Date: 2019-12-26 00:48:32 CET, cola version: 1.3.2
Document is loading...
All available functions which can be applied to this res_list
object:
res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#> On a matrix with 16183 rows and 111 columns.
#> Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#> Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#> Number of partitions are tried for k = 2, 3, 4, 5, 6.
#> Performed in total 30000 partitions by row resampling.
#>
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#> [1] "cola_report" "collect_classes" "collect_plots" "collect_stats"
#> [5] "colnames" "functional_enrichment" "get_anno_col" "get_anno"
#> [9] "get_classes" "get_matrix" "get_membership" "get_stats"
#> [13] "is_best_k" "is_stable_k" "ncol" "nrow"
#> [17] "rownames" "show" "suggest_best_k" "test_to_known_factors"
#> [21] "top_rows_heatmap" "top_rows_overlap"
#>
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]
The call of run_all_consensus_partition_methods()
was:
#> run_all_consensus_partition_methods(data = mat, mc.cores = 4)
Dimension of the input matrix:
mat = get_matrix(res_list)
dim(mat)
#> [1] 16183 111
The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.
library(ComplexHeatmap)
densityHeatmap(mat, ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
mc.cores = 4)
Folowing table shows the best k
(number of partitions) for each combination
of top-value methods and partition methods. Clicking on the method name in
the table goes to the section for a single combination of methods.
The cola vignette explains the definition of the metrics used for determining the best number of partitions.
suggest_best_k(res_list)
The best k | 1-PAC | Mean silhouette | Concordance | Optional k | ||
---|---|---|---|---|---|---|
CV:hclust | 2 | 1.000 | 1.000 | 1.000 | ** | |
ATC:skmeans | 2 | 1.000 | 0.996 | 0.998 | ** | |
SD:skmeans | 2 | 0.981 | 0.972 | 0.985 | ** | |
ATC:kmeans | 2 | 0.981 | 0.963 | 0.983 | ** | |
SD:pam | 5 | 0.939 | 0.901 | 0.949 | * | 2 |
CV:NMF | 6 | 0.923 | 0.889 | 0.930 | * | 4 |
MAD:skmeans | 2 | 0.890 | 0.915 | 0.965 | ||
MAD:NMF | 2 | 0.872 | 0.930 | 0.971 | ||
MAD:pam | 6 | 0.842 | 0.771 | 0.902 | ||
CV:pam | 4 | 0.808 | 0.929 | 0.964 | ||
SD:NMF | 2 | 0.804 | 0.912 | 0.950 | ||
ATC:pam | 2 | 0.804 | 0.918 | 0.964 | ||
MAD:hclust | 3 | 0.798 | 0.887 | 0.952 | ||
CV:mclust | 5 | 0.769 | 0.752 | 0.905 | ||
ATC:mclust | 4 | 0.764 | 0.869 | 0.926 | ||
ATC:NMF | 2 | 0.721 | 0.848 | 0.938 | ||
CV:skmeans | 4 | 0.706 | 0.740 | 0.870 | ||
MAD:mclust | 6 | 0.578 | 0.685 | 0.788 | ||
SD:hclust | 3 | 0.552 | 0.790 | 0.890 | ||
CV:kmeans | 6 | 0.543 | 0.624 | 0.665 | ||
SD:kmeans | 5 | 0.495 | 0.623 | 0.749 | ||
MAD:kmeans | 5 | 0.488 | 0.598 | 0.676 | ||
SD:mclust | 3 | 0.406 | 0.765 | 0.840 | ||
ATC:hclust | 2 | 0.395 | 0.740 | 0.845 |
**: 1-PAC > 0.95, *: 1-PAC > 0.9
Cumulative distribution function curves of consensus matrix for all methods.
collect_plots(res_list, fun = plot_ecdf)
Consensus heatmaps for all methods. (What is a consensus heatmap?)
collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)
collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)
collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)
collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)
collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)
Membership heatmaps for all methods. (What is a membership heatmap?)
collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)
collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)
collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)
collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)
collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)
Signature heatmaps for all methods. (What is a signature heatmap?)
Note in following heatmaps, rows are scaled.
collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)
collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)
collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)
collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)
collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)
The statistics used for measuring the stability of consensus partitioning. (How are they defined?)
get_stats(res_list, k = 2)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 2 0.804 0.912 0.950 0.496 0.505 0.505
#> CV:NMF 2 0.426 0.823 0.889 0.502 0.496 0.496
#> MAD:NMF 2 0.872 0.930 0.971 0.498 0.499 0.499
#> ATC:NMF 2 0.721 0.848 0.938 0.490 0.507 0.507
#> SD:skmeans 2 0.981 0.972 0.985 0.493 0.510 0.510
#> CV:skmeans 2 0.450 0.716 0.848 0.502 0.500 0.500
#> MAD:skmeans 2 0.890 0.915 0.965 0.494 0.514 0.514
#> ATC:skmeans 2 1.000 0.996 0.998 0.505 0.495 0.495
#> SD:mclust 2 0.568 0.789 0.889 0.380 0.619 0.619
#> CV:mclust 2 0.446 0.700 0.808 0.343 0.778 0.778
#> MAD:mclust 2 0.187 0.679 0.802 0.396 0.578 0.578
#> ATC:mclust 2 0.239 0.578 0.782 0.352 0.865 0.865
#> SD:kmeans 2 0.189 0.723 0.819 0.353 0.629 0.629
#> CV:kmeans 2 0.139 0.198 0.771 0.318 0.982 0.982
#> MAD:kmeans 2 0.391 0.873 0.894 0.386 0.578 0.578
#> ATC:kmeans 2 0.981 0.963 0.983 0.503 0.495 0.495
#> SD:pam 2 1.000 0.996 0.998 0.261 0.738 0.738
#> CV:pam 2 0.668 0.924 0.944 0.172 0.865 0.865
#> MAD:pam 2 0.317 0.796 0.868 0.373 0.690 0.690
#> ATC:pam 2 0.804 0.918 0.964 0.470 0.530 0.530
#> SD:hclust 2 0.405 0.722 0.839 0.255 0.865 0.865
#> CV:hclust 2 1.000 1.000 1.000 0.136 0.865 0.865
#> MAD:hclust 2 0.515 0.892 0.887 0.333 0.602 0.602
#> ATC:hclust 2 0.395 0.740 0.845 0.428 0.500 0.500
get_stats(res_list, k = 3)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 3 0.5973 0.739 0.817 0.282 0.814 0.653
#> CV:NMF 3 0.5903 0.664 0.806 0.319 0.763 0.557
#> MAD:NMF 3 0.5324 0.616 0.794 0.267 0.802 0.632
#> ATC:NMF 3 0.4881 0.503 0.713 0.317 0.663 0.424
#> SD:skmeans 3 0.5339 0.607 0.826 0.325 0.692 0.469
#> CV:skmeans 3 0.6745 0.696 0.854 0.325 0.659 0.419
#> MAD:skmeans 3 0.5062 0.545 0.787 0.324 0.805 0.635
#> ATC:skmeans 3 0.8614 0.883 0.952 0.264 0.860 0.723
#> SD:mclust 3 0.4064 0.765 0.840 0.436 0.835 0.740
#> CV:mclust 3 0.4340 0.716 0.762 0.446 0.691 0.639
#> MAD:mclust 3 0.1258 0.377 0.650 0.358 0.651 0.466
#> ATC:mclust 3 0.4214 0.518 0.774 0.700 0.514 0.444
#> SD:kmeans 3 0.2086 0.319 0.734 0.508 0.948 0.917
#> CV:kmeans 3 0.0893 0.450 0.647 0.650 0.517 0.510
#> MAD:kmeans 3 0.3682 0.393 0.762 0.451 0.959 0.933
#> ATC:kmeans 3 0.5707 0.803 0.885 0.264 0.654 0.417
#> SD:pam 3 0.6113 0.670 0.793 0.510 0.717 0.617
#> CV:pam 3 0.7626 0.939 0.960 1.124 0.796 0.764
#> MAD:pam 3 0.3729 0.824 0.856 0.234 0.919 0.883
#> ATC:pam 3 0.5467 0.684 0.819 0.362 0.720 0.509
#> SD:hclust 3 0.5522 0.790 0.890 0.683 0.672 0.621
#> CV:hclust 3 0.4355 0.793 0.879 2.036 0.784 0.750
#> MAD:hclust 3 0.7978 0.887 0.952 0.460 0.904 0.841
#> ATC:hclust 3 0.4046 0.643 0.762 0.244 0.945 0.890
get_stats(res_list, k = 4)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 4 0.889 0.882 0.945 0.1718 0.820 0.559
#> CV:NMF 4 0.952 0.915 0.951 0.1285 0.889 0.682
#> MAD:NMF 4 0.577 0.658 0.814 0.1647 0.785 0.493
#> ATC:NMF 4 0.683 0.743 0.851 0.1431 0.828 0.544
#> SD:skmeans 4 0.730 0.699 0.854 0.1362 0.742 0.399
#> CV:skmeans 4 0.706 0.740 0.870 0.1232 0.737 0.381
#> MAD:skmeans 4 0.716 0.749 0.877 0.1286 0.832 0.575
#> ATC:skmeans 4 0.873 0.830 0.920 0.0976 0.877 0.692
#> SD:mclust 4 0.580 0.720 0.821 0.2224 0.826 0.648
#> CV:mclust 4 0.568 0.571 0.822 0.1307 0.756 0.610
#> MAD:mclust 4 0.332 0.657 0.730 0.1788 0.768 0.512
#> ATC:mclust 4 0.764 0.869 0.926 0.1554 0.692 0.384
#> SD:kmeans 4 0.371 0.627 0.742 0.1988 0.722 0.539
#> CV:kmeans 4 0.282 0.544 0.666 0.2189 0.733 0.514
#> MAD:kmeans 4 0.367 0.318 0.660 0.1897 0.744 0.593
#> ATC:kmeans 4 0.550 0.571 0.693 0.1181 0.881 0.704
#> SD:pam 4 0.748 0.888 0.934 0.2658 0.728 0.565
#> CV:pam 4 0.808 0.929 0.964 0.4962 0.809 0.711
#> MAD:pam 4 0.594 0.774 0.850 0.3615 0.787 0.653
#> ATC:pam 4 0.587 0.724 0.830 0.1060 0.924 0.784
#> SD:hclust 4 0.640 0.739 0.876 0.2708 0.917 0.848
#> CV:hclust 4 0.465 0.744 0.827 0.3714 0.762 0.633
#> MAD:hclust 4 0.787 0.867 0.914 0.0874 0.969 0.939
#> ATC:hclust 4 0.600 0.720 0.857 0.2499 0.833 0.657
get_stats(res_list, k = 5)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 5 0.640 0.720 0.852 0.0373 0.808 0.431
#> CV:NMF 5 0.745 0.652 0.799 0.0504 0.808 0.425
#> MAD:NMF 5 0.656 0.670 0.822 0.0798 0.857 0.526
#> ATC:NMF 5 0.739 0.757 0.855 0.0611 0.932 0.750
#> SD:skmeans 5 0.750 0.731 0.829 0.0702 0.899 0.642
#> CV:skmeans 5 0.742 0.574 0.730 0.0674 0.930 0.736
#> MAD:skmeans 5 0.745 0.663 0.810 0.0700 0.932 0.753
#> ATC:skmeans 5 0.758 0.756 0.864 0.0815 0.860 0.589
#> SD:mclust 5 0.831 0.918 0.955 -0.0541 0.887 0.729
#> CV:mclust 5 0.769 0.752 0.905 0.1640 0.878 0.700
#> MAD:mclust 5 0.593 0.794 0.861 0.0619 0.985 0.955
#> ATC:mclust 5 0.739 0.771 0.847 0.0839 0.909 0.713
#> SD:kmeans 5 0.495 0.623 0.749 0.1218 0.931 0.812
#> CV:kmeans 5 0.400 0.537 0.709 0.1100 0.830 0.590
#> MAD:kmeans 5 0.488 0.598 0.676 0.1048 0.791 0.515
#> ATC:kmeans 5 0.620 0.665 0.792 0.0787 0.795 0.467
#> SD:pam 5 0.939 0.901 0.949 0.3108 0.830 0.675
#> CV:pam 5 0.806 0.901 0.941 0.1257 0.934 0.860
#> MAD:pam 5 0.705 0.812 0.888 0.1076 0.901 0.757
#> ATC:pam 5 0.637 0.684 0.781 0.0759 0.930 0.771
#> SD:hclust 5 0.514 0.635 0.751 0.1739 0.779 0.561
#> CV:hclust 5 0.566 0.688 0.833 0.2514 0.830 0.613
#> MAD:hclust 5 0.746 0.839 0.888 0.1354 0.971 0.939
#> ATC:hclust 5 0.642 0.617 0.810 0.0876 0.945 0.847
get_stats(res_list, k = 6)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> SD:NMF 6 0.712 0.632 0.801 0.0442 0.851 0.483
#> CV:NMF 6 0.923 0.889 0.930 0.0387 0.876 0.534
#> MAD:NMF 6 0.698 0.693 0.830 0.0303 0.860 0.460
#> ATC:NMF 6 0.763 0.704 0.836 0.0402 0.923 0.682
#> SD:skmeans 6 0.803 0.778 0.859 0.0443 0.936 0.707
#> CV:skmeans 6 0.792 0.714 0.802 0.0441 0.903 0.591
#> MAD:skmeans 6 0.771 0.668 0.796 0.0472 0.903 0.598
#> ATC:skmeans 6 0.725 0.619 0.796 0.0485 0.977 0.908
#> SD:mclust 6 0.799 0.863 0.921 0.1599 0.883 0.699
#> CV:mclust 6 0.878 0.847 0.924 0.1312 0.950 0.844
#> MAD:mclust 6 0.578 0.685 0.788 0.1449 0.823 0.505
#> ATC:mclust 6 0.718 0.630 0.774 0.0490 0.971 0.886
#> SD:kmeans 6 0.618 0.510 0.686 0.0635 0.913 0.753
#> CV:kmeans 6 0.543 0.624 0.665 0.0712 0.829 0.537
#> MAD:kmeans 6 0.579 0.686 0.750 0.0578 0.973 0.891
#> ATC:kmeans 6 0.715 0.645 0.747 0.0552 0.928 0.696
#> SD:pam 6 0.863 0.867 0.936 0.1705 0.846 0.584
#> CV:pam 6 0.800 0.788 0.908 0.1119 0.915 0.792
#> MAD:pam 6 0.842 0.771 0.902 0.1466 0.813 0.469
#> ATC:pam 6 0.716 0.688 0.787 0.0618 0.877 0.568
#> SD:hclust 6 0.623 0.644 0.786 0.1362 0.763 0.436
#> CV:hclust 6 0.618 0.731 0.809 0.0697 0.899 0.674
#> MAD:hclust 6 0.798 0.845 0.922 0.1510 0.860 0.688
#> ATC:hclust 6 0.659 0.567 0.779 0.0727 0.886 0.640
Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.
collect_stats(res_list, k = 2)
collect_stats(res_list, k = 3)
collect_stats(res_list, k = 4)
collect_stats(res_list, k = 5)
collect_stats(res_list, k = 6)
Collect partitions from all methods:
collect_classes(res_list, k = 2)
collect_classes(res_list, k = 3)
collect_classes(res_list, k = 4)
collect_classes(res_list, k = 5)
collect_classes(res_list, k = 6)
Overlap of top rows from different top-row methods:
top_rows_overlap(res_list, top_n = 1000, method = "euler")
top_rows_overlap(res_list, top_n = 2000, method = "euler")
top_rows_overlap(res_list, top_n = 3000, method = "euler")
top_rows_overlap(res_list, top_n = 4000, method = "euler")
top_rows_overlap(res_list, top_n = 5000, method = "euler")
Also visualize the correspondance of rankings between different top-row methods:
top_rows_overlap(res_list, top_n = 1000, method = "correspondance")
top_rows_overlap(res_list, top_n = 2000, method = "correspondance")
top_rows_overlap(res_list, top_n = 3000, method = "correspondance")
top_rows_overlap(res_list, top_n = 4000, method = "correspondance")
top_rows_overlap(res_list, top_n = 5000, method = "correspondance")
Heatmaps of the top rows:
top_rows_heatmap(res_list, top_n = 1000)
top_rows_heatmap(res_list, top_n = 2000)
top_rows_heatmap(res_list, top_n = 3000)
top_rows_heatmap(res_list, top_n = 4000)
top_rows_heatmap(res_list, top_n = 5000)
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 16183 rows and 111 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.405 0.722 0.839 0.255 0.865 0.865
#> 3 3 0.552 0.790 0.890 0.683 0.672 0.621
#> 4 4 0.640 0.739 0.876 0.271 0.917 0.848
#> 5 5 0.514 0.635 0.751 0.174 0.779 0.561
#> 6 6 0.623 0.644 0.786 0.136 0.763 0.436
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1818497 1 0.714 0.687 0.804 0.196
#> SRR1818600 1 0.973 0.768 0.596 0.404
#> SRR1818599 2 0.000 0.985 0.000 1.000
#> SRR1818598 1 0.987 0.767 0.568 0.432
#> SRR1818597 1 0.987 0.767 0.568 0.432
#> SRR1818596 1 0.988 0.764 0.564 0.436
#> SRR1818595 1 0.987 0.767 0.568 0.432
#> SRR1818594 1 0.987 0.767 0.568 0.432
#> SRR1818593 1 0.987 0.767 0.568 0.432
#> SRR1818592 1 0.988 0.764 0.564 0.436
#> SRR1818591 1 0.000 0.541 1.000 0.000
#> SRR1818590 1 0.000 0.541 1.000 0.000
#> SRR1818589 1 0.987 0.767 0.568 0.432
#> SRR1818587 1 0.955 0.762 0.624 0.376
#> SRR1818586 1 0.000 0.541 1.000 0.000
#> SRR1818585 1 0.000 0.541 1.000 0.000
#> SRR1818584 1 0.808 0.717 0.752 0.248
#> SRR1818583 1 0.987 0.767 0.568 0.432
#> SRR1818588 1 0.987 0.767 0.568 0.432
#> SRR1818582 1 0.988 0.764 0.564 0.436
#> SRR1818581 1 0.000 0.541 1.000 0.000
#> SRR1818579 1 0.973 0.768 0.596 0.404
#> SRR1818578 1 0.697 0.676 0.812 0.188
#> SRR1818577 1 0.000 0.541 1.000 0.000
#> SRR1818580 1 0.808 0.717 0.752 0.248
#> SRR1818575 1 0.955 0.762 0.624 0.376
#> SRR1818574 2 0.327 0.884 0.060 0.940
#> SRR1818576 1 0.985 0.768 0.572 0.428
#> SRR1818573 1 0.988 0.764 0.564 0.436
#> SRR1818572 1 0.808 0.717 0.752 0.248
#> SRR1818571 1 0.987 0.767 0.568 0.432
#> SRR1818570 1 0.987 0.767 0.568 0.432
#> SRR1818568 1 0.955 0.762 0.624 0.376
#> SRR1818567 1 0.000 0.541 1.000 0.000
#> SRR1818566 2 0.000 0.985 0.000 1.000
#> SRR1818569 1 0.000 0.541 1.000 0.000
#> SRR1818565 2 0.000 0.985 0.000 1.000
#> SRR1818564 1 0.985 0.768 0.572 0.428
#> SRR1818563 1 0.973 0.768 0.596 0.404
#> SRR1818561 2 0.000 0.985 0.000 1.000
#> SRR1818560 1 0.987 0.767 0.568 0.432
#> SRR1818559 1 0.988 0.764 0.564 0.436
#> SRR1818562 1 0.981 0.769 0.580 0.420
#> SRR1818558 1 0.833 0.723 0.736 0.264
#> SRR1818556 1 0.983 0.769 0.576 0.424
#> SRR1818557 1 0.988 0.764 0.564 0.436
#> SRR1818555 1 0.000 0.541 1.000 0.000
#> SRR1818553 1 0.987 0.767 0.568 0.432
#> SRR1818552 1 0.000 0.541 1.000 0.000
#> SRR1818551 1 0.981 0.769 0.580 0.420
#> SRR1818550 1 0.973 0.768 0.596 0.404
#> SRR1818554 1 0.987 0.767 0.568 0.432
#> SRR1818549 1 0.987 0.767 0.568 0.432
#> SRR1818548 1 0.988 0.764 0.564 0.436
#> SRR1818546 1 0.000 0.541 1.000 0.000
#> SRR1818547 1 0.985 0.768 0.572 0.428
#> SRR1818544 1 0.808 0.717 0.752 0.248
#> SRR1818543 1 0.987 0.767 0.568 0.432
#> SRR1818542 1 0.714 0.687 0.804 0.196
#> SRR1818545 1 0.973 0.768 0.596 0.404
#> SRR1818541 1 0.985 0.768 0.572 0.428
#> SRR1818539 1 0.987 0.767 0.568 0.432
#> SRR1818540 1 0.000 0.541 1.000 0.000
#> SRR1818536 1 0.993 0.745 0.548 0.452
#> SRR1818535 1 0.991 0.755 0.556 0.444
#> SRR1818534 1 0.988 0.764 0.564 0.436
#> SRR1818538 1 0.000 0.541 1.000 0.000
#> SRR1818537 1 0.985 0.768 0.572 0.428
#> SRR1818533 1 0.987 0.767 0.568 0.432
#> SRR1818532 1 0.987 0.767 0.568 0.432
#> SRR1818531 1 0.808 0.717 0.752 0.248
#> SRR1818530 1 0.000 0.541 1.000 0.000
#> SRR1818529 1 0.714 0.687 0.804 0.196
#> SRR1818528 1 0.987 0.767 0.568 0.432
#> SRR1818527 1 0.833 0.723 0.736 0.264
#> SRR1818526 1 0.985 0.768 0.572 0.428
#> SRR1818525 1 0.808 0.717 0.752 0.248
#> SRR1818523 2 0.000 0.985 0.000 1.000
#> SRR1818524 1 0.988 0.764 0.564 0.436
#> SRR1818522 1 0.981 0.769 0.580 0.420
#> SRR1818521 1 0.000 0.541 1.000 0.000
#> SRR1818520 1 0.000 0.541 1.000 0.000
#> SRR1818518 1 0.987 0.767 0.568 0.432
#> SRR1818519 1 0.985 0.768 0.572 0.428
#> SRR1818517 1 0.000 0.541 1.000 0.000
#> SRR1818516 2 0.000 0.985 0.000 1.000
#> SRR1818515 1 0.987 0.767 0.568 0.432
#> SRR1818514 1 0.000 0.541 1.000 0.000
#> SRR1818513 1 0.000 0.541 1.000 0.000
#> SRR1818512 1 0.000 0.541 1.000 0.000
#> SRR1818510 1 0.000 0.541 1.000 0.000
#> SRR1818511 1 0.981 0.769 0.580 0.420
#> SRR1818508 1 0.808 0.717 0.752 0.248
#> SRR1818509 1 0.000 0.541 1.000 0.000
#> SRR1818507 1 0.985 0.768 0.572 0.428
#> SRR1818506 1 0.987 0.767 0.568 0.432
#> SRR1818505 1 0.808 0.717 0.752 0.248
#> SRR1818503 1 0.985 0.768 0.572 0.428
#> SRR1818504 1 0.802 0.708 0.756 0.244
#> SRR1818502 1 0.987 0.767 0.568 0.432
#> SRR1818498 1 0.000 0.541 1.000 0.000
#> SRR1818500 1 0.697 0.676 0.812 0.188
#> SRR1818501 2 0.000 0.985 0.000 1.000
#> SRR1818499 1 0.987 0.767 0.568 0.432
#> SRR1818496 1 0.714 0.687 0.804 0.196
#> SRR1818494 1 0.987 0.767 0.568 0.432
#> SRR1818495 1 0.955 0.762 0.624 0.376
#> SRR1818493 1 0.000 0.541 1.000 0.000
#> SRR1818492 1 0.973 0.768 0.596 0.404
#> SRR1818491 1 0.808 0.717 0.752 0.248
#> SRR1818490 1 0.993 0.745 0.548 0.452
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1818497 1 0.6228 0.256 0.624 0.372 0.004
#> SRR1818600 1 0.1529 0.891 0.960 0.040 0.000
#> SRR1818599 3 0.1411 0.967 0.036 0.000 0.964
#> SRR1818598 1 0.0237 0.907 0.996 0.004 0.000
#> SRR1818597 1 0.0000 0.907 1.000 0.000 0.000
#> SRR1818596 1 0.0475 0.906 0.992 0.004 0.004
#> SRR1818595 1 0.0237 0.907 0.996 0.004 0.000
#> SRR1818594 1 0.0000 0.907 1.000 0.000 0.000
#> SRR1818593 1 0.0237 0.907 0.996 0.004 0.000
#> SRR1818592 1 0.0475 0.906 0.992 0.004 0.004
#> SRR1818591 2 0.4842 0.771 0.224 0.776 0.000
#> SRR1818590 2 0.5835 0.729 0.340 0.660 0.000
#> SRR1818589 1 0.0237 0.907 0.996 0.004 0.000
#> SRR1818587 1 0.2165 0.869 0.936 0.064 0.000
#> SRR1818586 2 0.4842 0.771 0.224 0.776 0.000
#> SRR1818585 2 0.1411 0.499 0.000 0.964 0.036
#> SRR1818584 1 0.4887 0.662 0.772 0.228 0.000
#> SRR1818583 1 0.0000 0.907 1.000 0.000 0.000
#> SRR1818588 1 0.0000 0.907 1.000 0.000 0.000
#> SRR1818582 1 0.0475 0.906 0.992 0.004 0.004
#> SRR1818581 2 0.4842 0.771 0.224 0.776 0.000
#> SRR1818579 1 0.1529 0.891 0.960 0.040 0.000
#> SRR1818578 2 0.7346 0.500 0.368 0.592 0.040
#> SRR1818577 2 0.6180 0.605 0.416 0.584 0.000
#> SRR1818580 1 0.4887 0.662 0.772 0.228 0.000
#> SRR1818575 1 0.2165 0.869 0.936 0.064 0.000
#> SRR1818574 3 0.4399 0.743 0.188 0.000 0.812
#> SRR1818576 1 0.0424 0.907 0.992 0.008 0.000
#> SRR1818573 1 0.0475 0.906 0.992 0.004 0.004
#> SRR1818572 1 0.4887 0.662 0.772 0.228 0.000
#> SRR1818571 1 0.0000 0.907 1.000 0.000 0.000
#> SRR1818570 1 0.0000 0.907 1.000 0.000 0.000
#> SRR1818568 1 0.2165 0.869 0.936 0.064 0.000
#> SRR1818567 2 0.6180 0.605 0.416 0.584 0.000
#> SRR1818566 3 0.1411 0.967 0.036 0.000 0.964
#> SRR1818569 2 0.1411 0.499 0.000 0.964 0.036
#> SRR1818565 3 0.1411 0.967 0.036 0.000 0.964
#> SRR1818564 1 0.0424 0.907 0.992 0.008 0.000
#> SRR1818563 1 0.1411 0.891 0.964 0.036 0.000
#> SRR1818561 3 0.1411 0.967 0.036 0.000 0.964
#> SRR1818560 1 0.0000 0.907 1.000 0.000 0.000
#> SRR1818559 1 0.0475 0.906 0.992 0.004 0.004
#> SRR1818562 1 0.0747 0.905 0.984 0.016 0.000
#> SRR1818558 1 0.4452 0.713 0.808 0.192 0.000
#> SRR1818556 1 0.0592 0.905 0.988 0.012 0.000
#> SRR1818557 1 0.0475 0.906 0.992 0.004 0.004
#> SRR1818555 2 0.4842 0.771 0.224 0.776 0.000
#> SRR1818553 1 0.0000 0.907 1.000 0.000 0.000
#> SRR1818552 2 0.5835 0.729 0.340 0.660 0.000
#> SRR1818551 1 0.0747 0.905 0.984 0.016 0.000
#> SRR1818550 1 0.1411 0.891 0.964 0.036 0.000
#> SRR1818554 1 0.0237 0.907 0.996 0.004 0.000
#> SRR1818549 1 0.0000 0.907 1.000 0.000 0.000
#> SRR1818548 1 0.0475 0.906 0.992 0.004 0.004
#> SRR1818546 2 0.1411 0.499 0.000 0.964 0.036
#> SRR1818547 1 0.0424 0.907 0.992 0.008 0.000
#> SRR1818544 1 0.4887 0.662 0.772 0.228 0.000
#> SRR1818543 1 0.0000 0.907 1.000 0.000 0.000
#> SRR1818542 1 0.6228 0.256 0.624 0.372 0.004
#> SRR1818545 1 0.1411 0.891 0.964 0.036 0.000
#> SRR1818541 1 0.0424 0.907 0.992 0.008 0.000
#> SRR1818539 1 0.0237 0.907 0.996 0.004 0.000
#> SRR1818540 2 0.4842 0.771 0.224 0.776 0.000
#> SRR1818536 1 0.1031 0.894 0.976 0.000 0.024
#> SRR1818535 1 0.1267 0.895 0.972 0.004 0.024
#> SRR1818534 1 0.0475 0.906 0.992 0.004 0.004
#> SRR1818538 2 0.5835 0.729 0.340 0.660 0.000
#> SRR1818537 1 0.0424 0.907 0.992 0.008 0.000
#> SRR1818533 1 0.0237 0.907 0.996 0.004 0.000
#> SRR1818532 1 0.0000 0.907 1.000 0.000 0.000
#> SRR1818531 1 0.4887 0.662 0.772 0.228 0.000
#> SRR1818530 2 0.1411 0.499 0.000 0.964 0.036
#> SRR1818529 1 0.6228 0.256 0.624 0.372 0.004
#> SRR1818528 1 0.0000 0.907 1.000 0.000 0.000
#> SRR1818527 1 0.4452 0.713 0.808 0.192 0.000
#> SRR1818526 1 0.0424 0.907 0.992 0.008 0.000
#> SRR1818525 1 0.4887 0.662 0.772 0.228 0.000
#> SRR1818523 3 0.1411 0.967 0.036 0.000 0.964
#> SRR1818524 1 0.0475 0.906 0.992 0.004 0.004
#> SRR1818522 1 0.0747 0.905 0.984 0.016 0.000
#> SRR1818521 2 0.6180 0.605 0.416 0.584 0.000
#> SRR1818520 2 0.4842 0.771 0.224 0.776 0.000
#> SRR1818518 1 0.0000 0.907 1.000 0.000 0.000
#> SRR1818519 1 0.0424 0.907 0.992 0.008 0.000
#> SRR1818517 2 0.5835 0.729 0.340 0.660 0.000
#> SRR1818516 3 0.1411 0.967 0.036 0.000 0.964
#> SRR1818515 1 0.0237 0.907 0.996 0.004 0.000
#> SRR1818514 2 0.1411 0.499 0.000 0.964 0.036
#> SRR1818513 2 0.5397 0.767 0.280 0.720 0.000
#> SRR1818512 2 0.1411 0.499 0.000 0.964 0.036
#> SRR1818510 2 0.4842 0.771 0.224 0.776 0.000
#> SRR1818511 1 0.0747 0.905 0.984 0.016 0.000
#> SRR1818508 1 0.4887 0.662 0.772 0.228 0.000
#> SRR1818509 2 0.5835 0.729 0.340 0.660 0.000
#> SRR1818507 1 0.0424 0.907 0.992 0.008 0.000
#> SRR1818506 1 0.0237 0.907 0.996 0.004 0.000
#> SRR1818505 1 0.4887 0.662 0.772 0.228 0.000
#> SRR1818503 1 0.0424 0.907 0.992 0.008 0.000
#> SRR1818504 1 0.7480 -0.187 0.508 0.456 0.036
#> SRR1818502 1 0.0237 0.907 0.996 0.004 0.000
#> SRR1818498 2 0.4842 0.771 0.224 0.776 0.000
#> SRR1818500 2 0.7328 0.506 0.364 0.596 0.040
#> SRR1818501 3 0.1411 0.967 0.036 0.000 0.964
#> SRR1818499 1 0.0237 0.907 0.996 0.004 0.000
#> SRR1818496 1 0.6228 0.256 0.624 0.372 0.004
#> SRR1818494 1 0.0237 0.907 0.996 0.004 0.000
#> SRR1818495 1 0.2165 0.869 0.936 0.064 0.000
#> SRR1818493 2 0.6180 0.605 0.416 0.584 0.000
#> SRR1818492 1 0.1411 0.891 0.964 0.036 0.000
#> SRR1818491 1 0.4887 0.662 0.772 0.228 0.000
#> SRR1818490 1 0.1753 0.872 0.952 0.000 0.048
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1818497 2 0.7179 0.1983 0.408 0.456 0.000 0.136
#> SRR1818600 1 0.2179 0.8377 0.924 0.064 0.000 0.012
#> SRR1818599 3 0.0000 0.9556 0.000 0.000 1.000 0.000
#> SRR1818598 1 0.0921 0.8615 0.972 0.028 0.000 0.000
#> SRR1818597 1 0.0000 0.8640 1.000 0.000 0.000 0.000
#> SRR1818596 1 0.1585 0.8520 0.952 0.004 0.004 0.040
#> SRR1818595 1 0.0707 0.8621 0.980 0.020 0.000 0.000
#> SRR1818594 1 0.0000 0.8640 1.000 0.000 0.000 0.000
#> SRR1818593 1 0.1489 0.8526 0.952 0.004 0.000 0.044
#> SRR1818592 1 0.1585 0.8520 0.952 0.004 0.004 0.040
#> SRR1818591 2 0.1637 0.7120 0.000 0.940 0.000 0.060
#> SRR1818590 2 0.2450 0.7534 0.072 0.912 0.000 0.016
#> SRR1818589 1 0.1489 0.8526 0.952 0.004 0.000 0.044
#> SRR1818587 1 0.4564 0.5369 0.672 0.328 0.000 0.000
#> SRR1818586 2 0.1637 0.7120 0.000 0.940 0.000 0.060
#> SRR1818585 4 0.1389 0.7612 0.000 0.048 0.000 0.952
#> SRR1818584 1 0.5847 0.4728 0.628 0.320 0.000 0.052
#> SRR1818583 1 0.0000 0.8640 1.000 0.000 0.000 0.000
#> SRR1818588 1 0.0000 0.8640 1.000 0.000 0.000 0.000
#> SRR1818582 1 0.1585 0.8520 0.952 0.004 0.004 0.040
#> SRR1818581 2 0.1637 0.7120 0.000 0.940 0.000 0.060
#> SRR1818579 1 0.2179 0.8377 0.924 0.064 0.000 0.012
#> SRR1818578 4 0.5966 0.3555 0.360 0.040 0.004 0.596
#> SRR1818577 2 0.3196 0.7172 0.136 0.856 0.000 0.008
#> SRR1818580 1 0.5827 0.4809 0.632 0.316 0.000 0.052
#> SRR1818575 1 0.4564 0.5369 0.672 0.328 0.000 0.000
#> SRR1818574 3 0.3074 0.6656 0.152 0.000 0.848 0.000
#> SRR1818576 1 0.0817 0.8619 0.976 0.024 0.000 0.000
#> SRR1818573 1 0.1585 0.8520 0.952 0.004 0.004 0.040
#> SRR1818572 1 0.5847 0.4728 0.628 0.320 0.000 0.052
#> SRR1818571 1 0.0592 0.8623 0.984 0.016 0.000 0.000
#> SRR1818570 1 0.0000 0.8640 1.000 0.000 0.000 0.000
#> SRR1818568 1 0.4564 0.5369 0.672 0.328 0.000 0.000
#> SRR1818567 2 0.3196 0.7172 0.136 0.856 0.000 0.008
#> SRR1818566 3 0.0000 0.9556 0.000 0.000 1.000 0.000
#> SRR1818569 4 0.1389 0.7612 0.000 0.048 0.000 0.952
#> SRR1818565 3 0.0000 0.9556 0.000 0.000 1.000 0.000
#> SRR1818564 1 0.0817 0.8619 0.976 0.024 0.000 0.000
#> SRR1818563 1 0.4103 0.6542 0.744 0.256 0.000 0.000
#> SRR1818561 3 0.0000 0.9556 0.000 0.000 1.000 0.000
#> SRR1818560 1 0.0000 0.8640 1.000 0.000 0.000 0.000
#> SRR1818559 1 0.1585 0.8520 0.952 0.004 0.004 0.040
#> SRR1818562 1 0.1042 0.8631 0.972 0.020 0.000 0.008
#> SRR1818558 1 0.5152 0.5304 0.664 0.316 0.000 0.020
#> SRR1818556 1 0.1022 0.8596 0.968 0.032 0.000 0.000
#> SRR1818557 1 0.1585 0.8520 0.952 0.004 0.004 0.040
#> SRR1818555 2 0.1637 0.7120 0.000 0.940 0.000 0.060
#> SRR1818553 1 0.0000 0.8640 1.000 0.000 0.000 0.000
#> SRR1818552 2 0.2450 0.7534 0.072 0.912 0.000 0.016
#> SRR1818551 1 0.1042 0.8631 0.972 0.020 0.000 0.008
#> SRR1818550 1 0.4103 0.6542 0.744 0.256 0.000 0.000
#> SRR1818554 1 0.1489 0.8526 0.952 0.004 0.000 0.044
#> SRR1818549 1 0.0000 0.8640 1.000 0.000 0.000 0.000
#> SRR1818548 1 0.1585 0.8520 0.952 0.004 0.004 0.040
#> SRR1818546 4 0.1389 0.7612 0.000 0.048 0.000 0.952
#> SRR1818547 1 0.1635 0.8533 0.948 0.008 0.000 0.044
#> SRR1818544 1 0.5827 0.4809 0.632 0.316 0.000 0.052
#> SRR1818543 1 0.0000 0.8640 1.000 0.000 0.000 0.000
#> SRR1818542 2 0.7179 0.1983 0.408 0.456 0.000 0.136
#> SRR1818545 1 0.4103 0.6542 0.744 0.256 0.000 0.000
#> SRR1818541 1 0.0817 0.8619 0.976 0.024 0.000 0.000
#> SRR1818539 1 0.0707 0.8621 0.980 0.020 0.000 0.000
#> SRR1818540 2 0.1637 0.7120 0.000 0.940 0.000 0.060
#> SRR1818536 1 0.1510 0.8588 0.956 0.016 0.028 0.000
#> SRR1818535 1 0.1296 0.8585 0.964 0.004 0.028 0.004
#> SRR1818534 1 0.1585 0.8520 0.952 0.004 0.004 0.040
#> SRR1818538 2 0.2450 0.7534 0.072 0.912 0.000 0.016
#> SRR1818537 1 0.0817 0.8619 0.976 0.024 0.000 0.000
#> SRR1818533 1 0.0921 0.8615 0.972 0.028 0.000 0.000
#> SRR1818532 1 0.0000 0.8640 1.000 0.000 0.000 0.000
#> SRR1818531 1 0.5847 0.4728 0.628 0.320 0.000 0.052
#> SRR1818530 4 0.1389 0.7612 0.000 0.048 0.000 0.952
#> SRR1818529 2 0.7179 0.1983 0.408 0.456 0.000 0.136
#> SRR1818528 1 0.0000 0.8640 1.000 0.000 0.000 0.000
#> SRR1818527 1 0.5152 0.5304 0.664 0.316 0.000 0.020
#> SRR1818526 1 0.1635 0.8533 0.948 0.008 0.000 0.044
#> SRR1818525 1 0.5847 0.4728 0.628 0.320 0.000 0.052
#> SRR1818523 3 0.0000 0.9556 0.000 0.000 1.000 0.000
#> SRR1818524 1 0.1585 0.8520 0.952 0.004 0.004 0.040
#> SRR1818522 1 0.1042 0.8631 0.972 0.020 0.000 0.008
#> SRR1818521 2 0.3196 0.7172 0.136 0.856 0.000 0.008
#> SRR1818520 2 0.1637 0.7120 0.000 0.940 0.000 0.060
#> SRR1818518 1 0.0000 0.8640 1.000 0.000 0.000 0.000
#> SRR1818519 1 0.1635 0.8533 0.948 0.008 0.000 0.044
#> SRR1818517 2 0.2450 0.7534 0.072 0.912 0.000 0.016
#> SRR1818516 3 0.0000 0.9556 0.000 0.000 1.000 0.000
#> SRR1818515 1 0.1489 0.8526 0.952 0.004 0.000 0.044
#> SRR1818514 4 0.1389 0.7612 0.000 0.048 0.000 0.952
#> SRR1818513 2 0.3168 0.7361 0.056 0.884 0.000 0.060
#> SRR1818512 4 0.1389 0.7612 0.000 0.048 0.000 0.952
#> SRR1818510 2 0.1637 0.7120 0.000 0.940 0.000 0.060
#> SRR1818511 1 0.1042 0.8631 0.972 0.020 0.000 0.008
#> SRR1818508 1 0.5847 0.4728 0.628 0.320 0.000 0.052
#> SRR1818509 2 0.2450 0.7534 0.072 0.912 0.000 0.016
#> SRR1818507 1 0.1635 0.8533 0.948 0.008 0.000 0.044
#> SRR1818506 1 0.0188 0.8638 0.996 0.004 0.000 0.000
#> SRR1818505 1 0.5827 0.4809 0.632 0.316 0.000 0.052
#> SRR1818503 1 0.0817 0.8619 0.976 0.024 0.000 0.000
#> SRR1818504 1 0.6022 -0.0386 0.504 0.032 0.004 0.460
#> SRR1818502 1 0.0921 0.8615 0.972 0.028 0.000 0.000
#> SRR1818498 2 0.1637 0.7120 0.000 0.940 0.000 0.060
#> SRR1818500 4 0.6028 0.3603 0.356 0.044 0.004 0.596
#> SRR1818501 3 0.0000 0.9556 0.000 0.000 1.000 0.000
#> SRR1818499 1 0.0376 0.8632 0.992 0.004 0.000 0.004
#> SRR1818496 2 0.7179 0.1983 0.408 0.456 0.000 0.136
#> SRR1818494 1 0.0921 0.8615 0.972 0.028 0.000 0.000
#> SRR1818495 1 0.4564 0.5369 0.672 0.328 0.000 0.000
#> SRR1818493 2 0.3196 0.7172 0.136 0.856 0.000 0.008
#> SRR1818492 1 0.4103 0.6542 0.744 0.256 0.000 0.000
#> SRR1818491 1 0.5827 0.4809 0.632 0.316 0.000 0.052
#> SRR1818490 1 0.1474 0.8457 0.948 0.000 0.052 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1818497 1 0.562 0.551 0.676 0.016 0.000 0.172 0.136
#> SRR1818600 4 0.443 0.432 0.360 0.000 0.000 0.628 0.012
#> SRR1818599 3 0.000 0.964 0.000 0.000 1.000 0.000 0.000
#> SRR1818598 4 0.356 0.691 0.260 0.000 0.000 0.740 0.000
#> SRR1818597 4 0.334 0.740 0.228 0.000 0.000 0.772 0.000
#> SRR1818596 4 0.179 0.611 0.084 0.000 0.000 0.916 0.000
#> SRR1818595 4 0.327 0.738 0.220 0.000 0.000 0.780 0.000
#> SRR1818594 4 0.334 0.740 0.228 0.000 0.000 0.772 0.000
#> SRR1818593 4 0.228 0.583 0.120 0.000 0.000 0.880 0.000
#> SRR1818592 4 0.179 0.611 0.084 0.000 0.000 0.916 0.000
#> SRR1818591 2 0.000 0.790 0.000 1.000 0.000 0.000 0.000
#> SRR1818590 2 0.417 0.664 0.396 0.604 0.000 0.000 0.000
#> SRR1818589 4 0.228 0.583 0.120 0.000 0.000 0.880 0.000
#> SRR1818587 1 0.424 0.484 0.628 0.004 0.000 0.368 0.000
#> SRR1818586 2 0.000 0.790 0.000 1.000 0.000 0.000 0.000
#> SRR1818585 5 0.000 0.747 0.000 0.000 0.000 0.000 1.000
#> SRR1818584 1 0.507 0.619 0.620 0.000 0.000 0.328 0.052
#> SRR1818583 4 0.334 0.740 0.228 0.000 0.000 0.772 0.000
#> SRR1818588 4 0.327 0.746 0.220 0.000 0.000 0.780 0.000
#> SRR1818582 4 0.179 0.611 0.084 0.000 0.000 0.916 0.000
#> SRR1818581 2 0.000 0.790 0.000 1.000 0.000 0.000 0.000
#> SRR1818579 4 0.443 0.432 0.360 0.000 0.000 0.628 0.012
#> SRR1818578 5 0.544 0.542 0.096 0.000 0.000 0.280 0.624
#> SRR1818577 1 0.424 -0.249 0.656 0.336 0.000 0.008 0.000
#> SRR1818580 1 0.508 0.615 0.616 0.000 0.000 0.332 0.052
#> SRR1818575 1 0.424 0.484 0.628 0.004 0.000 0.368 0.000
#> SRR1818574 3 0.330 0.727 0.068 0.000 0.848 0.084 0.000
#> SRR1818576 4 0.331 0.734 0.224 0.000 0.000 0.776 0.000
#> SRR1818573 4 0.179 0.611 0.084 0.000 0.000 0.916 0.000
#> SRR1818572 1 0.507 0.619 0.620 0.000 0.000 0.328 0.052
#> SRR1818571 4 0.340 0.735 0.236 0.000 0.000 0.764 0.000
#> SRR1818570 4 0.334 0.740 0.228 0.000 0.000 0.772 0.000
#> SRR1818568 1 0.424 0.484 0.628 0.004 0.000 0.368 0.000
#> SRR1818567 1 0.424 -0.249 0.656 0.336 0.000 0.008 0.000
#> SRR1818566 3 0.000 0.964 0.000 0.000 1.000 0.000 0.000
#> SRR1818569 5 0.000 0.747 0.000 0.000 0.000 0.000 1.000
#> SRR1818565 3 0.000 0.964 0.000 0.000 1.000 0.000 0.000
#> SRR1818564 4 0.331 0.734 0.224 0.000 0.000 0.776 0.000
#> SRR1818563 1 0.443 0.252 0.540 0.004 0.000 0.456 0.000
#> SRR1818561 3 0.000 0.964 0.000 0.000 1.000 0.000 0.000
#> SRR1818560 4 0.314 0.750 0.204 0.000 0.000 0.796 0.000
#> SRR1818559 4 0.179 0.611 0.084 0.000 0.000 0.916 0.000
#> SRR1818562 4 0.321 0.751 0.180 0.008 0.000 0.812 0.000
#> SRR1818558 1 0.463 0.577 0.616 0.000 0.000 0.364 0.020
#> SRR1818556 4 0.366 0.657 0.276 0.000 0.000 0.724 0.000
#> SRR1818557 4 0.179 0.611 0.084 0.000 0.000 0.916 0.000
#> SRR1818555 2 0.000 0.790 0.000 1.000 0.000 0.000 0.000
#> SRR1818553 4 0.327 0.746 0.220 0.000 0.000 0.780 0.000
#> SRR1818552 2 0.417 0.664 0.396 0.604 0.000 0.000 0.000
#> SRR1818551 4 0.321 0.751 0.180 0.008 0.000 0.812 0.000
#> SRR1818550 1 0.443 0.252 0.540 0.004 0.000 0.456 0.000
#> SRR1818554 4 0.228 0.583 0.120 0.000 0.000 0.880 0.000
#> SRR1818549 4 0.327 0.746 0.220 0.000 0.000 0.780 0.000
#> SRR1818548 4 0.179 0.611 0.084 0.000 0.000 0.916 0.000
#> SRR1818546 5 0.000 0.747 0.000 0.000 0.000 0.000 1.000
#> SRR1818547 4 0.228 0.584 0.120 0.000 0.000 0.880 0.000
#> SRR1818544 1 0.508 0.615 0.616 0.000 0.000 0.332 0.052
#> SRR1818543 4 0.314 0.750 0.204 0.000 0.000 0.796 0.000
#> SRR1818542 1 0.562 0.551 0.676 0.016 0.000 0.172 0.136
#> SRR1818545 1 0.443 0.252 0.540 0.004 0.000 0.456 0.000
#> SRR1818541 4 0.331 0.734 0.224 0.000 0.000 0.776 0.000
#> SRR1818539 4 0.327 0.738 0.220 0.000 0.000 0.780 0.000
#> SRR1818540 2 0.000 0.790 0.000 1.000 0.000 0.000 0.000
#> SRR1818536 4 0.417 0.707 0.240 0.000 0.028 0.732 0.000
#> SRR1818535 4 0.424 0.712 0.228 0.000 0.028 0.740 0.004
#> SRR1818534 4 0.179 0.611 0.084 0.000 0.000 0.916 0.000
#> SRR1818538 2 0.417 0.664 0.396 0.604 0.000 0.000 0.000
#> SRR1818537 4 0.331 0.734 0.224 0.000 0.000 0.776 0.000
#> SRR1818533 4 0.356 0.691 0.260 0.000 0.000 0.740 0.000
#> SRR1818532 4 0.327 0.746 0.220 0.000 0.000 0.780 0.000
#> SRR1818531 1 0.507 0.619 0.620 0.000 0.000 0.328 0.052
#> SRR1818530 5 0.000 0.747 0.000 0.000 0.000 0.000 1.000
#> SRR1818529 1 0.562 0.551 0.676 0.016 0.000 0.172 0.136
#> SRR1818528 4 0.314 0.750 0.204 0.000 0.000 0.796 0.000
#> SRR1818527 1 0.463 0.577 0.616 0.000 0.000 0.364 0.020
#> SRR1818526 4 0.228 0.584 0.120 0.000 0.000 0.880 0.000
#> SRR1818525 1 0.507 0.619 0.620 0.000 0.000 0.328 0.052
#> SRR1818523 3 0.000 0.964 0.000 0.000 1.000 0.000 0.000
#> SRR1818524 4 0.179 0.611 0.084 0.000 0.000 0.916 0.000
#> SRR1818522 4 0.321 0.751 0.180 0.008 0.000 0.812 0.000
#> SRR1818521 1 0.424 -0.249 0.656 0.336 0.000 0.008 0.000
#> SRR1818520 2 0.000 0.790 0.000 1.000 0.000 0.000 0.000
#> SRR1818518 4 0.314 0.750 0.204 0.000 0.000 0.796 0.000
#> SRR1818519 4 0.228 0.584 0.120 0.000 0.000 0.880 0.000
#> SRR1818517 2 0.417 0.664 0.396 0.604 0.000 0.000 0.000
#> SRR1818516 3 0.000 0.964 0.000 0.000 1.000 0.000 0.000
#> SRR1818515 4 0.228 0.583 0.120 0.000 0.000 0.880 0.000
#> SRR1818514 5 0.000 0.747 0.000 0.000 0.000 0.000 1.000
#> SRR1818513 2 0.281 0.751 0.168 0.832 0.000 0.000 0.000
#> SRR1818512 5 0.000 0.747 0.000 0.000 0.000 0.000 1.000
#> SRR1818510 2 0.000 0.790 0.000 1.000 0.000 0.000 0.000
#> SRR1818511 4 0.321 0.751 0.180 0.008 0.000 0.812 0.000
#> SRR1818508 1 0.507 0.619 0.620 0.000 0.000 0.328 0.052
#> SRR1818509 2 0.417 0.664 0.396 0.604 0.000 0.000 0.000
#> SRR1818507 4 0.228 0.584 0.120 0.000 0.000 0.880 0.000
#> SRR1818506 4 0.324 0.748 0.216 0.000 0.000 0.784 0.000
#> SRR1818505 1 0.508 0.615 0.616 0.000 0.000 0.332 0.052
#> SRR1818503 4 0.331 0.734 0.224 0.000 0.000 0.776 0.000
#> SRR1818504 5 0.595 0.321 0.108 0.000 0.000 0.408 0.484
#> SRR1818502 4 0.356 0.691 0.260 0.000 0.000 0.740 0.000
#> SRR1818498 2 0.000 0.790 0.000 1.000 0.000 0.000 0.000
#> SRR1818500 5 0.539 0.545 0.092 0.000 0.000 0.280 0.628
#> SRR1818501 3 0.000 0.964 0.000 0.000 1.000 0.000 0.000
#> SRR1818499 4 0.307 0.724 0.196 0.000 0.000 0.804 0.000
#> SRR1818496 1 0.562 0.551 0.676 0.016 0.000 0.172 0.136
#> SRR1818494 4 0.356 0.691 0.260 0.000 0.000 0.740 0.000
#> SRR1818495 1 0.424 0.484 0.628 0.004 0.000 0.368 0.000
#> SRR1818493 1 0.424 -0.249 0.656 0.336 0.000 0.008 0.000
#> SRR1818492 1 0.443 0.252 0.540 0.004 0.000 0.456 0.000
#> SRR1818491 1 0.508 0.615 0.616 0.000 0.000 0.332 0.052
#> SRR1818490 4 0.440 0.708 0.212 0.000 0.052 0.736 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1818497 6 0.5223 0.586 0.272 0.000 0.000 0.000 0.136 0.592
#> SRR1818600 1 0.3197 0.680 0.804 0.000 0.000 0.012 0.008 0.176
#> SRR1818599 3 0.0000 0.965 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818598 1 0.1267 0.748 0.940 0.000 0.000 0.000 0.000 0.060
#> SRR1818597 1 0.1528 0.754 0.936 0.000 0.000 0.016 0.000 0.048
#> SRR1818596 4 0.4858 0.735 0.180 0.000 0.000 0.664 0.000 0.156
#> SRR1818595 1 0.0547 0.755 0.980 0.000 0.000 0.000 0.000 0.020
#> SRR1818594 1 0.1528 0.754 0.936 0.000 0.000 0.016 0.000 0.048
#> SRR1818593 4 0.3163 0.715 0.232 0.000 0.000 0.764 0.000 0.004
#> SRR1818592 4 0.4858 0.735 0.180 0.000 0.000 0.664 0.000 0.156
#> SRR1818591 2 0.0000 0.765 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818590 2 0.4614 0.444 0.004 0.548 0.000 0.032 0.000 0.416
#> SRR1818589 4 0.3163 0.715 0.232 0.000 0.000 0.764 0.000 0.004
#> SRR1818587 1 0.4561 0.270 0.536 0.000 0.000 0.036 0.000 0.428
#> SRR1818586 2 0.0000 0.765 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818585 5 0.0000 0.823 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818584 1 0.5080 0.232 0.508 0.000 0.000 0.016 0.044 0.432
#> SRR1818583 1 0.1528 0.754 0.936 0.000 0.000 0.016 0.000 0.048
#> SRR1818588 1 0.1088 0.753 0.960 0.000 0.000 0.016 0.000 0.024
#> SRR1818582 4 0.4858 0.735 0.180 0.000 0.000 0.664 0.000 0.156
#> SRR1818581 2 0.0000 0.765 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818579 1 0.3197 0.680 0.804 0.000 0.000 0.012 0.008 0.176
#> SRR1818578 5 0.5791 0.617 0.052 0.000 0.000 0.156 0.624 0.168
#> SRR1818577 6 0.3265 0.420 0.000 0.248 0.000 0.004 0.000 0.748
#> SRR1818580 1 0.5076 0.242 0.512 0.000 0.000 0.016 0.044 0.428
#> SRR1818575 1 0.4561 0.270 0.536 0.000 0.000 0.036 0.000 0.428
#> SRR1818574 3 0.2843 0.739 0.116 0.000 0.848 0.000 0.000 0.036
#> SRR1818576 1 0.1075 0.753 0.952 0.000 0.000 0.000 0.000 0.048
#> SRR1818573 4 0.4858 0.735 0.180 0.000 0.000 0.664 0.000 0.156
#> SRR1818572 1 0.5080 0.232 0.508 0.000 0.000 0.016 0.044 0.432
#> SRR1818571 1 0.0632 0.756 0.976 0.000 0.000 0.000 0.000 0.024
#> SRR1818570 1 0.1528 0.754 0.936 0.000 0.000 0.016 0.000 0.048
#> SRR1818568 1 0.4561 0.270 0.536 0.000 0.000 0.036 0.000 0.428
#> SRR1818567 6 0.3265 0.420 0.000 0.248 0.000 0.004 0.000 0.748
#> SRR1818566 3 0.0000 0.965 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818569 5 0.0000 0.823 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818565 3 0.0000 0.965 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818564 1 0.1075 0.753 0.952 0.000 0.000 0.000 0.000 0.048
#> SRR1818563 1 0.4357 0.443 0.624 0.000 0.000 0.036 0.000 0.340
#> SRR1818561 3 0.0000 0.965 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818560 1 0.0717 0.753 0.976 0.000 0.000 0.016 0.000 0.008
#> SRR1818559 4 0.4858 0.735 0.180 0.000 0.000 0.664 0.000 0.156
#> SRR1818562 1 0.1666 0.738 0.936 0.008 0.000 0.036 0.000 0.020
#> SRR1818558 1 0.4546 0.296 0.540 0.000 0.000 0.016 0.012 0.432
#> SRR1818556 1 0.1556 0.737 0.920 0.000 0.000 0.000 0.000 0.080
#> SRR1818557 4 0.4858 0.735 0.180 0.000 0.000 0.664 0.000 0.156
#> SRR1818555 2 0.0000 0.765 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818553 1 0.1088 0.753 0.960 0.000 0.000 0.016 0.000 0.024
#> SRR1818552 2 0.4614 0.444 0.004 0.548 0.000 0.032 0.000 0.416
#> SRR1818551 1 0.1666 0.738 0.936 0.008 0.000 0.036 0.000 0.020
#> SRR1818550 1 0.4357 0.443 0.624 0.000 0.000 0.036 0.000 0.340
#> SRR1818554 4 0.3163 0.715 0.232 0.000 0.000 0.764 0.000 0.004
#> SRR1818549 1 0.1088 0.753 0.960 0.000 0.000 0.016 0.000 0.024
#> SRR1818548 4 0.4858 0.735 0.180 0.000 0.000 0.664 0.000 0.156
#> SRR1818546 5 0.0000 0.823 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818547 4 0.3404 0.708 0.224 0.000 0.000 0.760 0.000 0.016
#> SRR1818544 1 0.5076 0.242 0.512 0.000 0.000 0.016 0.044 0.428
#> SRR1818543 1 0.0717 0.753 0.976 0.000 0.000 0.016 0.000 0.008
#> SRR1818542 6 0.5223 0.586 0.272 0.000 0.000 0.000 0.136 0.592
#> SRR1818545 1 0.4357 0.443 0.624 0.000 0.000 0.036 0.000 0.340
#> SRR1818541 1 0.1075 0.753 0.952 0.000 0.000 0.000 0.000 0.048
#> SRR1818539 1 0.0547 0.755 0.980 0.000 0.000 0.000 0.000 0.020
#> SRR1818540 2 0.0000 0.765 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818536 1 0.1572 0.748 0.936 0.000 0.028 0.000 0.000 0.036
#> SRR1818535 1 0.2439 0.744 0.900 0.000 0.028 0.016 0.004 0.052
#> SRR1818534 4 0.4858 0.735 0.180 0.000 0.000 0.664 0.000 0.156
#> SRR1818538 2 0.4614 0.444 0.004 0.548 0.000 0.032 0.000 0.416
#> SRR1818537 1 0.1075 0.753 0.952 0.000 0.000 0.000 0.000 0.048
#> SRR1818533 1 0.1267 0.748 0.940 0.000 0.000 0.000 0.000 0.060
#> SRR1818532 1 0.1088 0.753 0.960 0.000 0.000 0.016 0.000 0.024
#> SRR1818531 1 0.5080 0.232 0.508 0.000 0.000 0.016 0.044 0.432
#> SRR1818530 5 0.0000 0.823 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818529 6 0.5223 0.586 0.272 0.000 0.000 0.000 0.136 0.592
#> SRR1818528 1 0.0717 0.753 0.976 0.000 0.000 0.016 0.000 0.008
#> SRR1818527 1 0.4546 0.296 0.540 0.000 0.000 0.016 0.012 0.432
#> SRR1818526 4 0.3404 0.708 0.224 0.000 0.000 0.760 0.000 0.016
#> SRR1818525 1 0.5080 0.232 0.508 0.000 0.000 0.016 0.044 0.432
#> SRR1818523 3 0.0000 0.965 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818524 4 0.4858 0.735 0.180 0.000 0.000 0.664 0.000 0.156
#> SRR1818522 1 0.1666 0.738 0.936 0.008 0.000 0.036 0.000 0.020
#> SRR1818521 6 0.3265 0.420 0.000 0.248 0.000 0.004 0.000 0.748
#> SRR1818520 2 0.0000 0.765 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818518 1 0.0806 0.752 0.972 0.000 0.000 0.020 0.000 0.008
#> SRR1818519 4 0.3404 0.708 0.224 0.000 0.000 0.760 0.000 0.016
#> SRR1818517 2 0.4614 0.444 0.004 0.548 0.000 0.032 0.000 0.416
#> SRR1818516 3 0.0000 0.965 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818515 4 0.3163 0.715 0.232 0.000 0.000 0.764 0.000 0.004
#> SRR1818514 5 0.0000 0.823 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818513 2 0.3161 0.663 0.000 0.776 0.000 0.008 0.000 0.216
#> SRR1818512 5 0.0000 0.823 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818510 2 0.0000 0.765 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818511 1 0.1666 0.738 0.936 0.008 0.000 0.036 0.000 0.020
#> SRR1818508 1 0.5080 0.232 0.508 0.000 0.000 0.016 0.044 0.432
#> SRR1818509 2 0.4614 0.444 0.004 0.548 0.000 0.032 0.000 0.416
#> SRR1818507 4 0.3404 0.708 0.224 0.000 0.000 0.760 0.000 0.016
#> SRR1818506 1 0.1261 0.751 0.952 0.000 0.000 0.024 0.000 0.024
#> SRR1818505 1 0.5076 0.242 0.512 0.000 0.000 0.016 0.044 0.428
#> SRR1818503 1 0.1075 0.753 0.952 0.000 0.000 0.000 0.000 0.048
#> SRR1818504 5 0.7019 0.341 0.192 0.000 0.000 0.156 0.484 0.168
#> SRR1818502 1 0.1267 0.748 0.940 0.000 0.000 0.000 0.000 0.060
#> SRR1818498 2 0.0000 0.765 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818500 5 0.5734 0.620 0.048 0.000 0.000 0.156 0.628 0.168
#> SRR1818501 3 0.0000 0.965 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818499 1 0.3893 0.505 0.764 0.000 0.000 0.156 0.000 0.080
#> SRR1818496 6 0.5223 0.586 0.272 0.000 0.000 0.000 0.136 0.592
#> SRR1818494 1 0.1267 0.748 0.940 0.000 0.000 0.000 0.000 0.060
#> SRR1818495 1 0.4561 0.270 0.536 0.000 0.000 0.036 0.000 0.428
#> SRR1818493 6 0.3265 0.420 0.000 0.248 0.000 0.004 0.000 0.748
#> SRR1818492 1 0.4357 0.443 0.624 0.000 0.000 0.036 0.000 0.340
#> SRR1818491 1 0.5076 0.242 0.512 0.000 0.000 0.016 0.044 0.428
#> SRR1818490 1 0.2532 0.733 0.892 0.000 0.052 0.020 0.000 0.036
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 16183 rows and 111 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 5.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.189 0.723 0.819 0.3529 0.629 0.629
#> 3 3 0.209 0.319 0.734 0.5081 0.948 0.917
#> 4 4 0.371 0.627 0.742 0.1988 0.722 0.539
#> 5 5 0.495 0.623 0.749 0.1218 0.931 0.812
#> 6 6 0.618 0.510 0.686 0.0635 0.913 0.753
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 5
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1818497 1 0.9998 -0.541 0.508 0.492
#> SRR1818600 1 0.3584 0.813 0.932 0.068
#> SRR1818599 1 0.6048 0.717 0.852 0.148
#> SRR1818598 1 0.3274 0.816 0.940 0.060
#> SRR1818597 1 0.0376 0.819 0.996 0.004
#> SRR1818596 1 0.6973 0.774 0.812 0.188
#> SRR1818595 1 0.0000 0.820 1.000 0.000
#> SRR1818594 1 0.0000 0.820 1.000 0.000
#> SRR1818593 1 0.7056 0.775 0.808 0.192
#> SRR1818592 1 0.6973 0.774 0.812 0.188
#> SRR1818591 2 0.8608 0.872 0.284 0.716
#> SRR1818590 2 0.8499 0.866 0.276 0.724
#> SRR1818589 1 0.7056 0.775 0.808 0.192
#> SRR1818587 1 0.5408 0.796 0.876 0.124
#> SRR1818586 2 0.8763 0.875 0.296 0.704
#> SRR1818585 2 0.9909 0.639 0.444 0.556
#> SRR1818584 1 0.7376 0.610 0.792 0.208
#> SRR1818583 1 0.0376 0.819 0.996 0.004
#> SRR1818588 1 0.3114 0.819 0.944 0.056
#> SRR1818582 1 0.6973 0.774 0.812 0.188
#> SRR1818581 2 0.8608 0.872 0.284 0.716
#> SRR1818579 1 0.3584 0.813 0.932 0.068
#> SRR1818578 1 0.4939 0.751 0.892 0.108
#> SRR1818577 2 0.8763 0.875 0.296 0.704
#> SRR1818580 1 0.7299 0.605 0.796 0.204
#> SRR1818575 1 0.4690 0.807 0.900 0.100
#> SRR1818574 1 0.6148 0.717 0.848 0.152
#> SRR1818576 1 0.0000 0.820 1.000 0.000
#> SRR1818573 1 0.7139 0.772 0.804 0.196
#> SRR1818572 1 0.9795 -0.290 0.584 0.416
#> SRR1818571 1 0.4690 0.801 0.900 0.100
#> SRR1818570 1 0.0376 0.819 0.996 0.004
#> SRR1818568 1 0.4690 0.807 0.900 0.100
#> SRR1818567 2 0.8763 0.875 0.296 0.704
#> SRR1818566 1 0.5842 0.720 0.860 0.140
#> SRR1818569 2 0.9909 0.639 0.444 0.556
#> SRR1818565 1 0.5842 0.720 0.860 0.140
#> SRR1818564 1 0.0376 0.819 0.996 0.004
#> SRR1818563 1 0.6623 0.786 0.828 0.172
#> SRR1818561 1 0.5842 0.720 0.860 0.140
#> SRR1818560 1 0.0000 0.820 1.000 0.000
#> SRR1818559 1 0.6973 0.774 0.812 0.188
#> SRR1818562 2 0.9635 0.759 0.388 0.612
#> SRR1818558 1 0.3274 0.809 0.940 0.060
#> SRR1818556 1 0.0938 0.820 0.988 0.012
#> SRR1818557 1 0.6973 0.774 0.812 0.188
#> SRR1818555 2 0.8608 0.872 0.284 0.716
#> SRR1818553 1 0.4022 0.806 0.920 0.080
#> SRR1818552 2 0.8713 0.874 0.292 0.708
#> SRR1818551 1 0.4431 0.807 0.908 0.092
#> SRR1818550 1 0.5408 0.801 0.876 0.124
#> SRR1818554 1 0.7056 0.775 0.808 0.192
#> SRR1818549 1 0.4431 0.804 0.908 0.092
#> SRR1818548 1 0.6973 0.774 0.812 0.188
#> SRR1818546 2 0.9896 0.640 0.440 0.560
#> SRR1818547 1 0.7453 0.765 0.788 0.212
#> SRR1818544 1 0.5408 0.736 0.876 0.124
#> SRR1818543 1 0.0376 0.819 0.996 0.004
#> SRR1818542 1 0.9988 -0.504 0.520 0.480
#> SRR1818545 1 0.5294 0.803 0.880 0.120
#> SRR1818541 1 0.0672 0.819 0.992 0.008
#> SRR1818539 1 0.0938 0.820 0.988 0.012
#> SRR1818540 2 0.8763 0.875 0.296 0.704
#> SRR1818536 1 0.2778 0.819 0.952 0.048
#> SRR1818535 1 0.2043 0.815 0.968 0.032
#> SRR1818534 1 0.6973 0.774 0.812 0.188
#> SRR1818538 2 0.8443 0.865 0.272 0.728
#> SRR1818537 1 0.1414 0.820 0.980 0.020
#> SRR1818533 1 0.2778 0.815 0.952 0.048
#> SRR1818532 1 0.1843 0.823 0.972 0.028
#> SRR1818531 1 0.7299 0.609 0.796 0.204
#> SRR1818530 2 0.9909 0.639 0.444 0.556
#> SRR1818529 1 0.9996 -0.504 0.512 0.488
#> SRR1818528 1 0.0000 0.820 1.000 0.000
#> SRR1818527 1 0.5842 0.727 0.860 0.140
#> SRR1818526 1 0.7376 0.765 0.792 0.208
#> SRR1818525 1 0.6887 0.625 0.816 0.184
#> SRR1818523 1 0.5842 0.720 0.860 0.140
#> SRR1818524 1 0.6973 0.774 0.812 0.188
#> SRR1818522 1 0.3733 0.812 0.928 0.072
#> SRR1818521 2 0.8763 0.875 0.296 0.704
#> SRR1818520 2 0.8386 0.852 0.268 0.732
#> SRR1818518 1 0.0000 0.820 1.000 0.000
#> SRR1818519 1 0.7376 0.761 0.792 0.208
#> SRR1818517 2 0.8608 0.869 0.284 0.716
#> SRR1818516 1 0.5842 0.720 0.860 0.140
#> SRR1818515 1 0.6887 0.777 0.816 0.184
#> SRR1818514 2 0.9909 0.639 0.444 0.556
#> SRR1818513 2 0.8763 0.875 0.296 0.704
#> SRR1818512 2 0.9909 0.639 0.444 0.556
#> SRR1818510 2 0.8763 0.875 0.296 0.704
#> SRR1818511 2 0.9710 0.757 0.400 0.600
#> SRR1818508 1 0.5737 0.724 0.864 0.136
#> SRR1818509 2 0.8608 0.869 0.284 0.716
#> SRR1818507 1 0.7376 0.761 0.792 0.208
#> SRR1818506 1 0.4161 0.805 0.916 0.084
#> SRR1818505 1 0.5059 0.748 0.888 0.112
#> SRR1818503 1 0.0672 0.819 0.992 0.008
#> SRR1818504 1 0.8555 0.406 0.720 0.280
#> SRR1818502 1 0.2778 0.815 0.952 0.048
#> SRR1818498 2 0.8144 0.835 0.252 0.748
#> SRR1818500 2 0.9996 0.576 0.488 0.512
#> SRR1818501 1 0.5842 0.720 0.860 0.140
#> SRR1818499 1 0.0000 0.820 1.000 0.000
#> SRR1818496 1 0.9998 -0.541 0.508 0.492
#> SRR1818494 1 0.2778 0.815 0.952 0.048
#> SRR1818495 1 0.5408 0.796 0.876 0.124
#> SRR1818493 2 0.8763 0.875 0.296 0.704
#> SRR1818492 1 0.4939 0.803 0.892 0.108
#> SRR1818491 1 0.5519 0.730 0.872 0.128
#> SRR1818490 1 0.2043 0.820 0.968 0.032
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1818497 1 0.9471 -0.13356 0.440 0.376 0.184
#> SRR1818600 1 0.5471 0.46391 0.812 0.060 0.128
#> SRR1818599 1 0.6601 0.20721 0.676 0.028 0.296
#> SRR1818598 1 0.4845 0.47942 0.844 0.052 0.104
#> SRR1818597 1 0.1643 0.48663 0.956 0.000 0.044
#> SRR1818596 1 0.6919 -0.70354 0.536 0.016 0.448
#> SRR1818595 1 0.0424 0.49886 0.992 0.000 0.008
#> SRR1818594 1 0.1289 0.49218 0.968 0.000 0.032
#> SRR1818593 3 0.6804 0.93205 0.460 0.012 0.528
#> SRR1818592 1 0.6919 -0.70354 0.536 0.016 0.448
#> SRR1818591 2 0.3502 0.79907 0.084 0.896 0.020
#> SRR1818590 2 0.5505 0.78013 0.088 0.816 0.096
#> SRR1818589 3 0.6804 0.93205 0.460 0.012 0.528
#> SRR1818587 1 0.6431 0.26925 0.760 0.084 0.156
#> SRR1818586 2 0.3116 0.80583 0.108 0.892 0.000
#> SRR1818585 2 0.9818 0.45547 0.248 0.408 0.344
#> SRR1818584 1 0.6935 0.41650 0.728 0.096 0.176
#> SRR1818583 1 0.1643 0.48663 0.956 0.000 0.044
#> SRR1818588 1 0.4915 0.32791 0.832 0.036 0.132
#> SRR1818582 1 0.6919 -0.70354 0.536 0.016 0.448
#> SRR1818581 2 0.3502 0.79907 0.084 0.896 0.020
#> SRR1818579 1 0.5538 0.46233 0.808 0.060 0.132
#> SRR1818578 1 0.5696 0.45685 0.796 0.056 0.148
#> SRR1818577 2 0.3532 0.80612 0.108 0.884 0.008
#> SRR1818580 1 0.7227 0.39944 0.704 0.096 0.200
#> SRR1818575 1 0.5944 0.28263 0.784 0.064 0.152
#> SRR1818574 1 0.6684 0.20069 0.676 0.032 0.292
#> SRR1818576 1 0.0592 0.49987 0.988 0.000 0.012
#> SRR1818573 1 0.7075 -0.78922 0.492 0.020 0.488
#> SRR1818572 1 0.7412 0.39013 0.700 0.124 0.176
#> SRR1818571 1 0.5618 0.06835 0.732 0.008 0.260
#> SRR1818570 1 0.1643 0.48663 0.956 0.000 0.044
#> SRR1818568 1 0.5944 0.28263 0.784 0.064 0.152
#> SRR1818567 2 0.3349 0.80591 0.108 0.888 0.004
#> SRR1818566 1 0.6539 0.21521 0.684 0.028 0.288
#> SRR1818569 2 0.9818 0.45547 0.248 0.408 0.344
#> SRR1818565 1 0.6539 0.21521 0.684 0.028 0.288
#> SRR1818564 1 0.1129 0.50108 0.976 0.004 0.020
#> SRR1818563 1 0.7571 -0.42534 0.592 0.052 0.356
#> SRR1818561 1 0.6539 0.21521 0.684 0.028 0.288
#> SRR1818560 1 0.0592 0.49987 0.988 0.000 0.012
#> SRR1818559 1 0.6919 -0.70354 0.536 0.016 0.448
#> SRR1818562 2 0.8111 0.56913 0.264 0.624 0.112
#> SRR1818558 1 0.4868 0.48030 0.844 0.056 0.100
#> SRR1818556 1 0.2496 0.49386 0.928 0.004 0.068
#> SRR1818557 1 0.6919 -0.70354 0.536 0.016 0.448
#> SRR1818555 2 0.3502 0.79907 0.084 0.896 0.020
#> SRR1818553 1 0.4733 0.19111 0.800 0.004 0.196
#> SRR1818552 2 0.4249 0.80129 0.108 0.864 0.028
#> SRR1818551 1 0.5263 0.35322 0.824 0.060 0.116
#> SRR1818550 1 0.7078 0.21641 0.712 0.088 0.200
#> SRR1818554 3 0.6804 0.93205 0.460 0.012 0.528
#> SRR1818549 1 0.4912 0.19159 0.796 0.008 0.196
#> SRR1818548 1 0.6919 -0.70354 0.536 0.016 0.448
#> SRR1818546 2 0.9806 0.45613 0.244 0.408 0.348
#> SRR1818547 3 0.7674 0.78554 0.476 0.044 0.480
#> SRR1818544 1 0.6470 0.44156 0.760 0.092 0.148
#> SRR1818543 1 0.2096 0.51302 0.944 0.004 0.052
#> SRR1818542 1 0.9390 0.00571 0.476 0.340 0.184
#> SRR1818545 1 0.7078 0.21641 0.712 0.088 0.200
#> SRR1818541 1 0.1989 0.51184 0.948 0.004 0.048
#> SRR1818539 1 0.2096 0.50887 0.944 0.004 0.052
#> SRR1818540 2 0.3116 0.80583 0.108 0.892 0.000
#> SRR1818536 1 0.4033 0.40581 0.856 0.008 0.136
#> SRR1818535 1 0.2165 0.47173 0.936 0.000 0.064
#> SRR1818534 1 0.6919 -0.70354 0.536 0.016 0.448
#> SRR1818538 2 0.5731 0.77319 0.088 0.804 0.108
#> SRR1818537 1 0.3375 0.49265 0.892 0.008 0.100
#> SRR1818533 1 0.3572 0.50186 0.900 0.040 0.060
#> SRR1818532 1 0.3644 0.37345 0.872 0.004 0.124
#> SRR1818531 1 0.6829 0.42177 0.736 0.096 0.168
#> SRR1818530 2 0.9818 0.45547 0.248 0.408 0.344
#> SRR1818529 1 0.9654 0.02951 0.452 0.320 0.228
#> SRR1818528 1 0.1529 0.51138 0.960 0.000 0.040
#> SRR1818527 1 0.6349 0.44705 0.768 0.092 0.140
#> SRR1818526 1 0.7484 -0.82883 0.504 0.036 0.460
#> SRR1818525 1 0.6470 0.44156 0.760 0.092 0.148
#> SRR1818523 1 0.6539 0.21521 0.684 0.028 0.288
#> SRR1818524 1 0.6919 -0.70354 0.536 0.016 0.448
#> SRR1818522 1 0.4189 0.41934 0.876 0.056 0.068
#> SRR1818521 2 0.3532 0.80612 0.108 0.884 0.008
#> SRR1818520 2 0.2496 0.78713 0.068 0.928 0.004
#> SRR1818518 1 0.0892 0.50380 0.980 0.000 0.020
#> SRR1818519 1 0.6823 -0.84496 0.504 0.012 0.484
#> SRR1818517 2 0.5377 0.78860 0.112 0.820 0.068
#> SRR1818516 1 0.6539 0.21521 0.684 0.028 0.288
#> SRR1818515 1 0.6683 -0.84016 0.500 0.008 0.492
#> SRR1818514 2 0.9818 0.45547 0.248 0.408 0.344
#> SRR1818513 2 0.3532 0.80554 0.108 0.884 0.008
#> SRR1818512 2 0.9818 0.45547 0.248 0.408 0.344
#> SRR1818510 2 0.3116 0.80583 0.108 0.892 0.000
#> SRR1818511 2 0.7618 0.56293 0.304 0.628 0.068
#> SRR1818508 1 0.6470 0.44156 0.760 0.092 0.148
#> SRR1818509 2 0.5377 0.78860 0.112 0.820 0.068
#> SRR1818507 1 0.6823 -0.84496 0.504 0.012 0.484
#> SRR1818506 1 0.4883 0.16457 0.788 0.004 0.208
#> SRR1818505 1 0.6349 0.44564 0.768 0.092 0.140
#> SRR1818503 1 0.1989 0.51184 0.948 0.004 0.048
#> SRR1818504 1 0.8802 0.20208 0.584 0.216 0.200
#> SRR1818502 1 0.3572 0.50186 0.900 0.040 0.060
#> SRR1818498 2 0.2496 0.78713 0.068 0.928 0.004
#> SRR1818500 2 0.9776 0.21549 0.384 0.384 0.232
#> SRR1818501 1 0.6539 0.21521 0.684 0.028 0.288
#> SRR1818499 1 0.1529 0.51199 0.960 0.000 0.040
#> SRR1818496 1 0.9471 -0.13356 0.440 0.376 0.184
#> SRR1818494 1 0.3572 0.50186 0.900 0.040 0.060
#> SRR1818495 1 0.6431 0.26925 0.760 0.084 0.156
#> SRR1818493 2 0.3349 0.80591 0.108 0.888 0.004
#> SRR1818492 1 0.6431 0.28042 0.760 0.084 0.156
#> SRR1818491 1 0.6470 0.44156 0.760 0.092 0.148
#> SRR1818490 1 0.2682 0.44295 0.920 0.004 0.076
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1818497 1 0.8684 0.2102 0.524 0.188 0.176 0.112
#> SRR1818600 1 0.4150 0.6708 0.848 0.020 0.076 0.056
#> SRR1818599 3 0.7293 0.4938 0.368 0.000 0.476 0.156
#> SRR1818598 1 0.3048 0.6964 0.900 0.016 0.028 0.056
#> SRR1818597 1 0.3333 0.6625 0.872 0.000 0.040 0.088
#> SRR1818596 4 0.6075 0.8529 0.204 0.016 0.080 0.700
#> SRR1818595 1 0.2830 0.6840 0.900 0.000 0.040 0.060
#> SRR1818594 1 0.2660 0.6798 0.908 0.000 0.036 0.056
#> SRR1818593 4 0.3972 0.8393 0.164 0.016 0.004 0.816
#> SRR1818592 4 0.6075 0.8529 0.204 0.016 0.080 0.700
#> SRR1818591 2 0.1109 0.8875 0.028 0.968 0.000 0.004
#> SRR1818590 2 0.5291 0.8063 0.036 0.788 0.076 0.100
#> SRR1818589 4 0.4068 0.8375 0.160 0.016 0.008 0.816
#> SRR1818587 1 0.6436 0.4670 0.656 0.036 0.048 0.260
#> SRR1818586 2 0.1118 0.8896 0.036 0.964 0.000 0.000
#> SRR1818585 3 0.9228 0.2882 0.128 0.280 0.428 0.164
#> SRR1818584 1 0.5132 0.6338 0.796 0.032 0.100 0.072
#> SRR1818583 1 0.3266 0.6636 0.876 0.000 0.040 0.084
#> SRR1818588 1 0.6071 0.5285 0.684 0.008 0.084 0.224
#> SRR1818582 4 0.6075 0.8529 0.204 0.016 0.080 0.700
#> SRR1818581 2 0.1109 0.8875 0.028 0.968 0.000 0.004
#> SRR1818579 1 0.4227 0.6684 0.844 0.020 0.076 0.060
#> SRR1818578 1 0.4979 0.6445 0.796 0.016 0.108 0.080
#> SRR1818577 2 0.2010 0.8851 0.040 0.940 0.008 0.012
#> SRR1818580 1 0.5322 0.6177 0.780 0.028 0.120 0.072
#> SRR1818575 1 0.6261 0.4786 0.664 0.028 0.048 0.260
#> SRR1818574 3 0.7300 0.4880 0.372 0.000 0.472 0.156
#> SRR1818576 1 0.2578 0.6815 0.912 0.000 0.036 0.052
#> SRR1818573 4 0.6027 0.8457 0.192 0.016 0.084 0.708
#> SRR1818572 1 0.5291 0.6265 0.788 0.036 0.100 0.076
#> SRR1818571 1 0.6596 0.2835 0.560 0.012 0.060 0.368
#> SRR1818570 1 0.3333 0.6625 0.872 0.000 0.040 0.088
#> SRR1818568 1 0.6261 0.4786 0.664 0.028 0.048 0.260
#> SRR1818567 2 0.1639 0.8880 0.036 0.952 0.008 0.004
#> SRR1818566 3 0.7261 0.4943 0.368 0.000 0.480 0.152
#> SRR1818569 3 0.9228 0.2882 0.128 0.280 0.428 0.164
#> SRR1818565 3 0.7261 0.4943 0.368 0.000 0.480 0.152
#> SRR1818564 1 0.2764 0.6817 0.908 0.004 0.036 0.052
#> SRR1818563 4 0.7023 0.0907 0.456 0.024 0.060 0.460
#> SRR1818561 3 0.7261 0.4943 0.368 0.000 0.480 0.152
#> SRR1818560 1 0.2578 0.6815 0.912 0.000 0.036 0.052
#> SRR1818559 4 0.6075 0.8529 0.204 0.016 0.080 0.700
#> SRR1818562 2 0.8324 0.3692 0.264 0.528 0.080 0.128
#> SRR1818558 1 0.3806 0.6730 0.864 0.016 0.072 0.048
#> SRR1818556 1 0.2115 0.6980 0.936 0.004 0.024 0.036
#> SRR1818557 4 0.6075 0.8529 0.204 0.016 0.080 0.700
#> SRR1818555 2 0.1109 0.8875 0.028 0.968 0.000 0.004
#> SRR1818553 1 0.6002 0.4141 0.640 0.008 0.048 0.304
#> SRR1818552 2 0.3683 0.8587 0.036 0.876 0.044 0.044
#> SRR1818551 1 0.5986 0.5597 0.700 0.020 0.060 0.220
#> SRR1818550 1 0.6832 0.4497 0.624 0.040 0.060 0.276
#> SRR1818554 4 0.4068 0.8375 0.160 0.016 0.008 0.816
#> SRR1818549 1 0.6143 0.4053 0.632 0.012 0.048 0.308
#> SRR1818548 4 0.6075 0.8529 0.204 0.016 0.080 0.700
#> SRR1818546 3 0.9228 0.2882 0.128 0.280 0.428 0.164
#> SRR1818547 4 0.6025 0.7392 0.228 0.028 0.048 0.696
#> SRR1818544 1 0.4697 0.6459 0.820 0.028 0.092 0.060
#> SRR1818543 1 0.1151 0.6949 0.968 0.000 0.024 0.008
#> SRR1818542 1 0.8444 0.2693 0.552 0.164 0.176 0.108
#> SRR1818545 1 0.6832 0.4497 0.624 0.040 0.060 0.276
#> SRR1818541 1 0.0712 0.7012 0.984 0.004 0.004 0.008
#> SRR1818539 1 0.1471 0.6972 0.960 0.004 0.024 0.012
#> SRR1818540 2 0.1118 0.8896 0.036 0.964 0.000 0.000
#> SRR1818536 1 0.5605 0.5737 0.712 0.008 0.056 0.224
#> SRR1818535 1 0.3745 0.6444 0.852 0.000 0.060 0.088
#> SRR1818534 4 0.6075 0.8529 0.204 0.016 0.080 0.700
#> SRR1818538 2 0.5531 0.7934 0.036 0.772 0.080 0.112
#> SRR1818537 1 0.1943 0.6978 0.944 0.008 0.016 0.032
#> SRR1818533 1 0.2089 0.7046 0.940 0.012 0.020 0.028
#> SRR1818532 1 0.5776 0.5427 0.700 0.004 0.076 0.220
#> SRR1818531 1 0.5062 0.6351 0.800 0.032 0.100 0.068
#> SRR1818530 3 0.9228 0.2882 0.128 0.280 0.428 0.164
#> SRR1818529 1 0.8573 0.2793 0.540 0.156 0.184 0.120
#> SRR1818528 1 0.1520 0.6911 0.956 0.000 0.024 0.020
#> SRR1818527 1 0.4557 0.6516 0.828 0.028 0.088 0.056
#> SRR1818526 4 0.5897 0.7519 0.224 0.024 0.048 0.704
#> SRR1818525 1 0.4760 0.6420 0.816 0.028 0.096 0.060
#> SRR1818523 3 0.7356 0.4930 0.368 0.000 0.468 0.164
#> SRR1818524 4 0.6075 0.8529 0.204 0.016 0.080 0.700
#> SRR1818522 1 0.5913 0.5875 0.716 0.020 0.068 0.196
#> SRR1818521 2 0.1917 0.8871 0.036 0.944 0.008 0.012
#> SRR1818520 2 0.1022 0.8882 0.032 0.968 0.000 0.000
#> SRR1818518 1 0.2494 0.6825 0.916 0.000 0.036 0.048
#> SRR1818519 4 0.5112 0.8159 0.168 0.024 0.036 0.772
#> SRR1818517 2 0.5342 0.8114 0.044 0.788 0.076 0.092
#> SRR1818516 3 0.7356 0.4930 0.368 0.000 0.468 0.164
#> SRR1818515 4 0.4063 0.8399 0.172 0.016 0.004 0.808
#> SRR1818514 3 0.9228 0.2882 0.128 0.280 0.428 0.164
#> SRR1818513 2 0.1118 0.8896 0.036 0.964 0.000 0.000
#> SRR1818512 3 0.9228 0.2882 0.128 0.280 0.428 0.164
#> SRR1818510 2 0.1118 0.8896 0.036 0.964 0.000 0.000
#> SRR1818511 2 0.8182 0.3550 0.292 0.524 0.076 0.108
#> SRR1818508 1 0.4760 0.6420 0.816 0.028 0.096 0.060
#> SRR1818509 2 0.5342 0.8114 0.044 0.788 0.076 0.092
#> SRR1818507 4 0.5112 0.8159 0.168 0.024 0.036 0.772
#> SRR1818506 1 0.6345 0.3082 0.588 0.008 0.056 0.348
#> SRR1818505 1 0.4697 0.6459 0.820 0.028 0.092 0.060
#> SRR1818503 1 0.0712 0.7012 0.984 0.004 0.004 0.008
#> SRR1818504 1 0.8057 0.3453 0.596 0.136 0.148 0.120
#> SRR1818502 1 0.1985 0.7035 0.944 0.012 0.020 0.024
#> SRR1818498 2 0.0921 0.8851 0.028 0.972 0.000 0.000
#> SRR1818500 1 0.9626 -0.1951 0.356 0.268 0.240 0.136
#> SRR1818501 3 0.7356 0.4935 0.368 0.000 0.468 0.164
#> SRR1818499 1 0.1520 0.6942 0.956 0.000 0.024 0.020
#> SRR1818496 1 0.8684 0.2102 0.524 0.188 0.176 0.112
#> SRR1818494 1 0.1985 0.7035 0.944 0.012 0.020 0.024
#> SRR1818495 1 0.6436 0.4670 0.656 0.036 0.048 0.260
#> SRR1818493 2 0.1639 0.8880 0.036 0.952 0.008 0.004
#> SRR1818492 1 0.6462 0.4655 0.652 0.036 0.048 0.264
#> SRR1818491 1 0.4697 0.6459 0.820 0.028 0.092 0.060
#> SRR1818490 1 0.5177 0.5697 0.744 0.004 0.052 0.200
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1818497 5 0.7443 0.223 0.380 0.092 0.024 0.056 0.448
#> SRR1818600 1 0.6149 0.462 0.584 0.016 0.008 0.084 0.308
#> SRR1818599 3 0.5284 0.996 0.324 0.000 0.608 0.068 0.000
#> SRR1818598 1 0.5450 0.537 0.660 0.016 0.000 0.072 0.252
#> SRR1818597 1 0.1498 0.604 0.952 0.000 0.016 0.024 0.008
#> SRR1818596 4 0.3989 0.842 0.104 0.004 0.060 0.820 0.012
#> SRR1818595 1 0.0727 0.615 0.980 0.000 0.004 0.012 0.004
#> SRR1818594 1 0.1299 0.609 0.960 0.000 0.012 0.020 0.008
#> SRR1818593 4 0.3255 0.817 0.044 0.004 0.040 0.876 0.036
#> SRR1818592 4 0.3989 0.842 0.104 0.004 0.060 0.820 0.012
#> SRR1818591 2 0.0324 0.855 0.004 0.992 0.000 0.004 0.000
#> SRR1818590 2 0.5465 0.726 0.004 0.716 0.148 0.028 0.104
#> SRR1818589 4 0.3255 0.817 0.044 0.004 0.040 0.876 0.036
#> SRR1818587 1 0.6947 0.507 0.604 0.004 0.100 0.156 0.136
#> SRR1818586 2 0.0451 0.855 0.008 0.988 0.000 0.004 0.000
#> SRR1818585 5 0.6661 0.601 0.040 0.128 0.172 0.024 0.636
#> SRR1818584 1 0.6304 0.298 0.496 0.016 0.008 0.076 0.404
#> SRR1818583 1 0.1498 0.604 0.952 0.000 0.016 0.024 0.008
#> SRR1818588 1 0.5378 0.496 0.736 0.000 0.088 0.100 0.076
#> SRR1818582 4 0.3989 0.842 0.104 0.004 0.060 0.820 0.012
#> SRR1818581 2 0.0324 0.855 0.004 0.992 0.000 0.004 0.000
#> SRR1818579 1 0.6149 0.462 0.584 0.016 0.008 0.084 0.308
#> SRR1818578 1 0.5031 0.452 0.656 0.000 0.012 0.036 0.296
#> SRR1818577 2 0.1977 0.840 0.008 0.936 0.024 0.024 0.008
#> SRR1818580 1 0.5989 0.236 0.484 0.004 0.008 0.072 0.432
#> SRR1818575 1 0.6875 0.509 0.612 0.004 0.100 0.152 0.132
#> SRR1818574 3 0.5343 0.970 0.340 0.000 0.592 0.068 0.000
#> SRR1818576 1 0.0727 0.615 0.980 0.000 0.004 0.012 0.004
#> SRR1818573 4 0.3719 0.833 0.084 0.004 0.060 0.840 0.012
#> SRR1818572 1 0.6355 0.278 0.488 0.016 0.008 0.080 0.408
#> SRR1818571 1 0.6825 0.357 0.596 0.008 0.064 0.224 0.108
#> SRR1818570 1 0.1498 0.604 0.952 0.000 0.016 0.024 0.008
#> SRR1818568 1 0.6913 0.510 0.608 0.004 0.100 0.152 0.136
#> SRR1818567 2 0.1503 0.847 0.008 0.952 0.020 0.020 0.000
#> SRR1818566 3 0.5284 0.996 0.324 0.000 0.608 0.068 0.000
#> SRR1818569 5 0.6661 0.601 0.040 0.128 0.172 0.024 0.636
#> SRR1818565 3 0.5284 0.996 0.324 0.000 0.608 0.068 0.000
#> SRR1818564 1 0.0798 0.615 0.976 0.000 0.008 0.000 0.016
#> SRR1818563 1 0.8216 0.216 0.348 0.008 0.096 0.344 0.204
#> SRR1818561 3 0.5284 0.996 0.324 0.000 0.608 0.068 0.000
#> SRR1818560 1 0.0727 0.615 0.980 0.000 0.012 0.004 0.004
#> SRR1818559 4 0.3989 0.842 0.104 0.004 0.060 0.820 0.012
#> SRR1818562 2 0.8938 0.232 0.260 0.404 0.148 0.072 0.116
#> SRR1818558 1 0.5309 0.514 0.656 0.012 0.008 0.040 0.284
#> SRR1818556 1 0.4243 0.602 0.780 0.004 0.008 0.040 0.168
#> SRR1818557 4 0.3989 0.842 0.104 0.004 0.060 0.820 0.012
#> SRR1818555 2 0.0324 0.855 0.004 0.992 0.000 0.004 0.000
#> SRR1818553 1 0.4921 0.477 0.760 0.004 0.032 0.140 0.064
#> SRR1818552 2 0.3360 0.811 0.008 0.856 0.100 0.008 0.028
#> SRR1818551 1 0.5606 0.552 0.736 0.012 0.076 0.088 0.088
#> SRR1818550 1 0.7838 0.451 0.492 0.008 0.100 0.196 0.204
#> SRR1818554 4 0.3255 0.817 0.044 0.004 0.040 0.876 0.036
#> SRR1818549 1 0.4921 0.479 0.760 0.004 0.032 0.140 0.064
#> SRR1818548 4 0.3989 0.842 0.104 0.004 0.060 0.820 0.012
#> SRR1818546 5 0.6661 0.601 0.040 0.128 0.172 0.024 0.636
#> SRR1818547 4 0.6050 0.658 0.068 0.008 0.100 0.692 0.132
#> SRR1818544 1 0.5221 0.390 0.584 0.000 0.008 0.036 0.372
#> SRR1818543 1 0.1830 0.636 0.924 0.000 0.008 0.000 0.068
#> SRR1818542 5 0.7373 0.191 0.392 0.084 0.024 0.056 0.444
#> SRR1818545 1 0.7821 0.451 0.492 0.008 0.096 0.200 0.204
#> SRR1818541 1 0.2818 0.633 0.856 0.000 0.000 0.012 0.132
#> SRR1818539 1 0.1502 0.638 0.940 0.000 0.000 0.004 0.056
#> SRR1818540 2 0.0451 0.855 0.008 0.988 0.000 0.004 0.000
#> SRR1818536 1 0.5462 0.486 0.724 0.004 0.036 0.128 0.108
#> SRR1818535 1 0.2036 0.588 0.928 0.000 0.036 0.028 0.008
#> SRR1818534 4 0.3989 0.842 0.104 0.004 0.060 0.820 0.012
#> SRR1818538 2 0.5987 0.697 0.004 0.684 0.148 0.052 0.112
#> SRR1818537 1 0.4743 0.577 0.720 0.004 0.000 0.064 0.212
#> SRR1818533 1 0.3937 0.606 0.784 0.012 0.000 0.020 0.184
#> SRR1818532 1 0.5099 0.504 0.756 0.000 0.072 0.100 0.072
#> SRR1818531 1 0.6304 0.298 0.496 0.016 0.008 0.076 0.404
#> SRR1818530 5 0.6661 0.601 0.040 0.128 0.172 0.024 0.636
#> SRR1818529 5 0.7427 0.164 0.344 0.056 0.024 0.096 0.480
#> SRR1818528 1 0.2199 0.639 0.916 0.000 0.008 0.016 0.060
#> SRR1818527 1 0.5580 0.428 0.592 0.012 0.008 0.040 0.348
#> SRR1818526 4 0.5703 0.692 0.064 0.004 0.104 0.716 0.112
#> SRR1818525 1 0.5599 0.351 0.552 0.008 0.008 0.040 0.392
#> SRR1818523 3 0.5284 0.996 0.324 0.000 0.608 0.068 0.000
#> SRR1818524 4 0.4039 0.841 0.100 0.004 0.060 0.820 0.016
#> SRR1818522 1 0.4983 0.553 0.780 0.012 0.068 0.068 0.072
#> SRR1818521 2 0.1851 0.842 0.008 0.940 0.024 0.024 0.004
#> SRR1818520 2 0.0486 0.854 0.004 0.988 0.000 0.004 0.004
#> SRR1818518 1 0.1095 0.613 0.968 0.000 0.012 0.012 0.008
#> SRR1818519 4 0.4918 0.769 0.064 0.004 0.088 0.776 0.068
#> SRR1818517 2 0.5193 0.746 0.008 0.740 0.148 0.024 0.080
#> SRR1818516 3 0.5284 0.996 0.324 0.000 0.608 0.068 0.000
#> SRR1818515 4 0.3801 0.816 0.072 0.004 0.044 0.844 0.036
#> SRR1818514 5 0.6661 0.601 0.040 0.128 0.172 0.024 0.636
#> SRR1818513 2 0.0451 0.855 0.008 0.988 0.000 0.004 0.000
#> SRR1818512 5 0.6661 0.601 0.040 0.128 0.172 0.024 0.636
#> SRR1818510 2 0.0451 0.855 0.008 0.988 0.000 0.004 0.000
#> SRR1818511 2 0.8378 0.192 0.328 0.400 0.148 0.036 0.088
#> SRR1818508 1 0.5662 0.378 0.564 0.012 0.008 0.040 0.376
#> SRR1818509 2 0.5193 0.746 0.008 0.740 0.148 0.024 0.080
#> SRR1818507 4 0.4729 0.779 0.064 0.004 0.088 0.788 0.056
#> SRR1818506 1 0.5908 0.414 0.688 0.004 0.064 0.168 0.076
#> SRR1818505 1 0.5198 0.396 0.592 0.000 0.008 0.036 0.364
#> SRR1818503 1 0.2818 0.633 0.856 0.000 0.000 0.012 0.132
#> SRR1818504 1 0.7486 0.203 0.564 0.060 0.072 0.068 0.236
#> SRR1818502 1 0.3937 0.606 0.784 0.012 0.000 0.020 0.184
#> SRR1818498 2 0.0486 0.854 0.004 0.988 0.000 0.004 0.004
#> SRR1818500 5 0.8730 0.389 0.312 0.124 0.080 0.088 0.396
#> SRR1818501 3 0.5284 0.996 0.324 0.000 0.608 0.068 0.000
#> SRR1818499 1 0.2457 0.642 0.900 0.000 0.008 0.016 0.076
#> SRR1818496 5 0.7443 0.223 0.380 0.092 0.024 0.056 0.448
#> SRR1818494 1 0.3937 0.606 0.784 0.012 0.000 0.020 0.184
#> SRR1818495 1 0.7016 0.506 0.596 0.004 0.100 0.160 0.140
#> SRR1818493 2 0.1758 0.842 0.008 0.944 0.020 0.024 0.004
#> SRR1818492 1 0.7016 0.506 0.596 0.004 0.100 0.160 0.140
#> SRR1818491 1 0.5221 0.390 0.584 0.000 0.008 0.036 0.372
#> SRR1818490 1 0.4261 0.513 0.808 0.000 0.032 0.088 0.072
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1818497 1 0.8019 0.238 0.448 0.080 0.024 0.048 0.228 0.172
#> SRR1818600 1 0.5287 0.462 0.628 0.000 0.004 0.024 0.072 0.272
#> SRR1818599 3 0.2536 0.997 0.116 0.000 0.864 0.020 0.000 0.000
#> SRR1818598 1 0.4374 0.475 0.712 0.000 0.004 0.024 0.024 0.236
#> SRR1818597 1 0.2562 0.467 0.892 0.000 0.064 0.008 0.012 0.024
#> SRR1818596 4 0.2361 0.809 0.064 0.000 0.032 0.896 0.000 0.008
#> SRR1818595 1 0.1994 0.466 0.920 0.000 0.052 0.008 0.004 0.016
#> SRR1818594 1 0.2562 0.467 0.892 0.000 0.064 0.008 0.012 0.024
#> SRR1818593 4 0.4469 0.765 0.016 0.000 0.032 0.756 0.036 0.160
#> SRR1818592 4 0.2429 0.809 0.064 0.000 0.028 0.896 0.004 0.008
#> SRR1818591 2 0.0000 0.846 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818590 2 0.5560 0.532 0.000 0.532 0.056 0.012 0.020 0.380
#> SRR1818589 4 0.4414 0.764 0.012 0.000 0.032 0.756 0.036 0.164
#> SRR1818587 1 0.5770 -0.582 0.448 0.000 0.024 0.080 0.004 0.444
#> SRR1818586 2 0.0000 0.846 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818585 5 0.2875 1.000 0.032 0.068 0.012 0.012 0.876 0.000
#> SRR1818584 1 0.5950 0.444 0.576 0.004 0.004 0.024 0.128 0.264
#> SRR1818583 1 0.2562 0.467 0.892 0.000 0.064 0.008 0.012 0.024
#> SRR1818588 1 0.5603 -0.427 0.528 0.000 0.044 0.056 0.000 0.372
#> SRR1818582 4 0.2429 0.809 0.064 0.000 0.028 0.896 0.004 0.008
#> SRR1818581 2 0.0000 0.846 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818579 1 0.5287 0.462 0.628 0.000 0.004 0.024 0.072 0.272
#> SRR1818578 1 0.4741 0.497 0.744 0.000 0.008 0.032 0.108 0.108
#> SRR1818577 2 0.2531 0.813 0.000 0.900 0.036 0.012 0.016 0.036
#> SRR1818580 1 0.6196 0.435 0.560 0.004 0.004 0.036 0.136 0.260
#> SRR1818575 1 0.5638 -0.560 0.468 0.000 0.024 0.080 0.000 0.428
#> SRR1818574 3 0.2581 0.993 0.120 0.000 0.860 0.020 0.000 0.000
#> SRR1818576 1 0.1942 0.464 0.916 0.000 0.064 0.008 0.000 0.012
#> SRR1818573 4 0.2247 0.796 0.040 0.000 0.020 0.912 0.004 0.024
#> SRR1818572 1 0.5950 0.444 0.576 0.004 0.004 0.024 0.128 0.264
#> SRR1818571 1 0.7125 -0.482 0.404 0.000 0.068 0.116 0.032 0.380
#> SRR1818570 1 0.2562 0.467 0.892 0.000 0.064 0.008 0.012 0.024
#> SRR1818568 1 0.5639 -0.564 0.464 0.000 0.024 0.080 0.000 0.432
#> SRR1818567 2 0.1596 0.829 0.000 0.944 0.020 0.004 0.012 0.020
#> SRR1818566 3 0.2536 0.997 0.116 0.000 0.864 0.020 0.000 0.000
#> SRR1818569 5 0.2875 1.000 0.032 0.068 0.012 0.012 0.876 0.000
#> SRR1818565 3 0.2536 0.997 0.116 0.000 0.864 0.020 0.000 0.000
#> SRR1818564 1 0.2036 0.460 0.912 0.000 0.064 0.008 0.000 0.016
#> SRR1818563 6 0.5411 0.608 0.296 0.000 0.000 0.148 0.000 0.556
#> SRR1818561 3 0.2536 0.997 0.116 0.000 0.864 0.020 0.000 0.000
#> SRR1818560 1 0.1668 0.473 0.928 0.000 0.060 0.008 0.000 0.004
#> SRR1818559 4 0.2361 0.809 0.064 0.000 0.032 0.896 0.000 0.008
#> SRR1818562 6 0.7325 0.418 0.244 0.180 0.064 0.012 0.020 0.480
#> SRR1818558 1 0.4976 0.487 0.680 0.000 0.004 0.020 0.076 0.220
#> SRR1818556 1 0.3630 0.477 0.796 0.000 0.012 0.016 0.012 0.164
#> SRR1818557 4 0.2361 0.809 0.064 0.000 0.032 0.896 0.000 0.008
#> SRR1818555 2 0.0000 0.846 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818553 1 0.6598 -0.285 0.552 0.000 0.084 0.076 0.028 0.260
#> SRR1818552 2 0.4682 0.687 0.000 0.696 0.056 0.004 0.016 0.228
#> SRR1818551 1 0.5377 -0.284 0.604 0.000 0.044 0.044 0.004 0.304
#> SRR1818550 6 0.5659 0.628 0.340 0.000 0.024 0.096 0.000 0.540
#> SRR1818554 4 0.4414 0.764 0.012 0.000 0.032 0.756 0.036 0.164
#> SRR1818549 1 0.6640 -0.289 0.548 0.000 0.088 0.076 0.028 0.260
#> SRR1818548 4 0.2429 0.809 0.064 0.000 0.028 0.896 0.004 0.008
#> SRR1818546 5 0.2875 1.000 0.032 0.068 0.012 0.012 0.876 0.000
#> SRR1818547 4 0.5378 0.443 0.004 0.000 0.032 0.484 0.036 0.444
#> SRR1818544 1 0.5784 0.472 0.624 0.004 0.004 0.032 0.124 0.212
#> SRR1818543 1 0.0653 0.499 0.980 0.000 0.012 0.000 0.004 0.004
#> SRR1818542 1 0.7947 0.245 0.456 0.080 0.024 0.044 0.228 0.168
#> SRR1818545 6 0.5659 0.628 0.340 0.000 0.024 0.096 0.000 0.540
#> SRR1818541 1 0.0777 0.503 0.972 0.000 0.000 0.000 0.004 0.024
#> SRR1818539 1 0.0924 0.494 0.972 0.000 0.008 0.008 0.008 0.004
#> SRR1818540 2 0.0000 0.846 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818536 1 0.5840 -0.260 0.544 0.000 0.076 0.052 0.000 0.328
#> SRR1818535 1 0.2925 0.453 0.872 0.000 0.076 0.016 0.012 0.024
#> SRR1818534 4 0.2361 0.809 0.064 0.000 0.032 0.896 0.000 0.008
#> SRR1818538 2 0.5768 0.462 0.000 0.484 0.056 0.020 0.020 0.420
#> SRR1818537 1 0.3452 0.484 0.788 0.000 0.000 0.016 0.012 0.184
#> SRR1818533 1 0.2699 0.510 0.864 0.000 0.000 0.008 0.020 0.108
#> SRR1818532 1 0.5589 -0.370 0.552 0.000 0.044 0.060 0.000 0.344
#> SRR1818531 1 0.5950 0.444 0.576 0.004 0.004 0.024 0.128 0.264
#> SRR1818530 5 0.2875 1.000 0.032 0.068 0.012 0.012 0.876 0.000
#> SRR1818529 1 0.8184 0.202 0.388 0.064 0.024 0.052 0.216 0.256
#> SRR1818528 1 0.1167 0.491 0.960 0.000 0.020 0.012 0.000 0.008
#> SRR1818527 1 0.5679 0.472 0.624 0.004 0.004 0.024 0.120 0.224
#> SRR1818526 4 0.5575 0.509 0.012 0.000 0.032 0.520 0.040 0.396
#> SRR1818525 1 0.5785 0.466 0.612 0.004 0.004 0.024 0.132 0.224
#> SRR1818523 3 0.2821 0.995 0.116 0.000 0.856 0.020 0.004 0.004
#> SRR1818524 4 0.2226 0.807 0.060 0.000 0.028 0.904 0.000 0.008
#> SRR1818522 1 0.5154 -0.176 0.636 0.000 0.044 0.036 0.004 0.280
#> SRR1818521 2 0.2531 0.813 0.000 0.900 0.036 0.012 0.016 0.036
#> SRR1818520 2 0.0000 0.846 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818518 1 0.1524 0.476 0.932 0.000 0.060 0.008 0.000 0.000
#> SRR1818519 4 0.5428 0.673 0.024 0.000 0.032 0.632 0.040 0.272
#> SRR1818517 2 0.5607 0.541 0.000 0.540 0.056 0.012 0.024 0.368
#> SRR1818516 3 0.2821 0.995 0.116 0.000 0.856 0.020 0.004 0.004
#> SRR1818515 4 0.4666 0.765 0.028 0.000 0.032 0.752 0.040 0.148
#> SRR1818514 5 0.2875 1.000 0.032 0.068 0.012 0.012 0.876 0.000
#> SRR1818513 2 0.0291 0.845 0.000 0.992 0.004 0.000 0.000 0.004
#> SRR1818512 5 0.2875 1.000 0.032 0.068 0.012 0.012 0.876 0.000
#> SRR1818510 2 0.0000 0.846 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818511 6 0.7677 0.459 0.300 0.176 0.064 0.020 0.024 0.416
#> SRR1818508 1 0.5751 0.468 0.616 0.004 0.004 0.024 0.128 0.224
#> SRR1818509 2 0.5607 0.541 0.000 0.540 0.056 0.012 0.024 0.368
#> SRR1818507 4 0.5349 0.690 0.024 0.000 0.032 0.648 0.040 0.256
#> SRR1818506 1 0.6741 -0.369 0.508 0.000 0.068 0.084 0.032 0.308
#> SRR1818505 1 0.5683 0.477 0.640 0.004 0.004 0.032 0.124 0.196
#> SRR1818503 1 0.0777 0.503 0.972 0.000 0.000 0.000 0.004 0.024
#> SRR1818504 1 0.5828 0.386 0.640 0.016 0.020 0.036 0.236 0.052
#> SRR1818502 1 0.2798 0.510 0.860 0.000 0.000 0.012 0.020 0.108
#> SRR1818498 2 0.0000 0.846 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818500 1 0.7593 0.043 0.408 0.056 0.020 0.044 0.356 0.116
#> SRR1818501 3 0.2678 0.996 0.116 0.000 0.860 0.020 0.004 0.000
#> SRR1818499 1 0.1508 0.495 0.948 0.000 0.020 0.012 0.004 0.016
#> SRR1818496 1 0.8019 0.238 0.448 0.080 0.024 0.048 0.228 0.172
#> SRR1818494 1 0.2798 0.510 0.860 0.000 0.000 0.012 0.020 0.108
#> SRR1818495 6 0.5845 0.499 0.440 0.000 0.024 0.088 0.004 0.444
#> SRR1818493 2 0.1975 0.823 0.000 0.928 0.028 0.012 0.012 0.020
#> SRR1818492 1 0.5845 -0.586 0.444 0.000 0.024 0.088 0.004 0.440
#> SRR1818491 1 0.5807 0.471 0.620 0.004 0.004 0.032 0.124 0.216
#> SRR1818490 1 0.5348 -0.129 0.636 0.000 0.076 0.040 0.000 0.248
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 16183 rows and 111 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.981 0.972 0.985 0.4930 0.510 0.510
#> 3 3 0.534 0.607 0.826 0.3246 0.692 0.469
#> 4 4 0.730 0.699 0.854 0.1362 0.742 0.399
#> 5 5 0.750 0.731 0.829 0.0702 0.899 0.642
#> 6 6 0.803 0.778 0.859 0.0443 0.936 0.707
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1818497 2 0.0000 0.995 0.000 1.000
#> SRR1818600 2 0.0000 0.995 0.000 1.000
#> SRR1818599 1 0.0376 0.977 0.996 0.004
#> SRR1818598 1 0.7219 0.778 0.800 0.200
#> SRR1818597 1 0.0376 0.977 0.996 0.004
#> SRR1818596 1 0.0000 0.978 1.000 0.000
#> SRR1818595 1 0.0376 0.977 0.996 0.004
#> SRR1818594 1 0.0376 0.977 0.996 0.004
#> SRR1818593 1 0.0000 0.978 1.000 0.000
#> SRR1818592 1 0.0000 0.978 1.000 0.000
#> SRR1818591 2 0.0376 0.995 0.004 0.996
#> SRR1818590 2 0.0376 0.995 0.004 0.996
#> SRR1818589 1 0.0000 0.978 1.000 0.000
#> SRR1818587 1 0.0000 0.978 1.000 0.000
#> SRR1818586 2 0.0376 0.995 0.004 0.996
#> SRR1818585 2 0.0000 0.995 0.000 1.000
#> SRR1818584 2 0.0000 0.995 0.000 1.000
#> SRR1818583 1 0.0376 0.977 0.996 0.004
#> SRR1818588 1 0.0000 0.978 1.000 0.000
#> SRR1818582 1 0.0000 0.978 1.000 0.000
#> SRR1818581 2 0.0376 0.995 0.004 0.996
#> SRR1818579 2 0.0000 0.995 0.000 1.000
#> SRR1818578 2 0.0000 0.995 0.000 1.000
#> SRR1818577 2 0.0376 0.995 0.004 0.996
#> SRR1818580 2 0.0000 0.995 0.000 1.000
#> SRR1818575 1 0.0000 0.978 1.000 0.000
#> SRR1818574 1 0.0376 0.977 0.996 0.004
#> SRR1818576 1 0.0376 0.977 0.996 0.004
#> SRR1818573 1 0.0000 0.978 1.000 0.000
#> SRR1818572 2 0.0000 0.995 0.000 1.000
#> SRR1818571 1 0.0000 0.978 1.000 0.000
#> SRR1818570 1 0.0376 0.977 0.996 0.004
#> SRR1818568 1 0.0000 0.978 1.000 0.000
#> SRR1818567 2 0.0376 0.995 0.004 0.996
#> SRR1818566 1 0.0376 0.977 0.996 0.004
#> SRR1818569 2 0.0000 0.995 0.000 1.000
#> SRR1818565 1 0.0376 0.977 0.996 0.004
#> SRR1818564 1 0.0376 0.977 0.996 0.004
#> SRR1818563 1 0.0000 0.978 1.000 0.000
#> SRR1818561 1 0.0376 0.977 0.996 0.004
#> SRR1818560 1 0.0376 0.977 0.996 0.004
#> SRR1818559 1 0.0000 0.978 1.000 0.000
#> SRR1818562 2 0.0376 0.995 0.004 0.996
#> SRR1818558 2 0.0000 0.995 0.000 1.000
#> SRR1818556 1 0.0376 0.977 0.996 0.004
#> SRR1818557 1 0.0000 0.978 1.000 0.000
#> SRR1818555 2 0.0376 0.995 0.004 0.996
#> SRR1818553 1 0.0000 0.978 1.000 0.000
#> SRR1818552 2 0.0376 0.995 0.004 0.996
#> SRR1818551 1 0.0000 0.978 1.000 0.000
#> SRR1818550 1 0.0000 0.978 1.000 0.000
#> SRR1818554 1 0.0000 0.978 1.000 0.000
#> SRR1818549 1 0.0000 0.978 1.000 0.000
#> SRR1818548 1 0.0000 0.978 1.000 0.000
#> SRR1818546 2 0.0000 0.995 0.000 1.000
#> SRR1818547 1 0.0000 0.978 1.000 0.000
#> SRR1818544 2 0.0000 0.995 0.000 1.000
#> SRR1818543 1 0.2778 0.946 0.952 0.048
#> SRR1818542 2 0.0000 0.995 0.000 1.000
#> SRR1818545 1 0.0000 0.978 1.000 0.000
#> SRR1818541 1 0.3584 0.928 0.932 0.068
#> SRR1818539 1 0.0376 0.977 0.996 0.004
#> SRR1818540 2 0.0376 0.995 0.004 0.996
#> SRR1818536 1 0.0376 0.977 0.996 0.004
#> SRR1818535 1 0.0376 0.977 0.996 0.004
#> SRR1818534 1 0.0000 0.978 1.000 0.000
#> SRR1818538 2 0.0376 0.995 0.004 0.996
#> SRR1818537 1 0.3584 0.928 0.932 0.068
#> SRR1818533 1 0.7219 0.778 0.800 0.200
#> SRR1818532 1 0.0000 0.978 1.000 0.000
#> SRR1818531 2 0.0000 0.995 0.000 1.000
#> SRR1818530 2 0.0000 0.995 0.000 1.000
#> SRR1818529 2 0.0000 0.995 0.000 1.000
#> SRR1818528 1 0.0938 0.973 0.988 0.012
#> SRR1818527 2 0.0000 0.995 0.000 1.000
#> SRR1818526 1 0.0000 0.978 1.000 0.000
#> SRR1818525 2 0.0000 0.995 0.000 1.000
#> SRR1818523 1 0.0376 0.977 0.996 0.004
#> SRR1818524 1 0.0000 0.978 1.000 0.000
#> SRR1818522 1 0.0376 0.976 0.996 0.004
#> SRR1818521 2 0.0376 0.995 0.004 0.996
#> SRR1818520 2 0.0376 0.995 0.004 0.996
#> SRR1818518 1 0.0376 0.977 0.996 0.004
#> SRR1818519 1 0.0000 0.978 1.000 0.000
#> SRR1818517 2 0.0376 0.995 0.004 0.996
#> SRR1818516 1 0.0376 0.977 0.996 0.004
#> SRR1818515 1 0.0000 0.978 1.000 0.000
#> SRR1818514 2 0.0000 0.995 0.000 1.000
#> SRR1818513 2 0.0376 0.995 0.004 0.996
#> SRR1818512 2 0.0000 0.995 0.000 1.000
#> SRR1818510 2 0.0376 0.995 0.004 0.996
#> SRR1818511 2 0.0376 0.995 0.004 0.996
#> SRR1818508 2 0.0000 0.995 0.000 1.000
#> SRR1818509 2 0.0376 0.995 0.004 0.996
#> SRR1818507 1 0.0000 0.978 1.000 0.000
#> SRR1818506 1 0.0000 0.978 1.000 0.000
#> SRR1818505 2 0.0000 0.995 0.000 1.000
#> SRR1818503 1 0.3584 0.928 0.932 0.068
#> SRR1818504 2 0.5629 0.842 0.132 0.868
#> SRR1818502 1 0.7219 0.778 0.800 0.200
#> SRR1818498 2 0.0376 0.995 0.004 0.996
#> SRR1818500 2 0.0000 0.995 0.000 1.000
#> SRR1818501 1 0.0376 0.977 0.996 0.004
#> SRR1818499 1 0.5294 0.872 0.880 0.120
#> SRR1818496 2 0.0000 0.995 0.000 1.000
#> SRR1818494 1 0.7219 0.778 0.800 0.200
#> SRR1818495 1 0.6048 0.831 0.852 0.148
#> SRR1818493 2 0.0376 0.995 0.004 0.996
#> SRR1818492 1 0.0000 0.978 1.000 0.000
#> SRR1818491 2 0.0000 0.995 0.000 1.000
#> SRR1818490 1 0.0376 0.977 0.996 0.004
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1818497 2 0.3755 0.864866 0.120 0.872 0.008
#> SRR1818600 1 0.5111 0.567883 0.808 0.168 0.024
#> SRR1818599 1 0.5216 0.532415 0.740 0.000 0.260
#> SRR1818598 1 0.1015 0.658636 0.980 0.008 0.012
#> SRR1818597 1 0.4702 0.572745 0.788 0.000 0.212
#> SRR1818596 3 0.0237 0.762150 0.004 0.000 0.996
#> SRR1818595 1 0.2537 0.646826 0.920 0.000 0.080
#> SRR1818594 1 0.4702 0.572745 0.788 0.000 0.212
#> SRR1818593 3 0.0237 0.762150 0.004 0.000 0.996
#> SRR1818592 3 0.0237 0.762150 0.004 0.000 0.996
#> SRR1818591 2 0.0237 0.907119 0.000 0.996 0.004
#> SRR1818590 2 0.0237 0.907119 0.000 0.996 0.004
#> SRR1818589 3 0.0237 0.762150 0.004 0.000 0.996
#> SRR1818587 3 0.8875 0.520680 0.336 0.136 0.528
#> SRR1818586 2 0.0237 0.907119 0.000 0.996 0.004
#> SRR1818585 2 0.4059 0.860682 0.128 0.860 0.012
#> SRR1818584 1 0.6274 -0.025472 0.544 0.456 0.000
#> SRR1818583 1 0.4702 0.572745 0.788 0.000 0.212
#> SRR1818588 1 0.8943 -0.288994 0.480 0.128 0.392
#> SRR1818582 3 0.0237 0.762150 0.004 0.000 0.996
#> SRR1818581 2 0.0237 0.907119 0.000 0.996 0.004
#> SRR1818579 1 0.4840 0.572450 0.816 0.168 0.016
#> SRR1818578 2 0.6678 0.164914 0.480 0.512 0.008
#> SRR1818577 2 0.0237 0.907119 0.000 0.996 0.004
#> SRR1818580 1 0.6305 -0.120927 0.516 0.484 0.000
#> SRR1818575 3 0.8743 0.492336 0.372 0.116 0.512
#> SRR1818574 1 0.5291 0.519227 0.732 0.000 0.268
#> SRR1818576 1 0.2356 0.650164 0.928 0.000 0.072
#> SRR1818573 3 0.0237 0.762150 0.004 0.000 0.996
#> SRR1818572 2 0.6095 0.453007 0.392 0.608 0.000
#> SRR1818571 3 0.6235 0.341676 0.436 0.000 0.564
#> SRR1818570 1 0.4702 0.572745 0.788 0.000 0.212
#> SRR1818568 3 0.8898 0.483259 0.372 0.128 0.500
#> SRR1818567 2 0.0237 0.907119 0.000 0.996 0.004
#> SRR1818566 1 0.5216 0.532415 0.740 0.000 0.260
#> SRR1818569 2 0.4059 0.860682 0.128 0.860 0.012
#> SRR1818565 1 0.5216 0.532415 0.740 0.000 0.260
#> SRR1818564 1 0.2356 0.649885 0.928 0.000 0.072
#> SRR1818563 3 0.5428 0.668740 0.064 0.120 0.816
#> SRR1818561 1 0.5216 0.532415 0.740 0.000 0.260
#> SRR1818560 1 0.2261 0.651609 0.932 0.000 0.068
#> SRR1818559 3 0.0237 0.762150 0.004 0.000 0.996
#> SRR1818562 2 0.0237 0.907119 0.000 0.996 0.004
#> SRR1818558 1 0.4399 0.566504 0.812 0.188 0.000
#> SRR1818556 1 0.0000 0.662061 1.000 0.000 0.000
#> SRR1818557 3 0.0237 0.762150 0.004 0.000 0.996
#> SRR1818555 2 0.0237 0.907119 0.000 0.996 0.004
#> SRR1818553 3 0.6267 0.313618 0.452 0.000 0.548
#> SRR1818552 2 0.0237 0.907119 0.000 0.996 0.004
#> SRR1818551 1 0.8991 -0.286299 0.476 0.132 0.392
#> SRR1818550 3 0.8925 0.491990 0.364 0.132 0.504
#> SRR1818554 3 0.0237 0.762150 0.004 0.000 0.996
#> SRR1818549 3 0.6267 0.313618 0.452 0.000 0.548
#> SRR1818548 3 0.0237 0.762150 0.004 0.000 0.996
#> SRR1818546 2 0.4059 0.860682 0.128 0.860 0.012
#> SRR1818547 3 0.3359 0.710871 0.016 0.084 0.900
#> SRR1818544 1 0.6267 -0.012328 0.548 0.452 0.000
#> SRR1818543 1 0.0592 0.663765 0.988 0.000 0.012
#> SRR1818542 2 0.3755 0.864866 0.120 0.872 0.008
#> SRR1818545 3 0.8925 0.491990 0.364 0.132 0.504
#> SRR1818541 1 0.0000 0.662061 1.000 0.000 0.000
#> SRR1818539 1 0.0592 0.663765 0.988 0.000 0.012
#> SRR1818540 2 0.0237 0.907119 0.000 0.996 0.004
#> SRR1818536 1 0.5733 0.386732 0.676 0.000 0.324
#> SRR1818535 1 0.4974 0.556001 0.764 0.000 0.236
#> SRR1818534 3 0.0237 0.762150 0.004 0.000 0.996
#> SRR1818538 2 0.0237 0.907119 0.000 0.996 0.004
#> SRR1818537 1 0.0424 0.660864 0.992 0.000 0.008
#> SRR1818533 1 0.0424 0.661577 0.992 0.008 0.000
#> SRR1818532 3 0.6680 0.272481 0.484 0.008 0.508
#> SRR1818531 1 0.6274 -0.025472 0.544 0.456 0.000
#> SRR1818530 2 0.4059 0.860682 0.128 0.860 0.012
#> SRR1818529 2 0.3826 0.863201 0.124 0.868 0.008
#> SRR1818528 1 0.0592 0.663765 0.988 0.000 0.012
#> SRR1818527 1 0.6260 -0.000435 0.552 0.448 0.000
#> SRR1818526 3 0.3207 0.712741 0.012 0.084 0.904
#> SRR1818525 1 0.6267 -0.012328 0.548 0.452 0.000
#> SRR1818523 1 0.5216 0.532415 0.740 0.000 0.260
#> SRR1818524 3 0.0237 0.762150 0.004 0.000 0.996
#> SRR1818522 1 0.9718 -0.154739 0.452 0.260 0.288
#> SRR1818521 2 0.0237 0.907119 0.000 0.996 0.004
#> SRR1818520 2 0.0237 0.907119 0.000 0.996 0.004
#> SRR1818518 1 0.1031 0.662553 0.976 0.000 0.024
#> SRR1818519 3 0.0000 0.760432 0.000 0.000 1.000
#> SRR1818517 2 0.0237 0.907119 0.000 0.996 0.004
#> SRR1818516 1 0.5216 0.532415 0.740 0.000 0.260
#> SRR1818515 3 0.0237 0.762150 0.004 0.000 0.996
#> SRR1818514 2 0.4059 0.860682 0.128 0.860 0.012
#> SRR1818513 2 0.0237 0.907119 0.000 0.996 0.004
#> SRR1818512 2 0.4059 0.860682 0.128 0.860 0.012
#> SRR1818510 2 0.0237 0.907119 0.000 0.996 0.004
#> SRR1818511 2 0.0237 0.907119 0.000 0.996 0.004
#> SRR1818508 1 0.6267 -0.012328 0.548 0.452 0.000
#> SRR1818509 2 0.0237 0.907119 0.000 0.996 0.004
#> SRR1818507 3 0.0000 0.760432 0.000 0.000 1.000
#> SRR1818506 3 0.6260 0.322372 0.448 0.000 0.552
#> SRR1818505 1 0.6260 -0.000435 0.552 0.448 0.000
#> SRR1818503 1 0.0000 0.662061 1.000 0.000 0.000
#> SRR1818504 2 0.5220 0.768011 0.208 0.780 0.012
#> SRR1818502 1 0.0424 0.661577 0.992 0.008 0.000
#> SRR1818498 2 0.0237 0.907119 0.000 0.996 0.004
#> SRR1818500 2 0.4059 0.860682 0.128 0.860 0.012
#> SRR1818501 1 0.5216 0.532415 0.740 0.000 0.260
#> SRR1818499 1 0.0661 0.663266 0.988 0.004 0.008
#> SRR1818496 2 0.3755 0.864866 0.120 0.872 0.008
#> SRR1818494 1 0.0424 0.661577 0.992 0.008 0.000
#> SRR1818495 3 0.9355 0.475678 0.340 0.180 0.480
#> SRR1818493 2 0.0237 0.907119 0.000 0.996 0.004
#> SRR1818492 3 0.8909 0.480246 0.376 0.128 0.496
#> SRR1818491 1 0.6286 -0.054024 0.536 0.464 0.000
#> SRR1818490 1 0.5465 0.466831 0.712 0.000 0.288
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1818497 3 0.6114 0.3160 0.016 0.468 0.496 0.020
#> SRR1818600 3 0.0188 0.6842 0.004 0.000 0.996 0.000
#> SRR1818599 1 0.0817 0.8444 0.976 0.000 0.000 0.024
#> SRR1818598 3 0.4382 0.2972 0.296 0.000 0.704 0.000
#> SRR1818597 1 0.0188 0.8452 0.996 0.000 0.000 0.004
#> SRR1818596 4 0.0817 0.9807 0.024 0.000 0.000 0.976
#> SRR1818595 1 0.1302 0.8370 0.956 0.000 0.044 0.000
#> SRR1818594 1 0.0188 0.8452 0.996 0.000 0.000 0.004
#> SRR1818593 4 0.0336 0.9792 0.008 0.000 0.000 0.992
#> SRR1818592 4 0.0817 0.9807 0.024 0.000 0.000 0.976
#> SRR1818591 2 0.0188 0.8658 0.000 0.996 0.004 0.000
#> SRR1818590 2 0.0188 0.8639 0.000 0.996 0.000 0.004
#> SRR1818589 4 0.0336 0.9792 0.008 0.000 0.000 0.992
#> SRR1818587 2 0.8430 0.3197 0.232 0.508 0.056 0.204
#> SRR1818586 2 0.0188 0.8658 0.000 0.996 0.004 0.000
#> SRR1818585 3 0.6435 0.3430 0.016 0.448 0.500 0.036
#> SRR1818584 3 0.0000 0.6857 0.000 0.000 1.000 0.000
#> SRR1818583 1 0.0188 0.8452 0.996 0.000 0.000 0.004
#> SRR1818588 1 0.1629 0.8379 0.952 0.024 0.000 0.024
#> SRR1818582 4 0.0817 0.9807 0.024 0.000 0.000 0.976
#> SRR1818581 2 0.0188 0.8658 0.000 0.996 0.004 0.000
#> SRR1818579 3 0.0188 0.6842 0.004 0.000 0.996 0.000
#> SRR1818578 3 0.6950 0.4770 0.068 0.288 0.608 0.036
#> SRR1818577 2 0.0188 0.8658 0.000 0.996 0.004 0.000
#> SRR1818580 3 0.0188 0.6847 0.000 0.000 0.996 0.004
#> SRR1818575 1 0.8319 0.4289 0.524 0.232 0.056 0.188
#> SRR1818574 1 0.0817 0.8444 0.976 0.000 0.000 0.024
#> SRR1818576 1 0.1302 0.8370 0.956 0.000 0.044 0.000
#> SRR1818573 4 0.0817 0.9807 0.024 0.000 0.000 0.976
#> SRR1818572 3 0.0000 0.6857 0.000 0.000 1.000 0.000
#> SRR1818571 1 0.4088 0.6895 0.764 0.000 0.004 0.232
#> SRR1818570 1 0.0188 0.8452 0.996 0.000 0.000 0.004
#> SRR1818568 1 0.8304 0.4227 0.524 0.240 0.056 0.180
#> SRR1818567 2 0.0188 0.8658 0.000 0.996 0.004 0.000
#> SRR1818566 1 0.0817 0.8444 0.976 0.000 0.000 0.024
#> SRR1818569 3 0.6435 0.3430 0.016 0.448 0.500 0.036
#> SRR1818565 1 0.0817 0.8444 0.976 0.000 0.000 0.024
#> SRR1818564 1 0.1211 0.8381 0.960 0.000 0.040 0.000
#> SRR1818563 4 0.3376 0.8548 0.008 0.016 0.108 0.868
#> SRR1818561 1 0.0817 0.8444 0.976 0.000 0.000 0.024
#> SRR1818560 1 0.1389 0.8356 0.952 0.000 0.048 0.000
#> SRR1818559 4 0.0817 0.9807 0.024 0.000 0.000 0.976
#> SRR1818562 2 0.0376 0.8618 0.000 0.992 0.004 0.004
#> SRR1818558 3 0.0000 0.6857 0.000 0.000 1.000 0.000
#> SRR1818556 1 0.4985 0.2918 0.532 0.000 0.468 0.000
#> SRR1818557 4 0.0817 0.9807 0.024 0.000 0.000 0.976
#> SRR1818555 2 0.0188 0.8658 0.000 0.996 0.004 0.000
#> SRR1818553 1 0.2149 0.8215 0.912 0.000 0.000 0.088
#> SRR1818552 2 0.0188 0.8639 0.000 0.996 0.000 0.004
#> SRR1818551 1 0.5308 0.5764 0.684 0.280 0.000 0.036
#> SRR1818550 2 0.9039 0.2711 0.112 0.464 0.248 0.176
#> SRR1818554 4 0.0336 0.9792 0.008 0.000 0.000 0.992
#> SRR1818549 1 0.1211 0.8418 0.960 0.000 0.000 0.040
#> SRR1818548 4 0.0817 0.9807 0.024 0.000 0.000 0.976
#> SRR1818546 3 0.6435 0.3430 0.016 0.448 0.500 0.036
#> SRR1818547 4 0.0927 0.9659 0.008 0.000 0.016 0.976
#> SRR1818544 3 0.0000 0.6857 0.000 0.000 1.000 0.000
#> SRR1818543 1 0.4193 0.6468 0.732 0.000 0.268 0.000
#> SRR1818542 3 0.6114 0.3160 0.016 0.468 0.496 0.020
#> SRR1818545 2 0.9804 0.0767 0.236 0.340 0.248 0.176
#> SRR1818541 1 0.4961 0.3379 0.552 0.000 0.448 0.000
#> SRR1818539 1 0.4134 0.6570 0.740 0.000 0.260 0.000
#> SRR1818540 2 0.0188 0.8658 0.000 0.996 0.004 0.000
#> SRR1818536 1 0.1109 0.8442 0.968 0.000 0.004 0.028
#> SRR1818535 1 0.0188 0.8452 0.996 0.000 0.000 0.004
#> SRR1818534 4 0.0817 0.9807 0.024 0.000 0.000 0.976
#> SRR1818538 2 0.0376 0.8618 0.000 0.992 0.004 0.004
#> SRR1818537 3 0.5000 -0.2500 0.496 0.000 0.504 0.000
#> SRR1818533 3 0.4454 0.2786 0.308 0.000 0.692 0.000
#> SRR1818532 1 0.1510 0.8402 0.956 0.016 0.000 0.028
#> SRR1818531 3 0.0000 0.6857 0.000 0.000 1.000 0.000
#> SRR1818530 3 0.6435 0.3430 0.016 0.448 0.500 0.036
#> SRR1818529 3 0.5010 0.5424 0.016 0.244 0.728 0.012
#> SRR1818528 1 0.2973 0.7704 0.856 0.000 0.144 0.000
#> SRR1818527 3 0.0000 0.6857 0.000 0.000 1.000 0.000
#> SRR1818526 4 0.0524 0.9736 0.008 0.000 0.004 0.988
#> SRR1818525 3 0.0000 0.6857 0.000 0.000 1.000 0.000
#> SRR1818523 1 0.0817 0.8444 0.976 0.000 0.000 0.024
#> SRR1818524 4 0.0817 0.9807 0.024 0.000 0.000 0.976
#> SRR1818522 1 0.4826 0.6175 0.716 0.264 0.000 0.020
#> SRR1818521 2 0.0188 0.8658 0.000 0.996 0.004 0.000
#> SRR1818520 2 0.0188 0.8658 0.000 0.996 0.004 0.000
#> SRR1818518 1 0.1389 0.8356 0.952 0.000 0.048 0.000
#> SRR1818519 4 0.0336 0.9753 0.008 0.000 0.000 0.992
#> SRR1818517 2 0.0188 0.8639 0.000 0.996 0.000 0.004
#> SRR1818516 1 0.0817 0.8444 0.976 0.000 0.000 0.024
#> SRR1818515 4 0.0336 0.9792 0.008 0.000 0.000 0.992
#> SRR1818514 3 0.6435 0.3430 0.016 0.448 0.500 0.036
#> SRR1818513 2 0.0188 0.8658 0.000 0.996 0.004 0.000
#> SRR1818512 3 0.6435 0.3430 0.016 0.448 0.500 0.036
#> SRR1818510 2 0.0188 0.8658 0.000 0.996 0.004 0.000
#> SRR1818511 2 0.0188 0.8639 0.000 0.996 0.000 0.004
#> SRR1818508 3 0.0000 0.6857 0.000 0.000 1.000 0.000
#> SRR1818509 2 0.0188 0.8639 0.000 0.996 0.000 0.004
#> SRR1818507 4 0.0336 0.9753 0.008 0.000 0.000 0.992
#> SRR1818506 1 0.3764 0.7096 0.784 0.000 0.000 0.216
#> SRR1818505 3 0.0188 0.6846 0.004 0.000 0.996 0.000
#> SRR1818503 1 0.4961 0.3379 0.552 0.000 0.448 0.000
#> SRR1818504 2 0.8539 -0.1538 0.224 0.420 0.320 0.036
#> SRR1818502 3 0.4454 0.2786 0.308 0.000 0.692 0.000
#> SRR1818498 2 0.0188 0.8658 0.000 0.996 0.004 0.000
#> SRR1818500 3 0.6510 0.3379 0.016 0.448 0.496 0.040
#> SRR1818501 1 0.0817 0.8444 0.976 0.000 0.000 0.024
#> SRR1818499 1 0.3649 0.7188 0.796 0.000 0.204 0.000
#> SRR1818496 3 0.6114 0.3160 0.016 0.468 0.496 0.020
#> SRR1818494 3 0.4454 0.2786 0.308 0.000 0.692 0.000
#> SRR1818495 2 0.6990 0.5455 0.096 0.668 0.060 0.176
#> SRR1818493 2 0.0188 0.8658 0.000 0.996 0.004 0.000
#> SRR1818492 1 0.8693 0.1695 0.424 0.340 0.060 0.176
#> SRR1818491 3 0.0000 0.6857 0.000 0.000 1.000 0.000
#> SRR1818490 1 0.0707 0.8438 0.980 0.000 0.000 0.020
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1818497 5 0.6050 0.6581 0.148 0.268 0.004 0.000 0.580
#> SRR1818600 1 0.0703 0.8286 0.976 0.000 0.000 0.000 0.024
#> SRR1818599 3 0.1310 0.8444 0.000 0.000 0.956 0.020 0.024
#> SRR1818598 1 0.2753 0.7823 0.856 0.000 0.008 0.000 0.136
#> SRR1818597 3 0.0290 0.8476 0.000 0.000 0.992 0.008 0.000
#> SRR1818596 4 0.0693 0.9449 0.000 0.000 0.008 0.980 0.012
#> SRR1818595 3 0.3239 0.8112 0.068 0.000 0.852 0.000 0.080
#> SRR1818594 3 0.0290 0.8476 0.000 0.000 0.992 0.008 0.000
#> SRR1818593 4 0.0162 0.9423 0.000 0.000 0.000 0.996 0.004
#> SRR1818592 4 0.0693 0.9449 0.000 0.000 0.008 0.980 0.012
#> SRR1818591 2 0.0000 0.8423 0.000 1.000 0.000 0.000 0.000
#> SRR1818590 2 0.2852 0.7874 0.000 0.828 0.000 0.000 0.172
#> SRR1818589 4 0.0290 0.9416 0.000 0.000 0.000 0.992 0.008
#> SRR1818587 2 0.7992 0.2538 0.120 0.400 0.040 0.060 0.380
#> SRR1818586 2 0.0000 0.8423 0.000 1.000 0.000 0.000 0.000
#> SRR1818585 5 0.6069 0.6656 0.160 0.252 0.004 0.000 0.584
#> SRR1818584 1 0.0794 0.8286 0.972 0.000 0.000 0.000 0.028
#> SRR1818583 3 0.0451 0.8471 0.000 0.000 0.988 0.008 0.004
#> SRR1818588 3 0.5196 0.5345 0.016 0.004 0.584 0.016 0.380
#> SRR1818582 4 0.0693 0.9449 0.000 0.000 0.008 0.980 0.012
#> SRR1818581 2 0.0000 0.8423 0.000 1.000 0.000 0.000 0.000
#> SRR1818579 1 0.0703 0.8286 0.976 0.000 0.000 0.000 0.024
#> SRR1818578 5 0.6690 0.6217 0.176 0.196 0.044 0.000 0.584
#> SRR1818577 2 0.0000 0.8423 0.000 1.000 0.000 0.000 0.000
#> SRR1818580 1 0.3586 0.5886 0.736 0.000 0.000 0.000 0.264
#> SRR1818575 5 0.8863 -0.1181 0.120 0.140 0.296 0.060 0.384
#> SRR1818574 3 0.1310 0.8444 0.000 0.000 0.956 0.020 0.024
#> SRR1818576 3 0.1579 0.8426 0.024 0.000 0.944 0.000 0.032
#> SRR1818573 4 0.0693 0.9449 0.000 0.000 0.008 0.980 0.012
#> SRR1818572 1 0.0794 0.8286 0.972 0.000 0.000 0.000 0.028
#> SRR1818571 3 0.5983 0.6606 0.032 0.000 0.652 0.196 0.120
#> SRR1818570 3 0.0290 0.8476 0.000 0.000 0.992 0.008 0.000
#> SRR1818568 5 0.8884 -0.1123 0.124 0.140 0.292 0.060 0.384
#> SRR1818567 2 0.0000 0.8423 0.000 1.000 0.000 0.000 0.000
#> SRR1818566 3 0.1310 0.8444 0.000 0.000 0.956 0.020 0.024
#> SRR1818569 5 0.6069 0.6656 0.160 0.252 0.004 0.000 0.584
#> SRR1818565 3 0.1310 0.8444 0.000 0.000 0.956 0.020 0.024
#> SRR1818564 3 0.1981 0.8376 0.028 0.000 0.924 0.000 0.048
#> SRR1818563 4 0.6637 0.2934 0.172 0.000 0.008 0.452 0.368
#> SRR1818561 3 0.1310 0.8444 0.000 0.000 0.956 0.020 0.024
#> SRR1818560 3 0.1582 0.8421 0.028 0.000 0.944 0.000 0.028
#> SRR1818559 4 0.0693 0.9449 0.000 0.000 0.008 0.980 0.012
#> SRR1818562 2 0.2966 0.7778 0.000 0.816 0.000 0.000 0.184
#> SRR1818558 1 0.0000 0.8306 1.000 0.000 0.000 0.000 0.000
#> SRR1818556 1 0.3930 0.7317 0.792 0.000 0.152 0.000 0.056
#> SRR1818557 4 0.0693 0.9449 0.000 0.000 0.008 0.980 0.012
#> SRR1818555 2 0.0000 0.8423 0.000 1.000 0.000 0.000 0.000
#> SRR1818553 3 0.3033 0.8116 0.000 0.000 0.864 0.052 0.084
#> SRR1818552 2 0.2852 0.7874 0.000 0.828 0.000 0.000 0.172
#> SRR1818551 3 0.7330 0.2648 0.016 0.188 0.412 0.016 0.368
#> SRR1818550 5 0.8063 -0.1616 0.228 0.292 0.016 0.060 0.404
#> SRR1818554 4 0.0290 0.9416 0.000 0.000 0.000 0.992 0.008
#> SRR1818549 3 0.2519 0.8268 0.000 0.000 0.884 0.016 0.100
#> SRR1818548 4 0.0693 0.9449 0.000 0.000 0.008 0.980 0.012
#> SRR1818546 5 0.6069 0.6656 0.160 0.252 0.004 0.000 0.584
#> SRR1818547 4 0.2228 0.8942 0.020 0.000 0.008 0.916 0.056
#> SRR1818544 1 0.3109 0.6796 0.800 0.000 0.000 0.000 0.200
#> SRR1818543 3 0.4269 0.6652 0.232 0.000 0.732 0.000 0.036
#> SRR1818542 5 0.6050 0.6581 0.148 0.268 0.004 0.000 0.580
#> SRR1818545 5 0.8373 -0.1108 0.244 0.256 0.036 0.060 0.404
#> SRR1818541 1 0.4537 0.7026 0.740 0.000 0.184 0.000 0.076
#> SRR1818539 3 0.4495 0.6606 0.244 0.000 0.712 0.000 0.044
#> SRR1818540 2 0.0000 0.8423 0.000 1.000 0.000 0.000 0.000
#> SRR1818536 3 0.3161 0.8237 0.032 0.000 0.860 0.008 0.100
#> SRR1818535 3 0.0807 0.8463 0.000 0.000 0.976 0.012 0.012
#> SRR1818534 4 0.0693 0.9449 0.000 0.000 0.008 0.980 0.012
#> SRR1818538 2 0.2891 0.7849 0.000 0.824 0.000 0.000 0.176
#> SRR1818537 1 0.3691 0.7640 0.820 0.000 0.104 0.000 0.076
#> SRR1818533 1 0.3317 0.7770 0.840 0.000 0.044 0.000 0.116
#> SRR1818532 3 0.4869 0.6089 0.016 0.000 0.640 0.016 0.328
#> SRR1818531 1 0.0794 0.8286 0.972 0.000 0.000 0.000 0.028
#> SRR1818530 5 0.6069 0.6656 0.160 0.252 0.004 0.000 0.584
#> SRR1818529 5 0.6349 0.5896 0.228 0.220 0.004 0.000 0.548
#> SRR1818528 3 0.3183 0.7548 0.156 0.000 0.828 0.000 0.016
#> SRR1818527 1 0.0794 0.8276 0.972 0.000 0.000 0.000 0.028
#> SRR1818526 4 0.1628 0.9077 0.000 0.000 0.008 0.936 0.056
#> SRR1818525 1 0.1197 0.8173 0.952 0.000 0.000 0.000 0.048
#> SRR1818523 3 0.1310 0.8444 0.000 0.000 0.956 0.020 0.024
#> SRR1818524 4 0.0693 0.9449 0.000 0.000 0.008 0.980 0.012
#> SRR1818522 3 0.6789 0.3555 0.000 0.220 0.488 0.012 0.280
#> SRR1818521 2 0.0000 0.8423 0.000 1.000 0.000 0.000 0.000
#> SRR1818520 2 0.0000 0.8423 0.000 1.000 0.000 0.000 0.000
#> SRR1818518 3 0.1668 0.8413 0.032 0.000 0.940 0.000 0.028
#> SRR1818519 4 0.1082 0.9266 0.000 0.000 0.008 0.964 0.028
#> SRR1818517 2 0.2852 0.7874 0.000 0.828 0.000 0.000 0.172
#> SRR1818516 3 0.1310 0.8444 0.000 0.000 0.956 0.020 0.024
#> SRR1818515 4 0.0162 0.9423 0.000 0.000 0.000 0.996 0.004
#> SRR1818514 5 0.6069 0.6656 0.160 0.252 0.004 0.000 0.584
#> SRR1818513 2 0.0000 0.8423 0.000 1.000 0.000 0.000 0.000
#> SRR1818512 5 0.6069 0.6656 0.160 0.252 0.004 0.000 0.584
#> SRR1818510 2 0.0000 0.8423 0.000 1.000 0.000 0.000 0.000
#> SRR1818511 2 0.2929 0.7808 0.000 0.820 0.000 0.000 0.180
#> SRR1818508 1 0.0794 0.8276 0.972 0.000 0.000 0.000 0.028
#> SRR1818509 2 0.2852 0.7874 0.000 0.828 0.000 0.000 0.172
#> SRR1818507 4 0.0898 0.9312 0.000 0.000 0.008 0.972 0.020
#> SRR1818506 3 0.4718 0.7104 0.000 0.000 0.728 0.180 0.092
#> SRR1818505 1 0.3109 0.6796 0.800 0.000 0.000 0.000 0.200
#> SRR1818503 1 0.4400 0.6876 0.736 0.000 0.212 0.000 0.052
#> SRR1818504 5 0.7298 0.5624 0.092 0.216 0.156 0.000 0.536
#> SRR1818502 1 0.3339 0.7774 0.840 0.000 0.048 0.000 0.112
#> SRR1818498 2 0.0000 0.8423 0.000 1.000 0.000 0.000 0.000
#> SRR1818500 5 0.6069 0.6656 0.160 0.252 0.004 0.000 0.584
#> SRR1818501 3 0.1310 0.8444 0.000 0.000 0.956 0.020 0.024
#> SRR1818499 3 0.4651 0.3609 0.372 0.000 0.608 0.000 0.020
#> SRR1818496 5 0.6050 0.6581 0.148 0.268 0.004 0.000 0.580
#> SRR1818494 1 0.3339 0.7774 0.840 0.000 0.048 0.000 0.112
#> SRR1818495 2 0.7869 0.2971 0.120 0.428 0.036 0.056 0.360
#> SRR1818493 2 0.0000 0.8423 0.000 1.000 0.000 0.000 0.000
#> SRR1818492 5 0.9025 -0.0978 0.128 0.252 0.176 0.060 0.384
#> SRR1818491 1 0.3109 0.6796 0.800 0.000 0.000 0.000 0.200
#> SRR1818490 3 0.0898 0.8466 0.000 0.000 0.972 0.008 0.020
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1818497 5 0.2122 0.9387 0.008 0.084 0.000 0.000 0.900 0.008
#> SRR1818600 1 0.1124 0.7992 0.956 0.000 0.000 0.000 0.036 0.008
#> SRR1818599 3 0.1508 0.7763 0.004 0.000 0.948 0.016 0.020 0.012
#> SRR1818598 1 0.2815 0.7534 0.864 0.000 0.012 0.000 0.028 0.096
#> SRR1818597 3 0.2451 0.7830 0.016 0.000 0.892 0.004 0.012 0.076
#> SRR1818596 4 0.0000 0.9037 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818595 3 0.5860 0.5837 0.164 0.000 0.588 0.000 0.032 0.216
#> SRR1818594 3 0.2544 0.7825 0.016 0.000 0.888 0.004 0.016 0.076
#> SRR1818593 4 0.1349 0.8920 0.004 0.000 0.000 0.940 0.000 0.056
#> SRR1818592 4 0.0000 0.9037 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818591 2 0.0363 0.9372 0.000 0.988 0.000 0.000 0.012 0.000
#> SRR1818590 2 0.2416 0.8522 0.000 0.844 0.000 0.000 0.000 0.156
#> SRR1818589 4 0.1349 0.8920 0.004 0.000 0.000 0.940 0.000 0.056
#> SRR1818587 6 0.1526 0.8065 0.008 0.036 0.004 0.008 0.000 0.944
#> SRR1818586 2 0.0363 0.9372 0.000 0.988 0.000 0.000 0.012 0.000
#> SRR1818585 5 0.1398 0.9599 0.008 0.052 0.000 0.000 0.940 0.000
#> SRR1818584 1 0.1219 0.8005 0.948 0.000 0.000 0.000 0.048 0.004
#> SRR1818583 3 0.2313 0.7847 0.016 0.000 0.904 0.004 0.016 0.060
#> SRR1818588 6 0.1812 0.7700 0.008 0.000 0.080 0.000 0.000 0.912
#> SRR1818582 4 0.0000 0.9037 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818581 2 0.0363 0.9372 0.000 0.988 0.000 0.000 0.012 0.000
#> SRR1818579 1 0.1124 0.7992 0.956 0.000 0.000 0.000 0.036 0.008
#> SRR1818578 5 0.1434 0.9402 0.012 0.028 0.012 0.000 0.948 0.000
#> SRR1818577 2 0.0363 0.9372 0.000 0.988 0.000 0.000 0.012 0.000
#> SRR1818580 1 0.3636 0.5532 0.676 0.000 0.000 0.000 0.320 0.004
#> SRR1818575 6 0.1527 0.8097 0.008 0.012 0.020 0.012 0.000 0.948
#> SRR1818574 3 0.1508 0.7763 0.004 0.000 0.948 0.016 0.020 0.012
#> SRR1818576 3 0.4406 0.7300 0.076 0.000 0.752 0.000 0.028 0.144
#> SRR1818573 4 0.0000 0.9037 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818572 1 0.1219 0.8005 0.948 0.000 0.000 0.000 0.048 0.004
#> SRR1818571 6 0.6561 0.1492 0.072 0.000 0.372 0.084 0.012 0.460
#> SRR1818570 3 0.2451 0.7830 0.016 0.000 0.892 0.004 0.012 0.076
#> SRR1818568 6 0.1520 0.8103 0.008 0.016 0.020 0.008 0.000 0.948
#> SRR1818567 2 0.0363 0.9372 0.000 0.988 0.000 0.000 0.012 0.000
#> SRR1818566 3 0.1508 0.7763 0.004 0.000 0.948 0.016 0.020 0.012
#> SRR1818569 5 0.1398 0.9599 0.008 0.052 0.000 0.000 0.940 0.000
#> SRR1818565 3 0.1508 0.7763 0.004 0.000 0.948 0.016 0.020 0.012
#> SRR1818564 3 0.4442 0.7275 0.076 0.000 0.748 0.000 0.028 0.148
#> SRR1818563 6 0.3459 0.7000 0.084 0.004 0.000 0.084 0.004 0.824
#> SRR1818561 3 0.1508 0.7763 0.004 0.000 0.948 0.016 0.020 0.012
#> SRR1818560 3 0.4670 0.7176 0.112 0.000 0.732 0.000 0.028 0.128
#> SRR1818559 4 0.0000 0.9037 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818562 2 0.2700 0.8458 0.004 0.836 0.000 0.000 0.004 0.156
#> SRR1818558 1 0.1794 0.7985 0.924 0.000 0.000 0.000 0.036 0.040
#> SRR1818556 1 0.2568 0.7606 0.888 0.000 0.060 0.000 0.016 0.036
#> SRR1818557 4 0.0000 0.9037 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818555 2 0.0363 0.9372 0.000 0.988 0.000 0.000 0.012 0.000
#> SRR1818553 3 0.5399 0.4254 0.020 0.000 0.580 0.052 0.012 0.336
#> SRR1818552 2 0.1204 0.9055 0.000 0.944 0.000 0.000 0.000 0.056
#> SRR1818551 6 0.3520 0.7357 0.008 0.100 0.076 0.000 0.000 0.816
#> SRR1818550 6 0.2545 0.7748 0.084 0.020 0.000 0.008 0.004 0.884
#> SRR1818554 4 0.1349 0.8920 0.004 0.000 0.000 0.940 0.000 0.056
#> SRR1818549 3 0.4228 0.5099 0.020 0.000 0.656 0.000 0.008 0.316
#> SRR1818548 4 0.0000 0.9037 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818546 5 0.1398 0.9599 0.008 0.052 0.000 0.000 0.940 0.000
#> SRR1818547 4 0.5021 0.4054 0.056 0.004 0.000 0.556 0.004 0.380
#> SRR1818544 1 0.3445 0.6572 0.732 0.000 0.000 0.000 0.260 0.008
#> SRR1818543 3 0.6259 0.4580 0.300 0.000 0.520 0.000 0.056 0.124
#> SRR1818542 5 0.2122 0.9387 0.008 0.084 0.000 0.000 0.900 0.008
#> SRR1818545 6 0.2601 0.7765 0.084 0.016 0.004 0.008 0.004 0.884
#> SRR1818541 1 0.5335 0.6131 0.652 0.000 0.108 0.000 0.032 0.208
#> SRR1818539 3 0.6211 0.3979 0.340 0.000 0.484 0.000 0.036 0.140
#> SRR1818540 2 0.0363 0.9372 0.000 0.988 0.000 0.000 0.012 0.000
#> SRR1818536 3 0.4631 0.6290 0.068 0.000 0.708 0.000 0.020 0.204
#> SRR1818535 3 0.1448 0.7794 0.000 0.000 0.948 0.012 0.024 0.016
#> SRR1818534 4 0.0000 0.9037 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818538 2 0.2700 0.8458 0.004 0.836 0.000 0.000 0.004 0.156
#> SRR1818537 1 0.3557 0.7395 0.828 0.000 0.060 0.000 0.032 0.080
#> SRR1818533 1 0.4546 0.6527 0.696 0.000 0.036 0.000 0.028 0.240
#> SRR1818532 6 0.2520 0.7384 0.012 0.000 0.108 0.000 0.008 0.872
#> SRR1818531 1 0.1219 0.8005 0.948 0.000 0.000 0.000 0.048 0.004
#> SRR1818530 5 0.1398 0.9599 0.008 0.052 0.000 0.000 0.940 0.000
#> SRR1818529 5 0.3348 0.8728 0.084 0.064 0.000 0.000 0.836 0.016
#> SRR1818528 3 0.5570 0.6083 0.228 0.000 0.620 0.000 0.032 0.120
#> SRR1818527 1 0.1757 0.7973 0.916 0.000 0.000 0.000 0.076 0.008
#> SRR1818526 4 0.3986 0.4880 0.004 0.004 0.000 0.608 0.000 0.384
#> SRR1818525 1 0.2070 0.7871 0.892 0.000 0.000 0.000 0.100 0.008
#> SRR1818523 3 0.1508 0.7763 0.004 0.000 0.948 0.016 0.020 0.012
#> SRR1818524 4 0.0000 0.9037 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818522 6 0.5796 0.4711 0.008 0.252 0.176 0.000 0.004 0.560
#> SRR1818521 2 0.0363 0.9372 0.000 0.988 0.000 0.000 0.012 0.000
#> SRR1818520 2 0.0363 0.9372 0.000 0.988 0.000 0.000 0.012 0.000
#> SRR1818518 3 0.4475 0.7283 0.112 0.000 0.748 0.000 0.024 0.116
#> SRR1818519 4 0.3215 0.7259 0.004 0.000 0.000 0.756 0.000 0.240
#> SRR1818517 2 0.2416 0.8522 0.000 0.844 0.000 0.000 0.000 0.156
#> SRR1818516 3 0.1508 0.7763 0.004 0.000 0.948 0.016 0.020 0.012
#> SRR1818515 4 0.1349 0.8920 0.004 0.000 0.000 0.940 0.000 0.056
#> SRR1818514 5 0.1398 0.9599 0.008 0.052 0.000 0.000 0.940 0.000
#> SRR1818513 2 0.0363 0.9372 0.000 0.988 0.000 0.000 0.012 0.000
#> SRR1818512 5 0.1398 0.9599 0.008 0.052 0.000 0.000 0.940 0.000
#> SRR1818510 2 0.0363 0.9372 0.000 0.988 0.000 0.000 0.012 0.000
#> SRR1818511 2 0.2416 0.8522 0.000 0.844 0.000 0.000 0.000 0.156
#> SRR1818508 1 0.1866 0.7940 0.908 0.000 0.000 0.000 0.084 0.008
#> SRR1818509 2 0.2416 0.8522 0.000 0.844 0.000 0.000 0.000 0.156
#> SRR1818507 4 0.2703 0.8018 0.004 0.000 0.000 0.824 0.000 0.172
#> SRR1818506 6 0.5712 0.0418 0.016 0.000 0.412 0.080 0.008 0.484
#> SRR1818505 1 0.3445 0.6572 0.732 0.000 0.000 0.000 0.260 0.008
#> SRR1818503 1 0.5365 0.6117 0.656 0.000 0.128 0.000 0.032 0.184
#> SRR1818504 5 0.3447 0.8468 0.012 0.044 0.104 0.000 0.832 0.008
#> SRR1818502 1 0.4587 0.6534 0.696 0.000 0.040 0.000 0.028 0.236
#> SRR1818498 2 0.0363 0.9372 0.000 0.988 0.000 0.000 0.012 0.000
#> SRR1818500 5 0.1398 0.9599 0.008 0.052 0.000 0.000 0.940 0.000
#> SRR1818501 3 0.1508 0.7763 0.004 0.000 0.948 0.016 0.020 0.012
#> SRR1818499 1 0.5574 0.0744 0.520 0.000 0.384 0.000 0.044 0.052
#> SRR1818496 5 0.2122 0.9387 0.008 0.084 0.000 0.000 0.900 0.008
#> SRR1818494 1 0.4587 0.6534 0.696 0.000 0.040 0.000 0.028 0.236
#> SRR1818495 6 0.1799 0.7981 0.008 0.052 0.004 0.008 0.000 0.928
#> SRR1818493 2 0.0363 0.9372 0.000 0.988 0.000 0.000 0.012 0.000
#> SRR1818492 6 0.1431 0.8108 0.008 0.016 0.016 0.008 0.000 0.952
#> SRR1818491 1 0.3445 0.6572 0.732 0.000 0.000 0.000 0.260 0.008
#> SRR1818490 3 0.2325 0.7758 0.008 0.000 0.884 0.000 0.008 0.100
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 16183 rows and 111 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 5.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.996 0.998 0.261 0.738 0.738
#> 3 3 0.611 0.670 0.793 0.510 0.717 0.617
#> 4 4 0.748 0.888 0.934 0.266 0.728 0.565
#> 5 5 0.939 0.901 0.949 0.311 0.830 0.675
#> 6 6 0.863 0.867 0.936 0.170 0.846 0.584
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 5
#> attr(,"optional")
#> [1] 2
There is also optional best \(k\) = 2 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1818497 1 0.000 1.000 1.000 0.000
#> SRR1818600 1 0.000 1.000 1.000 0.000
#> SRR1818599 1 0.000 1.000 1.000 0.000
#> SRR1818598 1 0.000 1.000 1.000 0.000
#> SRR1818597 1 0.000 1.000 1.000 0.000
#> SRR1818596 1 0.000 1.000 1.000 0.000
#> SRR1818595 1 0.000 1.000 1.000 0.000
#> SRR1818594 1 0.000 1.000 1.000 0.000
#> SRR1818593 1 0.000 1.000 1.000 0.000
#> SRR1818592 1 0.000 1.000 1.000 0.000
#> SRR1818591 2 0.000 0.988 0.000 1.000
#> SRR1818590 2 0.697 0.769 0.188 0.812
#> SRR1818589 1 0.000 1.000 1.000 0.000
#> SRR1818587 1 0.000 1.000 1.000 0.000
#> SRR1818586 2 0.000 0.988 0.000 1.000
#> SRR1818585 1 0.000 1.000 1.000 0.000
#> SRR1818584 1 0.000 1.000 1.000 0.000
#> SRR1818583 1 0.000 1.000 1.000 0.000
#> SRR1818588 1 0.000 1.000 1.000 0.000
#> SRR1818582 1 0.000 1.000 1.000 0.000
#> SRR1818581 2 0.000 0.988 0.000 1.000
#> SRR1818579 1 0.000 1.000 1.000 0.000
#> SRR1818578 1 0.000 1.000 1.000 0.000
#> SRR1818577 2 0.000 0.988 0.000 1.000
#> SRR1818580 1 0.000 1.000 1.000 0.000
#> SRR1818575 1 0.000 1.000 1.000 0.000
#> SRR1818574 1 0.000 1.000 1.000 0.000
#> SRR1818576 1 0.000 1.000 1.000 0.000
#> SRR1818573 1 0.000 1.000 1.000 0.000
#> SRR1818572 1 0.000 1.000 1.000 0.000
#> SRR1818571 1 0.000 1.000 1.000 0.000
#> SRR1818570 1 0.000 1.000 1.000 0.000
#> SRR1818568 1 0.000 1.000 1.000 0.000
#> SRR1818567 2 0.000 0.988 0.000 1.000
#> SRR1818566 1 0.000 1.000 1.000 0.000
#> SRR1818569 1 0.000 1.000 1.000 0.000
#> SRR1818565 1 0.000 1.000 1.000 0.000
#> SRR1818564 1 0.000 1.000 1.000 0.000
#> SRR1818563 1 0.000 1.000 1.000 0.000
#> SRR1818561 1 0.000 1.000 1.000 0.000
#> SRR1818560 1 0.000 1.000 1.000 0.000
#> SRR1818559 1 0.000 1.000 1.000 0.000
#> SRR1818562 1 0.000 1.000 1.000 0.000
#> SRR1818558 1 0.000 1.000 1.000 0.000
#> SRR1818556 1 0.000 1.000 1.000 0.000
#> SRR1818557 1 0.000 1.000 1.000 0.000
#> SRR1818555 2 0.000 0.988 0.000 1.000
#> SRR1818553 1 0.000 1.000 1.000 0.000
#> SRR1818552 2 0.000 0.988 0.000 1.000
#> SRR1818551 1 0.000 1.000 1.000 0.000
#> SRR1818550 1 0.000 1.000 1.000 0.000
#> SRR1818554 1 0.000 1.000 1.000 0.000
#> SRR1818549 1 0.000 1.000 1.000 0.000
#> SRR1818548 1 0.000 1.000 1.000 0.000
#> SRR1818546 1 0.000 1.000 1.000 0.000
#> SRR1818547 1 0.000 1.000 1.000 0.000
#> SRR1818544 1 0.000 1.000 1.000 0.000
#> SRR1818543 1 0.000 1.000 1.000 0.000
#> SRR1818542 1 0.000 1.000 1.000 0.000
#> SRR1818545 1 0.000 1.000 1.000 0.000
#> SRR1818541 1 0.000 1.000 1.000 0.000
#> SRR1818539 1 0.000 1.000 1.000 0.000
#> SRR1818540 2 0.000 0.988 0.000 1.000
#> SRR1818536 1 0.000 1.000 1.000 0.000
#> SRR1818535 1 0.000 1.000 1.000 0.000
#> SRR1818534 1 0.000 1.000 1.000 0.000
#> SRR1818538 1 0.000 1.000 1.000 0.000
#> SRR1818537 1 0.000 1.000 1.000 0.000
#> SRR1818533 1 0.000 1.000 1.000 0.000
#> SRR1818532 1 0.000 1.000 1.000 0.000
#> SRR1818531 1 0.000 1.000 1.000 0.000
#> SRR1818530 1 0.000 1.000 1.000 0.000
#> SRR1818529 1 0.000 1.000 1.000 0.000
#> SRR1818528 1 0.000 1.000 1.000 0.000
#> SRR1818527 1 0.000 1.000 1.000 0.000
#> SRR1818526 1 0.000 1.000 1.000 0.000
#> SRR1818525 1 0.000 1.000 1.000 0.000
#> SRR1818523 1 0.000 1.000 1.000 0.000
#> SRR1818524 1 0.000 1.000 1.000 0.000
#> SRR1818522 1 0.000 1.000 1.000 0.000
#> SRR1818521 2 0.000 0.988 0.000 1.000
#> SRR1818520 2 0.000 0.988 0.000 1.000
#> SRR1818518 1 0.000 1.000 1.000 0.000
#> SRR1818519 1 0.000 1.000 1.000 0.000
#> SRR1818517 2 0.000 0.988 0.000 1.000
#> SRR1818516 1 0.000 1.000 1.000 0.000
#> SRR1818515 1 0.000 1.000 1.000 0.000
#> SRR1818514 1 0.000 1.000 1.000 0.000
#> SRR1818513 2 0.000 0.988 0.000 1.000
#> SRR1818512 1 0.000 1.000 1.000 0.000
#> SRR1818510 2 0.000 0.988 0.000 1.000
#> SRR1818511 1 0.000 1.000 1.000 0.000
#> SRR1818508 1 0.000 1.000 1.000 0.000
#> SRR1818509 2 0.000 0.988 0.000 1.000
#> SRR1818507 1 0.000 1.000 1.000 0.000
#> SRR1818506 1 0.000 1.000 1.000 0.000
#> SRR1818505 1 0.000 1.000 1.000 0.000
#> SRR1818503 1 0.000 1.000 1.000 0.000
#> SRR1818504 1 0.000 1.000 1.000 0.000
#> SRR1818502 1 0.000 1.000 1.000 0.000
#> SRR1818498 2 0.000 0.988 0.000 1.000
#> SRR1818500 1 0.224 0.962 0.964 0.036
#> SRR1818501 1 0.000 1.000 1.000 0.000
#> SRR1818499 1 0.000 1.000 1.000 0.000
#> SRR1818496 1 0.000 1.000 1.000 0.000
#> SRR1818494 1 0.000 1.000 1.000 0.000
#> SRR1818495 1 0.000 1.000 1.000 0.000
#> SRR1818493 2 0.000 0.988 0.000 1.000
#> SRR1818492 1 0.000 1.000 1.000 0.000
#> SRR1818491 1 0.000 1.000 1.000 0.000
#> SRR1818490 1 0.000 1.000 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1818497 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818600 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818599 3 0.4842 0.3707 0.224 0.000 0.776
#> SRR1818598 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818597 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818596 3 0.5560 0.5934 0.300 0.000 0.700
#> SRR1818595 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818594 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818593 3 0.5560 0.5934 0.300 0.000 0.700
#> SRR1818592 3 0.5560 0.5934 0.300 0.000 0.700
#> SRR1818591 2 0.0000 0.9856 0.000 1.000 0.000
#> SRR1818590 2 0.4700 0.7058 0.008 0.812 0.180
#> SRR1818589 3 0.5560 0.5934 0.300 0.000 0.700
#> SRR1818587 1 0.6305 0.7323 0.516 0.000 0.484
#> SRR1818586 2 0.0000 0.9856 0.000 1.000 0.000
#> SRR1818585 1 0.0000 -0.0675 1.000 0.000 0.000
#> SRR1818584 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818583 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818588 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818582 3 0.5560 0.5934 0.300 0.000 0.700
#> SRR1818581 2 0.0000 0.9856 0.000 1.000 0.000
#> SRR1818579 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818578 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818577 2 0.0000 0.9856 0.000 1.000 0.000
#> SRR1818580 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818575 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818574 3 0.4842 0.3707 0.224 0.000 0.776
#> SRR1818576 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818573 3 0.5560 0.5934 0.300 0.000 0.700
#> SRR1818572 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818571 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818570 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818568 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818567 2 0.0000 0.9856 0.000 1.000 0.000
#> SRR1818566 3 0.4842 0.3707 0.224 0.000 0.776
#> SRR1818569 1 0.0000 -0.0675 1.000 0.000 0.000
#> SRR1818565 3 0.4842 0.3707 0.224 0.000 0.776
#> SRR1818564 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818563 3 0.5785 0.4711 0.332 0.000 0.668
#> SRR1818561 3 0.4842 0.3707 0.224 0.000 0.776
#> SRR1818560 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818559 3 0.5560 0.5934 0.300 0.000 0.700
#> SRR1818562 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818558 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818556 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818557 3 0.5560 0.5934 0.300 0.000 0.700
#> SRR1818555 2 0.0000 0.9856 0.000 1.000 0.000
#> SRR1818553 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818552 2 0.0000 0.9856 0.000 1.000 0.000
#> SRR1818551 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818550 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818554 3 0.5560 0.5934 0.300 0.000 0.700
#> SRR1818549 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818548 3 0.5560 0.5934 0.300 0.000 0.700
#> SRR1818546 1 0.0000 -0.0675 1.000 0.000 0.000
#> SRR1818547 3 0.6299 -0.5472 0.476 0.000 0.524
#> SRR1818544 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818543 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818542 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818545 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818541 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818539 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818540 2 0.0000 0.9856 0.000 1.000 0.000
#> SRR1818536 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818535 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818534 3 0.5560 0.5934 0.300 0.000 0.700
#> SRR1818538 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818537 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818533 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818532 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818531 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818530 1 0.0000 -0.0675 1.000 0.000 0.000
#> SRR1818529 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818528 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818527 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818526 1 0.6302 0.7494 0.520 0.000 0.480
#> SRR1818525 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818523 3 0.4842 0.3707 0.224 0.000 0.776
#> SRR1818524 3 0.5560 0.5934 0.300 0.000 0.700
#> SRR1818522 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818521 2 0.0000 0.9856 0.000 1.000 0.000
#> SRR1818520 2 0.0000 0.9856 0.000 1.000 0.000
#> SRR1818518 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818519 3 0.5560 0.5934 0.300 0.000 0.700
#> SRR1818517 2 0.0000 0.9856 0.000 1.000 0.000
#> SRR1818516 3 0.4842 0.3707 0.224 0.000 0.776
#> SRR1818515 3 0.5560 0.5934 0.300 0.000 0.700
#> SRR1818514 1 0.0000 -0.0675 1.000 0.000 0.000
#> SRR1818513 2 0.0000 0.9856 0.000 1.000 0.000
#> SRR1818512 1 0.0000 -0.0675 1.000 0.000 0.000
#> SRR1818510 2 0.0000 0.9856 0.000 1.000 0.000
#> SRR1818511 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818508 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818509 2 0.0000 0.9856 0.000 1.000 0.000
#> SRR1818507 3 0.5560 0.5934 0.300 0.000 0.700
#> SRR1818506 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818505 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818503 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818504 1 0.0747 -0.0704 0.984 0.000 0.016
#> SRR1818502 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818498 2 0.0000 0.9856 0.000 1.000 0.000
#> SRR1818500 1 0.0000 -0.0675 1.000 0.000 0.000
#> SRR1818501 3 0.4842 0.3707 0.224 0.000 0.776
#> SRR1818499 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818496 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818494 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818495 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818493 2 0.0000 0.9856 0.000 1.000 0.000
#> SRR1818492 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818491 1 0.6299 0.7659 0.524 0.000 0.476
#> SRR1818490 1 0.6299 0.7659 0.524 0.000 0.476
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1818497 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818600 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818599 3 0.0921 0.999 0.028 0.000 0.972 0.000
#> SRR1818598 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818597 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818596 1 0.4993 0.644 0.712 0.000 0.028 0.260
#> SRR1818595 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818594 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818593 1 0.4993 0.644 0.712 0.000 0.028 0.260
#> SRR1818592 1 0.4993 0.644 0.712 0.000 0.028 0.260
#> SRR1818591 2 0.0000 0.977 0.000 1.000 0.000 0.000
#> SRR1818590 2 0.3486 0.594 0.188 0.812 0.000 0.000
#> SRR1818589 1 0.4993 0.644 0.712 0.000 0.028 0.260
#> SRR1818587 1 0.1059 0.895 0.972 0.000 0.012 0.016
#> SRR1818586 2 0.0000 0.977 0.000 1.000 0.000 0.000
#> SRR1818585 4 0.4134 0.953 0.260 0.000 0.000 0.740
#> SRR1818584 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818583 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818588 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818582 1 0.4993 0.644 0.712 0.000 0.028 0.260
#> SRR1818581 2 0.0000 0.977 0.000 1.000 0.000 0.000
#> SRR1818579 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818578 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818577 2 0.0000 0.977 0.000 1.000 0.000 0.000
#> SRR1818580 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818575 1 0.0188 0.913 0.996 0.000 0.004 0.000
#> SRR1818574 3 0.0921 0.999 0.028 0.000 0.972 0.000
#> SRR1818576 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818573 1 0.4993 0.644 0.712 0.000 0.028 0.260
#> SRR1818572 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818571 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818570 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818568 1 0.0657 0.904 0.984 0.000 0.012 0.004
#> SRR1818567 2 0.0000 0.977 0.000 1.000 0.000 0.000
#> SRR1818566 3 0.0921 0.999 0.028 0.000 0.972 0.000
#> SRR1818569 4 0.4134 0.953 0.260 0.000 0.000 0.740
#> SRR1818565 3 0.0921 0.999 0.028 0.000 0.972 0.000
#> SRR1818564 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818563 1 0.4507 0.689 0.756 0.000 0.020 0.224
#> SRR1818561 3 0.0921 0.999 0.028 0.000 0.972 0.000
#> SRR1818560 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818559 1 0.4993 0.644 0.712 0.000 0.028 0.260
#> SRR1818562 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818558 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818556 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818557 1 0.4993 0.644 0.712 0.000 0.028 0.260
#> SRR1818555 2 0.0000 0.977 0.000 1.000 0.000 0.000
#> SRR1818553 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818552 2 0.0000 0.977 0.000 1.000 0.000 0.000
#> SRR1818551 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818550 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818554 1 0.4993 0.644 0.712 0.000 0.028 0.260
#> SRR1818549 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818548 1 0.4993 0.644 0.712 0.000 0.028 0.260
#> SRR1818546 4 0.4134 0.953 0.260 0.000 0.000 0.740
#> SRR1818547 1 0.2053 0.852 0.924 0.000 0.004 0.072
#> SRR1818544 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818543 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818542 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818545 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818541 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818539 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818540 2 0.0000 0.977 0.000 1.000 0.000 0.000
#> SRR1818536 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818535 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818534 1 0.4993 0.644 0.712 0.000 0.028 0.260
#> SRR1818538 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818537 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818533 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818532 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818531 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818530 4 0.4134 0.953 0.260 0.000 0.000 0.740
#> SRR1818529 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818528 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818527 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818526 1 0.1356 0.885 0.960 0.000 0.008 0.032
#> SRR1818525 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818523 3 0.0921 0.999 0.028 0.000 0.972 0.000
#> SRR1818524 1 0.4993 0.644 0.712 0.000 0.028 0.260
#> SRR1818522 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818521 2 0.0000 0.977 0.000 1.000 0.000 0.000
#> SRR1818520 2 0.0000 0.977 0.000 1.000 0.000 0.000
#> SRR1818518 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818519 1 0.4993 0.644 0.712 0.000 0.028 0.260
#> SRR1818517 2 0.0000 0.977 0.000 1.000 0.000 0.000
#> SRR1818516 3 0.0817 0.992 0.024 0.000 0.976 0.000
#> SRR1818515 1 0.4993 0.644 0.712 0.000 0.028 0.260
#> SRR1818514 4 0.4134 0.953 0.260 0.000 0.000 0.740
#> SRR1818513 2 0.0000 0.977 0.000 1.000 0.000 0.000
#> SRR1818512 4 0.4134 0.953 0.260 0.000 0.000 0.740
#> SRR1818510 2 0.0000 0.977 0.000 1.000 0.000 0.000
#> SRR1818511 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818508 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818509 2 0.0000 0.977 0.000 1.000 0.000 0.000
#> SRR1818507 1 0.4993 0.644 0.712 0.000 0.028 0.260
#> SRR1818506 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818505 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818503 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818504 4 0.4888 0.714 0.412 0.000 0.000 0.588
#> SRR1818502 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818498 2 0.0000 0.977 0.000 1.000 0.000 0.000
#> SRR1818500 4 0.4164 0.944 0.264 0.000 0.000 0.736
#> SRR1818501 3 0.0921 0.999 0.028 0.000 0.972 0.000
#> SRR1818499 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818496 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818494 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818495 1 0.0336 0.910 0.992 0.000 0.008 0.000
#> SRR1818493 2 0.0000 0.977 0.000 1.000 0.000 0.000
#> SRR1818492 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818491 1 0.0000 0.916 1.000 0.000 0.000 0.000
#> SRR1818490 1 0.0000 0.916 1.000 0.000 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1818497 1 0.1282 0.9228 0.952 0.000 0.004 0.000 0.044
#> SRR1818600 1 0.0798 0.9410 0.976 0.000 0.008 0.000 0.016
#> SRR1818599 3 0.0510 1.0000 0.016 0.000 0.984 0.000 0.000
#> SRR1818598 1 0.0290 0.9430 0.992 0.000 0.008 0.000 0.000
#> SRR1818597 1 0.0609 0.9432 0.980 0.000 0.020 0.000 0.000
#> SRR1818596 4 0.0000 0.9152 0.000 0.000 0.000 1.000 0.000
#> SRR1818595 1 0.0609 0.9432 0.980 0.000 0.020 0.000 0.000
#> SRR1818594 1 0.0609 0.9432 0.980 0.000 0.020 0.000 0.000
#> SRR1818593 4 0.0000 0.9152 0.000 0.000 0.000 1.000 0.000
#> SRR1818592 4 0.0000 0.9152 0.000 0.000 0.000 1.000 0.000
#> SRR1818591 2 0.0000 0.9588 0.000 1.000 0.000 0.000 0.000
#> SRR1818590 2 0.4708 0.5457 0.208 0.728 0.008 0.000 0.056
#> SRR1818589 4 0.0000 0.9152 0.000 0.000 0.000 1.000 0.000
#> SRR1818587 4 0.5949 0.2449 0.364 0.000 0.028 0.552 0.056
#> SRR1818586 2 0.0000 0.9588 0.000 1.000 0.000 0.000 0.000
#> SRR1818585 5 0.1341 0.8832 0.056 0.000 0.000 0.000 0.944
#> SRR1818584 1 0.0693 0.9401 0.980 0.000 0.008 0.000 0.012
#> SRR1818583 1 0.0609 0.9432 0.980 0.000 0.020 0.000 0.000
#> SRR1818588 1 0.2124 0.9184 0.916 0.000 0.028 0.000 0.056
#> SRR1818582 4 0.0000 0.9152 0.000 0.000 0.000 1.000 0.000
#> SRR1818581 2 0.0000 0.9588 0.000 1.000 0.000 0.000 0.000
#> SRR1818579 1 0.0693 0.9401 0.980 0.000 0.008 0.000 0.012
#> SRR1818578 1 0.0404 0.9423 0.988 0.000 0.000 0.000 0.012
#> SRR1818577 2 0.1596 0.9194 0.028 0.948 0.012 0.000 0.012
#> SRR1818580 1 0.0693 0.9401 0.980 0.000 0.008 0.000 0.012
#> SRR1818575 1 0.2284 0.9161 0.912 0.000 0.028 0.004 0.056
#> SRR1818574 3 0.0510 1.0000 0.016 0.000 0.984 0.000 0.000
#> SRR1818576 1 0.0609 0.9432 0.980 0.000 0.020 0.000 0.000
#> SRR1818573 4 0.0000 0.9152 0.000 0.000 0.000 1.000 0.000
#> SRR1818572 1 0.0693 0.9401 0.980 0.000 0.008 0.000 0.012
#> SRR1818571 1 0.1943 0.9224 0.924 0.000 0.020 0.000 0.056
#> SRR1818570 1 0.0609 0.9432 0.980 0.000 0.020 0.000 0.000
#> SRR1818568 1 0.6057 0.0824 0.488 0.000 0.028 0.428 0.056
#> SRR1818567 2 0.0000 0.9588 0.000 1.000 0.000 0.000 0.000
#> SRR1818566 3 0.0510 1.0000 0.016 0.000 0.984 0.000 0.000
#> SRR1818569 5 0.1341 0.8832 0.056 0.000 0.000 0.000 0.944
#> SRR1818565 3 0.0510 1.0000 0.016 0.000 0.984 0.000 0.000
#> SRR1818564 1 0.0898 0.9422 0.972 0.000 0.020 0.000 0.008
#> SRR1818563 4 0.5070 0.4748 0.244 0.000 0.012 0.688 0.056
#> SRR1818561 3 0.0510 1.0000 0.016 0.000 0.984 0.000 0.000
#> SRR1818560 1 0.0510 0.9439 0.984 0.000 0.016 0.000 0.000
#> SRR1818559 4 0.0000 0.9152 0.000 0.000 0.000 1.000 0.000
#> SRR1818562 1 0.0671 0.9451 0.980 0.000 0.016 0.000 0.004
#> SRR1818558 1 0.0693 0.9401 0.980 0.000 0.008 0.000 0.012
#> SRR1818556 1 0.0290 0.9430 0.992 0.000 0.008 0.000 0.000
#> SRR1818557 4 0.0000 0.9152 0.000 0.000 0.000 1.000 0.000
#> SRR1818555 2 0.0000 0.9588 0.000 1.000 0.000 0.000 0.000
#> SRR1818553 1 0.2124 0.9184 0.916 0.000 0.028 0.000 0.056
#> SRR1818552 2 0.0000 0.9588 0.000 1.000 0.000 0.000 0.000
#> SRR1818551 1 0.2124 0.9184 0.916 0.000 0.028 0.000 0.056
#> SRR1818550 1 0.2124 0.9184 0.916 0.000 0.028 0.000 0.056
#> SRR1818554 4 0.0000 0.9152 0.000 0.000 0.000 1.000 0.000
#> SRR1818549 1 0.2124 0.9184 0.916 0.000 0.028 0.000 0.056
#> SRR1818548 4 0.0000 0.9152 0.000 0.000 0.000 1.000 0.000
#> SRR1818546 5 0.1341 0.8832 0.056 0.000 0.000 0.000 0.944
#> SRR1818547 1 0.3436 0.8466 0.852 0.000 0.012 0.080 0.056
#> SRR1818544 1 0.0693 0.9401 0.980 0.000 0.008 0.000 0.012
#> SRR1818543 1 0.0693 0.9421 0.980 0.000 0.008 0.000 0.012
#> SRR1818542 1 0.1877 0.9065 0.924 0.000 0.000 0.064 0.012
#> SRR1818545 1 0.1943 0.9205 0.924 0.000 0.020 0.000 0.056
#> SRR1818541 1 0.0162 0.9443 0.996 0.000 0.004 0.000 0.000
#> SRR1818539 1 0.0671 0.9441 0.980 0.000 0.016 0.000 0.004
#> SRR1818540 2 0.0000 0.9588 0.000 1.000 0.000 0.000 0.000
#> SRR1818536 1 0.1750 0.9298 0.936 0.000 0.028 0.000 0.036
#> SRR1818535 1 0.0609 0.9432 0.980 0.000 0.020 0.000 0.000
#> SRR1818534 4 0.0000 0.9152 0.000 0.000 0.000 1.000 0.000
#> SRR1818538 1 0.1845 0.9206 0.928 0.000 0.016 0.000 0.056
#> SRR1818537 1 0.0162 0.9443 0.996 0.000 0.004 0.000 0.000
#> SRR1818533 1 0.1106 0.9397 0.964 0.000 0.012 0.000 0.024
#> SRR1818532 1 0.2124 0.9184 0.916 0.000 0.028 0.000 0.056
#> SRR1818531 1 0.0693 0.9401 0.980 0.000 0.008 0.000 0.012
#> SRR1818530 5 0.1341 0.8832 0.056 0.000 0.000 0.000 0.944
#> SRR1818529 1 0.0854 0.9388 0.976 0.000 0.008 0.004 0.012
#> SRR1818528 1 0.0609 0.9432 0.980 0.000 0.020 0.000 0.000
#> SRR1818527 1 0.0693 0.9401 0.980 0.000 0.008 0.000 0.012
#> SRR1818526 1 0.5878 0.3745 0.576 0.000 0.028 0.340 0.056
#> SRR1818525 1 0.0693 0.9401 0.980 0.000 0.008 0.000 0.012
#> SRR1818523 3 0.0510 1.0000 0.016 0.000 0.984 0.000 0.000
#> SRR1818524 4 0.0000 0.9152 0.000 0.000 0.000 1.000 0.000
#> SRR1818522 1 0.0771 0.9428 0.976 0.000 0.020 0.000 0.004
#> SRR1818521 2 0.0000 0.9588 0.000 1.000 0.000 0.000 0.000
#> SRR1818520 2 0.0000 0.9588 0.000 1.000 0.000 0.000 0.000
#> SRR1818518 1 0.0609 0.9432 0.980 0.000 0.020 0.000 0.000
#> SRR1818519 4 0.1628 0.8627 0.000 0.000 0.008 0.936 0.056
#> SRR1818517 2 0.1788 0.9001 0.004 0.932 0.008 0.000 0.056
#> SRR1818516 3 0.0510 1.0000 0.016 0.000 0.984 0.000 0.000
#> SRR1818515 4 0.0000 0.9152 0.000 0.000 0.000 1.000 0.000
#> SRR1818514 5 0.1341 0.8832 0.056 0.000 0.000 0.000 0.944
#> SRR1818513 2 0.0000 0.9588 0.000 1.000 0.000 0.000 0.000
#> SRR1818512 5 0.1341 0.8832 0.056 0.000 0.000 0.000 0.944
#> SRR1818510 2 0.0000 0.9588 0.000 1.000 0.000 0.000 0.000
#> SRR1818511 1 0.1568 0.9327 0.944 0.000 0.020 0.000 0.036
#> SRR1818508 1 0.0693 0.9401 0.980 0.000 0.008 0.000 0.012
#> SRR1818509 2 0.2341 0.8786 0.020 0.912 0.012 0.000 0.056
#> SRR1818507 4 0.1628 0.8627 0.000 0.000 0.008 0.936 0.056
#> SRR1818506 1 0.2124 0.9184 0.916 0.000 0.028 0.000 0.056
#> SRR1818505 1 0.0693 0.9401 0.980 0.000 0.008 0.000 0.012
#> SRR1818503 1 0.0510 0.9438 0.984 0.000 0.016 0.000 0.000
#> SRR1818504 5 0.4707 0.3763 0.392 0.000 0.020 0.000 0.588
#> SRR1818502 1 0.0162 0.9437 0.996 0.000 0.004 0.000 0.000
#> SRR1818498 2 0.0000 0.9588 0.000 1.000 0.000 0.000 0.000
#> SRR1818500 5 0.2127 0.8194 0.108 0.000 0.000 0.000 0.892
#> SRR1818501 3 0.0510 1.0000 0.016 0.000 0.984 0.000 0.000
#> SRR1818499 1 0.0290 0.9430 0.992 0.000 0.008 0.000 0.000
#> SRR1818496 1 0.0566 0.9414 0.984 0.000 0.004 0.000 0.012
#> SRR1818494 1 0.0451 0.9437 0.988 0.000 0.008 0.000 0.004
#> SRR1818495 1 0.3501 0.8670 0.856 0.000 0.028 0.060 0.056
#> SRR1818493 2 0.0000 0.9588 0.000 1.000 0.000 0.000 0.000
#> SRR1818492 1 0.2124 0.9184 0.916 0.000 0.028 0.000 0.056
#> SRR1818491 1 0.0693 0.9401 0.980 0.000 0.008 0.000 0.012
#> SRR1818490 1 0.2124 0.9184 0.916 0.000 0.028 0.000 0.056
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1818497 1 0.1065 0.90360 0.964 0.000 0.000 0.008 0.020 0.008
#> SRR1818600 1 0.1075 0.89255 0.952 0.000 0.000 0.000 0.000 0.048
#> SRR1818599 3 0.0000 1.00000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818598 1 0.0000 0.90471 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818597 1 0.1075 0.90166 0.952 0.000 0.000 0.000 0.000 0.048
#> SRR1818596 4 0.0000 0.96045 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818595 1 0.1327 0.89666 0.936 0.000 0.000 0.000 0.000 0.064
#> SRR1818594 1 0.3309 0.63460 0.720 0.000 0.000 0.000 0.000 0.280
#> SRR1818593 4 0.0000 0.96045 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818592 4 0.0000 0.96045 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818591 2 0.0000 0.97186 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818590 6 0.1196 0.83822 0.040 0.008 0.000 0.000 0.000 0.952
#> SRR1818589 4 0.0000 0.96045 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818587 6 0.1219 0.86445 0.004 0.000 0.000 0.048 0.000 0.948
#> SRR1818586 2 0.0000 0.97186 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818585 5 0.0000 0.86509 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818584 1 0.1075 0.89255 0.952 0.000 0.000 0.000 0.000 0.048
#> SRR1818583 1 0.1075 0.90166 0.952 0.000 0.000 0.000 0.000 0.048
#> SRR1818588 6 0.1075 0.87867 0.048 0.000 0.000 0.000 0.000 0.952
#> SRR1818582 4 0.0000 0.96045 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818581 2 0.0000 0.97186 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818579 1 0.1075 0.89255 0.952 0.000 0.000 0.000 0.000 0.048
#> SRR1818578 1 0.0547 0.90574 0.980 0.000 0.000 0.000 0.000 0.020
#> SRR1818577 2 0.4636 0.56744 0.160 0.692 0.000 0.000 0.000 0.148
#> SRR1818580 1 0.1075 0.89255 0.952 0.000 0.000 0.000 0.000 0.048
#> SRR1818575 6 0.1075 0.87867 0.048 0.000 0.000 0.000 0.000 0.952
#> SRR1818574 3 0.0000 1.00000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818576 1 0.1075 0.90166 0.952 0.000 0.000 0.000 0.000 0.048
#> SRR1818573 4 0.0000 0.96045 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818572 1 0.1075 0.89255 0.952 0.000 0.000 0.000 0.000 0.048
#> SRR1818571 1 0.2793 0.77977 0.800 0.000 0.000 0.000 0.000 0.200
#> SRR1818570 1 0.1075 0.90166 0.952 0.000 0.000 0.000 0.000 0.048
#> SRR1818568 6 0.1434 0.86349 0.012 0.000 0.000 0.048 0.000 0.940
#> SRR1818567 2 0.0000 0.97186 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818566 3 0.0000 1.00000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818569 5 0.0000 0.86509 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818565 3 0.0000 1.00000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818564 1 0.2631 0.80378 0.820 0.000 0.000 0.000 0.000 0.180
#> SRR1818563 6 0.0547 0.86106 0.000 0.000 0.000 0.020 0.000 0.980
#> SRR1818561 3 0.0000 1.00000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818560 1 0.1075 0.90166 0.952 0.000 0.000 0.000 0.000 0.048
#> SRR1818559 4 0.0000 0.96045 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818562 1 0.2454 0.81992 0.840 0.000 0.000 0.000 0.000 0.160
#> SRR1818558 6 0.3717 0.37111 0.384 0.000 0.000 0.000 0.000 0.616
#> SRR1818556 1 0.1075 0.89255 0.952 0.000 0.000 0.000 0.000 0.048
#> SRR1818557 4 0.0000 0.96045 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818555 2 0.0000 0.97186 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818553 6 0.1075 0.87867 0.048 0.000 0.000 0.000 0.000 0.952
#> SRR1818552 2 0.0000 0.97186 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818551 6 0.1075 0.87867 0.048 0.000 0.000 0.000 0.000 0.952
#> SRR1818550 6 0.1075 0.87867 0.048 0.000 0.000 0.000 0.000 0.952
#> SRR1818554 4 0.0000 0.96045 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818549 6 0.3867 -0.00124 0.488 0.000 0.000 0.000 0.000 0.512
#> SRR1818548 4 0.0000 0.96045 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818546 5 0.0000 0.86509 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818547 6 0.1261 0.84228 0.024 0.000 0.000 0.024 0.000 0.952
#> SRR1818544 1 0.1075 0.89255 0.952 0.000 0.000 0.000 0.000 0.048
#> SRR1818543 1 0.0547 0.90582 0.980 0.000 0.000 0.000 0.000 0.020
#> SRR1818542 1 0.1285 0.89218 0.944 0.000 0.000 0.052 0.000 0.004
#> SRR1818545 6 0.0000 0.86685 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1818541 1 0.3634 0.46562 0.644 0.000 0.000 0.000 0.000 0.356
#> SRR1818539 1 0.1765 0.87862 0.904 0.000 0.000 0.000 0.000 0.096
#> SRR1818540 2 0.0000 0.97186 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818536 1 0.2793 0.77977 0.800 0.000 0.000 0.000 0.000 0.200
#> SRR1818535 1 0.1434 0.89954 0.940 0.000 0.012 0.000 0.000 0.048
#> SRR1818534 4 0.0000 0.96045 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818538 6 0.2260 0.76451 0.140 0.000 0.000 0.000 0.000 0.860
#> SRR1818537 1 0.1387 0.89531 0.932 0.000 0.000 0.000 0.000 0.068
#> SRR1818533 1 0.2048 0.83621 0.880 0.000 0.000 0.000 0.000 0.120
#> SRR1818532 6 0.1075 0.87867 0.048 0.000 0.000 0.000 0.000 0.952
#> SRR1818531 1 0.1075 0.89255 0.952 0.000 0.000 0.000 0.000 0.048
#> SRR1818530 5 0.0000 0.86509 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818529 1 0.0000 0.90471 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818528 1 0.1075 0.90166 0.952 0.000 0.000 0.000 0.000 0.048
#> SRR1818527 1 0.1075 0.89255 0.952 0.000 0.000 0.000 0.000 0.048
#> SRR1818526 6 0.1794 0.87231 0.040 0.000 0.000 0.036 0.000 0.924
#> SRR1818525 1 0.1075 0.89255 0.952 0.000 0.000 0.000 0.000 0.048
#> SRR1818523 3 0.0000 1.00000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818524 4 0.0000 0.96045 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818522 1 0.3515 0.57403 0.676 0.000 0.000 0.000 0.000 0.324
#> SRR1818521 2 0.0000 0.97186 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818520 2 0.0000 0.97186 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818518 1 0.1075 0.90166 0.952 0.000 0.000 0.000 0.000 0.048
#> SRR1818519 6 0.1765 0.82615 0.000 0.000 0.000 0.096 0.000 0.904
#> SRR1818517 6 0.2260 0.78866 0.000 0.140 0.000 0.000 0.000 0.860
#> SRR1818516 3 0.0000 1.00000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818515 4 0.0000 0.96045 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818514 5 0.0000 0.86509 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818513 2 0.0000 0.97186 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818512 5 0.0000 0.86509 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818510 2 0.0000 0.97186 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818511 6 0.2300 0.79268 0.144 0.000 0.000 0.000 0.000 0.856
#> SRR1818508 1 0.1267 0.88892 0.940 0.000 0.000 0.000 0.000 0.060
#> SRR1818509 6 0.1204 0.85609 0.000 0.056 0.000 0.000 0.000 0.944
#> SRR1818507 4 0.3727 0.32135 0.000 0.000 0.000 0.612 0.000 0.388
#> SRR1818506 6 0.2048 0.81908 0.120 0.000 0.000 0.000 0.000 0.880
#> SRR1818505 1 0.1075 0.89255 0.952 0.000 0.000 0.000 0.000 0.048
#> SRR1818503 1 0.1075 0.90166 0.952 0.000 0.000 0.000 0.000 0.048
#> SRR1818504 5 0.4609 0.35057 0.364 0.000 0.000 0.000 0.588 0.048
#> SRR1818502 1 0.0000 0.90471 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818498 2 0.0000 0.97186 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818500 5 0.2572 0.71607 0.136 0.000 0.000 0.000 0.852 0.012
#> SRR1818501 3 0.0000 1.00000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818499 1 0.0000 0.90471 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818496 1 0.0291 0.90544 0.992 0.000 0.000 0.004 0.000 0.004
#> SRR1818494 1 0.0000 0.90471 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818495 6 0.1196 0.87841 0.040 0.000 0.000 0.008 0.000 0.952
#> SRR1818493 2 0.0000 0.97186 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818492 6 0.1075 0.87867 0.048 0.000 0.000 0.000 0.000 0.952
#> SRR1818491 1 0.1075 0.89255 0.952 0.000 0.000 0.000 0.000 0.048
#> SRR1818490 1 0.3351 0.63987 0.712 0.000 0.000 0.000 0.000 0.288
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 16183 rows and 111 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.568 0.789 0.889 0.3798 0.619 0.619
#> 3 3 0.406 0.765 0.840 0.4362 0.835 0.740
#> 4 4 0.580 0.720 0.821 0.2224 0.826 0.648
#> 5 5 0.831 0.918 0.955 -0.0541 0.887 0.729
#> 6 6 0.799 0.863 0.921 0.1599 0.883 0.699
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1818497 2 0.9833 0.5010 0.424 0.576
#> SRR1818600 1 0.3274 0.8787 0.940 0.060
#> SRR1818599 1 0.7815 0.6817 0.768 0.232
#> SRR1818598 1 0.4161 0.8757 0.916 0.084
#> SRR1818597 1 0.1184 0.8931 0.984 0.016
#> SRR1818596 2 0.2236 0.8033 0.036 0.964
#> SRR1818595 1 0.0000 0.8968 1.000 0.000
#> SRR1818594 1 0.1633 0.8932 0.976 0.024
#> SRR1818593 2 0.2236 0.8033 0.036 0.964
#> SRR1818592 2 0.2236 0.8033 0.036 0.964
#> SRR1818591 1 0.3584 0.8856 0.932 0.068
#> SRR1818590 1 0.3114 0.8891 0.944 0.056
#> SRR1818589 2 0.2236 0.8033 0.036 0.964
#> SRR1818587 1 0.1414 0.8979 0.980 0.020
#> SRR1818586 1 0.3733 0.8841 0.928 0.072
#> SRR1818585 2 0.9710 0.5249 0.400 0.600
#> SRR1818584 1 0.3431 0.8872 0.936 0.064
#> SRR1818583 1 0.1184 0.8931 0.984 0.016
#> SRR1818588 1 0.0938 0.8944 0.988 0.012
#> SRR1818582 2 0.2236 0.8033 0.036 0.964
#> SRR1818581 1 0.3584 0.8856 0.932 0.068
#> SRR1818579 1 0.2236 0.8887 0.964 0.036
#> SRR1818578 1 0.7815 0.6614 0.768 0.232
#> SRR1818577 1 0.3733 0.8841 0.928 0.072
#> SRR1818580 1 0.8763 0.5168 0.704 0.296
#> SRR1818575 1 0.3584 0.8709 0.932 0.068
#> SRR1818574 1 0.7745 0.6854 0.772 0.228
#> SRR1818576 1 0.1184 0.8931 0.984 0.016
#> SRR1818573 2 0.2236 0.8033 0.036 0.964
#> SRR1818572 1 0.2948 0.8920 0.948 0.052
#> SRR1818571 1 0.9286 0.4878 0.656 0.344
#> SRR1818570 1 0.1184 0.8931 0.984 0.016
#> SRR1818568 1 0.0938 0.8944 0.988 0.012
#> SRR1818567 1 0.3733 0.8841 0.928 0.072
#> SRR1818566 1 0.7815 0.6817 0.768 0.232
#> SRR1818569 2 0.9710 0.5249 0.400 0.600
#> SRR1818565 1 0.7815 0.6817 0.768 0.232
#> SRR1818564 1 0.1184 0.8931 0.984 0.016
#> SRR1818563 2 0.8813 0.5982 0.300 0.700
#> SRR1818561 1 0.7815 0.6817 0.768 0.232
#> SRR1818560 1 0.2236 0.8906 0.964 0.036
#> SRR1818559 2 0.2236 0.8033 0.036 0.964
#> SRR1818562 1 0.2236 0.8924 0.964 0.036
#> SRR1818558 1 0.0000 0.8968 1.000 0.000
#> SRR1818556 1 0.1633 0.8955 0.976 0.024
#> SRR1818557 2 0.2236 0.8033 0.036 0.964
#> SRR1818555 1 0.3584 0.8856 0.932 0.068
#> SRR1818553 1 0.8861 0.5629 0.696 0.304
#> SRR1818552 1 0.3733 0.8841 0.928 0.072
#> SRR1818551 1 0.1184 0.8972 0.984 0.016
#> SRR1818550 1 0.1414 0.8969 0.980 0.020
#> SRR1818554 2 0.2236 0.8033 0.036 0.964
#> SRR1818549 1 0.6148 0.7875 0.848 0.152
#> SRR1818548 2 0.2236 0.8033 0.036 0.964
#> SRR1818546 2 0.9710 0.5249 0.400 0.600
#> SRR1818547 2 0.5519 0.7704 0.128 0.872
#> SRR1818544 1 0.2236 0.8900 0.964 0.036
#> SRR1818543 1 0.1414 0.8936 0.980 0.020
#> SRR1818542 2 0.9922 0.4583 0.448 0.552
#> SRR1818545 1 0.3584 0.8735 0.932 0.068
#> SRR1818541 1 0.0672 0.8955 0.992 0.008
#> SRR1818539 1 0.4022 0.8699 0.920 0.080
#> SRR1818540 1 0.3733 0.8841 0.928 0.072
#> SRR1818536 1 0.0938 0.8984 0.988 0.012
#> SRR1818535 1 0.2603 0.8859 0.956 0.044
#> SRR1818534 2 0.2236 0.8033 0.036 0.964
#> SRR1818538 1 0.2778 0.8901 0.952 0.048
#> SRR1818537 1 0.2948 0.8805 0.948 0.052
#> SRR1818533 1 0.1633 0.8960 0.976 0.024
#> SRR1818532 1 0.0672 0.8982 0.992 0.008
#> SRR1818531 1 0.2948 0.8918 0.948 0.052
#> SRR1818530 2 0.9710 0.5249 0.400 0.600
#> SRR1818529 1 0.9983 -0.1422 0.524 0.476
#> SRR1818528 1 0.1184 0.8931 0.984 0.016
#> SRR1818527 1 0.1633 0.8972 0.976 0.024
#> SRR1818526 2 0.5519 0.7704 0.128 0.872
#> SRR1818525 1 0.2043 0.8918 0.968 0.032
#> SRR1818523 1 0.7815 0.6817 0.768 0.232
#> SRR1818524 2 0.2236 0.8033 0.036 0.964
#> SRR1818522 1 0.0000 0.8968 1.000 0.000
#> SRR1818521 1 0.3733 0.8841 0.928 0.072
#> SRR1818520 1 0.3733 0.8841 0.928 0.072
#> SRR1818518 1 0.1184 0.8931 0.984 0.016
#> SRR1818519 2 0.3114 0.7996 0.056 0.944
#> SRR1818517 1 0.3733 0.8841 0.928 0.072
#> SRR1818516 1 0.7815 0.6817 0.768 0.232
#> SRR1818515 2 0.2236 0.8033 0.036 0.964
#> SRR1818514 2 0.9710 0.5249 0.400 0.600
#> SRR1818513 1 0.3733 0.8841 0.928 0.072
#> SRR1818512 2 0.9710 0.5249 0.400 0.600
#> SRR1818510 1 0.3733 0.8841 0.928 0.072
#> SRR1818511 1 0.2236 0.8924 0.964 0.036
#> SRR1818508 1 0.0672 0.8977 0.992 0.008
#> SRR1818509 1 0.3733 0.8841 0.928 0.072
#> SRR1818507 2 0.3114 0.7996 0.056 0.944
#> SRR1818506 1 0.8813 0.5713 0.700 0.300
#> SRR1818505 1 0.0376 0.8962 0.996 0.004
#> SRR1818503 1 0.0938 0.8944 0.988 0.012
#> SRR1818504 1 0.9963 -0.0971 0.536 0.464
#> SRR1818502 1 0.0000 0.8968 1.000 0.000
#> SRR1818498 1 0.3733 0.8841 0.928 0.072
#> SRR1818500 2 0.9833 0.4722 0.424 0.576
#> SRR1818501 1 0.7815 0.6817 0.768 0.232
#> SRR1818499 1 0.1184 0.8931 0.984 0.016
#> SRR1818496 2 0.9944 0.4406 0.456 0.544
#> SRR1818494 1 0.0000 0.8968 1.000 0.000
#> SRR1818495 1 0.2236 0.8924 0.964 0.036
#> SRR1818493 1 0.3733 0.8841 0.928 0.072
#> SRR1818492 1 0.0376 0.8974 0.996 0.004
#> SRR1818491 1 0.2778 0.8831 0.952 0.048
#> SRR1818490 1 0.2236 0.8909 0.964 0.036
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1818497 2 0.9009 0.5860 0.236 0.560 0.204
#> SRR1818600 1 0.2846 0.8311 0.924 0.056 0.020
#> SRR1818599 2 0.5109 0.7651 0.212 0.780 0.008
#> SRR1818598 1 0.2663 0.8311 0.932 0.044 0.024
#> SRR1818597 1 0.3816 0.7623 0.852 0.148 0.000
#> SRR1818596 3 0.0592 0.9566 0.012 0.000 0.988
#> SRR1818595 1 0.2301 0.8314 0.936 0.060 0.004
#> SRR1818594 1 0.5763 0.5738 0.716 0.276 0.008
#> SRR1818593 3 0.0592 0.9566 0.012 0.000 0.988
#> SRR1818592 3 0.0592 0.9566 0.012 0.000 0.988
#> SRR1818591 1 0.5874 0.7407 0.796 0.088 0.116
#> SRR1818590 1 0.5639 0.7491 0.808 0.080 0.112
#> SRR1818589 3 0.0592 0.9566 0.012 0.000 0.988
#> SRR1818587 1 0.2681 0.8298 0.932 0.040 0.028
#> SRR1818586 1 0.5961 0.7379 0.792 0.096 0.112
#> SRR1818585 2 0.5371 0.6720 0.048 0.812 0.140
#> SRR1818584 1 0.2550 0.8297 0.936 0.040 0.024
#> SRR1818583 1 0.4465 0.7390 0.820 0.176 0.004
#> SRR1818588 1 0.2846 0.8309 0.924 0.056 0.020
#> SRR1818582 3 0.0592 0.9566 0.012 0.000 0.988
#> SRR1818581 1 0.5883 0.7411 0.796 0.092 0.112
#> SRR1818579 1 0.2527 0.8278 0.936 0.044 0.020
#> SRR1818578 2 0.7636 0.3943 0.396 0.556 0.048
#> SRR1818577 1 0.5961 0.7379 0.792 0.096 0.112
#> SRR1818580 1 0.8792 0.0772 0.492 0.392 0.116
#> SRR1818575 1 0.2926 0.8268 0.924 0.040 0.036
#> SRR1818574 1 0.6676 -0.1429 0.516 0.476 0.008
#> SRR1818576 1 0.4399 0.7126 0.812 0.188 0.000
#> SRR1818573 3 0.0592 0.9566 0.012 0.000 0.988
#> SRR1818572 1 0.3589 0.8332 0.900 0.048 0.052
#> SRR1818571 1 0.5292 0.7201 0.800 0.028 0.172
#> SRR1818570 1 0.4291 0.7263 0.820 0.180 0.000
#> SRR1818568 1 0.3369 0.8235 0.908 0.052 0.040
#> SRR1818567 1 0.5954 0.7373 0.792 0.092 0.116
#> SRR1818566 2 0.5109 0.7651 0.212 0.780 0.008
#> SRR1818569 2 0.5371 0.6720 0.048 0.812 0.140
#> SRR1818565 2 0.5109 0.7651 0.212 0.780 0.008
#> SRR1818564 1 0.4345 0.7746 0.848 0.136 0.016
#> SRR1818563 3 0.5551 0.6005 0.224 0.016 0.760
#> SRR1818561 2 0.5109 0.7651 0.212 0.780 0.008
#> SRR1818560 1 0.4605 0.6887 0.796 0.204 0.000
#> SRR1818559 3 0.0592 0.9566 0.012 0.000 0.988
#> SRR1818562 1 0.1031 0.8326 0.976 0.000 0.024
#> SRR1818558 1 0.2743 0.8285 0.928 0.052 0.020
#> SRR1818556 1 0.3502 0.8147 0.896 0.084 0.020
#> SRR1818557 3 0.0592 0.9566 0.012 0.000 0.988
#> SRR1818555 1 0.5883 0.7411 0.796 0.092 0.112
#> SRR1818553 1 0.5558 0.7250 0.800 0.048 0.152
#> SRR1818552 1 0.5954 0.7373 0.792 0.092 0.116
#> SRR1818551 1 0.2434 0.8284 0.940 0.036 0.024
#> SRR1818550 1 0.2903 0.8269 0.924 0.048 0.028
#> SRR1818554 3 0.0592 0.9566 0.012 0.000 0.988
#> SRR1818549 1 0.3765 0.8054 0.888 0.028 0.084
#> SRR1818548 3 0.0592 0.9566 0.012 0.000 0.988
#> SRR1818546 2 0.5371 0.6720 0.048 0.812 0.140
#> SRR1818547 3 0.3973 0.8258 0.088 0.032 0.880
#> SRR1818544 1 0.3722 0.8285 0.888 0.088 0.024
#> SRR1818543 1 0.3910 0.8074 0.876 0.104 0.020
#> SRR1818542 2 0.9240 0.5705 0.244 0.532 0.224
#> SRR1818545 1 0.3356 0.8213 0.908 0.036 0.056
#> SRR1818541 1 0.2173 0.8266 0.944 0.048 0.008
#> SRR1818539 1 0.5938 0.6242 0.732 0.248 0.020
#> SRR1818540 1 0.5954 0.7373 0.792 0.092 0.116
#> SRR1818536 1 0.2527 0.8307 0.936 0.044 0.020
#> SRR1818535 1 0.6661 0.1701 0.588 0.400 0.012
#> SRR1818534 3 0.0592 0.9566 0.012 0.000 0.988
#> SRR1818538 1 0.4995 0.7687 0.840 0.068 0.092
#> SRR1818537 1 0.2176 0.8306 0.948 0.032 0.020
#> SRR1818533 1 0.2550 0.8293 0.936 0.040 0.024
#> SRR1818532 1 0.2176 0.8301 0.948 0.032 0.020
#> SRR1818531 1 0.2663 0.8304 0.932 0.044 0.024
#> SRR1818530 2 0.5371 0.6720 0.048 0.812 0.140
#> SRR1818529 2 0.9106 0.5782 0.244 0.548 0.208
#> SRR1818528 1 0.4485 0.7717 0.844 0.136 0.020
#> SRR1818527 1 0.3181 0.8307 0.912 0.064 0.024
#> SRR1818526 3 0.4092 0.8212 0.088 0.036 0.876
#> SRR1818525 1 0.3722 0.8301 0.888 0.088 0.024
#> SRR1818523 2 0.5109 0.7651 0.212 0.780 0.008
#> SRR1818524 3 0.0592 0.9566 0.012 0.000 0.988
#> SRR1818522 1 0.1289 0.8312 0.968 0.032 0.000
#> SRR1818521 1 0.5954 0.7373 0.792 0.092 0.116
#> SRR1818520 1 0.6322 0.7312 0.772 0.120 0.108
#> SRR1818518 1 0.4452 0.7104 0.808 0.192 0.000
#> SRR1818519 3 0.1636 0.9389 0.016 0.020 0.964
#> SRR1818517 1 0.5883 0.7411 0.796 0.092 0.112
#> SRR1818516 2 0.5109 0.7651 0.212 0.780 0.008
#> SRR1818515 3 0.0592 0.9566 0.012 0.000 0.988
#> SRR1818514 2 0.5371 0.6720 0.048 0.812 0.140
#> SRR1818513 1 0.5954 0.7373 0.792 0.092 0.116
#> SRR1818512 2 0.5371 0.6720 0.048 0.812 0.140
#> SRR1818510 1 0.5954 0.7373 0.792 0.092 0.116
#> SRR1818511 1 0.0661 0.8277 0.988 0.008 0.004
#> SRR1818508 1 0.2414 0.8316 0.940 0.040 0.020
#> SRR1818509 1 0.5961 0.7379 0.792 0.096 0.112
#> SRR1818507 3 0.0983 0.9512 0.016 0.004 0.980
#> SRR1818506 1 0.5536 0.7284 0.804 0.052 0.144
#> SRR1818505 1 0.3234 0.8295 0.908 0.072 0.020
#> SRR1818503 1 0.2651 0.8229 0.928 0.060 0.012
#> SRR1818504 2 0.7465 0.6912 0.272 0.656 0.072
#> SRR1818502 1 0.2636 0.8307 0.932 0.048 0.020
#> SRR1818498 1 0.6322 0.7312 0.772 0.120 0.108
#> SRR1818500 2 0.6854 0.7163 0.136 0.740 0.124
#> SRR1818501 2 0.5109 0.7651 0.212 0.780 0.008
#> SRR1818499 1 0.4063 0.8068 0.868 0.112 0.020
#> SRR1818496 2 0.9040 0.5853 0.240 0.556 0.204
#> SRR1818494 1 0.2050 0.8315 0.952 0.028 0.020
#> SRR1818495 1 0.1647 0.8286 0.960 0.036 0.004
#> SRR1818493 1 0.5961 0.7379 0.792 0.096 0.112
#> SRR1818492 1 0.3134 0.8255 0.916 0.052 0.032
#> SRR1818491 1 0.3461 0.8301 0.900 0.076 0.024
#> SRR1818490 1 0.4654 0.6870 0.792 0.208 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1818497 3 0.8847 0.358 0.276 0.264 0.408 0.052
#> SRR1818600 1 0.3159 0.755 0.896 0.052 0.036 0.016
#> SRR1818599 3 0.6832 0.528 0.388 0.072 0.528 0.012
#> SRR1818598 1 0.4554 0.727 0.812 0.132 0.040 0.016
#> SRR1818597 1 0.2125 0.735 0.920 0.004 0.076 0.000
#> SRR1818596 4 0.0707 0.938 0.020 0.000 0.000 0.980
#> SRR1818595 1 0.2843 0.736 0.892 0.020 0.088 0.000
#> SRR1818594 1 0.5093 0.440 0.640 0.012 0.348 0.000
#> SRR1818593 4 0.0707 0.938 0.020 0.000 0.000 0.980
#> SRR1818592 4 0.0707 0.938 0.020 0.000 0.000 0.980
#> SRR1818591 2 0.2125 0.982 0.076 0.920 0.004 0.000
#> SRR1818590 2 0.2888 0.916 0.124 0.872 0.004 0.000
#> SRR1818589 4 0.0707 0.938 0.020 0.000 0.000 0.980
#> SRR1818587 1 0.5997 0.544 0.592 0.368 0.028 0.012
#> SRR1818586 2 0.1792 0.988 0.068 0.932 0.000 0.000
#> SRR1818585 3 0.2731 0.593 0.032 0.048 0.912 0.008
#> SRR1818584 1 0.1452 0.764 0.956 0.036 0.000 0.008
#> SRR1818583 1 0.2773 0.710 0.880 0.004 0.116 0.000
#> SRR1818588 1 0.5279 0.674 0.736 0.192 0.072 0.000
#> SRR1818582 4 0.0817 0.936 0.024 0.000 0.000 0.976
#> SRR1818581 2 0.2053 0.985 0.072 0.924 0.004 0.000
#> SRR1818579 1 0.1584 0.763 0.952 0.036 0.000 0.012
#> SRR1818578 1 0.4877 0.350 0.592 0.000 0.408 0.000
#> SRR1818577 2 0.1867 0.985 0.072 0.928 0.000 0.000
#> SRR1818580 1 0.7124 0.143 0.504 0.028 0.404 0.064
#> SRR1818575 1 0.5980 0.547 0.592 0.364 0.040 0.004
#> SRR1818574 1 0.6502 -0.301 0.528 0.048 0.412 0.012
#> SRR1818576 1 0.0524 0.756 0.988 0.004 0.008 0.000
#> SRR1818573 4 0.0707 0.938 0.020 0.000 0.000 0.980
#> SRR1818572 1 0.1722 0.763 0.944 0.048 0.000 0.008
#> SRR1818571 1 0.6724 0.548 0.560 0.364 0.056 0.020
#> SRR1818570 1 0.1576 0.750 0.948 0.004 0.048 0.000
#> SRR1818568 1 0.5980 0.547 0.592 0.364 0.040 0.004
#> SRR1818567 2 0.1792 0.988 0.068 0.932 0.000 0.000
#> SRR1818566 3 0.6926 0.550 0.368 0.068 0.544 0.020
#> SRR1818569 3 0.2731 0.593 0.032 0.048 0.912 0.008
#> SRR1818565 3 0.6926 0.550 0.368 0.068 0.544 0.020
#> SRR1818564 1 0.0592 0.759 0.984 0.000 0.016 0.000
#> SRR1818563 4 0.6019 0.552 0.236 0.040 0.032 0.692
#> SRR1818561 3 0.6926 0.550 0.368 0.068 0.544 0.020
#> SRR1818560 1 0.0524 0.756 0.988 0.004 0.008 0.000
#> SRR1818559 4 0.0707 0.938 0.020 0.000 0.000 0.980
#> SRR1818562 1 0.3982 0.691 0.776 0.220 0.000 0.004
#> SRR1818558 1 0.0937 0.763 0.976 0.012 0.012 0.000
#> SRR1818556 1 0.0672 0.757 0.984 0.000 0.008 0.008
#> SRR1818557 4 0.0707 0.938 0.020 0.000 0.000 0.980
#> SRR1818555 2 0.2053 0.985 0.072 0.924 0.004 0.000
#> SRR1818553 1 0.6518 0.553 0.568 0.364 0.056 0.012
#> SRR1818552 2 0.1792 0.988 0.068 0.932 0.000 0.000
#> SRR1818551 1 0.5728 0.557 0.600 0.364 0.036 0.000
#> SRR1818550 1 0.6015 0.537 0.592 0.368 0.016 0.024
#> SRR1818554 4 0.0707 0.938 0.020 0.000 0.000 0.980
#> SRR1818549 1 0.6348 0.552 0.568 0.368 0.060 0.004
#> SRR1818548 4 0.0707 0.938 0.020 0.000 0.000 0.980
#> SRR1818546 3 0.2731 0.593 0.032 0.048 0.912 0.008
#> SRR1818547 4 0.3994 0.771 0.140 0.004 0.028 0.828
#> SRR1818544 1 0.1543 0.760 0.956 0.008 0.032 0.004
#> SRR1818543 1 0.1489 0.755 0.952 0.004 0.044 0.000
#> SRR1818542 3 0.8892 0.360 0.276 0.260 0.408 0.056
#> SRR1818545 1 0.6455 0.533 0.576 0.364 0.036 0.024
#> SRR1818541 1 0.1059 0.762 0.972 0.012 0.016 0.000
#> SRR1818539 1 0.6228 0.437 0.604 0.052 0.336 0.008
#> SRR1818540 2 0.1792 0.988 0.068 0.932 0.000 0.000
#> SRR1818536 1 0.0336 0.757 0.992 0.000 0.000 0.008
#> SRR1818535 1 0.3257 0.678 0.844 0.004 0.152 0.000
#> SRR1818534 4 0.0707 0.938 0.020 0.000 0.000 0.980
#> SRR1818538 2 0.2777 0.936 0.104 0.888 0.004 0.004
#> SRR1818537 1 0.0657 0.757 0.984 0.004 0.000 0.012
#> SRR1818533 1 0.5321 0.661 0.704 0.256 0.036 0.004
#> SRR1818532 1 0.5169 0.648 0.696 0.272 0.032 0.000
#> SRR1818531 1 0.1452 0.764 0.956 0.036 0.000 0.008
#> SRR1818530 3 0.2731 0.593 0.032 0.048 0.912 0.008
#> SRR1818529 3 0.8978 0.361 0.272 0.256 0.408 0.064
#> SRR1818528 1 0.0000 0.757 1.000 0.000 0.000 0.000
#> SRR1818527 1 0.1297 0.764 0.964 0.016 0.020 0.000
#> SRR1818526 4 0.4095 0.759 0.148 0.004 0.028 0.820
#> SRR1818525 1 0.1042 0.761 0.972 0.008 0.020 0.000
#> SRR1818523 3 0.6926 0.550 0.368 0.068 0.544 0.020
#> SRR1818524 4 0.0707 0.938 0.020 0.000 0.000 0.980
#> SRR1818522 1 0.2867 0.751 0.884 0.104 0.012 0.000
#> SRR1818521 2 0.1978 0.986 0.068 0.928 0.004 0.000
#> SRR1818520 2 0.1978 0.986 0.068 0.928 0.004 0.000
#> SRR1818518 1 0.0188 0.756 0.996 0.004 0.000 0.000
#> SRR1818519 4 0.2623 0.886 0.064 0.000 0.028 0.908
#> SRR1818517 2 0.1792 0.988 0.068 0.932 0.000 0.000
#> SRR1818516 3 0.6926 0.550 0.368 0.068 0.544 0.020
#> SRR1818515 4 0.0817 0.936 0.024 0.000 0.000 0.976
#> SRR1818514 3 0.2731 0.593 0.032 0.048 0.912 0.008
#> SRR1818513 2 0.1792 0.988 0.068 0.932 0.000 0.000
#> SRR1818512 3 0.2731 0.593 0.032 0.048 0.912 0.008
#> SRR1818510 2 0.1792 0.988 0.068 0.932 0.000 0.000
#> SRR1818511 1 0.4222 0.658 0.728 0.272 0.000 0.000
#> SRR1818508 1 0.1182 0.764 0.968 0.016 0.016 0.000
#> SRR1818509 2 0.1792 0.988 0.068 0.932 0.000 0.000
#> SRR1818507 4 0.2385 0.896 0.052 0.000 0.028 0.920
#> SRR1818506 1 0.6531 0.550 0.564 0.368 0.056 0.012
#> SRR1818505 1 0.1042 0.761 0.972 0.008 0.020 0.000
#> SRR1818503 1 0.0376 0.760 0.992 0.004 0.004 0.000
#> SRR1818504 3 0.7092 0.403 0.368 0.040 0.540 0.052
#> SRR1818502 1 0.2751 0.758 0.904 0.056 0.040 0.000
#> SRR1818498 2 0.2053 0.985 0.072 0.924 0.004 0.000
#> SRR1818500 3 0.7264 0.476 0.268 0.076 0.604 0.052
#> SRR1818501 3 0.6926 0.550 0.368 0.068 0.544 0.020
#> SRR1818499 1 0.0524 0.760 0.988 0.004 0.008 0.000
#> SRR1818496 3 0.8847 0.358 0.276 0.264 0.408 0.052
#> SRR1818494 1 0.2644 0.758 0.908 0.060 0.032 0.000
#> SRR1818495 1 0.5085 0.539 0.616 0.376 0.008 0.000
#> SRR1818493 2 0.1792 0.988 0.068 0.932 0.000 0.000
#> SRR1818492 1 0.6152 0.542 0.588 0.364 0.036 0.012
#> SRR1818491 1 0.1256 0.761 0.964 0.008 0.028 0.000
#> SRR1818490 1 0.0524 0.754 0.988 0.004 0.008 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1818497 1 0.4060 0.839 0.812 0.032 0.000 0.036 0.120
#> SRR1818600 1 0.0404 0.943 0.988 0.000 0.000 0.012 0.000
#> SRR1818599 3 0.1106 0.947 0.024 0.000 0.964 0.000 0.012
#> SRR1818598 1 0.0693 0.942 0.980 0.000 0.000 0.008 0.012
#> SRR1818597 1 0.0000 0.943 1.000 0.000 0.000 0.000 0.000
#> SRR1818596 4 0.0162 0.964 0.004 0.000 0.000 0.996 0.000
#> SRR1818595 1 0.0000 0.943 1.000 0.000 0.000 0.000 0.000
#> SRR1818594 1 0.0404 0.943 0.988 0.000 0.000 0.000 0.012
#> SRR1818593 4 0.0000 0.961 0.000 0.000 0.000 1.000 0.000
#> SRR1818592 4 0.0162 0.964 0.004 0.000 0.000 0.996 0.000
#> SRR1818591 2 0.0000 0.927 0.000 1.000 0.000 0.000 0.000
#> SRR1818590 2 0.2773 0.721 0.164 0.836 0.000 0.000 0.000
#> SRR1818589 4 0.0000 0.961 0.000 0.000 0.000 1.000 0.000
#> SRR1818587 1 0.2115 0.912 0.916 0.068 0.008 0.000 0.008
#> SRR1818586 2 0.0000 0.927 0.000 1.000 0.000 0.000 0.000
#> SRR1818585 5 0.0000 1.000 0.000 0.000 0.000 0.000 1.000
#> SRR1818584 1 0.0609 0.940 0.980 0.000 0.000 0.020 0.000
#> SRR1818583 1 0.0000 0.943 1.000 0.000 0.000 0.000 0.000
#> SRR1818588 1 0.0566 0.941 0.984 0.012 0.004 0.000 0.000
#> SRR1818582 4 0.0162 0.964 0.004 0.000 0.000 0.996 0.000
#> SRR1818581 2 0.0000 0.927 0.000 1.000 0.000 0.000 0.000
#> SRR1818579 1 0.0404 0.943 0.988 0.000 0.000 0.012 0.000
#> SRR1818578 1 0.2325 0.903 0.904 0.000 0.000 0.028 0.068
#> SRR1818577 2 0.0000 0.927 0.000 1.000 0.000 0.000 0.000
#> SRR1818580 1 0.3027 0.886 0.876 0.012 0.000 0.040 0.072
#> SRR1818575 1 0.1877 0.915 0.924 0.064 0.012 0.000 0.000
#> SRR1818574 1 0.4067 0.648 0.692 0.000 0.300 0.000 0.008
#> SRR1818576 1 0.0000 0.943 1.000 0.000 0.000 0.000 0.000
#> SRR1818573 4 0.0000 0.961 0.000 0.000 0.000 1.000 0.000
#> SRR1818572 1 0.1168 0.933 0.960 0.008 0.000 0.032 0.000
#> SRR1818571 1 0.3239 0.847 0.828 0.012 0.156 0.004 0.000
#> SRR1818570 1 0.0000 0.943 1.000 0.000 0.000 0.000 0.000
#> SRR1818568 1 0.1764 0.916 0.928 0.064 0.008 0.000 0.000
#> SRR1818567 2 0.0000 0.927 0.000 1.000 0.000 0.000 0.000
#> SRR1818566 3 0.0404 0.991 0.000 0.000 0.988 0.000 0.012
#> SRR1818569 5 0.0000 1.000 0.000 0.000 0.000 0.000 1.000
#> SRR1818565 3 0.0404 0.991 0.000 0.000 0.988 0.000 0.012
#> SRR1818564 1 0.0000 0.943 1.000 0.000 0.000 0.000 0.000
#> SRR1818563 1 0.4284 0.837 0.812 0.012 0.044 0.108 0.024
#> SRR1818561 3 0.0404 0.991 0.000 0.000 0.988 0.000 0.012
#> SRR1818560 1 0.0162 0.944 0.996 0.000 0.004 0.000 0.000
#> SRR1818559 4 0.0162 0.964 0.004 0.000 0.000 0.996 0.000
#> SRR1818562 1 0.0566 0.942 0.984 0.012 0.000 0.004 0.000
#> SRR1818558 1 0.0000 0.943 1.000 0.000 0.000 0.000 0.000
#> SRR1818556 1 0.0162 0.943 0.996 0.000 0.000 0.004 0.000
#> SRR1818557 4 0.0162 0.964 0.004 0.000 0.000 0.996 0.000
#> SRR1818555 2 0.0000 0.927 0.000 1.000 0.000 0.000 0.000
#> SRR1818553 1 0.3081 0.849 0.832 0.012 0.156 0.000 0.000
#> SRR1818552 2 0.0000 0.927 0.000 1.000 0.000 0.000 0.000
#> SRR1818551 1 0.1502 0.922 0.940 0.056 0.000 0.000 0.004
#> SRR1818550 1 0.1924 0.915 0.924 0.064 0.008 0.004 0.000
#> SRR1818554 4 0.0000 0.961 0.000 0.000 0.000 1.000 0.000
#> SRR1818549 1 0.3081 0.849 0.832 0.012 0.156 0.000 0.000
#> SRR1818548 4 0.0162 0.964 0.004 0.000 0.000 0.996 0.000
#> SRR1818546 5 0.0000 1.000 0.000 0.000 0.000 0.000 1.000
#> SRR1818547 1 0.5156 0.698 0.700 0.020 0.060 0.220 0.000
#> SRR1818544 1 0.0510 0.941 0.984 0.000 0.000 0.016 0.000
#> SRR1818543 1 0.0000 0.943 1.000 0.000 0.000 0.000 0.000
#> SRR1818542 1 0.4060 0.839 0.812 0.032 0.000 0.036 0.120
#> SRR1818545 1 0.2084 0.914 0.920 0.064 0.008 0.004 0.004
#> SRR1818541 1 0.0000 0.943 1.000 0.000 0.000 0.000 0.000
#> SRR1818539 1 0.0671 0.941 0.980 0.000 0.004 0.000 0.016
#> SRR1818540 2 0.0000 0.927 0.000 1.000 0.000 0.000 0.000
#> SRR1818536 1 0.0162 0.943 0.996 0.000 0.000 0.004 0.000
#> SRR1818535 1 0.0404 0.943 0.988 0.000 0.000 0.000 0.012
#> SRR1818534 4 0.0162 0.964 0.004 0.000 0.000 0.996 0.000
#> SRR1818538 2 0.3521 0.596 0.232 0.764 0.000 0.004 0.000
#> SRR1818537 1 0.0162 0.943 0.996 0.000 0.000 0.004 0.000
#> SRR1818533 1 0.0324 0.944 0.992 0.004 0.000 0.000 0.004
#> SRR1818532 1 0.0290 0.943 0.992 0.008 0.000 0.000 0.000
#> SRR1818531 1 0.0510 0.941 0.984 0.000 0.000 0.016 0.000
#> SRR1818530 5 0.0000 1.000 0.000 0.000 0.000 0.000 1.000
#> SRR1818529 1 0.4209 0.833 0.804 0.032 0.000 0.044 0.120
#> SRR1818528 1 0.0000 0.943 1.000 0.000 0.000 0.000 0.000
#> SRR1818527 1 0.0290 0.943 0.992 0.000 0.000 0.008 0.000
#> SRR1818526 1 0.4652 0.751 0.744 0.012 0.056 0.188 0.000
#> SRR1818525 1 0.0609 0.939 0.980 0.000 0.000 0.020 0.000
#> SRR1818523 3 0.0404 0.991 0.000 0.000 0.988 0.000 0.012
#> SRR1818524 4 0.0162 0.964 0.004 0.000 0.000 0.996 0.000
#> SRR1818522 1 0.0162 0.943 0.996 0.004 0.000 0.000 0.000
#> SRR1818521 2 0.0000 0.927 0.000 1.000 0.000 0.000 0.000
#> SRR1818520 2 0.0162 0.924 0.004 0.996 0.000 0.000 0.000
#> SRR1818518 1 0.0000 0.943 1.000 0.000 0.000 0.000 0.000
#> SRR1818519 4 0.4067 0.696 0.132 0.016 0.048 0.804 0.000
#> SRR1818517 2 0.2424 0.772 0.132 0.868 0.000 0.000 0.000
#> SRR1818516 3 0.0404 0.991 0.000 0.000 0.988 0.000 0.012
#> SRR1818515 4 0.0324 0.961 0.004 0.004 0.000 0.992 0.000
#> SRR1818514 5 0.0000 1.000 0.000 0.000 0.000 0.000 1.000
#> SRR1818513 2 0.0000 0.927 0.000 1.000 0.000 0.000 0.000
#> SRR1818512 5 0.0000 1.000 0.000 0.000 0.000 0.000 1.000
#> SRR1818510 2 0.0000 0.927 0.000 1.000 0.000 0.000 0.000
#> SRR1818511 1 0.0404 0.941 0.988 0.012 0.000 0.000 0.000
#> SRR1818508 1 0.0162 0.943 0.996 0.000 0.000 0.004 0.000
#> SRR1818509 2 0.2329 0.783 0.124 0.876 0.000 0.000 0.000
#> SRR1818507 4 0.3248 0.820 0.064 0.020 0.048 0.868 0.000
#> SRR1818506 1 0.3081 0.849 0.832 0.012 0.156 0.000 0.000
#> SRR1818505 1 0.0162 0.943 0.996 0.000 0.000 0.004 0.000
#> SRR1818503 1 0.0000 0.943 1.000 0.000 0.000 0.000 0.000
#> SRR1818504 1 0.3071 0.881 0.872 0.012 0.000 0.036 0.080
#> SRR1818502 1 0.0000 0.943 1.000 0.000 0.000 0.000 0.000
#> SRR1818498 2 0.0162 0.924 0.004 0.996 0.000 0.000 0.000
#> SRR1818500 1 0.3605 0.853 0.832 0.012 0.000 0.036 0.120
#> SRR1818501 3 0.0404 0.991 0.000 0.000 0.988 0.000 0.012
#> SRR1818499 1 0.0000 0.943 1.000 0.000 0.000 0.000 0.000
#> SRR1818496 1 0.4060 0.839 0.812 0.032 0.000 0.036 0.120
#> SRR1818494 1 0.0000 0.943 1.000 0.000 0.000 0.000 0.000
#> SRR1818495 1 0.1478 0.919 0.936 0.064 0.000 0.000 0.000
#> SRR1818493 2 0.0000 0.927 0.000 1.000 0.000 0.000 0.000
#> SRR1818492 1 0.1764 0.916 0.928 0.064 0.008 0.000 0.000
#> SRR1818491 1 0.0510 0.941 0.984 0.000 0.000 0.016 0.000
#> SRR1818490 1 0.0404 0.942 0.988 0.000 0.012 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1818497 6 0.2871 0.7365 0.100 0.008 0.000 0.016 0.012 0.864
#> SRR1818600 1 0.1141 0.9032 0.948 0.000 0.000 0.000 0.000 0.052
#> SRR1818599 3 0.0547 0.9591 0.020 0.000 0.980 0.000 0.000 0.000
#> SRR1818598 1 0.1714 0.8952 0.908 0.000 0.000 0.000 0.000 0.092
#> SRR1818597 1 0.0547 0.9074 0.980 0.000 0.000 0.000 0.000 0.020
#> SRR1818596 4 0.0000 0.9436 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818595 1 0.0632 0.9078 0.976 0.000 0.000 0.000 0.000 0.024
#> SRR1818594 1 0.0713 0.9078 0.972 0.000 0.000 0.000 0.000 0.028
#> SRR1818593 4 0.0146 0.9423 0.000 0.000 0.000 0.996 0.000 0.004
#> SRR1818592 4 0.0000 0.9436 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818591 2 0.0000 0.9574 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818590 2 0.2593 0.8345 0.008 0.844 0.000 0.000 0.000 0.148
#> SRR1818589 4 0.0146 0.9423 0.000 0.000 0.000 0.996 0.000 0.004
#> SRR1818587 1 0.3221 0.6732 0.736 0.000 0.000 0.000 0.000 0.264
#> SRR1818586 2 0.0000 0.9574 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818585 5 0.0000 1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818584 1 0.1444 0.8894 0.928 0.000 0.000 0.000 0.000 0.072
#> SRR1818583 1 0.0547 0.9074 0.980 0.000 0.000 0.000 0.000 0.020
#> SRR1818588 1 0.2003 0.8537 0.884 0.000 0.000 0.000 0.000 0.116
#> SRR1818582 4 0.0000 0.9436 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818581 2 0.0000 0.9574 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818579 1 0.1007 0.9046 0.956 0.000 0.000 0.000 0.000 0.044
#> SRR1818578 1 0.4151 0.0525 0.576 0.000 0.000 0.008 0.004 0.412
#> SRR1818577 2 0.0000 0.9574 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818580 1 0.4225 0.3943 0.664 0.004 0.000 0.020 0.004 0.308
#> SRR1818575 1 0.2416 0.8192 0.844 0.000 0.000 0.000 0.000 0.156
#> SRR1818574 6 0.5763 0.5395 0.332 0.000 0.188 0.000 0.000 0.480
#> SRR1818576 1 0.0547 0.9074 0.980 0.000 0.000 0.000 0.000 0.020
#> SRR1818573 4 0.0146 0.9423 0.000 0.000 0.000 0.996 0.000 0.004
#> SRR1818572 1 0.2884 0.7734 0.824 0.008 0.000 0.004 0.000 0.164
#> SRR1818571 6 0.3076 0.7016 0.240 0.000 0.000 0.000 0.000 0.760
#> SRR1818570 1 0.0547 0.9074 0.980 0.000 0.000 0.000 0.000 0.020
#> SRR1818568 1 0.2416 0.8192 0.844 0.000 0.000 0.000 0.000 0.156
#> SRR1818567 2 0.0000 0.9574 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818566 3 0.0000 0.9932 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818569 5 0.0000 1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818565 3 0.0000 0.9932 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818564 1 0.0547 0.9074 0.980 0.000 0.000 0.000 0.000 0.020
#> SRR1818563 6 0.2669 0.7279 0.156 0.000 0.000 0.008 0.000 0.836
#> SRR1818561 3 0.0000 0.9932 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818560 1 0.0547 0.9074 0.980 0.000 0.000 0.000 0.000 0.020
#> SRR1818559 4 0.0000 0.9436 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818562 1 0.2053 0.8808 0.888 0.000 0.000 0.004 0.000 0.108
#> SRR1818558 1 0.0632 0.9063 0.976 0.000 0.000 0.000 0.000 0.024
#> SRR1818556 1 0.0713 0.9070 0.972 0.000 0.000 0.000 0.000 0.028
#> SRR1818557 4 0.0000 0.9436 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818555 2 0.0000 0.9574 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818553 6 0.3240 0.6998 0.244 0.000 0.000 0.000 0.004 0.752
#> SRR1818552 2 0.0000 0.9574 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818551 1 0.1910 0.8754 0.892 0.000 0.000 0.000 0.000 0.108
#> SRR1818550 1 0.2631 0.8115 0.820 0.000 0.000 0.000 0.000 0.180
#> SRR1818554 4 0.0146 0.9423 0.000 0.000 0.000 0.996 0.000 0.004
#> SRR1818549 6 0.3833 0.3214 0.444 0.000 0.000 0.000 0.000 0.556
#> SRR1818548 4 0.0146 0.9423 0.000 0.000 0.000 0.996 0.000 0.004
#> SRR1818546 5 0.0000 1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818547 6 0.2474 0.6504 0.032 0.004 0.000 0.080 0.000 0.884
#> SRR1818544 1 0.1411 0.8925 0.936 0.000 0.000 0.004 0.000 0.060
#> SRR1818543 1 0.0632 0.9069 0.976 0.000 0.000 0.000 0.000 0.024
#> SRR1818542 6 0.2779 0.7365 0.100 0.008 0.000 0.012 0.012 0.868
#> SRR1818545 1 0.3050 0.7365 0.764 0.000 0.000 0.000 0.000 0.236
#> SRR1818541 1 0.0260 0.9090 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR1818539 1 0.1387 0.9068 0.932 0.000 0.000 0.000 0.000 0.068
#> SRR1818540 2 0.0000 0.9574 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818536 1 0.0713 0.9070 0.972 0.000 0.000 0.000 0.000 0.028
#> SRR1818535 1 0.0790 0.9081 0.968 0.000 0.000 0.000 0.000 0.032
#> SRR1818534 4 0.0000 0.9436 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818538 2 0.2706 0.8224 0.008 0.832 0.000 0.000 0.000 0.160
#> SRR1818537 1 0.0547 0.9097 0.980 0.000 0.000 0.000 0.000 0.020
#> SRR1818533 1 0.1444 0.8906 0.928 0.000 0.000 0.000 0.000 0.072
#> SRR1818532 1 0.1075 0.9034 0.952 0.000 0.000 0.000 0.000 0.048
#> SRR1818531 1 0.1327 0.8948 0.936 0.000 0.000 0.000 0.000 0.064
#> SRR1818530 5 0.0000 1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818529 6 0.2779 0.7366 0.100 0.008 0.000 0.012 0.012 0.868
#> SRR1818528 1 0.0547 0.9074 0.980 0.000 0.000 0.000 0.000 0.020
#> SRR1818527 1 0.1219 0.8987 0.948 0.000 0.000 0.004 0.000 0.048
#> SRR1818526 6 0.2401 0.6712 0.044 0.004 0.000 0.060 0.000 0.892
#> SRR1818525 1 0.1908 0.8676 0.900 0.000 0.000 0.004 0.000 0.096
#> SRR1818523 3 0.0000 0.9932 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818524 4 0.0000 0.9436 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818522 1 0.1327 0.8984 0.936 0.000 0.000 0.000 0.000 0.064
#> SRR1818521 2 0.0000 0.9574 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818520 2 0.0146 0.9553 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1818518 1 0.0547 0.9074 0.980 0.000 0.000 0.000 0.000 0.020
#> SRR1818519 4 0.4392 0.2005 0.016 0.004 0.000 0.504 0.000 0.476
#> SRR1818517 2 0.2362 0.8507 0.004 0.860 0.000 0.000 0.000 0.136
#> SRR1818516 3 0.0000 0.9932 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818515 4 0.0000 0.9436 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818514 5 0.0000 1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818513 2 0.0000 0.9574 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818512 5 0.0000 1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818510 2 0.0000 0.9574 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818511 1 0.1957 0.8738 0.888 0.000 0.000 0.000 0.000 0.112
#> SRR1818508 1 0.1219 0.9008 0.948 0.000 0.000 0.004 0.000 0.048
#> SRR1818509 2 0.2320 0.8543 0.004 0.864 0.000 0.000 0.000 0.132
#> SRR1818507 4 0.3219 0.7386 0.012 0.004 0.000 0.792 0.000 0.192
#> SRR1818506 6 0.3351 0.6688 0.288 0.000 0.000 0.000 0.000 0.712
#> SRR1818505 1 0.0935 0.9039 0.964 0.000 0.000 0.004 0.000 0.032
#> SRR1818503 1 0.0363 0.9087 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR1818504 6 0.4439 0.6741 0.276 0.004 0.000 0.024 0.016 0.680
#> SRR1818502 1 0.0937 0.9068 0.960 0.000 0.000 0.000 0.000 0.040
#> SRR1818498 2 0.0146 0.9553 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1818500 6 0.3657 0.7346 0.136 0.004 0.000 0.024 0.028 0.808
#> SRR1818501 3 0.0000 0.9932 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818499 1 0.0363 0.9090 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR1818496 6 0.2871 0.7365 0.100 0.008 0.000 0.016 0.012 0.864
#> SRR1818494 1 0.0865 0.9069 0.964 0.000 0.000 0.000 0.000 0.036
#> SRR1818495 1 0.2340 0.8400 0.852 0.000 0.000 0.000 0.000 0.148
#> SRR1818493 2 0.0000 0.9574 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818492 1 0.2454 0.8173 0.840 0.000 0.000 0.000 0.000 0.160
#> SRR1818491 1 0.1411 0.8925 0.936 0.000 0.000 0.004 0.000 0.060
#> SRR1818490 1 0.0547 0.9074 0.980 0.000 0.000 0.000 0.000 0.020
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 16183 rows and 111 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.804 0.912 0.950 0.4959 0.505 0.505
#> 3 3 0.597 0.739 0.817 0.2820 0.814 0.653
#> 4 4 0.889 0.882 0.945 0.1718 0.820 0.559
#> 5 5 0.640 0.720 0.852 0.0373 0.808 0.431
#> 6 6 0.712 0.632 0.801 0.0442 0.851 0.483
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1818497 2 0.2423 0.953 0.040 0.960
#> SRR1818600 1 0.8763 0.585 0.704 0.296
#> SRR1818599 1 0.0000 0.942 1.000 0.000
#> SRR1818598 1 0.9732 0.410 0.596 0.404
#> SRR1818597 1 0.0000 0.942 1.000 0.000
#> SRR1818596 1 0.2423 0.940 0.960 0.040
#> SRR1818595 1 0.0000 0.942 1.000 0.000
#> SRR1818594 1 0.0000 0.942 1.000 0.000
#> SRR1818593 1 0.2423 0.940 0.960 0.040
#> SRR1818592 1 0.2423 0.940 0.960 0.040
#> SRR1818591 2 0.0000 0.956 0.000 1.000
#> SRR1818590 2 0.0000 0.956 0.000 1.000
#> SRR1818589 1 0.2423 0.940 0.960 0.040
#> SRR1818587 2 0.6712 0.769 0.176 0.824
#> SRR1818586 2 0.0000 0.956 0.000 1.000
#> SRR1818585 2 0.2423 0.953 0.040 0.960
#> SRR1818584 2 0.2423 0.953 0.040 0.960
#> SRR1818583 1 0.0000 0.942 1.000 0.000
#> SRR1818588 1 0.2423 0.940 0.960 0.040
#> SRR1818582 1 0.2423 0.940 0.960 0.040
#> SRR1818581 2 0.0000 0.956 0.000 1.000
#> SRR1818579 2 0.6973 0.806 0.188 0.812
#> SRR1818578 2 0.6801 0.817 0.180 0.820
#> SRR1818577 2 0.0000 0.956 0.000 1.000
#> SRR1818580 2 0.2423 0.953 0.040 0.960
#> SRR1818575 1 0.2603 0.940 0.956 0.044
#> SRR1818574 1 0.0000 0.942 1.000 0.000
#> SRR1818576 1 0.0000 0.942 1.000 0.000
#> SRR1818573 1 0.2423 0.940 0.960 0.040
#> SRR1818572 2 0.2423 0.953 0.040 0.960
#> SRR1818571 1 0.2423 0.940 0.960 0.040
#> SRR1818570 1 0.0000 0.942 1.000 0.000
#> SRR1818568 1 0.2778 0.938 0.952 0.048
#> SRR1818567 2 0.0000 0.956 0.000 1.000
#> SRR1818566 1 0.0000 0.942 1.000 0.000
#> SRR1818569 2 0.2423 0.953 0.040 0.960
#> SRR1818565 1 0.0000 0.942 1.000 0.000
#> SRR1818564 1 0.0000 0.942 1.000 0.000
#> SRR1818563 1 0.6048 0.862 0.852 0.148
#> SRR1818561 1 0.0000 0.942 1.000 0.000
#> SRR1818560 1 0.0000 0.942 1.000 0.000
#> SRR1818559 1 0.2423 0.940 0.960 0.040
#> SRR1818562 2 0.0000 0.956 0.000 1.000
#> SRR1818558 2 0.2948 0.947 0.052 0.948
#> SRR1818556 1 0.0000 0.942 1.000 0.000
#> SRR1818557 1 0.2423 0.940 0.960 0.040
#> SRR1818555 2 0.0000 0.956 0.000 1.000
#> SRR1818553 1 0.2236 0.941 0.964 0.036
#> SRR1818552 2 0.0000 0.956 0.000 1.000
#> SRR1818551 1 0.6247 0.857 0.844 0.156
#> SRR1818550 2 0.0376 0.954 0.004 0.996
#> SRR1818554 1 0.2423 0.940 0.960 0.040
#> SRR1818549 1 0.0672 0.942 0.992 0.008
#> SRR1818548 1 0.2423 0.940 0.960 0.040
#> SRR1818546 2 0.2423 0.953 0.040 0.960
#> SRR1818547 1 0.2778 0.938 0.952 0.048
#> SRR1818544 2 0.2423 0.953 0.040 0.960
#> SRR1818543 1 0.1633 0.932 0.976 0.024
#> SRR1818542 2 0.1184 0.956 0.016 0.984
#> SRR1818545 1 0.9866 0.350 0.568 0.432
#> SRR1818541 1 0.6531 0.801 0.832 0.168
#> SRR1818539 1 0.0000 0.942 1.000 0.000
#> SRR1818540 2 0.0000 0.956 0.000 1.000
#> SRR1818536 1 0.0000 0.942 1.000 0.000
#> SRR1818535 1 0.0000 0.942 1.000 0.000
#> SRR1818534 1 0.2423 0.940 0.960 0.040
#> SRR1818538 2 0.0000 0.956 0.000 1.000
#> SRR1818537 1 0.5059 0.863 0.888 0.112
#> SRR1818533 2 0.9881 0.108 0.436 0.564
#> SRR1818532 1 0.2423 0.940 0.960 0.040
#> SRR1818531 2 0.2423 0.953 0.040 0.960
#> SRR1818530 2 0.2423 0.953 0.040 0.960
#> SRR1818529 2 0.1843 0.955 0.028 0.972
#> SRR1818528 1 0.0000 0.942 1.000 0.000
#> SRR1818527 2 0.2423 0.953 0.040 0.960
#> SRR1818526 1 0.2423 0.940 0.960 0.040
#> SRR1818525 2 0.2423 0.953 0.040 0.960
#> SRR1818523 1 0.0000 0.942 1.000 0.000
#> SRR1818524 1 0.2423 0.940 0.960 0.040
#> SRR1818522 1 0.6973 0.823 0.812 0.188
#> SRR1818521 2 0.0000 0.956 0.000 1.000
#> SRR1818520 2 0.0000 0.956 0.000 1.000
#> SRR1818518 1 0.0000 0.942 1.000 0.000
#> SRR1818519 1 0.2423 0.940 0.960 0.040
#> SRR1818517 2 0.0000 0.956 0.000 1.000
#> SRR1818516 1 0.0000 0.942 1.000 0.000
#> SRR1818515 1 0.2423 0.940 0.960 0.040
#> SRR1818514 2 0.2423 0.953 0.040 0.960
#> SRR1818513 2 0.0000 0.956 0.000 1.000
#> SRR1818512 2 0.2423 0.953 0.040 0.960
#> SRR1818510 2 0.0000 0.956 0.000 1.000
#> SRR1818511 2 0.0000 0.956 0.000 1.000
#> SRR1818508 2 0.2423 0.953 0.040 0.960
#> SRR1818509 2 0.0000 0.956 0.000 1.000
#> SRR1818507 1 0.2423 0.940 0.960 0.040
#> SRR1818506 1 0.2423 0.940 0.960 0.040
#> SRR1818505 2 0.6973 0.806 0.188 0.812
#> SRR1818503 1 0.4815 0.870 0.896 0.104
#> SRR1818504 1 0.0000 0.942 1.000 0.000
#> SRR1818502 1 0.6531 0.822 0.832 0.168
#> SRR1818498 2 0.0000 0.956 0.000 1.000
#> SRR1818500 2 0.2778 0.949 0.048 0.952
#> SRR1818501 1 0.0000 0.942 1.000 0.000
#> SRR1818499 1 0.0000 0.942 1.000 0.000
#> SRR1818496 2 0.1633 0.955 0.024 0.976
#> SRR1818494 1 0.6801 0.816 0.820 0.180
#> SRR1818495 2 0.0376 0.954 0.004 0.996
#> SRR1818493 2 0.0000 0.956 0.000 1.000
#> SRR1818492 1 0.7453 0.793 0.788 0.212
#> SRR1818491 2 0.2423 0.953 0.040 0.960
#> SRR1818490 1 0.0000 0.942 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1818497 3 0.0000 0.9310 0.000 0.000 1.000
#> SRR1818600 1 0.7340 0.6251 0.676 0.076 0.248
#> SRR1818599 1 0.6777 0.7765 0.616 0.364 0.020
#> SRR1818598 1 0.6981 0.5091 0.732 0.132 0.136
#> SRR1818597 1 0.6777 0.7765 0.616 0.364 0.020
#> SRR1818596 1 0.0237 0.7234 0.996 0.000 0.004
#> SRR1818595 1 0.5956 0.7751 0.720 0.264 0.016
#> SRR1818594 1 0.6777 0.7765 0.616 0.364 0.020
#> SRR1818593 1 0.0237 0.7234 0.996 0.000 0.004
#> SRR1818592 1 0.0237 0.7234 0.996 0.000 0.004
#> SRR1818591 2 0.5988 0.6822 0.000 0.632 0.368
#> SRR1818590 2 0.8117 0.7291 0.236 0.636 0.128
#> SRR1818589 1 0.0237 0.7234 0.996 0.000 0.004
#> SRR1818587 2 0.6026 0.6773 0.376 0.624 0.000
#> SRR1818586 2 0.5968 0.6871 0.000 0.636 0.364
#> SRR1818585 3 0.0000 0.9310 0.000 0.000 1.000
#> SRR1818584 3 0.0237 0.9292 0.000 0.004 0.996
#> SRR1818583 1 0.6777 0.7765 0.616 0.364 0.020
#> SRR1818588 1 0.3551 0.5773 0.868 0.132 0.000
#> SRR1818582 1 0.0237 0.7234 0.996 0.000 0.004
#> SRR1818581 2 0.5988 0.6822 0.000 0.632 0.368
#> SRR1818579 3 0.8173 -0.0581 0.420 0.072 0.508
#> SRR1818578 3 0.2066 0.8676 0.000 0.060 0.940
#> SRR1818577 2 0.5968 0.6871 0.000 0.636 0.364
#> SRR1818580 3 0.0000 0.9310 0.000 0.000 1.000
#> SRR1818575 1 0.5327 0.2361 0.728 0.272 0.000
#> SRR1818574 1 0.6648 0.7765 0.620 0.364 0.016
#> SRR1818576 1 0.6777 0.7765 0.616 0.364 0.020
#> SRR1818573 1 0.0237 0.7234 0.996 0.000 0.004
#> SRR1818572 3 0.0237 0.9292 0.000 0.004 0.996
#> SRR1818571 1 0.0000 0.7242 1.000 0.000 0.000
#> SRR1818570 1 0.6777 0.7765 0.616 0.364 0.020
#> SRR1818568 2 0.6280 0.5641 0.460 0.540 0.000
#> SRR1818567 2 0.5968 0.6871 0.000 0.636 0.364
#> SRR1818566 1 0.6777 0.7765 0.616 0.364 0.020
#> SRR1818569 3 0.0000 0.9310 0.000 0.000 1.000
#> SRR1818565 1 0.6777 0.7765 0.616 0.364 0.020
#> SRR1818564 1 0.6777 0.7765 0.616 0.364 0.020
#> SRR1818563 2 0.6126 0.6552 0.400 0.600 0.000
#> SRR1818561 1 0.6777 0.7765 0.616 0.364 0.020
#> SRR1818560 1 0.6777 0.7765 0.616 0.364 0.020
#> SRR1818559 1 0.0237 0.7234 0.996 0.000 0.004
#> SRR1818562 2 0.8255 0.7298 0.196 0.636 0.168
#> SRR1818558 3 0.4409 0.6682 0.172 0.004 0.824
#> SRR1818556 1 0.6738 0.7772 0.624 0.356 0.020
#> SRR1818557 1 0.0237 0.7234 0.996 0.000 0.004
#> SRR1818555 2 0.5988 0.6822 0.000 0.632 0.368
#> SRR1818553 1 0.0000 0.7242 1.000 0.000 0.000
#> SRR1818552 2 0.5968 0.6871 0.000 0.636 0.364
#> SRR1818551 2 0.6509 0.5250 0.472 0.524 0.004
#> SRR1818550 2 0.5968 0.6845 0.364 0.636 0.000
#> SRR1818554 1 0.0237 0.7234 0.996 0.000 0.004
#> SRR1818549 1 0.0000 0.7242 1.000 0.000 0.000
#> SRR1818548 1 0.0237 0.7234 0.996 0.000 0.004
#> SRR1818546 3 0.0000 0.9310 0.000 0.000 1.000
#> SRR1818547 2 0.6625 0.5999 0.440 0.552 0.008
#> SRR1818544 3 0.0237 0.9293 0.004 0.000 0.996
#> SRR1818543 1 0.8973 0.6771 0.500 0.364 0.136
#> SRR1818542 3 0.0237 0.9277 0.000 0.004 0.996
#> SRR1818545 2 0.6026 0.6774 0.376 0.624 0.000
#> SRR1818541 1 0.6777 0.7765 0.616 0.364 0.020
#> SRR1818539 1 0.6828 0.7768 0.656 0.312 0.032
#> SRR1818540 2 0.5968 0.6871 0.000 0.636 0.364
#> SRR1818536 1 0.5431 0.7757 0.716 0.284 0.000
#> SRR1818535 1 0.6777 0.7765 0.616 0.364 0.020
#> SRR1818534 1 0.0237 0.7234 0.996 0.000 0.004
#> SRR1818538 2 0.8255 0.7328 0.196 0.636 0.168
#> SRR1818537 1 0.6688 0.7768 0.664 0.308 0.028
#> SRR1818533 1 0.6843 0.4962 0.740 0.144 0.116
#> SRR1818532 1 0.0592 0.7278 0.988 0.012 0.000
#> SRR1818531 3 0.0237 0.9292 0.000 0.004 0.996
#> SRR1818530 3 0.0000 0.9310 0.000 0.000 1.000
#> SRR1818529 3 0.0661 0.9211 0.004 0.008 0.988
#> SRR1818528 1 0.6777 0.7765 0.616 0.364 0.020
#> SRR1818527 3 0.0747 0.9222 0.000 0.016 0.984
#> SRR1818526 1 0.5285 0.2999 0.752 0.244 0.004
#> SRR1818525 3 0.0000 0.9310 0.000 0.000 1.000
#> SRR1818523 1 0.6777 0.7765 0.616 0.364 0.020
#> SRR1818524 1 0.0237 0.7234 0.996 0.000 0.004
#> SRR1818522 1 0.6986 0.4585 0.688 0.256 0.056
#> SRR1818521 2 0.5968 0.6871 0.000 0.636 0.364
#> SRR1818520 2 0.5968 0.6871 0.000 0.636 0.364
#> SRR1818518 1 0.6777 0.7765 0.616 0.364 0.020
#> SRR1818519 1 0.0475 0.7204 0.992 0.004 0.004
#> SRR1818517 2 0.8249 0.7307 0.200 0.636 0.164
#> SRR1818516 1 0.6777 0.7765 0.616 0.364 0.020
#> SRR1818515 1 0.0237 0.7234 0.996 0.000 0.004
#> SRR1818514 3 0.0000 0.9310 0.000 0.000 1.000
#> SRR1818513 2 0.5968 0.6871 0.000 0.636 0.364
#> SRR1818512 3 0.0000 0.9310 0.000 0.000 1.000
#> SRR1818510 2 0.5968 0.6871 0.000 0.636 0.364
#> SRR1818511 2 0.8241 0.7323 0.204 0.636 0.160
#> SRR1818508 3 0.0237 0.9292 0.000 0.004 0.996
#> SRR1818509 2 0.8207 0.7319 0.216 0.636 0.148
#> SRR1818507 1 0.0237 0.7234 0.996 0.000 0.004
#> SRR1818506 1 0.0000 0.7242 1.000 0.000 0.000
#> SRR1818505 3 0.4700 0.7038 0.008 0.180 0.812
#> SRR1818503 1 0.7013 0.7724 0.608 0.364 0.028
#> SRR1818504 1 0.6899 0.7746 0.612 0.364 0.024
#> SRR1818502 1 0.5764 0.7233 0.800 0.124 0.076
#> SRR1818498 2 0.5968 0.6871 0.000 0.636 0.364
#> SRR1818500 3 0.0424 0.9257 0.000 0.008 0.992
#> SRR1818501 1 0.6777 0.7765 0.616 0.364 0.020
#> SRR1818499 1 0.6777 0.7765 0.616 0.364 0.020
#> SRR1818496 3 0.0592 0.9173 0.000 0.012 0.988
#> SRR1818494 1 0.5823 0.6933 0.792 0.144 0.064
#> SRR1818495 2 0.5968 0.6845 0.364 0.636 0.000
#> SRR1818493 2 0.5968 0.6871 0.000 0.636 0.364
#> SRR1818492 2 0.6026 0.6773 0.376 0.624 0.000
#> SRR1818491 3 0.0475 0.9270 0.004 0.004 0.992
#> SRR1818490 1 0.6189 0.7760 0.632 0.364 0.004
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1818497 3 0.0000 0.9303 0.000 0.000 1.000 0.000
#> SRR1818600 1 0.6999 0.5696 0.624 0.020 0.124 0.232
#> SRR1818599 1 0.1022 0.9178 0.968 0.000 0.000 0.032
#> SRR1818598 4 0.7429 0.2485 0.192 0.316 0.000 0.492
#> SRR1818597 1 0.0000 0.9240 1.000 0.000 0.000 0.000
#> SRR1818596 4 0.0188 0.9654 0.004 0.000 0.000 0.996
#> SRR1818595 1 0.1022 0.9139 0.968 0.000 0.000 0.032
#> SRR1818594 1 0.0188 0.9239 0.996 0.000 0.000 0.004
#> SRR1818593 4 0.0000 0.9655 0.000 0.000 0.000 1.000
#> SRR1818592 4 0.0188 0.9654 0.004 0.000 0.000 0.996
#> SRR1818591 2 0.0188 0.9494 0.000 0.996 0.004 0.000
#> SRR1818590 2 0.0000 0.9503 0.000 1.000 0.000 0.000
#> SRR1818589 4 0.0000 0.9655 0.000 0.000 0.000 1.000
#> SRR1818587 2 0.1022 0.9343 0.032 0.968 0.000 0.000
#> SRR1818586 2 0.0188 0.9494 0.000 0.996 0.004 0.000
#> SRR1818585 3 0.0000 0.9303 0.000 0.000 1.000 0.000
#> SRR1818584 3 0.0895 0.9228 0.020 0.004 0.976 0.000
#> SRR1818583 1 0.0000 0.9240 1.000 0.000 0.000 0.000
#> SRR1818588 1 0.2814 0.8160 0.868 0.132 0.000 0.000
#> SRR1818582 4 0.0188 0.9654 0.004 0.000 0.000 0.996
#> SRR1818581 2 0.0188 0.9494 0.000 0.996 0.004 0.000
#> SRR1818579 1 0.5463 -0.0247 0.504 0.004 0.484 0.008
#> SRR1818578 3 0.0000 0.9303 0.000 0.000 1.000 0.000
#> SRR1818577 2 0.0000 0.9503 0.000 1.000 0.000 0.000
#> SRR1818580 3 0.0000 0.9303 0.000 0.000 1.000 0.000
#> SRR1818575 2 0.4459 0.7328 0.032 0.780 0.000 0.188
#> SRR1818574 1 0.1022 0.9178 0.968 0.000 0.000 0.032
#> SRR1818576 1 0.0000 0.9240 1.000 0.000 0.000 0.000
#> SRR1818573 4 0.0000 0.9655 0.000 0.000 0.000 1.000
#> SRR1818572 3 0.0000 0.9303 0.000 0.000 1.000 0.000
#> SRR1818571 4 0.0188 0.9637 0.004 0.000 0.000 0.996
#> SRR1818570 1 0.0000 0.9240 1.000 0.000 0.000 0.000
#> SRR1818568 2 0.1209 0.9327 0.032 0.964 0.000 0.004
#> SRR1818567 2 0.0000 0.9503 0.000 1.000 0.000 0.000
#> SRR1818566 1 0.1022 0.9178 0.968 0.000 0.000 0.032
#> SRR1818569 3 0.0000 0.9303 0.000 0.000 1.000 0.000
#> SRR1818565 1 0.1022 0.9178 0.968 0.000 0.000 0.032
#> SRR1818564 1 0.0188 0.9236 0.996 0.000 0.000 0.004
#> SRR1818563 4 0.1022 0.9414 0.000 0.032 0.000 0.968
#> SRR1818561 1 0.1022 0.9178 0.968 0.000 0.000 0.032
#> SRR1818560 1 0.0188 0.9236 0.996 0.000 0.000 0.004
#> SRR1818559 4 0.0188 0.9654 0.004 0.000 0.000 0.996
#> SRR1818562 2 0.0000 0.9503 0.000 1.000 0.000 0.000
#> SRR1818558 3 0.4722 0.5798 0.300 0.008 0.692 0.000
#> SRR1818556 1 0.0469 0.9237 0.988 0.000 0.000 0.012
#> SRR1818557 4 0.0000 0.9655 0.000 0.000 0.000 1.000
#> SRR1818555 2 0.0188 0.9494 0.000 0.996 0.004 0.000
#> SRR1818553 4 0.0592 0.9530 0.016 0.000 0.000 0.984
#> SRR1818552 2 0.0000 0.9503 0.000 1.000 0.000 0.000
#> SRR1818551 2 0.1929 0.9174 0.036 0.940 0.000 0.024
#> SRR1818550 2 0.0188 0.9489 0.004 0.996 0.000 0.000
#> SRR1818554 4 0.0000 0.9655 0.000 0.000 0.000 1.000
#> SRR1818549 1 0.4522 0.5949 0.680 0.000 0.000 0.320
#> SRR1818548 4 0.0000 0.9655 0.000 0.000 0.000 1.000
#> SRR1818546 3 0.0000 0.9303 0.000 0.000 1.000 0.000
#> SRR1818547 4 0.0188 0.9643 0.000 0.004 0.000 0.996
#> SRR1818544 3 0.1022 0.9190 0.032 0.000 0.968 0.000
#> SRR1818543 1 0.2125 0.8734 0.920 0.000 0.076 0.004
#> SRR1818542 3 0.0336 0.9281 0.008 0.000 0.992 0.000
#> SRR1818545 2 0.2489 0.8881 0.020 0.912 0.000 0.068
#> SRR1818541 1 0.0188 0.9230 0.996 0.004 0.000 0.000
#> SRR1818539 1 0.4581 0.7974 0.800 0.000 0.080 0.120
#> SRR1818540 2 0.0188 0.9494 0.000 0.996 0.004 0.000
#> SRR1818536 1 0.0592 0.9234 0.984 0.000 0.000 0.016
#> SRR1818535 1 0.0188 0.9242 0.996 0.000 0.000 0.004
#> SRR1818534 4 0.0188 0.9654 0.004 0.000 0.000 0.996
#> SRR1818538 2 0.0000 0.9503 0.000 1.000 0.000 0.000
#> SRR1818537 1 0.1716 0.8995 0.936 0.000 0.000 0.064
#> SRR1818533 2 0.6602 0.0838 0.080 0.484 0.000 0.436
#> SRR1818532 1 0.2714 0.8553 0.884 0.004 0.000 0.112
#> SRR1818531 3 0.1004 0.9208 0.024 0.004 0.972 0.000
#> SRR1818530 3 0.0000 0.9303 0.000 0.000 1.000 0.000
#> SRR1818529 3 0.2593 0.8327 0.000 0.004 0.892 0.104
#> SRR1818528 1 0.0000 0.9240 1.000 0.000 0.000 0.000
#> SRR1818527 3 0.4973 0.4793 0.348 0.008 0.644 0.000
#> SRR1818526 4 0.0336 0.9618 0.000 0.008 0.000 0.992
#> SRR1818525 3 0.0469 0.9272 0.012 0.000 0.988 0.000
#> SRR1818523 1 0.1022 0.9178 0.968 0.000 0.000 0.032
#> SRR1818524 4 0.0188 0.9654 0.004 0.000 0.000 0.996
#> SRR1818522 2 0.4522 0.5259 0.320 0.680 0.000 0.000
#> SRR1818521 2 0.0000 0.9503 0.000 1.000 0.000 0.000
#> SRR1818520 2 0.0188 0.9494 0.000 0.996 0.004 0.000
#> SRR1818518 1 0.0000 0.9240 1.000 0.000 0.000 0.000
#> SRR1818519 4 0.0188 0.9654 0.004 0.000 0.000 0.996
#> SRR1818517 2 0.0000 0.9503 0.000 1.000 0.000 0.000
#> SRR1818516 1 0.1022 0.9178 0.968 0.000 0.000 0.032
#> SRR1818515 4 0.0000 0.9655 0.000 0.000 0.000 1.000
#> SRR1818514 3 0.0000 0.9303 0.000 0.000 1.000 0.000
#> SRR1818513 2 0.0000 0.9503 0.000 1.000 0.000 0.000
#> SRR1818512 3 0.0000 0.9303 0.000 0.000 1.000 0.000
#> SRR1818510 2 0.0188 0.9494 0.000 0.996 0.004 0.000
#> SRR1818511 2 0.0921 0.9363 0.028 0.972 0.000 0.000
#> SRR1818508 3 0.1305 0.9147 0.036 0.004 0.960 0.000
#> SRR1818509 2 0.0000 0.9503 0.000 1.000 0.000 0.000
#> SRR1818507 4 0.0000 0.9655 0.000 0.000 0.000 1.000
#> SRR1818506 4 0.2530 0.8616 0.112 0.000 0.000 0.888
#> SRR1818505 3 0.4866 0.3417 0.404 0.000 0.596 0.000
#> SRR1818503 1 0.0000 0.9240 1.000 0.000 0.000 0.000
#> SRR1818504 1 0.0000 0.9240 1.000 0.000 0.000 0.000
#> SRR1818502 1 0.4378 0.7753 0.796 0.040 0.000 0.164
#> SRR1818498 2 0.0188 0.9494 0.000 0.996 0.004 0.000
#> SRR1818500 3 0.0000 0.9303 0.000 0.000 1.000 0.000
#> SRR1818501 1 0.1022 0.9178 0.968 0.000 0.000 0.032
#> SRR1818499 1 0.0000 0.9240 1.000 0.000 0.000 0.000
#> SRR1818496 3 0.0000 0.9303 0.000 0.000 1.000 0.000
#> SRR1818494 1 0.5332 0.7084 0.736 0.080 0.000 0.184
#> SRR1818495 2 0.0817 0.9394 0.024 0.976 0.000 0.000
#> SRR1818493 2 0.0000 0.9503 0.000 1.000 0.000 0.000
#> SRR1818492 2 0.1022 0.9343 0.032 0.968 0.000 0.000
#> SRR1818491 3 0.1576 0.9059 0.048 0.004 0.948 0.000
#> SRR1818490 1 0.0188 0.9236 0.996 0.000 0.000 0.004
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1818497 5 0.3266 0.7680 0.200 0.004 0.000 0.000 0.796
#> SRR1818600 1 0.3684 0.6357 0.788 0.000 0.004 0.192 0.016
#> SRR1818599 3 0.0000 0.8474 0.000 0.000 1.000 0.000 0.000
#> SRR1818598 1 0.3010 0.6591 0.824 0.004 0.000 0.172 0.000
#> SRR1818597 1 0.3983 0.4657 0.660 0.000 0.340 0.000 0.000
#> SRR1818596 4 0.0290 0.9165 0.008 0.000 0.000 0.992 0.000
#> SRR1818595 1 0.2377 0.7031 0.872 0.000 0.128 0.000 0.000
#> SRR1818594 1 0.3707 0.5563 0.716 0.000 0.284 0.000 0.000
#> SRR1818593 4 0.0000 0.9149 0.000 0.000 0.000 1.000 0.000
#> SRR1818592 4 0.0290 0.9165 0.008 0.000 0.000 0.992 0.000
#> SRR1818591 2 0.0000 0.9009 0.000 1.000 0.000 0.000 0.000
#> SRR1818590 2 0.2329 0.8351 0.124 0.876 0.000 0.000 0.000
#> SRR1818589 4 0.0000 0.9149 0.000 0.000 0.000 1.000 0.000
#> SRR1818587 1 0.3752 0.5345 0.708 0.292 0.000 0.000 0.000
#> SRR1818586 2 0.0000 0.9009 0.000 1.000 0.000 0.000 0.000
#> SRR1818585 5 0.0000 0.8283 0.000 0.000 0.000 0.000 1.000
#> SRR1818584 1 0.4383 0.0819 0.572 0.004 0.000 0.000 0.424
#> SRR1818583 3 0.3508 0.6540 0.252 0.000 0.748 0.000 0.000
#> SRR1818588 1 0.4002 0.6680 0.796 0.084 0.120 0.000 0.000
#> SRR1818582 4 0.0290 0.9165 0.008 0.000 0.000 0.992 0.000
#> SRR1818581 2 0.0000 0.9009 0.000 1.000 0.000 0.000 0.000
#> SRR1818579 1 0.4228 0.6389 0.788 0.000 0.004 0.108 0.100
#> SRR1818578 5 0.1270 0.8300 0.052 0.000 0.000 0.000 0.948
#> SRR1818577 2 0.2929 0.7161 0.180 0.820 0.000 0.000 0.000
#> SRR1818580 5 0.2891 0.7937 0.176 0.000 0.000 0.000 0.824
#> SRR1818575 1 0.3906 0.5701 0.744 0.240 0.000 0.016 0.000
#> SRR1818574 3 0.0000 0.8474 0.000 0.000 1.000 0.000 0.000
#> SRR1818576 1 0.3366 0.6239 0.768 0.000 0.232 0.000 0.000
#> SRR1818573 4 0.0000 0.9149 0.000 0.000 0.000 1.000 0.000
#> SRR1818572 5 0.4166 0.5945 0.348 0.004 0.000 0.000 0.648
#> SRR1818571 4 0.3452 0.6604 0.244 0.000 0.000 0.756 0.000
#> SRR1818570 3 0.4256 0.1818 0.436 0.000 0.564 0.000 0.000
#> SRR1818568 1 0.3305 0.6243 0.776 0.224 0.000 0.000 0.000
#> SRR1818567 2 0.0000 0.9009 0.000 1.000 0.000 0.000 0.000
#> SRR1818566 3 0.0000 0.8474 0.000 0.000 1.000 0.000 0.000
#> SRR1818569 5 0.0000 0.8283 0.000 0.000 0.000 0.000 1.000
#> SRR1818565 3 0.0000 0.8474 0.000 0.000 1.000 0.000 0.000
#> SRR1818564 1 0.1965 0.7261 0.904 0.000 0.096 0.000 0.000
#> SRR1818563 4 0.3487 0.7228 0.212 0.008 0.000 0.780 0.000
#> SRR1818561 3 0.0000 0.8474 0.000 0.000 1.000 0.000 0.000
#> SRR1818560 1 0.3452 0.6115 0.756 0.000 0.244 0.000 0.000
#> SRR1818559 4 0.0290 0.9165 0.008 0.000 0.000 0.992 0.000
#> SRR1818562 2 0.2971 0.7976 0.156 0.836 0.000 0.008 0.000
#> SRR1818558 1 0.1124 0.7320 0.960 0.000 0.004 0.000 0.036
#> SRR1818556 1 0.3704 0.6855 0.820 0.000 0.088 0.092 0.000
#> SRR1818557 4 0.0290 0.9165 0.008 0.000 0.000 0.992 0.000
#> SRR1818555 2 0.0000 0.9009 0.000 1.000 0.000 0.000 0.000
#> SRR1818553 4 0.3480 0.6200 0.248 0.000 0.000 0.752 0.000
#> SRR1818552 2 0.0162 0.8989 0.004 0.996 0.000 0.000 0.000
#> SRR1818551 1 0.2471 0.7015 0.864 0.136 0.000 0.000 0.000
#> SRR1818550 2 0.4562 0.0329 0.496 0.496 0.000 0.008 0.000
#> SRR1818554 4 0.0000 0.9149 0.000 0.000 0.000 1.000 0.000
#> SRR1818549 4 0.5703 0.1173 0.084 0.000 0.408 0.508 0.000
#> SRR1818548 4 0.0290 0.9165 0.008 0.000 0.000 0.992 0.000
#> SRR1818546 5 0.0000 0.8283 0.000 0.000 0.000 0.000 1.000
#> SRR1818547 4 0.2230 0.8225 0.116 0.000 0.000 0.884 0.000
#> SRR1818544 5 0.4264 0.4531 0.376 0.000 0.004 0.000 0.620
#> SRR1818543 1 0.2921 0.6906 0.856 0.000 0.020 0.000 0.124
#> SRR1818542 5 0.3333 0.7546 0.208 0.000 0.000 0.004 0.788
#> SRR1818545 1 0.5991 0.3767 0.564 0.288 0.000 0.148 0.000
#> SRR1818541 1 0.2020 0.7157 0.900 0.000 0.100 0.000 0.000
#> SRR1818539 1 0.4875 0.6289 0.732 0.000 0.004 0.124 0.140
#> SRR1818540 2 0.0000 0.9009 0.000 1.000 0.000 0.000 0.000
#> SRR1818536 3 0.5797 0.4295 0.276 0.000 0.592 0.132 0.000
#> SRR1818535 3 0.2561 0.7683 0.144 0.000 0.856 0.000 0.000
#> SRR1818534 4 0.0290 0.9165 0.008 0.000 0.000 0.992 0.000
#> SRR1818538 2 0.3132 0.7914 0.172 0.820 0.000 0.008 0.000
#> SRR1818537 1 0.3516 0.6648 0.812 0.000 0.020 0.164 0.004
#> SRR1818533 1 0.0324 0.7309 0.992 0.004 0.000 0.004 0.000
#> SRR1818532 1 0.2719 0.6846 0.852 0.000 0.144 0.004 0.000
#> SRR1818531 1 0.4310 0.2238 0.604 0.004 0.000 0.000 0.392
#> SRR1818530 5 0.0000 0.8283 0.000 0.000 0.000 0.000 1.000
#> SRR1818529 5 0.6380 0.4862 0.296 0.004 0.000 0.176 0.524
#> SRR1818528 1 0.3177 0.6456 0.792 0.000 0.208 0.000 0.000
#> SRR1818527 1 0.2970 0.6431 0.828 0.000 0.004 0.000 0.168
#> SRR1818526 4 0.1197 0.8872 0.048 0.000 0.000 0.952 0.000
#> SRR1818525 5 0.2179 0.8209 0.112 0.000 0.000 0.000 0.888
#> SRR1818523 3 0.0000 0.8474 0.000 0.000 1.000 0.000 0.000
#> SRR1818524 4 0.0290 0.9165 0.008 0.000 0.000 0.992 0.000
#> SRR1818522 1 0.3954 0.6736 0.772 0.192 0.036 0.000 0.000
#> SRR1818521 2 0.0794 0.8829 0.028 0.972 0.000 0.000 0.000
#> SRR1818520 2 0.0000 0.9009 0.000 1.000 0.000 0.000 0.000
#> SRR1818518 1 0.3395 0.6185 0.764 0.000 0.236 0.000 0.000
#> SRR1818519 4 0.0290 0.9165 0.008 0.000 0.000 0.992 0.000
#> SRR1818517 2 0.1792 0.8613 0.084 0.916 0.000 0.000 0.000
#> SRR1818516 3 0.0000 0.8474 0.000 0.000 1.000 0.000 0.000
#> SRR1818515 4 0.0000 0.9149 0.000 0.000 0.000 1.000 0.000
#> SRR1818514 5 0.0000 0.8283 0.000 0.000 0.000 0.000 1.000
#> SRR1818513 2 0.0000 0.9009 0.000 1.000 0.000 0.000 0.000
#> SRR1818512 5 0.0000 0.8283 0.000 0.000 0.000 0.000 1.000
#> SRR1818510 2 0.0000 0.9009 0.000 1.000 0.000 0.000 0.000
#> SRR1818511 2 0.3612 0.5737 0.268 0.732 0.000 0.000 0.000
#> SRR1818508 1 0.4367 0.2577 0.580 0.000 0.004 0.000 0.416
#> SRR1818509 2 0.1851 0.8584 0.088 0.912 0.000 0.000 0.000
#> SRR1818507 4 0.0000 0.9149 0.000 0.000 0.000 1.000 0.000
#> SRR1818506 1 0.5297 0.3625 0.580 0.000 0.060 0.360 0.000
#> SRR1818505 1 0.3863 0.5882 0.740 0.000 0.012 0.000 0.248
#> SRR1818503 1 0.2020 0.7165 0.900 0.000 0.100 0.000 0.000
#> SRR1818504 1 0.2732 0.6834 0.840 0.000 0.160 0.000 0.000
#> SRR1818502 1 0.0162 0.7303 0.996 0.004 0.000 0.000 0.000
#> SRR1818498 2 0.0000 0.9009 0.000 1.000 0.000 0.000 0.000
#> SRR1818500 5 0.0000 0.8283 0.000 0.000 0.000 0.000 1.000
#> SRR1818501 3 0.0000 0.8474 0.000 0.000 1.000 0.000 0.000
#> SRR1818499 1 0.1792 0.7251 0.916 0.000 0.084 0.000 0.000
#> SRR1818496 5 0.3550 0.7268 0.236 0.004 0.000 0.000 0.760
#> SRR1818494 1 0.0162 0.7303 0.996 0.004 0.000 0.000 0.000
#> SRR1818495 1 0.4192 0.2974 0.596 0.404 0.000 0.000 0.000
#> SRR1818493 2 0.0000 0.9009 0.000 1.000 0.000 0.000 0.000
#> SRR1818492 1 0.3487 0.6188 0.780 0.212 0.000 0.008 0.000
#> SRR1818491 1 0.3949 0.4693 0.696 0.000 0.004 0.000 0.300
#> SRR1818490 3 0.3395 0.6506 0.236 0.000 0.764 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1818497 1 0.4499 0.5412 0.652 0.000 0.000 0.000 0.288 0.060
#> SRR1818600 1 0.0937 0.6386 0.960 0.000 0.000 0.000 0.000 0.040
#> SRR1818599 3 0.0000 0.8041 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818598 1 0.0363 0.6566 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR1818597 6 0.5948 -0.1570 0.284 0.000 0.260 0.000 0.000 0.456
#> SRR1818596 4 0.0000 0.8797 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818595 1 0.3982 0.5431 0.536 0.000 0.004 0.000 0.000 0.460
#> SRR1818594 1 0.4717 0.5112 0.504 0.000 0.036 0.004 0.000 0.456
#> SRR1818593 4 0.0000 0.8797 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818592 4 0.0000 0.8797 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818591 2 0.0000 0.9535 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818590 6 0.5173 0.2422 0.092 0.388 0.000 0.000 0.000 0.520
#> SRR1818589 4 0.0146 0.8779 0.000 0.000 0.000 0.996 0.000 0.004
#> SRR1818587 6 0.0717 0.5647 0.016 0.008 0.000 0.000 0.000 0.976
#> SRR1818586 2 0.0000 0.9535 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818585 5 0.0000 0.8890 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818584 1 0.1285 0.6419 0.944 0.000 0.000 0.000 0.052 0.004
#> SRR1818583 6 0.5481 -0.1772 0.124 0.000 0.436 0.000 0.000 0.440
#> SRR1818588 6 0.1387 0.5452 0.068 0.000 0.000 0.000 0.000 0.932
#> SRR1818582 4 0.0000 0.8797 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818581 2 0.0000 0.9535 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818579 1 0.0865 0.6417 0.964 0.000 0.000 0.000 0.000 0.036
#> SRR1818578 5 0.4650 -0.2996 0.472 0.000 0.000 0.000 0.488 0.040
#> SRR1818577 2 0.3101 0.5954 0.244 0.756 0.000 0.000 0.000 0.000
#> SRR1818580 1 0.3309 0.4655 0.720 0.000 0.000 0.000 0.280 0.000
#> SRR1818575 6 0.2006 0.5863 0.104 0.004 0.000 0.000 0.000 0.892
#> SRR1818574 3 0.0000 0.8041 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818576 1 0.4399 0.5197 0.516 0.000 0.024 0.000 0.000 0.460
#> SRR1818573 4 0.0000 0.8797 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818572 1 0.2300 0.6108 0.856 0.000 0.000 0.000 0.144 0.000
#> SRR1818571 4 0.5256 0.3776 0.288 0.000 0.000 0.580 0.000 0.132
#> SRR1818570 3 0.5191 0.1080 0.088 0.000 0.456 0.000 0.000 0.456
#> SRR1818568 6 0.1471 0.5827 0.064 0.004 0.000 0.000 0.000 0.932
#> SRR1818567 2 0.0000 0.9535 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818566 3 0.0000 0.8041 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818569 5 0.0000 0.8890 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818565 3 0.0000 0.8041 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818564 1 0.4945 0.4768 0.604 0.000 0.092 0.000 0.000 0.304
#> SRR1818563 6 0.5651 0.3669 0.260 0.000 0.000 0.208 0.000 0.532
#> SRR1818561 3 0.0000 0.8041 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818560 1 0.4072 0.5477 0.544 0.000 0.008 0.000 0.000 0.448
#> SRR1818559 4 0.0000 0.8797 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818562 6 0.6067 0.3312 0.312 0.284 0.000 0.000 0.000 0.404
#> SRR1818558 1 0.1814 0.6806 0.900 0.000 0.000 0.000 0.000 0.100
#> SRR1818556 1 0.0603 0.6561 0.980 0.000 0.004 0.000 0.000 0.016
#> SRR1818557 4 0.0000 0.8797 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818555 2 0.0000 0.9535 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818553 4 0.4463 0.0818 0.028 0.000 0.000 0.516 0.000 0.456
#> SRR1818552 2 0.2300 0.7783 0.000 0.856 0.000 0.000 0.000 0.144
#> SRR1818551 6 0.2668 0.3844 0.168 0.004 0.000 0.000 0.000 0.828
#> SRR1818550 6 0.4945 0.5076 0.304 0.092 0.000 0.000 0.000 0.604
#> SRR1818554 4 0.0260 0.8763 0.000 0.000 0.000 0.992 0.000 0.008
#> SRR1818549 3 0.5296 0.5563 0.024 0.000 0.656 0.184 0.000 0.136
#> SRR1818548 4 0.0000 0.8797 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818546 5 0.0000 0.8890 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818547 4 0.5257 0.2466 0.104 0.000 0.000 0.524 0.000 0.372
#> SRR1818544 1 0.3050 0.5861 0.764 0.000 0.000 0.000 0.236 0.000
#> SRR1818543 1 0.3348 0.6601 0.768 0.000 0.000 0.000 0.016 0.216
#> SRR1818542 1 0.5121 0.5493 0.604 0.000 0.000 0.000 0.272 0.124
#> SRR1818545 6 0.3934 0.4814 0.376 0.008 0.000 0.000 0.000 0.616
#> SRR1818541 1 0.3843 0.5545 0.548 0.000 0.000 0.000 0.000 0.452
#> SRR1818539 1 0.4490 0.5677 0.720 0.000 0.004 0.000 0.128 0.148
#> SRR1818540 2 0.0000 0.9535 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818536 3 0.5806 0.1761 0.344 0.000 0.464 0.000 0.000 0.192
#> SRR1818535 3 0.2933 0.6522 0.004 0.000 0.796 0.000 0.000 0.200
#> SRR1818534 4 0.0000 0.8797 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818538 6 0.5684 0.4343 0.280 0.200 0.000 0.000 0.000 0.520
#> SRR1818537 1 0.0547 0.6560 0.980 0.000 0.000 0.000 0.000 0.020
#> SRR1818533 1 0.3592 0.6241 0.656 0.000 0.000 0.000 0.000 0.344
#> SRR1818532 6 0.1663 0.5199 0.088 0.000 0.000 0.000 0.000 0.912
#> SRR1818531 1 0.1501 0.6509 0.924 0.000 0.000 0.000 0.076 0.000
#> SRR1818530 5 0.0000 0.8890 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818529 1 0.1957 0.6384 0.888 0.000 0.000 0.000 0.112 0.000
#> SRR1818528 1 0.3843 0.5546 0.548 0.000 0.000 0.000 0.000 0.452
#> SRR1818527 1 0.0458 0.6555 0.984 0.000 0.000 0.000 0.000 0.016
#> SRR1818526 4 0.4084 0.3403 0.012 0.000 0.000 0.588 0.000 0.400
#> SRR1818525 1 0.3817 0.2993 0.568 0.000 0.000 0.000 0.432 0.000
#> SRR1818523 3 0.0000 0.8041 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818524 4 0.0000 0.8797 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818522 6 0.5987 0.0937 0.208 0.264 0.012 0.000 0.000 0.516
#> SRR1818521 2 0.1075 0.9020 0.048 0.952 0.000 0.000 0.000 0.000
#> SRR1818520 2 0.0000 0.9535 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818518 1 0.3975 0.5489 0.544 0.000 0.004 0.000 0.000 0.452
#> SRR1818519 4 0.1387 0.8311 0.000 0.000 0.000 0.932 0.000 0.068
#> SRR1818517 6 0.4578 0.1377 0.036 0.444 0.000 0.000 0.000 0.520
#> SRR1818516 3 0.0000 0.8041 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818515 4 0.0000 0.8797 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818514 5 0.0000 0.8890 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818513 2 0.0000 0.9535 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818512 5 0.0000 0.8890 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818510 2 0.0000 0.9535 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818511 6 0.4418 0.5491 0.100 0.192 0.000 0.000 0.000 0.708
#> SRR1818508 1 0.3330 0.5452 0.716 0.000 0.000 0.000 0.284 0.000
#> SRR1818509 6 0.4731 0.1727 0.048 0.428 0.000 0.000 0.000 0.524
#> SRR1818507 4 0.0146 0.8780 0.000 0.000 0.000 0.996 0.000 0.004
#> SRR1818506 6 0.4341 0.4008 0.068 0.000 0.004 0.216 0.000 0.712
#> SRR1818505 1 0.4421 0.6665 0.716 0.000 0.000 0.000 0.128 0.156
#> SRR1818503 1 0.3828 0.5607 0.560 0.000 0.000 0.000 0.000 0.440
#> SRR1818504 1 0.3851 0.5466 0.540 0.000 0.000 0.000 0.000 0.460
#> SRR1818502 1 0.3244 0.6612 0.732 0.000 0.000 0.000 0.000 0.268
#> SRR1818498 2 0.0000 0.9535 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818500 5 0.0820 0.8704 0.016 0.012 0.000 0.000 0.972 0.000
#> SRR1818501 3 0.0000 0.8041 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818499 1 0.3563 0.6203 0.664 0.000 0.000 0.000 0.000 0.336
#> SRR1818496 1 0.3690 0.5214 0.684 0.000 0.000 0.000 0.308 0.008
#> SRR1818494 1 0.3050 0.6719 0.764 0.000 0.000 0.000 0.000 0.236
#> SRR1818495 6 0.1643 0.5826 0.068 0.008 0.000 0.000 0.000 0.924
#> SRR1818493 2 0.0000 0.9535 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818492 6 0.2631 0.5754 0.180 0.000 0.000 0.000 0.000 0.820
#> SRR1818491 1 0.1610 0.6651 0.916 0.000 0.000 0.000 0.084 0.000
#> SRR1818490 3 0.3652 0.4911 0.004 0.000 0.672 0.000 0.000 0.324
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 16183 rows and 111 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 1.000 1.000 0.1358 0.865 0.865
#> 3 3 0.436 0.793 0.879 2.0360 0.784 0.750
#> 4 4 0.465 0.744 0.827 0.3714 0.762 0.633
#> 5 5 0.566 0.688 0.833 0.2514 0.830 0.613
#> 6 6 0.618 0.731 0.809 0.0697 0.899 0.674
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1818497 1 0 1 1 0
#> SRR1818600 1 0 1 1 0
#> SRR1818599 2 0 1 0 1
#> SRR1818598 1 0 1 1 0
#> SRR1818597 1 0 1 1 0
#> SRR1818596 1 0 1 1 0
#> SRR1818595 1 0 1 1 0
#> SRR1818594 1 0 1 1 0
#> SRR1818593 1 0 1 1 0
#> SRR1818592 1 0 1 1 0
#> SRR1818591 1 0 1 1 0
#> SRR1818590 1 0 1 1 0
#> SRR1818589 1 0 1 1 0
#> SRR1818587 1 0 1 1 0
#> SRR1818586 1 0 1 1 0
#> SRR1818585 1 0 1 1 0
#> SRR1818584 1 0 1 1 0
#> SRR1818583 1 0 1 1 0
#> SRR1818588 1 0 1 1 0
#> SRR1818582 1 0 1 1 0
#> SRR1818581 1 0 1 1 0
#> SRR1818579 1 0 1 1 0
#> SRR1818578 1 0 1 1 0
#> SRR1818577 1 0 1 1 0
#> SRR1818580 1 0 1 1 0
#> SRR1818575 1 0 1 1 0
#> SRR1818574 2 0 1 0 1
#> SRR1818576 1 0 1 1 0
#> SRR1818573 1 0 1 1 0
#> SRR1818572 1 0 1 1 0
#> SRR1818571 1 0 1 1 0
#> SRR1818570 1 0 1 1 0
#> SRR1818568 1 0 1 1 0
#> SRR1818567 1 0 1 1 0
#> SRR1818566 2 0 1 0 1
#> SRR1818569 1 0 1 1 0
#> SRR1818565 2 0 1 0 1
#> SRR1818564 1 0 1 1 0
#> SRR1818563 1 0 1 1 0
#> SRR1818561 2 0 1 0 1
#> SRR1818560 1 0 1 1 0
#> SRR1818559 1 0 1 1 0
#> SRR1818562 1 0 1 1 0
#> SRR1818558 1 0 1 1 0
#> SRR1818556 1 0 1 1 0
#> SRR1818557 1 0 1 1 0
#> SRR1818555 1 0 1 1 0
#> SRR1818553 1 0 1 1 0
#> SRR1818552 1 0 1 1 0
#> SRR1818551 1 0 1 1 0
#> SRR1818550 1 0 1 1 0
#> SRR1818554 1 0 1 1 0
#> SRR1818549 1 0 1 1 0
#> SRR1818548 1 0 1 1 0
#> SRR1818546 1 0 1 1 0
#> SRR1818547 1 0 1 1 0
#> SRR1818544 1 0 1 1 0
#> SRR1818543 1 0 1 1 0
#> SRR1818542 1 0 1 1 0
#> SRR1818545 1 0 1 1 0
#> SRR1818541 1 0 1 1 0
#> SRR1818539 1 0 1 1 0
#> SRR1818540 1 0 1 1 0
#> SRR1818536 1 0 1 1 0
#> SRR1818535 1 0 1 1 0
#> SRR1818534 1 0 1 1 0
#> SRR1818538 1 0 1 1 0
#> SRR1818537 1 0 1 1 0
#> SRR1818533 1 0 1 1 0
#> SRR1818532 1 0 1 1 0
#> SRR1818531 1 0 1 1 0
#> SRR1818530 1 0 1 1 0
#> SRR1818529 1 0 1 1 0
#> SRR1818528 1 0 1 1 0
#> SRR1818527 1 0 1 1 0
#> SRR1818526 1 0 1 1 0
#> SRR1818525 1 0 1 1 0
#> SRR1818523 2 0 1 0 1
#> SRR1818524 1 0 1 1 0
#> SRR1818522 1 0 1 1 0
#> SRR1818521 1 0 1 1 0
#> SRR1818520 1 0 1 1 0
#> SRR1818518 1 0 1 1 0
#> SRR1818519 1 0 1 1 0
#> SRR1818517 1 0 1 1 0
#> SRR1818516 2 0 1 0 1
#> SRR1818515 1 0 1 1 0
#> SRR1818514 1 0 1 1 0
#> SRR1818513 1 0 1 1 0
#> SRR1818512 1 0 1 1 0
#> SRR1818510 1 0 1 1 0
#> SRR1818511 1 0 1 1 0
#> SRR1818508 1 0 1 1 0
#> SRR1818509 1 0 1 1 0
#> SRR1818507 1 0 1 1 0
#> SRR1818506 1 0 1 1 0
#> SRR1818505 1 0 1 1 0
#> SRR1818503 1 0 1 1 0
#> SRR1818504 1 0 1 1 0
#> SRR1818502 1 0 1 1 0
#> SRR1818498 1 0 1 1 0
#> SRR1818500 1 0 1 1 0
#> SRR1818501 2 0 1 0 1
#> SRR1818499 1 0 1 1 0
#> SRR1818496 1 0 1 1 0
#> SRR1818494 1 0 1 1 0
#> SRR1818495 1 0 1 1 0
#> SRR1818493 1 0 1 1 0
#> SRR1818492 1 0 1 1 0
#> SRR1818491 1 0 1 1 0
#> SRR1818490 1 0 1 1 0
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1818497 1 0.6095 0.531 0.608 0.392 0
#> SRR1818600 2 0.5591 0.609 0.304 0.696 0
#> SRR1818599 3 0.0000 1.000 0.000 0.000 1
#> SRR1818598 1 0.0424 0.857 0.992 0.008 0
#> SRR1818597 1 0.0237 0.857 0.996 0.004 0
#> SRR1818596 1 0.0237 0.857 0.996 0.004 0
#> SRR1818595 1 0.0424 0.857 0.992 0.008 0
#> SRR1818594 1 0.0000 0.857 1.000 0.000 0
#> SRR1818593 1 0.1031 0.845 0.976 0.024 0
#> SRR1818592 1 0.0237 0.857 0.996 0.004 0
#> SRR1818591 1 0.5760 0.640 0.672 0.328 0
#> SRR1818590 1 0.5254 0.717 0.736 0.264 0
#> SRR1818589 1 0.1031 0.845 0.976 0.024 0
#> SRR1818587 1 0.3192 0.827 0.888 0.112 0
#> SRR1818586 1 0.5760 0.640 0.672 0.328 0
#> SRR1818585 2 0.3267 0.798 0.116 0.884 0
#> SRR1818584 2 0.2261 0.786 0.068 0.932 0
#> SRR1818583 1 0.0237 0.857 0.996 0.004 0
#> SRR1818588 1 0.0000 0.857 1.000 0.000 0
#> SRR1818582 1 0.0237 0.857 0.996 0.004 0
#> SRR1818581 1 0.5760 0.640 0.672 0.328 0
#> SRR1818579 2 0.5591 0.609 0.304 0.696 0
#> SRR1818578 1 0.0000 0.857 1.000 0.000 0
#> SRR1818577 1 0.6026 0.563 0.624 0.376 0
#> SRR1818580 1 0.5465 0.646 0.712 0.288 0
#> SRR1818575 1 0.3192 0.827 0.888 0.112 0
#> SRR1818574 3 0.0000 1.000 0.000 0.000 1
#> SRR1818576 1 0.0592 0.856 0.988 0.012 0
#> SRR1818573 1 0.0237 0.857 0.996 0.004 0
#> SRR1818572 2 0.2261 0.786 0.068 0.932 0
#> SRR1818571 1 0.0237 0.856 0.996 0.004 0
#> SRR1818570 1 0.0237 0.857 0.996 0.004 0
#> SRR1818568 1 0.3192 0.827 0.888 0.112 0
#> SRR1818567 1 0.6026 0.563 0.624 0.376 0
#> SRR1818566 3 0.0000 1.000 0.000 0.000 1
#> SRR1818569 2 0.3267 0.798 0.116 0.884 0
#> SRR1818565 3 0.0000 1.000 0.000 0.000 1
#> SRR1818564 1 0.0592 0.856 0.988 0.012 0
#> SRR1818563 1 0.3192 0.827 0.888 0.112 0
#> SRR1818561 3 0.0000 1.000 0.000 0.000 1
#> SRR1818560 1 0.0237 0.857 0.996 0.004 0
#> SRR1818559 1 0.0237 0.857 0.996 0.004 0
#> SRR1818562 1 0.1289 0.851 0.968 0.032 0
#> SRR1818558 2 0.5591 0.609 0.304 0.696 0
#> SRR1818556 1 0.0000 0.857 1.000 0.000 0
#> SRR1818557 1 0.0237 0.857 0.996 0.004 0
#> SRR1818555 1 0.5760 0.640 0.672 0.328 0
#> SRR1818553 1 0.0000 0.857 1.000 0.000 0
#> SRR1818552 1 0.5706 0.650 0.680 0.320 0
#> SRR1818551 1 0.0237 0.857 0.996 0.004 0
#> SRR1818550 1 0.3192 0.827 0.888 0.112 0
#> SRR1818554 1 0.1031 0.845 0.976 0.024 0
#> SRR1818549 1 0.0000 0.857 1.000 0.000 0
#> SRR1818548 1 0.0237 0.857 0.996 0.004 0
#> SRR1818546 2 0.3267 0.798 0.116 0.884 0
#> SRR1818547 1 0.3482 0.822 0.872 0.128 0
#> SRR1818544 1 0.5465 0.646 0.712 0.288 0
#> SRR1818543 1 0.0000 0.857 1.000 0.000 0
#> SRR1818542 1 0.6095 0.531 0.608 0.392 0
#> SRR1818545 1 0.3192 0.827 0.888 0.112 0
#> SRR1818541 1 0.3482 0.817 0.872 0.128 0
#> SRR1818539 1 0.0000 0.857 1.000 0.000 0
#> SRR1818540 1 0.5760 0.640 0.672 0.328 0
#> SRR1818536 1 0.0000 0.857 1.000 0.000 0
#> SRR1818535 1 0.0237 0.857 0.996 0.004 0
#> SRR1818534 1 0.0237 0.857 0.996 0.004 0
#> SRR1818538 1 0.5254 0.717 0.736 0.264 0
#> SRR1818537 1 0.3482 0.817 0.872 0.128 0
#> SRR1818533 1 0.0424 0.857 0.992 0.008 0
#> SRR1818532 1 0.0000 0.857 1.000 0.000 0
#> SRR1818531 2 0.2261 0.786 0.068 0.932 0
#> SRR1818530 2 0.3267 0.798 0.116 0.884 0
#> SRR1818529 1 0.6095 0.531 0.608 0.392 0
#> SRR1818528 1 0.0237 0.857 0.996 0.004 0
#> SRR1818527 2 0.5591 0.609 0.304 0.696 0
#> SRR1818526 1 0.3482 0.822 0.872 0.128 0
#> SRR1818525 2 0.3267 0.798 0.116 0.884 0
#> SRR1818523 3 0.0000 1.000 0.000 0.000 1
#> SRR1818524 1 0.0237 0.857 0.996 0.004 0
#> SRR1818522 1 0.0237 0.857 0.996 0.004 0
#> SRR1818521 1 0.6026 0.563 0.624 0.376 0
#> SRR1818520 1 0.5760 0.640 0.672 0.328 0
#> SRR1818518 1 0.0000 0.857 1.000 0.000 0
#> SRR1818519 1 0.3482 0.822 0.872 0.128 0
#> SRR1818517 1 0.5254 0.717 0.736 0.264 0
#> SRR1818516 3 0.0000 1.000 0.000 0.000 1
#> SRR1818515 1 0.1031 0.845 0.976 0.024 0
#> SRR1818514 2 0.3267 0.798 0.116 0.884 0
#> SRR1818513 1 0.5706 0.650 0.680 0.320 0
#> SRR1818512 2 0.3267 0.798 0.116 0.884 0
#> SRR1818510 1 0.5760 0.640 0.672 0.328 0
#> SRR1818511 1 0.1289 0.851 0.968 0.032 0
#> SRR1818508 2 0.2261 0.786 0.068 0.932 0
#> SRR1818509 1 0.5254 0.717 0.736 0.264 0
#> SRR1818507 1 0.3482 0.822 0.872 0.128 0
#> SRR1818506 1 0.0424 0.855 0.992 0.008 0
#> SRR1818505 1 0.5465 0.646 0.712 0.288 0
#> SRR1818503 1 0.3482 0.817 0.872 0.128 0
#> SRR1818504 1 0.0747 0.856 0.984 0.016 0
#> SRR1818502 1 0.0424 0.857 0.992 0.008 0
#> SRR1818498 1 0.5760 0.640 0.672 0.328 0
#> SRR1818500 1 0.0000 0.857 1.000 0.000 0
#> SRR1818501 3 0.0000 1.000 0.000 0.000 1
#> SRR1818499 1 0.0237 0.857 0.996 0.004 0
#> SRR1818496 1 0.6095 0.531 0.608 0.392 0
#> SRR1818494 1 0.0424 0.857 0.992 0.008 0
#> SRR1818495 1 0.3192 0.827 0.888 0.112 0
#> SRR1818493 1 0.6026 0.563 0.624 0.376 0
#> SRR1818492 1 0.3192 0.827 0.888 0.112 0
#> SRR1818491 1 0.5465 0.646 0.712 0.288 0
#> SRR1818490 1 0.0000 0.857 1.000 0.000 0
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1818497 2 0.5812 0.836 0.328 0.624 0 0.048
#> SRR1818600 4 0.6551 0.525 0.240 0.136 0 0.624
#> SRR1818599 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1818598 1 0.0779 0.815 0.980 0.016 0 0.004
#> SRR1818597 1 0.0000 0.819 1.000 0.000 0 0.000
#> SRR1818596 1 0.1940 0.782 0.924 0.076 0 0.000
#> SRR1818595 1 0.0779 0.815 0.980 0.016 0 0.004
#> SRR1818594 1 0.0188 0.819 0.996 0.004 0 0.000
#> SRR1818593 1 0.3907 0.622 0.768 0.232 0 0.000
#> SRR1818592 1 0.1940 0.782 0.924 0.076 0 0.000
#> SRR1818591 2 0.4331 0.914 0.288 0.712 0 0.000
#> SRR1818590 2 0.4790 0.845 0.380 0.620 0 0.000
#> SRR1818589 1 0.3907 0.622 0.768 0.232 0 0.000
#> SRR1818587 1 0.4564 0.216 0.672 0.328 0 0.000
#> SRR1818586 2 0.4331 0.914 0.288 0.712 0 0.000
#> SRR1818585 4 0.0000 0.767 0.000 0.000 0 1.000
#> SRR1818584 4 0.3217 0.770 0.012 0.128 0 0.860
#> SRR1818583 1 0.0000 0.819 1.000 0.000 0 0.000
#> SRR1818588 1 0.0188 0.819 0.996 0.004 0 0.000
#> SRR1818582 1 0.1940 0.782 0.924 0.076 0 0.000
#> SRR1818581 2 0.4331 0.914 0.288 0.712 0 0.000
#> SRR1818579 4 0.6551 0.525 0.240 0.136 0 0.624
#> SRR1818578 1 0.0188 0.819 0.996 0.004 0 0.000
#> SRR1818577 2 0.4193 0.896 0.268 0.732 0 0.000
#> SRR1818580 1 0.6142 0.449 0.676 0.140 0 0.184
#> SRR1818575 1 0.4564 0.216 0.672 0.328 0 0.000
#> SRR1818574 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1818576 1 0.0927 0.813 0.976 0.016 0 0.008
#> SRR1818573 1 0.1940 0.782 0.924 0.076 0 0.000
#> SRR1818572 4 0.3217 0.770 0.012 0.128 0 0.860
#> SRR1818571 1 0.0921 0.813 0.972 0.028 0 0.000
#> SRR1818570 1 0.0000 0.819 1.000 0.000 0 0.000
#> SRR1818568 1 0.4564 0.216 0.672 0.328 0 0.000
#> SRR1818567 2 0.4193 0.896 0.268 0.732 0 0.000
#> SRR1818566 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1818569 4 0.0000 0.767 0.000 0.000 0 1.000
#> SRR1818565 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1818564 1 0.0927 0.813 0.976 0.016 0 0.008
#> SRR1818563 1 0.4564 0.216 0.672 0.328 0 0.000
#> SRR1818561 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1818560 1 0.0336 0.818 0.992 0.008 0 0.000
#> SRR1818559 1 0.1940 0.782 0.924 0.076 0 0.000
#> SRR1818562 1 0.1474 0.786 0.948 0.052 0 0.000
#> SRR1818558 4 0.6551 0.525 0.240 0.136 0 0.624
#> SRR1818556 1 0.0469 0.817 0.988 0.012 0 0.000
#> SRR1818557 1 0.1940 0.782 0.924 0.076 0 0.000
#> SRR1818555 2 0.4331 0.914 0.288 0.712 0 0.000
#> SRR1818553 1 0.0188 0.819 0.996 0.004 0 0.000
#> SRR1818552 2 0.4543 0.903 0.324 0.676 0 0.000
#> SRR1818551 1 0.0000 0.819 1.000 0.000 0 0.000
#> SRR1818550 1 0.4564 0.216 0.672 0.328 0 0.000
#> SRR1818554 1 0.3907 0.622 0.768 0.232 0 0.000
#> SRR1818549 1 0.0188 0.819 0.996 0.004 0 0.000
#> SRR1818548 1 0.1940 0.782 0.924 0.076 0 0.000
#> SRR1818546 4 0.0000 0.767 0.000 0.000 0 1.000
#> SRR1818547 1 0.4898 0.438 0.584 0.416 0 0.000
#> SRR1818544 1 0.6142 0.449 0.676 0.140 0 0.184
#> SRR1818543 1 0.0469 0.817 0.988 0.012 0 0.000
#> SRR1818542 2 0.5812 0.836 0.328 0.624 0 0.048
#> SRR1818545 1 0.4564 0.216 0.672 0.328 0 0.000
#> SRR1818541 1 0.3249 0.695 0.852 0.140 0 0.008
#> SRR1818539 1 0.0469 0.817 0.988 0.012 0 0.000
#> SRR1818540 2 0.4331 0.914 0.288 0.712 0 0.000
#> SRR1818536 1 0.0188 0.819 0.996 0.004 0 0.000
#> SRR1818535 1 0.0000 0.819 1.000 0.000 0 0.000
#> SRR1818534 1 0.1940 0.782 0.924 0.076 0 0.000
#> SRR1818538 2 0.4790 0.845 0.380 0.620 0 0.000
#> SRR1818537 1 0.3249 0.695 0.852 0.140 0 0.008
#> SRR1818533 1 0.0779 0.815 0.980 0.016 0 0.004
#> SRR1818532 1 0.0188 0.819 0.996 0.004 0 0.000
#> SRR1818531 4 0.3217 0.770 0.012 0.128 0 0.860
#> SRR1818530 4 0.0000 0.767 0.000 0.000 0 1.000
#> SRR1818529 2 0.5812 0.836 0.328 0.624 0 0.048
#> SRR1818528 1 0.0336 0.818 0.992 0.008 0 0.000
#> SRR1818527 4 0.6551 0.525 0.240 0.136 0 0.624
#> SRR1818526 1 0.4898 0.438 0.584 0.416 0 0.000
#> SRR1818525 4 0.0000 0.767 0.000 0.000 0 1.000
#> SRR1818523 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1818524 1 0.1940 0.782 0.924 0.076 0 0.000
#> SRR1818522 1 0.0000 0.819 1.000 0.000 0 0.000
#> SRR1818521 2 0.4193 0.896 0.268 0.732 0 0.000
#> SRR1818520 2 0.4331 0.914 0.288 0.712 0 0.000
#> SRR1818518 1 0.0469 0.817 0.988 0.012 0 0.000
#> SRR1818519 1 0.4898 0.438 0.584 0.416 0 0.000
#> SRR1818517 2 0.4790 0.845 0.380 0.620 0 0.000
#> SRR1818516 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1818515 1 0.3907 0.622 0.768 0.232 0 0.000
#> SRR1818514 4 0.0000 0.767 0.000 0.000 0 1.000
#> SRR1818513 2 0.4543 0.903 0.324 0.676 0 0.000
#> SRR1818512 4 0.0000 0.767 0.000 0.000 0 1.000
#> SRR1818510 2 0.4331 0.914 0.288 0.712 0 0.000
#> SRR1818511 1 0.1474 0.786 0.948 0.052 0 0.000
#> SRR1818508 4 0.3217 0.770 0.012 0.128 0 0.860
#> SRR1818509 2 0.4790 0.845 0.380 0.620 0 0.000
#> SRR1818507 1 0.4898 0.438 0.584 0.416 0 0.000
#> SRR1818506 1 0.0817 0.812 0.976 0.024 0 0.000
#> SRR1818505 1 0.6142 0.449 0.676 0.140 0 0.184
#> SRR1818503 1 0.3249 0.695 0.852 0.140 0 0.008
#> SRR1818504 1 0.0804 0.815 0.980 0.012 0 0.008
#> SRR1818502 1 0.0779 0.815 0.980 0.016 0 0.004
#> SRR1818498 2 0.4331 0.914 0.288 0.712 0 0.000
#> SRR1818500 1 0.0188 0.819 0.996 0.004 0 0.000
#> SRR1818501 3 0.0000 1.000 0.000 0.000 1 0.000
#> SRR1818499 1 0.0336 0.818 0.992 0.008 0 0.000
#> SRR1818496 2 0.5812 0.836 0.328 0.624 0 0.048
#> SRR1818494 1 0.0779 0.815 0.980 0.016 0 0.004
#> SRR1818495 1 0.4564 0.216 0.672 0.328 0 0.000
#> SRR1818493 2 0.4193 0.896 0.268 0.732 0 0.000
#> SRR1818492 1 0.4564 0.216 0.672 0.328 0 0.000
#> SRR1818491 1 0.6142 0.449 0.676 0.140 0 0.184
#> SRR1818490 1 0.0188 0.819 0.996 0.004 0 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1818497 2 0.6144 0.602 0.184 0.648 0 0.124 0.044
#> SRR1818600 5 0.6297 0.641 0.220 0.048 0 0.108 0.624
#> SRR1818599 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1818598 1 0.1041 0.803 0.964 0.032 0 0.000 0.004
#> SRR1818597 1 0.0162 0.808 0.996 0.000 0 0.004 0.000
#> SRR1818596 1 0.4559 0.160 0.512 0.008 0 0.480 0.000
#> SRR1818595 1 0.1041 0.803 0.964 0.032 0 0.000 0.004
#> SRR1818594 1 0.0000 0.808 1.000 0.000 0 0.000 0.000
#> SRR1818593 4 0.2886 0.765 0.148 0.008 0 0.844 0.000
#> SRR1818592 1 0.4559 0.160 0.512 0.008 0 0.480 0.000
#> SRR1818591 2 0.0404 0.697 0.012 0.988 0 0.000 0.000
#> SRR1818590 2 0.3003 0.709 0.092 0.864 0 0.044 0.000
#> SRR1818589 4 0.2886 0.765 0.148 0.008 0 0.844 0.000
#> SRR1818587 2 0.6326 0.439 0.300 0.512 0 0.188 0.000
#> SRR1818586 2 0.0404 0.697 0.012 0.988 0 0.000 0.000
#> SRR1818585 5 0.0162 0.809 0.000 0.000 0 0.004 0.996
#> SRR1818584 5 0.3059 0.803 0.004 0.028 0 0.108 0.860
#> SRR1818583 1 0.0162 0.808 0.996 0.000 0 0.004 0.000
#> SRR1818588 1 0.1043 0.804 0.960 0.000 0 0.040 0.000
#> SRR1818582 1 0.4559 0.160 0.512 0.008 0 0.480 0.000
#> SRR1818581 2 0.0404 0.697 0.012 0.988 0 0.000 0.000
#> SRR1818579 5 0.6297 0.641 0.220 0.048 0 0.108 0.624
#> SRR1818578 1 0.0000 0.808 1.000 0.000 0 0.000 0.000
#> SRR1818577 2 0.3575 0.680 0.056 0.824 0 0.120 0.000
#> SRR1818580 1 0.6102 0.485 0.656 0.052 0 0.108 0.184
#> SRR1818575 2 0.6326 0.439 0.300 0.512 0 0.188 0.000
#> SRR1818574 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1818576 1 0.1153 0.805 0.964 0.024 0 0.004 0.008
#> SRR1818573 1 0.4559 0.160 0.512 0.008 0 0.480 0.000
#> SRR1818572 5 0.3059 0.803 0.004 0.028 0 0.108 0.860
#> SRR1818571 1 0.1965 0.770 0.904 0.000 0 0.096 0.000
#> SRR1818570 1 0.0162 0.808 0.996 0.000 0 0.004 0.000
#> SRR1818568 2 0.6326 0.439 0.300 0.512 0 0.188 0.000
#> SRR1818567 2 0.3575 0.680 0.056 0.824 0 0.120 0.000
#> SRR1818566 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1818569 5 0.0162 0.809 0.000 0.000 0 0.004 0.996
#> SRR1818565 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1818564 1 0.1153 0.805 0.964 0.024 0 0.004 0.008
#> SRR1818563 2 0.6326 0.439 0.300 0.512 0 0.188 0.000
#> SRR1818561 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1818560 1 0.0771 0.807 0.976 0.020 0 0.004 0.000
#> SRR1818559 1 0.4559 0.160 0.512 0.008 0 0.480 0.000
#> SRR1818562 1 0.3301 0.750 0.848 0.080 0 0.072 0.000
#> SRR1818558 5 0.6297 0.641 0.220 0.048 0 0.108 0.624
#> SRR1818556 1 0.1012 0.809 0.968 0.020 0 0.012 0.000
#> SRR1818557 1 0.4559 0.160 0.512 0.008 0 0.480 0.000
#> SRR1818555 2 0.0404 0.697 0.012 0.988 0 0.000 0.000
#> SRR1818553 1 0.0963 0.805 0.964 0.000 0 0.036 0.000
#> SRR1818552 2 0.1671 0.719 0.076 0.924 0 0.000 0.000
#> SRR1818551 1 0.1608 0.792 0.928 0.000 0 0.072 0.000
#> SRR1818550 2 0.6326 0.439 0.300 0.512 0 0.188 0.000
#> SRR1818554 4 0.2886 0.765 0.148 0.008 0 0.844 0.000
#> SRR1818549 1 0.0963 0.805 0.964 0.000 0 0.036 0.000
#> SRR1818548 1 0.4559 0.160 0.512 0.008 0 0.480 0.000
#> SRR1818546 5 0.0162 0.809 0.000 0.000 0 0.004 0.996
#> SRR1818547 4 0.4424 0.723 0.048 0.224 0 0.728 0.000
#> SRR1818544 1 0.6102 0.485 0.656 0.052 0 0.108 0.184
#> SRR1818543 1 0.1012 0.809 0.968 0.020 0 0.012 0.000
#> SRR1818542 2 0.6144 0.602 0.184 0.648 0 0.124 0.044
#> SRR1818545 2 0.6326 0.439 0.300 0.512 0 0.188 0.000
#> SRR1818541 1 0.3497 0.704 0.840 0.044 0 0.108 0.008
#> SRR1818539 1 0.1012 0.809 0.968 0.020 0 0.012 0.000
#> SRR1818540 2 0.0404 0.697 0.012 0.988 0 0.000 0.000
#> SRR1818536 1 0.0963 0.805 0.964 0.000 0 0.036 0.000
#> SRR1818535 1 0.0162 0.808 0.996 0.000 0 0.004 0.000
#> SRR1818534 1 0.4559 0.160 0.512 0.008 0 0.480 0.000
#> SRR1818538 2 0.3003 0.709 0.092 0.864 0 0.044 0.000
#> SRR1818537 1 0.3497 0.704 0.840 0.044 0 0.108 0.008
#> SRR1818533 1 0.1041 0.803 0.964 0.032 0 0.000 0.004
#> SRR1818532 1 0.1043 0.804 0.960 0.000 0 0.040 0.000
#> SRR1818531 5 0.3059 0.803 0.004 0.028 0 0.108 0.860
#> SRR1818530 5 0.0162 0.809 0.000 0.000 0 0.004 0.996
#> SRR1818529 2 0.6144 0.602 0.184 0.648 0 0.124 0.044
#> SRR1818528 1 0.2079 0.800 0.916 0.020 0 0.064 0.000
#> SRR1818527 5 0.6297 0.641 0.220 0.048 0 0.108 0.624
#> SRR1818526 4 0.4424 0.723 0.048 0.224 0 0.728 0.000
#> SRR1818525 5 0.0000 0.808 0.000 0.000 0 0.000 1.000
#> SRR1818523 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1818524 1 0.4559 0.160 0.512 0.008 0 0.480 0.000
#> SRR1818522 1 0.1608 0.792 0.928 0.000 0 0.072 0.000
#> SRR1818521 2 0.3575 0.680 0.056 0.824 0 0.120 0.000
#> SRR1818520 2 0.0404 0.697 0.012 0.988 0 0.000 0.000
#> SRR1818518 1 0.1012 0.809 0.968 0.020 0 0.012 0.000
#> SRR1818519 4 0.4424 0.723 0.048 0.224 0 0.728 0.000
#> SRR1818517 2 0.3003 0.709 0.092 0.864 0 0.044 0.000
#> SRR1818516 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1818515 4 0.2886 0.765 0.148 0.008 0 0.844 0.000
#> SRR1818514 5 0.0162 0.809 0.000 0.000 0 0.004 0.996
#> SRR1818513 2 0.1671 0.719 0.076 0.924 0 0.000 0.000
#> SRR1818512 5 0.0162 0.809 0.000 0.000 0 0.004 0.996
#> SRR1818510 2 0.0404 0.697 0.012 0.988 0 0.000 0.000
#> SRR1818511 1 0.3301 0.750 0.848 0.080 0 0.072 0.000
#> SRR1818508 5 0.3059 0.803 0.004 0.028 0 0.108 0.860
#> SRR1818509 2 0.3003 0.709 0.092 0.864 0 0.044 0.000
#> SRR1818507 4 0.4424 0.723 0.048 0.224 0 0.728 0.000
#> SRR1818506 1 0.3814 0.602 0.720 0.004 0 0.276 0.000
#> SRR1818505 1 0.6102 0.485 0.656 0.052 0 0.108 0.184
#> SRR1818503 1 0.3497 0.704 0.840 0.044 0 0.108 0.008
#> SRR1818504 1 0.2456 0.800 0.904 0.024 0 0.064 0.008
#> SRR1818502 1 0.1041 0.803 0.964 0.032 0 0.000 0.004
#> SRR1818498 2 0.0404 0.697 0.012 0.988 0 0.000 0.000
#> SRR1818500 1 0.0000 0.808 1.000 0.000 0 0.000 0.000
#> SRR1818501 3 0.0000 1.000 0.000 0.000 1 0.000 0.000
#> SRR1818499 1 0.2079 0.800 0.916 0.020 0 0.064 0.000
#> SRR1818496 2 0.6144 0.602 0.184 0.648 0 0.124 0.044
#> SRR1818494 1 0.1041 0.803 0.964 0.032 0 0.000 0.004
#> SRR1818495 2 0.6326 0.439 0.300 0.512 0 0.188 0.000
#> SRR1818493 2 0.3575 0.680 0.056 0.824 0 0.120 0.000
#> SRR1818492 2 0.6326 0.439 0.300 0.512 0 0.188 0.000
#> SRR1818491 1 0.6102 0.485 0.656 0.052 0 0.108 0.184
#> SRR1818490 1 0.0963 0.805 0.964 0.000 0 0.036 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1818497 2 0.5578 0.465 0.184 0.540 0 0.000 0.000 0.276
#> SRR1818600 5 0.5916 0.594 0.216 0.016 0 0.004 0.568 0.196
#> SRR1818599 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1818598 1 0.1074 0.875 0.960 0.012 0 0.000 0.000 0.028
#> SRR1818597 1 0.0000 0.880 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818596 4 0.3409 0.630 0.300 0.000 0 0.700 0.000 0.000
#> SRR1818595 1 0.1074 0.875 0.960 0.012 0 0.000 0.000 0.028
#> SRR1818594 1 0.0146 0.880 0.996 0.004 0 0.000 0.000 0.000
#> SRR1818593 4 0.2595 0.490 0.004 0.000 0 0.836 0.000 0.160
#> SRR1818592 4 0.3409 0.630 0.300 0.000 0 0.700 0.000 0.000
#> SRR1818591 2 0.0000 0.716 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818590 2 0.2860 0.608 0.048 0.852 0 0.000 0.000 0.100
#> SRR1818589 4 0.2595 0.490 0.004 0.000 0 0.836 0.000 0.160
#> SRR1818587 6 0.5670 1.000 0.132 0.348 0 0.008 0.000 0.512
#> SRR1818586 2 0.0000 0.716 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818585 5 0.2300 0.726 0.000 0.000 0 0.000 0.856 0.144
#> SRR1818584 5 0.3178 0.732 0.000 0.016 0 0.004 0.804 0.176
#> SRR1818583 1 0.0000 0.880 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818588 1 0.1863 0.862 0.920 0.004 0 0.060 0.000 0.016
#> SRR1818582 4 0.3409 0.630 0.300 0.000 0 0.700 0.000 0.000
#> SRR1818581 2 0.0000 0.716 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818579 5 0.5916 0.594 0.216 0.016 0 0.004 0.568 0.196
#> SRR1818578 1 0.0146 0.880 0.996 0.004 0 0.000 0.000 0.000
#> SRR1818577 2 0.3956 0.647 0.036 0.712 0 0.000 0.000 0.252
#> SRR1818580 1 0.5279 0.553 0.652 0.016 0 0.004 0.116 0.212
#> SRR1818575 6 0.5670 1.000 0.132 0.348 0 0.008 0.000 0.512
#> SRR1818574 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1818576 1 0.1340 0.879 0.948 0.004 0 0.008 0.000 0.040
#> SRR1818573 4 0.3409 0.630 0.300 0.000 0 0.700 0.000 0.000
#> SRR1818572 5 0.3178 0.732 0.000 0.016 0 0.004 0.804 0.176
#> SRR1818571 1 0.2636 0.822 0.860 0.004 0 0.120 0.000 0.016
#> SRR1818570 1 0.0000 0.880 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818568 6 0.5670 1.000 0.132 0.348 0 0.008 0.000 0.512
#> SRR1818567 2 0.3956 0.647 0.036 0.712 0 0.000 0.000 0.252
#> SRR1818566 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1818569 5 0.2300 0.726 0.000 0.000 0 0.000 0.856 0.144
#> SRR1818565 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1818564 1 0.1340 0.879 0.948 0.004 0 0.008 0.000 0.040
#> SRR1818563 6 0.5670 1.000 0.132 0.348 0 0.008 0.000 0.512
#> SRR1818561 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1818560 1 0.0547 0.878 0.980 0.000 0 0.000 0.000 0.020
#> SRR1818559 4 0.3409 0.630 0.300 0.000 0 0.700 0.000 0.000
#> SRR1818562 1 0.4000 0.766 0.796 0.076 0 0.092 0.000 0.036
#> SRR1818558 5 0.5916 0.594 0.216 0.016 0 0.004 0.568 0.196
#> SRR1818556 1 0.1390 0.880 0.948 0.004 0 0.016 0.000 0.032
#> SRR1818557 4 0.3409 0.630 0.300 0.000 0 0.700 0.000 0.000
#> SRR1818555 2 0.0000 0.716 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818553 1 0.1801 0.863 0.924 0.004 0 0.056 0.000 0.016
#> SRR1818552 2 0.1713 0.691 0.044 0.928 0 0.000 0.000 0.028
#> SRR1818551 1 0.2263 0.835 0.884 0.000 0 0.100 0.000 0.016
#> SRR1818550 6 0.5670 1.000 0.132 0.348 0 0.008 0.000 0.512
#> SRR1818554 4 0.2595 0.490 0.004 0.000 0 0.836 0.000 0.160
#> SRR1818549 1 0.1801 0.863 0.924 0.004 0 0.056 0.000 0.016
#> SRR1818548 4 0.3409 0.630 0.300 0.000 0 0.700 0.000 0.000
#> SRR1818546 5 0.2300 0.726 0.000 0.000 0 0.000 0.856 0.144
#> SRR1818547 4 0.5797 -0.039 0.000 0.208 0 0.488 0.000 0.304
#> SRR1818544 1 0.5279 0.553 0.652 0.016 0 0.004 0.116 0.212
#> SRR1818543 1 0.1390 0.880 0.948 0.004 0 0.016 0.000 0.032
#> SRR1818542 2 0.5578 0.465 0.184 0.540 0 0.000 0.000 0.276
#> SRR1818545 6 0.5670 1.000 0.132 0.348 0 0.008 0.000 0.512
#> SRR1818541 1 0.2744 0.781 0.840 0.016 0 0.000 0.000 0.144
#> SRR1818539 1 0.1390 0.880 0.948 0.004 0 0.016 0.000 0.032
#> SRR1818540 2 0.0000 0.716 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818536 1 0.1801 0.863 0.924 0.004 0 0.056 0.000 0.016
#> SRR1818535 1 0.0000 0.880 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818534 4 0.3409 0.630 0.300 0.000 0 0.700 0.000 0.000
#> SRR1818538 2 0.2860 0.608 0.048 0.852 0 0.000 0.000 0.100
#> SRR1818537 1 0.2744 0.781 0.840 0.016 0 0.000 0.000 0.144
#> SRR1818533 1 0.1074 0.875 0.960 0.012 0 0.000 0.000 0.028
#> SRR1818532 1 0.1863 0.862 0.920 0.004 0 0.060 0.000 0.016
#> SRR1818531 5 0.3178 0.732 0.000 0.016 0 0.004 0.804 0.176
#> SRR1818530 5 0.2300 0.726 0.000 0.000 0 0.000 0.856 0.144
#> SRR1818529 2 0.5578 0.465 0.184 0.540 0 0.000 0.000 0.276
#> SRR1818528 1 0.2350 0.860 0.888 0.000 0 0.076 0.000 0.036
#> SRR1818527 5 0.5916 0.594 0.216 0.016 0 0.004 0.568 0.196
#> SRR1818526 4 0.5797 -0.039 0.000 0.208 0 0.488 0.000 0.304
#> SRR1818525 5 0.0000 0.723 0.000 0.000 0 0.000 1.000 0.000
#> SRR1818523 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1818524 4 0.3409 0.630 0.300 0.000 0 0.700 0.000 0.000
#> SRR1818522 1 0.2263 0.835 0.884 0.000 0 0.100 0.000 0.016
#> SRR1818521 2 0.3956 0.647 0.036 0.712 0 0.000 0.000 0.252
#> SRR1818520 2 0.0000 0.716 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818518 1 0.1390 0.880 0.948 0.004 0 0.016 0.000 0.032
#> SRR1818519 4 0.5797 -0.039 0.000 0.208 0 0.488 0.000 0.304
#> SRR1818517 2 0.2860 0.608 0.048 0.852 0 0.000 0.000 0.100
#> SRR1818516 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1818515 4 0.2595 0.490 0.004 0.000 0 0.836 0.000 0.160
#> SRR1818514 5 0.2300 0.726 0.000 0.000 0 0.000 0.856 0.144
#> SRR1818513 2 0.1713 0.691 0.044 0.928 0 0.000 0.000 0.028
#> SRR1818512 5 0.2300 0.726 0.000 0.000 0 0.000 0.856 0.144
#> SRR1818510 2 0.0000 0.716 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818511 1 0.4000 0.766 0.796 0.076 0 0.092 0.000 0.036
#> SRR1818508 5 0.3178 0.732 0.000 0.016 0 0.004 0.804 0.176
#> SRR1818509 2 0.2860 0.608 0.048 0.852 0 0.000 0.000 0.100
#> SRR1818507 4 0.5797 -0.039 0.000 0.208 0 0.488 0.000 0.304
#> SRR1818506 1 0.4212 0.233 0.560 0.000 0 0.424 0.000 0.016
#> SRR1818505 1 0.5279 0.553 0.652 0.016 0 0.004 0.116 0.212
#> SRR1818503 1 0.2744 0.781 0.840 0.016 0 0.000 0.000 0.144
#> SRR1818504 1 0.2554 0.861 0.876 0.000 0 0.076 0.000 0.048
#> SRR1818502 1 0.1074 0.875 0.960 0.012 0 0.000 0.000 0.028
#> SRR1818498 2 0.0000 0.716 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818500 1 0.0146 0.880 0.996 0.004 0 0.000 0.000 0.000
#> SRR1818501 3 0.0000 1.000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1818499 1 0.2350 0.860 0.888 0.000 0 0.076 0.000 0.036
#> SRR1818496 2 0.5578 0.465 0.184 0.540 0 0.000 0.000 0.276
#> SRR1818494 1 0.1074 0.875 0.960 0.012 0 0.000 0.000 0.028
#> SRR1818495 6 0.5670 1.000 0.132 0.348 0 0.008 0.000 0.512
#> SRR1818493 2 0.3956 0.647 0.036 0.712 0 0.000 0.000 0.252
#> SRR1818492 6 0.5670 1.000 0.132 0.348 0 0.008 0.000 0.512
#> SRR1818491 1 0.5279 0.553 0.652 0.016 0 0.004 0.116 0.212
#> SRR1818490 1 0.1801 0.863 0.924 0.004 0 0.056 0.000 0.016
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 16183 rows and 111 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.1388 0.198 0.771 0.3177 0.982 0.982
#> 3 3 0.0893 0.450 0.647 0.6501 0.517 0.510
#> 4 4 0.2821 0.544 0.666 0.2189 0.733 0.514
#> 5 5 0.4001 0.537 0.709 0.1100 0.830 0.590
#> 6 6 0.5431 0.624 0.665 0.0712 0.829 0.537
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1818497 1 0.9732 -0.635 0.596 0.404
#> SRR1818600 1 0.5294 0.488 0.880 0.120
#> SRR1818599 1 0.9087 0.305 0.676 0.324
#> SRR1818598 1 0.2603 0.527 0.956 0.044
#> SRR1818597 1 0.2423 0.555 0.960 0.040
#> SRR1818596 1 0.6973 0.514 0.812 0.188
#> SRR1818595 1 0.0376 0.551 0.996 0.004
#> SRR1818594 1 0.2043 0.553 0.968 0.032
#> SRR1818593 1 0.7815 0.484 0.768 0.232
#> SRR1818592 1 0.6973 0.514 0.812 0.188
#> SRR1818591 1 0.9754 -0.624 0.592 0.408
#> SRR1818590 1 0.9754 -0.529 0.592 0.408
#> SRR1818589 1 0.7815 0.484 0.768 0.232
#> SRR1818587 1 0.6343 0.509 0.840 0.160
#> SRR1818586 1 0.9754 -0.624 0.592 0.408
#> SRR1818585 1 0.9988 -0.557 0.520 0.480
#> SRR1818584 1 0.8499 0.123 0.724 0.276
#> SRR1818583 1 0.2423 0.555 0.960 0.040
#> SRR1818588 1 0.5842 0.534 0.860 0.140
#> SRR1818582 1 0.6973 0.514 0.812 0.188
#> SRR1818581 1 0.9754 -0.624 0.592 0.408
#> SRR1818579 1 0.5519 0.479 0.872 0.128
#> SRR1818578 1 0.4939 0.492 0.892 0.108
#> SRR1818577 1 0.9815 -0.653 0.580 0.420
#> SRR1818580 1 0.8327 0.163 0.736 0.264
#> SRR1818575 1 0.6247 0.525 0.844 0.156
#> SRR1818574 1 0.9087 0.305 0.676 0.324
#> SRR1818576 1 0.2948 0.546 0.948 0.052
#> SRR1818573 1 0.6973 0.514 0.812 0.188
#> SRR1818572 1 0.9393 -0.271 0.644 0.356
#> SRR1818571 1 0.6887 0.521 0.816 0.184
#> SRR1818570 1 0.2423 0.555 0.960 0.040
#> SRR1818568 1 0.6148 0.525 0.848 0.152
#> SRR1818567 1 0.9754 -0.624 0.592 0.408
#> SRR1818566 1 0.9087 0.305 0.676 0.324
#> SRR1818569 1 0.9988 -0.557 0.520 0.480
#> SRR1818565 1 0.9087 0.305 0.676 0.324
#> SRR1818564 1 0.1843 0.551 0.972 0.028
#> SRR1818563 1 0.7453 0.494 0.788 0.212
#> SRR1818561 1 0.9087 0.305 0.676 0.324
#> SRR1818560 1 0.3431 0.544 0.936 0.064
#> SRR1818559 1 0.6973 0.514 0.812 0.188
#> SRR1818562 1 0.6623 0.404 0.828 0.172
#> SRR1818558 1 0.5519 0.479 0.872 0.128
#> SRR1818556 1 0.3431 0.542 0.936 0.064
#> SRR1818557 1 0.6973 0.514 0.812 0.188
#> SRR1818555 1 0.9754 -0.624 0.592 0.408
#> SRR1818553 1 0.5059 0.551 0.888 0.112
#> SRR1818552 1 0.9833 -0.620 0.576 0.424
#> SRR1818551 1 0.4161 0.526 0.916 0.084
#> SRR1818550 1 0.6148 0.516 0.848 0.152
#> SRR1818554 1 0.7815 0.484 0.768 0.232
#> SRR1818549 1 0.5294 0.551 0.880 0.120
#> SRR1818548 1 0.6973 0.514 0.812 0.188
#> SRR1818546 1 0.9988 -0.557 0.520 0.480
#> SRR1818547 1 0.7883 0.479 0.764 0.236
#> SRR1818544 1 0.6048 0.448 0.852 0.148
#> SRR1818543 1 0.4815 0.510 0.896 0.104
#> SRR1818542 1 0.9732 -0.635 0.596 0.404
#> SRR1818545 1 0.6148 0.516 0.848 0.152
#> SRR1818541 1 0.3431 0.534 0.936 0.064
#> SRR1818539 1 0.3274 0.538 0.940 0.060
#> SRR1818540 1 0.9754 -0.624 0.592 0.408
#> SRR1818536 1 0.4690 0.555 0.900 0.100
#> SRR1818535 1 0.3879 0.550 0.924 0.076
#> SRR1818534 1 0.6973 0.514 0.812 0.188
#> SRR1818538 1 0.9754 -0.529 0.592 0.408
#> SRR1818537 1 0.3584 0.535 0.932 0.068
#> SRR1818533 1 0.2603 0.527 0.956 0.044
#> SRR1818532 1 0.5294 0.544 0.880 0.120
#> SRR1818531 1 0.8499 0.123 0.724 0.276
#> SRR1818530 1 0.9988 -0.557 0.520 0.480
#> SRR1818529 1 0.9732 -0.635 0.596 0.404
#> SRR1818528 1 0.3274 0.538 0.940 0.060
#> SRR1818527 1 0.5842 0.462 0.860 0.140
#> SRR1818526 1 0.7883 0.479 0.764 0.236
#> SRR1818525 1 0.8499 0.134 0.724 0.276
#> SRR1818523 1 0.9087 0.305 0.676 0.324
#> SRR1818524 1 0.6973 0.514 0.812 0.188
#> SRR1818522 1 0.4022 0.525 0.920 0.080
#> SRR1818521 1 0.9815 -0.653 0.580 0.420
#> SRR1818520 1 0.9754 -0.624 0.592 0.408
#> SRR1818518 1 0.3274 0.543 0.940 0.060
#> SRR1818519 1 0.8016 0.472 0.756 0.244
#> SRR1818517 1 0.9754 -0.529 0.592 0.408
#> SRR1818516 1 0.9087 0.305 0.676 0.324
#> SRR1818515 1 0.7815 0.484 0.768 0.232
#> SRR1818514 1 0.9988 -0.557 0.520 0.480
#> SRR1818513 1 0.9775 -0.628 0.588 0.412
#> SRR1818512 1 0.9988 -0.557 0.520 0.480
#> SRR1818510 1 0.9754 -0.624 0.592 0.408
#> SRR1818511 1 0.6801 0.398 0.820 0.180
#> SRR1818508 1 0.8386 0.156 0.732 0.268
#> SRR1818509 1 0.9754 -0.529 0.592 0.408
#> SRR1818507 1 0.8016 0.472 0.756 0.244
#> SRR1818506 1 0.7139 0.513 0.804 0.196
#> SRR1818505 1 0.5946 0.453 0.856 0.144
#> SRR1818503 1 0.3431 0.534 0.936 0.064
#> SRR1818504 1 0.3879 0.521 0.924 0.076
#> SRR1818502 1 0.2603 0.527 0.956 0.044
#> SRR1818498 2 0.9993 0.000 0.484 0.516
#> SRR1818500 1 0.6048 0.400 0.852 0.148
#> SRR1818501 1 0.9087 0.305 0.676 0.324
#> SRR1818499 1 0.2423 0.543 0.960 0.040
#> SRR1818496 1 0.9732 -0.635 0.596 0.404
#> SRR1818494 1 0.2603 0.527 0.956 0.044
#> SRR1818495 1 0.6148 0.516 0.848 0.152
#> SRR1818493 1 0.9815 -0.653 0.580 0.420
#> SRR1818492 1 0.6148 0.516 0.848 0.152
#> SRR1818491 1 0.5946 0.453 0.856 0.144
#> SRR1818490 1 0.4690 0.555 0.900 0.100
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1818497 1 0.8518 -0.26191 0.472 0.436 0.092
#> SRR1818600 1 0.5889 0.52581 0.796 0.096 0.108
#> SRR1818599 1 0.8468 0.22950 0.576 0.116 0.308
#> SRR1818598 1 0.2845 0.52820 0.920 0.068 0.012
#> SRR1818597 1 0.2947 0.48302 0.920 0.020 0.060
#> SRR1818596 3 0.8201 0.88034 0.400 0.076 0.524
#> SRR1818595 1 0.2636 0.49665 0.932 0.020 0.048
#> SRR1818594 1 0.2743 0.49153 0.928 0.020 0.052
#> SRR1818593 3 0.7676 0.87672 0.360 0.056 0.584
#> SRR1818592 3 0.8249 0.87750 0.424 0.076 0.500
#> SRR1818591 2 0.6668 0.90170 0.264 0.696 0.040
#> SRR1818590 2 0.8882 0.71459 0.316 0.540 0.144
#> SRR1818589 3 0.7676 0.87672 0.360 0.056 0.584
#> SRR1818587 1 0.9233 -0.09627 0.528 0.204 0.268
#> SRR1818586 2 0.6703 0.90392 0.268 0.692 0.040
#> SRR1818585 1 0.9649 -0.06352 0.404 0.388 0.208
#> SRR1818584 1 0.7337 0.46828 0.708 0.140 0.152
#> SRR1818583 1 0.2846 0.48748 0.924 0.020 0.056
#> SRR1818588 1 0.8033 0.01492 0.640 0.120 0.240
#> SRR1818582 3 0.8249 0.87750 0.424 0.076 0.500
#> SRR1818581 2 0.6703 0.90392 0.268 0.692 0.040
#> SRR1818579 1 0.5889 0.52581 0.796 0.096 0.108
#> SRR1818578 1 0.3039 0.53958 0.920 0.044 0.036
#> SRR1818577 2 0.6341 0.86258 0.312 0.672 0.016
#> SRR1818580 1 0.6975 0.48094 0.732 0.124 0.144
#> SRR1818575 1 0.8673 -0.08068 0.580 0.148 0.272
#> SRR1818574 1 0.8468 0.22950 0.576 0.116 0.308
#> SRR1818576 1 0.1315 0.52591 0.972 0.008 0.020
#> SRR1818573 3 0.8249 0.87750 0.424 0.076 0.500
#> SRR1818572 1 0.7396 0.46314 0.704 0.144 0.152
#> SRR1818571 1 0.7487 -0.64861 0.500 0.036 0.464
#> SRR1818570 1 0.2947 0.48302 0.920 0.020 0.060
#> SRR1818568 1 0.8694 -0.06406 0.580 0.152 0.268
#> SRR1818567 2 0.6407 0.88917 0.272 0.700 0.028
#> SRR1818566 1 0.8468 0.22950 0.576 0.116 0.308
#> SRR1818569 1 0.9649 -0.06352 0.404 0.388 0.208
#> SRR1818565 1 0.8468 0.22950 0.576 0.116 0.308
#> SRR1818564 1 0.1636 0.51841 0.964 0.020 0.016
#> SRR1818563 1 0.9547 -0.50213 0.416 0.192 0.392
#> SRR1818561 1 0.8468 0.22950 0.576 0.116 0.308
#> SRR1818560 1 0.1877 0.52898 0.956 0.012 0.032
#> SRR1818559 3 0.8249 0.87750 0.424 0.076 0.500
#> SRR1818562 1 0.8505 0.14365 0.600 0.256 0.144
#> SRR1818558 1 0.5889 0.52581 0.796 0.096 0.108
#> SRR1818556 1 0.2903 0.53225 0.924 0.028 0.048
#> SRR1818557 3 0.8249 0.87750 0.424 0.076 0.500
#> SRR1818555 2 0.6703 0.90392 0.268 0.692 0.040
#> SRR1818553 1 0.6470 -0.28977 0.632 0.012 0.356
#> SRR1818552 2 0.6875 0.88313 0.244 0.700 0.056
#> SRR1818551 1 0.7097 0.22310 0.720 0.108 0.172
#> SRR1818550 1 0.9182 -0.07335 0.536 0.204 0.260
#> SRR1818554 3 0.7676 0.87672 0.360 0.056 0.584
#> SRR1818549 1 0.6019 -0.00747 0.700 0.012 0.288
#> SRR1818548 3 0.8249 0.87750 0.424 0.076 0.500
#> SRR1818546 1 0.9649 -0.06352 0.404 0.388 0.208
#> SRR1818547 3 0.8091 0.81801 0.320 0.088 0.592
#> SRR1818544 1 0.6063 0.52021 0.784 0.084 0.132
#> SRR1818543 1 0.3039 0.53890 0.920 0.036 0.044
#> SRR1818542 1 0.8518 -0.26191 0.472 0.436 0.092
#> SRR1818545 1 0.9147 -0.07686 0.540 0.200 0.260
#> SRR1818541 1 0.1015 0.53929 0.980 0.012 0.008
#> SRR1818539 1 0.1337 0.53703 0.972 0.012 0.016
#> SRR1818540 2 0.6703 0.90392 0.268 0.692 0.040
#> SRR1818536 1 0.4979 0.34168 0.812 0.020 0.168
#> SRR1818535 1 0.3129 0.48723 0.904 0.008 0.088
#> SRR1818534 3 0.8249 0.87750 0.424 0.076 0.500
#> SRR1818538 2 0.8882 0.71459 0.316 0.540 0.144
#> SRR1818537 1 0.1015 0.53929 0.980 0.012 0.008
#> SRR1818533 1 0.2845 0.52820 0.920 0.068 0.012
#> SRR1818532 1 0.6722 0.14294 0.720 0.060 0.220
#> SRR1818531 1 0.7337 0.46828 0.708 0.140 0.152
#> SRR1818530 1 0.9649 -0.06352 0.404 0.388 0.208
#> SRR1818529 1 0.8518 -0.26191 0.472 0.436 0.092
#> SRR1818528 1 0.0829 0.53559 0.984 0.004 0.012
#> SRR1818527 1 0.5961 0.52484 0.792 0.096 0.112
#> SRR1818526 3 0.8091 0.81801 0.320 0.088 0.592
#> SRR1818525 1 0.7775 0.43838 0.676 0.156 0.168
#> SRR1818523 1 0.8468 0.22950 0.576 0.116 0.308
#> SRR1818524 3 0.8243 0.87536 0.420 0.076 0.504
#> SRR1818522 1 0.7381 0.21127 0.704 0.132 0.164
#> SRR1818521 2 0.6341 0.86258 0.312 0.672 0.016
#> SRR1818520 2 0.6703 0.90392 0.268 0.692 0.040
#> SRR1818518 1 0.1751 0.52763 0.960 0.012 0.028
#> SRR1818519 3 0.8157 0.82217 0.308 0.096 0.596
#> SRR1818517 2 0.8882 0.71459 0.316 0.540 0.144
#> SRR1818516 1 0.8468 0.22950 0.576 0.116 0.308
#> SRR1818515 3 0.7676 0.87672 0.360 0.056 0.584
#> SRR1818514 1 0.9649 -0.06352 0.404 0.388 0.208
#> SRR1818513 2 0.6633 0.89830 0.260 0.700 0.040
#> SRR1818512 1 0.9649 -0.06352 0.404 0.388 0.208
#> SRR1818510 2 0.6703 0.90392 0.268 0.692 0.040
#> SRR1818511 1 0.8505 0.14365 0.600 0.256 0.144
#> SRR1818508 1 0.7337 0.46828 0.708 0.140 0.152
#> SRR1818509 2 0.8882 0.71459 0.316 0.540 0.144
#> SRR1818507 3 0.8157 0.82217 0.308 0.096 0.596
#> SRR1818506 3 0.7395 0.69386 0.476 0.032 0.492
#> SRR1818505 1 0.5998 0.52173 0.788 0.084 0.128
#> SRR1818503 1 0.1015 0.53929 0.980 0.012 0.008
#> SRR1818504 1 0.4642 0.45430 0.856 0.060 0.084
#> SRR1818502 1 0.2845 0.52820 0.920 0.068 0.012
#> SRR1818498 2 0.5731 0.83875 0.228 0.752 0.020
#> SRR1818500 1 0.6100 0.41434 0.784 0.120 0.096
#> SRR1818501 1 0.8468 0.22950 0.576 0.116 0.308
#> SRR1818499 1 0.2056 0.53544 0.952 0.024 0.024
#> SRR1818496 1 0.8518 -0.26191 0.472 0.436 0.092
#> SRR1818494 1 0.2845 0.52820 0.920 0.068 0.012
#> SRR1818495 1 0.9182 -0.07335 0.536 0.204 0.260
#> SRR1818493 2 0.6129 0.87451 0.284 0.700 0.016
#> SRR1818492 1 0.9182 -0.07335 0.536 0.204 0.260
#> SRR1818491 1 0.5998 0.52173 0.788 0.084 0.128
#> SRR1818490 1 0.4979 0.34168 0.812 0.020 0.168
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1818497 2 0.901 0.1994 0.368 0.372 0.176 0.084
#> SRR1818600 1 0.404 0.5485 0.848 0.028 0.100 0.024
#> SRR1818599 3 0.697 0.9976 0.328 0.004 0.552 0.116
#> SRR1818598 1 0.334 0.6248 0.884 0.052 0.008 0.056
#> SRR1818597 1 0.432 0.5826 0.824 0.032 0.016 0.128
#> SRR1818596 4 0.670 0.6309 0.208 0.048 0.072 0.672
#> SRR1818595 1 0.398 0.6075 0.848 0.040 0.012 0.100
#> SRR1818594 1 0.432 0.5826 0.824 0.032 0.016 0.128
#> SRR1818593 4 0.401 0.6439 0.112 0.020 0.024 0.844
#> SRR1818592 4 0.675 0.6248 0.224 0.044 0.072 0.660
#> SRR1818591 2 0.319 0.7974 0.060 0.888 0.004 0.048
#> SRR1818590 2 0.718 0.5976 0.120 0.636 0.040 0.204
#> SRR1818589 4 0.401 0.6439 0.112 0.020 0.024 0.844
#> SRR1818587 4 0.822 0.4837 0.308 0.156 0.044 0.492
#> SRR1818586 2 0.319 0.7974 0.060 0.888 0.004 0.048
#> SRR1818585 1 0.952 0.0135 0.344 0.256 0.288 0.112
#> SRR1818584 1 0.573 0.4792 0.752 0.060 0.148 0.040
#> SRR1818583 1 0.427 0.5839 0.828 0.032 0.016 0.124
#> SRR1818588 4 0.812 0.3594 0.404 0.124 0.044 0.428
#> SRR1818582 4 0.675 0.6248 0.224 0.044 0.072 0.660
#> SRR1818581 2 0.319 0.7974 0.060 0.888 0.004 0.048
#> SRR1818579 1 0.404 0.5485 0.848 0.028 0.100 0.024
#> SRR1818578 1 0.417 0.6196 0.844 0.032 0.028 0.096
#> SRR1818577 2 0.486 0.7662 0.124 0.804 0.032 0.040
#> SRR1818580 1 0.539 0.4906 0.776 0.048 0.132 0.044
#> SRR1818575 4 0.809 0.4644 0.336 0.132 0.044 0.488
#> SRR1818574 3 0.697 0.9976 0.328 0.004 0.552 0.116
#> SRR1818576 1 0.314 0.6145 0.888 0.024 0.008 0.080
#> SRR1818573 4 0.675 0.6248 0.224 0.044 0.072 0.660
#> SRR1818572 1 0.573 0.4792 0.752 0.060 0.148 0.040
#> SRR1818571 4 0.465 0.5950 0.288 0.000 0.008 0.704
#> SRR1818570 1 0.432 0.5826 0.824 0.032 0.016 0.128
#> SRR1818568 4 0.809 0.4644 0.336 0.132 0.044 0.488
#> SRR1818567 2 0.380 0.7908 0.060 0.868 0.024 0.048
#> SRR1818566 3 0.697 0.9976 0.328 0.004 0.552 0.116
#> SRR1818569 1 0.952 0.0135 0.344 0.256 0.288 0.112
#> SRR1818565 3 0.697 0.9976 0.328 0.004 0.552 0.116
#> SRR1818564 1 0.334 0.6127 0.880 0.032 0.008 0.080
#> SRR1818563 4 0.776 0.5667 0.244 0.140 0.044 0.572
#> SRR1818561 3 0.697 0.9976 0.328 0.004 0.552 0.116
#> SRR1818560 1 0.319 0.6065 0.884 0.012 0.016 0.088
#> SRR1818559 4 0.675 0.6248 0.224 0.044 0.072 0.660
#> SRR1818562 1 0.868 -0.1193 0.420 0.304 0.044 0.232
#> SRR1818558 1 0.404 0.5485 0.848 0.028 0.100 0.024
#> SRR1818556 1 0.279 0.6028 0.912 0.020 0.020 0.048
#> SRR1818557 4 0.675 0.6248 0.224 0.044 0.072 0.660
#> SRR1818555 2 0.319 0.7974 0.060 0.888 0.004 0.048
#> SRR1818553 4 0.567 0.3737 0.448 0.000 0.024 0.528
#> SRR1818552 2 0.431 0.7720 0.048 0.844 0.036 0.072
#> SRR1818551 1 0.788 0.0060 0.536 0.136 0.040 0.288
#> SRR1818550 4 0.824 0.4787 0.316 0.156 0.044 0.484
#> SRR1818554 4 0.401 0.6439 0.112 0.020 0.024 0.844
#> SRR1818549 1 0.578 -0.2492 0.500 0.000 0.028 0.472
#> SRR1818548 4 0.675 0.6248 0.224 0.044 0.072 0.660
#> SRR1818546 1 0.952 0.0135 0.344 0.256 0.288 0.112
#> SRR1818547 4 0.331 0.6281 0.084 0.028 0.008 0.880
#> SRR1818544 1 0.385 0.5537 0.860 0.028 0.088 0.024
#> SRR1818543 1 0.181 0.5981 0.948 0.004 0.028 0.020
#> SRR1818542 2 0.901 0.1994 0.368 0.372 0.176 0.084
#> SRR1818545 4 0.825 0.4734 0.320 0.156 0.044 0.480
#> SRR1818541 1 0.259 0.6199 0.916 0.020 0.008 0.056
#> SRR1818539 1 0.293 0.6193 0.896 0.012 0.012 0.080
#> SRR1818540 2 0.319 0.7974 0.060 0.888 0.004 0.048
#> SRR1818536 1 0.606 0.2113 0.632 0.036 0.016 0.316
#> SRR1818535 1 0.433 0.5538 0.816 0.016 0.024 0.144
#> SRR1818534 4 0.675 0.6248 0.224 0.044 0.072 0.660
#> SRR1818538 2 0.718 0.5976 0.120 0.636 0.040 0.204
#> SRR1818537 1 0.259 0.6199 0.916 0.020 0.008 0.056
#> SRR1818533 1 0.334 0.6248 0.884 0.052 0.008 0.056
#> SRR1818532 1 0.740 -0.2245 0.488 0.072 0.036 0.404
#> SRR1818531 1 0.573 0.4792 0.752 0.060 0.148 0.040
#> SRR1818530 1 0.952 0.0135 0.344 0.256 0.288 0.112
#> SRR1818529 2 0.901 0.1994 0.368 0.372 0.176 0.084
#> SRR1818528 1 0.304 0.6142 0.892 0.020 0.008 0.080
#> SRR1818527 1 0.419 0.5458 0.840 0.032 0.104 0.024
#> SRR1818526 4 0.324 0.6298 0.080 0.028 0.008 0.884
#> SRR1818525 1 0.626 0.4308 0.716 0.068 0.168 0.048
#> SRR1818523 3 0.718 0.9927 0.328 0.008 0.540 0.124
#> SRR1818524 4 0.680 0.6255 0.220 0.048 0.072 0.660
#> SRR1818522 1 0.785 0.0595 0.548 0.140 0.040 0.272
#> SRR1818521 2 0.486 0.7662 0.124 0.804 0.032 0.040
#> SRR1818520 2 0.319 0.7974 0.060 0.888 0.004 0.048
#> SRR1818518 1 0.291 0.6106 0.892 0.016 0.004 0.088
#> SRR1818519 4 0.314 0.6314 0.080 0.024 0.008 0.888
#> SRR1818517 2 0.718 0.5976 0.120 0.636 0.040 0.204
#> SRR1818516 3 0.718 0.9927 0.328 0.008 0.540 0.124
#> SRR1818515 4 0.401 0.6439 0.112 0.020 0.024 0.844
#> SRR1818514 1 0.952 0.0135 0.344 0.256 0.288 0.112
#> SRR1818513 2 0.339 0.7904 0.052 0.884 0.012 0.052
#> SRR1818512 1 0.952 0.0135 0.344 0.256 0.288 0.112
#> SRR1818510 2 0.319 0.7974 0.060 0.888 0.004 0.048
#> SRR1818511 1 0.868 -0.1193 0.420 0.304 0.044 0.232
#> SRR1818508 1 0.573 0.4792 0.752 0.060 0.148 0.040
#> SRR1818509 2 0.718 0.5976 0.120 0.636 0.040 0.204
#> SRR1818507 4 0.314 0.6314 0.080 0.024 0.008 0.888
#> SRR1818506 4 0.440 0.6101 0.272 0.000 0.004 0.724
#> SRR1818505 1 0.374 0.5569 0.864 0.028 0.088 0.020
#> SRR1818503 1 0.259 0.6199 0.916 0.020 0.008 0.056
#> SRR1818504 1 0.534 0.5877 0.776 0.064 0.028 0.132
#> SRR1818502 1 0.334 0.6248 0.884 0.052 0.008 0.056
#> SRR1818498 2 0.294 0.7931 0.056 0.900 0.004 0.040
#> SRR1818500 1 0.610 0.5575 0.724 0.096 0.028 0.152
#> SRR1818501 3 0.697 0.9976 0.328 0.004 0.552 0.116
#> SRR1818499 1 0.346 0.6197 0.868 0.032 0.004 0.096
#> SRR1818496 2 0.901 0.1994 0.368 0.372 0.176 0.084
#> SRR1818494 1 0.334 0.6248 0.884 0.052 0.008 0.056
#> SRR1818495 4 0.824 0.4787 0.316 0.156 0.044 0.484
#> SRR1818493 2 0.371 0.7890 0.064 0.872 0.024 0.040
#> SRR1818492 4 0.824 0.4787 0.316 0.156 0.044 0.484
#> SRR1818491 1 0.374 0.5569 0.864 0.028 0.088 0.020
#> SRR1818490 1 0.616 0.2062 0.628 0.036 0.020 0.316
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1818497 1 0.8368 -0.3716 0.392 0.280 0.052 0.040 0.236
#> SRR1818600 1 0.5163 0.3580 0.608 0.004 0.028 0.008 0.352
#> SRR1818599 3 0.4274 0.9941 0.176 0.012 0.776 0.032 0.004
#> SRR1818598 1 0.2228 0.5972 0.912 0.008 0.000 0.012 0.068
#> SRR1818597 1 0.2843 0.5903 0.896 0.004 0.032 0.024 0.044
#> SRR1818596 4 0.6629 0.6645 0.148 0.028 0.076 0.660 0.088
#> SRR1818595 1 0.1498 0.6035 0.952 0.000 0.008 0.024 0.016
#> SRR1818594 1 0.2688 0.5918 0.904 0.004 0.036 0.024 0.032
#> SRR1818593 4 0.2917 0.6644 0.068 0.012 0.024 0.888 0.008
#> SRR1818592 4 0.6629 0.6645 0.148 0.028 0.076 0.660 0.088
#> SRR1818591 2 0.1845 0.8422 0.056 0.928 0.000 0.016 0.000
#> SRR1818590 2 0.7649 0.5889 0.124 0.572 0.032 0.140 0.132
#> SRR1818589 4 0.2917 0.6644 0.068 0.012 0.024 0.888 0.008
#> SRR1818587 4 0.8985 0.0997 0.324 0.136 0.052 0.332 0.156
#> SRR1818586 2 0.1845 0.8422 0.056 0.928 0.000 0.016 0.000
#> SRR1818585 5 0.8142 1.0000 0.200 0.168 0.060 0.064 0.508
#> SRR1818584 1 0.5507 0.2603 0.552 0.012 0.028 0.008 0.400
#> SRR1818583 1 0.2255 0.5967 0.924 0.004 0.024 0.020 0.028
#> SRR1818588 1 0.8248 0.1205 0.488 0.088 0.052 0.240 0.132
#> SRR1818582 4 0.6629 0.6645 0.148 0.028 0.076 0.660 0.088
#> SRR1818581 2 0.1845 0.8422 0.056 0.928 0.000 0.016 0.000
#> SRR1818579 1 0.5163 0.3580 0.608 0.004 0.028 0.008 0.352
#> SRR1818578 1 0.3125 0.5703 0.864 0.004 0.012 0.016 0.104
#> SRR1818577 2 0.4702 0.7345 0.144 0.772 0.048 0.004 0.032
#> SRR1818580 1 0.4899 0.3302 0.624 0.008 0.016 0.004 0.348
#> SRR1818575 1 0.8778 -0.1079 0.356 0.104 0.052 0.332 0.156
#> SRR1818574 3 0.4274 0.9941 0.176 0.012 0.776 0.032 0.004
#> SRR1818576 1 0.0981 0.6045 0.972 0.000 0.008 0.012 0.008
#> SRR1818573 4 0.6629 0.6645 0.148 0.028 0.076 0.660 0.088
#> SRR1818572 1 0.5507 0.2603 0.552 0.012 0.028 0.008 0.400
#> SRR1818571 4 0.6514 0.3897 0.324 0.008 0.040 0.556 0.072
#> SRR1818570 1 0.2843 0.5903 0.896 0.004 0.032 0.024 0.044
#> SRR1818568 1 0.8778 -0.1079 0.356 0.104 0.052 0.332 0.156
#> SRR1818567 2 0.3361 0.8154 0.056 0.872 0.040 0.012 0.020
#> SRR1818566 3 0.4287 0.9933 0.176 0.008 0.776 0.032 0.008
#> SRR1818569 5 0.8142 1.0000 0.200 0.168 0.060 0.064 0.508
#> SRR1818565 3 0.4166 0.9941 0.176 0.008 0.780 0.032 0.004
#> SRR1818564 1 0.1314 0.6051 0.960 0.000 0.012 0.012 0.016
#> SRR1818563 4 0.8924 0.1901 0.284 0.140 0.048 0.372 0.156
#> SRR1818561 3 0.4166 0.9941 0.176 0.008 0.780 0.032 0.004
#> SRR1818560 1 0.1731 0.5991 0.940 0.000 0.012 0.008 0.040
#> SRR1818559 4 0.6629 0.6645 0.148 0.028 0.076 0.660 0.088
#> SRR1818562 1 0.7964 0.2630 0.528 0.208 0.040 0.100 0.124
#> SRR1818558 1 0.5163 0.3580 0.608 0.004 0.028 0.008 0.352
#> SRR1818556 1 0.2464 0.5796 0.888 0.000 0.016 0.000 0.096
#> SRR1818557 4 0.6629 0.6645 0.148 0.028 0.076 0.660 0.088
#> SRR1818555 2 0.1845 0.8422 0.056 0.928 0.000 0.016 0.000
#> SRR1818553 1 0.6355 0.1272 0.564 0.008 0.036 0.328 0.064
#> SRR1818552 2 0.4230 0.7895 0.052 0.828 0.016 0.040 0.064
#> SRR1818551 1 0.7001 0.3511 0.636 0.080 0.036 0.132 0.116
#> SRR1818550 1 0.8986 -0.1465 0.328 0.136 0.052 0.328 0.156
#> SRR1818554 4 0.2917 0.6644 0.068 0.012 0.024 0.888 0.008
#> SRR1818549 1 0.6531 0.1654 0.580 0.012 0.048 0.296 0.064
#> SRR1818548 4 0.6629 0.6645 0.148 0.028 0.076 0.660 0.088
#> SRR1818546 5 0.8142 1.0000 0.200 0.168 0.060 0.064 0.508
#> SRR1818547 4 0.4429 0.6072 0.044 0.036 0.032 0.820 0.068
#> SRR1818544 1 0.4574 0.4048 0.676 0.004 0.016 0.004 0.300
#> SRR1818543 1 0.1942 0.5856 0.920 0.000 0.012 0.000 0.068
#> SRR1818542 1 0.8368 -0.3716 0.392 0.280 0.052 0.040 0.236
#> SRR1818545 1 0.8986 -0.1465 0.328 0.136 0.052 0.328 0.156
#> SRR1818541 1 0.1365 0.6020 0.952 0.000 0.004 0.004 0.040
#> SRR1818539 1 0.0912 0.6053 0.972 0.000 0.000 0.012 0.016
#> SRR1818540 2 0.1845 0.8422 0.056 0.928 0.000 0.016 0.000
#> SRR1818536 1 0.5944 0.4051 0.696 0.024 0.028 0.156 0.096
#> SRR1818535 1 0.3175 0.5811 0.876 0.000 0.044 0.040 0.040
#> SRR1818534 4 0.6629 0.6645 0.148 0.028 0.076 0.660 0.088
#> SRR1818538 2 0.7649 0.5889 0.124 0.572 0.032 0.140 0.132
#> SRR1818537 1 0.1365 0.6020 0.952 0.000 0.004 0.004 0.040
#> SRR1818533 1 0.2228 0.5972 0.912 0.008 0.000 0.012 0.068
#> SRR1818532 1 0.7370 0.2442 0.580 0.048 0.048 0.204 0.120
#> SRR1818531 1 0.5507 0.2603 0.552 0.012 0.028 0.008 0.400
#> SRR1818530 5 0.8142 1.0000 0.200 0.168 0.060 0.064 0.508
#> SRR1818529 1 0.8368 -0.3716 0.392 0.280 0.052 0.040 0.236
#> SRR1818528 1 0.1200 0.6045 0.964 0.000 0.008 0.012 0.016
#> SRR1818527 1 0.5163 0.3580 0.608 0.004 0.028 0.008 0.352
#> SRR1818526 4 0.4429 0.6072 0.044 0.036 0.032 0.820 0.068
#> SRR1818525 1 0.5553 0.2009 0.524 0.012 0.028 0.008 0.428
#> SRR1818523 3 0.4665 0.9870 0.176 0.020 0.760 0.036 0.008
#> SRR1818524 4 0.6629 0.6645 0.148 0.028 0.076 0.660 0.088
#> SRR1818522 1 0.6908 0.3769 0.648 0.080 0.040 0.116 0.116
#> SRR1818521 2 0.4660 0.7397 0.140 0.776 0.048 0.004 0.032
#> SRR1818520 2 0.1845 0.8422 0.056 0.928 0.000 0.016 0.000
#> SRR1818518 1 0.1280 0.6048 0.960 0.000 0.008 0.008 0.024
#> SRR1818519 4 0.3871 0.6239 0.044 0.032 0.032 0.852 0.040
#> SRR1818517 2 0.7649 0.5889 0.124 0.572 0.032 0.140 0.132
#> SRR1818516 3 0.4665 0.9870 0.176 0.020 0.760 0.036 0.008
#> SRR1818515 4 0.2917 0.6644 0.068 0.012 0.024 0.888 0.008
#> SRR1818514 5 0.8142 1.0000 0.200 0.168 0.060 0.064 0.508
#> SRR1818513 2 0.2471 0.8394 0.060 0.908 0.012 0.016 0.004
#> SRR1818512 5 0.8142 1.0000 0.200 0.168 0.060 0.064 0.508
#> SRR1818510 2 0.1845 0.8422 0.056 0.928 0.000 0.016 0.000
#> SRR1818511 1 0.7986 0.2591 0.524 0.212 0.040 0.100 0.124
#> SRR1818508 1 0.5507 0.2603 0.552 0.012 0.028 0.008 0.400
#> SRR1818509 2 0.7649 0.5889 0.124 0.572 0.032 0.140 0.132
#> SRR1818507 4 0.3635 0.6273 0.040 0.028 0.032 0.864 0.036
#> SRR1818506 4 0.6612 0.3802 0.324 0.008 0.040 0.548 0.080
#> SRR1818505 1 0.4574 0.4048 0.676 0.004 0.016 0.004 0.300
#> SRR1818503 1 0.1285 0.6020 0.956 0.000 0.004 0.004 0.036
#> SRR1818504 1 0.2675 0.5934 0.904 0.004 0.020 0.040 0.032
#> SRR1818502 1 0.2228 0.5972 0.912 0.008 0.000 0.012 0.068
#> SRR1818498 2 0.1901 0.8370 0.056 0.928 0.000 0.012 0.004
#> SRR1818500 1 0.4560 0.5204 0.800 0.028 0.016 0.052 0.104
#> SRR1818501 3 0.4274 0.9941 0.176 0.012 0.776 0.032 0.004
#> SRR1818499 1 0.1701 0.6073 0.944 0.000 0.012 0.016 0.028
#> SRR1818496 1 0.8368 -0.3716 0.392 0.280 0.052 0.040 0.236
#> SRR1818494 1 0.2228 0.5972 0.912 0.008 0.000 0.012 0.068
#> SRR1818495 1 0.8986 -0.1465 0.328 0.136 0.052 0.328 0.156
#> SRR1818493 2 0.3437 0.8023 0.064 0.864 0.040 0.004 0.028
#> SRR1818492 4 0.8986 0.0899 0.328 0.136 0.052 0.328 0.156
#> SRR1818491 1 0.4574 0.4048 0.676 0.004 0.016 0.004 0.300
#> SRR1818490 1 0.6059 0.3971 0.688 0.024 0.032 0.160 0.096
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1818497 5 0.9025 0.4919 0.212 0.212 0.036 0.052 0.268 0.220
#> SRR1818600 6 0.2278 0.8620 0.128 0.000 0.000 0.000 0.004 0.868
#> SRR1818599 3 0.2899 0.9905 0.060 0.004 0.876 0.012 0.004 0.044
#> SRR1818598 1 0.4532 0.4373 0.596 0.004 0.008 0.004 0.012 0.376
#> SRR1818597 1 0.4518 0.5452 0.680 0.004 0.012 0.008 0.020 0.276
#> SRR1818596 4 0.4579 0.7647 0.172 0.028 0.028 0.748 0.004 0.020
#> SRR1818595 1 0.4189 0.5456 0.688 0.004 0.012 0.004 0.008 0.284
#> SRR1818594 1 0.4538 0.5431 0.676 0.004 0.012 0.008 0.020 0.280
#> SRR1818593 4 0.5554 0.7290 0.152 0.000 0.024 0.676 0.120 0.028
#> SRR1818592 4 0.4612 0.7646 0.172 0.024 0.028 0.748 0.008 0.020
#> SRR1818591 2 0.0632 0.8122 0.024 0.976 0.000 0.000 0.000 0.000
#> SRR1818590 2 0.7184 0.5296 0.232 0.524 0.020 0.080 0.128 0.016
#> SRR1818589 4 0.5554 0.7290 0.152 0.000 0.024 0.676 0.120 0.028
#> SRR1818587 1 0.7104 0.2011 0.572 0.068 0.036 0.184 0.116 0.024
#> SRR1818586 2 0.0632 0.8122 0.024 0.976 0.000 0.000 0.000 0.000
#> SRR1818585 5 0.5747 0.7173 0.016 0.100 0.000 0.032 0.632 0.220
#> SRR1818584 6 0.2294 0.8294 0.072 0.000 0.000 0.000 0.036 0.892
#> SRR1818583 1 0.4558 0.5413 0.672 0.004 0.012 0.008 0.020 0.284
#> SRR1818588 1 0.4394 0.4289 0.788 0.040 0.028 0.096 0.048 0.000
#> SRR1818582 4 0.4612 0.7646 0.172 0.024 0.028 0.748 0.008 0.020
#> SRR1818581 2 0.0632 0.8122 0.024 0.976 0.000 0.000 0.000 0.000
#> SRR1818579 6 0.2278 0.8620 0.128 0.000 0.000 0.000 0.004 0.868
#> SRR1818578 1 0.5090 0.4543 0.596 0.004 0.008 0.008 0.044 0.340
#> SRR1818577 2 0.5286 0.6901 0.080 0.752 0.048 0.032 0.044 0.044
#> SRR1818580 6 0.3632 0.8019 0.168 0.004 0.004 0.004 0.028 0.792
#> SRR1818575 1 0.6901 0.2187 0.588 0.052 0.036 0.184 0.116 0.024
#> SRR1818574 3 0.2614 0.9905 0.060 0.000 0.884 0.012 0.000 0.044
#> SRR1818576 1 0.4768 0.5317 0.648 0.004 0.020 0.004 0.024 0.300
#> SRR1818573 4 0.4612 0.7646 0.172 0.024 0.028 0.748 0.008 0.020
#> SRR1818572 6 0.2294 0.8294 0.072 0.000 0.000 0.000 0.036 0.892
#> SRR1818571 1 0.6019 0.0848 0.588 0.000 0.024 0.264 0.096 0.028
#> SRR1818570 1 0.4518 0.5452 0.680 0.004 0.012 0.008 0.020 0.276
#> SRR1818568 1 0.6901 0.2187 0.588 0.052 0.036 0.184 0.116 0.024
#> SRR1818567 2 0.2903 0.7847 0.024 0.888 0.016 0.032 0.032 0.008
#> SRR1818566 3 0.2768 0.9886 0.060 0.000 0.880 0.008 0.008 0.044
#> SRR1818569 5 0.5747 0.7173 0.016 0.100 0.000 0.032 0.632 0.220
#> SRR1818565 3 0.2513 0.9908 0.060 0.000 0.888 0.008 0.000 0.044
#> SRR1818564 1 0.4714 0.5397 0.660 0.004 0.020 0.004 0.024 0.288
#> SRR1818563 1 0.7235 0.1569 0.552 0.068 0.036 0.200 0.120 0.024
#> SRR1818561 3 0.2513 0.9908 0.060 0.000 0.888 0.008 0.000 0.044
#> SRR1818560 1 0.4307 0.5184 0.652 0.004 0.012 0.000 0.012 0.320
#> SRR1818559 4 0.4579 0.7647 0.172 0.028 0.028 0.748 0.004 0.020
#> SRR1818562 1 0.5974 0.4297 0.692 0.108 0.020 0.044 0.088 0.048
#> SRR1818558 6 0.2278 0.8620 0.128 0.000 0.000 0.000 0.004 0.868
#> SRR1818556 1 0.4062 0.3232 0.552 0.000 0.008 0.000 0.000 0.440
#> SRR1818557 4 0.4579 0.7647 0.172 0.028 0.028 0.748 0.004 0.020
#> SRR1818555 2 0.0632 0.8122 0.024 0.976 0.000 0.000 0.000 0.000
#> SRR1818553 1 0.4612 0.4464 0.756 0.000 0.016 0.140 0.052 0.036
#> SRR1818552 2 0.4655 0.7129 0.100 0.764 0.020 0.020 0.092 0.004
#> SRR1818551 1 0.3873 0.5273 0.836 0.024 0.016 0.028 0.036 0.060
#> SRR1818550 1 0.7104 0.2011 0.572 0.068 0.036 0.184 0.116 0.024
#> SRR1818554 4 0.5554 0.7290 0.152 0.000 0.024 0.676 0.120 0.028
#> SRR1818549 1 0.4846 0.4644 0.752 0.000 0.028 0.120 0.052 0.048
#> SRR1818548 4 0.4612 0.7646 0.172 0.024 0.028 0.748 0.008 0.020
#> SRR1818546 5 0.5747 0.7173 0.016 0.100 0.000 0.032 0.632 0.220
#> SRR1818547 4 0.6499 0.5996 0.180 0.000 0.032 0.568 0.188 0.032
#> SRR1818544 6 0.3901 0.7639 0.212 0.004 0.004 0.004 0.024 0.752
#> SRR1818543 1 0.4329 0.4788 0.624 0.004 0.012 0.000 0.008 0.352
#> SRR1818542 5 0.9025 0.4919 0.212 0.212 0.036 0.052 0.268 0.220
#> SRR1818545 1 0.7104 0.2011 0.572 0.068 0.036 0.184 0.116 0.024
#> SRR1818541 1 0.4892 0.5034 0.616 0.004 0.020 0.004 0.024 0.332
#> SRR1818539 1 0.4300 0.5276 0.664 0.004 0.012 0.004 0.008 0.308
#> SRR1818540 2 0.0632 0.8122 0.024 0.976 0.000 0.000 0.000 0.000
#> SRR1818536 1 0.2862 0.5475 0.876 0.004 0.012 0.032 0.004 0.072
#> SRR1818535 1 0.4793 0.5277 0.652 0.004 0.016 0.012 0.020 0.296
#> SRR1818534 4 0.4579 0.7647 0.172 0.028 0.028 0.748 0.004 0.020
#> SRR1818538 2 0.7184 0.5296 0.232 0.524 0.020 0.080 0.128 0.016
#> SRR1818537 1 0.4892 0.5034 0.616 0.004 0.020 0.004 0.024 0.332
#> SRR1818533 1 0.4532 0.4373 0.596 0.004 0.008 0.004 0.012 0.376
#> SRR1818532 1 0.3029 0.5075 0.876 0.008 0.028 0.060 0.016 0.012
#> SRR1818531 6 0.2294 0.8294 0.072 0.000 0.000 0.000 0.036 0.892
#> SRR1818530 5 0.5747 0.7173 0.016 0.100 0.000 0.032 0.632 0.220
#> SRR1818529 5 0.9025 0.4919 0.212 0.212 0.036 0.052 0.268 0.220
#> SRR1818528 1 0.4817 0.5216 0.636 0.004 0.020 0.004 0.024 0.312
#> SRR1818527 6 0.2278 0.8620 0.128 0.000 0.000 0.000 0.004 0.868
#> SRR1818526 4 0.6499 0.5996 0.180 0.000 0.032 0.568 0.188 0.032
#> SRR1818525 6 0.2629 0.7911 0.068 0.000 0.000 0.000 0.060 0.872
#> SRR1818523 3 0.3360 0.9826 0.060 0.004 0.856 0.016 0.016 0.048
#> SRR1818524 4 0.4579 0.7647 0.172 0.028 0.028 0.748 0.004 0.020
#> SRR1818522 1 0.4080 0.5320 0.820 0.024 0.012 0.032 0.036 0.076
#> SRR1818521 2 0.5205 0.7012 0.084 0.756 0.048 0.032 0.044 0.036
#> SRR1818520 2 0.0632 0.8122 0.024 0.976 0.000 0.000 0.000 0.000
#> SRR1818518 1 0.4197 0.5212 0.660 0.004 0.012 0.000 0.008 0.316
#> SRR1818519 4 0.6395 0.6113 0.172 0.000 0.032 0.584 0.180 0.032
#> SRR1818517 2 0.7184 0.5296 0.232 0.524 0.020 0.080 0.128 0.016
#> SRR1818516 3 0.3360 0.9826 0.060 0.004 0.856 0.016 0.016 0.048
#> SRR1818515 4 0.5554 0.7290 0.152 0.000 0.024 0.676 0.120 0.028
#> SRR1818514 5 0.5747 0.7173 0.016 0.100 0.000 0.032 0.632 0.220
#> SRR1818513 2 0.1698 0.8073 0.032 0.940 0.004 0.008 0.012 0.004
#> SRR1818512 5 0.5747 0.7173 0.016 0.100 0.000 0.032 0.632 0.220
#> SRR1818510 2 0.0632 0.8122 0.024 0.976 0.000 0.000 0.000 0.000
#> SRR1818511 1 0.5974 0.4297 0.692 0.108 0.020 0.044 0.088 0.048
#> SRR1818508 6 0.2294 0.8294 0.072 0.000 0.000 0.000 0.036 0.892
#> SRR1818509 2 0.7184 0.5296 0.232 0.524 0.020 0.080 0.128 0.016
#> SRR1818507 4 0.6395 0.6113 0.172 0.000 0.032 0.584 0.180 0.032
#> SRR1818506 1 0.5675 0.1187 0.616 0.000 0.016 0.256 0.088 0.024
#> SRR1818505 6 0.3901 0.7639 0.212 0.004 0.004 0.004 0.024 0.752
#> SRR1818503 1 0.4878 0.5066 0.620 0.004 0.020 0.004 0.024 0.328
#> SRR1818504 1 0.5174 0.5326 0.652 0.004 0.016 0.020 0.040 0.268
#> SRR1818502 1 0.4532 0.4373 0.596 0.004 0.008 0.004 0.012 0.376
#> SRR1818498 2 0.0632 0.8122 0.024 0.976 0.000 0.000 0.000 0.000
#> SRR1818500 1 0.5775 0.4515 0.604 0.012 0.008 0.036 0.056 0.284
#> SRR1818501 3 0.2899 0.9905 0.060 0.004 0.876 0.012 0.004 0.044
#> SRR1818499 1 0.3981 0.5271 0.672 0.004 0.004 0.000 0.008 0.312
#> SRR1818496 5 0.9025 0.4919 0.212 0.212 0.036 0.052 0.268 0.220
#> SRR1818494 1 0.4532 0.4373 0.596 0.004 0.008 0.004 0.012 0.376
#> SRR1818495 1 0.7104 0.2011 0.572 0.068 0.036 0.184 0.116 0.024
#> SRR1818493 2 0.3298 0.7757 0.024 0.868 0.032 0.032 0.036 0.008
#> SRR1818492 1 0.7104 0.2011 0.572 0.068 0.036 0.184 0.116 0.024
#> SRR1818491 6 0.3901 0.7639 0.212 0.004 0.004 0.004 0.024 0.752
#> SRR1818490 1 0.2862 0.5475 0.876 0.004 0.012 0.032 0.004 0.072
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 16183 rows and 111 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 4.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.450 0.716 0.848 0.5017 0.500 0.500
#> 3 3 0.674 0.696 0.854 0.3248 0.659 0.419
#> 4 4 0.706 0.740 0.870 0.1232 0.737 0.381
#> 5 5 0.742 0.574 0.730 0.0674 0.930 0.736
#> 6 6 0.792 0.714 0.802 0.0441 0.903 0.591
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1818497 2 0.7139 0.8046 0.196 0.804
#> SRR1818600 2 0.8713 0.8014 0.292 0.708
#> SRR1818599 1 0.0000 0.7148 1.000 0.000
#> SRR1818598 2 0.9988 0.5544 0.480 0.520
#> SRR1818597 1 0.0376 0.7125 0.996 0.004
#> SRR1818596 1 0.8661 0.7901 0.712 0.288
#> SRR1818595 1 0.0672 0.7099 0.992 0.008
#> SRR1818594 1 0.0376 0.7125 0.996 0.004
#> SRR1818593 1 0.8661 0.7901 0.712 0.288
#> SRR1818592 1 0.8661 0.7901 0.712 0.288
#> SRR1818591 2 0.0000 0.7465 0.000 1.000
#> SRR1818590 2 0.0376 0.7430 0.004 0.996
#> SRR1818589 1 0.8661 0.7901 0.712 0.288
#> SRR1818587 1 0.8661 0.7901 0.712 0.288
#> SRR1818586 2 0.0000 0.7465 0.000 1.000
#> SRR1818585 2 0.8443 0.8084 0.272 0.728
#> SRR1818584 2 0.8661 0.8038 0.288 0.712
#> SRR1818583 1 0.0376 0.7125 0.996 0.004
#> SRR1818588 1 0.8443 0.7926 0.728 0.272
#> SRR1818582 1 0.8661 0.7901 0.712 0.288
#> SRR1818581 2 0.0000 0.7465 0.000 1.000
#> SRR1818579 2 0.8661 0.8038 0.288 0.712
#> SRR1818578 2 0.8499 0.8073 0.276 0.724
#> SRR1818577 2 0.3733 0.7714 0.072 0.928
#> SRR1818580 2 0.8661 0.8038 0.288 0.712
#> SRR1818575 1 0.8443 0.7926 0.728 0.272
#> SRR1818574 1 0.0000 0.7148 1.000 0.000
#> SRR1818576 1 0.1633 0.6971 0.976 0.024
#> SRR1818573 1 0.8661 0.7901 0.712 0.288
#> SRR1818572 2 0.8661 0.8038 0.288 0.712
#> SRR1818571 1 0.8443 0.7926 0.728 0.272
#> SRR1818570 1 0.0376 0.7125 0.996 0.004
#> SRR1818568 1 0.8443 0.7926 0.728 0.272
#> SRR1818567 2 0.0000 0.7465 0.000 1.000
#> SRR1818566 1 0.0000 0.7148 1.000 0.000
#> SRR1818569 2 0.8443 0.8084 0.272 0.728
#> SRR1818565 1 0.0000 0.7148 1.000 0.000
#> SRR1818564 1 0.1184 0.7040 0.984 0.016
#> SRR1818563 1 0.8499 0.7924 0.724 0.276
#> SRR1818561 1 0.0000 0.7148 1.000 0.000
#> SRR1818560 1 0.1184 0.7040 0.984 0.016
#> SRR1818559 1 0.8661 0.7901 0.712 0.288
#> SRR1818562 2 0.0672 0.7392 0.008 0.992
#> SRR1818558 2 0.8661 0.8038 0.288 0.712
#> SRR1818556 1 0.1633 0.6971 0.976 0.024
#> SRR1818557 1 0.8661 0.7901 0.712 0.288
#> SRR1818555 2 0.0000 0.7465 0.000 1.000
#> SRR1818553 1 0.7674 0.7858 0.776 0.224
#> SRR1818552 2 0.0376 0.7430 0.004 0.996
#> SRR1818551 1 0.8661 0.7901 0.712 0.288
#> SRR1818550 1 0.8499 0.7924 0.724 0.276
#> SRR1818554 1 0.8661 0.7901 0.712 0.288
#> SRR1818549 1 0.6887 0.7774 0.816 0.184
#> SRR1818548 1 0.8661 0.7901 0.712 0.288
#> SRR1818546 2 0.8443 0.8084 0.272 0.728
#> SRR1818547 1 0.8661 0.7901 0.712 0.288
#> SRR1818544 2 0.8661 0.8038 0.288 0.712
#> SRR1818543 1 0.9129 0.0305 0.672 0.328
#> SRR1818542 2 0.7139 0.8046 0.196 0.804
#> SRR1818545 1 0.8499 0.7924 0.724 0.276
#> SRR1818541 1 0.9129 0.0304 0.672 0.328
#> SRR1818539 1 0.5408 0.5651 0.876 0.124
#> SRR1818540 2 0.0000 0.7465 0.000 1.000
#> SRR1818536 1 0.6887 0.7774 0.816 0.184
#> SRR1818535 1 0.0376 0.7125 0.996 0.004
#> SRR1818534 1 0.8661 0.7901 0.712 0.288
#> SRR1818538 2 0.0376 0.7430 0.004 0.996
#> SRR1818537 1 0.9129 0.0304 0.672 0.328
#> SRR1818533 2 0.9988 0.5544 0.480 0.520
#> SRR1818532 1 0.8443 0.7926 0.728 0.272
#> SRR1818531 2 0.8661 0.8038 0.288 0.712
#> SRR1818530 2 0.8443 0.8084 0.272 0.728
#> SRR1818529 2 0.7139 0.8046 0.196 0.804
#> SRR1818528 1 0.8608 0.1858 0.716 0.284
#> SRR1818527 2 0.8661 0.8038 0.288 0.712
#> SRR1818526 1 0.8661 0.7901 0.712 0.288
#> SRR1818525 2 0.8661 0.8038 0.288 0.712
#> SRR1818523 1 0.0000 0.7148 1.000 0.000
#> SRR1818524 1 0.8661 0.7901 0.712 0.288
#> SRR1818522 1 0.9522 0.7147 0.628 0.372
#> SRR1818521 2 0.0000 0.7465 0.000 1.000
#> SRR1818520 2 0.0000 0.7465 0.000 1.000
#> SRR1818518 1 0.1633 0.6971 0.976 0.024
#> SRR1818519 1 0.8661 0.7901 0.712 0.288
#> SRR1818517 2 0.0376 0.7430 0.004 0.996
#> SRR1818516 1 0.0000 0.7148 1.000 0.000
#> SRR1818515 1 0.8661 0.7901 0.712 0.288
#> SRR1818514 2 0.8443 0.8084 0.272 0.728
#> SRR1818513 2 0.0000 0.7465 0.000 1.000
#> SRR1818512 2 0.8443 0.8084 0.272 0.728
#> SRR1818510 2 0.0000 0.7465 0.000 1.000
#> SRR1818511 2 0.0672 0.7392 0.008 0.992
#> SRR1818508 2 0.8661 0.8038 0.288 0.712
#> SRR1818509 2 0.0376 0.7430 0.004 0.996
#> SRR1818507 1 0.8661 0.7901 0.712 0.288
#> SRR1818506 1 0.8443 0.7926 0.728 0.272
#> SRR1818505 2 0.8661 0.8038 0.288 0.712
#> SRR1818503 1 0.9129 0.0304 0.672 0.328
#> SRR1818504 2 0.8555 0.8064 0.280 0.720
#> SRR1818502 2 0.9988 0.5544 0.480 0.520
#> SRR1818498 2 0.0000 0.7465 0.000 1.000
#> SRR1818500 2 0.8443 0.8084 0.272 0.728
#> SRR1818501 1 0.0000 0.7148 1.000 0.000
#> SRR1818499 1 0.9996 -0.4965 0.512 0.488
#> SRR1818496 2 0.7139 0.8046 0.196 0.804
#> SRR1818494 2 0.9988 0.5544 0.480 0.520
#> SRR1818495 1 0.8499 0.7924 0.724 0.276
#> SRR1818493 2 0.0000 0.7465 0.000 1.000
#> SRR1818492 1 0.8499 0.7924 0.724 0.276
#> SRR1818491 2 0.8661 0.8038 0.288 0.712
#> SRR1818490 1 0.6887 0.7774 0.816 0.184
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1818497 2 0.6155 0.6154 0.008 0.664 0.328
#> SRR1818600 3 0.0592 0.8032 0.000 0.012 0.988
#> SRR1818599 3 0.6225 0.4222 0.432 0.000 0.568
#> SRR1818598 3 0.1289 0.7969 0.000 0.032 0.968
#> SRR1818597 3 0.6095 0.4856 0.392 0.000 0.608
#> SRR1818596 1 0.0000 0.8353 1.000 0.000 0.000
#> SRR1818595 3 0.3207 0.7705 0.084 0.012 0.904
#> SRR1818594 3 0.6079 0.4926 0.388 0.000 0.612
#> SRR1818593 1 0.0000 0.8353 1.000 0.000 0.000
#> SRR1818592 1 0.0000 0.8353 1.000 0.000 0.000
#> SRR1818591 2 0.0000 0.7973 0.000 1.000 0.000
#> SRR1818590 2 0.1031 0.7838 0.024 0.976 0.000
#> SRR1818589 1 0.0000 0.8353 1.000 0.000 0.000
#> SRR1818587 1 0.6045 0.5453 0.620 0.380 0.000
#> SRR1818586 2 0.0000 0.7973 0.000 1.000 0.000
#> SRR1818585 2 0.6451 0.5517 0.008 0.608 0.384
#> SRR1818584 3 0.2165 0.7744 0.000 0.064 0.936
#> SRR1818583 3 0.5968 0.5192 0.364 0.000 0.636
#> SRR1818588 1 0.7589 0.5624 0.588 0.360 0.052
#> SRR1818582 1 0.0000 0.8353 1.000 0.000 0.000
#> SRR1818581 2 0.0000 0.7973 0.000 1.000 0.000
#> SRR1818579 3 0.0592 0.8032 0.000 0.012 0.988
#> SRR1818578 3 0.5404 0.4499 0.004 0.256 0.740
#> SRR1818577 2 0.0000 0.7973 0.000 1.000 0.000
#> SRR1818580 3 0.1964 0.7807 0.000 0.056 0.944
#> SRR1818575 1 0.6381 0.5954 0.648 0.340 0.012
#> SRR1818574 3 0.6260 0.3863 0.448 0.000 0.552
#> SRR1818576 3 0.0000 0.8056 0.000 0.000 1.000
#> SRR1818573 1 0.0000 0.8353 1.000 0.000 0.000
#> SRR1818572 3 0.2165 0.7744 0.000 0.064 0.936
#> SRR1818571 1 0.1753 0.8022 0.952 0.000 0.048
#> SRR1818570 3 0.6095 0.4856 0.392 0.000 0.608
#> SRR1818568 1 0.6427 0.5874 0.640 0.348 0.012
#> SRR1818567 2 0.0000 0.7973 0.000 1.000 0.000
#> SRR1818566 3 0.6225 0.4222 0.432 0.000 0.568
#> SRR1818569 2 0.6451 0.5517 0.008 0.608 0.384
#> SRR1818565 3 0.6225 0.4222 0.432 0.000 0.568
#> SRR1818564 3 0.0000 0.8056 0.000 0.000 1.000
#> SRR1818563 1 0.5988 0.5611 0.632 0.368 0.000
#> SRR1818561 3 0.6225 0.4222 0.432 0.000 0.568
#> SRR1818560 3 0.0000 0.8056 0.000 0.000 1.000
#> SRR1818559 1 0.0000 0.8353 1.000 0.000 0.000
#> SRR1818562 2 0.1031 0.7838 0.024 0.976 0.000
#> SRR1818558 3 0.0592 0.8032 0.000 0.012 0.988
#> SRR1818556 3 0.0000 0.8056 0.000 0.000 1.000
#> SRR1818557 1 0.0000 0.8353 1.000 0.000 0.000
#> SRR1818555 2 0.0000 0.7973 0.000 1.000 0.000
#> SRR1818553 1 0.1860 0.7994 0.948 0.000 0.052
#> SRR1818552 2 0.0424 0.7928 0.008 0.992 0.000
#> SRR1818551 2 0.6553 -0.0501 0.412 0.580 0.008
#> SRR1818550 1 0.6434 0.5460 0.612 0.380 0.008
#> SRR1818554 1 0.0000 0.8353 1.000 0.000 0.000
#> SRR1818549 1 0.2261 0.7850 0.932 0.000 0.068
#> SRR1818548 1 0.0000 0.8353 1.000 0.000 0.000
#> SRR1818546 2 0.6451 0.5517 0.008 0.608 0.384
#> SRR1818547 1 0.0592 0.8326 0.988 0.012 0.000
#> SRR1818544 3 0.1964 0.7807 0.000 0.056 0.944
#> SRR1818543 3 0.0000 0.8056 0.000 0.000 1.000
#> SRR1818542 2 0.6155 0.6154 0.008 0.664 0.328
#> SRR1818545 1 0.6434 0.5460 0.612 0.380 0.008
#> SRR1818541 3 0.0000 0.8056 0.000 0.000 1.000
#> SRR1818539 3 0.0237 0.8050 0.004 0.000 0.996
#> SRR1818540 2 0.0000 0.7973 0.000 1.000 0.000
#> SRR1818536 1 0.6057 0.2680 0.656 0.004 0.340
#> SRR1818535 3 0.6154 0.4610 0.408 0.000 0.592
#> SRR1818534 1 0.0000 0.8353 1.000 0.000 0.000
#> SRR1818538 2 0.1031 0.7838 0.024 0.976 0.000
#> SRR1818537 3 0.0000 0.8056 0.000 0.000 1.000
#> SRR1818533 3 0.1289 0.7969 0.000 0.032 0.968
#> SRR1818532 1 0.6621 0.6977 0.720 0.228 0.052
#> SRR1818531 3 0.2165 0.7744 0.000 0.064 0.936
#> SRR1818530 2 0.6451 0.5517 0.008 0.608 0.384
#> SRR1818529 2 0.6155 0.6154 0.008 0.664 0.328
#> SRR1818528 3 0.0000 0.8056 0.000 0.000 1.000
#> SRR1818527 3 0.1860 0.7833 0.000 0.052 0.948
#> SRR1818526 1 0.0592 0.8326 0.988 0.012 0.000
#> SRR1818525 3 0.2066 0.7781 0.000 0.060 0.940
#> SRR1818523 3 0.6225 0.4222 0.432 0.000 0.568
#> SRR1818524 1 0.0000 0.8353 1.000 0.000 0.000
#> SRR1818522 2 0.2866 0.7238 0.076 0.916 0.008
#> SRR1818521 2 0.0000 0.7973 0.000 1.000 0.000
#> SRR1818520 2 0.0000 0.7973 0.000 1.000 0.000
#> SRR1818518 3 0.0000 0.8056 0.000 0.000 1.000
#> SRR1818519 1 0.0000 0.8353 1.000 0.000 0.000
#> SRR1818517 2 0.1031 0.7838 0.024 0.976 0.000
#> SRR1818516 3 0.6225 0.4222 0.432 0.000 0.568
#> SRR1818515 1 0.0000 0.8353 1.000 0.000 0.000
#> SRR1818514 2 0.6451 0.5517 0.008 0.608 0.384
#> SRR1818513 2 0.0000 0.7973 0.000 1.000 0.000
#> SRR1818512 2 0.6451 0.5517 0.008 0.608 0.384
#> SRR1818510 2 0.0000 0.7973 0.000 1.000 0.000
#> SRR1818511 2 0.1031 0.7838 0.024 0.976 0.000
#> SRR1818508 3 0.2066 0.7781 0.000 0.060 0.940
#> SRR1818509 2 0.1031 0.7838 0.024 0.976 0.000
#> SRR1818507 1 0.0000 0.8353 1.000 0.000 0.000
#> SRR1818506 1 0.0000 0.8353 1.000 0.000 0.000
#> SRR1818505 3 0.1860 0.7833 0.000 0.052 0.948
#> SRR1818503 3 0.0000 0.8056 0.000 0.000 1.000
#> SRR1818504 2 0.6984 0.4969 0.020 0.560 0.420
#> SRR1818502 3 0.1289 0.7969 0.000 0.032 0.968
#> SRR1818498 2 0.0000 0.7973 0.000 1.000 0.000
#> SRR1818500 2 0.6566 0.5583 0.012 0.612 0.376
#> SRR1818501 3 0.6225 0.4222 0.432 0.000 0.568
#> SRR1818499 3 0.0000 0.8056 0.000 0.000 1.000
#> SRR1818496 2 0.6155 0.6154 0.008 0.664 0.328
#> SRR1818494 3 0.1289 0.7969 0.000 0.032 0.968
#> SRR1818495 1 0.6434 0.5460 0.612 0.380 0.008
#> SRR1818493 2 0.0000 0.7973 0.000 1.000 0.000
#> SRR1818492 1 0.6434 0.5460 0.612 0.380 0.008
#> SRR1818491 3 0.1964 0.7807 0.000 0.056 0.944
#> SRR1818490 1 0.5591 0.3728 0.696 0.000 0.304
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1818497 1 0.5389 0.5977 0.648 0.328 0.004 0.020
#> SRR1818600 1 0.0188 0.7771 0.996 0.000 0.004 0.000
#> SRR1818599 3 0.0376 0.8791 0.004 0.000 0.992 0.004
#> SRR1818598 1 0.1722 0.7578 0.944 0.008 0.048 0.000
#> SRR1818597 3 0.0188 0.8783 0.004 0.000 0.996 0.000
#> SRR1818596 4 0.1022 0.9372 0.000 0.000 0.032 0.968
#> SRR1818595 3 0.4134 0.7458 0.188 0.008 0.796 0.008
#> SRR1818594 3 0.0188 0.8783 0.004 0.000 0.996 0.000
#> SRR1818593 4 0.0469 0.9356 0.000 0.000 0.012 0.988
#> SRR1818592 4 0.1022 0.9372 0.000 0.000 0.032 0.968
#> SRR1818591 2 0.0000 0.8699 0.000 1.000 0.000 0.000
#> SRR1818590 2 0.0469 0.8695 0.000 0.988 0.000 0.012
#> SRR1818589 4 0.0469 0.9356 0.000 0.000 0.012 0.988
#> SRR1818587 2 0.6709 0.5629 0.008 0.624 0.116 0.252
#> SRR1818586 2 0.0000 0.8699 0.000 1.000 0.000 0.000
#> SRR1818585 1 0.4986 0.6822 0.724 0.248 0.004 0.024
#> SRR1818584 1 0.0188 0.7771 0.996 0.000 0.004 0.000
#> SRR1818583 3 0.0188 0.8783 0.004 0.000 0.996 0.000
#> SRR1818588 3 0.5736 0.3580 0.000 0.328 0.628 0.044
#> SRR1818582 4 0.1022 0.9372 0.000 0.000 0.032 0.968
#> SRR1818581 2 0.0000 0.8699 0.000 1.000 0.000 0.000
#> SRR1818579 1 0.0188 0.7771 0.996 0.000 0.004 0.000
#> SRR1818578 1 0.4000 0.7440 0.828 0.144 0.016 0.012
#> SRR1818577 2 0.0000 0.8699 0.000 1.000 0.000 0.000
#> SRR1818580 1 0.0188 0.7771 0.996 0.000 0.004 0.000
#> SRR1818575 2 0.8033 0.2007 0.008 0.400 0.356 0.236
#> SRR1818574 3 0.0376 0.8791 0.004 0.000 0.992 0.004
#> SRR1818576 3 0.3649 0.7288 0.204 0.000 0.796 0.000
#> SRR1818573 4 0.1022 0.9372 0.000 0.000 0.032 0.968
#> SRR1818572 1 0.0188 0.7771 0.996 0.000 0.004 0.000
#> SRR1818571 4 0.4661 0.4383 0.000 0.000 0.348 0.652
#> SRR1818570 3 0.0188 0.8783 0.004 0.000 0.996 0.000
#> SRR1818568 2 0.8001 0.2125 0.008 0.408 0.356 0.228
#> SRR1818567 2 0.0000 0.8699 0.000 1.000 0.000 0.000
#> SRR1818566 3 0.0376 0.8791 0.004 0.000 0.992 0.004
#> SRR1818569 1 0.4986 0.6822 0.724 0.248 0.004 0.024
#> SRR1818565 3 0.0376 0.8791 0.004 0.000 0.992 0.004
#> SRR1818564 3 0.2999 0.8034 0.132 0.000 0.864 0.004
#> SRR1818563 4 0.5506 0.3419 0.024 0.332 0.004 0.640
#> SRR1818561 3 0.0376 0.8791 0.004 0.000 0.992 0.004
#> SRR1818560 3 0.2921 0.7949 0.140 0.000 0.860 0.000
#> SRR1818559 4 0.1022 0.9372 0.000 0.000 0.032 0.968
#> SRR1818562 2 0.0469 0.8695 0.000 0.988 0.000 0.012
#> SRR1818558 1 0.0188 0.7771 0.996 0.000 0.004 0.000
#> SRR1818556 3 0.4925 0.3349 0.428 0.000 0.572 0.000
#> SRR1818557 4 0.1022 0.9372 0.000 0.000 0.032 0.968
#> SRR1818555 2 0.0000 0.8699 0.000 1.000 0.000 0.000
#> SRR1818553 3 0.4222 0.6034 0.000 0.000 0.728 0.272
#> SRR1818552 2 0.0469 0.8695 0.000 0.988 0.000 0.012
#> SRR1818551 2 0.4188 0.7477 0.000 0.812 0.148 0.040
#> SRR1818550 2 0.7170 0.5783 0.032 0.624 0.120 0.224
#> SRR1818554 4 0.0469 0.9356 0.000 0.000 0.012 0.988
#> SRR1818549 3 0.0921 0.8685 0.000 0.000 0.972 0.028
#> SRR1818548 4 0.1022 0.9372 0.000 0.000 0.032 0.968
#> SRR1818546 1 0.4986 0.6822 0.724 0.248 0.004 0.024
#> SRR1818547 4 0.0188 0.9291 0.000 0.000 0.004 0.996
#> SRR1818544 1 0.0188 0.7771 0.996 0.000 0.004 0.000
#> SRR1818543 1 0.4356 0.4824 0.708 0.000 0.292 0.000
#> SRR1818542 1 0.5389 0.5977 0.648 0.328 0.004 0.020
#> SRR1818545 2 0.7352 0.5630 0.032 0.608 0.136 0.224
#> SRR1818541 1 0.4933 0.1139 0.568 0.000 0.432 0.000
#> SRR1818539 1 0.4781 0.4011 0.660 0.000 0.336 0.004
#> SRR1818540 2 0.0000 0.8699 0.000 1.000 0.000 0.000
#> SRR1818536 3 0.0707 0.8723 0.000 0.000 0.980 0.020
#> SRR1818535 3 0.0376 0.8791 0.004 0.000 0.992 0.004
#> SRR1818534 4 0.1022 0.9372 0.000 0.000 0.032 0.968
#> SRR1818538 2 0.0469 0.8695 0.000 0.988 0.000 0.012
#> SRR1818537 1 0.4933 0.1139 0.568 0.000 0.432 0.000
#> SRR1818533 1 0.1722 0.7578 0.944 0.008 0.048 0.000
#> SRR1818532 3 0.4499 0.7014 0.000 0.160 0.792 0.048
#> SRR1818531 1 0.0188 0.7771 0.996 0.000 0.004 0.000
#> SRR1818530 1 0.4986 0.6822 0.724 0.248 0.004 0.024
#> SRR1818529 1 0.5389 0.5977 0.648 0.328 0.004 0.020
#> SRR1818528 3 0.4961 0.2366 0.448 0.000 0.552 0.000
#> SRR1818527 1 0.0188 0.7771 0.996 0.000 0.004 0.000
#> SRR1818526 4 0.0188 0.9291 0.000 0.000 0.004 0.996
#> SRR1818525 1 0.0188 0.7771 0.996 0.000 0.004 0.000
#> SRR1818523 3 0.0376 0.8791 0.004 0.000 0.992 0.004
#> SRR1818524 4 0.1022 0.9372 0.000 0.000 0.032 0.968
#> SRR1818522 2 0.2799 0.8016 0.000 0.884 0.108 0.008
#> SRR1818521 2 0.0000 0.8699 0.000 1.000 0.000 0.000
#> SRR1818520 2 0.0000 0.8699 0.000 1.000 0.000 0.000
#> SRR1818518 3 0.3975 0.6834 0.240 0.000 0.760 0.000
#> SRR1818519 4 0.0188 0.9291 0.000 0.000 0.004 0.996
#> SRR1818517 2 0.0469 0.8695 0.000 0.988 0.000 0.012
#> SRR1818516 3 0.0376 0.8791 0.004 0.000 0.992 0.004
#> SRR1818515 4 0.0469 0.9356 0.000 0.000 0.012 0.988
#> SRR1818514 1 0.4986 0.6822 0.724 0.248 0.004 0.024
#> SRR1818513 2 0.0000 0.8699 0.000 1.000 0.000 0.000
#> SRR1818512 1 0.4986 0.6822 0.724 0.248 0.004 0.024
#> SRR1818510 2 0.0000 0.8699 0.000 1.000 0.000 0.000
#> SRR1818511 2 0.0469 0.8695 0.000 0.988 0.000 0.012
#> SRR1818508 1 0.0188 0.7771 0.996 0.000 0.004 0.000
#> SRR1818509 2 0.0469 0.8695 0.000 0.988 0.000 0.012
#> SRR1818507 4 0.0188 0.9291 0.000 0.000 0.004 0.996
#> SRR1818506 4 0.2921 0.8043 0.000 0.000 0.140 0.860
#> SRR1818505 1 0.0188 0.7771 0.996 0.000 0.004 0.000
#> SRR1818503 1 0.4933 0.1139 0.568 0.000 0.432 0.000
#> SRR1818504 1 0.8572 0.2926 0.368 0.360 0.240 0.032
#> SRR1818502 1 0.1722 0.7578 0.944 0.008 0.048 0.000
#> SRR1818498 2 0.0000 0.8699 0.000 1.000 0.000 0.000
#> SRR1818500 1 0.6137 0.6239 0.644 0.296 0.020 0.040
#> SRR1818501 3 0.0376 0.8791 0.004 0.000 0.992 0.004
#> SRR1818499 1 0.4992 -0.0658 0.524 0.000 0.476 0.000
#> SRR1818496 1 0.5389 0.5977 0.648 0.328 0.004 0.020
#> SRR1818494 1 0.1722 0.7578 0.944 0.008 0.048 0.000
#> SRR1818495 2 0.7122 0.5819 0.032 0.628 0.116 0.224
#> SRR1818493 2 0.0000 0.8699 0.000 1.000 0.000 0.000
#> SRR1818492 2 0.7308 0.5671 0.032 0.612 0.132 0.224
#> SRR1818491 1 0.0188 0.7771 0.996 0.000 0.004 0.000
#> SRR1818490 3 0.0817 0.8704 0.000 0.000 0.976 0.024
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1818497 5 0.5272 0.4125 0.072 0.308 0.000 0.000 0.620
#> SRR1818600 5 0.4306 0.1761 0.492 0.000 0.000 0.000 0.508
#> SRR1818599 3 0.0000 0.8487 0.000 0.000 1.000 0.000 0.000
#> SRR1818598 1 0.4639 0.1683 0.636 0.012 0.008 0.000 0.344
#> SRR1818597 3 0.1608 0.8221 0.072 0.000 0.928 0.000 0.000
#> SRR1818596 4 0.0854 0.9429 0.008 0.000 0.004 0.976 0.012
#> SRR1818595 3 0.6151 0.1843 0.396 0.000 0.484 0.004 0.116
#> SRR1818594 3 0.1671 0.8196 0.076 0.000 0.924 0.000 0.000
#> SRR1818593 4 0.0404 0.9407 0.012 0.000 0.000 0.988 0.000
#> SRR1818592 4 0.0854 0.9429 0.008 0.000 0.004 0.976 0.012
#> SRR1818591 2 0.0000 0.7919 0.000 1.000 0.000 0.000 0.000
#> SRR1818590 2 0.3480 0.7715 0.248 0.752 0.000 0.000 0.000
#> SRR1818589 4 0.0404 0.9407 0.012 0.000 0.000 0.988 0.000
#> SRR1818587 2 0.6326 0.5589 0.400 0.476 0.012 0.112 0.000
#> SRR1818586 2 0.0000 0.7919 0.000 1.000 0.000 0.000 0.000
#> SRR1818585 5 0.3231 0.4802 0.000 0.196 0.000 0.004 0.800
#> SRR1818584 5 0.4287 0.2269 0.460 0.000 0.000 0.000 0.540
#> SRR1818583 3 0.1410 0.8280 0.060 0.000 0.940 0.000 0.000
#> SRR1818588 1 0.7219 -0.1419 0.388 0.208 0.376 0.028 0.000
#> SRR1818582 4 0.0854 0.9429 0.008 0.000 0.004 0.976 0.012
#> SRR1818581 2 0.0000 0.7919 0.000 1.000 0.000 0.000 0.000
#> SRR1818579 5 0.4306 0.1761 0.492 0.000 0.000 0.000 0.508
#> SRR1818578 5 0.3493 0.4694 0.016 0.144 0.008 0.004 0.828
#> SRR1818577 2 0.0510 0.7780 0.016 0.984 0.000 0.000 0.000
#> SRR1818580 5 0.3816 0.3338 0.304 0.000 0.000 0.000 0.696
#> SRR1818575 1 0.8035 -0.2652 0.404 0.264 0.224 0.108 0.000
#> SRR1818574 3 0.0000 0.8487 0.000 0.000 1.000 0.000 0.000
#> SRR1818576 3 0.5390 0.4049 0.324 0.000 0.600 0.000 0.076
#> SRR1818573 4 0.0854 0.9429 0.008 0.000 0.004 0.976 0.012
#> SRR1818572 5 0.4287 0.2269 0.460 0.000 0.000 0.000 0.540
#> SRR1818571 4 0.5002 0.4682 0.052 0.000 0.312 0.636 0.000
#> SRR1818570 3 0.1608 0.8221 0.072 0.000 0.928 0.000 0.000
#> SRR1818568 1 0.8035 -0.2652 0.404 0.264 0.224 0.108 0.000
#> SRR1818567 2 0.0000 0.7919 0.000 1.000 0.000 0.000 0.000
#> SRR1818566 3 0.0000 0.8487 0.000 0.000 1.000 0.000 0.000
#> SRR1818569 5 0.3231 0.4802 0.000 0.196 0.000 0.004 0.800
#> SRR1818565 3 0.0000 0.8487 0.000 0.000 1.000 0.000 0.000
#> SRR1818564 3 0.5215 0.4155 0.352 0.000 0.592 0.000 0.056
#> SRR1818563 1 0.6883 -0.2639 0.404 0.224 0.008 0.364 0.000
#> SRR1818561 3 0.0000 0.8487 0.000 0.000 1.000 0.000 0.000
#> SRR1818560 3 0.1981 0.8036 0.064 0.000 0.920 0.000 0.016
#> SRR1818559 4 0.0854 0.9429 0.008 0.000 0.004 0.976 0.012
#> SRR1818562 2 0.3916 0.7656 0.256 0.732 0.000 0.000 0.012
#> SRR1818558 5 0.4306 0.1761 0.492 0.000 0.000 0.000 0.508
#> SRR1818556 1 0.6491 0.2366 0.492 0.000 0.244 0.000 0.264
#> SRR1818557 4 0.0854 0.9429 0.008 0.000 0.004 0.976 0.012
#> SRR1818555 2 0.0000 0.7919 0.000 1.000 0.000 0.000 0.000
#> SRR1818553 3 0.3783 0.6040 0.008 0.000 0.740 0.252 0.000
#> SRR1818552 2 0.3305 0.7751 0.224 0.776 0.000 0.000 0.000
#> SRR1818551 2 0.4516 0.7450 0.276 0.696 0.016 0.000 0.012
#> SRR1818550 2 0.6542 0.5412 0.408 0.460 0.024 0.108 0.000
#> SRR1818554 4 0.0404 0.9407 0.012 0.000 0.000 0.988 0.000
#> SRR1818549 3 0.0000 0.8487 0.000 0.000 1.000 0.000 0.000
#> SRR1818548 4 0.0854 0.9429 0.008 0.000 0.004 0.976 0.012
#> SRR1818546 5 0.3231 0.4802 0.000 0.196 0.000 0.004 0.800
#> SRR1818547 4 0.1671 0.9123 0.076 0.000 0.000 0.924 0.000
#> SRR1818544 5 0.4074 0.3083 0.364 0.000 0.000 0.000 0.636
#> SRR1818543 5 0.6274 0.0956 0.256 0.000 0.208 0.000 0.536
#> SRR1818542 5 0.5272 0.4125 0.072 0.308 0.000 0.000 0.620
#> SRR1818545 2 0.6745 0.5258 0.408 0.448 0.036 0.108 0.000
#> SRR1818541 1 0.6023 0.3130 0.576 0.000 0.176 0.000 0.248
#> SRR1818539 5 0.6651 -0.0956 0.256 0.000 0.300 0.000 0.444
#> SRR1818540 2 0.0000 0.7919 0.000 1.000 0.000 0.000 0.000
#> SRR1818536 3 0.0324 0.8452 0.004 0.000 0.992 0.004 0.000
#> SRR1818535 3 0.0000 0.8487 0.000 0.000 1.000 0.000 0.000
#> SRR1818534 4 0.0854 0.9429 0.008 0.000 0.004 0.976 0.012
#> SRR1818538 2 0.3480 0.7715 0.248 0.752 0.000 0.000 0.000
#> SRR1818537 1 0.6023 0.3130 0.576 0.000 0.176 0.000 0.248
#> SRR1818533 1 0.4639 0.1683 0.636 0.012 0.008 0.000 0.344
#> SRR1818532 3 0.6582 0.2499 0.312 0.144 0.524 0.020 0.000
#> SRR1818531 5 0.4287 0.2269 0.460 0.000 0.000 0.000 0.540
#> SRR1818530 5 0.3231 0.4802 0.000 0.196 0.000 0.004 0.800
#> SRR1818529 5 0.5272 0.4125 0.072 0.308 0.000 0.000 0.620
#> SRR1818528 1 0.6581 0.2416 0.452 0.000 0.324 0.000 0.224
#> SRR1818527 5 0.4306 0.1761 0.492 0.000 0.000 0.000 0.508
#> SRR1818526 4 0.1732 0.9095 0.080 0.000 0.000 0.920 0.000
#> SRR1818525 5 0.4192 0.2749 0.404 0.000 0.000 0.000 0.596
#> SRR1818523 3 0.0000 0.8487 0.000 0.000 1.000 0.000 0.000
#> SRR1818524 4 0.0854 0.9429 0.008 0.000 0.004 0.976 0.012
#> SRR1818522 2 0.4548 0.7558 0.256 0.712 0.016 0.004 0.012
#> SRR1818521 2 0.0162 0.7886 0.004 0.996 0.000 0.000 0.000
#> SRR1818520 2 0.0000 0.7919 0.000 1.000 0.000 0.000 0.000
#> SRR1818518 3 0.5660 0.3745 0.264 0.000 0.612 0.000 0.124
#> SRR1818519 4 0.1544 0.9166 0.068 0.000 0.000 0.932 0.000
#> SRR1818517 2 0.3756 0.7701 0.248 0.744 0.000 0.000 0.008
#> SRR1818516 3 0.0000 0.8487 0.000 0.000 1.000 0.000 0.000
#> SRR1818515 4 0.0404 0.9407 0.012 0.000 0.000 0.988 0.000
#> SRR1818514 5 0.3231 0.4802 0.000 0.196 0.000 0.004 0.800
#> SRR1818513 2 0.0000 0.7919 0.000 1.000 0.000 0.000 0.000
#> SRR1818512 5 0.3231 0.4802 0.000 0.196 0.000 0.004 0.800
#> SRR1818510 2 0.0000 0.7919 0.000 1.000 0.000 0.000 0.000
#> SRR1818511 2 0.3916 0.7656 0.256 0.732 0.000 0.000 0.012
#> SRR1818508 5 0.4287 0.2269 0.460 0.000 0.000 0.000 0.540
#> SRR1818509 2 0.3635 0.7709 0.248 0.748 0.000 0.000 0.004
#> SRR1818507 4 0.1341 0.9231 0.056 0.000 0.000 0.944 0.000
#> SRR1818506 4 0.2962 0.8687 0.084 0.000 0.048 0.868 0.000
#> SRR1818505 5 0.4074 0.3083 0.364 0.000 0.000 0.000 0.636
#> SRR1818503 1 0.6023 0.3130 0.576 0.000 0.176 0.000 0.248
#> SRR1818504 5 0.8340 0.1583 0.308 0.128 0.084 0.048 0.432
#> SRR1818502 1 0.4639 0.1683 0.636 0.012 0.008 0.000 0.344
#> SRR1818498 2 0.0000 0.7919 0.000 1.000 0.000 0.000 0.000
#> SRR1818500 5 0.6452 0.4072 0.096 0.204 0.016 0.044 0.640
#> SRR1818501 3 0.0000 0.8487 0.000 0.000 1.000 0.000 0.000
#> SRR1818499 1 0.6436 0.2463 0.504 0.000 0.232 0.000 0.264
#> SRR1818496 5 0.5272 0.4125 0.072 0.308 0.000 0.000 0.620
#> SRR1818494 1 0.4639 0.1683 0.636 0.012 0.008 0.000 0.344
#> SRR1818495 2 0.6385 0.5498 0.408 0.468 0.016 0.108 0.000
#> SRR1818493 2 0.0000 0.7919 0.000 1.000 0.000 0.000 0.000
#> SRR1818492 2 0.6681 0.5313 0.408 0.452 0.032 0.108 0.000
#> SRR1818491 5 0.4074 0.3083 0.364 0.000 0.000 0.000 0.636
#> SRR1818490 3 0.0000 0.8487 0.000 0.000 1.000 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1818497 5 0.4013 0.785 0.028 0.208 0.000 0.004 0.748 0.012
#> SRR1818600 1 0.0870 0.684 0.972 0.000 0.012 0.000 0.012 0.004
#> SRR1818599 3 0.0291 0.845 0.004 0.000 0.992 0.000 0.000 0.004
#> SRR1818598 1 0.5175 0.614 0.632 0.000 0.004 0.000 0.212 0.152
#> SRR1818597 3 0.3406 0.779 0.012 0.000 0.828 0.000 0.096 0.064
#> SRR1818596 4 0.0000 0.884 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818595 1 0.7868 0.178 0.300 0.000 0.264 0.008 0.232 0.196
#> SRR1818594 3 0.3448 0.778 0.016 0.000 0.828 0.000 0.092 0.064
#> SRR1818593 4 0.0547 0.882 0.000 0.000 0.000 0.980 0.000 0.020
#> SRR1818592 4 0.0000 0.884 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818591 2 0.0000 0.809 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818590 2 0.4193 0.559 0.000 0.624 0.000 0.000 0.024 0.352
#> SRR1818589 4 0.0547 0.882 0.000 0.000 0.000 0.980 0.000 0.020
#> SRR1818587 6 0.2804 0.922 0.000 0.108 0.016 0.016 0.000 0.860
#> SRR1818586 2 0.0000 0.809 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818585 5 0.3717 0.833 0.148 0.072 0.000 0.000 0.780 0.000
#> SRR1818584 1 0.1584 0.667 0.928 0.000 0.008 0.000 0.064 0.000
#> SRR1818583 3 0.3093 0.792 0.012 0.000 0.852 0.000 0.076 0.060
#> SRR1818588 6 0.2875 0.896 0.000 0.052 0.096 0.000 0.000 0.852
#> SRR1818582 4 0.0000 0.884 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818581 2 0.0000 0.809 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818579 1 0.0870 0.684 0.972 0.000 0.012 0.000 0.012 0.004
#> SRR1818578 5 0.3294 0.794 0.128 0.032 0.008 0.000 0.828 0.004
#> SRR1818577 2 0.0767 0.794 0.004 0.976 0.000 0.000 0.012 0.008
#> SRR1818580 1 0.3766 0.424 0.684 0.000 0.000 0.000 0.304 0.012
#> SRR1818575 6 0.3076 0.924 0.000 0.064 0.064 0.016 0.000 0.856
#> SRR1818574 3 0.0291 0.845 0.004 0.000 0.992 0.000 0.000 0.004
#> SRR1818576 3 0.7478 0.107 0.212 0.000 0.388 0.000 0.200 0.200
#> SRR1818573 4 0.0000 0.884 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818572 1 0.1584 0.667 0.928 0.000 0.008 0.000 0.064 0.000
#> SRR1818571 4 0.5873 0.339 0.000 0.000 0.272 0.480 0.000 0.248
#> SRR1818570 3 0.3357 0.782 0.012 0.000 0.832 0.000 0.092 0.064
#> SRR1818568 6 0.3076 0.924 0.000 0.064 0.064 0.016 0.000 0.856
#> SRR1818567 2 0.0146 0.807 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1818566 3 0.0291 0.845 0.004 0.000 0.992 0.000 0.000 0.004
#> SRR1818569 5 0.3717 0.833 0.148 0.072 0.000 0.000 0.780 0.000
#> SRR1818565 3 0.0291 0.845 0.004 0.000 0.992 0.000 0.000 0.004
#> SRR1818564 3 0.7493 0.102 0.208 0.000 0.384 0.000 0.200 0.208
#> SRR1818563 6 0.2944 0.889 0.000 0.068 0.004 0.072 0.000 0.856
#> SRR1818561 3 0.0291 0.845 0.004 0.000 0.992 0.000 0.000 0.004
#> SRR1818560 3 0.3275 0.765 0.088 0.000 0.844 0.000 0.036 0.032
#> SRR1818559 4 0.0000 0.884 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818562 2 0.4319 0.560 0.000 0.620 0.000 0.000 0.032 0.348
#> SRR1818558 1 0.0870 0.684 0.972 0.000 0.012 0.000 0.012 0.004
#> SRR1818556 1 0.3058 0.667 0.848 0.000 0.104 0.000 0.036 0.012
#> SRR1818557 4 0.0000 0.884 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818555 2 0.0000 0.809 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818553 3 0.4168 0.553 0.000 0.000 0.696 0.256 0.000 0.048
#> SRR1818552 2 0.3156 0.707 0.000 0.800 0.000 0.000 0.020 0.180
#> SRR1818551 2 0.4463 0.329 0.000 0.516 0.000 0.000 0.028 0.456
#> SRR1818550 6 0.2878 0.933 0.000 0.100 0.024 0.016 0.000 0.860
#> SRR1818554 4 0.0547 0.882 0.000 0.000 0.000 0.980 0.000 0.020
#> SRR1818549 3 0.0891 0.837 0.000 0.000 0.968 0.008 0.000 0.024
#> SRR1818548 4 0.0000 0.884 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818546 5 0.3717 0.833 0.148 0.072 0.000 0.000 0.780 0.000
#> SRR1818547 4 0.3578 0.611 0.000 0.000 0.000 0.660 0.000 0.340
#> SRR1818544 1 0.3340 0.575 0.784 0.000 0.004 0.000 0.196 0.016
#> SRR1818543 1 0.6453 0.289 0.468 0.000 0.180 0.000 0.312 0.040
#> SRR1818542 5 0.4013 0.785 0.028 0.208 0.000 0.004 0.748 0.012
#> SRR1818545 6 0.2878 0.933 0.000 0.100 0.024 0.016 0.000 0.860
#> SRR1818541 1 0.6342 0.576 0.544 0.000 0.056 0.000 0.200 0.200
#> SRR1818539 1 0.7189 0.296 0.372 0.000 0.180 0.000 0.336 0.112
#> SRR1818540 2 0.0000 0.809 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818536 3 0.1141 0.825 0.000 0.000 0.948 0.000 0.000 0.052
#> SRR1818535 3 0.0146 0.845 0.004 0.000 0.996 0.000 0.000 0.000
#> SRR1818534 4 0.0000 0.884 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818538 2 0.4193 0.559 0.000 0.624 0.000 0.000 0.024 0.352
#> SRR1818537 1 0.6342 0.576 0.544 0.000 0.056 0.000 0.200 0.200
#> SRR1818533 1 0.5199 0.612 0.628 0.000 0.004 0.000 0.216 0.152
#> SRR1818532 6 0.3709 0.771 0.000 0.040 0.204 0.000 0.000 0.756
#> SRR1818531 1 0.1584 0.667 0.928 0.000 0.008 0.000 0.064 0.000
#> SRR1818530 5 0.3717 0.833 0.148 0.072 0.000 0.000 0.780 0.000
#> SRR1818529 5 0.4013 0.785 0.028 0.208 0.000 0.004 0.748 0.012
#> SRR1818528 1 0.7348 0.407 0.380 0.000 0.176 0.000 0.296 0.148
#> SRR1818527 1 0.0870 0.684 0.972 0.000 0.012 0.000 0.012 0.004
#> SRR1818526 4 0.3578 0.611 0.000 0.000 0.000 0.660 0.000 0.340
#> SRR1818525 1 0.2212 0.635 0.880 0.000 0.008 0.000 0.112 0.000
#> SRR1818523 3 0.0291 0.845 0.004 0.000 0.992 0.000 0.000 0.004
#> SRR1818524 4 0.0000 0.884 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818522 2 0.4679 0.561 0.000 0.628 0.004 0.004 0.044 0.320
#> SRR1818521 2 0.0653 0.797 0.004 0.980 0.000 0.000 0.012 0.004
#> SRR1818520 2 0.0000 0.809 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818518 3 0.5911 0.155 0.388 0.000 0.488 0.000 0.076 0.048
#> SRR1818519 4 0.3101 0.727 0.000 0.000 0.000 0.756 0.000 0.244
#> SRR1818517 2 0.4193 0.559 0.000 0.624 0.000 0.000 0.024 0.352
#> SRR1818516 3 0.0291 0.845 0.004 0.000 0.992 0.000 0.000 0.004
#> SRR1818515 4 0.0547 0.882 0.000 0.000 0.000 0.980 0.000 0.020
#> SRR1818514 5 0.3717 0.833 0.148 0.072 0.000 0.000 0.780 0.000
#> SRR1818513 2 0.0000 0.809 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818512 5 0.3717 0.833 0.148 0.072 0.000 0.000 0.780 0.000
#> SRR1818510 2 0.0000 0.809 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818511 2 0.4332 0.554 0.000 0.616 0.000 0.000 0.032 0.352
#> SRR1818508 1 0.1584 0.667 0.928 0.000 0.008 0.000 0.064 0.000
#> SRR1818509 2 0.4193 0.559 0.000 0.624 0.000 0.000 0.024 0.352
#> SRR1818507 4 0.2730 0.773 0.000 0.000 0.000 0.808 0.000 0.192
#> SRR1818506 4 0.4513 0.600 0.000 0.000 0.044 0.640 0.004 0.312
#> SRR1818505 1 0.3371 0.574 0.780 0.000 0.004 0.000 0.200 0.016
#> SRR1818503 1 0.6342 0.576 0.544 0.000 0.056 0.000 0.200 0.200
#> SRR1818504 5 0.5081 0.256 0.140 0.004 0.024 0.000 0.696 0.136
#> SRR1818502 1 0.5199 0.612 0.628 0.000 0.004 0.000 0.216 0.152
#> SRR1818498 2 0.0146 0.807 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1818500 5 0.3220 0.738 0.036 0.044 0.008 0.008 0.868 0.036
#> SRR1818501 3 0.0291 0.845 0.004 0.000 0.992 0.000 0.000 0.004
#> SRR1818499 1 0.5089 0.628 0.688 0.000 0.060 0.000 0.192 0.060
#> SRR1818496 5 0.4013 0.785 0.028 0.208 0.000 0.004 0.748 0.012
#> SRR1818494 1 0.5199 0.612 0.628 0.000 0.004 0.000 0.216 0.152
#> SRR1818495 6 0.2878 0.933 0.000 0.100 0.024 0.016 0.000 0.860
#> SRR1818493 2 0.0291 0.805 0.004 0.992 0.000 0.000 0.004 0.000
#> SRR1818492 6 0.2878 0.933 0.000 0.100 0.024 0.016 0.000 0.860
#> SRR1818491 1 0.3371 0.574 0.780 0.000 0.004 0.000 0.200 0.016
#> SRR1818490 3 0.0937 0.831 0.000 0.000 0.960 0.000 0.000 0.040
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 16183 rows and 111 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 4.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.668 0.924 0.944 0.172 0.865 0.865
#> 3 3 0.763 0.939 0.960 1.124 0.796 0.764
#> 4 4 0.808 0.929 0.964 0.496 0.809 0.711
#> 5 5 0.806 0.901 0.941 0.126 0.934 0.860
#> 6 6 0.800 0.788 0.908 0.112 0.915 0.792
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1818497 1 0.0938 0.944 0.988 0.012
#> SRR1818600 1 0.1843 0.941 0.972 0.028
#> SRR1818599 2 0.7056 1.000 0.192 0.808
#> SRR1818598 1 0.0672 0.945 0.992 0.008
#> SRR1818597 1 0.0000 0.945 1.000 0.000
#> SRR1818596 1 0.0000 0.945 1.000 0.000
#> SRR1818595 1 0.0000 0.945 1.000 0.000
#> SRR1818594 1 0.0000 0.945 1.000 0.000
#> SRR1818593 1 0.0000 0.945 1.000 0.000
#> SRR1818592 1 0.0000 0.945 1.000 0.000
#> SRR1818591 1 0.7056 0.785 0.808 0.192
#> SRR1818590 1 0.2778 0.924 0.952 0.048
#> SRR1818589 1 0.0000 0.945 1.000 0.000
#> SRR1818587 1 0.2423 0.929 0.960 0.040
#> SRR1818586 1 0.7056 0.785 0.808 0.192
#> SRR1818585 1 0.1843 0.941 0.972 0.028
#> SRR1818584 1 0.1843 0.941 0.972 0.028
#> SRR1818583 1 0.1184 0.944 0.984 0.016
#> SRR1818588 1 0.2423 0.929 0.960 0.040
#> SRR1818582 1 0.0000 0.945 1.000 0.000
#> SRR1818581 1 0.7056 0.785 0.808 0.192
#> SRR1818579 1 0.1843 0.941 0.972 0.028
#> SRR1818578 1 0.1843 0.941 0.972 0.028
#> SRR1818577 1 0.6973 0.796 0.812 0.188
#> SRR1818580 1 0.1843 0.941 0.972 0.028
#> SRR1818575 1 0.2423 0.929 0.960 0.040
#> SRR1818574 2 0.7056 1.000 0.192 0.808
#> SRR1818576 1 0.1843 0.941 0.972 0.028
#> SRR1818573 1 0.0000 0.945 1.000 0.000
#> SRR1818572 1 0.1843 0.941 0.972 0.028
#> SRR1818571 1 0.0000 0.945 1.000 0.000
#> SRR1818570 1 0.0000 0.945 1.000 0.000
#> SRR1818568 1 0.2423 0.929 0.960 0.040
#> SRR1818567 1 0.7056 0.785 0.808 0.192
#> SRR1818566 2 0.7056 1.000 0.192 0.808
#> SRR1818569 1 0.1843 0.941 0.972 0.028
#> SRR1818565 2 0.7056 1.000 0.192 0.808
#> SRR1818564 1 0.1843 0.941 0.972 0.028
#> SRR1818563 1 0.2423 0.929 0.960 0.040
#> SRR1818561 2 0.7056 1.000 0.192 0.808
#> SRR1818560 1 0.1843 0.941 0.972 0.028
#> SRR1818559 1 0.1633 0.942 0.976 0.024
#> SRR1818562 1 0.2423 0.929 0.960 0.040
#> SRR1818558 1 0.1843 0.941 0.972 0.028
#> SRR1818556 1 0.1843 0.941 0.972 0.028
#> SRR1818557 1 0.0000 0.945 1.000 0.000
#> SRR1818555 1 0.7056 0.785 0.808 0.192
#> SRR1818553 1 0.0000 0.945 1.000 0.000
#> SRR1818552 1 0.7056 0.785 0.808 0.192
#> SRR1818551 1 0.2423 0.929 0.960 0.040
#> SRR1818550 1 0.2423 0.929 0.960 0.040
#> SRR1818554 1 0.0000 0.945 1.000 0.000
#> SRR1818549 1 0.0000 0.945 1.000 0.000
#> SRR1818548 1 0.0000 0.945 1.000 0.000
#> SRR1818546 1 0.1843 0.941 0.972 0.028
#> SRR1818547 1 0.2423 0.929 0.960 0.040
#> SRR1818544 1 0.1843 0.941 0.972 0.028
#> SRR1818543 1 0.1843 0.941 0.972 0.028
#> SRR1818542 1 0.0938 0.944 0.988 0.012
#> SRR1818545 1 0.2423 0.929 0.960 0.040
#> SRR1818541 1 0.1843 0.941 0.972 0.028
#> SRR1818539 1 0.1843 0.941 0.972 0.028
#> SRR1818540 1 0.7056 0.785 0.808 0.192
#> SRR1818536 1 0.0938 0.944 0.988 0.012
#> SRR1818535 1 0.1843 0.941 0.972 0.028
#> SRR1818534 1 0.0000 0.945 1.000 0.000
#> SRR1818538 1 0.2423 0.929 0.960 0.040
#> SRR1818537 1 0.1843 0.941 0.972 0.028
#> SRR1818533 1 0.1414 0.943 0.980 0.020
#> SRR1818532 1 0.0000 0.945 1.000 0.000
#> SRR1818531 1 0.1843 0.941 0.972 0.028
#> SRR1818530 1 0.1843 0.941 0.972 0.028
#> SRR1818529 1 0.1414 0.943 0.980 0.020
#> SRR1818528 1 0.1843 0.941 0.972 0.028
#> SRR1818527 1 0.1843 0.941 0.972 0.028
#> SRR1818526 1 0.2423 0.929 0.960 0.040
#> SRR1818525 1 0.1843 0.941 0.972 0.028
#> SRR1818523 2 0.7056 1.000 0.192 0.808
#> SRR1818524 1 0.0000 0.945 1.000 0.000
#> SRR1818522 1 0.0000 0.945 1.000 0.000
#> SRR1818521 1 0.6973 0.789 0.812 0.188
#> SRR1818520 1 0.7056 0.785 0.808 0.192
#> SRR1818518 1 0.1843 0.941 0.972 0.028
#> SRR1818519 1 0.2423 0.929 0.960 0.040
#> SRR1818517 1 0.6887 0.794 0.816 0.184
#> SRR1818516 2 0.7056 1.000 0.192 0.808
#> SRR1818515 1 0.0000 0.945 1.000 0.000
#> SRR1818514 1 0.1843 0.941 0.972 0.028
#> SRR1818513 1 0.7056 0.785 0.808 0.192
#> SRR1818512 1 0.1843 0.941 0.972 0.028
#> SRR1818510 1 0.7056 0.785 0.808 0.192
#> SRR1818511 1 0.2423 0.929 0.960 0.040
#> SRR1818508 1 0.1843 0.941 0.972 0.028
#> SRR1818509 1 0.3274 0.915 0.940 0.060
#> SRR1818507 1 0.2423 0.929 0.960 0.040
#> SRR1818506 1 0.0000 0.945 1.000 0.000
#> SRR1818505 1 0.1843 0.941 0.972 0.028
#> SRR1818503 1 0.1843 0.941 0.972 0.028
#> SRR1818504 1 0.0000 0.945 1.000 0.000
#> SRR1818502 1 0.0376 0.945 0.996 0.004
#> SRR1818498 1 0.6801 0.808 0.820 0.180
#> SRR1818500 1 0.0376 0.945 0.996 0.004
#> SRR1818501 2 0.7056 1.000 0.192 0.808
#> SRR1818499 1 0.1843 0.941 0.972 0.028
#> SRR1818496 1 0.0000 0.945 1.000 0.000
#> SRR1818494 1 0.0000 0.945 1.000 0.000
#> SRR1818495 1 0.2423 0.929 0.960 0.040
#> SRR1818493 1 0.7056 0.785 0.808 0.192
#> SRR1818492 1 0.2423 0.929 0.960 0.040
#> SRR1818491 1 0.1843 0.941 0.972 0.028
#> SRR1818490 1 0.0000 0.945 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1818497 1 0.0424 0.958 0.992 0.008 0.000
#> SRR1818600 1 0.0000 0.958 1.000 0.000 0.000
#> SRR1818599 3 0.0237 1.000 0.004 0.000 0.996
#> SRR1818598 1 0.0592 0.958 0.988 0.012 0.000
#> SRR1818597 1 0.0747 0.957 0.984 0.016 0.000
#> SRR1818596 1 0.1647 0.951 0.960 0.036 0.004
#> SRR1818595 1 0.0747 0.957 0.984 0.016 0.000
#> SRR1818594 1 0.0747 0.957 0.984 0.016 0.000
#> SRR1818593 1 0.1647 0.951 0.960 0.036 0.004
#> SRR1818592 1 0.1647 0.951 0.960 0.036 0.004
#> SRR1818591 2 0.1529 0.944 0.040 0.960 0.000
#> SRR1818590 1 0.4002 0.856 0.840 0.160 0.000
#> SRR1818589 1 0.1647 0.951 0.960 0.036 0.004
#> SRR1818587 1 0.3412 0.890 0.876 0.124 0.000
#> SRR1818586 2 0.1289 0.953 0.032 0.968 0.000
#> SRR1818585 1 0.0237 0.957 0.996 0.004 0.000
#> SRR1818584 1 0.0000 0.958 1.000 0.000 0.000
#> SRR1818583 1 0.0237 0.958 0.996 0.004 0.000
#> SRR1818588 1 0.3412 0.890 0.876 0.124 0.000
#> SRR1818582 1 0.1647 0.951 0.960 0.036 0.004
#> SRR1818581 2 0.1031 0.960 0.024 0.976 0.000
#> SRR1818579 1 0.0000 0.958 1.000 0.000 0.000
#> SRR1818578 1 0.0000 0.958 1.000 0.000 0.000
#> SRR1818577 2 0.3116 0.849 0.108 0.892 0.000
#> SRR1818580 1 0.0237 0.957 0.996 0.004 0.000
#> SRR1818575 1 0.3412 0.890 0.876 0.124 0.000
#> SRR1818574 3 0.0237 1.000 0.004 0.000 0.996
#> SRR1818576 1 0.0000 0.958 1.000 0.000 0.000
#> SRR1818573 1 0.1647 0.951 0.960 0.036 0.004
#> SRR1818572 1 0.0000 0.958 1.000 0.000 0.000
#> SRR1818571 1 0.1399 0.954 0.968 0.028 0.004
#> SRR1818570 1 0.0747 0.957 0.984 0.016 0.000
#> SRR1818568 1 0.3412 0.890 0.876 0.124 0.000
#> SRR1818567 2 0.1031 0.960 0.024 0.976 0.000
#> SRR1818566 3 0.0237 1.000 0.004 0.000 0.996
#> SRR1818569 1 0.0237 0.957 0.996 0.004 0.000
#> SRR1818565 3 0.0237 1.000 0.004 0.000 0.996
#> SRR1818564 1 0.0000 0.958 1.000 0.000 0.000
#> SRR1818563 1 0.3918 0.884 0.856 0.140 0.004
#> SRR1818561 3 0.0237 1.000 0.004 0.000 0.996
#> SRR1818560 1 0.0000 0.958 1.000 0.000 0.000
#> SRR1818559 1 0.1129 0.949 0.976 0.020 0.004
#> SRR1818562 1 0.3412 0.890 0.876 0.124 0.000
#> SRR1818558 1 0.0000 0.958 1.000 0.000 0.000
#> SRR1818556 1 0.0000 0.958 1.000 0.000 0.000
#> SRR1818557 1 0.1647 0.951 0.960 0.036 0.004
#> SRR1818555 2 0.1031 0.960 0.024 0.976 0.000
#> SRR1818553 1 0.0747 0.957 0.984 0.016 0.000
#> SRR1818552 2 0.1031 0.960 0.024 0.976 0.000
#> SRR1818551 1 0.3412 0.892 0.876 0.124 0.000
#> SRR1818550 1 0.3412 0.890 0.876 0.124 0.000
#> SRR1818554 1 0.1647 0.951 0.960 0.036 0.004
#> SRR1818549 1 0.0747 0.957 0.984 0.016 0.000
#> SRR1818548 1 0.1647 0.951 0.960 0.036 0.004
#> SRR1818546 1 0.0237 0.957 0.996 0.004 0.000
#> SRR1818547 1 0.3752 0.883 0.856 0.144 0.000
#> SRR1818544 1 0.0000 0.958 1.000 0.000 0.000
#> SRR1818543 1 0.0000 0.958 1.000 0.000 0.000
#> SRR1818542 1 0.0424 0.958 0.992 0.008 0.000
#> SRR1818545 1 0.3412 0.890 0.876 0.124 0.000
#> SRR1818541 1 0.0000 0.958 1.000 0.000 0.000
#> SRR1818539 1 0.0000 0.958 1.000 0.000 0.000
#> SRR1818540 2 0.1031 0.960 0.024 0.976 0.000
#> SRR1818536 1 0.0424 0.959 0.992 0.008 0.000
#> SRR1818535 1 0.0000 0.958 1.000 0.000 0.000
#> SRR1818534 1 0.1647 0.951 0.960 0.036 0.004
#> SRR1818538 1 0.3412 0.890 0.876 0.124 0.000
#> SRR1818537 1 0.0000 0.958 1.000 0.000 0.000
#> SRR1818533 1 0.0000 0.958 1.000 0.000 0.000
#> SRR1818532 1 0.0747 0.957 0.984 0.016 0.000
#> SRR1818531 1 0.0000 0.958 1.000 0.000 0.000
#> SRR1818530 1 0.0237 0.957 0.996 0.004 0.000
#> SRR1818529 1 0.0237 0.958 0.996 0.004 0.000
#> SRR1818528 1 0.0000 0.958 1.000 0.000 0.000
#> SRR1818527 1 0.0000 0.958 1.000 0.000 0.000
#> SRR1818526 1 0.3784 0.888 0.864 0.132 0.004
#> SRR1818525 1 0.0237 0.957 0.996 0.004 0.000
#> SRR1818523 3 0.0237 1.000 0.004 0.000 0.996
#> SRR1818524 1 0.1647 0.951 0.960 0.036 0.004
#> SRR1818522 1 0.0747 0.957 0.984 0.016 0.000
#> SRR1818521 2 0.2066 0.912 0.060 0.940 0.000
#> SRR1818520 2 0.1031 0.960 0.024 0.976 0.000
#> SRR1818518 1 0.0000 0.958 1.000 0.000 0.000
#> SRR1818519 1 0.3918 0.884 0.856 0.140 0.004
#> SRR1818517 1 0.6244 0.297 0.560 0.440 0.000
#> SRR1818516 3 0.0237 1.000 0.004 0.000 0.996
#> SRR1818515 1 0.1647 0.951 0.960 0.036 0.004
#> SRR1818514 1 0.0237 0.957 0.996 0.004 0.000
#> SRR1818513 2 0.1031 0.960 0.024 0.976 0.000
#> SRR1818512 1 0.0237 0.957 0.996 0.004 0.000
#> SRR1818510 2 0.1031 0.960 0.024 0.976 0.000
#> SRR1818511 1 0.3412 0.890 0.876 0.124 0.000
#> SRR1818508 1 0.0000 0.958 1.000 0.000 0.000
#> SRR1818509 1 0.3752 0.872 0.856 0.144 0.000
#> SRR1818507 1 0.3918 0.884 0.856 0.140 0.004
#> SRR1818506 1 0.0983 0.957 0.980 0.016 0.004
#> SRR1818505 1 0.0000 0.958 1.000 0.000 0.000
#> SRR1818503 1 0.0000 0.958 1.000 0.000 0.000
#> SRR1818504 1 0.0747 0.957 0.984 0.016 0.000
#> SRR1818502 1 0.0747 0.957 0.984 0.016 0.000
#> SRR1818498 2 0.3686 0.764 0.140 0.860 0.000
#> SRR1818500 1 0.0592 0.958 0.988 0.012 0.000
#> SRR1818501 3 0.0237 1.000 0.004 0.000 0.996
#> SRR1818499 1 0.0000 0.958 1.000 0.000 0.000
#> SRR1818496 1 0.0747 0.957 0.984 0.016 0.000
#> SRR1818494 1 0.0747 0.957 0.984 0.016 0.000
#> SRR1818495 1 0.3412 0.890 0.876 0.124 0.000
#> SRR1818493 2 0.1031 0.960 0.024 0.976 0.000
#> SRR1818492 1 0.3412 0.890 0.876 0.124 0.000
#> SRR1818491 1 0.0000 0.958 1.000 0.000 0.000
#> SRR1818490 1 0.0747 0.957 0.984 0.016 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1818497 1 0.0188 0.956 0.996 0.004 0.000 0.000
#> SRR1818600 1 0.0000 0.956 1.000 0.000 0.000 0.000
#> SRR1818599 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> SRR1818598 1 0.0188 0.956 0.996 0.004 0.000 0.000
#> SRR1818597 1 0.0188 0.956 0.996 0.004 0.000 0.000
#> SRR1818596 4 0.0000 0.950 0.000 0.000 0.000 1.000
#> SRR1818595 1 0.0188 0.956 0.996 0.004 0.000 0.000
#> SRR1818594 1 0.0188 0.956 0.996 0.004 0.000 0.000
#> SRR1818593 4 0.0000 0.950 0.000 0.000 0.000 1.000
#> SRR1818592 4 0.0000 0.950 0.000 0.000 0.000 1.000
#> SRR1818591 2 0.0336 0.963 0.008 0.992 0.000 0.000
#> SRR1818590 1 0.3300 0.861 0.848 0.144 0.000 0.008
#> SRR1818589 4 0.0000 0.950 0.000 0.000 0.000 1.000
#> SRR1818587 1 0.2799 0.893 0.884 0.108 0.000 0.008
#> SRR1818586 2 0.0336 0.963 0.008 0.992 0.000 0.000
#> SRR1818585 1 0.0336 0.953 0.992 0.008 0.000 0.000
#> SRR1818584 1 0.0000 0.956 1.000 0.000 0.000 0.000
#> SRR1818583 1 0.0188 0.956 0.996 0.004 0.000 0.000
#> SRR1818588 1 0.2799 0.893 0.884 0.108 0.000 0.008
#> SRR1818582 4 0.0000 0.950 0.000 0.000 0.000 1.000
#> SRR1818581 2 0.0336 0.963 0.008 0.992 0.000 0.000
#> SRR1818579 1 0.0000 0.956 1.000 0.000 0.000 0.000
#> SRR1818578 1 0.0000 0.956 1.000 0.000 0.000 0.000
#> SRR1818577 2 0.2469 0.825 0.108 0.892 0.000 0.000
#> SRR1818580 1 0.0188 0.955 0.996 0.004 0.000 0.000
#> SRR1818575 1 0.2799 0.893 0.884 0.108 0.000 0.008
#> SRR1818574 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> SRR1818576 1 0.0000 0.956 1.000 0.000 0.000 0.000
#> SRR1818573 4 0.0000 0.950 0.000 0.000 0.000 1.000
#> SRR1818572 1 0.0000 0.956 1.000 0.000 0.000 0.000
#> SRR1818571 1 0.3539 0.813 0.820 0.004 0.000 0.176
#> SRR1818570 1 0.0188 0.956 0.996 0.004 0.000 0.000
#> SRR1818568 1 0.2799 0.893 0.884 0.108 0.000 0.008
#> SRR1818567 2 0.0336 0.963 0.008 0.992 0.000 0.000
#> SRR1818566 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> SRR1818569 1 0.0336 0.953 0.992 0.008 0.000 0.000
#> SRR1818565 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> SRR1818564 1 0.0000 0.956 1.000 0.000 0.000 0.000
#> SRR1818563 4 0.6649 0.271 0.340 0.100 0.000 0.560
#> SRR1818561 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> SRR1818560 1 0.0000 0.956 1.000 0.000 0.000 0.000
#> SRR1818559 4 0.0336 0.936 0.008 0.000 0.000 0.992
#> SRR1818562 1 0.2469 0.897 0.892 0.108 0.000 0.000
#> SRR1818558 1 0.0000 0.956 1.000 0.000 0.000 0.000
#> SRR1818556 1 0.0000 0.956 1.000 0.000 0.000 0.000
#> SRR1818557 4 0.0000 0.950 0.000 0.000 0.000 1.000
#> SRR1818555 2 0.0336 0.963 0.008 0.992 0.000 0.000
#> SRR1818553 1 0.0779 0.951 0.980 0.004 0.000 0.016
#> SRR1818552 2 0.0336 0.963 0.008 0.992 0.000 0.000
#> SRR1818551 1 0.2737 0.896 0.888 0.104 0.000 0.008
#> SRR1818550 1 0.2799 0.893 0.884 0.108 0.000 0.008
#> SRR1818554 4 0.0000 0.950 0.000 0.000 0.000 1.000
#> SRR1818549 1 0.0844 0.951 0.980 0.004 0.004 0.012
#> SRR1818548 4 0.0000 0.950 0.000 0.000 0.000 1.000
#> SRR1818546 1 0.0336 0.953 0.992 0.008 0.000 0.000
#> SRR1818547 1 0.5910 0.654 0.688 0.104 0.000 0.208
#> SRR1818544 1 0.0000 0.956 1.000 0.000 0.000 0.000
#> SRR1818543 1 0.0000 0.956 1.000 0.000 0.000 0.000
#> SRR1818542 1 0.0188 0.956 0.996 0.004 0.000 0.000
#> SRR1818545 1 0.2799 0.893 0.884 0.108 0.000 0.008
#> SRR1818541 1 0.0000 0.956 1.000 0.000 0.000 0.000
#> SRR1818539 1 0.0000 0.956 1.000 0.000 0.000 0.000
#> SRR1818540 2 0.0336 0.963 0.008 0.992 0.000 0.000
#> SRR1818536 1 0.0336 0.954 0.992 0.000 0.000 0.008
#> SRR1818535 1 0.0000 0.956 1.000 0.000 0.000 0.000
#> SRR1818534 4 0.0000 0.950 0.000 0.000 0.000 1.000
#> SRR1818538 1 0.2469 0.897 0.892 0.108 0.000 0.000
#> SRR1818537 1 0.0000 0.956 1.000 0.000 0.000 0.000
#> SRR1818533 1 0.0000 0.956 1.000 0.000 0.000 0.000
#> SRR1818532 1 0.1722 0.932 0.944 0.048 0.000 0.008
#> SRR1818531 1 0.0000 0.956 1.000 0.000 0.000 0.000
#> SRR1818530 1 0.0336 0.953 0.992 0.008 0.000 0.000
#> SRR1818529 1 0.0188 0.956 0.996 0.004 0.000 0.000
#> SRR1818528 1 0.0000 0.956 1.000 0.000 0.000 0.000
#> SRR1818527 1 0.0000 0.956 1.000 0.000 0.000 0.000
#> SRR1818526 1 0.4010 0.854 0.836 0.100 0.000 0.064
#> SRR1818525 1 0.0336 0.953 0.992 0.008 0.000 0.000
#> SRR1818523 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> SRR1818524 4 0.0000 0.950 0.000 0.000 0.000 1.000
#> SRR1818522 1 0.1118 0.942 0.964 0.036 0.000 0.000
#> SRR1818521 2 0.1637 0.893 0.060 0.940 0.000 0.000
#> SRR1818520 2 0.0336 0.963 0.008 0.992 0.000 0.000
#> SRR1818518 1 0.0000 0.956 1.000 0.000 0.000 0.000
#> SRR1818519 4 0.0000 0.950 0.000 0.000 0.000 1.000
#> SRR1818517 1 0.5535 0.313 0.560 0.420 0.000 0.020
#> SRR1818516 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> SRR1818515 4 0.0000 0.950 0.000 0.000 0.000 1.000
#> SRR1818514 1 0.0336 0.953 0.992 0.008 0.000 0.000
#> SRR1818513 2 0.0336 0.963 0.008 0.992 0.000 0.000
#> SRR1818512 1 0.0336 0.953 0.992 0.008 0.000 0.000
#> SRR1818510 2 0.0336 0.963 0.008 0.992 0.000 0.000
#> SRR1818511 1 0.2799 0.893 0.884 0.108 0.000 0.008
#> SRR1818508 1 0.0000 0.956 1.000 0.000 0.000 0.000
#> SRR1818509 1 0.3088 0.876 0.864 0.128 0.000 0.008
#> SRR1818507 4 0.0000 0.950 0.000 0.000 0.000 1.000
#> SRR1818506 1 0.3088 0.867 0.864 0.008 0.000 0.128
#> SRR1818505 1 0.0000 0.956 1.000 0.000 0.000 0.000
#> SRR1818503 1 0.0000 0.956 1.000 0.000 0.000 0.000
#> SRR1818504 1 0.0376 0.955 0.992 0.004 0.000 0.004
#> SRR1818502 1 0.0188 0.956 0.996 0.004 0.000 0.000
#> SRR1818498 2 0.2469 0.796 0.108 0.892 0.000 0.000
#> SRR1818500 1 0.0657 0.952 0.984 0.004 0.000 0.012
#> SRR1818501 3 0.0000 1.000 0.000 0.000 1.000 0.000
#> SRR1818499 1 0.0000 0.956 1.000 0.000 0.000 0.000
#> SRR1818496 1 0.0188 0.956 0.996 0.004 0.000 0.000
#> SRR1818494 1 0.0188 0.956 0.996 0.004 0.000 0.000
#> SRR1818495 1 0.2799 0.893 0.884 0.108 0.000 0.008
#> SRR1818493 2 0.0336 0.963 0.008 0.992 0.000 0.000
#> SRR1818492 1 0.2799 0.893 0.884 0.108 0.000 0.008
#> SRR1818491 1 0.0000 0.956 1.000 0.000 0.000 0.000
#> SRR1818490 1 0.0524 0.954 0.988 0.004 0.000 0.008
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1818497 1 0.0000 0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1818600 1 0.0290 0.925 0.992 0.000 0.000 0.000 0.008
#> SRR1818599 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818598 1 0.0000 0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1818597 1 0.0000 0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1818596 4 0.0000 0.927 0.000 0.000 0.000 1.000 0.000
#> SRR1818595 1 0.0000 0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1818594 1 0.0000 0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1818593 4 0.0162 0.926 0.000 0.000 0.000 0.996 0.004
#> SRR1818592 4 0.0000 0.927 0.000 0.000 0.000 1.000 0.000
#> SRR1818591 2 0.0000 0.963 0.000 1.000 0.000 0.000 0.000
#> SRR1818590 1 0.3769 0.792 0.788 0.032 0.000 0.000 0.180
#> SRR1818589 4 0.0162 0.926 0.000 0.000 0.000 0.996 0.004
#> SRR1818587 1 0.2929 0.820 0.820 0.000 0.000 0.000 0.180
#> SRR1818586 2 0.0000 0.963 0.000 1.000 0.000 0.000 0.000
#> SRR1818585 5 0.2929 1.000 0.180 0.000 0.000 0.000 0.820
#> SRR1818584 1 0.0290 0.925 0.992 0.000 0.000 0.000 0.008
#> SRR1818583 1 0.0000 0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1818588 1 0.2929 0.820 0.820 0.000 0.000 0.000 0.180
#> SRR1818582 4 0.0000 0.927 0.000 0.000 0.000 1.000 0.000
#> SRR1818581 2 0.0000 0.963 0.000 1.000 0.000 0.000 0.000
#> SRR1818579 1 0.0290 0.925 0.992 0.000 0.000 0.000 0.008
#> SRR1818578 1 0.0290 0.925 0.992 0.000 0.000 0.000 0.008
#> SRR1818577 2 0.3318 0.624 0.180 0.808 0.000 0.000 0.012
#> SRR1818580 1 0.0404 0.923 0.988 0.000 0.000 0.000 0.012
#> SRR1818575 1 0.2929 0.820 0.820 0.000 0.000 0.000 0.180
#> SRR1818574 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818576 1 0.0290 0.925 0.992 0.000 0.000 0.000 0.008
#> SRR1818573 4 0.0000 0.927 0.000 0.000 0.000 1.000 0.000
#> SRR1818572 1 0.0290 0.925 0.992 0.000 0.000 0.000 0.008
#> SRR1818571 1 0.3800 0.803 0.812 0.000 0.000 0.108 0.080
#> SRR1818570 1 0.0000 0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1818568 1 0.2929 0.820 0.820 0.000 0.000 0.000 0.180
#> SRR1818567 2 0.0000 0.963 0.000 1.000 0.000 0.000 0.000
#> SRR1818566 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818569 5 0.2929 1.000 0.180 0.000 0.000 0.000 0.820
#> SRR1818565 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818564 1 0.0290 0.925 0.992 0.000 0.000 0.000 0.008
#> SRR1818563 4 0.6361 0.102 0.340 0.000 0.000 0.484 0.176
#> SRR1818561 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818560 1 0.0290 0.925 0.992 0.000 0.000 0.000 0.008
#> SRR1818559 4 0.0000 0.927 0.000 0.000 0.000 1.000 0.000
#> SRR1818562 1 0.0404 0.921 0.988 0.000 0.000 0.000 0.012
#> SRR1818558 1 0.0290 0.925 0.992 0.000 0.000 0.000 0.008
#> SRR1818556 1 0.0290 0.925 0.992 0.000 0.000 0.000 0.008
#> SRR1818557 4 0.0000 0.927 0.000 0.000 0.000 1.000 0.000
#> SRR1818555 2 0.0000 0.963 0.000 1.000 0.000 0.000 0.000
#> SRR1818553 1 0.0579 0.920 0.984 0.000 0.000 0.008 0.008
#> SRR1818552 2 0.0693 0.945 0.008 0.980 0.000 0.000 0.012
#> SRR1818551 1 0.2946 0.856 0.868 0.000 0.000 0.044 0.088
#> SRR1818550 1 0.2929 0.820 0.820 0.000 0.000 0.000 0.180
#> SRR1818554 4 0.0162 0.926 0.000 0.000 0.000 0.996 0.004
#> SRR1818549 1 0.2407 0.874 0.896 0.000 0.004 0.012 0.088
#> SRR1818548 4 0.0000 0.927 0.000 0.000 0.000 1.000 0.000
#> SRR1818546 5 0.2929 1.000 0.180 0.000 0.000 0.000 0.820
#> SRR1818547 1 0.5177 0.656 0.688 0.000 0.000 0.132 0.180
#> SRR1818544 1 0.0290 0.925 0.992 0.000 0.000 0.000 0.008
#> SRR1818543 1 0.0290 0.925 0.992 0.000 0.000 0.000 0.008
#> SRR1818542 1 0.0000 0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1818545 1 0.2929 0.820 0.820 0.000 0.000 0.000 0.180
#> SRR1818541 1 0.0290 0.925 0.992 0.000 0.000 0.000 0.008
#> SRR1818539 1 0.0290 0.925 0.992 0.000 0.000 0.000 0.008
#> SRR1818540 2 0.0000 0.963 0.000 1.000 0.000 0.000 0.000
#> SRR1818536 1 0.1908 0.882 0.908 0.000 0.000 0.000 0.092
#> SRR1818535 1 0.0290 0.925 0.992 0.000 0.000 0.000 0.008
#> SRR1818534 4 0.0000 0.927 0.000 0.000 0.000 1.000 0.000
#> SRR1818538 1 0.2852 0.826 0.828 0.000 0.000 0.000 0.172
#> SRR1818537 1 0.0290 0.925 0.992 0.000 0.000 0.000 0.008
#> SRR1818533 1 0.0290 0.925 0.992 0.000 0.000 0.000 0.008
#> SRR1818532 1 0.2852 0.826 0.828 0.000 0.000 0.000 0.172
#> SRR1818531 1 0.0290 0.925 0.992 0.000 0.000 0.000 0.008
#> SRR1818530 5 0.2929 1.000 0.180 0.000 0.000 0.000 0.820
#> SRR1818529 1 0.0162 0.925 0.996 0.000 0.000 0.000 0.004
#> SRR1818528 1 0.0290 0.925 0.992 0.000 0.000 0.000 0.008
#> SRR1818527 1 0.0290 0.925 0.992 0.000 0.000 0.000 0.008
#> SRR1818526 1 0.3513 0.807 0.800 0.000 0.000 0.020 0.180
#> SRR1818525 1 0.0510 0.921 0.984 0.000 0.000 0.000 0.016
#> SRR1818523 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818524 4 0.0000 0.927 0.000 0.000 0.000 1.000 0.000
#> SRR1818522 1 0.0162 0.924 0.996 0.000 0.000 0.000 0.004
#> SRR1818521 2 0.2172 0.847 0.076 0.908 0.000 0.000 0.016
#> SRR1818520 2 0.0000 0.963 0.000 1.000 0.000 0.000 0.000
#> SRR1818518 1 0.0290 0.925 0.992 0.000 0.000 0.000 0.008
#> SRR1818519 4 0.2773 0.768 0.000 0.000 0.000 0.836 0.164
#> SRR1818517 1 0.6557 0.252 0.504 0.308 0.000 0.008 0.180
#> SRR1818516 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818515 4 0.0162 0.926 0.000 0.000 0.000 0.996 0.004
#> SRR1818514 5 0.2929 1.000 0.180 0.000 0.000 0.000 0.820
#> SRR1818513 2 0.0000 0.963 0.000 1.000 0.000 0.000 0.000
#> SRR1818512 5 0.2929 1.000 0.180 0.000 0.000 0.000 0.820
#> SRR1818510 2 0.0000 0.963 0.000 1.000 0.000 0.000 0.000
#> SRR1818511 1 0.0510 0.920 0.984 0.000 0.000 0.000 0.016
#> SRR1818508 1 0.0290 0.925 0.992 0.000 0.000 0.000 0.008
#> SRR1818509 1 0.3513 0.804 0.800 0.020 0.000 0.000 0.180
#> SRR1818507 4 0.1608 0.863 0.000 0.000 0.000 0.928 0.072
#> SRR1818506 1 0.3535 0.825 0.832 0.000 0.000 0.080 0.088
#> SRR1818505 1 0.0290 0.925 0.992 0.000 0.000 0.000 0.008
#> SRR1818503 1 0.0290 0.925 0.992 0.000 0.000 0.000 0.008
#> SRR1818504 1 0.0162 0.924 0.996 0.000 0.000 0.004 0.000
#> SRR1818502 1 0.0000 0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1818498 2 0.0000 0.963 0.000 1.000 0.000 0.000 0.000
#> SRR1818500 1 0.0290 0.922 0.992 0.000 0.000 0.008 0.000
#> SRR1818501 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818499 1 0.0290 0.925 0.992 0.000 0.000 0.000 0.008
#> SRR1818496 1 0.0000 0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1818494 1 0.0000 0.925 1.000 0.000 0.000 0.000 0.000
#> SRR1818495 1 0.2929 0.820 0.820 0.000 0.000 0.000 0.180
#> SRR1818493 2 0.0000 0.963 0.000 1.000 0.000 0.000 0.000
#> SRR1818492 1 0.2929 0.820 0.820 0.000 0.000 0.000 0.180
#> SRR1818491 1 0.0290 0.925 0.992 0.000 0.000 0.000 0.008
#> SRR1818490 1 0.1851 0.881 0.912 0.000 0.000 0.000 0.088
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1818497 1 0.0000 0.8885 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818600 1 0.0363 0.8849 0.988 0.000 0 0.000 0.000 0.012
#> SRR1818599 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1818598 1 0.0000 0.8885 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818597 1 0.0000 0.8885 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818596 4 0.0000 0.8660 0.000 0.000 0 1.000 0.000 0.000
#> SRR1818595 1 0.0000 0.8885 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818594 1 0.0000 0.8885 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818593 4 0.3619 0.7445 0.000 0.000 0 0.680 0.004 0.316
#> SRR1818592 4 0.0000 0.8660 0.000 0.000 0 1.000 0.000 0.000
#> SRR1818591 2 0.0000 0.9324 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818590 6 0.3725 0.6473 0.316 0.008 0 0.000 0.000 0.676
#> SRR1818589 4 0.3619 0.7445 0.000 0.000 0 0.680 0.004 0.316
#> SRR1818587 6 0.3050 0.6272 0.236 0.000 0 0.000 0.000 0.764
#> SRR1818586 2 0.0000 0.9324 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818585 5 0.0146 1.0000 0.004 0.000 0 0.000 0.996 0.000
#> SRR1818584 1 0.0363 0.8849 0.988 0.000 0 0.000 0.000 0.012
#> SRR1818583 1 0.0000 0.8885 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818588 1 0.3695 0.1871 0.624 0.000 0 0.000 0.000 0.376
#> SRR1818582 4 0.0000 0.8660 0.000 0.000 0 1.000 0.000 0.000
#> SRR1818581 2 0.0000 0.9324 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818579 1 0.0363 0.8849 0.988 0.000 0 0.000 0.000 0.012
#> SRR1818578 1 0.0000 0.8885 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818577 2 0.3168 0.6796 0.172 0.804 0 0.000 0.000 0.024
#> SRR1818580 1 0.0508 0.8833 0.984 0.000 0 0.000 0.004 0.012
#> SRR1818575 1 0.3695 0.1871 0.624 0.000 0 0.000 0.000 0.376
#> SRR1818574 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1818576 1 0.0000 0.8885 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818573 4 0.0000 0.8660 0.000 0.000 0 1.000 0.000 0.000
#> SRR1818572 1 0.0363 0.8849 0.988 0.000 0 0.000 0.000 0.012
#> SRR1818571 1 0.4060 0.5854 0.764 0.000 0 0.112 0.004 0.120
#> SRR1818570 1 0.0000 0.8885 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818568 1 0.3706 0.1734 0.620 0.000 0 0.000 0.000 0.380
#> SRR1818567 2 0.0000 0.9324 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818566 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1818569 5 0.0146 1.0000 0.004 0.000 0 0.000 0.996 0.000
#> SRR1818565 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1818564 1 0.0000 0.8885 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818563 6 0.6086 0.4478 0.276 0.000 0 0.348 0.000 0.376
#> SRR1818561 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1818560 1 0.0000 0.8885 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818559 4 0.0000 0.8660 0.000 0.000 0 1.000 0.000 0.000
#> SRR1818562 1 0.3101 0.5190 0.756 0.000 0 0.000 0.000 0.244
#> SRR1818558 1 0.0363 0.8849 0.988 0.000 0 0.000 0.000 0.012
#> SRR1818556 1 0.0363 0.8849 0.988 0.000 0 0.000 0.000 0.012
#> SRR1818557 4 0.0000 0.8660 0.000 0.000 0 1.000 0.000 0.000
#> SRR1818555 2 0.0000 0.9324 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818553 1 0.1194 0.8589 0.956 0.000 0 0.008 0.004 0.032
#> SRR1818552 2 0.3707 0.6012 0.008 0.680 0 0.000 0.000 0.312
#> SRR1818551 1 0.1701 0.8226 0.920 0.000 0 0.008 0.000 0.072
#> SRR1818550 1 0.3717 0.1591 0.616 0.000 0 0.000 0.000 0.384
#> SRR1818554 4 0.3619 0.7445 0.000 0.000 0 0.680 0.004 0.316
#> SRR1818549 1 0.1897 0.8083 0.908 0.000 0 0.004 0.004 0.084
#> SRR1818548 4 0.0000 0.8660 0.000 0.000 0 1.000 0.000 0.000
#> SRR1818546 5 0.0146 1.0000 0.004 0.000 0 0.000 0.996 0.000
#> SRR1818547 6 0.3848 0.5624 0.292 0.000 0 0.012 0.004 0.692
#> SRR1818544 1 0.0363 0.8849 0.988 0.000 0 0.000 0.000 0.012
#> SRR1818543 1 0.0000 0.8885 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818542 1 0.0260 0.8854 0.992 0.000 0 0.008 0.000 0.000
#> SRR1818545 1 0.3717 0.1591 0.616 0.000 0 0.000 0.000 0.384
#> SRR1818541 1 0.0000 0.8885 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818539 1 0.0000 0.8885 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818540 2 0.0000 0.9324 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818536 1 0.1663 0.8088 0.912 0.000 0 0.000 0.000 0.088
#> SRR1818535 1 0.0000 0.8885 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818534 4 0.0000 0.8660 0.000 0.000 0 1.000 0.000 0.000
#> SRR1818538 6 0.3706 0.5601 0.380 0.000 0 0.000 0.000 0.620
#> SRR1818537 1 0.0000 0.8885 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818533 1 0.0260 0.8848 0.992 0.000 0 0.000 0.000 0.008
#> SRR1818532 1 0.3151 0.5324 0.748 0.000 0 0.000 0.000 0.252
#> SRR1818531 1 0.0363 0.8849 0.988 0.000 0 0.000 0.000 0.012
#> SRR1818530 5 0.0146 1.0000 0.004 0.000 0 0.000 0.996 0.000
#> SRR1818529 1 0.0000 0.8885 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818528 1 0.0000 0.8885 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818527 1 0.0363 0.8849 0.988 0.000 0 0.000 0.000 0.012
#> SRR1818526 6 0.3772 0.5645 0.296 0.000 0 0.008 0.004 0.692
#> SRR1818525 1 0.1297 0.8561 0.948 0.000 0 0.000 0.040 0.012
#> SRR1818523 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1818524 4 0.0000 0.8660 0.000 0.000 0 1.000 0.000 0.000
#> SRR1818522 1 0.0146 0.8868 0.996 0.000 0 0.000 0.000 0.004
#> SRR1818521 2 0.2662 0.7664 0.120 0.856 0 0.000 0.000 0.024
#> SRR1818520 2 0.0000 0.9324 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818518 1 0.0000 0.8885 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818519 6 0.3955 -0.4259 0.000 0.000 0 0.436 0.004 0.560
#> SRR1818517 6 0.4628 0.6143 0.344 0.044 0 0.004 0.000 0.608
#> SRR1818516 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1818515 4 0.3619 0.7445 0.000 0.000 0 0.680 0.004 0.316
#> SRR1818514 5 0.0146 1.0000 0.004 0.000 0 0.000 0.996 0.000
#> SRR1818513 2 0.0000 0.9324 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818512 5 0.0146 1.0000 0.004 0.000 0 0.000 0.996 0.000
#> SRR1818510 2 0.0000 0.9324 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818511 1 0.3464 0.3334 0.688 0.000 0 0.000 0.000 0.312
#> SRR1818508 1 0.0363 0.8849 0.988 0.000 0 0.000 0.000 0.012
#> SRR1818509 6 0.3636 0.6491 0.320 0.004 0 0.000 0.000 0.676
#> SRR1818507 4 0.3872 0.6504 0.000 0.000 0 0.604 0.004 0.392
#> SRR1818506 1 0.5021 0.0793 0.592 0.000 0 0.080 0.004 0.324
#> SRR1818505 1 0.0363 0.8849 0.988 0.000 0 0.000 0.000 0.012
#> SRR1818503 1 0.0000 0.8885 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818504 1 0.2135 0.7342 0.872 0.000 0 0.000 0.000 0.128
#> SRR1818502 1 0.0000 0.8885 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818498 2 0.0000 0.9324 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818500 1 0.0260 0.8847 0.992 0.000 0 0.008 0.000 0.000
#> SRR1818501 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1818499 1 0.0260 0.8864 0.992 0.000 0 0.000 0.000 0.008
#> SRR1818496 1 0.0000 0.8885 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818494 1 0.0000 0.8885 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818495 6 0.0547 0.3269 0.020 0.000 0 0.000 0.000 0.980
#> SRR1818493 2 0.0000 0.9324 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818492 1 0.3727 0.1449 0.612 0.000 0 0.000 0.000 0.388
#> SRR1818491 1 0.0363 0.8849 0.988 0.000 0 0.000 0.000 0.012
#> SRR1818490 1 0.1765 0.7998 0.904 0.000 0 0.000 0.000 0.096
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 16183 rows and 111 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 5.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.446 0.700 0.808 0.343 0.778 0.778
#> 3 3 0.434 0.716 0.762 0.446 0.691 0.639
#> 4 4 0.568 0.571 0.822 0.131 0.756 0.610
#> 5 5 0.769 0.752 0.905 0.164 0.878 0.700
#> 6 6 0.878 0.847 0.924 0.131 0.950 0.844
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 5
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1818497 1 0.9944 0.512 0.544 0.456
#> SRR1818600 1 0.9635 0.633 0.612 0.388
#> SRR1818599 2 0.1414 0.964 0.020 0.980
#> SRR1818598 1 0.9608 0.636 0.616 0.384
#> SRR1818597 1 0.9635 0.633 0.612 0.388
#> SRR1818596 1 0.3879 0.671 0.924 0.076
#> SRR1818595 1 0.9608 0.636 0.616 0.384
#> SRR1818594 1 0.9635 0.633 0.612 0.388
#> SRR1818593 1 0.3879 0.671 0.924 0.076
#> SRR1818592 1 0.3879 0.671 0.924 0.076
#> SRR1818591 1 0.0672 0.710 0.992 0.008
#> SRR1818590 1 0.0672 0.710 0.992 0.008
#> SRR1818589 1 0.3584 0.676 0.932 0.068
#> SRR1818587 1 0.0672 0.710 0.992 0.008
#> SRR1818586 1 0.0672 0.710 0.992 0.008
#> SRR1818585 2 0.3879 0.951 0.076 0.924
#> SRR1818584 1 0.9608 0.636 0.616 0.384
#> SRR1818583 1 0.9661 0.628 0.608 0.392
#> SRR1818588 1 0.7883 0.682 0.764 0.236
#> SRR1818582 1 0.3879 0.671 0.924 0.076
#> SRR1818581 1 0.0672 0.710 0.992 0.008
#> SRR1818579 1 0.9635 0.633 0.612 0.388
#> SRR1818578 1 0.9635 0.633 0.612 0.388
#> SRR1818577 1 0.0672 0.710 0.992 0.008
#> SRR1818580 1 0.9661 0.628 0.608 0.392
#> SRR1818575 1 0.7219 0.690 0.800 0.200
#> SRR1818574 2 0.1633 0.963 0.024 0.976
#> SRR1818576 1 0.9635 0.633 0.612 0.388
#> SRR1818573 1 0.3879 0.671 0.924 0.076
#> SRR1818572 1 0.9608 0.636 0.616 0.384
#> SRR1818571 1 0.2603 0.691 0.956 0.044
#> SRR1818570 1 0.9635 0.633 0.612 0.388
#> SRR1818568 1 0.8016 0.681 0.756 0.244
#> SRR1818567 1 0.0672 0.710 0.992 0.008
#> SRR1818566 2 0.1414 0.964 0.020 0.980
#> SRR1818569 2 0.3879 0.951 0.076 0.924
#> SRR1818565 2 0.1414 0.964 0.020 0.980
#> SRR1818564 1 0.9635 0.633 0.612 0.388
#> SRR1818563 1 0.0672 0.710 0.992 0.008
#> SRR1818561 2 0.1414 0.964 0.020 0.980
#> SRR1818560 1 0.9833 0.576 0.576 0.424
#> SRR1818559 1 0.3879 0.671 0.924 0.076
#> SRR1818562 1 0.5294 0.703 0.880 0.120
#> SRR1818558 1 0.9635 0.633 0.612 0.388
#> SRR1818556 1 0.9661 0.628 0.608 0.392
#> SRR1818557 1 0.3879 0.671 0.924 0.076
#> SRR1818555 1 0.0672 0.710 0.992 0.008
#> SRR1818553 1 0.2603 0.691 0.956 0.044
#> SRR1818552 1 0.0672 0.710 0.992 0.008
#> SRR1818551 1 0.6712 0.695 0.824 0.176
#> SRR1818550 1 0.0672 0.710 0.992 0.008
#> SRR1818554 1 0.3879 0.671 0.924 0.076
#> SRR1818549 1 0.8443 0.673 0.728 0.272
#> SRR1818548 1 0.3879 0.671 0.924 0.076
#> SRR1818546 2 0.3879 0.951 0.076 0.924
#> SRR1818547 1 0.2948 0.688 0.948 0.052
#> SRR1818544 1 0.9635 0.633 0.612 0.388
#> SRR1818543 1 0.9710 0.616 0.600 0.400
#> SRR1818542 1 0.9922 0.529 0.552 0.448
#> SRR1818545 1 0.0672 0.710 0.992 0.008
#> SRR1818541 1 0.9635 0.633 0.612 0.388
#> SRR1818539 1 0.9635 0.633 0.612 0.388
#> SRR1818540 1 0.0672 0.710 0.992 0.008
#> SRR1818536 1 0.9661 0.632 0.608 0.392
#> SRR1818535 1 0.9754 0.610 0.592 0.408
#> SRR1818534 1 0.3879 0.671 0.924 0.076
#> SRR1818538 1 0.0672 0.710 0.992 0.008
#> SRR1818537 1 0.9635 0.633 0.612 0.388
#> SRR1818533 1 0.9608 0.636 0.616 0.384
#> SRR1818532 1 0.7950 0.680 0.760 0.240
#> SRR1818531 1 0.9608 0.636 0.616 0.384
#> SRR1818530 2 0.3879 0.951 0.076 0.924
#> SRR1818529 1 0.9635 0.633 0.612 0.388
#> SRR1818528 1 0.9635 0.633 0.612 0.388
#> SRR1818527 1 0.9635 0.633 0.612 0.388
#> SRR1818526 1 0.2778 0.689 0.952 0.048
#> SRR1818525 1 0.9635 0.633 0.612 0.388
#> SRR1818523 2 0.1414 0.964 0.020 0.980
#> SRR1818524 1 0.3879 0.671 0.924 0.076
#> SRR1818522 1 0.6623 0.695 0.828 0.172
#> SRR1818521 1 0.0672 0.710 0.992 0.008
#> SRR1818520 1 0.0672 0.710 0.992 0.008
#> SRR1818518 1 0.9635 0.633 0.612 0.388
#> SRR1818519 1 0.3274 0.681 0.940 0.060
#> SRR1818517 1 0.0672 0.710 0.992 0.008
#> SRR1818516 2 0.1414 0.964 0.020 0.980
#> SRR1818515 1 0.3879 0.671 0.924 0.076
#> SRR1818514 2 0.3879 0.951 0.076 0.924
#> SRR1818513 1 0.0672 0.710 0.992 0.008
#> SRR1818512 2 0.3879 0.951 0.076 0.924
#> SRR1818510 1 0.0672 0.710 0.992 0.008
#> SRR1818511 1 0.0672 0.710 0.992 0.008
#> SRR1818508 1 0.9608 0.636 0.616 0.384
#> SRR1818509 1 0.0672 0.710 0.992 0.008
#> SRR1818507 1 0.3274 0.681 0.940 0.060
#> SRR1818506 1 0.2603 0.691 0.956 0.044
#> SRR1818505 1 0.9635 0.633 0.612 0.388
#> SRR1818503 1 0.9635 0.633 0.612 0.388
#> SRR1818504 1 0.9608 0.636 0.616 0.384
#> SRR1818502 1 0.9635 0.633 0.612 0.388
#> SRR1818498 1 0.0672 0.710 0.992 0.008
#> SRR1818500 1 0.9608 0.636 0.616 0.384
#> SRR1818501 2 0.1414 0.964 0.020 0.980
#> SRR1818499 1 0.9635 0.633 0.612 0.388
#> SRR1818496 1 0.9881 0.554 0.564 0.436
#> SRR1818494 1 0.9608 0.636 0.616 0.384
#> SRR1818495 1 0.0672 0.710 0.992 0.008
#> SRR1818493 1 0.0672 0.710 0.992 0.008
#> SRR1818492 1 0.0672 0.710 0.992 0.008
#> SRR1818491 1 0.9635 0.633 0.612 0.388
#> SRR1818490 1 0.9661 0.632 0.608 0.392
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1818497 1 0.4174 0.7748 0.872 0.036 0.092
#> SRR1818600 1 0.1031 0.7926 0.976 0.024 0.000
#> SRR1818599 3 0.6565 0.9738 0.048 0.232 0.720
#> SRR1818598 1 0.1170 0.7936 0.976 0.008 0.016
#> SRR1818597 1 0.0848 0.7951 0.984 0.008 0.008
#> SRR1818596 2 0.2066 0.8229 0.060 0.940 0.000
#> SRR1818595 1 0.1015 0.7953 0.980 0.008 0.012
#> SRR1818594 1 0.0424 0.7944 0.992 0.000 0.008
#> SRR1818593 2 0.2486 0.8199 0.060 0.932 0.008
#> SRR1818592 2 0.2066 0.8229 0.060 0.940 0.000
#> SRR1818591 1 0.7480 0.5282 0.508 0.036 0.456
#> SRR1818590 1 0.7558 0.6771 0.644 0.072 0.284
#> SRR1818589 2 0.2651 0.8164 0.060 0.928 0.012
#> SRR1818587 1 0.7298 0.7094 0.692 0.088 0.220
#> SRR1818586 1 0.7493 0.5002 0.488 0.036 0.476
#> SRR1818585 1 0.8511 0.5051 0.604 0.152 0.244
#> SRR1818584 1 0.1289 0.7849 0.968 0.032 0.000
#> SRR1818583 1 0.1399 0.7909 0.968 0.028 0.004
#> SRR1818588 1 0.5823 0.7539 0.792 0.064 0.144
#> SRR1818582 2 0.2066 0.8229 0.060 0.940 0.000
#> SRR1818581 1 0.7493 0.5002 0.488 0.036 0.476
#> SRR1818579 1 0.0983 0.7925 0.980 0.016 0.004
#> SRR1818578 1 0.1877 0.7846 0.956 0.032 0.012
#> SRR1818577 1 0.7319 0.5792 0.548 0.032 0.420
#> SRR1818580 1 0.1711 0.7855 0.960 0.032 0.008
#> SRR1818575 1 0.6208 0.7435 0.772 0.076 0.152
#> SRR1818574 3 0.8080 0.8099 0.128 0.232 0.640
#> SRR1818576 1 0.1129 0.7922 0.976 0.020 0.004
#> SRR1818573 2 0.2066 0.8229 0.060 0.940 0.000
#> SRR1818572 1 0.1031 0.7864 0.976 0.024 0.000
#> SRR1818571 1 0.7588 0.4829 0.624 0.312 0.064
#> SRR1818570 1 0.1129 0.7940 0.976 0.020 0.004
#> SRR1818568 1 0.5913 0.7520 0.788 0.068 0.144
#> SRR1818567 1 0.7493 0.5002 0.488 0.036 0.476
#> SRR1818566 3 0.6565 0.9738 0.048 0.232 0.720
#> SRR1818569 1 0.8511 0.5051 0.604 0.152 0.244
#> SRR1818565 3 0.6565 0.9738 0.048 0.232 0.720
#> SRR1818564 1 0.1015 0.7941 0.980 0.008 0.012
#> SRR1818563 1 0.7717 0.6738 0.680 0.172 0.148
#> SRR1818561 3 0.6565 0.9738 0.048 0.232 0.720
#> SRR1818560 1 0.1585 0.7898 0.964 0.028 0.008
#> SRR1818559 2 0.2066 0.8229 0.060 0.940 0.000
#> SRR1818562 1 0.5393 0.7555 0.808 0.044 0.148
#> SRR1818558 1 0.0000 0.7931 1.000 0.000 0.000
#> SRR1818556 1 0.1585 0.7898 0.964 0.028 0.008
#> SRR1818557 2 0.2066 0.8229 0.060 0.940 0.000
#> SRR1818555 1 0.7493 0.5002 0.488 0.036 0.476
#> SRR1818553 1 0.7416 0.5365 0.656 0.276 0.068
#> SRR1818552 1 0.7671 0.5092 0.492 0.044 0.464
#> SRR1818551 1 0.5307 0.7569 0.820 0.056 0.124
#> SRR1818550 1 0.7226 0.7103 0.692 0.080 0.228
#> SRR1818554 2 0.2486 0.8199 0.060 0.932 0.008
#> SRR1818549 1 0.5905 0.6932 0.772 0.184 0.044
#> SRR1818548 2 0.2066 0.8229 0.060 0.940 0.000
#> SRR1818546 1 0.8511 0.5051 0.604 0.152 0.244
#> SRR1818547 2 0.7256 0.1793 0.440 0.532 0.028
#> SRR1818544 1 0.0475 0.7929 0.992 0.004 0.004
#> SRR1818543 1 0.1950 0.7862 0.952 0.040 0.008
#> SRR1818542 1 0.4056 0.7777 0.876 0.032 0.092
#> SRR1818545 1 0.7180 0.7159 0.700 0.084 0.216
#> SRR1818541 1 0.0424 0.7922 0.992 0.008 0.000
#> SRR1818539 1 0.2063 0.7838 0.948 0.044 0.008
#> SRR1818540 1 0.7493 0.5002 0.488 0.036 0.476
#> SRR1818536 1 0.2383 0.7892 0.940 0.044 0.016
#> SRR1818535 1 0.2313 0.7904 0.944 0.032 0.024
#> SRR1818534 2 0.2066 0.8229 0.060 0.940 0.000
#> SRR1818538 1 0.7558 0.6771 0.644 0.072 0.284
#> SRR1818537 1 0.0661 0.7925 0.988 0.008 0.004
#> SRR1818533 1 0.1170 0.7936 0.976 0.008 0.016
#> SRR1818532 1 0.3112 0.7863 0.916 0.028 0.056
#> SRR1818531 1 0.1289 0.7849 0.968 0.032 0.000
#> SRR1818530 1 0.8511 0.5051 0.604 0.152 0.244
#> SRR1818529 1 0.3356 0.7844 0.908 0.036 0.056
#> SRR1818528 1 0.0747 0.7932 0.984 0.016 0.000
#> SRR1818527 1 0.0000 0.7931 1.000 0.000 0.000
#> SRR1818526 2 0.7256 0.1793 0.440 0.532 0.028
#> SRR1818525 1 0.1751 0.7859 0.960 0.028 0.012
#> SRR1818523 3 0.6565 0.9738 0.048 0.232 0.720
#> SRR1818524 2 0.2066 0.8229 0.060 0.940 0.000
#> SRR1818522 1 0.4915 0.7645 0.832 0.036 0.132
#> SRR1818521 1 0.7411 0.5796 0.548 0.036 0.416
#> SRR1818520 1 0.7493 0.5002 0.488 0.036 0.476
#> SRR1818518 1 0.1163 0.7920 0.972 0.028 0.000
#> SRR1818519 2 0.6027 0.5651 0.272 0.712 0.016
#> SRR1818517 1 0.7465 0.6840 0.656 0.072 0.272
#> SRR1818516 3 0.6565 0.9738 0.048 0.232 0.720
#> SRR1818515 2 0.2486 0.8199 0.060 0.932 0.008
#> SRR1818514 1 0.8511 0.5051 0.604 0.152 0.244
#> SRR1818513 1 0.7493 0.5002 0.488 0.036 0.476
#> SRR1818512 1 0.8511 0.5051 0.604 0.152 0.244
#> SRR1818510 1 0.7493 0.5002 0.488 0.036 0.476
#> SRR1818511 1 0.6576 0.7223 0.740 0.068 0.192
#> SRR1818508 1 0.1289 0.7849 0.968 0.032 0.000
#> SRR1818509 1 0.7497 0.6817 0.652 0.072 0.276
#> SRR1818507 2 0.6027 0.5651 0.272 0.712 0.016
#> SRR1818506 1 0.8206 -0.0387 0.480 0.448 0.072
#> SRR1818505 1 0.0000 0.7931 1.000 0.000 0.000
#> SRR1818503 1 0.0424 0.7922 0.992 0.008 0.000
#> SRR1818504 1 0.1015 0.7936 0.980 0.008 0.012
#> SRR1818502 1 0.0848 0.7932 0.984 0.008 0.008
#> SRR1818498 1 0.7181 0.5262 0.508 0.024 0.468
#> SRR1818500 1 0.1774 0.7883 0.960 0.024 0.016
#> SRR1818501 3 0.6565 0.9738 0.048 0.232 0.720
#> SRR1818499 1 0.0000 0.7931 1.000 0.000 0.000
#> SRR1818496 1 0.4232 0.7747 0.872 0.044 0.084
#> SRR1818494 1 0.1170 0.7936 0.976 0.008 0.016
#> SRR1818495 1 0.7186 0.7112 0.696 0.080 0.224
#> SRR1818493 1 0.7491 0.5058 0.492 0.036 0.472
#> SRR1818492 1 0.7180 0.7143 0.700 0.084 0.216
#> SRR1818491 1 0.0892 0.7898 0.980 0.020 0.000
#> SRR1818490 1 0.1751 0.7897 0.960 0.028 0.012
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1818497 1 0.3933 0.53043 0.792 0.200 0.000 0.008
#> SRR1818600 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818599 3 0.0000 0.99664 0.000 0.000 1.000 0.000
#> SRR1818598 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818597 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818596 4 0.0000 0.82168 0.000 0.000 0.000 1.000
#> SRR1818595 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818594 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818593 4 0.0000 0.82168 0.000 0.000 0.000 1.000
#> SRR1818592 4 0.0000 0.82168 0.000 0.000 0.000 1.000
#> SRR1818591 2 0.4992 0.54862 0.476 0.524 0.000 0.000
#> SRR1818590 2 0.4992 0.54862 0.476 0.524 0.000 0.000
#> SRR1818589 4 0.0000 0.82168 0.000 0.000 0.000 1.000
#> SRR1818587 1 0.5466 -0.29035 0.548 0.436 0.000 0.016
#> SRR1818586 2 0.4992 0.54862 0.476 0.524 0.000 0.000
#> SRR1818585 2 0.6710 -0.27460 0.068 0.672 0.208 0.052
#> SRR1818584 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818583 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818588 1 0.4781 0.16254 0.660 0.336 0.000 0.004
#> SRR1818582 4 0.0000 0.82168 0.000 0.000 0.000 1.000
#> SRR1818581 2 0.4992 0.54862 0.476 0.524 0.000 0.000
#> SRR1818579 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818578 1 0.1637 0.74663 0.940 0.060 0.000 0.000
#> SRR1818577 2 0.4992 0.54862 0.476 0.524 0.000 0.000
#> SRR1818580 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818575 1 0.4837 0.11689 0.648 0.348 0.000 0.004
#> SRR1818574 3 0.0469 0.97630 0.012 0.000 0.988 0.000
#> SRR1818576 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818573 4 0.0000 0.82168 0.000 0.000 0.000 1.000
#> SRR1818572 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818571 1 0.6583 0.24177 0.656 0.248 0.056 0.040
#> SRR1818570 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818568 1 0.4800 0.14701 0.656 0.340 0.000 0.004
#> SRR1818567 2 0.4992 0.54862 0.476 0.524 0.000 0.000
#> SRR1818566 3 0.0000 0.99664 0.000 0.000 1.000 0.000
#> SRR1818569 2 0.6710 -0.27460 0.068 0.672 0.208 0.052
#> SRR1818565 3 0.0000 0.99664 0.000 0.000 1.000 0.000
#> SRR1818564 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818563 1 0.5847 0.08126 0.628 0.320 0.000 0.052
#> SRR1818561 3 0.0000 0.99664 0.000 0.000 1.000 0.000
#> SRR1818560 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818559 4 0.0000 0.82168 0.000 0.000 0.000 1.000
#> SRR1818562 1 0.4855 0.10711 0.644 0.352 0.000 0.004
#> SRR1818558 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818556 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818557 4 0.0000 0.82168 0.000 0.000 0.000 1.000
#> SRR1818555 2 0.4992 0.54862 0.476 0.524 0.000 0.000
#> SRR1818553 1 0.5406 0.30872 0.692 0.268 0.036 0.004
#> SRR1818552 2 0.4992 0.54862 0.476 0.524 0.000 0.000
#> SRR1818551 1 0.3908 0.50856 0.784 0.212 0.000 0.004
#> SRR1818550 1 0.5466 -0.29035 0.548 0.436 0.000 0.016
#> SRR1818554 4 0.0000 0.82168 0.000 0.000 0.000 1.000
#> SRR1818549 1 0.3584 0.68432 0.868 0.064 0.064 0.004
#> SRR1818548 4 0.0000 0.82168 0.000 0.000 0.000 1.000
#> SRR1818546 2 0.6710 -0.27460 0.068 0.672 0.208 0.052
#> SRR1818547 4 0.8073 -0.00187 0.360 0.132 0.040 0.468
#> SRR1818544 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818543 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818542 1 0.3933 0.53043 0.792 0.200 0.000 0.008
#> SRR1818545 1 0.5466 -0.29035 0.548 0.436 0.000 0.016
#> SRR1818541 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818539 1 0.1807 0.75291 0.940 0.052 0.000 0.008
#> SRR1818540 2 0.4992 0.54862 0.476 0.524 0.000 0.000
#> SRR1818536 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818535 1 0.0188 0.79523 0.996 0.000 0.004 0.000
#> SRR1818534 4 0.0000 0.82168 0.000 0.000 0.000 1.000
#> SRR1818538 2 0.4994 0.53815 0.480 0.520 0.000 0.000
#> SRR1818537 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818533 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818532 1 0.1109 0.77488 0.968 0.028 0.000 0.004
#> SRR1818531 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818530 2 0.6710 -0.27460 0.068 0.672 0.208 0.052
#> SRR1818529 1 0.3450 0.61410 0.836 0.156 0.000 0.008
#> SRR1818528 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818527 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818526 4 0.8057 0.02839 0.352 0.132 0.040 0.476
#> SRR1818525 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818523 3 0.0000 0.99664 0.000 0.000 1.000 0.000
#> SRR1818524 4 0.0000 0.82168 0.000 0.000 0.000 1.000
#> SRR1818522 1 0.4122 0.46282 0.760 0.236 0.000 0.004
#> SRR1818521 2 0.4992 0.54862 0.476 0.524 0.000 0.000
#> SRR1818520 2 0.4992 0.54862 0.476 0.524 0.000 0.000
#> SRR1818518 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818519 4 0.6871 0.49403 0.192 0.132 0.024 0.652
#> SRR1818517 2 0.4994 0.53815 0.480 0.520 0.000 0.000
#> SRR1818516 3 0.0000 0.99664 0.000 0.000 1.000 0.000
#> SRR1818515 4 0.0000 0.82168 0.000 0.000 0.000 1.000
#> SRR1818514 2 0.6710 -0.27460 0.068 0.672 0.208 0.052
#> SRR1818513 2 0.4992 0.54862 0.476 0.524 0.000 0.000
#> SRR1818512 2 0.6710 -0.27460 0.068 0.672 0.208 0.052
#> SRR1818510 2 0.4992 0.54862 0.476 0.524 0.000 0.000
#> SRR1818511 1 0.5353 -0.26624 0.556 0.432 0.000 0.012
#> SRR1818508 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818509 2 0.4994 0.53815 0.480 0.520 0.000 0.000
#> SRR1818507 4 0.6773 0.49630 0.192 0.132 0.020 0.656
#> SRR1818506 1 0.8715 -0.17549 0.416 0.288 0.044 0.252
#> SRR1818505 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818503 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818504 1 0.2271 0.72138 0.916 0.076 0.000 0.008
#> SRR1818502 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818498 2 0.4992 0.54862 0.476 0.524 0.000 0.000
#> SRR1818500 1 0.2342 0.71679 0.912 0.080 0.000 0.008
#> SRR1818501 3 0.0000 0.99664 0.000 0.000 1.000 0.000
#> SRR1818499 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818496 1 0.3933 0.53043 0.792 0.200 0.000 0.008
#> SRR1818494 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818495 1 0.5466 -0.29035 0.548 0.436 0.000 0.016
#> SRR1818493 2 0.4992 0.54862 0.476 0.524 0.000 0.000
#> SRR1818492 1 0.5466 -0.29035 0.548 0.436 0.000 0.016
#> SRR1818491 1 0.0000 0.79826 1.000 0.000 0.000 0.000
#> SRR1818490 1 0.0000 0.79826 1.000 0.000 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1818497 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818600 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818599 3 0.0000 0.99230 0.000 0.000 1.000 0.000 0.000
#> SRR1818598 1 0.0162 0.91925 0.996 0.004 0.000 0.000 0.000
#> SRR1818597 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818596 4 0.0000 0.80754 0.000 0.000 0.000 1.000 0.000
#> SRR1818595 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818594 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818593 4 0.0000 0.80754 0.000 0.000 0.000 1.000 0.000
#> SRR1818592 4 0.0000 0.80754 0.000 0.000 0.000 1.000 0.000
#> SRR1818591 2 0.0000 0.63180 0.000 1.000 0.000 0.000 0.000
#> SRR1818590 2 0.3398 0.63614 0.216 0.780 0.000 0.004 0.000
#> SRR1818589 4 0.0000 0.80754 0.000 0.000 0.000 1.000 0.000
#> SRR1818587 2 0.4996 0.49098 0.420 0.548 0.000 0.032 0.000
#> SRR1818586 2 0.0000 0.63180 0.000 1.000 0.000 0.000 0.000
#> SRR1818585 5 0.0000 1.00000 0.000 0.000 0.000 0.000 1.000
#> SRR1818584 1 0.0162 0.91979 0.996 0.000 0.000 0.000 0.004
#> SRR1818583 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818588 2 0.4740 0.38977 0.468 0.516 0.000 0.016 0.000
#> SRR1818582 4 0.0000 0.80754 0.000 0.000 0.000 1.000 0.000
#> SRR1818581 2 0.0000 0.63180 0.000 1.000 0.000 0.000 0.000
#> SRR1818579 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818578 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818577 2 0.0609 0.63545 0.020 0.980 0.000 0.000 0.000
#> SRR1818580 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818575 2 0.5044 0.39098 0.464 0.504 0.000 0.032 0.000
#> SRR1818574 3 0.0955 0.94544 0.000 0.028 0.968 0.004 0.000
#> SRR1818576 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818573 4 0.0000 0.80754 0.000 0.000 0.000 1.000 0.000
#> SRR1818572 1 0.0162 0.91979 0.996 0.000 0.000 0.000 0.004
#> SRR1818571 1 0.4691 0.25247 0.636 0.340 0.004 0.020 0.000
#> SRR1818570 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818568 2 0.5024 0.45065 0.440 0.528 0.000 0.032 0.000
#> SRR1818567 2 0.0000 0.63180 0.000 1.000 0.000 0.000 0.000
#> SRR1818566 3 0.0000 0.99230 0.000 0.000 1.000 0.000 0.000
#> SRR1818569 5 0.0000 1.00000 0.000 0.000 0.000 0.000 1.000
#> SRR1818565 3 0.0000 0.99230 0.000 0.000 1.000 0.000 0.000
#> SRR1818564 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818563 1 0.5036 -0.08771 0.560 0.404 0.000 0.036 0.000
#> SRR1818561 3 0.0000 0.99230 0.000 0.000 1.000 0.000 0.000
#> SRR1818560 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818559 4 0.0000 0.80754 0.000 0.000 0.000 1.000 0.000
#> SRR1818562 1 0.4449 -0.29412 0.512 0.484 0.000 0.004 0.000
#> SRR1818558 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818556 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818557 4 0.0000 0.80754 0.000 0.000 0.000 1.000 0.000
#> SRR1818555 2 0.0000 0.63180 0.000 1.000 0.000 0.000 0.000
#> SRR1818553 1 0.4419 0.26490 0.644 0.344 0.004 0.008 0.000
#> SRR1818552 2 0.0000 0.63180 0.000 1.000 0.000 0.000 0.000
#> SRR1818551 1 0.4127 0.35371 0.680 0.312 0.000 0.008 0.000
#> SRR1818550 2 0.4996 0.49098 0.420 0.548 0.000 0.032 0.000
#> SRR1818554 4 0.0000 0.80754 0.000 0.000 0.000 1.000 0.000
#> SRR1818549 1 0.2865 0.75027 0.856 0.132 0.004 0.008 0.000
#> SRR1818548 4 0.0000 0.80754 0.000 0.000 0.000 1.000 0.000
#> SRR1818546 5 0.0000 1.00000 0.000 0.000 0.000 0.000 1.000
#> SRR1818547 4 0.6315 0.07092 0.396 0.156 0.000 0.448 0.000
#> SRR1818544 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818543 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818542 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818545 2 0.4996 0.49098 0.420 0.548 0.000 0.032 0.000
#> SRR1818541 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818539 1 0.1341 0.86405 0.944 0.056 0.000 0.000 0.000
#> SRR1818540 2 0.0000 0.63180 0.000 1.000 0.000 0.000 0.000
#> SRR1818536 1 0.0290 0.91597 0.992 0.008 0.000 0.000 0.000
#> SRR1818535 1 0.0510 0.90867 0.984 0.016 0.000 0.000 0.000
#> SRR1818534 4 0.0000 0.80754 0.000 0.000 0.000 1.000 0.000
#> SRR1818538 2 0.4047 0.59755 0.320 0.676 0.000 0.004 0.000
#> SRR1818537 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818533 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818532 1 0.0794 0.89631 0.972 0.028 0.000 0.000 0.000
#> SRR1818531 1 0.0162 0.91979 0.996 0.000 0.000 0.000 0.004
#> SRR1818530 5 0.0000 1.00000 0.000 0.000 0.000 0.000 1.000
#> SRR1818529 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818528 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818527 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818526 4 0.6315 0.07092 0.396 0.156 0.000 0.448 0.000
#> SRR1818525 1 0.0162 0.91979 0.996 0.000 0.000 0.000 0.004
#> SRR1818523 3 0.0000 0.99230 0.000 0.000 1.000 0.000 0.000
#> SRR1818524 4 0.0000 0.80754 0.000 0.000 0.000 1.000 0.000
#> SRR1818522 1 0.4030 0.26319 0.648 0.352 0.000 0.000 0.000
#> SRR1818521 2 0.0609 0.63545 0.020 0.980 0.000 0.000 0.000
#> SRR1818520 2 0.0000 0.63180 0.000 1.000 0.000 0.000 0.000
#> SRR1818518 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818519 4 0.5821 0.39948 0.240 0.156 0.000 0.604 0.000
#> SRR1818517 2 0.4375 0.49848 0.420 0.576 0.000 0.004 0.000
#> SRR1818516 3 0.0000 0.99230 0.000 0.000 1.000 0.000 0.000
#> SRR1818515 4 0.0000 0.80754 0.000 0.000 0.000 1.000 0.000
#> SRR1818514 5 0.0000 1.00000 0.000 0.000 0.000 0.000 1.000
#> SRR1818513 2 0.0000 0.63180 0.000 1.000 0.000 0.000 0.000
#> SRR1818512 5 0.0000 1.00000 0.000 0.000 0.000 0.000 1.000
#> SRR1818510 2 0.0000 0.63180 0.000 1.000 0.000 0.000 0.000
#> SRR1818511 2 0.4528 0.45232 0.444 0.548 0.000 0.008 0.000
#> SRR1818508 1 0.0162 0.91979 0.996 0.000 0.000 0.000 0.004
#> SRR1818509 2 0.4375 0.49848 0.420 0.576 0.000 0.004 0.000
#> SRR1818507 4 0.5673 0.44137 0.216 0.156 0.000 0.628 0.000
#> SRR1818506 1 0.5716 -0.00822 0.552 0.364 0.004 0.080 0.000
#> SRR1818505 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818503 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818504 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818502 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818498 2 0.0162 0.63295 0.004 0.996 0.000 0.000 0.000
#> SRR1818500 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818501 3 0.0000 0.99230 0.000 0.000 1.000 0.000 0.000
#> SRR1818499 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818496 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818494 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818495 2 0.4996 0.49098 0.420 0.548 0.000 0.032 0.000
#> SRR1818493 2 0.0000 0.63180 0.000 1.000 0.000 0.000 0.000
#> SRR1818492 2 0.4996 0.49098 0.420 0.548 0.000 0.032 0.000
#> SRR1818491 1 0.0000 0.92216 1.000 0.000 0.000 0.000 0.000
#> SRR1818490 1 0.0510 0.90867 0.984 0.016 0.000 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1818497 1 0.0632 0.9019 0.976 0.000 0.000 0.000 0.000 0.024
#> SRR1818600 1 0.0458 0.9082 0.984 0.000 0.000 0.000 0.000 0.016
#> SRR1818599 3 0.0000 0.9935 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818598 1 0.0790 0.9049 0.968 0.000 0.000 0.000 0.000 0.032
#> SRR1818597 1 0.0713 0.9064 0.972 0.000 0.000 0.000 0.000 0.028
#> SRR1818596 4 0.0000 0.9295 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818595 1 0.0632 0.9071 0.976 0.000 0.000 0.000 0.000 0.024
#> SRR1818594 1 0.0713 0.9064 0.972 0.000 0.000 0.000 0.000 0.028
#> SRR1818593 4 0.0000 0.9295 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818592 4 0.0000 0.9295 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818591 2 0.0146 0.9746 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1818590 6 0.2996 0.7010 0.000 0.228 0.000 0.000 0.000 0.772
#> SRR1818589 4 0.0000 0.9295 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818587 6 0.1480 0.8389 0.020 0.040 0.000 0.000 0.000 0.940
#> SRR1818586 2 0.0000 0.9754 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818585 5 0.0000 1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818584 1 0.0777 0.9010 0.972 0.000 0.000 0.000 0.004 0.024
#> SRR1818583 1 0.0547 0.9080 0.980 0.000 0.000 0.000 0.000 0.020
#> SRR1818588 6 0.2176 0.8100 0.080 0.024 0.000 0.000 0.000 0.896
#> SRR1818582 4 0.0000 0.9295 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818581 2 0.0000 0.9754 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818579 1 0.0363 0.9084 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR1818578 1 0.0547 0.9035 0.980 0.000 0.000 0.000 0.000 0.020
#> SRR1818577 2 0.1524 0.9318 0.008 0.932 0.000 0.000 0.000 0.060
#> SRR1818580 1 0.0713 0.9017 0.972 0.000 0.000 0.000 0.000 0.028
#> SRR1818575 6 0.1829 0.8262 0.056 0.024 0.000 0.000 0.000 0.920
#> SRR1818574 3 0.0790 0.9542 0.000 0.000 0.968 0.000 0.000 0.032
#> SRR1818576 1 0.0458 0.9082 0.984 0.000 0.000 0.000 0.000 0.016
#> SRR1818573 4 0.0000 0.9295 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818572 1 0.0777 0.9010 0.972 0.000 0.000 0.000 0.004 0.024
#> SRR1818571 1 0.5171 0.2165 0.512 0.000 0.004 0.076 0.000 0.408
#> SRR1818570 1 0.0713 0.9064 0.972 0.000 0.000 0.000 0.000 0.028
#> SRR1818568 6 0.1498 0.8350 0.032 0.028 0.000 0.000 0.000 0.940
#> SRR1818567 2 0.0000 0.9754 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818566 3 0.0000 0.9935 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818569 5 0.0000 1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818565 3 0.0000 0.9935 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818564 1 0.1007 0.8992 0.956 0.000 0.000 0.000 0.000 0.044
#> SRR1818563 6 0.2823 0.6557 0.204 0.000 0.000 0.000 0.000 0.796
#> SRR1818561 3 0.0000 0.9935 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818560 1 0.0458 0.9082 0.984 0.000 0.000 0.000 0.000 0.016
#> SRR1818559 4 0.0000 0.9295 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818562 1 0.4269 0.3385 0.568 0.020 0.000 0.000 0.000 0.412
#> SRR1818558 1 0.0146 0.9064 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1818556 1 0.0458 0.9082 0.984 0.000 0.000 0.000 0.000 0.016
#> SRR1818557 4 0.0000 0.9295 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818555 2 0.0000 0.9754 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818553 1 0.5253 0.2256 0.516 0.004 0.004 0.072 0.000 0.404
#> SRR1818552 2 0.1327 0.9300 0.000 0.936 0.000 0.000 0.000 0.064
#> SRR1818551 1 0.3668 0.5625 0.668 0.004 0.000 0.000 0.000 0.328
#> SRR1818550 6 0.1480 0.8389 0.020 0.040 0.000 0.000 0.000 0.940
#> SRR1818554 4 0.0000 0.9295 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818549 1 0.3907 0.3934 0.588 0.000 0.004 0.000 0.000 0.408
#> SRR1818548 4 0.0000 0.9295 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818546 5 0.0000 1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818547 6 0.4381 0.1643 0.024 0.000 0.000 0.440 0.000 0.536
#> SRR1818544 1 0.0547 0.9012 0.980 0.000 0.000 0.000 0.000 0.020
#> SRR1818543 1 0.0363 0.9083 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR1818542 1 0.0632 0.9019 0.976 0.000 0.000 0.000 0.000 0.024
#> SRR1818545 6 0.1480 0.8389 0.020 0.040 0.000 0.000 0.000 0.940
#> SRR1818541 1 0.0458 0.9082 0.984 0.000 0.000 0.000 0.000 0.016
#> SRR1818539 1 0.0790 0.9053 0.968 0.000 0.000 0.000 0.000 0.032
#> SRR1818540 2 0.0000 0.9754 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818536 1 0.2941 0.7188 0.780 0.000 0.000 0.000 0.000 0.220
#> SRR1818535 1 0.0865 0.9029 0.964 0.000 0.000 0.000 0.000 0.036
#> SRR1818534 4 0.0000 0.9295 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818538 6 0.3103 0.7314 0.008 0.208 0.000 0.000 0.000 0.784
#> SRR1818537 1 0.0458 0.9082 0.984 0.000 0.000 0.000 0.000 0.016
#> SRR1818533 1 0.0713 0.9065 0.972 0.000 0.000 0.000 0.000 0.028
#> SRR1818532 1 0.3050 0.7048 0.764 0.000 0.000 0.000 0.000 0.236
#> SRR1818531 1 0.0777 0.9010 0.972 0.000 0.000 0.000 0.004 0.024
#> SRR1818530 5 0.0000 1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818529 1 0.0632 0.9019 0.976 0.000 0.000 0.000 0.000 0.024
#> SRR1818528 1 0.0363 0.9084 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR1818527 1 0.0547 0.9012 0.980 0.000 0.000 0.000 0.000 0.020
#> SRR1818526 6 0.4381 0.1643 0.024 0.000 0.000 0.440 0.000 0.536
#> SRR1818525 1 0.0858 0.9005 0.968 0.000 0.000 0.000 0.004 0.028
#> SRR1818523 3 0.0000 0.9935 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818524 4 0.0000 0.9295 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818522 1 0.3952 0.5728 0.672 0.020 0.000 0.000 0.000 0.308
#> SRR1818521 2 0.1524 0.9318 0.008 0.932 0.000 0.000 0.000 0.060
#> SRR1818520 2 0.0000 0.9754 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818518 1 0.0458 0.9082 0.984 0.000 0.000 0.000 0.000 0.016
#> SRR1818519 4 0.4045 0.1692 0.008 0.000 0.000 0.564 0.000 0.428
#> SRR1818517 6 0.2999 0.8112 0.040 0.124 0.000 0.000 0.000 0.836
#> SRR1818516 3 0.0000 0.9935 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818515 4 0.0000 0.9295 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818514 5 0.0000 1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818513 2 0.0260 0.9734 0.000 0.992 0.000 0.000 0.000 0.008
#> SRR1818512 5 0.0000 1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818510 2 0.0000 0.9754 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818511 6 0.2887 0.7697 0.120 0.036 0.000 0.000 0.000 0.844
#> SRR1818508 1 0.0777 0.9010 0.972 0.000 0.000 0.000 0.004 0.024
#> SRR1818509 6 0.3014 0.8074 0.036 0.132 0.000 0.000 0.000 0.832
#> SRR1818507 4 0.3795 0.3779 0.004 0.000 0.000 0.632 0.000 0.364
#> SRR1818506 1 0.5727 0.0615 0.456 0.000 0.004 0.144 0.000 0.396
#> SRR1818505 1 0.0547 0.9012 0.980 0.000 0.000 0.000 0.000 0.020
#> SRR1818503 1 0.0146 0.9064 0.996 0.000 0.000 0.000 0.000 0.004
#> SRR1818504 1 0.0713 0.9064 0.972 0.000 0.000 0.000 0.000 0.028
#> SRR1818502 1 0.0713 0.9064 0.972 0.000 0.000 0.000 0.000 0.028
#> SRR1818498 2 0.0520 0.9668 0.008 0.984 0.000 0.000 0.000 0.008
#> SRR1818500 1 0.0363 0.9085 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR1818501 3 0.0000 0.9935 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818499 1 0.0547 0.9080 0.980 0.000 0.000 0.000 0.000 0.020
#> SRR1818496 1 0.0632 0.9019 0.976 0.000 0.000 0.000 0.000 0.024
#> SRR1818494 1 0.0790 0.9049 0.968 0.000 0.000 0.000 0.000 0.032
#> SRR1818495 6 0.1480 0.8389 0.020 0.040 0.000 0.000 0.000 0.940
#> SRR1818493 2 0.0790 0.9600 0.000 0.968 0.000 0.000 0.000 0.032
#> SRR1818492 6 0.1480 0.8389 0.020 0.040 0.000 0.000 0.000 0.940
#> SRR1818491 1 0.0547 0.9012 0.980 0.000 0.000 0.000 0.000 0.020
#> SRR1818490 1 0.2941 0.7215 0.780 0.000 0.000 0.000 0.000 0.220
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 16183 rows and 111 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.426 0.823 0.889 0.5021 0.496 0.496
#> 3 3 0.590 0.664 0.806 0.3190 0.763 0.557
#> 4 4 0.952 0.915 0.951 0.1285 0.889 0.682
#> 5 5 0.745 0.652 0.799 0.0504 0.808 0.425
#> 6 6 0.923 0.889 0.930 0.0387 0.876 0.534
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 4
There is also optional best \(k\) = 4 that is worth to check.
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1818497 2 0.1414 0.865 0.020 0.980
#> SRR1818600 2 0.6148 0.747 0.152 0.848
#> SRR1818599 1 0.5737 0.874 0.864 0.136
#> SRR1818598 2 0.1843 0.864 0.028 0.972
#> SRR1818597 1 0.5737 0.874 0.864 0.136
#> SRR1818596 1 0.0376 0.886 0.996 0.004
#> SRR1818595 1 0.5737 0.874 0.864 0.136
#> SRR1818594 1 0.6343 0.861 0.840 0.160
#> SRR1818593 1 0.0376 0.886 0.996 0.004
#> SRR1818592 1 0.0376 0.886 0.996 0.004
#> SRR1818591 2 0.6148 0.844 0.152 0.848
#> SRR1818590 2 0.6343 0.840 0.160 0.840
#> SRR1818589 1 0.0376 0.886 0.996 0.004
#> SRR1818587 2 0.9393 0.638 0.356 0.644
#> SRR1818586 2 0.6148 0.844 0.152 0.848
#> SRR1818585 2 0.0938 0.864 0.012 0.988
#> SRR1818584 2 0.0938 0.864 0.012 0.988
#> SRR1818583 1 0.5737 0.874 0.864 0.136
#> SRR1818588 1 0.0938 0.877 0.988 0.012
#> SRR1818582 1 0.0376 0.886 0.996 0.004
#> SRR1818581 2 0.6148 0.844 0.152 0.848
#> SRR1818579 2 0.0938 0.864 0.012 0.988
#> SRR1818578 2 0.2043 0.856 0.032 0.968
#> SRR1818577 2 0.5629 0.848 0.132 0.868
#> SRR1818580 2 0.0938 0.864 0.012 0.988
#> SRR1818575 1 0.0938 0.877 0.988 0.012
#> SRR1818574 1 0.5737 0.874 0.864 0.136
#> SRR1818576 1 0.7883 0.794 0.764 0.236
#> SRR1818573 1 0.0376 0.886 0.996 0.004
#> SRR1818572 2 0.0938 0.864 0.012 0.988
#> SRR1818571 1 0.0000 0.885 1.000 0.000
#> SRR1818570 1 0.5737 0.874 0.864 0.136
#> SRR1818568 1 0.0938 0.877 0.988 0.012
#> SRR1818567 2 0.6148 0.844 0.152 0.848
#> SRR1818566 1 0.5737 0.874 0.864 0.136
#> SRR1818569 2 0.0938 0.864 0.012 0.988
#> SRR1818565 1 0.5737 0.874 0.864 0.136
#> SRR1818564 1 0.5946 0.875 0.856 0.144
#> SRR1818563 2 0.9881 0.481 0.436 0.564
#> SRR1818561 1 0.5737 0.874 0.864 0.136
#> SRR1818560 1 0.6048 0.866 0.852 0.148
#> SRR1818559 1 0.0376 0.886 0.996 0.004
#> SRR1818562 2 0.6623 0.834 0.172 0.828
#> SRR1818558 2 0.0938 0.864 0.012 0.988
#> SRR1818556 1 0.7219 0.830 0.800 0.200
#> SRR1818557 1 0.0376 0.886 0.996 0.004
#> SRR1818555 2 0.6148 0.844 0.152 0.848
#> SRR1818553 1 0.3114 0.888 0.944 0.056
#> SRR1818552 2 0.6148 0.844 0.152 0.848
#> SRR1818551 1 0.0938 0.877 0.988 0.012
#> SRR1818550 2 0.8207 0.758 0.256 0.744
#> SRR1818554 1 0.0376 0.886 0.996 0.004
#> SRR1818549 1 0.3584 0.887 0.932 0.068
#> SRR1818548 1 0.0376 0.886 0.996 0.004
#> SRR1818546 2 0.0938 0.864 0.012 0.988
#> SRR1818547 1 0.2603 0.859 0.956 0.044
#> SRR1818544 2 0.0938 0.864 0.012 0.988
#> SRR1818543 1 0.9608 0.562 0.616 0.384
#> SRR1818542 2 0.1414 0.865 0.020 0.980
#> SRR1818545 2 0.9993 0.355 0.484 0.516
#> SRR1818541 2 0.8267 0.564 0.260 0.740
#> SRR1818539 1 0.8499 0.749 0.724 0.276
#> SRR1818540 2 0.6148 0.844 0.152 0.848
#> SRR1818536 1 0.3584 0.887 0.932 0.068
#> SRR1818535 1 0.5842 0.872 0.860 0.140
#> SRR1818534 1 0.0376 0.886 0.996 0.004
#> SRR1818538 2 0.6247 0.842 0.156 0.844
#> SRR1818537 2 0.9775 0.114 0.412 0.588
#> SRR1818533 2 0.2423 0.864 0.040 0.960
#> SRR1818532 1 0.1414 0.882 0.980 0.020
#> SRR1818531 2 0.0938 0.864 0.012 0.988
#> SRR1818530 2 0.0938 0.864 0.012 0.988
#> SRR1818529 2 0.1414 0.865 0.020 0.980
#> SRR1818528 1 0.8207 0.773 0.744 0.256
#> SRR1818527 2 0.0938 0.864 0.012 0.988
#> SRR1818526 1 0.0938 0.877 0.988 0.012
#> SRR1818525 2 0.0938 0.864 0.012 0.988
#> SRR1818523 1 0.5737 0.874 0.864 0.136
#> SRR1818524 1 0.0376 0.886 0.996 0.004
#> SRR1818522 1 0.3733 0.850 0.928 0.072
#> SRR1818521 2 0.5842 0.846 0.140 0.860
#> SRR1818520 2 0.6148 0.844 0.152 0.848
#> SRR1818518 1 0.7602 0.813 0.780 0.220
#> SRR1818519 1 0.0938 0.877 0.988 0.012
#> SRR1818517 2 0.6712 0.831 0.176 0.824
#> SRR1818516 1 0.5737 0.874 0.864 0.136
#> SRR1818515 1 0.0376 0.886 0.996 0.004
#> SRR1818514 2 0.0938 0.864 0.012 0.988
#> SRR1818513 2 0.6148 0.844 0.152 0.848
#> SRR1818512 2 0.0938 0.864 0.012 0.988
#> SRR1818510 2 0.6148 0.844 0.152 0.848
#> SRR1818511 2 0.7376 0.806 0.208 0.792
#> SRR1818508 2 0.0938 0.864 0.012 0.988
#> SRR1818509 2 0.6623 0.833 0.172 0.828
#> SRR1818507 1 0.0938 0.881 0.988 0.012
#> SRR1818506 1 0.0000 0.885 1.000 0.000
#> SRR1818505 2 0.1184 0.863 0.016 0.984
#> SRR1818503 2 0.9608 0.221 0.384 0.616
#> SRR1818504 1 0.9754 0.507 0.592 0.408
#> SRR1818502 2 0.4022 0.823 0.080 0.920
#> SRR1818498 2 0.5842 0.846 0.140 0.860
#> SRR1818500 2 0.5408 0.780 0.124 0.876
#> SRR1818501 1 0.5737 0.874 0.864 0.136
#> SRR1818499 1 0.8207 0.773 0.744 0.256
#> SRR1818496 2 0.1414 0.865 0.020 0.980
#> SRR1818494 2 0.5842 0.769 0.140 0.860
#> SRR1818495 2 0.8207 0.758 0.256 0.744
#> SRR1818493 2 0.6048 0.845 0.148 0.852
#> SRR1818492 1 0.8016 0.562 0.756 0.244
#> SRR1818491 2 0.0938 0.864 0.012 0.988
#> SRR1818490 1 0.4939 0.881 0.892 0.108
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1818497 3 0.0000 0.9047 0.000 0.000 1.000
#> SRR1818600 3 0.2796 0.8602 0.092 0.000 0.908
#> SRR1818599 1 0.1267 0.7165 0.972 0.004 0.024
#> SRR1818598 3 0.1832 0.8884 0.036 0.008 0.956
#> SRR1818597 1 0.1267 0.7165 0.972 0.004 0.024
#> SRR1818596 1 0.7054 0.5159 0.524 0.456 0.020
#> SRR1818595 1 0.1453 0.7164 0.968 0.008 0.024
#> SRR1818594 1 0.1525 0.7134 0.964 0.004 0.032
#> SRR1818593 1 0.7054 0.5159 0.524 0.456 0.020
#> SRR1818592 1 0.7054 0.5159 0.524 0.456 0.020
#> SRR1818591 2 0.6584 0.6065 0.012 0.608 0.380
#> SRR1818590 2 0.3619 0.7018 0.000 0.864 0.136
#> SRR1818589 1 0.7054 0.5159 0.524 0.456 0.020
#> SRR1818587 2 0.0000 0.6611 0.000 1.000 0.000
#> SRR1818586 2 0.6584 0.6065 0.012 0.608 0.380
#> SRR1818585 3 0.0000 0.9047 0.000 0.000 1.000
#> SRR1818584 3 0.0237 0.9053 0.004 0.000 0.996
#> SRR1818583 1 0.1267 0.7165 0.972 0.004 0.024
#> SRR1818588 2 0.5216 0.1553 0.260 0.740 0.000
#> SRR1818582 1 0.7054 0.5159 0.524 0.456 0.020
#> SRR1818581 2 0.6584 0.6065 0.012 0.608 0.380
#> SRR1818579 3 0.1289 0.8977 0.032 0.000 0.968
#> SRR1818578 3 0.2959 0.8512 0.100 0.000 0.900
#> SRR1818577 2 0.6280 0.4536 0.000 0.540 0.460
#> SRR1818580 3 0.0237 0.9053 0.004 0.000 0.996
#> SRR1818575 2 0.2537 0.5658 0.080 0.920 0.000
#> SRR1818574 1 0.1267 0.7165 0.972 0.004 0.024
#> SRR1818576 1 0.3784 0.6333 0.864 0.004 0.132
#> SRR1818573 1 0.7054 0.5159 0.524 0.456 0.020
#> SRR1818572 3 0.0237 0.9053 0.004 0.000 0.996
#> SRR1818571 1 0.6460 0.5324 0.556 0.440 0.004
#> SRR1818570 1 0.1267 0.7165 0.972 0.004 0.024
#> SRR1818568 2 0.1411 0.6274 0.036 0.964 0.000
#> SRR1818567 2 0.6584 0.6065 0.012 0.608 0.380
#> SRR1818566 1 0.1267 0.7165 0.972 0.004 0.024
#> SRR1818569 3 0.0000 0.9047 0.000 0.000 1.000
#> SRR1818565 1 0.1267 0.7165 0.972 0.004 0.024
#> SRR1818564 1 0.3742 0.6721 0.892 0.072 0.036
#> SRR1818563 2 0.0000 0.6611 0.000 1.000 0.000
#> SRR1818561 1 0.1267 0.7165 0.972 0.004 0.024
#> SRR1818560 1 0.1753 0.7068 0.952 0.000 0.048
#> SRR1818559 1 0.7054 0.5159 0.524 0.456 0.020
#> SRR1818562 2 0.6143 0.6509 0.012 0.684 0.304
#> SRR1818558 3 0.0892 0.9027 0.020 0.000 0.980
#> SRR1818556 1 0.3267 0.6514 0.884 0.000 0.116
#> SRR1818557 1 0.7054 0.5159 0.524 0.456 0.020
#> SRR1818555 2 0.6584 0.6065 0.012 0.608 0.380
#> SRR1818553 1 0.5929 0.5962 0.676 0.320 0.004
#> SRR1818552 2 0.5968 0.6196 0.000 0.636 0.364
#> SRR1818551 2 0.1860 0.6266 0.052 0.948 0.000
#> SRR1818550 2 0.0000 0.6611 0.000 1.000 0.000
#> SRR1818554 1 0.7054 0.5159 0.524 0.456 0.020
#> SRR1818549 1 0.1860 0.7024 0.948 0.052 0.000
#> SRR1818548 1 0.7054 0.5159 0.524 0.456 0.020
#> SRR1818546 3 0.0000 0.9047 0.000 0.000 1.000
#> SRR1818547 2 0.1163 0.6436 0.028 0.972 0.000
#> SRR1818544 3 0.0892 0.9024 0.020 0.000 0.980
#> SRR1818543 3 0.5968 0.4933 0.364 0.000 0.636
#> SRR1818542 3 0.0000 0.9047 0.000 0.000 1.000
#> SRR1818545 2 0.0000 0.6611 0.000 1.000 0.000
#> SRR1818541 3 0.5678 0.5947 0.316 0.000 0.684
#> SRR1818539 1 0.6215 0.1447 0.572 0.000 0.428
#> SRR1818540 2 0.6584 0.6065 0.012 0.608 0.380
#> SRR1818536 1 0.1015 0.7134 0.980 0.008 0.012
#> SRR1818535 1 0.1267 0.7165 0.972 0.004 0.024
#> SRR1818534 1 0.7054 0.5159 0.524 0.456 0.020
#> SRR1818538 2 0.3941 0.7037 0.000 0.844 0.156
#> SRR1818537 3 0.5706 0.5880 0.320 0.000 0.680
#> SRR1818533 3 0.4277 0.7763 0.132 0.016 0.852
#> SRR1818532 1 0.6308 0.4823 0.508 0.492 0.000
#> SRR1818531 3 0.0237 0.9053 0.004 0.000 0.996
#> SRR1818530 3 0.0000 0.9047 0.000 0.000 1.000
#> SRR1818529 3 0.0000 0.9047 0.000 0.000 1.000
#> SRR1818528 1 0.5254 0.4400 0.736 0.000 0.264
#> SRR1818527 3 0.0592 0.9046 0.012 0.000 0.988
#> SRR1818526 2 0.1585 0.6388 0.028 0.964 0.008
#> SRR1818525 3 0.0237 0.9053 0.004 0.000 0.996
#> SRR1818523 1 0.1267 0.7165 0.972 0.004 0.024
#> SRR1818524 1 0.7054 0.5159 0.524 0.456 0.020
#> SRR1818522 1 0.6105 0.5074 0.724 0.252 0.024
#> SRR1818521 2 0.6274 0.4621 0.000 0.544 0.456
#> SRR1818520 2 0.6584 0.6065 0.012 0.608 0.380
#> SRR1818518 1 0.3482 0.6388 0.872 0.000 0.128
#> SRR1818519 2 0.6758 -0.1687 0.360 0.620 0.020
#> SRR1818517 2 0.1753 0.6835 0.000 0.952 0.048
#> SRR1818516 1 0.1267 0.7165 0.972 0.004 0.024
#> SRR1818515 1 0.7054 0.5159 0.524 0.456 0.020
#> SRR1818514 3 0.0000 0.9047 0.000 0.000 1.000
#> SRR1818513 2 0.6584 0.6065 0.012 0.608 0.380
#> SRR1818512 3 0.0000 0.9047 0.000 0.000 1.000
#> SRR1818510 2 0.6584 0.6065 0.012 0.608 0.380
#> SRR1818511 2 0.2939 0.6904 0.012 0.916 0.072
#> SRR1818508 3 0.0424 0.9051 0.008 0.000 0.992
#> SRR1818509 2 0.1411 0.6790 0.000 0.964 0.036
#> SRR1818507 1 0.7054 0.5159 0.524 0.456 0.020
#> SRR1818506 1 0.6451 0.5351 0.560 0.436 0.004
#> SRR1818505 3 0.3551 0.8256 0.132 0.000 0.868
#> SRR1818503 3 0.5882 0.5332 0.348 0.000 0.652
#> SRR1818504 1 0.6204 0.0179 0.576 0.000 0.424
#> SRR1818502 3 0.1411 0.8948 0.036 0.000 0.964
#> SRR1818498 2 0.6701 0.5486 0.012 0.576 0.412
#> SRR1818500 3 0.3816 0.8085 0.148 0.000 0.852
#> SRR1818501 1 0.1267 0.7165 0.972 0.004 0.024
#> SRR1818499 1 0.4842 0.5184 0.776 0.000 0.224
#> SRR1818496 3 0.0000 0.9047 0.000 0.000 1.000
#> SRR1818494 3 0.3454 0.8244 0.104 0.008 0.888
#> SRR1818495 2 0.0000 0.6611 0.000 1.000 0.000
#> SRR1818493 2 0.6647 0.5804 0.012 0.592 0.396
#> SRR1818492 2 0.0000 0.6611 0.000 1.000 0.000
#> SRR1818491 3 0.0424 0.9053 0.008 0.000 0.992
#> SRR1818490 1 0.0983 0.7150 0.980 0.004 0.016
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1818497 1 0.0000 0.927 1.000 0.000 0.000 0.000
#> SRR1818600 1 0.1940 0.940 0.924 0.000 0.076 0.000
#> SRR1818599 3 0.1940 0.914 0.000 0.000 0.924 0.076
#> SRR1818598 1 0.1940 0.940 0.924 0.000 0.076 0.000
#> SRR1818597 3 0.0000 0.919 0.000 0.000 1.000 0.000
#> SRR1818596 4 0.0000 0.992 0.000 0.000 0.000 1.000
#> SRR1818595 3 0.0000 0.919 0.000 0.000 1.000 0.000
#> SRR1818594 3 0.0469 0.920 0.000 0.000 0.988 0.012
#> SRR1818593 4 0.0000 0.992 0.000 0.000 0.000 1.000
#> SRR1818592 4 0.0000 0.992 0.000 0.000 0.000 1.000
#> SRR1818591 2 0.0000 0.968 0.000 1.000 0.000 0.000
#> SRR1818590 2 0.0000 0.968 0.000 1.000 0.000 0.000
#> SRR1818589 4 0.0000 0.992 0.000 0.000 0.000 1.000
#> SRR1818587 2 0.0000 0.968 0.000 1.000 0.000 0.000
#> SRR1818586 2 0.0000 0.968 0.000 1.000 0.000 0.000
#> SRR1818585 1 0.0000 0.927 1.000 0.000 0.000 0.000
#> SRR1818584 1 0.1940 0.940 0.924 0.000 0.076 0.000
#> SRR1818583 3 0.0000 0.919 0.000 0.000 1.000 0.000
#> SRR1818588 2 0.4804 0.347 0.000 0.616 0.384 0.000
#> SRR1818582 4 0.0000 0.992 0.000 0.000 0.000 1.000
#> SRR1818581 2 0.0000 0.968 0.000 1.000 0.000 0.000
#> SRR1818579 1 0.1940 0.940 0.924 0.000 0.076 0.000
#> SRR1818578 1 0.0592 0.931 0.984 0.000 0.016 0.000
#> SRR1818577 2 0.0000 0.968 0.000 1.000 0.000 0.000
#> SRR1818580 1 0.1211 0.936 0.960 0.000 0.040 0.000
#> SRR1818575 2 0.1890 0.915 0.000 0.936 0.008 0.056
#> SRR1818574 3 0.1940 0.914 0.000 0.000 0.924 0.076
#> SRR1818576 3 0.0000 0.919 0.000 0.000 1.000 0.000
#> SRR1818573 4 0.0000 0.992 0.000 0.000 0.000 1.000
#> SRR1818572 1 0.1389 0.937 0.952 0.000 0.048 0.000
#> SRR1818571 4 0.0000 0.992 0.000 0.000 0.000 1.000
#> SRR1818570 3 0.0000 0.919 0.000 0.000 1.000 0.000
#> SRR1818568 2 0.0336 0.962 0.000 0.992 0.008 0.000
#> SRR1818567 2 0.0000 0.968 0.000 1.000 0.000 0.000
#> SRR1818566 3 0.1940 0.914 0.000 0.000 0.924 0.076
#> SRR1818569 1 0.0000 0.927 1.000 0.000 0.000 0.000
#> SRR1818565 3 0.1940 0.914 0.000 0.000 0.924 0.076
#> SRR1818564 3 0.0188 0.918 0.000 0.004 0.996 0.000
#> SRR1818563 2 0.4817 0.370 0.000 0.612 0.000 0.388
#> SRR1818561 3 0.1940 0.914 0.000 0.000 0.924 0.076
#> SRR1818560 3 0.0000 0.919 0.000 0.000 1.000 0.000
#> SRR1818559 4 0.0000 0.992 0.000 0.000 0.000 1.000
#> SRR1818562 2 0.0000 0.968 0.000 1.000 0.000 0.000
#> SRR1818558 1 0.1940 0.940 0.924 0.000 0.076 0.000
#> SRR1818556 3 0.0000 0.919 0.000 0.000 1.000 0.000
#> SRR1818557 4 0.0000 0.992 0.000 0.000 0.000 1.000
#> SRR1818555 2 0.0000 0.968 0.000 1.000 0.000 0.000
#> SRR1818553 4 0.0336 0.985 0.000 0.000 0.008 0.992
#> SRR1818552 2 0.0000 0.968 0.000 1.000 0.000 0.000
#> SRR1818551 2 0.0817 0.948 0.000 0.976 0.024 0.000
#> SRR1818550 2 0.0000 0.968 0.000 1.000 0.000 0.000
#> SRR1818554 4 0.0000 0.992 0.000 0.000 0.000 1.000
#> SRR1818549 3 0.1940 0.914 0.000 0.000 0.924 0.076
#> SRR1818548 4 0.0000 0.992 0.000 0.000 0.000 1.000
#> SRR1818546 1 0.0000 0.927 1.000 0.000 0.000 0.000
#> SRR1818547 4 0.1867 0.915 0.000 0.072 0.000 0.928
#> SRR1818544 1 0.1940 0.940 0.924 0.000 0.076 0.000
#> SRR1818543 1 0.2408 0.921 0.896 0.000 0.104 0.000
#> SRR1818542 1 0.0000 0.927 1.000 0.000 0.000 0.000
#> SRR1818545 2 0.0188 0.965 0.000 0.996 0.004 0.000
#> SRR1818541 1 0.4992 0.260 0.524 0.000 0.476 0.000
#> SRR1818539 1 0.3400 0.848 0.820 0.000 0.180 0.000
#> SRR1818540 2 0.0000 0.968 0.000 1.000 0.000 0.000
#> SRR1818536 3 0.1792 0.917 0.000 0.000 0.932 0.068
#> SRR1818535 3 0.1716 0.918 0.000 0.000 0.936 0.064
#> SRR1818534 4 0.0000 0.992 0.000 0.000 0.000 1.000
#> SRR1818538 2 0.0000 0.968 0.000 1.000 0.000 0.000
#> SRR1818537 1 0.3764 0.804 0.784 0.000 0.216 0.000
#> SRR1818533 1 0.2125 0.938 0.920 0.000 0.076 0.004
#> SRR1818532 3 0.4804 0.786 0.000 0.148 0.780 0.072
#> SRR1818531 1 0.1940 0.940 0.924 0.000 0.076 0.000
#> SRR1818530 1 0.0000 0.927 1.000 0.000 0.000 0.000
#> SRR1818529 1 0.0000 0.927 1.000 0.000 0.000 0.000
#> SRR1818528 3 0.1118 0.896 0.036 0.000 0.964 0.000
#> SRR1818527 1 0.1940 0.940 0.924 0.000 0.076 0.000
#> SRR1818526 4 0.1302 0.947 0.000 0.044 0.000 0.956
#> SRR1818525 1 0.1940 0.940 0.924 0.000 0.076 0.000
#> SRR1818523 3 0.1940 0.914 0.000 0.000 0.924 0.076
#> SRR1818524 4 0.0000 0.992 0.000 0.000 0.000 1.000
#> SRR1818522 3 0.4967 0.157 0.000 0.452 0.548 0.000
#> SRR1818521 2 0.0000 0.968 0.000 1.000 0.000 0.000
#> SRR1818520 2 0.0000 0.968 0.000 1.000 0.000 0.000
#> SRR1818518 3 0.0000 0.919 0.000 0.000 1.000 0.000
#> SRR1818519 4 0.0000 0.992 0.000 0.000 0.000 1.000
#> SRR1818517 2 0.0000 0.968 0.000 1.000 0.000 0.000
#> SRR1818516 3 0.1940 0.914 0.000 0.000 0.924 0.076
#> SRR1818515 4 0.0000 0.992 0.000 0.000 0.000 1.000
#> SRR1818514 1 0.0000 0.927 1.000 0.000 0.000 0.000
#> SRR1818513 2 0.0000 0.968 0.000 1.000 0.000 0.000
#> SRR1818512 1 0.0000 0.927 1.000 0.000 0.000 0.000
#> SRR1818510 2 0.0000 0.968 0.000 1.000 0.000 0.000
#> SRR1818511 2 0.0592 0.955 0.000 0.984 0.016 0.000
#> SRR1818508 1 0.1940 0.940 0.924 0.000 0.076 0.000
#> SRR1818509 2 0.0000 0.968 0.000 1.000 0.000 0.000
#> SRR1818507 4 0.0000 0.992 0.000 0.000 0.000 1.000
#> SRR1818506 4 0.0188 0.988 0.000 0.000 0.004 0.996
#> SRR1818505 1 0.1940 0.940 0.924 0.000 0.076 0.000
#> SRR1818503 1 0.4713 0.562 0.640 0.000 0.360 0.000
#> SRR1818504 3 0.2469 0.823 0.108 0.000 0.892 0.000
#> SRR1818502 1 0.1940 0.940 0.924 0.000 0.076 0.000
#> SRR1818498 2 0.0000 0.968 0.000 1.000 0.000 0.000
#> SRR1818500 1 0.0469 0.929 0.988 0.000 0.012 0.000
#> SRR1818501 3 0.1940 0.914 0.000 0.000 0.924 0.076
#> SRR1818499 3 0.2704 0.802 0.124 0.000 0.876 0.000
#> SRR1818496 1 0.0000 0.927 1.000 0.000 0.000 0.000
#> SRR1818494 1 0.1940 0.940 0.924 0.000 0.076 0.000
#> SRR1818495 2 0.0000 0.968 0.000 1.000 0.000 0.000
#> SRR1818493 2 0.0000 0.968 0.000 1.000 0.000 0.000
#> SRR1818492 2 0.0469 0.959 0.000 0.988 0.012 0.000
#> SRR1818491 1 0.1940 0.940 0.924 0.000 0.076 0.000
#> SRR1818490 3 0.1637 0.918 0.000 0.000 0.940 0.060
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1818497 5 0.0000 0.8662 0.000 0.000 0.000 0.000 1.000
#> SRR1818600 1 0.3305 0.5157 0.776 0.000 0.000 0.000 0.224
#> SRR1818599 3 0.0000 0.9625 0.000 0.000 1.000 0.000 0.000
#> SRR1818598 1 0.2690 0.5406 0.844 0.000 0.000 0.000 0.156
#> SRR1818597 3 0.2605 0.8170 0.148 0.000 0.852 0.000 0.000
#> SRR1818596 4 0.0000 0.9563 0.000 0.000 0.000 1.000 0.000
#> SRR1818595 1 0.3177 0.5193 0.792 0.000 0.208 0.000 0.000
#> SRR1818594 3 0.2424 0.8440 0.132 0.000 0.868 0.000 0.000
#> SRR1818593 4 0.0000 0.9563 0.000 0.000 0.000 1.000 0.000
#> SRR1818592 4 0.0000 0.9563 0.000 0.000 0.000 1.000 0.000
#> SRR1818591 2 0.0000 0.9037 0.000 1.000 0.000 0.000 0.000
#> SRR1818590 2 0.3210 0.7770 0.212 0.788 0.000 0.000 0.000
#> SRR1818589 4 0.0000 0.9563 0.000 0.000 0.000 1.000 0.000
#> SRR1818587 1 0.4297 -0.2436 0.528 0.472 0.000 0.000 0.000
#> SRR1818586 2 0.0000 0.9037 0.000 1.000 0.000 0.000 0.000
#> SRR1818585 5 0.0000 0.8662 0.000 0.000 0.000 0.000 1.000
#> SRR1818584 1 0.4219 0.2195 0.584 0.000 0.000 0.000 0.416
#> SRR1818583 3 0.0510 0.9547 0.016 0.000 0.984 0.000 0.000
#> SRR1818588 1 0.5498 -0.0216 0.580 0.340 0.080 0.000 0.000
#> SRR1818582 4 0.0000 0.9563 0.000 0.000 0.000 1.000 0.000
#> SRR1818581 2 0.0000 0.9037 0.000 1.000 0.000 0.000 0.000
#> SRR1818579 1 0.3508 0.4943 0.748 0.000 0.000 0.000 0.252
#> SRR1818578 5 0.1121 0.8341 0.044 0.000 0.000 0.000 0.956
#> SRR1818577 2 0.0000 0.9037 0.000 1.000 0.000 0.000 0.000
#> SRR1818580 5 0.4171 0.3048 0.396 0.000 0.000 0.000 0.604
#> SRR1818575 1 0.4767 -0.1388 0.560 0.420 0.000 0.020 0.000
#> SRR1818574 3 0.0000 0.9625 0.000 0.000 1.000 0.000 0.000
#> SRR1818576 1 0.3636 0.4793 0.728 0.000 0.272 0.000 0.000
#> SRR1818573 4 0.0000 0.9563 0.000 0.000 0.000 1.000 0.000
#> SRR1818572 5 0.4256 0.2097 0.436 0.000 0.000 0.000 0.564
#> SRR1818571 4 0.0000 0.9563 0.000 0.000 0.000 1.000 0.000
#> SRR1818570 3 0.1965 0.8840 0.096 0.000 0.904 0.000 0.000
#> SRR1818568 1 0.4262 -0.1601 0.560 0.440 0.000 0.000 0.000
#> SRR1818567 2 0.0000 0.9037 0.000 1.000 0.000 0.000 0.000
#> SRR1818566 3 0.0000 0.9625 0.000 0.000 1.000 0.000 0.000
#> SRR1818569 5 0.0000 0.8662 0.000 0.000 0.000 0.000 1.000
#> SRR1818565 3 0.0000 0.9625 0.000 0.000 1.000 0.000 0.000
#> SRR1818564 1 0.0794 0.5299 0.972 0.000 0.028 0.000 0.000
#> SRR1818563 1 0.6772 -0.1979 0.388 0.280 0.000 0.332 0.000
#> SRR1818561 3 0.0000 0.9625 0.000 0.000 1.000 0.000 0.000
#> SRR1818560 1 0.3999 0.3765 0.656 0.000 0.344 0.000 0.000
#> SRR1818559 4 0.0000 0.9563 0.000 0.000 0.000 1.000 0.000
#> SRR1818562 2 0.1410 0.8732 0.060 0.940 0.000 0.000 0.000
#> SRR1818558 1 0.3508 0.4943 0.748 0.000 0.000 0.000 0.252
#> SRR1818556 1 0.3336 0.5108 0.772 0.000 0.228 0.000 0.000
#> SRR1818557 4 0.0000 0.9563 0.000 0.000 0.000 1.000 0.000
#> SRR1818555 2 0.0000 0.9037 0.000 1.000 0.000 0.000 0.000
#> SRR1818553 4 0.0000 0.9563 0.000 0.000 0.000 1.000 0.000
#> SRR1818552 2 0.0000 0.9037 0.000 1.000 0.000 0.000 0.000
#> SRR1818551 1 0.4440 -0.2138 0.528 0.468 0.004 0.000 0.000
#> SRR1818550 1 0.4302 -0.2650 0.520 0.480 0.000 0.000 0.000
#> SRR1818554 4 0.0000 0.9563 0.000 0.000 0.000 1.000 0.000
#> SRR1818549 3 0.0000 0.9625 0.000 0.000 1.000 0.000 0.000
#> SRR1818548 4 0.0000 0.9563 0.000 0.000 0.000 1.000 0.000
#> SRR1818546 5 0.0000 0.8662 0.000 0.000 0.000 0.000 1.000
#> SRR1818547 4 0.2891 0.8100 0.176 0.000 0.000 0.824 0.000
#> SRR1818544 1 0.4291 0.0666 0.536 0.000 0.000 0.000 0.464
#> SRR1818543 1 0.4201 0.2867 0.592 0.000 0.000 0.000 0.408
#> SRR1818542 5 0.0000 0.8662 0.000 0.000 0.000 0.000 1.000
#> SRR1818545 1 0.4268 -0.1701 0.556 0.444 0.000 0.000 0.000
#> SRR1818541 1 0.3177 0.5237 0.792 0.000 0.000 0.000 0.208
#> SRR1818539 1 0.4182 0.3294 0.600 0.000 0.000 0.000 0.400
#> SRR1818540 2 0.0000 0.9037 0.000 1.000 0.000 0.000 0.000
#> SRR1818536 3 0.1478 0.9199 0.064 0.000 0.936 0.000 0.000
#> SRR1818535 3 0.0000 0.9625 0.000 0.000 1.000 0.000 0.000
#> SRR1818534 4 0.0000 0.9563 0.000 0.000 0.000 1.000 0.000
#> SRR1818538 2 0.3336 0.7650 0.228 0.772 0.000 0.000 0.000
#> SRR1818537 1 0.3395 0.5077 0.764 0.000 0.000 0.000 0.236
#> SRR1818533 1 0.2280 0.5438 0.880 0.000 0.000 0.000 0.120
#> SRR1818532 1 0.5877 0.0484 0.568 0.044 0.352 0.036 0.000
#> SRR1818531 1 0.4161 0.2807 0.608 0.000 0.000 0.000 0.392
#> SRR1818530 5 0.0000 0.8662 0.000 0.000 0.000 0.000 1.000
#> SRR1818529 5 0.0000 0.8662 0.000 0.000 0.000 0.000 1.000
#> SRR1818528 1 0.3992 0.4849 0.720 0.000 0.268 0.000 0.012
#> SRR1818527 1 0.3534 0.4905 0.744 0.000 0.000 0.000 0.256
#> SRR1818526 4 0.3424 0.7420 0.240 0.000 0.000 0.760 0.000
#> SRR1818525 5 0.4287 0.1342 0.460 0.000 0.000 0.000 0.540
#> SRR1818523 3 0.0000 0.9625 0.000 0.000 1.000 0.000 0.000
#> SRR1818524 4 0.0000 0.9563 0.000 0.000 0.000 1.000 0.000
#> SRR1818522 2 0.5613 0.3263 0.308 0.592 0.100 0.000 0.000
#> SRR1818521 2 0.0000 0.9037 0.000 1.000 0.000 0.000 0.000
#> SRR1818520 2 0.0000 0.9037 0.000 1.000 0.000 0.000 0.000
#> SRR1818518 1 0.3796 0.4446 0.700 0.000 0.300 0.000 0.000
#> SRR1818519 4 0.0609 0.9424 0.020 0.000 0.000 0.980 0.000
#> SRR1818517 2 0.3684 0.7148 0.280 0.720 0.000 0.000 0.000
#> SRR1818516 3 0.0000 0.9625 0.000 0.000 1.000 0.000 0.000
#> SRR1818515 4 0.0000 0.9563 0.000 0.000 0.000 1.000 0.000
#> SRR1818514 5 0.0000 0.8662 0.000 0.000 0.000 0.000 1.000
#> SRR1818513 2 0.0000 0.9037 0.000 1.000 0.000 0.000 0.000
#> SRR1818512 5 0.0000 0.8662 0.000 0.000 0.000 0.000 1.000
#> SRR1818510 2 0.0000 0.9037 0.000 1.000 0.000 0.000 0.000
#> SRR1818511 2 0.3895 0.6513 0.320 0.680 0.000 0.000 0.000
#> SRR1818508 1 0.4045 0.3554 0.644 0.000 0.000 0.000 0.356
#> SRR1818509 2 0.3684 0.7148 0.280 0.720 0.000 0.000 0.000
#> SRR1818507 4 0.0000 0.9563 0.000 0.000 0.000 1.000 0.000
#> SRR1818506 4 0.4015 0.5052 0.348 0.000 0.000 0.652 0.000
#> SRR1818505 1 0.4074 0.3407 0.636 0.000 0.000 0.000 0.364
#> SRR1818503 1 0.3336 0.5131 0.772 0.000 0.000 0.000 0.228
#> SRR1818504 1 0.4094 0.5391 0.788 0.000 0.084 0.000 0.128
#> SRR1818502 1 0.2891 0.5358 0.824 0.000 0.000 0.000 0.176
#> SRR1818498 2 0.0000 0.9037 0.000 1.000 0.000 0.000 0.000
#> SRR1818500 5 0.1836 0.8252 0.032 0.000 0.036 0.000 0.932
#> SRR1818501 3 0.0000 0.9625 0.000 0.000 1.000 0.000 0.000
#> SRR1818499 1 0.3731 0.5439 0.816 0.000 0.112 0.000 0.072
#> SRR1818496 5 0.0000 0.8662 0.000 0.000 0.000 0.000 1.000
#> SRR1818494 1 0.2377 0.5438 0.872 0.000 0.000 0.000 0.128
#> SRR1818495 1 0.4294 -0.2329 0.532 0.468 0.000 0.000 0.000
#> SRR1818493 2 0.0000 0.9037 0.000 1.000 0.000 0.000 0.000
#> SRR1818492 1 0.4249 -0.1414 0.568 0.432 0.000 0.000 0.000
#> SRR1818491 1 0.4045 0.3555 0.644 0.000 0.000 0.000 0.356
#> SRR1818490 3 0.0290 0.9591 0.008 0.000 0.992 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1818497 5 0.3186 0.8686 0.100 0.060 0.000 0.000 0.836 0.004
#> SRR1818600 1 0.0000 0.9266 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818599 3 0.0000 0.9394 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818598 1 0.0935 0.9249 0.964 0.032 0.000 0.000 0.000 0.004
#> SRR1818597 3 0.2565 0.8857 0.028 0.040 0.892 0.000 0.000 0.040
#> SRR1818596 4 0.0000 0.9711 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818595 1 0.2554 0.8930 0.892 0.040 0.024 0.000 0.000 0.044
#> SRR1818594 3 0.5449 0.4575 0.272 0.092 0.608 0.000 0.000 0.028
#> SRR1818593 4 0.0632 0.9669 0.000 0.000 0.000 0.976 0.024 0.000
#> SRR1818592 4 0.0000 0.9711 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818591 2 0.1714 0.9347 0.000 0.908 0.000 0.000 0.000 0.092
#> SRR1818590 6 0.1141 0.8979 0.000 0.052 0.000 0.000 0.000 0.948
#> SRR1818589 4 0.0632 0.9669 0.000 0.000 0.000 0.976 0.024 0.000
#> SRR1818587 6 0.0260 0.9238 0.008 0.000 0.000 0.000 0.000 0.992
#> SRR1818586 2 0.1714 0.9347 0.000 0.908 0.000 0.000 0.000 0.092
#> SRR1818585 5 0.0632 0.9131 0.024 0.000 0.000 0.000 0.976 0.000
#> SRR1818584 1 0.0000 0.9266 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818583 3 0.1624 0.9161 0.004 0.040 0.936 0.000 0.000 0.020
#> SRR1818588 6 0.0547 0.9226 0.020 0.000 0.000 0.000 0.000 0.980
#> SRR1818582 4 0.0000 0.9711 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818581 2 0.1714 0.9347 0.000 0.908 0.000 0.000 0.000 0.092
#> SRR1818579 1 0.0000 0.9266 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818578 1 0.4799 0.5502 0.656 0.088 0.000 0.000 0.252 0.004
#> SRR1818577 2 0.0937 0.8986 0.000 0.960 0.000 0.000 0.000 0.040
#> SRR1818580 1 0.0862 0.9161 0.972 0.008 0.000 0.000 0.016 0.004
#> SRR1818575 6 0.0458 0.9238 0.016 0.000 0.000 0.000 0.000 0.984
#> SRR1818574 3 0.0000 0.9394 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818576 1 0.2486 0.8951 0.896 0.040 0.024 0.000 0.000 0.040
#> SRR1818573 4 0.0000 0.9711 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818572 1 0.0260 0.9240 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1818571 4 0.2122 0.9054 0.000 0.000 0.000 0.900 0.024 0.076
#> SRR1818570 3 0.2222 0.8989 0.012 0.040 0.908 0.000 0.000 0.040
#> SRR1818568 6 0.0547 0.9226 0.020 0.000 0.000 0.000 0.000 0.980
#> SRR1818567 2 0.1007 0.9072 0.000 0.956 0.000 0.000 0.000 0.044
#> SRR1818566 3 0.0000 0.9394 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818569 5 0.0632 0.9131 0.024 0.000 0.000 0.000 0.976 0.000
#> SRR1818565 3 0.0000 0.9394 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818564 1 0.2775 0.8559 0.856 0.040 0.000 0.000 0.000 0.104
#> SRR1818563 6 0.1219 0.9065 0.000 0.004 0.000 0.048 0.000 0.948
#> SRR1818561 3 0.0000 0.9394 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818560 1 0.2252 0.9012 0.908 0.028 0.044 0.000 0.000 0.020
#> SRR1818559 4 0.0000 0.9711 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818562 6 0.2969 0.6756 0.000 0.224 0.000 0.000 0.000 0.776
#> SRR1818558 1 0.0000 0.9266 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818556 1 0.0632 0.9209 0.976 0.000 0.024 0.000 0.000 0.000
#> SRR1818557 4 0.0000 0.9711 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818555 2 0.1714 0.9347 0.000 0.908 0.000 0.000 0.000 0.092
#> SRR1818553 4 0.2016 0.9254 0.000 0.000 0.016 0.920 0.024 0.040
#> SRR1818552 2 0.1814 0.9284 0.000 0.900 0.000 0.000 0.000 0.100
#> SRR1818551 6 0.1053 0.9155 0.020 0.012 0.004 0.000 0.000 0.964
#> SRR1818550 6 0.0260 0.9238 0.008 0.000 0.000 0.000 0.000 0.992
#> SRR1818554 4 0.0632 0.9669 0.000 0.000 0.000 0.976 0.024 0.000
#> SRR1818549 3 0.1176 0.9259 0.000 0.000 0.956 0.000 0.020 0.024
#> SRR1818548 4 0.0000 0.9711 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818546 5 0.0632 0.9131 0.024 0.000 0.000 0.000 0.976 0.000
#> SRR1818547 6 0.2872 0.8194 0.000 0.000 0.000 0.140 0.024 0.836
#> SRR1818544 1 0.0603 0.9186 0.980 0.016 0.000 0.000 0.000 0.004
#> SRR1818543 1 0.2613 0.8179 0.848 0.000 0.000 0.000 0.140 0.012
#> SRR1818542 5 0.2771 0.8847 0.068 0.060 0.000 0.000 0.868 0.004
#> SRR1818545 6 0.0458 0.9238 0.016 0.000 0.000 0.000 0.000 0.984
#> SRR1818541 1 0.1480 0.9181 0.940 0.040 0.000 0.000 0.000 0.020
#> SRR1818539 1 0.4236 0.5115 0.656 0.000 0.000 0.000 0.308 0.036
#> SRR1818540 2 0.1714 0.9347 0.000 0.908 0.000 0.000 0.000 0.092
#> SRR1818536 3 0.1333 0.9175 0.008 0.000 0.944 0.000 0.000 0.048
#> SRR1818535 3 0.0458 0.9352 0.000 0.016 0.984 0.000 0.000 0.000
#> SRR1818534 4 0.0000 0.9711 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818538 6 0.1075 0.9006 0.000 0.048 0.000 0.000 0.000 0.952
#> SRR1818537 1 0.1082 0.9225 0.956 0.040 0.000 0.000 0.000 0.004
#> SRR1818533 1 0.1151 0.9242 0.956 0.032 0.000 0.000 0.000 0.012
#> SRR1818532 6 0.2026 0.8882 0.020 0.024 0.028 0.004 0.000 0.924
#> SRR1818531 1 0.0000 0.9266 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818530 5 0.0632 0.9131 0.024 0.000 0.000 0.000 0.976 0.000
#> SRR1818529 5 0.4809 0.6424 0.272 0.080 0.000 0.000 0.644 0.004
#> SRR1818528 1 0.2103 0.9080 0.916 0.040 0.024 0.000 0.000 0.020
#> SRR1818527 1 0.0000 0.9266 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818526 6 0.2748 0.8293 0.000 0.000 0.000 0.128 0.024 0.848
#> SRR1818525 1 0.0458 0.9207 0.984 0.000 0.000 0.000 0.016 0.000
#> SRR1818523 3 0.0000 0.9394 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818524 4 0.0000 0.9711 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818522 2 0.6600 0.0388 0.024 0.352 0.292 0.000 0.000 0.332
#> SRR1818521 2 0.0937 0.8986 0.000 0.960 0.000 0.000 0.000 0.040
#> SRR1818520 2 0.1714 0.9347 0.000 0.908 0.000 0.000 0.000 0.092
#> SRR1818518 1 0.1088 0.9184 0.960 0.000 0.024 0.000 0.000 0.016
#> SRR1818519 4 0.2988 0.8070 0.000 0.000 0.000 0.824 0.024 0.152
#> SRR1818517 6 0.1007 0.9031 0.000 0.044 0.000 0.000 0.000 0.956
#> SRR1818516 3 0.0000 0.9394 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818515 4 0.0632 0.9669 0.000 0.000 0.000 0.976 0.024 0.000
#> SRR1818514 5 0.0632 0.9131 0.024 0.000 0.000 0.000 0.976 0.000
#> SRR1818513 2 0.1714 0.9347 0.000 0.908 0.000 0.000 0.000 0.092
#> SRR1818512 5 0.0632 0.9131 0.024 0.000 0.000 0.000 0.976 0.000
#> SRR1818510 2 0.1714 0.9347 0.000 0.908 0.000 0.000 0.000 0.092
#> SRR1818511 6 0.0713 0.9135 0.000 0.028 0.000 0.000 0.000 0.972
#> SRR1818508 1 0.0000 0.9266 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818509 6 0.1007 0.9031 0.000 0.044 0.000 0.000 0.000 0.956
#> SRR1818507 4 0.0632 0.9669 0.000 0.000 0.000 0.976 0.024 0.000
#> SRR1818506 6 0.4012 0.6659 0.012 0.000 0.000 0.240 0.024 0.724
#> SRR1818505 1 0.0000 0.9266 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818503 1 0.1391 0.9189 0.944 0.040 0.000 0.000 0.000 0.016
#> SRR1818504 1 0.2002 0.9095 0.920 0.040 0.012 0.000 0.000 0.028
#> SRR1818502 1 0.0935 0.9249 0.964 0.032 0.000 0.000 0.000 0.004
#> SRR1818498 2 0.1714 0.9347 0.000 0.908 0.000 0.000 0.000 0.092
#> SRR1818500 1 0.6155 0.3115 0.544 0.092 0.060 0.000 0.300 0.004
#> SRR1818501 3 0.0000 0.9394 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818499 1 0.0508 0.9249 0.984 0.000 0.012 0.000 0.000 0.004
#> SRR1818496 5 0.3728 0.8253 0.152 0.060 0.000 0.000 0.784 0.004
#> SRR1818494 1 0.1124 0.9240 0.956 0.036 0.000 0.000 0.000 0.008
#> SRR1818495 6 0.0146 0.9227 0.004 0.000 0.000 0.000 0.000 0.996
#> SRR1818493 2 0.1007 0.9023 0.000 0.956 0.000 0.000 0.000 0.044
#> SRR1818492 6 0.0547 0.9226 0.020 0.000 0.000 0.000 0.000 0.980
#> SRR1818491 1 0.0000 0.9266 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818490 3 0.1007 0.9239 0.000 0.000 0.956 0.000 0.000 0.044
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 16183 rows and 111 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 3.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.515 0.892 0.887 0.3334 0.602 0.602
#> 3 3 0.798 0.887 0.952 0.4603 0.904 0.841
#> 4 4 0.787 0.867 0.914 0.0874 0.969 0.939
#> 5 5 0.746 0.839 0.888 0.1354 0.971 0.939
#> 6 6 0.798 0.845 0.922 0.1510 0.860 0.688
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 3
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1818497 2 0.9393 0.869 0.356 0.644
#> SRR1818600 1 0.0000 0.930 1.000 0.000
#> SRR1818599 1 0.8443 0.615 0.728 0.272
#> SRR1818598 1 0.0000 0.930 1.000 0.000
#> SRR1818597 1 0.0000 0.930 1.000 0.000
#> SRR1818596 1 0.3114 0.885 0.944 0.056
#> SRR1818595 1 0.0000 0.930 1.000 0.000
#> SRR1818594 1 0.0000 0.930 1.000 0.000
#> SRR1818593 1 0.0000 0.930 1.000 0.000
#> SRR1818592 1 0.3114 0.885 0.944 0.056
#> SRR1818591 2 0.8443 0.971 0.272 0.728
#> SRR1818590 2 0.8443 0.971 0.272 0.728
#> SRR1818589 1 0.0000 0.930 1.000 0.000
#> SRR1818587 1 0.0000 0.930 1.000 0.000
#> SRR1818586 2 0.8443 0.971 0.272 0.728
#> SRR1818585 2 0.8443 0.971 0.272 0.728
#> SRR1818584 1 0.3733 0.867 0.928 0.072
#> SRR1818583 1 0.0000 0.930 1.000 0.000
#> SRR1818588 1 0.0000 0.930 1.000 0.000
#> SRR1818582 1 0.3114 0.885 0.944 0.056
#> SRR1818581 2 0.8443 0.971 0.272 0.728
#> SRR1818579 1 0.0000 0.930 1.000 0.000
#> SRR1818578 2 0.9977 0.650 0.472 0.528
#> SRR1818577 2 0.8443 0.971 0.272 0.728
#> SRR1818580 1 0.3274 0.881 0.940 0.060
#> SRR1818575 1 0.0000 0.930 1.000 0.000
#> SRR1818574 1 0.8327 0.625 0.736 0.264
#> SRR1818576 1 0.0000 0.930 1.000 0.000
#> SRR1818573 1 0.3114 0.885 0.944 0.056
#> SRR1818572 1 0.3733 0.867 0.928 0.072
#> SRR1818571 1 0.0000 0.930 1.000 0.000
#> SRR1818570 1 0.0000 0.930 1.000 0.000
#> SRR1818568 1 0.0000 0.930 1.000 0.000
#> SRR1818567 2 0.8443 0.971 0.272 0.728
#> SRR1818566 1 0.8443 0.615 0.728 0.272
#> SRR1818569 2 0.8443 0.971 0.272 0.728
#> SRR1818565 1 0.8443 0.615 0.728 0.272
#> SRR1818564 1 0.0000 0.930 1.000 0.000
#> SRR1818563 1 0.0000 0.930 1.000 0.000
#> SRR1818561 1 0.8443 0.615 0.728 0.272
#> SRR1818560 1 0.0000 0.930 1.000 0.000
#> SRR1818559 1 0.3114 0.885 0.944 0.056
#> SRR1818562 1 0.0376 0.928 0.996 0.004
#> SRR1818558 1 0.3733 0.867 0.928 0.072
#> SRR1818556 1 0.0000 0.930 1.000 0.000
#> SRR1818557 1 0.3114 0.885 0.944 0.056
#> SRR1818555 2 0.8443 0.971 0.272 0.728
#> SRR1818553 1 0.0000 0.930 1.000 0.000
#> SRR1818552 2 0.8443 0.971 0.272 0.728
#> SRR1818551 1 0.0376 0.928 0.996 0.004
#> SRR1818550 1 0.0000 0.930 1.000 0.000
#> SRR1818554 1 0.0000 0.930 1.000 0.000
#> SRR1818549 1 0.0000 0.930 1.000 0.000
#> SRR1818548 1 0.3114 0.885 0.944 0.056
#> SRR1818546 2 0.8443 0.971 0.272 0.728
#> SRR1818547 1 0.0000 0.930 1.000 0.000
#> SRR1818544 1 0.3274 0.881 0.940 0.060
#> SRR1818543 1 0.0000 0.930 1.000 0.000
#> SRR1818542 2 0.9393 0.869 0.356 0.644
#> SRR1818545 1 0.0000 0.930 1.000 0.000
#> SRR1818541 1 0.0000 0.930 1.000 0.000
#> SRR1818539 1 0.0000 0.930 1.000 0.000
#> SRR1818540 2 0.8443 0.971 0.272 0.728
#> SRR1818536 1 0.0000 0.930 1.000 0.000
#> SRR1818535 1 0.0000 0.930 1.000 0.000
#> SRR1818534 1 0.3114 0.885 0.944 0.056
#> SRR1818538 2 0.8443 0.971 0.272 0.728
#> SRR1818537 1 0.0000 0.930 1.000 0.000
#> SRR1818533 1 0.0000 0.930 1.000 0.000
#> SRR1818532 1 0.0000 0.930 1.000 0.000
#> SRR1818531 1 0.3733 0.867 0.928 0.072
#> SRR1818530 2 0.8443 0.971 0.272 0.728
#> SRR1818529 1 0.9710 -0.166 0.600 0.400
#> SRR1818528 1 0.0000 0.930 1.000 0.000
#> SRR1818527 1 0.3733 0.867 0.928 0.072
#> SRR1818526 1 0.0000 0.930 1.000 0.000
#> SRR1818525 1 0.3733 0.867 0.928 0.072
#> SRR1818523 1 0.8443 0.615 0.728 0.272
#> SRR1818524 1 0.3114 0.885 0.944 0.056
#> SRR1818522 1 0.0376 0.928 0.996 0.004
#> SRR1818521 2 0.8443 0.971 0.272 0.728
#> SRR1818520 2 0.8443 0.971 0.272 0.728
#> SRR1818518 1 0.0000 0.930 1.000 0.000
#> SRR1818519 1 0.0000 0.930 1.000 0.000
#> SRR1818517 2 0.8443 0.971 0.272 0.728
#> SRR1818516 1 0.8443 0.615 0.728 0.272
#> SRR1818515 1 0.0000 0.930 1.000 0.000
#> SRR1818514 2 0.8443 0.971 0.272 0.728
#> SRR1818513 2 0.8443 0.971 0.272 0.728
#> SRR1818512 2 0.8443 0.971 0.272 0.728
#> SRR1818510 2 0.8443 0.971 0.272 0.728
#> SRR1818511 1 0.0376 0.928 0.996 0.004
#> SRR1818508 1 0.3733 0.867 0.928 0.072
#> SRR1818509 2 0.8443 0.971 0.272 0.728
#> SRR1818507 1 0.0000 0.930 1.000 0.000
#> SRR1818506 1 0.0000 0.930 1.000 0.000
#> SRR1818505 1 0.3274 0.881 0.940 0.060
#> SRR1818503 1 0.0000 0.930 1.000 0.000
#> SRR1818504 2 0.9775 0.777 0.412 0.588
#> SRR1818502 1 0.0000 0.930 1.000 0.000
#> SRR1818498 2 0.8443 0.971 0.272 0.728
#> SRR1818500 2 0.8443 0.971 0.272 0.728
#> SRR1818501 1 0.8443 0.615 0.728 0.272
#> SRR1818499 1 0.0376 0.928 0.996 0.004
#> SRR1818496 2 0.9393 0.869 0.356 0.644
#> SRR1818494 1 0.0000 0.930 1.000 0.000
#> SRR1818495 1 0.0000 0.930 1.000 0.000
#> SRR1818493 2 0.8443 0.971 0.272 0.728
#> SRR1818492 1 0.0000 0.930 1.000 0.000
#> SRR1818491 1 0.3274 0.881 0.940 0.060
#> SRR1818490 1 0.0000 0.930 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1818497 2 0.5926 0.493 0.356 0.644 0.000
#> SRR1818600 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818599 3 0.0000 0.935 0.000 0.000 1.000
#> SRR1818598 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818597 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818596 1 0.4370 0.871 0.868 0.056 0.076
#> SRR1818595 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818594 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818593 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818592 1 0.4370 0.871 0.868 0.056 0.076
#> SRR1818591 2 0.0000 0.851 0.000 1.000 0.000
#> SRR1818590 2 0.0000 0.851 0.000 1.000 0.000
#> SRR1818589 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818587 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818586 2 0.0000 0.851 0.000 1.000 0.000
#> SRR1818585 2 0.0000 0.851 0.000 1.000 0.000
#> SRR1818584 1 0.2356 0.919 0.928 0.072 0.000
#> SRR1818583 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818588 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818582 1 0.4370 0.871 0.868 0.056 0.076
#> SRR1818581 2 0.0000 0.851 0.000 1.000 0.000
#> SRR1818579 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818578 2 0.4555 0.633 0.200 0.800 0.000
#> SRR1818577 2 0.5291 0.609 0.268 0.732 0.000
#> SRR1818580 1 0.2066 0.928 0.940 0.060 0.000
#> SRR1818575 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818574 3 0.5678 0.527 0.316 0.000 0.684
#> SRR1818576 1 0.0237 0.962 0.996 0.000 0.004
#> SRR1818573 1 0.4370 0.871 0.868 0.056 0.076
#> SRR1818572 1 0.2356 0.919 0.928 0.072 0.000
#> SRR1818571 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818570 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818568 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818567 2 0.5291 0.609 0.268 0.732 0.000
#> SRR1818566 3 0.0000 0.935 0.000 0.000 1.000
#> SRR1818569 2 0.0000 0.851 0.000 1.000 0.000
#> SRR1818565 3 0.0000 0.935 0.000 0.000 1.000
#> SRR1818564 1 0.0237 0.962 0.996 0.000 0.004
#> SRR1818563 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818561 3 0.0000 0.935 0.000 0.000 1.000
#> SRR1818560 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818559 1 0.4370 0.871 0.868 0.056 0.076
#> SRR1818562 1 0.0848 0.957 0.984 0.008 0.008
#> SRR1818558 1 0.2356 0.919 0.928 0.072 0.000
#> SRR1818556 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818557 1 0.4370 0.871 0.868 0.056 0.076
#> SRR1818555 2 0.0000 0.851 0.000 1.000 0.000
#> SRR1818553 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818552 2 0.0000 0.851 0.000 1.000 0.000
#> SRR1818551 1 0.0848 0.957 0.984 0.008 0.008
#> SRR1818550 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818554 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818549 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818548 1 0.4370 0.871 0.868 0.056 0.076
#> SRR1818546 2 0.0000 0.851 0.000 1.000 0.000
#> SRR1818547 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818544 1 0.2066 0.928 0.940 0.060 0.000
#> SRR1818543 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818542 2 0.5926 0.493 0.356 0.644 0.000
#> SRR1818545 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818541 1 0.0237 0.962 0.996 0.000 0.004
#> SRR1818539 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818540 2 0.0000 0.851 0.000 1.000 0.000
#> SRR1818536 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818535 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818534 1 0.4370 0.871 0.868 0.056 0.076
#> SRR1818538 2 0.0000 0.851 0.000 1.000 0.000
#> SRR1818537 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818533 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818532 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818531 1 0.2356 0.919 0.928 0.072 0.000
#> SRR1818530 2 0.0000 0.851 0.000 1.000 0.000
#> SRR1818529 1 0.6126 0.296 0.600 0.400 0.000
#> SRR1818528 1 0.0237 0.962 0.996 0.000 0.004
#> SRR1818527 1 0.2356 0.919 0.928 0.072 0.000
#> SRR1818526 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818525 1 0.2356 0.919 0.928 0.072 0.000
#> SRR1818523 3 0.0000 0.935 0.000 0.000 1.000
#> SRR1818524 1 0.4370 0.871 0.868 0.056 0.076
#> SRR1818522 1 0.0848 0.957 0.984 0.008 0.008
#> SRR1818521 2 0.5291 0.609 0.268 0.732 0.000
#> SRR1818520 2 0.0000 0.851 0.000 1.000 0.000
#> SRR1818518 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818519 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818517 2 0.0000 0.851 0.000 1.000 0.000
#> SRR1818516 3 0.0000 0.935 0.000 0.000 1.000
#> SRR1818515 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818514 2 0.0000 0.851 0.000 1.000 0.000
#> SRR1818513 2 0.0000 0.851 0.000 1.000 0.000
#> SRR1818512 2 0.0000 0.851 0.000 1.000 0.000
#> SRR1818510 2 0.0000 0.851 0.000 1.000 0.000
#> SRR1818511 1 0.0848 0.957 0.984 0.008 0.008
#> SRR1818508 1 0.2356 0.919 0.928 0.072 0.000
#> SRR1818509 2 0.0000 0.851 0.000 1.000 0.000
#> SRR1818507 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818506 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818505 1 0.2066 0.928 0.940 0.060 0.000
#> SRR1818503 1 0.0237 0.962 0.996 0.000 0.004
#> SRR1818504 2 0.5236 0.677 0.168 0.804 0.028
#> SRR1818502 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818498 2 0.0000 0.851 0.000 1.000 0.000
#> SRR1818500 2 0.0000 0.851 0.000 1.000 0.000
#> SRR1818501 3 0.0000 0.935 0.000 0.000 1.000
#> SRR1818499 1 0.1585 0.947 0.964 0.008 0.028
#> SRR1818496 2 0.5926 0.493 0.356 0.644 0.000
#> SRR1818494 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818495 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818493 2 0.5291 0.609 0.268 0.732 0.000
#> SRR1818492 1 0.0000 0.963 1.000 0.000 0.000
#> SRR1818491 1 0.2066 0.928 0.940 0.060 0.000
#> SRR1818490 1 0.0000 0.963 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1818497 2 0.7519 0.4305 0.208 0.480 0.000 0.312
#> SRR1818600 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818599 3 0.0000 0.9078 0.000 0.000 1.000 0.000
#> SRR1818598 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818597 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818596 1 0.3464 0.8679 0.868 0.000 0.076 0.056
#> SRR1818595 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818594 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818593 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818592 1 0.3464 0.8679 0.868 0.000 0.076 0.056
#> SRR1818591 2 0.0000 0.7665 0.000 1.000 0.000 0.000
#> SRR1818590 2 0.0000 0.7665 0.000 1.000 0.000 0.000
#> SRR1818589 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818587 1 0.0188 0.9607 0.996 0.000 0.000 0.004
#> SRR1818586 2 0.0000 0.7665 0.000 1.000 0.000 0.000
#> SRR1818585 4 0.3837 0.8972 0.000 0.224 0.000 0.776
#> SRR1818584 1 0.2282 0.9176 0.924 0.052 0.000 0.024
#> SRR1818583 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818588 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818582 1 0.3464 0.8679 0.868 0.000 0.076 0.056
#> SRR1818581 2 0.0000 0.7665 0.000 1.000 0.000 0.000
#> SRR1818579 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818578 4 0.7031 0.5909 0.200 0.224 0.000 0.576
#> SRR1818577 2 0.6774 0.5440 0.120 0.568 0.000 0.312
#> SRR1818580 1 0.2021 0.9263 0.936 0.040 0.000 0.024
#> SRR1818575 1 0.0188 0.9607 0.996 0.000 0.000 0.004
#> SRR1818574 3 0.4500 0.3673 0.316 0.000 0.684 0.000
#> SRR1818576 1 0.0188 0.9605 0.996 0.000 0.004 0.000
#> SRR1818573 1 0.3464 0.8679 0.868 0.000 0.076 0.056
#> SRR1818572 1 0.2282 0.9176 0.924 0.052 0.000 0.024
#> SRR1818571 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818570 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818568 1 0.0188 0.9607 0.996 0.000 0.000 0.004
#> SRR1818567 2 0.6774 0.5440 0.120 0.568 0.000 0.312
#> SRR1818566 3 0.0000 0.9078 0.000 0.000 1.000 0.000
#> SRR1818569 4 0.3837 0.8972 0.000 0.224 0.000 0.776
#> SRR1818565 3 0.0000 0.9078 0.000 0.000 1.000 0.000
#> SRR1818564 1 0.0188 0.9605 0.996 0.000 0.004 0.000
#> SRR1818563 1 0.0188 0.9607 0.996 0.000 0.000 0.004
#> SRR1818561 3 0.0000 0.9078 0.000 0.000 1.000 0.000
#> SRR1818560 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818559 1 0.3464 0.8679 0.868 0.000 0.076 0.056
#> SRR1818562 1 0.0672 0.9560 0.984 0.008 0.008 0.000
#> SRR1818558 1 0.2282 0.9176 0.924 0.052 0.000 0.024
#> SRR1818556 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818557 1 0.3464 0.8679 0.868 0.000 0.076 0.056
#> SRR1818555 2 0.0000 0.7665 0.000 1.000 0.000 0.000
#> SRR1818553 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818552 2 0.0000 0.7665 0.000 1.000 0.000 0.000
#> SRR1818551 1 0.0672 0.9560 0.984 0.008 0.008 0.000
#> SRR1818550 1 0.0188 0.9607 0.996 0.000 0.000 0.004
#> SRR1818554 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818549 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818548 1 0.3464 0.8679 0.868 0.000 0.076 0.056
#> SRR1818546 4 0.3837 0.8972 0.000 0.224 0.000 0.776
#> SRR1818547 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818544 1 0.2021 0.9263 0.936 0.040 0.000 0.024
#> SRR1818543 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818542 2 0.7519 0.4305 0.208 0.480 0.000 0.312
#> SRR1818545 1 0.0188 0.9607 0.996 0.000 0.000 0.004
#> SRR1818541 1 0.0188 0.9605 0.996 0.000 0.004 0.000
#> SRR1818539 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818540 2 0.0000 0.7665 0.000 1.000 0.000 0.000
#> SRR1818536 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818535 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818534 1 0.3464 0.8679 0.868 0.000 0.076 0.056
#> SRR1818538 2 0.0000 0.7665 0.000 1.000 0.000 0.000
#> SRR1818537 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818533 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818532 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818531 1 0.2282 0.9176 0.924 0.052 0.000 0.024
#> SRR1818530 4 0.3837 0.8972 0.000 0.224 0.000 0.776
#> SRR1818529 1 0.7669 -0.0715 0.452 0.236 0.000 0.312
#> SRR1818528 1 0.0188 0.9605 0.996 0.000 0.004 0.000
#> SRR1818527 1 0.2282 0.9176 0.924 0.052 0.000 0.024
#> SRR1818526 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818525 1 0.2282 0.9176 0.924 0.052 0.000 0.024
#> SRR1818523 3 0.0000 0.9078 0.000 0.000 1.000 0.000
#> SRR1818524 1 0.3464 0.8679 0.868 0.000 0.076 0.056
#> SRR1818522 1 0.0672 0.9560 0.984 0.008 0.008 0.000
#> SRR1818521 2 0.6774 0.5440 0.120 0.568 0.000 0.312
#> SRR1818520 2 0.0000 0.7665 0.000 1.000 0.000 0.000
#> SRR1818518 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818519 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818517 2 0.0000 0.7665 0.000 1.000 0.000 0.000
#> SRR1818516 3 0.0000 0.9078 0.000 0.000 1.000 0.000
#> SRR1818515 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818514 4 0.3837 0.8972 0.000 0.224 0.000 0.776
#> SRR1818513 2 0.0000 0.7665 0.000 1.000 0.000 0.000
#> SRR1818512 4 0.3837 0.8972 0.000 0.224 0.000 0.776
#> SRR1818510 2 0.0000 0.7665 0.000 1.000 0.000 0.000
#> SRR1818511 1 0.0672 0.9560 0.984 0.008 0.008 0.000
#> SRR1818508 1 0.2282 0.9176 0.924 0.052 0.000 0.024
#> SRR1818509 2 0.0000 0.7665 0.000 1.000 0.000 0.000
#> SRR1818507 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818506 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818505 1 0.2021 0.9263 0.936 0.040 0.000 0.024
#> SRR1818503 1 0.0188 0.9605 0.996 0.000 0.004 0.000
#> SRR1818504 4 0.7122 0.6186 0.168 0.168 0.028 0.636
#> SRR1818502 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818498 2 0.0000 0.7665 0.000 1.000 0.000 0.000
#> SRR1818500 4 0.3837 0.8972 0.000 0.224 0.000 0.776
#> SRR1818501 3 0.0000 0.9078 0.000 0.000 1.000 0.000
#> SRR1818499 1 0.1256 0.9459 0.964 0.008 0.028 0.000
#> SRR1818496 2 0.7519 0.4305 0.208 0.480 0.000 0.312
#> SRR1818494 1 0.0000 0.9618 1.000 0.000 0.000 0.000
#> SRR1818495 1 0.0188 0.9607 0.996 0.000 0.000 0.004
#> SRR1818493 2 0.6774 0.5440 0.120 0.568 0.000 0.312
#> SRR1818492 1 0.0188 0.9607 0.996 0.000 0.000 0.004
#> SRR1818491 1 0.2021 0.9263 0.936 0.040 0.000 0.024
#> SRR1818490 1 0.0000 0.9618 1.000 0.000 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1818497 4 0.5474 0.764 0.076 0.348 0.000 0.576 0.000
#> SRR1818600 1 0.0703 0.889 0.976 0.000 0.000 0.024 0.000
#> SRR1818599 3 0.0000 0.909 0.000 0.000 1.000 0.000 0.000
#> SRR1818598 1 0.0703 0.889 0.976 0.000 0.000 0.024 0.000
#> SRR1818597 1 0.0000 0.892 1.000 0.000 0.000 0.000 0.000
#> SRR1818596 1 0.5297 0.494 0.544 0.000 0.020 0.416 0.020
#> SRR1818595 1 0.0162 0.892 0.996 0.000 0.000 0.004 0.000
#> SRR1818594 1 0.0000 0.892 1.000 0.000 0.000 0.000 0.000
#> SRR1818593 1 0.3508 0.725 0.748 0.000 0.000 0.252 0.000
#> SRR1818592 1 0.5297 0.494 0.544 0.000 0.020 0.416 0.020
#> SRR1818591 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818590 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818589 1 0.3508 0.725 0.748 0.000 0.000 0.252 0.000
#> SRR1818587 1 0.0162 0.892 0.996 0.000 0.000 0.004 0.000
#> SRR1818586 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818585 5 0.0000 0.911 0.000 0.000 0.000 0.000 1.000
#> SRR1818584 1 0.2473 0.848 0.896 0.032 0.000 0.072 0.000
#> SRR1818583 1 0.0000 0.892 1.000 0.000 0.000 0.000 0.000
#> SRR1818588 1 0.0000 0.892 1.000 0.000 0.000 0.000 0.000
#> SRR1818582 1 0.5297 0.494 0.544 0.000 0.020 0.416 0.020
#> SRR1818581 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818579 1 0.0703 0.889 0.976 0.000 0.000 0.024 0.000
#> SRR1818578 5 0.3109 0.600 0.200 0.000 0.000 0.000 0.800
#> SRR1818577 4 0.4256 0.735 0.000 0.436 0.000 0.564 0.000
#> SRR1818580 1 0.2260 0.856 0.908 0.028 0.000 0.064 0.000
#> SRR1818575 1 0.0162 0.892 0.996 0.000 0.000 0.004 0.000
#> SRR1818574 3 0.3876 0.371 0.316 0.000 0.684 0.000 0.000
#> SRR1818576 1 0.0290 0.892 0.992 0.000 0.000 0.008 0.000
#> SRR1818573 1 0.5297 0.494 0.544 0.000 0.020 0.416 0.020
#> SRR1818572 1 0.2473 0.848 0.896 0.032 0.000 0.072 0.000
#> SRR1818571 1 0.0609 0.889 0.980 0.000 0.000 0.020 0.000
#> SRR1818570 1 0.0000 0.892 1.000 0.000 0.000 0.000 0.000
#> SRR1818568 1 0.0162 0.892 0.996 0.000 0.000 0.004 0.000
#> SRR1818567 4 0.4256 0.735 0.000 0.436 0.000 0.564 0.000
#> SRR1818566 3 0.0000 0.909 0.000 0.000 1.000 0.000 0.000
#> SRR1818569 5 0.0000 0.911 0.000 0.000 0.000 0.000 1.000
#> SRR1818565 3 0.0000 0.909 0.000 0.000 1.000 0.000 0.000
#> SRR1818564 1 0.0290 0.892 0.992 0.000 0.000 0.008 0.000
#> SRR1818563 1 0.0703 0.888 0.976 0.000 0.000 0.024 0.000
#> SRR1818561 3 0.0000 0.909 0.000 0.000 1.000 0.000 0.000
#> SRR1818560 1 0.0000 0.892 1.000 0.000 0.000 0.000 0.000
#> SRR1818559 1 0.5297 0.494 0.544 0.000 0.020 0.416 0.020
#> SRR1818562 1 0.1168 0.883 0.960 0.008 0.000 0.032 0.000
#> SRR1818558 1 0.2409 0.850 0.900 0.032 0.000 0.068 0.000
#> SRR1818556 1 0.0703 0.889 0.976 0.000 0.000 0.024 0.000
#> SRR1818557 1 0.5297 0.494 0.544 0.000 0.020 0.416 0.020
#> SRR1818555 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818553 1 0.0000 0.892 1.000 0.000 0.000 0.000 0.000
#> SRR1818552 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818551 1 0.1168 0.883 0.960 0.008 0.000 0.032 0.000
#> SRR1818550 1 0.0703 0.888 0.976 0.000 0.000 0.024 0.000
#> SRR1818554 1 0.3508 0.725 0.748 0.000 0.000 0.252 0.000
#> SRR1818549 1 0.0162 0.892 0.996 0.000 0.000 0.004 0.000
#> SRR1818548 1 0.5297 0.494 0.544 0.000 0.020 0.416 0.020
#> SRR1818546 5 0.0000 0.911 0.000 0.000 0.000 0.000 1.000
#> SRR1818547 1 0.1792 0.867 0.916 0.000 0.000 0.084 0.000
#> SRR1818544 1 0.2193 0.858 0.912 0.028 0.000 0.060 0.000
#> SRR1818543 1 0.0000 0.892 1.000 0.000 0.000 0.000 0.000
#> SRR1818542 4 0.5474 0.764 0.076 0.348 0.000 0.576 0.000
#> SRR1818545 1 0.0703 0.888 0.976 0.000 0.000 0.024 0.000
#> SRR1818541 1 0.0404 0.891 0.988 0.000 0.000 0.012 0.000
#> SRR1818539 1 0.0703 0.889 0.976 0.000 0.000 0.024 0.000
#> SRR1818540 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818536 1 0.0609 0.889 0.980 0.000 0.000 0.020 0.000
#> SRR1818535 1 0.0000 0.892 1.000 0.000 0.000 0.000 0.000
#> SRR1818534 1 0.5297 0.494 0.544 0.000 0.020 0.416 0.020
#> SRR1818538 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818537 1 0.0703 0.889 0.976 0.000 0.000 0.024 0.000
#> SRR1818533 1 0.0162 0.892 0.996 0.000 0.000 0.004 0.000
#> SRR1818532 1 0.0000 0.892 1.000 0.000 0.000 0.000 0.000
#> SRR1818531 1 0.2473 0.848 0.896 0.032 0.000 0.072 0.000
#> SRR1818530 5 0.0000 0.911 0.000 0.000 0.000 0.000 1.000
#> SRR1818529 4 0.6068 0.411 0.308 0.148 0.000 0.544 0.000
#> SRR1818528 1 0.0404 0.891 0.988 0.000 0.000 0.012 0.000
#> SRR1818527 1 0.2409 0.850 0.900 0.032 0.000 0.068 0.000
#> SRR1818526 1 0.2020 0.852 0.900 0.000 0.000 0.100 0.000
#> SRR1818525 1 0.2409 0.850 0.900 0.032 0.000 0.068 0.000
#> SRR1818523 3 0.0000 0.909 0.000 0.000 1.000 0.000 0.000
#> SRR1818524 1 0.5297 0.494 0.544 0.000 0.020 0.416 0.020
#> SRR1818522 1 0.1168 0.883 0.960 0.008 0.000 0.032 0.000
#> SRR1818521 4 0.4256 0.735 0.000 0.436 0.000 0.564 0.000
#> SRR1818520 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818518 1 0.0000 0.892 1.000 0.000 0.000 0.000 0.000
#> SRR1818519 1 0.3336 0.747 0.772 0.000 0.000 0.228 0.000
#> SRR1818517 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818516 3 0.0000 0.909 0.000 0.000 1.000 0.000 0.000
#> SRR1818515 1 0.3508 0.725 0.748 0.000 0.000 0.252 0.000
#> SRR1818514 5 0.0000 0.911 0.000 0.000 0.000 0.000 1.000
#> SRR1818513 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818512 5 0.0000 0.911 0.000 0.000 0.000 0.000 1.000
#> SRR1818510 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818511 1 0.1168 0.883 0.960 0.008 0.000 0.032 0.000
#> SRR1818508 1 0.2409 0.850 0.900 0.032 0.000 0.068 0.000
#> SRR1818509 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818507 1 0.3336 0.747 0.772 0.000 0.000 0.228 0.000
#> SRR1818506 1 0.0703 0.888 0.976 0.000 0.000 0.024 0.000
#> SRR1818505 1 0.2193 0.858 0.912 0.028 0.000 0.060 0.000
#> SRR1818503 1 0.0404 0.891 0.988 0.000 0.000 0.012 0.000
#> SRR1818504 5 0.3997 0.681 0.116 0.000 0.004 0.076 0.804
#> SRR1818502 1 0.0162 0.892 0.996 0.000 0.000 0.004 0.000
#> SRR1818498 2 0.0000 1.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818500 5 0.0000 0.911 0.000 0.000 0.000 0.000 1.000
#> SRR1818501 3 0.0000 0.909 0.000 0.000 1.000 0.000 0.000
#> SRR1818499 1 0.2116 0.857 0.912 0.008 0.004 0.076 0.000
#> SRR1818496 4 0.5474 0.764 0.076 0.348 0.000 0.576 0.000
#> SRR1818494 1 0.0162 0.892 0.996 0.000 0.000 0.004 0.000
#> SRR1818495 1 0.0162 0.892 0.996 0.000 0.000 0.004 0.000
#> SRR1818493 4 0.4256 0.735 0.000 0.436 0.000 0.564 0.000
#> SRR1818492 1 0.1121 0.887 0.956 0.000 0.000 0.044 0.000
#> SRR1818491 1 0.2193 0.858 0.912 0.028 0.000 0.060 0.000
#> SRR1818490 1 0.0000 0.892 1.000 0.000 0.000 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1818497 6 0.0713 0.8497 0.028 0.000 0.000 0.000 0.000 0.972
#> SRR1818600 1 0.1807 0.8980 0.920 0.000 0.000 0.020 0.000 0.060
#> SRR1818599 3 0.0000 0.9120 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818598 1 0.1807 0.8980 0.920 0.000 0.000 0.020 0.000 0.060
#> SRR1818597 1 0.0458 0.9094 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1818596 4 0.0547 0.7204 0.020 0.000 0.000 0.980 0.000 0.000
#> SRR1818595 1 0.1461 0.9087 0.940 0.000 0.000 0.016 0.000 0.044
#> SRR1818594 1 0.0458 0.9094 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1818593 4 0.3847 0.6140 0.348 0.000 0.000 0.644 0.000 0.008
#> SRR1818592 4 0.0547 0.7204 0.020 0.000 0.000 0.980 0.000 0.000
#> SRR1818591 2 0.0000 0.9984 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818590 2 0.0146 0.9972 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1818589 4 0.3847 0.6140 0.348 0.000 0.000 0.644 0.000 0.008
#> SRR1818587 1 0.0603 0.9100 0.980 0.000 0.000 0.016 0.000 0.004
#> SRR1818586 2 0.0000 0.9984 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818585 5 0.0000 0.9233 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818584 1 0.2704 0.8500 0.844 0.000 0.000 0.016 0.000 0.140
#> SRR1818583 1 0.0458 0.9094 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1818588 1 0.0458 0.9094 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1818582 4 0.0547 0.7204 0.020 0.000 0.000 0.980 0.000 0.000
#> SRR1818581 2 0.0000 0.9984 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818579 1 0.1807 0.8980 0.920 0.000 0.000 0.020 0.000 0.060
#> SRR1818578 5 0.2793 0.5773 0.200 0.000 0.000 0.000 0.800 0.000
#> SRR1818577 6 0.1327 0.8547 0.000 0.064 0.000 0.000 0.000 0.936
#> SRR1818580 1 0.2667 0.8581 0.852 0.000 0.000 0.020 0.000 0.128
#> SRR1818575 1 0.0603 0.9100 0.980 0.000 0.000 0.016 0.000 0.004
#> SRR1818574 3 0.3482 0.3695 0.316 0.000 0.684 0.000 0.000 0.000
#> SRR1818576 1 0.1341 0.9104 0.948 0.000 0.000 0.024 0.000 0.028
#> SRR1818573 4 0.0547 0.7204 0.020 0.000 0.000 0.980 0.000 0.000
#> SRR1818572 1 0.2790 0.8473 0.840 0.000 0.000 0.020 0.000 0.140
#> SRR1818571 1 0.0909 0.9057 0.968 0.000 0.000 0.020 0.000 0.012
#> SRR1818570 1 0.0458 0.9094 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1818568 1 0.0603 0.9100 0.980 0.000 0.000 0.016 0.000 0.004
#> SRR1818567 6 0.1327 0.8547 0.000 0.064 0.000 0.000 0.000 0.936
#> SRR1818566 3 0.0000 0.9120 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818569 5 0.0000 0.9233 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818565 3 0.0000 0.9120 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818564 1 0.1341 0.9104 0.948 0.000 0.000 0.024 0.000 0.028
#> SRR1818563 1 0.1003 0.9055 0.964 0.000 0.000 0.020 0.000 0.016
#> SRR1818561 3 0.0000 0.9120 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818560 1 0.0458 0.9094 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1818559 4 0.0547 0.7204 0.020 0.000 0.000 0.980 0.000 0.000
#> SRR1818562 1 0.2400 0.8313 0.872 0.008 0.000 0.116 0.000 0.004
#> SRR1818558 1 0.2402 0.8569 0.856 0.000 0.000 0.004 0.000 0.140
#> SRR1818556 1 0.1807 0.8980 0.920 0.000 0.000 0.020 0.000 0.060
#> SRR1818557 4 0.0547 0.7204 0.020 0.000 0.000 0.980 0.000 0.000
#> SRR1818555 2 0.0000 0.9984 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818553 1 0.0458 0.9094 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1818552 2 0.0146 0.9972 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1818551 1 0.2400 0.8313 0.872 0.008 0.000 0.116 0.000 0.004
#> SRR1818550 1 0.1003 0.9055 0.964 0.000 0.000 0.020 0.000 0.016
#> SRR1818554 4 0.3847 0.6140 0.348 0.000 0.000 0.644 0.000 0.008
#> SRR1818549 1 0.0458 0.9103 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1818548 4 0.0547 0.7204 0.020 0.000 0.000 0.980 0.000 0.000
#> SRR1818546 5 0.0000 0.9233 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818547 1 0.4168 0.1445 0.584 0.000 0.000 0.400 0.000 0.016
#> SRR1818544 1 0.2135 0.8681 0.872 0.000 0.000 0.000 0.000 0.128
#> SRR1818543 1 0.0458 0.9094 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1818542 6 0.0713 0.8497 0.028 0.000 0.000 0.000 0.000 0.972
#> SRR1818545 1 0.1003 0.9055 0.964 0.000 0.000 0.020 0.000 0.016
#> SRR1818541 1 0.1984 0.9001 0.912 0.000 0.000 0.056 0.000 0.032
#> SRR1818539 1 0.1745 0.8993 0.924 0.000 0.000 0.020 0.000 0.056
#> SRR1818540 2 0.0000 0.9984 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818536 1 0.0909 0.9057 0.968 0.000 0.000 0.020 0.000 0.012
#> SRR1818535 1 0.0458 0.9094 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1818534 4 0.0547 0.7204 0.020 0.000 0.000 0.980 0.000 0.000
#> SRR1818538 2 0.0146 0.9972 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1818537 1 0.1807 0.8980 0.920 0.000 0.000 0.020 0.000 0.060
#> SRR1818533 1 0.1461 0.9087 0.940 0.000 0.000 0.016 0.000 0.044
#> SRR1818532 1 0.0458 0.9094 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1818531 1 0.2704 0.8500 0.844 0.000 0.000 0.016 0.000 0.140
#> SRR1818530 5 0.0000 0.9233 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818529 6 0.3665 0.4876 0.252 0.000 0.000 0.020 0.000 0.728
#> SRR1818528 1 0.1462 0.8977 0.936 0.000 0.000 0.056 0.000 0.008
#> SRR1818527 1 0.2402 0.8569 0.856 0.000 0.000 0.004 0.000 0.140
#> SRR1818526 1 0.4136 0.0153 0.560 0.000 0.000 0.428 0.000 0.012
#> SRR1818525 1 0.2402 0.8569 0.856 0.000 0.000 0.004 0.000 0.140
#> SRR1818523 3 0.0000 0.9120 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818524 4 0.0547 0.7204 0.020 0.000 0.000 0.980 0.000 0.000
#> SRR1818522 1 0.2400 0.8313 0.872 0.008 0.000 0.116 0.000 0.004
#> SRR1818521 6 0.1327 0.8547 0.000 0.064 0.000 0.000 0.000 0.936
#> SRR1818520 2 0.0000 0.9984 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818518 1 0.0458 0.9094 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1818519 4 0.4045 0.4575 0.428 0.000 0.000 0.564 0.000 0.008
#> SRR1818517 2 0.0146 0.9972 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1818516 3 0.0000 0.9120 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818515 4 0.3847 0.6140 0.348 0.000 0.000 0.644 0.000 0.008
#> SRR1818514 5 0.0000 0.9233 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818513 2 0.0000 0.9984 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818512 5 0.0000 0.9233 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818510 2 0.0000 0.9984 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818511 1 0.2400 0.8313 0.872 0.008 0.000 0.116 0.000 0.004
#> SRR1818508 1 0.2402 0.8569 0.856 0.000 0.000 0.004 0.000 0.140
#> SRR1818509 2 0.0146 0.9972 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1818507 4 0.4045 0.4575 0.428 0.000 0.000 0.564 0.000 0.008
#> SRR1818506 1 0.1007 0.8992 0.956 0.000 0.000 0.044 0.000 0.000
#> SRR1818505 1 0.2135 0.8681 0.872 0.000 0.000 0.000 0.000 0.128
#> SRR1818503 1 0.1984 0.9001 0.912 0.000 0.000 0.056 0.000 0.032
#> SRR1818504 5 0.2979 0.7480 0.004 0.000 0.000 0.188 0.804 0.004
#> SRR1818502 1 0.1461 0.9087 0.940 0.000 0.000 0.016 0.000 0.044
#> SRR1818498 2 0.0000 0.9984 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818500 5 0.0000 0.9233 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818501 3 0.0000 0.9120 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818499 1 0.3329 0.7000 0.768 0.008 0.000 0.220 0.000 0.004
#> SRR1818496 6 0.0713 0.8497 0.028 0.000 0.000 0.000 0.000 0.972
#> SRR1818494 1 0.1461 0.9087 0.940 0.000 0.000 0.016 0.000 0.044
#> SRR1818495 1 0.0858 0.9083 0.968 0.000 0.000 0.028 0.000 0.004
#> SRR1818493 6 0.1327 0.8547 0.000 0.064 0.000 0.000 0.000 0.936
#> SRR1818492 1 0.1500 0.8976 0.936 0.000 0.000 0.052 0.000 0.012
#> SRR1818491 1 0.2135 0.8681 0.872 0.000 0.000 0.000 0.000 0.128
#> SRR1818490 1 0.0458 0.9094 0.984 0.000 0.000 0.016 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 16183 rows and 111 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 5.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.391 0.873 0.894 0.3856 0.578 0.578
#> 3 3 0.368 0.393 0.762 0.4505 0.959 0.933
#> 4 4 0.367 0.318 0.660 0.1897 0.744 0.593
#> 5 5 0.488 0.598 0.676 0.1048 0.791 0.515
#> 6 6 0.579 0.686 0.750 0.0578 0.973 0.891
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 5
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1818497 2 0.8267 0.849 0.260 0.740
#> SRR1818600 1 0.3114 0.917 0.944 0.056
#> SRR1818599 1 0.5519 0.839 0.872 0.128
#> SRR1818598 1 0.2236 0.920 0.964 0.036
#> SRR1818597 1 0.0672 0.924 0.992 0.008
#> SRR1818596 1 0.4161 0.906 0.916 0.084
#> SRR1818595 1 0.0000 0.924 1.000 0.000
#> SRR1818594 1 0.0376 0.924 0.996 0.004
#> SRR1818593 1 0.4939 0.901 0.892 0.108
#> SRR1818592 1 0.4161 0.906 0.916 0.084
#> SRR1818591 2 0.6801 0.907 0.180 0.820
#> SRR1818590 2 0.6801 0.907 0.180 0.820
#> SRR1818589 1 0.4939 0.901 0.892 0.108
#> SRR1818587 1 0.1843 0.921 0.972 0.028
#> SRR1818586 2 0.7299 0.913 0.204 0.796
#> SRR1818585 2 0.5178 0.880 0.116 0.884
#> SRR1818584 1 0.7950 0.679 0.760 0.240
#> SRR1818583 1 0.0672 0.924 0.992 0.008
#> SRR1818588 1 0.0000 0.924 1.000 0.000
#> SRR1818582 1 0.4161 0.906 0.916 0.084
#> SRR1818581 2 0.6801 0.907 0.180 0.820
#> SRR1818579 1 0.3114 0.917 0.944 0.056
#> SRR1818578 1 0.6712 0.781 0.824 0.176
#> SRR1818577 2 0.7299 0.913 0.204 0.796
#> SRR1818580 1 0.8327 0.632 0.736 0.264
#> SRR1818575 1 0.0938 0.925 0.988 0.012
#> SRR1818574 1 0.4815 0.852 0.896 0.104
#> SRR1818576 1 0.0000 0.924 1.000 0.000
#> SRR1818573 1 0.4939 0.901 0.892 0.108
#> SRR1818572 2 0.9993 0.321 0.484 0.516
#> SRR1818571 1 0.1633 0.918 0.976 0.024
#> SRR1818570 1 0.0672 0.924 0.992 0.008
#> SRR1818568 1 0.0938 0.925 0.988 0.012
#> SRR1818567 2 0.7299 0.913 0.204 0.796
#> SRR1818566 1 0.4815 0.852 0.896 0.104
#> SRR1818569 2 0.5178 0.880 0.116 0.884
#> SRR1818565 1 0.4815 0.852 0.896 0.104
#> SRR1818564 1 0.0938 0.923 0.988 0.012
#> SRR1818563 1 0.2603 0.920 0.956 0.044
#> SRR1818561 1 0.4815 0.852 0.896 0.104
#> SRR1818560 1 0.0000 0.924 1.000 0.000
#> SRR1818559 1 0.4161 0.906 0.916 0.084
#> SRR1818562 2 0.6887 0.906 0.184 0.816
#> SRR1818558 1 0.2423 0.915 0.960 0.040
#> SRR1818556 1 0.1633 0.918 0.976 0.024
#> SRR1818557 1 0.4022 0.908 0.920 0.080
#> SRR1818555 2 0.6801 0.907 0.180 0.820
#> SRR1818553 1 0.0376 0.924 0.996 0.004
#> SRR1818552 2 0.7299 0.913 0.204 0.796
#> SRR1818551 1 0.0938 0.925 0.988 0.012
#> SRR1818550 1 0.2423 0.920 0.960 0.040
#> SRR1818554 1 0.4939 0.901 0.892 0.108
#> SRR1818549 1 0.1184 0.923 0.984 0.016
#> SRR1818548 1 0.4161 0.906 0.916 0.084
#> SRR1818546 2 0.4431 0.869 0.092 0.908
#> SRR1818547 1 0.3733 0.911 0.928 0.072
#> SRR1818544 1 0.6623 0.767 0.828 0.172
#> SRR1818543 1 0.0000 0.924 1.000 0.000
#> SRR1818542 2 1.0000 0.319 0.496 0.504
#> SRR1818545 1 0.2236 0.920 0.964 0.036
#> SRR1818541 1 0.0000 0.924 1.000 0.000
#> SRR1818539 1 0.1633 0.918 0.976 0.024
#> SRR1818540 2 0.7299 0.913 0.204 0.796
#> SRR1818536 1 0.1633 0.918 0.976 0.024
#> SRR1818535 1 0.1843 0.916 0.972 0.028
#> SRR1818534 1 0.4161 0.906 0.916 0.084
#> SRR1818538 2 0.6801 0.907 0.180 0.820
#> SRR1818537 1 0.1633 0.918 0.976 0.024
#> SRR1818533 1 0.0938 0.925 0.988 0.012
#> SRR1818532 1 0.0000 0.924 1.000 0.000
#> SRR1818531 1 0.7950 0.679 0.760 0.240
#> SRR1818530 2 0.5178 0.880 0.116 0.884
#> SRR1818529 2 0.9983 0.326 0.476 0.524
#> SRR1818528 1 0.0376 0.924 0.996 0.004
#> SRR1818527 1 0.7219 0.721 0.800 0.200
#> SRR1818526 1 0.3114 0.911 0.944 0.056
#> SRR1818525 1 0.7299 0.714 0.796 0.204
#> SRR1818523 1 0.4815 0.852 0.896 0.104
#> SRR1818524 1 0.4431 0.902 0.908 0.092
#> SRR1818522 1 0.1184 0.924 0.984 0.016
#> SRR1818521 2 0.7299 0.913 0.204 0.796
#> SRR1818520 2 0.5629 0.888 0.132 0.868
#> SRR1818518 1 0.0000 0.924 1.000 0.000
#> SRR1818519 1 0.4431 0.902 0.908 0.092
#> SRR1818517 2 0.7299 0.913 0.204 0.796
#> SRR1818516 1 0.4815 0.852 0.896 0.104
#> SRR1818515 1 0.4431 0.902 0.908 0.092
#> SRR1818514 2 0.5178 0.880 0.116 0.884
#> SRR1818513 2 0.7299 0.913 0.204 0.796
#> SRR1818512 2 0.5178 0.880 0.116 0.884
#> SRR1818510 2 0.7299 0.913 0.204 0.796
#> SRR1818511 2 0.7376 0.910 0.208 0.792
#> SRR1818508 1 0.6712 0.762 0.824 0.176
#> SRR1818509 2 0.7299 0.913 0.204 0.796
#> SRR1818507 1 0.4431 0.902 0.908 0.092
#> SRR1818506 1 0.0376 0.924 0.996 0.004
#> SRR1818505 1 0.6712 0.763 0.824 0.176
#> SRR1818503 1 0.0000 0.924 1.000 0.000
#> SRR1818504 2 0.5737 0.879 0.136 0.864
#> SRR1818502 1 0.0938 0.925 0.988 0.012
#> SRR1818498 2 0.5629 0.888 0.132 0.868
#> SRR1818500 2 0.5178 0.880 0.116 0.884
#> SRR1818501 1 0.4815 0.852 0.896 0.104
#> SRR1818499 1 0.0376 0.925 0.996 0.004
#> SRR1818496 2 0.8267 0.849 0.260 0.740
#> SRR1818494 1 0.0938 0.925 0.988 0.012
#> SRR1818495 1 0.2236 0.918 0.964 0.036
#> SRR1818493 2 0.7299 0.913 0.204 0.796
#> SRR1818492 1 0.0938 0.925 0.988 0.012
#> SRR1818491 1 0.6887 0.750 0.816 0.184
#> SRR1818490 1 0.0672 0.924 0.992 0.008
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1818497 2 0.9487 -0.32251 0.260 0.496 0.244
#> SRR1818600 1 0.8350 0.00234 0.600 0.120 0.280
#> SRR1818599 1 0.6448 0.30657 0.636 0.012 0.352
#> SRR1818598 1 0.7533 0.21072 0.668 0.088 0.244
#> SRR1818597 1 0.1964 0.57260 0.944 0.000 0.056
#> SRR1818596 1 0.6773 0.32222 0.636 0.024 0.340
#> SRR1818595 1 0.0592 0.57995 0.988 0.000 0.012
#> SRR1818594 1 0.0747 0.58096 0.984 0.000 0.016
#> SRR1818593 1 0.7487 0.04472 0.500 0.036 0.464
#> SRR1818592 1 0.6597 0.36206 0.664 0.024 0.312
#> SRR1818591 2 0.2681 0.75305 0.028 0.932 0.040
#> SRR1818590 2 0.3678 0.74087 0.028 0.892 0.080
#> SRR1818589 1 0.7674 -0.01281 0.484 0.044 0.472
#> SRR1818587 1 0.6112 0.44048 0.784 0.108 0.108
#> SRR1818586 2 0.1643 0.77028 0.044 0.956 0.000
#> SRR1818585 2 0.7648 0.54159 0.048 0.552 0.400
#> SRR1818584 1 0.9133 -0.35946 0.524 0.172 0.304
#> SRR1818583 1 0.1964 0.57383 0.944 0.000 0.056
#> SRR1818588 1 0.1289 0.58139 0.968 0.000 0.032
#> SRR1818582 1 0.6597 0.36206 0.664 0.024 0.312
#> SRR1818581 2 0.2681 0.75305 0.028 0.932 0.040
#> SRR1818579 1 0.8350 0.00234 0.600 0.120 0.280
#> SRR1818578 1 0.6402 0.37397 0.744 0.056 0.200
#> SRR1818577 2 0.1878 0.76886 0.044 0.952 0.004
#> SRR1818580 1 0.9331 -0.50464 0.480 0.176 0.344
#> SRR1818575 1 0.4092 0.54613 0.876 0.036 0.088
#> SRR1818574 1 0.5919 0.39044 0.712 0.012 0.276
#> SRR1818576 1 0.0747 0.57925 0.984 0.000 0.016
#> SRR1818573 1 0.7178 0.08653 0.512 0.024 0.464
#> SRR1818572 1 0.9738 -0.67325 0.444 0.252 0.304
#> SRR1818571 1 0.5061 0.44823 0.784 0.008 0.208
#> SRR1818570 1 0.1964 0.57260 0.944 0.000 0.056
#> SRR1818568 1 0.4423 0.53610 0.864 0.048 0.088
#> SRR1818567 2 0.1643 0.77028 0.044 0.956 0.000
#> SRR1818566 1 0.6051 0.37291 0.696 0.012 0.292
#> SRR1818569 2 0.7648 0.54159 0.048 0.552 0.400
#> SRR1818565 1 0.6051 0.37291 0.696 0.012 0.292
#> SRR1818564 1 0.1989 0.57146 0.948 0.004 0.048
#> SRR1818563 1 0.8203 0.10555 0.616 0.116 0.268
#> SRR1818561 1 0.6051 0.37291 0.696 0.012 0.292
#> SRR1818560 1 0.0592 0.57995 0.988 0.000 0.012
#> SRR1818559 1 0.6597 0.36206 0.664 0.024 0.312
#> SRR1818562 2 0.5119 0.65463 0.028 0.812 0.160
#> SRR1818558 1 0.6511 0.37839 0.760 0.104 0.136
#> SRR1818556 1 0.4883 0.42245 0.788 0.004 0.208
#> SRR1818557 1 0.6570 0.36525 0.668 0.024 0.308
#> SRR1818555 2 0.2681 0.75305 0.028 0.932 0.040
#> SRR1818553 1 0.1765 0.58125 0.956 0.004 0.040
#> SRR1818552 2 0.2663 0.76704 0.044 0.932 0.024
#> SRR1818551 1 0.2383 0.57639 0.940 0.016 0.044
#> SRR1818550 1 0.8141 0.12543 0.624 0.116 0.260
#> SRR1818554 1 0.7759 -0.03060 0.480 0.048 0.472
#> SRR1818549 1 0.2772 0.57109 0.916 0.004 0.080
#> SRR1818548 1 0.6597 0.36206 0.664 0.024 0.312
#> SRR1818546 2 0.7389 0.53970 0.036 0.556 0.408
#> SRR1818547 1 0.8909 -0.27589 0.476 0.124 0.400
#> SRR1818544 1 0.8026 0.06887 0.656 0.164 0.180
#> SRR1818543 1 0.0747 0.58038 0.984 0.000 0.016
#> SRR1818542 1 0.9731 -0.60511 0.444 0.308 0.248
#> SRR1818545 1 0.8141 0.12543 0.624 0.116 0.260
#> SRR1818541 1 0.2590 0.56274 0.924 0.004 0.072
#> SRR1818539 1 0.3193 0.53308 0.896 0.004 0.100
#> SRR1818540 2 0.1643 0.77028 0.044 0.956 0.000
#> SRR1818536 1 0.4861 0.45219 0.800 0.008 0.192
#> SRR1818535 1 0.2774 0.56370 0.920 0.008 0.072
#> SRR1818534 1 0.6597 0.36206 0.664 0.024 0.312
#> SRR1818538 2 0.5060 0.65860 0.028 0.816 0.156
#> SRR1818537 1 0.6067 0.35360 0.736 0.028 0.236
#> SRR1818533 1 0.3921 0.53689 0.884 0.036 0.080
#> SRR1818532 1 0.1163 0.58164 0.972 0.000 0.028
#> SRR1818531 1 0.9048 -0.33404 0.540 0.172 0.288
#> SRR1818530 2 0.7648 0.54159 0.048 0.552 0.400
#> SRR1818529 3 0.9891 0.00000 0.352 0.264 0.384
#> SRR1818528 1 0.1529 0.57505 0.960 0.000 0.040
#> SRR1818527 1 0.8219 -0.00186 0.640 0.180 0.180
#> SRR1818526 1 0.8645 -0.01418 0.568 0.132 0.300
#> SRR1818525 1 0.8219 -0.00186 0.640 0.180 0.180
#> SRR1818523 1 0.6161 0.37297 0.696 0.016 0.288
#> SRR1818524 1 0.6890 0.31596 0.632 0.028 0.340
#> SRR1818522 1 0.2492 0.57739 0.936 0.016 0.048
#> SRR1818521 2 0.1643 0.77028 0.044 0.956 0.000
#> SRR1818520 2 0.2982 0.74559 0.024 0.920 0.056
#> SRR1818518 1 0.0592 0.57995 0.988 0.000 0.012
#> SRR1818519 1 0.7748 0.25665 0.596 0.064 0.340
#> SRR1818517 2 0.3155 0.76241 0.044 0.916 0.040
#> SRR1818516 1 0.6161 0.37297 0.696 0.016 0.288
#> SRR1818515 1 0.7379 0.29082 0.616 0.048 0.336
#> SRR1818514 2 0.7648 0.54159 0.048 0.552 0.400
#> SRR1818513 2 0.1878 0.76992 0.044 0.952 0.004
#> SRR1818512 2 0.7648 0.54159 0.048 0.552 0.400
#> SRR1818510 2 0.1643 0.77028 0.044 0.956 0.000
#> SRR1818511 2 0.3263 0.76109 0.048 0.912 0.040
#> SRR1818508 1 0.8219 -0.00186 0.640 0.180 0.180
#> SRR1818509 2 0.3155 0.76241 0.044 0.916 0.040
#> SRR1818507 1 0.7620 0.26114 0.596 0.056 0.348
#> SRR1818506 1 0.1878 0.58087 0.952 0.004 0.044
#> SRR1818505 1 0.7451 0.21161 0.700 0.144 0.156
#> SRR1818503 1 0.2590 0.56274 0.924 0.004 0.072
#> SRR1818504 2 0.8526 0.46829 0.100 0.524 0.376
#> SRR1818502 1 0.3832 0.53859 0.888 0.036 0.076
#> SRR1818498 2 0.2982 0.74559 0.024 0.920 0.056
#> SRR1818500 2 0.7636 0.54340 0.048 0.556 0.396
#> SRR1818501 1 0.6161 0.37297 0.696 0.016 0.288
#> SRR1818499 1 0.2096 0.57113 0.944 0.004 0.052
#> SRR1818496 2 0.9487 -0.32251 0.260 0.496 0.244
#> SRR1818494 1 0.3832 0.53859 0.888 0.036 0.076
#> SRR1818495 1 0.6254 0.43151 0.776 0.108 0.116
#> SRR1818493 2 0.1643 0.77028 0.044 0.956 0.000
#> SRR1818492 1 0.5423 0.48287 0.820 0.084 0.096
#> SRR1818491 1 0.8219 -0.00186 0.640 0.180 0.180
#> SRR1818490 1 0.1411 0.58004 0.964 0.000 0.036
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1818497 1 0.9391 -0.12715 0.392 0.288 0.120 0.200
#> SRR1818600 1 0.7437 -0.14491 0.524 0.076 0.360 0.040
#> SRR1818599 3 0.7603 -0.18389 0.360 0.000 0.436 0.204
#> SRR1818598 1 0.6650 -0.05367 0.588 0.052 0.336 0.024
#> SRR1818597 1 0.4957 0.44979 0.776 0.000 0.112 0.112
#> SRR1818596 4 0.5268 0.35119 0.396 0.012 0.000 0.592
#> SRR1818595 1 0.4010 0.47742 0.836 0.000 0.100 0.064
#> SRR1818594 1 0.4093 0.47708 0.832 0.000 0.096 0.072
#> SRR1818593 4 0.7614 0.05389 0.196 0.012 0.256 0.536
#> SRR1818592 4 0.5290 0.34877 0.404 0.012 0.000 0.584
#> SRR1818591 2 0.1867 0.86083 0.000 0.928 0.072 0.000
#> SRR1818590 2 0.4470 0.80374 0.004 0.792 0.172 0.032
#> SRR1818589 4 0.7924 -0.03211 0.188 0.020 0.292 0.500
#> SRR1818587 1 0.4870 0.41230 0.816 0.080 0.048 0.056
#> SRR1818586 2 0.0707 0.88638 0.020 0.980 0.000 0.000
#> SRR1818585 4 0.8226 -0.02042 0.016 0.364 0.232 0.388
#> SRR1818584 1 0.7894 -0.20643 0.476 0.092 0.380 0.052
#> SRR1818583 1 0.4786 0.45624 0.788 0.000 0.108 0.104
#> SRR1818588 1 0.4791 0.47168 0.784 0.000 0.136 0.080
#> SRR1818582 4 0.5290 0.34877 0.404 0.012 0.000 0.584
#> SRR1818581 2 0.1867 0.86083 0.000 0.928 0.072 0.000
#> SRR1818579 1 0.7437 -0.14491 0.524 0.076 0.360 0.040
#> SRR1818578 1 0.5970 0.37265 0.732 0.032 0.076 0.160
#> SRR1818577 2 0.1510 0.88412 0.028 0.956 0.016 0.000
#> SRR1818580 1 0.8175 -0.26306 0.448 0.100 0.388 0.064
#> SRR1818575 1 0.3680 0.44785 0.876 0.036 0.040 0.048
#> SRR1818574 1 0.7605 -0.06741 0.416 0.000 0.384 0.200
#> SRR1818576 1 0.4130 0.47517 0.828 0.000 0.108 0.064
#> SRR1818573 4 0.7493 0.06473 0.192 0.012 0.240 0.556
#> SRR1818572 1 0.8077 -0.24226 0.456 0.108 0.384 0.052
#> SRR1818571 1 0.6901 0.02808 0.464 0.008 0.448 0.080
#> SRR1818570 1 0.4957 0.44979 0.776 0.000 0.112 0.112
#> SRR1818568 1 0.3773 0.44247 0.872 0.044 0.040 0.044
#> SRR1818567 2 0.1297 0.88601 0.020 0.964 0.016 0.000
#> SRR1818566 1 0.7666 -0.08970 0.396 0.000 0.392 0.212
#> SRR1818569 4 0.8226 -0.02042 0.016 0.364 0.232 0.388
#> SRR1818565 1 0.7666 -0.08970 0.396 0.000 0.392 0.212
#> SRR1818564 1 0.4939 0.44684 0.776 0.004 0.156 0.064
#> SRR1818563 1 0.7672 -0.14180 0.508 0.060 0.364 0.068
#> SRR1818561 1 0.7666 -0.08970 0.396 0.000 0.392 0.212
#> SRR1818560 1 0.4071 0.47628 0.832 0.000 0.104 0.064
#> SRR1818559 4 0.5290 0.34877 0.404 0.012 0.000 0.584
#> SRR1818562 2 0.6212 0.59095 0.024 0.620 0.324 0.032
#> SRR1818558 1 0.4452 0.39509 0.836 0.076 0.056 0.032
#> SRR1818556 1 0.5538 0.04173 0.596 0.008 0.384 0.012
#> SRR1818557 4 0.5290 0.34877 0.404 0.012 0.000 0.584
#> SRR1818555 2 0.1867 0.86083 0.000 0.928 0.072 0.000
#> SRR1818553 1 0.5171 0.45026 0.760 0.000 0.128 0.112
#> SRR1818552 2 0.2995 0.87365 0.020 0.900 0.064 0.016
#> SRR1818551 1 0.4764 0.46508 0.820 0.036 0.064 0.080
#> SRR1818550 1 0.7417 -0.11775 0.520 0.068 0.368 0.044
#> SRR1818554 4 0.7895 -0.02660 0.184 0.020 0.292 0.504
#> SRR1818549 1 0.5922 0.41304 0.704 0.004 0.184 0.108
#> SRR1818548 4 0.5290 0.34877 0.404 0.012 0.000 0.584
#> SRR1818546 4 0.8131 -0.02269 0.012 0.368 0.232 0.388
#> SRR1818547 3 0.8885 0.18003 0.348 0.056 0.372 0.224
#> SRR1818544 1 0.6481 0.29331 0.720 0.108 0.092 0.080
#> SRR1818543 1 0.3979 0.47972 0.844 0.004 0.096 0.056
#> SRR1818542 1 0.8595 0.02827 0.532 0.204 0.112 0.152
#> SRR1818545 1 0.7443 -0.12649 0.516 0.060 0.372 0.052
#> SRR1818541 1 0.0844 0.47528 0.980 0.004 0.012 0.004
#> SRR1818539 1 0.5317 0.39181 0.740 0.008 0.200 0.052
#> SRR1818540 2 0.0707 0.88638 0.020 0.980 0.000 0.000
#> SRR1818536 1 0.6901 0.02369 0.464 0.008 0.448 0.080
#> SRR1818535 1 0.5066 0.44308 0.768 0.000 0.112 0.120
#> SRR1818534 4 0.5290 0.34877 0.404 0.012 0.000 0.584
#> SRR1818538 2 0.5723 0.63107 0.008 0.648 0.312 0.032
#> SRR1818537 1 0.5598 -0.00621 0.632 0.012 0.340 0.016
#> SRR1818533 1 0.2221 0.45760 0.932 0.044 0.008 0.016
#> SRR1818532 1 0.4581 0.47186 0.800 0.000 0.120 0.080
#> SRR1818531 1 0.7770 -0.13223 0.520 0.096 0.336 0.048
#> SRR1818530 4 0.8226 -0.02042 0.016 0.364 0.232 0.388
#> SRR1818529 3 0.9211 0.21496 0.292 0.152 0.424 0.132
#> SRR1818528 1 0.3796 0.48613 0.848 0.000 0.096 0.056
#> SRR1818527 1 0.6890 0.27293 0.692 0.112 0.096 0.100
#> SRR1818526 1 0.8159 -0.00465 0.520 0.072 0.108 0.300
#> SRR1818525 1 0.6890 0.27293 0.692 0.112 0.096 0.100
#> SRR1818523 1 0.7716 -0.08946 0.396 0.000 0.380 0.224
#> SRR1818524 4 0.5253 0.34868 0.360 0.016 0.000 0.624
#> SRR1818522 1 0.5608 0.47169 0.760 0.024 0.120 0.096
#> SRR1818521 2 0.1406 0.88568 0.024 0.960 0.016 0.000
#> SRR1818520 2 0.2123 0.83954 0.004 0.936 0.032 0.028
#> SRR1818518 1 0.4261 0.47730 0.820 0.000 0.112 0.068
#> SRR1818519 4 0.6926 0.27129 0.392 0.032 0.048 0.528
#> SRR1818517 2 0.3668 0.86327 0.024 0.872 0.072 0.032
#> SRR1818516 1 0.7716 -0.08946 0.396 0.000 0.380 0.224
#> SRR1818515 4 0.6449 0.31232 0.360 0.028 0.032 0.580
#> SRR1818514 4 0.8226 -0.02042 0.016 0.364 0.232 0.388
#> SRR1818513 2 0.1631 0.88671 0.020 0.956 0.016 0.008
#> SRR1818512 4 0.8226 -0.02042 0.016 0.364 0.232 0.388
#> SRR1818510 2 0.0707 0.88638 0.020 0.980 0.000 0.000
#> SRR1818511 2 0.6147 0.69873 0.128 0.736 0.080 0.056
#> SRR1818508 1 0.6776 0.28132 0.700 0.112 0.096 0.092
#> SRR1818509 2 0.3668 0.86327 0.024 0.872 0.072 0.032
#> SRR1818507 4 0.6854 0.29130 0.364 0.032 0.048 0.556
#> SRR1818506 1 0.5326 0.45321 0.748 0.000 0.136 0.116
#> SRR1818505 1 0.6109 0.33064 0.744 0.088 0.068 0.100
#> SRR1818503 1 0.1247 0.47627 0.968 0.004 0.016 0.012
#> SRR1818504 4 0.8962 0.05232 0.072 0.312 0.204 0.412
#> SRR1818502 1 0.2443 0.45715 0.924 0.044 0.008 0.024
#> SRR1818498 2 0.2123 0.83954 0.004 0.936 0.032 0.028
#> SRR1818500 4 0.8199 -0.03253 0.016 0.376 0.224 0.384
#> SRR1818501 1 0.7716 -0.08946 0.396 0.000 0.380 0.224
#> SRR1818499 1 0.3877 0.48381 0.852 0.004 0.072 0.072
#> SRR1818496 1 0.9391 -0.12715 0.392 0.288 0.120 0.200
#> SRR1818494 1 0.2443 0.45715 0.924 0.044 0.008 0.024
#> SRR1818495 1 0.5021 0.41107 0.808 0.080 0.048 0.064
#> SRR1818493 2 0.1297 0.88601 0.020 0.964 0.016 0.000
#> SRR1818492 1 0.4665 0.42582 0.828 0.060 0.048 0.064
#> SRR1818491 1 0.6947 0.26724 0.688 0.112 0.100 0.100
#> SRR1818490 1 0.5171 0.45641 0.760 0.000 0.128 0.112
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1818497 1 0.9515 0.0688 0.348 0.172 0.132 0.124 0.224
#> SRR1818600 5 0.4318 0.7519 0.252 0.012 0.004 0.008 0.724
#> SRR1818599 3 0.8412 0.3642 0.256 0.000 0.320 0.272 0.152
#> SRR1818598 5 0.4109 0.7391 0.288 0.012 0.000 0.000 0.700
#> SRR1818597 1 0.2541 0.6478 0.900 0.000 0.020 0.068 0.012
#> SRR1818596 4 0.4734 0.7737 0.220 0.000 0.016 0.724 0.040
#> SRR1818595 1 0.0798 0.6739 0.976 0.000 0.016 0.008 0.000
#> SRR1818594 1 0.1469 0.6728 0.948 0.000 0.016 0.036 0.000
#> SRR1818593 4 0.5758 0.5366 0.056 0.000 0.020 0.572 0.352
#> SRR1818592 4 0.4673 0.7765 0.212 0.000 0.016 0.732 0.040
#> SRR1818591 2 0.1704 0.8342 0.000 0.928 0.000 0.004 0.068
#> SRR1818590 2 0.5078 0.7403 0.000 0.732 0.044 0.048 0.176
#> SRR1818589 4 0.5779 0.4732 0.056 0.000 0.016 0.532 0.396
#> SRR1818587 1 0.5637 0.5742 0.648 0.012 0.008 0.068 0.264
#> SRR1818586 2 0.0324 0.8518 0.004 0.992 0.000 0.004 0.000
#> SRR1818585 3 0.6396 0.3672 0.012 0.240 0.604 0.128 0.016
#> SRR1818584 5 0.4893 0.7449 0.236 0.016 0.028 0.008 0.712
#> SRR1818583 1 0.1774 0.6630 0.932 0.000 0.016 0.052 0.000
#> SRR1818588 1 0.3106 0.6457 0.872 0.000 0.020 0.028 0.080
#> SRR1818582 4 0.4673 0.7765 0.212 0.000 0.016 0.732 0.040
#> SRR1818581 2 0.1704 0.8342 0.000 0.928 0.000 0.004 0.068
#> SRR1818579 5 0.4344 0.7502 0.256 0.012 0.004 0.008 0.720
#> SRR1818578 1 0.5677 0.5688 0.704 0.004 0.044 0.088 0.160
#> SRR1818577 2 0.1565 0.8450 0.004 0.952 0.020 0.008 0.016
#> SRR1818580 5 0.4874 0.7457 0.232 0.012 0.028 0.012 0.716
#> SRR1818575 1 0.5158 0.5964 0.684 0.008 0.008 0.048 0.252
#> SRR1818574 3 0.8251 0.3766 0.300 0.000 0.316 0.268 0.116
#> SRR1818576 1 0.0798 0.6739 0.976 0.000 0.016 0.008 0.000
#> SRR1818573 4 0.5355 0.5603 0.064 0.000 0.008 0.636 0.292
#> SRR1818572 5 0.4957 0.7449 0.232 0.020 0.028 0.008 0.712
#> SRR1818571 5 0.5489 0.4045 0.420 0.000 0.012 0.040 0.528
#> SRR1818570 1 0.2541 0.6478 0.900 0.000 0.020 0.068 0.012
#> SRR1818568 1 0.5206 0.5906 0.676 0.008 0.008 0.048 0.260
#> SRR1818567 2 0.1460 0.8464 0.004 0.956 0.020 0.008 0.012
#> SRR1818566 3 0.8252 0.3846 0.292 0.000 0.320 0.272 0.116
#> SRR1818569 3 0.6396 0.3672 0.012 0.240 0.604 0.128 0.016
#> SRR1818565 3 0.8252 0.3846 0.292 0.000 0.320 0.272 0.116
#> SRR1818564 1 0.1306 0.6668 0.960 0.000 0.016 0.008 0.016
#> SRR1818563 5 0.4145 0.7156 0.188 0.012 0.000 0.028 0.772
#> SRR1818561 3 0.8252 0.3846 0.292 0.000 0.320 0.272 0.116
#> SRR1818560 1 0.0798 0.6739 0.976 0.000 0.016 0.008 0.000
#> SRR1818559 4 0.4673 0.7765 0.212 0.000 0.016 0.732 0.040
#> SRR1818562 2 0.6549 0.4112 0.012 0.476 0.044 0.048 0.420
#> SRR1818558 1 0.5004 0.5120 0.676 0.012 0.004 0.032 0.276
#> SRR1818556 5 0.4264 0.6700 0.376 0.000 0.004 0.000 0.620
#> SRR1818557 4 0.4673 0.7765 0.212 0.000 0.016 0.732 0.040
#> SRR1818555 2 0.1704 0.8342 0.000 0.928 0.000 0.004 0.068
#> SRR1818553 1 0.3510 0.6312 0.856 0.000 0.032 0.048 0.064
#> SRR1818552 2 0.3621 0.8125 0.004 0.856 0.040 0.044 0.056
#> SRR1818551 1 0.4280 0.6519 0.788 0.008 0.008 0.044 0.152
#> SRR1818550 5 0.4370 0.7112 0.196 0.012 0.004 0.028 0.760
#> SRR1818554 4 0.5779 0.4732 0.056 0.000 0.016 0.532 0.396
#> SRR1818549 1 0.4084 0.5982 0.816 0.000 0.032 0.048 0.104
#> SRR1818548 4 0.4673 0.7765 0.212 0.000 0.016 0.732 0.040
#> SRR1818546 3 0.6381 0.3631 0.008 0.240 0.604 0.128 0.020
#> SRR1818547 5 0.4811 0.4684 0.072 0.008 0.008 0.160 0.752
#> SRR1818544 1 0.6460 0.4209 0.592 0.016 0.040 0.064 0.288
#> SRR1818543 1 0.1498 0.6764 0.952 0.000 0.016 0.008 0.024
#> SRR1818542 1 0.8171 0.3413 0.512 0.068 0.120 0.080 0.220
#> SRR1818545 5 0.4096 0.7159 0.192 0.012 0.000 0.024 0.772
#> SRR1818541 1 0.3308 0.6460 0.832 0.004 0.000 0.020 0.144
#> SRR1818539 1 0.3059 0.5561 0.856 0.000 0.016 0.008 0.120
#> SRR1818540 2 0.0324 0.8518 0.004 0.992 0.000 0.004 0.000
#> SRR1818536 5 0.5458 0.4047 0.424 0.000 0.008 0.044 0.524
#> SRR1818535 1 0.2666 0.6435 0.892 0.000 0.020 0.076 0.012
#> SRR1818534 4 0.4673 0.7765 0.212 0.000 0.016 0.732 0.040
#> SRR1818538 2 0.6108 0.4756 0.000 0.516 0.044 0.044 0.396
#> SRR1818537 5 0.4066 0.7166 0.324 0.004 0.000 0.000 0.672
#> SRR1818533 1 0.4065 0.6008 0.760 0.008 0.000 0.020 0.212
#> SRR1818532 1 0.2958 0.6488 0.880 0.000 0.020 0.024 0.076
#> SRR1818531 5 0.5118 0.7113 0.272 0.016 0.028 0.008 0.676
#> SRR1818530 3 0.6396 0.3672 0.012 0.240 0.604 0.128 0.016
#> SRR1818529 5 0.6623 0.6050 0.132 0.056 0.100 0.044 0.668
#> SRR1818528 1 0.2520 0.6790 0.896 0.000 0.000 0.056 0.048
#> SRR1818527 1 0.6841 0.3941 0.568 0.028 0.044 0.068 0.292
#> SRR1818526 5 0.7838 -0.1619 0.232 0.020 0.032 0.336 0.380
#> SRR1818525 1 0.6904 0.3873 0.564 0.028 0.048 0.068 0.292
#> SRR1818523 3 0.8285 0.3842 0.284 0.000 0.304 0.292 0.120
#> SRR1818524 4 0.4588 0.7533 0.180 0.000 0.024 0.756 0.040
#> SRR1818522 1 0.4628 0.6477 0.784 0.008 0.016 0.088 0.104
#> SRR1818521 2 0.1460 0.8464 0.004 0.956 0.020 0.008 0.012
#> SRR1818520 2 0.0566 0.8466 0.000 0.984 0.012 0.004 0.000
#> SRR1818518 1 0.1117 0.6746 0.964 0.000 0.016 0.020 0.000
#> SRR1818519 4 0.6738 0.6212 0.228 0.008 0.024 0.572 0.168
#> SRR1818517 2 0.4288 0.7926 0.004 0.816 0.044 0.060 0.076
#> SRR1818516 3 0.8285 0.3842 0.284 0.000 0.304 0.292 0.120
#> SRR1818515 4 0.6410 0.6888 0.196 0.008 0.032 0.628 0.136
#> SRR1818514 3 0.6396 0.3672 0.012 0.240 0.604 0.128 0.016
#> SRR1818513 2 0.0613 0.8527 0.004 0.984 0.008 0.000 0.004
#> SRR1818512 3 0.6396 0.3672 0.012 0.240 0.604 0.128 0.016
#> SRR1818510 2 0.0324 0.8518 0.004 0.992 0.000 0.004 0.000
#> SRR1818511 2 0.7583 0.4891 0.172 0.584 0.052 0.100 0.092
#> SRR1818508 1 0.6578 0.4119 0.584 0.024 0.036 0.064 0.292
#> SRR1818509 2 0.4288 0.7926 0.004 0.816 0.044 0.060 0.076
#> SRR1818507 4 0.6735 0.6383 0.192 0.008 0.028 0.584 0.188
#> SRR1818506 1 0.3758 0.6331 0.840 0.000 0.028 0.060 0.072
#> SRR1818505 1 0.6465 0.4643 0.608 0.016 0.044 0.068 0.264
#> SRR1818503 1 0.3484 0.6448 0.824 0.004 0.000 0.028 0.144
#> SRR1818504 3 0.7489 0.3557 0.060 0.204 0.544 0.172 0.020
#> SRR1818502 1 0.4237 0.5983 0.752 0.008 0.000 0.028 0.212
#> SRR1818498 2 0.0566 0.8466 0.000 0.984 0.012 0.004 0.000
#> SRR1818500 3 0.6790 0.3524 0.020 0.240 0.572 0.152 0.016
#> SRR1818501 3 0.8285 0.3842 0.284 0.000 0.304 0.292 0.120
#> SRR1818499 1 0.3517 0.6687 0.856 0.004 0.016 0.064 0.060
#> SRR1818496 1 0.9515 0.0688 0.348 0.172 0.132 0.124 0.224
#> SRR1818494 1 0.4237 0.5983 0.752 0.008 0.000 0.028 0.212
#> SRR1818495 1 0.5944 0.5611 0.628 0.016 0.008 0.084 0.264
#> SRR1818493 2 0.1460 0.8464 0.004 0.956 0.020 0.008 0.012
#> SRR1818492 1 0.5827 0.5702 0.636 0.012 0.008 0.084 0.260
#> SRR1818491 1 0.6748 0.4063 0.576 0.024 0.044 0.068 0.288
#> SRR1818490 1 0.3674 0.6300 0.844 0.000 0.024 0.068 0.064
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1818497 1 0.8721 0.240 0.396 0.076 0.032 0.140 0.180 0.176
#> SRR1818600 6 0.3402 0.720 0.196 0.004 0.000 0.008 0.008 0.784
#> SRR1818599 3 0.3760 0.975 0.140 0.000 0.800 0.036 0.004 0.020
#> SRR1818598 6 0.3163 0.707 0.232 0.000 0.000 0.000 0.004 0.764
#> SRR1818597 1 0.2638 0.690 0.888 0.000 0.068 0.020 0.012 0.012
#> SRR1818596 4 0.4668 0.772 0.140 0.004 0.040 0.756 0.048 0.012
#> SRR1818595 1 0.1075 0.709 0.952 0.000 0.048 0.000 0.000 0.000
#> SRR1818594 1 0.1644 0.708 0.932 0.000 0.052 0.012 0.004 0.000
#> SRR1818593 4 0.4566 0.661 0.008 0.000 0.036 0.708 0.020 0.228
#> SRR1818592 4 0.4668 0.772 0.140 0.004 0.040 0.756 0.048 0.012
#> SRR1818591 2 0.1194 0.854 0.000 0.956 0.000 0.004 0.008 0.032
#> SRR1818590 2 0.5807 0.703 0.000 0.680 0.104 0.060 0.036 0.120
#> SRR1818589 4 0.4910 0.607 0.008 0.000 0.036 0.656 0.024 0.276
#> SRR1818587 1 0.5371 0.634 0.684 0.004 0.020 0.076 0.024 0.192
#> SRR1818586 2 0.0653 0.859 0.000 0.980 0.004 0.004 0.012 0.000
#> SRR1818585 5 0.2500 0.961 0.004 0.116 0.000 0.012 0.868 0.000
#> SRR1818584 6 0.4048 0.712 0.180 0.008 0.004 0.012 0.028 0.768
#> SRR1818583 1 0.1738 0.706 0.928 0.000 0.052 0.016 0.004 0.000
#> SRR1818588 1 0.3778 0.669 0.812 0.000 0.048 0.020 0.008 0.112
#> SRR1818582 4 0.4668 0.772 0.140 0.004 0.040 0.756 0.048 0.012
#> SRR1818581 2 0.1194 0.854 0.000 0.956 0.000 0.004 0.008 0.032
#> SRR1818579 6 0.3639 0.718 0.196 0.004 0.004 0.012 0.008 0.776
#> SRR1818578 1 0.4551 0.645 0.772 0.000 0.016 0.040 0.076 0.096
#> SRR1818577 2 0.2534 0.836 0.000 0.900 0.044 0.024 0.016 0.016
#> SRR1818580 6 0.3798 0.716 0.184 0.004 0.004 0.008 0.024 0.776
#> SRR1818575 1 0.4666 0.651 0.724 0.000 0.016 0.060 0.012 0.188
#> SRR1818574 3 0.3497 0.985 0.156 0.000 0.800 0.036 0.000 0.008
#> SRR1818576 1 0.1219 0.708 0.948 0.000 0.048 0.000 0.004 0.000
#> SRR1818573 4 0.4597 0.679 0.028 0.000 0.020 0.732 0.028 0.192
#> SRR1818572 6 0.4015 0.714 0.176 0.008 0.004 0.012 0.028 0.772
#> SRR1818571 6 0.5102 0.461 0.328 0.000 0.020 0.024 0.020 0.608
#> SRR1818570 1 0.2638 0.690 0.888 0.000 0.068 0.020 0.012 0.012
#> SRR1818568 1 0.4751 0.648 0.716 0.000 0.016 0.064 0.012 0.192
#> SRR1818567 2 0.2196 0.841 0.000 0.916 0.040 0.020 0.012 0.012
#> SRR1818566 3 0.3601 0.989 0.152 0.000 0.800 0.036 0.004 0.008
#> SRR1818569 5 0.2500 0.961 0.004 0.116 0.000 0.012 0.868 0.000
#> SRR1818565 3 0.3601 0.989 0.152 0.000 0.800 0.036 0.004 0.008
#> SRR1818564 1 0.1590 0.705 0.936 0.000 0.048 0.000 0.008 0.008
#> SRR1818563 6 0.3963 0.654 0.120 0.000 0.012 0.048 0.020 0.800
#> SRR1818561 3 0.3601 0.989 0.152 0.000 0.800 0.036 0.004 0.008
#> SRR1818560 1 0.1219 0.708 0.948 0.000 0.048 0.000 0.004 0.000
#> SRR1818559 4 0.4668 0.772 0.140 0.004 0.040 0.756 0.048 0.012
#> SRR1818562 6 0.7127 -0.133 0.004 0.348 0.100 0.060 0.040 0.448
#> SRR1818558 1 0.5422 0.462 0.624 0.008 0.012 0.044 0.024 0.288
#> SRR1818556 6 0.3653 0.664 0.300 0.000 0.000 0.000 0.008 0.692
#> SRR1818557 4 0.4668 0.772 0.140 0.004 0.040 0.756 0.048 0.012
#> SRR1818555 2 0.1194 0.854 0.000 0.956 0.000 0.004 0.008 0.032
#> SRR1818553 1 0.3932 0.658 0.808 0.000 0.064 0.020 0.012 0.096
#> SRR1818552 2 0.5051 0.742 0.000 0.740 0.104 0.056 0.024 0.076
#> SRR1818551 1 0.3701 0.684 0.804 0.000 0.016 0.024 0.012 0.144
#> SRR1818550 6 0.3957 0.653 0.132 0.000 0.012 0.040 0.020 0.796
#> SRR1818554 4 0.4910 0.607 0.008 0.000 0.036 0.656 0.024 0.276
#> SRR1818549 1 0.4200 0.649 0.792 0.000 0.064 0.020 0.020 0.104
#> SRR1818548 4 0.4668 0.772 0.140 0.004 0.040 0.756 0.048 0.012
#> SRR1818546 5 0.2500 0.961 0.004 0.116 0.000 0.012 0.868 0.000
#> SRR1818547 6 0.4434 0.464 0.016 0.000 0.032 0.164 0.032 0.756
#> SRR1818544 1 0.6733 0.337 0.512 0.008 0.016 0.104 0.056 0.304
#> SRR1818543 1 0.1788 0.707 0.928 0.000 0.040 0.000 0.004 0.028
#> SRR1818542 1 0.7869 0.377 0.504 0.048 0.032 0.092 0.152 0.172
#> SRR1818545 6 0.3957 0.653 0.132 0.000 0.012 0.040 0.020 0.796
#> SRR1818541 1 0.2622 0.692 0.880 0.000 0.008 0.016 0.008 0.088
#> SRR1818539 1 0.2675 0.682 0.876 0.000 0.040 0.000 0.008 0.076
#> SRR1818540 2 0.0405 0.860 0.000 0.988 0.004 0.000 0.008 0.000
#> SRR1818536 6 0.5050 0.468 0.336 0.000 0.020 0.024 0.016 0.604
#> SRR1818535 1 0.2152 0.692 0.904 0.000 0.068 0.024 0.004 0.000
#> SRR1818534 4 0.4668 0.772 0.140 0.004 0.040 0.756 0.048 0.012
#> SRR1818538 6 0.6980 -0.215 0.000 0.384 0.100 0.060 0.036 0.420
#> SRR1818537 6 0.3421 0.694 0.256 0.000 0.000 0.000 0.008 0.736
#> SRR1818533 1 0.3491 0.663 0.812 0.000 0.008 0.028 0.008 0.144
#> SRR1818532 1 0.3778 0.669 0.812 0.000 0.048 0.020 0.008 0.112
#> SRR1818531 6 0.4716 0.682 0.192 0.008 0.008 0.028 0.036 0.728
#> SRR1818530 5 0.2500 0.961 0.004 0.116 0.000 0.012 0.868 0.000
#> SRR1818529 6 0.5978 0.612 0.108 0.032 0.020 0.044 0.112 0.684
#> SRR1818528 1 0.3077 0.695 0.864 0.000 0.004 0.064 0.024 0.044
#> SRR1818527 1 0.6948 0.271 0.476 0.012 0.012 0.100 0.072 0.328
#> SRR1818526 4 0.7561 0.185 0.128 0.008 0.048 0.416 0.064 0.336
#> SRR1818525 1 0.6921 0.301 0.488 0.012 0.012 0.100 0.072 0.316
#> SRR1818523 3 0.4002 0.987 0.148 0.000 0.784 0.044 0.012 0.012
#> SRR1818524 4 0.4161 0.753 0.088 0.004 0.036 0.804 0.056 0.012
#> SRR1818522 1 0.4793 0.668 0.752 0.004 0.012 0.088 0.032 0.112
#> SRR1818521 2 0.2466 0.836 0.000 0.904 0.040 0.024 0.016 0.016
#> SRR1818520 2 0.0748 0.858 0.000 0.976 0.004 0.004 0.016 0.000
#> SRR1818518 1 0.1333 0.711 0.944 0.000 0.048 0.008 0.000 0.000
#> SRR1818519 4 0.5528 0.675 0.104 0.004 0.044 0.712 0.040 0.096
#> SRR1818517 2 0.5608 0.717 0.000 0.704 0.104 0.068 0.044 0.080
#> SRR1818516 3 0.4002 0.987 0.148 0.000 0.784 0.044 0.012 0.012
#> SRR1818515 4 0.4908 0.706 0.076 0.008 0.044 0.768 0.040 0.064
#> SRR1818514 5 0.2500 0.961 0.004 0.116 0.000 0.012 0.868 0.000
#> SRR1818513 2 0.0653 0.859 0.000 0.980 0.012 0.004 0.004 0.000
#> SRR1818512 5 0.2500 0.961 0.004 0.116 0.000 0.012 0.868 0.000
#> SRR1818510 2 0.0363 0.859 0.000 0.988 0.000 0.000 0.012 0.000
#> SRR1818511 2 0.8857 0.303 0.196 0.408 0.104 0.132 0.060 0.100
#> SRR1818508 1 0.6737 0.325 0.504 0.012 0.012 0.100 0.056 0.316
#> SRR1818509 2 0.5608 0.717 0.000 0.704 0.104 0.068 0.044 0.080
#> SRR1818507 4 0.5421 0.688 0.080 0.008 0.040 0.728 0.048 0.096
#> SRR1818506 1 0.4175 0.662 0.796 0.000 0.060 0.036 0.012 0.096
#> SRR1818505 1 0.6588 0.434 0.560 0.008 0.012 0.104 0.068 0.248
#> SRR1818503 1 0.2869 0.691 0.868 0.000 0.008 0.028 0.008 0.088
#> SRR1818504 5 0.4439 0.860 0.036 0.080 0.012 0.068 0.792 0.012
#> SRR1818502 1 0.3801 0.659 0.796 0.000 0.008 0.040 0.012 0.144
#> SRR1818498 2 0.0458 0.858 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1818500 5 0.3815 0.879 0.004 0.096 0.012 0.084 0.804 0.000
#> SRR1818501 3 0.4002 0.987 0.148 0.000 0.784 0.044 0.012 0.012
#> SRR1818499 1 0.4030 0.672 0.808 0.004 0.004 0.084 0.040 0.060
#> SRR1818496 1 0.8721 0.240 0.396 0.076 0.032 0.140 0.180 0.176
#> SRR1818494 1 0.3831 0.659 0.796 0.000 0.012 0.036 0.012 0.144
#> SRR1818495 1 0.6135 0.600 0.620 0.004 0.020 0.120 0.040 0.196
#> SRR1818493 2 0.2395 0.838 0.000 0.908 0.036 0.024 0.016 0.016
#> SRR1818492 1 0.6030 0.603 0.628 0.004 0.016 0.120 0.040 0.192
#> SRR1818491 1 0.6892 0.314 0.496 0.012 0.012 0.104 0.068 0.308
#> SRR1818490 1 0.3540 0.669 0.828 0.000 0.064 0.016 0.004 0.088
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 16183 rows and 111 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.890 0.915 0.965 0.4943 0.514 0.514
#> 3 3 0.506 0.545 0.787 0.3244 0.805 0.635
#> 4 4 0.716 0.749 0.877 0.1286 0.832 0.575
#> 5 5 0.745 0.663 0.810 0.0700 0.932 0.753
#> 6 6 0.771 0.668 0.796 0.0472 0.903 0.598
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1818497 2 0.000 0.987 0.000 1.000
#> SRR1818600 1 0.998 0.119 0.528 0.472
#> SRR1818599 1 0.000 0.946 1.000 0.000
#> SRR1818598 1 0.000 0.946 1.000 0.000
#> SRR1818597 1 0.000 0.946 1.000 0.000
#> SRR1818596 1 0.000 0.946 1.000 0.000
#> SRR1818595 1 0.000 0.946 1.000 0.000
#> SRR1818594 1 0.000 0.946 1.000 0.000
#> SRR1818593 1 0.000 0.946 1.000 0.000
#> SRR1818592 1 0.000 0.946 1.000 0.000
#> SRR1818591 2 0.000 0.987 0.000 1.000
#> SRR1818590 2 0.000 0.987 0.000 1.000
#> SRR1818589 1 0.000 0.946 1.000 0.000
#> SRR1818587 1 0.913 0.552 0.672 0.328
#> SRR1818586 2 0.000 0.987 0.000 1.000
#> SRR1818585 2 0.000 0.987 0.000 1.000
#> SRR1818584 2 0.000 0.987 0.000 1.000
#> SRR1818583 1 0.000 0.946 1.000 0.000
#> SRR1818588 1 0.000 0.946 1.000 0.000
#> SRR1818582 1 0.000 0.946 1.000 0.000
#> SRR1818581 2 0.000 0.987 0.000 1.000
#> SRR1818579 1 0.998 0.119 0.528 0.472
#> SRR1818578 2 0.000 0.987 0.000 1.000
#> SRR1818577 2 0.000 0.987 0.000 1.000
#> SRR1818580 2 0.000 0.987 0.000 1.000
#> SRR1818575 1 0.000 0.946 1.000 0.000
#> SRR1818574 1 0.000 0.946 1.000 0.000
#> SRR1818576 1 0.000 0.946 1.000 0.000
#> SRR1818573 1 0.000 0.946 1.000 0.000
#> SRR1818572 2 0.000 0.987 0.000 1.000
#> SRR1818571 1 0.000 0.946 1.000 0.000
#> SRR1818570 1 0.000 0.946 1.000 0.000
#> SRR1818568 1 0.000 0.946 1.000 0.000
#> SRR1818567 2 0.000 0.987 0.000 1.000
#> SRR1818566 1 0.000 0.946 1.000 0.000
#> SRR1818569 2 0.000 0.987 0.000 1.000
#> SRR1818565 1 0.000 0.946 1.000 0.000
#> SRR1818564 1 0.000 0.946 1.000 0.000
#> SRR1818563 1 0.000 0.946 1.000 0.000
#> SRR1818561 1 0.000 0.946 1.000 0.000
#> SRR1818560 1 0.000 0.946 1.000 0.000
#> SRR1818559 1 0.000 0.946 1.000 0.000
#> SRR1818562 2 0.000 0.987 0.000 1.000
#> SRR1818558 2 0.821 0.634 0.256 0.744
#> SRR1818556 1 0.000 0.946 1.000 0.000
#> SRR1818557 1 0.000 0.946 1.000 0.000
#> SRR1818555 2 0.000 0.987 0.000 1.000
#> SRR1818553 1 0.000 0.946 1.000 0.000
#> SRR1818552 2 0.000 0.987 0.000 1.000
#> SRR1818551 1 0.000 0.946 1.000 0.000
#> SRR1818550 1 0.000 0.946 1.000 0.000
#> SRR1818554 1 0.000 0.946 1.000 0.000
#> SRR1818549 1 0.000 0.946 1.000 0.000
#> SRR1818548 1 0.000 0.946 1.000 0.000
#> SRR1818546 2 0.000 0.987 0.000 1.000
#> SRR1818547 1 0.000 0.946 1.000 0.000
#> SRR1818544 2 0.000 0.987 0.000 1.000
#> SRR1818543 1 0.000 0.946 1.000 0.000
#> SRR1818542 2 0.000 0.987 0.000 1.000
#> SRR1818545 1 0.000 0.946 1.000 0.000
#> SRR1818541 1 0.000 0.946 1.000 0.000
#> SRR1818539 1 0.000 0.946 1.000 0.000
#> SRR1818540 2 0.000 0.987 0.000 1.000
#> SRR1818536 1 0.000 0.946 1.000 0.000
#> SRR1818535 1 0.000 0.946 1.000 0.000
#> SRR1818534 1 0.000 0.946 1.000 0.000
#> SRR1818538 2 0.000 0.987 0.000 1.000
#> SRR1818537 1 0.000 0.946 1.000 0.000
#> SRR1818533 1 0.000 0.946 1.000 0.000
#> SRR1818532 1 0.000 0.946 1.000 0.000
#> SRR1818531 2 0.000 0.987 0.000 1.000
#> SRR1818530 2 0.000 0.987 0.000 1.000
#> SRR1818529 2 0.000 0.987 0.000 1.000
#> SRR1818528 1 0.000 0.946 1.000 0.000
#> SRR1818527 2 0.000 0.987 0.000 1.000
#> SRR1818526 1 0.925 0.529 0.660 0.340
#> SRR1818525 2 0.000 0.987 0.000 1.000
#> SRR1818523 1 0.000 0.946 1.000 0.000
#> SRR1818524 1 0.706 0.756 0.808 0.192
#> SRR1818522 1 0.814 0.677 0.748 0.252
#> SRR1818521 2 0.000 0.987 0.000 1.000
#> SRR1818520 2 0.000 0.987 0.000 1.000
#> SRR1818518 1 0.000 0.946 1.000 0.000
#> SRR1818519 1 0.925 0.529 0.660 0.340
#> SRR1818517 2 0.000 0.987 0.000 1.000
#> SRR1818516 1 0.000 0.946 1.000 0.000
#> SRR1818515 1 0.802 0.688 0.756 0.244
#> SRR1818514 2 0.000 0.987 0.000 1.000
#> SRR1818513 2 0.000 0.987 0.000 1.000
#> SRR1818512 2 0.000 0.987 0.000 1.000
#> SRR1818510 2 0.000 0.987 0.000 1.000
#> SRR1818511 2 0.000 0.987 0.000 1.000
#> SRR1818508 2 0.000 0.987 0.000 1.000
#> SRR1818509 2 0.000 0.987 0.000 1.000
#> SRR1818507 1 0.925 0.529 0.660 0.340
#> SRR1818506 1 0.000 0.946 1.000 0.000
#> SRR1818505 2 0.000 0.987 0.000 1.000
#> SRR1818503 1 0.000 0.946 1.000 0.000
#> SRR1818504 2 0.000 0.987 0.000 1.000
#> SRR1818502 1 0.000 0.946 1.000 0.000
#> SRR1818498 2 0.000 0.987 0.000 1.000
#> SRR1818500 2 0.000 0.987 0.000 1.000
#> SRR1818501 1 0.000 0.946 1.000 0.000
#> SRR1818499 1 0.949 0.474 0.632 0.368
#> SRR1818496 2 0.000 0.987 0.000 1.000
#> SRR1818494 1 0.000 0.946 1.000 0.000
#> SRR1818495 2 0.855 0.570 0.280 0.720
#> SRR1818493 2 0.000 0.987 0.000 1.000
#> SRR1818492 1 0.000 0.946 1.000 0.000
#> SRR1818491 2 0.000 0.987 0.000 1.000
#> SRR1818490 1 0.000 0.946 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1818497 2 0.0747 0.81317 0.000 0.984 0.016
#> SRR1818600 3 0.3234 0.49819 0.072 0.020 0.908
#> SRR1818599 1 0.1643 0.69684 0.956 0.000 0.044
#> SRR1818598 3 0.5810 0.25916 0.336 0.000 0.664
#> SRR1818597 1 0.0000 0.71122 1.000 0.000 0.000
#> SRR1818596 1 0.6282 0.29832 0.612 0.004 0.384
#> SRR1818595 1 0.3816 0.69364 0.852 0.000 0.148
#> SRR1818594 1 0.0237 0.71208 0.996 0.000 0.004
#> SRR1818593 3 0.5178 0.41621 0.256 0.000 0.744
#> SRR1818592 1 0.6062 0.30500 0.616 0.000 0.384
#> SRR1818591 2 0.5760 0.44837 0.000 0.672 0.328
#> SRR1818590 2 0.5810 0.43588 0.000 0.664 0.336
#> SRR1818589 3 0.5178 0.41621 0.256 0.000 0.744
#> SRR1818587 1 0.9901 0.03011 0.404 0.300 0.296
#> SRR1818586 2 0.0000 0.81620 0.000 1.000 0.000
#> SRR1818585 2 0.0747 0.81317 0.000 0.984 0.016
#> SRR1818584 3 0.6026 0.11716 0.000 0.376 0.624
#> SRR1818583 1 0.0237 0.71208 0.996 0.000 0.004
#> SRR1818588 1 0.3340 0.70192 0.880 0.000 0.120
#> SRR1818582 1 0.6062 0.30500 0.616 0.000 0.384
#> SRR1818581 2 0.5785 0.44238 0.000 0.668 0.332
#> SRR1818579 3 0.6025 0.39072 0.232 0.028 0.740
#> SRR1818578 2 0.6416 0.44624 0.260 0.708 0.032
#> SRR1818577 2 0.0000 0.81620 0.000 1.000 0.000
#> SRR1818580 3 0.6267 -0.06155 0.000 0.452 0.548
#> SRR1818575 1 0.5465 0.59886 0.712 0.000 0.288
#> SRR1818574 1 0.1031 0.70400 0.976 0.000 0.024
#> SRR1818576 1 0.3816 0.69364 0.852 0.000 0.148
#> SRR1818573 3 0.5178 0.41621 0.256 0.000 0.744
#> SRR1818572 3 0.6252 -0.04128 0.000 0.444 0.556
#> SRR1818571 1 0.6126 0.01055 0.600 0.000 0.400
#> SRR1818570 1 0.0000 0.71122 1.000 0.000 0.000
#> SRR1818568 1 0.5465 0.59886 0.712 0.000 0.288
#> SRR1818567 2 0.0000 0.81620 0.000 1.000 0.000
#> SRR1818566 1 0.1289 0.70068 0.968 0.000 0.032
#> SRR1818569 2 0.0747 0.81317 0.000 0.984 0.016
#> SRR1818565 1 0.1289 0.70068 0.968 0.000 0.032
#> SRR1818564 1 0.4062 0.68531 0.836 0.000 0.164
#> SRR1818563 3 0.2339 0.50597 0.048 0.012 0.940
#> SRR1818561 1 0.1289 0.70068 0.968 0.000 0.032
#> SRR1818560 1 0.3941 0.68969 0.844 0.000 0.156
#> SRR1818559 1 0.6062 0.30500 0.616 0.000 0.384
#> SRR1818562 2 0.5988 0.37889 0.000 0.632 0.368
#> SRR1818558 1 0.7470 0.48711 0.612 0.052 0.336
#> SRR1818556 3 0.5948 0.21671 0.360 0.000 0.640
#> SRR1818557 1 0.6062 0.30500 0.616 0.000 0.384
#> SRR1818555 2 0.5785 0.44238 0.000 0.668 0.332
#> SRR1818553 1 0.0424 0.71235 0.992 0.000 0.008
#> SRR1818552 2 0.0000 0.81620 0.000 1.000 0.000
#> SRR1818551 1 0.3482 0.70195 0.872 0.000 0.128
#> SRR1818550 3 0.5848 0.36153 0.268 0.012 0.720
#> SRR1818554 3 0.5178 0.41621 0.256 0.000 0.744
#> SRR1818549 1 0.0424 0.71235 0.992 0.000 0.008
#> SRR1818548 1 0.6062 0.30500 0.616 0.000 0.384
#> SRR1818546 2 0.0747 0.81317 0.000 0.984 0.016
#> SRR1818547 3 0.2339 0.50679 0.048 0.012 0.940
#> SRR1818544 2 0.5138 0.56904 0.000 0.748 0.252
#> SRR1818543 1 0.4291 0.67467 0.820 0.000 0.180
#> SRR1818542 2 0.0747 0.81317 0.000 0.984 0.016
#> SRR1818545 3 0.5848 0.36153 0.268 0.012 0.720
#> SRR1818541 1 0.5178 0.60591 0.744 0.000 0.256
#> SRR1818539 1 0.4399 0.67347 0.812 0.000 0.188
#> SRR1818540 2 0.0000 0.81620 0.000 1.000 0.000
#> SRR1818536 1 0.6140 0.00335 0.596 0.000 0.404
#> SRR1818535 1 0.0237 0.71038 0.996 0.000 0.004
#> SRR1818534 1 0.6062 0.30500 0.616 0.000 0.384
#> SRR1818538 2 0.5988 0.37889 0.000 0.632 0.368
#> SRR1818537 3 0.5882 0.24009 0.348 0.000 0.652
#> SRR1818533 1 0.5216 0.60466 0.740 0.000 0.260
#> SRR1818532 1 0.3340 0.70192 0.880 0.000 0.120
#> SRR1818531 3 0.6026 0.11716 0.000 0.376 0.624
#> SRR1818530 2 0.0747 0.81317 0.000 0.984 0.016
#> SRR1818529 2 0.6192 0.31061 0.000 0.580 0.420
#> SRR1818528 1 0.4291 0.67467 0.820 0.000 0.180
#> SRR1818527 2 0.5138 0.56904 0.000 0.748 0.252
#> SRR1818526 3 0.7002 0.36136 0.048 0.280 0.672
#> SRR1818525 2 0.5138 0.56904 0.000 0.748 0.252
#> SRR1818523 1 0.1289 0.70068 0.968 0.000 0.032
#> SRR1818524 3 0.9868 0.18377 0.360 0.256 0.384
#> SRR1818522 1 0.6082 0.31295 0.692 0.296 0.012
#> SRR1818521 2 0.0000 0.81620 0.000 1.000 0.000
#> SRR1818520 2 0.0000 0.81620 0.000 1.000 0.000
#> SRR1818518 1 0.3816 0.69364 0.852 0.000 0.148
#> SRR1818519 3 0.9780 0.28602 0.240 0.344 0.416
#> SRR1818517 2 0.0000 0.81620 0.000 1.000 0.000
#> SRR1818516 1 0.1289 0.70068 0.968 0.000 0.032
#> SRR1818515 3 0.9925 0.27909 0.280 0.336 0.384
#> SRR1818514 2 0.0747 0.81317 0.000 0.984 0.016
#> SRR1818513 2 0.0000 0.81620 0.000 1.000 0.000
#> SRR1818512 2 0.0747 0.81317 0.000 0.984 0.016
#> SRR1818510 2 0.0000 0.81620 0.000 1.000 0.000
#> SRR1818511 2 0.0000 0.81620 0.000 1.000 0.000
#> SRR1818508 2 0.5178 0.56274 0.000 0.744 0.256
#> SRR1818509 2 0.0000 0.81620 0.000 1.000 0.000
#> SRR1818507 3 0.9877 0.28041 0.260 0.352 0.388
#> SRR1818506 1 0.0424 0.71235 0.992 0.000 0.008
#> SRR1818505 2 0.6016 0.53324 0.020 0.724 0.256
#> SRR1818503 1 0.5178 0.60591 0.744 0.000 0.256
#> SRR1818504 2 0.0747 0.81317 0.000 0.984 0.016
#> SRR1818502 1 0.5216 0.60466 0.740 0.000 0.260
#> SRR1818498 2 0.0000 0.81620 0.000 1.000 0.000
#> SRR1818500 2 0.0747 0.81317 0.000 0.984 0.016
#> SRR1818501 1 0.1289 0.70068 0.968 0.000 0.032
#> SRR1818499 1 0.9431 0.19335 0.496 0.292 0.212
#> SRR1818496 2 0.0747 0.81317 0.000 0.984 0.016
#> SRR1818494 1 0.5216 0.60466 0.740 0.000 0.260
#> SRR1818495 2 0.9877 -0.18492 0.292 0.412 0.296
#> SRR1818493 2 0.0000 0.81620 0.000 1.000 0.000
#> SRR1818492 1 0.9725 0.13758 0.440 0.240 0.320
#> SRR1818491 2 0.5138 0.56904 0.000 0.748 0.252
#> SRR1818490 1 0.0424 0.71235 0.992 0.000 0.008
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1818497 2 0.3796 0.8221 0.000 0.848 0.056 0.096
#> SRR1818600 3 0.0000 0.7480 0.000 0.000 1.000 0.000
#> SRR1818599 1 0.2546 0.8393 0.900 0.000 0.008 0.092
#> SRR1818598 3 0.1557 0.7364 0.056 0.000 0.944 0.000
#> SRR1818597 1 0.0592 0.8711 0.984 0.000 0.000 0.016
#> SRR1818596 4 0.0336 0.9589 0.008 0.000 0.000 0.992
#> SRR1818595 1 0.0592 0.8702 0.984 0.000 0.016 0.000
#> SRR1818594 1 0.0592 0.8711 0.984 0.000 0.000 0.016
#> SRR1818593 4 0.0672 0.9556 0.008 0.000 0.008 0.984
#> SRR1818592 4 0.0336 0.9589 0.008 0.000 0.000 0.992
#> SRR1818591 2 0.3400 0.7252 0.000 0.820 0.180 0.000
#> SRR1818590 2 0.3907 0.6647 0.000 0.768 0.232 0.000
#> SRR1818589 4 0.2799 0.8754 0.008 0.000 0.108 0.884
#> SRR1818587 1 0.8937 0.0248 0.440 0.240 0.248 0.072
#> SRR1818586 2 0.0000 0.8527 0.000 1.000 0.000 0.000
#> SRR1818585 2 0.4259 0.8141 0.000 0.816 0.056 0.128
#> SRR1818584 3 0.0000 0.7480 0.000 0.000 1.000 0.000
#> SRR1818583 1 0.0592 0.8711 0.984 0.000 0.000 0.016
#> SRR1818588 1 0.0000 0.8703 1.000 0.000 0.000 0.000
#> SRR1818582 4 0.0336 0.9589 0.008 0.000 0.000 0.992
#> SRR1818581 2 0.3444 0.7211 0.000 0.816 0.184 0.000
#> SRR1818579 3 0.0000 0.7480 0.000 0.000 1.000 0.000
#> SRR1818578 2 0.7105 0.6691 0.124 0.672 0.076 0.128
#> SRR1818577 2 0.0000 0.8527 0.000 1.000 0.000 0.000
#> SRR1818580 3 0.0000 0.7480 0.000 0.000 1.000 0.000
#> SRR1818575 1 0.5825 0.5426 0.696 0.012 0.236 0.056
#> SRR1818574 1 0.2401 0.8413 0.904 0.000 0.004 0.092
#> SRR1818576 1 0.0592 0.8702 0.984 0.000 0.016 0.000
#> SRR1818573 4 0.0921 0.9466 0.000 0.000 0.028 0.972
#> SRR1818572 3 0.0000 0.7480 0.000 0.000 1.000 0.000
#> SRR1818571 1 0.4643 0.4363 0.656 0.000 0.344 0.000
#> SRR1818570 1 0.0592 0.8711 0.984 0.000 0.000 0.016
#> SRR1818568 1 0.5987 0.5152 0.680 0.012 0.248 0.060
#> SRR1818567 2 0.0000 0.8527 0.000 1.000 0.000 0.000
#> SRR1818566 1 0.2401 0.8413 0.904 0.000 0.004 0.092
#> SRR1818569 2 0.4259 0.8141 0.000 0.816 0.056 0.128
#> SRR1818565 1 0.2401 0.8413 0.904 0.000 0.004 0.092
#> SRR1818564 1 0.0707 0.8703 0.980 0.000 0.020 0.000
#> SRR1818563 3 0.3172 0.6907 0.020 0.008 0.884 0.088
#> SRR1818561 1 0.2401 0.8413 0.904 0.000 0.004 0.092
#> SRR1818560 1 0.0592 0.8702 0.984 0.000 0.016 0.000
#> SRR1818559 4 0.0336 0.9589 0.008 0.000 0.000 0.992
#> SRR1818562 2 0.4624 0.5080 0.000 0.660 0.340 0.000
#> SRR1818558 3 0.5773 0.6712 0.148 0.084 0.744 0.024
#> SRR1818556 3 0.3024 0.6799 0.148 0.000 0.852 0.000
#> SRR1818557 4 0.0336 0.9589 0.008 0.000 0.000 0.992
#> SRR1818555 2 0.3444 0.7211 0.000 0.816 0.184 0.000
#> SRR1818553 1 0.0000 0.8703 1.000 0.000 0.000 0.000
#> SRR1818552 2 0.0000 0.8527 0.000 1.000 0.000 0.000
#> SRR1818551 1 0.0657 0.8674 0.984 0.004 0.000 0.012
#> SRR1818550 3 0.3401 0.7137 0.032 0.048 0.888 0.032
#> SRR1818554 4 0.2799 0.8754 0.008 0.000 0.108 0.884
#> SRR1818549 1 0.0188 0.8705 0.996 0.000 0.004 0.000
#> SRR1818548 4 0.0336 0.9589 0.008 0.000 0.000 0.992
#> SRR1818546 2 0.4259 0.8141 0.000 0.816 0.056 0.128
#> SRR1818547 3 0.5798 -0.1095 0.016 0.008 0.512 0.464
#> SRR1818544 3 0.4262 0.6378 0.000 0.236 0.756 0.008
#> SRR1818543 1 0.0921 0.8681 0.972 0.000 0.028 0.000
#> SRR1818542 2 0.3979 0.8222 0.004 0.844 0.056 0.096
#> SRR1818545 3 0.3257 0.7178 0.068 0.012 0.888 0.032
#> SRR1818541 1 0.4978 0.3371 0.612 0.000 0.384 0.004
#> SRR1818539 1 0.1302 0.8634 0.956 0.000 0.044 0.000
#> SRR1818540 2 0.0000 0.8527 0.000 1.000 0.000 0.000
#> SRR1818536 1 0.4746 0.3874 0.632 0.000 0.368 0.000
#> SRR1818535 1 0.0707 0.8707 0.980 0.000 0.000 0.020
#> SRR1818534 4 0.0336 0.9589 0.008 0.000 0.000 0.992
#> SRR1818538 2 0.4661 0.4957 0.000 0.652 0.348 0.000
#> SRR1818537 3 0.1557 0.7364 0.056 0.000 0.944 0.000
#> SRR1818533 3 0.5151 0.1314 0.464 0.000 0.532 0.004
#> SRR1818532 1 0.0000 0.8703 1.000 0.000 0.000 0.000
#> SRR1818531 3 0.0000 0.7480 0.000 0.000 1.000 0.000
#> SRR1818530 2 0.4259 0.8141 0.000 0.816 0.056 0.128
#> SRR1818529 3 0.5219 0.4008 0.000 0.244 0.712 0.044
#> SRR1818528 1 0.1109 0.8650 0.968 0.000 0.028 0.004
#> SRR1818527 3 0.4328 0.6314 0.000 0.244 0.748 0.008
#> SRR1818526 4 0.4939 0.7247 0.016 0.032 0.180 0.772
#> SRR1818525 3 0.4360 0.6270 0.000 0.248 0.744 0.008
#> SRR1818523 1 0.2401 0.8413 0.904 0.000 0.004 0.092
#> SRR1818524 4 0.0188 0.9574 0.004 0.000 0.000 0.996
#> SRR1818522 1 0.1635 0.8468 0.948 0.044 0.000 0.008
#> SRR1818521 2 0.0000 0.8527 0.000 1.000 0.000 0.000
#> SRR1818520 2 0.0000 0.8527 0.000 1.000 0.000 0.000
#> SRR1818518 1 0.0592 0.8702 0.984 0.000 0.016 0.000
#> SRR1818519 4 0.0592 0.9515 0.016 0.000 0.000 0.984
#> SRR1818517 2 0.0000 0.8527 0.000 1.000 0.000 0.000
#> SRR1818516 1 0.2401 0.8413 0.904 0.000 0.004 0.092
#> SRR1818515 4 0.0336 0.9553 0.008 0.000 0.000 0.992
#> SRR1818514 2 0.4259 0.8141 0.000 0.816 0.056 0.128
#> SRR1818513 2 0.0000 0.8527 0.000 1.000 0.000 0.000
#> SRR1818512 2 0.4259 0.8141 0.000 0.816 0.056 0.128
#> SRR1818510 2 0.0000 0.8527 0.000 1.000 0.000 0.000
#> SRR1818511 2 0.0000 0.8527 0.000 1.000 0.000 0.000
#> SRR1818508 3 0.4508 0.6306 0.004 0.244 0.744 0.008
#> SRR1818509 2 0.0000 0.8527 0.000 1.000 0.000 0.000
#> SRR1818507 4 0.0592 0.9515 0.016 0.000 0.000 0.984
#> SRR1818506 1 0.0000 0.8703 1.000 0.000 0.000 0.000
#> SRR1818505 3 0.5541 0.5220 0.024 0.312 0.656 0.008
#> SRR1818503 1 0.4978 0.3371 0.612 0.000 0.384 0.004
#> SRR1818504 2 0.4312 0.8118 0.000 0.812 0.056 0.132
#> SRR1818502 3 0.5151 0.1314 0.464 0.000 0.532 0.004
#> SRR1818498 2 0.0000 0.8527 0.000 1.000 0.000 0.000
#> SRR1818500 2 0.4312 0.8118 0.000 0.812 0.056 0.132
#> SRR1818501 1 0.2401 0.8413 0.904 0.000 0.004 0.092
#> SRR1818499 1 0.2222 0.8463 0.928 0.008 0.056 0.008
#> SRR1818496 2 0.3796 0.8221 0.000 0.848 0.056 0.096
#> SRR1818494 3 0.5151 0.1314 0.464 0.000 0.532 0.004
#> SRR1818495 2 0.8144 0.1656 0.156 0.548 0.236 0.060
#> SRR1818493 2 0.0000 0.8527 0.000 1.000 0.000 0.000
#> SRR1818492 1 0.6101 0.4740 0.664 0.028 0.272 0.036
#> SRR1818491 3 0.4511 0.6014 0.000 0.268 0.724 0.008
#> SRR1818490 1 0.0000 0.8703 1.000 0.000 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1818497 5 0.4570 0.6795 0.000 0.332 0.004 0.016 0.648
#> SRR1818600 3 0.0290 0.6848 0.000 0.000 0.992 0.000 0.008
#> SRR1818599 1 0.4098 0.7482 0.816 0.000 0.024 0.080 0.080
#> SRR1818598 3 0.0162 0.6852 0.004 0.000 0.996 0.000 0.000
#> SRR1818597 1 0.1282 0.7945 0.952 0.000 0.000 0.004 0.044
#> SRR1818596 4 0.0880 0.9447 0.000 0.000 0.000 0.968 0.032
#> SRR1818595 1 0.1626 0.7854 0.940 0.000 0.016 0.000 0.044
#> SRR1818594 1 0.1357 0.7952 0.948 0.000 0.000 0.004 0.048
#> SRR1818593 4 0.1059 0.9306 0.004 0.000 0.020 0.968 0.008
#> SRR1818592 4 0.0880 0.9447 0.000 0.000 0.000 0.968 0.032
#> SRR1818591 2 0.1270 0.8846 0.000 0.948 0.052 0.000 0.000
#> SRR1818590 2 0.2889 0.8231 0.000 0.872 0.084 0.000 0.044
#> SRR1818589 4 0.2352 0.8794 0.004 0.000 0.092 0.896 0.008
#> SRR1818587 5 0.9309 -0.2372 0.192 0.252 0.240 0.044 0.272
#> SRR1818586 2 0.0000 0.9091 0.000 1.000 0.000 0.000 0.000
#> SRR1818585 5 0.4763 0.6892 0.000 0.336 0.000 0.032 0.632
#> SRR1818584 3 0.0609 0.6819 0.000 0.000 0.980 0.000 0.020
#> SRR1818583 1 0.1357 0.7941 0.948 0.000 0.000 0.004 0.048
#> SRR1818588 1 0.3010 0.7455 0.860 0.000 0.008 0.016 0.116
#> SRR1818582 4 0.0880 0.9447 0.000 0.000 0.000 0.968 0.032
#> SRR1818581 2 0.1270 0.8846 0.000 0.948 0.052 0.000 0.000
#> SRR1818579 3 0.0290 0.6848 0.000 0.000 0.992 0.000 0.008
#> SRR1818578 5 0.5574 0.6523 0.048 0.240 0.004 0.036 0.672
#> SRR1818577 2 0.0000 0.9091 0.000 1.000 0.000 0.000 0.000
#> SRR1818580 3 0.3684 0.4171 0.000 0.000 0.720 0.000 0.280
#> SRR1818575 1 0.7296 0.2086 0.496 0.004 0.240 0.040 0.220
#> SRR1818574 1 0.3812 0.7552 0.828 0.000 0.012 0.080 0.080
#> SRR1818576 1 0.0912 0.7921 0.972 0.000 0.016 0.000 0.012
#> SRR1818573 4 0.1579 0.9377 0.000 0.000 0.024 0.944 0.032
#> SRR1818572 3 0.0609 0.6819 0.000 0.000 0.980 0.000 0.020
#> SRR1818571 1 0.5692 0.1663 0.488 0.000 0.452 0.020 0.040
#> SRR1818570 1 0.1282 0.7945 0.952 0.000 0.000 0.004 0.044
#> SRR1818568 1 0.7530 0.1462 0.464 0.008 0.240 0.040 0.248
#> SRR1818567 2 0.0000 0.9091 0.000 1.000 0.000 0.000 0.000
#> SRR1818566 1 0.3812 0.7552 0.828 0.000 0.012 0.080 0.080
#> SRR1818569 5 0.4763 0.6892 0.000 0.336 0.000 0.032 0.632
#> SRR1818565 1 0.3812 0.7552 0.828 0.000 0.012 0.080 0.080
#> SRR1818564 1 0.0771 0.7939 0.976 0.000 0.020 0.000 0.004
#> SRR1818563 3 0.3880 0.6185 0.016 0.000 0.820 0.048 0.116
#> SRR1818561 1 0.3812 0.7552 0.828 0.000 0.012 0.080 0.080
#> SRR1818560 1 0.0912 0.7921 0.972 0.000 0.016 0.000 0.012
#> SRR1818559 4 0.0880 0.9447 0.000 0.000 0.000 0.968 0.032
#> SRR1818562 2 0.4777 0.5567 0.000 0.664 0.292 0.000 0.044
#> SRR1818558 3 0.5812 0.5065 0.144 0.004 0.640 0.004 0.208
#> SRR1818556 3 0.1768 0.6546 0.072 0.000 0.924 0.000 0.004
#> SRR1818557 4 0.0880 0.9447 0.000 0.000 0.000 0.968 0.032
#> SRR1818555 2 0.1270 0.8846 0.000 0.948 0.052 0.000 0.000
#> SRR1818553 1 0.1630 0.7845 0.944 0.000 0.004 0.016 0.036
#> SRR1818552 2 0.1121 0.8938 0.000 0.956 0.000 0.000 0.044
#> SRR1818551 1 0.4250 0.6904 0.780 0.012 0.012 0.020 0.176
#> SRR1818550 3 0.4048 0.6172 0.016 0.012 0.820 0.036 0.116
#> SRR1818554 4 0.2352 0.8794 0.004 0.000 0.092 0.896 0.008
#> SRR1818549 1 0.2170 0.7888 0.924 0.000 0.020 0.020 0.036
#> SRR1818548 4 0.0880 0.9447 0.000 0.000 0.000 0.968 0.032
#> SRR1818546 5 0.4763 0.6892 0.000 0.336 0.000 0.032 0.632
#> SRR1818547 3 0.5901 0.1660 0.008 0.000 0.548 0.356 0.088
#> SRR1818544 5 0.5010 -0.0201 0.000 0.036 0.392 0.000 0.572
#> SRR1818543 1 0.0771 0.7939 0.976 0.000 0.020 0.000 0.004
#> SRR1818542 5 0.5181 0.6603 0.024 0.288 0.004 0.024 0.660
#> SRR1818545 3 0.4033 0.6179 0.020 0.008 0.820 0.036 0.116
#> SRR1818541 1 0.6488 -0.0869 0.428 0.000 0.408 0.004 0.160
#> SRR1818539 1 0.2233 0.7651 0.892 0.000 0.104 0.000 0.004
#> SRR1818540 2 0.0000 0.9091 0.000 1.000 0.000 0.000 0.000
#> SRR1818536 1 0.5320 0.1532 0.488 0.000 0.468 0.004 0.040
#> SRR1818535 1 0.1571 0.7926 0.936 0.000 0.000 0.004 0.060
#> SRR1818534 4 0.0880 0.9447 0.000 0.000 0.000 0.968 0.032
#> SRR1818538 2 0.4836 0.5395 0.000 0.652 0.304 0.000 0.044
#> SRR1818537 3 0.0162 0.6852 0.004 0.000 0.996 0.000 0.000
#> SRR1818533 3 0.6408 0.2639 0.344 0.000 0.492 0.004 0.160
#> SRR1818532 1 0.2692 0.7594 0.884 0.000 0.008 0.016 0.092
#> SRR1818531 3 0.0794 0.6814 0.000 0.000 0.972 0.000 0.028
#> SRR1818530 5 0.4763 0.6892 0.000 0.336 0.000 0.032 0.632
#> SRR1818529 3 0.5379 0.2318 0.000 0.064 0.608 0.004 0.324
#> SRR1818528 1 0.3283 0.7287 0.832 0.000 0.028 0.000 0.140
#> SRR1818527 3 0.5123 0.3408 0.000 0.044 0.572 0.000 0.384
#> SRR1818526 4 0.4924 0.7269 0.008 0.004 0.108 0.744 0.136
#> SRR1818525 3 0.5182 0.2909 0.000 0.044 0.544 0.000 0.412
#> SRR1818523 1 0.3812 0.7552 0.828 0.000 0.012 0.080 0.080
#> SRR1818524 4 0.0963 0.9428 0.000 0.000 0.000 0.964 0.036
#> SRR1818522 1 0.3611 0.7320 0.812 0.028 0.000 0.004 0.156
#> SRR1818521 2 0.0000 0.9091 0.000 1.000 0.000 0.000 0.000
#> SRR1818520 2 0.0000 0.9091 0.000 1.000 0.000 0.000 0.000
#> SRR1818518 1 0.0579 0.7942 0.984 0.000 0.008 0.000 0.008
#> SRR1818519 4 0.1365 0.9266 0.004 0.000 0.004 0.952 0.040
#> SRR1818517 2 0.1197 0.8918 0.000 0.952 0.000 0.000 0.048
#> SRR1818516 1 0.3812 0.7552 0.828 0.000 0.012 0.080 0.080
#> SRR1818515 4 0.1285 0.9293 0.004 0.000 0.004 0.956 0.036
#> SRR1818514 5 0.4763 0.6892 0.000 0.336 0.000 0.032 0.632
#> SRR1818513 2 0.0162 0.9085 0.000 0.996 0.000 0.000 0.004
#> SRR1818512 5 0.4763 0.6892 0.000 0.336 0.000 0.032 0.632
#> SRR1818510 2 0.0000 0.9091 0.000 1.000 0.000 0.000 0.000
#> SRR1818511 2 0.1341 0.8859 0.000 0.944 0.000 0.000 0.056
#> SRR1818508 3 0.5196 0.3553 0.004 0.040 0.576 0.000 0.380
#> SRR1818509 2 0.1197 0.8918 0.000 0.952 0.000 0.000 0.048
#> SRR1818507 4 0.1365 0.9279 0.004 0.000 0.004 0.952 0.040
#> SRR1818506 1 0.1386 0.7895 0.952 0.000 0.000 0.016 0.032
#> SRR1818505 5 0.5251 0.0289 0.004 0.044 0.376 0.000 0.576
#> SRR1818503 1 0.6360 -0.0273 0.448 0.000 0.388 0.000 0.164
#> SRR1818504 5 0.4747 0.6893 0.000 0.332 0.000 0.032 0.636
#> SRR1818502 3 0.6291 0.2647 0.344 0.000 0.492 0.000 0.164
#> SRR1818498 2 0.0000 0.9091 0.000 1.000 0.000 0.000 0.000
#> SRR1818500 5 0.4747 0.6893 0.000 0.332 0.000 0.032 0.636
#> SRR1818501 1 0.3812 0.7552 0.828 0.000 0.012 0.080 0.080
#> SRR1818499 1 0.5323 0.5176 0.624 0.000 0.080 0.000 0.296
#> SRR1818496 5 0.4570 0.6795 0.000 0.332 0.004 0.016 0.648
#> SRR1818494 3 0.6326 0.2758 0.336 0.000 0.492 0.000 0.172
#> SRR1818495 5 0.9188 -0.1916 0.180 0.288 0.204 0.040 0.288
#> SRR1818493 2 0.0000 0.9091 0.000 1.000 0.000 0.000 0.000
#> SRR1818492 1 0.7707 0.0578 0.420 0.012 0.248 0.036 0.284
#> SRR1818491 5 0.5176 0.0340 0.000 0.048 0.380 0.000 0.572
#> SRR1818490 1 0.0703 0.7957 0.976 0.000 0.000 0.000 0.024
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1818497 5 0.1663 0.9525 0.000 0.088 0.000 0.000 0.912 0.000
#> SRR1818600 1 0.0146 0.5967 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1818599 3 0.1147 0.6702 0.004 0.000 0.960 0.028 0.004 0.004
#> SRR1818598 1 0.1759 0.5744 0.924 0.000 0.004 0.004 0.004 0.064
#> SRR1818597 3 0.3043 0.6922 0.004 0.000 0.796 0.000 0.004 0.196
#> SRR1818596 4 0.0820 0.9366 0.000 0.000 0.012 0.972 0.016 0.000
#> SRR1818595 6 0.4693 -0.2346 0.028 0.000 0.456 0.000 0.008 0.508
#> SRR1818594 3 0.3429 0.6630 0.004 0.000 0.740 0.000 0.004 0.252
#> SRR1818593 4 0.1268 0.9225 0.008 0.000 0.004 0.952 0.000 0.036
#> SRR1818592 4 0.0820 0.9366 0.000 0.000 0.012 0.972 0.016 0.000
#> SRR1818591 2 0.0972 0.9496 0.008 0.964 0.000 0.000 0.028 0.000
#> SRR1818590 2 0.1116 0.9201 0.028 0.960 0.000 0.000 0.004 0.008
#> SRR1818589 4 0.1863 0.9052 0.044 0.000 0.000 0.920 0.000 0.036
#> SRR1818587 6 0.3234 0.5874 0.020 0.060 0.020 0.020 0.012 0.868
#> SRR1818586 2 0.0713 0.9499 0.000 0.972 0.000 0.000 0.028 0.000
#> SRR1818585 5 0.1958 0.9737 0.000 0.100 0.000 0.004 0.896 0.000
#> SRR1818584 1 0.0603 0.5977 0.980 0.000 0.000 0.000 0.016 0.004
#> SRR1818583 3 0.3164 0.6950 0.004 0.000 0.804 0.008 0.004 0.180
#> SRR1818588 6 0.3724 0.3972 0.000 0.012 0.268 0.004 0.000 0.716
#> SRR1818582 4 0.0820 0.9366 0.000 0.000 0.012 0.972 0.016 0.000
#> SRR1818581 2 0.0972 0.9496 0.008 0.964 0.000 0.000 0.028 0.000
#> SRR1818579 1 0.0260 0.5969 0.992 0.000 0.000 0.000 0.008 0.000
#> SRR1818578 5 0.2363 0.9279 0.008 0.052 0.016 0.008 0.908 0.008
#> SRR1818577 2 0.0935 0.9476 0.004 0.964 0.000 0.000 0.032 0.000
#> SRR1818580 1 0.1765 0.5888 0.904 0.000 0.000 0.000 0.096 0.000
#> SRR1818575 6 0.3635 0.5775 0.024 0.020 0.100 0.020 0.004 0.832
#> SRR1818574 3 0.0858 0.6744 0.000 0.000 0.968 0.028 0.004 0.000
#> SRR1818576 3 0.4291 0.5749 0.016 0.000 0.620 0.000 0.008 0.356
#> SRR1818573 4 0.0870 0.9345 0.004 0.000 0.012 0.972 0.012 0.000
#> SRR1818572 1 0.0603 0.5977 0.980 0.000 0.000 0.000 0.016 0.004
#> SRR1818571 1 0.5811 0.1055 0.492 0.000 0.348 0.008 0.000 0.152
#> SRR1818570 3 0.3043 0.6922 0.004 0.000 0.796 0.000 0.004 0.196
#> SRR1818568 6 0.3332 0.5921 0.024 0.020 0.076 0.020 0.004 0.856
#> SRR1818567 2 0.0713 0.9499 0.000 0.972 0.000 0.000 0.028 0.000
#> SRR1818566 3 0.0858 0.6744 0.000 0.000 0.968 0.028 0.004 0.000
#> SRR1818569 5 0.1958 0.9737 0.000 0.100 0.000 0.004 0.896 0.000
#> SRR1818565 3 0.0858 0.6744 0.000 0.000 0.968 0.028 0.004 0.000
#> SRR1818564 3 0.4266 0.5886 0.016 0.000 0.628 0.000 0.008 0.348
#> SRR1818563 1 0.4791 0.3614 0.608 0.016 0.004 0.020 0.004 0.348
#> SRR1818561 3 0.0858 0.6744 0.000 0.000 0.968 0.028 0.004 0.000
#> SRR1818560 3 0.4515 0.5613 0.028 0.000 0.608 0.000 0.008 0.356
#> SRR1818559 4 0.0820 0.9366 0.000 0.000 0.012 0.972 0.016 0.000
#> SRR1818562 2 0.3152 0.7378 0.196 0.792 0.000 0.000 0.004 0.008
#> SRR1818558 1 0.5341 0.0166 0.532 0.000 0.020 0.004 0.052 0.392
#> SRR1818556 1 0.1901 0.5694 0.912 0.000 0.008 0.000 0.004 0.076
#> SRR1818557 4 0.0820 0.9366 0.000 0.000 0.012 0.972 0.016 0.000
#> SRR1818555 2 0.0972 0.9496 0.008 0.964 0.000 0.000 0.028 0.000
#> SRR1818553 3 0.3881 0.5112 0.000 0.000 0.600 0.004 0.000 0.396
#> SRR1818552 2 0.0260 0.9380 0.000 0.992 0.000 0.000 0.000 0.008
#> SRR1818551 6 0.3679 0.4976 0.000 0.024 0.192 0.012 0.000 0.772
#> SRR1818550 1 0.4803 0.3569 0.604 0.016 0.004 0.020 0.004 0.352
#> SRR1818554 4 0.1863 0.9052 0.044 0.000 0.000 0.920 0.000 0.036
#> SRR1818549 3 0.3619 0.5944 0.000 0.000 0.680 0.004 0.000 0.316
#> SRR1818548 4 0.0820 0.9366 0.000 0.000 0.012 0.972 0.016 0.000
#> SRR1818546 5 0.1958 0.9737 0.000 0.100 0.000 0.004 0.896 0.000
#> SRR1818547 1 0.5730 0.3547 0.572 0.012 0.000 0.144 0.004 0.268
#> SRR1818544 1 0.6068 0.2934 0.428 0.000 0.004 0.008 0.396 0.164
#> SRR1818543 3 0.4831 0.5550 0.052 0.000 0.600 0.000 0.008 0.340
#> SRR1818542 5 0.3159 0.8698 0.000 0.072 0.004 0.000 0.840 0.084
#> SRR1818545 1 0.4791 0.3614 0.608 0.016 0.004 0.020 0.004 0.348
#> SRR1818541 6 0.5245 0.4804 0.300 0.000 0.064 0.000 0.028 0.608
#> SRR1818539 3 0.6070 0.3247 0.272 0.000 0.480 0.000 0.008 0.240
#> SRR1818540 2 0.0713 0.9499 0.000 0.972 0.000 0.000 0.028 0.000
#> SRR1818536 1 0.5266 0.0239 0.492 0.000 0.420 0.004 0.000 0.084
#> SRR1818535 3 0.2884 0.6960 0.000 0.000 0.824 0.008 0.004 0.164
#> SRR1818534 4 0.0820 0.9366 0.000 0.000 0.012 0.972 0.016 0.000
#> SRR1818538 2 0.3357 0.6991 0.224 0.764 0.000 0.000 0.004 0.008
#> SRR1818537 1 0.1818 0.5726 0.920 0.000 0.004 0.004 0.004 0.068
#> SRR1818533 6 0.4939 0.4679 0.320 0.000 0.052 0.000 0.016 0.612
#> SRR1818532 6 0.3646 0.3508 0.000 0.004 0.292 0.004 0.000 0.700
#> SRR1818531 1 0.1074 0.5939 0.960 0.000 0.000 0.000 0.028 0.012
#> SRR1818530 5 0.1958 0.9737 0.000 0.100 0.000 0.004 0.896 0.000
#> SRR1818529 1 0.4577 0.1949 0.572 0.024 0.000 0.004 0.396 0.004
#> SRR1818528 3 0.5987 0.3010 0.072 0.000 0.500 0.000 0.060 0.368
#> SRR1818527 1 0.5827 0.3750 0.528 0.000 0.004 0.008 0.312 0.148
#> SRR1818526 4 0.5487 0.5421 0.028 0.012 0.000 0.600 0.056 0.304
#> SRR1818525 1 0.5966 0.3699 0.516 0.000 0.008 0.008 0.316 0.152
#> SRR1818523 3 0.1116 0.6704 0.000 0.000 0.960 0.028 0.004 0.008
#> SRR1818524 4 0.0820 0.9366 0.000 0.000 0.012 0.972 0.016 0.000
#> SRR1818522 6 0.5714 -0.1469 0.000 0.020 0.428 0.012 0.064 0.476
#> SRR1818521 2 0.0935 0.9476 0.004 0.964 0.000 0.000 0.032 0.000
#> SRR1818520 2 0.0713 0.9499 0.000 0.972 0.000 0.000 0.028 0.000
#> SRR1818518 3 0.4224 0.6213 0.016 0.000 0.660 0.000 0.012 0.312
#> SRR1818519 4 0.2092 0.8728 0.000 0.000 0.000 0.876 0.000 0.124
#> SRR1818517 2 0.0622 0.9334 0.000 0.980 0.000 0.000 0.008 0.012
#> SRR1818516 3 0.1116 0.6704 0.000 0.000 0.960 0.028 0.004 0.008
#> SRR1818515 4 0.1563 0.9116 0.000 0.000 0.000 0.932 0.012 0.056
#> SRR1818514 5 0.1958 0.9737 0.000 0.100 0.000 0.004 0.896 0.000
#> SRR1818513 2 0.0713 0.9499 0.000 0.972 0.000 0.000 0.028 0.000
#> SRR1818512 5 0.1958 0.9737 0.000 0.100 0.000 0.004 0.896 0.000
#> SRR1818510 2 0.0713 0.9499 0.000 0.972 0.000 0.000 0.028 0.000
#> SRR1818511 2 0.1909 0.8881 0.000 0.920 0.000 0.004 0.052 0.024
#> SRR1818508 1 0.6036 0.3571 0.520 0.000 0.008 0.008 0.288 0.176
#> SRR1818509 2 0.0622 0.9334 0.000 0.980 0.000 0.000 0.008 0.012
#> SRR1818507 4 0.2019 0.8952 0.000 0.000 0.000 0.900 0.012 0.088
#> SRR1818506 3 0.3699 0.5815 0.000 0.000 0.660 0.004 0.000 0.336
#> SRR1818505 1 0.6071 0.2801 0.420 0.000 0.004 0.008 0.404 0.164
#> SRR1818503 6 0.5294 0.4755 0.300 0.000 0.068 0.000 0.028 0.604
#> SRR1818504 5 0.1958 0.9737 0.000 0.100 0.000 0.004 0.896 0.000
#> SRR1818502 6 0.4993 0.4490 0.324 0.000 0.044 0.000 0.024 0.608
#> SRR1818498 2 0.0713 0.9499 0.000 0.972 0.000 0.000 0.028 0.000
#> SRR1818500 5 0.1958 0.9737 0.000 0.100 0.000 0.004 0.896 0.000
#> SRR1818501 3 0.1116 0.6704 0.000 0.000 0.960 0.028 0.004 0.008
#> SRR1818499 3 0.7590 0.0183 0.188 0.000 0.404 0.008 0.176 0.224
#> SRR1818496 5 0.1610 0.9496 0.000 0.084 0.000 0.000 0.916 0.000
#> SRR1818494 6 0.5004 0.4410 0.324 0.000 0.040 0.000 0.028 0.608
#> SRR1818495 6 0.3545 0.5647 0.020 0.064 0.016 0.020 0.028 0.852
#> SRR1818493 2 0.0935 0.9476 0.004 0.964 0.000 0.000 0.032 0.000
#> SRR1818492 6 0.3391 0.5668 0.024 0.020 0.020 0.024 0.048 0.864
#> SRR1818491 1 0.6070 0.2869 0.424 0.000 0.004 0.008 0.400 0.164
#> SRR1818490 3 0.2762 0.6915 0.000 0.000 0.804 0.000 0.000 0.196
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 16183 rows and 111 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.317 0.796 0.868 0.373 0.690 0.690
#> 3 3 0.373 0.824 0.856 0.234 0.919 0.883
#> 4 4 0.594 0.774 0.850 0.362 0.787 0.653
#> 5 5 0.705 0.812 0.888 0.108 0.901 0.757
#> 6 6 0.842 0.771 0.902 0.147 0.813 0.469
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1818497 1 0.9358 0.701 0.648 0.352
#> SRR1818600 1 0.8081 0.744 0.752 0.248
#> SRR1818599 1 0.7453 0.753 0.788 0.212
#> SRR1818598 1 0.8081 0.744 0.752 0.248
#> SRR1818597 1 0.0938 0.847 0.988 0.012
#> SRR1818596 1 0.5629 0.807 0.868 0.132
#> SRR1818595 1 0.0376 0.846 0.996 0.004
#> SRR1818594 1 0.2236 0.845 0.964 0.036
#> SRR1818593 1 0.0376 0.844 0.996 0.004
#> SRR1818592 1 0.2043 0.846 0.968 0.032
#> SRR1818591 2 0.4939 0.783 0.108 0.892
#> SRR1818590 2 0.5294 0.778 0.120 0.880
#> SRR1818589 1 0.7453 0.753 0.788 0.212
#> SRR1818587 1 0.5519 0.807 0.872 0.128
#> SRR1818586 2 0.7453 0.821 0.212 0.788
#> SRR1818585 1 0.9460 0.688 0.636 0.364
#> SRR1818584 1 0.8081 0.744 0.752 0.248
#> SRR1818583 1 0.2423 0.845 0.960 0.040
#> SRR1818588 1 0.0376 0.846 0.996 0.004
#> SRR1818582 1 0.0376 0.844 0.996 0.004
#> SRR1818581 2 0.4939 0.783 0.108 0.892
#> SRR1818579 1 0.8081 0.744 0.752 0.248
#> SRR1818578 1 0.9358 0.701 0.648 0.352
#> SRR1818577 2 0.7453 0.821 0.212 0.788
#> SRR1818580 1 0.9358 0.701 0.648 0.352
#> SRR1818575 1 0.0376 0.844 0.996 0.004
#> SRR1818574 1 0.0376 0.844 0.996 0.004
#> SRR1818576 1 0.0376 0.846 0.996 0.004
#> SRR1818573 1 0.7528 0.752 0.784 0.216
#> SRR1818572 1 0.8081 0.744 0.752 0.248
#> SRR1818571 1 0.0376 0.844 0.996 0.004
#> SRR1818570 1 0.0376 0.846 0.996 0.004
#> SRR1818568 1 0.5059 0.811 0.888 0.112
#> SRR1818567 2 0.7453 0.821 0.212 0.788
#> SRR1818566 1 0.0376 0.844 0.996 0.004
#> SRR1818569 1 0.9580 0.666 0.620 0.380
#> SRR1818565 1 0.0376 0.844 0.996 0.004
#> SRR1818564 1 0.0376 0.846 0.996 0.004
#> SRR1818563 1 0.0376 0.844 0.996 0.004
#> SRR1818561 1 0.0000 0.845 1.000 0.000
#> SRR1818560 1 0.0938 0.847 0.988 0.012
#> SRR1818559 1 0.2236 0.846 0.964 0.036
#> SRR1818562 1 0.7602 0.753 0.780 0.220
#> SRR1818558 1 0.5946 0.800 0.856 0.144
#> SRR1818556 1 0.7056 0.769 0.808 0.192
#> SRR1818557 1 0.0376 0.844 0.996 0.004
#> SRR1818555 2 0.4939 0.783 0.108 0.892
#> SRR1818553 1 0.0376 0.844 0.996 0.004
#> SRR1818552 2 0.7453 0.821 0.212 0.788
#> SRR1818551 1 0.0376 0.844 0.996 0.004
#> SRR1818550 1 0.0376 0.846 0.996 0.004
#> SRR1818554 1 0.7453 0.753 0.788 0.212
#> SRR1818549 1 0.0376 0.844 0.996 0.004
#> SRR1818548 1 0.2043 0.846 0.968 0.032
#> SRR1818546 1 0.8327 0.735 0.736 0.264
#> SRR1818547 1 0.7453 0.753 0.788 0.212
#> SRR1818544 1 0.9358 0.701 0.648 0.352
#> SRR1818543 1 0.3114 0.845 0.944 0.056
#> SRR1818542 1 0.5737 0.809 0.864 0.136
#> SRR1818545 1 0.0672 0.847 0.992 0.008
#> SRR1818541 1 0.2423 0.845 0.960 0.040
#> SRR1818539 1 0.0376 0.846 0.996 0.004
#> SRR1818540 2 0.7453 0.821 0.212 0.788
#> SRR1818536 1 0.7376 0.753 0.792 0.208
#> SRR1818535 1 0.0938 0.845 0.988 0.012
#> SRR1818534 1 0.2603 0.845 0.956 0.044
#> SRR1818538 1 0.9732 0.513 0.596 0.404
#> SRR1818537 1 0.7453 0.754 0.788 0.212
#> SRR1818533 1 0.2423 0.845 0.960 0.040
#> SRR1818532 1 0.0376 0.846 0.996 0.004
#> SRR1818531 1 0.8081 0.744 0.752 0.248
#> SRR1818530 1 0.9427 0.691 0.640 0.360
#> SRR1818529 1 0.8016 0.744 0.756 0.244
#> SRR1818528 1 0.5946 0.800 0.856 0.144
#> SRR1818527 1 0.9358 0.701 0.648 0.352
#> SRR1818526 1 0.4939 0.811 0.892 0.108
#> SRR1818525 1 0.8661 0.751 0.712 0.288
#> SRR1818523 1 0.5294 0.813 0.880 0.120
#> SRR1818524 1 0.4298 0.832 0.912 0.088
#> SRR1818522 1 0.4939 0.811 0.892 0.108
#> SRR1818521 2 0.0376 0.816 0.004 0.996
#> SRR1818520 2 0.0376 0.816 0.004 0.996
#> SRR1818518 1 0.0376 0.846 0.996 0.004
#> SRR1818519 1 0.5294 0.810 0.880 0.120
#> SRR1818517 2 0.7453 0.821 0.212 0.788
#> SRR1818516 1 0.4939 0.811 0.892 0.108
#> SRR1818515 1 0.4939 0.811 0.892 0.108
#> SRR1818514 2 0.4431 0.771 0.092 0.908
#> SRR1818513 2 0.7453 0.821 0.212 0.788
#> SRR1818512 2 0.3274 0.798 0.060 0.940
#> SRR1818510 2 0.7453 0.821 0.212 0.788
#> SRR1818511 2 0.7950 0.793 0.240 0.760
#> SRR1818508 1 0.5946 0.800 0.856 0.144
#> SRR1818509 2 0.7453 0.821 0.212 0.788
#> SRR1818507 1 0.4939 0.811 0.892 0.108
#> SRR1818506 1 0.0376 0.846 0.996 0.004
#> SRR1818505 1 0.9358 0.701 0.648 0.352
#> SRR1818503 1 0.3431 0.842 0.936 0.064
#> SRR1818504 1 0.9460 0.688 0.636 0.364
#> SRR1818502 1 0.2423 0.845 0.960 0.040
#> SRR1818498 2 0.0376 0.816 0.004 0.996
#> SRR1818500 2 0.1414 0.815 0.020 0.980
#> SRR1818501 1 0.4939 0.811 0.892 0.108
#> SRR1818499 1 0.5946 0.800 0.856 0.144
#> SRR1818496 1 0.9393 0.697 0.644 0.356
#> SRR1818494 1 0.2423 0.845 0.960 0.040
#> SRR1818495 1 0.8081 0.683 0.752 0.248
#> SRR1818493 2 0.0376 0.816 0.004 0.996
#> SRR1818492 1 0.5178 0.810 0.884 0.116
#> SRR1818491 1 0.9358 0.701 0.648 0.352
#> SRR1818490 1 0.0376 0.846 0.996 0.004
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1818497 1 0.4062 0.834 0.836 0.000 0.164
#> SRR1818600 1 0.6652 0.790 0.744 0.172 0.084
#> SRR1818599 1 0.4749 0.798 0.816 0.172 0.012
#> SRR1818598 1 0.6652 0.790 0.744 0.172 0.084
#> SRR1818597 1 0.1411 0.864 0.964 0.000 0.036
#> SRR1818596 1 0.4504 0.822 0.804 0.000 0.196
#> SRR1818595 1 0.0000 0.861 1.000 0.000 0.000
#> SRR1818594 1 0.3340 0.854 0.880 0.000 0.120
#> SRR1818593 1 0.2165 0.844 0.936 0.000 0.064
#> SRR1818592 1 0.3340 0.852 0.880 0.000 0.120
#> SRR1818591 2 0.0000 0.722 0.000 1.000 0.000
#> SRR1818590 2 0.0592 0.711 0.000 0.988 0.012
#> SRR1818589 1 0.6490 0.783 0.752 0.172 0.076
#> SRR1818587 1 0.4178 0.833 0.828 0.000 0.172
#> SRR1818586 2 0.4178 0.833 0.172 0.828 0.000
#> SRR1818585 3 0.1753 0.943 0.048 0.000 0.952
#> SRR1818584 1 0.6652 0.790 0.744 0.172 0.084
#> SRR1818583 1 0.2356 0.858 0.928 0.000 0.072
#> SRR1818588 1 0.0000 0.861 1.000 0.000 0.000
#> SRR1818582 1 0.2261 0.845 0.932 0.000 0.068
#> SRR1818581 2 0.0000 0.722 0.000 1.000 0.000
#> SRR1818579 1 0.6652 0.790 0.744 0.172 0.084
#> SRR1818578 1 0.3816 0.837 0.852 0.000 0.148
#> SRR1818577 2 0.4346 0.821 0.184 0.816 0.000
#> SRR1818580 1 0.7930 0.762 0.664 0.172 0.164
#> SRR1818575 1 0.0747 0.859 0.984 0.000 0.016
#> SRR1818574 1 0.0000 0.861 1.000 0.000 0.000
#> SRR1818576 1 0.0592 0.863 0.988 0.000 0.012
#> SRR1818573 1 0.6490 0.783 0.752 0.172 0.076
#> SRR1818572 1 0.6652 0.790 0.744 0.172 0.084
#> SRR1818571 1 0.4178 0.804 0.828 0.172 0.000
#> SRR1818570 1 0.0000 0.861 1.000 0.000 0.000
#> SRR1818568 1 0.3192 0.838 0.888 0.000 0.112
#> SRR1818567 2 0.4178 0.833 0.172 0.828 0.000
#> SRR1818566 1 0.0000 0.861 1.000 0.000 0.000
#> SRR1818569 3 0.1753 0.943 0.048 0.000 0.952
#> SRR1818565 1 0.0000 0.861 1.000 0.000 0.000
#> SRR1818564 1 0.0000 0.861 1.000 0.000 0.000
#> SRR1818563 1 0.6229 0.789 0.764 0.172 0.064
#> SRR1818561 1 0.0000 0.861 1.000 0.000 0.000
#> SRR1818560 1 0.1964 0.862 0.944 0.000 0.056
#> SRR1818559 1 0.3551 0.849 0.868 0.000 0.132
#> SRR1818562 1 0.6044 0.798 0.772 0.172 0.056
#> SRR1818558 1 0.7661 0.776 0.684 0.172 0.144
#> SRR1818556 1 0.4749 0.798 0.816 0.172 0.012
#> SRR1818557 1 0.2165 0.844 0.936 0.000 0.064
#> SRR1818555 2 0.0000 0.722 0.000 1.000 0.000
#> SRR1818553 1 0.0592 0.860 0.988 0.000 0.012
#> SRR1818552 2 0.4178 0.833 0.172 0.828 0.000
#> SRR1818551 1 0.0237 0.861 0.996 0.000 0.004
#> SRR1818550 1 0.0000 0.861 1.000 0.000 0.000
#> SRR1818554 1 0.6490 0.783 0.752 0.172 0.076
#> SRR1818549 1 0.0000 0.861 1.000 0.000 0.000
#> SRR1818548 1 0.3192 0.853 0.888 0.000 0.112
#> SRR1818546 3 0.3116 0.857 0.108 0.000 0.892
#> SRR1818547 1 0.5412 0.795 0.796 0.172 0.032
#> SRR1818544 1 0.7717 0.769 0.680 0.172 0.148
#> SRR1818543 1 0.5981 0.820 0.788 0.132 0.080
#> SRR1818542 1 0.4555 0.820 0.800 0.000 0.200
#> SRR1818545 1 0.4178 0.804 0.828 0.172 0.000
#> SRR1818541 1 0.2356 0.858 0.928 0.000 0.072
#> SRR1818539 1 0.4178 0.804 0.828 0.172 0.000
#> SRR1818540 2 0.4178 0.833 0.172 0.828 0.000
#> SRR1818536 1 0.4749 0.798 0.816 0.172 0.012
#> SRR1818535 1 0.0424 0.862 0.992 0.000 0.008
#> SRR1818534 1 0.3752 0.847 0.856 0.000 0.144
#> SRR1818538 1 0.6548 0.630 0.616 0.372 0.012
#> SRR1818537 1 0.4749 0.798 0.816 0.172 0.012
#> SRR1818533 1 0.2356 0.858 0.928 0.000 0.072
#> SRR1818532 1 0.0000 0.861 1.000 0.000 0.000
#> SRR1818531 1 0.6652 0.790 0.744 0.172 0.084
#> SRR1818530 3 0.1753 0.943 0.048 0.000 0.952
#> SRR1818529 1 0.6955 0.786 0.728 0.172 0.100
#> SRR1818528 1 0.3619 0.837 0.864 0.000 0.136
#> SRR1818527 1 0.7717 0.769 0.680 0.172 0.148
#> SRR1818526 1 0.3619 0.832 0.864 0.000 0.136
#> SRR1818525 1 0.7717 0.769 0.680 0.172 0.148
#> SRR1818523 1 0.2356 0.853 0.928 0.000 0.072
#> SRR1818524 1 0.4235 0.834 0.824 0.000 0.176
#> SRR1818522 1 0.2165 0.852 0.936 0.000 0.064
#> SRR1818521 2 0.3965 0.820 0.132 0.860 0.008
#> SRR1818520 2 0.4178 0.678 0.000 0.828 0.172
#> SRR1818518 1 0.1289 0.864 0.968 0.000 0.032
#> SRR1818519 1 0.3551 0.831 0.868 0.000 0.132
#> SRR1818517 2 0.4178 0.833 0.172 0.828 0.000
#> SRR1818516 1 0.2165 0.852 0.936 0.000 0.064
#> SRR1818515 1 0.3482 0.831 0.872 0.000 0.128
#> SRR1818514 3 0.2031 0.926 0.016 0.032 0.952
#> SRR1818513 2 0.4178 0.833 0.172 0.828 0.000
#> SRR1818512 3 0.2173 0.910 0.008 0.048 0.944
#> SRR1818510 2 0.4178 0.833 0.172 0.828 0.000
#> SRR1818511 2 0.7843 0.624 0.208 0.664 0.128
#> SRR1818508 1 0.7545 0.778 0.692 0.172 0.136
#> SRR1818509 2 0.5147 0.810 0.180 0.800 0.020
#> SRR1818507 1 0.3482 0.831 0.872 0.000 0.128
#> SRR1818506 1 0.0000 0.861 1.000 0.000 0.000
#> SRR1818505 1 0.4047 0.837 0.848 0.004 0.148
#> SRR1818503 1 0.2537 0.857 0.920 0.000 0.080
#> SRR1818504 3 0.2165 0.925 0.064 0.000 0.936
#> SRR1818502 1 0.2356 0.858 0.928 0.000 0.072
#> SRR1818498 2 0.4178 0.678 0.000 0.828 0.172
#> SRR1818500 3 0.0747 0.904 0.000 0.016 0.984
#> SRR1818501 1 0.2165 0.852 0.936 0.000 0.064
#> SRR1818499 1 0.7545 0.778 0.692 0.172 0.136
#> SRR1818496 1 0.4521 0.829 0.816 0.004 0.180
#> SRR1818494 1 0.2356 0.858 0.928 0.000 0.072
#> SRR1818495 1 0.5944 0.797 0.784 0.064 0.152
#> SRR1818493 2 0.0000 0.722 0.000 1.000 0.000
#> SRR1818492 1 0.3038 0.849 0.896 0.000 0.104
#> SRR1818491 1 0.7717 0.769 0.680 0.172 0.148
#> SRR1818490 1 0.0000 0.861 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1818497 1 0.4231 0.717 0.824 0.016 0.024 0.136
#> SRR1818600 1 0.5031 0.768 0.740 0.000 0.048 0.212
#> SRR1818599 1 0.3764 0.777 0.784 0.000 0.000 0.216
#> SRR1818598 1 0.5031 0.768 0.740 0.000 0.048 0.212
#> SRR1818597 1 0.0817 0.806 0.976 0.000 0.000 0.024
#> SRR1818596 4 0.3688 0.869 0.208 0.000 0.000 0.792
#> SRR1818595 1 0.0336 0.806 0.992 0.000 0.000 0.008
#> SRR1818594 4 0.4996 0.444 0.484 0.000 0.000 0.516
#> SRR1818593 4 0.3873 0.868 0.228 0.000 0.000 0.772
#> SRR1818592 4 0.3688 0.869 0.208 0.000 0.000 0.792
#> SRR1818591 2 0.0000 0.911 0.000 1.000 0.000 0.000
#> SRR1818590 2 0.4095 0.664 0.000 0.792 0.016 0.192
#> SRR1818589 4 0.1297 0.616 0.020 0.000 0.016 0.964
#> SRR1818587 4 0.4250 0.818 0.276 0.000 0.000 0.724
#> SRR1818586 2 0.0000 0.911 0.000 1.000 0.000 0.000
#> SRR1818585 3 0.1022 0.970 0.000 0.000 0.968 0.032
#> SRR1818584 1 0.5031 0.768 0.740 0.000 0.048 0.212
#> SRR1818583 1 0.0707 0.807 0.980 0.000 0.000 0.020
#> SRR1818588 1 0.0336 0.806 0.992 0.000 0.000 0.008
#> SRR1818582 4 0.3837 0.869 0.224 0.000 0.000 0.776
#> SRR1818581 2 0.0000 0.911 0.000 1.000 0.000 0.000
#> SRR1818579 1 0.5031 0.768 0.740 0.000 0.048 0.212
#> SRR1818578 1 0.4267 0.638 0.788 0.000 0.024 0.188
#> SRR1818577 2 0.3649 0.660 0.204 0.796 0.000 0.000
#> SRR1818580 1 0.5298 0.750 0.708 0.000 0.048 0.244
#> SRR1818575 1 0.4585 0.199 0.668 0.000 0.000 0.332
#> SRR1818574 1 0.0817 0.807 0.976 0.000 0.000 0.024
#> SRR1818576 1 0.0592 0.807 0.984 0.000 0.000 0.016
#> SRR1818573 4 0.1510 0.607 0.028 0.000 0.016 0.956
#> SRR1818572 1 0.5031 0.768 0.740 0.000 0.048 0.212
#> SRR1818571 1 0.3610 0.781 0.800 0.000 0.000 0.200
#> SRR1818570 1 0.0336 0.806 0.992 0.000 0.000 0.008
#> SRR1818568 4 0.5003 0.792 0.308 0.000 0.016 0.676
#> SRR1818567 2 0.0000 0.911 0.000 1.000 0.000 0.000
#> SRR1818566 1 0.0817 0.807 0.976 0.000 0.000 0.024
#> SRR1818569 3 0.1022 0.970 0.000 0.000 0.968 0.032
#> SRR1818565 1 0.0817 0.807 0.976 0.000 0.000 0.024
#> SRR1818564 1 0.0336 0.806 0.992 0.000 0.000 0.008
#> SRR1818563 1 0.5511 0.659 0.636 0.000 0.032 0.332
#> SRR1818561 1 0.0817 0.807 0.976 0.000 0.000 0.024
#> SRR1818560 1 0.0921 0.805 0.972 0.000 0.000 0.028
#> SRR1818559 4 0.3688 0.869 0.208 0.000 0.000 0.792
#> SRR1818562 1 0.4957 0.769 0.748 0.000 0.048 0.204
#> SRR1818558 4 0.4152 0.519 0.160 0.000 0.032 0.808
#> SRR1818556 1 0.4842 0.768 0.760 0.000 0.048 0.192
#> SRR1818557 4 0.3873 0.868 0.228 0.000 0.000 0.772
#> SRR1818555 2 0.0000 0.911 0.000 1.000 0.000 0.000
#> SRR1818553 1 0.0707 0.801 0.980 0.000 0.000 0.020
#> SRR1818552 2 0.0000 0.911 0.000 1.000 0.000 0.000
#> SRR1818551 1 0.2345 0.732 0.900 0.000 0.000 0.100
#> SRR1818550 1 0.1022 0.809 0.968 0.000 0.032 0.000
#> SRR1818554 4 0.1297 0.616 0.020 0.000 0.016 0.964
#> SRR1818549 1 0.0336 0.806 0.992 0.000 0.000 0.008
#> SRR1818548 4 0.3764 0.870 0.216 0.000 0.000 0.784
#> SRR1818546 3 0.1022 0.970 0.000 0.000 0.968 0.032
#> SRR1818547 1 0.5623 0.698 0.660 0.000 0.048 0.292
#> SRR1818544 1 0.5031 0.768 0.740 0.000 0.048 0.212
#> SRR1818543 1 0.4423 0.791 0.788 0.000 0.036 0.176
#> SRR1818542 4 0.3764 0.866 0.216 0.000 0.000 0.784
#> SRR1818545 1 0.4500 0.775 0.776 0.000 0.032 0.192
#> SRR1818541 1 0.1297 0.808 0.964 0.000 0.016 0.020
#> SRR1818539 1 0.3791 0.781 0.796 0.000 0.004 0.200
#> SRR1818540 2 0.0000 0.911 0.000 1.000 0.000 0.000
#> SRR1818536 1 0.4175 0.777 0.784 0.000 0.016 0.200
#> SRR1818535 1 0.3649 0.548 0.796 0.000 0.000 0.204
#> SRR1818534 4 0.3688 0.869 0.208 0.000 0.000 0.792
#> SRR1818538 1 0.7701 0.629 0.596 0.164 0.048 0.192
#> SRR1818537 1 0.4842 0.768 0.760 0.000 0.048 0.192
#> SRR1818533 1 0.1724 0.806 0.948 0.000 0.032 0.020
#> SRR1818532 1 0.0336 0.806 0.992 0.000 0.000 0.008
#> SRR1818531 1 0.5031 0.768 0.740 0.000 0.048 0.212
#> SRR1818530 3 0.1022 0.970 0.000 0.000 0.968 0.032
#> SRR1818529 1 0.5657 0.698 0.644 0.000 0.044 0.312
#> SRR1818528 1 0.0921 0.805 0.972 0.000 0.000 0.028
#> SRR1818527 1 0.5031 0.768 0.740 0.000 0.048 0.212
#> SRR1818526 1 0.5384 0.265 0.648 0.000 0.028 0.324
#> SRR1818525 1 0.5067 0.767 0.736 0.000 0.048 0.216
#> SRR1818523 1 0.0817 0.807 0.976 0.000 0.000 0.024
#> SRR1818524 4 0.3688 0.869 0.208 0.000 0.000 0.792
#> SRR1818522 1 0.0336 0.806 0.992 0.000 0.000 0.008
#> SRR1818521 2 0.0000 0.911 0.000 1.000 0.000 0.000
#> SRR1818520 2 0.0000 0.911 0.000 1.000 0.000 0.000
#> SRR1818518 1 0.0592 0.807 0.984 0.000 0.000 0.016
#> SRR1818519 4 0.3873 0.868 0.228 0.000 0.000 0.772
#> SRR1818517 2 0.0000 0.911 0.000 1.000 0.000 0.000
#> SRR1818516 1 0.4277 0.393 0.720 0.000 0.000 0.280
#> SRR1818515 4 0.3873 0.868 0.228 0.000 0.000 0.772
#> SRR1818514 3 0.1022 0.970 0.000 0.000 0.968 0.032
#> SRR1818513 2 0.0000 0.911 0.000 1.000 0.000 0.000
#> SRR1818512 3 0.1151 0.962 0.000 0.008 0.968 0.024
#> SRR1818510 2 0.0000 0.911 0.000 1.000 0.000 0.000
#> SRR1818511 2 0.5233 0.435 0.332 0.648 0.000 0.020
#> SRR1818508 1 0.4692 0.773 0.756 0.000 0.032 0.212
#> SRR1818509 2 0.3649 0.660 0.204 0.796 0.000 0.000
#> SRR1818507 4 0.3873 0.868 0.228 0.000 0.000 0.772
#> SRR1818506 1 0.0336 0.806 0.992 0.000 0.000 0.008
#> SRR1818505 1 0.2197 0.807 0.928 0.000 0.048 0.024
#> SRR1818503 1 0.0707 0.807 0.980 0.000 0.000 0.020
#> SRR1818504 3 0.2944 0.793 0.128 0.000 0.868 0.004
#> SRR1818502 1 0.1724 0.806 0.948 0.000 0.032 0.020
#> SRR1818498 2 0.0000 0.911 0.000 1.000 0.000 0.000
#> SRR1818500 3 0.1022 0.970 0.000 0.000 0.968 0.032
#> SRR1818501 1 0.0817 0.807 0.976 0.000 0.000 0.024
#> SRR1818499 1 0.3726 0.781 0.788 0.000 0.000 0.212
#> SRR1818496 1 0.6413 0.632 0.688 0.148 0.016 0.148
#> SRR1818494 1 0.1724 0.806 0.948 0.000 0.032 0.020
#> SRR1818495 1 0.5861 -0.455 0.488 0.032 0.000 0.480
#> SRR1818493 2 0.0000 0.911 0.000 1.000 0.000 0.000
#> SRR1818492 1 0.0592 0.807 0.984 0.000 0.000 0.016
#> SRR1818491 1 0.5031 0.768 0.740 0.000 0.048 0.212
#> SRR1818490 1 0.0336 0.806 0.992 0.000 0.000 0.008
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1818497 1 0.3861 0.778 0.728 0.000 0.000 0.264 0.008
#> SRR1818600 1 0.0000 0.800 1.000 0.000 0.000 0.000 0.000
#> SRR1818599 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818598 1 0.0000 0.800 1.000 0.000 0.000 0.000 0.000
#> SRR1818597 1 0.4660 0.809 0.728 0.000 0.080 0.192 0.000
#> SRR1818596 4 0.0000 0.844 0.000 0.000 0.000 1.000 0.000
#> SRR1818595 1 0.4714 0.809 0.724 0.000 0.084 0.192 0.000
#> SRR1818594 4 0.4193 0.576 0.212 0.000 0.040 0.748 0.000
#> SRR1818593 4 0.0162 0.843 0.000 0.000 0.004 0.996 0.000
#> SRR1818592 4 0.0000 0.844 0.000 0.000 0.000 1.000 0.000
#> SRR1818591 2 0.0000 0.924 0.000 1.000 0.000 0.000 0.000
#> SRR1818590 2 0.3074 0.696 0.196 0.804 0.000 0.000 0.000
#> SRR1818589 4 0.3196 0.631 0.192 0.000 0.004 0.804 0.000
#> SRR1818587 4 0.1893 0.802 0.024 0.000 0.048 0.928 0.000
#> SRR1818586 2 0.0000 0.924 0.000 1.000 0.000 0.000 0.000
#> SRR1818585 5 0.0000 0.984 0.000 0.000 0.000 0.000 1.000
#> SRR1818584 1 0.0000 0.800 1.000 0.000 0.000 0.000 0.000
#> SRR1818583 1 0.4660 0.809 0.728 0.000 0.080 0.192 0.000
#> SRR1818588 1 0.4714 0.809 0.724 0.000 0.084 0.192 0.000
#> SRR1818582 4 0.0000 0.844 0.000 0.000 0.000 1.000 0.000
#> SRR1818581 2 0.0000 0.924 0.000 1.000 0.000 0.000 0.000
#> SRR1818579 1 0.0000 0.800 1.000 0.000 0.000 0.000 0.000
#> SRR1818578 1 0.4940 0.562 0.576 0.000 0.032 0.392 0.000
#> SRR1818577 2 0.3003 0.703 0.000 0.812 0.000 0.188 0.000
#> SRR1818580 1 0.0000 0.800 1.000 0.000 0.000 0.000 0.000
#> SRR1818575 4 0.5513 -0.158 0.408 0.000 0.068 0.524 0.000
#> SRR1818574 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818576 1 0.4714 0.809 0.724 0.000 0.084 0.192 0.000
#> SRR1818573 4 0.3039 0.631 0.192 0.000 0.000 0.808 0.000
#> SRR1818572 1 0.0000 0.800 1.000 0.000 0.000 0.000 0.000
#> SRR1818571 1 0.1792 0.804 0.916 0.000 0.084 0.000 0.000
#> SRR1818570 1 0.4714 0.809 0.724 0.000 0.084 0.192 0.000
#> SRR1818568 4 0.2104 0.802 0.060 0.000 0.024 0.916 0.000
#> SRR1818567 2 0.0000 0.924 0.000 1.000 0.000 0.000 0.000
#> SRR1818566 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818569 5 0.0000 0.984 0.000 0.000 0.000 0.000 1.000
#> SRR1818565 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818564 1 0.4714 0.809 0.724 0.000 0.084 0.192 0.000
#> SRR1818563 1 0.2338 0.704 0.884 0.000 0.004 0.112 0.000
#> SRR1818561 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818560 1 0.4660 0.809 0.728 0.000 0.080 0.192 0.000
#> SRR1818559 4 0.0000 0.844 0.000 0.000 0.000 1.000 0.000
#> SRR1818562 1 0.0290 0.800 0.992 0.000 0.008 0.000 0.000
#> SRR1818558 4 0.4291 0.418 0.464 0.000 0.000 0.536 0.000
#> SRR1818556 1 0.0162 0.799 0.996 0.000 0.004 0.000 0.000
#> SRR1818557 4 0.0000 0.844 0.000 0.000 0.000 1.000 0.000
#> SRR1818555 2 0.0000 0.924 0.000 1.000 0.000 0.000 0.000
#> SRR1818553 1 0.4841 0.798 0.708 0.000 0.084 0.208 0.000
#> SRR1818552 2 0.0000 0.924 0.000 1.000 0.000 0.000 0.000
#> SRR1818551 1 0.4777 0.758 0.680 0.000 0.052 0.268 0.000
#> SRR1818550 1 0.3954 0.812 0.772 0.000 0.036 0.192 0.000
#> SRR1818554 4 0.3196 0.631 0.192 0.000 0.004 0.804 0.000
#> SRR1818549 1 0.4714 0.809 0.724 0.000 0.084 0.192 0.000
#> SRR1818548 4 0.0000 0.844 0.000 0.000 0.000 1.000 0.000
#> SRR1818546 5 0.0000 0.984 0.000 0.000 0.000 0.000 1.000
#> SRR1818547 1 0.0566 0.794 0.984 0.000 0.004 0.012 0.000
#> SRR1818544 1 0.0000 0.800 1.000 0.000 0.000 0.000 0.000
#> SRR1818543 1 0.1992 0.816 0.924 0.000 0.032 0.044 0.000
#> SRR1818542 4 0.0510 0.837 0.016 0.000 0.000 0.984 0.000
#> SRR1818545 1 0.0162 0.799 0.996 0.000 0.004 0.000 0.000
#> SRR1818541 1 0.4367 0.812 0.748 0.000 0.060 0.192 0.000
#> SRR1818539 1 0.1732 0.804 0.920 0.000 0.080 0.000 0.000
#> SRR1818540 2 0.0000 0.924 0.000 1.000 0.000 0.000 0.000
#> SRR1818536 1 0.1792 0.804 0.916 0.000 0.084 0.000 0.000
#> SRR1818535 1 0.5639 0.500 0.524 0.000 0.080 0.396 0.000
#> SRR1818534 4 0.0000 0.844 0.000 0.000 0.000 1.000 0.000
#> SRR1818538 1 0.2280 0.699 0.880 0.120 0.000 0.000 0.000
#> SRR1818537 1 0.0963 0.804 0.964 0.000 0.036 0.000 0.000
#> SRR1818533 1 0.3196 0.808 0.804 0.000 0.004 0.192 0.000
#> SRR1818532 1 0.4714 0.809 0.724 0.000 0.084 0.192 0.000
#> SRR1818531 1 0.0000 0.800 1.000 0.000 0.000 0.000 0.000
#> SRR1818530 5 0.0000 0.984 0.000 0.000 0.000 0.000 1.000
#> SRR1818529 1 0.0404 0.799 0.988 0.000 0.000 0.012 0.000
#> SRR1818528 1 0.4660 0.809 0.728 0.000 0.080 0.192 0.000
#> SRR1818527 1 0.0000 0.800 1.000 0.000 0.000 0.000 0.000
#> SRR1818526 1 0.4557 0.285 0.516 0.000 0.008 0.476 0.000
#> SRR1818525 1 0.0000 0.800 1.000 0.000 0.000 0.000 0.000
#> SRR1818523 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818524 4 0.0000 0.844 0.000 0.000 0.000 1.000 0.000
#> SRR1818522 1 0.4714 0.809 0.724 0.000 0.084 0.192 0.000
#> SRR1818521 2 0.0000 0.924 0.000 1.000 0.000 0.000 0.000
#> SRR1818520 2 0.0000 0.924 0.000 1.000 0.000 0.000 0.000
#> SRR1818518 1 0.4714 0.809 0.724 0.000 0.084 0.192 0.000
#> SRR1818519 4 0.0000 0.844 0.000 0.000 0.000 1.000 0.000
#> SRR1818517 2 0.0000 0.924 0.000 1.000 0.000 0.000 0.000
#> SRR1818516 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818515 4 0.0162 0.843 0.000 0.000 0.004 0.996 0.000
#> SRR1818514 5 0.0000 0.984 0.000 0.000 0.000 0.000 1.000
#> SRR1818513 2 0.0000 0.924 0.000 1.000 0.000 0.000 0.000
#> SRR1818512 5 0.0000 0.984 0.000 0.000 0.000 0.000 1.000
#> SRR1818510 2 0.0000 0.924 0.000 1.000 0.000 0.000 0.000
#> SRR1818511 2 0.5083 0.570 0.016 0.716 0.076 0.192 0.000
#> SRR1818508 1 0.0000 0.800 1.000 0.000 0.000 0.000 0.000
#> SRR1818509 2 0.3039 0.698 0.000 0.808 0.000 0.192 0.000
#> SRR1818507 4 0.0000 0.844 0.000 0.000 0.000 1.000 0.000
#> SRR1818506 1 0.4714 0.809 0.724 0.000 0.084 0.192 0.000
#> SRR1818505 1 0.3003 0.808 0.812 0.000 0.000 0.188 0.000
#> SRR1818503 1 0.4660 0.809 0.728 0.000 0.080 0.192 0.000
#> SRR1818504 5 0.1544 0.879 0.000 0.000 0.068 0.000 0.932
#> SRR1818502 1 0.3876 0.812 0.776 0.000 0.032 0.192 0.000
#> SRR1818498 2 0.0000 0.924 0.000 1.000 0.000 0.000 0.000
#> SRR1818500 5 0.0000 0.984 0.000 0.000 0.000 0.000 1.000
#> SRR1818501 3 0.0000 1.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818499 1 0.1608 0.805 0.928 0.000 0.072 0.000 0.000
#> SRR1818496 1 0.5115 0.721 0.696 0.136 0.000 0.168 0.000
#> SRR1818494 1 0.3795 0.811 0.780 0.000 0.028 0.192 0.000
#> SRR1818495 4 0.5693 0.562 0.176 0.052 0.080 0.692 0.000
#> SRR1818493 2 0.0000 0.924 0.000 1.000 0.000 0.000 0.000
#> SRR1818492 1 0.4714 0.809 0.724 0.000 0.084 0.192 0.000
#> SRR1818491 1 0.0000 0.800 1.000 0.000 0.000 0.000 0.000
#> SRR1818490 1 0.4714 0.809 0.724 0.000 0.084 0.192 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1818497 4 0.5071 0.6146 0.200 0.024 0 0.692 0.012 0.072
#> SRR1818600 6 0.1075 0.9030 0.048 0.000 0 0.000 0.000 0.952
#> SRR1818599 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1818598 6 0.0937 0.9012 0.040 0.000 0 0.000 0.000 0.960
#> SRR1818597 1 0.1007 0.8277 0.956 0.000 0 0.000 0.000 0.044
#> SRR1818596 4 0.0000 0.8174 0.000 0.000 0 1.000 0.000 0.000
#> SRR1818595 1 0.1007 0.8277 0.956 0.000 0 0.000 0.000 0.044
#> SRR1818594 1 0.4085 0.5294 0.704 0.000 0 0.252 0.000 0.044
#> SRR1818593 4 0.0000 0.8174 0.000 0.000 0 1.000 0.000 0.000
#> SRR1818592 4 0.0000 0.8174 0.000 0.000 0 1.000 0.000 0.000
#> SRR1818591 2 0.0000 0.9081 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818590 6 0.2941 0.6941 0.000 0.220 0 0.000 0.000 0.780
#> SRR1818589 4 0.0000 0.8174 0.000 0.000 0 1.000 0.000 0.000
#> SRR1818587 4 0.5347 0.2918 0.412 0.000 0 0.480 0.000 0.108
#> SRR1818586 2 0.0000 0.9081 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818585 5 0.0000 0.9580 0.000 0.000 0 0.000 1.000 0.000
#> SRR1818584 6 0.0713 0.9062 0.028 0.000 0 0.000 0.000 0.972
#> SRR1818583 1 0.1007 0.8277 0.956 0.000 0 0.000 0.000 0.044
#> SRR1818588 1 0.0000 0.8183 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818582 4 0.0000 0.8174 0.000 0.000 0 1.000 0.000 0.000
#> SRR1818581 2 0.0000 0.9081 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818579 6 0.0713 0.9062 0.028 0.000 0 0.000 0.000 0.972
#> SRR1818578 4 0.4932 0.2187 0.372 0.000 0 0.556 0.000 0.072
#> SRR1818577 2 0.3446 0.5326 0.308 0.692 0 0.000 0.000 0.000
#> SRR1818580 6 0.0000 0.9034 0.000 0.000 0 0.000 0.000 1.000
#> SRR1818575 1 0.3864 -0.1704 0.520 0.000 0 0.480 0.000 0.000
#> SRR1818574 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1818576 1 0.1007 0.8277 0.956 0.000 0 0.000 0.000 0.044
#> SRR1818573 4 0.0000 0.8174 0.000 0.000 0 1.000 0.000 0.000
#> SRR1818572 6 0.0713 0.9062 0.028 0.000 0 0.000 0.000 0.972
#> SRR1818571 1 0.3672 0.3668 0.632 0.000 0 0.000 0.000 0.368
#> SRR1818570 1 0.1007 0.8277 0.956 0.000 0 0.000 0.000 0.044
#> SRR1818568 4 0.5681 0.2052 0.420 0.000 0 0.424 0.000 0.156
#> SRR1818567 2 0.0000 0.9081 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818566 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1818569 5 0.0000 0.9580 0.000 0.000 0 0.000 1.000 0.000
#> SRR1818565 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1818564 1 0.0865 0.8272 0.964 0.000 0 0.000 0.000 0.036
#> SRR1818563 6 0.1444 0.8902 0.072 0.000 0 0.000 0.000 0.928
#> SRR1818561 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1818560 1 0.1007 0.8277 0.956 0.000 0 0.000 0.000 0.044
#> SRR1818559 4 0.0000 0.8174 0.000 0.000 0 1.000 0.000 0.000
#> SRR1818562 6 0.1610 0.8865 0.084 0.000 0 0.000 0.000 0.916
#> SRR1818558 6 0.0000 0.9034 0.000 0.000 0 0.000 0.000 1.000
#> SRR1818556 6 0.0713 0.9062 0.028 0.000 0 0.000 0.000 0.972
#> SRR1818557 4 0.0000 0.8174 0.000 0.000 0 1.000 0.000 0.000
#> SRR1818555 2 0.0000 0.9081 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818553 1 0.0363 0.8147 0.988 0.000 0 0.012 0.000 0.000
#> SRR1818552 2 0.0000 0.9081 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818551 1 0.3823 -0.0291 0.564 0.000 0 0.436 0.000 0.000
#> SRR1818550 1 0.0000 0.8183 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818554 4 0.0000 0.8174 0.000 0.000 0 1.000 0.000 0.000
#> SRR1818549 1 0.0000 0.8183 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818548 4 0.0000 0.8174 0.000 0.000 0 1.000 0.000 0.000
#> SRR1818546 5 0.0000 0.9580 0.000 0.000 0 0.000 1.000 0.000
#> SRR1818547 6 0.1444 0.8902 0.072 0.000 0 0.000 0.000 0.928
#> SRR1818544 6 0.0000 0.9034 0.000 0.000 0 0.000 0.000 1.000
#> SRR1818543 1 0.3620 0.4793 0.648 0.000 0 0.000 0.000 0.352
#> SRR1818542 4 0.3911 0.4385 0.368 0.000 0 0.624 0.000 0.008
#> SRR1818545 6 0.1444 0.8902 0.072 0.000 0 0.000 0.000 0.928
#> SRR1818541 1 0.1007 0.8277 0.956 0.000 0 0.000 0.000 0.044
#> SRR1818539 1 0.3737 0.3611 0.608 0.000 0 0.000 0.000 0.392
#> SRR1818540 2 0.0000 0.9081 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818536 1 0.3672 0.3668 0.632 0.000 0 0.000 0.000 0.368
#> SRR1818535 1 0.3649 0.6601 0.764 0.000 0 0.196 0.000 0.040
#> SRR1818534 4 0.0000 0.8174 0.000 0.000 0 1.000 0.000 0.000
#> SRR1818538 6 0.1682 0.8918 0.052 0.020 0 0.000 0.000 0.928
#> SRR1818537 1 0.3804 0.3302 0.576 0.000 0 0.000 0.000 0.424
#> SRR1818533 1 0.2941 0.6230 0.780 0.000 0 0.000 0.000 0.220
#> SRR1818532 1 0.0000 0.8183 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818531 6 0.0713 0.9062 0.028 0.000 0 0.000 0.000 0.972
#> SRR1818530 5 0.0000 0.9580 0.000 0.000 0 0.000 1.000 0.000
#> SRR1818529 6 0.2237 0.8671 0.036 0.000 0 0.068 0.000 0.896
#> SRR1818528 1 0.1444 0.8145 0.928 0.000 0 0.000 0.000 0.072
#> SRR1818527 6 0.0000 0.9034 0.000 0.000 0 0.000 0.000 1.000
#> SRR1818526 6 0.4774 0.1584 0.420 0.000 0 0.052 0.000 0.528
#> SRR1818525 6 0.0000 0.9034 0.000 0.000 0 0.000 0.000 1.000
#> SRR1818523 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1818524 4 0.0000 0.8174 0.000 0.000 0 1.000 0.000 0.000
#> SRR1818522 1 0.1075 0.8167 0.952 0.000 0 0.000 0.000 0.048
#> SRR1818521 2 0.0146 0.9045 0.000 0.996 0 0.000 0.000 0.004
#> SRR1818520 2 0.0000 0.9081 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818518 1 0.1007 0.8277 0.956 0.000 0 0.000 0.000 0.044
#> SRR1818519 4 0.3782 0.3959 0.412 0.000 0 0.588 0.000 0.000
#> SRR1818517 2 0.0000 0.9081 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818516 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1818515 4 0.0713 0.7990 0.000 0.000 0 0.972 0.000 0.028
#> SRR1818514 5 0.0000 0.9580 0.000 0.000 0 0.000 1.000 0.000
#> SRR1818513 2 0.0000 0.9081 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818512 5 0.0000 0.9580 0.000 0.000 0 0.000 1.000 0.000
#> SRR1818510 2 0.0000 0.9081 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818511 1 0.3522 0.7225 0.800 0.128 0 0.000 0.000 0.072
#> SRR1818508 6 0.0000 0.9034 0.000 0.000 0 0.000 0.000 1.000
#> SRR1818509 2 0.3833 0.4556 0.344 0.648 0 0.000 0.000 0.008
#> SRR1818507 4 0.1003 0.8002 0.020 0.000 0 0.964 0.000 0.016
#> SRR1818506 1 0.0000 0.8183 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818505 6 0.3563 0.3561 0.336 0.000 0 0.000 0.000 0.664
#> SRR1818503 1 0.1141 0.8252 0.948 0.000 0 0.000 0.000 0.052
#> SRR1818504 5 0.2558 0.7422 0.156 0.000 0 0.000 0.840 0.004
#> SRR1818502 1 0.1007 0.8277 0.956 0.000 0 0.000 0.000 0.044
#> SRR1818498 2 0.0000 0.9081 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818500 5 0.0790 0.9288 0.000 0.000 0 0.000 0.968 0.032
#> SRR1818501 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1818499 1 0.3867 0.2250 0.512 0.000 0 0.000 0.000 0.488
#> SRR1818496 2 0.6062 0.3544 0.092 0.564 0 0.272 0.000 0.072
#> SRR1818494 1 0.1075 0.8270 0.952 0.000 0 0.000 0.000 0.048
#> SRR1818495 1 0.1074 0.8061 0.960 0.000 0 0.012 0.000 0.028
#> SRR1818493 2 0.0000 0.9081 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818492 1 0.0713 0.8108 0.972 0.000 0 0.000 0.000 0.028
#> SRR1818491 6 0.0000 0.9034 0.000 0.000 0 0.000 0.000 1.000
#> SRR1818490 1 0.0000 0.8183 1.000 0.000 0 0.000 0.000 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 16183 rows and 111 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 6.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.187 0.679 0.802 0.3955 0.578 0.578
#> 3 3 0.126 0.377 0.650 0.3576 0.651 0.466
#> 4 4 0.332 0.657 0.730 0.1788 0.768 0.512
#> 5 5 0.593 0.794 0.861 0.0619 0.985 0.955
#> 6 6 0.578 0.685 0.788 0.1449 0.823 0.505
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 6
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1818497 1 0.7219 0.7189 0.800 0.200
#> SRR1818600 2 0.8608 0.7102 0.284 0.716
#> SRR1818599 1 0.9850 -0.3820 0.572 0.428
#> SRR1818598 2 0.8661 0.7099 0.288 0.712
#> SRR1818597 1 0.1843 0.8243 0.972 0.028
#> SRR1818596 1 0.6438 0.7246 0.836 0.164
#> SRR1818595 1 0.3431 0.8089 0.936 0.064
#> SRR1818594 1 0.1843 0.8228 0.972 0.028
#> SRR1818593 2 0.8081 0.6992 0.248 0.752
#> SRR1818592 1 0.6712 0.7227 0.824 0.176
#> SRR1818591 2 0.9358 0.6030 0.352 0.648
#> SRR1818590 2 0.9209 0.5887 0.336 0.664
#> SRR1818589 2 0.7950 0.6987 0.240 0.760
#> SRR1818587 1 0.0000 0.8227 1.000 0.000
#> SRR1818586 1 0.7056 0.6871 0.808 0.192
#> SRR1818585 2 0.9933 0.0655 0.452 0.548
#> SRR1818584 2 0.8763 0.7081 0.296 0.704
#> SRR1818583 1 0.2423 0.8258 0.960 0.040
#> SRR1818588 1 0.0938 0.8233 0.988 0.012
#> SRR1818582 1 0.6712 0.7227 0.824 0.176
#> SRR1818581 2 0.9393 0.6039 0.356 0.644
#> SRR1818579 2 0.8861 0.7048 0.304 0.696
#> SRR1818578 1 0.4431 0.8012 0.908 0.092
#> SRR1818577 1 0.6247 0.7221 0.844 0.156
#> SRR1818580 2 0.8207 0.7089 0.256 0.744
#> SRR1818575 1 0.1184 0.8241 0.984 0.016
#> SRR1818574 1 0.1184 0.8227 0.984 0.016
#> SRR1818576 1 0.3274 0.8091 0.940 0.060
#> SRR1818573 2 0.7950 0.6987 0.240 0.760
#> SRR1818572 2 0.8813 0.7075 0.300 0.700
#> SRR1818571 2 0.9815 0.6639 0.420 0.580
#> SRR1818570 1 0.1414 0.8224 0.980 0.020
#> SRR1818568 1 0.1184 0.8241 0.984 0.016
#> SRR1818567 1 0.7056 0.6871 0.808 0.192
#> SRR1818566 1 0.2236 0.8220 0.964 0.036
#> SRR1818569 2 0.9933 0.0655 0.452 0.548
#> SRR1818565 1 0.2236 0.8220 0.964 0.036
#> SRR1818564 1 0.5059 0.7714 0.888 0.112
#> SRR1818563 2 0.8499 0.7085 0.276 0.724
#> SRR1818561 1 0.2236 0.8220 0.964 0.036
#> SRR1818560 1 0.3879 0.8023 0.924 0.076
#> SRR1818559 1 0.6712 0.7227 0.824 0.176
#> SRR1818562 2 0.9988 0.5613 0.480 0.520
#> SRR1818558 1 0.4298 0.7993 0.912 0.088
#> SRR1818556 2 0.9000 0.6986 0.316 0.684
#> SRR1818557 1 0.7674 0.6631 0.776 0.224
#> SRR1818555 2 0.9358 0.6030 0.352 0.648
#> SRR1818553 1 0.1184 0.8225 0.984 0.016
#> SRR1818552 1 0.7056 0.6871 0.808 0.192
#> SRR1818551 1 0.0376 0.8233 0.996 0.004
#> SRR1818550 1 0.9998 -0.5647 0.508 0.492
#> SRR1818554 2 0.7950 0.6987 0.240 0.760
#> SRR1818549 1 0.3733 0.7917 0.928 0.072
#> SRR1818548 1 0.8661 0.5383 0.712 0.288
#> SRR1818546 2 0.3733 0.6060 0.072 0.928
#> SRR1818547 2 0.8207 0.7010 0.256 0.744
#> SRR1818544 1 0.6048 0.7606 0.852 0.148
#> SRR1818543 1 0.5737 0.7550 0.864 0.136
#> SRR1818542 1 0.6887 0.7251 0.816 0.184
#> SRR1818545 2 0.9552 0.7023 0.376 0.624
#> SRR1818541 1 0.3733 0.8028 0.928 0.072
#> SRR1818539 2 0.9954 0.5208 0.460 0.540
#> SRR1818540 1 0.7056 0.6871 0.808 0.192
#> SRR1818536 2 0.9580 0.6961 0.380 0.620
#> SRR1818535 1 0.1633 0.8232 0.976 0.024
#> SRR1818534 1 0.6712 0.7227 0.824 0.176
#> SRR1818538 2 0.9460 0.6048 0.364 0.636
#> SRR1818537 2 0.8861 0.7048 0.304 0.696
#> SRR1818533 1 0.4431 0.7965 0.908 0.092
#> SRR1818532 1 0.1414 0.8236 0.980 0.020
#> SRR1818531 2 0.9775 0.6017 0.412 0.588
#> SRR1818530 2 0.9933 0.0655 0.452 0.548
#> SRR1818529 2 0.7745 0.6997 0.228 0.772
#> SRR1818528 1 0.3584 0.8044 0.932 0.068
#> SRR1818527 1 0.4022 0.8073 0.920 0.080
#> SRR1818526 1 0.6623 0.7192 0.828 0.172
#> SRR1818525 1 0.4690 0.8001 0.900 0.100
#> SRR1818523 1 0.2236 0.8220 0.964 0.036
#> SRR1818524 1 0.6887 0.7104 0.816 0.184
#> SRR1818522 1 0.0938 0.8217 0.988 0.012
#> SRR1818521 1 0.6973 0.6890 0.812 0.188
#> SRR1818520 1 0.7056 0.6871 0.808 0.192
#> SRR1818518 1 0.3431 0.8077 0.936 0.064
#> SRR1818519 1 0.5519 0.7548 0.872 0.128
#> SRR1818517 1 0.7056 0.6871 0.808 0.192
#> SRR1818516 1 0.2236 0.8220 0.964 0.036
#> SRR1818515 1 0.6531 0.7272 0.832 0.168
#> SRR1818514 2 0.9933 0.0655 0.452 0.548
#> SRR1818513 1 0.7056 0.6871 0.808 0.192
#> SRR1818512 2 0.9933 0.0655 0.452 0.548
#> SRR1818510 1 0.7056 0.6871 0.808 0.192
#> SRR1818511 1 0.4815 0.7687 0.896 0.104
#> SRR1818508 1 0.3733 0.8050 0.928 0.072
#> SRR1818509 1 0.7056 0.6871 0.808 0.192
#> SRR1818507 1 0.6247 0.7321 0.844 0.156
#> SRR1818506 1 0.0000 0.8227 1.000 0.000
#> SRR1818505 1 0.4298 0.8006 0.912 0.088
#> SRR1818503 1 0.3733 0.8028 0.928 0.072
#> SRR1818504 1 0.9358 0.3769 0.648 0.352
#> SRR1818502 1 0.4431 0.7973 0.908 0.092
#> SRR1818498 1 0.7139 0.6831 0.804 0.196
#> SRR1818500 2 0.9933 0.0655 0.452 0.548
#> SRR1818501 1 0.2236 0.8220 0.964 0.036
#> SRR1818499 1 0.2948 0.8213 0.948 0.052
#> SRR1818496 1 0.7056 0.7190 0.808 0.192
#> SRR1818494 1 0.4431 0.7973 0.908 0.092
#> SRR1818495 1 0.1414 0.8214 0.980 0.020
#> SRR1818493 1 0.7056 0.6871 0.808 0.192
#> SRR1818492 1 0.0672 0.8242 0.992 0.008
#> SRR1818491 1 0.5294 0.7861 0.880 0.120
#> SRR1818490 1 0.0938 0.8217 0.988 0.012
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1818497 1 0.832 -0.00991 0.496 0.080 0.424
#> SRR1818600 3 0.669 0.50822 0.372 0.016 0.612
#> SRR1818599 3 0.595 0.44877 0.280 0.012 0.708
#> SRR1818598 3 0.657 0.50518 0.376 0.012 0.612
#> SRR1818597 1 0.446 0.60334 0.864 0.080 0.056
#> SRR1818596 3 0.818 0.14553 0.424 0.072 0.504
#> SRR1818595 1 0.377 0.59895 0.888 0.084 0.028
#> SRR1818594 1 0.412 0.61292 0.876 0.084 0.040
#> SRR1818593 3 0.597 0.47916 0.160 0.060 0.780
#> SRR1818592 3 0.695 0.06347 0.472 0.016 0.512
#> SRR1818591 3 0.607 0.29829 0.028 0.236 0.736
#> SRR1818590 3 0.618 0.30181 0.032 0.236 0.732
#> SRR1818589 3 0.480 0.49650 0.132 0.032 0.836
#> SRR1818587 1 0.346 0.59454 0.904 0.036 0.060
#> SRR1818586 2 0.900 0.53579 0.356 0.504 0.140
#> SRR1818585 2 0.825 0.28054 0.080 0.528 0.392
#> SRR1818584 3 0.596 0.55572 0.300 0.008 0.692
#> SRR1818583 1 0.463 0.60112 0.856 0.088 0.056
#> SRR1818588 1 0.494 0.60255 0.840 0.104 0.056
#> SRR1818582 3 0.739 0.09114 0.464 0.032 0.504
#> SRR1818581 3 0.607 0.29829 0.028 0.236 0.736
#> SRR1818579 3 0.658 0.50085 0.380 0.012 0.608
#> SRR1818578 1 0.653 0.20387 0.620 0.012 0.368
#> SRR1818577 2 0.901 0.53220 0.360 0.500 0.140
#> SRR1818580 3 0.677 0.55666 0.264 0.044 0.692
#> SRR1818575 1 0.554 0.59029 0.812 0.116 0.072
#> SRR1818574 1 0.621 0.32864 0.628 0.004 0.368
#> SRR1818576 1 0.368 0.59277 0.892 0.080 0.028
#> SRR1818573 3 0.480 0.49313 0.132 0.032 0.836
#> SRR1818572 3 0.619 0.56007 0.292 0.016 0.692
#> SRR1818571 3 0.722 0.51722 0.296 0.052 0.652
#> SRR1818570 1 0.474 0.59889 0.852 0.084 0.064
#> SRR1818568 1 0.554 0.59029 0.812 0.116 0.072
#> SRR1818567 2 0.904 0.53476 0.356 0.500 0.144
#> SRR1818566 1 0.787 0.23218 0.524 0.056 0.420
#> SRR1818569 2 0.825 0.28054 0.080 0.528 0.392
#> SRR1818565 1 0.787 0.23218 0.524 0.056 0.420
#> SRR1818564 1 0.670 0.24686 0.684 0.036 0.280
#> SRR1818563 3 0.728 0.54401 0.260 0.068 0.672
#> SRR1818561 1 0.787 0.23218 0.524 0.056 0.420
#> SRR1818560 1 0.404 0.59285 0.880 0.080 0.040
#> SRR1818559 3 0.682 0.02743 0.488 0.012 0.500
#> SRR1818562 3 0.644 0.52590 0.188 0.064 0.748
#> SRR1818558 1 0.337 0.60787 0.904 0.072 0.024
#> SRR1818556 3 0.662 0.49791 0.388 0.012 0.600
#> SRR1818557 3 0.772 0.15228 0.432 0.048 0.520
#> SRR1818555 3 0.607 0.29829 0.028 0.236 0.736
#> SRR1818553 1 0.587 0.58310 0.796 0.116 0.088
#> SRR1818552 2 0.900 0.53460 0.356 0.504 0.140
#> SRR1818551 1 0.533 0.59558 0.820 0.120 0.060
#> SRR1818550 3 0.715 0.49498 0.348 0.036 0.616
#> SRR1818554 3 0.531 0.48915 0.136 0.048 0.816
#> SRR1818549 1 0.826 0.10716 0.544 0.084 0.372
#> SRR1818548 3 0.790 0.22712 0.400 0.060 0.540
#> SRR1818546 3 0.631 -0.13679 0.000 0.488 0.512
#> SRR1818547 3 0.723 0.54704 0.228 0.080 0.692
#> SRR1818544 1 0.617 0.18491 0.636 0.004 0.360
#> SRR1818543 1 0.701 0.15051 0.652 0.040 0.308
#> SRR1818542 1 0.824 0.00891 0.508 0.076 0.416
#> SRR1818545 3 0.688 0.51675 0.304 0.036 0.660
#> SRR1818541 1 0.296 0.60475 0.912 0.080 0.008
#> SRR1818539 1 0.792 -0.38464 0.480 0.056 0.464
#> SRR1818540 2 0.904 0.53476 0.356 0.500 0.144
#> SRR1818536 3 0.684 0.50794 0.332 0.028 0.640
#> SRR1818535 1 0.277 0.59643 0.916 0.004 0.080
#> SRR1818534 3 0.682 0.02954 0.484 0.012 0.504
#> SRR1818538 3 0.592 0.32318 0.032 0.212 0.756
#> SRR1818537 3 0.628 0.49958 0.384 0.004 0.612
#> SRR1818533 1 0.321 0.60514 0.900 0.092 0.008
#> SRR1818532 1 0.538 0.59556 0.820 0.112 0.068
#> SRR1818531 3 0.636 0.52186 0.364 0.008 0.628
#> SRR1818530 2 0.825 0.28054 0.080 0.528 0.392
#> SRR1818529 3 0.660 0.51806 0.168 0.084 0.748
#> SRR1818528 1 0.164 0.59984 0.956 0.000 0.044
#> SRR1818527 1 0.620 0.22960 0.656 0.008 0.336
#> SRR1818526 1 0.851 0.02665 0.512 0.096 0.392
#> SRR1818525 1 0.606 0.22117 0.656 0.004 0.340
#> SRR1818523 1 0.787 0.23218 0.524 0.056 0.420
#> SRR1818524 3 0.830 0.16329 0.412 0.080 0.508
#> SRR1818522 1 0.389 0.58140 0.884 0.032 0.084
#> SRR1818521 3 0.983 -0.20332 0.356 0.248 0.396
#> SRR1818520 2 0.987 0.31269 0.320 0.408 0.272
#> SRR1818518 1 0.341 0.59856 0.900 0.080 0.020
#> SRR1818519 1 0.745 0.34952 0.636 0.060 0.304
#> SRR1818517 2 0.912 0.51288 0.368 0.484 0.148
#> SRR1818516 1 0.787 0.23218 0.524 0.056 0.420
#> SRR1818515 3 0.766 0.09799 0.448 0.044 0.508
#> SRR1818514 2 0.825 0.28054 0.080 0.528 0.392
#> SRR1818513 2 0.895 0.53594 0.356 0.508 0.136
#> SRR1818512 2 0.825 0.28054 0.080 0.528 0.392
#> SRR1818510 2 0.904 0.53476 0.356 0.500 0.144
#> SRR1818511 1 0.733 0.39263 0.672 0.072 0.256
#> SRR1818508 1 0.287 0.57679 0.916 0.008 0.076
#> SRR1818509 2 0.912 0.51288 0.368 0.484 0.148
#> SRR1818507 1 0.827 -0.03078 0.480 0.076 0.444
#> SRR1818506 1 0.579 0.58492 0.800 0.116 0.084
#> SRR1818505 1 0.537 0.40015 0.744 0.004 0.252
#> SRR1818503 1 0.254 0.60496 0.920 0.080 0.000
#> SRR1818504 2 0.996 -0.02738 0.288 0.364 0.348
#> SRR1818502 1 0.313 0.60467 0.904 0.088 0.008
#> SRR1818498 2 0.991 0.29804 0.344 0.384 0.272
#> SRR1818500 2 0.915 0.19230 0.148 0.468 0.384
#> SRR1818501 1 0.787 0.23218 0.524 0.056 0.420
#> SRR1818499 1 0.418 0.52402 0.828 0.000 0.172
#> SRR1818496 1 0.826 -0.03821 0.492 0.076 0.432
#> SRR1818494 1 0.238 0.61366 0.936 0.056 0.008
#> SRR1818495 1 0.517 0.53310 0.824 0.048 0.128
#> SRR1818493 3 0.993 -0.26639 0.356 0.276 0.368
#> SRR1818492 1 0.536 0.59415 0.820 0.116 0.064
#> SRR1818491 1 0.647 0.17013 0.632 0.012 0.356
#> SRR1818490 1 0.364 0.57543 0.872 0.004 0.124
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1818497 1 0.7215 0.660 0.600 0.056 0.280 0.064
#> SRR1818600 4 0.4957 0.838 0.336 0.004 0.004 0.656
#> SRR1818599 3 0.7889 0.331 0.180 0.012 0.416 0.392
#> SRR1818598 4 0.5074 0.838 0.332 0.008 0.004 0.656
#> SRR1818597 1 0.1892 0.710 0.944 0.004 0.036 0.016
#> SRR1818596 1 0.8034 0.246 0.368 0.004 0.348 0.280
#> SRR1818595 1 0.0376 0.700 0.992 0.004 0.004 0.000
#> SRR1818594 1 0.1909 0.710 0.940 0.004 0.048 0.008
#> SRR1818593 4 0.5323 0.621 0.172 0.004 0.076 0.748
#> SRR1818592 1 0.7551 0.591 0.528 0.008 0.192 0.272
#> SRR1818591 2 0.5985 0.428 0.004 0.536 0.032 0.428
#> SRR1818590 2 0.5112 0.450 0.004 0.560 0.000 0.436
#> SRR1818589 4 0.3508 0.701 0.136 0.004 0.012 0.848
#> SRR1818587 1 0.4218 0.737 0.832 0.012 0.116 0.040
#> SRR1818586 2 0.1798 0.696 0.016 0.944 0.040 0.000
#> SRR1818585 3 0.3176 0.661 0.000 0.084 0.880 0.036
#> SRR1818584 4 0.5587 0.833 0.312 0.032 0.004 0.652
#> SRR1818583 1 0.2408 0.714 0.920 0.004 0.060 0.016
#> SRR1818588 1 0.2828 0.706 0.912 0.032 0.020 0.036
#> SRR1818582 1 0.7551 0.591 0.528 0.008 0.192 0.272
#> SRR1818581 2 0.5229 0.451 0.008 0.564 0.000 0.428
#> SRR1818579 4 0.5193 0.835 0.324 0.020 0.000 0.656
#> SRR1818578 1 0.6556 0.698 0.648 0.024 0.256 0.072
#> SRR1818577 2 0.0524 0.717 0.008 0.988 0.000 0.004
#> SRR1818580 4 0.6143 0.829 0.288 0.016 0.048 0.648
#> SRR1818575 1 0.2284 0.703 0.932 0.012 0.020 0.036
#> SRR1818574 1 0.6889 0.620 0.624 0.008 0.196 0.172
#> SRR1818576 1 0.0895 0.700 0.976 0.020 0.004 0.000
#> SRR1818573 4 0.3626 0.702 0.136 0.004 0.016 0.844
#> SRR1818572 4 0.5824 0.831 0.300 0.040 0.008 0.652
#> SRR1818571 4 0.6286 0.787 0.308 0.012 0.056 0.624
#> SRR1818570 1 0.2007 0.707 0.940 0.004 0.036 0.020
#> SRR1818568 1 0.2284 0.703 0.932 0.012 0.020 0.036
#> SRR1818567 2 0.0336 0.716 0.008 0.992 0.000 0.000
#> SRR1818566 3 0.6593 0.717 0.128 0.008 0.648 0.216
#> SRR1818569 3 0.3176 0.661 0.000 0.084 0.880 0.036
#> SRR1818565 3 0.6593 0.717 0.128 0.008 0.648 0.216
#> SRR1818564 1 0.5402 0.708 0.760 0.020 0.160 0.060
#> SRR1818563 4 0.5274 0.823 0.232 0.008 0.036 0.724
#> SRR1818561 3 0.6593 0.717 0.128 0.008 0.648 0.216
#> SRR1818560 1 0.0895 0.700 0.976 0.020 0.004 0.000
#> SRR1818559 1 0.7450 0.590 0.528 0.004 0.196 0.272
#> SRR1818562 4 0.6624 0.793 0.296 0.056 0.028 0.620
#> SRR1818558 1 0.2282 0.700 0.924 0.024 0.000 0.052
#> SRR1818556 4 0.5514 0.813 0.356 0.020 0.004 0.620
#> SRR1818557 1 0.7383 0.580 0.532 0.008 0.152 0.308
#> SRR1818555 2 0.5097 0.458 0.004 0.568 0.000 0.428
#> SRR1818553 1 0.2594 0.702 0.920 0.012 0.032 0.036
#> SRR1818552 2 0.0672 0.715 0.008 0.984 0.000 0.008
#> SRR1818551 1 0.2392 0.703 0.928 0.012 0.024 0.036
#> SRR1818550 4 0.7350 0.673 0.336 0.024 0.100 0.540
#> SRR1818554 4 0.3560 0.703 0.140 0.004 0.012 0.844
#> SRR1818549 1 0.6108 0.697 0.696 0.012 0.200 0.092
#> SRR1818548 1 0.7367 0.562 0.516 0.004 0.160 0.320
#> SRR1818546 3 0.5511 0.435 0.000 0.084 0.720 0.196
#> SRR1818547 4 0.5189 0.803 0.208 0.012 0.036 0.744
#> SRR1818544 1 0.6213 0.696 0.708 0.028 0.180 0.084
#> SRR1818543 1 0.5229 0.708 0.768 0.012 0.152 0.068
#> SRR1818542 1 0.7208 0.658 0.616 0.032 0.236 0.116
#> SRR1818545 4 0.5425 0.820 0.288 0.012 0.020 0.680
#> SRR1818541 1 0.0895 0.699 0.976 0.020 0.000 0.004
#> SRR1818539 1 0.7176 -0.104 0.524 0.004 0.132 0.340
#> SRR1818540 2 0.0336 0.716 0.008 0.992 0.000 0.000
#> SRR1818536 4 0.5911 0.793 0.328 0.004 0.044 0.624
#> SRR1818535 1 0.4814 0.724 0.776 0.004 0.172 0.048
#> SRR1818534 1 0.7450 0.590 0.528 0.004 0.196 0.272
#> SRR1818538 2 0.5383 0.407 0.012 0.536 0.000 0.452
#> SRR1818537 4 0.5233 0.830 0.332 0.020 0.000 0.648
#> SRR1818533 1 0.1042 0.699 0.972 0.008 0.000 0.020
#> SRR1818532 1 0.2284 0.703 0.932 0.012 0.020 0.036
#> SRR1818531 4 0.7775 0.633 0.332 0.032 0.124 0.512
#> SRR1818530 3 0.3176 0.661 0.000 0.084 0.880 0.036
#> SRR1818529 4 0.6829 0.787 0.216 0.036 0.092 0.656
#> SRR1818528 1 0.3806 0.736 0.824 0.020 0.156 0.000
#> SRR1818527 1 0.6046 0.706 0.720 0.032 0.180 0.068
#> SRR1818526 1 0.7192 0.670 0.608 0.016 0.184 0.192
#> SRR1818525 1 0.6113 0.705 0.716 0.032 0.180 0.072
#> SRR1818523 3 0.6593 0.717 0.128 0.008 0.648 0.216
#> SRR1818524 1 0.8052 0.219 0.372 0.004 0.324 0.300
#> SRR1818522 1 0.5027 0.738 0.776 0.016 0.164 0.044
#> SRR1818521 2 0.5927 0.493 0.052 0.744 0.144 0.060
#> SRR1818520 2 0.6322 0.237 0.016 0.564 0.384 0.036
#> SRR1818518 1 0.0895 0.700 0.976 0.020 0.004 0.000
#> SRR1818519 1 0.6999 0.688 0.620 0.012 0.204 0.164
#> SRR1818517 2 0.0804 0.715 0.012 0.980 0.000 0.008
#> SRR1818516 3 0.6593 0.717 0.128 0.008 0.648 0.216
#> SRR1818515 1 0.7159 0.620 0.564 0.004 0.160 0.272
#> SRR1818514 3 0.3176 0.661 0.000 0.084 0.880 0.036
#> SRR1818513 2 0.0336 0.716 0.008 0.992 0.000 0.000
#> SRR1818512 3 0.3176 0.661 0.000 0.084 0.880 0.036
#> SRR1818510 2 0.0336 0.716 0.008 0.992 0.000 0.000
#> SRR1818511 1 0.8498 0.568 0.528 0.192 0.200 0.080
#> SRR1818508 1 0.5792 0.713 0.736 0.032 0.176 0.056
#> SRR1818509 2 0.0804 0.715 0.012 0.980 0.000 0.008
#> SRR1818507 1 0.7382 0.657 0.584 0.016 0.188 0.212
#> SRR1818506 1 0.2689 0.702 0.916 0.012 0.036 0.036
#> SRR1818505 1 0.5507 0.716 0.748 0.028 0.180 0.044
#> SRR1818503 1 0.0895 0.699 0.976 0.020 0.000 0.004
#> SRR1818504 3 0.7403 0.420 0.272 0.084 0.592 0.052
#> SRR1818502 1 0.1042 0.699 0.972 0.020 0.000 0.008
#> SRR1818498 2 0.6333 0.227 0.016 0.560 0.388 0.036
#> SRR1818500 3 0.7022 0.534 0.220 0.092 0.644 0.044
#> SRR1818501 3 0.6593 0.717 0.128 0.008 0.648 0.216
#> SRR1818499 1 0.5361 0.724 0.748 0.024 0.192 0.036
#> SRR1818496 1 0.7429 0.647 0.600 0.048 0.252 0.100
#> SRR1818494 1 0.1042 0.699 0.972 0.020 0.000 0.008
#> SRR1818495 1 0.6058 0.734 0.736 0.048 0.144 0.072
#> SRR1818493 2 0.5685 0.510 0.040 0.756 0.144 0.060
#> SRR1818492 1 0.2730 0.706 0.916 0.028 0.020 0.036
#> SRR1818491 1 0.6021 0.703 0.720 0.028 0.180 0.072
#> SRR1818490 1 0.4837 0.724 0.788 0.004 0.136 0.072
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1818497 1 0.5000 0.7122 0.712 0.000 0.036 0.220 0.032
#> SRR1818600 4 0.3452 0.8181 0.244 0.000 0.000 0.756 0.000
#> SRR1818599 3 0.4841 0.4839 0.208 0.000 0.708 0.084 0.000
#> SRR1818598 4 0.3452 0.8181 0.244 0.000 0.000 0.756 0.000
#> SRR1818597 1 0.1502 0.8528 0.940 0.000 0.056 0.004 0.000
#> SRR1818596 1 0.4270 0.6493 0.656 0.000 0.004 0.336 0.004
#> SRR1818595 1 0.0486 0.8548 0.988 0.000 0.004 0.004 0.004
#> SRR1818594 1 0.1644 0.8571 0.940 0.000 0.048 0.008 0.004
#> SRR1818593 4 0.2843 0.5886 0.144 0.000 0.008 0.848 0.000
#> SRR1818592 1 0.4333 0.6300 0.640 0.000 0.004 0.352 0.004
#> SRR1818591 2 0.3656 0.7598 0.000 0.784 0.020 0.196 0.000
#> SRR1818590 2 0.3210 0.7557 0.000 0.788 0.000 0.212 0.000
#> SRR1818589 4 0.1282 0.6362 0.044 0.000 0.004 0.952 0.000
#> SRR1818587 1 0.2171 0.8508 0.924 0.004 0.008 0.044 0.020
#> SRR1818586 2 0.0865 0.8993 0.000 0.972 0.024 0.000 0.004
#> SRR1818585 5 0.0609 0.8639 0.000 0.000 0.020 0.000 0.980
#> SRR1818584 4 0.3395 0.8159 0.236 0.000 0.000 0.764 0.000
#> SRR1818583 1 0.1443 0.8564 0.948 0.000 0.044 0.004 0.004
#> SRR1818588 1 0.2300 0.8507 0.920 0.004 0.024 0.040 0.012
#> SRR1818582 1 0.4298 0.6295 0.640 0.000 0.008 0.352 0.000
#> SRR1818581 2 0.3210 0.7557 0.000 0.788 0.000 0.212 0.000
#> SRR1818579 4 0.3452 0.8181 0.244 0.000 0.000 0.756 0.000
#> SRR1818578 1 0.3195 0.8282 0.856 0.000 0.040 0.100 0.004
#> SRR1818577 2 0.0000 0.9161 0.000 1.000 0.000 0.000 0.000
#> SRR1818580 4 0.3563 0.8030 0.208 0.000 0.012 0.780 0.000
#> SRR1818575 1 0.2284 0.8501 0.920 0.004 0.012 0.044 0.020
#> SRR1818574 1 0.4907 -0.0317 0.488 0.000 0.488 0.024 0.000
#> SRR1818576 1 0.0451 0.8555 0.988 0.000 0.008 0.004 0.000
#> SRR1818573 4 0.1285 0.6226 0.036 0.000 0.004 0.956 0.004
#> SRR1818572 4 0.3461 0.8139 0.224 0.004 0.000 0.772 0.000
#> SRR1818571 4 0.5026 0.7357 0.328 0.000 0.028 0.632 0.012
#> SRR1818570 1 0.1502 0.8528 0.940 0.000 0.056 0.004 0.000
#> SRR1818568 1 0.2284 0.8501 0.920 0.004 0.012 0.044 0.020
#> SRR1818567 2 0.0000 0.9161 0.000 1.000 0.000 0.000 0.000
#> SRR1818566 3 0.0162 0.9179 0.004 0.000 0.996 0.000 0.000
#> SRR1818569 5 0.0609 0.8639 0.000 0.000 0.020 0.000 0.980
#> SRR1818565 3 0.0162 0.9179 0.004 0.000 0.996 0.000 0.000
#> SRR1818564 1 0.0486 0.8564 0.988 0.000 0.004 0.004 0.004
#> SRR1818563 4 0.4446 0.8032 0.184 0.004 0.016 0.764 0.032
#> SRR1818561 3 0.0162 0.9179 0.004 0.000 0.996 0.000 0.000
#> SRR1818560 1 0.0486 0.8548 0.988 0.000 0.004 0.004 0.004
#> SRR1818559 1 0.4333 0.6300 0.640 0.000 0.004 0.352 0.004
#> SRR1818562 4 0.5242 0.7450 0.308 0.016 0.020 0.644 0.012
#> SRR1818558 1 0.2011 0.8387 0.908 0.000 0.004 0.088 0.000
#> SRR1818556 4 0.4264 0.7506 0.376 0.000 0.000 0.620 0.004
#> SRR1818557 1 0.4298 0.6295 0.640 0.000 0.008 0.352 0.000
#> SRR1818555 2 0.3143 0.7640 0.000 0.796 0.000 0.204 0.000
#> SRR1818553 1 0.1978 0.8514 0.932 0.000 0.032 0.024 0.012
#> SRR1818552 2 0.0000 0.9161 0.000 1.000 0.000 0.000 0.000
#> SRR1818551 1 0.2284 0.8508 0.920 0.004 0.020 0.044 0.012
#> SRR1818550 4 0.4876 0.7406 0.320 0.004 0.008 0.648 0.020
#> SRR1818554 4 0.1251 0.6229 0.036 0.000 0.008 0.956 0.000
#> SRR1818549 1 0.2228 0.8526 0.920 0.000 0.028 0.040 0.012
#> SRR1818548 1 0.4414 0.5966 0.616 0.000 0.004 0.376 0.004
#> SRR1818546 5 0.0771 0.8606 0.000 0.000 0.020 0.004 0.976
#> SRR1818547 4 0.4437 0.7908 0.152 0.004 0.016 0.780 0.048
#> SRR1818544 1 0.2732 0.7857 0.840 0.000 0.000 0.160 0.000
#> SRR1818543 1 0.0771 0.8562 0.976 0.000 0.000 0.020 0.004
#> SRR1818542 1 0.4814 0.7420 0.736 0.000 0.036 0.196 0.032
#> SRR1818545 4 0.4583 0.7850 0.264 0.004 0.008 0.704 0.020
#> SRR1818541 1 0.0771 0.8521 0.976 0.000 0.004 0.020 0.000
#> SRR1818539 1 0.2228 0.8290 0.900 0.000 0.004 0.092 0.004
#> SRR1818540 2 0.0000 0.9161 0.000 1.000 0.000 0.000 0.000
#> SRR1818536 4 0.4970 0.7358 0.340 0.000 0.028 0.624 0.008
#> SRR1818535 1 0.1502 0.8546 0.940 0.000 0.056 0.004 0.000
#> SRR1818534 1 0.4333 0.6300 0.640 0.000 0.004 0.352 0.004
#> SRR1818538 4 0.4425 0.1932 0.000 0.392 0.008 0.600 0.000
#> SRR1818537 4 0.3586 0.8172 0.264 0.000 0.000 0.736 0.000
#> SRR1818533 1 0.1892 0.8425 0.916 0.000 0.004 0.080 0.000
#> SRR1818532 1 0.1893 0.8529 0.936 0.000 0.024 0.028 0.012
#> SRR1818531 4 0.3586 0.8061 0.264 0.000 0.000 0.736 0.000
#> SRR1818530 5 0.0609 0.8639 0.000 0.000 0.020 0.000 0.980
#> SRR1818529 4 0.4289 0.7731 0.148 0.000 0.036 0.788 0.028
#> SRR1818528 1 0.0162 0.8560 0.996 0.000 0.000 0.000 0.004
#> SRR1818527 1 0.2020 0.8331 0.900 0.000 0.000 0.100 0.000
#> SRR1818526 1 0.4133 0.8190 0.808 0.004 0.016 0.124 0.048
#> SRR1818525 1 0.2020 0.8328 0.900 0.000 0.000 0.100 0.000
#> SRR1818523 3 0.0162 0.9179 0.004 0.000 0.996 0.000 0.000
#> SRR1818524 1 0.3992 0.7061 0.712 0.000 0.004 0.280 0.004
#> SRR1818522 1 0.2207 0.8535 0.924 0.004 0.020 0.040 0.012
#> SRR1818521 2 0.0162 0.9143 0.004 0.996 0.000 0.000 0.000
#> SRR1818520 2 0.2352 0.8614 0.008 0.912 0.032 0.000 0.048
#> SRR1818518 1 0.0324 0.8547 0.992 0.000 0.004 0.004 0.000
#> SRR1818519 1 0.3502 0.8298 0.844 0.004 0.012 0.112 0.028
#> SRR1818517 2 0.0000 0.9161 0.000 1.000 0.000 0.000 0.000
#> SRR1818516 3 0.0162 0.9179 0.004 0.000 0.996 0.000 0.000
#> SRR1818515 1 0.3884 0.7020 0.708 0.000 0.004 0.288 0.000
#> SRR1818514 5 0.0609 0.8639 0.000 0.000 0.020 0.000 0.980
#> SRR1818513 2 0.0000 0.9161 0.000 1.000 0.000 0.000 0.000
#> SRR1818512 5 0.0609 0.8639 0.000 0.000 0.020 0.000 0.980
#> SRR1818510 2 0.0000 0.9161 0.000 1.000 0.000 0.000 0.000
#> SRR1818511 1 0.3292 0.8455 0.876 0.040 0.020 0.052 0.012
#> SRR1818508 1 0.1732 0.8426 0.920 0.000 0.000 0.080 0.000
#> SRR1818509 2 0.0000 0.9161 0.000 1.000 0.000 0.000 0.000
#> SRR1818507 1 0.4357 0.7653 0.740 0.004 0.012 0.228 0.016
#> SRR1818506 1 0.1893 0.8519 0.936 0.000 0.028 0.024 0.012
#> SRR1818505 1 0.1121 0.8525 0.956 0.000 0.000 0.044 0.000
#> SRR1818503 1 0.0451 0.8545 0.988 0.000 0.004 0.008 0.000
#> SRR1818504 5 0.5915 0.4134 0.276 0.004 0.040 0.052 0.628
#> SRR1818502 1 0.1205 0.8520 0.956 0.000 0.004 0.040 0.000
#> SRR1818498 2 0.2352 0.8614 0.008 0.912 0.032 0.000 0.048
#> SRR1818500 5 0.4536 0.6553 0.128 0.004 0.036 0.044 0.788
#> SRR1818501 3 0.0162 0.9179 0.004 0.000 0.996 0.000 0.000
#> SRR1818499 1 0.0451 0.8576 0.988 0.000 0.008 0.000 0.004
#> SRR1818496 1 0.5112 0.6881 0.696 0.000 0.036 0.236 0.032
#> SRR1818494 1 0.1124 0.8519 0.960 0.000 0.004 0.036 0.000
#> SRR1818495 1 0.2470 0.8522 0.916 0.016 0.020 0.036 0.012
#> SRR1818493 2 0.0162 0.9143 0.004 0.996 0.000 0.000 0.000
#> SRR1818492 1 0.2284 0.8501 0.920 0.004 0.012 0.044 0.020
#> SRR1818491 1 0.2424 0.8108 0.868 0.000 0.000 0.132 0.000
#> SRR1818490 1 0.1469 0.8544 0.948 0.000 0.036 0.016 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1818497 4 0.5051 0.7118 0.076 0.004 0.000 0.700 0.040 0.180
#> SRR1818600 6 0.1802 0.7140 0.072 0.000 0.000 0.012 0.000 0.916
#> SRR1818599 6 0.5588 0.5828 0.172 0.000 0.264 0.004 0.000 0.560
#> SRR1818598 6 0.1858 0.7126 0.076 0.000 0.000 0.012 0.000 0.912
#> SRR1818597 1 0.2834 0.7191 0.848 0.000 0.008 0.128 0.000 0.016
#> SRR1818596 4 0.0858 0.7051 0.028 0.000 0.000 0.968 0.000 0.004
#> SRR1818595 1 0.1845 0.7283 0.920 0.000 0.000 0.052 0.000 0.028
#> SRR1818594 1 0.3322 0.7385 0.832 0.000 0.012 0.104 0.000 0.052
#> SRR1818593 6 0.3945 0.5850 0.008 0.000 0.000 0.380 0.000 0.612
#> SRR1818592 4 0.0508 0.6893 0.012 0.000 0.000 0.984 0.000 0.004
#> SRR1818591 6 0.4057 0.3963 0.000 0.436 0.000 0.008 0.000 0.556
#> SRR1818590 6 0.4172 0.4079 0.004 0.424 0.000 0.008 0.000 0.564
#> SRR1818589 6 0.3874 0.6011 0.008 0.000 0.000 0.356 0.000 0.636
#> SRR1818587 1 0.3432 0.6909 0.800 0.000 0.000 0.052 0.000 0.148
#> SRR1818586 2 0.0551 0.9759 0.004 0.984 0.000 0.000 0.004 0.008
#> SRR1818585 5 0.0000 0.8889 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818584 6 0.3301 0.6986 0.100 0.004 0.000 0.068 0.000 0.828
#> SRR1818583 1 0.3568 0.6979 0.788 0.000 0.008 0.172 0.000 0.032
#> SRR1818588 1 0.2039 0.7297 0.904 0.000 0.000 0.020 0.000 0.076
#> SRR1818582 4 0.1074 0.6939 0.028 0.000 0.000 0.960 0.000 0.012
#> SRR1818581 6 0.4057 0.3963 0.000 0.436 0.000 0.008 0.000 0.556
#> SRR1818579 6 0.2121 0.7086 0.096 0.000 0.000 0.012 0.000 0.892
#> SRR1818578 4 0.4651 0.7175 0.120 0.004 0.012 0.744 0.008 0.112
#> SRR1818577 2 0.0146 0.9831 0.004 0.996 0.000 0.000 0.000 0.000
#> SRR1818580 6 0.3971 0.6952 0.068 0.004 0.004 0.116 0.012 0.796
#> SRR1818575 1 0.2378 0.7031 0.848 0.000 0.000 0.000 0.000 0.152
#> SRR1818574 1 0.7237 -0.0405 0.348 0.000 0.100 0.220 0.000 0.332
#> SRR1818576 1 0.2088 0.7305 0.904 0.000 0.000 0.068 0.000 0.028
#> SRR1818573 6 0.3659 0.5958 0.000 0.000 0.000 0.364 0.000 0.636
#> SRR1818572 6 0.3213 0.7003 0.084 0.004 0.000 0.076 0.000 0.836
#> SRR1818571 6 0.4424 0.5918 0.324 0.000 0.000 0.044 0.000 0.632
#> SRR1818570 1 0.2976 0.7198 0.844 0.000 0.012 0.124 0.000 0.020
#> SRR1818568 1 0.2340 0.7027 0.852 0.000 0.000 0.000 0.000 0.148
#> SRR1818567 2 0.0000 0.9833 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818566 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818569 5 0.0000 0.8889 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818565 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818564 1 0.5552 0.3974 0.552 0.000 0.000 0.196 0.000 0.252
#> SRR1818563 6 0.2339 0.7003 0.072 0.000 0.000 0.012 0.020 0.896
#> SRR1818561 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818560 1 0.2088 0.7305 0.904 0.000 0.000 0.068 0.000 0.028
#> SRR1818559 4 0.0692 0.6944 0.020 0.000 0.000 0.976 0.000 0.004
#> SRR1818562 6 0.4274 0.6582 0.216 0.020 0.000 0.024 0.008 0.732
#> SRR1818558 1 0.4490 0.6452 0.700 0.000 0.000 0.104 0.000 0.196
#> SRR1818556 6 0.4363 0.5968 0.324 0.000 0.000 0.040 0.000 0.636
#> SRR1818557 4 0.1418 0.6907 0.024 0.000 0.000 0.944 0.000 0.032
#> SRR1818555 6 0.4057 0.3963 0.000 0.436 0.000 0.008 0.000 0.556
#> SRR1818553 1 0.2605 0.7232 0.864 0.000 0.000 0.108 0.000 0.028
#> SRR1818552 2 0.0000 0.9833 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818551 1 0.2631 0.7031 0.840 0.000 0.000 0.000 0.008 0.152
#> SRR1818550 6 0.3101 0.6428 0.244 0.000 0.000 0.000 0.000 0.756
#> SRR1818554 6 0.3659 0.5958 0.000 0.000 0.000 0.364 0.000 0.636
#> SRR1818549 6 0.5290 0.3636 0.392 0.000 0.000 0.104 0.000 0.504
#> SRR1818548 4 0.3518 0.3479 0.012 0.000 0.000 0.732 0.000 0.256
#> SRR1818546 5 0.0000 0.8889 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818547 6 0.2629 0.7027 0.080 0.000 0.000 0.020 0.020 0.880
#> SRR1818544 4 0.4682 0.6958 0.112 0.004 0.000 0.692 0.000 0.192
#> SRR1818543 1 0.6005 -0.0659 0.384 0.000 0.000 0.236 0.000 0.380
#> SRR1818542 4 0.5254 0.7065 0.096 0.004 0.000 0.684 0.040 0.176
#> SRR1818545 6 0.2980 0.6793 0.192 0.000 0.000 0.008 0.000 0.800
#> SRR1818541 1 0.3254 0.7233 0.816 0.000 0.000 0.048 0.000 0.136
#> SRR1818539 6 0.4687 0.5647 0.336 0.000 0.000 0.060 0.000 0.604
#> SRR1818540 2 0.0000 0.9833 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818536 6 0.4691 0.5853 0.332 0.000 0.008 0.044 0.000 0.616
#> SRR1818535 1 0.4452 0.4840 0.648 0.000 0.012 0.312 0.000 0.028
#> SRR1818534 4 0.0508 0.6893 0.012 0.000 0.000 0.984 0.000 0.004
#> SRR1818538 6 0.4118 0.4530 0.004 0.396 0.000 0.008 0.000 0.592
#> SRR1818537 6 0.3098 0.6985 0.164 0.000 0.000 0.024 0.000 0.812
#> SRR1818533 1 0.3171 0.6672 0.784 0.000 0.000 0.012 0.000 0.204
#> SRR1818532 1 0.1794 0.7297 0.924 0.000 0.000 0.040 0.000 0.036
#> SRR1818531 6 0.3347 0.6976 0.104 0.004 0.000 0.068 0.000 0.824
#> SRR1818530 5 0.0000 0.8889 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818529 6 0.3951 0.6905 0.068 0.004 0.000 0.080 0.040 0.808
#> SRR1818528 1 0.4473 -0.0768 0.492 0.000 0.000 0.480 0.000 0.028
#> SRR1818527 4 0.5105 0.6615 0.156 0.004 0.000 0.644 0.000 0.196
#> SRR1818526 4 0.6251 0.5236 0.200 0.000 0.000 0.488 0.024 0.288
#> SRR1818525 4 0.4973 0.6759 0.140 0.004 0.000 0.660 0.000 0.196
#> SRR1818523 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818524 4 0.1682 0.7117 0.052 0.000 0.000 0.928 0.000 0.020
#> SRR1818522 1 0.5431 0.3508 0.552 0.000 0.000 0.332 0.008 0.108
#> SRR1818521 2 0.0000 0.9833 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818520 2 0.1716 0.9370 0.004 0.932 0.000 0.000 0.028 0.036
#> SRR1818518 1 0.2740 0.7207 0.852 0.000 0.000 0.120 0.000 0.028
#> SRR1818519 4 0.5485 0.6035 0.228 0.000 0.000 0.612 0.016 0.144
#> SRR1818517 2 0.0291 0.9811 0.004 0.992 0.000 0.000 0.000 0.004
#> SRR1818516 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818515 4 0.1812 0.7071 0.080 0.000 0.000 0.912 0.000 0.008
#> SRR1818514 5 0.0000 0.8889 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818513 2 0.0000 0.9833 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818512 5 0.0000 0.8889 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818510 2 0.0000 0.9833 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818511 4 0.6636 0.3300 0.344 0.068 0.000 0.468 0.008 0.112
#> SRR1818508 4 0.5946 0.2680 0.352 0.004 0.000 0.452 0.000 0.192
#> SRR1818509 2 0.0291 0.9811 0.004 0.992 0.000 0.000 0.000 0.004
#> SRR1818507 4 0.4593 0.7124 0.136 0.000 0.000 0.728 0.016 0.120
#> SRR1818506 1 0.3539 0.6487 0.756 0.000 0.000 0.220 0.000 0.024
#> SRR1818505 4 0.5231 0.6446 0.184 0.004 0.000 0.628 0.000 0.184
#> SRR1818503 1 0.3514 0.7310 0.804 0.000 0.000 0.108 0.000 0.088
#> SRR1818504 5 0.6216 0.5273 0.140 0.008 0.004 0.108 0.628 0.112
#> SRR1818502 1 0.2948 0.6834 0.804 0.000 0.000 0.008 0.000 0.188
#> SRR1818498 2 0.1716 0.9370 0.004 0.932 0.000 0.000 0.028 0.036
#> SRR1818500 5 0.4268 0.7155 0.064 0.008 0.000 0.044 0.788 0.096
#> SRR1818501 3 0.0000 1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818499 4 0.4905 0.4162 0.344 0.000 0.000 0.580 0.000 0.076
#> SRR1818496 4 0.5081 0.7105 0.076 0.004 0.000 0.696 0.040 0.184
#> SRR1818494 1 0.2980 0.6798 0.800 0.000 0.000 0.008 0.000 0.192
#> SRR1818495 1 0.5717 0.4479 0.588 0.016 0.000 0.268 0.008 0.120
#> SRR1818493 2 0.0146 0.9831 0.004 0.996 0.000 0.000 0.000 0.000
#> SRR1818492 1 0.2300 0.7034 0.856 0.000 0.000 0.000 0.000 0.144
#> SRR1818491 4 0.4865 0.6843 0.128 0.004 0.000 0.672 0.000 0.196
#> SRR1818490 1 0.3730 0.6279 0.740 0.000 0.008 0.236 0.000 0.016
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 16183 rows and 111 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.872 0.930 0.971 0.4982 0.499 0.499
#> 3 3 0.532 0.616 0.794 0.2672 0.802 0.632
#> 4 4 0.577 0.658 0.814 0.1647 0.785 0.493
#> 5 5 0.656 0.670 0.822 0.0798 0.857 0.526
#> 6 6 0.698 0.693 0.830 0.0303 0.860 0.460
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1818497 2 0.0000 0.9597 0.000 1.000
#> SRR1818600 2 0.8207 0.6604 0.256 0.744
#> SRR1818599 1 0.0000 0.9763 1.000 0.000
#> SRR1818598 1 0.8763 0.5817 0.704 0.296
#> SRR1818597 1 0.0000 0.9763 1.000 0.000
#> SRR1818596 1 0.0000 0.9763 1.000 0.000
#> SRR1818595 1 0.0000 0.9763 1.000 0.000
#> SRR1818594 1 0.0000 0.9763 1.000 0.000
#> SRR1818593 1 0.0000 0.9763 1.000 0.000
#> SRR1818592 1 0.0000 0.9763 1.000 0.000
#> SRR1818591 2 0.0000 0.9597 0.000 1.000
#> SRR1818590 2 0.0000 0.9597 0.000 1.000
#> SRR1818589 1 0.0000 0.9763 1.000 0.000
#> SRR1818587 2 0.6048 0.8184 0.148 0.852
#> SRR1818586 2 0.0000 0.9597 0.000 1.000
#> SRR1818585 2 0.0000 0.9597 0.000 1.000
#> SRR1818584 2 0.0000 0.9597 0.000 1.000
#> SRR1818583 1 0.0000 0.9763 1.000 0.000
#> SRR1818588 1 0.0000 0.9763 1.000 0.000
#> SRR1818582 1 0.0000 0.9763 1.000 0.000
#> SRR1818581 2 0.0000 0.9597 0.000 1.000
#> SRR1818579 2 0.3274 0.9117 0.060 0.940
#> SRR1818578 2 0.5946 0.8230 0.144 0.856
#> SRR1818577 2 0.0000 0.9597 0.000 1.000
#> SRR1818580 2 0.0000 0.9597 0.000 1.000
#> SRR1818575 1 0.0000 0.9763 1.000 0.000
#> SRR1818574 1 0.0000 0.9763 1.000 0.000
#> SRR1818576 1 0.0000 0.9763 1.000 0.000
#> SRR1818573 1 0.0000 0.9763 1.000 0.000
#> SRR1818572 2 0.0000 0.9597 0.000 1.000
#> SRR1818571 1 0.0000 0.9763 1.000 0.000
#> SRR1818570 1 0.0000 0.9763 1.000 0.000
#> SRR1818568 1 0.1414 0.9603 0.980 0.020
#> SRR1818567 2 0.0000 0.9597 0.000 1.000
#> SRR1818566 1 0.0000 0.9763 1.000 0.000
#> SRR1818569 2 0.0000 0.9597 0.000 1.000
#> SRR1818565 1 0.0000 0.9763 1.000 0.000
#> SRR1818564 1 0.0000 0.9763 1.000 0.000
#> SRR1818563 2 0.9963 0.1456 0.464 0.536
#> SRR1818561 1 0.0000 0.9763 1.000 0.000
#> SRR1818560 1 0.0000 0.9763 1.000 0.000
#> SRR1818559 1 0.0000 0.9763 1.000 0.000
#> SRR1818562 2 0.0000 0.9597 0.000 1.000
#> SRR1818558 2 0.0000 0.9597 0.000 1.000
#> SRR1818556 1 0.0000 0.9763 1.000 0.000
#> SRR1818557 1 0.0000 0.9763 1.000 0.000
#> SRR1818555 2 0.0000 0.9597 0.000 1.000
#> SRR1818553 1 0.0000 0.9763 1.000 0.000
#> SRR1818552 2 0.0000 0.9597 0.000 1.000
#> SRR1818551 1 0.4815 0.8812 0.896 0.104
#> SRR1818550 2 0.1184 0.9482 0.016 0.984
#> SRR1818554 1 0.0000 0.9763 1.000 0.000
#> SRR1818549 1 0.0000 0.9763 1.000 0.000
#> SRR1818548 1 0.0000 0.9763 1.000 0.000
#> SRR1818546 2 0.0000 0.9597 0.000 1.000
#> SRR1818547 2 0.8443 0.6326 0.272 0.728
#> SRR1818544 2 0.0000 0.9597 0.000 1.000
#> SRR1818543 1 0.0000 0.9763 1.000 0.000
#> SRR1818542 2 0.0000 0.9597 0.000 1.000
#> SRR1818545 1 0.8207 0.6605 0.744 0.256
#> SRR1818541 1 0.3431 0.9211 0.936 0.064
#> SRR1818539 1 0.0000 0.9763 1.000 0.000
#> SRR1818540 2 0.0000 0.9597 0.000 1.000
#> SRR1818536 1 0.0000 0.9763 1.000 0.000
#> SRR1818535 1 0.0000 0.9763 1.000 0.000
#> SRR1818534 1 0.0000 0.9763 1.000 0.000
#> SRR1818538 2 0.0000 0.9597 0.000 1.000
#> SRR1818537 1 0.0000 0.9763 1.000 0.000
#> SRR1818533 2 0.9998 0.0393 0.492 0.508
#> SRR1818532 1 0.0000 0.9763 1.000 0.000
#> SRR1818531 2 0.0000 0.9597 0.000 1.000
#> SRR1818530 2 0.0000 0.9597 0.000 1.000
#> SRR1818529 2 0.0000 0.9597 0.000 1.000
#> SRR1818528 1 0.0000 0.9763 1.000 0.000
#> SRR1818527 2 0.0000 0.9597 0.000 1.000
#> SRR1818526 1 0.7674 0.7162 0.776 0.224
#> SRR1818525 2 0.0000 0.9597 0.000 1.000
#> SRR1818523 1 0.0000 0.9763 1.000 0.000
#> SRR1818524 1 0.0000 0.9763 1.000 0.000
#> SRR1818522 1 0.0000 0.9763 1.000 0.000
#> SRR1818521 2 0.0000 0.9597 0.000 1.000
#> SRR1818520 2 0.0000 0.9597 0.000 1.000
#> SRR1818518 1 0.0000 0.9763 1.000 0.000
#> SRR1818519 1 0.0000 0.9763 1.000 0.000
#> SRR1818517 2 0.0000 0.9597 0.000 1.000
#> SRR1818516 1 0.0000 0.9763 1.000 0.000
#> SRR1818515 1 0.0000 0.9763 1.000 0.000
#> SRR1818514 2 0.0000 0.9597 0.000 1.000
#> SRR1818513 2 0.0000 0.9597 0.000 1.000
#> SRR1818512 2 0.0000 0.9597 0.000 1.000
#> SRR1818510 2 0.0000 0.9597 0.000 1.000
#> SRR1818511 2 0.0000 0.9597 0.000 1.000
#> SRR1818508 2 0.0000 0.9597 0.000 1.000
#> SRR1818509 2 0.0000 0.9597 0.000 1.000
#> SRR1818507 1 0.0000 0.9763 1.000 0.000
#> SRR1818506 1 0.0000 0.9763 1.000 0.000
#> SRR1818505 2 0.2236 0.9330 0.036 0.964
#> SRR1818503 1 0.0376 0.9732 0.996 0.004
#> SRR1818504 1 0.0000 0.9763 1.000 0.000
#> SRR1818502 1 0.5629 0.8475 0.868 0.132
#> SRR1818498 2 0.0000 0.9597 0.000 1.000
#> SRR1818500 2 0.0000 0.9597 0.000 1.000
#> SRR1818501 1 0.0000 0.9763 1.000 0.000
#> SRR1818499 1 0.0000 0.9763 1.000 0.000
#> SRR1818496 2 0.0000 0.9597 0.000 1.000
#> SRR1818494 1 0.5294 0.8621 0.880 0.120
#> SRR1818495 2 0.2603 0.9261 0.044 0.956
#> SRR1818493 2 0.0000 0.9597 0.000 1.000
#> SRR1818492 1 0.4815 0.8810 0.896 0.104
#> SRR1818491 2 0.0000 0.9597 0.000 1.000
#> SRR1818490 1 0.0000 0.9763 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1818497 3 0.1643 0.7188 0.000 0.044 0.956
#> SRR1818600 2 0.5431 0.2161 0.284 0.716 0.000
#> SRR1818599 1 0.0000 0.8615 1.000 0.000 0.000
#> SRR1818598 2 0.6305 -0.4010 0.484 0.516 0.000
#> SRR1818597 1 0.1753 0.8517 0.952 0.000 0.048
#> SRR1818596 1 0.5449 0.8296 0.816 0.116 0.068
#> SRR1818595 1 0.1411 0.8554 0.964 0.000 0.036
#> SRR1818594 1 0.2448 0.8400 0.924 0.000 0.076
#> SRR1818593 1 0.5760 0.6985 0.672 0.328 0.000
#> SRR1818592 1 0.4291 0.8117 0.820 0.180 0.000
#> SRR1818591 2 0.5363 0.4989 0.000 0.724 0.276
#> SRR1818590 2 0.1031 0.4853 0.000 0.976 0.024
#> SRR1818589 1 0.5882 0.6767 0.652 0.348 0.000
#> SRR1818587 2 0.7351 0.4389 0.068 0.664 0.268
#> SRR1818586 2 0.6267 0.4079 0.000 0.548 0.452
#> SRR1818585 3 0.1643 0.7221 0.000 0.044 0.956
#> SRR1818584 2 0.6154 -0.2108 0.000 0.592 0.408
#> SRR1818583 1 0.1031 0.8585 0.976 0.000 0.024
#> SRR1818588 1 0.3263 0.8531 0.912 0.040 0.048
#> SRR1818582 1 0.4842 0.7859 0.776 0.224 0.000
#> SRR1818581 2 0.4842 0.4943 0.000 0.776 0.224
#> SRR1818579 2 0.5919 0.2674 0.260 0.724 0.016
#> SRR1818578 3 0.3752 0.5830 0.144 0.000 0.856
#> SRR1818577 2 0.6111 0.4875 0.000 0.604 0.396
#> SRR1818580 3 0.6302 0.3352 0.000 0.480 0.520
#> SRR1818575 1 0.7138 0.6175 0.644 0.312 0.044
#> SRR1818574 1 0.0000 0.8615 1.000 0.000 0.000
#> SRR1818576 1 0.0237 0.8612 0.996 0.000 0.004
#> SRR1818573 1 0.5859 0.6812 0.656 0.344 0.000
#> SRR1818572 3 0.6309 0.3174 0.000 0.496 0.504
#> SRR1818571 1 0.5733 0.7028 0.676 0.324 0.000
#> SRR1818570 1 0.0747 0.8598 0.984 0.000 0.016
#> SRR1818568 2 0.8581 -0.0371 0.448 0.456 0.096
#> SRR1818567 2 0.5948 0.5037 0.000 0.640 0.360
#> SRR1818566 1 0.0000 0.8615 1.000 0.000 0.000
#> SRR1818569 3 0.1753 0.7220 0.000 0.048 0.952
#> SRR1818565 1 0.0000 0.8615 1.000 0.000 0.000
#> SRR1818564 1 0.0000 0.8615 1.000 0.000 0.000
#> SRR1818563 2 0.2165 0.4495 0.064 0.936 0.000
#> SRR1818561 1 0.0000 0.8615 1.000 0.000 0.000
#> SRR1818560 1 0.0000 0.8615 1.000 0.000 0.000
#> SRR1818559 1 0.4094 0.8478 0.872 0.100 0.028
#> SRR1818562 2 0.0592 0.4837 0.000 0.988 0.012
#> SRR1818558 3 0.9394 -0.0991 0.224 0.268 0.508
#> SRR1818556 1 0.5706 0.6939 0.680 0.320 0.000
#> SRR1818557 1 0.5397 0.7441 0.720 0.280 0.000
#> SRR1818555 2 0.5216 0.4988 0.000 0.740 0.260
#> SRR1818553 1 0.1289 0.8618 0.968 0.032 0.000
#> SRR1818552 2 0.6062 0.4990 0.000 0.616 0.384
#> SRR1818551 2 0.9105 0.1075 0.412 0.448 0.140
#> SRR1818550 2 0.0237 0.4823 0.000 0.996 0.004
#> SRR1818554 1 0.5948 0.6621 0.640 0.360 0.000
#> SRR1818549 1 0.4702 0.7920 0.788 0.212 0.000
#> SRR1818548 1 0.5529 0.7300 0.704 0.296 0.000
#> SRR1818546 3 0.5138 0.5976 0.000 0.252 0.748
#> SRR1818547 2 0.0424 0.4788 0.008 0.992 0.000
#> SRR1818544 3 0.4479 0.7035 0.044 0.096 0.860
#> SRR1818543 1 0.0592 0.8614 0.988 0.012 0.000
#> SRR1818542 3 0.0592 0.6960 0.000 0.012 0.988
#> SRR1818545 2 0.1289 0.4692 0.032 0.968 0.000
#> SRR1818541 1 0.3412 0.8082 0.876 0.000 0.124
#> SRR1818539 1 0.4842 0.7675 0.776 0.224 0.000
#> SRR1818540 2 0.6062 0.4943 0.000 0.616 0.384
#> SRR1818536 1 0.5621 0.7012 0.692 0.308 0.000
#> SRR1818535 1 0.1860 0.8501 0.948 0.000 0.052
#> SRR1818534 1 0.4712 0.8423 0.848 0.108 0.044
#> SRR1818538 2 0.0892 0.4843 0.000 0.980 0.020
#> SRR1818537 1 0.6260 0.4945 0.552 0.448 0.000
#> SRR1818533 1 0.7202 0.7360 0.716 0.160 0.124
#> SRR1818532 1 0.1753 0.8596 0.952 0.048 0.000
#> SRR1818531 3 0.6286 0.2957 0.000 0.464 0.536
#> SRR1818530 3 0.2959 0.7065 0.000 0.100 0.900
#> SRR1818529 2 0.6307 -0.3450 0.000 0.512 0.488
#> SRR1818528 1 0.1753 0.8519 0.952 0.000 0.048
#> SRR1818527 2 0.6339 0.4953 0.008 0.632 0.360
#> SRR1818526 2 0.3686 0.4155 0.140 0.860 0.000
#> SRR1818525 3 0.1643 0.7193 0.000 0.044 0.956
#> SRR1818523 1 0.0000 0.8615 1.000 0.000 0.000
#> SRR1818524 1 0.3769 0.8464 0.880 0.104 0.016
#> SRR1818522 1 0.3148 0.8560 0.916 0.048 0.036
#> SRR1818521 2 0.5859 0.4988 0.000 0.656 0.344
#> SRR1818520 2 0.5948 0.5037 0.000 0.640 0.360
#> SRR1818518 1 0.1031 0.8583 0.976 0.000 0.024
#> SRR1818519 1 0.8082 0.5868 0.608 0.296 0.096
#> SRR1818517 2 0.5968 0.5114 0.000 0.636 0.364
#> SRR1818516 1 0.0000 0.8615 1.000 0.000 0.000
#> SRR1818515 1 0.5254 0.7573 0.736 0.264 0.000
#> SRR1818514 3 0.1643 0.7218 0.000 0.044 0.956
#> SRR1818513 2 0.5968 0.5034 0.000 0.636 0.364
#> SRR1818512 3 0.2261 0.7192 0.000 0.068 0.932
#> SRR1818510 2 0.5948 0.5037 0.000 0.640 0.360
#> SRR1818511 2 0.6008 0.5056 0.000 0.628 0.372
#> SRR1818508 3 0.5938 0.2955 0.020 0.248 0.732
#> SRR1818509 2 0.5988 0.5098 0.000 0.632 0.368
#> SRR1818507 1 0.6129 0.7043 0.668 0.324 0.008
#> SRR1818506 1 0.1289 0.8616 0.968 0.032 0.000
#> SRR1818505 3 0.5835 0.2825 0.340 0.000 0.660
#> SRR1818503 1 0.2537 0.8367 0.920 0.000 0.080
#> SRR1818504 1 0.2796 0.8301 0.908 0.000 0.092
#> SRR1818502 1 0.3713 0.8430 0.892 0.032 0.076
#> SRR1818498 2 0.6140 0.4653 0.000 0.596 0.404
#> SRR1818500 3 0.0237 0.7005 0.000 0.004 0.996
#> SRR1818501 1 0.0000 0.8615 1.000 0.000 0.000
#> SRR1818499 1 0.0592 0.8606 0.988 0.000 0.012
#> SRR1818496 3 0.4346 0.6500 0.000 0.184 0.816
#> SRR1818494 1 0.3888 0.8465 0.888 0.048 0.064
#> SRR1818495 2 0.7793 0.3521 0.052 0.524 0.424
#> SRR1818493 2 0.5859 0.4988 0.000 0.656 0.344
#> SRR1818492 2 0.8075 0.3242 0.276 0.620 0.104
#> SRR1818491 3 0.6836 0.5586 0.056 0.240 0.704
#> SRR1818490 1 0.0000 0.8615 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1818497 3 0.2376 0.8011 0.000 0.068 0.916 0.016
#> SRR1818600 4 0.4630 0.6152 0.008 0.192 0.024 0.776
#> SRR1818599 1 0.3311 0.7870 0.828 0.000 0.000 0.172
#> SRR1818598 4 0.3424 0.6920 0.028 0.076 0.016 0.880
#> SRR1818597 1 0.1631 0.7838 0.956 0.020 0.016 0.008
#> SRR1818596 4 0.5858 0.4747 0.328 0.020 0.020 0.632
#> SRR1818595 1 0.3048 0.7596 0.900 0.056 0.028 0.016
#> SRR1818594 1 0.4542 0.7056 0.828 0.052 0.028 0.092
#> SRR1818593 4 0.0188 0.7204 0.004 0.000 0.000 0.996
#> SRR1818592 4 0.2053 0.7172 0.072 0.000 0.004 0.924
#> SRR1818591 2 0.2593 0.7877 0.000 0.904 0.080 0.016
#> SRR1818590 2 0.4037 0.7304 0.000 0.832 0.056 0.112
#> SRR1818589 4 0.0844 0.7172 0.004 0.004 0.012 0.980
#> SRR1818587 2 0.4687 0.6774 0.156 0.796 0.028 0.020
#> SRR1818586 2 0.3029 0.7909 0.048 0.896 0.052 0.004
#> SRR1818585 3 0.1302 0.8267 0.000 0.044 0.956 0.000
#> SRR1818584 3 0.7778 0.2632 0.004 0.212 0.444 0.340
#> SRR1818583 1 0.2216 0.8101 0.908 0.000 0.000 0.092
#> SRR1818588 1 0.3048 0.7596 0.900 0.056 0.028 0.016
#> SRR1818582 4 0.1661 0.7216 0.052 0.000 0.004 0.944
#> SRR1818581 2 0.3037 0.7790 0.000 0.888 0.076 0.036
#> SRR1818579 4 0.6253 0.3428 0.020 0.336 0.036 0.608
#> SRR1818578 3 0.2282 0.7891 0.024 0.052 0.924 0.000
#> SRR1818577 2 0.2297 0.7854 0.044 0.928 0.024 0.004
#> SRR1818580 3 0.6042 0.3907 0.000 0.052 0.580 0.368
#> SRR1818575 1 0.8279 0.1358 0.452 0.288 0.024 0.236
#> SRR1818574 1 0.3356 0.7843 0.824 0.000 0.000 0.176
#> SRR1818576 1 0.2469 0.8086 0.892 0.000 0.000 0.108
#> SRR1818573 4 0.0188 0.7204 0.004 0.000 0.000 0.996
#> SRR1818572 3 0.7121 0.4174 0.000 0.160 0.540 0.300
#> SRR1818571 4 0.2450 0.7086 0.072 0.000 0.016 0.912
#> SRR1818570 1 0.1389 0.8062 0.952 0.000 0.000 0.048
#> SRR1818568 2 0.7458 0.2557 0.380 0.500 0.028 0.092
#> SRR1818567 2 0.1557 0.7991 0.000 0.944 0.056 0.000
#> SRR1818566 1 0.3266 0.7908 0.832 0.000 0.000 0.168
#> SRR1818569 3 0.1302 0.8267 0.000 0.044 0.956 0.000
#> SRR1818565 1 0.3266 0.7908 0.832 0.000 0.000 0.168
#> SRR1818564 1 0.3123 0.7932 0.844 0.000 0.000 0.156
#> SRR1818563 4 0.3547 0.6451 0.000 0.144 0.016 0.840
#> SRR1818561 1 0.3266 0.7908 0.832 0.000 0.000 0.168
#> SRR1818560 1 0.3074 0.7954 0.848 0.000 0.000 0.152
#> SRR1818559 4 0.4462 0.5830 0.256 0.004 0.004 0.736
#> SRR1818562 2 0.5383 0.5084 0.000 0.672 0.036 0.292
#> SRR1818558 2 0.7102 0.1777 0.428 0.472 0.088 0.012
#> SRR1818556 4 0.5427 0.2023 0.416 0.000 0.016 0.568
#> SRR1818557 4 0.0657 0.7226 0.012 0.000 0.004 0.984
#> SRR1818555 2 0.2402 0.7903 0.000 0.912 0.076 0.012
#> SRR1818553 4 0.6063 0.1334 0.356 0.028 0.016 0.600
#> SRR1818552 2 0.0927 0.7986 0.008 0.976 0.016 0.000
#> SRR1818551 2 0.7536 0.4251 0.292 0.556 0.028 0.124
#> SRR1818550 2 0.5298 0.3453 0.000 0.612 0.016 0.372
#> SRR1818554 4 0.0967 0.7158 0.004 0.004 0.016 0.976
#> SRR1818549 4 0.4643 0.3613 0.344 0.000 0.000 0.656
#> SRR1818548 4 0.0469 0.7223 0.012 0.000 0.000 0.988
#> SRR1818546 3 0.0921 0.8232 0.000 0.028 0.972 0.000
#> SRR1818547 4 0.3597 0.6404 0.000 0.148 0.016 0.836
#> SRR1818544 3 0.1798 0.8237 0.016 0.040 0.944 0.000
#> SRR1818543 1 0.3123 0.7932 0.844 0.000 0.000 0.156
#> SRR1818542 3 0.5986 0.5617 0.020 0.060 0.700 0.220
#> SRR1818545 4 0.5398 0.2457 0.000 0.404 0.016 0.580
#> SRR1818541 1 0.2954 0.7590 0.900 0.064 0.028 0.008
#> SRR1818539 4 0.5444 0.1790 0.424 0.000 0.016 0.560
#> SRR1818540 2 0.1807 0.7997 0.008 0.940 0.052 0.000
#> SRR1818536 4 0.5364 0.2431 0.392 0.000 0.016 0.592
#> SRR1818535 1 0.1994 0.8038 0.936 0.004 0.008 0.052
#> SRR1818534 4 0.4825 0.5589 0.288 0.008 0.004 0.700
#> SRR1818538 2 0.5267 0.5909 0.000 0.712 0.048 0.240
#> SRR1818537 4 0.5683 0.3903 0.336 0.012 0.020 0.632
#> SRR1818533 1 0.7623 0.0381 0.488 0.092 0.036 0.384
#> SRR1818532 1 0.5686 0.7369 0.728 0.048 0.024 0.200
#> SRR1818531 3 0.6740 0.5558 0.008 0.212 0.636 0.144
#> SRR1818530 3 0.1302 0.8267 0.000 0.044 0.956 0.000
#> SRR1818529 4 0.5613 0.5248 0.000 0.120 0.156 0.724
#> SRR1818528 1 0.0895 0.7976 0.976 0.000 0.004 0.020
#> SRR1818527 2 0.4271 0.7572 0.040 0.836 0.104 0.020
#> SRR1818526 4 0.3142 0.6576 0.000 0.132 0.008 0.860
#> SRR1818525 3 0.2759 0.8084 0.052 0.044 0.904 0.000
#> SRR1818523 1 0.3266 0.7908 0.832 0.000 0.000 0.168
#> SRR1818524 4 0.4400 0.5734 0.248 0.004 0.004 0.744
#> SRR1818522 1 0.3313 0.7562 0.880 0.084 0.028 0.008
#> SRR1818521 2 0.1557 0.7991 0.000 0.944 0.056 0.000
#> SRR1818520 2 0.1557 0.7991 0.000 0.944 0.056 0.000
#> SRR1818518 1 0.2011 0.8099 0.920 0.000 0.000 0.080
#> SRR1818519 4 0.6735 0.3972 0.340 0.056 0.024 0.580
#> SRR1818517 2 0.0000 0.7968 0.000 1.000 0.000 0.000
#> SRR1818516 1 0.3266 0.7908 0.832 0.000 0.000 0.168
#> SRR1818515 4 0.1209 0.7234 0.032 0.000 0.004 0.964
#> SRR1818514 3 0.1302 0.8267 0.000 0.044 0.956 0.000
#> SRR1818513 2 0.1557 0.7991 0.000 0.944 0.056 0.000
#> SRR1818512 3 0.1302 0.8267 0.000 0.044 0.956 0.000
#> SRR1818510 2 0.1557 0.7991 0.000 0.944 0.056 0.000
#> SRR1818511 2 0.1004 0.7898 0.024 0.972 0.004 0.000
#> SRR1818508 2 0.7475 0.2305 0.192 0.476 0.332 0.000
#> SRR1818509 2 0.0000 0.7968 0.000 1.000 0.000 0.000
#> SRR1818507 4 0.2586 0.7125 0.092 0.004 0.004 0.900
#> SRR1818506 1 0.4691 0.8006 0.804 0.032 0.024 0.140
#> SRR1818505 1 0.6075 0.4568 0.636 0.076 0.288 0.000
#> SRR1818503 1 0.2021 0.7745 0.936 0.040 0.024 0.000
#> SRR1818504 1 0.2383 0.7692 0.924 0.048 0.024 0.004
#> SRR1818502 1 0.6266 0.5626 0.712 0.108 0.028 0.152
#> SRR1818498 2 0.1557 0.7991 0.000 0.944 0.056 0.000
#> SRR1818500 3 0.1302 0.8267 0.000 0.044 0.956 0.000
#> SRR1818501 1 0.3266 0.7908 0.832 0.000 0.000 0.168
#> SRR1818499 1 0.2469 0.8086 0.892 0.000 0.000 0.108
#> SRR1818496 3 0.4663 0.7363 0.000 0.064 0.788 0.148
#> SRR1818494 1 0.6919 0.4783 0.656 0.168 0.028 0.148
#> SRR1818495 2 0.4462 0.6674 0.180 0.788 0.028 0.004
#> SRR1818493 2 0.1557 0.7991 0.000 0.944 0.056 0.000
#> SRR1818492 2 0.4517 0.6754 0.172 0.792 0.028 0.008
#> SRR1818491 3 0.5007 0.7453 0.060 0.100 0.804 0.036
#> SRR1818490 1 0.3074 0.7954 0.848 0.000 0.000 0.152
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1818497 5 0.1608 0.8678 0.072 0.000 0.000 0.000 0.928
#> SRR1818600 4 0.2677 0.6559 0.112 0.016 0.000 0.872 0.000
#> SRR1818599 3 0.0000 0.8633 0.000 0.000 1.000 0.000 0.000
#> SRR1818598 4 0.2329 0.6571 0.124 0.000 0.000 0.876 0.000
#> SRR1818597 1 0.4101 0.4621 0.628 0.000 0.372 0.000 0.000
#> SRR1818596 1 0.4278 -0.0520 0.548 0.000 0.000 0.452 0.000
#> SRR1818595 1 0.2690 0.7032 0.844 0.000 0.156 0.000 0.000
#> SRR1818594 1 0.2462 0.7176 0.880 0.000 0.112 0.008 0.000
#> SRR1818593 4 0.2561 0.6629 0.144 0.000 0.000 0.856 0.000
#> SRR1818592 4 0.4030 0.4873 0.352 0.000 0.000 0.648 0.000
#> SRR1818591 2 0.2124 0.8538 0.004 0.900 0.000 0.096 0.000
#> SRR1818590 2 0.2648 0.8175 0.000 0.848 0.000 0.152 0.000
#> SRR1818589 4 0.1043 0.6921 0.040 0.000 0.000 0.960 0.000
#> SRR1818587 1 0.3210 0.6803 0.788 0.212 0.000 0.000 0.000
#> SRR1818586 2 0.0162 0.8879 0.004 0.996 0.000 0.000 0.000
#> SRR1818585 5 0.0000 0.8836 0.000 0.000 0.000 0.000 1.000
#> SRR1818584 4 0.8025 0.0623 0.112 0.236 0.000 0.416 0.236
#> SRR1818583 3 0.2179 0.8257 0.112 0.000 0.888 0.000 0.000
#> SRR1818588 1 0.3596 0.6716 0.776 0.012 0.212 0.000 0.000
#> SRR1818582 4 0.3983 0.5043 0.340 0.000 0.000 0.660 0.000
#> SRR1818581 2 0.2488 0.8351 0.004 0.872 0.000 0.124 0.000
#> SRR1818579 4 0.4457 0.5826 0.124 0.116 0.000 0.760 0.000
#> SRR1818578 5 0.0290 0.8826 0.008 0.000 0.000 0.000 0.992
#> SRR1818577 2 0.1671 0.8490 0.076 0.924 0.000 0.000 0.000
#> SRR1818580 4 0.5607 0.1189 0.080 0.000 0.000 0.540 0.380
#> SRR1818575 1 0.2520 0.7033 0.896 0.048 0.000 0.056 0.000
#> SRR1818574 3 0.0000 0.8633 0.000 0.000 1.000 0.000 0.000
#> SRR1818576 3 0.3039 0.7655 0.192 0.000 0.808 0.000 0.000
#> SRR1818573 4 0.2329 0.6711 0.124 0.000 0.000 0.876 0.000
#> SRR1818572 4 0.7905 -0.0960 0.100 0.180 0.000 0.388 0.332
#> SRR1818571 4 0.0912 0.6910 0.012 0.000 0.016 0.972 0.000
#> SRR1818570 3 0.3274 0.7092 0.220 0.000 0.780 0.000 0.000
#> SRR1818568 1 0.2179 0.7128 0.888 0.112 0.000 0.000 0.000
#> SRR1818567 2 0.0000 0.8896 0.000 1.000 0.000 0.000 0.000
#> SRR1818566 3 0.0000 0.8633 0.000 0.000 1.000 0.000 0.000
#> SRR1818569 5 0.0000 0.8836 0.000 0.000 0.000 0.000 1.000
#> SRR1818565 3 0.0000 0.8633 0.000 0.000 1.000 0.000 0.000
#> SRR1818564 3 0.1768 0.8435 0.072 0.000 0.924 0.004 0.000
#> SRR1818563 4 0.0290 0.6914 0.008 0.000 0.000 0.992 0.000
#> SRR1818561 3 0.0000 0.8633 0.000 0.000 1.000 0.000 0.000
#> SRR1818560 3 0.3999 0.5406 0.344 0.000 0.656 0.000 0.000
#> SRR1818559 4 0.4192 0.3982 0.404 0.000 0.000 0.596 0.000
#> SRR1818562 2 0.4135 0.5773 0.004 0.656 0.000 0.340 0.000
#> SRR1818558 1 0.2825 0.7101 0.892 0.048 0.000 0.040 0.020
#> SRR1818556 4 0.5776 0.3943 0.124 0.000 0.288 0.588 0.000
#> SRR1818557 4 0.3707 0.5709 0.284 0.000 0.000 0.716 0.000
#> SRR1818555 2 0.1608 0.8673 0.000 0.928 0.000 0.072 0.000
#> SRR1818553 1 0.2891 0.5959 0.824 0.000 0.000 0.176 0.000
#> SRR1818552 2 0.0000 0.8896 0.000 1.000 0.000 0.000 0.000
#> SRR1818551 1 0.2624 0.7162 0.872 0.116 0.000 0.012 0.000
#> SRR1818550 2 0.4630 0.4489 0.016 0.588 0.000 0.396 0.000
#> SRR1818554 4 0.0963 0.6925 0.036 0.000 0.000 0.964 0.000
#> SRR1818549 4 0.3756 0.5651 0.008 0.000 0.248 0.744 0.000
#> SRR1818548 4 0.3561 0.5923 0.260 0.000 0.000 0.740 0.000
#> SRR1818546 5 0.0000 0.8836 0.000 0.000 0.000 0.000 1.000
#> SRR1818547 4 0.0290 0.6914 0.008 0.000 0.000 0.992 0.000
#> SRR1818544 5 0.2513 0.8358 0.116 0.000 0.000 0.008 0.876
#> SRR1818543 3 0.3493 0.7874 0.108 0.000 0.832 0.060 0.000
#> SRR1818542 1 0.4537 0.2778 0.592 0.000 0.000 0.012 0.396
#> SRR1818545 4 0.3883 0.5547 0.036 0.184 0.000 0.780 0.000
#> SRR1818541 1 0.2424 0.7046 0.868 0.000 0.132 0.000 0.000
#> SRR1818539 4 0.5580 0.3208 0.088 0.000 0.336 0.576 0.000
#> SRR1818540 2 0.0000 0.8896 0.000 1.000 0.000 0.000 0.000
#> SRR1818536 4 0.4473 0.2859 0.008 0.000 0.412 0.580 0.000
#> SRR1818535 1 0.4262 0.3621 0.560 0.000 0.440 0.000 0.000
#> SRR1818534 4 0.4201 0.3902 0.408 0.000 0.000 0.592 0.000
#> SRR1818538 2 0.4084 0.5973 0.004 0.668 0.000 0.328 0.000
#> SRR1818537 4 0.4270 0.6221 0.124 0.008 0.080 0.788 0.000
#> SRR1818533 1 0.0404 0.7179 0.988 0.000 0.000 0.012 0.000
#> SRR1818532 1 0.2516 0.7129 0.860 0.000 0.140 0.000 0.000
#> SRR1818531 5 0.7272 0.4557 0.112 0.112 0.000 0.244 0.532
#> SRR1818530 5 0.0000 0.8836 0.000 0.000 0.000 0.000 1.000
#> SRR1818529 4 0.2659 0.6661 0.060 0.000 0.000 0.888 0.052
#> SRR1818528 3 0.3966 0.5742 0.336 0.000 0.664 0.000 0.000
#> SRR1818527 2 0.6439 0.6412 0.136 0.680 0.044 0.092 0.048
#> SRR1818526 4 0.1043 0.6925 0.040 0.000 0.000 0.960 0.000
#> SRR1818525 5 0.3620 0.8175 0.112 0.000 0.048 0.008 0.832
#> SRR1818523 3 0.0000 0.8633 0.000 0.000 1.000 0.000 0.000
#> SRR1818524 4 0.4210 0.3830 0.412 0.000 0.000 0.588 0.000
#> SRR1818522 1 0.5064 0.6137 0.680 0.088 0.232 0.000 0.000
#> SRR1818521 2 0.1270 0.8656 0.052 0.948 0.000 0.000 0.000
#> SRR1818520 2 0.0000 0.8896 0.000 1.000 0.000 0.000 0.000
#> SRR1818518 3 0.3816 0.6272 0.304 0.000 0.696 0.000 0.000
#> SRR1818519 1 0.3857 0.3548 0.688 0.000 0.000 0.312 0.000
#> SRR1818517 2 0.0290 0.8894 0.000 0.992 0.000 0.008 0.000
#> SRR1818516 3 0.0000 0.8633 0.000 0.000 1.000 0.000 0.000
#> SRR1818515 4 0.3661 0.5777 0.276 0.000 0.000 0.724 0.000
#> SRR1818514 5 0.0000 0.8836 0.000 0.000 0.000 0.000 1.000
#> SRR1818513 2 0.0000 0.8896 0.000 1.000 0.000 0.000 0.000
#> SRR1818512 5 0.0000 0.8836 0.000 0.000 0.000 0.000 1.000
#> SRR1818510 2 0.0000 0.8896 0.000 1.000 0.000 0.000 0.000
#> SRR1818511 2 0.0451 0.8884 0.004 0.988 0.000 0.008 0.000
#> SRR1818508 5 0.6903 0.5073 0.244 0.196 0.004 0.024 0.532
#> SRR1818509 2 0.0290 0.8894 0.000 0.992 0.000 0.008 0.000
#> SRR1818507 4 0.4030 0.4862 0.352 0.000 0.000 0.648 0.000
#> SRR1818506 1 0.3910 0.6186 0.720 0.000 0.272 0.008 0.000
#> SRR1818505 1 0.6080 0.2379 0.528 0.000 0.140 0.000 0.332
#> SRR1818503 1 0.3684 0.5386 0.720 0.000 0.280 0.000 0.000
#> SRR1818504 1 0.3508 0.5930 0.748 0.000 0.252 0.000 0.000
#> SRR1818502 1 0.1485 0.7223 0.948 0.000 0.032 0.020 0.000
#> SRR1818498 2 0.0000 0.8896 0.000 1.000 0.000 0.000 0.000
#> SRR1818500 5 0.0000 0.8836 0.000 0.000 0.000 0.000 1.000
#> SRR1818501 3 0.0000 0.8633 0.000 0.000 1.000 0.000 0.000
#> SRR1818499 3 0.3421 0.7667 0.204 0.000 0.788 0.008 0.000
#> SRR1818496 5 0.2006 0.8629 0.072 0.000 0.000 0.012 0.916
#> SRR1818494 1 0.2504 0.7156 0.900 0.004 0.064 0.032 0.000
#> SRR1818495 1 0.3814 0.6353 0.720 0.276 0.000 0.004 0.000
#> SRR1818493 2 0.0880 0.8771 0.032 0.968 0.000 0.000 0.000
#> SRR1818492 1 0.4649 0.3978 0.580 0.404 0.000 0.016 0.000
#> SRR1818491 5 0.6912 0.6755 0.136 0.052 0.064 0.100 0.648
#> SRR1818490 3 0.0290 0.8625 0.008 0.000 0.992 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1818497 5 0.4539 0.69569 0.164 0.008 0.000 0.004 0.728 0.096
#> SRR1818600 1 0.1644 0.68543 0.920 0.000 0.000 0.076 0.000 0.004
#> SRR1818599 3 0.0000 0.85750 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818598 1 0.2165 0.67914 0.884 0.000 0.000 0.108 0.000 0.008
#> SRR1818597 6 0.2307 0.74516 0.012 0.000 0.064 0.024 0.000 0.900
#> SRR1818596 4 0.1610 0.83387 0.000 0.000 0.000 0.916 0.000 0.084
#> SRR1818595 6 0.2380 0.78985 0.068 0.000 0.004 0.036 0.000 0.892
#> SRR1818594 6 0.2044 0.72436 0.008 0.000 0.004 0.076 0.004 0.908
#> SRR1818593 4 0.1267 0.85927 0.060 0.000 0.000 0.940 0.000 0.000
#> SRR1818592 4 0.0363 0.87472 0.000 0.000 0.000 0.988 0.000 0.012
#> SRR1818591 2 0.0363 0.91569 0.012 0.988 0.000 0.000 0.000 0.000
#> SRR1818590 2 0.2562 0.77567 0.172 0.828 0.000 0.000 0.000 0.000
#> SRR1818589 4 0.2178 0.81150 0.132 0.000 0.000 0.868 0.000 0.000
#> SRR1818587 6 0.3263 0.72314 0.012 0.116 0.000 0.040 0.000 0.832
#> SRR1818586 2 0.0000 0.91824 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818585 5 0.0000 0.83277 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818584 1 0.1812 0.65900 0.912 0.000 0.000 0.000 0.080 0.008
#> SRR1818583 3 0.3330 0.59684 0.000 0.000 0.716 0.000 0.000 0.284
#> SRR1818588 6 0.3060 0.78904 0.132 0.012 0.020 0.000 0.000 0.836
#> SRR1818582 4 0.0363 0.87472 0.000 0.000 0.000 0.988 0.000 0.012
#> SRR1818581 2 0.0363 0.91569 0.012 0.988 0.000 0.000 0.000 0.000
#> SRR1818579 1 0.0717 0.68487 0.976 0.000 0.000 0.008 0.000 0.016
#> SRR1818578 5 0.0508 0.82556 0.000 0.000 0.000 0.012 0.984 0.004
#> SRR1818577 2 0.2632 0.76329 0.164 0.832 0.000 0.000 0.000 0.004
#> SRR1818580 1 0.3720 0.51819 0.736 0.000 0.000 0.028 0.236 0.000
#> SRR1818575 6 0.3649 0.78939 0.096 0.040 0.000 0.044 0.000 0.820
#> SRR1818574 3 0.0000 0.85750 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818576 6 0.4672 0.69454 0.128 0.000 0.188 0.000 0.000 0.684
#> SRR1818573 4 0.1075 0.86300 0.048 0.000 0.000 0.952 0.000 0.000
#> SRR1818572 1 0.2793 0.56622 0.800 0.000 0.000 0.000 0.200 0.000
#> SRR1818571 1 0.3878 0.35093 0.644 0.000 0.004 0.348 0.000 0.004
#> SRR1818570 6 0.3804 0.46285 0.008 0.000 0.336 0.000 0.000 0.656
#> SRR1818568 6 0.2893 0.76282 0.028 0.056 0.000 0.044 0.000 0.872
#> SRR1818567 2 0.0000 0.91824 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818566 3 0.0000 0.85750 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818569 5 0.0000 0.83277 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818565 3 0.0000 0.85750 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818564 1 0.5660 0.36231 0.532 0.000 0.252 0.000 0.000 0.216
#> SRR1818563 4 0.3828 0.24907 0.440 0.000 0.000 0.560 0.000 0.000
#> SRR1818561 3 0.0000 0.85750 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818560 6 0.4244 0.75799 0.188 0.000 0.076 0.004 0.000 0.732
#> SRR1818559 4 0.0790 0.86982 0.000 0.000 0.000 0.968 0.000 0.032
#> SRR1818562 1 0.3699 0.41550 0.660 0.336 0.000 0.000 0.000 0.004
#> SRR1818558 6 0.4131 0.54465 0.384 0.000 0.000 0.016 0.000 0.600
#> SRR1818556 1 0.1552 0.68466 0.940 0.000 0.004 0.020 0.000 0.036
#> SRR1818557 4 0.0603 0.87497 0.004 0.000 0.000 0.980 0.000 0.016
#> SRR1818555 2 0.0363 0.91569 0.012 0.988 0.000 0.000 0.000 0.000
#> SRR1818553 6 0.2945 0.69425 0.020 0.000 0.000 0.156 0.000 0.824
#> SRR1818552 2 0.0146 0.91682 0.000 0.996 0.000 0.000 0.000 0.004
#> SRR1818551 6 0.1806 0.76203 0.020 0.008 0.000 0.044 0.000 0.928
#> SRR1818550 1 0.3969 0.62455 0.760 0.188 0.000 0.020 0.000 0.032
#> SRR1818554 4 0.2300 0.80060 0.144 0.000 0.000 0.856 0.000 0.000
#> SRR1818549 1 0.6088 0.25119 0.504 0.000 0.116 0.340 0.000 0.040
#> SRR1818548 4 0.0622 0.87509 0.008 0.000 0.000 0.980 0.000 0.012
#> SRR1818546 5 0.0000 0.83277 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818547 4 0.3765 0.35184 0.404 0.000 0.000 0.596 0.000 0.000
#> SRR1818544 5 0.3758 0.59370 0.284 0.000 0.000 0.000 0.700 0.016
#> SRR1818543 1 0.5380 0.46932 0.640 0.000 0.112 0.000 0.028 0.220
#> SRR1818542 5 0.5671 0.07976 0.040 0.000 0.000 0.060 0.456 0.444
#> SRR1818545 1 0.3612 0.65686 0.808 0.108 0.000 0.076 0.000 0.008
#> SRR1818541 6 0.2831 0.78425 0.136 0.000 0.000 0.024 0.000 0.840
#> SRR1818539 1 0.4730 0.62326 0.736 0.000 0.120 0.028 0.004 0.112
#> SRR1818540 2 0.0000 0.91824 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818536 1 0.4676 0.47868 0.632 0.000 0.312 0.048 0.000 0.008
#> SRR1818535 3 0.4488 0.25421 0.000 0.000 0.548 0.032 0.000 0.420
#> SRR1818534 4 0.0790 0.86907 0.000 0.000 0.000 0.968 0.000 0.032
#> SRR1818538 1 0.4128 0.00362 0.504 0.488 0.000 0.004 0.000 0.004
#> SRR1818537 1 0.1983 0.68946 0.908 0.000 0.000 0.072 0.000 0.020
#> SRR1818533 6 0.3888 0.70404 0.252 0.000 0.000 0.032 0.000 0.716
#> SRR1818532 6 0.2432 0.79321 0.100 0.000 0.000 0.024 0.000 0.876
#> SRR1818531 1 0.2581 0.63549 0.860 0.000 0.000 0.000 0.120 0.020
#> SRR1818530 5 0.0000 0.83277 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818529 1 0.3897 0.46177 0.696 0.000 0.000 0.280 0.024 0.000
#> SRR1818528 6 0.3424 0.76636 0.204 0.000 0.024 0.000 0.000 0.772
#> SRR1818527 1 0.4130 0.51102 0.760 0.060 0.000 0.000 0.016 0.164
#> SRR1818526 4 0.3649 0.72712 0.196 0.000 0.000 0.764 0.000 0.040
#> SRR1818525 5 0.4833 0.53314 0.288 0.000 0.012 0.000 0.640 0.060
#> SRR1818523 3 0.0000 0.85750 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818524 4 0.0937 0.86553 0.000 0.000 0.000 0.960 0.000 0.040
#> SRR1818522 6 0.3296 0.75519 0.188 0.000 0.012 0.008 0.000 0.792
#> SRR1818521 2 0.2631 0.77844 0.152 0.840 0.000 0.000 0.000 0.008
#> SRR1818520 2 0.0000 0.91824 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818518 6 0.3493 0.78603 0.148 0.000 0.056 0.000 0.000 0.796
#> SRR1818519 4 0.2624 0.78815 0.020 0.000 0.000 0.856 0.000 0.124
#> SRR1818517 2 0.1524 0.88507 0.060 0.932 0.000 0.000 0.000 0.008
#> SRR1818516 3 0.0000 0.85750 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818515 4 0.1168 0.87102 0.028 0.000 0.000 0.956 0.000 0.016
#> SRR1818514 5 0.0000 0.83277 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818513 2 0.0000 0.91824 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818512 5 0.0000 0.83277 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818510 2 0.0000 0.91824 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818511 2 0.5504 0.31544 0.232 0.564 0.000 0.000 0.000 0.204
#> SRR1818508 1 0.6368 0.10259 0.468 0.024 0.000 0.000 0.252 0.256
#> SRR1818509 2 0.1584 0.88225 0.064 0.928 0.000 0.000 0.000 0.008
#> SRR1818507 4 0.0993 0.87232 0.024 0.000 0.000 0.964 0.000 0.012
#> SRR1818506 6 0.2868 0.79305 0.112 0.000 0.032 0.004 0.000 0.852
#> SRR1818505 6 0.5855 0.45993 0.312 0.008 0.004 0.000 0.152 0.524
#> SRR1818503 6 0.3405 0.71481 0.272 0.000 0.004 0.000 0.000 0.724
#> SRR1818504 6 0.2278 0.79487 0.128 0.000 0.004 0.000 0.000 0.868
#> SRR1818502 6 0.3592 0.63697 0.344 0.000 0.000 0.000 0.000 0.656
#> SRR1818498 2 0.0000 0.91824 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818500 5 0.0146 0.83196 0.004 0.000 0.000 0.000 0.996 0.000
#> SRR1818501 3 0.0000 0.85750 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818499 1 0.4328 -0.32095 0.520 0.000 0.020 0.000 0.000 0.460
#> SRR1818496 5 0.5578 0.60500 0.248 0.036 0.000 0.040 0.640 0.036
#> SRR1818494 6 0.3828 0.48293 0.440 0.000 0.000 0.000 0.000 0.560
#> SRR1818495 6 0.3079 0.75904 0.056 0.096 0.000 0.004 0.000 0.844
#> SRR1818493 2 0.1806 0.85213 0.088 0.908 0.000 0.000 0.000 0.004
#> SRR1818492 6 0.4859 0.58344 0.316 0.080 0.000 0.000 0.000 0.604
#> SRR1818491 1 0.4670 0.57277 0.740 0.016 0.012 0.000 0.140 0.092
#> SRR1818490 3 0.4563 0.19148 0.044 0.000 0.588 0.000 0.000 0.368
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 16183 rows and 111 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'hclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.395 0.740 0.845 0.4283 0.500 0.500
#> 3 3 0.405 0.643 0.762 0.2436 0.945 0.890
#> 4 4 0.600 0.720 0.857 0.2499 0.833 0.657
#> 5 5 0.642 0.617 0.810 0.0876 0.945 0.847
#> 6 6 0.659 0.567 0.779 0.0727 0.886 0.640
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1818497 2 0.8713 0.8041 0.292 0.708
#> SRR1818600 1 0.7299 0.6516 0.796 0.204
#> SRR1818599 1 0.0000 0.8683 1.000 0.000
#> SRR1818598 1 0.0000 0.8683 1.000 0.000
#> SRR1818597 1 0.0000 0.8683 1.000 0.000
#> SRR1818596 2 0.9580 0.6763 0.380 0.620
#> SRR1818595 1 0.0000 0.8683 1.000 0.000
#> SRR1818594 1 0.0000 0.8683 1.000 0.000
#> SRR1818593 2 0.8861 0.7994 0.304 0.696
#> SRR1818592 2 0.8955 0.7923 0.312 0.688
#> SRR1818591 2 0.8763 0.8035 0.296 0.704
#> SRR1818590 2 0.8861 0.7994 0.304 0.696
#> SRR1818589 2 0.8861 0.7994 0.304 0.696
#> SRR1818587 2 0.9661 0.6502 0.392 0.608
#> SRR1818586 2 0.8763 0.7989 0.296 0.704
#> SRR1818585 2 0.0000 0.7133 0.000 1.000
#> SRR1818584 2 0.9286 0.7479 0.344 0.656
#> SRR1818583 1 0.0000 0.8683 1.000 0.000
#> SRR1818588 1 0.0672 0.8655 0.992 0.008
#> SRR1818582 2 0.8955 0.7923 0.312 0.688
#> SRR1818581 2 0.8763 0.8035 0.296 0.704
#> SRR1818579 1 0.7299 0.6516 0.796 0.204
#> SRR1818578 2 0.8763 0.8036 0.296 0.704
#> SRR1818577 2 0.0938 0.7207 0.012 0.988
#> SRR1818580 2 0.8763 0.8036 0.296 0.704
#> SRR1818575 1 0.9732 0.0722 0.596 0.404
#> SRR1818574 1 0.0000 0.8683 1.000 0.000
#> SRR1818576 1 0.0000 0.8683 1.000 0.000
#> SRR1818573 2 0.9000 0.7882 0.316 0.684
#> SRR1818572 1 0.7376 0.6447 0.792 0.208
#> SRR1818571 1 0.0000 0.8683 1.000 0.000
#> SRR1818570 1 0.0000 0.8683 1.000 0.000
#> SRR1818568 1 0.9732 0.0722 0.596 0.404
#> SRR1818567 2 0.1414 0.7250 0.020 0.980
#> SRR1818566 1 0.0000 0.8683 1.000 0.000
#> SRR1818569 2 0.0000 0.7133 0.000 1.000
#> SRR1818565 1 0.0000 0.8683 1.000 0.000
#> SRR1818564 1 0.0000 0.8683 1.000 0.000
#> SRR1818563 1 0.6148 0.7252 0.848 0.152
#> SRR1818561 1 0.0000 0.8683 1.000 0.000
#> SRR1818560 1 0.0000 0.8683 1.000 0.000
#> SRR1818559 2 0.8955 0.7923 0.312 0.688
#> SRR1818562 2 0.8763 0.8036 0.296 0.704
#> SRR1818558 1 0.9732 0.0722 0.596 0.404
#> SRR1818556 1 0.0000 0.8683 1.000 0.000
#> SRR1818557 2 0.8955 0.7923 0.312 0.688
#> SRR1818555 2 0.8763 0.8035 0.296 0.704
#> SRR1818553 1 0.0672 0.8655 0.992 0.008
#> SRR1818552 2 0.1633 0.7266 0.024 0.976
#> SRR1818551 1 0.9732 0.0722 0.596 0.404
#> SRR1818550 1 0.6148 0.7252 0.848 0.152
#> SRR1818554 2 0.8861 0.7994 0.304 0.696
#> SRR1818549 1 0.0000 0.8683 1.000 0.000
#> SRR1818548 2 0.8955 0.7923 0.312 0.688
#> SRR1818546 2 0.0000 0.7133 0.000 1.000
#> SRR1818547 2 0.8909 0.7966 0.308 0.692
#> SRR1818544 2 0.8763 0.8036 0.296 0.704
#> SRR1818543 1 0.0000 0.8683 1.000 0.000
#> SRR1818542 1 0.9983 -0.2627 0.524 0.476
#> SRR1818545 1 0.0376 0.8670 0.996 0.004
#> SRR1818541 1 0.0672 0.8656 0.992 0.008
#> SRR1818539 1 0.0000 0.8683 1.000 0.000
#> SRR1818540 2 0.1414 0.7250 0.020 0.980
#> SRR1818536 1 0.0000 0.8683 1.000 0.000
#> SRR1818535 1 0.1184 0.8612 0.984 0.016
#> SRR1818534 2 0.8955 0.7923 0.312 0.688
#> SRR1818538 2 0.8861 0.7994 0.304 0.696
#> SRR1818537 1 0.0000 0.8683 1.000 0.000
#> SRR1818533 1 0.0000 0.8683 1.000 0.000
#> SRR1818532 1 0.0000 0.8683 1.000 0.000
#> SRR1818531 2 0.9286 0.7479 0.344 0.656
#> SRR1818530 2 0.0000 0.7133 0.000 1.000
#> SRR1818529 1 0.7299 0.6516 0.796 0.204
#> SRR1818528 1 0.9944 -0.1758 0.544 0.456
#> SRR1818527 2 0.8763 0.8036 0.296 0.704
#> SRR1818526 2 0.8763 0.8036 0.296 0.704
#> SRR1818525 2 0.8763 0.8036 0.296 0.704
#> SRR1818523 1 0.0000 0.8683 1.000 0.000
#> SRR1818524 2 0.7376 0.7835 0.208 0.792
#> SRR1818522 2 0.8763 0.8036 0.296 0.704
#> SRR1818521 2 0.0376 0.7160 0.004 0.996
#> SRR1818520 2 0.0000 0.7133 0.000 1.000
#> SRR1818518 1 0.7528 0.6075 0.784 0.216
#> SRR1818519 2 0.5946 0.7641 0.144 0.856
#> SRR1818517 2 0.1633 0.7266 0.024 0.976
#> SRR1818516 1 0.0000 0.8683 1.000 0.000
#> SRR1818515 2 0.8763 0.8036 0.296 0.704
#> SRR1818514 2 0.0000 0.7133 0.000 1.000
#> SRR1818513 2 0.1414 0.7250 0.020 0.980
#> SRR1818512 2 0.0000 0.7133 0.000 1.000
#> SRR1818510 2 0.1414 0.7250 0.020 0.980
#> SRR1818511 2 0.8763 0.8036 0.296 0.704
#> SRR1818508 2 0.9460 0.7067 0.364 0.636
#> SRR1818509 2 0.1633 0.7266 0.024 0.976
#> SRR1818507 2 0.5946 0.7641 0.144 0.856
#> SRR1818506 1 0.1843 0.8525 0.972 0.028
#> SRR1818505 2 0.8763 0.8036 0.296 0.704
#> SRR1818503 1 0.0938 0.8636 0.988 0.012
#> SRR1818504 2 0.0000 0.7133 0.000 1.000
#> SRR1818502 1 0.0938 0.8636 0.988 0.012
#> SRR1818498 2 0.0000 0.7133 0.000 1.000
#> SRR1818500 2 0.0376 0.7161 0.004 0.996
#> SRR1818501 1 0.0000 0.8683 1.000 0.000
#> SRR1818499 2 0.8955 0.7905 0.312 0.688
#> SRR1818496 2 0.8713 0.8041 0.292 0.708
#> SRR1818494 1 0.0938 0.8636 0.988 0.012
#> SRR1818495 1 0.9393 0.2679 0.644 0.356
#> SRR1818493 2 0.0376 0.7160 0.004 0.996
#> SRR1818492 2 0.9881 0.5627 0.436 0.564
#> SRR1818491 2 0.8763 0.8036 0.296 0.704
#> SRR1818490 1 0.7528 0.6075 0.784 0.216
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1818497 2 0.7384 0.6805 0.272 0.660 0.068
#> SRR1818600 1 0.5414 0.6556 0.772 0.212 0.016
#> SRR1818599 3 0.6045 1.0000 0.380 0.000 0.620
#> SRR1818598 1 0.0000 0.7642 1.000 0.000 0.000
#> SRR1818597 1 0.0000 0.7642 1.000 0.000 0.000
#> SRR1818596 2 0.6148 0.5507 0.356 0.640 0.004
#> SRR1818595 1 0.0000 0.7642 1.000 0.000 0.000
#> SRR1818594 1 0.0000 0.7642 1.000 0.000 0.000
#> SRR1818593 2 0.5763 0.6819 0.276 0.716 0.008
#> SRR1818592 2 0.6062 0.6773 0.276 0.708 0.016
#> SRR1818591 2 0.6771 0.6885 0.276 0.684 0.040
#> SRR1818590 2 0.5763 0.6819 0.276 0.716 0.008
#> SRR1818589 2 0.5763 0.6819 0.276 0.716 0.008
#> SRR1818587 2 0.6209 0.5227 0.368 0.628 0.004
#> SRR1818586 2 0.7097 0.6799 0.280 0.668 0.052
#> SRR1818585 2 0.5968 0.3728 0.000 0.636 0.364
#> SRR1818584 2 0.6313 0.6337 0.308 0.676 0.016
#> SRR1818583 1 0.0000 0.7642 1.000 0.000 0.000
#> SRR1818588 1 0.0424 0.7660 0.992 0.008 0.000
#> SRR1818582 2 0.6062 0.6773 0.276 0.708 0.016
#> SRR1818581 2 0.6771 0.6885 0.276 0.684 0.040
#> SRR1818579 1 0.5414 0.6556 0.772 0.212 0.016
#> SRR1818578 2 0.5517 0.6881 0.268 0.728 0.004
#> SRR1818577 2 0.3918 0.5888 0.012 0.868 0.120
#> SRR1818580 2 0.5553 0.6878 0.272 0.724 0.004
#> SRR1818575 1 0.6859 0.1920 0.564 0.420 0.016
#> SRR1818574 3 0.6045 1.0000 0.380 0.000 0.620
#> SRR1818576 1 0.0000 0.7642 1.000 0.000 0.000
#> SRR1818573 2 0.6096 0.6748 0.280 0.704 0.016
#> SRR1818572 1 0.5461 0.6497 0.768 0.216 0.016
#> SRR1818571 1 0.0000 0.7642 1.000 0.000 0.000
#> SRR1818570 1 0.0000 0.7642 1.000 0.000 0.000
#> SRR1818568 1 0.6859 0.1920 0.564 0.420 0.016
#> SRR1818567 2 0.4209 0.5917 0.020 0.860 0.120
#> SRR1818566 3 0.6045 1.0000 0.380 0.000 0.620
#> SRR1818569 2 0.5968 0.3728 0.000 0.636 0.364
#> SRR1818565 3 0.6045 1.0000 0.380 0.000 0.620
#> SRR1818564 1 0.0000 0.7642 1.000 0.000 0.000
#> SRR1818563 1 0.4514 0.6993 0.832 0.156 0.012
#> SRR1818561 3 0.6045 1.0000 0.380 0.000 0.620
#> SRR1818560 1 0.0000 0.7642 1.000 0.000 0.000
#> SRR1818559 2 0.6062 0.6773 0.276 0.708 0.016
#> SRR1818562 2 0.6407 0.6898 0.272 0.700 0.028
#> SRR1818558 1 0.6859 0.1920 0.564 0.420 0.016
#> SRR1818556 1 0.0000 0.7642 1.000 0.000 0.000
#> SRR1818557 2 0.6062 0.6773 0.276 0.708 0.016
#> SRR1818555 2 0.6771 0.6885 0.276 0.684 0.040
#> SRR1818553 1 0.0424 0.7660 0.992 0.008 0.000
#> SRR1818552 2 0.4342 0.5930 0.024 0.856 0.120
#> SRR1818551 1 0.6859 0.1920 0.564 0.420 0.016
#> SRR1818550 1 0.4514 0.6993 0.832 0.156 0.012
#> SRR1818554 2 0.5763 0.6819 0.276 0.716 0.008
#> SRR1818549 1 0.0000 0.7642 1.000 0.000 0.000
#> SRR1818548 2 0.6062 0.6773 0.276 0.708 0.016
#> SRR1818546 2 0.5968 0.3728 0.000 0.636 0.364
#> SRR1818547 2 0.5797 0.6803 0.280 0.712 0.008
#> SRR1818544 2 0.5553 0.6878 0.272 0.724 0.004
#> SRR1818543 1 0.0000 0.7642 1.000 0.000 0.000
#> SRR1818542 1 0.6955 -0.1164 0.492 0.492 0.016
#> SRR1818545 1 0.0661 0.7658 0.988 0.008 0.004
#> SRR1818541 1 0.1453 0.7644 0.968 0.024 0.008
#> SRR1818539 1 0.0000 0.7642 1.000 0.000 0.000
#> SRR1818540 2 0.4209 0.5917 0.020 0.860 0.120
#> SRR1818536 1 0.0000 0.7642 1.000 0.000 0.000
#> SRR1818535 1 0.1182 0.7655 0.976 0.012 0.012
#> SRR1818534 2 0.6062 0.6773 0.276 0.708 0.016
#> SRR1818538 2 0.5763 0.6819 0.276 0.716 0.008
#> SRR1818537 1 0.0000 0.7642 1.000 0.000 0.000
#> SRR1818533 1 0.0000 0.7642 1.000 0.000 0.000
#> SRR1818532 1 0.0000 0.7642 1.000 0.000 0.000
#> SRR1818531 2 0.6313 0.6337 0.308 0.676 0.016
#> SRR1818530 2 0.5968 0.3728 0.000 0.636 0.364
#> SRR1818529 1 0.5414 0.6556 0.772 0.212 0.016
#> SRR1818528 1 0.6513 -0.0235 0.520 0.476 0.004
#> SRR1818527 2 0.5884 0.6894 0.272 0.716 0.012
#> SRR1818526 2 0.5884 0.6894 0.272 0.716 0.012
#> SRR1818525 2 0.5327 0.6867 0.272 0.728 0.000
#> SRR1818523 3 0.6045 1.0000 0.380 0.000 0.620
#> SRR1818524 2 0.6398 0.6657 0.192 0.748 0.060
#> SRR1818522 2 0.5327 0.6867 0.272 0.728 0.000
#> SRR1818521 2 0.5845 0.4334 0.004 0.688 0.308
#> SRR1818520 2 0.5968 0.3728 0.000 0.636 0.364
#> SRR1818518 1 0.5202 0.5786 0.772 0.220 0.008
#> SRR1818519 2 0.3918 0.6533 0.120 0.868 0.012
#> SRR1818517 2 0.4618 0.5878 0.024 0.840 0.136
#> SRR1818516 3 0.6045 1.0000 0.380 0.000 0.620
#> SRR1818515 2 0.6737 0.6882 0.272 0.688 0.040
#> SRR1818514 2 0.5968 0.3728 0.000 0.636 0.364
#> SRR1818513 2 0.4862 0.5746 0.020 0.820 0.160
#> SRR1818512 2 0.5968 0.3728 0.000 0.636 0.364
#> SRR1818510 2 0.4862 0.5746 0.020 0.820 0.160
#> SRR1818511 2 0.6407 0.6898 0.272 0.700 0.028
#> SRR1818508 2 0.6081 0.5847 0.344 0.652 0.004
#> SRR1818509 2 0.4618 0.5878 0.024 0.840 0.136
#> SRR1818507 2 0.3918 0.6533 0.120 0.868 0.012
#> SRR1818506 1 0.1832 0.7611 0.956 0.036 0.008
#> SRR1818505 2 0.5884 0.6894 0.272 0.716 0.012
#> SRR1818503 1 0.1711 0.7635 0.960 0.032 0.008
#> SRR1818504 2 0.5968 0.3728 0.000 0.636 0.364
#> SRR1818502 1 0.1711 0.7635 0.960 0.032 0.008
#> SRR1818498 2 0.5968 0.3728 0.000 0.636 0.364
#> SRR1818500 2 0.5982 0.4132 0.004 0.668 0.328
#> SRR1818501 3 0.6045 1.0000 0.380 0.000 0.620
#> SRR1818499 2 0.5690 0.6734 0.288 0.708 0.004
#> SRR1818496 2 0.7384 0.6805 0.272 0.660 0.068
#> SRR1818494 1 0.1711 0.7635 0.960 0.032 0.008
#> SRR1818495 1 0.6247 0.3432 0.620 0.376 0.004
#> SRR1818493 2 0.5845 0.4334 0.004 0.688 0.308
#> SRR1818492 2 0.6811 0.4657 0.404 0.580 0.016
#> SRR1818491 2 0.5884 0.6894 0.272 0.716 0.012
#> SRR1818490 1 0.5202 0.5786 0.772 0.220 0.008
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1818497 4 0.3216 0.7544 0.000 0.044 0.076 0.880
#> SRR1818600 1 0.4720 0.7097 0.768 0.000 0.044 0.188
#> SRR1818599 3 0.3024 1.0000 0.148 0.000 0.852 0.000
#> SRR1818598 1 0.0000 0.8849 1.000 0.000 0.000 0.000
#> SRR1818597 1 0.0000 0.8849 1.000 0.000 0.000 0.000
#> SRR1818596 4 0.3099 0.7329 0.104 0.000 0.020 0.876
#> SRR1818595 1 0.0000 0.8849 1.000 0.000 0.000 0.000
#> SRR1818594 1 0.0000 0.8849 1.000 0.000 0.000 0.000
#> SRR1818593 4 0.1004 0.7853 0.004 0.000 0.024 0.972
#> SRR1818592 4 0.1489 0.7814 0.004 0.000 0.044 0.952
#> SRR1818591 4 0.2275 0.7792 0.004 0.020 0.048 0.928
#> SRR1818590 4 0.1109 0.7870 0.004 0.000 0.028 0.968
#> SRR1818589 4 0.1004 0.7853 0.004 0.000 0.024 0.972
#> SRR1818587 4 0.3278 0.7220 0.116 0.000 0.020 0.864
#> SRR1818586 4 0.3806 0.7626 0.028 0.040 0.064 0.868
#> SRR1818585 2 0.0000 0.8314 0.000 1.000 0.000 0.000
#> SRR1818584 4 0.2408 0.7681 0.036 0.000 0.044 0.920
#> SRR1818583 1 0.0000 0.8849 1.000 0.000 0.000 0.000
#> SRR1818588 1 0.0524 0.8825 0.988 0.000 0.008 0.004
#> SRR1818582 4 0.1489 0.7814 0.004 0.000 0.044 0.952
#> SRR1818581 4 0.2275 0.7792 0.004 0.020 0.048 0.928
#> SRR1818579 1 0.4720 0.7097 0.768 0.000 0.044 0.188
#> SRR1818578 4 0.0779 0.7879 0.000 0.004 0.016 0.980
#> SRR1818577 4 0.6228 0.3258 0.000 0.364 0.064 0.572
#> SRR1818580 4 0.0779 0.7870 0.000 0.004 0.016 0.980
#> SRR1818575 4 0.6120 0.1098 0.432 0.000 0.048 0.520
#> SRR1818574 3 0.3024 1.0000 0.148 0.000 0.852 0.000
#> SRR1818576 1 0.0000 0.8849 1.000 0.000 0.000 0.000
#> SRR1818573 4 0.1635 0.7809 0.008 0.000 0.044 0.948
#> SRR1818572 1 0.4761 0.7049 0.764 0.000 0.044 0.192
#> SRR1818571 1 0.0000 0.8849 1.000 0.000 0.000 0.000
#> SRR1818570 1 0.0000 0.8849 1.000 0.000 0.000 0.000
#> SRR1818568 4 0.6120 0.1098 0.432 0.000 0.048 0.520
#> SRR1818567 4 0.6200 0.3425 0.000 0.356 0.064 0.580
#> SRR1818566 3 0.3024 1.0000 0.148 0.000 0.852 0.000
#> SRR1818569 2 0.0000 0.8314 0.000 1.000 0.000 0.000
#> SRR1818565 3 0.3024 1.0000 0.148 0.000 0.852 0.000
#> SRR1818564 1 0.0000 0.8849 1.000 0.000 0.000 0.000
#> SRR1818563 1 0.3856 0.7661 0.832 0.000 0.032 0.136
#> SRR1818561 3 0.3024 1.0000 0.148 0.000 0.852 0.000
#> SRR1818560 1 0.0000 0.8849 1.000 0.000 0.000 0.000
#> SRR1818559 4 0.1489 0.7814 0.004 0.000 0.044 0.952
#> SRR1818562 4 0.2255 0.7762 0.000 0.012 0.068 0.920
#> SRR1818558 4 0.6120 0.1098 0.432 0.000 0.048 0.520
#> SRR1818556 1 0.0000 0.8849 1.000 0.000 0.000 0.000
#> SRR1818557 4 0.1489 0.7814 0.004 0.000 0.044 0.952
#> SRR1818555 4 0.2275 0.7792 0.004 0.020 0.048 0.928
#> SRR1818553 1 0.0524 0.8825 0.988 0.000 0.008 0.004
#> SRR1818552 4 0.6186 0.3507 0.000 0.352 0.064 0.584
#> SRR1818551 4 0.6120 0.1098 0.432 0.000 0.048 0.520
#> SRR1818550 1 0.3856 0.7661 0.832 0.000 0.032 0.136
#> SRR1818554 4 0.1004 0.7853 0.004 0.000 0.024 0.972
#> SRR1818549 1 0.0000 0.8849 1.000 0.000 0.000 0.000
#> SRR1818548 4 0.1489 0.7814 0.004 0.000 0.044 0.952
#> SRR1818546 2 0.0000 0.8314 0.000 1.000 0.000 0.000
#> SRR1818547 4 0.1452 0.7834 0.008 0.000 0.036 0.956
#> SRR1818544 4 0.0779 0.7870 0.000 0.004 0.016 0.980
#> SRR1818543 1 0.0000 0.8849 1.000 0.000 0.000 0.000
#> SRR1818542 4 0.5522 0.4865 0.288 0.000 0.044 0.668
#> SRR1818545 1 0.0524 0.8820 0.988 0.000 0.004 0.008
#> SRR1818541 1 0.1182 0.8772 0.968 0.000 0.016 0.016
#> SRR1818539 1 0.0000 0.8849 1.000 0.000 0.000 0.000
#> SRR1818540 4 0.6200 0.3425 0.000 0.356 0.064 0.580
#> SRR1818536 1 0.0000 0.8849 1.000 0.000 0.000 0.000
#> SRR1818535 1 0.1510 0.8705 0.956 0.000 0.016 0.028
#> SRR1818534 4 0.1489 0.7814 0.004 0.000 0.044 0.952
#> SRR1818538 4 0.1109 0.7870 0.004 0.000 0.028 0.968
#> SRR1818537 1 0.0000 0.8849 1.000 0.000 0.000 0.000
#> SRR1818533 1 0.0000 0.8849 1.000 0.000 0.000 0.000
#> SRR1818532 1 0.0000 0.8849 1.000 0.000 0.000 0.000
#> SRR1818531 4 0.2408 0.7681 0.036 0.000 0.044 0.920
#> SRR1818530 2 0.0000 0.8314 0.000 1.000 0.000 0.000
#> SRR1818529 1 0.4720 0.7097 0.768 0.000 0.044 0.188
#> SRR1818528 1 0.6080 0.0716 0.488 0.000 0.044 0.468
#> SRR1818527 4 0.1807 0.7822 0.000 0.008 0.052 0.940
#> SRR1818526 4 0.1807 0.7822 0.000 0.008 0.052 0.940
#> SRR1818525 4 0.1474 0.7841 0.000 0.000 0.052 0.948
#> SRR1818523 3 0.3024 1.0000 0.148 0.000 0.852 0.000
#> SRR1818524 4 0.4599 0.6957 0.000 0.112 0.088 0.800
#> SRR1818522 4 0.1474 0.7841 0.000 0.000 0.052 0.948
#> SRR1818521 2 0.5536 0.3034 0.000 0.592 0.024 0.384
#> SRR1818520 2 0.0000 0.8314 0.000 1.000 0.000 0.000
#> SRR1818518 1 0.4775 0.5882 0.740 0.000 0.028 0.232
#> SRR1818519 4 0.5696 0.0471 0.000 0.480 0.024 0.496
#> SRR1818517 4 0.6337 0.3221 0.000 0.360 0.072 0.568
#> SRR1818516 3 0.3024 1.0000 0.148 0.000 0.852 0.000
#> SRR1818515 4 0.2662 0.7672 0.000 0.016 0.084 0.900
#> SRR1818514 2 0.0000 0.8314 0.000 1.000 0.000 0.000
#> SRR1818513 4 0.5999 0.2528 0.000 0.404 0.044 0.552
#> SRR1818512 2 0.0000 0.8314 0.000 1.000 0.000 0.000
#> SRR1818510 4 0.5999 0.2528 0.000 0.404 0.044 0.552
#> SRR1818511 4 0.2255 0.7762 0.000 0.012 0.068 0.920
#> SRR1818508 4 0.4604 0.6738 0.176 0.004 0.036 0.784
#> SRR1818509 4 0.6337 0.3221 0.000 0.360 0.072 0.568
#> SRR1818507 4 0.5696 0.0471 0.000 0.480 0.024 0.496
#> SRR1818506 1 0.1520 0.8714 0.956 0.000 0.020 0.024
#> SRR1818505 4 0.1807 0.7822 0.000 0.008 0.052 0.940
#> SRR1818503 1 0.1406 0.8747 0.960 0.000 0.024 0.016
#> SRR1818504 2 0.0000 0.8314 0.000 1.000 0.000 0.000
#> SRR1818502 1 0.1406 0.8747 0.960 0.000 0.024 0.016
#> SRR1818498 2 0.0000 0.8314 0.000 1.000 0.000 0.000
#> SRR1818500 2 0.5013 0.5096 0.000 0.688 0.020 0.292
#> SRR1818501 3 0.3024 1.0000 0.148 0.000 0.852 0.000
#> SRR1818499 4 0.2521 0.7847 0.024 0.000 0.064 0.912
#> SRR1818496 4 0.3216 0.7544 0.000 0.044 0.076 0.880
#> SRR1818494 1 0.1406 0.8747 0.960 0.000 0.024 0.016
#> SRR1818495 1 0.5582 0.4542 0.620 0.000 0.032 0.348
#> SRR1818493 2 0.5536 0.3034 0.000 0.592 0.024 0.384
#> SRR1818492 4 0.5478 0.5792 0.248 0.000 0.056 0.696
#> SRR1818491 4 0.1807 0.7822 0.000 0.008 0.052 0.940
#> SRR1818490 1 0.4775 0.5882 0.740 0.000 0.028 0.232
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1818497 4 0.3937 0.6986 0.000 0.184 0.012 0.784 0.020
#> SRR1818600 1 0.4184 0.5498 0.764 0.040 0.004 0.192 0.000
#> SRR1818599 3 0.1341 1.0000 0.056 0.000 0.944 0.000 0.000
#> SRR1818598 1 0.0000 0.8009 1.000 0.000 0.000 0.000 0.000
#> SRR1818597 1 0.0000 0.8009 1.000 0.000 0.000 0.000 0.000
#> SRR1818596 4 0.3970 0.6391 0.000 0.236 0.020 0.744 0.000
#> SRR1818595 1 0.0000 0.8009 1.000 0.000 0.000 0.000 0.000
#> SRR1818594 1 0.0000 0.8009 1.000 0.000 0.000 0.000 0.000
#> SRR1818593 4 0.0566 0.7467 0.000 0.012 0.004 0.984 0.000
#> SRR1818592 4 0.1197 0.7397 0.000 0.048 0.000 0.952 0.000
#> SRR1818591 4 0.2513 0.7396 0.000 0.116 0.008 0.876 0.000
#> SRR1818590 4 0.0955 0.7501 0.000 0.028 0.004 0.968 0.000
#> SRR1818589 4 0.0566 0.7467 0.000 0.012 0.004 0.984 0.000
#> SRR1818587 4 0.4026 0.6237 0.000 0.244 0.020 0.736 0.000
#> SRR1818586 4 0.4271 0.6769 0.000 0.252 0.012 0.724 0.012
#> SRR1818585 5 0.0000 0.7537 0.000 0.000 0.000 0.000 1.000
#> SRR1818584 4 0.2075 0.7271 0.032 0.040 0.004 0.924 0.000
#> SRR1818583 1 0.0000 0.8009 1.000 0.000 0.000 0.000 0.000
#> SRR1818588 1 0.3715 0.3828 0.736 0.260 0.000 0.004 0.000
#> SRR1818582 4 0.1197 0.7397 0.000 0.048 0.000 0.952 0.000
#> SRR1818581 4 0.2513 0.7396 0.000 0.116 0.008 0.876 0.000
#> SRR1818579 1 0.4184 0.5498 0.764 0.040 0.004 0.192 0.000
#> SRR1818578 4 0.0854 0.7509 0.000 0.008 0.012 0.976 0.004
#> SRR1818577 4 0.6773 0.1865 0.000 0.188 0.012 0.464 0.336
#> SRR1818580 4 0.1106 0.7507 0.000 0.024 0.012 0.964 0.000
#> SRR1818575 4 0.6439 -0.0467 0.184 0.356 0.000 0.460 0.000
#> SRR1818574 3 0.1341 1.0000 0.056 0.000 0.944 0.000 0.000
#> SRR1818576 1 0.0000 0.8009 1.000 0.000 0.000 0.000 0.000
#> SRR1818573 4 0.1365 0.7397 0.004 0.040 0.004 0.952 0.000
#> SRR1818572 1 0.4218 0.5437 0.760 0.040 0.004 0.196 0.000
#> SRR1818571 1 0.0000 0.8009 1.000 0.000 0.000 0.000 0.000
#> SRR1818570 1 0.0000 0.8009 1.000 0.000 0.000 0.000 0.000
#> SRR1818568 4 0.6439 -0.0467 0.184 0.356 0.000 0.460 0.000
#> SRR1818567 4 0.6756 0.2069 0.000 0.188 0.012 0.472 0.328
#> SRR1818566 3 0.1341 1.0000 0.056 0.000 0.944 0.000 0.000
#> SRR1818569 5 0.0000 0.7537 0.000 0.000 0.000 0.000 1.000
#> SRR1818565 3 0.1341 1.0000 0.056 0.000 0.944 0.000 0.000
#> SRR1818564 1 0.0000 0.8009 1.000 0.000 0.000 0.000 0.000
#> SRR1818563 1 0.3478 0.6331 0.828 0.032 0.004 0.136 0.000
#> SRR1818561 3 0.1341 1.0000 0.056 0.000 0.944 0.000 0.000
#> SRR1818560 1 0.0000 0.8009 1.000 0.000 0.000 0.000 0.000
#> SRR1818559 4 0.1197 0.7397 0.000 0.048 0.000 0.952 0.000
#> SRR1818562 4 0.3224 0.7229 0.000 0.160 0.016 0.824 0.000
#> SRR1818558 4 0.6439 -0.0467 0.184 0.356 0.000 0.460 0.000
#> SRR1818556 1 0.0000 0.8009 1.000 0.000 0.000 0.000 0.000
#> SRR1818557 4 0.1197 0.7397 0.000 0.048 0.000 0.952 0.000
#> SRR1818555 4 0.2513 0.7396 0.000 0.116 0.008 0.876 0.000
#> SRR1818553 1 0.3715 0.3828 0.736 0.260 0.000 0.004 0.000
#> SRR1818552 4 0.6746 0.2164 0.000 0.188 0.012 0.476 0.324
#> SRR1818551 4 0.6439 -0.0467 0.184 0.356 0.000 0.460 0.000
#> SRR1818550 1 0.3478 0.6331 0.828 0.032 0.004 0.136 0.000
#> SRR1818554 4 0.0566 0.7467 0.000 0.012 0.004 0.984 0.000
#> SRR1818549 1 0.1851 0.7177 0.912 0.088 0.000 0.000 0.000
#> SRR1818548 4 0.1197 0.7397 0.000 0.048 0.000 0.952 0.000
#> SRR1818546 5 0.0000 0.7537 0.000 0.000 0.000 0.000 1.000
#> SRR1818547 4 0.1116 0.7434 0.004 0.028 0.004 0.964 0.000
#> SRR1818544 4 0.1106 0.7507 0.000 0.024 0.012 0.964 0.000
#> SRR1818543 1 0.1851 0.7177 0.912 0.088 0.000 0.000 0.000
#> SRR1818542 4 0.5640 0.3303 0.116 0.276 0.000 0.608 0.000
#> SRR1818545 1 0.0579 0.7908 0.984 0.008 0.000 0.008 0.000
#> SRR1818541 2 0.4074 0.6318 0.364 0.636 0.000 0.000 0.000
#> SRR1818539 1 0.0000 0.8009 1.000 0.000 0.000 0.000 0.000
#> SRR1818540 4 0.6756 0.2069 0.000 0.188 0.012 0.472 0.328
#> SRR1818536 1 0.0000 0.8009 1.000 0.000 0.000 0.000 0.000
#> SRR1818535 1 0.4206 0.3157 0.708 0.272 0.000 0.020 0.000
#> SRR1818534 4 0.1197 0.7397 0.000 0.048 0.000 0.952 0.000
#> SRR1818538 4 0.0955 0.7501 0.000 0.028 0.004 0.968 0.000
#> SRR1818537 1 0.0000 0.8009 1.000 0.000 0.000 0.000 0.000
#> SRR1818533 1 0.0000 0.8009 1.000 0.000 0.000 0.000 0.000
#> SRR1818532 1 0.0162 0.7983 0.996 0.004 0.000 0.000 0.000
#> SRR1818531 4 0.2075 0.7271 0.032 0.040 0.004 0.924 0.000
#> SRR1818530 5 0.0000 0.7537 0.000 0.000 0.000 0.000 1.000
#> SRR1818529 1 0.4184 0.5498 0.764 0.040 0.004 0.192 0.000
#> SRR1818528 2 0.4327 0.1447 0.000 0.632 0.008 0.360 0.000
#> SRR1818527 4 0.2920 0.7338 0.000 0.132 0.016 0.852 0.000
#> SRR1818526 4 0.2920 0.7338 0.000 0.132 0.016 0.852 0.000
#> SRR1818525 4 0.2873 0.7371 0.000 0.120 0.020 0.860 0.000
#> SRR1818523 3 0.1341 1.0000 0.056 0.000 0.944 0.000 0.000
#> SRR1818524 4 0.5591 0.6155 0.000 0.200 0.032 0.684 0.084
#> SRR1818522 4 0.2873 0.7371 0.000 0.120 0.020 0.860 0.000
#> SRR1818521 5 0.5363 0.2624 0.000 0.052 0.004 0.372 0.572
#> SRR1818520 5 0.0000 0.7537 0.000 0.000 0.000 0.000 1.000
#> SRR1818518 1 0.6523 -0.2458 0.480 0.288 0.000 0.232 0.000
#> SRR1818519 5 0.6825 0.2732 0.000 0.156 0.024 0.340 0.480
#> SRR1818517 4 0.6734 0.1907 0.000 0.200 0.008 0.460 0.332
#> SRR1818516 3 0.1341 1.0000 0.056 0.000 0.944 0.000 0.000
#> SRR1818515 4 0.3565 0.7099 0.000 0.176 0.024 0.800 0.000
#> SRR1818514 5 0.0000 0.7537 0.000 0.000 0.000 0.000 1.000
#> SRR1818513 4 0.6576 0.1156 0.000 0.160 0.008 0.452 0.380
#> SRR1818512 5 0.0000 0.7537 0.000 0.000 0.000 0.000 1.000
#> SRR1818510 4 0.6576 0.1156 0.000 0.160 0.008 0.452 0.380
#> SRR1818511 4 0.3224 0.7229 0.000 0.160 0.016 0.824 0.000
#> SRR1818508 4 0.4410 0.6004 0.008 0.276 0.016 0.700 0.000
#> SRR1818509 4 0.6734 0.1907 0.000 0.200 0.008 0.460 0.332
#> SRR1818507 5 0.6825 0.2732 0.000 0.156 0.024 0.340 0.480
#> SRR1818506 2 0.4015 0.6283 0.348 0.652 0.000 0.000 0.000
#> SRR1818505 4 0.2920 0.7338 0.000 0.132 0.016 0.852 0.000
#> SRR1818503 2 0.4242 0.5966 0.428 0.572 0.000 0.000 0.000
#> SRR1818504 5 0.0000 0.7537 0.000 0.000 0.000 0.000 1.000
#> SRR1818502 2 0.4242 0.5966 0.428 0.572 0.000 0.000 0.000
#> SRR1818498 5 0.0000 0.7537 0.000 0.000 0.000 0.000 1.000
#> SRR1818500 5 0.4616 0.4698 0.000 0.036 0.000 0.288 0.676
#> SRR1818501 3 0.1341 1.0000 0.056 0.000 0.944 0.000 0.000
#> SRR1818499 4 0.3194 0.7382 0.000 0.148 0.020 0.832 0.000
#> SRR1818496 4 0.3937 0.6986 0.000 0.184 0.012 0.784 0.020
#> SRR1818494 2 0.4242 0.5966 0.428 0.572 0.000 0.000 0.000
#> SRR1818495 2 0.3488 0.3866 0.000 0.808 0.024 0.168 0.000
#> SRR1818493 5 0.5363 0.2624 0.000 0.052 0.004 0.372 0.572
#> SRR1818492 4 0.5139 0.4700 0.072 0.280 0.000 0.648 0.000
#> SRR1818491 4 0.2920 0.7338 0.000 0.132 0.016 0.852 0.000
#> SRR1818490 1 0.6523 -0.2458 0.480 0.288 0.000 0.232 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1818497 6 0.4450 0.729275 0.000 0.012 0.000 0.352 0.020 0.616
#> SRR1818600 1 0.3050 0.566013 0.764 0.000 0.000 0.236 0.000 0.000
#> SRR1818599 3 0.0146 1.000000 0.004 0.000 0.996 0.000 0.000 0.000
#> SRR1818598 1 0.0000 0.806532 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818597 1 0.0000 0.806532 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818596 4 0.5421 0.328342 0.000 0.308 0.000 0.548 0.000 0.144
#> SRR1818595 1 0.0000 0.806532 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818594 1 0.0000 0.806532 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818593 4 0.0713 0.613902 0.000 0.000 0.000 0.972 0.000 0.028
#> SRR1818592 4 0.0260 0.622540 0.000 0.008 0.000 0.992 0.000 0.000
#> SRR1818591 4 0.2740 0.517470 0.000 0.028 0.000 0.852 0.000 0.120
#> SRR1818590 4 0.1141 0.600030 0.000 0.000 0.000 0.948 0.000 0.052
#> SRR1818589 4 0.0713 0.613902 0.000 0.000 0.000 0.972 0.000 0.028
#> SRR1818587 4 0.4553 0.390607 0.000 0.328 0.000 0.620 0.000 0.052
#> SRR1818586 4 0.5403 0.263677 0.000 0.144 0.000 0.584 0.004 0.268
#> SRR1818585 5 0.0000 0.698988 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818584 4 0.0790 0.606990 0.032 0.000 0.000 0.968 0.000 0.000
#> SRR1818583 1 0.0000 0.806532 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818588 1 0.3833 0.399058 0.736 0.232 0.000 0.004 0.000 0.028
#> SRR1818582 4 0.0260 0.622540 0.000 0.008 0.000 0.992 0.000 0.000
#> SRR1818581 4 0.2740 0.517470 0.000 0.028 0.000 0.852 0.000 0.120
#> SRR1818579 1 0.3050 0.566013 0.764 0.000 0.000 0.236 0.000 0.000
#> SRR1818578 4 0.1908 0.587547 0.000 0.004 0.000 0.900 0.000 0.096
#> SRR1818577 5 0.7211 0.258062 0.000 0.084 0.000 0.320 0.324 0.272
#> SRR1818580 4 0.1714 0.565936 0.000 0.000 0.000 0.908 0.000 0.092
#> SRR1818575 4 0.6490 0.132286 0.184 0.320 0.000 0.456 0.000 0.040
#> SRR1818574 3 0.0146 1.000000 0.004 0.000 0.996 0.000 0.000 0.000
#> SRR1818576 1 0.0000 0.806532 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818573 4 0.0146 0.621365 0.004 0.000 0.000 0.996 0.000 0.000
#> SRR1818572 1 0.3076 0.560655 0.760 0.000 0.000 0.240 0.000 0.000
#> SRR1818571 1 0.0000 0.806532 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818570 1 0.0000 0.806532 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818568 4 0.6490 0.132286 0.184 0.320 0.000 0.456 0.000 0.040
#> SRR1818567 4 0.7240 -0.310247 0.000 0.088 0.000 0.324 0.316 0.272
#> SRR1818566 3 0.0146 1.000000 0.004 0.000 0.996 0.000 0.000 0.000
#> SRR1818569 5 0.0000 0.698988 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818565 3 0.0146 1.000000 0.004 0.000 0.996 0.000 0.000 0.000
#> SRR1818564 1 0.0000 0.806532 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818563 1 0.2562 0.643569 0.828 0.000 0.000 0.172 0.000 0.000
#> SRR1818561 3 0.0146 1.000000 0.004 0.000 0.996 0.000 0.000 0.000
#> SRR1818560 1 0.0000 0.806532 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818559 4 0.0260 0.622540 0.000 0.008 0.000 0.992 0.000 0.000
#> SRR1818562 6 0.3717 0.760454 0.000 0.000 0.000 0.384 0.000 0.616
#> SRR1818558 4 0.6490 0.132286 0.184 0.320 0.000 0.456 0.000 0.040
#> SRR1818556 1 0.0000 0.806532 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818557 4 0.0260 0.622540 0.000 0.008 0.000 0.992 0.000 0.000
#> SRR1818555 4 0.2740 0.517470 0.000 0.028 0.000 0.852 0.000 0.120
#> SRR1818553 1 0.3833 0.399058 0.736 0.232 0.000 0.004 0.000 0.028
#> SRR1818552 4 0.7243 -0.307609 0.000 0.088 0.000 0.324 0.312 0.276
#> SRR1818551 4 0.6490 0.132286 0.184 0.320 0.000 0.456 0.000 0.040
#> SRR1818550 1 0.2562 0.643569 0.828 0.000 0.000 0.172 0.000 0.000
#> SRR1818554 4 0.0713 0.613902 0.000 0.000 0.000 0.972 0.000 0.028
#> SRR1818549 1 0.1753 0.723092 0.912 0.084 0.000 0.000 0.000 0.004
#> SRR1818548 4 0.0260 0.622540 0.000 0.008 0.000 0.992 0.000 0.000
#> SRR1818546 5 0.0000 0.698988 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818547 4 0.0508 0.619907 0.004 0.000 0.000 0.984 0.000 0.012
#> SRR1818544 4 0.1714 0.565936 0.000 0.000 0.000 0.908 0.000 0.092
#> SRR1818543 1 0.1753 0.723092 0.912 0.084 0.000 0.000 0.000 0.004
#> SRR1818542 4 0.5724 0.341617 0.116 0.240 0.000 0.604 0.000 0.040
#> SRR1818545 1 0.0458 0.796322 0.984 0.000 0.000 0.016 0.000 0.000
#> SRR1818541 2 0.3899 0.673297 0.364 0.628 0.000 0.008 0.000 0.000
#> SRR1818539 1 0.0000 0.806532 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818540 4 0.7240 -0.310247 0.000 0.088 0.000 0.324 0.316 0.272
#> SRR1818536 1 0.0000 0.806532 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818535 1 0.4472 0.336744 0.708 0.228 0.000 0.028 0.000 0.036
#> SRR1818534 4 0.0260 0.622540 0.000 0.008 0.000 0.992 0.000 0.000
#> SRR1818538 4 0.1141 0.600030 0.000 0.000 0.000 0.948 0.000 0.052
#> SRR1818537 1 0.0000 0.806532 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818533 1 0.0000 0.806532 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818532 1 0.0146 0.803833 0.996 0.004 0.000 0.000 0.000 0.000
#> SRR1818531 4 0.0790 0.606990 0.032 0.000 0.000 0.968 0.000 0.000
#> SRR1818530 5 0.0000 0.698988 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818529 1 0.3050 0.566013 0.764 0.000 0.000 0.236 0.000 0.000
#> SRR1818528 2 0.5237 0.222516 0.000 0.608 0.000 0.172 0.000 0.220
#> SRR1818527 6 0.3789 0.752693 0.000 0.000 0.000 0.416 0.000 0.584
#> SRR1818526 6 0.3789 0.752693 0.000 0.000 0.000 0.416 0.000 0.584
#> SRR1818525 6 0.4129 0.735615 0.000 0.012 0.000 0.424 0.000 0.564
#> SRR1818523 3 0.0146 1.000000 0.004 0.000 0.996 0.000 0.000 0.000
#> SRR1818524 6 0.1889 0.457607 0.000 0.020 0.000 0.056 0.004 0.920
#> SRR1818522 6 0.4123 0.739987 0.000 0.012 0.000 0.420 0.000 0.568
#> SRR1818521 5 0.5418 0.473838 0.000 0.008 0.000 0.316 0.564 0.112
#> SRR1818520 5 0.0000 0.698988 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818518 1 0.6691 -0.294508 0.480 0.256 0.000 0.064 0.000 0.200
#> SRR1818519 5 0.6373 0.341596 0.000 0.300 0.004 0.192 0.480 0.024
#> SRR1818517 6 0.6084 -0.000459 0.000 0.060 0.000 0.092 0.320 0.528
#> SRR1818516 3 0.0146 1.000000 0.004 0.000 0.996 0.000 0.000 0.000
#> SRR1818515 6 0.3967 0.753180 0.000 0.012 0.000 0.356 0.000 0.632
#> SRR1818514 5 0.0000 0.698988 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818513 5 0.6994 0.310795 0.000 0.064 0.000 0.324 0.368 0.244
#> SRR1818512 5 0.0000 0.698988 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818510 5 0.6994 0.310795 0.000 0.064 0.000 0.324 0.368 0.244
#> SRR1818511 6 0.3717 0.760454 0.000 0.000 0.000 0.384 0.000 0.616
#> SRR1818508 4 0.6224 -0.228169 0.008 0.240 0.000 0.400 0.000 0.352
#> SRR1818509 6 0.6084 -0.000459 0.000 0.060 0.000 0.092 0.320 0.528
#> SRR1818507 5 0.6373 0.341596 0.000 0.300 0.004 0.192 0.480 0.024
#> SRR1818506 2 0.4088 0.670416 0.348 0.636 0.000 0.008 0.000 0.008
#> SRR1818505 6 0.3789 0.752693 0.000 0.000 0.000 0.416 0.000 0.584
#> SRR1818503 2 0.4178 0.635378 0.428 0.560 0.000 0.008 0.000 0.004
#> SRR1818504 5 0.0000 0.698988 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818502 2 0.4178 0.635378 0.428 0.560 0.000 0.008 0.000 0.004
#> SRR1818498 5 0.0000 0.698988 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818500 5 0.4694 0.565823 0.000 0.008 0.000 0.248 0.672 0.072
#> SRR1818501 3 0.0146 1.000000 0.004 0.000 0.996 0.000 0.000 0.000
#> SRR1818499 6 0.4666 0.622233 0.000 0.044 0.000 0.420 0.000 0.536
#> SRR1818496 6 0.4450 0.729275 0.000 0.012 0.000 0.352 0.020 0.616
#> SRR1818494 2 0.4178 0.635378 0.428 0.560 0.000 0.008 0.000 0.004
#> SRR1818495 2 0.1268 0.388846 0.000 0.952 0.004 0.036 0.000 0.008
#> SRR1818493 5 0.5418 0.473838 0.000 0.008 0.000 0.316 0.564 0.112
#> SRR1818492 4 0.6996 -0.065758 0.072 0.268 0.000 0.412 0.000 0.248
#> SRR1818491 6 0.3789 0.752693 0.000 0.000 0.000 0.416 0.000 0.584
#> SRR1818490 1 0.6691 -0.294508 0.480 0.256 0.000 0.064 0.000 0.200
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 16183 rows and 111 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'kmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.981 0.963 0.983 0.5034 0.495 0.495
#> 3 3 0.571 0.803 0.885 0.2642 0.654 0.417
#> 4 4 0.550 0.571 0.693 0.1181 0.881 0.704
#> 5 5 0.620 0.665 0.792 0.0787 0.795 0.467
#> 6 6 0.715 0.645 0.747 0.0552 0.928 0.696
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1818497 2 0.0000 0.995 0.000 1.000
#> SRR1818600 1 0.0000 0.969 1.000 0.000
#> SRR1818599 1 0.0000 0.969 1.000 0.000
#> SRR1818598 1 0.0000 0.969 1.000 0.000
#> SRR1818597 1 0.0000 0.969 1.000 0.000
#> SRR1818596 2 0.0000 0.995 0.000 1.000
#> SRR1818595 1 0.0000 0.969 1.000 0.000
#> SRR1818594 1 0.0000 0.969 1.000 0.000
#> SRR1818593 2 0.0000 0.995 0.000 1.000
#> SRR1818592 1 0.8443 0.662 0.728 0.272
#> SRR1818591 2 0.0000 0.995 0.000 1.000
#> SRR1818590 2 0.0000 0.995 0.000 1.000
#> SRR1818589 2 0.3879 0.914 0.076 0.924
#> SRR1818587 2 0.0000 0.995 0.000 1.000
#> SRR1818586 2 0.0000 0.995 0.000 1.000
#> SRR1818585 2 0.0000 0.995 0.000 1.000
#> SRR1818584 1 0.0000 0.969 1.000 0.000
#> SRR1818583 1 0.0000 0.969 1.000 0.000
#> SRR1818588 1 0.0000 0.969 1.000 0.000
#> SRR1818582 1 0.0000 0.969 1.000 0.000
#> SRR1818581 2 0.0000 0.995 0.000 1.000
#> SRR1818579 1 0.0000 0.969 1.000 0.000
#> SRR1818578 2 0.0000 0.995 0.000 1.000
#> SRR1818577 2 0.0000 0.995 0.000 1.000
#> SRR1818580 2 0.0000 0.995 0.000 1.000
#> SRR1818575 1 0.0000 0.969 1.000 0.000
#> SRR1818574 1 0.0000 0.969 1.000 0.000
#> SRR1818576 1 0.0000 0.969 1.000 0.000
#> SRR1818573 1 0.0000 0.969 1.000 0.000
#> SRR1818572 1 0.2778 0.931 0.952 0.048
#> SRR1818571 1 0.0000 0.969 1.000 0.000
#> SRR1818570 1 0.0000 0.969 1.000 0.000
#> SRR1818568 1 0.0000 0.969 1.000 0.000
#> SRR1818567 2 0.0000 0.995 0.000 1.000
#> SRR1818566 1 0.0000 0.969 1.000 0.000
#> SRR1818569 2 0.0000 0.995 0.000 1.000
#> SRR1818565 1 0.0000 0.969 1.000 0.000
#> SRR1818564 1 0.0000 0.969 1.000 0.000
#> SRR1818563 1 0.0000 0.969 1.000 0.000
#> SRR1818561 1 0.0000 0.969 1.000 0.000
#> SRR1818560 1 0.0000 0.969 1.000 0.000
#> SRR1818559 2 0.0938 0.984 0.012 0.988
#> SRR1818562 2 0.0000 0.995 0.000 1.000
#> SRR1818558 1 0.3733 0.911 0.928 0.072
#> SRR1818556 1 0.0000 0.969 1.000 0.000
#> SRR1818557 1 0.8443 0.662 0.728 0.272
#> SRR1818555 2 0.0000 0.995 0.000 1.000
#> SRR1818553 1 0.0000 0.969 1.000 0.000
#> SRR1818552 2 0.0000 0.995 0.000 1.000
#> SRR1818551 1 0.8555 0.648 0.720 0.280
#> SRR1818550 1 0.0000 0.969 1.000 0.000
#> SRR1818554 2 0.0000 0.995 0.000 1.000
#> SRR1818549 1 0.0000 0.969 1.000 0.000
#> SRR1818548 1 0.8386 0.669 0.732 0.268
#> SRR1818546 2 0.0000 0.995 0.000 1.000
#> SRR1818547 1 0.8499 0.655 0.724 0.276
#> SRR1818544 2 0.0000 0.995 0.000 1.000
#> SRR1818543 1 0.0000 0.969 1.000 0.000
#> SRR1818542 2 0.6048 0.819 0.148 0.852
#> SRR1818545 1 0.0000 0.969 1.000 0.000
#> SRR1818541 1 0.0000 0.969 1.000 0.000
#> SRR1818539 1 0.0000 0.969 1.000 0.000
#> SRR1818540 2 0.0000 0.995 0.000 1.000
#> SRR1818536 1 0.0000 0.969 1.000 0.000
#> SRR1818535 1 0.0000 0.969 1.000 0.000
#> SRR1818534 2 0.0000 0.995 0.000 1.000
#> SRR1818538 2 0.0000 0.995 0.000 1.000
#> SRR1818537 1 0.0000 0.969 1.000 0.000
#> SRR1818533 1 0.0000 0.969 1.000 0.000
#> SRR1818532 1 0.0000 0.969 1.000 0.000
#> SRR1818531 1 0.4022 0.903 0.920 0.080
#> SRR1818530 2 0.0000 0.995 0.000 1.000
#> SRR1818529 1 0.0000 0.969 1.000 0.000
#> SRR1818528 2 0.0000 0.995 0.000 1.000
#> SRR1818527 2 0.0000 0.995 0.000 1.000
#> SRR1818526 2 0.0000 0.995 0.000 1.000
#> SRR1818525 2 0.0000 0.995 0.000 1.000
#> SRR1818523 1 0.0000 0.969 1.000 0.000
#> SRR1818524 2 0.0000 0.995 0.000 1.000
#> SRR1818522 2 0.0000 0.995 0.000 1.000
#> SRR1818521 2 0.0000 0.995 0.000 1.000
#> SRR1818520 2 0.0000 0.995 0.000 1.000
#> SRR1818518 1 0.0000 0.969 1.000 0.000
#> SRR1818519 2 0.0000 0.995 0.000 1.000
#> SRR1818517 2 0.0000 0.995 0.000 1.000
#> SRR1818516 1 0.0000 0.969 1.000 0.000
#> SRR1818515 2 0.0000 0.995 0.000 1.000
#> SRR1818514 2 0.0000 0.995 0.000 1.000
#> SRR1818513 2 0.0000 0.995 0.000 1.000
#> SRR1818512 2 0.0000 0.995 0.000 1.000
#> SRR1818510 2 0.0000 0.995 0.000 1.000
#> SRR1818511 2 0.0000 0.995 0.000 1.000
#> SRR1818508 2 0.0000 0.995 0.000 1.000
#> SRR1818509 2 0.0000 0.995 0.000 1.000
#> SRR1818507 2 0.0000 0.995 0.000 1.000
#> SRR1818506 1 0.0000 0.969 1.000 0.000
#> SRR1818505 2 0.0000 0.995 0.000 1.000
#> SRR1818503 1 0.0000 0.969 1.000 0.000
#> SRR1818504 2 0.0000 0.995 0.000 1.000
#> SRR1818502 1 0.0000 0.969 1.000 0.000
#> SRR1818498 2 0.0000 0.995 0.000 1.000
#> SRR1818500 2 0.0000 0.995 0.000 1.000
#> SRR1818501 1 0.0000 0.969 1.000 0.000
#> SRR1818499 2 0.0000 0.995 0.000 1.000
#> SRR1818496 2 0.0000 0.995 0.000 1.000
#> SRR1818494 1 0.0000 0.969 1.000 0.000
#> SRR1818495 2 0.0000 0.995 0.000 1.000
#> SRR1818493 2 0.0000 0.995 0.000 1.000
#> SRR1818492 1 0.5178 0.867 0.884 0.116
#> SRR1818491 2 0.0000 0.995 0.000 1.000
#> SRR1818490 1 0.0000 0.969 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1818497 2 0.1643 0.9057 0.044 0.956 0.000
#> SRR1818600 1 0.0237 0.8427 0.996 0.000 0.004
#> SRR1818599 3 0.0000 0.8507 0.000 0.000 1.000
#> SRR1818598 3 0.4062 0.9144 0.164 0.000 0.836
#> SRR1818597 3 0.3879 0.9171 0.152 0.000 0.848
#> SRR1818596 1 0.3816 0.7956 0.852 0.148 0.000
#> SRR1818595 3 0.4062 0.9137 0.164 0.000 0.836
#> SRR1818594 3 0.3879 0.9171 0.152 0.000 0.848
#> SRR1818593 1 0.3482 0.8077 0.872 0.128 0.000
#> SRR1818592 1 0.0000 0.8455 1.000 0.000 0.000
#> SRR1818591 1 0.6079 0.3881 0.612 0.388 0.000
#> SRR1818590 1 0.5859 0.4962 0.656 0.344 0.000
#> SRR1818589 1 0.0000 0.8455 1.000 0.000 0.000
#> SRR1818587 1 0.3752 0.7985 0.856 0.144 0.000
#> SRR1818586 2 0.5988 0.4274 0.368 0.632 0.000
#> SRR1818585 2 0.0000 0.9088 0.000 1.000 0.000
#> SRR1818584 1 0.0000 0.8455 1.000 0.000 0.000
#> SRR1818583 3 0.3686 0.9181 0.140 0.000 0.860
#> SRR1818588 3 0.6140 0.5904 0.404 0.000 0.596
#> SRR1818582 1 0.0000 0.8455 1.000 0.000 0.000
#> SRR1818581 1 0.6079 0.3881 0.612 0.388 0.000
#> SRR1818579 1 0.2711 0.7679 0.912 0.000 0.088
#> SRR1818578 1 0.1643 0.8401 0.956 0.044 0.000
#> SRR1818577 2 0.1031 0.9145 0.024 0.976 0.000
#> SRR1818580 1 0.4452 0.7510 0.808 0.192 0.000
#> SRR1818575 1 0.3267 0.7366 0.884 0.000 0.116
#> SRR1818574 3 0.0000 0.8507 0.000 0.000 1.000
#> SRR1818576 3 0.3686 0.9181 0.140 0.000 0.860
#> SRR1818573 1 0.0237 0.8427 0.996 0.000 0.004
#> SRR1818572 1 0.0000 0.8455 1.000 0.000 0.000
#> SRR1818571 3 0.3686 0.9181 0.140 0.000 0.860
#> SRR1818570 3 0.3686 0.9181 0.140 0.000 0.860
#> SRR1818568 1 0.2356 0.7859 0.928 0.000 0.072
#> SRR1818567 2 0.1031 0.9145 0.024 0.976 0.000
#> SRR1818566 3 0.0000 0.8507 0.000 0.000 1.000
#> SRR1818569 2 0.0000 0.9088 0.000 1.000 0.000
#> SRR1818565 3 0.0000 0.8507 0.000 0.000 1.000
#> SRR1818564 3 0.3686 0.9181 0.140 0.000 0.860
#> SRR1818563 1 0.3192 0.7403 0.888 0.000 0.112
#> SRR1818561 3 0.0000 0.8507 0.000 0.000 1.000
#> SRR1818560 3 0.3686 0.9181 0.140 0.000 0.860
#> SRR1818559 1 0.0000 0.8455 1.000 0.000 0.000
#> SRR1818562 1 0.4452 0.7510 0.808 0.192 0.000
#> SRR1818558 1 0.0000 0.8455 1.000 0.000 0.000
#> SRR1818556 3 0.3686 0.9181 0.140 0.000 0.860
#> SRR1818557 1 0.0000 0.8455 1.000 0.000 0.000
#> SRR1818555 2 0.6095 0.3681 0.392 0.608 0.000
#> SRR1818553 3 0.5254 0.8289 0.264 0.000 0.736
#> SRR1818552 2 0.1031 0.9145 0.024 0.976 0.000
#> SRR1818551 1 0.0000 0.8455 1.000 0.000 0.000
#> SRR1818550 1 0.3192 0.7403 0.888 0.000 0.112
#> SRR1818554 1 0.3686 0.8002 0.860 0.140 0.000
#> SRR1818549 3 0.3816 0.9176 0.148 0.000 0.852
#> SRR1818548 1 0.0000 0.8455 1.000 0.000 0.000
#> SRR1818546 2 0.0000 0.9088 0.000 1.000 0.000
#> SRR1818547 1 0.0000 0.8455 1.000 0.000 0.000
#> SRR1818544 1 0.3686 0.8002 0.860 0.140 0.000
#> SRR1818543 3 0.5178 0.8380 0.256 0.000 0.744
#> SRR1818542 1 0.0000 0.8455 1.000 0.000 0.000
#> SRR1818545 3 0.4235 0.9087 0.176 0.000 0.824
#> SRR1818541 3 0.4178 0.9101 0.172 0.000 0.828
#> SRR1818539 3 0.4002 0.9150 0.160 0.000 0.840
#> SRR1818540 2 0.1031 0.9145 0.024 0.976 0.000
#> SRR1818536 3 0.3686 0.9181 0.140 0.000 0.860
#> SRR1818535 3 0.5178 0.8385 0.256 0.000 0.744
#> SRR1818534 1 0.2537 0.8296 0.920 0.080 0.000
#> SRR1818538 1 0.3551 0.8054 0.868 0.132 0.000
#> SRR1818537 3 0.3686 0.9181 0.140 0.000 0.860
#> SRR1818533 3 0.4178 0.9101 0.172 0.000 0.828
#> SRR1818532 3 0.4178 0.9101 0.172 0.000 0.828
#> SRR1818531 1 0.0000 0.8455 1.000 0.000 0.000
#> SRR1818530 2 0.0000 0.9088 0.000 1.000 0.000
#> SRR1818529 1 0.0000 0.8455 1.000 0.000 0.000
#> SRR1818528 1 0.2066 0.8367 0.940 0.060 0.000
#> SRR1818527 1 0.4121 0.7778 0.832 0.168 0.000
#> SRR1818526 1 0.4974 0.6951 0.764 0.236 0.000
#> SRR1818525 1 0.3879 0.7921 0.848 0.152 0.000
#> SRR1818523 3 0.0000 0.8507 0.000 0.000 1.000
#> SRR1818524 2 0.5291 0.6471 0.268 0.732 0.000
#> SRR1818522 1 0.3941 0.7887 0.844 0.156 0.000
#> SRR1818521 2 0.1031 0.9145 0.024 0.976 0.000
#> SRR1818520 2 0.0000 0.9088 0.000 1.000 0.000
#> SRR1818518 3 0.5327 0.8189 0.272 0.000 0.728
#> SRR1818519 2 0.3686 0.8281 0.140 0.860 0.000
#> SRR1818517 2 0.1031 0.9145 0.024 0.976 0.000
#> SRR1818516 3 0.0000 0.8507 0.000 0.000 1.000
#> SRR1818515 2 0.6309 -0.0238 0.496 0.504 0.000
#> SRR1818514 2 0.0000 0.9088 0.000 1.000 0.000
#> SRR1818513 2 0.1031 0.9145 0.024 0.976 0.000
#> SRR1818512 2 0.0000 0.9088 0.000 1.000 0.000
#> SRR1818510 2 0.1031 0.9145 0.024 0.976 0.000
#> SRR1818511 2 0.3192 0.8557 0.112 0.888 0.000
#> SRR1818508 1 0.3686 0.8015 0.860 0.140 0.000
#> SRR1818509 2 0.1860 0.9013 0.052 0.948 0.000
#> SRR1818507 2 0.2165 0.8941 0.064 0.936 0.000
#> SRR1818506 3 0.5926 0.6879 0.356 0.000 0.644
#> SRR1818505 1 0.4178 0.7733 0.828 0.172 0.000
#> SRR1818503 1 0.5905 0.2106 0.648 0.000 0.352
#> SRR1818504 2 0.0000 0.9088 0.000 1.000 0.000
#> SRR1818502 1 0.6111 0.0413 0.604 0.000 0.396
#> SRR1818498 2 0.0000 0.9088 0.000 1.000 0.000
#> SRR1818500 2 0.0424 0.9111 0.008 0.992 0.000
#> SRR1818501 3 0.0000 0.8507 0.000 0.000 1.000
#> SRR1818499 1 0.2356 0.8331 0.928 0.072 0.000
#> SRR1818496 2 0.3267 0.8521 0.116 0.884 0.000
#> SRR1818494 1 0.3619 0.7101 0.864 0.000 0.136
#> SRR1818495 1 0.3752 0.7985 0.856 0.144 0.000
#> SRR1818493 2 0.1031 0.9145 0.024 0.976 0.000
#> SRR1818492 1 0.0000 0.8455 1.000 0.000 0.000
#> SRR1818491 1 0.4842 0.7116 0.776 0.224 0.000
#> SRR1818490 1 0.5926 0.1968 0.644 0.000 0.356
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1818497 2 0.3400 0.39898 0.000 0.820 NA 0.180
#> SRR1818600 4 0.6147 0.44034 0.200 0.000 NA 0.672
#> SRR1818599 1 0.4977 0.50015 0.540 0.000 NA 0.000
#> SRR1818598 1 0.3919 0.69432 0.840 0.000 NA 0.056
#> SRR1818597 1 0.0707 0.73969 0.980 0.000 NA 0.020
#> SRR1818596 4 0.4722 0.61875 0.000 0.300 NA 0.692
#> SRR1818595 1 0.1398 0.73678 0.956 0.000 NA 0.040
#> SRR1818594 1 0.0707 0.73969 0.980 0.000 NA 0.020
#> SRR1818593 4 0.5008 0.66331 0.004 0.092 NA 0.780
#> SRR1818592 4 0.2670 0.65417 0.072 0.000 NA 0.904
#> SRR1818591 4 0.6617 0.54215 0.000 0.280 NA 0.600
#> SRR1818590 4 0.6394 0.57758 0.000 0.244 NA 0.636
#> SRR1818589 4 0.4199 0.66380 0.004 0.044 NA 0.824
#> SRR1818587 4 0.5093 0.63069 0.016 0.272 NA 0.704
#> SRR1818586 2 0.5925 -0.19289 0.000 0.512 NA 0.452
#> SRR1818585 2 0.4843 0.72019 0.000 0.604 NA 0.000
#> SRR1818584 4 0.5116 0.58626 0.108 0.000 NA 0.764
#> SRR1818583 1 0.1576 0.73389 0.948 0.000 NA 0.004
#> SRR1818588 1 0.4897 0.56489 0.660 0.000 NA 0.332
#> SRR1818582 4 0.2882 0.64368 0.084 0.000 NA 0.892
#> SRR1818581 4 0.6617 0.54215 0.000 0.280 NA 0.600
#> SRR1818579 1 0.7153 0.22224 0.444 0.000 NA 0.424
#> SRR1818578 4 0.2676 0.68665 0.012 0.092 NA 0.896
#> SRR1818577 2 0.4716 0.72317 0.000 0.764 NA 0.040
#> SRR1818580 4 0.6068 0.61282 0.000 0.208 NA 0.676
#> SRR1818575 4 0.5296 -0.31069 0.496 0.000 NA 0.496
#> SRR1818574 1 0.4977 0.50015 0.540 0.000 NA 0.000
#> SRR1818576 1 0.1576 0.73389 0.948 0.000 NA 0.004
#> SRR1818573 4 0.6240 0.43488 0.200 0.000 NA 0.664
#> SRR1818572 4 0.5383 0.55975 0.128 0.000 NA 0.744
#> SRR1818571 1 0.1890 0.73268 0.936 0.000 NA 0.008
#> SRR1818570 1 0.1576 0.73389 0.948 0.000 NA 0.004
#> SRR1818568 4 0.5295 -0.29405 0.488 0.000 NA 0.504
#> SRR1818567 2 0.4799 0.74104 0.000 0.744 NA 0.032
#> SRR1818566 1 0.4977 0.50015 0.540 0.000 NA 0.000
#> SRR1818569 2 0.4843 0.72019 0.000 0.604 NA 0.000
#> SRR1818565 1 0.4977 0.50015 0.540 0.000 NA 0.000
#> SRR1818564 1 0.1389 0.73366 0.952 0.000 NA 0.000
#> SRR1818563 1 0.7151 0.23260 0.448 0.000 NA 0.420
#> SRR1818561 1 0.4977 0.50015 0.540 0.000 NA 0.000
#> SRR1818560 1 0.1510 0.73851 0.956 0.000 NA 0.016
#> SRR1818559 4 0.1917 0.68673 0.012 0.036 NA 0.944
#> SRR1818562 4 0.6338 0.58406 0.000 0.236 NA 0.644
#> SRR1818558 4 0.2810 0.64876 0.088 0.008 NA 0.896
#> SRR1818556 1 0.1890 0.73268 0.936 0.000 NA 0.008
#> SRR1818557 4 0.2489 0.65691 0.068 0.000 NA 0.912
#> SRR1818555 4 0.6794 0.52414 0.000 0.280 NA 0.584
#> SRR1818553 1 0.4086 0.67056 0.776 0.000 NA 0.216
#> SRR1818552 2 0.4614 0.66724 0.000 0.792 NA 0.064
#> SRR1818551 4 0.2186 0.67278 0.048 0.012 NA 0.932
#> SRR1818550 1 0.7179 0.25033 0.456 0.000 NA 0.408
#> SRR1818554 4 0.5354 0.65769 0.004 0.116 NA 0.756
#> SRR1818549 1 0.0895 0.73980 0.976 0.000 NA 0.020
#> SRR1818548 4 0.2489 0.65691 0.068 0.000 NA 0.912
#> SRR1818546 2 0.4843 0.72019 0.000 0.604 NA 0.000
#> SRR1818547 4 0.3707 0.64808 0.028 0.000 NA 0.840
#> SRR1818544 4 0.4222 0.63831 0.000 0.272 NA 0.728
#> SRR1818543 1 0.4012 0.68780 0.800 0.000 NA 0.184
#> SRR1818542 4 0.1968 0.67335 0.044 0.008 NA 0.940
#> SRR1818545 1 0.5594 0.63700 0.724 0.000 NA 0.164
#> SRR1818541 1 0.3300 0.70918 0.848 0.000 NA 0.144
#> SRR1818539 1 0.1406 0.73888 0.960 0.000 NA 0.024
#> SRR1818540 2 0.4799 0.74104 0.000 0.744 NA 0.032
#> SRR1818536 1 0.2101 0.73212 0.928 0.000 NA 0.012
#> SRR1818535 1 0.4295 0.65403 0.752 0.000 NA 0.240
#> SRR1818534 4 0.3006 0.68659 0.012 0.092 NA 0.888
#> SRR1818538 4 0.6188 0.61792 0.004 0.180 NA 0.684
#> SRR1818537 1 0.2101 0.73212 0.928 0.000 NA 0.012
#> SRR1818533 1 0.2831 0.71949 0.876 0.000 NA 0.120
#> SRR1818532 1 0.2654 0.72323 0.888 0.000 NA 0.108
#> SRR1818531 4 0.4482 0.62561 0.068 0.000 NA 0.804
#> SRR1818530 2 0.4843 0.72019 0.000 0.604 NA 0.000
#> SRR1818529 4 0.6215 0.42482 0.208 0.000 NA 0.664
#> SRR1818528 4 0.4948 0.63397 0.016 0.252 NA 0.724
#> SRR1818527 4 0.4817 0.54379 0.000 0.388 NA 0.612
#> SRR1818526 4 0.4877 0.52239 0.000 0.408 NA 0.592
#> SRR1818525 4 0.5080 0.56532 0.004 0.364 NA 0.628
#> SRR1818523 1 0.4977 0.50015 0.540 0.000 NA 0.000
#> SRR1818524 4 0.5126 0.46739 0.000 0.444 NA 0.552
#> SRR1818522 4 0.5125 0.55453 0.004 0.376 NA 0.616
#> SRR1818521 2 0.4799 0.74104 0.000 0.744 NA 0.032
#> SRR1818520 2 0.4855 0.71959 0.000 0.600 NA 0.000
#> SRR1818518 1 0.4647 0.61278 0.704 0.000 NA 0.288
#> SRR1818519 2 0.5165 -0.36475 0.000 0.512 NA 0.484
#> SRR1818517 2 0.4799 0.74104 0.000 0.744 NA 0.032
#> SRR1818516 1 0.4977 0.50015 0.540 0.000 NA 0.000
#> SRR1818515 4 0.5060 0.51760 0.000 0.412 NA 0.584
#> SRR1818514 2 0.4843 0.72019 0.000 0.604 NA 0.000
#> SRR1818513 2 0.4799 0.74104 0.000 0.744 NA 0.032
#> SRR1818512 2 0.4843 0.72019 0.000 0.604 NA 0.000
#> SRR1818510 2 0.4932 0.74134 0.000 0.728 NA 0.032
#> SRR1818511 2 0.4830 -0.14457 0.000 0.608 NA 0.392
#> SRR1818508 4 0.4982 0.62690 0.016 0.276 NA 0.704
#> SRR1818509 2 0.3791 0.36079 0.000 0.796 NA 0.200
#> SRR1818507 2 0.4741 0.08058 0.000 0.668 NA 0.328
#> SRR1818506 1 0.4769 0.59016 0.684 0.000 NA 0.308
#> SRR1818505 4 0.4991 0.54294 0.000 0.388 NA 0.608
#> SRR1818503 1 0.5007 0.53457 0.636 0.000 NA 0.356
#> SRR1818504 2 0.4843 0.72019 0.000 0.604 NA 0.000
#> SRR1818502 1 0.4973 0.54456 0.644 0.000 NA 0.348
#> SRR1818498 2 0.4843 0.72017 0.000 0.604 NA 0.000
#> SRR1818500 2 0.4964 0.74100 0.000 0.724 NA 0.032
#> SRR1818501 1 0.4977 0.50015 0.540 0.000 NA 0.000
#> SRR1818499 4 0.4927 0.62993 0.016 0.268 NA 0.712
#> SRR1818496 2 0.4643 -0.00505 0.000 0.656 NA 0.344
#> SRR1818494 1 0.5259 0.50040 0.612 0.004 NA 0.376
#> SRR1818495 4 0.5223 0.61809 0.016 0.292 NA 0.684
#> SRR1818493 2 0.4799 0.74104 0.000 0.744 NA 0.032
#> SRR1818492 4 0.4990 0.62997 0.052 0.168 NA 0.772
#> SRR1818491 4 0.4877 0.52239 0.000 0.408 NA 0.592
#> SRR1818490 1 0.5148 0.54052 0.640 0.004 NA 0.348
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1818497 4 0.4181 0.5624 0.000 0.052 0.016 0.796 0.136
#> SRR1818600 2 0.3714 0.6567 0.132 0.812 0.000 0.056 0.000
#> SRR1818599 3 0.2424 0.9936 0.132 0.000 0.868 0.000 0.000
#> SRR1818598 1 0.4276 0.7149 0.764 0.168 0.068 0.000 0.000
#> SRR1818597 1 0.2011 0.7952 0.908 0.004 0.088 0.000 0.000
#> SRR1818596 4 0.4229 0.6504 0.052 0.124 0.024 0.800 0.000
#> SRR1818595 1 0.1544 0.7999 0.932 0.000 0.068 0.000 0.000
#> SRR1818594 1 0.2011 0.7952 0.908 0.004 0.088 0.000 0.000
#> SRR1818593 2 0.3796 0.5683 0.000 0.700 0.000 0.300 0.000
#> SRR1818592 2 0.6224 0.2406 0.096 0.512 0.016 0.376 0.000
#> SRR1818591 2 0.5755 0.4790 0.000 0.656 0.096 0.224 0.024
#> SRR1818590 2 0.5436 0.4838 0.000 0.660 0.092 0.240 0.008
#> SRR1818589 2 0.3388 0.6468 0.008 0.792 0.000 0.200 0.000
#> SRR1818587 4 0.4176 0.6548 0.080 0.092 0.020 0.808 0.000
#> SRR1818586 4 0.7004 0.3897 0.000 0.204 0.116 0.576 0.104
#> SRR1818585 5 0.0693 0.7833 0.000 0.000 0.012 0.008 0.980
#> SRR1818584 2 0.3916 0.6662 0.104 0.804 0.000 0.092 0.000
#> SRR1818583 1 0.2286 0.7858 0.888 0.004 0.108 0.000 0.000
#> SRR1818588 1 0.3090 0.7693 0.856 0.104 0.000 0.040 0.000
#> SRR1818582 2 0.6224 0.2406 0.096 0.512 0.016 0.376 0.000
#> SRR1818581 2 0.5755 0.4790 0.000 0.656 0.096 0.224 0.024
#> SRR1818579 2 0.3635 0.5263 0.248 0.748 0.000 0.004 0.000
#> SRR1818578 4 0.5828 0.1133 0.064 0.416 0.012 0.508 0.000
#> SRR1818577 5 0.7079 0.7091 0.000 0.116 0.104 0.216 0.564
#> SRR1818580 2 0.4525 0.5068 0.000 0.624 0.016 0.360 0.000
#> SRR1818575 1 0.5362 0.5699 0.672 0.236 0.012 0.080 0.000
#> SRR1818574 3 0.2424 0.9936 0.132 0.000 0.868 0.000 0.000
#> SRR1818576 1 0.2286 0.7858 0.888 0.004 0.108 0.000 0.000
#> SRR1818573 2 0.3936 0.6479 0.144 0.800 0.004 0.052 0.000
#> SRR1818572 2 0.3752 0.6607 0.124 0.812 0.000 0.064 0.000
#> SRR1818571 1 0.2984 0.7800 0.860 0.032 0.108 0.000 0.000
#> SRR1818570 1 0.2286 0.7858 0.888 0.004 0.108 0.000 0.000
#> SRR1818568 1 0.5491 0.5495 0.660 0.240 0.012 0.088 0.000
#> SRR1818567 5 0.6482 0.7869 0.000 0.116 0.096 0.148 0.640
#> SRR1818566 3 0.2424 0.9936 0.132 0.000 0.868 0.000 0.000
#> SRR1818569 5 0.0693 0.7833 0.000 0.000 0.012 0.008 0.980
#> SRR1818565 3 0.2424 0.9936 0.132 0.000 0.868 0.000 0.000
#> SRR1818564 1 0.2411 0.7850 0.884 0.008 0.108 0.000 0.000
#> SRR1818563 2 0.4135 0.3234 0.340 0.656 0.000 0.004 0.000
#> SRR1818561 3 0.2424 0.9936 0.132 0.000 0.868 0.000 0.000
#> SRR1818560 1 0.2179 0.7891 0.896 0.004 0.100 0.000 0.000
#> SRR1818559 4 0.6234 0.0683 0.092 0.412 0.016 0.480 0.000
#> SRR1818562 2 0.4428 0.5343 0.000 0.700 0.032 0.268 0.000
#> SRR1818558 4 0.6561 0.0121 0.140 0.420 0.012 0.428 0.000
#> SRR1818556 1 0.2984 0.7800 0.860 0.032 0.108 0.000 0.000
#> SRR1818557 2 0.6216 0.2427 0.096 0.516 0.016 0.372 0.000
#> SRR1818555 2 0.5755 0.4790 0.000 0.656 0.096 0.224 0.024
#> SRR1818553 1 0.2390 0.7835 0.896 0.084 0.000 0.020 0.000
#> SRR1818552 5 0.7363 0.6411 0.000 0.120 0.108 0.256 0.516
#> SRR1818551 4 0.6301 0.0956 0.108 0.412 0.012 0.468 0.000
#> SRR1818550 1 0.4367 0.4312 0.580 0.416 0.000 0.004 0.000
#> SRR1818554 2 0.3861 0.6086 0.000 0.728 0.008 0.264 0.000
#> SRR1818549 1 0.2361 0.7926 0.892 0.012 0.096 0.000 0.000
#> SRR1818548 2 0.6173 0.2486 0.092 0.520 0.016 0.372 0.000
#> SRR1818546 5 0.0693 0.7833 0.000 0.000 0.012 0.008 0.980
#> SRR1818547 2 0.3282 0.6507 0.008 0.804 0.000 0.188 0.000
#> SRR1818544 4 0.3548 0.5849 0.012 0.188 0.004 0.796 0.000
#> SRR1818543 1 0.2236 0.8033 0.908 0.068 0.024 0.000 0.000
#> SRR1818542 4 0.6298 0.0826 0.108 0.408 0.012 0.472 0.000
#> SRR1818545 1 0.4233 0.6998 0.748 0.208 0.044 0.000 0.000
#> SRR1818541 1 0.2069 0.7880 0.912 0.076 0.000 0.012 0.000
#> SRR1818539 1 0.2408 0.7948 0.892 0.016 0.092 0.000 0.000
#> SRR1818540 5 0.6482 0.7869 0.000 0.116 0.096 0.148 0.640
#> SRR1818536 1 0.3800 0.7526 0.812 0.080 0.108 0.000 0.000
#> SRR1818535 1 0.3051 0.7662 0.852 0.120 0.000 0.028 0.000
#> SRR1818534 4 0.5925 0.1727 0.068 0.388 0.016 0.528 0.000
#> SRR1818538 2 0.3061 0.6328 0.000 0.844 0.020 0.136 0.000
#> SRR1818537 1 0.3800 0.7526 0.812 0.080 0.108 0.000 0.000
#> SRR1818533 1 0.1168 0.8055 0.960 0.008 0.032 0.000 0.000
#> SRR1818532 1 0.1124 0.8052 0.960 0.004 0.036 0.000 0.000
#> SRR1818531 2 0.3577 0.6582 0.032 0.808 0.000 0.160 0.000
#> SRR1818530 5 0.0693 0.7833 0.000 0.000 0.012 0.008 0.980
#> SRR1818529 2 0.3639 0.6499 0.144 0.812 0.000 0.044 0.000
#> SRR1818528 4 0.3526 0.6675 0.072 0.096 0.000 0.832 0.000
#> SRR1818527 4 0.1026 0.7129 0.004 0.024 0.000 0.968 0.004
#> SRR1818526 4 0.0865 0.7122 0.000 0.024 0.000 0.972 0.004
#> SRR1818525 4 0.1710 0.7122 0.016 0.040 0.000 0.940 0.004
#> SRR1818523 3 0.3174 0.9893 0.132 0.020 0.844 0.004 0.000
#> SRR1818524 4 0.1059 0.7108 0.000 0.008 0.004 0.968 0.020
#> SRR1818522 4 0.1710 0.7122 0.016 0.040 0.000 0.940 0.004
#> SRR1818521 5 0.6076 0.7979 0.000 0.112 0.068 0.148 0.672
#> SRR1818520 5 0.0162 0.7839 0.000 0.000 0.004 0.000 0.996
#> SRR1818518 1 0.3234 0.7652 0.852 0.084 0.000 0.064 0.000
#> SRR1818519 4 0.2342 0.6989 0.000 0.024 0.020 0.916 0.040
#> SRR1818517 5 0.6416 0.7861 0.000 0.112 0.080 0.168 0.640
#> SRR1818516 3 0.3174 0.9893 0.132 0.020 0.844 0.004 0.000
#> SRR1818515 4 0.0865 0.7122 0.000 0.024 0.000 0.972 0.004
#> SRR1818514 5 0.0451 0.7831 0.000 0.000 0.004 0.008 0.988
#> SRR1818513 5 0.6292 0.7932 0.000 0.112 0.084 0.148 0.656
#> SRR1818512 5 0.0451 0.7831 0.000 0.000 0.004 0.008 0.988
#> SRR1818510 5 0.6164 0.7969 0.000 0.112 0.080 0.140 0.668
#> SRR1818511 4 0.3663 0.6227 0.000 0.084 0.016 0.840 0.060
#> SRR1818508 4 0.2580 0.6981 0.044 0.064 0.000 0.892 0.000
#> SRR1818509 4 0.6281 0.3754 0.000 0.116 0.092 0.660 0.132
#> SRR1818507 4 0.1952 0.6764 0.000 0.000 0.004 0.912 0.084
#> SRR1818506 1 0.3401 0.7598 0.840 0.096 0.000 0.064 0.000
#> SRR1818505 4 0.1026 0.7129 0.004 0.024 0.000 0.968 0.004
#> SRR1818503 1 0.3921 0.7346 0.800 0.128 0.000 0.072 0.000
#> SRR1818504 5 0.0451 0.7831 0.000 0.000 0.004 0.008 0.988
#> SRR1818502 1 0.3861 0.7376 0.804 0.128 0.000 0.068 0.000
#> SRR1818498 5 0.1173 0.7875 0.000 0.012 0.020 0.004 0.964
#> SRR1818500 5 0.4930 0.7879 0.000 0.056 0.024 0.188 0.732
#> SRR1818501 3 0.3174 0.9893 0.132 0.020 0.844 0.004 0.000
#> SRR1818499 4 0.2580 0.6981 0.044 0.064 0.000 0.892 0.000
#> SRR1818496 4 0.3423 0.6331 0.000 0.060 0.016 0.856 0.068
#> SRR1818494 1 0.3980 0.7313 0.796 0.128 0.000 0.076 0.000
#> SRR1818495 4 0.4107 0.6679 0.080 0.076 0.020 0.820 0.004
#> SRR1818493 5 0.6076 0.7979 0.000 0.112 0.068 0.148 0.672
#> SRR1818492 4 0.4624 0.5782 0.096 0.164 0.000 0.740 0.000
#> SRR1818491 4 0.1026 0.7129 0.004 0.024 0.000 0.968 0.004
#> SRR1818490 1 0.3921 0.7346 0.800 0.128 0.000 0.072 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1818497 6 0.1918 0.7593 0.000 0.008 0.000 0.000 0.088 0.904
#> SRR1818600 2 0.5209 0.6109 0.052 0.524 0.012 0.408 0.000 0.004
#> SRR1818599 3 0.1327 0.9814 0.064 0.000 0.936 0.000 0.000 0.000
#> SRR1818598 1 0.4050 0.6788 0.776 0.108 0.012 0.104 0.000 0.000
#> SRR1818597 1 0.0146 0.8137 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1818596 6 0.4844 0.0768 0.000 0.032 0.012 0.456 0.000 0.500
#> SRR1818595 1 0.0653 0.8143 0.980 0.004 0.000 0.012 0.000 0.004
#> SRR1818594 1 0.0260 0.8141 0.992 0.000 0.000 0.008 0.000 0.000
#> SRR1818593 2 0.5547 0.5136 0.000 0.508 0.000 0.344 0.000 0.148
#> SRR1818592 4 0.4258 0.5871 0.004 0.068 0.000 0.724 0.000 0.204
#> SRR1818591 2 0.6443 0.4827 0.000 0.536 0.012 0.048 0.272 0.132
#> SRR1818590 2 0.6515 0.4898 0.000 0.540 0.012 0.056 0.256 0.136
#> SRR1818589 2 0.4737 0.6446 0.000 0.572 0.000 0.372 0.000 0.056
#> SRR1818587 6 0.4797 0.1302 0.000 0.020 0.020 0.452 0.000 0.508
#> SRR1818586 5 0.7557 0.1168 0.000 0.092 0.028 0.188 0.416 0.276
#> SRR1818585 5 0.4908 0.7043 0.000 0.244 0.020 0.052 0.676 0.008
#> SRR1818584 2 0.5157 0.6102 0.040 0.524 0.012 0.416 0.000 0.008
#> SRR1818583 1 0.0405 0.8131 0.988 0.004 0.000 0.008 0.000 0.000
#> SRR1818588 1 0.4002 0.7074 0.740 0.032 0.000 0.216 0.000 0.012
#> SRR1818582 4 0.4258 0.5871 0.004 0.068 0.000 0.724 0.000 0.204
#> SRR1818581 2 0.6443 0.4827 0.000 0.536 0.012 0.048 0.272 0.132
#> SRR1818579 2 0.5461 0.5110 0.084 0.468 0.012 0.436 0.000 0.000
#> SRR1818578 4 0.5076 0.5599 0.000 0.088 0.008 0.616 0.000 0.288
#> SRR1818577 5 0.4748 0.6591 0.000 0.060 0.028 0.028 0.752 0.132
#> SRR1818580 2 0.6070 0.5531 0.000 0.528 0.000 0.232 0.020 0.220
#> SRR1818575 4 0.5225 0.0661 0.360 0.028 0.008 0.572 0.000 0.032
#> SRR1818574 3 0.1327 0.9814 0.064 0.000 0.936 0.000 0.000 0.000
#> SRR1818576 1 0.0405 0.8131 0.988 0.004 0.000 0.008 0.000 0.000
#> SRR1818573 4 0.4978 -0.5986 0.032 0.472 0.012 0.480 0.000 0.004
#> SRR1818572 2 0.5190 0.6199 0.052 0.536 0.012 0.396 0.000 0.004
#> SRR1818571 1 0.2478 0.7707 0.888 0.024 0.012 0.076 0.000 0.000
#> SRR1818570 1 0.0291 0.8134 0.992 0.004 0.000 0.004 0.000 0.000
#> SRR1818568 4 0.5281 0.1475 0.336 0.028 0.008 0.588 0.000 0.040
#> SRR1818567 5 0.3488 0.7176 0.000 0.036 0.028 0.016 0.844 0.076
#> SRR1818566 3 0.1327 0.9814 0.064 0.000 0.936 0.000 0.000 0.000
#> SRR1818569 5 0.4908 0.7043 0.000 0.244 0.020 0.052 0.676 0.008
#> SRR1818565 3 0.1327 0.9814 0.064 0.000 0.936 0.000 0.000 0.000
#> SRR1818564 1 0.0993 0.8050 0.964 0.012 0.000 0.024 0.000 0.000
#> SRR1818563 4 0.6045 -0.4212 0.168 0.392 0.012 0.428 0.000 0.000
#> SRR1818561 3 0.1327 0.9814 0.064 0.000 0.936 0.000 0.000 0.000
#> SRR1818560 1 0.0146 0.8137 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1818559 4 0.4581 0.5864 0.004 0.068 0.000 0.672 0.000 0.256
#> SRR1818562 2 0.6307 0.5733 0.000 0.544 0.000 0.216 0.052 0.188
#> SRR1818558 4 0.4105 0.5747 0.044 0.000 0.008 0.732 0.000 0.216
#> SRR1818556 1 0.2478 0.7707 0.888 0.024 0.012 0.076 0.000 0.000
#> SRR1818557 4 0.4459 0.5726 0.004 0.084 0.000 0.708 0.000 0.204
#> SRR1818555 2 0.6443 0.4827 0.000 0.536 0.012 0.048 0.272 0.132
#> SRR1818553 1 0.3849 0.7158 0.752 0.032 0.000 0.208 0.000 0.008
#> SRR1818552 5 0.5076 0.6198 0.000 0.080 0.028 0.020 0.716 0.156
#> SRR1818551 4 0.3692 0.5706 0.012 0.000 0.008 0.736 0.000 0.244
#> SRR1818550 4 0.6370 -0.1086 0.352 0.268 0.012 0.368 0.000 0.000
#> SRR1818554 2 0.4958 0.6421 0.000 0.560 0.000 0.364 0.000 0.076
#> SRR1818549 1 0.0806 0.8078 0.972 0.008 0.000 0.020 0.000 0.000
#> SRR1818548 4 0.4459 0.5726 0.004 0.084 0.000 0.708 0.000 0.204
#> SRR1818546 5 0.4908 0.7043 0.000 0.244 0.020 0.052 0.676 0.008
#> SRR1818547 2 0.4675 0.6504 0.004 0.592 0.000 0.360 0.000 0.044
#> SRR1818544 6 0.2744 0.7001 0.000 0.016 0.000 0.144 0.000 0.840
#> SRR1818543 1 0.2066 0.8059 0.920 0.024 0.012 0.040 0.000 0.004
#> SRR1818542 4 0.3734 0.5822 0.004 0.008 0.008 0.736 0.000 0.244
#> SRR1818545 1 0.4222 0.6665 0.760 0.120 0.012 0.108 0.000 0.000
#> SRR1818541 1 0.3691 0.7280 0.768 0.036 0.000 0.192 0.000 0.004
#> SRR1818539 1 0.1605 0.7976 0.940 0.016 0.012 0.032 0.000 0.000
#> SRR1818540 5 0.3433 0.7166 0.000 0.044 0.028 0.008 0.844 0.076
#> SRR1818536 1 0.3510 0.7188 0.820 0.068 0.012 0.100 0.000 0.000
#> SRR1818535 1 0.4897 0.3908 0.536 0.028 0.000 0.416 0.000 0.020
#> SRR1818534 4 0.4886 0.5579 0.000 0.076 0.008 0.640 0.000 0.276
#> SRR1818538 2 0.4912 0.6574 0.000 0.604 0.000 0.336 0.036 0.024
#> SRR1818537 1 0.3510 0.7188 0.820 0.068 0.012 0.100 0.000 0.000
#> SRR1818533 1 0.1082 0.8104 0.956 0.000 0.000 0.040 0.000 0.004
#> SRR1818532 1 0.1082 0.8104 0.956 0.000 0.000 0.040 0.000 0.004
#> SRR1818531 2 0.5013 0.5994 0.012 0.520 0.012 0.432 0.000 0.024
#> SRR1818530 5 0.4908 0.7043 0.000 0.244 0.020 0.052 0.676 0.008
#> SRR1818529 2 0.5209 0.6109 0.052 0.524 0.012 0.408 0.000 0.004
#> SRR1818528 6 0.3345 0.6659 0.000 0.028 0.000 0.184 0.000 0.788
#> SRR1818527 6 0.0603 0.8092 0.000 0.004 0.000 0.016 0.000 0.980
#> SRR1818526 6 0.0653 0.8074 0.000 0.004 0.000 0.012 0.004 0.980
#> SRR1818525 6 0.1152 0.8006 0.000 0.004 0.000 0.044 0.000 0.952
#> SRR1818523 3 0.2945 0.9685 0.064 0.040 0.868 0.028 0.000 0.000
#> SRR1818524 6 0.0951 0.8055 0.000 0.008 0.000 0.020 0.004 0.968
#> SRR1818522 6 0.0935 0.8054 0.000 0.004 0.000 0.032 0.000 0.964
#> SRR1818521 5 0.1866 0.7338 0.000 0.000 0.000 0.008 0.908 0.084
#> SRR1818520 5 0.4125 0.7119 0.000 0.232 0.016 0.028 0.724 0.000
#> SRR1818518 1 0.4517 0.6798 0.708 0.032 0.000 0.224 0.000 0.036
#> SRR1818519 6 0.2658 0.7822 0.000 0.024 0.016 0.072 0.004 0.884
#> SRR1818517 5 0.3187 0.7153 0.000 0.044 0.008 0.000 0.836 0.112
#> SRR1818516 3 0.2945 0.9685 0.064 0.040 0.868 0.028 0.000 0.000
#> SRR1818515 6 0.0653 0.8074 0.000 0.004 0.000 0.012 0.004 0.980
#> SRR1818514 5 0.4885 0.7042 0.000 0.240 0.020 0.052 0.680 0.008
#> SRR1818513 5 0.3000 0.7211 0.000 0.044 0.012 0.000 0.856 0.088
#> SRR1818512 5 0.4885 0.7042 0.000 0.240 0.020 0.052 0.680 0.008
#> SRR1818510 5 0.2739 0.7263 0.000 0.032 0.012 0.000 0.872 0.084
#> SRR1818511 6 0.1644 0.7684 0.000 0.004 0.000 0.000 0.076 0.920
#> SRR1818508 6 0.1531 0.7875 0.000 0.004 0.000 0.068 0.000 0.928
#> SRR1818509 6 0.5485 0.2534 0.000 0.080 0.024 0.000 0.336 0.560
#> SRR1818507 6 0.1364 0.8009 0.000 0.016 0.000 0.012 0.020 0.952
#> SRR1818506 1 0.4748 0.6589 0.684 0.040 0.000 0.240 0.000 0.036
#> SRR1818505 6 0.0405 0.8096 0.000 0.004 0.000 0.008 0.000 0.988
#> SRR1818503 1 0.5028 0.5895 0.628 0.040 0.000 0.296 0.000 0.036
#> SRR1818504 5 0.4885 0.7042 0.000 0.240 0.020 0.052 0.680 0.008
#> SRR1818502 1 0.5028 0.5895 0.628 0.040 0.000 0.296 0.000 0.036
#> SRR1818498 5 0.3696 0.7176 0.000 0.204 0.016 0.016 0.764 0.000
#> SRR1818500 5 0.3972 0.7209 0.000 0.068 0.000 0.012 0.776 0.144
#> SRR1818501 3 0.2950 0.9685 0.064 0.036 0.868 0.032 0.000 0.000
#> SRR1818499 6 0.1643 0.7855 0.000 0.008 0.000 0.068 0.000 0.924
#> SRR1818496 6 0.1444 0.7733 0.000 0.000 0.000 0.000 0.072 0.928
#> SRR1818494 1 0.5028 0.5895 0.628 0.040 0.000 0.296 0.000 0.036
#> SRR1818495 6 0.4950 0.3313 0.000 0.036 0.020 0.376 0.000 0.568
#> SRR1818493 5 0.1866 0.7338 0.000 0.000 0.000 0.008 0.908 0.084
#> SRR1818492 6 0.4136 0.5089 0.004 0.032 0.000 0.272 0.000 0.692
#> SRR1818491 6 0.0291 0.8090 0.000 0.004 0.000 0.000 0.004 0.992
#> SRR1818490 1 0.5028 0.5895 0.628 0.040 0.000 0.296 0.000 0.036
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 16183 rows and 111 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'skmeans' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 1.000 0.996 0.998 0.5049 0.495 0.495
#> 3 3 0.861 0.883 0.952 0.2643 0.860 0.723
#> 4 4 0.873 0.830 0.920 0.0976 0.877 0.692
#> 5 5 0.758 0.756 0.864 0.0815 0.860 0.589
#> 6 6 0.725 0.619 0.796 0.0485 0.977 0.908
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1818497 2 0.000 0.996 0.000 1.000
#> SRR1818600 1 0.000 1.000 1.000 0.000
#> SRR1818599 1 0.000 1.000 1.000 0.000
#> SRR1818598 1 0.000 1.000 1.000 0.000
#> SRR1818597 1 0.000 1.000 1.000 0.000
#> SRR1818596 2 0.000 0.996 0.000 1.000
#> SRR1818595 1 0.000 1.000 1.000 0.000
#> SRR1818594 1 0.000 1.000 1.000 0.000
#> SRR1818593 2 0.000 0.996 0.000 1.000
#> SRR1818592 1 0.000 1.000 1.000 0.000
#> SRR1818591 2 0.000 0.996 0.000 1.000
#> SRR1818590 2 0.000 0.996 0.000 1.000
#> SRR1818589 2 0.000 0.996 0.000 1.000
#> SRR1818587 2 0.000 0.996 0.000 1.000
#> SRR1818586 2 0.000 0.996 0.000 1.000
#> SRR1818585 2 0.000 0.996 0.000 1.000
#> SRR1818584 1 0.000 1.000 1.000 0.000
#> SRR1818583 1 0.000 1.000 1.000 0.000
#> SRR1818588 1 0.000 1.000 1.000 0.000
#> SRR1818582 1 0.000 1.000 1.000 0.000
#> SRR1818581 2 0.000 0.996 0.000 1.000
#> SRR1818579 1 0.000 1.000 1.000 0.000
#> SRR1818578 2 0.000 0.996 0.000 1.000
#> SRR1818577 2 0.000 0.996 0.000 1.000
#> SRR1818580 2 0.000 0.996 0.000 1.000
#> SRR1818575 1 0.000 1.000 1.000 0.000
#> SRR1818574 1 0.000 1.000 1.000 0.000
#> SRR1818576 1 0.000 1.000 1.000 0.000
#> SRR1818573 1 0.000 1.000 1.000 0.000
#> SRR1818572 1 0.000 1.000 1.000 0.000
#> SRR1818571 1 0.000 1.000 1.000 0.000
#> SRR1818570 1 0.000 1.000 1.000 0.000
#> SRR1818568 1 0.000 1.000 1.000 0.000
#> SRR1818567 2 0.000 0.996 0.000 1.000
#> SRR1818566 1 0.000 1.000 1.000 0.000
#> SRR1818569 2 0.000 0.996 0.000 1.000
#> SRR1818565 1 0.000 1.000 1.000 0.000
#> SRR1818564 1 0.000 1.000 1.000 0.000
#> SRR1818563 1 0.000 1.000 1.000 0.000
#> SRR1818561 1 0.000 1.000 1.000 0.000
#> SRR1818560 1 0.000 1.000 1.000 0.000
#> SRR1818559 2 0.000 0.996 0.000 1.000
#> SRR1818562 2 0.000 0.996 0.000 1.000
#> SRR1818558 1 0.000 1.000 1.000 0.000
#> SRR1818556 1 0.000 1.000 1.000 0.000
#> SRR1818557 1 0.000 1.000 1.000 0.000
#> SRR1818555 2 0.000 0.996 0.000 1.000
#> SRR1818553 1 0.000 1.000 1.000 0.000
#> SRR1818552 2 0.000 0.996 0.000 1.000
#> SRR1818551 1 0.000 1.000 1.000 0.000
#> SRR1818550 1 0.000 1.000 1.000 0.000
#> SRR1818554 2 0.000 0.996 0.000 1.000
#> SRR1818549 1 0.000 1.000 1.000 0.000
#> SRR1818548 1 0.000 1.000 1.000 0.000
#> SRR1818546 2 0.000 0.996 0.000 1.000
#> SRR1818547 1 0.118 0.984 0.984 0.016
#> SRR1818544 2 0.000 0.996 0.000 1.000
#> SRR1818543 1 0.000 1.000 1.000 0.000
#> SRR1818542 2 0.722 0.750 0.200 0.800
#> SRR1818545 1 0.000 1.000 1.000 0.000
#> SRR1818541 1 0.000 1.000 1.000 0.000
#> SRR1818539 1 0.000 1.000 1.000 0.000
#> SRR1818540 2 0.000 0.996 0.000 1.000
#> SRR1818536 1 0.000 1.000 1.000 0.000
#> SRR1818535 1 0.000 1.000 1.000 0.000
#> SRR1818534 2 0.000 0.996 0.000 1.000
#> SRR1818538 2 0.000 0.996 0.000 1.000
#> SRR1818537 1 0.000 1.000 1.000 0.000
#> SRR1818533 1 0.000 1.000 1.000 0.000
#> SRR1818532 1 0.000 1.000 1.000 0.000
#> SRR1818531 1 0.000 1.000 1.000 0.000
#> SRR1818530 2 0.000 0.996 0.000 1.000
#> SRR1818529 1 0.000 1.000 1.000 0.000
#> SRR1818528 2 0.000 0.996 0.000 1.000
#> SRR1818527 2 0.000 0.996 0.000 1.000
#> SRR1818526 2 0.000 0.996 0.000 1.000
#> SRR1818525 2 0.000 0.996 0.000 1.000
#> SRR1818523 1 0.000 1.000 1.000 0.000
#> SRR1818524 2 0.000 0.996 0.000 1.000
#> SRR1818522 2 0.000 0.996 0.000 1.000
#> SRR1818521 2 0.000 0.996 0.000 1.000
#> SRR1818520 2 0.000 0.996 0.000 1.000
#> SRR1818518 1 0.000 1.000 1.000 0.000
#> SRR1818519 2 0.000 0.996 0.000 1.000
#> SRR1818517 2 0.000 0.996 0.000 1.000
#> SRR1818516 1 0.000 1.000 1.000 0.000
#> SRR1818515 2 0.000 0.996 0.000 1.000
#> SRR1818514 2 0.000 0.996 0.000 1.000
#> SRR1818513 2 0.000 0.996 0.000 1.000
#> SRR1818512 2 0.000 0.996 0.000 1.000
#> SRR1818510 2 0.000 0.996 0.000 1.000
#> SRR1818511 2 0.000 0.996 0.000 1.000
#> SRR1818508 2 0.000 0.996 0.000 1.000
#> SRR1818509 2 0.000 0.996 0.000 1.000
#> SRR1818507 2 0.000 0.996 0.000 1.000
#> SRR1818506 1 0.000 1.000 1.000 0.000
#> SRR1818505 2 0.000 0.996 0.000 1.000
#> SRR1818503 1 0.000 1.000 1.000 0.000
#> SRR1818504 2 0.000 0.996 0.000 1.000
#> SRR1818502 1 0.000 1.000 1.000 0.000
#> SRR1818498 2 0.000 0.996 0.000 1.000
#> SRR1818500 2 0.000 0.996 0.000 1.000
#> SRR1818501 1 0.000 1.000 1.000 0.000
#> SRR1818499 2 0.000 0.996 0.000 1.000
#> SRR1818496 2 0.000 0.996 0.000 1.000
#> SRR1818494 1 0.000 1.000 1.000 0.000
#> SRR1818495 2 0.000 0.996 0.000 1.000
#> SRR1818493 2 0.000 0.996 0.000 1.000
#> SRR1818492 1 0.000 1.000 1.000 0.000
#> SRR1818491 2 0.000 0.996 0.000 1.000
#> SRR1818490 1 0.000 1.000 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1818497 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818600 3 0.0592 0.9395 0.012 0.000 0.988
#> SRR1818599 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818598 1 0.4931 0.7009 0.768 0.000 0.232
#> SRR1818597 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818596 2 0.0592 0.9286 0.000 0.988 0.012
#> SRR1818595 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818594 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818593 3 0.0000 0.9413 0.000 0.000 1.000
#> SRR1818592 3 0.4235 0.7769 0.176 0.000 0.824
#> SRR1818591 2 0.6154 0.3749 0.000 0.592 0.408
#> SRR1818590 2 0.6154 0.3749 0.000 0.592 0.408
#> SRR1818589 3 0.0000 0.9413 0.000 0.000 1.000
#> SRR1818587 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818586 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818585 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818584 3 0.0592 0.9395 0.012 0.000 0.988
#> SRR1818583 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818588 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818582 3 0.4346 0.7659 0.184 0.000 0.816
#> SRR1818581 2 0.6154 0.3749 0.000 0.592 0.408
#> SRR1818579 1 0.6308 0.0939 0.508 0.000 0.492
#> SRR1818578 2 0.0237 0.9352 0.000 0.996 0.004
#> SRR1818577 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818580 2 0.6154 0.3749 0.000 0.592 0.408
#> SRR1818575 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818574 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818576 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818573 3 0.0000 0.9413 0.000 0.000 1.000
#> SRR1818572 3 0.0592 0.9395 0.012 0.000 0.988
#> SRR1818571 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818570 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818568 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818567 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818566 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818569 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818565 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818564 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818563 1 0.6309 0.0795 0.504 0.000 0.496
#> SRR1818561 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818560 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818559 3 0.4555 0.7319 0.000 0.200 0.800
#> SRR1818562 2 0.6154 0.3749 0.000 0.592 0.408
#> SRR1818558 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818556 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818557 3 0.0000 0.9413 0.000 0.000 1.000
#> SRR1818555 2 0.6154 0.3749 0.000 0.592 0.408
#> SRR1818553 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818552 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818551 1 0.0424 0.9514 0.992 0.000 0.008
#> SRR1818550 1 0.4887 0.7066 0.772 0.000 0.228
#> SRR1818554 3 0.0000 0.9413 0.000 0.000 1.000
#> SRR1818549 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818548 3 0.0000 0.9413 0.000 0.000 1.000
#> SRR1818546 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818547 3 0.0000 0.9413 0.000 0.000 1.000
#> SRR1818544 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818543 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818542 2 0.5517 0.5951 0.004 0.728 0.268
#> SRR1818545 1 0.4931 0.7009 0.768 0.000 0.232
#> SRR1818541 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818539 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818540 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818536 1 0.1289 0.9312 0.968 0.000 0.032
#> SRR1818535 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818534 3 0.4605 0.7263 0.000 0.204 0.796
#> SRR1818538 3 0.0424 0.9379 0.000 0.008 0.992
#> SRR1818537 1 0.1289 0.9312 0.968 0.000 0.032
#> SRR1818533 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818532 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818531 3 0.0592 0.9395 0.012 0.000 0.988
#> SRR1818530 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818529 3 0.0592 0.9395 0.012 0.000 0.988
#> SRR1818528 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818527 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818526 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818525 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818523 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818524 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818522 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818521 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818520 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818518 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818519 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818517 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818516 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818515 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818514 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818513 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818512 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818510 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818511 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818508 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818509 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818507 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818506 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818505 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818503 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818504 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818502 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818498 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818500 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818501 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818499 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818496 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818494 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818495 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818493 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818492 1 0.0000 0.9581 1.000 0.000 0.000
#> SRR1818491 2 0.0000 0.9384 0.000 1.000 0.000
#> SRR1818490 1 0.0000 0.9581 1.000 0.000 0.000
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1818497 2 0.0000 0.952 0.000 1.000 0.000 0.000
#> SRR1818600 3 0.0469 0.722 0.012 0.000 0.988 0.000
#> SRR1818599 1 0.0000 0.941 1.000 0.000 0.000 0.000
#> SRR1818598 1 0.4985 0.165 0.532 0.000 0.468 0.000
#> SRR1818597 1 0.0188 0.942 0.996 0.000 0.000 0.004
#> SRR1818596 4 0.2149 0.786 0.000 0.088 0.000 0.912
#> SRR1818595 1 0.0188 0.942 0.996 0.000 0.000 0.004
#> SRR1818594 1 0.0188 0.942 0.996 0.000 0.000 0.004
#> SRR1818593 3 0.2921 0.618 0.000 0.000 0.860 0.140
#> SRR1818592 4 0.2266 0.817 0.004 0.000 0.084 0.912
#> SRR1818591 3 0.4792 0.601 0.000 0.312 0.680 0.008
#> SRR1818590 3 0.4792 0.601 0.000 0.312 0.680 0.008
#> SRR1818589 3 0.1302 0.707 0.000 0.000 0.956 0.044
#> SRR1818587 2 0.4916 0.204 0.000 0.576 0.000 0.424
#> SRR1818586 2 0.0188 0.951 0.000 0.996 0.000 0.004
#> SRR1818585 2 0.0000 0.952 0.000 1.000 0.000 0.000
#> SRR1818584 3 0.0469 0.722 0.012 0.000 0.988 0.000
#> SRR1818583 1 0.0000 0.941 1.000 0.000 0.000 0.000
#> SRR1818588 1 0.0188 0.942 0.996 0.000 0.000 0.004
#> SRR1818582 4 0.2266 0.817 0.004 0.000 0.084 0.912
#> SRR1818581 3 0.4769 0.604 0.000 0.308 0.684 0.008
#> SRR1818579 3 0.4761 0.293 0.372 0.000 0.628 0.000
#> SRR1818578 4 0.4406 0.536 0.000 0.300 0.000 0.700
#> SRR1818577 2 0.0188 0.951 0.000 0.996 0.000 0.004
#> SRR1818580 3 0.4677 0.599 0.000 0.316 0.680 0.004
#> SRR1818575 1 0.0188 0.942 0.996 0.000 0.000 0.004
#> SRR1818574 1 0.0000 0.941 1.000 0.000 0.000 0.000
#> SRR1818576 1 0.0188 0.942 0.996 0.000 0.000 0.004
#> SRR1818573 4 0.5000 0.120 0.000 0.000 0.496 0.504
#> SRR1818572 3 0.0469 0.722 0.012 0.000 0.988 0.000
#> SRR1818571 1 0.0469 0.934 0.988 0.000 0.012 0.000
#> SRR1818570 1 0.0188 0.942 0.996 0.000 0.000 0.004
#> SRR1818568 1 0.3907 0.670 0.768 0.000 0.000 0.232
#> SRR1818567 2 0.0188 0.951 0.000 0.996 0.000 0.004
#> SRR1818566 1 0.0000 0.941 1.000 0.000 0.000 0.000
#> SRR1818569 2 0.0000 0.952 0.000 1.000 0.000 0.000
#> SRR1818565 1 0.0000 0.941 1.000 0.000 0.000 0.000
#> SRR1818564 1 0.0000 0.941 1.000 0.000 0.000 0.000
#> SRR1818563 3 0.4817 0.249 0.388 0.000 0.612 0.000
#> SRR1818561 1 0.0000 0.941 1.000 0.000 0.000 0.000
#> SRR1818560 1 0.0188 0.942 0.996 0.000 0.000 0.004
#> SRR1818559 4 0.2521 0.818 0.000 0.024 0.064 0.912
#> SRR1818562 3 0.4792 0.601 0.000 0.312 0.680 0.008
#> SRR1818558 4 0.4382 0.552 0.296 0.000 0.000 0.704
#> SRR1818556 1 0.0469 0.934 0.988 0.000 0.012 0.000
#> SRR1818557 4 0.2149 0.815 0.000 0.000 0.088 0.912
#> SRR1818555 3 0.4792 0.601 0.000 0.312 0.680 0.008
#> SRR1818553 1 0.0188 0.942 0.996 0.000 0.000 0.004
#> SRR1818552 2 0.0188 0.951 0.000 0.996 0.000 0.004
#> SRR1818551 4 0.3444 0.684 0.184 0.000 0.000 0.816
#> SRR1818550 1 0.4992 0.142 0.524 0.000 0.476 0.000
#> SRR1818554 3 0.1302 0.707 0.000 0.000 0.956 0.044
#> SRR1818549 1 0.0000 0.941 1.000 0.000 0.000 0.000
#> SRR1818548 4 0.2149 0.815 0.000 0.000 0.088 0.912
#> SRR1818546 2 0.0000 0.952 0.000 1.000 0.000 0.000
#> SRR1818547 3 0.0592 0.718 0.000 0.000 0.984 0.016
#> SRR1818544 2 0.0336 0.951 0.000 0.992 0.000 0.008
#> SRR1818543 1 0.0000 0.941 1.000 0.000 0.000 0.000
#> SRR1818542 4 0.2611 0.779 0.000 0.096 0.008 0.896
#> SRR1818545 1 0.4992 0.141 0.524 0.000 0.476 0.000
#> SRR1818541 1 0.0188 0.942 0.996 0.000 0.000 0.004
#> SRR1818539 1 0.0336 0.937 0.992 0.000 0.008 0.000
#> SRR1818540 2 0.0188 0.951 0.000 0.996 0.000 0.004
#> SRR1818536 1 0.2868 0.819 0.864 0.000 0.136 0.000
#> SRR1818535 1 0.0188 0.942 0.996 0.000 0.000 0.004
#> SRR1818534 4 0.2521 0.818 0.000 0.024 0.064 0.912
#> SRR1818538 3 0.0657 0.721 0.000 0.012 0.984 0.004
#> SRR1818537 1 0.2973 0.810 0.856 0.000 0.144 0.000
#> SRR1818533 1 0.0188 0.942 0.996 0.000 0.000 0.004
#> SRR1818532 1 0.0188 0.942 0.996 0.000 0.000 0.004
#> SRR1818531 3 0.0469 0.722 0.012 0.000 0.988 0.000
#> SRR1818530 2 0.0000 0.952 0.000 1.000 0.000 0.000
#> SRR1818529 3 0.0469 0.722 0.012 0.000 0.988 0.000
#> SRR1818528 2 0.2542 0.922 0.000 0.904 0.012 0.084
#> SRR1818527 2 0.2473 0.924 0.000 0.908 0.012 0.080
#> SRR1818526 2 0.2473 0.924 0.000 0.908 0.012 0.080
#> SRR1818525 2 0.2473 0.924 0.000 0.908 0.012 0.080
#> SRR1818523 1 0.0000 0.941 1.000 0.000 0.000 0.000
#> SRR1818524 2 0.2402 0.925 0.000 0.912 0.012 0.076
#> SRR1818522 2 0.2473 0.924 0.000 0.908 0.012 0.080
#> SRR1818521 2 0.0188 0.951 0.000 0.996 0.000 0.004
#> SRR1818520 2 0.0188 0.951 0.000 0.996 0.000 0.004
#> SRR1818518 1 0.0188 0.942 0.996 0.000 0.000 0.004
#> SRR1818519 2 0.0469 0.950 0.000 0.988 0.000 0.012
#> SRR1818517 2 0.0188 0.951 0.000 0.996 0.000 0.004
#> SRR1818516 1 0.0000 0.941 1.000 0.000 0.000 0.000
#> SRR1818515 2 0.2473 0.924 0.000 0.908 0.012 0.080
#> SRR1818514 2 0.0000 0.952 0.000 1.000 0.000 0.000
#> SRR1818513 2 0.0188 0.951 0.000 0.996 0.000 0.004
#> SRR1818512 2 0.0000 0.952 0.000 1.000 0.000 0.000
#> SRR1818510 2 0.0188 0.951 0.000 0.996 0.000 0.004
#> SRR1818511 2 0.2021 0.933 0.000 0.932 0.012 0.056
#> SRR1818508 2 0.2473 0.924 0.000 0.908 0.012 0.080
#> SRR1818509 2 0.0188 0.951 0.000 0.996 0.000 0.004
#> SRR1818507 2 0.2402 0.925 0.000 0.912 0.012 0.076
#> SRR1818506 1 0.0188 0.942 0.996 0.000 0.000 0.004
#> SRR1818505 2 0.2473 0.924 0.000 0.908 0.012 0.080
#> SRR1818503 1 0.0188 0.942 0.996 0.000 0.000 0.004
#> SRR1818504 2 0.0000 0.952 0.000 1.000 0.000 0.000
#> SRR1818502 1 0.0188 0.942 0.996 0.000 0.000 0.004
#> SRR1818498 2 0.0188 0.951 0.000 0.996 0.000 0.004
#> SRR1818500 2 0.0000 0.952 0.000 1.000 0.000 0.000
#> SRR1818501 1 0.0000 0.941 1.000 0.000 0.000 0.000
#> SRR1818499 2 0.2473 0.924 0.000 0.908 0.012 0.080
#> SRR1818496 2 0.2402 0.925 0.000 0.912 0.012 0.076
#> SRR1818494 1 0.0188 0.942 0.996 0.000 0.000 0.004
#> SRR1818495 2 0.0592 0.948 0.000 0.984 0.000 0.016
#> SRR1818493 2 0.0188 0.951 0.000 0.996 0.000 0.004
#> SRR1818492 1 0.2542 0.855 0.904 0.000 0.012 0.084
#> SRR1818491 2 0.2473 0.924 0.000 0.908 0.012 0.080
#> SRR1818490 1 0.0188 0.942 0.996 0.000 0.000 0.004
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1818497 2 0.0880 0.7869 0.000 0.968 0.032 0.000 0.000
#> SRR1818600 5 0.0000 0.7507 0.000 0.000 0.000 0.000 1.000
#> SRR1818599 1 0.1205 0.9225 0.956 0.000 0.040 0.000 0.004
#> SRR1818598 5 0.4371 0.4802 0.344 0.000 0.012 0.000 0.644
#> SRR1818597 1 0.0000 0.9267 1.000 0.000 0.000 0.000 0.000
#> SRR1818596 4 0.0000 0.8736 0.000 0.000 0.000 1.000 0.000
#> SRR1818595 1 0.0162 0.9262 0.996 0.000 0.004 0.000 0.000
#> SRR1818594 1 0.0000 0.9267 1.000 0.000 0.000 0.000 0.000
#> SRR1818593 5 0.5493 0.4970 0.000 0.000 0.108 0.264 0.628
#> SRR1818592 4 0.0000 0.8736 0.000 0.000 0.000 1.000 0.000
#> SRR1818591 2 0.5699 0.4269 0.000 0.584 0.108 0.000 0.308
#> SRR1818590 2 0.5699 0.4269 0.000 0.584 0.108 0.000 0.308
#> SRR1818589 5 0.4406 0.6492 0.000 0.000 0.108 0.128 0.764
#> SRR1818587 2 0.6357 -0.0185 0.004 0.444 0.140 0.412 0.000
#> SRR1818586 2 0.0162 0.7965 0.000 0.996 0.004 0.000 0.000
#> SRR1818585 2 0.0703 0.7930 0.000 0.976 0.024 0.000 0.000
#> SRR1818584 5 0.0000 0.7507 0.000 0.000 0.000 0.000 1.000
#> SRR1818583 1 0.0162 0.9266 0.996 0.000 0.004 0.000 0.000
#> SRR1818588 1 0.0290 0.9256 0.992 0.000 0.008 0.000 0.000
#> SRR1818582 4 0.0000 0.8736 0.000 0.000 0.000 1.000 0.000
#> SRR1818581 2 0.5699 0.4269 0.000 0.584 0.108 0.000 0.308
#> SRR1818579 5 0.3081 0.6768 0.156 0.000 0.012 0.000 0.832
#> SRR1818578 2 0.4818 0.1497 0.000 0.520 0.020 0.460 0.000
#> SRR1818577 2 0.0162 0.7965 0.000 0.996 0.004 0.000 0.000
#> SRR1818580 2 0.5932 0.4316 0.000 0.560 0.132 0.000 0.308
#> SRR1818575 1 0.1774 0.8940 0.932 0.000 0.052 0.016 0.000
#> SRR1818574 1 0.1205 0.9225 0.956 0.000 0.040 0.000 0.004
#> SRR1818576 1 0.0000 0.9267 1.000 0.000 0.000 0.000 0.000
#> SRR1818573 5 0.4287 0.2340 0.000 0.000 0.000 0.460 0.540
#> SRR1818572 5 0.0000 0.7507 0.000 0.000 0.000 0.000 1.000
#> SRR1818571 1 0.3011 0.8074 0.844 0.000 0.016 0.000 0.140
#> SRR1818570 1 0.0000 0.9267 1.000 0.000 0.000 0.000 0.000
#> SRR1818568 1 0.3868 0.7442 0.800 0.000 0.060 0.140 0.000
#> SRR1818567 2 0.0162 0.7965 0.000 0.996 0.004 0.000 0.000
#> SRR1818566 1 0.1205 0.9225 0.956 0.000 0.040 0.000 0.004
#> SRR1818569 2 0.0703 0.7930 0.000 0.976 0.024 0.000 0.000
#> SRR1818565 1 0.1205 0.9225 0.956 0.000 0.040 0.000 0.004
#> SRR1818564 1 0.0798 0.9233 0.976 0.000 0.016 0.000 0.008
#> SRR1818563 5 0.3596 0.6384 0.212 0.000 0.012 0.000 0.776
#> SRR1818561 1 0.1205 0.9225 0.956 0.000 0.040 0.000 0.004
#> SRR1818560 1 0.0000 0.9267 1.000 0.000 0.000 0.000 0.000
#> SRR1818559 4 0.0000 0.8736 0.000 0.000 0.000 1.000 0.000
#> SRR1818562 2 0.5699 0.4269 0.000 0.584 0.108 0.000 0.308
#> SRR1818558 4 0.5422 0.4559 0.348 0.000 0.072 0.580 0.000
#> SRR1818556 1 0.3011 0.8074 0.844 0.000 0.016 0.000 0.140
#> SRR1818557 4 0.0000 0.8736 0.000 0.000 0.000 1.000 0.000
#> SRR1818555 2 0.5699 0.4269 0.000 0.584 0.108 0.000 0.308
#> SRR1818553 1 0.0162 0.9262 0.996 0.000 0.004 0.000 0.000
#> SRR1818552 2 0.0162 0.7965 0.000 0.996 0.004 0.000 0.000
#> SRR1818551 4 0.4269 0.6810 0.188 0.000 0.056 0.756 0.000
#> SRR1818550 5 0.4288 0.5217 0.324 0.000 0.012 0.000 0.664
#> SRR1818554 5 0.4406 0.6492 0.000 0.000 0.108 0.128 0.764
#> SRR1818549 1 0.0992 0.9234 0.968 0.000 0.024 0.000 0.008
#> SRR1818548 4 0.0000 0.8736 0.000 0.000 0.000 1.000 0.000
#> SRR1818546 2 0.0703 0.7930 0.000 0.976 0.024 0.000 0.000
#> SRR1818547 5 0.2286 0.7178 0.000 0.000 0.108 0.004 0.888
#> SRR1818544 2 0.2020 0.7140 0.000 0.900 0.100 0.000 0.000
#> SRR1818543 1 0.0912 0.9224 0.972 0.000 0.016 0.000 0.012
#> SRR1818542 4 0.4598 0.6991 0.024 0.152 0.056 0.768 0.000
#> SRR1818545 5 0.4323 0.5064 0.332 0.000 0.012 0.000 0.656
#> SRR1818541 1 0.0609 0.9231 0.980 0.000 0.020 0.000 0.000
#> SRR1818539 1 0.2408 0.8612 0.892 0.000 0.016 0.000 0.092
#> SRR1818540 2 0.0162 0.7965 0.000 0.996 0.004 0.000 0.000
#> SRR1818536 1 0.4588 0.3365 0.604 0.000 0.016 0.000 0.380
#> SRR1818535 1 0.0963 0.9224 0.964 0.000 0.036 0.000 0.000
#> SRR1818534 4 0.0000 0.8736 0.000 0.000 0.000 1.000 0.000
#> SRR1818538 5 0.2286 0.7172 0.000 0.004 0.108 0.000 0.888
#> SRR1818537 1 0.4682 0.2178 0.564 0.000 0.016 0.000 0.420
#> SRR1818533 1 0.0290 0.9256 0.992 0.000 0.008 0.000 0.000
#> SRR1818532 1 0.0162 0.9262 0.996 0.000 0.004 0.000 0.000
#> SRR1818531 5 0.0000 0.7507 0.000 0.000 0.000 0.000 1.000
#> SRR1818530 2 0.0703 0.7930 0.000 0.976 0.024 0.000 0.000
#> SRR1818529 5 0.0000 0.7507 0.000 0.000 0.000 0.000 1.000
#> SRR1818528 3 0.3109 0.8520 0.000 0.200 0.800 0.000 0.000
#> SRR1818527 3 0.3661 0.8922 0.000 0.276 0.724 0.000 0.000
#> SRR1818526 3 0.3661 0.8922 0.000 0.276 0.724 0.000 0.000
#> SRR1818525 3 0.3480 0.8873 0.000 0.248 0.752 0.000 0.000
#> SRR1818523 1 0.1282 0.9224 0.952 0.000 0.044 0.000 0.004
#> SRR1818524 3 0.4045 0.8106 0.000 0.356 0.644 0.000 0.000
#> SRR1818522 3 0.3534 0.8900 0.000 0.256 0.744 0.000 0.000
#> SRR1818521 2 0.0609 0.7942 0.000 0.980 0.020 0.000 0.000
#> SRR1818520 2 0.0000 0.7972 0.000 1.000 0.000 0.000 0.000
#> SRR1818518 1 0.1341 0.9068 0.944 0.000 0.056 0.000 0.000
#> SRR1818519 2 0.3695 0.5572 0.000 0.800 0.164 0.036 0.000
#> SRR1818517 2 0.0290 0.7968 0.000 0.992 0.008 0.000 0.000
#> SRR1818516 1 0.1282 0.9224 0.952 0.000 0.044 0.000 0.004
#> SRR1818515 3 0.3661 0.8922 0.000 0.276 0.724 0.000 0.000
#> SRR1818514 2 0.0703 0.7930 0.000 0.976 0.024 0.000 0.000
#> SRR1818513 2 0.0000 0.7972 0.000 1.000 0.000 0.000 0.000
#> SRR1818512 2 0.0703 0.7930 0.000 0.976 0.024 0.000 0.000
#> SRR1818510 2 0.0000 0.7972 0.000 1.000 0.000 0.000 0.000
#> SRR1818511 2 0.3752 0.2924 0.000 0.708 0.292 0.000 0.000
#> SRR1818508 3 0.3395 0.8809 0.000 0.236 0.764 0.000 0.000
#> SRR1818509 2 0.0290 0.7968 0.000 0.992 0.008 0.000 0.000
#> SRR1818507 3 0.4273 0.6442 0.000 0.448 0.552 0.000 0.000
#> SRR1818506 1 0.1732 0.8929 0.920 0.000 0.080 0.000 0.000
#> SRR1818505 3 0.3661 0.8922 0.000 0.276 0.724 0.000 0.000
#> SRR1818503 1 0.1732 0.8929 0.920 0.000 0.080 0.000 0.000
#> SRR1818504 2 0.0794 0.7901 0.000 0.972 0.028 0.000 0.000
#> SRR1818502 1 0.1732 0.8929 0.920 0.000 0.080 0.000 0.000
#> SRR1818498 2 0.0000 0.7972 0.000 1.000 0.000 0.000 0.000
#> SRR1818500 2 0.0703 0.7930 0.000 0.976 0.024 0.000 0.000
#> SRR1818501 1 0.1282 0.9224 0.952 0.000 0.044 0.000 0.004
#> SRR1818499 3 0.3177 0.8594 0.000 0.208 0.792 0.000 0.000
#> SRR1818496 3 0.4182 0.7485 0.000 0.400 0.600 0.000 0.000
#> SRR1818494 1 0.1732 0.8929 0.920 0.000 0.080 0.000 0.000
#> SRR1818495 2 0.5040 0.4450 0.008 0.680 0.256 0.056 0.000
#> SRR1818493 2 0.0000 0.7972 0.000 1.000 0.000 0.000 0.000
#> SRR1818492 3 0.2891 0.4787 0.176 0.000 0.824 0.000 0.000
#> SRR1818491 3 0.3661 0.8922 0.000 0.276 0.724 0.000 0.000
#> SRR1818490 1 0.2074 0.8890 0.896 0.000 0.104 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1818497 2 0.1151 0.77005 0.000 0.956 0.012 0.000 0.032 0.000
#> SRR1818600 6 0.1075 0.67218 0.000 0.000 0.048 0.000 0.000 0.952
#> SRR1818599 1 0.3964 0.74741 0.764 0.000 0.176 0.000 0.012 0.048
#> SRR1818598 6 0.3175 0.57894 0.256 0.000 0.000 0.000 0.000 0.744
#> SRR1818597 1 0.0000 0.79215 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818596 4 0.0000 0.73918 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818595 1 0.0632 0.78632 0.976 0.000 0.024 0.000 0.000 0.000
#> SRR1818594 1 0.0000 0.79215 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818593 4 0.6126 -0.08205 0.000 0.000 0.332 0.352 0.000 0.316
#> SRR1818592 4 0.0000 0.73918 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818591 2 0.5806 0.24361 0.000 0.464 0.344 0.000 0.000 0.192
#> SRR1818590 2 0.5806 0.24361 0.000 0.464 0.344 0.000 0.000 0.192
#> SRR1818589 6 0.5711 0.31043 0.000 0.000 0.328 0.180 0.000 0.492
#> SRR1818587 2 0.6988 -0.39974 0.000 0.404 0.312 0.208 0.076 0.000
#> SRR1818586 2 0.0363 0.77003 0.000 0.988 0.012 0.000 0.000 0.000
#> SRR1818585 2 0.1151 0.77005 0.000 0.956 0.012 0.000 0.032 0.000
#> SRR1818584 6 0.1075 0.67218 0.000 0.000 0.048 0.000 0.000 0.952
#> SRR1818583 1 0.0363 0.79275 0.988 0.000 0.000 0.000 0.000 0.012
#> SRR1818588 1 0.1075 0.77792 0.952 0.000 0.048 0.000 0.000 0.000
#> SRR1818582 4 0.0000 0.73918 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818581 2 0.5806 0.24361 0.000 0.464 0.344 0.000 0.000 0.192
#> SRR1818579 6 0.2491 0.63266 0.164 0.000 0.000 0.000 0.000 0.836
#> SRR1818578 2 0.4183 0.35794 0.000 0.668 0.036 0.296 0.000 0.000
#> SRR1818577 2 0.0363 0.77003 0.000 0.988 0.012 0.000 0.000 0.000
#> SRR1818580 2 0.6473 0.23618 0.000 0.428 0.344 0.000 0.032 0.196
#> SRR1818575 1 0.4555 0.30242 0.640 0.000 0.308 0.004 0.048 0.000
#> SRR1818574 1 0.3964 0.74741 0.764 0.000 0.176 0.000 0.012 0.048
#> SRR1818576 1 0.0000 0.79215 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818573 4 0.3390 0.43884 0.000 0.000 0.000 0.704 0.000 0.296
#> SRR1818572 6 0.1075 0.67218 0.000 0.000 0.048 0.000 0.000 0.952
#> SRR1818571 1 0.3426 0.59645 0.720 0.000 0.004 0.000 0.000 0.276
#> SRR1818570 1 0.0000 0.79215 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818568 1 0.5373 0.19074 0.596 0.000 0.308 0.048 0.048 0.000
#> SRR1818567 2 0.0363 0.77003 0.000 0.988 0.012 0.000 0.000 0.000
#> SRR1818566 1 0.3964 0.74741 0.764 0.000 0.176 0.000 0.012 0.048
#> SRR1818569 2 0.1151 0.77005 0.000 0.956 0.012 0.000 0.032 0.000
#> SRR1818565 1 0.3964 0.74741 0.764 0.000 0.176 0.000 0.012 0.048
#> SRR1818564 1 0.1349 0.78767 0.940 0.000 0.004 0.000 0.000 0.056
#> SRR1818563 6 0.2823 0.61366 0.204 0.000 0.000 0.000 0.000 0.796
#> SRR1818561 1 0.3964 0.74741 0.764 0.000 0.176 0.000 0.012 0.048
#> SRR1818560 1 0.0000 0.79215 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818559 4 0.0000 0.73918 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818562 2 0.5825 0.23861 0.000 0.460 0.344 0.000 0.000 0.196
#> SRR1818558 3 0.6928 -0.05926 0.308 0.000 0.408 0.228 0.052 0.004
#> SRR1818556 1 0.3448 0.59144 0.716 0.000 0.004 0.000 0.000 0.280
#> SRR1818557 4 0.0000 0.73918 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818555 2 0.5806 0.24361 0.000 0.464 0.344 0.000 0.000 0.192
#> SRR1818553 1 0.0790 0.78416 0.968 0.000 0.032 0.000 0.000 0.000
#> SRR1818552 2 0.0363 0.77003 0.000 0.988 0.012 0.000 0.000 0.000
#> SRR1818551 4 0.6868 -0.29119 0.268 0.000 0.316 0.368 0.048 0.000
#> SRR1818550 6 0.3151 0.58308 0.252 0.000 0.000 0.000 0.000 0.748
#> SRR1818554 6 0.5711 0.31043 0.000 0.000 0.328 0.180 0.000 0.492
#> SRR1818549 1 0.3115 0.77560 0.848 0.000 0.092 0.000 0.012 0.048
#> SRR1818548 4 0.0000 0.73918 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818546 2 0.1151 0.77005 0.000 0.956 0.012 0.000 0.032 0.000
#> SRR1818547 6 0.3531 0.51884 0.000 0.000 0.328 0.000 0.000 0.672
#> SRR1818544 2 0.2006 0.73214 0.000 0.904 0.016 0.000 0.080 0.000
#> SRR1818543 1 0.1471 0.78606 0.932 0.000 0.004 0.000 0.000 0.064
#> SRR1818542 4 0.7346 -0.07606 0.088 0.100 0.324 0.440 0.048 0.000
#> SRR1818545 6 0.3151 0.58308 0.252 0.000 0.000 0.000 0.000 0.748
#> SRR1818541 1 0.2948 0.67410 0.804 0.000 0.188 0.000 0.008 0.000
#> SRR1818539 1 0.2772 0.71421 0.816 0.000 0.004 0.000 0.000 0.180
#> SRR1818540 2 0.0363 0.77003 0.000 0.988 0.012 0.000 0.000 0.000
#> SRR1818536 1 0.3989 0.13568 0.528 0.000 0.004 0.000 0.000 0.468
#> SRR1818535 1 0.2632 0.75967 0.832 0.000 0.164 0.000 0.004 0.000
#> SRR1818534 4 0.0000 0.73918 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818538 6 0.3563 0.51436 0.000 0.000 0.336 0.000 0.000 0.664
#> SRR1818537 6 0.3852 0.30254 0.384 0.000 0.004 0.000 0.000 0.612
#> SRR1818533 1 0.1267 0.77187 0.940 0.000 0.060 0.000 0.000 0.000
#> SRR1818532 1 0.0790 0.78439 0.968 0.000 0.032 0.000 0.000 0.000
#> SRR1818531 6 0.1075 0.67218 0.000 0.000 0.048 0.000 0.000 0.952
#> SRR1818530 2 0.1151 0.77005 0.000 0.956 0.012 0.000 0.032 0.000
#> SRR1818529 6 0.1075 0.67218 0.000 0.000 0.048 0.000 0.000 0.952
#> SRR1818528 5 0.3612 0.65429 0.000 0.052 0.168 0.000 0.780 0.000
#> SRR1818527 5 0.1910 0.84951 0.000 0.108 0.000 0.000 0.892 0.000
#> SRR1818526 5 0.1910 0.84951 0.000 0.108 0.000 0.000 0.892 0.000
#> SRR1818525 5 0.1910 0.84951 0.000 0.108 0.000 0.000 0.892 0.000
#> SRR1818523 1 0.3964 0.74741 0.764 0.000 0.176 0.000 0.012 0.048
#> SRR1818524 5 0.3998 0.58889 0.000 0.340 0.016 0.000 0.644 0.000
#> SRR1818522 5 0.1863 0.84758 0.000 0.104 0.000 0.000 0.896 0.000
#> SRR1818521 2 0.0458 0.77423 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1818520 2 0.0000 0.77263 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818518 1 0.2106 0.78509 0.904 0.000 0.064 0.000 0.032 0.000
#> SRR1818519 2 0.3331 0.65071 0.000 0.836 0.056 0.016 0.092 0.000
#> SRR1818517 2 0.0458 0.77411 0.000 0.984 0.000 0.000 0.016 0.000
#> SRR1818516 1 0.3964 0.74741 0.764 0.000 0.176 0.000 0.012 0.048
#> SRR1818515 5 0.1910 0.84951 0.000 0.108 0.000 0.000 0.892 0.000
#> SRR1818514 2 0.1151 0.77005 0.000 0.956 0.012 0.000 0.032 0.000
#> SRR1818513 2 0.0363 0.77003 0.000 0.988 0.012 0.000 0.000 0.000
#> SRR1818512 2 0.1151 0.77005 0.000 0.956 0.012 0.000 0.032 0.000
#> SRR1818510 2 0.0363 0.77003 0.000 0.988 0.012 0.000 0.000 0.000
#> SRR1818511 2 0.3563 0.30855 0.000 0.664 0.000 0.000 0.336 0.000
#> SRR1818508 5 0.1863 0.84758 0.000 0.104 0.000 0.000 0.896 0.000
#> SRR1818509 2 0.0363 0.77420 0.000 0.988 0.000 0.000 0.012 0.000
#> SRR1818507 5 0.4165 0.38843 0.000 0.452 0.012 0.000 0.536 0.000
#> SRR1818506 1 0.3924 0.63483 0.740 0.000 0.208 0.000 0.052 0.000
#> SRR1818505 5 0.1910 0.84951 0.000 0.108 0.000 0.000 0.892 0.000
#> SRR1818503 1 0.4007 0.61616 0.728 0.000 0.220 0.000 0.052 0.000
#> SRR1818504 2 0.1151 0.77005 0.000 0.956 0.012 0.000 0.032 0.000
#> SRR1818502 1 0.4033 0.61226 0.724 0.000 0.224 0.000 0.052 0.000
#> SRR1818498 2 0.0000 0.77263 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818500 2 0.1151 0.77005 0.000 0.956 0.012 0.000 0.032 0.000
#> SRR1818501 1 0.3964 0.74741 0.764 0.000 0.176 0.000 0.012 0.048
#> SRR1818499 5 0.1471 0.80459 0.000 0.064 0.004 0.000 0.932 0.000
#> SRR1818496 5 0.3810 0.46442 0.000 0.428 0.000 0.000 0.572 0.000
#> SRR1818494 1 0.4033 0.61226 0.724 0.000 0.224 0.000 0.052 0.000
#> SRR1818495 3 0.5808 -0.00333 0.000 0.432 0.436 0.016 0.116 0.000
#> SRR1818493 2 0.0260 0.77382 0.000 0.992 0.000 0.000 0.008 0.000
#> SRR1818492 5 0.1168 0.68808 0.016 0.000 0.028 0.000 0.956 0.000
#> SRR1818491 5 0.1910 0.84951 0.000 0.108 0.000 0.000 0.892 0.000
#> SRR1818490 1 0.4408 0.61346 0.664 0.000 0.280 0.000 0.056 0.000
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 16183 rows and 111 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'pam' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.804 0.918 0.964 0.4704 0.530 0.530
#> 3 3 0.547 0.684 0.819 0.3616 0.720 0.509
#> 4 4 0.587 0.724 0.830 0.1060 0.924 0.784
#> 5 5 0.637 0.684 0.781 0.0759 0.930 0.771
#> 6 6 0.716 0.688 0.787 0.0618 0.877 0.568
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1818497 2 0.0000 0.950 0.000 1.000
#> SRR1818600 1 0.0000 0.968 1.000 0.000
#> SRR1818599 1 0.0000 0.968 1.000 0.000
#> SRR1818598 1 0.0000 0.968 1.000 0.000
#> SRR1818597 1 0.0000 0.968 1.000 0.000
#> SRR1818596 2 0.5059 0.863 0.112 0.888
#> SRR1818595 1 0.0000 0.968 1.000 0.000
#> SRR1818594 1 0.0000 0.968 1.000 0.000
#> SRR1818593 1 0.8386 0.621 0.732 0.268
#> SRR1818592 1 0.0000 0.968 1.000 0.000
#> SRR1818591 2 0.7950 0.689 0.240 0.760
#> SRR1818590 1 0.9866 0.239 0.568 0.432
#> SRR1818589 1 0.0000 0.968 1.000 0.000
#> SRR1818587 2 0.7453 0.750 0.212 0.788
#> SRR1818586 2 0.0000 0.950 0.000 1.000
#> SRR1818585 2 0.0000 0.950 0.000 1.000
#> SRR1818584 1 0.0000 0.968 1.000 0.000
#> SRR1818583 1 0.0000 0.968 1.000 0.000
#> SRR1818588 1 0.0000 0.968 1.000 0.000
#> SRR1818582 1 0.0000 0.968 1.000 0.000
#> SRR1818581 1 0.8861 0.560 0.696 0.304
#> SRR1818579 1 0.0000 0.968 1.000 0.000
#> SRR1818578 1 0.0376 0.965 0.996 0.004
#> SRR1818577 2 0.0000 0.950 0.000 1.000
#> SRR1818580 1 0.7528 0.712 0.784 0.216
#> SRR1818575 1 0.0000 0.968 1.000 0.000
#> SRR1818574 1 0.0000 0.968 1.000 0.000
#> SRR1818576 1 0.0000 0.968 1.000 0.000
#> SRR1818573 1 0.0000 0.968 1.000 0.000
#> SRR1818572 1 0.0000 0.968 1.000 0.000
#> SRR1818571 1 0.0000 0.968 1.000 0.000
#> SRR1818570 1 0.0000 0.968 1.000 0.000
#> SRR1818568 1 0.0000 0.968 1.000 0.000
#> SRR1818567 2 0.0000 0.950 0.000 1.000
#> SRR1818566 1 0.0000 0.968 1.000 0.000
#> SRR1818569 2 0.0000 0.950 0.000 1.000
#> SRR1818565 1 0.0000 0.968 1.000 0.000
#> SRR1818564 1 0.0000 0.968 1.000 0.000
#> SRR1818563 1 0.0000 0.968 1.000 0.000
#> SRR1818561 1 0.0000 0.968 1.000 0.000
#> SRR1818560 1 0.0000 0.968 1.000 0.000
#> SRR1818559 1 0.0376 0.965 0.996 0.004
#> SRR1818562 1 0.5294 0.849 0.880 0.120
#> SRR1818558 1 0.0000 0.968 1.000 0.000
#> SRR1818556 1 0.0000 0.968 1.000 0.000
#> SRR1818557 1 0.0000 0.968 1.000 0.000
#> SRR1818555 2 0.9881 0.223 0.436 0.564
#> SRR1818553 1 0.0000 0.968 1.000 0.000
#> SRR1818552 2 0.0000 0.950 0.000 1.000
#> SRR1818551 1 0.0000 0.968 1.000 0.000
#> SRR1818550 1 0.0000 0.968 1.000 0.000
#> SRR1818554 1 0.0376 0.965 0.996 0.004
#> SRR1818549 1 0.0000 0.968 1.000 0.000
#> SRR1818548 1 0.0000 0.968 1.000 0.000
#> SRR1818546 2 0.0000 0.950 0.000 1.000
#> SRR1818547 1 0.0000 0.968 1.000 0.000
#> SRR1818544 2 0.6623 0.802 0.172 0.828
#> SRR1818543 1 0.0000 0.968 1.000 0.000
#> SRR1818542 2 0.7528 0.744 0.216 0.784
#> SRR1818545 1 0.0000 0.968 1.000 0.000
#> SRR1818541 1 0.0000 0.968 1.000 0.000
#> SRR1818539 1 0.0000 0.968 1.000 0.000
#> SRR1818540 2 0.0000 0.950 0.000 1.000
#> SRR1818536 1 0.0000 0.968 1.000 0.000
#> SRR1818535 1 0.0000 0.968 1.000 0.000
#> SRR1818534 1 0.4690 0.871 0.900 0.100
#> SRR1818538 1 0.0000 0.968 1.000 0.000
#> SRR1818537 1 0.0000 0.968 1.000 0.000
#> SRR1818533 1 0.0000 0.968 1.000 0.000
#> SRR1818532 1 0.0000 0.968 1.000 0.000
#> SRR1818531 1 0.0000 0.968 1.000 0.000
#> SRR1818530 2 0.0000 0.950 0.000 1.000
#> SRR1818529 1 0.0000 0.968 1.000 0.000
#> SRR1818528 2 0.6623 0.802 0.172 0.828
#> SRR1818527 2 0.5737 0.833 0.136 0.864
#> SRR1818526 2 0.0000 0.950 0.000 1.000
#> SRR1818525 1 0.9580 0.376 0.620 0.380
#> SRR1818523 1 0.0000 0.968 1.000 0.000
#> SRR1818524 2 0.0000 0.950 0.000 1.000
#> SRR1818522 2 0.1184 0.940 0.016 0.984
#> SRR1818521 2 0.0000 0.950 0.000 1.000
#> SRR1818520 2 0.0000 0.950 0.000 1.000
#> SRR1818518 1 0.0000 0.968 1.000 0.000
#> SRR1818519 2 0.0000 0.950 0.000 1.000
#> SRR1818517 2 0.0000 0.950 0.000 1.000
#> SRR1818516 1 0.0000 0.968 1.000 0.000
#> SRR1818515 2 0.0000 0.950 0.000 1.000
#> SRR1818514 2 0.0000 0.950 0.000 1.000
#> SRR1818513 2 0.0000 0.950 0.000 1.000
#> SRR1818512 2 0.0000 0.950 0.000 1.000
#> SRR1818510 2 0.0000 0.950 0.000 1.000
#> SRR1818511 2 0.0000 0.950 0.000 1.000
#> SRR1818508 1 0.2423 0.934 0.960 0.040
#> SRR1818509 2 0.0000 0.950 0.000 1.000
#> SRR1818507 2 0.0000 0.950 0.000 1.000
#> SRR1818506 1 0.0000 0.968 1.000 0.000
#> SRR1818505 2 0.0000 0.950 0.000 1.000
#> SRR1818503 1 0.0000 0.968 1.000 0.000
#> SRR1818504 2 0.0000 0.950 0.000 1.000
#> SRR1818502 1 0.0000 0.968 1.000 0.000
#> SRR1818498 2 0.0000 0.950 0.000 1.000
#> SRR1818500 2 0.0000 0.950 0.000 1.000
#> SRR1818501 1 0.0000 0.968 1.000 0.000
#> SRR1818499 1 0.6343 0.796 0.840 0.160
#> SRR1818496 2 0.0000 0.950 0.000 1.000
#> SRR1818494 1 0.0000 0.968 1.000 0.000
#> SRR1818495 2 0.6531 0.806 0.168 0.832
#> SRR1818493 2 0.0000 0.950 0.000 1.000
#> SRR1818492 1 0.2603 0.930 0.956 0.044
#> SRR1818491 2 0.0000 0.950 0.000 1.000
#> SRR1818490 1 0.0000 0.968 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1818497 2 0.0000 0.89285 0.000 1.000 0.000
#> SRR1818600 1 0.5138 0.47562 0.748 0.000 0.252
#> SRR1818599 3 0.0000 0.68718 0.000 0.000 1.000
#> SRR1818598 3 0.4291 0.80008 0.180 0.000 0.820
#> SRR1818597 3 0.4452 0.80122 0.192 0.000 0.808
#> SRR1818596 1 0.4235 0.63344 0.824 0.176 0.000
#> SRR1818595 3 0.4452 0.80122 0.192 0.000 0.808
#> SRR1818594 3 0.4452 0.80122 0.192 0.000 0.808
#> SRR1818593 1 0.3551 0.67677 0.868 0.132 0.000
#> SRR1818592 1 0.0000 0.78128 1.000 0.000 0.000
#> SRR1818591 2 0.6255 0.52711 0.320 0.668 0.012
#> SRR1818590 2 0.5450 0.68126 0.228 0.760 0.012
#> SRR1818589 1 0.0592 0.77767 0.988 0.000 0.012
#> SRR1818587 1 0.4235 0.63344 0.824 0.176 0.000
#> SRR1818586 2 0.2625 0.84682 0.084 0.916 0.000
#> SRR1818585 2 0.0000 0.89285 0.000 1.000 0.000
#> SRR1818584 1 0.4654 0.55770 0.792 0.000 0.208
#> SRR1818583 3 0.4399 0.80109 0.188 0.000 0.812
#> SRR1818588 3 0.6305 0.35790 0.484 0.000 0.516
#> SRR1818582 1 0.0000 0.78128 1.000 0.000 0.000
#> SRR1818581 2 0.5493 0.66007 0.232 0.756 0.012
#> SRR1818579 3 0.6062 0.54686 0.384 0.000 0.616
#> SRR1818578 1 0.0000 0.78128 1.000 0.000 0.000
#> SRR1818577 2 0.0000 0.89285 0.000 1.000 0.000
#> SRR1818580 1 0.6823 -0.09784 0.504 0.484 0.012
#> SRR1818575 1 0.0000 0.78128 1.000 0.000 0.000
#> SRR1818574 3 0.0424 0.68823 0.008 0.000 0.992
#> SRR1818576 3 0.4399 0.80109 0.188 0.000 0.812
#> SRR1818573 1 0.0592 0.77767 0.988 0.000 0.012
#> SRR1818572 1 0.6168 0.02796 0.588 0.000 0.412
#> SRR1818571 3 0.4235 0.79997 0.176 0.000 0.824
#> SRR1818570 3 0.4399 0.80109 0.188 0.000 0.812
#> SRR1818568 1 0.0000 0.78128 1.000 0.000 0.000
#> SRR1818567 2 0.0000 0.89285 0.000 1.000 0.000
#> SRR1818566 3 0.0000 0.68718 0.000 0.000 1.000
#> SRR1818569 2 0.0000 0.89285 0.000 1.000 0.000
#> SRR1818565 3 0.0592 0.68830 0.012 0.000 0.988
#> SRR1818564 3 0.4235 0.79997 0.176 0.000 0.824
#> SRR1818563 1 0.6180 0.00592 0.584 0.000 0.416
#> SRR1818561 3 0.0592 0.68830 0.012 0.000 0.988
#> SRR1818560 3 0.4452 0.80122 0.192 0.000 0.808
#> SRR1818559 1 0.0000 0.78128 1.000 0.000 0.000
#> SRR1818562 2 0.5884 0.62794 0.272 0.716 0.012
#> SRR1818558 1 0.0000 0.78128 1.000 0.000 0.000
#> SRR1818556 3 0.4235 0.79997 0.176 0.000 0.824
#> SRR1818557 1 0.0000 0.78128 1.000 0.000 0.000
#> SRR1818555 2 0.4805 0.71404 0.176 0.812 0.012
#> SRR1818553 3 0.6305 0.35790 0.484 0.000 0.516
#> SRR1818552 2 0.0000 0.89285 0.000 1.000 0.000
#> SRR1818551 1 0.0000 0.78128 1.000 0.000 0.000
#> SRR1818550 3 0.6299 0.35938 0.476 0.000 0.524
#> SRR1818554 1 0.0592 0.77767 0.988 0.000 0.012
#> SRR1818549 3 0.4452 0.80122 0.192 0.000 0.808
#> SRR1818548 1 0.0000 0.78128 1.000 0.000 0.000
#> SRR1818546 2 0.0000 0.89285 0.000 1.000 0.000
#> SRR1818547 1 0.0592 0.77767 0.988 0.000 0.012
#> SRR1818544 2 0.5760 0.54932 0.328 0.672 0.000
#> SRR1818543 3 0.4399 0.79706 0.188 0.000 0.812
#> SRR1818542 1 0.5465 0.49059 0.712 0.288 0.000
#> SRR1818545 3 0.4346 0.79901 0.184 0.000 0.816
#> SRR1818541 1 0.5397 0.38210 0.720 0.000 0.280
#> SRR1818539 3 0.4291 0.80008 0.180 0.000 0.820
#> SRR1818540 2 0.0000 0.89285 0.000 1.000 0.000
#> SRR1818536 3 0.4235 0.79997 0.176 0.000 0.824
#> SRR1818535 1 0.0000 0.78128 1.000 0.000 0.000
#> SRR1818534 1 0.0000 0.78128 1.000 0.000 0.000
#> SRR1818538 1 0.1482 0.76916 0.968 0.020 0.012
#> SRR1818537 3 0.4291 0.80008 0.180 0.000 0.820
#> SRR1818533 3 0.4504 0.79926 0.196 0.000 0.804
#> SRR1818532 3 0.4452 0.80122 0.192 0.000 0.808
#> SRR1818531 1 0.0592 0.77767 0.988 0.000 0.012
#> SRR1818530 2 0.0000 0.89285 0.000 1.000 0.000
#> SRR1818529 1 0.6280 -0.16368 0.540 0.000 0.460
#> SRR1818528 2 0.6095 0.39949 0.392 0.608 0.000
#> SRR1818527 2 0.4861 0.76257 0.192 0.800 0.008
#> SRR1818526 2 0.2448 0.86009 0.076 0.924 0.000
#> SRR1818525 2 0.6095 0.41907 0.392 0.608 0.000
#> SRR1818523 3 0.6225 0.06392 0.432 0.000 0.568
#> SRR1818524 2 0.3267 0.83527 0.116 0.884 0.000
#> SRR1818522 2 0.5178 0.66966 0.256 0.744 0.000
#> SRR1818521 2 0.0000 0.89285 0.000 1.000 0.000
#> SRR1818520 2 0.0000 0.89285 0.000 1.000 0.000
#> SRR1818518 3 0.6280 0.41710 0.460 0.000 0.540
#> SRR1818519 2 0.3192 0.83855 0.112 0.888 0.000
#> SRR1818517 2 0.0000 0.89285 0.000 1.000 0.000
#> SRR1818516 3 0.6026 0.18878 0.376 0.000 0.624
#> SRR1818515 2 0.2165 0.86643 0.064 0.936 0.000
#> SRR1818514 2 0.0000 0.89285 0.000 1.000 0.000
#> SRR1818513 2 0.0000 0.89285 0.000 1.000 0.000
#> SRR1818512 2 0.0000 0.89285 0.000 1.000 0.000
#> SRR1818510 2 0.0000 0.89285 0.000 1.000 0.000
#> SRR1818511 2 0.0000 0.89285 0.000 1.000 0.000
#> SRR1818508 1 0.5905 0.36394 0.648 0.352 0.000
#> SRR1818509 2 0.0000 0.89285 0.000 1.000 0.000
#> SRR1818507 2 0.0000 0.89285 0.000 1.000 0.000
#> SRR1818506 3 0.6295 0.38859 0.472 0.000 0.528
#> SRR1818505 2 0.2711 0.85304 0.088 0.912 0.000
#> SRR1818503 1 0.6168 -0.02166 0.588 0.000 0.412
#> SRR1818504 2 0.0000 0.89285 0.000 1.000 0.000
#> SRR1818502 3 0.6307 0.34598 0.488 0.000 0.512
#> SRR1818498 2 0.0000 0.89285 0.000 1.000 0.000
#> SRR1818500 2 0.0000 0.89285 0.000 1.000 0.000
#> SRR1818501 3 0.0592 0.68830 0.012 0.000 0.988
#> SRR1818499 1 0.3879 0.68169 0.848 0.152 0.000
#> SRR1818496 2 0.0000 0.89285 0.000 1.000 0.000
#> SRR1818494 1 0.6260 -0.15943 0.552 0.000 0.448
#> SRR1818495 2 0.5859 0.52439 0.344 0.656 0.000
#> SRR1818493 2 0.0000 0.89285 0.000 1.000 0.000
#> SRR1818492 1 0.1031 0.76746 0.976 0.024 0.000
#> SRR1818491 2 0.2448 0.86009 0.076 0.924 0.000
#> SRR1818490 3 0.6309 0.32099 0.496 0.000 0.504
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1818497 2 0.3108 0.8425 0.000 0.872 0.112 0.016
#> SRR1818600 4 0.5657 0.3553 0.436 0.000 0.024 0.540
#> SRR1818599 3 0.2814 0.9879 0.132 0.000 0.868 0.000
#> SRR1818598 1 0.0188 0.7341 0.996 0.000 0.000 0.004
#> SRR1818597 1 0.3486 0.7758 0.812 0.000 0.000 0.188
#> SRR1818596 4 0.1716 0.7588 0.000 0.000 0.064 0.936
#> SRR1818595 1 0.3486 0.7758 0.812 0.000 0.000 0.188
#> SRR1818594 1 0.3726 0.7727 0.788 0.000 0.000 0.212
#> SRR1818593 4 0.1854 0.7704 0.020 0.008 0.024 0.948
#> SRR1818592 4 0.0592 0.7693 0.016 0.000 0.000 0.984
#> SRR1818591 2 0.7716 0.6297 0.164 0.612 0.068 0.156
#> SRR1818590 2 0.6985 0.7212 0.184 0.660 0.112 0.044
#> SRR1818589 4 0.4426 0.6808 0.204 0.000 0.024 0.772
#> SRR1818587 4 0.2149 0.7382 0.000 0.000 0.088 0.912
#> SRR1818586 2 0.4635 0.6889 0.000 0.756 0.028 0.216
#> SRR1818585 2 0.0707 0.8425 0.000 0.980 0.020 0.000
#> SRR1818584 4 0.5582 0.4381 0.400 0.000 0.024 0.576
#> SRR1818583 1 0.3937 0.7699 0.800 0.000 0.012 0.188
#> SRR1818588 1 0.4454 0.7273 0.692 0.000 0.000 0.308
#> SRR1818582 4 0.0592 0.7693 0.016 0.000 0.000 0.984
#> SRR1818581 2 0.6996 0.6455 0.200 0.652 0.040 0.108
#> SRR1818579 1 0.3219 0.6758 0.836 0.000 0.000 0.164
#> SRR1818578 4 0.1792 0.7576 0.000 0.000 0.068 0.932
#> SRR1818577 2 0.2928 0.8437 0.000 0.880 0.108 0.012
#> SRR1818580 2 0.8883 0.4972 0.188 0.496 0.112 0.204
#> SRR1818575 4 0.0592 0.7693 0.016 0.000 0.000 0.984
#> SRR1818574 3 0.2814 0.9879 0.132 0.000 0.868 0.000
#> SRR1818576 1 0.4054 0.7667 0.796 0.000 0.016 0.188
#> SRR1818573 4 0.3649 0.6857 0.204 0.000 0.000 0.796
#> SRR1818572 1 0.5496 0.1703 0.604 0.000 0.024 0.372
#> SRR1818571 1 0.0469 0.7248 0.988 0.000 0.012 0.000
#> SRR1818570 1 0.3937 0.7699 0.800 0.000 0.012 0.188
#> SRR1818568 4 0.0592 0.7693 0.016 0.000 0.000 0.984
#> SRR1818567 2 0.0000 0.8466 0.000 1.000 0.000 0.000
#> SRR1818566 3 0.2814 0.9879 0.132 0.000 0.868 0.000
#> SRR1818569 2 0.0707 0.8425 0.000 0.980 0.020 0.000
#> SRR1818565 3 0.2814 0.9879 0.132 0.000 0.868 0.000
#> SRR1818564 1 0.0469 0.7248 0.988 0.000 0.012 0.000
#> SRR1818563 1 0.4855 0.1758 0.600 0.000 0.000 0.400
#> SRR1818561 3 0.2814 0.9879 0.132 0.000 0.868 0.000
#> SRR1818560 1 0.3486 0.7758 0.812 0.000 0.000 0.188
#> SRR1818559 4 0.1211 0.7605 0.000 0.000 0.040 0.960
#> SRR1818562 2 0.7410 0.7056 0.184 0.636 0.112 0.068
#> SRR1818558 4 0.0592 0.7693 0.016 0.000 0.000 0.984
#> SRR1818556 1 0.0469 0.7248 0.988 0.000 0.012 0.000
#> SRR1818557 4 0.0592 0.7693 0.016 0.000 0.000 0.984
#> SRR1818555 2 0.4267 0.7284 0.188 0.788 0.024 0.000
#> SRR1818553 1 0.4454 0.7273 0.692 0.000 0.000 0.308
#> SRR1818552 2 0.0000 0.8466 0.000 1.000 0.000 0.000
#> SRR1818551 4 0.0592 0.7693 0.016 0.000 0.000 0.984
#> SRR1818550 1 0.3123 0.7382 0.844 0.000 0.000 0.156
#> SRR1818554 4 0.4426 0.6808 0.204 0.000 0.024 0.772
#> SRR1818549 1 0.3726 0.7727 0.788 0.000 0.000 0.212
#> SRR1818548 4 0.0592 0.7693 0.016 0.000 0.000 0.984
#> SRR1818546 2 0.0707 0.8425 0.000 0.980 0.020 0.000
#> SRR1818547 4 0.4426 0.6808 0.204 0.000 0.024 0.772
#> SRR1818544 2 0.6159 0.7088 0.004 0.680 0.112 0.204
#> SRR1818543 1 0.1792 0.7454 0.932 0.000 0.000 0.068
#> SRR1818542 4 0.3166 0.7060 0.016 0.116 0.000 0.868
#> SRR1818545 1 0.1302 0.7400 0.956 0.000 0.000 0.044
#> SRR1818541 4 0.4776 0.0549 0.376 0.000 0.000 0.624
#> SRR1818539 1 0.0000 0.7330 1.000 0.000 0.000 0.000
#> SRR1818540 2 0.0000 0.8466 0.000 1.000 0.000 0.000
#> SRR1818536 1 0.0336 0.7278 0.992 0.000 0.008 0.000
#> SRR1818535 4 0.0592 0.7693 0.016 0.000 0.000 0.984
#> SRR1818534 4 0.1716 0.7588 0.000 0.000 0.064 0.936
#> SRR1818538 4 0.4988 0.6737 0.204 0.016 0.024 0.756
#> SRR1818537 1 0.0000 0.7330 1.000 0.000 0.000 0.000
#> SRR1818533 1 0.4103 0.7612 0.744 0.000 0.000 0.256
#> SRR1818532 1 0.3764 0.7725 0.784 0.000 0.000 0.216
#> SRR1818531 4 0.3972 0.6850 0.204 0.000 0.008 0.788
#> SRR1818530 2 0.0707 0.8425 0.000 0.980 0.020 0.000
#> SRR1818529 1 0.4267 0.6081 0.788 0.000 0.024 0.188
#> SRR1818528 2 0.6444 0.5990 0.000 0.612 0.104 0.284
#> SRR1818527 2 0.6658 0.7753 0.092 0.708 0.112 0.088
#> SRR1818526 2 0.3958 0.8343 0.000 0.836 0.112 0.052
#> SRR1818525 2 0.7448 0.6619 0.060 0.624 0.112 0.204
#> SRR1818523 3 0.3471 0.9132 0.072 0.000 0.868 0.060
#> SRR1818524 2 0.4599 0.8197 0.000 0.800 0.112 0.088
#> SRR1818522 2 0.5594 0.7579 0.000 0.724 0.112 0.164
#> SRR1818521 2 0.0000 0.8466 0.000 1.000 0.000 0.000
#> SRR1818520 2 0.0707 0.8425 0.000 0.980 0.020 0.000
#> SRR1818518 1 0.4431 0.7295 0.696 0.000 0.000 0.304
#> SRR1818519 2 0.4039 0.8329 0.000 0.836 0.080 0.084
#> SRR1818517 2 0.0188 0.8470 0.000 0.996 0.004 0.000
#> SRR1818516 3 0.2814 0.9879 0.132 0.000 0.868 0.000
#> SRR1818515 2 0.3793 0.8366 0.000 0.844 0.112 0.044
#> SRR1818514 2 0.0707 0.8425 0.000 0.980 0.020 0.000
#> SRR1818513 2 0.0000 0.8466 0.000 1.000 0.000 0.000
#> SRR1818512 2 0.0707 0.8425 0.000 0.980 0.020 0.000
#> SRR1818510 2 0.0000 0.8466 0.000 1.000 0.000 0.000
#> SRR1818511 2 0.3108 0.8425 0.000 0.872 0.112 0.016
#> SRR1818508 4 0.6732 0.1311 0.000 0.336 0.108 0.556
#> SRR1818509 2 0.3108 0.8425 0.000 0.872 0.112 0.016
#> SRR1818507 2 0.3108 0.8425 0.000 0.872 0.112 0.016
#> SRR1818506 1 0.4454 0.7273 0.692 0.000 0.000 0.308
#> SRR1818505 2 0.4188 0.8301 0.000 0.824 0.112 0.064
#> SRR1818503 4 0.4907 -0.1313 0.420 0.000 0.000 0.580
#> SRR1818504 2 0.0707 0.8425 0.000 0.980 0.020 0.000
#> SRR1818502 1 0.4916 0.5455 0.576 0.000 0.000 0.424
#> SRR1818498 2 0.0707 0.8425 0.000 0.980 0.020 0.000
#> SRR1818500 2 0.0000 0.8466 0.000 1.000 0.000 0.000
#> SRR1818501 3 0.2814 0.9879 0.132 0.000 0.868 0.000
#> SRR1818499 4 0.7308 0.5508 0.076 0.160 0.112 0.652
#> SRR1818496 2 0.3108 0.8425 0.000 0.872 0.112 0.016
#> SRR1818494 4 0.4996 -0.3467 0.484 0.000 0.000 0.516
#> SRR1818495 2 0.6077 0.2778 0.000 0.496 0.044 0.460
#> SRR1818493 2 0.0000 0.8466 0.000 1.000 0.000 0.000
#> SRR1818492 4 0.2149 0.7382 0.000 0.000 0.088 0.912
#> SRR1818491 2 0.3958 0.8343 0.000 0.836 0.112 0.052
#> SRR1818490 1 0.4679 0.6760 0.648 0.000 0.000 0.352
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1818497 2 0.0000 0.7250 0.000 1.000 0.000 0.000 0.000
#> SRR1818600 4 0.6748 0.4875 0.308 0.000 0.052 0.536 0.104
#> SRR1818599 3 0.1671 0.9825 0.076 0.000 0.924 0.000 0.000
#> SRR1818598 1 0.0000 0.7561 1.000 0.000 0.000 0.000 0.000
#> SRR1818597 1 0.2732 0.7900 0.840 0.000 0.000 0.160 0.000
#> SRR1818596 4 0.2193 0.7525 0.000 0.060 0.028 0.912 0.000
#> SRR1818595 1 0.2732 0.7900 0.840 0.000 0.000 0.160 0.000
#> SRR1818594 1 0.3242 0.7826 0.784 0.000 0.000 0.216 0.000
#> SRR1818593 4 0.3465 0.7326 0.004 0.000 0.052 0.840 0.104
#> SRR1818592 4 0.0000 0.7598 0.000 0.000 0.000 1.000 0.000
#> SRR1818591 2 0.9044 0.3400 0.148 0.420 0.076 0.196 0.160
#> SRR1818590 2 0.5737 0.6063 0.108 0.720 0.068 0.008 0.096
#> SRR1818589 4 0.5854 0.6556 0.160 0.000 0.052 0.684 0.104
#> SRR1818587 4 0.3661 0.5396 0.000 0.276 0.000 0.724 0.000
#> SRR1818586 2 0.6654 0.4537 0.000 0.556 0.024 0.220 0.200
#> SRR1818585 5 0.2074 0.9926 0.000 0.104 0.000 0.000 0.896
#> SRR1818584 4 0.6689 0.5140 0.292 0.000 0.052 0.552 0.104
#> SRR1818583 1 0.2732 0.7900 0.840 0.000 0.000 0.160 0.000
#> SRR1818588 1 0.3452 0.7753 0.756 0.000 0.000 0.244 0.000
#> SRR1818582 4 0.0000 0.7598 0.000 0.000 0.000 1.000 0.000
#> SRR1818581 2 0.8570 0.4413 0.160 0.484 0.076 0.100 0.180
#> SRR1818579 1 0.5282 0.5417 0.712 0.000 0.020 0.168 0.100
#> SRR1818578 4 0.3292 0.7217 0.000 0.120 0.032 0.844 0.004
#> SRR1818577 2 0.1106 0.7193 0.000 0.964 0.024 0.000 0.012
#> SRR1818580 2 0.6695 0.5612 0.156 0.652 0.052 0.036 0.104
#> SRR1818575 4 0.0290 0.7560 0.008 0.000 0.000 0.992 0.000
#> SRR1818574 3 0.1671 0.9825 0.076 0.000 0.924 0.000 0.000
#> SRR1818576 1 0.2732 0.7900 0.840 0.000 0.000 0.160 0.000
#> SRR1818573 4 0.3599 0.7043 0.160 0.000 0.020 0.812 0.008
#> SRR1818572 1 0.6870 -0.0382 0.492 0.000 0.052 0.352 0.104
#> SRR1818571 1 0.0000 0.7561 1.000 0.000 0.000 0.000 0.000
#> SRR1818570 1 0.2732 0.7900 0.840 0.000 0.000 0.160 0.000
#> SRR1818568 4 0.0000 0.7598 0.000 0.000 0.000 1.000 0.000
#> SRR1818567 2 0.4292 0.5387 0.000 0.704 0.024 0.000 0.272
#> SRR1818566 3 0.1671 0.9825 0.076 0.000 0.924 0.000 0.000
#> SRR1818569 5 0.2074 0.9926 0.000 0.104 0.000 0.000 0.896
#> SRR1818565 3 0.1671 0.9825 0.076 0.000 0.924 0.000 0.000
#> SRR1818564 1 0.0000 0.7561 1.000 0.000 0.000 0.000 0.000
#> SRR1818563 1 0.6426 -0.0912 0.472 0.000 0.020 0.404 0.104
#> SRR1818561 3 0.1671 0.9825 0.076 0.000 0.924 0.000 0.000
#> SRR1818560 1 0.2732 0.7900 0.840 0.000 0.000 0.160 0.000
#> SRR1818559 4 0.0880 0.7551 0.000 0.032 0.000 0.968 0.000
#> SRR1818562 2 0.6348 0.5939 0.108 0.692 0.052 0.044 0.104
#> SRR1818558 4 0.0290 0.7588 0.000 0.008 0.000 0.992 0.000
#> SRR1818556 1 0.0000 0.7561 1.000 0.000 0.000 0.000 0.000
#> SRR1818557 4 0.0000 0.7598 0.000 0.000 0.000 1.000 0.000
#> SRR1818555 2 0.7834 0.3405 0.160 0.408 0.076 0.008 0.348
#> SRR1818553 1 0.3424 0.7768 0.760 0.000 0.000 0.240 0.000
#> SRR1818552 2 0.5891 0.4563 0.000 0.620 0.024 0.084 0.272
#> SRR1818551 4 0.0162 0.7596 0.000 0.004 0.000 0.996 0.000
#> SRR1818550 1 0.2536 0.7669 0.868 0.000 0.000 0.128 0.004
#> SRR1818554 4 0.5854 0.6556 0.160 0.000 0.052 0.684 0.104
#> SRR1818549 1 0.3210 0.7838 0.788 0.000 0.000 0.212 0.000
#> SRR1818548 4 0.0898 0.7608 0.000 0.000 0.020 0.972 0.008
#> SRR1818546 5 0.2074 0.9926 0.000 0.104 0.000 0.000 0.896
#> SRR1818547 4 0.5854 0.6556 0.160 0.000 0.052 0.684 0.104
#> SRR1818544 2 0.3170 0.7115 0.048 0.880 0.032 0.036 0.004
#> SRR1818543 1 0.1671 0.7611 0.924 0.000 0.000 0.076 0.000
#> SRR1818542 4 0.2329 0.7060 0.000 0.124 0.000 0.876 0.000
#> SRR1818545 1 0.1041 0.7567 0.964 0.000 0.000 0.032 0.004
#> SRR1818541 4 0.4138 -0.0142 0.384 0.000 0.000 0.616 0.000
#> SRR1818539 1 0.0000 0.7561 1.000 0.000 0.000 0.000 0.000
#> SRR1818540 2 0.4292 0.5387 0.000 0.704 0.024 0.000 0.272
#> SRR1818536 1 0.0000 0.7561 1.000 0.000 0.000 0.000 0.000
#> SRR1818535 4 0.0290 0.7560 0.008 0.000 0.000 0.992 0.000
#> SRR1818534 4 0.2193 0.7525 0.000 0.060 0.028 0.912 0.000
#> SRR1818538 4 0.6006 0.6537 0.160 0.004 0.052 0.680 0.104
#> SRR1818537 1 0.0000 0.7561 1.000 0.000 0.000 0.000 0.000
#> SRR1818533 1 0.3452 0.7753 0.756 0.000 0.000 0.244 0.000
#> SRR1818532 1 0.3242 0.7826 0.784 0.000 0.000 0.216 0.000
#> SRR1818531 4 0.3651 0.7045 0.160 0.000 0.028 0.808 0.004
#> SRR1818530 5 0.2074 0.9926 0.000 0.104 0.000 0.000 0.896
#> SRR1818529 1 0.5742 0.4918 0.696 0.000 0.052 0.148 0.104
#> SRR1818528 2 0.4042 0.5989 0.000 0.756 0.032 0.212 0.000
#> SRR1818527 2 0.2987 0.7117 0.056 0.884 0.032 0.028 0.000
#> SRR1818526 2 0.1485 0.7268 0.000 0.948 0.032 0.020 0.000
#> SRR1818525 2 0.3472 0.6994 0.076 0.856 0.032 0.036 0.000
#> SRR1818523 3 0.1768 0.8823 0.004 0.000 0.924 0.072 0.000
#> SRR1818524 2 0.0963 0.7277 0.000 0.964 0.000 0.036 0.000
#> SRR1818522 2 0.1836 0.7241 0.000 0.932 0.032 0.036 0.000
#> SRR1818521 2 0.4268 0.5433 0.000 0.708 0.024 0.000 0.268
#> SRR1818520 5 0.2377 0.9739 0.000 0.128 0.000 0.000 0.872
#> SRR1818518 1 0.3424 0.7768 0.760 0.000 0.000 0.240 0.000
#> SRR1818519 2 0.3039 0.6804 0.000 0.836 0.000 0.152 0.012
#> SRR1818517 2 0.3940 0.5912 0.000 0.756 0.024 0.000 0.220
#> SRR1818516 3 0.1768 0.9787 0.072 0.000 0.924 0.004 0.000
#> SRR1818515 2 0.0703 0.7265 0.000 0.976 0.000 0.024 0.000
#> SRR1818514 5 0.2074 0.9926 0.000 0.104 0.000 0.000 0.896
#> SRR1818513 2 0.4292 0.5387 0.000 0.704 0.024 0.000 0.272
#> SRR1818512 5 0.2074 0.9926 0.000 0.104 0.000 0.000 0.896
#> SRR1818510 2 0.4292 0.5387 0.000 0.704 0.024 0.000 0.272
#> SRR1818511 2 0.0000 0.7250 0.000 1.000 0.000 0.000 0.000
#> SRR1818508 2 0.4642 0.4164 0.000 0.660 0.032 0.308 0.000
#> SRR1818509 2 0.0290 0.7246 0.000 0.992 0.008 0.000 0.000
#> SRR1818507 2 0.0510 0.7269 0.000 0.984 0.000 0.016 0.000
#> SRR1818506 1 0.3424 0.7768 0.760 0.000 0.000 0.240 0.000
#> SRR1818505 2 0.1668 0.7253 0.000 0.940 0.032 0.028 0.000
#> SRR1818503 4 0.4235 -0.1760 0.424 0.000 0.000 0.576 0.000
#> SRR1818504 5 0.2074 0.9926 0.000 0.104 0.000 0.000 0.896
#> SRR1818502 1 0.4171 0.5907 0.604 0.000 0.000 0.396 0.000
#> SRR1818498 5 0.2377 0.9739 0.000 0.128 0.000 0.000 0.872
#> SRR1818500 2 0.4114 0.5801 0.000 0.732 0.024 0.000 0.244
#> SRR1818501 3 0.1671 0.9825 0.076 0.000 0.924 0.000 0.000
#> SRR1818499 4 0.6264 0.1524 0.072 0.444 0.028 0.456 0.000
#> SRR1818496 2 0.0162 0.7259 0.000 0.996 0.004 0.000 0.000
#> SRR1818494 1 0.4307 0.3662 0.500 0.000 0.000 0.500 0.000
#> SRR1818495 2 0.4291 0.2741 0.000 0.536 0.000 0.464 0.000
#> SRR1818493 2 0.4292 0.5387 0.000 0.704 0.024 0.000 0.272
#> SRR1818492 4 0.4126 0.3888 0.000 0.380 0.000 0.620 0.000
#> SRR1818491 2 0.1386 0.7274 0.000 0.952 0.032 0.016 0.000
#> SRR1818490 1 0.3774 0.7324 0.704 0.000 0.000 0.296 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1818497 2 0.0000 0.6318 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818600 6 0.2597 0.7189 0.176 0.000 0 0.000 0.000 0.824
#> SRR1818599 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1818598 1 0.2340 0.7921 0.852 0.000 0 0.000 0.000 0.148
#> SRR1818597 1 0.0000 0.8561 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818596 4 0.5229 0.9156 0.108 0.016 0 0.636 0.000 0.240
#> SRR1818595 1 0.0000 0.8561 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818594 1 0.0547 0.8516 0.980 0.000 0 0.020 0.000 0.000
#> SRR1818593 6 0.3464 0.4182 0.108 0.000 0 0.084 0.000 0.808
#> SRR1818592 4 0.4809 0.9241 0.108 0.000 0 0.652 0.000 0.240
#> SRR1818591 6 0.3634 0.5721 0.000 0.000 0 0.356 0.000 0.644
#> SRR1818590 6 0.4498 0.5759 0.000 0.056 0 0.300 0.000 0.644
#> SRR1818589 6 0.0260 0.6795 0.000 0.000 0 0.008 0.000 0.992
#> SRR1818587 2 0.5592 -0.0784 0.148 0.484 0 0.368 0.000 0.000
#> SRR1818586 2 0.6406 0.3225 0.028 0.428 0 0.352 0.192 0.000
#> SRR1818585 5 0.0000 0.9213 0.000 0.000 0 0.000 1.000 0.000
#> SRR1818584 6 0.3456 0.7177 0.172 0.000 0 0.040 0.000 0.788
#> SRR1818583 1 0.0000 0.8561 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818588 1 0.0692 0.8504 0.976 0.000 0 0.020 0.000 0.004
#> SRR1818582 4 0.4809 0.9241 0.108 0.000 0 0.652 0.000 0.240
#> SRR1818581 6 0.3607 0.5753 0.000 0.000 0 0.348 0.000 0.652
#> SRR1818579 6 0.3925 0.6853 0.200 0.000 0 0.056 0.000 0.744
#> SRR1818578 4 0.5608 0.7789 0.032 0.096 0 0.588 0.000 0.284
#> SRR1818577 2 0.3847 0.4966 0.000 0.644 0 0.348 0.008 0.000
#> SRR1818580 6 0.3151 0.5992 0.000 0.252 0 0.000 0.000 0.748
#> SRR1818575 4 0.5167 0.9181 0.148 0.000 0 0.612 0.000 0.240
#> SRR1818574 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1818576 1 0.0000 0.8561 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818573 4 0.3672 0.7682 0.000 0.000 0 0.632 0.000 0.368
#> SRR1818572 6 0.2631 0.7151 0.180 0.000 0 0.000 0.000 0.820
#> SRR1818571 1 0.2340 0.7921 0.852 0.000 0 0.000 0.000 0.148
#> SRR1818570 1 0.0000 0.8561 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818568 4 0.5167 0.9181 0.148 0.000 0 0.612 0.000 0.240
#> SRR1818567 2 0.6034 0.2653 0.000 0.400 0 0.348 0.252 0.000
#> SRR1818566 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1818569 5 0.0000 0.9213 0.000 0.000 0 0.000 1.000 0.000
#> SRR1818565 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1818564 1 0.2340 0.7921 0.852 0.000 0 0.000 0.000 0.148
#> SRR1818563 6 0.3712 0.7047 0.180 0.000 0 0.052 0.000 0.768
#> SRR1818561 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1818560 1 0.0000 0.8561 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818559 4 0.5005 0.9223 0.108 0.008 0 0.652 0.000 0.232
#> SRR1818562 6 0.3288 0.5841 0.000 0.276 0 0.000 0.000 0.724
#> SRR1818558 4 0.5167 0.9181 0.148 0.000 0 0.612 0.000 0.240
#> SRR1818556 1 0.2340 0.7921 0.852 0.000 0 0.000 0.000 0.148
#> SRR1818557 4 0.4809 0.9241 0.108 0.000 0 0.652 0.000 0.240
#> SRR1818555 6 0.3607 0.5753 0.000 0.000 0 0.348 0.000 0.652
#> SRR1818553 1 0.0547 0.8516 0.980 0.000 0 0.020 0.000 0.000
#> SRR1818552 2 0.6034 0.2653 0.000 0.400 0 0.348 0.252 0.000
#> SRR1818551 4 0.5167 0.9181 0.148 0.000 0 0.612 0.000 0.240
#> SRR1818550 1 0.3403 0.7243 0.768 0.000 0 0.020 0.000 0.212
#> SRR1818554 6 0.0260 0.6795 0.000 0.000 0 0.008 0.000 0.992
#> SRR1818549 1 0.0000 0.8561 1.000 0.000 0 0.000 0.000 0.000
#> SRR1818548 4 0.4915 0.9148 0.108 0.000 0 0.632 0.000 0.260
#> SRR1818546 5 0.0000 0.9213 0.000 0.000 0 0.000 1.000 0.000
#> SRR1818547 6 0.0000 0.6839 0.000 0.000 0 0.000 0.000 1.000
#> SRR1818544 2 0.2129 0.6211 0.000 0.904 0 0.040 0.000 0.056
#> SRR1818543 1 0.2340 0.7921 0.852 0.000 0 0.000 0.000 0.148
#> SRR1818542 4 0.5496 0.9126 0.148 0.012 0 0.600 0.000 0.240
#> SRR1818545 1 0.2416 0.7885 0.844 0.000 0 0.000 0.000 0.156
#> SRR1818541 1 0.5248 0.0754 0.572 0.000 0 0.304 0.000 0.124
#> SRR1818539 1 0.2340 0.7921 0.852 0.000 0 0.000 0.000 0.148
#> SRR1818540 2 0.6034 0.2653 0.000 0.400 0 0.348 0.252 0.000
#> SRR1818536 1 0.2340 0.7921 0.852 0.000 0 0.000 0.000 0.148
#> SRR1818535 4 0.5167 0.9181 0.148 0.000 0 0.612 0.000 0.240
#> SRR1818534 4 0.5229 0.9156 0.108 0.016 0 0.636 0.000 0.240
#> SRR1818538 6 0.0000 0.6839 0.000 0.000 0 0.000 0.000 1.000
#> SRR1818537 1 0.2340 0.7921 0.852 0.000 0 0.000 0.000 0.148
#> SRR1818533 1 0.0692 0.8504 0.976 0.000 0 0.020 0.000 0.004
#> SRR1818532 1 0.0547 0.8516 0.980 0.000 0 0.020 0.000 0.000
#> SRR1818531 4 0.3854 0.6376 0.000 0.000 0 0.536 0.000 0.464
#> SRR1818530 5 0.0000 0.9213 0.000 0.000 0 0.000 1.000 0.000
#> SRR1818529 6 0.3551 0.7031 0.192 0.000 0 0.036 0.000 0.772
#> SRR1818528 2 0.3133 0.5324 0.000 0.780 0 0.212 0.000 0.008
#> SRR1818527 2 0.1918 0.6160 0.000 0.904 0 0.008 0.000 0.088
#> SRR1818526 2 0.1141 0.6290 0.000 0.948 0 0.000 0.000 0.052
#> SRR1818525 2 0.1970 0.6129 0.000 0.900 0 0.008 0.000 0.092
#> SRR1818523 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1818524 2 0.2728 0.6001 0.000 0.860 0 0.040 0.000 0.100
#> SRR1818522 2 0.1655 0.6277 0.008 0.932 0 0.008 0.000 0.052
#> SRR1818521 2 0.6024 0.2707 0.000 0.404 0 0.348 0.248 0.000
#> SRR1818520 5 0.3101 0.7273 0.000 0.000 0 0.244 0.756 0.000
#> SRR1818518 1 0.0146 0.8556 0.996 0.000 0 0.004 0.000 0.000
#> SRR1818519 2 0.6247 0.3789 0.072 0.620 0 0.104 0.024 0.180
#> SRR1818517 2 0.5812 0.3366 0.000 0.460 0 0.348 0.192 0.000
#> SRR1818516 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1818515 2 0.0000 0.6318 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818514 5 0.0000 0.9213 0.000 0.000 0 0.000 1.000 0.000
#> SRR1818513 2 0.6034 0.2653 0.000 0.400 0 0.348 0.252 0.000
#> SRR1818512 5 0.0000 0.9213 0.000 0.000 0 0.000 1.000 0.000
#> SRR1818510 2 0.6034 0.2653 0.000 0.400 0 0.348 0.252 0.000
#> SRR1818511 2 0.0000 0.6318 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818508 2 0.4709 0.4673 0.040 0.712 0 0.196 0.000 0.052
#> SRR1818509 2 0.3428 0.5261 0.000 0.696 0 0.304 0.000 0.000
#> SRR1818507 2 0.0000 0.6318 0.000 1.000 0 0.000 0.000 0.000
#> SRR1818506 1 0.0146 0.8556 0.996 0.000 0 0.004 0.000 0.000
#> SRR1818505 2 0.1398 0.6285 0.000 0.940 0 0.008 0.000 0.052
#> SRR1818503 1 0.4808 0.1440 0.576 0.000 0 0.360 0.000 0.064
#> SRR1818504 5 0.0000 0.9213 0.000 0.000 0 0.000 1.000 0.000
#> SRR1818502 1 0.3088 0.6834 0.808 0.000 0 0.172 0.000 0.020
#> SRR1818498 5 0.3351 0.6767 0.000 0.000 0 0.288 0.712 0.000
#> SRR1818500 2 0.3923 0.5041 0.000 0.748 0 0.060 0.192 0.000
#> SRR1818501 3 0.0000 1.0000 0.000 0.000 1 0.000 0.000 0.000
#> SRR1818499 2 0.4575 0.2442 0.000 0.600 0 0.352 0.000 0.048
#> SRR1818496 2 0.0260 0.6321 0.000 0.992 0 0.000 0.000 0.008
#> SRR1818494 1 0.4368 0.3886 0.656 0.000 0 0.296 0.000 0.048
#> SRR1818495 2 0.7480 -0.3514 0.148 0.344 0 0.292 0.000 0.216
#> SRR1818493 2 0.6034 0.2653 0.000 0.400 0 0.348 0.252 0.000
#> SRR1818492 2 0.4482 0.2026 0.040 0.600 0 0.360 0.000 0.000
#> SRR1818491 2 0.1141 0.6290 0.000 0.948 0 0.000 0.000 0.052
#> SRR1818490 1 0.1757 0.8096 0.916 0.000 0 0.076 0.000 0.008
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 16183 rows and 111 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'mclust' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 4.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.239 0.578 0.782 0.3523 0.865 0.865
#> 3 3 0.421 0.518 0.774 0.7003 0.514 0.444
#> 4 4 0.764 0.869 0.926 0.1554 0.692 0.384
#> 5 5 0.739 0.771 0.847 0.0839 0.909 0.713
#> 6 6 0.718 0.630 0.774 0.0490 0.971 0.886
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 4
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1818497 1 0.4815 0.622 0.896 0.104
#> SRR1818600 1 1.0000 0.328 0.504 0.496
#> SRR1818599 2 0.6887 0.971 0.184 0.816
#> SRR1818598 1 1.0000 0.328 0.504 0.496
#> SRR1818597 1 0.3879 0.680 0.924 0.076
#> SRR1818596 1 0.5629 0.663 0.868 0.132
#> SRR1818595 1 0.4161 0.678 0.916 0.084
#> SRR1818594 1 0.2423 0.681 0.960 0.040
#> SRR1818593 1 0.9909 0.383 0.556 0.444
#> SRR1818592 1 0.4562 0.675 0.904 0.096
#> SRR1818591 1 1.0000 0.328 0.504 0.496
#> SRR1818590 1 1.0000 0.328 0.504 0.496
#> SRR1818589 1 1.0000 0.328 0.504 0.496
#> SRR1818587 1 0.6148 0.656 0.848 0.152
#> SRR1818586 1 0.7056 0.538 0.808 0.192
#> SRR1818585 1 0.0376 0.680 0.996 0.004
#> SRR1818584 1 1.0000 0.328 0.504 0.496
#> SRR1818583 1 0.0938 0.681 0.988 0.012
#> SRR1818588 1 0.5842 0.661 0.860 0.140
#> SRR1818582 1 0.6343 0.652 0.840 0.160
#> SRR1818581 1 1.0000 0.328 0.504 0.496
#> SRR1818579 1 1.0000 0.328 0.504 0.496
#> SRR1818578 1 0.0672 0.682 0.992 0.008
#> SRR1818577 1 0.2778 0.660 0.952 0.048
#> SRR1818580 1 1.0000 0.328 0.504 0.496
#> SRR1818575 1 0.4431 0.676 0.908 0.092
#> SRR1818574 2 0.7219 0.996 0.200 0.800
#> SRR1818576 1 0.1843 0.681 0.972 0.028
#> SRR1818573 1 1.0000 0.328 0.504 0.496
#> SRR1818572 1 1.0000 0.328 0.504 0.496
#> SRR1818571 1 1.0000 0.328 0.504 0.496
#> SRR1818570 1 0.1633 0.680 0.976 0.024
#> SRR1818568 1 0.2948 0.681 0.948 0.052
#> SRR1818567 1 0.1184 0.680 0.984 0.016
#> SRR1818566 2 0.7219 0.996 0.200 0.800
#> SRR1818569 1 0.0376 0.680 0.996 0.004
#> SRR1818565 2 0.7219 0.996 0.200 0.800
#> SRR1818564 1 0.7299 0.619 0.796 0.204
#> SRR1818563 1 1.0000 0.328 0.504 0.496
#> SRR1818561 2 0.7219 0.996 0.200 0.800
#> SRR1818560 1 0.4815 0.674 0.896 0.104
#> SRR1818559 1 0.1184 0.680 0.984 0.016
#> SRR1818562 1 1.0000 0.328 0.504 0.496
#> SRR1818558 1 0.5294 0.669 0.880 0.120
#> SRR1818556 1 1.0000 0.328 0.504 0.496
#> SRR1818557 1 0.5946 0.656 0.856 0.144
#> SRR1818555 1 1.0000 0.328 0.504 0.496
#> SRR1818553 1 0.1414 0.679 0.980 0.020
#> SRR1818552 1 0.7056 0.538 0.808 0.192
#> SRR1818551 1 0.4022 0.679 0.920 0.080
#> SRR1818550 1 0.9909 0.388 0.556 0.444
#> SRR1818554 1 1.0000 0.328 0.504 0.496
#> SRR1818549 1 0.9795 0.333 0.584 0.416
#> SRR1818548 1 0.6148 0.652 0.848 0.152
#> SRR1818546 1 0.9775 0.417 0.588 0.412
#> SRR1818547 1 1.0000 0.328 0.504 0.496
#> SRR1818544 1 0.2603 0.663 0.956 0.044
#> SRR1818543 1 0.8909 0.529 0.692 0.308
#> SRR1818542 1 0.7056 0.556 0.808 0.192
#> SRR1818545 1 1.0000 0.328 0.504 0.496
#> SRR1818541 1 0.5946 0.656 0.856 0.144
#> SRR1818539 1 0.9795 0.413 0.584 0.416
#> SRR1818540 1 0.7056 0.538 0.808 0.192
#> SRR1818536 1 1.0000 0.328 0.504 0.496
#> SRR1818535 1 0.8813 0.590 0.700 0.300
#> SRR1818534 1 0.0672 0.681 0.992 0.008
#> SRR1818538 1 1.0000 0.328 0.504 0.496
#> SRR1818537 1 1.0000 0.328 0.504 0.496
#> SRR1818533 1 0.3274 0.681 0.940 0.060
#> SRR1818532 1 0.6148 0.656 0.848 0.152
#> SRR1818531 1 0.9815 0.408 0.580 0.420
#> SRR1818530 1 0.0376 0.680 0.996 0.004
#> SRR1818529 1 1.0000 0.328 0.504 0.496
#> SRR1818528 1 0.7056 0.538 0.808 0.192
#> SRR1818527 1 0.7056 0.538 0.808 0.192
#> SRR1818526 1 0.7056 0.538 0.808 0.192
#> SRR1818525 1 0.7056 0.538 0.808 0.192
#> SRR1818523 2 0.7219 0.996 0.200 0.800
#> SRR1818524 1 0.7056 0.538 0.808 0.192
#> SRR1818522 1 0.7056 0.538 0.808 0.192
#> SRR1818521 1 0.6973 0.542 0.812 0.188
#> SRR1818520 1 0.0376 0.680 0.996 0.004
#> SRR1818518 1 0.7056 0.538 0.808 0.192
#> SRR1818519 1 0.5946 0.656 0.856 0.144
#> SRR1818517 1 0.0376 0.680 0.996 0.004
#> SRR1818516 2 0.7219 0.996 0.200 0.800
#> SRR1818515 1 0.7056 0.538 0.808 0.192
#> SRR1818514 1 0.0376 0.680 0.996 0.004
#> SRR1818513 1 0.0376 0.680 0.996 0.004
#> SRR1818512 1 0.0376 0.680 0.996 0.004
#> SRR1818510 1 0.0376 0.680 0.996 0.004
#> SRR1818511 1 0.4939 0.619 0.892 0.108
#> SRR1818508 1 0.7056 0.538 0.808 0.192
#> SRR1818509 1 0.0376 0.680 0.996 0.004
#> SRR1818507 1 0.7056 0.538 0.808 0.192
#> SRR1818506 1 0.4431 0.631 0.908 0.092
#> SRR1818505 1 0.7056 0.538 0.808 0.192
#> SRR1818503 1 0.1633 0.681 0.976 0.024
#> SRR1818504 1 0.0376 0.680 0.996 0.004
#> SRR1818502 1 0.5408 0.667 0.876 0.124
#> SRR1818498 1 0.3114 0.656 0.944 0.056
#> SRR1818500 1 0.7056 0.538 0.808 0.192
#> SRR1818501 2 0.7219 0.996 0.200 0.800
#> SRR1818499 1 0.7056 0.538 0.808 0.192
#> SRR1818496 1 0.6973 0.542 0.812 0.188
#> SRR1818494 1 0.4298 0.634 0.912 0.088
#> SRR1818495 1 0.5946 0.656 0.856 0.144
#> SRR1818493 1 0.5294 0.609 0.880 0.120
#> SRR1818492 1 0.7056 0.538 0.808 0.192
#> SRR1818491 1 0.7056 0.538 0.808 0.192
#> SRR1818490 1 0.7056 0.538 0.808 0.192
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1818497 2 0.0000 0.7998 0.000 1.000 0.000
#> SRR1818600 1 0.5948 -0.2288 0.640 0.000 0.360
#> SRR1818599 3 0.4914 0.6784 0.068 0.088 0.844
#> SRR1818598 1 0.3116 0.3909 0.892 0.000 0.108
#> SRR1818597 2 0.9512 0.1309 0.384 0.428 0.188
#> SRR1818596 1 0.8918 0.0978 0.492 0.380 0.128
#> SRR1818595 2 0.9399 0.2810 0.332 0.480 0.188
#> SRR1818594 1 0.9436 0.1247 0.468 0.344 0.188
#> SRR1818593 1 0.2796 0.4127 0.908 0.000 0.092
#> SRR1818592 2 0.9241 0.1757 0.388 0.456 0.156
#> SRR1818591 3 0.6495 0.6004 0.460 0.004 0.536
#> SRR1818590 3 0.6505 0.5912 0.468 0.004 0.528
#> SRR1818589 1 0.5810 -0.1557 0.664 0.000 0.336
#> SRR1818587 1 0.8773 0.2180 0.536 0.336 0.128
#> SRR1818586 2 0.3573 0.7701 0.004 0.876 0.120
#> SRR1818585 2 0.1289 0.7963 0.032 0.968 0.000
#> SRR1818584 1 0.4002 0.3170 0.840 0.000 0.160
#> SRR1818583 1 0.9339 0.1985 0.496 0.316 0.188
#> SRR1818588 2 0.9235 0.1885 0.384 0.460 0.156
#> SRR1818582 1 0.8770 0.3155 0.572 0.272 0.156
#> SRR1818581 3 0.6495 0.6004 0.460 0.004 0.536
#> SRR1818579 1 0.1529 0.4627 0.960 0.000 0.040
#> SRR1818578 1 0.8514 0.1626 0.528 0.372 0.100
#> SRR1818577 2 0.2356 0.7915 0.000 0.928 0.072
#> SRR1818580 1 0.4399 0.2695 0.812 0.000 0.188
#> SRR1818575 2 0.8941 0.4007 0.300 0.544 0.156
#> SRR1818574 3 0.3129 0.6644 0.008 0.088 0.904
#> SRR1818576 1 0.9385 0.1689 0.484 0.328 0.188
#> SRR1818573 1 0.4346 0.2716 0.816 0.000 0.184
#> SRR1818572 3 0.6295 0.5868 0.472 0.000 0.528
#> SRR1818571 1 0.0237 0.4847 0.996 0.000 0.004
#> SRR1818570 1 0.9483 0.0604 0.448 0.364 0.188
#> SRR1818568 2 0.8179 0.5679 0.208 0.640 0.152
#> SRR1818567 2 0.2496 0.7933 0.004 0.928 0.068
#> SRR1818566 3 0.3129 0.6644 0.008 0.088 0.904
#> SRR1818569 2 0.1620 0.7990 0.024 0.964 0.012
#> SRR1818565 3 0.3375 0.6586 0.008 0.100 0.892
#> SRR1818564 1 0.4744 0.4874 0.836 0.028 0.136
#> SRR1818563 1 0.0747 0.4790 0.984 0.000 0.016
#> SRR1818561 3 0.3129 0.6644 0.008 0.088 0.904
#> SRR1818560 1 0.9342 0.0437 0.452 0.380 0.168
#> SRR1818559 2 0.8799 0.4134 0.300 0.556 0.144
#> SRR1818562 1 0.4883 0.2165 0.788 0.004 0.208
#> SRR1818558 2 0.8459 0.5258 0.232 0.612 0.156
#> SRR1818556 1 0.0237 0.4847 0.996 0.000 0.004
#> SRR1818557 1 0.8489 0.3410 0.596 0.268 0.136
#> SRR1818555 3 0.6495 0.6004 0.460 0.004 0.536
#> SRR1818553 2 0.7975 0.6082 0.160 0.660 0.180
#> SRR1818552 2 0.3573 0.7701 0.004 0.876 0.120
#> SRR1818551 2 0.6880 0.6765 0.108 0.736 0.156
#> SRR1818550 1 0.0000 0.4859 1.000 0.000 0.000
#> SRR1818554 1 0.4121 0.3048 0.832 0.000 0.168
#> SRR1818549 3 0.8261 0.5371 0.340 0.092 0.568
#> SRR1818548 1 0.7835 0.4251 0.656 0.232 0.112
#> SRR1818546 1 0.6722 0.1920 0.720 0.060 0.220
#> SRR1818547 1 0.5706 -0.1003 0.680 0.000 0.320
#> SRR1818544 2 0.6468 0.1845 0.444 0.552 0.004
#> SRR1818543 1 0.3502 0.4699 0.896 0.084 0.020
#> SRR1818542 2 0.5514 0.7256 0.044 0.800 0.156
#> SRR1818545 1 0.3412 0.3695 0.876 0.000 0.124
#> SRR1818541 2 0.8734 0.1411 0.424 0.468 0.108
#> SRR1818539 1 0.3237 0.4947 0.912 0.032 0.056
#> SRR1818540 2 0.3349 0.7759 0.004 0.888 0.108
#> SRR1818536 1 0.5968 -0.2718 0.636 0.000 0.364
#> SRR1818535 2 0.3377 0.7811 0.012 0.896 0.092
#> SRR1818534 2 0.8599 0.4639 0.276 0.584 0.140
#> SRR1818538 3 0.6500 0.5966 0.464 0.004 0.532
#> SRR1818537 1 0.0892 0.4766 0.980 0.000 0.020
#> SRR1818533 2 0.9518 0.1019 0.392 0.420 0.188
#> SRR1818532 1 0.9172 0.1265 0.488 0.356 0.156
#> SRR1818531 1 0.1182 0.4918 0.976 0.012 0.012
#> SRR1818530 2 0.0237 0.7991 0.004 0.996 0.000
#> SRR1818529 3 0.6291 0.5928 0.468 0.000 0.532
#> SRR1818528 2 0.1525 0.7968 0.004 0.964 0.032
#> SRR1818527 2 0.0237 0.8015 0.004 0.996 0.000
#> SRR1818526 2 0.1170 0.7977 0.008 0.976 0.016
#> SRR1818525 2 0.0661 0.7992 0.004 0.988 0.008
#> SRR1818523 3 0.4235 0.6461 0.000 0.176 0.824
#> SRR1818524 2 0.0237 0.8015 0.004 0.996 0.000
#> SRR1818522 2 0.0237 0.8015 0.004 0.996 0.000
#> SRR1818521 2 0.1289 0.7908 0.032 0.968 0.000
#> SRR1818520 2 0.0424 0.7995 0.008 0.992 0.000
#> SRR1818518 2 0.3112 0.7823 0.004 0.900 0.096
#> SRR1818519 1 0.6896 0.2305 0.588 0.392 0.020
#> SRR1818517 2 0.0000 0.7998 0.000 1.000 0.000
#> SRR1818516 3 0.4235 0.6461 0.000 0.176 0.824
#> SRR1818515 2 0.0475 0.8006 0.004 0.992 0.004
#> SRR1818514 2 0.5678 0.4406 0.316 0.684 0.000
#> SRR1818513 2 0.0983 0.8011 0.004 0.980 0.016
#> SRR1818512 2 0.5254 0.5399 0.264 0.736 0.000
#> SRR1818510 2 0.0983 0.8011 0.004 0.980 0.016
#> SRR1818511 2 0.0237 0.8015 0.004 0.996 0.000
#> SRR1818508 2 0.0237 0.8015 0.004 0.996 0.000
#> SRR1818509 2 0.1267 0.8006 0.004 0.972 0.024
#> SRR1818507 2 0.0592 0.8017 0.012 0.988 0.000
#> SRR1818506 2 0.3193 0.7806 0.004 0.896 0.100
#> SRR1818505 2 0.0237 0.8015 0.004 0.996 0.000
#> SRR1818503 2 0.5285 0.7467 0.064 0.824 0.112
#> SRR1818504 2 0.6307 0.0549 0.488 0.512 0.000
#> SRR1818502 2 0.8158 0.5550 0.228 0.636 0.136
#> SRR1818498 2 0.1482 0.8006 0.020 0.968 0.012
#> SRR1818500 2 0.0237 0.8015 0.004 0.996 0.000
#> SRR1818501 3 0.4235 0.6461 0.000 0.176 0.824
#> SRR1818499 2 0.0237 0.8015 0.004 0.996 0.000
#> SRR1818496 2 0.0424 0.8010 0.008 0.992 0.000
#> SRR1818494 2 0.4094 0.7718 0.028 0.872 0.100
#> SRR1818495 1 0.7828 0.2825 0.592 0.340 0.068
#> SRR1818493 2 0.4504 0.6203 0.196 0.804 0.000
#> SRR1818492 2 0.0237 0.8015 0.004 0.996 0.000
#> SRR1818491 2 0.0661 0.7992 0.004 0.988 0.008
#> SRR1818490 2 0.2496 0.7919 0.004 0.928 0.068
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1818497 2 0.1211 0.858 0.040 0.960 0.000 0.000
#> SRR1818600 4 0.0000 0.984 0.000 0.000 0.000 1.000
#> SRR1818599 3 0.2214 0.946 0.044 0.028 0.928 0.000
#> SRR1818598 4 0.0000 0.984 0.000 0.000 0.000 1.000
#> SRR1818597 1 0.0000 0.901 1.000 0.000 0.000 0.000
#> SRR1818596 1 0.1118 0.909 0.964 0.036 0.000 0.000
#> SRR1818595 1 0.0000 0.901 1.000 0.000 0.000 0.000
#> SRR1818594 1 0.0000 0.901 1.000 0.000 0.000 0.000
#> SRR1818593 4 0.0804 0.959 0.012 0.008 0.000 0.980
#> SRR1818592 1 0.0817 0.910 0.976 0.024 0.000 0.000
#> SRR1818591 4 0.0000 0.984 0.000 0.000 0.000 1.000
#> SRR1818590 4 0.0000 0.984 0.000 0.000 0.000 1.000
#> SRR1818589 4 0.0000 0.984 0.000 0.000 0.000 1.000
#> SRR1818587 1 0.1022 0.909 0.968 0.032 0.000 0.000
#> SRR1818586 1 0.3311 0.779 0.828 0.172 0.000 0.000
#> SRR1818585 2 0.1398 0.857 0.040 0.956 0.004 0.000
#> SRR1818584 4 0.0000 0.984 0.000 0.000 0.000 1.000
#> SRR1818583 1 0.0000 0.901 1.000 0.000 0.000 0.000
#> SRR1818588 1 0.0469 0.907 0.988 0.012 0.000 0.000
#> SRR1818582 1 0.2011 0.871 0.920 0.080 0.000 0.000
#> SRR1818581 4 0.0000 0.984 0.000 0.000 0.000 1.000
#> SRR1818579 4 0.0000 0.984 0.000 0.000 0.000 1.000
#> SRR1818578 2 0.4888 0.469 0.412 0.588 0.000 0.000
#> SRR1818577 2 0.4761 0.491 0.332 0.664 0.004 0.000
#> SRR1818580 4 0.0000 0.984 0.000 0.000 0.000 1.000
#> SRR1818575 1 0.0469 0.907 0.988 0.012 0.000 0.000
#> SRR1818574 3 0.3542 0.869 0.120 0.028 0.852 0.000
#> SRR1818576 1 0.0000 0.901 1.000 0.000 0.000 0.000
#> SRR1818573 4 0.0000 0.984 0.000 0.000 0.000 1.000
#> SRR1818572 4 0.0000 0.984 0.000 0.000 0.000 1.000
#> SRR1818571 4 0.0000 0.984 0.000 0.000 0.000 1.000
#> SRR1818570 1 0.0000 0.901 1.000 0.000 0.000 0.000
#> SRR1818568 1 0.0817 0.910 0.976 0.024 0.000 0.000
#> SRR1818567 2 0.3123 0.782 0.156 0.844 0.000 0.000
#> SRR1818566 3 0.2214 0.946 0.044 0.028 0.928 0.000
#> SRR1818569 2 0.1398 0.857 0.040 0.956 0.004 0.000
#> SRR1818565 3 0.2214 0.946 0.044 0.028 0.928 0.000
#> SRR1818564 1 0.0817 0.910 0.976 0.024 0.000 0.000
#> SRR1818563 4 0.0000 0.984 0.000 0.000 0.000 1.000
#> SRR1818561 3 0.2214 0.946 0.044 0.028 0.928 0.000
#> SRR1818560 1 0.0707 0.910 0.980 0.020 0.000 0.000
#> SRR1818559 1 0.1022 0.910 0.968 0.032 0.000 0.000
#> SRR1818562 4 0.0000 0.984 0.000 0.000 0.000 1.000
#> SRR1818558 1 0.0469 0.907 0.988 0.012 0.000 0.000
#> SRR1818556 4 0.0000 0.984 0.000 0.000 0.000 1.000
#> SRR1818557 1 0.3444 0.753 0.816 0.184 0.000 0.000
#> SRR1818555 4 0.0000 0.984 0.000 0.000 0.000 1.000
#> SRR1818553 1 0.0817 0.910 0.976 0.024 0.000 0.000
#> SRR1818552 1 0.3311 0.779 0.828 0.172 0.000 0.000
#> SRR1818551 1 0.0817 0.910 0.976 0.024 0.000 0.000
#> SRR1818550 4 0.0188 0.980 0.000 0.004 0.000 0.996
#> SRR1818554 4 0.0000 0.984 0.000 0.000 0.000 1.000
#> SRR1818549 1 0.5940 0.610 0.692 0.188 0.000 0.120
#> SRR1818548 2 0.5872 0.486 0.384 0.576 0.000 0.040
#> SRR1818546 4 0.0817 0.957 0.000 0.024 0.000 0.976
#> SRR1818547 4 0.0000 0.984 0.000 0.000 0.000 1.000
#> SRR1818544 2 0.3356 0.843 0.176 0.824 0.000 0.000
#> SRR1818543 1 0.7515 0.207 0.448 0.188 0.000 0.364
#> SRR1818542 1 0.3172 0.778 0.840 0.160 0.000 0.000
#> SRR1818545 4 0.0000 0.984 0.000 0.000 0.000 1.000
#> SRR1818541 1 0.0817 0.910 0.976 0.024 0.000 0.000
#> SRR1818539 4 0.4290 0.692 0.164 0.036 0.000 0.800
#> SRR1818540 1 0.4955 0.267 0.556 0.444 0.000 0.000
#> SRR1818536 4 0.0000 0.984 0.000 0.000 0.000 1.000
#> SRR1818535 1 0.1211 0.907 0.960 0.040 0.000 0.000
#> SRR1818534 1 0.1389 0.903 0.952 0.048 0.000 0.000
#> SRR1818538 4 0.0000 0.984 0.000 0.000 0.000 1.000
#> SRR1818537 4 0.0000 0.984 0.000 0.000 0.000 1.000
#> SRR1818533 1 0.0000 0.901 1.000 0.000 0.000 0.000
#> SRR1818532 1 0.0469 0.907 0.988 0.012 0.000 0.000
#> SRR1818531 4 0.2021 0.896 0.040 0.024 0.000 0.936
#> SRR1818530 2 0.1398 0.857 0.040 0.956 0.004 0.000
#> SRR1818529 4 0.0000 0.984 0.000 0.000 0.000 1.000
#> SRR1818528 1 0.4790 0.306 0.620 0.380 0.000 0.000
#> SRR1818527 2 0.2868 0.859 0.136 0.864 0.000 0.000
#> SRR1818526 2 0.2868 0.859 0.136 0.864 0.000 0.000
#> SRR1818525 2 0.2868 0.859 0.136 0.864 0.000 0.000
#> SRR1818523 3 0.0188 0.925 0.000 0.004 0.996 0.000
#> SRR1818524 2 0.2921 0.858 0.140 0.860 0.000 0.000
#> SRR1818522 2 0.2868 0.859 0.136 0.864 0.000 0.000
#> SRR1818521 2 0.0000 0.833 0.000 1.000 0.000 0.000
#> SRR1818520 2 0.1398 0.857 0.040 0.956 0.004 0.000
#> SRR1818518 1 0.1902 0.892 0.932 0.064 0.004 0.000
#> SRR1818519 1 0.1211 0.908 0.960 0.040 0.000 0.000
#> SRR1818517 2 0.1211 0.858 0.040 0.960 0.000 0.000
#> SRR1818516 3 0.0188 0.925 0.000 0.004 0.996 0.000
#> SRR1818515 2 0.2868 0.859 0.136 0.864 0.000 0.000
#> SRR1818514 2 0.1211 0.858 0.040 0.960 0.000 0.000
#> SRR1818513 2 0.1398 0.857 0.040 0.956 0.004 0.000
#> SRR1818512 2 0.1211 0.858 0.040 0.960 0.000 0.000
#> SRR1818510 2 0.1398 0.857 0.040 0.956 0.004 0.000
#> SRR1818511 2 0.1389 0.860 0.048 0.952 0.000 0.000
#> SRR1818508 2 0.2868 0.859 0.136 0.864 0.000 0.000
#> SRR1818509 2 0.2888 0.809 0.124 0.872 0.004 0.000
#> SRR1818507 2 0.2868 0.859 0.136 0.864 0.000 0.000
#> SRR1818506 1 0.1118 0.909 0.964 0.036 0.000 0.000
#> SRR1818505 2 0.2868 0.859 0.136 0.864 0.000 0.000
#> SRR1818503 1 0.0921 0.910 0.972 0.028 0.000 0.000
#> SRR1818504 2 0.2704 0.864 0.124 0.876 0.000 0.000
#> SRR1818502 1 0.0817 0.910 0.976 0.024 0.000 0.000
#> SRR1818498 2 0.1398 0.857 0.040 0.956 0.004 0.000
#> SRR1818500 2 0.2868 0.859 0.136 0.864 0.000 0.000
#> SRR1818501 3 0.0188 0.925 0.000 0.004 0.996 0.000
#> SRR1818499 2 0.2868 0.859 0.136 0.864 0.000 0.000
#> SRR1818496 2 0.1792 0.861 0.068 0.932 0.000 0.000
#> SRR1818494 1 0.0921 0.910 0.972 0.028 0.000 0.000
#> SRR1818495 1 0.1118 0.909 0.964 0.036 0.000 0.000
#> SRR1818493 2 0.1118 0.856 0.036 0.964 0.000 0.000
#> SRR1818492 1 0.4072 0.664 0.748 0.252 0.000 0.000
#> SRR1818491 2 0.2868 0.859 0.136 0.864 0.000 0.000
#> SRR1818490 1 0.2011 0.880 0.920 0.080 0.000 0.000
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1818497 2 0.2953 0.783 0.012 0.844 0.000 0.000 0.144
#> SRR1818600 4 0.0000 0.970 0.000 0.000 0.000 1.000 0.000
#> SRR1818599 3 0.0162 0.977 0.004 0.000 0.996 0.000 0.000
#> SRR1818598 4 0.0703 0.967 0.000 0.000 0.000 0.976 0.024
#> SRR1818597 5 0.4283 0.855 0.456 0.000 0.000 0.000 0.544
#> SRR1818596 1 0.1197 0.707 0.952 0.048 0.000 0.000 0.000
#> SRR1818595 5 0.4283 0.855 0.456 0.000 0.000 0.000 0.544
#> SRR1818594 5 0.4283 0.855 0.456 0.000 0.000 0.000 0.544
#> SRR1818593 4 0.0693 0.961 0.000 0.012 0.000 0.980 0.008
#> SRR1818592 1 0.2233 0.720 0.892 0.104 0.000 0.000 0.004
#> SRR1818591 4 0.0000 0.970 0.000 0.000 0.000 1.000 0.000
#> SRR1818590 4 0.0000 0.970 0.000 0.000 0.000 1.000 0.000
#> SRR1818589 4 0.0000 0.970 0.000 0.000 0.000 1.000 0.000
#> SRR1818587 1 0.1197 0.707 0.952 0.048 0.000 0.000 0.000
#> SRR1818586 1 0.4161 0.620 0.752 0.040 0.000 0.000 0.208
#> SRR1818585 2 0.4276 0.699 0.004 0.616 0.000 0.000 0.380
#> SRR1818584 4 0.0404 0.969 0.000 0.000 0.000 0.988 0.012
#> SRR1818583 5 0.4283 0.855 0.456 0.000 0.000 0.000 0.544
#> SRR1818588 1 0.0510 0.660 0.984 0.000 0.000 0.000 0.016
#> SRR1818582 1 0.2648 0.715 0.848 0.152 0.000 0.000 0.000
#> SRR1818581 4 0.0000 0.970 0.000 0.000 0.000 1.000 0.000
#> SRR1818579 4 0.0703 0.967 0.000 0.000 0.000 0.976 0.024
#> SRR1818578 1 0.3707 0.618 0.716 0.284 0.000 0.000 0.000
#> SRR1818577 1 0.5793 0.381 0.536 0.100 0.000 0.000 0.364
#> SRR1818580 4 0.0000 0.970 0.000 0.000 0.000 1.000 0.000
#> SRR1818575 1 0.0162 0.664 0.996 0.000 0.000 0.000 0.004
#> SRR1818574 3 0.1965 0.839 0.096 0.000 0.904 0.000 0.000
#> SRR1818576 5 0.4283 0.855 0.456 0.000 0.000 0.000 0.544
#> SRR1818573 4 0.0609 0.968 0.000 0.000 0.000 0.980 0.020
#> SRR1818572 4 0.0000 0.970 0.000 0.000 0.000 1.000 0.000
#> SRR1818571 4 0.1410 0.949 0.000 0.000 0.000 0.940 0.060
#> SRR1818570 5 0.4283 0.855 0.456 0.000 0.000 0.000 0.544
#> SRR1818568 1 0.0290 0.676 0.992 0.008 0.000 0.000 0.000
#> SRR1818567 5 0.6806 -0.244 0.348 0.296 0.000 0.000 0.356
#> SRR1818566 3 0.0162 0.977 0.004 0.000 0.996 0.000 0.000
#> SRR1818569 2 0.4276 0.699 0.004 0.616 0.000 0.000 0.380
#> SRR1818565 3 0.0162 0.977 0.004 0.000 0.996 0.000 0.000
#> SRR1818564 1 0.2149 0.707 0.916 0.048 0.000 0.000 0.036
#> SRR1818563 4 0.0794 0.966 0.000 0.000 0.000 0.972 0.028
#> SRR1818561 3 0.0162 0.977 0.004 0.000 0.996 0.000 0.000
#> SRR1818560 1 0.1282 0.702 0.952 0.044 0.000 0.000 0.004
#> SRR1818559 1 0.2230 0.721 0.884 0.116 0.000 0.000 0.000
#> SRR1818562 4 0.0000 0.970 0.000 0.000 0.000 1.000 0.000
#> SRR1818558 1 0.0162 0.664 0.996 0.000 0.000 0.000 0.004
#> SRR1818556 4 0.1410 0.949 0.000 0.000 0.000 0.940 0.060
#> SRR1818557 1 0.3123 0.696 0.812 0.184 0.000 0.004 0.000
#> SRR1818555 4 0.0000 0.970 0.000 0.000 0.000 1.000 0.000
#> SRR1818553 1 0.0290 0.676 0.992 0.008 0.000 0.000 0.000
#> SRR1818552 1 0.4622 0.546 0.684 0.040 0.000 0.000 0.276
#> SRR1818551 1 0.1121 0.705 0.956 0.044 0.000 0.000 0.000
#> SRR1818550 4 0.1410 0.949 0.000 0.000 0.000 0.940 0.060
#> SRR1818554 4 0.0000 0.970 0.000 0.000 0.000 1.000 0.000
#> SRR1818549 1 0.6164 0.490 0.652 0.100 0.000 0.188 0.060
#> SRR1818548 1 0.5716 0.507 0.652 0.172 0.000 0.168 0.008
#> SRR1818546 4 0.2471 0.830 0.000 0.000 0.000 0.864 0.136
#> SRR1818547 4 0.0000 0.970 0.000 0.000 0.000 1.000 0.000
#> SRR1818544 2 0.1410 0.779 0.060 0.940 0.000 0.000 0.000
#> SRR1818543 1 0.6992 0.205 0.452 0.100 0.000 0.388 0.060
#> SRR1818542 1 0.3565 0.674 0.816 0.040 0.000 0.000 0.144
#> SRR1818545 4 0.0703 0.967 0.000 0.000 0.000 0.976 0.024
#> SRR1818541 1 0.3656 0.374 0.800 0.032 0.000 0.000 0.168
#> SRR1818539 4 0.4837 0.675 0.180 0.020 0.000 0.740 0.060
#> SRR1818540 1 0.5639 0.421 0.568 0.092 0.000 0.000 0.340
#> SRR1818536 4 0.0703 0.967 0.000 0.000 0.000 0.976 0.024
#> SRR1818535 1 0.3074 0.694 0.804 0.196 0.000 0.000 0.000
#> SRR1818534 1 0.2773 0.714 0.836 0.164 0.000 0.000 0.000
#> SRR1818538 4 0.0000 0.970 0.000 0.000 0.000 1.000 0.000
#> SRR1818537 4 0.0703 0.967 0.000 0.000 0.000 0.976 0.024
#> SRR1818533 5 0.4283 0.855 0.456 0.000 0.000 0.000 0.544
#> SRR1818532 5 0.4283 0.855 0.456 0.000 0.000 0.000 0.544
#> SRR1818531 4 0.1341 0.952 0.000 0.000 0.000 0.944 0.056
#> SRR1818530 2 0.4276 0.699 0.004 0.616 0.000 0.000 0.380
#> SRR1818529 4 0.0000 0.970 0.000 0.000 0.000 1.000 0.000
#> SRR1818528 1 0.3966 0.551 0.664 0.336 0.000 0.000 0.000
#> SRR1818527 2 0.0000 0.824 0.000 1.000 0.000 0.000 0.000
#> SRR1818526 2 0.0000 0.824 0.000 1.000 0.000 0.000 0.000
#> SRR1818525 2 0.0000 0.824 0.000 1.000 0.000 0.000 0.000
#> SRR1818523 3 0.0000 0.976 0.000 0.000 1.000 0.000 0.000
#> SRR1818524 2 0.0000 0.824 0.000 1.000 0.000 0.000 0.000
#> SRR1818522 2 0.0000 0.824 0.000 1.000 0.000 0.000 0.000
#> SRR1818521 2 0.0000 0.824 0.000 1.000 0.000 0.000 0.000
#> SRR1818520 2 0.4299 0.693 0.004 0.608 0.000 0.000 0.388
#> SRR1818518 1 0.3480 0.652 0.752 0.248 0.000 0.000 0.000
#> SRR1818519 1 0.1197 0.707 0.952 0.048 0.000 0.000 0.000
#> SRR1818517 2 0.4118 0.720 0.004 0.660 0.000 0.000 0.336
#> SRR1818516 3 0.0000 0.976 0.000 0.000 1.000 0.000 0.000
#> SRR1818515 2 0.0000 0.824 0.000 1.000 0.000 0.000 0.000
#> SRR1818514 2 0.4276 0.699 0.004 0.616 0.000 0.000 0.380
#> SRR1818513 2 0.6436 0.471 0.176 0.428 0.000 0.000 0.396
#> SRR1818512 2 0.4276 0.699 0.004 0.616 0.000 0.000 0.380
#> SRR1818510 2 0.6458 0.464 0.180 0.424 0.000 0.000 0.396
#> SRR1818511 2 0.0000 0.824 0.000 1.000 0.000 0.000 0.000
#> SRR1818508 2 0.0000 0.824 0.000 1.000 0.000 0.000 0.000
#> SRR1818509 1 0.6362 0.282 0.464 0.168 0.000 0.000 0.368
#> SRR1818507 2 0.0000 0.824 0.000 1.000 0.000 0.000 0.000
#> SRR1818506 1 0.3074 0.694 0.804 0.196 0.000 0.000 0.000
#> SRR1818505 2 0.0000 0.824 0.000 1.000 0.000 0.000 0.000
#> SRR1818503 1 0.1851 0.704 0.912 0.088 0.000 0.000 0.000
#> SRR1818504 2 0.4969 0.704 0.056 0.652 0.000 0.000 0.292
#> SRR1818502 1 0.0000 0.668 1.000 0.000 0.000 0.000 0.000
#> SRR1818498 2 0.4798 0.674 0.024 0.580 0.000 0.000 0.396
#> SRR1818500 2 0.0000 0.824 0.000 1.000 0.000 0.000 0.000
#> SRR1818501 3 0.0000 0.976 0.000 0.000 1.000 0.000 0.000
#> SRR1818499 2 0.0000 0.824 0.000 1.000 0.000 0.000 0.000
#> SRR1818496 2 0.0000 0.824 0.000 1.000 0.000 0.000 0.000
#> SRR1818494 1 0.2179 0.702 0.888 0.112 0.000 0.000 0.000
#> SRR1818495 1 0.1197 0.707 0.952 0.048 0.000 0.000 0.000
#> SRR1818493 2 0.0451 0.822 0.004 0.988 0.000 0.000 0.008
#> SRR1818492 1 0.4150 0.476 0.612 0.388 0.000 0.000 0.000
#> SRR1818491 2 0.0000 0.824 0.000 1.000 0.000 0.000 0.000
#> SRR1818490 1 0.3561 0.640 0.740 0.260 0.000 0.000 0.000
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1818497 5 0.4786 -0.2351 0.064 0.352 0.000 0.000 0.584 0.000
#> SRR1818600 4 0.3265 0.7854 0.000 0.248 0.000 0.748 0.000 0.004
#> SRR1818599 3 0.0363 0.9744 0.012 0.000 0.988 0.000 0.000 0.000
#> SRR1818598 4 0.2001 0.7388 0.012 0.008 0.000 0.912 0.000 0.068
#> SRR1818597 6 0.2996 0.9752 0.228 0.000 0.000 0.000 0.000 0.772
#> SRR1818596 1 0.0146 0.7795 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1818595 6 0.2996 0.9752 0.228 0.000 0.000 0.000 0.000 0.772
#> SRR1818594 6 0.2996 0.9752 0.228 0.000 0.000 0.000 0.000 0.772
#> SRR1818593 4 0.4786 0.7746 0.004 0.236 0.000 0.684 0.016 0.060
#> SRR1818592 1 0.1477 0.7872 0.940 0.004 0.000 0.000 0.048 0.008
#> SRR1818591 4 0.3956 0.7820 0.000 0.252 0.000 0.712 0.000 0.036
#> SRR1818590 4 0.3956 0.7820 0.000 0.252 0.000 0.712 0.000 0.036
#> SRR1818589 4 0.3998 0.7828 0.000 0.248 0.000 0.712 0.000 0.040
#> SRR1818587 1 0.0405 0.7780 0.988 0.000 0.000 0.000 0.004 0.008
#> SRR1818586 1 0.2845 0.7094 0.820 0.172 0.000 0.000 0.004 0.004
#> SRR1818585 5 0.3999 -0.4434 0.004 0.496 0.000 0.000 0.500 0.000
#> SRR1818584 4 0.1826 0.7682 0.004 0.052 0.000 0.924 0.000 0.020
#> SRR1818583 6 0.3023 0.9696 0.232 0.000 0.000 0.000 0.000 0.768
#> SRR1818588 1 0.2948 0.7169 0.848 0.092 0.000 0.000 0.000 0.060
#> SRR1818582 1 0.1938 0.7827 0.920 0.004 0.000 0.000 0.040 0.036
#> SRR1818581 4 0.3956 0.7820 0.000 0.252 0.000 0.712 0.000 0.036
#> SRR1818579 4 0.1882 0.7422 0.012 0.008 0.000 0.920 0.000 0.060
#> SRR1818578 1 0.3541 0.6276 0.748 0.000 0.000 0.000 0.232 0.020
#> SRR1818577 1 0.4976 0.3399 0.596 0.324 0.000 0.000 0.076 0.004
#> SRR1818580 4 0.3998 0.7828 0.000 0.248 0.000 0.712 0.000 0.040
#> SRR1818575 1 0.2790 0.7123 0.840 0.140 0.000 0.000 0.000 0.020
#> SRR1818574 3 0.1556 0.8756 0.080 0.000 0.920 0.000 0.000 0.000
#> SRR1818576 6 0.2969 0.9730 0.224 0.000 0.000 0.000 0.000 0.776
#> SRR1818573 4 0.1605 0.7624 0.012 0.032 0.000 0.940 0.000 0.016
#> SRR1818572 4 0.3933 0.7827 0.000 0.248 0.000 0.716 0.000 0.036
#> SRR1818571 4 0.3603 0.6815 0.012 0.048 0.000 0.804 0.000 0.136
#> SRR1818570 6 0.2969 0.9730 0.224 0.000 0.000 0.000 0.000 0.776
#> SRR1818568 1 0.2790 0.7123 0.840 0.140 0.000 0.000 0.000 0.020
#> SRR1818567 2 0.6158 0.5129 0.288 0.420 0.000 0.000 0.288 0.004
#> SRR1818566 3 0.0363 0.9744 0.012 0.000 0.988 0.000 0.000 0.000
#> SRR1818569 5 0.3999 -0.4434 0.004 0.496 0.000 0.000 0.500 0.000
#> SRR1818565 3 0.0363 0.9744 0.012 0.000 0.988 0.000 0.000 0.000
#> SRR1818564 1 0.5385 0.4656 0.668 0.040 0.000 0.188 0.004 0.100
#> SRR1818563 4 0.2282 0.7326 0.012 0.020 0.000 0.900 0.000 0.068
#> SRR1818561 3 0.0363 0.9744 0.012 0.000 0.988 0.000 0.000 0.000
#> SRR1818560 1 0.1501 0.7534 0.924 0.000 0.000 0.000 0.000 0.076
#> SRR1818559 1 0.1477 0.7863 0.940 0.004 0.000 0.000 0.048 0.008
#> SRR1818562 4 0.3998 0.7828 0.000 0.248 0.000 0.712 0.000 0.040
#> SRR1818558 1 0.2513 0.7190 0.852 0.140 0.000 0.000 0.000 0.008
#> SRR1818556 4 0.3603 0.6815 0.012 0.048 0.000 0.804 0.000 0.136
#> SRR1818557 1 0.3290 0.7384 0.840 0.016 0.000 0.000 0.084 0.060
#> SRR1818555 4 0.3956 0.7820 0.000 0.252 0.000 0.712 0.000 0.036
#> SRR1818553 1 0.2831 0.7135 0.840 0.136 0.000 0.000 0.000 0.024
#> SRR1818552 1 0.3104 0.6817 0.788 0.204 0.000 0.000 0.004 0.004
#> SRR1818551 1 0.0405 0.7773 0.988 0.004 0.000 0.000 0.000 0.008
#> SRR1818550 4 0.4235 0.6588 0.064 0.048 0.000 0.792 0.008 0.088
#> SRR1818554 4 0.3998 0.7828 0.000 0.248 0.000 0.712 0.000 0.040
#> SRR1818549 1 0.6902 0.3224 0.520 0.040 0.008 0.288 0.048 0.096
#> SRR1818548 1 0.6304 0.3783 0.584 0.028 0.000 0.084 0.248 0.056
#> SRR1818546 4 0.5121 0.7115 0.000 0.304 0.000 0.616 0.044 0.036
#> SRR1818547 4 0.3933 0.7827 0.000 0.248 0.000 0.716 0.000 0.036
#> SRR1818544 5 0.4339 0.0942 0.300 0.004 0.004 0.000 0.664 0.028
#> SRR1818543 4 0.6586 -0.0403 0.396 0.040 0.000 0.444 0.032 0.088
#> SRR1818542 1 0.1462 0.7791 0.936 0.056 0.000 0.000 0.000 0.008
#> SRR1818545 4 0.2001 0.7388 0.012 0.008 0.000 0.912 0.000 0.068
#> SRR1818541 1 0.3081 0.5685 0.776 0.000 0.004 0.000 0.000 0.220
#> SRR1818539 4 0.5915 0.4450 0.196 0.048 0.000 0.640 0.024 0.092
#> SRR1818540 1 0.4635 0.4581 0.648 0.288 0.000 0.000 0.060 0.004
#> SRR1818536 4 0.2001 0.7388 0.012 0.008 0.000 0.912 0.000 0.068
#> SRR1818535 1 0.1578 0.7862 0.936 0.000 0.004 0.000 0.048 0.012
#> SRR1818534 1 0.1787 0.7849 0.920 0.004 0.000 0.000 0.068 0.008
#> SRR1818538 4 0.3956 0.7820 0.000 0.252 0.000 0.712 0.000 0.036
#> SRR1818537 4 0.2169 0.7346 0.012 0.008 0.000 0.900 0.000 0.080
#> SRR1818533 6 0.2996 0.9752 0.228 0.000 0.000 0.000 0.000 0.772
#> SRR1818532 6 0.3482 0.8427 0.316 0.000 0.000 0.000 0.000 0.684
#> SRR1818531 4 0.4017 0.6787 0.052 0.040 0.000 0.812 0.016 0.080
#> SRR1818530 5 0.3999 -0.4434 0.004 0.496 0.000 0.000 0.500 0.000
#> SRR1818529 4 0.3755 0.7857 0.000 0.220 0.000 0.744 0.000 0.036
#> SRR1818528 1 0.2006 0.7671 0.892 0.000 0.004 0.000 0.104 0.000
#> SRR1818527 5 0.0260 0.6754 0.008 0.000 0.000 0.000 0.992 0.000
#> SRR1818526 5 0.0260 0.6754 0.008 0.000 0.000 0.000 0.992 0.000
#> SRR1818525 5 0.0260 0.6754 0.008 0.000 0.000 0.000 0.992 0.000
#> SRR1818523 3 0.0260 0.9691 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1818524 5 0.0622 0.6697 0.008 0.000 0.000 0.000 0.980 0.012
#> SRR1818522 5 0.0363 0.6733 0.012 0.000 0.000 0.000 0.988 0.000
#> SRR1818521 5 0.1082 0.6559 0.004 0.040 0.000 0.000 0.956 0.000
#> SRR1818520 2 0.3999 0.2925 0.004 0.500 0.000 0.000 0.496 0.000
#> SRR1818518 1 0.1668 0.7851 0.928 0.000 0.008 0.000 0.060 0.004
#> SRR1818519 1 0.0922 0.7848 0.968 0.000 0.004 0.000 0.004 0.024
#> SRR1818517 5 0.4594 -0.5044 0.036 0.476 0.000 0.000 0.488 0.000
#> SRR1818516 3 0.0260 0.9691 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1818515 5 0.0260 0.6754 0.008 0.000 0.000 0.000 0.992 0.000
#> SRR1818514 5 0.3999 -0.4434 0.004 0.496 0.000 0.000 0.500 0.000
#> SRR1818513 2 0.5421 0.7067 0.124 0.556 0.000 0.000 0.316 0.004
#> SRR1818512 5 0.3999 -0.4434 0.004 0.496 0.000 0.000 0.500 0.000
#> SRR1818510 2 0.5479 0.7035 0.136 0.556 0.000 0.000 0.304 0.004
#> SRR1818511 5 0.1265 0.6508 0.008 0.044 0.000 0.000 0.948 0.000
#> SRR1818508 5 0.0937 0.6385 0.040 0.000 0.000 0.000 0.960 0.000
#> SRR1818509 1 0.6178 -0.4651 0.388 0.348 0.000 0.000 0.260 0.004
#> SRR1818507 5 0.0692 0.6618 0.004 0.000 0.000 0.000 0.976 0.020
#> SRR1818506 1 0.1655 0.7862 0.932 0.000 0.008 0.000 0.052 0.008
#> SRR1818505 5 0.0260 0.6754 0.008 0.000 0.000 0.000 0.992 0.000
#> SRR1818503 1 0.3248 0.7229 0.828 0.136 0.004 0.000 0.016 0.016
#> SRR1818504 5 0.5503 -0.4258 0.100 0.384 0.004 0.000 0.508 0.004
#> SRR1818502 1 0.2831 0.7135 0.840 0.136 0.000 0.000 0.000 0.024
#> SRR1818498 2 0.5331 0.6073 0.092 0.496 0.000 0.000 0.408 0.004
#> SRR1818500 5 0.0717 0.6714 0.008 0.016 0.000 0.000 0.976 0.000
#> SRR1818501 3 0.0260 0.9691 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1818499 5 0.0363 0.6738 0.012 0.000 0.000 0.000 0.988 0.000
#> SRR1818496 5 0.0520 0.6744 0.008 0.008 0.000 0.000 0.984 0.000
#> SRR1818494 1 0.2357 0.7533 0.888 0.092 0.004 0.000 0.004 0.012
#> SRR1818495 1 0.1080 0.7839 0.960 0.000 0.004 0.000 0.004 0.032
#> SRR1818493 5 0.1753 0.6031 0.004 0.084 0.000 0.000 0.912 0.000
#> SRR1818492 1 0.3101 0.6232 0.756 0.000 0.000 0.000 0.244 0.000
#> SRR1818491 5 0.0260 0.6754 0.008 0.000 0.000 0.000 0.992 0.000
#> SRR1818490 1 0.1728 0.7841 0.924 0.000 0.008 0.000 0.064 0.004
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
The object with results only for a single top-value method and a single partition method can be extracted as:
res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]
A summary of res
and all the functions that can be applied to it:
res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#> On a matrix with 16183 rows and 111 columns.
#> Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#> Subgroups are detected by 'NMF' method.
#> Performed in total 1250 partitions by row resampling.
#> Best k for subgroups seems to be 2.
#>
#> Following methods can be applied to this 'ConsensusPartition' object:
#> [1] "cola_report" "collect_classes" "collect_plots"
#> [4] "collect_stats" "colnames" "compare_signatures"
#> [7] "consensus_heatmap" "dimension_reduction" "functional_enrichment"
#> [10] "get_anno_col" "get_anno" "get_classes"
#> [13] "get_consensus" "get_matrix" "get_membership"
#> [16] "get_param" "get_signatures" "get_stats"
#> [19] "is_best_k" "is_stable_k" "membership_heatmap"
#> [22] "ncol" "nrow" "plot_ecdf"
#> [25] "rownames" "select_partition_number" "show"
#> [28] "suggest_best_k" "test_to_known_factors"
collect_plots()
function collects all the plots made from res
for all k
(number of partitions)
into one single page to provide an easy and fast comparison between different k
.
collect_plots(res)
The plots are:
k
and the heatmap of
predicted classes for each k
.k
.k
.k
.All the plots in panels can be made by individual functions and they are plotted later in this section.
select_partition_number()
produces several plots showing different
statistics for choosing “optimized” k
. There are following statistics:
k
;k
, the area increased is defined as \(A_k - A_{k-1}\).The detailed explanations of these statistics can be found in the cola vignette.
Generally speaking, lower PAC score, higher mean silhouette score or higher
concordance corresponds to better partition. Rand index and Jaccard index
measure how similar the current partition is compared to partition with k-1
.
If they are too similar, we won't accept k
is better than k-1
.
select_partition_number(res)
The numeric values for all these statistics can be obtained by get_stats()
.
get_stats(res)
#> k 1-PAC mean_silhouette concordance area_increased Rand Jaccard
#> 2 2 0.721 0.848 0.938 0.4899 0.507 0.507
#> 3 3 0.488 0.503 0.713 0.3170 0.663 0.424
#> 4 4 0.683 0.743 0.851 0.1431 0.828 0.544
#> 5 5 0.739 0.757 0.855 0.0611 0.932 0.750
#> 6 6 0.763 0.704 0.836 0.0402 0.923 0.682
suggest_best_k()
suggests the best \(k\) based on these statistics. The rules are as follows:
suggest_best_k(res)
#> [1] 2
Following shows the table of the partitions (You need to click the show/hide
code output link to see it). The membership matrix (columns with name p*
)
is inferred by
clue::cl_consensus()
function with the SE
method. Basically the value in the membership matrix
represents the probability to belong to a certain group. The finall class
label for an item is determined with the group with highest probability it
belongs to.
In get_classes()
function, the entropy is calculated from the membership
matrix and the silhouette score is calculated from the consensus matrix.
cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#> class entropy silhouette p1 p2
#> SRR1818497 1 0.9933 0.1180 0.548 0.452
#> SRR1818600 2 0.0376 0.9143 0.004 0.996
#> SRR1818599 1 0.0000 0.9403 1.000 0.000
#> SRR1818598 2 0.0376 0.9143 0.004 0.996
#> SRR1818597 1 0.0672 0.9366 0.992 0.008
#> SRR1818596 1 0.0000 0.9403 1.000 0.000
#> SRR1818595 1 0.0376 0.9386 0.996 0.004
#> SRR1818594 1 0.3114 0.9035 0.944 0.056
#> SRR1818593 2 0.7674 0.6900 0.224 0.776
#> SRR1818592 1 0.1184 0.9321 0.984 0.016
#> SRR1818591 2 0.0000 0.9162 0.000 1.000
#> SRR1818590 2 0.0000 0.9162 0.000 1.000
#> SRR1818589 2 0.3114 0.8780 0.056 0.944
#> SRR1818587 1 0.0000 0.9403 1.000 0.000
#> SRR1818586 2 0.0000 0.9162 0.000 1.000
#> SRR1818585 2 0.7219 0.7254 0.200 0.800
#> SRR1818584 2 0.0000 0.9162 0.000 1.000
#> SRR1818583 1 0.6438 0.7947 0.836 0.164
#> SRR1818588 1 0.0376 0.9386 0.996 0.004
#> SRR1818582 1 0.5842 0.8227 0.860 0.140
#> SRR1818581 2 0.0000 0.9162 0.000 1.000
#> SRR1818579 2 0.4022 0.8577 0.080 0.920
#> SRR1818578 1 0.8555 0.6230 0.720 0.280
#> SRR1818577 2 0.0000 0.9162 0.000 1.000
#> SRR1818580 2 0.0000 0.9162 0.000 1.000
#> SRR1818575 1 0.0000 0.9403 1.000 0.000
#> SRR1818574 1 0.0000 0.9403 1.000 0.000
#> SRR1818576 1 0.2043 0.9217 0.968 0.032
#> SRR1818573 2 0.5294 0.8194 0.120 0.880
#> SRR1818572 2 0.0000 0.9162 0.000 1.000
#> SRR1818571 2 0.9996 0.0482 0.488 0.512
#> SRR1818570 1 0.1414 0.9297 0.980 0.020
#> SRR1818568 1 0.0000 0.9403 1.000 0.000
#> SRR1818567 2 0.0000 0.9162 0.000 1.000
#> SRR1818566 1 0.0000 0.9403 1.000 0.000
#> SRR1818569 2 0.0000 0.9162 0.000 1.000
#> SRR1818565 1 0.0000 0.9403 1.000 0.000
#> SRR1818564 1 0.6623 0.7853 0.828 0.172
#> SRR1818563 2 0.0000 0.9162 0.000 1.000
#> SRR1818561 1 0.0000 0.9403 1.000 0.000
#> SRR1818560 1 0.0000 0.9403 1.000 0.000
#> SRR1818559 1 0.2603 0.9130 0.956 0.044
#> SRR1818562 2 0.0000 0.9162 0.000 1.000
#> SRR1818558 1 0.0376 0.9386 0.996 0.004
#> SRR1818556 2 0.9954 0.1513 0.460 0.540
#> SRR1818557 1 0.9608 0.3715 0.616 0.384
#> SRR1818555 2 0.0000 0.9162 0.000 1.000
#> SRR1818553 1 0.0000 0.9403 1.000 0.000
#> SRR1818552 2 0.0000 0.9162 0.000 1.000
#> SRR1818551 1 0.4022 0.8837 0.920 0.080
#> SRR1818550 2 0.1633 0.9018 0.024 0.976
#> SRR1818554 2 0.0000 0.9162 0.000 1.000
#> SRR1818549 1 0.0000 0.9403 1.000 0.000
#> SRR1818548 1 0.8909 0.5538 0.692 0.308
#> SRR1818546 2 0.0000 0.9162 0.000 1.000
#> SRR1818547 2 0.0000 0.9162 0.000 1.000
#> SRR1818544 1 0.0938 0.9346 0.988 0.012
#> SRR1818543 1 0.4815 0.8605 0.896 0.104
#> SRR1818542 2 0.0000 0.9162 0.000 1.000
#> SRR1818545 2 0.0000 0.9162 0.000 1.000
#> SRR1818541 1 0.0000 0.9403 1.000 0.000
#> SRR1818539 2 0.9983 0.0974 0.476 0.524
#> SRR1818540 2 0.0000 0.9162 0.000 1.000
#> SRR1818536 2 0.9909 0.2039 0.444 0.556
#> SRR1818535 1 0.0000 0.9403 1.000 0.000
#> SRR1818534 1 0.6712 0.7795 0.824 0.176
#> SRR1818538 2 0.0000 0.9162 0.000 1.000
#> SRR1818537 2 0.6887 0.7455 0.184 0.816
#> SRR1818533 1 0.6531 0.7901 0.832 0.168
#> SRR1818532 1 0.0000 0.9403 1.000 0.000
#> SRR1818531 2 0.0000 0.9162 0.000 1.000
#> SRR1818530 2 0.0000 0.9162 0.000 1.000
#> SRR1818529 2 0.0000 0.9162 0.000 1.000
#> SRR1818528 1 0.0000 0.9403 1.000 0.000
#> SRR1818527 1 0.0000 0.9403 1.000 0.000
#> SRR1818526 1 0.0000 0.9403 1.000 0.000
#> SRR1818525 1 0.0000 0.9403 1.000 0.000
#> SRR1818523 1 0.0000 0.9403 1.000 0.000
#> SRR1818524 1 0.0000 0.9403 1.000 0.000
#> SRR1818522 1 0.0000 0.9403 1.000 0.000
#> SRR1818521 2 0.1414 0.9043 0.020 0.980
#> SRR1818520 2 0.0000 0.9162 0.000 1.000
#> SRR1818518 1 0.0000 0.9403 1.000 0.000
#> SRR1818519 1 0.0000 0.9403 1.000 0.000
#> SRR1818517 2 0.0000 0.9162 0.000 1.000
#> SRR1818516 1 0.0000 0.9403 1.000 0.000
#> SRR1818515 1 0.0000 0.9403 1.000 0.000
#> SRR1818514 2 0.9710 0.3500 0.400 0.600
#> SRR1818513 2 0.0000 0.9162 0.000 1.000
#> SRR1818512 2 0.8713 0.5847 0.292 0.708
#> SRR1818510 2 0.0000 0.9162 0.000 1.000
#> SRR1818511 1 0.6887 0.7569 0.816 0.184
#> SRR1818508 1 0.0000 0.9403 1.000 0.000
#> SRR1818509 2 0.0376 0.9141 0.004 0.996
#> SRR1818507 1 0.0000 0.9403 1.000 0.000
#> SRR1818506 1 0.0000 0.9403 1.000 0.000
#> SRR1818505 1 0.0000 0.9403 1.000 0.000
#> SRR1818503 1 0.0000 0.9403 1.000 0.000
#> SRR1818504 1 0.0000 0.9403 1.000 0.000
#> SRR1818502 1 0.0000 0.9403 1.000 0.000
#> SRR1818498 2 0.0000 0.9162 0.000 1.000
#> SRR1818500 1 0.3114 0.8971 0.944 0.056
#> SRR1818501 1 0.0000 0.9403 1.000 0.000
#> SRR1818499 1 0.0000 0.9403 1.000 0.000
#> SRR1818496 1 0.9998 -0.0326 0.508 0.492
#> SRR1818494 1 0.0000 0.9403 1.000 0.000
#> SRR1818495 1 0.0000 0.9403 1.000 0.000
#> SRR1818493 2 0.0000 0.9162 0.000 1.000
#> SRR1818492 1 0.0000 0.9403 1.000 0.000
#> SRR1818491 1 0.0000 0.9403 1.000 0.000
#> SRR1818490 1 0.0000 0.9403 1.000 0.000
cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#> class entropy silhouette p1 p2 p3
#> SRR1818497 3 0.6215 -0.1851 0.428 0.000 0.572
#> SRR1818600 2 0.2066 0.8314 0.000 0.940 0.060
#> SRR1818599 3 0.6386 0.4649 0.412 0.004 0.584
#> SRR1818598 2 0.1289 0.8388 0.000 0.968 0.032
#> SRR1818597 1 0.1753 0.7109 0.952 0.000 0.048
#> SRR1818596 1 0.0747 0.7114 0.984 0.000 0.016
#> SRR1818595 1 0.0747 0.7110 0.984 0.000 0.016
#> SRR1818594 1 0.1765 0.7095 0.956 0.004 0.040
#> SRR1818593 2 0.3607 0.7986 0.008 0.880 0.112
#> SRR1818592 1 0.1753 0.7077 0.952 0.000 0.048
#> SRR1818591 2 0.4784 0.7266 0.004 0.796 0.200
#> SRR1818590 2 0.0237 0.8375 0.000 0.996 0.004
#> SRR1818589 2 0.3030 0.8138 0.004 0.904 0.092
#> SRR1818587 1 0.2711 0.6564 0.912 0.000 0.088
#> SRR1818586 3 0.9824 -0.1116 0.348 0.248 0.404
#> SRR1818585 3 0.9549 -0.1095 0.396 0.192 0.412
#> SRR1818584 2 0.0237 0.8385 0.000 0.996 0.004
#> SRR1818583 1 0.2173 0.7101 0.944 0.008 0.048
#> SRR1818588 1 0.1289 0.7119 0.968 0.000 0.032
#> SRR1818582 1 0.4586 0.6445 0.856 0.048 0.096
#> SRR1818581 2 0.1765 0.8268 0.004 0.956 0.040
#> SRR1818579 2 0.1647 0.8367 0.004 0.960 0.036
#> SRR1818578 1 0.9180 -0.0613 0.472 0.376 0.152
#> SRR1818577 3 0.9672 -0.0938 0.384 0.212 0.404
#> SRR1818580 2 0.2959 0.7976 0.000 0.900 0.100
#> SRR1818575 1 0.0592 0.7146 0.988 0.000 0.012
#> SRR1818574 3 0.6308 0.3090 0.492 0.000 0.508
#> SRR1818576 1 0.1643 0.7123 0.956 0.000 0.044
#> SRR1818573 2 0.1399 0.8378 0.004 0.968 0.028
#> SRR1818572 2 0.0000 0.8382 0.000 1.000 0.000
#> SRR1818571 2 0.4677 0.7510 0.028 0.840 0.132
#> SRR1818570 1 0.1753 0.7112 0.952 0.000 0.048
#> SRR1818568 1 0.0892 0.7137 0.980 0.000 0.020
#> SRR1818567 2 0.7969 0.4878 0.064 0.540 0.396
#> SRR1818566 3 0.6286 0.3767 0.464 0.000 0.536
#> SRR1818569 2 0.8957 0.4038 0.128 0.472 0.400
#> SRR1818565 1 0.6308 -0.3036 0.508 0.000 0.492
#> SRR1818564 2 0.9065 0.0872 0.364 0.492 0.144
#> SRR1818563 2 0.0747 0.8399 0.000 0.984 0.016
#> SRR1818561 3 0.6235 0.4335 0.436 0.000 0.564
#> SRR1818560 1 0.6204 -0.0978 0.576 0.000 0.424
#> SRR1818559 1 0.1525 0.7143 0.964 0.004 0.032
#> SRR1818562 2 0.1163 0.8367 0.000 0.972 0.028
#> SRR1818558 1 0.1529 0.6996 0.960 0.000 0.040
#> SRR1818556 2 0.4136 0.7719 0.020 0.864 0.116
#> SRR1818557 2 0.6119 0.6877 0.164 0.772 0.064
#> SRR1818555 2 0.2496 0.8142 0.004 0.928 0.068
#> SRR1818553 1 0.4291 0.5567 0.820 0.000 0.180
#> SRR1818552 1 0.9181 0.1217 0.448 0.148 0.404
#> SRR1818551 1 0.2682 0.6678 0.920 0.004 0.076
#> SRR1818550 2 0.1585 0.8376 0.008 0.964 0.028
#> SRR1818554 2 0.2625 0.8190 0.000 0.916 0.084
#> SRR1818549 3 0.6553 0.4636 0.412 0.008 0.580
#> SRR1818548 2 0.5970 0.6881 0.060 0.780 0.160
#> SRR1818546 2 0.0237 0.8380 0.000 0.996 0.004
#> SRR1818547 2 0.0747 0.8387 0.000 0.984 0.016
#> SRR1818544 3 0.7263 0.4631 0.400 0.032 0.568
#> SRR1818543 3 0.9243 0.3457 0.264 0.208 0.528
#> SRR1818542 1 0.8280 0.1906 0.516 0.080 0.404
#> SRR1818545 2 0.1031 0.8391 0.000 0.976 0.024
#> SRR1818541 1 0.1289 0.7070 0.968 0.000 0.032
#> SRR1818539 2 0.3967 0.7935 0.044 0.884 0.072
#> SRR1818540 3 0.9672 -0.3102 0.212 0.384 0.404
#> SRR1818536 2 0.6051 0.5743 0.012 0.696 0.292
#> SRR1818535 1 0.5058 0.4376 0.756 0.000 0.244
#> SRR1818534 1 0.3434 0.6700 0.904 0.064 0.032
#> SRR1818538 2 0.0592 0.8386 0.000 0.988 0.012
#> SRR1818537 2 0.1989 0.8323 0.004 0.948 0.048
#> SRR1818533 1 0.2400 0.6792 0.932 0.004 0.064
#> SRR1818532 1 0.1860 0.7048 0.948 0.000 0.052
#> SRR1818531 2 0.0475 0.8368 0.004 0.992 0.004
#> SRR1818530 2 0.5588 0.6605 0.004 0.720 0.276
#> SRR1818529 2 0.0000 0.8382 0.000 1.000 0.000
#> SRR1818528 1 0.5650 0.2670 0.688 0.000 0.312
#> SRR1818527 3 0.6498 0.4738 0.396 0.008 0.596
#> SRR1818526 3 0.7001 0.4699 0.388 0.024 0.588
#> SRR1818525 3 0.6498 0.4738 0.396 0.008 0.596
#> SRR1818523 3 0.6154 0.4685 0.408 0.000 0.592
#> SRR1818524 3 0.6244 0.4308 0.440 0.000 0.560
#> SRR1818522 3 0.6498 0.4738 0.396 0.008 0.596
#> SRR1818521 3 0.5650 -0.1190 0.000 0.312 0.688
#> SRR1818520 2 0.7969 0.4878 0.064 0.540 0.396
#> SRR1818518 3 0.6235 0.4356 0.436 0.000 0.564
#> SRR1818519 1 0.1643 0.7115 0.956 0.000 0.044
#> SRR1818517 3 0.7584 -0.4539 0.040 0.472 0.488
#> SRR1818516 3 0.6215 0.4464 0.428 0.000 0.572
#> SRR1818515 3 0.6647 0.4733 0.396 0.012 0.592
#> SRR1818514 1 0.7920 0.1904 0.476 0.056 0.468
#> SRR1818513 2 0.7980 0.4852 0.064 0.536 0.400
#> SRR1818512 3 0.9315 -0.0447 0.220 0.260 0.520
#> SRR1818510 2 0.8056 0.4802 0.068 0.532 0.400
#> SRR1818511 3 0.9264 0.3100 0.412 0.156 0.432
#> SRR1818508 3 0.6359 0.4714 0.404 0.004 0.592
#> SRR1818509 1 0.9369 0.0946 0.424 0.168 0.408
#> SRR1818507 3 0.6235 0.4438 0.436 0.000 0.564
#> SRR1818506 1 0.5327 0.3745 0.728 0.000 0.272
#> SRR1818505 3 0.6540 0.4672 0.408 0.008 0.584
#> SRR1818503 1 0.2448 0.6782 0.924 0.000 0.076
#> SRR1818504 1 0.2959 0.6541 0.900 0.000 0.100
#> SRR1818502 1 0.1753 0.6990 0.952 0.000 0.048
#> SRR1818498 3 0.9891 -0.1959 0.280 0.316 0.404
#> SRR1818500 3 0.5580 0.3888 0.256 0.008 0.736
#> SRR1818501 3 0.6168 0.4652 0.412 0.000 0.588
#> SRR1818499 3 0.6168 0.4652 0.412 0.000 0.588
#> SRR1818496 3 0.5708 0.1380 0.028 0.204 0.768
#> SRR1818494 1 0.3816 0.5926 0.852 0.000 0.148
#> SRR1818495 1 0.1753 0.6963 0.952 0.000 0.048
#> SRR1818493 3 0.6500 -0.4253 0.004 0.464 0.532
#> SRR1818492 3 0.6598 0.4487 0.428 0.008 0.564
#> SRR1818491 3 0.6647 0.4733 0.396 0.012 0.592
#> SRR1818490 1 0.6235 -0.1410 0.564 0.000 0.436
cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#> class entropy silhouette p1 p2 p3 p4
#> SRR1818497 1 0.6158 0.6418 0.708 0.116 0.160 0.016
#> SRR1818600 4 0.0592 0.8952 0.000 0.016 0.000 0.984
#> SRR1818599 3 0.4513 0.7326 0.120 0.076 0.804 0.000
#> SRR1818598 4 0.0188 0.8952 0.000 0.000 0.004 0.996
#> SRR1818597 1 0.1867 0.8728 0.928 0.072 0.000 0.000
#> SRR1818596 1 0.1940 0.8735 0.924 0.076 0.000 0.000
#> SRR1818595 1 0.1716 0.8741 0.936 0.064 0.000 0.000
#> SRR1818594 1 0.2530 0.8532 0.888 0.112 0.000 0.000
#> SRR1818593 4 0.2115 0.8617 0.004 0.024 0.036 0.936
#> SRR1818592 1 0.1174 0.8676 0.968 0.012 0.000 0.020
#> SRR1818591 2 0.4277 0.6552 0.000 0.720 0.000 0.280
#> SRR1818590 4 0.2546 0.8484 0.000 0.092 0.008 0.900
#> SRR1818589 4 0.1624 0.8724 0.000 0.020 0.028 0.952
#> SRR1818587 1 0.3123 0.8168 0.844 0.156 0.000 0.000
#> SRR1818586 2 0.3164 0.7860 0.052 0.884 0.000 0.064
#> SRR1818585 2 0.6278 0.6567 0.228 0.652 0.000 0.120
#> SRR1818584 4 0.0921 0.8904 0.000 0.028 0.000 0.972
#> SRR1818583 1 0.3986 0.8225 0.832 0.132 0.004 0.032
#> SRR1818588 1 0.1109 0.8759 0.968 0.028 0.004 0.000
#> SRR1818582 1 0.4399 0.6844 0.768 0.020 0.000 0.212
#> SRR1818581 2 0.4543 0.5943 0.000 0.676 0.000 0.324
#> SRR1818579 4 0.0592 0.8952 0.000 0.016 0.000 0.984
#> SRR1818578 1 0.8942 0.1967 0.436 0.116 0.128 0.320
#> SRR1818577 2 0.2996 0.7792 0.064 0.892 0.000 0.044
#> SRR1818580 4 0.1174 0.8961 0.000 0.020 0.012 0.968
#> SRR1818575 1 0.1302 0.8766 0.956 0.044 0.000 0.000
#> SRR1818574 3 0.5100 0.7040 0.168 0.076 0.756 0.000
#> SRR1818576 1 0.1004 0.8762 0.972 0.024 0.000 0.004
#> SRR1818573 4 0.0672 0.8925 0.000 0.008 0.008 0.984
#> SRR1818572 4 0.1118 0.8869 0.000 0.036 0.000 0.964
#> SRR1818571 4 0.0336 0.8939 0.000 0.000 0.008 0.992
#> SRR1818570 1 0.2081 0.8689 0.916 0.084 0.000 0.000
#> SRR1818568 1 0.1867 0.8722 0.928 0.072 0.000 0.000
#> SRR1818567 2 0.3117 0.7862 0.028 0.880 0.000 0.092
#> SRR1818566 3 0.5032 0.7100 0.156 0.080 0.764 0.000
#> SRR1818569 2 0.4535 0.6397 0.004 0.704 0.000 0.292
#> SRR1818565 3 0.5143 0.7007 0.172 0.076 0.752 0.000
#> SRR1818564 4 0.3900 0.7258 0.164 0.020 0.000 0.816
#> SRR1818563 4 0.0188 0.8962 0.000 0.004 0.000 0.996
#> SRR1818561 3 0.4890 0.7182 0.144 0.080 0.776 0.000
#> SRR1818560 1 0.5288 0.7002 0.772 0.076 0.136 0.016
#> SRR1818559 1 0.2023 0.8685 0.940 0.028 0.004 0.028
#> SRR1818562 4 0.1356 0.8907 0.000 0.032 0.008 0.960
#> SRR1818558 1 0.1940 0.8700 0.924 0.076 0.000 0.000
#> SRR1818556 4 0.0469 0.8960 0.000 0.012 0.000 0.988
#> SRR1818557 4 0.2553 0.8491 0.060 0.016 0.008 0.916
#> SRR1818555 2 0.4304 0.6519 0.000 0.716 0.000 0.284
#> SRR1818553 1 0.1362 0.8581 0.964 0.020 0.012 0.004
#> SRR1818552 2 0.3105 0.7444 0.120 0.868 0.000 0.012
#> SRR1818551 1 0.2704 0.8453 0.876 0.124 0.000 0.000
#> SRR1818550 4 0.0921 0.8937 0.000 0.028 0.000 0.972
#> SRR1818554 4 0.1510 0.8733 0.000 0.016 0.028 0.956
#> SRR1818549 4 0.8519 0.1504 0.144 0.072 0.300 0.484
#> SRR1818548 4 0.1648 0.8814 0.012 0.016 0.016 0.956
#> SRR1818546 4 0.3400 0.7233 0.000 0.180 0.000 0.820
#> SRR1818547 4 0.0336 0.8939 0.000 0.000 0.008 0.992
#> SRR1818544 4 0.8029 0.1645 0.116 0.048 0.348 0.488
#> SRR1818543 4 0.4750 0.7544 0.044 0.036 0.104 0.816
#> SRR1818542 1 0.3791 0.7716 0.796 0.200 0.000 0.004
#> SRR1818545 4 0.0592 0.8962 0.000 0.016 0.000 0.984
#> SRR1818541 1 0.1474 0.8753 0.948 0.052 0.000 0.000
#> SRR1818539 4 0.0712 0.8937 0.004 0.008 0.004 0.984
#> SRR1818540 2 0.3156 0.7867 0.048 0.884 0.000 0.068
#> SRR1818536 4 0.0779 0.8964 0.000 0.016 0.004 0.980
#> SRR1818535 1 0.5925 0.4459 0.648 0.068 0.284 0.000
#> SRR1818534 1 0.3674 0.8116 0.848 0.036 0.000 0.116
#> SRR1818538 4 0.1305 0.8882 0.000 0.036 0.004 0.960
#> SRR1818537 4 0.0336 0.8962 0.000 0.008 0.000 0.992
#> SRR1818533 1 0.2593 0.8556 0.892 0.104 0.000 0.004
#> SRR1818532 1 0.1452 0.8770 0.956 0.036 0.008 0.000
#> SRR1818531 4 0.0921 0.8904 0.000 0.028 0.000 0.972
#> SRR1818530 4 0.5294 -0.1308 0.008 0.484 0.000 0.508
#> SRR1818529 4 0.1022 0.8896 0.000 0.032 0.000 0.968
#> SRR1818528 1 0.2019 0.8472 0.940 0.032 0.024 0.004
#> SRR1818527 3 0.1911 0.7735 0.004 0.020 0.944 0.032
#> SRR1818526 3 0.2222 0.7688 0.004 0.032 0.932 0.032
#> SRR1818525 3 0.0188 0.7748 0.000 0.004 0.996 0.000
#> SRR1818523 3 0.2256 0.7670 0.020 0.056 0.924 0.000
#> SRR1818524 1 0.5785 0.5905 0.720 0.040 0.208 0.032
#> SRR1818522 3 0.3285 0.7575 0.052 0.024 0.892 0.032
#> SRR1818521 2 0.5161 0.5446 0.000 0.676 0.300 0.024
#> SRR1818520 2 0.3182 0.7854 0.028 0.876 0.000 0.096
#> SRR1818518 3 0.6169 0.4037 0.356 0.024 0.596 0.024
#> SRR1818519 1 0.0592 0.8749 0.984 0.016 0.000 0.000
#> SRR1818517 2 0.4781 0.6450 0.000 0.752 0.212 0.036
#> SRR1818516 3 0.4155 0.7433 0.100 0.072 0.828 0.000
#> SRR1818515 3 0.2222 0.7688 0.004 0.032 0.932 0.032
#> SRR1818514 2 0.5530 0.4856 0.352 0.624 0.016 0.008
#> SRR1818513 2 0.3385 0.7877 0.040 0.880 0.008 0.072
#> SRR1818512 2 0.5679 0.5793 0.264 0.688 0.028 0.020
#> SRR1818510 2 0.3037 0.7881 0.036 0.888 0.000 0.076
#> SRR1818511 3 0.9250 0.0124 0.216 0.316 0.376 0.092
#> SRR1818508 3 0.1297 0.7753 0.000 0.020 0.964 0.016
#> SRR1818509 2 0.6171 0.5396 0.256 0.656 0.084 0.004
#> SRR1818507 3 0.6461 0.0926 0.460 0.020 0.488 0.032
#> SRR1818506 1 0.2297 0.8485 0.932 0.024 0.032 0.012
#> SRR1818505 3 0.1833 0.7718 0.000 0.024 0.944 0.032
#> SRR1818503 1 0.0937 0.8621 0.976 0.012 0.012 0.000
#> SRR1818504 1 0.1584 0.8517 0.952 0.036 0.012 0.000
#> SRR1818502 1 0.0779 0.8701 0.980 0.016 0.004 0.000
#> SRR1818498 2 0.3088 0.7828 0.060 0.888 0.000 0.052
#> SRR1818500 3 0.0921 0.7720 0.000 0.028 0.972 0.000
#> SRR1818501 3 0.2466 0.7657 0.028 0.056 0.916 0.000
#> SRR1818499 3 0.2310 0.7759 0.016 0.020 0.932 0.032
#> SRR1818496 2 0.5859 0.3995 0.004 0.588 0.376 0.032
#> SRR1818494 1 0.2636 0.8412 0.916 0.020 0.052 0.012
#> SRR1818495 1 0.1302 0.8765 0.956 0.044 0.000 0.000
#> SRR1818493 2 0.4262 0.6442 0.000 0.756 0.236 0.008
#> SRR1818492 3 0.6855 0.1062 0.440 0.040 0.488 0.032
#> SRR1818491 3 0.2036 0.7682 0.000 0.032 0.936 0.032
#> SRR1818490 1 0.4321 0.7301 0.812 0.040 0.144 0.004
cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#> class entropy silhouette p1 p2 p3 p4 p5
#> SRR1818497 5 0.5184 0.6277 0.224 0.020 0.060 0.000 0.696
#> SRR1818600 4 0.0000 0.9338 0.000 0.000 0.000 1.000 0.000
#> SRR1818599 3 0.1732 0.7679 0.000 0.000 0.920 0.000 0.080
#> SRR1818598 4 0.0162 0.9336 0.000 0.000 0.000 0.996 0.004
#> SRR1818597 1 0.3593 0.8361 0.828 0.084 0.088 0.000 0.000
#> SRR1818596 1 0.1646 0.8442 0.944 0.020 0.032 0.000 0.004
#> SRR1818595 1 0.2419 0.8534 0.904 0.064 0.028 0.000 0.004
#> SRR1818594 1 0.3152 0.8070 0.840 0.136 0.024 0.000 0.000
#> SRR1818593 4 0.1770 0.9080 0.008 0.008 0.000 0.936 0.048
#> SRR1818592 1 0.1565 0.8457 0.952 0.016 0.020 0.004 0.008
#> SRR1818591 2 0.2813 0.7051 0.000 0.832 0.000 0.168 0.000
#> SRR1818590 4 0.1626 0.9049 0.000 0.044 0.000 0.940 0.016
#> SRR1818589 4 0.1026 0.9255 0.004 0.004 0.000 0.968 0.024
#> SRR1818587 1 0.2295 0.8430 0.900 0.088 0.008 0.000 0.004
#> SRR1818586 2 0.1365 0.7707 0.040 0.952 0.004 0.004 0.000
#> SRR1818585 2 0.6636 0.5797 0.180 0.616 0.124 0.080 0.000
#> SRR1818584 4 0.0000 0.9338 0.000 0.000 0.000 1.000 0.000
#> SRR1818583 1 0.4998 0.7380 0.736 0.172 0.028 0.064 0.000
#> SRR1818588 1 0.2897 0.8401 0.884 0.024 0.072 0.000 0.020
#> SRR1818582 1 0.2973 0.7930 0.880 0.012 0.016 0.084 0.008
#> SRR1818581 2 0.3774 0.5804 0.000 0.704 0.000 0.296 0.000
#> SRR1818579 4 0.0000 0.9338 0.000 0.000 0.000 1.000 0.000
#> SRR1818578 3 0.7740 0.1809 0.348 0.028 0.364 0.244 0.016
#> SRR1818577 2 0.2597 0.7404 0.120 0.872 0.000 0.004 0.004
#> SRR1818580 4 0.0000 0.9338 0.000 0.000 0.000 1.000 0.000
#> SRR1818575 1 0.0898 0.8514 0.972 0.020 0.008 0.000 0.000
#> SRR1818574 3 0.1697 0.7670 0.008 0.000 0.932 0.000 0.060
#> SRR1818576 1 0.3705 0.8303 0.816 0.064 0.120 0.000 0.000
#> SRR1818573 4 0.0854 0.9280 0.008 0.012 0.000 0.976 0.004
#> SRR1818572 4 0.0000 0.9338 0.000 0.000 0.000 1.000 0.000
#> SRR1818571 4 0.0324 0.9331 0.000 0.004 0.000 0.992 0.004
#> SRR1818570 1 0.3888 0.8262 0.804 0.120 0.076 0.000 0.000
#> SRR1818568 1 0.2124 0.8463 0.916 0.056 0.028 0.000 0.000
#> SRR1818567 2 0.1153 0.7743 0.024 0.964 0.000 0.008 0.004
#> SRR1818566 3 0.1768 0.7669 0.004 0.000 0.924 0.000 0.072
#> SRR1818569 2 0.6054 0.6440 0.084 0.680 0.112 0.124 0.000
#> SRR1818565 3 0.1571 0.7684 0.004 0.000 0.936 0.000 0.060
#> SRR1818564 4 0.3773 0.7798 0.060 0.008 0.108 0.824 0.000
#> SRR1818563 4 0.0162 0.9336 0.000 0.000 0.000 0.996 0.004
#> SRR1818561 3 0.1764 0.7687 0.008 0.000 0.928 0.000 0.064
#> SRR1818560 1 0.4151 0.5926 0.652 0.000 0.344 0.004 0.000
#> SRR1818559 1 0.1917 0.8423 0.936 0.016 0.036 0.008 0.004
#> SRR1818562 4 0.1410 0.9044 0.000 0.000 0.000 0.940 0.060
#> SRR1818558 1 0.1571 0.8498 0.936 0.060 0.004 0.000 0.000
#> SRR1818556 4 0.0162 0.9330 0.000 0.000 0.004 0.996 0.000
#> SRR1818557 4 0.4264 0.7128 0.188 0.016 0.012 0.772 0.012
#> SRR1818555 2 0.3003 0.6904 0.000 0.812 0.000 0.188 0.000
#> SRR1818553 1 0.2464 0.8348 0.892 0.004 0.092 0.000 0.012
#> SRR1818552 2 0.1638 0.7635 0.064 0.932 0.000 0.004 0.000
#> SRR1818551 1 0.2575 0.8416 0.884 0.100 0.004 0.000 0.012
#> SRR1818550 4 0.0451 0.9319 0.000 0.008 0.000 0.988 0.004
#> SRR1818554 4 0.1285 0.9195 0.004 0.004 0.000 0.956 0.036
#> SRR1818549 3 0.5826 0.1221 0.020 0.004 0.500 0.436 0.040
#> SRR1818548 4 0.3253 0.8373 0.096 0.012 0.012 0.864 0.016
#> SRR1818546 4 0.1741 0.8999 0.000 0.024 0.040 0.936 0.000
#> SRR1818547 4 0.0290 0.9329 0.000 0.000 0.000 0.992 0.008
#> SRR1818544 4 0.5210 0.6130 0.008 0.004 0.176 0.712 0.100
#> SRR1818543 4 0.2769 0.8599 0.004 0.004 0.076 0.888 0.028
#> SRR1818542 1 0.2690 0.8031 0.844 0.156 0.000 0.000 0.000
#> SRR1818545 4 0.0162 0.9336 0.000 0.000 0.000 0.996 0.004
#> SRR1818541 1 0.2053 0.8484 0.924 0.024 0.048 0.000 0.004
#> SRR1818539 4 0.0740 0.9276 0.004 0.008 0.008 0.980 0.000
#> SRR1818540 2 0.1124 0.7716 0.036 0.960 0.000 0.004 0.000
#> SRR1818536 4 0.0162 0.9331 0.000 0.000 0.004 0.996 0.000
#> SRR1818535 3 0.4066 0.4761 0.324 0.000 0.672 0.000 0.004
#> SRR1818534 1 0.3351 0.8110 0.872 0.028 0.036 0.056 0.008
#> SRR1818538 4 0.0579 0.9305 0.000 0.008 0.000 0.984 0.008
#> SRR1818537 4 0.0000 0.9338 0.000 0.000 0.000 1.000 0.000
#> SRR1818533 1 0.1341 0.8503 0.944 0.056 0.000 0.000 0.000
#> SRR1818532 1 0.2728 0.8406 0.888 0.068 0.040 0.000 0.004
#> SRR1818531 4 0.0000 0.9338 0.000 0.000 0.000 1.000 0.000
#> SRR1818530 4 0.5658 0.0323 0.004 0.408 0.068 0.520 0.000
#> SRR1818529 4 0.0000 0.9338 0.000 0.000 0.000 1.000 0.000
#> SRR1818528 1 0.5795 0.5636 0.640 0.012 0.124 0.000 0.224
#> SRR1818527 5 0.0865 0.8407 0.000 0.000 0.024 0.004 0.972
#> SRR1818526 5 0.0290 0.8406 0.000 0.000 0.000 0.008 0.992
#> SRR1818525 5 0.3642 0.5990 0.000 0.008 0.232 0.000 0.760
#> SRR1818523 3 0.2929 0.6982 0.000 0.000 0.820 0.000 0.180
#> SRR1818524 5 0.3754 0.7359 0.176 0.008 0.020 0.000 0.796
#> SRR1818522 5 0.0290 0.8419 0.000 0.008 0.000 0.000 0.992
#> SRR1818521 2 0.4392 0.4500 0.000 0.612 0.008 0.000 0.380
#> SRR1818520 2 0.1121 0.7741 0.008 0.968 0.004 0.016 0.004
#> SRR1818518 5 0.3916 0.7403 0.104 0.000 0.092 0.000 0.804
#> SRR1818519 1 0.3013 0.8293 0.880 0.016 0.060 0.000 0.044
#> SRR1818517 2 0.4440 0.1555 0.000 0.528 0.000 0.004 0.468
#> SRR1818516 3 0.1851 0.7643 0.000 0.000 0.912 0.000 0.088
#> SRR1818515 5 0.0579 0.8412 0.008 0.000 0.008 0.000 0.984
#> SRR1818514 2 0.6390 0.4935 0.192 0.576 0.220 0.008 0.004
#> SRR1818513 2 0.1256 0.7726 0.008 0.964 0.004 0.012 0.012
#> SRR1818512 2 0.6329 0.5420 0.136 0.612 0.224 0.024 0.004
#> SRR1818510 2 0.1256 0.7739 0.012 0.964 0.004 0.012 0.008
#> SRR1818511 5 0.1768 0.8186 0.000 0.072 0.000 0.004 0.924
#> SRR1818508 5 0.1082 0.8360 0.000 0.008 0.028 0.000 0.964
#> SRR1818509 2 0.4613 0.3775 0.020 0.620 0.000 0.000 0.360
#> SRR1818507 5 0.2833 0.7898 0.120 0.004 0.012 0.000 0.864
#> SRR1818506 1 0.6111 0.3592 0.556 0.008 0.120 0.000 0.316
#> SRR1818505 5 0.0566 0.8395 0.000 0.012 0.004 0.000 0.984
#> SRR1818503 1 0.4216 0.7766 0.796 0.012 0.120 0.000 0.072
#> SRR1818504 1 0.3875 0.7935 0.816 0.012 0.124 0.000 0.048
#> SRR1818502 1 0.3829 0.8026 0.828 0.016 0.096 0.000 0.060
#> SRR1818498 2 0.1404 0.7739 0.028 0.956 0.004 0.008 0.004
#> SRR1818500 3 0.6461 0.3353 0.000 0.196 0.472 0.000 0.332
#> SRR1818501 3 0.2690 0.7208 0.000 0.000 0.844 0.000 0.156
#> SRR1818499 5 0.2054 0.8114 0.008 0.004 0.072 0.000 0.916
#> SRR1818496 5 0.1571 0.8219 0.000 0.060 0.000 0.004 0.936
#> SRR1818494 5 0.6318 0.0393 0.428 0.008 0.120 0.000 0.444
#> SRR1818495 1 0.2927 0.8359 0.880 0.020 0.080 0.000 0.020
#> SRR1818493 2 0.3489 0.6786 0.000 0.784 0.004 0.004 0.208
#> SRR1818492 5 0.1549 0.8354 0.040 0.016 0.000 0.000 0.944
#> SRR1818491 5 0.0912 0.8358 0.000 0.016 0.012 0.000 0.972
#> SRR1818490 1 0.5842 0.5869 0.632 0.008 0.148 0.000 0.212
cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#> class entropy silhouette p1 p2 p3 p4 p5 p6
#> SRR1818497 6 0.4493 0.008275 0.016 0.008 0.000 0.000 0.484 0.492
#> SRR1818600 4 0.0000 0.895104 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818599 3 0.0405 0.944174 0.004 0.000 0.988 0.000 0.000 0.008
#> SRR1818598 4 0.0146 0.895031 0.000 0.000 0.000 0.996 0.004 0.000
#> SRR1818597 1 0.2859 0.737434 0.872 0.060 0.020 0.000 0.048 0.000
#> SRR1818596 1 0.2833 0.706360 0.836 0.012 0.004 0.000 0.148 0.000
#> SRR1818595 1 0.2086 0.748343 0.912 0.012 0.004 0.000 0.064 0.008
#> SRR1818594 1 0.1410 0.764679 0.944 0.044 0.008 0.000 0.004 0.000
#> SRR1818593 4 0.3521 0.790876 0.004 0.008 0.004 0.808 0.152 0.024
#> SRR1818592 1 0.4329 0.424526 0.624 0.012 0.000 0.008 0.352 0.004
#> SRR1818591 2 0.1910 0.743171 0.000 0.892 0.000 0.108 0.000 0.000
#> SRR1818590 4 0.2492 0.841494 0.000 0.080 0.004 0.888 0.008 0.020
#> SRR1818589 4 0.1707 0.873014 0.000 0.000 0.004 0.928 0.056 0.012
#> SRR1818587 1 0.1003 0.764768 0.964 0.000 0.004 0.000 0.028 0.004
#> SRR1818586 2 0.1444 0.772136 0.072 0.928 0.000 0.000 0.000 0.000
#> SRR1818585 1 0.7297 0.189720 0.452 0.252 0.040 0.048 0.208 0.000
#> SRR1818584 4 0.0291 0.894823 0.000 0.004 0.000 0.992 0.004 0.000
#> SRR1818583 1 0.3017 0.744848 0.868 0.068 0.012 0.012 0.040 0.000
#> SRR1818588 1 0.4245 0.212031 0.648 0.008 0.004 0.000 0.328 0.012
#> SRR1818582 1 0.4082 0.637563 0.740 0.012 0.004 0.020 0.220 0.004
#> SRR1818581 2 0.3076 0.621781 0.000 0.760 0.000 0.240 0.000 0.000
#> SRR1818579 4 0.0000 0.895104 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818578 1 0.5505 0.592271 0.688 0.028 0.156 0.092 0.036 0.000
#> SRR1818577 2 0.4185 -0.022278 0.492 0.496 0.012 0.000 0.000 0.000
#> SRR1818580 4 0.0000 0.895104 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818575 1 0.1411 0.748999 0.936 0.004 0.000 0.000 0.060 0.000
#> SRR1818574 3 0.0862 0.933072 0.004 0.000 0.972 0.000 0.016 0.008
#> SRR1818576 1 0.2960 0.730088 0.868 0.028 0.024 0.000 0.076 0.004
#> SRR1818573 4 0.2945 0.821784 0.016 0.012 0.000 0.852 0.116 0.004
#> SRR1818572 4 0.0000 0.895104 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818571 4 0.0146 0.894961 0.000 0.000 0.000 0.996 0.004 0.000
#> SRR1818570 1 0.2975 0.732086 0.864 0.068 0.020 0.000 0.048 0.000
#> SRR1818568 1 0.0951 0.764729 0.968 0.004 0.008 0.000 0.020 0.000
#> SRR1818567 2 0.1493 0.782408 0.056 0.936 0.004 0.004 0.000 0.000
#> SRR1818566 3 0.0551 0.942545 0.004 0.000 0.984 0.000 0.004 0.008
#> SRR1818569 1 0.7478 -0.019933 0.380 0.316 0.020 0.084 0.200 0.000
#> SRR1818565 3 0.0260 0.944328 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1818564 4 0.3730 0.747717 0.040 0.000 0.012 0.796 0.148 0.004
#> SRR1818563 4 0.0665 0.893299 0.000 0.000 0.004 0.980 0.008 0.008
#> SRR1818561 3 0.0260 0.944328 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1818560 1 0.3351 0.669977 0.800 0.000 0.168 0.000 0.028 0.004
#> SRR1818559 1 0.3123 0.701605 0.824 0.012 0.008 0.004 0.152 0.000
#> SRR1818562 4 0.0891 0.888514 0.000 0.000 0.000 0.968 0.008 0.024
#> SRR1818558 1 0.1524 0.751781 0.932 0.008 0.000 0.000 0.060 0.000
#> SRR1818556 4 0.0146 0.894961 0.000 0.000 0.000 0.996 0.004 0.000
#> SRR1818557 4 0.6484 0.224263 0.304 0.012 0.000 0.464 0.204 0.016
#> SRR1818555 2 0.2178 0.726789 0.000 0.868 0.000 0.132 0.000 0.000
#> SRR1818553 1 0.3219 0.588027 0.792 0.000 0.012 0.000 0.192 0.004
#> SRR1818552 2 0.1700 0.767080 0.080 0.916 0.000 0.000 0.004 0.000
#> SRR1818551 1 0.1015 0.767077 0.968 0.012 0.004 0.000 0.004 0.012
#> SRR1818550 4 0.0520 0.893472 0.000 0.008 0.000 0.984 0.008 0.000
#> SRR1818554 4 0.1434 0.877903 0.000 0.000 0.000 0.940 0.048 0.012
#> SRR1818549 4 0.5225 0.258203 0.004 0.000 0.400 0.532 0.048 0.016
#> SRR1818548 4 0.6249 0.500912 0.188 0.012 0.004 0.580 0.188 0.028
#> SRR1818546 4 0.3409 0.729279 0.000 0.028 0.000 0.780 0.192 0.000
#> SRR1818547 4 0.0291 0.895023 0.000 0.000 0.000 0.992 0.004 0.004
#> SRR1818544 4 0.3273 0.795064 0.000 0.000 0.120 0.832 0.024 0.024
#> SRR1818543 4 0.2215 0.863966 0.008 0.000 0.032 0.916 0.020 0.024
#> SRR1818542 1 0.1565 0.767314 0.940 0.028 0.004 0.000 0.028 0.000
#> SRR1818545 4 0.0146 0.894953 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR1818541 5 0.3996 0.624468 0.388 0.004 0.004 0.000 0.604 0.000
#> SRR1818539 4 0.0653 0.891804 0.004 0.000 0.004 0.980 0.012 0.000
#> SRR1818540 2 0.0858 0.788221 0.028 0.968 0.000 0.004 0.000 0.000
#> SRR1818536 4 0.0000 0.895104 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818535 1 0.3563 0.517968 0.664 0.000 0.336 0.000 0.000 0.000
#> SRR1818534 1 0.3406 0.692575 0.808 0.012 0.008 0.012 0.160 0.000
#> SRR1818538 4 0.0912 0.890463 0.000 0.012 0.004 0.972 0.004 0.008
#> SRR1818537 4 0.0000 0.895104 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818533 1 0.1124 0.760471 0.956 0.008 0.000 0.000 0.036 0.000
#> SRR1818532 1 0.0798 0.766679 0.976 0.012 0.004 0.000 0.004 0.004
#> SRR1818531 4 0.0146 0.895031 0.000 0.000 0.000 0.996 0.004 0.000
#> SRR1818530 4 0.6170 0.196251 0.020 0.272 0.000 0.500 0.208 0.000
#> SRR1818529 4 0.0146 0.894953 0.000 0.004 0.000 0.996 0.000 0.000
#> SRR1818528 5 0.5133 0.714115 0.164 0.000 0.008 0.000 0.652 0.176
#> SRR1818527 6 0.1572 0.835944 0.000 0.000 0.028 0.000 0.036 0.936
#> SRR1818526 6 0.0458 0.841533 0.000 0.000 0.000 0.000 0.016 0.984
#> SRR1818525 6 0.3512 0.595637 0.000 0.000 0.272 0.000 0.008 0.720
#> SRR1818523 3 0.0547 0.936722 0.000 0.000 0.980 0.000 0.000 0.020
#> SRR1818524 6 0.4531 0.587893 0.040 0.008 0.004 0.000 0.276 0.672
#> SRR1818522 6 0.0653 0.845962 0.000 0.004 0.012 0.000 0.004 0.980
#> SRR1818521 6 0.4893 -0.000735 0.000 0.440 0.036 0.000 0.012 0.512
#> SRR1818520 2 0.0508 0.788428 0.012 0.984 0.000 0.004 0.000 0.000
#> SRR1818518 6 0.2936 0.799858 0.020 0.004 0.044 0.000 0.060 0.872
#> SRR1818519 5 0.4011 0.696548 0.304 0.000 0.000 0.000 0.672 0.024
#> SRR1818517 2 0.3999 0.013546 0.000 0.500 0.004 0.000 0.000 0.496
#> SRR1818516 3 0.0260 0.944328 0.000 0.000 0.992 0.000 0.000 0.008
#> SRR1818515 6 0.1411 0.820544 0.000 0.004 0.000 0.000 0.060 0.936
#> SRR1818514 5 0.6894 -0.250795 0.068 0.384 0.124 0.008 0.412 0.004
#> SRR1818513 2 0.0508 0.788428 0.012 0.984 0.000 0.004 0.000 0.000
#> SRR1818512 2 0.6878 0.285321 0.040 0.444 0.140 0.020 0.352 0.004
#> SRR1818510 2 0.0508 0.788428 0.012 0.984 0.000 0.004 0.000 0.000
#> SRR1818511 6 0.0692 0.843143 0.000 0.020 0.000 0.000 0.004 0.976
#> SRR1818508 6 0.1036 0.845303 0.000 0.004 0.024 0.000 0.008 0.964
#> SRR1818509 2 0.4069 0.327490 0.000 0.612 0.004 0.000 0.008 0.376
#> SRR1818507 6 0.3678 0.678483 0.016 0.008 0.000 0.000 0.228 0.748
#> SRR1818506 5 0.5238 0.655013 0.132 0.004 0.004 0.000 0.632 0.228
#> SRR1818505 6 0.0653 0.845962 0.000 0.004 0.012 0.000 0.004 0.980
#> SRR1818503 5 0.4659 0.734495 0.304 0.008 0.004 0.000 0.644 0.040
#> SRR1818504 5 0.4601 0.727835 0.308 0.000 0.020 0.000 0.644 0.028
#> SRR1818502 5 0.4524 0.730227 0.312 0.004 0.004 0.000 0.644 0.036
#> SRR1818498 2 0.0363 0.787214 0.012 0.988 0.000 0.000 0.000 0.000
#> SRR1818500 3 0.5555 0.451527 0.000 0.088 0.600 0.000 0.036 0.276
#> SRR1818501 3 0.0405 0.944174 0.004 0.000 0.988 0.000 0.000 0.008
#> SRR1818499 6 0.2265 0.816120 0.008 0.000 0.068 0.000 0.024 0.900
#> SRR1818496 6 0.0458 0.842562 0.000 0.016 0.000 0.000 0.000 0.984
#> SRR1818494 5 0.5115 0.558387 0.092 0.004 0.004 0.000 0.620 0.280
#> SRR1818495 5 0.4505 0.690572 0.348 0.008 0.008 0.000 0.620 0.016
#> SRR1818493 2 0.3168 0.704994 0.000 0.820 0.028 0.000 0.004 0.148
#> SRR1818492 6 0.0551 0.844746 0.004 0.004 0.000 0.000 0.008 0.984
#> SRR1818491 6 0.0692 0.845734 0.000 0.004 0.020 0.000 0.000 0.976
#> SRR1818490 5 0.5792 0.711384 0.172 0.000 0.040 0.000 0.612 0.176
Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.
consensus_heatmap(res, k = 2)
consensus_heatmap(res, k = 3)
consensus_heatmap(res, k = 4)
consensus_heatmap(res, k = 5)
consensus_heatmap(res, k = 6)
Heatmaps for the membership of samples in all partitions to see how consistent they are:
membership_heatmap(res, k = 2)
membership_heatmap(res, k = 3)
membership_heatmap(res, k = 4)
membership_heatmap(res, k = 5)
membership_heatmap(res, k = 6)
As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.
Signature heatmaps where rows are scaled:
get_signatures(res, k = 2)
get_signatures(res, k = 3)
get_signatures(res, k = 4)
get_signatures(res, k = 5)
get_signatures(res, k = 6)
Signature heatmaps where rows are not scaled:
get_signatures(res, k = 2, scale_rows = FALSE)
get_signatures(res, k = 3, scale_rows = FALSE)
get_signatures(res, k = 4, scale_rows = FALSE)
get_signatures(res, k = 5, scale_rows = FALSE)
get_signatures(res, k = 6, scale_rows = FALSE)
Compare the overlap of signatures from different k:
compare_signatures(res)
get_signature()
returns a data frame invisibly. TO get the list of signatures, the function
call should be assigned to a variable explicitly. In following code, if plot
argument is set
to FALSE
, no heatmap is plotted while only the differential analysis is performed.
# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)
An example of the output of tb
is:
#> which_row fdr mean_1 mean_2 scaled_mean_1 scaled_mean_2 km
#> 1 38 0.042760348 8.373488 9.131774 -0.5533452 0.5164555 1
#> 2 40 0.018707592 7.106213 8.469186 -0.6173731 0.5762149 1
#> 3 55 0.019134737 10.221463 11.207825 -0.6159697 0.5749050 1
#> 4 59 0.006059896 5.921854 7.869574 -0.6899429 0.6439467 1
#> 5 60 0.018055526 8.928898 10.211722 -0.6204761 0.5791110 1
#> 6 98 0.009384629 15.714769 14.887706 0.6635654 -0.6193277 2
...
The columns in tb
are:
which_row
: row indices corresponding to the input matrix.fdr
: FDR for the differential test. mean_x
: The mean value in group x.scaled_mean_x
: The mean value in group x after rows are scaled.km
: Row groups if k-means clustering is applied to rows.UMAP plot which shows how samples are separated.
dimension_reduction(res, k = 2, method = "UMAP")
dimension_reduction(res, k = 3, method = "UMAP")
dimension_reduction(res, k = 4, method = "UMAP")
dimension_reduction(res, k = 5, method = "UMAP")
dimension_reduction(res, k = 6, method = "UMAP")
Following heatmap shows how subgroups are split when increasing k
:
collect_classes(res)
If matrix rows can be associated to genes, consider to use functional_enrichment(res,
...)
to perform function enrichment for the signature genes. See this vignette for more detailed explanations.
sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#>
#> Matrix products: default
#> BLAS: /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#>
#> locale:
#> [1] LC_CTYPE=en_GB.UTF-8 LC_NUMERIC=C LC_TIME=en_GB.UTF-8
#> [4] LC_COLLATE=en_GB.UTF-8 LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=en_GB.UTF-8
#> [7] LC_PAPER=en_GB.UTF-8 LC_NAME=C LC_ADDRESS=C
#> [10] LC_TELEPHONE=C LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C
#>
#> attached base packages:
#> [1] grid stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] genefilter_1.66.0 ComplexHeatmap_2.3.1 markdown_1.1 knitr_1.26
#> [5] GetoptLong_0.1.7 cola_1.3.2
#>
#> loaded via a namespace (and not attached):
#> [1] circlize_0.4.8 shape_1.4.4 xfun_0.11 slam_0.1-46
#> [5] lattice_0.20-38 splines_3.6.0 colorspace_1.4-1 vctrs_0.2.0
#> [9] stats4_3.6.0 blob_1.2.0 XML_3.98-1.20 survival_2.44-1.1
#> [13] rlang_0.4.2 pillar_1.4.2 DBI_1.0.0 BiocGenerics_0.30.0
#> [17] bit64_0.9-7 RColorBrewer_1.1-2 matrixStats_0.55.0 stringr_1.4.0
#> [21] GlobalOptions_0.1.1 evaluate_0.14 memoise_1.1.0 Biobase_2.44.0
#> [25] IRanges_2.18.3 parallel_3.6.0 AnnotationDbi_1.46.1 highr_0.8
#> [29] Rcpp_1.0.3 xtable_1.8-4 backports_1.1.5 S4Vectors_0.22.1
#> [33] annotate_1.62.0 skmeans_0.2-11 bit_1.1-14 microbenchmark_1.4-7
#> [37] brew_1.0-6 impute_1.58.0 rjson_0.2.20 png_0.1-7
#> [41] digest_0.6.23 stringi_1.4.3 polyclip_1.10-0 clue_0.3-57
#> [45] tools_3.6.0 bitops_1.0-6 magrittr_1.5 eulerr_6.0.0
#> [49] RCurl_1.95-4.12 RSQLite_2.1.4 tibble_2.1.3 cluster_2.1.0
#> [53] crayon_1.3.4 pkgconfig_2.0.3 zeallot_0.1.0 Matrix_1.2-17
#> [57] xml2_1.2.2 httr_1.4.1 R6_2.4.1 mclust_5.4.5
#> [61] compiler_3.6.0