Date: 2019-12-26 00:23:38 CET, cola version: 1.3.2
Document is loading...
All available functions which can be applied to this res_list
object:
res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#> On a matrix with 15301 rows and 63 columns.
#> Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#> Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#> Number of partitions are tried for k = 2, 3, 4, 5, 6.
#> Performed in total 30000 partitions by row resampling.
#>
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#> [1] "cola_report" "collect_classes" "collect_plots" "collect_stats"
#> [5] "colnames" "functional_enrichment" "get_anno_col" "get_anno"
#> [9] "get_classes" "get_matrix" "get_membership" "get_stats"
#> [13] "is_best_k" "is_stable_k" "ncol" "nrow"
#> [17] "rownames" "show" "suggest_best_k" "test_to_known_factors"
#> [21] "top_rows_heatmap" "top_rows_overlap"
#>
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]
The call of run_all_consensus_partition_methods()
was:
#> run_all_consensus_partition_methods(data = mat, mc.cores = 4)
Dimension of the input matrix:
mat = get_matrix(res_list)
dim(mat)
#> [1] 15301 63
The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.
library(ComplexHeatmap)
densityHeatmap(mat, ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
mc.cores = 4)
Folowing table shows the best k
(number of partitions) for each combination
of top-value methods and partition methods. Clicking on the method name in
the table goes to the section for a single combination of methods.
The cola vignette explains the definition of the metrics used for determining the best number of partitions.
suggest_best_k(res_list)
The best k | 1-PAC | Mean silhouette | Concordance | Optional k | ||
---|---|---|---|---|---|---|
SD:hclust | 3 | 1.000 | 1.000 | 1.000 | ** | |
SD:kmeans | 3 | 1.000 | 0.978 | 0.949 | ** | |
SD:skmeans | 3 | 1.000 | 0.985 | 0.980 | ** | 2 |
SD:pam | 4 | 1.000 | 0.998 | 0.998 | ** | 2,3 |
SD:mclust | 2 | 1.000 | 0.997 | 0.996 | ** | |
SD:NMF | 3 | 1.000 | 1.000 | 1.000 | ** | 2 |
CV:skmeans | 3 | 1.000 | 0.991 | 0.988 | ** | 2 |
CV:mclust | 3 | 1.000 | 0.976 | 0.965 | ** | |
CV:NMF | 3 | 1.000 | 0.994 | 0.990 | ** | |
MAD:hclust | 4 | 1.000 | 0.996 | 0.997 | ** | 2,3 |
MAD:kmeans | 2 | 1.000 | 0.988 | 0.981 | ** | |
ATC:hclust | 6 | 1.000 | 0.996 | 0.997 | ** | 2,3,4,5 |
ATC:kmeans | 2 | 1.000 | 1.000 | 1.000 | ** | |
ATC:skmeans | 2 | 1.000 | 1.000 | 1.000 | ** | |
ATC:NMF | 2 | 1.000 | 1.000 | 1.000 | ** | |
ATC:mclust | 6 | 0.966 | 0.985 | 0.986 | ** | 2 |
MAD:NMF | 4 | 0.959 | 0.959 | 0.967 | ** | 2 |
MAD:skmeans | 6 | 0.948 | 0.950 | 0.920 | * | 2 |
MAD:mclust | 6 | 0.942 | 0.971 | 0.955 | * | 4,5 |
MAD:pam | 6 | 0.912 | 0.850 | 0.876 | * | 2,3,4 |
CV:hclust | 6 | 0.911 | 0.936 | 0.970 | * | 3 |
CV:pam | 6 | 0.910 | 0.955 | 0.955 | * | 2,3 |
ATC:pam | 6 | 0.902 | 0.929 | 0.908 | * | 2,3,4,5 |
CV:kmeans | 3 | 0.869 | 0.952 | 0.918 |
**: 1-PAC > 0.95, *: 1-PAC > 0.9
Cumulative distribution function curves of consensus matrix for all methods.
collect_plots(res_list, fun = plot_ecdf)
Consensus heatmaps for all methods. (What is a consensus heatmap?)
collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)
collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)
collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)
collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)
collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)
Membership heatmaps for all methods. (What is a membership heatmap?)
collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)
collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)
collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)
collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)
collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)
Signature heatmaps for all methods. (What is a signature heatmap?)
Note in following heatmaps, rows are scaled.
collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)
collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)
collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)
collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)
collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)
The statistics used for measuring the stability of consensus partitioning. (How are they defined?)
get_stats(res_list, k = 2)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 2 1.000 1.000 1.000 0.462 0.538 0.538
#> CV:NMF 2 0.775 0.980 0.984 0.449 0.538 0.538
#> MAD:NMF 2 1.000 1.000 1.000 0.462 0.538 0.538
#> ATC:NMF 2 1.000 1.000 1.000 0.462 0.538 0.538
#> SD:skmeans 2 1.000 1.000 1.000 0.462 0.538 0.538
#> CV:skmeans 2 1.000 1.000 1.000 0.462 0.538 0.538
#> MAD:skmeans 2 1.000 1.000 1.000 0.462 0.538 0.538
#> ATC:skmeans 2 1.000 1.000 1.000 0.462 0.538 0.538
#> SD:mclust 2 1.000 0.997 0.996 0.459 0.538 0.538
#> CV:mclust 2 0.775 0.951 0.960 0.362 0.649 0.649
#> MAD:mclust 2 0.481 0.940 0.935 0.400 0.538 0.538
#> ATC:mclust 2 1.000 1.000 1.000 0.462 0.538 0.538
#> SD:kmeans 2 0.481 0.577 0.805 0.335 0.775 0.775
#> CV:kmeans 2 0.481 0.911 0.908 0.373 0.538 0.538
#> MAD:kmeans 2 1.000 0.988 0.981 0.444 0.538 0.538
#> ATC:kmeans 2 1.000 1.000 1.000 0.462 0.538 0.538
#> SD:pam 2 1.000 1.000 1.000 0.352 0.649 0.649
#> CV:pam 2 1.000 0.986 0.992 0.359 0.649 0.649
#> MAD:pam 2 1.000 1.000 1.000 0.462 0.538 0.538
#> ATC:pam 2 1.000 1.000 1.000 0.462 0.538 0.538
#> SD:hclust 2 0.538 0.733 0.842 0.283 0.775 0.775
#> CV:hclust 2 0.538 0.857 0.860 0.302 0.649 0.649
#> MAD:hclust 2 1.000 1.000 1.000 0.462 0.538 0.538
#> ATC:hclust 2 1.000 1.000 1.000 0.462 0.538 0.538
get_stats(res_list, k = 3)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 3 1.000 1.000 1.000 0.124 0.943 0.893
#> CV:NMF 3 1.000 0.994 0.990 0.166 0.943 0.893
#> MAD:NMF 3 0.766 0.953 0.938 0.175 0.943 0.893
#> ATC:NMF 3 0.726 0.927 0.875 0.189 0.943 0.893
#> SD:skmeans 3 1.000 0.985 0.980 0.139 0.943 0.893
#> CV:skmeans 3 1.000 0.991 0.988 0.133 0.943 0.893
#> MAD:skmeans 3 0.764 0.940 0.871 0.281 0.822 0.669
#> ATC:skmeans 3 0.764 0.936 0.921 0.187 0.943 0.893
#> SD:mclust 3 0.693 0.843 0.919 0.230 0.943 0.893
#> CV:mclust 3 1.000 0.976 0.965 0.467 0.832 0.741
#> MAD:mclust 3 0.619 0.921 0.923 0.324 0.943 0.893
#> ATC:mclust 3 0.678 0.779 0.834 0.266 0.943 0.893
#> SD:kmeans 3 1.000 0.978 0.949 0.487 0.706 0.621
#> CV:kmeans 3 0.869 0.952 0.918 0.364 0.943 0.893
#> MAD:kmeans 3 0.642 0.677 0.756 0.350 0.822 0.669
#> ATC:kmeans 3 0.623 0.751 0.765 0.303 0.822 0.669
#> SD:pam 3 1.000 1.000 1.000 0.477 0.832 0.741
#> CV:pam 3 1.000 1.000 1.000 0.449 0.832 0.741
#> MAD:pam 3 1.000 1.000 1.000 0.124 0.943 0.893
#> ATC:pam 3 1.000 1.000 1.000 0.124 0.943 0.893
#> SD:hclust 3 1.000 1.000 1.000 0.837 0.706 0.621
#> CV:hclust 3 1.000 1.000 1.000 0.723 0.832 0.741
#> MAD:hclust 3 1.000 1.000 1.000 0.124 0.943 0.893
#> ATC:hclust 3 1.000 1.000 1.000 0.124 0.943 0.893
get_stats(res_list, k = 4)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 4 0.801 0.960 0.930 0.3296 0.788 0.559
#> CV:NMF 4 0.836 0.927 0.928 0.3362 0.788 0.559
#> MAD:NMF 4 0.959 0.959 0.967 0.3204 0.788 0.559
#> ATC:NMF 4 0.736 0.890 0.877 0.2267 0.788 0.559
#> SD:skmeans 4 0.751 0.832 0.911 0.3100 0.822 0.629
#> CV:skmeans 4 0.751 0.882 0.918 0.3110 0.822 0.629
#> MAD:skmeans 4 0.822 0.925 0.944 0.1943 0.943 0.841
#> ATC:skmeans 4 0.822 0.895 0.930 0.2772 0.822 0.629
#> SD:mclust 4 0.751 0.940 0.959 0.2222 0.822 0.629
#> CV:mclust 4 0.784 0.903 0.929 0.3216 0.822 0.629
#> MAD:mclust 4 1.000 0.991 0.992 0.3727 0.791 0.565
#> ATC:mclust 4 0.822 0.945 0.962 0.2027 0.822 0.629
#> SD:kmeans 4 0.614 0.834 0.796 0.2503 0.975 0.949
#> CV:kmeans 4 0.632 0.824 0.842 0.2330 1.000 1.000
#> MAD:kmeans 4 0.577 0.733 0.726 0.1486 0.822 0.589
#> ATC:kmeans 4 0.589 0.652 0.718 0.1194 1.000 1.000
#> SD:pam 4 1.000 0.998 0.998 0.2073 0.892 0.776
#> CV:pam 4 0.822 0.949 0.957 0.2085 0.892 0.776
#> MAD:pam 4 1.000 0.998 0.999 0.3432 0.822 0.629
#> ATC:pam 4 0.959 0.954 0.977 0.3127 0.822 0.629
#> SD:hclust 4 0.868 0.968 0.964 0.0775 0.975 0.949
#> CV:hclust 4 0.727 0.780 0.858 0.2182 0.892 0.776
#> MAD:hclust 4 1.000 0.996 0.997 0.3434 0.822 0.629
#> ATC:hclust 4 1.000 1.000 1.000 0.0472 0.975 0.949
get_stats(res_list, k = 5)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 5 0.763 0.861 0.864 0.0934 0.874 0.588
#> CV:NMF 5 0.734 0.928 0.892 0.0924 0.874 0.588
#> MAD:NMF 5 0.803 0.891 0.892 0.0901 0.892 0.626
#> ATC:NMF 5 0.788 0.755 0.819 0.1216 0.874 0.588
#> SD:skmeans 5 0.810 0.854 0.886 0.1036 0.840 0.529
#> CV:skmeans 5 0.791 0.838 0.878 0.1140 0.840 0.529
#> MAD:skmeans 5 0.877 0.955 0.947 0.1174 0.896 0.655
#> ATC:skmeans 5 0.843 0.861 0.879 0.1036 0.896 0.655
#> SD:mclust 5 0.779 0.741 0.839 0.1044 0.929 0.766
#> CV:mclust 5 0.806 0.839 0.865 0.1042 0.929 0.766
#> MAD:mclust 5 1.000 0.999 1.000 0.1029 0.926 0.729
#> ATC:mclust 5 0.871 0.971 0.919 0.1074 0.896 0.655
#> SD:kmeans 5 0.614 0.574 0.697 0.1373 0.779 0.540
#> CV:kmeans 5 0.590 0.571 0.720 0.1289 0.831 0.649
#> MAD:kmeans 5 0.615 0.574 0.635 0.0803 0.820 0.524
#> ATC:kmeans 5 0.620 0.658 0.681 0.1039 0.872 0.644
#> SD:pam 5 0.864 0.959 0.943 0.0701 0.975 0.934
#> CV:pam 5 0.797 0.919 0.929 0.0615 0.975 0.934
#> MAD:pam 5 0.816 0.837 0.845 0.0723 0.975 0.919
#> ATC:pam 5 0.959 0.951 0.977 0.0360 0.975 0.919
#> SD:hclust 5 0.684 0.862 0.915 0.2179 0.892 0.764
#> CV:hclust 5 0.745 0.795 0.786 0.1141 0.862 0.653
#> MAD:hclust 5 0.837 0.842 0.865 0.0881 1.000 1.000
#> ATC:hclust 5 1.000 0.992 0.995 0.3261 0.822 0.609
get_stats(res_list, k = 6)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 6 0.769 0.804 0.821 0.0432 1.000 1.000
#> CV:NMF 6 0.804 0.623 0.745 0.0515 0.889 0.619
#> MAD:NMF 6 0.802 0.703 0.821 0.0438 0.990 0.948
#> ATC:NMF 6 0.793 0.839 0.854 0.0528 0.945 0.765
#> SD:skmeans 6 0.843 0.788 0.817 0.0623 0.862 0.514
#> CV:skmeans 6 0.813 0.724 0.855 0.0566 0.892 0.576
#> MAD:skmeans 6 0.948 0.950 0.920 0.0406 0.982 0.907
#> ATC:skmeans 6 0.843 0.855 0.742 0.0542 0.923 0.655
#> SD:mclust 6 0.834 0.870 0.874 0.0775 0.905 0.620
#> CV:mclust 6 0.892 0.909 0.918 0.0671 0.932 0.709
#> MAD:mclust 6 0.942 0.971 0.955 0.0333 0.975 0.876
#> ATC:mclust 6 0.966 0.985 0.986 0.0561 0.975 0.876
#> SD:kmeans 6 0.637 0.707 0.677 0.0826 0.865 0.575
#> CV:kmeans 6 0.627 0.611 0.631 0.0871 0.828 0.519
#> MAD:kmeans 6 0.649 0.784 0.723 0.0545 0.951 0.801
#> ATC:kmeans 6 0.611 0.741 0.702 0.0448 0.929 0.718
#> SD:pam 6 0.817 0.946 0.926 0.1851 0.843 0.551
#> CV:pam 6 0.910 0.955 0.955 0.1319 0.911 0.744
#> MAD:pam 6 0.912 0.850 0.876 0.0927 0.840 0.493
#> ATC:pam 6 0.902 0.929 0.908 0.0953 0.929 0.746
#> SD:hclust 6 0.810 0.890 0.936 0.1278 0.911 0.744
#> CV:hclust 6 0.911 0.936 0.970 0.0738 0.975 0.914
#> MAD:hclust 6 0.856 0.930 0.901 0.0744 0.871 0.574
#> ATC:hclust 6 1.000 0.996 0.997 0.1444 0.896 0.624
Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.
collect_stats(res_list, k = 2)
collect_stats(res_list, k = 3)
collect_stats(res_list, k = 4)
collect_stats(res_list, k = 5)
collect_stats(res_list, k = 6)
Collect partitions from all methods:
collect_classes(res_list, k = 2)
collect_classes(res_list, k = 3)
collect_classes(res_list, k = 4)
collect_classes(res_list, k = 5)
collect_classes(res_list, k = 6)
Overlap of top rows from different top-row methods:
top_rows_overlap(res_list, top_n = 1000, method = "euler")
top_rows_overlap(res_list, top_n = 2000, method = "euler")
top_rows_overlap(res_list, top_n = 3000, method = "euler")
top_rows_overlap(res_list, top_n = 4000, method = "euler")
top_rows_overlap(res_list, top_n = 5000, method = "euler")
Also visualize the correspondance of rankings between different top-row methods:
top_rows_overlap(res_list, top_n = 1000, method = "correspondance")
top_rows_overlap(res_list, top_n = 2000, method = "correspondance")
top_rows_overlap(res_list, top_n = 3000, method = "correspondance")
top_rows_overlap(res_list, top_n = 4000, method = "correspondance")
top_rows_overlap(res_list, top_n = 5000, method = "correspondance")
Heatmaps of the top rows:
top_rows_heatmap(res_list, top_n = 1000)
top_rows_heatmap(res_list, top_n = 2000)
top_rows_heatmap(res_list, top_n = 3000)
top_rows_heatmap(res_list, top_n = 4000)
top_rows_heatmap(res_list, top_n = 5000)
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15301 rows and 63 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.538 0.733 0.842 0.2829 0.775 0.775
#> 3 3 1.000 1.000 1.000 0.8368 0.706 0.621
#> 4 4 0.868 0.968 0.964 0.0775 0.975 0.949
#> 5 5 0.684 0.862 0.915 0.2179 0.892 0.764
#> 6 6 0.810 0.890 0.936 0.1278 0.911 0.744
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1562718 2 0.000 0.786 0.000 1.000
#> SRR1562719 2 0.000 0.786 0.000 1.000
#> SRR1562720 2 0.000 0.786 0.000 1.000
#> SRR1562721 2 0.000 0.786 0.000 1.000
#> SRR1562723 2 0.000 0.786 0.000 1.000
#> SRR1562724 2 0.000 0.786 0.000 1.000
#> SRR1562725 2 0.000 0.786 0.000 1.000
#> SRR1562726 2 0.000 0.786 0.000 1.000
#> SRR1562727 2 0.000 0.786 0.000 1.000
#> SRR1562728 2 0.000 0.786 0.000 1.000
#> SRR1562729 2 0.000 0.786 0.000 1.000
#> SRR1562730 2 0.000 0.786 0.000 1.000
#> SRR1562731 2 0.000 0.786 0.000 1.000
#> SRR1562732 2 0.000 0.786 0.000 1.000
#> SRR1562733 2 0.000 0.786 0.000 1.000
#> SRR1562734 2 0.000 0.786 0.000 1.000
#> SRR1562735 2 0.000 0.786 0.000 1.000
#> SRR1562736 2 0.000 0.786 0.000 1.000
#> SRR1562737 2 0.000 0.786 0.000 1.000
#> SRR1562738 2 0.000 0.786 0.000 1.000
#> SRR1562739 2 0.000 0.786 0.000 1.000
#> SRR1562740 2 0.000 0.786 0.000 1.000
#> SRR1562741 2 0.000 0.786 0.000 1.000
#> SRR1562742 2 0.000 0.786 0.000 1.000
#> SRR1562743 2 0.000 0.786 0.000 1.000
#> SRR1562744 2 0.000 0.786 0.000 1.000
#> SRR1562745 2 0.000 0.786 0.000 1.000
#> SRR1562746 2 0.000 0.786 0.000 1.000
#> SRR1562747 2 0.000 0.786 0.000 1.000
#> SRR1562748 2 0.000 0.786 0.000 1.000
#> SRR1562749 2 0.000 0.786 0.000 1.000
#> SRR1562750 2 0.000 0.786 0.000 1.000
#> SRR1562751 2 0.000 0.786 0.000 1.000
#> SRR1562752 2 0.000 0.786 0.000 1.000
#> SRR1562753 2 0.000 0.786 0.000 1.000
#> SRR1562754 2 0.000 0.786 0.000 1.000
#> SRR1562755 2 0.000 0.786 0.000 1.000
#> SRR1562756 2 0.000 0.786 0.000 1.000
#> SRR1562757 2 0.000 0.786 0.000 1.000
#> SRR1562758 2 0.000 0.786 0.000 1.000
#> SRR1562759 2 0.000 0.786 0.000 1.000
#> SRR1562792 1 0.993 1.000 0.548 0.452
#> SRR1562793 1 0.993 1.000 0.548 0.452
#> SRR1562794 1 0.993 1.000 0.548 0.452
#> SRR1562795 1 0.993 1.000 0.548 0.452
#> SRR1562796 1 0.993 1.000 0.548 0.452
#> SRR1562797 1 0.993 1.000 0.548 0.452
#> SRR1562798 1 0.993 1.000 0.548 0.452
#> SRR1562799 1 0.993 1.000 0.548 0.452
#> SRR1562800 2 0.993 0.424 0.452 0.548
#> SRR1562801 2 0.993 0.424 0.452 0.548
#> SRR1562802 2 0.993 0.424 0.452 0.548
#> SRR1562803 2 0.993 0.424 0.452 0.548
#> SRR1562804 2 0.993 0.424 0.452 0.548
#> SRR1562805 2 0.993 0.424 0.452 0.548
#> SRR1562806 2 0.993 0.424 0.452 0.548
#> SRR1562807 2 0.993 0.424 0.452 0.548
#> SRR1562808 2 0.993 0.424 0.452 0.548
#> SRR1562809 2 0.993 0.424 0.452 0.548
#> SRR1562810 2 0.993 0.424 0.452 0.548
#> SRR1562811 2 0.993 0.424 0.452 0.548
#> SRR1562812 2 0.993 0.424 0.452 0.548
#> SRR1562813 2 0.993 0.424 0.452 0.548
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1562718 2 0 1 0 1 0
#> SRR1562719 2 0 1 0 1 0
#> SRR1562720 2 0 1 0 1 0
#> SRR1562721 2 0 1 0 1 0
#> SRR1562723 2 0 1 0 1 0
#> SRR1562724 2 0 1 0 1 0
#> SRR1562725 2 0 1 0 1 0
#> SRR1562726 2 0 1 0 1 0
#> SRR1562727 2 0 1 0 1 0
#> SRR1562728 2 0 1 0 1 0
#> SRR1562729 2 0 1 0 1 0
#> SRR1562730 2 0 1 0 1 0
#> SRR1562731 2 0 1 0 1 0
#> SRR1562732 2 0 1 0 1 0
#> SRR1562733 2 0 1 0 1 0
#> SRR1562734 2 0 1 0 1 0
#> SRR1562735 2 0 1 0 1 0
#> SRR1562736 2 0 1 0 1 0
#> SRR1562737 2 0 1 0 1 0
#> SRR1562738 2 0 1 0 1 0
#> SRR1562739 2 0 1 0 1 0
#> SRR1562740 2 0 1 0 1 0
#> SRR1562741 2 0 1 0 1 0
#> SRR1562742 2 0 1 0 1 0
#> SRR1562743 2 0 1 0 1 0
#> SRR1562744 2 0 1 0 1 0
#> SRR1562745 2 0 1 0 1 0
#> SRR1562746 2 0 1 0 1 0
#> SRR1562747 2 0 1 0 1 0
#> SRR1562748 2 0 1 0 1 0
#> SRR1562749 2 0 1 0 1 0
#> SRR1562750 2 0 1 0 1 0
#> SRR1562751 2 0 1 0 1 0
#> SRR1562752 2 0 1 0 1 0
#> SRR1562753 2 0 1 0 1 0
#> SRR1562754 2 0 1 0 1 0
#> SRR1562755 2 0 1 0 1 0
#> SRR1562756 2 0 1 0 1 0
#> SRR1562757 2 0 1 0 1 0
#> SRR1562758 2 0 1 0 1 0
#> SRR1562759 2 0 1 0 1 0
#> SRR1562792 3 0 1 0 0 1
#> SRR1562793 3 0 1 0 0 1
#> SRR1562794 3 0 1 0 0 1
#> SRR1562795 3 0 1 0 0 1
#> SRR1562796 3 0 1 0 0 1
#> SRR1562797 3 0 1 0 0 1
#> SRR1562798 3 0 1 0 0 1
#> SRR1562799 3 0 1 0 0 1
#> SRR1562800 1 0 1 1 0 0
#> SRR1562801 1 0 1 1 0 0
#> SRR1562802 1 0 1 1 0 0
#> SRR1562803 1 0 1 1 0 0
#> SRR1562804 1 0 1 1 0 0
#> SRR1562805 1 0 1 1 0 0
#> SRR1562806 1 0 1 1 0 0
#> SRR1562807 1 0 1 1 0 0
#> SRR1562808 1 0 1 1 0 0
#> SRR1562809 1 0 1 1 0 0
#> SRR1562810 1 0 1 1 0 0
#> SRR1562811 1 0 1 1 0 0
#> SRR1562812 1 0 1 1 0 0
#> SRR1562813 1 0 1 1 0 0
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1562718 2 0.0000 0.973 0.000 1.000 0 0.000
#> SRR1562719 2 0.0000 0.973 0.000 1.000 0 0.000
#> SRR1562720 2 0.0000 0.973 0.000 1.000 0 0.000
#> SRR1562721 2 0.0000 0.973 0.000 1.000 0 0.000
#> SRR1562723 2 0.0000 0.973 0.000 1.000 0 0.000
#> SRR1562724 2 0.0000 0.973 0.000 1.000 0 0.000
#> SRR1562725 2 0.0000 0.973 0.000 1.000 0 0.000
#> SRR1562726 2 0.0000 0.973 0.000 1.000 0 0.000
#> SRR1562727 2 0.0000 0.973 0.000 1.000 0 0.000
#> SRR1562728 2 0.0000 0.973 0.000 1.000 0 0.000
#> SRR1562729 2 0.0000 0.973 0.000 1.000 0 0.000
#> SRR1562730 2 0.0000 0.973 0.000 1.000 0 0.000
#> SRR1562731 2 0.0000 0.973 0.000 1.000 0 0.000
#> SRR1562732 2 0.0000 0.973 0.000 1.000 0 0.000
#> SRR1562733 2 0.0000 0.973 0.000 1.000 0 0.000
#> SRR1562734 2 0.0000 0.973 0.000 1.000 0 0.000
#> SRR1562735 2 0.0000 0.973 0.000 1.000 0 0.000
#> SRR1562736 2 0.0000 0.973 0.000 1.000 0 0.000
#> SRR1562737 2 0.0000 0.973 0.000 1.000 0 0.000
#> SRR1562738 2 0.0000 0.973 0.000 1.000 0 0.000
#> SRR1562739 2 0.0000 0.973 0.000 1.000 0 0.000
#> SRR1562740 2 0.0000 0.973 0.000 1.000 0 0.000
#> SRR1562741 2 0.0000 0.973 0.000 1.000 0 0.000
#> SRR1562742 2 0.0000 0.973 0.000 1.000 0 0.000
#> SRR1562743 2 0.0000 0.973 0.000 1.000 0 0.000
#> SRR1562744 2 0.0000 0.973 0.000 1.000 0 0.000
#> SRR1562745 2 0.0000 0.973 0.000 1.000 0 0.000
#> SRR1562746 2 0.0000 0.973 0.000 1.000 0 0.000
#> SRR1562747 2 0.0000 0.973 0.000 1.000 0 0.000
#> SRR1562748 2 0.3486 0.825 0.000 0.812 0 0.188
#> SRR1562749 2 0.3486 0.825 0.000 0.812 0 0.188
#> SRR1562750 2 0.3486 0.825 0.000 0.812 0 0.188
#> SRR1562751 2 0.3486 0.825 0.000 0.812 0 0.188
#> SRR1562752 2 0.3486 0.825 0.000 0.812 0 0.188
#> SRR1562753 2 0.3486 0.825 0.000 0.812 0 0.188
#> SRR1562754 2 0.0188 0.971 0.000 0.996 0 0.004
#> SRR1562755 2 0.0188 0.971 0.000 0.996 0 0.004
#> SRR1562756 2 0.0188 0.971 0.000 0.996 0 0.004
#> SRR1562757 2 0.0188 0.971 0.000 0.996 0 0.004
#> SRR1562758 2 0.0188 0.971 0.000 0.996 0 0.004
#> SRR1562759 2 0.0188 0.971 0.000 0.996 0 0.004
#> SRR1562792 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1562793 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1562794 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1562795 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1562796 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1562797 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1562798 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1562799 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1562800 4 0.3486 1.000 0.188 0.000 0 0.812
#> SRR1562801 4 0.3486 1.000 0.188 0.000 0 0.812
#> SRR1562802 4 0.3486 1.000 0.188 0.000 0 0.812
#> SRR1562803 4 0.3486 1.000 0.188 0.000 0 0.812
#> SRR1562804 4 0.3486 1.000 0.188 0.000 0 0.812
#> SRR1562805 4 0.3486 1.000 0.188 0.000 0 0.812
#> SRR1562806 1 0.0000 1.000 1.000 0.000 0 0.000
#> SRR1562807 1 0.0000 1.000 1.000 0.000 0 0.000
#> SRR1562808 1 0.0000 1.000 1.000 0.000 0 0.000
#> SRR1562809 1 0.0000 1.000 1.000 0.000 0 0.000
#> SRR1562810 1 0.0000 1.000 1.000 0.000 0 0.000
#> SRR1562811 1 0.0000 1.000 1.000 0.000 0 0.000
#> SRR1562812 1 0.0000 1.000 1.000 0.000 0 0.000
#> SRR1562813 1 0.0000 1.000 1.000 0.000 0 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1562718 2 0.000 0.834 0 1.000 0 0.000 0
#> SRR1562719 2 0.000 0.834 0 1.000 0 0.000 0
#> SRR1562720 2 0.000 0.834 0 1.000 0 0.000 0
#> SRR1562721 2 0.000 0.834 0 1.000 0 0.000 0
#> SRR1562723 2 0.000 0.834 0 1.000 0 0.000 0
#> SRR1562724 2 0.000 0.834 0 1.000 0 0.000 0
#> SRR1562725 2 0.000 0.834 0 1.000 0 0.000 0
#> SRR1562726 2 0.000 0.834 0 1.000 0 0.000 0
#> SRR1562727 2 0.000 0.834 0 1.000 0 0.000 0
#> SRR1562728 2 0.000 0.834 0 1.000 0 0.000 0
#> SRR1562729 2 0.000 0.834 0 1.000 0 0.000 0
#> SRR1562730 2 0.242 0.746 0 0.868 0 0.132 0
#> SRR1562731 2 0.242 0.746 0 0.868 0 0.132 0
#> SRR1562732 2 0.242 0.746 0 0.868 0 0.132 0
#> SRR1562733 2 0.242 0.746 0 0.868 0 0.132 0
#> SRR1562734 2 0.242 0.746 0 0.868 0 0.132 0
#> SRR1562735 2 0.242 0.746 0 0.868 0 0.132 0
#> SRR1562736 2 0.223 0.826 0 0.884 0 0.116 0
#> SRR1562737 2 0.223 0.826 0 0.884 0 0.116 0
#> SRR1562738 2 0.223 0.826 0 0.884 0 0.116 0
#> SRR1562739 2 0.223 0.826 0 0.884 0 0.116 0
#> SRR1562740 2 0.223 0.826 0 0.884 0 0.116 0
#> SRR1562741 2 0.223 0.826 0 0.884 0 0.116 0
#> SRR1562742 2 0.223 0.826 0 0.884 0 0.116 0
#> SRR1562743 2 0.223 0.826 0 0.884 0 0.116 0
#> SRR1562744 2 0.223 0.826 0 0.884 0 0.116 0
#> SRR1562745 2 0.223 0.826 0 0.884 0 0.116 0
#> SRR1562746 2 0.223 0.826 0 0.884 0 0.116 0
#> SRR1562747 2 0.223 0.826 0 0.884 0 0.116 0
#> SRR1562748 4 0.242 1.000 0 0.132 0 0.868 0
#> SRR1562749 4 0.242 1.000 0 0.132 0 0.868 0
#> SRR1562750 4 0.242 1.000 0 0.132 0 0.868 0
#> SRR1562751 4 0.242 1.000 0 0.132 0 0.868 0
#> SRR1562752 4 0.242 1.000 0 0.132 0 0.868 0
#> SRR1562753 4 0.242 1.000 0 0.132 0 0.868 0
#> SRR1562754 2 0.413 0.459 0 0.620 0 0.380 0
#> SRR1562755 2 0.413 0.459 0 0.620 0 0.380 0
#> SRR1562756 2 0.413 0.459 0 0.620 0 0.380 0
#> SRR1562757 2 0.413 0.459 0 0.620 0 0.380 0
#> SRR1562758 2 0.413 0.459 0 0.620 0 0.380 0
#> SRR1562759 2 0.413 0.459 0 0.620 0 0.380 0
#> SRR1562792 3 0.000 1.000 0 0.000 1 0.000 0
#> SRR1562793 3 0.000 1.000 0 0.000 1 0.000 0
#> SRR1562794 3 0.000 1.000 0 0.000 1 0.000 0
#> SRR1562795 3 0.000 1.000 0 0.000 1 0.000 0
#> SRR1562796 3 0.000 1.000 0 0.000 1 0.000 0
#> SRR1562797 3 0.000 1.000 0 0.000 1 0.000 0
#> SRR1562798 3 0.000 1.000 0 0.000 1 0.000 0
#> SRR1562799 3 0.000 1.000 0 0.000 1 0.000 0
#> SRR1562800 5 0.000 1.000 0 0.000 0 0.000 1
#> SRR1562801 5 0.000 1.000 0 0.000 0 0.000 1
#> SRR1562802 5 0.000 1.000 0 0.000 0 0.000 1
#> SRR1562803 5 0.000 1.000 0 0.000 0 0.000 1
#> SRR1562804 5 0.000 1.000 0 0.000 0 0.000 1
#> SRR1562805 5 0.000 1.000 0 0.000 0 0.000 1
#> SRR1562806 1 0.000 1.000 1 0.000 0 0.000 0
#> SRR1562807 1 0.000 1.000 1 0.000 0 0.000 0
#> SRR1562808 1 0.000 1.000 1 0.000 0 0.000 0
#> SRR1562809 1 0.000 1.000 1 0.000 0 0.000 0
#> SRR1562810 1 0.000 1.000 1 0.000 0 0.000 0
#> SRR1562811 1 0.000 1.000 1 0.000 0 0.000 0
#> SRR1562812 1 0.000 1.000 1 0.000 0 0.000 0
#> SRR1562813 1 0.000 1.000 1 0.000 0 0.000 0
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1562718 5 0.2941 0.766 0 0.220 0 0.00 0.780 0
#> SRR1562719 5 0.2941 0.766 0 0.220 0 0.00 0.780 0
#> SRR1562720 5 0.2941 0.766 0 0.220 0 0.00 0.780 0
#> SRR1562721 5 0.2941 0.766 0 0.220 0 0.00 0.780 0
#> SRR1562723 5 0.2941 0.766 0 0.220 0 0.00 0.780 0
#> SRR1562724 5 0.2941 0.766 0 0.220 0 0.00 0.780 0
#> SRR1562725 5 0.2941 0.766 0 0.220 0 0.00 0.780 0
#> SRR1562726 5 0.2941 0.766 0 0.220 0 0.00 0.780 0
#> SRR1562727 5 0.2941 0.766 0 0.220 0 0.00 0.780 0
#> SRR1562728 5 0.2941 0.766 0 0.220 0 0.00 0.780 0
#> SRR1562729 5 0.2941 0.766 0 0.220 0 0.00 0.780 0
#> SRR1562730 2 0.0146 1.000 0 0.996 0 0.00 0.004 0
#> SRR1562731 2 0.0146 1.000 0 0.996 0 0.00 0.004 0
#> SRR1562732 2 0.0146 1.000 0 0.996 0 0.00 0.004 0
#> SRR1562733 2 0.0146 1.000 0 0.996 0 0.00 0.004 0
#> SRR1562734 2 0.0146 1.000 0 0.996 0 0.00 0.004 0
#> SRR1562735 2 0.0146 1.000 0 0.996 0 0.00 0.004 0
#> SRR1562736 5 0.0000 0.829 0 0.000 0 0.00 1.000 0
#> SRR1562737 5 0.0000 0.829 0 0.000 0 0.00 1.000 0
#> SRR1562738 5 0.0000 0.829 0 0.000 0 0.00 1.000 0
#> SRR1562739 5 0.0000 0.829 0 0.000 0 0.00 1.000 0
#> SRR1562740 5 0.0000 0.829 0 0.000 0 0.00 1.000 0
#> SRR1562741 5 0.0000 0.829 0 0.000 0 0.00 1.000 0
#> SRR1562742 5 0.0000 0.829 0 0.000 0 0.00 1.000 0
#> SRR1562743 5 0.0000 0.829 0 0.000 0 0.00 1.000 0
#> SRR1562744 5 0.0000 0.829 0 0.000 0 0.00 1.000 0
#> SRR1562745 5 0.0000 0.829 0 0.000 0 0.00 1.000 0
#> SRR1562746 5 0.0000 0.829 0 0.000 0 0.00 1.000 0
#> SRR1562747 5 0.0000 0.829 0 0.000 0 0.00 1.000 0
#> SRR1562748 4 0.0000 1.000 0 0.000 0 1.00 0.000 0
#> SRR1562749 4 0.0000 1.000 0 0.000 0 1.00 0.000 0
#> SRR1562750 4 0.0000 1.000 0 0.000 0 1.00 0.000 0
#> SRR1562751 4 0.0000 1.000 0 0.000 0 1.00 0.000 0
#> SRR1562752 4 0.0000 1.000 0 0.000 0 1.00 0.000 0
#> SRR1562753 4 0.0000 1.000 0 0.000 0 1.00 0.000 0
#> SRR1562754 5 0.3337 0.620 0 0.004 0 0.26 0.736 0
#> SRR1562755 5 0.3337 0.620 0 0.004 0 0.26 0.736 0
#> SRR1562756 5 0.3337 0.620 0 0.004 0 0.26 0.736 0
#> SRR1562757 5 0.3337 0.620 0 0.004 0 0.26 0.736 0
#> SRR1562758 5 0.3337 0.620 0 0.004 0 0.26 0.736 0
#> SRR1562759 5 0.3337 0.620 0 0.004 0 0.26 0.736 0
#> SRR1562792 3 0.0000 1.000 0 0.000 1 0.00 0.000 0
#> SRR1562793 3 0.0000 1.000 0 0.000 1 0.00 0.000 0
#> SRR1562794 3 0.0000 1.000 0 0.000 1 0.00 0.000 0
#> SRR1562795 3 0.0000 1.000 0 0.000 1 0.00 0.000 0
#> SRR1562796 3 0.0000 1.000 0 0.000 1 0.00 0.000 0
#> SRR1562797 3 0.0000 1.000 0 0.000 1 0.00 0.000 0
#> SRR1562798 3 0.0000 1.000 0 0.000 1 0.00 0.000 0
#> SRR1562799 3 0.0000 1.000 0 0.000 1 0.00 0.000 0
#> SRR1562800 6 0.0000 1.000 0 0.000 0 0.00 0.000 1
#> SRR1562801 6 0.0000 1.000 0 0.000 0 0.00 0.000 1
#> SRR1562802 6 0.0000 1.000 0 0.000 0 0.00 0.000 1
#> SRR1562803 6 0.0000 1.000 0 0.000 0 0.00 0.000 1
#> SRR1562804 6 0.0000 1.000 0 0.000 0 0.00 0.000 1
#> SRR1562805 6 0.0000 1.000 0 0.000 0 0.00 0.000 1
#> SRR1562806 1 0.0000 1.000 1 0.000 0 0.00 0.000 0
#> SRR1562807 1 0.0000 1.000 1 0.000 0 0.00 0.000 0
#> SRR1562808 1 0.0000 1.000 1 0.000 0 0.00 0.000 0
#> SRR1562809 1 0.0000 1.000 1 0.000 0 0.00 0.000 0
#> SRR1562810 1 0.0000 1.000 1 0.000 0 0.00 0.000 0
#> SRR1562811 1 0.0000 1.000 1 0.000 0 0.00 0.000 0
#> SRR1562812 1 0.0000 1.000 1 0.000 0 0.00 0.000 0
#> SRR1562813 1 0.0000 1.000 1 0.000 0 0.00 0.000 0
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15301 rows and 63 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.481 0.577 0.805 0.3347 0.775 0.775
#> 3 3 1.000 0.978 0.949 0.4870 0.706 0.621
#> 4 4 0.614 0.834 0.796 0.2503 0.975 0.949
#> 5 5 0.614 0.574 0.697 0.1373 0.779 0.540
#> 6 6 0.637 0.707 0.677 0.0826 0.865 0.575
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1562718 2 0.973 0.7014 0.404 0.596
#> SRR1562719 2 0.973 0.7014 0.404 0.596
#> SRR1562720 2 0.973 0.7014 0.404 0.596
#> SRR1562721 2 0.973 0.7014 0.404 0.596
#> SRR1562723 2 0.973 0.7014 0.404 0.596
#> SRR1562724 2 0.973 0.7014 0.404 0.596
#> SRR1562725 2 0.973 0.7014 0.404 0.596
#> SRR1562726 2 0.973 0.7014 0.404 0.596
#> SRR1562727 2 0.973 0.7014 0.404 0.596
#> SRR1562728 2 0.973 0.7014 0.404 0.596
#> SRR1562729 2 0.973 0.7014 0.404 0.596
#> SRR1562730 2 0.973 0.7014 0.404 0.596
#> SRR1562731 2 0.973 0.7014 0.404 0.596
#> SRR1562732 2 0.973 0.7014 0.404 0.596
#> SRR1562733 2 0.973 0.7014 0.404 0.596
#> SRR1562734 2 0.973 0.7014 0.404 0.596
#> SRR1562735 2 0.973 0.7014 0.404 0.596
#> SRR1562736 2 0.973 0.7014 0.404 0.596
#> SRR1562737 2 0.973 0.7014 0.404 0.596
#> SRR1562738 2 0.973 0.7014 0.404 0.596
#> SRR1562739 2 0.973 0.7014 0.404 0.596
#> SRR1562740 2 0.973 0.7014 0.404 0.596
#> SRR1562741 2 0.973 0.7014 0.404 0.596
#> SRR1562742 2 0.973 0.7014 0.404 0.596
#> SRR1562743 2 0.973 0.7014 0.404 0.596
#> SRR1562744 2 0.973 0.7014 0.404 0.596
#> SRR1562745 2 0.973 0.7014 0.404 0.596
#> SRR1562746 2 0.973 0.7014 0.404 0.596
#> SRR1562747 2 0.973 0.7014 0.404 0.596
#> SRR1562748 2 0.973 0.7014 0.404 0.596
#> SRR1562749 2 0.973 0.7014 0.404 0.596
#> SRR1562750 2 0.973 0.7014 0.404 0.596
#> SRR1562751 2 0.973 0.7014 0.404 0.596
#> SRR1562752 2 0.973 0.7014 0.404 0.596
#> SRR1562753 2 0.973 0.7014 0.404 0.596
#> SRR1562754 2 0.973 0.7014 0.404 0.596
#> SRR1562755 2 0.973 0.7014 0.404 0.596
#> SRR1562756 2 0.973 0.7014 0.404 0.596
#> SRR1562757 2 0.973 0.7014 0.404 0.596
#> SRR1562758 2 0.973 0.7014 0.404 0.596
#> SRR1562759 2 0.973 0.7014 0.404 0.596
#> SRR1562792 1 0.000 1.0000 1.000 0.000
#> SRR1562793 1 0.000 1.0000 1.000 0.000
#> SRR1562794 1 0.000 1.0000 1.000 0.000
#> SRR1562795 1 0.000 1.0000 1.000 0.000
#> SRR1562796 1 0.000 1.0000 1.000 0.000
#> SRR1562797 1 0.000 1.0000 1.000 0.000
#> SRR1562798 1 0.000 1.0000 1.000 0.000
#> SRR1562799 1 0.000 1.0000 1.000 0.000
#> SRR1562800 2 0.802 -0.0282 0.244 0.756
#> SRR1562801 2 0.802 -0.0282 0.244 0.756
#> SRR1562802 2 0.802 -0.0282 0.244 0.756
#> SRR1562803 2 0.802 -0.0282 0.244 0.756
#> SRR1562804 2 0.802 -0.0282 0.244 0.756
#> SRR1562805 2 0.802 -0.0282 0.244 0.756
#> SRR1562806 2 0.802 -0.0282 0.244 0.756
#> SRR1562807 2 0.802 -0.0282 0.244 0.756
#> SRR1562808 2 0.802 -0.0282 0.244 0.756
#> SRR1562809 2 0.802 -0.0282 0.244 0.756
#> SRR1562810 2 0.802 -0.0282 0.244 0.756
#> SRR1562811 2 0.802 -0.0282 0.244 0.756
#> SRR1562812 2 0.802 -0.0282 0.244 0.756
#> SRR1562813 2 0.802 -0.0282 0.244 0.756
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1562718 2 0.1031 0.982 0.000 0.976 0.024
#> SRR1562719 2 0.1031 0.982 0.000 0.976 0.024
#> SRR1562720 2 0.1031 0.982 0.000 0.976 0.024
#> SRR1562721 2 0.1031 0.982 0.000 0.976 0.024
#> SRR1562723 2 0.1031 0.982 0.000 0.976 0.024
#> SRR1562724 2 0.1163 0.981 0.000 0.972 0.028
#> SRR1562725 2 0.1163 0.981 0.000 0.972 0.028
#> SRR1562726 2 0.1163 0.981 0.000 0.972 0.028
#> SRR1562727 2 0.1163 0.981 0.000 0.972 0.028
#> SRR1562728 2 0.1163 0.981 0.000 0.972 0.028
#> SRR1562729 2 0.1163 0.981 0.000 0.972 0.028
#> SRR1562730 2 0.1411 0.979 0.000 0.964 0.036
#> SRR1562731 2 0.1411 0.979 0.000 0.964 0.036
#> SRR1562732 2 0.1411 0.979 0.000 0.964 0.036
#> SRR1562733 2 0.1411 0.979 0.000 0.964 0.036
#> SRR1562734 2 0.1411 0.979 0.000 0.964 0.036
#> SRR1562735 2 0.1411 0.979 0.000 0.964 0.036
#> SRR1562736 2 0.0237 0.985 0.000 0.996 0.004
#> SRR1562737 2 0.0237 0.985 0.000 0.996 0.004
#> SRR1562738 2 0.0237 0.985 0.000 0.996 0.004
#> SRR1562739 2 0.0237 0.985 0.000 0.996 0.004
#> SRR1562740 2 0.0237 0.985 0.000 0.996 0.004
#> SRR1562741 2 0.0237 0.985 0.000 0.996 0.004
#> SRR1562742 2 0.0237 0.984 0.000 0.996 0.004
#> SRR1562743 2 0.0237 0.984 0.000 0.996 0.004
#> SRR1562744 2 0.0237 0.984 0.000 0.996 0.004
#> SRR1562745 2 0.0237 0.984 0.000 0.996 0.004
#> SRR1562746 2 0.0237 0.984 0.000 0.996 0.004
#> SRR1562747 2 0.0237 0.984 0.000 0.996 0.004
#> SRR1562748 2 0.0592 0.984 0.000 0.988 0.012
#> SRR1562749 2 0.0592 0.984 0.000 0.988 0.012
#> SRR1562750 2 0.0592 0.984 0.000 0.988 0.012
#> SRR1562751 2 0.0592 0.984 0.000 0.988 0.012
#> SRR1562752 2 0.0592 0.984 0.000 0.988 0.012
#> SRR1562753 2 0.0592 0.984 0.000 0.988 0.012
#> SRR1562754 2 0.0424 0.984 0.000 0.992 0.008
#> SRR1562755 2 0.0424 0.984 0.000 0.992 0.008
#> SRR1562756 2 0.0424 0.984 0.000 0.992 0.008
#> SRR1562757 2 0.0424 0.984 0.000 0.992 0.008
#> SRR1562758 2 0.0424 0.984 0.000 0.992 0.008
#> SRR1562759 2 0.0424 0.984 0.000 0.992 0.008
#> SRR1562792 3 0.4232 0.979 0.044 0.084 0.872
#> SRR1562793 3 0.4232 0.979 0.044 0.084 0.872
#> SRR1562794 3 0.4232 0.979 0.044 0.084 0.872
#> SRR1562795 3 0.4232 0.979 0.044 0.084 0.872
#> SRR1562796 3 0.5500 0.979 0.100 0.084 0.816
#> SRR1562797 3 0.5500 0.979 0.100 0.084 0.816
#> SRR1562798 3 0.5500 0.979 0.100 0.084 0.816
#> SRR1562799 3 0.5500 0.979 0.100 0.084 0.816
#> SRR1562800 1 0.4281 0.960 0.872 0.056 0.072
#> SRR1562801 1 0.4281 0.960 0.872 0.056 0.072
#> SRR1562802 1 0.4281 0.960 0.872 0.056 0.072
#> SRR1562803 1 0.4281 0.960 0.872 0.056 0.072
#> SRR1562804 1 0.4281 0.960 0.872 0.056 0.072
#> SRR1562805 1 0.4281 0.960 0.872 0.056 0.072
#> SRR1562806 1 0.2384 0.967 0.936 0.056 0.008
#> SRR1562807 1 0.2384 0.967 0.936 0.056 0.008
#> SRR1562808 1 0.2384 0.967 0.936 0.056 0.008
#> SRR1562809 1 0.2384 0.967 0.936 0.056 0.008
#> SRR1562810 1 0.2200 0.968 0.940 0.056 0.004
#> SRR1562811 1 0.2200 0.968 0.940 0.056 0.004
#> SRR1562812 1 0.2200 0.968 0.940 0.056 0.004
#> SRR1562813 1 0.2200 0.968 0.940 0.056 0.004
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1562718 2 0.3528 0.798 0.000 0.808 0.000 0.192
#> SRR1562719 2 0.3528 0.798 0.000 0.808 0.000 0.192
#> SRR1562720 2 0.3528 0.798 0.000 0.808 0.000 0.192
#> SRR1562721 2 0.3528 0.798 0.000 0.808 0.000 0.192
#> SRR1562723 2 0.3528 0.798 0.000 0.808 0.000 0.192
#> SRR1562724 2 0.3852 0.798 0.008 0.800 0.000 0.192
#> SRR1562725 2 0.3852 0.798 0.008 0.800 0.000 0.192
#> SRR1562726 2 0.3852 0.798 0.008 0.800 0.000 0.192
#> SRR1562727 2 0.3852 0.798 0.008 0.800 0.000 0.192
#> SRR1562728 2 0.3852 0.798 0.008 0.800 0.000 0.192
#> SRR1562729 2 0.3852 0.798 0.008 0.800 0.000 0.192
#> SRR1562730 2 0.4560 0.739 0.004 0.700 0.000 0.296
#> SRR1562731 2 0.4560 0.739 0.004 0.700 0.000 0.296
#> SRR1562732 2 0.4560 0.739 0.004 0.700 0.000 0.296
#> SRR1562733 2 0.4560 0.739 0.004 0.700 0.000 0.296
#> SRR1562734 2 0.4560 0.739 0.004 0.700 0.000 0.296
#> SRR1562735 2 0.4560 0.739 0.004 0.700 0.000 0.296
#> SRR1562736 2 0.1637 0.820 0.060 0.940 0.000 0.000
#> SRR1562737 2 0.1637 0.820 0.060 0.940 0.000 0.000
#> SRR1562738 2 0.1637 0.820 0.060 0.940 0.000 0.000
#> SRR1562739 2 0.1637 0.820 0.060 0.940 0.000 0.000
#> SRR1562740 2 0.1637 0.820 0.060 0.940 0.000 0.000
#> SRR1562741 2 0.1637 0.820 0.060 0.940 0.000 0.000
#> SRR1562742 2 0.1677 0.820 0.040 0.948 0.000 0.012
#> SRR1562743 2 0.1677 0.820 0.040 0.948 0.000 0.012
#> SRR1562744 2 0.1677 0.820 0.040 0.948 0.000 0.012
#> SRR1562745 2 0.1677 0.820 0.040 0.948 0.000 0.012
#> SRR1562746 2 0.1677 0.820 0.040 0.948 0.000 0.012
#> SRR1562747 2 0.1677 0.820 0.040 0.948 0.000 0.012
#> SRR1562748 2 0.4222 0.715 0.272 0.728 0.000 0.000
#> SRR1562749 2 0.4222 0.715 0.272 0.728 0.000 0.000
#> SRR1562750 2 0.4222 0.715 0.272 0.728 0.000 0.000
#> SRR1562751 2 0.4222 0.715 0.272 0.728 0.000 0.000
#> SRR1562752 2 0.4222 0.715 0.272 0.728 0.000 0.000
#> SRR1562753 2 0.4222 0.715 0.272 0.728 0.000 0.000
#> SRR1562754 2 0.3123 0.788 0.156 0.844 0.000 0.000
#> SRR1562755 2 0.3123 0.788 0.156 0.844 0.000 0.000
#> SRR1562756 2 0.3123 0.788 0.156 0.844 0.000 0.000
#> SRR1562757 2 0.3123 0.788 0.156 0.844 0.000 0.000
#> SRR1562758 2 0.3123 0.788 0.156 0.844 0.000 0.000
#> SRR1562759 2 0.3123 0.788 0.156 0.844 0.000 0.000
#> SRR1562792 3 0.0817 0.961 0.000 0.024 0.976 0.000
#> SRR1562793 3 0.0817 0.961 0.000 0.024 0.976 0.000
#> SRR1562794 3 0.0817 0.961 0.000 0.024 0.976 0.000
#> SRR1562795 3 0.0817 0.961 0.000 0.024 0.976 0.000
#> SRR1562796 3 0.3143 0.961 0.100 0.024 0.876 0.000
#> SRR1562797 3 0.3143 0.961 0.100 0.024 0.876 0.000
#> SRR1562798 3 0.3143 0.961 0.100 0.024 0.876 0.000
#> SRR1562799 3 0.3143 0.961 0.100 0.024 0.876 0.000
#> SRR1562800 4 0.4535 0.987 0.292 0.000 0.004 0.704
#> SRR1562801 4 0.4535 0.987 0.292 0.000 0.004 0.704
#> SRR1562802 4 0.4535 0.987 0.292 0.000 0.004 0.704
#> SRR1562803 4 0.4535 0.987 0.292 0.000 0.004 0.704
#> SRR1562804 4 0.4908 0.975 0.292 0.000 0.016 0.692
#> SRR1562805 4 0.4908 0.975 0.292 0.000 0.016 0.692
#> SRR1562806 1 0.5070 0.865 0.580 0.000 0.004 0.416
#> SRR1562807 1 0.5070 0.865 0.580 0.000 0.004 0.416
#> SRR1562808 1 0.5070 0.865 0.580 0.000 0.004 0.416
#> SRR1562809 1 0.5070 0.865 0.580 0.000 0.004 0.416
#> SRR1562810 1 0.5483 0.856 0.536 0.000 0.016 0.448
#> SRR1562811 1 0.5483 0.856 0.536 0.000 0.016 0.448
#> SRR1562812 1 0.5483 0.856 0.536 0.000 0.016 0.448
#> SRR1562813 1 0.5483 0.856 0.536 0.000 0.016 0.448
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1562718 2 0.4367 -0.1850 0.000 0.580 0.000 0.004 0.416
#> SRR1562719 2 0.4367 -0.1850 0.000 0.580 0.000 0.004 0.416
#> SRR1562720 2 0.4367 -0.1850 0.000 0.580 0.000 0.004 0.416
#> SRR1562721 2 0.4367 -0.1850 0.000 0.580 0.000 0.004 0.416
#> SRR1562723 2 0.4367 -0.1850 0.000 0.580 0.000 0.004 0.416
#> SRR1562724 2 0.4909 -0.0542 0.000 0.588 0.000 0.032 0.380
#> SRR1562725 2 0.4909 -0.0542 0.000 0.588 0.000 0.032 0.380
#> SRR1562726 2 0.4909 -0.0542 0.000 0.588 0.000 0.032 0.380
#> SRR1562727 2 0.4909 -0.0542 0.000 0.588 0.000 0.032 0.380
#> SRR1562728 2 0.4909 -0.0542 0.000 0.588 0.000 0.032 0.380
#> SRR1562729 2 0.4909 -0.0542 0.000 0.588 0.000 0.032 0.380
#> SRR1562730 5 0.5458 0.9926 0.000 0.380 0.000 0.068 0.552
#> SRR1562731 5 0.5294 0.9941 0.000 0.380 0.000 0.056 0.564
#> SRR1562732 5 0.5405 0.9941 0.000 0.380 0.000 0.064 0.556
#> SRR1562733 5 0.5405 0.9929 0.000 0.380 0.000 0.064 0.556
#> SRR1562734 5 0.5294 0.9941 0.000 0.380 0.000 0.056 0.564
#> SRR1562735 5 0.5351 0.9940 0.000 0.380 0.000 0.060 0.560
#> SRR1562736 2 0.1872 0.4617 0.000 0.928 0.000 0.052 0.020
#> SRR1562737 2 0.1872 0.4617 0.000 0.928 0.000 0.052 0.020
#> SRR1562738 2 0.1872 0.4617 0.000 0.928 0.000 0.052 0.020
#> SRR1562739 2 0.1872 0.4617 0.000 0.928 0.000 0.052 0.020
#> SRR1562740 2 0.1872 0.4617 0.000 0.928 0.000 0.052 0.020
#> SRR1562741 2 0.1872 0.4617 0.000 0.928 0.000 0.052 0.020
#> SRR1562742 2 0.2782 0.4954 0.000 0.880 0.000 0.048 0.072
#> SRR1562743 2 0.2782 0.4954 0.000 0.880 0.000 0.048 0.072
#> SRR1562744 2 0.2782 0.4954 0.000 0.880 0.000 0.048 0.072
#> SRR1562745 2 0.2782 0.4954 0.000 0.880 0.000 0.048 0.072
#> SRR1562746 2 0.2782 0.4954 0.000 0.880 0.000 0.048 0.072
#> SRR1562747 2 0.2782 0.4954 0.000 0.880 0.000 0.048 0.072
#> SRR1562748 4 0.4446 0.9919 0.000 0.476 0.000 0.520 0.004
#> SRR1562749 4 0.4744 0.9898 0.000 0.476 0.000 0.508 0.016
#> SRR1562750 4 0.4655 0.9906 0.000 0.476 0.000 0.512 0.012
#> SRR1562751 4 0.4744 0.9898 0.000 0.476 0.000 0.508 0.016
#> SRR1562752 4 0.4655 0.9913 0.000 0.476 0.000 0.512 0.012
#> SRR1562753 4 0.4827 0.9901 0.000 0.476 0.000 0.504 0.020
#> SRR1562754 2 0.4226 0.1231 0.000 0.764 0.000 0.176 0.060
#> SRR1562755 2 0.4226 0.1231 0.000 0.764 0.000 0.176 0.060
#> SRR1562756 2 0.4226 0.1231 0.000 0.764 0.000 0.176 0.060
#> SRR1562757 2 0.4226 0.1231 0.000 0.764 0.000 0.176 0.060
#> SRR1562758 2 0.4226 0.1231 0.000 0.764 0.000 0.176 0.060
#> SRR1562759 2 0.4226 0.1231 0.000 0.764 0.000 0.176 0.060
#> SRR1562792 3 0.3803 0.9216 0.000 0.000 0.804 0.056 0.140
#> SRR1562793 3 0.3825 0.9216 0.000 0.000 0.804 0.060 0.136
#> SRR1562794 3 0.3825 0.9216 0.000 0.000 0.804 0.060 0.136
#> SRR1562795 3 0.3803 0.9216 0.000 0.000 0.804 0.056 0.140
#> SRR1562796 3 0.0162 0.9216 0.000 0.000 0.996 0.004 0.000
#> SRR1562797 3 0.0000 0.9218 0.000 0.000 1.000 0.000 0.000
#> SRR1562798 3 0.0000 0.9218 0.000 0.000 1.000 0.000 0.000
#> SRR1562799 3 0.0000 0.9218 0.000 0.000 1.000 0.000 0.000
#> SRR1562800 1 0.0000 0.8142 1.000 0.000 0.000 0.000 0.000
#> SRR1562801 1 0.0000 0.8142 1.000 0.000 0.000 0.000 0.000
#> SRR1562802 1 0.0000 0.8142 1.000 0.000 0.000 0.000 0.000
#> SRR1562803 1 0.0000 0.8142 1.000 0.000 0.000 0.000 0.000
#> SRR1562804 1 0.0290 0.8139 0.992 0.000 0.000 0.000 0.008
#> SRR1562805 1 0.0290 0.8139 0.992 0.000 0.000 0.000 0.008
#> SRR1562806 1 0.5530 0.8405 0.640 0.000 0.000 0.228 0.132
#> SRR1562807 1 0.5530 0.8405 0.640 0.000 0.000 0.228 0.132
#> SRR1562808 1 0.5530 0.8405 0.640 0.000 0.000 0.228 0.132
#> SRR1562809 1 0.5530 0.8405 0.640 0.000 0.000 0.228 0.132
#> SRR1562810 1 0.5035 0.8488 0.672 0.000 0.000 0.252 0.076
#> SRR1562811 1 0.5035 0.8488 0.672 0.000 0.000 0.252 0.076
#> SRR1562812 1 0.5035 0.8488 0.672 0.000 0.000 0.252 0.076
#> SRR1562813 1 0.5035 0.8488 0.672 0.000 0.000 0.252 0.076
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1562718 2 0.1765 0.696 0.000 0.924 0.000 0.000 0.052 NA
#> SRR1562719 2 0.1765 0.696 0.000 0.924 0.000 0.000 0.052 NA
#> SRR1562720 2 0.1765 0.696 0.000 0.924 0.000 0.000 0.052 NA
#> SRR1562721 2 0.1765 0.696 0.000 0.924 0.000 0.000 0.052 NA
#> SRR1562723 2 0.1765 0.696 0.000 0.924 0.000 0.000 0.052 NA
#> SRR1562724 2 0.2401 0.682 0.000 0.900 0.000 0.044 0.020 NA
#> SRR1562725 2 0.2401 0.682 0.000 0.900 0.000 0.044 0.020 NA
#> SRR1562726 2 0.2394 0.682 0.000 0.900 0.000 0.048 0.020 NA
#> SRR1562727 2 0.2401 0.682 0.000 0.900 0.000 0.044 0.020 NA
#> SRR1562728 2 0.2394 0.682 0.000 0.900 0.000 0.048 0.020 NA
#> SRR1562729 2 0.2401 0.682 0.000 0.900 0.000 0.044 0.020 NA
#> SRR1562730 2 0.5938 0.629 0.000 0.620 0.000 0.140 0.076 NA
#> SRR1562731 2 0.5900 0.629 0.000 0.620 0.000 0.172 0.068 NA
#> SRR1562732 2 0.5971 0.629 0.000 0.620 0.000 0.144 0.084 NA
#> SRR1562733 2 0.5958 0.629 0.000 0.620 0.000 0.148 0.080 NA
#> SRR1562734 2 0.5916 0.629 0.000 0.620 0.000 0.172 0.072 NA
#> SRR1562735 2 0.5900 0.629 0.000 0.620 0.000 0.172 0.068 NA
#> SRR1562736 5 0.6004 0.614 0.000 0.432 0.000 0.088 0.436 NA
#> SRR1562737 5 0.6004 0.614 0.000 0.432 0.000 0.088 0.436 NA
#> SRR1562738 5 0.6004 0.614 0.000 0.432 0.000 0.088 0.436 NA
#> SRR1562739 5 0.6004 0.614 0.000 0.432 0.000 0.088 0.436 NA
#> SRR1562740 5 0.6004 0.614 0.000 0.432 0.000 0.088 0.436 NA
#> SRR1562741 5 0.6004 0.614 0.000 0.432 0.000 0.088 0.436 NA
#> SRR1562742 5 0.4319 0.613 0.000 0.400 0.000 0.000 0.576 NA
#> SRR1562743 5 0.4319 0.613 0.000 0.400 0.000 0.000 0.576 NA
#> SRR1562744 5 0.4319 0.613 0.000 0.400 0.000 0.000 0.576 NA
#> SRR1562745 5 0.4319 0.613 0.000 0.400 0.000 0.000 0.576 NA
#> SRR1562746 5 0.4319 0.613 0.000 0.400 0.000 0.000 0.576 NA
#> SRR1562747 5 0.4319 0.613 0.000 0.400 0.000 0.000 0.576 NA
#> SRR1562748 4 0.5425 0.985 0.000 0.112 0.000 0.600 0.272 NA
#> SRR1562749 4 0.5029 0.984 0.000 0.112 0.000 0.612 0.276 NA
#> SRR1562750 4 0.5627 0.977 0.000 0.112 0.000 0.580 0.284 NA
#> SRR1562751 4 0.5145 0.985 0.000 0.112 0.000 0.612 0.272 NA
#> SRR1562752 4 0.5520 0.984 0.000 0.112 0.000 0.592 0.276 NA
#> SRR1562753 4 0.5046 0.985 0.000 0.112 0.000 0.608 0.280 NA
#> SRR1562754 5 0.6202 0.306 0.000 0.220 0.000 0.168 0.560 NA
#> SRR1562755 5 0.6202 0.306 0.000 0.220 0.000 0.168 0.560 NA
#> SRR1562756 5 0.6420 0.303 0.000 0.220 0.000 0.164 0.544 NA
#> SRR1562757 5 0.6420 0.303 0.000 0.220 0.000 0.164 0.544 NA
#> SRR1562758 5 0.6202 0.306 0.000 0.220 0.000 0.168 0.560 NA
#> SRR1562759 5 0.6202 0.306 0.000 0.220 0.000 0.168 0.560 NA
#> SRR1562792 3 0.0291 0.874 0.000 0.000 0.992 0.004 0.004 NA
#> SRR1562793 3 0.0000 0.875 0.000 0.000 1.000 0.000 0.000 NA
#> SRR1562794 3 0.0000 0.875 0.000 0.000 1.000 0.000 0.000 NA
#> SRR1562795 3 0.0000 0.875 0.000 0.000 1.000 0.000 0.000 NA
#> SRR1562796 3 0.4926 0.874 0.000 0.000 0.704 0.072 0.044 NA
#> SRR1562797 3 0.4926 0.874 0.000 0.000 0.704 0.072 0.044 NA
#> SRR1562798 3 0.4882 0.874 0.000 0.000 0.704 0.064 0.044 NA
#> SRR1562799 3 0.4882 0.874 0.000 0.000 0.704 0.064 0.044 NA
#> SRR1562800 1 0.3934 0.771 0.616 0.000 0.000 0.000 0.008 NA
#> SRR1562801 1 0.3934 0.771 0.616 0.000 0.000 0.000 0.008 NA
#> SRR1562802 1 0.3717 0.771 0.616 0.000 0.000 0.000 0.000 NA
#> SRR1562803 1 0.3717 0.771 0.616 0.000 0.000 0.000 0.000 NA
#> SRR1562804 1 0.4569 0.770 0.616 0.000 0.000 0.028 0.012 NA
#> SRR1562805 1 0.4569 0.770 0.616 0.000 0.000 0.028 0.012 NA
#> SRR1562806 1 0.0622 0.810 0.980 0.000 0.000 0.008 0.000 NA
#> SRR1562807 1 0.0603 0.810 0.980 0.000 0.000 0.004 0.000 NA
#> SRR1562808 1 0.0603 0.810 0.980 0.000 0.000 0.004 0.000 NA
#> SRR1562809 1 0.0622 0.810 0.980 0.000 0.000 0.008 0.000 NA
#> SRR1562810 1 0.2421 0.807 0.900 0.000 0.000 0.040 0.032 NA
#> SRR1562811 1 0.2421 0.807 0.900 0.000 0.000 0.040 0.032 NA
#> SRR1562812 1 0.2421 0.807 0.900 0.000 0.000 0.040 0.032 NA
#> SRR1562813 1 0.2421 0.807 0.900 0.000 0.000 0.040 0.032 NA
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15301 rows and 63 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.4624 0.538 0.538
#> 3 3 1.000 0.985 0.980 0.1393 0.943 0.893
#> 4 4 0.751 0.832 0.911 0.3100 0.822 0.629
#> 5 5 0.810 0.854 0.886 0.1036 0.840 0.529
#> 6 6 0.843 0.788 0.817 0.0623 0.862 0.514
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2
There is also optional best \(k\) = 2 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1562718 2 0 1 0 1
#> SRR1562719 2 0 1 0 1
#> SRR1562720 2 0 1 0 1
#> SRR1562721 2 0 1 0 1
#> SRR1562723 2 0 1 0 1
#> SRR1562724 2 0 1 0 1
#> SRR1562725 2 0 1 0 1
#> SRR1562726 2 0 1 0 1
#> SRR1562727 2 0 1 0 1
#> SRR1562728 2 0 1 0 1
#> SRR1562729 2 0 1 0 1
#> SRR1562730 2 0 1 0 1
#> SRR1562731 2 0 1 0 1
#> SRR1562732 2 0 1 0 1
#> SRR1562733 2 0 1 0 1
#> SRR1562734 2 0 1 0 1
#> SRR1562735 2 0 1 0 1
#> SRR1562736 2 0 1 0 1
#> SRR1562737 2 0 1 0 1
#> SRR1562738 2 0 1 0 1
#> SRR1562739 2 0 1 0 1
#> SRR1562740 2 0 1 0 1
#> SRR1562741 2 0 1 0 1
#> SRR1562742 2 0 1 0 1
#> SRR1562743 2 0 1 0 1
#> SRR1562744 2 0 1 0 1
#> SRR1562745 2 0 1 0 1
#> SRR1562746 2 0 1 0 1
#> SRR1562747 2 0 1 0 1
#> SRR1562748 2 0 1 0 1
#> SRR1562749 2 0 1 0 1
#> SRR1562750 2 0 1 0 1
#> SRR1562751 2 0 1 0 1
#> SRR1562752 2 0 1 0 1
#> SRR1562753 2 0 1 0 1
#> SRR1562754 2 0 1 0 1
#> SRR1562755 2 0 1 0 1
#> SRR1562756 2 0 1 0 1
#> SRR1562757 2 0 1 0 1
#> SRR1562758 2 0 1 0 1
#> SRR1562759 2 0 1 0 1
#> SRR1562792 1 0 1 1 0
#> SRR1562793 1 0 1 1 0
#> SRR1562794 1 0 1 1 0
#> SRR1562795 1 0 1 1 0
#> SRR1562796 1 0 1 1 0
#> SRR1562797 1 0 1 1 0
#> SRR1562798 1 0 1 1 0
#> SRR1562799 1 0 1 1 0
#> SRR1562800 1 0 1 1 0
#> SRR1562801 1 0 1 1 0
#> SRR1562802 1 0 1 1 0
#> SRR1562803 1 0 1 1 0
#> SRR1562804 1 0 1 1 0
#> SRR1562805 1 0 1 1 0
#> SRR1562806 1 0 1 1 0
#> SRR1562807 1 0 1 1 0
#> SRR1562808 1 0 1 1 0
#> SRR1562809 1 0 1 1 0
#> SRR1562810 1 0 1 1 0
#> SRR1562811 1 0 1 1 0
#> SRR1562812 1 0 1 1 0
#> SRR1562813 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1562718 2 0.0747 0.982 0.000 0.984 0.016
#> SRR1562719 2 0.0747 0.982 0.000 0.984 0.016
#> SRR1562720 2 0.0747 0.982 0.000 0.984 0.016
#> SRR1562721 2 0.0747 0.982 0.000 0.984 0.016
#> SRR1562723 2 0.0747 0.982 0.000 0.984 0.016
#> SRR1562724 2 0.0747 0.982 0.000 0.984 0.016
#> SRR1562725 2 0.0747 0.982 0.000 0.984 0.016
#> SRR1562726 2 0.0747 0.982 0.000 0.984 0.016
#> SRR1562727 2 0.0747 0.982 0.000 0.984 0.016
#> SRR1562728 2 0.0747 0.982 0.000 0.984 0.016
#> SRR1562729 2 0.0747 0.982 0.000 0.984 0.016
#> SRR1562730 2 0.0747 0.982 0.000 0.984 0.016
#> SRR1562731 2 0.0747 0.982 0.000 0.984 0.016
#> SRR1562732 2 0.0747 0.982 0.000 0.984 0.016
#> SRR1562733 2 0.0747 0.982 0.000 0.984 0.016
#> SRR1562734 2 0.0747 0.982 0.000 0.984 0.016
#> SRR1562735 2 0.0747 0.982 0.000 0.984 0.016
#> SRR1562736 2 0.0000 0.982 0.000 1.000 0.000
#> SRR1562737 2 0.0000 0.982 0.000 1.000 0.000
#> SRR1562738 2 0.0000 0.982 0.000 1.000 0.000
#> SRR1562739 2 0.0000 0.982 0.000 1.000 0.000
#> SRR1562740 2 0.0000 0.982 0.000 1.000 0.000
#> SRR1562741 2 0.0000 0.982 0.000 1.000 0.000
#> SRR1562742 2 0.0000 0.982 0.000 1.000 0.000
#> SRR1562743 2 0.0000 0.982 0.000 1.000 0.000
#> SRR1562744 2 0.0000 0.982 0.000 1.000 0.000
#> SRR1562745 2 0.0000 0.982 0.000 1.000 0.000
#> SRR1562746 2 0.0000 0.982 0.000 1.000 0.000
#> SRR1562747 2 0.0000 0.982 0.000 1.000 0.000
#> SRR1562748 2 0.1753 0.964 0.000 0.952 0.048
#> SRR1562749 2 0.1753 0.964 0.000 0.952 0.048
#> SRR1562750 2 0.1753 0.964 0.000 0.952 0.048
#> SRR1562751 2 0.1753 0.964 0.000 0.952 0.048
#> SRR1562752 2 0.1753 0.964 0.000 0.952 0.048
#> SRR1562753 2 0.1753 0.964 0.000 0.952 0.048
#> SRR1562754 2 0.1411 0.970 0.000 0.964 0.036
#> SRR1562755 2 0.1411 0.970 0.000 0.964 0.036
#> SRR1562756 2 0.1411 0.970 0.000 0.964 0.036
#> SRR1562757 2 0.1411 0.970 0.000 0.964 0.036
#> SRR1562758 2 0.1411 0.970 0.000 0.964 0.036
#> SRR1562759 2 0.1411 0.970 0.000 0.964 0.036
#> SRR1562792 3 0.2165 1.000 0.064 0.000 0.936
#> SRR1562793 3 0.2165 1.000 0.064 0.000 0.936
#> SRR1562794 3 0.2165 1.000 0.064 0.000 0.936
#> SRR1562795 3 0.2165 1.000 0.064 0.000 0.936
#> SRR1562796 3 0.2165 1.000 0.064 0.000 0.936
#> SRR1562797 3 0.2165 1.000 0.064 0.000 0.936
#> SRR1562798 3 0.2165 1.000 0.064 0.000 0.936
#> SRR1562799 3 0.2165 1.000 0.064 0.000 0.936
#> SRR1562800 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562801 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562802 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562803 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562804 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562805 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562806 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562807 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562808 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562809 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562810 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562811 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562812 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562813 1 0.0000 1.000 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1562718 2 0.0000 0.803 0.000 1.000 0.000 0.000
#> SRR1562719 2 0.0000 0.803 0.000 1.000 0.000 0.000
#> SRR1562720 2 0.0000 0.803 0.000 1.000 0.000 0.000
#> SRR1562721 2 0.0000 0.803 0.000 1.000 0.000 0.000
#> SRR1562723 2 0.0000 0.803 0.000 1.000 0.000 0.000
#> SRR1562724 2 0.0000 0.803 0.000 1.000 0.000 0.000
#> SRR1562725 2 0.0000 0.803 0.000 1.000 0.000 0.000
#> SRR1562726 2 0.0000 0.803 0.000 1.000 0.000 0.000
#> SRR1562727 2 0.0000 0.803 0.000 1.000 0.000 0.000
#> SRR1562728 2 0.0000 0.803 0.000 1.000 0.000 0.000
#> SRR1562729 2 0.0000 0.803 0.000 1.000 0.000 0.000
#> SRR1562730 2 0.0817 0.792 0.000 0.976 0.000 0.024
#> SRR1562731 2 0.0817 0.792 0.000 0.976 0.000 0.024
#> SRR1562732 2 0.0817 0.792 0.000 0.976 0.000 0.024
#> SRR1562733 2 0.0817 0.792 0.000 0.976 0.000 0.024
#> SRR1562734 2 0.0817 0.792 0.000 0.976 0.000 0.024
#> SRR1562735 2 0.0817 0.792 0.000 0.976 0.000 0.024
#> SRR1562736 2 0.4720 0.606 0.000 0.672 0.004 0.324
#> SRR1562737 2 0.4720 0.606 0.000 0.672 0.004 0.324
#> SRR1562738 2 0.4720 0.606 0.000 0.672 0.004 0.324
#> SRR1562739 2 0.4720 0.606 0.000 0.672 0.004 0.324
#> SRR1562740 2 0.4720 0.606 0.000 0.672 0.004 0.324
#> SRR1562741 2 0.4720 0.606 0.000 0.672 0.004 0.324
#> SRR1562742 2 0.4584 0.638 0.000 0.696 0.004 0.300
#> SRR1562743 2 0.4584 0.638 0.000 0.696 0.004 0.300
#> SRR1562744 2 0.4584 0.638 0.000 0.696 0.004 0.300
#> SRR1562745 2 0.4584 0.638 0.000 0.696 0.004 0.300
#> SRR1562746 2 0.4584 0.638 0.000 0.696 0.004 0.300
#> SRR1562747 2 0.4584 0.638 0.000 0.696 0.004 0.300
#> SRR1562748 4 0.0592 0.805 0.000 0.016 0.000 0.984
#> SRR1562749 4 0.0592 0.805 0.000 0.016 0.000 0.984
#> SRR1562750 4 0.0592 0.805 0.000 0.016 0.000 0.984
#> SRR1562751 4 0.0592 0.805 0.000 0.016 0.000 0.984
#> SRR1562752 4 0.0592 0.805 0.000 0.016 0.000 0.984
#> SRR1562753 4 0.0592 0.805 0.000 0.016 0.000 0.984
#> SRR1562754 4 0.4134 0.757 0.000 0.260 0.000 0.740
#> SRR1562755 4 0.4134 0.757 0.000 0.260 0.000 0.740
#> SRR1562756 4 0.4134 0.757 0.000 0.260 0.000 0.740
#> SRR1562757 4 0.4134 0.757 0.000 0.260 0.000 0.740
#> SRR1562758 4 0.4134 0.757 0.000 0.260 0.000 0.740
#> SRR1562759 4 0.4134 0.757 0.000 0.260 0.000 0.740
#> SRR1562792 3 0.0188 1.000 0.004 0.000 0.996 0.000
#> SRR1562793 3 0.0188 1.000 0.004 0.000 0.996 0.000
#> SRR1562794 3 0.0188 1.000 0.004 0.000 0.996 0.000
#> SRR1562795 3 0.0188 1.000 0.004 0.000 0.996 0.000
#> SRR1562796 3 0.0188 1.000 0.004 0.000 0.996 0.000
#> SRR1562797 3 0.0188 1.000 0.004 0.000 0.996 0.000
#> SRR1562798 3 0.0188 1.000 0.004 0.000 0.996 0.000
#> SRR1562799 3 0.0188 1.000 0.004 0.000 0.996 0.000
#> SRR1562800 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562801 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562802 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562803 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562804 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562805 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562806 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562807 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562808 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562809 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562810 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562811 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562812 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562813 1 0.0000 1.000 1.000 0.000 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1562718 2 0.0404 0.696 0.000 0.988 0 0.000 0.012
#> SRR1562719 2 0.0404 0.696 0.000 0.988 0 0.000 0.012
#> SRR1562720 2 0.0404 0.696 0.000 0.988 0 0.000 0.012
#> SRR1562721 2 0.0404 0.696 0.000 0.988 0 0.000 0.012
#> SRR1562723 2 0.0404 0.696 0.000 0.988 0 0.000 0.012
#> SRR1562724 2 0.0000 0.699 0.000 1.000 0 0.000 0.000
#> SRR1562725 2 0.0000 0.699 0.000 1.000 0 0.000 0.000
#> SRR1562726 2 0.0000 0.699 0.000 1.000 0 0.000 0.000
#> SRR1562727 2 0.0000 0.699 0.000 1.000 0 0.000 0.000
#> SRR1562728 2 0.0000 0.699 0.000 1.000 0 0.000 0.000
#> SRR1562729 2 0.0000 0.699 0.000 1.000 0 0.000 0.000
#> SRR1562730 2 0.4291 0.566 0.000 0.536 0 0.000 0.464
#> SRR1562731 2 0.4291 0.566 0.000 0.536 0 0.000 0.464
#> SRR1562732 2 0.4291 0.566 0.000 0.536 0 0.000 0.464
#> SRR1562733 2 0.4291 0.566 0.000 0.536 0 0.000 0.464
#> SRR1562734 2 0.4291 0.566 0.000 0.536 0 0.000 0.464
#> SRR1562735 2 0.4291 0.566 0.000 0.536 0 0.000 0.464
#> SRR1562736 5 0.5232 0.857 0.000 0.456 0 0.044 0.500
#> SRR1562737 5 0.5232 0.857 0.000 0.456 0 0.044 0.500
#> SRR1562738 5 0.5232 0.857 0.000 0.456 0 0.044 0.500
#> SRR1562739 5 0.5232 0.857 0.000 0.456 0 0.044 0.500
#> SRR1562740 5 0.5232 0.857 0.000 0.456 0 0.044 0.500
#> SRR1562741 5 0.5232 0.857 0.000 0.456 0 0.044 0.500
#> SRR1562742 5 0.5028 0.856 0.000 0.444 0 0.032 0.524
#> SRR1562743 5 0.5028 0.856 0.000 0.444 0 0.032 0.524
#> SRR1562744 5 0.5028 0.856 0.000 0.444 0 0.032 0.524
#> SRR1562745 5 0.5028 0.856 0.000 0.444 0 0.032 0.524
#> SRR1562746 5 0.5028 0.856 0.000 0.444 0 0.032 0.524
#> SRR1562747 5 0.5028 0.856 0.000 0.444 0 0.032 0.524
#> SRR1562748 4 0.0000 1.000 0.000 0.000 0 1.000 0.000
#> SRR1562749 4 0.0000 1.000 0.000 0.000 0 1.000 0.000
#> SRR1562750 4 0.0000 1.000 0.000 0.000 0 1.000 0.000
#> SRR1562751 4 0.0000 1.000 0.000 0.000 0 1.000 0.000
#> SRR1562752 4 0.0000 1.000 0.000 0.000 0 1.000 0.000
#> SRR1562753 4 0.0000 1.000 0.000 0.000 0 1.000 0.000
#> SRR1562754 5 0.6692 0.743 0.000 0.296 0 0.272 0.432
#> SRR1562755 5 0.6692 0.743 0.000 0.296 0 0.272 0.432
#> SRR1562756 5 0.6692 0.743 0.000 0.296 0 0.272 0.432
#> SRR1562757 5 0.6692 0.743 0.000 0.296 0 0.272 0.432
#> SRR1562758 5 0.6692 0.743 0.000 0.296 0 0.272 0.432
#> SRR1562759 5 0.6692 0.743 0.000 0.296 0 0.272 0.432
#> SRR1562792 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562793 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562794 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562795 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562796 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562797 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562798 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562799 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562800 1 0.0162 0.998 0.996 0.000 0 0.000 0.004
#> SRR1562801 1 0.0162 0.998 0.996 0.000 0 0.000 0.004
#> SRR1562802 1 0.0162 0.998 0.996 0.000 0 0.000 0.004
#> SRR1562803 1 0.0162 0.998 0.996 0.000 0 0.000 0.004
#> SRR1562804 1 0.0162 0.998 0.996 0.000 0 0.000 0.004
#> SRR1562805 1 0.0162 0.998 0.996 0.000 0 0.000 0.004
#> SRR1562806 1 0.0000 0.998 1.000 0.000 0 0.000 0.000
#> SRR1562807 1 0.0000 0.998 1.000 0.000 0 0.000 0.000
#> SRR1562808 1 0.0000 0.998 1.000 0.000 0 0.000 0.000
#> SRR1562809 1 0.0000 0.998 1.000 0.000 0 0.000 0.000
#> SRR1562810 1 0.0000 0.998 1.000 0.000 0 0.000 0.000
#> SRR1562811 1 0.0000 0.998 1.000 0.000 0 0.000 0.000
#> SRR1562812 1 0.0000 0.998 1.000 0.000 0 0.000 0.000
#> SRR1562813 1 0.0000 0.998 1.000 0.000 0 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1562718 5 0.3457 0.477 0 0.232 0 0.000 0.752 0.016
#> SRR1562719 5 0.3457 0.477 0 0.232 0 0.000 0.752 0.016
#> SRR1562720 5 0.3457 0.477 0 0.232 0 0.000 0.752 0.016
#> SRR1562721 5 0.3457 0.477 0 0.232 0 0.000 0.752 0.016
#> SRR1562723 5 0.3457 0.477 0 0.232 0 0.000 0.752 0.016
#> SRR1562724 5 0.2912 0.484 0 0.216 0 0.000 0.784 0.000
#> SRR1562725 5 0.2912 0.484 0 0.216 0 0.000 0.784 0.000
#> SRR1562726 5 0.2912 0.484 0 0.216 0 0.000 0.784 0.000
#> SRR1562727 5 0.2912 0.484 0 0.216 0 0.000 0.784 0.000
#> SRR1562728 5 0.2912 0.484 0 0.216 0 0.000 0.784 0.000
#> SRR1562729 5 0.2912 0.484 0 0.216 0 0.000 0.784 0.000
#> SRR1562730 2 0.0146 1.000 0 0.996 0 0.000 0.004 0.000
#> SRR1562731 2 0.0146 1.000 0 0.996 0 0.000 0.004 0.000
#> SRR1562732 2 0.0146 1.000 0 0.996 0 0.000 0.004 0.000
#> SRR1562733 2 0.0146 1.000 0 0.996 0 0.000 0.004 0.000
#> SRR1562734 2 0.0146 1.000 0 0.996 0 0.000 0.004 0.000
#> SRR1562735 2 0.0146 1.000 0 0.996 0 0.000 0.004 0.000
#> SRR1562736 5 0.4135 0.394 0 0.004 0 0.008 0.584 0.404
#> SRR1562737 5 0.4135 0.394 0 0.004 0 0.008 0.584 0.404
#> SRR1562738 5 0.4135 0.394 0 0.004 0 0.008 0.584 0.404
#> SRR1562739 5 0.4135 0.394 0 0.004 0 0.008 0.584 0.404
#> SRR1562740 5 0.4135 0.394 0 0.004 0 0.008 0.584 0.404
#> SRR1562741 5 0.4135 0.394 0 0.004 0 0.008 0.584 0.404
#> SRR1562742 5 0.3989 0.330 0 0.004 0 0.000 0.528 0.468
#> SRR1562743 5 0.3989 0.330 0 0.004 0 0.000 0.528 0.468
#> SRR1562744 5 0.3989 0.330 0 0.004 0 0.000 0.528 0.468
#> SRR1562745 5 0.3989 0.330 0 0.004 0 0.000 0.528 0.468
#> SRR1562746 5 0.3989 0.330 0 0.004 0 0.000 0.528 0.468
#> SRR1562747 5 0.3989 0.330 0 0.004 0 0.000 0.528 0.468
#> SRR1562748 4 0.0000 1.000 0 0.000 0 1.000 0.000 0.000
#> SRR1562749 4 0.0000 1.000 0 0.000 0 1.000 0.000 0.000
#> SRR1562750 4 0.0000 1.000 0 0.000 0 1.000 0.000 0.000
#> SRR1562751 4 0.0000 1.000 0 0.000 0 1.000 0.000 0.000
#> SRR1562752 4 0.0000 1.000 0 0.000 0 1.000 0.000 0.000
#> SRR1562753 4 0.0000 1.000 0 0.000 0 1.000 0.000 0.000
#> SRR1562754 6 0.1297 1.000 0 0.000 0 0.040 0.012 0.948
#> SRR1562755 6 0.1297 1.000 0 0.000 0 0.040 0.012 0.948
#> SRR1562756 6 0.1297 1.000 0 0.000 0 0.040 0.012 0.948
#> SRR1562757 6 0.1297 1.000 0 0.000 0 0.040 0.012 0.948
#> SRR1562758 6 0.1297 1.000 0 0.000 0 0.040 0.012 0.948
#> SRR1562759 6 0.1297 1.000 0 0.000 0 0.040 0.012 0.948
#> SRR1562792 3 0.0000 1.000 0 0.000 1 0.000 0.000 0.000
#> SRR1562793 3 0.0000 1.000 0 0.000 1 0.000 0.000 0.000
#> SRR1562794 3 0.0000 1.000 0 0.000 1 0.000 0.000 0.000
#> SRR1562795 3 0.0000 1.000 0 0.000 1 0.000 0.000 0.000
#> SRR1562796 3 0.0000 1.000 0 0.000 1 0.000 0.000 0.000
#> SRR1562797 3 0.0000 1.000 0 0.000 1 0.000 0.000 0.000
#> SRR1562798 3 0.0000 1.000 0 0.000 1 0.000 0.000 0.000
#> SRR1562799 3 0.0000 1.000 0 0.000 1 0.000 0.000 0.000
#> SRR1562800 1 0.0000 1.000 1 0.000 0 0.000 0.000 0.000
#> SRR1562801 1 0.0000 1.000 1 0.000 0 0.000 0.000 0.000
#> SRR1562802 1 0.0000 1.000 1 0.000 0 0.000 0.000 0.000
#> SRR1562803 1 0.0000 1.000 1 0.000 0 0.000 0.000 0.000
#> SRR1562804 1 0.0000 1.000 1 0.000 0 0.000 0.000 0.000
#> SRR1562805 1 0.0000 1.000 1 0.000 0 0.000 0.000 0.000
#> SRR1562806 1 0.0000 1.000 1 0.000 0 0.000 0.000 0.000
#> SRR1562807 1 0.0000 1.000 1 0.000 0 0.000 0.000 0.000
#> SRR1562808 1 0.0000 1.000 1 0.000 0 0.000 0.000 0.000
#> SRR1562809 1 0.0000 1.000 1 0.000 0 0.000 0.000 0.000
#> SRR1562810 1 0.0000 1.000 1 0.000 0 0.000 0.000 0.000
#> SRR1562811 1 0.0000 1.000 1 0.000 0 0.000 0.000 0.000
#> SRR1562812 1 0.0000 1.000 1 0.000 0 0.000 0.000 0.000
#> SRR1562813 1 0.0000 1.000 1 0.000 0 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15301 rows and 63 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 4.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.3519 0.649 0.649
#> 3 3 1.000 1.000 1.000 0.4768 0.832 0.741
#> 4 4 1.000 0.998 0.998 0.2073 0.892 0.776
#> 5 5 0.864 0.959 0.943 0.0701 0.975 0.934
#> 6 6 0.817 0.946 0.926 0.1851 0.843 0.551
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3
There is also optional best \(k\) = 2 3 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1562718 2 0 1 0 1
#> SRR1562719 2 0 1 0 1
#> SRR1562720 2 0 1 0 1
#> SRR1562721 2 0 1 0 1
#> SRR1562723 2 0 1 0 1
#> SRR1562724 2 0 1 0 1
#> SRR1562725 2 0 1 0 1
#> SRR1562726 2 0 1 0 1
#> SRR1562727 2 0 1 0 1
#> SRR1562728 2 0 1 0 1
#> SRR1562729 2 0 1 0 1
#> SRR1562730 2 0 1 0 1
#> SRR1562731 2 0 1 0 1
#> SRR1562732 2 0 1 0 1
#> SRR1562733 2 0 1 0 1
#> SRR1562734 2 0 1 0 1
#> SRR1562735 2 0 1 0 1
#> SRR1562736 2 0 1 0 1
#> SRR1562737 2 0 1 0 1
#> SRR1562738 2 0 1 0 1
#> SRR1562739 2 0 1 0 1
#> SRR1562740 2 0 1 0 1
#> SRR1562741 2 0 1 0 1
#> SRR1562742 2 0 1 0 1
#> SRR1562743 2 0 1 0 1
#> SRR1562744 2 0 1 0 1
#> SRR1562745 2 0 1 0 1
#> SRR1562746 2 0 1 0 1
#> SRR1562747 2 0 1 0 1
#> SRR1562748 2 0 1 0 1
#> SRR1562749 2 0 1 0 1
#> SRR1562750 2 0 1 0 1
#> SRR1562751 2 0 1 0 1
#> SRR1562752 2 0 1 0 1
#> SRR1562753 2 0 1 0 1
#> SRR1562754 2 0 1 0 1
#> SRR1562755 2 0 1 0 1
#> SRR1562756 2 0 1 0 1
#> SRR1562757 2 0 1 0 1
#> SRR1562758 2 0 1 0 1
#> SRR1562759 2 0 1 0 1
#> SRR1562792 2 0 1 0 1
#> SRR1562793 2 0 1 0 1
#> SRR1562794 2 0 1 0 1
#> SRR1562795 2 0 1 0 1
#> SRR1562796 2 0 1 0 1
#> SRR1562797 2 0 1 0 1
#> SRR1562798 2 0 1 0 1
#> SRR1562799 2 0 1 0 1
#> SRR1562800 1 0 1 1 0
#> SRR1562801 1 0 1 1 0
#> SRR1562802 1 0 1 1 0
#> SRR1562803 1 0 1 1 0
#> SRR1562804 1 0 1 1 0
#> SRR1562805 1 0 1 1 0
#> SRR1562806 1 0 1 1 0
#> SRR1562807 1 0 1 1 0
#> SRR1562808 1 0 1 1 0
#> SRR1562809 1 0 1 1 0
#> SRR1562810 1 0 1 1 0
#> SRR1562811 1 0 1 1 0
#> SRR1562812 1 0 1 1 0
#> SRR1562813 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1562718 2 0 1 0 1 0
#> SRR1562719 2 0 1 0 1 0
#> SRR1562720 2 0 1 0 1 0
#> SRR1562721 2 0 1 0 1 0
#> SRR1562723 2 0 1 0 1 0
#> SRR1562724 2 0 1 0 1 0
#> SRR1562725 2 0 1 0 1 0
#> SRR1562726 2 0 1 0 1 0
#> SRR1562727 2 0 1 0 1 0
#> SRR1562728 2 0 1 0 1 0
#> SRR1562729 2 0 1 0 1 0
#> SRR1562730 2 0 1 0 1 0
#> SRR1562731 2 0 1 0 1 0
#> SRR1562732 2 0 1 0 1 0
#> SRR1562733 2 0 1 0 1 0
#> SRR1562734 2 0 1 0 1 0
#> SRR1562735 2 0 1 0 1 0
#> SRR1562736 2 0 1 0 1 0
#> SRR1562737 2 0 1 0 1 0
#> SRR1562738 2 0 1 0 1 0
#> SRR1562739 2 0 1 0 1 0
#> SRR1562740 2 0 1 0 1 0
#> SRR1562741 2 0 1 0 1 0
#> SRR1562742 2 0 1 0 1 0
#> SRR1562743 2 0 1 0 1 0
#> SRR1562744 2 0 1 0 1 0
#> SRR1562745 2 0 1 0 1 0
#> SRR1562746 2 0 1 0 1 0
#> SRR1562747 2 0 1 0 1 0
#> SRR1562748 2 0 1 0 1 0
#> SRR1562749 2 0 1 0 1 0
#> SRR1562750 2 0 1 0 1 0
#> SRR1562751 2 0 1 0 1 0
#> SRR1562752 2 0 1 0 1 0
#> SRR1562753 2 0 1 0 1 0
#> SRR1562754 2 0 1 0 1 0
#> SRR1562755 2 0 1 0 1 0
#> SRR1562756 2 0 1 0 1 0
#> SRR1562757 2 0 1 0 1 0
#> SRR1562758 2 0 1 0 1 0
#> SRR1562759 2 0 1 0 1 0
#> SRR1562792 3 0 1 0 0 1
#> SRR1562793 3 0 1 0 0 1
#> SRR1562794 3 0 1 0 0 1
#> SRR1562795 3 0 1 0 0 1
#> SRR1562796 3 0 1 0 0 1
#> SRR1562797 3 0 1 0 0 1
#> SRR1562798 3 0 1 0 0 1
#> SRR1562799 3 0 1 0 0 1
#> SRR1562800 1 0 1 1 0 0
#> SRR1562801 1 0 1 1 0 0
#> SRR1562802 1 0 1 1 0 0
#> SRR1562803 1 0 1 1 0 0
#> SRR1562804 1 0 1 1 0 0
#> SRR1562805 1 0 1 1 0 0
#> SRR1562806 1 0 1 1 0 0
#> SRR1562807 1 0 1 1 0 0
#> SRR1562808 1 0 1 1 0 0
#> SRR1562809 1 0 1 1 0 0
#> SRR1562810 1 0 1 1 0 0
#> SRR1562811 1 0 1 1 0 0
#> SRR1562812 1 0 1 1 0 0
#> SRR1562813 1 0 1 1 0 0
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1562718 2 0.0000 0.997 0 1.000 0 0.000
#> SRR1562719 2 0.0000 0.997 0 1.000 0 0.000
#> SRR1562720 2 0.0000 0.997 0 1.000 0 0.000
#> SRR1562721 2 0.0000 0.997 0 1.000 0 0.000
#> SRR1562723 2 0.0000 0.997 0 1.000 0 0.000
#> SRR1562724 2 0.0000 0.997 0 1.000 0 0.000
#> SRR1562725 2 0.0000 0.997 0 1.000 0 0.000
#> SRR1562726 2 0.0000 0.997 0 1.000 0 0.000
#> SRR1562727 2 0.0000 0.997 0 1.000 0 0.000
#> SRR1562728 2 0.0000 0.997 0 1.000 0 0.000
#> SRR1562729 2 0.0000 0.997 0 1.000 0 0.000
#> SRR1562730 2 0.0188 0.995 0 0.996 0 0.004
#> SRR1562731 2 0.0188 0.995 0 0.996 0 0.004
#> SRR1562732 2 0.0188 0.995 0 0.996 0 0.004
#> SRR1562733 2 0.0188 0.995 0 0.996 0 0.004
#> SRR1562734 2 0.0188 0.995 0 0.996 0 0.004
#> SRR1562735 2 0.0188 0.995 0 0.996 0 0.004
#> SRR1562736 2 0.0188 0.997 0 0.996 0 0.004
#> SRR1562737 2 0.0188 0.997 0 0.996 0 0.004
#> SRR1562738 2 0.0188 0.997 0 0.996 0 0.004
#> SRR1562739 2 0.0188 0.997 0 0.996 0 0.004
#> SRR1562740 2 0.0188 0.997 0 0.996 0 0.004
#> SRR1562741 2 0.0188 0.997 0 0.996 0 0.004
#> SRR1562742 2 0.0188 0.997 0 0.996 0 0.004
#> SRR1562743 2 0.0188 0.997 0 0.996 0 0.004
#> SRR1562744 2 0.0188 0.997 0 0.996 0 0.004
#> SRR1562745 2 0.0188 0.997 0 0.996 0 0.004
#> SRR1562746 2 0.0188 0.997 0 0.996 0 0.004
#> SRR1562747 2 0.0188 0.997 0 0.996 0 0.004
#> SRR1562748 4 0.0188 1.000 0 0.004 0 0.996
#> SRR1562749 4 0.0188 1.000 0 0.004 0 0.996
#> SRR1562750 4 0.0188 1.000 0 0.004 0 0.996
#> SRR1562751 4 0.0188 1.000 0 0.004 0 0.996
#> SRR1562752 4 0.0188 1.000 0 0.004 0 0.996
#> SRR1562753 4 0.0188 1.000 0 0.004 0 0.996
#> SRR1562754 2 0.0188 0.997 0 0.996 0 0.004
#> SRR1562755 2 0.0188 0.997 0 0.996 0 0.004
#> SRR1562756 2 0.0188 0.997 0 0.996 0 0.004
#> SRR1562757 2 0.0188 0.997 0 0.996 0 0.004
#> SRR1562758 2 0.0188 0.997 0 0.996 0 0.004
#> SRR1562759 2 0.0188 0.997 0 0.996 0 0.004
#> SRR1562792 3 0.0000 1.000 0 0.000 1 0.000
#> SRR1562793 3 0.0000 1.000 0 0.000 1 0.000
#> SRR1562794 3 0.0000 1.000 0 0.000 1 0.000
#> SRR1562795 3 0.0000 1.000 0 0.000 1 0.000
#> SRR1562796 3 0.0000 1.000 0 0.000 1 0.000
#> SRR1562797 3 0.0000 1.000 0 0.000 1 0.000
#> SRR1562798 3 0.0000 1.000 0 0.000 1 0.000
#> SRR1562799 3 0.0000 1.000 0 0.000 1 0.000
#> SRR1562800 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562801 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562802 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562803 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562804 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562805 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562806 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562807 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562808 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562809 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562810 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562811 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562812 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562813 1 0.0000 1.000 1 0.000 0 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1562718 2 0.1965 0.932 0.096 0.904 0 0 0.000
#> SRR1562719 2 0.1965 0.932 0.096 0.904 0 0 0.000
#> SRR1562720 2 0.1965 0.932 0.096 0.904 0 0 0.000
#> SRR1562721 2 0.1965 0.932 0.096 0.904 0 0 0.000
#> SRR1562723 2 0.1965 0.932 0.096 0.904 0 0 0.000
#> SRR1562724 2 0.1965 0.932 0.096 0.904 0 0 0.000
#> SRR1562725 2 0.1965 0.932 0.096 0.904 0 0 0.000
#> SRR1562726 2 0.1965 0.932 0.096 0.904 0 0 0.000
#> SRR1562727 2 0.1965 0.932 0.096 0.904 0 0 0.000
#> SRR1562728 2 0.1965 0.932 0.096 0.904 0 0 0.000
#> SRR1562729 2 0.1965 0.932 0.096 0.904 0 0 0.000
#> SRR1562730 2 0.3143 0.871 0.204 0.796 0 0 0.000
#> SRR1562731 2 0.3143 0.871 0.204 0.796 0 0 0.000
#> SRR1562732 2 0.3143 0.871 0.204 0.796 0 0 0.000
#> SRR1562733 2 0.3143 0.871 0.204 0.796 0 0 0.000
#> SRR1562734 2 0.3143 0.871 0.204 0.796 0 0 0.000
#> SRR1562735 2 0.3143 0.871 0.204 0.796 0 0 0.000
#> SRR1562736 2 0.0000 0.940 0.000 1.000 0 0 0.000
#> SRR1562737 2 0.0000 0.940 0.000 1.000 0 0 0.000
#> SRR1562738 2 0.0000 0.940 0.000 1.000 0 0 0.000
#> SRR1562739 2 0.0000 0.940 0.000 1.000 0 0 0.000
#> SRR1562740 2 0.0000 0.940 0.000 1.000 0 0 0.000
#> SRR1562741 2 0.0000 0.940 0.000 1.000 0 0 0.000
#> SRR1562742 2 0.0000 0.940 0.000 1.000 0 0 0.000
#> SRR1562743 2 0.0000 0.940 0.000 1.000 0 0 0.000
#> SRR1562744 2 0.0000 0.940 0.000 1.000 0 0 0.000
#> SRR1562745 2 0.0000 0.940 0.000 1.000 0 0 0.000
#> SRR1562746 2 0.0000 0.940 0.000 1.000 0 0 0.000
#> SRR1562747 2 0.0000 0.940 0.000 1.000 0 0 0.000
#> SRR1562748 4 0.0000 1.000 0.000 0.000 0 1 0.000
#> SRR1562749 4 0.0000 1.000 0.000 0.000 0 1 0.000
#> SRR1562750 4 0.0000 1.000 0.000 0.000 0 1 0.000
#> SRR1562751 4 0.0000 1.000 0.000 0.000 0 1 0.000
#> SRR1562752 4 0.0000 1.000 0.000 0.000 0 1 0.000
#> SRR1562753 4 0.0000 1.000 0.000 0.000 0 1 0.000
#> SRR1562754 2 0.0162 0.939 0.004 0.996 0 0 0.000
#> SRR1562755 2 0.0162 0.939 0.004 0.996 0 0 0.000
#> SRR1562756 2 0.0404 0.940 0.012 0.988 0 0 0.000
#> SRR1562757 2 0.0510 0.940 0.016 0.984 0 0 0.000
#> SRR1562758 2 0.0162 0.939 0.004 0.996 0 0 0.000
#> SRR1562759 2 0.0162 0.939 0.004 0.996 0 0 0.000
#> SRR1562792 3 0.0000 1.000 0.000 0.000 1 0 0.000
#> SRR1562793 3 0.0000 1.000 0.000 0.000 1 0 0.000
#> SRR1562794 3 0.0000 1.000 0.000 0.000 1 0 0.000
#> SRR1562795 3 0.0000 1.000 0.000 0.000 1 0 0.000
#> SRR1562796 3 0.0000 1.000 0.000 0.000 1 0 0.000
#> SRR1562797 3 0.0000 1.000 0.000 0.000 1 0 0.000
#> SRR1562798 3 0.0000 1.000 0.000 0.000 1 0 0.000
#> SRR1562799 3 0.0000 1.000 0.000 0.000 1 0 0.000
#> SRR1562800 5 0.0000 1.000 0.000 0.000 0 0 1.000
#> SRR1562801 5 0.0000 1.000 0.000 0.000 0 0 1.000
#> SRR1562802 5 0.0000 1.000 0.000 0.000 0 0 1.000
#> SRR1562803 5 0.0000 1.000 0.000 0.000 0 0 1.000
#> SRR1562804 5 0.0000 1.000 0.000 0.000 0 0 1.000
#> SRR1562805 5 0.0000 1.000 0.000 0.000 0 0 1.000
#> SRR1562806 1 0.3177 1.000 0.792 0.000 0 0 0.208
#> SRR1562807 1 0.3177 1.000 0.792 0.000 0 0 0.208
#> SRR1562808 1 0.3177 1.000 0.792 0.000 0 0 0.208
#> SRR1562809 1 0.3177 1.000 0.792 0.000 0 0 0.208
#> SRR1562810 1 0.3177 1.000 0.792 0.000 0 0 0.208
#> SRR1562811 1 0.3177 1.000 0.792 0.000 0 0 0.208
#> SRR1562812 1 0.3177 1.000 0.792 0.000 0 0 0.208
#> SRR1562813 1 0.3177 1.000 0.792 0.000 0 0 0.208
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1562718 2 0.2135 0.901 0.000 0.872 0 0 0.128 0.000
#> SRR1562719 2 0.2135 0.901 0.000 0.872 0 0 0.128 0.000
#> SRR1562720 2 0.2135 0.901 0.000 0.872 0 0 0.128 0.000
#> SRR1562721 2 0.2135 0.901 0.000 0.872 0 0 0.128 0.000
#> SRR1562723 2 0.2135 0.901 0.000 0.872 0 0 0.128 0.000
#> SRR1562724 2 0.2135 0.901 0.000 0.872 0 0 0.128 0.000
#> SRR1562725 2 0.2135 0.901 0.000 0.872 0 0 0.128 0.000
#> SRR1562726 2 0.2135 0.901 0.000 0.872 0 0 0.128 0.000
#> SRR1562727 2 0.2135 0.901 0.000 0.872 0 0 0.128 0.000
#> SRR1562728 2 0.2135 0.901 0.000 0.872 0 0 0.128 0.000
#> SRR1562729 2 0.2135 0.901 0.000 0.872 0 0 0.128 0.000
#> SRR1562730 2 0.2092 0.809 0.000 0.876 0 0 0.000 0.124
#> SRR1562731 2 0.2092 0.809 0.000 0.876 0 0 0.000 0.124
#> SRR1562732 2 0.2092 0.809 0.000 0.876 0 0 0.000 0.124
#> SRR1562733 2 0.2092 0.809 0.000 0.876 0 0 0.000 0.124
#> SRR1562734 2 0.2092 0.809 0.000 0.876 0 0 0.000 0.124
#> SRR1562735 2 0.2092 0.809 0.000 0.876 0 0 0.000 0.124
#> SRR1562736 5 0.1663 0.949 0.000 0.088 0 0 0.912 0.000
#> SRR1562737 5 0.1863 0.942 0.000 0.104 0 0 0.896 0.000
#> SRR1562738 5 0.1910 0.939 0.000 0.108 0 0 0.892 0.000
#> SRR1562739 5 0.2048 0.931 0.000 0.120 0 0 0.880 0.000
#> SRR1562740 5 0.2135 0.921 0.000 0.128 0 0 0.872 0.000
#> SRR1562741 5 0.1910 0.940 0.000 0.108 0 0 0.892 0.000
#> SRR1562742 5 0.1556 0.951 0.000 0.080 0 0 0.920 0.000
#> SRR1562743 5 0.1556 0.951 0.000 0.080 0 0 0.920 0.000
#> SRR1562744 5 0.1556 0.951 0.000 0.080 0 0 0.920 0.000
#> SRR1562745 5 0.1556 0.951 0.000 0.080 0 0 0.920 0.000
#> SRR1562746 5 0.1556 0.951 0.000 0.080 0 0 0.920 0.000
#> SRR1562747 5 0.1556 0.951 0.000 0.080 0 0 0.920 0.000
#> SRR1562748 4 0.0000 1.000 0.000 0.000 0 1 0.000 0.000
#> SRR1562749 4 0.0000 1.000 0.000 0.000 0 1 0.000 0.000
#> SRR1562750 4 0.0000 1.000 0.000 0.000 0 1 0.000 0.000
#> SRR1562751 4 0.0000 1.000 0.000 0.000 0 1 0.000 0.000
#> SRR1562752 4 0.0000 1.000 0.000 0.000 0 1 0.000 0.000
#> SRR1562753 4 0.0000 1.000 0.000 0.000 0 1 0.000 0.000
#> SRR1562754 5 0.0146 0.916 0.000 0.000 0 0 0.996 0.004
#> SRR1562755 5 0.0146 0.916 0.000 0.000 0 0 0.996 0.004
#> SRR1562756 5 0.0508 0.917 0.000 0.012 0 0 0.984 0.004
#> SRR1562757 5 0.0508 0.917 0.000 0.012 0 0 0.984 0.004
#> SRR1562758 5 0.0603 0.916 0.000 0.016 0 0 0.980 0.004
#> SRR1562759 5 0.0146 0.916 0.000 0.000 0 0 0.996 0.004
#> SRR1562792 3 0.0000 1.000 0.000 0.000 1 0 0.000 0.000
#> SRR1562793 3 0.0000 1.000 0.000 0.000 1 0 0.000 0.000
#> SRR1562794 3 0.0000 1.000 0.000 0.000 1 0 0.000 0.000
#> SRR1562795 3 0.0000 1.000 0.000 0.000 1 0 0.000 0.000
#> SRR1562796 3 0.0000 1.000 0.000 0.000 1 0 0.000 0.000
#> SRR1562797 3 0.0000 1.000 0.000 0.000 1 0 0.000 0.000
#> SRR1562798 3 0.0000 1.000 0.000 0.000 1 0 0.000 0.000
#> SRR1562799 3 0.0000 1.000 0.000 0.000 1 0 0.000 0.000
#> SRR1562800 6 0.2135 1.000 0.128 0.000 0 0 0.000 0.872
#> SRR1562801 6 0.2135 1.000 0.128 0.000 0 0 0.000 0.872
#> SRR1562802 6 0.2135 1.000 0.128 0.000 0 0 0.000 0.872
#> SRR1562803 6 0.2135 1.000 0.128 0.000 0 0 0.000 0.872
#> SRR1562804 6 0.2135 1.000 0.128 0.000 0 0 0.000 0.872
#> SRR1562805 6 0.2135 1.000 0.128 0.000 0 0 0.000 0.872
#> SRR1562806 1 0.0000 1.000 1.000 0.000 0 0 0.000 0.000
#> SRR1562807 1 0.0000 1.000 1.000 0.000 0 0 0.000 0.000
#> SRR1562808 1 0.0000 1.000 1.000 0.000 0 0 0.000 0.000
#> SRR1562809 1 0.0000 1.000 1.000 0.000 0 0 0.000 0.000
#> SRR1562810 1 0.0000 1.000 1.000 0.000 0 0 0.000 0.000
#> SRR1562811 1 0.0000 1.000 1.000 0.000 0 0 0.000 0.000
#> SRR1562812 1 0.0000 1.000 1.000 0.000 0 0 0.000 0.000
#> SRR1562813 1 0.0000 1.000 1.000 0.000 0 0 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15301 rows and 63 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.997 0.996 0.4588 0.538 0.538
#> 3 3 0.693 0.843 0.919 0.2303 0.943 0.893
#> 4 4 0.751 0.940 0.959 0.2222 0.822 0.629
#> 5 5 0.779 0.741 0.839 0.1044 0.929 0.766
#> 6 6 0.834 0.870 0.874 0.0775 0.905 0.620
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1562718 2 0.000 1.000 0.000 1.000
#> SRR1562719 2 0.000 1.000 0.000 1.000
#> SRR1562720 2 0.000 1.000 0.000 1.000
#> SRR1562721 2 0.000 1.000 0.000 1.000
#> SRR1562723 2 0.000 1.000 0.000 1.000
#> SRR1562724 2 0.000 1.000 0.000 1.000
#> SRR1562725 2 0.000 1.000 0.000 1.000
#> SRR1562726 2 0.000 1.000 0.000 1.000
#> SRR1562727 2 0.000 1.000 0.000 1.000
#> SRR1562728 2 0.000 1.000 0.000 1.000
#> SRR1562729 2 0.000 1.000 0.000 1.000
#> SRR1562730 2 0.000 1.000 0.000 1.000
#> SRR1562731 2 0.000 1.000 0.000 1.000
#> SRR1562732 2 0.000 1.000 0.000 1.000
#> SRR1562733 2 0.000 1.000 0.000 1.000
#> SRR1562734 2 0.000 1.000 0.000 1.000
#> SRR1562735 2 0.000 1.000 0.000 1.000
#> SRR1562736 2 0.000 1.000 0.000 1.000
#> SRR1562737 2 0.000 1.000 0.000 1.000
#> SRR1562738 2 0.000 1.000 0.000 1.000
#> SRR1562739 2 0.000 1.000 0.000 1.000
#> SRR1562740 2 0.000 1.000 0.000 1.000
#> SRR1562741 2 0.000 1.000 0.000 1.000
#> SRR1562742 2 0.000 1.000 0.000 1.000
#> SRR1562743 2 0.000 1.000 0.000 1.000
#> SRR1562744 2 0.000 1.000 0.000 1.000
#> SRR1562745 2 0.000 1.000 0.000 1.000
#> SRR1562746 2 0.000 1.000 0.000 1.000
#> SRR1562747 2 0.000 1.000 0.000 1.000
#> SRR1562748 2 0.000 1.000 0.000 1.000
#> SRR1562749 2 0.000 1.000 0.000 1.000
#> SRR1562750 2 0.000 1.000 0.000 1.000
#> SRR1562751 2 0.000 1.000 0.000 1.000
#> SRR1562752 2 0.000 1.000 0.000 1.000
#> SRR1562753 2 0.000 1.000 0.000 1.000
#> SRR1562754 2 0.000 1.000 0.000 1.000
#> SRR1562755 2 0.000 1.000 0.000 1.000
#> SRR1562756 2 0.000 1.000 0.000 1.000
#> SRR1562757 2 0.000 1.000 0.000 1.000
#> SRR1562758 2 0.000 1.000 0.000 1.000
#> SRR1562759 2 0.000 1.000 0.000 1.000
#> SRR1562792 1 0.000 0.989 1.000 0.000
#> SRR1562793 1 0.000 0.989 1.000 0.000
#> SRR1562794 1 0.000 0.989 1.000 0.000
#> SRR1562795 1 0.000 0.989 1.000 0.000
#> SRR1562796 1 0.000 0.989 1.000 0.000
#> SRR1562797 1 0.000 0.989 1.000 0.000
#> SRR1562798 1 0.000 0.989 1.000 0.000
#> SRR1562799 1 0.000 0.989 1.000 0.000
#> SRR1562800 1 0.118 0.994 0.984 0.016
#> SRR1562801 1 0.118 0.994 0.984 0.016
#> SRR1562802 1 0.118 0.994 0.984 0.016
#> SRR1562803 1 0.118 0.994 0.984 0.016
#> SRR1562804 1 0.118 0.994 0.984 0.016
#> SRR1562805 1 0.118 0.994 0.984 0.016
#> SRR1562806 1 0.118 0.994 0.984 0.016
#> SRR1562807 1 0.118 0.994 0.984 0.016
#> SRR1562808 1 0.118 0.994 0.984 0.016
#> SRR1562809 1 0.118 0.994 0.984 0.016
#> SRR1562810 1 0.118 0.994 0.984 0.016
#> SRR1562811 1 0.118 0.994 0.984 0.016
#> SRR1562812 1 0.118 0.994 0.984 0.016
#> SRR1562813 1 0.118 0.994 0.984 0.016
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1562718 2 0.0000 0.865 0.000 1.000 0.000
#> SRR1562719 2 0.0000 0.865 0.000 1.000 0.000
#> SRR1562720 2 0.0000 0.865 0.000 1.000 0.000
#> SRR1562721 2 0.0000 0.865 0.000 1.000 0.000
#> SRR1562723 2 0.0000 0.865 0.000 1.000 0.000
#> SRR1562724 2 0.0237 0.865 0.000 0.996 0.004
#> SRR1562725 2 0.0237 0.865 0.000 0.996 0.004
#> SRR1562726 2 0.0237 0.865 0.000 0.996 0.004
#> SRR1562727 2 0.0237 0.865 0.000 0.996 0.004
#> SRR1562728 2 0.0237 0.865 0.000 0.996 0.004
#> SRR1562729 2 0.0237 0.865 0.000 0.996 0.004
#> SRR1562730 2 0.0000 0.865 0.000 1.000 0.000
#> SRR1562731 2 0.0000 0.865 0.000 1.000 0.000
#> SRR1562732 2 0.0000 0.865 0.000 1.000 0.000
#> SRR1562733 2 0.0000 0.865 0.000 1.000 0.000
#> SRR1562734 2 0.0000 0.865 0.000 1.000 0.000
#> SRR1562735 2 0.0000 0.865 0.000 1.000 0.000
#> SRR1562736 2 0.0237 0.865 0.000 0.996 0.004
#> SRR1562737 2 0.0237 0.865 0.000 0.996 0.004
#> SRR1562738 2 0.0237 0.865 0.000 0.996 0.004
#> SRR1562739 2 0.0237 0.865 0.000 0.996 0.004
#> SRR1562740 2 0.0237 0.865 0.000 0.996 0.004
#> SRR1562741 2 0.0237 0.865 0.000 0.996 0.004
#> SRR1562742 2 0.0000 0.865 0.000 1.000 0.000
#> SRR1562743 2 0.0000 0.865 0.000 1.000 0.000
#> SRR1562744 2 0.0000 0.865 0.000 1.000 0.000
#> SRR1562745 2 0.0000 0.865 0.000 1.000 0.000
#> SRR1562746 2 0.0000 0.865 0.000 1.000 0.000
#> SRR1562747 2 0.0000 0.865 0.000 1.000 0.000
#> SRR1562748 2 0.9314 0.386 0.328 0.492 0.180
#> SRR1562749 2 0.9314 0.386 0.328 0.492 0.180
#> SRR1562750 2 0.9314 0.386 0.328 0.492 0.180
#> SRR1562751 2 0.9314 0.386 0.328 0.492 0.180
#> SRR1562752 2 0.9314 0.386 0.328 0.492 0.180
#> SRR1562753 2 0.9314 0.386 0.328 0.492 0.180
#> SRR1562754 2 0.5902 0.614 0.316 0.680 0.004
#> SRR1562755 2 0.5902 0.614 0.316 0.680 0.004
#> SRR1562756 2 0.5902 0.614 0.316 0.680 0.004
#> SRR1562757 2 0.5902 0.614 0.316 0.680 0.004
#> SRR1562758 2 0.5902 0.614 0.316 0.680 0.004
#> SRR1562759 2 0.5902 0.614 0.316 0.680 0.004
#> SRR1562792 3 0.0424 1.000 0.008 0.000 0.992
#> SRR1562793 3 0.0424 1.000 0.008 0.000 0.992
#> SRR1562794 3 0.0424 1.000 0.008 0.000 0.992
#> SRR1562795 3 0.0424 1.000 0.008 0.000 0.992
#> SRR1562796 3 0.0424 1.000 0.008 0.000 0.992
#> SRR1562797 3 0.0424 1.000 0.008 0.000 0.992
#> SRR1562798 3 0.0424 1.000 0.008 0.000 0.992
#> SRR1562799 3 0.0424 1.000 0.008 0.000 0.992
#> SRR1562800 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562801 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562802 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562803 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562804 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562805 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562806 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562807 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562808 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562809 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562810 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562811 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562812 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562813 1 0.0000 1.000 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1562718 2 0.0188 0.942 0 0.996 0.000 0.004
#> SRR1562719 2 0.0188 0.942 0 0.996 0.000 0.004
#> SRR1562720 2 0.0188 0.942 0 0.996 0.000 0.004
#> SRR1562721 2 0.0188 0.942 0 0.996 0.000 0.004
#> SRR1562723 2 0.0188 0.942 0 0.996 0.000 0.004
#> SRR1562724 2 0.0188 0.942 0 0.996 0.000 0.004
#> SRR1562725 2 0.0188 0.942 0 0.996 0.000 0.004
#> SRR1562726 2 0.0188 0.942 0 0.996 0.000 0.004
#> SRR1562727 2 0.0188 0.942 0 0.996 0.000 0.004
#> SRR1562728 2 0.0188 0.942 0 0.996 0.000 0.004
#> SRR1562729 2 0.0188 0.942 0 0.996 0.000 0.004
#> SRR1562730 2 0.0188 0.942 0 0.996 0.000 0.004
#> SRR1562731 2 0.0188 0.942 0 0.996 0.000 0.004
#> SRR1562732 2 0.0188 0.942 0 0.996 0.000 0.004
#> SRR1562733 2 0.0188 0.942 0 0.996 0.000 0.004
#> SRR1562734 2 0.0188 0.942 0 0.996 0.000 0.004
#> SRR1562735 2 0.0188 0.942 0 0.996 0.000 0.004
#> SRR1562736 2 0.2704 0.902 0 0.876 0.000 0.124
#> SRR1562737 2 0.2704 0.902 0 0.876 0.000 0.124
#> SRR1562738 2 0.2704 0.902 0 0.876 0.000 0.124
#> SRR1562739 2 0.2589 0.908 0 0.884 0.000 0.116
#> SRR1562740 2 0.2704 0.902 0 0.876 0.000 0.124
#> SRR1562741 2 0.2704 0.902 0 0.876 0.000 0.124
#> SRR1562742 2 0.2345 0.917 0 0.900 0.000 0.100
#> SRR1562743 2 0.2345 0.917 0 0.900 0.000 0.100
#> SRR1562744 2 0.2345 0.917 0 0.900 0.000 0.100
#> SRR1562745 2 0.2345 0.917 0 0.900 0.000 0.100
#> SRR1562746 2 0.2345 0.917 0 0.900 0.000 0.100
#> SRR1562747 2 0.2345 0.917 0 0.900 0.000 0.100
#> SRR1562748 4 0.0336 0.856 0 0.000 0.008 0.992
#> SRR1562749 4 0.0336 0.856 0 0.000 0.008 0.992
#> SRR1562750 4 0.0336 0.856 0 0.000 0.008 0.992
#> SRR1562751 4 0.0336 0.856 0 0.000 0.008 0.992
#> SRR1562752 4 0.0336 0.856 0 0.000 0.008 0.992
#> SRR1562753 4 0.0336 0.856 0 0.000 0.008 0.992
#> SRR1562754 4 0.3356 0.861 0 0.176 0.000 0.824
#> SRR1562755 4 0.3356 0.861 0 0.176 0.000 0.824
#> SRR1562756 4 0.3356 0.861 0 0.176 0.000 0.824
#> SRR1562757 4 0.3356 0.861 0 0.176 0.000 0.824
#> SRR1562758 4 0.3356 0.861 0 0.176 0.000 0.824
#> SRR1562759 4 0.3356 0.861 0 0.176 0.000 0.824
#> SRR1562792 3 0.0000 1.000 0 0.000 1.000 0.000
#> SRR1562793 3 0.0000 1.000 0 0.000 1.000 0.000
#> SRR1562794 3 0.0000 1.000 0 0.000 1.000 0.000
#> SRR1562795 3 0.0000 1.000 0 0.000 1.000 0.000
#> SRR1562796 3 0.0000 1.000 0 0.000 1.000 0.000
#> SRR1562797 3 0.0000 1.000 0 0.000 1.000 0.000
#> SRR1562798 3 0.0000 1.000 0 0.000 1.000 0.000
#> SRR1562799 3 0.0000 1.000 0 0.000 1.000 0.000
#> SRR1562800 1 0.0000 1.000 1 0.000 0.000 0.000
#> SRR1562801 1 0.0000 1.000 1 0.000 0.000 0.000
#> SRR1562802 1 0.0000 1.000 1 0.000 0.000 0.000
#> SRR1562803 1 0.0000 1.000 1 0.000 0.000 0.000
#> SRR1562804 1 0.0000 1.000 1 0.000 0.000 0.000
#> SRR1562805 1 0.0000 1.000 1 0.000 0.000 0.000
#> SRR1562806 1 0.0000 1.000 1 0.000 0.000 0.000
#> SRR1562807 1 0.0000 1.000 1 0.000 0.000 0.000
#> SRR1562808 1 0.0000 1.000 1 0.000 0.000 0.000
#> SRR1562809 1 0.0000 1.000 1 0.000 0.000 0.000
#> SRR1562810 1 0.0000 1.000 1 0.000 0.000 0.000
#> SRR1562811 1 0.0000 1.000 1 0.000 0.000 0.000
#> SRR1562812 1 0.0000 1.000 1 0.000 0.000 0.000
#> SRR1562813 1 0.0000 1.000 1 0.000 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1562718 2 0.000 0.751 0.00 1.000 0 0.000 0.000
#> SRR1562719 2 0.000 0.751 0.00 1.000 0 0.000 0.000
#> SRR1562720 2 0.000 0.751 0.00 1.000 0 0.000 0.000
#> SRR1562721 2 0.000 0.751 0.00 1.000 0 0.000 0.000
#> SRR1562723 2 0.000 0.751 0.00 1.000 0 0.000 0.000
#> SRR1562724 2 0.148 0.729 0.00 0.936 0 0.000 0.064
#> SRR1562725 2 0.148 0.729 0.00 0.936 0 0.000 0.064
#> SRR1562726 2 0.148 0.729 0.00 0.936 0 0.000 0.064
#> SRR1562727 2 0.148 0.729 0.00 0.936 0 0.000 0.064
#> SRR1562728 2 0.148 0.729 0.00 0.936 0 0.000 0.064
#> SRR1562729 2 0.148 0.729 0.00 0.936 0 0.000 0.064
#> SRR1562730 2 0.148 0.729 0.00 0.936 0 0.000 0.064
#> SRR1562731 2 0.148 0.729 0.00 0.936 0 0.000 0.064
#> SRR1562732 2 0.148 0.729 0.00 0.936 0 0.000 0.064
#> SRR1562733 2 0.148 0.729 0.00 0.936 0 0.000 0.064
#> SRR1562734 2 0.148 0.729 0.00 0.936 0 0.000 0.064
#> SRR1562735 2 0.148 0.729 0.00 0.936 0 0.000 0.064
#> SRR1562736 5 0.478 1.000 0.00 0.388 0 0.024 0.588
#> SRR1562737 5 0.478 1.000 0.00 0.388 0 0.024 0.588
#> SRR1562738 5 0.478 1.000 0.00 0.388 0 0.024 0.588
#> SRR1562739 5 0.478 1.000 0.00 0.388 0 0.024 0.588
#> SRR1562740 5 0.478 1.000 0.00 0.388 0 0.024 0.588
#> SRR1562741 5 0.478 1.000 0.00 0.388 0 0.024 0.588
#> SRR1562742 2 0.413 -0.149 0.00 0.620 0 0.000 0.380
#> SRR1562743 2 0.413 -0.149 0.00 0.620 0 0.000 0.380
#> SRR1562744 2 0.413 -0.149 0.00 0.620 0 0.000 0.380
#> SRR1562745 2 0.413 -0.149 0.00 0.620 0 0.000 0.380
#> SRR1562746 2 0.413 -0.149 0.00 0.620 0 0.000 0.380
#> SRR1562747 2 0.413 -0.149 0.00 0.620 0 0.000 0.380
#> SRR1562748 4 0.000 0.792 0.00 0.000 0 1.000 0.000
#> SRR1562749 4 0.000 0.792 0.00 0.000 0 1.000 0.000
#> SRR1562750 4 0.000 0.792 0.00 0.000 0 1.000 0.000
#> SRR1562751 4 0.000 0.792 0.00 0.000 0 1.000 0.000
#> SRR1562752 4 0.000 0.792 0.00 0.000 0 1.000 0.000
#> SRR1562753 4 0.000 0.792 0.00 0.000 0 1.000 0.000
#> SRR1562754 4 0.445 0.752 0.00 0.016 0 0.644 0.340
#> SRR1562755 4 0.445 0.752 0.00 0.016 0 0.644 0.340
#> SRR1562756 4 0.445 0.752 0.00 0.016 0 0.644 0.340
#> SRR1562757 4 0.445 0.752 0.00 0.016 0 0.644 0.340
#> SRR1562758 4 0.445 0.752 0.00 0.016 0 0.644 0.340
#> SRR1562759 4 0.445 0.752 0.00 0.016 0 0.644 0.340
#> SRR1562792 3 0.000 1.000 0.00 0.000 1 0.000 0.000
#> SRR1562793 3 0.000 1.000 0.00 0.000 1 0.000 0.000
#> SRR1562794 3 0.000 1.000 0.00 0.000 1 0.000 0.000
#> SRR1562795 3 0.000 1.000 0.00 0.000 1 0.000 0.000
#> SRR1562796 3 0.000 1.000 0.00 0.000 1 0.000 0.000
#> SRR1562797 3 0.000 1.000 0.00 0.000 1 0.000 0.000
#> SRR1562798 3 0.000 1.000 0.00 0.000 1 0.000 0.000
#> SRR1562799 3 0.000 1.000 0.00 0.000 1 0.000 0.000
#> SRR1562800 1 0.000 0.813 1.00 0.000 0 0.000 0.000
#> SRR1562801 1 0.000 0.813 1.00 0.000 0 0.000 0.000
#> SRR1562802 1 0.000 0.813 1.00 0.000 0 0.000 0.000
#> SRR1562803 1 0.000 0.813 1.00 0.000 0 0.000 0.000
#> SRR1562804 1 0.000 0.813 1.00 0.000 0 0.000 0.000
#> SRR1562805 1 0.000 0.813 1.00 0.000 0 0.000 0.000
#> SRR1562806 1 0.398 0.864 0.66 0.000 0 0.000 0.340
#> SRR1562807 1 0.398 0.864 0.66 0.000 0 0.000 0.340
#> SRR1562808 1 0.398 0.864 0.66 0.000 0 0.000 0.340
#> SRR1562809 1 0.398 0.864 0.66 0.000 0 0.000 0.340
#> SRR1562810 1 0.398 0.864 0.66 0.000 0 0.000 0.340
#> SRR1562811 1 0.398 0.864 0.66 0.000 0 0.000 0.340
#> SRR1562812 1 0.398 0.864 0.66 0.000 0 0.000 0.340
#> SRR1562813 1 0.398 0.864 0.66 0.000 0 0.000 0.340
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1562718 2 0.1471 0.893 0.004 0.932 0 0.000 0.064 0.000
#> SRR1562719 2 0.1471 0.893 0.004 0.932 0 0.000 0.064 0.000
#> SRR1562720 2 0.1471 0.893 0.004 0.932 0 0.000 0.064 0.000
#> SRR1562721 2 0.1471 0.893 0.004 0.932 0 0.000 0.064 0.000
#> SRR1562723 2 0.1471 0.893 0.004 0.932 0 0.000 0.064 0.000
#> SRR1562724 2 0.3076 0.834 0.000 0.760 0 0.000 0.240 0.000
#> SRR1562725 2 0.3076 0.834 0.000 0.760 0 0.000 0.240 0.000
#> SRR1562726 2 0.3076 0.834 0.000 0.760 0 0.000 0.240 0.000
#> SRR1562727 2 0.3076 0.834 0.000 0.760 0 0.000 0.240 0.000
#> SRR1562728 2 0.3076 0.834 0.000 0.760 0 0.000 0.240 0.000
#> SRR1562729 2 0.3076 0.834 0.000 0.760 0 0.000 0.240 0.000
#> SRR1562730 2 0.0547 0.878 0.020 0.980 0 0.000 0.000 0.000
#> SRR1562731 2 0.0547 0.878 0.020 0.980 0 0.000 0.000 0.000
#> SRR1562732 2 0.0547 0.878 0.020 0.980 0 0.000 0.000 0.000
#> SRR1562733 2 0.0547 0.878 0.020 0.980 0 0.000 0.000 0.000
#> SRR1562734 2 0.0547 0.878 0.020 0.980 0 0.000 0.000 0.000
#> SRR1562735 2 0.0547 0.878 0.020 0.980 0 0.000 0.000 0.000
#> SRR1562736 5 0.3094 0.750 0.140 0.000 0 0.036 0.824 0.000
#> SRR1562737 5 0.3094 0.750 0.140 0.000 0 0.036 0.824 0.000
#> SRR1562738 5 0.3094 0.750 0.140 0.000 0 0.036 0.824 0.000
#> SRR1562739 5 0.3094 0.750 0.140 0.000 0 0.036 0.824 0.000
#> SRR1562740 5 0.3094 0.750 0.140 0.000 0 0.036 0.824 0.000
#> SRR1562741 5 0.3094 0.750 0.140 0.000 0 0.036 0.824 0.000
#> SRR1562742 5 0.2219 0.778 0.000 0.136 0 0.000 0.864 0.000
#> SRR1562743 5 0.2219 0.778 0.000 0.136 0 0.000 0.864 0.000
#> SRR1562744 5 0.2219 0.778 0.000 0.136 0 0.000 0.864 0.000
#> SRR1562745 5 0.2219 0.778 0.000 0.136 0 0.000 0.864 0.000
#> SRR1562746 5 0.2219 0.778 0.000 0.136 0 0.000 0.864 0.000
#> SRR1562747 5 0.2219 0.778 0.000 0.136 0 0.000 0.864 0.000
#> SRR1562748 4 0.0000 0.774 0.000 0.000 0 1.000 0.000 0.000
#> SRR1562749 4 0.0000 0.774 0.000 0.000 0 1.000 0.000 0.000
#> SRR1562750 4 0.0000 0.774 0.000 0.000 0 1.000 0.000 0.000
#> SRR1562751 4 0.0000 0.774 0.000 0.000 0 1.000 0.000 0.000
#> SRR1562752 4 0.0000 0.774 0.000 0.000 0 1.000 0.000 0.000
#> SRR1562753 4 0.0000 0.774 0.000 0.000 0 1.000 0.000 0.000
#> SRR1562754 4 0.5079 0.739 0.148 0.000 0 0.628 0.224 0.000
#> SRR1562755 4 0.5079 0.739 0.148 0.000 0 0.628 0.224 0.000
#> SRR1562756 4 0.5079 0.739 0.148 0.000 0 0.628 0.224 0.000
#> SRR1562757 4 0.5079 0.739 0.148 0.000 0 0.628 0.224 0.000
#> SRR1562758 4 0.5079 0.739 0.148 0.000 0 0.628 0.224 0.000
#> SRR1562759 4 0.5079 0.739 0.148 0.000 0 0.628 0.224 0.000
#> SRR1562792 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562793 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562794 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562795 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562796 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562797 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562798 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562799 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562800 6 0.0000 1.000 0.000 0.000 0 0.000 0.000 1.000
#> SRR1562801 6 0.0000 1.000 0.000 0.000 0 0.000 0.000 1.000
#> SRR1562802 6 0.0000 1.000 0.000 0.000 0 0.000 0.000 1.000
#> SRR1562803 6 0.0000 1.000 0.000 0.000 0 0.000 0.000 1.000
#> SRR1562804 6 0.0000 1.000 0.000 0.000 0 0.000 0.000 1.000
#> SRR1562805 6 0.0000 1.000 0.000 0.000 0 0.000 0.000 1.000
#> SRR1562806 1 0.2562 0.980 0.828 0.000 0 0.000 0.000 0.172
#> SRR1562807 1 0.2562 0.980 0.828 0.000 0 0.000 0.000 0.172
#> SRR1562808 1 0.2562 0.980 0.828 0.000 0 0.000 0.000 0.172
#> SRR1562809 1 0.2562 0.980 0.828 0.000 0 0.000 0.000 0.172
#> SRR1562810 1 0.2793 0.980 0.800 0.000 0 0.000 0.000 0.200
#> SRR1562811 1 0.2793 0.980 0.800 0.000 0 0.000 0.000 0.200
#> SRR1562812 1 0.2793 0.980 0.800 0.000 0 0.000 0.000 0.200
#> SRR1562813 1 0.2793 0.980 0.800 0.000 0 0.000 0.000 0.200
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15301 rows and 63 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.4624 0.538 0.538
#> 3 3 1.000 1.000 1.000 0.1239 0.943 0.893
#> 4 4 0.801 0.960 0.930 0.3296 0.788 0.559
#> 5 5 0.763 0.861 0.864 0.0934 0.874 0.588
#> 6 6 0.769 0.804 0.821 0.0432 1.000 1.000
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2
There is also optional best \(k\) = 2 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1562718 2 0 1 0 1
#> SRR1562719 2 0 1 0 1
#> SRR1562720 2 0 1 0 1
#> SRR1562721 2 0 1 0 1
#> SRR1562723 2 0 1 0 1
#> SRR1562724 2 0 1 0 1
#> SRR1562725 2 0 1 0 1
#> SRR1562726 2 0 1 0 1
#> SRR1562727 2 0 1 0 1
#> SRR1562728 2 0 1 0 1
#> SRR1562729 2 0 1 0 1
#> SRR1562730 2 0 1 0 1
#> SRR1562731 2 0 1 0 1
#> SRR1562732 2 0 1 0 1
#> SRR1562733 2 0 1 0 1
#> SRR1562734 2 0 1 0 1
#> SRR1562735 2 0 1 0 1
#> SRR1562736 2 0 1 0 1
#> SRR1562737 2 0 1 0 1
#> SRR1562738 2 0 1 0 1
#> SRR1562739 2 0 1 0 1
#> SRR1562740 2 0 1 0 1
#> SRR1562741 2 0 1 0 1
#> SRR1562742 2 0 1 0 1
#> SRR1562743 2 0 1 0 1
#> SRR1562744 2 0 1 0 1
#> SRR1562745 2 0 1 0 1
#> SRR1562746 2 0 1 0 1
#> SRR1562747 2 0 1 0 1
#> SRR1562748 2 0 1 0 1
#> SRR1562749 2 0 1 0 1
#> SRR1562750 2 0 1 0 1
#> SRR1562751 2 0 1 0 1
#> SRR1562752 2 0 1 0 1
#> SRR1562753 2 0 1 0 1
#> SRR1562754 2 0 1 0 1
#> SRR1562755 2 0 1 0 1
#> SRR1562756 2 0 1 0 1
#> SRR1562757 2 0 1 0 1
#> SRR1562758 2 0 1 0 1
#> SRR1562759 2 0 1 0 1
#> SRR1562792 1 0 1 1 0
#> SRR1562793 1 0 1 1 0
#> SRR1562794 1 0 1 1 0
#> SRR1562795 1 0 1 1 0
#> SRR1562796 1 0 1 1 0
#> SRR1562797 1 0 1 1 0
#> SRR1562798 1 0 1 1 0
#> SRR1562799 1 0 1 1 0
#> SRR1562800 1 0 1 1 0
#> SRR1562801 1 0 1 1 0
#> SRR1562802 1 0 1 1 0
#> SRR1562803 1 0 1 1 0
#> SRR1562804 1 0 1 1 0
#> SRR1562805 1 0 1 1 0
#> SRR1562806 1 0 1 1 0
#> SRR1562807 1 0 1 1 0
#> SRR1562808 1 0 1 1 0
#> SRR1562809 1 0 1 1 0
#> SRR1562810 1 0 1 1 0
#> SRR1562811 1 0 1 1 0
#> SRR1562812 1 0 1 1 0
#> SRR1562813 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1562718 2 0 1 0 1 0
#> SRR1562719 2 0 1 0 1 0
#> SRR1562720 2 0 1 0 1 0
#> SRR1562721 2 0 1 0 1 0
#> SRR1562723 2 0 1 0 1 0
#> SRR1562724 2 0 1 0 1 0
#> SRR1562725 2 0 1 0 1 0
#> SRR1562726 2 0 1 0 1 0
#> SRR1562727 2 0 1 0 1 0
#> SRR1562728 2 0 1 0 1 0
#> SRR1562729 2 0 1 0 1 0
#> SRR1562730 2 0 1 0 1 0
#> SRR1562731 2 0 1 0 1 0
#> SRR1562732 2 0 1 0 1 0
#> SRR1562733 2 0 1 0 1 0
#> SRR1562734 2 0 1 0 1 0
#> SRR1562735 2 0 1 0 1 0
#> SRR1562736 2 0 1 0 1 0
#> SRR1562737 2 0 1 0 1 0
#> SRR1562738 2 0 1 0 1 0
#> SRR1562739 2 0 1 0 1 0
#> SRR1562740 2 0 1 0 1 0
#> SRR1562741 2 0 1 0 1 0
#> SRR1562742 2 0 1 0 1 0
#> SRR1562743 2 0 1 0 1 0
#> SRR1562744 2 0 1 0 1 0
#> SRR1562745 2 0 1 0 1 0
#> SRR1562746 2 0 1 0 1 0
#> SRR1562747 2 0 1 0 1 0
#> SRR1562748 2 0 1 0 1 0
#> SRR1562749 2 0 1 0 1 0
#> SRR1562750 2 0 1 0 1 0
#> SRR1562751 2 0 1 0 1 0
#> SRR1562752 2 0 1 0 1 0
#> SRR1562753 2 0 1 0 1 0
#> SRR1562754 2 0 1 0 1 0
#> SRR1562755 2 0 1 0 1 0
#> SRR1562756 2 0 1 0 1 0
#> SRR1562757 2 0 1 0 1 0
#> SRR1562758 2 0 1 0 1 0
#> SRR1562759 2 0 1 0 1 0
#> SRR1562792 3 0 1 0 0 1
#> SRR1562793 3 0 1 0 0 1
#> SRR1562794 3 0 1 0 0 1
#> SRR1562795 3 0 1 0 0 1
#> SRR1562796 3 0 1 0 0 1
#> SRR1562797 3 0 1 0 0 1
#> SRR1562798 3 0 1 0 0 1
#> SRR1562799 3 0 1 0 0 1
#> SRR1562800 1 0 1 1 0 0
#> SRR1562801 1 0 1 1 0 0
#> SRR1562802 1 0 1 1 0 0
#> SRR1562803 1 0 1 1 0 0
#> SRR1562804 1 0 1 1 0 0
#> SRR1562805 1 0 1 1 0 0
#> SRR1562806 1 0 1 1 0 0
#> SRR1562807 1 0 1 1 0 0
#> SRR1562808 1 0 1 1 0 0
#> SRR1562809 1 0 1 1 0 0
#> SRR1562810 1 0 1 1 0 0
#> SRR1562811 1 0 1 1 0 0
#> SRR1562812 1 0 1 1 0 0
#> SRR1562813 1 0 1 1 0 0
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1562718 2 0.0000 0.993 0.000 1.000 0 0.000
#> SRR1562719 2 0.0000 0.993 0.000 1.000 0 0.000
#> SRR1562720 2 0.0000 0.993 0.000 1.000 0 0.000
#> SRR1562721 2 0.0000 0.993 0.000 1.000 0 0.000
#> SRR1562723 2 0.0000 0.993 0.000 1.000 0 0.000
#> SRR1562724 2 0.0000 0.993 0.000 1.000 0 0.000
#> SRR1562725 2 0.0000 0.993 0.000 1.000 0 0.000
#> SRR1562726 2 0.0000 0.993 0.000 1.000 0 0.000
#> SRR1562727 2 0.0000 0.993 0.000 1.000 0 0.000
#> SRR1562728 2 0.0000 0.993 0.000 1.000 0 0.000
#> SRR1562729 2 0.0000 0.993 0.000 1.000 0 0.000
#> SRR1562730 2 0.0000 0.993 0.000 1.000 0 0.000
#> SRR1562731 2 0.0000 0.993 0.000 1.000 0 0.000
#> SRR1562732 2 0.0000 0.993 0.000 1.000 0 0.000
#> SRR1562733 2 0.0000 0.993 0.000 1.000 0 0.000
#> SRR1562734 2 0.0000 0.993 0.000 1.000 0 0.000
#> SRR1562735 2 0.0000 0.993 0.000 1.000 0 0.000
#> SRR1562736 4 0.4477 0.867 0.000 0.312 0 0.688
#> SRR1562737 4 0.4543 0.856 0.000 0.324 0 0.676
#> SRR1562738 4 0.4477 0.866 0.000 0.312 0 0.688
#> SRR1562739 4 0.4543 0.856 0.000 0.324 0 0.676
#> SRR1562740 4 0.4500 0.864 0.000 0.316 0 0.684
#> SRR1562741 4 0.4543 0.856 0.000 0.324 0 0.676
#> SRR1562742 2 0.0707 0.979 0.000 0.980 0 0.020
#> SRR1562743 2 0.0707 0.979 0.000 0.980 0 0.020
#> SRR1562744 2 0.0707 0.979 0.000 0.980 0 0.020
#> SRR1562745 2 0.0707 0.979 0.000 0.980 0 0.020
#> SRR1562746 2 0.0707 0.979 0.000 0.980 0 0.020
#> SRR1562747 2 0.0707 0.979 0.000 0.980 0 0.020
#> SRR1562748 4 0.2868 0.879 0.000 0.136 0 0.864
#> SRR1562749 4 0.2868 0.879 0.000 0.136 0 0.864
#> SRR1562750 4 0.2868 0.879 0.000 0.136 0 0.864
#> SRR1562751 4 0.2868 0.879 0.000 0.136 0 0.864
#> SRR1562752 4 0.2868 0.879 0.000 0.136 0 0.864
#> SRR1562753 4 0.2868 0.879 0.000 0.136 0 0.864
#> SRR1562754 4 0.3873 0.913 0.000 0.228 0 0.772
#> SRR1562755 4 0.3873 0.913 0.000 0.228 0 0.772
#> SRR1562756 4 0.3873 0.913 0.000 0.228 0 0.772
#> SRR1562757 4 0.3873 0.913 0.000 0.228 0 0.772
#> SRR1562758 4 0.3873 0.913 0.000 0.228 0 0.772
#> SRR1562759 4 0.3873 0.913 0.000 0.228 0 0.772
#> SRR1562792 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1562793 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1562794 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1562795 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1562796 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1562797 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1562798 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1562799 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1562800 1 0.1118 0.982 0.964 0.000 0 0.036
#> SRR1562801 1 0.1118 0.982 0.964 0.000 0 0.036
#> SRR1562802 1 0.1118 0.982 0.964 0.000 0 0.036
#> SRR1562803 1 0.1118 0.982 0.964 0.000 0 0.036
#> SRR1562804 1 0.1118 0.982 0.964 0.000 0 0.036
#> SRR1562805 1 0.1118 0.982 0.964 0.000 0 0.036
#> SRR1562806 1 0.0000 0.987 1.000 0.000 0 0.000
#> SRR1562807 1 0.0000 0.987 1.000 0.000 0 0.000
#> SRR1562808 1 0.0000 0.987 1.000 0.000 0 0.000
#> SRR1562809 1 0.0000 0.987 1.000 0.000 0 0.000
#> SRR1562810 1 0.0000 0.987 1.000 0.000 0 0.000
#> SRR1562811 1 0.0000 0.987 1.000 0.000 0 0.000
#> SRR1562812 1 0.0000 0.987 1.000 0.000 0 0.000
#> SRR1562813 1 0.0000 0.987 1.000 0.000 0 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1562718 2 0.2471 0.849 0.000 0.864 0 0.000 0.136
#> SRR1562719 2 0.2377 0.859 0.000 0.872 0 0.000 0.128
#> SRR1562720 2 0.2377 0.859 0.000 0.872 0 0.000 0.128
#> SRR1562721 2 0.2179 0.873 0.000 0.888 0 0.000 0.112
#> SRR1562723 2 0.2471 0.849 0.000 0.864 0 0.000 0.136
#> SRR1562724 2 0.0865 0.931 0.000 0.972 0 0.004 0.024
#> SRR1562725 2 0.0865 0.931 0.000 0.972 0 0.004 0.024
#> SRR1562726 2 0.0703 0.932 0.000 0.976 0 0.000 0.024
#> SRR1562727 2 0.0703 0.932 0.000 0.976 0 0.000 0.024
#> SRR1562728 2 0.0703 0.932 0.000 0.976 0 0.000 0.024
#> SRR1562729 2 0.0703 0.932 0.000 0.976 0 0.000 0.024
#> SRR1562730 2 0.0609 0.921 0.000 0.980 0 0.020 0.000
#> SRR1562731 2 0.0609 0.921 0.000 0.980 0 0.020 0.000
#> SRR1562732 2 0.0609 0.921 0.000 0.980 0 0.020 0.000
#> SRR1562733 2 0.0609 0.921 0.000 0.980 0 0.020 0.000
#> SRR1562734 2 0.0609 0.921 0.000 0.980 0 0.020 0.000
#> SRR1562735 2 0.0609 0.921 0.000 0.980 0 0.020 0.000
#> SRR1562736 5 0.3016 0.749 0.000 0.132 0 0.020 0.848
#> SRR1562737 5 0.3319 0.757 0.000 0.160 0 0.020 0.820
#> SRR1562738 5 0.3284 0.756 0.000 0.148 0 0.024 0.828
#> SRR1562739 5 0.3326 0.757 0.000 0.152 0 0.024 0.824
#> SRR1562740 5 0.3284 0.758 0.000 0.148 0 0.024 0.828
#> SRR1562741 5 0.3284 0.758 0.000 0.148 0 0.024 0.828
#> SRR1562742 5 0.4321 0.593 0.000 0.396 0 0.004 0.600
#> SRR1562743 5 0.4321 0.593 0.000 0.396 0 0.004 0.600
#> SRR1562744 5 0.4321 0.593 0.000 0.396 0 0.004 0.600
#> SRR1562745 5 0.4310 0.600 0.000 0.392 0 0.004 0.604
#> SRR1562746 5 0.4321 0.593 0.000 0.396 0 0.004 0.600
#> SRR1562747 5 0.4310 0.600 0.000 0.392 0 0.004 0.604
#> SRR1562748 4 0.4264 1.000 0.000 0.004 0 0.620 0.376
#> SRR1562749 4 0.4264 1.000 0.000 0.004 0 0.620 0.376
#> SRR1562750 4 0.4264 1.000 0.000 0.004 0 0.620 0.376
#> SRR1562751 4 0.4264 1.000 0.000 0.004 0 0.620 0.376
#> SRR1562752 4 0.4264 1.000 0.000 0.004 0 0.620 0.376
#> SRR1562753 4 0.4264 1.000 0.000 0.004 0 0.620 0.376
#> SRR1562754 5 0.2006 0.703 0.000 0.072 0 0.012 0.916
#> SRR1562755 5 0.2006 0.703 0.000 0.072 0 0.012 0.916
#> SRR1562756 5 0.2006 0.703 0.000 0.072 0 0.012 0.916
#> SRR1562757 5 0.2069 0.707 0.000 0.076 0 0.012 0.912
#> SRR1562758 5 0.2006 0.703 0.000 0.072 0 0.012 0.916
#> SRR1562759 5 0.2006 0.703 0.000 0.072 0 0.012 0.916
#> SRR1562792 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562793 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562794 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562795 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562796 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562797 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562798 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562799 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562800 1 0.3366 0.875 0.768 0.000 0 0.232 0.000
#> SRR1562801 1 0.3366 0.875 0.768 0.000 0 0.232 0.000
#> SRR1562802 1 0.3366 0.875 0.768 0.000 0 0.232 0.000
#> SRR1562803 1 0.3366 0.875 0.768 0.000 0 0.232 0.000
#> SRR1562804 1 0.3366 0.875 0.768 0.000 0 0.232 0.000
#> SRR1562805 1 0.3366 0.875 0.768 0.000 0 0.232 0.000
#> SRR1562806 1 0.0000 0.908 1.000 0.000 0 0.000 0.000
#> SRR1562807 1 0.0000 0.908 1.000 0.000 0 0.000 0.000
#> SRR1562808 1 0.0000 0.908 1.000 0.000 0 0.000 0.000
#> SRR1562809 1 0.0000 0.908 1.000 0.000 0 0.000 0.000
#> SRR1562810 1 0.0000 0.908 1.000 0.000 0 0.000 0.000
#> SRR1562811 1 0.0000 0.908 1.000 0.000 0 0.000 0.000
#> SRR1562812 1 0.0000 0.908 1.000 0.000 0 0.000 0.000
#> SRR1562813 1 0.0000 0.908 1.000 0.000 0 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1562718 2 0.387 0.648 0.000 0.636 0 0.008 0.356 NA
#> SRR1562719 2 0.385 0.655 0.000 0.644 0 0.008 0.348 NA
#> SRR1562720 2 0.385 0.655 0.000 0.644 0 0.008 0.348 NA
#> SRR1562721 2 0.380 0.666 0.000 0.656 0 0.008 0.336 NA
#> SRR1562723 2 0.385 0.655 0.000 0.644 0 0.008 0.348 NA
#> SRR1562724 2 0.378 0.757 0.000 0.760 0 0.020 0.204 NA
#> SRR1562725 2 0.375 0.758 0.000 0.764 0 0.020 0.200 NA
#> SRR1562726 2 0.389 0.753 0.000 0.744 0 0.020 0.220 NA
#> SRR1562727 2 0.387 0.754 0.000 0.748 0 0.020 0.216 NA
#> SRR1562728 2 0.389 0.752 0.000 0.744 0 0.020 0.220 NA
#> SRR1562729 2 0.384 0.756 0.000 0.752 0 0.020 0.212 NA
#> SRR1562730 2 0.231 0.694 0.000 0.880 0 0.000 0.016 NA
#> SRR1562731 2 0.231 0.694 0.000 0.880 0 0.000 0.016 NA
#> SRR1562732 2 0.231 0.694 0.000 0.880 0 0.000 0.016 NA
#> SRR1562733 2 0.231 0.694 0.000 0.880 0 0.000 0.016 NA
#> SRR1562734 2 0.231 0.694 0.000 0.880 0 0.000 0.016 NA
#> SRR1562735 2 0.231 0.694 0.000 0.880 0 0.000 0.016 NA
#> SRR1562736 5 0.350 0.775 0.000 0.124 0 0.056 0.812 NA
#> SRR1562737 5 0.357 0.768 0.000 0.136 0 0.052 0.804 NA
#> SRR1562738 5 0.370 0.768 0.000 0.128 0 0.060 0.800 NA
#> SRR1562739 5 0.373 0.763 0.000 0.136 0 0.056 0.796 NA
#> SRR1562740 5 0.361 0.769 0.000 0.128 0 0.060 0.804 NA
#> SRR1562741 5 0.373 0.763 0.000 0.136 0 0.056 0.796 NA
#> SRR1562742 5 0.190 0.803 0.000 0.072 0 0.000 0.912 NA
#> SRR1562743 5 0.184 0.804 0.000 0.068 0 0.000 0.916 NA
#> SRR1562744 5 0.190 0.803 0.000 0.072 0 0.000 0.912 NA
#> SRR1562745 5 0.190 0.803 0.000 0.072 0 0.000 0.912 NA
#> SRR1562746 5 0.190 0.804 0.000 0.072 0 0.000 0.912 NA
#> SRR1562747 5 0.184 0.804 0.000 0.068 0 0.000 0.916 NA
#> SRR1562748 4 0.101 1.000 0.000 0.000 0 0.956 0.044 NA
#> SRR1562749 4 0.101 1.000 0.000 0.000 0 0.956 0.044 NA
#> SRR1562750 4 0.101 1.000 0.000 0.000 0 0.956 0.044 NA
#> SRR1562751 4 0.101 1.000 0.000 0.000 0 0.956 0.044 NA
#> SRR1562752 4 0.101 1.000 0.000 0.000 0 0.956 0.044 NA
#> SRR1562753 4 0.101 1.000 0.000 0.000 0 0.956 0.044 NA
#> SRR1562754 5 0.408 0.744 0.000 0.008 0 0.100 0.768 NA
#> SRR1562755 5 0.408 0.744 0.000 0.008 0 0.100 0.768 NA
#> SRR1562756 5 0.408 0.744 0.000 0.008 0 0.100 0.768 NA
#> SRR1562757 5 0.408 0.744 0.000 0.008 0 0.100 0.768 NA
#> SRR1562758 5 0.408 0.744 0.000 0.008 0 0.100 0.768 NA
#> SRR1562759 5 0.403 0.746 0.000 0.008 0 0.096 0.772 NA
#> SRR1562792 3 0.000 1.000 0.000 0.000 1 0.000 0.000 NA
#> SRR1562793 3 0.000 1.000 0.000 0.000 1 0.000 0.000 NA
#> SRR1562794 3 0.000 1.000 0.000 0.000 1 0.000 0.000 NA
#> SRR1562795 3 0.000 1.000 0.000 0.000 1 0.000 0.000 NA
#> SRR1562796 3 0.000 1.000 0.000 0.000 1 0.000 0.000 NA
#> SRR1562797 3 0.000 1.000 0.000 0.000 1 0.000 0.000 NA
#> SRR1562798 3 0.000 1.000 0.000 0.000 1 0.000 0.000 NA
#> SRR1562799 3 0.000 1.000 0.000 0.000 1 0.000 0.000 NA
#> SRR1562800 1 0.383 0.728 0.556 0.000 0 0.000 0.000 NA
#> SRR1562801 1 0.383 0.728 0.556 0.000 0 0.000 0.000 NA
#> SRR1562802 1 0.383 0.730 0.560 0.000 0 0.000 0.000 NA
#> SRR1562803 1 0.383 0.730 0.560 0.000 0 0.000 0.000 NA
#> SRR1562804 1 0.386 0.715 0.532 0.000 0 0.000 0.000 NA
#> SRR1562805 1 0.386 0.715 0.532 0.000 0 0.000 0.000 NA
#> SRR1562806 1 0.000 0.808 1.000 0.000 0 0.000 0.000 NA
#> SRR1562807 1 0.000 0.808 1.000 0.000 0 0.000 0.000 NA
#> SRR1562808 1 0.000 0.808 1.000 0.000 0 0.000 0.000 NA
#> SRR1562809 1 0.000 0.808 1.000 0.000 0 0.000 0.000 NA
#> SRR1562810 1 0.000 0.808 1.000 0.000 0 0.000 0.000 NA
#> SRR1562811 1 0.000 0.808 1.000 0.000 0 0.000 0.000 NA
#> SRR1562812 1 0.000 0.808 1.000 0.000 0 0.000 0.000 NA
#> SRR1562813 1 0.000 0.808 1.000 0.000 0 0.000 0.000 NA
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15301 rows and 63 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.538 0.857 0.860 0.3016 0.649 0.649
#> 3 3 1.000 1.000 1.000 0.7231 0.832 0.741
#> 4 4 0.727 0.780 0.858 0.2182 0.892 0.776
#> 5 5 0.745 0.795 0.786 0.1141 0.862 0.653
#> 6 6 0.911 0.936 0.970 0.0738 0.975 0.914
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 3
There is also optional best \(k\) = 3 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1562718 2 0.000 0.889 0.0 1.0
#> SRR1562719 2 0.000 0.889 0.0 1.0
#> SRR1562720 2 0.000 0.889 0.0 1.0
#> SRR1562721 2 0.000 0.889 0.0 1.0
#> SRR1562723 2 0.000 0.889 0.0 1.0
#> SRR1562724 2 0.000 0.889 0.0 1.0
#> SRR1562725 2 0.000 0.889 0.0 1.0
#> SRR1562726 2 0.000 0.889 0.0 1.0
#> SRR1562727 2 0.000 0.889 0.0 1.0
#> SRR1562728 2 0.000 0.889 0.0 1.0
#> SRR1562729 2 0.000 0.889 0.0 1.0
#> SRR1562730 2 0.000 0.889 0.0 1.0
#> SRR1562731 2 0.000 0.889 0.0 1.0
#> SRR1562732 2 0.000 0.889 0.0 1.0
#> SRR1562733 2 0.000 0.889 0.0 1.0
#> SRR1562734 2 0.000 0.889 0.0 1.0
#> SRR1562735 2 0.000 0.889 0.0 1.0
#> SRR1562736 2 0.000 0.889 0.0 1.0
#> SRR1562737 2 0.000 0.889 0.0 1.0
#> SRR1562738 2 0.000 0.889 0.0 1.0
#> SRR1562739 2 0.000 0.889 0.0 1.0
#> SRR1562740 2 0.000 0.889 0.0 1.0
#> SRR1562741 2 0.000 0.889 0.0 1.0
#> SRR1562742 2 0.000 0.889 0.0 1.0
#> SRR1562743 2 0.000 0.889 0.0 1.0
#> SRR1562744 2 0.000 0.889 0.0 1.0
#> SRR1562745 2 0.000 0.889 0.0 1.0
#> SRR1562746 2 0.000 0.889 0.0 1.0
#> SRR1562747 2 0.000 0.889 0.0 1.0
#> SRR1562748 2 0.000 0.889 0.0 1.0
#> SRR1562749 2 0.000 0.889 0.0 1.0
#> SRR1562750 2 0.000 0.889 0.0 1.0
#> SRR1562751 2 0.000 0.889 0.0 1.0
#> SRR1562752 2 0.000 0.889 0.0 1.0
#> SRR1562753 2 0.000 0.889 0.0 1.0
#> SRR1562754 2 0.000 0.889 0.0 1.0
#> SRR1562755 2 0.000 0.889 0.0 1.0
#> SRR1562756 2 0.000 0.889 0.0 1.0
#> SRR1562757 2 0.000 0.889 0.0 1.0
#> SRR1562758 2 0.000 0.889 0.0 1.0
#> SRR1562759 2 0.000 0.889 0.0 1.0
#> SRR1562792 2 0.971 0.442 0.4 0.6
#> SRR1562793 2 0.971 0.442 0.4 0.6
#> SRR1562794 2 0.971 0.442 0.4 0.6
#> SRR1562795 2 0.971 0.442 0.4 0.6
#> SRR1562796 2 0.971 0.442 0.4 0.6
#> SRR1562797 2 0.971 0.442 0.4 0.6
#> SRR1562798 2 0.971 0.442 0.4 0.6
#> SRR1562799 2 0.971 0.442 0.4 0.6
#> SRR1562800 1 0.971 1.000 0.6 0.4
#> SRR1562801 1 0.971 1.000 0.6 0.4
#> SRR1562802 1 0.971 1.000 0.6 0.4
#> SRR1562803 1 0.971 1.000 0.6 0.4
#> SRR1562804 1 0.971 1.000 0.6 0.4
#> SRR1562805 1 0.971 1.000 0.6 0.4
#> SRR1562806 1 0.971 1.000 0.6 0.4
#> SRR1562807 1 0.971 1.000 0.6 0.4
#> SRR1562808 1 0.971 1.000 0.6 0.4
#> SRR1562809 1 0.971 1.000 0.6 0.4
#> SRR1562810 1 0.971 1.000 0.6 0.4
#> SRR1562811 1 0.971 1.000 0.6 0.4
#> SRR1562812 1 0.971 1.000 0.6 0.4
#> SRR1562813 1 0.971 1.000 0.6 0.4
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1562718 2 0 1 0 1 0
#> SRR1562719 2 0 1 0 1 0
#> SRR1562720 2 0 1 0 1 0
#> SRR1562721 2 0 1 0 1 0
#> SRR1562723 2 0 1 0 1 0
#> SRR1562724 2 0 1 0 1 0
#> SRR1562725 2 0 1 0 1 0
#> SRR1562726 2 0 1 0 1 0
#> SRR1562727 2 0 1 0 1 0
#> SRR1562728 2 0 1 0 1 0
#> SRR1562729 2 0 1 0 1 0
#> SRR1562730 2 0 1 0 1 0
#> SRR1562731 2 0 1 0 1 0
#> SRR1562732 2 0 1 0 1 0
#> SRR1562733 2 0 1 0 1 0
#> SRR1562734 2 0 1 0 1 0
#> SRR1562735 2 0 1 0 1 0
#> SRR1562736 2 0 1 0 1 0
#> SRR1562737 2 0 1 0 1 0
#> SRR1562738 2 0 1 0 1 0
#> SRR1562739 2 0 1 0 1 0
#> SRR1562740 2 0 1 0 1 0
#> SRR1562741 2 0 1 0 1 0
#> SRR1562742 2 0 1 0 1 0
#> SRR1562743 2 0 1 0 1 0
#> SRR1562744 2 0 1 0 1 0
#> SRR1562745 2 0 1 0 1 0
#> SRR1562746 2 0 1 0 1 0
#> SRR1562747 2 0 1 0 1 0
#> SRR1562748 2 0 1 0 1 0
#> SRR1562749 2 0 1 0 1 0
#> SRR1562750 2 0 1 0 1 0
#> SRR1562751 2 0 1 0 1 0
#> SRR1562752 2 0 1 0 1 0
#> SRR1562753 2 0 1 0 1 0
#> SRR1562754 2 0 1 0 1 0
#> SRR1562755 2 0 1 0 1 0
#> SRR1562756 2 0 1 0 1 0
#> SRR1562757 2 0 1 0 1 0
#> SRR1562758 2 0 1 0 1 0
#> SRR1562759 2 0 1 0 1 0
#> SRR1562792 3 0 1 0 0 1
#> SRR1562793 3 0 1 0 0 1
#> SRR1562794 3 0 1 0 0 1
#> SRR1562795 3 0 1 0 0 1
#> SRR1562796 3 0 1 0 0 1
#> SRR1562797 3 0 1 0 0 1
#> SRR1562798 3 0 1 0 0 1
#> SRR1562799 3 0 1 0 0 1
#> SRR1562800 1 0 1 1 0 0
#> SRR1562801 1 0 1 1 0 0
#> SRR1562802 1 0 1 1 0 0
#> SRR1562803 1 0 1 1 0 0
#> SRR1562804 1 0 1 1 0 0
#> SRR1562805 1 0 1 1 0 0
#> SRR1562806 1 0 1 1 0 0
#> SRR1562807 1 0 1 1 0 0
#> SRR1562808 1 0 1 1 0 0
#> SRR1562809 1 0 1 1 0 0
#> SRR1562810 1 0 1 1 0 0
#> SRR1562811 1 0 1 1 0 0
#> SRR1562812 1 0 1 1 0 0
#> SRR1562813 1 0 1 1 0 0
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1562718 2 0.452 0.708 0.0 0.680 0 0.320
#> SRR1562719 2 0.452 0.708 0.0 0.680 0 0.320
#> SRR1562720 2 0.452 0.708 0.0 0.680 0 0.320
#> SRR1562721 2 0.452 0.708 0.0 0.680 0 0.320
#> SRR1562723 2 0.452 0.708 0.0 0.680 0 0.320
#> SRR1562724 2 0.452 0.708 0.0 0.680 0 0.320
#> SRR1562725 2 0.452 0.708 0.0 0.680 0 0.320
#> SRR1562726 2 0.452 0.708 0.0 0.680 0 0.320
#> SRR1562727 2 0.452 0.708 0.0 0.680 0 0.320
#> SRR1562728 2 0.452 0.708 0.0 0.680 0 0.320
#> SRR1562729 2 0.452 0.708 0.0 0.680 0 0.320
#> SRR1562730 4 0.416 1.000 0.0 0.264 0 0.736
#> SRR1562731 4 0.416 1.000 0.0 0.264 0 0.736
#> SRR1562732 4 0.416 1.000 0.0 0.264 0 0.736
#> SRR1562733 4 0.416 1.000 0.0 0.264 0 0.736
#> SRR1562734 4 0.416 1.000 0.0 0.264 0 0.736
#> SRR1562735 4 0.416 1.000 0.0 0.264 0 0.736
#> SRR1562736 2 0.452 0.708 0.0 0.680 0 0.320
#> SRR1562737 2 0.452 0.708 0.0 0.680 0 0.320
#> SRR1562738 2 0.452 0.708 0.0 0.680 0 0.320
#> SRR1562739 2 0.452 0.708 0.0 0.680 0 0.320
#> SRR1562740 2 0.452 0.708 0.0 0.680 0 0.320
#> SRR1562741 2 0.452 0.708 0.0 0.680 0 0.320
#> SRR1562742 2 0.452 0.708 0.0 0.680 0 0.320
#> SRR1562743 2 0.452 0.708 0.0 0.680 0 0.320
#> SRR1562744 2 0.452 0.708 0.0 0.680 0 0.320
#> SRR1562745 2 0.452 0.708 0.0 0.680 0 0.320
#> SRR1562746 2 0.452 0.708 0.0 0.680 0 0.320
#> SRR1562747 2 0.452 0.708 0.0 0.680 0 0.320
#> SRR1562748 2 0.172 0.484 0.0 0.936 0 0.064
#> SRR1562749 2 0.172 0.484 0.0 0.936 0 0.064
#> SRR1562750 2 0.172 0.484 0.0 0.936 0 0.064
#> SRR1562751 2 0.172 0.484 0.0 0.936 0 0.064
#> SRR1562752 2 0.172 0.484 0.0 0.936 0 0.064
#> SRR1562753 2 0.172 0.484 0.0 0.936 0 0.064
#> SRR1562754 2 0.000 0.538 0.0 1.000 0 0.000
#> SRR1562755 2 0.000 0.538 0.0 1.000 0 0.000
#> SRR1562756 2 0.000 0.538 0.0 1.000 0 0.000
#> SRR1562757 2 0.000 0.538 0.0 1.000 0 0.000
#> SRR1562758 2 0.000 0.538 0.0 1.000 0 0.000
#> SRR1562759 2 0.000 0.538 0.0 1.000 0 0.000
#> SRR1562792 3 0.000 1.000 0.0 0.000 1 0.000
#> SRR1562793 3 0.000 1.000 0.0 0.000 1 0.000
#> SRR1562794 3 0.000 1.000 0.0 0.000 1 0.000
#> SRR1562795 3 0.000 1.000 0.0 0.000 1 0.000
#> SRR1562796 3 0.000 1.000 0.0 0.000 1 0.000
#> SRR1562797 3 0.000 1.000 0.0 0.000 1 0.000
#> SRR1562798 3 0.000 1.000 0.0 0.000 1 0.000
#> SRR1562799 3 0.000 1.000 0.0 0.000 1 0.000
#> SRR1562800 1 0.361 0.895 0.8 0.000 0 0.200
#> SRR1562801 1 0.361 0.895 0.8 0.000 0 0.200
#> SRR1562802 1 0.361 0.895 0.8 0.000 0 0.200
#> SRR1562803 1 0.361 0.895 0.8 0.000 0 0.200
#> SRR1562804 1 0.361 0.895 0.8 0.000 0 0.200
#> SRR1562805 1 0.361 0.895 0.8 0.000 0 0.200
#> SRR1562806 1 0.000 0.922 1.0 0.000 0 0.000
#> SRR1562807 1 0.000 0.922 1.0 0.000 0 0.000
#> SRR1562808 1 0.000 0.922 1.0 0.000 0 0.000
#> SRR1562809 1 0.000 0.922 1.0 0.000 0 0.000
#> SRR1562810 1 0.000 0.922 1.0 0.000 0 0.000
#> SRR1562811 1 0.000 0.922 1.0 0.000 0 0.000
#> SRR1562812 1 0.000 0.922 1.0 0.000 0 0.000
#> SRR1562813 1 0.000 0.922 1.0 0.000 0 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1562718 2 0.3837 0.886 0.000 0.692 0.000 0.000 0.308
#> SRR1562719 2 0.3837 0.886 0.000 0.692 0.000 0.000 0.308
#> SRR1562720 2 0.3837 0.886 0.000 0.692 0.000 0.000 0.308
#> SRR1562721 2 0.3837 0.886 0.000 0.692 0.000 0.000 0.308
#> SRR1562723 2 0.3837 0.886 0.000 0.692 0.000 0.000 0.308
#> SRR1562724 2 0.3837 0.886 0.000 0.692 0.000 0.000 0.308
#> SRR1562725 2 0.3837 0.886 0.000 0.692 0.000 0.000 0.308
#> SRR1562726 2 0.3837 0.886 0.000 0.692 0.000 0.000 0.308
#> SRR1562727 2 0.3837 0.886 0.000 0.692 0.000 0.000 0.308
#> SRR1562728 2 0.3837 0.886 0.000 0.692 0.000 0.000 0.308
#> SRR1562729 2 0.3837 0.886 0.000 0.692 0.000 0.000 0.308
#> SRR1562730 5 0.1121 1.000 0.000 0.044 0.000 0.000 0.956
#> SRR1562731 5 0.1121 1.000 0.000 0.044 0.000 0.000 0.956
#> SRR1562732 5 0.1121 1.000 0.000 0.044 0.000 0.000 0.956
#> SRR1562733 5 0.1121 1.000 0.000 0.044 0.000 0.000 0.956
#> SRR1562734 5 0.1121 1.000 0.000 0.044 0.000 0.000 0.956
#> SRR1562735 5 0.1121 1.000 0.000 0.044 0.000 0.000 0.956
#> SRR1562736 2 0.3837 0.886 0.000 0.692 0.000 0.000 0.308
#> SRR1562737 2 0.3837 0.886 0.000 0.692 0.000 0.000 0.308
#> SRR1562738 2 0.3837 0.886 0.000 0.692 0.000 0.000 0.308
#> SRR1562739 2 0.3837 0.886 0.000 0.692 0.000 0.000 0.308
#> SRR1562740 2 0.3837 0.886 0.000 0.692 0.000 0.000 0.308
#> SRR1562741 2 0.3837 0.886 0.000 0.692 0.000 0.000 0.308
#> SRR1562742 2 0.3837 0.886 0.000 0.692 0.000 0.000 0.308
#> SRR1562743 2 0.3837 0.886 0.000 0.692 0.000 0.000 0.308
#> SRR1562744 2 0.3837 0.886 0.000 0.692 0.000 0.000 0.308
#> SRR1562745 2 0.3837 0.886 0.000 0.692 0.000 0.000 0.308
#> SRR1562746 2 0.3837 0.886 0.000 0.692 0.000 0.000 0.308
#> SRR1562747 2 0.3837 0.886 0.000 0.692 0.000 0.000 0.308
#> SRR1562748 3 0.5238 0.341 0.000 0.472 0.484 0.000 0.044
#> SRR1562749 3 0.5238 0.341 0.000 0.472 0.484 0.000 0.044
#> SRR1562750 3 0.5238 0.341 0.000 0.472 0.484 0.000 0.044
#> SRR1562751 3 0.5238 0.341 0.000 0.472 0.484 0.000 0.044
#> SRR1562752 3 0.5238 0.341 0.000 0.472 0.484 0.000 0.044
#> SRR1562753 3 0.5238 0.341 0.000 0.472 0.484 0.000 0.044
#> SRR1562754 2 0.0404 0.566 0.000 0.988 0.012 0.000 0.000
#> SRR1562755 2 0.0404 0.566 0.000 0.988 0.012 0.000 0.000
#> SRR1562756 2 0.0404 0.566 0.000 0.988 0.012 0.000 0.000
#> SRR1562757 2 0.0404 0.566 0.000 0.988 0.012 0.000 0.000
#> SRR1562758 2 0.0404 0.566 0.000 0.988 0.012 0.000 0.000
#> SRR1562759 2 0.0404 0.566 0.000 0.988 0.012 0.000 0.000
#> SRR1562792 3 0.4304 0.536 0.000 0.000 0.516 0.484 0.000
#> SRR1562793 3 0.4304 0.536 0.000 0.000 0.516 0.484 0.000
#> SRR1562794 3 0.4304 0.536 0.000 0.000 0.516 0.484 0.000
#> SRR1562795 3 0.4304 0.536 0.000 0.000 0.516 0.484 0.000
#> SRR1562796 3 0.4304 0.536 0.000 0.000 0.516 0.484 0.000
#> SRR1562797 3 0.4304 0.536 0.000 0.000 0.516 0.484 0.000
#> SRR1562798 3 0.4304 0.536 0.000 0.000 0.516 0.484 0.000
#> SRR1562799 3 0.4304 0.536 0.000 0.000 0.516 0.484 0.000
#> SRR1562800 4 0.4304 1.000 0.484 0.000 0.000 0.516 0.000
#> SRR1562801 4 0.4304 1.000 0.484 0.000 0.000 0.516 0.000
#> SRR1562802 4 0.4304 1.000 0.484 0.000 0.000 0.516 0.000
#> SRR1562803 4 0.4304 1.000 0.484 0.000 0.000 0.516 0.000
#> SRR1562804 4 0.4304 1.000 0.484 0.000 0.000 0.516 0.000
#> SRR1562805 4 0.4304 1.000 0.484 0.000 0.000 0.516 0.000
#> SRR1562806 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> SRR1562807 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> SRR1562808 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> SRR1562809 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> SRR1562810 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> SRR1562811 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> SRR1562812 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
#> SRR1562813 1 0.0000 1.000 1.000 0.000 0.000 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1562718 5 0.00 0.926 0 0 0 0.00 1.00 0
#> SRR1562719 5 0.00 0.926 0 0 0 0.00 1.00 0
#> SRR1562720 5 0.00 0.926 0 0 0 0.00 1.00 0
#> SRR1562721 5 0.00 0.926 0 0 0 0.00 1.00 0
#> SRR1562723 5 0.00 0.926 0 0 0 0.00 1.00 0
#> SRR1562724 5 0.00 0.926 0 0 0 0.00 1.00 0
#> SRR1562725 5 0.00 0.926 0 0 0 0.00 1.00 0
#> SRR1562726 5 0.00 0.926 0 0 0 0.00 1.00 0
#> SRR1562727 5 0.00 0.926 0 0 0 0.00 1.00 0
#> SRR1562728 5 0.00 0.926 0 0 0 0.00 1.00 0
#> SRR1562729 5 0.00 0.926 0 0 0 0.00 1.00 0
#> SRR1562730 2 0.00 1.000 0 1 0 0.00 0.00 0
#> SRR1562731 2 0.00 1.000 0 1 0 0.00 0.00 0
#> SRR1562732 2 0.00 1.000 0 1 0 0.00 0.00 0
#> SRR1562733 2 0.00 1.000 0 1 0 0.00 0.00 0
#> SRR1562734 2 0.00 1.000 0 1 0 0.00 0.00 0
#> SRR1562735 2 0.00 1.000 0 1 0 0.00 0.00 0
#> SRR1562736 5 0.00 0.926 0 0 0 0.00 1.00 0
#> SRR1562737 5 0.00 0.926 0 0 0 0.00 1.00 0
#> SRR1562738 5 0.00 0.926 0 0 0 0.00 1.00 0
#> SRR1562739 5 0.00 0.926 0 0 0 0.00 1.00 0
#> SRR1562740 5 0.00 0.926 0 0 0 0.00 1.00 0
#> SRR1562741 5 0.00 0.926 0 0 0 0.00 1.00 0
#> SRR1562742 5 0.00 0.926 0 0 0 0.00 1.00 0
#> SRR1562743 5 0.00 0.926 0 0 0 0.00 1.00 0
#> SRR1562744 5 0.00 0.926 0 0 0 0.00 1.00 0
#> SRR1562745 5 0.00 0.926 0 0 0 0.00 1.00 0
#> SRR1562746 5 0.00 0.926 0 0 0 0.00 1.00 0
#> SRR1562747 5 0.00 0.926 0 0 0 0.00 1.00 0
#> SRR1562748 4 0.00 1.000 0 0 0 1.00 0.00 0
#> SRR1562749 4 0.00 1.000 0 0 0 1.00 0.00 0
#> SRR1562750 4 0.00 1.000 0 0 0 1.00 0.00 0
#> SRR1562751 4 0.00 1.000 0 0 0 1.00 0.00 0
#> SRR1562752 4 0.00 1.000 0 0 0 1.00 0.00 0
#> SRR1562753 4 0.00 1.000 0 0 0 1.00 0.00 0
#> SRR1562754 5 0.35 0.613 0 0 0 0.32 0.68 0
#> SRR1562755 5 0.35 0.613 0 0 0 0.32 0.68 0
#> SRR1562756 5 0.35 0.613 0 0 0 0.32 0.68 0
#> SRR1562757 5 0.35 0.613 0 0 0 0.32 0.68 0
#> SRR1562758 5 0.35 0.613 0 0 0 0.32 0.68 0
#> SRR1562759 5 0.35 0.613 0 0 0 0.32 0.68 0
#> SRR1562792 3 0.00 1.000 0 0 1 0.00 0.00 0
#> SRR1562793 3 0.00 1.000 0 0 1 0.00 0.00 0
#> SRR1562794 3 0.00 1.000 0 0 1 0.00 0.00 0
#> SRR1562795 3 0.00 1.000 0 0 1 0.00 0.00 0
#> SRR1562796 3 0.00 1.000 0 0 1 0.00 0.00 0
#> SRR1562797 3 0.00 1.000 0 0 1 0.00 0.00 0
#> SRR1562798 3 0.00 1.000 0 0 1 0.00 0.00 0
#> SRR1562799 3 0.00 1.000 0 0 1 0.00 0.00 0
#> SRR1562800 6 0.00 1.000 0 0 0 0.00 0.00 1
#> SRR1562801 6 0.00 1.000 0 0 0 0.00 0.00 1
#> SRR1562802 6 0.00 1.000 0 0 0 0.00 0.00 1
#> SRR1562803 6 0.00 1.000 0 0 0 0.00 0.00 1
#> SRR1562804 6 0.00 1.000 0 0 0 0.00 0.00 1
#> SRR1562805 6 0.00 1.000 0 0 0 0.00 0.00 1
#> SRR1562806 1 0.00 1.000 1 0 0 0.00 0.00 0
#> SRR1562807 1 0.00 1.000 1 0 0 0.00 0.00 0
#> SRR1562808 1 0.00 1.000 1 0 0 0.00 0.00 0
#> SRR1562809 1 0.00 1.000 1 0 0 0.00 0.00 0
#> SRR1562810 1 0.00 1.000 1 0 0 0.00 0.00 0
#> SRR1562811 1 0.00 1.000 1 0 0 0.00 0.00 0
#> SRR1562812 1 0.00 1.000 1 0 0 0.00 0.00 0
#> SRR1562813 1 0.00 1.000 1 0 0 0.00 0.00 0
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15301 rows and 63 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.481 0.911 0.908 0.3731 0.538 0.538
#> 3 3 0.869 0.952 0.918 0.3643 0.943 0.893
#> 4 4 0.632 0.824 0.842 0.2330 1.000 1.000
#> 5 5 0.590 0.571 0.720 0.1289 0.831 0.649
#> 6 6 0.627 0.611 0.631 0.0871 0.828 0.519
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1562718 2 0.000 1.000 0.00 1.00
#> SRR1562719 2 0.000 1.000 0.00 1.00
#> SRR1562720 2 0.000 1.000 0.00 1.00
#> SRR1562721 2 0.000 1.000 0.00 1.00
#> SRR1562723 2 0.000 1.000 0.00 1.00
#> SRR1562724 2 0.000 1.000 0.00 1.00
#> SRR1562725 2 0.000 1.000 0.00 1.00
#> SRR1562726 2 0.000 1.000 0.00 1.00
#> SRR1562727 2 0.000 1.000 0.00 1.00
#> SRR1562728 2 0.000 1.000 0.00 1.00
#> SRR1562729 2 0.000 1.000 0.00 1.00
#> SRR1562730 2 0.000 1.000 0.00 1.00
#> SRR1562731 2 0.000 1.000 0.00 1.00
#> SRR1562732 2 0.000 1.000 0.00 1.00
#> SRR1562733 2 0.000 1.000 0.00 1.00
#> SRR1562734 2 0.000 1.000 0.00 1.00
#> SRR1562735 2 0.000 1.000 0.00 1.00
#> SRR1562736 2 0.000 1.000 0.00 1.00
#> SRR1562737 2 0.000 1.000 0.00 1.00
#> SRR1562738 2 0.000 1.000 0.00 1.00
#> SRR1562739 2 0.000 1.000 0.00 1.00
#> SRR1562740 2 0.000 1.000 0.00 1.00
#> SRR1562741 2 0.000 1.000 0.00 1.00
#> SRR1562742 2 0.000 1.000 0.00 1.00
#> SRR1562743 2 0.000 1.000 0.00 1.00
#> SRR1562744 2 0.000 1.000 0.00 1.00
#> SRR1562745 2 0.000 1.000 0.00 1.00
#> SRR1562746 2 0.000 1.000 0.00 1.00
#> SRR1562747 2 0.000 1.000 0.00 1.00
#> SRR1562748 2 0.000 1.000 0.00 1.00
#> SRR1562749 2 0.000 1.000 0.00 1.00
#> SRR1562750 2 0.000 1.000 0.00 1.00
#> SRR1562751 2 0.000 1.000 0.00 1.00
#> SRR1562752 2 0.000 1.000 0.00 1.00
#> SRR1562753 2 0.000 1.000 0.00 1.00
#> SRR1562754 2 0.000 1.000 0.00 1.00
#> SRR1562755 2 0.000 1.000 0.00 1.00
#> SRR1562756 2 0.000 1.000 0.00 1.00
#> SRR1562757 2 0.000 1.000 0.00 1.00
#> SRR1562758 2 0.000 1.000 0.00 1.00
#> SRR1562759 2 0.000 1.000 0.00 1.00
#> SRR1562792 1 0.925 0.611 0.66 0.34
#> SRR1562793 1 0.925 0.611 0.66 0.34
#> SRR1562794 1 0.925 0.611 0.66 0.34
#> SRR1562795 1 0.925 0.611 0.66 0.34
#> SRR1562796 1 0.925 0.611 0.66 0.34
#> SRR1562797 1 0.925 0.611 0.66 0.34
#> SRR1562798 1 0.925 0.611 0.66 0.34
#> SRR1562799 1 0.925 0.611 0.66 0.34
#> SRR1562800 1 0.760 0.820 0.78 0.22
#> SRR1562801 1 0.760 0.820 0.78 0.22
#> SRR1562802 1 0.760 0.820 0.78 0.22
#> SRR1562803 1 0.760 0.820 0.78 0.22
#> SRR1562804 1 0.760 0.820 0.78 0.22
#> SRR1562805 1 0.760 0.820 0.78 0.22
#> SRR1562806 1 0.760 0.820 0.78 0.22
#> SRR1562807 1 0.760 0.820 0.78 0.22
#> SRR1562808 1 0.760 0.820 0.78 0.22
#> SRR1562809 1 0.760 0.820 0.78 0.22
#> SRR1562810 1 0.760 0.820 0.78 0.22
#> SRR1562811 1 0.760 0.820 0.78 0.22
#> SRR1562812 1 0.760 0.820 0.78 0.22
#> SRR1562813 1 0.760 0.820 0.78 0.22
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1562718 2 0.2066 0.945 0.000 0.940 0.060
#> SRR1562719 2 0.2066 0.945 0.000 0.940 0.060
#> SRR1562720 2 0.2066 0.945 0.000 0.940 0.060
#> SRR1562721 2 0.2066 0.945 0.000 0.940 0.060
#> SRR1562723 2 0.2066 0.945 0.000 0.940 0.060
#> SRR1562724 2 0.1753 0.949 0.000 0.952 0.048
#> SRR1562725 2 0.1753 0.949 0.000 0.952 0.048
#> SRR1562726 2 0.1753 0.949 0.000 0.952 0.048
#> SRR1562727 2 0.1753 0.949 0.000 0.952 0.048
#> SRR1562728 2 0.1753 0.949 0.000 0.952 0.048
#> SRR1562729 2 0.1753 0.949 0.000 0.952 0.048
#> SRR1562730 2 0.3340 0.908 0.000 0.880 0.120
#> SRR1562731 2 0.3340 0.908 0.000 0.880 0.120
#> SRR1562732 2 0.3340 0.908 0.000 0.880 0.120
#> SRR1562733 2 0.3340 0.908 0.000 0.880 0.120
#> SRR1562734 2 0.3340 0.908 0.000 0.880 0.120
#> SRR1562735 2 0.3340 0.908 0.000 0.880 0.120
#> SRR1562736 2 0.0424 0.958 0.000 0.992 0.008
#> SRR1562737 2 0.0424 0.958 0.000 0.992 0.008
#> SRR1562738 2 0.0424 0.958 0.000 0.992 0.008
#> SRR1562739 2 0.0424 0.958 0.000 0.992 0.008
#> SRR1562740 2 0.0424 0.958 0.000 0.992 0.008
#> SRR1562741 2 0.0424 0.958 0.000 0.992 0.008
#> SRR1562742 2 0.0592 0.958 0.000 0.988 0.012
#> SRR1562743 2 0.0592 0.958 0.000 0.988 0.012
#> SRR1562744 2 0.0592 0.958 0.000 0.988 0.012
#> SRR1562745 2 0.0592 0.958 0.000 0.988 0.012
#> SRR1562746 2 0.0592 0.958 0.000 0.988 0.012
#> SRR1562747 2 0.0592 0.958 0.000 0.988 0.012
#> SRR1562748 2 0.1411 0.951 0.000 0.964 0.036
#> SRR1562749 2 0.1411 0.951 0.000 0.964 0.036
#> SRR1562750 2 0.1411 0.951 0.000 0.964 0.036
#> SRR1562751 2 0.1411 0.951 0.000 0.964 0.036
#> SRR1562752 2 0.1411 0.951 0.000 0.964 0.036
#> SRR1562753 2 0.1411 0.951 0.000 0.964 0.036
#> SRR1562754 2 0.1163 0.954 0.000 0.972 0.028
#> SRR1562755 2 0.1163 0.954 0.000 0.972 0.028
#> SRR1562756 2 0.1163 0.954 0.000 0.972 0.028
#> SRR1562757 2 0.1163 0.954 0.000 0.972 0.028
#> SRR1562758 2 0.1163 0.954 0.000 0.972 0.028
#> SRR1562759 2 0.1163 0.954 0.000 0.972 0.028
#> SRR1562792 3 0.6587 0.980 0.156 0.092 0.752
#> SRR1562793 3 0.6587 0.980 0.156 0.092 0.752
#> SRR1562794 3 0.6587 0.980 0.156 0.092 0.752
#> SRR1562795 3 0.6587 0.980 0.156 0.092 0.752
#> SRR1562796 3 0.7199 0.980 0.204 0.092 0.704
#> SRR1562797 3 0.7199 0.980 0.204 0.092 0.704
#> SRR1562798 3 0.7199 0.980 0.204 0.092 0.704
#> SRR1562799 3 0.7199 0.980 0.204 0.092 0.704
#> SRR1562800 1 0.4253 0.949 0.872 0.048 0.080
#> SRR1562801 1 0.4253 0.949 0.872 0.048 0.080
#> SRR1562802 1 0.4253 0.949 0.872 0.048 0.080
#> SRR1562803 1 0.4253 0.949 0.872 0.048 0.080
#> SRR1562804 1 0.4339 0.949 0.868 0.048 0.084
#> SRR1562805 1 0.4339 0.949 0.868 0.048 0.084
#> SRR1562806 1 0.2339 0.958 0.940 0.048 0.012
#> SRR1562807 1 0.2339 0.958 0.940 0.048 0.012
#> SRR1562808 1 0.2339 0.958 0.940 0.048 0.012
#> SRR1562809 1 0.2339 0.958 0.940 0.048 0.012
#> SRR1562810 1 0.1753 0.960 0.952 0.048 0.000
#> SRR1562811 1 0.1753 0.960 0.952 0.048 0.000
#> SRR1562812 1 0.1753 0.960 0.952 0.048 0.000
#> SRR1562813 1 0.1753 0.960 0.952 0.048 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1562718 2 0.1545 0.792 0.000 0.952 0.008 NA
#> SRR1562719 2 0.1545 0.792 0.000 0.952 0.008 NA
#> SRR1562720 2 0.1545 0.792 0.000 0.952 0.008 NA
#> SRR1562721 2 0.1545 0.792 0.000 0.952 0.008 NA
#> SRR1562723 2 0.1545 0.792 0.000 0.952 0.008 NA
#> SRR1562724 2 0.1388 0.797 0.000 0.960 0.012 NA
#> SRR1562725 2 0.1388 0.797 0.000 0.960 0.012 NA
#> SRR1562726 2 0.1388 0.797 0.000 0.960 0.012 NA
#> SRR1562727 2 0.1388 0.797 0.000 0.960 0.012 NA
#> SRR1562728 2 0.1388 0.797 0.000 0.960 0.012 NA
#> SRR1562729 2 0.1388 0.797 0.000 0.960 0.012 NA
#> SRR1562730 2 0.4453 0.626 0.000 0.744 0.012 NA
#> SRR1562731 2 0.4453 0.626 0.000 0.744 0.012 NA
#> SRR1562732 2 0.4453 0.626 0.000 0.744 0.012 NA
#> SRR1562733 2 0.4453 0.626 0.000 0.744 0.012 NA
#> SRR1562734 2 0.4453 0.626 0.000 0.744 0.012 NA
#> SRR1562735 2 0.4453 0.626 0.000 0.744 0.012 NA
#> SRR1562736 2 0.3626 0.827 0.000 0.812 0.004 NA
#> SRR1562737 2 0.3626 0.827 0.000 0.812 0.004 NA
#> SRR1562738 2 0.3626 0.827 0.000 0.812 0.004 NA
#> SRR1562739 2 0.3626 0.827 0.000 0.812 0.004 NA
#> SRR1562740 2 0.3626 0.827 0.000 0.812 0.004 NA
#> SRR1562741 2 0.3626 0.827 0.000 0.812 0.004 NA
#> SRR1562742 2 0.3893 0.825 0.000 0.796 0.008 NA
#> SRR1562743 2 0.3893 0.825 0.000 0.796 0.008 NA
#> SRR1562744 2 0.3893 0.825 0.000 0.796 0.008 NA
#> SRR1562745 2 0.3893 0.825 0.000 0.796 0.008 NA
#> SRR1562746 2 0.3893 0.825 0.000 0.796 0.008 NA
#> SRR1562747 2 0.3893 0.825 0.000 0.796 0.008 NA
#> SRR1562748 2 0.5039 0.718 0.000 0.592 0.004 NA
#> SRR1562749 2 0.5039 0.718 0.000 0.592 0.004 NA
#> SRR1562750 2 0.5039 0.718 0.000 0.592 0.004 NA
#> SRR1562751 2 0.5039 0.718 0.000 0.592 0.004 NA
#> SRR1562752 2 0.5039 0.718 0.000 0.592 0.004 NA
#> SRR1562753 2 0.5039 0.718 0.000 0.592 0.004 NA
#> SRR1562754 2 0.4277 0.803 0.000 0.720 0.000 NA
#> SRR1562755 2 0.4277 0.803 0.000 0.720 0.000 NA
#> SRR1562756 2 0.4277 0.803 0.000 0.720 0.000 NA
#> SRR1562757 2 0.4277 0.803 0.000 0.720 0.000 NA
#> SRR1562758 2 0.4277 0.803 0.000 0.720 0.000 NA
#> SRR1562759 2 0.4277 0.803 0.000 0.720 0.000 NA
#> SRR1562792 3 0.4100 0.961 0.040 0.016 0.844 NA
#> SRR1562793 3 0.4100 0.961 0.040 0.016 0.844 NA
#> SRR1562794 3 0.4100 0.961 0.040 0.016 0.844 NA
#> SRR1562795 3 0.4100 0.961 0.040 0.016 0.844 NA
#> SRR1562796 3 0.1798 0.961 0.040 0.016 0.944 NA
#> SRR1562797 3 0.1798 0.961 0.040 0.016 0.944 NA
#> SRR1562798 3 0.1798 0.961 0.040 0.016 0.944 NA
#> SRR1562799 3 0.1798 0.961 0.040 0.016 0.944 NA
#> SRR1562800 1 0.3266 0.899 0.832 0.000 0.000 NA
#> SRR1562801 1 0.3266 0.899 0.832 0.000 0.000 NA
#> SRR1562802 1 0.3355 0.899 0.836 0.000 0.004 NA
#> SRR1562803 1 0.3355 0.899 0.836 0.000 0.004 NA
#> SRR1562804 1 0.3448 0.898 0.828 0.000 0.004 NA
#> SRR1562805 1 0.3448 0.898 0.828 0.000 0.004 NA
#> SRR1562806 1 0.1489 0.909 0.952 0.000 0.004 NA
#> SRR1562807 1 0.1489 0.909 0.952 0.000 0.004 NA
#> SRR1562808 1 0.1489 0.909 0.952 0.000 0.004 NA
#> SRR1562809 1 0.1489 0.909 0.952 0.000 0.004 NA
#> SRR1562810 1 0.0376 0.918 0.992 0.000 0.004 NA
#> SRR1562811 1 0.0376 0.918 0.992 0.000 0.004 NA
#> SRR1562812 1 0.0376 0.918 0.992 0.000 0.004 NA
#> SRR1562813 1 0.0376 0.918 0.992 0.000 0.004 NA
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1562718 2 0.4551 0.381 0.000 0.556 0.004 0.436 NA
#> SRR1562719 2 0.4551 0.381 0.000 0.556 0.004 0.436 NA
#> SRR1562720 2 0.4551 0.381 0.000 0.556 0.004 0.436 NA
#> SRR1562721 2 0.4551 0.381 0.000 0.556 0.004 0.436 NA
#> SRR1562723 2 0.4551 0.381 0.000 0.556 0.004 0.436 NA
#> SRR1562724 4 0.5380 -0.204 0.000 0.464 0.004 0.488 NA
#> SRR1562725 4 0.5380 -0.204 0.000 0.464 0.004 0.488 NA
#> SRR1562726 4 0.5380 -0.204 0.000 0.464 0.004 0.488 NA
#> SRR1562727 4 0.5380 -0.204 0.000 0.464 0.004 0.488 NA
#> SRR1562728 4 0.5380 -0.204 0.000 0.464 0.004 0.488 NA
#> SRR1562729 4 0.5380 -0.204 0.000 0.464 0.004 0.488 NA
#> SRR1562730 2 0.5602 0.659 0.000 0.640 0.000 0.196 NA
#> SRR1562731 2 0.5700 0.659 0.000 0.628 0.000 0.196 NA
#> SRR1562732 2 0.5567 0.659 0.000 0.644 0.000 0.196 NA
#> SRR1562733 2 0.5635 0.659 0.000 0.636 0.000 0.196 NA
#> SRR1562734 2 0.5761 0.658 0.000 0.620 0.000 0.196 NA
#> SRR1562735 2 0.5791 0.658 0.000 0.616 0.000 0.196 NA
#> SRR1562736 4 0.4336 0.536 0.000 0.172 0.008 0.768 NA
#> SRR1562737 4 0.4336 0.536 0.000 0.172 0.008 0.768 NA
#> SRR1562738 4 0.4336 0.536 0.000 0.172 0.008 0.768 NA
#> SRR1562739 4 0.4336 0.536 0.000 0.172 0.008 0.768 NA
#> SRR1562740 4 0.4336 0.536 0.000 0.172 0.008 0.768 NA
#> SRR1562741 4 0.4336 0.536 0.000 0.172 0.008 0.768 NA
#> SRR1562742 4 0.5725 0.462 0.000 0.240 0.020 0.648 NA
#> SRR1562743 4 0.5725 0.462 0.000 0.240 0.020 0.648 NA
#> SRR1562744 4 0.5725 0.462 0.000 0.240 0.020 0.648 NA
#> SRR1562745 4 0.5725 0.462 0.000 0.240 0.020 0.648 NA
#> SRR1562746 4 0.5725 0.462 0.000 0.240 0.020 0.648 NA
#> SRR1562747 4 0.5725 0.462 0.000 0.240 0.020 0.648 NA
#> SRR1562748 4 0.3919 0.477 0.000 0.036 0.000 0.776 NA
#> SRR1562749 4 0.3876 0.477 0.000 0.032 0.000 0.776 NA
#> SRR1562750 4 0.3919 0.477 0.000 0.036 0.000 0.776 NA
#> SRR1562751 4 0.3876 0.477 0.000 0.032 0.000 0.776 NA
#> SRR1562752 4 0.3876 0.477 0.000 0.032 0.000 0.776 NA
#> SRR1562753 4 0.3876 0.477 0.000 0.032 0.000 0.776 NA
#> SRR1562754 4 0.1836 0.556 0.000 0.036 0.000 0.932 NA
#> SRR1562755 4 0.1836 0.556 0.000 0.036 0.000 0.932 NA
#> SRR1562756 4 0.1836 0.556 0.000 0.036 0.000 0.932 NA
#> SRR1562757 4 0.1836 0.556 0.000 0.036 0.000 0.932 NA
#> SRR1562758 4 0.1836 0.556 0.000 0.036 0.000 0.932 NA
#> SRR1562759 4 0.1836 0.556 0.000 0.036 0.000 0.932 NA
#> SRR1562792 3 0.3912 0.942 0.036 0.040 0.828 0.000 NA
#> SRR1562793 3 0.3932 0.942 0.036 0.044 0.828 0.000 NA
#> SRR1562794 3 0.3912 0.942 0.036 0.040 0.828 0.000 NA
#> SRR1562795 3 0.3932 0.942 0.036 0.044 0.828 0.000 NA
#> SRR1562796 3 0.1124 0.942 0.036 0.000 0.960 0.000 NA
#> SRR1562797 3 0.1124 0.942 0.036 0.004 0.960 0.000 NA
#> SRR1562798 3 0.1124 0.942 0.036 0.000 0.960 0.000 NA
#> SRR1562799 3 0.1124 0.942 0.036 0.000 0.960 0.000 NA
#> SRR1562800 1 0.3707 0.818 0.716 0.000 0.000 0.000 NA
#> SRR1562801 1 0.3707 0.818 0.716 0.000 0.000 0.000 NA
#> SRR1562802 1 0.3838 0.819 0.716 0.004 0.000 0.000 NA
#> SRR1562803 1 0.3838 0.819 0.716 0.004 0.000 0.000 NA
#> SRR1562804 1 0.4109 0.816 0.700 0.012 0.000 0.000 NA
#> SRR1562805 1 0.4109 0.816 0.700 0.012 0.000 0.000 NA
#> SRR1562806 1 0.2729 0.826 0.884 0.056 0.000 0.000 NA
#> SRR1562807 1 0.2729 0.826 0.884 0.056 0.000 0.000 NA
#> SRR1562808 1 0.2729 0.826 0.884 0.056 0.000 0.000 NA
#> SRR1562809 1 0.2729 0.826 0.884 0.056 0.000 0.000 NA
#> SRR1562810 1 0.0162 0.849 0.996 0.000 0.000 0.000 NA
#> SRR1562811 1 0.0162 0.849 0.996 0.000 0.000 0.000 NA
#> SRR1562812 1 0.0162 0.849 0.996 0.000 0.000 0.000 NA
#> SRR1562813 1 0.0162 0.849 0.996 0.000 0.000 0.000 NA
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1562718 5 0.3799 0.234 0.000 0.144 0.004 0.020 0.796 NA
#> SRR1562719 5 0.3799 0.234 0.000 0.144 0.004 0.020 0.796 NA
#> SRR1562720 5 0.3799 0.234 0.000 0.144 0.004 0.020 0.796 NA
#> SRR1562721 5 0.3799 0.234 0.000 0.144 0.004 0.020 0.796 NA
#> SRR1562723 5 0.3799 0.234 0.000 0.144 0.004 0.020 0.796 NA
#> SRR1562724 5 0.1003 0.326 0.000 0.028 0.000 0.004 0.964 NA
#> SRR1562725 5 0.1003 0.326 0.000 0.028 0.000 0.004 0.964 NA
#> SRR1562726 5 0.1003 0.326 0.000 0.028 0.000 0.004 0.964 NA
#> SRR1562727 5 0.1003 0.326 0.000 0.028 0.000 0.004 0.964 NA
#> SRR1562728 5 0.1003 0.326 0.000 0.028 0.000 0.004 0.964 NA
#> SRR1562729 5 0.1003 0.326 0.000 0.028 0.000 0.004 0.964 NA
#> SRR1562730 2 0.4727 0.975 0.000 0.568 0.000 0.036 0.388 NA
#> SRR1562731 2 0.4141 0.975 0.000 0.596 0.000 0.016 0.388 NA
#> SRR1562732 2 0.5176 0.968 0.000 0.544 0.000 0.028 0.388 NA
#> SRR1562733 2 0.4921 0.974 0.000 0.560 0.000 0.028 0.388 NA
#> SRR1562734 2 0.4455 0.974 0.000 0.584 0.000 0.008 0.388 NA
#> SRR1562735 2 0.4100 0.975 0.000 0.600 0.000 0.008 0.388 NA
#> SRR1562736 5 0.6491 0.267 0.000 0.080 0.004 0.344 0.480 NA
#> SRR1562737 5 0.6491 0.267 0.000 0.080 0.004 0.344 0.480 NA
#> SRR1562738 5 0.6491 0.267 0.000 0.080 0.004 0.344 0.480 NA
#> SRR1562739 5 0.6491 0.267 0.000 0.080 0.004 0.344 0.480 NA
#> SRR1562740 5 0.6491 0.267 0.000 0.080 0.004 0.344 0.480 NA
#> SRR1562741 5 0.6491 0.267 0.000 0.080 0.004 0.344 0.480 NA
#> SRR1562742 5 0.6997 0.319 0.000 0.160 0.000 0.364 0.380 NA
#> SRR1562743 5 0.6997 0.319 0.000 0.160 0.000 0.364 0.380 NA
#> SRR1562744 5 0.6997 0.319 0.000 0.160 0.000 0.364 0.380 NA
#> SRR1562745 5 0.6997 0.319 0.000 0.160 0.000 0.364 0.380 NA
#> SRR1562746 5 0.6997 0.319 0.000 0.160 0.000 0.364 0.380 NA
#> SRR1562747 5 0.6997 0.319 0.000 0.160 0.000 0.364 0.380 NA
#> SRR1562748 4 0.6292 0.672 0.000 0.064 0.000 0.552 0.148 NA
#> SRR1562749 4 0.6273 0.673 0.000 0.064 0.000 0.556 0.148 NA
#> SRR1562750 4 0.6262 0.673 0.000 0.060 0.000 0.552 0.148 NA
#> SRR1562751 4 0.6292 0.672 0.000 0.064 0.000 0.552 0.148 NA
#> SRR1562752 4 0.6292 0.672 0.000 0.064 0.000 0.552 0.148 NA
#> SRR1562753 4 0.6292 0.672 0.000 0.064 0.000 0.552 0.148 NA
#> SRR1562754 4 0.3394 0.604 0.000 0.012 0.000 0.752 0.236 NA
#> SRR1562755 4 0.3483 0.604 0.000 0.016 0.000 0.748 0.236 NA
#> SRR1562756 4 0.3394 0.604 0.000 0.012 0.000 0.752 0.236 NA
#> SRR1562757 4 0.3483 0.604 0.000 0.016 0.000 0.748 0.236 NA
#> SRR1562758 4 0.3483 0.604 0.000 0.016 0.000 0.748 0.236 NA
#> SRR1562759 4 0.3394 0.604 0.000 0.012 0.000 0.752 0.236 NA
#> SRR1562792 3 0.0551 0.905 0.008 0.000 0.984 0.004 0.000 NA
#> SRR1562793 3 0.0551 0.905 0.008 0.004 0.984 0.000 0.000 NA
#> SRR1562794 3 0.0520 0.905 0.008 0.000 0.984 0.008 0.000 NA
#> SRR1562795 3 0.0551 0.905 0.008 0.004 0.984 0.004 0.000 NA
#> SRR1562796 3 0.4069 0.906 0.008 0.064 0.776 0.008 0.000 NA
#> SRR1562797 3 0.4069 0.906 0.008 0.064 0.776 0.008 0.000 NA
#> SRR1562798 3 0.4069 0.906 0.008 0.064 0.776 0.008 0.000 NA
#> SRR1562799 3 0.4069 0.906 0.008 0.064 0.776 0.008 0.000 NA
#> SRR1562800 1 0.3592 0.780 0.656 0.000 0.000 0.000 0.000 NA
#> SRR1562801 1 0.3592 0.780 0.656 0.000 0.000 0.000 0.000 NA
#> SRR1562802 1 0.3607 0.780 0.652 0.000 0.000 0.000 0.000 NA
#> SRR1562803 1 0.3607 0.780 0.652 0.000 0.000 0.000 0.000 NA
#> SRR1562804 1 0.4513 0.778 0.636 0.016 0.000 0.024 0.000 NA
#> SRR1562805 1 0.4513 0.778 0.636 0.016 0.000 0.024 0.000 NA
#> SRR1562806 1 0.3324 0.788 0.840 0.080 0.000 0.020 0.000 NA
#> SRR1562807 1 0.3324 0.788 0.840 0.080 0.000 0.020 0.000 NA
#> SRR1562808 1 0.3324 0.788 0.840 0.080 0.000 0.020 0.000 NA
#> SRR1562809 1 0.3324 0.788 0.840 0.080 0.000 0.020 0.000 NA
#> SRR1562810 1 0.0405 0.813 0.988 0.000 0.000 0.004 0.000 NA
#> SRR1562811 1 0.0405 0.813 0.988 0.000 0.000 0.004 0.000 NA
#> SRR1562812 1 0.0405 0.813 0.988 0.000 0.000 0.004 0.000 NA
#> SRR1562813 1 0.0405 0.813 0.988 0.000 0.000 0.004 0.000 NA
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15301 rows and 63 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.4624 0.538 0.538
#> 3 3 1.000 0.991 0.988 0.1327 0.943 0.893
#> 4 4 0.751 0.882 0.918 0.3110 0.822 0.629
#> 5 5 0.791 0.838 0.878 0.1140 0.840 0.529
#> 6 6 0.813 0.724 0.855 0.0566 0.892 0.576
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2
There is also optional best \(k\) = 2 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1562718 2 0 1 0 1
#> SRR1562719 2 0 1 0 1
#> SRR1562720 2 0 1 0 1
#> SRR1562721 2 0 1 0 1
#> SRR1562723 2 0 1 0 1
#> SRR1562724 2 0 1 0 1
#> SRR1562725 2 0 1 0 1
#> SRR1562726 2 0 1 0 1
#> SRR1562727 2 0 1 0 1
#> SRR1562728 2 0 1 0 1
#> SRR1562729 2 0 1 0 1
#> SRR1562730 2 0 1 0 1
#> SRR1562731 2 0 1 0 1
#> SRR1562732 2 0 1 0 1
#> SRR1562733 2 0 1 0 1
#> SRR1562734 2 0 1 0 1
#> SRR1562735 2 0 1 0 1
#> SRR1562736 2 0 1 0 1
#> SRR1562737 2 0 1 0 1
#> SRR1562738 2 0 1 0 1
#> SRR1562739 2 0 1 0 1
#> SRR1562740 2 0 1 0 1
#> SRR1562741 2 0 1 0 1
#> SRR1562742 2 0 1 0 1
#> SRR1562743 2 0 1 0 1
#> SRR1562744 2 0 1 0 1
#> SRR1562745 2 0 1 0 1
#> SRR1562746 2 0 1 0 1
#> SRR1562747 2 0 1 0 1
#> SRR1562748 2 0 1 0 1
#> SRR1562749 2 0 1 0 1
#> SRR1562750 2 0 1 0 1
#> SRR1562751 2 0 1 0 1
#> SRR1562752 2 0 1 0 1
#> SRR1562753 2 0 1 0 1
#> SRR1562754 2 0 1 0 1
#> SRR1562755 2 0 1 0 1
#> SRR1562756 2 0 1 0 1
#> SRR1562757 2 0 1 0 1
#> SRR1562758 2 0 1 0 1
#> SRR1562759 2 0 1 0 1
#> SRR1562792 1 0 1 1 0
#> SRR1562793 1 0 1 1 0
#> SRR1562794 1 0 1 1 0
#> SRR1562795 1 0 1 1 0
#> SRR1562796 1 0 1 1 0
#> SRR1562797 1 0 1 1 0
#> SRR1562798 1 0 1 1 0
#> SRR1562799 1 0 1 1 0
#> SRR1562800 1 0 1 1 0
#> SRR1562801 1 0 1 1 0
#> SRR1562802 1 0 1 1 0
#> SRR1562803 1 0 1 1 0
#> SRR1562804 1 0 1 1 0
#> SRR1562805 1 0 1 1 0
#> SRR1562806 1 0 1 1 0
#> SRR1562807 1 0 1 1 0
#> SRR1562808 1 0 1 1 0
#> SRR1562809 1 0 1 1 0
#> SRR1562810 1 0 1 1 0
#> SRR1562811 1 0 1 1 0
#> SRR1562812 1 0 1 1 0
#> SRR1562813 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1562718 2 0.0000 0.990 0.00 1.000 0.000
#> SRR1562719 2 0.0000 0.990 0.00 1.000 0.000
#> SRR1562720 2 0.0000 0.990 0.00 1.000 0.000
#> SRR1562721 2 0.0000 0.990 0.00 1.000 0.000
#> SRR1562723 2 0.0000 0.990 0.00 1.000 0.000
#> SRR1562724 2 0.0000 0.990 0.00 1.000 0.000
#> SRR1562725 2 0.0000 0.990 0.00 1.000 0.000
#> SRR1562726 2 0.0000 0.990 0.00 1.000 0.000
#> SRR1562727 2 0.0000 0.990 0.00 1.000 0.000
#> SRR1562728 2 0.0000 0.990 0.00 1.000 0.000
#> SRR1562729 2 0.0000 0.990 0.00 1.000 0.000
#> SRR1562730 2 0.0237 0.989 0.00 0.996 0.004
#> SRR1562731 2 0.0237 0.989 0.00 0.996 0.004
#> SRR1562732 2 0.0237 0.989 0.00 0.996 0.004
#> SRR1562733 2 0.0237 0.989 0.00 0.996 0.004
#> SRR1562734 2 0.0237 0.989 0.00 0.996 0.004
#> SRR1562735 2 0.0237 0.989 0.00 0.996 0.004
#> SRR1562736 2 0.0000 0.990 0.00 1.000 0.000
#> SRR1562737 2 0.0000 0.990 0.00 1.000 0.000
#> SRR1562738 2 0.0000 0.990 0.00 1.000 0.000
#> SRR1562739 2 0.0000 0.990 0.00 1.000 0.000
#> SRR1562740 2 0.0000 0.990 0.00 1.000 0.000
#> SRR1562741 2 0.0000 0.990 0.00 1.000 0.000
#> SRR1562742 2 0.0000 0.990 0.00 1.000 0.000
#> SRR1562743 2 0.0000 0.990 0.00 1.000 0.000
#> SRR1562744 2 0.0000 0.990 0.00 1.000 0.000
#> SRR1562745 2 0.0000 0.990 0.00 1.000 0.000
#> SRR1562746 2 0.0000 0.990 0.00 1.000 0.000
#> SRR1562747 2 0.0000 0.990 0.00 1.000 0.000
#> SRR1562748 2 0.1411 0.976 0.00 0.964 0.036
#> SRR1562749 2 0.1411 0.976 0.00 0.964 0.036
#> SRR1562750 2 0.1411 0.976 0.00 0.964 0.036
#> SRR1562751 2 0.1411 0.976 0.00 0.964 0.036
#> SRR1562752 2 0.1411 0.976 0.00 0.964 0.036
#> SRR1562753 2 0.1411 0.976 0.00 0.964 0.036
#> SRR1562754 2 0.1289 0.978 0.00 0.968 0.032
#> SRR1562755 2 0.1289 0.978 0.00 0.968 0.032
#> SRR1562756 2 0.1289 0.978 0.00 0.968 0.032
#> SRR1562757 2 0.1289 0.978 0.00 0.968 0.032
#> SRR1562758 2 0.1289 0.978 0.00 0.968 0.032
#> SRR1562759 2 0.1289 0.978 0.00 0.968 0.032
#> SRR1562792 3 0.1529 1.000 0.04 0.000 0.960
#> SRR1562793 3 0.1529 1.000 0.04 0.000 0.960
#> SRR1562794 3 0.1529 1.000 0.04 0.000 0.960
#> SRR1562795 3 0.1529 1.000 0.04 0.000 0.960
#> SRR1562796 3 0.1529 1.000 0.04 0.000 0.960
#> SRR1562797 3 0.1529 1.000 0.04 0.000 0.960
#> SRR1562798 3 0.1529 1.000 0.04 0.000 0.960
#> SRR1562799 3 0.1529 1.000 0.04 0.000 0.960
#> SRR1562800 1 0.0000 1.000 1.00 0.000 0.000
#> SRR1562801 1 0.0000 1.000 1.00 0.000 0.000
#> SRR1562802 1 0.0000 1.000 1.00 0.000 0.000
#> SRR1562803 1 0.0000 1.000 1.00 0.000 0.000
#> SRR1562804 1 0.0000 1.000 1.00 0.000 0.000
#> SRR1562805 1 0.0000 1.000 1.00 0.000 0.000
#> SRR1562806 1 0.0000 1.000 1.00 0.000 0.000
#> SRR1562807 1 0.0000 1.000 1.00 0.000 0.000
#> SRR1562808 1 0.0000 1.000 1.00 0.000 0.000
#> SRR1562809 1 0.0000 1.000 1.00 0.000 0.000
#> SRR1562810 1 0.0000 1.000 1.00 0.000 0.000
#> SRR1562811 1 0.0000 1.000 1.00 0.000 0.000
#> SRR1562812 1 0.0000 1.000 1.00 0.000 0.000
#> SRR1562813 1 0.0000 1.000 1.00 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1562718 2 0.0188 0.860 0.000 0.996 0.000 0.004
#> SRR1562719 2 0.0188 0.860 0.000 0.996 0.000 0.004
#> SRR1562720 2 0.0188 0.860 0.000 0.996 0.000 0.004
#> SRR1562721 2 0.0188 0.860 0.000 0.996 0.000 0.004
#> SRR1562723 2 0.0188 0.860 0.000 0.996 0.000 0.004
#> SRR1562724 2 0.0469 0.860 0.000 0.988 0.000 0.012
#> SRR1562725 2 0.0469 0.860 0.000 0.988 0.000 0.012
#> SRR1562726 2 0.0469 0.860 0.000 0.988 0.000 0.012
#> SRR1562727 2 0.0469 0.860 0.000 0.988 0.000 0.012
#> SRR1562728 2 0.0469 0.860 0.000 0.988 0.000 0.012
#> SRR1562729 2 0.0469 0.860 0.000 0.988 0.000 0.012
#> SRR1562730 2 0.1902 0.826 0.000 0.932 0.004 0.064
#> SRR1562731 2 0.1902 0.826 0.000 0.932 0.004 0.064
#> SRR1562732 2 0.1902 0.826 0.000 0.932 0.004 0.064
#> SRR1562733 2 0.1902 0.826 0.000 0.932 0.004 0.064
#> SRR1562734 2 0.1902 0.826 0.000 0.932 0.004 0.064
#> SRR1562735 2 0.1902 0.826 0.000 0.932 0.004 0.064
#> SRR1562736 2 0.3982 0.767 0.000 0.776 0.004 0.220
#> SRR1562737 2 0.3982 0.767 0.000 0.776 0.004 0.220
#> SRR1562738 2 0.3982 0.767 0.000 0.776 0.004 0.220
#> SRR1562739 2 0.3982 0.767 0.000 0.776 0.004 0.220
#> SRR1562740 2 0.3982 0.767 0.000 0.776 0.004 0.220
#> SRR1562741 2 0.3982 0.767 0.000 0.776 0.004 0.220
#> SRR1562742 2 0.3626 0.799 0.000 0.812 0.004 0.184
#> SRR1562743 2 0.3626 0.799 0.000 0.812 0.004 0.184
#> SRR1562744 2 0.3626 0.799 0.000 0.812 0.004 0.184
#> SRR1562745 2 0.3626 0.799 0.000 0.812 0.004 0.184
#> SRR1562746 2 0.3626 0.799 0.000 0.812 0.004 0.184
#> SRR1562747 2 0.3626 0.799 0.000 0.812 0.004 0.184
#> SRR1562748 4 0.1970 0.826 0.000 0.060 0.008 0.932
#> SRR1562749 4 0.1970 0.826 0.000 0.060 0.008 0.932
#> SRR1562750 4 0.1970 0.826 0.000 0.060 0.008 0.932
#> SRR1562751 4 0.1970 0.826 0.000 0.060 0.008 0.932
#> SRR1562752 4 0.1970 0.826 0.000 0.060 0.008 0.932
#> SRR1562753 4 0.1970 0.826 0.000 0.060 0.008 0.932
#> SRR1562754 4 0.4222 0.801 0.000 0.272 0.000 0.728
#> SRR1562755 4 0.4222 0.801 0.000 0.272 0.000 0.728
#> SRR1562756 4 0.4222 0.801 0.000 0.272 0.000 0.728
#> SRR1562757 4 0.4222 0.801 0.000 0.272 0.000 0.728
#> SRR1562758 4 0.4222 0.801 0.000 0.272 0.000 0.728
#> SRR1562759 4 0.4222 0.801 0.000 0.272 0.000 0.728
#> SRR1562792 3 0.0592 1.000 0.016 0.000 0.984 0.000
#> SRR1562793 3 0.0592 1.000 0.016 0.000 0.984 0.000
#> SRR1562794 3 0.0592 1.000 0.016 0.000 0.984 0.000
#> SRR1562795 3 0.0592 1.000 0.016 0.000 0.984 0.000
#> SRR1562796 3 0.0592 1.000 0.016 0.000 0.984 0.000
#> SRR1562797 3 0.0592 1.000 0.016 0.000 0.984 0.000
#> SRR1562798 3 0.0592 1.000 0.016 0.000 0.984 0.000
#> SRR1562799 3 0.0592 1.000 0.016 0.000 0.984 0.000
#> SRR1562800 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562801 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562802 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562803 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562804 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562805 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562806 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562807 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562808 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562809 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562810 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562811 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562812 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562813 1 0.0000 1.000 1.000 0.000 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1562718 2 0.4101 0.735 0.000 0.628 0 0.000 0.372
#> SRR1562719 2 0.4101 0.735 0.000 0.628 0 0.000 0.372
#> SRR1562720 2 0.4101 0.735 0.000 0.628 0 0.000 0.372
#> SRR1562721 2 0.4101 0.735 0.000 0.628 0 0.000 0.372
#> SRR1562723 2 0.4101 0.735 0.000 0.628 0 0.000 0.372
#> SRR1562724 2 0.4639 0.736 0.000 0.612 0 0.020 0.368
#> SRR1562725 2 0.4639 0.736 0.000 0.612 0 0.020 0.368
#> SRR1562726 2 0.4639 0.736 0.000 0.612 0 0.020 0.368
#> SRR1562727 2 0.4639 0.736 0.000 0.612 0 0.020 0.368
#> SRR1562728 2 0.4639 0.736 0.000 0.612 0 0.020 0.368
#> SRR1562729 2 0.4639 0.736 0.000 0.612 0 0.020 0.368
#> SRR1562730 2 0.0566 0.653 0.000 0.984 0 0.012 0.004
#> SRR1562731 2 0.0566 0.653 0.000 0.984 0 0.012 0.004
#> SRR1562732 2 0.0566 0.653 0.000 0.984 0 0.012 0.004
#> SRR1562733 2 0.0566 0.653 0.000 0.984 0 0.012 0.004
#> SRR1562734 2 0.0566 0.653 0.000 0.984 0 0.012 0.004
#> SRR1562735 2 0.0566 0.653 0.000 0.984 0 0.012 0.004
#> SRR1562736 5 0.3281 0.773 0.000 0.092 0 0.060 0.848
#> SRR1562737 5 0.3281 0.773 0.000 0.092 0 0.060 0.848
#> SRR1562738 5 0.3281 0.773 0.000 0.092 0 0.060 0.848
#> SRR1562739 5 0.3281 0.773 0.000 0.092 0 0.060 0.848
#> SRR1562740 5 0.3281 0.773 0.000 0.092 0 0.060 0.848
#> SRR1562741 5 0.3281 0.773 0.000 0.092 0 0.060 0.848
#> SRR1562742 5 0.2074 0.761 0.000 0.104 0 0.000 0.896
#> SRR1562743 5 0.2074 0.761 0.000 0.104 0 0.000 0.896
#> SRR1562744 5 0.2074 0.761 0.000 0.104 0 0.000 0.896
#> SRR1562745 5 0.2074 0.761 0.000 0.104 0 0.000 0.896
#> SRR1562746 5 0.2074 0.761 0.000 0.104 0 0.000 0.896
#> SRR1562747 5 0.2074 0.761 0.000 0.104 0 0.000 0.896
#> SRR1562748 4 0.0510 1.000 0.000 0.000 0 0.984 0.016
#> SRR1562749 4 0.0510 1.000 0.000 0.000 0 0.984 0.016
#> SRR1562750 4 0.0510 1.000 0.000 0.000 0 0.984 0.016
#> SRR1562751 4 0.0510 1.000 0.000 0.000 0 0.984 0.016
#> SRR1562752 4 0.0510 1.000 0.000 0.000 0 0.984 0.016
#> SRR1562753 4 0.0510 1.000 0.000 0.000 0 0.984 0.016
#> SRR1562754 5 0.3980 0.602 0.000 0.008 0 0.284 0.708
#> SRR1562755 5 0.3980 0.602 0.000 0.008 0 0.284 0.708
#> SRR1562756 5 0.3980 0.602 0.000 0.008 0 0.284 0.708
#> SRR1562757 5 0.3980 0.602 0.000 0.008 0 0.284 0.708
#> SRR1562758 5 0.3980 0.602 0.000 0.008 0 0.284 0.708
#> SRR1562759 5 0.3980 0.602 0.000 0.008 0 0.284 0.708
#> SRR1562792 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562793 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562794 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562795 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562796 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562797 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562798 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562799 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562800 1 0.0162 0.998 0.996 0.000 0 0.004 0.000
#> SRR1562801 1 0.0162 0.998 0.996 0.000 0 0.004 0.000
#> SRR1562802 1 0.0162 0.998 0.996 0.000 0 0.004 0.000
#> SRR1562803 1 0.0162 0.998 0.996 0.000 0 0.004 0.000
#> SRR1562804 1 0.0162 0.998 0.996 0.000 0 0.004 0.000
#> SRR1562805 1 0.0162 0.998 0.996 0.000 0 0.004 0.000
#> SRR1562806 1 0.0000 0.998 1.000 0.000 0 0.000 0.000
#> SRR1562807 1 0.0000 0.998 1.000 0.000 0 0.000 0.000
#> SRR1562808 1 0.0000 0.998 1.000 0.000 0 0.000 0.000
#> SRR1562809 1 0.0000 0.998 1.000 0.000 0 0.000 0.000
#> SRR1562810 1 0.0000 0.998 1.000 0.000 0 0.000 0.000
#> SRR1562811 1 0.0000 0.998 1.000 0.000 0 0.000 0.000
#> SRR1562812 1 0.0000 0.998 1.000 0.000 0 0.000 0.000
#> SRR1562813 1 0.0000 0.998 1.000 0.000 0 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1562718 2 0.5022 0.0153 0 0.496 0 0.000 0.432 0.072
#> SRR1562719 2 0.5022 0.0153 0 0.496 0 0.000 0.432 0.072
#> SRR1562720 2 0.5022 0.0153 0 0.496 0 0.000 0.432 0.072
#> SRR1562721 2 0.5022 0.0153 0 0.496 0 0.000 0.432 0.072
#> SRR1562723 2 0.5022 0.0153 0 0.496 0 0.000 0.432 0.072
#> SRR1562724 5 0.4902 0.0855 0 0.460 0 0.000 0.480 0.060
#> SRR1562725 5 0.4902 0.0855 0 0.460 0 0.000 0.480 0.060
#> SRR1562726 5 0.4902 0.0855 0 0.460 0 0.000 0.480 0.060
#> SRR1562727 5 0.4902 0.0855 0 0.460 0 0.000 0.480 0.060
#> SRR1562728 5 0.4902 0.0855 0 0.460 0 0.000 0.480 0.060
#> SRR1562729 5 0.4902 0.0855 0 0.460 0 0.000 0.480 0.060
#> SRR1562730 2 0.2697 0.5692 0 0.812 0 0.000 0.000 0.188
#> SRR1562731 2 0.2697 0.5692 0 0.812 0 0.000 0.000 0.188
#> SRR1562732 2 0.2697 0.5692 0 0.812 0 0.000 0.000 0.188
#> SRR1562733 2 0.2697 0.5692 0 0.812 0 0.000 0.000 0.188
#> SRR1562734 2 0.2697 0.5692 0 0.812 0 0.000 0.000 0.188
#> SRR1562735 2 0.2697 0.5692 0 0.812 0 0.000 0.000 0.188
#> SRR1562736 5 0.0725 0.6613 0 0.000 0 0.012 0.976 0.012
#> SRR1562737 5 0.0725 0.6613 0 0.000 0 0.012 0.976 0.012
#> SRR1562738 5 0.0725 0.6613 0 0.000 0 0.012 0.976 0.012
#> SRR1562739 5 0.0725 0.6613 0 0.000 0 0.012 0.976 0.012
#> SRR1562740 5 0.0725 0.6613 0 0.000 0 0.012 0.976 0.012
#> SRR1562741 5 0.0725 0.6613 0 0.000 0 0.012 0.976 0.012
#> SRR1562742 5 0.2278 0.6113 0 0.004 0 0.000 0.868 0.128
#> SRR1562743 5 0.2278 0.6113 0 0.004 0 0.000 0.868 0.128
#> SRR1562744 5 0.2278 0.6113 0 0.004 0 0.000 0.868 0.128
#> SRR1562745 5 0.2278 0.6113 0 0.004 0 0.000 0.868 0.128
#> SRR1562746 5 0.2278 0.6113 0 0.004 0 0.000 0.868 0.128
#> SRR1562747 5 0.2278 0.6113 0 0.004 0 0.000 0.868 0.128
#> SRR1562748 4 0.0000 1.0000 0 0.000 0 1.000 0.000 0.000
#> SRR1562749 4 0.0000 1.0000 0 0.000 0 1.000 0.000 0.000
#> SRR1562750 4 0.0000 1.0000 0 0.000 0 1.000 0.000 0.000
#> SRR1562751 4 0.0000 1.0000 0 0.000 0 1.000 0.000 0.000
#> SRR1562752 4 0.0000 1.0000 0 0.000 0 1.000 0.000 0.000
#> SRR1562753 4 0.0000 1.0000 0 0.000 0 1.000 0.000 0.000
#> SRR1562754 6 0.4011 1.0000 0 0.000 0 0.060 0.204 0.736
#> SRR1562755 6 0.4011 1.0000 0 0.000 0 0.060 0.204 0.736
#> SRR1562756 6 0.4011 1.0000 0 0.000 0 0.060 0.204 0.736
#> SRR1562757 6 0.4011 1.0000 0 0.000 0 0.060 0.204 0.736
#> SRR1562758 6 0.4011 1.0000 0 0.000 0 0.060 0.204 0.736
#> SRR1562759 6 0.4011 1.0000 0 0.000 0 0.060 0.204 0.736
#> SRR1562792 3 0.0000 1.0000 0 0.000 1 0.000 0.000 0.000
#> SRR1562793 3 0.0000 1.0000 0 0.000 1 0.000 0.000 0.000
#> SRR1562794 3 0.0000 1.0000 0 0.000 1 0.000 0.000 0.000
#> SRR1562795 3 0.0000 1.0000 0 0.000 1 0.000 0.000 0.000
#> SRR1562796 3 0.0000 1.0000 0 0.000 1 0.000 0.000 0.000
#> SRR1562797 3 0.0000 1.0000 0 0.000 1 0.000 0.000 0.000
#> SRR1562798 3 0.0000 1.0000 0 0.000 1 0.000 0.000 0.000
#> SRR1562799 3 0.0000 1.0000 0 0.000 1 0.000 0.000 0.000
#> SRR1562800 1 0.0000 1.0000 1 0.000 0 0.000 0.000 0.000
#> SRR1562801 1 0.0000 1.0000 1 0.000 0 0.000 0.000 0.000
#> SRR1562802 1 0.0000 1.0000 1 0.000 0 0.000 0.000 0.000
#> SRR1562803 1 0.0000 1.0000 1 0.000 0 0.000 0.000 0.000
#> SRR1562804 1 0.0000 1.0000 1 0.000 0 0.000 0.000 0.000
#> SRR1562805 1 0.0000 1.0000 1 0.000 0 0.000 0.000 0.000
#> SRR1562806 1 0.0000 1.0000 1 0.000 0 0.000 0.000 0.000
#> SRR1562807 1 0.0000 1.0000 1 0.000 0 0.000 0.000 0.000
#> SRR1562808 1 0.0000 1.0000 1 0.000 0 0.000 0.000 0.000
#> SRR1562809 1 0.0000 1.0000 1 0.000 0 0.000 0.000 0.000
#> SRR1562810 1 0.0000 1.0000 1 0.000 0 0.000 0.000 0.000
#> SRR1562811 1 0.0000 1.0000 1 0.000 0 0.000 0.000 0.000
#> SRR1562812 1 0.0000 1.0000 1 0.000 0 0.000 0.000 0.000
#> SRR1562813 1 0.0000 1.0000 1 0.000 0 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15301 rows and 63 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.986 0.992 0.3587 0.649 0.649
#> 3 3 1.000 1.000 1.000 0.4488 0.832 0.741
#> 4 4 0.822 0.949 0.957 0.2085 0.892 0.776
#> 5 5 0.797 0.919 0.929 0.0615 0.975 0.934
#> 6 6 0.910 0.955 0.955 0.1319 0.911 0.744
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3
There is also optional best \(k\) = 2 3 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1562718 2 0.000 0.990 0.000 1.000
#> SRR1562719 2 0.000 0.990 0.000 1.000
#> SRR1562720 2 0.000 0.990 0.000 1.000
#> SRR1562721 2 0.000 0.990 0.000 1.000
#> SRR1562723 2 0.000 0.990 0.000 1.000
#> SRR1562724 2 0.000 0.990 0.000 1.000
#> SRR1562725 2 0.000 0.990 0.000 1.000
#> SRR1562726 2 0.000 0.990 0.000 1.000
#> SRR1562727 2 0.000 0.990 0.000 1.000
#> SRR1562728 2 0.000 0.990 0.000 1.000
#> SRR1562729 2 0.000 0.990 0.000 1.000
#> SRR1562730 2 0.000 0.990 0.000 1.000
#> SRR1562731 2 0.000 0.990 0.000 1.000
#> SRR1562732 2 0.000 0.990 0.000 1.000
#> SRR1562733 2 0.000 0.990 0.000 1.000
#> SRR1562734 2 0.000 0.990 0.000 1.000
#> SRR1562735 2 0.000 0.990 0.000 1.000
#> SRR1562736 2 0.000 0.990 0.000 1.000
#> SRR1562737 2 0.000 0.990 0.000 1.000
#> SRR1562738 2 0.000 0.990 0.000 1.000
#> SRR1562739 2 0.000 0.990 0.000 1.000
#> SRR1562740 2 0.000 0.990 0.000 1.000
#> SRR1562741 2 0.000 0.990 0.000 1.000
#> SRR1562742 2 0.000 0.990 0.000 1.000
#> SRR1562743 2 0.000 0.990 0.000 1.000
#> SRR1562744 2 0.000 0.990 0.000 1.000
#> SRR1562745 2 0.000 0.990 0.000 1.000
#> SRR1562746 2 0.000 0.990 0.000 1.000
#> SRR1562747 2 0.000 0.990 0.000 1.000
#> SRR1562748 2 0.000 0.990 0.000 1.000
#> SRR1562749 2 0.000 0.990 0.000 1.000
#> SRR1562750 2 0.000 0.990 0.000 1.000
#> SRR1562751 2 0.000 0.990 0.000 1.000
#> SRR1562752 2 0.000 0.990 0.000 1.000
#> SRR1562753 2 0.000 0.990 0.000 1.000
#> SRR1562754 2 0.000 0.990 0.000 1.000
#> SRR1562755 2 0.000 0.990 0.000 1.000
#> SRR1562756 2 0.000 0.990 0.000 1.000
#> SRR1562757 2 0.000 0.990 0.000 1.000
#> SRR1562758 2 0.000 0.990 0.000 1.000
#> SRR1562759 2 0.000 0.990 0.000 1.000
#> SRR1562792 2 0.204 0.967 0.032 0.968
#> SRR1562793 2 0.260 0.958 0.044 0.956
#> SRR1562794 2 0.260 0.958 0.044 0.956
#> SRR1562795 2 0.278 0.954 0.048 0.952
#> SRR1562796 2 0.388 0.929 0.076 0.924
#> SRR1562797 2 0.402 0.925 0.080 0.920
#> SRR1562798 2 0.388 0.929 0.076 0.924
#> SRR1562799 2 0.388 0.929 0.076 0.924
#> SRR1562800 1 0.000 1.000 1.000 0.000
#> SRR1562801 1 0.000 1.000 1.000 0.000
#> SRR1562802 1 0.000 1.000 1.000 0.000
#> SRR1562803 1 0.000 1.000 1.000 0.000
#> SRR1562804 1 0.000 1.000 1.000 0.000
#> SRR1562805 1 0.000 1.000 1.000 0.000
#> SRR1562806 1 0.000 1.000 1.000 0.000
#> SRR1562807 1 0.000 1.000 1.000 0.000
#> SRR1562808 1 0.000 1.000 1.000 0.000
#> SRR1562809 1 0.000 1.000 1.000 0.000
#> SRR1562810 1 0.000 1.000 1.000 0.000
#> SRR1562811 1 0.000 1.000 1.000 0.000
#> SRR1562812 1 0.000 1.000 1.000 0.000
#> SRR1562813 1 0.000 1.000 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1562718 2 0 1 0 1 0
#> SRR1562719 2 0 1 0 1 0
#> SRR1562720 2 0 1 0 1 0
#> SRR1562721 2 0 1 0 1 0
#> SRR1562723 2 0 1 0 1 0
#> SRR1562724 2 0 1 0 1 0
#> SRR1562725 2 0 1 0 1 0
#> SRR1562726 2 0 1 0 1 0
#> SRR1562727 2 0 1 0 1 0
#> SRR1562728 2 0 1 0 1 0
#> SRR1562729 2 0 1 0 1 0
#> SRR1562730 2 0 1 0 1 0
#> SRR1562731 2 0 1 0 1 0
#> SRR1562732 2 0 1 0 1 0
#> SRR1562733 2 0 1 0 1 0
#> SRR1562734 2 0 1 0 1 0
#> SRR1562735 2 0 1 0 1 0
#> SRR1562736 2 0 1 0 1 0
#> SRR1562737 2 0 1 0 1 0
#> SRR1562738 2 0 1 0 1 0
#> SRR1562739 2 0 1 0 1 0
#> SRR1562740 2 0 1 0 1 0
#> SRR1562741 2 0 1 0 1 0
#> SRR1562742 2 0 1 0 1 0
#> SRR1562743 2 0 1 0 1 0
#> SRR1562744 2 0 1 0 1 0
#> SRR1562745 2 0 1 0 1 0
#> SRR1562746 2 0 1 0 1 0
#> SRR1562747 2 0 1 0 1 0
#> SRR1562748 2 0 1 0 1 0
#> SRR1562749 2 0 1 0 1 0
#> SRR1562750 2 0 1 0 1 0
#> SRR1562751 2 0 1 0 1 0
#> SRR1562752 2 0 1 0 1 0
#> SRR1562753 2 0 1 0 1 0
#> SRR1562754 2 0 1 0 1 0
#> SRR1562755 2 0 1 0 1 0
#> SRR1562756 2 0 1 0 1 0
#> SRR1562757 2 0 1 0 1 0
#> SRR1562758 2 0 1 0 1 0
#> SRR1562759 2 0 1 0 1 0
#> SRR1562792 3 0 1 0 0 1
#> SRR1562793 3 0 1 0 0 1
#> SRR1562794 3 0 1 0 0 1
#> SRR1562795 3 0 1 0 0 1
#> SRR1562796 3 0 1 0 0 1
#> SRR1562797 3 0 1 0 0 1
#> SRR1562798 3 0 1 0 0 1
#> SRR1562799 3 0 1 0 0 1
#> SRR1562800 1 0 1 1 0 0
#> SRR1562801 1 0 1 1 0 0
#> SRR1562802 1 0 1 1 0 0
#> SRR1562803 1 0 1 1 0 0
#> SRR1562804 1 0 1 1 0 0
#> SRR1562805 1 0 1 1 0 0
#> SRR1562806 1 0 1 1 0 0
#> SRR1562807 1 0 1 1 0 0
#> SRR1562808 1 0 1 1 0 0
#> SRR1562809 1 0 1 1 0 0
#> SRR1562810 1 0 1 1 0 0
#> SRR1562811 1 0 1 1 0 0
#> SRR1562812 1 0 1 1 0 0
#> SRR1562813 1 0 1 1 0 0
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1562718 2 0.0000 0.954 0.000 1.000 0 0.000
#> SRR1562719 2 0.0000 0.954 0.000 1.000 0 0.000
#> SRR1562720 2 0.0000 0.954 0.000 1.000 0 0.000
#> SRR1562721 2 0.0000 0.954 0.000 1.000 0 0.000
#> SRR1562723 2 0.0000 0.954 0.000 1.000 0 0.000
#> SRR1562724 2 0.0000 0.954 0.000 1.000 0 0.000
#> SRR1562725 2 0.0000 0.954 0.000 1.000 0 0.000
#> SRR1562726 2 0.0000 0.954 0.000 1.000 0 0.000
#> SRR1562727 2 0.0000 0.954 0.000 1.000 0 0.000
#> SRR1562728 2 0.0000 0.954 0.000 1.000 0 0.000
#> SRR1562729 2 0.0000 0.954 0.000 1.000 0 0.000
#> SRR1562730 2 0.3024 0.826 0.000 0.852 0 0.148
#> SRR1562731 2 0.3024 0.826 0.000 0.852 0 0.148
#> SRR1562732 2 0.3024 0.826 0.000 0.852 0 0.148
#> SRR1562733 2 0.3024 0.826 0.000 0.852 0 0.148
#> SRR1562734 2 0.3024 0.826 0.000 0.852 0 0.148
#> SRR1562735 2 0.3024 0.826 0.000 0.852 0 0.148
#> SRR1562736 2 0.0000 0.954 0.000 1.000 0 0.000
#> SRR1562737 2 0.0000 0.954 0.000 1.000 0 0.000
#> SRR1562738 2 0.0000 0.954 0.000 1.000 0 0.000
#> SRR1562739 2 0.0000 0.954 0.000 1.000 0 0.000
#> SRR1562740 2 0.0000 0.954 0.000 1.000 0 0.000
#> SRR1562741 2 0.0000 0.954 0.000 1.000 0 0.000
#> SRR1562742 2 0.0000 0.954 0.000 1.000 0 0.000
#> SRR1562743 2 0.0000 0.954 0.000 1.000 0 0.000
#> SRR1562744 2 0.0000 0.954 0.000 1.000 0 0.000
#> SRR1562745 2 0.0000 0.954 0.000 1.000 0 0.000
#> SRR1562746 2 0.0000 0.954 0.000 1.000 0 0.000
#> SRR1562747 2 0.0000 0.954 0.000 1.000 0 0.000
#> SRR1562748 4 0.3569 1.000 0.000 0.196 0 0.804
#> SRR1562749 4 0.3569 1.000 0.000 0.196 0 0.804
#> SRR1562750 4 0.3569 1.000 0.000 0.196 0 0.804
#> SRR1562751 4 0.3569 1.000 0.000 0.196 0 0.804
#> SRR1562752 4 0.3569 1.000 0.000 0.196 0 0.804
#> SRR1562753 4 0.3569 1.000 0.000 0.196 0 0.804
#> SRR1562754 2 0.0000 0.954 0.000 1.000 0 0.000
#> SRR1562755 2 0.0188 0.951 0.000 0.996 0 0.004
#> SRR1562756 2 0.1389 0.908 0.000 0.952 0 0.048
#> SRR1562757 2 0.4331 0.456 0.000 0.712 0 0.288
#> SRR1562758 2 0.0469 0.944 0.000 0.988 0 0.012
#> SRR1562759 2 0.0000 0.954 0.000 1.000 0 0.000
#> SRR1562792 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1562793 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1562794 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1562795 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1562796 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1562797 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1562798 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1562799 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1562800 1 0.1389 0.976 0.952 0.000 0 0.048
#> SRR1562801 1 0.1389 0.976 0.952 0.000 0 0.048
#> SRR1562802 1 0.1389 0.976 0.952 0.000 0 0.048
#> SRR1562803 1 0.1389 0.976 0.952 0.000 0 0.048
#> SRR1562804 1 0.1389 0.976 0.952 0.000 0 0.048
#> SRR1562805 1 0.1389 0.976 0.952 0.000 0 0.048
#> SRR1562806 1 0.0000 0.982 1.000 0.000 0 0.000
#> SRR1562807 1 0.0000 0.982 1.000 0.000 0 0.000
#> SRR1562808 1 0.0000 0.982 1.000 0.000 0 0.000
#> SRR1562809 1 0.0000 0.982 1.000 0.000 0 0.000
#> SRR1562810 1 0.0000 0.982 1.000 0.000 0 0.000
#> SRR1562811 1 0.0000 0.982 1.000 0.000 0 0.000
#> SRR1562812 1 0.0000 0.982 1.000 0.000 0 0.000
#> SRR1562813 1 0.0000 0.982 1.000 0.000 0 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1562718 2 0.0609 0.914 0.000 0.980 0 0.000 0.020
#> SRR1562719 2 0.0609 0.914 0.000 0.980 0 0.000 0.020
#> SRR1562720 2 0.0609 0.914 0.000 0.980 0 0.000 0.020
#> SRR1562721 2 0.0609 0.914 0.000 0.980 0 0.000 0.020
#> SRR1562723 2 0.0609 0.914 0.000 0.980 0 0.000 0.020
#> SRR1562724 2 0.0609 0.914 0.000 0.980 0 0.000 0.020
#> SRR1562725 2 0.0609 0.914 0.000 0.980 0 0.000 0.020
#> SRR1562726 2 0.0609 0.914 0.000 0.980 0 0.000 0.020
#> SRR1562727 2 0.0609 0.914 0.000 0.980 0 0.000 0.020
#> SRR1562728 2 0.0609 0.914 0.000 0.980 0 0.000 0.020
#> SRR1562729 2 0.0609 0.914 0.000 0.980 0 0.000 0.020
#> SRR1562730 2 0.5184 0.650 0.000 0.688 0 0.176 0.136
#> SRR1562731 2 0.5184 0.650 0.000 0.688 0 0.176 0.136
#> SRR1562732 2 0.5184 0.650 0.000 0.688 0 0.176 0.136
#> SRR1562733 2 0.5184 0.650 0.000 0.688 0 0.176 0.136
#> SRR1562734 2 0.5184 0.650 0.000 0.688 0 0.176 0.136
#> SRR1562735 2 0.5184 0.650 0.000 0.688 0 0.176 0.136
#> SRR1562736 2 0.0000 0.915 0.000 1.000 0 0.000 0.000
#> SRR1562737 2 0.0000 0.915 0.000 1.000 0 0.000 0.000
#> SRR1562738 2 0.0000 0.915 0.000 1.000 0 0.000 0.000
#> SRR1562739 2 0.0000 0.915 0.000 1.000 0 0.000 0.000
#> SRR1562740 2 0.0000 0.915 0.000 1.000 0 0.000 0.000
#> SRR1562741 2 0.0000 0.915 0.000 1.000 0 0.000 0.000
#> SRR1562742 2 0.0000 0.915 0.000 1.000 0 0.000 0.000
#> SRR1562743 2 0.0000 0.915 0.000 1.000 0 0.000 0.000
#> SRR1562744 2 0.0000 0.915 0.000 1.000 0 0.000 0.000
#> SRR1562745 2 0.0000 0.915 0.000 1.000 0 0.000 0.000
#> SRR1562746 2 0.0000 0.915 0.000 1.000 0 0.000 0.000
#> SRR1562747 2 0.0000 0.915 0.000 1.000 0 0.000 0.000
#> SRR1562748 4 0.2891 1.000 0.000 0.176 0 0.824 0.000
#> SRR1562749 4 0.2891 1.000 0.000 0.176 0 0.824 0.000
#> SRR1562750 4 0.2891 1.000 0.000 0.176 0 0.824 0.000
#> SRR1562751 4 0.2891 1.000 0.000 0.176 0 0.824 0.000
#> SRR1562752 4 0.2891 1.000 0.000 0.176 0 0.824 0.000
#> SRR1562753 4 0.2891 1.000 0.000 0.176 0 0.824 0.000
#> SRR1562754 2 0.0000 0.915 0.000 1.000 0 0.000 0.000
#> SRR1562755 2 0.0162 0.913 0.000 0.996 0 0.004 0.000
#> SRR1562756 2 0.1197 0.874 0.000 0.952 0 0.048 0.000
#> SRR1562757 2 0.3730 0.439 0.000 0.712 0 0.288 0.000
#> SRR1562758 2 0.0404 0.908 0.000 0.988 0 0.012 0.000
#> SRR1562759 2 0.0000 0.915 0.000 1.000 0 0.000 0.000
#> SRR1562792 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562793 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562794 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562795 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562796 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562797 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562798 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562799 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562800 5 0.2471 1.000 0.136 0.000 0 0.000 0.864
#> SRR1562801 5 0.2471 1.000 0.136 0.000 0 0.000 0.864
#> SRR1562802 5 0.2471 1.000 0.136 0.000 0 0.000 0.864
#> SRR1562803 5 0.2471 1.000 0.136 0.000 0 0.000 0.864
#> SRR1562804 5 0.2471 1.000 0.136 0.000 0 0.000 0.864
#> SRR1562805 5 0.2471 1.000 0.136 0.000 0 0.000 0.864
#> SRR1562806 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> SRR1562807 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> SRR1562808 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> SRR1562809 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> SRR1562810 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> SRR1562811 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> SRR1562812 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> SRR1562813 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1562718 5 0.2812 0.902 0.000 0.048 0 0.000 0.856 0.096
#> SRR1562719 5 0.2812 0.902 0.000 0.048 0 0.000 0.856 0.096
#> SRR1562720 5 0.2812 0.902 0.000 0.048 0 0.000 0.856 0.096
#> SRR1562721 5 0.2812 0.902 0.000 0.048 0 0.000 0.856 0.096
#> SRR1562723 5 0.2812 0.902 0.000 0.048 0 0.000 0.856 0.096
#> SRR1562724 5 0.2812 0.902 0.000 0.048 0 0.000 0.856 0.096
#> SRR1562725 5 0.2812 0.902 0.000 0.048 0 0.000 0.856 0.096
#> SRR1562726 5 0.2812 0.902 0.000 0.048 0 0.000 0.856 0.096
#> SRR1562727 5 0.2812 0.902 0.000 0.048 0 0.000 0.856 0.096
#> SRR1562728 5 0.2812 0.902 0.000 0.048 0 0.000 0.856 0.096
#> SRR1562729 5 0.2812 0.902 0.000 0.048 0 0.000 0.856 0.096
#> SRR1562730 2 0.0547 1.000 0.000 0.980 0 0.000 0.020 0.000
#> SRR1562731 2 0.0547 1.000 0.000 0.980 0 0.000 0.020 0.000
#> SRR1562732 2 0.0547 1.000 0.000 0.980 0 0.000 0.020 0.000
#> SRR1562733 2 0.0547 1.000 0.000 0.980 0 0.000 0.020 0.000
#> SRR1562734 2 0.0547 1.000 0.000 0.980 0 0.000 0.020 0.000
#> SRR1562735 2 0.0547 1.000 0.000 0.980 0 0.000 0.020 0.000
#> SRR1562736 5 0.1204 0.922 0.000 0.000 0 0.000 0.944 0.056
#> SRR1562737 5 0.0260 0.926 0.000 0.000 0 0.000 0.992 0.008
#> SRR1562738 5 0.0000 0.926 0.000 0.000 0 0.000 1.000 0.000
#> SRR1562739 5 0.0000 0.926 0.000 0.000 0 0.000 1.000 0.000
#> SRR1562740 5 0.0260 0.926 0.000 0.000 0 0.000 0.992 0.008
#> SRR1562741 5 0.0713 0.925 0.000 0.000 0 0.000 0.972 0.028
#> SRR1562742 5 0.0000 0.926 0.000 0.000 0 0.000 1.000 0.000
#> SRR1562743 5 0.0000 0.926 0.000 0.000 0 0.000 1.000 0.000
#> SRR1562744 5 0.0000 0.926 0.000 0.000 0 0.000 1.000 0.000
#> SRR1562745 5 0.0000 0.926 0.000 0.000 0 0.000 1.000 0.000
#> SRR1562746 5 0.0000 0.926 0.000 0.000 0 0.000 1.000 0.000
#> SRR1562747 5 0.0000 0.926 0.000 0.000 0 0.000 1.000 0.000
#> SRR1562748 4 0.0146 1.000 0.000 0.000 0 0.996 0.004 0.000
#> SRR1562749 4 0.0146 1.000 0.000 0.000 0 0.996 0.004 0.000
#> SRR1562750 4 0.0146 1.000 0.000 0.000 0 0.996 0.004 0.000
#> SRR1562751 4 0.0146 1.000 0.000 0.000 0 0.996 0.004 0.000
#> SRR1562752 4 0.0146 1.000 0.000 0.000 0 0.996 0.004 0.000
#> SRR1562753 4 0.0146 1.000 0.000 0.000 0 0.996 0.004 0.000
#> SRR1562754 5 0.0547 0.918 0.000 0.020 0 0.000 0.980 0.000
#> SRR1562755 5 0.0692 0.916 0.000 0.020 0 0.004 0.976 0.000
#> SRR1562756 5 0.1408 0.897 0.000 0.020 0 0.036 0.944 0.000
#> SRR1562757 5 0.3711 0.599 0.000 0.020 0 0.260 0.720 0.000
#> SRR1562758 5 0.0858 0.919 0.000 0.028 0 0.004 0.968 0.000
#> SRR1562759 5 0.0547 0.918 0.000 0.020 0 0.000 0.980 0.000
#> SRR1562792 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562793 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562794 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562795 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562796 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562797 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562798 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562799 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562800 6 0.1765 1.000 0.096 0.000 0 0.000 0.000 0.904
#> SRR1562801 6 0.1765 1.000 0.096 0.000 0 0.000 0.000 0.904
#> SRR1562802 6 0.1765 1.000 0.096 0.000 0 0.000 0.000 0.904
#> SRR1562803 6 0.1765 1.000 0.096 0.000 0 0.000 0.000 0.904
#> SRR1562804 6 0.1765 1.000 0.096 0.000 0 0.000 0.000 0.904
#> SRR1562805 6 0.1765 1.000 0.096 0.000 0 0.000 0.000 0.904
#> SRR1562806 1 0.0146 0.998 0.996 0.000 0 0.004 0.000 0.000
#> SRR1562807 1 0.0146 0.998 0.996 0.000 0 0.004 0.000 0.000
#> SRR1562808 1 0.0146 0.998 0.996 0.000 0 0.004 0.000 0.000
#> SRR1562809 1 0.0146 0.998 0.996 0.000 0 0.004 0.000 0.000
#> SRR1562810 1 0.0000 0.998 1.000 0.000 0 0.000 0.000 0.000
#> SRR1562811 1 0.0000 0.998 1.000 0.000 0 0.000 0.000 0.000
#> SRR1562812 1 0.0000 0.998 1.000 0.000 0 0.000 0.000 0.000
#> SRR1562813 1 0.0000 0.998 1.000 0.000 0 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15301 rows and 63 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.775 0.951 0.960 0.3619 0.649 0.649
#> 3 3 1.000 0.976 0.965 0.4668 0.832 0.741
#> 4 4 0.784 0.903 0.929 0.3216 0.822 0.629
#> 5 5 0.806 0.839 0.865 0.1042 0.929 0.766
#> 6 6 0.892 0.909 0.918 0.0671 0.932 0.709
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1562718 2 0.000 0.964 0.000 1.000
#> SRR1562719 2 0.000 0.964 0.000 1.000
#> SRR1562720 2 0.000 0.964 0.000 1.000
#> SRR1562721 2 0.000 0.964 0.000 1.000
#> SRR1562723 2 0.000 0.964 0.000 1.000
#> SRR1562724 2 0.000 0.964 0.000 1.000
#> SRR1562725 2 0.000 0.964 0.000 1.000
#> SRR1562726 2 0.000 0.964 0.000 1.000
#> SRR1562727 2 0.000 0.964 0.000 1.000
#> SRR1562728 2 0.000 0.964 0.000 1.000
#> SRR1562729 2 0.000 0.964 0.000 1.000
#> SRR1562730 2 0.000 0.964 0.000 1.000
#> SRR1562731 2 0.000 0.964 0.000 1.000
#> SRR1562732 2 0.000 0.964 0.000 1.000
#> SRR1562733 2 0.000 0.964 0.000 1.000
#> SRR1562734 2 0.000 0.964 0.000 1.000
#> SRR1562735 2 0.000 0.964 0.000 1.000
#> SRR1562736 2 0.000 0.964 0.000 1.000
#> SRR1562737 2 0.000 0.964 0.000 1.000
#> SRR1562738 2 0.000 0.964 0.000 1.000
#> SRR1562739 2 0.000 0.964 0.000 1.000
#> SRR1562740 2 0.000 0.964 0.000 1.000
#> SRR1562741 2 0.000 0.964 0.000 1.000
#> SRR1562742 2 0.000 0.964 0.000 1.000
#> SRR1562743 2 0.000 0.964 0.000 1.000
#> SRR1562744 2 0.000 0.964 0.000 1.000
#> SRR1562745 2 0.000 0.964 0.000 1.000
#> SRR1562746 2 0.000 0.964 0.000 1.000
#> SRR1562747 2 0.000 0.964 0.000 1.000
#> SRR1562748 2 0.118 0.956 0.016 0.984
#> SRR1562749 2 0.118 0.956 0.016 0.984
#> SRR1562750 2 0.118 0.956 0.016 0.984
#> SRR1562751 2 0.118 0.956 0.016 0.984
#> SRR1562752 2 0.118 0.956 0.016 0.984
#> SRR1562753 2 0.118 0.956 0.016 0.984
#> SRR1562754 2 0.000 0.964 0.000 1.000
#> SRR1562755 2 0.000 0.964 0.000 1.000
#> SRR1562756 2 0.000 0.964 0.000 1.000
#> SRR1562757 2 0.000 0.964 0.000 1.000
#> SRR1562758 2 0.000 0.964 0.000 1.000
#> SRR1562759 2 0.000 0.964 0.000 1.000
#> SRR1562792 2 0.730 0.803 0.204 0.796
#> SRR1562793 2 0.730 0.803 0.204 0.796
#> SRR1562794 2 0.730 0.803 0.204 0.796
#> SRR1562795 2 0.730 0.803 0.204 0.796
#> SRR1562796 2 0.730 0.803 0.204 0.796
#> SRR1562797 2 0.730 0.803 0.204 0.796
#> SRR1562798 2 0.730 0.803 0.204 0.796
#> SRR1562799 2 0.730 0.803 0.204 0.796
#> SRR1562800 1 0.311 1.000 0.944 0.056
#> SRR1562801 1 0.311 1.000 0.944 0.056
#> SRR1562802 1 0.311 1.000 0.944 0.056
#> SRR1562803 1 0.311 1.000 0.944 0.056
#> SRR1562804 1 0.311 1.000 0.944 0.056
#> SRR1562805 1 0.311 1.000 0.944 0.056
#> SRR1562806 1 0.311 1.000 0.944 0.056
#> SRR1562807 1 0.311 1.000 0.944 0.056
#> SRR1562808 1 0.311 1.000 0.944 0.056
#> SRR1562809 1 0.311 1.000 0.944 0.056
#> SRR1562810 1 0.311 1.000 0.944 0.056
#> SRR1562811 1 0.311 1.000 0.944 0.056
#> SRR1562812 1 0.311 1.000 0.944 0.056
#> SRR1562813 1 0.311 1.000 0.944 0.056
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1562718 2 0.0592 0.968 0.000 0.988 0.012
#> SRR1562719 2 0.0592 0.968 0.000 0.988 0.012
#> SRR1562720 2 0.0592 0.968 0.000 0.988 0.012
#> SRR1562721 2 0.0592 0.968 0.000 0.988 0.012
#> SRR1562723 2 0.0592 0.968 0.000 0.988 0.012
#> SRR1562724 2 0.1289 0.969 0.000 0.968 0.032
#> SRR1562725 2 0.1289 0.969 0.000 0.968 0.032
#> SRR1562726 2 0.1411 0.969 0.000 0.964 0.036
#> SRR1562727 2 0.1289 0.969 0.000 0.968 0.032
#> SRR1562728 2 0.1289 0.969 0.000 0.968 0.032
#> SRR1562729 2 0.1289 0.969 0.000 0.968 0.032
#> SRR1562730 2 0.0661 0.969 0.004 0.988 0.008
#> SRR1562731 2 0.0661 0.969 0.004 0.988 0.008
#> SRR1562732 2 0.0661 0.969 0.004 0.988 0.008
#> SRR1562733 2 0.0661 0.969 0.004 0.988 0.008
#> SRR1562734 2 0.0661 0.969 0.004 0.988 0.008
#> SRR1562735 2 0.0661 0.969 0.004 0.988 0.008
#> SRR1562736 2 0.1753 0.966 0.000 0.952 0.048
#> SRR1562737 2 0.1753 0.966 0.000 0.952 0.048
#> SRR1562738 2 0.1753 0.966 0.000 0.952 0.048
#> SRR1562739 2 0.1753 0.966 0.000 0.952 0.048
#> SRR1562740 2 0.1753 0.966 0.000 0.952 0.048
#> SRR1562741 2 0.1753 0.966 0.000 0.952 0.048
#> SRR1562742 2 0.0424 0.969 0.000 0.992 0.008
#> SRR1562743 2 0.0424 0.969 0.000 0.992 0.008
#> SRR1562744 2 0.0424 0.969 0.000 0.992 0.008
#> SRR1562745 2 0.0424 0.969 0.000 0.992 0.008
#> SRR1562746 2 0.0424 0.969 0.000 0.992 0.008
#> SRR1562747 2 0.0424 0.969 0.000 0.992 0.008
#> SRR1562748 2 0.2846 0.940 0.056 0.924 0.020
#> SRR1562749 2 0.2846 0.940 0.056 0.924 0.020
#> SRR1562750 2 0.2846 0.940 0.056 0.924 0.020
#> SRR1562751 2 0.2846 0.940 0.056 0.924 0.020
#> SRR1562752 2 0.2846 0.940 0.056 0.924 0.020
#> SRR1562753 2 0.2846 0.940 0.056 0.924 0.020
#> SRR1562754 2 0.2356 0.958 0.000 0.928 0.072
#> SRR1562755 2 0.2356 0.958 0.000 0.928 0.072
#> SRR1562756 2 0.2356 0.958 0.000 0.928 0.072
#> SRR1562757 2 0.2356 0.958 0.000 0.928 0.072
#> SRR1562758 2 0.2356 0.958 0.000 0.928 0.072
#> SRR1562759 2 0.2356 0.958 0.000 0.928 0.072
#> SRR1562792 3 0.2625 1.000 0.084 0.000 0.916
#> SRR1562793 3 0.2625 1.000 0.084 0.000 0.916
#> SRR1562794 3 0.2625 1.000 0.084 0.000 0.916
#> SRR1562795 3 0.2625 1.000 0.084 0.000 0.916
#> SRR1562796 3 0.2625 1.000 0.084 0.000 0.916
#> SRR1562797 3 0.2625 1.000 0.084 0.000 0.916
#> SRR1562798 3 0.2625 1.000 0.084 0.000 0.916
#> SRR1562799 3 0.2625 1.000 0.084 0.000 0.916
#> SRR1562800 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562801 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562802 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562803 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562804 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562805 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562806 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562807 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562808 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562809 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562810 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562811 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562812 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562813 1 0.0000 1.000 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1562718 2 0.0188 0.888 0.000 0.996 0 0.004
#> SRR1562719 2 0.0336 0.889 0.000 0.992 0 0.008
#> SRR1562720 2 0.0336 0.887 0.000 0.992 0 0.008
#> SRR1562721 2 0.0188 0.888 0.000 0.996 0 0.004
#> SRR1562723 2 0.0188 0.886 0.000 0.996 0 0.004
#> SRR1562724 2 0.0469 0.888 0.000 0.988 0 0.012
#> SRR1562725 2 0.0592 0.888 0.000 0.984 0 0.016
#> SRR1562726 2 0.0817 0.886 0.000 0.976 0 0.024
#> SRR1562727 2 0.0707 0.887 0.000 0.980 0 0.020
#> SRR1562728 2 0.0707 0.888 0.000 0.980 0 0.020
#> SRR1562729 2 0.0707 0.887 0.000 0.980 0 0.020
#> SRR1562730 2 0.0921 0.878 0.000 0.972 0 0.028
#> SRR1562731 2 0.0921 0.878 0.000 0.972 0 0.028
#> SRR1562732 2 0.0921 0.878 0.000 0.972 0 0.028
#> SRR1562733 2 0.0921 0.878 0.000 0.972 0 0.028
#> SRR1562734 2 0.1022 0.879 0.000 0.968 0 0.032
#> SRR1562735 2 0.0921 0.878 0.000 0.972 0 0.028
#> SRR1562736 2 0.3975 0.805 0.000 0.760 0 0.240
#> SRR1562737 2 0.3873 0.814 0.000 0.772 0 0.228
#> SRR1562738 2 0.3975 0.805 0.000 0.760 0 0.240
#> SRR1562739 2 0.3907 0.811 0.000 0.768 0 0.232
#> SRR1562740 2 0.3975 0.805 0.000 0.760 0 0.240
#> SRR1562741 2 0.3975 0.805 0.000 0.760 0 0.240
#> SRR1562742 2 0.3444 0.845 0.000 0.816 0 0.184
#> SRR1562743 2 0.3400 0.846 0.000 0.820 0 0.180
#> SRR1562744 2 0.3444 0.846 0.000 0.816 0 0.184
#> SRR1562745 2 0.3400 0.846 0.000 0.820 0 0.180
#> SRR1562746 2 0.3400 0.846 0.000 0.820 0 0.180
#> SRR1562747 2 0.3444 0.845 0.000 0.816 0 0.184
#> SRR1562748 4 0.1510 0.825 0.016 0.028 0 0.956
#> SRR1562749 4 0.1510 0.825 0.016 0.028 0 0.956
#> SRR1562750 4 0.1510 0.825 0.016 0.028 0 0.956
#> SRR1562751 4 0.1510 0.825 0.016 0.028 0 0.956
#> SRR1562752 4 0.1510 0.825 0.016 0.028 0 0.956
#> SRR1562753 4 0.1510 0.825 0.016 0.028 0 0.956
#> SRR1562754 4 0.3942 0.827 0.000 0.236 0 0.764
#> SRR1562755 4 0.3975 0.827 0.000 0.240 0 0.760
#> SRR1562756 4 0.3975 0.827 0.000 0.240 0 0.760
#> SRR1562757 4 0.3975 0.827 0.000 0.240 0 0.760
#> SRR1562758 4 0.3975 0.827 0.000 0.240 0 0.760
#> SRR1562759 4 0.3975 0.827 0.000 0.240 0 0.760
#> SRR1562792 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1562793 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1562794 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1562795 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1562796 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1562797 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1562798 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1562799 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1562800 1 0.0000 1.000 1.000 0.000 0 0.000
#> SRR1562801 1 0.0000 1.000 1.000 0.000 0 0.000
#> SRR1562802 1 0.0000 1.000 1.000 0.000 0 0.000
#> SRR1562803 1 0.0000 1.000 1.000 0.000 0 0.000
#> SRR1562804 1 0.0000 1.000 1.000 0.000 0 0.000
#> SRR1562805 1 0.0000 1.000 1.000 0.000 0 0.000
#> SRR1562806 1 0.0000 1.000 1.000 0.000 0 0.000
#> SRR1562807 1 0.0000 1.000 1.000 0.000 0 0.000
#> SRR1562808 1 0.0000 1.000 1.000 0.000 0 0.000
#> SRR1562809 1 0.0000 1.000 1.000 0.000 0 0.000
#> SRR1562810 1 0.0000 1.000 1.000 0.000 0 0.000
#> SRR1562811 1 0.0000 1.000 1.000 0.000 0 0.000
#> SRR1562812 1 0.0000 1.000 1.000 0.000 0 0.000
#> SRR1562813 1 0.0000 1.000 1.000 0.000 0 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1562718 2 0.4256 0.622 0.000 0.564 0 0.000 0.436
#> SRR1562719 2 0.4256 0.622 0.000 0.564 0 0.000 0.436
#> SRR1562720 2 0.4256 0.622 0.000 0.564 0 0.000 0.436
#> SRR1562721 2 0.4256 0.622 0.000 0.564 0 0.000 0.436
#> SRR1562723 2 0.4256 0.622 0.000 0.564 0 0.000 0.436
#> SRR1562724 2 0.4192 0.643 0.000 0.596 0 0.000 0.404
#> SRR1562725 2 0.4192 0.643 0.000 0.596 0 0.000 0.404
#> SRR1562726 2 0.4192 0.643 0.000 0.596 0 0.000 0.404
#> SRR1562727 2 0.4192 0.643 0.000 0.596 0 0.000 0.404
#> SRR1562728 2 0.4192 0.643 0.000 0.596 0 0.000 0.404
#> SRR1562729 2 0.4192 0.643 0.000 0.596 0 0.000 0.404
#> SRR1562730 5 0.0404 1.000 0.000 0.012 0 0.000 0.988
#> SRR1562731 5 0.0404 1.000 0.000 0.012 0 0.000 0.988
#> SRR1562732 5 0.0404 1.000 0.000 0.012 0 0.000 0.988
#> SRR1562733 5 0.0404 1.000 0.000 0.012 0 0.000 0.988
#> SRR1562734 5 0.0404 1.000 0.000 0.012 0 0.000 0.988
#> SRR1562735 5 0.0404 1.000 0.000 0.012 0 0.000 0.988
#> SRR1562736 2 0.0794 0.652 0.000 0.972 0 0.028 0.000
#> SRR1562737 2 0.0798 0.664 0.000 0.976 0 0.016 0.008
#> SRR1562738 2 0.0794 0.652 0.000 0.972 0 0.028 0.000
#> SRR1562739 2 0.0865 0.658 0.000 0.972 0 0.024 0.004
#> SRR1562740 2 0.1082 0.658 0.000 0.964 0 0.028 0.008
#> SRR1562741 2 0.0794 0.652 0.000 0.972 0 0.028 0.000
#> SRR1562742 2 0.2471 0.717 0.000 0.864 0 0.000 0.136
#> SRR1562743 2 0.2471 0.717 0.000 0.864 0 0.000 0.136
#> SRR1562744 2 0.2471 0.717 0.000 0.864 0 0.000 0.136
#> SRR1562745 2 0.2471 0.717 0.000 0.864 0 0.000 0.136
#> SRR1562746 2 0.2471 0.717 0.000 0.864 0 0.000 0.136
#> SRR1562747 2 0.2471 0.717 0.000 0.864 0 0.000 0.136
#> SRR1562748 4 0.0000 0.808 0.000 0.000 0 1.000 0.000
#> SRR1562749 4 0.0000 0.808 0.000 0.000 0 1.000 0.000
#> SRR1562750 4 0.0000 0.808 0.000 0.000 0 1.000 0.000
#> SRR1562751 4 0.0000 0.808 0.000 0.000 0 1.000 0.000
#> SRR1562752 4 0.0000 0.808 0.000 0.000 0 1.000 0.000
#> SRR1562753 4 0.0000 0.808 0.000 0.000 0 1.000 0.000
#> SRR1562754 4 0.4147 0.810 0.000 0.316 0 0.676 0.008
#> SRR1562755 4 0.4147 0.810 0.000 0.316 0 0.676 0.008
#> SRR1562756 4 0.4147 0.810 0.000 0.316 0 0.676 0.008
#> SRR1562757 4 0.4147 0.810 0.000 0.316 0 0.676 0.008
#> SRR1562758 4 0.4147 0.810 0.000 0.316 0 0.676 0.008
#> SRR1562759 4 0.4147 0.810 0.000 0.316 0 0.676 0.008
#> SRR1562792 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562793 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562794 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562795 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562796 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562797 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562798 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562799 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562800 1 0.0404 0.994 0.988 0.000 0 0.000 0.012
#> SRR1562801 1 0.0404 0.994 0.988 0.000 0 0.000 0.012
#> SRR1562802 1 0.0404 0.994 0.988 0.000 0 0.000 0.012
#> SRR1562803 1 0.0404 0.994 0.988 0.000 0 0.000 0.012
#> SRR1562804 1 0.0404 0.994 0.988 0.000 0 0.000 0.012
#> SRR1562805 1 0.0404 0.994 0.988 0.000 0 0.000 0.012
#> SRR1562806 1 0.0000 0.995 1.000 0.000 0 0.000 0.000
#> SRR1562807 1 0.0000 0.995 1.000 0.000 0 0.000 0.000
#> SRR1562808 1 0.0000 0.995 1.000 0.000 0 0.000 0.000
#> SRR1562809 1 0.0000 0.995 1.000 0.000 0 0.000 0.000
#> SRR1562810 1 0.0000 0.995 1.000 0.000 0 0.000 0.000
#> SRR1562811 1 0.0000 0.995 1.000 0.000 0 0.000 0.000
#> SRR1562812 1 0.0000 0.995 1.000 0.000 0 0.000 0.000
#> SRR1562813 1 0.0000 0.995 1.000 0.000 0 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1562718 2 0.0363 0.961 0.000 0.988 0 0.000 0.000 0.012
#> SRR1562719 2 0.0363 0.961 0.000 0.988 0 0.000 0.000 0.012
#> SRR1562720 2 0.0363 0.961 0.000 0.988 0 0.000 0.000 0.012
#> SRR1562721 2 0.0363 0.961 0.000 0.988 0 0.000 0.000 0.012
#> SRR1562723 2 0.0363 0.961 0.000 0.988 0 0.000 0.000 0.012
#> SRR1562724 2 0.1007 0.966 0.000 0.956 0 0.000 0.044 0.000
#> SRR1562725 2 0.1007 0.966 0.000 0.956 0 0.000 0.044 0.000
#> SRR1562726 2 0.0937 0.967 0.000 0.960 0 0.000 0.040 0.000
#> SRR1562727 2 0.1007 0.966 0.000 0.956 0 0.000 0.044 0.000
#> SRR1562728 2 0.0937 0.967 0.000 0.960 0 0.000 0.040 0.000
#> SRR1562729 2 0.1007 0.966 0.000 0.956 0 0.000 0.044 0.000
#> SRR1562730 6 0.1387 1.000 0.000 0.068 0 0.000 0.000 0.932
#> SRR1562731 6 0.1387 1.000 0.000 0.068 0 0.000 0.000 0.932
#> SRR1562732 6 0.1387 1.000 0.000 0.068 0 0.000 0.000 0.932
#> SRR1562733 6 0.1387 1.000 0.000 0.068 0 0.000 0.000 0.932
#> SRR1562734 6 0.1387 1.000 0.000 0.068 0 0.000 0.000 0.932
#> SRR1562735 6 0.1387 1.000 0.000 0.068 0 0.000 0.000 0.932
#> SRR1562736 5 0.0790 0.844 0.000 0.032 0 0.000 0.968 0.000
#> SRR1562737 5 0.0865 0.845 0.000 0.036 0 0.000 0.964 0.000
#> SRR1562738 5 0.0865 0.845 0.000 0.036 0 0.000 0.964 0.000
#> SRR1562739 5 0.0790 0.844 0.000 0.032 0 0.000 0.968 0.000
#> SRR1562740 5 0.0790 0.844 0.000 0.032 0 0.000 0.968 0.000
#> SRR1562741 5 0.0790 0.844 0.000 0.032 0 0.000 0.968 0.000
#> SRR1562742 5 0.3023 0.851 0.000 0.232 0 0.000 0.768 0.000
#> SRR1562743 5 0.3023 0.851 0.000 0.232 0 0.000 0.768 0.000
#> SRR1562744 5 0.3050 0.848 0.000 0.236 0 0.000 0.764 0.000
#> SRR1562745 5 0.3023 0.851 0.000 0.232 0 0.000 0.768 0.000
#> SRR1562746 5 0.3050 0.848 0.000 0.236 0 0.000 0.764 0.000
#> SRR1562747 5 0.3023 0.851 0.000 0.232 0 0.000 0.768 0.000
#> SRR1562748 4 0.0000 0.758 0.000 0.000 0 1.000 0.000 0.000
#> SRR1562749 4 0.0000 0.758 0.000 0.000 0 1.000 0.000 0.000
#> SRR1562750 4 0.0000 0.758 0.000 0.000 0 1.000 0.000 0.000
#> SRR1562751 4 0.0000 0.758 0.000 0.000 0 1.000 0.000 0.000
#> SRR1562752 4 0.0000 0.758 0.000 0.000 0 1.000 0.000 0.000
#> SRR1562753 4 0.0000 0.758 0.000 0.000 0 1.000 0.000 0.000
#> SRR1562754 4 0.3862 0.722 0.000 0.004 0 0.608 0.388 0.000
#> SRR1562755 4 0.3862 0.722 0.000 0.004 0 0.608 0.388 0.000
#> SRR1562756 4 0.3862 0.722 0.000 0.004 0 0.608 0.388 0.000
#> SRR1562757 4 0.3862 0.722 0.000 0.004 0 0.608 0.388 0.000
#> SRR1562758 4 0.3862 0.722 0.000 0.004 0 0.608 0.388 0.000
#> SRR1562759 4 0.3862 0.722 0.000 0.004 0 0.608 0.388 0.000
#> SRR1562792 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562793 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562794 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562795 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562796 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562797 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562798 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562799 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562800 1 0.0972 0.974 0.964 0.000 0 0.000 0.008 0.028
#> SRR1562801 1 0.0972 0.974 0.964 0.000 0 0.000 0.008 0.028
#> SRR1562802 1 0.0972 0.974 0.964 0.000 0 0.000 0.008 0.028
#> SRR1562803 1 0.0972 0.974 0.964 0.000 0 0.000 0.008 0.028
#> SRR1562804 1 0.0972 0.974 0.964 0.000 0 0.000 0.008 0.028
#> SRR1562805 1 0.0972 0.974 0.964 0.000 0 0.000 0.008 0.028
#> SRR1562806 1 0.0937 0.964 0.960 0.000 0 0.000 0.000 0.040
#> SRR1562807 1 0.0937 0.964 0.960 0.000 0 0.000 0.000 0.040
#> SRR1562808 1 0.0937 0.964 0.960 0.000 0 0.000 0.000 0.040
#> SRR1562809 1 0.0937 0.964 0.960 0.000 0 0.000 0.000 0.040
#> SRR1562810 1 0.0000 0.975 1.000 0.000 0 0.000 0.000 0.000
#> SRR1562811 1 0.0000 0.975 1.000 0.000 0 0.000 0.000 0.000
#> SRR1562812 1 0.0000 0.975 1.000 0.000 0 0.000 0.000 0.000
#> SRR1562813 1 0.0000 0.975 1.000 0.000 0 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15301 rows and 63 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.775 0.980 0.984 0.4485 0.538 0.538
#> 3 3 1.000 0.994 0.990 0.1659 0.943 0.893
#> 4 4 0.836 0.927 0.928 0.3362 0.788 0.559
#> 5 5 0.734 0.928 0.892 0.0924 0.874 0.588
#> 6 6 0.804 0.623 0.745 0.0515 0.889 0.619
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1562718 2 0.0000 1.000 0.000 1.000
#> SRR1562719 2 0.0000 1.000 0.000 1.000
#> SRR1562720 2 0.0000 1.000 0.000 1.000
#> SRR1562721 2 0.0000 1.000 0.000 1.000
#> SRR1562723 2 0.0000 1.000 0.000 1.000
#> SRR1562724 2 0.0000 1.000 0.000 1.000
#> SRR1562725 2 0.0000 1.000 0.000 1.000
#> SRR1562726 2 0.0000 1.000 0.000 1.000
#> SRR1562727 2 0.0000 1.000 0.000 1.000
#> SRR1562728 2 0.0000 1.000 0.000 1.000
#> SRR1562729 2 0.0000 1.000 0.000 1.000
#> SRR1562730 2 0.0000 1.000 0.000 1.000
#> SRR1562731 2 0.0000 1.000 0.000 1.000
#> SRR1562732 2 0.0000 1.000 0.000 1.000
#> SRR1562733 2 0.0000 1.000 0.000 1.000
#> SRR1562734 2 0.0000 1.000 0.000 1.000
#> SRR1562735 2 0.0000 1.000 0.000 1.000
#> SRR1562736 2 0.0000 1.000 0.000 1.000
#> SRR1562737 2 0.0000 1.000 0.000 1.000
#> SRR1562738 2 0.0000 1.000 0.000 1.000
#> SRR1562739 2 0.0000 1.000 0.000 1.000
#> SRR1562740 2 0.0000 1.000 0.000 1.000
#> SRR1562741 2 0.0000 1.000 0.000 1.000
#> SRR1562742 2 0.0000 1.000 0.000 1.000
#> SRR1562743 2 0.0000 1.000 0.000 1.000
#> SRR1562744 2 0.0000 1.000 0.000 1.000
#> SRR1562745 2 0.0000 1.000 0.000 1.000
#> SRR1562746 2 0.0000 1.000 0.000 1.000
#> SRR1562747 2 0.0000 1.000 0.000 1.000
#> SRR1562748 2 0.0000 1.000 0.000 1.000
#> SRR1562749 2 0.0000 1.000 0.000 1.000
#> SRR1562750 2 0.0000 1.000 0.000 1.000
#> SRR1562751 2 0.0000 1.000 0.000 1.000
#> SRR1562752 2 0.0000 1.000 0.000 1.000
#> SRR1562753 2 0.0000 1.000 0.000 1.000
#> SRR1562754 2 0.0000 1.000 0.000 1.000
#> SRR1562755 2 0.0000 1.000 0.000 1.000
#> SRR1562756 2 0.0000 1.000 0.000 1.000
#> SRR1562757 2 0.0000 1.000 0.000 1.000
#> SRR1562758 2 0.0000 1.000 0.000 1.000
#> SRR1562759 2 0.0000 1.000 0.000 1.000
#> SRR1562792 1 0.5059 0.917 0.888 0.112
#> SRR1562793 1 0.5059 0.917 0.888 0.112
#> SRR1562794 1 0.5059 0.917 0.888 0.112
#> SRR1562795 1 0.5059 0.917 0.888 0.112
#> SRR1562796 1 0.5059 0.917 0.888 0.112
#> SRR1562797 1 0.5059 0.917 0.888 0.112
#> SRR1562798 1 0.5059 0.917 0.888 0.112
#> SRR1562799 1 0.5059 0.917 0.888 0.112
#> SRR1562800 1 0.0672 0.957 0.992 0.008
#> SRR1562801 1 0.0672 0.957 0.992 0.008
#> SRR1562802 1 0.0672 0.957 0.992 0.008
#> SRR1562803 1 0.0672 0.957 0.992 0.008
#> SRR1562804 1 0.0672 0.957 0.992 0.008
#> SRR1562805 1 0.0672 0.957 0.992 0.008
#> SRR1562806 1 0.0672 0.957 0.992 0.008
#> SRR1562807 1 0.0672 0.957 0.992 0.008
#> SRR1562808 1 0.0672 0.957 0.992 0.008
#> SRR1562809 1 0.0672 0.957 0.992 0.008
#> SRR1562810 1 0.0672 0.957 0.992 0.008
#> SRR1562811 1 0.0672 0.957 0.992 0.008
#> SRR1562812 1 0.0672 0.957 0.992 0.008
#> SRR1562813 1 0.0672 0.957 0.992 0.008
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1562718 2 0.0000 0.992 0.000 1.000 0.000
#> SRR1562719 2 0.0000 0.992 0.000 1.000 0.000
#> SRR1562720 2 0.0000 0.992 0.000 1.000 0.000
#> SRR1562721 2 0.0000 0.992 0.000 1.000 0.000
#> SRR1562723 2 0.0000 0.992 0.000 1.000 0.000
#> SRR1562724 2 0.0000 0.992 0.000 1.000 0.000
#> SRR1562725 2 0.0000 0.992 0.000 1.000 0.000
#> SRR1562726 2 0.0000 0.992 0.000 1.000 0.000
#> SRR1562727 2 0.0000 0.992 0.000 1.000 0.000
#> SRR1562728 2 0.0000 0.992 0.000 1.000 0.000
#> SRR1562729 2 0.0000 0.992 0.000 1.000 0.000
#> SRR1562730 2 0.0000 0.992 0.000 1.000 0.000
#> SRR1562731 2 0.0000 0.992 0.000 1.000 0.000
#> SRR1562732 2 0.0000 0.992 0.000 1.000 0.000
#> SRR1562733 2 0.0000 0.992 0.000 1.000 0.000
#> SRR1562734 2 0.0000 0.992 0.000 1.000 0.000
#> SRR1562735 2 0.0000 0.992 0.000 1.000 0.000
#> SRR1562736 2 0.0747 0.989 0.000 0.984 0.016
#> SRR1562737 2 0.0592 0.990 0.000 0.988 0.012
#> SRR1562738 2 0.0747 0.989 0.000 0.984 0.016
#> SRR1562739 2 0.0592 0.990 0.000 0.988 0.012
#> SRR1562740 2 0.0747 0.989 0.000 0.984 0.016
#> SRR1562741 2 0.0747 0.989 0.000 0.984 0.016
#> SRR1562742 2 0.0000 0.992 0.000 1.000 0.000
#> SRR1562743 2 0.0000 0.992 0.000 1.000 0.000
#> SRR1562744 2 0.0000 0.992 0.000 1.000 0.000
#> SRR1562745 2 0.0000 0.992 0.000 1.000 0.000
#> SRR1562746 2 0.0000 0.992 0.000 1.000 0.000
#> SRR1562747 2 0.0000 0.992 0.000 1.000 0.000
#> SRR1562748 2 0.1163 0.984 0.000 0.972 0.028
#> SRR1562749 2 0.1163 0.984 0.000 0.972 0.028
#> SRR1562750 2 0.1163 0.984 0.000 0.972 0.028
#> SRR1562751 2 0.1163 0.984 0.000 0.972 0.028
#> SRR1562752 2 0.1163 0.984 0.000 0.972 0.028
#> SRR1562753 2 0.1163 0.984 0.000 0.972 0.028
#> SRR1562754 2 0.0892 0.988 0.000 0.980 0.020
#> SRR1562755 2 0.0892 0.988 0.000 0.980 0.020
#> SRR1562756 2 0.0892 0.988 0.000 0.980 0.020
#> SRR1562757 2 0.0892 0.988 0.000 0.980 0.020
#> SRR1562758 2 0.0892 0.988 0.000 0.980 0.020
#> SRR1562759 2 0.0892 0.988 0.000 0.980 0.020
#> SRR1562792 3 0.1163 1.000 0.028 0.000 0.972
#> SRR1562793 3 0.1163 1.000 0.028 0.000 0.972
#> SRR1562794 3 0.1163 1.000 0.028 0.000 0.972
#> SRR1562795 3 0.1163 1.000 0.028 0.000 0.972
#> SRR1562796 3 0.1163 1.000 0.028 0.000 0.972
#> SRR1562797 3 0.1163 1.000 0.028 0.000 0.972
#> SRR1562798 3 0.1163 1.000 0.028 0.000 0.972
#> SRR1562799 3 0.1163 1.000 0.028 0.000 0.972
#> SRR1562800 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562801 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562802 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562803 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562804 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562805 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562806 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562807 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562808 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562809 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562810 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562811 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562812 1 0.0000 1.000 1.000 0.000 0.000
#> SRR1562813 1 0.0000 1.000 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1562718 2 0.0000 0.988 0.000 1.000 0.000 0.000
#> SRR1562719 2 0.0000 0.988 0.000 1.000 0.000 0.000
#> SRR1562720 2 0.0188 0.988 0.000 0.996 0.004 0.000
#> SRR1562721 2 0.0000 0.988 0.000 1.000 0.000 0.000
#> SRR1562723 2 0.0000 0.988 0.000 1.000 0.000 0.000
#> SRR1562724 2 0.0188 0.988 0.000 0.996 0.004 0.000
#> SRR1562725 2 0.0188 0.988 0.000 0.996 0.004 0.000
#> SRR1562726 2 0.0000 0.988 0.000 1.000 0.000 0.000
#> SRR1562727 2 0.0188 0.988 0.000 0.996 0.004 0.000
#> SRR1562728 2 0.0188 0.988 0.000 0.996 0.004 0.000
#> SRR1562729 2 0.0000 0.988 0.000 1.000 0.000 0.000
#> SRR1562730 2 0.0188 0.988 0.000 0.996 0.004 0.000
#> SRR1562731 2 0.0188 0.988 0.000 0.996 0.004 0.000
#> SRR1562732 2 0.0188 0.988 0.000 0.996 0.004 0.000
#> SRR1562733 2 0.0188 0.988 0.000 0.996 0.004 0.000
#> SRR1562734 2 0.0188 0.988 0.000 0.996 0.004 0.000
#> SRR1562735 2 0.0188 0.988 0.000 0.996 0.004 0.000
#> SRR1562736 4 0.4713 0.714 0.000 0.360 0.000 0.640
#> SRR1562737 4 0.4643 0.740 0.000 0.344 0.000 0.656
#> SRR1562738 4 0.4907 0.609 0.000 0.420 0.000 0.580
#> SRR1562739 4 0.4877 0.642 0.000 0.408 0.000 0.592
#> SRR1562740 4 0.4661 0.733 0.000 0.348 0.000 0.652
#> SRR1562741 4 0.4679 0.726 0.000 0.352 0.000 0.648
#> SRR1562742 2 0.0817 0.971 0.000 0.976 0.000 0.024
#> SRR1562743 2 0.0921 0.967 0.000 0.972 0.000 0.028
#> SRR1562744 2 0.0817 0.971 0.000 0.976 0.000 0.024
#> SRR1562745 2 0.0921 0.967 0.000 0.972 0.000 0.028
#> SRR1562746 2 0.0921 0.967 0.000 0.972 0.000 0.028
#> SRR1562747 2 0.0817 0.971 0.000 0.976 0.000 0.024
#> SRR1562748 4 0.2266 0.806 0.000 0.084 0.004 0.912
#> SRR1562749 4 0.2266 0.806 0.000 0.084 0.004 0.912
#> SRR1562750 4 0.2266 0.806 0.000 0.084 0.004 0.912
#> SRR1562751 4 0.2266 0.806 0.000 0.084 0.004 0.912
#> SRR1562752 4 0.2266 0.806 0.000 0.084 0.004 0.912
#> SRR1562753 4 0.2266 0.806 0.000 0.084 0.004 0.912
#> SRR1562754 4 0.3837 0.834 0.000 0.224 0.000 0.776
#> SRR1562755 4 0.3873 0.833 0.000 0.228 0.000 0.772
#> SRR1562756 4 0.3837 0.834 0.000 0.224 0.000 0.776
#> SRR1562757 4 0.3764 0.835 0.000 0.216 0.000 0.784
#> SRR1562758 4 0.3837 0.834 0.000 0.224 0.000 0.776
#> SRR1562759 4 0.3873 0.833 0.000 0.228 0.000 0.772
#> SRR1562792 3 0.0336 1.000 0.008 0.000 0.992 0.000
#> SRR1562793 3 0.0336 1.000 0.008 0.000 0.992 0.000
#> SRR1562794 3 0.0336 1.000 0.008 0.000 0.992 0.000
#> SRR1562795 3 0.0336 1.000 0.008 0.000 0.992 0.000
#> SRR1562796 3 0.0336 1.000 0.008 0.000 0.992 0.000
#> SRR1562797 3 0.0336 1.000 0.008 0.000 0.992 0.000
#> SRR1562798 3 0.0336 1.000 0.008 0.000 0.992 0.000
#> SRR1562799 3 0.0336 1.000 0.008 0.000 0.992 0.000
#> SRR1562800 1 0.1022 0.984 0.968 0.000 0.000 0.032
#> SRR1562801 1 0.1022 0.984 0.968 0.000 0.000 0.032
#> SRR1562802 1 0.1022 0.984 0.968 0.000 0.000 0.032
#> SRR1562803 1 0.1022 0.984 0.968 0.000 0.000 0.032
#> SRR1562804 1 0.1022 0.984 0.968 0.000 0.000 0.032
#> SRR1562805 1 0.1022 0.984 0.968 0.000 0.000 0.032
#> SRR1562806 1 0.0000 0.988 1.000 0.000 0.000 0.000
#> SRR1562807 1 0.0000 0.988 1.000 0.000 0.000 0.000
#> SRR1562808 1 0.0000 0.988 1.000 0.000 0.000 0.000
#> SRR1562809 1 0.0000 0.988 1.000 0.000 0.000 0.000
#> SRR1562810 1 0.0000 0.988 1.000 0.000 0.000 0.000
#> SRR1562811 1 0.0000 0.988 1.000 0.000 0.000 0.000
#> SRR1562812 1 0.0000 0.988 1.000 0.000 0.000 0.000
#> SRR1562813 1 0.0000 0.988 1.000 0.000 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1562718 2 0.2929 0.876 0.000 0.820 0.000 0.000 0.180
#> SRR1562719 2 0.2732 0.897 0.000 0.840 0.000 0.000 0.160
#> SRR1562720 2 0.2424 0.915 0.000 0.868 0.000 0.000 0.132
#> SRR1562721 2 0.2471 0.914 0.000 0.864 0.000 0.000 0.136
#> SRR1562723 2 0.2561 0.910 0.000 0.856 0.000 0.000 0.144
#> SRR1562724 2 0.2471 0.917 0.000 0.864 0.000 0.000 0.136
#> SRR1562725 2 0.2471 0.917 0.000 0.864 0.000 0.000 0.136
#> SRR1562726 2 0.2648 0.910 0.000 0.848 0.000 0.000 0.152
#> SRR1562727 2 0.2424 0.917 0.000 0.868 0.000 0.000 0.132
#> SRR1562728 2 0.2516 0.916 0.000 0.860 0.000 0.000 0.140
#> SRR1562729 2 0.3048 0.887 0.000 0.820 0.000 0.004 0.176
#> SRR1562730 2 0.0000 0.882 0.000 1.000 0.000 0.000 0.000
#> SRR1562731 2 0.0000 0.882 0.000 1.000 0.000 0.000 0.000
#> SRR1562732 2 0.0000 0.882 0.000 1.000 0.000 0.000 0.000
#> SRR1562733 2 0.0000 0.882 0.000 1.000 0.000 0.000 0.000
#> SRR1562734 2 0.0000 0.882 0.000 1.000 0.000 0.000 0.000
#> SRR1562735 2 0.0000 0.882 0.000 1.000 0.000 0.000 0.000
#> SRR1562736 5 0.2054 0.891 0.000 0.052 0.000 0.028 0.920
#> SRR1562737 5 0.1792 0.911 0.000 0.084 0.000 0.000 0.916
#> SRR1562738 5 0.2193 0.894 0.000 0.060 0.000 0.028 0.912
#> SRR1562739 5 0.1892 0.909 0.000 0.080 0.000 0.004 0.916
#> SRR1562740 5 0.1830 0.907 0.000 0.068 0.000 0.008 0.924
#> SRR1562741 5 0.2124 0.892 0.000 0.056 0.000 0.028 0.916
#> SRR1562742 5 0.3171 0.885 0.000 0.176 0.000 0.008 0.816
#> SRR1562743 5 0.3171 0.885 0.000 0.176 0.000 0.008 0.816
#> SRR1562744 5 0.3171 0.885 0.000 0.176 0.000 0.008 0.816
#> SRR1562745 5 0.3171 0.885 0.000 0.176 0.000 0.008 0.816
#> SRR1562746 5 0.3171 0.885 0.000 0.176 0.000 0.008 0.816
#> SRR1562747 5 0.3171 0.885 0.000 0.176 0.000 0.008 0.816
#> SRR1562748 4 0.2773 1.000 0.000 0.000 0.000 0.836 0.164
#> SRR1562749 4 0.2773 1.000 0.000 0.000 0.000 0.836 0.164
#> SRR1562750 4 0.2773 1.000 0.000 0.000 0.000 0.836 0.164
#> SRR1562751 4 0.2773 1.000 0.000 0.000 0.000 0.836 0.164
#> SRR1562752 4 0.2773 1.000 0.000 0.000 0.000 0.836 0.164
#> SRR1562753 4 0.2773 1.000 0.000 0.000 0.000 0.836 0.164
#> SRR1562754 5 0.2712 0.906 0.000 0.088 0.000 0.032 0.880
#> SRR1562755 5 0.2712 0.906 0.000 0.088 0.000 0.032 0.880
#> SRR1562756 5 0.2712 0.906 0.000 0.088 0.000 0.032 0.880
#> SRR1562757 5 0.2712 0.906 0.000 0.088 0.000 0.032 0.880
#> SRR1562758 5 0.2712 0.906 0.000 0.088 0.000 0.032 0.880
#> SRR1562759 5 0.2769 0.908 0.000 0.092 0.000 0.032 0.876
#> SRR1562792 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> SRR1562793 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> SRR1562794 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> SRR1562795 3 0.0000 0.998 0.000 0.000 1.000 0.000 0.000
#> SRR1562796 3 0.0162 0.998 0.000 0.000 0.996 0.004 0.000
#> SRR1562797 3 0.0162 0.998 0.000 0.000 0.996 0.004 0.000
#> SRR1562798 3 0.0162 0.998 0.000 0.000 0.996 0.004 0.000
#> SRR1562799 3 0.0162 0.998 0.000 0.000 0.996 0.004 0.000
#> SRR1562800 1 0.3216 0.918 0.848 0.000 0.000 0.108 0.044
#> SRR1562801 1 0.3216 0.918 0.848 0.000 0.000 0.108 0.044
#> SRR1562802 1 0.3112 0.920 0.856 0.000 0.000 0.100 0.044
#> SRR1562803 1 0.3112 0.920 0.856 0.000 0.000 0.100 0.044
#> SRR1562804 1 0.3216 0.918 0.848 0.000 0.000 0.108 0.044
#> SRR1562805 1 0.3216 0.918 0.848 0.000 0.000 0.108 0.044
#> SRR1562806 1 0.0000 0.941 1.000 0.000 0.000 0.000 0.000
#> SRR1562807 1 0.0000 0.941 1.000 0.000 0.000 0.000 0.000
#> SRR1562808 1 0.0000 0.941 1.000 0.000 0.000 0.000 0.000
#> SRR1562809 1 0.0000 0.941 1.000 0.000 0.000 0.000 0.000
#> SRR1562810 1 0.0000 0.941 1.000 0.000 0.000 0.000 0.000
#> SRR1562811 1 0.0000 0.941 1.000 0.000 0.000 0.000 0.000
#> SRR1562812 1 0.0000 0.941 1.000 0.000 0.000 0.000 0.000
#> SRR1562813 1 0.0000 0.941 1.000 0.000 0.000 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1562718 5 0.4331 -0.3479 0.000 0.464 0.000 0.000 0.516 0.020
#> SRR1562719 5 0.4310 -0.2954 0.000 0.440 0.000 0.000 0.540 0.020
#> SRR1562720 2 0.4331 0.3661 0.000 0.516 0.000 0.000 0.464 0.020
#> SRR1562721 2 0.4318 0.3877 0.000 0.532 0.000 0.000 0.448 0.020
#> SRR1562723 2 0.4337 0.3356 0.000 0.500 0.000 0.000 0.480 0.020
#> SRR1562724 5 0.4301 -0.1861 0.000 0.400 0.000 0.004 0.580 0.016
#> SRR1562725 5 0.4284 -0.1674 0.000 0.392 0.000 0.004 0.588 0.016
#> SRR1562726 5 0.4099 -0.1184 0.000 0.372 0.000 0.000 0.612 0.016
#> SRR1562727 5 0.4378 -0.1587 0.000 0.388 0.000 0.008 0.588 0.016
#> SRR1562728 5 0.4368 -0.1520 0.000 0.384 0.000 0.008 0.592 0.016
#> SRR1562729 5 0.4266 -0.0793 0.000 0.348 0.000 0.008 0.628 0.016
#> SRR1562730 2 0.0713 0.7794 0.000 0.972 0.000 0.000 0.028 0.000
#> SRR1562731 2 0.0713 0.7794 0.000 0.972 0.000 0.000 0.028 0.000
#> SRR1562732 2 0.0713 0.7794 0.000 0.972 0.000 0.000 0.028 0.000
#> SRR1562733 2 0.0713 0.7794 0.000 0.972 0.000 0.000 0.028 0.000
#> SRR1562734 2 0.0713 0.7794 0.000 0.972 0.000 0.000 0.028 0.000
#> SRR1562735 2 0.0713 0.7794 0.000 0.972 0.000 0.000 0.028 0.000
#> SRR1562736 5 0.1151 0.4830 0.000 0.000 0.000 0.032 0.956 0.012
#> SRR1562737 5 0.1074 0.4841 0.000 0.000 0.000 0.028 0.960 0.012
#> SRR1562738 5 0.1196 0.4784 0.000 0.000 0.000 0.040 0.952 0.008
#> SRR1562739 5 0.0777 0.4837 0.000 0.000 0.000 0.024 0.972 0.004
#> SRR1562740 5 0.0858 0.4830 0.000 0.000 0.000 0.028 0.968 0.004
#> SRR1562741 5 0.0937 0.4779 0.000 0.000 0.000 0.040 0.960 0.000
#> SRR1562742 5 0.4076 0.5462 0.000 0.012 0.000 0.000 0.592 0.396
#> SRR1562743 5 0.4101 0.5441 0.000 0.012 0.000 0.000 0.580 0.408
#> SRR1562744 5 0.4084 0.5456 0.000 0.012 0.000 0.000 0.588 0.400
#> SRR1562745 5 0.4066 0.5464 0.000 0.012 0.000 0.000 0.596 0.392
#> SRR1562746 5 0.4084 0.5456 0.000 0.012 0.000 0.000 0.588 0.400
#> SRR1562747 5 0.4076 0.5463 0.000 0.012 0.000 0.000 0.592 0.396
#> SRR1562748 4 0.0458 1.0000 0.000 0.000 0.000 0.984 0.016 0.000
#> SRR1562749 4 0.0458 1.0000 0.000 0.000 0.000 0.984 0.016 0.000
#> SRR1562750 4 0.0458 1.0000 0.000 0.000 0.000 0.984 0.016 0.000
#> SRR1562751 4 0.0458 1.0000 0.000 0.000 0.000 0.984 0.016 0.000
#> SRR1562752 4 0.0458 1.0000 0.000 0.000 0.000 0.984 0.016 0.000
#> SRR1562753 4 0.0458 1.0000 0.000 0.000 0.000 0.984 0.016 0.000
#> SRR1562754 5 0.4780 0.5097 0.000 0.004 0.000 0.040 0.484 0.472
#> SRR1562755 5 0.4780 0.5097 0.000 0.004 0.000 0.040 0.484 0.472
#> SRR1562756 5 0.4779 0.5103 0.000 0.004 0.000 0.040 0.488 0.468
#> SRR1562757 5 0.4780 0.5097 0.000 0.004 0.000 0.040 0.484 0.472
#> SRR1562758 5 0.4780 0.5097 0.000 0.004 0.000 0.040 0.484 0.472
#> SRR1562759 5 0.4722 0.5133 0.000 0.004 0.000 0.036 0.492 0.468
#> SRR1562792 3 0.0146 0.9983 0.000 0.004 0.996 0.000 0.000 0.000
#> SRR1562793 3 0.0146 0.9983 0.000 0.004 0.996 0.000 0.000 0.000
#> SRR1562794 3 0.0146 0.9983 0.000 0.004 0.996 0.000 0.000 0.000
#> SRR1562795 3 0.0146 0.9983 0.000 0.004 0.996 0.000 0.000 0.000
#> SRR1562796 3 0.0000 0.9983 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1562797 3 0.0000 0.9983 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1562798 3 0.0000 0.9983 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1562799 3 0.0000 0.9983 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1562800 1 0.3499 0.8132 0.680 0.000 0.000 0.000 0.000 0.320
#> SRR1562801 1 0.3499 0.8132 0.680 0.000 0.000 0.000 0.000 0.320
#> SRR1562802 1 0.3499 0.8132 0.680 0.000 0.000 0.000 0.000 0.320
#> SRR1562803 1 0.3499 0.8132 0.680 0.000 0.000 0.000 0.000 0.320
#> SRR1562804 1 0.3499 0.8132 0.680 0.000 0.000 0.000 0.000 0.320
#> SRR1562805 1 0.3499 0.8132 0.680 0.000 0.000 0.000 0.000 0.320
#> SRR1562806 1 0.0551 0.8593 0.984 0.004 0.000 0.004 0.000 0.008
#> SRR1562807 1 0.0551 0.8593 0.984 0.004 0.000 0.004 0.000 0.008
#> SRR1562808 1 0.0653 0.8581 0.980 0.004 0.000 0.004 0.000 0.012
#> SRR1562809 1 0.0551 0.8593 0.984 0.004 0.000 0.004 0.000 0.008
#> SRR1562810 1 0.0146 0.8604 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1562811 1 0.0146 0.8604 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1562812 1 0.0146 0.8604 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1562813 1 0.0146 0.8604 0.996 0.000 0.000 0.000 0.000 0.004
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15301 rows and 63 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 4.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.4624 0.538 0.538
#> 3 3 1.000 1.000 1.000 0.1239 0.943 0.893
#> 4 4 1.000 0.996 0.997 0.3434 0.822 0.629
#> 5 5 0.837 0.842 0.865 0.0881 1.000 1.000
#> 6 6 0.856 0.930 0.901 0.0744 0.871 0.574
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3
There is also optional best \(k\) = 2 3 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1562718 2 0 1 0 1
#> SRR1562719 2 0 1 0 1
#> SRR1562720 2 0 1 0 1
#> SRR1562721 2 0 1 0 1
#> SRR1562723 2 0 1 0 1
#> SRR1562724 2 0 1 0 1
#> SRR1562725 2 0 1 0 1
#> SRR1562726 2 0 1 0 1
#> SRR1562727 2 0 1 0 1
#> SRR1562728 2 0 1 0 1
#> SRR1562729 2 0 1 0 1
#> SRR1562730 2 0 1 0 1
#> SRR1562731 2 0 1 0 1
#> SRR1562732 2 0 1 0 1
#> SRR1562733 2 0 1 0 1
#> SRR1562734 2 0 1 0 1
#> SRR1562735 2 0 1 0 1
#> SRR1562736 2 0 1 0 1
#> SRR1562737 2 0 1 0 1
#> SRR1562738 2 0 1 0 1
#> SRR1562739 2 0 1 0 1
#> SRR1562740 2 0 1 0 1
#> SRR1562741 2 0 1 0 1
#> SRR1562742 2 0 1 0 1
#> SRR1562743 2 0 1 0 1
#> SRR1562744 2 0 1 0 1
#> SRR1562745 2 0 1 0 1
#> SRR1562746 2 0 1 0 1
#> SRR1562747 2 0 1 0 1
#> SRR1562748 2 0 1 0 1
#> SRR1562749 2 0 1 0 1
#> SRR1562750 2 0 1 0 1
#> SRR1562751 2 0 1 0 1
#> SRR1562752 2 0 1 0 1
#> SRR1562753 2 0 1 0 1
#> SRR1562754 2 0 1 0 1
#> SRR1562755 2 0 1 0 1
#> SRR1562756 2 0 1 0 1
#> SRR1562757 2 0 1 0 1
#> SRR1562758 2 0 1 0 1
#> SRR1562759 2 0 1 0 1
#> SRR1562792 1 0 1 1 0
#> SRR1562793 1 0 1 1 0
#> SRR1562794 1 0 1 1 0
#> SRR1562795 1 0 1 1 0
#> SRR1562796 1 0 1 1 0
#> SRR1562797 1 0 1 1 0
#> SRR1562798 1 0 1 1 0
#> SRR1562799 1 0 1 1 0
#> SRR1562800 1 0 1 1 0
#> SRR1562801 1 0 1 1 0
#> SRR1562802 1 0 1 1 0
#> SRR1562803 1 0 1 1 0
#> SRR1562804 1 0 1 1 0
#> SRR1562805 1 0 1 1 0
#> SRR1562806 1 0 1 1 0
#> SRR1562807 1 0 1 1 0
#> SRR1562808 1 0 1 1 0
#> SRR1562809 1 0 1 1 0
#> SRR1562810 1 0 1 1 0
#> SRR1562811 1 0 1 1 0
#> SRR1562812 1 0 1 1 0
#> SRR1562813 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1562718 2 0 1 0 1 0
#> SRR1562719 2 0 1 0 1 0
#> SRR1562720 2 0 1 0 1 0
#> SRR1562721 2 0 1 0 1 0
#> SRR1562723 2 0 1 0 1 0
#> SRR1562724 2 0 1 0 1 0
#> SRR1562725 2 0 1 0 1 0
#> SRR1562726 2 0 1 0 1 0
#> SRR1562727 2 0 1 0 1 0
#> SRR1562728 2 0 1 0 1 0
#> SRR1562729 2 0 1 0 1 0
#> SRR1562730 2 0 1 0 1 0
#> SRR1562731 2 0 1 0 1 0
#> SRR1562732 2 0 1 0 1 0
#> SRR1562733 2 0 1 0 1 0
#> SRR1562734 2 0 1 0 1 0
#> SRR1562735 2 0 1 0 1 0
#> SRR1562736 2 0 1 0 1 0
#> SRR1562737 2 0 1 0 1 0
#> SRR1562738 2 0 1 0 1 0
#> SRR1562739 2 0 1 0 1 0
#> SRR1562740 2 0 1 0 1 0
#> SRR1562741 2 0 1 0 1 0
#> SRR1562742 2 0 1 0 1 0
#> SRR1562743 2 0 1 0 1 0
#> SRR1562744 2 0 1 0 1 0
#> SRR1562745 2 0 1 0 1 0
#> SRR1562746 2 0 1 0 1 0
#> SRR1562747 2 0 1 0 1 0
#> SRR1562748 2 0 1 0 1 0
#> SRR1562749 2 0 1 0 1 0
#> SRR1562750 2 0 1 0 1 0
#> SRR1562751 2 0 1 0 1 0
#> SRR1562752 2 0 1 0 1 0
#> SRR1562753 2 0 1 0 1 0
#> SRR1562754 2 0 1 0 1 0
#> SRR1562755 2 0 1 0 1 0
#> SRR1562756 2 0 1 0 1 0
#> SRR1562757 2 0 1 0 1 0
#> SRR1562758 2 0 1 0 1 0
#> SRR1562759 2 0 1 0 1 0
#> SRR1562792 3 0 1 0 0 1
#> SRR1562793 3 0 1 0 0 1
#> SRR1562794 3 0 1 0 0 1
#> SRR1562795 3 0 1 0 0 1
#> SRR1562796 3 0 1 0 0 1
#> SRR1562797 3 0 1 0 0 1
#> SRR1562798 3 0 1 0 0 1
#> SRR1562799 3 0 1 0 0 1
#> SRR1562800 1 0 1 1 0 0
#> SRR1562801 1 0 1 1 0 0
#> SRR1562802 1 0 1 1 0 0
#> SRR1562803 1 0 1 1 0 0
#> SRR1562804 1 0 1 1 0 0
#> SRR1562805 1 0 1 1 0 0
#> SRR1562806 1 0 1 1 0 0
#> SRR1562807 1 0 1 1 0 0
#> SRR1562808 1 0 1 1 0 0
#> SRR1562809 1 0 1 1 0 0
#> SRR1562810 1 0 1 1 0 0
#> SRR1562811 1 0 1 1 0 0
#> SRR1562812 1 0 1 1 0 0
#> SRR1562813 1 0 1 1 0 0
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1562718 2 0.0000 0.993 0 1.000 0 0.000
#> SRR1562719 2 0.0000 0.993 0 1.000 0 0.000
#> SRR1562720 2 0.0000 0.993 0 1.000 0 0.000
#> SRR1562721 2 0.0000 0.993 0 1.000 0 0.000
#> SRR1562723 2 0.0000 0.993 0 1.000 0 0.000
#> SRR1562724 2 0.0000 0.993 0 1.000 0 0.000
#> SRR1562725 2 0.0000 0.993 0 1.000 0 0.000
#> SRR1562726 2 0.0000 0.993 0 1.000 0 0.000
#> SRR1562727 2 0.0000 0.993 0 1.000 0 0.000
#> SRR1562728 2 0.0000 0.993 0 1.000 0 0.000
#> SRR1562729 2 0.0000 0.993 0 1.000 0 0.000
#> SRR1562730 2 0.0000 0.993 0 1.000 0 0.000
#> SRR1562731 2 0.0000 0.993 0 1.000 0 0.000
#> SRR1562732 2 0.0000 0.993 0 1.000 0 0.000
#> SRR1562733 2 0.0000 0.993 0 1.000 0 0.000
#> SRR1562734 2 0.0000 0.993 0 1.000 0 0.000
#> SRR1562735 2 0.0000 0.993 0 1.000 0 0.000
#> SRR1562736 2 0.0592 0.990 0 0.984 0 0.016
#> SRR1562737 2 0.0592 0.990 0 0.984 0 0.016
#> SRR1562738 2 0.0592 0.990 0 0.984 0 0.016
#> SRR1562739 2 0.0592 0.990 0 0.984 0 0.016
#> SRR1562740 2 0.0592 0.990 0 0.984 0 0.016
#> SRR1562741 2 0.0592 0.990 0 0.984 0 0.016
#> SRR1562742 2 0.0592 0.990 0 0.984 0 0.016
#> SRR1562743 2 0.0592 0.990 0 0.984 0 0.016
#> SRR1562744 2 0.0592 0.990 0 0.984 0 0.016
#> SRR1562745 2 0.0592 0.990 0 0.984 0 0.016
#> SRR1562746 2 0.0592 0.990 0 0.984 0 0.016
#> SRR1562747 2 0.0592 0.990 0 0.984 0 0.016
#> SRR1562748 4 0.0000 1.000 0 0.000 0 1.000
#> SRR1562749 4 0.0000 1.000 0 0.000 0 1.000
#> SRR1562750 4 0.0000 1.000 0 0.000 0 1.000
#> SRR1562751 4 0.0000 1.000 0 0.000 0 1.000
#> SRR1562752 4 0.0000 1.000 0 0.000 0 1.000
#> SRR1562753 4 0.0000 1.000 0 0.000 0 1.000
#> SRR1562754 4 0.0000 1.000 0 0.000 0 1.000
#> SRR1562755 4 0.0000 1.000 0 0.000 0 1.000
#> SRR1562756 4 0.0000 1.000 0 0.000 0 1.000
#> SRR1562757 4 0.0000 1.000 0 0.000 0 1.000
#> SRR1562758 4 0.0000 1.000 0 0.000 0 1.000
#> SRR1562759 4 0.0000 1.000 0 0.000 0 1.000
#> SRR1562792 3 0.0000 1.000 0 0.000 1 0.000
#> SRR1562793 3 0.0000 1.000 0 0.000 1 0.000
#> SRR1562794 3 0.0000 1.000 0 0.000 1 0.000
#> SRR1562795 3 0.0000 1.000 0 0.000 1 0.000
#> SRR1562796 3 0.0000 1.000 0 0.000 1 0.000
#> SRR1562797 3 0.0000 1.000 0 0.000 1 0.000
#> SRR1562798 3 0.0000 1.000 0 0.000 1 0.000
#> SRR1562799 3 0.0000 1.000 0 0.000 1 0.000
#> SRR1562800 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562801 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562802 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562803 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562804 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562805 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562806 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562807 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562808 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562809 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562810 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562811 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562812 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562813 1 0.0000 1.000 1 0.000 0 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1562718 2 0.000 0.803 0.0 1.0 0 0.000 0.000
#> SRR1562719 2 0.000 0.803 0.0 1.0 0 0.000 0.000
#> SRR1562720 2 0.000 0.803 0.0 1.0 0 0.000 0.000
#> SRR1562721 2 0.000 0.803 0.0 1.0 0 0.000 0.000
#> SRR1562723 2 0.000 0.803 0.0 1.0 0 0.000 0.000
#> SRR1562724 2 0.000 0.803 0.0 1.0 0 0.000 0.000
#> SRR1562725 2 0.000 0.803 0.0 1.0 0 0.000 0.000
#> SRR1562726 2 0.000 0.803 0.0 1.0 0 0.000 0.000
#> SRR1562727 2 0.000 0.803 0.0 1.0 0 0.000 0.000
#> SRR1562728 2 0.000 0.803 0.0 1.0 0 0.000 0.000
#> SRR1562729 2 0.000 0.803 0.0 1.0 0 0.000 0.000
#> SRR1562730 2 0.380 0.626 0.0 0.7 0 0.000 0.300
#> SRR1562731 2 0.380 0.626 0.0 0.7 0 0.000 0.300
#> SRR1562732 2 0.380 0.626 0.0 0.7 0 0.000 0.300
#> SRR1562733 2 0.380 0.626 0.0 0.7 0 0.000 0.300
#> SRR1562734 2 0.380 0.626 0.0 0.7 0 0.000 0.300
#> SRR1562735 2 0.380 0.626 0.0 0.7 0 0.000 0.300
#> SRR1562736 2 0.380 0.770 0.0 0.7 0 0.000 0.300
#> SRR1562737 2 0.380 0.770 0.0 0.7 0 0.000 0.300
#> SRR1562738 2 0.380 0.770 0.0 0.7 0 0.000 0.300
#> SRR1562739 2 0.380 0.770 0.0 0.7 0 0.000 0.300
#> SRR1562740 2 0.380 0.770 0.0 0.7 0 0.000 0.300
#> SRR1562741 2 0.380 0.770 0.0 0.7 0 0.000 0.300
#> SRR1562742 2 0.380 0.770 0.0 0.7 0 0.000 0.300
#> SRR1562743 2 0.380 0.770 0.0 0.7 0 0.000 0.300
#> SRR1562744 2 0.380 0.770 0.0 0.7 0 0.000 0.300
#> SRR1562745 2 0.380 0.770 0.0 0.7 0 0.000 0.300
#> SRR1562746 2 0.380 0.770 0.0 0.7 0 0.000 0.300
#> SRR1562747 2 0.380 0.770 0.0 0.7 0 0.000 0.300
#> SRR1562748 4 0.000 0.990 0.0 0.0 0 1.000 0.000
#> SRR1562749 4 0.000 0.990 0.0 0.0 0 1.000 0.000
#> SRR1562750 4 0.000 0.990 0.0 0.0 0 1.000 0.000
#> SRR1562751 4 0.000 0.990 0.0 0.0 0 1.000 0.000
#> SRR1562752 4 0.000 0.990 0.0 0.0 0 1.000 0.000
#> SRR1562753 4 0.000 0.990 0.0 0.0 0 1.000 0.000
#> SRR1562754 4 0.051 0.990 0.0 0.0 0 0.984 0.016
#> SRR1562755 4 0.051 0.990 0.0 0.0 0 0.984 0.016
#> SRR1562756 4 0.051 0.990 0.0 0.0 0 0.984 0.016
#> SRR1562757 4 0.051 0.990 0.0 0.0 0 0.984 0.016
#> SRR1562758 4 0.051 0.990 0.0 0.0 0 0.984 0.016
#> SRR1562759 4 0.051 0.990 0.0 0.0 0 0.984 0.016
#> SRR1562792 3 0.000 1.000 0.0 0.0 1 0.000 0.000
#> SRR1562793 3 0.000 1.000 0.0 0.0 1 0.000 0.000
#> SRR1562794 3 0.000 1.000 0.0 0.0 1 0.000 0.000
#> SRR1562795 3 0.000 1.000 0.0 0.0 1 0.000 0.000
#> SRR1562796 3 0.000 1.000 0.0 0.0 1 0.000 0.000
#> SRR1562797 3 0.000 1.000 0.0 0.0 1 0.000 0.000
#> SRR1562798 3 0.000 1.000 0.0 0.0 1 0.000 0.000
#> SRR1562799 3 0.000 1.000 0.0 0.0 1 0.000 0.000
#> SRR1562800 1 0.000 0.776 1.0 0.0 0 0.000 0.000
#> SRR1562801 1 0.000 0.776 1.0 0.0 0 0.000 0.000
#> SRR1562802 1 0.000 0.776 1.0 0.0 0 0.000 0.000
#> SRR1562803 1 0.000 0.776 1.0 0.0 0 0.000 0.000
#> SRR1562804 1 0.000 0.776 1.0 0.0 0 0.000 0.000
#> SRR1562805 1 0.000 0.776 1.0 0.0 0 0.000 0.000
#> SRR1562806 1 0.418 0.838 0.6 0.0 0 0.000 0.400
#> SRR1562807 1 0.418 0.838 0.6 0.0 0 0.000 0.400
#> SRR1562808 1 0.418 0.838 0.6 0.0 0 0.000 0.400
#> SRR1562809 1 0.418 0.838 0.6 0.0 0 0.000 0.400
#> SRR1562810 1 0.418 0.838 0.6 0.0 0 0.000 0.400
#> SRR1562811 1 0.418 0.838 0.6 0.0 0 0.000 0.400
#> SRR1562812 1 0.418 0.838 0.6 0.0 0 0.000 0.400
#> SRR1562813 1 0.418 0.838 0.6 0.0 0 0.000 0.400
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1562718 2 0.3330 0.838 0.000 0.716 0 0.000 0.284 0.000
#> SRR1562719 2 0.3330 0.838 0.000 0.716 0 0.000 0.284 0.000
#> SRR1562720 2 0.3330 0.838 0.000 0.716 0 0.000 0.284 0.000
#> SRR1562721 2 0.3330 0.838 0.000 0.716 0 0.000 0.284 0.000
#> SRR1562723 2 0.3330 0.838 0.000 0.716 0 0.000 0.284 0.000
#> SRR1562724 2 0.3330 0.838 0.000 0.716 0 0.000 0.284 0.000
#> SRR1562725 2 0.3330 0.838 0.000 0.716 0 0.000 0.284 0.000
#> SRR1562726 2 0.3330 0.838 0.000 0.716 0 0.000 0.284 0.000
#> SRR1562727 2 0.3330 0.838 0.000 0.716 0 0.000 0.284 0.000
#> SRR1562728 2 0.3330 0.838 0.000 0.716 0 0.000 0.284 0.000
#> SRR1562729 2 0.3330 0.838 0.000 0.716 0 0.000 0.284 0.000
#> SRR1562730 2 0.0865 0.729 0.000 0.964 0 0.000 0.000 0.036
#> SRR1562731 2 0.0865 0.729 0.000 0.964 0 0.000 0.000 0.036
#> SRR1562732 2 0.0865 0.729 0.000 0.964 0 0.000 0.000 0.036
#> SRR1562733 2 0.0865 0.729 0.000 0.964 0 0.000 0.000 0.036
#> SRR1562734 2 0.0865 0.729 0.000 0.964 0 0.000 0.000 0.036
#> SRR1562735 2 0.0865 0.729 0.000 0.964 0 0.000 0.000 0.036
#> SRR1562736 5 0.0000 1.000 0.000 0.000 0 0.000 1.000 0.000
#> SRR1562737 5 0.0000 1.000 0.000 0.000 0 0.000 1.000 0.000
#> SRR1562738 5 0.0000 1.000 0.000 0.000 0 0.000 1.000 0.000
#> SRR1562739 5 0.0000 1.000 0.000 0.000 0 0.000 1.000 0.000
#> SRR1562740 5 0.0000 1.000 0.000 0.000 0 0.000 1.000 0.000
#> SRR1562741 5 0.0000 1.000 0.000 0.000 0 0.000 1.000 0.000
#> SRR1562742 5 0.0000 1.000 0.000 0.000 0 0.000 1.000 0.000
#> SRR1562743 5 0.0000 1.000 0.000 0.000 0 0.000 1.000 0.000
#> SRR1562744 5 0.0000 1.000 0.000 0.000 0 0.000 1.000 0.000
#> SRR1562745 5 0.0000 1.000 0.000 0.000 0 0.000 1.000 0.000
#> SRR1562746 5 0.0000 1.000 0.000 0.000 0 0.000 1.000 0.000
#> SRR1562747 5 0.0000 1.000 0.000 0.000 0 0.000 1.000 0.000
#> SRR1562748 4 0.2527 0.918 0.000 0.000 0 0.832 0.000 0.168
#> SRR1562749 4 0.2527 0.918 0.000 0.000 0 0.832 0.000 0.168
#> SRR1562750 4 0.2527 0.918 0.000 0.000 0 0.832 0.000 0.168
#> SRR1562751 4 0.2527 0.918 0.000 0.000 0 0.832 0.000 0.168
#> SRR1562752 4 0.2527 0.918 0.000 0.000 0 0.832 0.000 0.168
#> SRR1562753 4 0.2527 0.918 0.000 0.000 0 0.832 0.000 0.168
#> SRR1562754 4 0.0260 0.918 0.000 0.000 0 0.992 0.008 0.000
#> SRR1562755 4 0.0260 0.918 0.000 0.000 0 0.992 0.008 0.000
#> SRR1562756 4 0.0260 0.918 0.000 0.000 0 0.992 0.008 0.000
#> SRR1562757 4 0.0260 0.918 0.000 0.000 0 0.992 0.008 0.000
#> SRR1562758 4 0.0260 0.918 0.000 0.000 0 0.992 0.008 0.000
#> SRR1562759 4 0.0260 0.918 0.000 0.000 0 0.992 0.008 0.000
#> SRR1562792 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562793 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562794 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562795 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562796 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562797 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562798 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562799 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562800 6 0.2823 1.000 0.204 0.000 0 0.000 0.000 0.796
#> SRR1562801 6 0.2823 1.000 0.204 0.000 0 0.000 0.000 0.796
#> SRR1562802 6 0.2823 1.000 0.204 0.000 0 0.000 0.000 0.796
#> SRR1562803 6 0.2823 1.000 0.204 0.000 0 0.000 0.000 0.796
#> SRR1562804 6 0.2823 1.000 0.204 0.000 0 0.000 0.000 0.796
#> SRR1562805 6 0.2823 1.000 0.204 0.000 0 0.000 0.000 0.796
#> SRR1562806 1 0.0000 1.000 1.000 0.000 0 0.000 0.000 0.000
#> SRR1562807 1 0.0000 1.000 1.000 0.000 0 0.000 0.000 0.000
#> SRR1562808 1 0.0000 1.000 1.000 0.000 0 0.000 0.000 0.000
#> SRR1562809 1 0.0000 1.000 1.000 0.000 0 0.000 0.000 0.000
#> SRR1562810 1 0.0000 1.000 1.000 0.000 0 0.000 0.000 0.000
#> SRR1562811 1 0.0000 1.000 1.000 0.000 0 0.000 0.000 0.000
#> SRR1562812 1 0.0000 1.000 1.000 0.000 0 0.000 0.000 0.000
#> SRR1562813 1 0.0000 1.000 1.000 0.000 0 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15301 rows and 63 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.988 0.981 0.4436 0.538 0.538
#> 3 3 0.642 0.677 0.756 0.3504 0.822 0.669
#> 4 4 0.577 0.733 0.726 0.1486 0.822 0.589
#> 5 5 0.615 0.574 0.635 0.0803 0.820 0.524
#> 6 6 0.649 0.784 0.723 0.0545 0.951 0.801
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1562718 2 0.000 1.000 0.000 1.000
#> SRR1562719 2 0.000 1.000 0.000 1.000
#> SRR1562720 2 0.000 1.000 0.000 1.000
#> SRR1562721 2 0.000 1.000 0.000 1.000
#> SRR1562723 2 0.000 1.000 0.000 1.000
#> SRR1562724 2 0.000 1.000 0.000 1.000
#> SRR1562725 2 0.000 1.000 0.000 1.000
#> SRR1562726 2 0.000 1.000 0.000 1.000
#> SRR1562727 2 0.000 1.000 0.000 1.000
#> SRR1562728 2 0.000 1.000 0.000 1.000
#> SRR1562729 2 0.000 1.000 0.000 1.000
#> SRR1562730 2 0.000 1.000 0.000 1.000
#> SRR1562731 2 0.000 1.000 0.000 1.000
#> SRR1562732 2 0.000 1.000 0.000 1.000
#> SRR1562733 2 0.000 1.000 0.000 1.000
#> SRR1562734 2 0.000 1.000 0.000 1.000
#> SRR1562735 2 0.000 1.000 0.000 1.000
#> SRR1562736 2 0.000 1.000 0.000 1.000
#> SRR1562737 2 0.000 1.000 0.000 1.000
#> SRR1562738 2 0.000 1.000 0.000 1.000
#> SRR1562739 2 0.000 1.000 0.000 1.000
#> SRR1562740 2 0.000 1.000 0.000 1.000
#> SRR1562741 2 0.000 1.000 0.000 1.000
#> SRR1562742 2 0.000 1.000 0.000 1.000
#> SRR1562743 2 0.000 1.000 0.000 1.000
#> SRR1562744 2 0.000 1.000 0.000 1.000
#> SRR1562745 2 0.000 1.000 0.000 1.000
#> SRR1562746 2 0.000 1.000 0.000 1.000
#> SRR1562747 2 0.000 1.000 0.000 1.000
#> SRR1562748 2 0.000 1.000 0.000 1.000
#> SRR1562749 2 0.000 1.000 0.000 1.000
#> SRR1562750 2 0.000 1.000 0.000 1.000
#> SRR1562751 2 0.000 1.000 0.000 1.000
#> SRR1562752 2 0.000 1.000 0.000 1.000
#> SRR1562753 2 0.000 1.000 0.000 1.000
#> SRR1562754 2 0.000 1.000 0.000 1.000
#> SRR1562755 2 0.000 1.000 0.000 1.000
#> SRR1562756 2 0.000 1.000 0.000 1.000
#> SRR1562757 2 0.000 1.000 0.000 1.000
#> SRR1562758 2 0.000 1.000 0.000 1.000
#> SRR1562759 2 0.000 1.000 0.000 1.000
#> SRR1562792 1 0.184 0.954 0.972 0.028
#> SRR1562793 1 0.184 0.954 0.972 0.028
#> SRR1562794 1 0.184 0.954 0.972 0.028
#> SRR1562795 1 0.184 0.954 0.972 0.028
#> SRR1562796 1 0.184 0.954 0.972 0.028
#> SRR1562797 1 0.184 0.954 0.972 0.028
#> SRR1562798 1 0.184 0.954 0.972 0.028
#> SRR1562799 1 0.184 0.954 0.972 0.028
#> SRR1562800 1 0.358 0.973 0.932 0.068
#> SRR1562801 1 0.358 0.973 0.932 0.068
#> SRR1562802 1 0.358 0.973 0.932 0.068
#> SRR1562803 1 0.358 0.973 0.932 0.068
#> SRR1562804 1 0.358 0.973 0.932 0.068
#> SRR1562805 1 0.358 0.973 0.932 0.068
#> SRR1562806 1 0.358 0.973 0.932 0.068
#> SRR1562807 1 0.358 0.973 0.932 0.068
#> SRR1562808 1 0.358 0.973 0.932 0.068
#> SRR1562809 1 0.358 0.973 0.932 0.068
#> SRR1562810 1 0.358 0.973 0.932 0.068
#> SRR1562811 1 0.358 0.973 0.932 0.068
#> SRR1562812 1 0.358 0.973 0.932 0.068
#> SRR1562813 1 0.358 0.973 0.932 0.068
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1562718 2 0.0000 0.690 0.000 1.000 0.000
#> SRR1562719 2 0.0000 0.690 0.000 1.000 0.000
#> SRR1562720 2 0.0000 0.690 0.000 1.000 0.000
#> SRR1562721 2 0.0000 0.690 0.000 1.000 0.000
#> SRR1562723 2 0.0000 0.690 0.000 1.000 0.000
#> SRR1562724 2 0.0000 0.690 0.000 1.000 0.000
#> SRR1562725 2 0.0000 0.690 0.000 1.000 0.000
#> SRR1562726 2 0.0000 0.690 0.000 1.000 0.000
#> SRR1562727 2 0.0000 0.690 0.000 1.000 0.000
#> SRR1562728 2 0.0000 0.690 0.000 1.000 0.000
#> SRR1562729 2 0.0000 0.690 0.000 1.000 0.000
#> SRR1562730 2 0.2625 0.634 0.000 0.916 0.084
#> SRR1562731 2 0.2625 0.634 0.000 0.916 0.084
#> SRR1562732 2 0.2625 0.634 0.000 0.916 0.084
#> SRR1562733 2 0.2625 0.634 0.000 0.916 0.084
#> SRR1562734 2 0.2625 0.634 0.000 0.916 0.084
#> SRR1562735 2 0.2625 0.634 0.000 0.916 0.084
#> SRR1562736 2 0.5859 -0.143 0.000 0.656 0.344
#> SRR1562737 2 0.5859 -0.143 0.000 0.656 0.344
#> SRR1562738 2 0.5859 -0.143 0.000 0.656 0.344
#> SRR1562739 2 0.5859 -0.143 0.000 0.656 0.344
#> SRR1562740 2 0.5859 -0.143 0.000 0.656 0.344
#> SRR1562741 2 0.5859 -0.143 0.000 0.656 0.344
#> SRR1562742 2 0.5138 0.323 0.000 0.748 0.252
#> SRR1562743 2 0.5138 0.323 0.000 0.748 0.252
#> SRR1562744 2 0.5138 0.323 0.000 0.748 0.252
#> SRR1562745 2 0.5138 0.323 0.000 0.748 0.252
#> SRR1562746 2 0.5138 0.323 0.000 0.748 0.252
#> SRR1562747 2 0.5138 0.323 0.000 0.748 0.252
#> SRR1562748 3 0.6215 0.920 0.000 0.428 0.572
#> SRR1562749 3 0.6215 0.920 0.000 0.428 0.572
#> SRR1562750 3 0.6215 0.920 0.000 0.428 0.572
#> SRR1562751 3 0.6215 0.920 0.000 0.428 0.572
#> SRR1562752 3 0.6215 0.920 0.000 0.428 0.572
#> SRR1562753 3 0.6215 0.920 0.000 0.428 0.572
#> SRR1562754 3 0.6305 0.913 0.000 0.484 0.516
#> SRR1562755 3 0.6305 0.913 0.000 0.484 0.516
#> SRR1562756 3 0.6305 0.913 0.000 0.484 0.516
#> SRR1562757 3 0.6305 0.913 0.000 0.484 0.516
#> SRR1562758 3 0.6305 0.913 0.000 0.484 0.516
#> SRR1562759 3 0.6305 0.913 0.000 0.484 0.516
#> SRR1562792 1 0.0000 0.821 1.000 0.000 0.000
#> SRR1562793 1 0.0000 0.821 1.000 0.000 0.000
#> SRR1562794 1 0.0000 0.821 1.000 0.000 0.000
#> SRR1562795 1 0.0000 0.821 1.000 0.000 0.000
#> SRR1562796 1 0.0237 0.821 0.996 0.000 0.004
#> SRR1562797 1 0.0237 0.821 0.996 0.000 0.004
#> SRR1562798 1 0.0237 0.821 0.996 0.000 0.004
#> SRR1562799 1 0.0237 0.821 0.996 0.000 0.004
#> SRR1562800 1 0.6033 0.902 0.660 0.004 0.336
#> SRR1562801 1 0.6033 0.902 0.660 0.004 0.336
#> SRR1562802 1 0.6033 0.902 0.660 0.004 0.336
#> SRR1562803 1 0.6033 0.902 0.660 0.004 0.336
#> SRR1562804 1 0.6033 0.902 0.660 0.004 0.336
#> SRR1562805 1 0.6033 0.902 0.660 0.004 0.336
#> SRR1562806 1 0.6033 0.902 0.660 0.004 0.336
#> SRR1562807 1 0.6033 0.902 0.660 0.004 0.336
#> SRR1562808 1 0.6033 0.902 0.660 0.004 0.336
#> SRR1562809 1 0.6033 0.902 0.660 0.004 0.336
#> SRR1562810 1 0.6033 0.902 0.660 0.004 0.336
#> SRR1562811 1 0.6033 0.902 0.660 0.004 0.336
#> SRR1562812 1 0.6033 0.902 0.660 0.004 0.336
#> SRR1562813 1 0.6033 0.902 0.660 0.004 0.336
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1562718 2 0.6967 0.856 0.000 0.456 NA 0.432
#> SRR1562719 2 0.6967 0.856 0.000 0.456 NA 0.432
#> SRR1562720 2 0.6967 0.856 0.000 0.456 NA 0.432
#> SRR1562721 2 0.6967 0.856 0.000 0.456 NA 0.432
#> SRR1562723 2 0.6967 0.856 0.000 0.456 NA 0.432
#> SRR1562724 2 0.7184 0.853 0.000 0.448 NA 0.416
#> SRR1562725 2 0.7184 0.853 0.000 0.448 NA 0.416
#> SRR1562726 2 0.7184 0.853 0.000 0.448 NA 0.416
#> SRR1562727 2 0.7184 0.853 0.000 0.448 NA 0.416
#> SRR1562728 2 0.7184 0.853 0.000 0.448 NA 0.416
#> SRR1562729 2 0.7184 0.853 0.000 0.448 NA 0.416
#> SRR1562730 2 0.4454 0.779 0.000 0.692 NA 0.308
#> SRR1562731 2 0.4454 0.779 0.000 0.692 NA 0.308
#> SRR1562732 2 0.4454 0.779 0.000 0.692 NA 0.308
#> SRR1562733 2 0.4454 0.779 0.000 0.692 NA 0.308
#> SRR1562734 2 0.4454 0.779 0.000 0.692 NA 0.308
#> SRR1562735 2 0.4454 0.779 0.000 0.692 NA 0.308
#> SRR1562736 4 0.0000 0.613 0.000 0.000 NA 1.000
#> SRR1562737 4 0.0000 0.613 0.000 0.000 NA 1.000
#> SRR1562738 4 0.0000 0.613 0.000 0.000 NA 1.000
#> SRR1562739 4 0.0000 0.613 0.000 0.000 NA 1.000
#> SRR1562740 4 0.0000 0.613 0.000 0.000 NA 1.000
#> SRR1562741 4 0.0000 0.613 0.000 0.000 NA 1.000
#> SRR1562742 4 0.3521 0.514 0.000 0.084 NA 0.864
#> SRR1562743 4 0.3521 0.514 0.000 0.084 NA 0.864
#> SRR1562744 4 0.3521 0.514 0.000 0.084 NA 0.864
#> SRR1562745 4 0.3521 0.514 0.000 0.084 NA 0.864
#> SRR1562746 4 0.3521 0.514 0.000 0.084 NA 0.864
#> SRR1562747 4 0.3521 0.514 0.000 0.084 NA 0.864
#> SRR1562748 4 0.7205 0.638 0.000 0.168 NA 0.528
#> SRR1562749 4 0.7222 0.638 0.000 0.172 NA 0.528
#> SRR1562750 4 0.7205 0.638 0.000 0.168 NA 0.528
#> SRR1562751 4 0.7222 0.638 0.000 0.172 NA 0.528
#> SRR1562752 4 0.7222 0.638 0.000 0.172 NA 0.528
#> SRR1562753 4 0.7205 0.638 0.000 0.168 NA 0.528
#> SRR1562754 4 0.6107 0.680 0.000 0.088 NA 0.648
#> SRR1562755 4 0.6107 0.680 0.000 0.088 NA 0.648
#> SRR1562756 4 0.6107 0.680 0.000 0.088 NA 0.648
#> SRR1562757 4 0.6107 0.680 0.000 0.088 NA 0.648
#> SRR1562758 4 0.6107 0.680 0.000 0.088 NA 0.648
#> SRR1562759 4 0.6107 0.680 0.000 0.088 NA 0.648
#> SRR1562792 1 0.5503 0.727 0.516 0.016 NA 0.000
#> SRR1562793 1 0.5503 0.727 0.516 0.016 NA 0.000
#> SRR1562794 1 0.5503 0.727 0.516 0.016 NA 0.000
#> SRR1562795 1 0.5503 0.727 0.516 0.016 NA 0.000
#> SRR1562796 1 0.4996 0.727 0.516 0.000 NA 0.000
#> SRR1562797 1 0.4996 0.727 0.516 0.000 NA 0.000
#> SRR1562798 1 0.4996 0.727 0.516 0.000 NA 0.000
#> SRR1562799 1 0.4996 0.727 0.516 0.000 NA 0.000
#> SRR1562800 1 0.2281 0.829 0.904 0.096 NA 0.000
#> SRR1562801 1 0.2281 0.829 0.904 0.096 NA 0.000
#> SRR1562802 1 0.2281 0.829 0.904 0.096 NA 0.000
#> SRR1562803 1 0.2281 0.829 0.904 0.096 NA 0.000
#> SRR1562804 1 0.2281 0.829 0.904 0.096 NA 0.000
#> SRR1562805 1 0.2281 0.829 0.904 0.096 NA 0.000
#> SRR1562806 1 0.0188 0.833 0.996 0.004 NA 0.000
#> SRR1562807 1 0.0188 0.833 0.996 0.004 NA 0.000
#> SRR1562808 1 0.0188 0.833 0.996 0.004 NA 0.000
#> SRR1562809 1 0.0188 0.833 0.996 0.004 NA 0.000
#> SRR1562810 1 0.0000 0.834 1.000 0.000 NA 0.000
#> SRR1562811 1 0.0000 0.834 1.000 0.000 NA 0.000
#> SRR1562812 1 0.0000 0.834 1.000 0.000 NA 0.000
#> SRR1562813 1 0.0000 0.834 1.000 0.000 NA 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1562718 2 0.2193 0.800 0.000 0.912 0.028 0.000 NA
#> SRR1562719 2 0.2193 0.800 0.000 0.912 0.028 0.000 NA
#> SRR1562720 2 0.2193 0.800 0.000 0.912 0.028 0.000 NA
#> SRR1562721 2 0.2193 0.800 0.000 0.912 0.028 0.000 NA
#> SRR1562723 2 0.2193 0.800 0.000 0.912 0.028 0.000 NA
#> SRR1562724 2 0.0798 0.793 0.000 0.976 0.008 0.000 NA
#> SRR1562725 2 0.0798 0.793 0.000 0.976 0.008 0.000 NA
#> SRR1562726 2 0.0798 0.793 0.000 0.976 0.008 0.000 NA
#> SRR1562727 2 0.0798 0.793 0.000 0.976 0.008 0.000 NA
#> SRR1562728 2 0.0798 0.793 0.000 0.976 0.008 0.000 NA
#> SRR1562729 2 0.0798 0.793 0.000 0.976 0.008 0.000 NA
#> SRR1562730 2 0.4738 0.689 0.000 0.564 0.012 0.004 NA
#> SRR1562731 2 0.4397 0.689 0.000 0.564 0.004 0.000 NA
#> SRR1562732 2 0.4738 0.689 0.000 0.564 0.012 0.004 NA
#> SRR1562733 2 0.4738 0.689 0.000 0.564 0.012 0.004 NA
#> SRR1562734 2 0.4682 0.689 0.000 0.564 0.016 0.000 NA
#> SRR1562735 2 0.4504 0.689 0.000 0.564 0.008 0.000 NA
#> SRR1562736 3 0.7032 0.086 0.000 0.340 0.364 0.288 NA
#> SRR1562737 3 0.7032 0.086 0.000 0.340 0.364 0.288 NA
#> SRR1562738 3 0.7032 0.086 0.000 0.340 0.364 0.288 NA
#> SRR1562739 3 0.7032 0.086 0.000 0.340 0.364 0.288 NA
#> SRR1562740 3 0.7032 0.086 0.000 0.340 0.364 0.288 NA
#> SRR1562741 3 0.7032 0.086 0.000 0.340 0.364 0.288 NA
#> SRR1562742 3 0.7934 0.203 0.000 0.348 0.364 0.192 NA
#> SRR1562743 3 0.7934 0.203 0.000 0.348 0.364 0.192 NA
#> SRR1562744 3 0.7934 0.203 0.000 0.348 0.364 0.192 NA
#> SRR1562745 3 0.7934 0.203 0.000 0.348 0.364 0.192 NA
#> SRR1562746 3 0.7934 0.203 0.000 0.348 0.364 0.192 NA
#> SRR1562747 3 0.7934 0.203 0.000 0.348 0.364 0.192 NA
#> SRR1562748 4 0.1732 0.817 0.000 0.080 0.000 0.920 NA
#> SRR1562749 4 0.1732 0.817 0.000 0.080 0.000 0.920 NA
#> SRR1562750 4 0.2130 0.815 0.000 0.080 0.000 0.908 NA
#> SRR1562751 4 0.1732 0.817 0.000 0.080 0.000 0.920 NA
#> SRR1562752 4 0.1732 0.817 0.000 0.080 0.000 0.920 NA
#> SRR1562753 4 0.1732 0.817 0.000 0.080 0.000 0.920 NA
#> SRR1562754 4 0.6793 0.805 0.000 0.128 0.140 0.612 NA
#> SRR1562755 4 0.6789 0.805 0.000 0.128 0.144 0.612 NA
#> SRR1562756 4 0.6793 0.805 0.000 0.128 0.140 0.612 NA
#> SRR1562757 4 0.6789 0.805 0.000 0.128 0.144 0.612 NA
#> SRR1562758 4 0.6789 0.805 0.000 0.128 0.144 0.612 NA
#> SRR1562759 4 0.6789 0.805 0.000 0.128 0.144 0.612 NA
#> SRR1562792 3 0.6451 -0.121 0.364 0.000 0.452 0.000 NA
#> SRR1562793 3 0.6451 -0.121 0.364 0.000 0.452 0.000 NA
#> SRR1562794 3 0.6571 -0.122 0.364 0.000 0.452 0.004 NA
#> SRR1562795 3 0.6451 -0.121 0.364 0.000 0.452 0.000 NA
#> SRR1562796 3 0.6237 -0.122 0.364 0.000 0.500 0.004 NA
#> SRR1562797 3 0.6125 -0.122 0.364 0.000 0.500 0.000 NA
#> SRR1562798 3 0.6125 -0.122 0.364 0.000 0.500 0.000 NA
#> SRR1562799 3 0.6237 -0.122 0.364 0.000 0.500 0.004 NA
#> SRR1562800 1 0.3134 0.904 0.848 0.000 0.000 0.032 NA
#> SRR1562801 1 0.3134 0.904 0.848 0.000 0.000 0.032 NA
#> SRR1562802 1 0.3134 0.904 0.848 0.000 0.000 0.032 NA
#> SRR1562803 1 0.3134 0.904 0.848 0.000 0.000 0.032 NA
#> SRR1562804 1 0.3242 0.903 0.844 0.000 0.000 0.040 NA
#> SRR1562805 1 0.3242 0.903 0.844 0.000 0.000 0.040 NA
#> SRR1562806 1 0.1041 0.920 0.964 0.000 0.000 0.004 NA
#> SRR1562807 1 0.1041 0.920 0.964 0.000 0.000 0.004 NA
#> SRR1562808 1 0.1041 0.920 0.964 0.000 0.000 0.004 NA
#> SRR1562809 1 0.1041 0.920 0.964 0.000 0.000 0.004 NA
#> SRR1562810 1 0.0609 0.923 0.980 0.000 0.000 0.020 NA
#> SRR1562811 1 0.0609 0.923 0.980 0.000 0.000 0.020 NA
#> SRR1562812 1 0.0609 0.923 0.980 0.000 0.000 0.020 NA
#> SRR1562813 1 0.0609 0.923 0.980 0.000 0.000 0.020 NA
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1562718 2 0.4584 0.740 0.000 0.688 0.052 0.016 0.244 NA
#> SRR1562719 2 0.4584 0.740 0.000 0.688 0.052 0.016 0.244 NA
#> SRR1562720 2 0.4584 0.740 0.000 0.688 0.052 0.016 0.244 NA
#> SRR1562721 2 0.4584 0.740 0.000 0.688 0.052 0.016 0.244 NA
#> SRR1562723 2 0.4584 0.740 0.000 0.688 0.052 0.016 0.244 NA
#> SRR1562724 2 0.4762 0.731 0.000 0.716 0.028 0.024 0.204 NA
#> SRR1562725 2 0.4762 0.731 0.000 0.716 0.028 0.024 0.204 NA
#> SRR1562726 2 0.4762 0.731 0.000 0.716 0.024 0.028 0.204 NA
#> SRR1562727 2 0.4762 0.731 0.000 0.716 0.028 0.024 0.204 NA
#> SRR1562728 2 0.4833 0.731 0.000 0.712 0.032 0.024 0.204 NA
#> SRR1562729 2 0.4836 0.731 0.000 0.712 0.028 0.028 0.204 NA
#> SRR1562730 2 0.6328 0.669 0.000 0.560 0.036 0.016 0.144 NA
#> SRR1562731 2 0.6445 0.669 0.000 0.552 0.044 0.016 0.144 NA
#> SRR1562732 2 0.6446 0.669 0.000 0.556 0.040 0.020 0.144 NA
#> SRR1562733 2 0.6446 0.669 0.000 0.556 0.040 0.020 0.144 NA
#> SRR1562734 2 0.6782 0.669 0.000 0.548 0.052 0.036 0.144 NA
#> SRR1562735 2 0.6445 0.669 0.000 0.552 0.044 0.016 0.144 NA
#> SRR1562736 5 0.3001 0.808 0.000 0.028 0.008 0.108 0.852 NA
#> SRR1562737 5 0.3001 0.808 0.000 0.028 0.008 0.108 0.852 NA
#> SRR1562738 5 0.3001 0.808 0.000 0.028 0.008 0.108 0.852 NA
#> SRR1562739 5 0.3001 0.808 0.000 0.028 0.008 0.108 0.852 NA
#> SRR1562740 5 0.3001 0.808 0.000 0.028 0.008 0.108 0.852 NA
#> SRR1562741 5 0.3001 0.808 0.000 0.028 0.008 0.108 0.852 NA
#> SRR1562742 5 0.3132 0.824 0.000 0.032 0.064 0.008 0.864 NA
#> SRR1562743 5 0.3073 0.824 0.000 0.032 0.060 0.008 0.868 NA
#> SRR1562744 5 0.3085 0.824 0.000 0.032 0.056 0.008 0.868 NA
#> SRR1562745 5 0.3132 0.824 0.000 0.032 0.064 0.008 0.864 NA
#> SRR1562746 5 0.3073 0.824 0.000 0.032 0.060 0.008 0.868 NA
#> SRR1562747 5 0.3073 0.824 0.000 0.032 0.060 0.008 0.868 NA
#> SRR1562748 4 0.6534 0.749 0.000 0.040 0.008 0.504 0.172 NA
#> SRR1562749 4 0.6238 0.749 0.000 0.032 0.000 0.504 0.172 NA
#> SRR1562750 4 0.6356 0.749 0.000 0.032 0.004 0.504 0.172 NA
#> SRR1562751 4 0.6534 0.749 0.000 0.040 0.008 0.504 0.172 NA
#> SRR1562752 4 0.6448 0.749 0.000 0.040 0.004 0.504 0.172 NA
#> SRR1562753 4 0.6238 0.749 0.000 0.032 0.000 0.504 0.172 NA
#> SRR1562754 4 0.3536 0.722 0.000 0.008 0.004 0.736 0.252 NA
#> SRR1562755 4 0.3398 0.722 0.000 0.008 0.000 0.740 0.252 NA
#> SRR1562756 4 0.3989 0.721 0.000 0.008 0.024 0.716 0.252 NA
#> SRR1562757 4 0.3911 0.721 0.000 0.008 0.020 0.720 0.252 NA
#> SRR1562758 4 0.3740 0.722 0.000 0.012 0.008 0.728 0.252 NA
#> SRR1562759 4 0.3398 0.722 0.000 0.008 0.000 0.740 0.252 NA
#> SRR1562792 3 0.5518 0.933 0.248 0.032 0.640 0.020 0.000 NA
#> SRR1562793 3 0.5518 0.933 0.248 0.032 0.640 0.020 0.000 NA
#> SRR1562794 3 0.5518 0.933 0.248 0.032 0.640 0.020 0.000 NA
#> SRR1562795 3 0.5518 0.933 0.248 0.032 0.640 0.020 0.000 NA
#> SRR1562796 3 0.3620 0.930 0.248 0.000 0.736 0.008 0.008 NA
#> SRR1562797 3 0.3651 0.930 0.248 0.000 0.736 0.004 0.008 NA
#> SRR1562798 3 0.3558 0.930 0.248 0.000 0.736 0.000 0.000 NA
#> SRR1562799 3 0.3608 0.930 0.248 0.000 0.736 0.000 0.004 NA
#> SRR1562800 1 0.0146 0.779 0.996 0.004 0.000 0.000 0.000 NA
#> SRR1562801 1 0.0146 0.779 0.996 0.004 0.000 0.000 0.000 NA
#> SRR1562802 1 0.0146 0.779 0.996 0.000 0.000 0.000 0.000 NA
#> SRR1562803 1 0.0146 0.779 0.996 0.000 0.000 0.000 0.000 NA
#> SRR1562804 1 0.0692 0.778 0.976 0.004 0.000 0.020 0.000 NA
#> SRR1562805 1 0.0692 0.778 0.976 0.004 0.000 0.020 0.000 NA
#> SRR1562806 1 0.4496 0.819 0.696 0.024 0.000 0.036 0.000 NA
#> SRR1562807 1 0.4484 0.819 0.696 0.020 0.000 0.040 0.000 NA
#> SRR1562808 1 0.4484 0.819 0.696 0.020 0.000 0.040 0.000 NA
#> SRR1562809 1 0.4484 0.819 0.696 0.020 0.000 0.040 0.000 NA
#> SRR1562810 1 0.3371 0.823 0.708 0.000 0.000 0.000 0.000 NA
#> SRR1562811 1 0.3371 0.823 0.708 0.000 0.000 0.000 0.000 NA
#> SRR1562812 1 0.3371 0.823 0.708 0.000 0.000 0.000 0.000 NA
#> SRR1562813 1 0.3371 0.823 0.708 0.000 0.000 0.000 0.000 NA
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15301 rows and 63 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.4624 0.538 0.538
#> 3 3 0.764 0.940 0.871 0.2809 0.822 0.669
#> 4 4 0.822 0.925 0.944 0.1943 0.943 0.841
#> 5 5 0.877 0.955 0.947 0.1174 0.896 0.655
#> 6 6 0.948 0.950 0.920 0.0406 0.982 0.907
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2
There is also optional best \(k\) = 2 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1562718 2 0 1 0 1
#> SRR1562719 2 0 1 0 1
#> SRR1562720 2 0 1 0 1
#> SRR1562721 2 0 1 0 1
#> SRR1562723 2 0 1 0 1
#> SRR1562724 2 0 1 0 1
#> SRR1562725 2 0 1 0 1
#> SRR1562726 2 0 1 0 1
#> SRR1562727 2 0 1 0 1
#> SRR1562728 2 0 1 0 1
#> SRR1562729 2 0 1 0 1
#> SRR1562730 2 0 1 0 1
#> SRR1562731 2 0 1 0 1
#> SRR1562732 2 0 1 0 1
#> SRR1562733 2 0 1 0 1
#> SRR1562734 2 0 1 0 1
#> SRR1562735 2 0 1 0 1
#> SRR1562736 2 0 1 0 1
#> SRR1562737 2 0 1 0 1
#> SRR1562738 2 0 1 0 1
#> SRR1562739 2 0 1 0 1
#> SRR1562740 2 0 1 0 1
#> SRR1562741 2 0 1 0 1
#> SRR1562742 2 0 1 0 1
#> SRR1562743 2 0 1 0 1
#> SRR1562744 2 0 1 0 1
#> SRR1562745 2 0 1 0 1
#> SRR1562746 2 0 1 0 1
#> SRR1562747 2 0 1 0 1
#> SRR1562748 2 0 1 0 1
#> SRR1562749 2 0 1 0 1
#> SRR1562750 2 0 1 0 1
#> SRR1562751 2 0 1 0 1
#> SRR1562752 2 0 1 0 1
#> SRR1562753 2 0 1 0 1
#> SRR1562754 2 0 1 0 1
#> SRR1562755 2 0 1 0 1
#> SRR1562756 2 0 1 0 1
#> SRR1562757 2 0 1 0 1
#> SRR1562758 2 0 1 0 1
#> SRR1562759 2 0 1 0 1
#> SRR1562792 1 0 1 1 0
#> SRR1562793 1 0 1 1 0
#> SRR1562794 1 0 1 1 0
#> SRR1562795 1 0 1 1 0
#> SRR1562796 1 0 1 1 0
#> SRR1562797 1 0 1 1 0
#> SRR1562798 1 0 1 1 0
#> SRR1562799 1 0 1 1 0
#> SRR1562800 1 0 1 1 0
#> SRR1562801 1 0 1 1 0
#> SRR1562802 1 0 1 1 0
#> SRR1562803 1 0 1 1 0
#> SRR1562804 1 0 1 1 0
#> SRR1562805 1 0 1 1 0
#> SRR1562806 1 0 1 1 0
#> SRR1562807 1 0 1 1 0
#> SRR1562808 1 0 1 1 0
#> SRR1562809 1 0 1 1 0
#> SRR1562810 1 0 1 1 0
#> SRR1562811 1 0 1 1 0
#> SRR1562812 1 0 1 1 0
#> SRR1562813 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1562718 2 0.613 0.994 0.0 0.600 0.400
#> SRR1562719 2 0.613 0.994 0.0 0.600 0.400
#> SRR1562720 2 0.613 0.994 0.0 0.600 0.400
#> SRR1562721 2 0.613 0.994 0.0 0.600 0.400
#> SRR1562723 2 0.613 0.994 0.0 0.600 0.400
#> SRR1562724 2 0.613 0.994 0.0 0.600 0.400
#> SRR1562725 2 0.613 0.994 0.0 0.600 0.400
#> SRR1562726 2 0.613 0.994 0.0 0.600 0.400
#> SRR1562727 2 0.613 0.994 0.0 0.600 0.400
#> SRR1562728 2 0.613 0.994 0.0 0.600 0.400
#> SRR1562729 2 0.613 0.994 0.0 0.600 0.400
#> SRR1562730 2 0.613 0.994 0.0 0.600 0.400
#> SRR1562731 2 0.613 0.994 0.0 0.600 0.400
#> SRR1562732 2 0.613 0.994 0.0 0.600 0.400
#> SRR1562733 2 0.613 0.994 0.0 0.600 0.400
#> SRR1562734 2 0.613 0.994 0.0 0.600 0.400
#> SRR1562735 2 0.613 0.994 0.0 0.600 0.400
#> SRR1562736 2 0.615 0.992 0.0 0.592 0.408
#> SRR1562737 2 0.615 0.992 0.0 0.592 0.408
#> SRR1562738 2 0.615 0.992 0.0 0.592 0.408
#> SRR1562739 2 0.615 0.992 0.0 0.592 0.408
#> SRR1562740 2 0.615 0.992 0.0 0.592 0.408
#> SRR1562741 2 0.615 0.992 0.0 0.592 0.408
#> SRR1562742 2 0.615 0.992 0.0 0.592 0.408
#> SRR1562743 2 0.615 0.992 0.0 0.592 0.408
#> SRR1562744 2 0.615 0.992 0.0 0.592 0.408
#> SRR1562745 2 0.615 0.992 0.0 0.592 0.408
#> SRR1562746 2 0.615 0.992 0.0 0.592 0.408
#> SRR1562747 2 0.615 0.992 0.0 0.592 0.408
#> SRR1562748 3 0.000 1.000 0.0 0.000 1.000
#> SRR1562749 3 0.000 1.000 0.0 0.000 1.000
#> SRR1562750 3 0.000 1.000 0.0 0.000 1.000
#> SRR1562751 3 0.000 1.000 0.0 0.000 1.000
#> SRR1562752 3 0.000 1.000 0.0 0.000 1.000
#> SRR1562753 3 0.000 1.000 0.0 0.000 1.000
#> SRR1562754 3 0.000 1.000 0.0 0.000 1.000
#> SRR1562755 3 0.000 1.000 0.0 0.000 1.000
#> SRR1562756 3 0.000 1.000 0.0 0.000 1.000
#> SRR1562757 3 0.000 1.000 0.0 0.000 1.000
#> SRR1562758 3 0.000 1.000 0.0 0.000 1.000
#> SRR1562759 3 0.000 1.000 0.0 0.000 1.000
#> SRR1562792 1 0.613 0.771 0.6 0.400 0.000
#> SRR1562793 1 0.613 0.771 0.6 0.400 0.000
#> SRR1562794 1 0.613 0.771 0.6 0.400 0.000
#> SRR1562795 1 0.613 0.771 0.6 0.400 0.000
#> SRR1562796 1 0.613 0.771 0.6 0.400 0.000
#> SRR1562797 1 0.613 0.771 0.6 0.400 0.000
#> SRR1562798 1 0.613 0.771 0.6 0.400 0.000
#> SRR1562799 1 0.613 0.771 0.6 0.400 0.000
#> SRR1562800 1 0.000 0.877 1.0 0.000 0.000
#> SRR1562801 1 0.000 0.877 1.0 0.000 0.000
#> SRR1562802 1 0.000 0.877 1.0 0.000 0.000
#> SRR1562803 1 0.000 0.877 1.0 0.000 0.000
#> SRR1562804 1 0.000 0.877 1.0 0.000 0.000
#> SRR1562805 1 0.000 0.877 1.0 0.000 0.000
#> SRR1562806 1 0.000 0.877 1.0 0.000 0.000
#> SRR1562807 1 0.000 0.877 1.0 0.000 0.000
#> SRR1562808 1 0.000 0.877 1.0 0.000 0.000
#> SRR1562809 1 0.000 0.877 1.0 0.000 0.000
#> SRR1562810 1 0.000 0.877 1.0 0.000 0.000
#> SRR1562811 1 0.000 0.877 1.0 0.000 0.000
#> SRR1562812 1 0.000 0.877 1.0 0.000 0.000
#> SRR1562813 1 0.000 0.877 1.0 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1562718 2 0.0000 0.879 0.00 1.000 0.000 0.000
#> SRR1562719 2 0.0000 0.879 0.00 1.000 0.000 0.000
#> SRR1562720 2 0.0000 0.879 0.00 1.000 0.000 0.000
#> SRR1562721 2 0.0000 0.879 0.00 1.000 0.000 0.000
#> SRR1562723 2 0.0000 0.879 0.00 1.000 0.000 0.000
#> SRR1562724 2 0.0000 0.879 0.00 1.000 0.000 0.000
#> SRR1562725 2 0.0000 0.879 0.00 1.000 0.000 0.000
#> SRR1562726 2 0.0000 0.879 0.00 1.000 0.000 0.000
#> SRR1562727 2 0.0000 0.879 0.00 1.000 0.000 0.000
#> SRR1562728 2 0.0000 0.879 0.00 1.000 0.000 0.000
#> SRR1562729 2 0.0000 0.879 0.00 1.000 0.000 0.000
#> SRR1562730 2 0.0000 0.879 0.00 1.000 0.000 0.000
#> SRR1562731 2 0.0000 0.879 0.00 1.000 0.000 0.000
#> SRR1562732 2 0.0000 0.879 0.00 1.000 0.000 0.000
#> SRR1562733 2 0.0000 0.879 0.00 1.000 0.000 0.000
#> SRR1562734 2 0.0000 0.879 0.00 1.000 0.000 0.000
#> SRR1562735 2 0.0000 0.879 0.00 1.000 0.000 0.000
#> SRR1562736 2 0.5085 0.760 0.00 0.708 0.032 0.260
#> SRR1562737 2 0.5085 0.760 0.00 0.708 0.032 0.260
#> SRR1562738 2 0.5085 0.760 0.00 0.708 0.032 0.260
#> SRR1562739 2 0.5085 0.760 0.00 0.708 0.032 0.260
#> SRR1562740 2 0.5085 0.760 0.00 0.708 0.032 0.260
#> SRR1562741 2 0.5085 0.760 0.00 0.708 0.032 0.260
#> SRR1562742 2 0.4617 0.806 0.00 0.764 0.032 0.204
#> SRR1562743 2 0.4617 0.806 0.00 0.764 0.032 0.204
#> SRR1562744 2 0.4617 0.806 0.00 0.764 0.032 0.204
#> SRR1562745 2 0.4617 0.806 0.00 0.764 0.032 0.204
#> SRR1562746 2 0.4617 0.806 0.00 0.764 0.032 0.204
#> SRR1562747 2 0.4617 0.806 0.00 0.764 0.032 0.204
#> SRR1562748 4 0.0336 0.995 0.00 0.000 0.008 0.992
#> SRR1562749 4 0.0336 0.995 0.00 0.000 0.008 0.992
#> SRR1562750 4 0.0336 0.995 0.00 0.000 0.008 0.992
#> SRR1562751 4 0.0336 0.995 0.00 0.000 0.008 0.992
#> SRR1562752 4 0.0336 0.995 0.00 0.000 0.008 0.992
#> SRR1562753 4 0.0336 0.995 0.00 0.000 0.008 0.992
#> SRR1562754 4 0.0000 0.995 0.00 0.000 0.000 1.000
#> SRR1562755 4 0.0000 0.995 0.00 0.000 0.000 1.000
#> SRR1562756 4 0.0000 0.995 0.00 0.000 0.000 1.000
#> SRR1562757 4 0.0000 0.995 0.00 0.000 0.000 1.000
#> SRR1562758 4 0.0000 0.995 0.00 0.000 0.000 1.000
#> SRR1562759 4 0.0000 0.995 0.00 0.000 0.000 1.000
#> SRR1562792 3 0.1211 1.000 0.04 0.000 0.960 0.000
#> SRR1562793 3 0.1211 1.000 0.04 0.000 0.960 0.000
#> SRR1562794 3 0.1211 1.000 0.04 0.000 0.960 0.000
#> SRR1562795 3 0.1211 1.000 0.04 0.000 0.960 0.000
#> SRR1562796 3 0.1211 1.000 0.04 0.000 0.960 0.000
#> SRR1562797 3 0.1211 1.000 0.04 0.000 0.960 0.000
#> SRR1562798 3 0.1211 1.000 0.04 0.000 0.960 0.000
#> SRR1562799 3 0.1211 1.000 0.04 0.000 0.960 0.000
#> SRR1562800 1 0.0000 1.000 1.00 0.000 0.000 0.000
#> SRR1562801 1 0.0000 1.000 1.00 0.000 0.000 0.000
#> SRR1562802 1 0.0000 1.000 1.00 0.000 0.000 0.000
#> SRR1562803 1 0.0000 1.000 1.00 0.000 0.000 0.000
#> SRR1562804 1 0.0000 1.000 1.00 0.000 0.000 0.000
#> SRR1562805 1 0.0000 1.000 1.00 0.000 0.000 0.000
#> SRR1562806 1 0.0000 1.000 1.00 0.000 0.000 0.000
#> SRR1562807 1 0.0000 1.000 1.00 0.000 0.000 0.000
#> SRR1562808 1 0.0000 1.000 1.00 0.000 0.000 0.000
#> SRR1562809 1 0.0000 1.000 1.00 0.000 0.000 0.000
#> SRR1562810 1 0.0000 1.000 1.00 0.000 0.000 0.000
#> SRR1562811 1 0.0000 1.000 1.00 0.000 0.000 0.000
#> SRR1562812 1 0.0000 1.000 1.00 0.000 0.000 0.000
#> SRR1562813 1 0.0000 1.000 1.00 0.000 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1562718 2 0.2011 0.957 0.000 0.908 0 0.004 0.088
#> SRR1562719 2 0.2011 0.957 0.000 0.908 0 0.004 0.088
#> SRR1562720 2 0.2011 0.957 0.000 0.908 0 0.004 0.088
#> SRR1562721 2 0.2011 0.957 0.000 0.908 0 0.004 0.088
#> SRR1562723 2 0.2011 0.957 0.000 0.908 0 0.004 0.088
#> SRR1562724 2 0.1908 0.956 0.000 0.908 0 0.000 0.092
#> SRR1562725 2 0.1908 0.956 0.000 0.908 0 0.000 0.092
#> SRR1562726 2 0.1908 0.956 0.000 0.908 0 0.000 0.092
#> SRR1562727 2 0.1908 0.956 0.000 0.908 0 0.000 0.092
#> SRR1562728 2 0.1908 0.956 0.000 0.908 0 0.000 0.092
#> SRR1562729 2 0.1908 0.956 0.000 0.908 0 0.000 0.092
#> SRR1562730 2 0.0162 0.927 0.000 0.996 0 0.004 0.000
#> SRR1562731 2 0.0162 0.927 0.000 0.996 0 0.004 0.000
#> SRR1562732 2 0.0162 0.927 0.000 0.996 0 0.004 0.000
#> SRR1562733 2 0.0162 0.927 0.000 0.996 0 0.004 0.000
#> SRR1562734 2 0.0162 0.927 0.000 0.996 0 0.004 0.000
#> SRR1562735 2 0.0162 0.927 0.000 0.996 0 0.004 0.000
#> SRR1562736 5 0.1430 0.980 0.000 0.052 0 0.004 0.944
#> SRR1562737 5 0.1430 0.980 0.000 0.052 0 0.004 0.944
#> SRR1562738 5 0.1430 0.980 0.000 0.052 0 0.004 0.944
#> SRR1562739 5 0.1430 0.980 0.000 0.052 0 0.004 0.944
#> SRR1562740 5 0.1430 0.980 0.000 0.052 0 0.004 0.944
#> SRR1562741 5 0.1430 0.980 0.000 0.052 0 0.004 0.944
#> SRR1562742 5 0.1671 0.980 0.000 0.076 0 0.000 0.924
#> SRR1562743 5 0.1671 0.980 0.000 0.076 0 0.000 0.924
#> SRR1562744 5 0.1671 0.980 0.000 0.076 0 0.000 0.924
#> SRR1562745 5 0.1671 0.980 0.000 0.076 0 0.000 0.924
#> SRR1562746 5 0.1671 0.980 0.000 0.076 0 0.000 0.924
#> SRR1562747 5 0.1671 0.980 0.000 0.076 0 0.000 0.924
#> SRR1562748 4 0.0290 0.866 0.000 0.000 0 0.992 0.008
#> SRR1562749 4 0.0290 0.866 0.000 0.000 0 0.992 0.008
#> SRR1562750 4 0.0290 0.866 0.000 0.000 0 0.992 0.008
#> SRR1562751 4 0.0290 0.866 0.000 0.000 0 0.992 0.008
#> SRR1562752 4 0.0290 0.866 0.000 0.000 0 0.992 0.008
#> SRR1562753 4 0.0290 0.866 0.000 0.000 0 0.992 0.008
#> SRR1562754 4 0.3452 0.857 0.000 0.000 0 0.756 0.244
#> SRR1562755 4 0.3452 0.857 0.000 0.000 0 0.756 0.244
#> SRR1562756 4 0.3452 0.857 0.000 0.000 0 0.756 0.244
#> SRR1562757 4 0.3452 0.857 0.000 0.000 0 0.756 0.244
#> SRR1562758 4 0.3452 0.857 0.000 0.000 0 0.756 0.244
#> SRR1562759 4 0.3452 0.857 0.000 0.000 0 0.756 0.244
#> SRR1562792 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562793 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562794 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562795 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562796 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562797 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562798 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562799 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562800 1 0.0162 0.998 0.996 0.000 0 0.000 0.004
#> SRR1562801 1 0.0162 0.998 0.996 0.000 0 0.000 0.004
#> SRR1562802 1 0.0162 0.998 0.996 0.000 0 0.000 0.004
#> SRR1562803 1 0.0162 0.998 0.996 0.000 0 0.000 0.004
#> SRR1562804 1 0.0162 0.998 0.996 0.000 0 0.000 0.004
#> SRR1562805 1 0.0162 0.998 0.996 0.000 0 0.000 0.004
#> SRR1562806 1 0.0000 0.999 1.000 0.000 0 0.000 0.000
#> SRR1562807 1 0.0000 0.999 1.000 0.000 0 0.000 0.000
#> SRR1562808 1 0.0000 0.999 1.000 0.000 0 0.000 0.000
#> SRR1562809 1 0.0000 0.999 1.000 0.000 0 0.000 0.000
#> SRR1562810 1 0.0000 0.999 1.000 0.000 0 0.000 0.000
#> SRR1562811 1 0.0000 0.999 1.000 0.000 0 0.000 0.000
#> SRR1562812 1 0.0000 0.999 1.000 0.000 0 0.000 0.000
#> SRR1562813 1 0.0000 0.999 1.000 0.000 0 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1562718 2 0.1204 0.883 0.000 0.944 0 0.000 0.056 0.000
#> SRR1562719 2 0.1204 0.883 0.000 0.944 0 0.000 0.056 0.000
#> SRR1562720 2 0.1204 0.883 0.000 0.944 0 0.000 0.056 0.000
#> SRR1562721 2 0.1204 0.883 0.000 0.944 0 0.000 0.056 0.000
#> SRR1562723 2 0.1204 0.883 0.000 0.944 0 0.000 0.056 0.000
#> SRR1562724 2 0.2129 0.878 0.000 0.904 0 0.000 0.056 0.040
#> SRR1562725 2 0.2129 0.878 0.000 0.904 0 0.000 0.056 0.040
#> SRR1562726 2 0.2129 0.878 0.000 0.904 0 0.000 0.056 0.040
#> SRR1562727 2 0.2129 0.878 0.000 0.904 0 0.000 0.056 0.040
#> SRR1562728 2 0.2129 0.878 0.000 0.904 0 0.000 0.056 0.040
#> SRR1562729 2 0.2129 0.878 0.000 0.904 0 0.000 0.056 0.040
#> SRR1562730 2 0.3602 0.792 0.000 0.760 0 0.032 0.000 0.208
#> SRR1562731 2 0.3602 0.792 0.000 0.760 0 0.032 0.000 0.208
#> SRR1562732 2 0.3602 0.792 0.000 0.760 0 0.032 0.000 0.208
#> SRR1562733 2 0.3602 0.792 0.000 0.760 0 0.032 0.000 0.208
#> SRR1562734 2 0.3602 0.792 0.000 0.760 0 0.032 0.000 0.208
#> SRR1562735 2 0.3602 0.792 0.000 0.760 0 0.032 0.000 0.208
#> SRR1562736 5 0.0777 0.956 0.000 0.000 0 0.024 0.972 0.004
#> SRR1562737 5 0.0777 0.956 0.000 0.000 0 0.024 0.972 0.004
#> SRR1562738 5 0.0777 0.956 0.000 0.000 0 0.024 0.972 0.004
#> SRR1562739 5 0.0777 0.956 0.000 0.000 0 0.024 0.972 0.004
#> SRR1562740 5 0.0777 0.956 0.000 0.000 0 0.024 0.972 0.004
#> SRR1562741 5 0.0777 0.956 0.000 0.000 0 0.024 0.972 0.004
#> SRR1562742 5 0.1327 0.956 0.000 0.000 0 0.000 0.936 0.064
#> SRR1562743 5 0.1327 0.956 0.000 0.000 0 0.000 0.936 0.064
#> SRR1562744 5 0.1327 0.956 0.000 0.000 0 0.000 0.936 0.064
#> SRR1562745 5 0.1327 0.956 0.000 0.000 0 0.000 0.936 0.064
#> SRR1562746 5 0.1327 0.956 0.000 0.000 0 0.000 0.936 0.064
#> SRR1562747 5 0.1327 0.956 0.000 0.000 0 0.000 0.936 0.064
#> SRR1562748 6 0.3515 1.000 0.000 0.000 0 0.324 0.000 0.676
#> SRR1562749 6 0.3515 1.000 0.000 0.000 0 0.324 0.000 0.676
#> SRR1562750 6 0.3515 1.000 0.000 0.000 0 0.324 0.000 0.676
#> SRR1562751 6 0.3515 1.000 0.000 0.000 0 0.324 0.000 0.676
#> SRR1562752 6 0.3515 1.000 0.000 0.000 0 0.324 0.000 0.676
#> SRR1562753 6 0.3515 1.000 0.000 0.000 0 0.324 0.000 0.676
#> SRR1562754 4 0.0790 1.000 0.000 0.000 0 0.968 0.032 0.000
#> SRR1562755 4 0.0790 1.000 0.000 0.000 0 0.968 0.032 0.000
#> SRR1562756 4 0.0790 1.000 0.000 0.000 0 0.968 0.032 0.000
#> SRR1562757 4 0.0790 1.000 0.000 0.000 0 0.968 0.032 0.000
#> SRR1562758 4 0.0790 1.000 0.000 0.000 0 0.968 0.032 0.000
#> SRR1562759 4 0.0790 1.000 0.000 0.000 0 0.968 0.032 0.000
#> SRR1562792 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562793 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562794 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562795 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562796 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562797 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562798 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562799 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562800 1 0.0363 0.994 0.988 0.000 0 0.000 0.000 0.012
#> SRR1562801 1 0.0363 0.994 0.988 0.000 0 0.000 0.000 0.012
#> SRR1562802 1 0.0363 0.994 0.988 0.000 0 0.000 0.000 0.012
#> SRR1562803 1 0.0363 0.994 0.988 0.000 0 0.000 0.000 0.012
#> SRR1562804 1 0.0363 0.994 0.988 0.000 0 0.000 0.000 0.012
#> SRR1562805 1 0.0363 0.994 0.988 0.000 0 0.000 0.000 0.012
#> SRR1562806 1 0.0000 0.995 1.000 0.000 0 0.000 0.000 0.000
#> SRR1562807 1 0.0000 0.995 1.000 0.000 0 0.000 0.000 0.000
#> SRR1562808 1 0.0000 0.995 1.000 0.000 0 0.000 0.000 0.000
#> SRR1562809 1 0.0000 0.995 1.000 0.000 0 0.000 0.000 0.000
#> SRR1562810 1 0.0000 0.995 1.000 0.000 0 0.000 0.000 0.000
#> SRR1562811 1 0.0000 0.995 1.000 0.000 0 0.000 0.000 0.000
#> SRR1562812 1 0.0000 0.995 1.000 0.000 0 0.000 0.000 0.000
#> SRR1562813 1 0.0000 0.995 1.000 0.000 0 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15301 rows and 63 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.4624 0.538 0.538
#> 3 3 1.000 1.000 1.000 0.1239 0.943 0.893
#> 4 4 1.000 0.998 0.999 0.3432 0.822 0.629
#> 5 5 0.816 0.837 0.845 0.0723 0.975 0.919
#> 6 6 0.912 0.850 0.876 0.0927 0.840 0.493
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 4
There is also optional best \(k\) = 2 3 4 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1562718 2 0 1 0 1
#> SRR1562719 2 0 1 0 1
#> SRR1562720 2 0 1 0 1
#> SRR1562721 2 0 1 0 1
#> SRR1562723 2 0 1 0 1
#> SRR1562724 2 0 1 0 1
#> SRR1562725 2 0 1 0 1
#> SRR1562726 2 0 1 0 1
#> SRR1562727 2 0 1 0 1
#> SRR1562728 2 0 1 0 1
#> SRR1562729 2 0 1 0 1
#> SRR1562730 2 0 1 0 1
#> SRR1562731 2 0 1 0 1
#> SRR1562732 2 0 1 0 1
#> SRR1562733 2 0 1 0 1
#> SRR1562734 2 0 1 0 1
#> SRR1562735 2 0 1 0 1
#> SRR1562736 2 0 1 0 1
#> SRR1562737 2 0 1 0 1
#> SRR1562738 2 0 1 0 1
#> SRR1562739 2 0 1 0 1
#> SRR1562740 2 0 1 0 1
#> SRR1562741 2 0 1 0 1
#> SRR1562742 2 0 1 0 1
#> SRR1562743 2 0 1 0 1
#> SRR1562744 2 0 1 0 1
#> SRR1562745 2 0 1 0 1
#> SRR1562746 2 0 1 0 1
#> SRR1562747 2 0 1 0 1
#> SRR1562748 2 0 1 0 1
#> SRR1562749 2 0 1 0 1
#> SRR1562750 2 0 1 0 1
#> SRR1562751 2 0 1 0 1
#> SRR1562752 2 0 1 0 1
#> SRR1562753 2 0 1 0 1
#> SRR1562754 2 0 1 0 1
#> SRR1562755 2 0 1 0 1
#> SRR1562756 2 0 1 0 1
#> SRR1562757 2 0 1 0 1
#> SRR1562758 2 0 1 0 1
#> SRR1562759 2 0 1 0 1
#> SRR1562792 1 0 1 1 0
#> SRR1562793 1 0 1 1 0
#> SRR1562794 1 0 1 1 0
#> SRR1562795 1 0 1 1 0
#> SRR1562796 1 0 1 1 0
#> SRR1562797 1 0 1 1 0
#> SRR1562798 1 0 1 1 0
#> SRR1562799 1 0 1 1 0
#> SRR1562800 1 0 1 1 0
#> SRR1562801 1 0 1 1 0
#> SRR1562802 1 0 1 1 0
#> SRR1562803 1 0 1 1 0
#> SRR1562804 1 0 1 1 0
#> SRR1562805 1 0 1 1 0
#> SRR1562806 1 0 1 1 0
#> SRR1562807 1 0 1 1 0
#> SRR1562808 1 0 1 1 0
#> SRR1562809 1 0 1 1 0
#> SRR1562810 1 0 1 1 0
#> SRR1562811 1 0 1 1 0
#> SRR1562812 1 0 1 1 0
#> SRR1562813 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1562718 2 0 1 0 1 0
#> SRR1562719 2 0 1 0 1 0
#> SRR1562720 2 0 1 0 1 0
#> SRR1562721 2 0 1 0 1 0
#> SRR1562723 2 0 1 0 1 0
#> SRR1562724 2 0 1 0 1 0
#> SRR1562725 2 0 1 0 1 0
#> SRR1562726 2 0 1 0 1 0
#> SRR1562727 2 0 1 0 1 0
#> SRR1562728 2 0 1 0 1 0
#> SRR1562729 2 0 1 0 1 0
#> SRR1562730 2 0 1 0 1 0
#> SRR1562731 2 0 1 0 1 0
#> SRR1562732 2 0 1 0 1 0
#> SRR1562733 2 0 1 0 1 0
#> SRR1562734 2 0 1 0 1 0
#> SRR1562735 2 0 1 0 1 0
#> SRR1562736 2 0 1 0 1 0
#> SRR1562737 2 0 1 0 1 0
#> SRR1562738 2 0 1 0 1 0
#> SRR1562739 2 0 1 0 1 0
#> SRR1562740 2 0 1 0 1 0
#> SRR1562741 2 0 1 0 1 0
#> SRR1562742 2 0 1 0 1 0
#> SRR1562743 2 0 1 0 1 0
#> SRR1562744 2 0 1 0 1 0
#> SRR1562745 2 0 1 0 1 0
#> SRR1562746 2 0 1 0 1 0
#> SRR1562747 2 0 1 0 1 0
#> SRR1562748 2 0 1 0 1 0
#> SRR1562749 2 0 1 0 1 0
#> SRR1562750 2 0 1 0 1 0
#> SRR1562751 2 0 1 0 1 0
#> SRR1562752 2 0 1 0 1 0
#> SRR1562753 2 0 1 0 1 0
#> SRR1562754 2 0 1 0 1 0
#> SRR1562755 2 0 1 0 1 0
#> SRR1562756 2 0 1 0 1 0
#> SRR1562757 2 0 1 0 1 0
#> SRR1562758 2 0 1 0 1 0
#> SRR1562759 2 0 1 0 1 0
#> SRR1562792 3 0 1 0 0 1
#> SRR1562793 3 0 1 0 0 1
#> SRR1562794 3 0 1 0 0 1
#> SRR1562795 3 0 1 0 0 1
#> SRR1562796 3 0 1 0 0 1
#> SRR1562797 3 0 1 0 0 1
#> SRR1562798 3 0 1 0 0 1
#> SRR1562799 3 0 1 0 0 1
#> SRR1562800 1 0 1 1 0 0
#> SRR1562801 1 0 1 1 0 0
#> SRR1562802 1 0 1 1 0 0
#> SRR1562803 1 0 1 1 0 0
#> SRR1562804 1 0 1 1 0 0
#> SRR1562805 1 0 1 1 0 0
#> SRR1562806 1 0 1 1 0 0
#> SRR1562807 1 0 1 1 0 0
#> SRR1562808 1 0 1 1 0 0
#> SRR1562809 1 0 1 1 0 0
#> SRR1562810 1 0 1 1 0 0
#> SRR1562811 1 0 1 1 0 0
#> SRR1562812 1 0 1 1 0 0
#> SRR1562813 1 0 1 1 0 0
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1562718 2 0.0000 0.997 0 1.000 0 0.000
#> SRR1562719 2 0.0000 0.997 0 1.000 0 0.000
#> SRR1562720 2 0.0000 0.997 0 1.000 0 0.000
#> SRR1562721 2 0.0000 0.997 0 1.000 0 0.000
#> SRR1562723 2 0.0000 0.997 0 1.000 0 0.000
#> SRR1562724 2 0.0000 0.997 0 1.000 0 0.000
#> SRR1562725 2 0.0000 0.997 0 1.000 0 0.000
#> SRR1562726 2 0.0000 0.997 0 1.000 0 0.000
#> SRR1562727 2 0.0000 0.997 0 1.000 0 0.000
#> SRR1562728 2 0.0000 0.997 0 1.000 0 0.000
#> SRR1562729 2 0.0000 0.997 0 1.000 0 0.000
#> SRR1562730 2 0.0000 0.997 0 1.000 0 0.000
#> SRR1562731 2 0.0000 0.997 0 1.000 0 0.000
#> SRR1562732 2 0.0000 0.997 0 1.000 0 0.000
#> SRR1562733 2 0.0000 0.997 0 1.000 0 0.000
#> SRR1562734 2 0.0000 0.997 0 1.000 0 0.000
#> SRR1562735 2 0.0000 0.997 0 1.000 0 0.000
#> SRR1562736 2 0.0469 0.991 0 0.988 0 0.012
#> SRR1562737 2 0.0469 0.991 0 0.988 0 0.012
#> SRR1562738 2 0.0469 0.991 0 0.988 0 0.012
#> SRR1562739 2 0.0469 0.991 0 0.988 0 0.012
#> SRR1562740 2 0.0469 0.991 0 0.988 0 0.012
#> SRR1562741 2 0.0188 0.996 0 0.996 0 0.004
#> SRR1562742 2 0.0188 0.996 0 0.996 0 0.004
#> SRR1562743 2 0.0188 0.996 0 0.996 0 0.004
#> SRR1562744 2 0.0188 0.996 0 0.996 0 0.004
#> SRR1562745 2 0.0188 0.996 0 0.996 0 0.004
#> SRR1562746 2 0.0188 0.996 0 0.996 0 0.004
#> SRR1562747 2 0.0188 0.996 0 0.996 0 0.004
#> SRR1562748 4 0.0000 1.000 0 0.000 0 1.000
#> SRR1562749 4 0.0000 1.000 0 0.000 0 1.000
#> SRR1562750 4 0.0000 1.000 0 0.000 0 1.000
#> SRR1562751 4 0.0000 1.000 0 0.000 0 1.000
#> SRR1562752 4 0.0000 1.000 0 0.000 0 1.000
#> SRR1562753 4 0.0000 1.000 0 0.000 0 1.000
#> SRR1562754 4 0.0000 1.000 0 0.000 0 1.000
#> SRR1562755 4 0.0000 1.000 0 0.000 0 1.000
#> SRR1562756 4 0.0000 1.000 0 0.000 0 1.000
#> SRR1562757 4 0.0000 1.000 0 0.000 0 1.000
#> SRR1562758 4 0.0000 1.000 0 0.000 0 1.000
#> SRR1562759 4 0.0000 1.000 0 0.000 0 1.000
#> SRR1562792 3 0.0000 1.000 0 0.000 1 0.000
#> SRR1562793 3 0.0000 1.000 0 0.000 1 0.000
#> SRR1562794 3 0.0000 1.000 0 0.000 1 0.000
#> SRR1562795 3 0.0000 1.000 0 0.000 1 0.000
#> SRR1562796 3 0.0000 1.000 0 0.000 1 0.000
#> SRR1562797 3 0.0000 1.000 0 0.000 1 0.000
#> SRR1562798 3 0.0000 1.000 0 0.000 1 0.000
#> SRR1562799 3 0.0000 1.000 0 0.000 1 0.000
#> SRR1562800 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562801 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562802 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562803 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562804 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562805 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562806 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562807 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562808 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562809 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562810 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562811 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562812 1 0.0000 1.000 1 0.000 0 0.000
#> SRR1562813 1 0.0000 1.000 1 0.000 0 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1562718 2 0.0000 0.804 0.000 1.000 0 0.000 0.000
#> SRR1562719 2 0.0000 0.804 0.000 1.000 0 0.000 0.000
#> SRR1562720 2 0.0000 0.804 0.000 1.000 0 0.000 0.000
#> SRR1562721 2 0.0000 0.804 0.000 1.000 0 0.000 0.000
#> SRR1562723 2 0.0000 0.804 0.000 1.000 0 0.000 0.000
#> SRR1562724 2 0.0000 0.804 0.000 1.000 0 0.000 0.000
#> SRR1562725 2 0.0000 0.804 0.000 1.000 0 0.000 0.000
#> SRR1562726 2 0.0000 0.804 0.000 1.000 0 0.000 0.000
#> SRR1562727 2 0.0000 0.804 0.000 1.000 0 0.000 0.000
#> SRR1562728 2 0.0000 0.804 0.000 1.000 0 0.000 0.000
#> SRR1562729 2 0.0000 0.804 0.000 1.000 0 0.000 0.000
#> SRR1562730 2 0.0162 0.802 0.000 0.996 0 0.000 0.004
#> SRR1562731 2 0.0162 0.802 0.000 0.996 0 0.000 0.004
#> SRR1562732 2 0.0162 0.802 0.000 0.996 0 0.000 0.004
#> SRR1562733 2 0.0162 0.802 0.000 0.996 0 0.000 0.004
#> SRR1562734 2 0.0162 0.802 0.000 0.996 0 0.000 0.004
#> SRR1562735 2 0.0162 0.802 0.000 0.996 0 0.000 0.004
#> SRR1562736 2 0.4210 0.670 0.000 0.588 0 0.000 0.412
#> SRR1562737 2 0.4210 0.670 0.000 0.588 0 0.000 0.412
#> SRR1562738 2 0.4210 0.670 0.000 0.588 0 0.000 0.412
#> SRR1562739 2 0.4210 0.670 0.000 0.588 0 0.000 0.412
#> SRR1562740 2 0.4210 0.670 0.000 0.588 0 0.000 0.412
#> SRR1562741 2 0.4210 0.670 0.000 0.588 0 0.000 0.412
#> SRR1562742 2 0.4210 0.670 0.000 0.588 0 0.000 0.412
#> SRR1562743 2 0.4210 0.670 0.000 0.588 0 0.000 0.412
#> SRR1562744 2 0.4210 0.670 0.000 0.588 0 0.000 0.412
#> SRR1562745 2 0.4210 0.670 0.000 0.588 0 0.000 0.412
#> SRR1562746 2 0.4210 0.670 0.000 0.588 0 0.000 0.412
#> SRR1562747 2 0.4210 0.670 0.000 0.588 0 0.000 0.412
#> SRR1562748 4 0.0000 0.751 0.000 0.000 0 1.000 0.000
#> SRR1562749 4 0.0000 0.751 0.000 0.000 0 1.000 0.000
#> SRR1562750 4 0.0000 0.751 0.000 0.000 0 1.000 0.000
#> SRR1562751 4 0.0000 0.751 0.000 0.000 0 1.000 0.000
#> SRR1562752 4 0.0000 0.751 0.000 0.000 0 1.000 0.000
#> SRR1562753 4 0.0000 0.751 0.000 0.000 0 1.000 0.000
#> SRR1562754 4 0.4114 0.757 0.000 0.000 0 0.624 0.376
#> SRR1562755 4 0.4088 0.762 0.000 0.000 0 0.632 0.368
#> SRR1562756 4 0.4088 0.762 0.000 0.000 0 0.632 0.368
#> SRR1562757 4 0.4088 0.762 0.000 0.000 0 0.632 0.368
#> SRR1562758 4 0.4101 0.760 0.000 0.000 0 0.628 0.372
#> SRR1562759 4 0.4114 0.757 0.000 0.000 0 0.624 0.376
#> SRR1562792 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562793 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562794 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562795 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562796 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562797 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562798 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562799 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562800 5 0.4219 1.000 0.416 0.000 0 0.000 0.584
#> SRR1562801 5 0.4219 1.000 0.416 0.000 0 0.000 0.584
#> SRR1562802 5 0.4219 1.000 0.416 0.000 0 0.000 0.584
#> SRR1562803 5 0.4219 1.000 0.416 0.000 0 0.000 0.584
#> SRR1562804 5 0.4219 1.000 0.416 0.000 0 0.000 0.584
#> SRR1562805 5 0.4219 1.000 0.416 0.000 0 0.000 0.584
#> SRR1562806 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> SRR1562807 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> SRR1562808 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> SRR1562809 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> SRR1562810 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> SRR1562811 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> SRR1562812 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
#> SRR1562813 1 0.0000 1.000 1.000 0.000 0 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1562718 2 0.0000 0.898 0.000 1.000 0 0.000 0.000 0.0
#> SRR1562719 2 0.0000 0.898 0.000 1.000 0 0.000 0.000 0.0
#> SRR1562720 2 0.0000 0.898 0.000 1.000 0 0.000 0.000 0.0
#> SRR1562721 2 0.0000 0.898 0.000 1.000 0 0.000 0.000 0.0
#> SRR1562723 2 0.0000 0.898 0.000 1.000 0 0.000 0.000 0.0
#> SRR1562724 2 0.0000 0.898 0.000 1.000 0 0.000 0.000 0.0
#> SRR1562725 2 0.0000 0.898 0.000 1.000 0 0.000 0.000 0.0
#> SRR1562726 2 0.0000 0.898 0.000 1.000 0 0.000 0.000 0.0
#> SRR1562727 2 0.0000 0.898 0.000 1.000 0 0.000 0.000 0.0
#> SRR1562728 2 0.0000 0.898 0.000 1.000 0 0.000 0.000 0.0
#> SRR1562729 2 0.0000 0.898 0.000 1.000 0 0.000 0.000 0.0
#> SRR1562730 2 0.3428 0.800 0.304 0.696 0 0.000 0.000 0.0
#> SRR1562731 2 0.3428 0.800 0.304 0.696 0 0.000 0.000 0.0
#> SRR1562732 2 0.3428 0.800 0.304 0.696 0 0.000 0.000 0.0
#> SRR1562733 2 0.3428 0.800 0.304 0.696 0 0.000 0.000 0.0
#> SRR1562734 2 0.3428 0.800 0.304 0.696 0 0.000 0.000 0.0
#> SRR1562735 2 0.3428 0.800 0.304 0.696 0 0.000 0.000 0.0
#> SRR1562736 5 0.0865 0.782 0.000 0.036 0 0.000 0.964 0.0
#> SRR1562737 5 0.0865 0.782 0.000 0.036 0 0.000 0.964 0.0
#> SRR1562738 5 0.0865 0.782 0.000 0.036 0 0.000 0.964 0.0
#> SRR1562739 5 0.0865 0.782 0.000 0.036 0 0.000 0.964 0.0
#> SRR1562740 5 0.0865 0.782 0.000 0.036 0 0.000 0.964 0.0
#> SRR1562741 5 0.0865 0.782 0.000 0.036 0 0.000 0.964 0.0
#> SRR1562742 5 0.0865 0.782 0.000 0.036 0 0.000 0.964 0.0
#> SRR1562743 5 0.0865 0.782 0.000 0.036 0 0.000 0.964 0.0
#> SRR1562744 5 0.0865 0.782 0.000 0.036 0 0.000 0.964 0.0
#> SRR1562745 5 0.0865 0.782 0.000 0.036 0 0.000 0.964 0.0
#> SRR1562746 5 0.0865 0.782 0.000 0.036 0 0.000 0.964 0.0
#> SRR1562747 5 0.0865 0.782 0.000 0.036 0 0.000 0.964 0.0
#> SRR1562748 4 0.0000 1.000 0.000 0.000 0 1.000 0.000 0.0
#> SRR1562749 4 0.0000 1.000 0.000 0.000 0 1.000 0.000 0.0
#> SRR1562750 4 0.0000 1.000 0.000 0.000 0 1.000 0.000 0.0
#> SRR1562751 4 0.0000 1.000 0.000 0.000 0 1.000 0.000 0.0
#> SRR1562752 4 0.0000 1.000 0.000 0.000 0 1.000 0.000 0.0
#> SRR1562753 4 0.0000 1.000 0.000 0.000 0 1.000 0.000 0.0
#> SRR1562754 5 0.5255 0.256 0.096 0.000 0 0.428 0.476 0.0
#> SRR1562755 5 0.5259 0.243 0.096 0.000 0 0.436 0.468 0.0
#> SRR1562756 5 0.5259 0.243 0.096 0.000 0 0.436 0.468 0.0
#> SRR1562757 5 0.5259 0.243 0.096 0.000 0 0.436 0.468 0.0
#> SRR1562758 5 0.5259 0.243 0.096 0.000 0 0.436 0.468 0.0
#> SRR1562759 5 0.5257 0.250 0.096 0.000 0 0.432 0.472 0.0
#> SRR1562792 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.0
#> SRR1562793 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.0
#> SRR1562794 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.0
#> SRR1562795 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.0
#> SRR1562796 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.0
#> SRR1562797 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.0
#> SRR1562798 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.0
#> SRR1562799 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.0
#> SRR1562800 6 0.0000 1.000 0.000 0.000 0 0.000 0.000 1.0
#> SRR1562801 6 0.0000 1.000 0.000 0.000 0 0.000 0.000 1.0
#> SRR1562802 6 0.0000 1.000 0.000 0.000 0 0.000 0.000 1.0
#> SRR1562803 6 0.0000 1.000 0.000 0.000 0 0.000 0.000 1.0
#> SRR1562804 6 0.0000 1.000 0.000 0.000 0 0.000 0.000 1.0
#> SRR1562805 6 0.0000 1.000 0.000 0.000 0 0.000 0.000 1.0
#> SRR1562806 1 0.3756 1.000 0.600 0.000 0 0.000 0.000 0.4
#> SRR1562807 1 0.3756 1.000 0.600 0.000 0 0.000 0.000 0.4
#> SRR1562808 1 0.3756 1.000 0.600 0.000 0 0.000 0.000 0.4
#> SRR1562809 1 0.3756 1.000 0.600 0.000 0 0.000 0.000 0.4
#> SRR1562810 1 0.3756 1.000 0.600 0.000 0 0.000 0.000 0.4
#> SRR1562811 1 0.3756 1.000 0.600 0.000 0 0.000 0.000 0.4
#> SRR1562812 1 0.3756 1.000 0.600 0.000 0 0.000 0.000 0.4
#> SRR1562813 1 0.3756 1.000 0.600 0.000 0 0.000 0.000 0.4
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15301 rows and 63 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.481 0.940 0.935 0.4000 0.538 0.538
#> 3 3 0.619 0.921 0.923 0.3244 0.943 0.893
#> 4 4 1.000 0.991 0.992 0.3727 0.791 0.565
#> 5 5 1.000 0.999 1.000 0.1029 0.926 0.729
#> 6 6 0.942 0.971 0.955 0.0333 0.975 0.876
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 4 5
There is also optional best \(k\) = 4 5 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1562718 2 0.000 1.000 0.000 1.000
#> SRR1562719 2 0.000 1.000 0.000 1.000
#> SRR1562720 2 0.000 1.000 0.000 1.000
#> SRR1562721 2 0.000 1.000 0.000 1.000
#> SRR1562723 2 0.000 1.000 0.000 1.000
#> SRR1562724 2 0.000 1.000 0.000 1.000
#> SRR1562725 2 0.000 1.000 0.000 1.000
#> SRR1562726 2 0.000 1.000 0.000 1.000
#> SRR1562727 2 0.000 1.000 0.000 1.000
#> SRR1562728 2 0.000 1.000 0.000 1.000
#> SRR1562729 2 0.000 1.000 0.000 1.000
#> SRR1562730 2 0.000 1.000 0.000 1.000
#> SRR1562731 2 0.000 1.000 0.000 1.000
#> SRR1562732 2 0.000 1.000 0.000 1.000
#> SRR1562733 2 0.000 1.000 0.000 1.000
#> SRR1562734 2 0.000 1.000 0.000 1.000
#> SRR1562735 2 0.000 1.000 0.000 1.000
#> SRR1562736 2 0.000 1.000 0.000 1.000
#> SRR1562737 2 0.000 1.000 0.000 1.000
#> SRR1562738 2 0.000 1.000 0.000 1.000
#> SRR1562739 2 0.000 1.000 0.000 1.000
#> SRR1562740 2 0.000 1.000 0.000 1.000
#> SRR1562741 2 0.000 1.000 0.000 1.000
#> SRR1562742 2 0.000 1.000 0.000 1.000
#> SRR1562743 2 0.000 1.000 0.000 1.000
#> SRR1562744 2 0.000 1.000 0.000 1.000
#> SRR1562745 2 0.000 1.000 0.000 1.000
#> SRR1562746 2 0.000 1.000 0.000 1.000
#> SRR1562747 2 0.000 1.000 0.000 1.000
#> SRR1562748 2 0.000 1.000 0.000 1.000
#> SRR1562749 2 0.000 1.000 0.000 1.000
#> SRR1562750 2 0.000 1.000 0.000 1.000
#> SRR1562751 2 0.000 1.000 0.000 1.000
#> SRR1562752 2 0.000 1.000 0.000 1.000
#> SRR1562753 2 0.000 1.000 0.000 1.000
#> SRR1562754 2 0.000 1.000 0.000 1.000
#> SRR1562755 2 0.000 1.000 0.000 1.000
#> SRR1562756 2 0.000 1.000 0.000 1.000
#> SRR1562757 2 0.000 1.000 0.000 1.000
#> SRR1562758 2 0.000 1.000 0.000 1.000
#> SRR1562759 2 0.000 1.000 0.000 1.000
#> SRR1562792 1 0.839 0.743 0.732 0.268
#> SRR1562793 1 0.839 0.743 0.732 0.268
#> SRR1562794 1 0.839 0.743 0.732 0.268
#> SRR1562795 1 0.839 0.743 0.732 0.268
#> SRR1562796 1 0.839 0.743 0.732 0.268
#> SRR1562797 1 0.839 0.743 0.732 0.268
#> SRR1562798 1 0.839 0.743 0.732 0.268
#> SRR1562799 1 0.839 0.743 0.732 0.268
#> SRR1562800 1 0.584 0.877 0.860 0.140
#> SRR1562801 1 0.584 0.877 0.860 0.140
#> SRR1562802 1 0.584 0.877 0.860 0.140
#> SRR1562803 1 0.584 0.877 0.860 0.140
#> SRR1562804 1 0.584 0.877 0.860 0.140
#> SRR1562805 1 0.584 0.877 0.860 0.140
#> SRR1562806 1 0.584 0.877 0.860 0.140
#> SRR1562807 1 0.584 0.877 0.860 0.140
#> SRR1562808 1 0.584 0.877 0.860 0.140
#> SRR1562809 1 0.584 0.877 0.860 0.140
#> SRR1562810 1 0.584 0.877 0.860 0.140
#> SRR1562811 1 0.584 0.877 0.860 0.140
#> SRR1562812 1 0.584 0.877 0.860 0.140
#> SRR1562813 1 0.584 0.877 0.860 0.140
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1562718 2 0.4399 0.863 0.188 0.812 0.000
#> SRR1562719 2 0.4399 0.863 0.188 0.812 0.000
#> SRR1562720 2 0.4399 0.863 0.188 0.812 0.000
#> SRR1562721 2 0.4399 0.863 0.188 0.812 0.000
#> SRR1562723 2 0.4399 0.863 0.188 0.812 0.000
#> SRR1562724 2 0.4399 0.863 0.188 0.812 0.000
#> SRR1562725 2 0.4399 0.863 0.188 0.812 0.000
#> SRR1562726 2 0.4399 0.863 0.188 0.812 0.000
#> SRR1562727 2 0.4399 0.863 0.188 0.812 0.000
#> SRR1562728 2 0.4399 0.863 0.188 0.812 0.000
#> SRR1562729 2 0.4399 0.863 0.188 0.812 0.000
#> SRR1562730 2 0.4399 0.863 0.188 0.812 0.000
#> SRR1562731 2 0.4399 0.863 0.188 0.812 0.000
#> SRR1562732 2 0.4399 0.863 0.188 0.812 0.000
#> SRR1562733 2 0.4399 0.863 0.188 0.812 0.000
#> SRR1562734 2 0.4399 0.863 0.188 0.812 0.000
#> SRR1562735 2 0.4399 0.863 0.188 0.812 0.000
#> SRR1562736 2 0.0747 0.889 0.000 0.984 0.016
#> SRR1562737 2 0.0747 0.889 0.000 0.984 0.016
#> SRR1562738 2 0.0747 0.889 0.000 0.984 0.016
#> SRR1562739 2 0.0747 0.889 0.000 0.984 0.016
#> SRR1562740 2 0.0747 0.889 0.000 0.984 0.016
#> SRR1562741 2 0.0747 0.889 0.000 0.984 0.016
#> SRR1562742 2 0.0747 0.889 0.000 0.984 0.016
#> SRR1562743 2 0.0747 0.889 0.000 0.984 0.016
#> SRR1562744 2 0.0747 0.889 0.000 0.984 0.016
#> SRR1562745 2 0.0747 0.889 0.000 0.984 0.016
#> SRR1562746 2 0.0747 0.889 0.000 0.984 0.016
#> SRR1562747 2 0.0747 0.889 0.000 0.984 0.016
#> SRR1562748 2 0.0592 0.888 0.012 0.988 0.000
#> SRR1562749 2 0.0592 0.888 0.012 0.988 0.000
#> SRR1562750 2 0.0592 0.888 0.012 0.988 0.000
#> SRR1562751 2 0.0592 0.888 0.012 0.988 0.000
#> SRR1562752 2 0.0592 0.888 0.012 0.988 0.000
#> SRR1562753 2 0.0592 0.888 0.012 0.988 0.000
#> SRR1562754 2 0.0592 0.888 0.012 0.988 0.000
#> SRR1562755 2 0.0592 0.888 0.012 0.988 0.000
#> SRR1562756 2 0.0592 0.888 0.012 0.988 0.000
#> SRR1562757 2 0.0592 0.888 0.012 0.988 0.000
#> SRR1562758 2 0.0592 0.888 0.012 0.988 0.000
#> SRR1562759 2 0.0592 0.888 0.012 0.988 0.000
#> SRR1562792 3 0.0000 1.000 0.000 0.000 1.000
#> SRR1562793 3 0.0000 1.000 0.000 0.000 1.000
#> SRR1562794 3 0.0000 1.000 0.000 0.000 1.000
#> SRR1562795 3 0.0000 1.000 0.000 0.000 1.000
#> SRR1562796 3 0.0000 1.000 0.000 0.000 1.000
#> SRR1562797 3 0.0000 1.000 0.000 0.000 1.000
#> SRR1562798 3 0.0000 1.000 0.000 0.000 1.000
#> SRR1562799 3 0.0000 1.000 0.000 0.000 1.000
#> SRR1562800 1 0.4399 1.000 0.812 0.188 0.000
#> SRR1562801 1 0.4399 1.000 0.812 0.188 0.000
#> SRR1562802 1 0.4399 1.000 0.812 0.188 0.000
#> SRR1562803 1 0.4399 1.000 0.812 0.188 0.000
#> SRR1562804 1 0.4399 1.000 0.812 0.188 0.000
#> SRR1562805 1 0.4399 1.000 0.812 0.188 0.000
#> SRR1562806 1 0.4399 1.000 0.812 0.188 0.000
#> SRR1562807 1 0.4399 1.000 0.812 0.188 0.000
#> SRR1562808 1 0.4399 1.000 0.812 0.188 0.000
#> SRR1562809 1 0.4399 1.000 0.812 0.188 0.000
#> SRR1562810 1 0.4399 1.000 0.812 0.188 0.000
#> SRR1562811 1 0.4399 1.000 0.812 0.188 0.000
#> SRR1562812 1 0.4399 1.000 0.812 0.188 0.000
#> SRR1562813 1 0.4399 1.000 0.812 0.188 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1562718 2 0.000 1.000 0 1.00 0 0.00
#> SRR1562719 2 0.000 1.000 0 1.00 0 0.00
#> SRR1562720 2 0.000 1.000 0 1.00 0 0.00
#> SRR1562721 2 0.000 1.000 0 1.00 0 0.00
#> SRR1562723 2 0.000 1.000 0 1.00 0 0.00
#> SRR1562724 2 0.000 1.000 0 1.00 0 0.00
#> SRR1562725 2 0.000 1.000 0 1.00 0 0.00
#> SRR1562726 2 0.000 1.000 0 1.00 0 0.00
#> SRR1562727 2 0.000 1.000 0 1.00 0 0.00
#> SRR1562728 2 0.000 1.000 0 1.00 0 0.00
#> SRR1562729 2 0.000 1.000 0 1.00 0 0.00
#> SRR1562730 2 0.000 1.000 0 1.00 0 0.00
#> SRR1562731 2 0.000 1.000 0 1.00 0 0.00
#> SRR1562732 2 0.000 1.000 0 1.00 0 0.00
#> SRR1562733 2 0.000 1.000 0 1.00 0 0.00
#> SRR1562734 2 0.000 1.000 0 1.00 0 0.00
#> SRR1562735 2 0.000 1.000 0 1.00 0 0.00
#> SRR1562736 4 0.121 0.976 0 0.04 0 0.96
#> SRR1562737 4 0.121 0.976 0 0.04 0 0.96
#> SRR1562738 4 0.121 0.976 0 0.04 0 0.96
#> SRR1562739 4 0.121 0.976 0 0.04 0 0.96
#> SRR1562740 4 0.121 0.976 0 0.04 0 0.96
#> SRR1562741 4 0.121 0.976 0 0.04 0 0.96
#> SRR1562742 4 0.121 0.976 0 0.04 0 0.96
#> SRR1562743 4 0.121 0.976 0 0.04 0 0.96
#> SRR1562744 4 0.121 0.976 0 0.04 0 0.96
#> SRR1562745 4 0.121 0.976 0 0.04 0 0.96
#> SRR1562746 4 0.121 0.976 0 0.04 0 0.96
#> SRR1562747 4 0.121 0.976 0 0.04 0 0.96
#> SRR1562748 4 0.000 0.976 0 0.00 0 1.00
#> SRR1562749 4 0.000 0.976 0 0.00 0 1.00
#> SRR1562750 4 0.000 0.976 0 0.00 0 1.00
#> SRR1562751 4 0.000 0.976 0 0.00 0 1.00
#> SRR1562752 4 0.000 0.976 0 0.00 0 1.00
#> SRR1562753 4 0.000 0.976 0 0.00 0 1.00
#> SRR1562754 4 0.000 0.976 0 0.00 0 1.00
#> SRR1562755 4 0.000 0.976 0 0.00 0 1.00
#> SRR1562756 4 0.000 0.976 0 0.00 0 1.00
#> SRR1562757 4 0.000 0.976 0 0.00 0 1.00
#> SRR1562758 4 0.000 0.976 0 0.00 0 1.00
#> SRR1562759 4 0.000 0.976 0 0.00 0 1.00
#> SRR1562792 3 0.000 1.000 0 0.00 1 0.00
#> SRR1562793 3 0.000 1.000 0 0.00 1 0.00
#> SRR1562794 3 0.000 1.000 0 0.00 1 0.00
#> SRR1562795 3 0.000 1.000 0 0.00 1 0.00
#> SRR1562796 3 0.000 1.000 0 0.00 1 0.00
#> SRR1562797 3 0.000 1.000 0 0.00 1 0.00
#> SRR1562798 3 0.000 1.000 0 0.00 1 0.00
#> SRR1562799 3 0.000 1.000 0 0.00 1 0.00
#> SRR1562800 1 0.000 1.000 1 0.00 0 0.00
#> SRR1562801 1 0.000 1.000 1 0.00 0 0.00
#> SRR1562802 1 0.000 1.000 1 0.00 0 0.00
#> SRR1562803 1 0.000 1.000 1 0.00 0 0.00
#> SRR1562804 1 0.000 1.000 1 0.00 0 0.00
#> SRR1562805 1 0.000 1.000 1 0.00 0 0.00
#> SRR1562806 1 0.000 1.000 1 0.00 0 0.00
#> SRR1562807 1 0.000 1.000 1 0.00 0 0.00
#> SRR1562808 1 0.000 1.000 1 0.00 0 0.00
#> SRR1562809 1 0.000 1.000 1 0.00 0 0.00
#> SRR1562810 1 0.000 1.000 1 0.00 0 0.00
#> SRR1562811 1 0.000 1.000 1 0.00 0 0.00
#> SRR1562812 1 0.000 1.000 1 0.00 0 0.00
#> SRR1562813 1 0.000 1.000 1 0.00 0 0.00
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1562718 2 0.0162 0.997 0 0.996 0 0 0.004
#> SRR1562719 2 0.0162 0.997 0 0.996 0 0 0.004
#> SRR1562720 2 0.0162 0.997 0 0.996 0 0 0.004
#> SRR1562721 2 0.0162 0.997 0 0.996 0 0 0.004
#> SRR1562723 2 0.0162 0.997 0 0.996 0 0 0.004
#> SRR1562724 2 0.0000 0.999 0 1.000 0 0 0.000
#> SRR1562725 2 0.0000 0.999 0 1.000 0 0 0.000
#> SRR1562726 2 0.0000 0.999 0 1.000 0 0 0.000
#> SRR1562727 2 0.0000 0.999 0 1.000 0 0 0.000
#> SRR1562728 2 0.0000 0.999 0 1.000 0 0 0.000
#> SRR1562729 2 0.0000 0.999 0 1.000 0 0 0.000
#> SRR1562730 2 0.0000 0.999 0 1.000 0 0 0.000
#> SRR1562731 2 0.0000 0.999 0 1.000 0 0 0.000
#> SRR1562732 2 0.0000 0.999 0 1.000 0 0 0.000
#> SRR1562733 2 0.0000 0.999 0 1.000 0 0 0.000
#> SRR1562734 2 0.0000 0.999 0 1.000 0 0 0.000
#> SRR1562735 2 0.0000 0.999 0 1.000 0 0 0.000
#> SRR1562736 5 0.0000 1.000 0 0.000 0 0 1.000
#> SRR1562737 5 0.0000 1.000 0 0.000 0 0 1.000
#> SRR1562738 5 0.0000 1.000 0 0.000 0 0 1.000
#> SRR1562739 5 0.0000 1.000 0 0.000 0 0 1.000
#> SRR1562740 5 0.0000 1.000 0 0.000 0 0 1.000
#> SRR1562741 5 0.0000 1.000 0 0.000 0 0 1.000
#> SRR1562742 5 0.0000 1.000 0 0.000 0 0 1.000
#> SRR1562743 5 0.0000 1.000 0 0.000 0 0 1.000
#> SRR1562744 5 0.0000 1.000 0 0.000 0 0 1.000
#> SRR1562745 5 0.0000 1.000 0 0.000 0 0 1.000
#> SRR1562746 5 0.0000 1.000 0 0.000 0 0 1.000
#> SRR1562747 5 0.0000 1.000 0 0.000 0 0 1.000
#> SRR1562748 4 0.0000 1.000 0 0.000 0 1 0.000
#> SRR1562749 4 0.0000 1.000 0 0.000 0 1 0.000
#> SRR1562750 4 0.0000 1.000 0 0.000 0 1 0.000
#> SRR1562751 4 0.0000 1.000 0 0.000 0 1 0.000
#> SRR1562752 4 0.0000 1.000 0 0.000 0 1 0.000
#> SRR1562753 4 0.0000 1.000 0 0.000 0 1 0.000
#> SRR1562754 4 0.0000 1.000 0 0.000 0 1 0.000
#> SRR1562755 4 0.0000 1.000 0 0.000 0 1 0.000
#> SRR1562756 4 0.0000 1.000 0 0.000 0 1 0.000
#> SRR1562757 4 0.0000 1.000 0 0.000 0 1 0.000
#> SRR1562758 4 0.0000 1.000 0 0.000 0 1 0.000
#> SRR1562759 4 0.0000 1.000 0 0.000 0 1 0.000
#> SRR1562792 3 0.0000 1.000 0 0.000 1 0 0.000
#> SRR1562793 3 0.0000 1.000 0 0.000 1 0 0.000
#> SRR1562794 3 0.0000 1.000 0 0.000 1 0 0.000
#> SRR1562795 3 0.0000 1.000 0 0.000 1 0 0.000
#> SRR1562796 3 0.0000 1.000 0 0.000 1 0 0.000
#> SRR1562797 3 0.0000 1.000 0 0.000 1 0 0.000
#> SRR1562798 3 0.0000 1.000 0 0.000 1 0 0.000
#> SRR1562799 3 0.0000 1.000 0 0.000 1 0 0.000
#> SRR1562800 1 0.0000 1.000 1 0.000 0 0 0.000
#> SRR1562801 1 0.0000 1.000 1 0.000 0 0 0.000
#> SRR1562802 1 0.0000 1.000 1 0.000 0 0 0.000
#> SRR1562803 1 0.0000 1.000 1 0.000 0 0 0.000
#> SRR1562804 1 0.0000 1.000 1 0.000 0 0 0.000
#> SRR1562805 1 0.0000 1.000 1 0.000 0 0 0.000
#> SRR1562806 1 0.0000 1.000 1 0.000 0 0 0.000
#> SRR1562807 1 0.0000 1.000 1 0.000 0 0 0.000
#> SRR1562808 1 0.0000 1.000 1 0.000 0 0 0.000
#> SRR1562809 1 0.0000 1.000 1 0.000 0 0 0.000
#> SRR1562810 1 0.0000 1.000 1 0.000 0 0 0.000
#> SRR1562811 1 0.0000 1.000 1 0.000 0 0 0.000
#> SRR1562812 1 0.0000 1.000 1 0.000 0 0 0.000
#> SRR1562813 1 0.0000 1.000 1 0.000 0 0 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1562718 2 0.305 0.920 0.000 0.764 0 0 0 0.236
#> SRR1562719 2 0.305 0.920 0.000 0.764 0 0 0 0.236
#> SRR1562720 2 0.305 0.920 0.000 0.764 0 0 0 0.236
#> SRR1562721 2 0.305 0.920 0.000 0.764 0 0 0 0.236
#> SRR1562723 2 0.305 0.920 0.000 0.764 0 0 0 0.236
#> SRR1562724 2 0.305 0.920 0.000 0.764 0 0 0 0.236
#> SRR1562725 2 0.305 0.920 0.000 0.764 0 0 0 0.236
#> SRR1562726 2 0.305 0.920 0.000 0.764 0 0 0 0.236
#> SRR1562727 2 0.305 0.920 0.000 0.764 0 0 0 0.236
#> SRR1562728 2 0.305 0.920 0.000 0.764 0 0 0 0.236
#> SRR1562729 2 0.305 0.920 0.000 0.764 0 0 0 0.236
#> SRR1562730 2 0.000 0.846 0.000 1.000 0 0 0 0.000
#> SRR1562731 2 0.000 0.846 0.000 1.000 0 0 0 0.000
#> SRR1562732 2 0.000 0.846 0.000 1.000 0 0 0 0.000
#> SRR1562733 2 0.000 0.846 0.000 1.000 0 0 0 0.000
#> SRR1562734 2 0.000 0.846 0.000 1.000 0 0 0 0.000
#> SRR1562735 2 0.000 0.846 0.000 1.000 0 0 0 0.000
#> SRR1562736 5 0.000 1.000 0.000 0.000 0 0 1 0.000
#> SRR1562737 5 0.000 1.000 0.000 0.000 0 0 1 0.000
#> SRR1562738 5 0.000 1.000 0.000 0.000 0 0 1 0.000
#> SRR1562739 5 0.000 1.000 0.000 0.000 0 0 1 0.000
#> SRR1562740 5 0.000 1.000 0.000 0.000 0 0 1 0.000
#> SRR1562741 5 0.000 1.000 0.000 0.000 0 0 1 0.000
#> SRR1562742 5 0.000 1.000 0.000 0.000 0 0 1 0.000
#> SRR1562743 5 0.000 1.000 0.000 0.000 0 0 1 0.000
#> SRR1562744 5 0.000 1.000 0.000 0.000 0 0 1 0.000
#> SRR1562745 5 0.000 1.000 0.000 0.000 0 0 1 0.000
#> SRR1562746 5 0.000 1.000 0.000 0.000 0 0 1 0.000
#> SRR1562747 5 0.000 1.000 0.000 0.000 0 0 1 0.000
#> SRR1562748 4 0.000 1.000 0.000 0.000 0 1 0 0.000
#> SRR1562749 4 0.000 1.000 0.000 0.000 0 1 0 0.000
#> SRR1562750 4 0.000 1.000 0.000 0.000 0 1 0 0.000
#> SRR1562751 4 0.000 1.000 0.000 0.000 0 1 0 0.000
#> SRR1562752 4 0.000 1.000 0.000 0.000 0 1 0 0.000
#> SRR1562753 4 0.000 1.000 0.000 0.000 0 1 0 0.000
#> SRR1562754 4 0.000 1.000 0.000 0.000 0 1 0 0.000
#> SRR1562755 4 0.000 1.000 0.000 0.000 0 1 0 0.000
#> SRR1562756 4 0.000 1.000 0.000 0.000 0 1 0 0.000
#> SRR1562757 4 0.000 1.000 0.000 0.000 0 1 0 0.000
#> SRR1562758 4 0.000 1.000 0.000 0.000 0 1 0 0.000
#> SRR1562759 4 0.000 1.000 0.000 0.000 0 1 0 0.000
#> SRR1562792 3 0.000 1.000 0.000 0.000 1 0 0 0.000
#> SRR1562793 3 0.000 1.000 0.000 0.000 1 0 0 0.000
#> SRR1562794 3 0.000 1.000 0.000 0.000 1 0 0 0.000
#> SRR1562795 3 0.000 1.000 0.000 0.000 1 0 0 0.000
#> SRR1562796 3 0.000 1.000 0.000 0.000 1 0 0 0.000
#> SRR1562797 3 0.000 1.000 0.000 0.000 1 0 0 0.000
#> SRR1562798 3 0.000 1.000 0.000 0.000 1 0 0 0.000
#> SRR1562799 3 0.000 1.000 0.000 0.000 1 0 0 0.000
#> SRR1562800 6 0.305 1.000 0.236 0.000 0 0 0 0.764
#> SRR1562801 6 0.305 1.000 0.236 0.000 0 0 0 0.764
#> SRR1562802 6 0.305 1.000 0.236 0.000 0 0 0 0.764
#> SRR1562803 6 0.305 1.000 0.236 0.000 0 0 0 0.764
#> SRR1562804 6 0.305 1.000 0.236 0.000 0 0 0 0.764
#> SRR1562805 6 0.305 1.000 0.236 0.000 0 0 0 0.764
#> SRR1562806 1 0.000 1.000 1.000 0.000 0 0 0 0.000
#> SRR1562807 1 0.000 1.000 1.000 0.000 0 0 0 0.000
#> SRR1562808 1 0.000 1.000 1.000 0.000 0 0 0 0.000
#> SRR1562809 1 0.000 1.000 1.000 0.000 0 0 0 0.000
#> SRR1562810 1 0.000 1.000 1.000 0.000 0 0 0 0.000
#> SRR1562811 1 0.000 1.000 1.000 0.000 0 0 0 0.000
#> SRR1562812 1 0.000 1.000 1.000 0.000 0 0 0 0.000
#> SRR1562813 1 0.000 1.000 1.000 0.000 0 0 0 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15301 rows and 63 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 4.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.4624 0.538 0.538
#> 3 3 0.766 0.953 0.938 0.1747 0.943 0.893
#> 4 4 0.959 0.959 0.967 0.3204 0.788 0.559
#> 5 5 0.803 0.891 0.892 0.0901 0.892 0.626
#> 6 6 0.802 0.703 0.821 0.0438 0.990 0.948
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2
There is also optional best \(k\) = 2 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1562718 2 0 1 0 1
#> SRR1562719 2 0 1 0 1
#> SRR1562720 2 0 1 0 1
#> SRR1562721 2 0 1 0 1
#> SRR1562723 2 0 1 0 1
#> SRR1562724 2 0 1 0 1
#> SRR1562725 2 0 1 0 1
#> SRR1562726 2 0 1 0 1
#> SRR1562727 2 0 1 0 1
#> SRR1562728 2 0 1 0 1
#> SRR1562729 2 0 1 0 1
#> SRR1562730 2 0 1 0 1
#> SRR1562731 2 0 1 0 1
#> SRR1562732 2 0 1 0 1
#> SRR1562733 2 0 1 0 1
#> SRR1562734 2 0 1 0 1
#> SRR1562735 2 0 1 0 1
#> SRR1562736 2 0 1 0 1
#> SRR1562737 2 0 1 0 1
#> SRR1562738 2 0 1 0 1
#> SRR1562739 2 0 1 0 1
#> SRR1562740 2 0 1 0 1
#> SRR1562741 2 0 1 0 1
#> SRR1562742 2 0 1 0 1
#> SRR1562743 2 0 1 0 1
#> SRR1562744 2 0 1 0 1
#> SRR1562745 2 0 1 0 1
#> SRR1562746 2 0 1 0 1
#> SRR1562747 2 0 1 0 1
#> SRR1562748 2 0 1 0 1
#> SRR1562749 2 0 1 0 1
#> SRR1562750 2 0 1 0 1
#> SRR1562751 2 0 1 0 1
#> SRR1562752 2 0 1 0 1
#> SRR1562753 2 0 1 0 1
#> SRR1562754 2 0 1 0 1
#> SRR1562755 2 0 1 0 1
#> SRR1562756 2 0 1 0 1
#> SRR1562757 2 0 1 0 1
#> SRR1562758 2 0 1 0 1
#> SRR1562759 2 0 1 0 1
#> SRR1562792 1 0 1 1 0
#> SRR1562793 1 0 1 1 0
#> SRR1562794 1 0 1 1 0
#> SRR1562795 1 0 1 1 0
#> SRR1562796 1 0 1 1 0
#> SRR1562797 1 0 1 1 0
#> SRR1562798 1 0 1 1 0
#> SRR1562799 1 0 1 1 0
#> SRR1562800 1 0 1 1 0
#> SRR1562801 1 0 1 1 0
#> SRR1562802 1 0 1 1 0
#> SRR1562803 1 0 1 1 0
#> SRR1562804 1 0 1 1 0
#> SRR1562805 1 0 1 1 0
#> SRR1562806 1 0 1 1 0
#> SRR1562807 1 0 1 1 0
#> SRR1562808 1 0 1 1 0
#> SRR1562809 1 0 1 1 0
#> SRR1562810 1 0 1 1 0
#> SRR1562811 1 0 1 1 0
#> SRR1562812 1 0 1 1 0
#> SRR1562813 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1562718 2 0.000 0.942 0.000 1.000 0.000
#> SRR1562719 2 0.000 0.942 0.000 1.000 0.000
#> SRR1562720 2 0.000 0.942 0.000 1.000 0.000
#> SRR1562721 2 0.000 0.942 0.000 1.000 0.000
#> SRR1562723 2 0.000 0.942 0.000 1.000 0.000
#> SRR1562724 2 0.000 0.942 0.000 1.000 0.000
#> SRR1562725 2 0.000 0.942 0.000 1.000 0.000
#> SRR1562726 2 0.000 0.942 0.000 1.000 0.000
#> SRR1562727 2 0.000 0.942 0.000 1.000 0.000
#> SRR1562728 2 0.000 0.942 0.000 1.000 0.000
#> SRR1562729 2 0.000 0.942 0.000 1.000 0.000
#> SRR1562730 2 0.000 0.942 0.000 1.000 0.000
#> SRR1562731 2 0.000 0.942 0.000 1.000 0.000
#> SRR1562732 2 0.000 0.942 0.000 1.000 0.000
#> SRR1562733 2 0.000 0.942 0.000 1.000 0.000
#> SRR1562734 2 0.000 0.942 0.000 1.000 0.000
#> SRR1562735 2 0.000 0.942 0.000 1.000 0.000
#> SRR1562736 2 0.263 0.928 0.000 0.916 0.084
#> SRR1562737 2 0.304 0.924 0.000 0.896 0.104
#> SRR1562738 2 0.319 0.921 0.000 0.888 0.112
#> SRR1562739 2 0.245 0.929 0.000 0.924 0.076
#> SRR1562740 2 0.304 0.923 0.000 0.896 0.104
#> SRR1562741 2 0.271 0.927 0.000 0.912 0.088
#> SRR1562742 2 0.000 0.942 0.000 1.000 0.000
#> SRR1562743 2 0.000 0.942 0.000 1.000 0.000
#> SRR1562744 2 0.000 0.942 0.000 1.000 0.000
#> SRR1562745 2 0.000 0.942 0.000 1.000 0.000
#> SRR1562746 2 0.000 0.942 0.000 1.000 0.000
#> SRR1562747 2 0.000 0.942 0.000 1.000 0.000
#> SRR1562748 2 0.412 0.900 0.000 0.832 0.168
#> SRR1562749 2 0.412 0.900 0.000 0.832 0.168
#> SRR1562750 2 0.412 0.900 0.000 0.832 0.168
#> SRR1562751 2 0.412 0.900 0.000 0.832 0.168
#> SRR1562752 2 0.412 0.900 0.000 0.832 0.168
#> SRR1562753 2 0.412 0.900 0.000 0.832 0.168
#> SRR1562754 2 0.412 0.900 0.000 0.832 0.168
#> SRR1562755 2 0.412 0.900 0.000 0.832 0.168
#> SRR1562756 2 0.412 0.900 0.000 0.832 0.168
#> SRR1562757 2 0.412 0.900 0.000 0.832 0.168
#> SRR1562758 2 0.412 0.900 0.000 0.832 0.168
#> SRR1562759 2 0.412 0.900 0.000 0.832 0.168
#> SRR1562792 3 0.412 1.000 0.168 0.000 0.832
#> SRR1562793 3 0.412 1.000 0.168 0.000 0.832
#> SRR1562794 3 0.412 1.000 0.168 0.000 0.832
#> SRR1562795 3 0.412 1.000 0.168 0.000 0.832
#> SRR1562796 3 0.412 1.000 0.168 0.000 0.832
#> SRR1562797 3 0.412 1.000 0.168 0.000 0.832
#> SRR1562798 3 0.412 1.000 0.168 0.000 0.832
#> SRR1562799 3 0.412 1.000 0.168 0.000 0.832
#> SRR1562800 1 0.000 1.000 1.000 0.000 0.000
#> SRR1562801 1 0.000 1.000 1.000 0.000 0.000
#> SRR1562802 1 0.000 1.000 1.000 0.000 0.000
#> SRR1562803 1 0.000 1.000 1.000 0.000 0.000
#> SRR1562804 1 0.000 1.000 1.000 0.000 0.000
#> SRR1562805 1 0.000 1.000 1.000 0.000 0.000
#> SRR1562806 1 0.000 1.000 1.000 0.000 0.000
#> SRR1562807 1 0.000 1.000 1.000 0.000 0.000
#> SRR1562808 1 0.000 1.000 1.000 0.000 0.000
#> SRR1562809 1 0.000 1.000 1.000 0.000 0.000
#> SRR1562810 1 0.000 1.000 1.000 0.000 0.000
#> SRR1562811 1 0.000 1.000 1.000 0.000 0.000
#> SRR1562812 1 0.000 1.000 1.000 0.000 0.000
#> SRR1562813 1 0.000 1.000 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1562718 2 0.0000 0.994 0.000 1.000 0.000 0.000
#> SRR1562719 2 0.0000 0.994 0.000 1.000 0.000 0.000
#> SRR1562720 2 0.0000 0.994 0.000 1.000 0.000 0.000
#> SRR1562721 2 0.0000 0.994 0.000 1.000 0.000 0.000
#> SRR1562723 2 0.0000 0.994 0.000 1.000 0.000 0.000
#> SRR1562724 2 0.0000 0.994 0.000 1.000 0.000 0.000
#> SRR1562725 2 0.0000 0.994 0.000 1.000 0.000 0.000
#> SRR1562726 2 0.0000 0.994 0.000 1.000 0.000 0.000
#> SRR1562727 2 0.0000 0.994 0.000 1.000 0.000 0.000
#> SRR1562728 2 0.0000 0.994 0.000 1.000 0.000 0.000
#> SRR1562729 2 0.0000 0.994 0.000 1.000 0.000 0.000
#> SRR1562730 2 0.0000 0.994 0.000 1.000 0.000 0.000
#> SRR1562731 2 0.0000 0.994 0.000 1.000 0.000 0.000
#> SRR1562732 2 0.0000 0.994 0.000 1.000 0.000 0.000
#> SRR1562733 2 0.0000 0.994 0.000 1.000 0.000 0.000
#> SRR1562734 2 0.0000 0.994 0.000 1.000 0.000 0.000
#> SRR1562735 2 0.0000 0.994 0.000 1.000 0.000 0.000
#> SRR1562736 4 0.4134 0.778 0.000 0.260 0.000 0.740
#> SRR1562737 4 0.3837 0.814 0.000 0.224 0.000 0.776
#> SRR1562738 4 0.3764 0.819 0.000 0.216 0.000 0.784
#> SRR1562739 4 0.4134 0.778 0.000 0.260 0.000 0.740
#> SRR1562740 4 0.3873 0.811 0.000 0.228 0.000 0.772
#> SRR1562741 4 0.4040 0.793 0.000 0.248 0.000 0.752
#> SRR1562742 2 0.0707 0.982 0.000 0.980 0.000 0.020
#> SRR1562743 2 0.0707 0.982 0.000 0.980 0.000 0.020
#> SRR1562744 2 0.0707 0.982 0.000 0.980 0.000 0.020
#> SRR1562745 2 0.0817 0.978 0.000 0.976 0.000 0.024
#> SRR1562746 2 0.0707 0.982 0.000 0.980 0.000 0.020
#> SRR1562747 2 0.0707 0.982 0.000 0.980 0.000 0.020
#> SRR1562748 4 0.1305 0.905 0.000 0.036 0.004 0.960
#> SRR1562749 4 0.1305 0.905 0.000 0.036 0.004 0.960
#> SRR1562750 4 0.1305 0.905 0.000 0.036 0.004 0.960
#> SRR1562751 4 0.1305 0.905 0.000 0.036 0.004 0.960
#> SRR1562752 4 0.1305 0.905 0.000 0.036 0.004 0.960
#> SRR1562753 4 0.1305 0.905 0.000 0.036 0.004 0.960
#> SRR1562754 4 0.1118 0.906 0.000 0.036 0.000 0.964
#> SRR1562755 4 0.1118 0.906 0.000 0.036 0.000 0.964
#> SRR1562756 4 0.1118 0.906 0.000 0.036 0.000 0.964
#> SRR1562757 4 0.1118 0.906 0.000 0.036 0.000 0.964
#> SRR1562758 4 0.1118 0.906 0.000 0.036 0.000 0.964
#> SRR1562759 4 0.1118 0.906 0.000 0.036 0.000 0.964
#> SRR1562792 3 0.0188 1.000 0.004 0.000 0.996 0.000
#> SRR1562793 3 0.0188 1.000 0.004 0.000 0.996 0.000
#> SRR1562794 3 0.0188 1.000 0.004 0.000 0.996 0.000
#> SRR1562795 3 0.0188 1.000 0.004 0.000 0.996 0.000
#> SRR1562796 3 0.0188 1.000 0.004 0.000 0.996 0.000
#> SRR1562797 3 0.0188 1.000 0.004 0.000 0.996 0.000
#> SRR1562798 3 0.0188 1.000 0.004 0.000 0.996 0.000
#> SRR1562799 3 0.0188 1.000 0.004 0.000 0.996 0.000
#> SRR1562800 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562801 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562802 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562803 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562804 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562805 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562806 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562807 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562808 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562809 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562810 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562811 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562812 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562813 1 0.0000 1.000 1.000 0.000 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1562718 2 0.191 0.948 0.00 0.908 0 0.000 0.092
#> SRR1562719 2 0.207 0.936 0.00 0.896 0 0.000 0.104
#> SRR1562720 2 0.185 0.951 0.00 0.912 0 0.000 0.088
#> SRR1562721 2 0.173 0.956 0.00 0.920 0 0.000 0.080
#> SRR1562723 2 0.191 0.948 0.00 0.908 0 0.000 0.092
#> SRR1562724 2 0.161 0.959 0.00 0.928 0 0.000 0.072
#> SRR1562725 2 0.161 0.959 0.00 0.928 0 0.000 0.072
#> SRR1562726 2 0.161 0.959 0.00 0.928 0 0.000 0.072
#> SRR1562727 2 0.161 0.959 0.00 0.928 0 0.000 0.072
#> SRR1562728 2 0.161 0.959 0.00 0.928 0 0.000 0.072
#> SRR1562729 2 0.161 0.959 0.00 0.928 0 0.000 0.072
#> SRR1562730 2 0.000 0.936 0.00 1.000 0 0.000 0.000
#> SRR1562731 2 0.000 0.936 0.00 1.000 0 0.000 0.000
#> SRR1562732 2 0.000 0.936 0.00 1.000 0 0.000 0.000
#> SRR1562733 2 0.000 0.936 0.00 1.000 0 0.000 0.000
#> SRR1562734 2 0.000 0.936 0.00 1.000 0 0.000 0.000
#> SRR1562735 2 0.000 0.936 0.00 1.000 0 0.000 0.000
#> SRR1562736 5 0.365 0.818 0.00 0.052 0 0.132 0.816
#> SRR1562737 5 0.362 0.816 0.00 0.048 0 0.136 0.816
#> SRR1562738 5 0.360 0.811 0.00 0.044 0 0.140 0.816
#> SRR1562739 5 0.360 0.811 0.00 0.044 0 0.140 0.816
#> SRR1562740 5 0.362 0.816 0.00 0.048 0 0.136 0.816
#> SRR1562741 5 0.360 0.811 0.00 0.044 0 0.140 0.816
#> SRR1562742 5 0.314 0.843 0.00 0.204 0 0.000 0.796
#> SRR1562743 5 0.318 0.842 0.00 0.208 0 0.000 0.792
#> SRR1562744 5 0.318 0.842 0.00 0.208 0 0.000 0.792
#> SRR1562745 5 0.314 0.843 0.00 0.204 0 0.000 0.796
#> SRR1562746 5 0.318 0.842 0.00 0.208 0 0.000 0.792
#> SRR1562747 5 0.318 0.842 0.00 0.208 0 0.000 0.792
#> SRR1562748 4 0.051 0.786 0.00 0.000 0 0.984 0.016
#> SRR1562749 4 0.051 0.786 0.00 0.000 0 0.984 0.016
#> SRR1562750 4 0.051 0.786 0.00 0.000 0 0.984 0.016
#> SRR1562751 4 0.051 0.786 0.00 0.000 0 0.984 0.016
#> SRR1562752 4 0.051 0.786 0.00 0.000 0 0.984 0.016
#> SRR1562753 4 0.051 0.786 0.00 0.000 0 0.984 0.016
#> SRR1562754 4 0.405 0.674 0.00 0.000 0 0.644 0.356
#> SRR1562755 4 0.391 0.716 0.00 0.000 0 0.676 0.324
#> SRR1562756 4 0.391 0.716 0.00 0.000 0 0.676 0.324
#> SRR1562757 4 0.388 0.721 0.00 0.000 0 0.684 0.316
#> SRR1562758 4 0.402 0.688 0.00 0.000 0 0.652 0.348
#> SRR1562759 4 0.397 0.704 0.00 0.000 0 0.664 0.336
#> SRR1562792 3 0.000 1.000 0.00 0.000 1 0.000 0.000
#> SRR1562793 3 0.000 1.000 0.00 0.000 1 0.000 0.000
#> SRR1562794 3 0.000 1.000 0.00 0.000 1 0.000 0.000
#> SRR1562795 3 0.000 1.000 0.00 0.000 1 0.000 0.000
#> SRR1562796 3 0.000 1.000 0.00 0.000 1 0.000 0.000
#> SRR1562797 3 0.000 1.000 0.00 0.000 1 0.000 0.000
#> SRR1562798 3 0.000 1.000 0.00 0.000 1 0.000 0.000
#> SRR1562799 3 0.000 1.000 0.00 0.000 1 0.000 0.000
#> SRR1562800 1 0.252 0.928 0.86 0.000 0 0.000 0.140
#> SRR1562801 1 0.252 0.928 0.86 0.000 0 0.000 0.140
#> SRR1562802 1 0.252 0.928 0.86 0.000 0 0.000 0.140
#> SRR1562803 1 0.252 0.928 0.86 0.000 0 0.000 0.140
#> SRR1562804 1 0.252 0.928 0.86 0.000 0 0.000 0.140
#> SRR1562805 1 0.252 0.928 0.86 0.000 0 0.000 0.140
#> SRR1562806 1 0.000 0.947 1.00 0.000 0 0.000 0.000
#> SRR1562807 1 0.000 0.947 1.00 0.000 0 0.000 0.000
#> SRR1562808 1 0.000 0.947 1.00 0.000 0 0.000 0.000
#> SRR1562809 1 0.000 0.947 1.00 0.000 0 0.000 0.000
#> SRR1562810 1 0.000 0.947 1.00 0.000 0 0.000 0.000
#> SRR1562811 1 0.000 0.947 1.00 0.000 0 0.000 0.000
#> SRR1562812 1 0.000 0.947 1.00 0.000 0 0.000 0.000
#> SRR1562813 1 0.000 0.947 1.00 0.000 0 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1562718 2 0.2778 0.846 0.000 0.824 0 0.000 0.168 0.008
#> SRR1562719 2 0.2877 0.844 0.000 0.820 0 0.000 0.168 0.012
#> SRR1562720 2 0.2558 0.849 0.000 0.840 0 0.000 0.156 0.004
#> SRR1562721 2 0.2558 0.849 0.000 0.840 0 0.000 0.156 0.004
#> SRR1562723 2 0.2595 0.848 0.000 0.836 0 0.000 0.160 0.004
#> SRR1562724 2 0.3081 0.833 0.000 0.776 0 0.000 0.220 0.004
#> SRR1562725 2 0.3136 0.829 0.000 0.768 0 0.000 0.228 0.004
#> SRR1562726 2 0.3189 0.825 0.000 0.760 0 0.000 0.236 0.004
#> SRR1562727 2 0.3136 0.831 0.000 0.768 0 0.000 0.228 0.004
#> SRR1562728 2 0.3050 0.826 0.000 0.764 0 0.000 0.236 0.000
#> SRR1562729 2 0.3163 0.827 0.000 0.764 0 0.000 0.232 0.004
#> SRR1562730 2 0.2135 0.781 0.000 0.872 0 0.000 0.000 0.128
#> SRR1562731 2 0.2135 0.781 0.000 0.872 0 0.000 0.000 0.128
#> SRR1562732 2 0.2135 0.781 0.000 0.872 0 0.000 0.000 0.128
#> SRR1562733 2 0.2135 0.781 0.000 0.872 0 0.000 0.000 0.128
#> SRR1562734 2 0.2135 0.781 0.000 0.872 0 0.000 0.000 0.128
#> SRR1562735 2 0.2135 0.781 0.000 0.872 0 0.000 0.000 0.128
#> SRR1562736 5 0.1092 0.821 0.000 0.020 0 0.020 0.960 0.000
#> SRR1562737 5 0.0914 0.828 0.000 0.016 0 0.016 0.968 0.000
#> SRR1562738 5 0.0914 0.828 0.000 0.016 0 0.016 0.968 0.000
#> SRR1562739 5 0.0914 0.828 0.000 0.016 0 0.016 0.968 0.000
#> SRR1562740 5 0.0820 0.828 0.000 0.012 0 0.016 0.972 0.000
#> SRR1562741 5 0.0914 0.827 0.000 0.016 0 0.016 0.968 0.000
#> SRR1562742 5 0.3730 0.822 0.000 0.060 0 0.000 0.772 0.168
#> SRR1562743 5 0.3763 0.821 0.000 0.060 0 0.000 0.768 0.172
#> SRR1562744 5 0.3763 0.821 0.000 0.060 0 0.000 0.768 0.172
#> SRR1562745 5 0.3763 0.821 0.000 0.060 0 0.000 0.768 0.172
#> SRR1562746 5 0.3829 0.813 0.000 0.060 0 0.000 0.760 0.180
#> SRR1562747 5 0.3796 0.817 0.000 0.060 0 0.000 0.764 0.176
#> SRR1562748 4 0.0363 0.556 0.000 0.000 0 0.988 0.012 0.000
#> SRR1562749 4 0.0260 0.559 0.000 0.000 0 0.992 0.008 0.000
#> SRR1562750 4 0.0146 0.559 0.000 0.000 0 0.996 0.004 0.000
#> SRR1562751 4 0.0260 0.559 0.000 0.000 0 0.992 0.008 0.000
#> SRR1562752 4 0.0146 0.559 0.000 0.000 0 0.996 0.004 0.000
#> SRR1562753 4 0.0146 0.559 0.000 0.000 0 0.996 0.004 0.000
#> SRR1562754 6 0.6337 0.966 0.000 0.008 0 0.332 0.312 0.348
#> SRR1562755 6 0.6330 0.965 0.000 0.008 0 0.344 0.300 0.348
#> SRR1562756 4 0.6323 -0.962 0.000 0.008 0 0.352 0.292 0.348
#> SRR1562757 4 0.6323 -0.955 0.000 0.008 0 0.356 0.292 0.344
#> SRR1562758 4 0.6330 -0.970 0.000 0.008 0 0.348 0.300 0.344
#> SRR1562759 4 0.6333 -0.978 0.000 0.008 0 0.344 0.304 0.344
#> SRR1562792 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562793 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562794 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562795 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562796 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562797 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562798 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562799 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1562800 1 0.0000 0.754 1.000 0.000 0 0.000 0.000 0.000
#> SRR1562801 1 0.0000 0.754 1.000 0.000 0 0.000 0.000 0.000
#> SRR1562802 1 0.0000 0.754 1.000 0.000 0 0.000 0.000 0.000
#> SRR1562803 1 0.0000 0.754 1.000 0.000 0 0.000 0.000 0.000
#> SRR1562804 1 0.0146 0.752 0.996 0.000 0 0.000 0.004 0.000
#> SRR1562805 1 0.0146 0.752 0.996 0.000 0 0.000 0.004 0.000
#> SRR1562806 1 0.3804 0.823 0.576 0.000 0 0.000 0.000 0.424
#> SRR1562807 1 0.3804 0.823 0.576 0.000 0 0.000 0.000 0.424
#> SRR1562808 1 0.3804 0.823 0.576 0.000 0 0.000 0.000 0.424
#> SRR1562809 1 0.3804 0.823 0.576 0.000 0 0.000 0.000 0.424
#> SRR1562810 1 0.3804 0.823 0.576 0.000 0 0.000 0.000 0.424
#> SRR1562811 1 0.3804 0.823 0.576 0.000 0 0.000 0.000 0.424
#> SRR1562812 1 0.3804 0.823 0.576 0.000 0 0.000 0.000 0.424
#> SRR1562813 1 0.3804 0.823 0.576 0.000 0 0.000 0.000 0.424
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15301 rows and 63 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1 1.000 1.000 0.4624 0.538 0.538
#> 3 3 1 1.000 1.000 0.1239 0.943 0.893
#> 4 4 1 1.000 1.000 0.0472 0.975 0.949
#> 5 5 1 0.992 0.995 0.3261 0.822 0.609
#> 6 6 1 0.996 0.997 0.1444 0.896 0.624
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 4 5
There is also optional best \(k\) = 2 3 4 5 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1562718 2 0 1 0 1
#> SRR1562719 2 0 1 0 1
#> SRR1562720 2 0 1 0 1
#> SRR1562721 2 0 1 0 1
#> SRR1562723 2 0 1 0 1
#> SRR1562724 2 0 1 0 1
#> SRR1562725 2 0 1 0 1
#> SRR1562726 2 0 1 0 1
#> SRR1562727 2 0 1 0 1
#> SRR1562728 2 0 1 0 1
#> SRR1562729 2 0 1 0 1
#> SRR1562730 2 0 1 0 1
#> SRR1562731 2 0 1 0 1
#> SRR1562732 2 0 1 0 1
#> SRR1562733 2 0 1 0 1
#> SRR1562734 2 0 1 0 1
#> SRR1562735 2 0 1 0 1
#> SRR1562736 2 0 1 0 1
#> SRR1562737 2 0 1 0 1
#> SRR1562738 2 0 1 0 1
#> SRR1562739 2 0 1 0 1
#> SRR1562740 2 0 1 0 1
#> SRR1562741 2 0 1 0 1
#> SRR1562742 2 0 1 0 1
#> SRR1562743 2 0 1 0 1
#> SRR1562744 2 0 1 0 1
#> SRR1562745 2 0 1 0 1
#> SRR1562746 2 0 1 0 1
#> SRR1562747 2 0 1 0 1
#> SRR1562748 2 0 1 0 1
#> SRR1562749 2 0 1 0 1
#> SRR1562750 2 0 1 0 1
#> SRR1562751 2 0 1 0 1
#> SRR1562752 2 0 1 0 1
#> SRR1562753 2 0 1 0 1
#> SRR1562754 2 0 1 0 1
#> SRR1562755 2 0 1 0 1
#> SRR1562756 2 0 1 0 1
#> SRR1562757 2 0 1 0 1
#> SRR1562758 2 0 1 0 1
#> SRR1562759 2 0 1 0 1
#> SRR1562792 1 0 1 1 0
#> SRR1562793 1 0 1 1 0
#> SRR1562794 1 0 1 1 0
#> SRR1562795 1 0 1 1 0
#> SRR1562796 1 0 1 1 0
#> SRR1562797 1 0 1 1 0
#> SRR1562798 1 0 1 1 0
#> SRR1562799 1 0 1 1 0
#> SRR1562800 1 0 1 1 0
#> SRR1562801 1 0 1 1 0
#> SRR1562802 1 0 1 1 0
#> SRR1562803 1 0 1 1 0
#> SRR1562804 1 0 1 1 0
#> SRR1562805 1 0 1 1 0
#> SRR1562806 1 0 1 1 0
#> SRR1562807 1 0 1 1 0
#> SRR1562808 1 0 1 1 0
#> SRR1562809 1 0 1 1 0
#> SRR1562810 1 0 1 1 0
#> SRR1562811 1 0 1 1 0
#> SRR1562812 1 0 1 1 0
#> SRR1562813 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1562718 2 0 1 0 1 0
#> SRR1562719 2 0 1 0 1 0
#> SRR1562720 2 0 1 0 1 0
#> SRR1562721 2 0 1 0 1 0
#> SRR1562723 2 0 1 0 1 0
#> SRR1562724 2 0 1 0 1 0
#> SRR1562725 2 0 1 0 1 0
#> SRR1562726 2 0 1 0 1 0
#> SRR1562727 2 0 1 0 1 0
#> SRR1562728 2 0 1 0 1 0
#> SRR1562729 2 0 1 0 1 0
#> SRR1562730 2 0 1 0 1 0
#> SRR1562731 2 0 1 0 1 0
#> SRR1562732 2 0 1 0 1 0
#> SRR1562733 2 0 1 0 1 0
#> SRR1562734 2 0 1 0 1 0
#> SRR1562735 2 0 1 0 1 0
#> SRR1562736 2 0 1 0 1 0
#> SRR1562737 2 0 1 0 1 0
#> SRR1562738 2 0 1 0 1 0
#> SRR1562739 2 0 1 0 1 0
#> SRR1562740 2 0 1 0 1 0
#> SRR1562741 2 0 1 0 1 0
#> SRR1562742 2 0 1 0 1 0
#> SRR1562743 2 0 1 0 1 0
#> SRR1562744 2 0 1 0 1 0
#> SRR1562745 2 0 1 0 1 0
#> SRR1562746 2 0 1 0 1 0
#> SRR1562747 2 0 1 0 1 0
#> SRR1562748 2 0 1 0 1 0
#> SRR1562749 2 0 1 0 1 0
#> SRR1562750 2 0 1 0 1 0
#> SRR1562751 2 0 1 0 1 0
#> SRR1562752 2 0 1 0 1 0
#> SRR1562753 2 0 1 0 1 0
#> SRR1562754 2 0 1 0 1 0
#> SRR1562755 2 0 1 0 1 0
#> SRR1562756 2 0 1 0 1 0
#> SRR1562757 2 0 1 0 1 0
#> SRR1562758 2 0 1 0 1 0
#> SRR1562759 2 0 1 0 1 0
#> SRR1562792 3 0 1 0 0 1
#> SRR1562793 3 0 1 0 0 1
#> SRR1562794 3 0 1 0 0 1
#> SRR1562795 3 0 1 0 0 1
#> SRR1562796 3 0 1 0 0 1
#> SRR1562797 3 0 1 0 0 1
#> SRR1562798 3 0 1 0 0 1
#> SRR1562799 3 0 1 0 0 1
#> SRR1562800 1 0 1 1 0 0
#> SRR1562801 1 0 1 1 0 0
#> SRR1562802 1 0 1 1 0 0
#> SRR1562803 1 0 1 1 0 0
#> SRR1562804 1 0 1 1 0 0
#> SRR1562805 1 0 1 1 0 0
#> SRR1562806 1 0 1 1 0 0
#> SRR1562807 1 0 1 1 0 0
#> SRR1562808 1 0 1 1 0 0
#> SRR1562809 1 0 1 1 0 0
#> SRR1562810 1 0 1 1 0 0
#> SRR1562811 1 0 1 1 0 0
#> SRR1562812 1 0 1 1 0 0
#> SRR1562813 1 0 1 1 0 0
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1562718 2 0 1 0 1 0 0
#> SRR1562719 2 0 1 0 1 0 0
#> SRR1562720 2 0 1 0 1 0 0
#> SRR1562721 2 0 1 0 1 0 0
#> SRR1562723 2 0 1 0 1 0 0
#> SRR1562724 2 0 1 0 1 0 0
#> SRR1562725 2 0 1 0 1 0 0
#> SRR1562726 2 0 1 0 1 0 0
#> SRR1562727 2 0 1 0 1 0 0
#> SRR1562728 2 0 1 0 1 0 0
#> SRR1562729 2 0 1 0 1 0 0
#> SRR1562730 2 0 1 0 1 0 0
#> SRR1562731 2 0 1 0 1 0 0
#> SRR1562732 2 0 1 0 1 0 0
#> SRR1562733 2 0 1 0 1 0 0
#> SRR1562734 2 0 1 0 1 0 0
#> SRR1562735 2 0 1 0 1 0 0
#> SRR1562736 2 0 1 0 1 0 0
#> SRR1562737 2 0 1 0 1 0 0
#> SRR1562738 2 0 1 0 1 0 0
#> SRR1562739 2 0 1 0 1 0 0
#> SRR1562740 2 0 1 0 1 0 0
#> SRR1562741 2 0 1 0 1 0 0
#> SRR1562742 2 0 1 0 1 0 0
#> SRR1562743 2 0 1 0 1 0 0
#> SRR1562744 2 0 1 0 1 0 0
#> SRR1562745 2 0 1 0 1 0 0
#> SRR1562746 2 0 1 0 1 0 0
#> SRR1562747 2 0 1 0 1 0 0
#> SRR1562748 2 0 1 0 1 0 0
#> SRR1562749 2 0 1 0 1 0 0
#> SRR1562750 2 0 1 0 1 0 0
#> SRR1562751 2 0 1 0 1 0 0
#> SRR1562752 2 0 1 0 1 0 0
#> SRR1562753 2 0 1 0 1 0 0
#> SRR1562754 2 0 1 0 1 0 0
#> SRR1562755 2 0 1 0 1 0 0
#> SRR1562756 2 0 1 0 1 0 0
#> SRR1562757 2 0 1 0 1 0 0
#> SRR1562758 2 0 1 0 1 0 0
#> SRR1562759 2 0 1 0 1 0 0
#> SRR1562792 3 0 1 0 0 1 0
#> SRR1562793 3 0 1 0 0 1 0
#> SRR1562794 3 0 1 0 0 1 0
#> SRR1562795 3 0 1 0 0 1 0
#> SRR1562796 3 0 1 0 0 1 0
#> SRR1562797 3 0 1 0 0 1 0
#> SRR1562798 3 0 1 0 0 1 0
#> SRR1562799 3 0 1 0 0 1 0
#> SRR1562800 4 0 1 0 0 0 1
#> SRR1562801 4 0 1 0 0 0 1
#> SRR1562802 4 0 1 0 0 0 1
#> SRR1562803 4 0 1 0 0 0 1
#> SRR1562804 4 0 1 0 0 0 1
#> SRR1562805 4 0 1 0 0 0 1
#> SRR1562806 1 0 1 1 0 0 0
#> SRR1562807 1 0 1 1 0 0 0
#> SRR1562808 1 0 1 1 0 0 0
#> SRR1562809 1 0 1 1 0 0 0
#> SRR1562810 1 0 1 1 0 0 0
#> SRR1562811 1 0 1 1 0 0 0
#> SRR1562812 1 0 1 1 0 0 0
#> SRR1562813 1 0 1 1 0 0 0
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1562718 2 0.0000 0.991 0 1.000 0 0.000 0
#> SRR1562719 2 0.0000 0.991 0 1.000 0 0.000 0
#> SRR1562720 2 0.0000 0.991 0 1.000 0 0.000 0
#> SRR1562721 2 0.0000 0.991 0 1.000 0 0.000 0
#> SRR1562723 2 0.0000 0.991 0 1.000 0 0.000 0
#> SRR1562724 2 0.0000 0.991 0 1.000 0 0.000 0
#> SRR1562725 2 0.0000 0.991 0 1.000 0 0.000 0
#> SRR1562726 2 0.0000 0.991 0 1.000 0 0.000 0
#> SRR1562727 2 0.0000 0.991 0 1.000 0 0.000 0
#> SRR1562728 2 0.0000 0.991 0 1.000 0 0.000 0
#> SRR1562729 2 0.0000 0.991 0 1.000 0 0.000 0
#> SRR1562730 2 0.0000 0.991 0 1.000 0 0.000 0
#> SRR1562731 2 0.0000 0.991 0 1.000 0 0.000 0
#> SRR1562732 2 0.0000 0.991 0 1.000 0 0.000 0
#> SRR1562733 2 0.0000 0.991 0 1.000 0 0.000 0
#> SRR1562734 2 0.0000 0.991 0 1.000 0 0.000 0
#> SRR1562735 2 0.0000 0.991 0 1.000 0 0.000 0
#> SRR1562736 2 0.0609 0.987 0 0.980 0 0.020 0
#> SRR1562737 2 0.0609 0.987 0 0.980 0 0.020 0
#> SRR1562738 2 0.0609 0.987 0 0.980 0 0.020 0
#> SRR1562739 2 0.0609 0.987 0 0.980 0 0.020 0
#> SRR1562740 2 0.0609 0.987 0 0.980 0 0.020 0
#> SRR1562741 2 0.0609 0.987 0 0.980 0 0.020 0
#> SRR1562742 2 0.0609 0.987 0 0.980 0 0.020 0
#> SRR1562743 2 0.0609 0.987 0 0.980 0 0.020 0
#> SRR1562744 2 0.0609 0.987 0 0.980 0 0.020 0
#> SRR1562745 2 0.0609 0.987 0 0.980 0 0.020 0
#> SRR1562746 2 0.0609 0.987 0 0.980 0 0.020 0
#> SRR1562747 2 0.0609 0.987 0 0.980 0 0.020 0
#> SRR1562748 4 0.0000 0.987 0 0.000 0 1.000 0
#> SRR1562749 4 0.0000 0.987 0 0.000 0 1.000 0
#> SRR1562750 4 0.0000 0.987 0 0.000 0 1.000 0
#> SRR1562751 4 0.0000 0.987 0 0.000 0 1.000 0
#> SRR1562752 4 0.0000 0.987 0 0.000 0 1.000 0
#> SRR1562753 4 0.0000 0.987 0 0.000 0 1.000 0
#> SRR1562754 4 0.0510 0.987 0 0.016 0 0.984 0
#> SRR1562755 4 0.0510 0.987 0 0.016 0 0.984 0
#> SRR1562756 4 0.0510 0.987 0 0.016 0 0.984 0
#> SRR1562757 4 0.0510 0.987 0 0.016 0 0.984 0
#> SRR1562758 4 0.0510 0.987 0 0.016 0 0.984 0
#> SRR1562759 4 0.0510 0.987 0 0.016 0 0.984 0
#> SRR1562792 3 0.0000 1.000 0 0.000 1 0.000 0
#> SRR1562793 3 0.0000 1.000 0 0.000 1 0.000 0
#> SRR1562794 3 0.0000 1.000 0 0.000 1 0.000 0
#> SRR1562795 3 0.0000 1.000 0 0.000 1 0.000 0
#> SRR1562796 3 0.0000 1.000 0 0.000 1 0.000 0
#> SRR1562797 3 0.0000 1.000 0 0.000 1 0.000 0
#> SRR1562798 3 0.0000 1.000 0 0.000 1 0.000 0
#> SRR1562799 3 0.0000 1.000 0 0.000 1 0.000 0
#> SRR1562800 5 0.0000 1.000 0 0.000 0 0.000 1
#> SRR1562801 5 0.0000 1.000 0 0.000 0 0.000 1
#> SRR1562802 5 0.0000 1.000 0 0.000 0 0.000 1
#> SRR1562803 5 0.0000 1.000 0 0.000 0 0.000 1
#> SRR1562804 5 0.0000 1.000 0 0.000 0 0.000 1
#> SRR1562805 5 0.0000 1.000 0 0.000 0 0.000 1
#> SRR1562806 1 0.0000 1.000 1 0.000 0 0.000 0
#> SRR1562807 1 0.0000 1.000 1 0.000 0 0.000 0
#> SRR1562808 1 0.0000 1.000 1 0.000 0 0.000 0
#> SRR1562809 1 0.0000 1.000 1 0.000 0 0.000 0
#> SRR1562810 1 0.0000 1.000 1 0.000 0 0.000 0
#> SRR1562811 1 0.0000 1.000 1 0.000 0 0.000 0
#> SRR1562812 1 0.0000 1.000 1 0.000 0 0.000 0
#> SRR1562813 1 0.0000 1.000 1 0.000 0 0.000 0
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1562718 2 0.0000 1.000 0 1 0 0.000 0.000 0
#> SRR1562719 2 0.0000 1.000 0 1 0 0.000 0.000 0
#> SRR1562720 2 0.0000 1.000 0 1 0 0.000 0.000 0
#> SRR1562721 2 0.0000 1.000 0 1 0 0.000 0.000 0
#> SRR1562723 2 0.0000 1.000 0 1 0 0.000 0.000 0
#> SRR1562724 2 0.0000 1.000 0 1 0 0.000 0.000 0
#> SRR1562725 2 0.0000 1.000 0 1 0 0.000 0.000 0
#> SRR1562726 2 0.0000 1.000 0 1 0 0.000 0.000 0
#> SRR1562727 2 0.0000 1.000 0 1 0 0.000 0.000 0
#> SRR1562728 2 0.0000 1.000 0 1 0 0.000 0.000 0
#> SRR1562729 2 0.0000 1.000 0 1 0 0.000 0.000 0
#> SRR1562730 2 0.0000 1.000 0 1 0 0.000 0.000 0
#> SRR1562731 2 0.0000 1.000 0 1 0 0.000 0.000 0
#> SRR1562732 2 0.0000 1.000 0 1 0 0.000 0.000 0
#> SRR1562733 2 0.0000 1.000 0 1 0 0.000 0.000 0
#> SRR1562734 2 0.0000 1.000 0 1 0 0.000 0.000 0
#> SRR1562735 2 0.0000 1.000 0 1 0 0.000 0.000 0
#> SRR1562736 5 0.0000 1.000 0 0 0 0.000 1.000 0
#> SRR1562737 5 0.0000 1.000 0 0 0 0.000 1.000 0
#> SRR1562738 5 0.0000 1.000 0 0 0 0.000 1.000 0
#> SRR1562739 5 0.0000 1.000 0 0 0 0.000 1.000 0
#> SRR1562740 5 0.0000 1.000 0 0 0 0.000 1.000 0
#> SRR1562741 5 0.0000 1.000 0 0 0 0.000 1.000 0
#> SRR1562742 5 0.0000 1.000 0 0 0 0.000 1.000 0
#> SRR1562743 5 0.0000 1.000 0 0 0 0.000 1.000 0
#> SRR1562744 5 0.0000 1.000 0 0 0 0.000 1.000 0
#> SRR1562745 5 0.0000 1.000 0 0 0 0.000 1.000 0
#> SRR1562746 5 0.0000 1.000 0 0 0 0.000 1.000 0
#> SRR1562747 5 0.0000 1.000 0 0 0 0.000 1.000 0
#> SRR1562748 4 0.0000 0.977 0 0 0 1.000 0.000 0
#> SRR1562749 4 0.0000 0.977 0 0 0 1.000 0.000 0
#> SRR1562750 4 0.0000 0.977 0 0 0 1.000 0.000 0
#> SRR1562751 4 0.0000 0.977 0 0 0 1.000 0.000 0
#> SRR1562752 4 0.0000 0.977 0 0 0 1.000 0.000 0
#> SRR1562753 4 0.0000 0.977 0 0 0 1.000 0.000 0
#> SRR1562754 4 0.0865 0.977 0 0 0 0.964 0.036 0
#> SRR1562755 4 0.0865 0.977 0 0 0 0.964 0.036 0
#> SRR1562756 4 0.0865 0.977 0 0 0 0.964 0.036 0
#> SRR1562757 4 0.0865 0.977 0 0 0 0.964 0.036 0
#> SRR1562758 4 0.0865 0.977 0 0 0 0.964 0.036 0
#> SRR1562759 4 0.0865 0.977 0 0 0 0.964 0.036 0
#> SRR1562792 3 0.0000 1.000 0 0 1 0.000 0.000 0
#> SRR1562793 3 0.0000 1.000 0 0 1 0.000 0.000 0
#> SRR1562794 3 0.0000 1.000 0 0 1 0.000 0.000 0
#> SRR1562795 3 0.0000 1.000 0 0 1 0.000 0.000 0
#> SRR1562796 3 0.0000 1.000 0 0 1 0.000 0.000 0
#> SRR1562797 3 0.0000 1.000 0 0 1 0.000 0.000 0
#> SRR1562798 3 0.0000 1.000 0 0 1 0.000 0.000 0
#> SRR1562799 3 0.0000 1.000 0 0 1 0.000 0.000 0
#> SRR1562800 6 0.0000 1.000 0 0 0 0.000 0.000 1
#> SRR1562801 6 0.0000 1.000 0 0 0 0.000 0.000 1
#> SRR1562802 6 0.0000 1.000 0 0 0 0.000 0.000 1
#> SRR1562803 6 0.0000 1.000 0 0 0 0.000 0.000 1
#> SRR1562804 6 0.0000 1.000 0 0 0 0.000 0.000 1
#> SRR1562805 6 0.0000 1.000 0 0 0 0.000 0.000 1
#> SRR1562806 1 0.0000 1.000 1 0 0 0.000 0.000 0
#> SRR1562807 1 0.0000 1.000 1 0 0 0.000 0.000 0
#> SRR1562808 1 0.0000 1.000 1 0 0 0.000 0.000 0
#> SRR1562809 1 0.0000 1.000 1 0 0 0.000 0.000 0
#> SRR1562810 1 0.0000 1.000 1 0 0 0.000 0.000 0
#> SRR1562811 1 0.0000 1.000 1 0 0 0.000 0.000 0
#> SRR1562812 1 0.0000 1.000 1 0 0 0.000 0.000 0
#> SRR1562813 1 0.0000 1.000 1 0 0 0.000 0.000 0
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15301 rows and 63 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.4624 0.538 0.538
#> 3 3 0.623 0.751 0.765 0.3033 0.822 0.669
#> 4 4 0.589 0.652 0.718 0.1194 1.000 1.000
#> 5 5 0.620 0.658 0.681 0.1039 0.872 0.644
#> 6 6 0.611 0.741 0.702 0.0448 0.929 0.718
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1562718 2 0 1 0 1
#> SRR1562719 2 0 1 0 1
#> SRR1562720 2 0 1 0 1
#> SRR1562721 2 0 1 0 1
#> SRR1562723 2 0 1 0 1
#> SRR1562724 2 0 1 0 1
#> SRR1562725 2 0 1 0 1
#> SRR1562726 2 0 1 0 1
#> SRR1562727 2 0 1 0 1
#> SRR1562728 2 0 1 0 1
#> SRR1562729 2 0 1 0 1
#> SRR1562730 2 0 1 0 1
#> SRR1562731 2 0 1 0 1
#> SRR1562732 2 0 1 0 1
#> SRR1562733 2 0 1 0 1
#> SRR1562734 2 0 1 0 1
#> SRR1562735 2 0 1 0 1
#> SRR1562736 2 0 1 0 1
#> SRR1562737 2 0 1 0 1
#> SRR1562738 2 0 1 0 1
#> SRR1562739 2 0 1 0 1
#> SRR1562740 2 0 1 0 1
#> SRR1562741 2 0 1 0 1
#> SRR1562742 2 0 1 0 1
#> SRR1562743 2 0 1 0 1
#> SRR1562744 2 0 1 0 1
#> SRR1562745 2 0 1 0 1
#> SRR1562746 2 0 1 0 1
#> SRR1562747 2 0 1 0 1
#> SRR1562748 2 0 1 0 1
#> SRR1562749 2 0 1 0 1
#> SRR1562750 2 0 1 0 1
#> SRR1562751 2 0 1 0 1
#> SRR1562752 2 0 1 0 1
#> SRR1562753 2 0 1 0 1
#> SRR1562754 2 0 1 0 1
#> SRR1562755 2 0 1 0 1
#> SRR1562756 2 0 1 0 1
#> SRR1562757 2 0 1 0 1
#> SRR1562758 2 0 1 0 1
#> SRR1562759 2 0 1 0 1
#> SRR1562792 1 0 1 1 0
#> SRR1562793 1 0 1 1 0
#> SRR1562794 1 0 1 1 0
#> SRR1562795 1 0 1 1 0
#> SRR1562796 1 0 1 1 0
#> SRR1562797 1 0 1 1 0
#> SRR1562798 1 0 1 1 0
#> SRR1562799 1 0 1 1 0
#> SRR1562800 1 0 1 1 0
#> SRR1562801 1 0 1 1 0
#> SRR1562802 1 0 1 1 0
#> SRR1562803 1 0 1 1 0
#> SRR1562804 1 0 1 1 0
#> SRR1562805 1 0 1 1 0
#> SRR1562806 1 0 1 1 0
#> SRR1562807 1 0 1 1 0
#> SRR1562808 1 0 1 1 0
#> SRR1562809 1 0 1 1 0
#> SRR1562810 1 0 1 1 0
#> SRR1562811 1 0 1 1 0
#> SRR1562812 1 0 1 1 0
#> SRR1562813 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1562718 2 0.0000 0.724 0.000 1.000 0.000
#> SRR1562719 2 0.0000 0.724 0.000 1.000 0.000
#> SRR1562720 2 0.0000 0.724 0.000 1.000 0.000
#> SRR1562721 2 0.0000 0.724 0.000 1.000 0.000
#> SRR1562723 2 0.0000 0.724 0.000 1.000 0.000
#> SRR1562724 2 0.0237 0.724 0.000 0.996 0.004
#> SRR1562725 2 0.0237 0.724 0.000 0.996 0.004
#> SRR1562726 2 0.0237 0.724 0.000 0.996 0.004
#> SRR1562727 2 0.0237 0.724 0.000 0.996 0.004
#> SRR1562728 2 0.0237 0.724 0.000 0.996 0.004
#> SRR1562729 2 0.0237 0.724 0.000 0.996 0.004
#> SRR1562730 2 0.2625 0.673 0.000 0.916 0.084
#> SRR1562731 2 0.2625 0.673 0.000 0.916 0.084
#> SRR1562732 2 0.2625 0.673 0.000 0.916 0.084
#> SRR1562733 2 0.2625 0.673 0.000 0.916 0.084
#> SRR1562734 2 0.2625 0.673 0.000 0.916 0.084
#> SRR1562735 2 0.2625 0.673 0.000 0.916 0.084
#> SRR1562736 2 0.5138 0.412 0.000 0.748 0.252
#> SRR1562737 2 0.5138 0.412 0.000 0.748 0.252
#> SRR1562738 2 0.5138 0.412 0.000 0.748 0.252
#> SRR1562739 2 0.5138 0.412 0.000 0.748 0.252
#> SRR1562740 2 0.5138 0.412 0.000 0.748 0.252
#> SRR1562741 2 0.5138 0.412 0.000 0.748 0.252
#> SRR1562742 2 0.5650 0.424 0.000 0.688 0.312
#> SRR1562743 2 0.5650 0.424 0.000 0.688 0.312
#> SRR1562744 2 0.5650 0.424 0.000 0.688 0.312
#> SRR1562745 2 0.5650 0.424 0.000 0.688 0.312
#> SRR1562746 2 0.5650 0.424 0.000 0.688 0.312
#> SRR1562747 2 0.5650 0.424 0.000 0.688 0.312
#> SRR1562748 3 0.6204 0.883 0.000 0.424 0.576
#> SRR1562749 3 0.6204 0.883 0.000 0.424 0.576
#> SRR1562750 3 0.6204 0.883 0.000 0.424 0.576
#> SRR1562751 3 0.6204 0.883 0.000 0.424 0.576
#> SRR1562752 3 0.6204 0.883 0.000 0.424 0.576
#> SRR1562753 3 0.6204 0.883 0.000 0.424 0.576
#> SRR1562754 3 0.6305 0.870 0.000 0.484 0.516
#> SRR1562755 3 0.6305 0.870 0.000 0.484 0.516
#> SRR1562756 3 0.6305 0.870 0.000 0.484 0.516
#> SRR1562757 3 0.6305 0.870 0.000 0.484 0.516
#> SRR1562758 3 0.6305 0.870 0.000 0.484 0.516
#> SRR1562759 3 0.6305 0.870 0.000 0.484 0.516
#> SRR1562792 1 0.0000 0.857 1.000 0.000 0.000
#> SRR1562793 1 0.0000 0.857 1.000 0.000 0.000
#> SRR1562794 1 0.0000 0.857 1.000 0.000 0.000
#> SRR1562795 1 0.0000 0.857 1.000 0.000 0.000
#> SRR1562796 1 0.0000 0.857 1.000 0.000 0.000
#> SRR1562797 1 0.0000 0.857 1.000 0.000 0.000
#> SRR1562798 1 0.0000 0.857 1.000 0.000 0.000
#> SRR1562799 1 0.0000 0.857 1.000 0.000 0.000
#> SRR1562800 1 0.5291 0.921 0.732 0.000 0.268
#> SRR1562801 1 0.5291 0.921 0.732 0.000 0.268
#> SRR1562802 1 0.5291 0.921 0.732 0.000 0.268
#> SRR1562803 1 0.5291 0.921 0.732 0.000 0.268
#> SRR1562804 1 0.5291 0.921 0.732 0.000 0.268
#> SRR1562805 1 0.5291 0.921 0.732 0.000 0.268
#> SRR1562806 1 0.5291 0.921 0.732 0.000 0.268
#> SRR1562807 1 0.5291 0.921 0.732 0.000 0.268
#> SRR1562808 1 0.5291 0.921 0.732 0.000 0.268
#> SRR1562809 1 0.5291 0.921 0.732 0.000 0.268
#> SRR1562810 1 0.5291 0.921 0.732 0.000 0.268
#> SRR1562811 1 0.5291 0.921 0.732 0.000 0.268
#> SRR1562812 1 0.5291 0.921 0.732 0.000 0.268
#> SRR1562813 1 0.5291 0.921 0.732 0.000 0.268
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1562718 2 0.0336 0.622 0.000 0.992 NA 0.000
#> SRR1562719 2 0.0336 0.622 0.000 0.992 NA 0.000
#> SRR1562720 2 0.0336 0.622 0.000 0.992 NA 0.000
#> SRR1562721 2 0.0336 0.622 0.000 0.992 NA 0.000
#> SRR1562723 2 0.0336 0.622 0.000 0.992 NA 0.000
#> SRR1562724 2 0.1389 0.616 0.000 0.952 NA 0.000
#> SRR1562725 2 0.1389 0.616 0.000 0.952 NA 0.000
#> SRR1562726 2 0.1389 0.616 0.000 0.952 NA 0.000
#> SRR1562727 2 0.1389 0.616 0.000 0.952 NA 0.000
#> SRR1562728 2 0.1389 0.616 0.000 0.952 NA 0.000
#> SRR1562729 2 0.1389 0.616 0.000 0.952 NA 0.000
#> SRR1562730 2 0.5109 0.532 0.000 0.744 NA 0.060
#> SRR1562731 2 0.5109 0.532 0.000 0.744 NA 0.060
#> SRR1562732 2 0.5172 0.532 0.000 0.744 NA 0.068
#> SRR1562733 2 0.5172 0.532 0.000 0.744 NA 0.068
#> SRR1562734 2 0.5109 0.532 0.000 0.744 NA 0.060
#> SRR1562735 2 0.5109 0.532 0.000 0.744 NA 0.060
#> SRR1562736 2 0.6300 0.294 0.000 0.608 NA 0.308
#> SRR1562737 2 0.6300 0.294 0.000 0.608 NA 0.308
#> SRR1562738 2 0.6300 0.294 0.000 0.608 NA 0.308
#> SRR1562739 2 0.6300 0.294 0.000 0.608 NA 0.308
#> SRR1562740 2 0.6300 0.294 0.000 0.608 NA 0.308
#> SRR1562741 2 0.6300 0.294 0.000 0.608 NA 0.308
#> SRR1562742 2 0.7193 0.286 0.000 0.508 NA 0.340
#> SRR1562743 2 0.7193 0.286 0.000 0.508 NA 0.340
#> SRR1562744 2 0.7193 0.286 0.000 0.508 NA 0.340
#> SRR1562745 2 0.7193 0.286 0.000 0.508 NA 0.340
#> SRR1562746 2 0.7193 0.286 0.000 0.508 NA 0.340
#> SRR1562747 2 0.7193 0.286 0.000 0.508 NA 0.340
#> SRR1562748 4 0.5522 0.867 0.000 0.288 NA 0.668
#> SRR1562749 4 0.5359 0.867 0.000 0.288 NA 0.676
#> SRR1562750 4 0.5442 0.867 0.000 0.288 NA 0.672
#> SRR1562751 4 0.5522 0.867 0.000 0.288 NA 0.668
#> SRR1562752 4 0.5359 0.867 0.000 0.288 NA 0.676
#> SRR1562753 4 0.5359 0.867 0.000 0.288 NA 0.676
#> SRR1562754 4 0.6071 0.859 0.000 0.324 NA 0.612
#> SRR1562755 4 0.6071 0.859 0.000 0.324 NA 0.612
#> SRR1562756 4 0.6071 0.859 0.000 0.324 NA 0.612
#> SRR1562757 4 0.6071 0.859 0.000 0.324 NA 0.612
#> SRR1562758 4 0.6071 0.859 0.000 0.324 NA 0.612
#> SRR1562759 4 0.6071 0.859 0.000 0.324 NA 0.612
#> SRR1562792 1 0.6071 0.711 0.504 0.000 NA 0.044
#> SRR1562793 1 0.6071 0.711 0.504 0.000 NA 0.044
#> SRR1562794 1 0.6071 0.711 0.504 0.000 NA 0.044
#> SRR1562795 1 0.6071 0.711 0.504 0.000 NA 0.044
#> SRR1562796 1 0.5000 0.711 0.504 0.000 NA 0.000
#> SRR1562797 1 0.5000 0.711 0.504 0.000 NA 0.000
#> SRR1562798 1 0.5000 0.711 0.504 0.000 NA 0.000
#> SRR1562799 1 0.5000 0.711 0.504 0.000 NA 0.000
#> SRR1562800 1 0.2216 0.825 0.908 0.000 NA 0.092
#> SRR1562801 1 0.2216 0.825 0.908 0.000 NA 0.092
#> SRR1562802 1 0.2216 0.825 0.908 0.000 NA 0.092
#> SRR1562803 1 0.2216 0.825 0.908 0.000 NA 0.092
#> SRR1562804 1 0.2216 0.825 0.908 0.000 NA 0.092
#> SRR1562805 1 0.2216 0.825 0.908 0.000 NA 0.092
#> SRR1562806 1 0.0000 0.829 1.000 0.000 NA 0.000
#> SRR1562807 1 0.0000 0.829 1.000 0.000 NA 0.000
#> SRR1562808 1 0.0000 0.829 1.000 0.000 NA 0.000
#> SRR1562809 1 0.0000 0.829 1.000 0.000 NA 0.000
#> SRR1562810 1 0.0000 0.829 1.000 0.000 NA 0.000
#> SRR1562811 1 0.0000 0.829 1.000 0.000 NA 0.000
#> SRR1562812 1 0.0000 0.829 1.000 0.000 NA 0.000
#> SRR1562813 1 0.0000 0.829 1.000 0.000 NA 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1562718 2 0.2688 0.568 0.000 0.896 0.012 0.036 0.056
#> SRR1562719 2 0.2688 0.568 0.000 0.896 0.012 0.036 0.056
#> SRR1562720 2 0.2688 0.568 0.000 0.896 0.012 0.036 0.056
#> SRR1562721 2 0.2688 0.568 0.000 0.896 0.012 0.036 0.056
#> SRR1562723 2 0.2688 0.568 0.000 0.896 0.012 0.036 0.056
#> SRR1562724 2 0.3163 0.577 0.000 0.876 0.052 0.036 0.036
#> SRR1562725 2 0.3163 0.577 0.000 0.876 0.052 0.036 0.036
#> SRR1562726 2 0.3163 0.577 0.000 0.876 0.052 0.036 0.036
#> SRR1562727 2 0.3163 0.577 0.000 0.876 0.052 0.036 0.036
#> SRR1562728 2 0.3163 0.577 0.000 0.876 0.052 0.036 0.036
#> SRR1562729 2 0.3163 0.577 0.000 0.876 0.052 0.036 0.036
#> SRR1562730 2 0.5322 0.495 0.000 0.684 0.184 0.004 0.128
#> SRR1562731 2 0.5322 0.495 0.000 0.684 0.184 0.004 0.128
#> SRR1562732 2 0.5377 0.494 0.000 0.680 0.176 0.004 0.140
#> SRR1562733 2 0.5377 0.494 0.000 0.680 0.176 0.004 0.140
#> SRR1562734 2 0.5322 0.495 0.000 0.684 0.184 0.004 0.128
#> SRR1562735 2 0.5322 0.495 0.000 0.684 0.184 0.004 0.128
#> SRR1562736 2 0.7464 -0.512 0.000 0.388 0.044 0.356 0.212
#> SRR1562737 2 0.7464 -0.512 0.000 0.388 0.044 0.356 0.212
#> SRR1562738 2 0.7464 -0.512 0.000 0.388 0.044 0.356 0.212
#> SRR1562739 2 0.7464 -0.512 0.000 0.388 0.044 0.356 0.212
#> SRR1562740 2 0.7464 -0.512 0.000 0.388 0.044 0.356 0.212
#> SRR1562741 2 0.7464 -0.512 0.000 0.388 0.044 0.356 0.212
#> SRR1562742 5 0.6687 0.999 0.000 0.248 0.000 0.332 0.420
#> SRR1562743 5 0.6687 0.999 0.000 0.248 0.000 0.332 0.420
#> SRR1562744 5 0.6687 0.999 0.000 0.248 0.000 0.332 0.420
#> SRR1562745 5 0.6692 0.996 0.000 0.248 0.000 0.336 0.416
#> SRR1562746 5 0.6687 0.999 0.000 0.248 0.000 0.332 0.420
#> SRR1562747 5 0.6687 0.999 0.000 0.248 0.000 0.332 0.420
#> SRR1562748 4 0.5593 0.789 0.000 0.060 0.064 0.700 0.176
#> SRR1562749 4 0.5567 0.789 0.000 0.060 0.060 0.700 0.180
#> SRR1562750 4 0.5627 0.789 0.000 0.060 0.064 0.696 0.180
#> SRR1562751 4 0.5593 0.789 0.000 0.060 0.064 0.700 0.176
#> SRR1562752 4 0.5652 0.789 0.000 0.060 0.068 0.696 0.176
#> SRR1562753 4 0.5652 0.789 0.000 0.060 0.068 0.696 0.176
#> SRR1562754 4 0.2112 0.756 0.000 0.084 0.004 0.908 0.004
#> SRR1562755 4 0.2112 0.756 0.000 0.084 0.004 0.908 0.004
#> SRR1562756 4 0.2237 0.756 0.000 0.084 0.008 0.904 0.004
#> SRR1562757 4 0.2293 0.756 0.000 0.084 0.016 0.900 0.000
#> SRR1562758 4 0.1952 0.756 0.000 0.084 0.004 0.912 0.000
#> SRR1562759 4 0.1952 0.756 0.000 0.084 0.004 0.912 0.000
#> SRR1562792 3 0.4288 0.958 0.384 0.000 0.612 0.004 0.000
#> SRR1562793 3 0.4288 0.958 0.384 0.000 0.612 0.000 0.004
#> SRR1562794 3 0.4288 0.958 0.384 0.000 0.612 0.000 0.004
#> SRR1562795 3 0.4288 0.958 0.384 0.000 0.612 0.000 0.004
#> SRR1562796 3 0.5687 0.958 0.384 0.000 0.552 0.028 0.036
#> SRR1562797 3 0.5687 0.958 0.384 0.000 0.552 0.028 0.036
#> SRR1562798 3 0.5678 0.958 0.384 0.000 0.552 0.024 0.040
#> SRR1562799 3 0.5678 0.958 0.384 0.000 0.552 0.024 0.040
#> SRR1562800 1 0.2690 0.858 0.844 0.000 0.000 0.000 0.156
#> SRR1562801 1 0.2690 0.858 0.844 0.000 0.000 0.000 0.156
#> SRR1562802 1 0.2690 0.858 0.844 0.000 0.000 0.000 0.156
#> SRR1562803 1 0.2690 0.858 0.844 0.000 0.000 0.000 0.156
#> SRR1562804 1 0.2690 0.858 0.844 0.000 0.000 0.000 0.156
#> SRR1562805 1 0.2690 0.858 0.844 0.000 0.000 0.000 0.156
#> SRR1562806 1 0.0162 0.895 0.996 0.000 0.000 0.000 0.004
#> SRR1562807 1 0.0162 0.895 0.996 0.000 0.000 0.000 0.004
#> SRR1562808 1 0.0162 0.895 0.996 0.000 0.000 0.000 0.004
#> SRR1562809 1 0.0162 0.895 0.996 0.000 0.000 0.000 0.004
#> SRR1562810 1 0.0162 0.895 0.996 0.000 0.000 0.004 0.000
#> SRR1562811 1 0.0162 0.895 0.996 0.000 0.000 0.004 0.000
#> SRR1562812 1 0.0162 0.895 0.996 0.000 0.000 0.004 0.000
#> SRR1562813 1 0.0162 0.895 0.996 0.000 0.000 0.004 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1562718 2 0.3672 0.683 0.000 0.832 0.060 0.040 0.060 NA
#> SRR1562719 2 0.3672 0.683 0.000 0.832 0.060 0.040 0.060 NA
#> SRR1562720 2 0.3672 0.683 0.000 0.832 0.060 0.040 0.060 NA
#> SRR1562721 2 0.3672 0.683 0.000 0.832 0.060 0.040 0.060 NA
#> SRR1562723 2 0.3672 0.683 0.000 0.832 0.060 0.040 0.060 NA
#> SRR1562724 2 0.3201 0.688 0.000 0.864 0.048 0.040 0.012 NA
#> SRR1562725 2 0.3201 0.688 0.000 0.864 0.048 0.040 0.012 NA
#> SRR1562726 2 0.3165 0.688 0.000 0.864 0.052 0.040 0.008 NA
#> SRR1562727 2 0.3165 0.688 0.000 0.864 0.052 0.040 0.008 NA
#> SRR1562728 2 0.3201 0.688 0.000 0.864 0.048 0.040 0.012 NA
#> SRR1562729 2 0.3165 0.688 0.000 0.864 0.052 0.040 0.008 NA
#> SRR1562730 2 0.5444 0.601 0.000 0.580 0.024 0.004 0.068 NA
#> SRR1562731 2 0.5444 0.601 0.000 0.580 0.024 0.004 0.068 NA
#> SRR1562732 2 0.5464 0.601 0.000 0.576 0.020 0.004 0.076 NA
#> SRR1562733 2 0.5314 0.601 0.000 0.576 0.008 0.004 0.084 NA
#> SRR1562734 2 0.5003 0.602 0.000 0.580 0.004 0.004 0.060 NA
#> SRR1562735 2 0.4881 0.602 0.000 0.580 0.000 0.004 0.060 NA
#> SRR1562736 5 0.7833 0.708 0.000 0.300 0.044 0.260 0.324 NA
#> SRR1562737 5 0.7833 0.708 0.000 0.300 0.044 0.260 0.324 NA
#> SRR1562738 5 0.7833 0.708 0.000 0.300 0.044 0.260 0.324 NA
#> SRR1562739 5 0.7833 0.708 0.000 0.300 0.044 0.260 0.324 NA
#> SRR1562740 5 0.7833 0.708 0.000 0.300 0.044 0.260 0.324 NA
#> SRR1562741 5 0.7833 0.708 0.000 0.300 0.044 0.260 0.324 NA
#> SRR1562742 5 0.4680 0.737 0.000 0.184 0.000 0.132 0.684 NA
#> SRR1562743 5 0.4923 0.737 0.000 0.184 0.000 0.132 0.676 NA
#> SRR1562744 5 0.4923 0.737 0.000 0.184 0.000 0.132 0.676 NA
#> SRR1562745 5 0.4817 0.736 0.000 0.184 0.004 0.132 0.680 NA
#> SRR1562746 5 0.4923 0.737 0.000 0.184 0.000 0.132 0.676 NA
#> SRR1562747 5 0.4923 0.736 0.000 0.184 0.008 0.132 0.676 NA
#> SRR1562748 4 0.1820 0.764 0.000 0.044 0.012 0.928 0.000 NA
#> SRR1562749 4 0.1265 0.764 0.000 0.044 0.000 0.948 0.000 NA
#> SRR1562750 4 0.1921 0.764 0.000 0.044 0.024 0.924 0.004 NA
#> SRR1562751 4 0.1908 0.764 0.000 0.044 0.020 0.924 0.000 NA
#> SRR1562752 4 0.1367 0.764 0.000 0.044 0.000 0.944 0.000 NA
#> SRR1562753 4 0.1870 0.764 0.000 0.044 0.012 0.928 0.004 NA
#> SRR1562754 4 0.6390 0.738 0.000 0.064 0.036 0.616 0.164 NA
#> SRR1562755 4 0.6390 0.738 0.000 0.064 0.036 0.616 0.164 NA
#> SRR1562756 4 0.6416 0.738 0.000 0.064 0.040 0.616 0.164 NA
#> SRR1562757 4 0.6347 0.738 0.000 0.064 0.032 0.616 0.172 NA
#> SRR1562758 4 0.6374 0.738 0.000 0.064 0.036 0.616 0.172 NA
#> SRR1562759 4 0.6374 0.738 0.000 0.064 0.036 0.616 0.172 NA
#> SRR1562792 3 0.5683 0.927 0.280 0.000 0.600 0.012 0.080 NA
#> SRR1562793 3 0.5683 0.927 0.280 0.000 0.600 0.012 0.080 NA
#> SRR1562794 3 0.5657 0.927 0.280 0.000 0.600 0.012 0.084 NA
#> SRR1562795 3 0.5657 0.927 0.280 0.000 0.600 0.012 0.084 NA
#> SRR1562796 3 0.3555 0.927 0.280 0.000 0.712 0.000 0.008 NA
#> SRR1562797 3 0.3586 0.927 0.280 0.000 0.712 0.000 0.004 NA
#> SRR1562798 3 0.3586 0.927 0.280 0.000 0.712 0.000 0.004 NA
#> SRR1562799 3 0.3555 0.927 0.280 0.000 0.712 0.000 0.000 NA
#> SRR1562800 1 0.3769 0.705 0.640 0.000 0.000 0.000 0.004 NA
#> SRR1562801 1 0.3769 0.705 0.640 0.000 0.000 0.000 0.004 NA
#> SRR1562802 1 0.3647 0.705 0.640 0.000 0.000 0.000 0.000 NA
#> SRR1562803 1 0.3647 0.705 0.640 0.000 0.000 0.000 0.000 NA
#> SRR1562804 1 0.4246 0.703 0.636 0.000 0.000 0.012 0.012 NA
#> SRR1562805 1 0.4246 0.703 0.636 0.000 0.000 0.012 0.012 NA
#> SRR1562806 1 0.0146 0.779 0.996 0.000 0.000 0.000 0.000 NA
#> SRR1562807 1 0.0146 0.779 0.996 0.000 0.000 0.000 0.000 NA
#> SRR1562808 1 0.0146 0.779 0.996 0.000 0.000 0.000 0.000 NA
#> SRR1562809 1 0.0146 0.779 0.996 0.000 0.000 0.000 0.000 NA
#> SRR1562810 1 0.0993 0.779 0.964 0.000 0.000 0.012 0.024 NA
#> SRR1562811 1 0.0993 0.779 0.964 0.000 0.000 0.012 0.024 NA
#> SRR1562812 1 0.0993 0.779 0.964 0.000 0.000 0.012 0.024 NA
#> SRR1562813 1 0.0993 0.779 0.964 0.000 0.000 0.012 0.024 NA
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15301 rows and 63 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.4624 0.538 0.538
#> 3 3 0.764 0.936 0.921 0.1867 0.943 0.893
#> 4 4 0.822 0.895 0.930 0.2772 0.822 0.629
#> 5 5 0.843 0.861 0.879 0.1036 0.896 0.655
#> 6 6 0.843 0.855 0.742 0.0542 0.923 0.655
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1562718 2 0 1 0 1
#> SRR1562719 2 0 1 0 1
#> SRR1562720 2 0 1 0 1
#> SRR1562721 2 0 1 0 1
#> SRR1562723 2 0 1 0 1
#> SRR1562724 2 0 1 0 1
#> SRR1562725 2 0 1 0 1
#> SRR1562726 2 0 1 0 1
#> SRR1562727 2 0 1 0 1
#> SRR1562728 2 0 1 0 1
#> SRR1562729 2 0 1 0 1
#> SRR1562730 2 0 1 0 1
#> SRR1562731 2 0 1 0 1
#> SRR1562732 2 0 1 0 1
#> SRR1562733 2 0 1 0 1
#> SRR1562734 2 0 1 0 1
#> SRR1562735 2 0 1 0 1
#> SRR1562736 2 0 1 0 1
#> SRR1562737 2 0 1 0 1
#> SRR1562738 2 0 1 0 1
#> SRR1562739 2 0 1 0 1
#> SRR1562740 2 0 1 0 1
#> SRR1562741 2 0 1 0 1
#> SRR1562742 2 0 1 0 1
#> SRR1562743 2 0 1 0 1
#> SRR1562744 2 0 1 0 1
#> SRR1562745 2 0 1 0 1
#> SRR1562746 2 0 1 0 1
#> SRR1562747 2 0 1 0 1
#> SRR1562748 2 0 1 0 1
#> SRR1562749 2 0 1 0 1
#> SRR1562750 2 0 1 0 1
#> SRR1562751 2 0 1 0 1
#> SRR1562752 2 0 1 0 1
#> SRR1562753 2 0 1 0 1
#> SRR1562754 2 0 1 0 1
#> SRR1562755 2 0 1 0 1
#> SRR1562756 2 0 1 0 1
#> SRR1562757 2 0 1 0 1
#> SRR1562758 2 0 1 0 1
#> SRR1562759 2 0 1 0 1
#> SRR1562792 1 0 1 1 0
#> SRR1562793 1 0 1 1 0
#> SRR1562794 1 0 1 1 0
#> SRR1562795 1 0 1 1 0
#> SRR1562796 1 0 1 1 0
#> SRR1562797 1 0 1 1 0
#> SRR1562798 1 0 1 1 0
#> SRR1562799 1 0 1 1 0
#> SRR1562800 1 0 1 1 0
#> SRR1562801 1 0 1 1 0
#> SRR1562802 1 0 1 1 0
#> SRR1562803 1 0 1 1 0
#> SRR1562804 1 0 1 1 0
#> SRR1562805 1 0 1 1 0
#> SRR1562806 1 0 1 1 0
#> SRR1562807 1 0 1 1 0
#> SRR1562808 1 0 1 1 0
#> SRR1562809 1 0 1 1 0
#> SRR1562810 1 0 1 1 0
#> SRR1562811 1 0 1 1 0
#> SRR1562812 1 0 1 1 0
#> SRR1562813 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1562718 2 0.103 0.929 0.024 0.976 0.000
#> SRR1562719 2 0.103 0.929 0.024 0.976 0.000
#> SRR1562720 2 0.103 0.929 0.024 0.976 0.000
#> SRR1562721 2 0.103 0.929 0.024 0.976 0.000
#> SRR1562723 2 0.103 0.929 0.024 0.976 0.000
#> SRR1562724 2 0.103 0.929 0.024 0.976 0.000
#> SRR1562725 2 0.103 0.929 0.024 0.976 0.000
#> SRR1562726 2 0.103 0.929 0.024 0.976 0.000
#> SRR1562727 2 0.103 0.929 0.024 0.976 0.000
#> SRR1562728 2 0.103 0.929 0.024 0.976 0.000
#> SRR1562729 2 0.103 0.929 0.024 0.976 0.000
#> SRR1562730 2 0.103 0.929 0.024 0.976 0.000
#> SRR1562731 2 0.103 0.929 0.024 0.976 0.000
#> SRR1562732 2 0.103 0.929 0.024 0.976 0.000
#> SRR1562733 2 0.103 0.929 0.024 0.976 0.000
#> SRR1562734 2 0.103 0.929 0.024 0.976 0.000
#> SRR1562735 2 0.103 0.929 0.024 0.976 0.000
#> SRR1562736 2 0.000 0.929 0.000 1.000 0.000
#> SRR1562737 2 0.000 0.929 0.000 1.000 0.000
#> SRR1562738 2 0.000 0.929 0.000 1.000 0.000
#> SRR1562739 2 0.000 0.929 0.000 1.000 0.000
#> SRR1562740 2 0.000 0.929 0.000 1.000 0.000
#> SRR1562741 2 0.000 0.929 0.000 1.000 0.000
#> SRR1562742 2 0.000 0.929 0.000 1.000 0.000
#> SRR1562743 2 0.000 0.929 0.000 1.000 0.000
#> SRR1562744 2 0.000 0.929 0.000 1.000 0.000
#> SRR1562745 2 0.000 0.929 0.000 1.000 0.000
#> SRR1562746 2 0.000 0.929 0.000 1.000 0.000
#> SRR1562747 2 0.000 0.929 0.000 1.000 0.000
#> SRR1562748 2 0.470 0.836 0.212 0.788 0.000
#> SRR1562749 2 0.470 0.836 0.212 0.788 0.000
#> SRR1562750 2 0.470 0.836 0.212 0.788 0.000
#> SRR1562751 2 0.470 0.836 0.212 0.788 0.000
#> SRR1562752 2 0.470 0.836 0.212 0.788 0.000
#> SRR1562753 2 0.470 0.836 0.212 0.788 0.000
#> SRR1562754 2 0.470 0.836 0.212 0.788 0.000
#> SRR1562755 2 0.470 0.836 0.212 0.788 0.000
#> SRR1562756 2 0.470 0.836 0.212 0.788 0.000
#> SRR1562757 2 0.470 0.836 0.212 0.788 0.000
#> SRR1562758 2 0.470 0.836 0.212 0.788 0.000
#> SRR1562759 2 0.470 0.836 0.212 0.788 0.000
#> SRR1562792 3 0.000 1.000 0.000 0.000 1.000
#> SRR1562793 3 0.000 1.000 0.000 0.000 1.000
#> SRR1562794 3 0.000 1.000 0.000 0.000 1.000
#> SRR1562795 3 0.000 1.000 0.000 0.000 1.000
#> SRR1562796 3 0.000 1.000 0.000 0.000 1.000
#> SRR1562797 3 0.000 1.000 0.000 0.000 1.000
#> SRR1562798 3 0.000 1.000 0.000 0.000 1.000
#> SRR1562799 3 0.000 1.000 0.000 0.000 1.000
#> SRR1562800 1 0.497 1.000 0.764 0.000 0.236
#> SRR1562801 1 0.497 1.000 0.764 0.000 0.236
#> SRR1562802 1 0.497 1.000 0.764 0.000 0.236
#> SRR1562803 1 0.497 1.000 0.764 0.000 0.236
#> SRR1562804 1 0.497 1.000 0.764 0.000 0.236
#> SRR1562805 1 0.497 1.000 0.764 0.000 0.236
#> SRR1562806 1 0.497 1.000 0.764 0.000 0.236
#> SRR1562807 1 0.497 1.000 0.764 0.000 0.236
#> SRR1562808 1 0.497 1.000 0.764 0.000 0.236
#> SRR1562809 1 0.497 1.000 0.764 0.000 0.236
#> SRR1562810 1 0.497 1.000 0.764 0.000 0.236
#> SRR1562811 1 0.497 1.000 0.764 0.000 0.236
#> SRR1562812 1 0.497 1.000 0.764 0.000 0.236
#> SRR1562813 1 0.497 1.000 0.764 0.000 0.236
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1562718 2 0.0469 0.846 0.000 0.988 0.000 0.012
#> SRR1562719 2 0.0469 0.846 0.000 0.988 0.000 0.012
#> SRR1562720 2 0.0469 0.846 0.000 0.988 0.000 0.012
#> SRR1562721 2 0.0469 0.846 0.000 0.988 0.000 0.012
#> SRR1562723 2 0.0469 0.846 0.000 0.988 0.000 0.012
#> SRR1562724 2 0.0469 0.846 0.000 0.988 0.000 0.012
#> SRR1562725 2 0.0469 0.846 0.000 0.988 0.000 0.012
#> SRR1562726 2 0.0469 0.846 0.000 0.988 0.000 0.012
#> SRR1562727 2 0.0469 0.846 0.000 0.988 0.000 0.012
#> SRR1562728 2 0.0469 0.846 0.000 0.988 0.000 0.012
#> SRR1562729 2 0.0469 0.846 0.000 0.988 0.000 0.012
#> SRR1562730 2 0.0188 0.839 0.000 0.996 0.004 0.000
#> SRR1562731 2 0.0188 0.839 0.000 0.996 0.004 0.000
#> SRR1562732 2 0.0188 0.839 0.000 0.996 0.004 0.000
#> SRR1562733 2 0.0188 0.839 0.000 0.996 0.004 0.000
#> SRR1562734 2 0.0188 0.839 0.000 0.996 0.004 0.000
#> SRR1562735 2 0.0188 0.839 0.000 0.996 0.004 0.000
#> SRR1562736 2 0.4673 0.734 0.000 0.700 0.008 0.292
#> SRR1562737 2 0.4673 0.734 0.000 0.700 0.008 0.292
#> SRR1562738 2 0.4673 0.734 0.000 0.700 0.008 0.292
#> SRR1562739 2 0.4673 0.734 0.000 0.700 0.008 0.292
#> SRR1562740 2 0.4673 0.734 0.000 0.700 0.008 0.292
#> SRR1562741 2 0.4673 0.734 0.000 0.700 0.008 0.292
#> SRR1562742 2 0.4697 0.732 0.000 0.696 0.008 0.296
#> SRR1562743 2 0.4697 0.732 0.000 0.696 0.008 0.296
#> SRR1562744 2 0.4697 0.732 0.000 0.696 0.008 0.296
#> SRR1562745 2 0.4697 0.732 0.000 0.696 0.008 0.296
#> SRR1562746 2 0.4697 0.732 0.000 0.696 0.008 0.296
#> SRR1562747 2 0.4697 0.732 0.000 0.696 0.008 0.296
#> SRR1562748 4 0.0657 0.938 0.000 0.004 0.012 0.984
#> SRR1562749 4 0.0657 0.938 0.000 0.004 0.012 0.984
#> SRR1562750 4 0.0657 0.938 0.000 0.004 0.012 0.984
#> SRR1562751 4 0.0657 0.938 0.000 0.004 0.012 0.984
#> SRR1562752 4 0.0657 0.938 0.000 0.004 0.012 0.984
#> SRR1562753 4 0.0657 0.938 0.000 0.004 0.012 0.984
#> SRR1562754 4 0.1867 0.939 0.000 0.072 0.000 0.928
#> SRR1562755 4 0.1867 0.939 0.000 0.072 0.000 0.928
#> SRR1562756 4 0.1867 0.939 0.000 0.072 0.000 0.928
#> SRR1562757 4 0.1867 0.939 0.000 0.072 0.000 0.928
#> SRR1562758 4 0.1867 0.939 0.000 0.072 0.000 0.928
#> SRR1562759 4 0.1867 0.939 0.000 0.072 0.000 0.928
#> SRR1562792 3 0.0817 1.000 0.024 0.000 0.976 0.000
#> SRR1562793 3 0.0817 1.000 0.024 0.000 0.976 0.000
#> SRR1562794 3 0.0817 1.000 0.024 0.000 0.976 0.000
#> SRR1562795 3 0.0817 1.000 0.024 0.000 0.976 0.000
#> SRR1562796 3 0.0817 1.000 0.024 0.000 0.976 0.000
#> SRR1562797 3 0.0817 1.000 0.024 0.000 0.976 0.000
#> SRR1562798 3 0.0817 1.000 0.024 0.000 0.976 0.000
#> SRR1562799 3 0.0817 1.000 0.024 0.000 0.976 0.000
#> SRR1562800 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562801 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562802 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562803 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562804 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562805 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562806 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562807 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562808 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562809 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562810 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562811 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562812 1 0.0000 1.000 1.000 0.000 0.000 0.000
#> SRR1562813 1 0.0000 1.000 1.000 0.000 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1562718 2 0.3707 0.840 0.000 0.716 0 0.000 0.284
#> SRR1562719 2 0.3707 0.840 0.000 0.716 0 0.000 0.284
#> SRR1562720 2 0.3707 0.840 0.000 0.716 0 0.000 0.284
#> SRR1562721 2 0.3707 0.840 0.000 0.716 0 0.000 0.284
#> SRR1562723 2 0.3707 0.840 0.000 0.716 0 0.000 0.284
#> SRR1562724 2 0.3707 0.840 0.000 0.716 0 0.000 0.284
#> SRR1562725 2 0.3707 0.840 0.000 0.716 0 0.000 0.284
#> SRR1562726 2 0.3707 0.840 0.000 0.716 0 0.000 0.284
#> SRR1562727 2 0.3707 0.840 0.000 0.716 0 0.000 0.284
#> SRR1562728 2 0.3707 0.840 0.000 0.716 0 0.000 0.284
#> SRR1562729 2 0.3707 0.840 0.000 0.716 0 0.000 0.284
#> SRR1562730 2 0.0162 0.751 0.000 0.996 0 0.000 0.004
#> SRR1562731 2 0.0162 0.751 0.000 0.996 0 0.000 0.004
#> SRR1562732 2 0.0162 0.751 0.000 0.996 0 0.000 0.004
#> SRR1562733 2 0.0162 0.751 0.000 0.996 0 0.000 0.004
#> SRR1562734 2 0.0162 0.751 0.000 0.996 0 0.000 0.004
#> SRR1562735 2 0.0162 0.751 0.000 0.996 0 0.000 0.004
#> SRR1562736 5 0.5729 0.991 0.000 0.088 0 0.396 0.516
#> SRR1562737 5 0.5729 0.991 0.000 0.088 0 0.396 0.516
#> SRR1562738 5 0.5729 0.991 0.000 0.088 0 0.396 0.516
#> SRR1562739 5 0.5729 0.991 0.000 0.088 0 0.396 0.516
#> SRR1562740 5 0.5729 0.991 0.000 0.088 0 0.396 0.516
#> SRR1562741 5 0.5729 0.991 0.000 0.088 0 0.396 0.516
#> SRR1562742 5 0.5639 0.991 0.000 0.080 0 0.396 0.524
#> SRR1562743 5 0.5639 0.991 0.000 0.080 0 0.396 0.524
#> SRR1562744 5 0.5639 0.991 0.000 0.080 0 0.396 0.524
#> SRR1562745 5 0.5639 0.991 0.000 0.080 0 0.396 0.524
#> SRR1562746 5 0.5639 0.991 0.000 0.080 0 0.396 0.524
#> SRR1562747 5 0.5639 0.991 0.000 0.080 0 0.396 0.524
#> SRR1562748 4 0.4283 0.647 0.000 0.000 0 0.544 0.456
#> SRR1562749 4 0.4283 0.647 0.000 0.000 0 0.544 0.456
#> SRR1562750 4 0.4283 0.647 0.000 0.000 0 0.544 0.456
#> SRR1562751 4 0.4283 0.647 0.000 0.000 0 0.544 0.456
#> SRR1562752 4 0.4283 0.647 0.000 0.000 0 0.544 0.456
#> SRR1562753 4 0.4283 0.647 0.000 0.000 0 0.544 0.456
#> SRR1562754 4 0.2077 0.466 0.000 0.008 0 0.908 0.084
#> SRR1562755 4 0.2077 0.466 0.000 0.008 0 0.908 0.084
#> SRR1562756 4 0.2077 0.466 0.000 0.008 0 0.908 0.084
#> SRR1562757 4 0.2077 0.466 0.000 0.008 0 0.908 0.084
#> SRR1562758 4 0.2077 0.466 0.000 0.008 0 0.908 0.084
#> SRR1562759 4 0.2077 0.466 0.000 0.008 0 0.908 0.084
#> SRR1562792 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562793 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562794 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562795 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562796 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562797 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562798 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562799 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1562800 1 0.0290 0.996 0.992 0.000 0 0.000 0.008
#> SRR1562801 1 0.0290 0.996 0.992 0.000 0 0.000 0.008
#> SRR1562802 1 0.0290 0.996 0.992 0.000 0 0.000 0.008
#> SRR1562803 1 0.0290 0.996 0.992 0.000 0 0.000 0.008
#> SRR1562804 1 0.0290 0.996 0.992 0.000 0 0.000 0.008
#> SRR1562805 1 0.0290 0.996 0.992 0.000 0 0.000 0.008
#> SRR1562806 1 0.0000 0.997 1.000 0.000 0 0.000 0.000
#> SRR1562807 1 0.0000 0.997 1.000 0.000 0 0.000 0.000
#> SRR1562808 1 0.0000 0.997 1.000 0.000 0 0.000 0.000
#> SRR1562809 1 0.0000 0.997 1.000 0.000 0 0.000 0.000
#> SRR1562810 1 0.0000 0.997 1.000 0.000 0 0.000 0.000
#> SRR1562811 1 0.0000 0.997 1.000 0.000 0 0.000 0.000
#> SRR1562812 1 0.0000 0.997 1.000 0.000 0 0.000 0.000
#> SRR1562813 1 0.0000 0.997 1.000 0.000 0 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1562718 2 0.0146 0.996 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1562719 2 0.0146 0.996 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1562720 2 0.0146 0.996 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1562721 2 0.0146 0.996 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1562723 2 0.0146 0.996 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1562724 2 0.0000 0.996 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1562725 2 0.0000 0.996 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1562726 2 0.0000 0.996 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1562727 2 0.0000 0.996 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1562728 2 0.0000 0.996 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1562729 2 0.0000 0.996 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1562730 6 0.3857 1.000 0.000 0.468 0.000 0.000 0.000 0.532
#> SRR1562731 6 0.3857 1.000 0.000 0.468 0.000 0.000 0.000 0.532
#> SRR1562732 6 0.3857 1.000 0.000 0.468 0.000 0.000 0.000 0.532
#> SRR1562733 6 0.3857 1.000 0.000 0.468 0.000 0.000 0.000 0.532
#> SRR1562734 6 0.3857 1.000 0.000 0.468 0.000 0.000 0.000 0.532
#> SRR1562735 6 0.3857 1.000 0.000 0.468 0.000 0.000 0.000 0.532
#> SRR1562736 5 0.4053 0.934 0.000 0.204 0.000 0.040 0.744 0.012
#> SRR1562737 5 0.4053 0.934 0.000 0.204 0.000 0.040 0.744 0.012
#> SRR1562738 5 0.4053 0.934 0.000 0.204 0.000 0.040 0.744 0.012
#> SRR1562739 5 0.4053 0.934 0.000 0.204 0.000 0.040 0.744 0.012
#> SRR1562740 5 0.4053 0.934 0.000 0.204 0.000 0.040 0.744 0.012
#> SRR1562741 5 0.4053 0.934 0.000 0.204 0.000 0.040 0.744 0.012
#> SRR1562742 5 0.2632 0.934 0.000 0.164 0.000 0.004 0.832 0.000
#> SRR1562743 5 0.2632 0.934 0.000 0.164 0.000 0.004 0.832 0.000
#> SRR1562744 5 0.2632 0.934 0.000 0.164 0.000 0.004 0.832 0.000
#> SRR1562745 5 0.2632 0.934 0.000 0.164 0.000 0.004 0.832 0.000
#> SRR1562746 5 0.2632 0.934 0.000 0.164 0.000 0.004 0.832 0.000
#> SRR1562747 5 0.2632 0.934 0.000 0.164 0.000 0.004 0.832 0.000
#> SRR1562748 3 0.5658 0.253 0.000 0.000 0.432 0.416 0.152 0.000
#> SRR1562749 3 0.5658 0.253 0.000 0.000 0.432 0.416 0.152 0.000
#> SRR1562750 3 0.5658 0.253 0.000 0.000 0.432 0.416 0.152 0.000
#> SRR1562751 3 0.5658 0.253 0.000 0.000 0.432 0.416 0.152 0.000
#> SRR1562752 3 0.5658 0.253 0.000 0.000 0.432 0.416 0.152 0.000
#> SRR1562753 3 0.5658 0.253 0.000 0.000 0.432 0.416 0.152 0.000
#> SRR1562754 4 0.3337 1.000 0.000 0.004 0.000 0.736 0.260 0.000
#> SRR1562755 4 0.3337 1.000 0.000 0.004 0.000 0.736 0.260 0.000
#> SRR1562756 4 0.3337 1.000 0.000 0.004 0.000 0.736 0.260 0.000
#> SRR1562757 4 0.3337 1.000 0.000 0.004 0.000 0.736 0.260 0.000
#> SRR1562758 4 0.3337 1.000 0.000 0.004 0.000 0.736 0.260 0.000
#> SRR1562759 4 0.3337 1.000 0.000 0.004 0.000 0.736 0.260 0.000
#> SRR1562792 3 0.3817 0.553 0.000 0.000 0.568 0.000 0.000 0.432
#> SRR1562793 3 0.3817 0.553 0.000 0.000 0.568 0.000 0.000 0.432
#> SRR1562794 3 0.3817 0.553 0.000 0.000 0.568 0.000 0.000 0.432
#> SRR1562795 3 0.3817 0.553 0.000 0.000 0.568 0.000 0.000 0.432
#> SRR1562796 3 0.3817 0.553 0.000 0.000 0.568 0.000 0.000 0.432
#> SRR1562797 3 0.3817 0.553 0.000 0.000 0.568 0.000 0.000 0.432
#> SRR1562798 3 0.3817 0.553 0.000 0.000 0.568 0.000 0.000 0.432
#> SRR1562799 3 0.3817 0.553 0.000 0.000 0.568 0.000 0.000 0.432
#> SRR1562800 1 0.0993 0.982 0.964 0.000 0.000 0.000 0.012 0.024
#> SRR1562801 1 0.0993 0.982 0.964 0.000 0.000 0.000 0.012 0.024
#> SRR1562802 1 0.0993 0.982 0.964 0.000 0.000 0.000 0.012 0.024
#> SRR1562803 1 0.0993 0.982 0.964 0.000 0.000 0.000 0.012 0.024
#> SRR1562804 1 0.0993 0.982 0.964 0.000 0.000 0.000 0.012 0.024
#> SRR1562805 1 0.0993 0.982 0.964 0.000 0.000 0.000 0.012 0.024
#> SRR1562806 1 0.0000 0.986 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1562807 1 0.0000 0.986 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1562808 1 0.0000 0.986 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1562809 1 0.0000 0.986 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1562810 1 0.0000 0.986 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1562811 1 0.0000 0.986 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1562812 1 0.0000 0.986 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1562813 1 0.0000 0.986 1.000 0.000 0.000 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15301 rows and 63 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.4624 0.538 0.538
#> 3 3 1.000 1.000 1.000 0.1239 0.943 0.893
#> 4 4 0.959 0.954 0.977 0.3127 0.822 0.629
#> 5 5 0.959 0.951 0.977 0.0360 0.975 0.919
#> 6 6 0.902 0.929 0.908 0.0953 0.929 0.746
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3 4 5
There is also optional best \(k\) = 2 3 4 5 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1562718 2 0 1 0 1
#> SRR1562719 2 0 1 0 1
#> SRR1562720 2 0 1 0 1
#> SRR1562721 2 0 1 0 1
#> SRR1562723 2 0 1 0 1
#> SRR1562724 2 0 1 0 1
#> SRR1562725 2 0 1 0 1
#> SRR1562726 2 0 1 0 1
#> SRR1562727 2 0 1 0 1
#> SRR1562728 2 0 1 0 1
#> SRR1562729 2 0 1 0 1
#> SRR1562730 2 0 1 0 1
#> SRR1562731 2 0 1 0 1
#> SRR1562732 2 0 1 0 1
#> SRR1562733 2 0 1 0 1
#> SRR1562734 2 0 1 0 1
#> SRR1562735 2 0 1 0 1
#> SRR1562736 2 0 1 0 1
#> SRR1562737 2 0 1 0 1
#> SRR1562738 2 0 1 0 1
#> SRR1562739 2 0 1 0 1
#> SRR1562740 2 0 1 0 1
#> SRR1562741 2 0 1 0 1
#> SRR1562742 2 0 1 0 1
#> SRR1562743 2 0 1 0 1
#> SRR1562744 2 0 1 0 1
#> SRR1562745 2 0 1 0 1
#> SRR1562746 2 0 1 0 1
#> SRR1562747 2 0 1 0 1
#> SRR1562748 2 0 1 0 1
#> SRR1562749 2 0 1 0 1
#> SRR1562750 2 0 1 0 1
#> SRR1562751 2 0 1 0 1
#> SRR1562752 2 0 1 0 1
#> SRR1562753 2 0 1 0 1
#> SRR1562754 2 0 1 0 1
#> SRR1562755 2 0 1 0 1
#> SRR1562756 2 0 1 0 1
#> SRR1562757 2 0 1 0 1
#> SRR1562758 2 0 1 0 1
#> SRR1562759 2 0 1 0 1
#> SRR1562792 1 0 1 1 0
#> SRR1562793 1 0 1 1 0
#> SRR1562794 1 0 1 1 0
#> SRR1562795 1 0 1 1 0
#> SRR1562796 1 0 1 1 0
#> SRR1562797 1 0 1 1 0
#> SRR1562798 1 0 1 1 0
#> SRR1562799 1 0 1 1 0
#> SRR1562800 1 0 1 1 0
#> SRR1562801 1 0 1 1 0
#> SRR1562802 1 0 1 1 0
#> SRR1562803 1 0 1 1 0
#> SRR1562804 1 0 1 1 0
#> SRR1562805 1 0 1 1 0
#> SRR1562806 1 0 1 1 0
#> SRR1562807 1 0 1 1 0
#> SRR1562808 1 0 1 1 0
#> SRR1562809 1 0 1 1 0
#> SRR1562810 1 0 1 1 0
#> SRR1562811 1 0 1 1 0
#> SRR1562812 1 0 1 1 0
#> SRR1562813 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1562718 2 0 1 0 1 0
#> SRR1562719 2 0 1 0 1 0
#> SRR1562720 2 0 1 0 1 0
#> SRR1562721 2 0 1 0 1 0
#> SRR1562723 2 0 1 0 1 0
#> SRR1562724 2 0 1 0 1 0
#> SRR1562725 2 0 1 0 1 0
#> SRR1562726 2 0 1 0 1 0
#> SRR1562727 2 0 1 0 1 0
#> SRR1562728 2 0 1 0 1 0
#> SRR1562729 2 0 1 0 1 0
#> SRR1562730 2 0 1 0 1 0
#> SRR1562731 2 0 1 0 1 0
#> SRR1562732 2 0 1 0 1 0
#> SRR1562733 2 0 1 0 1 0
#> SRR1562734 2 0 1 0 1 0
#> SRR1562735 2 0 1 0 1 0
#> SRR1562736 2 0 1 0 1 0
#> SRR1562737 2 0 1 0 1 0
#> SRR1562738 2 0 1 0 1 0
#> SRR1562739 2 0 1 0 1 0
#> SRR1562740 2 0 1 0 1 0
#> SRR1562741 2 0 1 0 1 0
#> SRR1562742 2 0 1 0 1 0
#> SRR1562743 2 0 1 0 1 0
#> SRR1562744 2 0 1 0 1 0
#> SRR1562745 2 0 1 0 1 0
#> SRR1562746 2 0 1 0 1 0
#> SRR1562747 2 0 1 0 1 0
#> SRR1562748 2 0 1 0 1 0
#> SRR1562749 2 0 1 0 1 0
#> SRR1562750 2 0 1 0 1 0
#> SRR1562751 2 0 1 0 1 0
#> SRR1562752 2 0 1 0 1 0
#> SRR1562753 2 0 1 0 1 0
#> SRR1562754 2 0 1 0 1 0
#> SRR1562755 2 0 1 0 1 0
#> SRR1562756 2 0 1 0 1 0
#> SRR1562757 2 0 1 0 1 0
#> SRR1562758 2 0 1 0 1 0
#> SRR1562759 2 0 1 0 1 0
#> SRR1562792 3 0 1 0 0 1
#> SRR1562793 3 0 1 0 0 1
#> SRR1562794 3 0 1 0 0 1
#> SRR1562795 3 0 1 0 0 1
#> SRR1562796 3 0 1 0 0 1
#> SRR1562797 3 0 1 0 0 1
#> SRR1562798 3 0 1 0 0 1
#> SRR1562799 3 0 1 0 0 1
#> SRR1562800 1 0 1 1 0 0
#> SRR1562801 1 0 1 1 0 0
#> SRR1562802 1 0 1 1 0 0
#> SRR1562803 1 0 1 1 0 0
#> SRR1562804 1 0 1 1 0 0
#> SRR1562805 1 0 1 1 0 0
#> SRR1562806 1 0 1 1 0 0
#> SRR1562807 1 0 1 1 0 0
#> SRR1562808 1 0 1 1 0 0
#> SRR1562809 1 0 1 1 0 0
#> SRR1562810 1 0 1 1 0 0
#> SRR1562811 1 0 1 1 0 0
#> SRR1562812 1 0 1 1 0 0
#> SRR1562813 1 0 1 1 0 0
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1562718 2 0.000 1.000 0 1.000 0 0.000
#> SRR1562719 2 0.000 1.000 0 1.000 0 0.000
#> SRR1562720 2 0.000 1.000 0 1.000 0 0.000
#> SRR1562721 2 0.000 1.000 0 1.000 0 0.000
#> SRR1562723 2 0.000 1.000 0 1.000 0 0.000
#> SRR1562724 2 0.000 1.000 0 1.000 0 0.000
#> SRR1562725 2 0.000 1.000 0 1.000 0 0.000
#> SRR1562726 2 0.000 1.000 0 1.000 0 0.000
#> SRR1562727 2 0.000 1.000 0 1.000 0 0.000
#> SRR1562728 2 0.000 1.000 0 1.000 0 0.000
#> SRR1562729 2 0.000 1.000 0 1.000 0 0.000
#> SRR1562730 2 0.000 1.000 0 1.000 0 0.000
#> SRR1562731 2 0.000 1.000 0 1.000 0 0.000
#> SRR1562732 2 0.000 1.000 0 1.000 0 0.000
#> SRR1562733 2 0.000 1.000 0 1.000 0 0.000
#> SRR1562734 2 0.000 1.000 0 1.000 0 0.000
#> SRR1562735 2 0.000 1.000 0 1.000 0 0.000
#> SRR1562736 2 0.000 1.000 0 1.000 0 0.000
#> SRR1562737 2 0.000 1.000 0 1.000 0 0.000
#> SRR1562738 2 0.000 1.000 0 1.000 0 0.000
#> SRR1562739 2 0.000 1.000 0 1.000 0 0.000
#> SRR1562740 2 0.000 1.000 0 1.000 0 0.000
#> SRR1562741 2 0.000 1.000 0 1.000 0 0.000
#> SRR1562742 2 0.000 1.000 0 1.000 0 0.000
#> SRR1562743 2 0.000 1.000 0 1.000 0 0.000
#> SRR1562744 2 0.000 1.000 0 1.000 0 0.000
#> SRR1562745 2 0.000 1.000 0 1.000 0 0.000
#> SRR1562746 2 0.000 1.000 0 1.000 0 0.000
#> SRR1562747 2 0.000 1.000 0 1.000 0 0.000
#> SRR1562748 4 0.000 0.809 0 0.000 0 1.000
#> SRR1562749 4 0.000 0.809 0 0.000 0 1.000
#> SRR1562750 4 0.000 0.809 0 0.000 0 1.000
#> SRR1562751 4 0.000 0.809 0 0.000 0 1.000
#> SRR1562752 4 0.000 0.809 0 0.000 0 1.000
#> SRR1562753 4 0.000 0.809 0 0.000 0 1.000
#> SRR1562754 4 0.234 0.801 0 0.100 0 0.900
#> SRR1562755 4 0.438 0.691 0 0.296 0 0.704
#> SRR1562756 4 0.234 0.801 0 0.100 0 0.900
#> SRR1562757 4 0.436 0.694 0 0.292 0 0.708
#> SRR1562758 4 0.485 0.513 0 0.400 0 0.600
#> SRR1562759 4 0.404 0.727 0 0.248 0 0.752
#> SRR1562792 3 0.000 1.000 0 0.000 1 0.000
#> SRR1562793 3 0.000 1.000 0 0.000 1 0.000
#> SRR1562794 3 0.000 1.000 0 0.000 1 0.000
#> SRR1562795 3 0.000 1.000 0 0.000 1 0.000
#> SRR1562796 3 0.000 1.000 0 0.000 1 0.000
#> SRR1562797 3 0.000 1.000 0 0.000 1 0.000
#> SRR1562798 3 0.000 1.000 0 0.000 1 0.000
#> SRR1562799 3 0.000 1.000 0 0.000 1 0.000
#> SRR1562800 1 0.000 1.000 1 0.000 0 0.000
#> SRR1562801 1 0.000 1.000 1 0.000 0 0.000
#> SRR1562802 1 0.000 1.000 1 0.000 0 0.000
#> SRR1562803 1 0.000 1.000 1 0.000 0 0.000
#> SRR1562804 1 0.000 1.000 1 0.000 0 0.000
#> SRR1562805 1 0.000 1.000 1 0.000 0 0.000
#> SRR1562806 1 0.000 1.000 1 0.000 0 0.000
#> SRR1562807 1 0.000 1.000 1 0.000 0 0.000
#> SRR1562808 1 0.000 1.000 1 0.000 0 0.000
#> SRR1562809 1 0.000 1.000 1 0.000 0 0.000
#> SRR1562810 1 0.000 1.000 1 0.000 0 0.000
#> SRR1562811 1 0.000 1.000 1 0.000 0 0.000
#> SRR1562812 1 0.000 1.000 1 0.000 0 0.000
#> SRR1562813 1 0.000 1.000 1 0.000 0 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1562718 2 0.000 1.000 0 1.000 0 0.000 0
#> SRR1562719 2 0.000 1.000 0 1.000 0 0.000 0
#> SRR1562720 2 0.000 1.000 0 1.000 0 0.000 0
#> SRR1562721 2 0.000 1.000 0 1.000 0 0.000 0
#> SRR1562723 2 0.000 1.000 0 1.000 0 0.000 0
#> SRR1562724 2 0.000 1.000 0 1.000 0 0.000 0
#> SRR1562725 2 0.000 1.000 0 1.000 0 0.000 0
#> SRR1562726 2 0.000 1.000 0 1.000 0 0.000 0
#> SRR1562727 2 0.000 1.000 0 1.000 0 0.000 0
#> SRR1562728 2 0.000 1.000 0 1.000 0 0.000 0
#> SRR1562729 2 0.000 1.000 0 1.000 0 0.000 0
#> SRR1562730 2 0.000 1.000 0 1.000 0 0.000 0
#> SRR1562731 2 0.000 1.000 0 1.000 0 0.000 0
#> SRR1562732 2 0.000 1.000 0 1.000 0 0.000 0
#> SRR1562733 2 0.000 1.000 0 1.000 0 0.000 0
#> SRR1562734 2 0.000 1.000 0 1.000 0 0.000 0
#> SRR1562735 2 0.000 1.000 0 1.000 0 0.000 0
#> SRR1562736 2 0.000 1.000 0 1.000 0 0.000 0
#> SRR1562737 2 0.000 1.000 0 1.000 0 0.000 0
#> SRR1562738 2 0.000 1.000 0 1.000 0 0.000 0
#> SRR1562739 2 0.000 1.000 0 1.000 0 0.000 0
#> SRR1562740 2 0.000 1.000 0 1.000 0 0.000 0
#> SRR1562741 2 0.000 1.000 0 1.000 0 0.000 0
#> SRR1562742 2 0.000 1.000 0 1.000 0 0.000 0
#> SRR1562743 2 0.000 1.000 0 1.000 0 0.000 0
#> SRR1562744 2 0.000 1.000 0 1.000 0 0.000 0
#> SRR1562745 2 0.000 1.000 0 1.000 0 0.000 0
#> SRR1562746 2 0.000 1.000 0 1.000 0 0.000 0
#> SRR1562747 2 0.000 1.000 0 1.000 0 0.000 0
#> SRR1562748 4 0.000 0.797 0 0.000 0 1.000 0
#> SRR1562749 4 0.000 0.797 0 0.000 0 1.000 0
#> SRR1562750 4 0.000 0.797 0 0.000 0 1.000 0
#> SRR1562751 4 0.000 0.797 0 0.000 0 1.000 0
#> SRR1562752 4 0.000 0.797 0 0.000 0 1.000 0
#> SRR1562753 4 0.000 0.797 0 0.000 0 1.000 0
#> SRR1562754 4 0.202 0.788 0 0.100 0 0.900 0
#> SRR1562755 4 0.377 0.672 0 0.296 0 0.704 0
#> SRR1562756 4 0.202 0.789 0 0.100 0 0.900 0
#> SRR1562757 4 0.375 0.675 0 0.292 0 0.708 0
#> SRR1562758 4 0.418 0.513 0 0.400 0 0.600 0
#> SRR1562759 4 0.348 0.711 0 0.248 0 0.752 0
#> SRR1562792 3 0.000 1.000 0 0.000 1 0.000 0
#> SRR1562793 3 0.000 1.000 0 0.000 1 0.000 0
#> SRR1562794 3 0.000 1.000 0 0.000 1 0.000 0
#> SRR1562795 3 0.000 1.000 0 0.000 1 0.000 0
#> SRR1562796 3 0.000 1.000 0 0.000 1 0.000 0
#> SRR1562797 3 0.000 1.000 0 0.000 1 0.000 0
#> SRR1562798 3 0.000 1.000 0 0.000 1 0.000 0
#> SRR1562799 3 0.000 1.000 0 0.000 1 0.000 0
#> SRR1562800 5 0.000 1.000 0 0.000 0 0.000 1
#> SRR1562801 5 0.000 1.000 0 0.000 0 0.000 1
#> SRR1562802 5 0.000 1.000 0 0.000 0 0.000 1
#> SRR1562803 5 0.000 1.000 0 0.000 0 0.000 1
#> SRR1562804 5 0.000 1.000 0 0.000 0 0.000 1
#> SRR1562805 5 0.000 1.000 0 0.000 0 0.000 1
#> SRR1562806 1 0.000 1.000 1 0.000 0 0.000 0
#> SRR1562807 1 0.000 1.000 1 0.000 0 0.000 0
#> SRR1562808 1 0.000 1.000 1 0.000 0 0.000 0
#> SRR1562809 1 0.000 1.000 1 0.000 0 0.000 0
#> SRR1562810 1 0.000 1.000 1 0.000 0 0.000 0
#> SRR1562811 1 0.000 1.000 1 0.000 0 0.000 0
#> SRR1562812 1 0.000 1.000 1 0.000 0 0.000 0
#> SRR1562813 1 0.000 1.000 1 0.000 0 0.000 0
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1562718 2 0.0000 0.957 0 1.000 0 0.000 0.000 0
#> SRR1562719 2 0.0000 0.957 0 1.000 0 0.000 0.000 0
#> SRR1562720 2 0.0000 0.957 0 1.000 0 0.000 0.000 0
#> SRR1562721 2 0.0000 0.957 0 1.000 0 0.000 0.000 0
#> SRR1562723 2 0.0000 0.957 0 1.000 0 0.000 0.000 0
#> SRR1562724 2 0.0000 0.957 0 1.000 0 0.000 0.000 0
#> SRR1562725 2 0.0000 0.957 0 1.000 0 0.000 0.000 0
#> SRR1562726 2 0.0000 0.957 0 1.000 0 0.000 0.000 0
#> SRR1562727 2 0.0000 0.957 0 1.000 0 0.000 0.000 0
#> SRR1562728 2 0.0000 0.957 0 1.000 0 0.000 0.000 0
#> SRR1562729 2 0.0000 0.957 0 1.000 0 0.000 0.000 0
#> SRR1562730 2 0.0000 0.957 0 1.000 0 0.000 0.000 0
#> SRR1562731 2 0.0000 0.957 0 1.000 0 0.000 0.000 0
#> SRR1562732 2 0.0000 0.957 0 1.000 0 0.000 0.000 0
#> SRR1562733 2 0.0000 0.957 0 1.000 0 0.000 0.000 0
#> SRR1562734 2 0.0000 0.957 0 1.000 0 0.000 0.000 0
#> SRR1562735 2 0.0000 0.957 0 1.000 0 0.000 0.000 0
#> SRR1562736 2 0.1838 0.870 0 0.916 0 0.016 0.068 0
#> SRR1562737 2 0.2163 0.832 0 0.892 0 0.016 0.092 0
#> SRR1562738 2 0.1838 0.870 0 0.916 0 0.016 0.068 0
#> SRR1562739 2 0.1838 0.870 0 0.916 0 0.016 0.068 0
#> SRR1562740 2 0.1895 0.865 0 0.912 0 0.016 0.072 0
#> SRR1562741 2 0.2006 0.854 0 0.904 0 0.016 0.080 0
#> SRR1562742 5 0.4141 1.000 0 0.388 0 0.016 0.596 0
#> SRR1562743 5 0.4141 1.000 0 0.388 0 0.016 0.596 0
#> SRR1562744 5 0.4141 1.000 0 0.388 0 0.016 0.596 0
#> SRR1562745 5 0.4141 1.000 0 0.388 0 0.016 0.596 0
#> SRR1562746 5 0.4141 1.000 0 0.388 0 0.016 0.596 0
#> SRR1562747 5 0.4141 1.000 0 0.388 0 0.016 0.596 0
#> SRR1562748 4 0.3765 0.772 0 0.000 0 0.596 0.404 0
#> SRR1562749 4 0.3765 0.772 0 0.000 0 0.596 0.404 0
#> SRR1562750 4 0.3765 0.772 0 0.000 0 0.596 0.404 0
#> SRR1562751 4 0.3765 0.772 0 0.000 0 0.596 0.404 0
#> SRR1562752 4 0.3765 0.772 0 0.000 0 0.596 0.404 0
#> SRR1562753 4 0.3765 0.772 0 0.000 0 0.596 0.404 0
#> SRR1562754 4 0.0820 0.753 0 0.012 0 0.972 0.016 0
#> SRR1562755 4 0.1926 0.729 0 0.020 0 0.912 0.068 0
#> SRR1562756 4 0.0713 0.752 0 0.000 0 0.972 0.028 0
#> SRR1562757 4 0.1700 0.738 0 0.048 0 0.928 0.024 0
#> SRR1562758 4 0.2164 0.716 0 0.068 0 0.900 0.032 0
#> SRR1562759 4 0.1418 0.747 0 0.024 0 0.944 0.032 0
#> SRR1562792 3 0.0000 1.000 0 0.000 1 0.000 0.000 0
#> SRR1562793 3 0.0000 1.000 0 0.000 1 0.000 0.000 0
#> SRR1562794 3 0.0000 1.000 0 0.000 1 0.000 0.000 0
#> SRR1562795 3 0.0000 1.000 0 0.000 1 0.000 0.000 0
#> SRR1562796 3 0.0000 1.000 0 0.000 1 0.000 0.000 0
#> SRR1562797 3 0.0000 1.000 0 0.000 1 0.000 0.000 0
#> SRR1562798 3 0.0000 1.000 0 0.000 1 0.000 0.000 0
#> SRR1562799 3 0.0000 1.000 0 0.000 1 0.000 0.000 0
#> SRR1562800 6 0.0000 1.000 0 0.000 0 0.000 0.000 1
#> SRR1562801 6 0.0000 1.000 0 0.000 0 0.000 0.000 1
#> SRR1562802 6 0.0000 1.000 0 0.000 0 0.000 0.000 1
#> SRR1562803 6 0.0000 1.000 0 0.000 0 0.000 0.000 1
#> SRR1562804 6 0.0000 1.000 0 0.000 0 0.000 0.000 1
#> SRR1562805 6 0.0000 1.000 0 0.000 0 0.000 0.000 1
#> SRR1562806 1 0.0000 1.000 1 0.000 0 0.000 0.000 0
#> SRR1562807 1 0.0000 1.000 1 0.000 0 0.000 0.000 0
#> SRR1562808 1 0.0000 1.000 1 0.000 0 0.000 0.000 0
#> SRR1562809 1 0.0000 1.000 1 0.000 0 0.000 0.000 0
#> SRR1562810 1 0.0000 1.000 1 0.000 0 0.000 0.000 0
#> SRR1562811 1 0.0000 1.000 1 0.000 0 0.000 0.000 0
#> SRR1562812 1 0.0000 1.000 1 0.000 0 0.000 0.000 0
#> SRR1562813 1 0.0000 1.000 1 0.000 0 0.000 0.000 0
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15301 rows and 63 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.4624 0.538 0.538
#> 3 3 0.678 0.779 0.834 0.2656 0.943 0.893
#> 4 4 0.822 0.945 0.962 0.2027 0.822 0.629
#> 5 5 0.871 0.971 0.919 0.1074 0.896 0.655
#> 6 6 0.966 0.985 0.986 0.0561 0.975 0.876
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2
There is also optional best \(k\) = 2 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1562718 2 0 1 0 1
#> SRR1562719 2 0 1 0 1
#> SRR1562720 2 0 1 0 1
#> SRR1562721 2 0 1 0 1
#> SRR1562723 2 0 1 0 1
#> SRR1562724 2 0 1 0 1
#> SRR1562725 2 0 1 0 1
#> SRR1562726 2 0 1 0 1
#> SRR1562727 2 0 1 0 1
#> SRR1562728 2 0 1 0 1
#> SRR1562729 2 0 1 0 1
#> SRR1562730 2 0 1 0 1
#> SRR1562731 2 0 1 0 1
#> SRR1562732 2 0 1 0 1
#> SRR1562733 2 0 1 0 1
#> SRR1562734 2 0 1 0 1
#> SRR1562735 2 0 1 0 1
#> SRR1562736 2 0 1 0 1
#> SRR1562737 2 0 1 0 1
#> SRR1562738 2 0 1 0 1
#> SRR1562739 2 0 1 0 1
#> SRR1562740 2 0 1 0 1
#> SRR1562741 2 0 1 0 1
#> SRR1562742 2 0 1 0 1
#> SRR1562743 2 0 1 0 1
#> SRR1562744 2 0 1 0 1
#> SRR1562745 2 0 1 0 1
#> SRR1562746 2 0 1 0 1
#> SRR1562747 2 0 1 0 1
#> SRR1562748 2 0 1 0 1
#> SRR1562749 2 0 1 0 1
#> SRR1562750 2 0 1 0 1
#> SRR1562751 2 0 1 0 1
#> SRR1562752 2 0 1 0 1
#> SRR1562753 2 0 1 0 1
#> SRR1562754 2 0 1 0 1
#> SRR1562755 2 0 1 0 1
#> SRR1562756 2 0 1 0 1
#> SRR1562757 2 0 1 0 1
#> SRR1562758 2 0 1 0 1
#> SRR1562759 2 0 1 0 1
#> SRR1562792 1 0 1 1 0
#> SRR1562793 1 0 1 1 0
#> SRR1562794 1 0 1 1 0
#> SRR1562795 1 0 1 1 0
#> SRR1562796 1 0 1 1 0
#> SRR1562797 1 0 1 1 0
#> SRR1562798 1 0 1 1 0
#> SRR1562799 1 0 1 1 0
#> SRR1562800 1 0 1 1 0
#> SRR1562801 1 0 1 1 0
#> SRR1562802 1 0 1 1 0
#> SRR1562803 1 0 1 1 0
#> SRR1562804 1 0 1 1 0
#> SRR1562805 1 0 1 1 0
#> SRR1562806 1 0 1 1 0
#> SRR1562807 1 0 1 1 0
#> SRR1562808 1 0 1 1 0
#> SRR1562809 1 0 1 1 0
#> SRR1562810 1 0 1 1 0
#> SRR1562811 1 0 1 1 0
#> SRR1562812 1 0 1 1 0
#> SRR1562813 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1562718 2 0.000 0.797 0.000 1.000 0.000
#> SRR1562719 2 0.000 0.797 0.000 1.000 0.000
#> SRR1562720 2 0.000 0.797 0.000 1.000 0.000
#> SRR1562721 2 0.000 0.797 0.000 1.000 0.000
#> SRR1562723 2 0.000 0.797 0.000 1.000 0.000
#> SRR1562724 2 0.000 0.797 0.000 1.000 0.000
#> SRR1562725 2 0.000 0.797 0.000 1.000 0.000
#> SRR1562726 2 0.000 0.797 0.000 1.000 0.000
#> SRR1562727 2 0.000 0.797 0.000 1.000 0.000
#> SRR1562728 2 0.000 0.797 0.000 1.000 0.000
#> SRR1562729 2 0.000 0.797 0.000 1.000 0.000
#> SRR1562730 2 0.000 0.797 0.000 1.000 0.000
#> SRR1562731 2 0.000 0.797 0.000 1.000 0.000
#> SRR1562732 2 0.000 0.797 0.000 1.000 0.000
#> SRR1562733 2 0.000 0.797 0.000 1.000 0.000
#> SRR1562734 2 0.000 0.797 0.000 1.000 0.000
#> SRR1562735 2 0.000 0.797 0.000 1.000 0.000
#> SRR1562736 2 0.186 0.797 0.000 0.948 0.052
#> SRR1562737 2 0.186 0.797 0.000 0.948 0.052
#> SRR1562738 2 0.186 0.797 0.000 0.948 0.052
#> SRR1562739 2 0.186 0.797 0.000 0.948 0.052
#> SRR1562740 2 0.186 0.797 0.000 0.948 0.052
#> SRR1562741 2 0.186 0.797 0.000 0.948 0.052
#> SRR1562742 2 0.186 0.797 0.000 0.948 0.052
#> SRR1562743 2 0.186 0.797 0.000 0.948 0.052
#> SRR1562744 2 0.186 0.797 0.000 0.948 0.052
#> SRR1562745 2 0.186 0.797 0.000 0.948 0.052
#> SRR1562746 2 0.186 0.797 0.000 0.948 0.052
#> SRR1562747 2 0.186 0.797 0.000 0.948 0.052
#> SRR1562748 2 0.993 0.319 0.328 0.388 0.284
#> SRR1562749 2 0.993 0.319 0.328 0.388 0.284
#> SRR1562750 2 0.993 0.319 0.328 0.388 0.284
#> SRR1562751 2 0.993 0.319 0.328 0.388 0.284
#> SRR1562752 2 0.993 0.319 0.328 0.388 0.284
#> SRR1562753 2 0.993 0.319 0.328 0.388 0.284
#> SRR1562754 2 0.987 0.340 0.328 0.404 0.268
#> SRR1562755 2 0.987 0.340 0.328 0.404 0.268
#> SRR1562756 2 0.987 0.340 0.328 0.404 0.268
#> SRR1562757 2 0.987 0.340 0.328 0.404 0.268
#> SRR1562758 2 0.987 0.340 0.328 0.404 0.268
#> SRR1562759 2 0.987 0.340 0.328 0.404 0.268
#> SRR1562792 3 0.525 1.000 0.264 0.000 0.736
#> SRR1562793 3 0.525 1.000 0.264 0.000 0.736
#> SRR1562794 3 0.525 1.000 0.264 0.000 0.736
#> SRR1562795 3 0.525 1.000 0.264 0.000 0.736
#> SRR1562796 3 0.525 1.000 0.264 0.000 0.736
#> SRR1562797 3 0.525 1.000 0.264 0.000 0.736
#> SRR1562798 3 0.525 1.000 0.264 0.000 0.736
#> SRR1562799 3 0.525 1.000 0.264 0.000 0.736
#> SRR1562800 1 0.000 1.000 1.000 0.000 0.000
#> SRR1562801 1 0.000 1.000 1.000 0.000 0.000
#> SRR1562802 1 0.000 1.000 1.000 0.000 0.000
#> SRR1562803 1 0.000 1.000 1.000 0.000 0.000
#> SRR1562804 1 0.000 1.000 1.000 0.000 0.000
#> SRR1562805 1 0.000 1.000 1.000 0.000 0.000
#> SRR1562806 1 0.000 1.000 1.000 0.000 0.000
#> SRR1562807 1 0.000 1.000 1.000 0.000 0.000
#> SRR1562808 1 0.000 1.000 1.000 0.000 0.000
#> SRR1562809 1 0.000 1.000 1.000 0.000 0.000
#> SRR1562810 1 0.000 1.000 1.000 0.000 0.000
#> SRR1562811 1 0.000 1.000 1.000 0.000 0.000
#> SRR1562812 1 0.000 1.000 1.000 0.000 0.000
#> SRR1562813 1 0.000 1.000 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1562718 2 0.000 0.904 0 1.0 0 0.0
#> SRR1562719 2 0.000 0.904 0 1.0 0 0.0
#> SRR1562720 2 0.000 0.904 0 1.0 0 0.0
#> SRR1562721 2 0.000 0.904 0 1.0 0 0.0
#> SRR1562723 2 0.000 0.904 0 1.0 0 0.0
#> SRR1562724 2 0.000 0.904 0 1.0 0 0.0
#> SRR1562725 2 0.000 0.904 0 1.0 0 0.0
#> SRR1562726 2 0.000 0.904 0 1.0 0 0.0
#> SRR1562727 2 0.000 0.904 0 1.0 0 0.0
#> SRR1562728 2 0.000 0.904 0 1.0 0 0.0
#> SRR1562729 2 0.000 0.904 0 1.0 0 0.0
#> SRR1562730 2 0.000 0.904 0 1.0 0 0.0
#> SRR1562731 2 0.000 0.904 0 1.0 0 0.0
#> SRR1562732 2 0.000 0.904 0 1.0 0 0.0
#> SRR1562733 2 0.000 0.904 0 1.0 0 0.0
#> SRR1562734 2 0.000 0.904 0 1.0 0 0.0
#> SRR1562735 2 0.000 0.904 0 1.0 0 0.0
#> SRR1562736 2 0.361 0.848 0 0.8 0 0.2
#> SRR1562737 2 0.361 0.848 0 0.8 0 0.2
#> SRR1562738 2 0.361 0.848 0 0.8 0 0.2
#> SRR1562739 2 0.361 0.848 0 0.8 0 0.2
#> SRR1562740 2 0.361 0.848 0 0.8 0 0.2
#> SRR1562741 2 0.361 0.848 0 0.8 0 0.2
#> SRR1562742 2 0.361 0.848 0 0.8 0 0.2
#> SRR1562743 2 0.361 0.848 0 0.8 0 0.2
#> SRR1562744 2 0.361 0.848 0 0.8 0 0.2
#> SRR1562745 2 0.361 0.848 0 0.8 0 0.2
#> SRR1562746 2 0.361 0.848 0 0.8 0 0.2
#> SRR1562747 2 0.361 0.848 0 0.8 0 0.2
#> SRR1562748 4 0.000 1.000 0 0.0 0 1.0
#> SRR1562749 4 0.000 1.000 0 0.0 0 1.0
#> SRR1562750 4 0.000 1.000 0 0.0 0 1.0
#> SRR1562751 4 0.000 1.000 0 0.0 0 1.0
#> SRR1562752 4 0.000 1.000 0 0.0 0 1.0
#> SRR1562753 4 0.000 1.000 0 0.0 0 1.0
#> SRR1562754 4 0.000 1.000 0 0.0 0 1.0
#> SRR1562755 4 0.000 1.000 0 0.0 0 1.0
#> SRR1562756 4 0.000 1.000 0 0.0 0 1.0
#> SRR1562757 4 0.000 1.000 0 0.0 0 1.0
#> SRR1562758 4 0.000 1.000 0 0.0 0 1.0
#> SRR1562759 4 0.000 1.000 0 0.0 0 1.0
#> SRR1562792 3 0.000 1.000 0 0.0 1 0.0
#> SRR1562793 3 0.000 1.000 0 0.0 1 0.0
#> SRR1562794 3 0.000 1.000 0 0.0 1 0.0
#> SRR1562795 3 0.000 1.000 0 0.0 1 0.0
#> SRR1562796 3 0.000 1.000 0 0.0 1 0.0
#> SRR1562797 3 0.000 1.000 0 0.0 1 0.0
#> SRR1562798 3 0.000 1.000 0 0.0 1 0.0
#> SRR1562799 3 0.000 1.000 0 0.0 1 0.0
#> SRR1562800 1 0.000 1.000 1 0.0 0 0.0
#> SRR1562801 1 0.000 1.000 1 0.0 0 0.0
#> SRR1562802 1 0.000 1.000 1 0.0 0 0.0
#> SRR1562803 1 0.000 1.000 1 0.0 0 0.0
#> SRR1562804 1 0.000 1.000 1 0.0 0 0.0
#> SRR1562805 1 0.000 1.000 1 0.0 0 0.0
#> SRR1562806 1 0.000 1.000 1 0.0 0 0.0
#> SRR1562807 1 0.000 1.000 1 0.0 0 0.0
#> SRR1562808 1 0.000 1.000 1 0.0 0 0.0
#> SRR1562809 1 0.000 1.000 1 0.0 0 0.0
#> SRR1562810 1 0.000 1.000 1 0.0 0 0.0
#> SRR1562811 1 0.000 1.000 1 0.0 0 0.0
#> SRR1562812 1 0.000 1.000 1 0.0 0 0.0
#> SRR1562813 1 0.000 1.000 1 0.0 0 0.0
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1562718 2 0.000 1.000 0.000 1.000 0 0 0.000
#> SRR1562719 2 0.000 1.000 0.000 1.000 0 0 0.000
#> SRR1562720 2 0.000 1.000 0.000 1.000 0 0 0.000
#> SRR1562721 2 0.000 1.000 0.000 1.000 0 0 0.000
#> SRR1562723 2 0.000 1.000 0.000 1.000 0 0 0.000
#> SRR1562724 2 0.000 1.000 0.000 1.000 0 0 0.000
#> SRR1562725 2 0.000 1.000 0.000 1.000 0 0 0.000
#> SRR1562726 2 0.000 1.000 0.000 1.000 0 0 0.000
#> SRR1562727 2 0.000 1.000 0.000 1.000 0 0 0.000
#> SRR1562728 2 0.000 1.000 0.000 1.000 0 0 0.000
#> SRR1562729 2 0.000 1.000 0.000 1.000 0 0 0.000
#> SRR1562730 2 0.000 1.000 0.000 1.000 0 0 0.000
#> SRR1562731 2 0.000 1.000 0.000 1.000 0 0 0.000
#> SRR1562732 2 0.000 1.000 0.000 1.000 0 0 0.000
#> SRR1562733 2 0.000 1.000 0.000 1.000 0 0 0.000
#> SRR1562734 2 0.000 1.000 0.000 1.000 0 0 0.000
#> SRR1562735 2 0.000 1.000 0.000 1.000 0 0 0.000
#> SRR1562736 5 0.371 1.000 0.000 0.284 0 0 0.716
#> SRR1562737 5 0.371 1.000 0.000 0.284 0 0 0.716
#> SRR1562738 5 0.371 1.000 0.000 0.284 0 0 0.716
#> SRR1562739 5 0.371 1.000 0.000 0.284 0 0 0.716
#> SRR1562740 5 0.371 1.000 0.000 0.284 0 0 0.716
#> SRR1562741 5 0.371 1.000 0.000 0.284 0 0 0.716
#> SRR1562742 5 0.371 1.000 0.000 0.284 0 0 0.716
#> SRR1562743 5 0.371 1.000 0.000 0.284 0 0 0.716
#> SRR1562744 5 0.371 1.000 0.000 0.284 0 0 0.716
#> SRR1562745 5 0.371 1.000 0.000 0.284 0 0 0.716
#> SRR1562746 5 0.371 1.000 0.000 0.284 0 0 0.716
#> SRR1562747 5 0.371 1.000 0.000 0.284 0 0 0.716
#> SRR1562748 4 0.000 1.000 0.000 0.000 0 1 0.000
#> SRR1562749 4 0.000 1.000 0.000 0.000 0 1 0.000
#> SRR1562750 4 0.000 1.000 0.000 0.000 0 1 0.000
#> SRR1562751 4 0.000 1.000 0.000 0.000 0 1 0.000
#> SRR1562752 4 0.000 1.000 0.000 0.000 0 1 0.000
#> SRR1562753 4 0.000 1.000 0.000 0.000 0 1 0.000
#> SRR1562754 4 0.000 1.000 0.000 0.000 0 1 0.000
#> SRR1562755 4 0.000 1.000 0.000 0.000 0 1 0.000
#> SRR1562756 4 0.000 1.000 0.000 0.000 0 1 0.000
#> SRR1562757 4 0.000 1.000 0.000 0.000 0 1 0.000
#> SRR1562758 4 0.000 1.000 0.000 0.000 0 1 0.000
#> SRR1562759 4 0.000 1.000 0.000 0.000 0 1 0.000
#> SRR1562792 3 0.000 1.000 0.000 0.000 1 0 0.000
#> SRR1562793 3 0.000 1.000 0.000 0.000 1 0 0.000
#> SRR1562794 3 0.000 1.000 0.000 0.000 1 0 0.000
#> SRR1562795 3 0.000 1.000 0.000 0.000 1 0 0.000
#> SRR1562796 3 0.000 1.000 0.000 0.000 1 0 0.000
#> SRR1562797 3 0.000 1.000 0.000 0.000 1 0 0.000
#> SRR1562798 3 0.000 1.000 0.000 0.000 1 0 0.000
#> SRR1562799 3 0.000 1.000 0.000 0.000 1 0 0.000
#> SRR1562800 1 0.000 0.846 1.000 0.000 0 0 0.000
#> SRR1562801 1 0.000 0.846 1.000 0.000 0 0 0.000
#> SRR1562802 1 0.000 0.846 1.000 0.000 0 0 0.000
#> SRR1562803 1 0.000 0.846 1.000 0.000 0 0 0.000
#> SRR1562804 1 0.000 0.846 1.000 0.000 0 0 0.000
#> SRR1562805 1 0.000 0.846 1.000 0.000 0 0 0.000
#> SRR1562806 1 0.371 0.888 0.716 0.000 0 0 0.284
#> SRR1562807 1 0.371 0.888 0.716 0.000 0 0 0.284
#> SRR1562808 1 0.371 0.888 0.716 0.000 0 0 0.284
#> SRR1562809 1 0.371 0.888 0.716 0.000 0 0 0.284
#> SRR1562810 1 0.371 0.888 0.716 0.000 0 0 0.284
#> SRR1562811 1 0.371 0.888 0.716 0.000 0 0 0.284
#> SRR1562812 1 0.371 0.888 0.716 0.000 0 0 0.284
#> SRR1562813 1 0.371 0.888 0.716 0.000 0 0 0.284
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1562718 2 0.1075 0.979 0.000 0.952 0 0 0.048 0.000
#> SRR1562719 2 0.1075 0.979 0.000 0.952 0 0 0.048 0.000
#> SRR1562720 2 0.1075 0.979 0.000 0.952 0 0 0.048 0.000
#> SRR1562721 2 0.1075 0.979 0.000 0.952 0 0 0.048 0.000
#> SRR1562723 2 0.1075 0.979 0.000 0.952 0 0 0.048 0.000
#> SRR1562724 2 0.1075 0.979 0.000 0.952 0 0 0.048 0.000
#> SRR1562725 2 0.1075 0.979 0.000 0.952 0 0 0.048 0.000
#> SRR1562726 2 0.1075 0.979 0.000 0.952 0 0 0.048 0.000
#> SRR1562727 2 0.1075 0.979 0.000 0.952 0 0 0.048 0.000
#> SRR1562728 2 0.1075 0.979 0.000 0.952 0 0 0.048 0.000
#> SRR1562729 2 0.1075 0.979 0.000 0.952 0 0 0.048 0.000
#> SRR1562730 2 0.0146 0.960 0.000 0.996 0 0 0.000 0.004
#> SRR1562731 2 0.0146 0.960 0.000 0.996 0 0 0.000 0.004
#> SRR1562732 2 0.0146 0.960 0.000 0.996 0 0 0.000 0.004
#> SRR1562733 2 0.0146 0.960 0.000 0.996 0 0 0.000 0.004
#> SRR1562734 2 0.0146 0.960 0.000 0.996 0 0 0.000 0.004
#> SRR1562735 2 0.0146 0.960 0.000 0.996 0 0 0.000 0.004
#> SRR1562736 5 0.0000 0.961 0.000 0.000 0 0 1.000 0.000
#> SRR1562737 5 0.0000 0.961 0.000 0.000 0 0 1.000 0.000
#> SRR1562738 5 0.0000 0.961 0.000 0.000 0 0 1.000 0.000
#> SRR1562739 5 0.0000 0.961 0.000 0.000 0 0 1.000 0.000
#> SRR1562740 5 0.0000 0.961 0.000 0.000 0 0 1.000 0.000
#> SRR1562741 5 0.0000 0.961 0.000 0.000 0 0 1.000 0.000
#> SRR1562742 5 0.1204 0.961 0.000 0.056 0 0 0.944 0.000
#> SRR1562743 5 0.1204 0.961 0.000 0.056 0 0 0.944 0.000
#> SRR1562744 5 0.1204 0.961 0.000 0.056 0 0 0.944 0.000
#> SRR1562745 5 0.1204 0.961 0.000 0.056 0 0 0.944 0.000
#> SRR1562746 5 0.1204 0.961 0.000 0.056 0 0 0.944 0.000
#> SRR1562747 5 0.1204 0.961 0.000 0.056 0 0 0.944 0.000
#> SRR1562748 4 0.0000 1.000 0.000 0.000 0 1 0.000 0.000
#> SRR1562749 4 0.0000 1.000 0.000 0.000 0 1 0.000 0.000
#> SRR1562750 4 0.0000 1.000 0.000 0.000 0 1 0.000 0.000
#> SRR1562751 4 0.0000 1.000 0.000 0.000 0 1 0.000 0.000
#> SRR1562752 4 0.0000 1.000 0.000 0.000 0 1 0.000 0.000
#> SRR1562753 4 0.0000 1.000 0.000 0.000 0 1 0.000 0.000
#> SRR1562754 4 0.0000 1.000 0.000 0.000 0 1 0.000 0.000
#> SRR1562755 4 0.0000 1.000 0.000 0.000 0 1 0.000 0.000
#> SRR1562756 4 0.0000 1.000 0.000 0.000 0 1 0.000 0.000
#> SRR1562757 4 0.0000 1.000 0.000 0.000 0 1 0.000 0.000
#> SRR1562758 4 0.0000 1.000 0.000 0.000 0 1 0.000 0.000
#> SRR1562759 4 0.0000 1.000 0.000 0.000 0 1 0.000 0.000
#> SRR1562792 3 0.0000 1.000 0.000 0.000 1 0 0.000 0.000
#> SRR1562793 3 0.0000 1.000 0.000 0.000 1 0 0.000 0.000
#> SRR1562794 3 0.0000 1.000 0.000 0.000 1 0 0.000 0.000
#> SRR1562795 3 0.0000 1.000 0.000 0.000 1 0 0.000 0.000
#> SRR1562796 3 0.0000 1.000 0.000 0.000 1 0 0.000 0.000
#> SRR1562797 3 0.0000 1.000 0.000 0.000 1 0 0.000 0.000
#> SRR1562798 3 0.0000 1.000 0.000 0.000 1 0 0.000 0.000
#> SRR1562799 3 0.0000 1.000 0.000 0.000 1 0 0.000 0.000
#> SRR1562800 6 0.0146 1.000 0.004 0.000 0 0 0.000 0.996
#> SRR1562801 6 0.0146 1.000 0.004 0.000 0 0 0.000 0.996
#> SRR1562802 6 0.0146 1.000 0.004 0.000 0 0 0.000 0.996
#> SRR1562803 6 0.0146 1.000 0.004 0.000 0 0 0.000 0.996
#> SRR1562804 6 0.0146 1.000 0.004 0.000 0 0 0.000 0.996
#> SRR1562805 6 0.0146 1.000 0.004 0.000 0 0 0.000 0.996
#> SRR1562806 1 0.0000 1.000 1.000 0.000 0 0 0.000 0.000
#> SRR1562807 1 0.0000 1.000 1.000 0.000 0 0 0.000 0.000
#> SRR1562808 1 0.0000 1.000 1.000 0.000 0 0 0.000 0.000
#> SRR1562809 1 0.0000 1.000 1.000 0.000 0 0 0.000 0.000
#> SRR1562810 1 0.0000 1.000 1.000 0.000 0 0 0.000 0.000
#> SRR1562811 1 0.0000 1.000 1.000 0.000 0 0 0.000 0.000
#> SRR1562812 1 0.0000 1.000 1.000 0.000 0 0 0.000 0.000
#> SRR1562813 1 0.0000 1.000 1.000 0.000 0 0 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 15301 rows and 63 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.4624 0.538 0.538
#> 3 3 0.726 0.927 0.875 0.1893 0.943 0.893
#> 4 4 0.736 0.890 0.877 0.2267 0.788 0.559
#> 5 5 0.788 0.755 0.819 0.1216 0.874 0.588
#> 6 6 0.793 0.839 0.854 0.0528 0.945 0.765
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1562718 2 0 1 0 1
#> SRR1562719 2 0 1 0 1
#> SRR1562720 2 0 1 0 1
#> SRR1562721 2 0 1 0 1
#> SRR1562723 2 0 1 0 1
#> SRR1562724 2 0 1 0 1
#> SRR1562725 2 0 1 0 1
#> SRR1562726 2 0 1 0 1
#> SRR1562727 2 0 1 0 1
#> SRR1562728 2 0 1 0 1
#> SRR1562729 2 0 1 0 1
#> SRR1562730 2 0 1 0 1
#> SRR1562731 2 0 1 0 1
#> SRR1562732 2 0 1 0 1
#> SRR1562733 2 0 1 0 1
#> SRR1562734 2 0 1 0 1
#> SRR1562735 2 0 1 0 1
#> SRR1562736 2 0 1 0 1
#> SRR1562737 2 0 1 0 1
#> SRR1562738 2 0 1 0 1
#> SRR1562739 2 0 1 0 1
#> SRR1562740 2 0 1 0 1
#> SRR1562741 2 0 1 0 1
#> SRR1562742 2 0 1 0 1
#> SRR1562743 2 0 1 0 1
#> SRR1562744 2 0 1 0 1
#> SRR1562745 2 0 1 0 1
#> SRR1562746 2 0 1 0 1
#> SRR1562747 2 0 1 0 1
#> SRR1562748 2 0 1 0 1
#> SRR1562749 2 0 1 0 1
#> SRR1562750 2 0 1 0 1
#> SRR1562751 2 0 1 0 1
#> SRR1562752 2 0 1 0 1
#> SRR1562753 2 0 1 0 1
#> SRR1562754 2 0 1 0 1
#> SRR1562755 2 0 1 0 1
#> SRR1562756 2 0 1 0 1
#> SRR1562757 2 0 1 0 1
#> SRR1562758 2 0 1 0 1
#> SRR1562759 2 0 1 0 1
#> SRR1562792 1 0 1 1 0
#> SRR1562793 1 0 1 1 0
#> SRR1562794 1 0 1 1 0
#> SRR1562795 1 0 1 1 0
#> SRR1562796 1 0 1 1 0
#> SRR1562797 1 0 1 1 0
#> SRR1562798 1 0 1 1 0
#> SRR1562799 1 0 1 1 0
#> SRR1562800 1 0 1 1 0
#> SRR1562801 1 0 1 1 0
#> SRR1562802 1 0 1 1 0
#> SRR1562803 1 0 1 1 0
#> SRR1562804 1 0 1 1 0
#> SRR1562805 1 0 1 1 0
#> SRR1562806 1 0 1 1 0
#> SRR1562807 1 0 1 1 0
#> SRR1562808 1 0 1 1 0
#> SRR1562809 1 0 1 1 0
#> SRR1562810 1 0 1 1 0
#> SRR1562811 1 0 1 1 0
#> SRR1562812 1 0 1 1 0
#> SRR1562813 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1562718 2 0.2261 0.896 0.068 0.932 0.000
#> SRR1562719 2 0.2261 0.896 0.068 0.932 0.000
#> SRR1562720 2 0.2261 0.896 0.068 0.932 0.000
#> SRR1562721 2 0.2261 0.896 0.068 0.932 0.000
#> SRR1562723 2 0.2261 0.896 0.068 0.932 0.000
#> SRR1562724 2 0.2261 0.896 0.068 0.932 0.000
#> SRR1562725 2 0.2261 0.896 0.068 0.932 0.000
#> SRR1562726 2 0.2261 0.896 0.068 0.932 0.000
#> SRR1562727 2 0.2261 0.896 0.068 0.932 0.000
#> SRR1562728 2 0.2261 0.896 0.068 0.932 0.000
#> SRR1562729 2 0.2261 0.896 0.068 0.932 0.000
#> SRR1562730 2 0.2261 0.896 0.068 0.932 0.000
#> SRR1562731 2 0.2261 0.896 0.068 0.932 0.000
#> SRR1562732 2 0.2261 0.896 0.068 0.932 0.000
#> SRR1562733 2 0.2261 0.896 0.068 0.932 0.000
#> SRR1562734 2 0.2261 0.896 0.068 0.932 0.000
#> SRR1562735 2 0.2261 0.896 0.068 0.932 0.000
#> SRR1562736 2 0.3482 0.888 0.128 0.872 0.000
#> SRR1562737 2 0.3551 0.887 0.132 0.868 0.000
#> SRR1562738 2 0.3482 0.888 0.128 0.872 0.000
#> SRR1562739 2 0.3192 0.892 0.112 0.888 0.000
#> SRR1562740 2 0.3619 0.886 0.136 0.864 0.000
#> SRR1562741 2 0.3192 0.892 0.112 0.888 0.000
#> SRR1562742 2 0.1753 0.900 0.048 0.952 0.000
#> SRR1562743 2 0.0000 0.901 0.000 1.000 0.000
#> SRR1562744 2 0.0237 0.901 0.004 0.996 0.000
#> SRR1562745 2 0.1031 0.901 0.024 0.976 0.000
#> SRR1562746 2 0.0592 0.901 0.012 0.988 0.000
#> SRR1562747 2 0.0592 0.900 0.012 0.988 0.000
#> SRR1562748 2 0.4452 0.868 0.192 0.808 0.000
#> SRR1562749 2 0.4452 0.868 0.192 0.808 0.000
#> SRR1562750 2 0.4452 0.868 0.192 0.808 0.000
#> SRR1562751 2 0.4452 0.868 0.192 0.808 0.000
#> SRR1562752 2 0.4452 0.868 0.192 0.808 0.000
#> SRR1562753 2 0.4452 0.868 0.192 0.808 0.000
#> SRR1562754 2 0.4452 0.868 0.192 0.808 0.000
#> SRR1562755 2 0.4452 0.868 0.192 0.808 0.000
#> SRR1562756 2 0.4452 0.868 0.192 0.808 0.000
#> SRR1562757 2 0.4452 0.868 0.192 0.808 0.000
#> SRR1562758 2 0.4452 0.868 0.192 0.808 0.000
#> SRR1562759 2 0.4452 0.868 0.192 0.808 0.000
#> SRR1562792 3 0.0000 1.000 0.000 0.000 1.000
#> SRR1562793 3 0.0000 1.000 0.000 0.000 1.000
#> SRR1562794 3 0.0000 1.000 0.000 0.000 1.000
#> SRR1562795 3 0.0000 1.000 0.000 0.000 1.000
#> SRR1562796 3 0.0000 1.000 0.000 0.000 1.000
#> SRR1562797 3 0.0000 1.000 0.000 0.000 1.000
#> SRR1562798 3 0.0000 1.000 0.000 0.000 1.000
#> SRR1562799 3 0.0000 1.000 0.000 0.000 1.000
#> SRR1562800 1 0.6095 1.000 0.608 0.000 0.392
#> SRR1562801 1 0.6095 1.000 0.608 0.000 0.392
#> SRR1562802 1 0.6095 1.000 0.608 0.000 0.392
#> SRR1562803 1 0.6095 1.000 0.608 0.000 0.392
#> SRR1562804 1 0.6095 1.000 0.608 0.000 0.392
#> SRR1562805 1 0.6095 1.000 0.608 0.000 0.392
#> SRR1562806 1 0.6095 1.000 0.608 0.000 0.392
#> SRR1562807 1 0.6095 1.000 0.608 0.000 0.392
#> SRR1562808 1 0.6095 1.000 0.608 0.000 0.392
#> SRR1562809 1 0.6095 1.000 0.608 0.000 0.392
#> SRR1562810 1 0.6095 1.000 0.608 0.000 0.392
#> SRR1562811 1 0.6095 1.000 0.608 0.000 0.392
#> SRR1562812 1 0.6095 1.000 0.608 0.000 0.392
#> SRR1562813 1 0.6095 1.000 0.608 0.000 0.392
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1562718 2 0.0188 0.923 0.000 0.996 0.000 0.004
#> SRR1562719 2 0.0188 0.923 0.000 0.996 0.000 0.004
#> SRR1562720 2 0.0188 0.923 0.000 0.996 0.000 0.004
#> SRR1562721 2 0.0188 0.923 0.000 0.996 0.000 0.004
#> SRR1562723 2 0.0188 0.923 0.000 0.996 0.000 0.004
#> SRR1562724 2 0.0000 0.924 0.000 1.000 0.000 0.000
#> SRR1562725 2 0.0000 0.924 0.000 1.000 0.000 0.000
#> SRR1562726 2 0.0000 0.924 0.000 1.000 0.000 0.000
#> SRR1562727 2 0.0000 0.924 0.000 1.000 0.000 0.000
#> SRR1562728 2 0.0000 0.924 0.000 1.000 0.000 0.000
#> SRR1562729 2 0.0000 0.924 0.000 1.000 0.000 0.000
#> SRR1562730 2 0.0000 0.924 0.000 1.000 0.000 0.000
#> SRR1562731 2 0.0000 0.924 0.000 1.000 0.000 0.000
#> SRR1562732 2 0.0000 0.924 0.000 1.000 0.000 0.000
#> SRR1562733 2 0.0000 0.924 0.000 1.000 0.000 0.000
#> SRR1562734 2 0.0000 0.924 0.000 1.000 0.000 0.000
#> SRR1562735 2 0.0000 0.924 0.000 1.000 0.000 0.000
#> SRR1562736 4 0.5815 0.666 0.000 0.428 0.032 0.540
#> SRR1562737 4 0.5808 0.672 0.000 0.424 0.032 0.544
#> SRR1562738 4 0.5838 0.635 0.000 0.444 0.032 0.524
#> SRR1562739 4 0.5859 0.573 0.000 0.472 0.032 0.496
#> SRR1562740 4 0.5800 0.678 0.000 0.420 0.032 0.548
#> SRR1562741 4 0.5853 0.605 0.000 0.460 0.032 0.508
#> SRR1562742 2 0.4745 0.595 0.000 0.756 0.036 0.208
#> SRR1562743 2 0.3787 0.767 0.000 0.840 0.036 0.124
#> SRR1562744 2 0.4050 0.736 0.000 0.820 0.036 0.144
#> SRR1562745 2 0.4290 0.699 0.000 0.800 0.036 0.164
#> SRR1562746 2 0.4197 0.716 0.000 0.808 0.036 0.156
#> SRR1562747 2 0.3731 0.772 0.000 0.844 0.036 0.120
#> SRR1562748 4 0.4319 0.870 0.000 0.228 0.012 0.760
#> SRR1562749 4 0.4319 0.870 0.000 0.228 0.012 0.760
#> SRR1562750 4 0.4319 0.870 0.000 0.228 0.012 0.760
#> SRR1562751 4 0.4319 0.870 0.000 0.228 0.012 0.760
#> SRR1562752 4 0.4319 0.870 0.000 0.228 0.012 0.760
#> SRR1562753 4 0.4319 0.870 0.000 0.228 0.012 0.760
#> SRR1562754 4 0.3873 0.871 0.000 0.228 0.000 0.772
#> SRR1562755 4 0.3873 0.871 0.000 0.228 0.000 0.772
#> SRR1562756 4 0.3873 0.871 0.000 0.228 0.000 0.772
#> SRR1562757 4 0.3873 0.871 0.000 0.228 0.000 0.772
#> SRR1562758 4 0.3873 0.871 0.000 0.228 0.000 0.772
#> SRR1562759 4 0.3873 0.871 0.000 0.228 0.000 0.772
#> SRR1562792 3 0.2676 0.995 0.092 0.000 0.896 0.012
#> SRR1562793 3 0.2676 0.995 0.092 0.000 0.896 0.012
#> SRR1562794 3 0.2676 0.995 0.092 0.000 0.896 0.012
#> SRR1562795 3 0.2676 0.995 0.092 0.000 0.896 0.012
#> SRR1562796 3 0.2216 0.995 0.092 0.000 0.908 0.000
#> SRR1562797 3 0.2216 0.995 0.092 0.000 0.908 0.000
#> SRR1562798 3 0.2216 0.995 0.092 0.000 0.908 0.000
#> SRR1562799 3 0.2216 0.995 0.092 0.000 0.908 0.000
#> SRR1562800 1 0.0779 0.989 0.980 0.000 0.004 0.016
#> SRR1562801 1 0.0779 0.989 0.980 0.000 0.004 0.016
#> SRR1562802 1 0.0779 0.989 0.980 0.000 0.004 0.016
#> SRR1562803 1 0.0779 0.989 0.980 0.000 0.004 0.016
#> SRR1562804 1 0.0779 0.989 0.980 0.000 0.004 0.016
#> SRR1562805 1 0.0779 0.989 0.980 0.000 0.004 0.016
#> SRR1562806 1 0.0000 0.992 1.000 0.000 0.000 0.000
#> SRR1562807 1 0.0000 0.992 1.000 0.000 0.000 0.000
#> SRR1562808 1 0.0000 0.992 1.000 0.000 0.000 0.000
#> SRR1562809 1 0.0000 0.992 1.000 0.000 0.000 0.000
#> SRR1562810 1 0.0000 0.992 1.000 0.000 0.000 0.000
#> SRR1562811 1 0.0000 0.992 1.000 0.000 0.000 0.000
#> SRR1562812 1 0.0000 0.992 1.000 0.000 0.000 0.000
#> SRR1562813 1 0.0000 0.992 1.000 0.000 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1562718 2 0.0703 0.951 0.000 0.976 0.000 0.000 0.024
#> SRR1562719 2 0.0703 0.951 0.000 0.976 0.000 0.000 0.024
#> SRR1562720 2 0.0794 0.948 0.000 0.972 0.000 0.000 0.028
#> SRR1562721 2 0.0703 0.951 0.000 0.976 0.000 0.000 0.024
#> SRR1562723 2 0.0794 0.948 0.000 0.972 0.000 0.000 0.028
#> SRR1562724 2 0.0404 0.955 0.000 0.988 0.000 0.000 0.012
#> SRR1562725 2 0.0290 0.955 0.000 0.992 0.000 0.000 0.008
#> SRR1562726 2 0.0290 0.955 0.000 0.992 0.000 0.000 0.008
#> SRR1562727 2 0.0510 0.954 0.000 0.984 0.000 0.000 0.016
#> SRR1562728 2 0.0404 0.955 0.000 0.988 0.000 0.000 0.012
#> SRR1562729 2 0.0290 0.955 0.000 0.992 0.000 0.000 0.008
#> SRR1562730 2 0.1845 0.929 0.000 0.928 0.000 0.016 0.056
#> SRR1562731 2 0.1845 0.929 0.000 0.928 0.000 0.016 0.056
#> SRR1562732 2 0.1943 0.927 0.000 0.924 0.000 0.020 0.056
#> SRR1562733 2 0.1845 0.929 0.000 0.928 0.000 0.016 0.056
#> SRR1562734 2 0.1845 0.929 0.000 0.928 0.000 0.016 0.056
#> SRR1562735 2 0.1845 0.929 0.000 0.928 0.000 0.016 0.056
#> SRR1562736 5 0.3300 0.600 0.000 0.204 0.000 0.004 0.792
#> SRR1562737 5 0.3462 0.594 0.000 0.196 0.000 0.012 0.792
#> SRR1562738 5 0.3300 0.599 0.000 0.204 0.000 0.004 0.792
#> SRR1562739 5 0.3398 0.601 0.000 0.216 0.000 0.004 0.780
#> SRR1562740 5 0.3391 0.587 0.000 0.188 0.000 0.012 0.800
#> SRR1562741 5 0.3496 0.594 0.000 0.200 0.000 0.012 0.788
#> SRR1562742 5 0.3876 0.600 0.000 0.316 0.000 0.000 0.684
#> SRR1562743 5 0.4060 0.573 0.000 0.360 0.000 0.000 0.640
#> SRR1562744 5 0.4045 0.579 0.000 0.356 0.000 0.000 0.644
#> SRR1562745 5 0.3966 0.596 0.000 0.336 0.000 0.000 0.664
#> SRR1562746 5 0.4015 0.591 0.000 0.348 0.000 0.000 0.652
#> SRR1562747 5 0.4060 0.573 0.000 0.360 0.000 0.000 0.640
#> SRR1562748 4 0.4288 1.000 0.000 0.012 0.000 0.664 0.324
#> SRR1562749 4 0.4288 1.000 0.000 0.012 0.000 0.664 0.324
#> SRR1562750 4 0.4288 1.000 0.000 0.012 0.000 0.664 0.324
#> SRR1562751 4 0.4288 1.000 0.000 0.012 0.000 0.664 0.324
#> SRR1562752 4 0.4288 1.000 0.000 0.012 0.000 0.664 0.324
#> SRR1562753 4 0.4288 1.000 0.000 0.012 0.000 0.664 0.324
#> SRR1562754 5 0.4658 -0.554 0.000 0.012 0.000 0.484 0.504
#> SRR1562755 5 0.4637 -0.471 0.000 0.012 0.000 0.452 0.536
#> SRR1562756 5 0.4644 -0.489 0.000 0.012 0.000 0.460 0.528
#> SRR1562757 5 0.4644 -0.490 0.000 0.012 0.000 0.460 0.528
#> SRR1562758 5 0.4656 -0.542 0.000 0.012 0.000 0.480 0.508
#> SRR1562759 5 0.4648 -0.500 0.000 0.012 0.000 0.464 0.524
#> SRR1562792 3 0.1270 0.999 0.052 0.000 0.948 0.000 0.000
#> SRR1562793 3 0.1270 0.999 0.052 0.000 0.948 0.000 0.000
#> SRR1562794 3 0.1270 0.999 0.052 0.000 0.948 0.000 0.000
#> SRR1562795 3 0.1270 0.999 0.052 0.000 0.948 0.000 0.000
#> SRR1562796 3 0.1430 0.999 0.052 0.000 0.944 0.000 0.004
#> SRR1562797 3 0.1430 0.999 0.052 0.000 0.944 0.000 0.004
#> SRR1562798 3 0.1430 0.999 0.052 0.000 0.944 0.000 0.004
#> SRR1562799 3 0.1430 0.999 0.052 0.000 0.944 0.000 0.004
#> SRR1562800 1 0.2006 0.955 0.916 0.000 0.000 0.072 0.012
#> SRR1562801 1 0.2006 0.955 0.916 0.000 0.000 0.072 0.012
#> SRR1562802 1 0.2006 0.955 0.916 0.000 0.000 0.072 0.012
#> SRR1562803 1 0.2006 0.955 0.916 0.000 0.000 0.072 0.012
#> SRR1562804 1 0.2069 0.953 0.912 0.000 0.000 0.076 0.012
#> SRR1562805 1 0.2069 0.953 0.912 0.000 0.000 0.076 0.012
#> SRR1562806 1 0.0000 0.966 1.000 0.000 0.000 0.000 0.000
#> SRR1562807 1 0.0000 0.966 1.000 0.000 0.000 0.000 0.000
#> SRR1562808 1 0.0000 0.966 1.000 0.000 0.000 0.000 0.000
#> SRR1562809 1 0.0000 0.966 1.000 0.000 0.000 0.000 0.000
#> SRR1562810 1 0.0000 0.966 1.000 0.000 0.000 0.000 0.000
#> SRR1562811 1 0.0000 0.966 1.000 0.000 0.000 0.000 0.000
#> SRR1562812 1 0.0000 0.966 1.000 0.000 0.000 0.000 0.000
#> SRR1562813 1 0.0000 0.966 1.000 0.000 0.000 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1562718 2 0.1908 0.829 0.000 0.900 0.000 0.004 0.096 NA
#> SRR1562719 2 0.1714 0.834 0.000 0.908 0.000 0.000 0.092 NA
#> SRR1562720 2 0.1765 0.832 0.000 0.904 0.000 0.000 0.096 NA
#> SRR1562721 2 0.1610 0.836 0.000 0.916 0.000 0.000 0.084 NA
#> SRR1562723 2 0.2053 0.819 0.000 0.888 0.000 0.000 0.108 NA
#> SRR1562724 2 0.1858 0.832 0.000 0.904 0.000 0.004 0.092 NA
#> SRR1562725 2 0.1897 0.836 0.000 0.908 0.000 0.004 0.084 NA
#> SRR1562726 2 0.1753 0.836 0.000 0.912 0.000 0.004 0.084 NA
#> SRR1562727 2 0.1806 0.834 0.000 0.908 0.000 0.004 0.088 NA
#> SRR1562728 2 0.1949 0.835 0.000 0.904 0.000 0.004 0.088 NA
#> SRR1562729 2 0.1897 0.836 0.000 0.908 0.000 0.004 0.084 NA
#> SRR1562730 2 0.3705 0.730 0.000 0.740 0.000 0.020 0.004 NA
#> SRR1562731 2 0.3731 0.727 0.000 0.736 0.000 0.020 0.004 NA
#> SRR1562732 2 0.3705 0.730 0.000 0.740 0.000 0.020 0.004 NA
#> SRR1562733 2 0.3670 0.727 0.000 0.736 0.000 0.024 0.000 NA
#> SRR1562734 2 0.3758 0.730 0.000 0.740 0.000 0.024 0.004 NA
#> SRR1562735 2 0.3622 0.732 0.000 0.744 0.000 0.016 0.004 NA
#> SRR1562736 5 0.4541 0.811 0.000 0.208 0.000 0.072 0.708 NA
#> SRR1562737 5 0.4308 0.818 0.000 0.196 0.000 0.068 0.728 NA
#> SRR1562738 5 0.4744 0.798 0.000 0.224 0.000 0.080 0.684 NA
#> SRR1562739 5 0.4745 0.797 0.000 0.232 0.000 0.076 0.680 NA
#> SRR1562740 5 0.4688 0.805 0.000 0.208 0.000 0.084 0.696 NA
#> SRR1562741 5 0.4591 0.811 0.000 0.208 0.000 0.076 0.704 NA
#> SRR1562742 5 0.2209 0.823 0.000 0.072 0.000 0.004 0.900 NA
#> SRR1562743 5 0.2265 0.825 0.000 0.076 0.000 0.004 0.896 NA
#> SRR1562744 5 0.2265 0.825 0.000 0.076 0.000 0.004 0.896 NA
#> SRR1562745 5 0.2182 0.825 0.000 0.076 0.000 0.004 0.900 NA
#> SRR1562746 5 0.2126 0.824 0.000 0.072 0.000 0.004 0.904 NA
#> SRR1562747 5 0.2373 0.821 0.000 0.084 0.000 0.004 0.888 NA
#> SRR1562748 4 0.1141 0.781 0.000 0.000 0.000 0.948 0.052 NA
#> SRR1562749 4 0.1141 0.781 0.000 0.000 0.000 0.948 0.052 NA
#> SRR1562750 4 0.1141 0.781 0.000 0.000 0.000 0.948 0.052 NA
#> SRR1562751 4 0.1141 0.781 0.000 0.000 0.000 0.948 0.052 NA
#> SRR1562752 4 0.1141 0.781 0.000 0.000 0.000 0.948 0.052 NA
#> SRR1562753 4 0.1141 0.781 0.000 0.000 0.000 0.948 0.052 NA
#> SRR1562754 4 0.4854 0.723 0.000 0.016 0.000 0.612 0.328 NA
#> SRR1562755 4 0.5103 0.710 0.000 0.028 0.000 0.592 0.336 NA
#> SRR1562756 4 0.5103 0.712 0.000 0.028 0.000 0.592 0.336 NA
#> SRR1562757 4 0.5116 0.706 0.000 0.028 0.000 0.588 0.340 NA
#> SRR1562758 4 0.5049 0.723 0.000 0.028 0.000 0.608 0.320 NA
#> SRR1562759 4 0.5077 0.718 0.000 0.028 0.000 0.600 0.328 NA
#> SRR1562792 3 0.0458 0.995 0.016 0.000 0.984 0.000 0.000 NA
#> SRR1562793 3 0.0547 0.997 0.020 0.000 0.980 0.000 0.000 NA
#> SRR1562794 3 0.0458 0.995 0.016 0.000 0.984 0.000 0.000 NA
#> SRR1562795 3 0.0547 0.997 0.020 0.000 0.980 0.000 0.000 NA
#> SRR1562796 3 0.0806 0.996 0.020 0.000 0.972 0.000 0.000 NA
#> SRR1562797 3 0.0692 0.997 0.020 0.000 0.976 0.000 0.000 NA
#> SRR1562798 3 0.0692 0.997 0.020 0.000 0.976 0.000 0.000 NA
#> SRR1562799 3 0.0692 0.997 0.020 0.000 0.976 0.000 0.000 NA
#> SRR1562800 1 0.3345 0.874 0.776 0.000 0.020 0.000 0.000 NA
#> SRR1562801 1 0.3345 0.874 0.776 0.000 0.020 0.000 0.000 NA
#> SRR1562802 1 0.3073 0.879 0.788 0.000 0.008 0.000 0.000 NA
#> SRR1562803 1 0.3073 0.879 0.788 0.000 0.008 0.000 0.000 NA
#> SRR1562804 1 0.3248 0.872 0.768 0.000 0.004 0.000 0.004 NA
#> SRR1562805 1 0.3248 0.872 0.768 0.000 0.004 0.000 0.004 NA
#> SRR1562806 1 0.0146 0.912 0.996 0.000 0.000 0.000 0.000 NA
#> SRR1562807 1 0.0146 0.912 0.996 0.000 0.000 0.000 0.000 NA
#> SRR1562808 1 0.0000 0.914 1.000 0.000 0.000 0.000 0.000 NA
#> SRR1562809 1 0.0000 0.914 1.000 0.000 0.000 0.000 0.000 NA
#> SRR1562810 1 0.0000 0.914 1.000 0.000 0.000 0.000 0.000 NA
#> SRR1562811 1 0.0000 0.914 1.000 0.000 0.000 0.000 0.000 NA
#> SRR1562812 1 0.0000 0.914 1.000 0.000 0.000 0.000 0.000 NA
#> SRR1562813 1 0.0000 0.914 1.000 0.000 0.000 0.000 0.000 NA
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#>
#> Matrix products: default
#> BLAS: /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#>
#> locale:
#> [1] LC_CTYPE=en_GB.UTF-8 LC_NUMERIC=C LC_TIME=en_GB.UTF-8
#> [4] LC_COLLATE=en_GB.UTF-8 LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=en_GB.UTF-8
#> [7] LC_PAPER=en_GB.UTF-8 LC_NAME=C LC_ADDRESS=C
#> [10] LC_TELEPHONE=C LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C
#>
#> attached base packages:
#> [1] grid stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] genefilter_1.66.0 ComplexHeatmap_2.3.1 markdown_1.1 knitr_1.26
#> [5] GetoptLong_0.1.7 cola_1.3.2
#>
#> loaded via a namespace (and not attached):
#> [1] circlize_0.4.8 shape_1.4.4 xfun_0.11 slam_0.1-46
#> [5] lattice_0.20-38 splines_3.6.0 colorspace_1.4-1 vctrs_0.2.0
#> [9] stats4_3.6.0 blob_1.2.0 XML_3.98-1.20 survival_2.44-1.1
#> [13] rlang_0.4.2 pillar_1.4.2 DBI_1.0.0 BiocGenerics_0.30.0
#> [17] bit64_0.9-7 RColorBrewer_1.1-2 matrixStats_0.55.0 stringr_1.4.0
#> [21] GlobalOptions_0.1.1 evaluate_0.14 memoise_1.1.0 Biobase_2.44.0
#> [25] IRanges_2.18.3 parallel_3.6.0 AnnotationDbi_1.46.1 highr_0.8
#> [29] Rcpp_1.0.3 xtable_1.8-4 backports_1.1.5 S4Vectors_0.22.1
#> [33] annotate_1.62.0 skmeans_0.2-11 bit_1.1-14 microbenchmark_1.4-7
#> [37] brew_1.0-6 impute_1.58.0 rjson_0.2.20 png_0.1-7
#> [41] digest_0.6.23 stringi_1.4.3 polyclip_1.10-0 clue_0.3-57
#> [45] tools_3.6.0 bitops_1.0-6 magrittr_1.5 eulerr_6.0.0
#> [49] RCurl_1.95-4.12 RSQLite_2.1.4 tibble_2.1.3 cluster_2.1.0
#> [53] crayon_1.3.4 pkgconfig_2.0.3 zeallot_0.1.0 Matrix_1.2-17
#> [57] xml2_1.2.2 httr_1.4.1 R6_2.4.1 mclust_5.4.5
#> [61] compiler_3.6.0