0.000      0.999 0.0 1.0
#> SRR1551037     2   0.000      0.999 0.0 1.0
#> SRR1551038     2   0.000      0.999 0.0 1.0
#> SRR1551039     1   0.000      1.000 1.0 0.0
#> SRR1551040     1   0.000      1.000 1.0 0.0
#> SRR1551041     1   0.000      1.000 1.0 0.0
#> SRR1551042     2   0.000      0.999 0.0 1.0
#> SRR1551043     2   0.000      0.999 0.0 1.0
#> SRR1551044     2   0.000      0.999 0.0 1.0
#> SRR1551045     2   0.000      0.999 0.0 1.0
#> SRR1551046     1   0.000      1.000 1.0 0.0
#> SRR1551047     1   0.000      1.000 1.0 0.0
#> SRR1551048     1   0.000      1.000 1.0 0.0
#> SRR1551049     2   0.000      0.999 0.0 1.0
#> SRR1551050     2   0.000      0.999 0.0 1.0
#> SRR1551051     2   0.000      0.999 0.0 1.0
#> SRR1551052     2   0.000      0.999 0.0 1.0
#> SRR1551053     1   0.000      1.000 1.0 0.0
#> SRR1551054     1   0.000      1.000 1.0 0.0
#> SRR1551055     1   0.000      1.000 1.0 0.0
#> SRR1551056     2   0.000      0.999 0.0 1.0
#> SRR1551057     2   0.000      0.999 0.0 1.0
#> SRR1551058     2   0.000      0.999 0.0 1.0
#> SRR1551059     2   0.000      0.999 0.0 1.0
#> SRR1551060     1   0.000      1.000 1.0 0.0
#> SRR1551061     1   0.000      1.000 1.0 0.0
#> SRR1551062     1   0.000      1.000 1.0 0.0
#> SRR1551063     2   0.000      0.999 0.0 1.0
#> SRR1551064     2   0.000      0.999 0.0 1.0
#> SRR1551065     2   0.000      0.999 0.0 1.0
#> SRR1551066     2   0.000      0.999 0.0 1.0
#> SRR1551067     1   0.000      1.000 1.0 0.0
#> SRR1551068     1   0.000      1.000 1.0 0.0
#> SRR1551069     1   0.000      1.000 1.0 0.0
#> SRR1551070     2   0.000      0.999 0.0 1.0
#> SRR1551071     2   0.000      0.999 0.0 1.0
#> SRR1551072     2   0.000      0.999 0.0 1.0
#> SRR1551073     2   0.000      0.999 0.0 1.0
#> SRR1551074     1   0.000      1.000 1.0 0.0
#> SRR1551075     1   0.000      1.000 1.0 0.0
#> SRR1551076     1   0.000      1.000 1.0 0.0
#> SRR1551077     2   0.000      0.999 0.0 1.0
#> SRR1551078     2   0.000      0.999 0.0 1.0
#> SRR1551079     2   0.000      0.999 0.0 1.0
#> SRR1551080     2   0.000      0.999 0.0 1.0
#> SRR1551081     1   0.000      1.000 1.0 0.0
#> SRR1551082     1   0.000      1.000 1.0 0.0
#> SRR1551083     1   0.000      1.000 1.0 0.0
#> SRR1551084     2   0.000      0.999 0.0 1.0
#> SRR1551085     2   0.000      0.999 0.0 1.0
#> SRR1551086     2   0.000      0.999 0.0 1.0
#> SRR1551088     1   0.000      1.000 1.0 0.0
#> SRR1551087     1   0.000      1.000 1.0 0.0
#> SRR1551089     1   0.000      1.000 1.0 0.0
#> SRR1551090     2   0.000      0.999 0.0 1.0
#> SRR1551091     2   0.000      0.999 0.0 1.0
#> SRR1551092     2   0.000      0.999 0.0 1.0
#> SRR1551093     2   0.000      0.999 0.0 1.0
#> SRR1551094     1   0.000      1.000 1.0 0.0
#> SRR1551095     1   0.000      1.000 1.0 0.0
#> SRR1551096     1   0.000      1.000 1.0 0.0
#> SRR1551097     2   0.000      0.999 0.0 1.0
#> SRR1551098     2   0.000      0.999 0.0 1.0
#> SRR1551099     2   0.000      0.999 0.0 1.0
#> SRR1551101     1   0.000      1.000 1.0 0.0
#> SRR1551100     1   0.000      1.000 1.0 0.0
#> SRR1551102     1   0.000      1.000 1.0 0.0
#> SRR1551103     2   0.000      0.999 0.0 1.0
#> SRR1551104     2   0.000      0.999 0.0 1.0
#> SRR1551105     2   0.000      0.999 0.0 1.0
#> SRR1551106     2   0.000      0.999 0.0 1.0
#> SRR1551107     1   0.000      1.000 1.0 0.0
#> SRR1551108     1   0.000      1.000 1.0 0.0
#> SRR1551109     1   0.000      1.000 1.0 0.0
#> SRR1551110     2   0.000      0.999 0.0 1.0
#> SRR1551111     2   0.000      0.999 0.0 1.0
#> SRR1551112     2   0.000      0.999 0.0 1.0
#> SRR1551113     2   0.000      0.999 0.0 1.0
#> SRR1551114     1   0.000      1.000 1.0 0.0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1550981     1   0.000      0.991 1.000 0.000 0.000
#> SRR1550982     1   0.000      0.991 1.000 0.000 0.000
#> SRR1550983     1   0.000      0.991 1.000 0.000 0.000
#> SRR1550984     1   0.000      0.991 1.000 0.000 0.000
#> SRR1550986     1   0.116      0.984 0.972 0.000 0.028
#> SRR1550985     1   0.000      0.991 1.000 0.000 0.000
#> SRR1550988     3   0.116      1.000 0.000 0.028 0.972
#> SRR1550987     1   0.000      0.991 1.000 0.000 0.000
#> SRR1550989     2   0.000      1.000 0.000 1.000 0.000
#> SRR1550990     2   0.000      1.000 0.000 1.000 0.000
#> SRR1550991     2   0.000      1.000 0.000 1.000 0.000
#> SRR1550992     1   0.116      0.984 0.972 0.000 0.028
#> SRR1550994     3   0.116      1.000 0.000 0.028 0.972
#> SRR1550993     1   0.000      0.991 1.000 0.000 0.000
#> SRR1550995     2   0.000      1.000 0.000 1.000 0.000
#> SRR1550996     2   0.000      1.000 0.000 1.000 0.000
#> SRR1550997     1   0.116      0.984 0.972 0.000 0.028
#> SRR1550998     1   0.000      0.991 1.000 0.000 0.000
#> SRR1551000     2   0.000      1.000 0.000 1.000 0.000
#> SRR1550999     3   0.116      1.000 0.000 0.028 0.972
#> SRR1551001     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551002     1   0.116      0.984 0.972 0.000 0.028
#> SRR1551003     1   0.000      0.991 1.000 0.000 0.000
#> SRR1551004     3   0.116      1.000 0.000 0.028 0.972
#> SRR1551006     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551005     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551007     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551008     1   0.116      0.984 0.972 0.000 0.028
#> SRR1551009     1   0.000      0.991 1.000 0.000 0.000
#> SRR1551010     3   0.116      1.000 0.000 0.028 0.972
#> SRR1551012     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551011     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551013     1   0.116      0.984 0.972 0.000 0.028
#> SRR1551014     1   0.000      0.991 1.000 0.000 0.000
#> SRR1551015     3   0.116      1.000 0.000 0.028 0.972
#> SRR1551016     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551017     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551018     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551019     1   0.000      0.991 1.000 0.000 0.000
#> SRR1551021     1   0.000      0.991 1.000 0.000 0.000
#> SRR1551022     3   0.116      1.000 0.000 0.028 0.972
#> SRR1551023     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551020     1   0.116      0.984 0.972 0.000 0.028
#> SRR1551024     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551026     1   0.116      0.984 0.972 0.000 0.028
#> SRR1551025     1   0.116      0.984 0.972 0.000 0.028
#> SRR1551027     1   0.000      0.991 1.000 0.000 0.000
#> SRR1551028     3   0.116      1.000 0.000 0.028 0.972
#> SRR1551029     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551030     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551031     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551032     1   0.116      0.984 0.972 0.000 0.028
#> SRR1551034     1   0.000      0.991 1.000 0.000 0.000
#> SRR1551033     1   0.116      0.984 0.972 0.000 0.028
#> SRR1551035     3   0.116      1.000 0.000 0.028 0.972
#> SRR1551036     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551037     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551038     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551039     1   0.000      0.991 1.000 0.000 0.000
#> SRR1551040     1   0.116      0.984 0.972 0.000 0.028
#> SRR1551041     1   0.000      0.991 1.000 0.000 0.000
#> SRR1551042     3   0.116      1.000 0.000 0.028 0.972
#> SRR1551043     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551044     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551045     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551046     1   0.000      0.991 1.000 0.000 0.000
#> SRR1551047     1   0.116      0.984 0.972 0.000 0.028
#> SRR1551048     1   0.000      0.991 1.000 0.000 0.000
#> SRR1551049     3   0.116      1.000 0.000 0.028 0.972
#> SRR1551050     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551051     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551052     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551053     1   0.000      0.991 1.000 0.000 0.000
#> SRR1551054     1   0.116      0.984 0.972 0.000 0.028
#> SRR1551055     1   0.000      0.991 1.000 0.000 0.000
#> SRR1551056     3   0.116      1.000 0.000 0.028 0.972
#> SRR1551057     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551058     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551059     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551060     1   0.000      0.991 1.000 0.000 0.000
#> SRR1551061     1   0.116      0.984 0.972 0.000 0.028
#> SRR1551062     1   0.000      0.991 1.000 0.000 0.000
#> SRR1551063     3   0.116      1.000 0.000 0.028 0.972
#> SRR1551064     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551065     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551066     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551067     1   0.000      0.991 1.000 0.000 0.000
#> SRR1551068     1   0.116      0.984 0.972 0.000 0.028
#> SRR1551069     1   0.000      0.991 1.000 0.000 0.000
#> SRR1551070     3   0.116      1.000 0.000 0.028 0.972
#> SRR1551071     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551072     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551073     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551074     1   0.000      0.991 1.000 0.000 0.000
#> SRR1551075     1   0.116      0.984 0.972 0.000 0.028
#> SRR1551076     1   0.000      0.991 1.000 0.000 0.000
#> SRR1551077     3   0.116      1.000 0.000 0.028 0.972
#> SRR1551078     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551079     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551080     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551081     1   0.000      0.991 1.000 0.000 0.000
#> SRR1551082     1   0.116      0.984 0.972 0.000 0.028
#> SRR1551083     1   0.000      0.991 1.000 0.000 0.000
#> SRR1551084     3   0.116      1.000 0.000 0.028 0.972
#> SRR1551085     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551086     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551088     1   0.116      0.984 0.972 0.000 0.028
#> SRR1551087     1   0.000      0.991 1.000 0.000 0.000
#> SRR1551089     1   0.000      0.991 1.000 0.000 0.000
#> SRR1551090     3   0.116      1.000 0.000 0.028 0.972
#> SRR1551091     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551092     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551093     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551094     1   0.000      0.991 1.000 0.000 0.000
#> SRR1551095     1   0.116      0.984 0.972 0.000 0.028
#> SRR1551096     1   0.000      0.991 1.000 0.000 0.000
#> SRR1551097     3   0.116      1.000 0.000 0.028 0.972
#> SRR1551098     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551099     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551101     1   0.116      0.984 0.972 0.000 0.028
#> SRR1551100     1   0.000      0.991 1.000 0.000 0.000
#> SRR1551102     1   0.000      0.991 1.000 0.000 0.000
#> SRR1551103     3   0.116      1.000 0.000 0.028 0.972
#> SRR1551104     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551105     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551106     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551107     1   0.000      0.991 1.000 0.000 0.000
#> SRR1551108     1   0.116      0.984 0.972 0.000 0.028
#> SRR1551109     1   0.000      0.991 1.000 0.000 0.000
#> SRR1551110     3   0.116      1.000 0.000 0.028 0.972
#> SRR1551111     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551112     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551113     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551114     1   0.000      0.991 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3   p4
#> SRR1550981     1  0.1211      0.703 0.960 0.000 0.040 0.00
#> SRR1550982     1  0.1211      0.703 0.960 0.000 0.040 0.00
#> SRR1550983     1  0.1211      0.703 0.960 0.000 0.040 0.00
#> SRR1550984     1  0.1211      0.703 0.960 0.000 0.040 0.00
#> SRR1550986     3  0.0000      0.992 0.000 0.000 1.000 0.00
#> SRR1550985     1  0.1211      0.703 0.960 0.000 0.040 0.00
#> SRR1550988     4  0.0707      1.000 0.000 0.020 0.000 0.98
#> SRR1550987     1  0.5526      0.648 0.564 0.000 0.416 0.02
#> SRR1550989     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1550990     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1550991     2  0.0592      0.987 0.016 0.984 0.000 0.00
#> SRR1550992     3  0.0000      0.992 0.000 0.000 1.000 0.00
#> SRR1550994     4  0.0707      1.000 0.000 0.020 0.000 0.98
#> SRR1550993     1  0.5526      0.648 0.564 0.000 0.416 0.02
#> SRR1550995     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1550996     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1550997     3  0.0000      0.992 0.000 0.000 1.000 0.00
#> SRR1550998     1  0.5526      0.648 0.564 0.000 0.416 0.02
#> SRR1551000     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1550999     4  0.0707      1.000 0.000 0.020 0.000 0.98
#> SRR1551001     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551002     3  0.0000      0.992 0.000 0.000 1.000 0.00
#> SRR1551003     1  0.5526      0.648 0.564 0.000 0.416 0.02
#> SRR1551004     4  0.0707      1.000 0.000 0.020 0.000 0.98
#> SRR1551006     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551005     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551007     2  0.0592      0.987 0.016 0.984 0.000 0.00
#> SRR1551008     3  0.0000      0.992 0.000 0.000 1.000 0.00
#> SRR1551009     1  0.5526      0.648 0.564 0.000 0.416 0.02
#> SRR1551010     4  0.0707      1.000 0.000 0.020 0.000 0.98
#> SRR1551012     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551011     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551013     3  0.0000      0.992 0.000 0.000 1.000 0.00
#> SRR1551014     1  0.5526      0.648 0.564 0.000 0.416 0.02
#> SRR1551015     4  0.0707      1.000 0.000 0.020 0.000 0.98
#> SRR1551016     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551017     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551018     2  0.0592      0.987 0.016 0.984 0.000 0.00
#> SRR1551019     1  0.3873      0.672 0.772 0.000 0.228 0.00
#> SRR1551021     1  0.5526      0.648 0.564 0.000 0.416 0.02
#> SRR1551022     4  0.0707      1.000 0.000 0.020 0.000 0.98
#> SRR1551023     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551020     3  0.0000      0.992 0.000 0.000 1.000 0.00
#> SRR1551024     2  0.3196      0.839 0.136 0.856 0.008 0.00
#> SRR1551026     3  0.0000      0.992 0.000 0.000 1.000 0.00
#> SRR1551025     3  0.0188      0.986 0.004 0.000 0.996 0.00
#> SRR1551027     1  0.5526      0.648 0.564 0.000 0.416 0.02
#> SRR1551028     4  0.0707      1.000 0.000 0.020 0.000 0.98
#> SRR1551029     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551030     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551031     2  0.0592      0.987 0.016 0.984 0.000 0.00
#> SRR1551032     3  0.2868      0.805 0.136 0.000 0.864 0.00
#> SRR1551034     1  0.5526      0.648 0.564 0.000 0.416 0.02
#> SRR1551033     3  0.0000      0.992 0.000 0.000 1.000 0.00
#> SRR1551035     4  0.0707      1.000 0.000 0.020 0.000 0.98
#> SRR1551036     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551037     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551038     2  0.0592      0.987 0.016 0.984 0.000 0.00
#> SRR1551039     1  0.1211      0.703 0.960 0.000 0.040 0.00
#> SRR1551040     3  0.0000      0.992 0.000 0.000 1.000 0.00
#> SRR1551041     1  0.5526      0.648 0.564 0.000 0.416 0.02
#> SRR1551042     4  0.0707      1.000 0.000 0.020 0.000 0.98
#> SRR1551043     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551044     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551045     2  0.0592      0.987 0.016 0.984 0.000 0.00
#> SRR1551046     1  0.1211      0.703 0.960 0.000 0.040 0.00
#> SRR1551047     3  0.0000      0.992 0.000 0.000 1.000 0.00
#> SRR1551048     1  0.5526      0.648 0.564 0.000 0.416 0.02
#> SRR1551049     4  0.0707      1.000 0.000 0.020 0.000 0.98
#> SRR1551050     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551051     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551052     2  0.0592      0.987 0.016 0.984 0.000 0.00
#> SRR1551053     1  0.1211      0.703 0.960 0.000 0.040 0.00
#> SRR1551054     3  0.0000      0.992 0.000 0.000 1.000 0.00
#> SRR1551055     1  0.5526      0.648 0.564 0.000 0.416 0.02
#> SRR1551056     4  0.0707      1.000 0.000 0.020 0.000 0.98
#> SRR1551057     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551058     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551059     2  0.0592      0.987 0.016 0.984 0.000 0.00
#> SRR1551060     1  0.1211      0.703 0.960 0.000 0.040 0.00
#> SRR1551061     3  0.0000      0.992 0.000 0.000 1.000 0.00
#> SRR1551062     1  0.5526      0.648 0.564 0.000 0.416 0.02
#> SRR1551063     4  0.0707      1.000 0.000 0.020 0.000 0.98
#> SRR1551064     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551065     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551066     2  0.0592      0.987 0.016 0.984 0.000 0.00
#> SRR1551067     1  0.1211      0.703 0.960 0.000 0.040 0.00
#> SRR1551068     3  0.0000      0.992 0.000 0.000 1.000 0.00
#> SRR1551069     1  0.5526      0.648 0.564 0.000 0.416 0.02
#> SRR1551070     4  0.0707      1.000 0.000 0.020 0.000 0.98
#> SRR1551071     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551072     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551073     2  0.0592      0.987 0.016 0.984 0.000 0.00
#> SRR1551074     1  0.1211      0.703 0.960 0.000 0.040 0.00
#> SRR1551075     3  0.0000      0.992 0.000 0.000 1.000 0.00
#> SRR1551076     1  0.5526      0.648 0.564 0.000 0.416 0.02
#> SRR1551077     4  0.0707      1.000 0.000 0.020 0.000 0.98
#> SRR1551078     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551079     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551080     2  0.0592      0.987 0.016 0.984 0.000 0.00
#> SRR1551081     1  0.1211      0.703 0.960 0.000 0.040 0.00
#> SRR1551082     3  0.0000      0.992 0.000 0.000 1.000 0.00
#> SRR1551083     1  0.5526      0.648 0.564 0.000 0.416 0.02
#> SRR1551084     4  0.0707      1.000 0.000 0.020 0.000 0.98
#> SRR1551085     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551086     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551088     3  0.0000      0.992 0.000 0.000 1.000 0.00
#> SRR1551087     1  0.1211      0.703 0.960 0.000 0.040 0.00
#> SRR1551089     1  0.5526      0.648 0.564 0.000 0.416 0.02
#> SRR1551090     4  0.0707      1.000 0.000 0.020 0.000 0.98
#> SRR1551091     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551092     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551093     2  0.0592      0.987 0.016 0.984 0.000 0.00
#> SRR1551094     1  0.1211      0.703 0.960 0.000 0.040 0.00
#> SRR1551095     3  0.0000      0.992 0.000 0.000 1.000 0.00
#> SRR1551096     1  0.5526      0.648 0.564 0.000 0.416 0.02
#> SRR1551097     4  0.0707      1.000 0.000 0.020 0.000 0.98
#> SRR1551098     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551099     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551101     3  0.0000      0.992 0.000 0.000 1.000 0.00
#> SRR1551100     1  0.1211      0.703 0.960 0.000 0.040 0.00
#> SRR1551102     1  0.5526      0.648 0.564 0.000 0.416 0.02
#> SRR1551103     4  0.0707      1.000 0.000 0.020 0.000 0.98
#> SRR1551104     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551105     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551106     2  0.0592      0.987 0.016 0.984 0.000 0.00
#> SRR1551107     1  0.1211      0.703 0.960 0.000 0.040 0.00
#> SRR1551108     3  0.0000      0.992 0.000 0.000 1.000 0.00
#> SRR1551109     1  0.5526      0.648 0.564 0.000 0.416 0.02
#> SRR1551110     4  0.0707      1.000 0.000 0.020 0.000 0.98
#> SRR1551111     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551112     2  0.0000      0.994 0.000 1.000 0.000 0.00
#> SRR1551113     2  0.0592      0.987 0.016 0.984 0.000 0.00
#> SRR1551114     1  0.1211      0.703 0.960 0.000 0.040 0.00

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3 p4    p5
#> SRR1550981     5   0.127      0.980 0.052 0.000 0.000  0 0.948
#> SRR1550982     5   0.127      0.980 0.052 0.000 0.000  0 0.948
#> SRR1550983     5   0.127      0.980 0.052 0.000 0.000  0 0.948
#> SRR1550984     5   0.127      0.980 0.052 0.000 0.000  0 0.948
#> SRR1550986     3   0.000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1550985     5   0.127      0.980 0.052 0.000 0.000  0 0.948
#> SRR1550988     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1550987     1   0.179      1.000 0.916 0.000 0.084  0 0.000
#> SRR1550989     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1550990     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1550991     2   0.303      0.902 0.084 0.864 0.000  0 0.052
#> SRR1550992     3   0.000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1550994     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1550993     1   0.179      1.000 0.916 0.000 0.084  0 0.000
#> SRR1550995     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1550996     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1550997     3   0.000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1550998     1   0.179      1.000 0.916 0.000 0.084  0 0.000
#> SRR1551000     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1550999     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551001     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551002     3   0.000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551003     1   0.179      1.000 0.916 0.000 0.084  0 0.000
#> SRR1551004     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551006     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551005     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551007     2   0.303      0.902 0.084 0.864 0.000  0 0.052
#> SRR1551008     3   0.000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551009     1   0.179      1.000 0.916 0.000 0.084  0 0.000
#> SRR1551010     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551012     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551011     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551013     3   0.000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551014     1   0.179      1.000 0.916 0.000 0.084  0 0.000
#> SRR1551015     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551016     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551017     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551018     2   0.303      0.902 0.084 0.864 0.000  0 0.052
#> SRR1551019     5   0.498      0.544 0.052 0.000 0.308  0 0.640
#> SRR1551021     1   0.179      1.000 0.916 0.000 0.084  0 0.000
#> SRR1551022     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551023     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551020     3   0.000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551024     2   0.311      0.752 0.000 0.800 0.000  0 0.200
#> SRR1551026     3   0.000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551025     3   0.000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551027     1   0.179      1.000 0.916 0.000 0.084  0 0.000
#> SRR1551028     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551029     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551030     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551031     2   0.303      0.902 0.084 0.864 0.000  0 0.052
#> SRR1551032     3   0.316      0.751 0.004 0.000 0.808  0 0.188
#> SRR1551034     1   0.179      1.000 0.916 0.000 0.084  0 0.000
#> SRR1551033     3   0.000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551035     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551036     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551037     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551038     2   0.303      0.902 0.084 0.864 0.000  0 0.052
#> SRR1551039     5   0.127      0.980 0.052 0.000 0.000  0 0.948
#> SRR1551040     3   0.000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551041     1   0.179      1.000 0.916 0.000 0.084  0 0.000
#> SRR1551042     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551043     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551044     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551045     2   0.303      0.902 0.084 0.864 0.000  0 0.052
#> SRR1551046     5   0.127      0.980 0.052 0.000 0.000  0 0.948
#> SRR1551047     3   0.000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551048     1   0.179      1.000 0.916 0.000 0.084  0 0.000
#> SRR1551049     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551050     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551051     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551052     2   0.303      0.902 0.084 0.864 0.000  0 0.052
#> SRR1551053     5   0.127      0.980 0.052 0.000 0.000  0 0.948
#> SRR1551054     3   0.000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551055     1   0.179      1.000 0.916 0.000 0.084  0 0.000
#> SRR1551056     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551057     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551058     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551059     2   0.303      0.902 0.084 0.864 0.000  0 0.052
#> SRR1551060     5   0.127      0.980 0.052 0.000 0.000  0 0.948
#> SRR1551061     3   0.000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551062     1   0.179      1.000 0.916 0.000 0.084  0 0.000
#> SRR1551063     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551064     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551065     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551066     2   0.303      0.902 0.084 0.864 0.000  0 0.052
#> SRR1551067     5   0.127      0.980 0.052 0.000 0.000  0 0.948
#> SRR1551068     3   0.000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551069     1   0.179      1.000 0.916 0.000 0.084  0 0.000
#> SRR1551070     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551071     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551072     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551073     2   0.303      0.902 0.084 0.864 0.000  0 0.052
#> SRR1551074     5   0.127      0.980 0.052 0.000 0.000  0 0.948
#> SRR1551075     3   0.000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551076     1   0.179      1.000 0.916 0.000 0.084  0 0.000
#> SRR1551077     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551078     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551079     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551080     2   0.303      0.902 0.084 0.864 0.000  0 0.052
#> SRR1551081     5   0.127      0.980 0.052 0.000 0.000  0 0.948
#> SRR1551082     3   0.000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551083     1   0.179      1.000 0.916 0.000 0.084  0 0.000
#> SRR1551084     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551085     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551086     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551088     3   0.000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551087     5   0.127      0.980 0.052 0.000 0.000  0 0.948
#> SRR1551089     1   0.179      1.000 0.916 0.000 0.084  0 0.000
#> SRR1551090     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551091     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551092     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551093     2   0.303      0.902 0.084 0.864 0.000  0 0.052
#> SRR1551094     5   0.127      0.980 0.052 0.000 0.000  0 0.948
#> SRR1551095     3   0.000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551096     1   0.179      1.000 0.916 0.000 0.084  0 0.000
#> SRR1551097     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551098     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551099     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551101     3   0.000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551100     5   0.127      0.980 0.052 0.000 0.000  0 0.948
#> SRR1551102     1   0.179      1.000 0.916 0.000 0.084  0 0.000
#> SRR1551103     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551104     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551105     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551106     2   0.303      0.902 0.084 0.864 0.000  0 0.052
#> SRR1551107     5   0.127      0.980 0.052 0.000 0.000  0 0.948
#> SRR1551108     3   0.000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551109     1   0.179      1.000 0.916 0.000 0.084  0 0.000
#> SRR1551110     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551111     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551112     2   0.000      0.964 0.000 1.000 0.000  0 0.000
#> SRR1551113     2   0.303      0.902 0.084 0.864 0.000  0 0.052
#> SRR1551114     5   0.127      0.980 0.052 0.000 0.000  0 0.948

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3 p4    p5    p6
#> SRR1550981     5  0.0146      0.980 0.004 0.000 0.000  0 0.996 0.000
#> SRR1550982     5  0.0146      0.980 0.004 0.000 0.000  0 0.996 0.000
#> SRR1550983     5  0.0146      0.980 0.004 0.000 0.000  0 0.996 0.000
#> SRR1550984     5  0.0146      0.980 0.004 0.000 0.000  0 0.996 0.000
#> SRR1550986     3  0.0000      0.989 0.000 0.000 1.000  0 0.000 0.000
#> SRR1550985     5  0.0146      0.980 0.004 0.000 0.000  0 0.996 0.000
#> SRR1550988     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1550987     1  0.0260      1.000 0.992 0.000 0.008  0 0.000 0.000
#> SRR1550989     2  0.0146      0.989 0.004 0.996 0.000  0 0.000 0.000
#> SRR1550990     2  0.0291      0.989 0.004 0.992 0.000  0 0.004 0.000
#> SRR1550991     6  0.0865      1.000 0.000 0.036 0.000  0 0.000 0.964
#> SRR1550992     3  0.0000      0.989 0.000 0.000 1.000  0 0.000 0.000
#> SRR1550994     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1550993     1  0.0260      1.000 0.992 0.000 0.008  0 0.000 0.000
#> SRR1550995     2  0.0146      0.989 0.004 0.996 0.000  0 0.000 0.000
#> SRR1550996     2  0.0291      0.989 0.004 0.992 0.000  0 0.004 0.000
#> SRR1550997     3  0.0000      0.989 0.000 0.000 1.000  0 0.000 0.000
#> SRR1550998     1  0.0260      1.000 0.992 0.000 0.008  0 0.000 0.000
#> SRR1551000     2  0.0146      0.989 0.004 0.996 0.000  0 0.000 0.000
#> SRR1550999     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551001     2  0.0291      0.989 0.004 0.992 0.000  0 0.004 0.000
#> SRR1551002     3  0.0000      0.989 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551003     1  0.0260      1.000 0.992 0.000 0.008  0 0.000 0.000
#> SRR1551004     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551006     2  0.0291      0.989 0.004 0.992 0.000  0 0.004 0.000
#> SRR1551005     2  0.0146      0.989 0.004 0.996 0.000  0 0.000 0.000
#> SRR1551007     6  0.0865      1.000 0.000 0.036 0.000  0 0.000 0.964
#> SRR1551008     3  0.0000      0.989 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551009     1  0.0260      1.000 0.992 0.000 0.008  0 0.000 0.000
#> SRR1551010     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551012     2  0.0291      0.989 0.004 0.992 0.000  0 0.004 0.000
#> SRR1551011     2  0.0146      0.989 0.004 0.996 0.000  0 0.000 0.000
#> SRR1551013     3  0.0000      0.989 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551014     1  0.0260      1.000 0.992 0.000 0.008  0 0.000 0.000
#> SRR1551015     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551016     2  0.0000      0.989 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551017     2  0.0291      0.989 0.004 0.992 0.000  0 0.004 0.000
#> SRR1551018     6  0.0865      1.000 0.000 0.036 0.000  0 0.000 0.964
#> SRR1551019     5  0.4244      0.565 0.004 0.000 0.280  0 0.680 0.036
#> SRR1551021     1  0.0260      1.000 0.992 0.000 0.008  0 0.000 0.000
#> SRR1551022     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551023     2  0.0146      0.989 0.004 0.996 0.000  0 0.000 0.000
#> SRR1551020     3  0.0000      0.989 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551024     2  0.3104      0.754 0.000 0.800 0.000  0 0.184 0.016
#> SRR1551026     3  0.0000      0.989 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551025     3  0.0865      0.963 0.000 0.000 0.964  0 0.000 0.036
#> SRR1551027     1  0.0260      1.000 0.992 0.000 0.008  0 0.000 0.000
#> SRR1551028     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551029     2  0.0146      0.989 0.004 0.996 0.000  0 0.000 0.000
#> SRR1551030     2  0.0291      0.989 0.004 0.992 0.000  0 0.004 0.000
#> SRR1551031     6  0.0865      1.000 0.000 0.036 0.000  0 0.000 0.964
#> SRR1551032     3  0.3388      0.754 0.000 0.000 0.792  0 0.172 0.036
#> SRR1551034     1  0.0260      1.000 0.992 0.000 0.008  0 0.000 0.000
#> SRR1551033     3  0.0000      0.989 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551035     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551036     2  0.0146      0.989 0.004 0.996 0.000  0 0.000 0.000
#> SRR1551037     2  0.0291      0.989 0.004 0.992 0.000  0 0.004 0.000
#> SRR1551038     6  0.0865      1.000 0.000 0.036 0.000  0 0.000 0.964
#> SRR1551039     5  0.0146      0.980 0.004 0.000 0.000  0 0.996 0.000
#> SRR1551040     3  0.0000      0.989 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551041     1  0.0260      1.000 0.992 0.000 0.008  0 0.000 0.000
#> SRR1551042     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551043     2  0.0146      0.989 0.004 0.996 0.000  0 0.000 0.000
#> SRR1551044     2  0.0291      0.989 0.004 0.992 0.000  0 0.004 0.000
#> SRR1551045     6  0.0865      1.000 0.000 0.036 0.000  0 0.000 0.964
#> SRR1551046     5  0.0146      0.980 0.004 0.000 0.000  0 0.996 0.000
#> SRR1551047     3  0.0000      0.989 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551048     1  0.0260      1.000 0.992 0.000 0.008  0 0.000 0.000
#> SRR1551049     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551050     2  0.0146      0.989 0.004 0.996 0.000  0 0.000 0.000
#> SRR1551051     2  0.0291      0.989 0.004 0.992 0.000  0 0.004 0.000
#> SRR1551052     6  0.0865      1.000 0.000 0.036 0.000  0 0.000 0.964
#> SRR1551053     5  0.0146      0.980 0.004 0.000 0.000  0 0.996 0.000
#> SRR1551054     3  0.0000      0.989 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551055     1  0.0260      1.000 0.992 0.000 0.008  0 0.000 0.000
#> SRR1551056     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551057     2  0.0146      0.989 0.004 0.996 0.000  0 0.000 0.000
#> SRR1551058     2  0.0291      0.989 0.004 0.992 0.000  0 0.004 0.000
#> SRR1551059     6  0.0865      1.000 0.000 0.036 0.000  0 0.000 0.964
#> SRR1551060     5  0.0146      0.980 0.004 0.000 0.000  0 0.996 0.000
#> SRR1551061     3  0.0000      0.989 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551062     1  0.0260      1.000 0.992 0.000 0.008  0 0.000 0.000
#> SRR1551063     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551064     2  0.0146      0.989 0.004 0.996 0.000  0 0.000 0.000
#> SRR1551065     2  0.0291      0.989 0.004 0.992 0.000  0 0.004 0.000
#> SRR1551066     6  0.0865      1.000 0.000 0.036 0.000  0 0.000 0.964
#> SRR1551067     5  0.0146      0.980 0.004 0.000 0.000  0 0.996 0.000
#> SRR1551068     3  0.0000      0.989 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551069     1  0.0260      1.000 0.992 0.000 0.008  0 0.000 0.000
#> SRR1551070     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551071     2  0.0146      0.989 0.004 0.996 0.000  0 0.000 0.000
#> SRR1551072     2  0.0291      0.989 0.004 0.992 0.000  0 0.004 0.000
#> SRR1551073     6  0.0865      1.000 0.000 0.036 0.000  0 0.000 0.964
#> SRR1551074     5  0.0146      0.980 0.004 0.000 0.000  0 0.996 0.000
#> SRR1551075     3  0.0000      0.989 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551076     1  0.0260      1.000 0.992 0.000 0.008  0 0.000 0.000
#> SRR1551077     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551078     2  0.0146      0.989 0.004 0.996 0.000  0 0.000 0.000
#> SRR1551079     2  0.0291      0.989 0.004 0.992 0.000  0 0.004 0.000
#> SRR1551080     6  0.0865      1.000 0.000 0.036 0.000  0 0.000 0.964
#> SRR1551081     5  0.0146      0.980 0.004 0.000 0.000  0 0.996 0.000
#> SRR1551082     3  0.0000      0.989 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551083     1  0.0260      1.000 0.992 0.000 0.008  0 0.000 0.000
#> SRR1551084     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551085     2  0.0146      0.989 0.004 0.996 0.000  0 0.000 0.000
#> SRR1551086     2  0.0291      0.989 0.004 0.992 0.000  0 0.004 0.000
#> SRR1551088     3  0.0000      0.989 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551087     5  0.0146      0.980 0.004 0.000 0.000  0 0.996 0.000
#> SRR1551089     1  0.0260      1.000 0.992 0.000 0.008  0 0.000 0.000
#> SRR1551090     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551091     2  0.0146      0.989 0.004 0.996 0.000  0 0.000 0.000
#> SRR1551092     2  0.0291      0.989 0.004 0.992 0.000  0 0.004 0.000
#> SRR1551093     6  0.0865      1.000 0.000 0.036 0.000  0 0.000 0.964
#> SRR1551094     5  0.0146      0.980 0.004 0.000 0.000  0 0.996 0.000
#> SRR1551095     3  0.0000      0.989 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551096     1  0.0260      1.000 0.992 0.000 0.008  0 0.000 0.000
#> SRR1551097     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551098     2  0.0146      0.989 0.004 0.996 0.000  0 0.000 0.000
#> SRR1551099     2  0.0291      0.989 0.004 0.992 0.000  0 0.004 0.000
#> SRR1551101     3  0.0000      0.989 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551100     5  0.0146      0.980 0.004 0.000 0.000  0 0.996 0.000
#> SRR1551102     1  0.0260      1.000 0.992 0.000 0.008  0 0.000 0.000
#> SRR1551103     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551104     2  0.0146      0.989 0.004 0.996 0.000  0 0.000 0.000
#> SRR1551105     2  0.0291      0.989 0.004 0.992 0.000  0 0.004 0.000
#> SRR1551106     6  0.0865      1.000 0.000 0.036 0.000  0 0.000 0.964
#> SRR1551107     5  0.0146      0.980 0.004 0.000 0.000  0 0.996 0.000
#> SRR1551108     3  0.0000      0.989 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551109     1  0.0260      1.000 0.992 0.000 0.008  0 0.000 0.000
#> SRR1551110     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551111     2  0.0146      0.989 0.004 0.996 0.000  0 0.000 0.000
#> SRR1551112     2  0.0291      0.989 0.004 0.992 0.000  0 0.004 0.000
#> SRR1551113     6  0.0865      1.000 0.000 0.036 0.000  0 0.000 0.964
#> SRR1551114     5  0.0146      0.980 0.004 0.000 0.000  0 0.996 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15028 rows and 134 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.607           0.881       0.934         0.3425 0.704   0.704
#> 3 3 1.000           0.989       0.996         0.7178 0.687   0.562
#> 4 4 1.000           0.991       0.997         0.2075 0.877   0.702
#> 5 5 1.000           0.997       0.999         0.0630 0.947   0.821
#> 6 6 1.000           0.995       0.998         0.0831 0.937   0.744

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 3 4 5

There is also optional best \(k\) = 3 4 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1550981     2   0.730     0.8065 0.204 0.796
#> SRR1550982     2   0.730     0.8065 0.204 0.796
#> SRR1550983     2   0.730     0.8065 0.204 0.796
#> SRR1550984     2   0.730     0.8065 0.204 0.796
#> SRR1550986     1   0.000     0.9774 1.000 0.000
#> SRR1550985     2   0.730     0.8065 0.204 0.796
#> SRR1550988     2   0.000     0.9146 0.000 1.000
#> SRR1550987     2   0.850     0.7310 0.276 0.724
#> SRR1550989     2   0.000     0.9146 0.000 1.000
#> SRR1550990     2   0.000     0.9146 0.000 1.000
#> SRR1550991     2   0.000     0.9146 0.000 1.000
#> SRR1550992     1   0.000     0.9774 1.000 0.000
#> SRR1550994     2   0.000     0.9146 0.000 1.000
#> SRR1550993     2   0.827     0.7500 0.260 0.740
#> SRR1550995     2   0.000     0.9146 0.000 1.000
#> SRR1550996     2   0.000     0.9146 0.000 1.000
#> SRR1550997     1   0.000     0.9774 1.000 0.000
#> SRR1550998     2   0.850     0.7310 0.276 0.724
#> SRR1551000     2   0.000     0.9146 0.000 1.000
#> SRR1550999     2   0.000     0.9146 0.000 1.000
#> SRR1551001     2   0.000     0.9146 0.000 1.000
#> SRR1551002     1   0.000     0.9774 1.000 0.000
#> SRR1551003     2   0.850     0.7310 0.276 0.724
#> SRR1551004     2   0.000     0.9146 0.000 1.000
#> SRR1551006     2   0.000     0.9146 0.000 1.000
#> SRR1551005     2   0.000     0.9146 0.000 1.000
#> SRR1551007     2   0.000     0.9146 0.000 1.000
#> SRR1551008     1   0.000     0.9774 1.000 0.000
#> SRR1551009     2   0.850     0.7310 0.276 0.724
#> SRR1551010     2   0.000     0.9146 0.000 1.000
#> SRR1551012     2   0.000     0.9146 0.000 1.000
#> SRR1551011     2   0.000     0.9146 0.000 1.000
#> SRR1551013     1   0.000     0.9774 1.000 0.000
#> SRR1551014     2   0.929     0.6225 0.344 0.656
#> SRR1551015     2   0.327     0.8867 0.060 0.940
#> SRR1551016     2   0.000     0.9146 0.000 1.000
#> SRR1551017     2   0.000     0.9146 0.000 1.000
#> SRR1551018     2   0.000     0.9146 0.000 1.000
#> SRR1551019     1   0.000     0.9774 1.000 0.000
#> SRR1551021     1   0.990    -0.0273 0.560 0.440
#> SRR1551022     2   0.000     0.9146 0.000 1.000
#> SRR1551023     2   0.000     0.9146 0.000 1.000
#> SRR1551020     1   0.000     0.9774 1.000 0.000
#> SRR1551024     2   0.000     0.9146 0.000 1.000
#> SRR1551026     1   0.000     0.9774 1.000 0.000
#> SRR1551025     1   0.000     0.9774 1.000 0.000
#> SRR1551027     2   0.850     0.7310 0.276 0.724
#> SRR1551028     2   0.000     0.9146 0.000 1.000
#> SRR1551029     2   0.000     0.9146 0.000 1.000
#> SRR1551030     2   0.000     0.9146 0.000 1.000
#> SRR1551031     2   0.000     0.9146 0.000 1.000
#> SRR1551032     1   0.000     0.9774 1.000 0.000
#> SRR1551034     2   0.850     0.7310 0.276 0.724
#> SRR1551033     1   0.000     0.9774 1.000 0.000
#> SRR1551035     2   0.000     0.9146 0.000 1.000
#> SRR1551036     2   0.000     0.9146 0.000 1.000
#> SRR1551037     2   0.000     0.9146 0.000 1.000
#> SRR1551038     2   0.000     0.9146 0.000 1.000
#> SRR1551039     2   0.730     0.8065 0.204 0.796
#> SRR1551040     1   0.000     0.9774 1.000 0.000
#> SRR1551041     2   0.850     0.7310 0.276 0.724
#> SRR1551042     2   0.000     0.9146 0.000 1.000
#> SRR1551043     2   0.000     0.9146 0.000 1.000
#> SRR1551044     2   0.000     0.9146 0.000 1.000
#> SRR1551045     2   0.000     0.9146 0.000 1.000
#> SRR1551046     2   0.730     0.8065 0.204 0.796
#> SRR1551047     1   0.000     0.9774 1.000 0.000
#> SRR1551048     2   0.795     0.7720 0.240 0.760
#> SRR1551049     2   0.000     0.9146 0.000 1.000
#> SRR1551050     2   0.000     0.9146 0.000 1.000
#> SRR1551051     2   0.000     0.9146 0.000 1.000
#> SRR1551052     2   0.000     0.9146 0.000 1.000
#> SRR1551053     2   0.730     0.8065 0.204 0.796
#> SRR1551054     1   0.000     0.9774 1.000 0.000
#> SRR1551055     2   0.730     0.8065 0.204 0.796
#> SRR1551056     2   0.000     0.9146 0.000 1.000
#> SRR1551057     2   0.000     0.9146 0.000 1.000
#> SRR1551058     2   0.000     0.9146 0.000 1.000
#> SRR1551059     2   0.000     0.9146 0.000 1.000
#> SRR1551060     2   0.730     0.8065 0.204 0.796
#> SRR1551061     1   0.000     0.9774 1.000 0.000
#> SRR1551062     2   0.781     0.7802 0.232 0.768
#> SRR1551063     2   0.000     0.9146 0.000 1.000
#> SRR1551064     2   0.000     0.9146 0.000 1.000
#> SRR1551065     2   0.000     0.9146 0.000 1.000
#> SRR1551066     2   0.000     0.9146 0.000 1.000
#> SRR1551067     2   0.730     0.8065 0.204 0.796
#> SRR1551068     1   0.000     0.9774 1.000 0.000
#> SRR1551069     2   0.850     0.7310 0.276 0.724
#> SRR1551070     2   0.000     0.9146 0.000 1.000
#> SRR1551071     2   0.000     0.9146 0.000 1.000
#> SRR1551072     2   0.000     0.9146 0.000 1.000
#> SRR1551073     2   0.000     0.9146 0.000 1.000
#> SRR1551074     2   0.730     0.8065 0.204 0.796
#> SRR1551075     1   0.000     0.9774 1.000 0.000
#> SRR1551076     2   0.850     0.7310 0.276 0.724
#> SRR1551077     2   0.000     0.9146 0.000 1.000
#> SRR1551078     2   0.000     0.9146 0.000 1.000
#> SRR1551079     2   0.000     0.9146 0.000 1.000
#> SRR1551080     2   0.000     0.9146 0.000 1.000
#> SRR1551081     2   0.730     0.8065 0.204 0.796
#> SRR1551082     1   0.000     0.9774 1.000 0.000
#> SRR1551083     2   0.745     0.7994 0.212 0.788
#> SRR1551084     2   0.000     0.9146 0.000 1.000
#> SRR1551085     2   0.000     0.9146 0.000 1.000
#> SRR1551086     2   0.000     0.9146 0.000 1.000
#> SRR1551088     1   0.000     0.9774 1.000 0.000
#> SRR1551087     2   0.730     0.8065 0.204 0.796
#> SRR1551089     2   0.850     0.7310 0.276 0.724
#> SRR1551090     2   0.000     0.9146 0.000 1.000
#> SRR1551091     2   0.000     0.9146 0.000 1.000
#> SRR1551092     2   0.000     0.9146 0.000 1.000
#> SRR1551093     2   0.000     0.9146 0.000 1.000
#> SRR1551094     2   0.730     0.8065 0.204 0.796
#> SRR1551095     1   0.000     0.9774 1.000 0.000
#> SRR1551096     2   0.730     0.8065 0.204 0.796
#> SRR1551097     2   0.000     0.9146 0.000 1.000
#> SRR1551098     2   0.000     0.9146 0.000 1.000
#> SRR1551099     2   0.000     0.9146 0.000 1.000
#> SRR1551101     1   0.000     0.9774 1.000 0.000
#> SRR1551100     2   0.730     0.8065 0.204 0.796
#> SRR1551102     2   0.738     0.8030 0.208 0.792
#> SRR1551103     2   0.000     0.9146 0.000 1.000
#> SRR1551104     2   0.000     0.9146 0.000 1.000
#> SRR1551105     2   0.000     0.9146 0.000 1.000
#> SRR1551106     2   0.000     0.9146 0.000 1.000
#> SRR1551107     2   0.730     0.8065 0.204 0.796
#> SRR1551108     1   0.000     0.9774 1.000 0.000
#> SRR1551109     2   0.850     0.7310 0.276 0.724
#> SRR1551110     2   0.000     0.9146 0.000 1.000
#> SRR1551111     2   0.000     0.9146 0.000 1.000
#> SRR1551112     2   0.000     0.9146 0.000 1.000
#> SRR1551113     2   0.000     0.9146 0.000 1.000
#> SRR1551114     2   0.730     0.8065 0.204 0.796

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1550981     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1550982     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1550983     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1550984     1  0.0237      0.995 0.996 0.004 0.000
#> SRR1550986     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1550985     1  0.0237      0.995 0.996 0.004 0.000
#> SRR1550988     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1550987     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1550989     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1550990     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1550991     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1550992     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1550994     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1550993     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1550995     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1550996     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1550997     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1550998     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551000     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1550999     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551001     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551002     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551003     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551004     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551006     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551005     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551007     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551008     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551009     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551010     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551012     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551011     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551013     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551014     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551015     2  0.2959      0.879 0.100 0.900 0.000
#> SRR1551016     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551017     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551018     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551019     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551021     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551022     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551023     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551020     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551024     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551026     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551025     3  0.2448      0.917 0.076 0.000 0.924
#> SRR1551027     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551028     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551029     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551030     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551031     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551032     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551034     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551033     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551035     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551036     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551037     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551038     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551039     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551040     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551041     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551042     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551043     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551044     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551045     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551046     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551047     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551048     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551049     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551050     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551051     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551052     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551053     2  0.6111      0.348 0.396 0.604 0.000
#> SRR1551054     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551055     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551056     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551057     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551058     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551059     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551060     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551061     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551062     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551063     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551064     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551065     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551066     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551067     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551068     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551069     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551070     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551071     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551072     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551073     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551074     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551075     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551076     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551077     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551078     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551079     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551080     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551081     1  0.0237      0.995 0.996 0.004 0.000
#> SRR1551082     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551083     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551084     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551085     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551086     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551088     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551087     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551089     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551090     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551091     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551092     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551093     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551094     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551095     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551096     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551097     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551098     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551099     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551101     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551100     1  0.0237      0.995 0.996 0.004 0.000
#> SRR1551102     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551103     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551104     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551105     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551106     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551107     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551108     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551109     1  0.0000      0.999 1.000 0.000 0.000
#> SRR1551110     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551111     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551112     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551113     2  0.0000      0.993 0.000 1.000 0.000
#> SRR1551114     1  0.0000      0.999 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1   p2    p3 p4
#> SRR1550981     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1550982     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1550983     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1550984     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1550986     3   0.000      0.995 0.000 0.00 1.000  0
#> SRR1550985     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1550988     4   0.000      1.000 0.000 0.00 0.000  1
#> SRR1550987     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1550989     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1550990     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1550991     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1550992     3   0.000      0.995 0.000 0.00 1.000  0
#> SRR1550994     4   0.000      1.000 0.000 0.00 0.000  1
#> SRR1550993     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1550995     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1550996     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1550997     3   0.000      0.995 0.000 0.00 1.000  0
#> SRR1550998     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1551000     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1550999     4   0.000      1.000 0.000 0.00 0.000  1
#> SRR1551001     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551002     3   0.000      0.995 0.000 0.00 1.000  0
#> SRR1551003     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1551004     4   0.000      1.000 0.000 0.00 0.000  1
#> SRR1551006     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551005     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551007     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551008     3   0.000      0.995 0.000 0.00 1.000  0
#> SRR1551009     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1551010     4   0.000      1.000 0.000 0.00 0.000  1
#> SRR1551012     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551011     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551013     3   0.000      0.995 0.000 0.00 1.000  0
#> SRR1551014     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1551015     4   0.000      1.000 0.000 0.00 0.000  1
#> SRR1551016     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551017     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551018     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551019     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1551021     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1551022     4   0.000      1.000 0.000 0.00 0.000  1
#> SRR1551023     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551020     3   0.000      0.995 0.000 0.00 1.000  0
#> SRR1551024     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551026     3   0.000      0.995 0.000 0.00 1.000  0
#> SRR1551025     3   0.194      0.905 0.076 0.00 0.924  0
#> SRR1551027     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1551028     4   0.000      1.000 0.000 0.00 0.000  1
#> SRR1551029     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551030     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551031     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551032     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1551034     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1551033     3   0.000      0.995 0.000 0.00 1.000  0
#> SRR1551035     4   0.000      1.000 0.000 0.00 0.000  1
#> SRR1551036     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551037     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551038     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551039     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1551040     3   0.000      0.995 0.000 0.00 1.000  0
#> SRR1551041     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1551042     4   0.000      1.000 0.000 0.00 0.000  1
#> SRR1551043     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551044     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551045     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551046     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1551047     3   0.000      0.995 0.000 0.00 1.000  0
#> SRR1551048     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1551049     4   0.000      1.000 0.000 0.00 0.000  1
#> SRR1551050     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551051     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551052     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551053     2   0.471      0.437 0.360 0.64 0.000  0
#> SRR1551054     3   0.000      0.995 0.000 0.00 1.000  0
#> SRR1551055     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1551056     4   0.000      1.000 0.000 0.00 0.000  1
#> SRR1551057     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551058     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551059     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551060     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1551061     3   0.000      0.995 0.000 0.00 1.000  0
#> SRR1551062     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1551063     4   0.000      1.000 0.000 0.00 0.000  1
#> SRR1551064     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551065     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551066     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551067     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1551068     3   0.000      0.995 0.000 0.00 1.000  0
#> SRR1551069     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1551070     4   0.000      1.000 0.000 0.00 0.000  1
#> SRR1551071     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551072     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551073     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551074     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1551075     3   0.000      0.995 0.000 0.00 1.000  0
#> SRR1551076     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1551077     4   0.000      1.000 0.000 0.00 0.000  1
#> SRR1551078     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551079     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551080     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551081     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1551082     3   0.000      0.995 0.000 0.00 1.000  0
#> SRR1551083     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1551084     4   0.000      1.000 0.000 0.00 0.000  1
#> SRR1551085     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551086     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551088     3   0.000      0.995 0.000 0.00 1.000  0
#> SRR1551087     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1551089     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1551090     4   0.000      1.000 0.000 0.00 0.000  1
#> SRR1551091     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551092     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551093     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551094     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1551095     3   0.000      0.995 0.000 0.00 1.000  0
#> SRR1551096     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1551097     4   0.000      1.000 0.000 0.00 0.000  1
#> SRR1551098     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551099     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551101     3   0.000      0.995 0.000 0.00 1.000  0
#> SRR1551100     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1551102     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1551103     4   0.000      1.000 0.000 0.00 0.000  1
#> SRR1551104     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551105     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551106     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551107     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1551108     3   0.000      0.995 0.000 0.00 1.000  0
#> SRR1551109     1   0.000      1.000 1.000 0.00 0.000  0
#> SRR1551110     4   0.000      1.000 0.000 0.00 0.000  1
#> SRR1551111     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551112     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551113     2   0.000      0.993 0.000 1.00 0.000  0
#> SRR1551114     1   0.000      1.000 1.000 0.00 0.000  0

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette p1  p2 p3 p4  p5
#> SRR1550981     5   0.000      1.000  0 0.0  0  0 1.0
#> SRR1550982     5   0.000      1.000  0 0.0  0  0 1.0
#> SRR1550983     5   0.000      1.000  0 0.0  0  0 1.0
#> SRR1550984     5   0.000      1.000  0 0.0  0  0 1.0
#> SRR1550986     3   0.000      1.000  0 0.0  1  0 0.0
#> SRR1550985     5   0.000      1.000  0 0.0  0  0 1.0
#> SRR1550988     4   0.000      1.000  0 0.0  0  1 0.0
#> SRR1550987     1   0.000      1.000  1 0.0  0  0 0.0
#> SRR1550989     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1550990     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1550991     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1550992     3   0.000      1.000  0 0.0  1  0 0.0
#> SRR1550994     4   0.000      1.000  0 0.0  0  1 0.0
#> SRR1550993     1   0.000      1.000  1 0.0  0  0 0.0
#> SRR1550995     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1550996     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1550997     3   0.000      1.000  0 0.0  1  0 0.0
#> SRR1550998     1   0.000      1.000  1 0.0  0  0 0.0
#> SRR1551000     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1550999     4   0.000      1.000  0 0.0  0  1 0.0
#> SRR1551001     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551002     3   0.000      1.000  0 0.0  1  0 0.0
#> SRR1551003     1   0.000      1.000  1 0.0  0  0 0.0
#> SRR1551004     4   0.000      1.000  0 0.0  0  1 0.0
#> SRR1551006     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551005     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551007     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551008     3   0.000      1.000  0 0.0  1  0 0.0
#> SRR1551009     1   0.000      1.000  1 0.0  0  0 0.0
#> SRR1551010     4   0.000      1.000  0 0.0  0  1 0.0
#> SRR1551012     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551011     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551013     3   0.000      1.000  0 0.0  1  0 0.0
#> SRR1551014     1   0.000      1.000  1 0.0  0  0 0.0
#> SRR1551015     4   0.000      1.000  0 0.0  0  1 0.0
#> SRR1551016     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551017     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551018     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551019     5   0.000      1.000  0 0.0  0  0 1.0
#> SRR1551021     1   0.000      1.000  1 0.0  0  0 0.0
#> SRR1551022     4   0.000      1.000  0 0.0  0  1 0.0
#> SRR1551023     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551020     3   0.000      1.000  0 0.0  1  0 0.0
#> SRR1551024     2   0.311      0.750  0 0.8  0  0 0.2
#> SRR1551026     3   0.000      1.000  0 0.0  1  0 0.0
#> SRR1551025     5   0.000      1.000  0 0.0  0  0 1.0
#> SRR1551027     1   0.000      1.000  1 0.0  0  0 0.0
#> SRR1551028     4   0.000      1.000  0 0.0  0  1 0.0
#> SRR1551029     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551030     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551031     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551032     5   0.000      1.000  0 0.0  0  0 1.0
#> SRR1551034     1   0.000      1.000  1 0.0  0  0 0.0
#> SRR1551033     3   0.000      1.000  0 0.0  1  0 0.0
#> SRR1551035     4   0.000      1.000  0 0.0  0  1 0.0
#> SRR1551036     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551037     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551038     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551039     5   0.000      1.000  0 0.0  0  0 1.0
#> SRR1551040     3   0.000      1.000  0 0.0  1  0 0.0
#> SRR1551041     1   0.000      1.000  1 0.0  0  0 0.0
#> SRR1551042     4   0.000      1.000  0 0.0  0  1 0.0
#> SRR1551043     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551044     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551045     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551046     5   0.000      1.000  0 0.0  0  0 1.0
#> SRR1551047     3   0.000      1.000  0 0.0  1  0 0.0
#> SRR1551048     1   0.000      1.000  1 0.0  0  0 0.0
#> SRR1551049     4   0.000      1.000  0 0.0  0  1 0.0
#> SRR1551050     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551051     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551052     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551053     5   0.000      1.000  0 0.0  0  0 1.0
#> SRR1551054     3   0.000      1.000  0 0.0  1  0 0.0
#> SRR1551055     1   0.000      1.000  1 0.0  0  0 0.0
#> SRR1551056     4   0.000      1.000  0 0.0  0  1 0.0
#> SRR1551057     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551058     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551059     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551060     5   0.000      1.000  0 0.0  0  0 1.0
#> SRR1551061     3   0.000      1.000  0 0.0  1  0 0.0
#> SRR1551062     1   0.000      1.000  1 0.0  0  0 0.0
#> SRR1551063     4   0.000      1.000  0 0.0  0  1 0.0
#> SRR1551064     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551065     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551066     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551067     5   0.000      1.000  0 0.0  0  0 1.0
#> SRR1551068     3   0.000      1.000  0 0.0  1  0 0.0
#> SRR1551069     1   0.000      1.000  1 0.0  0  0 0.0
#> SRR1551070     4   0.000      1.000  0 0.0  0  1 0.0
#> SRR1551071     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551072     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551073     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551074     5   0.000      1.000  0 0.0  0  0 1.0
#> SRR1551075     3   0.000      1.000  0 0.0  1  0 0.0
#> SRR1551076     1   0.000      1.000  1 0.0  0  0 0.0
#> SRR1551077     4   0.000      1.000  0 0.0  0  1 0.0
#> SRR1551078     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551079     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551080     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551081     5   0.000      1.000  0 0.0  0  0 1.0
#> SRR1551082     3   0.000      1.000  0 0.0  1  0 0.0
#> SRR1551083     1   0.000      1.000  1 0.0  0  0 0.0
#> SRR1551084     4   0.000      1.000  0 0.0  0  1 0.0
#> SRR1551085     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551086     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551088     3   0.000      1.000  0 0.0  1  0 0.0
#> SRR1551087     5   0.000      1.000  0 0.0  0  0 1.0
#> SRR1551089     1   0.000      1.000  1 0.0  0  0 0.0
#> SRR1551090     4   0.000      1.000  0 0.0  0  1 0.0
#> SRR1551091     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551092     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551093     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551094     5   0.000      1.000  0 0.0  0  0 1.0
#> SRR1551095     3   0.000      1.000  0 0.0  1  0 0.0
#> SRR1551096     1   0.000      1.000  1 0.0  0  0 0.0
#> SRR1551097     4   0.000      1.000  0 0.0  0  1 0.0
#> SRR1551098     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551099     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551101     3   0.000      1.000  0 0.0  1  0 0.0
#> SRR1551100     5   0.000      1.000  0 0.0  0  0 1.0
#> SRR1551102     1   0.000      1.000  1 0.0  0  0 0.0
#> SRR1551103     4   0.000      1.000  0 0.0  0  1 0.0
#> SRR1551104     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551105     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551106     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551107     5   0.000      1.000  0 0.0  0  0 1.0
#> SRR1551108     3   0.000      1.000  0 0.0  1  0 0.0
#> SRR1551109     1   0.000      1.000  1 0.0  0  0 0.0
#> SRR1551110     4   0.000      1.000  0 0.0  0  1 0.0
#> SRR1551111     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551112     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551113     2   0.000      0.996  0 1.0  0  0 0.0
#> SRR1551114     5   0.000      1.000  0 0.0  0  0 1.0

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette p1    p2 p3 p4    p5    p6
#> SRR1550981     5   0.000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1550982     5   0.000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1550983     5   0.000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1550984     5   0.000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1550986     3   0.000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1550985     5   0.000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1550988     4   0.000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1550987     1   0.000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1550989     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1550990     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1550991     6   0.000      1.000  0 0.000  0  0 0.000 1.000
#> SRR1550992     3   0.000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1550994     4   0.000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1550993     1   0.000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1550995     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1550996     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1550997     3   0.000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1550998     1   0.000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551000     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1550999     4   0.000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551001     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551002     3   0.000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551003     1   0.000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551004     4   0.000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551006     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551005     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551007     6   0.000      1.000  0 0.000  0  0 0.000 1.000
#> SRR1551008     3   0.000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551009     1   0.000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551010     4   0.000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551012     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551011     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551013     3   0.000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551014     1   0.000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551015     4   0.000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551016     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551017     2   0.176      0.891  0 0.904  0  0 0.000 0.096
#> SRR1551018     6   0.000      1.000  0 0.000  0  0 0.000 1.000
#> SRR1551019     5   0.000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1551021     1   0.000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551022     4   0.000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551023     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551020     3   0.000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551024     2   0.291      0.726  0 0.784  0  0 0.216 0.000
#> SRR1551026     3   0.000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551025     5   0.000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1551027     1   0.000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551028     4   0.000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551029     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551030     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551031     6   0.000      1.000  0 0.000  0  0 0.000 1.000
#> SRR1551032     5   0.000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1551034     1   0.000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551033     3   0.000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551035     4   0.000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551036     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551037     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551038     6   0.000      1.000  0 0.000  0  0 0.000 1.000
#> SRR1551039     5   0.000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1551040     3   0.000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551041     1   0.000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551042     4   0.000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551043     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551044     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551045     6   0.000      1.000  0 0.000  0  0 0.000 1.000
#> SRR1551046     5   0.000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1551047     3   0.000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551048     1   0.000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551049     4   0.000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551050     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551051     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551052     6   0.000      1.000  0 0.000  0  0 0.000 1.000
#> SRR1551053     5   0.000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1551054     3   0.000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551055     1   0.000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551056     4   0.000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551057     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551058     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551059     6   0.000      1.000  0 0.000  0  0 0.000 1.000
#> SRR1551060     5   0.000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1551061     3   0.000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551062     1   0.000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551063     4   0.000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551064     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551065     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551066     6   0.000      1.000  0 0.000  0  0 0.000 1.000
#> SRR1551067     5   0.000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1551068     3   0.000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551069     1   0.000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551070     4   0.000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551071     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551072     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551073     6   0.000      1.000  0 0.000  0  0 0.000 1.000
#> SRR1551074     5   0.000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1551075     3   0.000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551076     1   0.000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551077     4   0.000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551078     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551079     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551080     6   0.000      1.000  0 0.000  0  0 0.000 1.000
#> SRR1551081     5   0.000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1551082     3   0.000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551083     1   0.000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551084     4   0.000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551085     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551086     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551088     3   0.000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551087     5   0.000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1551089     1   0.000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551090     4   0.000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551091     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551092     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551093     6   0.000      1.000  0 0.000  0  0 0.000 1.000
#> SRR1551094     5   0.000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1551095     3   0.000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551096     1   0.000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551097     4   0.000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551098     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551099     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551101     3   0.000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551100     5   0.000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1551102     1   0.000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551103     4   0.000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551104     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551105     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551106     6   0.000      1.000  0 0.000  0  0 0.000 1.000
#> SRR1551107     5   0.000      1.000  0 0.000  0  0 1.000 0.000
#> SRR1551108     3   0.000      1.000  0 0.000  1  0 0.000 0.000
#> SRR1551109     1   0.000      1.000  1 0.000  0  0 0.000 0.000
#> SRR1551110     4   0.000      1.000  0 0.000  0  1 0.000 0.000
#> SRR1551111     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551112     2   0.000      0.992  0 1.000  0  0 0.000 0.000
#> SRR1551113     6   0.000      1.000  0 0.000  0  0 0.000 1.000
#> SRR1551114     5   0.000      1.000  0 0.000  0  0 1.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15028 rows and 134 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.741           0.898       0.948         0.4532 0.566   0.566
#> 3 3 0.713           0.823       0.893         0.3823 0.627   0.434
#> 4 4 1.000           0.976       0.991         0.1337 0.890   0.717
#> 5 5 1.000           0.969       0.987         0.0705 0.951   0.829
#> 6 6 0.915           0.921       0.957         0.0278 0.983   0.928

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 4 5

There is also optional best \(k\) = 4 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1550981     2  0.0938      0.923 0.012 0.988
#> SRR1550982     2  0.0938      0.923 0.012 0.988
#> SRR1550983     2  0.0938      0.923 0.012 0.988
#> SRR1550984     2  0.0938      0.923 0.012 0.988
#> SRR1550986     1  0.0000      0.978 1.000 0.000
#> SRR1550985     2  0.0938      0.923 0.012 0.988
#> SRR1550988     1  0.0938      0.978 0.988 0.012
#> SRR1550987     2  0.8813      0.667 0.300 0.700
#> SRR1550989     2  0.0000      0.927 0.000 1.000
#> SRR1550990     2  0.0000      0.927 0.000 1.000
#> SRR1550991     2  0.0000      0.927 0.000 1.000
#> SRR1550992     1  0.0000      0.978 1.000 0.000
#> SRR1550994     1  0.0938      0.978 0.988 0.012
#> SRR1550993     2  0.8813      0.667 0.300 0.700
#> SRR1550995     2  0.0000      0.927 0.000 1.000
#> SRR1550996     2  0.0376      0.926 0.004 0.996
#> SRR1550997     1  0.0000      0.978 1.000 0.000
#> SRR1550998     2  0.8813      0.667 0.300 0.700
#> SRR1551000     2  0.0000      0.927 0.000 1.000
#> SRR1550999     1  0.0938      0.978 0.988 0.012
#> SRR1551001     2  0.0000      0.927 0.000 1.000
#> SRR1551002     1  0.0000      0.978 1.000 0.000
#> SRR1551003     2  0.8813      0.667 0.300 0.700
#> SRR1551004     1  0.0938      0.978 0.988 0.012
#> SRR1551006     2  0.0000      0.927 0.000 1.000
#> SRR1551005     2  0.0000      0.927 0.000 1.000
#> SRR1551007     2  0.0000      0.927 0.000 1.000
#> SRR1551008     1  0.0000      0.978 1.000 0.000
#> SRR1551009     2  0.8813      0.667 0.300 0.700
#> SRR1551010     1  0.0938      0.978 0.988 0.012
#> SRR1551012     2  0.0000      0.927 0.000 1.000
#> SRR1551011     2  0.0000      0.927 0.000 1.000
#> SRR1551013     1  0.0000      0.978 1.000 0.000
#> SRR1551014     2  0.8813      0.667 0.300 0.700
#> SRR1551015     1  0.0938      0.978 0.988 0.012
#> SRR1551016     2  0.0000      0.927 0.000 1.000
#> SRR1551017     2  0.0000      0.927 0.000 1.000
#> SRR1551018     2  0.0000      0.927 0.000 1.000
#> SRR1551019     2  0.1184      0.921 0.016 0.984
#> SRR1551021     2  0.8661      0.681 0.288 0.712
#> SRR1551022     1  0.0938      0.978 0.988 0.012
#> SRR1551023     2  0.0000      0.927 0.000 1.000
#> SRR1551020     1  0.0000      0.978 1.000 0.000
#> SRR1551024     2  0.0376      0.926 0.004 0.996
#> SRR1551026     1  0.0000      0.978 1.000 0.000
#> SRR1551025     1  0.8608      0.591 0.716 0.284
#> SRR1551027     2  0.8813      0.667 0.300 0.700
#> SRR1551028     1  0.0938      0.978 0.988 0.012
#> SRR1551029     2  0.0000      0.927 0.000 1.000
#> SRR1551030     2  0.0000      0.927 0.000 1.000
#> SRR1551031     2  0.0000      0.927 0.000 1.000
#> SRR1551032     1  0.8608      0.591 0.716 0.284
#> SRR1551034     2  0.8813      0.667 0.300 0.700
#> SRR1551033     1  0.0000      0.978 1.000 0.000
#> SRR1551035     1  0.0938      0.978 0.988 0.012
#> SRR1551036     2  0.0000      0.927 0.000 1.000
#> SRR1551037     2  0.0000      0.927 0.000 1.000
#> SRR1551038     2  0.0000      0.927 0.000 1.000
#> SRR1551039     2  0.0938      0.923 0.012 0.988
#> SRR1551040     1  0.0000      0.978 1.000 0.000
#> SRR1551041     2  0.8813      0.667 0.300 0.700
#> SRR1551042     1  0.0938      0.978 0.988 0.012
#> SRR1551043     2  0.0000      0.927 0.000 1.000
#> SRR1551044     2  0.0000      0.927 0.000 1.000
#> SRR1551045     2  0.0000      0.927 0.000 1.000
#> SRR1551046     2  0.0938      0.923 0.012 0.988
#> SRR1551047     1  0.0000      0.978 1.000 0.000
#> SRR1551048     2  0.8813      0.667 0.300 0.700
#> SRR1551049     1  0.0938      0.978 0.988 0.012
#> SRR1551050     2  0.0000      0.927 0.000 1.000
#> SRR1551051     2  0.0000      0.927 0.000 1.000
#> SRR1551052     2  0.0000      0.927 0.000 1.000
#> SRR1551053     2  0.0938      0.923 0.012 0.988
#> SRR1551054     1  0.0000      0.978 1.000 0.000
#> SRR1551055     2  0.8813      0.667 0.300 0.700
#> SRR1551056     1  0.0938      0.978 0.988 0.012
#> SRR1551057     2  0.0000      0.927 0.000 1.000
#> SRR1551058     2  0.0000      0.927 0.000 1.000
#> SRR1551059     2  0.0000      0.927 0.000 1.000
#> SRR1551060     2  0.0938      0.923 0.012 0.988
#> SRR1551061     1  0.0000      0.978 1.000 0.000
#> SRR1551062     2  0.8813      0.667 0.300 0.700
#> SRR1551063     1  0.0938      0.978 0.988 0.012
#> SRR1551064     2  0.0000      0.927 0.000 1.000
#> SRR1551065     2  0.0000      0.927 0.000 1.000
#> SRR1551066     2  0.0000      0.927 0.000 1.000
#> SRR1551067     2  0.0938      0.923 0.012 0.988
#> SRR1551068     1  0.0000      0.978 1.000 0.000
#> SRR1551069     2  0.8813      0.667 0.300 0.700
#> SRR1551070     1  0.0938      0.978 0.988 0.012
#> SRR1551071     2  0.0000      0.927 0.000 1.000
#> SRR1551072     2  0.0000      0.927 0.000 1.000
#> SRR1551073     2  0.0000      0.927 0.000 1.000
#> SRR1551074     2  0.0938      0.923 0.012 0.988
#> SRR1551075     1  0.0000      0.978 1.000 0.000
#> SRR1551076     2  0.8813      0.667 0.300 0.700
#> SRR1551077     1  0.0938      0.978 0.988 0.012
#> SRR1551078     2  0.0000      0.927 0.000 1.000
#> SRR1551079     2  0.0000      0.927 0.000 1.000
#> SRR1551080     2  0.0000      0.927 0.000 1.000
#> SRR1551081     2  0.0938      0.923 0.012 0.988
#> SRR1551082     1  0.0000      0.978 1.000 0.000
#> SRR1551083     2  0.8813      0.667 0.300 0.700
#> SRR1551084     1  0.0938      0.978 0.988 0.012
#> SRR1551085     2  0.0000      0.927 0.000 1.000
#> SRR1551086     2  0.0000      0.927 0.000 1.000
#> SRR1551088     1  0.0000      0.978 1.000 0.000
#> SRR1551087     2  0.0938      0.923 0.012 0.988
#> SRR1551089     2  0.8813      0.667 0.300 0.700
#> SRR1551090     1  0.0938      0.978 0.988 0.012
#> SRR1551091     2  0.0000      0.927 0.000 1.000
#> SRR1551092     2  0.0000      0.927 0.000 1.000
#> SRR1551093     2  0.0000      0.927 0.000 1.000
#> SRR1551094     2  0.0938      0.923 0.012 0.988
#> SRR1551095     1  0.0000      0.978 1.000 0.000
#> SRR1551096     2  0.8813      0.667 0.300 0.700
#> SRR1551097     1  0.0938      0.978 0.988 0.012
#> SRR1551098     2  0.0000      0.927 0.000 1.000
#> SRR1551099     2  0.0000      0.927 0.000 1.000
#> SRR1551101     1  0.0000      0.978 1.000 0.000
#> SRR1551100     2  0.0938      0.923 0.012 0.988
#> SRR1551102     2  0.8813      0.667 0.300 0.700
#> SRR1551103     1  0.0938      0.978 0.988 0.012
#> SRR1551104     2  0.0000      0.927 0.000 1.000
#> SRR1551105     2  0.0000      0.927 0.000 1.000
#> SRR1551106     2  0.0000      0.927 0.000 1.000
#> SRR1551107     2  0.0938      0.923 0.012 0.988
#> SRR1551108     1  0.0000      0.978 1.000 0.000
#> SRR1551109     2  0.8813      0.667 0.300 0.700
#> SRR1551110     1  0.0938      0.978 0.988 0.012
#> SRR1551111     2  0.0000      0.927 0.000 1.000
#> SRR1551112     2  0.0000      0.927 0.000 1.000
#> SRR1551113     2  0.0000      0.927 0.000 1.000
#> SRR1551114     2  0.0938      0.923 0.012 0.988

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1550981     1  0.9319      0.482 0.508 0.296 0.196
#> SRR1550982     1  0.9375      0.478 0.496 0.308 0.196
#> SRR1550983     1  0.9375      0.478 0.496 0.308 0.196
#> SRR1550984     1  0.9392      0.475 0.492 0.312 0.196
#> SRR1550986     1  0.0000      0.724 1.000 0.000 0.000
#> SRR1550985     1  0.9408      0.472 0.488 0.316 0.196
#> SRR1550988     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1550987     1  0.4702      0.687 0.788 0.000 0.212
#> SRR1550989     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1550990     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1550991     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1550992     1  0.0000      0.724 1.000 0.000 0.000
#> SRR1550994     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1550993     1  0.4702      0.687 0.788 0.000 0.212
#> SRR1550995     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1550996     2  0.2384      0.912 0.008 0.936 0.056
#> SRR1550997     1  0.0000      0.724 1.000 0.000 0.000
#> SRR1550998     1  0.4702      0.687 0.788 0.000 0.212
#> SRR1551000     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1550999     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551001     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551002     1  0.0000      0.724 1.000 0.000 0.000
#> SRR1551003     1  0.4702      0.687 0.788 0.000 0.212
#> SRR1551004     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551006     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551005     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551007     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551008     1  0.0000      0.724 1.000 0.000 0.000
#> SRR1551009     1  0.4702      0.687 0.788 0.000 0.212
#> SRR1551010     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551012     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551011     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551013     1  0.0000      0.724 1.000 0.000 0.000
#> SRR1551014     1  0.4702      0.687 0.788 0.000 0.212
#> SRR1551015     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551016     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551017     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551018     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551019     1  0.8924      0.378 0.524 0.140 0.336
#> SRR1551021     1  0.4555      0.689 0.800 0.000 0.200
#> SRR1551022     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551023     2  0.1964      0.921 0.000 0.944 0.056
#> SRR1551020     1  0.0000      0.724 1.000 0.000 0.000
#> SRR1551024     2  0.7250      0.328 0.288 0.656 0.056
#> SRR1551026     1  0.0000      0.724 1.000 0.000 0.000
#> SRR1551025     1  0.5591      0.525 0.696 0.000 0.304
#> SRR1551027     1  0.4702      0.687 0.788 0.000 0.212
#> SRR1551028     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551029     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551030     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551031     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551032     1  0.5591      0.525 0.696 0.000 0.304
#> SRR1551034     1  0.4702      0.687 0.788 0.000 0.212
#> SRR1551033     1  0.0000      0.724 1.000 0.000 0.000
#> SRR1551035     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551036     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551037     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551038     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551039     1  0.9375      0.478 0.496 0.308 0.196
#> SRR1551040     1  0.0000      0.724 1.000 0.000 0.000
#> SRR1551041     1  0.4702      0.687 0.788 0.000 0.212
#> SRR1551042     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551043     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551044     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551045     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551046     1  0.9375      0.478 0.496 0.308 0.196
#> SRR1551047     1  0.0000      0.724 1.000 0.000 0.000
#> SRR1551048     1  0.4702      0.687 0.788 0.000 0.212
#> SRR1551049     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551050     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551051     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551052     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551053     1  0.9500      0.445 0.460 0.344 0.196
#> SRR1551054     1  0.0000      0.724 1.000 0.000 0.000
#> SRR1551055     1  0.4702      0.687 0.788 0.000 0.212
#> SRR1551056     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551057     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551058     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551059     2  0.0237      0.985 0.000 0.996 0.004
#> SRR1551060     1  0.9375      0.478 0.496 0.308 0.196
#> SRR1551061     1  0.0000      0.724 1.000 0.000 0.000
#> SRR1551062     1  0.4702      0.687 0.788 0.000 0.212
#> SRR1551063     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551064     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551065     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551066     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551067     1  0.9375      0.478 0.496 0.308 0.196
#> SRR1551068     1  0.0000      0.724 1.000 0.000 0.000
#> SRR1551069     1  0.4702      0.687 0.788 0.000 0.212
#> SRR1551070     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551071     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551072     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551073     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551074     1  0.9375      0.478 0.496 0.308 0.196
#> SRR1551075     1  0.0000      0.724 1.000 0.000 0.000
#> SRR1551076     1  0.4702      0.687 0.788 0.000 0.212
#> SRR1551077     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551078     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551079     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551080     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551081     1  0.9408      0.472 0.488 0.316 0.196
#> SRR1551082     1  0.0000      0.724 1.000 0.000 0.000
#> SRR1551083     1  0.4702      0.687 0.788 0.000 0.212
#> SRR1551084     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551085     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551086     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551088     1  0.0000      0.724 1.000 0.000 0.000
#> SRR1551087     1  0.9375      0.478 0.496 0.308 0.196
#> SRR1551089     1  0.4702      0.687 0.788 0.000 0.212
#> SRR1551090     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551091     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551092     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551093     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551094     1  0.9375      0.478 0.496 0.308 0.196
#> SRR1551095     1  0.0000      0.724 1.000 0.000 0.000
#> SRR1551096     1  0.4702      0.687 0.788 0.000 0.212
#> SRR1551097     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551098     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551099     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551101     1  0.0000      0.724 1.000 0.000 0.000
#> SRR1551100     1  0.9408      0.472 0.488 0.316 0.196
#> SRR1551102     1  0.4702      0.687 0.788 0.000 0.212
#> SRR1551103     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551104     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551105     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551106     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551107     1  0.9375      0.478 0.496 0.308 0.196
#> SRR1551108     1  0.0000      0.724 1.000 0.000 0.000
#> SRR1551109     1  0.4702      0.687 0.788 0.000 0.212
#> SRR1551110     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551111     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551112     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551113     2  0.0000      0.989 0.000 1.000 0.000
#> SRR1551114     1  0.9375      0.478 0.496 0.308 0.196

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3   p4
#> SRR1550981     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1550982     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1550983     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1550984     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1550986     3   0.000      0.981 0.000 0.000 1.000 0.00
#> SRR1550985     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1550988     4   0.000      0.988 0.000 0.000 0.000 1.00
#> SRR1550987     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1550989     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1550990     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1550991     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1550992     3   0.000      0.981 0.000 0.000 1.000 0.00
#> SRR1550994     4   0.000      0.988 0.000 0.000 0.000 1.00
#> SRR1550993     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1550995     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1550996     1   0.488      0.318 0.592 0.408 0.000 0.00
#> SRR1550997     3   0.000      0.981 0.000 0.000 1.000 0.00
#> SRR1550998     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1551000     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1550999     4   0.000      0.988 0.000 0.000 0.000 1.00
#> SRR1551001     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551002     3   0.000      0.981 0.000 0.000 1.000 0.00
#> SRR1551003     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1551004     4   0.000      0.988 0.000 0.000 0.000 1.00
#> SRR1551006     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551005     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551007     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551008     3   0.000      0.981 0.000 0.000 1.000 0.00
#> SRR1551009     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1551010     4   0.000      0.988 0.000 0.000 0.000 1.00
#> SRR1551012     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551011     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551013     3   0.000      0.981 0.000 0.000 1.000 0.00
#> SRR1551014     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1551015     4   0.340      0.756 0.180 0.000 0.000 0.82
#> SRR1551016     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551017     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551018     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551019     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1551021     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1551022     4   0.000      0.988 0.000 0.000 0.000 1.00
#> SRR1551023     2   0.265      0.850 0.120 0.880 0.000 0.00
#> SRR1551020     3   0.302      0.817 0.148 0.000 0.852 0.00
#> SRR1551024     1   0.376      0.694 0.784 0.216 0.000 0.00
#> SRR1551026     3   0.302      0.817 0.148 0.000 0.852 0.00
#> SRR1551025     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1551027     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1551028     4   0.000      0.988 0.000 0.000 0.000 1.00
#> SRR1551029     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551030     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551031     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551032     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1551034     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1551033     3   0.000      0.981 0.000 0.000 1.000 0.00
#> SRR1551035     4   0.000      0.988 0.000 0.000 0.000 1.00
#> SRR1551036     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551037     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551038     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551039     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1551040     3   0.000      0.981 0.000 0.000 1.000 0.00
#> SRR1551041     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1551042     4   0.000      0.988 0.000 0.000 0.000 1.00
#> SRR1551043     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551044     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551045     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551046     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1551047     3   0.000      0.981 0.000 0.000 1.000 0.00
#> SRR1551048     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1551049     4   0.000      0.988 0.000 0.000 0.000 1.00
#> SRR1551050     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551051     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551052     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551053     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1551054     3   0.000      0.981 0.000 0.000 1.000 0.00
#> SRR1551055     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1551056     4   0.000      0.988 0.000 0.000 0.000 1.00
#> SRR1551057     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551058     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551059     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551060     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1551061     3   0.000      0.981 0.000 0.000 1.000 0.00
#> SRR1551062     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1551063     4   0.000      0.988 0.000 0.000 0.000 1.00
#> SRR1551064     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551065     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551066     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551067     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1551068     3   0.000      0.981 0.000 0.000 1.000 0.00
#> SRR1551069     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1551070     4   0.000      0.988 0.000 0.000 0.000 1.00
#> SRR1551071     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551072     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551073     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551074     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1551075     3   0.000      0.981 0.000 0.000 1.000 0.00
#> SRR1551076     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1551077     4   0.000      0.988 0.000 0.000 0.000 1.00
#> SRR1551078     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551079     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551080     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551081     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1551082     3   0.000      0.981 0.000 0.000 1.000 0.00
#> SRR1551083     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1551084     4   0.000      0.988 0.000 0.000 0.000 1.00
#> SRR1551085     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551086     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551088     3   0.000      0.981 0.000 0.000 1.000 0.00
#> SRR1551087     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1551089     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1551090     4   0.000      0.988 0.000 0.000 0.000 1.00
#> SRR1551091     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551092     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551093     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551094     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1551095     3   0.000      0.981 0.000 0.000 1.000 0.00
#> SRR1551096     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1551097     4   0.000      0.988 0.000 0.000 0.000 1.00
#> SRR1551098     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551099     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551101     3   0.000      0.981 0.000 0.000 1.000 0.00
#> SRR1551100     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1551102     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1551103     4   0.000      0.988 0.000 0.000 0.000 1.00
#> SRR1551104     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551105     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551106     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551107     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1551108     3   0.000      0.981 0.000 0.000 1.000 0.00
#> SRR1551109     1   0.000      0.981 1.000 0.000 0.000 0.00
#> SRR1551110     4   0.000      0.988 0.000 0.000 0.000 1.00
#> SRR1551111     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551112     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551113     2   0.000      0.997 0.000 1.000 0.000 0.00
#> SRR1551114     1   0.000      0.981 1.000 0.000 0.000 0.00

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1550981     5   0.000      0.968 0.000 0.000 0.000 0.000 1.000
#> SRR1550982     5   0.000      0.968 0.000 0.000 0.000 0.000 1.000
#> SRR1550983     5   0.000      0.968 0.000 0.000 0.000 0.000 1.000
#> SRR1550984     5   0.000      0.968 0.000 0.000 0.000 0.000 1.000
#> SRR1550986     3   0.000      0.981 0.000 0.000 1.000 0.000 0.000
#> SRR1550985     5   0.000      0.968 0.000 0.000 0.000 0.000 1.000
#> SRR1550988     4   0.000      0.986 0.000 0.000 0.000 1.000 0.000
#> SRR1550987     1   0.000      0.983 1.000 0.000 0.000 0.000 0.000
#> SRR1550989     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1550990     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1550991     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1550992     3   0.000      0.981 0.000 0.000 1.000 0.000 0.000
#> SRR1550994     4   0.000      0.986 0.000 0.000 0.000 1.000 0.000
#> SRR1550993     1   0.000      0.983 1.000 0.000 0.000 0.000 0.000
#> SRR1550995     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1550996     5   0.391      0.527 0.000 0.324 0.000 0.000 0.676
#> SRR1550997     3   0.000      0.981 0.000 0.000 1.000 0.000 0.000
#> SRR1550998     1   0.000      0.983 1.000 0.000 0.000 0.000 0.000
#> SRR1551000     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1550999     4   0.000      0.986 0.000 0.000 0.000 1.000 0.000
#> SRR1551001     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551002     3   0.000      0.981 0.000 0.000 1.000 0.000 0.000
#> SRR1551003     1   0.000      0.983 1.000 0.000 0.000 0.000 0.000
#> SRR1551004     4   0.000      0.986 0.000 0.000 0.000 1.000 0.000
#> SRR1551006     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551005     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551007     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551008     3   0.000      0.981 0.000 0.000 1.000 0.000 0.000
#> SRR1551009     1   0.000      0.983 1.000 0.000 0.000 0.000 0.000
#> SRR1551010     4   0.000      0.986 0.000 0.000 0.000 1.000 0.000
#> SRR1551012     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551011     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551013     3   0.000      0.981 0.000 0.000 1.000 0.000 0.000
#> SRR1551014     1   0.000      0.983 1.000 0.000 0.000 0.000 0.000
#> SRR1551015     4   0.348      0.663 0.000 0.000 0.000 0.752 0.248
#> SRR1551016     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551017     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551018     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551019     5   0.000      0.968 0.000 0.000 0.000 0.000 1.000
#> SRR1551021     1   0.386      0.539 0.688 0.000 0.000 0.000 0.312
#> SRR1551022     4   0.000      0.986 0.000 0.000 0.000 1.000 0.000
#> SRR1551023     2   0.342      0.674 0.000 0.760 0.000 0.000 0.240
#> SRR1551020     3   0.289      0.800 0.000 0.000 0.824 0.000 0.176
#> SRR1551024     5   0.281      0.757 0.000 0.168 0.000 0.000 0.832
#> SRR1551026     3   0.281      0.810 0.000 0.000 0.832 0.000 0.168
#> SRR1551025     5   0.000      0.968 0.000 0.000 0.000 0.000 1.000
#> SRR1551027     1   0.000      0.983 1.000 0.000 0.000 0.000 0.000
#> SRR1551028     4   0.000      0.986 0.000 0.000 0.000 1.000 0.000
#> SRR1551029     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551030     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551031     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551032     5   0.000      0.968 0.000 0.000 0.000 0.000 1.000
#> SRR1551034     1   0.000      0.983 1.000 0.000 0.000 0.000 0.000
#> SRR1551033     3   0.000      0.981 0.000 0.000 1.000 0.000 0.000
#> SRR1551035     4   0.000      0.986 0.000 0.000 0.000 1.000 0.000
#> SRR1551036     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551037     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551038     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551039     5   0.000      0.968 0.000 0.000 0.000 0.000 1.000
#> SRR1551040     3   0.000      0.981 0.000 0.000 1.000 0.000 0.000
#> SRR1551041     1   0.000      0.983 1.000 0.000 0.000 0.000 0.000
#> SRR1551042     4   0.000      0.986 0.000 0.000 0.000 1.000 0.000
#> SRR1551043     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551044     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551045     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551046     5   0.000      0.968 0.000 0.000 0.000 0.000 1.000
#> SRR1551047     3   0.000      0.981 0.000 0.000 1.000 0.000 0.000
#> SRR1551048     1   0.000      0.983 1.000 0.000 0.000 0.000 0.000
#> SRR1551049     4   0.000      0.986 0.000 0.000 0.000 1.000 0.000
#> SRR1551050     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551051     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551052     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551053     5   0.000      0.968 0.000 0.000 0.000 0.000 1.000
#> SRR1551054     3   0.000      0.981 0.000 0.000 1.000 0.000 0.000
#> SRR1551055     1   0.000      0.983 1.000 0.000 0.000 0.000 0.000
#> SRR1551056     4   0.000      0.986 0.000 0.000 0.000 1.000 0.000
#> SRR1551057     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551058     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551059     2   0.120      0.945 0.000 0.952 0.000 0.000 0.048
#> SRR1551060     5   0.000      0.968 0.000 0.000 0.000 0.000 1.000
#> SRR1551061     3   0.000      0.981 0.000 0.000 1.000 0.000 0.000
#> SRR1551062     1   0.000      0.983 1.000 0.000 0.000 0.000 0.000
#> SRR1551063     4   0.000      0.986 0.000 0.000 0.000 1.000 0.000
#> SRR1551064     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551065     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551066     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551067     5   0.000      0.968 0.000 0.000 0.000 0.000 1.000
#> SRR1551068     3   0.000      0.981 0.000 0.000 1.000 0.000 0.000
#> SRR1551069     1   0.000      0.983 1.000 0.000 0.000 0.000 0.000
#> SRR1551070     4   0.000      0.986 0.000 0.000 0.000 1.000 0.000
#> SRR1551071     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551072     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551073     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551074     5   0.000      0.968 0.000 0.000 0.000 0.000 1.000
#> SRR1551075     3   0.000      0.981 0.000 0.000 1.000 0.000 0.000
#> SRR1551076     1   0.000      0.983 1.000 0.000 0.000 0.000 0.000
#> SRR1551077     4   0.000      0.986 0.000 0.000 0.000 1.000 0.000
#> SRR1551078     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551079     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551080     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551081     5   0.000      0.968 0.000 0.000 0.000 0.000 1.000
#> SRR1551082     3   0.000      0.981 0.000 0.000 1.000 0.000 0.000
#> SRR1551083     1   0.000      0.983 1.000 0.000 0.000 0.000 0.000
#> SRR1551084     4   0.000      0.986 0.000 0.000 0.000 1.000 0.000
#> SRR1551085     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551086     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551088     3   0.000      0.981 0.000 0.000 1.000 0.000 0.000
#> SRR1551087     5   0.000      0.968 0.000 0.000 0.000 0.000 1.000
#> SRR1551089     1   0.000      0.983 1.000 0.000 0.000 0.000 0.000
#> SRR1551090     4   0.000      0.986 0.000 0.000 0.000 1.000 0.000
#> SRR1551091     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551092     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551093     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551094     5   0.000      0.968 0.000 0.000 0.000 0.000 1.000
#> SRR1551095     3   0.000      0.981 0.000 0.000 1.000 0.000 0.000
#> SRR1551096     1   0.000      0.983 1.000 0.000 0.000 0.000 0.000
#> SRR1551097     4   0.000      0.986 0.000 0.000 0.000 1.000 0.000
#> SRR1551098     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551099     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551101     3   0.000      0.981 0.000 0.000 1.000 0.000 0.000
#> SRR1551100     5   0.000      0.968 0.000 0.000 0.000 0.000 1.000
#> SRR1551102     1   0.000      0.983 1.000 0.000 0.000 0.000 0.000
#> SRR1551103     4   0.000      0.986 0.000 0.000 0.000 1.000 0.000
#> SRR1551104     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551105     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551106     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551107     5   0.000      0.968 0.000 0.000 0.000 0.000 1.000
#> SRR1551108     3   0.000      0.981 0.000 0.000 1.000 0.000 0.000
#> SRR1551109     1   0.000      0.983 1.000 0.000 0.000 0.000 0.000
#> SRR1551110     4   0.000      0.986 0.000 0.000 0.000 1.000 0.000
#> SRR1551111     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551112     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551113     2   0.000      0.994 0.000 1.000 0.000 0.000 0.000
#> SRR1551114     5   0.000      0.968 0.000 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette   p1    p2    p3    p4    p5    p6
#> SRR1550981     6   0.372      0.360 0.00 0.000 0.000 0.000 0.384 0.616
#> SRR1550982     5   0.000      0.965 0.00 0.000 0.000 0.000 1.000 0.000
#> SRR1550983     5   0.000      0.965 0.00 0.000 0.000 0.000 1.000 0.000
#> SRR1550984     5   0.000      0.965 0.00 0.000 0.000 0.000 1.000 0.000
#> SRR1550986     3   0.000      0.967 0.00 0.000 1.000 0.000 0.000 0.000
#> SRR1550985     5   0.000      0.965 0.00 0.000 0.000 0.000 1.000 0.000
#> SRR1550988     4   0.000      0.973 0.00 0.000 0.000 1.000 0.000 0.000
#> SRR1550987     1   0.000      0.982 1.00 0.000 0.000 0.000 0.000 0.000
#> SRR1550989     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1550990     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1550991     2   0.222      0.881 0.00 0.864 0.000 0.000 0.000 0.136
#> SRR1550992     3   0.000      0.967 0.00 0.000 1.000 0.000 0.000 0.000
#> SRR1550994     4   0.000      0.973 0.00 0.000 0.000 1.000 0.000 0.000
#> SRR1550993     1   0.000      0.982 1.00 0.000 0.000 0.000 0.000 0.000
#> SRR1550995     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1550996     6   0.473      0.623 0.00 0.248 0.000 0.000 0.096 0.656
#> SRR1550997     3   0.000      0.967 0.00 0.000 1.000 0.000 0.000 0.000
#> SRR1550998     1   0.000      0.982 1.00 0.000 0.000 0.000 0.000 0.000
#> SRR1551000     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1550999     4   0.000      0.973 0.00 0.000 0.000 1.000 0.000 0.000
#> SRR1551001     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1551002     3   0.000      0.967 0.00 0.000 1.000 0.000 0.000 0.000
#> SRR1551003     1   0.000      0.982 1.00 0.000 0.000 0.000 0.000 0.000
#> SRR1551004     4   0.000      0.973 0.00 0.000 0.000 1.000 0.000 0.000
#> SRR1551006     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1551005     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1551007     2   0.222      0.881 0.00 0.864 0.000 0.000 0.000 0.136
#> SRR1551008     3   0.000      0.967 0.00 0.000 1.000 0.000 0.000 0.000
#> SRR1551009     1   0.000      0.982 1.00 0.000 0.000 0.000 0.000 0.000
#> SRR1551010     4   0.000      0.973 0.00 0.000 0.000 1.000 0.000 0.000
#> SRR1551012     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1551011     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1551013     3   0.000      0.967 0.00 0.000 1.000 0.000 0.000 0.000
#> SRR1551014     1   0.000      0.982 1.00 0.000 0.000 0.000 0.000 0.000
#> SRR1551015     4   0.377      0.387 0.00 0.000 0.000 0.596 0.000 0.404
#> SRR1551016     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1551017     2   0.079      0.940 0.00 0.968 0.000 0.000 0.000 0.032
#> SRR1551018     2   0.222      0.881 0.00 0.864 0.000 0.000 0.000 0.136
#> SRR1551019     6   0.242      0.654 0.00 0.000 0.000 0.000 0.156 0.844
#> SRR1551021     1   0.453      0.503 0.66 0.000 0.000 0.000 0.068 0.272
#> SRR1551022     4   0.176      0.878 0.00 0.000 0.000 0.904 0.000 0.096
#> SRR1551023     6   0.519      0.504 0.00 0.376 0.000 0.000 0.096 0.528
#> SRR1551020     3   0.327      0.701 0.00 0.000 0.728 0.000 0.000 0.272
#> SRR1551024     6   0.431      0.661 0.00 0.184 0.000 0.000 0.096 0.720
#> SRR1551026     3   0.322      0.712 0.00 0.000 0.736 0.000 0.000 0.264
#> SRR1551025     6   0.222      0.664 0.00 0.000 0.000 0.000 0.136 0.864
#> SRR1551027     1   0.000      0.982 1.00 0.000 0.000 0.000 0.000 0.000
#> SRR1551028     4   0.000      0.973 0.00 0.000 0.000 1.000 0.000 0.000
#> SRR1551029     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1551030     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1551031     2   0.222      0.881 0.00 0.864 0.000 0.000 0.000 0.136
#> SRR1551032     6   0.222      0.664 0.00 0.000 0.000 0.000 0.136 0.864
#> SRR1551034     1   0.000      0.982 1.00 0.000 0.000 0.000 0.000 0.000
#> SRR1551033     3   0.000      0.967 0.00 0.000 1.000 0.000 0.000 0.000
#> SRR1551035     4   0.000      0.973 0.00 0.000 0.000 1.000 0.000 0.000
#> SRR1551036     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1551037     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1551038     2   0.222      0.881 0.00 0.864 0.000 0.000 0.000 0.136
#> SRR1551039     5   0.000      0.965 0.00 0.000 0.000 0.000 1.000 0.000
#> SRR1551040     3   0.000      0.967 0.00 0.000 1.000 0.000 0.000 0.000
#> SRR1551041     1   0.000      0.982 1.00 0.000 0.000 0.000 0.000 0.000
#> SRR1551042     4   0.000      0.973 0.00 0.000 0.000 1.000 0.000 0.000
#> SRR1551043     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1551044     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1551045     2   0.222      0.881 0.00 0.864 0.000 0.000 0.000 0.136
#> SRR1551046     5   0.000      0.965 0.00 0.000 0.000 0.000 1.000 0.000
#> SRR1551047     3   0.000      0.967 0.00 0.000 1.000 0.000 0.000 0.000
#> SRR1551048     1   0.000      0.982 1.00 0.000 0.000 0.000 0.000 0.000
#> SRR1551049     4   0.000      0.973 0.00 0.000 0.000 1.000 0.000 0.000
#> SRR1551050     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1551051     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1551052     2   0.222      0.881 0.00 0.864 0.000 0.000 0.000 0.136
#> SRR1551053     5   0.310      0.637 0.00 0.000 0.000 0.000 0.756 0.244
#> SRR1551054     3   0.000      0.967 0.00 0.000 1.000 0.000 0.000 0.000
#> SRR1551055     1   0.000      0.982 1.00 0.000 0.000 0.000 0.000 0.000
#> SRR1551056     4   0.000      0.973 0.00 0.000 0.000 1.000 0.000 0.000
#> SRR1551057     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1551058     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1551059     2   0.256      0.845 0.00 0.828 0.000 0.000 0.000 0.172
#> SRR1551060     5   0.000      0.965 0.00 0.000 0.000 0.000 1.000 0.000
#> SRR1551061     3   0.000      0.967 0.00 0.000 1.000 0.000 0.000 0.000
#> SRR1551062     1   0.000      0.982 1.00 0.000 0.000 0.000 0.000 0.000
#> SRR1551063     4   0.000      0.973 0.00 0.000 0.000 1.000 0.000 0.000
#> SRR1551064     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1551065     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1551066     2   0.222      0.881 0.00 0.864 0.000 0.000 0.000 0.136
#> SRR1551067     5   0.000      0.965 0.00 0.000 0.000 0.000 1.000 0.000
#> SRR1551068     3   0.191      0.875 0.00 0.000 0.892 0.000 0.000 0.108
#> SRR1551069     1   0.000      0.982 1.00 0.000 0.000 0.000 0.000 0.000
#> SRR1551070     4   0.000      0.973 0.00 0.000 0.000 1.000 0.000 0.000
#> SRR1551071     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1551072     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1551073     2   0.222      0.881 0.00 0.864 0.000 0.000 0.000 0.136
#> SRR1551074     5   0.273      0.730 0.00 0.000 0.000 0.000 0.808 0.192
#> SRR1551075     3   0.000      0.967 0.00 0.000 1.000 0.000 0.000 0.000
#> SRR1551076     1   0.000      0.982 1.00 0.000 0.000 0.000 0.000 0.000
#> SRR1551077     4   0.000      0.973 0.00 0.000 0.000 1.000 0.000 0.000
#> SRR1551078     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1551079     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1551080     2   0.222      0.881 0.00 0.864 0.000 0.000 0.000 0.136
#> SRR1551081     5   0.000      0.965 0.00 0.000 0.000 0.000 1.000 0.000
#> SRR1551082     3   0.000      0.967 0.00 0.000 1.000 0.000 0.000 0.000
#> SRR1551083     1   0.000      0.982 1.00 0.000 0.000 0.000 0.000 0.000
#> SRR1551084     4   0.000      0.973 0.00 0.000 0.000 1.000 0.000 0.000
#> SRR1551085     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1551086     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1551088     3   0.000      0.967 0.00 0.000 1.000 0.000 0.000 0.000
#> SRR1551087     5   0.000      0.965 0.00 0.000 0.000 0.000 1.000 0.000
#> SRR1551089     1   0.000      0.982 1.00 0.000 0.000 0.000 0.000 0.000
#> SRR1551090     4   0.000      0.973 0.00 0.000 0.000 1.000 0.000 0.000
#> SRR1551091     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1551092     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1551093     2   0.222      0.881 0.00 0.864 0.000 0.000 0.000 0.136
#> SRR1551094     5   0.000      0.965 0.00 0.000 0.000 0.000 1.000 0.000
#> SRR1551095     3   0.000      0.967 0.00 0.000 1.000 0.000 0.000 0.000
#> SRR1551096     1   0.000      0.982 1.00 0.000 0.000 0.000 0.000 0.000
#> SRR1551097     4   0.000      0.973 0.00 0.000 0.000 1.000 0.000 0.000
#> SRR1551098     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1551099     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1551101     3   0.000      0.967 0.00 0.000 1.000 0.000 0.000 0.000
#> SRR1551100     5   0.000      0.965 0.00 0.000 0.000 0.000 1.000 0.000
#> SRR1551102     1   0.000      0.982 1.00 0.000 0.000 0.000 0.000 0.000
#> SRR1551103     4   0.000      0.973 0.00 0.000 0.000 1.000 0.000 0.000
#> SRR1551104     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1551105     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1551106     2   0.222      0.881 0.00 0.864 0.000 0.000 0.000 0.136
#> SRR1551107     5   0.000      0.965 0.00 0.000 0.000 0.000 1.000 0.000
#> SRR1551108     3   0.000      0.967 0.00 0.000 1.000 0.000 0.000 0.000
#> SRR1551109     1   0.000      0.982 1.00 0.000 0.000 0.000 0.000 0.000
#> SRR1551110     4   0.000      0.973 0.00 0.000 0.000 1.000 0.000 0.000
#> SRR1551111     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1551112     2   0.000      0.957 0.00 1.000 0.000 0.000 0.000 0.000
#> SRR1551113     2   0.222      0.881 0.00 0.864 0.000 0.000 0.000 0.136
#> SRR1551114     5   0.000      0.965 0.00 0.000 0.000 0.000 1.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15028 rows and 134 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.878           0.901       0.962          0.471 0.533   0.533
#> 3 3 0.850           0.878       0.934          0.367 0.678   0.463
#> 4 4 0.771           0.813       0.888          0.096 0.914   0.762
#> 5 5 0.894           0.841       0.918          0.102 0.885   0.632
#> 6 6 0.960           0.972       0.958          0.047 0.933   0.706

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1550981     1  0.0938      0.953 0.988 0.012
#> SRR1550982     1  1.0000     -0.036 0.504 0.496
#> SRR1550983     1  0.8081      0.648 0.752 0.248
#> SRR1550984     2  0.7602      0.710 0.220 0.780
#> SRR1550986     1  0.0000      0.962 1.000 0.000
#> SRR1550985     2  0.7139      0.744 0.196 0.804
#> SRR1550988     2  0.0000      0.956 0.000 1.000
#> SRR1550987     1  0.0000      0.962 1.000 0.000
#> SRR1550989     2  0.0000      0.956 0.000 1.000
#> SRR1550990     2  0.0000      0.956 0.000 1.000
#> SRR1550991     2  0.0000      0.956 0.000 1.000
#> SRR1550992     1  0.0000      0.962 1.000 0.000
#> SRR1550994     2  0.0000      0.956 0.000 1.000
#> SRR1550993     1  0.0376      0.960 0.996 0.004
#> SRR1550995     2  0.0000      0.956 0.000 1.000
#> SRR1550996     2  0.0000      0.956 0.000 1.000
#> SRR1550997     1  0.0000      0.962 1.000 0.000
#> SRR1550998     1  0.0000      0.962 1.000 0.000
#> SRR1551000     2  0.0000      0.956 0.000 1.000
#> SRR1550999     2  0.0000      0.956 0.000 1.000
#> SRR1551001     2  0.0000      0.956 0.000 1.000
#> SRR1551002     1  0.0000      0.962 1.000 0.000
#> SRR1551003     1  0.0000      0.962 1.000 0.000
#> SRR1551004     2  0.0000      0.956 0.000 1.000
#> SRR1551006     2  0.0000      0.956 0.000 1.000
#> SRR1551005     2  0.0000      0.956 0.000 1.000
#> SRR1551007     2  0.0000      0.956 0.000 1.000
#> SRR1551008     1  0.0000      0.962 1.000 0.000
#> SRR1551009     1  0.0376      0.960 0.996 0.004
#> SRR1551010     2  0.0000      0.956 0.000 1.000
#> SRR1551012     2  0.0000      0.956 0.000 1.000
#> SRR1551011     2  0.0000      0.956 0.000 1.000
#> SRR1551013     1  0.0000      0.962 1.000 0.000
#> SRR1551014     1  0.0000      0.962 1.000 0.000
#> SRR1551015     2  0.0000      0.956 0.000 1.000
#> SRR1551016     2  0.0000      0.956 0.000 1.000
#> SRR1551017     2  0.0000      0.956 0.000 1.000
#> SRR1551018     2  0.0000      0.956 0.000 1.000
#> SRR1551019     1  0.0000      0.962 1.000 0.000
#> SRR1551021     1  0.0000      0.962 1.000 0.000
#> SRR1551022     2  0.0000      0.956 0.000 1.000
#> SRR1551023     2  0.0000      0.956 0.000 1.000
#> SRR1551020     1  0.0000      0.962 1.000 0.000
#> SRR1551024     2  0.0000      0.956 0.000 1.000
#> SRR1551026     1  0.0000      0.962 1.000 0.000
#> SRR1551025     1  0.0000      0.962 1.000 0.000
#> SRR1551027     1  0.0000      0.962 1.000 0.000
#> SRR1551028     2  0.0000      0.956 0.000 1.000
#> SRR1551029     2  0.0000      0.956 0.000 1.000
#> SRR1551030     2  0.0000      0.956 0.000 1.000
#> SRR1551031     2  0.0000      0.956 0.000 1.000
#> SRR1551032     1  0.0000      0.962 1.000 0.000
#> SRR1551034     1  0.0000      0.962 1.000 0.000
#> SRR1551033     1  0.0000      0.962 1.000 0.000
#> SRR1551035     2  0.0000      0.956 0.000 1.000
#> SRR1551036     2  0.0000      0.956 0.000 1.000
#> SRR1551037     2  0.0000      0.956 0.000 1.000
#> SRR1551038     2  0.0000      0.956 0.000 1.000
#> SRR1551039     2  0.9393      0.461 0.356 0.644
#> SRR1551040     1  0.0000      0.962 1.000 0.000
#> SRR1551041     1  0.0000      0.962 1.000 0.000
#> SRR1551042     2  0.0000      0.956 0.000 1.000
#> SRR1551043     2  0.0000      0.956 0.000 1.000
#> SRR1551044     2  0.0000      0.956 0.000 1.000
#> SRR1551045     2  0.0000      0.956 0.000 1.000
#> SRR1551046     1  0.9491      0.391 0.632 0.368
#> SRR1551047     1  0.0000      0.962 1.000 0.000
#> SRR1551048     1  0.0376      0.960 0.996 0.004
#> SRR1551049     2  0.0000      0.956 0.000 1.000
#> SRR1551050     2  0.0000      0.956 0.000 1.000
#> SRR1551051     2  0.0000      0.956 0.000 1.000
#> SRR1551052     2  0.0000      0.956 0.000 1.000
#> SRR1551053     2  0.6887      0.760 0.184 0.816
#> SRR1551054     1  0.0000      0.962 1.000 0.000
#> SRR1551055     1  0.0376      0.960 0.996 0.004
#> SRR1551056     2  0.0000      0.956 0.000 1.000
#> SRR1551057     2  0.0000      0.956 0.000 1.000
#> SRR1551058     2  0.0000      0.956 0.000 1.000
#> SRR1551059     2  0.0000      0.956 0.000 1.000
#> SRR1551060     2  0.9795      0.310 0.416 0.584
#> SRR1551061     1  0.0000      0.962 1.000 0.000
#> SRR1551062     1  0.0376      0.960 0.996 0.004
#> SRR1551063     2  0.0000      0.956 0.000 1.000
#> SRR1551064     2  0.0000      0.956 0.000 1.000
#> SRR1551065     2  0.0000      0.956 0.000 1.000
#> SRR1551066     2  0.0000      0.956 0.000 1.000
#> SRR1551067     2  0.9754      0.332 0.408 0.592
#> SRR1551068     1  0.0000      0.962 1.000 0.000
#> SRR1551069     1  0.0000      0.962 1.000 0.000
#> SRR1551070     2  0.0000      0.956 0.000 1.000
#> SRR1551071     2  0.0000      0.956 0.000 1.000
#> SRR1551072     2  0.0000      0.956 0.000 1.000
#> SRR1551073     2  0.0000      0.956 0.000 1.000
#> SRR1551074     1  0.4298      0.875 0.912 0.088
#> SRR1551075     1  0.0000      0.962 1.000 0.000
#> SRR1551076     1  0.0000      0.962 1.000 0.000
#> SRR1551077     2  0.0000      0.956 0.000 1.000
#> SRR1551078     2  0.0000      0.956 0.000 1.000
#> SRR1551079     2  0.0000      0.956 0.000 1.000
#> SRR1551080     2  0.0000      0.956 0.000 1.000
#> SRR1551081     2  0.4690      0.860 0.100 0.900
#> SRR1551082     1  0.0000      0.962 1.000 0.000
#> SRR1551083     1  0.0376      0.960 0.996 0.004
#> SRR1551084     2  0.0000      0.956 0.000 1.000
#> SRR1551085     2  0.0000      0.956 0.000 1.000
#> SRR1551086     2  0.0000      0.956 0.000 1.000
#> SRR1551088     1  0.0000      0.962 1.000 0.000
#> SRR1551087     2  0.9944      0.185 0.456 0.544
#> SRR1551089     1  0.0000      0.962 1.000 0.000
#> SRR1551090     2  0.0000      0.956 0.000 1.000
#> SRR1551091     2  0.0000      0.956 0.000 1.000
#> SRR1551092     2  0.0000      0.956 0.000 1.000
#> SRR1551093     2  0.0000      0.956 0.000 1.000
#> SRR1551094     2  0.9850      0.275 0.428 0.572
#> SRR1551095     1  0.0000      0.962 1.000 0.000
#> SRR1551096     1  0.0376      0.960 0.996 0.004
#> SRR1551097     2  0.0000      0.956 0.000 1.000
#> SRR1551098     2  0.0000      0.956 0.000 1.000
#> SRR1551099     2  0.0000      0.956 0.000 1.000
#> SRR1551101     1  0.0000      0.962 1.000 0.000
#> SRR1551100     2  0.8909      0.561 0.308 0.692
#> SRR1551102     1  0.0376      0.960 0.996 0.004
#> SRR1551103     2  0.0000      0.956 0.000 1.000
#> SRR1551104     2  0.0000      0.956 0.000 1.000
#> SRR1551105     2  0.0000      0.956 0.000 1.000
#> SRR1551106     2  0.0000      0.956 0.000 1.000
#> SRR1551107     2  0.9635      0.385 0.388 0.612
#> SRR1551108     1  0.0000      0.962 1.000 0.000
#> SRR1551109     1  0.0000      0.962 1.000 0.000
#> SRR1551110     2  0.0000      0.956 0.000 1.000
#> SRR1551111     2  0.0000      0.956 0.000 1.000
#> SRR1551112     2  0.0000      0.956 0.000 1.000
#> SRR1551113     2  0.0000      0.956 0.000 1.000
#> SRR1551114     1  0.9795      0.255 0.584 0.416

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1550981     1  0.0237     0.9417 0.996 0.000 0.004
#> SRR1550982     1  0.2793     0.9126 0.928 0.028 0.044
#> SRR1550983     1  0.1753     0.9239 0.952 0.000 0.048
#> SRR1550984     2  0.6302     0.0319 0.480 0.520 0.000
#> SRR1550986     1  0.0000     0.9428 1.000 0.000 0.000
#> SRR1550985     2  0.6154     0.2726 0.408 0.592 0.000
#> SRR1550988     3  0.1753     0.8454 0.000 0.048 0.952
#> SRR1550987     3  0.4974     0.7736 0.236 0.000 0.764
#> SRR1550989     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1550990     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1550991     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1550992     1  0.0000     0.9428 1.000 0.000 0.000
#> SRR1550994     3  0.1753     0.8454 0.000 0.048 0.952
#> SRR1550993     3  0.4654     0.8005 0.208 0.000 0.792
#> SRR1550995     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1550996     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1550997     1  0.0000     0.9428 1.000 0.000 0.000
#> SRR1550998     3  0.5058     0.7645 0.244 0.000 0.756
#> SRR1551000     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1550999     3  0.1753     0.8454 0.000 0.048 0.952
#> SRR1551001     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551002     1  0.0000     0.9428 1.000 0.000 0.000
#> SRR1551003     3  0.4654     0.8005 0.208 0.000 0.792
#> SRR1551004     3  0.1753     0.8454 0.000 0.048 0.952
#> SRR1551006     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551005     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551007     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551008     1  0.0000     0.9428 1.000 0.000 0.000
#> SRR1551009     3  0.4654     0.8005 0.208 0.000 0.792
#> SRR1551010     3  0.1753     0.8454 0.000 0.048 0.952
#> SRR1551012     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551011     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551013     1  0.0000     0.9428 1.000 0.000 0.000
#> SRR1551014     3  0.6062     0.5135 0.384 0.000 0.616
#> SRR1551015     3  0.1753     0.8454 0.000 0.048 0.952
#> SRR1551016     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551017     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551018     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551019     1  0.1643     0.9258 0.956 0.000 0.044
#> SRR1551021     1  0.6308    -0.1680 0.508 0.000 0.492
#> SRR1551022     3  0.1753     0.8454 0.000 0.048 0.952
#> SRR1551023     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551020     1  0.0000     0.9428 1.000 0.000 0.000
#> SRR1551024     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551026     1  0.0000     0.9428 1.000 0.000 0.000
#> SRR1551025     1  0.0424     0.9405 0.992 0.000 0.008
#> SRR1551027     3  0.5859     0.6016 0.344 0.000 0.656
#> SRR1551028     3  0.1753     0.8454 0.000 0.048 0.952
#> SRR1551029     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551030     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551031     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551032     1  0.1753     0.9239 0.952 0.000 0.048
#> SRR1551034     3  0.4796     0.7904 0.220 0.000 0.780
#> SRR1551033     1  0.0000     0.9428 1.000 0.000 0.000
#> SRR1551035     3  0.1753     0.8454 0.000 0.048 0.952
#> SRR1551036     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551037     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551038     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551039     1  0.5036     0.7485 0.808 0.172 0.020
#> SRR1551040     1  0.0000     0.9428 1.000 0.000 0.000
#> SRR1551041     3  0.5363     0.7205 0.276 0.000 0.724
#> SRR1551042     3  0.1753     0.8454 0.000 0.048 0.952
#> SRR1551043     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551044     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551045     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551046     1  0.1964     0.9190 0.944 0.000 0.056
#> SRR1551047     1  0.0000     0.9428 1.000 0.000 0.000
#> SRR1551048     3  0.4654     0.8005 0.208 0.000 0.792
#> SRR1551049     3  0.1753     0.8454 0.000 0.048 0.952
#> SRR1551050     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551051     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551052     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551053     2  0.5968     0.3894 0.364 0.636 0.000
#> SRR1551054     1  0.0000     0.9428 1.000 0.000 0.000
#> SRR1551055     3  0.4605     0.8022 0.204 0.000 0.796
#> SRR1551056     3  0.1753     0.8454 0.000 0.048 0.952
#> SRR1551057     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551058     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551059     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551060     1  0.3412     0.8191 0.876 0.124 0.000
#> SRR1551061     1  0.0000     0.9428 1.000 0.000 0.000
#> SRR1551062     3  0.4654     0.8005 0.208 0.000 0.792
#> SRR1551063     3  0.1753     0.8454 0.000 0.048 0.952
#> SRR1551064     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551065     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551066     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551067     1  0.2550     0.9153 0.932 0.012 0.056
#> SRR1551068     1  0.0000     0.9428 1.000 0.000 0.000
#> SRR1551069     3  0.4654     0.8005 0.208 0.000 0.792
#> SRR1551070     3  0.1753     0.8454 0.000 0.048 0.952
#> SRR1551071     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551072     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551073     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551074     1  0.1860     0.9216 0.948 0.000 0.052
#> SRR1551075     1  0.0000     0.9428 1.000 0.000 0.000
#> SRR1551076     3  0.4796     0.7904 0.220 0.000 0.780
#> SRR1551077     3  0.1753     0.8454 0.000 0.048 0.952
#> SRR1551078     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551079     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551080     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551081     2  0.6750     0.4120 0.336 0.640 0.024
#> SRR1551082     1  0.0000     0.9428 1.000 0.000 0.000
#> SRR1551083     3  0.4605     0.8022 0.204 0.000 0.796
#> SRR1551084     3  0.1753     0.8454 0.000 0.048 0.952
#> SRR1551085     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551086     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551088     1  0.0000     0.9428 1.000 0.000 0.000
#> SRR1551087     1  0.2384     0.9171 0.936 0.008 0.056
#> SRR1551089     3  0.4750     0.7940 0.216 0.000 0.784
#> SRR1551090     3  0.1753     0.8454 0.000 0.048 0.952
#> SRR1551091     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551092     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551093     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551094     1  0.2663     0.9156 0.932 0.024 0.044
#> SRR1551095     1  0.0000     0.9428 1.000 0.000 0.000
#> SRR1551096     3  0.4605     0.8022 0.204 0.000 0.796
#> SRR1551097     3  0.1753     0.8454 0.000 0.048 0.952
#> SRR1551098     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551099     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551101     1  0.0000     0.9428 1.000 0.000 0.000
#> SRR1551100     1  0.5678     0.5449 0.684 0.316 0.000
#> SRR1551102     3  0.5098     0.7596 0.248 0.000 0.752
#> SRR1551103     3  0.1753     0.8454 0.000 0.048 0.952
#> SRR1551104     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551105     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551106     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551107     1  0.3899     0.8782 0.888 0.056 0.056
#> SRR1551108     1  0.0000     0.9428 1.000 0.000 0.000
#> SRR1551109     3  0.4654     0.8005 0.208 0.000 0.792
#> SRR1551110     3  0.1753     0.8454 0.000 0.048 0.952
#> SRR1551111     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551112     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551113     2  0.0000     0.9686 0.000 1.000 0.000
#> SRR1551114     1  0.0892     0.9309 0.980 0.020 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1550981     3  0.1118    0.81955 0.036 0.000 0.964 0.000
#> SRR1550982     3  0.7053    0.16427 0.356 0.132 0.512 0.000
#> SRR1550983     1  0.5158    0.18889 0.524 0.004 0.472 0.000
#> SRR1550984     2  0.5105    0.24475 0.004 0.564 0.432 0.000
#> SRR1550986     3  0.0000    0.84582 0.000 0.000 1.000 0.000
#> SRR1550985     2  0.6025    0.50795 0.096 0.668 0.236 0.000
#> SRR1550988     4  0.0000    1.00000 0.000 0.000 0.000 1.000
#> SRR1550987     1  0.4542    0.88792 0.804 0.000 0.088 0.108
#> SRR1550989     2  0.0000    0.90993 0.000 1.000 0.000 0.000
#> SRR1550990     2  0.0000    0.90993 0.000 1.000 0.000 0.000
#> SRR1550991     2  0.3569    0.84362 0.196 0.804 0.000 0.000
#> SRR1550992     3  0.0000    0.84582 0.000 0.000 1.000 0.000
#> SRR1550994     4  0.0000    1.00000 0.000 0.000 0.000 1.000
#> SRR1550993     1  0.4499    0.88639 0.804 0.000 0.072 0.124
#> SRR1550995     2  0.0000    0.90993 0.000 1.000 0.000 0.000
#> SRR1550996     2  0.0000    0.90993 0.000 1.000 0.000 0.000
#> SRR1550997     3  0.0000    0.84582 0.000 0.000 1.000 0.000
#> SRR1550998     1  0.4547    0.88647 0.804 0.000 0.092 0.104
#> SRR1551000     2  0.0000    0.90993 0.000 1.000 0.000 0.000
#> SRR1550999     4  0.0000    1.00000 0.000 0.000 0.000 1.000
#> SRR1551001     2  0.0000    0.90993 0.000 1.000 0.000 0.000
#> SRR1551002     3  0.0000    0.84582 0.000 0.000 1.000 0.000
#> SRR1551003     1  0.4513    0.88788 0.804 0.000 0.076 0.120
#> SRR1551004     4  0.0000    1.00000 0.000 0.000 0.000 1.000
#> SRR1551006     2  0.0188    0.90909 0.004 0.996 0.000 0.000
#> SRR1551005     2  0.0000    0.90993 0.000 1.000 0.000 0.000
#> SRR1551007     2  0.3569    0.84362 0.196 0.804 0.000 0.000
#> SRR1551008     3  0.0000    0.84582 0.000 0.000 1.000 0.000
#> SRR1551009     1  0.4499    0.88639 0.804 0.000 0.072 0.124
#> SRR1551010     4  0.0000    1.00000 0.000 0.000 0.000 1.000
#> SRR1551012     2  0.0000    0.90993 0.000 1.000 0.000 0.000
#> SRR1551011     2  0.0000    0.90993 0.000 1.000 0.000 0.000
#> SRR1551013     3  0.0000    0.84582 0.000 0.000 1.000 0.000
#> SRR1551014     1  0.4525    0.86901 0.804 0.000 0.116 0.080
#> SRR1551015     4  0.0000    1.00000 0.000 0.000 0.000 1.000
#> SRR1551016     2  0.0000    0.90993 0.000 1.000 0.000 0.000
#> SRR1551017     2  0.3569    0.84362 0.196 0.804 0.000 0.000
#> SRR1551018     2  0.3569    0.84362 0.196 0.804 0.000 0.000
#> SRR1551019     3  0.4948    0.08301 0.440 0.000 0.560 0.000
#> SRR1551021     1  0.4462    0.85194 0.804 0.000 0.132 0.064
#> SRR1551022     4  0.0000    1.00000 0.000 0.000 0.000 1.000
#> SRR1551023     2  0.0000    0.90993 0.000 1.000 0.000 0.000
#> SRR1551020     3  0.0000    0.84582 0.000 0.000 1.000 0.000
#> SRR1551024     2  0.0000    0.90993 0.000 1.000 0.000 0.000
#> SRR1551026     3  0.0000    0.84582 0.000 0.000 1.000 0.000
#> SRR1551025     3  0.2704    0.73648 0.124 0.000 0.876 0.000
#> SRR1551027     1  0.4535    0.87269 0.804 0.000 0.112 0.084
#> SRR1551028     4  0.0000    1.00000 0.000 0.000 0.000 1.000
#> SRR1551029     2  0.0000    0.90993 0.000 1.000 0.000 0.000
#> SRR1551030     2  0.0592    0.90577 0.016 0.984 0.000 0.000
#> SRR1551031     2  0.3569    0.84362 0.196 0.804 0.000 0.000
#> SRR1551032     3  0.4981   -0.00902 0.464 0.000 0.536 0.000
#> SRR1551034     1  0.4535    0.88842 0.804 0.000 0.084 0.112
#> SRR1551033     3  0.0000    0.84582 0.000 0.000 1.000 0.000
#> SRR1551035     4  0.0000    1.00000 0.000 0.000 0.000 1.000
#> SRR1551036     2  0.0000    0.90993 0.000 1.000 0.000 0.000
#> SRR1551037     2  0.0188    0.90909 0.004 0.996 0.000 0.000
#> SRR1551038     2  0.3569    0.84362 0.196 0.804 0.000 0.000
#> SRR1551039     3  0.7574    0.22445 0.248 0.268 0.484 0.000
#> SRR1551040     3  0.0000    0.84582 0.000 0.000 1.000 0.000
#> SRR1551041     1  0.4547    0.87898 0.804 0.000 0.104 0.092
#> SRR1551042     4  0.0000    1.00000 0.000 0.000 0.000 1.000
#> SRR1551043     2  0.0000    0.90993 0.000 1.000 0.000 0.000
#> SRR1551044     2  0.0188    0.90909 0.004 0.996 0.000 0.000
#> SRR1551045     2  0.3569    0.84362 0.196 0.804 0.000 0.000
#> SRR1551046     1  0.4964    0.46227 0.616 0.004 0.380 0.000
#> SRR1551047     3  0.0000    0.84582 0.000 0.000 1.000 0.000
#> SRR1551048     1  0.4499    0.88639 0.804 0.000 0.072 0.124
#> SRR1551049     4  0.0000    1.00000 0.000 0.000 0.000 1.000
#> SRR1551050     2  0.0000    0.90993 0.000 1.000 0.000 0.000
#> SRR1551051     2  0.0000    0.90993 0.000 1.000 0.000 0.000
#> SRR1551052     2  0.3569    0.84362 0.196 0.804 0.000 0.000
#> SRR1551053     2  0.4679    0.43515 0.000 0.648 0.352 0.000
#> SRR1551054     3  0.0000    0.84582 0.000 0.000 1.000 0.000
#> SRR1551055     1  0.4482    0.88258 0.804 0.000 0.068 0.128
#> SRR1551056     4  0.0000    1.00000 0.000 0.000 0.000 1.000
#> SRR1551057     2  0.0000    0.90993 0.000 1.000 0.000 0.000
#> SRR1551058     2  0.2921    0.86424 0.140 0.860 0.000 0.000
#> SRR1551059     2  0.3569    0.84362 0.196 0.804 0.000 0.000
#> SRR1551060     3  0.7093    0.34632 0.172 0.272 0.556 0.000
#> SRR1551061     3  0.0000    0.84582 0.000 0.000 1.000 0.000
#> SRR1551062     1  0.4499    0.88639 0.804 0.000 0.072 0.124
#> SRR1551063     4  0.0000    1.00000 0.000 0.000 0.000 1.000
#> SRR1551064     2  0.0000    0.90993 0.000 1.000 0.000 0.000
#> SRR1551065     2  0.0000    0.90993 0.000 1.000 0.000 0.000
#> SRR1551066     2  0.3569    0.84362 0.196 0.804 0.000 0.000
#> SRR1551067     1  0.5465    0.41276 0.588 0.020 0.392 0.000
#> SRR1551068     3  0.0000    0.84582 0.000 0.000 1.000 0.000
#> SRR1551069     1  0.4499    0.88639 0.804 0.000 0.072 0.124
#> SRR1551070     4  0.0000    1.00000 0.000 0.000 0.000 1.000
#> SRR1551071     2  0.0000    0.90993 0.000 1.000 0.000 0.000
#> SRR1551072     2  0.0000    0.90993 0.000 1.000 0.000 0.000
#> SRR1551073     2  0.3569    0.84362 0.196 0.804 0.000 0.000
#> SRR1551074     3  0.4985   -0.02557 0.468 0.000 0.532 0.000
#> SRR1551075     3  0.0000    0.84582 0.000 0.000 1.000 0.000
#> SRR1551076     1  0.4542    0.88792 0.804 0.000 0.088 0.108
#> SRR1551077     4  0.0000    1.00000 0.000 0.000 0.000 1.000
#> SRR1551078     2  0.0000    0.90993 0.000 1.000 0.000 0.000
#> SRR1551079     2  0.3356    0.85126 0.176 0.824 0.000 0.000
#> SRR1551080     2  0.3569    0.84362 0.196 0.804 0.000 0.000
#> SRR1551081     2  0.7458    0.11630 0.288 0.500 0.212 0.000
#> SRR1551082     3  0.0000    0.84582 0.000 0.000 1.000 0.000
#> SRR1551083     1  0.4482    0.88258 0.804 0.000 0.068 0.128
#> SRR1551084     4  0.0000    1.00000 0.000 0.000 0.000 1.000
#> SRR1551085     2  0.0000    0.90993 0.000 1.000 0.000 0.000
#> SRR1551086     2  0.0188    0.90909 0.004 0.996 0.000 0.000
#> SRR1551088     3  0.0000    0.84582 0.000 0.000 1.000 0.000
#> SRR1551087     1  0.5408    0.37539 0.576 0.016 0.408 0.000
#> SRR1551089     1  0.4525    0.88841 0.804 0.000 0.080 0.116
#> SRR1551090     4  0.0000    1.00000 0.000 0.000 0.000 1.000
#> SRR1551091     2  0.0000    0.90993 0.000 1.000 0.000 0.000
#> SRR1551092     2  0.0000    0.90993 0.000 1.000 0.000 0.000
#> SRR1551093     2  0.3569    0.84362 0.196 0.804 0.000 0.000
#> SRR1551094     3  0.6615    0.08316 0.404 0.084 0.512 0.000
#> SRR1551095     3  0.0000    0.84582 0.000 0.000 1.000 0.000
#> SRR1551096     1  0.4482    0.88258 0.804 0.000 0.068 0.128
#> SRR1551097     4  0.0000    1.00000 0.000 0.000 0.000 1.000
#> SRR1551098     2  0.0000    0.90993 0.000 1.000 0.000 0.000
#> SRR1551099     2  0.0000    0.90993 0.000 1.000 0.000 0.000
#> SRR1551101     3  0.0000    0.84582 0.000 0.000 1.000 0.000
#> SRR1551100     2  0.7188   -0.15712 0.136 0.436 0.428 0.000
#> SRR1551102     1  0.4547    0.88647 0.804 0.000 0.092 0.104
#> SRR1551103     4  0.0000    1.00000 0.000 0.000 0.000 1.000
#> SRR1551104     2  0.0000    0.90993 0.000 1.000 0.000 0.000
#> SRR1551105     2  0.0000    0.90993 0.000 1.000 0.000 0.000
#> SRR1551106     2  0.3569    0.84362 0.196 0.804 0.000 0.000
#> SRR1551107     1  0.5807    0.54529 0.636 0.052 0.312 0.000
#> SRR1551108     3  0.0000    0.84582 0.000 0.000 1.000 0.000
#> SRR1551109     1  0.4513    0.88788 0.804 0.000 0.076 0.120
#> SRR1551110     4  0.0000    1.00000 0.000 0.000 0.000 1.000
#> SRR1551111     2  0.0000    0.90993 0.000 1.000 0.000 0.000
#> SRR1551112     2  0.0000    0.90993 0.000 1.000 0.000 0.000
#> SRR1551113     2  0.3569    0.84362 0.196 0.804 0.000 0.000
#> SRR1551114     3  0.3611    0.73909 0.080 0.060 0.860 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1550981     3  0.2597     0.8006 0.024 0.000 0.884 0.000 0.092
#> SRR1550982     2  0.6527     0.1757 0.040 0.532 0.336 0.000 0.092
#> SRR1550983     1  0.7333     0.0977 0.432 0.100 0.376 0.000 0.092
#> SRR1550984     3  0.6107     0.2960 0.012 0.384 0.512 0.000 0.092
#> SRR1550986     3  0.0000     0.8764 0.000 0.000 1.000 0.000 0.000
#> SRR1550985     2  0.4690     0.6458 0.004 0.744 0.160 0.000 0.092
#> SRR1550988     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000
#> SRR1550987     1  0.0162     0.8425 0.996 0.000 0.000 0.004 0.000
#> SRR1550989     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> SRR1550990     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> SRR1550991     5  0.1908     0.9772 0.000 0.092 0.000 0.000 0.908
#> SRR1550992     3  0.0000     0.8764 0.000 0.000 1.000 0.000 0.000
#> SRR1550994     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000
#> SRR1550993     1  0.0162     0.8425 0.996 0.000 0.000 0.004 0.000
#> SRR1550995     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> SRR1550996     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> SRR1550997     3  0.0000     0.8764 0.000 0.000 1.000 0.000 0.000
#> SRR1550998     1  0.0162     0.8425 0.996 0.000 0.000 0.004 0.000
#> SRR1551000     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> SRR1550999     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000
#> SRR1551001     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> SRR1551002     3  0.0000     0.8764 0.000 0.000 1.000 0.000 0.000
#> SRR1551003     1  0.0162     0.8425 0.996 0.000 0.000 0.004 0.000
#> SRR1551004     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000
#> SRR1551006     2  0.0794     0.9245 0.000 0.972 0.000 0.000 0.028
#> SRR1551005     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> SRR1551007     5  0.1908     0.9772 0.000 0.092 0.000 0.000 0.908
#> SRR1551008     3  0.0000     0.8764 0.000 0.000 1.000 0.000 0.000
#> SRR1551009     1  0.0162     0.8425 0.996 0.000 0.000 0.004 0.000
#> SRR1551010     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000
#> SRR1551012     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> SRR1551011     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> SRR1551013     3  0.0000     0.8764 0.000 0.000 1.000 0.000 0.000
#> SRR1551014     1  0.0162     0.8425 0.996 0.000 0.000 0.004 0.000
#> SRR1551015     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000
#> SRR1551016     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> SRR1551017     5  0.1908     0.9772 0.000 0.092 0.000 0.000 0.908
#> SRR1551018     5  0.1908     0.9772 0.000 0.092 0.000 0.000 0.908
#> SRR1551019     3  0.5807     0.0249 0.424 0.000 0.484 0.000 0.092
#> SRR1551021     1  0.0162     0.8425 0.996 0.000 0.000 0.004 0.000
#> SRR1551022     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000
#> SRR1551023     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> SRR1551020     3  0.0000     0.8764 0.000 0.000 1.000 0.000 0.000
#> SRR1551024     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> SRR1551026     3  0.0000     0.8764 0.000 0.000 1.000 0.000 0.000
#> SRR1551025     3  0.3648     0.7456 0.084 0.000 0.824 0.000 0.092
#> SRR1551027     1  0.0162     0.8425 0.996 0.000 0.000 0.004 0.000
#> SRR1551028     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000
#> SRR1551029     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> SRR1551030     2  0.1851     0.8556 0.000 0.912 0.000 0.000 0.088
#> SRR1551031     5  0.1908     0.9772 0.000 0.092 0.000 0.000 0.908
#> SRR1551032     1  0.5812     0.0925 0.476 0.000 0.432 0.000 0.092
#> SRR1551034     1  0.0162     0.8425 0.996 0.000 0.000 0.004 0.000
#> SRR1551033     3  0.0000     0.8764 0.000 0.000 1.000 0.000 0.000
#> SRR1551035     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000
#> SRR1551036     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> SRR1551037     2  0.0162     0.9476 0.000 0.996 0.000 0.000 0.004
#> SRR1551038     5  0.1908     0.9772 0.000 0.092 0.000 0.000 0.908
#> SRR1551039     3  0.7552     0.2797 0.132 0.340 0.436 0.000 0.092
#> SRR1551040     3  0.0000     0.8764 0.000 0.000 1.000 0.000 0.000
#> SRR1551041     1  0.0162     0.8425 0.996 0.000 0.000 0.004 0.000
#> SRR1551042     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000
#> SRR1551043     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> SRR1551044     2  0.0162     0.9476 0.000 0.996 0.000 0.000 0.004
#> SRR1551045     5  0.1908     0.9772 0.000 0.092 0.000 0.000 0.908
#> SRR1551046     1  0.5680     0.4776 0.632 0.012 0.264 0.000 0.092
#> SRR1551047     3  0.0000     0.8764 0.000 0.000 1.000 0.000 0.000
#> SRR1551048     1  0.0162     0.8425 0.996 0.000 0.000 0.004 0.000
#> SRR1551049     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000
#> SRR1551050     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> SRR1551051     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> SRR1551052     5  0.1908     0.9772 0.000 0.092 0.000 0.000 0.908
#> SRR1551053     2  0.5583     0.3868 0.004 0.616 0.288 0.000 0.092
#> SRR1551054     3  0.0000     0.8764 0.000 0.000 1.000 0.000 0.000
#> SRR1551055     1  0.0162     0.8425 0.996 0.000 0.000 0.004 0.000
#> SRR1551056     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000
#> SRR1551057     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> SRR1551058     5  0.3837     0.6968 0.000 0.308 0.000 0.000 0.692
#> SRR1551059     5  0.1908     0.9772 0.000 0.092 0.000 0.000 0.908
#> SRR1551060     3  0.5982     0.3928 0.288 0.020 0.600 0.000 0.092
#> SRR1551061     3  0.0000     0.8764 0.000 0.000 1.000 0.000 0.000
#> SRR1551062     1  0.0162     0.8425 0.996 0.000 0.000 0.004 0.000
#> SRR1551063     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000
#> SRR1551064     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> SRR1551065     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> SRR1551066     5  0.1908     0.9772 0.000 0.092 0.000 0.000 0.908
#> SRR1551067     1  0.5819     0.4299 0.604 0.012 0.292 0.000 0.092
#> SRR1551068     3  0.0000     0.8764 0.000 0.000 1.000 0.000 0.000
#> SRR1551069     1  0.0162     0.8425 0.996 0.000 0.000 0.004 0.000
#> SRR1551070     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000
#> SRR1551071     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> SRR1551072     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> SRR1551073     5  0.1908     0.9772 0.000 0.092 0.000 0.000 0.908
#> SRR1551074     1  0.5814     0.0783 0.472 0.000 0.436 0.000 0.092
#> SRR1551075     3  0.0000     0.8764 0.000 0.000 1.000 0.000 0.000
#> SRR1551076     1  0.0162     0.8425 0.996 0.000 0.000 0.004 0.000
#> SRR1551077     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000
#> SRR1551078     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> SRR1551079     5  0.2891     0.8921 0.000 0.176 0.000 0.000 0.824
#> SRR1551080     5  0.1908     0.9772 0.000 0.092 0.000 0.000 0.908
#> SRR1551081     1  0.8032     0.1022 0.348 0.324 0.236 0.000 0.092
#> SRR1551082     3  0.0000     0.8764 0.000 0.000 1.000 0.000 0.000
#> SRR1551083     1  0.0162     0.8425 0.996 0.000 0.000 0.004 0.000
#> SRR1551084     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000
#> SRR1551085     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> SRR1551086     2  0.0290     0.9440 0.000 0.992 0.000 0.000 0.008
#> SRR1551088     3  0.0000     0.8764 0.000 0.000 1.000 0.000 0.000
#> SRR1551087     1  0.5671     0.4063 0.596 0.004 0.308 0.000 0.092
#> SRR1551089     1  0.0162     0.8425 0.996 0.000 0.000 0.004 0.000
#> SRR1551090     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000
#> SRR1551091     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> SRR1551092     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> SRR1551093     5  0.1908     0.9772 0.000 0.092 0.000 0.000 0.908
#> SRR1551094     3  0.7325     0.0540 0.368 0.100 0.440 0.000 0.092
#> SRR1551095     3  0.0000     0.8764 0.000 0.000 1.000 0.000 0.000
#> SRR1551096     1  0.0162     0.8425 0.996 0.000 0.000 0.004 0.000
#> SRR1551097     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000
#> SRR1551098     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> SRR1551099     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> SRR1551101     3  0.0000     0.8764 0.000 0.000 1.000 0.000 0.000
#> SRR1551100     2  0.5544     0.4063 0.004 0.624 0.280 0.000 0.092
#> SRR1551102     1  0.0162     0.8425 0.996 0.000 0.000 0.004 0.000
#> SRR1551103     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000
#> SRR1551104     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> SRR1551105     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> SRR1551106     5  0.1908     0.9772 0.000 0.092 0.000 0.000 0.908
#> SRR1551107     1  0.7454     0.3674 0.516 0.192 0.200 0.000 0.092
#> SRR1551108     3  0.0000     0.8764 0.000 0.000 1.000 0.000 0.000
#> SRR1551109     1  0.0162     0.8425 0.996 0.000 0.000 0.004 0.000
#> SRR1551110     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000
#> SRR1551111     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> SRR1551112     2  0.0000     0.9506 0.000 1.000 0.000 0.000 0.000
#> SRR1551113     5  0.1908     0.9772 0.000 0.092 0.000 0.000 0.908
#> SRR1551114     3  0.4779     0.7088 0.036 0.100 0.772 0.000 0.092

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3 p4    p5    p6
#> SRR1550981     5  0.3949      0.934 0.152 0.008 0.068  0 0.772 0.000
#> SRR1550982     5  0.3867      0.939 0.152 0.044 0.020  0 0.784 0.000
#> SRR1550983     5  0.3736      0.948 0.168 0.024 0.024  0 0.784 0.000
#> SRR1550984     5  0.3892      0.946 0.152 0.032 0.032  0 0.784 0.000
#> SRR1550986     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1550985     5  0.3904      0.865 0.096 0.112 0.008  0 0.784 0.000
#> SRR1550988     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1550987     1  0.0146      0.998 0.996 0.000 0.000  0 0.004 0.000
#> SRR1550989     2  0.0363      0.987 0.000 0.988 0.000  0 0.012 0.000
#> SRR1550990     2  0.0363      0.980 0.000 0.988 0.000  0 0.012 0.000
#> SRR1550991     6  0.0000      0.952 0.000 0.000 0.000  0 0.000 1.000
#> SRR1550992     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1550994     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1550993     1  0.0000      0.999 1.000 0.000 0.000  0 0.000 0.000
#> SRR1550995     2  0.0458      0.986 0.000 0.984 0.000  0 0.016 0.000
#> SRR1550996     2  0.0363      0.987 0.000 0.988 0.000  0 0.012 0.000
#> SRR1550997     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1550998     1  0.0146      0.998 0.996 0.000 0.000  0 0.004 0.000
#> SRR1551000     2  0.0363      0.987 0.000 0.988 0.000  0 0.012 0.000
#> SRR1550999     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551001     2  0.0260      0.984 0.000 0.992 0.000  0 0.008 0.000
#> SRR1551002     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551003     1  0.0000      0.999 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551004     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551006     2  0.0891      0.966 0.000 0.968 0.000  0 0.008 0.024
#> SRR1551005     2  0.0458      0.986 0.000 0.984 0.000  0 0.016 0.000
#> SRR1551007     6  0.0000      0.952 0.000 0.000 0.000  0 0.000 1.000
#> SRR1551008     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551009     1  0.0146      0.998 0.996 0.000 0.000  0 0.004 0.000
#> SRR1551010     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551012     2  0.0260      0.982 0.000 0.992 0.000  0 0.008 0.000
#> SRR1551011     2  0.0363      0.987 0.000 0.988 0.000  0 0.012 0.000
#> SRR1551013     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551014     1  0.0146      0.998 0.996 0.000 0.000  0 0.004 0.000
#> SRR1551015     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551016     2  0.0363      0.987 0.000 0.988 0.000  0 0.012 0.000
#> SRR1551017     6  0.0622      0.939 0.000 0.012 0.000  0 0.008 0.980
#> SRR1551018     6  0.0000      0.952 0.000 0.000 0.000  0 0.000 1.000
#> SRR1551019     5  0.3771      0.930 0.180 0.000 0.056  0 0.764 0.000
#> SRR1551021     1  0.0146      0.996 0.996 0.000 0.000  0 0.004 0.000
#> SRR1551022     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551023     2  0.0458      0.986 0.000 0.984 0.000  0 0.016 0.000
#> SRR1551020     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551024     2  0.0405      0.986 0.000 0.988 0.004  0 0.008 0.000
#> SRR1551026     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551025     5  0.4140      0.903 0.152 0.000 0.104  0 0.744 0.000
#> SRR1551027     1  0.0146      0.998 0.996 0.000 0.000  0 0.004 0.000
#> SRR1551028     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551029     2  0.0458      0.986 0.000 0.984 0.000  0 0.016 0.000
#> SRR1551030     2  0.2070      0.880 0.000 0.892 0.000  0 0.008 0.100
#> SRR1551031     6  0.0000      0.952 0.000 0.000 0.000  0 0.000 1.000
#> SRR1551032     5  0.3927      0.924 0.172 0.000 0.072  0 0.756 0.000
#> SRR1551034     1  0.0000      0.999 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551033     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551035     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551036     2  0.0458      0.986 0.000 0.984 0.000  0 0.016 0.000
#> SRR1551037     2  0.0405      0.980 0.000 0.988 0.000  0 0.008 0.004
#> SRR1551038     6  0.0000      0.952 0.000 0.000 0.000  0 0.000 1.000
#> SRR1551039     5  0.3816      0.946 0.160 0.032 0.024  0 0.784 0.000
#> SRR1551040     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551041     1  0.0146      0.998 0.996 0.000 0.000  0 0.004 0.000
#> SRR1551042     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551043     2  0.0458      0.986 0.000 0.984 0.000  0 0.016 0.000
#> SRR1551044     2  0.0260      0.984 0.000 0.992 0.000  0 0.008 0.000
#> SRR1551045     6  0.0000      0.952 0.000 0.000 0.000  0 0.000 1.000
#> SRR1551046     5  0.3542      0.942 0.184 0.016 0.016  0 0.784 0.000
#> SRR1551047     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551048     1  0.0000      0.999 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551049     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551050     2  0.0458      0.986 0.000 0.984 0.000  0 0.016 0.000
#> SRR1551051     2  0.0146      0.986 0.000 0.996 0.000  0 0.004 0.000
#> SRR1551052     6  0.0000      0.952 0.000 0.000 0.000  0 0.000 1.000
#> SRR1551053     5  0.3980      0.827 0.056 0.136 0.024  0 0.784 0.000
#> SRR1551054     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551055     1  0.0000      0.999 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551056     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551057     2  0.0363      0.987 0.000 0.988 0.000  0 0.012 0.000
#> SRR1551058     6  0.4066      0.366 0.000 0.392 0.000  0 0.012 0.596
#> SRR1551059     6  0.0000      0.952 0.000 0.000 0.000  0 0.000 1.000
#> SRR1551060     5  0.3861      0.941 0.168 0.008 0.052  0 0.772 0.000
#> SRR1551061     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551062     1  0.0000      0.999 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551063     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551064     2  0.0363      0.987 0.000 0.988 0.000  0 0.012 0.000
#> SRR1551065     2  0.0363      0.980 0.000 0.988 0.000  0 0.012 0.000
#> SRR1551066     6  0.0000      0.952 0.000 0.000 0.000  0 0.000 1.000
#> SRR1551067     5  0.3536      0.942 0.184 0.012 0.020  0 0.784 0.000
#> SRR1551068     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551069     1  0.0000      0.999 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551070     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551071     2  0.0363      0.987 0.000 0.988 0.000  0 0.012 0.000
#> SRR1551072     2  0.0458      0.978 0.000 0.984 0.000  0 0.016 0.000
#> SRR1551073     6  0.0000      0.952 0.000 0.000 0.000  0 0.000 1.000
#> SRR1551074     5  0.3804      0.941 0.176 0.008 0.044  0 0.772 0.000
#> SRR1551075     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551076     1  0.0000      0.999 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551077     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551078     2  0.0458      0.986 0.000 0.984 0.000  0 0.016 0.000
#> SRR1551079     6  0.3171      0.730 0.000 0.204 0.000  0 0.012 0.784
#> SRR1551080     6  0.0000      0.952 0.000 0.000 0.000  0 0.000 1.000
#> SRR1551081     5  0.3757      0.943 0.164 0.036 0.016  0 0.784 0.000
#> SRR1551082     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551083     1  0.0000      0.999 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551084     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551085     2  0.0363      0.987 0.000 0.988 0.000  0 0.012 0.000
#> SRR1551086     2  0.0520      0.979 0.000 0.984 0.000  0 0.008 0.008
#> SRR1551088     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551087     5  0.3600      0.937 0.192 0.012 0.020  0 0.776 0.000
#> SRR1551089     1  0.0000      0.999 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551090     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551091     2  0.0363      0.987 0.000 0.988 0.000  0 0.012 0.000
#> SRR1551092     2  0.0146      0.984 0.000 0.996 0.000  0 0.004 0.000
#> SRR1551093     6  0.0000      0.952 0.000 0.000 0.000  0 0.000 1.000
#> SRR1551094     5  0.3733      0.948 0.168 0.020 0.028  0 0.784 0.000
#> SRR1551095     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551096     1  0.0000      0.999 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551097     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551098     2  0.0363      0.987 0.000 0.988 0.000  0 0.012 0.000
#> SRR1551099     2  0.0260      0.982 0.000 0.992 0.000  0 0.008 0.000
#> SRR1551101     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551100     5  0.4031      0.897 0.112 0.084 0.020  0 0.784 0.000
#> SRR1551102     1  0.0146      0.998 0.996 0.000 0.000  0 0.004 0.000
#> SRR1551103     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551104     2  0.0363      0.987 0.000 0.988 0.000  0 0.012 0.000
#> SRR1551105     2  0.0363      0.980 0.000 0.988 0.000  0 0.012 0.000
#> SRR1551106     6  0.0000      0.952 0.000 0.000 0.000  0 0.000 1.000
#> SRR1551107     5  0.3640      0.944 0.176 0.024 0.016  0 0.784 0.000
#> SRR1551108     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551109     1  0.0000      0.999 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551110     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551111     2  0.0260      0.987 0.000 0.992 0.000  0 0.008 0.000
#> SRR1551112     2  0.0458      0.978 0.000 0.984 0.000  0 0.016 0.000
#> SRR1551113     6  0.0000      0.952 0.000 0.000 0.000  0 0.000 1.000
#> SRR1551114     5  0.3913      0.942 0.156 0.012 0.056  0 0.776 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15028 rows and 134 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.992       0.995         0.4965 0.502   0.502
#> 3 3 0.745           0.933       0.875         0.2213 0.879   0.758
#> 4 4 0.866           0.930       0.938         0.1640 0.918   0.784
#> 5 5 0.887           0.946       0.922         0.0726 0.948   0.827
#> 6 6 1.000           0.991       0.996         0.0785 0.937   0.745

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette   p1   p2
#> SRR1550981     1   0.242      0.970 0.96 0.04
#> SRR1550982     1   0.242      0.970 0.96 0.04
#> SRR1550983     1   0.242      0.970 0.96 0.04
#> SRR1550984     1   0.242      0.970 0.96 0.04
#> SRR1550986     1   0.000      0.988 1.00 0.00
#> SRR1550985     1   0.242      0.970 0.96 0.04
#> SRR1550988     2   0.000      1.000 0.00 1.00
#> SRR1550987     1   0.000      0.988 1.00 0.00
#> SRR1550989     2   0.000      1.000 0.00 1.00
#> SRR1550990     2   0.000      1.000 0.00 1.00
#> SRR1550991     2   0.000      1.000 0.00 1.00
#> SRR1550992     1   0.000      0.988 1.00 0.00
#> SRR1550994     2   0.000      1.000 0.00 1.00
#> SRR1550993     1   0.000      0.988 1.00 0.00
#> SRR1550995     2   0.000      1.000 0.00 1.00
#> SRR1550996     2   0.000      1.000 0.00 1.00
#> SRR1550997     1   0.000      0.988 1.00 0.00
#> SRR1550998     1   0.000      0.988 1.00 0.00
#> SRR1551000     2   0.000      1.000 0.00 1.00
#> SRR1550999     2   0.000      1.000 0.00 1.00
#> SRR1551001     2   0.000      1.000 0.00 1.00
#> SRR1551002     1   0.000      0.988 1.00 0.00
#> SRR1551003     1   0.000      0.988 1.00 0.00
#> SRR1551004     2   0.000      1.000 0.00 1.00
#> SRR1551006     2   0.000      1.000 0.00 1.00
#> SRR1551005     2   0.000      1.000 0.00 1.00
#> SRR1551007     2   0.000      1.000 0.00 1.00
#> SRR1551008     1   0.000      0.988 1.00 0.00
#> SRR1551009     1   0.000      0.988 1.00 0.00
#> SRR1551010     2   0.000      1.000 0.00 1.00
#> SRR1551012     2   0.000      1.000 0.00 1.00
#> SRR1551011     2   0.000      1.000 0.00 1.00
#> SRR1551013     1   0.000      0.988 1.00 0.00
#> SRR1551014     1   0.000      0.988 1.00 0.00
#> SRR1551015     2   0.000      1.000 0.00 1.00
#> SRR1551016     2   0.000      1.000 0.00 1.00
#> SRR1551017     2   0.000      1.000 0.00 1.00
#> SRR1551018     2   0.000      1.000 0.00 1.00
#> SRR1551019     1   0.000      0.988 1.00 0.00
#> SRR1551021     1   0.000      0.988 1.00 0.00
#> SRR1551022     2   0.000      1.000 0.00 1.00
#> SRR1551023     2   0.000      1.000 0.00 1.00
#> SRR1551020     1   0.000      0.988 1.00 0.00
#> SRR1551024     2   0.000      1.000 0.00 1.00
#> SRR1551026     1   0.000      0.988 1.00 0.00
#> SRR1551025     1   0.000      0.988 1.00 0.00
#> SRR1551027     1   0.000      0.988 1.00 0.00
#> SRR1551028     2   0.000      1.000 0.00 1.00
#> SRR1551029     2   0.000      1.000 0.00 1.00
#> SRR1551030     2   0.000      1.000 0.00 1.00
#> SRR1551031     2   0.000      1.000 0.00 1.00
#> SRR1551032     1   0.000      0.988 1.00 0.00
#> SRR1551034     1   0.000      0.988 1.00 0.00
#> SRR1551033     1   0.000      0.988 1.00 0.00
#> SRR1551035     2   0.000      1.000 0.00 1.00
#> SRR1551036     2   0.000      1.000 0.00 1.00
#> SRR1551037     2   0.000      1.000 0.00 1.00
#> SRR1551038     2   0.000      1.000 0.00 1.00
#> SRR1551039     1   0.242      0.970 0.96 0.04
#> SRR1551040     1   0.000      0.988 1.00 0.00
#> SRR1551041     1   0.000      0.988 1.00 0.00
#> SRR1551042     2   0.000      1.000 0.00 1.00
#> SRR1551043     2   0.000      1.000 0.00 1.00
#> SRR1551044     2   0.000      1.000 0.00 1.00
#> SRR1551045     2   0.000      1.000 0.00 1.00
#> SRR1551046     1   0.242      0.970 0.96 0.04
#> SRR1551047     1   0.000      0.988 1.00 0.00
#> SRR1551048     1   0.000      0.988 1.00 0.00
#> SRR1551049     2   0.000      1.000 0.00 1.00
#> SRR1551050     2   0.000      1.000 0.00 1.00
#> SRR1551051     2   0.000      1.000 0.00 1.00
#> SRR1551052     2   0.000      1.000 0.00 1.00
#> SRR1551053     1   0.242      0.970 0.96 0.04
#> SRR1551054     1   0.000      0.988 1.00 0.00
#> SRR1551055     1   0.000      0.988 1.00 0.00
#> SRR1551056     2   0.000      1.000 0.00 1.00
#> SRR1551057     2   0.000      1.000 0.00 1.00
#> SRR1551058     2   0.000      1.000 0.00 1.00
#> SRR1551059     2   0.000      1.000 0.00 1.00
#> SRR1551060     1   0.242      0.970 0.96 0.04
#> SRR1551061     1   0.000      0.988 1.00 0.00
#> SRR1551062     1   0.000      0.988 1.00 0.00
#> SRR1551063     2   0.000      1.000 0.00 1.00
#> SRR1551064     2   0.000      1.000 0.00 1.00
#> SRR1551065     2   0.000      1.000 0.00 1.00
#> SRR1551066     2   0.000      1.000 0.00 1.00
#> SRR1551067     1   0.242      0.970 0.96 0.04
#> SRR1551068     1   0.000      0.988 1.00 0.00
#> SRR1551069     1   0.000      0.988 1.00 0.00
#> SRR1551070     2   0.000      1.000 0.00 1.00
#> SRR1551071     2   0.000      1.000 0.00 1.00
#> SRR1551072     2   0.000      1.000 0.00 1.00
#> SRR1551073     2   0.000      1.000 0.00 1.00
#> SRR1551074     1   0.242      0.970 0.96 0.04
#> SRR1551075     1   0.000      0.988 1.00 0.00
#> SRR1551076     1   0.000      0.988 1.00 0.00
#> SRR1551077     2   0.000      1.000 0.00 1.00
#> SRR1551078     2   0.000      1.000 0.00 1.00
#> SRR1551079     2   0.000      1.000 0.00 1.00
#> SRR1551080     2   0.000      1.000 0.00 1.00
#> SRR1551081     1   0.242      0.970 0.96 0.04
#> SRR1551082     1   0.000      0.988 1.00 0.00
#> SRR1551083     1   0.000      0.988 1.00 0.00
#> SRR1551084     2   0.000      1.000 0.00 1.00
#> SRR1551085     2   0.000      1.000 0.00 1.00
#> SRR1551086     2   0.000      1.000 0.00 1.00
#> SRR1551088     1   0.000      0.988 1.00 0.00
#> SRR1551087     1   0.242      0.970 0.96 0.04
#> SRR1551089     1   0.000      0.988 1.00 0.00
#> SRR1551090     2   0.000      1.000 0.00 1.00
#> SRR1551091     2   0.000      1.000 0.00 1.00
#> SRR1551092     2   0.000      1.000 0.00 1.00
#> SRR1551093     2   0.000      1.000 0.00 1.00
#> SRR1551094     1   0.242      0.970 0.96 0.04
#> SRR1551095     1   0.000      0.988 1.00 0.00
#> SRR1551096     1   0.000      0.988 1.00 0.00
#> SRR1551097     2   0.000      1.000 0.00 1.00
#> SRR1551098     2   0.000      1.000 0.00 1.00
#> SRR1551099     2   0.000      1.000 0.00 1.00
#> SRR1551101     1   0.000      0.988 1.00 0.00
#> SRR1551100     1   0.242      0.970 0.96 0.04
#> SRR1551102     1   0.000      0.988 1.00 0.00
#> SRR1551103     2   0.000      1.000 0.00 1.00
#> SRR1551104     2   0.000      1.000 0.00 1.00
#> SRR1551105     2   0.000      1.000 0.00 1.00
#> SRR1551106     2   0.000      1.000 0.00 1.00
#> SRR1551107     1   0.242      0.970 0.96 0.04
#> SRR1551108     1   0.000      0.988 1.00 0.00
#> SRR1551109     1   0.000      0.988 1.00 0.00
#> SRR1551110     2   0.000      1.000 0.00 1.00
#> SRR1551111     2   0.000      1.000 0.00 1.00
#> SRR1551112     2   0.000      1.000 0.00 1.00
#> SRR1551113     2   0.000      1.000 0.00 1.00
#> SRR1551114     1   0.242      0.970 0.96 0.04

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette   p1  p2   p3
#> SRR1550981     1   0.502      0.799 0.76 0.0 0.24
#> SRR1550982     1   0.502      0.799 0.76 0.0 0.24
#> SRR1550983     1   0.502      0.799 0.76 0.0 0.24
#> SRR1550984     1   0.502      0.799 0.76 0.0 0.24
#> SRR1550986     1   0.400      0.864 0.84 0.0 0.16
#> SRR1550985     1   0.502      0.799 0.76 0.0 0.24
#> SRR1550988     3   0.613      1.000 0.00 0.4 0.60
#> SRR1550987     1   0.000      0.882 1.00 0.0 0.00
#> SRR1550989     2   0.000      1.000 0.00 1.0 0.00
#> SRR1550990     2   0.000      1.000 0.00 1.0 0.00
#> SRR1550991     2   0.000      1.000 0.00 1.0 0.00
#> SRR1550992     1   0.400      0.864 0.84 0.0 0.16
#> SRR1550994     3   0.613      1.000 0.00 0.4 0.60
#> SRR1550993     1   0.000      0.882 1.00 0.0 0.00
#> SRR1550995     2   0.000      1.000 0.00 1.0 0.00
#> SRR1550996     2   0.000      1.000 0.00 1.0 0.00
#> SRR1550997     1   0.400      0.864 0.84 0.0 0.16
#> SRR1550998     1   0.000      0.882 1.00 0.0 0.00
#> SRR1551000     2   0.000      1.000 0.00 1.0 0.00
#> SRR1550999     3   0.613      1.000 0.00 0.4 0.60
#> SRR1551001     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551002     1   0.400      0.864 0.84 0.0 0.16
#> SRR1551003     1   0.000      0.882 1.00 0.0 0.00
#> SRR1551004     3   0.613      1.000 0.00 0.4 0.60
#> SRR1551006     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551005     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551007     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551008     1   0.400      0.864 0.84 0.0 0.16
#> SRR1551009     1   0.000      0.882 1.00 0.0 0.00
#> SRR1551010     3   0.613      1.000 0.00 0.4 0.60
#> SRR1551012     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551011     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551013     1   0.400      0.864 0.84 0.0 0.16
#> SRR1551014     1   0.000      0.882 1.00 0.0 0.00
#> SRR1551015     3   0.613      1.000 0.00 0.4 0.60
#> SRR1551016     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551017     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551018     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551019     1   0.400      0.864 0.84 0.0 0.16
#> SRR1551021     1   0.000      0.882 1.00 0.0 0.00
#> SRR1551022     3   0.613      1.000 0.00 0.4 0.60
#> SRR1551023     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551020     1   0.400      0.864 0.84 0.0 0.16
#> SRR1551024     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551026     1   0.400      0.864 0.84 0.0 0.16
#> SRR1551025     1   0.400      0.864 0.84 0.0 0.16
#> SRR1551027     1   0.000      0.882 1.00 0.0 0.00
#> SRR1551028     3   0.613      1.000 0.00 0.4 0.60
#> SRR1551029     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551030     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551031     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551032     1   0.400      0.864 0.84 0.0 0.16
#> SRR1551034     1   0.000      0.882 1.00 0.0 0.00
#> SRR1551033     1   0.400      0.864 0.84 0.0 0.16
#> SRR1551035     3   0.613      1.000 0.00 0.4 0.60
#> SRR1551036     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551037     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551038     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551039     1   0.502      0.799 0.76 0.0 0.24
#> SRR1551040     1   0.400      0.864 0.84 0.0 0.16
#> SRR1551041     1   0.000      0.882 1.00 0.0 0.00
#> SRR1551042     3   0.613      1.000 0.00 0.4 0.60
#> SRR1551043     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551044     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551045     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551046     1   0.502      0.799 0.76 0.0 0.24
#> SRR1551047     1   0.400      0.864 0.84 0.0 0.16
#> SRR1551048     1   0.000      0.882 1.00 0.0 0.00
#> SRR1551049     3   0.613      1.000 0.00 0.4 0.60
#> SRR1551050     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551051     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551052     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551053     1   0.502      0.799 0.76 0.0 0.24
#> SRR1551054     1   0.400      0.864 0.84 0.0 0.16
#> SRR1551055     1   0.000      0.882 1.00 0.0 0.00
#> SRR1551056     3   0.613      1.000 0.00 0.4 0.60
#> SRR1551057     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551058     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551059     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551060     1   0.502      0.799 0.76 0.0 0.24
#> SRR1551061     1   0.400      0.864 0.84 0.0 0.16
#> SRR1551062     1   0.000      0.882 1.00 0.0 0.00
#> SRR1551063     3   0.613      1.000 0.00 0.4 0.60
#> SRR1551064     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551065     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551066     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551067     1   0.502      0.799 0.76 0.0 0.24
#> SRR1551068     1   0.400      0.864 0.84 0.0 0.16
#> SRR1551069     1   0.000      0.882 1.00 0.0 0.00
#> SRR1551070     3   0.613      1.000 0.00 0.4 0.60
#> SRR1551071     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551072     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551073     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551074     1   0.502      0.799 0.76 0.0 0.24
#> SRR1551075     1   0.400      0.864 0.84 0.0 0.16
#> SRR1551076     1   0.000      0.882 1.00 0.0 0.00
#> SRR1551077     3   0.613      1.000 0.00 0.4 0.60
#> SRR1551078     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551079     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551080     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551081     1   0.502      0.799 0.76 0.0 0.24
#> SRR1551082     1   0.400      0.864 0.84 0.0 0.16
#> SRR1551083     1   0.000      0.882 1.00 0.0 0.00
#> SRR1551084     3   0.613      1.000 0.00 0.4 0.60
#> SRR1551085     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551086     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551088     1   0.400      0.864 0.84 0.0 0.16
#> SRR1551087     1   0.502      0.799 0.76 0.0 0.24
#> SRR1551089     1   0.000      0.882 1.00 0.0 0.00
#> SRR1551090     3   0.613      1.000 0.00 0.4 0.60
#> SRR1551091     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551092     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551093     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551094     1   0.502      0.799 0.76 0.0 0.24
#> SRR1551095     1   0.400      0.864 0.84 0.0 0.16
#> SRR1551096     1   0.000      0.882 1.00 0.0 0.00
#> SRR1551097     3   0.613      1.000 0.00 0.4 0.60
#> SRR1551098     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551099     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551101     1   0.400      0.864 0.84 0.0 0.16
#> SRR1551100     1   0.502      0.799 0.76 0.0 0.24
#> SRR1551102     1   0.000      0.882 1.00 0.0 0.00
#> SRR1551103     3   0.613      1.000 0.00 0.4 0.60
#> SRR1551104     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551105     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551106     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551107     1   0.502      0.799 0.76 0.0 0.24
#> SRR1551108     1   0.400      0.864 0.84 0.0 0.16
#> SRR1551109     1   0.000      0.882 1.00 0.0 0.00
#> SRR1551110     3   0.613      1.000 0.00 0.4 0.60
#> SRR1551111     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551112     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551113     2   0.000      1.000 0.00 1.0 0.00
#> SRR1551114     1   0.502      0.799 0.76 0.0 0.24

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1 p2    p3 p4
#> SRR1550981     1   0.292      1.000 0.860  0 0.140  0
#> SRR1550982     1   0.292      1.000 0.860  0 0.140  0
#> SRR1550983     1   0.292      1.000 0.860  0 0.140  0
#> SRR1550984     1   0.292      1.000 0.860  0 0.140  0
#> SRR1550986     3   0.000      0.802 0.000  0 1.000  0
#> SRR1550985     1   0.292      1.000 0.860  0 0.140  0
#> SRR1550988     4   0.000      1.000 0.000  0 0.000  1
#> SRR1550987     3   0.470      0.765 0.356  0 0.644  0
#> SRR1550989     2   0.000      1.000 0.000  1 0.000  0
#> SRR1550990     2   0.000      1.000 0.000  1 0.000  0
#> SRR1550991     2   0.000      1.000 0.000  1 0.000  0
#> SRR1550992     3   0.000      0.802 0.000  0 1.000  0
#> SRR1550994     4   0.000      1.000 0.000  0 0.000  1
#> SRR1550993     3   0.470      0.765 0.356  0 0.644  0
#> SRR1550995     2   0.000      1.000 0.000  1 0.000  0
#> SRR1550996     2   0.000      1.000 0.000  1 0.000  0
#> SRR1550997     3   0.000      0.802 0.000  0 1.000  0
#> SRR1550998     3   0.470      0.765 0.356  0 0.644  0
#> SRR1551000     2   0.000      1.000 0.000  1 0.000  0
#> SRR1550999     4   0.000      1.000 0.000  0 0.000  1
#> SRR1551001     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551002     3   0.000      0.802 0.000  0 1.000  0
#> SRR1551003     3   0.470      0.765 0.356  0 0.644  0
#> SRR1551004     4   0.000      1.000 0.000  0 0.000  1
#> SRR1551006     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551005     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551007     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551008     3   0.000      0.802 0.000  0 1.000  0
#> SRR1551009     3   0.470      0.765 0.356  0 0.644  0
#> SRR1551010     4   0.000      1.000 0.000  0 0.000  1
#> SRR1551012     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551011     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551013     3   0.000      0.802 0.000  0 1.000  0
#> SRR1551014     3   0.470      0.765 0.356  0 0.644  0
#> SRR1551015     4   0.000      1.000 0.000  0 0.000  1
#> SRR1551016     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551017     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551018     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551019     3   0.164      0.783 0.060  0 0.940  0
#> SRR1551021     3   0.470      0.765 0.356  0 0.644  0
#> SRR1551022     4   0.000      1.000 0.000  0 0.000  1
#> SRR1551023     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551020     3   0.000      0.802 0.000  0 1.000  0
#> SRR1551024     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551026     3   0.000      0.802 0.000  0 1.000  0
#> SRR1551025     3   0.164      0.783 0.060  0 0.940  0
#> SRR1551027     3   0.470      0.765 0.356  0 0.644  0
#> SRR1551028     4   0.000      1.000 0.000  0 0.000  1
#> SRR1551029     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551030     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551031     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551032     3   0.164      0.783 0.060  0 0.940  0
#> SRR1551034     3   0.470      0.765 0.356  0 0.644  0
#> SRR1551033     3   0.000      0.802 0.000  0 1.000  0
#> SRR1551035     4   0.000      1.000 0.000  0 0.000  1
#> SRR1551036     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551037     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551038     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551039     1   0.292      1.000 0.860  0 0.140  0
#> SRR1551040     3   0.000      0.802 0.000  0 1.000  0
#> SRR1551041     3   0.470      0.765 0.356  0 0.644  0
#> SRR1551042     4   0.000      1.000 0.000  0 0.000  1
#> SRR1551043     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551044     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551045     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551046     1   0.292      1.000 0.860  0 0.140  0
#> SRR1551047     3   0.000      0.802 0.000  0 1.000  0
#> SRR1551048     3   0.470      0.765 0.356  0 0.644  0
#> SRR1551049     4   0.000      1.000 0.000  0 0.000  1
#> SRR1551050     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551051     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551052     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551053     1   0.292      1.000 0.860  0 0.140  0
#> SRR1551054     3   0.000      0.802 0.000  0 1.000  0
#> SRR1551055     3   0.470      0.765 0.356  0 0.644  0
#> SRR1551056     4   0.000      1.000 0.000  0 0.000  1
#> SRR1551057     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551058     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551059     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551060     1   0.292      1.000 0.860  0 0.140  0
#> SRR1551061     3   0.000      0.802 0.000  0 1.000  0
#> SRR1551062     3   0.470      0.765 0.356  0 0.644  0
#> SRR1551063     4   0.000      1.000 0.000  0 0.000  1
#> SRR1551064     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551065     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551066     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551067     1   0.292      1.000 0.860  0 0.140  0
#> SRR1551068     3   0.000      0.802 0.000  0 1.000  0
#> SRR1551069     3   0.470      0.765 0.356  0 0.644  0
#> SRR1551070     4   0.000      1.000 0.000  0 0.000  1
#> SRR1551071     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551072     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551073     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551074     1   0.292      1.000 0.860  0 0.140  0
#> SRR1551075     3   0.000      0.802 0.000  0 1.000  0
#> SRR1551076     3   0.470      0.765 0.356  0 0.644  0
#> SRR1551077     4   0.000      1.000 0.000  0 0.000  1
#> SRR1551078     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551079     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551080     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551081     1   0.292      1.000 0.860  0 0.140  0
#> SRR1551082     3   0.000      0.802 0.000  0 1.000  0
#> SRR1551083     3   0.470      0.765 0.356  0 0.644  0
#> SRR1551084     4   0.000      1.000 0.000  0 0.000  1
#> SRR1551085     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551086     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551088     3   0.000      0.802 0.000  0 1.000  0
#> SRR1551087     1   0.292      1.000 0.860  0 0.140  0
#> SRR1551089     3   0.470      0.765 0.356  0 0.644  0
#> SRR1551090     4   0.000      1.000 0.000  0 0.000  1
#> SRR1551091     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551092     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551093     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551094     1   0.292      1.000 0.860  0 0.140  0
#> SRR1551095     3   0.000      0.802 0.000  0 1.000  0
#> SRR1551096     3   0.470      0.765 0.356  0 0.644  0
#> SRR1551097     4   0.000      1.000 0.000  0 0.000  1
#> SRR1551098     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551099     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551101     3   0.000      0.802 0.000  0 1.000  0
#> SRR1551100     1   0.292      1.000 0.860  0 0.140  0
#> SRR1551102     3   0.470      0.765 0.356  0 0.644  0
#> SRR1551103     4   0.000      1.000 0.000  0 0.000  1
#> SRR1551104     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551105     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551106     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551107     1   0.292      1.000 0.860  0 0.140  0
#> SRR1551108     3   0.000      0.802 0.000  0 1.000  0
#> SRR1551109     3   0.470      0.765 0.356  0 0.644  0
#> SRR1551110     4   0.000      1.000 0.000  0 0.000  1
#> SRR1551111     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551112     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551113     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551114     1   0.292      1.000 0.860  0 0.140  0

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3 p4   p5
#> SRR1550981     5   0.000      1.000 0.000 0.000 0.000  0 1.00
#> SRR1550982     5   0.000      1.000 0.000 0.000 0.000  0 1.00
#> SRR1550983     5   0.000      1.000 0.000 0.000 0.000  0 1.00
#> SRR1550984     5   0.000      1.000 0.000 0.000 0.000  0 1.00
#> SRR1550986     3   0.418      0.967 0.268 0.000 0.712  0 0.02
#> SRR1550985     5   0.000      1.000 0.000 0.000 0.000  0 1.00
#> SRR1550988     4   0.000      1.000 0.000 0.000 0.000  1 0.00
#> SRR1550987     1   0.000      1.000 1.000 0.000 0.000  0 0.00
#> SRR1550989     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1550990     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1550991     2   0.373      0.777 0.000 0.712 0.288  0 0.00
#> SRR1550992     3   0.418      0.967 0.268 0.000 0.712  0 0.02
#> SRR1550994     4   0.000      1.000 0.000 0.000 0.000  1 0.00
#> SRR1550993     1   0.000      1.000 1.000 0.000 0.000  0 0.00
#> SRR1550995     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1550996     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1550997     3   0.418      0.967 0.268 0.000 0.712  0 0.02
#> SRR1550998     1   0.000      1.000 1.000 0.000 0.000  0 0.00
#> SRR1551000     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1550999     4   0.000      1.000 0.000 0.000 0.000  1 0.00
#> SRR1551001     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551002     3   0.418      0.967 0.268 0.000 0.712  0 0.02
#> SRR1551003     1   0.000      1.000 1.000 0.000 0.000  0 0.00
#> SRR1551004     4   0.000      1.000 0.000 0.000 0.000  1 0.00
#> SRR1551006     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551005     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551007     2   0.373      0.777 0.000 0.712 0.288  0 0.00
#> SRR1551008     3   0.418      0.967 0.268 0.000 0.712  0 0.02
#> SRR1551009     1   0.000      1.000 1.000 0.000 0.000  0 0.00
#> SRR1551010     4   0.000      1.000 0.000 0.000 0.000  1 0.00
#> SRR1551012     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551011     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551013     3   0.418      0.967 0.268 0.000 0.712  0 0.02
#> SRR1551014     1   0.000      1.000 1.000 0.000 0.000  0 0.00
#> SRR1551015     4   0.000      1.000 0.000 0.000 0.000  1 0.00
#> SRR1551016     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551017     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551018     2   0.373      0.777 0.000 0.712 0.288  0 0.00
#> SRR1551019     3   0.628      0.763 0.268 0.000 0.532  0 0.20
#> SRR1551021     1   0.000      1.000 1.000 0.000 0.000  0 0.00
#> SRR1551022     4   0.000      1.000 0.000 0.000 0.000  1 0.00
#> SRR1551023     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551020     3   0.418      0.967 0.268 0.000 0.712  0 0.02
#> SRR1551024     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551026     3   0.418      0.967 0.268 0.000 0.712  0 0.02
#> SRR1551025     3   0.628      0.763 0.268 0.000 0.532  0 0.20
#> SRR1551027     1   0.000      1.000 1.000 0.000 0.000  0 0.00
#> SRR1551028     4   0.000      1.000 0.000 0.000 0.000  1 0.00
#> SRR1551029     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551030     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551031     2   0.373      0.777 0.000 0.712 0.288  0 0.00
#> SRR1551032     3   0.628      0.763 0.268 0.000 0.532  0 0.20
#> SRR1551034     1   0.000      1.000 1.000 0.000 0.000  0 0.00
#> SRR1551033     3   0.418      0.967 0.268 0.000 0.712  0 0.02
#> SRR1551035     4   0.000      1.000 0.000 0.000 0.000  1 0.00
#> SRR1551036     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551037     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551038     2   0.373      0.777 0.000 0.712 0.288  0 0.00
#> SRR1551039     5   0.000      1.000 0.000 0.000 0.000  0 1.00
#> SRR1551040     3   0.418      0.967 0.268 0.000 0.712  0 0.02
#> SRR1551041     1   0.000      1.000 1.000 0.000 0.000  0 0.00
#> SRR1551042     4   0.000      1.000 0.000 0.000 0.000  1 0.00
#> SRR1551043     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551044     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551045     2   0.373      0.777 0.000 0.712 0.288  0 0.00
#> SRR1551046     5   0.000      1.000 0.000 0.000 0.000  0 1.00
#> SRR1551047     3   0.418      0.967 0.268 0.000 0.712  0 0.02
#> SRR1551048     1   0.000      1.000 1.000 0.000 0.000  0 0.00
#> SRR1551049     4   0.000      1.000 0.000 0.000 0.000  1 0.00
#> SRR1551050     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551051     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551052     2   0.373      0.777 0.000 0.712 0.288  0 0.00
#> SRR1551053     5   0.000      1.000 0.000 0.000 0.000  0 1.00
#> SRR1551054     3   0.418      0.967 0.268 0.000 0.712  0 0.02
#> SRR1551055     1   0.000      1.000 1.000 0.000 0.000  0 0.00
#> SRR1551056     4   0.000      1.000 0.000 0.000 0.000  1 0.00
#> SRR1551057     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551058     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551059     2   0.373      0.777 0.000 0.712 0.288  0 0.00
#> SRR1551060     5   0.000      1.000 0.000 0.000 0.000  0 1.00
#> SRR1551061     3   0.418      0.967 0.268 0.000 0.712  0 0.02
#> SRR1551062     1   0.000      1.000 1.000 0.000 0.000  0 0.00
#> SRR1551063     4   0.000      1.000 0.000 0.000 0.000  1 0.00
#> SRR1551064     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551065     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551066     2   0.373      0.777 0.000 0.712 0.288  0 0.00
#> SRR1551067     5   0.000      1.000 0.000 0.000 0.000  0 1.00
#> SRR1551068     3   0.418      0.967 0.268 0.000 0.712  0 0.02
#> SRR1551069     1   0.000      1.000 1.000 0.000 0.000  0 0.00
#> SRR1551070     4   0.000      1.000 0.000 0.000 0.000  1 0.00
#> SRR1551071     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551072     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551073     2   0.373      0.777 0.000 0.712 0.288  0 0.00
#> SRR1551074     5   0.000      1.000 0.000 0.000 0.000  0 1.00
#> SRR1551075     3   0.418      0.967 0.268 0.000 0.712  0 0.02
#> SRR1551076     1   0.000      1.000 1.000 0.000 0.000  0 0.00
#> SRR1551077     4   0.000      1.000 0.000 0.000 0.000  1 0.00
#> SRR1551078     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551079     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551080     2   0.373      0.777 0.000 0.712 0.288  0 0.00
#> SRR1551081     5   0.000      1.000 0.000 0.000 0.000  0 1.00
#> SRR1551082     3   0.418      0.967 0.268 0.000 0.712  0 0.02
#> SRR1551083     1   0.000      1.000 1.000 0.000 0.000  0 0.00
#> SRR1551084     4   0.000      1.000 0.000 0.000 0.000  1 0.00
#> SRR1551085     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551086     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551088     3   0.418      0.967 0.268 0.000 0.712  0 0.02
#> SRR1551087     5   0.000      1.000 0.000 0.000 0.000  0 1.00
#> SRR1551089     1   0.000      1.000 1.000 0.000 0.000  0 0.00
#> SRR1551090     4   0.000      1.000 0.000 0.000 0.000  1 0.00
#> SRR1551091     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551092     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551093     2   0.373      0.777 0.000 0.712 0.288  0 0.00
#> SRR1551094     5   0.000      1.000 0.000 0.000 0.000  0 1.00
#> SRR1551095     3   0.418      0.967 0.268 0.000 0.712  0 0.02
#> SRR1551096     1   0.000      1.000 1.000 0.000 0.000  0 0.00
#> SRR1551097     4   0.000      1.000 0.000 0.000 0.000  1 0.00
#> SRR1551098     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551099     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551101     3   0.418      0.967 0.268 0.000 0.712  0 0.02
#> SRR1551100     5   0.000      1.000 0.000 0.000 0.000  0 1.00
#> SRR1551102     1   0.000      1.000 1.000 0.000 0.000  0 0.00
#> SRR1551103     4   0.000      1.000 0.000 0.000 0.000  1 0.00
#> SRR1551104     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551105     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551106     2   0.373      0.777 0.000 0.712 0.288  0 0.00
#> SRR1551107     5   0.000      1.000 0.000 0.000 0.000  0 1.00
#> SRR1551108     3   0.418      0.967 0.268 0.000 0.712  0 0.02
#> SRR1551109     1   0.000      1.000 1.000 0.000 0.000  0 0.00
#> SRR1551110     4   0.000      1.000 0.000 0.000 0.000  1 0.00
#> SRR1551111     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551112     2   0.000      0.930 0.000 1.000 0.000  0 0.00
#> SRR1551113     2   0.373      0.777 0.000 0.712 0.288  0 0.00
#> SRR1551114     5   0.000      1.000 0.000 0.000 0.000  0 1.00

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette p1 p2  p3 p4  p5 p6
#> SRR1550981     5   0.000      1.000  0  0 0.0  0 1.0  0
#> SRR1550982     5   0.000      1.000  0  0 0.0  0 1.0  0
#> SRR1550983     5   0.000      1.000  0  0 0.0  0 1.0  0
#> SRR1550984     5   0.000      1.000  0  0 0.0  0 1.0  0
#> SRR1550986     3   0.000      0.971  0  0 1.0  0 0.0  0
#> SRR1550985     5   0.000      1.000  0  0 0.0  0 1.0  0
#> SRR1550988     4   0.000      1.000  0  0 0.0  1 0.0  0
#> SRR1550987     1   0.000      1.000  1  0 0.0  0 0.0  0
#> SRR1550989     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1550990     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1550991     6   0.000      1.000  0  0 0.0  0 0.0  1
#> SRR1550992     3   0.000      0.971  0  0 1.0  0 0.0  0
#> SRR1550994     4   0.000      1.000  0  0 0.0  1 0.0  0
#> SRR1550993     1   0.000      1.000  1  0 0.0  0 0.0  0
#> SRR1550995     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1550996     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1550997     3   0.000      0.971  0  0 1.0  0 0.0  0
#> SRR1550998     1   0.000      1.000  1  0 0.0  0 0.0  0
#> SRR1551000     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1550999     4   0.000      1.000  0  0 0.0  1 0.0  0
#> SRR1551001     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551002     3   0.000      0.971  0  0 1.0  0 0.0  0
#> SRR1551003     1   0.000      1.000  1  0 0.0  0 0.0  0
#> SRR1551004     4   0.000      1.000  0  0 0.0  1 0.0  0
#> SRR1551006     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551005     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551007     6   0.000      1.000  0  0 0.0  0 0.0  1
#> SRR1551008     3   0.000      0.971  0  0 1.0  0 0.0  0
#> SRR1551009     1   0.000      1.000  1  0 0.0  0 0.0  0
#> SRR1551010     4   0.000      1.000  0  0 0.0  1 0.0  0
#> SRR1551012     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551011     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551013     3   0.000      0.971  0  0 1.0  0 0.0  0
#> SRR1551014     1   0.000      1.000  1  0 0.0  0 0.0  0
#> SRR1551015     4   0.000      1.000  0  0 0.0  1 0.0  0
#> SRR1551016     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551017     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551018     6   0.000      1.000  0  0 0.0  0 0.0  1
#> SRR1551019     3   0.279      0.773  0  0 0.8  0 0.2  0
#> SRR1551021     1   0.000      1.000  1  0 0.0  0 0.0  0
#> SRR1551022     4   0.000      1.000  0  0 0.0  1 0.0  0
#> SRR1551023     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551020     3   0.000      0.971  0  0 1.0  0 0.0  0
#> SRR1551024     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551026     3   0.000      0.971  0  0 1.0  0 0.0  0
#> SRR1551025     3   0.279      0.773  0  0 0.8  0 0.2  0
#> SRR1551027     1   0.000      1.000  1  0 0.0  0 0.0  0
#> SRR1551028     4   0.000      1.000  0  0 0.0  1 0.0  0
#> SRR1551029     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551030     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551031     6   0.000      1.000  0  0 0.0  0 0.0  1
#> SRR1551032     3   0.279      0.773  0  0 0.8  0 0.2  0
#> SRR1551034     1   0.000      1.000  1  0 0.0  0 0.0  0
#> SRR1551033     3   0.000      0.971  0  0 1.0  0 0.0  0
#> SRR1551035     4   0.000      1.000  0  0 0.0  1 0.0  0
#> SRR1551036     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551037     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551038     6   0.000      1.000  0  0 0.0  0 0.0  1
#> SRR1551039     5   0.000      1.000  0  0 0.0  0 1.0  0
#> SRR1551040     3   0.000      0.971  0  0 1.0  0 0.0  0
#> SRR1551041     1   0.000      1.000  1  0 0.0  0 0.0  0
#> SRR1551042     4   0.000      1.000  0  0 0.0  1 0.0  0
#> SRR1551043     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551044     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551045     6   0.000      1.000  0  0 0.0  0 0.0  1
#> SRR1551046     5   0.000      1.000  0  0 0.0  0 1.0  0
#> SRR1551047     3   0.000      0.971  0  0 1.0  0 0.0  0
#> SRR1551048     1   0.000      1.000  1  0 0.0  0 0.0  0
#> SRR1551049     4   0.000      1.000  0  0 0.0  1 0.0  0
#> SRR1551050     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551051     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551052     6   0.000      1.000  0  0 0.0  0 0.0  1
#> SRR1551053     5   0.000      1.000  0  0 0.0  0 1.0  0
#> SRR1551054     3   0.000      0.971  0  0 1.0  0 0.0  0
#> SRR1551055     1   0.000      1.000  1  0 0.0  0 0.0  0
#> SRR1551056     4   0.000      1.000  0  0 0.0  1 0.0  0
#> SRR1551057     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551058     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551059     6   0.000      1.000  0  0 0.0  0 0.0  1
#> SRR1551060     5   0.000      1.000  0  0 0.0  0 1.0  0
#> SRR1551061     3   0.000      0.971  0  0 1.0  0 0.0  0
#> SRR1551062     1   0.000      1.000  1  0 0.0  0 0.0  0
#> SRR1551063     4   0.000      1.000  0  0 0.0  1 0.0  0
#> SRR1551064     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551065     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551066     6   0.000      1.000  0  0 0.0  0 0.0  1
#> SRR1551067     5   0.000      1.000  0  0 0.0  0 1.0  0
#> SRR1551068     3   0.000      0.971  0  0 1.0  0 0.0  0
#> SRR1551069     1   0.000      1.000  1  0 0.0  0 0.0  0
#> SRR1551070     4   0.000      1.000  0  0 0.0  1 0.0  0
#> SRR1551071     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551072     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551073     6   0.000      1.000  0  0 0.0  0 0.0  1
#> SRR1551074     5   0.000      1.000  0  0 0.0  0 1.0  0
#> SRR1551075     3   0.000      0.971  0  0 1.0  0 0.0  0
#> SRR1551076     1   0.000      1.000  1  0 0.0  0 0.0  0
#> SRR1551077     4   0.000      1.000  0  0 0.0  1 0.0  0
#> SRR1551078     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551079     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551080     6   0.000      1.000  0  0 0.0  0 0.0  1
#> SRR1551081     5   0.000      1.000  0  0 0.0  0 1.0  0
#> SRR1551082     3   0.000      0.971  0  0 1.0  0 0.0  0
#> SRR1551083     1   0.000      1.000  1  0 0.0  0 0.0  0
#> SRR1551084     4   0.000      1.000  0  0 0.0  1 0.0  0
#> SRR1551085     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551086     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551088     3   0.000      0.971  0  0 1.0  0 0.0  0
#> SRR1551087     5   0.000      1.000  0  0 0.0  0 1.0  0
#> SRR1551089     1   0.000      1.000  1  0 0.0  0 0.0  0
#> SRR1551090     4   0.000      1.000  0  0 0.0  1 0.0  0
#> SRR1551091     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551092     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551093     6   0.000      1.000  0  0 0.0  0 0.0  1
#> SRR1551094     5   0.000      1.000  0  0 0.0  0 1.0  0
#> SRR1551095     3   0.000      0.971  0  0 1.0  0 0.0  0
#> SRR1551096     1   0.000      1.000  1  0 0.0  0 0.0  0
#> SRR1551097     4   0.000      1.000  0  0 0.0  1 0.0  0
#> SRR1551098     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551099     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551101     3   0.000      0.971  0  0 1.0  0 0.0  0
#> SRR1551100     5   0.000      1.000  0  0 0.0  0 1.0  0
#> SRR1551102     1   0.000      1.000  1  0 0.0  0 0.0  0
#> SRR1551103     4   0.000      1.000  0  0 0.0  1 0.0  0
#> SRR1551104     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551105     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551106     6   0.000      1.000  0  0 0.0  0 0.0  1
#> SRR1551107     5   0.000      1.000  0  0 0.0  0 1.0  0
#> SRR1551108     3   0.000      0.971  0  0 1.0  0 0.0  0
#> SRR1551109     1   0.000      1.000  1  0 0.0  0 0.0  0
#> SRR1551110     4   0.000      1.000  0  0 0.0  1 0.0  0
#> SRR1551111     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551112     2   0.000      1.000  0  1 0.0  0 0.0  0
#> SRR1551113     6   0.000      1.000  0  0 0.0  0 0.0  1
#> SRR1551114     5   0.000      1.000  0  0 0.0  0 1.0  0

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15028 rows and 134 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.494           0.927       0.922         0.4732 0.502   0.502
#> 3 3 0.671           0.799       0.825         0.2720 1.000   1.000
#> 4 4 0.678           0.763       0.740         0.1326 0.789   0.580
#> 5 5 0.672           0.830       0.713         0.0799 0.937   0.784
#> 6 6 0.663           0.903       0.822         0.0622 0.956   0.805

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1550981     1  0.3431      0.970 0.936 0.064
#> SRR1550982     1  0.3431      0.970 0.936 0.064
#> SRR1550983     1  0.3431      0.970 0.936 0.064
#> SRR1550984     1  0.3431      0.970 0.936 0.064
#> SRR1550986     1  0.3431      0.970 0.936 0.064
#> SRR1550985     1  0.3431      0.970 0.936 0.064
#> SRR1550988     2  0.6712      0.817 0.176 0.824
#> SRR1550987     1  0.0672      0.950 0.992 0.008
#> SRR1550989     2  0.3733      0.936 0.072 0.928
#> SRR1550990     2  0.3733      0.936 0.072 0.928
#> SRR1550991     2  0.3733      0.936 0.072 0.928
#> SRR1550992     1  0.3431      0.970 0.936 0.064
#> SRR1550994     2  0.6712      0.817 0.176 0.824
#> SRR1550993     1  0.0672      0.950 0.992 0.008
#> SRR1550995     2  0.3733      0.936 0.072 0.928
#> SRR1550996     2  0.3733      0.936 0.072 0.928
#> SRR1550997     1  0.3431      0.970 0.936 0.064
#> SRR1550998     1  0.0672      0.950 0.992 0.008
#> SRR1551000     2  0.3733      0.936 0.072 0.928
#> SRR1550999     2  0.6712      0.817 0.176 0.824
#> SRR1551001     2  0.3733      0.936 0.072 0.928
#> SRR1551002     1  0.3431      0.970 0.936 0.064
#> SRR1551003     1  0.0672      0.950 0.992 0.008
#> SRR1551004     2  0.6712      0.817 0.176 0.824
#> SRR1551006     2  0.3733      0.936 0.072 0.928
#> SRR1551005     2  0.3733      0.936 0.072 0.928
#> SRR1551007     2  0.3733      0.936 0.072 0.928
#> SRR1551008     1  0.3431      0.970 0.936 0.064
#> SRR1551009     1  0.0672      0.950 0.992 0.008
#> SRR1551010     2  0.6712      0.817 0.176 0.824
#> SRR1551012     2  0.3733      0.936 0.072 0.928
#> SRR1551011     2  0.3733      0.936 0.072 0.928
#> SRR1551013     1  0.3431      0.970 0.936 0.064
#> SRR1551014     1  0.0672      0.950 0.992 0.008
#> SRR1551015     2  0.6712      0.817 0.176 0.824
#> SRR1551016     2  0.3733      0.936 0.072 0.928
#> SRR1551017     2  0.3733      0.936 0.072 0.928
#> SRR1551018     2  0.3733      0.936 0.072 0.928
#> SRR1551019     1  0.3431      0.968 0.936 0.064
#> SRR1551021     1  0.0672      0.950 0.992 0.008
#> SRR1551022     2  0.6712      0.817 0.176 0.824
#> SRR1551023     2  0.3733      0.936 0.072 0.928
#> SRR1551020     1  0.3431      0.970 0.936 0.064
#> SRR1551024     2  0.6973      0.824 0.188 0.812
#> SRR1551026     1  0.3431      0.970 0.936 0.064
#> SRR1551025     1  0.3431      0.970 0.936 0.064
#> SRR1551027     1  0.0672      0.950 0.992 0.008
#> SRR1551028     2  0.6712      0.817 0.176 0.824
#> SRR1551029     2  0.3733      0.936 0.072 0.928
#> SRR1551030     2  0.3733      0.936 0.072 0.928
#> SRR1551031     2  0.3733      0.936 0.072 0.928
#> SRR1551032     1  0.3274      0.969 0.940 0.060
#> SRR1551034     1  0.0672      0.950 0.992 0.008
#> SRR1551033     1  0.3431      0.970 0.936 0.064
#> SRR1551035     2  0.6712      0.817 0.176 0.824
#> SRR1551036     2  0.3733      0.936 0.072 0.928
#> SRR1551037     2  0.3733      0.936 0.072 0.928
#> SRR1551038     2  0.3733      0.936 0.072 0.928
#> SRR1551039     1  0.3431      0.970 0.936 0.064
#> SRR1551040     1  0.3431      0.970 0.936 0.064
#> SRR1551041     1  0.0672      0.950 0.992 0.008
#> SRR1551042     2  0.6712      0.817 0.176 0.824
#> SRR1551043     2  0.3733      0.936 0.072 0.928
#> SRR1551044     2  0.3733      0.936 0.072 0.928
#> SRR1551045     2  0.3733      0.936 0.072 0.928
#> SRR1551046     1  0.3431      0.970 0.936 0.064
#> SRR1551047     1  0.3431      0.970 0.936 0.064
#> SRR1551048     1  0.0672      0.950 0.992 0.008
#> SRR1551049     2  0.6712      0.817 0.176 0.824
#> SRR1551050     2  0.3733      0.936 0.072 0.928
#> SRR1551051     2  0.3733      0.936 0.072 0.928
#> SRR1551052     2  0.3733      0.936 0.072 0.928
#> SRR1551053     1  0.8443      0.645 0.728 0.272
#> SRR1551054     1  0.3431      0.970 0.936 0.064
#> SRR1551055     1  0.0672      0.950 0.992 0.008
#> SRR1551056     2  0.6712      0.817 0.176 0.824
#> SRR1551057     2  0.3733      0.936 0.072 0.928
#> SRR1551058     2  0.3733      0.936 0.072 0.928
#> SRR1551059     2  0.3733      0.936 0.072 0.928
#> SRR1551060     1  0.3431      0.970 0.936 0.064
#> SRR1551061     1  0.3431      0.970 0.936 0.064
#> SRR1551062     1  0.0672      0.950 0.992 0.008
#> SRR1551063     2  0.6712      0.817 0.176 0.824
#> SRR1551064     2  0.3733      0.936 0.072 0.928
#> SRR1551065     2  0.3733      0.936 0.072 0.928
#> SRR1551066     2  0.3733      0.936 0.072 0.928
#> SRR1551067     1  0.3431      0.970 0.936 0.064
#> SRR1551068     1  0.3431      0.970 0.936 0.064
#> SRR1551069     1  0.0672      0.950 0.992 0.008
#> SRR1551070     2  0.6712      0.817 0.176 0.824
#> SRR1551071     2  0.3733      0.936 0.072 0.928
#> SRR1551072     2  0.3733      0.936 0.072 0.928
#> SRR1551073     2  0.3733      0.936 0.072 0.928
#> SRR1551074     1  0.3431      0.970 0.936 0.064
#> SRR1551075     1  0.3431      0.970 0.936 0.064
#> SRR1551076     1  0.0672      0.950 0.992 0.008
#> SRR1551077     2  0.6712      0.817 0.176 0.824
#> SRR1551078     2  0.3733      0.936 0.072 0.928
#> SRR1551079     2  0.3733      0.936 0.072 0.928
#> SRR1551080     2  0.3733      0.936 0.072 0.928
#> SRR1551081     1  0.3431      0.970 0.936 0.064
#> SRR1551082     1  0.3431      0.970 0.936 0.064
#> SRR1551083     1  0.0672      0.950 0.992 0.008
#> SRR1551084     2  0.6712      0.817 0.176 0.824
#> SRR1551085     2  0.3733      0.936 0.072 0.928
#> SRR1551086     2  0.3733      0.936 0.072 0.928
#> SRR1551088     1  0.3431      0.970 0.936 0.064
#> SRR1551087     1  0.3431      0.970 0.936 0.064
#> SRR1551089     1  0.0672      0.950 0.992 0.008
#> SRR1551090     2  0.6712      0.817 0.176 0.824
#> SRR1551091     2  0.3733      0.936 0.072 0.928
#> SRR1551092     2  0.3733      0.936 0.072 0.928
#> SRR1551093     2  0.3733      0.936 0.072 0.928
#> SRR1551094     1  0.3431      0.970 0.936 0.064
#> SRR1551095     1  0.3431      0.970 0.936 0.064
#> SRR1551096     1  0.0672      0.950 0.992 0.008
#> SRR1551097     2  0.6712      0.817 0.176 0.824
#> SRR1551098     2  0.3733      0.936 0.072 0.928
#> SRR1551099     2  0.3733      0.936 0.072 0.928
#> SRR1551101     1  0.3431      0.970 0.936 0.064
#> SRR1551100     1  0.3431      0.970 0.936 0.064
#> SRR1551102     1  0.0672      0.950 0.992 0.008
#> SRR1551103     2  0.6712      0.817 0.176 0.824
#> SRR1551104     2  0.3733      0.936 0.072 0.928
#> SRR1551105     2  0.3733      0.936 0.072 0.928
#> SRR1551106     2  0.3733      0.936 0.072 0.928
#> SRR1551107     1  0.3431      0.970 0.936 0.064
#> SRR1551108     1  0.3431      0.970 0.936 0.064
#> SRR1551109     1  0.0672      0.950 0.992 0.008
#> SRR1551110     2  0.6712      0.817 0.176 0.824
#> SRR1551111     2  0.3733      0.936 0.072 0.928
#> SRR1551112     2  0.3733      0.936 0.072 0.928
#> SRR1551113     2  0.3733      0.936 0.072 0.928
#> SRR1551114     1  0.3431      0.970 0.936 0.064

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2 p3
#> SRR1550981     1  0.6764      0.827 0.716 0.060 NA
#> SRR1550982     1  0.7024      0.821 0.704 0.072 NA
#> SRR1550983     1  0.6764      0.827 0.716 0.060 NA
#> SRR1550984     1  0.7024      0.821 0.704 0.072 NA
#> SRR1550986     1  0.6333      0.835 0.656 0.012 NA
#> SRR1550985     1  0.7024      0.821 0.704 0.072 NA
#> SRR1550988     2  0.7394      0.614 0.032 0.496 NA
#> SRR1550987     1  0.1267      0.838 0.972 0.004 NA
#> SRR1550989     2  0.0000      0.846 0.000 1.000 NA
#> SRR1550990     2  0.0000      0.846 0.000 1.000 NA
#> SRR1550991     2  0.4575      0.790 0.004 0.812 NA
#> SRR1550992     1  0.6333      0.835 0.656 0.012 NA
#> SRR1550994     2  0.7489      0.614 0.036 0.496 NA
#> SRR1550993     1  0.1267      0.838 0.972 0.004 NA
#> SRR1550995     2  0.0000      0.846 0.000 1.000 NA
#> SRR1550996     2  0.0000      0.846 0.000 1.000 NA
#> SRR1550997     1  0.6333      0.835 0.656 0.012 NA
#> SRR1550998     1  0.1267      0.838 0.972 0.004 NA
#> SRR1551000     2  0.0000      0.846 0.000 1.000 NA
#> SRR1550999     2  0.7489      0.614 0.036 0.496 NA
#> SRR1551001     2  0.0000      0.846 0.000 1.000 NA
#> SRR1551002     1  0.6333      0.835 0.656 0.012 NA
#> SRR1551003     1  0.1267      0.838 0.972 0.004 NA
#> SRR1551004     2  0.7489      0.614 0.036 0.496 NA
#> SRR1551006     2  0.0237      0.845 0.000 0.996 NA
#> SRR1551005     2  0.0000      0.846 0.000 1.000 NA
#> SRR1551007     2  0.4575      0.790 0.004 0.812 NA
#> SRR1551008     1  0.6333      0.835 0.656 0.012 NA
#> SRR1551009     1  0.1267      0.838 0.972 0.004 NA
#> SRR1551010     2  0.7394      0.614 0.032 0.496 NA
#> SRR1551012     2  0.0000      0.846 0.000 1.000 NA
#> SRR1551011     2  0.0000      0.846 0.000 1.000 NA
#> SRR1551013     1  0.6333      0.835 0.656 0.012 NA
#> SRR1551014     1  0.1267      0.838 0.972 0.004 NA
#> SRR1551015     2  0.7489      0.614 0.036 0.496 NA
#> SRR1551016     2  0.0000      0.846 0.000 1.000 NA
#> SRR1551017     2  0.0424      0.844 0.000 0.992 NA
#> SRR1551018     2  0.4575      0.790 0.004 0.812 NA
#> SRR1551019     1  0.4861      0.855 0.808 0.012 NA
#> SRR1551021     1  0.0237      0.842 0.996 0.004 NA
#> SRR1551022     2  0.7394      0.614 0.032 0.496 NA
#> SRR1551023     2  0.0000      0.846 0.000 1.000 NA
#> SRR1551020     1  0.6333      0.835 0.656 0.012 NA
#> SRR1551024     2  0.3155      0.792 0.040 0.916 NA
#> SRR1551026     1  0.6333      0.835 0.656 0.012 NA
#> SRR1551025     1  0.5072      0.854 0.792 0.012 NA
#> SRR1551027     1  0.1267      0.838 0.972 0.004 NA
#> SRR1551028     2  0.7394      0.614 0.032 0.496 NA
#> SRR1551029     2  0.0000      0.846 0.000 1.000 NA
#> SRR1551030     2  0.0237      0.845 0.000 0.996 NA
#> SRR1551031     2  0.4575      0.790 0.004 0.812 NA
#> SRR1551032     1  0.4692      0.855 0.820 0.012 NA
#> SRR1551034     1  0.1267      0.838 0.972 0.004 NA
#> SRR1551033     1  0.6333      0.835 0.656 0.012 NA
#> SRR1551035     2  0.7394      0.614 0.032 0.496 NA
#> SRR1551036     2  0.0000      0.846 0.000 1.000 NA
#> SRR1551037     2  0.0237      0.845 0.000 0.996 NA
#> SRR1551038     2  0.4575      0.790 0.004 0.812 NA
#> SRR1551039     1  0.7024      0.821 0.704 0.072 NA
#> SRR1551040     1  0.6333      0.835 0.656 0.012 NA
#> SRR1551041     1  0.1267      0.838 0.972 0.004 NA
#> SRR1551042     2  0.7394      0.614 0.032 0.496 NA
#> SRR1551043     2  0.0000      0.846 0.000 1.000 NA
#> SRR1551044     2  0.0237      0.845 0.000 0.996 NA
#> SRR1551045     2  0.4575      0.790 0.004 0.812 NA
#> SRR1551046     1  0.6764      0.827 0.716 0.060 NA
#> SRR1551047     1  0.6333      0.835 0.656 0.012 NA
#> SRR1551048     1  0.1267      0.838 0.972 0.004 NA
#> SRR1551049     2  0.7394      0.614 0.032 0.496 NA
#> SRR1551050     2  0.0000      0.846 0.000 1.000 NA
#> SRR1551051     2  0.0000      0.846 0.000 1.000 NA
#> SRR1551052     2  0.4575      0.790 0.004 0.812 NA
#> SRR1551053     1  0.8271      0.739 0.632 0.156 NA
#> SRR1551054     1  0.6333      0.835 0.656 0.012 NA
#> SRR1551055     1  0.1267      0.838 0.972 0.004 NA
#> SRR1551056     2  0.7394      0.614 0.032 0.496 NA
#> SRR1551057     2  0.0000      0.846 0.000 1.000 NA
#> SRR1551058     2  0.0237      0.845 0.000 0.996 NA
#> SRR1551059     2  0.4575      0.790 0.004 0.812 NA
#> SRR1551060     1  0.7024      0.821 0.704 0.072 NA
#> SRR1551061     1  0.6333      0.835 0.656 0.012 NA
#> SRR1551062     1  0.1267      0.838 0.972 0.004 NA
#> SRR1551063     2  0.7394      0.614 0.032 0.496 NA
#> SRR1551064     2  0.0000      0.846 0.000 1.000 NA
#> SRR1551065     2  0.0237      0.845 0.000 0.996 NA
#> SRR1551066     2  0.4575      0.790 0.004 0.812 NA
#> SRR1551067     1  0.7024      0.821 0.704 0.072 NA
#> SRR1551068     1  0.6333      0.835 0.656 0.012 NA
#> SRR1551069     1  0.1267      0.838 0.972 0.004 NA
#> SRR1551070     2  0.7394      0.614 0.032 0.496 NA
#> SRR1551071     2  0.0000      0.846 0.000 1.000 NA
#> SRR1551072     2  0.0000      0.846 0.000 1.000 NA
#> SRR1551073     2  0.4575      0.790 0.004 0.812 NA
#> SRR1551074     1  0.6764      0.827 0.716 0.060 NA
#> SRR1551075     1  0.6333      0.835 0.656 0.012 NA
#> SRR1551076     1  0.1267      0.838 0.972 0.004 NA
#> SRR1551077     2  0.7394      0.614 0.032 0.496 NA
#> SRR1551078     2  0.0000      0.846 0.000 1.000 NA
#> SRR1551079     2  0.0237      0.845 0.000 0.996 NA
#> SRR1551080     2  0.4575      0.790 0.004 0.812 NA
#> SRR1551081     1  0.7024      0.821 0.704 0.072 NA
#> SRR1551082     1  0.6333      0.835 0.656 0.012 NA
#> SRR1551083     1  0.1267      0.838 0.972 0.004 NA
#> SRR1551084     2  0.7394      0.614 0.032 0.496 NA
#> SRR1551085     2  0.0000      0.846 0.000 1.000 NA
#> SRR1551086     2  0.0237      0.845 0.000 0.996 NA
#> SRR1551088     1  0.6333      0.835 0.656 0.012 NA
#> SRR1551087     1  0.7024      0.821 0.704 0.072 NA
#> SRR1551089     1  0.1267      0.838 0.972 0.004 NA
#> SRR1551090     2  0.7394      0.614 0.032 0.496 NA
#> SRR1551091     2  0.0000      0.846 0.000 1.000 NA
#> SRR1551092     2  0.0000      0.846 0.000 1.000 NA
#> SRR1551093     2  0.4575      0.790 0.004 0.812 NA
#> SRR1551094     1  0.7024      0.821 0.704 0.072 NA
#> SRR1551095     1  0.6333      0.835 0.656 0.012 NA
#> SRR1551096     1  0.1267      0.838 0.972 0.004 NA
#> SRR1551097     2  0.7394      0.614 0.032 0.496 NA
#> SRR1551098     2  0.0000      0.846 0.000 1.000 NA
#> SRR1551099     2  0.0000      0.846 0.000 1.000 NA
#> SRR1551101     1  0.6333      0.835 0.656 0.012 NA
#> SRR1551100     1  0.7024      0.821 0.704 0.072 NA
#> SRR1551102     1  0.1267      0.838 0.972 0.004 NA
#> SRR1551103     2  0.7394      0.614 0.032 0.496 NA
#> SRR1551104     2  0.0000      0.846 0.000 1.000 NA
#> SRR1551105     2  0.0000      0.846 0.000 1.000 NA
#> SRR1551106     2  0.4575      0.790 0.004 0.812 NA
#> SRR1551107     1  0.7024      0.821 0.704 0.072 NA
#> SRR1551108     1  0.6333      0.835 0.656 0.012 NA
#> SRR1551109     1  0.1267      0.838 0.972 0.004 NA
#> SRR1551110     2  0.7394      0.614 0.032 0.496 NA
#> SRR1551111     2  0.0000      0.846 0.000 1.000 NA
#> SRR1551112     2  0.0237      0.845 0.000 0.996 NA
#> SRR1551113     2  0.4575      0.790 0.004 0.812 NA
#> SRR1551114     1  0.7024      0.821 0.704 0.072 NA

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1550981     1  0.1411     0.5312 0.960 0.020 0.000 0.020
#> SRR1550982     1  0.2002     0.5411 0.936 0.044 0.000 0.020
#> SRR1550983     1  0.1913     0.5408 0.940 0.040 0.000 0.020
#> SRR1550984     1  0.2111     0.5403 0.932 0.044 0.000 0.024
#> SRR1550986     3  0.4936     0.9970 0.372 0.000 0.624 0.004
#> SRR1550985     1  0.1888     0.5414 0.940 0.044 0.000 0.016
#> SRR1550988     4  0.5680     0.9898 0.028 0.280 0.016 0.676
#> SRR1550987     1  0.7098     0.5460 0.536 0.000 0.312 0.152
#> SRR1550989     2  0.0927     0.8535 0.016 0.976 0.000 0.008
#> SRR1550990     2  0.0000     0.8541 0.000 1.000 0.000 0.000
#> SRR1550991     2  0.7210     0.5696 0.020 0.612 0.204 0.164
#> SRR1550992     3  0.4936     0.9970 0.372 0.000 0.624 0.004
#> SRR1550994     4  0.6603     0.9669 0.028 0.280 0.060 0.632
#> SRR1550993     1  0.7098     0.5460 0.536 0.000 0.312 0.152
#> SRR1550995     2  0.0927     0.8535 0.016 0.976 0.000 0.008
#> SRR1550996     2  0.0469     0.8536 0.012 0.988 0.000 0.000
#> SRR1550997     3  0.5070     0.9949 0.372 0.000 0.620 0.008
#> SRR1550998     1  0.7098     0.5460 0.536 0.000 0.312 0.152
#> SRR1551000     2  0.0927     0.8535 0.016 0.976 0.000 0.008
#> SRR1550999     4  0.6603     0.9669 0.028 0.280 0.060 0.632
#> SRR1551001     2  0.0000     0.8541 0.000 1.000 0.000 0.000
#> SRR1551002     3  0.4936     0.9970 0.372 0.000 0.624 0.004
#> SRR1551003     1  0.7098     0.5460 0.536 0.000 0.312 0.152
#> SRR1551004     4  0.6534     0.9691 0.028 0.280 0.056 0.636
#> SRR1551006     2  0.0188     0.8537 0.000 0.996 0.000 0.004
#> SRR1551005     2  0.0927     0.8535 0.016 0.976 0.000 0.008
#> SRR1551007     2  0.7203     0.5696 0.020 0.612 0.208 0.160
#> SRR1551008     3  0.4936     0.9970 0.372 0.000 0.624 0.004
#> SRR1551009     1  0.7098     0.5460 0.536 0.000 0.312 0.152
#> SRR1551010     4  0.5568     0.9905 0.028 0.280 0.012 0.680
#> SRR1551012     2  0.0000     0.8541 0.000 1.000 0.000 0.000
#> SRR1551011     2  0.0927     0.8535 0.016 0.976 0.000 0.008
#> SRR1551013     3  0.4936     0.9970 0.372 0.000 0.624 0.004
#> SRR1551014     1  0.7098     0.5460 0.536 0.000 0.312 0.152
#> SRR1551015     4  0.6670     0.9657 0.028 0.280 0.064 0.628
#> SRR1551016     2  0.0804     0.8540 0.012 0.980 0.000 0.008
#> SRR1551017     2  0.0188     0.8537 0.000 0.996 0.000 0.004
#> SRR1551018     2  0.7210     0.5695 0.020 0.612 0.204 0.164
#> SRR1551019     1  0.3808     0.3586 0.812 0.000 0.176 0.012
#> SRR1551021     1  0.7169     0.5356 0.528 0.000 0.312 0.160
#> SRR1551022     4  0.5680     0.9898 0.028 0.280 0.016 0.676
#> SRR1551023     2  0.0927     0.8535 0.016 0.976 0.000 0.008
#> SRR1551020     3  0.5298     0.9847 0.372 0.000 0.612 0.016
#> SRR1551024     2  0.1743     0.8109 0.056 0.940 0.000 0.004
#> SRR1551026     3  0.5298     0.9847 0.372 0.000 0.612 0.016
#> SRR1551025     1  0.4891    -0.0121 0.680 0.000 0.308 0.012
#> SRR1551027     1  0.7098     0.5460 0.536 0.000 0.312 0.152
#> SRR1551028     4  0.5680     0.9898 0.028 0.280 0.016 0.676
#> SRR1551029     2  0.0927     0.8535 0.016 0.976 0.000 0.008
#> SRR1551030     2  0.0188     0.8537 0.000 0.996 0.000 0.004
#> SRR1551031     2  0.7216     0.5695 0.020 0.612 0.200 0.168
#> SRR1551032     1  0.4576     0.2027 0.728 0.000 0.260 0.012
#> SRR1551034     1  0.7098     0.5460 0.536 0.000 0.312 0.152
#> SRR1551033     3  0.4936     0.9970 0.372 0.000 0.624 0.004
#> SRR1551035     4  0.5568     0.9905 0.028 0.280 0.012 0.680
#> SRR1551036     2  0.0927     0.8535 0.016 0.976 0.000 0.008
#> SRR1551037     2  0.0188     0.8537 0.000 0.996 0.000 0.004
#> SRR1551038     2  0.7210     0.5696 0.020 0.612 0.204 0.164
#> SRR1551039     1  0.1888     0.5414 0.940 0.044 0.000 0.016
#> SRR1551040     3  0.5070     0.9949 0.372 0.000 0.620 0.008
#> SRR1551041     1  0.7098     0.5460 0.536 0.000 0.312 0.152
#> SRR1551042     4  0.5568     0.9905 0.028 0.280 0.012 0.680
#> SRR1551043     2  0.0927     0.8535 0.016 0.976 0.000 0.008
#> SRR1551044     2  0.0188     0.8537 0.000 0.996 0.000 0.004
#> SRR1551045     2  0.7210     0.5696 0.020 0.612 0.204 0.164
#> SRR1551046     1  0.1913     0.5408 0.940 0.040 0.000 0.020
#> SRR1551047     3  0.5070     0.9949 0.372 0.000 0.620 0.008
#> SRR1551048     1  0.7098     0.5460 0.536 0.000 0.312 0.152
#> SRR1551049     4  0.5680     0.9898 0.028 0.280 0.016 0.676
#> SRR1551050     2  0.0927     0.8535 0.016 0.976 0.000 0.008
#> SRR1551051     2  0.0000     0.8541 0.000 1.000 0.000 0.000
#> SRR1551052     2  0.7210     0.5696 0.020 0.612 0.204 0.164
#> SRR1551053     1  0.2882     0.4970 0.892 0.084 0.000 0.024
#> SRR1551054     3  0.5070     0.9949 0.372 0.000 0.620 0.008
#> SRR1551055     1  0.7098     0.5460 0.536 0.000 0.312 0.152
#> SRR1551056     4  0.5568     0.9905 0.028 0.280 0.012 0.680
#> SRR1551057     2  0.0927     0.8535 0.016 0.976 0.000 0.008
#> SRR1551058     2  0.0188     0.8537 0.000 0.996 0.000 0.004
#> SRR1551059     2  0.7203     0.5696 0.020 0.612 0.208 0.160
#> SRR1551060     1  0.2111     0.5403 0.932 0.044 0.000 0.024
#> SRR1551061     3  0.4936     0.9970 0.372 0.000 0.624 0.004
#> SRR1551062     1  0.7098     0.5460 0.536 0.000 0.312 0.152
#> SRR1551063     4  0.5785     0.9889 0.028 0.280 0.020 0.672
#> SRR1551064     2  0.0927     0.8535 0.016 0.976 0.000 0.008
#> SRR1551065     2  0.0000     0.8541 0.000 1.000 0.000 0.000
#> SRR1551066     2  0.7210     0.5695 0.020 0.612 0.204 0.164
#> SRR1551067     1  0.1888     0.5414 0.940 0.044 0.000 0.016
#> SRR1551068     3  0.4936     0.9970 0.372 0.000 0.624 0.004
#> SRR1551069     1  0.7098     0.5460 0.536 0.000 0.312 0.152
#> SRR1551070     4  0.5568     0.9905 0.028 0.280 0.012 0.680
#> SRR1551071     2  0.0927     0.8535 0.016 0.976 0.000 0.008
#> SRR1551072     2  0.0000     0.8541 0.000 1.000 0.000 0.000
#> SRR1551073     2  0.7203     0.5696 0.020 0.612 0.208 0.160
#> SRR1551074     1  0.1297     0.5313 0.964 0.020 0.000 0.016
#> SRR1551075     3  0.4936     0.9970 0.372 0.000 0.624 0.004
#> SRR1551076     1  0.7098     0.5460 0.536 0.000 0.312 0.152
#> SRR1551077     4  0.5680     0.9897 0.028 0.280 0.016 0.676
#> SRR1551078     2  0.0927     0.8535 0.016 0.976 0.000 0.008
#> SRR1551079     2  0.0188     0.8537 0.000 0.996 0.000 0.004
#> SRR1551080     2  0.7216     0.5695 0.020 0.612 0.200 0.168
#> SRR1551081     1  0.1888     0.5414 0.940 0.044 0.000 0.016
#> SRR1551082     3  0.4936     0.9970 0.372 0.000 0.624 0.004
#> SRR1551083     1  0.7098     0.5460 0.536 0.000 0.312 0.152
#> SRR1551084     4  0.5680     0.9897 0.028 0.280 0.016 0.676
#> SRR1551085     2  0.0927     0.8535 0.016 0.976 0.000 0.008
#> SRR1551086     2  0.0188     0.8537 0.000 0.996 0.000 0.004
#> SRR1551088     3  0.4936     0.9970 0.372 0.000 0.624 0.004
#> SRR1551087     1  0.1888     0.5414 0.940 0.044 0.000 0.016
#> SRR1551089     1  0.7098     0.5460 0.536 0.000 0.312 0.152
#> SRR1551090     4  0.5568     0.9905 0.028 0.280 0.012 0.680
#> SRR1551091     2  0.0927     0.8535 0.016 0.976 0.000 0.008
#> SRR1551092     2  0.0000     0.8541 0.000 1.000 0.000 0.000
#> SRR1551093     2  0.7203     0.5696 0.020 0.612 0.208 0.160
#> SRR1551094     1  0.1888     0.5414 0.940 0.044 0.000 0.016
#> SRR1551095     3  0.4936     0.9970 0.372 0.000 0.624 0.004
#> SRR1551096     1  0.7098     0.5460 0.536 0.000 0.312 0.152
#> SRR1551097     4  0.5568     0.9905 0.028 0.280 0.012 0.680
#> SRR1551098     2  0.0927     0.8535 0.016 0.976 0.000 0.008
#> SRR1551099     2  0.0000     0.8541 0.000 1.000 0.000 0.000
#> SRR1551101     3  0.5070     0.9949 0.372 0.000 0.620 0.008
#> SRR1551100     1  0.1888     0.5414 0.940 0.044 0.000 0.016
#> SRR1551102     1  0.7098     0.5460 0.536 0.000 0.312 0.152
#> SRR1551103     4  0.5568     0.9905 0.028 0.280 0.012 0.680
#> SRR1551104     2  0.0927     0.8535 0.016 0.976 0.000 0.008
#> SRR1551105     2  0.0000     0.8541 0.000 1.000 0.000 0.000
#> SRR1551106     2  0.7210     0.5696 0.020 0.612 0.204 0.164
#> SRR1551107     1  0.2002     0.5411 0.936 0.044 0.000 0.020
#> SRR1551108     3  0.4936     0.9970 0.372 0.000 0.624 0.004
#> SRR1551109     1  0.7098     0.5460 0.536 0.000 0.312 0.152
#> SRR1551110     4  0.5680     0.9897 0.028 0.280 0.016 0.676
#> SRR1551111     2  0.0927     0.8535 0.016 0.976 0.000 0.008
#> SRR1551112     2  0.0000     0.8541 0.000 1.000 0.000 0.000
#> SRR1551113     2  0.7210     0.5695 0.020 0.612 0.204 0.164
#> SRR1551114     1  0.2002     0.5411 0.936 0.044 0.000 0.020

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1550981     1  0.7790      0.544 0.388 0.012 0.212 0.044 0.344
#> SRR1550982     1  0.7873      0.546 0.384 0.016 0.212 0.044 0.344
#> SRR1550983     1  0.7873      0.546 0.384 0.016 0.212 0.044 0.344
#> SRR1550984     1  0.7832      0.546 0.384 0.016 0.216 0.040 0.344
#> SRR1550986     3  0.3837      0.985 0.308 0.000 0.692 0.000 0.000
#> SRR1550985     1  0.7832      0.546 0.384 0.016 0.216 0.040 0.344
#> SRR1550988     4  0.3368      0.981 0.004 0.164 0.004 0.820 0.008
#> SRR1550987     1  0.0162      0.566 0.996 0.000 0.000 0.004 0.000
#> SRR1550989     2  0.1732      0.939 0.000 0.920 0.080 0.000 0.000
#> SRR1550990     2  0.0000      0.938 0.000 1.000 0.000 0.000 0.000
#> SRR1550991     5  0.5655      0.985 0.000 0.380 0.012 0.056 0.552
#> SRR1550992     3  0.3837      0.985 0.308 0.000 0.692 0.000 0.000
#> SRR1550994     4  0.4520      0.955 0.004 0.164 0.036 0.772 0.024
#> SRR1550993     1  0.0162      0.566 0.996 0.000 0.000 0.004 0.000
#> SRR1550995     2  0.1732      0.939 0.000 0.920 0.080 0.000 0.000
#> SRR1550996     2  0.0000      0.938 0.000 1.000 0.000 0.000 0.000
#> SRR1550997     3  0.4365      0.978 0.308 0.000 0.676 0.012 0.004
#> SRR1550998     1  0.0609      0.564 0.980 0.000 0.000 0.020 0.000
#> SRR1551000     2  0.1732      0.939 0.000 0.920 0.080 0.000 0.000
#> SRR1550999     4  0.4520      0.955 0.004 0.164 0.036 0.772 0.024
#> SRR1551001     2  0.0000      0.938 0.000 1.000 0.000 0.000 0.000
#> SRR1551002     3  0.3837      0.985 0.308 0.000 0.692 0.000 0.000
#> SRR1551003     1  0.0162      0.566 0.996 0.000 0.000 0.004 0.000
#> SRR1551004     4  0.4238      0.962 0.004 0.164 0.036 0.784 0.012
#> SRR1551006     2  0.0000      0.938 0.000 1.000 0.000 0.000 0.000
#> SRR1551005     2  0.1732      0.939 0.000 0.920 0.080 0.000 0.000
#> SRR1551007     5  0.5113      0.987 0.000 0.380 0.000 0.044 0.576
#> SRR1551008     3  0.3837      0.985 0.308 0.000 0.692 0.000 0.000
#> SRR1551009     1  0.0404      0.565 0.988 0.000 0.000 0.012 0.000
#> SRR1551010     4  0.2930      0.982 0.004 0.164 0.000 0.832 0.000
#> SRR1551012     2  0.0000      0.938 0.000 1.000 0.000 0.000 0.000
#> SRR1551011     2  0.1732      0.939 0.000 0.920 0.080 0.000 0.000
#> SRR1551013     3  0.3837      0.985 0.308 0.000 0.692 0.000 0.000
#> SRR1551014     1  0.0451      0.565 0.988 0.000 0.000 0.004 0.008
#> SRR1551015     4  0.5379      0.924 0.004 0.164 0.064 0.724 0.044
#> SRR1551016     2  0.1732      0.939 0.000 0.920 0.080 0.000 0.000
#> SRR1551017     2  0.0290      0.931 0.000 0.992 0.008 0.000 0.000
#> SRR1551018     5  0.5733      0.980 0.000 0.380 0.024 0.044 0.552
#> SRR1551019     1  0.7636      0.401 0.480 0.000 0.140 0.116 0.264
#> SRR1551021     1  0.0912      0.556 0.972 0.000 0.000 0.012 0.016
#> SRR1551022     4  0.3795      0.975 0.004 0.164 0.008 0.804 0.020
#> SRR1551023     2  0.1732      0.939 0.000 0.920 0.080 0.000 0.000
#> SRR1551020     3  0.6005      0.887 0.308 0.000 0.588 0.080 0.024
#> SRR1551024     2  0.1106      0.892 0.000 0.964 0.024 0.012 0.000
#> SRR1551026     3  0.6005      0.887 0.308 0.000 0.588 0.080 0.024
#> SRR1551025     1  0.7779     -0.170 0.432 0.000 0.308 0.108 0.152
#> SRR1551027     1  0.0693      0.563 0.980 0.000 0.000 0.008 0.012
#> SRR1551028     4  0.3368      0.981 0.004 0.164 0.004 0.820 0.008
#> SRR1551029     2  0.1732      0.939 0.000 0.920 0.080 0.000 0.000
#> SRR1551030     2  0.0000      0.938 0.000 1.000 0.000 0.000 0.000
#> SRR1551031     5  0.5831      0.984 0.000 0.380 0.020 0.056 0.544
#> SRR1551032     1  0.7536      0.130 0.504 0.000 0.236 0.108 0.152
#> SRR1551034     1  0.0162      0.566 0.996 0.000 0.000 0.004 0.000
#> SRR1551033     3  0.3837      0.985 0.308 0.000 0.692 0.000 0.000
#> SRR1551035     4  0.3088      0.982 0.004 0.164 0.000 0.828 0.004
#> SRR1551036     2  0.1732      0.939 0.000 0.920 0.080 0.000 0.000
#> SRR1551037     2  0.0000      0.938 0.000 1.000 0.000 0.000 0.000
#> SRR1551038     5  0.5442      0.987 0.000 0.380 0.004 0.056 0.560
#> SRR1551039     1  0.7832      0.546 0.384 0.016 0.216 0.040 0.344
#> SRR1551040     3  0.4365      0.978 0.308 0.000 0.676 0.012 0.004
#> SRR1551041     1  0.0609      0.564 0.980 0.000 0.000 0.020 0.000
#> SRR1551042     4  0.3088      0.982 0.004 0.164 0.000 0.828 0.004
#> SRR1551043     2  0.1732      0.939 0.000 0.920 0.080 0.000 0.000
#> SRR1551044     2  0.0000      0.938 0.000 1.000 0.000 0.000 0.000
#> SRR1551045     5  0.5442      0.987 0.000 0.380 0.004 0.056 0.560
#> SRR1551046     1  0.7873      0.546 0.384 0.016 0.212 0.044 0.344
#> SRR1551047     3  0.4142      0.981 0.308 0.000 0.684 0.004 0.004
#> SRR1551048     1  0.0162      0.566 0.996 0.000 0.000 0.004 0.000
#> SRR1551049     4  0.3368      0.981 0.004 0.164 0.004 0.820 0.008
#> SRR1551050     2  0.1732      0.939 0.000 0.920 0.080 0.000 0.000
#> SRR1551051     2  0.0000      0.938 0.000 1.000 0.000 0.000 0.000
#> SRR1551052     5  0.5655      0.985 0.000 0.380 0.012 0.056 0.552
#> SRR1551053     1  0.7979      0.539 0.376 0.024 0.216 0.040 0.344
#> SRR1551054     3  0.4142      0.981 0.308 0.000 0.684 0.004 0.004
#> SRR1551055     1  0.0609      0.564 0.980 0.000 0.000 0.020 0.000
#> SRR1551056     4  0.3088      0.982 0.004 0.164 0.000 0.828 0.004
#> SRR1551057     2  0.1732      0.939 0.000 0.920 0.080 0.000 0.000
#> SRR1551058     2  0.0000      0.938 0.000 1.000 0.000 0.000 0.000
#> SRR1551059     5  0.5176      0.987 0.000 0.380 0.000 0.048 0.572
#> SRR1551060     1  0.7832      0.546 0.384 0.016 0.216 0.040 0.344
#> SRR1551061     3  0.3837      0.985 0.308 0.000 0.692 0.000 0.000
#> SRR1551062     1  0.0162      0.566 0.996 0.000 0.000 0.004 0.000
#> SRR1551063     4  0.3578      0.980 0.004 0.164 0.016 0.812 0.004
#> SRR1551064     2  0.1732      0.939 0.000 0.920 0.080 0.000 0.000
#> SRR1551065     2  0.0000      0.938 0.000 1.000 0.000 0.000 0.000
#> SRR1551066     5  0.5567      0.984 0.000 0.380 0.016 0.044 0.560
#> SRR1551067     1  0.7832      0.546 0.384 0.016 0.216 0.040 0.344
#> SRR1551068     3  0.3837      0.985 0.308 0.000 0.692 0.000 0.000
#> SRR1551069     1  0.0404      0.565 0.988 0.000 0.000 0.012 0.000
#> SRR1551070     4  0.2930      0.982 0.004 0.164 0.000 0.832 0.000
#> SRR1551071     2  0.1732      0.939 0.000 0.920 0.080 0.000 0.000
#> SRR1551072     2  0.0000      0.938 0.000 1.000 0.000 0.000 0.000
#> SRR1551073     5  0.5176      0.987 0.000 0.380 0.000 0.048 0.572
#> SRR1551074     1  0.7750      0.544 0.388 0.012 0.216 0.040 0.344
#> SRR1551075     3  0.3837      0.985 0.308 0.000 0.692 0.000 0.000
#> SRR1551076     1  0.0162      0.566 0.996 0.000 0.000 0.004 0.000
#> SRR1551077     4  0.3421      0.980 0.004 0.164 0.016 0.816 0.000
#> SRR1551078     2  0.1732      0.939 0.000 0.920 0.080 0.000 0.000
#> SRR1551079     2  0.0000      0.938 0.000 1.000 0.000 0.000 0.000
#> SRR1551080     5  0.5831      0.984 0.000 0.380 0.020 0.056 0.544
#> SRR1551081     1  0.7832      0.546 0.384 0.016 0.216 0.040 0.344
#> SRR1551082     3  0.3837      0.985 0.308 0.000 0.692 0.000 0.000
#> SRR1551083     1  0.0162      0.566 0.996 0.000 0.000 0.004 0.000
#> SRR1551084     4  0.3421      0.980 0.004 0.164 0.016 0.816 0.000
#> SRR1551085     2  0.1732      0.939 0.000 0.920 0.080 0.000 0.000
#> SRR1551086     2  0.0000      0.938 0.000 1.000 0.000 0.000 0.000
#> SRR1551088     3  0.3837      0.985 0.308 0.000 0.692 0.000 0.000
#> SRR1551087     1  0.7832      0.546 0.384 0.016 0.216 0.040 0.344
#> SRR1551089     1  0.0162      0.566 0.996 0.000 0.000 0.004 0.000
#> SRR1551090     4  0.3088      0.982 0.004 0.164 0.000 0.828 0.004
#> SRR1551091     2  0.1732      0.939 0.000 0.920 0.080 0.000 0.000
#> SRR1551092     2  0.0000      0.938 0.000 1.000 0.000 0.000 0.000
#> SRR1551093     5  0.5176      0.987 0.000 0.380 0.000 0.048 0.572
#> SRR1551094     1  0.7832      0.546 0.384 0.016 0.216 0.040 0.344
#> SRR1551095     3  0.3837      0.985 0.308 0.000 0.692 0.000 0.000
#> SRR1551096     1  0.0162      0.566 0.996 0.000 0.000 0.004 0.000
#> SRR1551097     4  0.2930      0.982 0.004 0.164 0.000 0.832 0.000
#> SRR1551098     2  0.1732      0.939 0.000 0.920 0.080 0.000 0.000
#> SRR1551099     2  0.0000      0.938 0.000 1.000 0.000 0.000 0.000
#> SRR1551101     3  0.4365      0.978 0.308 0.000 0.676 0.012 0.004
#> SRR1551100     1  0.7832      0.546 0.384 0.016 0.216 0.040 0.344
#> SRR1551102     1  0.0609      0.564 0.980 0.000 0.000 0.020 0.000
#> SRR1551103     4  0.2930      0.982 0.004 0.164 0.000 0.832 0.000
#> SRR1551104     2  0.1732      0.939 0.000 0.920 0.080 0.000 0.000
#> SRR1551105     2  0.0000      0.938 0.000 1.000 0.000 0.000 0.000
#> SRR1551106     5  0.5442      0.987 0.000 0.380 0.004 0.056 0.560
#> SRR1551107     1  0.7873      0.546 0.384 0.016 0.212 0.044 0.344
#> SRR1551108     3  0.3837      0.985 0.308 0.000 0.692 0.000 0.000
#> SRR1551109     1  0.0162      0.566 0.996 0.000 0.000 0.004 0.000
#> SRR1551110     4  0.3421      0.980 0.004 0.164 0.016 0.816 0.000
#> SRR1551111     2  0.1732      0.939 0.000 0.920 0.080 0.000 0.000
#> SRR1551112     2  0.0000      0.938 0.000 1.000 0.000 0.000 0.000
#> SRR1551113     5  0.5733      0.980 0.000 0.380 0.024 0.044 0.552
#> SRR1551114     1  0.7873      0.546 0.384 0.016 0.212 0.044 0.344

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1550981     5  0.3386      0.961 0.188 0.000 0.016 0.008 0.788 0.000
#> SRR1550982     5  0.3386      0.961 0.188 0.000 0.016 0.008 0.788 0.000
#> SRR1550983     5  0.3386      0.961 0.188 0.000 0.016 0.008 0.788 0.000
#> SRR1550984     5  0.2979      0.966 0.188 0.000 0.004 0.000 0.804 0.004
#> SRR1550986     3  0.4455      0.975 0.232 0.000 0.688 0.000 0.080 0.000
#> SRR1550985     5  0.2838      0.966 0.188 0.000 0.004 0.000 0.808 0.000
#> SRR1550988     4  0.2213      0.971 0.004 0.100 0.008 0.888 0.000 0.000
#> SRR1550987     1  0.0000      0.923 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1550989     2  0.3965      0.854 0.000 0.768 0.160 0.000 0.064 0.008
#> SRR1550990     2  0.0000      0.856 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1550991     6  0.4117      0.985 0.000 0.204 0.000 0.044 0.012 0.740
#> SRR1550992     3  0.4455      0.975 0.232 0.000 0.688 0.000 0.080 0.000
#> SRR1550994     4  0.4238      0.936 0.004 0.100 0.032 0.800 0.040 0.024
#> SRR1550993     1  0.0000      0.923 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1550995     2  0.3965      0.854 0.000 0.768 0.160 0.000 0.064 0.008
#> SRR1550996     2  0.0000      0.856 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1550997     3  0.4640      0.971 0.232 0.000 0.680 0.004 0.084 0.000
#> SRR1550998     1  0.0405      0.920 0.988 0.000 0.004 0.008 0.000 0.000
#> SRR1551000     2  0.3965      0.854 0.000 0.768 0.160 0.000 0.064 0.008
#> SRR1550999     4  0.4238      0.936 0.004 0.100 0.032 0.800 0.040 0.024
#> SRR1551001     2  0.0000      0.856 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551002     3  0.4455      0.975 0.232 0.000 0.688 0.000 0.080 0.000
#> SRR1551003     1  0.0000      0.923 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551004     4  0.3952      0.945 0.004 0.100 0.028 0.816 0.028 0.024
#> SRR1551006     2  0.0000      0.856 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551005     2  0.3944      0.854 0.000 0.768 0.164 0.000 0.060 0.008
#> SRR1551007     6  0.4159      0.985 0.000 0.204 0.004 0.044 0.008 0.740
#> SRR1551008     3  0.4455      0.975 0.232 0.000 0.688 0.000 0.080 0.000
#> SRR1551009     1  0.0291      0.921 0.992 0.000 0.004 0.000 0.000 0.004
#> SRR1551010     4  0.1958      0.972 0.004 0.100 0.000 0.896 0.000 0.000
#> SRR1551012     2  0.0000      0.856 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551011     2  0.3965      0.854 0.000 0.768 0.160 0.000 0.064 0.008
#> SRR1551013     3  0.4455      0.975 0.232 0.000 0.688 0.000 0.080 0.000
#> SRR1551014     1  0.0653      0.913 0.980 0.000 0.004 0.012 0.000 0.004
#> SRR1551015     4  0.5564      0.880 0.004 0.100 0.068 0.716 0.052 0.060
#> SRR1551016     2  0.4046      0.854 0.000 0.768 0.152 0.000 0.068 0.012
#> SRR1551017     2  0.0405      0.847 0.000 0.988 0.008 0.000 0.004 0.000
#> SRR1551018     6  0.5370      0.970 0.000 0.204 0.032 0.048 0.036 0.680
#> SRR1551019     5  0.6919      0.386 0.324 0.000 0.012 0.052 0.436 0.176
#> SRR1551021     1  0.1294      0.897 0.956 0.000 0.008 0.024 0.008 0.004
#> SRR1551022     4  0.3124      0.959 0.004 0.100 0.032 0.852 0.004 0.008
#> SRR1551023     2  0.3965      0.854 0.000 0.768 0.160 0.000 0.064 0.008
#> SRR1551020     3  0.7456      0.764 0.232 0.000 0.476 0.040 0.096 0.156
#> SRR1551024     2  0.1426      0.811 0.000 0.948 0.000 0.008 0.016 0.028
#> SRR1551026     3  0.7456      0.764 0.232 0.000 0.476 0.040 0.096 0.156
#> SRR1551025     1  0.8285     -0.212 0.332 0.000 0.180 0.052 0.260 0.176
#> SRR1551027     1  0.1036      0.903 0.964 0.000 0.008 0.024 0.000 0.004
#> SRR1551028     4  0.2405      0.970 0.004 0.100 0.016 0.880 0.000 0.000
#> SRR1551029     2  0.4046      0.854 0.000 0.768 0.152 0.000 0.068 0.012
#> SRR1551030     2  0.0000      0.856 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551031     6  0.4857      0.979 0.000 0.204 0.016 0.048 0.024 0.708
#> SRR1551032     1  0.8241     -0.177 0.344 0.000 0.168 0.052 0.260 0.176
#> SRR1551034     1  0.0000      0.923 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551033     3  0.4455      0.975 0.232 0.000 0.688 0.000 0.080 0.000
#> SRR1551035     4  0.2101      0.973 0.004 0.100 0.000 0.892 0.004 0.000
#> SRR1551036     2  0.4046      0.854 0.000 0.768 0.152 0.000 0.068 0.012
#> SRR1551037     2  0.0000      0.856 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551038     6  0.4117      0.985 0.000 0.204 0.000 0.044 0.012 0.740
#> SRR1551039     5  0.2697      0.967 0.188 0.000 0.000 0.000 0.812 0.000
#> SRR1551040     3  0.4640      0.971 0.232 0.000 0.680 0.004 0.084 0.000
#> SRR1551041     1  0.0405      0.920 0.988 0.000 0.004 0.008 0.000 0.000
#> SRR1551042     4  0.2101      0.973 0.004 0.100 0.000 0.892 0.004 0.000
#> SRR1551043     2  0.4046      0.854 0.000 0.768 0.152 0.000 0.068 0.012
#> SRR1551044     2  0.0000      0.856 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551045     6  0.4117      0.985 0.000 0.204 0.000 0.044 0.012 0.740
#> SRR1551046     5  0.3386      0.961 0.188 0.000 0.016 0.008 0.788 0.000
#> SRR1551047     3  0.4455      0.975 0.232 0.000 0.688 0.000 0.080 0.000
#> SRR1551048     1  0.0000      0.923 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551049     4  0.2213      0.971 0.004 0.100 0.008 0.888 0.000 0.000
#> SRR1551050     2  0.3965      0.854 0.000 0.768 0.160 0.000 0.064 0.008
#> SRR1551051     2  0.0000      0.856 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551052     6  0.4117      0.985 0.000 0.204 0.000 0.044 0.012 0.740
#> SRR1551053     5  0.2979      0.966 0.188 0.000 0.004 0.000 0.804 0.004
#> SRR1551054     3  0.4455      0.975 0.232 0.000 0.688 0.000 0.080 0.000
#> SRR1551055     1  0.0405      0.920 0.988 0.000 0.004 0.008 0.000 0.000
#> SRR1551056     4  0.2101      0.972 0.004 0.100 0.004 0.892 0.000 0.000
#> SRR1551057     2  0.3965      0.854 0.000 0.768 0.160 0.000 0.064 0.008
#> SRR1551058     2  0.0000      0.856 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551059     6  0.4256      0.985 0.000 0.204 0.004 0.044 0.012 0.736
#> SRR1551060     5  0.2979      0.966 0.188 0.000 0.004 0.000 0.804 0.004
#> SRR1551061     3  0.4455      0.975 0.232 0.000 0.688 0.000 0.080 0.000
#> SRR1551062     1  0.0000      0.923 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551063     4  0.2846      0.967 0.004 0.100 0.020 0.864 0.012 0.000
#> SRR1551064     2  0.3985      0.854 0.000 0.768 0.156 0.000 0.068 0.008
#> SRR1551065     2  0.0000      0.856 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551066     6  0.5160      0.975 0.000 0.204 0.024 0.048 0.032 0.692
#> SRR1551067     5  0.2697      0.967 0.188 0.000 0.000 0.000 0.812 0.000
#> SRR1551068     3  0.4455      0.975 0.232 0.000 0.688 0.000 0.080 0.000
#> SRR1551069     1  0.0291      0.921 0.992 0.000 0.004 0.000 0.000 0.004
#> SRR1551070     4  0.2244      0.972 0.004 0.100 0.004 0.888 0.004 0.000
#> SRR1551071     2  0.3965      0.854 0.000 0.768 0.160 0.000 0.064 0.008
#> SRR1551072     2  0.0000      0.856 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551073     6  0.4406      0.984 0.000 0.204 0.004 0.048 0.016 0.728
#> SRR1551074     5  0.2697      0.967 0.188 0.000 0.000 0.000 0.812 0.000
#> SRR1551075     3  0.4455      0.975 0.232 0.000 0.688 0.000 0.080 0.000
#> SRR1551076     1  0.0000      0.923 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551077     4  0.3080      0.966 0.004 0.100 0.016 0.856 0.020 0.004
#> SRR1551078     2  0.4046      0.854 0.000 0.768 0.152 0.000 0.068 0.012
#> SRR1551079     2  0.0000      0.856 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551080     6  0.4857      0.979 0.000 0.204 0.016 0.048 0.024 0.708
#> SRR1551081     5  0.2697      0.967 0.188 0.000 0.000 0.000 0.812 0.000
#> SRR1551082     3  0.4455      0.975 0.232 0.000 0.688 0.000 0.080 0.000
#> SRR1551083     1  0.0000      0.923 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551084     4  0.3080      0.966 0.004 0.100 0.016 0.856 0.020 0.004
#> SRR1551085     2  0.3985      0.854 0.000 0.768 0.156 0.000 0.068 0.008
#> SRR1551086     2  0.0000      0.856 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551088     3  0.4455      0.975 0.232 0.000 0.688 0.000 0.080 0.000
#> SRR1551087     5  0.2697      0.967 0.188 0.000 0.000 0.000 0.812 0.000
#> SRR1551089     1  0.0000      0.923 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551090     4  0.1958      0.972 0.004 0.100 0.000 0.896 0.000 0.000
#> SRR1551091     2  0.3965      0.854 0.000 0.768 0.160 0.000 0.064 0.008
#> SRR1551092     2  0.0000      0.856 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551093     6  0.4406      0.984 0.000 0.204 0.004 0.048 0.016 0.728
#> SRR1551094     5  0.2697      0.967 0.188 0.000 0.000 0.000 0.812 0.000
#> SRR1551095     3  0.4455      0.975 0.232 0.000 0.688 0.000 0.080 0.000
#> SRR1551096     1  0.0000      0.923 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551097     4  0.2244      0.972 0.004 0.100 0.004 0.888 0.004 0.000
#> SRR1551098     2  0.3965      0.854 0.000 0.768 0.160 0.000 0.064 0.008
#> SRR1551099     2  0.0000      0.856 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551101     3  0.4640      0.971 0.232 0.000 0.680 0.004 0.084 0.000
#> SRR1551100     5  0.2697      0.967 0.188 0.000 0.000 0.000 0.812 0.000
#> SRR1551102     1  0.0551      0.918 0.984 0.000 0.004 0.008 0.000 0.004
#> SRR1551103     4  0.2244      0.972 0.004 0.100 0.004 0.888 0.004 0.000
#> SRR1551104     2  0.3965      0.854 0.000 0.768 0.160 0.000 0.064 0.008
#> SRR1551105     2  0.0000      0.856 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551106     6  0.4179      0.985 0.000 0.204 0.000 0.048 0.012 0.736
#> SRR1551107     5  0.3198      0.964 0.188 0.000 0.008 0.008 0.796 0.000
#> SRR1551108     3  0.4455      0.975 0.232 0.000 0.688 0.000 0.080 0.000
#> SRR1551109     1  0.0000      0.923 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551110     4  0.3080      0.966 0.004 0.100 0.016 0.856 0.020 0.004
#> SRR1551111     2  0.3985      0.854 0.000 0.768 0.156 0.000 0.068 0.008
#> SRR1551112     2  0.0000      0.856 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551113     6  0.5370      0.970 0.000 0.204 0.032 0.048 0.036 0.680
#> SRR1551114     5  0.3089      0.965 0.188 0.000 0.008 0.004 0.800 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15028 rows and 134 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.997       0.999         0.4991 0.502   0.502
#> 3 3 1.000           0.985       0.982         0.2420 0.879   0.758
#> 4 4 0.802           0.888       0.903         0.1380 0.918   0.784
#> 5 5 0.880           0.896       0.870         0.0780 0.948   0.827
#> 6 6 1.000           0.972       0.973         0.0734 0.933   0.730

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette  p1  p2
#> SRR1550981     1   0.000      1.000 1.0 0.0
#> SRR1550982     1   0.000      1.000 1.0 0.0
#> SRR1550983     1   0.000      1.000 1.0 0.0
#> SRR1550984     1   0.000      1.000 1.0 0.0
#> SRR1550986     1   0.000      1.000 1.0 0.0
#> SRR1550985     1   0.000      1.000 1.0 0.0
#> SRR1550988     2   0.000      0.997 0.0 1.0
#> SRR1550987     1   0.000      1.000 1.0 0.0
#> SRR1550989     2   0.000      0.997 0.0 1.0
#> SRR1550990     2   0.000      0.997 0.0 1.0
#> SRR1550991     2   0.000      0.997 0.0 1.0
#> SRR1550992     1   0.000      1.000 1.0 0.0
#> SRR1550994     2   0.000      0.997 0.0 1.0
#> SRR1550993     1   0.000      1.000 1.0 0.0
#> SRR1550995     2   0.000      0.997 0.0 1.0
#> SRR1550996     2   0.000      0.997 0.0 1.0
#> SRR1550997     1   0.000      1.000 1.0 0.0
#> SRR1550998     1   0.000      1.000 1.0 0.0
#> SRR1551000     2   0.000      0.997 0.0 1.0
#> SRR1550999     2   0.000      0.997 0.0 1.0
#> SRR1551001     2   0.000      0.997 0.0 1.0
#> SRR1551002     1   0.000      1.000 1.0 0.0
#> SRR1551003     1   0.000      1.000 1.0 0.0
#> SRR1551004     2   0.000      0.997 0.0 1.0
#> SRR1551006     2   0.000      0.997 0.0 1.0
#> SRR1551005     2   0.000      0.997 0.0 1.0
#> SRR1551007     2   0.000      0.997 0.0 1.0
#> SRR1551008     1   0.000      1.000 1.0 0.0
#> SRR1551009     1   0.000      1.000 1.0 0.0
#> SRR1551010     2   0.000      0.997 0.0 1.0
#> SRR1551012     2   0.000      0.997 0.0 1.0
#> SRR1551011     2   0.000      0.997 0.0 1.0
#> SRR1551013     1   0.000      1.000 1.0 0.0
#> SRR1551014     1   0.000      1.000 1.0 0.0
#> SRR1551015     2   0.000      0.997 0.0 1.0
#> SRR1551016     2   0.000      0.997 0.0 1.0
#> SRR1551017     2   0.000      0.997 0.0 1.0
#> SRR1551018     2   0.000      0.997 0.0 1.0
#> SRR1551019     1   0.000      1.000 1.0 0.0
#> SRR1551021     1   0.000      1.000 1.0 0.0
#> SRR1551022     2   0.000      0.997 0.0 1.0
#> SRR1551023     2   0.000      0.997 0.0 1.0
#> SRR1551020     1   0.000      1.000 1.0 0.0
#> SRR1551024     2   0.722      0.750 0.2 0.8
#> SRR1551026     1   0.000      1.000 1.0 0.0
#> SRR1551025     1   0.000      1.000 1.0 0.0
#> SRR1551027     1   0.000      1.000 1.0 0.0
#> SRR1551028     2   0.000      0.997 0.0 1.0
#> SRR1551029     2   0.000      0.997 0.0 1.0
#> SRR1551030     2   0.000      0.997 0.0 1.0
#> SRR1551031     2   0.000      0.997 0.0 1.0
#> SRR1551032     1   0.000      1.000 1.0 0.0
#> SRR1551034     1   0.000      1.000 1.0 0.0
#> SRR1551033     1   0.000      1.000 1.0 0.0
#> SRR1551035     2   0.000      0.997 0.0 1.0
#> SRR1551036     2   0.000      0.997 0.0 1.0
#> SRR1551037     2   0.000      0.997 0.0 1.0
#> SRR1551038     2   0.000      0.997 0.0 1.0
#> SRR1551039     1   0.000      1.000 1.0 0.0
#> SRR1551040     1   0.000      1.000 1.0 0.0
#> SRR1551041     1   0.000      1.000 1.0 0.0
#> SRR1551042     2   0.000      0.997 0.0 1.0
#> SRR1551043     2   0.000      0.997 0.0 1.0
#> SRR1551044     2   0.000      0.997 0.0 1.0
#> SRR1551045     2   0.000      0.997 0.0 1.0
#> SRR1551046     1   0.000      1.000 1.0 0.0
#> SRR1551047     1   0.000      1.000 1.0 0.0
#> SRR1551048     1   0.000      1.000 1.0 0.0
#> SRR1551049     2   0.000      0.997 0.0 1.0
#> SRR1551050     2   0.000      0.997 0.0 1.0
#> SRR1551051     2   0.000      0.997 0.0 1.0
#> SRR1551052     2   0.000      0.997 0.0 1.0
#> SRR1551053     1   0.000      1.000 1.0 0.0
#> SRR1551054     1   0.000      1.000 1.0 0.0
#> SRR1551055     1   0.000      1.000 1.0 0.0
#> SRR1551056     2   0.000      0.997 0.0 1.0
#> SRR1551057     2   0.000      0.997 0.0 1.0
#> SRR1551058     2   0.000      0.997 0.0 1.0
#> SRR1551059     2   0.000      0.997 0.0 1.0
#> SRR1551060     1   0.000      1.000 1.0 0.0
#> SRR1551061     1   0.000      1.000 1.0 0.0
#> SRR1551062     1   0.000      1.000 1.0 0.0
#> SRR1551063     2   0.000      0.997 0.0 1.0
#> SRR1551064     2   0.000      0.997 0.0 1.0
#> SRR1551065     2   0.000      0.997 0.0 1.0
#> SRR1551066     2   0.000      0.997 0.0 1.0
#> SRR1551067     1   0.000      1.000 1.0 0.0
#> SRR1551068     1   0.000      1.000 1.0 0.0
#> SRR1551069     1   0.000      1.000 1.0 0.0
#> SRR1551070     2   0.000      0.997 0.0 1.0
#> SRR1551071     2   0.000      0.997 0.0 1.0
#> SRR1551072     2   0.000      0.997 0.0 1.0
#> SRR1551073     2   0.000      0.997 0.0 1.0
#> SRR1551074     1   0.000      1.000 1.0 0.0
#> SRR1551075     1   0.000      1.000 1.0 0.0
#> SRR1551076     1   0.000      1.000 1.0 0.0
#> SRR1551077     2   0.000      0.997 0.0 1.0
#> SRR1551078     2   0.000      0.997 0.0 1.0
#> SRR1551079     2   0.000      0.997 0.0 1.0
#> SRR1551080     2   0.000      0.997 0.0 1.0
#> SRR1551081     1   0.000      1.000 1.0 0.0
#> SRR1551082     1   0.000      1.000 1.0 0.0
#> SRR1551083     1   0.000      1.000 1.0 0.0
#> SRR1551084     2   0.000      0.997 0.0 1.0
#> SRR1551085     2   0.000      0.997 0.0 1.0
#> SRR1551086     2   0.000      0.997 0.0 1.0
#> SRR1551088     1   0.000      1.000 1.0 0.0
#> SRR1551087     1   0.000      1.000 1.0 0.0
#> SRR1551089     1   0.000      1.000 1.0 0.0
#> SRR1551090     2   0.000      0.997 0.0 1.0
#> SRR1551091     2   0.000      0.997 0.0 1.0
#> SRR1551092     2   0.000      0.997 0.0 1.0
#> SRR1551093     2   0.000      0.997 0.0 1.0
#> SRR1551094     1   0.000      1.000 1.0 0.0
#> SRR1551095     1   0.000      1.000 1.0 0.0
#> SRR1551096     1   0.000      1.000 1.0 0.0
#> SRR1551097     2   0.000      0.997 0.0 1.0
#> SRR1551098     2   0.000      0.997 0.0 1.0
#> SRR1551099     2   0.000      0.997 0.0 1.0
#> SRR1551101     1   0.000      1.000 1.0 0.0
#> SRR1551100     1   0.000      1.000 1.0 0.0
#> SRR1551102     1   0.000      1.000 1.0 0.0
#> SRR1551103     2   0.000      0.997 0.0 1.0
#> SRR1551104     2   0.000      0.997 0.0 1.0
#> SRR1551105     2   0.000      0.997 0.0 1.0
#> SRR1551106     2   0.000      0.997 0.0 1.0
#> SRR1551107     1   0.000      1.000 1.0 0.0
#> SRR1551108     1   0.000      1.000 1.0 0.0
#> SRR1551109     1   0.000      1.000 1.0 0.0
#> SRR1551110     2   0.000      0.997 0.0 1.0
#> SRR1551111     2   0.000      0.997 0.0 1.0
#> SRR1551112     2   0.000      0.997 0.0 1.0
#> SRR1551113     2   0.000      0.997 0.0 1.0
#> SRR1551114     1   0.000      1.000 1.0 0.0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1550981     1  0.1529      0.972 0.960 0.000 0.040
#> SRR1550982     1  0.1529      0.972 0.960 0.000 0.040
#> SRR1550983     1  0.1529      0.972 0.960 0.000 0.040
#> SRR1550984     1  0.1529      0.972 0.960 0.000 0.040
#> SRR1550986     1  0.0237      0.984 0.996 0.000 0.004
#> SRR1550985     1  0.1529      0.972 0.960 0.000 0.040
#> SRR1550988     3  0.1643      1.000 0.000 0.044 0.956
#> SRR1550987     1  0.0747      0.981 0.984 0.000 0.016
#> SRR1550989     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1550990     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1550991     2  0.1289      0.974 0.000 0.968 0.032
#> SRR1550992     1  0.0237      0.984 0.996 0.000 0.004
#> SRR1550994     3  0.1643      1.000 0.000 0.044 0.956
#> SRR1550993     1  0.0747      0.981 0.984 0.000 0.016
#> SRR1550995     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1550996     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1550997     1  0.0237      0.984 0.996 0.000 0.004
#> SRR1550998     1  0.0747      0.981 0.984 0.000 0.016
#> SRR1551000     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1550999     3  0.1643      1.000 0.000 0.044 0.956
#> SRR1551001     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551002     1  0.0237      0.984 0.996 0.000 0.004
#> SRR1551003     1  0.0747      0.981 0.984 0.000 0.016
#> SRR1551004     3  0.1643      1.000 0.000 0.044 0.956
#> SRR1551006     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551005     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551007     2  0.1289      0.974 0.000 0.968 0.032
#> SRR1551008     1  0.0237      0.984 0.996 0.000 0.004
#> SRR1551009     1  0.0747      0.981 0.984 0.000 0.016
#> SRR1551010     3  0.1643      1.000 0.000 0.044 0.956
#> SRR1551012     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551011     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551013     1  0.0237      0.984 0.996 0.000 0.004
#> SRR1551014     1  0.0747      0.981 0.984 0.000 0.016
#> SRR1551015     3  0.1643      1.000 0.000 0.044 0.956
#> SRR1551016     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551017     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551018     2  0.1289      0.974 0.000 0.968 0.032
#> SRR1551019     1  0.0000      0.983 1.000 0.000 0.000
#> SRR1551021     1  0.0000      0.983 1.000 0.000 0.000
#> SRR1551022     3  0.1643      1.000 0.000 0.044 0.956
#> SRR1551023     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551020     1  0.0237      0.984 0.996 0.000 0.004
#> SRR1551024     2  0.1129      0.968 0.020 0.976 0.004
#> SRR1551026     1  0.0237      0.984 0.996 0.000 0.004
#> SRR1551025     1  0.0000      0.983 1.000 0.000 0.000
#> SRR1551027     1  0.0747      0.981 0.984 0.000 0.016
#> SRR1551028     3  0.1643      1.000 0.000 0.044 0.956
#> SRR1551029     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551030     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551031     2  0.1289      0.974 0.000 0.968 0.032
#> SRR1551032     1  0.0000      0.983 1.000 0.000 0.000
#> SRR1551034     1  0.0747      0.981 0.984 0.000 0.016
#> SRR1551033     1  0.0237      0.984 0.996 0.000 0.004
#> SRR1551035     3  0.1643      1.000 0.000 0.044 0.956
#> SRR1551036     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551037     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551038     2  0.1289      0.974 0.000 0.968 0.032
#> SRR1551039     1  0.1529      0.972 0.960 0.000 0.040
#> SRR1551040     1  0.0237      0.984 0.996 0.000 0.004
#> SRR1551041     1  0.0747      0.981 0.984 0.000 0.016
#> SRR1551042     3  0.1643      1.000 0.000 0.044 0.956
#> SRR1551043     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551044     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551045     2  0.1289      0.974 0.000 0.968 0.032
#> SRR1551046     1  0.1529      0.972 0.960 0.000 0.040
#> SRR1551047     1  0.0237      0.984 0.996 0.000 0.004
#> SRR1551048     1  0.0747      0.981 0.984 0.000 0.016
#> SRR1551049     3  0.1643      1.000 0.000 0.044 0.956
#> SRR1551050     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551051     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551052     2  0.1289      0.974 0.000 0.968 0.032
#> SRR1551053     1  0.1529      0.972 0.960 0.000 0.040
#> SRR1551054     1  0.0237      0.984 0.996 0.000 0.004
#> SRR1551055     1  0.0747      0.981 0.984 0.000 0.016
#> SRR1551056     3  0.1643      1.000 0.000 0.044 0.956
#> SRR1551057     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551058     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551059     2  0.1289      0.974 0.000 0.968 0.032
#> SRR1551060     1  0.1529      0.972 0.960 0.000 0.040
#> SRR1551061     1  0.0237      0.984 0.996 0.000 0.004
#> SRR1551062     1  0.0747      0.981 0.984 0.000 0.016
#> SRR1551063     3  0.1643      1.000 0.000 0.044 0.956
#> SRR1551064     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551065     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551066     2  0.1289      0.974 0.000 0.968 0.032
#> SRR1551067     1  0.1529      0.972 0.960 0.000 0.040
#> SRR1551068     1  0.0237      0.984 0.996 0.000 0.004
#> SRR1551069     1  0.0747      0.981 0.984 0.000 0.016
#> SRR1551070     3  0.1643      1.000 0.000 0.044 0.956
#> SRR1551071     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551072     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551073     2  0.1289      0.974 0.000 0.968 0.032
#> SRR1551074     1  0.1529      0.972 0.960 0.000 0.040
#> SRR1551075     1  0.0237      0.984 0.996 0.000 0.004
#> SRR1551076     1  0.0747      0.981 0.984 0.000 0.016
#> SRR1551077     3  0.1643      1.000 0.000 0.044 0.956
#> SRR1551078     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551079     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551080     2  0.1289      0.974 0.000 0.968 0.032
#> SRR1551081     1  0.1529      0.972 0.960 0.000 0.040
#> SRR1551082     1  0.0237      0.984 0.996 0.000 0.004
#> SRR1551083     1  0.0747      0.981 0.984 0.000 0.016
#> SRR1551084     3  0.1643      1.000 0.000 0.044 0.956
#> SRR1551085     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551086     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551088     1  0.0237      0.984 0.996 0.000 0.004
#> SRR1551087     1  0.1529      0.972 0.960 0.000 0.040
#> SRR1551089     1  0.0747      0.981 0.984 0.000 0.016
#> SRR1551090     3  0.1643      1.000 0.000 0.044 0.956
#> SRR1551091     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551092     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551093     2  0.1289      0.974 0.000 0.968 0.032
#> SRR1551094     1  0.1529      0.972 0.960 0.000 0.040
#> SRR1551095     1  0.0237      0.984 0.996 0.000 0.004
#> SRR1551096     1  0.0747      0.981 0.984 0.000 0.016
#> SRR1551097     3  0.1643      1.000 0.000 0.044 0.956
#> SRR1551098     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551099     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551101     1  0.0237      0.984 0.996 0.000 0.004
#> SRR1551100     1  0.1529      0.972 0.960 0.000 0.040
#> SRR1551102     1  0.0747      0.981 0.984 0.000 0.016
#> SRR1551103     3  0.1643      1.000 0.000 0.044 0.956
#> SRR1551104     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551105     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551106     2  0.1289      0.974 0.000 0.968 0.032
#> SRR1551107     1  0.1529      0.972 0.960 0.000 0.040
#> SRR1551108     1  0.0237      0.984 0.996 0.000 0.004
#> SRR1551109     1  0.0747      0.981 0.984 0.000 0.016
#> SRR1551110     3  0.1643      1.000 0.000 0.044 0.956
#> SRR1551111     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551112     2  0.0000      0.990 0.000 1.000 0.000
#> SRR1551113     2  0.1289      0.974 0.000 0.968 0.032
#> SRR1551114     1  0.1529      0.972 0.960 0.000 0.040

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1550981     1  0.4679      1.000 0.648 0.000 0.352 0.000
#> SRR1550982     1  0.4679      1.000 0.648 0.000 0.352 0.000
#> SRR1550983     1  0.4679      1.000 0.648 0.000 0.352 0.000
#> SRR1550984     1  0.4679      1.000 0.648 0.000 0.352 0.000
#> SRR1550986     3  0.4776      0.740 0.376 0.000 0.624 0.000
#> SRR1550985     1  0.4679      1.000 0.648 0.000 0.352 0.000
#> SRR1550988     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1550987     3  0.0188      0.708 0.000 0.000 0.996 0.004
#> SRR1550989     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1550990     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1550991     2  0.3149      0.913 0.088 0.880 0.000 0.032
#> SRR1550992     3  0.4776      0.740 0.376 0.000 0.624 0.000
#> SRR1550994     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1550993     3  0.0188      0.708 0.000 0.000 0.996 0.004
#> SRR1550995     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1550996     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1550997     3  0.4776      0.740 0.376 0.000 0.624 0.000
#> SRR1550998     3  0.0188      0.708 0.000 0.000 0.996 0.004
#> SRR1551000     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1550999     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1551001     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551002     3  0.4776      0.740 0.376 0.000 0.624 0.000
#> SRR1551003     3  0.0188      0.708 0.000 0.000 0.996 0.004
#> SRR1551004     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1551006     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551005     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551007     2  0.3149      0.913 0.088 0.880 0.000 0.032
#> SRR1551008     3  0.4776      0.740 0.376 0.000 0.624 0.000
#> SRR1551009     3  0.0188      0.708 0.000 0.000 0.996 0.004
#> SRR1551010     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1551012     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551011     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551013     3  0.4776      0.740 0.376 0.000 0.624 0.000
#> SRR1551014     3  0.0188      0.708 0.000 0.000 0.996 0.004
#> SRR1551015     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1551016     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551017     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551018     2  0.3149      0.913 0.088 0.880 0.000 0.032
#> SRR1551019     3  0.3942      0.394 0.236 0.000 0.764 0.000
#> SRR1551021     3  0.0000      0.708 0.000 0.000 1.000 0.000
#> SRR1551022     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1551023     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551020     3  0.4776      0.740 0.376 0.000 0.624 0.000
#> SRR1551024     2  0.3486      0.776 0.188 0.812 0.000 0.000
#> SRR1551026     3  0.4776      0.740 0.376 0.000 0.624 0.000
#> SRR1551025     3  0.3764      0.690 0.216 0.000 0.784 0.000
#> SRR1551027     3  0.0188      0.708 0.000 0.000 0.996 0.004
#> SRR1551028     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1551029     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551030     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551031     2  0.3149      0.913 0.088 0.880 0.000 0.032
#> SRR1551032     3  0.3649      0.685 0.204 0.000 0.796 0.000
#> SRR1551034     3  0.0188      0.708 0.000 0.000 0.996 0.004
#> SRR1551033     3  0.4776      0.740 0.376 0.000 0.624 0.000
#> SRR1551035     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1551036     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551037     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551038     2  0.3149      0.913 0.088 0.880 0.000 0.032
#> SRR1551039     1  0.4679      1.000 0.648 0.000 0.352 0.000
#> SRR1551040     3  0.4776      0.740 0.376 0.000 0.624 0.000
#> SRR1551041     3  0.0188      0.708 0.000 0.000 0.996 0.004
#> SRR1551042     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1551043     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551044     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551045     2  0.3149      0.913 0.088 0.880 0.000 0.032
#> SRR1551046     1  0.4679      1.000 0.648 0.000 0.352 0.000
#> SRR1551047     3  0.4776      0.740 0.376 0.000 0.624 0.000
#> SRR1551048     3  0.0188      0.708 0.000 0.000 0.996 0.004
#> SRR1551049     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1551050     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551051     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551052     2  0.3149      0.913 0.088 0.880 0.000 0.032
#> SRR1551053     1  0.4679      1.000 0.648 0.000 0.352 0.000
#> SRR1551054     3  0.4776      0.740 0.376 0.000 0.624 0.000
#> SRR1551055     3  0.0188      0.708 0.000 0.000 0.996 0.004
#> SRR1551056     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1551057     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551058     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551059     2  0.3149      0.913 0.088 0.880 0.000 0.032
#> SRR1551060     1  0.4679      1.000 0.648 0.000 0.352 0.000
#> SRR1551061     3  0.4776      0.740 0.376 0.000 0.624 0.000
#> SRR1551062     3  0.0188      0.708 0.000 0.000 0.996 0.004
#> SRR1551063     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1551064     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551065     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551066     2  0.3149      0.913 0.088 0.880 0.000 0.032
#> SRR1551067     1  0.4679      1.000 0.648 0.000 0.352 0.000
#> SRR1551068     3  0.4776      0.740 0.376 0.000 0.624 0.000
#> SRR1551069     3  0.0188      0.708 0.000 0.000 0.996 0.004
#> SRR1551070     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1551071     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551072     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551073     2  0.3149      0.913 0.088 0.880 0.000 0.032
#> SRR1551074     1  0.4679      1.000 0.648 0.000 0.352 0.000
#> SRR1551075     3  0.4776      0.740 0.376 0.000 0.624 0.000
#> SRR1551076     3  0.0188      0.708 0.000 0.000 0.996 0.004
#> SRR1551077     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1551078     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551079     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551080     2  0.3149      0.913 0.088 0.880 0.000 0.032
#> SRR1551081     1  0.4679      1.000 0.648 0.000 0.352 0.000
#> SRR1551082     3  0.4776      0.740 0.376 0.000 0.624 0.000
#> SRR1551083     3  0.0188      0.708 0.000 0.000 0.996 0.004
#> SRR1551084     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1551085     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551086     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551088     3  0.4776      0.740 0.376 0.000 0.624 0.000
#> SRR1551087     1  0.4679      1.000 0.648 0.000 0.352 0.000
#> SRR1551089     3  0.0188      0.708 0.000 0.000 0.996 0.004
#> SRR1551090     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1551091     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551092     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551093     2  0.3149      0.913 0.088 0.880 0.000 0.032
#> SRR1551094     1  0.4679      1.000 0.648 0.000 0.352 0.000
#> SRR1551095     3  0.4776      0.740 0.376 0.000 0.624 0.000
#> SRR1551096     3  0.0188      0.708 0.000 0.000 0.996 0.004
#> SRR1551097     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1551098     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551099     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551101     3  0.4776      0.740 0.376 0.000 0.624 0.000
#> SRR1551100     1  0.4679      1.000 0.648 0.000 0.352 0.000
#> SRR1551102     3  0.0188      0.708 0.000 0.000 0.996 0.004
#> SRR1551103     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1551104     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551105     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551106     2  0.3149      0.913 0.088 0.880 0.000 0.032
#> SRR1551107     1  0.4679      1.000 0.648 0.000 0.352 0.000
#> SRR1551108     3  0.4776      0.740 0.376 0.000 0.624 0.000
#> SRR1551109     3  0.0188      0.708 0.000 0.000 0.996 0.004
#> SRR1551110     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1551111     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551112     2  0.0000      0.968 0.000 1.000 0.000 0.000
#> SRR1551113     2  0.3149      0.913 0.088 0.880 0.000 0.032
#> SRR1551114     1  0.4679      1.000 0.648 0.000 0.352 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3 p4    p5
#> SRR1550981     5  0.0000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1550982     5  0.0000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1550983     5  0.0000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1550984     5  0.0000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1550986     3  0.0162      0.932 0.000 0.000 0.996  0 0.004
#> SRR1550985     5  0.0000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1550988     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1550987     1  0.5329      1.000 0.516 0.000 0.432  0 0.052
#> SRR1550989     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1550990     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1550991     2  0.4304      0.586 0.484 0.516 0.000  0 0.000
#> SRR1550992     3  0.0162      0.932 0.000 0.000 0.996  0 0.004
#> SRR1550994     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1550993     1  0.5329      1.000 0.516 0.000 0.432  0 0.052
#> SRR1550995     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1550996     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1550997     3  0.0162      0.932 0.000 0.000 0.996  0 0.004
#> SRR1550998     1  0.5329      1.000 0.516 0.000 0.432  0 0.052
#> SRR1551000     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1550999     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551001     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551002     3  0.0162      0.932 0.000 0.000 0.996  0 0.004
#> SRR1551003     1  0.5329      1.000 0.516 0.000 0.432  0 0.052
#> SRR1551004     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551006     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551005     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551007     2  0.4304      0.586 0.484 0.516 0.000  0 0.000
#> SRR1551008     3  0.0162      0.932 0.000 0.000 0.996  0 0.004
#> SRR1551009     1  0.5329      1.000 0.516 0.000 0.432  0 0.052
#> SRR1551010     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551012     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551011     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551013     3  0.0162      0.932 0.000 0.000 0.996  0 0.004
#> SRR1551014     1  0.5329      1.000 0.516 0.000 0.432  0 0.052
#> SRR1551015     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551016     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551017     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551018     2  0.4304      0.586 0.484 0.516 0.000  0 0.000
#> SRR1551019     3  0.4256      0.184 0.000 0.000 0.564  0 0.436
#> SRR1551021     1  0.5329      1.000 0.516 0.000 0.432  0 0.052
#> SRR1551022     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551023     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551020     3  0.0162      0.932 0.000 0.000 0.996  0 0.004
#> SRR1551024     2  0.3003      0.700 0.000 0.812 0.188  0 0.000
#> SRR1551026     3  0.0162      0.932 0.000 0.000 0.996  0 0.004
#> SRR1551025     3  0.3242      0.573 0.000 0.000 0.784  0 0.216
#> SRR1551027     1  0.5329      1.000 0.516 0.000 0.432  0 0.052
#> SRR1551028     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551029     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551030     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551031     2  0.4304      0.586 0.484 0.516 0.000  0 0.000
#> SRR1551032     3  0.3305      0.552 0.000 0.000 0.776  0 0.224
#> SRR1551034     1  0.5329      1.000 0.516 0.000 0.432  0 0.052
#> SRR1551033     3  0.0162      0.932 0.000 0.000 0.996  0 0.004
#> SRR1551035     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551036     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551037     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551038     2  0.4304      0.586 0.484 0.516 0.000  0 0.000
#> SRR1551039     5  0.0000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551040     3  0.0162      0.932 0.000 0.000 0.996  0 0.004
#> SRR1551041     1  0.5329      1.000 0.516 0.000 0.432  0 0.052
#> SRR1551042     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551043     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551044     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551045     2  0.4304      0.586 0.484 0.516 0.000  0 0.000
#> SRR1551046     5  0.0000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551047     3  0.0162      0.932 0.000 0.000 0.996  0 0.004
#> SRR1551048     1  0.5329      1.000 0.516 0.000 0.432  0 0.052
#> SRR1551049     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551050     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551051     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551052     2  0.4304      0.586 0.484 0.516 0.000  0 0.000
#> SRR1551053     5  0.0000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551054     3  0.0162      0.932 0.000 0.000 0.996  0 0.004
#> SRR1551055     1  0.5329      1.000 0.516 0.000 0.432  0 0.052
#> SRR1551056     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551057     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551058     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551059     2  0.4304      0.586 0.484 0.516 0.000  0 0.000
#> SRR1551060     5  0.0000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551061     3  0.0162      0.932 0.000 0.000 0.996  0 0.004
#> SRR1551062     1  0.5329      1.000 0.516 0.000 0.432  0 0.052
#> SRR1551063     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551064     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551065     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551066     2  0.4304      0.586 0.484 0.516 0.000  0 0.000
#> SRR1551067     5  0.0000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551068     3  0.0162      0.932 0.000 0.000 0.996  0 0.004
#> SRR1551069     1  0.5329      1.000 0.516 0.000 0.432  0 0.052
#> SRR1551070     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551071     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551072     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551073     2  0.4304      0.586 0.484 0.516 0.000  0 0.000
#> SRR1551074     5  0.0000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551075     3  0.0162      0.932 0.000 0.000 0.996  0 0.004
#> SRR1551076     1  0.5329      1.000 0.516 0.000 0.432  0 0.052
#> SRR1551077     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551078     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551079     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551080     2  0.4304      0.586 0.484 0.516 0.000  0 0.000
#> SRR1551081     5  0.0000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551082     3  0.0162      0.932 0.000 0.000 0.996  0 0.004
#> SRR1551083     1  0.5329      1.000 0.516 0.000 0.432  0 0.052
#> SRR1551084     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551085     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551086     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551088     3  0.0162      0.932 0.000 0.000 0.996  0 0.004
#> SRR1551087     5  0.0000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551089     1  0.5329      1.000 0.516 0.000 0.432  0 0.052
#> SRR1551090     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551091     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551092     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551093     2  0.4304      0.586 0.484 0.516 0.000  0 0.000
#> SRR1551094     5  0.0000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551095     3  0.0162      0.932 0.000 0.000 0.996  0 0.004
#> SRR1551096     1  0.5329      1.000 0.516 0.000 0.432  0 0.052
#> SRR1551097     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551098     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551099     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551101     3  0.0162      0.932 0.000 0.000 0.996  0 0.004
#> SRR1551100     5  0.0000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551102     1  0.5329      1.000 0.516 0.000 0.432  0 0.052
#> SRR1551103     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551104     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551105     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551106     2  0.4304      0.586 0.484 0.516 0.000  0 0.000
#> SRR1551107     5  0.0000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551108     3  0.0162      0.932 0.000 0.000 0.996  0 0.004
#> SRR1551109     1  0.5329      1.000 0.516 0.000 0.432  0 0.052
#> SRR1551110     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551111     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551112     2  0.0000      0.876 0.000 1.000 0.000  0 0.000
#> SRR1551113     2  0.4304      0.586 0.484 0.516 0.000  0 0.000
#> SRR1551114     5  0.0000      1.000 0.000 0.000 0.000  0 1.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3 p4    p5    p6
#> SRR1550981     5  0.0000      0.970 0.000 0.000 0.000  0 1.000 0.000
#> SRR1550982     5  0.0000      0.970 0.000 0.000 0.000  0 1.000 0.000
#> SRR1550983     5  0.0000      0.970 0.000 0.000 0.000  0 1.000 0.000
#> SRR1550984     5  0.0000      0.970 0.000 0.000 0.000  0 1.000 0.000
#> SRR1550986     3  0.0000      0.979 0.000 0.000 1.000  0 0.000 0.000
#> SRR1550985     5  0.0000      0.970 0.000 0.000 0.000  0 1.000 0.000
#> SRR1550988     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1550987     1  0.1500      1.000 0.936 0.000 0.052  0 0.012 0.000
#> SRR1550989     2  0.0000      0.968 0.000 1.000 0.000  0 0.000 0.000
#> SRR1550990     2  0.1327      0.967 0.064 0.936 0.000  0 0.000 0.000
#> SRR1550991     6  0.0260      1.000 0.000 0.008 0.000  0 0.000 0.992
#> SRR1550992     3  0.0000      0.979 0.000 0.000 1.000  0 0.000 0.000
#> SRR1550994     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1550993     1  0.1500      1.000 0.936 0.000 0.052  0 0.012 0.000
#> SRR1550995     2  0.0000      0.968 0.000 1.000 0.000  0 0.000 0.000
#> SRR1550996     2  0.1327      0.967 0.064 0.936 0.000  0 0.000 0.000
#> SRR1550997     3  0.0000      0.979 0.000 0.000 1.000  0 0.000 0.000
#> SRR1550998     1  0.1500      1.000 0.936 0.000 0.052  0 0.012 0.000
#> SRR1551000     2  0.0000      0.968 0.000 1.000 0.000  0 0.000 0.000
#> SRR1550999     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551001     2  0.1327      0.967 0.064 0.936 0.000  0 0.000 0.000
#> SRR1551002     3  0.0000      0.979 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551003     1  0.1500      1.000 0.936 0.000 0.052  0 0.012 0.000
#> SRR1551004     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551006     2  0.1327      0.967 0.064 0.936 0.000  0 0.000 0.000
#> SRR1551005     2  0.0000      0.968 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551007     6  0.0260      1.000 0.000 0.008 0.000  0 0.000 0.992
#> SRR1551008     3  0.0000      0.979 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551009     1  0.1500      1.000 0.936 0.000 0.052  0 0.012 0.000
#> SRR1551010     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551012     2  0.1327      0.967 0.064 0.936 0.000  0 0.000 0.000
#> SRR1551011     2  0.0000      0.968 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551013     3  0.0000      0.979 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551014     1  0.1500      1.000 0.936 0.000 0.052  0 0.012 0.000
#> SRR1551015     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551016     2  0.0000      0.968 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551017     2  0.1327      0.967 0.064 0.936 0.000  0 0.000 0.000
#> SRR1551018     6  0.0260      1.000 0.000 0.008 0.000  0 0.000 0.992
#> SRR1551019     5  0.3971      0.134 0.000 0.000 0.448  0 0.548 0.004
#> SRR1551021     1  0.1500      1.000 0.936 0.000 0.052  0 0.012 0.000
#> SRR1551022     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551023     2  0.0000      0.968 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551020     3  0.0146      0.977 0.000 0.000 0.996  0 0.000 0.004
#> SRR1551024     2  0.3454      0.842 0.060 0.812 0.124  0 0.000 0.004
#> SRR1551026     3  0.0146      0.977 0.000 0.000 0.996  0 0.000 0.004
#> SRR1551025     3  0.3012      0.750 0.000 0.000 0.796  0 0.196 0.008
#> SRR1551027     1  0.1500      1.000 0.936 0.000 0.052  0 0.012 0.000
#> SRR1551028     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551029     2  0.0000      0.968 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551030     2  0.1327      0.967 0.064 0.936 0.000  0 0.000 0.000
#> SRR1551031     6  0.0260      1.000 0.000 0.008 0.000  0 0.000 0.992
#> SRR1551032     3  0.3012      0.750 0.000 0.000 0.796  0 0.196 0.008
#> SRR1551034     1  0.1500      1.000 0.936 0.000 0.052  0 0.012 0.000
#> SRR1551033     3  0.0000      0.979 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551035     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551036     2  0.0000      0.968 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551037     2  0.1327      0.967 0.064 0.936 0.000  0 0.000 0.000
#> SRR1551038     6  0.0260      1.000 0.000 0.008 0.000  0 0.000 0.992
#> SRR1551039     5  0.0000      0.970 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551040     3  0.0000      0.979 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551041     1  0.1500      1.000 0.936 0.000 0.052  0 0.012 0.000
#> SRR1551042     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551043     2  0.0000      0.968 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551044     2  0.1327      0.967 0.064 0.936 0.000  0 0.000 0.000
#> SRR1551045     6  0.0260      1.000 0.000 0.008 0.000  0 0.000 0.992
#> SRR1551046     5  0.0000      0.970 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551047     3  0.0000      0.979 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551048     1  0.1500      1.000 0.936 0.000 0.052  0 0.012 0.000
#> SRR1551049     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551050     2  0.0000      0.968 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551051     2  0.1327      0.967 0.064 0.936 0.000  0 0.000 0.000
#> SRR1551052     6  0.0260      1.000 0.000 0.008 0.000  0 0.000 0.992
#> SRR1551053     5  0.0000      0.970 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551054     3  0.0000      0.979 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551055     1  0.1500      1.000 0.936 0.000 0.052  0 0.012 0.000
#> SRR1551056     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551057     2  0.0000      0.968 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551058     2  0.1327      0.967 0.064 0.936 0.000  0 0.000 0.000
#> SRR1551059     6  0.0260      1.000 0.000 0.008 0.000  0 0.000 0.992
#> SRR1551060     5  0.0000      0.970 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551061     3  0.0000      0.979 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551062     1  0.1500      1.000 0.936 0.000 0.052  0 0.012 0.000
#> SRR1551063     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551064     2  0.0000      0.968 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551065     2  0.1327      0.967 0.064 0.936 0.000  0 0.000 0.000
#> SRR1551066     6  0.0260      1.000 0.000 0.008 0.000  0 0.000 0.992
#> SRR1551067     5  0.0000      0.970 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551068     3  0.0000      0.979 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551069     1  0.1500      1.000 0.936 0.000 0.052  0 0.012 0.000
#> SRR1551070     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551071     2  0.0000      0.968 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551072     2  0.1327      0.967 0.064 0.936 0.000  0 0.000 0.000
#> SRR1551073     6  0.0260      1.000 0.000 0.008 0.000  0 0.000 0.992
#> SRR1551074     5  0.0000      0.970 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551075     3  0.0000      0.979 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551076     1  0.1500      1.000 0.936 0.000 0.052  0 0.012 0.000
#> SRR1551077     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551078     2  0.0000      0.968 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551079     2  0.1327      0.967 0.064 0.936 0.000  0 0.000 0.000
#> SRR1551080     6  0.0260      1.000 0.000 0.008 0.000  0 0.000 0.992
#> SRR1551081     5  0.0000      0.970 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551082     3  0.0000      0.979 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551083     1  0.1500      1.000 0.936 0.000 0.052  0 0.012 0.000
#> SRR1551084     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551085     2  0.0000      0.968 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551086     2  0.1327      0.967 0.064 0.936 0.000  0 0.000 0.000
#> SRR1551088     3  0.0000      0.979 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551087     5  0.0000      0.970 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551089     1  0.1500      1.000 0.936 0.000 0.052  0 0.012 0.000
#> SRR1551090     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551091     2  0.0000      0.968 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551092     2  0.1327      0.967 0.064 0.936 0.000  0 0.000 0.000
#> SRR1551093     6  0.0260      1.000 0.000 0.008 0.000  0 0.000 0.992
#> SRR1551094     5  0.0000      0.970 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551095     3  0.0000      0.979 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551096     1  0.1500      1.000 0.936 0.000 0.052  0 0.012 0.000
#> SRR1551097     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551098     2  0.0000      0.968 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551099     2  0.1327      0.967 0.064 0.936 0.000  0 0.000 0.000
#> SRR1551101     3  0.0000      0.979 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551100     5  0.0000      0.970 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551102     1  0.1500      1.000 0.936 0.000 0.052  0 0.012 0.000
#> SRR1551103     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551104     2  0.0000      0.968 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551105     2  0.1327      0.967 0.064 0.936 0.000  0 0.000 0.000
#> SRR1551106     6  0.0260      1.000 0.000 0.008 0.000  0 0.000 0.992
#> SRR1551107     5  0.0000      0.970 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551108     3  0.0000      0.979 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551109     1  0.1500      1.000 0.936 0.000 0.052  0 0.012 0.000
#> SRR1551110     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551111     2  0.0000      0.968 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551112     2  0.1327      0.967 0.064 0.936 0.000  0 0.000 0.000
#> SRR1551113     6  0.0260      1.000 0.000 0.008 0.000  0 0.000 0.992
#> SRR1551114     5  0.0000      0.970 0.000 0.000 0.000  0 1.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15028 rows and 134 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.992       0.996         0.4979 0.502   0.502
#> 3 3 1.000           0.979       0.977         0.2400 0.879   0.758
#> 4 4 0.952           0.931       0.971         0.1462 0.855   0.648
#> 5 5 1.000           0.986       0.994         0.0657 0.930   0.772
#> 6 6 1.000           0.985       0.994         0.0833 0.937   0.745

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 4 5

There is also optional best \(k\) = 2 3 4 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1550981     1   0.000      0.992 1.000 0.000
#> SRR1550982     1   0.000      0.992 1.000 0.000
#> SRR1550983     1   0.000      0.992 1.000 0.000
#> SRR1550984     1   0.184      0.966 0.972 0.028
#> SRR1550986     1   0.000      0.992 1.000 0.000
#> SRR1550985     1   0.518      0.872 0.884 0.116
#> SRR1550988     2   0.000      1.000 0.000 1.000
#> SRR1550987     1   0.000      0.992 1.000 0.000
#> SRR1550989     2   0.000      1.000 0.000 1.000
#> SRR1550990     2   0.000      1.000 0.000 1.000
#> SRR1550991     2   0.000      1.000 0.000 1.000
#> SRR1550992     1   0.000      0.992 1.000 0.000
#> SRR1550994     2   0.000      1.000 0.000 1.000
#> SRR1550993     1   0.000      0.992 1.000 0.000
#> SRR1550995     2   0.000      1.000 0.000 1.000
#> SRR1550996     2   0.000      1.000 0.000 1.000
#> SRR1550997     1   0.000      0.992 1.000 0.000
#> SRR1550998     1   0.000      0.992 1.000 0.000
#> SRR1551000     2   0.000      1.000 0.000 1.000
#> SRR1550999     2   0.000      1.000 0.000 1.000
#> SRR1551001     2   0.000      1.000 0.000 1.000
#> SRR1551002     1   0.000      0.992 1.000 0.000
#> SRR1551003     1   0.000      0.992 1.000 0.000
#> SRR1551004     2   0.000      1.000 0.000 1.000
#> SRR1551006     2   0.000      1.000 0.000 1.000
#> SRR1551005     2   0.000      1.000 0.000 1.000
#> SRR1551007     2   0.000      1.000 0.000 1.000
#> SRR1551008     1   0.000      0.992 1.000 0.000
#> SRR1551009     1   0.000      0.992 1.000 0.000
#> SRR1551010     2   0.000      1.000 0.000 1.000
#> SRR1551012     2   0.000      1.000 0.000 1.000
#> SRR1551011     2   0.000      1.000 0.000 1.000
#> SRR1551013     1   0.000      0.992 1.000 0.000
#> SRR1551014     1   0.000      0.992 1.000 0.000
#> SRR1551015     2   0.000      1.000 0.000 1.000
#> SRR1551016     2   0.000      1.000 0.000 1.000
#> SRR1551017     2   0.000      1.000 0.000 1.000
#> SRR1551018     2   0.000      1.000 0.000 1.000
#> SRR1551019     1   0.000      0.992 1.000 0.000
#> SRR1551021     1   0.000      0.992 1.000 0.000
#> SRR1551022     2   0.000      1.000 0.000 1.000
#> SRR1551023     2   0.000      1.000 0.000 1.000
#> SRR1551020     1   0.000      0.992 1.000 0.000
#> SRR1551024     2   0.000      1.000 0.000 1.000
#> SRR1551026     1   0.000      0.992 1.000 0.000
#> SRR1551025     1   0.000      0.992 1.000 0.000
#> SRR1551027     1   0.000      0.992 1.000 0.000
#> SRR1551028     2   0.000      1.000 0.000 1.000
#> SRR1551029     2   0.000      1.000 0.000 1.000
#> SRR1551030     2   0.000      1.000 0.000 1.000
#> SRR1551031     2   0.000      1.000 0.000 1.000
#> SRR1551032     1   0.000      0.992 1.000 0.000
#> SRR1551034     1   0.000      0.992 1.000 0.000
#> SRR1551033     1   0.000      0.992 1.000 0.000
#> SRR1551035     2   0.000      1.000 0.000 1.000
#> SRR1551036     2   0.000      1.000 0.000 1.000
#> SRR1551037     2   0.000      1.000 0.000 1.000
#> SRR1551038     2   0.000      1.000 0.000 1.000
#> SRR1551039     1   0.000      0.992 1.000 0.000
#> SRR1551040     1   0.000      0.992 1.000 0.000
#> SRR1551041     1   0.000      0.992 1.000 0.000
#> SRR1551042     2   0.000      1.000 0.000 1.000
#> SRR1551043     2   0.000      1.000 0.000 1.000
#> SRR1551044     2   0.000      1.000 0.000 1.000
#> SRR1551045     2   0.000      1.000 0.000 1.000
#> SRR1551046     1   0.000      0.992 1.000 0.000
#> SRR1551047     1   0.000      0.992 1.000 0.000
#> SRR1551048     1   0.000      0.992 1.000 0.000
#> SRR1551049     2   0.000      1.000 0.000 1.000
#> SRR1551050     2   0.000      1.000 0.000 1.000
#> SRR1551051     2   0.000      1.000 0.000 1.000
#> SRR1551052     2   0.000      1.000 0.000 1.000
#> SRR1551053     1   0.518      0.872 0.884 0.116
#> SRR1551054     1   0.000      0.992 1.000 0.000
#> SRR1551055     1   0.000      0.992 1.000 0.000
#> SRR1551056     2   0.000      1.000 0.000 1.000
#> SRR1551057     2   0.000      1.000 0.000 1.000
#> SRR1551058     2   0.000      1.000 0.000 1.000
#> SRR1551059     2   0.000      1.000 0.000 1.000
#> SRR1551060     1   0.000      0.992 1.000 0.000
#> SRR1551061     1   0.000      0.992 1.000 0.000
#> SRR1551062     1   0.000      0.992 1.000 0.000
#> SRR1551063     2   0.000      1.000 0.000 1.000
#> SRR1551064     2   0.000      1.000 0.000 1.000
#> SRR1551065     2   0.000      1.000 0.000 1.000
#> SRR1551066     2   0.000      1.000 0.000 1.000
#> SRR1551067     1   0.000      0.992 1.000 0.000
#> SRR1551068     1   0.000      0.992 1.000 0.000
#> SRR1551069     1   0.000      0.992 1.000 0.000
#> SRR1551070     2   0.000      1.000 0.000 1.000
#> SRR1551071     2   0.000      1.000 0.000 1.000
#> SRR1551072     2   0.000      1.000 0.000 1.000
#> SRR1551073     2   0.000      1.000 0.000 1.000
#> SRR1551074     1   0.000      0.992 1.000 0.000
#> SRR1551075     1   0.000      0.992 1.000 0.000
#> SRR1551076     1   0.000      0.992 1.000 0.000
#> SRR1551077     2   0.000      1.000 0.000 1.000
#> SRR1551078     2   0.000      1.000 0.000 1.000
#> SRR1551079     2   0.000      1.000 0.000 1.000
#> SRR1551080     2   0.000      1.000 0.000 1.000
#> SRR1551081     1   0.760      0.726 0.780 0.220
#> SRR1551082     1   0.000      0.992 1.000 0.000
#> SRR1551083     1   0.000      0.992 1.000 0.000
#> SRR1551084     2   0.000      1.000 0.000 1.000
#> SRR1551085     2   0.000      1.000 0.000 1.000
#> SRR1551086     2   0.000      1.000 0.000 1.000
#> SRR1551088     1   0.000      0.992 1.000 0.000
#> SRR1551087     1   0.000      0.992 1.000 0.000
#> SRR1551089     1   0.000      0.992 1.000 0.000
#> SRR1551090     2   0.000      1.000 0.000 1.000
#> SRR1551091     2   0.000      1.000 0.000 1.000
#> SRR1551092     2   0.000      1.000 0.000 1.000
#> SRR1551093     2   0.000      1.000 0.000 1.000
#> SRR1551094     1   0.000      0.992 1.000 0.000
#> SRR1551095     1   0.000      0.992 1.000 0.000
#> SRR1551096     1   0.000      0.992 1.000 0.000
#> SRR1551097     2   0.000      1.000 0.000 1.000
#> SRR1551098     2   0.000      1.000 0.000 1.000
#> SRR1551099     2   0.000      1.000 0.000 1.000
#> SRR1551101     1   0.000      0.992 1.000 0.000
#> SRR1551100     1   0.000      0.992 1.000 0.000
#> SRR1551102     1   0.000      0.992 1.000 0.000
#> SRR1551103     2   0.000      1.000 0.000 1.000
#> SRR1551104     2   0.000      1.000 0.000 1.000
#> SRR1551105     2   0.000      1.000 0.000 1.000
#> SRR1551106     2   0.000      1.000 0.000 1.000
#> SRR1551107     1   0.000      0.992 1.000 0.000
#> SRR1551108     1   0.000      0.992 1.000 0.000
#> SRR1551109     1   0.000      0.992 1.000 0.000
#> SRR1551110     2   0.000      1.000 0.000 1.000
#> SRR1551111     2   0.000      1.000 0.000 1.000
#> SRR1551112     2   0.000      1.000 0.000 1.000
#> SRR1551113     2   0.000      1.000 0.000 1.000
#> SRR1551114     1   0.000      0.992 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1550981     1   0.000      0.968 1.000 0.000 0.000
#> SRR1550982     1   0.000      0.968 1.000 0.000 0.000
#> SRR1550983     1   0.000      0.968 1.000 0.000 0.000
#> SRR1550984     1   0.263      0.898 0.916 0.084 0.000
#> SRR1550986     1   0.196      0.960 0.944 0.000 0.056
#> SRR1550985     1   0.394      0.809 0.844 0.156 0.000
#> SRR1550988     3   0.196      1.000 0.000 0.056 0.944
#> SRR1550987     1   0.000      0.968 1.000 0.000 0.000
#> SRR1550989     2   0.000      1.000 0.000 1.000 0.000
#> SRR1550990     2   0.000      1.000 0.000 1.000 0.000
#> SRR1550991     2   0.000      1.000 0.000 1.000 0.000
#> SRR1550992     1   0.196      0.960 0.944 0.000 0.056
#> SRR1550994     3   0.196      1.000 0.000 0.056 0.944
#> SRR1550993     1   0.000      0.968 1.000 0.000 0.000
#> SRR1550995     2   0.000      1.000 0.000 1.000 0.000
#> SRR1550996     2   0.000      1.000 0.000 1.000 0.000
#> SRR1550997     1   0.196      0.960 0.944 0.000 0.056
#> SRR1550998     1   0.000      0.968 1.000 0.000 0.000
#> SRR1551000     2   0.000      1.000 0.000 1.000 0.000
#> SRR1550999     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551001     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551002     1   0.196      0.960 0.944 0.000 0.056
#> SRR1551003     1   0.000      0.968 1.000 0.000 0.000
#> SRR1551004     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551006     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551005     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551007     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551008     1   0.196      0.960 0.944 0.000 0.056
#> SRR1551009     1   0.000      0.968 1.000 0.000 0.000
#> SRR1551010     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551012     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551011     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551013     1   0.196      0.960 0.944 0.000 0.056
#> SRR1551014     1   0.000      0.968 1.000 0.000 0.000
#> SRR1551015     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551016     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551017     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551018     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551019     1   0.141      0.963 0.964 0.000 0.036
#> SRR1551021     1   0.000      0.968 1.000 0.000 0.000
#> SRR1551022     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551023     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551020     1   0.196      0.960 0.944 0.000 0.056
#> SRR1551024     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551026     1   0.196      0.960 0.944 0.000 0.056
#> SRR1551025     1   0.196      0.960 0.944 0.000 0.056
#> SRR1551027     1   0.000      0.968 1.000 0.000 0.000
#> SRR1551028     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551029     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551030     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551031     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551032     1   0.196      0.960 0.944 0.000 0.056
#> SRR1551034     1   0.000      0.968 1.000 0.000 0.000
#> SRR1551033     1   0.196      0.960 0.944 0.000 0.056
#> SRR1551035     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551036     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551037     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551038     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551039     1   0.000      0.968 1.000 0.000 0.000
#> SRR1551040     1   0.196      0.960 0.944 0.000 0.056
#> SRR1551041     1   0.000      0.968 1.000 0.000 0.000
#> SRR1551042     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551043     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551044     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551045     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551046     1   0.000      0.968 1.000 0.000 0.000
#> SRR1551047     1   0.196      0.960 0.944 0.000 0.056
#> SRR1551048     1   0.000      0.968 1.000 0.000 0.000
#> SRR1551049     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551050     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551051     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551052     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551053     1   0.382      0.820 0.852 0.148 0.000
#> SRR1551054     1   0.196      0.960 0.944 0.000 0.056
#> SRR1551055     1   0.000      0.968 1.000 0.000 0.000
#> SRR1551056     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551057     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551058     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551059     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551060     1   0.000      0.968 1.000 0.000 0.000
#> SRR1551061     1   0.196      0.960 0.944 0.000 0.056
#> SRR1551062     1   0.000      0.968 1.000 0.000 0.000
#> SRR1551063     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551064     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551065     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551066     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551067     1   0.000      0.968 1.000 0.000 0.000
#> SRR1551068     1   0.196      0.960 0.944 0.000 0.056
#> SRR1551069     1   0.000      0.968 1.000 0.000 0.000
#> SRR1551070     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551071     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551072     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551073     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551074     1   0.000      0.968 1.000 0.000 0.000
#> SRR1551075     1   0.196      0.960 0.944 0.000 0.056
#> SRR1551076     1   0.000      0.968 1.000 0.000 0.000
#> SRR1551077     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551078     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551079     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551080     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551081     1   0.536      0.625 0.724 0.276 0.000
#> SRR1551082     1   0.196      0.960 0.944 0.000 0.056
#> SRR1551083     1   0.000      0.968 1.000 0.000 0.000
#> SRR1551084     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551085     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551086     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551088     1   0.196      0.960 0.944 0.000 0.056
#> SRR1551087     1   0.000      0.968 1.000 0.000 0.000
#> SRR1551089     1   0.000      0.968 1.000 0.000 0.000
#> SRR1551090     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551091     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551092     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551093     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551094     1   0.000      0.968 1.000 0.000 0.000
#> SRR1551095     1   0.196      0.960 0.944 0.000 0.056
#> SRR1551096     1   0.000      0.968 1.000 0.000 0.000
#> SRR1551097     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551098     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551099     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551101     1   0.196      0.960 0.944 0.000 0.056
#> SRR1551100     1   0.153      0.942 0.960 0.040 0.000
#> SRR1551102     1   0.000      0.968 1.000 0.000 0.000
#> SRR1551103     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551104     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551105     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551106     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551107     1   0.000      0.968 1.000 0.000 0.000
#> SRR1551108     1   0.196      0.960 0.944 0.000 0.056
#> SRR1551109     1   0.000      0.968 1.000 0.000 0.000
#> SRR1551110     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551111     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551112     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551113     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551114     1   0.000      0.968 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3 p4
#> SRR1550981     3  0.4382     0.5243 0.296 0.000 0.704  0
#> SRR1550982     1  0.4877     0.3789 0.592 0.000 0.408  0
#> SRR1550983     1  0.3688     0.7418 0.792 0.000 0.208  0
#> SRR1550984     2  0.4697     0.4512 0.000 0.644 0.356  0
#> SRR1550986     3  0.0000     0.9789 0.000 0.000 1.000  0
#> SRR1550985     2  0.4224     0.8030 0.076 0.824 0.100  0
#> SRR1550988     4  0.0000     1.0000 0.000 0.000 0.000  1
#> SRR1550987     1  0.0000     0.9249 1.000 0.000 0.000  0
#> SRR1550989     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1550990     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1550991     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1550992     3  0.0000     0.9789 0.000 0.000 1.000  0
#> SRR1550994     4  0.0000     1.0000 0.000 0.000 0.000  1
#> SRR1550993     1  0.0000     0.9249 1.000 0.000 0.000  0
#> SRR1550995     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1550996     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1550997     3  0.0000     0.9789 0.000 0.000 1.000  0
#> SRR1550998     1  0.0000     0.9249 1.000 0.000 0.000  0
#> SRR1551000     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1550999     4  0.0000     1.0000 0.000 0.000 0.000  1
#> SRR1551001     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551002     3  0.0000     0.9789 0.000 0.000 1.000  0
#> SRR1551003     1  0.0000     0.9249 1.000 0.000 0.000  0
#> SRR1551004     4  0.0000     1.0000 0.000 0.000 0.000  1
#> SRR1551006     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551005     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551007     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551008     3  0.0000     0.9789 0.000 0.000 1.000  0
#> SRR1551009     1  0.0000     0.9249 1.000 0.000 0.000  0
#> SRR1551010     4  0.0000     1.0000 0.000 0.000 0.000  1
#> SRR1551012     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551011     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551013     3  0.0000     0.9789 0.000 0.000 1.000  0
#> SRR1551014     1  0.0000     0.9249 1.000 0.000 0.000  0
#> SRR1551015     4  0.0000     1.0000 0.000 0.000 0.000  1
#> SRR1551016     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551017     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551018     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551019     3  0.2814     0.8238 0.132 0.000 0.868  0
#> SRR1551021     1  0.0000     0.9249 1.000 0.000 0.000  0
#> SRR1551022     4  0.0000     1.0000 0.000 0.000 0.000  1
#> SRR1551023     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551020     3  0.0000     0.9789 0.000 0.000 1.000  0
#> SRR1551024     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551026     3  0.0000     0.9789 0.000 0.000 1.000  0
#> SRR1551025     3  0.0000     0.9789 0.000 0.000 1.000  0
#> SRR1551027     1  0.0000     0.9249 1.000 0.000 0.000  0
#> SRR1551028     4  0.0000     1.0000 0.000 0.000 0.000  1
#> SRR1551029     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551030     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551031     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551032     3  0.0000     0.9789 0.000 0.000 1.000  0
#> SRR1551034     1  0.0000     0.9249 1.000 0.000 0.000  0
#> SRR1551033     3  0.0000     0.9789 0.000 0.000 1.000  0
#> SRR1551035     4  0.0000     1.0000 0.000 0.000 0.000  1
#> SRR1551036     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551037     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551038     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551039     1  0.5786     0.5352 0.640 0.052 0.308  0
#> SRR1551040     3  0.0000     0.9789 0.000 0.000 1.000  0
#> SRR1551041     1  0.0000     0.9249 1.000 0.000 0.000  0
#> SRR1551042     4  0.0000     1.0000 0.000 0.000 0.000  1
#> SRR1551043     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551044     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551045     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551046     1  0.0000     0.9249 1.000 0.000 0.000  0
#> SRR1551047     3  0.0000     0.9789 0.000 0.000 1.000  0
#> SRR1551048     1  0.0000     0.9249 1.000 0.000 0.000  0
#> SRR1551049     4  0.0000     1.0000 0.000 0.000 0.000  1
#> SRR1551050     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551051     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551052     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551053     2  0.3610     0.7422 0.000 0.800 0.200  0
#> SRR1551054     3  0.0000     0.9789 0.000 0.000 1.000  0
#> SRR1551055     1  0.0000     0.9249 1.000 0.000 0.000  0
#> SRR1551056     4  0.0000     1.0000 0.000 0.000 0.000  1
#> SRR1551057     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551058     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551059     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551060     1  0.1792     0.8807 0.932 0.000 0.068  0
#> SRR1551061     3  0.0000     0.9789 0.000 0.000 1.000  0
#> SRR1551062     1  0.0000     0.9249 1.000 0.000 0.000  0
#> SRR1551063     4  0.0000     1.0000 0.000 0.000 0.000  1
#> SRR1551064     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551065     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551066     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551067     1  0.1792     0.8804 0.932 0.000 0.068  0
#> SRR1551068     3  0.0000     0.9789 0.000 0.000 1.000  0
#> SRR1551069     1  0.0000     0.9249 1.000 0.000 0.000  0
#> SRR1551070     4  0.0000     1.0000 0.000 0.000 0.000  1
#> SRR1551071     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551072     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551073     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551074     1  0.3764     0.7313 0.784 0.000 0.216  0
#> SRR1551075     3  0.0000     0.9789 0.000 0.000 1.000  0
#> SRR1551076     1  0.0000     0.9249 1.000 0.000 0.000  0
#> SRR1551077     4  0.0000     1.0000 0.000 0.000 0.000  1
#> SRR1551078     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551079     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551080     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551081     2  0.2530     0.8667 0.112 0.888 0.000  0
#> SRR1551082     3  0.0000     0.9789 0.000 0.000 1.000  0
#> SRR1551083     1  0.0000     0.9249 1.000 0.000 0.000  0
#> SRR1551084     4  0.0000     1.0000 0.000 0.000 0.000  1
#> SRR1551085     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551086     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551088     3  0.0000     0.9789 0.000 0.000 1.000  0
#> SRR1551087     1  0.0817     0.9107 0.976 0.000 0.024  0
#> SRR1551089     1  0.0000     0.9249 1.000 0.000 0.000  0
#> SRR1551090     4  0.0000     1.0000 0.000 0.000 0.000  1
#> SRR1551091     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551092     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551093     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551094     1  0.4304     0.6334 0.716 0.000 0.284  0
#> SRR1551095     3  0.0000     0.9789 0.000 0.000 1.000  0
#> SRR1551096     1  0.0000     0.9249 1.000 0.000 0.000  0
#> SRR1551097     4  0.0000     1.0000 0.000 0.000 0.000  1
#> SRR1551098     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551099     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551101     3  0.0000     0.9789 0.000 0.000 1.000  0
#> SRR1551100     2  0.7009     0.0851 0.120 0.488 0.392  0
#> SRR1551102     1  0.0000     0.9249 1.000 0.000 0.000  0
#> SRR1551103     4  0.0000     1.0000 0.000 0.000 0.000  1
#> SRR1551104     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551105     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551106     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551107     1  0.0000     0.9249 1.000 0.000 0.000  0
#> SRR1551108     3  0.0000     0.9789 0.000 0.000 1.000  0
#> SRR1551109     1  0.0000     0.9249 1.000 0.000 0.000  0
#> SRR1551110     4  0.0000     1.0000 0.000 0.000 0.000  1
#> SRR1551111     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551112     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551113     2  0.0000     0.9762 0.000 1.000 0.000  0
#> SRR1551114     1  0.5000     0.1086 0.504 0.000 0.496  0

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette p1 p2    p3 p4    p5
#> SRR1550981     5   0.000      1.000  0  0 0.000  0 1.000
#> SRR1550982     5   0.000      1.000  0  0 0.000  0 1.000
#> SRR1550983     5   0.000      1.000  0  0 0.000  0 1.000
#> SRR1550984     5   0.000      1.000  0  0 0.000  0 1.000
#> SRR1550986     3   0.000      0.964  0  0 1.000  0 0.000
#> SRR1550985     5   0.000      1.000  0  0 0.000  0 1.000
#> SRR1550988     4   0.000      1.000  0  0 0.000  1 0.000
#> SRR1550987     1   0.000      1.000  1  0 0.000  0 0.000
#> SRR1550989     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1550990     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1550991     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1550992     3   0.000      0.964  0  0 1.000  0 0.000
#> SRR1550994     4   0.000      1.000  0  0 0.000  1 0.000
#> SRR1550993     1   0.000      1.000  1  0 0.000  0 0.000
#> SRR1550995     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1550996     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1550997     3   0.000      0.964  0  0 1.000  0 0.000
#> SRR1550998     1   0.000      1.000  1  0 0.000  0 0.000
#> SRR1551000     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1550999     4   0.000      1.000  0  0 0.000  1 0.000
#> SRR1551001     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551002     3   0.000      0.964  0  0 1.000  0 0.000
#> SRR1551003     1   0.000      1.000  1  0 0.000  0 0.000
#> SRR1551004     4   0.000      1.000  0  0 0.000  1 0.000
#> SRR1551006     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551005     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551007     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551008     3   0.000      0.964  0  0 1.000  0 0.000
#> SRR1551009     1   0.000      1.000  1  0 0.000  0 0.000
#> SRR1551010     4   0.000      1.000  0  0 0.000  1 0.000
#> SRR1551012     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551011     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551013     3   0.000      0.964  0  0 1.000  0 0.000
#> SRR1551014     1   0.000      1.000  1  0 0.000  0 0.000
#> SRR1551015     4   0.000      1.000  0  0 0.000  1 0.000
#> SRR1551016     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551017     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551018     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551019     5   0.000      1.000  0  0 0.000  0 1.000
#> SRR1551021     1   0.000      1.000  1  0 0.000  0 0.000
#> SRR1551022     4   0.000      1.000  0  0 0.000  1 0.000
#> SRR1551023     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551020     3   0.000      0.964  0  0 1.000  0 0.000
#> SRR1551024     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551026     3   0.000      0.964  0  0 1.000  0 0.000
#> SRR1551025     3   0.371      0.607  0  0 0.716  0 0.284
#> SRR1551027     1   0.000      1.000  1  0 0.000  0 0.000
#> SRR1551028     4   0.000      1.000  0  0 0.000  1 0.000
#> SRR1551029     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551030     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551031     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551032     3   0.428      0.196  0  0 0.544  0 0.456
#> SRR1551034     1   0.000      1.000  1  0 0.000  0 0.000
#> SRR1551033     3   0.000      0.964  0  0 1.000  0 0.000
#> SRR1551035     4   0.000      1.000  0  0 0.000  1 0.000
#> SRR1551036     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551037     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551038     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551039     5   0.000      1.000  0  0 0.000  0 1.000
#> SRR1551040     3   0.000      0.964  0  0 1.000  0 0.000
#> SRR1551041     1   0.000      1.000  1  0 0.000  0 0.000
#> SRR1551042     4   0.000      1.000  0  0 0.000  1 0.000
#> SRR1551043     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551044     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551045     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551046     5   0.000      1.000  0  0 0.000  0 1.000
#> SRR1551047     3   0.000      0.964  0  0 1.000  0 0.000
#> SRR1551048     1   0.000      1.000  1  0 0.000  0 0.000
#> SRR1551049     4   0.000      1.000  0  0 0.000  1 0.000
#> SRR1551050     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551051     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551052     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551053     5   0.000      1.000  0  0 0.000  0 1.000
#> SRR1551054     3   0.000      0.964  0  0 1.000  0 0.000
#> SRR1551055     1   0.000      1.000  1  0 0.000  0 0.000
#> SRR1551056     4   0.000      1.000  0  0 0.000  1 0.000
#> SRR1551057     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551058     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551059     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551060     5   0.000      1.000  0  0 0.000  0 1.000
#> SRR1551061     3   0.000      0.964  0  0 1.000  0 0.000
#> SRR1551062     1   0.000      1.000  1  0 0.000  0 0.000
#> SRR1551063     4   0.000      1.000  0  0 0.000  1 0.000
#> SRR1551064     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551065     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551066     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551067     5   0.000      1.000  0  0 0.000  0 1.000
#> SRR1551068     3   0.000      0.964  0  0 1.000  0 0.000
#> SRR1551069     1   0.000      1.000  1  0 0.000  0 0.000
#> SRR1551070     4   0.000      1.000  0  0 0.000  1 0.000
#> SRR1551071     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551072     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551073     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551074     5   0.000      1.000  0  0 0.000  0 1.000
#> SRR1551075     3   0.000      0.964  0  0 1.000  0 0.000
#> SRR1551076     1   0.000      1.000  1  0 0.000  0 0.000
#> SRR1551077     4   0.000      1.000  0  0 0.000  1 0.000
#> SRR1551078     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551079     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551080     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551081     5   0.000      1.000  0  0 0.000  0 1.000
#> SRR1551082     3   0.000      0.964  0  0 1.000  0 0.000
#> SRR1551083     1   0.000      1.000  1  0 0.000  0 0.000
#> SRR1551084     4   0.000      1.000  0  0 0.000  1 0.000
#> SRR1551085     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551086     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551088     3   0.000      0.964  0  0 1.000  0 0.000
#> SRR1551087     5   0.000      1.000  0  0 0.000  0 1.000
#> SRR1551089     1   0.000      1.000  1  0 0.000  0 0.000
#> SRR1551090     4   0.000      1.000  0  0 0.000  1 0.000
#> SRR1551091     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551092     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551093     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551094     5   0.000      1.000  0  0 0.000  0 1.000
#> SRR1551095     3   0.000      0.964  0  0 1.000  0 0.000
#> SRR1551096     1   0.000      1.000  1  0 0.000  0 0.000
#> SRR1551097     4   0.000      1.000  0  0 0.000  1 0.000
#> SRR1551098     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551099     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551101     3   0.000      0.964  0  0 1.000  0 0.000
#> SRR1551100     5   0.000      1.000  0  0 0.000  0 1.000
#> SRR1551102     1   0.000      1.000  1  0 0.000  0 0.000
#> SRR1551103     4   0.000      1.000  0  0 0.000  1 0.000
#> SRR1551104     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551105     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551106     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551107     5   0.000      1.000  0  0 0.000  0 1.000
#> SRR1551108     3   0.000      0.964  0  0 1.000  0 0.000
#> SRR1551109     1   0.000      1.000  1  0 0.000  0 0.000
#> SRR1551110     4   0.000      1.000  0  0 0.000  1 0.000
#> SRR1551111     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551112     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551113     2   0.000      1.000  0  1 0.000  0 0.000
#> SRR1551114     5   0.000      1.000  0  0 0.000  0 1.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette p1 p2    p3 p4    p5 p6
#> SRR1550981     5   0.000      1.000  0  0 0.000  0 1.000  0
#> SRR1550982     5   0.000      1.000  0  0 0.000  0 1.000  0
#> SRR1550983     5   0.000      1.000  0  0 0.000  0 1.000  0
#> SRR1550984     5   0.000      1.000  0  0 0.000  0 1.000  0
#> SRR1550986     3   0.000      0.963  0  0 1.000  0 0.000  0
#> SRR1550985     5   0.000      1.000  0  0 0.000  0 1.000  0
#> SRR1550988     4   0.000      1.000  0  0 0.000  1 0.000  0
#> SRR1550987     1   0.000      1.000  1  0 0.000  0 0.000  0
#> SRR1550989     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1550990     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1550991     6   0.000      1.000  0  0 0.000  0 0.000  1
#> SRR1550992     3   0.000      0.963  0  0 1.000  0 0.000  0
#> SRR1550994     4   0.000      1.000  0  0 0.000  1 0.000  0
#> SRR1550993     1   0.000      1.000  1  0 0.000  0 0.000  0
#> SRR1550995     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1550996     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1550997     3   0.000      0.963  0  0 1.000  0 0.000  0
#> SRR1550998     1   0.000      1.000  1  0 0.000  0 0.000  0
#> SRR1551000     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1550999     4   0.000      1.000  0  0 0.000  1 0.000  0
#> SRR1551001     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551002     3   0.000      0.963  0  0 1.000  0 0.000  0
#> SRR1551003     1   0.000      1.000  1  0 0.000  0 0.000  0
#> SRR1551004     4   0.000      1.000  0  0 0.000  1 0.000  0
#> SRR1551006     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551005     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551007     6   0.000      1.000  0  0 0.000  0 0.000  1
#> SRR1551008     3   0.000      0.963  0  0 1.000  0 0.000  0
#> SRR1551009     1   0.000      1.000  1  0 0.000  0 0.000  0
#> SRR1551010     4   0.000      1.000  0  0 0.000  1 0.000  0
#> SRR1551012     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551011     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551013     3   0.000      0.963  0  0 1.000  0 0.000  0
#> SRR1551014     1   0.000      1.000  1  0 0.000  0 0.000  0
#> SRR1551015     4   0.000      1.000  0  0 0.000  1 0.000  0
#> SRR1551016     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551017     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551018     6   0.000      1.000  0  0 0.000  0 0.000  1
#> SRR1551019     5   0.000      1.000  0  0 0.000  0 1.000  0
#> SRR1551021     1   0.000      1.000  1  0 0.000  0 0.000  0
#> SRR1551022     4   0.000      1.000  0  0 0.000  1 0.000  0
#> SRR1551023     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551020     3   0.000      0.963  0  0 1.000  0 0.000  0
#> SRR1551024     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551026     3   0.000      0.963  0  0 1.000  0 0.000  0
#> SRR1551025     3   0.333      0.607  0  0 0.716  0 0.284  0
#> SRR1551027     1   0.000      1.000  1  0 0.000  0 0.000  0
#> SRR1551028     4   0.000      1.000  0  0 0.000  1 0.000  0
#> SRR1551029     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551030     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551031     6   0.000      1.000  0  0 0.000  0 0.000  1
#> SRR1551032     3   0.385      0.196  0  0 0.544  0 0.456  0
#> SRR1551034     1   0.000      1.000  1  0 0.000  0 0.000  0
#> SRR1551033     3   0.000      0.963  0  0 1.000  0 0.000  0
#> SRR1551035     4   0.000      1.000  0  0 0.000  1 0.000  0
#> SRR1551036     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551037     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551038     6   0.000      1.000  0  0 0.000  0 0.000  1
#> SRR1551039     5   0.000      1.000  0  0 0.000  0 1.000  0
#> SRR1551040     3   0.000      0.963  0  0 1.000  0 0.000  0
#> SRR1551041     1   0.000      1.000  1  0 0.000  0 0.000  0
#> SRR1551042     4   0.000      1.000  0  0 0.000  1 0.000  0
#> SRR1551043     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551044     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551045     6   0.000      1.000  0  0 0.000  0 0.000  1
#> SRR1551046     5   0.000      1.000  0  0 0.000  0 1.000  0
#> SRR1551047     3   0.000      0.963  0  0 1.000  0 0.000  0
#> SRR1551048     1   0.000      1.000  1  0 0.000  0 0.000  0
#> SRR1551049     4   0.000      1.000  0  0 0.000  1 0.000  0
#> SRR1551050     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551051     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551052     6   0.000      1.000  0  0 0.000  0 0.000  1
#> SRR1551053     5   0.000      1.000  0  0 0.000  0 1.000  0
#> SRR1551054     3   0.000      0.963  0  0 1.000  0 0.000  0
#> SRR1551055     1   0.000      1.000  1  0 0.000  0 0.000  0
#> SRR1551056     4   0.000      1.000  0  0 0.000  1 0.000  0
#> SRR1551057     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551058     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551059     6   0.000      1.000  0  0 0.000  0 0.000  1
#> SRR1551060     5   0.000      1.000  0  0 0.000  0 1.000  0
#> SRR1551061     3   0.000      0.963  0  0 1.000  0 0.000  0
#> SRR1551062     1   0.000      1.000  1  0 0.000  0 0.000  0
#> SRR1551063     4   0.000      1.000  0  0 0.000  1 0.000  0
#> SRR1551064     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551065     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551066     6   0.000      1.000  0  0 0.000  0 0.000  1
#> SRR1551067     5   0.000      1.000  0  0 0.000  0 1.000  0
#> SRR1551068     3   0.000      0.963  0  0 1.000  0 0.000  0
#> SRR1551069     1   0.000      1.000  1  0 0.000  0 0.000  0
#> SRR1551070     4   0.000      1.000  0  0 0.000  1 0.000  0
#> SRR1551071     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551072     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551073     6   0.000      1.000  0  0 0.000  0 0.000  1
#> SRR1551074     5   0.000      1.000  0  0 0.000  0 1.000  0
#> SRR1551075     3   0.000      0.963  0  0 1.000  0 0.000  0
#> SRR1551076     1   0.000      1.000  1  0 0.000  0 0.000  0
#> SRR1551077     4   0.000      1.000  0  0 0.000  1 0.000  0
#> SRR1551078     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551079     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551080     6   0.000      1.000  0  0 0.000  0 0.000  1
#> SRR1551081     5   0.000      1.000  0  0 0.000  0 1.000  0
#> SRR1551082     3   0.000      0.963  0  0 1.000  0 0.000  0
#> SRR1551083     1   0.000      1.000  1  0 0.000  0 0.000  0
#> SRR1551084     4   0.000      1.000  0  0 0.000  1 0.000  0
#> SRR1551085     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551086     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551088     3   0.000      0.963  0  0 1.000  0 0.000  0
#> SRR1551087     5   0.000      1.000  0  0 0.000  0 1.000  0
#> SRR1551089     1   0.000      1.000  1  0 0.000  0 0.000  0
#> SRR1551090     4   0.000      1.000  0  0 0.000  1 0.000  0
#> SRR1551091     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551092     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551093     6   0.000      1.000  0  0 0.000  0 0.000  1
#> SRR1551094     5   0.000      1.000  0  0 0.000  0 1.000  0
#> SRR1551095     3   0.000      0.963  0  0 1.000  0 0.000  0
#> SRR1551096     1   0.000      1.000  1  0 0.000  0 0.000  0
#> SRR1551097     4   0.000      1.000  0  0 0.000  1 0.000  0
#> SRR1551098     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551099     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551101     3   0.000      0.963  0  0 1.000  0 0.000  0
#> SRR1551100     5   0.000      1.000  0  0 0.000  0 1.000  0
#> SRR1551102     1   0.000      1.000  1  0 0.000  0 0.000  0
#> SRR1551103     4   0.000      1.000  0  0 0.000  1 0.000  0
#> SRR1551104     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551105     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551106     6   0.000      1.000  0  0 0.000  0 0.000  1
#> SRR1551107     5   0.000      1.000  0  0 0.000  0 1.000  0
#> SRR1551108     3   0.000      0.963  0  0 1.000  0 0.000  0
#> SRR1551109     1   0.000      1.000  1  0 0.000  0 0.000  0
#> SRR1551110     4   0.000      1.000  0  0 0.000  1 0.000  0
#> SRR1551111     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551112     2   0.000      1.000  0  1 0.000  0 0.000  0
#> SRR1551113     6   0.000      1.000  0  0 0.000  0 0.000  1
#> SRR1551114     5   0.000      1.000  0  0 0.000  0 1.000  0

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15028 rows and 134 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.695           0.917       0.945         0.4865 0.502   0.502
#> 3 3 0.788           0.839       0.928         0.2518 0.873   0.753
#> 4 4 0.764           0.886       0.930         0.1611 0.795   0.542
#> 5 5 0.896           0.898       0.955         0.0827 0.940   0.796
#> 6 6 0.916           0.929       0.932         0.0543 0.932   0.719

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1550981     2   0.722      0.806 0.200 0.800
#> SRR1550982     2   0.722      0.806 0.200 0.800
#> SRR1550983     2   0.722      0.806 0.200 0.800
#> SRR1550984     2   0.722      0.806 0.200 0.800
#> SRR1550986     1   0.358      0.941 0.932 0.068
#> SRR1550985     2   0.722      0.806 0.200 0.800
#> SRR1550988     1   0.118      0.949 0.984 0.016
#> SRR1550987     1   0.327      0.945 0.940 0.060
#> SRR1550989     2   0.000      0.933 0.000 1.000
#> SRR1550990     2   0.000      0.933 0.000 1.000
#> SRR1550991     2   0.000      0.933 0.000 1.000
#> SRR1550992     1   0.358      0.941 0.932 0.068
#> SRR1550994     1   0.118      0.949 0.984 0.016
#> SRR1550993     1   0.327      0.945 0.940 0.060
#> SRR1550995     2   0.000      0.933 0.000 1.000
#> SRR1550996     2   0.000      0.933 0.000 1.000
#> SRR1550997     1   0.358      0.941 0.932 0.068
#> SRR1550998     1   0.327      0.945 0.940 0.060
#> SRR1551000     2   0.000      0.933 0.000 1.000
#> SRR1550999     1   0.118      0.949 0.984 0.016
#> SRR1551001     2   0.000      0.933 0.000 1.000
#> SRR1551002     1   0.358      0.941 0.932 0.068
#> SRR1551003     1   0.327      0.945 0.940 0.060
#> SRR1551004     1   0.118      0.949 0.984 0.016
#> SRR1551006     2   0.000      0.933 0.000 1.000
#> SRR1551005     2   0.000      0.933 0.000 1.000
#> SRR1551007     2   0.000      0.933 0.000 1.000
#> SRR1551008     1   0.358      0.941 0.932 0.068
#> SRR1551009     1   0.327      0.945 0.940 0.060
#> SRR1551010     1   0.118      0.949 0.984 0.016
#> SRR1551012     2   0.000      0.933 0.000 1.000
#> SRR1551011     2   0.000      0.933 0.000 1.000
#> SRR1551013     1   0.358      0.941 0.932 0.068
#> SRR1551014     1   0.327      0.945 0.940 0.060
#> SRR1551015     1   0.118      0.949 0.984 0.016
#> SRR1551016     2   0.000      0.933 0.000 1.000
#> SRR1551017     2   0.000      0.933 0.000 1.000
#> SRR1551018     2   0.000      0.933 0.000 1.000
#> SRR1551019     2   0.722      0.806 0.200 0.800
#> SRR1551021     1   0.327      0.945 0.940 0.060
#> SRR1551022     1   0.118      0.949 0.984 0.016
#> SRR1551023     2   0.541      0.859 0.124 0.876
#> SRR1551020     1   0.358      0.941 0.932 0.068
#> SRR1551024     2   0.714      0.808 0.196 0.804
#> SRR1551026     1   0.358      0.941 0.932 0.068
#> SRR1551025     2   0.827      0.743 0.260 0.740
#> SRR1551027     1   0.327      0.945 0.940 0.060
#> SRR1551028     1   0.118      0.949 0.984 0.016
#> SRR1551029     2   0.000      0.933 0.000 1.000
#> SRR1551030     2   0.000      0.933 0.000 1.000
#> SRR1551031     2   0.000      0.933 0.000 1.000
#> SRR1551032     2   0.827      0.743 0.260 0.740
#> SRR1551034     1   0.327      0.945 0.940 0.060
#> SRR1551033     1   0.358      0.941 0.932 0.068
#> SRR1551035     1   0.118      0.949 0.984 0.016
#> SRR1551036     2   0.000      0.933 0.000 1.000
#> SRR1551037     2   0.000      0.933 0.000 1.000
#> SRR1551038     2   0.000      0.933 0.000 1.000
#> SRR1551039     2   0.722      0.806 0.200 0.800
#> SRR1551040     1   0.358      0.941 0.932 0.068
#> SRR1551041     1   0.327      0.945 0.940 0.060
#> SRR1551042     1   0.118      0.949 0.984 0.016
#> SRR1551043     2   0.000      0.933 0.000 1.000
#> SRR1551044     2   0.000      0.933 0.000 1.000
#> SRR1551045     2   0.000      0.933 0.000 1.000
#> SRR1551046     2   0.722      0.806 0.200 0.800
#> SRR1551047     1   0.358      0.941 0.932 0.068
#> SRR1551048     1   0.327      0.945 0.940 0.060
#> SRR1551049     1   0.118      0.949 0.984 0.016
#> SRR1551050     2   0.000      0.933 0.000 1.000
#> SRR1551051     2   0.000      0.933 0.000 1.000
#> SRR1551052     2   0.000      0.933 0.000 1.000
#> SRR1551053     2   0.722      0.806 0.200 0.800
#> SRR1551054     1   0.358      0.941 0.932 0.068
#> SRR1551055     1   0.327      0.945 0.940 0.060
#> SRR1551056     1   0.118      0.949 0.984 0.016
#> SRR1551057     2   0.000      0.933 0.000 1.000
#> SRR1551058     2   0.000      0.933 0.000 1.000
#> SRR1551059     2   0.000      0.933 0.000 1.000
#> SRR1551060     2   0.722      0.806 0.200 0.800
#> SRR1551061     1   0.358      0.941 0.932 0.068
#> SRR1551062     1   0.327      0.945 0.940 0.060
#> SRR1551063     1   0.118      0.949 0.984 0.016
#> SRR1551064     2   0.000      0.933 0.000 1.000
#> SRR1551065     2   0.000      0.933 0.000 1.000
#> SRR1551066     2   0.000      0.933 0.000 1.000
#> SRR1551067     2   0.722      0.806 0.200 0.800
#> SRR1551068     1   0.358      0.941 0.932 0.068
#> SRR1551069     1   0.327      0.945 0.940 0.060
#> SRR1551070     1   0.118      0.949 0.984 0.016
#> SRR1551071     2   0.000      0.933 0.000 1.000
#> SRR1551072     2   0.000      0.933 0.000 1.000
#> SRR1551073     2   0.000      0.933 0.000 1.000
#> SRR1551074     2   0.722      0.806 0.200 0.800
#> SRR1551075     1   0.358      0.941 0.932 0.068
#> SRR1551076     1   0.327      0.945 0.940 0.060
#> SRR1551077     1   0.118      0.949 0.984 0.016
#> SRR1551078     2   0.000      0.933 0.000 1.000
#> SRR1551079     2   0.000      0.933 0.000 1.000
#> SRR1551080     2   0.000      0.933 0.000 1.000
#> SRR1551081     2   0.722      0.806 0.200 0.800
#> SRR1551082     1   0.358      0.941 0.932 0.068
#> SRR1551083     1   0.327      0.945 0.940 0.060
#> SRR1551084     1   0.118      0.949 0.984 0.016
#> SRR1551085     2   0.000      0.933 0.000 1.000
#> SRR1551086     2   0.000      0.933 0.000 1.000
#> SRR1551088     1   0.358      0.941 0.932 0.068
#> SRR1551087     2   0.722      0.806 0.200 0.800
#> SRR1551089     1   0.327      0.945 0.940 0.060
#> SRR1551090     1   0.118      0.949 0.984 0.016
#> SRR1551091     2   0.000      0.933 0.000 1.000
#> SRR1551092     2   0.000      0.933 0.000 1.000
#> SRR1551093     2   0.000      0.933 0.000 1.000
#> SRR1551094     2   0.722      0.806 0.200 0.800
#> SRR1551095     1   0.358      0.941 0.932 0.068
#> SRR1551096     1   0.327      0.945 0.940 0.060
#> SRR1551097     1   0.118      0.949 0.984 0.016
#> SRR1551098     2   0.000      0.933 0.000 1.000
#> SRR1551099     2   0.000      0.933 0.000 1.000
#> SRR1551101     1   0.358      0.941 0.932 0.068
#> SRR1551100     2   0.722      0.806 0.200 0.800
#> SRR1551102     1   0.327      0.945 0.940 0.060
#> SRR1551103     1   0.118      0.949 0.984 0.016
#> SRR1551104     2   0.000      0.933 0.000 1.000
#> SRR1551105     2   0.000      0.933 0.000 1.000
#> SRR1551106     2   0.000      0.933 0.000 1.000
#> SRR1551107     2   0.722      0.806 0.200 0.800
#> SRR1551108     1   0.358      0.941 0.932 0.068
#> SRR1551109     1   0.327      0.945 0.940 0.060
#> SRR1551110     1   0.118      0.949 0.984 0.016
#> SRR1551111     2   0.000      0.933 0.000 1.000
#> SRR1551112     2   0.000      0.933 0.000 1.000
#> SRR1551113     2   0.000      0.933 0.000 1.000
#> SRR1551114     2   0.722      0.806 0.200 0.800

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1550981     2  0.6676      0.316 0.476 0.516 0.008
#> SRR1550982     2  0.6819      0.311 0.476 0.512 0.012
#> SRR1550983     2  0.6819      0.311 0.476 0.512 0.012
#> SRR1550984     2  0.6676      0.316 0.476 0.516 0.008
#> SRR1550986     1  0.0000      0.990 1.000 0.000 0.000
#> SRR1550985     2  0.6676      0.316 0.476 0.516 0.008
#> SRR1550988     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1550987     1  0.0237      0.990 0.996 0.000 0.004
#> SRR1550989     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1550990     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1550991     2  0.0892      0.841 0.020 0.980 0.000
#> SRR1550992     1  0.0000      0.990 1.000 0.000 0.000
#> SRR1550994     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1550993     1  0.0237      0.990 0.996 0.000 0.004
#> SRR1550995     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1550996     2  0.0592      0.842 0.012 0.988 0.000
#> SRR1550997     1  0.0000      0.990 1.000 0.000 0.000
#> SRR1550998     1  0.0237      0.990 0.996 0.000 0.004
#> SRR1551000     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1550999     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551001     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1551002     1  0.0000      0.990 1.000 0.000 0.000
#> SRR1551003     1  0.0237      0.990 0.996 0.000 0.004
#> SRR1551004     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551006     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1551005     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1551007     2  0.0892      0.841 0.020 0.980 0.000
#> SRR1551008     1  0.0000      0.990 1.000 0.000 0.000
#> SRR1551009     1  0.0237      0.990 0.996 0.000 0.004
#> SRR1551010     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551012     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1551011     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1551013     1  0.0000      0.990 1.000 0.000 0.000
#> SRR1551014     1  0.0237      0.990 0.996 0.000 0.004
#> SRR1551015     3  0.0237      0.996 0.004 0.000 0.996
#> SRR1551016     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1551017     2  0.0747      0.841 0.016 0.984 0.000
#> SRR1551018     2  0.0892      0.841 0.020 0.980 0.000
#> SRR1551019     1  0.6793      0.565 0.672 0.036 0.292
#> SRR1551021     1  0.0237      0.990 0.996 0.000 0.004
#> SRR1551022     3  0.0237      0.996 0.004 0.000 0.996
#> SRR1551023     2  0.3412      0.770 0.124 0.876 0.000
#> SRR1551020     1  0.0000      0.990 1.000 0.000 0.000
#> SRR1551024     2  0.6274      0.360 0.456 0.544 0.000
#> SRR1551026     1  0.0000      0.990 1.000 0.000 0.000
#> SRR1551025     1  0.0000      0.990 1.000 0.000 0.000
#> SRR1551027     1  0.0237      0.990 0.996 0.000 0.004
#> SRR1551028     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551029     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1551030     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1551031     2  0.0892      0.841 0.020 0.980 0.000
#> SRR1551032     1  0.0000      0.990 1.000 0.000 0.000
#> SRR1551034     1  0.0237      0.990 0.996 0.000 0.004
#> SRR1551033     1  0.0000      0.990 1.000 0.000 0.000
#> SRR1551035     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551036     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1551037     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1551038     2  0.0892      0.841 0.020 0.980 0.000
#> SRR1551039     2  0.6819      0.311 0.476 0.512 0.012
#> SRR1551040     1  0.0237      0.988 0.996 0.000 0.004
#> SRR1551041     1  0.0237      0.990 0.996 0.000 0.004
#> SRR1551042     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551043     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1551044     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1551045     2  0.0892      0.841 0.020 0.980 0.000
#> SRR1551046     2  0.6819      0.311 0.476 0.512 0.012
#> SRR1551047     1  0.0000      0.990 1.000 0.000 0.000
#> SRR1551048     1  0.0237      0.990 0.996 0.000 0.004
#> SRR1551049     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551050     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1551051     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1551052     2  0.0892      0.841 0.020 0.980 0.000
#> SRR1551053     2  0.6676      0.316 0.476 0.516 0.008
#> SRR1551054     1  0.0000      0.990 1.000 0.000 0.000
#> SRR1551055     1  0.0237      0.990 0.996 0.000 0.004
#> SRR1551056     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551057     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1551058     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1551059     2  0.2356      0.810 0.072 0.928 0.000
#> SRR1551060     2  0.6676      0.316 0.476 0.516 0.008
#> SRR1551061     1  0.0000      0.990 1.000 0.000 0.000
#> SRR1551062     1  0.0237      0.990 0.996 0.000 0.004
#> SRR1551063     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551064     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1551065     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1551066     2  0.0892      0.841 0.020 0.980 0.000
#> SRR1551067     2  0.6819      0.311 0.476 0.512 0.012
#> SRR1551068     1  0.0000      0.990 1.000 0.000 0.000
#> SRR1551069     1  0.0237      0.990 0.996 0.000 0.004
#> SRR1551070     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551071     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1551072     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1551073     2  0.0892      0.841 0.020 0.980 0.000
#> SRR1551074     2  0.6676      0.316 0.476 0.516 0.008
#> SRR1551075     1  0.0000      0.990 1.000 0.000 0.000
#> SRR1551076     1  0.0237      0.990 0.996 0.000 0.004
#> SRR1551077     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551078     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1551079     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1551080     2  0.0892      0.841 0.020 0.980 0.000
#> SRR1551081     2  0.6676      0.316 0.476 0.516 0.008
#> SRR1551082     1  0.0000      0.990 1.000 0.000 0.000
#> SRR1551083     1  0.0237      0.990 0.996 0.000 0.004
#> SRR1551084     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551085     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1551086     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1551088     1  0.0000      0.990 1.000 0.000 0.000
#> SRR1551087     2  0.6819      0.311 0.476 0.512 0.012
#> SRR1551089     1  0.0237      0.990 0.996 0.000 0.004
#> SRR1551090     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551091     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1551092     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1551093     2  0.0892      0.841 0.020 0.980 0.000
#> SRR1551094     2  0.6819      0.311 0.476 0.512 0.012
#> SRR1551095     1  0.0000      0.990 1.000 0.000 0.000
#> SRR1551096     1  0.0237      0.990 0.996 0.000 0.004
#> SRR1551097     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551098     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1551099     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1551101     1  0.0000      0.990 1.000 0.000 0.000
#> SRR1551100     2  0.6676      0.316 0.476 0.516 0.008
#> SRR1551102     1  0.0237      0.990 0.996 0.000 0.004
#> SRR1551103     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551104     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1551105     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1551106     2  0.0892      0.841 0.020 0.980 0.000
#> SRR1551107     2  0.6819      0.311 0.476 0.512 0.012
#> SRR1551108     1  0.0000      0.990 1.000 0.000 0.000
#> SRR1551109     1  0.0237      0.990 0.996 0.000 0.004
#> SRR1551110     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551111     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1551112     2  0.0000      0.844 0.000 1.000 0.000
#> SRR1551113     2  0.0892      0.841 0.020 0.980 0.000
#> SRR1551114     2  0.6819      0.311 0.476 0.512 0.012

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1550981     1  0.4072      0.814 0.748 0.000 0.252 0.000
#> SRR1550982     1  0.3801      0.843 0.780 0.000 0.220 0.000
#> SRR1550983     1  0.3801      0.843 0.780 0.000 0.220 0.000
#> SRR1550984     1  0.3801      0.843 0.780 0.000 0.220 0.000
#> SRR1550986     3  0.0000      0.956 0.000 0.000 1.000 0.000
#> SRR1550985     1  0.3801      0.843 0.780 0.000 0.220 0.000
#> SRR1550988     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> SRR1550987     1  0.0188      0.848 0.996 0.000 0.004 0.000
#> SRR1550989     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1550990     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1550991     2  0.3356      0.833 0.176 0.824 0.000 0.000
#> SRR1550992     3  0.0000      0.956 0.000 0.000 1.000 0.000
#> SRR1550994     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> SRR1550993     1  0.0188      0.848 0.996 0.000 0.004 0.000
#> SRR1550995     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1550996     2  0.4467      0.798 0.172 0.788 0.040 0.000
#> SRR1550997     3  0.0000      0.956 0.000 0.000 1.000 0.000
#> SRR1550998     1  0.0188      0.848 0.996 0.000 0.004 0.000
#> SRR1551000     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1550999     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> SRR1551001     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1551002     3  0.0000      0.956 0.000 0.000 1.000 0.000
#> SRR1551003     1  0.0188      0.848 0.996 0.000 0.004 0.000
#> SRR1551004     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> SRR1551006     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1551005     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1551007     2  0.3356      0.833 0.176 0.824 0.000 0.000
#> SRR1551008     3  0.0000      0.956 0.000 0.000 1.000 0.000
#> SRR1551009     1  0.0188      0.848 0.996 0.000 0.004 0.000
#> SRR1551010     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> SRR1551012     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1551011     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1551013     3  0.0000      0.956 0.000 0.000 1.000 0.000
#> SRR1551014     1  0.0188      0.848 0.996 0.000 0.004 0.000
#> SRR1551015     4  0.3583      0.738 0.180 0.000 0.004 0.816
#> SRR1551016     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1551017     2  0.3266      0.839 0.168 0.832 0.000 0.000
#> SRR1551018     2  0.3356      0.833 0.176 0.824 0.000 0.000
#> SRR1551019     1  0.4250      0.787 0.724 0.000 0.276 0.000
#> SRR1551021     1  0.3528      0.846 0.808 0.000 0.192 0.000
#> SRR1551022     4  0.0188      0.983 0.000 0.000 0.004 0.996
#> SRR1551023     2  0.6243      0.589 0.172 0.668 0.160 0.000
#> SRR1551020     3  0.4761      0.195 0.372 0.000 0.628 0.000
#> SRR1551024     1  0.6010      0.723 0.676 0.104 0.220 0.000
#> SRR1551026     3  0.4356      0.460 0.292 0.000 0.708 0.000
#> SRR1551025     1  0.4277      0.786 0.720 0.000 0.280 0.000
#> SRR1551027     1  0.0188      0.848 0.996 0.000 0.004 0.000
#> SRR1551028     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> SRR1551029     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1551030     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1551031     2  0.3356      0.833 0.176 0.824 0.000 0.000
#> SRR1551032     1  0.4277      0.786 0.720 0.000 0.280 0.000
#> SRR1551034     1  0.0188      0.848 0.996 0.000 0.004 0.000
#> SRR1551033     3  0.0000      0.956 0.000 0.000 1.000 0.000
#> SRR1551035     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> SRR1551036     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1551037     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1551038     2  0.3356      0.833 0.176 0.824 0.000 0.000
#> SRR1551039     1  0.3801      0.843 0.780 0.000 0.220 0.000
#> SRR1551040     3  0.0000      0.956 0.000 0.000 1.000 0.000
#> SRR1551041     1  0.0188      0.848 0.996 0.000 0.004 0.000
#> SRR1551042     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> SRR1551043     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1551044     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1551045     2  0.3356      0.833 0.176 0.824 0.000 0.000
#> SRR1551046     1  0.3801      0.843 0.780 0.000 0.220 0.000
#> SRR1551047     3  0.0000      0.956 0.000 0.000 1.000 0.000
#> SRR1551048     1  0.0188      0.848 0.996 0.000 0.004 0.000
#> SRR1551049     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> SRR1551050     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1551051     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1551052     2  0.3356      0.833 0.176 0.824 0.000 0.000
#> SRR1551053     1  0.3801      0.843 0.780 0.000 0.220 0.000
#> SRR1551054     3  0.0000      0.956 0.000 0.000 1.000 0.000
#> SRR1551055     1  0.0188      0.848 0.996 0.000 0.004 0.000
#> SRR1551056     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> SRR1551057     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1551058     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1551059     2  0.5608      0.641 0.256 0.684 0.060 0.000
#> SRR1551060     1  0.3801      0.843 0.780 0.000 0.220 0.000
#> SRR1551061     3  0.0000      0.956 0.000 0.000 1.000 0.000
#> SRR1551062     1  0.0188      0.848 0.996 0.000 0.004 0.000
#> SRR1551063     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> SRR1551064     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1551065     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1551066     2  0.3356      0.833 0.176 0.824 0.000 0.000
#> SRR1551067     1  0.3801      0.843 0.780 0.000 0.220 0.000
#> SRR1551068     3  0.0000      0.956 0.000 0.000 1.000 0.000
#> SRR1551069     1  0.0188      0.848 0.996 0.000 0.004 0.000
#> SRR1551070     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> SRR1551071     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1551072     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1551073     2  0.3356      0.833 0.176 0.824 0.000 0.000
#> SRR1551074     1  0.4008      0.822 0.756 0.000 0.244 0.000
#> SRR1551075     3  0.0000      0.956 0.000 0.000 1.000 0.000
#> SRR1551076     1  0.0188      0.848 0.996 0.000 0.004 0.000
#> SRR1551077     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> SRR1551078     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1551079     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1551080     2  0.3356      0.833 0.176 0.824 0.000 0.000
#> SRR1551081     1  0.3801      0.843 0.780 0.000 0.220 0.000
#> SRR1551082     3  0.0000      0.956 0.000 0.000 1.000 0.000
#> SRR1551083     1  0.0188      0.848 0.996 0.000 0.004 0.000
#> SRR1551084     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> SRR1551085     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1551086     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1551088     3  0.0000      0.956 0.000 0.000 1.000 0.000
#> SRR1551087     1  0.3801      0.843 0.780 0.000 0.220 0.000
#> SRR1551089     1  0.0188      0.848 0.996 0.000 0.004 0.000
#> SRR1551090     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> SRR1551091     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1551092     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1551093     2  0.3356      0.833 0.176 0.824 0.000 0.000
#> SRR1551094     1  0.3801      0.843 0.780 0.000 0.220 0.000
#> SRR1551095     3  0.0000      0.956 0.000 0.000 1.000 0.000
#> SRR1551096     1  0.0188      0.848 0.996 0.000 0.004 0.000
#> SRR1551097     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> SRR1551098     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1551099     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1551101     3  0.0000      0.956 0.000 0.000 1.000 0.000
#> SRR1551100     1  0.3801      0.843 0.780 0.000 0.220 0.000
#> SRR1551102     1  0.0188      0.848 0.996 0.000 0.004 0.000
#> SRR1551103     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> SRR1551104     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1551105     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1551106     2  0.3356      0.833 0.176 0.824 0.000 0.000
#> SRR1551107     1  0.3801      0.843 0.780 0.000 0.220 0.000
#> SRR1551108     3  0.0000      0.956 0.000 0.000 1.000 0.000
#> SRR1551109     1  0.0188      0.848 0.996 0.000 0.004 0.000
#> SRR1551110     4  0.0000      0.987 0.000 0.000 0.000 1.000
#> SRR1551111     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1551112     2  0.0000      0.926 0.000 1.000 0.000 0.000
#> SRR1551113     2  0.3356      0.833 0.176 0.824 0.000 0.000
#> SRR1551114     1  0.3801      0.843 0.780 0.000 0.220 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1550981     5  0.0000      0.941 0.000 0.000 0.000 0.000 1.000
#> SRR1550982     5  0.0000      0.941 0.000 0.000 0.000 0.000 1.000
#> SRR1550983     5  0.0000      0.941 0.000 0.000 0.000 0.000 1.000
#> SRR1550984     5  0.0000      0.941 0.000 0.000 0.000 0.000 1.000
#> SRR1550986     3  0.0000      0.972 0.000 0.000 1.000 0.000 0.000
#> SRR1550985     5  0.0000      0.941 0.000 0.000 0.000 0.000 1.000
#> SRR1550988     4  0.0000      0.985 0.000 0.000 0.000 1.000 0.000
#> SRR1550987     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> SRR1550989     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1550990     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1550991     2  0.3395      0.756 0.000 0.764 0.000 0.000 0.236
#> SRR1550992     3  0.0000      0.972 0.000 0.000 1.000 0.000 0.000
#> SRR1550994     4  0.0000      0.985 0.000 0.000 0.000 1.000 0.000
#> SRR1550993     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> SRR1550995     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1550996     2  0.4150      0.470 0.000 0.612 0.000 0.000 0.388
#> SRR1550997     3  0.0000      0.972 0.000 0.000 1.000 0.000 0.000
#> SRR1550998     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> SRR1551000     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1550999     4  0.0000      0.985 0.000 0.000 0.000 1.000 0.000
#> SRR1551001     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1551002     3  0.0000      0.972 0.000 0.000 1.000 0.000 0.000
#> SRR1551003     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> SRR1551004     4  0.0000      0.985 0.000 0.000 0.000 1.000 0.000
#> SRR1551006     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1551005     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1551007     2  0.3395      0.756 0.000 0.764 0.000 0.000 0.236
#> SRR1551008     3  0.0000      0.972 0.000 0.000 1.000 0.000 0.000
#> SRR1551009     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> SRR1551010     4  0.0000      0.985 0.000 0.000 0.000 1.000 0.000
#> SRR1551012     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1551011     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1551013     3  0.0162      0.969 0.000 0.000 0.996 0.000 0.004
#> SRR1551014     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> SRR1551015     4  0.3480      0.647 0.000 0.000 0.000 0.752 0.248
#> SRR1551016     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1551017     2  0.2605      0.824 0.000 0.852 0.000 0.000 0.148
#> SRR1551018     2  0.3395      0.756 0.000 0.764 0.000 0.000 0.236
#> SRR1551019     5  0.0000      0.941 0.000 0.000 0.000 0.000 1.000
#> SRR1551021     1  0.4114      0.400 0.624 0.000 0.000 0.000 0.376
#> SRR1551022     4  0.0162      0.981 0.000 0.000 0.000 0.996 0.004
#> SRR1551023     2  0.4030      0.410 0.000 0.648 0.000 0.000 0.352
#> SRR1551020     5  0.3913      0.440 0.000 0.000 0.324 0.000 0.676
#> SRR1551024     5  0.3561      0.572 0.000 0.260 0.000 0.000 0.740
#> SRR1551026     3  0.4278      0.194 0.000 0.000 0.548 0.000 0.452
#> SRR1551025     5  0.0000      0.941 0.000 0.000 0.000 0.000 1.000
#> SRR1551027     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> SRR1551028     4  0.0000      0.985 0.000 0.000 0.000 1.000 0.000
#> SRR1551029     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1551030     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1551031     2  0.3395      0.756 0.000 0.764 0.000 0.000 0.236
#> SRR1551032     5  0.0000      0.941 0.000 0.000 0.000 0.000 1.000
#> SRR1551034     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> SRR1551033     3  0.0000      0.972 0.000 0.000 1.000 0.000 0.000
#> SRR1551035     4  0.0000      0.985 0.000 0.000 0.000 1.000 0.000
#> SRR1551036     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1551037     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1551038     2  0.3395      0.756 0.000 0.764 0.000 0.000 0.236
#> SRR1551039     5  0.0000      0.941 0.000 0.000 0.000 0.000 1.000
#> SRR1551040     3  0.0000      0.972 0.000 0.000 1.000 0.000 0.000
#> SRR1551041     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> SRR1551042     4  0.0000      0.985 0.000 0.000 0.000 1.000 0.000
#> SRR1551043     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1551044     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1551045     2  0.3395      0.756 0.000 0.764 0.000 0.000 0.236
#> SRR1551046     5  0.0000      0.941 0.000 0.000 0.000 0.000 1.000
#> SRR1551047     3  0.0000      0.972 0.000 0.000 1.000 0.000 0.000
#> SRR1551048     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> SRR1551049     4  0.0000      0.985 0.000 0.000 0.000 1.000 0.000
#> SRR1551050     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1551051     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1551052     2  0.3395      0.756 0.000 0.764 0.000 0.000 0.236
#> SRR1551053     5  0.0000      0.941 0.000 0.000 0.000 0.000 1.000
#> SRR1551054     3  0.0000      0.972 0.000 0.000 1.000 0.000 0.000
#> SRR1551055     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> SRR1551056     4  0.0000      0.985 0.000 0.000 0.000 1.000 0.000
#> SRR1551057     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1551058     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1551059     5  0.4219      0.125 0.000 0.416 0.000 0.000 0.584
#> SRR1551060     5  0.0000      0.941 0.000 0.000 0.000 0.000 1.000
#> SRR1551061     3  0.0000      0.972 0.000 0.000 1.000 0.000 0.000
#> SRR1551062     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> SRR1551063     4  0.0000      0.985 0.000 0.000 0.000 1.000 0.000
#> SRR1551064     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1551065     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1551066     2  0.3395      0.756 0.000 0.764 0.000 0.000 0.236
#> SRR1551067     5  0.0000      0.941 0.000 0.000 0.000 0.000 1.000
#> SRR1551068     3  0.0609      0.955 0.000 0.000 0.980 0.000 0.020
#> SRR1551069     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> SRR1551070     4  0.0000      0.985 0.000 0.000 0.000 1.000 0.000
#> SRR1551071     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1551072     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1551073     2  0.3395      0.756 0.000 0.764 0.000 0.000 0.236
#> SRR1551074     5  0.0000      0.941 0.000 0.000 0.000 0.000 1.000
#> SRR1551075     3  0.0000      0.972 0.000 0.000 1.000 0.000 0.000
#> SRR1551076     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> SRR1551077     4  0.0000      0.985 0.000 0.000 0.000 1.000 0.000
#> SRR1551078     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1551079     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1551080     2  0.3395      0.756 0.000 0.764 0.000 0.000 0.236
#> SRR1551081     5  0.0000      0.941 0.000 0.000 0.000 0.000 1.000
#> SRR1551082     3  0.0000      0.972 0.000 0.000 1.000 0.000 0.000
#> SRR1551083     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> SRR1551084     4  0.0000      0.985 0.000 0.000 0.000 1.000 0.000
#> SRR1551085     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1551086     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1551088     3  0.0000      0.972 0.000 0.000 1.000 0.000 0.000
#> SRR1551087     5  0.0000      0.941 0.000 0.000 0.000 0.000 1.000
#> SRR1551089     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> SRR1551090     4  0.0000      0.985 0.000 0.000 0.000 1.000 0.000
#> SRR1551091     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1551092     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1551093     2  0.3395      0.756 0.000 0.764 0.000 0.000 0.236
#> SRR1551094     5  0.0000      0.941 0.000 0.000 0.000 0.000 1.000
#> SRR1551095     3  0.0000      0.972 0.000 0.000 1.000 0.000 0.000
#> SRR1551096     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> SRR1551097     4  0.0000      0.985 0.000 0.000 0.000 1.000 0.000
#> SRR1551098     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1551099     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1551101     3  0.0000      0.972 0.000 0.000 1.000 0.000 0.000
#> SRR1551100     5  0.0000      0.941 0.000 0.000 0.000 0.000 1.000
#> SRR1551102     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> SRR1551103     4  0.0000      0.985 0.000 0.000 0.000 1.000 0.000
#> SRR1551104     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1551105     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1551106     2  0.3395      0.756 0.000 0.764 0.000 0.000 0.236
#> SRR1551107     5  0.0000      0.941 0.000 0.000 0.000 0.000 1.000
#> SRR1551108     3  0.0000      0.972 0.000 0.000 1.000 0.000 0.000
#> SRR1551109     1  0.0000      0.979 1.000 0.000 0.000 0.000 0.000
#> SRR1551110     4  0.0000      0.985 0.000 0.000 0.000 1.000 0.000
#> SRR1551111     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1551112     2  0.0000      0.913 0.000 1.000 0.000 0.000 0.000
#> SRR1551113     2  0.3395      0.756 0.000 0.764 0.000 0.000 0.236
#> SRR1551114     5  0.0000      0.941 0.000 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1550981     5  0.2762      0.831 0.000 0.000 0.000 0.000 0.804 0.196
#> SRR1550982     5  0.0000      0.898 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1550983     5  0.0000      0.898 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1550984     5  0.0146      0.897 0.000 0.000 0.000 0.000 0.996 0.004
#> SRR1550986     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1550985     5  0.0000      0.898 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1550988     4  0.0000      0.986 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1550987     1  0.0000      0.975 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1550989     2  0.0146      0.972 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1550990     2  0.0260      0.970 0.000 0.992 0.000 0.000 0.000 0.008
#> SRR1550991     6  0.3482      0.954 0.000 0.316 0.000 0.000 0.000 0.684
#> SRR1550992     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1550994     4  0.0000      0.986 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1550993     1  0.0000      0.975 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1550995     2  0.0146      0.972 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1550996     6  0.5334      0.619 0.000 0.344 0.000 0.000 0.120 0.536
#> SRR1550997     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1550998     1  0.0000      0.975 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551000     2  0.0146      0.972 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1550999     4  0.0000      0.986 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551001     2  0.0260      0.970 0.000 0.992 0.000 0.000 0.000 0.008
#> SRR1551002     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551003     1  0.0000      0.975 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551004     4  0.0000      0.986 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551006     2  0.0260      0.970 0.000 0.992 0.000 0.000 0.000 0.008
#> SRR1551005     2  0.0000      0.973 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551007     6  0.3482      0.954 0.000 0.316 0.000 0.000 0.000 0.684
#> SRR1551008     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551009     1  0.0000      0.975 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551010     4  0.0000      0.986 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551012     2  0.0000      0.973 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551011     2  0.0146      0.972 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1551013     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551014     1  0.0000      0.975 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551015     4  0.3240      0.641 0.000 0.000 0.000 0.752 0.244 0.004
#> SRR1551016     2  0.0260      0.970 0.000 0.992 0.000 0.000 0.000 0.008
#> SRR1551017     2  0.2121      0.815 0.000 0.892 0.000 0.000 0.012 0.096
#> SRR1551018     6  0.3482      0.954 0.000 0.316 0.000 0.000 0.000 0.684
#> SRR1551019     5  0.3101      0.812 0.000 0.000 0.000 0.000 0.756 0.244
#> SRR1551021     1  0.5692      0.177 0.512 0.000 0.000 0.000 0.296 0.192
#> SRR1551022     4  0.0146      0.982 0.000 0.000 0.000 0.996 0.004 0.000
#> SRR1551023     2  0.5303      0.261 0.000 0.600 0.000 0.000 0.204 0.196
#> SRR1551020     5  0.5382      0.646 0.000 0.000 0.148 0.000 0.564 0.288
#> SRR1551024     5  0.5861      0.339 0.000 0.220 0.000 0.000 0.472 0.308
#> SRR1551026     5  0.5888      0.462 0.000 0.000 0.268 0.000 0.476 0.256
#> SRR1551025     5  0.3464      0.777 0.000 0.000 0.000 0.000 0.688 0.312
#> SRR1551027     1  0.0000      0.975 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551028     4  0.0000      0.986 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551029     2  0.0146      0.972 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1551030     2  0.0547      0.957 0.000 0.980 0.000 0.000 0.000 0.020
#> SRR1551031     6  0.3482      0.954 0.000 0.316 0.000 0.000 0.000 0.684
#> SRR1551032     5  0.3464      0.777 0.000 0.000 0.000 0.000 0.688 0.312
#> SRR1551034     1  0.0000      0.975 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551033     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551035     4  0.0000      0.986 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551036     2  0.0146      0.972 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1551037     2  0.0260      0.970 0.000 0.992 0.000 0.000 0.000 0.008
#> SRR1551038     6  0.3482      0.954 0.000 0.316 0.000 0.000 0.000 0.684
#> SRR1551039     5  0.0000      0.898 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1551040     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551041     1  0.0000      0.975 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551042     4  0.0000      0.986 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551043     2  0.0146      0.972 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1551044     2  0.0260      0.970 0.000 0.992 0.000 0.000 0.000 0.008
#> SRR1551045     6  0.3482      0.954 0.000 0.316 0.000 0.000 0.000 0.684
#> SRR1551046     5  0.0000      0.898 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1551047     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551048     1  0.0000      0.975 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551049     4  0.0000      0.986 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551050     2  0.0146      0.972 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1551051     2  0.0000      0.973 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551052     6  0.3482      0.954 0.000 0.316 0.000 0.000 0.000 0.684
#> SRR1551053     5  0.1556      0.874 0.000 0.000 0.000 0.000 0.920 0.080
#> SRR1551054     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551055     1  0.0000      0.975 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551056     4  0.0000      0.986 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551057     2  0.0000      0.973 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551058     2  0.0260      0.970 0.000 0.992 0.000 0.000 0.000 0.008
#> SRR1551059     6  0.2234      0.692 0.000 0.124 0.000 0.000 0.004 0.872
#> SRR1551060     5  0.0000      0.898 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1551061     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551062     1  0.0000      0.975 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551063     4  0.0000      0.986 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551064     2  0.0146      0.972 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1551065     2  0.0260      0.970 0.000 0.992 0.000 0.000 0.000 0.008
#> SRR1551066     6  0.3482      0.954 0.000 0.316 0.000 0.000 0.000 0.684
#> SRR1551067     5  0.0000      0.898 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1551068     3  0.2402      0.867 0.000 0.000 0.868 0.000 0.012 0.120
#> SRR1551069     1  0.0000      0.975 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551070     4  0.0000      0.986 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551071     2  0.0146      0.972 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1551072     2  0.0146      0.972 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1551073     6  0.3482      0.954 0.000 0.316 0.000 0.000 0.000 0.684
#> SRR1551074     5  0.2697      0.834 0.000 0.000 0.000 0.000 0.812 0.188
#> SRR1551075     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551076     1  0.0000      0.975 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551077     4  0.0000      0.986 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551078     2  0.0000      0.973 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551079     2  0.0260      0.970 0.000 0.992 0.000 0.000 0.000 0.008
#> SRR1551080     6  0.3482      0.954 0.000 0.316 0.000 0.000 0.000 0.684
#> SRR1551081     5  0.0000      0.898 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1551082     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551083     1  0.0000      0.975 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551084     4  0.0000      0.986 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551085     2  0.0146      0.972 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1551086     2  0.0260      0.970 0.000 0.992 0.000 0.000 0.000 0.008
#> SRR1551088     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551087     5  0.0000      0.898 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1551089     1  0.0000      0.975 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551090     4  0.0000      0.986 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551091     2  0.0146      0.972 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1551092     2  0.0000      0.973 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551093     6  0.3482      0.954 0.000 0.316 0.000 0.000 0.000 0.684
#> SRR1551094     5  0.0000      0.898 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1551095     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551096     1  0.0000      0.975 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551097     4  0.0000      0.986 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551098     2  0.0146      0.972 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1551099     2  0.0000      0.973 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551101     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551100     5  0.0146      0.897 0.000 0.000 0.000 0.000 0.996 0.004
#> SRR1551102     1  0.0000      0.975 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551103     4  0.0000      0.986 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551104     2  0.0146      0.972 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1551105     2  0.0146      0.972 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1551106     6  0.3482      0.954 0.000 0.316 0.000 0.000 0.000 0.684
#> SRR1551107     5  0.0000      0.898 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1551108     3  0.0000      0.993 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551109     1  0.0000      0.975 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551110     4  0.0000      0.986 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551111     2  0.0000      0.973 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551112     2  0.0260      0.970 0.000 0.992 0.000 0.000 0.000 0.008
#> SRR1551113     6  0.3482      0.954 0.000 0.316 0.000 0.000 0.000 0.684
#> SRR1551114     5  0.0000      0.898 0.000 0.000 0.000 0.000 1.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15028 rows and 134 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.998           0.954       0.974          0.494 0.502   0.502
#> 3 3 0.784           0.959       0.944          0.241 0.879   0.758
#> 4 4 0.799           0.840       0.839          0.142 0.910   0.764
#> 5 5 0.868           0.890       0.898          0.104 0.926   0.748
#> 6 6 1.000           0.989       0.984          0.060 0.951   0.784

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1550981     1  0.0000      0.979 1.000 0.000
#> SRR1550982     1  0.0000      0.979 1.000 0.000
#> SRR1550983     1  0.0000      0.979 1.000 0.000
#> SRR1550984     1  0.7745      0.692 0.772 0.228
#> SRR1550986     1  0.0000      0.979 1.000 0.000
#> SRR1550985     1  0.6801      0.768 0.820 0.180
#> SRR1550988     2  0.4298      0.925 0.088 0.912
#> SRR1550987     1  0.0000      0.979 1.000 0.000
#> SRR1550989     2  0.0672      0.972 0.008 0.992
#> SRR1550990     2  0.0672      0.972 0.008 0.992
#> SRR1550991     2  0.0672      0.972 0.008 0.992
#> SRR1550992     1  0.0000      0.979 1.000 0.000
#> SRR1550994     2  0.4298      0.925 0.088 0.912
#> SRR1550993     1  0.0000      0.979 1.000 0.000
#> SRR1550995     2  0.0672      0.972 0.008 0.992
#> SRR1550996     2  0.0672      0.972 0.008 0.992
#> SRR1550997     1  0.0000      0.979 1.000 0.000
#> SRR1550998     1  0.0000      0.979 1.000 0.000
#> SRR1551000     2  0.0672      0.972 0.008 0.992
#> SRR1550999     2  0.4298      0.925 0.088 0.912
#> SRR1551001     2  0.0672      0.972 0.008 0.992
#> SRR1551002     1  0.0000      0.979 1.000 0.000
#> SRR1551003     1  0.0000      0.979 1.000 0.000
#> SRR1551004     2  0.4298      0.925 0.088 0.912
#> SRR1551006     2  0.0672      0.972 0.008 0.992
#> SRR1551005     2  0.0672      0.972 0.008 0.992
#> SRR1551007     2  0.0672      0.972 0.008 0.992
#> SRR1551008     1  0.0000      0.979 1.000 0.000
#> SRR1551009     1  0.0000      0.979 1.000 0.000
#> SRR1551010     2  0.4298      0.925 0.088 0.912
#> SRR1551012     2  0.0672      0.972 0.008 0.992
#> SRR1551011     2  0.0672      0.972 0.008 0.992
#> SRR1551013     1  0.0000      0.979 1.000 0.000
#> SRR1551014     1  0.0000      0.979 1.000 0.000
#> SRR1551015     2  0.4298      0.925 0.088 0.912
#> SRR1551016     2  0.0672      0.972 0.008 0.992
#> SRR1551017     2  0.0672      0.972 0.008 0.992
#> SRR1551018     2  0.0672      0.972 0.008 0.992
#> SRR1551019     1  0.0000      0.979 1.000 0.000
#> SRR1551021     1  0.0000      0.979 1.000 0.000
#> SRR1551022     2  0.4298      0.925 0.088 0.912
#> SRR1551023     2  0.0672      0.972 0.008 0.992
#> SRR1551020     1  0.0000      0.979 1.000 0.000
#> SRR1551024     2  0.5737      0.873 0.136 0.864
#> SRR1551026     1  0.0000      0.979 1.000 0.000
#> SRR1551025     1  0.0000      0.979 1.000 0.000
#> SRR1551027     1  0.0000      0.979 1.000 0.000
#> SRR1551028     2  0.4298      0.925 0.088 0.912
#> SRR1551029     2  0.0672      0.972 0.008 0.992
#> SRR1551030     2  0.0672      0.972 0.008 0.992
#> SRR1551031     2  0.0672      0.972 0.008 0.992
#> SRR1551032     1  0.0000      0.979 1.000 0.000
#> SRR1551034     1  0.0000      0.979 1.000 0.000
#> SRR1551033     1  0.0000      0.979 1.000 0.000
#> SRR1551035     2  0.4298      0.925 0.088 0.912
#> SRR1551036     2  0.0672      0.972 0.008 0.992
#> SRR1551037     2  0.0672      0.972 0.008 0.992
#> SRR1551038     2  0.0672      0.972 0.008 0.992
#> SRR1551039     1  0.0000      0.979 1.000 0.000
#> SRR1551040     1  0.0000      0.979 1.000 0.000
#> SRR1551041     1  0.0000      0.979 1.000 0.000
#> SRR1551042     2  0.4298      0.925 0.088 0.912
#> SRR1551043     2  0.0672      0.972 0.008 0.992
#> SRR1551044     2  0.0672      0.972 0.008 0.992
#> SRR1551045     2  0.0672      0.972 0.008 0.992
#> SRR1551046     1  0.0000      0.979 1.000 0.000
#> SRR1551047     1  0.0000      0.979 1.000 0.000
#> SRR1551048     1  0.0000      0.979 1.000 0.000
#> SRR1551049     2  0.4298      0.925 0.088 0.912
#> SRR1551050     2  0.0672      0.972 0.008 0.992
#> SRR1551051     2  0.0672      0.972 0.008 0.992
#> SRR1551052     2  0.0672      0.972 0.008 0.992
#> SRR1551053     1  0.9896      0.170 0.560 0.440
#> SRR1551054     1  0.0000      0.979 1.000 0.000
#> SRR1551055     1  0.0000      0.979 1.000 0.000
#> SRR1551056     2  0.4298      0.925 0.088 0.912
#> SRR1551057     2  0.0672      0.972 0.008 0.992
#> SRR1551058     2  0.0672      0.972 0.008 0.992
#> SRR1551059     2  0.0672      0.972 0.008 0.992
#> SRR1551060     1  0.0000      0.979 1.000 0.000
#> SRR1551061     1  0.0000      0.979 1.000 0.000
#> SRR1551062     1  0.0000      0.979 1.000 0.000
#> SRR1551063     2  0.4298      0.925 0.088 0.912
#> SRR1551064     2  0.0672      0.972 0.008 0.992
#> SRR1551065     2  0.0672      0.972 0.008 0.992
#> SRR1551066     2  0.0672      0.972 0.008 0.992
#> SRR1551067     1  0.0000      0.979 1.000 0.000
#> SRR1551068     1  0.0000      0.979 1.000 0.000
#> SRR1551069     1  0.0000      0.979 1.000 0.000
#> SRR1551070     2  0.4298      0.925 0.088 0.912
#> SRR1551071     2  0.0672      0.972 0.008 0.992
#> SRR1551072     2  0.0672      0.972 0.008 0.992
#> SRR1551073     2  0.0672      0.972 0.008 0.992
#> SRR1551074     1  0.0000      0.979 1.000 0.000
#> SRR1551075     1  0.0000      0.979 1.000 0.000
#> SRR1551076     1  0.0000      0.979 1.000 0.000
#> SRR1551077     2  0.4298      0.925 0.088 0.912
#> SRR1551078     2  0.0672      0.972 0.008 0.992
#> SRR1551079     2  0.0672      0.972 0.008 0.992
#> SRR1551080     2  0.0672      0.972 0.008 0.992
#> SRR1551081     1  0.8861      0.547 0.696 0.304
#> SRR1551082     1  0.0000      0.979 1.000 0.000
#> SRR1551083     1  0.0000      0.979 1.000 0.000
#> SRR1551084     2  0.4298      0.925 0.088 0.912
#> SRR1551085     2  0.0672      0.972 0.008 0.992
#> SRR1551086     2  0.0672      0.972 0.008 0.992
#> SRR1551088     1  0.0000      0.979 1.000 0.000
#> SRR1551087     1  0.0000      0.979 1.000 0.000
#> SRR1551089     1  0.0000      0.979 1.000 0.000
#> SRR1551090     2  0.4298      0.925 0.088 0.912
#> SRR1551091     2  0.0672      0.972 0.008 0.992
#> SRR1551092     2  0.0672      0.972 0.008 0.992
#> SRR1551093     2  0.0672      0.972 0.008 0.992
#> SRR1551094     1  0.0000      0.979 1.000 0.000
#> SRR1551095     1  0.0000      0.979 1.000 0.000
#> SRR1551096     1  0.0000      0.979 1.000 0.000
#> SRR1551097     2  0.4298      0.925 0.088 0.912
#> SRR1551098     2  0.0672      0.972 0.008 0.992
#> SRR1551099     2  0.0672      0.972 0.008 0.992
#> SRR1551101     1  0.0000      0.979 1.000 0.000
#> SRR1551100     1  0.2043      0.948 0.968 0.032
#> SRR1551102     1  0.0000      0.979 1.000 0.000
#> SRR1551103     2  0.4298      0.925 0.088 0.912
#> SRR1551104     2  0.0672      0.972 0.008 0.992
#> SRR1551105     2  0.0672      0.972 0.008 0.992
#> SRR1551106     2  0.0672      0.972 0.008 0.992
#> SRR1551107     1  0.0000      0.979 1.000 0.000
#> SRR1551108     1  0.0000      0.979 1.000 0.000
#> SRR1551109     1  0.0000      0.979 1.000 0.000
#> SRR1551110     2  0.4298      0.925 0.088 0.912
#> SRR1551111     2  0.0672      0.972 0.008 0.992
#> SRR1551112     2  0.0672      0.972 0.008 0.992
#> SRR1551113     2  0.0672      0.972 0.008 0.992
#> SRR1551114     1  0.0000      0.979 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1550981     1  0.0424      0.935 0.992 0.000 0.008
#> SRR1550982     1  0.0424      0.935 0.992 0.000 0.008
#> SRR1550983     1  0.0424      0.935 0.992 0.000 0.008
#> SRR1550984     1  0.4228      0.811 0.844 0.148 0.008
#> SRR1550986     1  0.0747      0.936 0.984 0.000 0.016
#> SRR1550985     1  0.4099      0.820 0.852 0.140 0.008
#> SRR1550988     3  0.4172      1.000 0.004 0.156 0.840
#> SRR1550987     1  0.3551      0.912 0.868 0.000 0.132
#> SRR1550989     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1550990     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1550991     2  0.0237      0.995 0.000 0.996 0.004
#> SRR1550992     1  0.0747      0.936 0.984 0.000 0.016
#> SRR1550994     3  0.4172      1.000 0.004 0.156 0.840
#> SRR1550993     1  0.3551      0.912 0.868 0.000 0.132
#> SRR1550995     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1550996     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1550997     1  0.0747      0.936 0.984 0.000 0.016
#> SRR1550998     1  0.3551      0.912 0.868 0.000 0.132
#> SRR1551000     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1550999     3  0.4172      1.000 0.004 0.156 0.840
#> SRR1551001     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1551002     1  0.0747      0.936 0.984 0.000 0.016
#> SRR1551003     1  0.3551      0.912 0.868 0.000 0.132
#> SRR1551004     3  0.4172      1.000 0.004 0.156 0.840
#> SRR1551006     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1551005     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1551007     2  0.0237      0.995 0.000 0.996 0.004
#> SRR1551008     1  0.0747      0.936 0.984 0.000 0.016
#> SRR1551009     1  0.3551      0.912 0.868 0.000 0.132
#> SRR1551010     3  0.4172      1.000 0.004 0.156 0.840
#> SRR1551012     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1551011     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1551013     1  0.0747      0.936 0.984 0.000 0.016
#> SRR1551014     1  0.3551      0.912 0.868 0.000 0.132
#> SRR1551015     3  0.4110      0.995 0.004 0.152 0.844
#> SRR1551016     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1551017     2  0.0237      0.995 0.000 0.996 0.004
#> SRR1551018     2  0.0237      0.995 0.000 0.996 0.004
#> SRR1551019     1  0.0424      0.935 0.992 0.000 0.008
#> SRR1551021     1  0.3551      0.912 0.868 0.000 0.132
#> SRR1551022     3  0.4172      1.000 0.004 0.156 0.840
#> SRR1551023     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1551020     1  0.0747      0.936 0.984 0.000 0.016
#> SRR1551024     2  0.3272      0.861 0.080 0.904 0.016
#> SRR1551026     1  0.0747      0.936 0.984 0.000 0.016
#> SRR1551025     1  0.1031      0.934 0.976 0.000 0.024
#> SRR1551027     1  0.3551      0.912 0.868 0.000 0.132
#> SRR1551028     3  0.4172      1.000 0.004 0.156 0.840
#> SRR1551029     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1551030     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1551031     2  0.0237      0.995 0.000 0.996 0.004
#> SRR1551032     1  0.0747      0.935 0.984 0.000 0.016
#> SRR1551034     1  0.3551      0.912 0.868 0.000 0.132
#> SRR1551033     1  0.0747      0.936 0.984 0.000 0.016
#> SRR1551035     3  0.4172      1.000 0.004 0.156 0.840
#> SRR1551036     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1551037     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1551038     2  0.0237      0.995 0.000 0.996 0.004
#> SRR1551039     1  0.1585      0.927 0.964 0.028 0.008
#> SRR1551040     1  0.0747      0.936 0.984 0.000 0.016
#> SRR1551041     1  0.3551      0.912 0.868 0.000 0.132
#> SRR1551042     3  0.4172      1.000 0.004 0.156 0.840
#> SRR1551043     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1551044     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1551045     2  0.0237      0.995 0.000 0.996 0.004
#> SRR1551046     1  0.1031      0.935 0.976 0.000 0.024
#> SRR1551047     1  0.0747      0.936 0.984 0.000 0.016
#> SRR1551048     1  0.3551      0.912 0.868 0.000 0.132
#> SRR1551049     3  0.4172      1.000 0.004 0.156 0.840
#> SRR1551050     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1551051     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1551052     2  0.0237      0.995 0.000 0.996 0.004
#> SRR1551053     1  0.5335      0.690 0.760 0.232 0.008
#> SRR1551054     1  0.0747      0.936 0.984 0.000 0.016
#> SRR1551055     1  0.3551      0.912 0.868 0.000 0.132
#> SRR1551056     3  0.4172      1.000 0.004 0.156 0.840
#> SRR1551057     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1551058     2  0.0237      0.995 0.000 0.996 0.004
#> SRR1551059     2  0.0237      0.995 0.000 0.996 0.004
#> SRR1551060     1  0.2173      0.914 0.944 0.048 0.008
#> SRR1551061     1  0.0747      0.936 0.984 0.000 0.016
#> SRR1551062     1  0.3551      0.912 0.868 0.000 0.132
#> SRR1551063     3  0.4172      1.000 0.004 0.156 0.840
#> SRR1551064     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1551065     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1551066     2  0.0237      0.995 0.000 0.996 0.004
#> SRR1551067     1  0.1774      0.932 0.960 0.016 0.024
#> SRR1551068     1  0.0747      0.936 0.984 0.000 0.016
#> SRR1551069     1  0.3551      0.912 0.868 0.000 0.132
#> SRR1551070     3  0.4172      1.000 0.004 0.156 0.840
#> SRR1551071     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1551072     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1551073     2  0.0237      0.995 0.000 0.996 0.004
#> SRR1551074     1  0.0747      0.936 0.984 0.000 0.016
#> SRR1551075     1  0.0747      0.936 0.984 0.000 0.016
#> SRR1551076     1  0.3551      0.912 0.868 0.000 0.132
#> SRR1551077     3  0.4172      1.000 0.004 0.156 0.840
#> SRR1551078     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1551079     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1551080     2  0.0237      0.995 0.000 0.996 0.004
#> SRR1551081     1  0.5156      0.717 0.776 0.216 0.008
#> SRR1551082     1  0.0747      0.936 0.984 0.000 0.016
#> SRR1551083     1  0.3551      0.912 0.868 0.000 0.132
#> SRR1551084     3  0.4172      1.000 0.004 0.156 0.840
#> SRR1551085     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1551086     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1551088     1  0.0747      0.936 0.984 0.000 0.016
#> SRR1551087     1  0.1482      0.931 0.968 0.020 0.012
#> SRR1551089     1  0.3551      0.912 0.868 0.000 0.132
#> SRR1551090     3  0.4172      1.000 0.004 0.156 0.840
#> SRR1551091     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1551092     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1551093     2  0.0237      0.995 0.000 0.996 0.004
#> SRR1551094     1  0.0661      0.935 0.988 0.004 0.008
#> SRR1551095     1  0.0747      0.936 0.984 0.000 0.016
#> SRR1551096     1  0.3551      0.912 0.868 0.000 0.132
#> SRR1551097     3  0.4172      1.000 0.004 0.156 0.840
#> SRR1551098     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1551099     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1551101     1  0.0747      0.936 0.984 0.000 0.016
#> SRR1551100     1  0.1832      0.922 0.956 0.036 0.008
#> SRR1551102     1  0.3551      0.912 0.868 0.000 0.132
#> SRR1551103     3  0.4172      1.000 0.004 0.156 0.840
#> SRR1551104     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1551105     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1551106     2  0.0237      0.995 0.000 0.996 0.004
#> SRR1551107     1  0.1919      0.931 0.956 0.020 0.024
#> SRR1551108     1  0.0747      0.936 0.984 0.000 0.016
#> SRR1551109     1  0.3551      0.912 0.868 0.000 0.132
#> SRR1551110     3  0.4172      1.000 0.004 0.156 0.840
#> SRR1551111     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1551112     2  0.0000      0.996 0.000 1.000 0.000
#> SRR1551113     2  0.0237      0.995 0.000 0.996 0.004
#> SRR1551114     1  0.0424      0.935 0.992 0.000 0.008

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3 p4
#> SRR1550981     3  0.1940      0.727 0.076 0.000 0.924  0
#> SRR1550982     3  0.2334      0.717 0.088 0.004 0.908  0
#> SRR1550983     3  0.2281      0.710 0.096 0.000 0.904  0
#> SRR1550984     3  0.5332      0.447 0.080 0.184 0.736  0
#> SRR1550986     3  0.1867      0.780 0.072 0.000 0.928  0
#> SRR1550985     3  0.6562      0.226 0.088 0.360 0.552  0
#> SRR1550988     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1550987     1  0.4804      1.000 0.616 0.000 0.384  0
#> SRR1550989     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1550990     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1550991     2  0.4804      0.709 0.384 0.616 0.000  0
#> SRR1550992     3  0.1867      0.780 0.072 0.000 0.928  0
#> SRR1550994     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1550993     1  0.4804      1.000 0.616 0.000 0.384  0
#> SRR1550995     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1550996     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1550997     3  0.1867      0.780 0.072 0.000 0.928  0
#> SRR1550998     1  0.4804      1.000 0.616 0.000 0.384  0
#> SRR1551000     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1550999     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551001     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1551002     3  0.1867      0.780 0.072 0.000 0.928  0
#> SRR1551003     1  0.4804      1.000 0.616 0.000 0.384  0
#> SRR1551004     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551006     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1551005     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1551007     2  0.4804      0.709 0.384 0.616 0.000  0
#> SRR1551008     3  0.1867      0.780 0.072 0.000 0.928  0
#> SRR1551009     1  0.4804      1.000 0.616 0.000 0.384  0
#> SRR1551010     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551012     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1551011     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1551013     3  0.1867      0.780 0.072 0.000 0.928  0
#> SRR1551014     1  0.4804      1.000 0.616 0.000 0.384  0
#> SRR1551015     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551016     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1551017     2  0.4804      0.709 0.384 0.616 0.000  0
#> SRR1551018     2  0.4804      0.709 0.384 0.616 0.000  0
#> SRR1551019     3  0.1637      0.738 0.060 0.000 0.940  0
#> SRR1551021     1  0.4804      1.000 0.616 0.000 0.384  0
#> SRR1551022     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551023     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1551020     3  0.1867      0.780 0.072 0.000 0.928  0
#> SRR1551024     2  0.3443      0.758 0.016 0.848 0.136  0
#> SRR1551026     3  0.1867      0.780 0.072 0.000 0.928  0
#> SRR1551025     3  0.0000      0.750 0.000 0.000 1.000  0
#> SRR1551027     1  0.4804      1.000 0.616 0.000 0.384  0
#> SRR1551028     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551029     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1551030     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1551031     2  0.4804      0.709 0.384 0.616 0.000  0
#> SRR1551032     3  0.1389      0.743 0.048 0.000 0.952  0
#> SRR1551034     1  0.4804      1.000 0.616 0.000 0.384  0
#> SRR1551033     3  0.1867      0.780 0.072 0.000 0.928  0
#> SRR1551035     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551036     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1551037     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1551038     2  0.4804      0.709 0.384 0.616 0.000  0
#> SRR1551039     3  0.3732      0.662 0.092 0.056 0.852  0
#> SRR1551040     3  0.1867      0.780 0.072 0.000 0.928  0
#> SRR1551041     1  0.4804      1.000 0.616 0.000 0.384  0
#> SRR1551042     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551043     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1551044     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1551045     2  0.4804      0.709 0.384 0.616 0.000  0
#> SRR1551046     3  0.3219      0.609 0.164 0.000 0.836  0
#> SRR1551047     3  0.1867      0.780 0.072 0.000 0.928  0
#> SRR1551048     1  0.4804      1.000 0.616 0.000 0.384  0
#> SRR1551049     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551050     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1551051     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1551052     2  0.4804      0.709 0.384 0.616 0.000  0
#> SRR1551053     3  0.6324      0.250 0.072 0.356 0.572  0
#> SRR1551054     3  0.1867      0.780 0.072 0.000 0.928  0
#> SRR1551055     1  0.4804      1.000 0.616 0.000 0.384  0
#> SRR1551056     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551057     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1551058     2  0.1792      0.868 0.068 0.932 0.000  0
#> SRR1551059     2  0.4804      0.709 0.384 0.616 0.000  0
#> SRR1551060     3  0.5174      0.508 0.124 0.116 0.760  0
#> SRR1551061     3  0.1867      0.780 0.072 0.000 0.928  0
#> SRR1551062     1  0.4804      1.000 0.616 0.000 0.384  0
#> SRR1551063     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551064     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1551065     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1551066     2  0.4804      0.709 0.384 0.616 0.000  0
#> SRR1551067     3  0.3852      0.563 0.180 0.012 0.808  0
#> SRR1551068     3  0.1867      0.780 0.072 0.000 0.928  0
#> SRR1551069     1  0.4804      1.000 0.616 0.000 0.384  0
#> SRR1551070     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551071     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1551072     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1551073     2  0.4804      0.709 0.384 0.616 0.000  0
#> SRR1551074     3  0.2589      0.688 0.116 0.000 0.884  0
#> SRR1551075     3  0.1867      0.780 0.072 0.000 0.928  0
#> SRR1551076     1  0.4804      1.000 0.616 0.000 0.384  0
#> SRR1551077     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551078     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1551079     2  0.0188      0.895 0.004 0.996 0.000  0
#> SRR1551080     2  0.4804      0.709 0.384 0.616 0.000  0
#> SRR1551081     3  0.6708      0.117 0.096 0.376 0.528  0
#> SRR1551082     3  0.1867      0.780 0.072 0.000 0.928  0
#> SRR1551083     1  0.4804      1.000 0.616 0.000 0.384  0
#> SRR1551084     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551085     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1551086     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1551088     3  0.1867      0.780 0.072 0.000 0.928  0
#> SRR1551087     3  0.4079      0.554 0.180 0.020 0.800  0
#> SRR1551089     1  0.4804      1.000 0.616 0.000 0.384  0
#> SRR1551090     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551091     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1551092     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1551093     2  0.4804      0.709 0.384 0.616 0.000  0
#> SRR1551094     3  0.2611      0.707 0.096 0.008 0.896  0
#> SRR1551095     3  0.1867      0.780 0.072 0.000 0.928  0
#> SRR1551096     1  0.4804      1.000 0.616 0.000 0.384  0
#> SRR1551097     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551098     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1551099     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1551101     3  0.1867      0.780 0.072 0.000 0.928  0
#> SRR1551100     3  0.4483      0.611 0.088 0.104 0.808  0
#> SRR1551102     1  0.4804      1.000 0.616 0.000 0.384  0
#> SRR1551103     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551104     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1551105     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1551106     2  0.4804      0.709 0.384 0.616 0.000  0
#> SRR1551107     3  0.4800      0.473 0.196 0.044 0.760  0
#> SRR1551108     3  0.1867      0.780 0.072 0.000 0.928  0
#> SRR1551109     1  0.4804      1.000 0.616 0.000 0.384  0
#> SRR1551110     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551111     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1551112     2  0.0000      0.897 0.000 1.000 0.000  0
#> SRR1551113     2  0.4804      0.709 0.384 0.616 0.000  0
#> SRR1551114     3  0.2149      0.718 0.088 0.000 0.912  0

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3 p4    p5
#> SRR1550981     3  0.1197     0.7146 0.048 0.000 0.952  0 0.000
#> SRR1550982     3  0.3051     0.6792 0.060 0.076 0.864  0 0.000
#> SRR1550983     3  0.2127     0.6868 0.108 0.000 0.892  0 0.000
#> SRR1550984     3  0.3281     0.6688 0.060 0.092 0.848  0 0.000
#> SRR1550986     3  0.5053     0.7658 0.096 0.000 0.688  0 0.216
#> SRR1550985     2  0.5457     0.0397 0.060 0.480 0.460  0 0.000
#> SRR1550988     4  0.0000     1.0000 0.000 0.000 0.000  1 0.000
#> SRR1550987     1  0.0000     1.0000 1.000 0.000 0.000  0 0.000
#> SRR1550989     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1550990     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1550991     5  0.3242     1.0000 0.000 0.216 0.000  0 0.784
#> SRR1550992     3  0.5053     0.7658 0.096 0.000 0.688  0 0.216
#> SRR1550994     4  0.0000     1.0000 0.000 0.000 0.000  1 0.000
#> SRR1550993     1  0.0000     1.0000 1.000 0.000 0.000  0 0.000
#> SRR1550995     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1550996     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1550997     3  0.5053     0.7658 0.096 0.000 0.688  0 0.216
#> SRR1550998     1  0.0000     1.0000 1.000 0.000 0.000  0 0.000
#> SRR1551000     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1550999     4  0.0000     1.0000 0.000 0.000 0.000  1 0.000
#> SRR1551001     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1551002     3  0.5053     0.7658 0.096 0.000 0.688  0 0.216
#> SRR1551003     1  0.0000     1.0000 1.000 0.000 0.000  0 0.000
#> SRR1551004     4  0.0000     1.0000 0.000 0.000 0.000  1 0.000
#> SRR1551006     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1551005     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1551007     5  0.3242     1.0000 0.000 0.216 0.000  0 0.784
#> SRR1551008     3  0.5053     0.7658 0.096 0.000 0.688  0 0.216
#> SRR1551009     1  0.0000     1.0000 1.000 0.000 0.000  0 0.000
#> SRR1551010     4  0.0000     1.0000 0.000 0.000 0.000  1 0.000
#> SRR1551012     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1551011     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1551013     3  0.5053     0.7658 0.096 0.000 0.688  0 0.216
#> SRR1551014     1  0.0000     1.0000 1.000 0.000 0.000  0 0.000
#> SRR1551015     4  0.0000     1.0000 0.000 0.000 0.000  1 0.000
#> SRR1551016     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1551017     5  0.3242     1.0000 0.000 0.216 0.000  0 0.784
#> SRR1551018     5  0.3242     1.0000 0.000 0.216 0.000  0 0.784
#> SRR1551019     3  0.1121     0.7162 0.044 0.000 0.956  0 0.000
#> SRR1551021     1  0.0000     1.0000 1.000 0.000 0.000  0 0.000
#> SRR1551022     4  0.0000     1.0000 0.000 0.000 0.000  1 0.000
#> SRR1551023     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1551020     3  0.5053     0.7658 0.096 0.000 0.688  0 0.216
#> SRR1551024     2  0.3416     0.7486 0.000 0.840 0.072  0 0.088
#> SRR1551026     3  0.5053     0.7658 0.096 0.000 0.688  0 0.216
#> SRR1551025     3  0.0290     0.7269 0.000 0.000 0.992  0 0.008
#> SRR1551027     1  0.0000     1.0000 1.000 0.000 0.000  0 0.000
#> SRR1551028     4  0.0000     1.0000 0.000 0.000 0.000  1 0.000
#> SRR1551029     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1551030     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1551031     5  0.3242     1.0000 0.000 0.216 0.000  0 0.784
#> SRR1551032     3  0.0703     0.7211 0.024 0.000 0.976  0 0.000
#> SRR1551034     1  0.0000     1.0000 1.000 0.000 0.000  0 0.000
#> SRR1551033     3  0.5053     0.7658 0.096 0.000 0.688  0 0.216
#> SRR1551035     4  0.0000     1.0000 0.000 0.000 0.000  1 0.000
#> SRR1551036     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1551037     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1551038     5  0.3242     1.0000 0.000 0.216 0.000  0 0.784
#> SRR1551039     3  0.3169     0.6744 0.060 0.084 0.856  0 0.000
#> SRR1551040     3  0.5053     0.7658 0.096 0.000 0.688  0 0.216
#> SRR1551041     1  0.0000     1.0000 1.000 0.000 0.000  0 0.000
#> SRR1551042     4  0.0000     1.0000 0.000 0.000 0.000  1 0.000
#> SRR1551043     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1551044     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1551045     5  0.3242     1.0000 0.000 0.216 0.000  0 0.784
#> SRR1551046     3  0.3210     0.5967 0.212 0.000 0.788  0 0.000
#> SRR1551047     3  0.5053     0.7658 0.096 0.000 0.688  0 0.216
#> SRR1551048     1  0.0000     1.0000 1.000 0.000 0.000  0 0.000
#> SRR1551049     4  0.0000     1.0000 0.000 0.000 0.000  1 0.000
#> SRR1551050     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1551051     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1551052     5  0.3242     1.0000 0.000 0.216 0.000  0 0.784
#> SRR1551053     3  0.5193     0.2992 0.052 0.364 0.584  0 0.000
#> SRR1551054     3  0.5053     0.7658 0.096 0.000 0.688  0 0.216
#> SRR1551055     1  0.0000     1.0000 1.000 0.000 0.000  0 0.000
#> SRR1551056     4  0.0000     1.0000 0.000 0.000 0.000  1 0.000
#> SRR1551057     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1551058     2  0.2648     0.7501 0.000 0.848 0.000  0 0.152
#> SRR1551059     5  0.3242     1.0000 0.000 0.216 0.000  0 0.784
#> SRR1551060     3  0.3109     0.6099 0.200 0.000 0.800  0 0.000
#> SRR1551061     3  0.5053     0.7658 0.096 0.000 0.688  0 0.216
#> SRR1551062     1  0.0000     1.0000 1.000 0.000 0.000  0 0.000
#> SRR1551063     4  0.0000     1.0000 0.000 0.000 0.000  1 0.000
#> SRR1551064     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1551065     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1551066     5  0.3242     1.0000 0.000 0.216 0.000  0 0.784
#> SRR1551067     3  0.3452     0.5553 0.244 0.000 0.756  0 0.000
#> SRR1551068     3  0.5053     0.7658 0.096 0.000 0.688  0 0.216
#> SRR1551069     1  0.0000     1.0000 1.000 0.000 0.000  0 0.000
#> SRR1551070     4  0.0000     1.0000 0.000 0.000 0.000  1 0.000
#> SRR1551071     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1551072     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1551073     5  0.3242     1.0000 0.000 0.216 0.000  0 0.784
#> SRR1551074     3  0.2516     0.6648 0.140 0.000 0.860  0 0.000
#> SRR1551075     3  0.5053     0.7658 0.096 0.000 0.688  0 0.216
#> SRR1551076     1  0.0000     1.0000 1.000 0.000 0.000  0 0.000
#> SRR1551077     4  0.0000     1.0000 0.000 0.000 0.000  1 0.000
#> SRR1551078     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1551079     2  0.0880     0.9330 0.000 0.968 0.000  0 0.032
#> SRR1551080     5  0.3242     1.0000 0.000 0.216 0.000  0 0.784
#> SRR1551081     3  0.5639     0.3258 0.092 0.340 0.568  0 0.000
#> SRR1551082     3  0.5053     0.7658 0.096 0.000 0.688  0 0.216
#> SRR1551083     1  0.0000     1.0000 1.000 0.000 0.000  0 0.000
#> SRR1551084     4  0.0000     1.0000 0.000 0.000 0.000  1 0.000
#> SRR1551085     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1551086     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1551088     3  0.5053     0.7658 0.096 0.000 0.688  0 0.216
#> SRR1551087     3  0.3366     0.5718 0.232 0.000 0.768  0 0.000
#> SRR1551089     1  0.0000     1.0000 1.000 0.000 0.000  0 0.000
#> SRR1551090     4  0.0000     1.0000 0.000 0.000 0.000  1 0.000
#> SRR1551091     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1551092     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1551093     5  0.3242     1.0000 0.000 0.216 0.000  0 0.784
#> SRR1551094     3  0.1908     0.6956 0.092 0.000 0.908  0 0.000
#> SRR1551095     3  0.5053     0.7658 0.096 0.000 0.688  0 0.216
#> SRR1551096     1  0.0000     1.0000 1.000 0.000 0.000  0 0.000
#> SRR1551097     4  0.0000     1.0000 0.000 0.000 0.000  1 0.000
#> SRR1551098     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1551099     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1551101     3  0.5053     0.7658 0.096 0.000 0.688  0 0.216
#> SRR1551100     3  0.4878     0.4911 0.060 0.264 0.676  0 0.000
#> SRR1551102     1  0.0000     1.0000 1.000 0.000 0.000  0 0.000
#> SRR1551103     4  0.0000     1.0000 0.000 0.000 0.000  1 0.000
#> SRR1551104     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1551105     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1551106     5  0.3242     1.0000 0.000 0.216 0.000  0 0.784
#> SRR1551107     3  0.5367     0.4961 0.184 0.148 0.668  0 0.000
#> SRR1551108     3  0.5053     0.7658 0.096 0.000 0.688  0 0.216
#> SRR1551109     1  0.0000     1.0000 1.000 0.000 0.000  0 0.000
#> SRR1551110     4  0.0000     1.0000 0.000 0.000 0.000  1 0.000
#> SRR1551111     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1551112     2  0.0000     0.9701 0.000 1.000 0.000  0 0.000
#> SRR1551113     5  0.3242     1.0000 0.000 0.216 0.000  0 0.784
#> SRR1551114     3  0.1410     0.7099 0.060 0.000 0.940  0 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3 p4    p5    p6
#> SRR1550981     5  0.0146      0.995 0.004 0.000 0.000  0 0.996 0.000
#> SRR1550982     5  0.0146      0.995 0.004 0.000 0.000  0 0.996 0.000
#> SRR1550983     5  0.0146      0.995 0.004 0.000 0.000  0 0.996 0.000
#> SRR1550984     5  0.0146      0.995 0.004 0.000 0.000  0 0.996 0.000
#> SRR1550986     3  0.0547      0.996 0.020 0.000 0.980  0 0.000 0.000
#> SRR1550985     5  0.0146      0.995 0.004 0.000 0.000  0 0.996 0.000
#> SRR1550988     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1550987     1  0.0000      0.998 1.000 0.000 0.000  0 0.000 0.000
#> SRR1550989     2  0.0000      0.983 0.000 1.000 0.000  0 0.000 0.000
#> SRR1550990     2  0.0547      0.981 0.000 0.980 0.020  0 0.000 0.000
#> SRR1550991     6  0.1007      0.999 0.000 0.044 0.000  0 0.000 0.956
#> SRR1550992     3  0.0547      0.996 0.020 0.000 0.980  0 0.000 0.000
#> SRR1550994     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1550993     1  0.0000      0.998 1.000 0.000 0.000  0 0.000 0.000
#> SRR1550995     2  0.0000      0.983 0.000 1.000 0.000  0 0.000 0.000
#> SRR1550996     2  0.0458      0.981 0.000 0.984 0.016  0 0.000 0.000
#> SRR1550997     3  0.0547      0.996 0.020 0.000 0.980  0 0.000 0.000
#> SRR1550998     1  0.0000      0.998 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551000     2  0.0000      0.983 0.000 1.000 0.000  0 0.000 0.000
#> SRR1550999     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551001     2  0.0547      0.981 0.000 0.980 0.020  0 0.000 0.000
#> SRR1551002     3  0.0547      0.996 0.020 0.000 0.980  0 0.000 0.000
#> SRR1551003     1  0.0000      0.998 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551004     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551006     2  0.0547      0.981 0.000 0.980 0.020  0 0.000 0.000
#> SRR1551005     2  0.0000      0.983 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551007     6  0.1007      0.999 0.000 0.044 0.000  0 0.000 0.956
#> SRR1551008     3  0.0547      0.996 0.020 0.000 0.980  0 0.000 0.000
#> SRR1551009     1  0.0000      0.998 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551010     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551012     2  0.0547      0.981 0.000 0.980 0.020  0 0.000 0.000
#> SRR1551011     2  0.0000      0.983 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551013     3  0.0547      0.996 0.020 0.000 0.980  0 0.000 0.000
#> SRR1551014     1  0.0000      0.998 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551015     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551016     2  0.0000      0.983 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551017     6  0.1549      0.980 0.000 0.044 0.020  0 0.000 0.936
#> SRR1551018     6  0.1007      0.999 0.000 0.044 0.000  0 0.000 0.956
#> SRR1551019     5  0.0291      0.992 0.004 0.000 0.004  0 0.992 0.000
#> SRR1551021     1  0.0865      0.969 0.964 0.000 0.000  0 0.000 0.036
#> SRR1551022     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551023     2  0.0000      0.983 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551020     3  0.1549      0.965 0.020 0.000 0.936  0 0.000 0.044
#> SRR1551024     2  0.3487      0.770 0.000 0.788 0.168  0 0.000 0.044
#> SRR1551026     3  0.1549      0.965 0.020 0.000 0.936  0 0.000 0.044
#> SRR1551025     5  0.1410      0.959 0.004 0.000 0.008  0 0.944 0.044
#> SRR1551027     1  0.0000      0.998 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551028     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551029     2  0.0000      0.983 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551030     2  0.0692      0.979 0.000 0.976 0.020  0 0.000 0.004
#> SRR1551031     6  0.1007      0.999 0.000 0.044 0.000  0 0.000 0.956
#> SRR1551032     5  0.1410      0.959 0.004 0.000 0.008  0 0.944 0.044
#> SRR1551034     1  0.0000      0.998 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551033     3  0.0547      0.996 0.020 0.000 0.980  0 0.000 0.000
#> SRR1551035     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551036     2  0.0000      0.983 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551037     2  0.0547      0.981 0.000 0.980 0.020  0 0.000 0.000
#> SRR1551038     6  0.1007      0.999 0.000 0.044 0.000  0 0.000 0.956
#> SRR1551039     5  0.0146      0.995 0.004 0.000 0.000  0 0.996 0.000
#> SRR1551040     3  0.0547      0.996 0.020 0.000 0.980  0 0.000 0.000
#> SRR1551041     1  0.0000      0.998 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551042     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551043     2  0.0000      0.983 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551044     2  0.0547      0.981 0.000 0.980 0.020  0 0.000 0.000
#> SRR1551045     6  0.1007      0.999 0.000 0.044 0.000  0 0.000 0.956
#> SRR1551046     5  0.0146      0.995 0.004 0.000 0.000  0 0.996 0.000
#> SRR1551047     3  0.0547      0.996 0.020 0.000 0.980  0 0.000 0.000
#> SRR1551048     1  0.0000      0.998 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551049     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551050     2  0.0000      0.983 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551051     2  0.0547      0.981 0.000 0.980 0.020  0 0.000 0.000
#> SRR1551052     6  0.1007      0.999 0.000 0.044 0.000  0 0.000 0.956
#> SRR1551053     5  0.0146      0.990 0.000 0.004 0.000  0 0.996 0.000
#> SRR1551054     3  0.0547      0.996 0.020 0.000 0.980  0 0.000 0.000
#> SRR1551055     1  0.0000      0.998 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551056     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551057     2  0.0000      0.983 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551058     2  0.2667      0.844 0.000 0.852 0.020  0 0.000 0.128
#> SRR1551059     6  0.1007      0.999 0.000 0.044 0.000  0 0.000 0.956
#> SRR1551060     5  0.0146      0.995 0.004 0.000 0.000  0 0.996 0.000
#> SRR1551061     3  0.0547      0.996 0.020 0.000 0.980  0 0.000 0.000
#> SRR1551062     1  0.0000      0.998 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551063     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551064     2  0.0000      0.983 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551065     2  0.0547      0.981 0.000 0.980 0.020  0 0.000 0.000
#> SRR1551066     6  0.1007      0.999 0.000 0.044 0.000  0 0.000 0.956
#> SRR1551067     5  0.0146      0.995 0.004 0.000 0.000  0 0.996 0.000
#> SRR1551068     3  0.0547      0.996 0.020 0.000 0.980  0 0.000 0.000
#> SRR1551069     1  0.0000      0.998 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551070     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551071     2  0.0000      0.983 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551072     2  0.0547      0.981 0.000 0.980 0.020  0 0.000 0.000
#> SRR1551073     6  0.1007      0.999 0.000 0.044 0.000  0 0.000 0.956
#> SRR1551074     5  0.0146      0.995 0.004 0.000 0.000  0 0.996 0.000
#> SRR1551075     3  0.0547      0.996 0.020 0.000 0.980  0 0.000 0.000
#> SRR1551076     1  0.0000      0.998 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551077     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551078     2  0.0000      0.983 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551079     2  0.1176      0.963 0.000 0.956 0.020  0 0.000 0.024
#> SRR1551080     6  0.1007      0.999 0.000 0.044 0.000  0 0.000 0.956
#> SRR1551081     5  0.0146      0.995 0.004 0.000 0.000  0 0.996 0.000
#> SRR1551082     3  0.0547      0.996 0.020 0.000 0.980  0 0.000 0.000
#> SRR1551083     1  0.0000      0.998 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551084     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551085     2  0.0000      0.983 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551086     2  0.0547      0.981 0.000 0.980 0.020  0 0.000 0.000
#> SRR1551088     3  0.0547      0.996 0.020 0.000 0.980  0 0.000 0.000
#> SRR1551087     5  0.0146      0.995 0.004 0.000 0.000  0 0.996 0.000
#> SRR1551089     1  0.0000      0.998 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551090     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551091     2  0.0000      0.983 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551092     2  0.0547      0.981 0.000 0.980 0.020  0 0.000 0.000
#> SRR1551093     6  0.1007      0.999 0.000 0.044 0.000  0 0.000 0.956
#> SRR1551094     5  0.0146      0.995 0.004 0.000 0.000  0 0.996 0.000
#> SRR1551095     3  0.0547      0.996 0.020 0.000 0.980  0 0.000 0.000
#> SRR1551096     1  0.0000      0.998 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551097     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551098     2  0.0000      0.983 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551099     2  0.0547      0.981 0.000 0.980 0.020  0 0.000 0.000
#> SRR1551101     3  0.0547      0.996 0.020 0.000 0.980  0 0.000 0.000
#> SRR1551100     5  0.0146      0.995 0.004 0.000 0.000  0 0.996 0.000
#> SRR1551102     1  0.0000      0.998 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551103     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551104     2  0.0000      0.983 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551105     2  0.0547      0.981 0.000 0.980 0.020  0 0.000 0.000
#> SRR1551106     6  0.1007      0.999 0.000 0.044 0.000  0 0.000 0.956
#> SRR1551107     5  0.0146      0.995 0.004 0.000 0.000  0 0.996 0.000
#> SRR1551108     3  0.0547      0.996 0.020 0.000 0.980  0 0.000 0.000
#> SRR1551109     1  0.0000      0.998 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551110     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551111     2  0.0000      0.983 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551112     2  0.0547      0.981 0.000 0.980 0.020  0 0.000 0.000
#> SRR1551113     6  0.1007      0.999 0.000 0.044 0.000  0 0.000 0.956
#> SRR1551114     5  0.0146      0.995 0.004 0.000 0.000  0 0.996 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15028 rows and 134 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.777           0.974       0.984         0.4912 0.502   0.502
#> 3 3 0.912           0.958       0.945         0.2022 0.910   0.821
#> 4 4 0.775           0.893       0.853         0.1479 0.879   0.706
#> 5 5 0.887           0.981       0.938         0.1135 0.956   0.849
#> 6 6 0.935           0.987       0.972         0.0671 0.937   0.745

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 3

There is also optional best \(k\) = 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1550981     1   0.552      0.893 0.872 0.128
#> SRR1550982     1   0.552      0.893 0.872 0.128
#> SRR1550983     1   0.552      0.893 0.872 0.128
#> SRR1550984     1   0.552      0.893 0.872 0.128
#> SRR1550986     1   0.000      0.962 1.000 0.000
#> SRR1550985     1   0.552      0.893 0.872 0.128
#> SRR1550988     2   0.000      1.000 0.000 1.000
#> SRR1550987     1   0.000      0.962 1.000 0.000
#> SRR1550989     2   0.000      1.000 0.000 1.000
#> SRR1550990     2   0.000      1.000 0.000 1.000
#> SRR1550991     2   0.000      1.000 0.000 1.000
#> SRR1550992     1   0.000      0.962 1.000 0.000
#> SRR1550994     2   0.000      1.000 0.000 1.000
#> SRR1550993     1   0.000      0.962 1.000 0.000
#> SRR1550995     2   0.000      1.000 0.000 1.000
#> SRR1550996     2   0.000      1.000 0.000 1.000
#> SRR1550997     1   0.000      0.962 1.000 0.000
#> SRR1550998     1   0.000      0.962 1.000 0.000
#> SRR1551000     2   0.000      1.000 0.000 1.000
#> SRR1550999     2   0.000      1.000 0.000 1.000
#> SRR1551001     2   0.000      1.000 0.000 1.000
#> SRR1551002     1   0.000      0.962 1.000 0.000
#> SRR1551003     1   0.000      0.962 1.000 0.000
#> SRR1551004     2   0.000      1.000 0.000 1.000
#> SRR1551006     2   0.000      1.000 0.000 1.000
#> SRR1551005     2   0.000      1.000 0.000 1.000
#> SRR1551007     2   0.000      1.000 0.000 1.000
#> SRR1551008     1   0.000      0.962 1.000 0.000
#> SRR1551009     1   0.000      0.962 1.000 0.000
#> SRR1551010     2   0.000      1.000 0.000 1.000
#> SRR1551012     2   0.000      1.000 0.000 1.000
#> SRR1551011     2   0.000      1.000 0.000 1.000
#> SRR1551013     1   0.000      0.962 1.000 0.000
#> SRR1551014     1   0.000      0.962 1.000 0.000
#> SRR1551015     2   0.000      1.000 0.000 1.000
#> SRR1551016     2   0.000      1.000 0.000 1.000
#> SRR1551017     2   0.000      1.000 0.000 1.000
#> SRR1551018     2   0.000      1.000 0.000 1.000
#> SRR1551019     1   0.000      0.962 1.000 0.000
#> SRR1551021     1   0.000      0.962 1.000 0.000
#> SRR1551022     2   0.000      1.000 0.000 1.000
#> SRR1551023     2   0.000      1.000 0.000 1.000
#> SRR1551020     1   0.000      0.962 1.000 0.000
#> SRR1551024     2   0.000      1.000 0.000 1.000
#> SRR1551026     1   0.000      0.962 1.000 0.000
#> SRR1551025     1   0.000      0.962 1.000 0.000
#> SRR1551027     1   0.000      0.962 1.000 0.000
#> SRR1551028     2   0.000      1.000 0.000 1.000
#> SRR1551029     2   0.000      1.000 0.000 1.000
#> SRR1551030     2   0.000      1.000 0.000 1.000
#> SRR1551031     2   0.000      1.000 0.000 1.000
#> SRR1551032     1   0.000      0.962 1.000 0.000
#> SRR1551034     1   0.000      0.962 1.000 0.000
#> SRR1551033     1   0.000      0.962 1.000 0.000
#> SRR1551035     2   0.000      1.000 0.000 1.000
#> SRR1551036     2   0.000      1.000 0.000 1.000
#> SRR1551037     2   0.000      1.000 0.000 1.000
#> SRR1551038     2   0.000      1.000 0.000 1.000
#> SRR1551039     1   0.552      0.893 0.872 0.128
#> SRR1551040     1   0.000      0.962 1.000 0.000
#> SRR1551041     1   0.000      0.962 1.000 0.000
#> SRR1551042     2   0.000      1.000 0.000 1.000
#> SRR1551043     2   0.000      1.000 0.000 1.000
#> SRR1551044     2   0.000      1.000 0.000 1.000
#> SRR1551045     2   0.000      1.000 0.000 1.000
#> SRR1551046     1   0.552      0.893 0.872 0.128
#> SRR1551047     1   0.000      0.962 1.000 0.000
#> SRR1551048     1   0.000      0.962 1.000 0.000
#> SRR1551049     2   0.000      1.000 0.000 1.000
#> SRR1551050     2   0.000      1.000 0.000 1.000
#> SRR1551051     2   0.000      1.000 0.000 1.000
#> SRR1551052     2   0.000      1.000 0.000 1.000
#> SRR1551053     1   0.552      0.893 0.872 0.128
#> SRR1551054     1   0.000      0.962 1.000 0.000
#> SRR1551055     1   0.000      0.962 1.000 0.000
#> SRR1551056     2   0.000      1.000 0.000 1.000
#> SRR1551057     2   0.000      1.000 0.000 1.000
#> SRR1551058     2   0.000      1.000 0.000 1.000
#> SRR1551059     2   0.000      1.000 0.000 1.000
#> SRR1551060     1   0.552      0.893 0.872 0.128
#> SRR1551061     1   0.000      0.962 1.000 0.000
#> SRR1551062     1   0.000      0.962 1.000 0.000
#> SRR1551063     2   0.000      1.000 0.000 1.000
#> SRR1551064     2   0.000      1.000 0.000 1.000
#> SRR1551065     2   0.000      1.000 0.000 1.000
#> SRR1551066     2   0.000      1.000 0.000 1.000
#> SRR1551067     1   0.552      0.893 0.872 0.128
#> SRR1551068     1   0.000      0.962 1.000 0.000
#> SRR1551069     1   0.000      0.962 1.000 0.000
#> SRR1551070     2   0.000      1.000 0.000 1.000
#> SRR1551071     2   0.000      1.000 0.000 1.000
#> SRR1551072     2   0.000      1.000 0.000 1.000
#> SRR1551073     2   0.000      1.000 0.000 1.000
#> SRR1551074     1   0.552      0.893 0.872 0.128
#> SRR1551075     1   0.000      0.962 1.000 0.000
#> SRR1551076     1   0.000      0.962 1.000 0.000
#> SRR1551077     2   0.000      1.000 0.000 1.000
#> SRR1551078     2   0.000      1.000 0.000 1.000
#> SRR1551079     2   0.000      1.000 0.000 1.000
#> SRR1551080     2   0.000      1.000 0.000 1.000
#> SRR1551081     1   0.552      0.893 0.872 0.128
#> SRR1551082     1   0.000      0.962 1.000 0.000
#> SRR1551083     1   0.000      0.962 1.000 0.000
#> SRR1551084     2   0.000      1.000 0.000 1.000
#> SRR1551085     2   0.000      1.000 0.000 1.000
#> SRR1551086     2   0.000      1.000 0.000 1.000
#> SRR1551088     1   0.000      0.962 1.000 0.000
#> SRR1551087     1   0.552      0.893 0.872 0.128
#> SRR1551089     1   0.000      0.962 1.000 0.000
#> SRR1551090     2   0.000      1.000 0.000 1.000
#> SRR1551091     2   0.000      1.000 0.000 1.000
#> SRR1551092     2   0.000      1.000 0.000 1.000
#> SRR1551093     2   0.000      1.000 0.000 1.000
#> SRR1551094     1   0.552      0.893 0.872 0.128
#> SRR1551095     1   0.000      0.962 1.000 0.000
#> SRR1551096     1   0.000      0.962 1.000 0.000
#> SRR1551097     2   0.000      1.000 0.000 1.000
#> SRR1551098     2   0.000      1.000 0.000 1.000
#> SRR1551099     2   0.000      1.000 0.000 1.000
#> SRR1551101     1   0.000      0.962 1.000 0.000
#> SRR1551100     1   0.552      0.893 0.872 0.128
#> SRR1551102     1   0.000      0.962 1.000 0.000
#> SRR1551103     2   0.000      1.000 0.000 1.000
#> SRR1551104     2   0.000      1.000 0.000 1.000
#> SRR1551105     2   0.000      1.000 0.000 1.000
#> SRR1551106     2   0.000      1.000 0.000 1.000
#> SRR1551107     1   0.552      0.893 0.872 0.128
#> SRR1551108     1   0.000      0.962 1.000 0.000
#> SRR1551109     1   0.000      0.962 1.000 0.000
#> SRR1551110     2   0.000      1.000 0.000 1.000
#> SRR1551111     2   0.000      1.000 0.000 1.000
#> SRR1551112     2   0.000      1.000 0.000 1.000
#> SRR1551113     2   0.000      1.000 0.000 1.000
#> SRR1551114     1   0.552      0.893 0.872 0.128

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1550981     1   0.000      0.904 1.000 0.000 0.000
#> SRR1550982     1   0.000      0.904 1.000 0.000 0.000
#> SRR1550983     1   0.000      0.904 1.000 0.000 0.000
#> SRR1550984     1   0.000      0.904 1.000 0.000 0.000
#> SRR1550986     3   0.226      1.000 0.068 0.000 0.932
#> SRR1550985     1   0.000      0.904 1.000 0.000 0.000
#> SRR1550988     2   0.226      0.953 0.000 0.932 0.068
#> SRR1550987     1   0.355      0.922 0.868 0.000 0.132
#> SRR1550989     2   0.000      0.982 0.000 1.000 0.000
#> SRR1550990     2   0.000      0.982 0.000 1.000 0.000
#> SRR1550991     2   0.000      0.982 0.000 1.000 0.000
#> SRR1550992     3   0.226      1.000 0.068 0.000 0.932
#> SRR1550994     2   0.226      0.953 0.000 0.932 0.068
#> SRR1550993     1   0.355      0.922 0.868 0.000 0.132
#> SRR1550995     2   0.000      0.982 0.000 1.000 0.000
#> SRR1550996     2   0.000      0.982 0.000 1.000 0.000
#> SRR1550997     3   0.226      1.000 0.068 0.000 0.932
#> SRR1550998     1   0.355      0.922 0.868 0.000 0.132
#> SRR1551000     2   0.000      0.982 0.000 1.000 0.000
#> SRR1550999     2   0.226      0.953 0.000 0.932 0.068
#> SRR1551001     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551002     3   0.226      1.000 0.068 0.000 0.932
#> SRR1551003     1   0.355      0.922 0.868 0.000 0.132
#> SRR1551004     2   0.226      0.953 0.000 0.932 0.068
#> SRR1551006     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551005     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551007     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551008     3   0.226      1.000 0.068 0.000 0.932
#> SRR1551009     1   0.355      0.922 0.868 0.000 0.132
#> SRR1551010     2   0.226      0.953 0.000 0.932 0.068
#> SRR1551012     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551011     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551013     3   0.226      1.000 0.068 0.000 0.932
#> SRR1551014     1   0.355      0.922 0.868 0.000 0.132
#> SRR1551015     2   0.226      0.953 0.000 0.932 0.068
#> SRR1551016     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551017     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551018     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551019     1   0.429      0.877 0.820 0.000 0.180
#> SRR1551021     1   0.355      0.922 0.868 0.000 0.132
#> SRR1551022     2   0.226      0.953 0.000 0.932 0.068
#> SRR1551023     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551020     3   0.226      1.000 0.068 0.000 0.932
#> SRR1551024     2   0.348      0.862 0.128 0.872 0.000
#> SRR1551026     3   0.226      1.000 0.068 0.000 0.932
#> SRR1551025     1   0.429      0.877 0.820 0.000 0.180
#> SRR1551027     1   0.355      0.922 0.868 0.000 0.132
#> SRR1551028     2   0.226      0.953 0.000 0.932 0.068
#> SRR1551029     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551030     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551031     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551032     1   0.429      0.877 0.820 0.000 0.180
#> SRR1551034     1   0.355      0.922 0.868 0.000 0.132
#> SRR1551033     3   0.226      1.000 0.068 0.000 0.932
#> SRR1551035     2   0.226      0.953 0.000 0.932 0.068
#> SRR1551036     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551037     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551038     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551039     1   0.000      0.904 1.000 0.000 0.000
#> SRR1551040     3   0.226      1.000 0.068 0.000 0.932
#> SRR1551041     1   0.355      0.922 0.868 0.000 0.132
#> SRR1551042     2   0.226      0.953 0.000 0.932 0.068
#> SRR1551043     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551044     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551045     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551046     1   0.000      0.904 1.000 0.000 0.000
#> SRR1551047     3   0.226      1.000 0.068 0.000 0.932
#> SRR1551048     1   0.355      0.922 0.868 0.000 0.132
#> SRR1551049     2   0.226      0.953 0.000 0.932 0.068
#> SRR1551050     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551051     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551052     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551053     1   0.000      0.904 1.000 0.000 0.000
#> SRR1551054     3   0.226      1.000 0.068 0.000 0.932
#> SRR1551055     1   0.355      0.922 0.868 0.000 0.132
#> SRR1551056     2   0.226      0.953 0.000 0.932 0.068
#> SRR1551057     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551058     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551059     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551060     1   0.000      0.904 1.000 0.000 0.000
#> SRR1551061     3   0.226      1.000 0.068 0.000 0.932
#> SRR1551062     1   0.355      0.922 0.868 0.000 0.132
#> SRR1551063     2   0.226      0.953 0.000 0.932 0.068
#> SRR1551064     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551065     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551066     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551067     1   0.000      0.904 1.000 0.000 0.000
#> SRR1551068     3   0.226      1.000 0.068 0.000 0.932
#> SRR1551069     1   0.355      0.922 0.868 0.000 0.132
#> SRR1551070     2   0.226      0.953 0.000 0.932 0.068
#> SRR1551071     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551072     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551073     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551074     1   0.000      0.904 1.000 0.000 0.000
#> SRR1551075     3   0.226      1.000 0.068 0.000 0.932
#> SRR1551076     1   0.355      0.922 0.868 0.000 0.132
#> SRR1551077     2   0.226      0.953 0.000 0.932 0.068
#> SRR1551078     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551079     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551080     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551081     1   0.000      0.904 1.000 0.000 0.000
#> SRR1551082     3   0.226      1.000 0.068 0.000 0.932
#> SRR1551083     1   0.355      0.922 0.868 0.000 0.132
#> SRR1551084     2   0.226      0.953 0.000 0.932 0.068
#> SRR1551085     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551086     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551088     3   0.226      1.000 0.068 0.000 0.932
#> SRR1551087     1   0.000      0.904 1.000 0.000 0.000
#> SRR1551089     1   0.355      0.922 0.868 0.000 0.132
#> SRR1551090     2   0.226      0.953 0.000 0.932 0.068
#> SRR1551091     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551092     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551093     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551094     1   0.000      0.904 1.000 0.000 0.000
#> SRR1551095     3   0.226      1.000 0.068 0.000 0.932
#> SRR1551096     1   0.355      0.922 0.868 0.000 0.132
#> SRR1551097     2   0.226      0.953 0.000 0.932 0.068
#> SRR1551098     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551099     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551101     3   0.226      1.000 0.068 0.000 0.932
#> SRR1551100     1   0.000      0.904 1.000 0.000 0.000
#> SRR1551102     1   0.355      0.922 0.868 0.000 0.132
#> SRR1551103     2   0.226      0.953 0.000 0.932 0.068
#> SRR1551104     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551105     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551106     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551107     1   0.000      0.904 1.000 0.000 0.000
#> SRR1551108     3   0.226      1.000 0.068 0.000 0.932
#> SRR1551109     1   0.355      0.922 0.868 0.000 0.132
#> SRR1551110     2   0.226      0.953 0.000 0.932 0.068
#> SRR1551111     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551112     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551113     2   0.000      0.982 0.000 1.000 0.000
#> SRR1551114     1   0.000      0.904 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3  p4
#> SRR1550981     1   0.485      0.625 0.600 0.000 0.000 0.4
#> SRR1550982     1   0.485      0.625 0.600 0.000 0.000 0.4
#> SRR1550983     1   0.485      0.625 0.600 0.000 0.000 0.4
#> SRR1550984     1   0.485      0.625 0.600 0.000 0.000 0.4
#> SRR1550986     3   0.000      1.000 0.000 0.000 1.000 0.0
#> SRR1550985     1   0.485      0.625 0.600 0.000 0.000 0.4
#> SRR1550988     4   0.485      1.000 0.000 0.400 0.000 0.6
#> SRR1550987     1   0.361      0.683 0.800 0.000 0.200 0.0
#> SRR1550989     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1550990     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1550991     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1550992     3   0.000      1.000 0.000 0.000 1.000 0.0
#> SRR1550994     4   0.485      1.000 0.000 0.400 0.000 0.6
#> SRR1550993     1   0.361      0.683 0.800 0.000 0.200 0.0
#> SRR1550995     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1550996     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1550997     3   0.000      1.000 0.000 0.000 1.000 0.0
#> SRR1550998     1   0.361      0.683 0.800 0.000 0.200 0.0
#> SRR1551000     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1550999     4   0.485      1.000 0.000 0.400 0.000 0.6
#> SRR1551001     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551002     3   0.000      1.000 0.000 0.000 1.000 0.0
#> SRR1551003     1   0.361      0.683 0.800 0.000 0.200 0.0
#> SRR1551004     4   0.485      1.000 0.000 0.400 0.000 0.6
#> SRR1551006     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551005     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551007     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551008     3   0.000      1.000 0.000 0.000 1.000 0.0
#> SRR1551009     1   0.361      0.683 0.800 0.000 0.200 0.0
#> SRR1551010     4   0.485      1.000 0.000 0.400 0.000 0.6
#> SRR1551012     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551011     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551013     3   0.000      1.000 0.000 0.000 1.000 0.0
#> SRR1551014     1   0.361      0.683 0.800 0.000 0.200 0.0
#> SRR1551015     4   0.485      1.000 0.000 0.400 0.000 0.6
#> SRR1551016     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551017     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551018     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551019     1   0.404      0.626 0.752 0.000 0.248 0.0
#> SRR1551021     1   0.361      0.683 0.800 0.000 0.200 0.0
#> SRR1551022     4   0.485      1.000 0.000 0.400 0.000 0.6
#> SRR1551023     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551020     3   0.000      1.000 0.000 0.000 1.000 0.0
#> SRR1551024     2   0.276      0.757 0.128 0.872 0.000 0.0
#> SRR1551026     3   0.000      1.000 0.000 0.000 1.000 0.0
#> SRR1551025     1   0.404      0.626 0.752 0.000 0.248 0.0
#> SRR1551027     1   0.361      0.683 0.800 0.000 0.200 0.0
#> SRR1551028     4   0.485      1.000 0.000 0.400 0.000 0.6
#> SRR1551029     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551030     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551031     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551032     1   0.404      0.626 0.752 0.000 0.248 0.0
#> SRR1551034     1   0.361      0.683 0.800 0.000 0.200 0.0
#> SRR1551033     3   0.000      1.000 0.000 0.000 1.000 0.0
#> SRR1551035     4   0.485      1.000 0.000 0.400 0.000 0.6
#> SRR1551036     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551037     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551038     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551039     1   0.485      0.625 0.600 0.000 0.000 0.4
#> SRR1551040     3   0.000      1.000 0.000 0.000 1.000 0.0
#> SRR1551041     1   0.361      0.683 0.800 0.000 0.200 0.0
#> SRR1551042     4   0.485      1.000 0.000 0.400 0.000 0.6
#> SRR1551043     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551044     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551045     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551046     1   0.485      0.625 0.600 0.000 0.000 0.4
#> SRR1551047     3   0.000      1.000 0.000 0.000 1.000 0.0
#> SRR1551048     1   0.361      0.683 0.800 0.000 0.200 0.0
#> SRR1551049     4   0.485      1.000 0.000 0.400 0.000 0.6
#> SRR1551050     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551051     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551052     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551053     1   0.485      0.625 0.600 0.000 0.000 0.4
#> SRR1551054     3   0.000      1.000 0.000 0.000 1.000 0.0
#> SRR1551055     1   0.361      0.683 0.800 0.000 0.200 0.0
#> SRR1551056     4   0.485      1.000 0.000 0.400 0.000 0.6
#> SRR1551057     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551058     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551059     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551060     1   0.485      0.625 0.600 0.000 0.000 0.4
#> SRR1551061     3   0.000      1.000 0.000 0.000 1.000 0.0
#> SRR1551062     1   0.361      0.683 0.800 0.000 0.200 0.0
#> SRR1551063     4   0.485      1.000 0.000 0.400 0.000 0.6
#> SRR1551064     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551065     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551066     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551067     1   0.485      0.625 0.600 0.000 0.000 0.4
#> SRR1551068     3   0.000      1.000 0.000 0.000 1.000 0.0
#> SRR1551069     1   0.361      0.683 0.800 0.000 0.200 0.0
#> SRR1551070     4   0.485      1.000 0.000 0.400 0.000 0.6
#> SRR1551071     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551072     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551073     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551074     1   0.485      0.625 0.600 0.000 0.000 0.4
#> SRR1551075     3   0.000      1.000 0.000 0.000 1.000 0.0
#> SRR1551076     1   0.361      0.683 0.800 0.000 0.200 0.0
#> SRR1551077     4   0.485      1.000 0.000 0.400 0.000 0.6
#> SRR1551078     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551079     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551080     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551081     1   0.485      0.625 0.600 0.000 0.000 0.4
#> SRR1551082     3   0.000      1.000 0.000 0.000 1.000 0.0
#> SRR1551083     1   0.361      0.683 0.800 0.000 0.200 0.0
#> SRR1551084     4   0.485      1.000 0.000 0.400 0.000 0.6
#> SRR1551085     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551086     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551088     3   0.000      1.000 0.000 0.000 1.000 0.0
#> SRR1551087     1   0.485      0.625 0.600 0.000 0.000 0.4
#> SRR1551089     1   0.361      0.683 0.800 0.000 0.200 0.0
#> SRR1551090     4   0.485      1.000 0.000 0.400 0.000 0.6
#> SRR1551091     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551092     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551093     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551094     1   0.485      0.625 0.600 0.000 0.000 0.4
#> SRR1551095     3   0.000      1.000 0.000 0.000 1.000 0.0
#> SRR1551096     1   0.361      0.683 0.800 0.000 0.200 0.0
#> SRR1551097     4   0.485      1.000 0.000 0.400 0.000 0.6
#> SRR1551098     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551099     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551101     3   0.000      1.000 0.000 0.000 1.000 0.0
#> SRR1551100     1   0.485      0.625 0.600 0.000 0.000 0.4
#> SRR1551102     1   0.361      0.683 0.800 0.000 0.200 0.0
#> SRR1551103     4   0.485      1.000 0.000 0.400 0.000 0.6
#> SRR1551104     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551105     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551106     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551107     1   0.485      0.625 0.600 0.000 0.000 0.4
#> SRR1551108     3   0.000      1.000 0.000 0.000 1.000 0.0
#> SRR1551109     1   0.361      0.683 0.800 0.000 0.200 0.0
#> SRR1551110     4   0.485      1.000 0.000 0.400 0.000 0.6
#> SRR1551111     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551112     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551113     2   0.000      0.996 0.000 1.000 0.000 0.0
#> SRR1551114     1   0.485      0.625 0.600 0.000 0.000 0.4

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3 p4    p5
#> SRR1550981     5   0.000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1550982     5   0.000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1550983     5   0.000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1550984     5   0.000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1550986     3   0.202      1.000 0.100 0.000 0.900  0 0.000
#> SRR1550985     5   0.000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1550988     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1550987     1   0.000      0.990 1.000 0.000 0.000  0 0.000
#> SRR1550989     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1550990     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1550991     2   0.202      0.931 0.000 0.900 0.100  0 0.000
#> SRR1550992     3   0.202      1.000 0.100 0.000 0.900  0 0.000
#> SRR1550994     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1550993     1   0.000      0.990 1.000 0.000 0.000  0 0.000
#> SRR1550995     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1550996     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1550997     3   0.202      1.000 0.100 0.000 0.900  0 0.000
#> SRR1550998     1   0.000      0.990 1.000 0.000 0.000  0 0.000
#> SRR1551000     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1550999     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551001     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551002     3   0.202      1.000 0.100 0.000 0.900  0 0.000
#> SRR1551003     1   0.000      0.990 1.000 0.000 0.000  0 0.000
#> SRR1551004     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551006     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551005     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551007     2   0.202      0.931 0.000 0.900 0.100  0 0.000
#> SRR1551008     3   0.202      1.000 0.100 0.000 0.900  0 0.000
#> SRR1551009     1   0.000      0.990 1.000 0.000 0.000  0 0.000
#> SRR1551010     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551012     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551011     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551013     3   0.202      1.000 0.100 0.000 0.900  0 0.000
#> SRR1551014     1   0.000      0.990 1.000 0.000 0.000  0 0.000
#> SRR1551015     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551016     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551017     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551018     2   0.202      0.931 0.000 0.900 0.100  0 0.000
#> SRR1551019     1   0.154      0.926 0.932 0.000 0.068  0 0.000
#> SRR1551021     1   0.000      0.990 1.000 0.000 0.000  0 0.000
#> SRR1551022     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551023     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551020     3   0.202      1.000 0.100 0.000 0.900  0 0.000
#> SRR1551024     2   0.238      0.870 0.000 0.872 0.000  0 0.128
#> SRR1551026     3   0.202      1.000 0.100 0.000 0.900  0 0.000
#> SRR1551025     1   0.154      0.926 0.932 0.000 0.068  0 0.000
#> SRR1551027     1   0.000      0.990 1.000 0.000 0.000  0 0.000
#> SRR1551028     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551029     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551030     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551031     2   0.202      0.931 0.000 0.900 0.100  0 0.000
#> SRR1551032     1   0.154      0.926 0.932 0.000 0.068  0 0.000
#> SRR1551034     1   0.000      0.990 1.000 0.000 0.000  0 0.000
#> SRR1551033     3   0.202      1.000 0.100 0.000 0.900  0 0.000
#> SRR1551035     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551036     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551037     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551038     2   0.202      0.931 0.000 0.900 0.100  0 0.000
#> SRR1551039     5   0.000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551040     3   0.202      1.000 0.100 0.000 0.900  0 0.000
#> SRR1551041     1   0.000      0.990 1.000 0.000 0.000  0 0.000
#> SRR1551042     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551043     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551044     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551045     2   0.202      0.931 0.000 0.900 0.100  0 0.000
#> SRR1551046     5   0.000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551047     3   0.202      1.000 0.100 0.000 0.900  0 0.000
#> SRR1551048     1   0.000      0.990 1.000 0.000 0.000  0 0.000
#> SRR1551049     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551050     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551051     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551052     2   0.202      0.931 0.000 0.900 0.100  0 0.000
#> SRR1551053     5   0.000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551054     3   0.202      1.000 0.100 0.000 0.900  0 0.000
#> SRR1551055     1   0.000      0.990 1.000 0.000 0.000  0 0.000
#> SRR1551056     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551057     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551058     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551059     2   0.202      0.931 0.000 0.900 0.100  0 0.000
#> SRR1551060     5   0.000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551061     3   0.202      1.000 0.100 0.000 0.900  0 0.000
#> SRR1551062     1   0.000      0.990 1.000 0.000 0.000  0 0.000
#> SRR1551063     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551064     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551065     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551066     2   0.202      0.931 0.000 0.900 0.100  0 0.000
#> SRR1551067     5   0.000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551068     3   0.202      1.000 0.100 0.000 0.900  0 0.000
#> SRR1551069     1   0.000      0.990 1.000 0.000 0.000  0 0.000
#> SRR1551070     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551071     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551072     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551073     2   0.202      0.931 0.000 0.900 0.100  0 0.000
#> SRR1551074     5   0.000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551075     3   0.202      1.000 0.100 0.000 0.900  0 0.000
#> SRR1551076     1   0.000      0.990 1.000 0.000 0.000  0 0.000
#> SRR1551077     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551078     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551079     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551080     2   0.202      0.931 0.000 0.900 0.100  0 0.000
#> SRR1551081     5   0.000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551082     3   0.202      1.000 0.100 0.000 0.900  0 0.000
#> SRR1551083     1   0.000      0.990 1.000 0.000 0.000  0 0.000
#> SRR1551084     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551085     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551086     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551088     3   0.202      1.000 0.100 0.000 0.900  0 0.000
#> SRR1551087     5   0.000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551089     1   0.000      0.990 1.000 0.000 0.000  0 0.000
#> SRR1551090     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551091     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551092     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551093     2   0.202      0.931 0.000 0.900 0.100  0 0.000
#> SRR1551094     5   0.000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551095     3   0.202      1.000 0.100 0.000 0.900  0 0.000
#> SRR1551096     1   0.000      0.990 1.000 0.000 0.000  0 0.000
#> SRR1551097     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551098     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551099     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551101     3   0.202      1.000 0.100 0.000 0.900  0 0.000
#> SRR1551100     5   0.000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551102     1   0.000      0.990 1.000 0.000 0.000  0 0.000
#> SRR1551103     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551104     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551105     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551106     2   0.202      0.931 0.000 0.900 0.100  0 0.000
#> SRR1551107     5   0.000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551108     3   0.202      1.000 0.100 0.000 0.900  0 0.000
#> SRR1551109     1   0.000      0.990 1.000 0.000 0.000  0 0.000
#> SRR1551110     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551111     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551112     2   0.000      0.974 0.000 1.000 0.000  0 0.000
#> SRR1551113     2   0.202      0.931 0.000 0.900 0.100  0 0.000
#> SRR1551114     5   0.000      1.000 0.000 0.000 0.000  0 1.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3 p4    p5    p6
#> SRR1550981     5  0.0000      1.000 0.000 0.000 0.000  0 1.000 0.000
#> SRR1550982     5  0.0000      1.000 0.000 0.000 0.000  0 1.000 0.000
#> SRR1550983     5  0.0000      1.000 0.000 0.000 0.000  0 1.000 0.000
#> SRR1550984     5  0.0000      1.000 0.000 0.000 0.000  0 1.000 0.000
#> SRR1550986     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1550985     5  0.0000      1.000 0.000 0.000 0.000  0 1.000 0.000
#> SRR1550988     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1550987     1  0.0000      0.968 1.000 0.000 0.000  0 0.000 0.000
#> SRR1550989     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1550990     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1550991     6  0.2762      1.000 0.000 0.196 0.000  0 0.000 0.804
#> SRR1550992     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1550994     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1550993     1  0.0000      0.968 1.000 0.000 0.000  0 0.000 0.000
#> SRR1550995     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1550996     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1550997     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1550998     1  0.0000      0.968 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551000     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1550999     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551001     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551002     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551003     1  0.0000      0.968 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551004     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551006     2  0.0146      0.992 0.000 0.996 0.000  0 0.000 0.004
#> SRR1551005     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551007     6  0.2762      1.000 0.000 0.196 0.000  0 0.000 0.804
#> SRR1551008     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551009     1  0.0000      0.968 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551010     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551012     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551011     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551013     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551014     1  0.0000      0.968 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551015     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551016     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551017     2  0.0146      0.992 0.000 0.996 0.000  0 0.000 0.004
#> SRR1551018     6  0.2762      1.000 0.000 0.196 0.000  0 0.000 0.804
#> SRR1551019     1  0.4311      0.760 0.716 0.000 0.088  0 0.000 0.196
#> SRR1551021     1  0.0000      0.968 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551022     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551023     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551020     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551024     2  0.2135      0.817 0.000 0.872 0.000  0 0.128 0.000
#> SRR1551026     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551025     1  0.4311      0.760 0.716 0.000 0.088  0 0.000 0.196
#> SRR1551027     1  0.0000      0.968 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551028     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551029     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551030     2  0.0146      0.992 0.000 0.996 0.000  0 0.000 0.004
#> SRR1551031     6  0.2762      1.000 0.000 0.196 0.000  0 0.000 0.804
#> SRR1551032     1  0.4311      0.760 0.716 0.000 0.088  0 0.000 0.196
#> SRR1551034     1  0.0000      0.968 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551033     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551035     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551036     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551037     2  0.0146      0.992 0.000 0.996 0.000  0 0.000 0.004
#> SRR1551038     6  0.2762      1.000 0.000 0.196 0.000  0 0.000 0.804
#> SRR1551039     5  0.0000      1.000 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551040     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551041     1  0.0000      0.968 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551042     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551043     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551044     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551045     6  0.2762      1.000 0.000 0.196 0.000  0 0.000 0.804
#> SRR1551046     5  0.0000      1.000 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551047     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551048     1  0.0000      0.968 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551049     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551050     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551051     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551052     6  0.2762      1.000 0.000 0.196 0.000  0 0.000 0.804
#> SRR1551053     5  0.0000      1.000 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551054     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551055     1  0.0000      0.968 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551056     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551057     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551058     2  0.0146      0.992 0.000 0.996 0.000  0 0.000 0.004
#> SRR1551059     6  0.2762      1.000 0.000 0.196 0.000  0 0.000 0.804
#> SRR1551060     5  0.0000      1.000 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551061     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551062     1  0.0000      0.968 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551063     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551064     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551065     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551066     6  0.2762      1.000 0.000 0.196 0.000  0 0.000 0.804
#> SRR1551067     5  0.0000      1.000 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551068     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551069     1  0.0000      0.968 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551070     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551071     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551072     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551073     6  0.2762      1.000 0.000 0.196 0.000  0 0.000 0.804
#> SRR1551074     5  0.0000      1.000 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551075     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551076     1  0.0000      0.968 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551077     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551078     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551079     2  0.0146      0.992 0.000 0.996 0.000  0 0.000 0.004
#> SRR1551080     6  0.2762      1.000 0.000 0.196 0.000  0 0.000 0.804
#> SRR1551081     5  0.0000      1.000 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551082     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551083     1  0.0000      0.968 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551084     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551085     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551086     2  0.0146      0.992 0.000 0.996 0.000  0 0.000 0.004
#> SRR1551088     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551087     5  0.0000      1.000 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551089     1  0.0000      0.968 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551090     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551091     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551092     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551093     6  0.2762      1.000 0.000 0.196 0.000  0 0.000 0.804
#> SRR1551094     5  0.0000      1.000 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551095     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551096     1  0.0000      0.968 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551097     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551098     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551099     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551101     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551100     5  0.0000      1.000 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551102     1  0.0000      0.968 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551103     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551104     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551105     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551106     6  0.2762      1.000 0.000 0.196 0.000  0 0.000 0.804
#> SRR1551107     5  0.0000      1.000 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551108     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551109     1  0.0000      0.968 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551110     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551111     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551112     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551113     6  0.2762      1.000 0.000 0.196 0.000  0 0.000 0.804
#> SRR1551114     5  0.0000      1.000 0.000 0.000 0.000  0 1.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15028 rows and 134 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.979       0.983         0.4913 0.503   0.503
#> 3 3 0.669           0.624       0.754         0.2307 0.913   0.827
#> 4 4 0.674           0.775       0.742         0.1285 0.783   0.533
#> 5 5 0.664           0.730       0.715         0.0836 0.867   0.580
#> 6 6 0.704           0.883       0.768         0.0519 0.969   0.854

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1550981     1  0.1843      0.988 0.972 0.028
#> SRR1550982     1  0.1843      0.988 0.972 0.028
#> SRR1550983     1  0.1843      0.988 0.972 0.028
#> SRR1550984     1  0.1843      0.988 0.972 0.028
#> SRR1550986     1  0.0376      0.984 0.996 0.004
#> SRR1550985     1  0.1843      0.988 0.972 0.028
#> SRR1550988     2  0.2043      0.971 0.032 0.968
#> SRR1550987     1  0.1633      0.989 0.976 0.024
#> SRR1550989     2  0.0376      0.986 0.004 0.996
#> SRR1550990     2  0.0376      0.986 0.004 0.996
#> SRR1550991     2  0.0376      0.986 0.004 0.996
#> SRR1550992     1  0.0376      0.984 0.996 0.004
#> SRR1550994     2  0.2043      0.971 0.032 0.968
#> SRR1550993     1  0.1633      0.989 0.976 0.024
#> SRR1550995     2  0.0376      0.986 0.004 0.996
#> SRR1550996     2  0.0376      0.986 0.004 0.996
#> SRR1550997     1  0.0376      0.984 0.996 0.004
#> SRR1550998     1  0.1633      0.989 0.976 0.024
#> SRR1551000     2  0.0376      0.986 0.004 0.996
#> SRR1550999     2  0.2043      0.971 0.032 0.968
#> SRR1551001     2  0.0376      0.986 0.004 0.996
#> SRR1551002     1  0.0376      0.984 0.996 0.004
#> SRR1551003     1  0.1633      0.989 0.976 0.024
#> SRR1551004     2  0.2043      0.971 0.032 0.968
#> SRR1551006     2  0.0376      0.986 0.004 0.996
#> SRR1551005     2  0.0376      0.986 0.004 0.996
#> SRR1551007     2  0.0376      0.986 0.004 0.996
#> SRR1551008     1  0.0376      0.984 0.996 0.004
#> SRR1551009     1  0.1633      0.989 0.976 0.024
#> SRR1551010     2  0.2043      0.971 0.032 0.968
#> SRR1551012     2  0.0376      0.986 0.004 0.996
#> SRR1551011     2  0.0376      0.986 0.004 0.996
#> SRR1551013     1  0.0376      0.984 0.996 0.004
#> SRR1551014     1  0.1633      0.989 0.976 0.024
#> SRR1551015     2  0.2043      0.971 0.032 0.968
#> SRR1551016     2  0.0376      0.986 0.004 0.996
#> SRR1551017     2  0.0376      0.986 0.004 0.996
#> SRR1551018     2  0.0376      0.986 0.004 0.996
#> SRR1551019     1  0.0376      0.984 0.996 0.004
#> SRR1551021     1  0.1633      0.989 0.976 0.024
#> SRR1551022     2  0.2043      0.971 0.032 0.968
#> SRR1551023     2  0.0376      0.986 0.004 0.996
#> SRR1551020     1  0.0376      0.984 0.996 0.004
#> SRR1551024     2  0.0376      0.986 0.004 0.996
#> SRR1551026     1  0.0376      0.984 0.996 0.004
#> SRR1551025     1  0.0376      0.984 0.996 0.004
#> SRR1551027     1  0.1633      0.989 0.976 0.024
#> SRR1551028     2  0.2043      0.971 0.032 0.968
#> SRR1551029     2  0.0376      0.986 0.004 0.996
#> SRR1551030     2  0.0376      0.986 0.004 0.996
#> SRR1551031     2  0.0376      0.986 0.004 0.996
#> SRR1551032     1  0.0376      0.984 0.996 0.004
#> SRR1551034     1  0.1633      0.989 0.976 0.024
#> SRR1551033     1  0.0376      0.984 0.996 0.004
#> SRR1551035     2  0.2043      0.971 0.032 0.968
#> SRR1551036     2  0.0376      0.986 0.004 0.996
#> SRR1551037     2  0.0376      0.986 0.004 0.996
#> SRR1551038     2  0.0376      0.986 0.004 0.996
#> SRR1551039     1  0.1843      0.988 0.972 0.028
#> SRR1551040     1  0.0376      0.984 0.996 0.004
#> SRR1551041     1  0.1633      0.989 0.976 0.024
#> SRR1551042     2  0.2043      0.971 0.032 0.968
#> SRR1551043     2  0.0376      0.986 0.004 0.996
#> SRR1551044     2  0.0376      0.986 0.004 0.996
#> SRR1551045     2  0.0376      0.986 0.004 0.996
#> SRR1551046     1  0.1843      0.988 0.972 0.028
#> SRR1551047     1  0.0376      0.984 0.996 0.004
#> SRR1551048     1  0.1633      0.989 0.976 0.024
#> SRR1551049     2  0.2043      0.971 0.032 0.968
#> SRR1551050     2  0.0376      0.986 0.004 0.996
#> SRR1551051     2  0.0376      0.986 0.004 0.996
#> SRR1551052     2  0.0376      0.986 0.004 0.996
#> SRR1551053     2  0.9710      0.336 0.400 0.600
#> SRR1551054     1  0.0376      0.984 0.996 0.004
#> SRR1551055     1  0.1633      0.989 0.976 0.024
#> SRR1551056     2  0.2043      0.971 0.032 0.968
#> SRR1551057     2  0.0376      0.986 0.004 0.996
#> SRR1551058     2  0.0376      0.986 0.004 0.996
#> SRR1551059     2  0.0376      0.986 0.004 0.996
#> SRR1551060     1  0.1843      0.988 0.972 0.028
#> SRR1551061     1  0.0376      0.984 0.996 0.004
#> SRR1551062     1  0.1633      0.989 0.976 0.024
#> SRR1551063     2  0.2043      0.971 0.032 0.968
#> SRR1551064     2  0.0376      0.986 0.004 0.996
#> SRR1551065     2  0.0376      0.986 0.004 0.996
#> SRR1551066     2  0.0376      0.986 0.004 0.996
#> SRR1551067     1  0.1843      0.988 0.972 0.028
#> SRR1551068     1  0.0376      0.984 0.996 0.004
#> SRR1551069     1  0.1633      0.989 0.976 0.024
#> SRR1551070     2  0.2043      0.971 0.032 0.968
#> SRR1551071     2  0.0376      0.986 0.004 0.996
#> SRR1551072     2  0.0376      0.986 0.004 0.996
#> SRR1551073     2  0.0376      0.986 0.004 0.996
#> SRR1551074     1  0.1843      0.988 0.972 0.028
#> SRR1551075     1  0.0376      0.984 0.996 0.004
#> SRR1551076     1  0.1633      0.989 0.976 0.024
#> SRR1551077     2  0.2043      0.971 0.032 0.968
#> SRR1551078     2  0.0376      0.986 0.004 0.996
#> SRR1551079     2  0.0376      0.986 0.004 0.996
#> SRR1551080     2  0.0376      0.986 0.004 0.996
#> SRR1551081     1  0.1843      0.988 0.972 0.028
#> SRR1551082     1  0.0376      0.984 0.996 0.004
#> SRR1551083     1  0.1633      0.989 0.976 0.024
#> SRR1551084     2  0.2043      0.971 0.032 0.968
#> SRR1551085     2  0.0376      0.986 0.004 0.996
#> SRR1551086     2  0.0376      0.986 0.004 0.996
#> SRR1551088     1  0.0376      0.984 0.996 0.004
#> SRR1551087     1  0.1843      0.988 0.972 0.028
#> SRR1551089     1  0.1633      0.989 0.976 0.024
#> SRR1551090     2  0.2043      0.971 0.032 0.968
#> SRR1551091     2  0.0376      0.986 0.004 0.996
#> SRR1551092     2  0.0376      0.986 0.004 0.996
#> SRR1551093     2  0.0376      0.986 0.004 0.996
#> SRR1551094     1  0.1843      0.988 0.972 0.028
#> SRR1551095     1  0.0376      0.984 0.996 0.004
#> SRR1551096     1  0.1633      0.989 0.976 0.024
#> SRR1551097     2  0.2043      0.971 0.032 0.968
#> SRR1551098     2  0.0376      0.986 0.004 0.996
#> SRR1551099     2  0.0376      0.986 0.004 0.996
#> SRR1551101     1  0.0376      0.984 0.996 0.004
#> SRR1551100     1  0.1843      0.988 0.972 0.028
#> SRR1551102     1  0.1633      0.989 0.976 0.024
#> SRR1551103     2  0.2043      0.971 0.032 0.968
#> SRR1551104     2  0.0376      0.986 0.004 0.996
#> SRR1551105     2  0.0376      0.986 0.004 0.996
#> SRR1551106     2  0.0376      0.986 0.004 0.996
#> SRR1551107     1  0.1843      0.988 0.972 0.028
#> SRR1551108     1  0.0376      0.984 0.996 0.004
#> SRR1551109     1  0.1633      0.989 0.976 0.024
#> SRR1551110     2  0.2043      0.971 0.032 0.968
#> SRR1551111     2  0.0376      0.986 0.004 0.996
#> SRR1551112     2  0.0376      0.986 0.004 0.996
#> SRR1551113     2  0.0376      0.986 0.004 0.996
#> SRR1551114     1  0.1843      0.988 0.972 0.028

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1550981     3  0.6291      0.940 0.468 0.000 0.532
#> SRR1550982     3  0.6286      0.949 0.464 0.000 0.536
#> SRR1550983     3  0.6291      0.940 0.468 0.000 0.532
#> SRR1550984     3  0.6286      0.949 0.464 0.000 0.536
#> SRR1550986     1  0.0000      0.519 1.000 0.000 0.000
#> SRR1550985     3  0.6286      0.949 0.464 0.000 0.536
#> SRR1550988     2  0.6587      0.730 0.016 0.632 0.352
#> SRR1550987     1  0.6168     -0.144 0.588 0.000 0.412
#> SRR1550989     2  0.0237      0.880 0.000 0.996 0.004
#> SRR1550990     2  0.0237      0.880 0.000 0.996 0.004
#> SRR1550991     2  0.4235      0.823 0.000 0.824 0.176
#> SRR1550992     1  0.0000      0.519 1.000 0.000 0.000
#> SRR1550994     2  0.6587      0.730 0.016 0.632 0.352
#> SRR1550993     1  0.6168     -0.144 0.588 0.000 0.412
#> SRR1550995     2  0.0237      0.880 0.000 0.996 0.004
#> SRR1550996     2  0.0424      0.880 0.000 0.992 0.008
#> SRR1550997     1  0.0000      0.519 1.000 0.000 0.000
#> SRR1550998     1  0.6168     -0.144 0.588 0.000 0.412
#> SRR1551000     2  0.0237      0.880 0.000 0.996 0.004
#> SRR1550999     2  0.6587      0.730 0.016 0.632 0.352
#> SRR1551001     2  0.0237      0.880 0.000 0.996 0.004
#> SRR1551002     1  0.0000      0.519 1.000 0.000 0.000
#> SRR1551003     1  0.6168     -0.144 0.588 0.000 0.412
#> SRR1551004     2  0.6587      0.730 0.016 0.632 0.352
#> SRR1551006     2  0.0237      0.880 0.000 0.996 0.004
#> SRR1551005     2  0.0237      0.880 0.000 0.996 0.004
#> SRR1551007     2  0.4235      0.823 0.000 0.824 0.176
#> SRR1551008     1  0.0000      0.519 1.000 0.000 0.000
#> SRR1551009     1  0.6168     -0.144 0.588 0.000 0.412
#> SRR1551010     2  0.6587      0.730 0.016 0.632 0.352
#> SRR1551012     2  0.0000      0.880 0.000 1.000 0.000
#> SRR1551011     2  0.0237      0.880 0.000 0.996 0.004
#> SRR1551013     1  0.0000      0.519 1.000 0.000 0.000
#> SRR1551014     1  0.6168     -0.144 0.588 0.000 0.412
#> SRR1551015     2  0.6587      0.730 0.016 0.632 0.352
#> SRR1551016     2  0.0424      0.880 0.000 0.992 0.008
#> SRR1551017     2  0.2959      0.845 0.000 0.900 0.100
#> SRR1551018     2  0.4235      0.823 0.000 0.824 0.176
#> SRR1551019     1  0.6168     -0.379 0.588 0.000 0.412
#> SRR1551021     1  0.6154     -0.139 0.592 0.000 0.408
#> SRR1551022     2  0.6587      0.730 0.016 0.632 0.352
#> SRR1551023     2  0.0237      0.880 0.000 0.996 0.004
#> SRR1551020     1  0.0000      0.519 1.000 0.000 0.000
#> SRR1551024     2  0.1163      0.873 0.000 0.972 0.028
#> SRR1551026     1  0.0000      0.519 1.000 0.000 0.000
#> SRR1551025     1  0.6045     -0.183 0.620 0.000 0.380
#> SRR1551027     1  0.6168     -0.144 0.588 0.000 0.412
#> SRR1551028     2  0.6587      0.730 0.016 0.632 0.352
#> SRR1551029     2  0.0237      0.880 0.000 0.996 0.004
#> SRR1551030     2  0.0237      0.880 0.000 0.996 0.004
#> SRR1551031     2  0.4235      0.823 0.000 0.824 0.176
#> SRR1551032     1  0.6062     -0.205 0.616 0.000 0.384
#> SRR1551034     1  0.6168     -0.144 0.588 0.000 0.412
#> SRR1551033     1  0.0000      0.519 1.000 0.000 0.000
#> SRR1551035     2  0.6587      0.730 0.016 0.632 0.352
#> SRR1551036     2  0.0237      0.880 0.000 0.996 0.004
#> SRR1551037     2  0.0237      0.880 0.000 0.996 0.004
#> SRR1551038     2  0.4235      0.823 0.000 0.824 0.176
#> SRR1551039     3  0.6286      0.949 0.464 0.000 0.536
#> SRR1551040     1  0.0000      0.519 1.000 0.000 0.000
#> SRR1551041     1  0.6168     -0.144 0.588 0.000 0.412
#> SRR1551042     2  0.6587      0.730 0.016 0.632 0.352
#> SRR1551043     2  0.0237      0.880 0.000 0.996 0.004
#> SRR1551044     2  0.0237      0.880 0.000 0.996 0.004
#> SRR1551045     2  0.4235      0.823 0.000 0.824 0.176
#> SRR1551046     3  0.6291      0.940 0.468 0.000 0.532
#> SRR1551047     1  0.0000      0.519 1.000 0.000 0.000
#> SRR1551048     1  0.6168     -0.144 0.588 0.000 0.412
#> SRR1551049     2  0.6587      0.730 0.016 0.632 0.352
#> SRR1551050     2  0.0237      0.880 0.000 0.996 0.004
#> SRR1551051     2  0.0000      0.880 0.000 1.000 0.000
#> SRR1551052     2  0.4235      0.823 0.000 0.824 0.176
#> SRR1551053     3  0.8964      0.436 0.296 0.160 0.544
#> SRR1551054     1  0.0000      0.519 1.000 0.000 0.000
#> SRR1551055     1  0.6168     -0.144 0.588 0.000 0.412
#> SRR1551056     2  0.6587      0.730 0.016 0.632 0.352
#> SRR1551057     2  0.0237      0.880 0.000 0.996 0.004
#> SRR1551058     2  0.0892      0.876 0.000 0.980 0.020
#> SRR1551059     2  0.4235      0.823 0.000 0.824 0.176
#> SRR1551060     3  0.6286      0.949 0.464 0.000 0.536
#> SRR1551061     1  0.0000      0.519 1.000 0.000 0.000
#> SRR1551062     1  0.6168     -0.144 0.588 0.000 0.412
#> SRR1551063     2  0.6587      0.730 0.016 0.632 0.352
#> SRR1551064     2  0.0237      0.880 0.000 0.996 0.004
#> SRR1551065     2  0.0237      0.880 0.000 0.996 0.004
#> SRR1551066     2  0.4235      0.823 0.000 0.824 0.176
#> SRR1551067     3  0.6286      0.949 0.464 0.000 0.536
#> SRR1551068     1  0.0000      0.519 1.000 0.000 0.000
#> SRR1551069     1  0.6168     -0.144 0.588 0.000 0.412
#> SRR1551070     2  0.6587      0.730 0.016 0.632 0.352
#> SRR1551071     2  0.0237      0.880 0.000 0.996 0.004
#> SRR1551072     2  0.0237      0.880 0.000 0.996 0.004
#> SRR1551073     2  0.4235      0.823 0.000 0.824 0.176
#> SRR1551074     3  0.6291      0.940 0.468 0.000 0.532
#> SRR1551075     1  0.0000      0.519 1.000 0.000 0.000
#> SRR1551076     1  0.6168     -0.144 0.588 0.000 0.412
#> SRR1551077     2  0.6587      0.730 0.016 0.632 0.352
#> SRR1551078     2  0.0237      0.880 0.000 0.996 0.004
#> SRR1551079     2  0.0892      0.876 0.000 0.980 0.020
#> SRR1551080     2  0.4235      0.823 0.000 0.824 0.176
#> SRR1551081     3  0.6286      0.949 0.464 0.000 0.536
#> SRR1551082     1  0.0000      0.519 1.000 0.000 0.000
#> SRR1551083     1  0.6168     -0.144 0.588 0.000 0.412
#> SRR1551084     2  0.6587      0.730 0.016 0.632 0.352
#> SRR1551085     2  0.0237      0.880 0.000 0.996 0.004
#> SRR1551086     2  0.0237      0.880 0.000 0.996 0.004
#> SRR1551088     1  0.0000      0.519 1.000 0.000 0.000
#> SRR1551087     3  0.6286      0.949 0.464 0.000 0.536
#> SRR1551089     1  0.6168     -0.144 0.588 0.000 0.412
#> SRR1551090     2  0.6587      0.730 0.016 0.632 0.352
#> SRR1551091     2  0.0237      0.880 0.000 0.996 0.004
#> SRR1551092     2  0.0000      0.880 0.000 1.000 0.000
#> SRR1551093     2  0.4235      0.823 0.000 0.824 0.176
#> SRR1551094     3  0.6286      0.949 0.464 0.000 0.536
#> SRR1551095     1  0.0000      0.519 1.000 0.000 0.000
#> SRR1551096     1  0.6168     -0.144 0.588 0.000 0.412
#> SRR1551097     2  0.6587      0.730 0.016 0.632 0.352
#> SRR1551098     2  0.0237      0.880 0.000 0.996 0.004
#> SRR1551099     2  0.0000      0.880 0.000 1.000 0.000
#> SRR1551101     1  0.0000      0.519 1.000 0.000 0.000
#> SRR1551100     3  0.6286      0.949 0.464 0.000 0.536
#> SRR1551102     1  0.6168     -0.144 0.588 0.000 0.412
#> SRR1551103     2  0.6587      0.730 0.016 0.632 0.352
#> SRR1551104     2  0.0237      0.880 0.000 0.996 0.004
#> SRR1551105     2  0.0237      0.880 0.000 0.996 0.004
#> SRR1551106     2  0.4235      0.823 0.000 0.824 0.176
#> SRR1551107     3  0.6286      0.949 0.464 0.000 0.536
#> SRR1551108     1  0.0000      0.519 1.000 0.000 0.000
#> SRR1551109     1  0.6168     -0.144 0.588 0.000 0.412
#> SRR1551110     2  0.6587      0.730 0.016 0.632 0.352
#> SRR1551111     2  0.0237      0.880 0.000 0.996 0.004
#> SRR1551112     2  0.0237      0.880 0.000 0.996 0.004
#> SRR1551113     2  0.4235      0.823 0.000 0.824 0.176
#> SRR1551114     3  0.6286      0.949 0.464 0.000 0.536

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1550981     1  0.7168      0.626 0.556 0.000 0.208 0.236
#> SRR1550982     1  0.7193      0.626 0.552 0.000 0.208 0.240
#> SRR1550983     1  0.7168      0.626 0.556 0.000 0.208 0.236
#> SRR1550984     1  0.7193      0.626 0.552 0.000 0.208 0.240
#> SRR1550986     3  0.4994      0.995 0.480 0.000 0.520 0.000
#> SRR1550985     1  0.7193      0.626 0.552 0.000 0.208 0.240
#> SRR1550988     4  0.4955      0.995 0.008 0.344 0.000 0.648
#> SRR1550987     1  0.0000      0.606 1.000 0.000 0.000 0.000
#> SRR1550989     2  0.0469      0.826 0.000 0.988 0.000 0.012
#> SRR1550990     2  0.0000      0.826 0.000 1.000 0.000 0.000
#> SRR1550991     2  0.6746      0.510 0.000 0.580 0.296 0.124
#> SRR1550992     3  0.4994      0.995 0.480 0.000 0.520 0.000
#> SRR1550994     4  0.5598      0.984 0.008 0.344 0.020 0.628
#> SRR1550993     1  0.0000      0.606 1.000 0.000 0.000 0.000
#> SRR1550995     2  0.0469      0.826 0.000 0.988 0.000 0.012
#> SRR1550996     2  0.0000      0.826 0.000 1.000 0.000 0.000
#> SRR1550997     3  0.5510      0.985 0.480 0.000 0.504 0.016
#> SRR1550998     1  0.0000      0.606 1.000 0.000 0.000 0.000
#> SRR1551000     2  0.0469      0.826 0.000 0.988 0.000 0.012
#> SRR1550999     4  0.5598      0.984 0.008 0.344 0.020 0.628
#> SRR1551001     2  0.0000      0.826 0.000 1.000 0.000 0.000
#> SRR1551002     3  0.4994      0.995 0.480 0.000 0.520 0.000
#> SRR1551003     1  0.0000      0.606 1.000 0.000 0.000 0.000
#> SRR1551004     4  0.5598      0.984 0.008 0.344 0.020 0.628
#> SRR1551006     2  0.0000      0.826 0.000 1.000 0.000 0.000
#> SRR1551005     2  0.0469      0.826 0.000 0.988 0.000 0.012
#> SRR1551007     2  0.6746      0.510 0.000 0.580 0.296 0.124
#> SRR1551008     3  0.4994      0.995 0.480 0.000 0.520 0.000
#> SRR1551009     1  0.0000      0.606 1.000 0.000 0.000 0.000
#> SRR1551010     4  0.4955      0.995 0.008 0.344 0.000 0.648
#> SRR1551012     2  0.0469      0.826 0.000 0.988 0.000 0.012
#> SRR1551011     2  0.0469      0.826 0.000 0.988 0.000 0.012
#> SRR1551013     3  0.4994      0.995 0.480 0.000 0.520 0.000
#> SRR1551014     1  0.0000      0.606 1.000 0.000 0.000 0.000
#> SRR1551015     4  0.5958      0.974 0.008 0.344 0.036 0.612
#> SRR1551016     2  0.0000      0.826 0.000 1.000 0.000 0.000
#> SRR1551017     2  0.3439      0.725 0.000 0.868 0.048 0.084
#> SRR1551018     2  0.6746      0.510 0.000 0.580 0.296 0.124
#> SRR1551019     1  0.5874      0.545 0.696 0.000 0.112 0.192
#> SRR1551021     1  0.0000      0.606 1.000 0.000 0.000 0.000
#> SRR1551022     4  0.5496      0.985 0.008 0.344 0.016 0.632
#> SRR1551023     2  0.0469      0.826 0.000 0.988 0.000 0.012
#> SRR1551020     3  0.4994      0.995 0.480 0.000 0.520 0.000
#> SRR1551024     2  0.1936      0.791 0.000 0.940 0.028 0.032
#> SRR1551026     3  0.4994      0.995 0.480 0.000 0.520 0.000
#> SRR1551025     1  0.5077      0.472 0.760 0.000 0.080 0.160
#> SRR1551027     1  0.0000      0.606 1.000 0.000 0.000 0.000
#> SRR1551028     4  0.4955      0.995 0.008 0.344 0.000 0.648
#> SRR1551029     2  0.0469      0.826 0.000 0.988 0.000 0.012
#> SRR1551030     2  0.0000      0.826 0.000 1.000 0.000 0.000
#> SRR1551031     2  0.6746      0.510 0.000 0.580 0.296 0.124
#> SRR1551032     1  0.4907      0.502 0.764 0.000 0.060 0.176
#> SRR1551034     1  0.0000      0.606 1.000 0.000 0.000 0.000
#> SRR1551033     3  0.4994      0.995 0.480 0.000 0.520 0.000
#> SRR1551035     4  0.4955      0.995 0.008 0.344 0.000 0.648
#> SRR1551036     2  0.0469      0.826 0.000 0.988 0.000 0.012
#> SRR1551037     2  0.0000      0.826 0.000 1.000 0.000 0.000
#> SRR1551038     2  0.6746      0.510 0.000 0.580 0.296 0.124
#> SRR1551039     1  0.7193      0.626 0.552 0.000 0.208 0.240
#> SRR1551040     3  0.5510      0.985 0.480 0.000 0.504 0.016
#> SRR1551041     1  0.0000      0.606 1.000 0.000 0.000 0.000
#> SRR1551042     4  0.4955      0.995 0.008 0.344 0.000 0.648
#> SRR1551043     2  0.0469      0.826 0.000 0.988 0.000 0.012
#> SRR1551044     2  0.0000      0.826 0.000 1.000 0.000 0.000
#> SRR1551045     2  0.6746      0.510 0.000 0.580 0.296 0.124
#> SRR1551046     1  0.7168      0.626 0.556 0.000 0.208 0.236
#> SRR1551047     3  0.5510      0.985 0.480 0.000 0.504 0.016
#> SRR1551048     1  0.0000      0.606 1.000 0.000 0.000 0.000
#> SRR1551049     4  0.4955      0.995 0.008 0.344 0.000 0.648
#> SRR1551050     2  0.0469      0.826 0.000 0.988 0.000 0.012
#> SRR1551051     2  0.0469      0.826 0.000 0.988 0.000 0.012
#> SRR1551052     2  0.6746      0.510 0.000 0.580 0.296 0.124
#> SRR1551053     1  0.9085      0.498 0.456 0.108 0.192 0.244
#> SRR1551054     3  0.5510      0.985 0.480 0.000 0.504 0.016
#> SRR1551055     1  0.0000      0.606 1.000 0.000 0.000 0.000
#> SRR1551056     4  0.4955      0.995 0.008 0.344 0.000 0.648
#> SRR1551057     2  0.0469      0.826 0.000 0.988 0.000 0.012
#> SRR1551058     2  0.0592      0.817 0.000 0.984 0.000 0.016
#> SRR1551059     2  0.6746      0.510 0.000 0.580 0.296 0.124
#> SRR1551060     1  0.7193      0.626 0.552 0.000 0.208 0.240
#> SRR1551061     3  0.4994      0.995 0.480 0.000 0.520 0.000
#> SRR1551062     1  0.0000      0.606 1.000 0.000 0.000 0.000
#> SRR1551063     4  0.4955      0.995 0.008 0.344 0.000 0.648
#> SRR1551064     2  0.0469      0.826 0.000 0.988 0.000 0.012
#> SRR1551065     2  0.0000      0.826 0.000 1.000 0.000 0.000
#> SRR1551066     2  0.6746      0.510 0.000 0.580 0.296 0.124
#> SRR1551067     1  0.7193      0.626 0.552 0.000 0.208 0.240
#> SRR1551068     3  0.4994      0.995 0.480 0.000 0.520 0.000
#> SRR1551069     1  0.0000      0.606 1.000 0.000 0.000 0.000
#> SRR1551070     4  0.4955      0.995 0.008 0.344 0.000 0.648
#> SRR1551071     2  0.0469      0.826 0.000 0.988 0.000 0.012
#> SRR1551072     2  0.0000      0.826 0.000 1.000 0.000 0.000
#> SRR1551073     2  0.6746      0.510 0.000 0.580 0.296 0.124
#> SRR1551074     1  0.7168      0.626 0.556 0.000 0.208 0.236
#> SRR1551075     3  0.4994      0.995 0.480 0.000 0.520 0.000
#> SRR1551076     1  0.0000      0.606 1.000 0.000 0.000 0.000
#> SRR1551077     4  0.4955      0.995 0.008 0.344 0.000 0.648
#> SRR1551078     2  0.0469      0.826 0.000 0.988 0.000 0.012
#> SRR1551079     2  0.0592      0.817 0.000 0.984 0.000 0.016
#> SRR1551080     2  0.6746      0.510 0.000 0.580 0.296 0.124
#> SRR1551081     1  0.7193      0.626 0.552 0.000 0.208 0.240
#> SRR1551082     3  0.4994      0.995 0.480 0.000 0.520 0.000
#> SRR1551083     1  0.0000      0.606 1.000 0.000 0.000 0.000
#> SRR1551084     4  0.4955      0.995 0.008 0.344 0.000 0.648
#> SRR1551085     2  0.0469      0.826 0.000 0.988 0.000 0.012
#> SRR1551086     2  0.0000      0.826 0.000 1.000 0.000 0.000
#> SRR1551088     3  0.4994      0.995 0.480 0.000 0.520 0.000
#> SRR1551087     1  0.7193      0.626 0.552 0.000 0.208 0.240
#> SRR1551089     1  0.0000      0.606 1.000 0.000 0.000 0.000
#> SRR1551090     4  0.4955      0.995 0.008 0.344 0.000 0.648
#> SRR1551091     2  0.0469      0.826 0.000 0.988 0.000 0.012
#> SRR1551092     2  0.0469      0.826 0.000 0.988 0.000 0.012
#> SRR1551093     2  0.6746      0.510 0.000 0.580 0.296 0.124
#> SRR1551094     1  0.7193      0.626 0.552 0.000 0.208 0.240
#> SRR1551095     3  0.4994      0.995 0.480 0.000 0.520 0.000
#> SRR1551096     1  0.0000      0.606 1.000 0.000 0.000 0.000
#> SRR1551097     4  0.4955      0.995 0.008 0.344 0.000 0.648
#> SRR1551098     2  0.0469      0.826 0.000 0.988 0.000 0.012
#> SRR1551099     2  0.0469      0.826 0.000 0.988 0.000 0.012
#> SRR1551101     3  0.5510      0.985 0.480 0.000 0.504 0.016
#> SRR1551100     1  0.7193      0.626 0.552 0.000 0.208 0.240
#> SRR1551102     1  0.0000      0.606 1.000 0.000 0.000 0.000
#> SRR1551103     4  0.4955      0.995 0.008 0.344 0.000 0.648
#> SRR1551104     2  0.0469      0.826 0.000 0.988 0.000 0.012
#> SRR1551105     2  0.0000      0.826 0.000 1.000 0.000 0.000
#> SRR1551106     2  0.6746      0.510 0.000 0.580 0.296 0.124
#> SRR1551107     1  0.7193      0.626 0.552 0.000 0.208 0.240
#> SRR1551108     3  0.4994      0.995 0.480 0.000 0.520 0.000
#> SRR1551109     1  0.0000      0.606 1.000 0.000 0.000 0.000
#> SRR1551110     4  0.4955      0.995 0.008 0.344 0.000 0.648
#> SRR1551111     2  0.0469      0.826 0.000 0.988 0.000 0.012
#> SRR1551112     2  0.0000      0.826 0.000 1.000 0.000 0.000
#> SRR1551113     2  0.6746      0.510 0.000 0.580 0.296 0.124
#> SRR1551114     1  0.7193      0.626 0.552 0.000 0.208 0.240

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1550981     5  0.4971  -0.000036 0.472 0.000 0.020 0.004 0.504
#> SRR1550982     5  0.4971  -0.000036 0.472 0.000 0.020 0.004 0.504
#> SRR1550983     5  0.4971  -0.000036 0.472 0.000 0.020 0.004 0.504
#> SRR1550984     5  0.5049  -0.003459 0.472 0.000 0.024 0.004 0.500
#> SRR1550986     3  0.3857   0.981519 0.312 0.000 0.688 0.000 0.000
#> SRR1550985     5  0.4971  -0.000036 0.472 0.000 0.020 0.004 0.504
#> SRR1550988     4  0.3128   0.990513 0.004 0.168 0.004 0.824 0.000
#> SRR1550987     1  0.0000   0.929696 1.000 0.000 0.000 0.000 0.000
#> SRR1550989     2  0.0290   0.935741 0.000 0.992 0.000 0.008 0.000
#> SRR1550990     2  0.2230   0.929725 0.000 0.884 0.116 0.000 0.000
#> SRR1550991     5  0.7589   0.120873 0.000 0.384 0.132 0.092 0.392
#> SRR1550992     3  0.3857   0.981519 0.312 0.000 0.688 0.000 0.000
#> SRR1550994     4  0.4133   0.973968 0.004 0.168 0.016 0.788 0.024
#> SRR1550993     1  0.0000   0.929696 1.000 0.000 0.000 0.000 0.000
#> SRR1550995     2  0.0290   0.935741 0.000 0.992 0.000 0.008 0.000
#> SRR1550996     2  0.1965   0.932879 0.000 0.904 0.096 0.000 0.000
#> SRR1550997     3  0.5527   0.944793 0.312 0.000 0.620 0.032 0.036
#> SRR1550998     1  0.0162   0.927674 0.996 0.000 0.000 0.004 0.000
#> SRR1551000     2  0.0290   0.935741 0.000 0.992 0.000 0.008 0.000
#> SRR1550999     4  0.4559   0.962923 0.004 0.168 0.024 0.768 0.036
#> SRR1551001     2  0.2230   0.929725 0.000 0.884 0.116 0.000 0.000
#> SRR1551002     3  0.3857   0.981519 0.312 0.000 0.688 0.000 0.000
#> SRR1551003     1  0.0000   0.929696 1.000 0.000 0.000 0.000 0.000
#> SRR1551004     4  0.4133   0.973968 0.004 0.168 0.016 0.788 0.024
#> SRR1551006     2  0.2230   0.929725 0.000 0.884 0.116 0.000 0.000
#> SRR1551005     2  0.0290   0.935741 0.000 0.992 0.000 0.008 0.000
#> SRR1551007     5  0.7589   0.120873 0.000 0.384 0.132 0.092 0.392
#> SRR1551008     3  0.3857   0.981519 0.312 0.000 0.688 0.000 0.000
#> SRR1551009     1  0.0000   0.929696 1.000 0.000 0.000 0.000 0.000
#> SRR1551010     4  0.3128   0.990513 0.004 0.168 0.004 0.824 0.000
#> SRR1551012     2  0.2513   0.930215 0.000 0.876 0.116 0.008 0.000
#> SRR1551011     2  0.0290   0.935741 0.000 0.992 0.000 0.008 0.000
#> SRR1551013     3  0.3857   0.981519 0.312 0.000 0.688 0.000 0.000
#> SRR1551014     1  0.0000   0.929696 1.000 0.000 0.000 0.000 0.000
#> SRR1551015     4  0.4875   0.953945 0.004 0.168 0.040 0.752 0.036
#> SRR1551016     2  0.0404   0.935414 0.000 0.988 0.012 0.000 0.000
#> SRR1551017     2  0.4166   0.837215 0.000 0.796 0.120 0.076 0.008
#> SRR1551018     5  0.7616   0.119695 0.000 0.384 0.136 0.092 0.388
#> SRR1551019     1  0.6058   0.315249 0.532 0.000 0.032 0.056 0.380
#> SRR1551021     1  0.0000   0.929696 1.000 0.000 0.000 0.000 0.000
#> SRR1551022     4  0.3461   0.984030 0.004 0.168 0.016 0.812 0.000
#> SRR1551023     2  0.0290   0.935741 0.000 0.992 0.000 0.008 0.000
#> SRR1551020     3  0.4009   0.979240 0.312 0.000 0.684 0.004 0.000
#> SRR1551024     2  0.3260   0.898615 0.000 0.856 0.084 0.004 0.056
#> SRR1551026     3  0.4009   0.979240 0.312 0.000 0.684 0.004 0.000
#> SRR1551025     1  0.6511   0.466661 0.584 0.000 0.092 0.056 0.268
#> SRR1551027     1  0.0000   0.929696 1.000 0.000 0.000 0.000 0.000
#> SRR1551028     4  0.2970   0.990609 0.004 0.168 0.000 0.828 0.000
#> SRR1551029     2  0.0290   0.935741 0.000 0.992 0.000 0.008 0.000
#> SRR1551030     2  0.2230   0.929725 0.000 0.884 0.116 0.000 0.000
#> SRR1551031     5  0.7616   0.119695 0.000 0.384 0.136 0.092 0.388
#> SRR1551032     1  0.6086   0.464700 0.592 0.000 0.048 0.056 0.304
#> SRR1551034     1  0.0000   0.929696 1.000 0.000 0.000 0.000 0.000
#> SRR1551033     3  0.3857   0.981519 0.312 0.000 0.688 0.000 0.000
#> SRR1551035     4  0.2970   0.990609 0.004 0.168 0.000 0.828 0.000
#> SRR1551036     2  0.0290   0.935741 0.000 0.992 0.000 0.008 0.000
#> SRR1551037     2  0.2230   0.929725 0.000 0.884 0.116 0.000 0.000
#> SRR1551038     5  0.7589   0.120873 0.000 0.384 0.132 0.092 0.392
#> SRR1551039     5  0.4971  -0.000036 0.472 0.000 0.020 0.004 0.504
#> SRR1551040     3  0.5527   0.944793 0.312 0.000 0.620 0.032 0.036
#> SRR1551041     1  0.0162   0.927674 0.996 0.000 0.000 0.004 0.000
#> SRR1551042     4  0.2970   0.990609 0.004 0.168 0.000 0.828 0.000
#> SRR1551043     2  0.0290   0.935741 0.000 0.992 0.000 0.008 0.000
#> SRR1551044     2  0.2230   0.929725 0.000 0.884 0.116 0.000 0.000
#> SRR1551045     5  0.7589   0.120873 0.000 0.384 0.132 0.092 0.392
#> SRR1551046     5  0.4971  -0.000036 0.472 0.000 0.020 0.004 0.504
#> SRR1551047     3  0.5527   0.944793 0.312 0.000 0.620 0.032 0.036
#> SRR1551048     1  0.0000   0.929696 1.000 0.000 0.000 0.000 0.000
#> SRR1551049     4  0.2970   0.990609 0.004 0.168 0.000 0.828 0.000
#> SRR1551050     2  0.0290   0.935741 0.000 0.992 0.000 0.008 0.000
#> SRR1551051     2  0.2513   0.930215 0.000 0.876 0.116 0.008 0.000
#> SRR1551052     5  0.7589   0.120873 0.000 0.384 0.132 0.092 0.392
#> SRR1551053     5  0.5746  -0.004606 0.440 0.040 0.016 0.004 0.500
#> SRR1551054     3  0.5527   0.944793 0.312 0.000 0.620 0.032 0.036
#> SRR1551055     1  0.0162   0.927674 0.996 0.000 0.000 0.004 0.000
#> SRR1551056     4  0.2970   0.990609 0.004 0.168 0.000 0.828 0.000
#> SRR1551057     2  0.0290   0.935741 0.000 0.992 0.000 0.008 0.000
#> SRR1551058     2  0.2624   0.922018 0.000 0.872 0.116 0.012 0.000
#> SRR1551059     5  0.7616   0.119844 0.000 0.384 0.136 0.092 0.388
#> SRR1551060     5  0.5049  -0.003459 0.472 0.000 0.024 0.004 0.500
#> SRR1551061     3  0.3857   0.981519 0.312 0.000 0.688 0.000 0.000
#> SRR1551062     1  0.0000   0.929696 1.000 0.000 0.000 0.000 0.000
#> SRR1551063     4  0.3128   0.990513 0.004 0.168 0.004 0.824 0.000
#> SRR1551064     2  0.0290   0.935741 0.000 0.992 0.000 0.008 0.000
#> SRR1551065     2  0.2230   0.929725 0.000 0.884 0.116 0.000 0.000
#> SRR1551066     5  0.7589   0.120873 0.000 0.384 0.132 0.092 0.392
#> SRR1551067     5  0.4971  -0.000036 0.472 0.000 0.020 0.004 0.504
#> SRR1551068     3  0.3857   0.981519 0.312 0.000 0.688 0.000 0.000
#> SRR1551069     1  0.0000   0.929696 1.000 0.000 0.000 0.000 0.000
#> SRR1551070     4  0.3128   0.990513 0.004 0.168 0.004 0.824 0.000
#> SRR1551071     2  0.0290   0.935741 0.000 0.992 0.000 0.008 0.000
#> SRR1551072     2  0.2230   0.929725 0.000 0.884 0.116 0.000 0.000
#> SRR1551073     5  0.7616   0.119844 0.000 0.384 0.136 0.092 0.388
#> SRR1551074     5  0.4971  -0.000036 0.472 0.000 0.020 0.004 0.504
#> SRR1551075     3  0.3857   0.981519 0.312 0.000 0.688 0.000 0.000
#> SRR1551076     1  0.0000   0.929696 1.000 0.000 0.000 0.000 0.000
#> SRR1551077     4  0.2970   0.990609 0.004 0.168 0.000 0.828 0.000
#> SRR1551078     2  0.0290   0.935741 0.000 0.992 0.000 0.008 0.000
#> SRR1551079     2  0.2624   0.922018 0.000 0.872 0.116 0.012 0.000
#> SRR1551080     5  0.7589   0.120873 0.000 0.384 0.132 0.092 0.392
#> SRR1551081     5  0.4971  -0.000036 0.472 0.000 0.020 0.004 0.504
#> SRR1551082     3  0.3857   0.981519 0.312 0.000 0.688 0.000 0.000
#> SRR1551083     1  0.0000   0.929696 1.000 0.000 0.000 0.000 0.000
#> SRR1551084     4  0.2970   0.990609 0.004 0.168 0.000 0.828 0.000
#> SRR1551085     2  0.0290   0.935741 0.000 0.992 0.000 0.008 0.000
#> SRR1551086     2  0.2230   0.929725 0.000 0.884 0.116 0.000 0.000
#> SRR1551088     3  0.3857   0.981519 0.312 0.000 0.688 0.000 0.000
#> SRR1551087     5  0.4971  -0.000036 0.472 0.000 0.020 0.004 0.504
#> SRR1551089     1  0.0000   0.929696 1.000 0.000 0.000 0.000 0.000
#> SRR1551090     4  0.2970   0.990609 0.004 0.168 0.000 0.828 0.000
#> SRR1551091     2  0.0290   0.935741 0.000 0.992 0.000 0.008 0.000
#> SRR1551092     2  0.2513   0.930215 0.000 0.876 0.116 0.008 0.000
#> SRR1551093     5  0.7616   0.119844 0.000 0.384 0.136 0.092 0.388
#> SRR1551094     5  0.4971  -0.000036 0.472 0.000 0.020 0.004 0.504
#> SRR1551095     3  0.3857   0.981519 0.312 0.000 0.688 0.000 0.000
#> SRR1551096     1  0.0000   0.929696 1.000 0.000 0.000 0.000 0.000
#> SRR1551097     4  0.3128   0.990513 0.004 0.168 0.004 0.824 0.000
#> SRR1551098     2  0.0290   0.935741 0.000 0.992 0.000 0.008 0.000
#> SRR1551099     2  0.2513   0.930215 0.000 0.876 0.116 0.008 0.000
#> SRR1551101     3  0.5527   0.944793 0.312 0.000 0.620 0.032 0.036
#> SRR1551100     5  0.4971  -0.000036 0.472 0.000 0.020 0.004 0.504
#> SRR1551102     1  0.0162   0.927674 0.996 0.000 0.000 0.004 0.000
#> SRR1551103     4  0.3128   0.990513 0.004 0.168 0.004 0.824 0.000
#> SRR1551104     2  0.0290   0.935741 0.000 0.992 0.000 0.008 0.000
#> SRR1551105     2  0.2230   0.929725 0.000 0.884 0.116 0.000 0.000
#> SRR1551106     5  0.7589   0.120873 0.000 0.384 0.132 0.092 0.392
#> SRR1551107     5  0.4971  -0.000036 0.472 0.000 0.020 0.004 0.504
#> SRR1551108     3  0.3857   0.981519 0.312 0.000 0.688 0.000 0.000
#> SRR1551109     1  0.0000   0.929696 1.000 0.000 0.000 0.000 0.000
#> SRR1551110     4  0.3128   0.990513 0.004 0.168 0.004 0.824 0.000
#> SRR1551111     2  0.0290   0.935741 0.000 0.992 0.000 0.008 0.000
#> SRR1551112     2  0.2230   0.929725 0.000 0.884 0.116 0.000 0.000
#> SRR1551113     5  0.7616   0.119695 0.000 0.384 0.136 0.092 0.388
#> SRR1551114     5  0.4971  -0.000036 0.472 0.000 0.020 0.004 0.504

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1550981     5  0.3445     0.9661 0.260 0.000 0.000 0.008 0.732 0.000
#> SRR1550982     5  0.3445     0.9661 0.260 0.000 0.000 0.008 0.732 0.000
#> SRR1550983     5  0.3445     0.9661 0.260 0.000 0.000 0.008 0.732 0.000
#> SRR1550984     5  0.3787     0.9574 0.260 0.000 0.008 0.012 0.720 0.000
#> SRR1550986     3  0.3817     0.9728 0.252 0.000 0.720 0.000 0.028 0.000
#> SRR1550985     5  0.3337     0.9658 0.260 0.000 0.000 0.004 0.736 0.000
#> SRR1550988     4  0.2420     0.9800 0.000 0.040 0.000 0.884 0.000 0.076
#> SRR1550987     1  0.0000     0.9276 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1550989     2  0.3670     0.7801 0.000 0.704 0.000 0.012 0.000 0.284
#> SRR1550990     2  0.7103     0.7703 0.000 0.404 0.208 0.000 0.092 0.296
#> SRR1550991     6  0.0146     0.9944 0.000 0.000 0.000 0.004 0.000 0.996
#> SRR1550992     3  0.3817     0.9728 0.252 0.000 0.720 0.000 0.028 0.000
#> SRR1550994     4  0.3935     0.9436 0.000 0.056 0.012 0.816 0.040 0.076
#> SRR1550993     1  0.0000     0.9276 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1550995     2  0.3670     0.7801 0.000 0.704 0.000 0.012 0.000 0.284
#> SRR1550996     2  0.7049     0.7720 0.000 0.408 0.212 0.000 0.084 0.296
#> SRR1550997     3  0.5429     0.9271 0.252 0.076 0.628 0.000 0.044 0.000
#> SRR1550998     1  0.1116     0.9076 0.960 0.008 0.000 0.028 0.000 0.004
#> SRR1551000     2  0.3670     0.7801 0.000 0.704 0.000 0.012 0.000 0.284
#> SRR1550999     4  0.4785     0.9112 0.000 0.080 0.028 0.764 0.052 0.076
#> SRR1551001     2  0.7063     0.7706 0.000 0.404 0.216 0.000 0.084 0.296
#> SRR1551002     3  0.3817     0.9728 0.252 0.000 0.720 0.000 0.028 0.000
#> SRR1551003     1  0.0000     0.9276 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551004     4  0.3935     0.9436 0.000 0.056 0.012 0.816 0.040 0.076
#> SRR1551006     2  0.7063     0.7706 0.000 0.404 0.216 0.000 0.084 0.296
#> SRR1551005     2  0.3670     0.7801 0.000 0.704 0.000 0.012 0.000 0.284
#> SRR1551007     6  0.0405     0.9938 0.000 0.000 0.000 0.004 0.008 0.988
#> SRR1551008     3  0.3817     0.9728 0.252 0.000 0.720 0.000 0.028 0.000
#> SRR1551009     1  0.0000     0.9276 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551010     4  0.2420     0.9800 0.000 0.040 0.000 0.884 0.000 0.076
#> SRR1551012     2  0.7383     0.7733 0.000 0.404 0.208 0.012 0.092 0.284
#> SRR1551011     2  0.3670     0.7801 0.000 0.704 0.000 0.012 0.000 0.284
#> SRR1551013     3  0.4158     0.9674 0.252 0.000 0.708 0.012 0.028 0.000
#> SRR1551014     1  0.0508     0.9206 0.984 0.000 0.004 0.012 0.000 0.000
#> SRR1551015     4  0.5229     0.8902 0.000 0.080 0.044 0.736 0.064 0.076
#> SRR1551016     2  0.4582     0.7758 0.000 0.652 0.040 0.000 0.012 0.296
#> SRR1551017     2  0.7168     0.7137 0.000 0.360 0.216 0.000 0.092 0.332
#> SRR1551018     6  0.0692     0.9894 0.000 0.000 0.000 0.004 0.020 0.976
#> SRR1551019     5  0.6524     0.3665 0.340 0.160 0.004 0.040 0.456 0.000
#> SRR1551021     1  0.0508     0.9206 0.984 0.000 0.004 0.012 0.000 0.000
#> SRR1551022     4  0.3195     0.9654 0.000 0.044 0.012 0.856 0.012 0.076
#> SRR1551023     2  0.3670     0.7801 0.000 0.704 0.000 0.012 0.000 0.284
#> SRR1551020     3  0.4499     0.9583 0.252 0.004 0.692 0.012 0.040 0.000
#> SRR1551024     2  0.7769     0.7070 0.000 0.376 0.196 0.016 0.156 0.256
#> SRR1551026     3  0.4499     0.9583 0.252 0.004 0.692 0.012 0.040 0.000
#> SRR1551025     1  0.7610    -0.0131 0.408 0.160 0.088 0.040 0.304 0.000
#> SRR1551027     1  0.0508     0.9206 0.984 0.000 0.004 0.012 0.000 0.000
#> SRR1551028     4  0.2350     0.9801 0.000 0.036 0.000 0.888 0.000 0.076
#> SRR1551029     2  0.3670     0.7801 0.000 0.704 0.000 0.012 0.000 0.284
#> SRR1551030     2  0.7063     0.7706 0.000 0.404 0.216 0.000 0.084 0.296
#> SRR1551031     6  0.0508     0.9906 0.000 0.000 0.000 0.004 0.012 0.984
#> SRR1551032     1  0.6745    -0.1752 0.408 0.160 0.012 0.040 0.380 0.000
#> SRR1551034     1  0.0000     0.9276 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551033     3  0.3817     0.9728 0.252 0.000 0.720 0.000 0.028 0.000
#> SRR1551035     4  0.2350     0.9801 0.000 0.036 0.000 0.888 0.000 0.076
#> SRR1551036     2  0.3670     0.7801 0.000 0.704 0.000 0.012 0.000 0.284
#> SRR1551037     2  0.7063     0.7706 0.000 0.404 0.216 0.000 0.084 0.296
#> SRR1551038     6  0.0146     0.9944 0.000 0.000 0.000 0.004 0.000 0.996
#> SRR1551039     5  0.3337     0.9671 0.260 0.000 0.000 0.004 0.736 0.000
#> SRR1551040     3  0.5429     0.9271 0.252 0.076 0.628 0.000 0.044 0.000
#> SRR1551041     1  0.1116     0.9076 0.960 0.008 0.000 0.028 0.000 0.004
#> SRR1551042     4  0.2420     0.9791 0.000 0.040 0.000 0.884 0.000 0.076
#> SRR1551043     2  0.3670     0.7801 0.000 0.704 0.000 0.012 0.000 0.284
#> SRR1551044     2  0.7063     0.7706 0.000 0.404 0.216 0.000 0.084 0.296
#> SRR1551045     6  0.0291     0.9934 0.000 0.000 0.000 0.004 0.004 0.992
#> SRR1551046     5  0.3445     0.9661 0.260 0.000 0.000 0.008 0.732 0.000
#> SRR1551047     3  0.5429     0.9271 0.252 0.076 0.628 0.000 0.044 0.000
#> SRR1551048     1  0.0000     0.9276 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551049     4  0.2350     0.9801 0.000 0.036 0.000 0.888 0.000 0.076
#> SRR1551050     2  0.3670     0.7801 0.000 0.704 0.000 0.012 0.000 0.284
#> SRR1551051     2  0.7383     0.7733 0.000 0.404 0.208 0.012 0.092 0.284
#> SRR1551052     6  0.0146     0.9944 0.000 0.000 0.000 0.004 0.000 0.996
#> SRR1551053     5  0.3902     0.9535 0.256 0.004 0.008 0.012 0.720 0.000
#> SRR1551054     3  0.5429     0.9271 0.252 0.076 0.628 0.000 0.044 0.000
#> SRR1551055     1  0.1116     0.9076 0.960 0.008 0.000 0.028 0.000 0.004
#> SRR1551056     4  0.2350     0.9801 0.000 0.036 0.000 0.888 0.000 0.076
#> SRR1551057     2  0.3670     0.7801 0.000 0.704 0.000 0.012 0.000 0.284
#> SRR1551058     2  0.7063     0.7706 0.000 0.404 0.216 0.000 0.084 0.296
#> SRR1551059     6  0.0405     0.9938 0.000 0.000 0.000 0.004 0.008 0.988
#> SRR1551060     5  0.3787     0.9574 0.260 0.000 0.008 0.012 0.720 0.000
#> SRR1551061     3  0.3817     0.9728 0.252 0.000 0.720 0.000 0.028 0.000
#> SRR1551062     1  0.0000     0.9276 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551063     4  0.2420     0.9800 0.000 0.040 0.000 0.884 0.000 0.076
#> SRR1551064     2  0.3670     0.7801 0.000 0.704 0.000 0.012 0.000 0.284
#> SRR1551065     2  0.7103     0.7703 0.000 0.404 0.208 0.000 0.092 0.296
#> SRR1551066     6  0.0146     0.9944 0.000 0.000 0.000 0.004 0.000 0.996
#> SRR1551067     5  0.3198     0.9673 0.260 0.000 0.000 0.000 0.740 0.000
#> SRR1551068     3  0.3817     0.9728 0.252 0.000 0.720 0.000 0.028 0.000
#> SRR1551069     1  0.0000     0.9276 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551070     4  0.2420     0.9800 0.000 0.040 0.000 0.884 0.000 0.076
#> SRR1551071     2  0.3670     0.7801 0.000 0.704 0.000 0.012 0.000 0.284
#> SRR1551072     2  0.7103     0.7703 0.000 0.404 0.208 0.000 0.092 0.296
#> SRR1551073     6  0.0405     0.9938 0.000 0.000 0.000 0.004 0.008 0.988
#> SRR1551074     5  0.3198     0.9673 0.260 0.000 0.000 0.000 0.740 0.000
#> SRR1551075     3  0.3817     0.9728 0.252 0.000 0.720 0.000 0.028 0.000
#> SRR1551076     1  0.0000     0.9276 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551077     4  0.2350     0.9801 0.000 0.036 0.000 0.888 0.000 0.076
#> SRR1551078     2  0.3670     0.7801 0.000 0.704 0.000 0.012 0.000 0.284
#> SRR1551079     2  0.7063     0.7706 0.000 0.404 0.216 0.000 0.084 0.296
#> SRR1551080     6  0.0291     0.9939 0.000 0.000 0.000 0.004 0.004 0.992
#> SRR1551081     5  0.3198     0.9673 0.260 0.000 0.000 0.000 0.740 0.000
#> SRR1551082     3  0.3817     0.9728 0.252 0.000 0.720 0.000 0.028 0.000
#> SRR1551083     1  0.0000     0.9276 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551084     4  0.2350     0.9801 0.000 0.036 0.000 0.888 0.000 0.076
#> SRR1551085     2  0.3670     0.7801 0.000 0.704 0.000 0.012 0.000 0.284
#> SRR1551086     2  0.7063     0.7706 0.000 0.404 0.216 0.000 0.084 0.296
#> SRR1551088     3  0.3817     0.9728 0.252 0.000 0.720 0.000 0.028 0.000
#> SRR1551087     5  0.3337     0.9671 0.260 0.000 0.000 0.004 0.736 0.000
#> SRR1551089     1  0.0000     0.9276 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551090     4  0.2350     0.9801 0.000 0.036 0.000 0.888 0.000 0.076
#> SRR1551091     2  0.3670     0.7801 0.000 0.704 0.000 0.012 0.000 0.284
#> SRR1551092     2  0.7383     0.7733 0.000 0.404 0.208 0.012 0.092 0.284
#> SRR1551093     6  0.0405     0.9938 0.000 0.000 0.000 0.004 0.008 0.988
#> SRR1551094     5  0.3337     0.9671 0.260 0.000 0.000 0.004 0.736 0.000
#> SRR1551095     3  0.3817     0.9728 0.252 0.000 0.720 0.000 0.028 0.000
#> SRR1551096     1  0.0000     0.9276 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551097     4  0.2420     0.9800 0.000 0.040 0.000 0.884 0.000 0.076
#> SRR1551098     2  0.3670     0.7801 0.000 0.704 0.000 0.012 0.000 0.284
#> SRR1551099     2  0.7383     0.7733 0.000 0.404 0.208 0.012 0.092 0.284
#> SRR1551101     3  0.5429     0.9271 0.252 0.076 0.628 0.000 0.044 0.000
#> SRR1551100     5  0.3198     0.9673 0.260 0.000 0.000 0.000 0.740 0.000
#> SRR1551102     1  0.1116     0.9076 0.960 0.008 0.000 0.028 0.000 0.004
#> SRR1551103     4  0.2420     0.9800 0.000 0.040 0.000 0.884 0.000 0.076
#> SRR1551104     2  0.3670     0.7801 0.000 0.704 0.000 0.012 0.000 0.284
#> SRR1551105     2  0.7103     0.7703 0.000 0.404 0.208 0.000 0.092 0.296
#> SRR1551106     6  0.0291     0.9934 0.000 0.000 0.000 0.004 0.004 0.992
#> SRR1551107     5  0.3198     0.9673 0.260 0.000 0.000 0.000 0.740 0.000
#> SRR1551108     3  0.3817     0.9728 0.252 0.000 0.720 0.000 0.028 0.000
#> SRR1551109     1  0.0000     0.9276 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551110     4  0.2420     0.9800 0.000 0.040 0.000 0.884 0.000 0.076
#> SRR1551111     2  0.3670     0.7801 0.000 0.704 0.000 0.012 0.000 0.284
#> SRR1551112     2  0.7103     0.7703 0.000 0.404 0.208 0.000 0.092 0.296
#> SRR1551113     6  0.0692     0.9894 0.000 0.000 0.000 0.004 0.020 0.976
#> SRR1551114     5  0.3198     0.9673 0.260 0.000 0.000 0.000 0.740 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15028 rows and 134 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           1.000       1.000         0.4988 0.502   0.502
#> 3 3 1.000           0.991       0.985         0.2384 0.879   0.758
#> 4 4 0.869           0.960       0.957         0.1371 0.918   0.784
#> 5 5 0.886           0.901       0.874         0.0827 0.931   0.770
#> 6 6 1.000           0.986       0.979         0.0723 0.947   0.773

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette p1 p2
#> SRR1550981     1       0          1  1  0
#> SRR1550982     1       0          1  1  0
#> SRR1550983     1       0          1  1  0
#> SRR1550984     1       0          1  1  0
#> SRR1550986     1       0          1  1  0
#> SRR1550985     1       0          1  1  0
#> SRR1550988     2       0          1  0  1
#> SRR1550987     1       0          1  1  0
#> SRR1550989     2       0          1  0  1
#> SRR1550990     2       0          1  0  1
#> SRR1550991     2       0          1  0  1
#> SRR1550992     1       0          1  1  0
#> SRR1550994     2       0          1  0  1
#> SRR1550993     1       0          1  1  0
#> SRR1550995     2       0          1  0  1
#> SRR1550996     2       0          1  0  1
#> SRR1550997     1       0          1  1  0
#> SRR1550998     1       0          1  1  0
#> SRR1551000     2       0          1  0  1
#> SRR1550999     2       0          1  0  1
#> SRR1551001     2       0          1  0  1
#> SRR1551002     1       0          1  1  0
#> SRR1551003     1       0          1  1  0
#> SRR1551004     2       0          1  0  1
#> SRR1551006     2       0          1  0  1
#> SRR1551005     2       0          1  0  1
#> SRR1551007     2       0          1  0  1
#> SRR1551008     1       0          1  1  0
#> SRR1551009     1       0          1  1  0
#> SRR1551010     2       0          1  0  1
#> SRR1551012     2       0          1  0  1
#> SRR1551011     2       0          1  0  1
#> SRR1551013     1       0          1  1  0
#> SRR1551014     1       0          1  1  0
#> SRR1551015     2       0          1  0  1
#> SRR1551016     2       0          1  0  1
#> SRR1551017     2       0          1  0  1
#> SRR1551018     2       0          1  0  1
#> SRR1551019     1       0          1  1  0
#> SRR1551021     1       0          1  1  0
#> SRR1551022     2       0          1  0  1
#> SRR1551023     2       0          1  0  1
#> SRR1551020     1       0          1  1  0
#> SRR1551024     2       0          1  0  1
#> SRR1551026     1       0          1  1  0
#> SRR1551025     1       0          1  1  0
#> SRR1551027     1       0          1  1  0
#> SRR1551028     2       0          1  0  1
#> SRR1551029     2       0          1  0  1
#> SRR1551030     2       0          1  0  1
#> SRR1551031     2       0          1  0  1
#> SRR1551032     1       0          1  1  0
#> SRR1551034     1       0          1  1  0
#> SRR1551033     1       0          1  1  0
#> SRR1551035     2       0          1  0  1
#> SRR1551036     2       0          1  0  1
#> SRR1551037     2       0          1  0  1
#> SRR1551038     2       0          1  0  1
#> SRR1551039     1       0          1  1  0
#> SRR1551040     1       0          1  1  0
#> SRR1551041     1       0          1  1  0
#> SRR1551042     2       0          1  0  1
#> SRR1551043     2       0          1  0  1
#> SRR1551044     2       0          1  0  1
#> SRR1551045     2       0          1  0  1
#> SRR1551046     1       0          1  1  0
#> SRR1551047     1       0          1  1  0
#> SRR1551048     1       0          1  1  0
#> SRR1551049     2       0          1  0  1
#> SRR1551050     2       0          1  0  1
#> SRR1551051     2       0          1  0  1
#> SRR1551052     2       0          1  0  1
#> SRR1551053     1       0          1  1  0
#> SRR1551054     1       0          1  1  0
#> SRR1551055     1       0          1  1  0
#> SRR1551056     2       0          1  0  1
#> SRR1551057     2       0          1  0  1
#> SRR1551058     2       0          1  0  1
#> SRR1551059     2       0          1  0  1
#> SRR1551060     1       0          1  1  0
#> SRR1551061     1       0          1  1  0
#> SRR1551062     1       0          1  1  0
#> SRR1551063     2       0          1  0  1
#> SRR1551064     2       0          1  0  1
#> SRR1551065     2       0          1  0  1
#> SRR1551066     2       0          1  0  1
#> SRR1551067     1       0          1  1  0
#> SRR1551068     1       0          1  1  0
#> SRR1551069     1       0          1  1  0
#> SRR1551070     2       0          1  0  1
#> SRR1551071     2       0          1  0  1
#> SRR1551072     2       0          1  0  1
#> SRR1551073     2       0          1  0  1
#> SRR1551074     1       0          1  1  0
#> SRR1551075     1       0          1  1  0
#> SRR1551076     1       0          1  1  0
#> SRR1551077     2       0          1  0  1
#> SRR1551078     2       0          1  0  1
#> SRR1551079     2       0          1  0  1
#> SRR1551080     2       0          1  0  1
#> SRR1551081     1       0          1  1  0
#> SRR1551082     1       0          1  1  0
#> SRR1551083     1       0          1  1  0
#> SRR1551084     2       0          1  0  1
#> SRR1551085     2       0          1  0  1
#> SRR1551086     2       0          1  0  1
#> SRR1551088     1       0          1  1  0
#> SRR1551087     1       0          1  1  0
#> SRR1551089     1       0          1  1  0
#> SRR1551090     2       0          1  0  1
#> SRR1551091     2       0          1  0  1
#> SRR1551092     2       0          1  0  1
#> SRR1551093     2       0          1  0  1
#> SRR1551094     1       0          1  1  0
#> SRR1551095     1       0          1  1  0
#> SRR1551096     1       0          1  1  0
#> SRR1551097     2       0          1  0  1
#> SRR1551098     2       0          1  0  1
#> SRR1551099     2       0          1  0  1
#> SRR1551101     1       0          1  1  0
#> SRR1551100     1       0          1  1  0
#> SRR1551102     1       0          1  1  0
#> SRR1551103     2       0          1  0  1
#> SRR1551104     2       0          1  0  1
#> SRR1551105     2       0          1  0  1
#> SRR1551106     2       0          1  0  1
#> SRR1551107     1       0          1  1  0
#> SRR1551108     1       0          1  1  0
#> SRR1551109     1       0          1  1  0
#> SRR1551110     2       0          1  0  1
#> SRR1551111     2       0          1  0  1
#> SRR1551112     2       0          1  0  1
#> SRR1551113     2       0          1  0  1
#> SRR1551114     1       0          1  1  0

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1550981     1   0.196      0.964 0.944 0.000 0.056
#> SRR1550982     1   0.196      0.964 0.944 0.000 0.056
#> SRR1550983     1   0.196      0.964 0.944 0.000 0.056
#> SRR1550984     1   0.196      0.964 0.944 0.000 0.056
#> SRR1550986     1   0.000      0.986 1.000 0.000 0.000
#> SRR1550985     1   0.196      0.964 0.944 0.000 0.056
#> SRR1550988     3   0.196      1.000 0.000 0.056 0.944
#> SRR1550987     1   0.000      0.986 1.000 0.000 0.000
#> SRR1550989     2   0.000      1.000 0.000 1.000 0.000
#> SRR1550990     2   0.000      1.000 0.000 1.000 0.000
#> SRR1550991     2   0.000      1.000 0.000 1.000 0.000
#> SRR1550992     1   0.000      0.986 1.000 0.000 0.000
#> SRR1550994     3   0.196      1.000 0.000 0.056 0.944
#> SRR1550993     1   0.000      0.986 1.000 0.000 0.000
#> SRR1550995     2   0.000      1.000 0.000 1.000 0.000
#> SRR1550996     2   0.000      1.000 0.000 1.000 0.000
#> SRR1550997     1   0.000      0.986 1.000 0.000 0.000
#> SRR1550998     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551000     2   0.000      1.000 0.000 1.000 0.000
#> SRR1550999     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551001     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551002     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551003     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551004     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551006     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551005     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551007     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551008     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551009     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551010     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551012     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551011     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551013     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551014     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551015     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551016     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551017     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551018     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551019     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551021     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551022     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551023     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551020     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551024     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551026     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551025     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551027     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551028     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551029     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551030     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551031     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551032     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551034     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551033     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551035     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551036     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551037     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551038     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551039     1   0.196      0.964 0.944 0.000 0.056
#> SRR1551040     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551041     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551042     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551043     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551044     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551045     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551046     1   0.196      0.964 0.944 0.000 0.056
#> SRR1551047     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551048     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551049     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551050     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551051     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551052     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551053     1   0.196      0.964 0.944 0.000 0.056
#> SRR1551054     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551055     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551056     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551057     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551058     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551059     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551060     1   0.196      0.964 0.944 0.000 0.056
#> SRR1551061     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551062     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551063     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551064     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551065     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551066     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551067     1   0.196      0.964 0.944 0.000 0.056
#> SRR1551068     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551069     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551070     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551071     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551072     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551073     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551074     1   0.196      0.964 0.944 0.000 0.056
#> SRR1551075     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551076     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551077     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551078     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551079     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551080     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551081     1   0.196      0.964 0.944 0.000 0.056
#> SRR1551082     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551083     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551084     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551085     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551086     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551088     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551087     1   0.196      0.964 0.944 0.000 0.056
#> SRR1551089     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551090     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551091     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551092     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551093     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551094     1   0.196      0.964 0.944 0.000 0.056
#> SRR1551095     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551096     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551097     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551098     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551099     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551101     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551100     1   0.196      0.964 0.944 0.000 0.056
#> SRR1551102     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551103     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551104     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551105     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551106     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551107     1   0.196      0.964 0.944 0.000 0.056
#> SRR1551108     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551109     1   0.000      0.986 1.000 0.000 0.000
#> SRR1551110     3   0.196      1.000 0.000 0.056 0.944
#> SRR1551111     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551112     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551113     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551114     1   0.196      0.964 0.944 0.000 0.056

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3 p4
#> SRR1550981     1  0.1867      1.000 0.928 0.000 0.072  0
#> SRR1550982     1  0.1867      1.000 0.928 0.000 0.072  0
#> SRR1550983     1  0.1867      1.000 0.928 0.000 0.072  0
#> SRR1550984     1  0.1867      1.000 0.928 0.000 0.072  0
#> SRR1550986     3  0.1637      0.915 0.060 0.000 0.940  0
#> SRR1550985     1  0.1867      1.000 0.928 0.000 0.072  0
#> SRR1550988     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1550987     3  0.2281      0.908 0.096 0.000 0.904  0
#> SRR1550989     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1550990     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1550991     2  0.1867      0.952 0.072 0.928 0.000  0
#> SRR1550992     3  0.1637      0.915 0.060 0.000 0.940  0
#> SRR1550994     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1550993     3  0.2281      0.908 0.096 0.000 0.904  0
#> SRR1550995     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1550996     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1550997     3  0.1637      0.915 0.060 0.000 0.940  0
#> SRR1550998     3  0.2281      0.908 0.096 0.000 0.904  0
#> SRR1551000     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1550999     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551001     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551002     3  0.1637      0.915 0.060 0.000 0.940  0
#> SRR1551003     3  0.2281      0.908 0.096 0.000 0.904  0
#> SRR1551004     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551006     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551005     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551007     2  0.1867      0.952 0.072 0.928 0.000  0
#> SRR1551008     3  0.1637      0.915 0.060 0.000 0.940  0
#> SRR1551009     3  0.2281      0.908 0.096 0.000 0.904  0
#> SRR1551010     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551012     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551011     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551013     3  0.1637      0.915 0.060 0.000 0.940  0
#> SRR1551014     3  0.2281      0.908 0.096 0.000 0.904  0
#> SRR1551015     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551016     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551017     2  0.0469      0.978 0.012 0.988 0.000  0
#> SRR1551018     2  0.1867      0.952 0.072 0.928 0.000  0
#> SRR1551019     3  0.4500      0.676 0.316 0.000 0.684  0
#> SRR1551021     3  0.2281      0.908 0.096 0.000 0.904  0
#> SRR1551022     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551023     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551020     3  0.1637      0.915 0.060 0.000 0.940  0
#> SRR1551024     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551026     3  0.1637      0.915 0.060 0.000 0.940  0
#> SRR1551025     3  0.1637      0.915 0.060 0.000 0.940  0
#> SRR1551027     3  0.2281      0.908 0.096 0.000 0.904  0
#> SRR1551028     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551029     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551030     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551031     2  0.1867      0.952 0.072 0.928 0.000  0
#> SRR1551032     3  0.2149      0.912 0.088 0.000 0.912  0
#> SRR1551034     3  0.2281      0.908 0.096 0.000 0.904  0
#> SRR1551033     3  0.1637      0.915 0.060 0.000 0.940  0
#> SRR1551035     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551036     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551037     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551038     2  0.1867      0.952 0.072 0.928 0.000  0
#> SRR1551039     1  0.1867      1.000 0.928 0.000 0.072  0
#> SRR1551040     3  0.1637      0.915 0.060 0.000 0.940  0
#> SRR1551041     3  0.2281      0.908 0.096 0.000 0.904  0
#> SRR1551042     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551043     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551044     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551045     2  0.1867      0.952 0.072 0.928 0.000  0
#> SRR1551046     1  0.1867      1.000 0.928 0.000 0.072  0
#> SRR1551047     3  0.1637      0.915 0.060 0.000 0.940  0
#> SRR1551048     3  0.2281      0.908 0.096 0.000 0.904  0
#> SRR1551049     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551050     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551051     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551052     2  0.1867      0.952 0.072 0.928 0.000  0
#> SRR1551053     1  0.1867      1.000 0.928 0.000 0.072  0
#> SRR1551054     3  0.1637      0.915 0.060 0.000 0.940  0
#> SRR1551055     3  0.2281      0.908 0.096 0.000 0.904  0
#> SRR1551056     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551057     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551058     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551059     2  0.1867      0.952 0.072 0.928 0.000  0
#> SRR1551060     1  0.1867      1.000 0.928 0.000 0.072  0
#> SRR1551061     3  0.1637      0.915 0.060 0.000 0.940  0
#> SRR1551062     3  0.2281      0.908 0.096 0.000 0.904  0
#> SRR1551063     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551064     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551065     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551066     2  0.1867      0.952 0.072 0.928 0.000  0
#> SRR1551067     1  0.1867      1.000 0.928 0.000 0.072  0
#> SRR1551068     3  0.1637      0.915 0.060 0.000 0.940  0
#> SRR1551069     3  0.2281      0.908 0.096 0.000 0.904  0
#> SRR1551070     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551071     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551072     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551073     2  0.1867      0.952 0.072 0.928 0.000  0
#> SRR1551074     1  0.1867      1.000 0.928 0.000 0.072  0
#> SRR1551075     3  0.1637      0.915 0.060 0.000 0.940  0
#> SRR1551076     3  0.2281      0.908 0.096 0.000 0.904  0
#> SRR1551077     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551078     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551079     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551080     2  0.1867      0.952 0.072 0.928 0.000  0
#> SRR1551081     1  0.1867      1.000 0.928 0.000 0.072  0
#> SRR1551082     3  0.1637      0.915 0.060 0.000 0.940  0
#> SRR1551083     3  0.2281      0.908 0.096 0.000 0.904  0
#> SRR1551084     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551085     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551086     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551088     3  0.1637      0.915 0.060 0.000 0.940  0
#> SRR1551087     1  0.1867      1.000 0.928 0.000 0.072  0
#> SRR1551089     3  0.2281      0.908 0.096 0.000 0.904  0
#> SRR1551090     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551091     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551092     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551093     2  0.1867      0.952 0.072 0.928 0.000  0
#> SRR1551094     1  0.1867      1.000 0.928 0.000 0.072  0
#> SRR1551095     3  0.1637      0.915 0.060 0.000 0.940  0
#> SRR1551096     3  0.2281      0.908 0.096 0.000 0.904  0
#> SRR1551097     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551098     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551099     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551101     3  0.1637      0.915 0.060 0.000 0.940  0
#> SRR1551100     1  0.1867      1.000 0.928 0.000 0.072  0
#> SRR1551102     3  0.2281      0.908 0.096 0.000 0.904  0
#> SRR1551103     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551104     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551105     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551106     2  0.1867      0.952 0.072 0.928 0.000  0
#> SRR1551107     1  0.1867      1.000 0.928 0.000 0.072  0
#> SRR1551108     3  0.1637      0.915 0.060 0.000 0.940  0
#> SRR1551109     3  0.2281      0.908 0.096 0.000 0.904  0
#> SRR1551110     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551111     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551112     2  0.0000      0.983 0.000 1.000 0.000  0
#> SRR1551113     2  0.1867      0.952 0.072 0.928 0.000  0
#> SRR1551114     1  0.1867      1.000 0.928 0.000 0.072  0

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3 p4    p5
#> SRR1550981     5   0.000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1550982     5   0.000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1550983     5   0.000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1550984     5   0.000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1550986     3   0.463      0.777 0.444 0.000 0.544  0 0.012
#> SRR1550985     5   0.000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1550988     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1550987     3   0.029      0.750 0.000 0.000 0.992  0 0.008
#> SRR1550989     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1550990     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1550991     1   0.427      0.888 0.556 0.444 0.000  0 0.000
#> SRR1550992     3   0.463      0.777 0.444 0.000 0.544  0 0.012
#> SRR1550994     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1550993     3   0.029      0.750 0.000 0.000 0.992  0 0.008
#> SRR1550995     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1550996     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1550997     3   0.463      0.777 0.444 0.000 0.544  0 0.012
#> SRR1550998     3   0.029      0.750 0.000 0.000 0.992  0 0.008
#> SRR1551000     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1550999     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551001     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551002     3   0.463      0.777 0.444 0.000 0.544  0 0.012
#> SRR1551003     3   0.029      0.750 0.000 0.000 0.992  0 0.008
#> SRR1551004     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551006     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551005     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551007     1   0.427      0.888 0.556 0.444 0.000  0 0.000
#> SRR1551008     3   0.463      0.777 0.444 0.000 0.544  0 0.012
#> SRR1551009     3   0.029      0.750 0.000 0.000 0.992  0 0.008
#> SRR1551010     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551012     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551011     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551013     3   0.463      0.777 0.444 0.000 0.544  0 0.012
#> SRR1551014     3   0.029      0.750 0.000 0.000 0.992  0 0.008
#> SRR1551015     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551016     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551017     2   0.120      0.912 0.048 0.952 0.000  0 0.000
#> SRR1551018     1   0.427      0.888 0.556 0.444 0.000  0 0.000
#> SRR1551019     1   0.659     -0.635 0.428 0.000 0.360  0 0.212
#> SRR1551021     3   0.029      0.750 0.000 0.000 0.992  0 0.008
#> SRR1551022     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551023     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551020     3   0.463      0.777 0.444 0.000 0.544  0 0.012
#> SRR1551024     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551026     3   0.463      0.777 0.444 0.000 0.544  0 0.012
#> SRR1551025     3   0.463      0.777 0.444 0.000 0.544  0 0.012
#> SRR1551027     3   0.029      0.750 0.000 0.000 0.992  0 0.008
#> SRR1551028     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551029     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551030     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551031     1   0.427      0.888 0.556 0.444 0.000  0 0.000
#> SRR1551032     3   0.472      0.775 0.444 0.000 0.540  0 0.016
#> SRR1551034     3   0.029      0.750 0.000 0.000 0.992  0 0.008
#> SRR1551033     3   0.463      0.777 0.444 0.000 0.544  0 0.012
#> SRR1551035     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551036     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551037     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551038     1   0.427      0.888 0.556 0.444 0.000  0 0.000
#> SRR1551039     5   0.000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551040     3   0.463      0.777 0.444 0.000 0.544  0 0.012
#> SRR1551041     3   0.029      0.750 0.000 0.000 0.992  0 0.008
#> SRR1551042     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551043     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551044     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551045     1   0.427      0.888 0.556 0.444 0.000  0 0.000
#> SRR1551046     5   0.000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551047     3   0.463      0.777 0.444 0.000 0.544  0 0.012
#> SRR1551048     3   0.029      0.750 0.000 0.000 0.992  0 0.008
#> SRR1551049     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551050     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551051     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551052     1   0.427      0.888 0.556 0.444 0.000  0 0.000
#> SRR1551053     5   0.000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551054     3   0.463      0.777 0.444 0.000 0.544  0 0.012
#> SRR1551055     3   0.029      0.750 0.000 0.000 0.992  0 0.008
#> SRR1551056     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551057     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551058     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551059     1   0.427      0.888 0.556 0.444 0.000  0 0.000
#> SRR1551060     5   0.000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551061     3   0.463      0.777 0.444 0.000 0.544  0 0.012
#> SRR1551062     3   0.029      0.750 0.000 0.000 0.992  0 0.008
#> SRR1551063     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551064     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551065     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551066     1   0.427      0.888 0.556 0.444 0.000  0 0.000
#> SRR1551067     5   0.000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551068     3   0.463      0.777 0.444 0.000 0.544  0 0.012
#> SRR1551069     3   0.029      0.750 0.000 0.000 0.992  0 0.008
#> SRR1551070     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551071     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551072     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551073     1   0.427      0.888 0.556 0.444 0.000  0 0.000
#> SRR1551074     5   0.000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551075     3   0.463      0.777 0.444 0.000 0.544  0 0.012
#> SRR1551076     3   0.029      0.750 0.000 0.000 0.992  0 0.008
#> SRR1551077     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551078     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551079     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551080     1   0.427      0.888 0.556 0.444 0.000  0 0.000
#> SRR1551081     5   0.000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551082     3   0.463      0.777 0.444 0.000 0.544  0 0.012
#> SRR1551083     3   0.029      0.750 0.000 0.000 0.992  0 0.008
#> SRR1551084     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551085     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551086     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551088     3   0.463      0.777 0.444 0.000 0.544  0 0.012
#> SRR1551087     5   0.000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551089     3   0.029      0.750 0.000 0.000 0.992  0 0.008
#> SRR1551090     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551091     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551092     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551093     1   0.427      0.888 0.556 0.444 0.000  0 0.000
#> SRR1551094     5   0.000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551095     3   0.463      0.777 0.444 0.000 0.544  0 0.012
#> SRR1551096     3   0.029      0.750 0.000 0.000 0.992  0 0.008
#> SRR1551097     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551098     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551099     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551101     3   0.463      0.777 0.444 0.000 0.544  0 0.012
#> SRR1551100     5   0.000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551102     3   0.029      0.750 0.000 0.000 0.992  0 0.008
#> SRR1551103     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551104     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551105     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551106     1   0.427      0.888 0.556 0.444 0.000  0 0.000
#> SRR1551107     5   0.000      1.000 0.000 0.000 0.000  0 1.000
#> SRR1551108     3   0.463      0.777 0.444 0.000 0.544  0 0.012
#> SRR1551109     3   0.029      0.750 0.000 0.000 0.992  0 0.008
#> SRR1551110     4   0.000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551111     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551112     2   0.000      0.998 0.000 1.000 0.000  0 0.000
#> SRR1551113     1   0.427      0.888 0.556 0.444 0.000  0 0.000
#> SRR1551114     5   0.000      1.000 0.000 0.000 0.000  0 1.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3 p4   p5    p6
#> SRR1550981     5  0.0000      1.000 0.000 0.000 0.000  0 1.00 0.000
#> SRR1550982     5  0.0000      1.000 0.000 0.000 0.000  0 1.00 0.000
#> SRR1550983     5  0.0000      1.000 0.000 0.000 0.000  0 1.00 0.000
#> SRR1550984     5  0.0000      1.000 0.000 0.000 0.000  0 1.00 0.000
#> SRR1550986     3  0.0000      0.988 0.000 0.000 1.000  0 0.00 0.000
#> SRR1550985     5  0.0000      1.000 0.000 0.000 0.000  0 1.00 0.000
#> SRR1550988     4  0.0000      1.000 0.000 0.000 0.000  1 0.00 0.000
#> SRR1550987     1  0.1267      1.000 0.940 0.000 0.060  0 0.00 0.000
#> SRR1550989     2  0.0000      0.973 0.000 1.000 0.000  0 0.00 0.000
#> SRR1550990     2  0.1204      0.970 0.056 0.944 0.000  0 0.00 0.000
#> SRR1550991     6  0.0363      1.000 0.000 0.012 0.000  0 0.00 0.988
#> SRR1550992     3  0.0000      0.988 0.000 0.000 1.000  0 0.00 0.000
#> SRR1550994     4  0.0000      1.000 0.000 0.000 0.000  1 0.00 0.000
#> SRR1550993     1  0.1267      1.000 0.940 0.000 0.060  0 0.00 0.000
#> SRR1550995     2  0.0000      0.973 0.000 1.000 0.000  0 0.00 0.000
#> SRR1550996     2  0.1141      0.970 0.052 0.948 0.000  0 0.00 0.000
#> SRR1550997     3  0.0000      0.988 0.000 0.000 1.000  0 0.00 0.000
#> SRR1550998     1  0.1267      1.000 0.940 0.000 0.060  0 0.00 0.000
#> SRR1551000     2  0.0000      0.973 0.000 1.000 0.000  0 0.00 0.000
#> SRR1550999     4  0.0000      1.000 0.000 0.000 0.000  1 0.00 0.000
#> SRR1551001     2  0.1204      0.970 0.056 0.944 0.000  0 0.00 0.000
#> SRR1551002     3  0.0000      0.988 0.000 0.000 1.000  0 0.00 0.000
#> SRR1551003     1  0.1267      1.000 0.940 0.000 0.060  0 0.00 0.000
#> SRR1551004     4  0.0000      1.000 0.000 0.000 0.000  1 0.00 0.000
#> SRR1551006     2  0.1204      0.970 0.056 0.944 0.000  0 0.00 0.000
#> SRR1551005     2  0.0000      0.973 0.000 1.000 0.000  0 0.00 0.000
#> SRR1551007     6  0.0363      1.000 0.000 0.012 0.000  0 0.00 0.988
#> SRR1551008     3  0.0000      0.988 0.000 0.000 1.000  0 0.00 0.000
#> SRR1551009     1  0.1267      1.000 0.940 0.000 0.060  0 0.00 0.000
#> SRR1551010     4  0.0000      1.000 0.000 0.000 0.000  1 0.00 0.000
#> SRR1551012     2  0.1204      0.970 0.056 0.944 0.000  0 0.00 0.000
#> SRR1551011     2  0.0000      0.973 0.000 1.000 0.000  0 0.00 0.000
#> SRR1551013     3  0.0000      0.988 0.000 0.000 1.000  0 0.00 0.000
#> SRR1551014     1  0.1267      1.000 0.940 0.000 0.060  0 0.00 0.000
#> SRR1551015     4  0.0000      1.000 0.000 0.000 0.000  1 0.00 0.000
#> SRR1551016     2  0.0260      0.973 0.008 0.992 0.000  0 0.00 0.000
#> SRR1551017     2  0.3254      0.845 0.056 0.820 0.000  0 0.00 0.124
#> SRR1551018     6  0.0363      1.000 0.000 0.012 0.000  0 0.00 0.988
#> SRR1551019     3  0.3287      0.709 0.000 0.000 0.768  0 0.22 0.012
#> SRR1551021     1  0.1267      1.000 0.940 0.000 0.060  0 0.00 0.000
#> SRR1551022     4  0.0000      1.000 0.000 0.000 0.000  1 0.00 0.000
#> SRR1551023     2  0.0000      0.973 0.000 1.000 0.000  0 0.00 0.000
#> SRR1551020     3  0.0000      0.988 0.000 0.000 1.000  0 0.00 0.000
#> SRR1551024     2  0.0146      0.972 0.004 0.996 0.000  0 0.00 0.000
#> SRR1551026     3  0.0000      0.988 0.000 0.000 1.000  0 0.00 0.000
#> SRR1551025     3  0.0363      0.981 0.000 0.000 0.988  0 0.00 0.012
#> SRR1551027     1  0.1267      1.000 0.940 0.000 0.060  0 0.00 0.000
#> SRR1551028     4  0.0000      1.000 0.000 0.000 0.000  1 0.00 0.000
#> SRR1551029     2  0.0000      0.973 0.000 1.000 0.000  0 0.00 0.000
#> SRR1551030     2  0.1204      0.970 0.056 0.944 0.000  0 0.00 0.000
#> SRR1551031     6  0.0363      1.000 0.000 0.012 0.000  0 0.00 0.988
#> SRR1551032     3  0.0363      0.981 0.000 0.000 0.988  0 0.00 0.012
#> SRR1551034     1  0.1267      1.000 0.940 0.000 0.060  0 0.00 0.000
#> SRR1551033     3  0.0000      0.988 0.000 0.000 1.000  0 0.00 0.000
#> SRR1551035     4  0.0000      1.000 0.000 0.000 0.000  1 0.00 0.000
#> SRR1551036     2  0.0000      0.973 0.000 1.000 0.000  0 0.00 0.000
#> SRR1551037     2  0.1204      0.970 0.056 0.944 0.000  0 0.00 0.000
#> SRR1551038     6  0.0363      1.000 0.000 0.012 0.000  0 0.00 0.988
#> SRR1551039     5  0.0000      1.000 0.000 0.000 0.000  0 1.00 0.000
#> SRR1551040     3  0.0000      0.988 0.000 0.000 1.000  0 0.00 0.000
#> SRR1551041     1  0.1267      1.000 0.940 0.000 0.060  0 0.00 0.000
#> SRR1551042     4  0.0000      1.000 0.000 0.000 0.000  1 0.00 0.000
#> SRR1551043     2  0.0000      0.973 0.000 1.000 0.000  0 0.00 0.000
#> SRR1551044     2  0.1204      0.970 0.056 0.944 0.000  0 0.00 0.000
#> SRR1551045     6  0.0363      1.000 0.000 0.012 0.000  0 0.00 0.988
#> SRR1551046     5  0.0000      1.000 0.000 0.000 0.000  0 1.00 0.000
#> SRR1551047     3  0.0000      0.988 0.000 0.000 1.000  0 0.00 0.000
#> SRR1551048     1  0.1267      1.000 0.940 0.000 0.060  0 0.00 0.000
#> SRR1551049     4  0.0000      1.000 0.000 0.000 0.000  1 0.00 0.000
#> SRR1551050     2  0.0000      0.973 0.000 1.000 0.000  0 0.00 0.000
#> SRR1551051     2  0.1204      0.970 0.056 0.944 0.000  0 0.00 0.000
#> SRR1551052     6  0.0363      1.000 0.000 0.012 0.000  0 0.00 0.988
#> SRR1551053     5  0.0000      1.000 0.000 0.000 0.000  0 1.00 0.000
#> SRR1551054     3  0.0000      0.988 0.000 0.000 1.000  0 0.00 0.000
#> SRR1551055     1  0.1267      1.000 0.940 0.000 0.060  0 0.00 0.000
#> SRR1551056     4  0.0000      1.000 0.000 0.000 0.000  1 0.00 0.000
#> SRR1551057     2  0.0000      0.973 0.000 1.000 0.000  0 0.00 0.000
#> SRR1551058     2  0.1204      0.970 0.056 0.944 0.000  0 0.00 0.000
#> SRR1551059     6  0.0363      1.000 0.000 0.012 0.000  0 0.00 0.988
#> SRR1551060     5  0.0000      1.000 0.000 0.000 0.000  0 1.00 0.000
#> SRR1551061     3  0.0000      0.988 0.000 0.000 1.000  0 0.00 0.000
#> SRR1551062     1  0.1267      1.000 0.940 0.000 0.060  0 0.00 0.000
#> SRR1551063     4  0.0000      1.000 0.000 0.000 0.000  1 0.00 0.000
#> SRR1551064     2  0.0000      0.973 0.000 1.000 0.000  0 0.00 0.000
#> SRR1551065     2  0.1204      0.970 0.056 0.944 0.000  0 0.00 0.000
#> SRR1551066     6  0.0363      1.000 0.000 0.012 0.000  0 0.00 0.988
#> SRR1551067     5  0.0000      1.000 0.000 0.000 0.000  0 1.00 0.000
#> SRR1551068     3  0.0000      0.988 0.000 0.000 1.000  0 0.00 0.000
#> SRR1551069     1  0.1267      1.000 0.940 0.000 0.060  0 0.00 0.000
#> SRR1551070     4  0.0000      1.000 0.000 0.000 0.000  1 0.00 0.000
#> SRR1551071     2  0.0000      0.973 0.000 1.000 0.000  0 0.00 0.000
#> SRR1551072     2  0.1204      0.970 0.056 0.944 0.000  0 0.00 0.000
#> SRR1551073     6  0.0363      1.000 0.000 0.012 0.000  0 0.00 0.988
#> SRR1551074     5  0.0000      1.000 0.000 0.000 0.000  0 1.00 0.000
#> SRR1551075     3  0.0000      0.988 0.000 0.000 1.000  0 0.00 0.000
#> SRR1551076     1  0.1267      1.000 0.940 0.000 0.060  0 0.00 0.000
#> SRR1551077     4  0.0000      1.000 0.000 0.000 0.000  1 0.00 0.000
#> SRR1551078     2  0.0000      0.973 0.000 1.000 0.000  0 0.00 0.000
#> SRR1551079     2  0.1204      0.970 0.056 0.944 0.000  0 0.00 0.000
#> SRR1551080     6  0.0363      1.000 0.000 0.012 0.000  0 0.00 0.988
#> SRR1551081     5  0.0000      1.000 0.000 0.000 0.000  0 1.00 0.000
#> SRR1551082     3  0.0000      0.988 0.000 0.000 1.000  0 0.00 0.000
#> SRR1551083     1  0.1267      1.000 0.940 0.000 0.060  0 0.00 0.000
#> SRR1551084     4  0.0000      1.000 0.000 0.000 0.000  1 0.00 0.000
#> SRR1551085     2  0.0000      0.973 0.000 1.000 0.000  0 0.00 0.000
#> SRR1551086     2  0.1204      0.970 0.056 0.944 0.000  0 0.00 0.000
#> SRR1551088     3  0.0000      0.988 0.000 0.000 1.000  0 0.00 0.000
#> SRR1551087     5  0.0000      1.000 0.000 0.000 0.000  0 1.00 0.000
#> SRR1551089     1  0.1267      1.000 0.940 0.000 0.060  0 0.00 0.000
#> SRR1551090     4  0.0000      1.000 0.000 0.000 0.000  1 0.00 0.000
#> SRR1551091     2  0.0000      0.973 0.000 1.000 0.000  0 0.00 0.000
#> SRR1551092     2  0.1204      0.970 0.056 0.944 0.000  0 0.00 0.000
#> SRR1551093     6  0.0363      1.000 0.000 0.012 0.000  0 0.00 0.988
#> SRR1551094     5  0.0000      1.000 0.000 0.000 0.000  0 1.00 0.000
#> SRR1551095     3  0.0000      0.988 0.000 0.000 1.000  0 0.00 0.000
#> SRR1551096     1  0.1267      1.000 0.940 0.000 0.060  0 0.00 0.000
#> SRR1551097     4  0.0000      1.000 0.000 0.000 0.000  1 0.00 0.000
#> SRR1551098     2  0.0000      0.973 0.000 1.000 0.000  0 0.00 0.000
#> SRR1551099     2  0.1204      0.970 0.056 0.944 0.000  0 0.00 0.000
#> SRR1551101     3  0.0000      0.988 0.000 0.000 1.000  0 0.00 0.000
#> SRR1551100     5  0.0000      1.000 0.000 0.000 0.000  0 1.00 0.000
#> SRR1551102     1  0.1267      1.000 0.940 0.000 0.060  0 0.00 0.000
#> SRR1551103     4  0.0000      1.000 0.000 0.000 0.000  1 0.00 0.000
#> SRR1551104     2  0.0000      0.973 0.000 1.000 0.000  0 0.00 0.000
#> SRR1551105     2  0.1204      0.970 0.056 0.944 0.000  0 0.00 0.000
#> SRR1551106     6  0.0363      1.000 0.000 0.012 0.000  0 0.00 0.988
#> SRR1551107     5  0.0000      1.000 0.000 0.000 0.000  0 1.00 0.000
#> SRR1551108     3  0.0000      0.988 0.000 0.000 1.000  0 0.00 0.000
#> SRR1551109     1  0.1267      1.000 0.940 0.000 0.060  0 0.00 0.000
#> SRR1551110     4  0.0000      1.000 0.000 0.000 0.000  1 0.00 0.000
#> SRR1551111     2  0.0000      0.973 0.000 1.000 0.000  0 0.00 0.000
#> SRR1551112     2  0.1204      0.970 0.056 0.944 0.000  0 0.00 0.000
#> SRR1551113     6  0.0363      1.000 0.000 0.012 0.000  0 0.00 0.988
#> SRR1551114     5  0.0000      1.000 0.000 0.000 0.000  0 1.00 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15028 rows and 134 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.953       0.982         0.4924 0.503   0.503
#> 3 3 0.772           0.840       0.829         0.2174 0.906   0.813
#> 4 4 1.000           0.994       0.997         0.1850 0.858   0.662
#> 5 5 1.000           0.993       0.997         0.0628 0.952   0.834
#> 6 6 1.000           0.992       0.997         0.0863 0.934   0.733

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 4 5

There is also optional best \(k\) = 2 4 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1550981     1   0.000     0.9618 1.000 0.000
#> SRR1550982     1   0.000     0.9618 1.000 0.000
#> SRR1550983     1   0.000     0.9618 1.000 0.000
#> SRR1550984     1   0.999     0.1279 0.520 0.480
#> SRR1550986     1   0.000     0.9618 1.000 0.000
#> SRR1550985     1   1.000     0.0996 0.512 0.488
#> SRR1550988     2   0.000     0.9969 0.000 1.000
#> SRR1550987     1   0.000     0.9618 1.000 0.000
#> SRR1550989     2   0.000     0.9969 0.000 1.000
#> SRR1550990     2   0.000     0.9969 0.000 1.000
#> SRR1550991     2   0.000     0.9969 0.000 1.000
#> SRR1550992     1   0.000     0.9618 1.000 0.000
#> SRR1550994     2   0.000     0.9969 0.000 1.000
#> SRR1550993     1   0.000     0.9618 1.000 0.000
#> SRR1550995     2   0.000     0.9969 0.000 1.000
#> SRR1550996     2   0.000     0.9969 0.000 1.000
#> SRR1550997     1   0.000     0.9618 1.000 0.000
#> SRR1550998     1   0.000     0.9618 1.000 0.000
#> SRR1551000     2   0.000     0.9969 0.000 1.000
#> SRR1550999     2   0.000     0.9969 0.000 1.000
#> SRR1551001     2   0.000     0.9969 0.000 1.000
#> SRR1551002     1   0.000     0.9618 1.000 0.000
#> SRR1551003     1   0.000     0.9618 1.000 0.000
#> SRR1551004     2   0.000     0.9969 0.000 1.000
#> SRR1551006     2   0.000     0.9969 0.000 1.000
#> SRR1551005     2   0.000     0.9969 0.000 1.000
#> SRR1551007     2   0.000     0.9969 0.000 1.000
#> SRR1551008     1   0.000     0.9618 1.000 0.000
#> SRR1551009     1   0.000     0.9618 1.000 0.000
#> SRR1551010     2   0.000     0.9969 0.000 1.000
#> SRR1551012     2   0.000     0.9969 0.000 1.000
#> SRR1551011     2   0.000     0.9969 0.000 1.000
#> SRR1551013     1   0.000     0.9618 1.000 0.000
#> SRR1551014     1   0.000     0.9618 1.000 0.000
#> SRR1551015     2   0.224     0.9588 0.036 0.964
#> SRR1551016     2   0.000     0.9969 0.000 1.000
#> SRR1551017     2   0.000     0.9969 0.000 1.000
#> SRR1551018     2   0.000     0.9969 0.000 1.000
#> SRR1551019     1   0.000     0.9618 1.000 0.000
#> SRR1551021     1   0.000     0.9618 1.000 0.000
#> SRR1551022     2   0.000     0.9969 0.000 1.000
#> SRR1551023     2   0.000     0.9969 0.000 1.000
#> SRR1551020     1   0.000     0.9618 1.000 0.000
#> SRR1551024     2   0.000     0.9969 0.000 1.000
#> SRR1551026     1   0.000     0.9618 1.000 0.000
#> SRR1551025     1   0.000     0.9618 1.000 0.000
#> SRR1551027     1   0.000     0.9618 1.000 0.000
#> SRR1551028     2   0.000     0.9969 0.000 1.000
#> SRR1551029     2   0.000     0.9969 0.000 1.000
#> SRR1551030     2   0.000     0.9969 0.000 1.000
#> SRR1551031     2   0.000     0.9969 0.000 1.000
#> SRR1551032     1   0.000     0.9618 1.000 0.000
#> SRR1551034     1   0.000     0.9618 1.000 0.000
#> SRR1551033     1   0.000     0.9618 1.000 0.000
#> SRR1551035     2   0.000     0.9969 0.000 1.000
#> SRR1551036     2   0.000     0.9969 0.000 1.000
#> SRR1551037     2   0.000     0.9969 0.000 1.000
#> SRR1551038     2   0.000     0.9969 0.000 1.000
#> SRR1551039     1   0.000     0.9618 1.000 0.000
#> SRR1551040     1   0.000     0.9618 1.000 0.000
#> SRR1551041     1   0.000     0.9618 1.000 0.000
#> SRR1551042     2   0.000     0.9969 0.000 1.000
#> SRR1551043     2   0.000     0.9969 0.000 1.000
#> SRR1551044     2   0.000     0.9969 0.000 1.000
#> SRR1551045     2   0.000     0.9969 0.000 1.000
#> SRR1551046     1   0.000     0.9618 1.000 0.000
#> SRR1551047     1   0.000     0.9618 1.000 0.000
#> SRR1551048     1   0.000     0.9618 1.000 0.000
#> SRR1551049     2   0.000     0.9969 0.000 1.000
#> SRR1551050     2   0.000     0.9969 0.000 1.000
#> SRR1551051     2   0.000     0.9969 0.000 1.000
#> SRR1551052     2   0.000     0.9969 0.000 1.000
#> SRR1551053     2   0.689     0.7607 0.184 0.816
#> SRR1551054     1   0.000     0.9618 1.000 0.000
#> SRR1551055     1   0.000     0.9618 1.000 0.000
#> SRR1551056     2   0.000     0.9969 0.000 1.000
#> SRR1551057     2   0.000     0.9969 0.000 1.000
#> SRR1551058     2   0.000     0.9969 0.000 1.000
#> SRR1551059     2   0.000     0.9969 0.000 1.000
#> SRR1551060     1   0.876     0.5838 0.704 0.296
#> SRR1551061     1   0.000     0.9618 1.000 0.000
#> SRR1551062     1   0.000     0.9618 1.000 0.000
#> SRR1551063     2   0.000     0.9969 0.000 1.000
#> SRR1551064     2   0.000     0.9969 0.000 1.000
#> SRR1551065     2   0.000     0.9969 0.000 1.000
#> SRR1551066     2   0.000     0.9969 0.000 1.000
#> SRR1551067     1   0.000     0.9618 1.000 0.000
#> SRR1551068     1   0.000     0.9618 1.000 0.000
#> SRR1551069     1   0.000     0.9618 1.000 0.000
#> SRR1551070     2   0.000     0.9969 0.000 1.000
#> SRR1551071     2   0.000     0.9969 0.000 1.000
#> SRR1551072     2   0.000     0.9969 0.000 1.000
#> SRR1551073     2   0.000     0.9969 0.000 1.000
#> SRR1551074     1   0.000     0.9618 1.000 0.000
#> SRR1551075     1   0.000     0.9618 1.000 0.000
#> SRR1551076     1   0.000     0.9618 1.000 0.000
#> SRR1551077     2   0.000     0.9969 0.000 1.000
#> SRR1551078     2   0.000     0.9969 0.000 1.000
#> SRR1551079     2   0.000     0.9969 0.000 1.000
#> SRR1551080     2   0.000     0.9969 0.000 1.000
#> SRR1551081     1   0.998     0.1415 0.524 0.476
#> SRR1551082     1   0.000     0.9618 1.000 0.000
#> SRR1551083     1   0.000     0.9618 1.000 0.000
#> SRR1551084     2   0.000     0.9969 0.000 1.000
#> SRR1551085     2   0.000     0.9969 0.000 1.000
#> SRR1551086     2   0.000     0.9969 0.000 1.000
#> SRR1551088     1   0.000     0.9618 1.000 0.000
#> SRR1551087     1   0.000     0.9618 1.000 0.000
#> SRR1551089     1   0.000     0.9618 1.000 0.000
#> SRR1551090     2   0.000     0.9969 0.000 1.000
#> SRR1551091     2   0.000     0.9969 0.000 1.000
#> SRR1551092     2   0.000     0.9969 0.000 1.000
#> SRR1551093     2   0.000     0.9969 0.000 1.000
#> SRR1551094     1   0.000     0.9618 1.000 0.000
#> SRR1551095     1   0.000     0.9618 1.000 0.000
#> SRR1551096     1   0.000     0.9618 1.000 0.000
#> SRR1551097     2   0.000     0.9969 0.000 1.000
#> SRR1551098     2   0.000     0.9969 0.000 1.000
#> SRR1551099     2   0.000     0.9969 0.000 1.000
#> SRR1551101     1   0.000     0.9618 1.000 0.000
#> SRR1551100     1   0.987     0.2763 0.568 0.432
#> SRR1551102     1   0.000     0.9618 1.000 0.000
#> SRR1551103     2   0.000     0.9969 0.000 1.000
#> SRR1551104     2   0.000     0.9969 0.000 1.000
#> SRR1551105     2   0.000     0.9969 0.000 1.000
#> SRR1551106     2   0.000     0.9969 0.000 1.000
#> SRR1551107     1   0.000     0.9618 1.000 0.000
#> SRR1551108     1   0.000     0.9618 1.000 0.000
#> SRR1551109     1   0.000     0.9618 1.000 0.000
#> SRR1551110     2   0.000     0.9969 0.000 1.000
#> SRR1551111     2   0.000     0.9969 0.000 1.000
#> SRR1551112     2   0.000     0.9969 0.000 1.000
#> SRR1551113     2   0.000     0.9969 0.000 1.000
#> SRR1551114     1   0.000     0.9618 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1550981     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1550982     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1550983     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1550984     3   0.956    -0.1536 0.236 0.284 0.480
#> SRR1550986     3   0.000     0.8748 0.000 0.000 1.000
#> SRR1550985     3   0.950    -0.0873 0.208 0.316 0.476
#> SRR1550988     2   0.000     0.6075 0.000 1.000 0.000
#> SRR1550987     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1550989     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1550990     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1550991     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1550992     3   0.000     0.8748 0.000 0.000 1.000
#> SRR1550994     2   0.000     0.6075 0.000 1.000 0.000
#> SRR1550993     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1550995     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1550996     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1550997     3   0.000     0.8748 0.000 0.000 1.000
#> SRR1550998     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1551000     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1550999     2   0.000     0.6075 0.000 1.000 0.000
#> SRR1551001     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551002     3   0.000     0.8748 0.000 0.000 1.000
#> SRR1551003     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1551004     2   0.000     0.6075 0.000 1.000 0.000
#> SRR1551006     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551005     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551007     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551008     3   0.000     0.8748 0.000 0.000 1.000
#> SRR1551009     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1551010     2   0.000     0.6075 0.000 1.000 0.000
#> SRR1551012     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551011     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551013     3   0.000     0.8748 0.000 0.000 1.000
#> SRR1551014     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1551015     2   0.000     0.6075 0.000 1.000 0.000
#> SRR1551016     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551017     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551018     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551019     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1551021     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1551022     2   0.000     0.6075 0.000 1.000 0.000
#> SRR1551023     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551020     3   0.000     0.8748 0.000 0.000 1.000
#> SRR1551024     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551026     3   0.000     0.8748 0.000 0.000 1.000
#> SRR1551025     3   0.000     0.8748 0.000 0.000 1.000
#> SRR1551027     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1551028     2   0.000     0.6075 0.000 1.000 0.000
#> SRR1551029     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551030     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551031     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551032     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1551034     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1551033     3   0.000     0.8748 0.000 0.000 1.000
#> SRR1551035     2   0.000     0.6075 0.000 1.000 0.000
#> SRR1551036     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551037     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551038     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551039     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1551040     3   0.000     0.8748 0.000 0.000 1.000
#> SRR1551041     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1551042     2   0.000     0.6075 0.000 1.000 0.000
#> SRR1551043     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551044     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551045     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551046     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1551047     3   0.000     0.8748 0.000 0.000 1.000
#> SRR1551048     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1551049     2   0.000     0.6075 0.000 1.000 0.000
#> SRR1551050     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551051     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551052     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551053     2   0.926     0.6673 0.284 0.520 0.196
#> SRR1551054     3   0.000     0.8748 0.000 0.000 1.000
#> SRR1551055     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1551056     2   0.000     0.6075 0.000 1.000 0.000
#> SRR1551057     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551058     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551059     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551060     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1551061     3   0.000     0.8748 0.000 0.000 1.000
#> SRR1551062     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1551063     2   0.000     0.6075 0.000 1.000 0.000
#> SRR1551064     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551065     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551066     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551067     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1551068     3   0.000     0.8748 0.000 0.000 1.000
#> SRR1551069     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1551070     2   0.000     0.6075 0.000 1.000 0.000
#> SRR1551071     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551072     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551073     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551074     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1551075     3   0.000     0.8748 0.000 0.000 1.000
#> SRR1551076     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1551077     2   0.000     0.6075 0.000 1.000 0.000
#> SRR1551078     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551079     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551080     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551081     3   0.886    -0.6306 0.400 0.120 0.480
#> SRR1551082     3   0.000     0.8748 0.000 0.000 1.000
#> SRR1551083     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1551084     2   0.000     0.6075 0.000 1.000 0.000
#> SRR1551085     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551086     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551088     3   0.000     0.8748 0.000 0.000 1.000
#> SRR1551087     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1551089     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1551090     2   0.000     0.6075 0.000 1.000 0.000
#> SRR1551091     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551092     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551093     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551094     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1551095     3   0.000     0.8748 0.000 0.000 1.000
#> SRR1551096     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1551097     2   0.000     0.6075 0.000 1.000 0.000
#> SRR1551098     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551099     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551101     3   0.000     0.8748 0.000 0.000 1.000
#> SRR1551100     1   0.668     0.9771 0.512 0.008 0.480
#> SRR1551102     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1551103     2   0.000     0.6075 0.000 1.000 0.000
#> SRR1551104     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551105     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551106     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551107     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1551108     3   0.000     0.8748 0.000 0.000 1.000
#> SRR1551109     1   0.630     0.9993 0.520 0.000 0.480
#> SRR1551110     2   0.000     0.6075 0.000 1.000 0.000
#> SRR1551111     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551112     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551113     2   0.630     0.8756 0.480 0.520 0.000
#> SRR1551114     1   0.630     0.9993 0.520 0.000 0.480

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3 p4
#> SRR1550981     1  0.0000      0.992 1.000 0.000 0.000  0
#> SRR1550982     1  0.0000      0.992 1.000 0.000 0.000  0
#> SRR1550983     1  0.0000      0.992 1.000 0.000 0.000  0
#> SRR1550984     1  0.0000      0.992 1.000 0.000 0.000  0
#> SRR1550986     3  0.0000      1.000 0.000 0.000 1.000  0
#> SRR1550985     1  0.0000      0.992 1.000 0.000 0.000  0
#> SRR1550988     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1550987     1  0.0336      0.992 0.992 0.000 0.008  0
#> SRR1550989     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1550990     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1550991     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1550992     3  0.0000      1.000 0.000 0.000 1.000  0
#> SRR1550994     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1550993     1  0.0336      0.992 0.992 0.000 0.008  0
#> SRR1550995     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1550996     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1550997     3  0.0000      1.000 0.000 0.000 1.000  0
#> SRR1550998     1  0.0336      0.992 0.992 0.000 0.008  0
#> SRR1551000     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1550999     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551001     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551002     3  0.0000      1.000 0.000 0.000 1.000  0
#> SRR1551003     1  0.0336      0.992 0.992 0.000 0.008  0
#> SRR1551004     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551006     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551005     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551007     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551008     3  0.0000      1.000 0.000 0.000 1.000  0
#> SRR1551009     1  0.0336      0.992 0.992 0.000 0.008  0
#> SRR1551010     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551012     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551011     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551013     3  0.0000      1.000 0.000 0.000 1.000  0
#> SRR1551014     1  0.0336      0.992 0.992 0.000 0.008  0
#> SRR1551015     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551016     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551017     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551018     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551019     1  0.0000      0.992 1.000 0.000 0.000  0
#> SRR1551021     1  0.0336      0.992 0.992 0.000 0.008  0
#> SRR1551022     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551023     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551020     3  0.0000      1.000 0.000 0.000 1.000  0
#> SRR1551024     2  0.0336      0.989 0.008 0.992 0.000  0
#> SRR1551026     3  0.0000      1.000 0.000 0.000 1.000  0
#> SRR1551025     3  0.0000      1.000 0.000 0.000 1.000  0
#> SRR1551027     1  0.0336      0.992 0.992 0.000 0.008  0
#> SRR1551028     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551029     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551030     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551031     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551032     1  0.3024      0.834 0.852 0.000 0.148  0
#> SRR1551034     1  0.0336      0.992 0.992 0.000 0.008  0
#> SRR1551033     3  0.0000      1.000 0.000 0.000 1.000  0
#> SRR1551035     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551036     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551037     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551038     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551039     1  0.0000      0.992 1.000 0.000 0.000  0
#> SRR1551040     3  0.0000      1.000 0.000 0.000 1.000  0
#> SRR1551041     1  0.0336      0.992 0.992 0.000 0.008  0
#> SRR1551042     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551043     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551044     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551045     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551046     1  0.0000      0.992 1.000 0.000 0.000  0
#> SRR1551047     3  0.0000      1.000 0.000 0.000 1.000  0
#> SRR1551048     1  0.0336      0.992 0.992 0.000 0.008  0
#> SRR1551049     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551050     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551051     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551052     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551053     2  0.3074      0.815 0.152 0.848 0.000  0
#> SRR1551054     3  0.0000      1.000 0.000 0.000 1.000  0
#> SRR1551055     1  0.0336      0.992 0.992 0.000 0.008  0
#> SRR1551056     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551057     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551058     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551059     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551060     1  0.0000      0.992 1.000 0.000 0.000  0
#> SRR1551061     3  0.0000      1.000 0.000 0.000 1.000  0
#> SRR1551062     1  0.0336      0.992 0.992 0.000 0.008  0
#> SRR1551063     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551064     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551065     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551066     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551067     1  0.0000      0.992 1.000 0.000 0.000  0
#> SRR1551068     3  0.0000      1.000 0.000 0.000 1.000  0
#> SRR1551069     1  0.0336      0.992 0.992 0.000 0.008  0
#> SRR1551070     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551071     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551072     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551073     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551074     1  0.0000      0.992 1.000 0.000 0.000  0
#> SRR1551075     3  0.0000      1.000 0.000 0.000 1.000  0
#> SRR1551076     1  0.0336      0.992 0.992 0.000 0.008  0
#> SRR1551077     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551078     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551079     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551080     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551081     1  0.0000      0.992 1.000 0.000 0.000  0
#> SRR1551082     3  0.0000      1.000 0.000 0.000 1.000  0
#> SRR1551083     1  0.0336      0.992 0.992 0.000 0.008  0
#> SRR1551084     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551085     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551086     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551088     3  0.0000      1.000 0.000 0.000 1.000  0
#> SRR1551087     1  0.0000      0.992 1.000 0.000 0.000  0
#> SRR1551089     1  0.0336      0.992 0.992 0.000 0.008  0
#> SRR1551090     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551091     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551092     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551093     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551094     1  0.0000      0.992 1.000 0.000 0.000  0
#> SRR1551095     3  0.0000      1.000 0.000 0.000 1.000  0
#> SRR1551096     1  0.0336      0.992 0.992 0.000 0.008  0
#> SRR1551097     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551098     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551099     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551101     3  0.0000      1.000 0.000 0.000 1.000  0
#> SRR1551100     1  0.0000      0.992 1.000 0.000 0.000  0
#> SRR1551102     1  0.0336      0.992 0.992 0.000 0.008  0
#> SRR1551103     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551104     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551105     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551106     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551107     1  0.0000      0.992 1.000 0.000 0.000  0
#> SRR1551108     3  0.0000      1.000 0.000 0.000 1.000  0
#> SRR1551109     1  0.0336      0.992 0.992 0.000 0.008  0
#> SRR1551110     4  0.0000      1.000 0.000 0.000 0.000  1
#> SRR1551111     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551112     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551113     2  0.0000      0.997 0.000 1.000 0.000  0
#> SRR1551114     1  0.0000      0.992 1.000 0.000 0.000  0

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3 p4    p5
#> SRR1550981     5  0.0000      0.999 0.000 0.000 0.000  0 1.000
#> SRR1550982     5  0.0000      0.999 0.000 0.000 0.000  0 1.000
#> SRR1550983     5  0.0000      0.999 0.000 0.000 0.000  0 1.000
#> SRR1550984     5  0.0000      0.999 0.000 0.000 0.000  0 1.000
#> SRR1550986     3  0.0000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1550985     5  0.0000      0.999 0.000 0.000 0.000  0 1.000
#> SRR1550988     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1550987     1  0.0000      1.000 1.000 0.000 0.000  0 0.000
#> SRR1550989     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1550990     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1550991     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1550992     3  0.0000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1550994     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1550993     1  0.0000      1.000 1.000 0.000 0.000  0 0.000
#> SRR1550995     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1550996     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1550997     3  0.0000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1550998     1  0.0000      1.000 1.000 0.000 0.000  0 0.000
#> SRR1551000     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1550999     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551001     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551002     3  0.0000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551003     1  0.0000      1.000 1.000 0.000 0.000  0 0.000
#> SRR1551004     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551006     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551005     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551007     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551008     3  0.0000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551009     1  0.0000      1.000 1.000 0.000 0.000  0 0.000
#> SRR1551010     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551012     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551011     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551013     3  0.0000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551014     1  0.0000      1.000 1.000 0.000 0.000  0 0.000
#> SRR1551015     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551016     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551017     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551018     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551019     5  0.0000      0.999 0.000 0.000 0.000  0 1.000
#> SRR1551021     1  0.0000      1.000 1.000 0.000 0.000  0 0.000
#> SRR1551022     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551023     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551020     3  0.0000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551024     2  0.3039      0.763 0.000 0.808 0.000  0 0.192
#> SRR1551026     3  0.0000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551025     3  0.3074      0.756 0.000 0.000 0.804  0 0.196
#> SRR1551027     1  0.0000      1.000 1.000 0.000 0.000  0 0.000
#> SRR1551028     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551029     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551030     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551031     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551032     5  0.0451      0.989 0.004 0.000 0.008  0 0.988
#> SRR1551034     1  0.0000      1.000 1.000 0.000 0.000  0 0.000
#> SRR1551033     3  0.0000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551035     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551036     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551037     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551038     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551039     5  0.0000      0.999 0.000 0.000 0.000  0 1.000
#> SRR1551040     3  0.0000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551041     1  0.0000      1.000 1.000 0.000 0.000  0 0.000
#> SRR1551042     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551043     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551044     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551045     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551046     5  0.0000      0.999 0.000 0.000 0.000  0 1.000
#> SRR1551047     3  0.0000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551048     1  0.0000      1.000 1.000 0.000 0.000  0 0.000
#> SRR1551049     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551050     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551051     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551052     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551053     5  0.0000      0.999 0.000 0.000 0.000  0 1.000
#> SRR1551054     3  0.0000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551055     1  0.0000      1.000 1.000 0.000 0.000  0 0.000
#> SRR1551056     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551057     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551058     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551059     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551060     5  0.0000      0.999 0.000 0.000 0.000  0 1.000
#> SRR1551061     3  0.0000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551062     1  0.0000      1.000 1.000 0.000 0.000  0 0.000
#> SRR1551063     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551064     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551065     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551066     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551067     5  0.0000      0.999 0.000 0.000 0.000  0 1.000
#> SRR1551068     3  0.0000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551069     1  0.0000      1.000 1.000 0.000 0.000  0 0.000
#> SRR1551070     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551071     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551072     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551073     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551074     5  0.0000      0.999 0.000 0.000 0.000  0 1.000
#> SRR1551075     3  0.0000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551076     1  0.0000      1.000 1.000 0.000 0.000  0 0.000
#> SRR1551077     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551078     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551079     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551080     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551081     5  0.0000      0.999 0.000 0.000 0.000  0 1.000
#> SRR1551082     3  0.0000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551083     1  0.0000      1.000 1.000 0.000 0.000  0 0.000
#> SRR1551084     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551085     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551086     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551088     3  0.0000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551087     5  0.0000      0.999 0.000 0.000 0.000  0 1.000
#> SRR1551089     1  0.0000      1.000 1.000 0.000 0.000  0 0.000
#> SRR1551090     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551091     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551092     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551093     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551094     5  0.0000      0.999 0.000 0.000 0.000  0 1.000
#> SRR1551095     3  0.0000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551096     1  0.0000      1.000 1.000 0.000 0.000  0 0.000
#> SRR1551097     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551098     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551099     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551101     3  0.0000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551100     5  0.0000      0.999 0.000 0.000 0.000  0 1.000
#> SRR1551102     1  0.0000      1.000 1.000 0.000 0.000  0 0.000
#> SRR1551103     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551104     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551105     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551106     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551107     5  0.0000      0.999 0.000 0.000 0.000  0 1.000
#> SRR1551108     3  0.0000      0.990 0.000 0.000 1.000  0 0.000
#> SRR1551109     1  0.0000      1.000 1.000 0.000 0.000  0 0.000
#> SRR1551110     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551111     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551112     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551113     2  0.0000      0.996 0.000 1.000 0.000  0 0.000
#> SRR1551114     5  0.0000      0.999 0.000 0.000 0.000  0 1.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3 p4    p5    p6
#> SRR1550981     5  0.0000      0.999 0.000 0.000 0.000  0 1.000 0.000
#> SRR1550982     5  0.0000      0.999 0.000 0.000 0.000  0 1.000 0.000
#> SRR1550983     5  0.0000      0.999 0.000 0.000 0.000  0 1.000 0.000
#> SRR1550984     5  0.0000      0.999 0.000 0.000 0.000  0 1.000 0.000
#> SRR1550986     3  0.0000      0.990 0.000 0.000 1.000  0 0.000 0.000
#> SRR1550985     5  0.0000      0.999 0.000 0.000 0.000  0 1.000 0.000
#> SRR1550988     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1550987     1  0.0000      1.000 1.000 0.000 0.000  0 0.000 0.000
#> SRR1550989     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1550990     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1550991     6  0.0000      0.996 0.000 0.000 0.000  0 0.000 1.000
#> SRR1550992     3  0.0000      0.990 0.000 0.000 1.000  0 0.000 0.000
#> SRR1550994     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1550993     1  0.0000      1.000 1.000 0.000 0.000  0 0.000 0.000
#> SRR1550995     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1550996     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1550997     3  0.0000      0.990 0.000 0.000 1.000  0 0.000 0.000
#> SRR1550998     1  0.0000      1.000 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551000     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1550999     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551001     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551002     3  0.0000      0.990 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551003     1  0.0000      1.000 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551004     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551006     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551005     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551007     6  0.0000      0.996 0.000 0.000 0.000  0 0.000 1.000
#> SRR1551008     3  0.0000      0.990 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551009     1  0.0000      1.000 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551010     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551012     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551011     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551013     3  0.0000      0.990 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551014     1  0.0000      1.000 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551015     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551016     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551017     6  0.1075      0.939 0.000 0.048 0.000  0 0.000 0.952
#> SRR1551018     6  0.0000      0.996 0.000 0.000 0.000  0 0.000 1.000
#> SRR1551019     5  0.0000      0.999 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551021     1  0.0000      1.000 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551022     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551023     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551020     3  0.0000      0.990 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551024     2  0.2793      0.750 0.000 0.800 0.000  0 0.200 0.000
#> SRR1551026     3  0.0000      0.990 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551025     3  0.2730      0.762 0.000 0.000 0.808  0 0.192 0.000
#> SRR1551027     1  0.0000      1.000 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551028     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551029     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551030     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551031     6  0.0000      0.996 0.000 0.000 0.000  0 0.000 1.000
#> SRR1551032     5  0.0405      0.988 0.004 0.000 0.008  0 0.988 0.000
#> SRR1551034     1  0.0000      1.000 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551033     3  0.0000      0.990 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551035     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551036     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551037     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551038     6  0.0000      0.996 0.000 0.000 0.000  0 0.000 1.000
#> SRR1551039     5  0.0000      0.999 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551040     3  0.0000      0.990 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551041     1  0.0000      1.000 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551042     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551043     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551044     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551045     6  0.0000      0.996 0.000 0.000 0.000  0 0.000 1.000
#> SRR1551046     5  0.0000      0.999 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551047     3  0.0000      0.990 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551048     1  0.0000      1.000 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551049     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551050     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551051     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551052     6  0.0000      0.996 0.000 0.000 0.000  0 0.000 1.000
#> SRR1551053     5  0.0000      0.999 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551054     3  0.0000      0.990 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551055     1  0.0000      1.000 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551056     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551057     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551058     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551059     6  0.0000      0.996 0.000 0.000 0.000  0 0.000 1.000
#> SRR1551060     5  0.0000      0.999 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551061     3  0.0000      0.990 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551062     1  0.0000      1.000 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551063     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551064     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551065     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551066     6  0.0000      0.996 0.000 0.000 0.000  0 0.000 1.000
#> SRR1551067     5  0.0000      0.999 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551068     3  0.0000      0.990 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551069     1  0.0000      1.000 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551070     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551071     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551072     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551073     6  0.0000      0.996 0.000 0.000 0.000  0 0.000 1.000
#> SRR1551074     5  0.0000      0.999 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551075     3  0.0000      0.990 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551076     1  0.0000      1.000 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551077     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551078     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551079     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551080     6  0.0000      0.996 0.000 0.000 0.000  0 0.000 1.000
#> SRR1551081     5  0.0000      0.999 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551082     3  0.0000      0.990 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551083     1  0.0000      1.000 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551084     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551085     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551086     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551088     3  0.0000      0.990 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551087     5  0.0000      0.999 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551089     1  0.0000      1.000 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551090     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551091     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551092     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551093     6  0.0000      0.996 0.000 0.000 0.000  0 0.000 1.000
#> SRR1551094     5  0.0000      0.999 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551095     3  0.0000      0.990 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551096     1  0.0000      1.000 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551097     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551098     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551099     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551101     3  0.0000      0.990 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551100     5  0.0000      0.999 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551102     1  0.0000      1.000 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551103     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551104     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551105     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551106     6  0.0000      0.996 0.000 0.000 0.000  0 0.000 1.000
#> SRR1551107     5  0.0000      0.999 0.000 0.000 0.000  0 1.000 0.000
#> SRR1551108     3  0.0000      0.990 0.000 0.000 1.000  0 0.000 0.000
#> SRR1551109     1  0.0000      1.000 1.000 0.000 0.000  0 0.000 0.000
#> SRR1551110     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1551111     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551112     2  0.0000      0.995 0.000 1.000 0.000  0 0.000 0.000
#> SRR1551113     6  0.0000      0.996 0.000 0.000 0.000  0 0.000 1.000
#> SRR1551114     5  0.0000      0.999 0.000 0.000 0.000  0 1.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15028 rows and 134 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2  1.00           0.983       0.984         0.4903 0.502   0.502
#> 3 3  0.81           0.933       0.962         0.2574 0.699   0.492
#> 4 4  1.00           0.969       0.984         0.1459 0.910   0.764
#> 5 5  1.00           0.944       0.974         0.0750 0.947   0.819
#> 6 6  0.92           0.893       0.932         0.0357 0.981   0.925

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 4 5

There is also optional best \(k\) = 2 4 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1550981     2  0.0000      0.998 0.000 1.000
#> SRR1550982     2  0.0000      0.998 0.000 1.000
#> SRR1550983     2  0.0000      0.998 0.000 1.000
#> SRR1550984     2  0.0000      0.998 0.000 1.000
#> SRR1550986     1  0.1843      0.974 0.972 0.028
#> SRR1550985     2  0.0000      0.998 0.000 1.000
#> SRR1550988     1  0.0000      0.968 1.000 0.000
#> SRR1550987     1  0.3584      0.960 0.932 0.068
#> SRR1550989     2  0.0000      0.998 0.000 1.000
#> SRR1550990     2  0.0000      0.998 0.000 1.000
#> SRR1550991     2  0.0000      0.998 0.000 1.000
#> SRR1550992     1  0.1843      0.974 0.972 0.028
#> SRR1550994     1  0.0000      0.968 1.000 0.000
#> SRR1550993     1  0.3584      0.960 0.932 0.068
#> SRR1550995     2  0.0000      0.998 0.000 1.000
#> SRR1550996     2  0.0000      0.998 0.000 1.000
#> SRR1550997     1  0.1843      0.974 0.972 0.028
#> SRR1550998     1  0.3584      0.960 0.932 0.068
#> SRR1551000     2  0.0000      0.998 0.000 1.000
#> SRR1550999     1  0.0000      0.968 1.000 0.000
#> SRR1551001     2  0.0000      0.998 0.000 1.000
#> SRR1551002     1  0.1843      0.974 0.972 0.028
#> SRR1551003     1  0.3584      0.960 0.932 0.068
#> SRR1551004     1  0.0000      0.968 1.000 0.000
#> SRR1551006     2  0.0000      0.998 0.000 1.000
#> SRR1551005     2  0.0000      0.998 0.000 1.000
#> SRR1551007     2  0.0000      0.998 0.000 1.000
#> SRR1551008     1  0.1843      0.974 0.972 0.028
#> SRR1551009     1  0.3584      0.960 0.932 0.068
#> SRR1551010     1  0.0000      0.968 1.000 0.000
#> SRR1551012     2  0.0000      0.998 0.000 1.000
#> SRR1551011     2  0.0000      0.998 0.000 1.000
#> SRR1551013     1  0.1843      0.974 0.972 0.028
#> SRR1551014     1  0.3584      0.960 0.932 0.068
#> SRR1551015     1  0.1184      0.972 0.984 0.016
#> SRR1551016     2  0.0000      0.998 0.000 1.000
#> SRR1551017     2  0.0000      0.998 0.000 1.000
#> SRR1551018     2  0.0000      0.998 0.000 1.000
#> SRR1551019     2  0.0938      0.986 0.012 0.988
#> SRR1551021     1  0.4815      0.925 0.896 0.104
#> SRR1551022     1  0.0000      0.968 1.000 0.000
#> SRR1551023     2  0.0000      0.998 0.000 1.000
#> SRR1551020     1  0.1843      0.974 0.972 0.028
#> SRR1551024     2  0.0000      0.998 0.000 1.000
#> SRR1551026     1  0.1843      0.974 0.972 0.028
#> SRR1551025     2  0.3114      0.942 0.056 0.944
#> SRR1551027     1  0.3584      0.960 0.932 0.068
#> SRR1551028     1  0.0000      0.968 1.000 0.000
#> SRR1551029     2  0.0000      0.998 0.000 1.000
#> SRR1551030     2  0.0000      0.998 0.000 1.000
#> SRR1551031     2  0.0000      0.998 0.000 1.000
#> SRR1551032     2  0.3274      0.940 0.060 0.940
#> SRR1551034     1  0.3584      0.960 0.932 0.068
#> SRR1551033     1  0.1843      0.974 0.972 0.028
#> SRR1551035     1  0.0000      0.968 1.000 0.000
#> SRR1551036     2  0.0000      0.998 0.000 1.000
#> SRR1551037     2  0.0000      0.998 0.000 1.000
#> SRR1551038     2  0.0000      0.998 0.000 1.000
#> SRR1551039     2  0.0000      0.998 0.000 1.000
#> SRR1551040     1  0.1843      0.974 0.972 0.028
#> SRR1551041     1  0.3584      0.960 0.932 0.068
#> SRR1551042     1  0.0000      0.968 1.000 0.000
#> SRR1551043     2  0.0000      0.998 0.000 1.000
#> SRR1551044     2  0.0000      0.998 0.000 1.000
#> SRR1551045     2  0.0000      0.998 0.000 1.000
#> SRR1551046     2  0.0000      0.998 0.000 1.000
#> SRR1551047     1  0.1843      0.974 0.972 0.028
#> SRR1551048     1  0.3584      0.960 0.932 0.068
#> SRR1551049     1  0.0000      0.968 1.000 0.000
#> SRR1551050     2  0.0000      0.998 0.000 1.000
#> SRR1551051     2  0.0000      0.998 0.000 1.000
#> SRR1551052     2  0.0000      0.998 0.000 1.000
#> SRR1551053     2  0.0000      0.998 0.000 1.000
#> SRR1551054     1  0.1843      0.974 0.972 0.028
#> SRR1551055     1  0.3584      0.960 0.932 0.068
#> SRR1551056     1  0.0000      0.968 1.000 0.000
#> SRR1551057     2  0.0000      0.998 0.000 1.000
#> SRR1551058     2  0.0000      0.998 0.000 1.000
#> SRR1551059     2  0.0000      0.998 0.000 1.000
#> SRR1551060     2  0.0000      0.998 0.000 1.000
#> SRR1551061     1  0.1843      0.974 0.972 0.028
#> SRR1551062     1  0.3584      0.960 0.932 0.068
#> SRR1551063     1  0.0000      0.968 1.000 0.000
#> SRR1551064     2  0.0000      0.998 0.000 1.000
#> SRR1551065     2  0.0000      0.998 0.000 1.000
#> SRR1551066     2  0.0000      0.998 0.000 1.000
#> SRR1551067     2  0.0000      0.998 0.000 1.000
#> SRR1551068     1  0.1843      0.974 0.972 0.028
#> SRR1551069     1  0.3584      0.960 0.932 0.068
#> SRR1551070     1  0.0000      0.968 1.000 0.000
#> SRR1551071     2  0.0000      0.998 0.000 1.000
#> SRR1551072     2  0.0000      0.998 0.000 1.000
#> SRR1551073     2  0.0000      0.998 0.000 1.000
#> SRR1551074     2  0.0000      0.998 0.000 1.000
#> SRR1551075     1  0.1843      0.974 0.972 0.028
#> SRR1551076     1  0.3584      0.960 0.932 0.068
#> SRR1551077     1  0.0000      0.968 1.000 0.000
#> SRR1551078     2  0.0000      0.998 0.000 1.000
#> SRR1551079     2  0.0000      0.998 0.000 1.000
#> SRR1551080     2  0.0000      0.998 0.000 1.000
#> SRR1551081     2  0.0000      0.998 0.000 1.000
#> SRR1551082     1  0.1843      0.974 0.972 0.028
#> SRR1551083     1  0.3584      0.960 0.932 0.068
#> SRR1551084     1  0.0000      0.968 1.000 0.000
#> SRR1551085     2  0.0000      0.998 0.000 1.000
#> SRR1551086     2  0.0000      0.998 0.000 1.000
#> SRR1551088     1  0.1843      0.974 0.972 0.028
#> SRR1551087     2  0.0000      0.998 0.000 1.000
#> SRR1551089     1  0.3584      0.960 0.932 0.068
#> SRR1551090     1  0.0000      0.968 1.000 0.000
#> SRR1551091     2  0.0000      0.998 0.000 1.000
#> SRR1551092     2  0.0000      0.998 0.000 1.000
#> SRR1551093     2  0.0000      0.998 0.000 1.000
#> SRR1551094     2  0.0000      0.998 0.000 1.000
#> SRR1551095     1  0.1843      0.974 0.972 0.028
#> SRR1551096     1  0.3584      0.960 0.932 0.068
#> SRR1551097     1  0.0000      0.968 1.000 0.000
#> SRR1551098     2  0.0000      0.998 0.000 1.000
#> SRR1551099     2  0.0000      0.998 0.000 1.000
#> SRR1551101     1  0.1843      0.974 0.972 0.028
#> SRR1551100     2  0.0000      0.998 0.000 1.000
#> SRR1551102     1  0.3584      0.960 0.932 0.068
#> SRR1551103     1  0.0000      0.968 1.000 0.000
#> SRR1551104     2  0.0000      0.998 0.000 1.000
#> SRR1551105     2  0.0000      0.998 0.000 1.000
#> SRR1551106     2  0.0000      0.998 0.000 1.000
#> SRR1551107     2  0.0000      0.998 0.000 1.000
#> SRR1551108     1  0.1843      0.974 0.972 0.028
#> SRR1551109     1  0.3584      0.960 0.932 0.068
#> SRR1551110     1  0.0000      0.968 1.000 0.000
#> SRR1551111     2  0.0000      0.998 0.000 1.000
#> SRR1551112     2  0.0000      0.998 0.000 1.000
#> SRR1551113     2  0.0000      0.998 0.000 1.000
#> SRR1551114     2  0.0000      0.998 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1550981     1  0.5360      0.780 0.768 0.220 0.012
#> SRR1550982     1  0.5360      0.780 0.768 0.220 0.012
#> SRR1550983     1  0.5360      0.780 0.768 0.220 0.012
#> SRR1550984     1  0.5360      0.780 0.768 0.220 0.012
#> SRR1550986     1  0.0237      0.905 0.996 0.000 0.004
#> SRR1550985     1  0.5360      0.780 0.768 0.220 0.012
#> SRR1550988     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1550987     1  0.0747      0.904 0.984 0.000 0.016
#> SRR1550989     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1550990     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1550991     2  0.0592      0.986 0.012 0.988 0.000
#> SRR1550992     1  0.0237      0.905 0.996 0.000 0.004
#> SRR1550994     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1550993     1  0.0747      0.904 0.984 0.000 0.016
#> SRR1550995     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1550996     2  0.2356      0.914 0.072 0.928 0.000
#> SRR1550997     1  0.0237      0.905 0.996 0.000 0.004
#> SRR1550998     1  0.0747      0.904 0.984 0.000 0.016
#> SRR1551000     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1550999     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551001     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551002     1  0.0237      0.905 0.996 0.000 0.004
#> SRR1551003     1  0.0747      0.904 0.984 0.000 0.016
#> SRR1551004     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551006     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551005     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551007     2  0.0592      0.986 0.012 0.988 0.000
#> SRR1551008     1  0.0237      0.905 0.996 0.000 0.004
#> SRR1551009     1  0.0747      0.904 0.984 0.000 0.016
#> SRR1551010     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551012     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551011     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551013     1  0.0237      0.905 0.996 0.000 0.004
#> SRR1551014     1  0.0747      0.904 0.984 0.000 0.016
#> SRR1551015     3  0.2448      0.908 0.076 0.000 0.924
#> SRR1551016     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551017     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551018     2  0.0592      0.986 0.012 0.988 0.000
#> SRR1551019     1  0.5171      0.749 0.784 0.012 0.204
#> SRR1551021     1  0.0592      0.904 0.988 0.000 0.012
#> SRR1551022     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551023     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551020     1  0.0237      0.905 0.996 0.000 0.004
#> SRR1551024     2  0.2878      0.883 0.096 0.904 0.000
#> SRR1551026     1  0.0237      0.905 0.996 0.000 0.004
#> SRR1551025     1  0.2625      0.862 0.916 0.000 0.084
#> SRR1551027     1  0.0592      0.904 0.988 0.000 0.012
#> SRR1551028     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551029     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551030     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551031     2  0.0592      0.986 0.012 0.988 0.000
#> SRR1551032     1  0.2625      0.862 0.916 0.000 0.084
#> SRR1551034     1  0.0747      0.904 0.984 0.000 0.016
#> SRR1551033     1  0.0237      0.905 0.996 0.000 0.004
#> SRR1551035     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551036     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551037     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551038     2  0.0592      0.986 0.012 0.988 0.000
#> SRR1551039     1  0.5360      0.780 0.768 0.220 0.012
#> SRR1551040     1  0.0237      0.905 0.996 0.000 0.004
#> SRR1551041     1  0.0747      0.904 0.984 0.000 0.016
#> SRR1551042     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551043     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551044     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551045     2  0.0592      0.986 0.012 0.988 0.000
#> SRR1551046     1  0.5360      0.780 0.768 0.220 0.012
#> SRR1551047     1  0.0237      0.905 0.996 0.000 0.004
#> SRR1551048     1  0.0747      0.904 0.984 0.000 0.016
#> SRR1551049     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551050     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551051     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551052     2  0.0592      0.986 0.012 0.988 0.000
#> SRR1551053     1  0.5360      0.780 0.768 0.220 0.012
#> SRR1551054     1  0.0237      0.905 0.996 0.000 0.004
#> SRR1551055     1  0.0747      0.904 0.984 0.000 0.016
#> SRR1551056     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551057     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551058     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551059     2  0.0592      0.986 0.012 0.988 0.000
#> SRR1551060     1  0.5360      0.780 0.768 0.220 0.012
#> SRR1551061     1  0.0237      0.905 0.996 0.000 0.004
#> SRR1551062     1  0.0747      0.904 0.984 0.000 0.016
#> SRR1551063     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551064     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551065     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551066     2  0.0592      0.986 0.012 0.988 0.000
#> SRR1551067     1  0.5360      0.780 0.768 0.220 0.012
#> SRR1551068     1  0.0237      0.905 0.996 0.000 0.004
#> SRR1551069     1  0.0747      0.904 0.984 0.000 0.016
#> SRR1551070     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551071     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551072     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551073     2  0.0592      0.986 0.012 0.988 0.000
#> SRR1551074     1  0.5360      0.780 0.768 0.220 0.012
#> SRR1551075     1  0.0237      0.905 0.996 0.000 0.004
#> SRR1551076     1  0.0747      0.904 0.984 0.000 0.016
#> SRR1551077     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551078     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551079     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551080     2  0.0592      0.986 0.012 0.988 0.000
#> SRR1551081     1  0.5360      0.780 0.768 0.220 0.012
#> SRR1551082     1  0.0237      0.905 0.996 0.000 0.004
#> SRR1551083     1  0.0747      0.904 0.984 0.000 0.016
#> SRR1551084     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551085     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551086     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551088     1  0.0237      0.905 0.996 0.000 0.004
#> SRR1551087     1  0.5360      0.780 0.768 0.220 0.012
#> SRR1551089     1  0.0747      0.904 0.984 0.000 0.016
#> SRR1551090     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551091     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551092     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551093     2  0.0592      0.986 0.012 0.988 0.000
#> SRR1551094     1  0.5360      0.780 0.768 0.220 0.012
#> SRR1551095     1  0.0237      0.905 0.996 0.000 0.004
#> SRR1551096     1  0.0747      0.904 0.984 0.000 0.016
#> SRR1551097     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551098     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551099     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551101     1  0.0237      0.905 0.996 0.000 0.004
#> SRR1551100     1  0.5360      0.780 0.768 0.220 0.012
#> SRR1551102     1  0.0747      0.904 0.984 0.000 0.016
#> SRR1551103     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551104     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551105     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551106     2  0.0592      0.986 0.012 0.988 0.000
#> SRR1551107     1  0.5360      0.780 0.768 0.220 0.012
#> SRR1551108     1  0.0237      0.905 0.996 0.000 0.004
#> SRR1551109     1  0.0747      0.904 0.984 0.000 0.016
#> SRR1551110     3  0.0000      0.996 0.000 0.000 1.000
#> SRR1551111     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551112     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551113     2  0.0592      0.986 0.012 0.988 0.000
#> SRR1551114     1  0.5360      0.780 0.768 0.220 0.012

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3   p4
#> SRR1550981     1  0.1356      0.973 0.960 0.032 0.008 0.00
#> SRR1550982     1  0.1209      0.975 0.964 0.032 0.004 0.00
#> SRR1550983     1  0.1209      0.975 0.964 0.032 0.004 0.00
#> SRR1550984     1  0.1209      0.975 0.964 0.032 0.004 0.00
#> SRR1550986     3  0.0000      0.968 0.000 0.000 1.000 0.00
#> SRR1550985     1  0.1209      0.975 0.964 0.032 0.004 0.00
#> SRR1550988     4  0.0000      0.991 0.000 0.000 0.000 1.00
#> SRR1550987     1  0.0000      0.974 1.000 0.000 0.000 0.00
#> SRR1550989     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1550990     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1550991     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1550992     3  0.0000      0.968 0.000 0.000 1.000 0.00
#> SRR1550994     4  0.0000      0.991 0.000 0.000 0.000 1.00
#> SRR1550993     1  0.0000      0.974 1.000 0.000 0.000 0.00
#> SRR1550995     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1550996     2  0.3873      0.696 0.228 0.772 0.000 0.00
#> SRR1550997     3  0.0000      0.968 0.000 0.000 1.000 0.00
#> SRR1550998     1  0.0000      0.974 1.000 0.000 0.000 0.00
#> SRR1551000     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1550999     4  0.0000      0.991 0.000 0.000 0.000 1.00
#> SRR1551001     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551002     3  0.0000      0.968 0.000 0.000 1.000 0.00
#> SRR1551003     1  0.0000      0.974 1.000 0.000 0.000 0.00
#> SRR1551004     4  0.0000      0.991 0.000 0.000 0.000 1.00
#> SRR1551006     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551005     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551007     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551008     3  0.0000      0.968 0.000 0.000 1.000 0.00
#> SRR1551009     1  0.0000      0.974 1.000 0.000 0.000 0.00
#> SRR1551010     4  0.0000      0.991 0.000 0.000 0.000 1.00
#> SRR1551012     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551011     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551013     3  0.0000      0.968 0.000 0.000 1.000 0.00
#> SRR1551014     1  0.0000      0.974 1.000 0.000 0.000 0.00
#> SRR1551015     4  0.3464      0.819 0.108 0.032 0.000 0.86
#> SRR1551016     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551017     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551018     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551019     1  0.2224      0.949 0.928 0.032 0.040 0.00
#> SRR1551021     1  0.1022      0.974 0.968 0.032 0.000 0.00
#> SRR1551022     4  0.0000      0.991 0.000 0.000 0.000 1.00
#> SRR1551023     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551020     3  0.3975      0.694 0.240 0.000 0.760 0.00
#> SRR1551024     2  0.4837      0.447 0.348 0.648 0.004 0.00
#> SRR1551026     3  0.3975      0.694 0.240 0.000 0.760 0.00
#> SRR1551025     1  0.2399      0.944 0.920 0.032 0.048 0.00
#> SRR1551027     1  0.0000      0.974 1.000 0.000 0.000 0.00
#> SRR1551028     4  0.0000      0.991 0.000 0.000 0.000 1.00
#> SRR1551029     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551030     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551031     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551032     1  0.2399      0.944 0.920 0.032 0.048 0.00
#> SRR1551034     1  0.0000      0.974 1.000 0.000 0.000 0.00
#> SRR1551033     3  0.0000      0.968 0.000 0.000 1.000 0.00
#> SRR1551035     4  0.0000      0.991 0.000 0.000 0.000 1.00
#> SRR1551036     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551037     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551038     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551039     1  0.1209      0.975 0.964 0.032 0.004 0.00
#> SRR1551040     3  0.0000      0.968 0.000 0.000 1.000 0.00
#> SRR1551041     1  0.0000      0.974 1.000 0.000 0.000 0.00
#> SRR1551042     4  0.0000      0.991 0.000 0.000 0.000 1.00
#> SRR1551043     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551044     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551045     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551046     1  0.1209      0.975 0.964 0.032 0.004 0.00
#> SRR1551047     3  0.0000      0.968 0.000 0.000 1.000 0.00
#> SRR1551048     1  0.0000      0.974 1.000 0.000 0.000 0.00
#> SRR1551049     4  0.0000      0.991 0.000 0.000 0.000 1.00
#> SRR1551050     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551051     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551052     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551053     1  0.1209      0.975 0.964 0.032 0.004 0.00
#> SRR1551054     3  0.0000      0.968 0.000 0.000 1.000 0.00
#> SRR1551055     1  0.0000      0.974 1.000 0.000 0.000 0.00
#> SRR1551056     4  0.0000      0.991 0.000 0.000 0.000 1.00
#> SRR1551057     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551058     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551059     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551060     1  0.1209      0.975 0.964 0.032 0.004 0.00
#> SRR1551061     3  0.0000      0.968 0.000 0.000 1.000 0.00
#> SRR1551062     1  0.0000      0.974 1.000 0.000 0.000 0.00
#> SRR1551063     4  0.0000      0.991 0.000 0.000 0.000 1.00
#> SRR1551064     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551065     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551066     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551067     1  0.1209      0.975 0.964 0.032 0.004 0.00
#> SRR1551068     3  0.0336      0.961 0.008 0.000 0.992 0.00
#> SRR1551069     1  0.0000      0.974 1.000 0.000 0.000 0.00
#> SRR1551070     4  0.0000      0.991 0.000 0.000 0.000 1.00
#> SRR1551071     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551072     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551073     2  0.0336      0.979 0.008 0.992 0.000 0.00
#> SRR1551074     1  0.1209      0.975 0.964 0.032 0.004 0.00
#> SRR1551075     3  0.0000      0.968 0.000 0.000 1.000 0.00
#> SRR1551076     1  0.0000      0.974 1.000 0.000 0.000 0.00
#> SRR1551077     4  0.0000      0.991 0.000 0.000 0.000 1.00
#> SRR1551078     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551079     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551080     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551081     1  0.1209      0.975 0.964 0.032 0.004 0.00
#> SRR1551082     3  0.0000      0.968 0.000 0.000 1.000 0.00
#> SRR1551083     1  0.0000      0.974 1.000 0.000 0.000 0.00
#> SRR1551084     4  0.0000      0.991 0.000 0.000 0.000 1.00
#> SRR1551085     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551086     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551088     3  0.0000      0.968 0.000 0.000 1.000 0.00
#> SRR1551087     1  0.1209      0.975 0.964 0.032 0.004 0.00
#> SRR1551089     1  0.0000      0.974 1.000 0.000 0.000 0.00
#> SRR1551090     4  0.0000      0.991 0.000 0.000 0.000 1.00
#> SRR1551091     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551092     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551093     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551094     1  0.1209      0.975 0.964 0.032 0.004 0.00
#> SRR1551095     3  0.0000      0.968 0.000 0.000 1.000 0.00
#> SRR1551096     1  0.0000      0.974 1.000 0.000 0.000 0.00
#> SRR1551097     4  0.0000      0.991 0.000 0.000 0.000 1.00
#> SRR1551098     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551099     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551101     3  0.0000      0.968 0.000 0.000 1.000 0.00
#> SRR1551100     1  0.1209      0.975 0.964 0.032 0.004 0.00
#> SRR1551102     1  0.0000      0.974 1.000 0.000 0.000 0.00
#> SRR1551103     4  0.0000      0.991 0.000 0.000 0.000 1.00
#> SRR1551104     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551105     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551106     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551107     1  0.1209      0.975 0.964 0.032 0.004 0.00
#> SRR1551108     3  0.0000      0.968 0.000 0.000 1.000 0.00
#> SRR1551109     1  0.0000      0.974 1.000 0.000 0.000 0.00
#> SRR1551110     4  0.0000      0.991 0.000 0.000 0.000 1.00
#> SRR1551111     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551112     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551113     2  0.0000      0.987 0.000 1.000 0.000 0.00
#> SRR1551114     1  0.1209      0.975 0.964 0.032 0.004 0.00

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3   p4    p5
#> SRR1550981     5  0.0000      0.971 0.000 0.000 0.000 0.00 1.000
#> SRR1550982     5  0.0000      0.971 0.000 0.000 0.000 0.00 1.000
#> SRR1550983     5  0.0000      0.971 0.000 0.000 0.000 0.00 1.000
#> SRR1550984     5  0.0000      0.971 0.000 0.000 0.000 0.00 1.000
#> SRR1550986     3  0.0000      0.956 0.000 0.000 1.000 0.00 0.000
#> SRR1550985     5  0.0000      0.971 0.000 0.000 0.000 0.00 1.000
#> SRR1550988     4  0.0000      0.990 0.000 0.000 0.000 1.00 0.000
#> SRR1550987     1  0.0404      0.979 0.988 0.000 0.000 0.00 0.012
#> SRR1550989     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1550990     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1550991     2  0.1877      0.934 0.012 0.924 0.000 0.00 0.064
#> SRR1550992     3  0.0000      0.956 0.000 0.000 1.000 0.00 0.000
#> SRR1550994     4  0.0000      0.990 0.000 0.000 0.000 1.00 0.000
#> SRR1550993     1  0.0404      0.979 0.988 0.000 0.000 0.00 0.012
#> SRR1550995     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1550996     2  0.4242      0.270 0.000 0.572 0.000 0.00 0.428
#> SRR1550997     3  0.0000      0.956 0.000 0.000 1.000 0.00 0.000
#> SRR1550998     1  0.0404      0.979 0.988 0.000 0.000 0.00 0.012
#> SRR1551000     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1550999     4  0.0000      0.990 0.000 0.000 0.000 1.00 0.000
#> SRR1551001     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551002     3  0.0000      0.956 0.000 0.000 1.000 0.00 0.000
#> SRR1551003     1  0.0404      0.979 0.988 0.000 0.000 0.00 0.012
#> SRR1551004     4  0.0000      0.990 0.000 0.000 0.000 1.00 0.000
#> SRR1551006     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551005     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551007     2  0.1877      0.934 0.012 0.924 0.000 0.00 0.064
#> SRR1551008     3  0.0000      0.956 0.000 0.000 1.000 0.00 0.000
#> SRR1551009     1  0.0404      0.979 0.988 0.000 0.000 0.00 0.012
#> SRR1551010     4  0.0000      0.990 0.000 0.000 0.000 1.00 0.000
#> SRR1551012     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551011     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551013     3  0.0000      0.956 0.000 0.000 1.000 0.00 0.000
#> SRR1551014     1  0.0404      0.979 0.988 0.000 0.000 0.00 0.012
#> SRR1551015     4  0.2929      0.771 0.000 0.000 0.000 0.82 0.180
#> SRR1551016     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551017     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551018     2  0.1877      0.934 0.012 0.924 0.000 0.00 0.064
#> SRR1551019     5  0.0000      0.971 0.000 0.000 0.000 0.00 1.000
#> SRR1551021     1  0.4138      0.392 0.616 0.000 0.000 0.00 0.384
#> SRR1551022     4  0.0000      0.990 0.000 0.000 0.000 1.00 0.000
#> SRR1551023     2  0.0880      0.955 0.000 0.968 0.000 0.00 0.032
#> SRR1551020     3  0.4171      0.389 0.000 0.000 0.604 0.00 0.396
#> SRR1551024     5  0.4150      0.312 0.000 0.388 0.000 0.00 0.612
#> SRR1551026     3  0.4171      0.389 0.000 0.000 0.604 0.00 0.396
#> SRR1551025     5  0.0290      0.964 0.000 0.000 0.008 0.00 0.992
#> SRR1551027     1  0.0404      0.979 0.988 0.000 0.000 0.00 0.012
#> SRR1551028     4  0.0000      0.990 0.000 0.000 0.000 1.00 0.000
#> SRR1551029     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551030     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551031     2  0.1877      0.934 0.012 0.924 0.000 0.00 0.064
#> SRR1551032     5  0.0290      0.964 0.000 0.000 0.008 0.00 0.992
#> SRR1551034     1  0.0404      0.979 0.988 0.000 0.000 0.00 0.012
#> SRR1551033     3  0.0000      0.956 0.000 0.000 1.000 0.00 0.000
#> SRR1551035     4  0.0000      0.990 0.000 0.000 0.000 1.00 0.000
#> SRR1551036     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551037     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551038     2  0.1877      0.934 0.012 0.924 0.000 0.00 0.064
#> SRR1551039     5  0.0000      0.971 0.000 0.000 0.000 0.00 1.000
#> SRR1551040     3  0.0000      0.956 0.000 0.000 1.000 0.00 0.000
#> SRR1551041     1  0.0404      0.979 0.988 0.000 0.000 0.00 0.012
#> SRR1551042     4  0.0000      0.990 0.000 0.000 0.000 1.00 0.000
#> SRR1551043     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551044     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551045     2  0.1877      0.934 0.012 0.924 0.000 0.00 0.064
#> SRR1551046     5  0.0000      0.971 0.000 0.000 0.000 0.00 1.000
#> SRR1551047     3  0.0000      0.956 0.000 0.000 1.000 0.00 0.000
#> SRR1551048     1  0.0404      0.979 0.988 0.000 0.000 0.00 0.012
#> SRR1551049     4  0.0000      0.990 0.000 0.000 0.000 1.00 0.000
#> SRR1551050     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551051     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551052     2  0.1877      0.934 0.012 0.924 0.000 0.00 0.064
#> SRR1551053     5  0.0000      0.971 0.000 0.000 0.000 0.00 1.000
#> SRR1551054     3  0.0000      0.956 0.000 0.000 1.000 0.00 0.000
#> SRR1551055     1  0.0404      0.979 0.988 0.000 0.000 0.00 0.012
#> SRR1551056     4  0.0000      0.990 0.000 0.000 0.000 1.00 0.000
#> SRR1551057     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551058     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551059     2  0.1877      0.934 0.012 0.924 0.000 0.00 0.064
#> SRR1551060     5  0.0000      0.971 0.000 0.000 0.000 0.00 1.000
#> SRR1551061     3  0.0000      0.956 0.000 0.000 1.000 0.00 0.000
#> SRR1551062     1  0.0404      0.979 0.988 0.000 0.000 0.00 0.012
#> SRR1551063     4  0.0000      0.990 0.000 0.000 0.000 1.00 0.000
#> SRR1551064     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551065     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551066     2  0.1877      0.934 0.012 0.924 0.000 0.00 0.064
#> SRR1551067     5  0.0000      0.971 0.000 0.000 0.000 0.00 1.000
#> SRR1551068     3  0.0290      0.950 0.000 0.000 0.992 0.00 0.008
#> SRR1551069     1  0.0404      0.979 0.988 0.000 0.000 0.00 0.012
#> SRR1551070     4  0.0000      0.990 0.000 0.000 0.000 1.00 0.000
#> SRR1551071     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551072     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551073     2  0.2069      0.923 0.012 0.912 0.000 0.00 0.076
#> SRR1551074     5  0.0000      0.971 0.000 0.000 0.000 0.00 1.000
#> SRR1551075     3  0.0000      0.956 0.000 0.000 1.000 0.00 0.000
#> SRR1551076     1  0.0404      0.979 0.988 0.000 0.000 0.00 0.012
#> SRR1551077     4  0.0000      0.990 0.000 0.000 0.000 1.00 0.000
#> SRR1551078     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551079     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551080     2  0.1877      0.934 0.012 0.924 0.000 0.00 0.064
#> SRR1551081     5  0.0000      0.971 0.000 0.000 0.000 0.00 1.000
#> SRR1551082     3  0.0000      0.956 0.000 0.000 1.000 0.00 0.000
#> SRR1551083     1  0.0404      0.979 0.988 0.000 0.000 0.00 0.012
#> SRR1551084     4  0.0000      0.990 0.000 0.000 0.000 1.00 0.000
#> SRR1551085     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551086     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551088     3  0.0000      0.956 0.000 0.000 1.000 0.00 0.000
#> SRR1551087     5  0.0000      0.971 0.000 0.000 0.000 0.00 1.000
#> SRR1551089     1  0.0404      0.979 0.988 0.000 0.000 0.00 0.012
#> SRR1551090     4  0.0000      0.990 0.000 0.000 0.000 1.00 0.000
#> SRR1551091     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551092     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551093     2  0.1877      0.934 0.012 0.924 0.000 0.00 0.064
#> SRR1551094     5  0.0000      0.971 0.000 0.000 0.000 0.00 1.000
#> SRR1551095     3  0.0000      0.956 0.000 0.000 1.000 0.00 0.000
#> SRR1551096     1  0.0404      0.979 0.988 0.000 0.000 0.00 0.012
#> SRR1551097     4  0.0000      0.990 0.000 0.000 0.000 1.00 0.000
#> SRR1551098     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551099     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551101     3  0.0000      0.956 0.000 0.000 1.000 0.00 0.000
#> SRR1551100     5  0.0000      0.971 0.000 0.000 0.000 0.00 1.000
#> SRR1551102     1  0.0404      0.979 0.988 0.000 0.000 0.00 0.012
#> SRR1551103     4  0.0000      0.990 0.000 0.000 0.000 1.00 0.000
#> SRR1551104     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551105     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551106     2  0.1877      0.934 0.012 0.924 0.000 0.00 0.064
#> SRR1551107     5  0.0000      0.971 0.000 0.000 0.000 0.00 1.000
#> SRR1551108     3  0.0000      0.956 0.000 0.000 1.000 0.00 0.000
#> SRR1551109     1  0.0404      0.979 0.988 0.000 0.000 0.00 0.012
#> SRR1551110     4  0.0000      0.990 0.000 0.000 0.000 1.00 0.000
#> SRR1551111     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551112     2  0.0000      0.970 0.000 1.000 0.000 0.00 0.000
#> SRR1551113     2  0.1877      0.934 0.012 0.924 0.000 0.00 0.064
#> SRR1551114     5  0.0000      0.971 0.000 0.000 0.000 0.00 1.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1550981     5  0.2003      0.841 0.000 0.000 0.000 0.000 0.884 0.116
#> SRR1550982     5  0.0000      0.971 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1550983     5  0.0000      0.971 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1550984     5  0.0632      0.950 0.000 0.000 0.000 0.000 0.976 0.024
#> SRR1550986     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1550985     5  0.0000      0.971 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1550988     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1550987     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1550989     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1550990     2  0.0713      0.883 0.000 0.972 0.000 0.000 0.000 0.028
#> SRR1550991     2  0.3592      0.714 0.000 0.656 0.000 0.000 0.000 0.344
#> SRR1550992     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1550994     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1550993     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1550995     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1550996     2  0.5242      0.393 0.000 0.516 0.000 0.000 0.100 0.384
#> SRR1550997     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1550998     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551000     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1550999     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551001     2  0.0865      0.881 0.000 0.964 0.000 0.000 0.000 0.036
#> SRR1551002     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551003     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551004     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551006     2  0.0713      0.883 0.000 0.972 0.000 0.000 0.000 0.028
#> SRR1551005     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551007     2  0.3592      0.714 0.000 0.656 0.000 0.000 0.000 0.344
#> SRR1551008     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551009     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551010     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551012     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551011     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551013     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551014     1  0.0291      0.973 0.992 0.000 0.000 0.000 0.004 0.004
#> SRR1551015     4  0.2536      0.813 0.000 0.000 0.000 0.864 0.116 0.020
#> SRR1551016     2  0.0865      0.881 0.000 0.964 0.000 0.000 0.000 0.036
#> SRR1551017     2  0.1141      0.876 0.000 0.948 0.000 0.000 0.000 0.052
#> SRR1551018     2  0.3592      0.714 0.000 0.656 0.000 0.000 0.000 0.344
#> SRR1551019     6  0.3714      0.571 0.004 0.000 0.000 0.000 0.340 0.656
#> SRR1551021     1  0.4836      0.481 0.664 0.000 0.000 0.000 0.196 0.140
#> SRR1551022     4  0.0603      0.973 0.000 0.000 0.000 0.980 0.004 0.016
#> SRR1551023     2  0.1779      0.842 0.000 0.920 0.000 0.000 0.064 0.016
#> SRR1551020     6  0.4961      0.545 0.000 0.000 0.348 0.000 0.080 0.572
#> SRR1551024     2  0.5784      0.184 0.004 0.432 0.000 0.000 0.152 0.412
#> SRR1551026     6  0.5050      0.421 0.000 0.000 0.416 0.000 0.076 0.508
#> SRR1551025     6  0.4526      0.676 0.004 0.000 0.052 0.000 0.288 0.656
#> SRR1551027     1  0.0291      0.973 0.992 0.000 0.000 0.000 0.004 0.004
#> SRR1551028     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551029     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551030     2  0.0713      0.883 0.000 0.972 0.000 0.000 0.000 0.028
#> SRR1551031     2  0.3578      0.717 0.000 0.660 0.000 0.000 0.000 0.340
#> SRR1551032     6  0.4526      0.676 0.004 0.000 0.052 0.000 0.288 0.656
#> SRR1551034     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551033     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551035     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551036     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551037     2  0.0713      0.883 0.000 0.972 0.000 0.000 0.000 0.028
#> SRR1551038     2  0.3592      0.714 0.000 0.656 0.000 0.000 0.000 0.344
#> SRR1551039     5  0.0000      0.971 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1551040     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551041     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551042     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551043     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551044     2  0.0713      0.883 0.000 0.972 0.000 0.000 0.000 0.028
#> SRR1551045     2  0.3592      0.714 0.000 0.656 0.000 0.000 0.000 0.344
#> SRR1551046     5  0.0000      0.971 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1551047     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551048     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551049     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551050     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551051     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551052     2  0.3592      0.714 0.000 0.656 0.000 0.000 0.000 0.344
#> SRR1551053     5  0.2378      0.773 0.000 0.000 0.000 0.000 0.848 0.152
#> SRR1551054     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551055     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551056     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551057     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551058     2  0.0713      0.883 0.000 0.972 0.000 0.000 0.000 0.028
#> SRR1551059     2  0.3883      0.713 0.000 0.656 0.000 0.000 0.012 0.332
#> SRR1551060     5  0.0000      0.971 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1551061     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551062     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551063     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551064     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551065     2  0.0713      0.883 0.000 0.972 0.000 0.000 0.000 0.028
#> SRR1551066     2  0.3592      0.714 0.000 0.656 0.000 0.000 0.000 0.344
#> SRR1551067     5  0.0000      0.971 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1551068     3  0.0458      0.980 0.000 0.000 0.984 0.000 0.000 0.016
#> SRR1551069     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551070     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551071     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551072     2  0.0713      0.883 0.000 0.972 0.000 0.000 0.000 0.028
#> SRR1551073     2  0.3883      0.713 0.000 0.656 0.000 0.000 0.012 0.332
#> SRR1551074     5  0.1327      0.909 0.000 0.000 0.000 0.000 0.936 0.064
#> SRR1551075     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551076     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551077     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551078     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551079     2  0.0713      0.883 0.000 0.972 0.000 0.000 0.000 0.028
#> SRR1551080     2  0.3592      0.714 0.000 0.656 0.000 0.000 0.000 0.344
#> SRR1551081     5  0.0000      0.971 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1551082     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551083     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551084     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551085     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551086     2  0.0713      0.883 0.000 0.972 0.000 0.000 0.000 0.028
#> SRR1551088     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551087     5  0.0000      0.971 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1551089     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551090     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551091     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551092     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551093     2  0.3592      0.714 0.000 0.656 0.000 0.000 0.000 0.344
#> SRR1551094     5  0.0000      0.971 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1551095     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551096     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551097     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551098     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551099     2  0.0146      0.883 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1551101     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551100     5  0.0000      0.971 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1551102     1  0.0146      0.977 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1551103     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551104     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551105     2  0.0713      0.883 0.000 0.972 0.000 0.000 0.000 0.028
#> SRR1551106     2  0.3592      0.714 0.000 0.656 0.000 0.000 0.000 0.344
#> SRR1551107     5  0.0000      0.971 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1551108     3  0.0000      0.999 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551109     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551110     4  0.0000      0.990 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551111     2  0.0000      0.883 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551112     2  0.0713      0.883 0.000 0.972 0.000 0.000 0.000 0.028
#> SRR1551113     2  0.3592      0.714 0.000 0.656 0.000 0.000 0.000 0.344
#> SRR1551114     5  0.0000      0.971 0.000 0.000 0.000 0.000 1.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15028 rows and 134 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.985           0.953       0.981         0.4890 0.510   0.510
#> 3 3 0.853           0.886       0.931         0.2852 0.857   0.723
#> 4 4 0.788           0.878       0.914         0.1080 0.873   0.685
#> 5 5 0.920           0.907       0.953         0.1102 0.856   0.576
#> 6 6 0.941           0.956       0.949         0.0578 0.914   0.651

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 5

There is also optional best \(k\) = 2 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1550981     1   0.000     0.9744 1.000 0.000
#> SRR1550982     1   0.242     0.9432 0.960 0.040
#> SRR1550983     1   0.000     0.9744 1.000 0.000
#> SRR1550984     2   0.997     0.0899 0.468 0.532
#> SRR1550986     1   0.000     0.9744 1.000 0.000
#> SRR1550985     2   0.802     0.6681 0.244 0.756
#> SRR1550988     2   0.000     0.9845 0.000 1.000
#> SRR1550987     1   0.000     0.9744 1.000 0.000
#> SRR1550989     2   0.000     0.9845 0.000 1.000
#> SRR1550990     2   0.000     0.9845 0.000 1.000
#> SRR1550991     2   0.000     0.9845 0.000 1.000
#> SRR1550992     1   0.000     0.9744 1.000 0.000
#> SRR1550994     2   0.000     0.9845 0.000 1.000
#> SRR1550993     1   0.000     0.9744 1.000 0.000
#> SRR1550995     2   0.000     0.9845 0.000 1.000
#> SRR1550996     2   0.000     0.9845 0.000 1.000
#> SRR1550997     1   0.000     0.9744 1.000 0.000
#> SRR1550998     1   0.000     0.9744 1.000 0.000
#> SRR1551000     2   0.000     0.9845 0.000 1.000
#> SRR1550999     2   0.000     0.9845 0.000 1.000
#> SRR1551001     2   0.000     0.9845 0.000 1.000
#> SRR1551002     1   0.000     0.9744 1.000 0.000
#> SRR1551003     1   0.000     0.9744 1.000 0.000
#> SRR1551004     2   0.000     0.9845 0.000 1.000
#> SRR1551006     2   0.000     0.9845 0.000 1.000
#> SRR1551005     2   0.000     0.9845 0.000 1.000
#> SRR1551007     2   0.000     0.9845 0.000 1.000
#> SRR1551008     1   0.000     0.9744 1.000 0.000
#> SRR1551009     1   0.000     0.9744 1.000 0.000
#> SRR1551010     2   0.000     0.9845 0.000 1.000
#> SRR1551012     2   0.000     0.9845 0.000 1.000
#> SRR1551011     2   0.000     0.9845 0.000 1.000
#> SRR1551013     1   0.000     0.9744 1.000 0.000
#> SRR1551014     1   0.000     0.9744 1.000 0.000
#> SRR1551015     2   0.000     0.9845 0.000 1.000
#> SRR1551016     2   0.000     0.9845 0.000 1.000
#> SRR1551017     2   0.000     0.9845 0.000 1.000
#> SRR1551018     2   0.000     0.9845 0.000 1.000
#> SRR1551019     1   0.000     0.9744 1.000 0.000
#> SRR1551021     1   0.000     0.9744 1.000 0.000
#> SRR1551022     2   0.000     0.9845 0.000 1.000
#> SRR1551023     2   0.000     0.9845 0.000 1.000
#> SRR1551020     1   0.000     0.9744 1.000 0.000
#> SRR1551024     2   0.000     0.9845 0.000 1.000
#> SRR1551026     1   0.000     0.9744 1.000 0.000
#> SRR1551025     1   0.000     0.9744 1.000 0.000
#> SRR1551027     1   0.000     0.9744 1.000 0.000
#> SRR1551028     2   0.000     0.9845 0.000 1.000
#> SRR1551029     2   0.000     0.9845 0.000 1.000
#> SRR1551030     2   0.000     0.9845 0.000 1.000
#> SRR1551031     2   0.000     0.9845 0.000 1.000
#> SRR1551032     1   0.000     0.9744 1.000 0.000
#> SRR1551034     1   0.000     0.9744 1.000 0.000
#> SRR1551033     1   0.000     0.9744 1.000 0.000
#> SRR1551035     2   0.000     0.9845 0.000 1.000
#> SRR1551036     2   0.000     0.9845 0.000 1.000
#> SRR1551037     2   0.000     0.9845 0.000 1.000
#> SRR1551038     2   0.000     0.9845 0.000 1.000
#> SRR1551039     1   0.563     0.8454 0.868 0.132
#> SRR1551040     1   0.000     0.9744 1.000 0.000
#> SRR1551041     1   0.000     0.9744 1.000 0.000
#> SRR1551042     2   0.000     0.9845 0.000 1.000
#> SRR1551043     2   0.000     0.9845 0.000 1.000
#> SRR1551044     2   0.000     0.9845 0.000 1.000
#> SRR1551045     2   0.000     0.9845 0.000 1.000
#> SRR1551046     1   0.000     0.9744 1.000 0.000
#> SRR1551047     1   0.000     0.9744 1.000 0.000
#> SRR1551048     1   0.000     0.9744 1.000 0.000
#> SRR1551049     2   0.000     0.9845 0.000 1.000
#> SRR1551050     2   0.000     0.9845 0.000 1.000
#> SRR1551051     2   0.000     0.9845 0.000 1.000
#> SRR1551052     2   0.000     0.9845 0.000 1.000
#> SRR1551053     2   0.625     0.8047 0.156 0.844
#> SRR1551054     1   0.000     0.9744 1.000 0.000
#> SRR1551055     1   0.000     0.9744 1.000 0.000
#> SRR1551056     2   0.000     0.9845 0.000 1.000
#> SRR1551057     2   0.000     0.9845 0.000 1.000
#> SRR1551058     2   0.000     0.9845 0.000 1.000
#> SRR1551059     2   0.000     0.9845 0.000 1.000
#> SRR1551060     1   0.904     0.5385 0.680 0.320
#> SRR1551061     1   0.000     0.9744 1.000 0.000
#> SRR1551062     1   0.000     0.9744 1.000 0.000
#> SRR1551063     2   0.000     0.9845 0.000 1.000
#> SRR1551064     2   0.000     0.9845 0.000 1.000
#> SRR1551065     2   0.000     0.9845 0.000 1.000
#> SRR1551066     2   0.000     0.9845 0.000 1.000
#> SRR1551067     1   0.311     0.9287 0.944 0.056
#> SRR1551068     1   0.000     0.9744 1.000 0.000
#> SRR1551069     1   0.000     0.9744 1.000 0.000
#> SRR1551070     2   0.000     0.9845 0.000 1.000
#> SRR1551071     2   0.000     0.9845 0.000 1.000
#> SRR1551072     2   0.000     0.9845 0.000 1.000
#> SRR1551073     2   0.000     0.9845 0.000 1.000
#> SRR1551074     1   0.000     0.9744 1.000 0.000
#> SRR1551075     1   0.000     0.9744 1.000 0.000
#> SRR1551076     1   0.000     0.9744 1.000 0.000
#> SRR1551077     2   0.000     0.9845 0.000 1.000
#> SRR1551078     2   0.000     0.9845 0.000 1.000
#> SRR1551079     2   0.000     0.9845 0.000 1.000
#> SRR1551080     2   0.000     0.9845 0.000 1.000
#> SRR1551081     2   0.844     0.6168 0.272 0.728
#> SRR1551082     1   0.000     0.9744 1.000 0.000
#> SRR1551083     1   0.000     0.9744 1.000 0.000
#> SRR1551084     2   0.000     0.9845 0.000 1.000
#> SRR1551085     2   0.000     0.9845 0.000 1.000
#> SRR1551086     2   0.000     0.9845 0.000 1.000
#> SRR1551088     1   0.000     0.9744 1.000 0.000
#> SRR1551087     1   0.343     0.9210 0.936 0.064
#> SRR1551089     1   0.000     0.9744 1.000 0.000
#> SRR1551090     2   0.000     0.9845 0.000 1.000
#> SRR1551091     2   0.000     0.9845 0.000 1.000
#> SRR1551092     2   0.000     0.9845 0.000 1.000
#> SRR1551093     2   0.000     0.9845 0.000 1.000
#> SRR1551094     1   0.260     0.9397 0.956 0.044
#> SRR1551095     1   0.000     0.9744 1.000 0.000
#> SRR1551096     1   0.000     0.9744 1.000 0.000
#> SRR1551097     2   0.000     0.9845 0.000 1.000
#> SRR1551098     2   0.000     0.9845 0.000 1.000
#> SRR1551099     2   0.000     0.9845 0.000 1.000
#> SRR1551101     1   0.000     0.9744 1.000 0.000
#> SRR1551100     1   1.000     0.0391 0.508 0.492
#> SRR1551102     1   0.000     0.9744 1.000 0.000
#> SRR1551103     2   0.000     0.9845 0.000 1.000
#> SRR1551104     2   0.000     0.9845 0.000 1.000
#> SRR1551105     2   0.000     0.9845 0.000 1.000
#> SRR1551106     2   0.000     0.9845 0.000 1.000
#> SRR1551107     1   0.697     0.7708 0.812 0.188
#> SRR1551108     1   0.000     0.9744 1.000 0.000
#> SRR1551109     1   0.000     0.9744 1.000 0.000
#> SRR1551110     2   0.000     0.9845 0.000 1.000
#> SRR1551111     2   0.000     0.9845 0.000 1.000
#> SRR1551112     2   0.000     0.9845 0.000 1.000
#> SRR1551113     2   0.000     0.9845 0.000 1.000
#> SRR1551114     1   0.224     0.9465 0.964 0.036

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1550981     1  0.0000     0.8674 1.000 0.000 0.000
#> SRR1550982     1  0.1482     0.8602 0.968 0.020 0.012
#> SRR1550983     1  0.0747     0.8657 0.984 0.000 0.016
#> SRR1550984     1  0.6126     0.3846 0.600 0.400 0.000
#> SRR1550986     1  0.0000     0.8674 1.000 0.000 0.000
#> SRR1550985     2  0.6045     0.3136 0.380 0.620 0.000
#> SRR1550988     3  0.1753     0.9924 0.000 0.048 0.952
#> SRR1550987     1  0.5650     0.7060 0.688 0.000 0.312
#> SRR1550989     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1550990     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1550991     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1550992     1  0.0000     0.8674 1.000 0.000 0.000
#> SRR1550994     3  0.1753     0.9924 0.000 0.048 0.952
#> SRR1550993     1  0.6111     0.5977 0.604 0.000 0.396
#> SRR1550995     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1550996     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1550997     1  0.0000     0.8674 1.000 0.000 0.000
#> SRR1550998     1  0.5216     0.7506 0.740 0.000 0.260
#> SRR1551000     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1550999     3  0.1753     0.9924 0.000 0.048 0.952
#> SRR1551001     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551002     1  0.0000     0.8674 1.000 0.000 0.000
#> SRR1551003     1  0.5706     0.6977 0.680 0.000 0.320
#> SRR1551004     3  0.1753     0.9924 0.000 0.048 0.952
#> SRR1551006     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551005     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551007     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551008     1  0.0000     0.8674 1.000 0.000 0.000
#> SRR1551009     1  0.6062     0.6169 0.616 0.000 0.384
#> SRR1551010     3  0.1753     0.9924 0.000 0.048 0.952
#> SRR1551012     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551011     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551013     1  0.0000     0.8674 1.000 0.000 0.000
#> SRR1551014     1  0.3551     0.8295 0.868 0.000 0.132
#> SRR1551015     3  0.0892     0.9551 0.000 0.020 0.980
#> SRR1551016     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551017     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551018     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551019     1  0.0000     0.8674 1.000 0.000 0.000
#> SRR1551021     1  0.3192     0.8384 0.888 0.000 0.112
#> SRR1551022     3  0.1964     0.9893 0.000 0.056 0.944
#> SRR1551023     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551020     1  0.0000     0.8674 1.000 0.000 0.000
#> SRR1551024     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551026     1  0.0000     0.8674 1.000 0.000 0.000
#> SRR1551025     1  0.0000     0.8674 1.000 0.000 0.000
#> SRR1551027     1  0.4235     0.8065 0.824 0.000 0.176
#> SRR1551028     3  0.1860     0.9917 0.000 0.052 0.948
#> SRR1551029     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551030     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551031     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551032     1  0.0237     0.8671 0.996 0.000 0.004
#> SRR1551034     1  0.5678     0.7019 0.684 0.000 0.316
#> SRR1551033     1  0.0000     0.8674 1.000 0.000 0.000
#> SRR1551035     3  0.2066     0.9861 0.000 0.060 0.940
#> SRR1551036     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551037     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551038     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551039     1  0.2200     0.8397 0.940 0.056 0.004
#> SRR1551040     1  0.0000     0.8674 1.000 0.000 0.000
#> SRR1551041     1  0.4796     0.7793 0.780 0.000 0.220
#> SRR1551042     3  0.1860     0.9917 0.000 0.052 0.948
#> SRR1551043     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551044     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551045     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551046     1  0.1643     0.8607 0.956 0.000 0.044
#> SRR1551047     1  0.0000     0.8674 1.000 0.000 0.000
#> SRR1551048     1  0.6026     0.6284 0.624 0.000 0.376
#> SRR1551049     3  0.1753     0.9924 0.000 0.048 0.952
#> SRR1551050     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551051     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551052     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551053     2  0.3879     0.7762 0.152 0.848 0.000
#> SRR1551054     1  0.0000     0.8674 1.000 0.000 0.000
#> SRR1551055     1  0.6079     0.6108 0.612 0.000 0.388
#> SRR1551056     3  0.2066     0.9861 0.000 0.060 0.940
#> SRR1551057     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551058     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551059     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551060     1  0.3116     0.8003 0.892 0.108 0.000
#> SRR1551061     1  0.0000     0.8674 1.000 0.000 0.000
#> SRR1551062     1  0.6062     0.6169 0.616 0.000 0.384
#> SRR1551063     3  0.1753     0.9924 0.000 0.048 0.952
#> SRR1551064     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551065     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551066     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551067     1  0.2116     0.8606 0.948 0.012 0.040
#> SRR1551068     1  0.0000     0.8674 1.000 0.000 0.000
#> SRR1551069     1  0.5733     0.6934 0.676 0.000 0.324
#> SRR1551070     3  0.1753     0.9924 0.000 0.048 0.952
#> SRR1551071     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551072     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551073     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551074     1  0.0747     0.8657 0.984 0.000 0.016
#> SRR1551075     1  0.0000     0.8674 1.000 0.000 0.000
#> SRR1551076     1  0.5363     0.7379 0.724 0.000 0.276
#> SRR1551077     3  0.1753     0.9924 0.000 0.048 0.952
#> SRR1551078     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551079     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551080     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551081     2  0.6804     0.0116 0.460 0.528 0.012
#> SRR1551082     1  0.0000     0.8674 1.000 0.000 0.000
#> SRR1551083     1  0.6095     0.6044 0.608 0.000 0.392
#> SRR1551084     3  0.1964     0.9894 0.000 0.056 0.944
#> SRR1551085     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551086     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551088     1  0.0000     0.8674 1.000 0.000 0.000
#> SRR1551087     1  0.2116     0.8606 0.948 0.012 0.040
#> SRR1551089     1  0.5497     0.7243 0.708 0.000 0.292
#> SRR1551090     3  0.2066     0.9861 0.000 0.060 0.940
#> SRR1551091     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551092     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551093     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551094     1  0.1337     0.8618 0.972 0.016 0.012
#> SRR1551095     1  0.0000     0.8674 1.000 0.000 0.000
#> SRR1551096     1  0.6095     0.6044 0.608 0.000 0.392
#> SRR1551097     3  0.1753     0.9924 0.000 0.048 0.952
#> SRR1551098     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551099     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551101     1  0.0000     0.8674 1.000 0.000 0.000
#> SRR1551100     1  0.5291     0.6178 0.732 0.268 0.000
#> SRR1551102     1  0.5621     0.7097 0.692 0.000 0.308
#> SRR1551103     3  0.2066     0.9861 0.000 0.060 0.940
#> SRR1551104     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551105     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551106     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551107     1  0.2636     0.8564 0.932 0.020 0.048
#> SRR1551108     1  0.0000     0.8674 1.000 0.000 0.000
#> SRR1551109     1  0.5905     0.6604 0.648 0.000 0.352
#> SRR1551110     3  0.1860     0.9917 0.000 0.052 0.948
#> SRR1551111     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551112     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551113     2  0.0000     0.9773 0.000 1.000 0.000
#> SRR1551114     1  0.0747     0.8615 0.984 0.016 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1550981     3  0.4356     0.7141 0.292 0.000 0.708 0.000
#> SRR1550982     1  0.7226     0.3558 0.548 0.220 0.232 0.000
#> SRR1550983     1  0.4391     0.5983 0.740 0.008 0.252 0.000
#> SRR1550984     2  0.3674     0.8175 0.104 0.852 0.044 0.000
#> SRR1550986     3  0.2814     0.9422 0.132 0.000 0.868 0.000
#> SRR1550985     2  0.1724     0.9063 0.032 0.948 0.020 0.000
#> SRR1550988     4  0.0000     0.9982 0.000 0.000 0.000 1.000
#> SRR1550987     1  0.0376     0.8866 0.992 0.000 0.004 0.004
#> SRR1550989     2  0.0188     0.9343 0.004 0.996 0.000 0.000
#> SRR1550990     2  0.0000     0.9350 0.000 1.000 0.000 0.000
#> SRR1550991     2  0.2814     0.8991 0.000 0.868 0.132 0.000
#> SRR1550992     3  0.2814     0.9422 0.132 0.000 0.868 0.000
#> SRR1550994     4  0.0188     0.9970 0.004 0.000 0.000 0.996
#> SRR1550993     1  0.0336     0.8844 0.992 0.000 0.000 0.008
#> SRR1550995     2  0.0188     0.9343 0.004 0.996 0.000 0.000
#> SRR1550996     2  0.0000     0.9350 0.000 1.000 0.000 0.000
#> SRR1550997     3  0.2814     0.9422 0.132 0.000 0.868 0.000
#> SRR1550998     1  0.0336     0.8856 0.992 0.000 0.008 0.000
#> SRR1551000     2  0.0188     0.9343 0.004 0.996 0.000 0.000
#> SRR1550999     4  0.0336     0.9951 0.008 0.000 0.000 0.992
#> SRR1551001     2  0.0000     0.9350 0.000 1.000 0.000 0.000
#> SRR1551002     3  0.2814     0.9422 0.132 0.000 0.868 0.000
#> SRR1551003     1  0.0376     0.8866 0.992 0.000 0.004 0.004
#> SRR1551004     4  0.0188     0.9970 0.004 0.000 0.000 0.996
#> SRR1551006     2  0.1389     0.9252 0.000 0.952 0.048 0.000
#> SRR1551005     2  0.0000     0.9350 0.000 1.000 0.000 0.000
#> SRR1551007     2  0.2814     0.8991 0.000 0.868 0.132 0.000
#> SRR1551008     3  0.2814     0.9422 0.132 0.000 0.868 0.000
#> SRR1551009     1  0.0336     0.8844 0.992 0.000 0.000 0.008
#> SRR1551010     4  0.0000     0.9982 0.000 0.000 0.000 1.000
#> SRR1551012     2  0.0000     0.9350 0.000 1.000 0.000 0.000
#> SRR1551011     2  0.0188     0.9343 0.004 0.996 0.000 0.000
#> SRR1551013     3  0.2814     0.9422 0.132 0.000 0.868 0.000
#> SRR1551014     1  0.0469     0.8839 0.988 0.000 0.012 0.000
#> SRR1551015     4  0.0336     0.9951 0.008 0.000 0.000 0.992
#> SRR1551016     2  0.0000     0.9350 0.000 1.000 0.000 0.000
#> SRR1551017     2  0.2814     0.8991 0.000 0.868 0.132 0.000
#> SRR1551018     2  0.2814     0.8991 0.000 0.868 0.132 0.000
#> SRR1551019     3  0.4948     0.3475 0.440 0.000 0.560 0.000
#> SRR1551021     1  0.0469     0.8839 0.988 0.000 0.012 0.000
#> SRR1551022     4  0.0000     0.9982 0.000 0.000 0.000 1.000
#> SRR1551023     2  0.0188     0.9343 0.004 0.996 0.000 0.000
#> SRR1551020     3  0.2814     0.9422 0.132 0.000 0.868 0.000
#> SRR1551024     2  0.0000     0.9350 0.000 1.000 0.000 0.000
#> SRR1551026     3  0.2814     0.9422 0.132 0.000 0.868 0.000
#> SRR1551025     3  0.3311     0.8972 0.172 0.000 0.828 0.000
#> SRR1551027     1  0.0469     0.8839 0.988 0.000 0.012 0.000
#> SRR1551028     4  0.0000     0.9982 0.000 0.000 0.000 1.000
#> SRR1551029     2  0.0000     0.9350 0.000 1.000 0.000 0.000
#> SRR1551030     2  0.1867     0.9185 0.000 0.928 0.072 0.000
#> SRR1551031     2  0.2814     0.8991 0.000 0.868 0.132 0.000
#> SRR1551032     1  0.4948     0.0754 0.560 0.000 0.440 0.000
#> SRR1551034     1  0.0376     0.8866 0.992 0.000 0.004 0.004
#> SRR1551033     3  0.2814     0.9422 0.132 0.000 0.868 0.000
#> SRR1551035     4  0.0000     0.9982 0.000 0.000 0.000 1.000
#> SRR1551036     2  0.0000     0.9350 0.000 1.000 0.000 0.000
#> SRR1551037     2  0.0336     0.9340 0.000 0.992 0.008 0.000
#> SRR1551038     2  0.2814     0.8991 0.000 0.868 0.132 0.000
#> SRR1551039     2  0.6783     0.3246 0.304 0.572 0.124 0.000
#> SRR1551040     3  0.2814     0.9422 0.132 0.000 0.868 0.000
#> SRR1551041     1  0.0336     0.8856 0.992 0.000 0.008 0.000
#> SRR1551042     4  0.0000     0.9982 0.000 0.000 0.000 1.000
#> SRR1551043     2  0.0000     0.9350 0.000 1.000 0.000 0.000
#> SRR1551044     2  0.0336     0.9340 0.000 0.992 0.008 0.000
#> SRR1551045     2  0.2814     0.8991 0.000 0.868 0.132 0.000
#> SRR1551046     1  0.1867     0.8390 0.928 0.000 0.072 0.000
#> SRR1551047     3  0.2814     0.9422 0.132 0.000 0.868 0.000
#> SRR1551048     1  0.0336     0.8844 0.992 0.000 0.000 0.008
#> SRR1551049     4  0.0000     0.9982 0.000 0.000 0.000 1.000
#> SRR1551050     2  0.0188     0.9343 0.004 0.996 0.000 0.000
#> SRR1551051     2  0.0000     0.9350 0.000 1.000 0.000 0.000
#> SRR1551052     2  0.2814     0.8991 0.000 0.868 0.132 0.000
#> SRR1551053     2  0.1406     0.9142 0.016 0.960 0.024 0.000
#> SRR1551054     3  0.2814     0.9422 0.132 0.000 0.868 0.000
#> SRR1551055     1  0.0336     0.8844 0.992 0.000 0.000 0.008
#> SRR1551056     4  0.0000     0.9982 0.000 0.000 0.000 1.000
#> SRR1551057     2  0.0000     0.9350 0.000 1.000 0.000 0.000
#> SRR1551058     2  0.2814     0.8991 0.000 0.868 0.132 0.000
#> SRR1551059     2  0.2814     0.8991 0.000 0.868 0.132 0.000
#> SRR1551060     2  0.6874     0.2790 0.136 0.568 0.296 0.000
#> SRR1551061     3  0.2814     0.9422 0.132 0.000 0.868 0.000
#> SRR1551062     1  0.0336     0.8844 0.992 0.000 0.000 0.008
#> SRR1551063     4  0.0000     0.9982 0.000 0.000 0.000 1.000
#> SRR1551064     2  0.0188     0.9343 0.004 0.996 0.000 0.000
#> SRR1551065     2  0.0000     0.9350 0.000 1.000 0.000 0.000
#> SRR1551066     2  0.2814     0.8991 0.000 0.868 0.132 0.000
#> SRR1551067     1  0.4869     0.7107 0.780 0.088 0.132 0.000
#> SRR1551068     3  0.2814     0.9422 0.132 0.000 0.868 0.000
#> SRR1551069     1  0.0376     0.8866 0.992 0.000 0.004 0.004
#> SRR1551070     4  0.0336     0.9951 0.008 0.000 0.000 0.992
#> SRR1551071     2  0.0188     0.9343 0.004 0.996 0.000 0.000
#> SRR1551072     2  0.0000     0.9350 0.000 1.000 0.000 0.000
#> SRR1551073     2  0.2814     0.8991 0.000 0.868 0.132 0.000
#> SRR1551074     1  0.4679     0.3779 0.648 0.000 0.352 0.000
#> SRR1551075     3  0.2814     0.9422 0.132 0.000 0.868 0.000
#> SRR1551076     1  0.0376     0.8866 0.992 0.000 0.004 0.004
#> SRR1551077     4  0.0188     0.9970 0.004 0.000 0.000 0.996
#> SRR1551078     2  0.0000     0.9350 0.000 1.000 0.000 0.000
#> SRR1551079     2  0.2814     0.8991 0.000 0.868 0.132 0.000
#> SRR1551080     2  0.2814     0.8991 0.000 0.868 0.132 0.000
#> SRR1551081     2  0.5417     0.2292 0.412 0.572 0.016 0.000
#> SRR1551082     3  0.2814     0.9422 0.132 0.000 0.868 0.000
#> SRR1551083     1  0.0336     0.8844 0.992 0.000 0.000 0.008
#> SRR1551084     4  0.0000     0.9982 0.000 0.000 0.000 1.000
#> SRR1551085     2  0.0188     0.9343 0.004 0.996 0.000 0.000
#> SRR1551086     2  0.1211     0.9270 0.000 0.960 0.040 0.000
#> SRR1551088     3  0.2814     0.9422 0.132 0.000 0.868 0.000
#> SRR1551087     1  0.4030     0.7633 0.836 0.092 0.072 0.000
#> SRR1551089     1  0.0376     0.8866 0.992 0.000 0.004 0.004
#> SRR1551090     4  0.0000     0.9982 0.000 0.000 0.000 1.000
#> SRR1551091     2  0.0188     0.9343 0.004 0.996 0.000 0.000
#> SRR1551092     2  0.0000     0.9350 0.000 1.000 0.000 0.000
#> SRR1551093     2  0.2814     0.8991 0.000 0.868 0.132 0.000
#> SRR1551094     1  0.6845     0.4177 0.596 0.168 0.236 0.000
#> SRR1551095     3  0.2814     0.9422 0.132 0.000 0.868 0.000
#> SRR1551096     1  0.0336     0.8844 0.992 0.000 0.000 0.008
#> SRR1551097     4  0.0000     0.9982 0.000 0.000 0.000 1.000
#> SRR1551098     2  0.0188     0.9343 0.004 0.996 0.000 0.000
#> SRR1551099     2  0.0000     0.9350 0.000 1.000 0.000 0.000
#> SRR1551101     3  0.2814     0.9422 0.132 0.000 0.868 0.000
#> SRR1551100     2  0.4424     0.7715 0.100 0.812 0.088 0.000
#> SRR1551102     1  0.0336     0.8856 0.992 0.000 0.008 0.000
#> SRR1551103     4  0.0188     0.9970 0.004 0.000 0.000 0.996
#> SRR1551104     2  0.0188     0.9343 0.004 0.996 0.000 0.000
#> SRR1551105     2  0.0000     0.9350 0.000 1.000 0.000 0.000
#> SRR1551106     2  0.2814     0.8991 0.000 0.868 0.132 0.000
#> SRR1551107     1  0.3760     0.7423 0.836 0.136 0.028 0.000
#> SRR1551108     3  0.2814     0.9422 0.132 0.000 0.868 0.000
#> SRR1551109     1  0.0336     0.8844 0.992 0.000 0.000 0.008
#> SRR1551110     4  0.0000     0.9982 0.000 0.000 0.000 1.000
#> SRR1551111     2  0.0000     0.9350 0.000 1.000 0.000 0.000
#> SRR1551112     2  0.0000     0.9350 0.000 1.000 0.000 0.000
#> SRR1551113     2  0.2814     0.8991 0.000 0.868 0.132 0.000
#> SRR1551114     3  0.7551     0.2804 0.196 0.356 0.448 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3 p4    p5
#> SRR1550981     3  0.4449      0.728 0.052 0.144 0.780  0 0.024
#> SRR1550982     2  0.1653      0.899 0.004 0.944 0.028  0 0.024
#> SRR1550983     2  0.6266      0.395 0.316 0.560 0.100  0 0.024
#> SRR1550984     2  0.2423      0.866 0.000 0.896 0.080  0 0.024
#> SRR1550986     3  0.0404      0.964 0.012 0.000 0.988  0 0.000
#> SRR1550985     2  0.1106      0.908 0.000 0.964 0.012  0 0.024
#> SRR1550988     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1550987     1  0.0000      0.962 1.000 0.000 0.000  0 0.000
#> SRR1550989     2  0.0000      0.923 0.000 1.000 0.000  0 0.000
#> SRR1550990     2  0.0609      0.913 0.000 0.980 0.000  0 0.020
#> SRR1550991     5  0.0609      0.969 0.000 0.020 0.000  0 0.980
#> SRR1550992     3  0.0404      0.964 0.012 0.000 0.988  0 0.000
#> SRR1550994     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1550993     1  0.0000      0.962 1.000 0.000 0.000  0 0.000
#> SRR1550995     2  0.0000      0.923 0.000 1.000 0.000  0 0.000
#> SRR1550996     2  0.0000      0.923 0.000 1.000 0.000  0 0.000
#> SRR1550997     3  0.0404      0.964 0.012 0.000 0.988  0 0.000
#> SRR1550998     1  0.0000      0.962 1.000 0.000 0.000  0 0.000
#> SRR1551000     2  0.0000      0.923 0.000 1.000 0.000  0 0.000
#> SRR1550999     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551001     2  0.0162      0.921 0.000 0.996 0.000  0 0.004
#> SRR1551002     3  0.0404      0.964 0.012 0.000 0.988  0 0.000
#> SRR1551003     1  0.0000      0.962 1.000 0.000 0.000  0 0.000
#> SRR1551004     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551006     2  0.4219      0.291 0.000 0.584 0.000  0 0.416
#> SRR1551005     2  0.0000      0.923 0.000 1.000 0.000  0 0.000
#> SRR1551007     5  0.0609      0.969 0.000 0.020 0.000  0 0.980
#> SRR1551008     3  0.0404      0.964 0.012 0.000 0.988  0 0.000
#> SRR1551009     1  0.0000      0.962 1.000 0.000 0.000  0 0.000
#> SRR1551010     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551012     2  0.0000      0.923 0.000 1.000 0.000  0 0.000
#> SRR1551011     2  0.0000      0.923 0.000 1.000 0.000  0 0.000
#> SRR1551013     3  0.0404      0.964 0.012 0.000 0.988  0 0.000
#> SRR1551014     1  0.0000      0.962 1.000 0.000 0.000  0 0.000
#> SRR1551015     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551016     2  0.0000      0.923 0.000 1.000 0.000  0 0.000
#> SRR1551017     5  0.0794      0.963 0.000 0.028 0.000  0 0.972
#> SRR1551018     5  0.0609      0.969 0.000 0.020 0.000  0 0.980
#> SRR1551019     3  0.3621      0.735 0.192 0.000 0.788  0 0.020
#> SRR1551021     1  0.0000      0.962 1.000 0.000 0.000  0 0.000
#> SRR1551022     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551023     2  0.0000      0.923 0.000 1.000 0.000  0 0.000
#> SRR1551020     3  0.0404      0.964 0.012 0.000 0.988  0 0.000
#> SRR1551024     2  0.0000      0.923 0.000 1.000 0.000  0 0.000
#> SRR1551026     3  0.0404      0.964 0.012 0.000 0.988  0 0.000
#> SRR1551025     3  0.0898      0.934 0.008 0.000 0.972  0 0.020
#> SRR1551027     1  0.0000      0.962 1.000 0.000 0.000  0 0.000
#> SRR1551028     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551029     2  0.0000      0.923 0.000 1.000 0.000  0 0.000
#> SRR1551030     5  0.4171      0.322 0.000 0.396 0.000  0 0.604
#> SRR1551031     5  0.0609      0.969 0.000 0.020 0.000  0 0.980
#> SRR1551032     3  0.4360      0.546 0.300 0.000 0.680  0 0.020
#> SRR1551034     1  0.0000      0.962 1.000 0.000 0.000  0 0.000
#> SRR1551033     3  0.0404      0.964 0.012 0.000 0.988  0 0.000
#> SRR1551035     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551036     2  0.0000      0.923 0.000 1.000 0.000  0 0.000
#> SRR1551037     2  0.3074      0.740 0.000 0.804 0.000  0 0.196
#> SRR1551038     5  0.0609      0.969 0.000 0.020 0.000  0 0.980
#> SRR1551039     2  0.2264      0.879 0.004 0.912 0.060  0 0.024
#> SRR1551040     3  0.0404      0.964 0.012 0.000 0.988  0 0.000
#> SRR1551041     1  0.0000      0.962 1.000 0.000 0.000  0 0.000
#> SRR1551042     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551043     2  0.0000      0.923 0.000 1.000 0.000  0 0.000
#> SRR1551044     2  0.2516      0.810 0.000 0.860 0.000  0 0.140
#> SRR1551045     5  0.0609      0.969 0.000 0.020 0.000  0 0.980
#> SRR1551046     1  0.4356      0.667 0.756 0.200 0.020  0 0.024
#> SRR1551047     3  0.0404      0.964 0.012 0.000 0.988  0 0.000
#> SRR1551048     1  0.0000      0.962 1.000 0.000 0.000  0 0.000
#> SRR1551049     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551050     2  0.0000      0.923 0.000 1.000 0.000  0 0.000
#> SRR1551051     2  0.0000      0.923 0.000 1.000 0.000  0 0.000
#> SRR1551052     5  0.0609      0.969 0.000 0.020 0.000  0 0.980
#> SRR1551053     2  0.1106      0.908 0.000 0.964 0.012  0 0.024
#> SRR1551054     3  0.0404      0.964 0.012 0.000 0.988  0 0.000
#> SRR1551055     1  0.0000      0.962 1.000 0.000 0.000  0 0.000
#> SRR1551056     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551057     2  0.0000      0.923 0.000 1.000 0.000  0 0.000
#> SRR1551058     5  0.0963      0.956 0.000 0.036 0.000  0 0.964
#> SRR1551059     5  0.0609      0.969 0.000 0.020 0.000  0 0.980
#> SRR1551060     2  0.4726      0.512 0.004 0.644 0.328  0 0.024
#> SRR1551061     3  0.0404      0.964 0.012 0.000 0.988  0 0.000
#> SRR1551062     1  0.0000      0.962 1.000 0.000 0.000  0 0.000
#> SRR1551063     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551064     2  0.0000      0.923 0.000 1.000 0.000  0 0.000
#> SRR1551065     2  0.1341      0.889 0.000 0.944 0.000  0 0.056
#> SRR1551066     5  0.0609      0.969 0.000 0.020 0.000  0 0.980
#> SRR1551067     2  0.4584      0.722 0.188 0.752 0.036  0 0.024
#> SRR1551068     3  0.0404      0.964 0.012 0.000 0.988  0 0.000
#> SRR1551069     1  0.0000      0.962 1.000 0.000 0.000  0 0.000
#> SRR1551070     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551071     2  0.0000      0.923 0.000 1.000 0.000  0 0.000
#> SRR1551072     2  0.0963      0.903 0.000 0.964 0.000  0 0.036
#> SRR1551073     5  0.0609      0.969 0.000 0.020 0.000  0 0.980
#> SRR1551074     1  0.6162      0.137 0.500 0.072 0.404  0 0.024
#> SRR1551075     3  0.0404      0.964 0.012 0.000 0.988  0 0.000
#> SRR1551076     1  0.0000      0.962 1.000 0.000 0.000  0 0.000
#> SRR1551077     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551078     2  0.0000      0.923 0.000 1.000 0.000  0 0.000
#> SRR1551079     5  0.0880      0.960 0.000 0.032 0.000  0 0.968
#> SRR1551080     5  0.0609      0.969 0.000 0.020 0.000  0 0.980
#> SRR1551081     2  0.1978      0.893 0.032 0.932 0.012  0 0.024
#> SRR1551082     3  0.0404      0.964 0.012 0.000 0.988  0 0.000
#> SRR1551083     1  0.0000      0.962 1.000 0.000 0.000  0 0.000
#> SRR1551084     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551085     2  0.0000      0.923 0.000 1.000 0.000  0 0.000
#> SRR1551086     2  0.4060      0.438 0.000 0.640 0.000  0 0.360
#> SRR1551088     3  0.0404      0.964 0.012 0.000 0.988  0 0.000
#> SRR1551087     2  0.4942      0.603 0.272 0.680 0.024  0 0.024
#> SRR1551089     1  0.0000      0.962 1.000 0.000 0.000  0 0.000
#> SRR1551090     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551091     2  0.0000      0.923 0.000 1.000 0.000  0 0.000
#> SRR1551092     2  0.0000      0.923 0.000 1.000 0.000  0 0.000
#> SRR1551093     5  0.0609      0.969 0.000 0.020 0.000  0 0.980
#> SRR1551094     2  0.3256      0.847 0.028 0.864 0.084  0 0.024
#> SRR1551095     3  0.0404      0.964 0.012 0.000 0.988  0 0.000
#> SRR1551096     1  0.0000      0.962 1.000 0.000 0.000  0 0.000
#> SRR1551097     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551098     2  0.0000      0.923 0.000 1.000 0.000  0 0.000
#> SRR1551099     2  0.0000      0.923 0.000 1.000 0.000  0 0.000
#> SRR1551101     3  0.0404      0.964 0.012 0.000 0.988  0 0.000
#> SRR1551100     2  0.1106      0.908 0.000 0.964 0.012  0 0.024
#> SRR1551102     1  0.0000      0.962 1.000 0.000 0.000  0 0.000
#> SRR1551103     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551104     2  0.0000      0.923 0.000 1.000 0.000  0 0.000
#> SRR1551105     2  0.0609      0.913 0.000 0.980 0.000  0 0.020
#> SRR1551106     5  0.0609      0.969 0.000 0.020 0.000  0 0.980
#> SRR1551107     2  0.3587      0.803 0.140 0.824 0.012  0 0.024
#> SRR1551108     3  0.0404      0.964 0.012 0.000 0.988  0 0.000
#> SRR1551109     1  0.0000      0.962 1.000 0.000 0.000  0 0.000
#> SRR1551110     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1551111     2  0.0000      0.923 0.000 1.000 0.000  0 0.000
#> SRR1551112     2  0.1732      0.870 0.000 0.920 0.000  0 0.080
#> SRR1551113     5  0.0609      0.969 0.000 0.020 0.000  0 0.980
#> SRR1551114     2  0.3845      0.729 0.000 0.768 0.208  0 0.024

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1550981     5  0.4422      0.890 0.116 0.012 0.072 0.000 0.772 0.028
#> SRR1550982     5  0.4179      0.913 0.116 0.088 0.004 0.000 0.776 0.016
#> SRR1550983     5  0.4040      0.914 0.136 0.056 0.004 0.000 0.784 0.020
#> SRR1550984     5  0.4236      0.900 0.072 0.088 0.004 0.000 0.788 0.048
#> SRR1550986     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1550985     5  0.4203      0.885 0.088 0.132 0.000 0.000 0.764 0.016
#> SRR1550988     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1550987     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1550989     2  0.0363      0.956 0.000 0.988 0.000 0.000 0.012 0.000
#> SRR1550990     2  0.1408      0.938 0.000 0.944 0.000 0.000 0.036 0.020
#> SRR1550991     6  0.0000      0.968 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1550992     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1550994     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1550993     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1550995     2  0.0458      0.955 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1550996     2  0.0458      0.955 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1550997     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1550998     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551000     2  0.0363      0.956 0.000 0.988 0.000 0.000 0.012 0.000
#> SRR1550999     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551001     2  0.1151      0.952 0.000 0.956 0.000 0.000 0.032 0.012
#> SRR1551002     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551003     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551004     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551006     2  0.3134      0.832 0.000 0.820 0.000 0.000 0.036 0.144
#> SRR1551005     2  0.0547      0.954 0.000 0.980 0.000 0.000 0.020 0.000
#> SRR1551007     6  0.0260      0.969 0.000 0.000 0.000 0.000 0.008 0.992
#> SRR1551008     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551009     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551010     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551012     2  0.0993      0.946 0.000 0.964 0.000 0.000 0.024 0.012
#> SRR1551011     2  0.0146      0.955 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1551013     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551014     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551015     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551016     2  0.0632      0.952 0.000 0.976 0.000 0.000 0.024 0.000
#> SRR1551017     6  0.0865      0.952 0.000 0.000 0.000 0.000 0.036 0.964
#> SRR1551018     6  0.0363      0.969 0.000 0.000 0.000 0.000 0.012 0.988
#> SRR1551019     5  0.4465      0.823 0.144 0.000 0.144 0.000 0.712 0.000
#> SRR1551021     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551022     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551023     2  0.0547      0.954 0.000 0.980 0.000 0.000 0.020 0.000
#> SRR1551020     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551024     2  0.0000      0.955 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551026     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551025     5  0.4819      0.771 0.132 0.000 0.204 0.000 0.664 0.000
#> SRR1551027     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551028     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551029     2  0.0632      0.952 0.000 0.976 0.000 0.000 0.024 0.000
#> SRR1551030     2  0.4166      0.539 0.000 0.648 0.000 0.000 0.028 0.324
#> SRR1551031     6  0.0458      0.968 0.000 0.000 0.000 0.000 0.016 0.984
#> SRR1551032     5  0.4693      0.798 0.140 0.000 0.176 0.000 0.684 0.000
#> SRR1551034     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551033     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551035     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551036     2  0.0458      0.955 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1551037     2  0.2537      0.888 0.000 0.872 0.000 0.000 0.032 0.096
#> SRR1551038     6  0.0260      0.969 0.000 0.000 0.000 0.000 0.008 0.992
#> SRR1551039     5  0.4208      0.912 0.092 0.076 0.004 0.000 0.788 0.040
#> SRR1551040     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551041     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551042     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551043     2  0.0547      0.954 0.000 0.980 0.000 0.000 0.020 0.000
#> SRR1551044     2  0.2436      0.900 0.000 0.880 0.000 0.000 0.032 0.088
#> SRR1551045     6  0.0547      0.966 0.000 0.000 0.000 0.000 0.020 0.980
#> SRR1551046     5  0.3996      0.904 0.148 0.032 0.004 0.000 0.784 0.032
#> SRR1551047     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551048     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551049     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551050     2  0.0458      0.955 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1551051     2  0.0458      0.952 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1551052     6  0.0363      0.969 0.000 0.000 0.000 0.000 0.012 0.988
#> SRR1551053     5  0.3163      0.757 0.000 0.232 0.000 0.004 0.764 0.000
#> SRR1551054     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551055     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551056     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551057     2  0.0363      0.956 0.000 0.988 0.000 0.000 0.012 0.000
#> SRR1551058     6  0.3354      0.753 0.000 0.168 0.000 0.000 0.036 0.796
#> SRR1551059     6  0.0260      0.969 0.000 0.000 0.000 0.000 0.008 0.992
#> SRR1551060     5  0.4383      0.907 0.100 0.032 0.044 0.000 0.788 0.036
#> SRR1551061     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551062     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551063     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551064     2  0.0363      0.956 0.000 0.988 0.000 0.000 0.012 0.000
#> SRR1551065     2  0.1934      0.924 0.000 0.916 0.000 0.000 0.044 0.040
#> SRR1551066     6  0.0260      0.969 0.000 0.000 0.000 0.000 0.008 0.992
#> SRR1551067     5  0.4040      0.914 0.136 0.056 0.004 0.000 0.784 0.020
#> SRR1551068     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551069     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551070     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551071     2  0.0260      0.955 0.000 0.992 0.000 0.000 0.008 0.000
#> SRR1551072     2  0.1856      0.925 0.000 0.920 0.000 0.000 0.048 0.032
#> SRR1551073     6  0.0547      0.959 0.000 0.000 0.000 0.000 0.020 0.980
#> SRR1551074     5  0.4217      0.888 0.148 0.012 0.052 0.000 0.772 0.016
#> SRR1551075     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551076     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551077     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551078     2  0.0547      0.954 0.000 0.980 0.000 0.000 0.020 0.000
#> SRR1551079     6  0.2164      0.883 0.000 0.068 0.000 0.000 0.032 0.900
#> SRR1551080     6  0.0547      0.966 0.000 0.000 0.000 0.000 0.020 0.980
#> SRR1551081     5  0.4100      0.914 0.104 0.068 0.000 0.000 0.788 0.040
#> SRR1551082     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551083     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551084     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551085     2  0.0458      0.955 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1551086     2  0.3014      0.846 0.000 0.832 0.000 0.000 0.036 0.132
#> SRR1551088     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551087     5  0.3993      0.905 0.148 0.036 0.004 0.000 0.784 0.028
#> SRR1551089     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551090     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551091     2  0.0363      0.956 0.000 0.988 0.000 0.000 0.012 0.000
#> SRR1551092     2  0.0891      0.947 0.000 0.968 0.000 0.000 0.024 0.008
#> SRR1551093     6  0.0260      0.969 0.000 0.000 0.000 0.000 0.008 0.992
#> SRR1551094     5  0.4134      0.916 0.124 0.060 0.004 0.000 0.784 0.028
#> SRR1551095     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551096     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551097     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551098     2  0.0000      0.955 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551099     2  0.0993      0.946 0.000 0.964 0.000 0.000 0.024 0.012
#> SRR1551101     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551100     5  0.4211      0.889 0.092 0.128 0.000 0.000 0.764 0.016
#> SRR1551102     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551103     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551104     2  0.0146      0.955 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1551105     2  0.1408      0.938 0.000 0.944 0.000 0.000 0.036 0.020
#> SRR1551106     6  0.0260      0.969 0.000 0.000 0.000 0.000 0.008 0.992
#> SRR1551107     5  0.4081      0.911 0.120 0.088 0.000 0.000 0.776 0.016
#> SRR1551108     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551109     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551110     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551111     2  0.0260      0.955 0.000 0.992 0.000 0.000 0.008 0.000
#> SRR1551112     2  0.1934      0.924 0.000 0.916 0.000 0.000 0.044 0.040
#> SRR1551113     6  0.0260      0.967 0.000 0.000 0.000 0.000 0.008 0.992
#> SRR1551114     5  0.4352      0.915 0.092 0.068 0.024 0.000 0.788 0.028

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15028 rows and 134 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.704           0.933       0.964        0.32237 0.714   0.714
#> 3 3 0.850           0.951       0.974        0.79296 0.693   0.569
#> 4 4 0.957           0.956       0.966        0.05254 0.993   0.983
#> 5 5 1.000           0.959       0.985        0.04787 0.962   0.904
#> 6 6 0.998           0.908       0.964        0.00967 0.994   0.984

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1550981     2   0.680      0.818 0.180 0.820
#> SRR1550982     2   0.680      0.818 0.180 0.820
#> SRR1550983     2   0.680      0.818 0.180 0.820
#> SRR1550984     2   0.000      0.953 0.000 1.000
#> SRR1550986     1   0.000      1.000 1.000 0.000
#> SRR1550985     2   0.000      0.953 0.000 1.000
#> SRR1550988     2   0.000      0.953 0.000 1.000
#> SRR1550987     2   0.738      0.792 0.208 0.792
#> SRR1550989     2   0.000      0.953 0.000 1.000
#> SRR1550990     2   0.000      0.953 0.000 1.000
#> SRR1550991     2   0.000      0.953 0.000 1.000
#> SRR1550992     1   0.000      1.000 1.000 0.000
#> SRR1550994     2   0.000      0.953 0.000 1.000
#> SRR1550993     2   0.738      0.792 0.208 0.792
#> SRR1550995     2   0.000      0.953 0.000 1.000
#> SRR1550996     2   0.000      0.953 0.000 1.000
#> SRR1550997     1   0.000      1.000 1.000 0.000
#> SRR1550998     2   0.738      0.792 0.208 0.792
#> SRR1551000     2   0.000      0.953 0.000 1.000
#> SRR1550999     2   0.000      0.953 0.000 1.000
#> SRR1551001     2   0.000      0.953 0.000 1.000
#> SRR1551002     1   0.000      1.000 1.000 0.000
#> SRR1551003     2   0.738      0.792 0.208 0.792
#> SRR1551004     2   0.000      0.953 0.000 1.000
#> SRR1551006     2   0.000      0.953 0.000 1.000
#> SRR1551005     2   0.000      0.953 0.000 1.000
#> SRR1551007     2   0.000      0.953 0.000 1.000
#> SRR1551008     1   0.000      1.000 1.000 0.000
#> SRR1551009     2   0.738      0.792 0.208 0.792
#> SRR1551010     2   0.000      0.953 0.000 1.000
#> SRR1551012     2   0.000      0.953 0.000 1.000
#> SRR1551011     2   0.000      0.953 0.000 1.000
#> SRR1551013     1   0.000      1.000 1.000 0.000
#> SRR1551014     2   0.738      0.792 0.208 0.792
#> SRR1551015     2   0.000      0.953 0.000 1.000
#> SRR1551016     2   0.000      0.953 0.000 1.000
#> SRR1551017     2   0.000      0.953 0.000 1.000
#> SRR1551018     2   0.000      0.953 0.000 1.000
#> SRR1551019     1   0.000      1.000 1.000 0.000
#> SRR1551021     2   0.738      0.792 0.208 0.792
#> SRR1551022     2   0.000      0.953 0.000 1.000
#> SRR1551023     2   0.000      0.953 0.000 1.000
#> SRR1551020     1   0.000      1.000 1.000 0.000
#> SRR1551024     2   0.000      0.953 0.000 1.000
#> SRR1551026     1   0.000      1.000 1.000 0.000
#> SRR1551025     1   0.000      1.000 1.000 0.000
#> SRR1551027     2   0.738      0.792 0.208 0.792
#> SRR1551028     2   0.000      0.953 0.000 1.000
#> SRR1551029     2   0.000      0.953 0.000 1.000
#> SRR1551030     2   0.000      0.953 0.000 1.000
#> SRR1551031     2   0.000      0.953 0.000 1.000
#> SRR1551032     1   0.000      1.000 1.000 0.000
#> SRR1551034     2   0.738      0.792 0.208 0.792
#> SRR1551033     1   0.000      1.000 1.000 0.000
#> SRR1551035     2   0.000      0.953 0.000 1.000
#> SRR1551036     2   0.000      0.953 0.000 1.000
#> SRR1551037     2   0.000      0.953 0.000 1.000
#> SRR1551038     2   0.000      0.953 0.000 1.000
#> SRR1551039     2   0.000      0.953 0.000 1.000
#> SRR1551040     1   0.000      1.000 1.000 0.000
#> SRR1551041     2   0.738      0.792 0.208 0.792
#> SRR1551042     2   0.000      0.953 0.000 1.000
#> SRR1551043     2   0.000      0.953 0.000 1.000
#> SRR1551044     2   0.000      0.953 0.000 1.000
#> SRR1551045     2   0.000      0.953 0.000 1.000
#> SRR1551046     2   0.680      0.818 0.180 0.820
#> SRR1551047     1   0.000      1.000 1.000 0.000
#> SRR1551048     2   0.738      0.792 0.208 0.792
#> SRR1551049     2   0.000      0.953 0.000 1.000
#> SRR1551050     2   0.000      0.953 0.000 1.000
#> SRR1551051     2   0.000      0.953 0.000 1.000
#> SRR1551052     2   0.000      0.953 0.000 1.000
#> SRR1551053     2   0.000      0.953 0.000 1.000
#> SRR1551054     1   0.000      1.000 1.000 0.000
#> SRR1551055     2   0.738      0.792 0.208 0.792
#> SRR1551056     2   0.000      0.953 0.000 1.000
#> SRR1551057     2   0.000      0.953 0.000 1.000
#> SRR1551058     2   0.000      0.953 0.000 1.000
#> SRR1551059     2   0.000      0.953 0.000 1.000
#> SRR1551060     2   0.000      0.953 0.000 1.000
#> SRR1551061     1   0.000      1.000 1.000 0.000
#> SRR1551062     2   0.738      0.792 0.208 0.792
#> SRR1551063     2   0.000      0.953 0.000 1.000
#> SRR1551064     2   0.000      0.953 0.000 1.000
#> SRR1551065     2   0.000      0.953 0.000 1.000
#> SRR1551066     2   0.000      0.953 0.000 1.000
#> SRR1551067     2   0.000      0.953 0.000 1.000
#> SRR1551068     1   0.000      1.000 1.000 0.000
#> SRR1551069     2   0.738      0.792 0.208 0.792
#> SRR1551070     2   0.000      0.953 0.000 1.000
#> SRR1551071     2   0.000      0.953 0.000 1.000
#> SRR1551072     2   0.000      0.953 0.000 1.000
#> SRR1551073     2   0.000      0.953 0.000 1.000
#> SRR1551074     2   0.000      0.953 0.000 1.000
#> SRR1551075     1   0.000      1.000 1.000 0.000
#> SRR1551076     2   0.738      0.792 0.208 0.792
#> SRR1551077     2   0.000      0.953 0.000 1.000
#> SRR1551078     2   0.000      0.953 0.000 1.000
#> SRR1551079     2   0.000      0.953 0.000 1.000
#> SRR1551080     2   0.000      0.953 0.000 1.000
#> SRR1551081     2   0.000      0.953 0.000 1.000
#> SRR1551082     1   0.000      1.000 1.000 0.000
#> SRR1551083     2   0.738      0.792 0.208 0.792
#> SRR1551084     2   0.000      0.953 0.000 1.000
#> SRR1551085     2   0.000      0.953 0.000 1.000
#> SRR1551086     2   0.000      0.953 0.000 1.000
#> SRR1551088     1   0.000      1.000 1.000 0.000
#> SRR1551087     2   0.000      0.953 0.000 1.000
#> SRR1551089     2   0.738      0.792 0.208 0.792
#> SRR1551090     2   0.000      0.953 0.000 1.000
#> SRR1551091     2   0.000      0.953 0.000 1.000
#> SRR1551092     2   0.000      0.953 0.000 1.000
#> SRR1551093     2   0.000      0.953 0.000 1.000
#> SRR1551094     2   0.000      0.953 0.000 1.000
#> SRR1551095     1   0.000      1.000 1.000 0.000
#> SRR1551096     2   0.738      0.792 0.208 0.792
#> SRR1551097     2   0.000      0.953 0.000 1.000
#> SRR1551098     2   0.000      0.953 0.000 1.000
#> SRR1551099     2   0.000      0.953 0.000 1.000
#> SRR1551101     1   0.000      1.000 1.000 0.000
#> SRR1551100     2   0.000      0.953 0.000 1.000
#> SRR1551102     2   0.738      0.792 0.208 0.792
#> SRR1551103     2   0.000      0.953 0.000 1.000
#> SRR1551104     2   0.000      0.953 0.000 1.000
#> SRR1551105     2   0.000      0.953 0.000 1.000
#> SRR1551106     2   0.000      0.953 0.000 1.000
#> SRR1551107     2   0.000      0.953 0.000 1.000
#> SRR1551108     1   0.000      1.000 1.000 0.000
#> SRR1551109     2   0.738      0.792 0.208 0.792
#> SRR1551110     2   0.000      0.953 0.000 1.000
#> SRR1551111     2   0.000      0.953 0.000 1.000
#> SRR1551112     2   0.000      0.953 0.000 1.000
#> SRR1551113     2   0.000      0.953 0.000 1.000
#> SRR1551114     2   0.000      0.953 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1550981     1   0.116      0.879 0.972 0.028 0.000
#> SRR1550982     1   0.116      0.879 0.972 0.028 0.000
#> SRR1550983     1   0.116      0.879 0.972 0.028 0.000
#> SRR1550984     1   0.465      0.800 0.792 0.208 0.000
#> SRR1550986     3   0.000      0.974 0.000 0.000 1.000
#> SRR1550985     1   0.465      0.800 0.792 0.208 0.000
#> SRR1550988     2   0.000      1.000 0.000 1.000 0.000
#> SRR1550987     1   0.000      0.884 1.000 0.000 0.000
#> SRR1550989     2   0.000      1.000 0.000 1.000 0.000
#> SRR1550990     2   0.000      1.000 0.000 1.000 0.000
#> SRR1550991     2   0.000      1.000 0.000 1.000 0.000
#> SRR1550992     3   0.000      0.974 0.000 0.000 1.000
#> SRR1550994     2   0.000      1.000 0.000 1.000 0.000
#> SRR1550993     1   0.000      0.884 1.000 0.000 0.000
#> SRR1550995     2   0.000      1.000 0.000 1.000 0.000
#> SRR1550996     2   0.000      1.000 0.000 1.000 0.000
#> SRR1550997     3   0.000      0.974 0.000 0.000 1.000
#> SRR1550998     1   0.000      0.884 1.000 0.000 0.000
#> SRR1551000     2   0.000      1.000 0.000 1.000 0.000
#> SRR1550999     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551001     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551002     3   0.000      0.974 0.000 0.000 1.000
#> SRR1551003     1   0.000      0.884 1.000 0.000 0.000
#> SRR1551004     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551006     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551005     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551007     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551008     3   0.000      0.974 0.000 0.000 1.000
#> SRR1551009     1   0.000      0.884 1.000 0.000 0.000
#> SRR1551010     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551012     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551011     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551013     3   0.000      0.974 0.000 0.000 1.000
#> SRR1551014     1   0.000      0.884 1.000 0.000 0.000
#> SRR1551015     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551016     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551017     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551018     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551019     3   0.465      0.793 0.208 0.000 0.792
#> SRR1551021     1   0.000      0.884 1.000 0.000 0.000
#> SRR1551022     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551023     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551020     3   0.000      0.974 0.000 0.000 1.000
#> SRR1551024     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551026     3   0.000      0.974 0.000 0.000 1.000
#> SRR1551025     3   0.465      0.793 0.208 0.000 0.792
#> SRR1551027     1   0.000      0.884 1.000 0.000 0.000
#> SRR1551028     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551029     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551030     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551031     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551032     3   0.465      0.793 0.208 0.000 0.792
#> SRR1551034     1   0.000      0.884 1.000 0.000 0.000
#> SRR1551033     3   0.000      0.974 0.000 0.000 1.000
#> SRR1551035     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551036     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551037     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551038     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551039     1   0.465      0.800 0.792 0.208 0.000
#> SRR1551040     3   0.000      0.974 0.000 0.000 1.000
#> SRR1551041     1   0.000      0.884 1.000 0.000 0.000
#> SRR1551042     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551043     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551044     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551045     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551046     1   0.116      0.879 0.972 0.028 0.000
#> SRR1551047     3   0.000      0.974 0.000 0.000 1.000
#> SRR1551048     1   0.000      0.884 1.000 0.000 0.000
#> SRR1551049     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551050     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551051     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551052     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551053     1   0.465      0.800 0.792 0.208 0.000
#> SRR1551054     3   0.000      0.974 0.000 0.000 1.000
#> SRR1551055     1   0.000      0.884 1.000 0.000 0.000
#> SRR1551056     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551057     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551058     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551059     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551060     1   0.465      0.800 0.792 0.208 0.000
#> SRR1551061     3   0.000      0.974 0.000 0.000 1.000
#> SRR1551062     1   0.000      0.884 1.000 0.000 0.000
#> SRR1551063     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551064     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551065     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551066     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551067     1   0.465      0.800 0.792 0.208 0.000
#> SRR1551068     3   0.000      0.974 0.000 0.000 1.000
#> SRR1551069     1   0.000      0.884 1.000 0.000 0.000
#> SRR1551070     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551071     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551072     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551073     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551074     1   0.465      0.800 0.792 0.208 0.000
#> SRR1551075     3   0.000      0.974 0.000 0.000 1.000
#> SRR1551076     1   0.000      0.884 1.000 0.000 0.000
#> SRR1551077     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551078     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551079     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551080     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551081     1   0.465      0.800 0.792 0.208 0.000
#> SRR1551082     3   0.000      0.974 0.000 0.000 1.000
#> SRR1551083     1   0.000      0.884 1.000 0.000 0.000
#> SRR1551084     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551085     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551086     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551088     3   0.000      0.974 0.000 0.000 1.000
#> SRR1551087     1   0.465      0.800 0.792 0.208 0.000
#> SRR1551089     1   0.000      0.884 1.000 0.000 0.000
#> SRR1551090     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551091     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551092     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551093     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551094     1   0.465      0.800 0.792 0.208 0.000
#> SRR1551095     3   0.000      0.974 0.000 0.000 1.000
#> SRR1551096     1   0.000      0.884 1.000 0.000 0.000
#> SRR1551097     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551098     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551099     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551101     3   0.000      0.974 0.000 0.000 1.000
#> SRR1551100     1   0.465      0.800 0.792 0.208 0.000
#> SRR1551102     1   0.000      0.884 1.000 0.000 0.000
#> SRR1551103     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551104     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551105     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551106     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551107     1   0.465      0.800 0.792 0.208 0.000
#> SRR1551108     3   0.000      0.974 0.000 0.000 1.000
#> SRR1551109     1   0.000      0.884 1.000 0.000 0.000
#> SRR1551110     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551111     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551112     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551113     2   0.000      1.000 0.000 1.000 0.000
#> SRR1551114     1   0.465      0.800 0.792 0.208 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1 p2    p3    p4
#> SRR1550981     1   0.208      0.856 0.916  0 0.000 0.084
#> SRR1550982     1   0.208      0.856 0.916  0 0.000 0.084
#> SRR1550983     1   0.208      0.856 0.916  0 0.000 0.084
#> SRR1550984     1   0.416      0.793 0.736  0 0.000 0.264
#> SRR1550986     3   0.000      1.000 0.000  0 1.000 0.000
#> SRR1550985     1   0.416      0.793 0.736  0 0.000 0.264
#> SRR1550988     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1550987     1   0.000      0.872 1.000  0 0.000 0.000
#> SRR1550989     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1550990     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1550991     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1550992     3   0.000      1.000 0.000  0 1.000 0.000
#> SRR1550994     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1550993     1   0.000      0.872 1.000  0 0.000 0.000
#> SRR1550995     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1550996     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1550997     3   0.000      1.000 0.000  0 1.000 0.000
#> SRR1550998     1   0.000      0.872 1.000  0 0.000 0.000
#> SRR1551000     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1550999     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551001     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551002     3   0.000      1.000 0.000  0 1.000 0.000
#> SRR1551003     1   0.000      0.872 1.000  0 0.000 0.000
#> SRR1551004     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551006     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551005     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551007     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551008     3   0.000      1.000 0.000  0 1.000 0.000
#> SRR1551009     1   0.000      0.872 1.000  0 0.000 0.000
#> SRR1551010     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551012     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551011     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551013     3   0.000      1.000 0.000  0 1.000 0.000
#> SRR1551014     1   0.000      0.872 1.000  0 0.000 0.000
#> SRR1551015     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551016     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551017     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551018     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551019     4   0.515      1.000 0.208  0 0.056 0.736
#> SRR1551021     1   0.000      0.872 1.000  0 0.000 0.000
#> SRR1551022     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551023     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551020     3   0.000      1.000 0.000  0 1.000 0.000
#> SRR1551024     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551026     3   0.000      1.000 0.000  0 1.000 0.000
#> SRR1551025     4   0.515      1.000 0.208  0 0.056 0.736
#> SRR1551027     1   0.000      0.872 1.000  0 0.000 0.000
#> SRR1551028     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551029     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551030     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551031     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551032     4   0.515      1.000 0.208  0 0.056 0.736
#> SRR1551034     1   0.000      0.872 1.000  0 0.000 0.000
#> SRR1551033     3   0.000      1.000 0.000  0 1.000 0.000
#> SRR1551035     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551036     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551037     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551038     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551039     1   0.416      0.793 0.736  0 0.000 0.264
#> SRR1551040     3   0.000      1.000 0.000  0 1.000 0.000
#> SRR1551041     1   0.000      0.872 1.000  0 0.000 0.000
#> SRR1551042     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551043     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551044     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551045     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551046     1   0.208      0.856 0.916  0 0.000 0.084
#> SRR1551047     3   0.000      1.000 0.000  0 1.000 0.000
#> SRR1551048     1   0.000      0.872 1.000  0 0.000 0.000
#> SRR1551049     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551050     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551051     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551052     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551053     1   0.416      0.793 0.736  0 0.000 0.264
#> SRR1551054     3   0.000      1.000 0.000  0 1.000 0.000
#> SRR1551055     1   0.000      0.872 1.000  0 0.000 0.000
#> SRR1551056     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551057     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551058     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551059     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551060     1   0.416      0.793 0.736  0 0.000 0.264
#> SRR1551061     3   0.000      1.000 0.000  0 1.000 0.000
#> SRR1551062     1   0.000      0.872 1.000  0 0.000 0.000
#> SRR1551063     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551064     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551065     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551066     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551067     1   0.416      0.793 0.736  0 0.000 0.264
#> SRR1551068     3   0.000      1.000 0.000  0 1.000 0.000
#> SRR1551069     1   0.000      0.872 1.000  0 0.000 0.000
#> SRR1551070     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551071     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551072     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551073     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551074     1   0.416      0.793 0.736  0 0.000 0.264
#> SRR1551075     3   0.000      1.000 0.000  0 1.000 0.000
#> SRR1551076     1   0.000      0.872 1.000  0 0.000 0.000
#> SRR1551077     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551078     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551079     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551080     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551081     1   0.416      0.793 0.736  0 0.000 0.264
#> SRR1551082     3   0.000      1.000 0.000  0 1.000 0.000
#> SRR1551083     1   0.000      0.872 1.000  0 0.000 0.000
#> SRR1551084     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551085     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551086     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551088     3   0.000      1.000 0.000  0 1.000 0.000
#> SRR1551087     1   0.416      0.793 0.736  0 0.000 0.264
#> SRR1551089     1   0.000      0.872 1.000  0 0.000 0.000
#> SRR1551090     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551091     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551092     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551093     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551094     1   0.416      0.793 0.736  0 0.000 0.264
#> SRR1551095     3   0.000      1.000 0.000  0 1.000 0.000
#> SRR1551096     1   0.000      0.872 1.000  0 0.000 0.000
#> SRR1551097     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551098     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551099     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551101     3   0.000      1.000 0.000  0 1.000 0.000
#> SRR1551100     1   0.416      0.793 0.736  0 0.000 0.264
#> SRR1551102     1   0.000      0.872 1.000  0 0.000 0.000
#> SRR1551103     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551104     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551105     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551106     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551107     1   0.416      0.793 0.736  0 0.000 0.264
#> SRR1551108     3   0.000      1.000 0.000  0 1.000 0.000
#> SRR1551109     1   0.000      0.872 1.000  0 0.000 0.000
#> SRR1551110     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551111     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551112     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551113     2   0.000      1.000 0.000  1 0.000 0.000
#> SRR1551114     1   0.416      0.793 0.736  0 0.000 0.264

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1 p2 p3 p4    p5
#> SRR1550981     5    0.43      0.226 0.488  0  0  0 0.512
#> SRR1550982     5    0.43      0.226 0.488  0  0  0 0.512
#> SRR1550983     5    0.43      0.226 0.488  0  0  0 0.512
#> SRR1550984     5    0.00      0.820 0.000  0  0  0 1.000
#> SRR1550986     3    0.00      1.000 0.000  0  1  0 0.000
#> SRR1550985     5    0.00      0.820 0.000  0  0  0 1.000
#> SRR1550988     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1550987     1    0.00      1.000 1.000  0  0  0 0.000
#> SRR1550989     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1550990     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1550991     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1550992     3    0.00      1.000 0.000  0  1  0 0.000
#> SRR1550994     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1550993     1    0.00      1.000 1.000  0  0  0 0.000
#> SRR1550995     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1550996     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1550997     3    0.00      1.000 0.000  0  1  0 0.000
#> SRR1550998     1    0.00      1.000 1.000  0  0  0 0.000
#> SRR1551000     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1550999     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551001     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551002     3    0.00      1.000 0.000  0  1  0 0.000
#> SRR1551003     1    0.00      1.000 1.000  0  0  0 0.000
#> SRR1551004     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551006     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551005     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551007     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551008     3    0.00      1.000 0.000  0  1  0 0.000
#> SRR1551009     1    0.00      1.000 1.000  0  0  0 0.000
#> SRR1551010     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551012     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551011     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551013     3    0.00      1.000 0.000  0  1  0 0.000
#> SRR1551014     1    0.00      1.000 1.000  0  0  0 0.000
#> SRR1551015     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551016     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551017     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551018     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551019     4    0.00      1.000 0.000  0  0  1 0.000
#> SRR1551021     1    0.00      1.000 1.000  0  0  0 0.000
#> SRR1551022     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551023     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551020     3    0.00      1.000 0.000  0  1  0 0.000
#> SRR1551024     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551026     3    0.00      1.000 0.000  0  1  0 0.000
#> SRR1551025     4    0.00      1.000 0.000  0  0  1 0.000
#> SRR1551027     1    0.00      1.000 1.000  0  0  0 0.000
#> SRR1551028     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551029     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551030     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551031     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551032     4    0.00      1.000 0.000  0  0  1 0.000
#> SRR1551034     1    0.00      1.000 1.000  0  0  0 0.000
#> SRR1551033     3    0.00      1.000 0.000  0  1  0 0.000
#> SRR1551035     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551036     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551037     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551038     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551039     5    0.00      0.820 0.000  0  0  0 1.000
#> SRR1551040     3    0.00      1.000 0.000  0  1  0 0.000
#> SRR1551041     1    0.00      1.000 1.000  0  0  0 0.000
#> SRR1551042     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551043     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551044     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551045     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551046     5    0.43      0.226 0.488  0  0  0 0.512
#> SRR1551047     3    0.00      1.000 0.000  0  1  0 0.000
#> SRR1551048     1    0.00      1.000 1.000  0  0  0 0.000
#> SRR1551049     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551050     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551051     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551052     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551053     5    0.00      0.820 0.000  0  0  0 1.000
#> SRR1551054     3    0.00      1.000 0.000  0  1  0 0.000
#> SRR1551055     1    0.00      1.000 1.000  0  0  0 0.000
#> SRR1551056     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551057     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551058     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551059     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551060     5    0.00      0.820 0.000  0  0  0 1.000
#> SRR1551061     3    0.00      1.000 0.000  0  1  0 0.000
#> SRR1551062     1    0.00      1.000 1.000  0  0  0 0.000
#> SRR1551063     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551064     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551065     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551066     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551067     5    0.00      0.820 0.000  0  0  0 1.000
#> SRR1551068     3    0.00      1.000 0.000  0  1  0 0.000
#> SRR1551069     1    0.00      1.000 1.000  0  0  0 0.000
#> SRR1551070     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551071     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551072     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551073     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551074     5    0.00      0.820 0.000  0  0  0 1.000
#> SRR1551075     3    0.00      1.000 0.000  0  1  0 0.000
#> SRR1551076     1    0.00      1.000 1.000  0  0  0 0.000
#> SRR1551077     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551078     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551079     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551080     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551081     5    0.00      0.820 0.000  0  0  0 1.000
#> SRR1551082     3    0.00      1.000 0.000  0  1  0 0.000
#> SRR1551083     1    0.00      1.000 1.000  0  0  0 0.000
#> SRR1551084     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551085     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551086     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551088     3    0.00      1.000 0.000  0  1  0 0.000
#> SRR1551087     5    0.00      0.820 0.000  0  0  0 1.000
#> SRR1551089     1    0.00      1.000 1.000  0  0  0 0.000
#> SRR1551090     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551091     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551092     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551093     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551094     5    0.00      0.820 0.000  0  0  0 1.000
#> SRR1551095     3    0.00      1.000 0.000  0  1  0 0.000
#> SRR1551096     1    0.00      1.000 1.000  0  0  0 0.000
#> SRR1551097     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551098     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551099     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551101     3    0.00      1.000 0.000  0  1  0 0.000
#> SRR1551100     5    0.00      0.820 0.000  0  0  0 1.000
#> SRR1551102     1    0.00      1.000 1.000  0  0  0 0.000
#> SRR1551103     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551104     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551105     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551106     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551107     5    0.00      0.820 0.000  0  0  0 1.000
#> SRR1551108     3    0.00      1.000 0.000  0  1  0 0.000
#> SRR1551109     1    0.00      1.000 1.000  0  0  0 0.000
#> SRR1551110     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551111     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551112     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551113     2    0.00      1.000 0.000  1  0  0 0.000
#> SRR1551114     5    0.00      0.820 0.000  0  0  0 1.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette p1 p2 p3    p4    p5 p6
#> SRR1550981     5   0.000      0.323  0  0  0 0.000 1.000  0
#> SRR1550982     5   0.000      0.323  0  0  0 0.000 1.000  0
#> SRR1550983     5   0.000      0.323  0  0  0 0.000 1.000  0
#> SRR1550984     4   0.387     -0.475  0  0  0 0.516 0.484  0
#> SRR1550986     3   0.000      1.000  0  0  1 0.000 0.000  0
#> SRR1550985     4   0.387     -0.475  0  0  0 0.516 0.484  0
#> SRR1550988     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1550987     1   0.000      1.000  1  0  0 0.000 0.000  0
#> SRR1550989     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1550990     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1550991     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1550992     3   0.000      1.000  0  0  1 0.000 0.000  0
#> SRR1550994     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1550993     1   0.000      1.000  1  0  0 0.000 0.000  0
#> SRR1550995     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1550996     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1550997     3   0.000      1.000  0  0  1 0.000 0.000  0
#> SRR1550998     1   0.000      1.000  1  0  0 0.000 0.000  0
#> SRR1551000     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1550999     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551001     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551002     3   0.000      1.000  0  0  1 0.000 0.000  0
#> SRR1551003     1   0.000      1.000  1  0  0 0.000 0.000  0
#> SRR1551004     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551006     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551005     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551007     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551008     3   0.000      1.000  0  0  1 0.000 0.000  0
#> SRR1551009     1   0.000      1.000  1  0  0 0.000 0.000  0
#> SRR1551010     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551012     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551011     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551013     3   0.000      1.000  0  0  1 0.000 0.000  0
#> SRR1551014     1   0.000      1.000  1  0  0 0.000 0.000  0
#> SRR1551015     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551016     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551017     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551018     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551019     6   0.000      1.000  0  0  0 0.000 0.000  1
#> SRR1551021     1   0.000      1.000  1  0  0 0.000 0.000  0
#> SRR1551022     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551023     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551020     3   0.000      1.000  0  0  1 0.000 0.000  0
#> SRR1551024     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551026     3   0.000      1.000  0  0  1 0.000 0.000  0
#> SRR1551025     6   0.000      1.000  0  0  0 0.000 0.000  1
#> SRR1551027     1   0.000      1.000  1  0  0 0.000 0.000  0
#> SRR1551028     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551029     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551030     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551031     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551032     6   0.000      1.000  0  0  0 0.000 0.000  1
#> SRR1551034     1   0.000      1.000  1  0  0 0.000 0.000  0
#> SRR1551033     3   0.000      1.000  0  0  1 0.000 0.000  0
#> SRR1551035     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551036     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551037     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551038     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551039     5   0.387      0.390  0  0  0 0.488 0.512  0
#> SRR1551040     3   0.000      1.000  0  0  1 0.000 0.000  0
#> SRR1551041     1   0.000      1.000  1  0  0 0.000 0.000  0
#> SRR1551042     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551043     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551044     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551045     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551046     5   0.000      0.323  0  0  0 0.000 1.000  0
#> SRR1551047     3   0.000      1.000  0  0  1 0.000 0.000  0
#> SRR1551048     1   0.000      1.000  1  0  0 0.000 0.000  0
#> SRR1551049     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551050     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551051     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551052     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551053     4   0.000      0.395  0  0  0 1.000 0.000  0
#> SRR1551054     3   0.000      1.000  0  0  1 0.000 0.000  0
#> SRR1551055     1   0.000      1.000  1  0  0 0.000 0.000  0
#> SRR1551056     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551057     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551058     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551059     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551060     4   0.000      0.395  0  0  0 1.000 0.000  0
#> SRR1551061     3   0.000      1.000  0  0  1 0.000 0.000  0
#> SRR1551062     1   0.000      1.000  1  0  0 0.000 0.000  0
#> SRR1551063     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551064     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551065     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551066     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551067     5   0.387      0.390  0  0  0 0.488 0.512  0
#> SRR1551068     3   0.000      1.000  0  0  1 0.000 0.000  0
#> SRR1551069     1   0.000      1.000  1  0  0 0.000 0.000  0
#> SRR1551070     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551071     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551072     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551073     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551074     5   0.387      0.390  0  0  0 0.488 0.512  0
#> SRR1551075     3   0.000      1.000  0  0  1 0.000 0.000  0
#> SRR1551076     1   0.000      1.000  1  0  0 0.000 0.000  0
#> SRR1551077     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551078     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551079     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551080     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551081     5   0.387      0.390  0  0  0 0.488 0.512  0
#> SRR1551082     3   0.000      1.000  0  0  1 0.000 0.000  0
#> SRR1551083     1   0.000      1.000  1  0  0 0.000 0.000  0
#> SRR1551084     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551085     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551086     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551088     3   0.000      1.000  0  0  1 0.000 0.000  0
#> SRR1551087     5   0.387      0.390  0  0  0 0.488 0.512  0
#> SRR1551089     1   0.000      1.000  1  0  0 0.000 0.000  0
#> SRR1551090     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551091     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551092     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551093     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551094     5   0.387      0.390  0  0  0 0.488 0.512  0
#> SRR1551095     3   0.000      1.000  0  0  1 0.000 0.000  0
#> SRR1551096     1   0.000      1.000  1  0  0 0.000 0.000  0
#> SRR1551097     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551098     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551099     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551101     3   0.000      1.000  0  0  1 0.000 0.000  0
#> SRR1551100     5   0.387      0.390  0  0  0 0.488 0.512  0
#> SRR1551102     1   0.000      1.000  1  0  0 0.000 0.000  0
#> SRR1551103     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551104     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551105     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551106     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551107     5   0.387      0.390  0  0  0 0.488 0.512  0
#> SRR1551108     3   0.000      1.000  0  0  1 0.000 0.000  0
#> SRR1551109     1   0.000      1.000  1  0  0 0.000 0.000  0
#> SRR1551110     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551111     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551112     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551113     2   0.000      1.000  0  1  0 0.000 0.000  0
#> SRR1551114     5   0.387      0.390  0  0  0 0.488 0.512  0

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15028 rows and 134 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.710           0.936       0.950         0.4142 0.541   0.541
#> 3 3 1.000           0.980       0.984         0.4205 0.804   0.658
#> 4 4 0.771           0.801       0.859         0.1546 0.904   0.767
#> 5 5 0.763           0.920       0.860         0.0962 0.906   0.702
#> 6 6 0.723           0.920       0.859         0.0511 0.954   0.795

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1550981     1   0.839      0.815 0.732 0.268
#> SRR1550982     2   0.730      0.674 0.204 0.796
#> SRR1550983     1   0.839      0.815 0.732 0.268
#> SRR1550984     2   0.000      0.997 0.000 1.000
#> SRR1550986     1   0.000      0.848 1.000 0.000
#> SRR1550985     2   0.000      0.997 0.000 1.000
#> SRR1550988     2   0.000      0.997 0.000 1.000
#> SRR1550987     1   0.839      0.815 0.732 0.268
#> SRR1550989     2   0.000      0.997 0.000 1.000
#> SRR1550990     2   0.000      0.997 0.000 1.000
#> SRR1550991     2   0.000      0.997 0.000 1.000
#> SRR1550992     1   0.000      0.848 1.000 0.000
#> SRR1550994     2   0.000      0.997 0.000 1.000
#> SRR1550993     1   0.839      0.815 0.732 0.268
#> SRR1550995     2   0.000      0.997 0.000 1.000
#> SRR1550996     2   0.000      0.997 0.000 1.000
#> SRR1550997     1   0.000      0.848 1.000 0.000
#> SRR1550998     1   0.839      0.815 0.732 0.268
#> SRR1551000     2   0.000      0.997 0.000 1.000
#> SRR1550999     2   0.000      0.997 0.000 1.000
#> SRR1551001     2   0.000      0.997 0.000 1.000
#> SRR1551002     1   0.000      0.848 1.000 0.000
#> SRR1551003     1   0.839      0.815 0.732 0.268
#> SRR1551004     2   0.000      0.997 0.000 1.000
#> SRR1551006     2   0.000      0.997 0.000 1.000
#> SRR1551005     2   0.000      0.997 0.000 1.000
#> SRR1551007     2   0.000      0.997 0.000 1.000
#> SRR1551008     1   0.000      0.848 1.000 0.000
#> SRR1551009     1   0.839      0.815 0.732 0.268
#> SRR1551010     2   0.000      0.997 0.000 1.000
#> SRR1551012     2   0.000      0.997 0.000 1.000
#> SRR1551011     2   0.000      0.997 0.000 1.000
#> SRR1551013     1   0.000      0.848 1.000 0.000
#> SRR1551014     1   0.839      0.815 0.732 0.268
#> SRR1551015     2   0.000      0.997 0.000 1.000
#> SRR1551016     2   0.000      0.997 0.000 1.000
#> SRR1551017     2   0.000      0.997 0.000 1.000
#> SRR1551018     2   0.000      0.997 0.000 1.000
#> SRR1551019     1   0.000      0.848 1.000 0.000
#> SRR1551021     1   0.839      0.815 0.732 0.268
#> SRR1551022     2   0.000      0.997 0.000 1.000
#> SRR1551023     2   0.000      0.997 0.000 1.000
#> SRR1551020     1   0.000      0.848 1.000 0.000
#> SRR1551024     2   0.000      0.997 0.000 1.000
#> SRR1551026     1   0.000      0.848 1.000 0.000
#> SRR1551025     1   0.000      0.848 1.000 0.000
#> SRR1551027     1   0.839      0.815 0.732 0.268
#> SRR1551028     2   0.000      0.997 0.000 1.000
#> SRR1551029     2   0.000      0.997 0.000 1.000
#> SRR1551030     2   0.000      0.997 0.000 1.000
#> SRR1551031     2   0.000      0.997 0.000 1.000
#> SRR1551032     1   0.000      0.848 1.000 0.000
#> SRR1551034     1   0.839      0.815 0.732 0.268
#> SRR1551033     1   0.000      0.848 1.000 0.000
#> SRR1551035     2   0.000      0.997 0.000 1.000
#> SRR1551036     2   0.000      0.997 0.000 1.000
#> SRR1551037     2   0.000      0.997 0.000 1.000
#> SRR1551038     2   0.000      0.997 0.000 1.000
#> SRR1551039     2   0.000      0.997 0.000 1.000
#> SRR1551040     1   0.000      0.848 1.000 0.000
#> SRR1551041     1   0.839      0.815 0.732 0.268
#> SRR1551042     2   0.000      0.997 0.000 1.000
#> SRR1551043     2   0.000      0.997 0.000 1.000
#> SRR1551044     2   0.000      0.997 0.000 1.000
#> SRR1551045     2   0.000      0.997 0.000 1.000
#> SRR1551046     1   0.839      0.815 0.732 0.268
#> SRR1551047     1   0.000      0.848 1.000 0.000
#> SRR1551048     1   0.839      0.815 0.732 0.268
#> SRR1551049     2   0.000      0.997 0.000 1.000
#> SRR1551050     2   0.000      0.997 0.000 1.000
#> SRR1551051     2   0.000      0.997 0.000 1.000
#> SRR1551052     2   0.000      0.997 0.000 1.000
#> SRR1551053     2   0.000      0.997 0.000 1.000
#> SRR1551054     1   0.000      0.848 1.000 0.000
#> SRR1551055     1   0.839      0.815 0.732 0.268
#> SRR1551056     2   0.000      0.997 0.000 1.000
#> SRR1551057     2   0.000      0.997 0.000 1.000
#> SRR1551058     2   0.000      0.997 0.000 1.000
#> SRR1551059     2   0.000      0.997 0.000 1.000
#> SRR1551060     2   0.000      0.997 0.000 1.000
#> SRR1551061     1   0.000      0.848 1.000 0.000
#> SRR1551062     1   0.839      0.815 0.732 0.268
#> SRR1551063     2   0.000      0.997 0.000 1.000
#> SRR1551064     2   0.000      0.997 0.000 1.000
#> SRR1551065     2   0.000      0.997 0.000 1.000
#> SRR1551066     2   0.000      0.997 0.000 1.000
#> SRR1551067     2   0.000      0.997 0.000 1.000
#> SRR1551068     1   0.000      0.848 1.000 0.000
#> SRR1551069     1   0.839      0.815 0.732 0.268
#> SRR1551070     2   0.000      0.997 0.000 1.000
#> SRR1551071     2   0.000      0.997 0.000 1.000
#> SRR1551072     2   0.000      0.997 0.000 1.000
#> SRR1551073     2   0.000      0.997 0.000 1.000
#> SRR1551074     1   0.855      0.799 0.720 0.280
#> SRR1551075     1   0.000      0.848 1.000 0.000
#> SRR1551076     1   0.839      0.815 0.732 0.268
#> SRR1551077     2   0.000      0.997 0.000 1.000
#> SRR1551078     2   0.000      0.997 0.000 1.000
#> SRR1551079     2   0.000      0.997 0.000 1.000
#> SRR1551080     2   0.000      0.997 0.000 1.000
#> SRR1551081     2   0.000      0.997 0.000 1.000
#> SRR1551082     1   0.000      0.848 1.000 0.000
#> SRR1551083     1   0.839      0.815 0.732 0.268
#> SRR1551084     2   0.000      0.997 0.000 1.000
#> SRR1551085     2   0.000      0.997 0.000 1.000
#> SRR1551086     2   0.000      0.997 0.000 1.000
#> SRR1551088     1   0.000      0.848 1.000 0.000
#> SRR1551087     2   0.000      0.997 0.000 1.000
#> SRR1551089     1   0.839      0.815 0.732 0.268
#> SRR1551090     2   0.000      0.997 0.000 1.000
#> SRR1551091     2   0.000      0.997 0.000 1.000
#> SRR1551092     2   0.000      0.997 0.000 1.000
#> SRR1551093     2   0.000      0.997 0.000 1.000
#> SRR1551094     2   0.000      0.997 0.000 1.000
#> SRR1551095     1   0.000      0.848 1.000 0.000
#> SRR1551096     1   0.839      0.815 0.732 0.268
#> SRR1551097     2   0.000      0.997 0.000 1.000
#> SRR1551098     2   0.000      0.997 0.000 1.000
#> SRR1551099     2   0.000      0.997 0.000 1.000
#> SRR1551101     1   0.000      0.848 1.000 0.000
#> SRR1551100     2   0.000      0.997 0.000 1.000
#> SRR1551102     1   0.839      0.815 0.732 0.268
#> SRR1551103     2   0.000      0.997 0.000 1.000
#> SRR1551104     2   0.000      0.997 0.000 1.000
#> SRR1551105     2   0.000      0.997 0.000 1.000
#> SRR1551106     2   0.000      0.997 0.000 1.000
#> SRR1551107     2   0.000      0.997 0.000 1.000
#> SRR1551108     1   0.000      0.848 1.000 0.000
#> SRR1551109     1   0.839      0.815 0.732 0.268
#> SRR1551110     2   0.000      0.997 0.000 1.000
#> SRR1551111     2   0.000      0.997 0.000 1.000
#> SRR1551112     2   0.000      0.997 0.000 1.000
#> SRR1551113     2   0.000      0.997 0.000 1.000
#> SRR1551114     2   0.000      0.997 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1550981     1  0.0000      0.984 1.000 0.000 0.000
#> SRR1550982     1  0.1289      0.968 0.968 0.032 0.000
#> SRR1550983     1  0.0000      0.984 1.000 0.000 0.000
#> SRR1550984     1  0.1289      0.968 0.968 0.032 0.000
#> SRR1550986     3  0.1289      0.982 0.032 0.000 0.968
#> SRR1550985     1  0.1289      0.968 0.968 0.032 0.000
#> SRR1550988     2  0.1289      0.977 0.000 0.968 0.032
#> SRR1550987     1  0.0000      0.984 1.000 0.000 0.000
#> SRR1550989     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1550990     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1550991     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1550992     3  0.1289      0.982 0.032 0.000 0.968
#> SRR1550994     2  0.1289      0.977 0.000 0.968 0.032
#> SRR1550993     1  0.0000      0.984 1.000 0.000 0.000
#> SRR1550995     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1550996     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1550997     3  0.1289      0.982 0.032 0.000 0.968
#> SRR1550998     1  0.0000      0.984 1.000 0.000 0.000
#> SRR1551000     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1550999     2  0.1289      0.977 0.000 0.968 0.032
#> SRR1551001     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551002     3  0.1289      0.982 0.032 0.000 0.968
#> SRR1551003     1  0.0000      0.984 1.000 0.000 0.000
#> SRR1551004     2  0.1289      0.977 0.000 0.968 0.032
#> SRR1551006     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551005     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551007     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551008     3  0.1289      0.982 0.032 0.000 0.968
#> SRR1551009     1  0.0000      0.984 1.000 0.000 0.000
#> SRR1551010     2  0.1289      0.977 0.000 0.968 0.032
#> SRR1551012     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551011     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551013     3  0.1289      0.982 0.032 0.000 0.968
#> SRR1551014     1  0.0000      0.984 1.000 0.000 0.000
#> SRR1551015     2  0.1289      0.977 0.000 0.968 0.032
#> SRR1551016     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551017     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551018     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551019     1  0.0000      0.984 1.000 0.000 0.000
#> SRR1551021     1  0.0000      0.984 1.000 0.000 0.000
#> SRR1551022     2  0.1289      0.977 0.000 0.968 0.032
#> SRR1551023     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551020     3  0.1289      0.982 0.032 0.000 0.968
#> SRR1551024     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551026     3  0.1289      0.982 0.032 0.000 0.968
#> SRR1551025     3  0.1289      0.982 0.032 0.000 0.968
#> SRR1551027     1  0.0000      0.984 1.000 0.000 0.000
#> SRR1551028     2  0.1289      0.977 0.000 0.968 0.032
#> SRR1551029     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551030     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551031     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551032     3  0.6126      0.389 0.400 0.000 0.600
#> SRR1551034     1  0.0000      0.984 1.000 0.000 0.000
#> SRR1551033     3  0.1289      0.982 0.032 0.000 0.968
#> SRR1551035     2  0.1289      0.977 0.000 0.968 0.032
#> SRR1551036     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551037     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551038     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551039     1  0.1289      0.968 0.968 0.032 0.000
#> SRR1551040     3  0.1289      0.982 0.032 0.000 0.968
#> SRR1551041     1  0.0000      0.984 1.000 0.000 0.000
#> SRR1551042     2  0.1289      0.977 0.000 0.968 0.032
#> SRR1551043     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551044     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551045     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551046     1  0.0000      0.984 1.000 0.000 0.000
#> SRR1551047     3  0.1289      0.982 0.032 0.000 0.968
#> SRR1551048     1  0.0000      0.984 1.000 0.000 0.000
#> SRR1551049     2  0.1289      0.977 0.000 0.968 0.032
#> SRR1551050     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551051     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551052     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551053     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551054     3  0.1289      0.982 0.032 0.000 0.968
#> SRR1551055     1  0.0000      0.984 1.000 0.000 0.000
#> SRR1551056     2  0.1289      0.977 0.000 0.968 0.032
#> SRR1551057     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551058     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551059     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551060     1  0.1289      0.968 0.968 0.032 0.000
#> SRR1551061     3  0.1289      0.982 0.032 0.000 0.968
#> SRR1551062     1  0.0000      0.984 1.000 0.000 0.000
#> SRR1551063     2  0.1289      0.977 0.000 0.968 0.032
#> SRR1551064     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551065     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551066     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551067     1  0.1289      0.968 0.968 0.032 0.000
#> SRR1551068     3  0.1289      0.982 0.032 0.000 0.968
#> SRR1551069     1  0.0000      0.984 1.000 0.000 0.000
#> SRR1551070     2  0.1289      0.977 0.000 0.968 0.032
#> SRR1551071     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551072     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551073     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551074     1  0.0237      0.982 0.996 0.004 0.000
#> SRR1551075     3  0.1289      0.982 0.032 0.000 0.968
#> SRR1551076     1  0.0000      0.984 1.000 0.000 0.000
#> SRR1551077     2  0.1289      0.977 0.000 0.968 0.032
#> SRR1551078     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551079     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551080     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551081     1  0.1289      0.968 0.968 0.032 0.000
#> SRR1551082     3  0.1289      0.982 0.032 0.000 0.968
#> SRR1551083     1  0.0000      0.984 1.000 0.000 0.000
#> SRR1551084     2  0.1289      0.977 0.000 0.968 0.032
#> SRR1551085     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551086     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551088     3  0.1289      0.982 0.032 0.000 0.968
#> SRR1551087     1  0.1289      0.968 0.968 0.032 0.000
#> SRR1551089     1  0.0000      0.984 1.000 0.000 0.000
#> SRR1551090     2  0.1289      0.977 0.000 0.968 0.032
#> SRR1551091     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551092     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551093     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551094     1  0.1289      0.968 0.968 0.032 0.000
#> SRR1551095     3  0.1289      0.982 0.032 0.000 0.968
#> SRR1551096     1  0.0000      0.984 1.000 0.000 0.000
#> SRR1551097     2  0.1289      0.977 0.000 0.968 0.032
#> SRR1551098     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551099     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551101     3  0.1289      0.982 0.032 0.000 0.968
#> SRR1551100     1  0.1289      0.968 0.968 0.032 0.000
#> SRR1551102     1  0.0000      0.984 1.000 0.000 0.000
#> SRR1551103     2  0.1289      0.977 0.000 0.968 0.032
#> SRR1551104     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551105     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551106     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551107     1  0.1289      0.968 0.968 0.032 0.000
#> SRR1551108     3  0.1289      0.982 0.032 0.000 0.968
#> SRR1551109     1  0.0000      0.984 1.000 0.000 0.000
#> SRR1551110     2  0.1289      0.977 0.000 0.968 0.032
#> SRR1551111     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551112     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551113     2  0.0000      0.992 0.000 1.000 0.000
#> SRR1551114     1  0.1289      0.968 0.968 0.032 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1550981     1   0.361      0.896 0.800 0.000 0.000 0.200
#> SRR1550982     1   0.361      0.896 0.800 0.000 0.000 0.200
#> SRR1550983     1   0.361      0.896 0.800 0.000 0.000 0.200
#> SRR1550984     1   0.361      0.896 0.800 0.000 0.000 0.200
#> SRR1550986     3   0.000      0.975 0.000 0.000 1.000 0.000
#> SRR1550985     1   0.361      0.896 0.800 0.000 0.000 0.200
#> SRR1550988     2   0.208      0.523 0.000 0.916 0.000 0.084
#> SRR1550987     1   0.000      0.920 1.000 0.000 0.000 0.000
#> SRR1550989     2   0.404      0.725 0.000 0.752 0.000 0.248
#> SRR1550990     2   0.416      0.705 0.000 0.736 0.000 0.264
#> SRR1550991     4   0.433      0.993 0.000 0.288 0.000 0.712
#> SRR1550992     3   0.000      0.975 0.000 0.000 1.000 0.000
#> SRR1550994     2   0.208      0.523 0.000 0.916 0.000 0.084
#> SRR1550993     1   0.000      0.920 1.000 0.000 0.000 0.000
#> SRR1550995     2   0.404      0.725 0.000 0.752 0.000 0.248
#> SRR1550996     2   0.404      0.725 0.000 0.752 0.000 0.248
#> SRR1550997     3   0.000      0.975 0.000 0.000 1.000 0.000
#> SRR1550998     1   0.000      0.920 1.000 0.000 0.000 0.000
#> SRR1551000     2   0.404      0.725 0.000 0.752 0.000 0.248
#> SRR1550999     2   0.208      0.523 0.000 0.916 0.000 0.084
#> SRR1551001     2   0.404      0.725 0.000 0.752 0.000 0.248
#> SRR1551002     3   0.000      0.975 0.000 0.000 1.000 0.000
#> SRR1551003     1   0.000      0.920 1.000 0.000 0.000 0.000
#> SRR1551004     2   0.208      0.523 0.000 0.916 0.000 0.084
#> SRR1551006     2   0.416      0.705 0.000 0.736 0.000 0.264
#> SRR1551005     2   0.404      0.725 0.000 0.752 0.000 0.248
#> SRR1551007     4   0.433      0.993 0.000 0.288 0.000 0.712
#> SRR1551008     3   0.000      0.975 0.000 0.000 1.000 0.000
#> SRR1551009     1   0.000      0.920 1.000 0.000 0.000 0.000
#> SRR1551010     2   0.208      0.523 0.000 0.916 0.000 0.084
#> SRR1551012     2   0.404      0.725 0.000 0.752 0.000 0.248
#> SRR1551011     2   0.404      0.725 0.000 0.752 0.000 0.248
#> SRR1551013     3   0.000      0.975 0.000 0.000 1.000 0.000
#> SRR1551014     1   0.000      0.920 1.000 0.000 0.000 0.000
#> SRR1551015     2   0.208      0.523 0.000 0.916 0.000 0.084
#> SRR1551016     2   0.404      0.725 0.000 0.752 0.000 0.248
#> SRR1551017     2   0.448      0.598 0.000 0.688 0.000 0.312
#> SRR1551018     4   0.433      0.993 0.000 0.288 0.000 0.712
#> SRR1551019     1   0.215      0.866 0.912 0.000 0.000 0.088
#> SRR1551021     1   0.000      0.920 1.000 0.000 0.000 0.000
#> SRR1551022     2   0.208      0.523 0.000 0.916 0.000 0.084
#> SRR1551023     2   0.404      0.725 0.000 0.752 0.000 0.248
#> SRR1551020     3   0.000      0.975 0.000 0.000 1.000 0.000
#> SRR1551024     2   0.419      0.705 0.000 0.732 0.000 0.268
#> SRR1551026     3   0.000      0.975 0.000 0.000 1.000 0.000
#> SRR1551025     3   0.215      0.920 0.000 0.000 0.912 0.088
#> SRR1551027     1   0.000      0.920 1.000 0.000 0.000 0.000
#> SRR1551028     2   0.208      0.523 0.000 0.916 0.000 0.084
#> SRR1551029     2   0.404      0.725 0.000 0.752 0.000 0.248
#> SRR1551030     2   0.416      0.705 0.000 0.736 0.000 0.264
#> SRR1551031     4   0.456      0.902 0.000 0.328 0.000 0.672
#> SRR1551032     3   0.669      0.189 0.420 0.000 0.492 0.088
#> SRR1551034     1   0.000      0.920 1.000 0.000 0.000 0.000
#> SRR1551033     3   0.000      0.975 0.000 0.000 1.000 0.000
#> SRR1551035     2   0.208      0.523 0.000 0.916 0.000 0.084
#> SRR1551036     2   0.404      0.725 0.000 0.752 0.000 0.248
#> SRR1551037     2   0.416      0.705 0.000 0.736 0.000 0.264
#> SRR1551038     4   0.433      0.993 0.000 0.288 0.000 0.712
#> SRR1551039     1   0.361      0.896 0.800 0.000 0.000 0.200
#> SRR1551040     3   0.000      0.975 0.000 0.000 1.000 0.000
#> SRR1551041     1   0.000      0.920 1.000 0.000 0.000 0.000
#> SRR1551042     2   0.208      0.523 0.000 0.916 0.000 0.084
#> SRR1551043     2   0.404      0.725 0.000 0.752 0.000 0.248
#> SRR1551044     2   0.404      0.725 0.000 0.752 0.000 0.248
#> SRR1551045     4   0.433      0.993 0.000 0.288 0.000 0.712
#> SRR1551046     1   0.361      0.896 0.800 0.000 0.000 0.200
#> SRR1551047     3   0.000      0.975 0.000 0.000 1.000 0.000
#> SRR1551048     1   0.000      0.920 1.000 0.000 0.000 0.000
#> SRR1551049     2   0.208      0.523 0.000 0.916 0.000 0.084
#> SRR1551050     2   0.404      0.725 0.000 0.752 0.000 0.248
#> SRR1551051     2   0.404      0.725 0.000 0.752 0.000 0.248
#> SRR1551052     4   0.433      0.993 0.000 0.288 0.000 0.712
#> SRR1551053     2   0.438      0.183 0.000 0.704 0.000 0.296
#> SRR1551054     3   0.000      0.975 0.000 0.000 1.000 0.000
#> SRR1551055     1   0.000      0.920 1.000 0.000 0.000 0.000
#> SRR1551056     2   0.208      0.523 0.000 0.916 0.000 0.084
#> SRR1551057     2   0.404      0.725 0.000 0.752 0.000 0.248
#> SRR1551058     2   0.416      0.705 0.000 0.736 0.000 0.264
#> SRR1551059     4   0.433      0.993 0.000 0.288 0.000 0.712
#> SRR1551060     1   0.361      0.896 0.800 0.000 0.000 0.200
#> SRR1551061     3   0.000      0.975 0.000 0.000 1.000 0.000
#> SRR1551062     1   0.000      0.920 1.000 0.000 0.000 0.000
#> SRR1551063     2   0.208      0.523 0.000 0.916 0.000 0.084
#> SRR1551064     2   0.404      0.725 0.000 0.752 0.000 0.248
#> SRR1551065     2   0.416      0.705 0.000 0.736 0.000 0.264
#> SRR1551066     4   0.433      0.993 0.000 0.288 0.000 0.712
#> SRR1551067     1   0.361      0.896 0.800 0.000 0.000 0.200
#> SRR1551068     3   0.000      0.975 0.000 0.000 1.000 0.000
#> SRR1551069     1   0.000      0.920 1.000 0.000 0.000 0.000
#> SRR1551070     2   0.208      0.523 0.000 0.916 0.000 0.084
#> SRR1551071     2   0.404      0.725 0.000 0.752 0.000 0.248
#> SRR1551072     2   0.416      0.705 0.000 0.736 0.000 0.264
#> SRR1551073     4   0.433      0.993 0.000 0.288 0.000 0.712
#> SRR1551074     1   0.361      0.896 0.800 0.000 0.000 0.200
#> SRR1551075     3   0.000      0.975 0.000 0.000 1.000 0.000
#> SRR1551076     1   0.000      0.920 1.000 0.000 0.000 0.000
#> SRR1551077     2   0.208      0.523 0.000 0.916 0.000 0.084
#> SRR1551078     2   0.404      0.725 0.000 0.752 0.000 0.248
#> SRR1551079     2   0.416      0.705 0.000 0.736 0.000 0.264
#> SRR1551080     4   0.433      0.993 0.000 0.288 0.000 0.712
#> SRR1551081     1   0.361      0.896 0.800 0.000 0.000 0.200
#> SRR1551082     3   0.000      0.975 0.000 0.000 1.000 0.000
#> SRR1551083     1   0.000      0.920 1.000 0.000 0.000 0.000
#> SRR1551084     2   0.208      0.523 0.000 0.916 0.000 0.084
#> SRR1551085     2   0.404      0.725 0.000 0.752 0.000 0.248
#> SRR1551086     2   0.416      0.705 0.000 0.736 0.000 0.264
#> SRR1551088     3   0.000      0.975 0.000 0.000 1.000 0.000
#> SRR1551087     1   0.361      0.896 0.800 0.000 0.000 0.200
#> SRR1551089     1   0.000      0.920 1.000 0.000 0.000 0.000
#> SRR1551090     2   0.208      0.523 0.000 0.916 0.000 0.084
#> SRR1551091     2   0.404      0.725 0.000 0.752 0.000 0.248
#> SRR1551092     2   0.404      0.725 0.000 0.752 0.000 0.248
#> SRR1551093     4   0.433      0.993 0.000 0.288 0.000 0.712
#> SRR1551094     1   0.361      0.896 0.800 0.000 0.000 0.200
#> SRR1551095     3   0.000      0.975 0.000 0.000 1.000 0.000
#> SRR1551096     1   0.000      0.920 1.000 0.000 0.000 0.000
#> SRR1551097     2   0.208      0.523 0.000 0.916 0.000 0.084
#> SRR1551098     2   0.404      0.725 0.000 0.752 0.000 0.248
#> SRR1551099     2   0.404      0.725 0.000 0.752 0.000 0.248
#> SRR1551101     3   0.000      0.975 0.000 0.000 1.000 0.000
#> SRR1551100     1   0.361      0.896 0.800 0.000 0.000 0.200
#> SRR1551102     1   0.000      0.920 1.000 0.000 0.000 0.000
#> SRR1551103     2   0.208      0.523 0.000 0.916 0.000 0.084
#> SRR1551104     2   0.404      0.725 0.000 0.752 0.000 0.248
#> SRR1551105     2   0.416      0.705 0.000 0.736 0.000 0.264
#> SRR1551106     4   0.433      0.993 0.000 0.288 0.000 0.712
#> SRR1551107     1   0.361      0.896 0.800 0.000 0.000 0.200
#> SRR1551108     3   0.000      0.975 0.000 0.000 1.000 0.000
#> SRR1551109     1   0.000      0.920 1.000 0.000 0.000 0.000
#> SRR1551110     2   0.208      0.523 0.000 0.916 0.000 0.084
#> SRR1551111     2   0.404      0.725 0.000 0.752 0.000 0.248
#> SRR1551112     2   0.416      0.705 0.000 0.736 0.000 0.264
#> SRR1551113     4   0.433      0.993 0.000 0.288 0.000 0.712
#> SRR1551114     1   0.361      0.896 0.800 0.000 0.000 0.200

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1550981     1  0.5720      0.781 0.604 0.000 0.000 0.128 0.268
#> SRR1550982     1  0.5720      0.781 0.604 0.000 0.000 0.128 0.268
#> SRR1550983     1  0.5720      0.781 0.604 0.000 0.000 0.128 0.268
#> SRR1550984     1  0.5784      0.780 0.604 0.000 0.000 0.144 0.252
#> SRR1550986     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1550985     1  0.5784      0.780 0.604 0.000 0.000 0.144 0.252
#> SRR1550988     4  0.3684      0.970 0.000 0.280 0.000 0.720 0.000
#> SRR1550987     1  0.0000      0.834 1.000 0.000 0.000 0.000 0.000
#> SRR1550989     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000
#> SRR1550990     2  0.0290      0.990 0.000 0.992 0.000 0.000 0.008
#> SRR1550991     5  0.5036      0.997 0.000 0.320 0.000 0.052 0.628
#> SRR1550992     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1550994     4  0.3684      0.970 0.000 0.280 0.000 0.720 0.000
#> SRR1550993     1  0.0000      0.834 1.000 0.000 0.000 0.000 0.000
#> SRR1550995     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000
#> SRR1550996     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000
#> SRR1550997     3  0.0162      0.964 0.000 0.000 0.996 0.000 0.004
#> SRR1550998     1  0.0000      0.834 1.000 0.000 0.000 0.000 0.000
#> SRR1551000     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000
#> SRR1550999     4  0.3684      0.970 0.000 0.280 0.000 0.720 0.000
#> SRR1551001     2  0.0290      0.990 0.000 0.992 0.000 0.000 0.008
#> SRR1551002     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1551003     1  0.0000      0.834 1.000 0.000 0.000 0.000 0.000
#> SRR1551004     4  0.3684      0.970 0.000 0.280 0.000 0.720 0.000
#> SRR1551006     2  0.0290      0.989 0.000 0.992 0.000 0.000 0.008
#> SRR1551005     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000
#> SRR1551007     5  0.5036      0.997 0.000 0.320 0.000 0.052 0.628
#> SRR1551008     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1551009     1  0.0000      0.834 1.000 0.000 0.000 0.000 0.000
#> SRR1551010     4  0.3684      0.970 0.000 0.280 0.000 0.720 0.000
#> SRR1551012     2  0.0290      0.990 0.000 0.992 0.000 0.000 0.008
#> SRR1551011     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000
#> SRR1551013     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1551014     1  0.0000      0.834 1.000 0.000 0.000 0.000 0.000
#> SRR1551015     4  0.3684      0.970 0.000 0.280 0.000 0.720 0.000
#> SRR1551016     2  0.0162      0.991 0.000 0.996 0.000 0.000 0.004
#> SRR1551017     2  0.1792      0.874 0.000 0.916 0.000 0.000 0.084
#> SRR1551018     5  0.5036      0.997 0.000 0.320 0.000 0.052 0.628
#> SRR1551019     1  0.4069      0.716 0.788 0.000 0.000 0.136 0.076
#> SRR1551021     1  0.0000      0.834 1.000 0.000 0.000 0.000 0.000
#> SRR1551022     4  0.3684      0.970 0.000 0.280 0.000 0.720 0.000
#> SRR1551023     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000
#> SRR1551020     3  0.0510      0.958 0.000 0.000 0.984 0.000 0.016
#> SRR1551024     2  0.0290      0.984 0.000 0.992 0.000 0.008 0.000
#> SRR1551026     3  0.0510      0.958 0.000 0.000 0.984 0.000 0.016
#> SRR1551025     3  0.4069      0.811 0.000 0.000 0.788 0.136 0.076
#> SRR1551027     1  0.0000      0.834 1.000 0.000 0.000 0.000 0.000
#> SRR1551028     4  0.3684      0.970 0.000 0.280 0.000 0.720 0.000
#> SRR1551029     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000
#> SRR1551030     2  0.0162      0.989 0.000 0.996 0.000 0.000 0.004
#> SRR1551031     5  0.4718      0.958 0.000 0.344 0.000 0.028 0.628
#> SRR1551032     3  0.7460      0.139 0.380 0.000 0.408 0.136 0.076
#> SRR1551034     1  0.0000      0.834 1.000 0.000 0.000 0.000 0.000
#> SRR1551033     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1551035     4  0.3684      0.970 0.000 0.280 0.000 0.720 0.000
#> SRR1551036     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000
#> SRR1551037     2  0.0404      0.988 0.000 0.988 0.000 0.000 0.012
#> SRR1551038     5  0.5036      0.997 0.000 0.320 0.000 0.052 0.628
#> SRR1551039     1  0.5720      0.781 0.604 0.000 0.000 0.128 0.268
#> SRR1551040     3  0.0162      0.964 0.000 0.000 0.996 0.000 0.004
#> SRR1551041     1  0.0000      0.834 1.000 0.000 0.000 0.000 0.000
#> SRR1551042     4  0.3684      0.970 0.000 0.280 0.000 0.720 0.000
#> SRR1551043     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000
#> SRR1551044     2  0.0290      0.990 0.000 0.992 0.000 0.000 0.008
#> SRR1551045     5  0.5036      0.997 0.000 0.320 0.000 0.052 0.628
#> SRR1551046     1  0.5720      0.781 0.604 0.000 0.000 0.128 0.268
#> SRR1551047     3  0.0162      0.964 0.000 0.000 0.996 0.000 0.004
#> SRR1551048     1  0.0000      0.834 1.000 0.000 0.000 0.000 0.000
#> SRR1551049     4  0.3684      0.970 0.000 0.280 0.000 0.720 0.000
#> SRR1551050     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000
#> SRR1551051     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000
#> SRR1551052     5  0.5036      0.997 0.000 0.320 0.000 0.052 0.628
#> SRR1551053     4  0.5089      0.392 0.016 0.048 0.000 0.684 0.252
#> SRR1551054     3  0.0162      0.964 0.000 0.000 0.996 0.000 0.004
#> SRR1551055     1  0.0000      0.834 1.000 0.000 0.000 0.000 0.000
#> SRR1551056     4  0.3684      0.970 0.000 0.280 0.000 0.720 0.000
#> SRR1551057     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000
#> SRR1551058     2  0.0404      0.988 0.000 0.988 0.000 0.000 0.012
#> SRR1551059     5  0.5036      0.997 0.000 0.320 0.000 0.052 0.628
#> SRR1551060     1  0.5784      0.780 0.604 0.000 0.000 0.144 0.252
#> SRR1551061     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1551062     1  0.0000      0.834 1.000 0.000 0.000 0.000 0.000
#> SRR1551063     4  0.3684      0.970 0.000 0.280 0.000 0.720 0.000
#> SRR1551064     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000
#> SRR1551065     2  0.0404      0.988 0.000 0.988 0.000 0.000 0.012
#> SRR1551066     5  0.5036      0.997 0.000 0.320 0.000 0.052 0.628
#> SRR1551067     1  0.5720      0.781 0.604 0.000 0.000 0.128 0.268
#> SRR1551068     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1551069     1  0.0000      0.834 1.000 0.000 0.000 0.000 0.000
#> SRR1551070     4  0.3684      0.970 0.000 0.280 0.000 0.720 0.000
#> SRR1551071     2  0.0162      0.991 0.000 0.996 0.000 0.000 0.004
#> SRR1551072     2  0.0404      0.988 0.000 0.988 0.000 0.000 0.012
#> SRR1551073     5  0.5036      0.997 0.000 0.320 0.000 0.052 0.628
#> SRR1551074     1  0.5720      0.781 0.604 0.000 0.000 0.128 0.268
#> SRR1551075     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1551076     1  0.0000      0.834 1.000 0.000 0.000 0.000 0.000
#> SRR1551077     4  0.3684      0.970 0.000 0.280 0.000 0.720 0.000
#> SRR1551078     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000
#> SRR1551079     2  0.0404      0.988 0.000 0.988 0.000 0.000 0.012
#> SRR1551080     5  0.5036      0.997 0.000 0.320 0.000 0.052 0.628
#> SRR1551081     1  0.5770      0.780 0.604 0.000 0.000 0.140 0.256
#> SRR1551082     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1551083     1  0.0000      0.834 1.000 0.000 0.000 0.000 0.000
#> SRR1551084     4  0.3684      0.970 0.000 0.280 0.000 0.720 0.000
#> SRR1551085     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000
#> SRR1551086     2  0.0404      0.988 0.000 0.988 0.000 0.000 0.012
#> SRR1551088     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1551087     1  0.5720      0.781 0.604 0.000 0.000 0.128 0.268
#> SRR1551089     1  0.0000      0.834 1.000 0.000 0.000 0.000 0.000
#> SRR1551090     4  0.3684      0.970 0.000 0.280 0.000 0.720 0.000
#> SRR1551091     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000
#> SRR1551092     2  0.0290      0.990 0.000 0.992 0.000 0.000 0.008
#> SRR1551093     5  0.5036      0.997 0.000 0.320 0.000 0.052 0.628
#> SRR1551094     1  0.5720      0.781 0.604 0.000 0.000 0.128 0.268
#> SRR1551095     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1551096     1  0.0000      0.834 1.000 0.000 0.000 0.000 0.000
#> SRR1551097     4  0.3684      0.970 0.000 0.280 0.000 0.720 0.000
#> SRR1551098     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000
#> SRR1551099     2  0.0290      0.990 0.000 0.992 0.000 0.000 0.008
#> SRR1551101     3  0.0162      0.964 0.000 0.000 0.996 0.000 0.004
#> SRR1551100     1  0.5720      0.781 0.604 0.000 0.000 0.128 0.268
#> SRR1551102     1  0.0000      0.834 1.000 0.000 0.000 0.000 0.000
#> SRR1551103     4  0.3684      0.970 0.000 0.280 0.000 0.720 0.000
#> SRR1551104     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000
#> SRR1551105     2  0.0404      0.988 0.000 0.988 0.000 0.000 0.012
#> SRR1551106     5  0.5036      0.997 0.000 0.320 0.000 0.052 0.628
#> SRR1551107     1  0.5720      0.781 0.604 0.000 0.000 0.128 0.268
#> SRR1551108     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000
#> SRR1551109     1  0.0000      0.834 1.000 0.000 0.000 0.000 0.000
#> SRR1551110     4  0.3684      0.970 0.000 0.280 0.000 0.720 0.000
#> SRR1551111     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000
#> SRR1551112     2  0.0404      0.988 0.000 0.988 0.000 0.000 0.012
#> SRR1551113     5  0.5036      0.997 0.000 0.320 0.000 0.052 0.628
#> SRR1551114     1  0.5720      0.781 0.604 0.000 0.000 0.128 0.268

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1550981     5  0.3728      0.937 0.344 0.000 0.000 0.004 0.652 0.000
#> SRR1550982     5  0.3728      0.937 0.344 0.000 0.000 0.004 0.652 0.000
#> SRR1550983     5  0.3728      0.937 0.344 0.000 0.000 0.004 0.652 0.000
#> SRR1550984     5  0.5250      0.894 0.344 0.000 0.000 0.048 0.576 0.032
#> SRR1550986     3  0.0146      0.978 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1550985     5  0.5250      0.894 0.344 0.000 0.000 0.048 0.576 0.032
#> SRR1550988     4  0.2631      0.996 0.000 0.180 0.000 0.820 0.000 0.000
#> SRR1550987     1  0.0000      0.938 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1550989     2  0.0000      0.893 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1550990     2  0.2912      0.839 0.000 0.784 0.000 0.000 0.216 0.000
#> SRR1550991     6  0.3755      0.996 0.000 0.220 0.000 0.036 0.000 0.744
#> SRR1550992     3  0.0146      0.978 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1550994     4  0.2980      0.992 0.000 0.180 0.000 0.808 0.000 0.012
#> SRR1550993     1  0.0000      0.938 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1550995     2  0.0000      0.893 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1550996     2  0.0000      0.893 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1550997     3  0.0520      0.975 0.000 0.000 0.984 0.008 0.008 0.000
#> SRR1550998     1  0.0000      0.938 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551000     2  0.0000      0.893 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1550999     4  0.3071      0.991 0.000 0.180 0.000 0.804 0.000 0.016
#> SRR1551001     2  0.2762      0.847 0.000 0.804 0.000 0.000 0.196 0.000
#> SRR1551002     3  0.0146      0.978 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1551003     1  0.0000      0.938 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551004     4  0.2980      0.992 0.000 0.180 0.000 0.808 0.000 0.012
#> SRR1551006     2  0.2697      0.848 0.000 0.812 0.000 0.000 0.188 0.000
#> SRR1551005     2  0.0000      0.893 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551007     6  0.3755      0.996 0.000 0.220 0.000 0.036 0.000 0.744
#> SRR1551008     3  0.0000      0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551009     1  0.0000      0.938 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551010     4  0.2631      0.996 0.000 0.180 0.000 0.820 0.000 0.000
#> SRR1551012     2  0.2912      0.839 0.000 0.784 0.000 0.000 0.216 0.000
#> SRR1551011     2  0.0000      0.893 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551013     3  0.0146      0.978 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1551014     1  0.0146      0.936 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1551015     4  0.3071      0.991 0.000 0.180 0.000 0.804 0.000 0.016
#> SRR1551016     2  0.1863      0.872 0.000 0.896 0.000 0.000 0.104 0.000
#> SRR1551017     2  0.4176      0.762 0.000 0.716 0.000 0.000 0.220 0.064
#> SRR1551018     6  0.3755      0.996 0.000 0.220 0.000 0.036 0.000 0.744
#> SRR1551019     1  0.5505      0.500 0.648 0.000 0.000 0.056 0.092 0.204
#> SRR1551021     1  0.0146      0.936 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1551022     4  0.2631      0.996 0.000 0.180 0.000 0.820 0.000 0.000
#> SRR1551023     2  0.0000      0.893 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551020     3  0.1657      0.940 0.000 0.000 0.928 0.056 0.016 0.000
#> SRR1551024     2  0.0436      0.885 0.000 0.988 0.000 0.004 0.004 0.004
#> SRR1551026     3  0.1657      0.940 0.000 0.000 0.928 0.056 0.016 0.000
#> SRR1551025     3  0.5505      0.684 0.000 0.000 0.648 0.056 0.092 0.204
#> SRR1551027     1  0.0146      0.936 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1551028     4  0.2631      0.996 0.000 0.180 0.000 0.820 0.000 0.000
#> SRR1551029     2  0.0000      0.893 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551030     2  0.0000      0.893 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551031     6  0.3566      0.973 0.000 0.236 0.000 0.020 0.000 0.744
#> SRR1551032     1  0.7972      0.102 0.372 0.000 0.276 0.056 0.092 0.204
#> SRR1551034     1  0.0000      0.938 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551033     3  0.0000      0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551035     4  0.2882      0.994 0.000 0.180 0.000 0.812 0.000 0.008
#> SRR1551036     2  0.0000      0.893 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551037     2  0.2912      0.839 0.000 0.784 0.000 0.000 0.216 0.000
#> SRR1551038     6  0.3755      0.996 0.000 0.220 0.000 0.036 0.000 0.744
#> SRR1551039     5  0.3592      0.938 0.344 0.000 0.000 0.000 0.656 0.000
#> SRR1551040     3  0.0520      0.975 0.000 0.000 0.984 0.008 0.008 0.000
#> SRR1551041     1  0.0000      0.938 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551042     4  0.2882      0.994 0.000 0.180 0.000 0.812 0.000 0.008
#> SRR1551043     2  0.0000      0.893 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551044     2  0.2912      0.839 0.000 0.784 0.000 0.000 0.216 0.000
#> SRR1551045     6  0.3755      0.996 0.000 0.220 0.000 0.036 0.000 0.744
#> SRR1551046     5  0.3728      0.937 0.344 0.000 0.000 0.004 0.652 0.000
#> SRR1551047     3  0.0520      0.975 0.000 0.000 0.984 0.008 0.008 0.000
#> SRR1551048     1  0.0000      0.938 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551049     4  0.2631      0.996 0.000 0.180 0.000 0.820 0.000 0.000
#> SRR1551050     2  0.0000      0.893 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551051     2  0.0000      0.893 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551052     6  0.3755      0.996 0.000 0.220 0.000 0.036 0.000 0.744
#> SRR1551053     5  0.5237      0.355 0.012 0.020 0.000 0.360 0.572 0.036
#> SRR1551054     3  0.0146      0.978 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1551055     1  0.0000      0.938 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551056     4  0.2631      0.996 0.000 0.180 0.000 0.820 0.000 0.000
#> SRR1551057     2  0.0000      0.893 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551058     2  0.2912      0.839 0.000 0.784 0.000 0.000 0.216 0.000
#> SRR1551059     6  0.4002      0.994 0.000 0.220 0.000 0.036 0.008 0.736
#> SRR1551060     5  0.5368      0.888 0.344 0.000 0.000 0.052 0.568 0.036
#> SRR1551061     3  0.0000      0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551062     1  0.0000      0.938 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551063     4  0.2631      0.996 0.000 0.180 0.000 0.820 0.000 0.000
#> SRR1551064     2  0.0000      0.893 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551065     2  0.2912      0.839 0.000 0.784 0.000 0.000 0.216 0.000
#> SRR1551066     6  0.3755      0.996 0.000 0.220 0.000 0.036 0.000 0.744
#> SRR1551067     5  0.3592      0.938 0.344 0.000 0.000 0.000 0.656 0.000
#> SRR1551068     3  0.0000      0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551069     1  0.0000      0.938 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551070     4  0.2631      0.996 0.000 0.180 0.000 0.820 0.000 0.000
#> SRR1551071     2  0.0937      0.886 0.000 0.960 0.000 0.000 0.040 0.000
#> SRR1551072     2  0.2941      0.837 0.000 0.780 0.000 0.000 0.220 0.000
#> SRR1551073     6  0.4002      0.994 0.000 0.220 0.000 0.036 0.008 0.736
#> SRR1551074     5  0.3592      0.938 0.344 0.000 0.000 0.000 0.656 0.000
#> SRR1551075     3  0.0000      0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551076     1  0.0000      0.938 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551077     4  0.2631      0.996 0.000 0.180 0.000 0.820 0.000 0.000
#> SRR1551078     2  0.0146      0.892 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1551079     2  0.2912      0.839 0.000 0.784 0.000 0.000 0.216 0.000
#> SRR1551080     6  0.3755      0.996 0.000 0.220 0.000 0.036 0.000 0.744
#> SRR1551081     5  0.4874      0.909 0.344 0.000 0.000 0.032 0.600 0.024
#> SRR1551082     3  0.0000      0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551083     1  0.0000      0.938 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551084     4  0.2631      0.996 0.000 0.180 0.000 0.820 0.000 0.000
#> SRR1551085     2  0.0000      0.893 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551086     2  0.2912      0.839 0.000 0.784 0.000 0.000 0.216 0.000
#> SRR1551088     3  0.0000      0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551087     5  0.3592      0.938 0.344 0.000 0.000 0.000 0.656 0.000
#> SRR1551089     1  0.0000      0.938 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551090     4  0.2631      0.996 0.000 0.180 0.000 0.820 0.000 0.000
#> SRR1551091     2  0.0000      0.893 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551092     2  0.2912      0.839 0.000 0.784 0.000 0.000 0.216 0.000
#> SRR1551093     6  0.4002      0.994 0.000 0.220 0.000 0.036 0.008 0.736
#> SRR1551094     5  0.3592      0.938 0.344 0.000 0.000 0.000 0.656 0.000
#> SRR1551095     3  0.0000      0.978 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551096     1  0.0000      0.938 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551097     4  0.2772      0.995 0.000 0.180 0.000 0.816 0.000 0.004
#> SRR1551098     2  0.0000      0.893 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551099     2  0.2912      0.839 0.000 0.784 0.000 0.000 0.216 0.000
#> SRR1551101     3  0.0520      0.975 0.000 0.000 0.984 0.008 0.008 0.000
#> SRR1551100     5  0.3592      0.938 0.344 0.000 0.000 0.000 0.656 0.000
#> SRR1551102     1  0.0000      0.938 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551103     4  0.2772      0.995 0.000 0.180 0.000 0.816 0.000 0.004
#> SRR1551104     2  0.0000      0.893 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551105     2  0.2912      0.839 0.000 0.784 0.000 0.000 0.216 0.000
#> SRR1551106     6  0.4002      0.994 0.000 0.220 0.000 0.036 0.008 0.736
#> SRR1551107     5  0.3592      0.938 0.344 0.000 0.000 0.000 0.656 0.000
#> SRR1551108     3  0.0146      0.978 0.000 0.000 0.996 0.000 0.004 0.000
#> SRR1551109     1  0.0000      0.938 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1551110     4  0.2772      0.995 0.000 0.180 0.000 0.816 0.000 0.004
#> SRR1551111     2  0.0000      0.893 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551112     2  0.2912      0.839 0.000 0.784 0.000 0.000 0.216 0.000
#> SRR1551113     6  0.4002      0.994 0.000 0.220 0.000 0.036 0.008 0.736
#> SRR1551114     5  0.3592      0.938 0.344 0.000 0.000 0.000 0.656 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15028 rows and 134 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.992       0.996         0.4961 0.503   0.503
#> 3 3 1.000           0.974       0.983         0.1668 0.913   0.827
#> 4 4 0.825           0.944       0.927         0.1142 0.948   0.877
#> 5 5 0.805           0.910       0.893         0.1347 0.879   0.671
#> 6 6 0.932           0.980       0.938         0.0849 0.937   0.745

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1550981     1   0.000      0.991 1.000 0.000
#> SRR1550982     1   0.000      0.991 1.000 0.000
#> SRR1550983     1   0.000      0.991 1.000 0.000
#> SRR1550984     1   0.000      0.991 1.000 0.000
#> SRR1550986     1   0.000      0.991 1.000 0.000
#> SRR1550985     1   0.821      0.663 0.744 0.256
#> SRR1550988     2   0.000      1.000 0.000 1.000
#> SRR1550987     1   0.000      0.991 1.000 0.000
#> SRR1550989     2   0.000      1.000 0.000 1.000
#> SRR1550990     2   0.000      1.000 0.000 1.000
#> SRR1550991     2   0.000      1.000 0.000 1.000
#> SRR1550992     1   0.000      0.991 1.000 0.000
#> SRR1550994     2   0.000      1.000 0.000 1.000
#> SRR1550993     1   0.000      0.991 1.000 0.000
#> SRR1550995     2   0.000      1.000 0.000 1.000
#> SRR1550996     2   0.000      1.000 0.000 1.000
#> SRR1550997     1   0.000      0.991 1.000 0.000
#> SRR1550998     1   0.000      0.991 1.000 0.000
#> SRR1551000     2   0.000      1.000 0.000 1.000
#> SRR1550999     2   0.000      1.000 0.000 1.000
#> SRR1551001     2   0.000      1.000 0.000 1.000
#> SRR1551002     1   0.000      0.991 1.000 0.000
#> SRR1551003     1   0.000      0.991 1.000 0.000
#> SRR1551004     2   0.000      1.000 0.000 1.000
#> SRR1551006     2   0.000      1.000 0.000 1.000
#> SRR1551005     2   0.000      1.000 0.000 1.000
#> SRR1551007     2   0.000      1.000 0.000 1.000
#> SRR1551008     1   0.000      0.991 1.000 0.000
#> SRR1551009     1   0.000      0.991 1.000 0.000
#> SRR1551010     2   0.000      1.000 0.000 1.000
#> SRR1551012     2   0.000      1.000 0.000 1.000
#> SRR1551011     2   0.000      1.000 0.000 1.000
#> SRR1551013     1   0.000      0.991 1.000 0.000
#> SRR1551014     1   0.000      0.991 1.000 0.000
#> SRR1551015     2   0.000      1.000 0.000 1.000
#> SRR1551016     2   0.000      1.000 0.000 1.000
#> SRR1551017     2   0.000      1.000 0.000 1.000
#> SRR1551018     2   0.000      1.000 0.000 1.000
#> SRR1551019     1   0.000      0.991 1.000 0.000
#> SRR1551021     1   0.000      0.991 1.000 0.000
#> SRR1551022     2   0.000      1.000 0.000 1.000
#> SRR1551023     2   0.000      1.000 0.000 1.000
#> SRR1551020     1   0.000      0.991 1.000 0.000
#> SRR1551024     2   0.000      1.000 0.000 1.000
#> SRR1551026     1   0.000      0.991 1.000 0.000
#> SRR1551025     1   0.000      0.991 1.000 0.000
#> SRR1551027     1   0.000      0.991 1.000 0.000
#> SRR1551028     2   0.000      1.000 0.000 1.000
#> SRR1551029     2   0.000      1.000 0.000 1.000
#> SRR1551030     2   0.000      1.000 0.000 1.000
#> SRR1551031     2   0.000      1.000 0.000 1.000
#> SRR1551032     1   0.000      0.991 1.000 0.000
#> SRR1551034     1   0.000      0.991 1.000 0.000
#> SRR1551033     1   0.000      0.991 1.000 0.000
#> SRR1551035     2   0.000      1.000 0.000 1.000
#> SRR1551036     2   0.000      1.000 0.000 1.000
#> SRR1551037     2   0.000      1.000 0.000 1.000
#> SRR1551038     2   0.000      1.000 0.000 1.000
#> SRR1551039     1   0.000      0.991 1.000 0.000
#> SRR1551040     1   0.000      0.991 1.000 0.000
#> SRR1551041     1   0.000      0.991 1.000 0.000
#> SRR1551042     2   0.000      1.000 0.000 1.000
#> SRR1551043     2   0.000      1.000 0.000 1.000
#> SRR1551044     2   0.000      1.000 0.000 1.000
#> SRR1551045     2   0.000      1.000 0.000 1.000
#> SRR1551046     1   0.000      0.991 1.000 0.000
#> SRR1551047     1   0.000      0.991 1.000 0.000
#> SRR1551048     1   0.000      0.991 1.000 0.000
#> SRR1551049     2   0.000      1.000 0.000 1.000
#> SRR1551050     2   0.000      1.000 0.000 1.000
#> SRR1551051     2   0.000      1.000 0.000 1.000
#> SRR1551052     2   0.000      1.000 0.000 1.000
#> SRR1551053     2   0.000      1.000 0.000 1.000
#> SRR1551054     1   0.000      0.991 1.000 0.000
#> SRR1551055     1   0.000      0.991 1.000 0.000
#> SRR1551056     2   0.000      1.000 0.000 1.000
#> SRR1551057     2   0.000      1.000 0.000 1.000
#> SRR1551058     2   0.000      1.000 0.000 1.000
#> SRR1551059     2   0.000      1.000 0.000 1.000
#> SRR1551060     1   0.714      0.760 0.804 0.196
#> SRR1551061     1   0.000      0.991 1.000 0.000
#> SRR1551062     1   0.000      0.991 1.000 0.000
#> SRR1551063     2   0.000      1.000 0.000 1.000
#> SRR1551064     2   0.000      1.000 0.000 1.000
#> SRR1551065     2   0.000      1.000 0.000 1.000
#> SRR1551066     2   0.000      1.000 0.000 1.000
#> SRR1551067     1   0.000      0.991 1.000 0.000
#> SRR1551068     1   0.000      0.991 1.000 0.000
#> SRR1551069     1   0.000      0.991 1.000 0.000
#> SRR1551070     2   0.000      1.000 0.000 1.000
#> SRR1551071     2   0.000      1.000 0.000 1.000
#> SRR1551072     2   0.000      1.000 0.000 1.000
#> SRR1551073     2   0.000      1.000 0.000 1.000
#> SRR1551074     1   0.000      0.991 1.000 0.000
#> SRR1551075     1   0.000      0.991 1.000 0.000
#> SRR1551076     1   0.000      0.991 1.000 0.000
#> SRR1551077     2   0.000      1.000 0.000 1.000
#> SRR1551078     2   0.000      1.000 0.000 1.000
#> SRR1551079     2   0.000      1.000 0.000 1.000
#> SRR1551080     2   0.000      1.000 0.000 1.000
#> SRR1551081     1   0.242      0.953 0.960 0.040
#> SRR1551082     1   0.000      0.991 1.000 0.000
#> SRR1551083     1   0.000      0.991 1.000 0.000
#> SRR1551084     2   0.000      1.000 0.000 1.000
#> SRR1551085     2   0.000      1.000 0.000 1.000
#> SRR1551086     2   0.000      1.000 0.000 1.000
#> SRR1551088     1   0.000      0.991 1.000 0.000
#> SRR1551087     1   0.000      0.991 1.000 0.000
#> SRR1551089     1   0.000      0.991 1.000 0.000
#> SRR1551090     2   0.000      1.000 0.000 1.000
#> SRR1551091     2   0.000      1.000 0.000 1.000
#> SRR1551092     2   0.000      1.000 0.000 1.000
#> SRR1551093     2   0.000      1.000 0.000 1.000
#> SRR1551094     1   0.000      0.991 1.000 0.000
#> SRR1551095     1   0.000      0.991 1.000 0.000
#> SRR1551096     1   0.000      0.991 1.000 0.000
#> SRR1551097     2   0.000      1.000 0.000 1.000
#> SRR1551098     2   0.000      1.000 0.000 1.000
#> SRR1551099     2   0.000      1.000 0.000 1.000
#> SRR1551101     1   0.000      0.991 1.000 0.000
#> SRR1551100     1   0.000      0.991 1.000 0.000
#> SRR1551102     1   0.000      0.991 1.000 0.000
#> SRR1551103     2   0.000      1.000 0.000 1.000
#> SRR1551104     2   0.000      1.000 0.000 1.000
#> SRR1551105     2   0.000      1.000 0.000 1.000
#> SRR1551106     2   0.000      1.000 0.000 1.000
#> SRR1551107     1   0.000      0.991 1.000 0.000
#> SRR1551108     1   0.000      0.991 1.000 0.000
#> SRR1551109     1   0.000      0.991 1.000 0.000
#> SRR1551110     2   0.000      1.000 0.000 1.000
#> SRR1551111     2   0.000      1.000 0.000 1.000
#> SRR1551112     2   0.000      1.000 0.000 1.000
#> SRR1551113     2   0.000      1.000 0.000 1.000
#> SRR1551114     1   0.000      0.991 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1550981     3  0.0237     0.9594 0.004 0.000 0.996
#> SRR1550982     3  0.0237     0.9594 0.004 0.000 0.996
#> SRR1550983     3  0.0237     0.9594 0.004 0.000 0.996
#> SRR1550984     3  0.0237     0.9594 0.004 0.000 0.996
#> SRR1550986     1  0.0424     0.9619 0.992 0.000 0.008
#> SRR1550985     3  0.0237     0.9594 0.004 0.000 0.996
#> SRR1550988     2  0.0237     0.9972 0.000 0.996 0.004
#> SRR1550987     1  0.2356     0.9551 0.928 0.000 0.072
#> SRR1550989     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1550990     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1550991     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1550992     1  0.0424     0.9619 0.992 0.000 0.008
#> SRR1550994     2  0.0237     0.9972 0.000 0.996 0.004
#> SRR1550993     1  0.2356     0.9551 0.928 0.000 0.072
#> SRR1550995     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1550996     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1550997     1  0.0424     0.9619 0.992 0.000 0.008
#> SRR1550998     1  0.2356     0.9551 0.928 0.000 0.072
#> SRR1551000     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1550999     2  0.0237     0.9972 0.000 0.996 0.004
#> SRR1551001     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551002     1  0.0424     0.9619 0.992 0.000 0.008
#> SRR1551003     1  0.2356     0.9551 0.928 0.000 0.072
#> SRR1551004     2  0.0237     0.9972 0.000 0.996 0.004
#> SRR1551006     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551005     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551007     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551008     1  0.0424     0.9619 0.992 0.000 0.008
#> SRR1551009     1  0.2356     0.9551 0.928 0.000 0.072
#> SRR1551010     2  0.0237     0.9972 0.000 0.996 0.004
#> SRR1551012     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551011     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551013     1  0.0424     0.9619 0.992 0.000 0.008
#> SRR1551014     1  0.2356     0.9551 0.928 0.000 0.072
#> SRR1551015     2  0.0237     0.9972 0.000 0.996 0.004
#> SRR1551016     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551017     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551018     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551019     1  0.0424     0.9619 0.992 0.000 0.008
#> SRR1551021     1  0.2356     0.9551 0.928 0.000 0.072
#> SRR1551022     2  0.0237     0.9972 0.000 0.996 0.004
#> SRR1551023     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551020     1  0.0424     0.9619 0.992 0.000 0.008
#> SRR1551024     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551026     1  0.0424     0.9619 0.992 0.000 0.008
#> SRR1551025     1  0.0424     0.9619 0.992 0.000 0.008
#> SRR1551027     1  0.2356     0.9551 0.928 0.000 0.072
#> SRR1551028     2  0.0237     0.9972 0.000 0.996 0.004
#> SRR1551029     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551030     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551031     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551032     1  0.0424     0.9619 0.992 0.000 0.008
#> SRR1551034     1  0.2356     0.9551 0.928 0.000 0.072
#> SRR1551033     1  0.0424     0.9619 0.992 0.000 0.008
#> SRR1551035     2  0.0237     0.9972 0.000 0.996 0.004
#> SRR1551036     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551037     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551038     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551039     3  0.0237     0.9594 0.004 0.000 0.996
#> SRR1551040     1  0.0424     0.9619 0.992 0.000 0.008
#> SRR1551041     1  0.2356     0.9551 0.928 0.000 0.072
#> SRR1551042     2  0.0237     0.9972 0.000 0.996 0.004
#> SRR1551043     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551044     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551045     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551046     3  0.0237     0.9594 0.004 0.000 0.996
#> SRR1551047     1  0.0424     0.9619 0.992 0.000 0.008
#> SRR1551048     1  0.2356     0.9551 0.928 0.000 0.072
#> SRR1551049     2  0.0237     0.9972 0.000 0.996 0.004
#> SRR1551050     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551051     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551052     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551053     3  0.6307     0.0452 0.000 0.488 0.512
#> SRR1551054     1  0.0424     0.9619 0.992 0.000 0.008
#> SRR1551055     1  0.2356     0.9551 0.928 0.000 0.072
#> SRR1551056     2  0.0237     0.9972 0.000 0.996 0.004
#> SRR1551057     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551058     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551059     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551060     3  0.0237     0.9594 0.004 0.000 0.996
#> SRR1551061     1  0.0424     0.9619 0.992 0.000 0.008
#> SRR1551062     1  0.2356     0.9551 0.928 0.000 0.072
#> SRR1551063     2  0.0237     0.9972 0.000 0.996 0.004
#> SRR1551064     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551065     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551066     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551067     3  0.0237     0.9594 0.004 0.000 0.996
#> SRR1551068     1  0.0424     0.9619 0.992 0.000 0.008
#> SRR1551069     1  0.2356     0.9551 0.928 0.000 0.072
#> SRR1551070     2  0.0237     0.9972 0.000 0.996 0.004
#> SRR1551071     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551072     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551073     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551074     3  0.0237     0.9594 0.004 0.000 0.996
#> SRR1551075     1  0.0424     0.9619 0.992 0.000 0.008
#> SRR1551076     1  0.2356     0.9551 0.928 0.000 0.072
#> SRR1551077     2  0.0237     0.9972 0.000 0.996 0.004
#> SRR1551078     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551079     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551080     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551081     3  0.0237     0.9594 0.004 0.000 0.996
#> SRR1551082     1  0.0424     0.9619 0.992 0.000 0.008
#> SRR1551083     1  0.2356     0.9551 0.928 0.000 0.072
#> SRR1551084     2  0.0237     0.9972 0.000 0.996 0.004
#> SRR1551085     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551086     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551088     1  0.0424     0.9619 0.992 0.000 0.008
#> SRR1551087     3  0.0237     0.9594 0.004 0.000 0.996
#> SRR1551089     1  0.2356     0.9551 0.928 0.000 0.072
#> SRR1551090     2  0.0237     0.9972 0.000 0.996 0.004
#> SRR1551091     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551092     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551093     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551094     3  0.0237     0.9594 0.004 0.000 0.996
#> SRR1551095     1  0.0424     0.9619 0.992 0.000 0.008
#> SRR1551096     1  0.2356     0.9551 0.928 0.000 0.072
#> SRR1551097     2  0.0237     0.9972 0.000 0.996 0.004
#> SRR1551098     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551099     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551101     1  0.0424     0.9619 0.992 0.000 0.008
#> SRR1551100     3  0.0237     0.9594 0.004 0.000 0.996
#> SRR1551102     1  0.2356     0.9551 0.928 0.000 0.072
#> SRR1551103     2  0.0237     0.9972 0.000 0.996 0.004
#> SRR1551104     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551105     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551106     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551107     3  0.0237     0.9594 0.004 0.000 0.996
#> SRR1551108     1  0.0424     0.9619 0.992 0.000 0.008
#> SRR1551109     1  0.2356     0.9551 0.928 0.000 0.072
#> SRR1551110     2  0.0237     0.9972 0.000 0.996 0.004
#> SRR1551111     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551112     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551113     2  0.0000     0.9990 0.000 1.000 0.000
#> SRR1551114     3  0.0237     0.9594 0.004 0.000 0.996

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1550981     4  0.0672      0.955 0.008 0.000 0.008 0.984
#> SRR1550982     4  0.0336      0.961 0.008 0.000 0.000 0.992
#> SRR1550983     4  0.0336      0.961 0.008 0.000 0.000 0.992
#> SRR1550984     4  0.0672      0.959 0.008 0.000 0.008 0.984
#> SRR1550986     3  0.3907      1.000 0.232 0.000 0.768 0.000
#> SRR1550985     4  0.0712      0.955 0.004 0.004 0.008 0.984
#> SRR1550988     2  0.3486      0.859 0.000 0.812 0.188 0.000
#> SRR1550987     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1550989     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1550990     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1550991     2  0.1722      0.925 0.000 0.944 0.048 0.008
#> SRR1550992     3  0.3907      1.000 0.232 0.000 0.768 0.000
#> SRR1550994     2  0.3486      0.859 0.000 0.812 0.188 0.000
#> SRR1550993     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1550995     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1550996     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1550997     3  0.3907      1.000 0.232 0.000 0.768 0.000
#> SRR1550998     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1551000     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1550999     2  0.3486      0.859 0.000 0.812 0.188 0.000
#> SRR1551001     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551002     3  0.3907      1.000 0.232 0.000 0.768 0.000
#> SRR1551003     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1551004     2  0.3486      0.859 0.000 0.812 0.188 0.000
#> SRR1551006     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551005     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551007     2  0.1722      0.925 0.000 0.944 0.048 0.008
#> SRR1551008     3  0.3907      1.000 0.232 0.000 0.768 0.000
#> SRR1551009     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1551010     2  0.3486      0.859 0.000 0.812 0.188 0.000
#> SRR1551012     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551011     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551013     3  0.3907      1.000 0.232 0.000 0.768 0.000
#> SRR1551014     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1551015     2  0.3486      0.859 0.000 0.812 0.188 0.000
#> SRR1551016     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551017     2  0.1305      0.926 0.000 0.960 0.036 0.004
#> SRR1551018     2  0.1722      0.925 0.000 0.944 0.048 0.008
#> SRR1551019     3  0.3907      1.000 0.232 0.000 0.768 0.000
#> SRR1551021     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1551022     2  0.3486      0.859 0.000 0.812 0.188 0.000
#> SRR1551023     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551020     3  0.3907      1.000 0.232 0.000 0.768 0.000
#> SRR1551024     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551026     3  0.3907      1.000 0.232 0.000 0.768 0.000
#> SRR1551025     3  0.3907      1.000 0.232 0.000 0.768 0.000
#> SRR1551027     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1551028     2  0.3486      0.859 0.000 0.812 0.188 0.000
#> SRR1551029     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551030     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551031     2  0.1722      0.925 0.000 0.944 0.048 0.008
#> SRR1551032     3  0.3907      1.000 0.232 0.000 0.768 0.000
#> SRR1551034     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1551033     3  0.3907      1.000 0.232 0.000 0.768 0.000
#> SRR1551035     2  0.3486      0.859 0.000 0.812 0.188 0.000
#> SRR1551036     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551037     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551038     2  0.1722      0.925 0.000 0.944 0.048 0.008
#> SRR1551039     4  0.0336      0.961 0.008 0.000 0.000 0.992
#> SRR1551040     3  0.3907      1.000 0.232 0.000 0.768 0.000
#> SRR1551041     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1551042     2  0.3486      0.859 0.000 0.812 0.188 0.000
#> SRR1551043     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551044     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551045     2  0.1722      0.925 0.000 0.944 0.048 0.008
#> SRR1551046     4  0.0336      0.961 0.008 0.000 0.000 0.992
#> SRR1551047     3  0.3907      1.000 0.232 0.000 0.768 0.000
#> SRR1551048     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1551049     2  0.3486      0.859 0.000 0.812 0.188 0.000
#> SRR1551050     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551051     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551052     2  0.1722      0.925 0.000 0.944 0.048 0.008
#> SRR1551053     4  0.5686      0.341 0.000 0.376 0.032 0.592
#> SRR1551054     3  0.3907      1.000 0.232 0.000 0.768 0.000
#> SRR1551055     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1551056     2  0.3486      0.859 0.000 0.812 0.188 0.000
#> SRR1551057     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551058     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551059     2  0.1722      0.925 0.000 0.944 0.048 0.008
#> SRR1551060     4  0.0672      0.959 0.008 0.000 0.008 0.984
#> SRR1551061     3  0.3907      1.000 0.232 0.000 0.768 0.000
#> SRR1551062     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1551063     2  0.3486      0.859 0.000 0.812 0.188 0.000
#> SRR1551064     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551065     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551066     2  0.1722      0.925 0.000 0.944 0.048 0.008
#> SRR1551067     4  0.0336      0.961 0.008 0.000 0.000 0.992
#> SRR1551068     3  0.3907      1.000 0.232 0.000 0.768 0.000
#> SRR1551069     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1551070     2  0.3486      0.859 0.000 0.812 0.188 0.000
#> SRR1551071     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551072     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551073     2  0.1722      0.925 0.000 0.944 0.048 0.008
#> SRR1551074     4  0.0336      0.961 0.008 0.000 0.000 0.992
#> SRR1551075     3  0.3907      1.000 0.232 0.000 0.768 0.000
#> SRR1551076     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1551077     2  0.3486      0.859 0.000 0.812 0.188 0.000
#> SRR1551078     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551079     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551080     2  0.1722      0.925 0.000 0.944 0.048 0.008
#> SRR1551081     4  0.0672      0.959 0.008 0.000 0.008 0.984
#> SRR1551082     3  0.3907      1.000 0.232 0.000 0.768 0.000
#> SRR1551083     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1551084     2  0.3486      0.859 0.000 0.812 0.188 0.000
#> SRR1551085     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551086     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551088     3  0.3907      1.000 0.232 0.000 0.768 0.000
#> SRR1551087     4  0.0336      0.961 0.008 0.000 0.000 0.992
#> SRR1551089     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1551090     2  0.3486      0.859 0.000 0.812 0.188 0.000
#> SRR1551091     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551092     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551093     2  0.1722      0.925 0.000 0.944 0.048 0.008
#> SRR1551094     4  0.0336      0.961 0.008 0.000 0.000 0.992
#> SRR1551095     3  0.3907      1.000 0.232 0.000 0.768 0.000
#> SRR1551096     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1551097     2  0.3486      0.859 0.000 0.812 0.188 0.000
#> SRR1551098     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551099     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551101     3  0.3907      1.000 0.232 0.000 0.768 0.000
#> SRR1551100     4  0.0336      0.961 0.008 0.000 0.000 0.992
#> SRR1551102     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1551103     2  0.3486      0.859 0.000 0.812 0.188 0.000
#> SRR1551104     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551105     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551106     2  0.1722      0.925 0.000 0.944 0.048 0.008
#> SRR1551107     4  0.0336      0.961 0.008 0.000 0.000 0.992
#> SRR1551108     3  0.3907      1.000 0.232 0.000 0.768 0.000
#> SRR1551109     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1551110     2  0.3486      0.859 0.000 0.812 0.188 0.000
#> SRR1551111     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551112     2  0.0000      0.941 0.000 1.000 0.000 0.000
#> SRR1551113     2  0.1722      0.925 0.000 0.944 0.048 0.008
#> SRR1551114     4  0.0336      0.961 0.008 0.000 0.000 0.992

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1550981     5  0.0162      0.948 0.000 0.000 0.004 0.000 0.996
#> SRR1550982     5  0.0000      0.950 0.000 0.000 0.000 0.000 1.000
#> SRR1550983     5  0.0000      0.950 0.000 0.000 0.000 0.000 1.000
#> SRR1550984     5  0.2929      0.891 0.008 0.000 0.000 0.152 0.840
#> SRR1550986     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1550985     5  0.2843      0.895 0.008 0.000 0.000 0.144 0.848
#> SRR1550988     4  0.2648      1.000 0.000 0.152 0.000 0.848 0.000
#> SRR1550987     1  0.1043      1.000 0.960 0.000 0.040 0.000 0.000
#> SRR1550989     2  0.3395      0.862 0.000 0.764 0.000 0.236 0.000
#> SRR1550990     2  0.3336      0.861 0.000 0.772 0.000 0.228 0.000
#> SRR1550991     2  0.2067      0.652 0.032 0.920 0.000 0.048 0.000
#> SRR1550992     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1550994     4  0.2648      1.000 0.000 0.152 0.000 0.848 0.000
#> SRR1550993     1  0.1043      1.000 0.960 0.000 0.040 0.000 0.000
#> SRR1550995     2  0.3395      0.862 0.000 0.764 0.000 0.236 0.000
#> SRR1550996     2  0.3395      0.862 0.000 0.764 0.000 0.236 0.000
#> SRR1550997     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1550998     1  0.1043      1.000 0.960 0.000 0.040 0.000 0.000
#> SRR1551000     2  0.3395      0.862 0.000 0.764 0.000 0.236 0.000
#> SRR1550999     4  0.2648      1.000 0.000 0.152 0.000 0.848 0.000
#> SRR1551001     2  0.3395      0.862 0.000 0.764 0.000 0.236 0.000
#> SRR1551002     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551003     1  0.1043      1.000 0.960 0.000 0.040 0.000 0.000
#> SRR1551004     4  0.2648      1.000 0.000 0.152 0.000 0.848 0.000
#> SRR1551006     2  0.3305      0.861 0.000 0.776 0.000 0.224 0.000
#> SRR1551005     2  0.3395      0.862 0.000 0.764 0.000 0.236 0.000
#> SRR1551007     2  0.2067      0.652 0.032 0.920 0.000 0.048 0.000
#> SRR1551008     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551009     1  0.1043      1.000 0.960 0.000 0.040 0.000 0.000
#> SRR1551010     4  0.2648      1.000 0.000 0.152 0.000 0.848 0.000
#> SRR1551012     2  0.3395      0.862 0.000 0.764 0.000 0.236 0.000
#> SRR1551011     2  0.3395      0.862 0.000 0.764 0.000 0.236 0.000
#> SRR1551013     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551014     1  0.1043      1.000 0.960 0.000 0.040 0.000 0.000
#> SRR1551015     4  0.2648      1.000 0.000 0.152 0.000 0.848 0.000
#> SRR1551016     2  0.3336      0.861 0.000 0.772 0.000 0.228 0.000
#> SRR1551017     2  0.0290      0.702 0.000 0.992 0.000 0.008 0.000
#> SRR1551018     2  0.2067      0.652 0.032 0.920 0.000 0.048 0.000
#> SRR1551019     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551021     1  0.1043      1.000 0.960 0.000 0.040 0.000 0.000
#> SRR1551022     4  0.2648      1.000 0.000 0.152 0.000 0.848 0.000
#> SRR1551023     2  0.3395      0.862 0.000 0.764 0.000 0.236 0.000
#> SRR1551020     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551024     2  0.3395      0.862 0.000 0.764 0.000 0.236 0.000
#> SRR1551026     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551025     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551027     1  0.1043      1.000 0.960 0.000 0.040 0.000 0.000
#> SRR1551028     4  0.2648      1.000 0.000 0.152 0.000 0.848 0.000
#> SRR1551029     2  0.3395      0.862 0.000 0.764 0.000 0.236 0.000
#> SRR1551030     2  0.3305      0.861 0.000 0.776 0.000 0.224 0.000
#> SRR1551031     2  0.2067      0.652 0.032 0.920 0.000 0.048 0.000
#> SRR1551032     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551034     1  0.1043      1.000 0.960 0.000 0.040 0.000 0.000
#> SRR1551033     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551035     4  0.2648      1.000 0.000 0.152 0.000 0.848 0.000
#> SRR1551036     2  0.3395      0.862 0.000 0.764 0.000 0.236 0.000
#> SRR1551037     2  0.3305      0.861 0.000 0.776 0.000 0.224 0.000
#> SRR1551038     2  0.2067      0.652 0.032 0.920 0.000 0.048 0.000
#> SRR1551039     5  0.0000      0.950 0.000 0.000 0.000 0.000 1.000
#> SRR1551040     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551041     1  0.1043      1.000 0.960 0.000 0.040 0.000 0.000
#> SRR1551042     4  0.2648      1.000 0.000 0.152 0.000 0.848 0.000
#> SRR1551043     2  0.3395      0.862 0.000 0.764 0.000 0.236 0.000
#> SRR1551044     2  0.3336      0.861 0.000 0.772 0.000 0.228 0.000
#> SRR1551045     2  0.2067      0.652 0.032 0.920 0.000 0.048 0.000
#> SRR1551046     5  0.0000      0.950 0.000 0.000 0.000 0.000 1.000
#> SRR1551047     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551048     1  0.1043      1.000 0.960 0.000 0.040 0.000 0.000
#> SRR1551049     4  0.2648      1.000 0.000 0.152 0.000 0.848 0.000
#> SRR1551050     2  0.3395      0.862 0.000 0.764 0.000 0.236 0.000
#> SRR1551051     2  0.3395      0.862 0.000 0.764 0.000 0.236 0.000
#> SRR1551052     2  0.2067      0.652 0.032 0.920 0.000 0.048 0.000
#> SRR1551053     5  0.6363      0.506 0.008 0.160 0.000 0.292 0.540
#> SRR1551054     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551055     1  0.1043      1.000 0.960 0.000 0.040 0.000 0.000
#> SRR1551056     4  0.2648      1.000 0.000 0.152 0.000 0.848 0.000
#> SRR1551057     2  0.3395      0.862 0.000 0.764 0.000 0.236 0.000
#> SRR1551058     2  0.3274      0.859 0.000 0.780 0.000 0.220 0.000
#> SRR1551059     2  0.2067      0.652 0.032 0.920 0.000 0.048 0.000
#> SRR1551060     5  0.2929      0.891 0.008 0.000 0.000 0.152 0.840
#> SRR1551061     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551062     1  0.1043      1.000 0.960 0.000 0.040 0.000 0.000
#> SRR1551063     4  0.2648      1.000 0.000 0.152 0.000 0.848 0.000
#> SRR1551064     2  0.3395      0.862 0.000 0.764 0.000 0.236 0.000
#> SRR1551065     2  0.3274      0.859 0.000 0.780 0.000 0.220 0.000
#> SRR1551066     2  0.2067      0.652 0.032 0.920 0.000 0.048 0.000
#> SRR1551067     5  0.0000      0.950 0.000 0.000 0.000 0.000 1.000
#> SRR1551068     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551069     1  0.1043      1.000 0.960 0.000 0.040 0.000 0.000
#> SRR1551070     4  0.2648      1.000 0.000 0.152 0.000 0.848 0.000
#> SRR1551071     2  0.3395      0.862 0.000 0.764 0.000 0.236 0.000
#> SRR1551072     2  0.3274      0.859 0.000 0.780 0.000 0.220 0.000
#> SRR1551073     2  0.2067      0.652 0.032 0.920 0.000 0.048 0.000
#> SRR1551074     5  0.0000      0.950 0.000 0.000 0.000 0.000 1.000
#> SRR1551075     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551076     1  0.1043      1.000 0.960 0.000 0.040 0.000 0.000
#> SRR1551077     4  0.2648      1.000 0.000 0.152 0.000 0.848 0.000
#> SRR1551078     2  0.3395      0.862 0.000 0.764 0.000 0.236 0.000
#> SRR1551079     2  0.3274      0.859 0.000 0.780 0.000 0.220 0.000
#> SRR1551080     2  0.2067      0.652 0.032 0.920 0.000 0.048 0.000
#> SRR1551081     5  0.2179      0.914 0.004 0.000 0.000 0.100 0.896
#> SRR1551082     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551083     1  0.1043      1.000 0.960 0.000 0.040 0.000 0.000
#> SRR1551084     4  0.2648      1.000 0.000 0.152 0.000 0.848 0.000
#> SRR1551085     2  0.3395      0.862 0.000 0.764 0.000 0.236 0.000
#> SRR1551086     2  0.3274      0.859 0.000 0.780 0.000 0.220 0.000
#> SRR1551088     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551087     5  0.0000      0.950 0.000 0.000 0.000 0.000 1.000
#> SRR1551089     1  0.1043      1.000 0.960 0.000 0.040 0.000 0.000
#> SRR1551090     4  0.2648      1.000 0.000 0.152 0.000 0.848 0.000
#> SRR1551091     2  0.3395      0.862 0.000 0.764 0.000 0.236 0.000
#> SRR1551092     2  0.3395      0.862 0.000 0.764 0.000 0.236 0.000
#> SRR1551093     2  0.2067      0.652 0.032 0.920 0.000 0.048 0.000
#> SRR1551094     5  0.0000      0.950 0.000 0.000 0.000 0.000 1.000
#> SRR1551095     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551096     1  0.1043      1.000 0.960 0.000 0.040 0.000 0.000
#> SRR1551097     4  0.2648      1.000 0.000 0.152 0.000 0.848 0.000
#> SRR1551098     2  0.3395      0.862 0.000 0.764 0.000 0.236 0.000
#> SRR1551099     2  0.3395      0.862 0.000 0.764 0.000 0.236 0.000
#> SRR1551101     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551100     5  0.0000      0.950 0.000 0.000 0.000 0.000 1.000
#> SRR1551102     1  0.1043      1.000 0.960 0.000 0.040 0.000 0.000
#> SRR1551103     4  0.2648      1.000 0.000 0.152 0.000 0.848 0.000
#> SRR1551104     2  0.3395      0.862 0.000 0.764 0.000 0.236 0.000
#> SRR1551105     2  0.3305      0.861 0.000 0.776 0.000 0.224 0.000
#> SRR1551106     2  0.2067      0.652 0.032 0.920 0.000 0.048 0.000
#> SRR1551107     5  0.0000      0.950 0.000 0.000 0.000 0.000 1.000
#> SRR1551108     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551109     1  0.1043      1.000 0.960 0.000 0.040 0.000 0.000
#> SRR1551110     4  0.2648      1.000 0.000 0.152 0.000 0.848 0.000
#> SRR1551111     2  0.3395      0.862 0.000 0.764 0.000 0.236 0.000
#> SRR1551112     2  0.3274      0.859 0.000 0.780 0.000 0.220 0.000
#> SRR1551113     2  0.2067      0.652 0.032 0.920 0.000 0.048 0.000
#> SRR1551114     5  0.0000      0.950 0.000 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1550981     5  0.0146      0.918 0.000 0.000 0.004 0.000 0.996 0.000
#> SRR1550982     5  0.0000      0.920 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1550983     5  0.0000      0.920 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1550984     5  0.4779      0.784 0.008 0.000 0.000 0.072 0.656 0.264
#> SRR1550986     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1550985     5  0.4737      0.788 0.008 0.000 0.000 0.072 0.664 0.256
#> SRR1550988     4  0.1610      1.000 0.000 0.084 0.000 0.916 0.000 0.000
#> SRR1550987     1  0.0363      1.000 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1550989     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1550990     2  0.0405      0.987 0.004 0.988 0.000 0.000 0.000 0.008
#> SRR1550991     6  0.3221      1.000 0.000 0.264 0.000 0.000 0.000 0.736
#> SRR1550992     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1550994     4  0.1610      1.000 0.000 0.084 0.000 0.916 0.000 0.000
#> SRR1550993     1  0.0363      1.000 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1550995     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1550996     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1550997     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1550998     1  0.0363      1.000 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1551000     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1550999     4  0.1610      1.000 0.000 0.084 0.000 0.916 0.000 0.000
#> SRR1551001     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551002     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551003     1  0.0363      1.000 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1551004     4  0.1610      1.000 0.000 0.084 0.000 0.916 0.000 0.000
#> SRR1551006     2  0.0405      0.987 0.004 0.988 0.000 0.000 0.000 0.008
#> SRR1551005     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551007     6  0.3221      1.000 0.000 0.264 0.000 0.000 0.000 0.736
#> SRR1551008     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551009     1  0.0363      1.000 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1551010     4  0.1610      1.000 0.000 0.084 0.000 0.916 0.000 0.000
#> SRR1551012     2  0.0146      0.990 0.004 0.996 0.000 0.000 0.000 0.000
#> SRR1551011     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551013     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551014     1  0.0363      1.000 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1551015     4  0.1610      1.000 0.000 0.084 0.000 0.916 0.000 0.000
#> SRR1551016     2  0.0260      0.988 0.000 0.992 0.000 0.000 0.000 0.008
#> SRR1551017     2  0.1588      0.880 0.004 0.924 0.000 0.000 0.000 0.072
#> SRR1551018     6  0.3221      1.000 0.000 0.264 0.000 0.000 0.000 0.736
#> SRR1551019     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551021     1  0.0363      1.000 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1551022     4  0.1610      1.000 0.000 0.084 0.000 0.916 0.000 0.000
#> SRR1551023     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551020     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551024     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551026     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551025     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551027     1  0.0363      1.000 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1551028     4  0.1610      1.000 0.000 0.084 0.000 0.916 0.000 0.000
#> SRR1551029     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551030     2  0.0260      0.988 0.000 0.992 0.000 0.000 0.000 0.008
#> SRR1551031     6  0.3221      1.000 0.000 0.264 0.000 0.000 0.000 0.736
#> SRR1551032     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551034     1  0.0363      1.000 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1551033     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551035     4  0.1610      1.000 0.000 0.084 0.000 0.916 0.000 0.000
#> SRR1551036     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551037     2  0.0405      0.987 0.004 0.988 0.000 0.000 0.000 0.008
#> SRR1551038     6  0.3221      1.000 0.000 0.264 0.000 0.000 0.000 0.736
#> SRR1551039     5  0.0000      0.920 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1551040     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551041     1  0.0363      1.000 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1551042     4  0.1610      1.000 0.000 0.084 0.000 0.916 0.000 0.000
#> SRR1551043     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551044     2  0.0405      0.987 0.004 0.988 0.000 0.000 0.000 0.008
#> SRR1551045     6  0.3221      1.000 0.000 0.264 0.000 0.000 0.000 0.736
#> SRR1551046     5  0.0000      0.920 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1551047     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551048     1  0.0363      1.000 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1551049     4  0.1610      1.000 0.000 0.084 0.000 0.916 0.000 0.000
#> SRR1551050     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551051     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551052     6  0.3221      1.000 0.000 0.264 0.000 0.000 0.000 0.736
#> SRR1551053     5  0.6753      0.628 0.008 0.128 0.000 0.088 0.512 0.264
#> SRR1551054     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551055     1  0.0363      1.000 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1551056     4  0.1610      1.000 0.000 0.084 0.000 0.916 0.000 0.000
#> SRR1551057     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551058     2  0.0405      0.987 0.004 0.988 0.000 0.000 0.000 0.008
#> SRR1551059     6  0.3221      1.000 0.000 0.264 0.000 0.000 0.000 0.736
#> SRR1551060     5  0.4779      0.784 0.008 0.000 0.000 0.072 0.656 0.264
#> SRR1551061     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551062     1  0.0363      1.000 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1551063     4  0.1610      1.000 0.000 0.084 0.000 0.916 0.000 0.000
#> SRR1551064     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551065     2  0.0405      0.987 0.004 0.988 0.000 0.000 0.000 0.008
#> SRR1551066     6  0.3221      1.000 0.000 0.264 0.000 0.000 0.000 0.736
#> SRR1551067     5  0.0363      0.919 0.000 0.000 0.000 0.012 0.988 0.000
#> SRR1551068     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551069     1  0.0363      1.000 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1551070     4  0.1610      1.000 0.000 0.084 0.000 0.916 0.000 0.000
#> SRR1551071     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551072     2  0.0405      0.987 0.004 0.988 0.000 0.000 0.000 0.008
#> SRR1551073     6  0.3221      1.000 0.000 0.264 0.000 0.000 0.000 0.736
#> SRR1551074     5  0.0363      0.919 0.000 0.000 0.000 0.012 0.988 0.000
#> SRR1551075     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551076     1  0.0363      1.000 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1551077     4  0.1610      1.000 0.000 0.084 0.000 0.916 0.000 0.000
#> SRR1551078     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551079     2  0.0405      0.987 0.004 0.988 0.000 0.000 0.000 0.008
#> SRR1551080     6  0.3221      1.000 0.000 0.264 0.000 0.000 0.000 0.736
#> SRR1551081     5  0.3965      0.838 0.008 0.000 0.000 0.064 0.768 0.160
#> SRR1551082     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551083     1  0.0363      1.000 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1551084     4  0.1610      1.000 0.000 0.084 0.000 0.916 0.000 0.000
#> SRR1551085     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551086     2  0.0405      0.987 0.004 0.988 0.000 0.000 0.000 0.008
#> SRR1551088     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551087     5  0.0000      0.920 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1551089     1  0.0363      1.000 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1551090     4  0.1610      1.000 0.000 0.084 0.000 0.916 0.000 0.000
#> SRR1551091     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551092     2  0.0146      0.990 0.004 0.996 0.000 0.000 0.000 0.000
#> SRR1551093     6  0.3221      1.000 0.000 0.264 0.000 0.000 0.000 0.736
#> SRR1551094     5  0.0000      0.920 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1551095     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551096     1  0.0363      1.000 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1551097     4  0.1610      1.000 0.000 0.084 0.000 0.916 0.000 0.000
#> SRR1551098     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551099     2  0.0146      0.990 0.004 0.996 0.000 0.000 0.000 0.000
#> SRR1551101     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551100     5  0.0363      0.919 0.000 0.000 0.000 0.012 0.988 0.000
#> SRR1551102     1  0.0363      1.000 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1551103     4  0.1610      1.000 0.000 0.084 0.000 0.916 0.000 0.000
#> SRR1551104     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551105     2  0.0405      0.987 0.004 0.988 0.000 0.000 0.000 0.008
#> SRR1551106     6  0.3221      1.000 0.000 0.264 0.000 0.000 0.000 0.736
#> SRR1551107     5  0.0363      0.919 0.000 0.000 0.000 0.012 0.988 0.000
#> SRR1551108     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551109     1  0.0363      1.000 0.988 0.000 0.012 0.000 0.000 0.000
#> SRR1551110     4  0.1610      1.000 0.000 0.084 0.000 0.916 0.000 0.000
#> SRR1551111     2  0.0000      0.992 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1551112     2  0.0405      0.987 0.004 0.988 0.000 0.000 0.000 0.008
#> SRR1551113     6  0.3221      1.000 0.000 0.264 0.000 0.000 0.000 0.736
#> SRR1551114     5  0.0146      0.920 0.000 0.000 0.000 0.004 0.996 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15028 rows and 134 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.626           0.860       0.897         0.4133 0.510   0.510
#> 3 3 1.000           0.996       0.998         0.4202 0.880   0.771
#> 4 4 1.000           0.996       0.998         0.0775 0.950   0.881
#> 5 5 1.000           0.996       0.998         0.1914 0.879   0.671
#> 6 6 0.936           0.992       0.966         0.0763 0.937   0.745

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 3 4 5

There is also optional best \(k\) = 3 4 5 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1550981     1   0.966      0.722 0.608 0.392
#> SRR1550982     1   0.966      0.722 0.608 0.392
#> SRR1550983     1   0.966      0.722 0.608 0.392
#> SRR1550984     1   0.966      0.722 0.608 0.392
#> SRR1550986     1   0.000      0.727 1.000 0.000
#> SRR1550985     2   0.706      0.641 0.192 0.808
#> SRR1550988     2   0.000      0.984 0.000 1.000
#> SRR1550987     1   0.966      0.722 0.608 0.392
#> SRR1550989     2   0.000      0.984 0.000 1.000
#> SRR1550990     2   0.000      0.984 0.000 1.000
#> SRR1550991     2   0.000      0.984 0.000 1.000
#> SRR1550992     1   0.000      0.727 1.000 0.000
#> SRR1550994     2   0.000      0.984 0.000 1.000
#> SRR1550993     1   0.966      0.722 0.608 0.392
#> SRR1550995     2   0.000      0.984 0.000 1.000
#> SRR1550996     2   0.000      0.984 0.000 1.000
#> SRR1550997     1   0.000      0.727 1.000 0.000
#> SRR1550998     1   0.966      0.722 0.608 0.392
#> SRR1551000     2   0.000      0.984 0.000 1.000
#> SRR1550999     2   0.000      0.984 0.000 1.000
#> SRR1551001     2   0.000      0.984 0.000 1.000
#> SRR1551002     1   0.000      0.727 1.000 0.000
#> SRR1551003     1   0.966      0.722 0.608 0.392
#> SRR1551004     2   0.000      0.984 0.000 1.000
#> SRR1551006     2   0.000      0.984 0.000 1.000
#> SRR1551005     2   0.000      0.984 0.000 1.000
#> SRR1551007     2   0.000      0.984 0.000 1.000
#> SRR1551008     1   0.000      0.727 1.000 0.000
#> SRR1551009     1   0.966      0.722 0.608 0.392
#> SRR1551010     2   0.000      0.984 0.000 1.000
#> SRR1551012     2   0.000      0.984 0.000 1.000
#> SRR1551011     2   0.000      0.984 0.000 1.000
#> SRR1551013     1   0.000      0.727 1.000 0.000
#> SRR1551014     1   0.929      0.722 0.656 0.344
#> SRR1551015     2   0.000      0.984 0.000 1.000
#> SRR1551016     2   0.000      0.984 0.000 1.000
#> SRR1551017     2   0.000      0.984 0.000 1.000
#> SRR1551018     2   0.000      0.984 0.000 1.000
#> SRR1551019     1   0.000      0.727 1.000 0.000
#> SRR1551021     1   0.966      0.722 0.608 0.392
#> SRR1551022     2   0.000      0.984 0.000 1.000
#> SRR1551023     2   0.000      0.984 0.000 1.000
#> SRR1551020     1   0.000      0.727 1.000 0.000
#> SRR1551024     2   0.000      0.984 0.000 1.000
#> SRR1551026     1   0.000      0.727 1.000 0.000
#> SRR1551025     1   0.000      0.727 1.000 0.000
#> SRR1551027     1   0.966      0.722 0.608 0.392
#> SRR1551028     2   0.000      0.984 0.000 1.000
#> SRR1551029     2   0.000      0.984 0.000 1.000
#> SRR1551030     2   0.000      0.984 0.000 1.000
#> SRR1551031     2   0.000      0.984 0.000 1.000
#> SRR1551032     1   0.000      0.727 1.000 0.000
#> SRR1551034     1   0.966      0.722 0.608 0.392
#> SRR1551033     1   0.000      0.727 1.000 0.000
#> SRR1551035     2   0.000      0.984 0.000 1.000
#> SRR1551036     2   0.000      0.984 0.000 1.000
#> SRR1551037     2   0.000      0.984 0.000 1.000
#> SRR1551038     2   0.000      0.984 0.000 1.000
#> SRR1551039     1   0.966      0.722 0.608 0.392
#> SRR1551040     1   0.000      0.727 1.000 0.000
#> SRR1551041     1   0.966      0.722 0.608 0.392
#> SRR1551042     2   0.000      0.984 0.000 1.000
#> SRR1551043     2   0.000      0.984 0.000 1.000
#> SRR1551044     2   0.000      0.984 0.000 1.000
#> SRR1551045     2   0.000      0.984 0.000 1.000
#> SRR1551046     1   0.966      0.722 0.608 0.392
#> SRR1551047     1   0.000      0.727 1.000 0.000
#> SRR1551048     1   0.966      0.722 0.608 0.392
#> SRR1551049     2   0.000      0.984 0.000 1.000
#> SRR1551050     2   0.000      0.984 0.000 1.000
#> SRR1551051     2   0.000      0.984 0.000 1.000
#> SRR1551052     2   0.000      0.984 0.000 1.000
#> SRR1551053     2   0.000      0.984 0.000 1.000
#> SRR1551054     1   0.000      0.727 1.000 0.000
#> SRR1551055     1   0.966      0.722 0.608 0.392
#> SRR1551056     2   0.000      0.984 0.000 1.000
#> SRR1551057     2   0.000      0.984 0.000 1.000
#> SRR1551058     2   0.000      0.984 0.000 1.000
#> SRR1551059     2   0.000      0.984 0.000 1.000
#> SRR1551060     2   0.998     -0.417 0.476 0.524
#> SRR1551061     1   0.000      0.727 1.000 0.000
#> SRR1551062     1   0.966      0.722 0.608 0.392
#> SRR1551063     2   0.000      0.984 0.000 1.000
#> SRR1551064     2   0.000      0.984 0.000 1.000
#> SRR1551065     2   0.000      0.984 0.000 1.000
#> SRR1551066     2   0.000      0.984 0.000 1.000
#> SRR1551067     1   0.966      0.722 0.608 0.392
#> SRR1551068     1   0.000      0.727 1.000 0.000
#> SRR1551069     1   0.966      0.722 0.608 0.392
#> SRR1551070     2   0.000      0.984 0.000 1.000
#> SRR1551071     2   0.000      0.984 0.000 1.000
#> SRR1551072     2   0.000      0.984 0.000 1.000
#> SRR1551073     2   0.000      0.984 0.000 1.000
#> SRR1551074     1   0.966      0.722 0.608 0.392
#> SRR1551075     1   0.000      0.727 1.000 0.000
#> SRR1551076     1   0.966      0.722 0.608 0.392
#> SRR1551077     2   0.000      0.984 0.000 1.000
#> SRR1551078     2   0.000      0.984 0.000 1.000
#> SRR1551079     2   0.000      0.984 0.000 1.000
#> SRR1551080     2   0.000      0.984 0.000 1.000
#> SRR1551081     2   0.714      0.631 0.196 0.804
#> SRR1551082     1   0.000      0.727 1.000 0.000
#> SRR1551083     1   0.966      0.722 0.608 0.392
#> SRR1551084     2   0.000      0.984 0.000 1.000
#> SRR1551085     2   0.000      0.984 0.000 1.000
#> SRR1551086     2   0.000      0.984 0.000 1.000
#> SRR1551088     1   0.000      0.727 1.000 0.000
#> SRR1551087     1   0.966      0.722 0.608 0.392
#> SRR1551089     1   0.966      0.722 0.608 0.392
#> SRR1551090     2   0.000      0.984 0.000 1.000
#> SRR1551091     2   0.000      0.984 0.000 1.000
#> SRR1551092     2   0.000      0.984 0.000 1.000
#> SRR1551093     2   0.000      0.984 0.000 1.000
#> SRR1551094     1   0.966      0.722 0.608 0.392
#> SRR1551095     1   0.000      0.727 1.000 0.000
#> SRR1551096     1   0.966      0.722 0.608 0.392
#> SRR1551097     2   0.000      0.984 0.000 1.000
#> SRR1551098     2   0.000      0.984 0.000 1.000
#> SRR1551099     2   0.000      0.984 0.000 1.000
#> SRR1551101     1   0.000      0.727 1.000 0.000
#> SRR1551100     1   0.966      0.722 0.608 0.392
#> SRR1551102     1   0.966      0.722 0.608 0.392
#> SRR1551103     2   0.000      0.984 0.000 1.000
#> SRR1551104     2   0.000      0.984 0.000 1.000
#> SRR1551105     2   0.000      0.984 0.000 1.000
#> SRR1551106     2   0.000      0.984 0.000 1.000
#> SRR1551107     1   0.966      0.722 0.608 0.392
#> SRR1551108     1   0.000      0.727 1.000 0.000
#> SRR1551109     1   0.966      0.722 0.608 0.392
#> SRR1551110     2   0.000      0.984 0.000 1.000
#> SRR1551111     2   0.000      0.984 0.000 1.000
#> SRR1551112     2   0.000      0.984 0.000 1.000
#> SRR1551113     2   0.000      0.984 0.000 1.000
#> SRR1551114     1   0.966      0.722 0.608 0.392

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1 p2    p3
#> SRR1550981     1   0.000      0.993 1.000  0 0.000
#> SRR1550982     1   0.000      0.993 1.000  0 0.000
#> SRR1550983     1   0.000      0.993 1.000  0 0.000
#> SRR1550984     1   0.000      0.993 1.000  0 0.000
#> SRR1550986     3   0.000      1.000 0.000  0 1.000
#> SRR1550985     1   0.000      0.993 1.000  0 0.000
#> SRR1550988     2   0.000      1.000 0.000  1 0.000
#> SRR1550987     1   0.000      0.993 1.000  0 0.000
#> SRR1550989     2   0.000      1.000 0.000  1 0.000
#> SRR1550990     2   0.000      1.000 0.000  1 0.000
#> SRR1550991     2   0.000      1.000 0.000  1 0.000
#> SRR1550992     3   0.000      1.000 0.000  0 1.000
#> SRR1550994     2   0.000      1.000 0.000  1 0.000
#> SRR1550993     1   0.000      0.993 1.000  0 0.000
#> SRR1550995     2   0.000      1.000 0.000  1 0.000
#> SRR1550996     2   0.000      1.000 0.000  1 0.000
#> SRR1550997     3   0.000      1.000 0.000  0 1.000
#> SRR1550998     1   0.000      0.993 1.000  0 0.000
#> SRR1551000     2   0.000      1.000 0.000  1 0.000
#> SRR1550999     2   0.000      1.000 0.000  1 0.000
#> SRR1551001     2   0.000      1.000 0.000  1 0.000
#> SRR1551002     3   0.000      1.000 0.000  0 1.000
#> SRR1551003     1   0.000      0.993 1.000  0 0.000
#> SRR1551004     2   0.000      1.000 0.000  1 0.000
#> SRR1551006     2   0.000      1.000 0.000  1 0.000
#> SRR1551005     2   0.000      1.000 0.000  1 0.000
#> SRR1551007     2   0.000      1.000 0.000  1 0.000
#> SRR1551008     3   0.000      1.000 0.000  0 1.000
#> SRR1551009     1   0.000      0.993 1.000  0 0.000
#> SRR1551010     2   0.000      1.000 0.000  1 0.000
#> SRR1551012     2   0.000      1.000 0.000  1 0.000
#> SRR1551011     2   0.000      1.000 0.000  1 0.000
#> SRR1551013     3   0.000      1.000 0.000  0 1.000
#> SRR1551014     1   0.000      0.993 1.000  0 0.000
#> SRR1551015     2   0.000      1.000 0.000  1 0.000
#> SRR1551016     2   0.000      1.000 0.000  1 0.000
#> SRR1551017     2   0.000      1.000 0.000  1 0.000
#> SRR1551018     2   0.000      1.000 0.000  1 0.000
#> SRR1551019     1   0.000      0.993 1.000  0 0.000
#> SRR1551021     1   0.000      0.993 1.000  0 0.000
#> SRR1551022     2   0.000      1.000 0.000  1 0.000
#> SRR1551023     2   0.000      1.000 0.000  1 0.000
#> SRR1551020     3   0.000      1.000 0.000  0 1.000
#> SRR1551024     2   0.000      1.000 0.000  1 0.000
#> SRR1551026     3   0.000      1.000 0.000  0 1.000
#> SRR1551025     3   0.000      1.000 0.000  0 1.000
#> SRR1551027     1   0.000      0.993 1.000  0 0.000
#> SRR1551028     2   0.000      1.000 0.000  1 0.000
#> SRR1551029     2   0.000      1.000 0.000  1 0.000
#> SRR1551030     2   0.000      1.000 0.000  1 0.000
#> SRR1551031     2   0.000      1.000 0.000  1 0.000
#> SRR1551032     1   0.514      0.663 0.748  0 0.252
#> SRR1551034     1   0.000      0.993 1.000  0 0.000
#> SRR1551033     3   0.000      1.000 0.000  0 1.000
#> SRR1551035     2   0.000      1.000 0.000  1 0.000
#> SRR1551036     2   0.000      1.000 0.000  1 0.000
#> SRR1551037     2   0.000      1.000 0.000  1 0.000
#> SRR1551038     2   0.000      1.000 0.000  1 0.000
#> SRR1551039     1   0.000      0.993 1.000  0 0.000
#> SRR1551040     3   0.000      1.000 0.000  0 1.000
#> SRR1551041     1   0.000      0.993 1.000  0 0.000
#> SRR1551042     2   0.000      1.000 0.000  1 0.000
#> SRR1551043     2   0.000      1.000 0.000  1 0.000
#> SRR1551044     2   0.000      1.000 0.000  1 0.000
#> SRR1551045     2   0.000      1.000 0.000  1 0.000
#> SRR1551046     1   0.000      0.993 1.000  0 0.000
#> SRR1551047     3   0.000      1.000 0.000  0 1.000
#> SRR1551048     1   0.000      0.993 1.000  0 0.000
#> SRR1551049     2   0.000      1.000 0.000  1 0.000
#> SRR1551050     2   0.000      1.000 0.000  1 0.000
#> SRR1551051     2   0.000      1.000 0.000  1 0.000
#> SRR1551052     2   0.000      1.000 0.000  1 0.000
#> SRR1551053     2   0.000      1.000 0.000  1 0.000
#> SRR1551054     3   0.000      1.000 0.000  0 1.000
#> SRR1551055     1   0.000      0.993 1.000  0 0.000
#> SRR1551056     2   0.000      1.000 0.000  1 0.000
#> SRR1551057     2   0.000      1.000 0.000  1 0.000
#> SRR1551058     2   0.000      1.000 0.000  1 0.000
#> SRR1551059     2   0.000      1.000 0.000  1 0.000
#> SRR1551060     1   0.000      0.993 1.000  0 0.000
#> SRR1551061     3   0.000      1.000 0.000  0 1.000
#> SRR1551062     1   0.000      0.993 1.000  0 0.000
#> SRR1551063     2   0.000      1.000 0.000  1 0.000
#> SRR1551064     2   0.000      1.000 0.000  1 0.000
#> SRR1551065     2   0.000      1.000 0.000  1 0.000
#> SRR1551066     2   0.000      1.000 0.000  1 0.000
#> SRR1551067     1   0.000      0.993 1.000  0 0.000
#> SRR1551068     3   0.000      1.000 0.000  0 1.000
#> SRR1551069     1   0.000      0.993 1.000  0 0.000
#> SRR1551070     2   0.000      1.000 0.000  1 0.000
#> SRR1551071     2   0.000      1.000 0.000  1 0.000
#> SRR1551072     2   0.000      1.000 0.000  1 0.000
#> SRR1551073     2   0.000      1.000 0.000  1 0.000
#> SRR1551074     1   0.000      0.993 1.000  0 0.000
#> SRR1551075     3   0.000      1.000 0.000  0 1.000
#> SRR1551076     1   0.000      0.993 1.000  0 0.000
#> SRR1551077     2   0.000      1.000 0.000  1 0.000
#> SRR1551078     2   0.000      1.000 0.000  1 0.000
#> SRR1551079     2   0.000      1.000 0.000  1 0.000
#> SRR1551080     2   0.000      1.000 0.000  1 0.000
#> SRR1551081     1   0.000      0.993 1.000  0 0.000
#> SRR1551082     3   0.000      1.000 0.000  0 1.000
#> SRR1551083     1   0.000      0.993 1.000  0 0.000
#> SRR1551084     2   0.000      1.000 0.000  1 0.000
#> SRR1551085     2   0.000      1.000 0.000  1 0.000
#> SRR1551086     2   0.000      1.000 0.000  1 0.000
#> SRR1551088     3   0.000      1.000 0.000  0 1.000
#> SRR1551087     1   0.000      0.993 1.000  0 0.000
#> SRR1551089     1   0.000      0.993 1.000  0 0.000
#> SRR1551090     2   0.000      1.000 0.000  1 0.000
#> SRR1551091     2   0.000      1.000 0.000  1 0.000
#> SRR1551092     2   0.000      1.000 0.000  1 0.000
#> SRR1551093     2   0.000      1.000 0.000  1 0.000
#> SRR1551094     1   0.000      0.993 1.000  0 0.000
#> SRR1551095     3   0.000      1.000 0.000  0 1.000
#> SRR1551096     1   0.000      0.993 1.000  0 0.000
#> SRR1551097     2   0.000      1.000 0.000  1 0.000
#> SRR1551098     2   0.000      1.000 0.000  1 0.000
#> SRR1551099     2   0.000      1.000 0.000  1 0.000
#> SRR1551101     3   0.000      1.000 0.000  0 1.000
#> SRR1551100     1   0.000      0.993 1.000  0 0.000
#> SRR1551102     1   0.000      0.993 1.000  0 0.000
#> SRR1551103     2   0.000      1.000 0.000  1 0.000
#> SRR1551104     2   0.000      1.000 0.000  1 0.000
#> SRR1551105     2   0.000      1.000 0.000  1 0.000
#> SRR1551106     2   0.000      1.000 0.000  1 0.000
#> SRR1551107     1   0.000      0.993 1.000  0 0.000
#> SRR1551108     3   0.000      1.000 0.000  0 1.000
#> SRR1551109     1   0.000      0.993 1.000  0 0.000
#> SRR1551110     2   0.000      1.000 0.000  1 0.000
#> SRR1551111     2   0.000      1.000 0.000  1 0.000
#> SRR1551112     2   0.000      1.000 0.000  1 0.000
#> SRR1551113     2   0.000      1.000 0.000  1 0.000
#> SRR1551114     1   0.000      0.993 1.000  0 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1 p2    p3 p4
#> SRR1550981     4   0.000      1.000 0.000  0 0.000  1
#> SRR1550982     4   0.000      1.000 0.000  0 0.000  1
#> SRR1550983     4   0.000      1.000 0.000  0 0.000  1
#> SRR1550984     4   0.000      1.000 0.000  0 0.000  1
#> SRR1550986     3   0.000      1.000 0.000  0 1.000  0
#> SRR1550985     4   0.000      1.000 0.000  0 0.000  1
#> SRR1550988     2   0.000      1.000 0.000  1 0.000  0
#> SRR1550987     1   0.000      0.988 1.000  0 0.000  0
#> SRR1550989     2   0.000      1.000 0.000  1 0.000  0
#> SRR1550990     2   0.000      1.000 0.000  1 0.000  0
#> SRR1550991     2   0.000      1.000 0.000  1 0.000  0
#> SRR1550992     3   0.000      1.000 0.000  0 1.000  0
#> SRR1550994     2   0.000      1.000 0.000  1 0.000  0
#> SRR1550993     1   0.000      0.988 1.000  0 0.000  0
#> SRR1550995     2   0.000      1.000 0.000  1 0.000  0
#> SRR1550996     2   0.000      1.000 0.000  1 0.000  0
#> SRR1550997     3   0.000      1.000 0.000  0 1.000  0
#> SRR1550998     1   0.000      0.988 1.000  0 0.000  0
#> SRR1551000     2   0.000      1.000 0.000  1 0.000  0
#> SRR1550999     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551001     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551002     3   0.000      1.000 0.000  0 1.000  0
#> SRR1551003     1   0.000      0.988 1.000  0 0.000  0
#> SRR1551004     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551006     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551005     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551007     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551008     3   0.000      1.000 0.000  0 1.000  0
#> SRR1551009     1   0.000      0.988 1.000  0 0.000  0
#> SRR1551010     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551012     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551011     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551013     3   0.000      1.000 0.000  0 1.000  0
#> SRR1551014     1   0.000      0.988 1.000  0 0.000  0
#> SRR1551015     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551016     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551017     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551018     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551019     1   0.000      0.988 1.000  0 0.000  0
#> SRR1551021     1   0.000      0.988 1.000  0 0.000  0
#> SRR1551022     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551023     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551020     3   0.000      1.000 0.000  0 1.000  0
#> SRR1551024     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551026     3   0.000      1.000 0.000  0 1.000  0
#> SRR1551025     3   0.000      1.000 0.000  0 1.000  0
#> SRR1551027     1   0.000      0.988 1.000  0 0.000  0
#> SRR1551028     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551029     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551030     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551031     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551032     1   0.401      0.677 0.756  0 0.244  0
#> SRR1551034     1   0.000      0.988 1.000  0 0.000  0
#> SRR1551033     3   0.000      1.000 0.000  0 1.000  0
#> SRR1551035     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551036     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551037     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551038     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551039     4   0.000      1.000 0.000  0 0.000  1
#> SRR1551040     3   0.000      1.000 0.000  0 1.000  0
#> SRR1551041     1   0.000      0.988 1.000  0 0.000  0
#> SRR1551042     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551043     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551044     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551045     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551046     4   0.000      1.000 0.000  0 0.000  1
#> SRR1551047     3   0.000      1.000 0.000  0 1.000  0
#> SRR1551048     1   0.000      0.988 1.000  0 0.000  0
#> SRR1551049     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551050     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551051     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551052     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551053     4   0.000      1.000 0.000  0 0.000  1
#> SRR1551054     3   0.000      1.000 0.000  0 1.000  0
#> SRR1551055     1   0.000      0.988 1.000  0 0.000  0
#> SRR1551056     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551057     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551058     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551059     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551060     4   0.000      1.000 0.000  0 0.000  1
#> SRR1551061     3   0.000      1.000 0.000  0 1.000  0
#> SRR1551062     1   0.000      0.988 1.000  0 0.000  0
#> SRR1551063     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551064     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551065     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551066     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551067     4   0.000      1.000 0.000  0 0.000  1
#> SRR1551068     3   0.000      1.000 0.000  0 1.000  0
#> SRR1551069     1   0.000      0.988 1.000  0 0.000  0
#> SRR1551070     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551071     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551072     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551073     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551074     4   0.000      1.000 0.000  0 0.000  1
#> SRR1551075     3   0.000      1.000 0.000  0 1.000  0
#> SRR1551076     1   0.000      0.988 1.000  0 0.000  0
#> SRR1551077     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551078     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551079     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551080     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551081     4   0.000      1.000 0.000  0 0.000  1
#> SRR1551082     3   0.000      1.000 0.000  0 1.000  0
#> SRR1551083     1   0.000      0.988 1.000  0 0.000  0
#> SRR1551084     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551085     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551086     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551088     3   0.000      1.000 0.000  0 1.000  0
#> SRR1551087     4   0.000      1.000 0.000  0 0.000  1
#> SRR1551089     1   0.000      0.988 1.000  0 0.000  0
#> SRR1551090     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551091     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551092     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551093     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551094     4   0.000      1.000 0.000  0 0.000  1
#> SRR1551095     3   0.000      1.000 0.000  0 1.000  0
#> SRR1551096     1   0.000      0.988 1.000  0 0.000  0
#> SRR1551097     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551098     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551099     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551101     3   0.000      1.000 0.000  0 1.000  0
#> SRR1551100     4   0.000      1.000 0.000  0 0.000  1
#> SRR1551102     1   0.000      0.988 1.000  0 0.000  0
#> SRR1551103     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551104     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551105     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551106     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551107     4   0.000      1.000 0.000  0 0.000  1
#> SRR1551108     3   0.000      1.000 0.000  0 1.000  0
#> SRR1551109     1   0.000      0.988 1.000  0 0.000  0
#> SRR1551110     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551111     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551112     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551113     2   0.000      1.000 0.000  1 0.000  0
#> SRR1551114     4   0.000      1.000 0.000  0 0.000  1

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1 p2    p3    p4    p5
#> SRR1550981     5  0.0000      1.000 0.000  0 0.000 0.000 1.000
#> SRR1550982     5  0.0000      1.000 0.000  0 0.000 0.000 1.000
#> SRR1550983     5  0.0000      1.000 0.000  0 0.000 0.000 1.000
#> SRR1550984     5  0.0000      1.000 0.000  0 0.000 0.000 1.000
#> SRR1550986     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> SRR1550985     5  0.0000      1.000 0.000  0 0.000 0.000 1.000
#> SRR1550988     4  0.0000      1.000 0.000  0 0.000 1.000 0.000
#> SRR1550987     1  0.0000      0.988 1.000  0 0.000 0.000 0.000
#> SRR1550989     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1550990     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1550991     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1550992     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> SRR1550994     4  0.0000      1.000 0.000  0 0.000 1.000 0.000
#> SRR1550993     1  0.0000      0.988 1.000  0 0.000 0.000 0.000
#> SRR1550995     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1550996     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1550997     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> SRR1550998     1  0.0000      0.988 1.000  0 0.000 0.000 0.000
#> SRR1551000     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1550999     4  0.0000      1.000 0.000  0 0.000 1.000 0.000
#> SRR1551001     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551002     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> SRR1551003     1  0.0000      0.988 1.000  0 0.000 0.000 0.000
#> SRR1551004     4  0.0000      1.000 0.000  0 0.000 1.000 0.000
#> SRR1551006     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551005     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551007     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551008     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> SRR1551009     1  0.0000      0.988 1.000  0 0.000 0.000 0.000
#> SRR1551010     4  0.0000      1.000 0.000  0 0.000 1.000 0.000
#> SRR1551012     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551011     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551013     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> SRR1551014     1  0.0000      0.988 1.000  0 0.000 0.000 0.000
#> SRR1551015     4  0.0000      1.000 0.000  0 0.000 1.000 0.000
#> SRR1551016     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551017     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551018     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551019     1  0.0000      0.988 1.000  0 0.000 0.000 0.000
#> SRR1551021     1  0.0000      0.988 1.000  0 0.000 0.000 0.000
#> SRR1551022     4  0.0000      1.000 0.000  0 0.000 1.000 0.000
#> SRR1551023     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551020     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> SRR1551024     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551026     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> SRR1551025     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> SRR1551027     1  0.0000      0.988 1.000  0 0.000 0.000 0.000
#> SRR1551028     4  0.0000      1.000 0.000  0 0.000 1.000 0.000
#> SRR1551029     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551030     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551031     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551032     1  0.3452      0.677 0.756  0 0.244 0.000 0.000
#> SRR1551034     1  0.0000      0.988 1.000  0 0.000 0.000 0.000
#> SRR1551033     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> SRR1551035     4  0.0000      1.000 0.000  0 0.000 1.000 0.000
#> SRR1551036     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551037     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551038     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551039     5  0.0000      1.000 0.000  0 0.000 0.000 1.000
#> SRR1551040     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> SRR1551041     1  0.0000      0.988 1.000  0 0.000 0.000 0.000
#> SRR1551042     4  0.0000      1.000 0.000  0 0.000 1.000 0.000
#> SRR1551043     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551044     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551045     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551046     5  0.0000      1.000 0.000  0 0.000 0.000 1.000
#> SRR1551047     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> SRR1551048     1  0.0000      0.988 1.000  0 0.000 0.000 0.000
#> SRR1551049     4  0.0000      1.000 0.000  0 0.000 1.000 0.000
#> SRR1551050     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551051     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551052     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551053     5  0.0162      0.996 0.000  0 0.000 0.004 0.996
#> SRR1551054     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> SRR1551055     1  0.0000      0.988 1.000  0 0.000 0.000 0.000
#> SRR1551056     4  0.0000      1.000 0.000  0 0.000 1.000 0.000
#> SRR1551057     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551058     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551059     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551060     5  0.0000      1.000 0.000  0 0.000 0.000 1.000
#> SRR1551061     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> SRR1551062     1  0.0000      0.988 1.000  0 0.000 0.000 0.000
#> SRR1551063     4  0.0000      1.000 0.000  0 0.000 1.000 0.000
#> SRR1551064     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551065     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551066     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551067     5  0.0000      1.000 0.000  0 0.000 0.000 1.000
#> SRR1551068     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> SRR1551069     1  0.0000      0.988 1.000  0 0.000 0.000 0.000
#> SRR1551070     4  0.0000      1.000 0.000  0 0.000 1.000 0.000
#> SRR1551071     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551072     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551073     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551074     5  0.0000      1.000 0.000  0 0.000 0.000 1.000
#> SRR1551075     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> SRR1551076     1  0.0000      0.988 1.000  0 0.000 0.000 0.000
#> SRR1551077     4  0.0000      1.000 0.000  0 0.000 1.000 0.000
#> SRR1551078     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551079     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551080     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551081     5  0.0000      1.000 0.000  0 0.000 0.000 1.000
#> SRR1551082     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> SRR1551083     1  0.0000      0.988 1.000  0 0.000 0.000 0.000
#> SRR1551084     4  0.0000      1.000 0.000  0 0.000 1.000 0.000
#> SRR1551085     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551086     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551088     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> SRR1551087     5  0.0000      1.000 0.000  0 0.000 0.000 1.000
#> SRR1551089     1  0.0000      0.988 1.000  0 0.000 0.000 0.000
#> SRR1551090     4  0.0000      1.000 0.000  0 0.000 1.000 0.000
#> SRR1551091     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551092     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551093     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551094     5  0.0000      1.000 0.000  0 0.000 0.000 1.000
#> SRR1551095     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> SRR1551096     1  0.0000      0.988 1.000  0 0.000 0.000 0.000
#> SRR1551097     4  0.0000      1.000 0.000  0 0.000 1.000 0.000
#> SRR1551098     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551099     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551101     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> SRR1551100     5  0.0000      1.000 0.000  0 0.000 0.000 1.000
#> SRR1551102     1  0.0000      0.988 1.000  0 0.000 0.000 0.000
#> SRR1551103     4  0.0000      1.000 0.000  0 0.000 1.000 0.000
#> SRR1551104     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551105     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551106     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551107     5  0.0000      1.000 0.000  0 0.000 0.000 1.000
#> SRR1551108     3  0.0000      1.000 0.000  0 1.000 0.000 0.000
#> SRR1551109     1  0.0000      0.988 1.000  0 0.000 0.000 0.000
#> SRR1551110     4  0.0000      1.000 0.000  0 0.000 1.000 0.000
#> SRR1551111     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551112     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551113     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> SRR1551114     5  0.0000      1.000 0.000  0 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5  p6
#> SRR1550981     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.0
#> SRR1550982     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.0
#> SRR1550983     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.0
#> SRR1550984     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.0
#> SRR1550986     3  0.0000      0.996 0.000 0.000 1.000 0.000 0.000 0.0
#> SRR1550985     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.0
#> SRR1550988     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.0
#> SRR1550987     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.0
#> SRR1550989     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1550990     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1550991     6  0.1814      1.000 0.000 0.100 0.000 0.000 0.000 0.9
#> SRR1550992     3  0.0000      0.996 0.000 0.000 1.000 0.000 0.000 0.0
#> SRR1550994     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.0
#> SRR1550993     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.0
#> SRR1550995     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1550996     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1550997     3  0.0000      0.996 0.000 0.000 1.000 0.000 0.000 0.0
#> SRR1550998     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.0
#> SRR1551000     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1550999     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.0
#> SRR1551001     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551002     3  0.0000      0.996 0.000 0.000 1.000 0.000 0.000 0.0
#> SRR1551003     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.0
#> SRR1551004     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.0
#> SRR1551006     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551005     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551007     6  0.1814      1.000 0.000 0.100 0.000 0.000 0.000 0.9
#> SRR1551008     3  0.0000      0.996 0.000 0.000 1.000 0.000 0.000 0.0
#> SRR1551009     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.0
#> SRR1551010     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.0
#> SRR1551012     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551011     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551013     3  0.0000      0.996 0.000 0.000 1.000 0.000 0.000 0.0
#> SRR1551014     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.0
#> SRR1551015     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.0
#> SRR1551016     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551017     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551018     6  0.1814      1.000 0.000 0.100 0.000 0.000 0.000 0.9
#> SRR1551019     1  0.1814      0.912 0.900 0.000 0.000 0.000 0.000 0.1
#> SRR1551021     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.0
#> SRR1551022     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.0
#> SRR1551023     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551020     3  0.0000      0.996 0.000 0.000 1.000 0.000 0.000 0.0
#> SRR1551024     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551026     3  0.0000      0.996 0.000 0.000 1.000 0.000 0.000 0.0
#> SRR1551025     3  0.1814      0.915 0.000 0.000 0.900 0.000 0.000 0.1
#> SRR1551027     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.0
#> SRR1551028     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.0
#> SRR1551029     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551030     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551031     6  0.1814      1.000 0.000 0.100 0.000 0.000 0.000 0.9
#> SRR1551032     1  0.4023      0.754 0.756 0.000 0.144 0.000 0.000 0.1
#> SRR1551034     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.0
#> SRR1551033     3  0.0000      0.996 0.000 0.000 1.000 0.000 0.000 0.0
#> SRR1551035     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.0
#> SRR1551036     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551037     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551038     6  0.1814      1.000 0.000 0.100 0.000 0.000 0.000 0.9
#> SRR1551039     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.0
#> SRR1551040     3  0.0000      0.996 0.000 0.000 1.000 0.000 0.000 0.0
#> SRR1551041     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.0
#> SRR1551042     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.0
#> SRR1551043     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551044     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551045     6  0.1814      1.000 0.000 0.100 0.000 0.000 0.000 0.9
#> SRR1551046     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.0
#> SRR1551047     3  0.0000      0.996 0.000 0.000 1.000 0.000 0.000 0.0
#> SRR1551048     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.0
#> SRR1551049     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.0
#> SRR1551050     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551051     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551052     6  0.1814      1.000 0.000 0.100 0.000 0.000 0.000 0.9
#> SRR1551053     5  0.0146      0.996 0.000 0.000 0.000 0.004 0.996 0.0
#> SRR1551054     3  0.0000      0.996 0.000 0.000 1.000 0.000 0.000 0.0
#> SRR1551055     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.0
#> SRR1551056     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.0
#> SRR1551057     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551058     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551059     6  0.1814      1.000 0.000 0.100 0.000 0.000 0.000 0.9
#> SRR1551060     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.0
#> SRR1551061     3  0.0000      0.996 0.000 0.000 1.000 0.000 0.000 0.0
#> SRR1551062     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.0
#> SRR1551063     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.0
#> SRR1551064     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551065     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551066     6  0.1814      1.000 0.000 0.100 0.000 0.000 0.000 0.9
#> SRR1551067     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.0
#> SRR1551068     3  0.0000      0.996 0.000 0.000 1.000 0.000 0.000 0.0
#> SRR1551069     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.0
#> SRR1551070     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.0
#> SRR1551071     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551072     2  0.0713      0.965 0.000 0.972 0.000 0.028 0.000 0.0
#> SRR1551073     6  0.1814      1.000 0.000 0.100 0.000 0.000 0.000 0.9
#> SRR1551074     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.0
#> SRR1551075     3  0.0000      0.996 0.000 0.000 1.000 0.000 0.000 0.0
#> SRR1551076     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.0
#> SRR1551077     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.0
#> SRR1551078     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551079     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551080     6  0.1814      1.000 0.000 0.100 0.000 0.000 0.000 0.9
#> SRR1551081     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.0
#> SRR1551082     3  0.0000      0.996 0.000 0.000 1.000 0.000 0.000 0.0
#> SRR1551083     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.0
#> SRR1551084     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.0
#> SRR1551085     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551086     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551088     3  0.0000      0.996 0.000 0.000 1.000 0.000 0.000 0.0
#> SRR1551087     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.0
#> SRR1551089     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.0
#> SRR1551090     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.0
#> SRR1551091     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551092     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551093     6  0.1814      1.000 0.000 0.100 0.000 0.000 0.000 0.9
#> SRR1551094     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.0
#> SRR1551095     3  0.0000      0.996 0.000 0.000 1.000 0.000 0.000 0.0
#> SRR1551096     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.0
#> SRR1551097     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.0
#> SRR1551098     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551099     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551101     3  0.0000      0.996 0.000 0.000 1.000 0.000 0.000 0.0
#> SRR1551100     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.0
#> SRR1551102     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.0
#> SRR1551103     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.0
#> SRR1551104     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551105     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551106     6  0.1814      1.000 0.000 0.100 0.000 0.000 0.000 0.9
#> SRR1551107     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.0
#> SRR1551108     3  0.0000      0.996 0.000 0.000 1.000 0.000 0.000 0.0
#> SRR1551109     1  0.0000      0.986 1.000 0.000 0.000 0.000 0.000 0.0
#> SRR1551110     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.0
#> SRR1551111     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000 0.0
#> SRR1551112     2  0.1814      0.876 0.000 0.900 0.000 0.000 0.000 0.1
#> SRR1551113     6  0.1814      1.000 0.000 0.100 0.000 0.000 0.000 0.9
#> SRR1551114     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.0

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15028 rows and 134 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.777           0.926       0.960         0.4799 0.502   0.502
#> 3 3 0.910           0.952       0.962         0.2263 0.910   0.821
#> 4 4 1.000           0.999       0.999         0.0769 0.955   0.891
#> 5 5 0.812           0.862       0.919         0.2154 0.858   0.612
#> 6 6 0.795           0.852       0.904         0.0085 0.983   0.928

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 3

There is also optional best \(k\) = 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1550981     1   0.900      0.665 0.684 0.316
#> SRR1550982     1   0.900      0.665 0.684 0.316
#> SRR1550983     1   0.900      0.665 0.684 0.316
#> SRR1550984     1   0.900      0.665 0.684 0.316
#> SRR1550986     1   0.000      0.903 1.000 0.000
#> SRR1550985     1   0.900      0.665 0.684 0.316
#> SRR1550988     2   0.000      1.000 0.000 1.000
#> SRR1550987     1   0.000      0.903 1.000 0.000
#> SRR1550989     2   0.000      1.000 0.000 1.000
#> SRR1550990     2   0.000      1.000 0.000 1.000
#> SRR1550991     2   0.000      1.000 0.000 1.000
#> SRR1550992     1   0.000      0.903 1.000 0.000
#> SRR1550994     2   0.000      1.000 0.000 1.000
#> SRR1550993     1   0.000      0.903 1.000 0.000
#> SRR1550995     2   0.000      1.000 0.000 1.000
#> SRR1550996     2   0.000      1.000 0.000 1.000
#> SRR1550997     1   0.000      0.903 1.000 0.000
#> SRR1550998     1   0.000      0.903 1.000 0.000
#> SRR1551000     2   0.000      1.000 0.000 1.000
#> SRR1550999     2   0.000      1.000 0.000 1.000
#> SRR1551001     2   0.000      1.000 0.000 1.000
#> SRR1551002     1   0.000      0.903 1.000 0.000
#> SRR1551003     1   0.000      0.903 1.000 0.000
#> SRR1551004     2   0.000      1.000 0.000 1.000
#> SRR1551006     2   0.000      1.000 0.000 1.000
#> SRR1551005     2   0.000      1.000 0.000 1.000
#> SRR1551007     2   0.000      1.000 0.000 1.000
#> SRR1551008     1   0.000      0.903 1.000 0.000
#> SRR1551009     1   0.000      0.903 1.000 0.000
#> SRR1551010     2   0.000      1.000 0.000 1.000
#> SRR1551012     2   0.000      1.000 0.000 1.000
#> SRR1551011     2   0.000      1.000 0.000 1.000
#> SRR1551013     1   0.000      0.903 1.000 0.000
#> SRR1551014     1   0.000      0.903 1.000 0.000
#> SRR1551015     2   0.000      1.000 0.000 1.000
#> SRR1551016     2   0.000      1.000 0.000 1.000
#> SRR1551017     2   0.000      1.000 0.000 1.000
#> SRR1551018     2   0.000      1.000 0.000 1.000
#> SRR1551019     1   0.278      0.876 0.952 0.048
#> SRR1551021     1   0.000      0.903 1.000 0.000
#> SRR1551022     2   0.000      1.000 0.000 1.000
#> SRR1551023     2   0.000      1.000 0.000 1.000
#> SRR1551020     1   0.000      0.903 1.000 0.000
#> SRR1551024     2   0.000      1.000 0.000 1.000
#> SRR1551026     1   0.000      0.903 1.000 0.000
#> SRR1551025     1   0.000      0.903 1.000 0.000
#> SRR1551027     1   0.000      0.903 1.000 0.000
#> SRR1551028     2   0.000      1.000 0.000 1.000
#> SRR1551029     2   0.000      1.000 0.000 1.000
#> SRR1551030     2   0.000      1.000 0.000 1.000
#> SRR1551031     2   0.000      1.000 0.000 1.000
#> SRR1551032     1   0.000      0.903 1.000 0.000
#> SRR1551034     1   0.000      0.903 1.000 0.000
#> SRR1551033     1   0.000      0.903 1.000 0.000
#> SRR1551035     2   0.000      1.000 0.000 1.000
#> SRR1551036     2   0.000      1.000 0.000 1.000
#> SRR1551037     2   0.000      1.000 0.000 1.000
#> SRR1551038     2   0.000      1.000 0.000 1.000
#> SRR1551039     1   0.900      0.665 0.684 0.316
#> SRR1551040     1   0.000      0.903 1.000 0.000
#> SRR1551041     1   0.000      0.903 1.000 0.000
#> SRR1551042     2   0.000      1.000 0.000 1.000
#> SRR1551043     2   0.000      1.000 0.000 1.000
#> SRR1551044     2   0.000      1.000 0.000 1.000
#> SRR1551045     2   0.000      1.000 0.000 1.000
#> SRR1551046     1   0.900      0.665 0.684 0.316
#> SRR1551047     1   0.000      0.903 1.000 0.000
#> SRR1551048     1   0.000      0.903 1.000 0.000
#> SRR1551049     2   0.000      1.000 0.000 1.000
#> SRR1551050     2   0.000      1.000 0.000 1.000
#> SRR1551051     2   0.000      1.000 0.000 1.000
#> SRR1551052     2   0.000      1.000 0.000 1.000
#> SRR1551053     1   0.900      0.665 0.684 0.316
#> SRR1551054     1   0.000      0.903 1.000 0.000
#> SRR1551055     1   0.000      0.903 1.000 0.000
#> SRR1551056     2   0.000      1.000 0.000 1.000
#> SRR1551057     2   0.000      1.000 0.000 1.000
#> SRR1551058     2   0.000      1.000 0.000 1.000
#> SRR1551059     2   0.000      1.000 0.000 1.000
#> SRR1551060     1   0.900      0.665 0.684 0.316
#> SRR1551061     1   0.000      0.903 1.000 0.000
#> SRR1551062     1   0.000      0.903 1.000 0.000
#> SRR1551063     2   0.000      1.000 0.000 1.000
#> SRR1551064     2   0.000      1.000 0.000 1.000
#> SRR1551065     2   0.000      1.000 0.000 1.000
#> SRR1551066     2   0.000      1.000 0.000 1.000
#> SRR1551067     1   0.900      0.665 0.684 0.316
#> SRR1551068     1   0.000      0.903 1.000 0.000
#> SRR1551069     1   0.000      0.903 1.000 0.000
#> SRR1551070     2   0.000      1.000 0.000 1.000
#> SRR1551071     2   0.000      1.000 0.000 1.000
#> SRR1551072     2   0.000      1.000 0.000 1.000
#> SRR1551073     2   0.000      1.000 0.000 1.000
#> SRR1551074     1   0.900      0.665 0.684 0.316
#> SRR1551075     1   0.000      0.903 1.000 0.000
#> SRR1551076     1   0.000      0.903 1.000 0.000
#> SRR1551077     2   0.000      1.000 0.000 1.000
#> SRR1551078     2   0.000      1.000 0.000 1.000
#> SRR1551079     2   0.000      1.000 0.000 1.000
#> SRR1551080     2   0.000      1.000 0.000 1.000
#> SRR1551081     1   0.900      0.665 0.684 0.316
#> SRR1551082     1   0.000      0.903 1.000 0.000
#> SRR1551083     1   0.000      0.903 1.000 0.000
#> SRR1551084     2   0.000      1.000 0.000 1.000
#> SRR1551085     2   0.000      1.000 0.000 1.000
#> SRR1551086     2   0.000      1.000 0.000 1.000
#> SRR1551088     1   0.000      0.903 1.000 0.000
#> SRR1551087     1   0.900      0.665 0.684 0.316
#> SRR1551089     1   0.000      0.903 1.000 0.000
#> SRR1551090     2   0.000      1.000 0.000 1.000
#> SRR1551091     2   0.000      1.000 0.000 1.000
#> SRR1551092     2   0.000      1.000 0.000 1.000
#> SRR1551093     2   0.000      1.000 0.000 1.000
#> SRR1551094     1   0.900      0.665 0.684 0.316
#> SRR1551095     1   0.000      0.903 1.000 0.000
#> SRR1551096     1   0.000      0.903 1.000 0.000
#> SRR1551097     2   0.000      1.000 0.000 1.000
#> SRR1551098     2   0.000      1.000 0.000 1.000
#> SRR1551099     2   0.000      1.000 0.000 1.000
#> SRR1551101     1   0.000      0.903 1.000 0.000
#> SRR1551100     1   0.900      0.665 0.684 0.316
#> SRR1551102     1   0.000      0.903 1.000 0.000
#> SRR1551103     2   0.000      1.000 0.000 1.000
#> SRR1551104     2   0.000      1.000 0.000 1.000
#> SRR1551105     2   0.000      1.000 0.000 1.000
#> SRR1551106     2   0.000      1.000 0.000 1.000
#> SRR1551107     1   0.900      0.665 0.684 0.316
#> SRR1551108     1   0.000      0.903 1.000 0.000
#> SRR1551109     1   0.000      0.903 1.000 0.000
#> SRR1551110     2   0.000      1.000 0.000 1.000
#> SRR1551111     2   0.000      1.000 0.000 1.000
#> SRR1551112     2   0.000      1.000 0.000 1.000
#> SRR1551113     2   0.000      1.000 0.000 1.000
#> SRR1551114     1   0.900      0.665 0.684 0.316

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1 p2    p3
#> SRR1550981     1   0.514      0.827 0.748  0 0.252
#> SRR1550982     1   0.514      0.827 0.748  0 0.252
#> SRR1550983     1   0.514      0.827 0.748  0 0.252
#> SRR1550984     1   0.514      0.827 0.748  0 0.252
#> SRR1550986     3   0.000      1.000 0.000  0 1.000
#> SRR1550985     1   0.514      0.827 0.748  0 0.252
#> SRR1550988     2   0.000      1.000 0.000  1 0.000
#> SRR1550987     1   0.000      0.851 1.000  0 0.000
#> SRR1550989     2   0.000      1.000 0.000  1 0.000
#> SRR1550990     2   0.000      1.000 0.000  1 0.000
#> SRR1550991     2   0.000      1.000 0.000  1 0.000
#> SRR1550992     3   0.000      1.000 0.000  0 1.000
#> SRR1550994     2   0.000      1.000 0.000  1 0.000
#> SRR1550993     1   0.000      0.851 1.000  0 0.000
#> SRR1550995     2   0.000      1.000 0.000  1 0.000
#> SRR1550996     2   0.000      1.000 0.000  1 0.000
#> SRR1550997     3   0.000      1.000 0.000  0 1.000
#> SRR1550998     1   0.000      0.851 1.000  0 0.000
#> SRR1551000     2   0.000      1.000 0.000  1 0.000
#> SRR1550999     2   0.000      1.000 0.000  1 0.000
#> SRR1551001     2   0.000      1.000 0.000  1 0.000
#> SRR1551002     3   0.000      1.000 0.000  0 1.000
#> SRR1551003     1   0.000      0.851 1.000  0 0.000
#> SRR1551004     2   0.000      1.000 0.000  1 0.000
#> SRR1551006     2   0.000      1.000 0.000  1 0.000
#> SRR1551005     2   0.000      1.000 0.000  1 0.000
#> SRR1551007     2   0.000      1.000 0.000  1 0.000
#> SRR1551008     3   0.000      1.000 0.000  0 1.000
#> SRR1551009     1   0.000      0.851 1.000  0 0.000
#> SRR1551010     2   0.000      1.000 0.000  1 0.000
#> SRR1551012     2   0.000      1.000 0.000  1 0.000
#> SRR1551011     2   0.000      1.000 0.000  1 0.000
#> SRR1551013     3   0.000      1.000 0.000  0 1.000
#> SRR1551014     1   0.000      0.851 1.000  0 0.000
#> SRR1551015     2   0.000      1.000 0.000  1 0.000
#> SRR1551016     2   0.000      1.000 0.000  1 0.000
#> SRR1551017     2   0.000      1.000 0.000  1 0.000
#> SRR1551018     2   0.000      1.000 0.000  1 0.000
#> SRR1551019     1   0.514      0.827 0.748  0 0.252
#> SRR1551021     1   0.000      0.851 1.000  0 0.000
#> SRR1551022     2   0.000      1.000 0.000  1 0.000
#> SRR1551023     2   0.000      1.000 0.000  1 0.000
#> SRR1551020     3   0.000      1.000 0.000  0 1.000
#> SRR1551024     2   0.000      1.000 0.000  1 0.000
#> SRR1551026     3   0.000      1.000 0.000  0 1.000
#> SRR1551025     1   0.514      0.827 0.748  0 0.252
#> SRR1551027     1   0.000      0.851 1.000  0 0.000
#> SRR1551028     2   0.000      1.000 0.000  1 0.000
#> SRR1551029     2   0.000      1.000 0.000  1 0.000
#> SRR1551030     2   0.000      1.000 0.000  1 0.000
#> SRR1551031     2   0.000      1.000 0.000  1 0.000
#> SRR1551032     1   0.514      0.827 0.748  0 0.252
#> SRR1551034     1   0.000      0.851 1.000  0 0.000
#> SRR1551033     3   0.000      1.000 0.000  0 1.000
#> SRR1551035     2   0.000      1.000 0.000  1 0.000
#> SRR1551036     2   0.000      1.000 0.000  1 0.000
#> SRR1551037     2   0.000      1.000 0.000  1 0.000
#> SRR1551038     2   0.000      1.000 0.000  1 0.000
#> SRR1551039     1   0.514      0.827 0.748  0 0.252
#> SRR1551040     3   0.000      1.000 0.000  0 1.000
#> SRR1551041     1   0.000      0.851 1.000  0 0.000
#> SRR1551042     2   0.000      1.000 0.000  1 0.000
#> SRR1551043     2   0.000      1.000 0.000  1 0.000
#> SRR1551044     2   0.000      1.000 0.000  1 0.000
#> SRR1551045     2   0.000      1.000 0.000  1 0.000
#> SRR1551046     1   0.514      0.827 0.748  0 0.252
#> SRR1551047     3   0.000      1.000 0.000  0 1.000
#> SRR1551048     1   0.000      0.851 1.000  0 0.000
#> SRR1551049     2   0.000      1.000 0.000  1 0.000
#> SRR1551050     2   0.000      1.000 0.000  1 0.000
#> SRR1551051     2   0.000      1.000 0.000  1 0.000
#> SRR1551052     2   0.000      1.000 0.000  1 0.000
#> SRR1551053     1   0.514      0.827 0.748  0 0.252
#> SRR1551054     3   0.000      1.000 0.000  0 1.000
#> SRR1551055     1   0.000      0.851 1.000  0 0.000
#> SRR1551056     2   0.000      1.000 0.000  1 0.000
#> SRR1551057     2   0.000      1.000 0.000  1 0.000
#> SRR1551058     2   0.000      1.000 0.000  1 0.000
#> SRR1551059     2   0.000      1.000 0.000  1 0.000
#> SRR1551060     1   0.514      0.827 0.748  0 0.252
#> SRR1551061     3   0.000      1.000 0.000  0 1.000
#> SRR1551062     1   0.000      0.851 1.000  0 0.000
#> SRR1551063     2   0.000      1.000 0.000  1 0.000
#> SRR1551064     2   0.000      1.000 0.000  1 0.000
#> SRR1551065     2   0.000      1.000 0.000  1 0.000
#> SRR1551066     2   0.000      1.000 0.000  1 0.000
#> SRR1551067     1   0.514      0.827 0.748  0 0.252
#> SRR1551068     3   0.000      1.000 0.000  0 1.000
#> SRR1551069     1   0.000      0.851 1.000  0 0.000
#> SRR1551070     2   0.000      1.000 0.000  1 0.000
#> SRR1551071     2   0.000      1.000 0.000  1 0.000
#> SRR1551072     2   0.000      1.000 0.000  1 0.000
#> SRR1551073     2   0.000      1.000 0.000  1 0.000
#> SRR1551074     1   0.514      0.827 0.748  0 0.252
#> SRR1551075     3   0.000      1.000 0.000  0 1.000
#> SRR1551076     1   0.000      0.851 1.000  0 0.000
#> SRR1551077     2   0.000      1.000 0.000  1 0.000
#> SRR1551078     2   0.000      1.000 0.000  1 0.000
#> SRR1551079     2   0.000      1.000 0.000  1 0.000
#> SRR1551080     2   0.000      1.000 0.000  1 0.000
#> SRR1551081     1   0.514      0.827 0.748  0 0.252
#> SRR1551082     3   0.000      1.000 0.000  0 1.000
#> SRR1551083     1   0.000      0.851 1.000  0 0.000
#> SRR1551084     2   0.000      1.000 0.000  1 0.000
#> SRR1551085     2   0.000      1.000 0.000  1 0.000
#> SRR1551086     2   0.000      1.000 0.000  1 0.000
#> SRR1551088     3   0.000      1.000 0.000  0 1.000
#> SRR1551087     1   0.514      0.827 0.748  0 0.252
#> SRR1551089     1   0.000      0.851 1.000  0 0.000
#> SRR1551090     2   0.000      1.000 0.000  1 0.000
#> SRR1551091     2   0.000      1.000 0.000  1 0.000
#> SRR1551092     2   0.000      1.000 0.000  1 0.000
#> SRR1551093     2   0.000      1.000 0.000  1 0.000
#> SRR1551094     1   0.514      0.827 0.748  0 0.252
#> SRR1551095     3   0.000      1.000 0.000  0 1.000
#> SRR1551096     1   0.000      0.851 1.000  0 0.000
#> SRR1551097     2   0.000      1.000 0.000  1 0.000
#> SRR1551098     2   0.000      1.000 0.000  1 0.000
#> SRR1551099     2   0.000      1.000 0.000  1 0.000
#> SRR1551101     3   0.000      1.000 0.000  0 1.000
#> SRR1551100     1   0.514      0.827 0.748  0 0.252
#> SRR1551102     1   0.000      0.851 1.000  0 0.000
#> SRR1551103     2   0.000      1.000 0.000  1 0.000
#> SRR1551104     2   0.000      1.000 0.000  1 0.000
#> SRR1551105     2   0.000      1.000 0.000  1 0.000
#> SRR1551106     2   0.000      1.000 0.000  1 0.000
#> SRR1551107     1   0.514      0.827 0.748  0 0.252
#> SRR1551108     3   0.000      1.000 0.000  0 1.000
#> SRR1551109     1   0.000      0.851 1.000  0 0.000
#> SRR1551110     2   0.000      1.000 0.000  1 0.000
#> SRR1551111     2   0.000      1.000 0.000  1 0.000
#> SRR1551112     2   0.000      1.000 0.000  1 0.000
#> SRR1551113     2   0.000      1.000 0.000  1 0.000
#> SRR1551114     1   0.514      0.827 0.748  0 0.252

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette p1    p2 p3    p4
#> SRR1550981     4   0.000      1.000  0 0.000  0 1.000
#> SRR1550982     4   0.000      1.000  0 0.000  0 1.000
#> SRR1550983     4   0.000      1.000  0 0.000  0 1.000
#> SRR1550984     4   0.000      1.000  0 0.000  0 1.000
#> SRR1550986     3   0.000      1.000  0 0.000  1 0.000
#> SRR1550985     4   0.000      1.000  0 0.000  0 1.000
#> SRR1550988     2   0.000      0.999  0 1.000  0 0.000
#> SRR1550987     1   0.000      1.000  1 0.000  0 0.000
#> SRR1550989     2   0.000      0.999  0 1.000  0 0.000
#> SRR1550990     2   0.000      0.999  0 1.000  0 0.000
#> SRR1550991     2   0.000      0.999  0 1.000  0 0.000
#> SRR1550992     3   0.000      1.000  0 0.000  1 0.000
#> SRR1550994     2   0.000      0.999  0 1.000  0 0.000
#> SRR1550993     1   0.000      1.000  1 0.000  0 0.000
#> SRR1550995     2   0.000      0.999  0 1.000  0 0.000
#> SRR1550996     2   0.000      0.999  0 1.000  0 0.000
#> SRR1550997     3   0.000      1.000  0 0.000  1 0.000
#> SRR1550998     1   0.000      1.000  1 0.000  0 0.000
#> SRR1551000     2   0.000      0.999  0 1.000  0 0.000
#> SRR1550999     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551001     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551002     3   0.000      1.000  0 0.000  1 0.000
#> SRR1551003     1   0.000      1.000  1 0.000  0 0.000
#> SRR1551004     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551006     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551005     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551007     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551008     3   0.000      1.000  0 0.000  1 0.000
#> SRR1551009     1   0.000      1.000  1 0.000  0 0.000
#> SRR1551010     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551012     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551011     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551013     3   0.000      1.000  0 0.000  1 0.000
#> SRR1551014     1   0.000      1.000  1 0.000  0 0.000
#> SRR1551015     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551016     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551017     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551018     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551019     4   0.000      1.000  0 0.000  0 1.000
#> SRR1551021     1   0.000      1.000  1 0.000  0 0.000
#> SRR1551022     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551023     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551020     3   0.000      1.000  0 0.000  1 0.000
#> SRR1551024     2   0.179      0.927  0 0.932  0 0.068
#> SRR1551026     3   0.000      1.000  0 0.000  1 0.000
#> SRR1551025     4   0.000      1.000  0 0.000  0 1.000
#> SRR1551027     1   0.000      1.000  1 0.000  0 0.000
#> SRR1551028     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551029     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551030     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551031     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551032     4   0.000      1.000  0 0.000  0 1.000
#> SRR1551034     1   0.000      1.000  1 0.000  0 0.000
#> SRR1551033     3   0.000      1.000  0 0.000  1 0.000
#> SRR1551035     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551036     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551037     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551038     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551039     4   0.000      1.000  0 0.000  0 1.000
#> SRR1551040     3   0.000      1.000  0 0.000  1 0.000
#> SRR1551041     1   0.000      1.000  1 0.000  0 0.000
#> SRR1551042     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551043     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551044     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551045     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551046     4   0.000      1.000  0 0.000  0 1.000
#> SRR1551047     3   0.000      1.000  0 0.000  1 0.000
#> SRR1551048     1   0.000      1.000  1 0.000  0 0.000
#> SRR1551049     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551050     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551051     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551052     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551053     4   0.000      1.000  0 0.000  0 1.000
#> SRR1551054     3   0.000      1.000  0 0.000  1 0.000
#> SRR1551055     1   0.000      1.000  1 0.000  0 0.000
#> SRR1551056     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551057     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551058     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551059     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551060     4   0.000      1.000  0 0.000  0 1.000
#> SRR1551061     3   0.000      1.000  0 0.000  1 0.000
#> SRR1551062     1   0.000      1.000  1 0.000  0 0.000
#> SRR1551063     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551064     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551065     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551066     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551067     4   0.000      1.000  0 0.000  0 1.000
#> SRR1551068     3   0.000      1.000  0 0.000  1 0.000
#> SRR1551069     1   0.000      1.000  1 0.000  0 0.000
#> SRR1551070     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551071     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551072     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551073     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551074     4   0.000      1.000  0 0.000  0 1.000
#> SRR1551075     3   0.000      1.000  0 0.000  1 0.000
#> SRR1551076     1   0.000      1.000  1 0.000  0 0.000
#> SRR1551077     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551078     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551079     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551080     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551081     4   0.000      1.000  0 0.000  0 1.000
#> SRR1551082     3   0.000      1.000  0 0.000  1 0.000
#> SRR1551083     1   0.000      1.000  1 0.000  0 0.000
#> SRR1551084     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551085     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551086     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551088     3   0.000      1.000  0 0.000  1 0.000
#> SRR1551087     4   0.000      1.000  0 0.000  0 1.000
#> SRR1551089     1   0.000      1.000  1 0.000  0 0.000
#> SRR1551090     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551091     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551092     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551093     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551094     4   0.000      1.000  0 0.000  0 1.000
#> SRR1551095     3   0.000      1.000  0 0.000  1 0.000
#> SRR1551096     1   0.000      1.000  1 0.000  0 0.000
#> SRR1551097     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551098     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551099     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551101     3   0.000      1.000  0 0.000  1 0.000
#> SRR1551100     4   0.000      1.000  0 0.000  0 1.000
#> SRR1551102     1   0.000      1.000  1 0.000  0 0.000
#> SRR1551103     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551104     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551105     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551106     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551107     4   0.000      1.000  0 0.000  0 1.000
#> SRR1551108     3   0.000      1.000  0 0.000  1 0.000
#> SRR1551109     1   0.000      1.000  1 0.000  0 0.000
#> SRR1551110     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551111     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551112     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551113     2   0.000      0.999  0 1.000  0 0.000
#> SRR1551114     4   0.000      1.000  0 0.000  0 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette p1    p2 p3    p4    p5
#> SRR1550981     5  0.0000      1.000  0 0.000  0 0.000 1.000
#> SRR1550982     5  0.0000      1.000  0 0.000  0 0.000 1.000
#> SRR1550983     5  0.0000      1.000  0 0.000  0 0.000 1.000
#> SRR1550984     5  0.0000      1.000  0 0.000  0 0.000 1.000
#> SRR1550986     3  0.0000      1.000  0 0.000  1 0.000 0.000
#> SRR1550985     5  0.0000      1.000  0 0.000  0 0.000 1.000
#> SRR1550988     4  0.2852      0.793  0 0.172  0 0.828 0.000
#> SRR1550987     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR1550989     2  0.1121      0.863  0 0.956  0 0.044 0.000
#> SRR1550990     4  0.3752      0.617  0 0.292  0 0.708 0.000
#> SRR1550991     4  0.0609      0.812  0 0.020  0 0.980 0.000
#> SRR1550992     3  0.0000      1.000  0 0.000  1 0.000 0.000
#> SRR1550994     4  0.3177      0.793  0 0.208  0 0.792 0.000
#> SRR1550993     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR1550995     2  0.1270      0.865  0 0.948  0 0.052 0.000
#> SRR1550996     2  0.2732      0.804  0 0.840  0 0.160 0.000
#> SRR1550997     3  0.0000      1.000  0 0.000  1 0.000 0.000
#> SRR1550998     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR1551000     2  0.1121      0.863  0 0.956  0 0.044 0.000
#> SRR1550999     4  0.2891      0.793  0 0.176  0 0.824 0.000
#> SRR1551001     2  0.0510      0.861  0 0.984  0 0.016 0.000
#> SRR1551002     3  0.0000      1.000  0 0.000  1 0.000 0.000
#> SRR1551003     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR1551004     4  0.3586      0.758  0 0.264  0 0.736 0.000
#> SRR1551006     4  0.3876      0.530  0 0.316  0 0.684 0.000
#> SRR1551005     2  0.0880      0.862  0 0.968  0 0.032 0.000
#> SRR1551007     4  0.0703      0.813  0 0.024  0 0.976 0.000
#> SRR1551008     3  0.0000      1.000  0 0.000  1 0.000 0.000
#> SRR1551009     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR1551010     4  0.3508      0.765  0 0.252  0 0.748 0.000
#> SRR1551012     4  0.4015      0.466  0 0.348  0 0.652 0.000
#> SRR1551011     2  0.2773      0.775  0 0.836  0 0.164 0.000
#> SRR1551013     3  0.0000      1.000  0 0.000  1 0.000 0.000
#> SRR1551014     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR1551015     4  0.2891      0.793  0 0.176  0 0.824 0.000
#> SRR1551016     2  0.1608      0.846  0 0.928  0 0.072 0.000
#> SRR1551017     4  0.0794      0.814  0 0.028  0 0.972 0.000
#> SRR1551018     4  0.0609      0.812  0 0.020  0 0.980 0.000
#> SRR1551019     5  0.0000      1.000  0 0.000  0 0.000 1.000
#> SRR1551021     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR1551022     4  0.3636      0.754  0 0.272  0 0.728 0.000
#> SRR1551023     2  0.0404      0.859  0 0.988  0 0.012 0.000
#> SRR1551020     3  0.0000      1.000  0 0.000  1 0.000 0.000
#> SRR1551024     2  0.0963      0.826  0 0.964  0 0.000 0.036
#> SRR1551026     3  0.0000      1.000  0 0.000  1 0.000 0.000
#> SRR1551025     5  0.0000      1.000  0 0.000  0 0.000 1.000
#> SRR1551027     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR1551028     4  0.3774      0.727  0 0.296  0 0.704 0.000
#> SRR1551029     2  0.0510      0.860  0 0.984  0 0.016 0.000
#> SRR1551030     4  0.4030      0.467  0 0.352  0 0.648 0.000
#> SRR1551031     4  0.3730      0.589  0 0.288  0 0.712 0.000
#> SRR1551032     5  0.0000      1.000  0 0.000  0 0.000 1.000
#> SRR1551034     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR1551033     3  0.0000      1.000  0 0.000  1 0.000 0.000
#> SRR1551035     4  0.2852      0.793  0 0.172  0 0.828 0.000
#> SRR1551036     2  0.0703      0.864  0 0.976  0 0.024 0.000
#> SRR1551037     4  0.4192      0.457  0 0.404  0 0.596 0.000
#> SRR1551038     4  0.0794      0.814  0 0.028  0 0.972 0.000
#> SRR1551039     5  0.0000      1.000  0 0.000  0 0.000 1.000
#> SRR1551040     3  0.0000      1.000  0 0.000  1 0.000 0.000
#> SRR1551041     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR1551042     4  0.2852      0.793  0 0.172  0 0.828 0.000
#> SRR1551043     2  0.0162      0.854  0 0.996  0 0.004 0.000
#> SRR1551044     2  0.1270      0.859  0 0.948  0 0.052 0.000
#> SRR1551045     4  0.0880      0.814  0 0.032  0 0.968 0.000
#> SRR1551046     5  0.0000      1.000  0 0.000  0 0.000 1.000
#> SRR1551047     3  0.0000      1.000  0 0.000  1 0.000 0.000
#> SRR1551048     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR1551049     4  0.3395      0.782  0 0.236  0 0.764 0.000
#> SRR1551050     2  0.0703      0.864  0 0.976  0 0.024 0.000
#> SRR1551051     2  0.3983      0.580  0 0.660  0 0.340 0.000
#> SRR1551052     4  0.0794      0.814  0 0.028  0 0.972 0.000
#> SRR1551053     5  0.0000      1.000  0 0.000  0 0.000 1.000
#> SRR1551054     3  0.0000      1.000  0 0.000  1 0.000 0.000
#> SRR1551055     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR1551056     4  0.3039      0.795  0 0.192  0 0.808 0.000
#> SRR1551057     2  0.1197      0.862  0 0.952  0 0.048 0.000
#> SRR1551058     4  0.1608      0.810  0 0.072  0 0.928 0.000
#> SRR1551059     4  0.0794      0.814  0 0.028  0 0.972 0.000
#> SRR1551060     5  0.0000      1.000  0 0.000  0 0.000 1.000
#> SRR1551061     3  0.0000      1.000  0 0.000  1 0.000 0.000
#> SRR1551062     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR1551063     4  0.1792      0.819  0 0.084  0 0.916 0.000
#> SRR1551064     2  0.1965      0.840  0 0.904  0 0.096 0.000
#> SRR1551065     4  0.3684      0.600  0 0.280  0 0.720 0.000
#> SRR1551066     4  0.0794      0.814  0 0.028  0 0.972 0.000
#> SRR1551067     5  0.0000      1.000  0 0.000  0 0.000 1.000
#> SRR1551068     3  0.0000      1.000  0 0.000  1 0.000 0.000
#> SRR1551069     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR1551070     4  0.3003      0.795  0 0.188  0 0.812 0.000
#> SRR1551071     2  0.4201      0.391  0 0.592  0 0.408 0.000
#> SRR1551072     4  0.0963      0.816  0 0.036  0 0.964 0.000
#> SRR1551073     4  0.1121      0.816  0 0.044  0 0.956 0.000
#> SRR1551074     5  0.0000      1.000  0 0.000  0 0.000 1.000
#> SRR1551075     3  0.0000      1.000  0 0.000  1 0.000 0.000
#> SRR1551076     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR1551077     4  0.3109      0.795  0 0.200  0 0.800 0.000
#> SRR1551078     2  0.0162      0.854  0 0.996  0 0.004 0.000
#> SRR1551079     4  0.3452      0.661  0 0.244  0 0.756 0.000
#> SRR1551080     4  0.0794      0.814  0 0.028  0 0.972 0.000
#> SRR1551081     5  0.0000      1.000  0 0.000  0 0.000 1.000
#> SRR1551082     3  0.0000      1.000  0 0.000  1 0.000 0.000
#> SRR1551083     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR1551084     4  0.2852      0.793  0 0.172  0 0.828 0.000
#> SRR1551085     2  0.0880      0.865  0 0.968  0 0.032 0.000
#> SRR1551086     4  0.3305      0.683  0 0.224  0 0.776 0.000
#> SRR1551088     3  0.0000      1.000  0 0.000  1 0.000 0.000
#> SRR1551087     5  0.0000      1.000  0 0.000  0 0.000 1.000
#> SRR1551089     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR1551090     4  0.2852      0.793  0 0.172  0 0.828 0.000
#> SRR1551091     2  0.0963      0.865  0 0.964  0 0.036 0.000
#> SRR1551092     2  0.4182      0.213  0 0.600  0 0.400 0.000
#> SRR1551093     4  0.0703      0.813  0 0.024  0 0.976 0.000
#> SRR1551094     5  0.0000      1.000  0 0.000  0 0.000 1.000
#> SRR1551095     3  0.0000      1.000  0 0.000  1 0.000 0.000
#> SRR1551096     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR1551097     4  0.2891      0.793  0 0.176  0 0.824 0.000
#> SRR1551098     2  0.2732      0.766  0 0.840  0 0.160 0.000
#> SRR1551099     2  0.4305     -0.131  0 0.512  0 0.488 0.000
#> SRR1551101     3  0.0000      1.000  0 0.000  1 0.000 0.000
#> SRR1551100     5  0.0000      1.000  0 0.000  0 0.000 1.000
#> SRR1551102     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR1551103     4  0.2852      0.793  0 0.172  0 0.828 0.000
#> SRR1551104     2  0.3177      0.754  0 0.792  0 0.208 0.000
#> SRR1551105     4  0.3039      0.729  0 0.192  0 0.808 0.000
#> SRR1551106     4  0.0880      0.814  0 0.032  0 0.968 0.000
#> SRR1551107     5  0.0000      1.000  0 0.000  0 0.000 1.000
#> SRR1551108     3  0.0000      1.000  0 0.000  1 0.000 0.000
#> SRR1551109     1  0.0000      1.000  1 0.000  0 0.000 0.000
#> SRR1551110     4  0.2852      0.793  0 0.172  0 0.828 0.000
#> SRR1551111     2  0.3508      0.711  0 0.748  0 0.252 0.000
#> SRR1551112     4  0.2966      0.725  0 0.184  0 0.816 0.000
#> SRR1551113     4  0.0794      0.814  0 0.028  0 0.972 0.000
#> SRR1551114     5  0.0000      1.000  0 0.000  0 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4   p5    p6
#> SRR1550981     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.00 0.000
#> SRR1550982     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.00 0.000
#> SRR1550983     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.00 0.000
#> SRR1550984     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.00 0.000
#> SRR1550986     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.00 0.000
#> SRR1550985     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.00 0.000
#> SRR1550988     4  0.3298      0.768 0.000 0.236 0.000 0.756 0.00 0.008
#> SRR1550987     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.00 0.000
#> SRR1550989     2  0.1957      0.874 0.000 0.888 0.000 0.112 0.00 0.000
#> SRR1550990     4  0.2278      0.787 0.000 0.128 0.000 0.868 0.00 0.004
#> SRR1550991     4  0.0622      0.810 0.000 0.008 0.000 0.980 0.00 0.012
#> SRR1550992     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.00 0.000
#> SRR1550994     4  0.2902      0.777 0.000 0.196 0.000 0.800 0.00 0.004
#> SRR1550993     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.00 0.000
#> SRR1550995     2  0.1663      0.888 0.000 0.912 0.000 0.088 0.00 0.000
#> SRR1550996     2  0.2402      0.863 0.000 0.856 0.000 0.140 0.00 0.004
#> SRR1550997     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.00 0.000
#> SRR1550998     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.00 0.000
#> SRR1551000     2  0.1700      0.889 0.000 0.916 0.000 0.080 0.00 0.004
#> SRR1550999     4  0.3215      0.766 0.000 0.240 0.000 0.756 0.00 0.004
#> SRR1551001     2  0.1644      0.885 0.000 0.920 0.000 0.076 0.00 0.004
#> SRR1551002     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.00 0.000
#> SRR1551003     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.00 0.000
#> SRR1551004     4  0.3109      0.764 0.000 0.224 0.000 0.772 0.00 0.004
#> SRR1551006     4  0.3512      0.524 0.000 0.272 0.000 0.720 0.00 0.008
#> SRR1551005     2  0.1387      0.885 0.000 0.932 0.000 0.068 0.00 0.000
#> SRR1551007     4  0.0622      0.811 0.000 0.012 0.000 0.980 0.00 0.008
#> SRR1551008     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.00 0.000
#> SRR1551009     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.00 0.000
#> SRR1551010     4  0.3240      0.746 0.000 0.244 0.000 0.752 0.00 0.004
#> SRR1551012     4  0.3699      0.367 0.000 0.336 0.000 0.660 0.00 0.004
#> SRR1551011     2  0.3175      0.744 0.000 0.744 0.000 0.256 0.00 0.000
#> SRR1551013     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.00 0.000
#> SRR1551014     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.00 0.000
#> SRR1551015     4  0.3215      0.766 0.000 0.240 0.000 0.756 0.00 0.004
#> SRR1551016     2  0.1908      0.884 0.000 0.900 0.000 0.096 0.00 0.004
#> SRR1551017     4  0.0717      0.812 0.000 0.016 0.000 0.976 0.00 0.008
#> SRR1551018     4  0.0622      0.811 0.000 0.012 0.000 0.980 0.00 0.008
#> SRR1551019     6  0.0547      0.805 0.000 0.000 0.000 0.000 0.02 0.980
#> SRR1551021     1  0.0458      0.983 0.984 0.000 0.000 0.000 0.00 0.016
#> SRR1551022     4  0.3189      0.755 0.000 0.236 0.000 0.760 0.00 0.004
#> SRR1551023     2  0.1387      0.885 0.000 0.932 0.000 0.068 0.00 0.000
#> SRR1551020     3  0.2912      0.737 0.000 0.000 0.784 0.000 0.00 0.216
#> SRR1551024     2  0.2112      0.745 0.000 0.896 0.000 0.016 0.00 0.088
#> SRR1551026     3  0.0790      0.959 0.000 0.000 0.968 0.000 0.00 0.032
#> SRR1551025     6  0.0547      0.805 0.000 0.000 0.000 0.000 0.02 0.980
#> SRR1551027     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.00 0.000
#> SRR1551028     4  0.3163      0.759 0.000 0.232 0.000 0.764 0.00 0.004
#> SRR1551029     2  0.1387      0.885 0.000 0.932 0.000 0.068 0.00 0.000
#> SRR1551030     4  0.3782      0.308 0.000 0.360 0.000 0.636 0.00 0.004
#> SRR1551031     4  0.2431      0.746 0.000 0.132 0.000 0.860 0.00 0.008
#> SRR1551032     6  0.0547      0.805 0.000 0.000 0.000 0.000 0.02 0.980
#> SRR1551034     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.00 0.000
#> SRR1551033     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.00 0.000
#> SRR1551035     4  0.3298      0.768 0.000 0.236 0.000 0.756 0.00 0.008
#> SRR1551036     2  0.1531      0.884 0.000 0.928 0.000 0.068 0.00 0.004
#> SRR1551037     4  0.3795      0.527 0.000 0.364 0.000 0.632 0.00 0.004
#> SRR1551038     4  0.0622      0.810 0.000 0.008 0.000 0.980 0.00 0.012
#> SRR1551039     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.00 0.000
#> SRR1551040     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.00 0.000
#> SRR1551041     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.00 0.000
#> SRR1551042     4  0.3189      0.768 0.000 0.236 0.000 0.760 0.00 0.004
#> SRR1551043     2  0.1531      0.884 0.000 0.928 0.000 0.068 0.00 0.004
#> SRR1551044     2  0.1806      0.885 0.000 0.908 0.000 0.088 0.00 0.004
#> SRR1551045     4  0.0622      0.811 0.000 0.012 0.000 0.980 0.00 0.008
#> SRR1551046     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.00 0.000
#> SRR1551047     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.00 0.000
#> SRR1551048     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.00 0.000
#> SRR1551049     4  0.2871      0.785 0.000 0.192 0.000 0.804 0.00 0.004
#> SRR1551050     2  0.1444      0.887 0.000 0.928 0.000 0.072 0.00 0.000
#> SRR1551051     2  0.3997      0.295 0.000 0.508 0.000 0.488 0.00 0.004
#> SRR1551052     4  0.0520      0.810 0.000 0.008 0.000 0.984 0.00 0.008
#> SRR1551053     6  0.4218      0.575 0.000 0.024 0.000 0.000 0.36 0.616
#> SRR1551054     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.00 0.000
#> SRR1551055     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.00 0.000
#> SRR1551056     4  0.2933      0.775 0.000 0.200 0.000 0.796 0.00 0.004
#> SRR1551057     2  0.1610      0.888 0.000 0.916 0.000 0.084 0.00 0.000
#> SRR1551058     4  0.1049      0.811 0.000 0.032 0.000 0.960 0.00 0.008
#> SRR1551059     4  0.0717      0.812 0.000 0.016 0.000 0.976 0.00 0.008
#> SRR1551060     6  0.4246      0.505 0.000 0.020 0.000 0.000 0.40 0.580
#> SRR1551061     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.00 0.000
#> SRR1551062     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.00 0.000
#> SRR1551063     4  0.1753      0.814 0.000 0.084 0.000 0.912 0.00 0.004
#> SRR1551064     2  0.1910      0.881 0.000 0.892 0.000 0.108 0.00 0.000
#> SRR1551065     4  0.2378      0.731 0.000 0.152 0.000 0.848 0.00 0.000
#> SRR1551066     4  0.0622      0.810 0.000 0.008 0.000 0.980 0.00 0.012
#> SRR1551067     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.00 0.000
#> SRR1551068     3  0.1267      0.933 0.000 0.000 0.940 0.000 0.00 0.060
#> SRR1551069     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.00 0.000
#> SRR1551070     4  0.2902      0.787 0.000 0.196 0.000 0.800 0.00 0.004
#> SRR1551071     2  0.3862      0.544 0.000 0.608 0.000 0.388 0.00 0.004
#> SRR1551072     4  0.1049      0.812 0.000 0.032 0.000 0.960 0.00 0.008
#> SRR1551073     4  0.0909      0.813 0.000 0.020 0.000 0.968 0.00 0.012
#> SRR1551074     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.00 0.000
#> SRR1551075     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.00 0.000
#> SRR1551076     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.00 0.000
#> SRR1551077     4  0.2933      0.775 0.000 0.200 0.000 0.796 0.00 0.004
#> SRR1551078     2  0.1588      0.887 0.000 0.924 0.000 0.072 0.00 0.004
#> SRR1551079     4  0.2933      0.670 0.000 0.200 0.000 0.796 0.00 0.004
#> SRR1551080     4  0.0622      0.811 0.000 0.012 0.000 0.980 0.00 0.008
#> SRR1551081     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.00 0.000
#> SRR1551082     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.00 0.000
#> SRR1551083     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.00 0.000
#> SRR1551084     4  0.3298      0.768 0.000 0.236 0.000 0.756 0.00 0.008
#> SRR1551085     2  0.1444      0.887 0.000 0.928 0.000 0.072 0.00 0.000
#> SRR1551086     4  0.1714      0.784 0.000 0.092 0.000 0.908 0.00 0.000
#> SRR1551088     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.00 0.000
#> SRR1551087     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.00 0.000
#> SRR1551089     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.00 0.000
#> SRR1551090     4  0.3298      0.768 0.000 0.236 0.000 0.756 0.00 0.008
#> SRR1551091     2  0.1501      0.888 0.000 0.924 0.000 0.076 0.00 0.000
#> SRR1551092     2  0.3881      0.343 0.000 0.600 0.000 0.396 0.00 0.004
#> SRR1551093     4  0.0725      0.811 0.000 0.012 0.000 0.976 0.00 0.012
#> SRR1551094     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.00 0.000
#> SRR1551095     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.00 0.000
#> SRR1551096     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.00 0.000
#> SRR1551097     4  0.3215      0.766 0.000 0.240 0.000 0.756 0.00 0.004
#> SRR1551098     2  0.2664      0.805 0.000 0.816 0.000 0.184 0.00 0.000
#> SRR1551099     4  0.3996      0.142 0.000 0.484 0.000 0.512 0.00 0.004
#> SRR1551101     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.00 0.000
#> SRR1551100     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.00 0.000
#> SRR1551102     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.00 0.000
#> SRR1551103     4  0.3298      0.768 0.000 0.236 0.000 0.756 0.00 0.008
#> SRR1551104     2  0.3052      0.790 0.000 0.780 0.000 0.216 0.00 0.004
#> SRR1551105     4  0.1663      0.788 0.000 0.088 0.000 0.912 0.00 0.000
#> SRR1551106     4  0.0725      0.811 0.000 0.012 0.000 0.976 0.00 0.012
#> SRR1551107     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.00 0.000
#> SRR1551108     3  0.0000      0.984 0.000 0.000 1.000 0.000 0.00 0.000
#> SRR1551109     1  0.0000      0.999 1.000 0.000 0.000 0.000 0.00 0.000
#> SRR1551110     4  0.3298      0.768 0.000 0.236 0.000 0.756 0.00 0.008
#> SRR1551111     2  0.3769      0.615 0.000 0.640 0.000 0.356 0.00 0.004
#> SRR1551112     4  0.1714      0.784 0.000 0.092 0.000 0.908 0.00 0.000
#> SRR1551113     4  0.0622      0.810 0.000 0.008 0.000 0.980 0.00 0.012
#> SRR1551114     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.00 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15028 rows and 134 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.996       0.998         0.2853 0.714   0.714
#> 3 3 1.000           0.977       0.991         1.0372 0.683   0.563
#> 4 4 0.959           0.963       0.959         0.0871 0.949   0.880
#> 5 5 0.754           0.859       0.861         0.1940 0.873   0.659
#> 6 6 0.780           0.886       0.870         0.0570 0.937   0.745

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1550981     2  0.0000      1.000 0.000 1.000
#> SRR1550982     2  0.0000      1.000 0.000 1.000
#> SRR1550983     2  0.0000      1.000 0.000 1.000
#> SRR1550984     2  0.0000      1.000 0.000 1.000
#> SRR1550986     1  0.0000      0.990 1.000 0.000
#> SRR1550985     2  0.0000      1.000 0.000 1.000
#> SRR1550988     2  0.0000      1.000 0.000 1.000
#> SRR1550987     2  0.0000      1.000 0.000 1.000
#> SRR1550989     2  0.0000      1.000 0.000 1.000
#> SRR1550990     2  0.0000      1.000 0.000 1.000
#> SRR1550991     2  0.0000      1.000 0.000 1.000
#> SRR1550992     1  0.0000      0.990 1.000 0.000
#> SRR1550994     2  0.0000      1.000 0.000 1.000
#> SRR1550993     2  0.0000      1.000 0.000 1.000
#> SRR1550995     2  0.0000      1.000 0.000 1.000
#> SRR1550996     2  0.0000      1.000 0.000 1.000
#> SRR1550997     1  0.0000      0.990 1.000 0.000
#> SRR1550998     2  0.0000      1.000 0.000 1.000
#> SRR1551000     2  0.0000      1.000 0.000 1.000
#> SRR1550999     2  0.0000      1.000 0.000 1.000
#> SRR1551001     2  0.0000      1.000 0.000 1.000
#> SRR1551002     1  0.0000      0.990 1.000 0.000
#> SRR1551003     2  0.0000      1.000 0.000 1.000
#> SRR1551004     2  0.0000      1.000 0.000 1.000
#> SRR1551006     2  0.0000      1.000 0.000 1.000
#> SRR1551005     2  0.0000      1.000 0.000 1.000
#> SRR1551007     2  0.0000      1.000 0.000 1.000
#> SRR1551008     1  0.0000      0.990 1.000 0.000
#> SRR1551009     2  0.0000      1.000 0.000 1.000
#> SRR1551010     2  0.0000      1.000 0.000 1.000
#> SRR1551012     2  0.0000      1.000 0.000 1.000
#> SRR1551011     2  0.0000      1.000 0.000 1.000
#> SRR1551013     1  0.0000      0.990 1.000 0.000
#> SRR1551014     2  0.0376      0.996 0.004 0.996
#> SRR1551015     2  0.0000      1.000 0.000 1.000
#> SRR1551016     2  0.0000      1.000 0.000 1.000
#> SRR1551017     2  0.0000      1.000 0.000 1.000
#> SRR1551018     2  0.0000      1.000 0.000 1.000
#> SRR1551019     1  0.6887      0.777 0.816 0.184
#> SRR1551021     2  0.1633      0.975 0.024 0.976
#> SRR1551022     2  0.0000      1.000 0.000 1.000
#> SRR1551023     2  0.0000      1.000 0.000 1.000
#> SRR1551020     1  0.0000      0.990 1.000 0.000
#> SRR1551024     2  0.0000      1.000 0.000 1.000
#> SRR1551026     1  0.0000      0.990 1.000 0.000
#> SRR1551025     1  0.0000      0.990 1.000 0.000
#> SRR1551027     2  0.0000      1.000 0.000 1.000
#> SRR1551028     2  0.0000      1.000 0.000 1.000
#> SRR1551029     2  0.0000      1.000 0.000 1.000
#> SRR1551030     2  0.0000      1.000 0.000 1.000
#> SRR1551031     2  0.0000      1.000 0.000 1.000
#> SRR1551032     1  0.2236      0.957 0.964 0.036
#> SRR1551034     2  0.0000      1.000 0.000 1.000
#> SRR1551033     1  0.0000      0.990 1.000 0.000
#> SRR1551035     2  0.0000      1.000 0.000 1.000
#> SRR1551036     2  0.0000      1.000 0.000 1.000
#> SRR1551037     2  0.0000      1.000 0.000 1.000
#> SRR1551038     2  0.0000      1.000 0.000 1.000
#> SRR1551039     2  0.0000      1.000 0.000 1.000
#> SRR1551040     1  0.0000      0.990 1.000 0.000
#> SRR1551041     2  0.0000      1.000 0.000 1.000
#> SRR1551042     2  0.0000      1.000 0.000 1.000
#> SRR1551043     2  0.0000      1.000 0.000 1.000
#> SRR1551044     2  0.0000      1.000 0.000 1.000
#> SRR1551045     2  0.0000      1.000 0.000 1.000
#> SRR1551046     2  0.0000      1.000 0.000 1.000
#> SRR1551047     1  0.0000      0.990 1.000 0.000
#> SRR1551048     2  0.0000      1.000 0.000 1.000
#> SRR1551049     2  0.0000      1.000 0.000 1.000
#> SRR1551050     2  0.0000      1.000 0.000 1.000
#> SRR1551051     2  0.0000      1.000 0.000 1.000
#> SRR1551052     2  0.0000      1.000 0.000 1.000
#> SRR1551053     2  0.0000      1.000 0.000 1.000
#> SRR1551054     1  0.0000      0.990 1.000 0.000
#> SRR1551055     2  0.0000      1.000 0.000 1.000
#> SRR1551056     2  0.0000      1.000 0.000 1.000
#> SRR1551057     2  0.0000      1.000 0.000 1.000
#> SRR1551058     2  0.0000      1.000 0.000 1.000
#> SRR1551059     2  0.0000      1.000 0.000 1.000
#> SRR1551060     2  0.0000      1.000 0.000 1.000
#> SRR1551061     1  0.0000      0.990 1.000 0.000
#> SRR1551062     2  0.0000      1.000 0.000 1.000
#> SRR1551063     2  0.0000      1.000 0.000 1.000
#> SRR1551064     2  0.0000      1.000 0.000 1.000
#> SRR1551065     2  0.0000      1.000 0.000 1.000
#> SRR1551066     2  0.0000      1.000 0.000 1.000
#> SRR1551067     2  0.0000      1.000 0.000 1.000
#> SRR1551068     1  0.0000      0.990 1.000 0.000
#> SRR1551069     2  0.0000      1.000 0.000 1.000
#> SRR1551070     2  0.0000      1.000 0.000 1.000
#> SRR1551071     2  0.0000      1.000 0.000 1.000
#> SRR1551072     2  0.0000      1.000 0.000 1.000
#> SRR1551073     2  0.0000      1.000 0.000 1.000
#> SRR1551074     2  0.0000      1.000 0.000 1.000
#> SRR1551075     1  0.0000      0.990 1.000 0.000
#> SRR1551076     2  0.0000      1.000 0.000 1.000
#> SRR1551077     2  0.0000      1.000 0.000 1.000
#> SRR1551078     2  0.0000      1.000 0.000 1.000
#> SRR1551079     2  0.0000      1.000 0.000 1.000
#> SRR1551080     2  0.0000      1.000 0.000 1.000
#> SRR1551081     2  0.0000      1.000 0.000 1.000
#> SRR1551082     1  0.0000      0.990 1.000 0.000
#> SRR1551083     2  0.0000      1.000 0.000 1.000
#> SRR1551084     2  0.0000      1.000 0.000 1.000
#> SRR1551085     2  0.0000      1.000 0.000 1.000
#> SRR1551086     2  0.0000      1.000 0.000 1.000
#> SRR1551088     1  0.0000      0.990 1.000 0.000
#> SRR1551087     2  0.0000      1.000 0.000 1.000
#> SRR1551089     2  0.0000      1.000 0.000 1.000
#> SRR1551090     2  0.0000      1.000 0.000 1.000
#> SRR1551091     2  0.0000      1.000 0.000 1.000
#> SRR1551092     2  0.0000      1.000 0.000 1.000
#> SRR1551093     2  0.0000      1.000 0.000 1.000
#> SRR1551094     2  0.0000      1.000 0.000 1.000
#> SRR1551095     1  0.0000      0.990 1.000 0.000
#> SRR1551096     2  0.0000      1.000 0.000 1.000
#> SRR1551097     2  0.0000      1.000 0.000 1.000
#> SRR1551098     2  0.0000      1.000 0.000 1.000
#> SRR1551099     2  0.0000      1.000 0.000 1.000
#> SRR1551101     1  0.0000      0.990 1.000 0.000
#> SRR1551100     2  0.0000      1.000 0.000 1.000
#> SRR1551102     2  0.0000      1.000 0.000 1.000
#> SRR1551103     2  0.0000      1.000 0.000 1.000
#> SRR1551104     2  0.0000      1.000 0.000 1.000
#> SRR1551105     2  0.0000      1.000 0.000 1.000
#> SRR1551106     2  0.0000      1.000 0.000 1.000
#> SRR1551107     2  0.0000      1.000 0.000 1.000
#> SRR1551108     1  0.0000      0.990 1.000 0.000
#> SRR1551109     2  0.0000      1.000 0.000 1.000
#> SRR1551110     2  0.0000      1.000 0.000 1.000
#> SRR1551111     2  0.0000      1.000 0.000 1.000
#> SRR1551112     2  0.0000      1.000 0.000 1.000
#> SRR1551113     2  0.0000      1.000 0.000 1.000
#> SRR1551114     2  0.0000      1.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1550981     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1550982     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1550983     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1550984     1  0.5760      0.483 0.672 0.328 0.000
#> SRR1550986     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1550985     1  0.0592      0.959 0.988 0.012 0.000
#> SRR1550988     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1550987     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1550989     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1550990     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1550991     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1550992     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1550994     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1550993     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1550995     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1550996     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1550997     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1550998     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1551000     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1550999     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551001     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551002     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551003     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1551004     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551006     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551005     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551007     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551008     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551009     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1551010     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551012     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551011     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551013     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551014     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1551015     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551016     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551017     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551018     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551019     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1551021     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1551022     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551023     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551020     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551024     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551026     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551025     1  0.6140      0.321 0.596 0.000 0.404
#> SRR1551027     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1551028     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551029     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551030     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551031     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551032     1  0.2537      0.894 0.920 0.000 0.080
#> SRR1551034     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1551033     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551035     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551036     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551037     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551038     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551039     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1551040     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551041     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1551042     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551043     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551044     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551045     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551046     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1551047     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551048     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1551049     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551050     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551051     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551052     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551053     2  0.0592      0.983 0.012 0.988 0.000
#> SRR1551054     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551055     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1551056     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551057     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551058     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551059     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551060     2  0.5621      0.547 0.308 0.692 0.000
#> SRR1551061     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551062     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1551063     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551064     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551065     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551066     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551067     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1551068     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551069     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1551070     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551071     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551072     2  0.0424      0.987 0.008 0.992 0.000
#> SRR1551073     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551074     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1551075     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551076     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1551077     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551078     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551079     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551080     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551081     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1551082     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551083     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1551084     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551085     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551086     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551088     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551087     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1551089     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1551090     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551091     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551092     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551093     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551094     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1551095     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551096     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1551097     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551098     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551099     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551101     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551100     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1551102     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1551103     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551104     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551105     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551106     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551107     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1551108     3  0.0000      1.000 0.000 0.000 1.000
#> SRR1551109     1  0.0000      0.974 1.000 0.000 0.000
#> SRR1551110     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551111     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551112     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551113     2  0.0000      0.995 0.000 1.000 0.000
#> SRR1551114     1  0.0000      0.974 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1550981     4  0.2814      0.936 0.132 0.000 0.000 0.868
#> SRR1550982     4  0.2944      0.938 0.128 0.004 0.000 0.868
#> SRR1550983     4  0.2868      0.934 0.136 0.000 0.000 0.864
#> SRR1550984     4  0.3471      0.865 0.060 0.072 0.000 0.868
#> SRR1550986     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1550985     4  0.3421      0.904 0.088 0.044 0.000 0.868
#> SRR1550988     2  0.0921      0.968 0.000 0.972 0.000 0.028
#> SRR1550987     1  0.0188      0.986 0.996 0.000 0.000 0.004
#> SRR1550989     2  0.0592      0.972 0.000 0.984 0.000 0.016
#> SRR1550990     2  0.0336      0.973 0.000 0.992 0.000 0.008
#> SRR1550991     2  0.1545      0.960 0.008 0.952 0.000 0.040
#> SRR1550992     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1550994     2  0.0336      0.973 0.000 0.992 0.000 0.008
#> SRR1550993     1  0.0336      0.992 0.992 0.000 0.000 0.008
#> SRR1550995     2  0.0707      0.971 0.000 0.980 0.000 0.020
#> SRR1550996     2  0.0469      0.973 0.000 0.988 0.000 0.012
#> SRR1550997     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1550998     1  0.0469      0.991 0.988 0.000 0.000 0.012
#> SRR1551000     2  0.0707      0.971 0.000 0.980 0.000 0.020
#> SRR1550999     2  0.0592      0.971 0.000 0.984 0.000 0.016
#> SRR1551001     2  0.1211      0.962 0.000 0.960 0.000 0.040
#> SRR1551002     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1551003     1  0.0469      0.990 0.988 0.000 0.000 0.012
#> SRR1551004     2  0.0469      0.972 0.000 0.988 0.000 0.012
#> SRR1551006     2  0.0336      0.974 0.000 0.992 0.000 0.008
#> SRR1551005     2  0.0707      0.971 0.000 0.980 0.000 0.020
#> SRR1551007     2  0.1938      0.951 0.012 0.936 0.000 0.052
#> SRR1551008     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1551009     1  0.0188      0.991 0.996 0.000 0.000 0.004
#> SRR1551010     2  0.0336      0.974 0.000 0.992 0.000 0.008
#> SRR1551012     2  0.0469      0.973 0.000 0.988 0.000 0.012
#> SRR1551011     2  0.0592      0.972 0.000 0.984 0.000 0.016
#> SRR1551013     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1551014     1  0.0188      0.991 0.996 0.000 0.000 0.004
#> SRR1551015     2  0.1398      0.962 0.004 0.956 0.000 0.040
#> SRR1551016     2  0.1022      0.966 0.000 0.968 0.000 0.032
#> SRR1551017     2  0.0895      0.972 0.004 0.976 0.000 0.020
#> SRR1551018     2  0.2111      0.948 0.024 0.932 0.000 0.044
#> SRR1551019     4  0.3913      0.910 0.148 0.000 0.028 0.824
#> SRR1551021     1  0.0336      0.992 0.992 0.000 0.000 0.008
#> SRR1551022     2  0.0469      0.973 0.000 0.988 0.000 0.012
#> SRR1551023     2  0.1211      0.962 0.000 0.960 0.000 0.040
#> SRR1551020     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1551024     2  0.0188      0.974 0.000 0.996 0.000 0.004
#> SRR1551026     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1551025     4  0.6170      0.744 0.136 0.000 0.192 0.672
#> SRR1551027     1  0.1022      0.973 0.968 0.000 0.000 0.032
#> SRR1551028     2  0.0336      0.974 0.000 0.992 0.000 0.008
#> SRR1551029     2  0.1302      0.959 0.000 0.956 0.000 0.044
#> SRR1551030     2  0.0336      0.973 0.000 0.992 0.000 0.008
#> SRR1551031     2  0.0657      0.972 0.004 0.984 0.000 0.012
#> SRR1551032     4  0.4286      0.898 0.136 0.000 0.052 0.812
#> SRR1551034     1  0.0000      0.989 1.000 0.000 0.000 0.000
#> SRR1551033     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1551035     2  0.0592      0.972 0.000 0.984 0.000 0.016
#> SRR1551036     2  0.0707      0.971 0.000 0.980 0.000 0.020
#> SRR1551037     2  0.0336      0.973 0.000 0.992 0.000 0.008
#> SRR1551038     2  0.1807      0.954 0.008 0.940 0.000 0.052
#> SRR1551039     4  0.2944      0.938 0.128 0.004 0.000 0.868
#> SRR1551040     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1551041     1  0.0336      0.992 0.992 0.000 0.000 0.008
#> SRR1551042     2  0.0592      0.971 0.000 0.984 0.000 0.016
#> SRR1551043     2  0.1022      0.966 0.000 0.968 0.000 0.032
#> SRR1551044     2  0.0707      0.971 0.000 0.980 0.000 0.020
#> SRR1551045     2  0.1545      0.960 0.008 0.952 0.000 0.040
#> SRR1551046     4  0.2868      0.934 0.136 0.000 0.000 0.864
#> SRR1551047     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1551048     1  0.0188      0.991 0.996 0.000 0.000 0.004
#> SRR1551049     2  0.0469      0.972 0.000 0.988 0.000 0.012
#> SRR1551050     2  0.1211      0.962 0.000 0.960 0.000 0.040
#> SRR1551051     2  0.0469      0.973 0.000 0.988 0.000 0.012
#> SRR1551052     2  0.1452      0.962 0.008 0.956 0.000 0.036
#> SRR1551053     2  0.3726      0.752 0.000 0.788 0.000 0.212
#> SRR1551054     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1551055     1  0.0336      0.992 0.992 0.000 0.000 0.008
#> SRR1551056     2  0.0469      0.972 0.000 0.988 0.000 0.012
#> SRR1551057     2  0.0921      0.968 0.000 0.972 0.000 0.028
#> SRR1551058     2  0.0707      0.974 0.000 0.980 0.000 0.020
#> SRR1551059     2  0.1798      0.956 0.016 0.944 0.000 0.040
#> SRR1551060     4  0.3801      0.641 0.000 0.220 0.000 0.780
#> SRR1551061     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1551062     1  0.0336      0.992 0.992 0.000 0.000 0.008
#> SRR1551063     2  0.0817      0.969 0.000 0.976 0.000 0.024
#> SRR1551064     2  0.0592      0.972 0.000 0.984 0.000 0.016
#> SRR1551065     2  0.0469      0.974 0.000 0.988 0.000 0.012
#> SRR1551066     2  0.1975      0.951 0.016 0.936 0.000 0.048
#> SRR1551067     4  0.2868      0.934 0.136 0.000 0.000 0.864
#> SRR1551068     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1551069     1  0.0336      0.992 0.992 0.000 0.000 0.008
#> SRR1551070     2  0.1452      0.963 0.008 0.956 0.000 0.036
#> SRR1551071     2  0.0707      0.971 0.000 0.980 0.000 0.020
#> SRR1551072     2  0.1004      0.973 0.004 0.972 0.000 0.024
#> SRR1551073     2  0.3617      0.883 0.064 0.860 0.000 0.076
#> SRR1551074     4  0.2921      0.929 0.140 0.000 0.000 0.860
#> SRR1551075     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1551076     1  0.0707      0.985 0.980 0.000 0.000 0.020
#> SRR1551077     2  0.0336      0.974 0.000 0.992 0.000 0.008
#> SRR1551078     2  0.1637      0.946 0.000 0.940 0.000 0.060
#> SRR1551079     2  0.0469      0.974 0.000 0.988 0.000 0.012
#> SRR1551080     2  0.1284      0.968 0.012 0.964 0.000 0.024
#> SRR1551081     4  0.2944      0.938 0.128 0.004 0.000 0.868
#> SRR1551082     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1551083     1  0.0188      0.986 0.996 0.000 0.000 0.004
#> SRR1551084     2  0.0817      0.969 0.000 0.976 0.000 0.024
#> SRR1551085     2  0.0921      0.968 0.000 0.972 0.000 0.028
#> SRR1551086     2  0.0592      0.974 0.000 0.984 0.000 0.016
#> SRR1551088     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1551087     4  0.2944      0.938 0.128 0.004 0.000 0.868
#> SRR1551089     1  0.0592      0.988 0.984 0.000 0.000 0.016
#> SRR1551090     2  0.1022      0.967 0.000 0.968 0.000 0.032
#> SRR1551091     2  0.1022      0.966 0.000 0.968 0.000 0.032
#> SRR1551092     2  0.0469      0.973 0.000 0.988 0.000 0.012
#> SRR1551093     2  0.2282      0.942 0.024 0.924 0.000 0.052
#> SRR1551094     4  0.2944      0.938 0.128 0.004 0.000 0.868
#> SRR1551095     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1551096     1  0.0817      0.981 0.976 0.000 0.000 0.024
#> SRR1551097     2  0.0592      0.972 0.000 0.984 0.000 0.016
#> SRR1551098     2  0.0592      0.972 0.000 0.984 0.000 0.016
#> SRR1551099     2  0.0469      0.973 0.000 0.988 0.000 0.012
#> SRR1551101     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1551100     4  0.3266      0.924 0.108 0.024 0.000 0.868
#> SRR1551102     1  0.0336      0.992 0.992 0.000 0.000 0.008
#> SRR1551103     2  0.1211      0.964 0.000 0.960 0.000 0.040
#> SRR1551104     2  0.0469      0.973 0.000 0.988 0.000 0.012
#> SRR1551105     2  0.0336      0.974 0.000 0.992 0.000 0.008
#> SRR1551106     2  0.3312      0.900 0.052 0.876 0.000 0.072
#> SRR1551107     4  0.2944      0.938 0.128 0.004 0.000 0.868
#> SRR1551108     3  0.0000      1.000 0.000 0.000 1.000 0.000
#> SRR1551109     1  0.0336      0.982 0.992 0.000 0.000 0.008
#> SRR1551110     2  0.1302      0.962 0.000 0.956 0.000 0.044
#> SRR1551111     2  0.0469      0.973 0.000 0.988 0.000 0.012
#> SRR1551112     2  0.0592      0.974 0.000 0.984 0.000 0.016
#> SRR1551113     2  0.2385      0.939 0.028 0.920 0.000 0.052
#> SRR1551114     4  0.3421      0.904 0.088 0.044 0.000 0.868

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1550981     5  0.3902      0.904 0.152 0.016 0.000 0.028 0.804
#> SRR1550982     5  0.3951      0.911 0.140 0.032 0.000 0.020 0.808
#> SRR1550983     5  0.3911      0.907 0.152 0.024 0.000 0.020 0.804
#> SRR1550984     5  0.4752      0.816 0.044 0.124 0.000 0.060 0.772
#> SRR1550986     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1550985     5  0.4775      0.870 0.072 0.076 0.000 0.072 0.780
#> SRR1550988     4  0.2266      0.951 0.064 0.016 0.000 0.912 0.008
#> SRR1550987     1  0.0566      0.979 0.984 0.000 0.000 0.012 0.004
#> SRR1550989     2  0.4348      0.725 0.000 0.668 0.000 0.316 0.016
#> SRR1550990     2  0.2966      0.788 0.000 0.816 0.000 0.184 0.000
#> SRR1550991     2  0.3229      0.709 0.040 0.872 0.000 0.032 0.056
#> SRR1550992     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1550994     4  0.2204      0.950 0.036 0.036 0.000 0.920 0.008
#> SRR1550993     1  0.0798      0.984 0.976 0.000 0.000 0.016 0.008
#> SRR1550995     2  0.4722      0.659 0.000 0.608 0.000 0.368 0.024
#> SRR1550996     2  0.3819      0.779 0.000 0.756 0.000 0.228 0.016
#> SRR1550997     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1550998     1  0.0566      0.984 0.984 0.000 0.000 0.012 0.004
#> SRR1551000     2  0.4736      0.607 0.000 0.576 0.000 0.404 0.020
#> SRR1550999     4  0.2078      0.950 0.036 0.036 0.000 0.924 0.004
#> SRR1551001     2  0.4075      0.783 0.000 0.780 0.000 0.160 0.060
#> SRR1551002     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551003     1  0.0898      0.984 0.972 0.000 0.000 0.008 0.020
#> SRR1551004     4  0.2313      0.952 0.040 0.032 0.000 0.916 0.012
#> SRR1551006     2  0.2193      0.790 0.000 0.900 0.000 0.092 0.008
#> SRR1551005     2  0.4465      0.730 0.000 0.672 0.000 0.304 0.024
#> SRR1551007     2  0.3207      0.708 0.048 0.872 0.000 0.024 0.056
#> SRR1551008     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551009     1  0.0807      0.984 0.976 0.000 0.000 0.012 0.012
#> SRR1551010     4  0.2555      0.955 0.052 0.028 0.000 0.904 0.016
#> SRR1551012     2  0.4141      0.769 0.000 0.728 0.000 0.248 0.024
#> SRR1551011     2  0.4402      0.693 0.000 0.636 0.000 0.352 0.012
#> SRR1551013     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551014     1  0.0451      0.979 0.988 0.000 0.000 0.004 0.008
#> SRR1551015     4  0.2745      0.944 0.052 0.028 0.000 0.896 0.024
#> SRR1551016     2  0.3504      0.785 0.004 0.840 0.000 0.092 0.064
#> SRR1551017     2  0.2338      0.763 0.016 0.916 0.000 0.036 0.032
#> SRR1551018     2  0.3432      0.701 0.060 0.860 0.000 0.028 0.052
#> SRR1551019     5  0.4146      0.871 0.176 0.000 0.020 0.024 0.780
#> SRR1551021     1  0.0671      0.969 0.980 0.000 0.000 0.004 0.016
#> SRR1551022     4  0.1996      0.948 0.032 0.036 0.000 0.928 0.004
#> SRR1551023     2  0.4974      0.578 0.000 0.560 0.000 0.408 0.032
#> SRR1551020     3  0.0162      0.997 0.000 0.000 0.996 0.004 0.000
#> SRR1551024     2  0.4418      0.718 0.000 0.652 0.000 0.332 0.016
#> SRR1551026     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551025     5  0.5282      0.807 0.164 0.000 0.096 0.024 0.716
#> SRR1551027     1  0.1041      0.967 0.964 0.000 0.000 0.004 0.032
#> SRR1551028     4  0.2390      0.943 0.032 0.044 0.000 0.912 0.012
#> SRR1551029     2  0.4925      0.699 0.000 0.632 0.000 0.324 0.044
#> SRR1551030     2  0.2017      0.789 0.000 0.912 0.000 0.080 0.008
#> SRR1551031     2  0.2011      0.758 0.008 0.928 0.000 0.044 0.020
#> SRR1551032     5  0.4062      0.873 0.168 0.000 0.016 0.028 0.788
#> SRR1551034     1  0.0798      0.984 0.976 0.000 0.000 0.016 0.008
#> SRR1551033     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551035     4  0.2234      0.945 0.036 0.044 0.000 0.916 0.004
#> SRR1551036     2  0.4428      0.755 0.000 0.700 0.000 0.268 0.032
#> SRR1551037     2  0.2416      0.791 0.000 0.888 0.000 0.100 0.012
#> SRR1551038     2  0.3549      0.706 0.040 0.852 0.000 0.032 0.076
#> SRR1551039     5  0.4508      0.907 0.128 0.056 0.000 0.032 0.784
#> SRR1551040     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551041     1  0.1012      0.982 0.968 0.000 0.000 0.012 0.020
#> SRR1551042     4  0.2227      0.955 0.048 0.032 0.000 0.916 0.004
#> SRR1551043     2  0.4780      0.740 0.000 0.672 0.000 0.280 0.048
#> SRR1551044     2  0.2984      0.791 0.000 0.860 0.000 0.108 0.032
#> SRR1551045     2  0.3152      0.715 0.044 0.876 0.000 0.028 0.052
#> SRR1551046     5  0.3938      0.901 0.164 0.016 0.000 0.024 0.796
#> SRR1551047     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551048     1  0.0798      0.984 0.976 0.000 0.000 0.016 0.008
#> SRR1551049     4  0.2266      0.951 0.064 0.016 0.000 0.912 0.008
#> SRR1551050     2  0.5068      0.643 0.000 0.592 0.000 0.364 0.044
#> SRR1551051     2  0.4152      0.747 0.000 0.692 0.000 0.296 0.012
#> SRR1551052     2  0.3170      0.725 0.036 0.876 0.000 0.040 0.048
#> SRR1551053     4  0.6031      0.292 0.000 0.268 0.000 0.568 0.164
#> SRR1551054     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551055     1  0.1018      0.982 0.968 0.000 0.000 0.016 0.016
#> SRR1551056     4  0.2409      0.954 0.060 0.020 0.000 0.908 0.012
#> SRR1551057     2  0.4573      0.759 0.000 0.700 0.000 0.256 0.044
#> SRR1551058     2  0.2011      0.778 0.008 0.928 0.000 0.044 0.020
#> SRR1551059     2  0.3152      0.717 0.044 0.876 0.000 0.028 0.052
#> SRR1551060     5  0.5538      0.658 0.008 0.172 0.000 0.148 0.672
#> SRR1551061     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551062     1  0.0912      0.984 0.972 0.000 0.000 0.012 0.016
#> SRR1551063     4  0.2478      0.953 0.060 0.028 0.000 0.904 0.008
#> SRR1551064     2  0.4318      0.742 0.000 0.688 0.000 0.292 0.020
#> SRR1551065     2  0.2295      0.789 0.004 0.900 0.000 0.088 0.008
#> SRR1551066     2  0.3490      0.700 0.048 0.856 0.000 0.028 0.068
#> SRR1551067     5  0.4446      0.910 0.156 0.028 0.000 0.040 0.776
#> SRR1551068     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551069     1  0.0798      0.984 0.976 0.000 0.000 0.008 0.016
#> SRR1551070     4  0.2692      0.924 0.092 0.016 0.000 0.884 0.008
#> SRR1551071     2  0.4352      0.767 0.000 0.720 0.000 0.244 0.036
#> SRR1551072     2  0.3134      0.790 0.012 0.864 0.000 0.096 0.028
#> SRR1551073     2  0.4144      0.678 0.068 0.816 0.000 0.032 0.084
#> SRR1551074     5  0.4702      0.897 0.172 0.020 0.000 0.056 0.752
#> SRR1551075     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551076     1  0.1106      0.981 0.964 0.000 0.000 0.012 0.024
#> SRR1551077     4  0.2409      0.953 0.044 0.028 0.000 0.912 0.016
#> SRR1551078     2  0.4769      0.751 0.000 0.688 0.000 0.256 0.056
#> SRR1551079     2  0.2086      0.779 0.008 0.924 0.000 0.048 0.020
#> SRR1551080     2  0.3410      0.706 0.052 0.860 0.000 0.024 0.064
#> SRR1551081     5  0.4564      0.909 0.132 0.052 0.000 0.036 0.780
#> SRR1551082     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551083     1  0.0798      0.984 0.976 0.000 0.000 0.016 0.008
#> SRR1551084     4  0.2196      0.955 0.056 0.024 0.000 0.916 0.004
#> SRR1551085     2  0.4687      0.739 0.000 0.672 0.000 0.288 0.040
#> SRR1551086     2  0.2349      0.789 0.004 0.900 0.000 0.084 0.012
#> SRR1551088     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551087     5  0.4075      0.913 0.136 0.036 0.000 0.024 0.804
#> SRR1551089     1  0.0992      0.981 0.968 0.000 0.000 0.008 0.024
#> SRR1551090     4  0.2297      0.954 0.060 0.020 0.000 0.912 0.008
#> SRR1551091     2  0.4675      0.642 0.000 0.600 0.000 0.380 0.020
#> SRR1551092     2  0.3967      0.763 0.000 0.724 0.000 0.264 0.012
#> SRR1551093     2  0.3761      0.689 0.068 0.840 0.000 0.028 0.064
#> SRR1551094     5  0.4041      0.912 0.140 0.032 0.000 0.024 0.804
#> SRR1551095     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551096     1  0.1168      0.973 0.960 0.000 0.000 0.008 0.032
#> SRR1551097     4  0.2521      0.949 0.068 0.024 0.000 0.900 0.008
#> SRR1551098     2  0.4551      0.670 0.000 0.616 0.000 0.368 0.016
#> SRR1551099     2  0.4016      0.761 0.000 0.716 0.000 0.272 0.012
#> SRR1551101     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551100     5  0.5103      0.880 0.096 0.068 0.000 0.080 0.756
#> SRR1551102     1  0.0566      0.984 0.984 0.000 0.000 0.012 0.004
#> SRR1551103     4  0.2331      0.950 0.064 0.024 0.000 0.908 0.004
#> SRR1551104     2  0.4297      0.750 0.000 0.692 0.000 0.288 0.020
#> SRR1551105     2  0.2763      0.791 0.000 0.848 0.000 0.148 0.004
#> SRR1551106     2  0.3823      0.685 0.064 0.836 0.000 0.028 0.072
#> SRR1551107     5  0.5004      0.901 0.144 0.036 0.000 0.072 0.748
#> SRR1551108     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1551109     1  0.0693      0.976 0.980 0.000 0.000 0.012 0.008
#> SRR1551110     4  0.2304      0.948 0.068 0.020 0.000 0.908 0.004
#> SRR1551111     2  0.3642      0.777 0.000 0.760 0.000 0.232 0.008
#> SRR1551112     2  0.2331      0.784 0.004 0.908 0.000 0.064 0.024
#> SRR1551113     2  0.3294      0.705 0.048 0.868 0.000 0.028 0.056
#> SRR1551114     5  0.4753      0.884 0.088 0.076 0.000 0.056 0.780

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1550981     5  0.4272     0.8431 0.148 0.012 0.000 0.036 0.772 0.032
#> SRR1550982     5  0.4415     0.8672 0.136 0.056 0.000 0.024 0.768 0.016
#> SRR1550983     5  0.4310     0.8531 0.148 0.028 0.000 0.024 0.772 0.028
#> SRR1550984     5  0.6156     0.7319 0.036 0.156 0.000 0.080 0.644 0.084
#> SRR1550986     3  0.0000     0.9940 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1550985     5  0.5111     0.8297 0.072 0.140 0.000 0.056 0.720 0.012
#> SRR1550988     4  0.1950     0.9516 0.024 0.064 0.000 0.912 0.000 0.000
#> SRR1550987     1  0.0405     0.9856 0.988 0.000 0.000 0.008 0.000 0.004
#> SRR1550989     2  0.1462     0.8540 0.000 0.936 0.000 0.056 0.008 0.000
#> SRR1550990     2  0.1863     0.8447 0.004 0.920 0.000 0.016 0.000 0.060
#> SRR1550991     6  0.3913     0.9689 0.008 0.212 0.000 0.012 0.016 0.752
#> SRR1550992     3  0.0000     0.9940 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1550994     4  0.2034     0.9510 0.024 0.060 0.000 0.912 0.004 0.000
#> SRR1550993     1  0.0260     0.9868 0.992 0.000 0.000 0.008 0.000 0.000
#> SRR1550995     2  0.1829     0.8466 0.000 0.920 0.000 0.056 0.024 0.000
#> SRR1550996     2  0.1755     0.8643 0.000 0.932 0.000 0.028 0.008 0.032
#> SRR1550997     3  0.0000     0.9940 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1550998     1  0.0665     0.9864 0.980 0.000 0.000 0.008 0.004 0.008
#> SRR1551000     2  0.2199     0.8303 0.000 0.892 0.000 0.088 0.020 0.000
#> SRR1550999     4  0.2094     0.9505 0.020 0.060 0.000 0.912 0.004 0.004
#> SRR1551001     2  0.2119     0.8455 0.000 0.912 0.000 0.008 0.036 0.044
#> SRR1551002     3  0.0000     0.9940 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551003     1  0.0665     0.9863 0.980 0.000 0.000 0.008 0.008 0.004
#> SRR1551004     4  0.2622     0.9400 0.020 0.056 0.000 0.892 0.024 0.008
#> SRR1551006     2  0.3470     0.7489 0.000 0.804 0.000 0.020 0.020 0.156
#> SRR1551005     2  0.1693     0.8558 0.000 0.932 0.000 0.044 0.020 0.004
#> SRR1551007     6  0.4056     0.9695 0.016 0.208 0.000 0.008 0.020 0.748
#> SRR1551008     3  0.0000     0.9940 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551009     1  0.0405     0.9856 0.988 0.000 0.000 0.008 0.000 0.004
#> SRR1551010     4  0.2507     0.9479 0.028 0.060 0.000 0.892 0.020 0.000
#> SRR1551012     2  0.1810     0.8614 0.008 0.932 0.000 0.020 0.004 0.036
#> SRR1551011     2  0.1692     0.8614 0.000 0.932 0.000 0.048 0.008 0.012
#> SRR1551013     3  0.0000     0.9940 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551014     1  0.1078     0.9823 0.964 0.000 0.000 0.012 0.008 0.016
#> SRR1551015     4  0.2478     0.9437 0.024 0.076 0.000 0.888 0.012 0.000
#> SRR1551016     2  0.2737     0.8118 0.000 0.868 0.000 0.004 0.044 0.084
#> SRR1551017     2  0.4816    -0.2372 0.000 0.500 0.000 0.008 0.036 0.456
#> SRR1551018     6  0.3865     0.9698 0.016 0.208 0.000 0.004 0.016 0.756
#> SRR1551019     5  0.4300     0.7995 0.176 0.000 0.000 0.032 0.748 0.044
#> SRR1551021     1  0.1346     0.9606 0.952 0.000 0.000 0.008 0.016 0.024
#> SRR1551022     4  0.2153     0.9369 0.008 0.084 0.000 0.900 0.004 0.004
#> SRR1551023     2  0.2679     0.8040 0.000 0.864 0.000 0.096 0.040 0.000
#> SRR1551020     3  0.2648     0.8996 0.004 0.000 0.876 0.020 0.008 0.092
#> SRR1551024     2  0.2179     0.8553 0.000 0.900 0.000 0.064 0.000 0.036
#> SRR1551026     3  0.0748     0.9779 0.004 0.000 0.976 0.004 0.000 0.016
#> SRR1551025     5  0.5709     0.7431 0.172 0.000 0.076 0.036 0.672 0.044
#> SRR1551027     1  0.1180     0.9740 0.960 0.000 0.000 0.012 0.016 0.012
#> SRR1551028     4  0.2451     0.9448 0.016 0.076 0.000 0.892 0.012 0.004
#> SRR1551029     2  0.2318     0.8309 0.000 0.892 0.000 0.064 0.044 0.000
#> SRR1551030     2  0.4765     0.4295 0.000 0.640 0.000 0.020 0.040 0.300
#> SRR1551031     6  0.4248     0.9169 0.004 0.248 0.000 0.008 0.032 0.708
#> SRR1551032     5  0.4769     0.7913 0.172 0.000 0.016 0.036 0.732 0.044
#> SRR1551034     1  0.0551     0.9870 0.984 0.000 0.000 0.008 0.004 0.004
#> SRR1551033     3  0.0000     0.9940 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551035     4  0.1982     0.9489 0.016 0.068 0.000 0.912 0.000 0.004
#> SRR1551036     2  0.1708     0.8560 0.000 0.932 0.000 0.040 0.024 0.004
#> SRR1551037     2  0.2920     0.7837 0.000 0.844 0.000 0.008 0.020 0.128
#> SRR1551038     6  0.3824     0.9685 0.008 0.212 0.000 0.012 0.012 0.756
#> SRR1551039     5  0.5200     0.8723 0.128 0.076 0.000 0.032 0.724 0.040
#> SRR1551040     3  0.0000     0.9940 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551041     1  0.0665     0.9863 0.980 0.000 0.000 0.008 0.008 0.004
#> SRR1551042     4  0.2034     0.9510 0.024 0.060 0.000 0.912 0.004 0.000
#> SRR1551043     2  0.2287     0.8444 0.000 0.904 0.000 0.048 0.036 0.012
#> SRR1551044     2  0.3208     0.7797 0.000 0.832 0.000 0.008 0.040 0.120
#> SRR1551045     6  0.3909     0.9673 0.012 0.200 0.000 0.008 0.020 0.760
#> SRR1551046     5  0.4300     0.8502 0.156 0.020 0.000 0.024 0.768 0.032
#> SRR1551047     3  0.0000     0.9940 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551048     1  0.0260     0.9868 0.992 0.000 0.000 0.008 0.000 0.000
#> SRR1551049     4  0.2307     0.9507 0.024 0.064 0.000 0.900 0.012 0.000
#> SRR1551050     2  0.2308     0.8286 0.000 0.892 0.000 0.068 0.040 0.000
#> SRR1551051     2  0.1168     0.8630 0.000 0.956 0.000 0.028 0.000 0.016
#> SRR1551052     6  0.3955     0.9649 0.008 0.220 0.000 0.008 0.020 0.744
#> SRR1551053     4  0.6577    -0.0095 0.000 0.364 0.000 0.368 0.240 0.028
#> SRR1551054     3  0.0000     0.9940 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551055     1  0.0717     0.9852 0.976 0.000 0.000 0.016 0.008 0.000
#> SRR1551056     4  0.2265     0.9513 0.024 0.068 0.000 0.900 0.008 0.000
#> SRR1551057     2  0.1168     0.8596 0.000 0.956 0.000 0.028 0.016 0.000
#> SRR1551058     2  0.4541     0.5070 0.004 0.676 0.000 0.012 0.036 0.272
#> SRR1551059     6  0.3798     0.9619 0.012 0.224 0.000 0.004 0.012 0.748
#> SRR1551060     5  0.6626     0.6117 0.012 0.188 0.000 0.160 0.560 0.080
#> SRR1551061     3  0.0000     0.9940 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551062     1  0.1078     0.9787 0.964 0.000 0.000 0.012 0.016 0.008
#> SRR1551063     4  0.2504     0.9481 0.032 0.064 0.000 0.892 0.008 0.004
#> SRR1551064     2  0.1409     0.8629 0.000 0.948 0.000 0.032 0.008 0.012
#> SRR1551065     2  0.3197     0.7679 0.004 0.828 0.000 0.016 0.012 0.140
#> SRR1551066     6  0.3922     0.9648 0.012 0.200 0.000 0.012 0.016 0.760
#> SRR1551067     5  0.5266     0.8708 0.144 0.084 0.000 0.048 0.708 0.016
#> SRR1551068     3  0.0000     0.9940 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551069     1  0.0622     0.9860 0.980 0.000 0.000 0.012 0.008 0.000
#> SRR1551070     4  0.2333     0.9468 0.040 0.060 0.000 0.896 0.004 0.000
#> SRR1551071     2  0.0767     0.8612 0.004 0.976 0.000 0.000 0.008 0.012
#> SRR1551072     2  0.2529     0.8164 0.008 0.884 0.000 0.012 0.008 0.088
#> SRR1551073     6  0.3955     0.9567 0.028 0.200 0.000 0.012 0.004 0.756
#> SRR1551074     5  0.5915     0.8587 0.152 0.088 0.000 0.076 0.660 0.024
#> SRR1551075     3  0.0000     0.9940 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551076     1  0.0717     0.9852 0.976 0.000 0.000 0.016 0.008 0.000
#> SRR1551077     4  0.2247     0.9498 0.024 0.060 0.000 0.904 0.012 0.000
#> SRR1551078     2  0.2123     0.8431 0.000 0.912 0.000 0.024 0.052 0.012
#> SRR1551079     2  0.4471     0.4595 0.000 0.660 0.000 0.008 0.040 0.292
#> SRR1551080     6  0.4199     0.9637 0.020 0.200 0.000 0.004 0.032 0.744
#> SRR1551081     5  0.5442     0.8703 0.128 0.088 0.000 0.056 0.704 0.024
#> SRR1551082     3  0.0000     0.9940 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551083     1  0.0508     0.9841 0.984 0.000 0.000 0.012 0.000 0.004
#> SRR1551084     4  0.1950     0.9516 0.024 0.064 0.000 0.912 0.000 0.000
#> SRR1551085     2  0.1218     0.8629 0.000 0.956 0.000 0.028 0.012 0.004
#> SRR1551086     2  0.2920     0.7807 0.000 0.844 0.000 0.008 0.020 0.128
#> SRR1551088     3  0.0000     0.9940 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551087     5  0.4519     0.8718 0.144 0.048 0.000 0.032 0.760 0.016
#> SRR1551089     1  0.0725     0.9851 0.976 0.000 0.000 0.012 0.012 0.000
#> SRR1551090     4  0.2113     0.9508 0.028 0.060 0.000 0.908 0.004 0.000
#> SRR1551091     2  0.1807     0.8471 0.000 0.920 0.000 0.060 0.020 0.000
#> SRR1551092     2  0.1223     0.8642 0.008 0.960 0.000 0.016 0.004 0.012
#> SRR1551093     6  0.3928     0.9641 0.024 0.192 0.000 0.008 0.012 0.764
#> SRR1551094     5  0.4320     0.8713 0.140 0.048 0.000 0.028 0.772 0.012
#> SRR1551095     3  0.0000     0.9940 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551096     1  0.1173     0.9764 0.960 0.000 0.000 0.016 0.016 0.008
#> SRR1551097     4  0.2644     0.9460 0.028 0.072 0.000 0.884 0.012 0.004
#> SRR1551098     2  0.1719     0.8581 0.000 0.928 0.000 0.056 0.008 0.008
#> SRR1551099     2  0.1829     0.8589 0.008 0.928 0.000 0.036 0.000 0.028
#> SRR1551101     3  0.0000     0.9940 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551100     5  0.4891     0.8465 0.088 0.132 0.000 0.056 0.724 0.000
#> SRR1551102     1  0.0653     0.9873 0.980 0.000 0.000 0.012 0.004 0.004
#> SRR1551103     4  0.2562     0.9451 0.032 0.068 0.000 0.888 0.004 0.008
#> SRR1551104     2  0.1693     0.8606 0.000 0.932 0.000 0.044 0.004 0.020
#> SRR1551105     2  0.2800     0.8150 0.004 0.860 0.000 0.036 0.000 0.100
#> SRR1551106     6  0.4037     0.9569 0.028 0.184 0.000 0.012 0.012 0.764
#> SRR1551107     5  0.5565     0.8665 0.136 0.092 0.000 0.068 0.688 0.016
#> SRR1551108     3  0.0000     0.9940 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1551109     1  0.0405     0.9856 0.988 0.000 0.000 0.008 0.000 0.004
#> SRR1551110     4  0.2263     0.9470 0.036 0.060 0.000 0.900 0.004 0.000
#> SRR1551111     2  0.1334     0.8607 0.000 0.948 0.000 0.020 0.000 0.032
#> SRR1551112     2  0.3828     0.7305 0.008 0.788 0.000 0.028 0.016 0.160
#> SRR1551113     6  0.3973     0.9622 0.016 0.208 0.000 0.016 0.008 0.752
#> SRR1551114     5  0.5013     0.8655 0.092 0.088 0.000 0.064 0.740 0.016

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0