cola Report for recount2:SRP055514

Date: 2019-12-26 00:48:41 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 15216 rows and 75 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 15216    75

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
CV:skmeans 2 1.000 0.968 0.988 **
MAD:skmeans 2 1.000 0.965 0.986 **
MAD:NMF 2 0.998 0.957 0.981 **
ATC:NMF 3 0.981 0.917 0.970 **
ATC:hclust 5 0.961 0.898 0.950 **
SD:skmeans 2 0.944 0.941 0.977 *
ATC:pam 6 0.932 0.902 0.959 * 2
ATC:skmeans 4 0.916 0.912 0.957 * 3
MAD:pam 2 0.891 0.937 0.971
CV:pam 2 0.883 0.918 0.963
CV:NMF 2 0.813 0.904 0.958
SD:pam 2 0.788 0.922 0.961
SD:NMF 2 0.765 0.876 0.947
CV:hclust 2 0.653 0.796 0.907
CV:kmeans 2 0.639 0.864 0.912
SD:mclust 3 0.619 0.815 0.881
SD:hclust 6 0.619 0.700 0.834
MAD:hclust 2 0.576 0.844 0.927
ATC:kmeans 2 0.550 0.890 0.939
MAD:kmeans 2 0.533 0.884 0.909
ATC:mclust 3 0.530 0.793 0.890
MAD:mclust 2 0.462 0.780 0.871
CV:mclust 2 0.412 0.783 0.868
SD:kmeans 2 0.384 0.688 0.762

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.765           0.876       0.947          0.491 0.498   0.498
#> CV:NMF      2 0.813           0.904       0.958          0.493 0.501   0.501
#> MAD:NMF     2 0.998           0.957       0.981          0.499 0.504   0.504
#> ATC:NMF     2 0.707           0.846       0.934          0.424 0.604   0.604
#> SD:skmeans  2 0.944           0.941       0.977          0.505 0.498   0.498
#> CV:skmeans  2 1.000           0.968       0.988          0.505 0.494   0.494
#> MAD:skmeans 2 1.000           0.965       0.986          0.504 0.498   0.498
#> ATC:skmeans 2 0.536           0.779       0.901          0.497 0.498   0.498
#> SD:mclust   2 0.444           0.693       0.811          0.428 0.504   0.504
#> CV:mclust   2 0.412           0.783       0.868          0.449 0.501   0.501
#> MAD:mclust  2 0.462           0.780       0.871          0.448 0.493   0.493
#> ATC:mclust  2 0.289           0.614       0.772          0.367 0.514   0.514
#> SD:kmeans   2 0.384           0.688       0.762          0.458 0.498   0.498
#> CV:kmeans   2 0.639           0.864       0.912          0.479 0.498   0.498
#> MAD:kmeans  2 0.533           0.884       0.909          0.482 0.504   0.504
#> ATC:kmeans  2 0.550           0.890       0.939          0.457 0.559   0.559
#> SD:pam      2 0.788           0.922       0.961          0.481 0.504   0.504
#> CV:pam      2 0.883           0.918       0.963          0.484 0.508   0.508
#> MAD:pam     2 0.891           0.937       0.971          0.486 0.504   0.504
#> ATC:pam     2 0.972           0.942       0.974          0.409 0.580   0.580
#> SD:hclust   2 0.330           0.567       0.807          0.452 0.494   0.494
#> CV:hclust   2 0.653           0.796       0.907          0.448 0.514   0.514
#> MAD:hclust  2 0.576           0.844       0.927          0.480 0.526   0.526
#> ATC:hclust  2 0.412           0.835       0.874          0.469 0.494   0.494
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.627           0.781       0.891          0.250 0.659   0.442
#> CV:NMF      3 0.509           0.704       0.837          0.289 0.667   0.449
#> MAD:NMF     3 0.568           0.716       0.868          0.265 0.657   0.434
#> ATC:NMF     3 0.981           0.917       0.970          0.283 0.792   0.674
#> SD:skmeans  3 0.737           0.887       0.914          0.308 0.765   0.559
#> CV:skmeans  3 0.506           0.654       0.779          0.276 0.861   0.723
#> MAD:skmeans 3 0.717           0.841       0.896          0.303 0.788   0.595
#> ATC:skmeans 3 0.907           0.931       0.967          0.338 0.737   0.520
#> SD:mclust   3 0.619           0.815       0.881          0.490 0.762   0.559
#> CV:mclust   3 0.347           0.643       0.714          0.369 0.743   0.551
#> MAD:mclust  3 0.412           0.605       0.804          0.356 0.854   0.712
#> ATC:mclust  3 0.530           0.793       0.890          0.610 0.621   0.433
#> SD:kmeans   3 0.454           0.656       0.806          0.359 0.785   0.597
#> CV:kmeans   3 0.451           0.644       0.797          0.265 0.972   0.944
#> MAD:kmeans  3 0.476           0.638       0.777          0.301 0.872   0.748
#> ATC:kmeans  3 0.607           0.723       0.839          0.359 0.615   0.398
#> SD:pam      3 0.821           0.889       0.944          0.189 0.931   0.863
#> CV:pam      3 0.771           0.775       0.885          0.163 0.910   0.826
#> MAD:pam     3 0.845           0.897       0.932          0.162 0.931   0.863
#> ATC:pam     3 0.707           0.898       0.927          0.449 0.692   0.518
#> SD:hclust   3 0.342           0.515       0.664          0.146 0.658   0.462
#> CV:hclust   3 0.560           0.707       0.826          0.180 1.000   1.000
#> MAD:hclust  3 0.635           0.724       0.886          0.206 0.888   0.786
#> ATC:hclust  3 0.771           0.822       0.907          0.268 0.935   0.869
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.477           0.656       0.800         0.1437 0.831   0.610
#> CV:NMF      4 0.411           0.465       0.675         0.1443 0.722   0.403
#> MAD:NMF     4 0.496           0.570       0.776         0.1341 0.792   0.517
#> ATC:NMF     4 0.621           0.794       0.882         0.2282 0.816   0.620
#> SD:skmeans  4 0.672           0.827       0.870         0.1212 0.862   0.621
#> CV:skmeans  4 0.529           0.516       0.703         0.1483 0.814   0.545
#> MAD:skmeans 4 0.643           0.783       0.834         0.1249 0.859   0.618
#> ATC:skmeans 4 0.916           0.912       0.957         0.1061 0.892   0.694
#> SD:mclust   4 0.535           0.737       0.814         0.0932 0.867   0.651
#> CV:mclust   4 0.467           0.612       0.738         0.1346 0.880   0.709
#> MAD:mclust  4 0.608           0.700       0.806         0.1593 0.777   0.486
#> ATC:mclust  4 0.610           0.691       0.812         0.2186 0.627   0.314
#> SD:kmeans   4 0.535           0.666       0.766         0.1284 0.942   0.841
#> CV:kmeans   4 0.399           0.548       0.644         0.1180 0.885   0.760
#> MAD:kmeans  4 0.497           0.613       0.743         0.1190 0.908   0.770
#> ATC:kmeans  4 0.693           0.695       0.838         0.1488 0.944   0.835
#> SD:pam      4 0.836           0.897       0.927         0.1312 0.950   0.884
#> CV:pam      4 0.719           0.813       0.899         0.1025 0.935   0.853
#> MAD:pam     4 0.773           0.906       0.911         0.1496 0.950   0.884
#> ATC:pam     4 0.865           0.848       0.939         0.1231 0.928   0.820
#> SD:hclust   4 0.606           0.690       0.848         0.2283 0.800   0.576
#> CV:hclust   4 0.712           0.690       0.817         0.1870 0.877   0.761
#> MAD:hclust  4 0.590           0.673       0.841         0.0964 0.921   0.818
#> ATC:hclust  4 0.848           0.823       0.910         0.1300 0.937   0.852
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.499           0.496       0.694         0.0922 0.836   0.539
#> CV:NMF      5 0.494           0.397       0.630         0.0809 0.793   0.408
#> MAD:NMF     5 0.530           0.531       0.722         0.0793 0.870   0.600
#> ATC:NMF     5 0.562           0.575       0.683         0.0938 0.858   0.590
#> SD:skmeans  5 0.642           0.606       0.754         0.0669 0.988   0.955
#> CV:skmeans  5 0.541           0.382       0.616         0.0699 0.897   0.638
#> MAD:skmeans 5 0.640           0.644       0.738         0.0661 0.977   0.914
#> ATC:skmeans 5 0.840           0.824       0.872         0.0495 0.922   0.730
#> SD:mclust   5 0.542           0.559       0.741         0.0898 0.901   0.680
#> CV:mclust   5 0.520           0.577       0.694         0.0826 0.920   0.767
#> MAD:mclust  5 0.613           0.558       0.700         0.0843 0.916   0.717
#> ATC:mclust  5 0.701           0.745       0.847         0.0349 0.991   0.968
#> SD:kmeans   5 0.544           0.557       0.696         0.0760 0.994   0.981
#> CV:kmeans   5 0.434           0.276       0.641         0.0832 0.863   0.677
#> MAD:kmeans  5 0.511           0.518       0.687         0.0751 0.923   0.774
#> ATC:kmeans  5 0.741           0.566       0.728         0.0715 0.944   0.832
#> SD:pam      5 0.716           0.828       0.904         0.1592 0.866   0.651
#> CV:pam      5 0.632           0.614       0.835         0.1039 0.959   0.894
#> MAD:pam     5 0.845           0.875       0.936         0.1532 0.849   0.615
#> ATC:pam     5 0.779           0.823       0.861         0.0827 0.919   0.784
#> SD:hclust   5 0.578           0.651       0.816         0.0802 0.939   0.818
#> CV:hclust   5 0.757           0.715       0.815         0.0528 0.959   0.895
#> MAD:hclust  5 0.592           0.588       0.786         0.1170 0.915   0.773
#> ATC:hclust  5 0.961           0.898       0.950         0.1096 0.874   0.655
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.533           0.406       0.635         0.0591 0.856   0.494
#> CV:NMF      6 0.557           0.460       0.598         0.0457 0.914   0.636
#> MAD:NMF     6 0.555           0.420       0.620         0.0583 0.859   0.488
#> ATC:NMF     6 0.576           0.282       0.592         0.0609 0.805   0.419
#> SD:skmeans  6 0.664           0.472       0.654         0.0440 0.876   0.532
#> CV:skmeans  6 0.552           0.399       0.606         0.0442 0.925   0.686
#> MAD:skmeans 6 0.653           0.501       0.641         0.0438 0.898   0.618
#> ATC:skmeans 6 0.824           0.829       0.865         0.0380 0.951   0.800
#> SD:mclust   6 0.632           0.594       0.732         0.0571 0.894   0.583
#> CV:mclust   6 0.567           0.494       0.646         0.0679 0.842   0.480
#> MAD:mclust  6 0.614           0.590       0.692         0.0545 0.901   0.613
#> ATC:mclust  6 0.595           0.598       0.736         0.0600 0.874   0.560
#> SD:kmeans   6 0.562           0.320       0.645         0.0490 0.945   0.825
#> CV:kmeans   6 0.458           0.309       0.582         0.0538 0.943   0.842
#> MAD:kmeans  6 0.549           0.420       0.631         0.0527 0.916   0.729
#> ATC:kmeans  6 0.710           0.593       0.751         0.0480 0.888   0.663
#> SD:pam      6 0.773           0.797       0.878         0.0540 0.944   0.783
#> CV:pam      6 0.575           0.663       0.819         0.0681 0.931   0.807
#> MAD:pam     6 0.799           0.785       0.880         0.0593 0.947   0.795
#> ATC:pam     6 0.932           0.902       0.959         0.1169 0.874   0.616
#> SD:hclust   6 0.619           0.700       0.834         0.0287 0.956   0.869
#> CV:hclust   6 0.636           0.699       0.788         0.0586 0.895   0.725
#> MAD:hclust  6 0.627           0.562       0.780         0.0385 0.974   0.917
#> ATC:hclust  6 0.926           0.884       0.925         0.0253 0.997   0.988

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Results for each method


SD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15216 rows and 75 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.330           0.567       0.807         0.4520 0.494   0.494
#> 3 3 0.342           0.515       0.664         0.1461 0.658   0.462
#> 4 4 0.606           0.690       0.848         0.2283 0.800   0.576
#> 5 5 0.578           0.651       0.816         0.0802 0.939   0.818
#> 6 6 0.619           0.700       0.834         0.0287 0.956   0.869

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1818631     2  0.9954    0.17121 0.460 0.540
#> SRR1818632     2  0.9954    0.17121 0.460 0.540
#> SRR1818679     2  0.9963    0.34408 0.464 0.536
#> SRR1818680     2  0.9963    0.34408 0.464 0.536
#> SRR1818677     1  0.6973    0.57441 0.812 0.188
#> SRR1818678     1  0.6973    0.57441 0.812 0.188
#> SRR1818675     2  0.0000    0.56150 0.000 1.000
#> SRR1818676     2  0.0000    0.56150 0.000 1.000
#> SRR1818673     2  0.9896    0.41185 0.440 0.560
#> SRR1818674     2  0.9896    0.41185 0.440 0.560
#> SRR1818671     2  0.9323    0.54174 0.348 0.652
#> SRR1818672     2  0.9323    0.54174 0.348 0.652
#> SRR1818661     2  0.9944    0.17766 0.456 0.544
#> SRR1818662     2  0.9944    0.17766 0.456 0.544
#> SRR1818655     1  0.0000    0.86357 1.000 0.000
#> SRR1818656     1  0.0000    0.86357 1.000 0.000
#> SRR1818653     2  0.9954    0.17121 0.460 0.540
#> SRR1818654     2  0.9954    0.17121 0.460 0.540
#> SRR1818651     1  0.0000    0.86357 1.000 0.000
#> SRR1818652     1  0.0000    0.86357 1.000 0.000
#> SRR1818657     1  0.0000    0.86357 1.000 0.000
#> SRR1818658     1  0.0000    0.86357 1.000 0.000
#> SRR1818649     1  0.0376    0.86012 0.996 0.004
#> SRR1818650     1  0.0376    0.86012 0.996 0.004
#> SRR1818659     1  0.0000    0.86357 1.000 0.000
#> SRR1818647     2  0.0000    0.56150 0.000 1.000
#> SRR1818648     2  0.0000    0.56150 0.000 1.000
#> SRR1818645     2  0.9323    0.54174 0.348 0.652
#> SRR1818646     2  0.9323    0.54174 0.348 0.652
#> SRR1818639     1  0.0000    0.86357 1.000 0.000
#> SRR1818640     1  0.0000    0.86357 1.000 0.000
#> SRR1818637     2  0.0000    0.56150 0.000 1.000
#> SRR1818638     2  0.0000    0.56150 0.000 1.000
#> SRR1818635     2  0.9896    0.41185 0.440 0.560
#> SRR1818636     2  0.9896    0.41185 0.440 0.560
#> SRR1818643     1  0.5629    0.67384 0.868 0.132
#> SRR1818644     1  0.5629    0.67384 0.868 0.132
#> SRR1818641     1  0.9993   -0.28753 0.516 0.484
#> SRR1818642     1  0.9993   -0.28753 0.516 0.484
#> SRR1818633     1  0.9795    0.00454 0.584 0.416
#> SRR1818634     1  0.9795    0.00454 0.584 0.416
#> SRR1818665     1  0.0000    0.86357 1.000 0.000
#> SRR1818666     1  0.0000    0.86357 1.000 0.000
#> SRR1818667     2  0.9323    0.54174 0.348 0.652
#> SRR1818668     2  0.9323    0.54174 0.348 0.652
#> SRR1818669     1  0.0000    0.86357 1.000 0.000
#> SRR1818670     1  0.0000    0.86357 1.000 0.000
#> SRR1818663     1  0.0000    0.86357 1.000 0.000
#> SRR1818664     1  0.0000    0.86357 1.000 0.000
#> SRR1818629     2  0.9323    0.54174 0.348 0.652
#> SRR1818630     2  0.9323    0.54174 0.348 0.652
#> SRR1818627     1  0.0000    0.86357 1.000 0.000
#> SRR1818628     1  0.0000    0.86357 1.000 0.000
#> SRR1818621     2  0.9954    0.17121 0.460 0.540
#> SRR1818622     2  0.9954    0.17121 0.460 0.540
#> SRR1818625     1  0.0000    0.86357 1.000 0.000
#> SRR1818626     1  0.0000    0.86357 1.000 0.000
#> SRR1818623     2  0.9000    0.36151 0.316 0.684
#> SRR1818624     2  0.9000    0.36151 0.316 0.684
#> SRR1818619     1  0.0000    0.86357 1.000 0.000
#> SRR1818620     1  0.0000    0.86357 1.000 0.000
#> SRR1818617     1  0.0000    0.86357 1.000 0.000
#> SRR1818618     1  0.0000    0.86357 1.000 0.000
#> SRR1818615     2  0.9323    0.54174 0.348 0.652
#> SRR1818616     2  0.9323    0.54174 0.348 0.652
#> SRR1818609     2  0.0000    0.56150 0.000 1.000
#> SRR1818610     2  0.0000    0.56150 0.000 1.000
#> SRR1818607     2  0.9323    0.54174 0.348 0.652
#> SRR1818608     2  0.9323    0.54174 0.348 0.652
#> SRR1818613     1  0.0000    0.86357 1.000 0.000
#> SRR1818614     1  0.0000    0.86357 1.000 0.000
#> SRR1818611     1  0.0376    0.86012 0.996 0.004
#> SRR1818612     1  0.0376    0.86012 0.996 0.004
#> SRR1818605     1  0.9850    0.04927 0.572 0.428
#> SRR1818606     1  0.9850    0.04927 0.572 0.428

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1818631     1  0.5178     0.1060 0.744 0.000 0.256
#> SRR1818632     1  0.5178     0.1060 0.744 0.000 0.256
#> SRR1818679     2  0.5643     0.5952 0.220 0.760 0.020
#> SRR1818680     2  0.5643     0.5952 0.220 0.760 0.020
#> SRR1818677     2  0.6286    -0.3324 0.464 0.536 0.000
#> SRR1818678     2  0.6286    -0.3324 0.464 0.536 0.000
#> SRR1818675     3  0.9223     0.6453 0.200 0.272 0.528
#> SRR1818676     3  0.9223     0.6453 0.200 0.272 0.528
#> SRR1818673     2  0.2796     0.6814 0.092 0.908 0.000
#> SRR1818674     2  0.2796     0.6814 0.092 0.908 0.000
#> SRR1818671     2  0.0592     0.6820 0.000 0.988 0.012
#> SRR1818672     2  0.0592     0.6820 0.000 0.988 0.012
#> SRR1818661     1  0.6442    -0.2474 0.564 0.004 0.432
#> SRR1818662     1  0.6442    -0.2474 0.564 0.004 0.432
#> SRR1818655     1  0.5882     0.7449 0.652 0.348 0.000
#> SRR1818656     1  0.5882     0.7449 0.652 0.348 0.000
#> SRR1818653     1  0.5216     0.0996 0.740 0.000 0.260
#> SRR1818654     1  0.5216     0.0996 0.740 0.000 0.260
#> SRR1818651     1  0.5882     0.7449 0.652 0.348 0.000
#> SRR1818652     1  0.5882     0.7449 0.652 0.348 0.000
#> SRR1818657     1  0.5882     0.7449 0.652 0.348 0.000
#> SRR1818658     1  0.5882     0.7449 0.652 0.348 0.000
#> SRR1818649     1  0.5905     0.7399 0.648 0.352 0.000
#> SRR1818650     1  0.5905     0.7399 0.648 0.352 0.000
#> SRR1818659     1  0.5882     0.7449 0.652 0.348 0.000
#> SRR1818647     2  0.6154    -0.4364 0.000 0.592 0.408
#> SRR1818648     2  0.6154    -0.4364 0.000 0.592 0.408
#> SRR1818645     2  0.0000     0.6902 0.000 1.000 0.000
#> SRR1818646     2  0.0000     0.6902 0.000 1.000 0.000
#> SRR1818639     1  0.5882     0.7449 0.652 0.348 0.000
#> SRR1818640     1  0.5882     0.7449 0.652 0.348 0.000
#> SRR1818637     3  0.6225     0.5859 0.000 0.432 0.568
#> SRR1818638     3  0.6225     0.5859 0.000 0.432 0.568
#> SRR1818635     2  0.2796     0.6814 0.092 0.908 0.000
#> SRR1818636     2  0.2796     0.6814 0.092 0.908 0.000
#> SRR1818643     1  0.6302     0.5000 0.520 0.480 0.000
#> SRR1818644     1  0.6302     0.5000 0.520 0.480 0.000
#> SRR1818641     2  0.4121     0.6167 0.168 0.832 0.000
#> SRR1818642     2  0.4121     0.6167 0.168 0.832 0.000
#> SRR1818633     2  0.5733     0.3244 0.324 0.676 0.000
#> SRR1818634     2  0.5733     0.3244 0.324 0.676 0.000
#> SRR1818665     1  0.5882     0.7449 0.652 0.348 0.000
#> SRR1818666     1  0.5882     0.7449 0.652 0.348 0.000
#> SRR1818667     2  0.0000     0.6902 0.000 1.000 0.000
#> SRR1818668     2  0.0000     0.6902 0.000 1.000 0.000
#> SRR1818669     1  0.5835     0.7389 0.660 0.340 0.000
#> SRR1818670     1  0.5835     0.7389 0.660 0.340 0.000
#> SRR1818663     1  0.5882     0.7449 0.652 0.348 0.000
#> SRR1818664     1  0.5882     0.7449 0.652 0.348 0.000
#> SRR1818629     2  0.0000     0.6902 0.000 1.000 0.000
#> SRR1818630     2  0.0000     0.6902 0.000 1.000 0.000
#> SRR1818627     1  0.5882     0.7449 0.652 0.348 0.000
#> SRR1818628     1  0.5882     0.7449 0.652 0.348 0.000
#> SRR1818621     1  0.5216     0.0996 0.740 0.000 0.260
#> SRR1818622     1  0.5216     0.0996 0.740 0.000 0.260
#> SRR1818625     1  0.5882     0.7449 0.652 0.348 0.000
#> SRR1818626     1  0.5882     0.7449 0.652 0.348 0.000
#> SRR1818623     3  0.9746     0.5756 0.240 0.328 0.432
#> SRR1818624     3  0.9746     0.5756 0.240 0.328 0.432
#> SRR1818619     1  0.5882     0.7449 0.652 0.348 0.000
#> SRR1818620     1  0.5882     0.7449 0.652 0.348 0.000
#> SRR1818617     1  0.5882     0.7449 0.652 0.348 0.000
#> SRR1818618     1  0.5882     0.7449 0.652 0.348 0.000
#> SRR1818615     2  0.0000     0.6902 0.000 1.000 0.000
#> SRR1818616     2  0.0000     0.6902 0.000 1.000 0.000
#> SRR1818609     2  0.6154    -0.4364 0.000 0.592 0.408
#> SRR1818610     2  0.6154    -0.4364 0.000 0.592 0.408
#> SRR1818607     2  0.0000     0.6902 0.000 1.000 0.000
#> SRR1818608     2  0.0000     0.6902 0.000 1.000 0.000
#> SRR1818613     1  0.5882     0.7449 0.652 0.348 0.000
#> SRR1818614     1  0.5882     0.7449 0.652 0.348 0.000
#> SRR1818611     1  0.5905     0.7399 0.648 0.352 0.000
#> SRR1818612     1  0.5905     0.7399 0.648 0.352 0.000
#> SRR1818605     1  0.7676     0.3249 0.672 0.112 0.216
#> SRR1818606     1  0.7676     0.3249 0.672 0.112 0.216

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1818631     3  0.4936      0.674 0.372 0.004 0.624 0.000
#> SRR1818632     3  0.4936      0.674 0.372 0.004 0.624 0.000
#> SRR1818679     2  0.6056      0.585 0.248 0.660 0.092 0.000
#> SRR1818680     2  0.6056      0.585 0.248 0.660 0.092 0.000
#> SRR1818677     1  0.3486      0.672 0.812 0.188 0.000 0.000
#> SRR1818678     1  0.3486      0.672 0.812 0.188 0.000 0.000
#> SRR1818675     4  0.4713      0.278 0.000 0.000 0.360 0.640
#> SRR1818676     4  0.4713      0.278 0.000 0.000 0.360 0.640
#> SRR1818673     2  0.3356      0.708 0.176 0.824 0.000 0.000
#> SRR1818674     2  0.3356      0.708 0.176 0.824 0.000 0.000
#> SRR1818671     2  0.0657      0.740 0.004 0.984 0.000 0.012
#> SRR1818672     2  0.0657      0.740 0.004 0.984 0.000 0.012
#> SRR1818661     3  0.1557      0.321 0.056 0.000 0.944 0.000
#> SRR1818662     3  0.1557      0.321 0.056 0.000 0.944 0.000
#> SRR1818655     1  0.1716      0.879 0.936 0.000 0.064 0.000
#> SRR1818656     1  0.1716      0.879 0.936 0.000 0.064 0.000
#> SRR1818653     3  0.4730      0.681 0.364 0.000 0.636 0.000
#> SRR1818654     3  0.4730      0.681 0.364 0.000 0.636 0.000
#> SRR1818651     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1818652     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1818657     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1818658     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1818649     1  0.0188      0.928 0.996 0.004 0.000 0.000
#> SRR1818650     1  0.0188      0.928 0.996 0.004 0.000 0.000
#> SRR1818659     1  0.0921      0.910 0.972 0.000 0.028 0.000
#> SRR1818647     4  0.4961      0.482 0.000 0.448 0.000 0.552
#> SRR1818648     4  0.4961      0.482 0.000 0.448 0.000 0.552
#> SRR1818645     2  0.0188      0.751 0.004 0.996 0.000 0.000
#> SRR1818646     2  0.0188      0.751 0.004 0.996 0.000 0.000
#> SRR1818639     1  0.0817      0.914 0.976 0.000 0.024 0.000
#> SRR1818640     1  0.0817      0.914 0.976 0.000 0.024 0.000
#> SRR1818637     4  0.0000      0.508 0.000 0.000 0.000 1.000
#> SRR1818638     4  0.0000      0.508 0.000 0.000 0.000 1.000
#> SRR1818635     2  0.3356      0.708 0.176 0.824 0.000 0.000
#> SRR1818636     2  0.3356      0.708 0.176 0.824 0.000 0.000
#> SRR1818643     1  0.5859      0.392 0.652 0.284 0.064 0.000
#> SRR1818644     1  0.5859      0.392 0.652 0.284 0.064 0.000
#> SRR1818641     2  0.4706      0.640 0.248 0.732 0.020 0.000
#> SRR1818642     2  0.4706      0.640 0.248 0.732 0.020 0.000
#> SRR1818633     2  0.6140      0.274 0.452 0.500 0.048 0.000
#> SRR1818634     2  0.6140      0.274 0.452 0.500 0.048 0.000
#> SRR1818665     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1818666     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1818667     2  0.0188      0.751 0.004 0.996 0.000 0.000
#> SRR1818668     2  0.0188      0.751 0.004 0.996 0.000 0.000
#> SRR1818669     1  0.1109      0.904 0.968 0.004 0.028 0.000
#> SRR1818670     1  0.1109      0.904 0.968 0.004 0.028 0.000
#> SRR1818663     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1818664     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1818629     2  0.0188      0.751 0.004 0.996 0.000 0.000
#> SRR1818630     2  0.0188      0.751 0.004 0.996 0.000 0.000
#> SRR1818627     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1818628     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1818621     3  0.4730      0.681 0.364 0.000 0.636 0.000
#> SRR1818622     3  0.4730      0.681 0.364 0.000 0.636 0.000
#> SRR1818625     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1818626     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1818623     3  0.7756     -0.430 0.000 0.252 0.428 0.320
#> SRR1818624     3  0.7756     -0.430 0.000 0.252 0.428 0.320
#> SRR1818619     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1818620     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1818617     1  0.1716      0.879 0.936 0.000 0.064 0.000
#> SRR1818618     1  0.1716      0.879 0.936 0.000 0.064 0.000
#> SRR1818615     2  0.0188      0.751 0.004 0.996 0.000 0.000
#> SRR1818616     2  0.0188      0.751 0.004 0.996 0.000 0.000
#> SRR1818609     4  0.4961      0.482 0.000 0.448 0.000 0.552
#> SRR1818610     4  0.4961      0.482 0.000 0.448 0.000 0.552
#> SRR1818607     2  0.0188      0.751 0.004 0.996 0.000 0.000
#> SRR1818608     2  0.0188      0.751 0.004 0.996 0.000 0.000
#> SRR1818613     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1818614     1  0.0000      0.930 1.000 0.000 0.000 0.000
#> SRR1818611     1  0.0188      0.928 0.996 0.004 0.000 0.000
#> SRR1818612     1  0.0188      0.928 0.996 0.004 0.000 0.000
#> SRR1818605     3  0.4996      0.394 0.484 0.000 0.516 0.000
#> SRR1818606     3  0.4996      0.394 0.484 0.000 0.516 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1818631     3  0.8137     0.3937 0.196 0.000 0.368 0.124 0.312
#> SRR1818632     3  0.8137     0.3937 0.196 0.000 0.368 0.124 0.312
#> SRR1818679     2  0.6125     0.6231 0.224 0.660 0.044 0.032 0.040
#> SRR1818680     2  0.6125     0.6231 0.224 0.660 0.044 0.032 0.040
#> SRR1818677     1  0.3003     0.6898 0.812 0.188 0.000 0.000 0.000
#> SRR1818678     1  0.3003     0.6898 0.812 0.188 0.000 0.000 0.000
#> SRR1818675     5  0.6211     0.6147 0.000 0.000 0.248 0.204 0.548
#> SRR1818676     5  0.6211     0.6147 0.000 0.000 0.248 0.204 0.548
#> SRR1818673     2  0.3010     0.7582 0.172 0.824 0.000 0.004 0.000
#> SRR1818674     2  0.3010     0.7582 0.172 0.824 0.000 0.004 0.000
#> SRR1818671     2  0.0404     0.8238 0.000 0.988 0.000 0.012 0.000
#> SRR1818672     2  0.0404     0.8238 0.000 0.988 0.000 0.012 0.000
#> SRR1818661     4  0.6731    -0.0681 0.004 0.000 0.232 0.452 0.312
#> SRR1818662     4  0.6731    -0.0681 0.004 0.000 0.232 0.452 0.312
#> SRR1818655     1  0.3096     0.7750 0.868 0.000 0.084 0.040 0.008
#> SRR1818656     1  0.3096     0.7750 0.868 0.000 0.084 0.040 0.008
#> SRR1818653     3  0.1544     0.5386 0.068 0.000 0.932 0.000 0.000
#> SRR1818654     3  0.1544     0.5386 0.068 0.000 0.932 0.000 0.000
#> SRR1818651     1  0.0000     0.8526 1.000 0.000 0.000 0.000 0.000
#> SRR1818652     1  0.0000     0.8526 1.000 0.000 0.000 0.000 0.000
#> SRR1818657     1  0.0000     0.8526 1.000 0.000 0.000 0.000 0.000
#> SRR1818658     1  0.0000     0.8526 1.000 0.000 0.000 0.000 0.000
#> SRR1818649     1  0.0324     0.8507 0.992 0.004 0.004 0.000 0.000
#> SRR1818650     1  0.0324     0.8507 0.992 0.004 0.004 0.000 0.000
#> SRR1818659     1  0.3816     0.5030 0.696 0.000 0.304 0.000 0.000
#> SRR1818647     4  0.6448     0.3452 0.000 0.272 0.000 0.500 0.228
#> SRR1818648     4  0.6448     0.3452 0.000 0.272 0.000 0.500 0.228
#> SRR1818645     2  0.0000     0.8338 0.000 1.000 0.000 0.000 0.000
#> SRR1818646     2  0.0000     0.8338 0.000 1.000 0.000 0.000 0.000
#> SRR1818639     1  0.2329     0.7729 0.876 0.000 0.124 0.000 0.000
#> SRR1818640     1  0.2329     0.7729 0.876 0.000 0.124 0.000 0.000
#> SRR1818637     5  0.3913     0.5850 0.000 0.000 0.000 0.324 0.676
#> SRR1818638     5  0.3913     0.5850 0.000 0.000 0.000 0.324 0.676
#> SRR1818635     2  0.3010     0.7582 0.172 0.824 0.000 0.004 0.000
#> SRR1818636     2  0.3010     0.7582 0.172 0.824 0.000 0.004 0.000
#> SRR1818643     1  0.6523     0.3650 0.580 0.288 0.084 0.040 0.008
#> SRR1818644     1  0.6523     0.3650 0.580 0.288 0.084 0.040 0.008
#> SRR1818641     2  0.4543     0.6831 0.224 0.732 0.024 0.020 0.000
#> SRR1818642     2  0.4543     0.6831 0.224 0.732 0.024 0.020 0.000
#> SRR1818633     1  0.6839     0.0255 0.440 0.328 0.008 0.224 0.000
#> SRR1818634     1  0.6839     0.0255 0.440 0.328 0.008 0.224 0.000
#> SRR1818665     1  0.0000     0.8526 1.000 0.000 0.000 0.000 0.000
#> SRR1818666     1  0.0000     0.8526 1.000 0.000 0.000 0.000 0.000
#> SRR1818667     2  0.0000     0.8338 0.000 1.000 0.000 0.000 0.000
#> SRR1818668     2  0.0000     0.8338 0.000 1.000 0.000 0.000 0.000
#> SRR1818669     1  0.3583     0.6282 0.792 0.000 0.192 0.012 0.004
#> SRR1818670     1  0.3583     0.6282 0.792 0.000 0.192 0.012 0.004
#> SRR1818663     1  0.0000     0.8526 1.000 0.000 0.000 0.000 0.000
#> SRR1818664     1  0.0000     0.8526 1.000 0.000 0.000 0.000 0.000
#> SRR1818629     2  0.0000     0.8338 0.000 1.000 0.000 0.000 0.000
#> SRR1818630     2  0.0000     0.8338 0.000 1.000 0.000 0.000 0.000
#> SRR1818627     1  0.0000     0.8526 1.000 0.000 0.000 0.000 0.000
#> SRR1818628     1  0.0000     0.8526 1.000 0.000 0.000 0.000 0.000
#> SRR1818621     3  0.1544     0.5386 0.068 0.000 0.932 0.000 0.000
#> SRR1818622     3  0.1544     0.5386 0.068 0.000 0.932 0.000 0.000
#> SRR1818625     1  0.0000     0.8526 1.000 0.000 0.000 0.000 0.000
#> SRR1818626     1  0.0000     0.8526 1.000 0.000 0.000 0.000 0.000
#> SRR1818623     4  0.1831     0.1978 0.000 0.076 0.004 0.920 0.000
#> SRR1818624     4  0.1831     0.1978 0.000 0.076 0.004 0.920 0.000
#> SRR1818619     1  0.0000     0.8526 1.000 0.000 0.000 0.000 0.000
#> SRR1818620     1  0.0000     0.8526 1.000 0.000 0.000 0.000 0.000
#> SRR1818617     1  0.3096     0.7750 0.868 0.000 0.084 0.040 0.008
#> SRR1818618     1  0.3096     0.7750 0.868 0.000 0.084 0.040 0.008
#> SRR1818615     2  0.0000     0.8338 0.000 1.000 0.000 0.000 0.000
#> SRR1818616     2  0.0000     0.8338 0.000 1.000 0.000 0.000 0.000
#> SRR1818609     4  0.6448     0.3452 0.000 0.272 0.000 0.500 0.228
#> SRR1818610     4  0.6448     0.3452 0.000 0.272 0.000 0.500 0.228
#> SRR1818607     2  0.0000     0.8338 0.000 1.000 0.000 0.000 0.000
#> SRR1818608     2  0.0000     0.8338 0.000 1.000 0.000 0.000 0.000
#> SRR1818613     1  0.0000     0.8526 1.000 0.000 0.000 0.000 0.000
#> SRR1818614     1  0.0000     0.8526 1.000 0.000 0.000 0.000 0.000
#> SRR1818611     1  0.0324     0.8507 0.992 0.004 0.004 0.000 0.000
#> SRR1818612     1  0.0324     0.8507 0.992 0.004 0.004 0.000 0.000
#> SRR1818605     3  0.6596     0.2865 0.416 0.000 0.460 0.080 0.044
#> SRR1818606     3  0.6596     0.2865 0.416 0.000 0.460 0.080 0.044

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1818631     3  0.5220     0.6432 0.140 0.000 0.708 0.012 0.044 0.096
#> SRR1818632     3  0.5220     0.6432 0.140 0.000 0.708 0.012 0.044 0.096
#> SRR1818679     2  0.5672     0.5833 0.200 0.656 0.060 0.016 0.000 0.068
#> SRR1818680     2  0.5672     0.5833 0.200 0.656 0.060 0.016 0.000 0.068
#> SRR1818677     1  0.2882     0.7170 0.812 0.180 0.000 0.000 0.000 0.008
#> SRR1818678     1  0.2882     0.7170 0.812 0.180 0.000 0.000 0.000 0.008
#> SRR1818675     4  0.6352     0.4493 0.000 0.000 0.108 0.568 0.208 0.116
#> SRR1818676     4  0.6352     0.4493 0.000 0.000 0.108 0.568 0.208 0.116
#> SRR1818673     2  0.3037     0.7220 0.160 0.820 0.000 0.004 0.000 0.016
#> SRR1818674     2  0.3037     0.7220 0.160 0.820 0.000 0.004 0.000 0.016
#> SRR1818671     2  0.1265     0.7756 0.000 0.948 0.000 0.008 0.000 0.044
#> SRR1818672     2  0.1265     0.7756 0.000 0.948 0.000 0.008 0.000 0.044
#> SRR1818661     3  0.2450     0.5984 0.000 0.000 0.868 0.116 0.016 0.000
#> SRR1818662     3  0.2450     0.5984 0.000 0.000 0.868 0.116 0.016 0.000
#> SRR1818655     1  0.2742     0.7704 0.852 0.000 0.012 0.000 0.008 0.128
#> SRR1818656     1  0.2742     0.7704 0.852 0.000 0.012 0.000 0.008 0.128
#> SRR1818653     5  0.0260     1.0000 0.008 0.000 0.000 0.000 0.992 0.000
#> SRR1818654     5  0.0260     1.0000 0.008 0.000 0.000 0.000 0.992 0.000
#> SRR1818651     1  0.0146     0.8295 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1818652     1  0.0146     0.8295 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1818657     1  0.0405     0.8288 0.988 0.000 0.000 0.004 0.000 0.008
#> SRR1818658     1  0.0405     0.8288 0.988 0.000 0.000 0.004 0.000 0.008
#> SRR1818649     1  0.0291     0.8293 0.992 0.004 0.000 0.000 0.000 0.004
#> SRR1818650     1  0.0291     0.8293 0.992 0.004 0.000 0.000 0.000 0.004
#> SRR1818659     1  0.3659     0.5074 0.636 0.000 0.000 0.000 0.364 0.000
#> SRR1818647     6  0.3431     1.0000 0.000 0.228 0.000 0.016 0.000 0.756
#> SRR1818648     6  0.3431     1.0000 0.000 0.228 0.000 0.016 0.000 0.756
#> SRR1818645     2  0.0000     0.7925 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818646     2  0.0000     0.7925 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818639     1  0.2664     0.7385 0.816 0.000 0.000 0.000 0.184 0.000
#> SRR1818640     1  0.2664     0.7385 0.816 0.000 0.000 0.000 0.184 0.000
#> SRR1818637     4  0.2491     0.5241 0.000 0.000 0.000 0.836 0.000 0.164
#> SRR1818638     4  0.2491     0.5241 0.000 0.000 0.000 0.836 0.000 0.164
#> SRR1818635     2  0.3037     0.7220 0.160 0.820 0.000 0.004 0.000 0.016
#> SRR1818636     2  0.3037     0.7220 0.160 0.820 0.000 0.004 0.000 0.016
#> SRR1818643     1  0.5981     0.3796 0.552 0.288 0.012 0.004 0.008 0.136
#> SRR1818644     1  0.5981     0.3796 0.552 0.288 0.012 0.004 0.008 0.136
#> SRR1818641     2  0.4230     0.6482 0.200 0.728 0.000 0.004 0.000 0.068
#> SRR1818642     2  0.4230     0.6482 0.200 0.728 0.000 0.004 0.000 0.068
#> SRR1818633     1  0.6903     0.0124 0.424 0.328 0.012 0.044 0.000 0.192
#> SRR1818634     1  0.6903     0.0124 0.424 0.328 0.012 0.044 0.000 0.192
#> SRR1818665     1  0.0260     0.8294 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR1818666     1  0.0260     0.8294 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR1818667     2  0.0937     0.7871 0.000 0.960 0.000 0.000 0.000 0.040
#> SRR1818668     2  0.0937     0.7871 0.000 0.960 0.000 0.000 0.000 0.040
#> SRR1818669     1  0.4865     0.5884 0.732 0.000 0.124 0.004 0.044 0.096
#> SRR1818670     1  0.4865     0.5884 0.732 0.000 0.124 0.004 0.044 0.096
#> SRR1818663     1  0.0000     0.8289 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818664     1  0.0000     0.8289 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818629     2  0.0937     0.7871 0.000 0.960 0.000 0.000 0.000 0.040
#> SRR1818630     2  0.0937     0.7871 0.000 0.960 0.000 0.000 0.000 0.040
#> SRR1818627     1  0.0260     0.8294 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR1818628     1  0.0260     0.8294 0.992 0.000 0.000 0.000 0.000 0.008
#> SRR1818621     5  0.0260     1.0000 0.008 0.000 0.000 0.000 0.992 0.000
#> SRR1818622     5  0.0260     1.0000 0.008 0.000 0.000 0.000 0.992 0.000
#> SRR1818625     1  0.0000     0.8289 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818626     1  0.0000     0.8289 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818623     4  0.6999     0.1429 0.000 0.064 0.272 0.384 0.000 0.280
#> SRR1818624     4  0.6999     0.1429 0.000 0.064 0.272 0.384 0.000 0.280
#> SRR1818619     1  0.0405     0.8288 0.988 0.000 0.000 0.004 0.000 0.008
#> SRR1818620     1  0.0405     0.8288 0.988 0.000 0.000 0.004 0.000 0.008
#> SRR1818617     1  0.2742     0.7704 0.852 0.000 0.012 0.000 0.008 0.128
#> SRR1818618     1  0.2742     0.7704 0.852 0.000 0.012 0.000 0.008 0.128
#> SRR1818615     2  0.0790     0.7900 0.000 0.968 0.000 0.000 0.000 0.032
#> SRR1818616     2  0.0790     0.7900 0.000 0.968 0.000 0.000 0.000 0.032
#> SRR1818609     6  0.3431     1.0000 0.000 0.228 0.000 0.016 0.000 0.756
#> SRR1818610     6  0.3431     1.0000 0.000 0.228 0.000 0.016 0.000 0.756
#> SRR1818607     2  0.0000     0.7925 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818608     2  0.0000     0.7925 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818613     1  0.0146     0.8295 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1818614     1  0.0146     0.8295 0.996 0.000 0.000 0.004 0.000 0.000
#> SRR1818611     1  0.0291     0.8293 0.992 0.004 0.000 0.000 0.000 0.004
#> SRR1818612     1  0.0291     0.8293 0.992 0.004 0.000 0.000 0.000 0.004
#> SRR1818605     1  0.7341    -0.0364 0.396 0.000 0.064 0.044 0.364 0.132
#> SRR1818606     1  0.7341    -0.0364 0.396 0.000 0.064 0.044 0.364 0.132

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15216 rows and 75 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.384           0.688       0.762          0.458 0.498   0.498
#> 3 3 0.454           0.656       0.806          0.359 0.785   0.597
#> 4 4 0.535           0.666       0.766          0.128 0.942   0.841
#> 5 5 0.544           0.557       0.696          0.076 0.994   0.981
#> 6 6 0.562           0.320       0.645          0.049 0.945   0.825

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1818631     1  0.9580      0.469 0.620 0.380
#> SRR1818632     1  0.9580      0.469 0.620 0.380
#> SRR1818679     1  0.9850      0.057 0.572 0.428
#> SRR1818680     1  0.9850      0.057 0.572 0.428
#> SRR1818677     2  0.9850      0.669 0.428 0.572
#> SRR1818678     2  0.9850      0.669 0.428 0.572
#> SRR1818675     2  0.9358      0.107 0.352 0.648
#> SRR1818676     2  0.9358      0.107 0.352 0.648
#> SRR1818673     2  0.9732      0.691 0.404 0.596
#> SRR1818674     2  0.9732      0.691 0.404 0.596
#> SRR1818671     2  0.8267      0.715 0.260 0.740
#> SRR1818672     2  0.8267      0.715 0.260 0.740
#> SRR1818661     1  0.9963      0.335 0.536 0.464
#> SRR1818662     1  0.9963      0.335 0.536 0.464
#> SRR1818655     1  0.0376      0.857 0.996 0.004
#> SRR1818656     1  0.0376      0.857 0.996 0.004
#> SRR1818653     1  0.2948      0.828 0.948 0.052
#> SRR1818654     1  0.2948      0.828 0.948 0.052
#> SRR1818651     1  0.0938      0.855 0.988 0.012
#> SRR1818652     1  0.0938      0.855 0.988 0.012
#> SRR1818657     1  0.0376      0.857 0.996 0.004
#> SRR1818658     1  0.0376      0.857 0.996 0.004
#> SRR1818649     1  0.0000      0.857 1.000 0.000
#> SRR1818650     1  0.0000      0.857 1.000 0.000
#> SRR1818659     1  0.0000      0.857 1.000 0.000
#> SRR1818647     2  0.0000      0.634 0.000 1.000
#> SRR1818648     2  0.0000      0.634 0.000 1.000
#> SRR1818645     2  0.9358      0.714 0.352 0.648
#> SRR1818646     2  0.9358      0.714 0.352 0.648
#> SRR1818639     1  0.0376      0.857 0.996 0.004
#> SRR1818640     1  0.0376      0.857 0.996 0.004
#> SRR1818637     2  0.0376      0.637 0.004 0.996
#> SRR1818638     2  0.0376      0.637 0.004 0.996
#> SRR1818635     2  0.9896      0.660 0.440 0.560
#> SRR1818636     2  0.9896      0.660 0.440 0.560
#> SRR1818643     2  0.9944      0.639 0.456 0.544
#> SRR1818644     2  0.9944      0.639 0.456 0.544
#> SRR1818641     2  0.9944      0.639 0.456 0.544
#> SRR1818642     2  0.9944      0.639 0.456 0.544
#> SRR1818633     1  0.8909      0.331 0.692 0.308
#> SRR1818634     1  0.8909      0.331 0.692 0.308
#> SRR1818665     1  0.0000      0.857 1.000 0.000
#> SRR1818666     1  0.0000      0.857 1.000 0.000
#> SRR1818667     2  0.5737      0.693 0.136 0.864
#> SRR1818668     2  0.5737      0.693 0.136 0.864
#> SRR1818669     1  0.0000      0.857 1.000 0.000
#> SRR1818670     1  0.0000      0.857 1.000 0.000
#> SRR1818663     1  0.0000      0.857 1.000 0.000
#> SRR1818664     1  0.0000      0.857 1.000 0.000
#> SRR1818629     2  0.9710      0.694 0.400 0.600
#> SRR1818630     2  0.9710      0.694 0.400 0.600
#> SRR1818627     1  0.0672      0.856 0.992 0.008
#> SRR1818628     1  0.0672      0.856 0.992 0.008
#> SRR1818621     1  0.8861      0.559 0.696 0.304
#> SRR1818622     1  0.8861      0.559 0.696 0.304
#> SRR1818625     1  0.0000      0.857 1.000 0.000
#> SRR1818626     1  0.0000      0.857 1.000 0.000
#> SRR1818623     2  0.0376      0.637 0.004 0.996
#> SRR1818624     2  0.0376      0.637 0.004 0.996
#> SRR1818619     1  0.0376      0.857 0.996 0.004
#> SRR1818620     1  0.0376      0.857 0.996 0.004
#> SRR1818617     2  0.9896      0.655 0.440 0.560
#> SRR1818618     2  0.9896      0.655 0.440 0.560
#> SRR1818615     2  0.6712      0.704 0.176 0.824
#> SRR1818616     2  0.6712      0.704 0.176 0.824
#> SRR1818609     2  0.1184      0.643 0.016 0.984
#> SRR1818610     2  0.1184      0.643 0.016 0.984
#> SRR1818607     2  0.9358      0.714 0.352 0.648
#> SRR1818608     2  0.9358      0.714 0.352 0.648
#> SRR1818613     1  0.0938      0.855 0.988 0.012
#> SRR1818614     1  0.0938      0.855 0.988 0.012
#> SRR1818611     1  0.0000      0.857 1.000 0.000
#> SRR1818612     1  0.0000      0.857 1.000 0.000
#> SRR1818605     1  0.4161      0.798 0.916 0.084
#> SRR1818606     1  0.4161      0.798 0.916 0.084

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1818631     3  0.5982     0.4975 0.328 0.004 0.668
#> SRR1818632     3  0.5982     0.4975 0.328 0.004 0.668
#> SRR1818679     3  0.9953     0.2694 0.344 0.288 0.368
#> SRR1818680     3  0.9953     0.2694 0.344 0.288 0.368
#> SRR1818677     2  0.5778     0.7068 0.200 0.768 0.032
#> SRR1818678     2  0.5778     0.7068 0.200 0.768 0.032
#> SRR1818675     3  0.4370     0.5716 0.076 0.056 0.868
#> SRR1818676     3  0.4370     0.5716 0.076 0.056 0.868
#> SRR1818673     2  0.4228     0.7303 0.148 0.844 0.008
#> SRR1818674     2  0.4228     0.7303 0.148 0.844 0.008
#> SRR1818671     2  0.3921     0.6629 0.016 0.872 0.112
#> SRR1818672     2  0.3921     0.6629 0.016 0.872 0.112
#> SRR1818661     3  0.5201     0.5666 0.236 0.004 0.760
#> SRR1818662     3  0.5201     0.5666 0.236 0.004 0.760
#> SRR1818655     1  0.3120     0.8674 0.908 0.012 0.080
#> SRR1818656     1  0.3120     0.8674 0.908 0.012 0.080
#> SRR1818653     1  0.5656     0.6310 0.728 0.008 0.264
#> SRR1818654     1  0.5656     0.6310 0.728 0.008 0.264
#> SRR1818651     1  0.1860     0.8865 0.948 0.000 0.052
#> SRR1818652     1  0.1860     0.8865 0.948 0.000 0.052
#> SRR1818657     1  0.0892     0.8989 0.980 0.000 0.020
#> SRR1818658     1  0.0892     0.8989 0.980 0.000 0.020
#> SRR1818649     1  0.3791     0.8378 0.892 0.060 0.048
#> SRR1818650     1  0.3791     0.8378 0.892 0.060 0.048
#> SRR1818659     1  0.2680     0.8776 0.924 0.008 0.068
#> SRR1818647     3  0.6045     0.2431 0.000 0.380 0.620
#> SRR1818648     3  0.6045     0.2431 0.000 0.380 0.620
#> SRR1818645     2  0.2918     0.7145 0.044 0.924 0.032
#> SRR1818646     2  0.2918     0.7145 0.044 0.924 0.032
#> SRR1818639     1  0.2866     0.8709 0.916 0.008 0.076
#> SRR1818640     1  0.2866     0.8709 0.916 0.008 0.076
#> SRR1818637     2  0.6295     0.0372 0.000 0.528 0.472
#> SRR1818638     2  0.6295     0.0372 0.000 0.528 0.472
#> SRR1818635     2  0.4861     0.7184 0.192 0.800 0.008
#> SRR1818636     2  0.4861     0.7184 0.192 0.800 0.008
#> SRR1818643     2  0.5414     0.7047 0.212 0.772 0.016
#> SRR1818644     2  0.5414     0.7047 0.212 0.772 0.016
#> SRR1818641     2  0.5643     0.6949 0.220 0.760 0.020
#> SRR1818642     2  0.5643     0.6949 0.220 0.760 0.020
#> SRR1818633     2  0.8932     0.1751 0.420 0.456 0.124
#> SRR1818634     2  0.8932     0.1751 0.420 0.456 0.124
#> SRR1818665     1  0.0983     0.8988 0.980 0.004 0.016
#> SRR1818666     1  0.0983     0.8988 0.980 0.004 0.016
#> SRR1818667     2  0.4233     0.6173 0.004 0.836 0.160
#> SRR1818668     2  0.4233     0.6173 0.004 0.836 0.160
#> SRR1818669     1  0.1129     0.8988 0.976 0.004 0.020
#> SRR1818670     1  0.1129     0.8988 0.976 0.004 0.020
#> SRR1818663     1  0.1015     0.8971 0.980 0.008 0.012
#> SRR1818664     1  0.1015     0.8971 0.980 0.008 0.012
#> SRR1818629     2  0.3987     0.7318 0.108 0.872 0.020
#> SRR1818630     2  0.3987     0.7318 0.108 0.872 0.020
#> SRR1818627     1  0.1753     0.8923 0.952 0.000 0.048
#> SRR1818628     1  0.1753     0.8923 0.952 0.000 0.048
#> SRR1818621     3  0.6641     0.1774 0.448 0.008 0.544
#> SRR1818622     3  0.6641     0.1774 0.448 0.008 0.544
#> SRR1818625     1  0.1585     0.8934 0.964 0.008 0.028
#> SRR1818626     1  0.1585     0.8934 0.964 0.008 0.028
#> SRR1818623     3  0.6180     0.1806 0.000 0.416 0.584
#> SRR1818624     3  0.6180     0.1806 0.000 0.416 0.584
#> SRR1818619     1  0.1643     0.8932 0.956 0.000 0.044
#> SRR1818620     1  0.1643     0.8932 0.956 0.000 0.044
#> SRR1818617     2  0.5597     0.7011 0.216 0.764 0.020
#> SRR1818618     2  0.5597     0.7011 0.216 0.764 0.020
#> SRR1818615     2  0.3129     0.6747 0.008 0.904 0.088
#> SRR1818616     2  0.3129     0.6747 0.008 0.904 0.088
#> SRR1818609     2  0.5560     0.4376 0.000 0.700 0.300
#> SRR1818610     2  0.5560     0.4376 0.000 0.700 0.300
#> SRR1818607     2  0.2918     0.7145 0.044 0.924 0.032
#> SRR1818608     2  0.2918     0.7145 0.044 0.924 0.032
#> SRR1818613     1  0.1860     0.8865 0.948 0.000 0.052
#> SRR1818614     1  0.1860     0.8865 0.948 0.000 0.052
#> SRR1818611     1  0.3692     0.8423 0.896 0.056 0.048
#> SRR1818612     1  0.3692     0.8423 0.896 0.056 0.048
#> SRR1818605     1  0.5896     0.5196 0.700 0.008 0.292
#> SRR1818606     1  0.5896     0.5196 0.700 0.008 0.292

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1818631     3   0.569      0.615 0.184 0.000 0.712 0.104
#> SRR1818632     3   0.569      0.615 0.184 0.000 0.712 0.104
#> SRR1818679     3   0.918      0.251 0.184 0.316 0.400 0.100
#> SRR1818680     3   0.918      0.251 0.184 0.316 0.400 0.100
#> SRR1818677     2   0.558      0.688 0.048 0.772 0.068 0.112
#> SRR1818678     2   0.558      0.688 0.048 0.772 0.068 0.112
#> SRR1818675     3   0.609      0.315 0.036 0.012 0.604 0.348
#> SRR1818676     3   0.609      0.315 0.036 0.012 0.604 0.348
#> SRR1818673     2   0.273      0.733 0.028 0.916 0.020 0.036
#> SRR1818674     2   0.273      0.733 0.028 0.916 0.020 0.036
#> SRR1818671     2   0.472      0.494 0.000 0.672 0.004 0.324
#> SRR1818672     2   0.472      0.494 0.000 0.672 0.004 0.324
#> SRR1818661     3   0.509      0.579 0.096 0.000 0.764 0.140
#> SRR1818662     3   0.509      0.579 0.096 0.000 0.764 0.140
#> SRR1818655     1   0.482      0.791 0.808 0.020 0.068 0.104
#> SRR1818656     1   0.482      0.791 0.808 0.020 0.068 0.104
#> SRR1818653     1   0.660      0.487 0.600 0.004 0.300 0.096
#> SRR1818654     1   0.660      0.487 0.600 0.004 0.300 0.096
#> SRR1818651     1   0.260      0.842 0.912 0.004 0.064 0.020
#> SRR1818652     1   0.260      0.842 0.912 0.004 0.064 0.020
#> SRR1818657     1   0.257      0.844 0.916 0.004 0.052 0.028
#> SRR1818658     1   0.257      0.844 0.916 0.004 0.052 0.028
#> SRR1818649     1   0.495      0.765 0.812 0.076 0.064 0.048
#> SRR1818650     1   0.495      0.765 0.812 0.076 0.064 0.048
#> SRR1818659     1   0.405      0.817 0.852 0.016 0.060 0.072
#> SRR1818647     4   0.686      0.685 0.000 0.144 0.276 0.580
#> SRR1818648     4   0.686      0.685 0.000 0.144 0.276 0.580
#> SRR1818645     2   0.307      0.700 0.004 0.868 0.004 0.124
#> SRR1818646     2   0.307      0.700 0.004 0.868 0.004 0.124
#> SRR1818639     1   0.490      0.783 0.800 0.016 0.072 0.112
#> SRR1818640     1   0.490      0.783 0.800 0.016 0.072 0.112
#> SRR1818637     4   0.608      0.754 0.000 0.216 0.112 0.672
#> SRR1818638     4   0.608      0.754 0.000 0.216 0.112 0.672
#> SRR1818635     2   0.292      0.732 0.032 0.908 0.020 0.040
#> SRR1818636     2   0.292      0.732 0.032 0.908 0.020 0.040
#> SRR1818643     2   0.322      0.728 0.040 0.896 0.028 0.036
#> SRR1818644     2   0.322      0.728 0.040 0.896 0.028 0.036
#> SRR1818641     2   0.377      0.718 0.048 0.872 0.036 0.044
#> SRR1818642     2   0.377      0.718 0.048 0.872 0.036 0.044
#> SRR1818633     2   0.904      0.154 0.284 0.448 0.152 0.116
#> SRR1818634     2   0.904      0.154 0.284 0.448 0.152 0.116
#> SRR1818665     1   0.148      0.852 0.960 0.004 0.016 0.020
#> SRR1818666     1   0.148      0.852 0.960 0.004 0.016 0.020
#> SRR1818667     2   0.535      0.323 0.000 0.596 0.016 0.388
#> SRR1818668     2   0.535      0.323 0.000 0.596 0.016 0.388
#> SRR1818669     1   0.222      0.851 0.932 0.008 0.044 0.016
#> SRR1818670     1   0.222      0.851 0.932 0.008 0.044 0.016
#> SRR1818663     1   0.134      0.850 0.964 0.008 0.004 0.024
#> SRR1818664     1   0.134      0.850 0.964 0.008 0.004 0.024
#> SRR1818629     2   0.297      0.731 0.020 0.896 0.008 0.076
#> SRR1818630     2   0.297      0.731 0.020 0.896 0.008 0.076
#> SRR1818627     1   0.244      0.847 0.916 0.000 0.060 0.024
#> SRR1818628     1   0.244      0.847 0.916 0.000 0.060 0.024
#> SRR1818621     3   0.589      0.553 0.252 0.004 0.676 0.068
#> SRR1818622     3   0.589      0.553 0.252 0.004 0.676 0.068
#> SRR1818625     1   0.174      0.849 0.952 0.008 0.016 0.024
#> SRR1818626     1   0.174      0.849 0.952 0.008 0.016 0.024
#> SRR1818623     4   0.664      0.662 0.000 0.128 0.268 0.604
#> SRR1818624     4   0.664      0.662 0.000 0.128 0.268 0.604
#> SRR1818619     1   0.358      0.824 0.876 0.016 0.060 0.048
#> SRR1818620     1   0.358      0.824 0.876 0.016 0.060 0.048
#> SRR1818617     2   0.574      0.670 0.068 0.764 0.056 0.112
#> SRR1818618     2   0.574      0.670 0.068 0.764 0.056 0.112
#> SRR1818615     2   0.472      0.499 0.000 0.692 0.008 0.300
#> SRR1818616     2   0.472      0.499 0.000 0.692 0.008 0.300
#> SRR1818609     4   0.557      0.587 0.000 0.344 0.032 0.624
#> SRR1818610     4   0.557      0.587 0.000 0.344 0.032 0.624
#> SRR1818607     2   0.307      0.700 0.004 0.868 0.004 0.124
#> SRR1818608     2   0.307      0.700 0.004 0.868 0.004 0.124
#> SRR1818613     1   0.230      0.843 0.920 0.000 0.064 0.016
#> SRR1818614     1   0.230      0.843 0.920 0.000 0.064 0.016
#> SRR1818611     1   0.481      0.776 0.820 0.072 0.060 0.048
#> SRR1818612     1   0.481      0.776 0.820 0.072 0.060 0.048
#> SRR1818605     1   0.520      0.488 0.668 0.004 0.312 0.016
#> SRR1818606     1   0.520      0.488 0.668 0.004 0.312 0.016

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1818631     3   0.647      0.480 0.136 0.000 0.636 0.152 0.076
#> SRR1818632     3   0.647      0.480 0.136 0.000 0.636 0.152 0.076
#> SRR1818679     5   0.925      1.000 0.136 0.180 0.300 0.068 0.316
#> SRR1818680     5   0.925      1.000 0.136 0.180 0.300 0.068 0.316
#> SRR1818677     2   0.594      0.410 0.036 0.620 0.024 0.024 0.296
#> SRR1818678     2   0.594      0.410 0.036 0.620 0.024 0.024 0.296
#> SRR1818675     3   0.659      0.337 0.016 0.012 0.464 0.416 0.092
#> SRR1818676     3   0.659      0.337 0.016 0.012 0.464 0.416 0.092
#> SRR1818673     2   0.328      0.613 0.008 0.836 0.004 0.008 0.144
#> SRR1818674     2   0.328      0.613 0.008 0.836 0.004 0.008 0.144
#> SRR1818671     2   0.540      0.447 0.000 0.644 0.000 0.248 0.108
#> SRR1818672     2   0.540      0.447 0.000 0.644 0.000 0.248 0.108
#> SRR1818661     3   0.478      0.582 0.056 0.000 0.728 0.204 0.012
#> SRR1818662     3   0.478      0.582 0.056 0.000 0.728 0.204 0.012
#> SRR1818655     1   0.529      0.619 0.692 0.000 0.108 0.008 0.192
#> SRR1818656     1   0.529      0.619 0.692 0.000 0.108 0.008 0.192
#> SRR1818653     1   0.670      0.345 0.456 0.000 0.348 0.008 0.188
#> SRR1818654     1   0.670      0.345 0.456 0.000 0.348 0.008 0.188
#> SRR1818651     1   0.394      0.704 0.812 0.000 0.116 0.008 0.064
#> SRR1818652     1   0.394      0.704 0.812 0.000 0.116 0.008 0.064
#> SRR1818657     1   0.459      0.694 0.780 0.004 0.080 0.016 0.120
#> SRR1818658     1   0.459      0.694 0.780 0.004 0.080 0.016 0.120
#> SRR1818649     1   0.577      0.530 0.660 0.056 0.040 0.004 0.240
#> SRR1818650     1   0.577      0.530 0.660 0.056 0.040 0.004 0.240
#> SRR1818659     1   0.425      0.695 0.792 0.000 0.104 0.008 0.096
#> SRR1818647     4   0.501      0.661 0.000 0.076 0.132 0.752 0.040
#> SRR1818648     4   0.501      0.661 0.000 0.076 0.132 0.752 0.040
#> SRR1818645     2   0.311      0.629 0.000 0.856 0.000 0.100 0.044
#> SRR1818646     2   0.311      0.629 0.000 0.856 0.000 0.100 0.044
#> SRR1818639     1   0.509      0.619 0.696 0.000 0.124 0.000 0.180
#> SRR1818640     1   0.509      0.619 0.696 0.000 0.124 0.000 0.180
#> SRR1818637     4   0.406      0.729 0.000 0.120 0.032 0.812 0.036
#> SRR1818638     4   0.406      0.729 0.000 0.120 0.032 0.812 0.036
#> SRR1818635     2   0.372      0.603 0.024 0.816 0.004 0.008 0.148
#> SRR1818636     2   0.372      0.603 0.024 0.816 0.004 0.008 0.148
#> SRR1818643     2   0.391      0.579 0.016 0.772 0.000 0.008 0.204
#> SRR1818644     2   0.391      0.579 0.016 0.772 0.000 0.008 0.204
#> SRR1818641     2   0.391      0.573 0.024 0.760 0.000 0.000 0.216
#> SRR1818642     2   0.391      0.573 0.024 0.760 0.000 0.000 0.216
#> SRR1818633     2   0.919     -0.394 0.240 0.316 0.124 0.056 0.264
#> SRR1818634     2   0.919     -0.394 0.240 0.316 0.124 0.056 0.264
#> SRR1818665     1   0.260      0.725 0.896 0.000 0.040 0.004 0.060
#> SRR1818666     1   0.260      0.725 0.896 0.000 0.040 0.004 0.060
#> SRR1818667     2   0.616      0.243 0.000 0.544 0.012 0.336 0.108
#> SRR1818668     2   0.616      0.243 0.000 0.544 0.012 0.336 0.108
#> SRR1818669     1   0.342      0.721 0.856 0.000 0.060 0.016 0.068
#> SRR1818670     1   0.342      0.721 0.856 0.000 0.060 0.016 0.068
#> SRR1818663     1   0.221      0.725 0.912 0.004 0.016 0.000 0.068
#> SRR1818664     1   0.221      0.725 0.912 0.004 0.016 0.000 0.068
#> SRR1818629     2   0.298      0.636 0.004 0.876 0.008 0.024 0.088
#> SRR1818630     2   0.298      0.636 0.004 0.876 0.008 0.024 0.088
#> SRR1818627     1   0.440      0.702 0.780 0.000 0.104 0.008 0.108
#> SRR1818628     1   0.440      0.702 0.780 0.000 0.104 0.008 0.108
#> SRR1818621     3   0.528      0.346 0.148 0.000 0.712 0.016 0.124
#> SRR1818622     3   0.528      0.346 0.148 0.000 0.712 0.016 0.124
#> SRR1818625     1   0.251      0.722 0.892 0.004 0.016 0.000 0.088
#> SRR1818626     1   0.251      0.722 0.892 0.004 0.016 0.000 0.088
#> SRR1818623     4   0.618      0.614 0.000 0.096 0.156 0.664 0.084
#> SRR1818624     4   0.618      0.614 0.000 0.096 0.156 0.664 0.084
#> SRR1818619     1   0.542      0.638 0.700 0.004 0.092 0.016 0.188
#> SRR1818620     1   0.542      0.638 0.700 0.004 0.092 0.016 0.188
#> SRR1818617     2   0.639      0.392 0.068 0.596 0.020 0.028 0.288
#> SRR1818618     2   0.639      0.392 0.068 0.596 0.020 0.028 0.288
#> SRR1818615     2   0.533      0.448 0.000 0.648 0.004 0.268 0.080
#> SRR1818616     2   0.533      0.448 0.000 0.648 0.004 0.268 0.080
#> SRR1818609     4   0.453      0.623 0.000 0.260 0.000 0.700 0.040
#> SRR1818610     4   0.453      0.623 0.000 0.260 0.000 0.700 0.040
#> SRR1818607     2   0.311      0.629 0.000 0.856 0.000 0.100 0.044
#> SRR1818608     2   0.311      0.629 0.000 0.856 0.000 0.100 0.044
#> SRR1818613     1   0.397      0.701 0.808 0.000 0.124 0.008 0.060
#> SRR1818614     1   0.397      0.701 0.808 0.000 0.124 0.008 0.060
#> SRR1818611     1   0.543      0.584 0.696 0.056 0.032 0.004 0.212
#> SRR1818612     1   0.543      0.584 0.696 0.056 0.032 0.004 0.212
#> SRR1818605     1   0.626      0.322 0.552 0.004 0.316 0.008 0.120
#> SRR1818606     1   0.626      0.322 0.552 0.004 0.316 0.008 0.120

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1818631     3   0.475     0.5256 0.100 0.000 0.764 0.028 0.048 0.060
#> SRR1818632     3   0.475     0.5256 0.100 0.000 0.764 0.028 0.048 0.060
#> SRR1818679     3   0.899    -0.0836 0.092 0.224 0.300 0.036 0.100 0.248
#> SRR1818680     3   0.899    -0.0836 0.092 0.224 0.300 0.036 0.100 0.248
#> SRR1818677     2   0.734     0.1671 0.020 0.448 0.012 0.056 0.172 0.292
#> SRR1818678     2   0.734     0.1671 0.020 0.448 0.012 0.056 0.172 0.292
#> SRR1818675     3   0.578     0.3489 0.008 0.008 0.592 0.296 0.036 0.060
#> SRR1818676     3   0.578     0.3489 0.008 0.008 0.592 0.296 0.036 0.060
#> SRR1818673     2   0.185     0.5272 0.008 0.936 0.004 0.020 0.020 0.012
#> SRR1818674     2   0.185     0.5272 0.008 0.936 0.004 0.020 0.020 0.012
#> SRR1818671     2   0.624     0.2021 0.000 0.364 0.000 0.328 0.004 0.304
#> SRR1818672     2   0.624     0.2021 0.000 0.364 0.000 0.328 0.004 0.304
#> SRR1818661     3   0.376     0.5488 0.020 0.004 0.824 0.088 0.056 0.008
#> SRR1818662     3   0.376     0.5488 0.020 0.004 0.824 0.088 0.056 0.008
#> SRR1818655     1   0.509    -0.2106 0.520 0.012 0.008 0.008 0.432 0.020
#> SRR1818656     1   0.509    -0.2106 0.520 0.012 0.008 0.008 0.432 0.020
#> SRR1818653     1   0.612    -1.0000 0.420 0.000 0.132 0.000 0.420 0.028
#> SRR1818654     5   0.612     0.0000 0.420 0.000 0.132 0.000 0.420 0.028
#> SRR1818651     1   0.462     0.2167 0.728 0.004 0.060 0.008 0.188 0.012
#> SRR1818652     1   0.462     0.2167 0.728 0.004 0.060 0.008 0.188 0.012
#> SRR1818657     1   0.475     0.3951 0.724 0.000 0.028 0.000 0.116 0.132
#> SRR1818658     1   0.475     0.3951 0.724 0.000 0.028 0.000 0.116 0.132
#> SRR1818649     1   0.637     0.3112 0.612 0.072 0.016 0.004 0.164 0.132
#> SRR1818650     1   0.637     0.3112 0.612 0.072 0.016 0.004 0.164 0.132
#> SRR1818659     1   0.450     0.1129 0.704 0.000 0.020 0.008 0.240 0.028
#> SRR1818647     4   0.476     0.5522 0.000 0.040 0.196 0.720 0.020 0.024
#> SRR1818648     4   0.476     0.5522 0.000 0.040 0.196 0.720 0.020 0.024
#> SRR1818645     2   0.517     0.5158 0.000 0.612 0.000 0.148 0.000 0.240
#> SRR1818646     2   0.517     0.5158 0.000 0.612 0.000 0.148 0.000 0.240
#> SRR1818639     1   0.479    -0.2393 0.524 0.012 0.012 0.000 0.440 0.012
#> SRR1818640     1   0.479    -0.2393 0.524 0.012 0.012 0.000 0.440 0.012
#> SRR1818637     4   0.437     0.6355 0.000 0.044 0.056 0.796 0.036 0.068
#> SRR1818638     4   0.437     0.6355 0.000 0.044 0.056 0.796 0.036 0.068
#> SRR1818635     2   0.196     0.5236 0.012 0.932 0.004 0.016 0.020 0.016
#> SRR1818636     2   0.196     0.5236 0.012 0.932 0.004 0.016 0.020 0.016
#> SRR1818643     2   0.340     0.4729 0.008 0.852 0.016 0.012 0.036 0.076
#> SRR1818644     2   0.340     0.4729 0.008 0.852 0.016 0.012 0.036 0.076
#> SRR1818641     2   0.269     0.4770 0.008 0.880 0.000 0.008 0.024 0.080
#> SRR1818642     2   0.269     0.4770 0.008 0.880 0.000 0.008 0.024 0.080
#> SRR1818633     6   0.914     1.0000 0.164 0.256 0.076 0.060 0.128 0.316
#> SRR1818634     6   0.914     1.0000 0.164 0.256 0.076 0.060 0.128 0.316
#> SRR1818665     1   0.349     0.4347 0.828 0.000 0.012 0.008 0.044 0.108
#> SRR1818666     1   0.349     0.4347 0.828 0.000 0.012 0.008 0.044 0.108
#> SRR1818667     4   0.689     0.1106 0.000 0.320 0.012 0.432 0.044 0.192
#> SRR1818668     4   0.689     0.1106 0.000 0.320 0.012 0.432 0.044 0.192
#> SRR1818669     1   0.434     0.4255 0.772 0.000 0.072 0.000 0.052 0.104
#> SRR1818670     1   0.434     0.4255 0.772 0.000 0.072 0.000 0.052 0.104
#> SRR1818663     1   0.205     0.4570 0.912 0.000 0.004 0.000 0.056 0.028
#> SRR1818664     1   0.205     0.4570 0.912 0.000 0.004 0.000 0.056 0.028
#> SRR1818629     2   0.531     0.4255 0.000 0.676 0.012 0.088 0.028 0.196
#> SRR1818630     2   0.531     0.4255 0.000 0.676 0.012 0.088 0.028 0.196
#> SRR1818627     1   0.457     0.4055 0.756 0.000 0.032 0.012 0.060 0.140
#> SRR1818628     1   0.457     0.4055 0.756 0.000 0.032 0.012 0.060 0.140
#> SRR1818621     3   0.637     0.2061 0.124 0.000 0.512 0.008 0.312 0.044
#> SRR1818622     3   0.637     0.2061 0.124 0.000 0.512 0.008 0.312 0.044
#> SRR1818625     1   0.242     0.4591 0.888 0.000 0.004 0.000 0.076 0.032
#> SRR1818626     1   0.242     0.4591 0.888 0.000 0.004 0.000 0.076 0.032
#> SRR1818623     4   0.605     0.5428 0.000 0.052 0.172 0.632 0.020 0.124
#> SRR1818624     4   0.605     0.5428 0.000 0.052 0.172 0.632 0.020 0.124
#> SRR1818619     1   0.615     0.2893 0.588 0.004 0.040 0.004 0.160 0.204
#> SRR1818620     1   0.615     0.2893 0.588 0.004 0.040 0.004 0.160 0.204
#> SRR1818617     2   0.767    -0.0783 0.048 0.444 0.012 0.048 0.212 0.236
#> SRR1818618     2   0.767    -0.0783 0.048 0.444 0.012 0.048 0.212 0.236
#> SRR1818615     2   0.594     0.2786 0.000 0.496 0.000 0.348 0.020 0.136
#> SRR1818616     2   0.594     0.2786 0.000 0.496 0.000 0.348 0.020 0.136
#> SRR1818609     4   0.322     0.6309 0.000 0.092 0.004 0.844 0.008 0.052
#> SRR1818610     4   0.322     0.6309 0.000 0.092 0.004 0.844 0.008 0.052
#> SRR1818607     2   0.517     0.5158 0.000 0.612 0.000 0.148 0.000 0.240
#> SRR1818608     2   0.517     0.5158 0.000 0.612 0.000 0.148 0.000 0.240
#> SRR1818613     1   0.449     0.2459 0.744 0.004 0.060 0.008 0.172 0.012
#> SRR1818614     1   0.449     0.2459 0.744 0.004 0.060 0.008 0.172 0.012
#> SRR1818611     1   0.605     0.3211 0.640 0.068 0.012 0.004 0.168 0.108
#> SRR1818612     1   0.605     0.3211 0.640 0.068 0.012 0.004 0.168 0.108
#> SRR1818605     1   0.643    -0.1067 0.552 0.000 0.208 0.000 0.156 0.084
#> SRR1818606     1   0.643    -0.1067 0.552 0.000 0.208 0.000 0.156 0.084

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15216 rows and 75 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.944           0.941       0.977         0.5046 0.498   0.498
#> 3 3 0.737           0.887       0.914         0.3082 0.765   0.559
#> 4 4 0.672           0.827       0.870         0.1212 0.862   0.621
#> 5 5 0.642           0.606       0.754         0.0669 0.988   0.955
#> 6 6 0.664           0.472       0.654         0.0440 0.876   0.532

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1818631     1   0.000      0.965 1.000 0.000
#> SRR1818632     1   0.000      0.965 1.000 0.000
#> SRR1818679     1   0.999      0.114 0.516 0.484
#> SRR1818680     1   0.999      0.114 0.516 0.484
#> SRR1818677     2   0.000      0.988 0.000 1.000
#> SRR1818678     2   0.000      0.988 0.000 1.000
#> SRR1818675     1   0.730      0.741 0.796 0.204
#> SRR1818676     1   0.730      0.741 0.796 0.204
#> SRR1818673     2   0.000      0.988 0.000 1.000
#> SRR1818674     2   0.000      0.988 0.000 1.000
#> SRR1818671     2   0.000      0.988 0.000 1.000
#> SRR1818672     2   0.000      0.988 0.000 1.000
#> SRR1818661     1   0.000      0.965 1.000 0.000
#> SRR1818662     1   0.000      0.965 1.000 0.000
#> SRR1818655     1   0.000      0.965 1.000 0.000
#> SRR1818656     1   0.000      0.965 1.000 0.000
#> SRR1818653     1   0.000      0.965 1.000 0.000
#> SRR1818654     1   0.000      0.965 1.000 0.000
#> SRR1818651     1   0.000      0.965 1.000 0.000
#> SRR1818652     1   0.000      0.965 1.000 0.000
#> SRR1818657     1   0.000      0.965 1.000 0.000
#> SRR1818658     1   0.000      0.965 1.000 0.000
#> SRR1818649     1   0.000      0.965 1.000 0.000
#> SRR1818650     1   0.000      0.965 1.000 0.000
#> SRR1818659     1   0.000      0.965 1.000 0.000
#> SRR1818647     2   0.000      0.988 0.000 1.000
#> SRR1818648     2   0.000      0.988 0.000 1.000
#> SRR1818645     2   0.000      0.988 0.000 1.000
#> SRR1818646     2   0.000      0.988 0.000 1.000
#> SRR1818639     1   0.000      0.965 1.000 0.000
#> SRR1818640     1   0.000      0.965 1.000 0.000
#> SRR1818637     2   0.000      0.988 0.000 1.000
#> SRR1818638     2   0.000      0.988 0.000 1.000
#> SRR1818635     2   0.000      0.988 0.000 1.000
#> SRR1818636     2   0.000      0.988 0.000 1.000
#> SRR1818643     2   0.000      0.988 0.000 1.000
#> SRR1818644     2   0.000      0.988 0.000 1.000
#> SRR1818641     2   0.000      0.988 0.000 1.000
#> SRR1818642     2   0.000      0.988 0.000 1.000
#> SRR1818633     2   0.680      0.776 0.180 0.820
#> SRR1818634     2   0.680      0.776 0.180 0.820
#> SRR1818665     1   0.000      0.965 1.000 0.000
#> SRR1818666     1   0.000      0.965 1.000 0.000
#> SRR1818667     2   0.000      0.988 0.000 1.000
#> SRR1818668     2   0.000      0.988 0.000 1.000
#> SRR1818669     1   0.000      0.965 1.000 0.000
#> SRR1818670     1   0.000      0.965 1.000 0.000
#> SRR1818663     1   0.000      0.965 1.000 0.000
#> SRR1818664     1   0.000      0.965 1.000 0.000
#> SRR1818629     2   0.000      0.988 0.000 1.000
#> SRR1818630     2   0.000      0.988 0.000 1.000
#> SRR1818627     1   0.000      0.965 1.000 0.000
#> SRR1818628     1   0.000      0.965 1.000 0.000
#> SRR1818621     1   0.000      0.965 1.000 0.000
#> SRR1818622     1   0.000      0.965 1.000 0.000
#> SRR1818625     1   0.000      0.965 1.000 0.000
#> SRR1818626     1   0.000      0.965 1.000 0.000
#> SRR1818623     2   0.000      0.988 0.000 1.000
#> SRR1818624     2   0.000      0.988 0.000 1.000
#> SRR1818619     1   0.000      0.965 1.000 0.000
#> SRR1818620     1   0.000      0.965 1.000 0.000
#> SRR1818617     2   0.000      0.988 0.000 1.000
#> SRR1818618     2   0.000      0.988 0.000 1.000
#> SRR1818615     2   0.000      0.988 0.000 1.000
#> SRR1818616     2   0.000      0.988 0.000 1.000
#> SRR1818609     2   0.000      0.988 0.000 1.000
#> SRR1818610     2   0.000      0.988 0.000 1.000
#> SRR1818607     2   0.000      0.988 0.000 1.000
#> SRR1818608     2   0.000      0.988 0.000 1.000
#> SRR1818613     1   0.000      0.965 1.000 0.000
#> SRR1818614     1   0.000      0.965 1.000 0.000
#> SRR1818611     1   0.000      0.965 1.000 0.000
#> SRR1818612     1   0.000      0.965 1.000 0.000
#> SRR1818605     1   0.000      0.965 1.000 0.000
#> SRR1818606     1   0.000      0.965 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1818631     3  0.3340      0.795 0.120 0.000 0.880
#> SRR1818632     3  0.3340      0.795 0.120 0.000 0.880
#> SRR1818679     3  0.4235      0.788 0.000 0.176 0.824
#> SRR1818680     3  0.4235      0.788 0.000 0.176 0.824
#> SRR1818677     2  0.0592      0.964 0.000 0.988 0.012
#> SRR1818678     2  0.0592      0.964 0.000 0.988 0.012
#> SRR1818675     3  0.0592      0.817 0.000 0.012 0.988
#> SRR1818676     3  0.0592      0.817 0.000 0.012 0.988
#> SRR1818673     2  0.0592      0.960 0.000 0.988 0.012
#> SRR1818674     2  0.0592      0.960 0.000 0.988 0.012
#> SRR1818671     2  0.2261      0.950 0.000 0.932 0.068
#> SRR1818672     2  0.2261      0.950 0.000 0.932 0.068
#> SRR1818661     3  0.2711      0.798 0.088 0.000 0.912
#> SRR1818662     3  0.2711      0.798 0.088 0.000 0.912
#> SRR1818655     1  0.3116      0.926 0.892 0.000 0.108
#> SRR1818656     1  0.3116      0.926 0.892 0.000 0.108
#> SRR1818653     1  0.4750      0.818 0.784 0.000 0.216
#> SRR1818654     1  0.4750      0.818 0.784 0.000 0.216
#> SRR1818651     1  0.3192      0.924 0.888 0.000 0.112
#> SRR1818652     1  0.3192      0.924 0.888 0.000 0.112
#> SRR1818657     1  0.0000      0.938 1.000 0.000 0.000
#> SRR1818658     1  0.0000      0.938 1.000 0.000 0.000
#> SRR1818649     1  0.1170      0.924 0.976 0.016 0.008
#> SRR1818650     1  0.1170      0.924 0.976 0.016 0.008
#> SRR1818659     1  0.3116      0.926 0.892 0.000 0.108
#> SRR1818647     3  0.3941      0.780 0.000 0.156 0.844
#> SRR1818648     3  0.3941      0.780 0.000 0.156 0.844
#> SRR1818645     2  0.0237      0.964 0.000 0.996 0.004
#> SRR1818646     2  0.0237      0.964 0.000 0.996 0.004
#> SRR1818639     1  0.3116      0.926 0.892 0.000 0.108
#> SRR1818640     1  0.3116      0.926 0.892 0.000 0.108
#> SRR1818637     3  0.5650      0.582 0.000 0.312 0.688
#> SRR1818638     3  0.5650      0.582 0.000 0.312 0.688
#> SRR1818635     2  0.0592      0.960 0.000 0.988 0.012
#> SRR1818636     2  0.0592      0.960 0.000 0.988 0.012
#> SRR1818643     2  0.0747      0.962 0.000 0.984 0.016
#> SRR1818644     2  0.0747      0.962 0.000 0.984 0.016
#> SRR1818641     2  0.0592      0.960 0.000 0.988 0.012
#> SRR1818642     2  0.0592      0.960 0.000 0.988 0.012
#> SRR1818633     3  0.7720      0.674 0.120 0.208 0.672
#> SRR1818634     3  0.7720      0.674 0.120 0.208 0.672
#> SRR1818665     1  0.1529      0.942 0.960 0.000 0.040
#> SRR1818666     1  0.1529      0.942 0.960 0.000 0.040
#> SRR1818667     2  0.2625      0.941 0.000 0.916 0.084
#> SRR1818668     2  0.2625      0.941 0.000 0.916 0.084
#> SRR1818669     1  0.1411      0.942 0.964 0.000 0.036
#> SRR1818670     1  0.1411      0.942 0.964 0.000 0.036
#> SRR1818663     1  0.0000      0.938 1.000 0.000 0.000
#> SRR1818664     1  0.0000      0.938 1.000 0.000 0.000
#> SRR1818629     2  0.2165      0.955 0.000 0.936 0.064
#> SRR1818630     2  0.2165      0.955 0.000 0.936 0.064
#> SRR1818627     1  0.1860      0.941 0.948 0.000 0.052
#> SRR1818628     1  0.1860      0.941 0.948 0.000 0.052
#> SRR1818621     3  0.2711      0.798 0.088 0.000 0.912
#> SRR1818622     3  0.2711      0.798 0.088 0.000 0.912
#> SRR1818625     1  0.0000      0.938 1.000 0.000 0.000
#> SRR1818626     1  0.0000      0.938 1.000 0.000 0.000
#> SRR1818623     3  0.3816      0.785 0.000 0.148 0.852
#> SRR1818624     3  0.3816      0.785 0.000 0.148 0.852
#> SRR1818619     1  0.0000      0.938 1.000 0.000 0.000
#> SRR1818620     1  0.0000      0.938 1.000 0.000 0.000
#> SRR1818617     2  0.1411      0.961 0.000 0.964 0.036
#> SRR1818618     2  0.1411      0.961 0.000 0.964 0.036
#> SRR1818615     2  0.1860      0.956 0.000 0.948 0.052
#> SRR1818616     2  0.1860      0.956 0.000 0.948 0.052
#> SRR1818609     2  0.2878      0.931 0.000 0.904 0.096
#> SRR1818610     2  0.2878      0.931 0.000 0.904 0.096
#> SRR1818607     2  0.0237      0.964 0.000 0.996 0.004
#> SRR1818608     2  0.0237      0.964 0.000 0.996 0.004
#> SRR1818613     1  0.3192      0.924 0.888 0.000 0.112
#> SRR1818614     1  0.3192      0.924 0.888 0.000 0.112
#> SRR1818611     1  0.1015      0.927 0.980 0.012 0.008
#> SRR1818612     1  0.1015      0.927 0.980 0.012 0.008
#> SRR1818605     3  0.5397      0.594 0.280 0.000 0.720
#> SRR1818606     3  0.5397      0.594 0.280 0.000 0.720

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1818631     3  0.3464      0.849 0.076 0.000 0.868 0.056
#> SRR1818632     3  0.3464      0.849 0.076 0.000 0.868 0.056
#> SRR1818679     3  0.5546      0.759 0.008 0.128 0.748 0.116
#> SRR1818680     3  0.5546      0.759 0.008 0.128 0.748 0.116
#> SRR1818677     2  0.4193      0.789 0.000 0.732 0.000 0.268
#> SRR1818678     2  0.4193      0.789 0.000 0.732 0.000 0.268
#> SRR1818675     3  0.4134      0.708 0.000 0.000 0.740 0.260
#> SRR1818676     3  0.4134      0.708 0.000 0.000 0.740 0.260
#> SRR1818673     2  0.0469      0.853 0.000 0.988 0.000 0.012
#> SRR1818674     2  0.0469      0.853 0.000 0.988 0.000 0.012
#> SRR1818671     4  0.3764      0.705 0.000 0.216 0.000 0.784
#> SRR1818672     4  0.3764      0.705 0.000 0.216 0.000 0.784
#> SRR1818661     3  0.1716      0.856 0.000 0.000 0.936 0.064
#> SRR1818662     3  0.1716      0.856 0.000 0.000 0.936 0.064
#> SRR1818655     1  0.3569      0.861 0.804 0.000 0.196 0.000
#> SRR1818656     1  0.3569      0.861 0.804 0.000 0.196 0.000
#> SRR1818653     3  0.2999      0.750 0.132 0.000 0.864 0.004
#> SRR1818654     3  0.2999      0.750 0.132 0.000 0.864 0.004
#> SRR1818651     1  0.4277      0.796 0.720 0.000 0.280 0.000
#> SRR1818652     1  0.4277      0.796 0.720 0.000 0.280 0.000
#> SRR1818657     1  0.1706      0.890 0.948 0.000 0.036 0.016
#> SRR1818658     1  0.1706      0.890 0.948 0.000 0.036 0.016
#> SRR1818649     1  0.1917      0.866 0.944 0.036 0.008 0.012
#> SRR1818650     1  0.1917      0.866 0.944 0.036 0.008 0.012
#> SRR1818659     1  0.3528      0.862 0.808 0.000 0.192 0.000
#> SRR1818647     4  0.3099      0.806 0.000 0.020 0.104 0.876
#> SRR1818648     4  0.3099      0.806 0.000 0.020 0.104 0.876
#> SRR1818645     2  0.3486      0.847 0.000 0.812 0.000 0.188
#> SRR1818646     2  0.3486      0.847 0.000 0.812 0.000 0.188
#> SRR1818639     1  0.3569      0.861 0.804 0.000 0.196 0.000
#> SRR1818640     1  0.3569      0.861 0.804 0.000 0.196 0.000
#> SRR1818637     4  0.1042      0.840 0.000 0.020 0.008 0.972
#> SRR1818638     4  0.1042      0.840 0.000 0.020 0.008 0.972
#> SRR1818635     2  0.0469      0.853 0.000 0.988 0.000 0.012
#> SRR1818636     2  0.0469      0.853 0.000 0.988 0.000 0.012
#> SRR1818643     2  0.0592      0.854 0.000 0.984 0.000 0.016
#> SRR1818644     2  0.0592      0.854 0.000 0.984 0.000 0.016
#> SRR1818641     2  0.0000      0.848 0.000 1.000 0.000 0.000
#> SRR1818642     2  0.0000      0.848 0.000 1.000 0.000 0.000
#> SRR1818633     4  0.7199      0.685 0.108 0.096 0.128 0.668
#> SRR1818634     4  0.7199      0.685 0.108 0.096 0.128 0.668
#> SRR1818665     1  0.2197      0.893 0.916 0.000 0.080 0.004
#> SRR1818666     1  0.2197      0.893 0.916 0.000 0.080 0.004
#> SRR1818667     4  0.1792      0.837 0.000 0.068 0.000 0.932
#> SRR1818668     4  0.1792      0.837 0.000 0.068 0.000 0.932
#> SRR1818669     1  0.2216      0.893 0.908 0.000 0.092 0.000
#> SRR1818670     1  0.2216      0.893 0.908 0.000 0.092 0.000
#> SRR1818663     1  0.0469      0.889 0.988 0.000 0.012 0.000
#> SRR1818664     1  0.0469      0.889 0.988 0.000 0.012 0.000
#> SRR1818629     2  0.4134      0.763 0.000 0.740 0.000 0.260
#> SRR1818630     2  0.4134      0.763 0.000 0.740 0.000 0.260
#> SRR1818627     1  0.3088      0.879 0.864 0.000 0.128 0.008
#> SRR1818628     1  0.3088      0.879 0.864 0.000 0.128 0.008
#> SRR1818621     3  0.0672      0.849 0.008 0.000 0.984 0.008
#> SRR1818622     3  0.0672      0.849 0.008 0.000 0.984 0.008
#> SRR1818625     1  0.0469      0.889 0.988 0.000 0.012 0.000
#> SRR1818626     1  0.0469      0.889 0.988 0.000 0.012 0.000
#> SRR1818623     4  0.2799      0.791 0.000 0.008 0.108 0.884
#> SRR1818624     4  0.2799      0.791 0.000 0.008 0.108 0.884
#> SRR1818619     1  0.1610      0.889 0.952 0.000 0.032 0.016
#> SRR1818620     1  0.1610      0.889 0.952 0.000 0.032 0.016
#> SRR1818617     2  0.4122      0.810 0.000 0.760 0.004 0.236
#> SRR1818618     2  0.4122      0.810 0.000 0.760 0.004 0.236
#> SRR1818615     4  0.3726      0.739 0.000 0.212 0.000 0.788
#> SRR1818616     4  0.3726      0.739 0.000 0.212 0.000 0.788
#> SRR1818609     4  0.1792      0.840 0.000 0.068 0.000 0.932
#> SRR1818610     4  0.1792      0.840 0.000 0.068 0.000 0.932
#> SRR1818607     2  0.3486      0.847 0.000 0.812 0.000 0.188
#> SRR1818608     2  0.3486      0.847 0.000 0.812 0.000 0.188
#> SRR1818613     1  0.4277      0.796 0.720 0.000 0.280 0.000
#> SRR1818614     1  0.4277      0.796 0.720 0.000 0.280 0.000
#> SRR1818611     1  0.1771      0.868 0.948 0.036 0.004 0.012
#> SRR1818612     1  0.1771      0.868 0.948 0.036 0.004 0.012
#> SRR1818605     3  0.2081      0.850 0.084 0.000 0.916 0.000
#> SRR1818606     3  0.2081      0.850 0.084 0.000 0.916 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1818631     3  0.3186      0.786 0.056 0.000 0.872 0.052 0.020
#> SRR1818632     3  0.3186      0.786 0.056 0.000 0.872 0.052 0.020
#> SRR1818679     3  0.5059      0.717 0.000 0.084 0.760 0.072 0.084
#> SRR1818680     3  0.5059      0.717 0.000 0.084 0.760 0.072 0.084
#> SRR1818677     2  0.6603     -0.510 0.004 0.440 0.000 0.184 0.372
#> SRR1818678     2  0.6603     -0.510 0.004 0.440 0.000 0.184 0.372
#> SRR1818675     3  0.3550      0.671 0.000 0.000 0.760 0.236 0.004
#> SRR1818676     3  0.3550      0.671 0.000 0.000 0.760 0.236 0.004
#> SRR1818673     2  0.0579      0.595 0.000 0.984 0.000 0.008 0.008
#> SRR1818674     2  0.0579      0.595 0.000 0.984 0.000 0.008 0.008
#> SRR1818671     4  0.5728      0.257 0.000 0.200 0.000 0.624 0.176
#> SRR1818672     4  0.5728      0.257 0.000 0.200 0.000 0.624 0.176
#> SRR1818661     3  0.1830      0.800 0.012 0.000 0.932 0.052 0.004
#> SRR1818662     3  0.1830      0.800 0.012 0.000 0.932 0.052 0.004
#> SRR1818655     1  0.5845      0.658 0.608 0.004 0.132 0.000 0.256
#> SRR1818656     1  0.5845      0.658 0.608 0.004 0.132 0.000 0.256
#> SRR1818653     3  0.5525      0.579 0.124 0.000 0.636 0.000 0.240
#> SRR1818654     3  0.5525      0.579 0.124 0.000 0.636 0.000 0.240
#> SRR1818651     1  0.5791      0.619 0.616 0.000 0.196 0.000 0.188
#> SRR1818652     1  0.5791      0.619 0.616 0.000 0.196 0.000 0.188
#> SRR1818657     1  0.3916      0.687 0.732 0.000 0.012 0.000 0.256
#> SRR1818658     1  0.3916      0.687 0.732 0.000 0.012 0.000 0.256
#> SRR1818649     1  0.4895      0.661 0.672 0.032 0.012 0.000 0.284
#> SRR1818650     1  0.4895      0.661 0.672 0.032 0.012 0.000 0.284
#> SRR1818659     1  0.4968      0.702 0.712 0.000 0.152 0.000 0.136
#> SRR1818647     4  0.2179      0.715 0.000 0.000 0.112 0.888 0.000
#> SRR1818648     4  0.2179      0.715 0.000 0.000 0.112 0.888 0.000
#> SRR1818645     2  0.5447      0.222 0.000 0.660 0.000 0.172 0.168
#> SRR1818646     2  0.5447      0.222 0.000 0.660 0.000 0.172 0.168
#> SRR1818639     1  0.5876      0.655 0.608 0.004 0.140 0.000 0.248
#> SRR1818640     1  0.5876      0.655 0.608 0.004 0.140 0.000 0.248
#> SRR1818637     4  0.0451      0.750 0.000 0.000 0.008 0.988 0.004
#> SRR1818638     4  0.0451      0.750 0.000 0.000 0.008 0.988 0.004
#> SRR1818635     2  0.0579      0.595 0.000 0.984 0.000 0.008 0.008
#> SRR1818636     2  0.0579      0.595 0.000 0.984 0.000 0.008 0.008
#> SRR1818643     2  0.0404      0.589 0.000 0.988 0.000 0.000 0.012
#> SRR1818644     2  0.0404      0.589 0.000 0.988 0.000 0.000 0.012
#> SRR1818641     2  0.0703      0.581 0.000 0.976 0.000 0.000 0.024
#> SRR1818642     2  0.0703      0.581 0.000 0.976 0.000 0.000 0.024
#> SRR1818633     4  0.8673      0.315 0.056 0.112 0.156 0.444 0.232
#> SRR1818634     4  0.8673      0.315 0.056 0.112 0.156 0.444 0.232
#> SRR1818665     1  0.3639      0.726 0.812 0.000 0.044 0.000 0.144
#> SRR1818666     1  0.3639      0.726 0.812 0.000 0.044 0.000 0.144
#> SRR1818667     4  0.1818      0.734 0.000 0.044 0.000 0.932 0.024
#> SRR1818668     4  0.1818      0.734 0.000 0.044 0.000 0.932 0.024
#> SRR1818669     1  0.3169      0.746 0.856 0.000 0.084 0.000 0.060
#> SRR1818670     1  0.3169      0.746 0.856 0.000 0.084 0.000 0.060
#> SRR1818663     1  0.2249      0.742 0.896 0.000 0.008 0.000 0.096
#> SRR1818664     1  0.2249      0.742 0.896 0.000 0.008 0.000 0.096
#> SRR1818629     2  0.5309      0.257 0.000 0.676 0.000 0.164 0.160
#> SRR1818630     2  0.5309      0.257 0.000 0.676 0.000 0.164 0.160
#> SRR1818627     1  0.4624      0.701 0.740 0.000 0.096 0.000 0.164
#> SRR1818628     1  0.4624      0.701 0.740 0.000 0.096 0.000 0.164
#> SRR1818621     3  0.2953      0.772 0.012 0.000 0.844 0.000 0.144
#> SRR1818622     3  0.2953      0.772 0.012 0.000 0.844 0.000 0.144
#> SRR1818625     1  0.2249      0.742 0.896 0.000 0.008 0.000 0.096
#> SRR1818626     1  0.2249      0.742 0.896 0.000 0.008 0.000 0.096
#> SRR1818623     4  0.2069      0.734 0.000 0.000 0.076 0.912 0.012
#> SRR1818624     4  0.2069      0.734 0.000 0.000 0.076 0.912 0.012
#> SRR1818619     1  0.4109      0.663 0.700 0.000 0.012 0.000 0.288
#> SRR1818620     1  0.4109      0.663 0.700 0.000 0.012 0.000 0.288
#> SRR1818617     5  0.6499      1.000 0.000 0.396 0.000 0.188 0.416
#> SRR1818618     5  0.6499      1.000 0.000 0.396 0.000 0.188 0.416
#> SRR1818615     4  0.3882      0.573 0.000 0.224 0.000 0.756 0.020
#> SRR1818616     4  0.3882      0.573 0.000 0.224 0.000 0.756 0.020
#> SRR1818609     4  0.0865      0.749 0.000 0.024 0.000 0.972 0.004
#> SRR1818610     4  0.0865      0.749 0.000 0.024 0.000 0.972 0.004
#> SRR1818607     2  0.5447      0.222 0.000 0.660 0.000 0.172 0.168
#> SRR1818608     2  0.5447      0.222 0.000 0.660 0.000 0.172 0.168
#> SRR1818613     1  0.5791      0.619 0.616 0.000 0.196 0.000 0.188
#> SRR1818614     1  0.5791      0.619 0.616 0.000 0.196 0.000 0.188
#> SRR1818611     1  0.4895      0.661 0.672 0.032 0.012 0.000 0.284
#> SRR1818612     1  0.4895      0.661 0.672 0.032 0.012 0.000 0.284
#> SRR1818605     3  0.3825      0.777 0.060 0.000 0.804 0.000 0.136
#> SRR1818606     3  0.3825      0.777 0.060 0.000 0.804 0.000 0.136

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1818631     3  0.2707     0.7738 0.028 0.000 0.892 0.012 0.032 0.036
#> SRR1818632     3  0.2707     0.7738 0.028 0.000 0.892 0.012 0.032 0.036
#> SRR1818679     3  0.3832     0.7316 0.000 0.056 0.824 0.032 0.016 0.072
#> SRR1818680     3  0.3832     0.7316 0.000 0.056 0.824 0.032 0.016 0.072
#> SRR1818677     6  0.8060    -0.1376 0.000 0.264 0.040 0.116 0.256 0.324
#> SRR1818678     6  0.8060    -0.1376 0.000 0.264 0.040 0.116 0.256 0.324
#> SRR1818675     3  0.3620     0.6605 0.000 0.000 0.736 0.248 0.008 0.008
#> SRR1818676     3  0.3620     0.6605 0.000 0.000 0.736 0.248 0.008 0.008
#> SRR1818673     2  0.1078     0.7531 0.000 0.964 0.000 0.012 0.008 0.016
#> SRR1818674     2  0.1078     0.7531 0.000 0.964 0.000 0.012 0.008 0.016
#> SRR1818671     4  0.6881     0.3113 0.000 0.200 0.008 0.516 0.092 0.184
#> SRR1818672     4  0.6881     0.3113 0.000 0.200 0.008 0.516 0.092 0.184
#> SRR1818661     3  0.2383     0.7790 0.000 0.000 0.880 0.024 0.096 0.000
#> SRR1818662     3  0.2383     0.7790 0.000 0.000 0.880 0.024 0.096 0.000
#> SRR1818655     5  0.5517     0.3806 0.380 0.000 0.012 0.000 0.512 0.096
#> SRR1818656     5  0.5517     0.3806 0.380 0.000 0.012 0.000 0.512 0.096
#> SRR1818653     5  0.4863    -0.1939 0.040 0.000 0.440 0.000 0.512 0.008
#> SRR1818654     5  0.4863    -0.1939 0.040 0.000 0.440 0.000 0.512 0.008
#> SRR1818651     5  0.5636     0.3907 0.364 0.000 0.044 0.000 0.532 0.060
#> SRR1818652     5  0.5636     0.3907 0.364 0.000 0.044 0.000 0.532 0.060
#> SRR1818657     6  0.5887    -0.2038 0.408 0.000 0.016 0.000 0.128 0.448
#> SRR1818658     6  0.5887    -0.2038 0.408 0.000 0.016 0.000 0.128 0.448
#> SRR1818649     1  0.5249     0.4472 0.708 0.012 0.032 0.004 0.140 0.104
#> SRR1818650     1  0.5249     0.4472 0.708 0.012 0.032 0.004 0.140 0.104
#> SRR1818659     1  0.5092    -0.2046 0.560 0.000 0.028 0.000 0.376 0.036
#> SRR1818647     4  0.2051     0.7673 0.000 0.000 0.096 0.896 0.004 0.004
#> SRR1818648     4  0.2051     0.7673 0.000 0.000 0.096 0.896 0.004 0.004
#> SRR1818645     2  0.6232     0.6048 0.000 0.584 0.000 0.112 0.104 0.200
#> SRR1818646     2  0.6232     0.6048 0.000 0.584 0.000 0.112 0.104 0.200
#> SRR1818639     5  0.5291     0.4071 0.372 0.000 0.016 0.000 0.544 0.068
#> SRR1818640     5  0.5291     0.4071 0.372 0.000 0.016 0.000 0.544 0.068
#> SRR1818637     4  0.0922     0.7961 0.000 0.000 0.024 0.968 0.004 0.004
#> SRR1818638     4  0.0922     0.7961 0.000 0.000 0.024 0.968 0.004 0.004
#> SRR1818635     2  0.1078     0.7531 0.000 0.964 0.000 0.012 0.008 0.016
#> SRR1818636     2  0.1078     0.7531 0.000 0.964 0.000 0.012 0.008 0.016
#> SRR1818643     2  0.1621     0.7456 0.000 0.944 0.012 0.008 0.020 0.016
#> SRR1818644     2  0.1621     0.7456 0.000 0.944 0.012 0.008 0.020 0.016
#> SRR1818641     2  0.1458     0.7408 0.000 0.948 0.016 0.000 0.016 0.020
#> SRR1818642     2  0.1458     0.7408 0.000 0.948 0.016 0.000 0.016 0.020
#> SRR1818633     6  0.8145    -0.1047 0.024 0.076 0.144 0.328 0.056 0.372
#> SRR1818634     6  0.8145    -0.1047 0.024 0.076 0.144 0.328 0.056 0.372
#> SRR1818665     1  0.6126     0.3616 0.528 0.000 0.028 0.000 0.180 0.264
#> SRR1818666     1  0.6126     0.3616 0.528 0.000 0.028 0.000 0.180 0.264
#> SRR1818667     4  0.2738     0.7806 0.000 0.028 0.012 0.888 0.020 0.052
#> SRR1818668     4  0.2738     0.7806 0.000 0.028 0.012 0.888 0.020 0.052
#> SRR1818669     1  0.5801     0.3441 0.624 0.000 0.068 0.000 0.200 0.108
#> SRR1818670     1  0.5801     0.3441 0.624 0.000 0.068 0.000 0.200 0.108
#> SRR1818663     1  0.0146     0.5423 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1818664     1  0.0146     0.5423 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1818629     2  0.6295     0.5766 0.000 0.592 0.008 0.140 0.072 0.188
#> SRR1818630     2  0.6295     0.5766 0.000 0.592 0.008 0.140 0.072 0.188
#> SRR1818627     1  0.6715     0.3313 0.480 0.000 0.076 0.000 0.168 0.276
#> SRR1818628     1  0.6715     0.3313 0.480 0.000 0.076 0.000 0.168 0.276
#> SRR1818621     3  0.3489     0.6610 0.000 0.000 0.708 0.000 0.288 0.004
#> SRR1818622     3  0.3489     0.6610 0.000 0.000 0.708 0.000 0.288 0.004
#> SRR1818625     1  0.0000     0.5427 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818626     1  0.0000     0.5427 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818623     4  0.2425     0.7629 0.000 0.000 0.100 0.880 0.008 0.012
#> SRR1818624     4  0.2425     0.7629 0.000 0.000 0.100 0.880 0.008 0.012
#> SRR1818619     6  0.5793    -0.1222 0.368 0.000 0.020 0.000 0.112 0.500
#> SRR1818620     6  0.5793    -0.1222 0.368 0.000 0.020 0.000 0.112 0.500
#> SRR1818617     6  0.7537     0.0242 0.008 0.228 0.008 0.096 0.248 0.412
#> SRR1818618     6  0.7537     0.0242 0.008 0.228 0.008 0.096 0.248 0.412
#> SRR1818615     4  0.4025     0.6524 0.000 0.208 0.008 0.748 0.008 0.028
#> SRR1818616     4  0.4025     0.6524 0.000 0.208 0.008 0.748 0.008 0.028
#> SRR1818609     4  0.0881     0.7980 0.000 0.012 0.000 0.972 0.008 0.008
#> SRR1818610     4  0.0881     0.7980 0.000 0.012 0.000 0.972 0.008 0.008
#> SRR1818607     2  0.6232     0.6048 0.000 0.584 0.000 0.112 0.104 0.200
#> SRR1818608     2  0.6232     0.6048 0.000 0.584 0.000 0.112 0.104 0.200
#> SRR1818613     5  0.5636     0.3907 0.364 0.000 0.044 0.000 0.532 0.060
#> SRR1818614     5  0.5636     0.3907 0.364 0.000 0.044 0.000 0.532 0.060
#> SRR1818611     1  0.5249     0.4472 0.708 0.012 0.032 0.004 0.140 0.104
#> SRR1818612     1  0.5249     0.4472 0.708 0.012 0.032 0.004 0.140 0.104
#> SRR1818605     3  0.4525     0.7010 0.076 0.004 0.728 0.000 0.180 0.012
#> SRR1818606     3  0.4525     0.7010 0.076 0.004 0.728 0.000 0.180 0.012

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15216 rows and 75 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.788           0.922       0.961          0.481 0.504   0.504
#> 3 3 0.821           0.889       0.944          0.189 0.931   0.863
#> 4 4 0.836           0.897       0.927          0.131 0.950   0.884
#> 5 5 0.716           0.828       0.904          0.159 0.866   0.651
#> 6 6 0.773           0.797       0.878          0.054 0.944   0.783

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1818631     1   0.000      0.992 1.000 0.000
#> SRR1818632     1   0.000      0.992 1.000 0.000
#> SRR1818679     1   0.662      0.762 0.828 0.172
#> SRR1818680     1   0.494      0.861 0.892 0.108
#> SRR1818677     2   0.000      0.913 0.000 1.000
#> SRR1818678     2   0.000      0.913 0.000 1.000
#> SRR1818675     1   0.000      0.992 1.000 0.000
#> SRR1818676     1   0.000      0.992 1.000 0.000
#> SRR1818673     2   0.000      0.913 0.000 1.000
#> SRR1818674     2   0.000      0.913 0.000 1.000
#> SRR1818671     2   0.000      0.913 0.000 1.000
#> SRR1818672     2   0.000      0.913 0.000 1.000
#> SRR1818661     1   0.000      0.992 1.000 0.000
#> SRR1818662     1   0.000      0.992 1.000 0.000
#> SRR1818655     1   0.000      0.992 1.000 0.000
#> SRR1818656     1   0.000      0.992 1.000 0.000
#> SRR1818653     1   0.000      0.992 1.000 0.000
#> SRR1818654     1   0.000      0.992 1.000 0.000
#> SRR1818651     1   0.000      0.992 1.000 0.000
#> SRR1818652     1   0.000      0.992 1.000 0.000
#> SRR1818657     1   0.000      0.992 1.000 0.000
#> SRR1818658     1   0.000      0.992 1.000 0.000
#> SRR1818649     1   0.000      0.992 1.000 0.000
#> SRR1818650     1   0.000      0.992 1.000 0.000
#> SRR1818659     1   0.000      0.992 1.000 0.000
#> SRR1818647     2   0.506      0.851 0.112 0.888
#> SRR1818648     2   0.494      0.854 0.108 0.892
#> SRR1818645     2   0.000      0.913 0.000 1.000
#> SRR1818646     2   0.000      0.913 0.000 1.000
#> SRR1818639     1   0.000      0.992 1.000 0.000
#> SRR1818640     1   0.000      0.992 1.000 0.000
#> SRR1818637     2   0.000      0.913 0.000 1.000
#> SRR1818638     2   0.000      0.913 0.000 1.000
#> SRR1818635     2   0.760      0.753 0.220 0.780
#> SRR1818636     2   0.722      0.774 0.200 0.800
#> SRR1818643     2   0.833      0.693 0.264 0.736
#> SRR1818644     2   0.855      0.671 0.280 0.720
#> SRR1818641     2   0.895      0.630 0.312 0.688
#> SRR1818642     2   0.904      0.617 0.320 0.680
#> SRR1818633     1   0.000      0.992 1.000 0.000
#> SRR1818634     1   0.000      0.992 1.000 0.000
#> SRR1818665     1   0.000      0.992 1.000 0.000
#> SRR1818666     1   0.000      0.992 1.000 0.000
#> SRR1818667     2   0.000      0.913 0.000 1.000
#> SRR1818668     2   0.000      0.913 0.000 1.000
#> SRR1818669     1   0.000      0.992 1.000 0.000
#> SRR1818670     1   0.000      0.992 1.000 0.000
#> SRR1818663     1   0.000      0.992 1.000 0.000
#> SRR1818664     1   0.000      0.992 1.000 0.000
#> SRR1818629     2   0.000      0.913 0.000 1.000
#> SRR1818630     2   0.000      0.913 0.000 1.000
#> SRR1818627     1   0.000      0.992 1.000 0.000
#> SRR1818628     1   0.000      0.992 1.000 0.000
#> SRR1818621     1   0.000      0.992 1.000 0.000
#> SRR1818622     1   0.000      0.992 1.000 0.000
#> SRR1818625     1   0.000      0.992 1.000 0.000
#> SRR1818626     1   0.000      0.992 1.000 0.000
#> SRR1818623     2   0.973      0.446 0.404 0.596
#> SRR1818624     2   0.973      0.446 0.404 0.596
#> SRR1818619     1   0.000      0.992 1.000 0.000
#> SRR1818620     1   0.000      0.992 1.000 0.000
#> SRR1818617     2   0.000      0.913 0.000 1.000
#> SRR1818618     2   0.000      0.913 0.000 1.000
#> SRR1818615     2   0.000      0.913 0.000 1.000
#> SRR1818616     2   0.000      0.913 0.000 1.000
#> SRR1818609     2   0.000      0.913 0.000 1.000
#> SRR1818610     2   0.000      0.913 0.000 1.000
#> SRR1818607     2   0.000      0.913 0.000 1.000
#> SRR1818608     2   0.000      0.913 0.000 1.000
#> SRR1818613     1   0.000      0.992 1.000 0.000
#> SRR1818614     1   0.000      0.992 1.000 0.000
#> SRR1818611     1   0.000      0.992 1.000 0.000
#> SRR1818612     1   0.000      0.992 1.000 0.000
#> SRR1818605     1   0.000      0.992 1.000 0.000
#> SRR1818606     1   0.000      0.992 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1818631     1  0.5397      0.634 0.720 0.000 0.280
#> SRR1818632     1  0.5363      0.641 0.724 0.000 0.276
#> SRR1818679     1  0.4326      0.791 0.844 0.144 0.012
#> SRR1818680     1  0.3129      0.864 0.904 0.088 0.008
#> SRR1818677     2  0.0747      0.890 0.000 0.984 0.016
#> SRR1818678     2  0.0747      0.890 0.000 0.984 0.016
#> SRR1818675     1  0.4654      0.753 0.792 0.000 0.208
#> SRR1818676     1  0.4654      0.753 0.792 0.000 0.208
#> SRR1818673     2  0.0000      0.887 0.000 1.000 0.000
#> SRR1818674     2  0.0000      0.887 0.000 1.000 0.000
#> SRR1818671     2  0.0892      0.888 0.000 0.980 0.020
#> SRR1818672     2  0.0747      0.890 0.000 0.984 0.016
#> SRR1818661     1  0.5397      0.634 0.720 0.000 0.280
#> SRR1818662     1  0.5397      0.634 0.720 0.000 0.280
#> SRR1818655     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818656     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818653     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818654     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818651     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818652     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818657     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818658     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818649     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818650     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818659     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818647     3  0.0000      0.986 0.000 0.000 1.000
#> SRR1818648     3  0.0000      0.986 0.000 0.000 1.000
#> SRR1818645     2  0.0747      0.890 0.000 0.984 0.016
#> SRR1818646     2  0.0747      0.890 0.000 0.984 0.016
#> SRR1818639     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818640     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818637     3  0.0000      0.986 0.000 0.000 1.000
#> SRR1818638     3  0.0000      0.986 0.000 0.000 1.000
#> SRR1818635     2  0.4796      0.694 0.220 0.780 0.000
#> SRR1818636     2  0.4555      0.714 0.200 0.800 0.000
#> SRR1818643     2  0.5327      0.617 0.272 0.728 0.000
#> SRR1818644     2  0.5560      0.582 0.300 0.700 0.000
#> SRR1818641     2  0.5706      0.571 0.320 0.680 0.000
#> SRR1818642     2  0.5733      0.565 0.324 0.676 0.000
#> SRR1818633     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818634     1  0.0237      0.951 0.996 0.004 0.000
#> SRR1818665     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818666     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818667     2  0.0747      0.890 0.000 0.984 0.016
#> SRR1818668     2  0.0747      0.890 0.000 0.984 0.016
#> SRR1818669     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818670     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818663     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818664     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818629     2  0.0000      0.887 0.000 1.000 0.000
#> SRR1818630     2  0.0000      0.887 0.000 1.000 0.000
#> SRR1818627     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818628     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818621     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818622     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818625     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818626     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818623     3  0.0424      0.985 0.000 0.008 0.992
#> SRR1818624     3  0.0592      0.983 0.000 0.012 0.988
#> SRR1818619     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818620     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818617     2  0.0747      0.890 0.000 0.984 0.016
#> SRR1818618     2  0.0747      0.890 0.000 0.984 0.016
#> SRR1818615     2  0.0000      0.887 0.000 1.000 0.000
#> SRR1818616     2  0.0000      0.887 0.000 1.000 0.000
#> SRR1818609     3  0.1529      0.969 0.000 0.040 0.960
#> SRR1818610     3  0.1529      0.969 0.000 0.040 0.960
#> SRR1818607     2  0.0747      0.890 0.000 0.984 0.016
#> SRR1818608     2  0.0747      0.890 0.000 0.984 0.016
#> SRR1818613     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818614     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818611     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818612     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818605     1  0.0000      0.955 1.000 0.000 0.000
#> SRR1818606     1  0.0000      0.955 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1818631     1  0.4277      0.646 0.720 0.000 0.000 0.280
#> SRR1818632     1  0.4250      0.653 0.724 0.000 0.000 0.276
#> SRR1818679     1  0.4044      0.810 0.820 0.152 0.024 0.004
#> SRR1818680     1  0.3158      0.867 0.880 0.096 0.020 0.004
#> SRR1818677     2  0.0000      0.951 0.000 1.000 0.000 0.000
#> SRR1818678     2  0.0000      0.951 0.000 1.000 0.000 0.000
#> SRR1818675     1  0.3942      0.735 0.764 0.000 0.000 0.236
#> SRR1818676     1  0.3942      0.735 0.764 0.000 0.000 0.236
#> SRR1818673     3  0.2216      0.948 0.000 0.092 0.908 0.000
#> SRR1818674     3  0.2216      0.948 0.000 0.092 0.908 0.000
#> SRR1818671     2  0.0000      0.951 0.000 1.000 0.000 0.000
#> SRR1818672     2  0.0000      0.951 0.000 1.000 0.000 0.000
#> SRR1818661     1  0.4277      0.646 0.720 0.000 0.000 0.280
#> SRR1818662     1  0.4277      0.646 0.720 0.000 0.000 0.280
#> SRR1818655     1  0.0000      0.922 1.000 0.000 0.000 0.000
#> SRR1818656     1  0.0000      0.922 1.000 0.000 0.000 0.000
#> SRR1818653     1  0.0000      0.922 1.000 0.000 0.000 0.000
#> SRR1818654     1  0.0000      0.922 1.000 0.000 0.000 0.000
#> SRR1818651     1  0.0000      0.922 1.000 0.000 0.000 0.000
#> SRR1818652     1  0.0000      0.922 1.000 0.000 0.000 0.000
#> SRR1818657     1  0.0000      0.922 1.000 0.000 0.000 0.000
#> SRR1818658     1  0.0000      0.922 1.000 0.000 0.000 0.000
#> SRR1818649     1  0.3448      0.854 0.828 0.000 0.168 0.004
#> SRR1818650     1  0.3208      0.872 0.848 0.000 0.148 0.004
#> SRR1818659     1  0.0000      0.922 1.000 0.000 0.000 0.000
#> SRR1818647     4  0.0188      0.980 0.000 0.004 0.000 0.996
#> SRR1818648     4  0.0188      0.980 0.000 0.004 0.000 0.996
#> SRR1818645     2  0.0000      0.951 0.000 1.000 0.000 0.000
#> SRR1818646     2  0.0000      0.951 0.000 1.000 0.000 0.000
#> SRR1818639     1  0.0000      0.922 1.000 0.000 0.000 0.000
#> SRR1818640     1  0.0000      0.922 1.000 0.000 0.000 0.000
#> SRR1818637     4  0.0188      0.980 0.000 0.004 0.000 0.996
#> SRR1818638     4  0.0188      0.980 0.000 0.004 0.000 0.996
#> SRR1818635     3  0.2011      0.947 0.000 0.080 0.920 0.000
#> SRR1818636     3  0.2011      0.947 0.000 0.080 0.920 0.000
#> SRR1818643     3  0.3245      0.928 0.028 0.100 0.872 0.000
#> SRR1818644     3  0.3333      0.918 0.040 0.088 0.872 0.000
#> SRR1818641     3  0.3528      0.873 0.000 0.192 0.808 0.000
#> SRR1818642     3  0.3528      0.873 0.000 0.192 0.808 0.000
#> SRR1818633     1  0.1576      0.913 0.948 0.000 0.048 0.004
#> SRR1818634     1  0.1902      0.911 0.932 0.000 0.064 0.004
#> SRR1818665     1  0.1902      0.909 0.932 0.000 0.064 0.004
#> SRR1818666     1  0.1978      0.908 0.928 0.000 0.068 0.004
#> SRR1818667     2  0.0000      0.951 0.000 1.000 0.000 0.000
#> SRR1818668     2  0.0000      0.951 0.000 1.000 0.000 0.000
#> SRR1818669     1  0.0000      0.922 1.000 0.000 0.000 0.000
#> SRR1818670     1  0.0000      0.922 1.000 0.000 0.000 0.000
#> SRR1818663     1  0.2401      0.901 0.904 0.000 0.092 0.004
#> SRR1818664     1  0.2401      0.901 0.904 0.000 0.092 0.004
#> SRR1818629     3  0.1940      0.942 0.000 0.076 0.924 0.000
#> SRR1818630     3  0.2149      0.948 0.000 0.088 0.912 0.000
#> SRR1818627     1  0.0336      0.921 0.992 0.000 0.008 0.000
#> SRR1818628     1  0.0469      0.921 0.988 0.000 0.012 0.000
#> SRR1818621     1  0.0000      0.922 1.000 0.000 0.000 0.000
#> SRR1818622     1  0.0000      0.922 1.000 0.000 0.000 0.000
#> SRR1818625     1  0.3831      0.826 0.792 0.000 0.204 0.004
#> SRR1818626     1  0.3306      0.868 0.840 0.000 0.156 0.004
#> SRR1818623     4  0.0707      0.978 0.000 0.020 0.000 0.980
#> SRR1818624     4  0.0817      0.976 0.000 0.024 0.000 0.976
#> SRR1818619     1  0.2401      0.901 0.904 0.000 0.092 0.004
#> SRR1818620     1  0.2401      0.901 0.904 0.000 0.092 0.004
#> SRR1818617     2  0.0592      0.937 0.000 0.984 0.016 0.000
#> SRR1818618     2  0.0592      0.937 0.000 0.984 0.016 0.000
#> SRR1818615     2  0.4103      0.649 0.000 0.744 0.256 0.000
#> SRR1818616     2  0.4250      0.612 0.000 0.724 0.276 0.000
#> SRR1818609     4  0.1302      0.961 0.000 0.044 0.000 0.956
#> SRR1818610     4  0.1302      0.961 0.000 0.044 0.000 0.956
#> SRR1818607     2  0.0000      0.951 0.000 1.000 0.000 0.000
#> SRR1818608     2  0.0000      0.951 0.000 1.000 0.000 0.000
#> SRR1818613     1  0.0000      0.922 1.000 0.000 0.000 0.000
#> SRR1818614     1  0.0000      0.922 1.000 0.000 0.000 0.000
#> SRR1818611     1  0.2401      0.901 0.904 0.000 0.092 0.004
#> SRR1818612     1  0.2401      0.901 0.904 0.000 0.092 0.004
#> SRR1818605     1  0.0895      0.920 0.976 0.000 0.020 0.004
#> SRR1818606     1  0.0657      0.921 0.984 0.000 0.012 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1818631     3  0.4955      0.583 0.072 0.000 0.680 0.248 0.000
#> SRR1818632     3  0.4877      0.598 0.072 0.000 0.692 0.236 0.000
#> SRR1818679     3  0.4361      0.690 0.124 0.108 0.768 0.000 0.000
#> SRR1818680     3  0.3840      0.740 0.116 0.076 0.808 0.000 0.000
#> SRR1818677     2  0.1121      0.841 0.044 0.956 0.000 0.000 0.000
#> SRR1818678     2  0.1270      0.837 0.052 0.948 0.000 0.000 0.000
#> SRR1818675     3  0.3143      0.726 0.000 0.000 0.796 0.204 0.000
#> SRR1818676     3  0.3143      0.726 0.000 0.000 0.796 0.204 0.000
#> SRR1818673     5  0.0000      0.947 0.000 0.000 0.000 0.000 1.000
#> SRR1818674     5  0.0000      0.947 0.000 0.000 0.000 0.000 1.000
#> SRR1818671     2  0.0000      0.859 0.000 1.000 0.000 0.000 0.000
#> SRR1818672     2  0.0000      0.859 0.000 1.000 0.000 0.000 0.000
#> SRR1818661     3  0.4955      0.583 0.072 0.000 0.680 0.248 0.000
#> SRR1818662     3  0.4955      0.583 0.072 0.000 0.680 0.248 0.000
#> SRR1818655     3  0.0290      0.882 0.008 0.000 0.992 0.000 0.000
#> SRR1818656     3  0.0510      0.880 0.016 0.000 0.984 0.000 0.000
#> SRR1818653     3  0.0000      0.883 0.000 0.000 1.000 0.000 0.000
#> SRR1818654     3  0.0000      0.883 0.000 0.000 1.000 0.000 0.000
#> SRR1818651     3  0.0000      0.883 0.000 0.000 1.000 0.000 0.000
#> SRR1818652     3  0.0000      0.883 0.000 0.000 1.000 0.000 0.000
#> SRR1818657     3  0.0000      0.883 0.000 0.000 1.000 0.000 0.000
#> SRR1818658     3  0.0000      0.883 0.000 0.000 1.000 0.000 0.000
#> SRR1818649     1  0.4074      0.561 0.636 0.000 0.364 0.000 0.000
#> SRR1818650     1  0.3913      0.646 0.676 0.000 0.324 0.000 0.000
#> SRR1818659     3  0.1197      0.860 0.048 0.000 0.952 0.000 0.000
#> SRR1818647     4  0.0000      0.995 0.000 0.000 0.000 1.000 0.000
#> SRR1818648     4  0.0000      0.995 0.000 0.000 0.000 1.000 0.000
#> SRR1818645     2  0.0000      0.859 0.000 1.000 0.000 0.000 0.000
#> SRR1818646     2  0.0000      0.859 0.000 1.000 0.000 0.000 0.000
#> SRR1818639     3  0.0404      0.881 0.012 0.000 0.988 0.000 0.000
#> SRR1818640     3  0.0510      0.879 0.016 0.000 0.984 0.000 0.000
#> SRR1818637     4  0.0000      0.995 0.000 0.000 0.000 1.000 0.000
#> SRR1818638     4  0.0000      0.995 0.000 0.000 0.000 1.000 0.000
#> SRR1818635     5  0.0000      0.947 0.000 0.000 0.000 0.000 1.000
#> SRR1818636     5  0.0000      0.947 0.000 0.000 0.000 0.000 1.000
#> SRR1818643     5  0.1697      0.924 0.000 0.060 0.008 0.000 0.932
#> SRR1818644     5  0.2054      0.916 0.000 0.052 0.028 0.000 0.920
#> SRR1818641     5  0.2516      0.860 0.000 0.140 0.000 0.000 0.860
#> SRR1818642     5  0.2516      0.860 0.000 0.140 0.000 0.000 0.860
#> SRR1818633     3  0.2773      0.745 0.164 0.000 0.836 0.000 0.000
#> SRR1818634     3  0.2852      0.739 0.172 0.000 0.828 0.000 0.000
#> SRR1818665     1  0.3480      0.824 0.752 0.000 0.248 0.000 0.000
#> SRR1818666     1  0.3274      0.847 0.780 0.000 0.220 0.000 0.000
#> SRR1818667     2  0.0000      0.859 0.000 1.000 0.000 0.000 0.000
#> SRR1818668     2  0.0000      0.859 0.000 1.000 0.000 0.000 0.000
#> SRR1818669     3  0.0162      0.883 0.004 0.000 0.996 0.000 0.000
#> SRR1818670     3  0.0162      0.883 0.004 0.000 0.996 0.000 0.000
#> SRR1818663     1  0.2561      0.876 0.856 0.000 0.144 0.000 0.000
#> SRR1818664     1  0.2561      0.876 0.856 0.000 0.144 0.000 0.000
#> SRR1818629     5  0.0000      0.947 0.000 0.000 0.000 0.000 1.000
#> SRR1818630     5  0.0162      0.946 0.000 0.004 0.000 0.000 0.996
#> SRR1818627     3  0.0794      0.873 0.028 0.000 0.972 0.000 0.000
#> SRR1818628     3  0.0794      0.873 0.028 0.000 0.972 0.000 0.000
#> SRR1818621     3  0.0000      0.883 0.000 0.000 1.000 0.000 0.000
#> SRR1818622     3  0.0000      0.883 0.000 0.000 1.000 0.000 0.000
#> SRR1818625     1  0.2561      0.876 0.856 0.000 0.144 0.000 0.000
#> SRR1818626     1  0.2561      0.876 0.856 0.000 0.144 0.000 0.000
#> SRR1818623     4  0.0290      0.992 0.000 0.008 0.000 0.992 0.000
#> SRR1818624     4  0.0404      0.988 0.000 0.012 0.000 0.988 0.000
#> SRR1818619     1  0.3305      0.855 0.776 0.000 0.224 0.000 0.000
#> SRR1818620     1  0.3074      0.866 0.804 0.000 0.196 0.000 0.000
#> SRR1818617     2  0.4297      0.192 0.472 0.528 0.000 0.000 0.000
#> SRR1818618     2  0.4256      0.283 0.436 0.564 0.000 0.000 0.000
#> SRR1818615     2  0.3857      0.542 0.000 0.688 0.000 0.000 0.312
#> SRR1818616     2  0.3966      0.500 0.000 0.664 0.000 0.000 0.336
#> SRR1818609     4  0.0162      0.994 0.000 0.004 0.000 0.996 0.000
#> SRR1818610     4  0.0162      0.994 0.000 0.004 0.000 0.996 0.000
#> SRR1818607     2  0.0000      0.859 0.000 1.000 0.000 0.000 0.000
#> SRR1818608     2  0.0000      0.859 0.000 1.000 0.000 0.000 0.000
#> SRR1818613     3  0.0000      0.883 0.000 0.000 1.000 0.000 0.000
#> SRR1818614     3  0.0000      0.883 0.000 0.000 1.000 0.000 0.000
#> SRR1818611     1  0.1608      0.815 0.928 0.000 0.072 0.000 0.000
#> SRR1818612     1  0.1608      0.815 0.928 0.000 0.072 0.000 0.000
#> SRR1818605     3  0.2074      0.823 0.104 0.000 0.896 0.000 0.000
#> SRR1818606     3  0.1908      0.831 0.092 0.000 0.908 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1818631     3  0.4037      0.988 0.380 0.000 0.608 0.012 0.000 0.000
#> SRR1818632     3  0.3955      0.989 0.384 0.000 0.608 0.008 0.000 0.000
#> SRR1818679     1  0.3468      0.578 0.712 0.000 0.284 0.000 0.000 0.004
#> SRR1818680     1  0.3309      0.586 0.720 0.000 0.280 0.000 0.000 0.000
#> SRR1818677     5  0.2219      0.822 0.000 0.000 0.136 0.000 0.864 0.000
#> SRR1818678     5  0.2562      0.794 0.000 0.000 0.172 0.000 0.828 0.000
#> SRR1818675     1  0.3865      0.631 0.752 0.000 0.056 0.192 0.000 0.000
#> SRR1818676     1  0.3865      0.631 0.752 0.000 0.056 0.192 0.000 0.000
#> SRR1818673     2  0.0000      0.948 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818674     2  0.0000      0.948 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818671     5  0.0000      0.905 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818672     5  0.0146      0.904 0.000 0.000 0.000 0.004 0.996 0.000
#> SRR1818661     3  0.4057      0.991 0.388 0.000 0.600 0.012 0.000 0.000
#> SRR1818662     3  0.4057      0.991 0.388 0.000 0.600 0.012 0.000 0.000
#> SRR1818655     1  0.1500      0.825 0.936 0.000 0.012 0.000 0.000 0.052
#> SRR1818656     1  0.1225      0.835 0.952 0.000 0.012 0.000 0.000 0.036
#> SRR1818653     1  0.0000      0.842 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818654     1  0.0000      0.842 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818651     1  0.0000      0.842 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818652     1  0.0000      0.842 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818657     1  0.0260      0.843 0.992 0.000 0.008 0.000 0.000 0.000
#> SRR1818658     1  0.0260      0.843 0.992 0.000 0.008 0.000 0.000 0.000
#> SRR1818649     6  0.5979      0.297 0.308 0.000 0.252 0.000 0.000 0.440
#> SRR1818650     6  0.5803      0.405 0.248 0.000 0.252 0.000 0.000 0.500
#> SRR1818659     1  0.4500      0.536 0.676 0.000 0.076 0.000 0.000 0.248
#> SRR1818647     4  0.0000      0.992 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818648     4  0.0000      0.992 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818645     5  0.0000      0.905 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818646     5  0.0000      0.905 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818639     1  0.0508      0.842 0.984 0.000 0.004 0.000 0.000 0.012
#> SRR1818640     1  0.0603      0.840 0.980 0.000 0.004 0.000 0.000 0.016
#> SRR1818637     4  0.0000      0.992 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818638     4  0.0000      0.992 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818635     2  0.0000      0.948 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818636     2  0.0000      0.948 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818643     2  0.1462      0.927 0.008 0.936 0.000 0.000 0.056 0.000
#> SRR1818644     2  0.1780      0.918 0.028 0.924 0.000 0.000 0.048 0.000
#> SRR1818641     2  0.2260      0.861 0.000 0.860 0.000 0.000 0.140 0.000
#> SRR1818642     2  0.2260      0.861 0.000 0.860 0.000 0.000 0.140 0.000
#> SRR1818633     1  0.2489      0.776 0.860 0.000 0.012 0.000 0.000 0.128
#> SRR1818634     1  0.3010      0.749 0.828 0.004 0.020 0.000 0.000 0.148
#> SRR1818665     6  0.2278      0.678 0.004 0.000 0.128 0.000 0.000 0.868
#> SRR1818666     6  0.2135      0.680 0.000 0.000 0.128 0.000 0.000 0.872
#> SRR1818667     5  0.0146      0.904 0.000 0.000 0.004 0.000 0.996 0.000
#> SRR1818668     5  0.0146      0.904 0.000 0.000 0.004 0.000 0.996 0.000
#> SRR1818669     1  0.0692      0.844 0.976 0.000 0.004 0.000 0.000 0.020
#> SRR1818670     1  0.0790      0.842 0.968 0.000 0.000 0.000 0.000 0.032
#> SRR1818663     6  0.0000      0.718 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1818664     6  0.0000      0.718 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1818629     2  0.0000      0.948 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818630     2  0.0146      0.946 0.000 0.996 0.000 0.000 0.004 0.000
#> SRR1818627     1  0.2901      0.732 0.840 0.000 0.128 0.000 0.000 0.032
#> SRR1818628     1  0.2667      0.747 0.852 0.000 0.128 0.000 0.000 0.020
#> SRR1818621     1  0.1007      0.815 0.956 0.000 0.044 0.000 0.000 0.000
#> SRR1818622     1  0.1204      0.803 0.944 0.000 0.056 0.000 0.000 0.000
#> SRR1818625     6  0.0000      0.718 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1818626     6  0.0000      0.718 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1818623     4  0.0806      0.977 0.000 0.000 0.020 0.972 0.008 0.000
#> SRR1818624     4  0.0909      0.974 0.000 0.000 0.020 0.968 0.012 0.000
#> SRR1818619     6  0.3766      0.493 0.256 0.000 0.024 0.000 0.000 0.720
#> SRR1818620     6  0.3398      0.505 0.252 0.000 0.008 0.000 0.000 0.740
#> SRR1818617     6  0.4152      0.305 0.000 0.000 0.012 0.000 0.440 0.548
#> SRR1818618     6  0.4183      0.205 0.000 0.000 0.012 0.000 0.480 0.508
#> SRR1818615     5  0.3464      0.609 0.000 0.312 0.000 0.000 0.688 0.000
#> SRR1818616     5  0.3563      0.567 0.000 0.336 0.000 0.000 0.664 0.000
#> SRR1818609     4  0.0000      0.992 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818610     4  0.0000      0.992 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818607     5  0.0000      0.905 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818608     5  0.0000      0.905 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818613     1  0.0000      0.842 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818614     1  0.0000      0.842 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818611     6  0.3151      0.662 0.000 0.000 0.252 0.000 0.000 0.748
#> SRR1818612     6  0.3151      0.662 0.000 0.000 0.252 0.000 0.000 0.748
#> SRR1818605     1  0.2631      0.737 0.820 0.000 0.000 0.000 0.000 0.180
#> SRR1818606     1  0.1957      0.802 0.888 0.000 0.000 0.000 0.000 0.112

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15216 rows and 75 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.444           0.693       0.811         0.4282 0.504   0.504
#> 3 3 0.619           0.815       0.881         0.4904 0.762   0.559
#> 4 4 0.535           0.737       0.814         0.0932 0.867   0.651
#> 5 5 0.542           0.559       0.741         0.0898 0.901   0.680
#> 6 6 0.632           0.594       0.732         0.0571 0.894   0.583

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1818631     1   0.141      0.638 0.980 0.020
#> SRR1818632     1   0.141      0.638 0.980 0.020
#> SRR1818679     1   0.955     -0.510 0.624 0.376
#> SRR1818680     1   0.958     -0.522 0.620 0.380
#> SRR1818677     2   0.973      0.983 0.404 0.596
#> SRR1818678     2   0.973      0.983 0.404 0.596
#> SRR1818675     1   0.963     -0.537 0.612 0.388
#> SRR1818676     1   0.983     -0.644 0.576 0.424
#> SRR1818673     2   0.987      0.963 0.432 0.568
#> SRR1818674     2   0.987      0.963 0.432 0.568
#> SRR1818671     2   0.973      0.983 0.404 0.596
#> SRR1818672     2   0.973      0.983 0.404 0.596
#> SRR1818661     1   0.141      0.638 0.980 0.020
#> SRR1818662     1   0.141      0.638 0.980 0.020
#> SRR1818655     1   0.000      0.649 1.000 0.000
#> SRR1818656     1   0.000      0.649 1.000 0.000
#> SRR1818653     1   0.141      0.638 0.980 0.020
#> SRR1818654     1   0.141      0.638 0.980 0.020
#> SRR1818651     1   0.814      0.672 0.748 0.252
#> SRR1818652     1   0.814      0.672 0.748 0.252
#> SRR1818657     1   0.971      0.629 0.600 0.400
#> SRR1818658     1   0.971      0.629 0.600 0.400
#> SRR1818649     1   0.388      0.658 0.924 0.076
#> SRR1818650     1   0.416      0.660 0.916 0.084
#> SRR1818659     1   0.118      0.656 0.984 0.016
#> SRR1818647     2   0.987      0.959 0.432 0.568
#> SRR1818648     2   0.987      0.959 0.432 0.568
#> SRR1818645     2   0.973      0.983 0.404 0.596
#> SRR1818646     2   0.973      0.983 0.404 0.596
#> SRR1818639     1   0.118      0.656 0.984 0.016
#> SRR1818640     1   0.118      0.656 0.984 0.016
#> SRR1818637     2   0.987      0.959 0.432 0.568
#> SRR1818638     2   0.987      0.959 0.432 0.568
#> SRR1818635     2   0.987      0.963 0.432 0.568
#> SRR1818636     2   0.987      0.963 0.432 0.568
#> SRR1818643     2   0.973      0.983 0.404 0.596
#> SRR1818644     2   0.973      0.983 0.404 0.596
#> SRR1818641     2   0.973      0.983 0.404 0.596
#> SRR1818642     2   0.973      0.983 0.404 0.596
#> SRR1818633     1   0.952     -0.479 0.628 0.372
#> SRR1818634     1   0.952     -0.479 0.628 0.372
#> SRR1818665     1   0.971      0.629 0.600 0.400
#> SRR1818666     1   0.971      0.629 0.600 0.400
#> SRR1818667     2   0.975      0.981 0.408 0.592
#> SRR1818668     2   0.975      0.981 0.408 0.592
#> SRR1818669     1   0.141      0.658 0.980 0.020
#> SRR1818670     1   0.141      0.658 0.980 0.020
#> SRR1818663     1   0.971      0.629 0.600 0.400
#> SRR1818664     1   0.971      0.629 0.600 0.400
#> SRR1818629     2   0.973      0.983 0.404 0.596
#> SRR1818630     2   0.973      0.983 0.404 0.596
#> SRR1818627     1   0.839      0.670 0.732 0.268
#> SRR1818628     1   0.821      0.672 0.744 0.256
#> SRR1818621     1   0.141      0.638 0.980 0.020
#> SRR1818622     1   0.141      0.638 0.980 0.020
#> SRR1818625     1   0.971      0.629 0.600 0.400
#> SRR1818626     1   0.971      0.629 0.600 0.400
#> SRR1818623     2   0.987      0.959 0.432 0.568
#> SRR1818624     2   0.987      0.959 0.432 0.568
#> SRR1818619     1   0.224      0.621 0.964 0.036
#> SRR1818620     1   0.260      0.609 0.956 0.044
#> SRR1818617     2   0.973      0.983 0.404 0.596
#> SRR1818618     2   0.973      0.983 0.404 0.596
#> SRR1818615     2   0.973      0.983 0.404 0.596
#> SRR1818616     2   0.973      0.983 0.404 0.596
#> SRR1818609     2   0.973      0.983 0.404 0.596
#> SRR1818610     2   0.973      0.983 0.404 0.596
#> SRR1818607     2   0.973      0.983 0.404 0.596
#> SRR1818608     2   0.973      0.983 0.404 0.596
#> SRR1818613     1   0.921      0.653 0.664 0.336
#> SRR1818614     1   0.921      0.653 0.664 0.336
#> SRR1818611     1   0.949      0.643 0.632 0.368
#> SRR1818612     1   0.943      0.646 0.640 0.360
#> SRR1818605     1   0.680      0.672 0.820 0.180
#> SRR1818606     1   0.697      0.672 0.812 0.188

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1818631     3  0.6051     0.7127 0.292 0.012 0.696
#> SRR1818632     3  0.6051     0.7127 0.292 0.012 0.696
#> SRR1818679     3  0.8726     0.6604 0.212 0.196 0.592
#> SRR1818680     3  0.9120     0.5950 0.256 0.200 0.544
#> SRR1818677     2  0.1015     0.9500 0.008 0.980 0.012
#> SRR1818678     2  0.1015     0.9500 0.008 0.980 0.012
#> SRR1818675     3  0.2918     0.7893 0.044 0.032 0.924
#> SRR1818676     3  0.2806     0.7883 0.040 0.032 0.928
#> SRR1818673     2  0.0829     0.9525 0.004 0.984 0.012
#> SRR1818674     2  0.0829     0.9525 0.004 0.984 0.012
#> SRR1818671     2  0.2448     0.9077 0.000 0.924 0.076
#> SRR1818672     2  0.2537     0.9042 0.000 0.920 0.080
#> SRR1818661     3  0.6224     0.7112 0.296 0.016 0.688
#> SRR1818662     3  0.6224     0.7112 0.296 0.016 0.688
#> SRR1818655     1  0.2486     0.8369 0.932 0.008 0.060
#> SRR1818656     1  0.2486     0.8369 0.932 0.008 0.060
#> SRR1818653     1  0.6540     0.0639 0.584 0.008 0.408
#> SRR1818654     1  0.6498     0.1137 0.596 0.008 0.396
#> SRR1818651     1  0.1711     0.8706 0.960 0.032 0.008
#> SRR1818652     1  0.2173     0.8740 0.944 0.048 0.008
#> SRR1818657     1  0.2261     0.8758 0.932 0.068 0.000
#> SRR1818658     1  0.2537     0.8740 0.920 0.080 0.000
#> SRR1818649     1  0.3983     0.8343 0.852 0.144 0.004
#> SRR1818650     1  0.3983     0.8343 0.852 0.144 0.004
#> SRR1818659     1  0.2339     0.8435 0.940 0.012 0.048
#> SRR1818647     3  0.2564     0.7829 0.028 0.036 0.936
#> SRR1818648     3  0.2564     0.7829 0.028 0.036 0.936
#> SRR1818645     2  0.0000     0.9515 0.000 1.000 0.000
#> SRR1818646     2  0.0000     0.9515 0.000 1.000 0.000
#> SRR1818639     1  0.2486     0.8369 0.932 0.008 0.060
#> SRR1818640     1  0.2486     0.8369 0.932 0.008 0.060
#> SRR1818637     3  0.1964     0.7668 0.000 0.056 0.944
#> SRR1818638     3  0.1964     0.7668 0.000 0.056 0.944
#> SRR1818635     2  0.0829     0.9525 0.004 0.984 0.012
#> SRR1818636     2  0.0829     0.9525 0.004 0.984 0.012
#> SRR1818643     2  0.0000     0.9515 0.000 1.000 0.000
#> SRR1818644     2  0.0000     0.9515 0.000 1.000 0.000
#> SRR1818641     2  0.0475     0.9523 0.004 0.992 0.004
#> SRR1818642     2  0.0475     0.9523 0.004 0.992 0.004
#> SRR1818633     3  0.8494     0.6620 0.236 0.156 0.608
#> SRR1818634     3  0.8576     0.6545 0.240 0.160 0.600
#> SRR1818665     1  0.2537     0.8735 0.920 0.080 0.000
#> SRR1818666     1  0.2625     0.8726 0.916 0.084 0.000
#> SRR1818667     2  0.6045     0.3919 0.000 0.620 0.380
#> SRR1818668     2  0.5859     0.4939 0.000 0.656 0.344
#> SRR1818669     1  0.1529     0.8751 0.960 0.040 0.000
#> SRR1818670     1  0.1529     0.8751 0.960 0.040 0.000
#> SRR1818663     1  0.2711     0.8707 0.912 0.088 0.000
#> SRR1818664     1  0.2625     0.8724 0.916 0.084 0.000
#> SRR1818629     2  0.0829     0.9525 0.004 0.984 0.012
#> SRR1818630     2  0.0829     0.9525 0.004 0.984 0.012
#> SRR1818627     1  0.1751     0.8713 0.960 0.028 0.012
#> SRR1818628     1  0.1751     0.8730 0.960 0.028 0.012
#> SRR1818621     3  0.6313     0.6941 0.308 0.016 0.676
#> SRR1818622     3  0.6313     0.6941 0.308 0.016 0.676
#> SRR1818625     1  0.3983     0.8343 0.852 0.144 0.004
#> SRR1818626     1  0.3983     0.8343 0.852 0.144 0.004
#> SRR1818623     3  0.2318     0.7830 0.028 0.028 0.944
#> SRR1818624     3  0.2318     0.7830 0.028 0.028 0.944
#> SRR1818619     1  0.3983     0.8343 0.852 0.144 0.004
#> SRR1818620     1  0.3983     0.8343 0.852 0.144 0.004
#> SRR1818617     2  0.0237     0.9524 0.000 0.996 0.004
#> SRR1818618     2  0.0237     0.9524 0.000 0.996 0.004
#> SRR1818615     2  0.0747     0.9502 0.000 0.984 0.016
#> SRR1818616     2  0.0747     0.9502 0.000 0.984 0.016
#> SRR1818609     3  0.4702     0.6931 0.000 0.212 0.788
#> SRR1818610     3  0.4702     0.6931 0.000 0.212 0.788
#> SRR1818607     2  0.0000     0.9515 0.000 1.000 0.000
#> SRR1818608     2  0.0000     0.9515 0.000 1.000 0.000
#> SRR1818613     1  0.1620     0.8621 0.964 0.012 0.024
#> SRR1818614     1  0.1620     0.8621 0.964 0.012 0.024
#> SRR1818611     1  0.3983     0.8343 0.852 0.144 0.004
#> SRR1818612     1  0.3983     0.8343 0.852 0.144 0.004
#> SRR1818605     1  0.1529     0.8479 0.960 0.000 0.040
#> SRR1818606     1  0.1411     0.8491 0.964 0.000 0.036

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1818631     3  0.4488     0.7417 0.096 0.008 0.820 0.076
#> SRR1818632     3  0.4488     0.7417 0.096 0.008 0.820 0.076
#> SRR1818679     1  0.6009     0.5067 0.648 0.008 0.292 0.052
#> SRR1818680     1  0.6053     0.4916 0.640 0.008 0.300 0.052
#> SRR1818677     2  0.1985     0.8796 0.040 0.940 0.016 0.004
#> SRR1818678     2  0.2099     0.8785 0.040 0.936 0.020 0.004
#> SRR1818675     3  0.5262     0.7625 0.128 0.008 0.768 0.096
#> SRR1818676     3  0.5262     0.7625 0.128 0.008 0.768 0.096
#> SRR1818673     2  0.2810     0.8645 0.008 0.896 0.088 0.008
#> SRR1818674     2  0.2810     0.8645 0.008 0.896 0.088 0.008
#> SRR1818671     2  0.4049     0.7586 0.008 0.780 0.212 0.000
#> SRR1818672     2  0.4086     0.7535 0.008 0.776 0.216 0.000
#> SRR1818661     3  0.3647     0.7461 0.096 0.004 0.860 0.040
#> SRR1818662     3  0.3647     0.7461 0.096 0.004 0.860 0.040
#> SRR1818655     4  0.3674     0.9684 0.116 0.036 0.000 0.848
#> SRR1818656     4  0.3674     0.9684 0.116 0.036 0.000 0.848
#> SRR1818653     3  0.7075     0.3968 0.080 0.020 0.540 0.360
#> SRR1818654     3  0.7118     0.3914 0.084 0.020 0.540 0.356
#> SRR1818651     1  0.3302     0.7806 0.876 0.096 0.020 0.008
#> SRR1818652     1  0.3409     0.7799 0.872 0.096 0.024 0.008
#> SRR1818657     1  0.2918     0.7812 0.876 0.116 0.000 0.008
#> SRR1818658     1  0.2918     0.7812 0.876 0.116 0.000 0.008
#> SRR1818649     1  0.3606     0.7775 0.840 0.140 0.020 0.000
#> SRR1818650     1  0.3606     0.7775 0.840 0.140 0.020 0.000
#> SRR1818659     4  0.5815     0.8634 0.148 0.044 0.060 0.748
#> SRR1818647     3  0.3069     0.7514 0.088 0.012 0.888 0.012
#> SRR1818648     3  0.3069     0.7514 0.088 0.012 0.888 0.012
#> SRR1818645     2  0.0336     0.8934 0.000 0.992 0.008 0.000
#> SRR1818646     2  0.0336     0.8934 0.000 0.992 0.008 0.000
#> SRR1818639     4  0.3674     0.9684 0.116 0.036 0.000 0.848
#> SRR1818640     4  0.3674     0.9684 0.116 0.036 0.000 0.848
#> SRR1818637     3  0.2401     0.7425 0.000 0.004 0.904 0.092
#> SRR1818638     3  0.2401     0.7425 0.000 0.004 0.904 0.092
#> SRR1818635     2  0.2302     0.8821 0.008 0.924 0.060 0.008
#> SRR1818636     2  0.2302     0.8821 0.008 0.924 0.060 0.008
#> SRR1818643     2  0.0657     0.8920 0.004 0.984 0.000 0.012
#> SRR1818644     2  0.0657     0.8920 0.004 0.984 0.000 0.012
#> SRR1818641     2  0.0672     0.8933 0.008 0.984 0.000 0.008
#> SRR1818642     2  0.0524     0.8931 0.004 0.988 0.000 0.008
#> SRR1818633     1  0.5937     0.5266 0.660 0.008 0.280 0.052
#> SRR1818634     1  0.5937     0.5266 0.660 0.008 0.280 0.052
#> SRR1818665     1  0.2704     0.7809 0.876 0.124 0.000 0.000
#> SRR1818666     1  0.2760     0.7797 0.872 0.128 0.000 0.000
#> SRR1818667     2  0.5918     0.0791 0.012 0.496 0.476 0.016
#> SRR1818668     2  0.5906     0.1552 0.012 0.516 0.456 0.016
#> SRR1818669     1  0.4380     0.6903 0.800 0.032 0.164 0.004
#> SRR1818670     1  0.4380     0.6903 0.800 0.032 0.164 0.004
#> SRR1818663     1  0.2704     0.7808 0.876 0.124 0.000 0.000
#> SRR1818664     1  0.2704     0.7808 0.876 0.124 0.000 0.000
#> SRR1818629     2  0.1284     0.8939 0.012 0.964 0.024 0.000
#> SRR1818630     2  0.1471     0.8941 0.012 0.960 0.024 0.004
#> SRR1818627     1  0.4419     0.7554 0.824 0.096 0.072 0.008
#> SRR1818628     1  0.4043     0.7690 0.844 0.096 0.052 0.008
#> SRR1818621     3  0.5745     0.6535 0.056 0.000 0.656 0.288
#> SRR1818622     3  0.5745     0.6535 0.056 0.000 0.656 0.288
#> SRR1818625     1  0.2868     0.7782 0.864 0.136 0.000 0.000
#> SRR1818626     1  0.2868     0.7782 0.864 0.136 0.000 0.000
#> SRR1818623     3  0.2610     0.7538 0.088 0.000 0.900 0.012
#> SRR1818624     3  0.2610     0.7538 0.088 0.000 0.900 0.012
#> SRR1818619     1  0.4214     0.6685 0.780 0.016 0.204 0.000
#> SRR1818620     1  0.4214     0.6685 0.780 0.016 0.204 0.000
#> SRR1818617     2  0.0469     0.8922 0.012 0.988 0.000 0.000
#> SRR1818618     2  0.0469     0.8922 0.012 0.988 0.000 0.000
#> SRR1818615     2  0.2665     0.8645 0.008 0.900 0.088 0.004
#> SRR1818616     2  0.2665     0.8645 0.008 0.900 0.088 0.004
#> SRR1818609     3  0.5244     0.2268 0.008 0.372 0.616 0.004
#> SRR1818610     3  0.5214     0.2529 0.008 0.364 0.624 0.004
#> SRR1818607     2  0.0524     0.8938 0.004 0.988 0.008 0.000
#> SRR1818608     2  0.0524     0.8938 0.004 0.988 0.008 0.000
#> SRR1818613     1  0.4687     0.7734 0.808 0.096 0.088 0.008
#> SRR1818614     1  0.4687     0.7734 0.808 0.096 0.088 0.008
#> SRR1818611     1  0.5148     0.6303 0.736 0.056 0.000 0.208
#> SRR1818612     1  0.5148     0.6303 0.736 0.056 0.000 0.208
#> SRR1818605     1  0.6840     0.5371 0.572 0.096 0.324 0.008
#> SRR1818606     1  0.6840     0.5371 0.572 0.096 0.324 0.008

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1818631     3  0.3538    0.68935 0.024 0.008 0.856 0.084 0.028
#> SRR1818632     3  0.3538    0.68935 0.024 0.008 0.856 0.084 0.028
#> SRR1818679     1  0.6534    0.00434 0.492 0.020 0.060 0.404 0.024
#> SRR1818680     1  0.6663   -0.01087 0.484 0.024 0.064 0.404 0.024
#> SRR1818677     2  0.5370    0.68241 0.080 0.744 0.128 0.024 0.024
#> SRR1818678     2  0.5484    0.67394 0.096 0.740 0.112 0.028 0.024
#> SRR1818675     3  0.4314    0.70145 0.092 0.000 0.780 0.124 0.004
#> SRR1818676     3  0.4314    0.70145 0.092 0.000 0.780 0.124 0.004
#> SRR1818673     4  0.5168   -0.23916 0.008 0.416 0.004 0.552 0.020
#> SRR1818674     4  0.5161   -0.22949 0.008 0.412 0.004 0.556 0.020
#> SRR1818671     2  0.6121    0.65855 0.012 0.644 0.176 0.156 0.012
#> SRR1818672     2  0.6121    0.65855 0.012 0.644 0.176 0.156 0.012
#> SRR1818661     3  0.5314    0.63397 0.044 0.000 0.648 0.288 0.020
#> SRR1818662     3  0.5314    0.63397 0.044 0.000 0.648 0.288 0.020
#> SRR1818655     5  0.1205    0.78651 0.004 0.040 0.000 0.000 0.956
#> SRR1818656     5  0.1205    0.78651 0.004 0.040 0.000 0.000 0.956
#> SRR1818653     5  0.5221    0.38843 0.036 0.008 0.372 0.000 0.584
#> SRR1818654     5  0.5221    0.38843 0.036 0.008 0.372 0.000 0.584
#> SRR1818651     1  0.3713    0.66507 0.824 0.004 0.132 0.008 0.032
#> SRR1818652     1  0.3591    0.66602 0.828 0.004 0.132 0.004 0.032
#> SRR1818657     1  0.0613    0.76890 0.984 0.008 0.000 0.004 0.004
#> SRR1818658     1  0.0960    0.76851 0.972 0.016 0.000 0.004 0.008
#> SRR1818649     1  0.3982    0.69419 0.812 0.116 0.000 0.060 0.012
#> SRR1818650     1  0.3982    0.69419 0.812 0.116 0.000 0.060 0.012
#> SRR1818659     5  0.4264    0.60707 0.020 0.044 0.148 0.000 0.788
#> SRR1818647     3  0.5348    0.68485 0.088 0.004 0.688 0.212 0.008
#> SRR1818648     3  0.5318    0.68596 0.088 0.004 0.692 0.208 0.008
#> SRR1818645     2  0.1808    0.73899 0.020 0.936 0.000 0.040 0.004
#> SRR1818646     2  0.1808    0.73899 0.020 0.936 0.000 0.040 0.004
#> SRR1818639     5  0.1282    0.78596 0.004 0.044 0.000 0.000 0.952
#> SRR1818640     5  0.1282    0.78596 0.004 0.044 0.000 0.000 0.952
#> SRR1818637     3  0.2953    0.61068 0.000 0.028 0.868 0.100 0.004
#> SRR1818638     3  0.2953    0.61068 0.000 0.028 0.868 0.100 0.004
#> SRR1818635     2  0.5452    0.44873 0.028 0.536 0.000 0.416 0.020
#> SRR1818636     2  0.5446    0.45664 0.028 0.540 0.000 0.412 0.020
#> SRR1818643     2  0.2465    0.72733 0.028 0.912 0.004 0.012 0.044
#> SRR1818644     2  0.2465    0.72733 0.028 0.912 0.004 0.012 0.044
#> SRR1818641     2  0.2246    0.73307 0.028 0.924 0.004 0.016 0.028
#> SRR1818642     2  0.2246    0.73307 0.028 0.924 0.004 0.016 0.028
#> SRR1818633     4  0.5252    0.34729 0.336 0.008 0.036 0.616 0.004
#> SRR1818634     4  0.5180    0.34805 0.336 0.008 0.032 0.620 0.004
#> SRR1818665     1  0.1386    0.76820 0.952 0.016 0.000 0.032 0.000
#> SRR1818666     1  0.1386    0.76820 0.952 0.016 0.000 0.032 0.000
#> SRR1818667     2  0.6821    0.57269 0.012 0.568 0.236 0.160 0.024
#> SRR1818668     2  0.6799    0.57866 0.012 0.572 0.232 0.160 0.024
#> SRR1818669     4  0.6282    0.22992 0.364 0.096 0.000 0.520 0.020
#> SRR1818670     4  0.6282    0.22992 0.364 0.096 0.000 0.520 0.020
#> SRR1818663     1  0.1386    0.76820 0.952 0.016 0.000 0.032 0.000
#> SRR1818664     1  0.1485    0.76857 0.948 0.020 0.000 0.032 0.000
#> SRR1818629     2  0.5935    0.68937 0.020 0.688 0.088 0.176 0.028
#> SRR1818630     2  0.5901    0.69159 0.020 0.692 0.088 0.172 0.028
#> SRR1818627     1  0.3491    0.67908 0.836 0.000 0.124 0.028 0.012
#> SRR1818628     1  0.3443    0.68382 0.840 0.000 0.120 0.028 0.012
#> SRR1818621     3  0.5109    0.14069 0.028 0.000 0.580 0.008 0.384
#> SRR1818622     3  0.5109    0.14069 0.028 0.000 0.580 0.008 0.384
#> SRR1818625     1  0.2629    0.72427 0.880 0.104 0.000 0.004 0.012
#> SRR1818626     1  0.2629    0.72427 0.880 0.104 0.000 0.004 0.012
#> SRR1818623     3  0.5897    0.51649 0.088 0.000 0.496 0.412 0.004
#> SRR1818624     3  0.5881    0.53329 0.088 0.000 0.508 0.400 0.004
#> SRR1818619     4  0.4999    0.25449 0.420 0.008 0.012 0.556 0.004
#> SRR1818620     4  0.4999    0.25449 0.420 0.008 0.012 0.556 0.004
#> SRR1818617     2  0.2342    0.72419 0.040 0.916 0.000 0.020 0.024
#> SRR1818618     2  0.2244    0.72583 0.040 0.920 0.000 0.016 0.024
#> SRR1818615     2  0.5987    0.64704 0.000 0.648 0.160 0.168 0.024
#> SRR1818616     2  0.5987    0.64704 0.000 0.648 0.160 0.168 0.024
#> SRR1818609     4  0.7530   -0.18017 0.004 0.340 0.276 0.352 0.028
#> SRR1818610     4  0.7530   -0.18017 0.004 0.340 0.276 0.352 0.028
#> SRR1818607     2  0.2300    0.73766 0.024 0.920 0.004 0.040 0.012
#> SRR1818608     2  0.2300    0.73766 0.024 0.920 0.004 0.040 0.012
#> SRR1818613     1  0.1267    0.76696 0.960 0.000 0.004 0.012 0.024
#> SRR1818614     1  0.1267    0.76696 0.960 0.000 0.004 0.012 0.024
#> SRR1818611     1  0.6365    0.38318 0.540 0.152 0.004 0.004 0.300
#> SRR1818612     1  0.6365    0.38318 0.540 0.152 0.004 0.004 0.300
#> SRR1818605     1  0.3117    0.72104 0.876 0.004 0.076 0.024 0.020
#> SRR1818606     1  0.3209    0.71965 0.872 0.004 0.076 0.024 0.024

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1818631     3  0.2601     0.6371 0.024 0.004 0.888 0.000 0.016 0.068
#> SRR1818632     3  0.2601     0.6371 0.024 0.004 0.888 0.000 0.016 0.068
#> SRR1818679     6  0.5122     0.7004 0.288 0.004 0.080 0.000 0.008 0.620
#> SRR1818680     6  0.5122     0.7004 0.288 0.004 0.080 0.000 0.008 0.620
#> SRR1818677     2  0.4110     0.5352 0.100 0.800 0.012 0.040 0.000 0.048
#> SRR1818678     2  0.4194     0.5352 0.100 0.796 0.016 0.036 0.000 0.052
#> SRR1818675     3  0.6179     0.4951 0.184 0.000 0.584 0.052 0.004 0.176
#> SRR1818676     3  0.6179     0.4951 0.184 0.000 0.584 0.052 0.004 0.176
#> SRR1818673     2  0.5752     0.4175 0.000 0.524 0.000 0.184 0.004 0.288
#> SRR1818674     2  0.5752     0.4175 0.000 0.524 0.000 0.184 0.004 0.288
#> SRR1818671     4  0.4355     0.7651 0.000 0.248 0.008 0.704 0.008 0.032
#> SRR1818672     4  0.4355     0.7651 0.000 0.248 0.008 0.704 0.008 0.032
#> SRR1818661     3  0.4433     0.6090 0.108 0.000 0.776 0.020 0.024 0.072
#> SRR1818662     3  0.4433     0.6090 0.108 0.000 0.776 0.020 0.024 0.072
#> SRR1818655     5  0.1493     0.7264 0.004 0.056 0.000 0.000 0.936 0.004
#> SRR1818656     5  0.1493     0.7264 0.004 0.056 0.000 0.000 0.936 0.004
#> SRR1818653     5  0.5808     0.6002 0.000 0.052 0.184 0.144 0.620 0.000
#> SRR1818654     5  0.5808     0.6002 0.000 0.052 0.184 0.144 0.620 0.000
#> SRR1818651     1  0.2792     0.8015 0.888 0.044 0.024 0.000 0.024 0.020
#> SRR1818652     1  0.2792     0.8015 0.888 0.044 0.024 0.000 0.024 0.020
#> SRR1818657     1  0.2030     0.8241 0.908 0.064 0.000 0.000 0.000 0.028
#> SRR1818658     1  0.2030     0.8227 0.908 0.064 0.000 0.000 0.000 0.028
#> SRR1818649     1  0.4014     0.6798 0.756 0.096 0.000 0.000 0.000 0.148
#> SRR1818650     1  0.3977     0.6850 0.760 0.096 0.000 0.000 0.000 0.144
#> SRR1818659     5  0.3687     0.6690 0.044 0.060 0.064 0.000 0.828 0.004
#> SRR1818647     3  0.6262     0.3569 0.004 0.000 0.480 0.196 0.016 0.304
#> SRR1818648     3  0.6241     0.3597 0.004 0.000 0.484 0.192 0.016 0.304
#> SRR1818645     2  0.4105     0.0714 0.004 0.640 0.000 0.344 0.004 0.008
#> SRR1818646     2  0.4105     0.0714 0.004 0.640 0.000 0.344 0.004 0.008
#> SRR1818639     5  0.1349     0.7270 0.000 0.056 0.000 0.000 0.940 0.004
#> SRR1818640     5  0.1349     0.7270 0.000 0.056 0.000 0.000 0.940 0.004
#> SRR1818637     3  0.5883     0.4208 0.000 0.016 0.548 0.340 0.048 0.048
#> SRR1818638     3  0.5883     0.4208 0.000 0.016 0.548 0.340 0.048 0.048
#> SRR1818635     2  0.5748     0.4370 0.000 0.548 0.000 0.184 0.008 0.260
#> SRR1818636     2  0.5731     0.4394 0.000 0.552 0.000 0.184 0.008 0.256
#> SRR1818643     2  0.1194     0.6032 0.004 0.956 0.000 0.032 0.008 0.000
#> SRR1818644     2  0.0748     0.6047 0.004 0.976 0.000 0.016 0.004 0.000
#> SRR1818641     2  0.1757     0.6074 0.012 0.928 0.000 0.052 0.000 0.008
#> SRR1818642     2  0.1757     0.6074 0.012 0.928 0.000 0.052 0.000 0.008
#> SRR1818633     6  0.4151     0.7317 0.228 0.004 0.040 0.004 0.000 0.724
#> SRR1818634     6  0.4151     0.7317 0.228 0.004 0.040 0.004 0.000 0.724
#> SRR1818665     1  0.1636     0.8319 0.936 0.036 0.000 0.004 0.000 0.024
#> SRR1818666     1  0.1636     0.8319 0.936 0.036 0.000 0.004 0.000 0.024
#> SRR1818667     4  0.5743     0.7405 0.000 0.236 0.100 0.616 0.004 0.044
#> SRR1818668     4  0.5743     0.7405 0.000 0.236 0.100 0.616 0.004 0.044
#> SRR1818669     6  0.4963     0.6989 0.292 0.052 0.016 0.004 0.000 0.636
#> SRR1818670     6  0.4963     0.6989 0.292 0.052 0.016 0.004 0.000 0.636
#> SRR1818663     1  0.1636     0.8324 0.936 0.036 0.000 0.004 0.000 0.024
#> SRR1818664     1  0.1636     0.8324 0.936 0.036 0.000 0.004 0.000 0.024
#> SRR1818629     2  0.5654     0.4641 0.008 0.612 0.012 0.204 0.000 0.164
#> SRR1818630     2  0.5550     0.4664 0.004 0.616 0.012 0.204 0.000 0.164
#> SRR1818627     1  0.2650     0.7731 0.884 0.012 0.076 0.000 0.008 0.020
#> SRR1818628     1  0.2479     0.7846 0.896 0.012 0.064 0.000 0.008 0.020
#> SRR1818621     5  0.6369     0.4586 0.000 0.044 0.324 0.152 0.480 0.000
#> SRR1818622     5  0.6369     0.4586 0.000 0.044 0.324 0.152 0.480 0.000
#> SRR1818625     1  0.2301     0.8061 0.884 0.096 0.000 0.000 0.000 0.020
#> SRR1818626     1  0.2301     0.8061 0.884 0.096 0.000 0.000 0.000 0.020
#> SRR1818623     6  0.5761    -0.2513 0.004 0.000 0.416 0.148 0.000 0.432
#> SRR1818624     6  0.5761    -0.2537 0.004 0.000 0.416 0.148 0.000 0.432
#> SRR1818619     6  0.3555     0.7380 0.280 0.000 0.008 0.000 0.000 0.712
#> SRR1818620     6  0.3650     0.7380 0.280 0.000 0.012 0.000 0.000 0.708
#> SRR1818617     2  0.0551     0.6060 0.008 0.984 0.000 0.004 0.004 0.000
#> SRR1818618     2  0.0551     0.6060 0.008 0.984 0.000 0.004 0.004 0.000
#> SRR1818615     4  0.4427     0.7611 0.000 0.256 0.028 0.692 0.000 0.024
#> SRR1818616     4  0.4427     0.7611 0.000 0.256 0.028 0.692 0.000 0.024
#> SRR1818609     4  0.4508     0.7485 0.000 0.108 0.068 0.760 0.000 0.064
#> SRR1818610     4  0.4593     0.7495 0.000 0.108 0.064 0.760 0.004 0.064
#> SRR1818607     2  0.4329     0.0503 0.004 0.624 0.000 0.352 0.012 0.008
#> SRR1818608     2  0.4329     0.0503 0.004 0.624 0.000 0.352 0.012 0.008
#> SRR1818613     1  0.0862     0.8189 0.972 0.008 0.000 0.004 0.000 0.016
#> SRR1818614     1  0.0862     0.8189 0.972 0.008 0.000 0.004 0.000 0.016
#> SRR1818611     1  0.6298     0.3093 0.496 0.180 0.000 0.004 0.296 0.024
#> SRR1818612     1  0.6298     0.3093 0.496 0.180 0.000 0.004 0.296 0.024
#> SRR1818605     1  0.2352     0.7844 0.900 0.000 0.052 0.004 0.004 0.040
#> SRR1818606     1  0.2282     0.7851 0.904 0.000 0.052 0.004 0.004 0.036

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15216 rows and 75 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.765           0.876       0.947         0.4905 0.498   0.498
#> 3 3 0.627           0.781       0.891         0.2497 0.659   0.442
#> 4 4 0.477           0.656       0.800         0.1437 0.831   0.610
#> 5 5 0.499           0.496       0.694         0.0922 0.836   0.539
#> 6 6 0.533           0.406       0.635         0.0591 0.856   0.494

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1818631     1   0.000      0.969 1.000 0.000
#> SRR1818632     1   0.000      0.969 1.000 0.000
#> SRR1818679     1   0.738      0.703 0.792 0.208
#> SRR1818680     1   0.738      0.703 0.792 0.208
#> SRR1818677     2   0.494      0.844 0.108 0.892
#> SRR1818678     2   0.343      0.875 0.064 0.936
#> SRR1818675     2   0.990      0.285 0.440 0.560
#> SRR1818676     2   0.973      0.382 0.404 0.596
#> SRR1818673     2   0.000      0.906 0.000 1.000
#> SRR1818674     2   0.000      0.906 0.000 1.000
#> SRR1818671     2   0.000      0.906 0.000 1.000
#> SRR1818672     2   0.000      0.906 0.000 1.000
#> SRR1818661     1   0.000      0.969 1.000 0.000
#> SRR1818662     1   0.000      0.969 1.000 0.000
#> SRR1818655     1   0.000      0.969 1.000 0.000
#> SRR1818656     1   0.000      0.969 1.000 0.000
#> SRR1818653     1   0.000      0.969 1.000 0.000
#> SRR1818654     1   0.000      0.969 1.000 0.000
#> SRR1818651     1   0.000      0.969 1.000 0.000
#> SRR1818652     1   0.000      0.969 1.000 0.000
#> SRR1818657     1   0.000      0.969 1.000 0.000
#> SRR1818658     1   0.000      0.969 1.000 0.000
#> SRR1818649     1   0.000      0.969 1.000 0.000
#> SRR1818650     1   0.000      0.969 1.000 0.000
#> SRR1818659     1   0.000      0.969 1.000 0.000
#> SRR1818647     2   0.000      0.906 0.000 1.000
#> SRR1818648     2   0.000      0.906 0.000 1.000
#> SRR1818645     2   0.000      0.906 0.000 1.000
#> SRR1818646     2   0.000      0.906 0.000 1.000
#> SRR1818639     1   0.000      0.969 1.000 0.000
#> SRR1818640     1   0.000      0.969 1.000 0.000
#> SRR1818637     2   0.000      0.906 0.000 1.000
#> SRR1818638     2   0.000      0.906 0.000 1.000
#> SRR1818635     2   0.327      0.878 0.060 0.940
#> SRR1818636     2   0.327      0.878 0.060 0.940
#> SRR1818643     2   0.936      0.525 0.352 0.648
#> SRR1818644     2   0.943      0.510 0.360 0.640
#> SRR1818641     2   0.975      0.403 0.408 0.592
#> SRR1818642     2   0.978      0.393 0.412 0.588
#> SRR1818633     1   0.913      0.451 0.672 0.328
#> SRR1818634     1   0.913      0.451 0.672 0.328
#> SRR1818665     1   0.000      0.969 1.000 0.000
#> SRR1818666     1   0.000      0.969 1.000 0.000
#> SRR1818667     2   0.000      0.906 0.000 1.000
#> SRR1818668     2   0.000      0.906 0.000 1.000
#> SRR1818669     1   0.000      0.969 1.000 0.000
#> SRR1818670     1   0.000      0.969 1.000 0.000
#> SRR1818663     1   0.000      0.969 1.000 0.000
#> SRR1818664     1   0.000      0.969 1.000 0.000
#> SRR1818629     2   0.000      0.906 0.000 1.000
#> SRR1818630     2   0.000      0.906 0.000 1.000
#> SRR1818627     1   0.000      0.969 1.000 0.000
#> SRR1818628     1   0.000      0.969 1.000 0.000
#> SRR1818621     1   0.000      0.969 1.000 0.000
#> SRR1818622     1   0.000      0.969 1.000 0.000
#> SRR1818625     1   0.000      0.969 1.000 0.000
#> SRR1818626     1   0.000      0.969 1.000 0.000
#> SRR1818623     2   0.000      0.906 0.000 1.000
#> SRR1818624     2   0.000      0.906 0.000 1.000
#> SRR1818619     1   0.000      0.969 1.000 0.000
#> SRR1818620     1   0.000      0.969 1.000 0.000
#> SRR1818617     2   0.563      0.823 0.132 0.868
#> SRR1818618     2   0.584      0.816 0.140 0.860
#> SRR1818615     2   0.000      0.906 0.000 1.000
#> SRR1818616     2   0.000      0.906 0.000 1.000
#> SRR1818609     2   0.000      0.906 0.000 1.000
#> SRR1818610     2   0.000      0.906 0.000 1.000
#> SRR1818607     2   0.000      0.906 0.000 1.000
#> SRR1818608     2   0.000      0.906 0.000 1.000
#> SRR1818613     1   0.000      0.969 1.000 0.000
#> SRR1818614     1   0.000      0.969 1.000 0.000
#> SRR1818611     1   0.000      0.969 1.000 0.000
#> SRR1818612     1   0.000      0.969 1.000 0.000
#> SRR1818605     1   0.000      0.969 1.000 0.000
#> SRR1818606     1   0.000      0.969 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1818631     3  0.1860      0.811 0.052 0.000 0.948
#> SRR1818632     3  0.1860      0.811 0.052 0.000 0.948
#> SRR1818679     3  0.8694      0.479 0.268 0.152 0.580
#> SRR1818680     3  0.9235      0.184 0.384 0.156 0.460
#> SRR1818677     1  0.5465      0.678 0.712 0.288 0.000
#> SRR1818678     1  0.5733      0.627 0.676 0.324 0.000
#> SRR1818675     3  0.0000      0.789 0.000 0.000 1.000
#> SRR1818676     3  0.0000      0.789 0.000 0.000 1.000
#> SRR1818673     2  0.5988      0.303 0.368 0.632 0.000
#> SRR1818674     2  0.5926      0.339 0.356 0.644 0.000
#> SRR1818671     2  0.0000      0.901 0.000 1.000 0.000
#> SRR1818672     2  0.0000      0.901 0.000 1.000 0.000
#> SRR1818661     3  0.0592      0.798 0.012 0.000 0.988
#> SRR1818662     3  0.0592      0.798 0.012 0.000 0.988
#> SRR1818655     1  0.1031      0.864 0.976 0.000 0.024
#> SRR1818656     1  0.1643      0.857 0.956 0.000 0.044
#> SRR1818653     3  0.6095      0.418 0.392 0.000 0.608
#> SRR1818654     3  0.6252      0.274 0.444 0.000 0.556
#> SRR1818651     1  0.2878      0.824 0.904 0.000 0.096
#> SRR1818652     1  0.2625      0.832 0.916 0.000 0.084
#> SRR1818657     1  0.0592      0.867 0.988 0.000 0.012
#> SRR1818658     1  0.0424      0.868 0.992 0.000 0.008
#> SRR1818649     1  0.1643      0.861 0.956 0.044 0.000
#> SRR1818650     1  0.1643      0.861 0.956 0.044 0.000
#> SRR1818659     1  0.0237      0.869 0.996 0.000 0.004
#> SRR1818647     2  0.4654      0.761 0.000 0.792 0.208
#> SRR1818648     2  0.5098      0.710 0.000 0.752 0.248
#> SRR1818645     2  0.0000      0.901 0.000 1.000 0.000
#> SRR1818646     2  0.0000      0.901 0.000 1.000 0.000
#> SRR1818639     1  0.1860      0.852 0.948 0.000 0.052
#> SRR1818640     1  0.1753      0.854 0.952 0.000 0.048
#> SRR1818637     2  0.2261      0.879 0.000 0.932 0.068
#> SRR1818638     2  0.2261      0.879 0.000 0.932 0.068
#> SRR1818635     1  0.4452      0.777 0.808 0.192 0.000
#> SRR1818636     1  0.4504      0.774 0.804 0.196 0.000
#> SRR1818643     1  0.4842      0.752 0.776 0.224 0.000
#> SRR1818644     1  0.4750      0.759 0.784 0.216 0.000
#> SRR1818641     1  0.2261      0.852 0.932 0.068 0.000
#> SRR1818642     1  0.2165      0.853 0.936 0.064 0.000
#> SRR1818633     1  0.5137      0.798 0.832 0.104 0.064
#> SRR1818634     1  0.5153      0.798 0.832 0.100 0.068
#> SRR1818665     1  0.0237      0.869 0.996 0.000 0.004
#> SRR1818666     1  0.0237      0.869 0.996 0.000 0.004
#> SRR1818667     2  0.1860      0.886 0.000 0.948 0.052
#> SRR1818668     2  0.1860      0.886 0.000 0.948 0.052
#> SRR1818669     1  0.0000      0.869 1.000 0.000 0.000
#> SRR1818670     1  0.0000      0.869 1.000 0.000 0.000
#> SRR1818663     1  0.0000      0.869 1.000 0.000 0.000
#> SRR1818664     1  0.0000      0.869 1.000 0.000 0.000
#> SRR1818629     2  0.1643      0.868 0.044 0.956 0.000
#> SRR1818630     2  0.1411      0.876 0.036 0.964 0.000
#> SRR1818627     1  0.6008      0.389 0.628 0.000 0.372
#> SRR1818628     1  0.5948      0.415 0.640 0.000 0.360
#> SRR1818621     3  0.1860      0.811 0.052 0.000 0.948
#> SRR1818622     3  0.1860      0.811 0.052 0.000 0.948
#> SRR1818625     1  0.0000      0.869 1.000 0.000 0.000
#> SRR1818626     1  0.0000      0.869 1.000 0.000 0.000
#> SRR1818623     2  0.2625      0.873 0.000 0.916 0.084
#> SRR1818624     2  0.2796      0.868 0.000 0.908 0.092
#> SRR1818619     1  0.0000      0.869 1.000 0.000 0.000
#> SRR1818620     1  0.0237      0.869 0.996 0.000 0.004
#> SRR1818617     1  0.5138      0.720 0.748 0.252 0.000
#> SRR1818618     1  0.5178      0.716 0.744 0.256 0.000
#> SRR1818615     2  0.0000      0.901 0.000 1.000 0.000
#> SRR1818616     2  0.0000      0.901 0.000 1.000 0.000
#> SRR1818609     2  0.0592      0.900 0.000 0.988 0.012
#> SRR1818610     2  0.0592      0.900 0.000 0.988 0.012
#> SRR1818607     2  0.0000      0.901 0.000 1.000 0.000
#> SRR1818608     2  0.0000      0.901 0.000 1.000 0.000
#> SRR1818613     1  0.4750      0.689 0.784 0.000 0.216
#> SRR1818614     1  0.4750      0.689 0.784 0.000 0.216
#> SRR1818611     1  0.1643      0.861 0.956 0.044 0.000
#> SRR1818612     1  0.1753      0.859 0.952 0.048 0.000
#> SRR1818605     3  0.3879      0.784 0.152 0.000 0.848
#> SRR1818606     3  0.3941      0.784 0.156 0.000 0.844

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1818631     3  0.2670      0.746 0.072 0.000 0.904 0.024
#> SRR1818632     3  0.2670      0.746 0.072 0.000 0.904 0.024
#> SRR1818679     3  0.2311      0.759 0.076 0.004 0.916 0.004
#> SRR1818680     3  0.2876      0.749 0.092 0.008 0.892 0.008
#> SRR1818677     1  0.7148      0.609 0.624 0.248 0.072 0.056
#> SRR1818678     1  0.7243      0.581 0.608 0.260 0.088 0.044
#> SRR1818675     3  0.3710      0.699 0.000 0.004 0.804 0.192
#> SRR1818676     3  0.3668      0.702 0.000 0.004 0.808 0.188
#> SRR1818673     1  0.5028      0.496 0.596 0.400 0.000 0.004
#> SRR1818674     1  0.5050      0.481 0.588 0.408 0.000 0.004
#> SRR1818671     2  0.1389      0.842 0.000 0.952 0.048 0.000
#> SRR1818672     2  0.1389      0.842 0.000 0.952 0.048 0.000
#> SRR1818661     3  0.2480      0.732 0.008 0.000 0.904 0.088
#> SRR1818662     3  0.2546      0.730 0.008 0.000 0.900 0.092
#> SRR1818655     1  0.4985      0.220 0.532 0.000 0.000 0.468
#> SRR1818656     1  0.4998      0.154 0.512 0.000 0.000 0.488
#> SRR1818653     4  0.2610      0.751 0.088 0.000 0.012 0.900
#> SRR1818654     4  0.2610      0.751 0.088 0.000 0.012 0.900
#> SRR1818651     1  0.4103      0.613 0.744 0.000 0.000 0.256
#> SRR1818652     1  0.3942      0.630 0.764 0.000 0.000 0.236
#> SRR1818657     1  0.1677      0.727 0.948 0.000 0.040 0.012
#> SRR1818658     1  0.1677      0.727 0.948 0.000 0.040 0.012
#> SRR1818649     1  0.1394      0.728 0.964 0.008 0.016 0.012
#> SRR1818650     1  0.1271      0.727 0.968 0.008 0.012 0.012
#> SRR1818659     4  0.3266      0.741 0.168 0.000 0.000 0.832
#> SRR1818647     3  0.4464      0.649 0.000 0.208 0.768 0.024
#> SRR1818648     3  0.4307      0.666 0.000 0.192 0.784 0.024
#> SRR1818645     2  0.0804      0.841 0.012 0.980 0.000 0.008
#> SRR1818646     2  0.0804      0.841 0.012 0.980 0.000 0.008
#> SRR1818639     4  0.4072      0.636 0.252 0.000 0.000 0.748
#> SRR1818640     4  0.4072      0.629 0.252 0.000 0.000 0.748
#> SRR1818637     2  0.4487      0.769 0.000 0.808 0.100 0.092
#> SRR1818638     2  0.4487      0.769 0.000 0.808 0.100 0.092
#> SRR1818635     1  0.4400      0.670 0.744 0.248 0.004 0.004
#> SRR1818636     1  0.4122      0.675 0.760 0.236 0.000 0.004
#> SRR1818643     1  0.6466      0.579 0.588 0.320 0.000 0.092
#> SRR1818644     1  0.6430      0.589 0.596 0.312 0.000 0.092
#> SRR1818641     1  0.5170      0.669 0.724 0.228 0.000 0.048
#> SRR1818642     1  0.5203      0.667 0.720 0.232 0.000 0.048
#> SRR1818633     3  0.7613      0.414 0.332 0.144 0.508 0.016
#> SRR1818634     3  0.7613      0.409 0.332 0.144 0.508 0.016
#> SRR1818665     1  0.1474      0.721 0.948 0.000 0.000 0.052
#> SRR1818666     1  0.1474      0.721 0.948 0.000 0.000 0.052
#> SRR1818667     2  0.3903      0.801 0.000 0.844 0.076 0.080
#> SRR1818668     2  0.3970      0.798 0.000 0.840 0.076 0.084
#> SRR1818669     1  0.1576      0.724 0.948 0.000 0.048 0.004
#> SRR1818670     1  0.1489      0.725 0.952 0.000 0.044 0.004
#> SRR1818663     1  0.1557      0.718 0.944 0.000 0.000 0.056
#> SRR1818664     1  0.1637      0.717 0.940 0.000 0.000 0.060
#> SRR1818629     2  0.4936      0.124 0.372 0.624 0.000 0.004
#> SRR1818630     2  0.4855      0.199 0.352 0.644 0.000 0.004
#> SRR1818627     1  0.5569      0.548 0.660 0.000 0.296 0.044
#> SRR1818628     1  0.5549      0.562 0.672 0.000 0.280 0.048
#> SRR1818621     4  0.3647      0.675 0.016 0.000 0.152 0.832
#> SRR1818622     4  0.3625      0.667 0.012 0.000 0.160 0.828
#> SRR1818625     1  0.1022      0.725 0.968 0.000 0.000 0.032
#> SRR1818626     1  0.1022      0.725 0.968 0.000 0.000 0.032
#> SRR1818623     3  0.2450      0.761 0.000 0.072 0.912 0.016
#> SRR1818624     3  0.2329      0.762 0.000 0.072 0.916 0.012
#> SRR1818619     1  0.4639      0.633 0.752 0.008 0.228 0.012
#> SRR1818620     1  0.4458      0.652 0.772 0.008 0.208 0.012
#> SRR1818617     1  0.5913      0.547 0.600 0.352 0.000 0.048
#> SRR1818618     1  0.6054      0.543 0.592 0.352 0.000 0.056
#> SRR1818615     2  0.0376      0.842 0.004 0.992 0.000 0.004
#> SRR1818616     2  0.0376      0.842 0.004 0.992 0.000 0.004
#> SRR1818609     2  0.2908      0.827 0.000 0.896 0.064 0.040
#> SRR1818610     2  0.2908      0.827 0.000 0.896 0.064 0.040
#> SRR1818607     2  0.0804      0.841 0.012 0.980 0.000 0.008
#> SRR1818608     2  0.0804      0.841 0.012 0.980 0.000 0.008
#> SRR1818613     1  0.5700      0.577 0.716 0.000 0.120 0.164
#> SRR1818614     1  0.5624      0.578 0.720 0.000 0.108 0.172
#> SRR1818611     1  0.3606      0.664 0.840 0.020 0.000 0.140
#> SRR1818612     1  0.3554      0.666 0.844 0.020 0.000 0.136
#> SRR1818605     4  0.7506      0.255 0.184 0.000 0.376 0.440
#> SRR1818606     4  0.7222      0.444 0.172 0.000 0.300 0.528

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1818631     3  0.1347     0.6618 0.020 0.008 0.960 0.004 0.008
#> SRR1818632     3  0.1347     0.6618 0.020 0.008 0.960 0.004 0.008
#> SRR1818679     3  0.5071     0.3760 0.304 0.028 0.652 0.012 0.004
#> SRR1818680     3  0.5090     0.3693 0.308 0.028 0.648 0.012 0.004
#> SRR1818677     2  0.4530     0.5521 0.108 0.800 0.036 0.044 0.012
#> SRR1818678     2  0.4938     0.5423 0.096 0.780 0.056 0.056 0.012
#> SRR1818675     3  0.6677     0.5115 0.016 0.008 0.532 0.308 0.136
#> SRR1818676     3  0.6642     0.5134 0.016 0.008 0.536 0.308 0.132
#> SRR1818673     1  0.6232     0.1392 0.464 0.408 0.000 0.124 0.004
#> SRR1818674     1  0.6296     0.1256 0.456 0.408 0.000 0.132 0.004
#> SRR1818671     4  0.4030     0.6253 0.000 0.352 0.000 0.648 0.000
#> SRR1818672     4  0.4030     0.6230 0.000 0.352 0.000 0.648 0.000
#> SRR1818661     3  0.1605     0.6613 0.000 0.004 0.944 0.012 0.040
#> SRR1818662     3  0.1605     0.6613 0.000 0.004 0.944 0.012 0.040
#> SRR1818655     2  0.6633    -0.2927 0.220 0.392 0.000 0.000 0.388
#> SRR1818656     5  0.6557     0.2199 0.204 0.368 0.000 0.000 0.428
#> SRR1818653     5  0.1153     0.6693 0.008 0.024 0.004 0.000 0.964
#> SRR1818654     5  0.1243     0.6698 0.008 0.028 0.004 0.000 0.960
#> SRR1818651     1  0.4930     0.5683 0.696 0.084 0.000 0.000 0.220
#> SRR1818652     1  0.4810     0.5865 0.712 0.084 0.000 0.000 0.204
#> SRR1818657     1  0.5173    -0.0395 0.500 0.460 0.040 0.000 0.000
#> SRR1818658     1  0.4979    -0.0659 0.492 0.480 0.028 0.000 0.000
#> SRR1818649     1  0.3504     0.6746 0.840 0.064 0.092 0.000 0.004
#> SRR1818650     1  0.3629     0.6721 0.832 0.072 0.092 0.000 0.004
#> SRR1818659     5  0.3527     0.5769 0.192 0.016 0.000 0.000 0.792
#> SRR1818647     3  0.5330     0.4707 0.000 0.064 0.620 0.312 0.004
#> SRR1818648     3  0.5330     0.4724 0.000 0.064 0.620 0.312 0.004
#> SRR1818645     2  0.3300     0.4639 0.004 0.792 0.000 0.204 0.000
#> SRR1818646     2  0.3231     0.4759 0.004 0.800 0.000 0.196 0.000
#> SRR1818639     5  0.5603     0.2882 0.072 0.452 0.000 0.000 0.476
#> SRR1818640     5  0.5650     0.2770 0.076 0.456 0.000 0.000 0.468
#> SRR1818637     4  0.0613     0.6874 0.000 0.004 0.008 0.984 0.004
#> SRR1818638     4  0.0613     0.6874 0.000 0.004 0.008 0.984 0.004
#> SRR1818635     1  0.5108     0.3970 0.612 0.348 0.004 0.032 0.004
#> SRR1818636     1  0.4969     0.4063 0.616 0.352 0.004 0.024 0.004
#> SRR1818643     1  0.6229     0.2180 0.504 0.376 0.004 0.112 0.004
#> SRR1818644     1  0.6183     0.2279 0.512 0.372 0.004 0.108 0.004
#> SRR1818641     2  0.5484     0.0541 0.392 0.540 0.000 0.068 0.000
#> SRR1818642     2  0.5470     0.1192 0.364 0.564 0.000 0.072 0.000
#> SRR1818633     3  0.6829     0.2543 0.180 0.372 0.436 0.008 0.004
#> SRR1818634     3  0.6910     0.2698 0.180 0.360 0.444 0.012 0.004
#> SRR1818665     1  0.1864     0.6813 0.924 0.068 0.004 0.000 0.004
#> SRR1818666     1  0.1864     0.6813 0.924 0.068 0.004 0.000 0.004
#> SRR1818667     4  0.2646     0.7558 0.000 0.124 0.004 0.868 0.004
#> SRR1818668     4  0.2597     0.7563 0.000 0.120 0.004 0.872 0.004
#> SRR1818669     1  0.3159     0.6802 0.856 0.056 0.088 0.000 0.000
#> SRR1818670     1  0.3159     0.6802 0.856 0.056 0.088 0.000 0.000
#> SRR1818663     1  0.1300     0.6903 0.956 0.028 0.000 0.000 0.016
#> SRR1818664     1  0.1300     0.6903 0.956 0.028 0.000 0.000 0.016
#> SRR1818629     2  0.4946     0.2983 0.056 0.680 0.000 0.260 0.004
#> SRR1818630     2  0.4872     0.3244 0.056 0.692 0.000 0.248 0.004
#> SRR1818627     1  0.4919     0.6405 0.780 0.048 0.112 0.040 0.020
#> SRR1818628     1  0.4778     0.6451 0.792 0.056 0.096 0.036 0.020
#> SRR1818621     5  0.1059     0.6520 0.008 0.000 0.020 0.004 0.968
#> SRR1818622     5  0.1059     0.6520 0.008 0.000 0.020 0.004 0.968
#> SRR1818625     1  0.0865     0.6892 0.972 0.024 0.004 0.000 0.000
#> SRR1818626     1  0.0865     0.6892 0.972 0.024 0.004 0.000 0.000
#> SRR1818623     3  0.3647     0.6232 0.004 0.000 0.764 0.228 0.004
#> SRR1818624     3  0.3616     0.6260 0.004 0.000 0.768 0.224 0.004
#> SRR1818619     2  0.6572     0.1257 0.388 0.432 0.176 0.004 0.000
#> SRR1818620     2  0.6487     0.1065 0.404 0.432 0.160 0.004 0.000
#> SRR1818617     2  0.4168     0.5672 0.132 0.796 0.000 0.060 0.012
#> SRR1818618     2  0.4268     0.5686 0.132 0.792 0.000 0.060 0.016
#> SRR1818615     4  0.4632     0.6199 0.012 0.376 0.000 0.608 0.004
#> SRR1818616     4  0.4644     0.6141 0.012 0.380 0.000 0.604 0.004
#> SRR1818609     4  0.2806     0.7550 0.000 0.152 0.000 0.844 0.004
#> SRR1818610     4  0.2719     0.7549 0.000 0.144 0.000 0.852 0.004
#> SRR1818607     2  0.3266     0.4720 0.004 0.796 0.000 0.200 0.000
#> SRR1818608     2  0.3160     0.4852 0.004 0.808 0.000 0.188 0.000
#> SRR1818613     1  0.4779     0.6443 0.748 0.008 0.120 0.000 0.124
#> SRR1818614     1  0.4684     0.6463 0.760 0.012 0.096 0.000 0.132
#> SRR1818611     1  0.4123     0.6464 0.788 0.104 0.000 0.000 0.108
#> SRR1818612     1  0.3970     0.6538 0.800 0.104 0.000 0.000 0.096
#> SRR1818605     1  0.5642     0.5416 0.696 0.024 0.156 0.004 0.120
#> SRR1818606     1  0.5736     0.5411 0.688 0.024 0.144 0.004 0.140

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1818631     3  0.3628     0.5130 0.060 0.000 0.832 0.072 0.008 0.028
#> SRR1818632     3  0.3686     0.5122 0.064 0.000 0.828 0.072 0.008 0.028
#> SRR1818679     3  0.7396     0.2070 0.292 0.140 0.448 0.080 0.000 0.040
#> SRR1818680     3  0.7504     0.1851 0.300 0.140 0.432 0.084 0.000 0.044
#> SRR1818677     6  0.3451     0.4829 0.028 0.132 0.016 0.004 0.000 0.820
#> SRR1818678     6  0.3753     0.4823 0.028 0.120 0.032 0.008 0.000 0.812
#> SRR1818675     4  0.5763     0.3491 0.032 0.004 0.208 0.616 0.140 0.000
#> SRR1818676     4  0.5738     0.3490 0.032 0.004 0.204 0.620 0.140 0.000
#> SRR1818673     2  0.4438     0.3514 0.324 0.640 0.000 0.020 0.000 0.016
#> SRR1818674     2  0.4358     0.3543 0.324 0.644 0.000 0.016 0.000 0.016
#> SRR1818671     2  0.5716    -0.2055 0.000 0.500 0.008 0.356 0.000 0.136
#> SRR1818672     2  0.5692    -0.1889 0.000 0.512 0.008 0.344 0.000 0.136
#> SRR1818661     3  0.1860     0.5176 0.004 0.000 0.928 0.028 0.036 0.004
#> SRR1818662     3  0.1642     0.5180 0.000 0.000 0.936 0.028 0.032 0.004
#> SRR1818655     6  0.5123     0.4237 0.088 0.004 0.000 0.004 0.292 0.612
#> SRR1818656     6  0.5141     0.3884 0.080 0.004 0.000 0.004 0.320 0.592
#> SRR1818653     5  0.1732     0.8855 0.000 0.004 0.000 0.004 0.920 0.072
#> SRR1818654     5  0.1674     0.8899 0.000 0.004 0.000 0.004 0.924 0.068
#> SRR1818651     1  0.6111     0.2794 0.448 0.000 0.000 0.008 0.328 0.216
#> SRR1818652     1  0.5942     0.3429 0.484 0.000 0.000 0.004 0.296 0.216
#> SRR1818657     6  0.5318     0.3935 0.252 0.000 0.000 0.160 0.000 0.588
#> SRR1818658     6  0.5279     0.4067 0.244 0.000 0.000 0.160 0.000 0.596
#> SRR1818649     1  0.4942     0.6302 0.760 0.044 0.048 0.036 0.008 0.104
#> SRR1818650     1  0.5067     0.6260 0.748 0.040 0.052 0.036 0.008 0.116
#> SRR1818659     5  0.3316     0.7635 0.136 0.000 0.000 0.000 0.812 0.052
#> SRR1818647     3  0.6235     0.2195 0.000 0.188 0.552 0.220 0.004 0.036
#> SRR1818648     3  0.6232     0.2255 0.000 0.172 0.548 0.240 0.004 0.036
#> SRR1818645     2  0.4513     0.3024 0.000 0.532 0.004 0.024 0.000 0.440
#> SRR1818646     2  0.4517     0.2973 0.000 0.528 0.004 0.024 0.000 0.444
#> SRR1818639     6  0.4453     0.3924 0.044 0.000 0.000 0.000 0.332 0.624
#> SRR1818640     6  0.4378     0.3986 0.040 0.000 0.000 0.000 0.328 0.632
#> SRR1818637     4  0.4167     0.6855 0.000 0.332 0.008 0.648 0.008 0.004
#> SRR1818638     4  0.4167     0.6855 0.000 0.332 0.008 0.648 0.008 0.004
#> SRR1818635     1  0.4695    -0.0193 0.504 0.460 0.000 0.008 0.000 0.028
#> SRR1818636     1  0.4756    -0.0127 0.504 0.456 0.000 0.008 0.000 0.032
#> SRR1818643     2  0.5197     0.1726 0.432 0.508 0.000 0.016 0.008 0.036
#> SRR1818644     2  0.5120     0.1659 0.436 0.508 0.000 0.012 0.008 0.036
#> SRR1818641     2  0.4908     0.4821 0.208 0.664 0.000 0.004 0.000 0.124
#> SRR1818642     2  0.4910     0.4899 0.192 0.668 0.000 0.004 0.000 0.136
#> SRR1818633     3  0.7888     0.0983 0.060 0.048 0.368 0.216 0.008 0.300
#> SRR1818634     3  0.7817     0.1529 0.056 0.048 0.396 0.224 0.008 0.268
#> SRR1818665     1  0.5241     0.5145 0.656 0.004 0.004 0.164 0.004 0.168
#> SRR1818666     1  0.5164     0.5090 0.652 0.004 0.004 0.164 0.000 0.176
#> SRR1818667     4  0.4348     0.6093 0.000 0.416 0.000 0.560 0.000 0.024
#> SRR1818668     4  0.4192     0.6233 0.000 0.412 0.000 0.572 0.000 0.016
#> SRR1818669     1  0.5425     0.5875 0.704 0.008 0.088 0.076 0.004 0.120
#> SRR1818670     1  0.5597     0.5847 0.692 0.012 0.088 0.076 0.004 0.128
#> SRR1818663     1  0.1983     0.6487 0.916 0.000 0.000 0.012 0.012 0.060
#> SRR1818664     1  0.1882     0.6488 0.920 0.000 0.000 0.008 0.012 0.060
#> SRR1818629     6  0.7325     0.1573 0.044 0.292 0.024 0.288 0.000 0.352
#> SRR1818630     6  0.7222     0.1667 0.036 0.284 0.024 0.292 0.000 0.364
#> SRR1818627     1  0.5921     0.4766 0.600 0.004 0.028 0.256 0.012 0.100
#> SRR1818628     1  0.5983     0.4588 0.584 0.004 0.024 0.268 0.012 0.108
#> SRR1818621     5  0.0436     0.8977 0.004 0.000 0.004 0.004 0.988 0.000
#> SRR1818622     5  0.0436     0.8977 0.004 0.000 0.004 0.004 0.988 0.000
#> SRR1818625     1  0.2338     0.6480 0.900 0.004 0.000 0.016 0.012 0.068
#> SRR1818626     1  0.2620     0.6466 0.884 0.004 0.000 0.024 0.012 0.076
#> SRR1818623     3  0.4678     0.2910 0.000 0.020 0.624 0.328 0.000 0.028
#> SRR1818624     3  0.4578     0.3029 0.000 0.020 0.636 0.320 0.000 0.024
#> SRR1818619     6  0.6302     0.4053 0.200 0.000 0.048 0.212 0.000 0.540
#> SRR1818620     6  0.6331     0.3936 0.220 0.000 0.044 0.208 0.000 0.528
#> SRR1818617     6  0.3234     0.5597 0.040 0.072 0.000 0.024 0.008 0.856
#> SRR1818618     6  0.3343     0.5604 0.040 0.072 0.000 0.020 0.016 0.852
#> SRR1818615     2  0.1340     0.3295 0.008 0.948 0.000 0.040 0.000 0.004
#> SRR1818616     2  0.1370     0.3374 0.012 0.948 0.000 0.036 0.000 0.004
#> SRR1818609     2  0.4770    -0.3370 0.000 0.572 0.008 0.380 0.000 0.040
#> SRR1818610     2  0.4795    -0.3607 0.000 0.560 0.008 0.392 0.000 0.040
#> SRR1818607     2  0.4389     0.2949 0.000 0.528 0.000 0.024 0.000 0.448
#> SRR1818608     2  0.4318     0.2969 0.000 0.532 0.000 0.020 0.000 0.448
#> SRR1818613     1  0.6799     0.5428 0.588 0.000 0.120 0.048 0.092 0.152
#> SRR1818614     1  0.6897     0.5333 0.576 0.000 0.124 0.044 0.104 0.152
#> SRR1818611     1  0.6627     0.4922 0.564 0.056 0.000 0.056 0.076 0.248
#> SRR1818612     1  0.6407     0.5195 0.592 0.056 0.000 0.056 0.064 0.232
#> SRR1818605     1  0.5201     0.5092 0.724 0.032 0.052 0.016 0.156 0.020
#> SRR1818606     1  0.5405     0.4833 0.696 0.036 0.052 0.012 0.184 0.020

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15216 rows and 75 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.653           0.796       0.907         0.4481 0.514   0.514
#> 3 3 0.560           0.707       0.826         0.1804 1.000   1.000
#> 4 4 0.712           0.690       0.817         0.1870 0.877   0.761
#> 5 5 0.757           0.715       0.815         0.0528 0.959   0.895
#> 6 6 0.636           0.699       0.788         0.0586 0.895   0.725

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1818631     1  0.0000      0.936 1.000 0.000
#> SRR1818632     1  0.0000      0.936 1.000 0.000
#> SRR1818679     1  0.9998     -0.291 0.508 0.492
#> SRR1818680     1  0.9998     -0.291 0.508 0.492
#> SRR1818677     1  0.0000      0.936 1.000 0.000
#> SRR1818678     1  0.0000      0.936 1.000 0.000
#> SRR1818675     2  0.0000      0.812 0.000 1.000
#> SRR1818676     2  0.0000      0.812 0.000 1.000
#> SRR1818673     2  0.9522      0.620 0.372 0.628
#> SRR1818674     2  0.9522      0.620 0.372 0.628
#> SRR1818671     2  0.1843      0.817 0.028 0.972
#> SRR1818672     2  0.1843      0.817 0.028 0.972
#> SRR1818661     2  0.3879      0.814 0.076 0.924
#> SRR1818662     2  0.3879      0.814 0.076 0.924
#> SRR1818655     1  0.0376      0.933 0.996 0.004
#> SRR1818656     1  0.0376      0.933 0.996 0.004
#> SRR1818653     1  0.4298      0.833 0.912 0.088
#> SRR1818654     1  0.4298      0.833 0.912 0.088
#> SRR1818651     1  0.0000      0.936 1.000 0.000
#> SRR1818652     1  0.0000      0.936 1.000 0.000
#> SRR1818657     1  0.0000      0.936 1.000 0.000
#> SRR1818658     1  0.0000      0.936 1.000 0.000
#> SRR1818649     1  0.0000      0.936 1.000 0.000
#> SRR1818650     1  0.0000      0.936 1.000 0.000
#> SRR1818659     1  0.0000      0.936 1.000 0.000
#> SRR1818647     2  0.0376      0.814 0.004 0.996
#> SRR1818648     2  0.0376      0.814 0.004 0.996
#> SRR1818645     2  0.8499      0.742 0.276 0.724
#> SRR1818646     2  0.8499      0.742 0.276 0.724
#> SRR1818639     1  0.0000      0.936 1.000 0.000
#> SRR1818640     1  0.0000      0.936 1.000 0.000
#> SRR1818637     2  0.0000      0.812 0.000 1.000
#> SRR1818638     2  0.0000      0.812 0.000 1.000
#> SRR1818635     2  0.9522      0.620 0.372 0.628
#> SRR1818636     2  0.9522      0.620 0.372 0.628
#> SRR1818643     1  0.0376      0.933 0.996 0.004
#> SRR1818644     1  0.0376      0.933 0.996 0.004
#> SRR1818641     1  0.9998     -0.291 0.508 0.492
#> SRR1818642     1  0.9998     -0.291 0.508 0.492
#> SRR1818633     2  0.2043      0.817 0.032 0.968
#> SRR1818634     2  0.2043      0.817 0.032 0.968
#> SRR1818665     1  0.0000      0.936 1.000 0.000
#> SRR1818666     1  0.0000      0.936 1.000 0.000
#> SRR1818667     2  0.8144      0.760 0.252 0.748
#> SRR1818668     2  0.8144      0.760 0.252 0.748
#> SRR1818669     1  0.0000      0.936 1.000 0.000
#> SRR1818670     1  0.0000      0.936 1.000 0.000
#> SRR1818663     1  0.0000      0.936 1.000 0.000
#> SRR1818664     1  0.0000      0.936 1.000 0.000
#> SRR1818629     2  0.8144      0.760 0.252 0.748
#> SRR1818630     2  0.8144      0.760 0.252 0.748
#> SRR1818627     1  0.0000      0.936 1.000 0.000
#> SRR1818628     1  0.0000      0.936 1.000 0.000
#> SRR1818621     1  0.0000      0.936 1.000 0.000
#> SRR1818622     1  0.0000      0.936 1.000 0.000
#> SRR1818625     1  0.0000      0.936 1.000 0.000
#> SRR1818626     1  0.0000      0.936 1.000 0.000
#> SRR1818623     2  0.3584      0.817 0.068 0.932
#> SRR1818624     2  0.3584      0.817 0.068 0.932
#> SRR1818619     1  0.0000      0.936 1.000 0.000
#> SRR1818620     1  0.0000      0.936 1.000 0.000
#> SRR1818617     1  0.0376      0.933 0.996 0.004
#> SRR1818618     1  0.0376      0.933 0.996 0.004
#> SRR1818615     2  0.9580      0.598 0.380 0.620
#> SRR1818616     2  0.9580      0.598 0.380 0.620
#> SRR1818609     2  0.0376      0.814 0.004 0.996
#> SRR1818610     2  0.0376      0.814 0.004 0.996
#> SRR1818607     2  0.8499      0.742 0.276 0.724
#> SRR1818608     2  0.8499      0.742 0.276 0.724
#> SRR1818613     1  0.0000      0.936 1.000 0.000
#> SRR1818614     1  0.0000      0.936 1.000 0.000
#> SRR1818611     1  0.0000      0.936 1.000 0.000
#> SRR1818612     1  0.0000      0.936 1.000 0.000
#> SRR1818605     1  0.0376      0.933 0.996 0.004
#> SRR1818606     1  0.0376      0.933 0.996 0.004

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2 p3
#> SRR1818631     1  0.0892      0.876 0.980 0.000 NA
#> SRR1818632     1  0.0892      0.876 0.980 0.000 NA
#> SRR1818679     1  0.9938     -0.375 0.368 0.352 NA
#> SRR1818680     1  0.9938     -0.375 0.368 0.352 NA
#> SRR1818677     1  0.0592      0.879 0.988 0.000 NA
#> SRR1818678     1  0.0592      0.879 0.988 0.000 NA
#> SRR1818675     2  0.5948      0.600 0.000 0.640 NA
#> SRR1818676     2  0.5948      0.600 0.000 0.640 NA
#> SRR1818673     2  0.8554      0.559 0.324 0.560 NA
#> SRR1818674     2  0.8554      0.559 0.324 0.560 NA
#> SRR1818671     2  0.2682      0.739 0.004 0.920 NA
#> SRR1818672     2  0.2682      0.739 0.004 0.920 NA
#> SRR1818661     2  0.4931      0.727 0.032 0.828 NA
#> SRR1818662     2  0.4931      0.727 0.032 0.828 NA
#> SRR1818655     1  0.1585      0.873 0.964 0.008 NA
#> SRR1818656     1  0.1585      0.873 0.964 0.008 NA
#> SRR1818653     1  0.5092      0.733 0.804 0.020 NA
#> SRR1818654     1  0.5092      0.733 0.804 0.020 NA
#> SRR1818651     1  0.1031      0.878 0.976 0.000 NA
#> SRR1818652     1  0.1031      0.878 0.976 0.000 NA
#> SRR1818657     1  0.0747      0.879 0.984 0.000 NA
#> SRR1818658     1  0.0747      0.879 0.984 0.000 NA
#> SRR1818649     1  0.1031      0.878 0.976 0.000 NA
#> SRR1818650     1  0.1031      0.878 0.976 0.000 NA
#> SRR1818659     1  0.5926      0.524 0.644 0.000 NA
#> SRR1818647     2  0.1399      0.739 0.004 0.968 NA
#> SRR1818648     2  0.1399      0.739 0.004 0.968 NA
#> SRR1818645     2  0.7983      0.655 0.256 0.636 NA
#> SRR1818646     2  0.7983      0.655 0.256 0.636 NA
#> SRR1818639     1  0.0592      0.879 0.988 0.000 NA
#> SRR1818640     1  0.0592      0.879 0.988 0.000 NA
#> SRR1818637     2  0.5948      0.600 0.000 0.640 NA
#> SRR1818638     2  0.5948      0.600 0.000 0.640 NA
#> SRR1818635     2  0.8554      0.559 0.324 0.560 NA
#> SRR1818636     2  0.8554      0.559 0.324 0.560 NA
#> SRR1818643     1  0.1315      0.875 0.972 0.008 NA
#> SRR1818644     1  0.1315      0.875 0.972 0.008 NA
#> SRR1818641     1  0.9938     -0.375 0.368 0.352 NA
#> SRR1818642     1  0.9938     -0.375 0.368 0.352 NA
#> SRR1818633     2  0.2866      0.739 0.008 0.916 NA
#> SRR1818634     2  0.2866      0.739 0.008 0.916 NA
#> SRR1818665     1  0.0424      0.879 0.992 0.000 NA
#> SRR1818666     1  0.0424      0.879 0.992 0.000 NA
#> SRR1818667     2  0.7804      0.679 0.216 0.664 NA
#> SRR1818668     2  0.7804      0.679 0.216 0.664 NA
#> SRR1818669     1  0.0892      0.876 0.980 0.000 NA
#> SRR1818670     1  0.0892      0.876 0.980 0.000 NA
#> SRR1818663     1  0.1031      0.878 0.976 0.000 NA
#> SRR1818664     1  0.1031      0.878 0.976 0.000 NA
#> SRR1818629     2  0.7804      0.679 0.216 0.664 NA
#> SRR1818630     2  0.7804      0.679 0.216 0.664 NA
#> SRR1818627     1  0.0424      0.879 0.992 0.000 NA
#> SRR1818628     1  0.0424      0.879 0.992 0.000 NA
#> SRR1818621     1  0.5948      0.520 0.640 0.000 NA
#> SRR1818622     1  0.5948      0.520 0.640 0.000 NA
#> SRR1818625     1  0.1031      0.878 0.976 0.000 NA
#> SRR1818626     1  0.1031      0.878 0.976 0.000 NA
#> SRR1818623     2  0.4683      0.730 0.024 0.836 NA
#> SRR1818624     2  0.4683      0.730 0.024 0.836 NA
#> SRR1818619     1  0.0747      0.879 0.984 0.000 NA
#> SRR1818620     1  0.0747      0.879 0.984 0.000 NA
#> SRR1818617     1  0.1585      0.873 0.964 0.008 NA
#> SRR1818618     1  0.1585      0.873 0.964 0.008 NA
#> SRR1818615     2  0.8918      0.567 0.296 0.548 NA
#> SRR1818616     2  0.8918      0.567 0.296 0.548 NA
#> SRR1818609     2  0.1399      0.739 0.004 0.968 NA
#> SRR1818610     2  0.1399      0.739 0.004 0.968 NA
#> SRR1818607     2  0.7983      0.655 0.256 0.636 NA
#> SRR1818608     2  0.7983      0.655 0.256 0.636 NA
#> SRR1818613     1  0.1031      0.878 0.976 0.000 NA
#> SRR1818614     1  0.1031      0.878 0.976 0.000 NA
#> SRR1818611     1  0.1031      0.878 0.976 0.000 NA
#> SRR1818612     1  0.1031      0.878 0.976 0.000 NA
#> SRR1818605     1  0.1315      0.875 0.972 0.008 NA
#> SRR1818606     1  0.1315      0.875 0.972 0.008 NA

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1818631     1  0.0524      0.898 0.988 0.000 0.008 0.004
#> SRR1818632     1  0.0524      0.898 0.988 0.000 0.008 0.004
#> SRR1818679     3  0.6393      1.000 0.064 0.456 0.480 0.000
#> SRR1818680     3  0.6393      1.000 0.064 0.456 0.480 0.000
#> SRR1818677     1  0.0188      0.900 0.996 0.000 0.000 0.004
#> SRR1818678     1  0.0188      0.900 0.996 0.000 0.000 0.004
#> SRR1818675     4  0.0817      0.754 0.000 0.024 0.000 0.976
#> SRR1818676     4  0.0817      0.754 0.000 0.024 0.000 0.976
#> SRR1818673     2  0.4997      0.300 0.232 0.736 0.024 0.008
#> SRR1818674     2  0.4997      0.300 0.232 0.736 0.024 0.008
#> SRR1818671     2  0.6637      0.359 0.000 0.540 0.092 0.368
#> SRR1818672     2  0.6637      0.359 0.000 0.540 0.092 0.368
#> SRR1818661     4  0.7330      0.703 0.028 0.100 0.308 0.564
#> SRR1818662     4  0.7330      0.703 0.028 0.100 0.308 0.564
#> SRR1818655     1  0.2443      0.887 0.916 0.060 0.024 0.000
#> SRR1818656     1  0.2443      0.887 0.916 0.060 0.024 0.000
#> SRR1818653     1  0.6976      0.148 0.516 0.384 0.092 0.008
#> SRR1818654     1  0.6976      0.148 0.516 0.384 0.092 0.008
#> SRR1818651     1  0.1902      0.893 0.932 0.064 0.004 0.000
#> SRR1818652     1  0.1902      0.893 0.932 0.064 0.004 0.000
#> SRR1818657     1  0.0376      0.900 0.992 0.000 0.004 0.004
#> SRR1818658     1  0.0376      0.900 0.992 0.000 0.004 0.004
#> SRR1818649     1  0.1902      0.893 0.932 0.064 0.004 0.000
#> SRR1818650     1  0.1902      0.893 0.932 0.064 0.004 0.000
#> SRR1818659     1  0.5500      0.344 0.520 0.000 0.464 0.016
#> SRR1818647     2  0.5548      0.411 0.000 0.588 0.024 0.388
#> SRR1818648     2  0.5548      0.411 0.000 0.588 0.024 0.388
#> SRR1818645     2  0.3349      0.448 0.004 0.880 0.064 0.052
#> SRR1818646     2  0.3349      0.448 0.004 0.880 0.064 0.052
#> SRR1818639     1  0.0188      0.900 0.996 0.000 0.000 0.004
#> SRR1818640     1  0.0188      0.900 0.996 0.000 0.000 0.004
#> SRR1818637     4  0.0817      0.754 0.000 0.024 0.000 0.976
#> SRR1818638     4  0.0817      0.754 0.000 0.024 0.000 0.976
#> SRR1818635     2  0.4997      0.300 0.232 0.736 0.024 0.008
#> SRR1818636     2  0.4997      0.300 0.232 0.736 0.024 0.008
#> SRR1818643     1  0.1443      0.895 0.960 0.008 0.028 0.004
#> SRR1818644     1  0.1443      0.895 0.960 0.008 0.028 0.004
#> SRR1818641     3  0.6393      1.000 0.064 0.456 0.480 0.000
#> SRR1818642     3  0.6393      1.000 0.064 0.456 0.480 0.000
#> SRR1818633     2  0.6808      0.357 0.004 0.536 0.092 0.368
#> SRR1818634     2  0.6808      0.357 0.004 0.536 0.092 0.368
#> SRR1818665     1  0.0000      0.900 1.000 0.000 0.000 0.000
#> SRR1818666     1  0.0000      0.900 1.000 0.000 0.000 0.000
#> SRR1818667     2  0.4407      0.419 0.004 0.820 0.100 0.076
#> SRR1818668     2  0.4407      0.419 0.004 0.820 0.100 0.076
#> SRR1818669     1  0.0524      0.898 0.988 0.000 0.008 0.004
#> SRR1818670     1  0.0524      0.898 0.988 0.000 0.008 0.004
#> SRR1818663     1  0.1902      0.893 0.932 0.064 0.004 0.000
#> SRR1818664     1  0.1902      0.893 0.932 0.064 0.004 0.000
#> SRR1818629     2  0.4407      0.419 0.004 0.820 0.100 0.076
#> SRR1818630     2  0.4407      0.419 0.004 0.820 0.100 0.076
#> SRR1818627     1  0.0000      0.900 1.000 0.000 0.000 0.000
#> SRR1818628     1  0.0000      0.900 1.000 0.000 0.000 0.000
#> SRR1818621     1  0.5503      0.338 0.516 0.000 0.468 0.016
#> SRR1818622     1  0.5503      0.338 0.516 0.000 0.468 0.016
#> SRR1818625     1  0.1902      0.893 0.932 0.064 0.004 0.000
#> SRR1818626     1  0.1902      0.893 0.932 0.064 0.004 0.000
#> SRR1818623     4  0.7245      0.704 0.020 0.108 0.308 0.564
#> SRR1818624     4  0.7245      0.704 0.020 0.108 0.308 0.564
#> SRR1818619     1  0.0376      0.900 0.992 0.000 0.004 0.004
#> SRR1818620     1  0.0376      0.900 0.992 0.000 0.004 0.004
#> SRR1818617     1  0.2443      0.887 0.916 0.060 0.024 0.000
#> SRR1818618     1  0.2443      0.887 0.916 0.060 0.024 0.000
#> SRR1818615     2  0.2744      0.324 0.024 0.912 0.052 0.012
#> SRR1818616     2  0.2744      0.324 0.024 0.912 0.052 0.012
#> SRR1818609     2  0.5548      0.411 0.000 0.588 0.024 0.388
#> SRR1818610     2  0.5548      0.411 0.000 0.588 0.024 0.388
#> SRR1818607     2  0.3349      0.448 0.004 0.880 0.064 0.052
#> SRR1818608     2  0.3349      0.448 0.004 0.880 0.064 0.052
#> SRR1818613     1  0.1902      0.893 0.932 0.064 0.004 0.000
#> SRR1818614     1  0.1902      0.893 0.932 0.064 0.004 0.000
#> SRR1818611     1  0.1902      0.893 0.932 0.064 0.004 0.000
#> SRR1818612     1  0.1902      0.893 0.932 0.064 0.004 0.000
#> SRR1818605     1  0.1443      0.895 0.960 0.008 0.028 0.004
#> SRR1818606     1  0.1443      0.895 0.960 0.008 0.028 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1818631     1  0.0693      0.869 0.980 0.000 0.008 0.000 0.012
#> SRR1818632     1  0.0693      0.869 0.980 0.000 0.008 0.000 0.012
#> SRR1818679     5  0.5588      1.000 0.012 0.376 0.052 0.000 0.560
#> SRR1818680     5  0.5588      1.000 0.012 0.376 0.052 0.000 0.560
#> SRR1818677     1  0.0290      0.873 0.992 0.000 0.000 0.000 0.008
#> SRR1818678     1  0.0290      0.873 0.992 0.000 0.000 0.000 0.008
#> SRR1818675     4  0.0290      0.787 0.000 0.000 0.000 0.992 0.008
#> SRR1818676     4  0.0290      0.787 0.000 0.000 0.000 0.992 0.008
#> SRR1818673     2  0.5058      0.379 0.216 0.704 0.012 0.000 0.068
#> SRR1818674     2  0.5058      0.379 0.216 0.704 0.012 0.000 0.068
#> SRR1818671     2  0.5947      0.509 0.000 0.484 0.092 0.004 0.420
#> SRR1818672     2  0.5947      0.509 0.000 0.484 0.092 0.004 0.420
#> SRR1818661     4  0.5265      0.773 0.008 0.012 0.400 0.564 0.016
#> SRR1818662     4  0.5265      0.773 0.008 0.012 0.400 0.564 0.016
#> SRR1818655     1  0.2522      0.845 0.904 0.028 0.012 0.000 0.056
#> SRR1818656     1  0.2522      0.845 0.904 0.028 0.012 0.000 0.056
#> SRR1818653     1  0.7208     -0.323 0.468 0.348 0.080 0.000 0.104
#> SRR1818654     1  0.7208     -0.323 0.468 0.348 0.080 0.000 0.104
#> SRR1818651     1  0.2193      0.860 0.920 0.028 0.008 0.000 0.044
#> SRR1818652     1  0.2193      0.860 0.920 0.028 0.008 0.000 0.044
#> SRR1818657     1  0.0566      0.873 0.984 0.000 0.004 0.000 0.012
#> SRR1818658     1  0.0566      0.873 0.984 0.000 0.004 0.000 0.012
#> SRR1818649     1  0.1907      0.863 0.928 0.028 0.000 0.000 0.044
#> SRR1818650     1  0.1907      0.863 0.928 0.028 0.000 0.000 0.044
#> SRR1818659     3  0.4182      0.992 0.400 0.000 0.600 0.000 0.000
#> SRR1818647     2  0.4886      0.559 0.000 0.596 0.000 0.032 0.372
#> SRR1818648     2  0.4886      0.559 0.000 0.596 0.000 0.032 0.372
#> SRR1818645     2  0.1872      0.455 0.000 0.928 0.020 0.000 0.052
#> SRR1818646     2  0.1872      0.455 0.000 0.928 0.020 0.000 0.052
#> SRR1818639     1  0.0290      0.873 0.992 0.000 0.000 0.000 0.008
#> SRR1818640     1  0.0290      0.873 0.992 0.000 0.000 0.000 0.008
#> SRR1818637     4  0.0290      0.787 0.000 0.000 0.000 0.992 0.008
#> SRR1818638     4  0.0290      0.787 0.000 0.000 0.000 0.992 0.008
#> SRR1818635     2  0.5058      0.379 0.216 0.704 0.012 0.000 0.068
#> SRR1818636     2  0.5058      0.379 0.216 0.704 0.012 0.000 0.068
#> SRR1818643     1  0.1659      0.853 0.948 0.004 0.016 0.008 0.024
#> SRR1818644     1  0.1659      0.853 0.948 0.004 0.016 0.008 0.024
#> SRR1818641     5  0.5588      1.000 0.012 0.376 0.052 0.000 0.560
#> SRR1818642     5  0.5588      1.000 0.012 0.376 0.052 0.000 0.560
#> SRR1818633     2  0.6091      0.508 0.004 0.480 0.092 0.004 0.420
#> SRR1818634     2  0.6091      0.508 0.004 0.480 0.092 0.004 0.420
#> SRR1818665     1  0.0324      0.874 0.992 0.000 0.004 0.000 0.004
#> SRR1818666     1  0.0324      0.874 0.992 0.000 0.004 0.000 0.004
#> SRR1818667     2  0.2890      0.406 0.000 0.836 0.004 0.000 0.160
#> SRR1818668     2  0.2890      0.406 0.000 0.836 0.004 0.000 0.160
#> SRR1818669     1  0.0693      0.869 0.980 0.000 0.008 0.000 0.012
#> SRR1818670     1  0.0693      0.869 0.980 0.000 0.008 0.000 0.012
#> SRR1818663     1  0.1907      0.863 0.928 0.028 0.000 0.000 0.044
#> SRR1818664     1  0.1907      0.863 0.928 0.028 0.000 0.000 0.044
#> SRR1818629     2  0.2890      0.406 0.000 0.836 0.004 0.000 0.160
#> SRR1818630     2  0.2890      0.406 0.000 0.836 0.004 0.000 0.160
#> SRR1818627     1  0.0324      0.874 0.992 0.000 0.004 0.000 0.004
#> SRR1818628     1  0.0324      0.874 0.992 0.000 0.004 0.000 0.004
#> SRR1818621     3  0.4171      0.996 0.396 0.000 0.604 0.000 0.000
#> SRR1818622     3  0.4171      0.996 0.396 0.000 0.604 0.000 0.000
#> SRR1818625     1  0.1907      0.863 0.928 0.028 0.000 0.000 0.044
#> SRR1818626     1  0.1907      0.863 0.928 0.028 0.000 0.000 0.044
#> SRR1818623     4  0.5425      0.773 0.008 0.020 0.392 0.564 0.016
#> SRR1818624     4  0.5425      0.773 0.008 0.020 0.392 0.564 0.016
#> SRR1818619     1  0.0566      0.873 0.984 0.000 0.004 0.000 0.012
#> SRR1818620     1  0.0566      0.873 0.984 0.000 0.004 0.000 0.012
#> SRR1818617     1  0.2522      0.845 0.904 0.028 0.012 0.000 0.056
#> SRR1818618     1  0.2522      0.845 0.904 0.028 0.012 0.000 0.056
#> SRR1818615     2  0.2470      0.368 0.012 0.884 0.000 0.000 0.104
#> SRR1818616     2  0.2470      0.368 0.012 0.884 0.000 0.000 0.104
#> SRR1818609     2  0.4886      0.559 0.000 0.596 0.000 0.032 0.372
#> SRR1818610     2  0.4886      0.559 0.000 0.596 0.000 0.032 0.372
#> SRR1818607     2  0.1872      0.455 0.000 0.928 0.020 0.000 0.052
#> SRR1818608     2  0.1872      0.455 0.000 0.928 0.020 0.000 0.052
#> SRR1818613     1  0.2193      0.860 0.920 0.028 0.008 0.000 0.044
#> SRR1818614     1  0.2193      0.860 0.920 0.028 0.008 0.000 0.044
#> SRR1818611     1  0.1907      0.863 0.928 0.028 0.000 0.000 0.044
#> SRR1818612     1  0.1907      0.863 0.928 0.028 0.000 0.000 0.044
#> SRR1818605     1  0.1659      0.853 0.948 0.004 0.016 0.008 0.024
#> SRR1818606     1  0.1659      0.853 0.948 0.004 0.016 0.008 0.024

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1818631     1   0.363      0.694 0.776 0.000 0.000 0.008 0.028 0.188
#> SRR1818632     1   0.363      0.694 0.776 0.000 0.000 0.008 0.028 0.188
#> SRR1818679     2   0.649      0.357 0.012 0.516 0.000 0.236 0.208 0.028
#> SRR1818680     2   0.649      0.357 0.012 0.516 0.000 0.236 0.208 0.028
#> SRR1818677     1   0.167      0.860 0.928 0.000 0.000 0.008 0.004 0.060
#> SRR1818678     1   0.167      0.860 0.928 0.000 0.000 0.008 0.004 0.060
#> SRR1818675     3   0.000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818676     3   0.000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818673     2   0.570      0.200 0.220 0.632 0.000 0.104 0.012 0.032
#> SRR1818674     2   0.570      0.200 0.220 0.632 0.000 0.104 0.012 0.032
#> SRR1818671     4   0.329      0.818 0.000 0.276 0.000 0.724 0.000 0.000
#> SRR1818672     4   0.329      0.818 0.000 0.276 0.000 0.724 0.000 0.000
#> SRR1818661     6   0.377      0.986 0.004 0.004 0.268 0.000 0.008 0.716
#> SRR1818662     6   0.377      0.986 0.004 0.004 0.268 0.000 0.008 0.716
#> SRR1818655     1   0.257      0.858 0.892 0.040 0.000 0.000 0.036 0.032
#> SRR1818656     1   0.257      0.858 0.892 0.040 0.000 0.000 0.036 0.032
#> SRR1818653     2   0.740     -0.312 0.308 0.376 0.000 0.028 0.236 0.052
#> SRR1818654     2   0.740     -0.312 0.308 0.376 0.000 0.028 0.236 0.052
#> SRR1818651     1   0.181      0.876 0.928 0.044 0.000 0.000 0.008 0.020
#> SRR1818652     1   0.181      0.876 0.928 0.044 0.000 0.000 0.008 0.020
#> SRR1818657     1   0.220      0.855 0.904 0.004 0.000 0.008 0.012 0.072
#> SRR1818658     1   0.220      0.855 0.904 0.004 0.000 0.008 0.012 0.072
#> SRR1818649     1   0.155      0.878 0.936 0.044 0.000 0.000 0.000 0.020
#> SRR1818650     1   0.155      0.878 0.936 0.044 0.000 0.000 0.000 0.020
#> SRR1818659     5   0.302      0.992 0.232 0.000 0.000 0.000 0.768 0.000
#> SRR1818647     4   0.445      0.806 0.000 0.428 0.016 0.548 0.000 0.008
#> SRR1818648     4   0.445      0.806 0.000 0.428 0.016 0.548 0.000 0.008
#> SRR1818645     2   0.385      0.281 0.000 0.776 0.000 0.160 0.056 0.008
#> SRR1818646     2   0.385      0.281 0.000 0.776 0.000 0.160 0.056 0.008
#> SRR1818639     1   0.167      0.860 0.928 0.000 0.000 0.008 0.004 0.060
#> SRR1818640     1   0.167      0.860 0.928 0.000 0.000 0.008 0.004 0.060
#> SRR1818637     3   0.000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818638     3   0.000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818635     2   0.570      0.200 0.220 0.632 0.000 0.104 0.012 0.032
#> SRR1818636     2   0.570      0.200 0.220 0.632 0.000 0.104 0.012 0.032
#> SRR1818643     1   0.228      0.850 0.904 0.004 0.000 0.004 0.036 0.052
#> SRR1818644     1   0.228      0.850 0.904 0.004 0.000 0.004 0.036 0.052
#> SRR1818641     2   0.649      0.357 0.012 0.516 0.000 0.236 0.208 0.028
#> SRR1818642     2   0.649      0.357 0.012 0.516 0.000 0.236 0.208 0.028
#> SRR1818633     4   0.340      0.815 0.004 0.272 0.000 0.724 0.000 0.000
#> SRR1818634     4   0.340      0.815 0.004 0.272 0.000 0.724 0.000 0.000
#> SRR1818665     1   0.151      0.872 0.944 0.000 0.000 0.008 0.028 0.020
#> SRR1818666     1   0.151      0.872 0.944 0.000 0.000 0.008 0.028 0.020
#> SRR1818667     2   0.270      0.277 0.000 0.844 0.000 0.144 0.004 0.008
#> SRR1818668     2   0.270      0.277 0.000 0.844 0.000 0.144 0.004 0.008
#> SRR1818669     1   0.363      0.694 0.776 0.000 0.000 0.008 0.028 0.188
#> SRR1818670     1   0.363      0.694 0.776 0.000 0.000 0.008 0.028 0.188
#> SRR1818663     1   0.155      0.878 0.936 0.044 0.000 0.000 0.000 0.020
#> SRR1818664     1   0.155      0.878 0.936 0.044 0.000 0.000 0.000 0.020
#> SRR1818629     2   0.270      0.277 0.000 0.844 0.000 0.144 0.004 0.008
#> SRR1818630     2   0.270      0.277 0.000 0.844 0.000 0.144 0.004 0.008
#> SRR1818627     1   0.151      0.872 0.944 0.000 0.000 0.008 0.028 0.020
#> SRR1818628     1   0.151      0.872 0.944 0.000 0.000 0.008 0.028 0.020
#> SRR1818621     5   0.314      0.996 0.228 0.000 0.000 0.000 0.768 0.004
#> SRR1818622     5   0.314      0.996 0.228 0.000 0.000 0.000 0.768 0.004
#> SRR1818625     1   0.155      0.878 0.936 0.044 0.000 0.000 0.000 0.020
#> SRR1818626     1   0.155      0.878 0.936 0.044 0.000 0.000 0.000 0.020
#> SRR1818623     6   0.377      0.986 0.004 0.004 0.268 0.008 0.000 0.716
#> SRR1818624     6   0.377      0.986 0.004 0.004 0.268 0.008 0.000 0.716
#> SRR1818619     1   0.220      0.855 0.904 0.004 0.000 0.008 0.012 0.072
#> SRR1818620     1   0.220      0.855 0.904 0.004 0.000 0.008 0.012 0.072
#> SRR1818617     1   0.257      0.858 0.892 0.040 0.000 0.000 0.036 0.032
#> SRR1818618     1   0.257      0.858 0.892 0.040 0.000 0.000 0.036 0.032
#> SRR1818615     2   0.348      0.329 0.012 0.816 0.000 0.124 0.000 0.048
#> SRR1818616     2   0.348      0.329 0.012 0.816 0.000 0.124 0.000 0.048
#> SRR1818609     4   0.445      0.806 0.000 0.428 0.016 0.548 0.000 0.008
#> SRR1818610     4   0.445      0.806 0.000 0.428 0.016 0.548 0.000 0.008
#> SRR1818607     2   0.385      0.281 0.000 0.776 0.000 0.160 0.056 0.008
#> SRR1818608     2   0.385      0.281 0.000 0.776 0.000 0.160 0.056 0.008
#> SRR1818613     1   0.181      0.876 0.928 0.044 0.000 0.000 0.008 0.020
#> SRR1818614     1   0.181      0.876 0.928 0.044 0.000 0.000 0.008 0.020
#> SRR1818611     1   0.155      0.878 0.936 0.044 0.000 0.000 0.000 0.020
#> SRR1818612     1   0.155      0.878 0.936 0.044 0.000 0.000 0.000 0.020
#> SRR1818605     1   0.228      0.850 0.904 0.004 0.000 0.004 0.036 0.052
#> SRR1818606     1   0.228      0.850 0.904 0.004 0.000 0.004 0.036 0.052

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15216 rows and 75 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.639           0.864       0.912         0.4794 0.498   0.498
#> 3 3 0.451           0.644       0.797         0.2647 0.972   0.944
#> 4 4 0.399           0.548       0.644         0.1180 0.885   0.760
#> 5 5 0.434           0.276       0.641         0.0832 0.863   0.677
#> 6 6 0.458           0.309       0.582         0.0538 0.943   0.842

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1818631     1  0.2043      0.931 0.968 0.032
#> SRR1818632     1  0.2043      0.931 0.968 0.032
#> SRR1818679     2  0.7453      0.829 0.212 0.788
#> SRR1818680     2  0.7453      0.829 0.212 0.788
#> SRR1818677     2  0.9954      0.408 0.460 0.540
#> SRR1818678     2  0.9954      0.408 0.460 0.540
#> SRR1818675     1  0.8443      0.677 0.728 0.272
#> SRR1818676     1  0.8443      0.677 0.728 0.272
#> SRR1818673     2  0.7376      0.831 0.208 0.792
#> SRR1818674     2  0.7376      0.831 0.208 0.792
#> SRR1818671     2  0.3114      0.875 0.056 0.944
#> SRR1818672     2  0.3114      0.875 0.056 0.944
#> SRR1818661     1  0.5178      0.862 0.884 0.116
#> SRR1818662     1  0.5178      0.862 0.884 0.116
#> SRR1818655     1  0.0938      0.950 0.988 0.012
#> SRR1818656     1  0.0938      0.950 0.988 0.012
#> SRR1818653     1  0.0000      0.951 1.000 0.000
#> SRR1818654     1  0.0000      0.951 1.000 0.000
#> SRR1818651     1  0.0000      0.951 1.000 0.000
#> SRR1818652     1  0.0000      0.951 1.000 0.000
#> SRR1818657     1  0.0376      0.951 0.996 0.004
#> SRR1818658     1  0.0376      0.951 0.996 0.004
#> SRR1818649     1  0.0938      0.950 0.988 0.012
#> SRR1818650     1  0.0938      0.950 0.988 0.012
#> SRR1818659     1  0.0938      0.951 0.988 0.012
#> SRR1818647     2  0.1184      0.862 0.016 0.984
#> SRR1818648     2  0.1184      0.862 0.016 0.984
#> SRR1818645     2  0.4161      0.877 0.084 0.916
#> SRR1818646     2  0.4161      0.877 0.084 0.916
#> SRR1818639     1  0.0376      0.951 0.996 0.004
#> SRR1818640     1  0.0376      0.951 0.996 0.004
#> SRR1818637     2  0.1414      0.860 0.020 0.980
#> SRR1818638     2  0.1414      0.860 0.020 0.980
#> SRR1818635     2  0.7453      0.829 0.212 0.788
#> SRR1818636     2  0.7453      0.829 0.212 0.788
#> SRR1818643     2  0.9896      0.457 0.440 0.560
#> SRR1818644     2  0.9896      0.457 0.440 0.560
#> SRR1818641     2  0.7453      0.829 0.212 0.788
#> SRR1818642     2  0.7453      0.829 0.212 0.788
#> SRR1818633     1  0.8713      0.572 0.708 0.292
#> SRR1818634     1  0.8713      0.572 0.708 0.292
#> SRR1818665     1  0.0938      0.950 0.988 0.012
#> SRR1818666     1  0.0938      0.950 0.988 0.012
#> SRR1818667     2  0.2236      0.872 0.036 0.964
#> SRR1818668     2  0.2236      0.872 0.036 0.964
#> SRR1818669     1  0.0938      0.950 0.988 0.012
#> SRR1818670     1  0.0938      0.950 0.988 0.012
#> SRR1818663     1  0.0672      0.951 0.992 0.008
#> SRR1818664     1  0.0672      0.951 0.992 0.008
#> SRR1818629     2  0.4022      0.877 0.080 0.920
#> SRR1818630     2  0.4022      0.877 0.080 0.920
#> SRR1818627     1  0.0672      0.951 0.992 0.008
#> SRR1818628     1  0.0672      0.951 0.992 0.008
#> SRR1818621     1  0.3733      0.901 0.928 0.072
#> SRR1818622     1  0.3733      0.901 0.928 0.072
#> SRR1818625     1  0.0672      0.951 0.992 0.008
#> SRR1818626     1  0.0672      0.951 0.992 0.008
#> SRR1818623     2  0.1414      0.860 0.020 0.980
#> SRR1818624     2  0.1414      0.860 0.020 0.980
#> SRR1818619     1  0.0376      0.951 0.996 0.004
#> SRR1818620     1  0.0376      0.951 0.996 0.004
#> SRR1818617     2  0.6623      0.850 0.172 0.828
#> SRR1818618     2  0.6623      0.850 0.172 0.828
#> SRR1818615     2  0.2948      0.875 0.052 0.948
#> SRR1818616     2  0.2948      0.875 0.052 0.948
#> SRR1818609     2  0.1184      0.862 0.016 0.984
#> SRR1818610     2  0.1184      0.862 0.016 0.984
#> SRR1818607     2  0.4161      0.877 0.084 0.916
#> SRR1818608     2  0.4161      0.877 0.084 0.916
#> SRR1818613     1  0.0000      0.951 1.000 0.000
#> SRR1818614     1  0.0000      0.951 1.000 0.000
#> SRR1818611     1  0.0938      0.950 0.988 0.012
#> SRR1818612     1  0.0938      0.950 0.988 0.012
#> SRR1818605     1  0.1633      0.938 0.976 0.024
#> SRR1818606     1  0.1633      0.938 0.976 0.024

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1818631     1   0.544      0.578 0.736 0.004 0.260
#> SRR1818632     1   0.544      0.578 0.736 0.004 0.260
#> SRR1818679     2   0.738      0.635 0.080 0.676 0.244
#> SRR1818680     2   0.738      0.635 0.080 0.676 0.244
#> SRR1818677     2   0.937      0.101 0.344 0.476 0.180
#> SRR1818678     2   0.937      0.101 0.344 0.476 0.180
#> SRR1818675     3   0.857      1.000 0.372 0.104 0.524
#> SRR1818676     3   0.857      1.000 0.372 0.104 0.524
#> SRR1818673     2   0.580      0.700 0.088 0.800 0.112
#> SRR1818674     2   0.580      0.700 0.088 0.800 0.112
#> SRR1818671     2   0.447      0.701 0.004 0.820 0.176
#> SRR1818672     2   0.447      0.701 0.004 0.820 0.176
#> SRR1818661     1   0.657      0.221 0.636 0.016 0.348
#> SRR1818662     1   0.657      0.221 0.636 0.016 0.348
#> SRR1818655     1   0.421      0.720 0.856 0.016 0.128
#> SRR1818656     1   0.421      0.720 0.856 0.016 0.128
#> SRR1818653     1   0.463      0.676 0.808 0.004 0.188
#> SRR1818654     1   0.463      0.676 0.808 0.004 0.188
#> SRR1818651     1   0.188      0.765 0.952 0.004 0.044
#> SRR1818652     1   0.188      0.765 0.952 0.004 0.044
#> SRR1818657     1   0.287      0.756 0.916 0.008 0.076
#> SRR1818658     1   0.287      0.756 0.916 0.008 0.076
#> SRR1818649     1   0.427      0.727 0.860 0.024 0.116
#> SRR1818650     1   0.427      0.727 0.860 0.024 0.116
#> SRR1818659     1   0.327      0.767 0.892 0.004 0.104
#> SRR1818647     2   0.540      0.610 0.000 0.720 0.280
#> SRR1818648     2   0.540      0.610 0.000 0.720 0.280
#> SRR1818645     2   0.253      0.743 0.020 0.936 0.044
#> SRR1818646     2   0.253      0.743 0.020 0.936 0.044
#> SRR1818639     1   0.263      0.764 0.916 0.000 0.084
#> SRR1818640     1   0.263      0.764 0.916 0.000 0.084
#> SRR1818637     2   0.613      0.495 0.000 0.600 0.400
#> SRR1818638     2   0.613      0.495 0.000 0.600 0.400
#> SRR1818635     2   0.580      0.700 0.088 0.800 0.112
#> SRR1818636     2   0.580      0.700 0.088 0.800 0.112
#> SRR1818643     2   0.849      0.402 0.248 0.604 0.148
#> SRR1818644     2   0.849      0.402 0.248 0.604 0.148
#> SRR1818641     2   0.646      0.682 0.080 0.756 0.164
#> SRR1818642     2   0.646      0.682 0.080 0.756 0.164
#> SRR1818633     1   0.860     -0.166 0.564 0.312 0.124
#> SRR1818634     1   0.860     -0.166 0.564 0.312 0.124
#> SRR1818665     1   0.375      0.745 0.872 0.008 0.120
#> SRR1818666     1   0.375      0.745 0.872 0.008 0.120
#> SRR1818667     2   0.343      0.725 0.004 0.884 0.112
#> SRR1818668     2   0.343      0.725 0.004 0.884 0.112
#> SRR1818669     1   0.383      0.745 0.868 0.008 0.124
#> SRR1818670     1   0.383      0.745 0.868 0.008 0.124
#> SRR1818663     1   0.228      0.767 0.940 0.008 0.052
#> SRR1818664     1   0.228      0.767 0.940 0.008 0.052
#> SRR1818629     2   0.355      0.742 0.024 0.896 0.080
#> SRR1818630     2   0.355      0.742 0.024 0.896 0.080
#> SRR1818627     1   0.403      0.731 0.856 0.008 0.136
#> SRR1818628     1   0.403      0.731 0.856 0.008 0.136
#> SRR1818621     1   0.584      0.440 0.688 0.004 0.308
#> SRR1818622     1   0.584      0.440 0.688 0.004 0.308
#> SRR1818625     1   0.228      0.767 0.940 0.008 0.052
#> SRR1818626     1   0.228      0.767 0.940 0.008 0.052
#> SRR1818623     2   0.568      0.600 0.000 0.684 0.316
#> SRR1818624     2   0.568      0.600 0.000 0.684 0.316
#> SRR1818619     1   0.321      0.752 0.904 0.012 0.084
#> SRR1818620     1   0.321      0.752 0.904 0.012 0.084
#> SRR1818617     2   0.635      0.687 0.080 0.764 0.156
#> SRR1818618     2   0.635      0.687 0.080 0.764 0.156
#> SRR1818615     2   0.259      0.736 0.004 0.924 0.072
#> SRR1818616     2   0.259      0.736 0.004 0.924 0.072
#> SRR1818609     2   0.525      0.625 0.000 0.736 0.264
#> SRR1818610     2   0.525      0.625 0.000 0.736 0.264
#> SRR1818607     2   0.253      0.743 0.020 0.936 0.044
#> SRR1818608     2   0.253      0.743 0.020 0.936 0.044
#> SRR1818613     1   0.188      0.765 0.952 0.004 0.044
#> SRR1818614     1   0.188      0.765 0.952 0.004 0.044
#> SRR1818611     1   0.427      0.727 0.860 0.024 0.116
#> SRR1818612     1   0.427      0.727 0.860 0.024 0.116
#> SRR1818605     1   0.452      0.658 0.816 0.004 0.180
#> SRR1818606     1   0.452      0.658 0.816 0.004 0.180

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2 p3    p4
#> SRR1818631     1   0.647      0.670 0.612 0.076 NA 0.008
#> SRR1818632     1   0.647      0.670 0.612 0.076 NA 0.008
#> SRR1818679     2   0.636      0.494 0.048 0.716 NA 0.148
#> SRR1818680     2   0.636      0.494 0.048 0.716 NA 0.148
#> SRR1818677     2   0.882      0.249 0.372 0.404 NA 0.100
#> SRR1818678     2   0.882      0.249 0.372 0.404 NA 0.100
#> SRR1818675     4   0.828      0.122 0.228 0.020 NA 0.412
#> SRR1818676     4   0.828      0.122 0.228 0.020 NA 0.412
#> SRR1818673     2   0.741      0.525 0.092 0.608 NA 0.244
#> SRR1818674     2   0.741      0.525 0.092 0.608 NA 0.244
#> SRR1818671     4   0.543      0.454 0.000 0.252 NA 0.696
#> SRR1818672     4   0.543      0.454 0.000 0.252 NA 0.696
#> SRR1818661     1   0.682      0.537 0.468 0.004 NA 0.084
#> SRR1818662     1   0.682      0.537 0.468 0.004 NA 0.084
#> SRR1818655     1   0.581      0.697 0.708 0.160 NA 0.000
#> SRR1818656     1   0.581      0.697 0.708 0.160 NA 0.000
#> SRR1818653     1   0.567      0.700 0.620 0.028 NA 0.004
#> SRR1818654     1   0.567      0.700 0.620 0.028 NA 0.004
#> SRR1818651     1   0.177      0.777 0.944 0.012 NA 0.000
#> SRR1818652     1   0.177      0.777 0.944 0.012 NA 0.000
#> SRR1818657     1   0.390      0.761 0.832 0.036 NA 0.000
#> SRR1818658     1   0.390      0.761 0.832 0.036 NA 0.000
#> SRR1818649     1   0.527      0.681 0.740 0.184 NA 0.000
#> SRR1818650     1   0.527      0.681 0.740 0.184 NA 0.000
#> SRR1818659     1   0.350      0.774 0.852 0.024 NA 0.000
#> SRR1818647     4   0.400      0.535 0.000 0.104 NA 0.836
#> SRR1818648     4   0.400      0.535 0.000 0.104 NA 0.836
#> SRR1818645     2   0.609      0.258 0.016 0.568 NA 0.392
#> SRR1818646     2   0.609      0.258 0.016 0.568 NA 0.392
#> SRR1818639     1   0.360      0.773 0.848 0.028 NA 0.000
#> SRR1818640     1   0.360      0.773 0.848 0.028 NA 0.000
#> SRR1818637     4   0.350      0.497 0.000 0.020 NA 0.848
#> SRR1818638     4   0.350      0.497 0.000 0.020 NA 0.848
#> SRR1818635     2   0.747      0.528 0.100 0.608 NA 0.236
#> SRR1818636     2   0.747      0.528 0.100 0.608 NA 0.236
#> SRR1818643     2   0.892      0.422 0.264 0.468 NA 0.168
#> SRR1818644     2   0.892      0.422 0.264 0.468 NA 0.168
#> SRR1818641     2   0.577      0.527 0.060 0.752 NA 0.144
#> SRR1818642     2   0.577      0.527 0.060 0.752 NA 0.144
#> SRR1818633     1   0.927      0.143 0.440 0.160 NA 0.252
#> SRR1818634     1   0.927      0.143 0.440 0.160 NA 0.252
#> SRR1818665     1   0.464      0.733 0.776 0.044 NA 0.000
#> SRR1818666     1   0.464      0.733 0.776 0.044 NA 0.000
#> SRR1818667     4   0.595      0.371 0.000 0.328 NA 0.616
#> SRR1818668     4   0.595      0.371 0.000 0.328 NA 0.616
#> SRR1818669     1   0.423      0.759 0.820 0.060 NA 0.000
#> SRR1818670     1   0.423      0.759 0.820 0.060 NA 0.000
#> SRR1818663     1   0.193      0.774 0.940 0.036 NA 0.000
#> SRR1818664     1   0.193      0.774 0.940 0.036 NA 0.000
#> SRR1818629     4   0.630      0.138 0.012 0.424 NA 0.528
#> SRR1818630     4   0.630      0.138 0.012 0.424 NA 0.528
#> SRR1818627     1   0.483      0.727 0.752 0.040 NA 0.000
#> SRR1818628     1   0.483      0.727 0.752 0.040 NA 0.000
#> SRR1818621     1   0.610      0.599 0.504 0.012 NA 0.024
#> SRR1818622     1   0.610      0.599 0.504 0.012 NA 0.024
#> SRR1818625     1   0.193      0.774 0.940 0.036 NA 0.000
#> SRR1818626     1   0.193      0.774 0.940 0.036 NA 0.000
#> SRR1818623     4   0.585      0.495 0.000 0.160 NA 0.704
#> SRR1818624     4   0.585      0.495 0.000 0.160 NA 0.704
#> SRR1818619     1   0.432      0.757 0.812 0.040 NA 0.004
#> SRR1818620     1   0.432      0.757 0.812 0.040 NA 0.004
#> SRR1818617     2   0.811      0.469 0.100 0.560 NA 0.244
#> SRR1818618     2   0.811      0.469 0.100 0.560 NA 0.244
#> SRR1818615     4   0.584      0.242 0.000 0.400 NA 0.564
#> SRR1818616     4   0.584      0.242 0.000 0.400 NA 0.564
#> SRR1818609     4   0.410      0.532 0.000 0.128 NA 0.824
#> SRR1818610     4   0.410      0.532 0.000 0.128 NA 0.824
#> SRR1818607     2   0.609      0.258 0.016 0.568 NA 0.392
#> SRR1818608     2   0.609      0.258 0.016 0.568 NA 0.392
#> SRR1818613     1   0.177      0.777 0.944 0.012 NA 0.000
#> SRR1818614     1   0.177      0.777 0.944 0.012 NA 0.000
#> SRR1818611     1   0.516      0.687 0.748 0.180 NA 0.000
#> SRR1818612     1   0.516      0.687 0.748 0.180 NA 0.000
#> SRR1818605     1   0.492      0.737 0.732 0.024 NA 0.004
#> SRR1818606     1   0.492      0.737 0.732 0.024 NA 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1818631     1   0.636    -0.1227 0.552 0.000 0.308 0.020 0.120
#> SRR1818632     1   0.636    -0.1227 0.552 0.000 0.308 0.020 0.120
#> SRR1818679     5   0.530     1.0000 0.016 0.436 0.004 0.016 0.528
#> SRR1818680     5   0.530     1.0000 0.016 0.436 0.004 0.016 0.528
#> SRR1818677     2   0.864    -0.1544 0.292 0.324 0.080 0.032 0.272
#> SRR1818678     2   0.864    -0.1544 0.292 0.324 0.080 0.032 0.272
#> SRR1818675     4   0.766     0.0688 0.176 0.028 0.300 0.464 0.032
#> SRR1818676     4   0.766     0.0688 0.176 0.028 0.300 0.464 0.032
#> SRR1818673     2   0.397     0.2055 0.028 0.820 0.020 0.008 0.124
#> SRR1818674     2   0.397     0.2055 0.028 0.820 0.020 0.008 0.124
#> SRR1818671     2   0.578    -0.0879 0.000 0.508 0.012 0.420 0.060
#> SRR1818672     2   0.578    -0.0879 0.000 0.508 0.012 0.420 0.060
#> SRR1818661     3   0.635     0.7917 0.412 0.000 0.468 0.104 0.016
#> SRR1818662     3   0.635     0.7917 0.412 0.000 0.468 0.104 0.016
#> SRR1818655     1   0.688     0.3011 0.608 0.048 0.168 0.016 0.160
#> SRR1818656     1   0.688     0.3011 0.608 0.048 0.168 0.016 0.160
#> SRR1818653     1   0.572    -0.3318 0.536 0.000 0.396 0.016 0.052
#> SRR1818654     1   0.572    -0.3318 0.536 0.000 0.396 0.016 0.052
#> SRR1818651     1   0.161     0.4704 0.944 0.004 0.040 0.000 0.012
#> SRR1818652     1   0.161     0.4704 0.944 0.004 0.040 0.000 0.012
#> SRR1818657     1   0.459     0.4519 0.772 0.000 0.148 0.032 0.048
#> SRR1818658     1   0.459     0.4519 0.772 0.000 0.148 0.032 0.048
#> SRR1818649     1   0.659     0.3563 0.648 0.092 0.056 0.024 0.180
#> SRR1818650     1   0.659     0.3563 0.648 0.092 0.056 0.024 0.180
#> SRR1818659     1   0.405     0.4166 0.792 0.004 0.164 0.008 0.032
#> SRR1818647     4   0.542     0.5430 0.000 0.324 0.012 0.612 0.052
#> SRR1818648     4   0.542     0.5430 0.000 0.324 0.012 0.612 0.052
#> SRR1818645     2   0.534     0.2366 0.000 0.704 0.016 0.164 0.116
#> SRR1818646     2   0.534     0.2366 0.000 0.704 0.016 0.164 0.116
#> SRR1818639     1   0.508     0.3190 0.716 0.004 0.180 0.004 0.096
#> SRR1818640     1   0.508     0.3190 0.716 0.004 0.180 0.004 0.096
#> SRR1818637     4   0.486     0.5635 0.000 0.140 0.088 0.752 0.020
#> SRR1818638     4   0.486     0.5635 0.000 0.140 0.088 0.752 0.020
#> SRR1818635     2   0.397     0.2055 0.028 0.820 0.020 0.008 0.124
#> SRR1818636     2   0.397     0.2055 0.028 0.820 0.020 0.008 0.124
#> SRR1818643     2   0.686     0.1157 0.196 0.620 0.060 0.024 0.100
#> SRR1818644     2   0.686     0.1157 0.196 0.620 0.060 0.024 0.100
#> SRR1818641     2   0.489    -0.8368 0.016 0.504 0.000 0.004 0.476
#> SRR1818642     2   0.489    -0.8368 0.016 0.504 0.000 0.004 0.476
#> SRR1818633     1   0.922    -0.1575 0.344 0.272 0.164 0.156 0.064
#> SRR1818634     1   0.922    -0.1575 0.344 0.272 0.164 0.156 0.064
#> SRR1818665     1   0.556     0.4151 0.716 0.008 0.156 0.036 0.084
#> SRR1818666     1   0.556     0.4151 0.716 0.008 0.156 0.036 0.084
#> SRR1818667     2   0.688     0.2520 0.000 0.564 0.056 0.228 0.152
#> SRR1818668     2   0.688     0.2520 0.000 0.564 0.056 0.228 0.152
#> SRR1818669     1   0.518     0.3414 0.720 0.000 0.152 0.016 0.112
#> SRR1818670     1   0.518     0.3414 0.720 0.000 0.152 0.016 0.112
#> SRR1818663     1   0.326     0.5005 0.876 0.020 0.044 0.008 0.052
#> SRR1818664     1   0.326     0.5005 0.876 0.020 0.044 0.008 0.052
#> SRR1818629     2   0.586     0.2904 0.000 0.692 0.068 0.100 0.140
#> SRR1818630     2   0.586     0.2904 0.000 0.692 0.068 0.100 0.140
#> SRR1818627     1   0.566     0.4053 0.704 0.008 0.172 0.036 0.080
#> SRR1818628     1   0.566     0.4053 0.704 0.008 0.172 0.036 0.080
#> SRR1818621     3   0.549     0.7746 0.448 0.000 0.504 0.028 0.020
#> SRR1818622     3   0.549     0.7746 0.448 0.000 0.504 0.028 0.020
#> SRR1818625     1   0.326     0.5005 0.876 0.020 0.044 0.008 0.052
#> SRR1818626     1   0.326     0.5005 0.876 0.020 0.044 0.008 0.052
#> SRR1818623     4   0.645     0.4362 0.000 0.300 0.052 0.568 0.080
#> SRR1818624     4   0.645     0.4362 0.000 0.300 0.052 0.568 0.080
#> SRR1818619     1   0.498     0.4358 0.740 0.000 0.168 0.032 0.060
#> SRR1818620     1   0.498     0.4358 0.740 0.000 0.168 0.032 0.060
#> SRR1818617     2   0.766     0.0635 0.056 0.564 0.072 0.104 0.204
#> SRR1818618     2   0.766     0.0635 0.056 0.564 0.072 0.104 0.204
#> SRR1818615     2   0.460     0.3218 0.000 0.760 0.020 0.168 0.052
#> SRR1818616     2   0.460     0.3218 0.000 0.760 0.020 0.168 0.052
#> SRR1818609     4   0.532     0.5241 0.000 0.340 0.008 0.604 0.048
#> SRR1818610     4   0.532     0.5241 0.000 0.340 0.008 0.604 0.048
#> SRR1818607     2   0.534     0.2366 0.000 0.704 0.016 0.164 0.116
#> SRR1818608     2   0.534     0.2366 0.000 0.704 0.016 0.164 0.116
#> SRR1818613     1   0.161     0.4704 0.944 0.004 0.040 0.000 0.012
#> SRR1818614     1   0.161     0.4704 0.944 0.004 0.040 0.000 0.012
#> SRR1818611     1   0.659     0.3563 0.648 0.092 0.056 0.024 0.180
#> SRR1818612     1   0.659     0.3563 0.648 0.092 0.056 0.024 0.180
#> SRR1818605     1   0.537    -0.1055 0.668 0.016 0.268 0.016 0.032
#> SRR1818606     1   0.537    -0.1055 0.668 0.016 0.268 0.016 0.032

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5 p6
#> SRR1818631     1   0.708    -0.1729 0.428 0.000 0.088 0.032 0.364 NA
#> SRR1818632     1   0.708    -0.1729 0.428 0.000 0.088 0.032 0.364 NA
#> SRR1818679     3   0.509     0.8786 0.012 0.312 0.624 0.028 0.020 NA
#> SRR1818680     3   0.509     0.8786 0.012 0.312 0.624 0.028 0.020 NA
#> SRR1818677     1   0.887    -0.0277 0.296 0.204 0.256 0.024 0.156 NA
#> SRR1818678     1   0.887    -0.0277 0.296 0.204 0.256 0.024 0.156 NA
#> SRR1818675     4   0.653     0.2382 0.112 0.024 0.020 0.632 0.136 NA
#> SRR1818676     4   0.653     0.2382 0.112 0.024 0.020 0.632 0.136 NA
#> SRR1818673     2   0.692     0.2474 0.056 0.620 0.144 0.048 0.056 NA
#> SRR1818674     2   0.692     0.2474 0.056 0.620 0.144 0.048 0.056 NA
#> SRR1818671     2   0.679     0.1218 0.000 0.560 0.072 0.204 0.032 NA
#> SRR1818672     2   0.679     0.1218 0.000 0.560 0.072 0.204 0.032 NA
#> SRR1818661     5   0.625     0.7438 0.292 0.004 0.012 0.112 0.548 NA
#> SRR1818662     5   0.625     0.7438 0.292 0.004 0.012 0.112 0.548 NA
#> SRR1818655     1   0.728     0.2058 0.520 0.020 0.208 0.012 0.136 NA
#> SRR1818656     1   0.728     0.2058 0.520 0.020 0.208 0.012 0.136 NA
#> SRR1818653     1   0.624    -0.2119 0.496 0.000 0.068 0.016 0.368 NA
#> SRR1818654     1   0.624    -0.2119 0.496 0.000 0.068 0.016 0.368 NA
#> SRR1818651     1   0.194     0.3842 0.916 0.000 0.012 0.000 0.064 NA
#> SRR1818652     1   0.194     0.3842 0.916 0.000 0.012 0.000 0.064 NA
#> SRR1818657     1   0.513     0.3726 0.684 0.004 0.012 0.024 0.056 NA
#> SRR1818658     1   0.513     0.3726 0.684 0.004 0.012 0.024 0.056 NA
#> SRR1818649     1   0.726     0.2992 0.572 0.052 0.108 0.016 0.132 NA
#> SRR1818650     1   0.726     0.2992 0.572 0.052 0.108 0.016 0.132 NA
#> SRR1818659     1   0.485     0.3549 0.716 0.000 0.020 0.004 0.120 NA
#> SRR1818647     4   0.674     0.5540 0.000 0.344 0.036 0.432 0.012 NA
#> SRR1818648     4   0.674     0.5540 0.000 0.344 0.036 0.432 0.012 NA
#> SRR1818645     2   0.523     0.2152 0.008 0.724 0.148 0.052 0.028 NA
#> SRR1818646     2   0.523     0.2152 0.008 0.724 0.148 0.052 0.028 NA
#> SRR1818639     1   0.546     0.2650 0.684 0.004 0.080 0.008 0.172 NA
#> SRR1818640     1   0.546     0.2650 0.684 0.004 0.080 0.008 0.172 NA
#> SRR1818637     4   0.288     0.5711 0.000 0.180 0.008 0.812 0.000 NA
#> SRR1818638     4   0.288     0.5711 0.000 0.180 0.008 0.812 0.000 NA
#> SRR1818635     2   0.697     0.2438 0.060 0.616 0.144 0.048 0.056 NA
#> SRR1818636     2   0.697     0.2438 0.060 0.616 0.144 0.048 0.056 NA
#> SRR1818643     2   0.876     0.1550 0.188 0.428 0.108 0.076 0.120 NA
#> SRR1818644     2   0.876     0.1550 0.188 0.428 0.108 0.076 0.120 NA
#> SRR1818641     3   0.466     0.8701 0.012 0.388 0.580 0.008 0.008 NA
#> SRR1818642     3   0.466     0.8701 0.012 0.388 0.580 0.008 0.008 NA
#> SRR1818633     1   0.893    -0.0990 0.300 0.244 0.072 0.032 0.124 NA
#> SRR1818634     1   0.893    -0.0990 0.300 0.244 0.072 0.032 0.124 NA
#> SRR1818665     1   0.472     0.3185 0.564 0.000 0.008 0.008 0.020 NA
#> SRR1818666     1   0.472     0.3185 0.564 0.000 0.008 0.008 0.020 NA
#> SRR1818667     2   0.618     0.3012 0.000 0.616 0.104 0.200 0.024 NA
#> SRR1818668     2   0.618     0.3012 0.000 0.616 0.104 0.200 0.024 NA
#> SRR1818669     1   0.604     0.2365 0.624 0.000 0.080 0.016 0.204 NA
#> SRR1818670     1   0.604     0.2365 0.624 0.000 0.080 0.016 0.204 NA
#> SRR1818663     1   0.368     0.4261 0.816 0.004 0.024 0.012 0.016 NA
#> SRR1818664     1   0.368     0.4261 0.816 0.004 0.024 0.012 0.016 NA
#> SRR1818629     2   0.577     0.3637 0.008 0.700 0.088 0.076 0.032 NA
#> SRR1818630     2   0.577     0.3637 0.008 0.700 0.088 0.076 0.032 NA
#> SRR1818627     1   0.510     0.2979 0.544 0.000 0.012 0.012 0.032 NA
#> SRR1818628     1   0.510     0.2979 0.544 0.000 0.012 0.012 0.032 NA
#> SRR1818621     5   0.598     0.7161 0.348 0.000 0.024 0.036 0.536 NA
#> SRR1818622     5   0.598     0.7161 0.348 0.000 0.024 0.036 0.536 NA
#> SRR1818625     1   0.368     0.4261 0.816 0.004 0.024 0.012 0.016 NA
#> SRR1818626     1   0.368     0.4261 0.816 0.004 0.024 0.012 0.016 NA
#> SRR1818623     4   0.722     0.4442 0.000 0.288 0.080 0.484 0.060 NA
#> SRR1818624     4   0.722     0.4442 0.000 0.288 0.080 0.484 0.060 NA
#> SRR1818619     1   0.545     0.3620 0.664 0.008 0.020 0.024 0.056 NA
#> SRR1818620     1   0.545     0.3620 0.664 0.008 0.020 0.024 0.056 NA
#> SRR1818617     2   0.827     0.0375 0.068 0.416 0.276 0.040 0.068 NA
#> SRR1818618     2   0.827     0.0375 0.068 0.416 0.276 0.040 0.068 NA
#> SRR1818615     2   0.340     0.3718 0.000 0.844 0.036 0.088 0.016 NA
#> SRR1818616     2   0.340     0.3718 0.000 0.844 0.036 0.088 0.016 NA
#> SRR1818609     4   0.670     0.5328 0.000 0.364 0.028 0.408 0.012 NA
#> SRR1818610     4   0.670     0.5328 0.000 0.364 0.028 0.408 0.012 NA
#> SRR1818607     2   0.523     0.2152 0.008 0.724 0.148 0.052 0.028 NA
#> SRR1818608     2   0.523     0.2152 0.008 0.724 0.148 0.052 0.028 NA
#> SRR1818613     1   0.194     0.3842 0.916 0.000 0.012 0.000 0.064 NA
#> SRR1818614     1   0.194     0.3842 0.916 0.000 0.012 0.000 0.064 NA
#> SRR1818611     1   0.720     0.3035 0.580 0.052 0.108 0.016 0.128 NA
#> SRR1818612     1   0.720     0.3035 0.580 0.052 0.108 0.016 0.128 NA
#> SRR1818605     1   0.604    -0.1663 0.572 0.004 0.020 0.052 0.304 NA
#> SRR1818606     1   0.604    -0.1663 0.572 0.004 0.020 0.052 0.304 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15216 rows and 75 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.968       0.988         0.5051 0.494   0.494
#> 3 3 0.506           0.654       0.779         0.2761 0.861   0.723
#> 4 4 0.529           0.516       0.703         0.1483 0.814   0.545
#> 5 5 0.541           0.382       0.616         0.0699 0.897   0.638
#> 6 6 0.552           0.399       0.606         0.0442 0.925   0.686

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1818631     1    0.00      0.998 1.000 0.000
#> SRR1818632     1    0.00      0.998 1.000 0.000
#> SRR1818679     2    0.00      0.976 0.000 1.000
#> SRR1818680     2    0.00      0.976 0.000 1.000
#> SRR1818677     2    0.00      0.976 0.000 1.000
#> SRR1818678     2    0.00      0.976 0.000 1.000
#> SRR1818675     1    0.26      0.954 0.956 0.044
#> SRR1818676     1    0.26      0.954 0.956 0.044
#> SRR1818673     2    0.00      0.976 0.000 1.000
#> SRR1818674     2    0.00      0.976 0.000 1.000
#> SRR1818671     2    0.00      0.976 0.000 1.000
#> SRR1818672     2    0.00      0.976 0.000 1.000
#> SRR1818661     1    0.00      0.998 1.000 0.000
#> SRR1818662     1    0.00      0.998 1.000 0.000
#> SRR1818655     1    0.00      0.998 1.000 0.000
#> SRR1818656     1    0.00      0.998 1.000 0.000
#> SRR1818653     1    0.00      0.998 1.000 0.000
#> SRR1818654     1    0.00      0.998 1.000 0.000
#> SRR1818651     1    0.00      0.998 1.000 0.000
#> SRR1818652     1    0.00      0.998 1.000 0.000
#> SRR1818657     1    0.00      0.998 1.000 0.000
#> SRR1818658     1    0.00      0.998 1.000 0.000
#> SRR1818649     1    0.00      0.998 1.000 0.000
#> SRR1818650     1    0.00      0.998 1.000 0.000
#> SRR1818659     1    0.00      0.998 1.000 0.000
#> SRR1818647     2    0.00      0.976 0.000 1.000
#> SRR1818648     2    0.00      0.976 0.000 1.000
#> SRR1818645     2    0.00      0.976 0.000 1.000
#> SRR1818646     2    0.00      0.976 0.000 1.000
#> SRR1818639     1    0.00      0.998 1.000 0.000
#> SRR1818640     1    0.00      0.998 1.000 0.000
#> SRR1818637     2    0.00      0.976 0.000 1.000
#> SRR1818638     2    0.00      0.976 0.000 1.000
#> SRR1818635     2    0.00      0.976 0.000 1.000
#> SRR1818636     2    0.00      0.976 0.000 1.000
#> SRR1818643     2    0.00      0.976 0.000 1.000
#> SRR1818644     2    0.00      0.976 0.000 1.000
#> SRR1818641     2    0.00      0.976 0.000 1.000
#> SRR1818642     2    0.00      0.976 0.000 1.000
#> SRR1818633     2    0.98      0.308 0.416 0.584
#> SRR1818634     2    0.98      0.308 0.416 0.584
#> SRR1818665     1    0.00      0.998 1.000 0.000
#> SRR1818666     1    0.00      0.998 1.000 0.000
#> SRR1818667     2    0.00      0.976 0.000 1.000
#> SRR1818668     2    0.00      0.976 0.000 1.000
#> SRR1818669     1    0.00      0.998 1.000 0.000
#> SRR1818670     1    0.00      0.998 1.000 0.000
#> SRR1818663     1    0.00      0.998 1.000 0.000
#> SRR1818664     1    0.00      0.998 1.000 0.000
#> SRR1818629     2    0.00      0.976 0.000 1.000
#> SRR1818630     2    0.00      0.976 0.000 1.000
#> SRR1818627     1    0.00      0.998 1.000 0.000
#> SRR1818628     1    0.00      0.998 1.000 0.000
#> SRR1818621     1    0.00      0.998 1.000 0.000
#> SRR1818622     1    0.00      0.998 1.000 0.000
#> SRR1818625     1    0.00      0.998 1.000 0.000
#> SRR1818626     1    0.00      0.998 1.000 0.000
#> SRR1818623     2    0.00      0.976 0.000 1.000
#> SRR1818624     2    0.00      0.976 0.000 1.000
#> SRR1818619     1    0.00      0.998 1.000 0.000
#> SRR1818620     1    0.00      0.998 1.000 0.000
#> SRR1818617     2    0.00      0.976 0.000 1.000
#> SRR1818618     2    0.00      0.976 0.000 1.000
#> SRR1818615     2    0.00      0.976 0.000 1.000
#> SRR1818616     2    0.00      0.976 0.000 1.000
#> SRR1818609     2    0.00      0.976 0.000 1.000
#> SRR1818610     2    0.00      0.976 0.000 1.000
#> SRR1818607     2    0.00      0.976 0.000 1.000
#> SRR1818608     2    0.00      0.976 0.000 1.000
#> SRR1818613     1    0.00      0.998 1.000 0.000
#> SRR1818614     1    0.00      0.998 1.000 0.000
#> SRR1818611     1    0.00      0.998 1.000 0.000
#> SRR1818612     1    0.00      0.998 1.000 0.000
#> SRR1818605     1    0.00      0.998 1.000 0.000
#> SRR1818606     1    0.00      0.998 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1818631     1  0.5529      0.726 0.704 0.000 0.296
#> SRR1818632     1  0.5529      0.726 0.704 0.000 0.296
#> SRR1818679     2  0.0892      0.698 0.000 0.980 0.020
#> SRR1818680     2  0.0747      0.699 0.000 0.984 0.016
#> SRR1818677     2  0.6775      0.468 0.144 0.744 0.112
#> SRR1818678     2  0.6892      0.457 0.152 0.736 0.112
#> SRR1818675     3  0.3043      0.435 0.084 0.008 0.908
#> SRR1818676     3  0.3043      0.435 0.084 0.008 0.908
#> SRR1818673     2  0.1643      0.706 0.000 0.956 0.044
#> SRR1818674     2  0.1643      0.706 0.000 0.956 0.044
#> SRR1818671     3  0.6307      0.289 0.000 0.488 0.512
#> SRR1818672     3  0.6307      0.289 0.000 0.488 0.512
#> SRR1818661     1  0.6291      0.516 0.532 0.000 0.468
#> SRR1818662     1  0.6291      0.516 0.532 0.000 0.468
#> SRR1818655     1  0.4868      0.798 0.844 0.100 0.056
#> SRR1818656     1  0.4790      0.801 0.848 0.096 0.056
#> SRR1818653     1  0.4750      0.799 0.784 0.000 0.216
#> SRR1818654     1  0.4750      0.799 0.784 0.000 0.216
#> SRR1818651     1  0.1860      0.861 0.948 0.000 0.052
#> SRR1818652     1  0.1860      0.861 0.948 0.000 0.052
#> SRR1818657     1  0.3482      0.843 0.872 0.000 0.128
#> SRR1818658     1  0.3482      0.843 0.872 0.000 0.128
#> SRR1818649     1  0.3998      0.824 0.884 0.056 0.060
#> SRR1818650     1  0.3998      0.824 0.884 0.056 0.060
#> SRR1818659     1  0.2537      0.860 0.920 0.000 0.080
#> SRR1818647     3  0.5968      0.590 0.000 0.364 0.636
#> SRR1818648     3  0.5968      0.590 0.000 0.364 0.636
#> SRR1818645     2  0.2878      0.687 0.000 0.904 0.096
#> SRR1818646     2  0.2878      0.687 0.000 0.904 0.096
#> SRR1818639     1  0.1399      0.852 0.968 0.004 0.028
#> SRR1818640     1  0.1399      0.852 0.968 0.004 0.028
#> SRR1818637     3  0.5905      0.598 0.000 0.352 0.648
#> SRR1818638     3  0.5905      0.598 0.000 0.352 0.648
#> SRR1818635     2  0.1643      0.706 0.000 0.956 0.044
#> SRR1818636     2  0.1643      0.706 0.000 0.956 0.044
#> SRR1818643     2  0.6180      0.422 0.008 0.660 0.332
#> SRR1818644     2  0.6205      0.411 0.008 0.656 0.336
#> SRR1818641     2  0.0424      0.701 0.000 0.992 0.008
#> SRR1818642     2  0.0424      0.701 0.000 0.992 0.008
#> SRR1818633     3  0.6906      0.368 0.192 0.084 0.724
#> SRR1818634     3  0.6935      0.371 0.188 0.088 0.724
#> SRR1818665     1  0.4002      0.838 0.840 0.000 0.160
#> SRR1818666     1  0.4002      0.838 0.840 0.000 0.160
#> SRR1818667     2  0.6095      0.131 0.000 0.608 0.392
#> SRR1818668     2  0.6095      0.131 0.000 0.608 0.392
#> SRR1818669     1  0.0892      0.855 0.980 0.000 0.020
#> SRR1818670     1  0.0892      0.855 0.980 0.000 0.020
#> SRR1818663     1  0.2066      0.858 0.940 0.000 0.060
#> SRR1818664     1  0.2066      0.858 0.940 0.000 0.060
#> SRR1818629     2  0.6026      0.193 0.000 0.624 0.376
#> SRR1818630     2  0.6045      0.179 0.000 0.620 0.380
#> SRR1818627     1  0.4235      0.834 0.824 0.000 0.176
#> SRR1818628     1  0.4235      0.834 0.824 0.000 0.176
#> SRR1818621     1  0.5859      0.699 0.656 0.000 0.344
#> SRR1818622     1  0.5859      0.699 0.656 0.000 0.344
#> SRR1818625     1  0.2066      0.858 0.940 0.000 0.060
#> SRR1818626     1  0.2066      0.858 0.940 0.000 0.060
#> SRR1818623     3  0.5926      0.596 0.000 0.356 0.644
#> SRR1818624     3  0.5926      0.596 0.000 0.356 0.644
#> SRR1818619     1  0.3482      0.843 0.872 0.000 0.128
#> SRR1818620     1  0.3482      0.843 0.872 0.000 0.128
#> SRR1818617     2  0.4346      0.617 0.000 0.816 0.184
#> SRR1818618     2  0.4784      0.598 0.004 0.796 0.200
#> SRR1818615     2  0.5785      0.323 0.000 0.668 0.332
#> SRR1818616     2  0.5785      0.323 0.000 0.668 0.332
#> SRR1818609     3  0.6215      0.476 0.000 0.428 0.572
#> SRR1818610     3  0.6215      0.476 0.000 0.428 0.572
#> SRR1818607     2  0.2878      0.687 0.000 0.904 0.096
#> SRR1818608     2  0.2878      0.687 0.000 0.904 0.096
#> SRR1818613     1  0.1753      0.861 0.952 0.000 0.048
#> SRR1818614     1  0.1753      0.861 0.952 0.000 0.048
#> SRR1818611     1  0.3998      0.824 0.884 0.056 0.060
#> SRR1818612     1  0.3998      0.824 0.884 0.056 0.060
#> SRR1818605     1  0.5785      0.735 0.668 0.000 0.332
#> SRR1818606     1  0.5785      0.735 0.668 0.000 0.332

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1818631     3  0.4839     0.5572 0.256 0.004 0.724 0.016
#> SRR1818632     3  0.4869     0.5507 0.260 0.004 0.720 0.016
#> SRR1818679     2  0.2708     0.6858 0.004 0.904 0.016 0.076
#> SRR1818680     2  0.2778     0.6862 0.004 0.900 0.016 0.080
#> SRR1818677     2  0.7852     0.4891 0.084 0.604 0.132 0.180
#> SRR1818678     2  0.7596     0.5085 0.080 0.624 0.112 0.184
#> SRR1818675     3  0.7073     0.0729 0.048 0.036 0.468 0.448
#> SRR1818676     3  0.7074     0.0604 0.048 0.036 0.464 0.452
#> SRR1818673     2  0.4643     0.6766 0.012 0.788 0.028 0.172
#> SRR1818674     2  0.4643     0.6766 0.012 0.788 0.028 0.172
#> SRR1818671     4  0.1118     0.7160 0.000 0.036 0.000 0.964
#> SRR1818672     4  0.1302     0.7134 0.000 0.044 0.000 0.956
#> SRR1818661     3  0.5590     0.6439 0.200 0.012 0.728 0.060
#> SRR1818662     3  0.5590     0.6439 0.200 0.012 0.728 0.060
#> SRR1818655     1  0.7042     0.2883 0.488 0.124 0.388 0.000
#> SRR1818656     1  0.6946     0.3031 0.504 0.116 0.380 0.000
#> SRR1818653     3  0.4899     0.5586 0.300 0.008 0.688 0.004
#> SRR1818654     3  0.4850     0.5621 0.292 0.008 0.696 0.004
#> SRR1818651     1  0.4877     0.3907 0.664 0.008 0.328 0.000
#> SRR1818652     1  0.4814     0.4095 0.676 0.008 0.316 0.000
#> SRR1818657     1  0.5195     0.5399 0.692 0.032 0.276 0.000
#> SRR1818658     1  0.5195     0.5399 0.692 0.032 0.276 0.000
#> SRR1818649     1  0.5648     0.4730 0.684 0.064 0.252 0.000
#> SRR1818650     1  0.5716     0.4690 0.680 0.068 0.252 0.000
#> SRR1818659     1  0.3790     0.5696 0.820 0.016 0.164 0.000
#> SRR1818647     4  0.0927     0.7175 0.000 0.008 0.016 0.976
#> SRR1818648     4  0.0672     0.7192 0.000 0.008 0.008 0.984
#> SRR1818645     2  0.4746     0.5024 0.000 0.632 0.000 0.368
#> SRR1818646     2  0.4746     0.5024 0.000 0.632 0.000 0.368
#> SRR1818639     1  0.5847     0.3069 0.560 0.036 0.404 0.000
#> SRR1818640     1  0.5784     0.2908 0.556 0.032 0.412 0.000
#> SRR1818637     4  0.1388     0.7076 0.000 0.012 0.028 0.960
#> SRR1818638     4  0.1388     0.7076 0.000 0.012 0.028 0.960
#> SRR1818635     2  0.4643     0.6766 0.012 0.788 0.028 0.172
#> SRR1818636     2  0.4715     0.6760 0.016 0.788 0.028 0.168
#> SRR1818643     2  0.8006     0.4348 0.060 0.556 0.132 0.252
#> SRR1818644     2  0.7787     0.4515 0.052 0.572 0.124 0.252
#> SRR1818641     2  0.2528     0.6910 0.004 0.908 0.008 0.080
#> SRR1818642     2  0.2597     0.6910 0.004 0.904 0.008 0.084
#> SRR1818633     4  0.8116     0.1688 0.156 0.040 0.300 0.504
#> SRR1818634     4  0.8019     0.1426 0.144 0.036 0.324 0.496
#> SRR1818665     1  0.5231     0.5073 0.676 0.028 0.296 0.000
#> SRR1818666     1  0.5207     0.5095 0.680 0.028 0.292 0.000
#> SRR1818667     4  0.4155     0.5745 0.000 0.240 0.004 0.756
#> SRR1818668     4  0.4313     0.5552 0.000 0.260 0.004 0.736
#> SRR1818669     1  0.4837     0.4968 0.648 0.004 0.348 0.000
#> SRR1818670     1  0.4973     0.4913 0.644 0.008 0.348 0.000
#> SRR1818663     1  0.0592     0.5959 0.984 0.016 0.000 0.000
#> SRR1818664     1  0.0592     0.5959 0.984 0.016 0.000 0.000
#> SRR1818629     4  0.4722     0.4913 0.000 0.300 0.008 0.692
#> SRR1818630     4  0.4697     0.4986 0.000 0.296 0.008 0.696
#> SRR1818627     1  0.5384     0.4805 0.648 0.028 0.324 0.000
#> SRR1818628     1  0.5364     0.4840 0.652 0.028 0.320 0.000
#> SRR1818621     3  0.4927     0.6323 0.264 0.000 0.712 0.024
#> SRR1818622     3  0.4927     0.6323 0.264 0.000 0.712 0.024
#> SRR1818625     1  0.0592     0.5959 0.984 0.016 0.000 0.000
#> SRR1818626     1  0.0592     0.5959 0.984 0.016 0.000 0.000
#> SRR1818623     4  0.2313     0.6992 0.000 0.044 0.032 0.924
#> SRR1818624     4  0.2313     0.6992 0.000 0.044 0.032 0.924
#> SRR1818619     1  0.5256     0.5381 0.692 0.036 0.272 0.000
#> SRR1818620     1  0.5256     0.5381 0.692 0.036 0.272 0.000
#> SRR1818617     2  0.6721     0.2310 0.004 0.476 0.076 0.444
#> SRR1818618     4  0.6825    -0.2477 0.004 0.448 0.084 0.464
#> SRR1818615     4  0.4594     0.5016 0.000 0.280 0.008 0.712
#> SRR1818616     4  0.4673     0.4784 0.000 0.292 0.008 0.700
#> SRR1818609     4  0.0895     0.7201 0.000 0.020 0.004 0.976
#> SRR1818610     4  0.0895     0.7201 0.000 0.020 0.004 0.976
#> SRR1818607     2  0.4730     0.5056 0.000 0.636 0.000 0.364
#> SRR1818608     2  0.4730     0.5056 0.000 0.636 0.000 0.364
#> SRR1818613     1  0.4792     0.4222 0.680 0.008 0.312 0.000
#> SRR1818614     1  0.4792     0.4222 0.680 0.008 0.312 0.000
#> SRR1818611     1  0.5579     0.4741 0.688 0.060 0.252 0.000
#> SRR1818612     1  0.5579     0.4741 0.688 0.060 0.252 0.000
#> SRR1818605     3  0.5982     0.5435 0.392 0.024 0.572 0.012
#> SRR1818606     3  0.5970     0.5483 0.388 0.024 0.576 0.012

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1818631     5   0.692    -0.3032 0.240 0.008 0.344 0.000 0.408
#> SRR1818632     5   0.693    -0.3096 0.244 0.008 0.344 0.000 0.404
#> SRR1818679     2   0.575     0.5849 0.008 0.644 0.268 0.056 0.024
#> SRR1818680     2   0.575     0.5849 0.008 0.644 0.268 0.056 0.024
#> SRR1818677     2   0.936     0.3620 0.104 0.312 0.288 0.100 0.196
#> SRR1818678     2   0.938     0.3806 0.092 0.316 0.280 0.116 0.196
#> SRR1818675     4   0.754    -0.2389 0.116 0.004 0.396 0.400 0.084
#> SRR1818676     3   0.765     0.1432 0.132 0.004 0.408 0.372 0.084
#> SRR1818673     2   0.311     0.5452 0.000 0.860 0.000 0.080 0.060
#> SRR1818674     2   0.311     0.5452 0.000 0.860 0.000 0.080 0.060
#> SRR1818671     4   0.230     0.6553 0.004 0.020 0.068 0.908 0.000
#> SRR1818672     4   0.230     0.6553 0.004 0.020 0.068 0.908 0.000
#> SRR1818661     3   0.655     0.6624 0.096 0.004 0.544 0.032 0.324
#> SRR1818662     3   0.653     0.6596 0.092 0.004 0.540 0.032 0.332
#> SRR1818655     5   0.772     0.3010 0.244 0.088 0.208 0.000 0.460
#> SRR1818656     5   0.767     0.2910 0.264 0.084 0.192 0.000 0.460
#> SRR1818653     5   0.660    -0.3927 0.188 0.004 0.356 0.000 0.452
#> SRR1818654     5   0.655    -0.4029 0.176 0.004 0.364 0.000 0.456
#> SRR1818651     5   0.622     0.1260 0.396 0.004 0.124 0.000 0.476
#> SRR1818652     5   0.622     0.1279 0.392 0.004 0.124 0.000 0.480
#> SRR1818657     1   0.125     0.5916 0.956 0.000 0.008 0.000 0.036
#> SRR1818658     1   0.125     0.5916 0.956 0.000 0.008 0.000 0.036
#> SRR1818649     5   0.514     0.2821 0.188 0.064 0.028 0.000 0.720
#> SRR1818650     5   0.522     0.2784 0.188 0.064 0.032 0.000 0.716
#> SRR1818659     1   0.532     0.3840 0.636 0.000 0.088 0.000 0.276
#> SRR1818647     4   0.140     0.6636 0.000 0.028 0.020 0.952 0.000
#> SRR1818648     4   0.140     0.6636 0.000 0.028 0.020 0.952 0.000
#> SRR1818645     2   0.674     0.3945 0.000 0.456 0.244 0.296 0.004
#> SRR1818646     2   0.674     0.3945 0.000 0.456 0.244 0.296 0.004
#> SRR1818639     5   0.641     0.3424 0.296 0.016 0.140 0.000 0.548
#> SRR1818640     5   0.643     0.3395 0.284 0.016 0.148 0.000 0.552
#> SRR1818637     4   0.152     0.6569 0.000 0.004 0.048 0.944 0.004
#> SRR1818638     4   0.152     0.6569 0.000 0.004 0.048 0.944 0.004
#> SRR1818635     2   0.311     0.5452 0.000 0.860 0.000 0.080 0.060
#> SRR1818636     2   0.311     0.5452 0.000 0.860 0.000 0.080 0.060
#> SRR1818643     2   0.711     0.3695 0.012 0.580 0.216 0.120 0.072
#> SRR1818644     2   0.703     0.3748 0.012 0.588 0.212 0.120 0.068
#> SRR1818641     2   0.522     0.5915 0.000 0.680 0.248 0.052 0.020
#> SRR1818642     2   0.522     0.5915 0.000 0.680 0.248 0.052 0.020
#> SRR1818633     4   0.801     0.1227 0.288 0.012 0.280 0.368 0.052
#> SRR1818634     4   0.802     0.1641 0.280 0.016 0.272 0.384 0.048
#> SRR1818665     1   0.297     0.5958 0.868 0.000 0.052 0.000 0.080
#> SRR1818666     1   0.297     0.5958 0.868 0.000 0.052 0.000 0.080
#> SRR1818667     4   0.568     0.4894 0.000 0.216 0.140 0.640 0.004
#> SRR1818668     4   0.576     0.4772 0.000 0.228 0.140 0.628 0.004
#> SRR1818669     1   0.587    -0.0541 0.476 0.004 0.084 0.000 0.436
#> SRR1818670     1   0.583    -0.0217 0.484 0.004 0.080 0.000 0.432
#> SRR1818663     1   0.514     0.3820 0.528 0.008 0.024 0.000 0.440
#> SRR1818664     1   0.514     0.3723 0.520 0.008 0.024 0.000 0.448
#> SRR1818629     4   0.616     0.4250 0.008 0.300 0.116 0.572 0.004
#> SRR1818630     4   0.618     0.4260 0.008 0.296 0.120 0.572 0.004
#> SRR1818627     1   0.348     0.5699 0.836 0.000 0.080 0.000 0.084
#> SRR1818628     1   0.336     0.5701 0.844 0.000 0.076 0.000 0.080
#> SRR1818621     3   0.610     0.6245 0.096 0.000 0.472 0.008 0.424
#> SRR1818622     3   0.610     0.6245 0.096 0.000 0.472 0.008 0.424
#> SRR1818625     1   0.521     0.3772 0.524 0.008 0.028 0.000 0.440
#> SRR1818626     1   0.514     0.3723 0.520 0.008 0.024 0.000 0.448
#> SRR1818623     4   0.288     0.6397 0.000 0.032 0.080 0.880 0.008
#> SRR1818624     4   0.288     0.6397 0.000 0.032 0.080 0.880 0.008
#> SRR1818619     1   0.157     0.5781 0.944 0.000 0.020 0.000 0.036
#> SRR1818620     1   0.147     0.5812 0.948 0.000 0.016 0.000 0.036
#> SRR1818617     2   0.841     0.2127 0.008 0.328 0.248 0.308 0.108
#> SRR1818618     4   0.848    -0.2405 0.012 0.308 0.240 0.332 0.108
#> SRR1818615     4   0.552     0.4082 0.000 0.308 0.092 0.600 0.000
#> SRR1818616     4   0.558     0.3930 0.000 0.312 0.096 0.592 0.000
#> SRR1818609     4   0.104     0.6641 0.000 0.032 0.004 0.964 0.000
#> SRR1818610     4   0.104     0.6641 0.000 0.032 0.004 0.964 0.000
#> SRR1818607     2   0.675     0.3937 0.000 0.452 0.248 0.296 0.004
#> SRR1818608     2   0.676     0.3986 0.000 0.452 0.252 0.292 0.004
#> SRR1818613     5   0.620     0.0973 0.412 0.004 0.120 0.000 0.464
#> SRR1818614     5   0.620     0.1065 0.408 0.004 0.120 0.000 0.468
#> SRR1818611     5   0.514     0.2820 0.188 0.064 0.028 0.000 0.720
#> SRR1818612     5   0.508     0.2831 0.188 0.060 0.028 0.000 0.724
#> SRR1818605     3   0.683     0.5878 0.124 0.036 0.476 0.000 0.364
#> SRR1818606     3   0.675     0.5874 0.120 0.032 0.472 0.000 0.376

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1818631     5  0.6704     0.4365 0.180 0.024 0.084 0.004 0.584 0.124
#> SRR1818632     5  0.6759     0.4304 0.188 0.020 0.088 0.004 0.572 0.128
#> SRR1818679     2  0.2207     0.4111 0.008 0.920 0.032 0.020 0.008 0.012
#> SRR1818680     2  0.2264     0.4072 0.008 0.916 0.040 0.016 0.008 0.012
#> SRR1818677     2  0.8645     0.1968 0.052 0.396 0.228 0.056 0.100 0.168
#> SRR1818678     2  0.8689     0.2000 0.056 0.400 0.208 0.068 0.084 0.184
#> SRR1818675     4  0.7037     0.1658 0.092 0.000 0.116 0.448 0.328 0.016
#> SRR1818676     4  0.6999     0.1798 0.092 0.000 0.112 0.456 0.324 0.016
#> SRR1818673     2  0.5763    -0.2587 0.000 0.460 0.428 0.032 0.000 0.080
#> SRR1818674     2  0.5763    -0.2587 0.000 0.460 0.428 0.032 0.000 0.080
#> SRR1818671     4  0.4750     0.5889 0.000 0.032 0.116 0.760 0.040 0.052
#> SRR1818672     4  0.4673     0.5908 0.000 0.036 0.108 0.768 0.040 0.048
#> SRR1818661     5  0.3247     0.5040 0.044 0.000 0.028 0.056 0.860 0.012
#> SRR1818662     5  0.3298     0.5051 0.052 0.000 0.024 0.056 0.856 0.012
#> SRR1818655     6  0.8680     0.2907 0.132 0.156 0.164 0.000 0.228 0.320
#> SRR1818656     6  0.8631     0.2977 0.132 0.152 0.160 0.000 0.220 0.336
#> SRR1818653     5  0.5166     0.4595 0.120 0.000 0.044 0.000 0.692 0.144
#> SRR1818654     5  0.5222     0.4502 0.116 0.000 0.048 0.000 0.688 0.148
#> SRR1818651     5  0.7160     0.3001 0.316 0.000 0.088 0.000 0.368 0.228
#> SRR1818652     5  0.7173     0.3065 0.308 0.000 0.088 0.000 0.368 0.236
#> SRR1818657     1  0.2078     0.5905 0.916 0.000 0.040 0.000 0.012 0.032
#> SRR1818658     1  0.2002     0.5922 0.920 0.000 0.040 0.000 0.012 0.028
#> SRR1818649     6  0.3651     0.6853 0.064 0.016 0.008 0.000 0.088 0.824
#> SRR1818650     6  0.3502     0.6861 0.060 0.012 0.008 0.000 0.088 0.832
#> SRR1818659     1  0.5716     0.4223 0.592 0.004 0.012 0.000 0.192 0.200
#> SRR1818647     4  0.1180     0.6283 0.000 0.008 0.024 0.960 0.004 0.004
#> SRR1818648     4  0.1096     0.6292 0.000 0.008 0.020 0.964 0.004 0.004
#> SRR1818645     2  0.5616     0.4003 0.000 0.620 0.128 0.224 0.004 0.024
#> SRR1818646     2  0.5625     0.3969 0.000 0.616 0.124 0.232 0.004 0.024
#> SRR1818639     5  0.7537     0.1674 0.164 0.028 0.108 0.000 0.436 0.264
#> SRR1818640     5  0.7494     0.1461 0.160 0.024 0.108 0.000 0.428 0.280
#> SRR1818637     4  0.2434     0.6127 0.000 0.004 0.044 0.900 0.040 0.012
#> SRR1818638     4  0.2547     0.6120 0.000 0.008 0.044 0.896 0.040 0.012
#> SRR1818635     2  0.5763    -0.2587 0.000 0.460 0.428 0.032 0.000 0.080
#> SRR1818636     2  0.5763    -0.2587 0.000 0.460 0.428 0.032 0.000 0.080
#> SRR1818643     3  0.7109     0.9800 0.016 0.184 0.568 0.036 0.100 0.096
#> SRR1818644     3  0.7140     0.9799 0.016 0.192 0.564 0.040 0.096 0.092
#> SRR1818641     2  0.0943     0.4098 0.004 0.972 0.012 0.004 0.004 0.004
#> SRR1818642     2  0.0955     0.4125 0.004 0.972 0.008 0.008 0.004 0.004
#> SRR1818633     4  0.9124     0.1775 0.204 0.024 0.188 0.304 0.168 0.112
#> SRR1818634     4  0.9090     0.1798 0.200 0.020 0.176 0.308 0.176 0.120
#> SRR1818665     1  0.3462     0.6034 0.840 0.004 0.032 0.000 0.048 0.076
#> SRR1818666     1  0.3462     0.6034 0.840 0.004 0.032 0.000 0.048 0.076
#> SRR1818667     4  0.6527     0.4640 0.000 0.216 0.204 0.532 0.020 0.028
#> SRR1818668     4  0.6681     0.4419 0.000 0.232 0.220 0.500 0.020 0.028
#> SRR1818669     1  0.7455    -0.1214 0.344 0.012 0.080 0.000 0.292 0.272
#> SRR1818670     1  0.7429    -0.0836 0.364 0.012 0.080 0.000 0.280 0.264
#> SRR1818663     1  0.5645     0.3516 0.496 0.000 0.040 0.000 0.060 0.404
#> SRR1818664     1  0.5645     0.3516 0.496 0.000 0.040 0.000 0.060 0.404
#> SRR1818629     4  0.7053     0.3145 0.000 0.260 0.288 0.400 0.020 0.032
#> SRR1818630     4  0.6933     0.3535 0.000 0.244 0.280 0.428 0.020 0.028
#> SRR1818627     1  0.3698     0.5951 0.824 0.004 0.032 0.000 0.060 0.080
#> SRR1818628     1  0.3639     0.5975 0.828 0.004 0.032 0.000 0.056 0.080
#> SRR1818621     5  0.3318     0.5200 0.048 0.000 0.008 0.008 0.840 0.096
#> SRR1818622     5  0.3318     0.5200 0.048 0.000 0.008 0.008 0.840 0.096
#> SRR1818625     1  0.5700     0.3304 0.484 0.000 0.040 0.000 0.064 0.412
#> SRR1818626     1  0.5645     0.3516 0.496 0.000 0.040 0.000 0.060 0.404
#> SRR1818623     4  0.3258     0.6133 0.000 0.020 0.040 0.860 0.060 0.020
#> SRR1818624     4  0.3184     0.6139 0.000 0.016 0.036 0.864 0.060 0.024
#> SRR1818619     1  0.2357     0.5847 0.904 0.004 0.048 0.000 0.012 0.032
#> SRR1818620     1  0.2430     0.5837 0.900 0.004 0.048 0.000 0.012 0.036
#> SRR1818617     2  0.8157     0.2195 0.008 0.392 0.232 0.136 0.040 0.192
#> SRR1818618     2  0.8413     0.1964 0.008 0.352 0.232 0.168 0.048 0.192
#> SRR1818615     4  0.6389     0.3826 0.000 0.212 0.284 0.480 0.012 0.012
#> SRR1818616     4  0.6561     0.3506 0.000 0.232 0.288 0.452 0.016 0.012
#> SRR1818609     4  0.0951     0.6298 0.000 0.008 0.020 0.968 0.000 0.004
#> SRR1818610     4  0.0951     0.6298 0.000 0.008 0.020 0.968 0.000 0.004
#> SRR1818607     2  0.5603     0.3998 0.000 0.620 0.124 0.228 0.004 0.024
#> SRR1818608     2  0.5580     0.4018 0.000 0.624 0.124 0.224 0.004 0.024
#> SRR1818613     5  0.7140     0.2522 0.340 0.000 0.084 0.000 0.348 0.228
#> SRR1818614     5  0.7139     0.2636 0.336 0.000 0.084 0.000 0.352 0.228
#> SRR1818611     6  0.3492     0.6861 0.056 0.012 0.008 0.000 0.092 0.832
#> SRR1818612     6  0.3492     0.6861 0.056 0.012 0.008 0.000 0.092 0.832
#> SRR1818605     5  0.6027     0.4355 0.104 0.000 0.180 0.000 0.612 0.104
#> SRR1818606     5  0.6024     0.4310 0.112 0.000 0.180 0.000 0.612 0.096

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15216 rows and 75 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.883           0.918       0.963         0.4841 0.508   0.508
#> 3 3 0.771           0.775       0.885         0.1630 0.910   0.826
#> 4 4 0.719           0.813       0.899         0.1025 0.935   0.853
#> 5 5 0.632           0.614       0.835         0.1039 0.959   0.894
#> 6 6 0.575           0.663       0.819         0.0681 0.931   0.807

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1818631     1  0.0000     0.9791 1.000 0.000
#> SRR1818632     1  0.0000     0.9791 1.000 0.000
#> SRR1818679     2  0.1843     0.9257 0.028 0.972
#> SRR1818680     2  0.0376     0.9337 0.004 0.996
#> SRR1818677     1  0.0938     0.9693 0.988 0.012
#> SRR1818678     1  0.4939     0.8696 0.892 0.108
#> SRR1818675     1  0.0000     0.9791 1.000 0.000
#> SRR1818676     1  0.0000     0.9791 1.000 0.000
#> SRR1818673     2  0.2948     0.9134 0.052 0.948
#> SRR1818674     2  0.4022     0.8930 0.080 0.920
#> SRR1818671     2  0.0000     0.9342 0.000 1.000
#> SRR1818672     2  0.0000     0.9342 0.000 1.000
#> SRR1818661     1  0.0000     0.9791 1.000 0.000
#> SRR1818662     1  0.0000     0.9791 1.000 0.000
#> SRR1818655     1  0.3431     0.9214 0.936 0.064
#> SRR1818656     1  0.3431     0.9214 0.936 0.064
#> SRR1818653     1  0.0000     0.9791 1.000 0.000
#> SRR1818654     1  0.0000     0.9791 1.000 0.000
#> SRR1818651     1  0.0000     0.9791 1.000 0.000
#> SRR1818652     1  0.0000     0.9791 1.000 0.000
#> SRR1818657     1  0.0000     0.9791 1.000 0.000
#> SRR1818658     1  0.0000     0.9791 1.000 0.000
#> SRR1818649     1  0.0000     0.9791 1.000 0.000
#> SRR1818650     1  0.0376     0.9759 0.996 0.004
#> SRR1818659     1  0.0000     0.9791 1.000 0.000
#> SRR1818647     2  0.0672     0.9329 0.008 0.992
#> SRR1818648     2  0.0672     0.9325 0.008 0.992
#> SRR1818645     2  0.0000     0.9342 0.000 1.000
#> SRR1818646     2  0.0000     0.9342 0.000 1.000
#> SRR1818639     1  0.0000     0.9791 1.000 0.000
#> SRR1818640     1  0.0000     0.9791 1.000 0.000
#> SRR1818637     2  0.0000     0.9342 0.000 1.000
#> SRR1818638     2  0.0000     0.9342 0.000 1.000
#> SRR1818635     2  0.8909     0.5982 0.308 0.692
#> SRR1818636     2  0.8955     0.5915 0.312 0.688
#> SRR1818643     1  0.9850     0.1512 0.572 0.428
#> SRR1818644     2  1.0000     0.0926 0.496 0.504
#> SRR1818641     2  0.0376     0.9336 0.004 0.996
#> SRR1818642     2  0.0000     0.9342 0.000 1.000
#> SRR1818633     1  0.2423     0.9443 0.960 0.040
#> SRR1818634     1  0.4815     0.8766 0.896 0.104
#> SRR1818665     1  0.0000     0.9791 1.000 0.000
#> SRR1818666     1  0.0000     0.9791 1.000 0.000
#> SRR1818667     2  0.0000     0.9342 0.000 1.000
#> SRR1818668     2  0.0000     0.9342 0.000 1.000
#> SRR1818669     1  0.0000     0.9791 1.000 0.000
#> SRR1818670     1  0.0000     0.9791 1.000 0.000
#> SRR1818663     1  0.0000     0.9791 1.000 0.000
#> SRR1818664     1  0.0000     0.9791 1.000 0.000
#> SRR1818629     2  0.2043     0.9239 0.032 0.968
#> SRR1818630     2  0.2948     0.9139 0.052 0.948
#> SRR1818627     1  0.0000     0.9791 1.000 0.000
#> SRR1818628     1  0.0000     0.9791 1.000 0.000
#> SRR1818621     1  0.0000     0.9791 1.000 0.000
#> SRR1818622     1  0.0000     0.9791 1.000 0.000
#> SRR1818625     1  0.0000     0.9791 1.000 0.000
#> SRR1818626     1  0.0000     0.9791 1.000 0.000
#> SRR1818623     2  0.7139     0.7678 0.196 0.804
#> SRR1818624     2  0.4298     0.8837 0.088 0.912
#> SRR1818619     1  0.0000     0.9791 1.000 0.000
#> SRR1818620     1  0.0000     0.9791 1.000 0.000
#> SRR1818617     2  0.3274     0.9089 0.060 0.940
#> SRR1818618     2  0.6973     0.7811 0.188 0.812
#> SRR1818615     2  0.0000     0.9342 0.000 1.000
#> SRR1818616     2  0.0000     0.9342 0.000 1.000
#> SRR1818609     2  0.0000     0.9342 0.000 1.000
#> SRR1818610     2  0.0000     0.9342 0.000 1.000
#> SRR1818607     2  0.0000     0.9342 0.000 1.000
#> SRR1818608     2  0.0000     0.9342 0.000 1.000
#> SRR1818613     1  0.0000     0.9791 1.000 0.000
#> SRR1818614     1  0.0000     0.9791 1.000 0.000
#> SRR1818611     1  0.0000     0.9791 1.000 0.000
#> SRR1818612     1  0.0000     0.9791 1.000 0.000
#> SRR1818605     1  0.0000     0.9791 1.000 0.000
#> SRR1818606     1  0.0000     0.9791 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1818631     1  0.0237      0.981 0.996 0.000 0.004
#> SRR1818632     1  0.0237      0.981 0.996 0.000 0.004
#> SRR1818679     2  0.5508      0.620 0.028 0.784 0.188
#> SRR1818680     2  0.3272      0.617 0.004 0.892 0.104
#> SRR1818677     1  0.0747      0.972 0.984 0.016 0.000
#> SRR1818678     1  0.3791      0.883 0.892 0.060 0.048
#> SRR1818675     1  0.2261      0.933 0.932 0.000 0.068
#> SRR1818676     1  0.2261      0.933 0.932 0.000 0.068
#> SRR1818673     2  0.1411      0.582 0.036 0.964 0.000
#> SRR1818674     2  0.1860      0.573 0.052 0.948 0.000
#> SRR1818671     3  0.6244     -0.115 0.000 0.440 0.560
#> SRR1818672     2  0.6267      0.337 0.000 0.548 0.452
#> SRR1818661     1  0.2066      0.937 0.940 0.000 0.060
#> SRR1818662     1  0.2066      0.937 0.940 0.000 0.060
#> SRR1818655     1  0.2569      0.930 0.936 0.032 0.032
#> SRR1818656     1  0.2569      0.930 0.936 0.032 0.032
#> SRR1818653     1  0.0000      0.983 1.000 0.000 0.000
#> SRR1818654     1  0.0000      0.983 1.000 0.000 0.000
#> SRR1818651     1  0.0000      0.983 1.000 0.000 0.000
#> SRR1818652     1  0.0000      0.983 1.000 0.000 0.000
#> SRR1818657     1  0.0000      0.983 1.000 0.000 0.000
#> SRR1818658     1  0.0000      0.983 1.000 0.000 0.000
#> SRR1818649     1  0.0000      0.983 1.000 0.000 0.000
#> SRR1818650     1  0.0237      0.981 0.996 0.004 0.000
#> SRR1818659     1  0.0000      0.983 1.000 0.000 0.000
#> SRR1818647     3  0.3816      0.755 0.000 0.148 0.852
#> SRR1818648     3  0.4452      0.727 0.000 0.192 0.808
#> SRR1818645     2  0.5733      0.559 0.000 0.676 0.324
#> SRR1818646     2  0.5678      0.564 0.000 0.684 0.316
#> SRR1818639     1  0.0000      0.983 1.000 0.000 0.000
#> SRR1818640     1  0.0000      0.983 1.000 0.000 0.000
#> SRR1818637     3  0.0237      0.748 0.000 0.004 0.996
#> SRR1818638     3  0.0237      0.748 0.000 0.004 0.996
#> SRR1818635     2  0.5098      0.391 0.248 0.752 0.000
#> SRR1818636     2  0.5178      0.382 0.256 0.744 0.000
#> SRR1818643     2  0.5733      0.309 0.324 0.676 0.000
#> SRR1818644     2  0.5431      0.351 0.284 0.716 0.000
#> SRR1818641     2  0.2796      0.617 0.000 0.908 0.092
#> SRR1818642     2  0.5016      0.600 0.000 0.760 0.240
#> SRR1818633     1  0.1877      0.949 0.956 0.012 0.032
#> SRR1818634     1  0.3481      0.896 0.904 0.052 0.044
#> SRR1818665     1  0.0000      0.983 1.000 0.000 0.000
#> SRR1818666     1  0.0000      0.983 1.000 0.000 0.000
#> SRR1818667     2  0.6126      0.470 0.000 0.600 0.400
#> SRR1818668     2  0.6126      0.467 0.000 0.600 0.400
#> SRR1818669     1  0.0000      0.983 1.000 0.000 0.000
#> SRR1818670     1  0.0000      0.983 1.000 0.000 0.000
#> SRR1818663     1  0.0000      0.983 1.000 0.000 0.000
#> SRR1818664     1  0.0000      0.983 1.000 0.000 0.000
#> SRR1818629     2  0.5269      0.610 0.016 0.784 0.200
#> SRR1818630     2  0.4636      0.613 0.044 0.852 0.104
#> SRR1818627     1  0.0000      0.983 1.000 0.000 0.000
#> SRR1818628     1  0.0000      0.983 1.000 0.000 0.000
#> SRR1818621     1  0.0237      0.981 0.996 0.000 0.004
#> SRR1818622     1  0.0237      0.981 0.996 0.000 0.004
#> SRR1818625     1  0.0000      0.983 1.000 0.000 0.000
#> SRR1818626     1  0.0000      0.983 1.000 0.000 0.000
#> SRR1818623     2  0.7145     -0.191 0.024 0.536 0.440
#> SRR1818624     3  0.6950      0.332 0.020 0.408 0.572
#> SRR1818619     1  0.0000      0.983 1.000 0.000 0.000
#> SRR1818620     1  0.0000      0.983 1.000 0.000 0.000
#> SRR1818617     2  0.7425      0.518 0.052 0.620 0.328
#> SRR1818618     2  0.8882      0.374 0.144 0.540 0.316
#> SRR1818615     2  0.0747      0.591 0.000 0.984 0.016
#> SRR1818616     2  0.1289      0.600 0.000 0.968 0.032
#> SRR1818609     3  0.3941      0.750 0.000 0.156 0.844
#> SRR1818610     3  0.2537      0.752 0.000 0.080 0.920
#> SRR1818607     2  0.5733      0.559 0.000 0.676 0.324
#> SRR1818608     2  0.5733      0.559 0.000 0.676 0.324
#> SRR1818613     1  0.0000      0.983 1.000 0.000 0.000
#> SRR1818614     1  0.0000      0.983 1.000 0.000 0.000
#> SRR1818611     1  0.0000      0.983 1.000 0.000 0.000
#> SRR1818612     1  0.0000      0.983 1.000 0.000 0.000
#> SRR1818605     1  0.0000      0.983 1.000 0.000 0.000
#> SRR1818606     1  0.0000      0.983 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1818631     1  0.0592     0.9537 0.984 0.000 0.000 0.016
#> SRR1818632     1  0.0592     0.9537 0.984 0.000 0.000 0.016
#> SRR1818679     2  0.5337     0.0754 0.012 0.564 0.424 0.000
#> SRR1818680     3  0.4632     0.5839 0.004 0.308 0.688 0.000
#> SRR1818677     1  0.0657     0.9525 0.984 0.004 0.012 0.000
#> SRR1818678     1  0.2867     0.8684 0.884 0.104 0.012 0.000
#> SRR1818675     1  0.2401     0.9028 0.904 0.000 0.004 0.092
#> SRR1818676     1  0.2266     0.9070 0.912 0.000 0.004 0.084
#> SRR1818673     3  0.2760     0.7280 0.000 0.128 0.872 0.000
#> SRR1818674     3  0.2760     0.7280 0.000 0.128 0.872 0.000
#> SRR1818671     2  0.2882     0.7810 0.000 0.892 0.024 0.084
#> SRR1818672     2  0.2675     0.7932 0.000 0.908 0.048 0.044
#> SRR1818661     1  0.0921     0.9500 0.972 0.000 0.000 0.028
#> SRR1818662     1  0.0921     0.9500 0.972 0.000 0.000 0.028
#> SRR1818655     1  0.1004     0.9461 0.972 0.024 0.004 0.000
#> SRR1818656     1  0.1004     0.9461 0.972 0.024 0.004 0.000
#> SRR1818653     1  0.0000     0.9556 1.000 0.000 0.000 0.000
#> SRR1818654     1  0.0188     0.9553 0.996 0.000 0.000 0.004
#> SRR1818651     1  0.0000     0.9556 1.000 0.000 0.000 0.000
#> SRR1818652     1  0.0000     0.9556 1.000 0.000 0.000 0.000
#> SRR1818657     1  0.0000     0.9556 1.000 0.000 0.000 0.000
#> SRR1818658     1  0.1637     0.9402 0.940 0.000 0.060 0.000
#> SRR1818649     1  0.2011     0.9308 0.920 0.000 0.080 0.000
#> SRR1818650     1  0.2589     0.9109 0.884 0.000 0.116 0.000
#> SRR1818659     1  0.2704     0.9046 0.876 0.000 0.124 0.000
#> SRR1818647     4  0.1824     0.8234 0.000 0.060 0.004 0.936
#> SRR1818648     4  0.2048     0.8224 0.000 0.064 0.008 0.928
#> SRR1818645     2  0.0000     0.8153 0.000 1.000 0.000 0.000
#> SRR1818646     2  0.0000     0.8153 0.000 1.000 0.000 0.000
#> SRR1818639     1  0.0000     0.9556 1.000 0.000 0.000 0.000
#> SRR1818640     1  0.0000     0.9556 1.000 0.000 0.000 0.000
#> SRR1818637     4  0.0592     0.8156 0.000 0.016 0.000 0.984
#> SRR1818638     4  0.0592     0.8156 0.000 0.016 0.000 0.984
#> SRR1818635     3  0.2805     0.7019 0.100 0.012 0.888 0.000
#> SRR1818636     3  0.2918     0.6942 0.116 0.008 0.876 0.000
#> SRR1818643     3  0.4164     0.5237 0.264 0.000 0.736 0.000
#> SRR1818644     3  0.3725     0.6394 0.180 0.008 0.812 0.000
#> SRR1818641     3  0.3837     0.6768 0.000 0.224 0.776 0.000
#> SRR1818642     2  0.4356     0.4936 0.000 0.708 0.292 0.000
#> SRR1818633     1  0.0817     0.9479 0.976 0.024 0.000 0.000
#> SRR1818634     1  0.1847     0.9267 0.940 0.052 0.004 0.004
#> SRR1818665     1  0.2760     0.9019 0.872 0.000 0.128 0.000
#> SRR1818666     1  0.2760     0.9019 0.872 0.000 0.128 0.000
#> SRR1818667     2  0.2021     0.7981 0.000 0.932 0.056 0.012
#> SRR1818668     2  0.0188     0.8145 0.000 0.996 0.004 0.000
#> SRR1818669     1  0.0000     0.9556 1.000 0.000 0.000 0.000
#> SRR1818670     1  0.0336     0.9557 0.992 0.000 0.008 0.000
#> SRR1818663     1  0.2530     0.9127 0.888 0.000 0.112 0.000
#> SRR1818664     1  0.2530     0.9127 0.888 0.000 0.112 0.000
#> SRR1818629     3  0.5168     0.0997 0.004 0.492 0.504 0.000
#> SRR1818630     3  0.5827     0.3830 0.036 0.396 0.568 0.000
#> SRR1818627     1  0.2408     0.9193 0.896 0.000 0.104 0.000
#> SRR1818628     1  0.2149     0.9281 0.912 0.000 0.088 0.000
#> SRR1818621     1  0.0592     0.9537 0.984 0.000 0.000 0.016
#> SRR1818622     1  0.0592     0.9537 0.984 0.000 0.000 0.016
#> SRR1818625     1  0.2530     0.9127 0.888 0.000 0.112 0.000
#> SRR1818626     1  0.2530     0.9127 0.888 0.000 0.112 0.000
#> SRR1818623     4  0.6027     0.0682 0.004 0.032 0.472 0.492
#> SRR1818624     4  0.5311     0.4519 0.000 0.024 0.328 0.648
#> SRR1818619     1  0.0000     0.9556 1.000 0.000 0.000 0.000
#> SRR1818620     1  0.0921     0.9515 0.972 0.000 0.028 0.000
#> SRR1818617     2  0.5052     0.5693 0.036 0.720 0.244 0.000
#> SRR1818618     2  0.6787     0.4318 0.124 0.632 0.232 0.012
#> SRR1818615     3  0.3311     0.7210 0.000 0.172 0.828 0.000
#> SRR1818616     3  0.3610     0.7074 0.000 0.200 0.800 0.000
#> SRR1818609     4  0.2473     0.8171 0.000 0.080 0.012 0.908
#> SRR1818610     4  0.2281     0.8084 0.000 0.096 0.000 0.904
#> SRR1818607     2  0.0000     0.8153 0.000 1.000 0.000 0.000
#> SRR1818608     2  0.0000     0.8153 0.000 1.000 0.000 0.000
#> SRR1818613     1  0.0000     0.9556 1.000 0.000 0.000 0.000
#> SRR1818614     1  0.0000     0.9556 1.000 0.000 0.000 0.000
#> SRR1818611     1  0.0000     0.9556 1.000 0.000 0.000 0.000
#> SRR1818612     1  0.0188     0.9557 0.996 0.000 0.004 0.000
#> SRR1818605     1  0.0000     0.9556 1.000 0.000 0.000 0.000
#> SRR1818606     1  0.0188     0.9554 0.996 0.000 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1818631     1  0.2112    0.76772 0.908 0.000 0.004 0.004 0.084
#> SRR1818632     1  0.1365    0.79324 0.952 0.000 0.004 0.004 0.040
#> SRR1818679     2  0.5759    0.12739 0.008 0.476 0.452 0.000 0.064
#> SRR1818680     3  0.3421    0.60126 0.000 0.204 0.788 0.000 0.008
#> SRR1818677     1  0.0807    0.79976 0.976 0.000 0.012 0.000 0.012
#> SRR1818678     1  0.2217    0.77066 0.920 0.044 0.012 0.000 0.024
#> SRR1818675     1  0.5190   -0.01842 0.496 0.000 0.004 0.032 0.468
#> SRR1818676     1  0.4971    0.00755 0.512 0.000 0.000 0.028 0.460
#> SRR1818673     3  0.0162    0.76179 0.000 0.004 0.996 0.000 0.000
#> SRR1818674     3  0.0162    0.76179 0.000 0.004 0.996 0.000 0.000
#> SRR1818671     2  0.2674    0.74604 0.000 0.888 0.020 0.084 0.008
#> SRR1818672     2  0.2376    0.75615 0.000 0.904 0.052 0.044 0.000
#> SRR1818661     1  0.2833    0.71608 0.852 0.000 0.004 0.004 0.140
#> SRR1818662     1  0.2833    0.71608 0.852 0.000 0.004 0.004 0.140
#> SRR1818655     1  0.1914    0.76620 0.924 0.016 0.000 0.000 0.060
#> SRR1818656     1  0.1845    0.76767 0.928 0.016 0.000 0.000 0.056
#> SRR1818653     1  0.0794    0.80025 0.972 0.000 0.000 0.000 0.028
#> SRR1818654     1  0.1410    0.78565 0.940 0.000 0.000 0.000 0.060
#> SRR1818651     1  0.0000    0.79849 1.000 0.000 0.000 0.000 0.000
#> SRR1818652     1  0.0000    0.79849 1.000 0.000 0.000 0.000 0.000
#> SRR1818657     1  0.0000    0.79849 1.000 0.000 0.000 0.000 0.000
#> SRR1818658     1  0.2230    0.72467 0.884 0.000 0.000 0.000 0.116
#> SRR1818649     1  0.2929    0.67134 0.820 0.000 0.000 0.000 0.180
#> SRR1818650     1  0.3741    0.52387 0.732 0.000 0.004 0.000 0.264
#> SRR1818659     1  0.3857    0.36612 0.688 0.000 0.000 0.000 0.312
#> SRR1818647     4  0.0609    0.84667 0.000 0.020 0.000 0.980 0.000
#> SRR1818648     4  0.0794    0.84457 0.000 0.028 0.000 0.972 0.000
#> SRR1818645     2  0.0000    0.76973 0.000 1.000 0.000 0.000 0.000
#> SRR1818646     2  0.0000    0.76973 0.000 1.000 0.000 0.000 0.000
#> SRR1818639     1  0.0000    0.79849 1.000 0.000 0.000 0.000 0.000
#> SRR1818640     1  0.0000    0.79849 1.000 0.000 0.000 0.000 0.000
#> SRR1818637     4  0.2970    0.80489 0.000 0.004 0.000 0.828 0.168
#> SRR1818638     4  0.2970    0.80489 0.000 0.004 0.000 0.828 0.168
#> SRR1818635     3  0.0162    0.76200 0.004 0.000 0.996 0.000 0.000
#> SRR1818636     3  0.0162    0.76200 0.004 0.000 0.996 0.000 0.000
#> SRR1818643     3  0.4114    0.24131 0.376 0.000 0.624 0.000 0.000
#> SRR1818644     3  0.3210    0.56892 0.212 0.000 0.788 0.000 0.000
#> SRR1818641     3  0.3608    0.66638 0.000 0.112 0.824 0.000 0.064
#> SRR1818642     2  0.5204    0.34817 0.000 0.580 0.368 0.000 0.052
#> SRR1818633     1  0.1597    0.78174 0.940 0.012 0.000 0.000 0.048
#> SRR1818634     1  0.3194    0.70343 0.832 0.020 0.000 0.000 0.148
#> SRR1818665     5  0.4297    0.22704 0.472 0.000 0.000 0.000 0.528
#> SRR1818666     5  0.4297    0.22704 0.472 0.000 0.000 0.000 0.528
#> SRR1818667     2  0.3372    0.74151 0.000 0.840 0.036 0.004 0.120
#> SRR1818668     2  0.1478    0.76325 0.000 0.936 0.000 0.000 0.064
#> SRR1818669     1  0.0000    0.79849 1.000 0.000 0.000 0.000 0.000
#> SRR1818670     1  0.0404    0.79847 0.988 0.000 0.000 0.000 0.012
#> SRR1818663     1  0.3336    0.57770 0.772 0.000 0.000 0.000 0.228
#> SRR1818664     1  0.3336    0.57770 0.772 0.000 0.000 0.000 0.228
#> SRR1818629     2  0.6285    0.16386 0.008 0.444 0.432 0.000 0.116
#> SRR1818630     3  0.7442   -0.03543 0.084 0.340 0.448 0.000 0.128
#> SRR1818627     1  0.4291   -0.29838 0.536 0.000 0.000 0.000 0.464
#> SRR1818628     1  0.4291   -0.30003 0.536 0.000 0.000 0.000 0.464
#> SRR1818621     1  0.2833    0.71608 0.852 0.000 0.004 0.004 0.140
#> SRR1818622     1  0.2833    0.71608 0.852 0.000 0.004 0.004 0.140
#> SRR1818625     1  0.3366    0.57294 0.768 0.000 0.000 0.000 0.232
#> SRR1818626     1  0.3336    0.57770 0.772 0.000 0.000 0.000 0.228
#> SRR1818623     5  0.7279   -0.53812 0.000 0.020 0.324 0.296 0.360
#> SRR1818624     4  0.7130    0.29308 0.000 0.016 0.248 0.376 0.360
#> SRR1818619     1  0.0703    0.79583 0.976 0.000 0.000 0.000 0.024
#> SRR1818620     1  0.1270    0.78312 0.948 0.000 0.000 0.000 0.052
#> SRR1818617     2  0.6193    0.59777 0.092 0.668 0.132 0.000 0.108
#> SRR1818618     2  0.7225    0.44373 0.164 0.560 0.164 0.000 0.112
#> SRR1818615     3  0.1671    0.73890 0.000 0.076 0.924 0.000 0.000
#> SRR1818616     3  0.1732    0.73632 0.000 0.080 0.920 0.000 0.000
#> SRR1818609     4  0.0898    0.84540 0.000 0.020 0.008 0.972 0.000
#> SRR1818610     4  0.0880    0.84277 0.000 0.032 0.000 0.968 0.000
#> SRR1818607     2  0.0000    0.76973 0.000 1.000 0.000 0.000 0.000
#> SRR1818608     2  0.0000    0.76973 0.000 1.000 0.000 0.000 0.000
#> SRR1818613     1  0.0000    0.79849 1.000 0.000 0.000 0.000 0.000
#> SRR1818614     1  0.0000    0.79849 1.000 0.000 0.000 0.000 0.000
#> SRR1818611     1  0.0963    0.79438 0.964 0.000 0.000 0.000 0.036
#> SRR1818612     1  0.1197    0.79135 0.952 0.000 0.000 0.000 0.048
#> SRR1818605     1  0.0963    0.79913 0.964 0.000 0.000 0.000 0.036
#> SRR1818606     1  0.2074    0.75766 0.896 0.000 0.000 0.000 0.104

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1818631     1  0.3531     0.5472 0.672 0.000 0.000 0.000 0.000 0.328
#> SRR1818632     1  0.2912     0.6808 0.784 0.000 0.000 0.000 0.000 0.216
#> SRR1818679     3  0.6206    -0.0806 0.000 0.416 0.420 0.000 0.036 0.128
#> SRR1818680     3  0.3773     0.6067 0.000 0.192 0.768 0.000 0.020 0.020
#> SRR1818677     1  0.0881     0.7976 0.972 0.000 0.012 0.000 0.008 0.008
#> SRR1818678     1  0.2508     0.7688 0.900 0.048 0.012 0.000 0.024 0.016
#> SRR1818675     6  0.5322     0.4881 0.188 0.000 0.000 0.000 0.216 0.596
#> SRR1818676     6  0.5680     0.3963 0.252 0.000 0.000 0.000 0.220 0.528
#> SRR1818673     3  0.0000     0.7238 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818674     3  0.0000     0.7238 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818671     2  0.2878     0.7282 0.000 0.860 0.024 0.100 0.000 0.016
#> SRR1818672     2  0.2376     0.7310 0.000 0.888 0.068 0.044 0.000 0.000
#> SRR1818661     1  0.3782     0.4115 0.588 0.000 0.000 0.000 0.000 0.412
#> SRR1818662     1  0.3782     0.4115 0.588 0.000 0.000 0.000 0.000 0.412
#> SRR1818655     1  0.2581     0.7150 0.860 0.000 0.000 0.000 0.020 0.120
#> SRR1818656     1  0.2581     0.7150 0.860 0.000 0.000 0.000 0.020 0.120
#> SRR1818653     1  0.0858     0.8001 0.968 0.000 0.000 0.000 0.004 0.028
#> SRR1818654     1  0.1765     0.7739 0.904 0.000 0.000 0.000 0.000 0.096
#> SRR1818651     1  0.0000     0.7990 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818652     1  0.0000     0.7990 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818657     1  0.0000     0.7990 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818658     1  0.1765     0.7683 0.904 0.000 0.000 0.000 0.096 0.000
#> SRR1818649     1  0.3830     0.6371 0.744 0.000 0.000 0.000 0.212 0.044
#> SRR1818650     1  0.4294     0.5397 0.672 0.000 0.000 0.000 0.280 0.048
#> SRR1818659     1  0.3584     0.4708 0.688 0.000 0.000 0.000 0.308 0.004
#> SRR1818647     4  0.0000     0.8707 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818648     4  0.0000     0.8707 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818645     2  0.0000     0.7521 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818646     2  0.0000     0.7521 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818639     1  0.0000     0.7990 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818640     1  0.0000     0.7990 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818637     4  0.4392     0.6879 0.000 0.000 0.000 0.680 0.064 0.256
#> SRR1818638     4  0.4392     0.6879 0.000 0.000 0.000 0.680 0.064 0.256
#> SRR1818635     3  0.0000     0.7238 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818636     3  0.0000     0.7238 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818643     3  0.3592     0.2462 0.344 0.000 0.656 0.000 0.000 0.000
#> SRR1818644     3  0.2762     0.5136 0.196 0.000 0.804 0.000 0.000 0.000
#> SRR1818641     3  0.4576     0.6115 0.000 0.092 0.748 0.000 0.040 0.120
#> SRR1818642     2  0.6036     0.2130 0.000 0.516 0.332 0.000 0.040 0.112
#> SRR1818633     1  0.2009     0.7656 0.908 0.000 0.000 0.000 0.024 0.068
#> SRR1818634     1  0.3572     0.6560 0.764 0.000 0.000 0.000 0.032 0.204
#> SRR1818665     5  0.2941     0.9244 0.220 0.000 0.000 0.000 0.780 0.000
#> SRR1818666     5  0.2941     0.9244 0.220 0.000 0.000 0.000 0.780 0.000
#> SRR1818667     2  0.4582     0.6680 0.000 0.672 0.024 0.000 0.032 0.272
#> SRR1818668     2  0.2896     0.7221 0.000 0.824 0.000 0.000 0.016 0.160
#> SRR1818669     1  0.0000     0.7990 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818670     1  0.0363     0.7995 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR1818663     1  0.2915     0.6958 0.808 0.000 0.000 0.000 0.184 0.008
#> SRR1818664     1  0.2915     0.6958 0.808 0.000 0.000 0.000 0.184 0.008
#> SRR1818629     2  0.6667     0.2328 0.000 0.384 0.316 0.000 0.032 0.268
#> SRR1818630     3  0.6948    -0.0516 0.024 0.312 0.412 0.000 0.024 0.228
#> SRR1818627     5  0.3288     0.9096 0.276 0.000 0.000 0.000 0.724 0.000
#> SRR1818628     5  0.3244     0.9208 0.268 0.000 0.000 0.000 0.732 0.000
#> SRR1818621     1  0.3782     0.4115 0.588 0.000 0.000 0.000 0.000 0.412
#> SRR1818622     1  0.4018     0.3984 0.580 0.000 0.000 0.000 0.008 0.412
#> SRR1818625     1  0.2948     0.6935 0.804 0.000 0.000 0.000 0.188 0.008
#> SRR1818626     1  0.2915     0.6958 0.808 0.000 0.000 0.000 0.184 0.008
#> SRR1818623     6  0.3023     0.5642 0.000 0.000 0.232 0.000 0.000 0.768
#> SRR1818624     6  0.3348     0.5762 0.000 0.000 0.216 0.016 0.000 0.768
#> SRR1818619     1  0.0632     0.7962 0.976 0.000 0.000 0.000 0.024 0.000
#> SRR1818620     1  0.0713     0.7976 0.972 0.000 0.000 0.000 0.028 0.000
#> SRR1818617     2  0.6957     0.5470 0.080 0.580 0.116 0.000 0.076 0.148
#> SRR1818618     2  0.8198     0.3646 0.136 0.432 0.152 0.000 0.124 0.156
#> SRR1818615     3  0.1501     0.7177 0.000 0.076 0.924 0.000 0.000 0.000
#> SRR1818616     3  0.1610     0.7147 0.000 0.084 0.916 0.000 0.000 0.000
#> SRR1818609     4  0.0000     0.8707 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818610     4  0.0000     0.8707 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818607     2  0.0000     0.7521 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818608     2  0.0000     0.7521 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818613     1  0.0000     0.7990 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818614     1  0.0000     0.7990 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818611     1  0.2679     0.7229 0.864 0.000 0.000 0.000 0.096 0.040
#> SRR1818612     1  0.2842     0.7172 0.852 0.000 0.000 0.000 0.104 0.044
#> SRR1818605     1  0.1327     0.7918 0.936 0.000 0.000 0.000 0.000 0.064
#> SRR1818606     1  0.2491     0.7265 0.836 0.000 0.000 0.000 0.000 0.164

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15216 rows and 75 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.412           0.783       0.868         0.4488 0.501   0.501
#> 3 3 0.347           0.643       0.714         0.3691 0.743   0.551
#> 4 4 0.467           0.612       0.738         0.1346 0.880   0.709
#> 5 5 0.520           0.577       0.694         0.0826 0.920   0.767
#> 6 6 0.567           0.494       0.646         0.0679 0.842   0.480

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1818631     1  0.9833      0.380 0.576 0.424
#> SRR1818632     1  0.9635      0.485 0.612 0.388
#> SRR1818679     2  0.0672      0.857 0.008 0.992
#> SRR1818680     2  0.0672      0.857 0.008 0.992
#> SRR1818677     2  0.2043      0.863 0.032 0.968
#> SRR1818678     2  0.1633      0.863 0.024 0.976
#> SRR1818675     2  0.6148      0.825 0.152 0.848
#> SRR1818676     2  0.6148      0.825 0.152 0.848
#> SRR1818673     2  0.4022      0.891 0.080 0.920
#> SRR1818674     2  0.4022      0.891 0.080 0.920
#> SRR1818671     2  0.3879      0.891 0.076 0.924
#> SRR1818672     2  0.3879      0.891 0.076 0.924
#> SRR1818661     2  0.9833      0.225 0.424 0.576
#> SRR1818662     2  0.9833      0.225 0.424 0.576
#> SRR1818655     1  0.6973      0.814 0.812 0.188
#> SRR1818656     1  0.6712      0.826 0.824 0.176
#> SRR1818653     1  0.9393      0.563 0.644 0.356
#> SRR1818654     1  0.9286      0.588 0.656 0.344
#> SRR1818651     1  0.2236      0.849 0.964 0.036
#> SRR1818652     1  0.2236      0.849 0.964 0.036
#> SRR1818657     1  0.1184      0.839 0.984 0.016
#> SRR1818658     1  0.0938      0.837 0.988 0.012
#> SRR1818649     1  0.5946      0.844 0.856 0.144
#> SRR1818650     1  0.5946      0.844 0.856 0.144
#> SRR1818659     1  0.2603      0.852 0.956 0.044
#> SRR1818647     2  0.3879      0.891 0.076 0.924
#> SRR1818648     2  0.3879      0.891 0.076 0.924
#> SRR1818645     2  0.1184      0.849 0.016 0.984
#> SRR1818646     2  0.1184      0.849 0.016 0.984
#> SRR1818639     1  0.5408      0.853 0.876 0.124
#> SRR1818640     1  0.5629      0.851 0.868 0.132
#> SRR1818637     2  0.3879      0.891 0.076 0.924
#> SRR1818638     2  0.3879      0.891 0.076 0.924
#> SRR1818635     2  0.4022      0.891 0.080 0.920
#> SRR1818636     2  0.4022      0.891 0.080 0.920
#> SRR1818643     2  0.5737      0.846 0.136 0.864
#> SRR1818644     2  0.5408      0.857 0.124 0.876
#> SRR1818641     2  0.0672      0.856 0.008 0.992
#> SRR1818642     2  0.0672      0.856 0.008 0.992
#> SRR1818633     2  0.9286      0.482 0.344 0.656
#> SRR1818634     2  0.9286      0.481 0.344 0.656
#> SRR1818665     1  0.4431      0.850 0.908 0.092
#> SRR1818666     1  0.4431      0.850 0.908 0.092
#> SRR1818667     2  0.3879      0.891 0.076 0.924
#> SRR1818668     2  0.3879      0.891 0.076 0.924
#> SRR1818669     1  0.4690      0.854 0.900 0.100
#> SRR1818670     1  0.4562      0.854 0.904 0.096
#> SRR1818663     1  0.1184      0.840 0.984 0.016
#> SRR1818664     1  0.1184      0.840 0.984 0.016
#> SRR1818629     2  0.4022      0.891 0.080 0.920
#> SRR1818630     2  0.4022      0.891 0.080 0.920
#> SRR1818627     1  0.9522      0.516 0.628 0.372
#> SRR1818628     1  0.9954      0.246 0.540 0.460
#> SRR1818621     2  0.9833      0.225 0.424 0.576
#> SRR1818622     2  0.9833      0.225 0.424 0.576
#> SRR1818625     1  0.1184      0.840 0.984 0.016
#> SRR1818626     1  0.1184      0.840 0.984 0.016
#> SRR1818623     2  0.3879      0.891 0.076 0.924
#> SRR1818624     2  0.3879      0.891 0.076 0.924
#> SRR1818619     1  0.4815      0.852 0.896 0.104
#> SRR1818620     1  0.5178      0.846 0.884 0.116
#> SRR1818617     2  0.0938      0.854 0.012 0.988
#> SRR1818618     2  0.0672      0.856 0.008 0.992
#> SRR1818615     2  0.3879      0.891 0.076 0.924
#> SRR1818616     2  0.4022      0.891 0.080 0.920
#> SRR1818609     2  0.3879      0.891 0.076 0.924
#> SRR1818610     2  0.3879      0.891 0.076 0.924
#> SRR1818607     2  0.1184      0.855 0.016 0.984
#> SRR1818608     2  0.1184      0.855 0.016 0.984
#> SRR1818613     1  0.2603      0.851 0.956 0.044
#> SRR1818614     1  0.2603      0.852 0.956 0.044
#> SRR1818611     1  0.5629      0.850 0.868 0.132
#> SRR1818612     1  0.5629      0.850 0.868 0.132
#> SRR1818605     1  0.7219      0.770 0.800 0.200
#> SRR1818606     1  0.7219      0.770 0.800 0.200

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1818631     1  0.8444      0.607 0.612 0.236 0.152
#> SRR1818632     1  0.8336      0.619 0.624 0.224 0.152
#> SRR1818679     2  0.2845      0.863 0.068 0.920 0.012
#> SRR1818680     2  0.2845      0.863 0.068 0.920 0.012
#> SRR1818677     2  0.4526      0.813 0.104 0.856 0.040
#> SRR1818678     2  0.4256      0.828 0.096 0.868 0.036
#> SRR1818675     3  0.9004      0.463 0.136 0.376 0.488
#> SRR1818676     3  0.9004      0.463 0.136 0.376 0.488
#> SRR1818673     3  0.6737      0.677 0.016 0.384 0.600
#> SRR1818674     3  0.6737      0.677 0.016 0.384 0.600
#> SRR1818671     3  0.6608      0.726 0.008 0.432 0.560
#> SRR1818672     3  0.6608      0.726 0.008 0.432 0.560
#> SRR1818661     1  0.9510      0.472 0.492 0.264 0.244
#> SRR1818662     1  0.9510      0.472 0.492 0.264 0.244
#> SRR1818655     1  0.8890      0.510 0.544 0.308 0.148
#> SRR1818656     1  0.8825      0.521 0.556 0.296 0.148
#> SRR1818653     1  0.7584      0.692 0.676 0.104 0.220
#> SRR1818654     1  0.7584      0.690 0.676 0.104 0.220
#> SRR1818651     1  0.1491      0.756 0.968 0.016 0.016
#> SRR1818652     1  0.1636      0.757 0.964 0.020 0.016
#> SRR1818657     1  0.1751      0.753 0.960 0.012 0.028
#> SRR1818658     1  0.1620      0.754 0.964 0.012 0.024
#> SRR1818649     1  0.8650      0.530 0.572 0.292 0.136
#> SRR1818650     1  0.8597      0.532 0.576 0.292 0.132
#> SRR1818659     1  0.1636      0.756 0.964 0.020 0.016
#> SRR1818647     3  0.6498      0.728 0.008 0.396 0.596
#> SRR1818648     3  0.6498      0.728 0.008 0.396 0.596
#> SRR1818645     2  0.2651      0.864 0.060 0.928 0.012
#> SRR1818646     2  0.2651      0.864 0.060 0.928 0.012
#> SRR1818639     1  0.5667      0.733 0.800 0.060 0.140
#> SRR1818640     1  0.5823      0.731 0.792 0.064 0.144
#> SRR1818637     3  0.5785      0.687 0.000 0.332 0.668
#> SRR1818638     3  0.5785      0.687 0.000 0.332 0.668
#> SRR1818635     3  0.6985      0.672 0.024 0.384 0.592
#> SRR1818636     3  0.7099      0.669 0.028 0.384 0.588
#> SRR1818643     3  0.8995      0.405 0.136 0.372 0.492
#> SRR1818644     3  0.8995      0.410 0.136 0.372 0.492
#> SRR1818641     2  0.2584      0.868 0.064 0.928 0.008
#> SRR1818642     2  0.2584      0.868 0.064 0.928 0.008
#> SRR1818633     1  0.9999     -0.280 0.340 0.328 0.332
#> SRR1818634     1  0.9987     -0.262 0.348 0.308 0.344
#> SRR1818665     1  0.4058      0.752 0.880 0.044 0.076
#> SRR1818666     1  0.3590      0.752 0.896 0.028 0.076
#> SRR1818667     3  0.6513      0.698 0.004 0.476 0.520
#> SRR1818668     3  0.6509      0.702 0.004 0.472 0.524
#> SRR1818669     1  0.4413      0.741 0.852 0.024 0.124
#> SRR1818670     1  0.4662      0.740 0.844 0.032 0.124
#> SRR1818663     1  0.0848      0.753 0.984 0.008 0.008
#> SRR1818664     1  0.0848      0.753 0.984 0.008 0.008
#> SRR1818629     3  0.7905      0.619 0.064 0.376 0.560
#> SRR1818630     3  0.7824      0.626 0.060 0.376 0.564
#> SRR1818627     1  0.7126      0.673 0.720 0.164 0.116
#> SRR1818628     1  0.7447      0.656 0.696 0.184 0.120
#> SRR1818621     1  0.9532      0.464 0.488 0.268 0.244
#> SRR1818622     1  0.9532      0.464 0.488 0.268 0.244
#> SRR1818625     1  0.2280      0.746 0.940 0.052 0.008
#> SRR1818626     1  0.2173      0.747 0.944 0.048 0.008
#> SRR1818623     3  0.6286      0.635 0.000 0.464 0.536
#> SRR1818624     3  0.6286      0.635 0.000 0.464 0.536
#> SRR1818619     1  0.7245      0.647 0.712 0.120 0.168
#> SRR1818620     1  0.7552      0.625 0.692 0.140 0.168
#> SRR1818617     2  0.4035      0.841 0.080 0.880 0.040
#> SRR1818618     2  0.4357      0.831 0.080 0.868 0.052
#> SRR1818615     2  0.6682     -0.692 0.008 0.504 0.488
#> SRR1818616     3  0.6664      0.648 0.008 0.464 0.528
#> SRR1818609     3  0.6565      0.729 0.008 0.416 0.576
#> SRR1818610     3  0.6587      0.727 0.008 0.424 0.568
#> SRR1818607     2  0.2804      0.862 0.060 0.924 0.016
#> SRR1818608     2  0.2804      0.862 0.060 0.924 0.016
#> SRR1818613     1  0.1170      0.756 0.976 0.008 0.016
#> SRR1818614     1  0.1182      0.757 0.976 0.012 0.012
#> SRR1818611     1  0.8546      0.542 0.584 0.284 0.132
#> SRR1818612     1  0.8546      0.542 0.584 0.284 0.132
#> SRR1818605     1  0.3310      0.747 0.908 0.028 0.064
#> SRR1818606     1  0.3310      0.748 0.908 0.028 0.064

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1818631     1   0.557     0.6237 0.740 0.024 0.188 0.048
#> SRR1818632     1   0.553     0.6293 0.744 0.024 0.184 0.048
#> SRR1818679     2   0.313     0.8855 0.008 0.892 0.032 0.068
#> SRR1818680     2   0.313     0.8855 0.008 0.892 0.032 0.068
#> SRR1818677     2   0.539     0.7879 0.084 0.780 0.032 0.104
#> SRR1818678     2   0.528     0.8029 0.072 0.788 0.036 0.104
#> SRR1818675     3   0.659     0.0234 0.016 0.044 0.472 0.468
#> SRR1818676     3   0.659     0.0234 0.016 0.044 0.472 0.468
#> SRR1818673     4   0.715     0.5831 0.020 0.184 0.176 0.620
#> SRR1818674     4   0.715     0.5831 0.020 0.184 0.176 0.620
#> SRR1818671     4   0.243     0.6033 0.008 0.060 0.012 0.920
#> SRR1818672     4   0.243     0.6033 0.008 0.060 0.012 0.920
#> SRR1818661     3   0.622     0.6697 0.276 0.016 0.652 0.056
#> SRR1818662     3   0.619     0.6706 0.272 0.016 0.656 0.056
#> SRR1818655     1   0.658     0.4817 0.568 0.348 0.080 0.004
#> SRR1818656     1   0.651     0.4899 0.576 0.344 0.076 0.004
#> SRR1818653     1   0.506     0.7004 0.784 0.060 0.140 0.016
#> SRR1818654     1   0.506     0.7004 0.784 0.060 0.140 0.016
#> SRR1818651     1   0.108     0.7577 0.972 0.004 0.020 0.004
#> SRR1818652     1   0.119     0.7583 0.968 0.004 0.024 0.004
#> SRR1818657     1   0.179     0.7506 0.948 0.008 0.036 0.008
#> SRR1818658     1   0.179     0.7506 0.948 0.008 0.036 0.008
#> SRR1818649     1   0.643     0.5033 0.592 0.336 0.064 0.008
#> SRR1818650     1   0.641     0.5090 0.596 0.332 0.064 0.008
#> SRR1818659     1   0.151     0.7629 0.956 0.028 0.016 0.000
#> SRR1818647     4   0.298     0.5608 0.004 0.032 0.068 0.896
#> SRR1818648     4   0.291     0.5636 0.004 0.032 0.064 0.900
#> SRR1818645     2   0.255     0.8914 0.000 0.900 0.008 0.092
#> SRR1818646     2   0.255     0.8914 0.000 0.900 0.008 0.092
#> SRR1818639     1   0.406     0.7280 0.840 0.096 0.060 0.004
#> SRR1818640     1   0.421     0.7246 0.832 0.092 0.072 0.004
#> SRR1818637     4   0.549     0.3566 0.000 0.060 0.240 0.700
#> SRR1818638     4   0.549     0.3566 0.000 0.060 0.240 0.700
#> SRR1818635     4   0.716     0.5851 0.020 0.180 0.180 0.620
#> SRR1818636     4   0.716     0.5851 0.020 0.180 0.180 0.620
#> SRR1818643     4   0.835     0.4695 0.168 0.092 0.184 0.556
#> SRR1818644     4   0.838     0.4751 0.164 0.100 0.180 0.556
#> SRR1818641     2   0.264     0.8906 0.000 0.904 0.020 0.076
#> SRR1818642     2   0.264     0.8906 0.000 0.904 0.020 0.076
#> SRR1818633     4   0.865     0.0920 0.368 0.124 0.084 0.424
#> SRR1818634     4   0.865     0.0920 0.368 0.124 0.084 0.424
#> SRR1818665     1   0.366     0.7240 0.868 0.012 0.080 0.040
#> SRR1818666     1   0.383     0.7194 0.860 0.012 0.080 0.048
#> SRR1818667     4   0.510     0.5748 0.004 0.184 0.056 0.756
#> SRR1818668     4   0.521     0.5767 0.004 0.196 0.056 0.744
#> SRR1818669     1   0.379     0.7376 0.860 0.056 0.076 0.008
#> SRR1818670     1   0.379     0.7376 0.860 0.056 0.076 0.008
#> SRR1818663     1   0.151     0.7556 0.960 0.008 0.020 0.012
#> SRR1818664     1   0.162     0.7553 0.956 0.008 0.024 0.012
#> SRR1818629     4   0.710     0.5761 0.020 0.200 0.156 0.624
#> SRR1818630     4   0.710     0.5761 0.020 0.200 0.156 0.624
#> SRR1818627     1   0.734     0.4112 0.612 0.028 0.184 0.176
#> SRR1818628     1   0.738     0.4054 0.608 0.028 0.184 0.180
#> SRR1818621     3   0.636     0.6607 0.288 0.016 0.636 0.060
#> SRR1818622     3   0.636     0.6607 0.288 0.016 0.636 0.060
#> SRR1818625     1   0.117     0.7592 0.968 0.012 0.020 0.000
#> SRR1818626     1   0.106     0.7595 0.972 0.012 0.016 0.000
#> SRR1818623     4   0.603     0.2747 0.000 0.076 0.280 0.644
#> SRR1818624     4   0.603     0.2747 0.000 0.076 0.280 0.644
#> SRR1818619     1   0.704     0.3270 0.600 0.020 0.104 0.276
#> SRR1818620     1   0.701     0.3201 0.600 0.020 0.100 0.280
#> SRR1818617     2   0.584     0.7712 0.020 0.740 0.120 0.120
#> SRR1818618     2   0.578     0.7690 0.016 0.740 0.112 0.132
#> SRR1818615     4   0.645     0.5303 0.000 0.260 0.116 0.624
#> SRR1818616     4   0.679     0.5205 0.004 0.264 0.128 0.604
#> SRR1818609     4   0.222     0.5859 0.000 0.040 0.032 0.928
#> SRR1818610     4   0.222     0.5859 0.000 0.040 0.032 0.928
#> SRR1818607     2   0.255     0.8914 0.000 0.900 0.008 0.092
#> SRR1818608     2   0.240     0.8909 0.000 0.904 0.004 0.092
#> SRR1818613     1   0.160     0.7611 0.956 0.020 0.020 0.004
#> SRR1818614     1   0.123     0.7584 0.968 0.008 0.020 0.004
#> SRR1818611     1   0.628     0.5298 0.616 0.316 0.060 0.008
#> SRR1818612     1   0.636     0.5230 0.608 0.320 0.064 0.008
#> SRR1818605     1   0.333     0.7346 0.884 0.008 0.060 0.048
#> SRR1818606     1   0.342     0.7335 0.880 0.008 0.060 0.052

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1818631     1  0.6688     0.3368 0.548 0.016 0.324 0.036 0.076
#> SRR1818632     1  0.6795     0.3361 0.548 0.020 0.316 0.036 0.080
#> SRR1818679     2  0.2486     0.8443 0.032 0.912 0.008 0.040 0.008
#> SRR1818680     2  0.2486     0.8443 0.032 0.912 0.008 0.040 0.008
#> SRR1818677     2  0.6292     0.7203 0.084 0.696 0.036 0.068 0.116
#> SRR1818678     2  0.6292     0.7167 0.084 0.696 0.036 0.068 0.116
#> SRR1818675     3  0.6645     0.3098 0.020 0.000 0.516 0.312 0.152
#> SRR1818676     3  0.6645     0.3098 0.020 0.000 0.516 0.312 0.152
#> SRR1818673     5  0.5929     0.7623 0.004 0.104 0.000 0.344 0.548
#> SRR1818674     5  0.5929     0.7623 0.004 0.104 0.000 0.344 0.548
#> SRR1818671     4  0.2853     0.6627 0.004 0.040 0.000 0.880 0.076
#> SRR1818672     4  0.2853     0.6626 0.004 0.040 0.000 0.880 0.076
#> SRR1818661     3  0.4134     0.7280 0.148 0.004 0.792 0.052 0.004
#> SRR1818662     3  0.4092     0.7280 0.144 0.004 0.796 0.052 0.004
#> SRR1818655     1  0.7826     0.3928 0.452 0.256 0.108 0.000 0.184
#> SRR1818656     1  0.7781     0.4079 0.464 0.244 0.108 0.000 0.184
#> SRR1818653     1  0.6154     0.4903 0.604 0.016 0.236 0.000 0.144
#> SRR1818654     1  0.6177     0.4876 0.600 0.016 0.240 0.000 0.144
#> SRR1818651     1  0.2204     0.6455 0.920 0.016 0.016 0.000 0.048
#> SRR1818652     1  0.2537     0.6463 0.904 0.016 0.024 0.000 0.056
#> SRR1818657     1  0.2074     0.6379 0.920 0.004 0.016 0.000 0.060
#> SRR1818658     1  0.2301     0.6378 0.912 0.004 0.016 0.004 0.064
#> SRR1818649     1  0.7721     0.4123 0.464 0.240 0.092 0.000 0.204
#> SRR1818650     1  0.7663     0.4192 0.472 0.236 0.088 0.000 0.204
#> SRR1818659     1  0.3340     0.6509 0.864 0.064 0.024 0.000 0.048
#> SRR1818647     4  0.1179     0.7108 0.000 0.004 0.016 0.964 0.016
#> SRR1818648     4  0.1179     0.7108 0.000 0.004 0.016 0.964 0.016
#> SRR1818645     2  0.1386     0.8474 0.000 0.952 0.000 0.016 0.032
#> SRR1818646     2  0.1549     0.8454 0.000 0.944 0.000 0.016 0.040
#> SRR1818639     1  0.5519     0.5849 0.700 0.028 0.112 0.000 0.160
#> SRR1818640     1  0.5351     0.5862 0.708 0.020 0.112 0.000 0.160
#> SRR1818637     4  0.4412     0.6118 0.000 0.008 0.188 0.756 0.048
#> SRR1818638     4  0.4412     0.6118 0.000 0.008 0.188 0.756 0.048
#> SRR1818635     5  0.5905     0.7648 0.004 0.104 0.000 0.336 0.556
#> SRR1818636     5  0.5905     0.7648 0.004 0.104 0.000 0.336 0.556
#> SRR1818643     5  0.7181     0.5439 0.180 0.060 0.004 0.208 0.548
#> SRR1818644     5  0.7181     0.5490 0.180 0.060 0.004 0.208 0.548
#> SRR1818641     2  0.1095     0.8497 0.008 0.968 0.012 0.012 0.000
#> SRR1818642     2  0.1095     0.8497 0.008 0.968 0.012 0.012 0.000
#> SRR1818633     1  0.8192    -0.1160 0.384 0.052 0.028 0.220 0.316
#> SRR1818634     1  0.8192    -0.1160 0.384 0.052 0.028 0.220 0.316
#> SRR1818665     1  0.4389     0.5874 0.784 0.004 0.056 0.012 0.144
#> SRR1818666     1  0.4431     0.5840 0.780 0.004 0.056 0.012 0.148
#> SRR1818667     4  0.5408     0.5990 0.004 0.100 0.036 0.728 0.132
#> SRR1818668     4  0.5587     0.5757 0.004 0.108 0.036 0.712 0.140
#> SRR1818669     1  0.4886     0.6034 0.764 0.040 0.080 0.000 0.116
#> SRR1818670     1  0.5022     0.6016 0.752 0.040 0.080 0.000 0.128
#> SRR1818663     1  0.1808     0.6451 0.936 0.008 0.012 0.000 0.044
#> SRR1818664     1  0.1913     0.6448 0.932 0.008 0.016 0.000 0.044
#> SRR1818629     5  0.6050     0.6753 0.000 0.104 0.004 0.404 0.488
#> SRR1818630     5  0.6011     0.6782 0.000 0.100 0.004 0.404 0.492
#> SRR1818627     1  0.7545     0.2066 0.456 0.004 0.184 0.056 0.300
#> SRR1818628     1  0.7624     0.1658 0.432 0.004 0.208 0.052 0.304
#> SRR1818621     3  0.4708     0.6817 0.192 0.012 0.744 0.048 0.004
#> SRR1818622     3  0.4674     0.6867 0.188 0.012 0.748 0.048 0.004
#> SRR1818625     1  0.2426     0.6475 0.908 0.008 0.016 0.004 0.064
#> SRR1818626     1  0.2359     0.6475 0.912 0.008 0.016 0.004 0.060
#> SRR1818623     4  0.4444     0.6412 0.000 0.008 0.184 0.756 0.052
#> SRR1818624     4  0.4444     0.6412 0.000 0.008 0.184 0.756 0.052
#> SRR1818619     1  0.6514     0.3694 0.560 0.004 0.060 0.060 0.316
#> SRR1818620     1  0.6321     0.3736 0.564 0.000 0.052 0.064 0.320
#> SRR1818617     2  0.6125     0.6860 0.032 0.648 0.016 0.072 0.232
#> SRR1818618     2  0.6055     0.6838 0.032 0.648 0.012 0.072 0.236
#> SRR1818615     4  0.5649     0.0301 0.000 0.108 0.000 0.596 0.296
#> SRR1818616     4  0.5724    -0.0274 0.000 0.112 0.000 0.584 0.304
#> SRR1818609     4  0.0898     0.7071 0.000 0.008 0.000 0.972 0.020
#> SRR1818610     4  0.0992     0.7059 0.000 0.008 0.000 0.968 0.024
#> SRR1818607     2  0.1211     0.8502 0.000 0.960 0.000 0.016 0.024
#> SRR1818608     2  0.1117     0.8512 0.000 0.964 0.000 0.016 0.020
#> SRR1818613     1  0.2418     0.6439 0.912 0.020 0.024 0.000 0.044
#> SRR1818614     1  0.2409     0.6427 0.912 0.016 0.028 0.000 0.044
#> SRR1818611     1  0.7631     0.4355 0.480 0.220 0.088 0.000 0.212
#> SRR1818612     1  0.7611     0.4368 0.484 0.216 0.088 0.000 0.212
#> SRR1818605     1  0.4083     0.6172 0.804 0.008 0.052 0.004 0.132
#> SRR1818606     1  0.4150     0.6157 0.800 0.008 0.056 0.004 0.132

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1818631     3   0.665   0.148633 0.260 0.032 0.388 0.000 0.320 0.000
#> SRR1818632     3   0.667   0.134617 0.264 0.032 0.380 0.000 0.324 0.000
#> SRR1818679     2   0.328   0.807017 0.008 0.856 0.036 0.004 0.076 0.020
#> SRR1818680     2   0.328   0.807017 0.008 0.856 0.036 0.004 0.076 0.020
#> SRR1818677     2   0.613   0.667461 0.032 0.612 0.040 0.016 0.252 0.048
#> SRR1818678     2   0.603   0.675287 0.032 0.620 0.040 0.012 0.248 0.048
#> SRR1818675     3   0.695   0.202060 0.132 0.000 0.452 0.292 0.000 0.124
#> SRR1818676     3   0.695   0.202060 0.132 0.000 0.452 0.292 0.000 0.124
#> SRR1818673     6   0.107   0.652253 0.000 0.020 0.000 0.008 0.008 0.964
#> SRR1818674     6   0.107   0.652253 0.000 0.020 0.000 0.008 0.008 0.964
#> SRR1818671     4   0.440   0.666953 0.004 0.040 0.012 0.708 0.000 0.236
#> SRR1818672     4   0.440   0.666953 0.004 0.040 0.012 0.708 0.000 0.236
#> SRR1818661     3   0.280   0.616648 0.060 0.004 0.880 0.020 0.036 0.000
#> SRR1818662     3   0.281   0.616256 0.056 0.004 0.880 0.020 0.040 0.000
#> SRR1818655     5   0.350   0.564089 0.024 0.160 0.016 0.000 0.800 0.000
#> SRR1818656     5   0.337   0.563319 0.020 0.164 0.012 0.000 0.804 0.000
#> SRR1818653     5   0.572   0.311255 0.236 0.004 0.192 0.004 0.564 0.000
#> SRR1818654     5   0.577   0.309337 0.236 0.004 0.200 0.004 0.556 0.000
#> SRR1818651     1   0.428   0.424388 0.572 0.008 0.004 0.000 0.412 0.004
#> SRR1818652     1   0.403   0.423659 0.572 0.008 0.000 0.000 0.420 0.000
#> SRR1818657     1   0.458   0.464318 0.552 0.004 0.012 0.000 0.420 0.012
#> SRR1818658     1   0.450   0.458844 0.552 0.004 0.008 0.000 0.424 0.012
#> SRR1818649     5   0.240   0.581200 0.016 0.112 0.000 0.000 0.872 0.000
#> SRR1818650     5   0.270   0.581891 0.020 0.108 0.008 0.000 0.864 0.000
#> SRR1818659     1   0.473   0.410600 0.500 0.008 0.012 0.000 0.468 0.012
#> SRR1818647     4   0.225   0.718898 0.012 0.012 0.004 0.904 0.000 0.068
#> SRR1818648     4   0.230   0.719305 0.012 0.012 0.004 0.900 0.000 0.072
#> SRR1818645     2   0.133   0.820059 0.000 0.952 0.000 0.012 0.008 0.028
#> SRR1818646     2   0.133   0.820059 0.000 0.952 0.000 0.012 0.008 0.028
#> SRR1818639     5   0.542   0.360862 0.280 0.044 0.064 0.000 0.612 0.000
#> SRR1818640     5   0.542   0.372979 0.272 0.040 0.072 0.000 0.616 0.000
#> SRR1818637     4   0.426   0.587177 0.012 0.012 0.204 0.740 0.000 0.032
#> SRR1818638     4   0.426   0.587177 0.012 0.012 0.204 0.740 0.000 0.032
#> SRR1818635     6   0.121   0.653057 0.004 0.020 0.000 0.008 0.008 0.960
#> SRR1818636     6   0.121   0.653057 0.004 0.020 0.000 0.008 0.008 0.960
#> SRR1818643     6   0.565   0.573924 0.216 0.036 0.016 0.020 0.048 0.664
#> SRR1818644     6   0.581   0.576673 0.212 0.044 0.016 0.020 0.052 0.656
#> SRR1818641     2   0.246   0.800514 0.008 0.908 0.016 0.008 0.036 0.024
#> SRR1818642     2   0.225   0.803390 0.008 0.916 0.012 0.004 0.036 0.024
#> SRR1818633     6   0.751   0.213301 0.324 0.052 0.020 0.032 0.140 0.432
#> SRR1818634     6   0.751   0.213301 0.324 0.052 0.020 0.032 0.140 0.432
#> SRR1818665     1   0.572   0.469064 0.604 0.004 0.056 0.020 0.288 0.028
#> SRR1818666     1   0.562   0.463371 0.596 0.004 0.048 0.020 0.308 0.024
#> SRR1818667     4   0.668   0.526794 0.004 0.100 0.076 0.500 0.008 0.312
#> SRR1818668     4   0.667   0.533629 0.004 0.100 0.076 0.504 0.008 0.308
#> SRR1818669     5   0.414   0.441132 0.160 0.028 0.032 0.000 0.772 0.008
#> SRR1818670     5   0.407   0.458596 0.152 0.032 0.028 0.000 0.780 0.008
#> SRR1818663     1   0.431   0.421415 0.520 0.000 0.004 0.000 0.464 0.012
#> SRR1818664     1   0.431   0.407750 0.508 0.000 0.004 0.000 0.476 0.012
#> SRR1818629     6   0.386   0.626569 0.016 0.068 0.020 0.048 0.016 0.832
#> SRR1818630     6   0.393   0.622708 0.016 0.064 0.020 0.056 0.016 0.828
#> SRR1818627     1   0.664   0.035148 0.552 0.000 0.256 0.036 0.060 0.096
#> SRR1818628     1   0.669   0.036556 0.548 0.000 0.256 0.036 0.064 0.096
#> SRR1818621     3   0.413   0.601320 0.104 0.004 0.784 0.020 0.088 0.000
#> SRR1818622     3   0.399   0.609139 0.100 0.004 0.796 0.020 0.080 0.000
#> SRR1818625     5   0.423  -0.377883 0.440 0.000 0.000 0.000 0.544 0.016
#> SRR1818626     5   0.422  -0.364000 0.432 0.000 0.000 0.000 0.552 0.016
#> SRR1818623     4   0.605   0.643988 0.016 0.040 0.160 0.640 0.008 0.136
#> SRR1818624     4   0.605   0.643988 0.016 0.040 0.160 0.640 0.008 0.136
#> SRR1818619     1   0.733   0.376580 0.448 0.008 0.096 0.008 0.276 0.164
#> SRR1818620     1   0.725   0.375537 0.444 0.008 0.080 0.008 0.292 0.168
#> SRR1818617     2   0.614   0.692223 0.024 0.620 0.024 0.012 0.208 0.112
#> SRR1818618     2   0.613   0.696033 0.024 0.624 0.024 0.012 0.200 0.116
#> SRR1818615     6   0.586   0.000344 0.000 0.132 0.008 0.332 0.008 0.520
#> SRR1818616     6   0.575   0.057000 0.000 0.120 0.008 0.324 0.008 0.540
#> SRR1818609     4   0.337   0.708847 0.008 0.020 0.000 0.796 0.000 0.176
#> SRR1818610     4   0.345   0.708413 0.008 0.024 0.000 0.792 0.000 0.176
#> SRR1818607     2   0.133   0.820059 0.000 0.952 0.000 0.012 0.008 0.028
#> SRR1818608     2   0.133   0.820059 0.000 0.952 0.000 0.012 0.008 0.028
#> SRR1818613     1   0.433   0.440480 0.596 0.008 0.008 0.000 0.384 0.004
#> SRR1818614     1   0.458   0.429165 0.584 0.008 0.020 0.000 0.384 0.004
#> SRR1818611     5   0.236   0.581050 0.016 0.108 0.000 0.000 0.876 0.000
#> SRR1818612     5   0.240   0.582017 0.020 0.104 0.000 0.000 0.876 0.000
#> SRR1818605     1   0.491   0.445377 0.680 0.000 0.028 0.012 0.244 0.036
#> SRR1818606     1   0.491   0.445377 0.680 0.000 0.028 0.012 0.244 0.036

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15216 rows and 75 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.813           0.904       0.958         0.4929 0.501   0.501
#> 3 3 0.509           0.704       0.837         0.2886 0.667   0.449
#> 4 4 0.411           0.465       0.675         0.1443 0.722   0.403
#> 5 5 0.494           0.397       0.630         0.0809 0.793   0.408
#> 6 6 0.557           0.460       0.598         0.0457 0.914   0.636

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1818631     1  0.0000     0.9711 1.000 0.000
#> SRR1818632     1  0.0000     0.9711 1.000 0.000
#> SRR1818679     1  0.9983    -0.0376 0.524 0.476
#> SRR1818680     2  0.9635     0.4410 0.388 0.612
#> SRR1818677     1  0.1633     0.9484 0.976 0.024
#> SRR1818678     1  0.2778     0.9237 0.952 0.048
#> SRR1818675     2  0.3584     0.8902 0.068 0.932
#> SRR1818676     2  0.7453     0.7424 0.212 0.788
#> SRR1818673     2  0.0672     0.9294 0.008 0.992
#> SRR1818674     2  0.0000     0.9327 0.000 1.000
#> SRR1818671     2  0.0000     0.9327 0.000 1.000
#> SRR1818672     2  0.0000     0.9327 0.000 1.000
#> SRR1818661     1  0.0000     0.9711 1.000 0.000
#> SRR1818662     1  0.0000     0.9711 1.000 0.000
#> SRR1818655     1  0.0000     0.9711 1.000 0.000
#> SRR1818656     1  0.0000     0.9711 1.000 0.000
#> SRR1818653     1  0.0000     0.9711 1.000 0.000
#> SRR1818654     1  0.0000     0.9711 1.000 0.000
#> SRR1818651     1  0.0000     0.9711 1.000 0.000
#> SRR1818652     1  0.0000     0.9711 1.000 0.000
#> SRR1818657     1  0.0000     0.9711 1.000 0.000
#> SRR1818658     1  0.0000     0.9711 1.000 0.000
#> SRR1818649     1  0.0000     0.9711 1.000 0.000
#> SRR1818650     1  0.0000     0.9711 1.000 0.000
#> SRR1818659     1  0.0000     0.9711 1.000 0.000
#> SRR1818647     2  0.0000     0.9327 0.000 1.000
#> SRR1818648     2  0.0000     0.9327 0.000 1.000
#> SRR1818645     2  0.0000     0.9327 0.000 1.000
#> SRR1818646     2  0.0000     0.9327 0.000 1.000
#> SRR1818639     1  0.0000     0.9711 1.000 0.000
#> SRR1818640     1  0.0000     0.9711 1.000 0.000
#> SRR1818637     2  0.0000     0.9327 0.000 1.000
#> SRR1818638     2  0.0000     0.9327 0.000 1.000
#> SRR1818635     2  0.6973     0.7887 0.188 0.812
#> SRR1818636     2  0.7745     0.7388 0.228 0.772
#> SRR1818643     2  0.9129     0.5782 0.328 0.672
#> SRR1818644     2  0.8713     0.6440 0.292 0.708
#> SRR1818641     2  0.5946     0.8340 0.144 0.856
#> SRR1818642     2  0.5946     0.8339 0.144 0.856
#> SRR1818633     1  0.6712     0.7614 0.824 0.176
#> SRR1818634     1  0.9427     0.4057 0.640 0.360
#> SRR1818665     1  0.0000     0.9711 1.000 0.000
#> SRR1818666     1  0.0000     0.9711 1.000 0.000
#> SRR1818667     2  0.0000     0.9327 0.000 1.000
#> SRR1818668     2  0.0000     0.9327 0.000 1.000
#> SRR1818669     1  0.0000     0.9711 1.000 0.000
#> SRR1818670     1  0.0000     0.9711 1.000 0.000
#> SRR1818663     1  0.0000     0.9711 1.000 0.000
#> SRR1818664     1  0.0000     0.9711 1.000 0.000
#> SRR1818629     2  0.0000     0.9327 0.000 1.000
#> SRR1818630     2  0.0000     0.9327 0.000 1.000
#> SRR1818627     1  0.0000     0.9711 1.000 0.000
#> SRR1818628     1  0.0000     0.9711 1.000 0.000
#> SRR1818621     1  0.0000     0.9711 1.000 0.000
#> SRR1818622     1  0.0000     0.9711 1.000 0.000
#> SRR1818625     1  0.0000     0.9711 1.000 0.000
#> SRR1818626     1  0.0000     0.9711 1.000 0.000
#> SRR1818623     2  0.0000     0.9327 0.000 1.000
#> SRR1818624     2  0.0000     0.9327 0.000 1.000
#> SRR1818619     1  0.0000     0.9711 1.000 0.000
#> SRR1818620     1  0.0000     0.9711 1.000 0.000
#> SRR1818617     2  0.2043     0.9173 0.032 0.968
#> SRR1818618     2  0.1633     0.9217 0.024 0.976
#> SRR1818615     2  0.0000     0.9327 0.000 1.000
#> SRR1818616     2  0.0000     0.9327 0.000 1.000
#> SRR1818609     2  0.0000     0.9327 0.000 1.000
#> SRR1818610     2  0.0000     0.9327 0.000 1.000
#> SRR1818607     2  0.0000     0.9327 0.000 1.000
#> SRR1818608     2  0.0000     0.9327 0.000 1.000
#> SRR1818613     1  0.0000     0.9711 1.000 0.000
#> SRR1818614     1  0.0000     0.9711 1.000 0.000
#> SRR1818611     1  0.0000     0.9711 1.000 0.000
#> SRR1818612     1  0.0000     0.9711 1.000 0.000
#> SRR1818605     1  0.0000     0.9711 1.000 0.000
#> SRR1818606     1  0.0000     0.9711 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1818631     3  0.4178     0.8359 0.172 0.000 0.828
#> SRR1818632     3  0.4178     0.8359 0.172 0.000 0.828
#> SRR1818679     1  0.4842     0.6999 0.776 0.224 0.000
#> SRR1818680     1  0.5098     0.6854 0.752 0.248 0.000
#> SRR1818677     1  0.2569     0.7850 0.936 0.032 0.032
#> SRR1818678     1  0.2492     0.7842 0.936 0.048 0.016
#> SRR1818675     3  0.0237     0.7047 0.000 0.004 0.996
#> SRR1818676     3  0.0237     0.7047 0.000 0.004 0.996
#> SRR1818673     1  0.5650     0.6232 0.688 0.312 0.000
#> SRR1818674     1  0.5859     0.5760 0.656 0.344 0.000
#> SRR1818671     2  0.3686     0.8403 0.000 0.860 0.140
#> SRR1818672     2  0.3619     0.8413 0.000 0.864 0.136
#> SRR1818661     3  0.2796     0.8075 0.092 0.000 0.908
#> SRR1818662     3  0.2796     0.8074 0.092 0.000 0.908
#> SRR1818655     1  0.0237     0.7857 0.996 0.000 0.004
#> SRR1818656     1  0.0237     0.7857 0.996 0.000 0.004
#> SRR1818653     1  0.6079    -0.0017 0.612 0.000 0.388
#> SRR1818654     1  0.5948     0.1038 0.640 0.000 0.360
#> SRR1818651     1  0.5098     0.5050 0.752 0.000 0.248
#> SRR1818652     1  0.2066     0.7614 0.940 0.000 0.060
#> SRR1818657     1  0.2165     0.7611 0.936 0.000 0.064
#> SRR1818658     1  0.1964     0.7652 0.944 0.000 0.056
#> SRR1818649     1  0.1289     0.7859 0.968 0.032 0.000
#> SRR1818650     1  0.1411     0.7853 0.964 0.036 0.000
#> SRR1818659     1  0.6204    -0.0752 0.576 0.000 0.424
#> SRR1818647     2  0.4605     0.8107 0.000 0.796 0.204
#> SRR1818648     2  0.4654     0.8081 0.000 0.792 0.208
#> SRR1818645     2  0.0592     0.8442 0.012 0.988 0.000
#> SRR1818646     2  0.0424     0.8457 0.008 0.992 0.000
#> SRR1818639     1  0.1031     0.7814 0.976 0.000 0.024
#> SRR1818640     1  0.0747     0.7833 0.984 0.000 0.016
#> SRR1818637     2  0.5178     0.7740 0.000 0.744 0.256
#> SRR1818638     2  0.5216     0.7703 0.000 0.740 0.260
#> SRR1818635     1  0.5431     0.6569 0.716 0.284 0.000
#> SRR1818636     1  0.5138     0.6831 0.748 0.252 0.000
#> SRR1818643     1  0.5926     0.5750 0.644 0.356 0.000
#> SRR1818644     1  0.5988     0.5517 0.632 0.368 0.000
#> SRR1818641     1  0.5016     0.6905 0.760 0.240 0.000
#> SRR1818642     1  0.4931     0.6962 0.768 0.232 0.000
#> SRR1818633     1  0.7804     0.4575 0.664 0.120 0.216
#> SRR1818634     3  0.9982     0.2825 0.332 0.308 0.360
#> SRR1818665     1  0.3686     0.6964 0.860 0.000 0.140
#> SRR1818666     1  0.2959     0.7306 0.900 0.000 0.100
#> SRR1818667     2  0.2066     0.8513 0.000 0.940 0.060
#> SRR1818668     2  0.1753     0.8516 0.000 0.952 0.048
#> SRR1818669     1  0.0747     0.7833 0.984 0.000 0.016
#> SRR1818670     1  0.0747     0.7833 0.984 0.000 0.016
#> SRR1818663     1  0.0592     0.7842 0.988 0.000 0.012
#> SRR1818664     1  0.0592     0.7842 0.988 0.000 0.012
#> SRR1818629     2  0.0000     0.8480 0.000 1.000 0.000
#> SRR1818630     2  0.0000     0.8480 0.000 1.000 0.000
#> SRR1818627     3  0.4399     0.8297 0.188 0.000 0.812
#> SRR1818628     3  0.4291     0.8332 0.180 0.000 0.820
#> SRR1818621     3  0.4121     0.8356 0.168 0.000 0.832
#> SRR1818622     3  0.4002     0.8344 0.160 0.000 0.840
#> SRR1818625     1  0.0000     0.7864 1.000 0.000 0.000
#> SRR1818626     1  0.0000     0.7864 1.000 0.000 0.000
#> SRR1818623     2  0.5968     0.6616 0.000 0.636 0.364
#> SRR1818624     2  0.5591     0.7353 0.000 0.696 0.304
#> SRR1818619     1  0.5016     0.5935 0.760 0.000 0.240
#> SRR1818620     1  0.4121     0.6854 0.832 0.000 0.168
#> SRR1818617     2  0.6252    -0.0600 0.444 0.556 0.000
#> SRR1818618     2  0.4974     0.5662 0.236 0.764 0.000
#> SRR1818615     2  0.0237     0.8470 0.004 0.996 0.000
#> SRR1818616     2  0.0237     0.8470 0.004 0.996 0.000
#> SRR1818609     2  0.3816     0.8376 0.000 0.852 0.148
#> SRR1818610     2  0.3816     0.8376 0.000 0.852 0.148
#> SRR1818607     2  0.0592     0.8442 0.012 0.988 0.000
#> SRR1818608     2  0.0592     0.8439 0.012 0.988 0.000
#> SRR1818613     3  0.6215     0.5298 0.428 0.000 0.572
#> SRR1818614     3  0.6095     0.6094 0.392 0.000 0.608
#> SRR1818611     1  0.1529     0.7844 0.960 0.040 0.000
#> SRR1818612     1  0.2625     0.7681 0.916 0.084 0.000
#> SRR1818605     3  0.5560     0.7504 0.300 0.000 0.700
#> SRR1818606     3  0.5591     0.7498 0.304 0.000 0.696

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1818631     3   0.713      0.382 0.148 0.244 0.596 0.012
#> SRR1818632     3   0.788      0.284 0.208 0.272 0.504 0.016
#> SRR1818679     2   0.447      0.462 0.020 0.776 0.200 0.004
#> SRR1818680     2   0.421      0.484 0.016 0.804 0.172 0.008
#> SRR1818677     2   0.681      0.390 0.144 0.612 0.240 0.004
#> SRR1818678     2   0.642      0.434 0.152 0.648 0.200 0.000
#> SRR1818675     3   0.593      0.250 0.028 0.004 0.516 0.452
#> SRR1818676     3   0.592      0.264 0.028 0.004 0.524 0.444
#> SRR1818673     2   0.741      0.272 0.340 0.540 0.036 0.084
#> SRR1818674     2   0.757      0.278 0.328 0.536 0.036 0.100
#> SRR1818671     4   0.452      0.697 0.028 0.204 0.000 0.768
#> SRR1818672     4   0.481      0.688 0.028 0.236 0.000 0.736
#> SRR1818661     3   0.378      0.644 0.052 0.008 0.860 0.080
#> SRR1818662     3   0.384      0.645 0.052 0.012 0.860 0.076
#> SRR1818655     2   0.741      0.264 0.188 0.492 0.320 0.000
#> SRR1818656     2   0.761      0.259 0.252 0.476 0.272 0.000
#> SRR1818653     3   0.766      0.107 0.160 0.408 0.424 0.008
#> SRR1818654     2   0.774     -0.182 0.172 0.416 0.404 0.008
#> SRR1818651     1   0.451      0.682 0.800 0.064 0.136 0.000
#> SRR1818652     1   0.435      0.676 0.816 0.080 0.104 0.000
#> SRR1818657     1   0.297      0.691 0.896 0.076 0.020 0.008
#> SRR1818658     1   0.285      0.691 0.900 0.076 0.016 0.008
#> SRR1818649     1   0.752      0.252 0.492 0.280 0.228 0.000
#> SRR1818650     1   0.719      0.315 0.532 0.300 0.168 0.000
#> SRR1818659     1   0.376      0.668 0.828 0.020 0.152 0.000
#> SRR1818647     4   0.191      0.640 0.000 0.040 0.020 0.940
#> SRR1818648     4   0.207      0.643 0.004 0.044 0.016 0.936
#> SRR1818645     2   0.327      0.318 0.000 0.832 0.000 0.168
#> SRR1818646     2   0.361      0.252 0.000 0.800 0.000 0.200
#> SRR1818639     2   0.789      0.101 0.288 0.368 0.344 0.000
#> SRR1818640     2   0.778      0.105 0.244 0.392 0.364 0.000
#> SRR1818637     4   0.261      0.564 0.000 0.012 0.088 0.900
#> SRR1818638     4   0.268      0.560 0.000 0.012 0.092 0.896
#> SRR1818635     2   0.716      0.162 0.404 0.504 0.036 0.056
#> SRR1818636     2   0.679      0.051 0.456 0.476 0.036 0.032
#> SRR1818643     1   0.581      0.556 0.728 0.192 0.036 0.044
#> SRR1818644     1   0.569      0.559 0.736 0.188 0.036 0.040
#> SRR1818641     2   0.230      0.509 0.044 0.928 0.004 0.024
#> SRR1818642     2   0.182      0.509 0.036 0.944 0.000 0.020
#> SRR1818633     1   0.704      0.458 0.656 0.116 0.044 0.184
#> SRR1818634     1   0.833      0.199 0.516 0.132 0.072 0.280
#> SRR1818665     1   0.385      0.661 0.860 0.056 0.072 0.012
#> SRR1818666     1   0.365      0.668 0.868 0.068 0.056 0.008
#> SRR1818667     4   0.523      0.575 0.004 0.412 0.004 0.580
#> SRR1818668     4   0.531      0.588 0.004 0.392 0.008 0.596
#> SRR1818669     1   0.736      0.215 0.488 0.340 0.172 0.000
#> SRR1818670     1   0.719      0.256 0.516 0.328 0.156 0.000
#> SRR1818663     1   0.233      0.695 0.916 0.072 0.012 0.000
#> SRR1818664     1   0.254      0.692 0.904 0.084 0.012 0.000
#> SRR1818629     4   0.671      0.505 0.052 0.436 0.016 0.496
#> SRR1818630     4   0.684      0.492 0.060 0.452 0.016 0.472
#> SRR1818627     1   0.650      0.322 0.624 0.012 0.288 0.076
#> SRR1818628     1   0.695      0.253 0.592 0.024 0.304 0.080
#> SRR1818621     3   0.313      0.632 0.072 0.024 0.892 0.012
#> SRR1818622     3   0.283      0.630 0.056 0.024 0.908 0.012
#> SRR1818625     1   0.331      0.682 0.868 0.104 0.028 0.000
#> SRR1818626     1   0.324      0.683 0.872 0.100 0.028 0.000
#> SRR1818623     4   0.501      0.322 0.000 0.024 0.276 0.700
#> SRR1818624     4   0.461      0.410 0.000 0.024 0.224 0.752
#> SRR1818619     1   0.448      0.660 0.832 0.080 0.064 0.024
#> SRR1818620     1   0.403      0.677 0.852 0.080 0.052 0.016
#> SRR1818617     2   0.510      0.518 0.036 0.800 0.092 0.072
#> SRR1818618     2   0.546      0.524 0.028 0.772 0.120 0.080
#> SRR1818615     4   0.591      0.493 0.000 0.440 0.036 0.524
#> SRR1818616     4   0.592      0.483 0.000 0.448 0.036 0.516
#> SRR1818609     4   0.322      0.703 0.000 0.164 0.000 0.836
#> SRR1818610     4   0.317      0.702 0.000 0.160 0.000 0.840
#> SRR1818607     2   0.349      0.280 0.000 0.812 0.000 0.188
#> SRR1818608     2   0.344      0.295 0.000 0.816 0.000 0.184
#> SRR1818613     1   0.419      0.682 0.800 0.028 0.172 0.000
#> SRR1818614     1   0.468      0.651 0.744 0.024 0.232 0.000
#> SRR1818611     1   0.664      0.457 0.620 0.228 0.152 0.000
#> SRR1818612     1   0.704      0.378 0.568 0.256 0.176 0.000
#> SRR1818605     1   0.349      0.674 0.856 0.008 0.124 0.012
#> SRR1818606     1   0.358      0.661 0.832 0.000 0.156 0.012

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1818631     3   0.732   0.432772 0.020 0.200 0.476 0.016 0.288
#> SRR1818632     3   0.762   0.392657 0.032 0.216 0.408 0.012 0.332
#> SRR1818679     2   0.400   0.455783 0.012 0.812 0.112 0.000 0.064
#> SRR1818680     2   0.390   0.463580 0.012 0.820 0.104 0.000 0.064
#> SRR1818677     2   0.795  -0.045618 0.068 0.444 0.240 0.012 0.236
#> SRR1818678     2   0.799  -0.009606 0.084 0.460 0.212 0.012 0.232
#> SRR1818675     4   0.693   0.326897 0.016 0.000 0.340 0.444 0.200
#> SRR1818676     4   0.701   0.308653 0.020 0.000 0.352 0.432 0.196
#> SRR1818673     1   0.616   0.392097 0.588 0.280 0.000 0.112 0.020
#> SRR1818674     1   0.624   0.372612 0.576 0.288 0.000 0.116 0.020
#> SRR1818671     4   0.496   0.523006 0.000 0.168 0.004 0.720 0.108
#> SRR1818672     4   0.529   0.501998 0.008 0.180 0.004 0.704 0.104
#> SRR1818661     3   0.373   0.490989 0.004 0.000 0.824 0.068 0.104
#> SRR1818662     3   0.379   0.484121 0.004 0.000 0.820 0.072 0.104
#> SRR1818655     2   0.773  -0.099309 0.212 0.392 0.328 0.000 0.068
#> SRR1818656     2   0.793  -0.130833 0.268 0.360 0.296 0.000 0.076
#> SRR1818653     2   0.720  -0.077664 0.036 0.396 0.392 0.000 0.176
#> SRR1818654     2   0.718  -0.087773 0.040 0.400 0.400 0.000 0.160
#> SRR1818651     1   0.435   0.510709 0.780 0.008 0.076 0.000 0.136
#> SRR1818652     1   0.383   0.530577 0.812 0.008 0.044 0.000 0.136
#> SRR1818657     5   0.487   0.544369 0.368 0.024 0.004 0.000 0.604
#> SRR1818658     5   0.496   0.566436 0.348 0.032 0.004 0.000 0.616
#> SRR1818649     1   0.591   0.475227 0.656 0.108 0.204 0.000 0.032
#> SRR1818650     1   0.570   0.495968 0.680 0.116 0.176 0.000 0.028
#> SRR1818659     1   0.666   0.111730 0.444 0.000 0.272 0.000 0.284
#> SRR1818647     4   0.254   0.646905 0.000 0.032 0.028 0.908 0.032
#> SRR1818648     4   0.207   0.642993 0.000 0.032 0.012 0.928 0.028
#> SRR1818645     2   0.215   0.556794 0.004 0.912 0.004 0.076 0.004
#> SRR1818646     2   0.260   0.542918 0.004 0.880 0.004 0.108 0.004
#> SRR1818639     3   0.836   0.320804 0.212 0.212 0.380 0.000 0.196
#> SRR1818640     3   0.838   0.308799 0.208 0.228 0.372 0.000 0.192
#> SRR1818637     4   0.415   0.618408 0.000 0.004 0.080 0.792 0.124
#> SRR1818638     4   0.419   0.617657 0.000 0.004 0.080 0.788 0.128
#> SRR1818635     1   0.572   0.463605 0.640 0.256 0.000 0.084 0.020
#> SRR1818636     1   0.547   0.483378 0.672 0.236 0.000 0.068 0.024
#> SRR1818643     1   0.480   0.515172 0.768 0.032 0.000 0.108 0.092
#> SRR1818644     1   0.459   0.536065 0.788 0.040 0.000 0.088 0.084
#> SRR1818641     2   0.120   0.544289 0.016 0.964 0.008 0.000 0.012
#> SRR1818642     2   0.140   0.544110 0.020 0.956 0.008 0.000 0.016
#> SRR1818633     5   0.659   0.561275 0.160 0.084 0.016 0.088 0.652
#> SRR1818634     5   0.668   0.494880 0.108 0.080 0.032 0.116 0.664
#> SRR1818665     5   0.486   0.472037 0.384 0.008 0.016 0.000 0.592
#> SRR1818666     5   0.496   0.476053 0.384 0.012 0.016 0.000 0.588
#> SRR1818667     2   0.568   0.148922 0.000 0.540 0.000 0.372 0.088
#> SRR1818668     2   0.594   0.136468 0.000 0.524 0.000 0.360 0.116
#> SRR1818669     5   0.843  -0.093141 0.264 0.212 0.180 0.000 0.344
#> SRR1818670     5   0.841  -0.074916 0.264 0.212 0.176 0.000 0.348
#> SRR1818663     1   0.321   0.497168 0.812 0.000 0.008 0.000 0.180
#> SRR1818664     1   0.305   0.506009 0.820 0.000 0.004 0.000 0.176
#> SRR1818629     2   0.669   0.141613 0.008 0.468 0.000 0.332 0.192
#> SRR1818630     2   0.652   0.153419 0.000 0.476 0.000 0.300 0.224
#> SRR1818627     5   0.531   0.516395 0.196 0.000 0.056 0.040 0.708
#> SRR1818628     5   0.523   0.518388 0.176 0.004 0.052 0.040 0.728
#> SRR1818621     3   0.317   0.523693 0.060 0.000 0.856 0.000 0.084
#> SRR1818622     3   0.259   0.540300 0.048 0.000 0.900 0.008 0.044
#> SRR1818625     1   0.186   0.582294 0.924 0.004 0.004 0.000 0.068
#> SRR1818626     1   0.218   0.577111 0.908 0.008 0.004 0.000 0.080
#> SRR1818623     4   0.650   0.369998 0.000 0.008 0.336 0.496 0.160
#> SRR1818624     4   0.634   0.458944 0.000 0.016 0.280 0.564 0.140
#> SRR1818619     5   0.512   0.613240 0.272 0.028 0.016 0.008 0.676
#> SRR1818620     5   0.501   0.607099 0.288 0.032 0.016 0.000 0.664
#> SRR1818617     2   0.685   0.428783 0.168 0.636 0.092 0.076 0.028
#> SRR1818618     2   0.741   0.397037 0.164 0.588 0.124 0.096 0.028
#> SRR1818615     4   0.621  -0.071477 0.048 0.444 0.000 0.464 0.044
#> SRR1818616     2   0.632   0.000358 0.052 0.464 0.000 0.436 0.048
#> SRR1818609     4   0.308   0.582938 0.004 0.124 0.000 0.852 0.020
#> SRR1818610     4   0.289   0.590474 0.004 0.116 0.000 0.864 0.016
#> SRR1818607     2   0.255   0.545918 0.004 0.884 0.004 0.104 0.004
#> SRR1818608     2   0.245   0.554260 0.004 0.896 0.004 0.088 0.008
#> SRR1818613     1   0.502   0.420036 0.708 0.004 0.096 0.000 0.192
#> SRR1818614     1   0.531   0.426927 0.688 0.004 0.160 0.000 0.148
#> SRR1818611     1   0.516   0.531618 0.728 0.072 0.168 0.000 0.032
#> SRR1818612     1   0.502   0.532982 0.732 0.092 0.160 0.000 0.016
#> SRR1818605     1   0.512   0.420606 0.696 0.000 0.080 0.008 0.216
#> SRR1818606     1   0.522   0.421217 0.692 0.000 0.092 0.008 0.208

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1818631     3  0.8668     0.3956 0.036 0.120 0.372 0.064 0.256 0.152
#> SRR1818632     3  0.8722     0.4217 0.040 0.120 0.380 0.060 0.212 0.188
#> SRR1818679     2  0.4509     0.4437 0.004 0.744 0.168 0.000 0.044 0.040
#> SRR1818680     2  0.4546     0.4414 0.004 0.744 0.172 0.004 0.044 0.032
#> SRR1818677     3  0.8868     0.4351 0.092 0.212 0.320 0.020 0.124 0.232
#> SRR1818678     3  0.8784     0.4313 0.104 0.240 0.300 0.008 0.128 0.220
#> SRR1818675     4  0.4780     0.4596 0.020 0.000 0.068 0.744 0.140 0.028
#> SRR1818676     4  0.4780     0.4596 0.020 0.000 0.068 0.744 0.140 0.028
#> SRR1818673     1  0.5469     0.4974 0.624 0.220 0.140 0.008 0.008 0.000
#> SRR1818674     1  0.5923     0.4839 0.600 0.220 0.148 0.020 0.008 0.004
#> SRR1818671     4  0.7401     0.3518 0.000 0.128 0.308 0.344 0.000 0.220
#> SRR1818672     3  0.7427    -0.4824 0.000 0.132 0.324 0.324 0.000 0.220
#> SRR1818661     5  0.5790     0.2453 0.004 0.000 0.192 0.156 0.616 0.032
#> SRR1818662     5  0.5742     0.2367 0.004 0.000 0.200 0.152 0.616 0.028
#> SRR1818655     5  0.8234     0.1178 0.196 0.224 0.112 0.000 0.384 0.084
#> SRR1818656     5  0.8442     0.0818 0.224 0.236 0.100 0.000 0.332 0.108
#> SRR1818653     5  0.6368     0.3021 0.008 0.252 0.044 0.000 0.544 0.152
#> SRR1818654     5  0.6207     0.3270 0.008 0.248 0.052 0.000 0.572 0.120
#> SRR1818651     1  0.4793     0.5739 0.716 0.004 0.020 0.000 0.092 0.168
#> SRR1818652     1  0.3928     0.6191 0.792 0.004 0.012 0.000 0.072 0.120
#> SRR1818657     6  0.3515     0.6999 0.192 0.000 0.016 0.000 0.012 0.780
#> SRR1818658     6  0.3056     0.7118 0.184 0.000 0.004 0.000 0.008 0.804
#> SRR1818649     1  0.6324     0.4086 0.600 0.040 0.084 0.004 0.232 0.040
#> SRR1818650     1  0.6451     0.4369 0.608 0.056 0.084 0.004 0.204 0.044
#> SRR1818659     5  0.6455     0.1260 0.288 0.000 0.052 0.000 0.496 0.164
#> SRR1818647     4  0.5730     0.5712 0.004 0.036 0.364 0.540 0.008 0.048
#> SRR1818648     4  0.5892     0.5614 0.004 0.040 0.392 0.504 0.008 0.052
#> SRR1818645     2  0.2435     0.6116 0.004 0.900 0.064 0.016 0.008 0.008
#> SRR1818646     2  0.2928     0.6124 0.004 0.860 0.100 0.024 0.000 0.012
#> SRR1818639     5  0.7894     0.0825 0.164 0.060 0.140 0.000 0.448 0.188
#> SRR1818640     5  0.8053     0.0706 0.160 0.080 0.156 0.000 0.440 0.164
#> SRR1818637     4  0.0622     0.5841 0.000 0.008 0.012 0.980 0.000 0.000
#> SRR1818638     4  0.0810     0.5814 0.000 0.008 0.004 0.976 0.008 0.004
#> SRR1818635     1  0.4997     0.5723 0.700 0.164 0.116 0.004 0.008 0.008
#> SRR1818636     1  0.4957     0.5765 0.704 0.164 0.112 0.004 0.008 0.008
#> SRR1818643     1  0.5167     0.5909 0.740 0.064 0.092 0.052 0.000 0.052
#> SRR1818644     1  0.4899     0.6023 0.760 0.064 0.080 0.052 0.000 0.044
#> SRR1818641     2  0.2659     0.5883 0.012 0.892 0.052 0.000 0.020 0.024
#> SRR1818642     2  0.2688     0.5874 0.016 0.892 0.048 0.000 0.020 0.024
#> SRR1818633     6  0.4521     0.5834 0.044 0.016 0.100 0.032 0.020 0.788
#> SRR1818634     6  0.4556     0.5761 0.032 0.012 0.100 0.052 0.020 0.784
#> SRR1818665     6  0.5691     0.6306 0.252 0.020 0.064 0.008 0.024 0.632
#> SRR1818666     6  0.5543     0.6436 0.248 0.020 0.060 0.008 0.020 0.644
#> SRR1818667     2  0.6168     0.4875 0.000 0.600 0.104 0.212 0.008 0.076
#> SRR1818668     2  0.6381     0.4795 0.000 0.580 0.092 0.212 0.008 0.108
#> SRR1818669     3  0.8844     0.4224 0.184 0.140 0.272 0.000 0.180 0.224
#> SRR1818670     3  0.8828     0.4275 0.180 0.144 0.260 0.000 0.164 0.252
#> SRR1818663     1  0.3196     0.5843 0.816 0.000 0.020 0.000 0.008 0.156
#> SRR1818664     1  0.2944     0.6025 0.832 0.000 0.012 0.000 0.008 0.148
#> SRR1818629     2  0.6987     0.4029 0.000 0.480 0.156 0.092 0.008 0.264
#> SRR1818630     2  0.6715     0.3766 0.000 0.476 0.144 0.060 0.008 0.312
#> SRR1818627     6  0.6761     0.6385 0.160 0.004 0.076 0.120 0.044 0.596
#> SRR1818628     6  0.6638     0.6331 0.140 0.004 0.080 0.140 0.032 0.604
#> SRR1818621     5  0.2135     0.4130 0.024 0.000 0.004 0.044 0.916 0.012
#> SRR1818622     5  0.2208     0.4092 0.016 0.000 0.008 0.052 0.912 0.012
#> SRR1818625     1  0.1873     0.6536 0.924 0.000 0.008 0.000 0.020 0.048
#> SRR1818626     1  0.2164     0.6531 0.908 0.000 0.008 0.000 0.028 0.056
#> SRR1818623     4  0.6090     0.4232 0.000 0.004 0.240 0.576 0.136 0.044
#> SRR1818624     4  0.6027     0.4643 0.000 0.008 0.232 0.592 0.128 0.040
#> SRR1818619     6  0.3526     0.6770 0.108 0.012 0.032 0.012 0.004 0.832
#> SRR1818620     6  0.3360     0.6883 0.132 0.012 0.028 0.000 0.004 0.824
#> SRR1818617     2  0.7506     0.2028 0.084 0.500 0.188 0.008 0.180 0.040
#> SRR1818618     2  0.8185     0.0813 0.100 0.400 0.216 0.016 0.224 0.044
#> SRR1818615     2  0.6133     0.3917 0.008 0.552 0.284 0.128 0.004 0.024
#> SRR1818616     2  0.6224     0.4144 0.024 0.552 0.300 0.096 0.004 0.024
#> SRR1818609     4  0.6165     0.5042 0.004 0.092 0.420 0.440 0.000 0.044
#> SRR1818610     4  0.6165     0.5042 0.004 0.092 0.420 0.440 0.000 0.044
#> SRR1818607     2  0.2417     0.6161 0.004 0.888 0.088 0.012 0.008 0.000
#> SRR1818608     2  0.2388     0.6185 0.004 0.900 0.068 0.012 0.012 0.004
#> SRR1818613     1  0.5240     0.4929 0.656 0.004 0.016 0.000 0.112 0.212
#> SRR1818614     1  0.5538     0.4929 0.648 0.004 0.036 0.000 0.116 0.196
#> SRR1818611     1  0.5947     0.4617 0.632 0.028 0.072 0.004 0.224 0.040
#> SRR1818612     1  0.6062     0.4525 0.624 0.032 0.076 0.004 0.224 0.040
#> SRR1818605     1  0.5443     0.4836 0.668 0.000 0.044 0.004 0.108 0.176
#> SRR1818606     1  0.5706     0.4711 0.656 0.004 0.052 0.004 0.112 0.172

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15216 rows and 75 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.576           0.844       0.927         0.4802 0.526   0.526
#> 3 3 0.635           0.724       0.886         0.2059 0.888   0.786
#> 4 4 0.590           0.673       0.841         0.0964 0.921   0.818
#> 5 5 0.592           0.588       0.786         0.1170 0.915   0.773
#> 6 6 0.627           0.562       0.780         0.0385 0.974   0.917

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1818631     1  0.4690   0.874005 0.900 0.100
#> SRR1818632     1  0.4690   0.874005 0.900 0.100
#> SRR1818679     2  0.6148   0.839579 0.152 0.848
#> SRR1818680     2  0.6148   0.839579 0.152 0.848
#> SRR1818677     1  0.7056   0.741216 0.808 0.192
#> SRR1818678     1  0.7056   0.741216 0.808 0.192
#> SRR1818675     2  0.9710   0.305510 0.400 0.600
#> SRR1818676     2  0.9710   0.305510 0.400 0.600
#> SRR1818673     2  0.4431   0.888103 0.092 0.908
#> SRR1818674     2  0.4431   0.888103 0.092 0.908
#> SRR1818671     2  0.0000   0.927927 0.000 1.000
#> SRR1818672     2  0.0000   0.927927 0.000 1.000
#> SRR1818661     1  0.4815   0.871871 0.896 0.104
#> SRR1818662     1  0.4815   0.871871 0.896 0.104
#> SRR1818655     1  0.0000   0.915079 1.000 0.000
#> SRR1818656     1  0.0000   0.915079 1.000 0.000
#> SRR1818653     1  0.4690   0.874005 0.900 0.100
#> SRR1818654     1  0.4690   0.874005 0.900 0.100
#> SRR1818651     1  0.0000   0.915079 1.000 0.000
#> SRR1818652     1  0.0000   0.915079 1.000 0.000
#> SRR1818657     1  0.0000   0.915079 1.000 0.000
#> SRR1818658     1  0.0000   0.915079 1.000 0.000
#> SRR1818649     1  0.1414   0.907622 0.980 0.020
#> SRR1818650     1  0.1414   0.907622 0.980 0.020
#> SRR1818659     1  0.0000   0.915079 1.000 0.000
#> SRR1818647     2  0.0000   0.927927 0.000 1.000
#> SRR1818648     2  0.0000   0.927927 0.000 1.000
#> SRR1818645     2  0.0376   0.927199 0.004 0.996
#> SRR1818646     2  0.0376   0.927199 0.004 0.996
#> SRR1818639     1  0.0000   0.915079 1.000 0.000
#> SRR1818640     1  0.0000   0.915079 1.000 0.000
#> SRR1818637     2  0.0000   0.927927 0.000 1.000
#> SRR1818638     2  0.0000   0.927927 0.000 1.000
#> SRR1818635     2  0.4431   0.888103 0.092 0.908
#> SRR1818636     2  0.4431   0.888103 0.092 0.908
#> SRR1818643     1  0.9998   0.000566 0.508 0.492
#> SRR1818644     1  0.9998   0.000566 0.508 0.492
#> SRR1818641     2  0.6148   0.839579 0.152 0.848
#> SRR1818642     2  0.6148   0.839579 0.152 0.848
#> SRR1818633     1  0.7453   0.757654 0.788 0.212
#> SRR1818634     1  0.7453   0.757654 0.788 0.212
#> SRR1818665     1  0.0000   0.915079 1.000 0.000
#> SRR1818666     1  0.0000   0.915079 1.000 0.000
#> SRR1818667     2  0.0000   0.927927 0.000 1.000
#> SRR1818668     2  0.0000   0.927927 0.000 1.000
#> SRR1818669     1  0.0000   0.915079 1.000 0.000
#> SRR1818670     1  0.0000   0.915079 1.000 0.000
#> SRR1818663     1  0.0000   0.915079 1.000 0.000
#> SRR1818664     1  0.0000   0.915079 1.000 0.000
#> SRR1818629     2  0.0000   0.927927 0.000 1.000
#> SRR1818630     2  0.0000   0.927927 0.000 1.000
#> SRR1818627     1  0.0000   0.915079 1.000 0.000
#> SRR1818628     1  0.0000   0.915079 1.000 0.000
#> SRR1818621     1  0.4690   0.874005 0.900 0.100
#> SRR1818622     1  0.4690   0.874005 0.900 0.100
#> SRR1818625     1  0.0000   0.915079 1.000 0.000
#> SRR1818626     1  0.0000   0.915079 1.000 0.000
#> SRR1818623     1  0.9754   0.419584 0.592 0.408
#> SRR1818624     1  0.9754   0.419584 0.592 0.408
#> SRR1818619     1  0.0000   0.915079 1.000 0.000
#> SRR1818620     1  0.0000   0.915079 1.000 0.000
#> SRR1818617     1  0.0000   0.915079 1.000 0.000
#> SRR1818618     1  0.0000   0.915079 1.000 0.000
#> SRR1818615     2  0.0000   0.927927 0.000 1.000
#> SRR1818616     2  0.0000   0.927927 0.000 1.000
#> SRR1818609     2  0.0000   0.927927 0.000 1.000
#> SRR1818610     2  0.0000   0.927927 0.000 1.000
#> SRR1818607     2  0.0376   0.927199 0.004 0.996
#> SRR1818608     2  0.0376   0.927199 0.004 0.996
#> SRR1818613     1  0.0000   0.915079 1.000 0.000
#> SRR1818614     1  0.0000   0.915079 1.000 0.000
#> SRR1818611     1  0.1414   0.907622 0.980 0.020
#> SRR1818612     1  0.1414   0.907622 0.980 0.020
#> SRR1818605     1  0.3879   0.885352 0.924 0.076
#> SRR1818606     1  0.3879   0.885352 0.924 0.076

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1818631     1  0.5968     0.1922 0.636 0.000 0.364
#> SRR1818632     1  0.5968     0.1922 0.636 0.000 0.364
#> SRR1818679     2  0.4164     0.7821 0.144 0.848 0.008
#> SRR1818680     2  0.4164     0.7821 0.144 0.848 0.008
#> SRR1818677     1  0.4682     0.6069 0.804 0.192 0.004
#> SRR1818678     1  0.4682     0.6069 0.804 0.192 0.004
#> SRR1818675     2  0.9625    -0.0777 0.204 0.408 0.388
#> SRR1818676     2  0.9625    -0.0777 0.204 0.408 0.388
#> SRR1818673     2  0.3043     0.8433 0.084 0.908 0.008
#> SRR1818674     2  0.3043     0.8433 0.084 0.908 0.008
#> SRR1818671     2  0.0000     0.8900 0.000 1.000 0.000
#> SRR1818672     2  0.0000     0.8900 0.000 1.000 0.000
#> SRR1818661     3  0.3500     0.6380 0.116 0.004 0.880
#> SRR1818662     3  0.3500     0.6380 0.116 0.004 0.880
#> SRR1818655     1  0.0592     0.8579 0.988 0.000 0.012
#> SRR1818656     1  0.0592     0.8579 0.988 0.000 0.012
#> SRR1818653     3  0.6140     0.5505 0.404 0.000 0.596
#> SRR1818654     3  0.6140     0.5505 0.404 0.000 0.596
#> SRR1818651     1  0.0000     0.8635 1.000 0.000 0.000
#> SRR1818652     1  0.0000     0.8635 1.000 0.000 0.000
#> SRR1818657     1  0.0000     0.8635 1.000 0.000 0.000
#> SRR1818658     1  0.0000     0.8635 1.000 0.000 0.000
#> SRR1818649     1  0.1315     0.8452 0.972 0.020 0.008
#> SRR1818650     1  0.1315     0.8452 0.972 0.020 0.008
#> SRR1818659     1  0.0000     0.8635 1.000 0.000 0.000
#> SRR1818647     2  0.0000     0.8900 0.000 1.000 0.000
#> SRR1818648     2  0.0000     0.8900 0.000 1.000 0.000
#> SRR1818645     2  0.0237     0.8890 0.000 0.996 0.004
#> SRR1818646     2  0.0237     0.8890 0.000 0.996 0.004
#> SRR1818639     1  0.0000     0.8635 1.000 0.000 0.000
#> SRR1818640     1  0.0000     0.8635 1.000 0.000 0.000
#> SRR1818637     2  0.3267     0.8159 0.000 0.884 0.116
#> SRR1818638     2  0.3267     0.8159 0.000 0.884 0.116
#> SRR1818635     2  0.3043     0.8433 0.084 0.908 0.008
#> SRR1818636     2  0.3043     0.8433 0.084 0.908 0.008
#> SRR1818643     1  0.6825    -0.0359 0.496 0.492 0.012
#> SRR1818644     1  0.6825    -0.0359 0.496 0.492 0.012
#> SRR1818641     2  0.4164     0.7821 0.144 0.848 0.008
#> SRR1818642     2  0.4164     0.7821 0.144 0.848 0.008
#> SRR1818633     1  0.6348     0.5238 0.740 0.212 0.048
#> SRR1818634     1  0.6348     0.5238 0.740 0.212 0.048
#> SRR1818665     1  0.0000     0.8635 1.000 0.000 0.000
#> SRR1818666     1  0.0000     0.8635 1.000 0.000 0.000
#> SRR1818667     2  0.0000     0.8900 0.000 1.000 0.000
#> SRR1818668     2  0.0000     0.8900 0.000 1.000 0.000
#> SRR1818669     1  0.0000     0.8635 1.000 0.000 0.000
#> SRR1818670     1  0.0000     0.8635 1.000 0.000 0.000
#> SRR1818663     1  0.0000     0.8635 1.000 0.000 0.000
#> SRR1818664     1  0.0000     0.8635 1.000 0.000 0.000
#> SRR1818629     2  0.0000     0.8900 0.000 1.000 0.000
#> SRR1818630     2  0.0000     0.8900 0.000 1.000 0.000
#> SRR1818627     1  0.0000     0.8635 1.000 0.000 0.000
#> SRR1818628     1  0.0000     0.8635 1.000 0.000 0.000
#> SRR1818621     3  0.6140     0.5505 0.404 0.000 0.596
#> SRR1818622     3  0.6140     0.5505 0.404 0.000 0.596
#> SRR1818625     1  0.0000     0.8635 1.000 0.000 0.000
#> SRR1818626     1  0.0000     0.8635 1.000 0.000 0.000
#> SRR1818623     3  0.7389     0.1589 0.036 0.408 0.556
#> SRR1818624     3  0.7389     0.1589 0.036 0.408 0.556
#> SRR1818619     1  0.0000     0.8635 1.000 0.000 0.000
#> SRR1818620     1  0.0000     0.8635 1.000 0.000 0.000
#> SRR1818617     1  0.0592     0.8579 0.988 0.000 0.012
#> SRR1818618     1  0.0592     0.8579 0.988 0.000 0.012
#> SRR1818615     2  0.0000     0.8900 0.000 1.000 0.000
#> SRR1818616     2  0.0000     0.8900 0.000 1.000 0.000
#> SRR1818609     2  0.0000     0.8900 0.000 1.000 0.000
#> SRR1818610     2  0.0000     0.8900 0.000 1.000 0.000
#> SRR1818607     2  0.0237     0.8890 0.000 0.996 0.004
#> SRR1818608     2  0.0237     0.8890 0.000 0.996 0.004
#> SRR1818613     1  0.0000     0.8635 1.000 0.000 0.000
#> SRR1818614     1  0.0000     0.8635 1.000 0.000 0.000
#> SRR1818611     1  0.1315     0.8452 0.972 0.020 0.008
#> SRR1818612     1  0.1315     0.8452 0.972 0.020 0.008
#> SRR1818605     1  0.5650     0.3739 0.688 0.000 0.312
#> SRR1818606     1  0.5650     0.3739 0.688 0.000 0.312

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1818631     1  0.6637    0.09105 0.540 0.000 0.368 0.092
#> SRR1818632     1  0.6637    0.09105 0.540 0.000 0.368 0.092
#> SRR1818679     2  0.3581    0.76405 0.116 0.852 0.032 0.000
#> SRR1818680     2  0.3581    0.76405 0.116 0.852 0.032 0.000
#> SRR1818677     1  0.3569    0.62660 0.804 0.196 0.000 0.000
#> SRR1818678     1  0.3569    0.62660 0.804 0.196 0.000 0.000
#> SRR1818675     4  0.6699    0.49743 0.116 0.004 0.272 0.608
#> SRR1818676     4  0.6699    0.49743 0.116 0.004 0.272 0.608
#> SRR1818673     2  0.2266    0.80273 0.084 0.912 0.004 0.000
#> SRR1818674     2  0.2266    0.80273 0.084 0.912 0.004 0.000
#> SRR1818671     2  0.0188    0.82801 0.000 0.996 0.000 0.004
#> SRR1818672     2  0.0188    0.82801 0.000 0.996 0.000 0.004
#> SRR1818661     3  0.1637    0.26144 0.060 0.000 0.940 0.000
#> SRR1818662     3  0.1637    0.26144 0.060 0.000 0.940 0.000
#> SRR1818655     1  0.2197    0.80746 0.916 0.004 0.080 0.000
#> SRR1818656     1  0.2197    0.80746 0.916 0.004 0.080 0.000
#> SRR1818653     3  0.4830    0.50188 0.392 0.000 0.608 0.000
#> SRR1818654     3  0.4830    0.50188 0.392 0.000 0.608 0.000
#> SRR1818651     1  0.1389    0.84840 0.952 0.000 0.000 0.048
#> SRR1818652     1  0.1389    0.84840 0.952 0.000 0.000 0.048
#> SRR1818657     1  0.2216    0.83108 0.908 0.000 0.000 0.092
#> SRR1818658     1  0.2216    0.83108 0.908 0.000 0.000 0.092
#> SRR1818649     1  0.1151    0.83683 0.968 0.024 0.008 0.000
#> SRR1818650     1  0.1151    0.83683 0.968 0.024 0.008 0.000
#> SRR1818659     1  0.0336    0.84426 0.992 0.000 0.008 0.000
#> SRR1818647     2  0.4406    0.56014 0.000 0.700 0.000 0.300
#> SRR1818648     2  0.4406    0.56014 0.000 0.700 0.000 0.300
#> SRR1818645     2  0.0000    0.82808 0.000 1.000 0.000 0.000
#> SRR1818646     2  0.0000    0.82808 0.000 1.000 0.000 0.000
#> SRR1818639     1  0.0336    0.84426 0.992 0.000 0.008 0.000
#> SRR1818640     1  0.0336    0.84426 0.992 0.000 0.008 0.000
#> SRR1818637     4  0.2216    0.61178 0.000 0.092 0.000 0.908
#> SRR1818638     4  0.2216    0.61178 0.000 0.092 0.000 0.908
#> SRR1818635     2  0.2266    0.80273 0.084 0.912 0.004 0.000
#> SRR1818636     2  0.2266    0.80273 0.084 0.912 0.004 0.000
#> SRR1818643     2  0.6591    0.11845 0.424 0.496 0.080 0.000
#> SRR1818644     2  0.6591    0.11845 0.424 0.496 0.080 0.000
#> SRR1818641     2  0.3581    0.76405 0.116 0.852 0.032 0.000
#> SRR1818642     2  0.3581    0.76405 0.116 0.852 0.032 0.000
#> SRR1818633     1  0.7413    0.45667 0.624 0.216 0.068 0.092
#> SRR1818634     1  0.7413    0.45667 0.624 0.216 0.068 0.092
#> SRR1818665     1  0.1389    0.84840 0.952 0.000 0.000 0.048
#> SRR1818666     1  0.1389    0.84840 0.952 0.000 0.000 0.048
#> SRR1818667     2  0.0188    0.82801 0.000 0.996 0.000 0.004
#> SRR1818668     2  0.0188    0.82801 0.000 0.996 0.000 0.004
#> SRR1818669     1  0.2401    0.82993 0.904 0.000 0.004 0.092
#> SRR1818670     1  0.2401    0.82993 0.904 0.000 0.004 0.092
#> SRR1818663     1  0.0000    0.84501 1.000 0.000 0.000 0.000
#> SRR1818664     1  0.0000    0.84501 1.000 0.000 0.000 0.000
#> SRR1818629     2  0.0188    0.82801 0.000 0.996 0.000 0.004
#> SRR1818630     2  0.0188    0.82801 0.000 0.996 0.000 0.004
#> SRR1818627     1  0.1389    0.84840 0.952 0.000 0.000 0.048
#> SRR1818628     1  0.1389    0.84840 0.952 0.000 0.000 0.048
#> SRR1818621     3  0.4830    0.50188 0.392 0.000 0.608 0.000
#> SRR1818622     3  0.4830    0.50188 0.392 0.000 0.608 0.000
#> SRR1818625     1  0.0000    0.84501 1.000 0.000 0.000 0.000
#> SRR1818626     1  0.0000    0.84501 1.000 0.000 0.000 0.000
#> SRR1818623     3  0.6728   -0.00504 0.000 0.268 0.596 0.136
#> SRR1818624     3  0.6728   -0.00504 0.000 0.268 0.596 0.136
#> SRR1818619     1  0.2216    0.83108 0.908 0.000 0.000 0.092
#> SRR1818620     1  0.2216    0.83108 0.908 0.000 0.000 0.092
#> SRR1818617     1  0.2197    0.80746 0.916 0.004 0.080 0.000
#> SRR1818618     1  0.2197    0.80746 0.916 0.004 0.080 0.000
#> SRR1818615     2  0.0188    0.82801 0.000 0.996 0.000 0.004
#> SRR1818616     2  0.0188    0.82801 0.000 0.996 0.000 0.004
#> SRR1818609     2  0.4406    0.56014 0.000 0.700 0.000 0.300
#> SRR1818610     2  0.4406    0.56014 0.000 0.700 0.000 0.300
#> SRR1818607     2  0.0000    0.82808 0.000 1.000 0.000 0.000
#> SRR1818608     2  0.0000    0.82808 0.000 1.000 0.000 0.000
#> SRR1818613     1  0.1389    0.84840 0.952 0.000 0.000 0.048
#> SRR1818614     1  0.1389    0.84840 0.952 0.000 0.000 0.048
#> SRR1818611     1  0.1151    0.83683 0.968 0.024 0.008 0.000
#> SRR1818612     1  0.1151    0.83683 0.968 0.024 0.008 0.000
#> SRR1818605     1  0.6838    0.21534 0.524 0.004 0.380 0.092
#> SRR1818606     1  0.6838    0.21534 0.524 0.004 0.380 0.092

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1818631     5  0.6448     0.3897 0.228 0.000 0.272 0.000 0.500
#> SRR1818632     5  0.6448     0.3897 0.228 0.000 0.272 0.000 0.500
#> SRR1818679     2  0.3322     0.7853 0.104 0.848 0.004 0.000 0.044
#> SRR1818680     2  0.3322     0.7853 0.104 0.848 0.004 0.000 0.044
#> SRR1818677     1  0.3562     0.5676 0.788 0.196 0.000 0.000 0.016
#> SRR1818678     1  0.3562     0.5676 0.788 0.196 0.000 0.000 0.016
#> SRR1818675     4  0.4818    -0.0677 0.000 0.000 0.020 0.520 0.460
#> SRR1818676     4  0.4818    -0.0677 0.000 0.000 0.020 0.520 0.460
#> SRR1818673     2  0.2112     0.8212 0.084 0.908 0.004 0.000 0.004
#> SRR1818674     2  0.2112     0.8212 0.084 0.908 0.004 0.000 0.004
#> SRR1818671     2  0.0162     0.8470 0.000 0.996 0.000 0.004 0.000
#> SRR1818672     2  0.0162     0.8470 0.000 0.996 0.000 0.004 0.000
#> SRR1818661     3  0.4740     0.4236 0.016 0.000 0.516 0.000 0.468
#> SRR1818662     3  0.4740     0.4236 0.016 0.000 0.516 0.000 0.468
#> SRR1818655     1  0.3231     0.6284 0.800 0.004 0.000 0.000 0.196
#> SRR1818656     1  0.3231     0.6284 0.800 0.004 0.000 0.000 0.196
#> SRR1818653     3  0.5774     0.3756 0.156 0.000 0.612 0.000 0.232
#> SRR1818654     3  0.5774     0.3756 0.156 0.000 0.612 0.000 0.232
#> SRR1818651     1  0.1608     0.7584 0.928 0.000 0.000 0.000 0.072
#> SRR1818652     1  0.1608     0.7584 0.928 0.000 0.000 0.000 0.072
#> SRR1818657     1  0.3480     0.5820 0.752 0.000 0.000 0.000 0.248
#> SRR1818658     1  0.3480     0.5820 0.752 0.000 0.000 0.000 0.248
#> SRR1818649     1  0.1059     0.7601 0.968 0.020 0.004 0.000 0.008
#> SRR1818650     1  0.1059     0.7601 0.968 0.020 0.004 0.000 0.008
#> SRR1818659     1  0.4010     0.4994 0.760 0.000 0.208 0.000 0.032
#> SRR1818647     4  0.4227     0.4492 0.000 0.420 0.000 0.580 0.000
#> SRR1818648     4  0.4227     0.4492 0.000 0.420 0.000 0.580 0.000
#> SRR1818645     2  0.0000     0.8476 0.000 1.000 0.000 0.000 0.000
#> SRR1818646     2  0.0000     0.8476 0.000 1.000 0.000 0.000 0.000
#> SRR1818639     1  0.1893     0.7391 0.928 0.000 0.024 0.000 0.048
#> SRR1818640     1  0.1893     0.7391 0.928 0.000 0.024 0.000 0.048
#> SRR1818637     4  0.3160     0.2988 0.000 0.000 0.188 0.808 0.004
#> SRR1818638     4  0.3160     0.2988 0.000 0.000 0.188 0.808 0.004
#> SRR1818635     2  0.2112     0.8212 0.084 0.908 0.004 0.000 0.004
#> SRR1818636     2  0.2112     0.8212 0.084 0.908 0.004 0.000 0.004
#> SRR1818643     2  0.6399     0.2169 0.308 0.496 0.000 0.000 0.196
#> SRR1818644     2  0.6399     0.2169 0.308 0.496 0.000 0.000 0.196
#> SRR1818641     2  0.3322     0.7853 0.104 0.848 0.004 0.000 0.044
#> SRR1818642     2  0.3322     0.7853 0.104 0.848 0.004 0.000 0.044
#> SRR1818633     1  0.8439    -0.1493 0.416 0.028 0.096 0.188 0.272
#> SRR1818634     1  0.8439    -0.1493 0.416 0.028 0.096 0.188 0.272
#> SRR1818665     1  0.1608     0.7584 0.928 0.000 0.000 0.000 0.072
#> SRR1818666     1  0.1608     0.7584 0.928 0.000 0.000 0.000 0.072
#> SRR1818667     2  0.0162     0.8470 0.000 0.996 0.000 0.004 0.000
#> SRR1818668     2  0.0162     0.8470 0.000 0.996 0.000 0.004 0.000
#> SRR1818669     1  0.5949     0.2080 0.588 0.000 0.172 0.000 0.240
#> SRR1818670     1  0.5949     0.2080 0.588 0.000 0.172 0.000 0.240
#> SRR1818663     1  0.0000     0.7637 1.000 0.000 0.000 0.000 0.000
#> SRR1818664     1  0.0000     0.7637 1.000 0.000 0.000 0.000 0.000
#> SRR1818629     2  0.0162     0.8470 0.000 0.996 0.000 0.004 0.000
#> SRR1818630     2  0.0162     0.8470 0.000 0.996 0.000 0.004 0.000
#> SRR1818627     1  0.1608     0.7584 0.928 0.000 0.000 0.000 0.072
#> SRR1818628     1  0.1608     0.7584 0.928 0.000 0.000 0.000 0.072
#> SRR1818621     3  0.5774     0.3756 0.156 0.000 0.612 0.000 0.232
#> SRR1818622     3  0.5774     0.3756 0.156 0.000 0.612 0.000 0.232
#> SRR1818625     1  0.0000     0.7637 1.000 0.000 0.000 0.000 0.000
#> SRR1818626     1  0.0000     0.7637 1.000 0.000 0.000 0.000 0.000
#> SRR1818623     3  0.7937     0.1950 0.000 0.080 0.356 0.324 0.240
#> SRR1818624     3  0.7937     0.1950 0.000 0.080 0.356 0.324 0.240
#> SRR1818619     1  0.3480     0.5820 0.752 0.000 0.000 0.000 0.248
#> SRR1818620     1  0.3480     0.5820 0.752 0.000 0.000 0.000 0.248
#> SRR1818617     1  0.3231     0.6284 0.800 0.004 0.000 0.000 0.196
#> SRR1818618     1  0.3231     0.6284 0.800 0.004 0.000 0.000 0.196
#> SRR1818615     2  0.0162     0.8470 0.000 0.996 0.000 0.004 0.000
#> SRR1818616     2  0.0162     0.8470 0.000 0.996 0.000 0.004 0.000
#> SRR1818609     4  0.4227     0.4492 0.000 0.420 0.000 0.580 0.000
#> SRR1818610     4  0.4227     0.4492 0.000 0.420 0.000 0.580 0.000
#> SRR1818607     2  0.0000     0.8476 0.000 1.000 0.000 0.000 0.000
#> SRR1818608     2  0.0000     0.8476 0.000 1.000 0.000 0.000 0.000
#> SRR1818613     1  0.1608     0.7584 0.928 0.000 0.000 0.000 0.072
#> SRR1818614     1  0.1608     0.7584 0.928 0.000 0.000 0.000 0.072
#> SRR1818611     1  0.1059     0.7601 0.968 0.020 0.004 0.000 0.008
#> SRR1818612     1  0.1059     0.7601 0.968 0.020 0.004 0.000 0.008
#> SRR1818605     5  0.4318     0.5347 0.228 0.004 0.032 0.000 0.736
#> SRR1818606     5  0.4318     0.5347 0.228 0.004 0.032 0.000 0.736

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1818631     3  0.6090      0.494 0.224 0.000 0.404 0.000 0.004 0.368
#> SRR1818632     3  0.6090      0.494 0.224 0.000 0.404 0.000 0.004 0.368
#> SRR1818679     2  0.5239      0.672 0.092 0.580 0.008 0.320 0.000 0.000
#> SRR1818680     2  0.5239      0.672 0.092 0.580 0.008 0.320 0.000 0.000
#> SRR1818677     1  0.4010      0.520 0.764 0.020 0.040 0.176 0.000 0.000
#> SRR1818678     1  0.4010      0.520 0.764 0.020 0.040 0.176 0.000 0.000
#> SRR1818675     2  0.8305     -0.541 0.000 0.332 0.288 0.088 0.104 0.188
#> SRR1818676     2  0.8305     -0.541 0.000 0.332 0.288 0.088 0.104 0.188
#> SRR1818673     2  0.5350      0.704 0.076 0.536 0.008 0.376 0.000 0.004
#> SRR1818674     2  0.5350      0.704 0.076 0.536 0.008 0.376 0.000 0.004
#> SRR1818671     2  0.3782      0.724 0.000 0.588 0.000 0.412 0.000 0.000
#> SRR1818672     2  0.3782      0.724 0.000 0.588 0.000 0.412 0.000 0.000
#> SRR1818661     6  0.0260      0.617 0.008 0.000 0.000 0.000 0.000 0.992
#> SRR1818662     6  0.0260      0.617 0.008 0.000 0.000 0.000 0.000 0.992
#> SRR1818655     1  0.3834      0.560 0.772 0.048 0.172 0.000 0.008 0.000
#> SRR1818656     1  0.3834      0.560 0.772 0.048 0.172 0.000 0.008 0.000
#> SRR1818653     5  0.0458      1.000 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1818654     5  0.0458      1.000 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1818651     1  0.1957      0.687 0.888 0.000 0.112 0.000 0.000 0.000
#> SRR1818652     1  0.1957      0.687 0.888 0.000 0.112 0.000 0.000 0.000
#> SRR1818657     1  0.3464      0.476 0.688 0.000 0.312 0.000 0.000 0.000
#> SRR1818658     1  0.3464      0.476 0.688 0.000 0.312 0.000 0.000 0.000
#> SRR1818649     1  0.1080      0.695 0.960 0.032 0.004 0.000 0.000 0.004
#> SRR1818650     1  0.1080      0.695 0.960 0.032 0.004 0.000 0.000 0.004
#> SRR1818659     1  0.3841      0.300 0.616 0.000 0.004 0.000 0.380 0.000
#> SRR1818647     4  0.0260      0.632 0.000 0.008 0.000 0.992 0.000 0.000
#> SRR1818648     4  0.0260      0.632 0.000 0.008 0.000 0.992 0.000 0.000
#> SRR1818645     2  0.3747      0.726 0.000 0.604 0.000 0.396 0.000 0.000
#> SRR1818646     2  0.3747      0.726 0.000 0.604 0.000 0.396 0.000 0.000
#> SRR1818639     1  0.3555      0.565 0.776 0.000 0.040 0.000 0.184 0.000
#> SRR1818640     1  0.3555      0.565 0.776 0.000 0.040 0.000 0.184 0.000
#> SRR1818637     4  0.6565      0.113 0.000 0.332 0.272 0.376 0.016 0.004
#> SRR1818638     4  0.6565      0.113 0.000 0.332 0.272 0.376 0.016 0.004
#> SRR1818635     2  0.5350      0.704 0.076 0.536 0.008 0.376 0.000 0.004
#> SRR1818636     2  0.5350      0.704 0.076 0.536 0.008 0.376 0.000 0.004
#> SRR1818643     2  0.5772      0.195 0.272 0.540 0.180 0.000 0.008 0.000
#> SRR1818644     2  0.5772      0.195 0.272 0.540 0.180 0.000 0.008 0.000
#> SRR1818641     2  0.5239      0.672 0.092 0.580 0.008 0.320 0.000 0.000
#> SRR1818642     2  0.5239      0.672 0.092 0.580 0.008 0.320 0.000 0.000
#> SRR1818633     1  0.7366     -0.257 0.348 0.004 0.332 0.212 0.000 0.104
#> SRR1818634     1  0.7366     -0.257 0.348 0.004 0.332 0.212 0.000 0.104
#> SRR1818665     1  0.2135      0.681 0.872 0.000 0.128 0.000 0.000 0.000
#> SRR1818666     1  0.2135      0.681 0.872 0.000 0.128 0.000 0.000 0.000
#> SRR1818667     2  0.3782      0.724 0.000 0.588 0.000 0.412 0.000 0.000
#> SRR1818668     2  0.3782      0.724 0.000 0.588 0.000 0.412 0.000 0.000
#> SRR1818669     1  0.4107      0.112 0.540 0.000 0.452 0.000 0.004 0.004
#> SRR1818670     1  0.4107      0.112 0.540 0.000 0.452 0.000 0.004 0.004
#> SRR1818663     1  0.0146      0.700 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1818664     1  0.0146      0.700 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1818629     2  0.3782      0.724 0.000 0.588 0.000 0.412 0.000 0.000
#> SRR1818630     2  0.3782      0.724 0.000 0.588 0.000 0.412 0.000 0.000
#> SRR1818627     1  0.2135      0.681 0.872 0.000 0.128 0.000 0.000 0.000
#> SRR1818628     1  0.2135      0.681 0.872 0.000 0.128 0.000 0.000 0.000
#> SRR1818621     5  0.0458      1.000 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1818622     5  0.0458      1.000 0.016 0.000 0.000 0.000 0.984 0.000
#> SRR1818625     1  0.0146      0.700 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1818626     1  0.0146      0.700 0.996 0.000 0.004 0.000 0.000 0.000
#> SRR1818623     6  0.3765      0.591 0.000 0.000 0.000 0.404 0.000 0.596
#> SRR1818624     6  0.3765      0.591 0.000 0.000 0.000 0.404 0.000 0.596
#> SRR1818619     1  0.3464      0.476 0.688 0.000 0.312 0.000 0.000 0.000
#> SRR1818620     1  0.3464      0.476 0.688 0.000 0.312 0.000 0.000 0.000
#> SRR1818617     1  0.3834      0.560 0.772 0.048 0.172 0.000 0.008 0.000
#> SRR1818618     1  0.3834      0.560 0.772 0.048 0.172 0.000 0.008 0.000
#> SRR1818615     2  0.3782      0.724 0.000 0.588 0.000 0.412 0.000 0.000
#> SRR1818616     2  0.3782      0.724 0.000 0.588 0.000 0.412 0.000 0.000
#> SRR1818609     4  0.0260      0.632 0.000 0.008 0.000 0.992 0.000 0.000
#> SRR1818610     4  0.0260      0.632 0.000 0.008 0.000 0.992 0.000 0.000
#> SRR1818607     2  0.3747      0.726 0.000 0.604 0.000 0.396 0.000 0.000
#> SRR1818608     2  0.3747      0.726 0.000 0.604 0.000 0.396 0.000 0.000
#> SRR1818613     1  0.1957      0.687 0.888 0.000 0.112 0.000 0.000 0.000
#> SRR1818614     1  0.1957      0.687 0.888 0.000 0.112 0.000 0.000 0.000
#> SRR1818611     1  0.1080      0.695 0.960 0.032 0.004 0.000 0.000 0.004
#> SRR1818612     1  0.1080      0.695 0.960 0.032 0.004 0.000 0.000 0.004
#> SRR1818605     3  0.7760      0.547 0.200 0.048 0.444 0.000 0.108 0.200
#> SRR1818606     3  0.7760      0.547 0.200 0.048 0.444 0.000 0.108 0.200

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15216 rows and 75 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.533           0.884       0.909         0.4822 0.504   0.504
#> 3 3 0.476           0.638       0.777         0.3015 0.872   0.748
#> 4 4 0.497           0.613       0.743         0.1190 0.908   0.770
#> 5 5 0.511           0.518       0.687         0.0751 0.923   0.774
#> 6 6 0.549           0.420       0.631         0.0527 0.916   0.729

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1818631     1  0.6887      0.813 0.816 0.184
#> SRR1818632     1  0.6887      0.813 0.816 0.184
#> SRR1818679     1  0.7453      0.740 0.788 0.212
#> SRR1818680     1  0.7453      0.740 0.788 0.212
#> SRR1818677     2  0.6887      0.904 0.184 0.816
#> SRR1818678     2  0.6887      0.904 0.184 0.816
#> SRR1818675     1  0.8144      0.761 0.748 0.252
#> SRR1818676     1  0.8144      0.761 0.748 0.252
#> SRR1818673     2  0.6887      0.904 0.184 0.816
#> SRR1818674     2  0.6887      0.904 0.184 0.816
#> SRR1818671     2  0.4562      0.909 0.096 0.904
#> SRR1818672     2  0.4562      0.909 0.096 0.904
#> SRR1818661     1  0.7299      0.796 0.796 0.204
#> SRR1818662     1  0.7299      0.796 0.796 0.204
#> SRR1818655     1  0.0938      0.926 0.988 0.012
#> SRR1818656     1  0.0938      0.926 0.988 0.012
#> SRR1818653     1  0.2423      0.909 0.960 0.040
#> SRR1818654     1  0.2423      0.909 0.960 0.040
#> SRR1818651     1  0.0376      0.926 0.996 0.004
#> SRR1818652     1  0.0376      0.926 0.996 0.004
#> SRR1818657     1  0.0938      0.926 0.988 0.012
#> SRR1818658     1  0.0938      0.926 0.988 0.012
#> SRR1818649     1  0.0938      0.926 0.988 0.012
#> SRR1818650     1  0.0938      0.926 0.988 0.012
#> SRR1818659     1  0.0938      0.926 0.988 0.012
#> SRR1818647     2  0.1184      0.866 0.016 0.984
#> SRR1818648     2  0.1184      0.866 0.016 0.984
#> SRR1818645     2  0.5629      0.912 0.132 0.868
#> SRR1818646     2  0.5629      0.912 0.132 0.868
#> SRR1818639     1  0.0938      0.926 0.988 0.012
#> SRR1818640     1  0.0938      0.926 0.988 0.012
#> SRR1818637     2  0.1184      0.866 0.016 0.984
#> SRR1818638     2  0.1184      0.866 0.016 0.984
#> SRR1818635     2  0.7376      0.887 0.208 0.792
#> SRR1818636     2  0.7376      0.887 0.208 0.792
#> SRR1818643     2  0.7376      0.887 0.208 0.792
#> SRR1818644     2  0.7376      0.887 0.208 0.792
#> SRR1818641     2  0.7376      0.887 0.208 0.792
#> SRR1818642     2  0.7376      0.887 0.208 0.792
#> SRR1818633     1  0.8813      0.585 0.700 0.300
#> SRR1818634     1  0.8813      0.585 0.700 0.300
#> SRR1818665     1  0.0938      0.926 0.988 0.012
#> SRR1818666     1  0.0938      0.926 0.988 0.012
#> SRR1818667     2  0.3114      0.899 0.056 0.944
#> SRR1818668     2  0.3114      0.899 0.056 0.944
#> SRR1818669     1  0.0938      0.926 0.988 0.012
#> SRR1818670     1  0.0938      0.926 0.988 0.012
#> SRR1818663     1  0.0672      0.926 0.992 0.008
#> SRR1818664     1  0.0672      0.926 0.992 0.008
#> SRR1818629     2  0.6801      0.905 0.180 0.820
#> SRR1818630     2  0.6801      0.905 0.180 0.820
#> SRR1818627     1  0.0000      0.925 1.000 0.000
#> SRR1818628     1  0.0000      0.925 1.000 0.000
#> SRR1818621     1  0.5519      0.851 0.872 0.128
#> SRR1818622     1  0.5519      0.851 0.872 0.128
#> SRR1818625     1  0.0938      0.926 0.988 0.012
#> SRR1818626     1  0.0938      0.926 0.988 0.012
#> SRR1818623     2  0.1184      0.866 0.016 0.984
#> SRR1818624     2  0.1184      0.866 0.016 0.984
#> SRR1818619     1  0.0938      0.926 0.988 0.012
#> SRR1818620     1  0.0938      0.926 0.988 0.012
#> SRR1818617     2  0.6887      0.904 0.184 0.816
#> SRR1818618     2  0.6887      0.904 0.184 0.816
#> SRR1818615     2  0.3431      0.902 0.064 0.936
#> SRR1818616     2  0.3431      0.902 0.064 0.936
#> SRR1818609     2  0.1184      0.878 0.016 0.984
#> SRR1818610     2  0.1184      0.878 0.016 0.984
#> SRR1818607     2  0.5629      0.912 0.132 0.868
#> SRR1818608     2  0.5629      0.912 0.132 0.868
#> SRR1818613     1  0.0376      0.924 0.996 0.004
#> SRR1818614     1  0.0376      0.924 0.996 0.004
#> SRR1818611     1  0.0938      0.926 0.988 0.012
#> SRR1818612     1  0.0938      0.926 0.988 0.012
#> SRR1818605     1  0.2423      0.909 0.960 0.040
#> SRR1818606     1  0.2423      0.909 0.960 0.040

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1818631     3  0.6209      0.438 0.368 0.004 0.628
#> SRR1818632     3  0.6209      0.438 0.368 0.004 0.628
#> SRR1818679     3  0.9684      0.321 0.340 0.224 0.436
#> SRR1818680     3  0.9684      0.321 0.340 0.224 0.436
#> SRR1818677     2  0.5181      0.763 0.084 0.832 0.084
#> SRR1818678     2  0.5181      0.763 0.084 0.832 0.084
#> SRR1818675     3  0.5178      0.608 0.164 0.028 0.808
#> SRR1818676     3  0.5178      0.608 0.164 0.028 0.808
#> SRR1818673     2  0.4652      0.773 0.064 0.856 0.080
#> SRR1818674     2  0.4652      0.773 0.064 0.856 0.080
#> SRR1818671     2  0.3030      0.756 0.004 0.904 0.092
#> SRR1818672     2  0.3030      0.756 0.004 0.904 0.092
#> SRR1818661     3  0.5618      0.559 0.260 0.008 0.732
#> SRR1818662     3  0.5618      0.559 0.260 0.008 0.732
#> SRR1818655     1  0.2772      0.794 0.916 0.004 0.080
#> SRR1818656     1  0.2772      0.794 0.916 0.004 0.080
#> SRR1818653     1  0.5254      0.605 0.736 0.000 0.264
#> SRR1818654     1  0.5254      0.605 0.736 0.000 0.264
#> SRR1818651     1  0.3116      0.790 0.892 0.000 0.108
#> SRR1818652     1  0.3116      0.790 0.892 0.000 0.108
#> SRR1818657     1  0.1411      0.816 0.964 0.000 0.036
#> SRR1818658     1  0.1411      0.816 0.964 0.000 0.036
#> SRR1818649     1  0.4137      0.759 0.872 0.032 0.096
#> SRR1818650     1  0.4137      0.759 0.872 0.032 0.096
#> SRR1818659     1  0.2400      0.801 0.932 0.004 0.064
#> SRR1818647     2  0.6305      0.187 0.000 0.516 0.484
#> SRR1818648     2  0.6305      0.187 0.000 0.516 0.484
#> SRR1818645     2  0.1636      0.784 0.020 0.964 0.016
#> SRR1818646     2  0.1636      0.784 0.020 0.964 0.016
#> SRR1818639     1  0.2590      0.797 0.924 0.004 0.072
#> SRR1818640     1  0.2590      0.797 0.924 0.004 0.072
#> SRR1818637     2  0.5926      0.490 0.000 0.644 0.356
#> SRR1818638     2  0.5926      0.490 0.000 0.644 0.356
#> SRR1818635     2  0.5566      0.751 0.108 0.812 0.080
#> SRR1818636     2  0.5566      0.751 0.108 0.812 0.080
#> SRR1818643     2  0.6184      0.737 0.108 0.780 0.112
#> SRR1818644     2  0.6184      0.737 0.108 0.780 0.112
#> SRR1818641     2  0.6389      0.718 0.124 0.768 0.108
#> SRR1818642     2  0.6389      0.718 0.124 0.768 0.108
#> SRR1818633     1  0.9940     -0.290 0.388 0.308 0.304
#> SRR1818634     1  0.9940     -0.290 0.388 0.308 0.304
#> SRR1818665     1  0.0424      0.816 0.992 0.000 0.008
#> SRR1818666     1  0.0424      0.816 0.992 0.000 0.008
#> SRR1818667     2  0.4293      0.728 0.004 0.832 0.164
#> SRR1818668     2  0.4293      0.728 0.004 0.832 0.164
#> SRR1818669     1  0.1411      0.816 0.964 0.000 0.036
#> SRR1818670     1  0.1411      0.816 0.964 0.000 0.036
#> SRR1818663     1  0.0592      0.816 0.988 0.000 0.012
#> SRR1818664     1  0.0592      0.816 0.988 0.000 0.012
#> SRR1818629     2  0.3375      0.785 0.048 0.908 0.044
#> SRR1818630     2  0.3375      0.785 0.048 0.908 0.044
#> SRR1818627     1  0.1964      0.811 0.944 0.000 0.056
#> SRR1818628     1  0.1964      0.811 0.944 0.000 0.056
#> SRR1818621     1  0.6483      0.117 0.544 0.004 0.452
#> SRR1818622     1  0.6483      0.117 0.544 0.004 0.452
#> SRR1818625     1  0.1337      0.814 0.972 0.012 0.016
#> SRR1818626     1  0.1337      0.814 0.972 0.012 0.016
#> SRR1818623     3  0.6299     -0.197 0.000 0.476 0.524
#> SRR1818624     3  0.6299     -0.197 0.000 0.476 0.524
#> SRR1818619     1  0.2955      0.796 0.912 0.008 0.080
#> SRR1818620     1  0.2955      0.796 0.912 0.008 0.080
#> SRR1818617     2  0.6181      0.729 0.116 0.780 0.104
#> SRR1818618     2  0.6181      0.729 0.116 0.780 0.104
#> SRR1818615     2  0.2772      0.761 0.004 0.916 0.080
#> SRR1818616     2  0.2772      0.761 0.004 0.916 0.080
#> SRR1818609     2  0.4931      0.648 0.000 0.768 0.232
#> SRR1818610     2  0.4931      0.648 0.000 0.768 0.232
#> SRR1818607     2  0.1636      0.784 0.020 0.964 0.016
#> SRR1818608     2  0.1636      0.784 0.020 0.964 0.016
#> SRR1818613     1  0.3116      0.790 0.892 0.000 0.108
#> SRR1818614     1  0.3116      0.790 0.892 0.000 0.108
#> SRR1818611     1  0.3889      0.765 0.884 0.032 0.084
#> SRR1818612     1  0.3889      0.765 0.884 0.032 0.084
#> SRR1818605     1  0.5216      0.587 0.740 0.000 0.260
#> SRR1818606     1  0.5216      0.587 0.740 0.000 0.260

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1818631     3  0.6139      0.631 0.244 0.000 0.656 0.100
#> SRR1818632     3  0.6139      0.631 0.244 0.000 0.656 0.100
#> SRR1818679     3  0.9215      0.341 0.268 0.244 0.400 0.088
#> SRR1818680     3  0.9215      0.341 0.268 0.244 0.400 0.088
#> SRR1818677     2  0.5169      0.678 0.024 0.788 0.072 0.116
#> SRR1818678     2  0.5169      0.678 0.024 0.788 0.072 0.116
#> SRR1818675     3  0.6083      0.434 0.056 0.000 0.584 0.360
#> SRR1818676     3  0.6083      0.434 0.056 0.000 0.584 0.360
#> SRR1818673     2  0.2634      0.736 0.020 0.920 0.028 0.032
#> SRR1818674     2  0.2634      0.736 0.020 0.920 0.028 0.032
#> SRR1818671     2  0.4655      0.409 0.000 0.684 0.004 0.312
#> SRR1818672     2  0.4655      0.409 0.000 0.684 0.004 0.312
#> SRR1818661     3  0.6133      0.591 0.124 0.000 0.672 0.204
#> SRR1818662     3  0.6133      0.591 0.124 0.000 0.672 0.204
#> SRR1818655     1  0.5601      0.673 0.756 0.020 0.132 0.092
#> SRR1818656     1  0.5601      0.673 0.756 0.020 0.132 0.092
#> SRR1818653     1  0.6396      0.334 0.564 0.000 0.360 0.076
#> SRR1818654     1  0.6396      0.334 0.564 0.000 0.360 0.076
#> SRR1818651     1  0.3047      0.740 0.872 0.000 0.116 0.012
#> SRR1818652     1  0.3047      0.740 0.872 0.000 0.116 0.012
#> SRR1818657     1  0.2578      0.762 0.912 0.000 0.052 0.036
#> SRR1818658     1  0.2578      0.762 0.912 0.000 0.052 0.036
#> SRR1818649     1  0.4897      0.714 0.808 0.044 0.108 0.040
#> SRR1818650     1  0.4897      0.714 0.808 0.044 0.108 0.040
#> SRR1818659     1  0.3670      0.736 0.860 0.008 0.100 0.032
#> SRR1818647     4  0.6275      0.790 0.000 0.256 0.104 0.640
#> SRR1818648     4  0.6275      0.790 0.000 0.256 0.104 0.640
#> SRR1818645     2  0.2714      0.695 0.000 0.884 0.004 0.112
#> SRR1818646     2  0.2714      0.695 0.000 0.884 0.004 0.112
#> SRR1818639     1  0.5573      0.661 0.748 0.012 0.148 0.092
#> SRR1818640     1  0.5573      0.661 0.748 0.012 0.148 0.092
#> SRR1818637     4  0.5491      0.762 0.000 0.260 0.052 0.688
#> SRR1818638     4  0.5491      0.762 0.000 0.260 0.052 0.688
#> SRR1818635     2  0.3133      0.732 0.028 0.900 0.036 0.036
#> SRR1818636     2  0.3133      0.732 0.028 0.900 0.036 0.036
#> SRR1818643     2  0.4081      0.713 0.032 0.856 0.060 0.052
#> SRR1818644     2  0.4081      0.713 0.032 0.856 0.060 0.052
#> SRR1818641     2  0.4303      0.707 0.032 0.844 0.052 0.072
#> SRR1818642     2  0.4303      0.707 0.032 0.844 0.052 0.072
#> SRR1818633     1  0.9606     -0.245 0.332 0.292 0.252 0.124
#> SRR1818634     1  0.9606     -0.245 0.332 0.292 0.252 0.124
#> SRR1818665     1  0.0927      0.766 0.976 0.000 0.008 0.016
#> SRR1818666     1  0.0927      0.766 0.976 0.000 0.008 0.016
#> SRR1818667     2  0.5728      0.159 0.000 0.600 0.036 0.364
#> SRR1818668     2  0.5728      0.159 0.000 0.600 0.036 0.364
#> SRR1818669     1  0.2450      0.759 0.912 0.000 0.072 0.016
#> SRR1818670     1  0.2450      0.759 0.912 0.000 0.072 0.016
#> SRR1818663     1  0.1697      0.765 0.952 0.004 0.028 0.016
#> SRR1818664     1  0.1697      0.765 0.952 0.004 0.028 0.016
#> SRR1818629     2  0.2761      0.735 0.016 0.908 0.012 0.064
#> SRR1818630     2  0.2761      0.735 0.016 0.908 0.012 0.064
#> SRR1818627     1  0.2450      0.758 0.912 0.000 0.072 0.016
#> SRR1818628     1  0.2450      0.758 0.912 0.000 0.072 0.016
#> SRR1818621     3  0.6214      0.375 0.360 0.000 0.576 0.064
#> SRR1818622     3  0.6214      0.375 0.360 0.000 0.576 0.064
#> SRR1818625     1  0.2353      0.765 0.928 0.008 0.040 0.024
#> SRR1818626     1  0.2353      0.765 0.928 0.008 0.040 0.024
#> SRR1818623     4  0.6941      0.694 0.000 0.192 0.220 0.588
#> SRR1818624     4  0.6941      0.694 0.000 0.192 0.220 0.588
#> SRR1818619     1  0.4238      0.713 0.828 0.004 0.108 0.060
#> SRR1818620     1  0.4238      0.713 0.828 0.004 0.108 0.060
#> SRR1818617     2  0.5974      0.624 0.040 0.744 0.096 0.120
#> SRR1818618     2  0.5974      0.624 0.040 0.744 0.096 0.120
#> SRR1818615     2  0.4164      0.493 0.000 0.736 0.000 0.264
#> SRR1818616     2  0.4164      0.493 0.000 0.736 0.000 0.264
#> SRR1818609     4  0.4888      0.591 0.000 0.412 0.000 0.588
#> SRR1818610     4  0.4888      0.591 0.000 0.412 0.000 0.588
#> SRR1818607     2  0.2714      0.695 0.000 0.884 0.004 0.112
#> SRR1818608     2  0.2714      0.695 0.000 0.884 0.004 0.112
#> SRR1818613     1  0.2859      0.738 0.880 0.000 0.112 0.008
#> SRR1818614     1  0.2859      0.738 0.880 0.000 0.112 0.008
#> SRR1818611     1  0.4717      0.719 0.820 0.044 0.096 0.040
#> SRR1818612     1  0.4717      0.719 0.820 0.044 0.096 0.040
#> SRR1818605     1  0.5069      0.397 0.664 0.000 0.320 0.016
#> SRR1818606     1  0.5069      0.397 0.664 0.000 0.320 0.016

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4 p5
#> SRR1818631     3   0.501     0.6338 0.160 0.000 0.740 0.028 NA
#> SRR1818632     3   0.501     0.6338 0.160 0.000 0.740 0.028 NA
#> SRR1818679     3   0.871     0.2829 0.124 0.296 0.328 0.020 NA
#> SRR1818680     3   0.871     0.2829 0.124 0.296 0.328 0.020 NA
#> SRR1818677     2   0.663     0.4904 0.008 0.600 0.040 0.120 NA
#> SRR1818678     2   0.663     0.4904 0.008 0.600 0.040 0.120 NA
#> SRR1818675     3   0.632     0.5328 0.052 0.004 0.644 0.192 NA
#> SRR1818676     3   0.632     0.5328 0.052 0.004 0.644 0.192 NA
#> SRR1818673     2   0.192     0.5991 0.008 0.936 0.004 0.036 NA
#> SRR1818674     2   0.192     0.5991 0.008 0.936 0.004 0.036 NA
#> SRR1818671     4   0.589     0.1698 0.000 0.408 0.004 0.500 NA
#> SRR1818672     4   0.589     0.1698 0.000 0.408 0.004 0.500 NA
#> SRR1818661     3   0.429     0.6232 0.072 0.004 0.816 0.064 NA
#> SRR1818662     3   0.429     0.6232 0.072 0.004 0.816 0.064 NA
#> SRR1818655     1   0.484     0.6073 0.624 0.020 0.008 0.000 NA
#> SRR1818656     1   0.484     0.6073 0.624 0.020 0.008 0.000 NA
#> SRR1818653     1   0.654     0.2298 0.432 0.000 0.200 0.000 NA
#> SRR1818654     1   0.654     0.2298 0.432 0.000 0.200 0.000 NA
#> SRR1818651     1   0.370     0.7064 0.832 0.008 0.072 0.000 NA
#> SRR1818652     1   0.370     0.7064 0.832 0.008 0.072 0.000 NA
#> SRR1818657     1   0.473     0.6917 0.784 0.008 0.064 0.032 NA
#> SRR1818658     1   0.473     0.6917 0.784 0.008 0.064 0.032 NA
#> SRR1818649     1   0.628     0.6122 0.656 0.116 0.032 0.016 NA
#> SRR1818650     1   0.628     0.6122 0.656 0.116 0.032 0.016 NA
#> SRR1818659     1   0.400     0.6861 0.776 0.008 0.016 0.004 NA
#> SRR1818647     4   0.531     0.6009 0.000 0.092 0.164 0.716 NA
#> SRR1818648     4   0.531     0.6009 0.000 0.092 0.164 0.716 NA
#> SRR1818645     2   0.559     0.4004 0.000 0.628 0.008 0.276 NA
#> SRR1818646     2   0.559     0.4004 0.000 0.628 0.008 0.276 NA
#> SRR1818639     1   0.496     0.5994 0.632 0.012 0.024 0.000 NA
#> SRR1818640     1   0.496     0.5994 0.632 0.012 0.024 0.000 NA
#> SRR1818637     4   0.530     0.6270 0.000 0.112 0.080 0.740 NA
#> SRR1818638     4   0.530     0.6270 0.000 0.112 0.080 0.740 NA
#> SRR1818635     2   0.223     0.6001 0.012 0.924 0.004 0.032 NA
#> SRR1818636     2   0.223     0.6001 0.012 0.924 0.004 0.032 NA
#> SRR1818643     2   0.346     0.5862 0.016 0.868 0.024 0.032 NA
#> SRR1818644     2   0.346     0.5862 0.016 0.868 0.024 0.032 NA
#> SRR1818641     2   0.279     0.5885 0.020 0.884 0.012 0.000 NA
#> SRR1818642     2   0.279     0.5885 0.020 0.884 0.012 0.000 NA
#> SRR1818633     2   0.989    -0.1788 0.220 0.248 0.208 0.136 NA
#> SRR1818634     2   0.989    -0.1788 0.220 0.248 0.208 0.136 NA
#> SRR1818665     1   0.228     0.7245 0.920 0.000 0.028 0.024 NA
#> SRR1818666     1   0.228     0.7245 0.920 0.000 0.028 0.024 NA
#> SRR1818667     4   0.609     0.3340 0.000 0.356 0.016 0.540 NA
#> SRR1818668     4   0.609     0.3340 0.000 0.356 0.016 0.540 NA
#> SRR1818669     1   0.417     0.6990 0.816 0.004 0.080 0.020 NA
#> SRR1818670     1   0.417     0.6990 0.816 0.004 0.080 0.020 NA
#> SRR1818663     1   0.241     0.7258 0.916 0.012 0.020 0.008 NA
#> SRR1818664     1   0.241     0.7258 0.916 0.012 0.020 0.008 NA
#> SRR1818629     2   0.470     0.5195 0.004 0.744 0.004 0.180 NA
#> SRR1818630     2   0.470     0.5195 0.004 0.744 0.004 0.180 NA
#> SRR1818627     1   0.395     0.7043 0.828 0.000 0.068 0.028 NA
#> SRR1818628     1   0.395     0.7043 0.828 0.000 0.068 0.028 NA
#> SRR1818621     3   0.704     0.3928 0.236 0.000 0.460 0.020 NA
#> SRR1818622     3   0.704     0.3928 0.236 0.000 0.460 0.020 NA
#> SRR1818625     1   0.317     0.7222 0.872 0.020 0.016 0.008 NA
#> SRR1818626     1   0.317     0.7222 0.872 0.020 0.016 0.008 NA
#> SRR1818623     4   0.659     0.4216 0.000 0.056 0.296 0.560 NA
#> SRR1818624     4   0.659     0.4216 0.000 0.056 0.296 0.560 NA
#> SRR1818619     1   0.635     0.5935 0.660 0.024 0.100 0.036 NA
#> SRR1818620     1   0.635     0.5935 0.660 0.024 0.100 0.036 NA
#> SRR1818617     2   0.647     0.4844 0.040 0.604 0.016 0.072 NA
#> SRR1818618     2   0.647     0.4844 0.040 0.604 0.016 0.072 NA
#> SRR1818615     2   0.521     0.0494 0.000 0.540 0.004 0.420 NA
#> SRR1818616     2   0.521     0.0494 0.000 0.540 0.004 0.420 NA
#> SRR1818609     4   0.398     0.6119 0.000 0.188 0.016 0.780 NA
#> SRR1818610     4   0.398     0.6119 0.000 0.188 0.016 0.780 NA
#> SRR1818607     2   0.559     0.4004 0.000 0.628 0.008 0.276 NA
#> SRR1818608     2   0.559     0.4004 0.000 0.628 0.008 0.276 NA
#> SRR1818613     1   0.358     0.7065 0.840 0.008 0.072 0.000 NA
#> SRR1818614     1   0.358     0.7065 0.840 0.008 0.072 0.000 NA
#> SRR1818611     1   0.606     0.6222 0.672 0.116 0.024 0.016 NA
#> SRR1818612     1   0.606     0.6222 0.672 0.116 0.024 0.016 NA
#> SRR1818605     1   0.606     0.3532 0.584 0.004 0.296 0.008 NA
#> SRR1818606     1   0.606     0.3532 0.584 0.004 0.296 0.008 NA

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1818631     3   0.364    0.46192 0.124 0.000 0.816 0.020 0.008 0.032
#> SRR1818632     3   0.364    0.46192 0.124 0.000 0.816 0.020 0.008 0.032
#> SRR1818679     3   0.807   -0.00392 0.052 0.192 0.428 0.028 0.060 0.240
#> SRR1818680     3   0.807   -0.00392 0.052 0.192 0.428 0.028 0.060 0.240
#> SRR1818677     2   0.705    0.41908 0.008 0.508 0.064 0.060 0.064 0.296
#> SRR1818678     2   0.705    0.41908 0.008 0.508 0.064 0.060 0.064 0.296
#> SRR1818675     3   0.707    0.44361 0.032 0.004 0.472 0.308 0.136 0.048
#> SRR1818676     3   0.707    0.44361 0.032 0.004 0.472 0.308 0.136 0.048
#> SRR1818673     2   0.132    0.58584 0.000 0.956 0.004 0.016 0.008 0.016
#> SRR1818674     2   0.132    0.58584 0.000 0.956 0.004 0.016 0.008 0.016
#> SRR1818671     2   0.614    0.19541 0.000 0.416 0.000 0.384 0.012 0.188
#> SRR1818672     2   0.614    0.19541 0.000 0.416 0.000 0.384 0.012 0.188
#> SRR1818661     3   0.631    0.49169 0.048 0.000 0.636 0.124 0.128 0.064
#> SRR1818662     3   0.631    0.49169 0.048 0.000 0.636 0.124 0.128 0.064
#> SRR1818655     1   0.557   -0.23218 0.476 0.004 0.004 0.000 0.412 0.104
#> SRR1818656     1   0.557   -0.23218 0.476 0.004 0.004 0.000 0.412 0.104
#> SRR1818653     5   0.582    0.50685 0.300 0.000 0.128 0.000 0.548 0.024
#> SRR1818654     5   0.582    0.50685 0.300 0.000 0.128 0.000 0.548 0.024
#> SRR1818651     1   0.457    0.45187 0.736 0.000 0.076 0.004 0.164 0.020
#> SRR1818652     1   0.457    0.45187 0.736 0.000 0.076 0.004 0.164 0.020
#> SRR1818657     1   0.450    0.51686 0.760 0.000 0.056 0.000 0.076 0.108
#> SRR1818658     1   0.450    0.51686 0.760 0.000 0.056 0.000 0.076 0.108
#> SRR1818649     1   0.719    0.36925 0.548 0.072 0.060 0.012 0.088 0.220
#> SRR1818650     1   0.719    0.36925 0.548 0.072 0.060 0.012 0.088 0.220
#> SRR1818659     1   0.438    0.28035 0.676 0.000 0.012 0.000 0.280 0.032
#> SRR1818647     4   0.428    0.64943 0.000 0.060 0.084 0.796 0.024 0.036
#> SRR1818648     4   0.428    0.64943 0.000 0.060 0.084 0.796 0.024 0.036
#> SRR1818645     2   0.546    0.51352 0.000 0.592 0.000 0.216 0.004 0.188
#> SRR1818646     2   0.546    0.51352 0.000 0.592 0.000 0.216 0.004 0.188
#> SRR1818639     5   0.511    0.19222 0.464 0.004 0.000 0.004 0.472 0.056
#> SRR1818640     5   0.511    0.19222 0.464 0.004 0.000 0.004 0.472 0.056
#> SRR1818637     4   0.375    0.67798 0.000 0.068 0.012 0.828 0.060 0.032
#> SRR1818638     4   0.375    0.67798 0.000 0.068 0.012 0.828 0.060 0.032
#> SRR1818635     2   0.175    0.57732 0.004 0.940 0.008 0.016 0.008 0.024
#> SRR1818636     2   0.175    0.57732 0.004 0.940 0.008 0.016 0.008 0.024
#> SRR1818643     2   0.408    0.53002 0.000 0.812 0.028 0.032 0.068 0.060
#> SRR1818644     2   0.408    0.53002 0.000 0.812 0.028 0.032 0.068 0.060
#> SRR1818641     2   0.348    0.51911 0.004 0.820 0.008 0.008 0.024 0.136
#> SRR1818642     2   0.348    0.51911 0.004 0.820 0.008 0.008 0.024 0.136
#> SRR1818633     6   0.895    1.00000 0.188 0.152 0.112 0.080 0.072 0.396
#> SRR1818634     6   0.895    1.00000 0.188 0.152 0.112 0.080 0.072 0.396
#> SRR1818665     1   0.294    0.55289 0.876 0.000 0.028 0.008 0.056 0.032
#> SRR1818666     1   0.294    0.55289 0.876 0.000 0.028 0.008 0.056 0.032
#> SRR1818667     4   0.677    0.23386 0.000 0.280 0.024 0.512 0.056 0.128
#> SRR1818668     4   0.677    0.23386 0.000 0.280 0.024 0.512 0.056 0.128
#> SRR1818669     1   0.487    0.48175 0.712 0.000 0.184 0.004 0.060 0.040
#> SRR1818670     1   0.487    0.48175 0.712 0.000 0.184 0.004 0.060 0.040
#> SRR1818663     1   0.259    0.54484 0.872 0.000 0.000 0.000 0.044 0.084
#> SRR1818664     1   0.259    0.54484 0.872 0.000 0.000 0.000 0.044 0.084
#> SRR1818629     2   0.502    0.56928 0.000 0.708 0.008 0.092 0.028 0.164
#> SRR1818630     2   0.502    0.56928 0.000 0.708 0.008 0.092 0.028 0.164
#> SRR1818627     1   0.435    0.52791 0.784 0.000 0.088 0.008 0.068 0.052
#> SRR1818628     1   0.435    0.52791 0.784 0.000 0.088 0.008 0.068 0.052
#> SRR1818621     5   0.707    0.18831 0.144 0.000 0.352 0.016 0.416 0.072
#> SRR1818622     5   0.707    0.18831 0.144 0.000 0.352 0.016 0.416 0.072
#> SRR1818625     1   0.296    0.54321 0.848 0.000 0.004 0.000 0.040 0.108
#> SRR1818626     1   0.296    0.54321 0.848 0.000 0.004 0.000 0.040 0.108
#> SRR1818623     4   0.585    0.45145 0.000 0.024 0.228 0.616 0.020 0.112
#> SRR1818624     4   0.585    0.45145 0.000 0.024 0.228 0.616 0.020 0.112
#> SRR1818619     1   0.624    0.33081 0.588 0.004 0.128 0.000 0.076 0.204
#> SRR1818620     1   0.624    0.33081 0.588 0.004 0.128 0.000 0.076 0.204
#> SRR1818617     2   0.753    0.01005 0.028 0.384 0.020 0.060 0.132 0.376
#> SRR1818618     2   0.753    0.01005 0.028 0.384 0.020 0.060 0.132 0.376
#> SRR1818615     2   0.526    0.25521 0.000 0.520 0.004 0.404 0.008 0.064
#> SRR1818616     2   0.526    0.25521 0.000 0.520 0.004 0.404 0.008 0.064
#> SRR1818609     4   0.386    0.65581 0.000 0.144 0.000 0.788 0.020 0.048
#> SRR1818610     4   0.386    0.65581 0.000 0.144 0.000 0.788 0.020 0.048
#> SRR1818607     2   0.546    0.51352 0.000 0.592 0.000 0.216 0.004 0.188
#> SRR1818608     2   0.546    0.51352 0.000 0.592 0.000 0.216 0.004 0.188
#> SRR1818613     1   0.450    0.45884 0.744 0.000 0.076 0.004 0.156 0.020
#> SRR1818614     1   0.450    0.45884 0.744 0.000 0.076 0.004 0.156 0.020
#> SRR1818611     1   0.681    0.39046 0.580 0.068 0.036 0.012 0.092 0.212
#> SRR1818612     1   0.681    0.39046 0.580 0.068 0.036 0.012 0.092 0.212
#> SRR1818605     1   0.690    0.04567 0.476 0.008 0.256 0.000 0.196 0.064
#> SRR1818606     1   0.690    0.04567 0.476 0.008 0.256 0.000 0.196 0.064

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15216 rows and 75 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.965       0.986         0.5041 0.498   0.498
#> 3 3 0.717           0.841       0.896         0.3029 0.788   0.595
#> 4 4 0.643           0.783       0.834         0.1249 0.859   0.618
#> 5 5 0.640           0.644       0.738         0.0661 0.977   0.914
#> 6 6 0.653           0.501       0.641         0.0438 0.898   0.618

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1818631     1   0.000      0.977 1.000 0.000
#> SRR1818632     1   0.000      0.977 1.000 0.000
#> SRR1818679     1   0.969      0.369 0.604 0.396
#> SRR1818680     1   0.969      0.369 0.604 0.396
#> SRR1818677     2   0.000      0.995 0.000 1.000
#> SRR1818678     2   0.000      0.995 0.000 1.000
#> SRR1818675     1   0.311      0.926 0.944 0.056
#> SRR1818676     1   0.311      0.926 0.944 0.056
#> SRR1818673     2   0.000      0.995 0.000 1.000
#> SRR1818674     2   0.000      0.995 0.000 1.000
#> SRR1818671     2   0.000      0.995 0.000 1.000
#> SRR1818672     2   0.000      0.995 0.000 1.000
#> SRR1818661     1   0.000      0.977 1.000 0.000
#> SRR1818662     1   0.000      0.977 1.000 0.000
#> SRR1818655     1   0.000      0.977 1.000 0.000
#> SRR1818656     1   0.000      0.977 1.000 0.000
#> SRR1818653     1   0.000      0.977 1.000 0.000
#> SRR1818654     1   0.000      0.977 1.000 0.000
#> SRR1818651     1   0.000      0.977 1.000 0.000
#> SRR1818652     1   0.000      0.977 1.000 0.000
#> SRR1818657     1   0.000      0.977 1.000 0.000
#> SRR1818658     1   0.000      0.977 1.000 0.000
#> SRR1818649     1   0.000      0.977 1.000 0.000
#> SRR1818650     1   0.000      0.977 1.000 0.000
#> SRR1818659     1   0.000      0.977 1.000 0.000
#> SRR1818647     2   0.000      0.995 0.000 1.000
#> SRR1818648     2   0.000      0.995 0.000 1.000
#> SRR1818645     2   0.000      0.995 0.000 1.000
#> SRR1818646     2   0.000      0.995 0.000 1.000
#> SRR1818639     1   0.000      0.977 1.000 0.000
#> SRR1818640     1   0.000      0.977 1.000 0.000
#> SRR1818637     2   0.000      0.995 0.000 1.000
#> SRR1818638     2   0.000      0.995 0.000 1.000
#> SRR1818635     2   0.000      0.995 0.000 1.000
#> SRR1818636     2   0.000      0.995 0.000 1.000
#> SRR1818643     2   0.000      0.995 0.000 1.000
#> SRR1818644     2   0.000      0.995 0.000 1.000
#> SRR1818641     2   0.000      0.995 0.000 1.000
#> SRR1818642     2   0.000      0.995 0.000 1.000
#> SRR1818633     2   0.430      0.905 0.088 0.912
#> SRR1818634     2   0.430      0.905 0.088 0.912
#> SRR1818665     1   0.000      0.977 1.000 0.000
#> SRR1818666     1   0.000      0.977 1.000 0.000
#> SRR1818667     2   0.000      0.995 0.000 1.000
#> SRR1818668     2   0.000      0.995 0.000 1.000
#> SRR1818669     1   0.000      0.977 1.000 0.000
#> SRR1818670     1   0.000      0.977 1.000 0.000
#> SRR1818663     1   0.000      0.977 1.000 0.000
#> SRR1818664     1   0.000      0.977 1.000 0.000
#> SRR1818629     2   0.000      0.995 0.000 1.000
#> SRR1818630     2   0.000      0.995 0.000 1.000
#> SRR1818627     1   0.000      0.977 1.000 0.000
#> SRR1818628     1   0.000      0.977 1.000 0.000
#> SRR1818621     1   0.000      0.977 1.000 0.000
#> SRR1818622     1   0.000      0.977 1.000 0.000
#> SRR1818625     1   0.000      0.977 1.000 0.000
#> SRR1818626     1   0.000      0.977 1.000 0.000
#> SRR1818623     2   0.000      0.995 0.000 1.000
#> SRR1818624     2   0.000      0.995 0.000 1.000
#> SRR1818619     1   0.000      0.977 1.000 0.000
#> SRR1818620     1   0.000      0.977 1.000 0.000
#> SRR1818617     2   0.000      0.995 0.000 1.000
#> SRR1818618     2   0.000      0.995 0.000 1.000
#> SRR1818615     2   0.000      0.995 0.000 1.000
#> SRR1818616     2   0.000      0.995 0.000 1.000
#> SRR1818609     2   0.000      0.995 0.000 1.000
#> SRR1818610     2   0.000      0.995 0.000 1.000
#> SRR1818607     2   0.000      0.995 0.000 1.000
#> SRR1818608     2   0.000      0.995 0.000 1.000
#> SRR1818613     1   0.000      0.977 1.000 0.000
#> SRR1818614     1   0.000      0.977 1.000 0.000
#> SRR1818611     1   0.000      0.977 1.000 0.000
#> SRR1818612     1   0.000      0.977 1.000 0.000
#> SRR1818605     1   0.000      0.977 1.000 0.000
#> SRR1818606     1   0.000      0.977 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1818631     3  0.4235      0.757 0.176 0.000 0.824
#> SRR1818632     3  0.4235      0.757 0.176 0.000 0.824
#> SRR1818679     3  0.3551      0.760 0.000 0.132 0.868
#> SRR1818680     3  0.3551      0.760 0.000 0.132 0.868
#> SRR1818677     2  0.1753      0.941 0.000 0.952 0.048
#> SRR1818678     2  0.1753      0.941 0.000 0.952 0.048
#> SRR1818675     3  0.1182      0.790 0.012 0.012 0.976
#> SRR1818676     3  0.1182      0.790 0.012 0.012 0.976
#> SRR1818673     2  0.0747      0.943 0.000 0.984 0.016
#> SRR1818674     2  0.0747      0.943 0.000 0.984 0.016
#> SRR1818671     2  0.2165      0.938 0.000 0.936 0.064
#> SRR1818672     2  0.2165      0.938 0.000 0.936 0.064
#> SRR1818661     3  0.2796      0.775 0.092 0.000 0.908
#> SRR1818662     3  0.2796      0.775 0.092 0.000 0.908
#> SRR1818655     1  0.2959      0.896 0.900 0.000 0.100
#> SRR1818656     1  0.2959      0.896 0.900 0.000 0.100
#> SRR1818653     1  0.6307      0.114 0.512 0.000 0.488
#> SRR1818654     1  0.6307      0.114 0.512 0.000 0.488
#> SRR1818651     1  0.3192      0.890 0.888 0.000 0.112
#> SRR1818652     1  0.3192      0.890 0.888 0.000 0.112
#> SRR1818657     1  0.0000      0.913 1.000 0.000 0.000
#> SRR1818658     1  0.0000      0.913 1.000 0.000 0.000
#> SRR1818649     1  0.1129      0.903 0.976 0.004 0.020
#> SRR1818650     1  0.1129      0.903 0.976 0.004 0.020
#> SRR1818659     1  0.2959      0.896 0.900 0.000 0.100
#> SRR1818647     3  0.5397      0.595 0.000 0.280 0.720
#> SRR1818648     3  0.5397      0.595 0.000 0.280 0.720
#> SRR1818645     2  0.0424      0.948 0.000 0.992 0.008
#> SRR1818646     2  0.0424      0.948 0.000 0.992 0.008
#> SRR1818639     1  0.2959      0.896 0.900 0.000 0.100
#> SRR1818640     1  0.2959      0.896 0.900 0.000 0.100
#> SRR1818637     2  0.5327      0.693 0.000 0.728 0.272
#> SRR1818638     2  0.5327      0.693 0.000 0.728 0.272
#> SRR1818635     2  0.0747      0.943 0.000 0.984 0.016
#> SRR1818636     2  0.0747      0.943 0.000 0.984 0.016
#> SRR1818643     2  0.0892      0.943 0.000 0.980 0.020
#> SRR1818644     2  0.0892      0.943 0.000 0.980 0.020
#> SRR1818641     2  0.0747      0.943 0.000 0.984 0.016
#> SRR1818642     2  0.0747      0.943 0.000 0.984 0.016
#> SRR1818633     3  0.6250      0.771 0.104 0.120 0.776
#> SRR1818634     3  0.6250      0.771 0.104 0.120 0.776
#> SRR1818665     1  0.1031      0.916 0.976 0.000 0.024
#> SRR1818666     1  0.1031      0.916 0.976 0.000 0.024
#> SRR1818667     2  0.2878      0.921 0.000 0.904 0.096
#> SRR1818668     2  0.2878      0.921 0.000 0.904 0.096
#> SRR1818669     1  0.1411      0.914 0.964 0.000 0.036
#> SRR1818670     1  0.1411      0.914 0.964 0.000 0.036
#> SRR1818663     1  0.0237      0.912 0.996 0.000 0.004
#> SRR1818664     1  0.0237      0.912 0.996 0.000 0.004
#> SRR1818629     2  0.0892      0.947 0.000 0.980 0.020
#> SRR1818630     2  0.0892      0.947 0.000 0.980 0.020
#> SRR1818627     1  0.1289      0.916 0.968 0.000 0.032
#> SRR1818628     1  0.1289      0.916 0.968 0.000 0.032
#> SRR1818621     3  0.4235      0.719 0.176 0.000 0.824
#> SRR1818622     3  0.4235      0.719 0.176 0.000 0.824
#> SRR1818625     1  0.0237      0.912 0.996 0.000 0.004
#> SRR1818626     1  0.0237      0.912 0.996 0.000 0.004
#> SRR1818623     3  0.5016      0.652 0.000 0.240 0.760
#> SRR1818624     3  0.5016      0.652 0.000 0.240 0.760
#> SRR1818619     1  0.0892      0.907 0.980 0.000 0.020
#> SRR1818620     1  0.0892      0.907 0.980 0.000 0.020
#> SRR1818617     2  0.1964      0.941 0.000 0.944 0.056
#> SRR1818618     2  0.1964      0.941 0.000 0.944 0.056
#> SRR1818615     2  0.0747      0.947 0.000 0.984 0.016
#> SRR1818616     2  0.0747      0.947 0.000 0.984 0.016
#> SRR1818609     2  0.2796      0.923 0.000 0.908 0.092
#> SRR1818610     2  0.2796      0.923 0.000 0.908 0.092
#> SRR1818607     2  0.0424      0.948 0.000 0.992 0.008
#> SRR1818608     2  0.0424      0.948 0.000 0.992 0.008
#> SRR1818613     1  0.3192      0.890 0.888 0.000 0.112
#> SRR1818614     1  0.3192      0.890 0.888 0.000 0.112
#> SRR1818611     1  0.1129      0.903 0.976 0.004 0.020
#> SRR1818612     1  0.1129      0.903 0.976 0.004 0.020
#> SRR1818605     3  0.5988      0.461 0.368 0.000 0.632
#> SRR1818606     3  0.5988      0.461 0.368 0.000 0.632

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1818631     3  0.4030      0.848 0.092 0.000 0.836 0.072
#> SRR1818632     3  0.4030      0.848 0.092 0.000 0.836 0.072
#> SRR1818679     3  0.5710      0.743 0.004 0.128 0.728 0.140
#> SRR1818680     3  0.5710      0.743 0.004 0.128 0.728 0.140
#> SRR1818677     2  0.4910      0.708 0.000 0.704 0.020 0.276
#> SRR1818678     2  0.4910      0.708 0.000 0.704 0.020 0.276
#> SRR1818675     3  0.3569      0.792 0.000 0.000 0.804 0.196
#> SRR1818676     3  0.3569      0.792 0.000 0.000 0.804 0.196
#> SRR1818673     2  0.0707      0.795 0.000 0.980 0.000 0.020
#> SRR1818674     2  0.0707      0.795 0.000 0.980 0.000 0.020
#> SRR1818671     4  0.4103      0.626 0.000 0.256 0.000 0.744
#> SRR1818672     4  0.4103      0.626 0.000 0.256 0.000 0.744
#> SRR1818661     3  0.2915      0.859 0.028 0.000 0.892 0.080
#> SRR1818662     3  0.2915      0.859 0.028 0.000 0.892 0.080
#> SRR1818655     1  0.3402      0.863 0.832 0.004 0.164 0.000
#> SRR1818656     1  0.3402      0.863 0.832 0.004 0.164 0.000
#> SRR1818653     3  0.2814      0.814 0.132 0.000 0.868 0.000
#> SRR1818654     3  0.2814      0.814 0.132 0.000 0.868 0.000
#> SRR1818651     1  0.3726      0.830 0.788 0.000 0.212 0.000
#> SRR1818652     1  0.3726      0.830 0.788 0.000 0.212 0.000
#> SRR1818657     1  0.2075      0.885 0.936 0.004 0.044 0.016
#> SRR1818658     1  0.2075      0.885 0.936 0.004 0.044 0.016
#> SRR1818649     1  0.3833      0.837 0.864 0.072 0.044 0.020
#> SRR1818650     1  0.3833      0.837 0.864 0.072 0.044 0.020
#> SRR1818659     1  0.3219      0.864 0.836 0.000 0.164 0.000
#> SRR1818647     4  0.2399      0.774 0.000 0.032 0.048 0.920
#> SRR1818648     4  0.2399      0.774 0.000 0.032 0.048 0.920
#> SRR1818645     2  0.4008      0.757 0.000 0.756 0.000 0.244
#> SRR1818646     2  0.4008      0.757 0.000 0.756 0.000 0.244
#> SRR1818639     1  0.3448      0.862 0.828 0.004 0.168 0.000
#> SRR1818640     1  0.3448      0.862 0.828 0.004 0.168 0.000
#> SRR1818637     4  0.1452      0.782 0.000 0.036 0.008 0.956
#> SRR1818638     4  0.1452      0.782 0.000 0.036 0.008 0.956
#> SRR1818635     2  0.0707      0.795 0.000 0.980 0.000 0.020
#> SRR1818636     2  0.0707      0.795 0.000 0.980 0.000 0.020
#> SRR1818643     2  0.0817      0.794 0.000 0.976 0.000 0.024
#> SRR1818644     2  0.0817      0.794 0.000 0.976 0.000 0.024
#> SRR1818641     2  0.0469      0.791 0.000 0.988 0.000 0.012
#> SRR1818642     2  0.0469      0.791 0.000 0.988 0.000 0.012
#> SRR1818633     4  0.7678      0.314 0.048 0.104 0.288 0.560
#> SRR1818634     4  0.7678      0.314 0.048 0.104 0.288 0.560
#> SRR1818665     1  0.1824      0.891 0.936 0.000 0.060 0.004
#> SRR1818666     1  0.1824      0.891 0.936 0.000 0.060 0.004
#> SRR1818667     4  0.2814      0.760 0.000 0.132 0.000 0.868
#> SRR1818668     4  0.2814      0.760 0.000 0.132 0.000 0.868
#> SRR1818669     1  0.1635      0.893 0.948 0.000 0.044 0.008
#> SRR1818670     1  0.1635      0.893 0.948 0.000 0.044 0.008
#> SRR1818663     1  0.1406      0.886 0.960 0.000 0.024 0.016
#> SRR1818664     1  0.1406      0.886 0.960 0.000 0.024 0.016
#> SRR1818629     2  0.4103      0.705 0.000 0.744 0.000 0.256
#> SRR1818630     2  0.4103      0.705 0.000 0.744 0.000 0.256
#> SRR1818627     1  0.3249      0.857 0.852 0.000 0.140 0.008
#> SRR1818628     1  0.3249      0.857 0.852 0.000 0.140 0.008
#> SRR1818621     3  0.2125      0.851 0.076 0.000 0.920 0.004
#> SRR1818622     3  0.2125      0.851 0.076 0.000 0.920 0.004
#> SRR1818625     1  0.1406      0.886 0.960 0.000 0.024 0.016
#> SRR1818626     1  0.1406      0.886 0.960 0.000 0.024 0.016
#> SRR1818623     4  0.2222      0.763 0.000 0.016 0.060 0.924
#> SRR1818624     4  0.2222      0.763 0.000 0.016 0.060 0.924
#> SRR1818619     1  0.2297      0.880 0.928 0.004 0.044 0.024
#> SRR1818620     1  0.2297      0.880 0.928 0.004 0.044 0.024
#> SRR1818617     2  0.4941      0.456 0.000 0.564 0.000 0.436
#> SRR1818618     2  0.4941      0.456 0.000 0.564 0.000 0.436
#> SRR1818615     4  0.4406      0.580 0.000 0.300 0.000 0.700
#> SRR1818616     4  0.4406      0.580 0.000 0.300 0.000 0.700
#> SRR1818609     4  0.2469      0.771 0.000 0.108 0.000 0.892
#> SRR1818610     4  0.2469      0.771 0.000 0.108 0.000 0.892
#> SRR1818607     2  0.4008      0.757 0.000 0.756 0.000 0.244
#> SRR1818608     2  0.4008      0.757 0.000 0.756 0.000 0.244
#> SRR1818613     1  0.3726      0.830 0.788 0.000 0.212 0.000
#> SRR1818614     1  0.3726      0.830 0.788 0.000 0.212 0.000
#> SRR1818611     1  0.3761      0.840 0.868 0.068 0.044 0.020
#> SRR1818612     1  0.3761      0.840 0.868 0.068 0.044 0.020
#> SRR1818605     3  0.2988      0.848 0.112 0.000 0.876 0.012
#> SRR1818606     3  0.2988      0.848 0.112 0.000 0.876 0.012

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4 p5
#> SRR1818631     3  0.3033     0.8039 0.076 0.000 0.876 0.016 NA
#> SRR1818632     3  0.3033     0.8039 0.076 0.000 0.876 0.016 NA
#> SRR1818679     3  0.5421     0.7006 0.000 0.144 0.720 0.044 NA
#> SRR1818680     3  0.5421     0.7006 0.000 0.144 0.720 0.044 NA
#> SRR1818677     2  0.6850     0.4411 0.000 0.456 0.008 0.264 NA
#> SRR1818678     2  0.6850     0.4411 0.000 0.456 0.008 0.264 NA
#> SRR1818675     3  0.3500     0.7327 0.004 0.000 0.808 0.172 NA
#> SRR1818676     3  0.3500     0.7327 0.004 0.000 0.808 0.172 NA
#> SRR1818673     2  0.0798     0.7356 0.000 0.976 0.000 0.016 NA
#> SRR1818674     2  0.0798     0.7356 0.000 0.976 0.000 0.016 NA
#> SRR1818671     4  0.4998     0.5067 0.000 0.196 0.000 0.700 NA
#> SRR1818672     4  0.4998     0.5067 0.000 0.196 0.000 0.700 NA
#> SRR1818661     3  0.1690     0.8208 0.024 0.000 0.944 0.024 NA
#> SRR1818662     3  0.1690     0.8208 0.024 0.000 0.944 0.024 NA
#> SRR1818655     1  0.5860     0.6447 0.632 0.004 0.116 0.008 NA
#> SRR1818656     1  0.5860     0.6447 0.632 0.004 0.116 0.008 NA
#> SRR1818653     3  0.5108     0.6847 0.120 0.000 0.716 0.008 NA
#> SRR1818654     3  0.5108     0.6847 0.120 0.000 0.716 0.008 NA
#> SRR1818651     1  0.5572     0.6377 0.644 0.000 0.164 0.000 NA
#> SRR1818652     1  0.5572     0.6377 0.644 0.000 0.164 0.000 NA
#> SRR1818657     1  0.4581     0.6281 0.624 0.004 0.012 0.000 NA
#> SRR1818658     1  0.4581     0.6281 0.624 0.004 0.012 0.000 NA
#> SRR1818649     1  0.4675     0.6484 0.704 0.020 0.020 0.000 NA
#> SRR1818650     1  0.4675     0.6484 0.704 0.020 0.020 0.000 NA
#> SRR1818659     1  0.4454     0.6892 0.760 0.000 0.128 0.000 NA
#> SRR1818647     4  0.2177     0.7038 0.000 0.004 0.080 0.908 NA
#> SRR1818648     4  0.2177     0.7038 0.000 0.004 0.080 0.908 NA
#> SRR1818645     2  0.5506     0.6000 0.000 0.616 0.000 0.284 NA
#> SRR1818646     2  0.5506     0.6000 0.000 0.616 0.000 0.284 NA
#> SRR1818639     1  0.5982     0.6373 0.620 0.004 0.128 0.008 NA
#> SRR1818640     1  0.5982     0.6373 0.620 0.004 0.128 0.008 NA
#> SRR1818637     4  0.0740     0.7216 0.000 0.008 0.004 0.980 NA
#> SRR1818638     4  0.0740     0.7216 0.000 0.008 0.004 0.980 NA
#> SRR1818635     2  0.0798     0.7356 0.000 0.976 0.000 0.016 NA
#> SRR1818636     2  0.0798     0.7356 0.000 0.976 0.000 0.016 NA
#> SRR1818643     2  0.1485     0.7265 0.000 0.948 0.000 0.020 NA
#> SRR1818644     2  0.1485     0.7265 0.000 0.948 0.000 0.020 NA
#> SRR1818641     2  0.1041     0.7259 0.000 0.964 0.000 0.004 NA
#> SRR1818642     2  0.1041     0.7259 0.000 0.964 0.000 0.004 NA
#> SRR1818633     4  0.8590     0.2094 0.036 0.072 0.248 0.348 NA
#> SRR1818634     4  0.8590     0.2094 0.036 0.072 0.248 0.348 NA
#> SRR1818665     1  0.3771     0.7079 0.796 0.000 0.040 0.000 NA
#> SRR1818666     1  0.3771     0.7079 0.796 0.000 0.040 0.000 NA
#> SRR1818667     4  0.1918     0.7125 0.000 0.036 0.000 0.928 NA
#> SRR1818668     4  0.1918     0.7125 0.000 0.036 0.000 0.928 NA
#> SRR1818669     1  0.3281     0.7264 0.848 0.000 0.060 0.000 NA
#> SRR1818670     1  0.3281     0.7264 0.848 0.000 0.060 0.000 NA
#> SRR1818663     1  0.2127     0.7167 0.892 0.000 0.000 0.000 NA
#> SRR1818664     1  0.2127     0.7167 0.892 0.000 0.000 0.000 NA
#> SRR1818629     2  0.5570     0.5409 0.000 0.608 0.000 0.288 NA
#> SRR1818630     2  0.5570     0.5409 0.000 0.608 0.000 0.288 NA
#> SRR1818627     1  0.5116     0.6584 0.692 0.000 0.120 0.000 NA
#> SRR1818628     1  0.5116     0.6584 0.692 0.000 0.120 0.000 NA
#> SRR1818621     3  0.3255     0.7891 0.052 0.000 0.848 0.000 NA
#> SRR1818622     3  0.3255     0.7891 0.052 0.000 0.848 0.000 NA
#> SRR1818625     1  0.2127     0.7167 0.892 0.000 0.000 0.000 NA
#> SRR1818626     1  0.2127     0.7167 0.892 0.000 0.000 0.000 NA
#> SRR1818623     4  0.2561     0.6975 0.000 0.000 0.096 0.884 NA
#> SRR1818624     4  0.2561     0.6975 0.000 0.000 0.096 0.884 NA
#> SRR1818619     1  0.5033     0.5861 0.568 0.004 0.028 0.000 NA
#> SRR1818620     1  0.5033     0.5861 0.568 0.004 0.028 0.000 NA
#> SRR1818617     4  0.6766    -0.0207 0.000 0.284 0.000 0.396 NA
#> SRR1818618     4  0.6766    -0.0207 0.000 0.284 0.000 0.396 NA
#> SRR1818615     4  0.4083     0.5577 0.000 0.228 0.000 0.744 NA
#> SRR1818616     4  0.4083     0.5577 0.000 0.228 0.000 0.744 NA
#> SRR1818609     4  0.1168     0.7208 0.000 0.032 0.000 0.960 NA
#> SRR1818610     4  0.1168     0.7208 0.000 0.032 0.000 0.960 NA
#> SRR1818607     2  0.5506     0.6000 0.000 0.616 0.000 0.284 NA
#> SRR1818608     2  0.5506     0.6000 0.000 0.616 0.000 0.284 NA
#> SRR1818613     1  0.5507     0.6424 0.652 0.000 0.160 0.000 NA
#> SRR1818614     1  0.5507     0.6424 0.652 0.000 0.160 0.000 NA
#> SRR1818611     1  0.4584     0.6502 0.708 0.020 0.016 0.000 NA
#> SRR1818612     1  0.4584     0.6502 0.708 0.020 0.016 0.000 NA
#> SRR1818605     3  0.4394     0.7719 0.136 0.000 0.764 0.000 NA
#> SRR1818606     3  0.4394     0.7719 0.136 0.000 0.764 0.000 NA

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1818631     3  0.2801     0.6912 0.036 0.000 0.872 0.004 0.080 0.008
#> SRR1818632     3  0.2801     0.6912 0.036 0.000 0.872 0.004 0.080 0.008
#> SRR1818679     3  0.6427     0.5368 0.004 0.108 0.604 0.008 0.128 0.148
#> SRR1818680     3  0.6427     0.5368 0.004 0.108 0.604 0.008 0.128 0.148
#> SRR1818677     6  0.6659    -0.1103 0.000 0.248 0.004 0.168 0.068 0.512
#> SRR1818678     6  0.6659    -0.1103 0.000 0.248 0.004 0.168 0.068 0.512
#> SRR1818675     3  0.3800     0.6387 0.000 0.000 0.776 0.176 0.028 0.020
#> SRR1818676     3  0.3800     0.6387 0.000 0.000 0.776 0.176 0.028 0.020
#> SRR1818673     2  0.0508     0.7199 0.000 0.984 0.000 0.012 0.004 0.000
#> SRR1818674     2  0.0508     0.7199 0.000 0.984 0.000 0.012 0.004 0.000
#> SRR1818671     4  0.5335     0.5579 0.000 0.128 0.000 0.640 0.020 0.212
#> SRR1818672     4  0.5335     0.5579 0.000 0.128 0.000 0.640 0.020 0.212
#> SRR1818661     3  0.1173     0.7199 0.000 0.000 0.960 0.016 0.016 0.008
#> SRR1818662     3  0.1173     0.7199 0.000 0.000 0.960 0.016 0.016 0.008
#> SRR1818655     6  0.6752     0.0391 0.368 0.000 0.088 0.000 0.128 0.416
#> SRR1818656     6  0.6752     0.0391 0.368 0.000 0.088 0.000 0.128 0.416
#> SRR1818653     3  0.6192     0.5068 0.076 0.000 0.544 0.000 0.096 0.284
#> SRR1818654     3  0.6192     0.5068 0.076 0.000 0.544 0.000 0.096 0.284
#> SRR1818651     1  0.7326     0.3824 0.420 0.000 0.160 0.000 0.200 0.220
#> SRR1818652     1  0.7326     0.3824 0.420 0.000 0.160 0.000 0.200 0.220
#> SRR1818657     5  0.4362     0.3653 0.392 0.000 0.020 0.000 0.584 0.004
#> SRR1818658     5  0.4353     0.3738 0.388 0.000 0.020 0.000 0.588 0.004
#> SRR1818649     1  0.5341     0.4046 0.636 0.012 0.004 0.000 0.224 0.124
#> SRR1818650     1  0.5341     0.4046 0.636 0.012 0.004 0.000 0.224 0.124
#> SRR1818659     1  0.6232     0.3828 0.592 0.000 0.108 0.000 0.128 0.172
#> SRR1818647     4  0.1931     0.7992 0.000 0.008 0.068 0.916 0.004 0.004
#> SRR1818648     4  0.1931     0.7992 0.000 0.008 0.068 0.916 0.004 0.004
#> SRR1818645     2  0.5771     0.5312 0.000 0.532 0.000 0.212 0.004 0.252
#> SRR1818646     2  0.5771     0.5312 0.000 0.532 0.000 0.212 0.004 0.252
#> SRR1818639     6  0.6786     0.0410 0.360 0.000 0.096 0.000 0.124 0.420
#> SRR1818640     6  0.6786     0.0410 0.360 0.000 0.096 0.000 0.124 0.420
#> SRR1818637     4  0.0806     0.8190 0.000 0.000 0.008 0.972 0.020 0.000
#> SRR1818638     4  0.0806     0.8190 0.000 0.000 0.008 0.972 0.020 0.000
#> SRR1818635     2  0.0508     0.7199 0.000 0.984 0.000 0.012 0.004 0.000
#> SRR1818636     2  0.0508     0.7199 0.000 0.984 0.000 0.012 0.004 0.000
#> SRR1818643     2  0.2238     0.6951 0.004 0.916 0.004 0.016 0.028 0.032
#> SRR1818644     2  0.2238     0.6951 0.004 0.916 0.004 0.016 0.028 0.032
#> SRR1818641     2  0.1923     0.6918 0.000 0.916 0.000 0.004 0.016 0.064
#> SRR1818642     2  0.1923     0.6918 0.000 0.916 0.000 0.004 0.016 0.064
#> SRR1818633     5  0.9068     0.1278 0.036 0.088 0.216 0.252 0.288 0.120
#> SRR1818634     5  0.9068     0.1278 0.036 0.088 0.216 0.252 0.288 0.120
#> SRR1818665     1  0.4863     0.2538 0.620 0.000 0.028 0.000 0.320 0.032
#> SRR1818666     1  0.4863     0.2538 0.620 0.000 0.028 0.000 0.320 0.032
#> SRR1818667     4  0.2361     0.8084 0.000 0.008 0.000 0.896 0.032 0.064
#> SRR1818668     4  0.2361     0.8084 0.000 0.008 0.000 0.896 0.032 0.064
#> SRR1818669     1  0.5461     0.4444 0.640 0.000 0.080 0.000 0.228 0.052
#> SRR1818670     1  0.5461     0.4444 0.640 0.000 0.080 0.000 0.228 0.052
#> SRR1818663     1  0.0436     0.5023 0.988 0.000 0.004 0.000 0.004 0.004
#> SRR1818664     1  0.0436     0.5023 0.988 0.000 0.004 0.000 0.004 0.004
#> SRR1818629     2  0.5883     0.5155 0.000 0.560 0.000 0.240 0.020 0.180
#> SRR1818630     2  0.5883     0.5155 0.000 0.560 0.000 0.240 0.020 0.180
#> SRR1818627     1  0.5851     0.1647 0.540 0.000 0.076 0.000 0.332 0.052
#> SRR1818628     1  0.5851     0.1647 0.540 0.000 0.076 0.000 0.332 0.052
#> SRR1818621     3  0.4377     0.6851 0.028 0.000 0.744 0.000 0.056 0.172
#> SRR1818622     3  0.4377     0.6851 0.028 0.000 0.744 0.000 0.056 0.172
#> SRR1818625     1  0.0436     0.5023 0.988 0.000 0.004 0.000 0.004 0.004
#> SRR1818626     1  0.0436     0.5023 0.988 0.000 0.004 0.000 0.004 0.004
#> SRR1818623     4  0.2890     0.7611 0.000 0.000 0.108 0.856 0.016 0.020
#> SRR1818624     4  0.2890     0.7611 0.000 0.000 0.108 0.856 0.016 0.020
#> SRR1818619     5  0.4462     0.4354 0.356 0.000 0.012 0.000 0.612 0.020
#> SRR1818620     5  0.4462     0.4354 0.356 0.000 0.012 0.000 0.612 0.020
#> SRR1818617     6  0.6692     0.1304 0.004 0.128 0.000 0.264 0.092 0.512
#> SRR1818618     6  0.6692     0.1304 0.004 0.128 0.000 0.264 0.092 0.512
#> SRR1818615     4  0.4277     0.6809 0.000 0.172 0.000 0.740 0.008 0.080
#> SRR1818616     4  0.4277     0.6809 0.000 0.172 0.000 0.740 0.008 0.080
#> SRR1818609     4  0.1138     0.8222 0.000 0.012 0.000 0.960 0.004 0.024
#> SRR1818610     4  0.1138     0.8222 0.000 0.012 0.000 0.960 0.004 0.024
#> SRR1818607     2  0.5771     0.5312 0.000 0.532 0.000 0.212 0.004 0.252
#> SRR1818608     2  0.5771     0.5312 0.000 0.532 0.000 0.212 0.004 0.252
#> SRR1818613     1  0.7326     0.3824 0.420 0.000 0.160 0.000 0.200 0.220
#> SRR1818614     1  0.7326     0.3824 0.420 0.000 0.160 0.000 0.200 0.220
#> SRR1818611     1  0.5341     0.4046 0.636 0.012 0.004 0.000 0.224 0.124
#> SRR1818612     1  0.5341     0.4046 0.636 0.012 0.004 0.000 0.224 0.124
#> SRR1818605     3  0.5445     0.6728 0.124 0.004 0.688 0.000 0.080 0.104
#> SRR1818606     3  0.5445     0.6728 0.124 0.004 0.688 0.000 0.080 0.104

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15216 rows and 75 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.891           0.937       0.971         0.4865 0.504   0.504
#> 3 3 0.845           0.897       0.932         0.1616 0.931   0.863
#> 4 4 0.773           0.906       0.911         0.1496 0.950   0.884
#> 5 5 0.845           0.875       0.936         0.1532 0.849   0.615
#> 6 6 0.799           0.785       0.880         0.0593 0.947   0.795

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1818631     1   0.000      0.993 1.000 0.000
#> SRR1818632     1   0.000      0.993 1.000 0.000
#> SRR1818679     1   0.595      0.817 0.856 0.144
#> SRR1818680     1   0.563      0.835 0.868 0.132
#> SRR1818677     2   0.000      0.937 0.000 1.000
#> SRR1818678     2   0.000      0.937 0.000 1.000
#> SRR1818675     1   0.000      0.993 1.000 0.000
#> SRR1818676     1   0.000      0.993 1.000 0.000
#> SRR1818673     2   0.000      0.937 0.000 1.000
#> SRR1818674     2   0.000      0.937 0.000 1.000
#> SRR1818671     2   0.000      0.937 0.000 1.000
#> SRR1818672     2   0.000      0.937 0.000 1.000
#> SRR1818661     1   0.000      0.993 1.000 0.000
#> SRR1818662     1   0.000      0.993 1.000 0.000
#> SRR1818655     1   0.000      0.993 1.000 0.000
#> SRR1818656     1   0.000      0.993 1.000 0.000
#> SRR1818653     1   0.000      0.993 1.000 0.000
#> SRR1818654     1   0.000      0.993 1.000 0.000
#> SRR1818651     1   0.000      0.993 1.000 0.000
#> SRR1818652     1   0.000      0.993 1.000 0.000
#> SRR1818657     1   0.000      0.993 1.000 0.000
#> SRR1818658     1   0.000      0.993 1.000 0.000
#> SRR1818649     1   0.000      0.993 1.000 0.000
#> SRR1818650     1   0.000      0.993 1.000 0.000
#> SRR1818659     1   0.000      0.993 1.000 0.000
#> SRR1818647     2   0.000      0.937 0.000 1.000
#> SRR1818648     2   0.000      0.937 0.000 1.000
#> SRR1818645     2   0.000      0.937 0.000 1.000
#> SRR1818646     2   0.000      0.937 0.000 1.000
#> SRR1818639     1   0.000      0.993 1.000 0.000
#> SRR1818640     1   0.000      0.993 1.000 0.000
#> SRR1818637     2   0.000      0.937 0.000 1.000
#> SRR1818638     2   0.000      0.937 0.000 1.000
#> SRR1818635     2   0.745      0.748 0.212 0.788
#> SRR1818636     2   0.760      0.738 0.220 0.780
#> SRR1818643     2   0.224      0.913 0.036 0.964
#> SRR1818644     2   0.278      0.905 0.048 0.952
#> SRR1818641     2   0.975      0.393 0.408 0.592
#> SRR1818642     2   0.969      0.423 0.396 0.604
#> SRR1818633     1   0.000      0.993 1.000 0.000
#> SRR1818634     1   0.000      0.993 1.000 0.000
#> SRR1818665     1   0.000      0.993 1.000 0.000
#> SRR1818666     1   0.000      0.993 1.000 0.000
#> SRR1818667     2   0.000      0.937 0.000 1.000
#> SRR1818668     2   0.000      0.937 0.000 1.000
#> SRR1818669     1   0.000      0.993 1.000 0.000
#> SRR1818670     1   0.000      0.993 1.000 0.000
#> SRR1818663     1   0.000      0.993 1.000 0.000
#> SRR1818664     1   0.000      0.993 1.000 0.000
#> SRR1818629     2   0.000      0.937 0.000 1.000
#> SRR1818630     2   0.000      0.937 0.000 1.000
#> SRR1818627     1   0.000      0.993 1.000 0.000
#> SRR1818628     1   0.000      0.993 1.000 0.000
#> SRR1818621     1   0.000      0.993 1.000 0.000
#> SRR1818622     1   0.000      0.993 1.000 0.000
#> SRR1818625     1   0.000      0.993 1.000 0.000
#> SRR1818626     1   0.000      0.993 1.000 0.000
#> SRR1818623     2   0.808      0.701 0.248 0.752
#> SRR1818624     2   0.900      0.591 0.316 0.684
#> SRR1818619     1   0.000      0.993 1.000 0.000
#> SRR1818620     1   0.000      0.993 1.000 0.000
#> SRR1818617     2   0.000      0.937 0.000 1.000
#> SRR1818618     2   0.000      0.937 0.000 1.000
#> SRR1818615     2   0.000      0.937 0.000 1.000
#> SRR1818616     2   0.000      0.937 0.000 1.000
#> SRR1818609     2   0.000      0.937 0.000 1.000
#> SRR1818610     2   0.000      0.937 0.000 1.000
#> SRR1818607     2   0.000      0.937 0.000 1.000
#> SRR1818608     2   0.000      0.937 0.000 1.000
#> SRR1818613     1   0.000      0.993 1.000 0.000
#> SRR1818614     1   0.000      0.993 1.000 0.000
#> SRR1818611     1   0.000      0.993 1.000 0.000
#> SRR1818612     1   0.000      0.993 1.000 0.000
#> SRR1818605     1   0.000      0.993 1.000 0.000
#> SRR1818606     1   0.000      0.993 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1818631     1  0.1031      0.964 0.976 0.000 0.024
#> SRR1818632     1  0.1031      0.964 0.976 0.000 0.024
#> SRR1818679     1  0.3989      0.847 0.864 0.012 0.124
#> SRR1818680     1  0.4068      0.844 0.864 0.016 0.120
#> SRR1818677     2  0.4178      0.813 0.000 0.828 0.172
#> SRR1818678     2  0.4178      0.813 0.000 0.828 0.172
#> SRR1818675     1  0.0000      0.977 1.000 0.000 0.000
#> SRR1818676     1  0.0000      0.977 1.000 0.000 0.000
#> SRR1818673     2  0.0000      0.788 0.000 1.000 0.000
#> SRR1818674     2  0.0000      0.788 0.000 1.000 0.000
#> SRR1818671     2  0.4178      0.813 0.000 0.828 0.172
#> SRR1818672     2  0.4178      0.813 0.000 0.828 0.172
#> SRR1818661     1  0.1031      0.964 0.976 0.000 0.024
#> SRR1818662     1  0.1031      0.964 0.976 0.000 0.024
#> SRR1818655     1  0.0000      0.977 1.000 0.000 0.000
#> SRR1818656     1  0.0000      0.977 1.000 0.000 0.000
#> SRR1818653     1  0.0000      0.977 1.000 0.000 0.000
#> SRR1818654     1  0.0000      0.977 1.000 0.000 0.000
#> SRR1818651     1  0.0000      0.977 1.000 0.000 0.000
#> SRR1818652     1  0.0000      0.977 1.000 0.000 0.000
#> SRR1818657     1  0.0000      0.977 1.000 0.000 0.000
#> SRR1818658     1  0.0000      0.977 1.000 0.000 0.000
#> SRR1818649     1  0.1163      0.972 0.972 0.000 0.028
#> SRR1818650     1  0.1399      0.971 0.968 0.004 0.028
#> SRR1818659     1  0.0000      0.977 1.000 0.000 0.000
#> SRR1818647     3  0.1163      1.000 0.000 0.028 0.972
#> SRR1818648     3  0.1163      1.000 0.000 0.028 0.972
#> SRR1818645     2  0.4178      0.813 0.000 0.828 0.172
#> SRR1818646     2  0.4178      0.813 0.000 0.828 0.172
#> SRR1818639     1  0.0000      0.977 1.000 0.000 0.000
#> SRR1818640     1  0.0000      0.977 1.000 0.000 0.000
#> SRR1818637     3  0.1163      1.000 0.000 0.028 0.972
#> SRR1818638     3  0.1163      1.000 0.000 0.028 0.972
#> SRR1818635     2  0.4702      0.577 0.212 0.788 0.000
#> SRR1818636     2  0.4654      0.583 0.208 0.792 0.000
#> SRR1818643     2  0.0892      0.782 0.020 0.980 0.000
#> SRR1818644     2  0.1643      0.769 0.044 0.956 0.000
#> SRR1818641     2  0.6154      0.288 0.408 0.592 0.000
#> SRR1818642     2  0.6095      0.333 0.392 0.608 0.000
#> SRR1818633     1  0.3590      0.910 0.896 0.076 0.028
#> SRR1818634     1  0.4469      0.863 0.852 0.120 0.028
#> SRR1818665     1  0.0747      0.975 0.984 0.000 0.016
#> SRR1818666     1  0.1163      0.972 0.972 0.000 0.028
#> SRR1818667     2  0.4178      0.813 0.000 0.828 0.172
#> SRR1818668     2  0.4178      0.813 0.000 0.828 0.172
#> SRR1818669     1  0.0000      0.977 1.000 0.000 0.000
#> SRR1818670     1  0.0000      0.977 1.000 0.000 0.000
#> SRR1818663     1  0.1163      0.972 0.972 0.000 0.028
#> SRR1818664     1  0.1163      0.972 0.972 0.000 0.028
#> SRR1818629     2  0.0000      0.788 0.000 1.000 0.000
#> SRR1818630     2  0.0000      0.788 0.000 1.000 0.000
#> SRR1818627     1  0.0000      0.977 1.000 0.000 0.000
#> SRR1818628     1  0.0424      0.976 0.992 0.000 0.008
#> SRR1818621     1  0.0000      0.977 1.000 0.000 0.000
#> SRR1818622     1  0.0000      0.977 1.000 0.000 0.000
#> SRR1818625     1  0.1163      0.972 0.972 0.000 0.028
#> SRR1818626     1  0.1163      0.972 0.972 0.000 0.028
#> SRR1818623     3  0.1163      1.000 0.000 0.028 0.972
#> SRR1818624     3  0.1163      1.000 0.000 0.028 0.972
#> SRR1818619     1  0.1163      0.972 0.972 0.000 0.028
#> SRR1818620     1  0.1163      0.972 0.972 0.000 0.028
#> SRR1818617     2  0.4178      0.813 0.000 0.828 0.172
#> SRR1818618     2  0.4178      0.813 0.000 0.828 0.172
#> SRR1818615     2  0.1411      0.799 0.000 0.964 0.036
#> SRR1818616     2  0.1964      0.803 0.000 0.944 0.056
#> SRR1818609     3  0.1163      1.000 0.000 0.028 0.972
#> SRR1818610     3  0.1163      1.000 0.000 0.028 0.972
#> SRR1818607     2  0.4178      0.813 0.000 0.828 0.172
#> SRR1818608     2  0.4178      0.813 0.000 0.828 0.172
#> SRR1818613     1  0.0000      0.977 1.000 0.000 0.000
#> SRR1818614     1  0.0000      0.977 1.000 0.000 0.000
#> SRR1818611     1  0.1163      0.972 0.972 0.000 0.028
#> SRR1818612     1  0.1163      0.972 0.972 0.000 0.028
#> SRR1818605     1  0.1163      0.972 0.972 0.000 0.028
#> SRR1818606     1  0.1163      0.972 0.972 0.000 0.028

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1818631     1  0.0817      0.904 0.976 0.000 0.000 0.024
#> SRR1818632     1  0.0817      0.904 0.976 0.000 0.000 0.024
#> SRR1818679     1  0.3652      0.857 0.856 0.092 0.000 0.052
#> SRR1818680     1  0.3525      0.854 0.860 0.100 0.000 0.040
#> SRR1818677     2  0.0000      0.951 0.000 1.000 0.000 0.000
#> SRR1818678     2  0.0000      0.951 0.000 1.000 0.000 0.000
#> SRR1818675     1  0.0469      0.909 0.988 0.000 0.000 0.012
#> SRR1818676     1  0.0469      0.909 0.988 0.000 0.000 0.012
#> SRR1818673     3  0.1716      0.983 0.000 0.064 0.936 0.000
#> SRR1818674     3  0.1716      0.983 0.000 0.064 0.936 0.000
#> SRR1818671     2  0.0469      0.944 0.000 0.988 0.000 0.012
#> SRR1818672     2  0.0469      0.944 0.000 0.988 0.000 0.012
#> SRR1818661     1  0.0817      0.904 0.976 0.000 0.000 0.024
#> SRR1818662     1  0.0817      0.904 0.976 0.000 0.000 0.024
#> SRR1818655     1  0.0188      0.912 0.996 0.000 0.004 0.000
#> SRR1818656     1  0.0188      0.912 0.996 0.000 0.004 0.000
#> SRR1818653     1  0.0000      0.912 1.000 0.000 0.000 0.000
#> SRR1818654     1  0.0000      0.912 1.000 0.000 0.000 0.000
#> SRR1818651     1  0.0000      0.912 1.000 0.000 0.000 0.000
#> SRR1818652     1  0.0000      0.912 1.000 0.000 0.000 0.000
#> SRR1818657     1  0.0000      0.912 1.000 0.000 0.000 0.000
#> SRR1818658     1  0.0000      0.912 1.000 0.000 0.000 0.000
#> SRR1818649     1  0.6818      0.642 0.600 0.000 0.232 0.168
#> SRR1818650     1  0.6542      0.702 0.636 0.000 0.196 0.168
#> SRR1818659     1  0.0000      0.912 1.000 0.000 0.000 0.000
#> SRR1818647     4  0.3266      0.998 0.000 0.168 0.000 0.832
#> SRR1818648     4  0.3266      0.998 0.000 0.168 0.000 0.832
#> SRR1818645     2  0.0000      0.951 0.000 1.000 0.000 0.000
#> SRR1818646     2  0.0000      0.951 0.000 1.000 0.000 0.000
#> SRR1818639     1  0.0000      0.912 1.000 0.000 0.000 0.000
#> SRR1818640     1  0.0000      0.912 1.000 0.000 0.000 0.000
#> SRR1818637     4  0.3266      0.998 0.000 0.168 0.000 0.832
#> SRR1818638     4  0.3266      0.998 0.000 0.168 0.000 0.832
#> SRR1818635     3  0.1302      0.969 0.000 0.044 0.956 0.000
#> SRR1818636     3  0.1557      0.980 0.000 0.056 0.944 0.000
#> SRR1818643     3  0.2111      0.962 0.024 0.044 0.932 0.000
#> SRR1818644     3  0.2227      0.946 0.036 0.036 0.928 0.000
#> SRR1818641     3  0.1902      0.981 0.004 0.064 0.932 0.000
#> SRR1818642     3  0.1716      0.981 0.000 0.064 0.936 0.000
#> SRR1818633     1  0.3695      0.867 0.828 0.000 0.016 0.156
#> SRR1818634     1  0.3910      0.864 0.820 0.000 0.024 0.156
#> SRR1818665     1  0.3245      0.884 0.880 0.000 0.064 0.056
#> SRR1818666     1  0.4010      0.869 0.836 0.000 0.064 0.100
#> SRR1818667     2  0.0000      0.951 0.000 1.000 0.000 0.000
#> SRR1818668     2  0.0000      0.951 0.000 1.000 0.000 0.000
#> SRR1818669     1  0.0000      0.912 1.000 0.000 0.000 0.000
#> SRR1818670     1  0.0000      0.912 1.000 0.000 0.000 0.000
#> SRR1818663     1  0.4758      0.840 0.780 0.000 0.064 0.156
#> SRR1818664     1  0.4758      0.840 0.780 0.000 0.064 0.156
#> SRR1818629     3  0.1716      0.983 0.000 0.064 0.936 0.000
#> SRR1818630     3  0.1716      0.983 0.000 0.064 0.936 0.000
#> SRR1818627     1  0.1022      0.907 0.968 0.000 0.032 0.000
#> SRR1818628     1  0.0804      0.911 0.980 0.000 0.008 0.012
#> SRR1818621     1  0.0000      0.912 1.000 0.000 0.000 0.000
#> SRR1818622     1  0.0000      0.912 1.000 0.000 0.000 0.000
#> SRR1818625     1  0.6883      0.618 0.584 0.000 0.260 0.156
#> SRR1818626     1  0.6240      0.741 0.668 0.000 0.176 0.156
#> SRR1818623     4  0.3266      0.998 0.000 0.168 0.000 0.832
#> SRR1818624     4  0.3266      0.998 0.000 0.168 0.000 0.832
#> SRR1818619     1  0.4663      0.845 0.788 0.000 0.064 0.148
#> SRR1818620     1  0.4758      0.840 0.780 0.000 0.064 0.156
#> SRR1818617     2  0.0817      0.932 0.000 0.976 0.024 0.000
#> SRR1818618     2  0.0707      0.933 0.000 0.980 0.020 0.000
#> SRR1818615     2  0.3610      0.731 0.000 0.800 0.200 0.000
#> SRR1818616     2  0.3726      0.720 0.000 0.788 0.212 0.000
#> SRR1818609     4  0.3402      0.995 0.000 0.164 0.004 0.832
#> SRR1818610     4  0.3402      0.995 0.000 0.164 0.004 0.832
#> SRR1818607     2  0.0000      0.951 0.000 1.000 0.000 0.000
#> SRR1818608     2  0.0000      0.951 0.000 1.000 0.000 0.000
#> SRR1818613     1  0.0000      0.912 1.000 0.000 0.000 0.000
#> SRR1818614     1  0.0000      0.912 1.000 0.000 0.000 0.000
#> SRR1818611     1  0.4893      0.834 0.768 0.000 0.064 0.168
#> SRR1818612     1  0.4893      0.834 0.768 0.000 0.064 0.168
#> SRR1818605     1  0.3024      0.874 0.852 0.000 0.000 0.148
#> SRR1818606     1  0.2999      0.879 0.864 0.000 0.004 0.132

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1818631     3  0.1211      0.920 0.016 0.000 0.960 0.024 0.000
#> SRR1818632     3  0.1211      0.920 0.016 0.000 0.960 0.024 0.000
#> SRR1818679     3  0.3758      0.801 0.096 0.088 0.816 0.000 0.000
#> SRR1818680     3  0.3702      0.802 0.084 0.096 0.820 0.000 0.000
#> SRR1818677     2  0.0162      0.946 0.004 0.996 0.000 0.000 0.000
#> SRR1818678     2  0.0162      0.946 0.004 0.996 0.000 0.000 0.000
#> SRR1818675     3  0.1478      0.906 0.000 0.000 0.936 0.064 0.000
#> SRR1818676     3  0.1608      0.900 0.000 0.000 0.928 0.072 0.000
#> SRR1818673     5  0.0000      0.999 0.000 0.000 0.000 0.000 1.000
#> SRR1818674     5  0.0000      0.999 0.000 0.000 0.000 0.000 1.000
#> SRR1818671     2  0.1410      0.911 0.000 0.940 0.000 0.060 0.000
#> SRR1818672     2  0.1043      0.926 0.000 0.960 0.000 0.040 0.000
#> SRR1818661     3  0.1211      0.920 0.016 0.000 0.960 0.024 0.000
#> SRR1818662     3  0.1211      0.920 0.016 0.000 0.960 0.024 0.000
#> SRR1818655     3  0.0794      0.927 0.028 0.000 0.972 0.000 0.000
#> SRR1818656     3  0.0963      0.922 0.036 0.000 0.964 0.000 0.000
#> SRR1818653     3  0.0000      0.935 0.000 0.000 1.000 0.000 0.000
#> SRR1818654     3  0.0000      0.935 0.000 0.000 1.000 0.000 0.000
#> SRR1818651     3  0.0000      0.935 0.000 0.000 1.000 0.000 0.000
#> SRR1818652     3  0.0000      0.935 0.000 0.000 1.000 0.000 0.000
#> SRR1818657     3  0.0000      0.935 0.000 0.000 1.000 0.000 0.000
#> SRR1818658     3  0.0000      0.935 0.000 0.000 1.000 0.000 0.000
#> SRR1818649     1  0.4256      0.141 0.564 0.000 0.436 0.000 0.000
#> SRR1818650     1  0.3586      0.603 0.736 0.000 0.264 0.000 0.000
#> SRR1818659     3  0.0880      0.924 0.032 0.000 0.968 0.000 0.000
#> SRR1818647     4  0.0000      0.998 0.000 0.000 0.000 1.000 0.000
#> SRR1818648     4  0.0000      0.998 0.000 0.000 0.000 1.000 0.000
#> SRR1818645     2  0.0000      0.947 0.000 1.000 0.000 0.000 0.000
#> SRR1818646     2  0.0000      0.947 0.000 1.000 0.000 0.000 0.000
#> SRR1818639     3  0.0000      0.935 0.000 0.000 1.000 0.000 0.000
#> SRR1818640     3  0.0000      0.935 0.000 0.000 1.000 0.000 0.000
#> SRR1818637     4  0.0000      0.998 0.000 0.000 0.000 1.000 0.000
#> SRR1818638     4  0.0000      0.998 0.000 0.000 0.000 1.000 0.000
#> SRR1818635     5  0.0000      0.999 0.000 0.000 0.000 0.000 1.000
#> SRR1818636     5  0.0000      0.999 0.000 0.000 0.000 0.000 1.000
#> SRR1818643     5  0.0000      0.999 0.000 0.000 0.000 0.000 1.000
#> SRR1818644     5  0.0162      0.994 0.000 0.000 0.004 0.000 0.996
#> SRR1818641     5  0.0000      0.999 0.000 0.000 0.000 0.000 1.000
#> SRR1818642     5  0.0000      0.999 0.000 0.000 0.000 0.000 1.000
#> SRR1818633     3  0.3534      0.672 0.256 0.000 0.744 0.000 0.000
#> SRR1818634     3  0.3452      0.693 0.244 0.000 0.756 0.000 0.000
#> SRR1818665     1  0.3143      0.730 0.796 0.000 0.204 0.000 0.000
#> SRR1818666     1  0.2605      0.776 0.852 0.000 0.148 0.000 0.000
#> SRR1818667     2  0.0000      0.947 0.000 1.000 0.000 0.000 0.000
#> SRR1818668     2  0.0000      0.947 0.000 1.000 0.000 0.000 0.000
#> SRR1818669     3  0.0162      0.935 0.004 0.000 0.996 0.000 0.000
#> SRR1818670     3  0.0162      0.935 0.004 0.000 0.996 0.000 0.000
#> SRR1818663     1  0.1608      0.805 0.928 0.000 0.072 0.000 0.000
#> SRR1818664     1  0.1608      0.805 0.928 0.000 0.072 0.000 0.000
#> SRR1818629     5  0.0000      0.999 0.000 0.000 0.000 0.000 1.000
#> SRR1818630     5  0.0000      0.999 0.000 0.000 0.000 0.000 1.000
#> SRR1818627     3  0.1544      0.895 0.068 0.000 0.932 0.000 0.000
#> SRR1818628     3  0.0880      0.925 0.032 0.000 0.968 0.000 0.000
#> SRR1818621     3  0.0000      0.935 0.000 0.000 1.000 0.000 0.000
#> SRR1818622     3  0.0000      0.935 0.000 0.000 1.000 0.000 0.000
#> SRR1818625     1  0.1809      0.801 0.928 0.000 0.060 0.000 0.012
#> SRR1818626     1  0.1764      0.803 0.928 0.000 0.064 0.000 0.008
#> SRR1818623     4  0.0290      0.992 0.000 0.008 0.000 0.992 0.000
#> SRR1818624     4  0.0162      0.995 0.000 0.004 0.000 0.996 0.000
#> SRR1818619     1  0.2179      0.800 0.888 0.000 0.112 0.000 0.000
#> SRR1818620     1  0.2074      0.801 0.896 0.000 0.104 0.000 0.000
#> SRR1818617     1  0.4273      0.211 0.552 0.448 0.000 0.000 0.000
#> SRR1818618     1  0.4283      0.190 0.544 0.456 0.000 0.000 0.000
#> SRR1818615     2  0.3109      0.767 0.000 0.800 0.000 0.000 0.200
#> SRR1818616     2  0.3305      0.733 0.000 0.776 0.000 0.000 0.224
#> SRR1818609     4  0.0000      0.998 0.000 0.000 0.000 1.000 0.000
#> SRR1818610     4  0.0000      0.998 0.000 0.000 0.000 1.000 0.000
#> SRR1818607     2  0.0000      0.947 0.000 1.000 0.000 0.000 0.000
#> SRR1818608     2  0.0000      0.947 0.000 1.000 0.000 0.000 0.000
#> SRR1818613     3  0.0000      0.935 0.000 0.000 1.000 0.000 0.000
#> SRR1818614     3  0.0000      0.935 0.000 0.000 1.000 0.000 0.000
#> SRR1818611     1  0.0510      0.770 0.984 0.000 0.016 0.000 0.000
#> SRR1818612     1  0.0609      0.773 0.980 0.000 0.020 0.000 0.000
#> SRR1818605     3  0.3074      0.774 0.196 0.000 0.804 0.000 0.000
#> SRR1818606     3  0.2966      0.789 0.184 0.000 0.816 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1818631     3  0.3833      0.911 0.344 0.000 0.648 0.008 0.000 0.000
#> SRR1818632     3  0.3847      0.915 0.348 0.000 0.644 0.008 0.000 0.000
#> SRR1818679     1  0.3620      0.512 0.648 0.000 0.352 0.000 0.000 0.000
#> SRR1818680     1  0.3531      0.535 0.672 0.000 0.328 0.000 0.000 0.000
#> SRR1818677     5  0.0146      0.943 0.000 0.000 0.004 0.000 0.996 0.000
#> SRR1818678     5  0.0146      0.943 0.000 0.000 0.004 0.000 0.996 0.000
#> SRR1818675     1  0.3717      0.642 0.776 0.000 0.160 0.064 0.000 0.000
#> SRR1818676     1  0.3825      0.635 0.768 0.000 0.160 0.072 0.000 0.000
#> SRR1818673     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818674     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818671     5  0.1327      0.904 0.000 0.000 0.000 0.064 0.936 0.000
#> SRR1818672     5  0.0865      0.925 0.000 0.000 0.000 0.036 0.964 0.000
#> SRR1818661     3  0.4032      0.910 0.420 0.000 0.572 0.008 0.000 0.000
#> SRR1818662     3  0.4032      0.910 0.420 0.000 0.572 0.008 0.000 0.000
#> SRR1818655     1  0.0713      0.782 0.972 0.000 0.000 0.000 0.000 0.028
#> SRR1818656     1  0.0865      0.780 0.964 0.000 0.000 0.000 0.000 0.036
#> SRR1818653     1  0.0000      0.785 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818654     1  0.0000      0.785 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818651     1  0.0000      0.785 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818652     1  0.0000      0.785 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818657     1  0.0000      0.785 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818658     1  0.0000      0.785 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818649     1  0.5995      0.105 0.436 0.000 0.260 0.000 0.000 0.304
#> SRR1818650     6  0.5889      0.314 0.264 0.000 0.260 0.000 0.000 0.476
#> SRR1818659     1  0.3555      0.566 0.712 0.000 0.008 0.000 0.000 0.280
#> SRR1818647     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818648     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818645     5  0.0000      0.944 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818646     5  0.0000      0.944 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818639     1  0.0000      0.785 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818640     1  0.0000      0.785 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818637     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818638     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818635     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818636     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818643     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818644     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818641     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818642     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818633     1  0.3494      0.625 0.736 0.000 0.012 0.000 0.000 0.252
#> SRR1818634     1  0.3509      0.631 0.744 0.000 0.016 0.000 0.000 0.240
#> SRR1818665     6  0.2527      0.667 0.000 0.000 0.168 0.000 0.000 0.832
#> SRR1818666     6  0.2527      0.667 0.000 0.000 0.168 0.000 0.000 0.832
#> SRR1818667     5  0.0000      0.944 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818668     5  0.0000      0.944 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818669     1  0.1644      0.758 0.920 0.000 0.004 0.000 0.000 0.076
#> SRR1818670     1  0.0547      0.783 0.980 0.000 0.000 0.000 0.000 0.020
#> SRR1818663     6  0.0000      0.714 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1818664     6  0.0000      0.714 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1818629     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818630     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818627     1  0.2968      0.659 0.816 0.000 0.168 0.000 0.000 0.016
#> SRR1818628     1  0.2527      0.675 0.832 0.000 0.168 0.000 0.000 0.000
#> SRR1818621     1  0.1556      0.712 0.920 0.000 0.080 0.000 0.000 0.000
#> SRR1818622     1  0.1957      0.663 0.888 0.000 0.112 0.000 0.000 0.000
#> SRR1818625     6  0.0000      0.714 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1818626     6  0.0000      0.714 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1818623     4  0.0405      0.989 0.000 0.000 0.004 0.988 0.008 0.000
#> SRR1818624     4  0.0508      0.987 0.000 0.000 0.012 0.984 0.004 0.000
#> SRR1818619     6  0.5120      0.362 0.280 0.000 0.120 0.000 0.000 0.600
#> SRR1818620     6  0.4929      0.380 0.280 0.000 0.100 0.000 0.000 0.620
#> SRR1818617     6  0.3817      0.345 0.000 0.000 0.000 0.000 0.432 0.568
#> SRR1818618     6  0.3828      0.327 0.000 0.000 0.000 0.000 0.440 0.560
#> SRR1818615     5  0.2762      0.773 0.000 0.196 0.000 0.000 0.804 0.000
#> SRR1818616     5  0.2969      0.733 0.000 0.224 0.000 0.000 0.776 0.000
#> SRR1818609     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818610     4  0.0000      0.996 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818607     5  0.0000      0.944 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818608     5  0.0000      0.944 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818613     1  0.0000      0.785 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818614     1  0.0000      0.785 1.000 0.000 0.000 0.000 0.000 0.000
#> SRR1818611     6  0.3198      0.646 0.000 0.000 0.260 0.000 0.000 0.740
#> SRR1818612     6  0.3337      0.645 0.004 0.000 0.260 0.000 0.000 0.736
#> SRR1818605     1  0.3514      0.630 0.752 0.000 0.020 0.000 0.000 0.228
#> SRR1818606     1  0.3271      0.634 0.760 0.000 0.008 0.000 0.000 0.232

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15216 rows and 75 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.462           0.780       0.871         0.4483 0.493   0.493
#> 3 3 0.412           0.605       0.804         0.3561 0.854   0.712
#> 4 4 0.608           0.700       0.806         0.1593 0.777   0.486
#> 5 5 0.613           0.558       0.700         0.0843 0.916   0.717
#> 6 6 0.614           0.590       0.692         0.0545 0.901   0.613

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1818631     1  0.9286      0.723 0.656 0.344
#> SRR1818632     1  0.9286      0.723 0.656 0.344
#> SRR1818679     2  0.8144      0.539 0.252 0.748
#> SRR1818680     2  0.8081      0.548 0.248 0.752
#> SRR1818677     2  0.0000      0.924 0.000 1.000
#> SRR1818678     2  0.0000      0.924 0.000 1.000
#> SRR1818675     2  0.9850     -0.131 0.428 0.572
#> SRR1818676     2  0.9850     -0.131 0.428 0.572
#> SRR1818673     2  0.0938      0.921 0.012 0.988
#> SRR1818674     2  0.0938      0.921 0.012 0.988
#> SRR1818671     2  0.0000      0.924 0.000 1.000
#> SRR1818672     2  0.0000      0.924 0.000 1.000
#> SRR1818661     1  0.9522      0.686 0.628 0.372
#> SRR1818662     1  0.9522      0.686 0.628 0.372
#> SRR1818655     1  0.9170      0.734 0.668 0.332
#> SRR1818656     1  0.9170      0.734 0.668 0.332
#> SRR1818653     1  0.9248      0.728 0.660 0.340
#> SRR1818654     1  0.9248      0.728 0.660 0.340
#> SRR1818651     1  0.4939      0.774 0.892 0.108
#> SRR1818652     1  0.4815      0.774 0.896 0.104
#> SRR1818657     1  0.0938      0.749 0.988 0.012
#> SRR1818658     1  0.1184      0.748 0.984 0.016
#> SRR1818649     1  0.7219      0.747 0.800 0.200
#> SRR1818650     1  0.7219      0.745 0.800 0.200
#> SRR1818659     1  0.9087      0.739 0.676 0.324
#> SRR1818647     2  0.0938      0.921 0.012 0.988
#> SRR1818648     2  0.0938      0.921 0.012 0.988
#> SRR1818645     2  0.0000      0.924 0.000 1.000
#> SRR1818646     2  0.0000      0.924 0.000 1.000
#> SRR1818639     1  0.9087      0.739 0.676 0.324
#> SRR1818640     1  0.9087      0.739 0.676 0.324
#> SRR1818637     2  0.0938      0.921 0.012 0.988
#> SRR1818638     2  0.0938      0.921 0.012 0.988
#> SRR1818635     2  0.0672      0.923 0.008 0.992
#> SRR1818636     2  0.0376      0.924 0.004 0.996
#> SRR1818643     2  0.0000      0.924 0.000 1.000
#> SRR1818644     2  0.0000      0.924 0.000 1.000
#> SRR1818641     2  0.0000      0.924 0.000 1.000
#> SRR1818642     2  0.0000      0.924 0.000 1.000
#> SRR1818633     2  0.8267      0.519 0.260 0.740
#> SRR1818634     2  0.8267      0.519 0.260 0.740
#> SRR1818665     1  0.0938      0.746 0.988 0.012
#> SRR1818666     1  0.0938      0.746 0.988 0.012
#> SRR1818667     2  0.0672      0.923 0.008 0.992
#> SRR1818668     2  0.0672      0.923 0.008 0.992
#> SRR1818669     1  0.9087      0.739 0.676 0.324
#> SRR1818670     1  0.9087      0.739 0.676 0.324
#> SRR1818663     1  0.0938      0.746 0.988 0.012
#> SRR1818664     1  0.0938      0.746 0.988 0.012
#> SRR1818629     2  0.0000      0.924 0.000 1.000
#> SRR1818630     2  0.0000      0.924 0.000 1.000
#> SRR1818627     1  0.3431      0.767 0.936 0.064
#> SRR1818628     1  0.3584      0.768 0.932 0.068
#> SRR1818621     1  0.9248      0.728 0.660 0.340
#> SRR1818622     1  0.9248      0.728 0.660 0.340
#> SRR1818625     1  0.0938      0.746 0.988 0.012
#> SRR1818626     1  0.0938      0.746 0.988 0.012
#> SRR1818623     2  0.0938      0.921 0.012 0.988
#> SRR1818624     2  0.0938      0.921 0.012 0.988
#> SRR1818619     1  0.9866      0.570 0.568 0.432
#> SRR1818620     1  0.9922      0.531 0.552 0.448
#> SRR1818617     2  0.0000      0.924 0.000 1.000
#> SRR1818618     2  0.0000      0.924 0.000 1.000
#> SRR1818615     2  0.0376      0.924 0.004 0.996
#> SRR1818616     2  0.0376      0.924 0.004 0.996
#> SRR1818609     2  0.0376      0.924 0.004 0.996
#> SRR1818610     2  0.0376      0.924 0.004 0.996
#> SRR1818607     2  0.0000      0.924 0.000 1.000
#> SRR1818608     2  0.0000      0.924 0.000 1.000
#> SRR1818613     1  0.2603      0.765 0.956 0.044
#> SRR1818614     1  0.2603      0.765 0.956 0.044
#> SRR1818611     1  0.4298      0.764 0.912 0.088
#> SRR1818612     1  0.5178      0.762 0.884 0.116
#> SRR1818605     1  0.8499      0.752 0.724 0.276
#> SRR1818606     1  0.8443      0.753 0.728 0.272

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1818631     3  0.6647     0.4570 0.396 0.012 0.592
#> SRR1818632     3  0.6647     0.4570 0.396 0.012 0.592
#> SRR1818679     2  0.9797     0.0897 0.240 0.404 0.356
#> SRR1818680     2  0.9818     0.0976 0.248 0.408 0.344
#> SRR1818677     2  0.1289     0.8165 0.032 0.968 0.000
#> SRR1818678     2  0.1289     0.8165 0.032 0.968 0.000
#> SRR1818675     3  0.4821     0.7558 0.088 0.064 0.848
#> SRR1818676     3  0.4982     0.7509 0.096 0.064 0.840
#> SRR1818673     2  0.1774     0.8186 0.024 0.960 0.016
#> SRR1818674     2  0.1774     0.8186 0.024 0.960 0.016
#> SRR1818671     2  0.1643     0.8007 0.000 0.956 0.044
#> SRR1818672     2  0.1964     0.7954 0.000 0.944 0.056
#> SRR1818661     1  0.7353    -0.2559 0.568 0.036 0.396
#> SRR1818662     1  0.7353    -0.2559 0.568 0.036 0.396
#> SRR1818655     1  0.1765     0.6576 0.956 0.004 0.040
#> SRR1818656     1  0.1765     0.6576 0.956 0.004 0.040
#> SRR1818653     1  0.5650     0.1951 0.688 0.000 0.312
#> SRR1818654     1  0.5497     0.2504 0.708 0.000 0.292
#> SRR1818651     1  0.1129     0.6833 0.976 0.020 0.004
#> SRR1818652     1  0.1711     0.6919 0.960 0.032 0.008
#> SRR1818657     1  0.4805     0.7151 0.812 0.176 0.012
#> SRR1818658     1  0.5072     0.7107 0.792 0.196 0.012
#> SRR1818649     1  0.6566     0.4976 0.612 0.376 0.012
#> SRR1818650     1  0.6584     0.4921 0.608 0.380 0.012
#> SRR1818659     1  0.1765     0.6576 0.956 0.004 0.040
#> SRR1818647     3  0.2066     0.7673 0.000 0.060 0.940
#> SRR1818648     3  0.2066     0.7673 0.000 0.060 0.940
#> SRR1818645     2  0.0592     0.8097 0.000 0.988 0.012
#> SRR1818646     2  0.0592     0.8097 0.000 0.988 0.012
#> SRR1818639     1  0.1765     0.6576 0.956 0.004 0.040
#> SRR1818640     1  0.1765     0.6576 0.956 0.004 0.040
#> SRR1818637     3  0.2356     0.7485 0.000 0.072 0.928
#> SRR1818638     3  0.2356     0.7485 0.000 0.072 0.928
#> SRR1818635     2  0.1774     0.8186 0.024 0.960 0.016
#> SRR1818636     2  0.1774     0.8186 0.024 0.960 0.016
#> SRR1818643     2  0.1031     0.8191 0.024 0.976 0.000
#> SRR1818644     2  0.1031     0.8191 0.024 0.976 0.000
#> SRR1818641     2  0.1031     0.8191 0.024 0.976 0.000
#> SRR1818642     2  0.1031     0.8191 0.024 0.976 0.000
#> SRR1818633     2  0.9793     0.0504 0.236 0.388 0.376
#> SRR1818634     2  0.9793     0.0504 0.236 0.388 0.376
#> SRR1818665     1  0.5122     0.7090 0.788 0.200 0.012
#> SRR1818666     1  0.5122     0.7090 0.788 0.200 0.012
#> SRR1818667     2  0.5785     0.5369 0.000 0.668 0.332
#> SRR1818668     2  0.5678     0.5606 0.000 0.684 0.316
#> SRR1818669     1  0.3690     0.7231 0.884 0.100 0.016
#> SRR1818670     1  0.3690     0.7231 0.884 0.100 0.016
#> SRR1818663     1  0.5122     0.7090 0.788 0.200 0.012
#> SRR1818664     1  0.5171     0.7068 0.784 0.204 0.012
#> SRR1818629     2  0.1267     0.8194 0.024 0.972 0.004
#> SRR1818630     2  0.1267     0.8194 0.024 0.972 0.004
#> SRR1818627     1  0.3539     0.7222 0.888 0.100 0.012
#> SRR1818628     1  0.3695     0.7236 0.880 0.108 0.012
#> SRR1818621     3  0.6483     0.3511 0.452 0.004 0.544
#> SRR1818622     3  0.6476     0.3576 0.448 0.004 0.548
#> SRR1818625     1  0.6381     0.5580 0.648 0.340 0.012
#> SRR1818626     1  0.6404     0.5516 0.644 0.344 0.012
#> SRR1818623     3  0.2066     0.7673 0.000 0.060 0.940
#> SRR1818624     3  0.2066     0.7673 0.000 0.060 0.940
#> SRR1818619     1  0.9507     0.2415 0.432 0.380 0.188
#> SRR1818620     1  0.9507     0.2415 0.432 0.380 0.188
#> SRR1818617     2  0.1031     0.8191 0.024 0.976 0.000
#> SRR1818618     2  0.1031     0.8191 0.024 0.976 0.000
#> SRR1818615     2  0.3267     0.7521 0.000 0.884 0.116
#> SRR1818616     2  0.3267     0.7521 0.000 0.884 0.116
#> SRR1818609     2  0.6309     0.1697 0.000 0.500 0.500
#> SRR1818610     2  0.6309     0.1697 0.000 0.500 0.500
#> SRR1818607     2  0.0592     0.8097 0.000 0.988 0.012
#> SRR1818608     2  0.0592     0.8097 0.000 0.988 0.012
#> SRR1818613     1  0.2959     0.7220 0.900 0.100 0.000
#> SRR1818614     1  0.2878     0.7209 0.904 0.096 0.000
#> SRR1818611     1  0.6548     0.5076 0.616 0.372 0.012
#> SRR1818612     1  0.6548     0.5076 0.616 0.372 0.012
#> SRR1818605     1  0.1170     0.6799 0.976 0.016 0.008
#> SRR1818606     1  0.1170     0.6799 0.976 0.016 0.008

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1818631     4   0.667      0.501 0.160 0.016 0.160 0.664
#> SRR1818632     4   0.667      0.501 0.160 0.016 0.160 0.664
#> SRR1818679     1   0.754      0.453 0.568 0.032 0.124 0.276
#> SRR1818680     1   0.750      0.459 0.572 0.032 0.120 0.276
#> SRR1818677     2   0.225      0.900 0.040 0.932 0.008 0.020
#> SRR1818678     2   0.221      0.901 0.040 0.932 0.004 0.024
#> SRR1818675     4   0.433      0.655 0.048 0.028 0.084 0.840
#> SRR1818676     4   0.433      0.655 0.048 0.028 0.084 0.840
#> SRR1818673     2   0.370      0.859 0.004 0.860 0.052 0.084
#> SRR1818674     2   0.370      0.859 0.004 0.860 0.052 0.084
#> SRR1818671     2   0.453      0.734 0.012 0.764 0.008 0.216
#> SRR1818672     2   0.457      0.728 0.012 0.760 0.008 0.220
#> SRR1818661     4   0.693      0.479 0.140 0.016 0.212 0.632
#> SRR1818662     4   0.693      0.479 0.140 0.016 0.212 0.632
#> SRR1818655     3   0.401      0.707 0.244 0.000 0.756 0.000
#> SRR1818656     3   0.401      0.707 0.244 0.000 0.756 0.000
#> SRR1818653     3   0.771      0.479 0.228 0.000 0.424 0.348
#> SRR1818654     3   0.771      0.479 0.228 0.000 0.424 0.348
#> SRR1818651     1   0.230      0.788 0.932 0.032 0.024 0.012
#> SRR1818652     1   0.230      0.788 0.932 0.032 0.024 0.012
#> SRR1818657     1   0.112      0.791 0.964 0.036 0.000 0.000
#> SRR1818658     1   0.112      0.791 0.964 0.036 0.000 0.000
#> SRR1818649     1   0.316      0.778 0.884 0.068 0.000 0.048
#> SRR1818650     1   0.324      0.776 0.880 0.068 0.000 0.052
#> SRR1818659     3   0.453      0.650 0.292 0.004 0.704 0.000
#> SRR1818647     4   0.184      0.676 0.028 0.016 0.008 0.948
#> SRR1818648     4   0.184      0.676 0.028 0.016 0.008 0.948
#> SRR1818645     2   0.138      0.909 0.008 0.964 0.008 0.020
#> SRR1818646     2   0.138      0.909 0.008 0.964 0.008 0.020
#> SRR1818639     3   0.401      0.707 0.244 0.000 0.756 0.000
#> SRR1818640     3   0.401      0.707 0.244 0.000 0.756 0.000
#> SRR1818637     4   0.373      0.615 0.000 0.044 0.108 0.848
#> SRR1818638     4   0.373      0.615 0.000 0.044 0.108 0.848
#> SRR1818635     2   0.369      0.860 0.004 0.860 0.048 0.088
#> SRR1818636     2   0.369      0.860 0.004 0.860 0.048 0.088
#> SRR1818643     2   0.106      0.912 0.012 0.972 0.016 0.000
#> SRR1818644     2   0.106      0.912 0.012 0.972 0.016 0.000
#> SRR1818641     2   0.152      0.915 0.016 0.960 0.016 0.008
#> SRR1818642     2   0.152      0.915 0.016 0.960 0.016 0.008
#> SRR1818633     1   0.792      0.189 0.464 0.032 0.128 0.376
#> SRR1818634     1   0.790      0.229 0.476 0.032 0.128 0.364
#> SRR1818665     1   0.121      0.791 0.960 0.040 0.000 0.000
#> SRR1818666     1   0.121      0.791 0.960 0.040 0.000 0.000
#> SRR1818667     4   0.562      0.369 0.008 0.416 0.012 0.564
#> SRR1818668     4   0.564      0.347 0.008 0.424 0.012 0.556
#> SRR1818669     1   0.418      0.725 0.824 0.032 0.008 0.136
#> SRR1818670     1   0.418      0.725 0.824 0.032 0.008 0.136
#> SRR1818663     1   0.130      0.791 0.956 0.044 0.000 0.000
#> SRR1818664     1   0.130      0.791 0.956 0.044 0.000 0.000
#> SRR1818629     2   0.168      0.909 0.004 0.948 0.004 0.044
#> SRR1818630     2   0.168      0.909 0.004 0.948 0.004 0.044
#> SRR1818627     1   0.253      0.788 0.924 0.024 0.032 0.020
#> SRR1818628     1   0.242      0.789 0.928 0.024 0.032 0.016
#> SRR1818621     3   0.675      0.218 0.092 0.000 0.464 0.444
#> SRR1818622     3   0.675      0.218 0.092 0.000 0.464 0.444
#> SRR1818625     1   0.164      0.792 0.948 0.044 0.000 0.008
#> SRR1818626     1   0.164      0.792 0.948 0.044 0.000 0.008
#> SRR1818623     4   0.172      0.674 0.028 0.008 0.012 0.952
#> SRR1818624     4   0.172      0.674 0.028 0.008 0.012 0.952
#> SRR1818619     1   0.680      0.577 0.656 0.024 0.120 0.200
#> SRR1818620     1   0.683      0.573 0.652 0.024 0.120 0.204
#> SRR1818617     2   0.125      0.911 0.016 0.968 0.004 0.012
#> SRR1818618     2   0.125      0.911 0.016 0.968 0.004 0.012
#> SRR1818615     2   0.281      0.882 0.008 0.896 0.008 0.088
#> SRR1818616     2   0.281      0.882 0.008 0.896 0.008 0.088
#> SRR1818609     4   0.519      0.512 0.008 0.328 0.008 0.656
#> SRR1818610     4   0.519      0.512 0.008 0.328 0.008 0.656
#> SRR1818607     2   0.138      0.909 0.008 0.964 0.008 0.020
#> SRR1818608     2   0.138      0.909 0.008 0.964 0.008 0.020
#> SRR1818613     1   0.261      0.786 0.920 0.024 0.016 0.040
#> SRR1818614     1   0.261      0.786 0.920 0.024 0.016 0.040
#> SRR1818611     1   0.377      0.749 0.860 0.048 0.084 0.008
#> SRR1818612     1   0.377      0.749 0.860 0.048 0.084 0.008
#> SRR1818605     1   0.523      0.641 0.756 0.024 0.032 0.188
#> SRR1818606     1   0.537      0.636 0.752 0.024 0.040 0.184

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1818631     4  0.8377     0.6394 0.048 0.072 0.276 0.440 0.164
#> SRR1818632     4  0.8377     0.6394 0.048 0.072 0.276 0.440 0.164
#> SRR1818679     1  0.8654    -0.0585 0.344 0.136 0.212 0.016 0.292
#> SRR1818680     1  0.8633    -0.0369 0.348 0.136 0.204 0.016 0.296
#> SRR1818677     2  0.6115     0.5575 0.068 0.676 0.028 0.036 0.192
#> SRR1818678     2  0.6129     0.5623 0.064 0.676 0.028 0.040 0.192
#> SRR1818675     4  0.8103     0.6793 0.120 0.016 0.272 0.456 0.136
#> SRR1818676     4  0.8103     0.6793 0.120 0.016 0.272 0.456 0.136
#> SRR1818673     5  0.4469     0.2008 0.004 0.348 0.004 0.004 0.640
#> SRR1818674     5  0.4469     0.2008 0.004 0.348 0.004 0.004 0.640
#> SRR1818671     2  0.4841     0.5074 0.000 0.708 0.000 0.084 0.208
#> SRR1818672     2  0.4944     0.5002 0.000 0.700 0.000 0.092 0.208
#> SRR1818661     4  0.7962     0.6579 0.084 0.000 0.272 0.380 0.264
#> SRR1818662     4  0.7962     0.6579 0.084 0.000 0.272 0.380 0.264
#> SRR1818655     3  0.5865     0.7606 0.056 0.016 0.556 0.368 0.004
#> SRR1818656     3  0.5865     0.7606 0.056 0.016 0.556 0.368 0.004
#> SRR1818653     3  0.1845     0.5854 0.056 0.000 0.928 0.000 0.016
#> SRR1818654     3  0.1845     0.5854 0.056 0.000 0.928 0.000 0.016
#> SRR1818651     1  0.2848     0.7768 0.896 0.036 0.040 0.024 0.004
#> SRR1818652     1  0.2924     0.7760 0.892 0.036 0.044 0.024 0.004
#> SRR1818657     1  0.1314     0.7883 0.960 0.012 0.016 0.000 0.012
#> SRR1818658     1  0.1314     0.7883 0.960 0.012 0.016 0.000 0.012
#> SRR1818649     1  0.3360     0.7650 0.868 0.044 0.024 0.004 0.060
#> SRR1818650     1  0.3360     0.7650 0.868 0.044 0.024 0.004 0.060
#> SRR1818659     3  0.5975     0.7538 0.064 0.016 0.548 0.368 0.004
#> SRR1818647     4  0.8173     0.6357 0.008 0.080 0.240 0.352 0.320
#> SRR1818648     4  0.8173     0.6357 0.008 0.080 0.240 0.352 0.320
#> SRR1818645     2  0.0510     0.6560 0.000 0.984 0.000 0.000 0.016
#> SRR1818646     2  0.0510     0.6560 0.000 0.984 0.000 0.000 0.016
#> SRR1818639     3  0.5807     0.7600 0.052 0.016 0.560 0.368 0.004
#> SRR1818640     3  0.5807     0.7600 0.052 0.016 0.560 0.368 0.004
#> SRR1818637     4  0.6861     0.5350 0.000 0.012 0.368 0.424 0.196
#> SRR1818638     4  0.6861     0.5350 0.000 0.012 0.368 0.424 0.196
#> SRR1818635     5  0.4849    -0.0583 0.016 0.432 0.004 0.000 0.548
#> SRR1818636     5  0.4855    -0.0754 0.016 0.436 0.004 0.000 0.544
#> SRR1818643     2  0.3700     0.6371 0.008 0.784 0.004 0.004 0.200
#> SRR1818644     2  0.3700     0.6371 0.008 0.784 0.004 0.004 0.200
#> SRR1818641     2  0.4275     0.6372 0.012 0.716 0.004 0.004 0.264
#> SRR1818642     2  0.4275     0.6372 0.012 0.716 0.004 0.004 0.264
#> SRR1818633     5  0.7727    -0.1435 0.244 0.080 0.180 0.008 0.488
#> SRR1818634     5  0.7727    -0.1435 0.244 0.080 0.180 0.008 0.488
#> SRR1818665     1  0.1372     0.7883 0.956 0.024 0.016 0.000 0.004
#> SRR1818666     1  0.1372     0.7883 0.956 0.024 0.016 0.000 0.004
#> SRR1818667     2  0.6853     0.3106 0.000 0.592 0.108 0.100 0.200
#> SRR1818668     2  0.6627     0.3406 0.000 0.612 0.088 0.100 0.200
#> SRR1818669     1  0.5902     0.4851 0.568 0.032 0.040 0.004 0.356
#> SRR1818670     1  0.5914     0.4817 0.564 0.032 0.040 0.004 0.360
#> SRR1818663     1  0.1202     0.7861 0.960 0.032 0.004 0.000 0.004
#> SRR1818664     1  0.1202     0.7861 0.960 0.032 0.004 0.000 0.004
#> SRR1818629     2  0.4759     0.5589 0.004 0.652 0.004 0.020 0.320
#> SRR1818630     2  0.4741     0.5616 0.004 0.656 0.004 0.020 0.316
#> SRR1818627     1  0.3896     0.7490 0.848 0.056 0.032 0.044 0.020
#> SRR1818628     1  0.3725     0.7539 0.856 0.056 0.032 0.040 0.016
#> SRR1818621     3  0.2153     0.5296 0.044 0.000 0.916 0.040 0.000
#> SRR1818622     3  0.2153     0.5296 0.044 0.000 0.916 0.040 0.000
#> SRR1818625     1  0.1573     0.7851 0.948 0.036 0.004 0.004 0.008
#> SRR1818626     1  0.1573     0.7851 0.948 0.036 0.004 0.004 0.008
#> SRR1818623     4  0.7559     0.6574 0.008 0.028 0.240 0.372 0.352
#> SRR1818624     4  0.7569     0.6584 0.008 0.028 0.244 0.372 0.348
#> SRR1818619     1  0.6038     0.2878 0.460 0.000 0.072 0.016 0.452
#> SRR1818620     1  0.6038     0.2878 0.460 0.000 0.072 0.016 0.452
#> SRR1818617     2  0.3974     0.6342 0.016 0.752 0.004 0.000 0.228
#> SRR1818618     2  0.4030     0.6344 0.012 0.752 0.004 0.004 0.228
#> SRR1818615     2  0.4203     0.5520 0.000 0.760 0.000 0.052 0.188
#> SRR1818616     2  0.4136     0.5551 0.000 0.764 0.000 0.048 0.188
#> SRR1818609     5  0.7768     0.1082 0.000 0.356 0.108 0.140 0.396
#> SRR1818610     5  0.7797     0.0985 0.000 0.352 0.112 0.140 0.396
#> SRR1818607     2  0.0609     0.6544 0.000 0.980 0.000 0.000 0.020
#> SRR1818608     2  0.0609     0.6544 0.000 0.980 0.000 0.000 0.020
#> SRR1818613     1  0.1565     0.7779 0.952 0.020 0.016 0.004 0.008
#> SRR1818614     1  0.1565     0.7779 0.952 0.020 0.016 0.004 0.008
#> SRR1818611     1  0.5654     0.6813 0.728 0.128 0.076 0.052 0.016
#> SRR1818612     1  0.5710     0.6795 0.724 0.128 0.080 0.052 0.016
#> SRR1818605     1  0.4515     0.6864 0.792 0.048 0.120 0.004 0.036
#> SRR1818606     1  0.4515     0.6864 0.792 0.048 0.120 0.004 0.036

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1818631     3  0.5376      0.515 0.032 0.024 0.612 0.004 0.020 0.308
#> SRR1818632     3  0.5376      0.515 0.032 0.024 0.612 0.004 0.020 0.308
#> SRR1818679     6  0.7230      0.741 0.296 0.048 0.088 0.040 0.028 0.500
#> SRR1818680     6  0.7230      0.741 0.296 0.048 0.088 0.040 0.028 0.500
#> SRR1818677     2  0.7976      0.510 0.132 0.372 0.012 0.268 0.016 0.200
#> SRR1818678     2  0.7982      0.504 0.132 0.372 0.012 0.264 0.016 0.204
#> SRR1818675     3  0.6465      0.422 0.228 0.016 0.548 0.020 0.008 0.180
#> SRR1818676     3  0.6465      0.422 0.228 0.016 0.548 0.020 0.008 0.180
#> SRR1818673     2  0.3324      0.457 0.004 0.824 0.000 0.060 0.000 0.112
#> SRR1818674     2  0.3324      0.457 0.004 0.824 0.000 0.060 0.000 0.112
#> SRR1818671     4  0.5135      0.638 0.000 0.152 0.084 0.700 0.000 0.064
#> SRR1818672     4  0.5135      0.638 0.000 0.152 0.084 0.700 0.000 0.064
#> SRR1818661     3  0.6064      0.489 0.112 0.024 0.572 0.000 0.020 0.272
#> SRR1818662     3  0.6064      0.489 0.112 0.024 0.572 0.000 0.020 0.272
#> SRR1818655     5  0.0976      0.803 0.008 0.008 0.000 0.016 0.968 0.000
#> SRR1818656     5  0.0976      0.803 0.008 0.008 0.000 0.016 0.968 0.000
#> SRR1818653     5  0.5704      0.727 0.020 0.080 0.136 0.000 0.680 0.084
#> SRR1818654     5  0.5704      0.727 0.020 0.080 0.136 0.000 0.680 0.084
#> SRR1818651     1  0.4298      0.702 0.804 0.024 0.004 0.048 0.056 0.064
#> SRR1818652     1  0.4298      0.702 0.804 0.024 0.004 0.048 0.056 0.064
#> SRR1818657     1  0.2084      0.747 0.920 0.012 0.000 0.012 0.012 0.044
#> SRR1818658     1  0.2084      0.748 0.920 0.012 0.000 0.012 0.012 0.044
#> SRR1818649     1  0.4529      0.545 0.724 0.036 0.000 0.020 0.012 0.208
#> SRR1818650     1  0.4529      0.545 0.724 0.036 0.000 0.020 0.012 0.208
#> SRR1818659     5  0.2228      0.773 0.056 0.008 0.004 0.024 0.908 0.000
#> SRR1818647     3  0.5655      0.507 0.004 0.012 0.600 0.172 0.000 0.212
#> SRR1818648     3  0.5655      0.507 0.004 0.012 0.600 0.172 0.000 0.212
#> SRR1818645     4  0.3000      0.431 0.028 0.092 0.000 0.860 0.004 0.016
#> SRR1818646     4  0.3000      0.431 0.028 0.092 0.000 0.860 0.004 0.016
#> SRR1818639     5  0.0779      0.805 0.008 0.008 0.000 0.008 0.976 0.000
#> SRR1818640     5  0.0779      0.805 0.008 0.008 0.000 0.008 0.976 0.000
#> SRR1818637     3  0.4196      0.475 0.000 0.144 0.772 0.056 0.004 0.024
#> SRR1818638     3  0.4196      0.475 0.000 0.144 0.772 0.056 0.004 0.024
#> SRR1818635     2  0.3357      0.468 0.012 0.832 0.000 0.064 0.000 0.092
#> SRR1818636     2  0.3357      0.468 0.012 0.832 0.000 0.064 0.000 0.092
#> SRR1818643     2  0.6324      0.572 0.032 0.444 0.000 0.416 0.024 0.084
#> SRR1818644     2  0.6324      0.572 0.032 0.444 0.000 0.416 0.024 0.084
#> SRR1818641     2  0.6591      0.595 0.048 0.476 0.000 0.360 0.028 0.088
#> SRR1818642     2  0.6591      0.595 0.048 0.476 0.000 0.360 0.028 0.088
#> SRR1818633     6  0.5747      0.802 0.204 0.048 0.068 0.020 0.004 0.656
#> SRR1818634     6  0.5747      0.802 0.204 0.048 0.068 0.020 0.004 0.656
#> SRR1818665     1  0.1312      0.754 0.956 0.020 0.000 0.012 0.004 0.008
#> SRR1818666     1  0.1312      0.754 0.956 0.020 0.000 0.012 0.004 0.008
#> SRR1818667     4  0.6262      0.548 0.000 0.168 0.268 0.528 0.004 0.032
#> SRR1818668     4  0.6277      0.542 0.000 0.168 0.272 0.524 0.004 0.032
#> SRR1818669     1  0.4691     -0.249 0.524 0.012 0.000 0.016 0.004 0.444
#> SRR1818670     1  0.4691     -0.249 0.524 0.012 0.000 0.016 0.004 0.444
#> SRR1818663     1  0.1350      0.755 0.952 0.020 0.000 0.000 0.008 0.020
#> SRR1818664     1  0.1350      0.755 0.952 0.020 0.000 0.000 0.008 0.020
#> SRR1818629     2  0.4250      0.526 0.020 0.744 0.004 0.204 0.020 0.008
#> SRR1818630     2  0.4279      0.529 0.020 0.740 0.004 0.208 0.020 0.008
#> SRR1818627     1  0.4093      0.686 0.812 0.024 0.020 0.016 0.028 0.100
#> SRR1818628     1  0.4139      0.685 0.808 0.024 0.020 0.016 0.028 0.104
#> SRR1818621     5  0.5907      0.697 0.012 0.084 0.176 0.000 0.644 0.084
#> SRR1818622     5  0.5907      0.697 0.012 0.084 0.176 0.000 0.644 0.084
#> SRR1818625     1  0.2139      0.746 0.920 0.024 0.000 0.020 0.008 0.028
#> SRR1818626     1  0.2139      0.746 0.920 0.024 0.000 0.020 0.008 0.028
#> SRR1818623     3  0.5033      0.563 0.000 0.028 0.676 0.084 0.000 0.212
#> SRR1818624     3  0.5058      0.562 0.000 0.028 0.672 0.084 0.000 0.216
#> SRR1818619     6  0.4750      0.774 0.296 0.020 0.024 0.004 0.004 0.652
#> SRR1818620     6  0.4675      0.771 0.296 0.020 0.020 0.004 0.004 0.656
#> SRR1818617     2  0.6971      0.585 0.052 0.428 0.012 0.380 0.016 0.112
#> SRR1818618     2  0.6923      0.585 0.048 0.432 0.012 0.380 0.016 0.112
#> SRR1818615     4  0.5678      0.614 0.000 0.244 0.108 0.612 0.004 0.032
#> SRR1818616     4  0.5678      0.614 0.000 0.244 0.108 0.612 0.004 0.032
#> SRR1818609     4  0.6746      0.439 0.000 0.128 0.292 0.488 0.004 0.088
#> SRR1818610     4  0.6746      0.439 0.000 0.128 0.292 0.488 0.004 0.088
#> SRR1818607     4  0.2537      0.453 0.024 0.088 0.000 0.880 0.000 0.008
#> SRR1818608     4  0.2537      0.453 0.024 0.088 0.000 0.880 0.000 0.008
#> SRR1818613     1  0.2678      0.729 0.892 0.008 0.004 0.024 0.016 0.056
#> SRR1818614     1  0.2949      0.727 0.880 0.016 0.004 0.028 0.016 0.056
#> SRR1818611     1  0.5525      0.584 0.708 0.052 0.000 0.064 0.120 0.056
#> SRR1818612     1  0.5525      0.584 0.708 0.052 0.000 0.064 0.120 0.056
#> SRR1818605     1  0.4239      0.587 0.780 0.012 0.040 0.016 0.008 0.144
#> SRR1818606     1  0.4239      0.587 0.780 0.012 0.040 0.016 0.008 0.144

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15216 rows and 75 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.998           0.957       0.981         0.4989 0.504   0.504
#> 3 3 0.568           0.716       0.868         0.2652 0.657   0.434
#> 4 4 0.496           0.570       0.776         0.1341 0.792   0.517
#> 5 5 0.530           0.531       0.722         0.0793 0.870   0.600
#> 6 6 0.555           0.420       0.620         0.0583 0.859   0.488

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1818631     1  0.0000      0.968 1.000 0.000
#> SRR1818632     1  0.0000      0.968 1.000 0.000
#> SRR1818679     1  0.7602      0.733 0.780 0.220
#> SRR1818680     1  0.7528      0.739 0.784 0.216
#> SRR1818677     2  0.0000      0.995 0.000 1.000
#> SRR1818678     2  0.0000      0.995 0.000 1.000
#> SRR1818675     1  0.4298      0.893 0.912 0.088
#> SRR1818676     1  0.4431      0.889 0.908 0.092
#> SRR1818673     2  0.0000      0.995 0.000 1.000
#> SRR1818674     2  0.0000      0.995 0.000 1.000
#> SRR1818671     2  0.0000      0.995 0.000 1.000
#> SRR1818672     2  0.0000      0.995 0.000 1.000
#> SRR1818661     1  0.0000      0.968 1.000 0.000
#> SRR1818662     1  0.0000      0.968 1.000 0.000
#> SRR1818655     1  0.0000      0.968 1.000 0.000
#> SRR1818656     1  0.0000      0.968 1.000 0.000
#> SRR1818653     1  0.0000      0.968 1.000 0.000
#> SRR1818654     1  0.0000      0.968 1.000 0.000
#> SRR1818651     1  0.0000      0.968 1.000 0.000
#> SRR1818652     1  0.0000      0.968 1.000 0.000
#> SRR1818657     1  0.0000      0.968 1.000 0.000
#> SRR1818658     1  0.0000      0.968 1.000 0.000
#> SRR1818649     1  0.0000      0.968 1.000 0.000
#> SRR1818650     1  0.0000      0.968 1.000 0.000
#> SRR1818659     1  0.0000      0.968 1.000 0.000
#> SRR1818647     2  0.0000      0.995 0.000 1.000
#> SRR1818648     2  0.0000      0.995 0.000 1.000
#> SRR1818645     2  0.0000      0.995 0.000 1.000
#> SRR1818646     2  0.0000      0.995 0.000 1.000
#> SRR1818639     1  0.0000      0.968 1.000 0.000
#> SRR1818640     1  0.0000      0.968 1.000 0.000
#> SRR1818637     2  0.0000      0.995 0.000 1.000
#> SRR1818638     2  0.0000      0.995 0.000 1.000
#> SRR1818635     2  0.0000      0.995 0.000 1.000
#> SRR1818636     2  0.0000      0.995 0.000 1.000
#> SRR1818643     2  0.0376      0.992 0.004 0.996
#> SRR1818644     2  0.0672      0.989 0.008 0.992
#> SRR1818641     2  0.3431      0.931 0.064 0.936
#> SRR1818642     2  0.3274      0.936 0.060 0.940
#> SRR1818633     1  0.9522      0.451 0.628 0.372
#> SRR1818634     1  0.9087      0.556 0.676 0.324
#> SRR1818665     1  0.0000      0.968 1.000 0.000
#> SRR1818666     1  0.0000      0.968 1.000 0.000
#> SRR1818667     2  0.0000      0.995 0.000 1.000
#> SRR1818668     2  0.0000      0.995 0.000 1.000
#> SRR1818669     1  0.0000      0.968 1.000 0.000
#> SRR1818670     1  0.0000      0.968 1.000 0.000
#> SRR1818663     1  0.0000      0.968 1.000 0.000
#> SRR1818664     1  0.0000      0.968 1.000 0.000
#> SRR1818629     2  0.0000      0.995 0.000 1.000
#> SRR1818630     2  0.0000      0.995 0.000 1.000
#> SRR1818627     1  0.0000      0.968 1.000 0.000
#> SRR1818628     1  0.0000      0.968 1.000 0.000
#> SRR1818621     1  0.0000      0.968 1.000 0.000
#> SRR1818622     1  0.0000      0.968 1.000 0.000
#> SRR1818625     1  0.0000      0.968 1.000 0.000
#> SRR1818626     1  0.0000      0.968 1.000 0.000
#> SRR1818623     2  0.0000      0.995 0.000 1.000
#> SRR1818624     2  0.0000      0.995 0.000 1.000
#> SRR1818619     1  0.0000      0.968 1.000 0.000
#> SRR1818620     1  0.0000      0.968 1.000 0.000
#> SRR1818617     2  0.0376      0.992 0.004 0.996
#> SRR1818618     2  0.0376      0.992 0.004 0.996
#> SRR1818615     2  0.0000      0.995 0.000 1.000
#> SRR1818616     2  0.0000      0.995 0.000 1.000
#> SRR1818609     2  0.0000      0.995 0.000 1.000
#> SRR1818610     2  0.0000      0.995 0.000 1.000
#> SRR1818607     2  0.0000      0.995 0.000 1.000
#> SRR1818608     2  0.0000      0.995 0.000 1.000
#> SRR1818613     1  0.0000      0.968 1.000 0.000
#> SRR1818614     1  0.0000      0.968 1.000 0.000
#> SRR1818611     1  0.0000      0.968 1.000 0.000
#> SRR1818612     1  0.0000      0.968 1.000 0.000
#> SRR1818605     1  0.0000      0.968 1.000 0.000
#> SRR1818606     1  0.0000      0.968 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1818631     3  0.1860     0.7667 0.052 0.000 0.948
#> SRR1818632     3  0.1860     0.7667 0.052 0.000 0.948
#> SRR1818679     3  0.8425     0.3040 0.364 0.096 0.540
#> SRR1818680     1  0.8569     0.1556 0.508 0.100 0.392
#> SRR1818677     1  0.6308     0.1781 0.508 0.492 0.000
#> SRR1818678     2  0.6244     0.0180 0.440 0.560 0.000
#> SRR1818675     3  0.0000     0.7498 0.000 0.000 1.000
#> SRR1818676     3  0.0000     0.7498 0.000 0.000 1.000
#> SRR1818673     2  0.4062     0.7265 0.164 0.836 0.000
#> SRR1818674     2  0.3879     0.7432 0.152 0.848 0.000
#> SRR1818671     2  0.0000     0.9042 0.000 1.000 0.000
#> SRR1818672     2  0.0000     0.9042 0.000 1.000 0.000
#> SRR1818661     3  0.0424     0.7544 0.008 0.000 0.992
#> SRR1818662     3  0.0424     0.7544 0.008 0.000 0.992
#> SRR1818655     1  0.0000     0.8369 1.000 0.000 0.000
#> SRR1818656     1  0.0237     0.8371 0.996 0.000 0.004
#> SRR1818653     3  0.5465     0.6274 0.288 0.000 0.712
#> SRR1818654     3  0.5859     0.5349 0.344 0.000 0.656
#> SRR1818651     1  0.0747     0.8339 0.984 0.000 0.016
#> SRR1818652     1  0.0424     0.8363 0.992 0.000 0.008
#> SRR1818657     1  0.0424     0.8363 0.992 0.000 0.008
#> SRR1818658     1  0.0424     0.8363 0.992 0.000 0.008
#> SRR1818649     1  0.0892     0.8320 0.980 0.020 0.000
#> SRR1818650     1  0.0892     0.8320 0.980 0.020 0.000
#> SRR1818659     1  0.0237     0.8372 0.996 0.000 0.004
#> SRR1818647     2  0.4452     0.7472 0.000 0.808 0.192
#> SRR1818648     2  0.4452     0.7472 0.000 0.808 0.192
#> SRR1818645     2  0.0000     0.9042 0.000 1.000 0.000
#> SRR1818646     2  0.0000     0.9042 0.000 1.000 0.000
#> SRR1818639     1  0.0424     0.8363 0.992 0.000 0.008
#> SRR1818640     1  0.0237     0.8372 0.996 0.000 0.004
#> SRR1818637     2  0.2878     0.8425 0.000 0.904 0.096
#> SRR1818638     2  0.2878     0.8425 0.000 0.904 0.096
#> SRR1818635     1  0.5363     0.6476 0.724 0.276 0.000
#> SRR1818636     1  0.5363     0.6476 0.724 0.276 0.000
#> SRR1818643     1  0.5098     0.6781 0.752 0.248 0.000
#> SRR1818644     1  0.5016     0.6855 0.760 0.240 0.000
#> SRR1818641     1  0.4291     0.7348 0.820 0.180 0.000
#> SRR1818642     1  0.4346     0.7318 0.816 0.184 0.000
#> SRR1818633     3  0.9346     0.4956 0.260 0.224 0.516
#> SRR1818634     3  0.9268     0.5002 0.268 0.208 0.524
#> SRR1818665     1  0.0237     0.8372 0.996 0.000 0.004
#> SRR1818666     1  0.0237     0.8372 0.996 0.000 0.004
#> SRR1818667     2  0.1860     0.8767 0.000 0.948 0.052
#> SRR1818668     2  0.1860     0.8767 0.000 0.948 0.052
#> SRR1818669     1  0.0237     0.8372 0.996 0.000 0.004
#> SRR1818670     1  0.0237     0.8372 0.996 0.000 0.004
#> SRR1818663     1  0.0237     0.8372 0.996 0.000 0.004
#> SRR1818664     1  0.0237     0.8372 0.996 0.000 0.004
#> SRR1818629     2  0.0237     0.9022 0.004 0.996 0.000
#> SRR1818630     2  0.0237     0.9022 0.004 0.996 0.000
#> SRR1818627     1  0.5948     0.4417 0.640 0.000 0.360
#> SRR1818628     1  0.5760     0.5012 0.672 0.000 0.328
#> SRR1818621     3  0.2537     0.7674 0.080 0.000 0.920
#> SRR1818622     3  0.2448     0.7676 0.076 0.000 0.924
#> SRR1818625     1  0.0000     0.8369 1.000 0.000 0.000
#> SRR1818626     1  0.0000     0.8369 1.000 0.000 0.000
#> SRR1818623     3  0.6274     0.0519 0.000 0.456 0.544
#> SRR1818624     3  0.6192     0.1619 0.000 0.420 0.580
#> SRR1818619     1  0.2261     0.8083 0.932 0.000 0.068
#> SRR1818620     1  0.2165     0.8092 0.936 0.000 0.064
#> SRR1818617     1  0.6302     0.2202 0.520 0.480 0.000
#> SRR1818618     1  0.6305     0.2090 0.516 0.484 0.000
#> SRR1818615     2  0.0000     0.9042 0.000 1.000 0.000
#> SRR1818616     2  0.0000     0.9042 0.000 1.000 0.000
#> SRR1818609     2  0.0237     0.9030 0.000 0.996 0.004
#> SRR1818610     2  0.0237     0.9030 0.000 0.996 0.004
#> SRR1818607     2  0.0000     0.9042 0.000 1.000 0.000
#> SRR1818608     2  0.0000     0.9042 0.000 1.000 0.000
#> SRR1818613     1  0.4605     0.6593 0.796 0.000 0.204
#> SRR1818614     1  0.4555     0.6663 0.800 0.000 0.200
#> SRR1818611     1  0.0892     0.8320 0.980 0.020 0.000
#> SRR1818612     1  0.1163     0.8284 0.972 0.028 0.000
#> SRR1818605     3  0.4974     0.7006 0.236 0.000 0.764
#> SRR1818606     3  0.5058     0.6945 0.244 0.000 0.756

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1818631     3  0.1004     0.7478 0.024 0.000 0.972 0.004
#> SRR1818632     3  0.1004     0.7478 0.024 0.000 0.972 0.004
#> SRR1818679     3  0.3289     0.7122 0.120 0.012 0.864 0.004
#> SRR1818680     3  0.3662     0.6890 0.148 0.012 0.836 0.004
#> SRR1818677     1  0.7176     0.3071 0.516 0.376 0.016 0.092
#> SRR1818678     1  0.6989     0.2129 0.492 0.420 0.016 0.072
#> SRR1818675     3  0.4331     0.6300 0.000 0.000 0.712 0.288
#> SRR1818676     3  0.4356     0.6260 0.000 0.000 0.708 0.292
#> SRR1818673     1  0.5383     0.2472 0.536 0.452 0.000 0.012
#> SRR1818674     1  0.5392     0.2263 0.528 0.460 0.000 0.012
#> SRR1818671     2  0.1059     0.8239 0.000 0.972 0.016 0.012
#> SRR1818672     2  0.1059     0.8239 0.000 0.972 0.016 0.012
#> SRR1818661     3  0.1042     0.7475 0.008 0.000 0.972 0.020
#> SRR1818662     3  0.1042     0.7475 0.008 0.000 0.972 0.020
#> SRR1818655     4  0.4855     0.4647 0.400 0.000 0.000 0.600
#> SRR1818656     4  0.4697     0.5627 0.356 0.000 0.000 0.644
#> SRR1818653     4  0.3984     0.7544 0.132 0.000 0.040 0.828
#> SRR1818654     4  0.3984     0.7544 0.132 0.000 0.040 0.828
#> SRR1818651     1  0.4936     0.2399 0.652 0.000 0.008 0.340
#> SRR1818652     1  0.4401     0.3923 0.724 0.000 0.004 0.272
#> SRR1818657     1  0.1305     0.6501 0.960 0.000 0.004 0.036
#> SRR1818658     1  0.1305     0.6501 0.960 0.000 0.004 0.036
#> SRR1818649     1  0.1739     0.6535 0.952 0.008 0.024 0.016
#> SRR1818650     1  0.1486     0.6545 0.960 0.008 0.024 0.008
#> SRR1818659     4  0.4040     0.7401 0.248 0.000 0.000 0.752
#> SRR1818647     3  0.5473     0.4742 0.000 0.324 0.644 0.032
#> SRR1818648     3  0.5389     0.5055 0.000 0.308 0.660 0.032
#> SRR1818645     2  0.0779     0.8250 0.004 0.980 0.000 0.016
#> SRR1818646     2  0.0779     0.8250 0.004 0.980 0.000 0.016
#> SRR1818639     4  0.3726     0.7575 0.212 0.000 0.000 0.788
#> SRR1818640     4  0.3726     0.7575 0.212 0.000 0.000 0.788
#> SRR1818637     2  0.4050     0.7428 0.000 0.820 0.036 0.144
#> SRR1818638     2  0.4050     0.7428 0.000 0.820 0.036 0.144
#> SRR1818635     1  0.4663     0.5628 0.716 0.272 0.000 0.012
#> SRR1818636     1  0.4606     0.5710 0.724 0.264 0.000 0.012
#> SRR1818643     1  0.6718     0.3109 0.524 0.380 0.000 0.096
#> SRR1818644     1  0.6586     0.3477 0.544 0.368 0.000 0.088
#> SRR1818641     1  0.5592     0.5143 0.656 0.300 0.000 0.044
#> SRR1818642     1  0.5720     0.5160 0.652 0.296 0.000 0.052
#> SRR1818633     3  0.6800     0.5815 0.248 0.092 0.636 0.024
#> SRR1818634     3  0.6629     0.5943 0.240 0.084 0.652 0.024
#> SRR1818665     1  0.0817     0.6490 0.976 0.000 0.000 0.024
#> SRR1818666     1  0.0817     0.6490 0.976 0.000 0.000 0.024
#> SRR1818667     2  0.3501     0.7669 0.000 0.848 0.020 0.132
#> SRR1818668     2  0.3501     0.7669 0.000 0.848 0.020 0.132
#> SRR1818669     1  0.2142     0.6486 0.928 0.000 0.056 0.016
#> SRR1818670     1  0.2142     0.6486 0.928 0.000 0.056 0.016
#> SRR1818663     1  0.1022     0.6419 0.968 0.000 0.000 0.032
#> SRR1818664     1  0.1022     0.6419 0.968 0.000 0.000 0.032
#> SRR1818629     2  0.4737     0.5241 0.252 0.728 0.000 0.020
#> SRR1818630     2  0.4576     0.5613 0.232 0.748 0.000 0.020
#> SRR1818627     1  0.5387     0.3418 0.584 0.000 0.400 0.016
#> SRR1818628     1  0.5436     0.3984 0.620 0.000 0.356 0.024
#> SRR1818621     4  0.4867     0.5766 0.032 0.000 0.232 0.736
#> SRR1818622     4  0.4808     0.5692 0.028 0.000 0.236 0.736
#> SRR1818625     1  0.0469     0.6510 0.988 0.000 0.000 0.012
#> SRR1818626     1  0.0469     0.6510 0.988 0.000 0.000 0.012
#> SRR1818623     3  0.1913     0.7491 0.000 0.020 0.940 0.040
#> SRR1818624     3  0.1820     0.7495 0.000 0.020 0.944 0.036
#> SRR1818619     1  0.6025     0.4417 0.620 0.012 0.332 0.036
#> SRR1818620     1  0.5863     0.4815 0.652 0.012 0.300 0.036
#> SRR1818617     2  0.6327    -0.0665 0.444 0.496 0.000 0.060
#> SRR1818618     2  0.6319    -0.0380 0.436 0.504 0.000 0.060
#> SRR1818615     2  0.0469     0.8235 0.000 0.988 0.000 0.012
#> SRR1818616     2  0.0469     0.8235 0.000 0.988 0.000 0.012
#> SRR1818609     2  0.2142     0.8105 0.000 0.928 0.016 0.056
#> SRR1818610     2  0.2222     0.8090 0.000 0.924 0.016 0.060
#> SRR1818607     2  0.0779     0.8250 0.004 0.980 0.000 0.016
#> SRR1818608     2  0.0779     0.8250 0.004 0.980 0.000 0.016
#> SRR1818613     1  0.6978     0.1916 0.584 0.000 0.208 0.208
#> SRR1818614     1  0.7010     0.1559 0.576 0.000 0.184 0.240
#> SRR1818611     1  0.4348     0.4648 0.780 0.024 0.000 0.196
#> SRR1818612     1  0.4387     0.4582 0.776 0.024 0.000 0.200
#> SRR1818605     3  0.7805    -0.0739 0.300 0.000 0.420 0.280
#> SRR1818606     4  0.7874     0.2127 0.284 0.000 0.336 0.380

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1818631     3   0.128     0.7011 0.020 0.000 0.960 0.016 0.004
#> SRR1818632     3   0.128     0.7011 0.020 0.000 0.960 0.016 0.004
#> SRR1818679     3   0.495     0.4321 0.280 0.012 0.672 0.036 0.000
#> SRR1818680     3   0.486     0.4241 0.284 0.008 0.672 0.036 0.000
#> SRR1818677     2   0.408     0.5615 0.044 0.840 0.024 0.052 0.040
#> SRR1818678     2   0.391     0.5599 0.036 0.848 0.024 0.056 0.036
#> SRR1818675     3   0.727     0.5307 0.024 0.016 0.496 0.284 0.180
#> SRR1818676     3   0.719     0.5437 0.024 0.016 0.508 0.284 0.168
#> SRR1818673     1   0.603     0.1046 0.464 0.440 0.000 0.088 0.008
#> SRR1818674     1   0.607     0.0956 0.460 0.440 0.000 0.092 0.008
#> SRR1818671     4   0.453     0.6281 0.000 0.424 0.004 0.568 0.004
#> SRR1818672     4   0.452     0.6327 0.000 0.420 0.004 0.572 0.004
#> SRR1818661     3   0.199     0.7015 0.000 0.004 0.928 0.028 0.040
#> SRR1818662     3   0.182     0.7021 0.000 0.004 0.936 0.024 0.036
#> SRR1818655     5   0.567     0.6393 0.136 0.244 0.000 0.000 0.620
#> SRR1818656     5   0.540     0.6653 0.124 0.220 0.000 0.000 0.656
#> SRR1818653     5   0.185     0.7247 0.036 0.020 0.008 0.000 0.936
#> SRR1818654     5   0.185     0.7247 0.036 0.020 0.008 0.000 0.936
#> SRR1818651     1   0.450     0.4711 0.664 0.024 0.000 0.000 0.312
#> SRR1818652     1   0.443     0.5248 0.700 0.032 0.000 0.000 0.268
#> SRR1818657     1   0.607     0.0367 0.504 0.424 0.020 0.024 0.028
#> SRR1818658     1   0.615     0.0108 0.492 0.432 0.020 0.028 0.028
#> SRR1818649     1   0.274     0.6810 0.900 0.036 0.044 0.004 0.016
#> SRR1818650     1   0.274     0.6810 0.900 0.036 0.044 0.004 0.016
#> SRR1818659     5   0.352     0.6008 0.232 0.000 0.000 0.004 0.764
#> SRR1818647     3   0.562     0.4809 0.000 0.072 0.592 0.328 0.008
#> SRR1818648     3   0.564     0.4839 0.000 0.076 0.596 0.320 0.008
#> SRR1818645     2   0.263     0.4874 0.000 0.860 0.004 0.136 0.000
#> SRR1818646     2   0.258     0.4918 0.000 0.864 0.004 0.132 0.000
#> SRR1818639     5   0.558     0.5370 0.080 0.368 0.000 0.000 0.552
#> SRR1818640     5   0.547     0.5479 0.072 0.364 0.000 0.000 0.564
#> SRR1818637     4   0.223     0.6735 0.000 0.092 0.004 0.900 0.004
#> SRR1818638     4   0.223     0.6735 0.000 0.092 0.004 0.900 0.004
#> SRR1818635     1   0.539     0.3307 0.580 0.364 0.000 0.048 0.008
#> SRR1818636     1   0.539     0.3307 0.580 0.364 0.000 0.048 0.008
#> SRR1818643     1   0.636     0.0741 0.448 0.440 0.000 0.088 0.024
#> SRR1818644     1   0.628     0.0785 0.452 0.444 0.000 0.080 0.024
#> SRR1818641     2   0.591     0.2610 0.296 0.588 0.000 0.108 0.008
#> SRR1818642     2   0.583     0.2760 0.288 0.600 0.000 0.104 0.008
#> SRR1818633     3   0.637     0.6181 0.104 0.132 0.668 0.088 0.008
#> SRR1818634     3   0.627     0.6213 0.108 0.128 0.676 0.080 0.008
#> SRR1818665     1   0.156     0.6805 0.948 0.020 0.000 0.004 0.028
#> SRR1818666     1   0.156     0.6805 0.948 0.020 0.000 0.004 0.028
#> SRR1818667     4   0.340     0.7323 0.000 0.236 0.000 0.764 0.000
#> SRR1818668     4   0.327     0.7337 0.000 0.220 0.000 0.780 0.000
#> SRR1818669     1   0.424     0.6602 0.816 0.032 0.108 0.016 0.028
#> SRR1818670     1   0.424     0.6598 0.816 0.036 0.108 0.016 0.024
#> SRR1818663     1   0.133     0.6797 0.956 0.008 0.000 0.004 0.032
#> SRR1818664     1   0.141     0.6795 0.952 0.008 0.000 0.004 0.036
#> SRR1818629     2   0.475     0.3345 0.044 0.692 0.000 0.260 0.004
#> SRR1818630     2   0.461     0.3049 0.036 0.700 0.000 0.260 0.004
#> SRR1818627     1   0.501     0.5916 0.736 0.016 0.192 0.036 0.020
#> SRR1818628     1   0.520     0.5984 0.736 0.016 0.176 0.040 0.032
#> SRR1818621     5   0.232     0.6875 0.024 0.000 0.044 0.016 0.916
#> SRR1818622     5   0.230     0.6831 0.020 0.000 0.048 0.016 0.916
#> SRR1818625     1   0.163     0.6823 0.944 0.036 0.000 0.004 0.016
#> SRR1818626     1   0.155     0.6820 0.948 0.032 0.000 0.004 0.016
#> SRR1818623     3   0.391     0.6652 0.000 0.016 0.744 0.240 0.000
#> SRR1818624     3   0.388     0.6690 0.000 0.016 0.748 0.236 0.000
#> SRR1818619     2   0.799     0.0991 0.328 0.372 0.240 0.032 0.028
#> SRR1818620     2   0.806     0.0944 0.332 0.376 0.224 0.040 0.028
#> SRR1818617     2   0.373     0.5633 0.100 0.836 0.000 0.028 0.036
#> SRR1818618     2   0.381     0.5631 0.100 0.832 0.000 0.032 0.036
#> SRR1818615     4   0.465     0.5927 0.004 0.428 0.000 0.560 0.008
#> SRR1818616     4   0.465     0.5927 0.004 0.428 0.000 0.560 0.008
#> SRR1818609     4   0.349     0.7343 0.000 0.208 0.004 0.784 0.004
#> SRR1818610     4   0.346     0.7343 0.000 0.204 0.004 0.788 0.004
#> SRR1818607     2   0.258     0.4919 0.000 0.864 0.004 0.132 0.000
#> SRR1818608     2   0.254     0.4962 0.000 0.868 0.004 0.128 0.000
#> SRR1818613     1   0.476     0.6001 0.744 0.000 0.088 0.008 0.160
#> SRR1818614     1   0.471     0.5979 0.744 0.000 0.076 0.008 0.172
#> SRR1818611     1   0.387     0.6277 0.804 0.048 0.000 0.004 0.144
#> SRR1818612     1   0.395     0.6290 0.804 0.048 0.000 0.008 0.140
#> SRR1818605     1   0.605     0.4664 0.640 0.004 0.212 0.020 0.124
#> SRR1818606     1   0.599     0.4797 0.648 0.004 0.204 0.020 0.124

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1818631     3  0.4332     0.5579 0.060 0.124 0.768 0.000 0.000 0.048
#> SRR1818632     3  0.4388     0.5569 0.064 0.124 0.764 0.000 0.000 0.048
#> SRR1818679     3  0.7331     0.1791 0.312 0.212 0.392 0.020 0.000 0.064
#> SRR1818680     3  0.7390     0.1345 0.336 0.204 0.372 0.024 0.000 0.064
#> SRR1818677     6  0.4072     0.4417 0.008 0.148 0.008 0.052 0.004 0.780
#> SRR1818678     6  0.3895     0.4465 0.008 0.144 0.008 0.052 0.000 0.788
#> SRR1818675     4  0.7440     0.0757 0.020 0.088 0.172 0.468 0.244 0.008
#> SRR1818676     4  0.7474     0.0734 0.024 0.088 0.180 0.476 0.224 0.008
#> SRR1818673     2  0.5167     0.4427 0.300 0.600 0.000 0.092 0.000 0.008
#> SRR1818674     2  0.5151     0.4481 0.296 0.604 0.000 0.092 0.000 0.008
#> SRR1818671     4  0.5015     0.3195 0.000 0.352 0.004 0.572 0.000 0.072
#> SRR1818672     4  0.5071     0.3130 0.000 0.356 0.004 0.564 0.000 0.076
#> SRR1818661     3  0.1881     0.5756 0.000 0.008 0.928 0.012 0.044 0.008
#> SRR1818662     3  0.1768     0.5761 0.000 0.008 0.932 0.012 0.044 0.004
#> SRR1818655     6  0.4879     0.3023 0.064 0.000 0.000 0.000 0.392 0.544
#> SRR1818656     6  0.4882     0.2388 0.060 0.000 0.000 0.000 0.428 0.512
#> SRR1818653     5  0.1932     0.7156 0.004 0.004 0.004 0.000 0.912 0.076
#> SRR1818654     5  0.1876     0.7186 0.004 0.004 0.004 0.000 0.916 0.072
#> SRR1818651     5  0.6006     0.0742 0.396 0.020 0.000 0.000 0.448 0.136
#> SRR1818652     1  0.6130    -0.1170 0.424 0.020 0.000 0.000 0.400 0.156
#> SRR1818657     6  0.5587     0.4175 0.240 0.160 0.000 0.000 0.012 0.588
#> SRR1818658     6  0.5466     0.4225 0.240 0.156 0.000 0.000 0.008 0.596
#> SRR1818649     1  0.3985     0.6277 0.800 0.064 0.012 0.000 0.016 0.108
#> SRR1818650     1  0.4076     0.6269 0.796 0.064 0.016 0.000 0.016 0.108
#> SRR1818659     5  0.3608     0.5804 0.248 0.004 0.000 0.000 0.736 0.012
#> SRR1818647     3  0.5825     0.3237 0.000 0.120 0.580 0.272 0.012 0.016
#> SRR1818648     3  0.5910     0.3058 0.000 0.128 0.568 0.276 0.012 0.016
#> SRR1818645     2  0.5533     0.4029 0.000 0.448 0.000 0.132 0.000 0.420
#> SRR1818646     2  0.5450     0.3946 0.000 0.452 0.000 0.120 0.000 0.428
#> SRR1818639     6  0.4187     0.4025 0.016 0.004 0.000 0.000 0.356 0.624
#> SRR1818640     6  0.4254     0.4045 0.020 0.004 0.000 0.000 0.352 0.624
#> SRR1818637     4  0.0405     0.6066 0.000 0.004 0.000 0.988 0.008 0.000
#> SRR1818638     4  0.0508     0.6049 0.000 0.004 0.000 0.984 0.012 0.000
#> SRR1818635     1  0.4649    -0.0511 0.504 0.464 0.000 0.020 0.000 0.012
#> SRR1818636     1  0.4649    -0.0505 0.504 0.464 0.000 0.020 0.000 0.012
#> SRR1818643     2  0.6026     0.2764 0.400 0.472 0.000 0.084 0.004 0.040
#> SRR1818644     2  0.5954     0.2634 0.408 0.472 0.000 0.076 0.004 0.040
#> SRR1818641     2  0.6292     0.5178 0.152 0.572 0.000 0.080 0.000 0.196
#> SRR1818642     2  0.6292     0.5169 0.152 0.572 0.000 0.080 0.000 0.196
#> SRR1818633     3  0.6731     0.4013 0.048 0.220 0.540 0.012 0.008 0.172
#> SRR1818634     3  0.6629     0.4266 0.044 0.216 0.560 0.016 0.008 0.156
#> SRR1818665     1  0.4819     0.5568 0.704 0.104 0.004 0.000 0.012 0.176
#> SRR1818666     1  0.4819     0.5582 0.704 0.104 0.004 0.000 0.012 0.176
#> SRR1818667     4  0.2615     0.5860 0.000 0.136 0.000 0.852 0.004 0.008
#> SRR1818668     4  0.2462     0.5897 0.000 0.132 0.000 0.860 0.004 0.004
#> SRR1818669     1  0.6391     0.4361 0.588 0.160 0.120 0.000 0.004 0.128
#> SRR1818670     1  0.6384     0.4392 0.588 0.164 0.116 0.000 0.004 0.128
#> SRR1818663     1  0.2125     0.6411 0.908 0.004 0.004 0.000 0.016 0.068
#> SRR1818664     1  0.2011     0.6399 0.912 0.004 0.000 0.000 0.020 0.064
#> SRR1818629     2  0.6156     0.1890 0.040 0.532 0.004 0.120 0.000 0.304
#> SRR1818630     2  0.6240     0.1816 0.040 0.524 0.004 0.132 0.000 0.300
#> SRR1818627     1  0.7062     0.4755 0.584 0.180 0.052 0.040 0.036 0.108
#> SRR1818628     1  0.7214     0.4535 0.568 0.188 0.040 0.044 0.048 0.112
#> SRR1818621     5  0.1364     0.7391 0.016 0.000 0.020 0.012 0.952 0.000
#> SRR1818622     5  0.1448     0.7378 0.016 0.000 0.024 0.012 0.948 0.000
#> SRR1818625     1  0.2255     0.6427 0.892 0.016 0.000 0.000 0.004 0.088
#> SRR1818626     1  0.2306     0.6423 0.888 0.016 0.000 0.000 0.004 0.092
#> SRR1818623     3  0.4745     0.4154 0.000 0.032 0.636 0.308 0.000 0.024
#> SRR1818624     3  0.4784     0.4453 0.000 0.040 0.660 0.272 0.000 0.028
#> SRR1818619     6  0.6211     0.4209 0.160 0.188 0.072 0.000 0.000 0.580
#> SRR1818620     6  0.6216     0.4193 0.168 0.180 0.072 0.000 0.000 0.580
#> SRR1818617     6  0.4119     0.5120 0.028 0.092 0.004 0.048 0.020 0.808
#> SRR1818618     6  0.4132     0.5098 0.028 0.088 0.004 0.052 0.020 0.808
#> SRR1818615     2  0.4051     0.0618 0.000 0.560 0.000 0.432 0.000 0.008
#> SRR1818616     2  0.4051     0.0692 0.000 0.560 0.000 0.432 0.000 0.008
#> SRR1818609     4  0.4016     0.4870 0.000 0.292 0.004 0.684 0.000 0.020
#> SRR1818610     4  0.3977     0.4963 0.000 0.284 0.004 0.692 0.000 0.020
#> SRR1818607     2  0.5419     0.4016 0.000 0.460 0.000 0.116 0.000 0.424
#> SRR1818608     2  0.5328     0.3799 0.000 0.456 0.000 0.104 0.000 0.440
#> SRR1818613     1  0.6902     0.4723 0.568 0.040 0.124 0.000 0.172 0.096
#> SRR1818614     1  0.6961     0.4393 0.552 0.044 0.100 0.000 0.208 0.096
#> SRR1818611     1  0.5968     0.4982 0.612 0.068 0.000 0.000 0.168 0.152
#> SRR1818612     1  0.5916     0.5020 0.620 0.072 0.000 0.000 0.172 0.136
#> SRR1818605     1  0.5671     0.4939 0.676 0.060 0.112 0.000 0.136 0.016
#> SRR1818606     1  0.5735     0.4860 0.668 0.060 0.108 0.000 0.148 0.016

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15216 rows and 75 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.412           0.835       0.874         0.4693 0.494   0.494
#> 3 3 0.771           0.822       0.907         0.2676 0.935   0.869
#> 4 4 0.848           0.823       0.910         0.1300 0.937   0.852
#> 5 5 0.961           0.898       0.950         0.1096 0.874   0.655
#> 6 6 0.926           0.884       0.925         0.0253 0.997   0.988

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1818631     2   0.000      0.913 0.000 1.000
#> SRR1818632     2   0.000      0.913 0.000 1.000
#> SRR1818679     1   0.969      0.532 0.604 0.396
#> SRR1818680     1   0.969      0.532 0.604 0.396
#> SRR1818677     2   0.482      0.951 0.104 0.896
#> SRR1818678     2   0.482      0.951 0.104 0.896
#> SRR1818675     1   0.971      0.529 0.600 0.400
#> SRR1818676     1   0.971      0.529 0.600 0.400
#> SRR1818673     2   0.482      0.951 0.104 0.896
#> SRR1818674     2   0.482      0.951 0.104 0.896
#> SRR1818671     2   0.482      0.951 0.104 0.896
#> SRR1818672     2   0.482      0.951 0.104 0.896
#> SRR1818661     2   0.000      0.913 0.000 1.000
#> SRR1818662     2   0.000      0.913 0.000 1.000
#> SRR1818655     1   0.000      0.842 1.000 0.000
#> SRR1818656     1   0.000      0.842 1.000 0.000
#> SRR1818653     1   0.925      0.613 0.660 0.340
#> SRR1818654     1   0.925      0.613 0.660 0.340
#> SRR1818651     1   0.000      0.842 1.000 0.000
#> SRR1818652     1   0.000      0.842 1.000 0.000
#> SRR1818657     1   0.000      0.842 1.000 0.000
#> SRR1818658     1   0.000      0.842 1.000 0.000
#> SRR1818649     1   0.000      0.842 1.000 0.000
#> SRR1818650     1   0.000      0.842 1.000 0.000
#> SRR1818659     1   0.000      0.842 1.000 0.000
#> SRR1818647     2   0.000      0.913 0.000 1.000
#> SRR1818648     2   0.000      0.913 0.000 1.000
#> SRR1818645     2   0.482      0.951 0.104 0.896
#> SRR1818646     2   0.482      0.951 0.104 0.896
#> SRR1818639     1   0.000      0.842 1.000 0.000
#> SRR1818640     1   0.000      0.842 1.000 0.000
#> SRR1818637     2   0.000      0.913 0.000 1.000
#> SRR1818638     2   0.000      0.913 0.000 1.000
#> SRR1818635     2   0.482      0.951 0.104 0.896
#> SRR1818636     2   0.482      0.951 0.104 0.896
#> SRR1818643     2   0.482      0.951 0.104 0.896
#> SRR1818644     2   0.482      0.951 0.104 0.896
#> SRR1818641     2   0.482      0.951 0.104 0.896
#> SRR1818642     2   0.482      0.951 0.104 0.896
#> SRR1818633     1   0.969      0.532 0.604 0.396
#> SRR1818634     1   0.969      0.532 0.604 0.396
#> SRR1818665     1   0.000      0.842 1.000 0.000
#> SRR1818666     1   0.000      0.842 1.000 0.000
#> SRR1818667     2   0.482      0.951 0.104 0.896
#> SRR1818668     2   0.482      0.951 0.104 0.896
#> SRR1818669     1   0.000      0.842 1.000 0.000
#> SRR1818670     1   0.000      0.842 1.000 0.000
#> SRR1818663     1   0.000      0.842 1.000 0.000
#> SRR1818664     1   0.000      0.842 1.000 0.000
#> SRR1818629     2   0.482      0.951 0.104 0.896
#> SRR1818630     2   0.482      0.951 0.104 0.896
#> SRR1818627     1   0.000      0.842 1.000 0.000
#> SRR1818628     1   0.000      0.842 1.000 0.000
#> SRR1818621     2   0.373      0.938 0.072 0.928
#> SRR1818622     2   0.373      0.938 0.072 0.928
#> SRR1818625     1   0.000      0.842 1.000 0.000
#> SRR1818626     1   0.000      0.842 1.000 0.000
#> SRR1818623     2   0.000      0.913 0.000 1.000
#> SRR1818624     2   0.000      0.913 0.000 1.000
#> SRR1818619     1   0.946      0.546 0.636 0.364
#> SRR1818620     1   0.946      0.546 0.636 0.364
#> SRR1818617     1   0.946      0.546 0.636 0.364
#> SRR1818618     1   0.946      0.546 0.636 0.364
#> SRR1818615     2   0.482      0.951 0.104 0.896
#> SRR1818616     2   0.482      0.951 0.104 0.896
#> SRR1818609     2   0.000      0.913 0.000 1.000
#> SRR1818610     2   0.000      0.913 0.000 1.000
#> SRR1818607     2   0.482      0.951 0.104 0.896
#> SRR1818608     2   0.482      0.951 0.104 0.896
#> SRR1818613     1   0.000      0.842 1.000 0.000
#> SRR1818614     1   0.000      0.842 1.000 0.000
#> SRR1818611     1   0.000      0.842 1.000 0.000
#> SRR1818612     1   0.000      0.842 1.000 0.000
#> SRR1818605     1   0.925      0.613 0.660 0.340
#> SRR1818606     1   0.925      0.613 0.660 0.340

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1818631     3   0.000      0.962 0.000 0.000 1.000
#> SRR1818632     3   0.000      0.962 0.000 0.000 1.000
#> SRR1818679     1   0.788      0.489 0.592 0.072 0.336
#> SRR1818680     1   0.788      0.489 0.592 0.072 0.336
#> SRR1818677     2   0.129      0.970 0.032 0.968 0.000
#> SRR1818678     2   0.129      0.970 0.032 0.968 0.000
#> SRR1818675     1   0.613      0.462 0.600 0.000 0.400
#> SRR1818676     1   0.613      0.462 0.600 0.000 0.400
#> SRR1818673     2   0.129      0.970 0.032 0.968 0.000
#> SRR1818674     2   0.129      0.970 0.032 0.968 0.000
#> SRR1818671     2   0.129      0.970 0.032 0.968 0.000
#> SRR1818672     2   0.129      0.970 0.032 0.968 0.000
#> SRR1818661     3   0.000      0.962 0.000 0.000 1.000
#> SRR1818662     3   0.000      0.962 0.000 0.000 1.000
#> SRR1818655     1   0.000      0.830 1.000 0.000 0.000
#> SRR1818656     1   0.000      0.830 1.000 0.000 0.000
#> SRR1818653     1   0.583      0.551 0.660 0.000 0.340
#> SRR1818654     1   0.583      0.551 0.660 0.000 0.340
#> SRR1818651     1   0.000      0.830 1.000 0.000 0.000
#> SRR1818652     1   0.000      0.830 1.000 0.000 0.000
#> SRR1818657     1   0.000      0.830 1.000 0.000 0.000
#> SRR1818658     1   0.000      0.830 1.000 0.000 0.000
#> SRR1818649     1   0.000      0.830 1.000 0.000 0.000
#> SRR1818650     1   0.000      0.830 1.000 0.000 0.000
#> SRR1818659     1   0.000      0.830 1.000 0.000 0.000
#> SRR1818647     2   0.236      0.914 0.000 0.928 0.072
#> SRR1818648     2   0.236      0.914 0.000 0.928 0.072
#> SRR1818645     2   0.129      0.970 0.032 0.968 0.000
#> SRR1818646     2   0.129      0.970 0.032 0.968 0.000
#> SRR1818639     1   0.000      0.830 1.000 0.000 0.000
#> SRR1818640     1   0.000      0.830 1.000 0.000 0.000
#> SRR1818637     2   0.236      0.914 0.000 0.928 0.072
#> SRR1818638     2   0.236      0.914 0.000 0.928 0.072
#> SRR1818635     2   0.129      0.970 0.032 0.968 0.000
#> SRR1818636     2   0.129      0.970 0.032 0.968 0.000
#> SRR1818643     2   0.129      0.970 0.032 0.968 0.000
#> SRR1818644     2   0.129      0.970 0.032 0.968 0.000
#> SRR1818641     2   0.129      0.970 0.032 0.968 0.000
#> SRR1818642     2   0.129      0.970 0.032 0.968 0.000
#> SRR1818633     1   0.888      0.485 0.576 0.216 0.208
#> SRR1818634     1   0.888      0.485 0.576 0.216 0.208
#> SRR1818665     1   0.000      0.830 1.000 0.000 0.000
#> SRR1818666     1   0.000      0.830 1.000 0.000 0.000
#> SRR1818667     2   0.129      0.970 0.032 0.968 0.000
#> SRR1818668     2   0.129      0.970 0.032 0.968 0.000
#> SRR1818669     1   0.000      0.830 1.000 0.000 0.000
#> SRR1818670     1   0.000      0.830 1.000 0.000 0.000
#> SRR1818663     1   0.000      0.830 1.000 0.000 0.000
#> SRR1818664     1   0.000      0.830 1.000 0.000 0.000
#> SRR1818629     2   0.129      0.970 0.032 0.968 0.000
#> SRR1818630     2   0.129      0.970 0.032 0.968 0.000
#> SRR1818627     1   0.000      0.830 1.000 0.000 0.000
#> SRR1818628     1   0.000      0.830 1.000 0.000 0.000
#> SRR1818621     3   0.236      0.919 0.072 0.000 0.928
#> SRR1818622     3   0.236      0.919 0.072 0.000 0.928
#> SRR1818625     1   0.000      0.830 1.000 0.000 0.000
#> SRR1818626     1   0.000      0.830 1.000 0.000 0.000
#> SRR1818623     2   0.236      0.914 0.000 0.928 0.072
#> SRR1818624     2   0.236      0.914 0.000 0.928 0.072
#> SRR1818619     1   0.618      0.394 0.584 0.416 0.000
#> SRR1818620     1   0.618      0.394 0.584 0.416 0.000
#> SRR1818617     1   0.623      0.350 0.564 0.436 0.000
#> SRR1818618     1   0.623      0.350 0.564 0.436 0.000
#> SRR1818615     2   0.129      0.970 0.032 0.968 0.000
#> SRR1818616     2   0.129      0.970 0.032 0.968 0.000
#> SRR1818609     2   0.236      0.914 0.000 0.928 0.072
#> SRR1818610     2   0.236      0.914 0.000 0.928 0.072
#> SRR1818607     2   0.129      0.970 0.032 0.968 0.000
#> SRR1818608     2   0.129      0.970 0.032 0.968 0.000
#> SRR1818613     1   0.000      0.830 1.000 0.000 0.000
#> SRR1818614     1   0.000      0.830 1.000 0.000 0.000
#> SRR1818611     1   0.000      0.830 1.000 0.000 0.000
#> SRR1818612     1   0.000      0.830 1.000 0.000 0.000
#> SRR1818605     1   0.583      0.551 0.660 0.000 0.340
#> SRR1818606     1   0.583      0.551 0.660 0.000 0.340

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1818631     3  0.1867      0.962 0.000 0.000 0.928 0.072
#> SRR1818632     3  0.1867      0.962 0.000 0.000 0.928 0.072
#> SRR1818679     1  0.6435      0.427 0.532 0.072 0.396 0.000
#> SRR1818680     1  0.6435      0.427 0.532 0.072 0.396 0.000
#> SRR1818677     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1818678     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1818675     1  0.5151      0.390 0.532 0.000 0.464 0.004
#> SRR1818676     1  0.5151      0.390 0.532 0.000 0.464 0.004
#> SRR1818673     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1818674     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1818671     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1818672     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1818661     3  0.1867      0.962 0.000 0.000 0.928 0.072
#> SRR1818662     3  0.1867      0.962 0.000 0.000 0.928 0.072
#> SRR1818655     1  0.0000      0.811 1.000 0.000 0.000 0.000
#> SRR1818656     1  0.0000      0.811 1.000 0.000 0.000 0.000
#> SRR1818653     1  0.4888      0.482 0.588 0.000 0.412 0.000
#> SRR1818654     1  0.4888      0.482 0.588 0.000 0.412 0.000
#> SRR1818651     1  0.0707      0.807 0.980 0.000 0.020 0.000
#> SRR1818652     1  0.0707      0.807 0.980 0.000 0.020 0.000
#> SRR1818657     1  0.0000      0.811 1.000 0.000 0.000 0.000
#> SRR1818658     1  0.0000      0.811 1.000 0.000 0.000 0.000
#> SRR1818649     1  0.0000      0.811 1.000 0.000 0.000 0.000
#> SRR1818650     1  0.0000      0.811 1.000 0.000 0.000 0.000
#> SRR1818659     1  0.0000      0.811 1.000 0.000 0.000 0.000
#> SRR1818647     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1818648     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1818645     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1818646     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1818639     1  0.0000      0.811 1.000 0.000 0.000 0.000
#> SRR1818640     1  0.0000      0.811 1.000 0.000 0.000 0.000
#> SRR1818637     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1818638     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1818635     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1818636     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1818643     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1818644     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1818641     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1818642     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1818633     1  0.7315      0.450 0.532 0.216 0.252 0.000
#> SRR1818634     1  0.7315      0.450 0.532 0.216 0.252 0.000
#> SRR1818665     1  0.0000      0.811 1.000 0.000 0.000 0.000
#> SRR1818666     1  0.0000      0.811 1.000 0.000 0.000 0.000
#> SRR1818667     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1818668     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1818669     1  0.0000      0.811 1.000 0.000 0.000 0.000
#> SRR1818670     1  0.0000      0.811 1.000 0.000 0.000 0.000
#> SRR1818663     1  0.0000      0.811 1.000 0.000 0.000 0.000
#> SRR1818664     1  0.0000      0.811 1.000 0.000 0.000 0.000
#> SRR1818629     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1818630     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1818627     1  0.0707      0.807 0.980 0.000 0.020 0.000
#> SRR1818628     1  0.0707      0.807 0.980 0.000 0.020 0.000
#> SRR1818621     3  0.0000      0.928 0.000 0.000 1.000 0.000
#> SRR1818622     3  0.0000      0.928 0.000 0.000 1.000 0.000
#> SRR1818625     1  0.0000      0.811 1.000 0.000 0.000 0.000
#> SRR1818626     1  0.0000      0.811 1.000 0.000 0.000 0.000
#> SRR1818623     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1818624     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1818619     1  0.5581      0.342 0.532 0.448 0.020 0.000
#> SRR1818620     1  0.5581      0.342 0.532 0.448 0.020 0.000
#> SRR1818617     1  0.4985      0.313 0.532 0.468 0.000 0.000
#> SRR1818618     1  0.4985      0.313 0.532 0.468 0.000 0.000
#> SRR1818615     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1818616     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1818609     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1818610     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> SRR1818607     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1818608     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> SRR1818613     1  0.0707      0.807 0.980 0.000 0.020 0.000
#> SRR1818614     1  0.0707      0.807 0.980 0.000 0.020 0.000
#> SRR1818611     1  0.0000      0.811 1.000 0.000 0.000 0.000
#> SRR1818612     1  0.0000      0.811 1.000 0.000 0.000 0.000
#> SRR1818605     1  0.4888      0.482 0.588 0.000 0.412 0.000
#> SRR1818606     1  0.4888      0.482 0.588 0.000 0.412 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3 p4    p5
#> SRR1818631     3  0.0000      0.812 0.000 0.000 1.000  0 0.000
#> SRR1818632     3  0.0000      0.812 0.000 0.000 1.000  0 0.000
#> SRR1818679     5  0.1608      0.678 0.000 0.072 0.000  0 0.928
#> SRR1818680     5  0.1608      0.678 0.000 0.072 0.000  0 0.928
#> SRR1818677     2  0.0000      1.000 0.000 1.000 0.000  0 0.000
#> SRR1818678     2  0.0000      1.000 0.000 1.000 0.000  0 0.000
#> SRR1818675     5  0.0794      0.634 0.000 0.000 0.028  0 0.972
#> SRR1818676     5  0.0794      0.634 0.000 0.000 0.028  0 0.972
#> SRR1818673     2  0.0000      1.000 0.000 1.000 0.000  0 0.000
#> SRR1818674     2  0.0000      1.000 0.000 1.000 0.000  0 0.000
#> SRR1818671     2  0.0000      1.000 0.000 1.000 0.000  0 0.000
#> SRR1818672     2  0.0000      1.000 0.000 1.000 0.000  0 0.000
#> SRR1818661     3  0.0000      0.812 0.000 0.000 1.000  0 0.000
#> SRR1818662     3  0.0000      0.812 0.000 0.000 1.000  0 0.000
#> SRR1818655     1  0.0000      0.994 1.000 0.000 0.000  0 0.000
#> SRR1818656     1  0.0000      0.994 1.000 0.000 0.000  0 0.000
#> SRR1818653     5  0.1341      0.648 0.056 0.000 0.000  0 0.944
#> SRR1818654     5  0.1341      0.648 0.056 0.000 0.000  0 0.944
#> SRR1818651     1  0.0609      0.982 0.980 0.000 0.000  0 0.020
#> SRR1818652     1  0.0609      0.982 0.980 0.000 0.000  0 0.020
#> SRR1818657     1  0.0000      0.994 1.000 0.000 0.000  0 0.000
#> SRR1818658     1  0.0000      0.994 1.000 0.000 0.000  0 0.000
#> SRR1818649     1  0.0000      0.994 1.000 0.000 0.000  0 0.000
#> SRR1818650     1  0.0000      0.994 1.000 0.000 0.000  0 0.000
#> SRR1818659     1  0.0000      0.994 1.000 0.000 0.000  0 0.000
#> SRR1818647     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1818648     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1818645     2  0.0000      1.000 0.000 1.000 0.000  0 0.000
#> SRR1818646     2  0.0000      1.000 0.000 1.000 0.000  0 0.000
#> SRR1818639     1  0.0000      0.994 1.000 0.000 0.000  0 0.000
#> SRR1818640     1  0.0000      0.994 1.000 0.000 0.000  0 0.000
#> SRR1818637     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1818638     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1818635     2  0.0000      1.000 0.000 1.000 0.000  0 0.000
#> SRR1818636     2  0.0000      1.000 0.000 1.000 0.000  0 0.000
#> SRR1818643     2  0.0000      1.000 0.000 1.000 0.000  0 0.000
#> SRR1818644     2  0.0000      1.000 0.000 1.000 0.000  0 0.000
#> SRR1818641     2  0.0000      1.000 0.000 1.000 0.000  0 0.000
#> SRR1818642     2  0.0000      1.000 0.000 1.000 0.000  0 0.000
#> SRR1818633     5  0.3242      0.658 0.000 0.216 0.000  0 0.784
#> SRR1818634     5  0.3242      0.658 0.000 0.216 0.000  0 0.784
#> SRR1818665     1  0.0000      0.994 1.000 0.000 0.000  0 0.000
#> SRR1818666     1  0.0000      0.994 1.000 0.000 0.000  0 0.000
#> SRR1818667     2  0.0000      1.000 0.000 1.000 0.000  0 0.000
#> SRR1818668     2  0.0000      1.000 0.000 1.000 0.000  0 0.000
#> SRR1818669     1  0.0000      0.994 1.000 0.000 0.000  0 0.000
#> SRR1818670     1  0.0000      0.994 1.000 0.000 0.000  0 0.000
#> SRR1818663     1  0.0000      0.994 1.000 0.000 0.000  0 0.000
#> SRR1818664     1  0.0000      0.994 1.000 0.000 0.000  0 0.000
#> SRR1818629     2  0.0000      1.000 0.000 1.000 0.000  0 0.000
#> SRR1818630     2  0.0000      1.000 0.000 1.000 0.000  0 0.000
#> SRR1818627     1  0.0609      0.982 0.980 0.000 0.000  0 0.020
#> SRR1818628     1  0.0609      0.982 0.980 0.000 0.000  0 0.020
#> SRR1818621     3  0.4294      0.523 0.000 0.000 0.532  0 0.468
#> SRR1818622     3  0.4294      0.523 0.000 0.000 0.532  0 0.468
#> SRR1818625     1  0.0000      0.994 1.000 0.000 0.000  0 0.000
#> SRR1818626     1  0.0000      0.994 1.000 0.000 0.000  0 0.000
#> SRR1818623     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1818624     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1818619     5  0.4273      0.457 0.000 0.448 0.000  0 0.552
#> SRR1818620     5  0.4273      0.457 0.000 0.448 0.000  0 0.552
#> SRR1818617     5  0.4294      0.414 0.000 0.468 0.000  0 0.532
#> SRR1818618     5  0.4294      0.414 0.000 0.468 0.000  0 0.532
#> SRR1818615     2  0.0000      1.000 0.000 1.000 0.000  0 0.000
#> SRR1818616     2  0.0000      1.000 0.000 1.000 0.000  0 0.000
#> SRR1818609     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1818610     4  0.0000      1.000 0.000 0.000 0.000  1 0.000
#> SRR1818607     2  0.0000      1.000 0.000 1.000 0.000  0 0.000
#> SRR1818608     2  0.0000      1.000 0.000 1.000 0.000  0 0.000
#> SRR1818613     1  0.0609      0.982 0.980 0.000 0.000  0 0.020
#> SRR1818614     1  0.0609      0.982 0.980 0.000 0.000  0 0.020
#> SRR1818611     1  0.0000      0.994 1.000 0.000 0.000  0 0.000
#> SRR1818612     1  0.0000      0.994 1.000 0.000 0.000  0 0.000
#> SRR1818605     5  0.1341      0.648 0.056 0.000 0.000  0 0.944
#> SRR1818606     5  0.1341      0.648 0.056 0.000 0.000  0 0.944

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3 p4    p5    p6
#> SRR1818631     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1818632     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1818679     6  0.1444      0.685 0.000 0.072 0.000  0 0.000 0.928
#> SRR1818680     6  0.1444      0.685 0.000 0.072 0.000  0 0.000 0.928
#> SRR1818677     2  0.0000      0.869 0.000 1.000 0.000  0 0.000 0.000
#> SRR1818678     2  0.0000      0.869 0.000 1.000 0.000  0 0.000 0.000
#> SRR1818675     6  0.0713      0.646 0.000 0.000 0.028  0 0.000 0.972
#> SRR1818676     6  0.0713      0.646 0.000 0.000 0.028  0 0.000 0.972
#> SRR1818673     2  0.0000      0.869 0.000 1.000 0.000  0 0.000 0.000
#> SRR1818674     2  0.0000      0.869 0.000 1.000 0.000  0 0.000 0.000
#> SRR1818671     2  0.3023      0.842 0.000 0.768 0.000  0 0.232 0.000
#> SRR1818672     2  0.3023      0.842 0.000 0.768 0.000  0 0.232 0.000
#> SRR1818661     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1818662     3  0.0000      1.000 0.000 0.000 1.000  0 0.000 0.000
#> SRR1818655     1  0.0000      0.994 1.000 0.000 0.000  0 0.000 0.000
#> SRR1818656     1  0.0000      0.994 1.000 0.000 0.000  0 0.000 0.000
#> SRR1818653     6  0.1204      0.658 0.056 0.000 0.000  0 0.000 0.944
#> SRR1818654     6  0.1204      0.658 0.056 0.000 0.000  0 0.000 0.944
#> SRR1818651     1  0.0547      0.982 0.980 0.000 0.000  0 0.000 0.020
#> SRR1818652     1  0.0547      0.982 0.980 0.000 0.000  0 0.000 0.020
#> SRR1818657     1  0.0000      0.994 1.000 0.000 0.000  0 0.000 0.000
#> SRR1818658     1  0.0000      0.994 1.000 0.000 0.000  0 0.000 0.000
#> SRR1818649     1  0.0000      0.994 1.000 0.000 0.000  0 0.000 0.000
#> SRR1818650     1  0.0000      0.994 1.000 0.000 0.000  0 0.000 0.000
#> SRR1818659     1  0.0000      0.994 1.000 0.000 0.000  0 0.000 0.000
#> SRR1818647     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1818648     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1818645     2  0.3023      0.842 0.000 0.768 0.000  0 0.232 0.000
#> SRR1818646     2  0.3023      0.842 0.000 0.768 0.000  0 0.232 0.000
#> SRR1818639     1  0.0000      0.994 1.000 0.000 0.000  0 0.000 0.000
#> SRR1818640     1  0.0000      0.994 1.000 0.000 0.000  0 0.000 0.000
#> SRR1818637     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1818638     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1818635     2  0.0000      0.869 0.000 1.000 0.000  0 0.000 0.000
#> SRR1818636     2  0.0000      0.869 0.000 1.000 0.000  0 0.000 0.000
#> SRR1818643     2  0.0000      0.869 0.000 1.000 0.000  0 0.000 0.000
#> SRR1818644     2  0.0000      0.869 0.000 1.000 0.000  0 0.000 0.000
#> SRR1818641     2  0.0000      0.869 0.000 1.000 0.000  0 0.000 0.000
#> SRR1818642     2  0.0000      0.869 0.000 1.000 0.000  0 0.000 0.000
#> SRR1818633     6  0.3023      0.663 0.000 0.212 0.000  0 0.004 0.784
#> SRR1818634     6  0.3023      0.663 0.000 0.212 0.000  0 0.004 0.784
#> SRR1818665     1  0.0000      0.994 1.000 0.000 0.000  0 0.000 0.000
#> SRR1818666     1  0.0000      0.994 1.000 0.000 0.000  0 0.000 0.000
#> SRR1818667     2  0.3023      0.842 0.000 0.768 0.000  0 0.232 0.000
#> SRR1818668     2  0.3023      0.842 0.000 0.768 0.000  0 0.232 0.000
#> SRR1818669     1  0.0000      0.994 1.000 0.000 0.000  0 0.000 0.000
#> SRR1818670     1  0.0000      0.994 1.000 0.000 0.000  0 0.000 0.000
#> SRR1818663     1  0.0000      0.994 1.000 0.000 0.000  0 0.000 0.000
#> SRR1818664     1  0.0000      0.994 1.000 0.000 0.000  0 0.000 0.000
#> SRR1818629     2  0.0000      0.869 0.000 1.000 0.000  0 0.000 0.000
#> SRR1818630     2  0.0000      0.869 0.000 1.000 0.000  0 0.000 0.000
#> SRR1818627     1  0.0547      0.982 0.980 0.000 0.000  0 0.000 0.020
#> SRR1818628     1  0.0547      0.982 0.980 0.000 0.000  0 0.000 0.020
#> SRR1818621     5  0.3050      1.000 0.000 0.000 0.000  0 0.764 0.236
#> SRR1818622     5  0.3050      1.000 0.000 0.000 0.000  0 0.764 0.236
#> SRR1818625     1  0.0000      0.994 1.000 0.000 0.000  0 0.000 0.000
#> SRR1818626     1  0.0000      0.994 1.000 0.000 0.000  0 0.000 0.000
#> SRR1818623     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1818624     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1818619     6  0.3966      0.531 0.000 0.444 0.000  0 0.004 0.552
#> SRR1818620     6  0.3966      0.531 0.000 0.444 0.000  0 0.004 0.552
#> SRR1818617     6  0.3986      0.512 0.000 0.464 0.000  0 0.004 0.532
#> SRR1818618     6  0.3986      0.512 0.000 0.464 0.000  0 0.004 0.532
#> SRR1818615     2  0.3023      0.842 0.000 0.768 0.000  0 0.232 0.000
#> SRR1818616     2  0.3023      0.842 0.000 0.768 0.000  0 0.232 0.000
#> SRR1818609     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1818610     4  0.0000      1.000 0.000 0.000 0.000  1 0.000 0.000
#> SRR1818607     2  0.3023      0.842 0.000 0.768 0.000  0 0.232 0.000
#> SRR1818608     2  0.3023      0.842 0.000 0.768 0.000  0 0.232 0.000
#> SRR1818613     1  0.0547      0.982 0.980 0.000 0.000  0 0.000 0.020
#> SRR1818614     1  0.0547      0.982 0.980 0.000 0.000  0 0.000 0.020
#> SRR1818611     1  0.0000      0.994 1.000 0.000 0.000  0 0.000 0.000
#> SRR1818612     1  0.0000      0.994 1.000 0.000 0.000  0 0.000 0.000
#> SRR1818605     6  0.1204      0.658 0.056 0.000 0.000  0 0.000 0.944
#> SRR1818606     6  0.1204      0.658 0.056 0.000 0.000  0 0.000 0.944

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15216 rows and 75 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.550           0.890       0.939         0.4574 0.559   0.559
#> 3 3 0.607           0.723       0.839         0.3590 0.615   0.398
#> 4 4 0.693           0.695       0.838         0.1488 0.944   0.835
#> 5 5 0.741           0.566       0.728         0.0715 0.944   0.832
#> 6 6 0.710           0.593       0.751         0.0480 0.888   0.663

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1818631     2  0.6623      0.829 0.172 0.828
#> SRR1818632     2  0.6623      0.829 0.172 0.828
#> SRR1818679     1  0.7139      0.744 0.804 0.196
#> SRR1818680     1  0.7139      0.744 0.804 0.196
#> SRR1818677     1  0.6623      0.832 0.828 0.172
#> SRR1818678     1  0.6623      0.832 0.828 0.172
#> SRR1818675     2  0.6623      0.829 0.172 0.828
#> SRR1818676     2  0.6623      0.829 0.172 0.828
#> SRR1818673     1  0.6623      0.832 0.828 0.172
#> SRR1818674     1  0.6623      0.832 0.828 0.172
#> SRR1818671     2  0.1633      0.934 0.024 0.976
#> SRR1818672     2  0.1633      0.934 0.024 0.976
#> SRR1818661     2  0.6623      0.829 0.172 0.828
#> SRR1818662     2  0.6623      0.829 0.172 0.828
#> SRR1818655     1  0.0000      0.923 1.000 0.000
#> SRR1818656     1  0.0000      0.923 1.000 0.000
#> SRR1818653     1  0.0376      0.921 0.996 0.004
#> SRR1818654     1  0.0376      0.921 0.996 0.004
#> SRR1818651     1  0.0000      0.923 1.000 0.000
#> SRR1818652     1  0.0000      0.923 1.000 0.000
#> SRR1818657     1  0.0000      0.923 1.000 0.000
#> SRR1818658     1  0.0000      0.923 1.000 0.000
#> SRR1818649     1  0.0000      0.923 1.000 0.000
#> SRR1818650     1  0.0000      0.923 1.000 0.000
#> SRR1818659     1  0.0000      0.923 1.000 0.000
#> SRR1818647     2  0.0000      0.941 0.000 1.000
#> SRR1818648     2  0.0000      0.941 0.000 1.000
#> SRR1818645     2  0.1633      0.934 0.024 0.976
#> SRR1818646     2  0.1633      0.934 0.024 0.976
#> SRR1818639     1  0.0000      0.923 1.000 0.000
#> SRR1818640     1  0.0000      0.923 1.000 0.000
#> SRR1818637     2  0.0000      0.941 0.000 1.000
#> SRR1818638     2  0.0000      0.941 0.000 1.000
#> SRR1818635     1  0.6048      0.850 0.852 0.148
#> SRR1818636     1  0.6048      0.850 0.852 0.148
#> SRR1818643     1  0.6343      0.842 0.840 0.160
#> SRR1818644     1  0.6343      0.842 0.840 0.160
#> SRR1818641     1  0.6048      0.850 0.852 0.148
#> SRR1818642     1  0.6048      0.850 0.852 0.148
#> SRR1818633     1  0.6973      0.756 0.812 0.188
#> SRR1818634     1  0.6973      0.756 0.812 0.188
#> SRR1818665     1  0.0000      0.923 1.000 0.000
#> SRR1818666     1  0.0000      0.923 1.000 0.000
#> SRR1818667     2  0.0000      0.941 0.000 1.000
#> SRR1818668     2  0.0000      0.941 0.000 1.000
#> SRR1818669     1  0.0000      0.923 1.000 0.000
#> SRR1818670     1  0.0000      0.923 1.000 0.000
#> SRR1818663     1  0.0000      0.923 1.000 0.000
#> SRR1818664     1  0.0000      0.923 1.000 0.000
#> SRR1818629     1  0.6623      0.832 0.828 0.172
#> SRR1818630     1  0.6623      0.832 0.828 0.172
#> SRR1818627     1  0.0000      0.923 1.000 0.000
#> SRR1818628     1  0.0000      0.923 1.000 0.000
#> SRR1818621     1  0.6531      0.785 0.832 0.168
#> SRR1818622     1  0.6531      0.785 0.832 0.168
#> SRR1818625     1  0.0000      0.923 1.000 0.000
#> SRR1818626     1  0.0000      0.923 1.000 0.000
#> SRR1818623     2  0.0000      0.941 0.000 1.000
#> SRR1818624     2  0.0000      0.941 0.000 1.000
#> SRR1818619     1  0.0000      0.923 1.000 0.000
#> SRR1818620     1  0.0000      0.923 1.000 0.000
#> SRR1818617     1  0.6438      0.838 0.836 0.164
#> SRR1818618     1  0.6438      0.838 0.836 0.164
#> SRR1818615     2  0.0000      0.941 0.000 1.000
#> SRR1818616     2  0.0000      0.941 0.000 1.000
#> SRR1818609     2  0.0000      0.941 0.000 1.000
#> SRR1818610     2  0.0000      0.941 0.000 1.000
#> SRR1818607     2  0.1633      0.934 0.024 0.976
#> SRR1818608     2  0.1633      0.934 0.024 0.976
#> SRR1818613     1  0.0000      0.923 1.000 0.000
#> SRR1818614     1  0.0000      0.923 1.000 0.000
#> SRR1818611     1  0.0000      0.923 1.000 0.000
#> SRR1818612     1  0.0000      0.923 1.000 0.000
#> SRR1818605     1  0.0376      0.921 0.996 0.004
#> SRR1818606     1  0.0376      0.921 0.996 0.004

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1818631     3  0.0237      0.657 0.000 0.004 0.996
#> SRR1818632     3  0.0237      0.657 0.000 0.004 0.996
#> SRR1818679     3  0.9550      0.251 0.352 0.200 0.448
#> SRR1818680     3  0.9550      0.251 0.352 0.200 0.448
#> SRR1818677     2  0.6008      0.748 0.332 0.664 0.004
#> SRR1818678     2  0.6008      0.748 0.332 0.664 0.004
#> SRR1818675     3  0.0237      0.657 0.000 0.004 0.996
#> SRR1818676     3  0.0237      0.657 0.000 0.004 0.996
#> SRR1818673     2  0.5706      0.748 0.320 0.680 0.000
#> SRR1818674     2  0.5706      0.748 0.320 0.680 0.000
#> SRR1818671     2  0.0000      0.621 0.000 1.000 0.000
#> SRR1818672     2  0.0000      0.621 0.000 1.000 0.000
#> SRR1818661     3  0.0237      0.657 0.000 0.004 0.996
#> SRR1818662     3  0.0237      0.657 0.000 0.004 0.996
#> SRR1818655     1  0.0000      0.952 1.000 0.000 0.000
#> SRR1818656     1  0.0000      0.952 1.000 0.000 0.000
#> SRR1818653     1  0.5016      0.640 0.760 0.000 0.240
#> SRR1818654     1  0.5016      0.640 0.760 0.000 0.240
#> SRR1818651     1  0.0237      0.951 0.996 0.000 0.004
#> SRR1818652     1  0.0237      0.951 0.996 0.000 0.004
#> SRR1818657     1  0.0000      0.952 1.000 0.000 0.000
#> SRR1818658     1  0.0000      0.952 1.000 0.000 0.000
#> SRR1818649     1  0.0000      0.952 1.000 0.000 0.000
#> SRR1818650     1  0.0000      0.952 1.000 0.000 0.000
#> SRR1818659     1  0.0000      0.952 1.000 0.000 0.000
#> SRR1818647     3  0.5216      0.612 0.000 0.260 0.740
#> SRR1818648     3  0.5216      0.612 0.000 0.260 0.740
#> SRR1818645     2  0.0000      0.621 0.000 1.000 0.000
#> SRR1818646     2  0.0000      0.621 0.000 1.000 0.000
#> SRR1818639     1  0.0000      0.952 1.000 0.000 0.000
#> SRR1818640     1  0.0000      0.952 1.000 0.000 0.000
#> SRR1818637     3  0.6260      0.484 0.000 0.448 0.552
#> SRR1818638     3  0.6260      0.484 0.000 0.448 0.552
#> SRR1818635     2  0.6079      0.693 0.388 0.612 0.000
#> SRR1818636     2  0.6079      0.693 0.388 0.612 0.000
#> SRR1818643     2  0.5968      0.724 0.364 0.636 0.000
#> SRR1818644     2  0.5968      0.724 0.364 0.636 0.000
#> SRR1818641     2  0.6079      0.693 0.388 0.612 0.000
#> SRR1818642     2  0.6079      0.693 0.388 0.612 0.000
#> SRR1818633     3  0.9579      0.215 0.368 0.200 0.432
#> SRR1818634     3  0.9579      0.215 0.368 0.200 0.432
#> SRR1818665     1  0.0000      0.952 1.000 0.000 0.000
#> SRR1818666     1  0.0000      0.952 1.000 0.000 0.000
#> SRR1818667     2  0.0592      0.611 0.000 0.988 0.012
#> SRR1818668     2  0.0592      0.611 0.000 0.988 0.012
#> SRR1818669     1  0.0000      0.952 1.000 0.000 0.000
#> SRR1818670     1  0.0000      0.952 1.000 0.000 0.000
#> SRR1818663     1  0.0000      0.952 1.000 0.000 0.000
#> SRR1818664     1  0.0000      0.952 1.000 0.000 0.000
#> SRR1818629     2  0.5835      0.746 0.340 0.660 0.000
#> SRR1818630     2  0.5835      0.746 0.340 0.660 0.000
#> SRR1818627     1  0.0237      0.951 0.996 0.000 0.004
#> SRR1818628     1  0.0237      0.951 0.996 0.000 0.004
#> SRR1818621     3  0.6062      0.284 0.384 0.000 0.616
#> SRR1818622     3  0.6062      0.284 0.384 0.000 0.616
#> SRR1818625     1  0.0000      0.952 1.000 0.000 0.000
#> SRR1818626     1  0.0000      0.952 1.000 0.000 0.000
#> SRR1818623     3  0.5650      0.594 0.000 0.312 0.688
#> SRR1818624     3  0.5650      0.594 0.000 0.312 0.688
#> SRR1818619     1  0.1399      0.921 0.968 0.028 0.004
#> SRR1818620     1  0.1399      0.921 0.968 0.028 0.004
#> SRR1818617     2  0.5982      0.748 0.328 0.668 0.004
#> SRR1818618     2  0.5982      0.748 0.328 0.668 0.004
#> SRR1818615     2  0.0747      0.607 0.000 0.984 0.016
#> SRR1818616     2  0.0747      0.607 0.000 0.984 0.016
#> SRR1818609     3  0.6307      0.433 0.000 0.488 0.512
#> SRR1818610     3  0.6307      0.433 0.000 0.488 0.512
#> SRR1818607     2  0.0000      0.621 0.000 1.000 0.000
#> SRR1818608     2  0.0000      0.621 0.000 1.000 0.000
#> SRR1818613     1  0.0237      0.951 0.996 0.000 0.004
#> SRR1818614     1  0.0237      0.951 0.996 0.000 0.004
#> SRR1818611     1  0.0000      0.952 1.000 0.000 0.000
#> SRR1818612     1  0.0000      0.952 1.000 0.000 0.000
#> SRR1818605     1  0.5098      0.626 0.752 0.000 0.248
#> SRR1818606     1  0.5098      0.626 0.752 0.000 0.248

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1818631     3  0.4500      0.591 0.000 0.032 0.776 0.192
#> SRR1818632     3  0.4500      0.591 0.000 0.032 0.776 0.192
#> SRR1818679     3  0.6538      0.604 0.176 0.168 0.652 0.004
#> SRR1818680     3  0.6538      0.604 0.176 0.168 0.652 0.004
#> SRR1818677     2  0.1211      0.827 0.040 0.960 0.000 0.000
#> SRR1818678     2  0.1211      0.827 0.040 0.960 0.000 0.000
#> SRR1818675     3  0.3300      0.627 0.000 0.008 0.848 0.144
#> SRR1818676     3  0.3300      0.627 0.000 0.008 0.848 0.144
#> SRR1818673     2  0.1211      0.827 0.040 0.960 0.000 0.000
#> SRR1818674     2  0.1211      0.827 0.040 0.960 0.000 0.000
#> SRR1818671     2  0.5085      0.507 0.000 0.616 0.008 0.376
#> SRR1818672     2  0.5085      0.507 0.000 0.616 0.008 0.376
#> SRR1818661     3  0.4900      0.545 0.000 0.032 0.732 0.236
#> SRR1818662     3  0.4900      0.545 0.000 0.032 0.732 0.236
#> SRR1818655     1  0.0927      0.855 0.976 0.016 0.000 0.008
#> SRR1818656     1  0.0927      0.855 0.976 0.016 0.000 0.008
#> SRR1818653     1  0.5161      0.201 0.520 0.004 0.476 0.000
#> SRR1818654     1  0.5161      0.201 0.520 0.004 0.476 0.000
#> SRR1818651     1  0.2999      0.792 0.864 0.004 0.132 0.000
#> SRR1818652     1  0.2999      0.792 0.864 0.004 0.132 0.000
#> SRR1818657     1  0.0188      0.857 0.996 0.004 0.000 0.000
#> SRR1818658     1  0.0188      0.857 0.996 0.004 0.000 0.000
#> SRR1818649     1  0.0592      0.857 0.984 0.016 0.000 0.000
#> SRR1818650     1  0.0592      0.857 0.984 0.016 0.000 0.000
#> SRR1818659     1  0.0927      0.855 0.976 0.016 0.000 0.008
#> SRR1818647     4  0.4516      0.561 0.000 0.012 0.252 0.736
#> SRR1818648     4  0.4516      0.561 0.000 0.012 0.252 0.736
#> SRR1818645     2  0.4511      0.662 0.000 0.724 0.008 0.268
#> SRR1818646     2  0.4511      0.662 0.000 0.724 0.008 0.268
#> SRR1818639     1  0.0927      0.855 0.976 0.016 0.000 0.008
#> SRR1818640     1  0.0927      0.855 0.976 0.016 0.000 0.008
#> SRR1818637     4  0.2376      0.751 0.000 0.068 0.016 0.916
#> SRR1818638     4  0.2376      0.751 0.000 0.068 0.016 0.916
#> SRR1818635     2  0.1867      0.814 0.072 0.928 0.000 0.000
#> SRR1818636     2  0.1867      0.814 0.072 0.928 0.000 0.000
#> SRR1818643     2  0.1557      0.824 0.056 0.944 0.000 0.000
#> SRR1818644     2  0.1557      0.824 0.056 0.944 0.000 0.000
#> SRR1818641     2  0.1867      0.814 0.072 0.928 0.000 0.000
#> SRR1818642     2  0.1867      0.814 0.072 0.928 0.000 0.000
#> SRR1818633     3  0.6657      0.573 0.208 0.152 0.636 0.004
#> SRR1818634     3  0.6657      0.573 0.208 0.152 0.636 0.004
#> SRR1818665     1  0.0672      0.857 0.984 0.008 0.000 0.008
#> SRR1818666     1  0.0672      0.857 0.984 0.008 0.000 0.008
#> SRR1818667     2  0.5602      0.414 0.000 0.568 0.024 0.408
#> SRR1818668     2  0.5602      0.414 0.000 0.568 0.024 0.408
#> SRR1818669     1  0.0336      0.858 0.992 0.008 0.000 0.000
#> SRR1818670     1  0.0336      0.858 0.992 0.008 0.000 0.000
#> SRR1818663     1  0.0000      0.856 1.000 0.000 0.000 0.000
#> SRR1818664     1  0.0000      0.856 1.000 0.000 0.000 0.000
#> SRR1818629     2  0.1389      0.827 0.048 0.952 0.000 0.000
#> SRR1818630     2  0.1389      0.827 0.048 0.952 0.000 0.000
#> SRR1818627     1  0.3052      0.789 0.860 0.004 0.136 0.000
#> SRR1818628     1  0.3052      0.789 0.860 0.004 0.136 0.000
#> SRR1818621     3  0.3841      0.652 0.144 0.020 0.832 0.004
#> SRR1818622     3  0.3841      0.652 0.144 0.020 0.832 0.004
#> SRR1818625     1  0.0592      0.857 0.984 0.016 0.000 0.000
#> SRR1818626     1  0.0592      0.857 0.984 0.016 0.000 0.000
#> SRR1818623     4  0.3444      0.649 0.000 0.000 0.184 0.816
#> SRR1818624     4  0.3444      0.649 0.000 0.000 0.184 0.816
#> SRR1818619     1  0.6423      0.551 0.648 0.196 0.156 0.000
#> SRR1818620     1  0.6423      0.551 0.648 0.196 0.156 0.000
#> SRR1818617     2  0.1798      0.823 0.040 0.944 0.016 0.000
#> SRR1818618     2  0.1798      0.823 0.040 0.944 0.016 0.000
#> SRR1818615     4  0.4957      0.352 0.000 0.320 0.012 0.668
#> SRR1818616     4  0.4957      0.352 0.000 0.320 0.012 0.668
#> SRR1818609     4  0.1792      0.748 0.000 0.068 0.000 0.932
#> SRR1818610     4  0.1792      0.748 0.000 0.068 0.000 0.932
#> SRR1818607     2  0.4511      0.662 0.000 0.724 0.008 0.268
#> SRR1818608     2  0.4511      0.662 0.000 0.724 0.008 0.268
#> SRR1818613     1  0.3172      0.772 0.840 0.000 0.160 0.000
#> SRR1818614     1  0.3172      0.772 0.840 0.000 0.160 0.000
#> SRR1818611     1  0.0592      0.857 0.984 0.016 0.000 0.000
#> SRR1818612     1  0.0592      0.857 0.984 0.016 0.000 0.000
#> SRR1818605     1  0.5165      0.172 0.512 0.004 0.484 0.000
#> SRR1818606     1  0.5165      0.172 0.512 0.004 0.484 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4 p5
#> SRR1818631     3  0.1410     0.7500 0.000 0.000 0.940 0.060 NA
#> SRR1818632     3  0.1410     0.7500 0.000 0.000 0.940 0.060 NA
#> SRR1818679     1  0.7968    -0.2259 0.384 0.088 0.240 0.000 NA
#> SRR1818680     1  0.7968    -0.2259 0.384 0.088 0.240 0.000 NA
#> SRR1818677     2  0.0451     0.7863 0.004 0.988 0.000 0.000 NA
#> SRR1818678     2  0.0451     0.7863 0.004 0.988 0.000 0.000 NA
#> SRR1818675     3  0.3584     0.7464 0.012 0.000 0.836 0.040 NA
#> SRR1818676     3  0.3584     0.7464 0.012 0.000 0.836 0.040 NA
#> SRR1818673     2  0.0451     0.7870 0.004 0.988 0.000 0.000 NA
#> SRR1818674     2  0.0451     0.7870 0.004 0.988 0.000 0.000 NA
#> SRR1818671     2  0.6349     0.3937 0.000 0.472 0.000 0.360 NA
#> SRR1818672     2  0.6349     0.3937 0.000 0.472 0.000 0.360 NA
#> SRR1818661     3  0.2233     0.7133 0.000 0.000 0.892 0.104 NA
#> SRR1818662     3  0.2233     0.7133 0.000 0.000 0.892 0.104 NA
#> SRR1818655     1  0.4392     0.6778 0.612 0.008 0.000 0.000 NA
#> SRR1818656     1  0.4392     0.6778 0.612 0.008 0.000 0.000 NA
#> SRR1818653     1  0.5923     0.1124 0.576 0.000 0.144 0.000 NA
#> SRR1818654     1  0.5923     0.1124 0.576 0.000 0.144 0.000 NA
#> SRR1818651     1  0.0510     0.5801 0.984 0.000 0.000 0.000 NA
#> SRR1818652     1  0.0510     0.5801 0.984 0.000 0.000 0.000 NA
#> SRR1818657     1  0.4047     0.6890 0.676 0.004 0.000 0.000 NA
#> SRR1818658     1  0.4047     0.6890 0.676 0.004 0.000 0.000 NA
#> SRR1818649     1  0.4181     0.6883 0.676 0.004 0.004 0.000 NA
#> SRR1818650     1  0.4181     0.6883 0.676 0.004 0.004 0.000 NA
#> SRR1818659     1  0.4276     0.6786 0.616 0.004 0.000 0.000 NA
#> SRR1818647     4  0.4581     0.4407 0.000 0.004 0.360 0.624 NA
#> SRR1818648     4  0.4581     0.4407 0.000 0.004 0.360 0.624 NA
#> SRR1818645     2  0.6115     0.5152 0.000 0.552 0.000 0.280 NA
#> SRR1818646     2  0.6115     0.5152 0.000 0.552 0.000 0.280 NA
#> SRR1818639     1  0.4392     0.6778 0.612 0.008 0.000 0.000 NA
#> SRR1818640     1  0.4392     0.6778 0.612 0.008 0.000 0.000 NA
#> SRR1818637     4  0.0693     0.7242 0.000 0.000 0.012 0.980 NA
#> SRR1818638     4  0.0693     0.7242 0.000 0.000 0.012 0.980 NA
#> SRR1818635     2  0.0613     0.7868 0.004 0.984 0.004 0.000 NA
#> SRR1818636     2  0.0613     0.7868 0.004 0.984 0.004 0.000 NA
#> SRR1818643     2  0.0451     0.7878 0.004 0.988 0.000 0.000 NA
#> SRR1818644     2  0.0451     0.7878 0.004 0.988 0.000 0.000 NA
#> SRR1818641     2  0.0486     0.7869 0.004 0.988 0.004 0.000 NA
#> SRR1818642     2  0.0486     0.7869 0.004 0.988 0.004 0.000 NA
#> SRR1818633     1  0.7899    -0.2141 0.388 0.080 0.240 0.000 NA
#> SRR1818634     1  0.7899    -0.2141 0.388 0.080 0.240 0.000 NA
#> SRR1818665     1  0.4264     0.6804 0.620 0.004 0.000 0.000 NA
#> SRR1818666     1  0.4264     0.6804 0.620 0.004 0.000 0.000 NA
#> SRR1818667     2  0.6633     0.2995 0.000 0.440 0.012 0.396 NA
#> SRR1818668     2  0.6633     0.2995 0.000 0.440 0.012 0.396 NA
#> SRR1818669     1  0.4151     0.6874 0.652 0.004 0.000 0.000 NA
#> SRR1818670     1  0.4151     0.6874 0.652 0.004 0.000 0.000 NA
#> SRR1818663     1  0.4066     0.6891 0.672 0.004 0.000 0.000 NA
#> SRR1818664     1  0.4066     0.6891 0.672 0.004 0.000 0.000 NA
#> SRR1818629     2  0.0324     0.7878 0.004 0.992 0.000 0.000 NA
#> SRR1818630     2  0.0324     0.7878 0.004 0.992 0.000 0.000 NA
#> SRR1818627     1  0.0963     0.5695 0.964 0.000 0.000 0.000 NA
#> SRR1818628     1  0.0963     0.5695 0.964 0.000 0.000 0.000 NA
#> SRR1818621     3  0.6306     0.5435 0.172 0.000 0.500 0.000 NA
#> SRR1818622     3  0.6306     0.5435 0.172 0.000 0.500 0.000 NA
#> SRR1818625     1  0.4084     0.6890 0.668 0.004 0.000 0.000 NA
#> SRR1818626     1  0.4084     0.6890 0.668 0.004 0.000 0.000 NA
#> SRR1818623     4  0.3727     0.6124 0.000 0.000 0.216 0.768 NA
#> SRR1818624     4  0.3727     0.6124 0.000 0.000 0.216 0.768 NA
#> SRR1818619     1  0.5355     0.3473 0.688 0.184 0.008 0.000 NA
#> SRR1818620     1  0.5355     0.3473 0.688 0.184 0.008 0.000 NA
#> SRR1818617     2  0.1662     0.7626 0.004 0.936 0.004 0.000 NA
#> SRR1818618     2  0.1662     0.7626 0.004 0.936 0.004 0.000 NA
#> SRR1818615     4  0.5481     0.4129 0.000 0.184 0.008 0.676 NA
#> SRR1818616     4  0.5481     0.4129 0.000 0.184 0.008 0.676 NA
#> SRR1818609     4  0.0162     0.7227 0.000 0.000 0.000 0.996 NA
#> SRR1818610     4  0.0162     0.7227 0.000 0.000 0.000 0.996 NA
#> SRR1818607     2  0.5973     0.5430 0.000 0.580 0.000 0.256 NA
#> SRR1818608     2  0.5973     0.5430 0.000 0.580 0.000 0.256 NA
#> SRR1818613     1  0.1041     0.5687 0.964 0.000 0.004 0.000 NA
#> SRR1818614     1  0.1041     0.5687 0.964 0.000 0.004 0.000 NA
#> SRR1818611     1  0.4236     0.6880 0.664 0.004 0.004 0.000 NA
#> SRR1818612     1  0.4236     0.6880 0.664 0.004 0.004 0.000 NA
#> SRR1818605     1  0.5987     0.0958 0.572 0.000 0.156 0.000 NA
#> SRR1818606     1  0.5987     0.0958 0.572 0.000 0.156 0.000 NA

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5 p6
#> SRR1818631     3  0.1257     0.7487 0.000 0.000 0.952 0.028 0.020 NA
#> SRR1818632     3  0.1257     0.7487 0.000 0.000 0.952 0.028 0.020 NA
#> SRR1818679     5  0.4394     0.6268 0.016 0.036 0.144 0.000 0.768 NA
#> SRR1818680     5  0.4394     0.6268 0.016 0.036 0.144 0.000 0.768 NA
#> SRR1818677     2  0.1320     0.7648 0.000 0.948 0.000 0.000 0.036 NA
#> SRR1818678     2  0.1320     0.7648 0.000 0.948 0.000 0.000 0.036 NA
#> SRR1818675     3  0.4130     0.6994 0.000 0.000 0.768 0.024 0.152 NA
#> SRR1818676     3  0.4130     0.6994 0.000 0.000 0.768 0.024 0.152 NA
#> SRR1818673     2  0.0000     0.7779 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1818674     2  0.0000     0.7779 0.000 1.000 0.000 0.000 0.000 NA
#> SRR1818671     2  0.6383     0.1246 0.000 0.384 0.000 0.308 0.012 NA
#> SRR1818672     2  0.6383     0.1246 0.000 0.384 0.000 0.308 0.012 NA
#> SRR1818661     3  0.2201     0.7211 0.000 0.000 0.904 0.056 0.004 NA
#> SRR1818662     3  0.2201     0.7211 0.000 0.000 0.904 0.056 0.004 NA
#> SRR1818655     1  0.3121     0.7381 0.796 0.004 0.000 0.000 0.008 NA
#> SRR1818656     1  0.3121     0.7381 0.796 0.004 0.000 0.000 0.008 NA
#> SRR1818653     5  0.5523     0.6443 0.112 0.000 0.076 0.000 0.668 NA
#> SRR1818654     5  0.5523     0.6443 0.112 0.000 0.076 0.000 0.668 NA
#> SRR1818651     1  0.5025     0.3173 0.560 0.000 0.000 0.000 0.356 NA
#> SRR1818652     1  0.5025     0.3173 0.560 0.000 0.000 0.000 0.356 NA
#> SRR1818657     1  0.1053     0.7727 0.964 0.004 0.000 0.000 0.020 NA
#> SRR1818658     1  0.1053     0.7727 0.964 0.004 0.000 0.000 0.020 NA
#> SRR1818649     1  0.3072     0.7424 0.836 0.004 0.000 0.000 0.036 NA
#> SRR1818650     1  0.3072     0.7424 0.836 0.004 0.000 0.000 0.036 NA
#> SRR1818659     1  0.3121     0.7376 0.796 0.004 0.000 0.000 0.008 NA
#> SRR1818647     4  0.5048     0.2696 0.000 0.000 0.344 0.580 0.008 NA
#> SRR1818648     4  0.5048     0.2696 0.000 0.000 0.344 0.580 0.008 NA
#> SRR1818645     2  0.6051     0.3339 0.000 0.476 0.000 0.216 0.008 NA
#> SRR1818646     2  0.6051     0.3339 0.000 0.476 0.000 0.216 0.008 NA
#> SRR1818639     1  0.3023     0.7406 0.808 0.004 0.000 0.000 0.008 NA
#> SRR1818640     1  0.3023     0.7406 0.808 0.004 0.000 0.000 0.008 NA
#> SRR1818637     4  0.1026     0.6233 0.000 0.004 0.012 0.968 0.008 NA
#> SRR1818638     4  0.1026     0.6233 0.000 0.004 0.012 0.968 0.008 NA
#> SRR1818635     2  0.0146     0.7783 0.004 0.996 0.000 0.000 0.000 NA
#> SRR1818636     2  0.0146     0.7783 0.004 0.996 0.000 0.000 0.000 NA
#> SRR1818643     2  0.0291     0.7783 0.004 0.992 0.000 0.000 0.000 NA
#> SRR1818644     2  0.0291     0.7783 0.004 0.992 0.000 0.000 0.000 NA
#> SRR1818641     2  0.0146     0.7783 0.004 0.996 0.000 0.000 0.000 NA
#> SRR1818642     2  0.0146     0.7783 0.004 0.996 0.000 0.000 0.000 NA
#> SRR1818633     5  0.4345     0.6390 0.020 0.032 0.124 0.000 0.780 NA
#> SRR1818634     5  0.4345     0.6390 0.020 0.032 0.124 0.000 0.780 NA
#> SRR1818665     1  0.2362     0.7535 0.860 0.004 0.000 0.000 0.000 NA
#> SRR1818666     1  0.2362     0.7535 0.860 0.004 0.000 0.000 0.000 NA
#> SRR1818667     4  0.7147     0.0499 0.000 0.304 0.000 0.360 0.080 NA
#> SRR1818668     4  0.7147     0.0499 0.000 0.304 0.000 0.360 0.080 NA
#> SRR1818669     1  0.1477     0.7752 0.940 0.004 0.000 0.000 0.008 NA
#> SRR1818670     1  0.1477     0.7752 0.940 0.004 0.000 0.000 0.008 NA
#> SRR1818663     1  0.0806     0.7762 0.972 0.000 0.000 0.000 0.008 NA
#> SRR1818664     1  0.0806     0.7762 0.972 0.000 0.000 0.000 0.008 NA
#> SRR1818629     2  0.0291     0.7781 0.004 0.992 0.000 0.000 0.000 NA
#> SRR1818630     2  0.0291     0.7781 0.004 0.992 0.000 0.000 0.000 NA
#> SRR1818627     1  0.4972     0.2340 0.536 0.000 0.000 0.000 0.392 NA
#> SRR1818628     1  0.4972     0.2340 0.536 0.000 0.000 0.000 0.392 NA
#> SRR1818621     3  0.6133     0.2377 0.004 0.000 0.420 0.000 0.324 NA
#> SRR1818622     3  0.6133     0.2377 0.004 0.000 0.420 0.000 0.324 NA
#> SRR1818625     1  0.0748     0.7768 0.976 0.004 0.000 0.000 0.004 NA
#> SRR1818626     1  0.0748     0.7768 0.976 0.004 0.000 0.000 0.004 NA
#> SRR1818623     4  0.3655     0.5120 0.000 0.000 0.148 0.796 0.012 NA
#> SRR1818624     4  0.3655     0.5120 0.000 0.000 0.148 0.796 0.012 NA
#> SRR1818619     5  0.5381     0.5538 0.224 0.080 0.000 0.000 0.648 NA
#> SRR1818620     5  0.5381     0.5538 0.224 0.080 0.000 0.000 0.648 NA
#> SRR1818617     2  0.2831     0.6941 0.000 0.840 0.000 0.000 0.136 NA
#> SRR1818618     2  0.2831     0.6941 0.000 0.840 0.000 0.000 0.136 NA
#> SRR1818615     4  0.5722     0.4432 0.000 0.144 0.000 0.576 0.020 NA
#> SRR1818616     4  0.5722     0.4432 0.000 0.144 0.000 0.576 0.020 NA
#> SRR1818609     4  0.0291     0.6261 0.000 0.004 0.000 0.992 0.000 NA
#> SRR1818610     4  0.0291     0.6261 0.000 0.004 0.000 0.992 0.000 NA
#> SRR1818607     2  0.5934     0.3713 0.000 0.500 0.000 0.192 0.008 NA
#> SRR1818608     2  0.5934     0.3713 0.000 0.500 0.000 0.192 0.008 NA
#> SRR1818613     1  0.5249     0.2884 0.544 0.000 0.004 0.000 0.360 NA
#> SRR1818614     1  0.5249     0.2884 0.544 0.000 0.004 0.000 0.360 NA
#> SRR1818611     1  0.3558     0.7377 0.780 0.004 0.000 0.000 0.032 NA
#> SRR1818612     1  0.3558     0.7377 0.780 0.004 0.000 0.000 0.032 NA
#> SRR1818605     5  0.5957     0.6228 0.132 0.000 0.076 0.000 0.616 NA
#> SRR1818606     5  0.5957     0.6228 0.132 0.000 0.076 0.000 0.616 NA

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15216 rows and 75 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.536           0.779       0.901         0.4973 0.498   0.498
#> 3 3 0.907           0.931       0.967         0.3377 0.737   0.520
#> 4 4 0.916           0.912       0.957         0.1061 0.892   0.694
#> 5 5 0.840           0.824       0.872         0.0495 0.922   0.730
#> 6 6 0.824           0.829       0.865         0.0380 0.951   0.800

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 3

There is also optional best \(k\) = 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1818631     2   0.866      0.666 0.288 0.712
#> SRR1818632     2   0.866      0.666 0.288 0.712
#> SRR1818679     2   0.866      0.666 0.288 0.712
#> SRR1818680     2   0.866      0.666 0.288 0.712
#> SRR1818677     2   0.975      0.236 0.408 0.592
#> SRR1818678     2   0.975      0.236 0.408 0.592
#> SRR1818675     2   0.866      0.666 0.288 0.712
#> SRR1818676     2   0.866      0.666 0.288 0.712
#> SRR1818673     2   0.876      0.507 0.296 0.704
#> SRR1818674     2   0.876      0.507 0.296 0.704
#> SRR1818671     2   0.000      0.832 0.000 1.000
#> SRR1818672     2   0.000      0.832 0.000 1.000
#> SRR1818661     2   0.866      0.666 0.288 0.712
#> SRR1818662     2   0.866      0.666 0.288 0.712
#> SRR1818655     1   0.000      0.905 1.000 0.000
#> SRR1818656     1   0.000      0.905 1.000 0.000
#> SRR1818653     1   0.000      0.905 1.000 0.000
#> SRR1818654     1   0.000      0.905 1.000 0.000
#> SRR1818651     1   0.000      0.905 1.000 0.000
#> SRR1818652     1   0.000      0.905 1.000 0.000
#> SRR1818657     1   0.000      0.905 1.000 0.000
#> SRR1818658     1   0.000      0.905 1.000 0.000
#> SRR1818649     1   0.000      0.905 1.000 0.000
#> SRR1818650     1   0.000      0.905 1.000 0.000
#> SRR1818659     1   0.000      0.905 1.000 0.000
#> SRR1818647     2   0.000      0.832 0.000 1.000
#> SRR1818648     2   0.000      0.832 0.000 1.000
#> SRR1818645     2   0.000      0.832 0.000 1.000
#> SRR1818646     2   0.000      0.832 0.000 1.000
#> SRR1818639     1   0.000      0.905 1.000 0.000
#> SRR1818640     1   0.000      0.905 1.000 0.000
#> SRR1818637     2   0.000      0.832 0.000 1.000
#> SRR1818638     2   0.000      0.832 0.000 1.000
#> SRR1818635     1   0.866      0.609 0.712 0.288
#> SRR1818636     1   0.866      0.609 0.712 0.288
#> SRR1818643     1   0.866      0.609 0.712 0.288
#> SRR1818644     1   0.866      0.609 0.712 0.288
#> SRR1818641     1   0.866      0.609 0.712 0.288
#> SRR1818642     1   0.866      0.609 0.712 0.288
#> SRR1818633     2   0.866      0.666 0.288 0.712
#> SRR1818634     2   0.866      0.666 0.288 0.712
#> SRR1818665     1   0.000      0.905 1.000 0.000
#> SRR1818666     1   0.000      0.905 1.000 0.000
#> SRR1818667     2   0.000      0.832 0.000 1.000
#> SRR1818668     2   0.000      0.832 0.000 1.000
#> SRR1818669     1   0.000      0.905 1.000 0.000
#> SRR1818670     1   0.000      0.905 1.000 0.000
#> SRR1818663     1   0.000      0.905 1.000 0.000
#> SRR1818664     1   0.000      0.905 1.000 0.000
#> SRR1818629     1   0.866      0.609 0.712 0.288
#> SRR1818630     1   0.866      0.609 0.712 0.288
#> SRR1818627     1   0.000      0.905 1.000 0.000
#> SRR1818628     1   0.000      0.905 1.000 0.000
#> SRR1818621     1   0.876      0.442 0.704 0.296
#> SRR1818622     1   0.876      0.442 0.704 0.296
#> SRR1818625     1   0.000      0.905 1.000 0.000
#> SRR1818626     1   0.000      0.905 1.000 0.000
#> SRR1818623     2   0.000      0.832 0.000 1.000
#> SRR1818624     2   0.000      0.832 0.000 1.000
#> SRR1818619     1   0.000      0.905 1.000 0.000
#> SRR1818620     1   0.000      0.905 1.000 0.000
#> SRR1818617     2   0.494      0.761 0.108 0.892
#> SRR1818618     2   0.494      0.761 0.108 0.892
#> SRR1818615     2   0.000      0.832 0.000 1.000
#> SRR1818616     2   0.000      0.832 0.000 1.000
#> SRR1818609     2   0.000      0.832 0.000 1.000
#> SRR1818610     2   0.000      0.832 0.000 1.000
#> SRR1818607     2   0.000      0.832 0.000 1.000
#> SRR1818608     2   0.000      0.832 0.000 1.000
#> SRR1818613     1   0.000      0.905 1.000 0.000
#> SRR1818614     1   0.000      0.905 1.000 0.000
#> SRR1818611     1   0.000      0.905 1.000 0.000
#> SRR1818612     1   0.000      0.905 1.000 0.000
#> SRR1818605     1   0.000      0.905 1.000 0.000
#> SRR1818606     1   0.000      0.905 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1818631     3  0.0000      0.906 0.000 0.000 1.000
#> SRR1818632     3  0.0000      0.906 0.000 0.000 1.000
#> SRR1818679     3  0.0000      0.906 0.000 0.000 1.000
#> SRR1818680     3  0.0000      0.906 0.000 0.000 1.000
#> SRR1818677     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1818678     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1818675     3  0.0000      0.906 0.000 0.000 1.000
#> SRR1818676     3  0.0000      0.906 0.000 0.000 1.000
#> SRR1818673     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1818674     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1818671     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1818672     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1818661     3  0.0000      0.906 0.000 0.000 1.000
#> SRR1818662     3  0.0000      0.906 0.000 0.000 1.000
#> SRR1818655     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1818656     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1818653     1  0.3116      0.896 0.892 0.000 0.108
#> SRR1818654     1  0.3116      0.896 0.892 0.000 0.108
#> SRR1818651     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1818652     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1818657     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1818658     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1818649     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1818650     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1818659     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1818647     3  0.0000      0.906 0.000 0.000 1.000
#> SRR1818648     3  0.0000      0.906 0.000 0.000 1.000
#> SRR1818645     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1818646     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1818639     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1818640     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1818637     3  0.3116      0.848 0.000 0.108 0.892
#> SRR1818638     3  0.3116      0.848 0.000 0.108 0.892
#> SRR1818635     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1818636     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1818643     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1818644     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1818641     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1818642     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1818633     3  0.0000      0.906 0.000 0.000 1.000
#> SRR1818634     3  0.0000      0.906 0.000 0.000 1.000
#> SRR1818665     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1818666     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1818667     3  0.5882      0.557 0.000 0.348 0.652
#> SRR1818668     3  0.5882      0.557 0.000 0.348 0.652
#> SRR1818669     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1818670     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1818663     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1818664     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1818629     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1818630     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1818627     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1818628     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1818621     3  0.0237      0.904 0.004 0.000 0.996
#> SRR1818622     3  0.0237      0.904 0.004 0.000 0.996
#> SRR1818625     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1818626     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1818623     3  0.0000      0.906 0.000 0.000 1.000
#> SRR1818624     3  0.0000      0.906 0.000 0.000 1.000
#> SRR1818619     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1818620     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1818617     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1818618     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1818615     3  0.6291      0.284 0.000 0.468 0.532
#> SRR1818616     3  0.6291      0.284 0.000 0.468 0.532
#> SRR1818609     3  0.3192      0.846 0.000 0.112 0.888
#> SRR1818610     3  0.3192      0.846 0.000 0.112 0.888
#> SRR1818607     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1818608     2  0.0000      1.000 0.000 1.000 0.000
#> SRR1818613     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1818614     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1818611     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1818612     1  0.0000      0.987 1.000 0.000 0.000
#> SRR1818605     1  0.2711      0.915 0.912 0.000 0.088
#> SRR1818606     1  0.2711      0.915 0.912 0.000 0.088

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1818631     3  0.0336      0.926 0.000 0.000 0.992 0.008
#> SRR1818632     3  0.0336      0.926 0.000 0.000 0.992 0.008
#> SRR1818679     3  0.0336      0.926 0.000 0.000 0.992 0.008
#> SRR1818680     3  0.0336      0.926 0.000 0.000 0.992 0.008
#> SRR1818677     2  0.0000      0.878 0.000 1.000 0.000 0.000
#> SRR1818678     2  0.0000      0.878 0.000 1.000 0.000 0.000
#> SRR1818675     3  0.0336      0.926 0.000 0.000 0.992 0.008
#> SRR1818676     3  0.0336      0.926 0.000 0.000 0.992 0.008
#> SRR1818673     2  0.0000      0.878 0.000 1.000 0.000 0.000
#> SRR1818674     2  0.0000      0.878 0.000 1.000 0.000 0.000
#> SRR1818671     2  0.4967      0.372 0.000 0.548 0.000 0.452
#> SRR1818672     2  0.4967      0.372 0.000 0.548 0.000 0.452
#> SRR1818661     3  0.0336      0.926 0.000 0.000 0.992 0.008
#> SRR1818662     3  0.0336      0.926 0.000 0.000 0.992 0.008
#> SRR1818655     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1818656     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1818653     3  0.3726      0.774 0.212 0.000 0.788 0.000
#> SRR1818654     3  0.3726      0.774 0.212 0.000 0.788 0.000
#> SRR1818651     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1818652     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1818657     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1818658     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1818649     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1818650     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1818659     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1818647     4  0.0817      0.979 0.000 0.000 0.024 0.976
#> SRR1818648     4  0.0817      0.979 0.000 0.000 0.024 0.976
#> SRR1818645     2  0.4916      0.434 0.000 0.576 0.000 0.424
#> SRR1818646     2  0.4916      0.434 0.000 0.576 0.000 0.424
#> SRR1818639     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1818640     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1818637     4  0.0000      0.990 0.000 0.000 0.000 1.000
#> SRR1818638     4  0.0000      0.990 0.000 0.000 0.000 1.000
#> SRR1818635     2  0.0000      0.878 0.000 1.000 0.000 0.000
#> SRR1818636     2  0.0000      0.878 0.000 1.000 0.000 0.000
#> SRR1818643     2  0.0000      0.878 0.000 1.000 0.000 0.000
#> SRR1818644     2  0.0000      0.878 0.000 1.000 0.000 0.000
#> SRR1818641     2  0.0000      0.878 0.000 1.000 0.000 0.000
#> SRR1818642     2  0.0000      0.878 0.000 1.000 0.000 0.000
#> SRR1818633     3  0.0336      0.926 0.000 0.000 0.992 0.008
#> SRR1818634     3  0.0336      0.926 0.000 0.000 0.992 0.008
#> SRR1818665     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1818666     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1818667     4  0.0000      0.990 0.000 0.000 0.000 1.000
#> SRR1818668     4  0.0000      0.990 0.000 0.000 0.000 1.000
#> SRR1818669     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1818670     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1818663     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1818664     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1818629     2  0.0000      0.878 0.000 1.000 0.000 0.000
#> SRR1818630     2  0.0000      0.878 0.000 1.000 0.000 0.000
#> SRR1818627     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1818628     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1818621     3  0.0000      0.922 0.000 0.000 1.000 0.000
#> SRR1818622     3  0.0000      0.922 0.000 0.000 1.000 0.000
#> SRR1818625     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1818626     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1818623     4  0.0817      0.979 0.000 0.000 0.024 0.976
#> SRR1818624     4  0.0817      0.979 0.000 0.000 0.024 0.976
#> SRR1818619     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1818620     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1818617     2  0.0188      0.876 0.000 0.996 0.000 0.004
#> SRR1818618     2  0.0188      0.876 0.000 0.996 0.000 0.004
#> SRR1818615     4  0.0000      0.990 0.000 0.000 0.000 1.000
#> SRR1818616     4  0.0000      0.990 0.000 0.000 0.000 1.000
#> SRR1818609     4  0.0000      0.990 0.000 0.000 0.000 1.000
#> SRR1818610     4  0.0000      0.990 0.000 0.000 0.000 1.000
#> SRR1818607     2  0.3764      0.727 0.000 0.784 0.000 0.216
#> SRR1818608     2  0.3764      0.727 0.000 0.784 0.000 0.216
#> SRR1818613     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1818614     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1818611     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1818612     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> SRR1818605     3  0.3726      0.774 0.212 0.000 0.788 0.000
#> SRR1818606     3  0.3726      0.774 0.212 0.000 0.788 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1818631     3  0.0000      0.987 0.000 0.000 1.000 0.000 0.000
#> SRR1818632     3  0.0000      0.987 0.000 0.000 1.000 0.000 0.000
#> SRR1818679     3  0.0162      0.985 0.000 0.000 0.996 0.000 0.004
#> SRR1818680     3  0.0162      0.985 0.000 0.000 0.996 0.000 0.004
#> SRR1818677     2  0.3274      0.781 0.000 0.780 0.000 0.000 0.220
#> SRR1818678     2  0.3274      0.781 0.000 0.780 0.000 0.000 0.220
#> SRR1818675     3  0.0000      0.987 0.000 0.000 1.000 0.000 0.000
#> SRR1818676     3  0.0000      0.987 0.000 0.000 1.000 0.000 0.000
#> SRR1818673     2  0.0000      0.918 0.000 1.000 0.000 0.000 0.000
#> SRR1818674     2  0.0000      0.918 0.000 1.000 0.000 0.000 0.000
#> SRR1818671     4  0.6369      0.409 0.000 0.240 0.000 0.520 0.240
#> SRR1818672     4  0.6369      0.409 0.000 0.240 0.000 0.520 0.240
#> SRR1818661     3  0.0000      0.987 0.000 0.000 1.000 0.000 0.000
#> SRR1818662     3  0.0000      0.987 0.000 0.000 1.000 0.000 0.000
#> SRR1818655     1  0.0290      0.963 0.992 0.000 0.000 0.000 0.008
#> SRR1818656     1  0.0290      0.963 0.992 0.000 0.000 0.000 0.008
#> SRR1818653     5  0.4733      0.965 0.028 0.000 0.348 0.000 0.624
#> SRR1818654     5  0.4733      0.965 0.028 0.000 0.348 0.000 0.624
#> SRR1818651     1  0.2280      0.874 0.880 0.000 0.000 0.000 0.120
#> SRR1818652     1  0.2280      0.874 0.880 0.000 0.000 0.000 0.120
#> SRR1818657     1  0.0000      0.963 1.000 0.000 0.000 0.000 0.000
#> SRR1818658     1  0.0000      0.963 1.000 0.000 0.000 0.000 0.000
#> SRR1818649     1  0.0290      0.963 0.992 0.000 0.000 0.000 0.008
#> SRR1818650     1  0.0290      0.963 0.992 0.000 0.000 0.000 0.008
#> SRR1818659     1  0.0290      0.963 0.992 0.000 0.000 0.000 0.008
#> SRR1818647     4  0.4201      0.241 0.000 0.000 0.408 0.592 0.000
#> SRR1818648     4  0.4201      0.241 0.000 0.000 0.408 0.592 0.000
#> SRR1818645     4  0.6441      0.388 0.000 0.256 0.000 0.504 0.240
#> SRR1818646     4  0.6441      0.388 0.000 0.256 0.000 0.504 0.240
#> SRR1818639     1  0.0290      0.963 0.992 0.000 0.000 0.000 0.008
#> SRR1818640     1  0.0290      0.963 0.992 0.000 0.000 0.000 0.008
#> SRR1818637     4  0.0000      0.682 0.000 0.000 0.000 1.000 0.000
#> SRR1818638     4  0.0000      0.682 0.000 0.000 0.000 1.000 0.000
#> SRR1818635     2  0.0000      0.918 0.000 1.000 0.000 0.000 0.000
#> SRR1818636     2  0.0000      0.918 0.000 1.000 0.000 0.000 0.000
#> SRR1818643     2  0.0000      0.918 0.000 1.000 0.000 0.000 0.000
#> SRR1818644     2  0.0000      0.918 0.000 1.000 0.000 0.000 0.000
#> SRR1818641     2  0.0000      0.918 0.000 1.000 0.000 0.000 0.000
#> SRR1818642     2  0.0000      0.918 0.000 1.000 0.000 0.000 0.000
#> SRR1818633     3  0.0963      0.956 0.000 0.000 0.964 0.000 0.036
#> SRR1818634     3  0.0963      0.956 0.000 0.000 0.964 0.000 0.036
#> SRR1818665     1  0.0000      0.963 1.000 0.000 0.000 0.000 0.000
#> SRR1818666     1  0.0000      0.963 1.000 0.000 0.000 0.000 0.000
#> SRR1818667     4  0.0290      0.683 0.000 0.000 0.000 0.992 0.008
#> SRR1818668     4  0.0290      0.683 0.000 0.000 0.000 0.992 0.008
#> SRR1818669     1  0.0000      0.963 1.000 0.000 0.000 0.000 0.000
#> SRR1818670     1  0.0000      0.963 1.000 0.000 0.000 0.000 0.000
#> SRR1818663     1  0.0000      0.963 1.000 0.000 0.000 0.000 0.000
#> SRR1818664     1  0.0000      0.963 1.000 0.000 0.000 0.000 0.000
#> SRR1818629     2  0.0000      0.918 0.000 1.000 0.000 0.000 0.000
#> SRR1818630     2  0.0000      0.918 0.000 1.000 0.000 0.000 0.000
#> SRR1818627     1  0.0510      0.957 0.984 0.000 0.000 0.000 0.016
#> SRR1818628     1  0.0510      0.957 0.984 0.000 0.000 0.000 0.016
#> SRR1818621     5  0.4161      0.927 0.000 0.000 0.392 0.000 0.608
#> SRR1818622     5  0.4161      0.927 0.000 0.000 0.392 0.000 0.608
#> SRR1818625     1  0.0290      0.963 0.992 0.000 0.000 0.000 0.008
#> SRR1818626     1  0.0290      0.963 0.992 0.000 0.000 0.000 0.008
#> SRR1818623     4  0.4171      0.264 0.000 0.000 0.396 0.604 0.000
#> SRR1818624     4  0.4171      0.264 0.000 0.000 0.396 0.604 0.000
#> SRR1818619     1  0.2516      0.860 0.860 0.000 0.000 0.000 0.140
#> SRR1818620     1  0.2516      0.860 0.860 0.000 0.000 0.000 0.140
#> SRR1818617     2  0.4235      0.706 0.000 0.656 0.000 0.008 0.336
#> SRR1818618     2  0.4118      0.710 0.000 0.660 0.000 0.004 0.336
#> SRR1818615     4  0.0290      0.683 0.000 0.000 0.000 0.992 0.008
#> SRR1818616     4  0.0290      0.683 0.000 0.000 0.000 0.992 0.008
#> SRR1818609     4  0.0000      0.682 0.000 0.000 0.000 1.000 0.000
#> SRR1818610     4  0.0000      0.682 0.000 0.000 0.000 1.000 0.000
#> SRR1818607     4  0.6504      0.360 0.000 0.272 0.000 0.488 0.240
#> SRR1818608     4  0.6504      0.360 0.000 0.272 0.000 0.488 0.240
#> SRR1818613     1  0.2813      0.827 0.832 0.000 0.000 0.000 0.168
#> SRR1818614     1  0.2813      0.827 0.832 0.000 0.000 0.000 0.168
#> SRR1818611     1  0.0290      0.963 0.992 0.000 0.000 0.000 0.008
#> SRR1818612     1  0.0290      0.963 0.992 0.000 0.000 0.000 0.008
#> SRR1818605     5  0.4733      0.965 0.028 0.000 0.348 0.000 0.624
#> SRR1818606     5  0.4733      0.965 0.028 0.000 0.348 0.000 0.624

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1818631     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818632     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818679     3  0.0405      0.959 0.000 0.004 0.988 0.000 0.008 0.000
#> SRR1818680     3  0.0405      0.959 0.000 0.004 0.988 0.000 0.008 0.000
#> SRR1818677     6  0.1444      0.191 0.000 0.072 0.000 0.000 0.000 0.928
#> SRR1818678     6  0.1444      0.191 0.000 0.072 0.000 0.000 0.000 0.928
#> SRR1818675     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818676     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818673     2  0.3854      0.993 0.000 0.536 0.000 0.000 0.000 0.464
#> SRR1818674     2  0.3854      0.993 0.000 0.536 0.000 0.000 0.000 0.464
#> SRR1818671     6  0.3672      0.685 0.000 0.000 0.000 0.368 0.000 0.632
#> SRR1818672     6  0.3672      0.685 0.000 0.000 0.000 0.368 0.000 0.632
#> SRR1818661     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818662     3  0.0000      0.965 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818655     1  0.0717      0.901 0.976 0.016 0.000 0.000 0.008 0.000
#> SRR1818656     1  0.0717      0.901 0.976 0.016 0.000 0.000 0.008 0.000
#> SRR1818653     5  0.2362      0.961 0.004 0.000 0.136 0.000 0.860 0.000
#> SRR1818654     5  0.2362      0.961 0.004 0.000 0.136 0.000 0.860 0.000
#> SRR1818651     1  0.3388      0.766 0.792 0.036 0.000 0.000 0.172 0.000
#> SRR1818652     1  0.3354      0.770 0.796 0.036 0.000 0.000 0.168 0.000
#> SRR1818657     1  0.0405      0.901 0.988 0.008 0.000 0.000 0.004 0.000
#> SRR1818658     1  0.0405      0.901 0.988 0.008 0.000 0.000 0.004 0.000
#> SRR1818649     1  0.0972      0.899 0.964 0.028 0.000 0.000 0.008 0.000
#> SRR1818650     1  0.0972      0.899 0.964 0.028 0.000 0.000 0.008 0.000
#> SRR1818659     1  0.0717      0.901 0.976 0.016 0.000 0.000 0.008 0.000
#> SRR1818647     4  0.3508      0.654 0.000 0.004 0.292 0.704 0.000 0.000
#> SRR1818648     4  0.3508      0.654 0.000 0.004 0.292 0.704 0.000 0.000
#> SRR1818645     6  0.3578      0.716 0.000 0.000 0.000 0.340 0.000 0.660
#> SRR1818646     6  0.3578      0.716 0.000 0.000 0.000 0.340 0.000 0.660
#> SRR1818639     1  0.0717      0.901 0.976 0.016 0.000 0.000 0.008 0.000
#> SRR1818640     1  0.0717      0.901 0.976 0.016 0.000 0.000 0.008 0.000
#> SRR1818637     4  0.0000      0.833 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818638     4  0.0000      0.833 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818635     2  0.3851      0.995 0.000 0.540 0.000 0.000 0.000 0.460
#> SRR1818636     2  0.3851      0.995 0.000 0.540 0.000 0.000 0.000 0.460
#> SRR1818643     2  0.3851      0.995 0.000 0.540 0.000 0.000 0.000 0.460
#> SRR1818644     2  0.3851      0.995 0.000 0.540 0.000 0.000 0.000 0.460
#> SRR1818641     2  0.3851      0.995 0.000 0.540 0.000 0.000 0.000 0.460
#> SRR1818642     2  0.3851      0.995 0.000 0.540 0.000 0.000 0.000 0.460
#> SRR1818633     3  0.2854      0.866 0.000 0.088 0.860 0.004 0.048 0.000
#> SRR1818634     3  0.2854      0.866 0.000 0.088 0.860 0.004 0.048 0.000
#> SRR1818665     1  0.0146      0.902 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1818666     1  0.0146      0.902 0.996 0.000 0.000 0.000 0.004 0.000
#> SRR1818667     4  0.0260      0.831 0.000 0.000 0.000 0.992 0.000 0.008
#> SRR1818668     4  0.0260      0.831 0.000 0.000 0.000 0.992 0.000 0.008
#> SRR1818669     1  0.0291      0.902 0.992 0.004 0.000 0.000 0.004 0.000
#> SRR1818670     1  0.0291      0.902 0.992 0.004 0.000 0.000 0.004 0.000
#> SRR1818663     1  0.0146      0.902 0.996 0.004 0.000 0.000 0.000 0.000
#> SRR1818664     1  0.0146      0.902 0.996 0.004 0.000 0.000 0.000 0.000
#> SRR1818629     2  0.3860      0.986 0.000 0.528 0.000 0.000 0.000 0.472
#> SRR1818630     2  0.3860      0.986 0.000 0.528 0.000 0.000 0.000 0.472
#> SRR1818627     1  0.2509      0.846 0.876 0.036 0.000 0.000 0.088 0.000
#> SRR1818628     1  0.2457      0.849 0.880 0.036 0.000 0.000 0.084 0.000
#> SRR1818621     5  0.2793      0.926 0.000 0.000 0.200 0.000 0.800 0.000
#> SRR1818622     5  0.2793      0.926 0.000 0.000 0.200 0.000 0.800 0.000
#> SRR1818625     1  0.0146      0.903 0.996 0.004 0.000 0.000 0.000 0.000
#> SRR1818626     1  0.0146      0.903 0.996 0.004 0.000 0.000 0.000 0.000
#> SRR1818623     4  0.3405      0.680 0.000 0.004 0.272 0.724 0.000 0.000
#> SRR1818624     4  0.3405      0.680 0.000 0.004 0.272 0.724 0.000 0.000
#> SRR1818619     1  0.5704      0.282 0.456 0.400 0.000 0.000 0.140 0.004
#> SRR1818620     1  0.5704      0.282 0.456 0.400 0.000 0.000 0.140 0.004
#> SRR1818617     6  0.4456      0.466 0.000 0.268 0.000 0.000 0.064 0.668
#> SRR1818618     6  0.4456      0.466 0.000 0.268 0.000 0.000 0.064 0.668
#> SRR1818615     4  0.0363      0.828 0.000 0.000 0.000 0.988 0.000 0.012
#> SRR1818616     4  0.0363      0.828 0.000 0.000 0.000 0.988 0.000 0.012
#> SRR1818609     4  0.0000      0.833 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818610     4  0.0000      0.833 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818607     6  0.3547      0.719 0.000 0.000 0.000 0.332 0.000 0.668
#> SRR1818608     6  0.3547      0.719 0.000 0.000 0.000 0.332 0.000 0.668
#> SRR1818613     1  0.3999      0.645 0.696 0.032 0.000 0.000 0.272 0.000
#> SRR1818614     1  0.3999      0.645 0.696 0.032 0.000 0.000 0.272 0.000
#> SRR1818611     1  0.0972      0.899 0.964 0.028 0.000 0.000 0.008 0.000
#> SRR1818612     1  0.0972      0.899 0.964 0.028 0.000 0.000 0.008 0.000
#> SRR1818605     5  0.2726      0.959 0.008 0.008 0.136 0.000 0.848 0.000
#> SRR1818606     5  0.2726      0.959 0.008 0.008 0.136 0.000 0.848 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15216 rows and 75 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.972           0.942       0.974         0.4091 0.580   0.580
#> 3 3 0.707           0.898       0.927         0.4490 0.692   0.518
#> 4 4 0.865           0.848       0.939         0.1231 0.928   0.820
#> 5 5 0.779           0.823       0.861         0.0827 0.919   0.784
#> 6 6 0.932           0.902       0.959         0.1169 0.874   0.616

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1818631     1   0.000      0.989 1.000 0.000
#> SRR1818632     1   0.000      0.989 1.000 0.000
#> SRR1818679     1   0.000      0.989 1.000 0.000
#> SRR1818680     1   0.000      0.989 1.000 0.000
#> SRR1818677     1   0.278      0.952 0.952 0.048
#> SRR1818678     1   0.278      0.952 0.952 0.048
#> SRR1818675     1   0.141      0.973 0.980 0.020
#> SRR1818676     1   0.469      0.882 0.900 0.100
#> SRR1818673     2   0.866      0.614 0.288 0.712
#> SRR1818674     2   0.876      0.600 0.296 0.704
#> SRR1818671     2   0.000      0.931 0.000 1.000
#> SRR1818672     2   0.000      0.931 0.000 1.000
#> SRR1818661     2   0.975      0.371 0.408 0.592
#> SRR1818662     2   0.981      0.339 0.420 0.580
#> SRR1818655     1   0.000      0.989 1.000 0.000
#> SRR1818656     1   0.000      0.989 1.000 0.000
#> SRR1818653     1   0.000      0.989 1.000 0.000
#> SRR1818654     1   0.000      0.989 1.000 0.000
#> SRR1818651     1   0.000      0.989 1.000 0.000
#> SRR1818652     1   0.000      0.989 1.000 0.000
#> SRR1818657     1   0.000      0.989 1.000 0.000
#> SRR1818658     1   0.000      0.989 1.000 0.000
#> SRR1818649     1   0.000      0.989 1.000 0.000
#> SRR1818650     1   0.000      0.989 1.000 0.000
#> SRR1818659     1   0.000      0.989 1.000 0.000
#> SRR1818647     2   0.000      0.931 0.000 1.000
#> SRR1818648     2   0.000      0.931 0.000 1.000
#> SRR1818645     2   0.000      0.931 0.000 1.000
#> SRR1818646     2   0.000      0.931 0.000 1.000
#> SRR1818639     1   0.000      0.989 1.000 0.000
#> SRR1818640     1   0.000      0.989 1.000 0.000
#> SRR1818637     2   0.000      0.931 0.000 1.000
#> SRR1818638     2   0.000      0.931 0.000 1.000
#> SRR1818635     1   0.000      0.989 1.000 0.000
#> SRR1818636     1   0.000      0.989 1.000 0.000
#> SRR1818643     1   0.278      0.952 0.952 0.048
#> SRR1818644     1   0.278      0.952 0.952 0.048
#> SRR1818641     1   0.000      0.989 1.000 0.000
#> SRR1818642     1   0.000      0.989 1.000 0.000
#> SRR1818633     1   0.000      0.989 1.000 0.000
#> SRR1818634     1   0.000      0.989 1.000 0.000
#> SRR1818665     1   0.000      0.989 1.000 0.000
#> SRR1818666     1   0.000      0.989 1.000 0.000
#> SRR1818667     2   0.000      0.931 0.000 1.000
#> SRR1818668     2   0.000      0.931 0.000 1.000
#> SRR1818669     1   0.000      0.989 1.000 0.000
#> SRR1818670     1   0.000      0.989 1.000 0.000
#> SRR1818663     1   0.000      0.989 1.000 0.000
#> SRR1818664     1   0.000      0.989 1.000 0.000
#> SRR1818629     1   0.278      0.952 0.952 0.048
#> SRR1818630     1   0.278      0.952 0.952 0.048
#> SRR1818627     1   0.000      0.989 1.000 0.000
#> SRR1818628     1   0.000      0.989 1.000 0.000
#> SRR1818621     1   0.000      0.989 1.000 0.000
#> SRR1818622     1   0.000      0.989 1.000 0.000
#> SRR1818625     1   0.000      0.989 1.000 0.000
#> SRR1818626     1   0.000      0.989 1.000 0.000
#> SRR1818623     2   0.000      0.931 0.000 1.000
#> SRR1818624     2   0.000      0.931 0.000 1.000
#> SRR1818619     1   0.000      0.989 1.000 0.000
#> SRR1818620     1   0.000      0.989 1.000 0.000
#> SRR1818617     1   0.278      0.952 0.952 0.048
#> SRR1818618     1   0.278      0.952 0.952 0.048
#> SRR1818615     2   0.000      0.931 0.000 1.000
#> SRR1818616     2   0.000      0.931 0.000 1.000
#> SRR1818609     2   0.000      0.931 0.000 1.000
#> SRR1818610     2   0.000      0.931 0.000 1.000
#> SRR1818607     2   0.000      0.931 0.000 1.000
#> SRR1818608     2   0.000      0.931 0.000 1.000
#> SRR1818613     1   0.000      0.989 1.000 0.000
#> SRR1818614     1   0.000      0.989 1.000 0.000
#> SRR1818611     1   0.000      0.989 1.000 0.000
#> SRR1818612     1   0.000      0.989 1.000 0.000
#> SRR1818605     1   0.000      0.989 1.000 0.000
#> SRR1818606     1   0.000      0.989 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1818631     3   0.000      0.872 0.000 0.000 1.000
#> SRR1818632     3   0.000      0.872 0.000 0.000 1.000
#> SRR1818679     1   0.263      0.880 0.916 0.084 0.000
#> SRR1818680     1   0.271      0.875 0.912 0.088 0.000
#> SRR1818677     2   0.445      0.870 0.192 0.808 0.000
#> SRR1818678     2   0.445      0.870 0.192 0.808 0.000
#> SRR1818675     1   0.604      0.462 0.620 0.000 0.380
#> SRR1818676     1   0.610      0.435 0.608 0.000 0.392
#> SRR1818673     2   0.435      0.869 0.184 0.816 0.000
#> SRR1818674     2   0.435      0.869 0.184 0.816 0.000
#> SRR1818671     2   0.000      0.796 0.000 1.000 0.000
#> SRR1818672     2   0.000      0.796 0.000 1.000 0.000
#> SRR1818661     3   0.000      0.872 0.000 0.000 1.000
#> SRR1818662     3   0.000      0.872 0.000 0.000 1.000
#> SRR1818655     1   0.000      0.969 1.000 0.000 0.000
#> SRR1818656     1   0.000      0.969 1.000 0.000 0.000
#> SRR1818653     1   0.000      0.969 1.000 0.000 0.000
#> SRR1818654     1   0.000      0.969 1.000 0.000 0.000
#> SRR1818651     1   0.000      0.969 1.000 0.000 0.000
#> SRR1818652     1   0.000      0.969 1.000 0.000 0.000
#> SRR1818657     1   0.000      0.969 1.000 0.000 0.000
#> SRR1818658     1   0.000      0.969 1.000 0.000 0.000
#> SRR1818649     1   0.000      0.969 1.000 0.000 0.000
#> SRR1818650     1   0.000      0.969 1.000 0.000 0.000
#> SRR1818659     1   0.000      0.969 1.000 0.000 0.000
#> SRR1818647     3   0.440      0.932 0.000 0.188 0.812
#> SRR1818648     3   0.440      0.932 0.000 0.188 0.812
#> SRR1818645     2   0.000      0.796 0.000 1.000 0.000
#> SRR1818646     2   0.000      0.796 0.000 1.000 0.000
#> SRR1818639     1   0.000      0.969 1.000 0.000 0.000
#> SRR1818640     1   0.000      0.969 1.000 0.000 0.000
#> SRR1818637     3   0.445      0.932 0.000 0.192 0.808
#> SRR1818638     3   0.445      0.932 0.000 0.192 0.808
#> SRR1818635     2   0.445      0.870 0.192 0.808 0.000
#> SRR1818636     2   0.445      0.870 0.192 0.808 0.000
#> SRR1818643     2   0.445      0.870 0.192 0.808 0.000
#> SRR1818644     2   0.445      0.870 0.192 0.808 0.000
#> SRR1818641     2   0.445      0.870 0.192 0.808 0.000
#> SRR1818642     2   0.445      0.870 0.192 0.808 0.000
#> SRR1818633     1   0.000      0.969 1.000 0.000 0.000
#> SRR1818634     1   0.000      0.969 1.000 0.000 0.000
#> SRR1818665     1   0.000      0.969 1.000 0.000 0.000
#> SRR1818666     1   0.000      0.969 1.000 0.000 0.000
#> SRR1818667     2   0.000      0.796 0.000 1.000 0.000
#> SRR1818668     2   0.000      0.796 0.000 1.000 0.000
#> SRR1818669     1   0.000      0.969 1.000 0.000 0.000
#> SRR1818670     1   0.000      0.969 1.000 0.000 0.000
#> SRR1818663     1   0.000      0.969 1.000 0.000 0.000
#> SRR1818664     1   0.000      0.969 1.000 0.000 0.000
#> SRR1818629     2   0.445      0.870 0.192 0.808 0.000
#> SRR1818630     2   0.445      0.870 0.192 0.808 0.000
#> SRR1818627     1   0.000      0.969 1.000 0.000 0.000
#> SRR1818628     1   0.000      0.969 1.000 0.000 0.000
#> SRR1818621     1   0.280      0.882 0.908 0.000 0.092
#> SRR1818622     1   0.226      0.907 0.932 0.000 0.068
#> SRR1818625     1   0.000      0.969 1.000 0.000 0.000
#> SRR1818626     1   0.000      0.969 1.000 0.000 0.000
#> SRR1818623     3   0.445      0.932 0.000 0.192 0.808
#> SRR1818624     3   0.445      0.932 0.000 0.192 0.808
#> SRR1818619     1   0.000      0.969 1.000 0.000 0.000
#> SRR1818620     1   0.000      0.969 1.000 0.000 0.000
#> SRR1818617     2   0.445      0.870 0.192 0.808 0.000
#> SRR1818618     2   0.445      0.870 0.192 0.808 0.000
#> SRR1818615     2   0.341      0.656 0.000 0.876 0.124
#> SRR1818616     2   0.196      0.744 0.000 0.944 0.056
#> SRR1818609     3   0.445      0.932 0.000 0.192 0.808
#> SRR1818610     3   0.445      0.932 0.000 0.192 0.808
#> SRR1818607     2   0.000      0.796 0.000 1.000 0.000
#> SRR1818608     2   0.000      0.796 0.000 1.000 0.000
#> SRR1818613     1   0.000      0.969 1.000 0.000 0.000
#> SRR1818614     1   0.000      0.969 1.000 0.000 0.000
#> SRR1818611     1   0.000      0.969 1.000 0.000 0.000
#> SRR1818612     1   0.000      0.969 1.000 0.000 0.000
#> SRR1818605     1   0.000      0.969 1.000 0.000 0.000
#> SRR1818606     1   0.000      0.969 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1818631     3   0.000      0.717 0.000 0.000 1.000 0.000
#> SRR1818632     3   0.000      0.717 0.000 0.000 1.000 0.000
#> SRR1818679     1   0.384      0.740 0.816 0.016 0.168 0.000
#> SRR1818680     1   0.395      0.735 0.812 0.020 0.168 0.000
#> SRR1818677     2   0.000      0.933 0.000 1.000 0.000 0.000
#> SRR1818678     2   0.000      0.933 0.000 1.000 0.000 0.000
#> SRR1818675     3   0.504      0.380 0.404 0.000 0.592 0.004
#> SRR1818676     3   0.504      0.380 0.404 0.000 0.592 0.004
#> SRR1818673     2   0.000      0.933 0.000 1.000 0.000 0.000
#> SRR1818674     2   0.000      0.933 0.000 1.000 0.000 0.000
#> SRR1818671     4   0.500     -0.194 0.000 0.488 0.000 0.512
#> SRR1818672     2   0.487      0.429 0.000 0.596 0.000 0.404
#> SRR1818661     3   0.000      0.717 0.000 0.000 1.000 0.000
#> SRR1818662     3   0.000      0.717 0.000 0.000 1.000 0.000
#> SRR1818655     1   0.000      0.947 1.000 0.000 0.000 0.000
#> SRR1818656     1   0.000      0.947 1.000 0.000 0.000 0.000
#> SRR1818653     1   0.000      0.947 1.000 0.000 0.000 0.000
#> SRR1818654     1   0.000      0.947 1.000 0.000 0.000 0.000
#> SRR1818651     1   0.000      0.947 1.000 0.000 0.000 0.000
#> SRR1818652     1   0.000      0.947 1.000 0.000 0.000 0.000
#> SRR1818657     1   0.000      0.947 1.000 0.000 0.000 0.000
#> SRR1818658     1   0.000      0.947 1.000 0.000 0.000 0.000
#> SRR1818649     1   0.000      0.947 1.000 0.000 0.000 0.000
#> SRR1818650     1   0.000      0.947 1.000 0.000 0.000 0.000
#> SRR1818659     1   0.000      0.947 1.000 0.000 0.000 0.000
#> SRR1818647     4   0.172      0.905 0.000 0.000 0.064 0.936
#> SRR1818648     4   0.172      0.905 0.000 0.000 0.064 0.936
#> SRR1818645     2   0.302      0.865 0.000 0.852 0.000 0.148
#> SRR1818646     2   0.302      0.865 0.000 0.852 0.000 0.148
#> SRR1818639     1   0.000      0.947 1.000 0.000 0.000 0.000
#> SRR1818640     1   0.000      0.947 1.000 0.000 0.000 0.000
#> SRR1818637     4   0.147      0.913 0.000 0.000 0.052 0.948
#> SRR1818638     4   0.147      0.913 0.000 0.000 0.052 0.948
#> SRR1818635     2   0.000      0.933 0.000 1.000 0.000 0.000
#> SRR1818636     2   0.000      0.933 0.000 1.000 0.000 0.000
#> SRR1818643     2   0.000      0.933 0.000 1.000 0.000 0.000
#> SRR1818644     2   0.000      0.933 0.000 1.000 0.000 0.000
#> SRR1818641     2   0.000      0.933 0.000 1.000 0.000 0.000
#> SRR1818642     2   0.000      0.933 0.000 1.000 0.000 0.000
#> SRR1818633     1   0.327      0.759 0.832 0.000 0.168 0.000
#> SRR1818634     1   0.327      0.759 0.832 0.000 0.168 0.000
#> SRR1818665     1   0.000      0.947 1.000 0.000 0.000 0.000
#> SRR1818666     1   0.000      0.947 1.000 0.000 0.000 0.000
#> SRR1818667     2   0.302      0.865 0.000 0.852 0.000 0.148
#> SRR1818668     2   0.302      0.865 0.000 0.852 0.000 0.148
#> SRR1818669     1   0.000      0.947 1.000 0.000 0.000 0.000
#> SRR1818670     1   0.000      0.947 1.000 0.000 0.000 0.000
#> SRR1818663     1   0.000      0.947 1.000 0.000 0.000 0.000
#> SRR1818664     1   0.000      0.947 1.000 0.000 0.000 0.000
#> SRR1818629     2   0.000      0.933 0.000 1.000 0.000 0.000
#> SRR1818630     2   0.000      0.933 0.000 1.000 0.000 0.000
#> SRR1818627     1   0.000      0.947 1.000 0.000 0.000 0.000
#> SRR1818628     1   0.000      0.947 1.000 0.000 0.000 0.000
#> SRR1818621     1   0.498     -0.025 0.540 0.000 0.460 0.000
#> SRR1818622     1   0.492      0.128 0.576 0.000 0.424 0.000
#> SRR1818625     1   0.000      0.947 1.000 0.000 0.000 0.000
#> SRR1818626     1   0.000      0.947 1.000 0.000 0.000 0.000
#> SRR1818623     4   0.147      0.913 0.000 0.000 0.052 0.948
#> SRR1818624     4   0.147      0.913 0.000 0.000 0.052 0.948
#> SRR1818619     1   0.000      0.947 1.000 0.000 0.000 0.000
#> SRR1818620     1   0.000      0.947 1.000 0.000 0.000 0.000
#> SRR1818617     2   0.000      0.933 0.000 1.000 0.000 0.000
#> SRR1818618     2   0.000      0.933 0.000 1.000 0.000 0.000
#> SRR1818615     4   0.000      0.882 0.000 0.000 0.000 1.000
#> SRR1818616     4   0.000      0.882 0.000 0.000 0.000 1.000
#> SRR1818609     4   0.147      0.913 0.000 0.000 0.052 0.948
#> SRR1818610     4   0.147      0.913 0.000 0.000 0.052 0.948
#> SRR1818607     2   0.302      0.865 0.000 0.852 0.000 0.148
#> SRR1818608     2   0.302      0.865 0.000 0.852 0.000 0.148
#> SRR1818613     1   0.000      0.947 1.000 0.000 0.000 0.000
#> SRR1818614     1   0.000      0.947 1.000 0.000 0.000 0.000
#> SRR1818611     1   0.000      0.947 1.000 0.000 0.000 0.000
#> SRR1818612     1   0.000      0.947 1.000 0.000 0.000 0.000
#> SRR1818605     1   0.000      0.947 1.000 0.000 0.000 0.000
#> SRR1818606     1   0.000      0.947 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1818631     3   0.534     1.0000 0.000 0.000 0.628 0.288 0.084
#> SRR1818632     3   0.534     1.0000 0.000 0.000 0.628 0.288 0.084
#> SRR1818679     1   0.051     0.8123 0.984 0.000 0.016 0.000 0.000
#> SRR1818680     1   0.051     0.8123 0.984 0.000 0.016 0.000 0.000
#> SRR1818677     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1818678     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1818675     1   0.790    -0.0706 0.412 0.000 0.232 0.268 0.088
#> SRR1818676     1   0.790    -0.0706 0.412 0.000 0.232 0.268 0.088
#> SRR1818673     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1818674     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1818671     5   0.218     0.7493 0.000 0.112 0.000 0.000 0.888
#> SRR1818672     5   0.252     0.7790 0.000 0.140 0.000 0.000 0.860
#> SRR1818661     3   0.534     1.0000 0.000 0.000 0.628 0.288 0.084
#> SRR1818662     3   0.534     1.0000 0.000 0.000 0.628 0.288 0.084
#> SRR1818655     1   0.425     0.6957 0.624 0.004 0.372 0.000 0.000
#> SRR1818656     1   0.410     0.6992 0.628 0.000 0.372 0.000 0.000
#> SRR1818653     1   0.000     0.8198 1.000 0.000 0.000 0.000 0.000
#> SRR1818654     1   0.000     0.8198 1.000 0.000 0.000 0.000 0.000
#> SRR1818651     1   0.000     0.8198 1.000 0.000 0.000 0.000 0.000
#> SRR1818652     1   0.000     0.8198 1.000 0.000 0.000 0.000 0.000
#> SRR1818657     1   0.088     0.8149 0.968 0.000 0.032 0.000 0.000
#> SRR1818658     1   0.403     0.7075 0.648 0.000 0.352 0.000 0.000
#> SRR1818649     1   0.000     0.8198 1.000 0.000 0.000 0.000 0.000
#> SRR1818650     1   0.000     0.8198 1.000 0.000 0.000 0.000 0.000
#> SRR1818659     1   0.410     0.6992 0.628 0.000 0.372 0.000 0.000
#> SRR1818647     4   0.361     0.9760 0.000 0.000 0.000 0.732 0.268
#> SRR1818648     4   0.361     0.9760 0.000 0.000 0.000 0.732 0.268
#> SRR1818645     5   0.364     0.8528 0.000 0.272 0.000 0.000 0.728
#> SRR1818646     5   0.364     0.8528 0.000 0.272 0.000 0.000 0.728
#> SRR1818639     1   0.410     0.6992 0.628 0.000 0.372 0.000 0.000
#> SRR1818640     1   0.410     0.6992 0.628 0.000 0.372 0.000 0.000
#> SRR1818637     4   0.373     0.9919 0.000 0.000 0.000 0.712 0.288
#> SRR1818638     4   0.373     0.9919 0.000 0.000 0.000 0.712 0.288
#> SRR1818635     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1818636     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1818643     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1818644     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1818641     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1818642     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1818633     1   0.051     0.8123 0.984 0.000 0.016 0.000 0.000
#> SRR1818634     1   0.051     0.8123 0.984 0.000 0.016 0.000 0.000
#> SRR1818665     1   0.410     0.6992 0.628 0.000 0.372 0.000 0.000
#> SRR1818666     1   0.410     0.6992 0.628 0.000 0.372 0.000 0.000
#> SRR1818667     5   0.366     0.8496 0.000 0.276 0.000 0.000 0.724
#> SRR1818668     5   0.366     0.8496 0.000 0.276 0.000 0.000 0.724
#> SRR1818669     1   0.410     0.6992 0.628 0.000 0.372 0.000 0.000
#> SRR1818670     1   0.410     0.6992 0.628 0.000 0.372 0.000 0.000
#> SRR1818663     1   0.410     0.6992 0.628 0.000 0.372 0.000 0.000
#> SRR1818664     1   0.410     0.6992 0.628 0.000 0.372 0.000 0.000
#> SRR1818629     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1818630     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1818627     1   0.000     0.8198 1.000 0.000 0.000 0.000 0.000
#> SRR1818628     1   0.000     0.8198 1.000 0.000 0.000 0.000 0.000
#> SRR1818621     1   0.521     0.5249 0.696 0.000 0.200 0.096 0.008
#> SRR1818622     1   0.475     0.5796 0.736 0.000 0.184 0.072 0.008
#> SRR1818625     1   0.293     0.7735 0.820 0.000 0.180 0.000 0.000
#> SRR1818626     1   0.289     0.7747 0.824 0.000 0.176 0.000 0.000
#> SRR1818623     4   0.373     0.9919 0.000 0.000 0.000 0.712 0.288
#> SRR1818624     4   0.373     0.9919 0.000 0.000 0.000 0.712 0.288
#> SRR1818619     1   0.000     0.8198 1.000 0.000 0.000 0.000 0.000
#> SRR1818620     1   0.000     0.8198 1.000 0.000 0.000 0.000 0.000
#> SRR1818617     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1818618     2   0.000     1.0000 0.000 1.000 0.000 0.000 0.000
#> SRR1818615     5   0.218     0.5168 0.000 0.000 0.000 0.112 0.888
#> SRR1818616     5   0.179     0.5614 0.000 0.000 0.000 0.084 0.916
#> SRR1818609     4   0.373     0.9919 0.000 0.000 0.000 0.712 0.288
#> SRR1818610     4   0.373     0.9919 0.000 0.000 0.000 0.712 0.288
#> SRR1818607     5   0.364     0.8528 0.000 0.272 0.000 0.000 0.728
#> SRR1818608     5   0.364     0.8528 0.000 0.272 0.000 0.000 0.728
#> SRR1818613     1   0.000     0.8198 1.000 0.000 0.000 0.000 0.000
#> SRR1818614     1   0.000     0.8198 1.000 0.000 0.000 0.000 0.000
#> SRR1818611     1   0.000     0.8198 1.000 0.000 0.000 0.000 0.000
#> SRR1818612     1   0.000     0.8198 1.000 0.000 0.000 0.000 0.000
#> SRR1818605     1   0.000     0.8198 1.000 0.000 0.000 0.000 0.000
#> SRR1818606     1   0.000     0.8198 1.000 0.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1818631     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818632     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818679     5  0.0000      0.899 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818680     5  0.0000      0.899 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818677     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818678     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818675     5  0.3833      0.228 0.000 0.000 0.444 0.000 0.556 0.000
#> SRR1818676     5  0.3833      0.228 0.000 0.000 0.444 0.000 0.556 0.000
#> SRR1818673     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818674     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818671     6  0.0000      0.981 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1818672     6  0.0000      0.981 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1818661     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818662     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> SRR1818655     1  0.0363      0.934 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR1818656     1  0.0363      0.934 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR1818653     5  0.0000      0.899 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818654     5  0.0000      0.899 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818651     5  0.0000      0.899 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818652     5  0.0000      0.899 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818657     5  0.3151      0.621 0.252 0.000 0.000 0.000 0.748 0.000
#> SRR1818658     1  0.2883      0.703 0.788 0.000 0.000 0.000 0.212 0.000
#> SRR1818649     5  0.0000      0.899 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818650     5  0.0000      0.899 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818659     1  0.0363      0.934 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR1818647     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818648     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818645     6  0.0000      0.981 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1818646     6  0.0000      0.981 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1818639     1  0.0363      0.934 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR1818640     1  0.0547      0.928 0.980 0.000 0.000 0.000 0.020 0.000
#> SRR1818637     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818638     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818635     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818636     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818643     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818644     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818641     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818642     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818633     5  0.0000      0.899 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818634     5  0.0000      0.899 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818665     1  0.0363      0.934 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR1818666     1  0.0363      0.934 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR1818667     6  0.0146      0.979 0.000 0.004 0.000 0.000 0.000 0.996
#> SRR1818668     6  0.0146      0.979 0.000 0.004 0.000 0.000 0.000 0.996
#> SRR1818669     1  0.0363      0.934 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR1818670     1  0.0363      0.934 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR1818663     1  0.0363      0.934 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR1818664     1  0.0363      0.934 0.988 0.000 0.000 0.000 0.012 0.000
#> SRR1818629     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818630     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818627     5  0.3727      0.323 0.388 0.000 0.000 0.000 0.612 0.000
#> SRR1818628     5  0.3727      0.323 0.388 0.000 0.000 0.000 0.612 0.000
#> SRR1818621     5  0.2266      0.801 0.012 0.000 0.108 0.000 0.880 0.000
#> SRR1818622     5  0.1913      0.828 0.012 0.000 0.080 0.000 0.908 0.000
#> SRR1818625     1  0.2854      0.735 0.792 0.000 0.000 0.000 0.208 0.000
#> SRR1818626     1  0.2883      0.730 0.788 0.000 0.000 0.000 0.212 0.000
#> SRR1818623     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818624     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818619     5  0.0000      0.899 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818620     5  0.0000      0.899 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818617     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818618     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> SRR1818615     6  0.2135      0.849 0.000 0.000 0.000 0.128 0.000 0.872
#> SRR1818616     6  0.0363      0.973 0.000 0.000 0.000 0.012 0.000 0.988
#> SRR1818609     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818610     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000 0.000
#> SRR1818607     6  0.0000      0.981 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1818608     6  0.0000      0.981 0.000 0.000 0.000 0.000 0.000 1.000
#> SRR1818613     5  0.0000      0.899 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818614     5  0.0000      0.899 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818611     5  0.0000      0.899 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818612     5  0.0000      0.899 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818605     5  0.0000      0.899 0.000 0.000 0.000 0.000 1.000 0.000
#> SRR1818606     5  0.0000      0.899 0.000 0.000 0.000 0.000 1.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15216 rows and 75 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.289           0.614       0.772         0.3668 0.514   0.514
#> 3 3 0.530           0.793       0.890         0.6102 0.621   0.433
#> 4 4 0.610           0.691       0.812         0.2186 0.627   0.314
#> 5 5 0.701           0.745       0.847         0.0349 0.991   0.968
#> 6 6 0.595           0.598       0.736         0.0600 0.874   0.560

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1818631     2   0.482      0.429 0.104 0.896
#> SRR1818632     2   0.482      0.429 0.104 0.896
#> SRR1818679     2   0.981      0.693 0.420 0.580
#> SRR1818680     2   0.983      0.688 0.424 0.576
#> SRR1818677     1   0.925      0.330 0.660 0.340
#> SRR1818678     1   0.925      0.330 0.660 0.340
#> SRR1818675     2   0.997      0.609 0.468 0.532
#> SRR1818676     2   0.997      0.609 0.468 0.532
#> SRR1818673     2   0.983      0.645 0.424 0.576
#> SRR1818674     1   1.000     -0.393 0.508 0.492
#> SRR1818671     2   0.949      0.761 0.368 0.632
#> SRR1818672     2   0.949      0.761 0.368 0.632
#> SRR1818661     2   0.482      0.429 0.104 0.896
#> SRR1818662     2   0.482      0.429 0.104 0.896
#> SRR1818655     1   0.000      0.777 1.000 0.000
#> SRR1818656     1   0.000      0.777 1.000 0.000
#> SRR1818653     1   0.000      0.777 1.000 0.000
#> SRR1818654     1   0.000      0.777 1.000 0.000
#> SRR1818651     1   0.000      0.777 1.000 0.000
#> SRR1818652     1   0.000      0.777 1.000 0.000
#> SRR1818657     1   0.000      0.777 1.000 0.000
#> SRR1818658     1   0.000      0.777 1.000 0.000
#> SRR1818649     1   0.000      0.777 1.000 0.000
#> SRR1818650     1   0.000      0.777 1.000 0.000
#> SRR1818659     1   0.000      0.777 1.000 0.000
#> SRR1818647     2   0.949      0.761 0.368 0.632
#> SRR1818648     2   0.949      0.761 0.368 0.632
#> SRR1818645     2   0.949      0.761 0.368 0.632
#> SRR1818646     2   0.949      0.761 0.368 0.632
#> SRR1818639     1   0.000      0.777 1.000 0.000
#> SRR1818640     1   0.000      0.777 1.000 0.000
#> SRR1818637     2   0.949      0.761 0.368 0.632
#> SRR1818638     2   0.949      0.761 0.368 0.632
#> SRR1818635     1   0.921      0.342 0.664 0.336
#> SRR1818636     1   0.921      0.342 0.664 0.336
#> SRR1818643     1   0.921      0.342 0.664 0.336
#> SRR1818644     1   0.921      0.342 0.664 0.336
#> SRR1818641     1   0.921      0.342 0.664 0.336
#> SRR1818642     1   0.921      0.342 0.664 0.336
#> SRR1818633     1   1.000     -0.510 0.504 0.496
#> SRR1818634     2   0.999      0.562 0.480 0.520
#> SRR1818665     1   0.000      0.777 1.000 0.000
#> SRR1818666     1   0.000      0.777 1.000 0.000
#> SRR1818667     2   0.949      0.761 0.368 0.632
#> SRR1818668     2   0.949      0.761 0.368 0.632
#> SRR1818669     1   0.000      0.777 1.000 0.000
#> SRR1818670     1   0.000      0.777 1.000 0.000
#> SRR1818663     1   0.000      0.777 1.000 0.000
#> SRR1818664     1   0.000      0.777 1.000 0.000
#> SRR1818629     1   0.921      0.342 0.664 0.336
#> SRR1818630     1   0.921      0.342 0.664 0.336
#> SRR1818627     1   0.000      0.777 1.000 0.000
#> SRR1818628     1   0.000      0.777 1.000 0.000
#> SRR1818621     2   0.925      0.170 0.340 0.660
#> SRR1818622     2   0.925      0.170 0.340 0.660
#> SRR1818625     1   0.000      0.777 1.000 0.000
#> SRR1818626     1   0.000      0.777 1.000 0.000
#> SRR1818623     2   0.949      0.761 0.368 0.632
#> SRR1818624     2   0.949      0.761 0.368 0.632
#> SRR1818619     1   0.866      0.402 0.712 0.288
#> SRR1818620     1   0.866      0.402 0.712 0.288
#> SRR1818617     1   0.925      0.330 0.660 0.340
#> SRR1818618     1   0.925      0.330 0.660 0.340
#> SRR1818615     2   0.949      0.761 0.368 0.632
#> SRR1818616     2   0.949      0.761 0.368 0.632
#> SRR1818609     2   0.949      0.761 0.368 0.632
#> SRR1818610     2   0.949      0.761 0.368 0.632
#> SRR1818607     2   0.949      0.761 0.368 0.632
#> SRR1818608     2   0.949      0.761 0.368 0.632
#> SRR1818613     1   0.000      0.777 1.000 0.000
#> SRR1818614     1   0.000      0.777 1.000 0.000
#> SRR1818611     1   0.000      0.777 1.000 0.000
#> SRR1818612     1   0.000      0.777 1.000 0.000
#> SRR1818605     1   0.000      0.777 1.000 0.000
#> SRR1818606     1   0.000      0.777 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1818631     3  0.0424    0.92426 0.000 0.008 0.992
#> SRR1818632     3  0.0424    0.92426 0.000 0.008 0.992
#> SRR1818679     2  0.7072    0.72129 0.160 0.724 0.116
#> SRR1818680     2  0.6960    0.72903 0.152 0.732 0.116
#> SRR1818677     2  0.0000    0.84811 0.000 1.000 0.000
#> SRR1818678     2  0.0000    0.84811 0.000 1.000 0.000
#> SRR1818675     3  0.4099    0.80923 0.140 0.008 0.852
#> SRR1818676     3  0.4099    0.80923 0.140 0.008 0.852
#> SRR1818673     2  0.0000    0.84811 0.000 1.000 0.000
#> SRR1818674     2  0.0000    0.84811 0.000 1.000 0.000
#> SRR1818671     2  0.0000    0.84811 0.000 1.000 0.000
#> SRR1818672     2  0.0000    0.84811 0.000 1.000 0.000
#> SRR1818661     3  0.0424    0.92426 0.000 0.008 0.992
#> SRR1818662     3  0.0424    0.92426 0.000 0.008 0.992
#> SRR1818655     2  0.4842    0.67337 0.224 0.776 0.000
#> SRR1818656     2  0.4842    0.67337 0.224 0.776 0.000
#> SRR1818653     1  0.0424    0.90628 0.992 0.008 0.000
#> SRR1818654     1  0.0424    0.90628 0.992 0.008 0.000
#> SRR1818651     2  0.6111    0.47742 0.396 0.604 0.000
#> SRR1818652     2  0.6225    0.37998 0.432 0.568 0.000
#> SRR1818657     2  0.5404    0.73407 0.256 0.740 0.004
#> SRR1818658     2  0.5443    0.73166 0.260 0.736 0.004
#> SRR1818649     2  0.5835    0.55513 0.340 0.660 0.000
#> SRR1818650     2  0.5810    0.56097 0.336 0.664 0.000
#> SRR1818659     2  0.4842    0.67337 0.224 0.776 0.000
#> SRR1818647     3  0.1163    0.93170 0.000 0.028 0.972
#> SRR1818648     3  0.1163    0.93170 0.000 0.028 0.972
#> SRR1818645     2  0.0000    0.84811 0.000 1.000 0.000
#> SRR1818646     2  0.0000    0.84811 0.000 1.000 0.000
#> SRR1818639     2  0.6302   -0.01468 0.480 0.520 0.000
#> SRR1818640     1  0.6309    0.00577 0.500 0.500 0.000
#> SRR1818637     3  0.1163    0.93170 0.000 0.028 0.972
#> SRR1818638     3  0.1163    0.93170 0.000 0.028 0.972
#> SRR1818635     2  0.0000    0.84811 0.000 1.000 0.000
#> SRR1818636     2  0.0000    0.84811 0.000 1.000 0.000
#> SRR1818643     2  0.0000    0.84811 0.000 1.000 0.000
#> SRR1818644     2  0.0000    0.84811 0.000 1.000 0.000
#> SRR1818641     2  0.0000    0.84811 0.000 1.000 0.000
#> SRR1818642     2  0.0000    0.84811 0.000 1.000 0.000
#> SRR1818633     2  0.6037    0.77350 0.100 0.788 0.112
#> SRR1818634     2  0.6460    0.75782 0.124 0.764 0.112
#> SRR1818665     2  0.4465    0.78440 0.176 0.820 0.004
#> SRR1818666     2  0.4465    0.78440 0.176 0.820 0.004
#> SRR1818667     2  0.4178    0.75934 0.000 0.828 0.172
#> SRR1818668     2  0.4178    0.75934 0.000 0.828 0.172
#> SRR1818669     1  0.0424    0.90628 0.992 0.008 0.000
#> SRR1818670     1  0.0424    0.90628 0.992 0.008 0.000
#> SRR1818663     2  0.5115    0.75802 0.228 0.768 0.004
#> SRR1818664     2  0.4629    0.78625 0.188 0.808 0.004
#> SRR1818629     2  0.0000    0.84811 0.000 1.000 0.000
#> SRR1818630     2  0.0000    0.84811 0.000 1.000 0.000
#> SRR1818627     2  0.5690    0.69953 0.288 0.708 0.004
#> SRR1818628     2  0.5553    0.71723 0.272 0.724 0.004
#> SRR1818621     1  0.1163    0.88618 0.972 0.000 0.028
#> SRR1818622     1  0.1163    0.88618 0.972 0.000 0.028
#> SRR1818625     2  0.1647    0.83976 0.036 0.960 0.004
#> SRR1818626     2  0.1765    0.83929 0.040 0.956 0.004
#> SRR1818623     3  0.1163    0.93170 0.000 0.028 0.972
#> SRR1818624     3  0.1163    0.93170 0.000 0.028 0.972
#> SRR1818619     2  0.4178    0.78676 0.172 0.828 0.000
#> SRR1818620     2  0.4178    0.78676 0.172 0.828 0.000
#> SRR1818617     2  0.0000    0.84811 0.000 1.000 0.000
#> SRR1818618     2  0.0000    0.84811 0.000 1.000 0.000
#> SRR1818615     3  0.5016    0.69747 0.000 0.240 0.760
#> SRR1818616     3  0.5016    0.69747 0.000 0.240 0.760
#> SRR1818609     3  0.1163    0.93170 0.000 0.028 0.972
#> SRR1818610     3  0.1163    0.93170 0.000 0.028 0.972
#> SRR1818607     2  0.0000    0.84811 0.000 1.000 0.000
#> SRR1818608     2  0.0000    0.84811 0.000 1.000 0.000
#> SRR1818613     1  0.0424    0.90628 0.992 0.008 0.000
#> SRR1818614     1  0.0424    0.90628 0.992 0.008 0.000
#> SRR1818611     1  0.3941    0.78166 0.844 0.156 0.000
#> SRR1818612     1  0.3941    0.78166 0.844 0.156 0.000
#> SRR1818605     1  0.0661    0.90441 0.988 0.008 0.004
#> SRR1818606     1  0.0661    0.90441 0.988 0.008 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1818631     3  0.4898      0.340 0.000 0.000 0.584 0.416
#> SRR1818632     3  0.4898      0.340 0.000 0.000 0.584 0.416
#> SRR1818679     3  0.2732      0.750 0.076 0.008 0.904 0.012
#> SRR1818680     3  0.2790      0.751 0.072 0.012 0.904 0.012
#> SRR1818677     2  0.2408      0.810 0.000 0.896 0.104 0.000
#> SRR1818678     2  0.2469      0.807 0.000 0.892 0.108 0.000
#> SRR1818675     3  0.2662      0.743 0.084 0.000 0.900 0.016
#> SRR1818676     3  0.2706      0.745 0.080 0.000 0.900 0.020
#> SRR1818673     2  0.0336      0.823 0.000 0.992 0.008 0.000
#> SRR1818674     2  0.0336      0.823 0.000 0.992 0.008 0.000
#> SRR1818671     2  0.5571      0.119 0.000 0.580 0.024 0.396
#> SRR1818672     2  0.5560      0.123 0.000 0.584 0.024 0.392
#> SRR1818661     3  0.4331      0.484 0.000 0.000 0.712 0.288
#> SRR1818662     3  0.4331      0.484 0.000 0.000 0.712 0.288
#> SRR1818655     1  0.5050      0.397 0.588 0.408 0.004 0.000
#> SRR1818656     1  0.5050      0.397 0.588 0.408 0.004 0.000
#> SRR1818653     1  0.1557      0.877 0.944 0.000 0.056 0.000
#> SRR1818654     1  0.1474      0.878 0.948 0.000 0.052 0.000
#> SRR1818651     1  0.1109      0.882 0.968 0.000 0.028 0.004
#> SRR1818652     1  0.1109      0.882 0.968 0.000 0.028 0.004
#> SRR1818657     1  0.1109      0.882 0.968 0.000 0.028 0.004
#> SRR1818658     1  0.1191      0.883 0.968 0.004 0.024 0.004
#> SRR1818649     1  0.0592      0.881 0.984 0.016 0.000 0.000
#> SRR1818650     1  0.0592      0.881 0.984 0.016 0.000 0.000
#> SRR1818659     1  0.5853      0.256 0.508 0.460 0.032 0.000
#> SRR1818647     4  0.4955      0.139 0.000 0.000 0.444 0.556
#> SRR1818648     4  0.4955      0.139 0.000 0.000 0.444 0.556
#> SRR1818645     2  0.1970      0.802 0.000 0.932 0.008 0.060
#> SRR1818646     2  0.1970      0.802 0.000 0.932 0.008 0.060
#> SRR1818639     1  0.4313      0.659 0.736 0.260 0.004 0.000
#> SRR1818640     1  0.4313      0.659 0.736 0.260 0.004 0.000
#> SRR1818637     4  0.4088      0.634 0.000 0.140 0.040 0.820
#> SRR1818638     4  0.4088      0.634 0.000 0.140 0.040 0.820
#> SRR1818635     2  0.3047      0.811 0.000 0.872 0.116 0.012
#> SRR1818636     2  0.3047      0.811 0.000 0.872 0.116 0.012
#> SRR1818643     2  0.1584      0.831 0.000 0.952 0.036 0.012
#> SRR1818644     2  0.1584      0.831 0.000 0.952 0.036 0.012
#> SRR1818641     2  0.3047      0.811 0.000 0.872 0.116 0.012
#> SRR1818642     2  0.3047      0.811 0.000 0.872 0.116 0.012
#> SRR1818633     3  0.2954      0.751 0.064 0.008 0.900 0.028
#> SRR1818634     3  0.2975      0.749 0.060 0.008 0.900 0.032
#> SRR1818665     1  0.3938      0.838 0.848 0.084 0.064 0.004
#> SRR1818666     1  0.4004      0.835 0.844 0.088 0.064 0.004
#> SRR1818667     4  0.7159      0.536 0.000 0.244 0.200 0.556
#> SRR1818668     4  0.7182      0.532 0.000 0.248 0.200 0.552
#> SRR1818669     1  0.3862      0.811 0.824 0.024 0.152 0.000
#> SRR1818670     1  0.2813      0.863 0.896 0.024 0.080 0.000
#> SRR1818663     1  0.1847      0.876 0.940 0.004 0.052 0.004
#> SRR1818664     1  0.1847      0.876 0.940 0.004 0.052 0.004
#> SRR1818629     2  0.3047      0.811 0.000 0.872 0.116 0.012
#> SRR1818630     2  0.3047      0.811 0.000 0.872 0.116 0.012
#> SRR1818627     1  0.1109      0.882 0.968 0.000 0.028 0.004
#> SRR1818628     1  0.1109      0.882 0.968 0.000 0.028 0.004
#> SRR1818621     4  0.7344      0.206 0.300 0.000 0.188 0.512
#> SRR1818622     4  0.7344      0.206 0.300 0.000 0.188 0.512
#> SRR1818625     1  0.1707      0.883 0.952 0.024 0.020 0.004
#> SRR1818626     1  0.1707      0.883 0.952 0.024 0.020 0.004
#> SRR1818623     4  0.3726      0.507 0.000 0.000 0.212 0.788
#> SRR1818624     4  0.3726      0.507 0.000 0.000 0.212 0.788
#> SRR1818619     3  0.4190      0.660 0.032 0.148 0.816 0.004
#> SRR1818620     3  0.4190      0.660 0.032 0.148 0.816 0.004
#> SRR1818617     2  0.3801      0.685 0.000 0.780 0.220 0.000
#> SRR1818618     2  0.3801      0.685 0.000 0.780 0.220 0.000
#> SRR1818615     4  0.6570      0.594 0.000 0.204 0.164 0.632
#> SRR1818616     4  0.6407      0.601 0.000 0.204 0.148 0.648
#> SRR1818609     4  0.4050      0.634 0.000 0.144 0.036 0.820
#> SRR1818610     4  0.4050      0.634 0.000 0.144 0.036 0.820
#> SRR1818607     2  0.2142      0.802 0.000 0.928 0.016 0.056
#> SRR1818608     2  0.2142      0.802 0.000 0.928 0.016 0.056
#> SRR1818613     1  0.1211      0.878 0.960 0.000 0.040 0.000
#> SRR1818614     1  0.1211      0.878 0.960 0.000 0.040 0.000
#> SRR1818611     1  0.1406      0.879 0.960 0.024 0.016 0.000
#> SRR1818612     1  0.1406      0.879 0.960 0.024 0.016 0.000
#> SRR1818605     1  0.1716      0.862 0.936 0.000 0.064 0.000
#> SRR1818606     1  0.1716      0.862 0.936 0.000 0.064 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1818631     3  0.3612      0.587 0.000 0.000 0.800 0.172 0.028
#> SRR1818632     3  0.3612      0.587 0.000 0.000 0.800 0.172 0.028
#> SRR1818679     3  0.3430      0.708 0.220 0.000 0.776 0.004 0.000
#> SRR1818680     3  0.3461      0.707 0.224 0.000 0.772 0.004 0.000
#> SRR1818677     2  0.1356      0.904 0.000 0.956 0.028 0.012 0.004
#> SRR1818678     2  0.1356      0.904 0.000 0.956 0.028 0.012 0.004
#> SRR1818675     3  0.1329      0.669 0.032 0.000 0.956 0.008 0.004
#> SRR1818676     3  0.1329      0.669 0.032 0.000 0.956 0.008 0.004
#> SRR1818673     2  0.0898      0.909 0.000 0.972 0.008 0.020 0.000
#> SRR1818674     2  0.0898      0.909 0.000 0.972 0.008 0.020 0.000
#> SRR1818671     2  0.5307      0.381 0.000 0.616 0.028 0.332 0.024
#> SRR1818672     2  0.5307      0.381 0.000 0.616 0.028 0.332 0.024
#> SRR1818661     3  0.3656      0.590 0.000 0.000 0.800 0.168 0.032
#> SRR1818662     3  0.3656      0.590 0.000 0.000 0.800 0.168 0.032
#> SRR1818655     1  0.4569      0.735 0.748 0.104 0.000 0.000 0.148
#> SRR1818656     1  0.4569      0.735 0.748 0.104 0.000 0.000 0.148
#> SRR1818653     1  0.2426      0.827 0.900 0.000 0.036 0.000 0.064
#> SRR1818654     1  0.3012      0.804 0.860 0.000 0.036 0.000 0.104
#> SRR1818651     1  0.0510      0.853 0.984 0.000 0.000 0.000 0.016
#> SRR1818652     1  0.0510      0.853 0.984 0.000 0.000 0.000 0.016
#> SRR1818657     1  0.1408      0.853 0.948 0.008 0.000 0.000 0.044
#> SRR1818658     1  0.1331      0.853 0.952 0.008 0.000 0.000 0.040
#> SRR1818649     1  0.1764      0.847 0.928 0.008 0.000 0.000 0.064
#> SRR1818650     1  0.1764      0.847 0.928 0.008 0.000 0.000 0.064
#> SRR1818659     1  0.5481      0.596 0.660 0.232 0.008 0.000 0.100
#> SRR1818647     4  0.4985      0.420 0.000 0.008 0.452 0.524 0.016
#> SRR1818648     4  0.4985      0.420 0.000 0.008 0.452 0.524 0.016
#> SRR1818645     2  0.1815      0.899 0.000 0.940 0.016 0.020 0.024
#> SRR1818646     2  0.1815      0.899 0.000 0.940 0.016 0.020 0.024
#> SRR1818639     1  0.3527      0.773 0.804 0.024 0.000 0.000 0.172
#> SRR1818640     1  0.3476      0.772 0.804 0.020 0.000 0.000 0.176
#> SRR1818637     4  0.1851      0.559 0.000 0.000 0.000 0.912 0.088
#> SRR1818638     4  0.1851      0.559 0.000 0.000 0.000 0.912 0.088
#> SRR1818635     2  0.0510      0.912 0.000 0.984 0.000 0.000 0.016
#> SRR1818636     2  0.0510      0.912 0.000 0.984 0.000 0.000 0.016
#> SRR1818643     2  0.1018      0.909 0.000 0.968 0.016 0.000 0.016
#> SRR1818644     2  0.1018      0.909 0.000 0.968 0.016 0.000 0.016
#> SRR1818641     2  0.0510      0.912 0.000 0.984 0.000 0.000 0.016
#> SRR1818642     2  0.0510      0.912 0.000 0.984 0.000 0.000 0.016
#> SRR1818633     3  0.3461      0.707 0.224 0.000 0.772 0.004 0.000
#> SRR1818634     3  0.3461      0.707 0.224 0.000 0.772 0.004 0.000
#> SRR1818665     1  0.2374      0.846 0.912 0.016 0.020 0.000 0.052
#> SRR1818666     1  0.2374      0.846 0.912 0.016 0.020 0.000 0.052
#> SRR1818667     4  0.5114      0.519 0.000 0.340 0.052 0.608 0.000
#> SRR1818668     4  0.5114      0.519 0.000 0.340 0.052 0.608 0.000
#> SRR1818669     1  0.5648      0.372 0.568 0.028 0.368 0.000 0.036
#> SRR1818670     1  0.5648      0.372 0.568 0.028 0.368 0.000 0.036
#> SRR1818663     1  0.1914      0.851 0.928 0.008 0.008 0.000 0.056
#> SRR1818664     1  0.1843      0.852 0.932 0.008 0.008 0.000 0.052
#> SRR1818629     2  0.0510      0.912 0.000 0.984 0.000 0.000 0.016
#> SRR1818630     2  0.0510      0.912 0.000 0.984 0.000 0.000 0.016
#> SRR1818627     1  0.1792      0.854 0.916 0.000 0.000 0.000 0.084
#> SRR1818628     1  0.1478      0.855 0.936 0.000 0.000 0.000 0.064
#> SRR1818621     5  0.2300      1.000 0.000 0.000 0.040 0.052 0.908
#> SRR1818622     5  0.2300      1.000 0.000 0.000 0.040 0.052 0.908
#> SRR1818625     1  0.2376      0.848 0.904 0.044 0.000 0.000 0.052
#> SRR1818626     1  0.2221      0.851 0.912 0.036 0.000 0.000 0.052
#> SRR1818623     4  0.3966      0.613 0.000 0.008 0.224 0.756 0.012
#> SRR1818624     4  0.3966      0.613 0.000 0.008 0.224 0.756 0.012
#> SRR1818619     3  0.4207      0.688 0.204 0.028 0.760 0.004 0.004
#> SRR1818620     3  0.4207      0.688 0.204 0.028 0.760 0.004 0.004
#> SRR1818617     2  0.2429      0.867 0.000 0.900 0.076 0.020 0.004
#> SRR1818618     2  0.2304      0.870 0.000 0.908 0.068 0.020 0.004
#> SRR1818615     4  0.4809      0.580 0.000 0.296 0.036 0.664 0.004
#> SRR1818616     4  0.4577      0.578 0.000 0.296 0.024 0.676 0.004
#> SRR1818609     4  0.0162      0.611 0.000 0.000 0.000 0.996 0.004
#> SRR1818610     4  0.0162      0.611 0.000 0.000 0.000 0.996 0.004
#> SRR1818607     2  0.2434      0.888 0.000 0.912 0.024 0.040 0.024
#> SRR1818608     2  0.2434      0.888 0.000 0.912 0.024 0.040 0.024
#> SRR1818613     1  0.0771      0.853 0.976 0.000 0.004 0.000 0.020
#> SRR1818614     1  0.0771      0.853 0.976 0.000 0.004 0.000 0.020
#> SRR1818611     1  0.5045      0.558 0.620 0.032 0.008 0.000 0.340
#> SRR1818612     1  0.5045      0.558 0.620 0.032 0.008 0.000 0.340
#> SRR1818605     1  0.1915      0.841 0.928 0.000 0.040 0.000 0.032
#> SRR1818606     1  0.1915      0.841 0.928 0.000 0.040 0.000 0.032

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1818631     3  0.4155     0.5582 0.016 0.000 0.748 0.036 0.004 0.196
#> SRR1818632     3  0.4155     0.5582 0.016 0.000 0.748 0.036 0.004 0.196
#> SRR1818679     3  0.2932     0.7812 0.140 0.000 0.836 0.004 0.020 0.000
#> SRR1818680     3  0.2932     0.7812 0.140 0.000 0.836 0.004 0.020 0.000
#> SRR1818677     2  0.0551     0.7569 0.004 0.984 0.008 0.004 0.000 0.000
#> SRR1818678     2  0.0551     0.7569 0.004 0.984 0.008 0.004 0.000 0.000
#> SRR1818675     3  0.3060     0.7777 0.132 0.000 0.836 0.020 0.012 0.000
#> SRR1818676     3  0.3060     0.7777 0.132 0.000 0.836 0.020 0.012 0.000
#> SRR1818673     2  0.5210     0.4270 0.004 0.680 0.096 0.196 0.008 0.016
#> SRR1818674     2  0.5210     0.4270 0.004 0.680 0.096 0.196 0.008 0.016
#> SRR1818671     4  0.5349     0.2838 0.004 0.452 0.048 0.476 0.000 0.020
#> SRR1818672     4  0.5349     0.2838 0.004 0.452 0.048 0.476 0.000 0.020
#> SRR1818661     3  0.4016     0.5592 0.016 0.000 0.752 0.036 0.000 0.196
#> SRR1818662     3  0.4016     0.5592 0.016 0.000 0.752 0.036 0.000 0.196
#> SRR1818655     5  0.4299     0.4255 0.040 0.308 0.000 0.000 0.652 0.000
#> SRR1818656     5  0.4282     0.4280 0.040 0.304 0.000 0.000 0.656 0.000
#> SRR1818653     5  0.4961     0.1107 0.348 0.000 0.080 0.000 0.572 0.000
#> SRR1818654     5  0.5071     0.1228 0.340 0.000 0.080 0.000 0.576 0.004
#> SRR1818651     1  0.3489     0.7945 0.708 0.000 0.000 0.000 0.288 0.004
#> SRR1818652     1  0.3508     0.7924 0.704 0.000 0.000 0.000 0.292 0.004
#> SRR1818657     1  0.3645     0.8074 0.740 0.024 0.000 0.000 0.236 0.000
#> SRR1818658     1  0.4330     0.7521 0.696 0.068 0.000 0.000 0.236 0.000
#> SRR1818649     5  0.6103    -0.0659 0.320 0.244 0.000 0.000 0.432 0.004
#> SRR1818650     5  0.6103    -0.0659 0.320 0.244 0.000 0.000 0.432 0.004
#> SRR1818659     2  0.4701    -0.0905 0.036 0.524 0.004 0.000 0.436 0.000
#> SRR1818647     4  0.5392     0.4801 0.012 0.000 0.284 0.592 0.000 0.112
#> SRR1818648     4  0.5392     0.4801 0.012 0.000 0.284 0.592 0.000 0.112
#> SRR1818645     2  0.2537     0.7145 0.000 0.880 0.008 0.088 0.000 0.024
#> SRR1818646     2  0.2537     0.7145 0.000 0.880 0.008 0.088 0.000 0.024
#> SRR1818639     5  0.4316     0.4228 0.040 0.312 0.000 0.000 0.648 0.000
#> SRR1818640     5  0.4299     0.4257 0.040 0.308 0.000 0.000 0.652 0.000
#> SRR1818637     4  0.0632     0.6221 0.000 0.000 0.000 0.976 0.000 0.024
#> SRR1818638     4  0.0632     0.6221 0.000 0.000 0.000 0.976 0.000 0.024
#> SRR1818635     2  0.3245     0.7613 0.184 0.796 0.000 0.000 0.016 0.004
#> SRR1818636     2  0.3245     0.7613 0.184 0.796 0.000 0.000 0.016 0.004
#> SRR1818643     2  0.5073     0.7025 0.172 0.692 0.112 0.000 0.012 0.012
#> SRR1818644     2  0.5073     0.7025 0.172 0.692 0.112 0.000 0.012 0.012
#> SRR1818641     2  0.3245     0.7613 0.184 0.796 0.000 0.000 0.016 0.004
#> SRR1818642     2  0.3245     0.7613 0.184 0.796 0.000 0.000 0.016 0.004
#> SRR1818633     3  0.2932     0.7812 0.140 0.000 0.836 0.004 0.020 0.000
#> SRR1818634     3  0.2932     0.7812 0.140 0.000 0.836 0.004 0.020 0.000
#> SRR1818665     1  0.2823     0.8012 0.796 0.000 0.000 0.000 0.204 0.000
#> SRR1818666     1  0.2823     0.8012 0.796 0.000 0.000 0.000 0.204 0.000
#> SRR1818667     4  0.4834     0.6375 0.000 0.224 0.120 0.656 0.000 0.000
#> SRR1818668     4  0.4834     0.6375 0.000 0.224 0.120 0.656 0.000 0.000
#> SRR1818669     3  0.6691     0.5351 0.244 0.068 0.520 0.000 0.160 0.008
#> SRR1818670     3  0.6691     0.5351 0.244 0.068 0.520 0.000 0.160 0.008
#> SRR1818663     1  0.3192     0.7924 0.776 0.004 0.004 0.000 0.216 0.000
#> SRR1818664     1  0.2883     0.7968 0.788 0.000 0.000 0.000 0.212 0.000
#> SRR1818629     2  0.3245     0.7613 0.184 0.796 0.000 0.000 0.016 0.004
#> SRR1818630     2  0.3245     0.7613 0.184 0.796 0.000 0.000 0.016 0.004
#> SRR1818627     1  0.3650     0.8016 0.716 0.008 0.004 0.000 0.272 0.000
#> SRR1818628     1  0.3628     0.8043 0.720 0.004 0.008 0.000 0.268 0.000
#> SRR1818621     6  0.3297     1.0000 0.008 0.000 0.020 0.064 0.056 0.852
#> SRR1818622     6  0.3297     1.0000 0.008 0.000 0.020 0.064 0.056 0.852
#> SRR1818625     1  0.5851     0.3784 0.476 0.220 0.000 0.000 0.304 0.000
#> SRR1818626     1  0.5862     0.3676 0.468 0.216 0.000 0.000 0.316 0.000
#> SRR1818623     4  0.4174     0.6083 0.000 0.000 0.184 0.732 0.000 0.084
#> SRR1818624     4  0.4174     0.6083 0.000 0.000 0.184 0.732 0.000 0.084
#> SRR1818619     3  0.4550     0.7629 0.140 0.036 0.768 0.024 0.024 0.008
#> SRR1818620     3  0.4550     0.7629 0.140 0.036 0.768 0.024 0.024 0.008
#> SRR1818617     2  0.2510     0.7120 0.000 0.872 0.100 0.028 0.000 0.000
#> SRR1818618     2  0.2412     0.7190 0.000 0.880 0.092 0.028 0.000 0.000
#> SRR1818615     4  0.3663     0.6626 0.004 0.180 0.040 0.776 0.000 0.000
#> SRR1818616     4  0.3663     0.6626 0.004 0.180 0.040 0.776 0.000 0.000
#> SRR1818609     4  0.0146     0.6292 0.000 0.000 0.000 0.996 0.000 0.004
#> SRR1818610     4  0.0146     0.6292 0.000 0.000 0.000 0.996 0.000 0.004
#> SRR1818607     2  0.3194     0.6418 0.000 0.808 0.004 0.168 0.000 0.020
#> SRR1818608     2  0.3194     0.6418 0.000 0.808 0.004 0.168 0.000 0.020
#> SRR1818613     5  0.4095     0.4133 0.216 0.000 0.060 0.000 0.724 0.000
#> SRR1818614     5  0.4095     0.4133 0.216 0.000 0.060 0.000 0.724 0.000
#> SRR1818611     5  0.1007     0.4712 0.016 0.004 0.004 0.000 0.968 0.008
#> SRR1818612     5  0.1007     0.4712 0.016 0.004 0.004 0.000 0.968 0.008
#> SRR1818605     5  0.4264     0.4275 0.196 0.000 0.084 0.000 0.720 0.000
#> SRR1818606     5  0.4264     0.4275 0.196 0.000 0.084 0.000 0.720 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 15216 rows and 75 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.707           0.846       0.934         0.4237 0.604   0.604
#> 3 3 0.981           0.917       0.970         0.2825 0.792   0.674
#> 4 4 0.621           0.794       0.882         0.2282 0.816   0.620
#> 5 5 0.562           0.575       0.683         0.0938 0.858   0.590
#> 6 6 0.576           0.282       0.592         0.0609 0.805   0.419

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>            class entropy silhouette    p1    p2
#> SRR1818631     1  0.0000      0.914 1.000 0.000
#> SRR1818632     1  0.0000      0.914 1.000 0.000
#> SRR1818679     1  0.0000      0.914 1.000 0.000
#> SRR1818680     1  0.0000      0.914 1.000 0.000
#> SRR1818677     1  0.8763      0.629 0.704 0.296
#> SRR1818678     1  0.8713      0.636 0.708 0.292
#> SRR1818675     1  0.0000      0.914 1.000 0.000
#> SRR1818676     1  0.0000      0.914 1.000 0.000
#> SRR1818673     2  0.9732      0.220 0.404 0.596
#> SRR1818674     2  0.9732      0.220 0.404 0.596
#> SRR1818671     2  0.0000      0.949 0.000 1.000
#> SRR1818672     2  0.0000      0.949 0.000 1.000
#> SRR1818661     1  0.7219      0.705 0.800 0.200
#> SRR1818662     1  0.7219      0.705 0.800 0.200
#> SRR1818655     1  0.0376      0.912 0.996 0.004
#> SRR1818656     1  0.0376      0.912 0.996 0.004
#> SRR1818653     1  0.0000      0.914 1.000 0.000
#> SRR1818654     1  0.0000      0.914 1.000 0.000
#> SRR1818651     1  0.0000      0.914 1.000 0.000
#> SRR1818652     1  0.0000      0.914 1.000 0.000
#> SRR1818657     1  0.0000      0.914 1.000 0.000
#> SRR1818658     1  0.0000      0.914 1.000 0.000
#> SRR1818649     1  0.0000      0.914 1.000 0.000
#> SRR1818650     1  0.0000      0.914 1.000 0.000
#> SRR1818659     1  0.0000      0.914 1.000 0.000
#> SRR1818647     2  0.0672      0.944 0.008 0.992
#> SRR1818648     2  0.0672      0.944 0.008 0.992
#> SRR1818645     2  0.0000      0.949 0.000 1.000
#> SRR1818646     2  0.0000      0.949 0.000 1.000
#> SRR1818639     1  0.0376      0.912 0.996 0.004
#> SRR1818640     1  0.0376      0.912 0.996 0.004
#> SRR1818637     2  0.0000      0.949 0.000 1.000
#> SRR1818638     2  0.0000      0.949 0.000 1.000
#> SRR1818635     1  0.8327      0.674 0.736 0.264
#> SRR1818636     1  0.8443      0.664 0.728 0.272
#> SRR1818643     1  0.8955      0.603 0.688 0.312
#> SRR1818644     1  0.8661      0.642 0.712 0.288
#> SRR1818641     1  0.8144      0.689 0.748 0.252
#> SRR1818642     1  0.8267      0.679 0.740 0.260
#> SRR1818633     1  0.0000      0.914 1.000 0.000
#> SRR1818634     1  0.0000      0.914 1.000 0.000
#> SRR1818665     1  0.0000      0.914 1.000 0.000
#> SRR1818666     1  0.0000      0.914 1.000 0.000
#> SRR1818667     2  0.0000      0.949 0.000 1.000
#> SRR1818668     2  0.0000      0.949 0.000 1.000
#> SRR1818669     1  0.0000      0.914 1.000 0.000
#> SRR1818670     1  0.0000      0.914 1.000 0.000
#> SRR1818663     1  0.0000      0.914 1.000 0.000
#> SRR1818664     1  0.0000      0.914 1.000 0.000
#> SRR1818629     1  0.9922      0.283 0.552 0.448
#> SRR1818630     1  0.9795      0.375 0.584 0.416
#> SRR1818627     1  0.0000      0.914 1.000 0.000
#> SRR1818628     1  0.0000      0.914 1.000 0.000
#> SRR1818621     1  0.0000      0.914 1.000 0.000
#> SRR1818622     1  0.0000      0.914 1.000 0.000
#> SRR1818625     1  0.0000      0.914 1.000 0.000
#> SRR1818626     1  0.0000      0.914 1.000 0.000
#> SRR1818623     2  0.0672      0.944 0.008 0.992
#> SRR1818624     2  0.0672      0.944 0.008 0.992
#> SRR1818619     1  0.0376      0.912 0.996 0.004
#> SRR1818620     1  0.0376      0.912 0.996 0.004
#> SRR1818617     1  0.9000      0.596 0.684 0.316
#> SRR1818618     1  0.8713      0.636 0.708 0.292
#> SRR1818615     2  0.0000      0.949 0.000 1.000
#> SRR1818616     2  0.0000      0.949 0.000 1.000
#> SRR1818609     2  0.0000      0.949 0.000 1.000
#> SRR1818610     2  0.0000      0.949 0.000 1.000
#> SRR1818607     2  0.0000      0.949 0.000 1.000
#> SRR1818608     2  0.0000      0.949 0.000 1.000
#> SRR1818613     1  0.0000      0.914 1.000 0.000
#> SRR1818614     1  0.0000      0.914 1.000 0.000
#> SRR1818611     1  0.0000      0.914 1.000 0.000
#> SRR1818612     1  0.0000      0.914 1.000 0.000
#> SRR1818605     1  0.0000      0.914 1.000 0.000
#> SRR1818606     1  0.0000      0.914 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>            class entropy silhouette    p1    p2    p3
#> SRR1818631     3  0.0000      0.884 0.000 0.000 1.000
#> SRR1818632     3  0.0000      0.884 0.000 0.000 1.000
#> SRR1818679     1  0.1860      0.923 0.948 0.000 0.052
#> SRR1818680     1  0.1163      0.949 0.972 0.000 0.028
#> SRR1818677     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818678     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818675     3  0.0000      0.884 0.000 0.000 1.000
#> SRR1818676     3  0.0000      0.884 0.000 0.000 1.000
#> SRR1818673     1  0.0892      0.956 0.980 0.020 0.000
#> SRR1818674     1  0.1031      0.952 0.976 0.024 0.000
#> SRR1818671     2  0.0000      0.964 0.000 1.000 0.000
#> SRR1818672     2  0.0000      0.964 0.000 1.000 0.000
#> SRR1818661     3  0.0000      0.884 0.000 0.000 1.000
#> SRR1818662     3  0.0000      0.884 0.000 0.000 1.000
#> SRR1818655     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818656     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818653     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818654     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818651     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818652     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818657     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818658     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818649     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818650     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818659     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818647     2  0.5397      0.626 0.000 0.720 0.280
#> SRR1818648     2  0.5560      0.591 0.000 0.700 0.300
#> SRR1818645     2  0.0000      0.964 0.000 1.000 0.000
#> SRR1818646     2  0.0000      0.964 0.000 1.000 0.000
#> SRR1818639     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818640     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818637     2  0.0000      0.964 0.000 1.000 0.000
#> SRR1818638     2  0.0000      0.964 0.000 1.000 0.000
#> SRR1818635     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818636     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818643     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818644     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818641     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818642     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818633     1  0.6252      0.102 0.556 0.000 0.444
#> SRR1818634     1  0.6244      0.117 0.560 0.000 0.440
#> SRR1818665     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818666     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818667     2  0.0000      0.964 0.000 1.000 0.000
#> SRR1818668     2  0.0000      0.964 0.000 1.000 0.000
#> SRR1818669     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818670     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818663     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818664     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818629     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818630     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818627     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818628     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818621     3  0.0000      0.884 0.000 0.000 1.000
#> SRR1818622     3  0.0000      0.884 0.000 0.000 1.000
#> SRR1818625     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818626     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818623     2  0.0000      0.964 0.000 1.000 0.000
#> SRR1818624     2  0.0000      0.964 0.000 1.000 0.000
#> SRR1818619     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818620     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818617     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818618     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818615     2  0.0000      0.964 0.000 1.000 0.000
#> SRR1818616     2  0.0000      0.964 0.000 1.000 0.000
#> SRR1818609     2  0.0000      0.964 0.000 1.000 0.000
#> SRR1818610     2  0.0000      0.964 0.000 1.000 0.000
#> SRR1818607     2  0.0000      0.964 0.000 1.000 0.000
#> SRR1818608     2  0.0000      0.964 0.000 1.000 0.000
#> SRR1818613     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818614     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818611     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818612     1  0.0000      0.976 1.000 0.000 0.000
#> SRR1818605     3  0.5835      0.520 0.340 0.000 0.660
#> SRR1818606     3  0.5835      0.520 0.340 0.000 0.660

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>            class entropy silhouette    p1    p2    p3    p4
#> SRR1818631     3  0.0188     0.8466 0.000 0.000 0.996 0.004
#> SRR1818632     3  0.0336     0.8459 0.000 0.000 0.992 0.008
#> SRR1818679     3  0.6179     0.4499 0.320 0.000 0.608 0.072
#> SRR1818680     1  0.6471     0.0799 0.512 0.000 0.416 0.072
#> SRR1818677     1  0.1297     0.8601 0.964 0.016 0.000 0.020
#> SRR1818678     1  0.1297     0.8601 0.964 0.016 0.000 0.020
#> SRR1818675     3  0.0000     0.8468 0.000 0.000 1.000 0.000
#> SRR1818676     3  0.0188     0.8463 0.004 0.000 0.996 0.000
#> SRR1818673     1  0.2401     0.8138 0.904 0.092 0.000 0.004
#> SRR1818674     1  0.2401     0.8138 0.904 0.092 0.000 0.004
#> SRR1818671     2  0.2053     0.8752 0.072 0.924 0.000 0.004
#> SRR1818672     2  0.2053     0.8752 0.072 0.924 0.000 0.004
#> SRR1818661     3  0.0000     0.8468 0.000 0.000 1.000 0.000
#> SRR1818662     3  0.0000     0.8468 0.000 0.000 1.000 0.000
#> SRR1818655     1  0.2281     0.8753 0.904 0.000 0.000 0.096
#> SRR1818656     1  0.2408     0.8724 0.896 0.000 0.000 0.104
#> SRR1818653     4  0.2647     0.8291 0.120 0.000 0.000 0.880
#> SRR1818654     4  0.2530     0.8270 0.112 0.000 0.000 0.888
#> SRR1818651     1  0.3873     0.7542 0.772 0.000 0.000 0.228
#> SRR1818652     1  0.4072     0.7224 0.748 0.000 0.000 0.252
#> SRR1818657     1  0.1867     0.8797 0.928 0.000 0.000 0.072
#> SRR1818658     1  0.2011     0.8789 0.920 0.000 0.000 0.080
#> SRR1818649     1  0.3649     0.8079 0.796 0.000 0.000 0.204
#> SRR1818650     1  0.3688     0.7961 0.792 0.000 0.000 0.208
#> SRR1818659     4  0.4999    -0.0172 0.492 0.000 0.000 0.508
#> SRR1818647     3  0.2216     0.8079 0.000 0.092 0.908 0.000
#> SRR1818648     3  0.2011     0.8151 0.000 0.080 0.920 0.000
#> SRR1818645     2  0.2867     0.8524 0.104 0.884 0.000 0.012
#> SRR1818646     2  0.3105     0.8384 0.120 0.868 0.000 0.012
#> SRR1818639     1  0.4072     0.7196 0.748 0.000 0.000 0.252
#> SRR1818640     1  0.3975     0.7391 0.760 0.000 0.000 0.240
#> SRR1818637     2  0.0592     0.8616 0.000 0.984 0.000 0.016
#> SRR1818638     2  0.0592     0.8616 0.000 0.984 0.000 0.016
#> SRR1818635     1  0.1284     0.8761 0.964 0.012 0.000 0.024
#> SRR1818636     1  0.1004     0.8785 0.972 0.004 0.000 0.024
#> SRR1818643     1  0.1174     0.8629 0.968 0.012 0.000 0.020
#> SRR1818644     1  0.1174     0.8629 0.968 0.012 0.000 0.020
#> SRR1818641     1  0.1059     0.8670 0.972 0.012 0.000 0.016
#> SRR1818642     1  0.1388     0.8719 0.960 0.012 0.000 0.028
#> SRR1818633     3  0.4391     0.6005 0.252 0.000 0.740 0.008
#> SRR1818634     3  0.4053     0.6371 0.228 0.000 0.768 0.004
#> SRR1818665     1  0.2149     0.8788 0.912 0.000 0.000 0.088
#> SRR1818666     1  0.2149     0.8788 0.912 0.000 0.000 0.088
#> SRR1818667     2  0.1978     0.8763 0.068 0.928 0.000 0.004
#> SRR1818668     2  0.1978     0.8763 0.068 0.928 0.000 0.004
#> SRR1818669     1  0.2814     0.8717 0.868 0.000 0.000 0.132
#> SRR1818670     1  0.2814     0.8717 0.868 0.000 0.000 0.132
#> SRR1818663     1  0.2281     0.8768 0.904 0.000 0.000 0.096
#> SRR1818664     1  0.2345     0.8757 0.900 0.000 0.000 0.100
#> SRR1818629     1  0.2089     0.8421 0.932 0.048 0.000 0.020
#> SRR1818630     1  0.1936     0.8505 0.940 0.032 0.000 0.028
#> SRR1818627     1  0.2760     0.8730 0.872 0.000 0.000 0.128
#> SRR1818628     1  0.2760     0.8730 0.872 0.000 0.000 0.128
#> SRR1818621     4  0.3088     0.7232 0.008 0.000 0.128 0.864
#> SRR1818622     4  0.3088     0.7232 0.008 0.000 0.128 0.864
#> SRR1818625     1  0.1940     0.8793 0.924 0.000 0.000 0.076
#> SRR1818626     1  0.2011     0.8787 0.920 0.000 0.000 0.080
#> SRR1818623     2  0.1182     0.8533 0.000 0.968 0.016 0.016
#> SRR1818624     2  0.1706     0.8416 0.000 0.948 0.036 0.016
#> SRR1818619     1  0.2760     0.8720 0.872 0.000 0.000 0.128
#> SRR1818620     1  0.2760     0.8720 0.872 0.000 0.000 0.128
#> SRR1818617     1  0.2048     0.8358 0.928 0.064 0.000 0.008
#> SRR1818618     1  0.2060     0.8417 0.932 0.052 0.000 0.016
#> SRR1818615     2  0.1637     0.8772 0.060 0.940 0.000 0.000
#> SRR1818616     2  0.1474     0.8768 0.052 0.948 0.000 0.000
#> SRR1818609     2  0.0592     0.8616 0.000 0.984 0.000 0.016
#> SRR1818610     2  0.0592     0.8616 0.000 0.984 0.000 0.016
#> SRR1818607     2  0.5203     0.5241 0.348 0.636 0.000 0.016
#> SRR1818608     2  0.5512     0.1360 0.492 0.492 0.000 0.016
#> SRR1818613     4  0.3219     0.8155 0.164 0.000 0.000 0.836
#> SRR1818614     4  0.3444     0.7968 0.184 0.000 0.000 0.816
#> SRR1818611     4  0.2973     0.8281 0.144 0.000 0.000 0.856
#> SRR1818612     4  0.2973     0.8282 0.144 0.000 0.000 0.856
#> SRR1818605     4  0.3749     0.7560 0.032 0.000 0.128 0.840
#> SRR1818606     4  0.3638     0.7611 0.032 0.000 0.120 0.848

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>            class entropy silhouette    p1    p2    p3    p4    p5
#> SRR1818631     3  0.1557     0.8138 0.000 0.052 0.940 0.000 0.008
#> SRR1818632     3  0.1894     0.8082 0.000 0.072 0.920 0.000 0.008
#> SRR1818679     3  0.6863     0.2260 0.324 0.264 0.408 0.000 0.004
#> SRR1818680     1  0.6915    -0.2452 0.388 0.292 0.316 0.000 0.004
#> SRR1818677     2  0.4434     0.8482 0.460 0.536 0.000 0.004 0.000
#> SRR1818678     2  0.4434     0.8409 0.460 0.536 0.000 0.004 0.000
#> SRR1818675     3  0.1628     0.8202 0.008 0.056 0.936 0.000 0.000
#> SRR1818676     3  0.1628     0.8202 0.008 0.056 0.936 0.000 0.000
#> SRR1818673     2  0.4978     0.8216 0.476 0.496 0.000 0.028 0.000
#> SRR1818674     2  0.4905     0.8326 0.476 0.500 0.000 0.024 0.000
#> SRR1818671     4  0.3949     0.7569 0.000 0.332 0.000 0.668 0.000
#> SRR1818672     4  0.3932     0.7592 0.000 0.328 0.000 0.672 0.000
#> SRR1818661     3  0.0324     0.8209 0.000 0.004 0.992 0.000 0.004
#> SRR1818662     3  0.0324     0.8209 0.000 0.004 0.992 0.000 0.004
#> SRR1818655     1  0.4169     0.3155 0.732 0.240 0.000 0.000 0.028
#> SRR1818656     1  0.4192     0.3160 0.736 0.232 0.000 0.000 0.032
#> SRR1818653     5  0.0794     0.7407 0.028 0.000 0.000 0.000 0.972
#> SRR1818654     5  0.0880     0.7423 0.032 0.000 0.000 0.000 0.968
#> SRR1818651     1  0.3861     0.4234 0.728 0.008 0.000 0.000 0.264
#> SRR1818652     1  0.3759     0.4902 0.764 0.016 0.000 0.000 0.220
#> SRR1818657     1  0.3452     0.2941 0.756 0.244 0.000 0.000 0.000
#> SRR1818658     1  0.3607     0.2933 0.752 0.244 0.000 0.000 0.004
#> SRR1818649     1  0.4452     0.3426 0.696 0.272 0.000 0.000 0.032
#> SRR1818650     1  0.4503     0.3410 0.696 0.268 0.000 0.000 0.036
#> SRR1818659     1  0.5550     0.2395 0.528 0.072 0.000 0.000 0.400
#> SRR1818647     3  0.4219     0.7510 0.000 0.104 0.780 0.116 0.000
#> SRR1818648     3  0.4073     0.7603 0.000 0.104 0.792 0.104 0.000
#> SRR1818645     2  0.5987     0.6561 0.272 0.572 0.000 0.156 0.000
#> SRR1818646     2  0.6063     0.6266 0.256 0.568 0.000 0.176 0.000
#> SRR1818639     1  0.5642     0.3377 0.636 0.184 0.000 0.000 0.180
#> SRR1818640     1  0.5605     0.3301 0.640 0.192 0.000 0.000 0.168
#> SRR1818637     4  0.0290     0.7824 0.000 0.008 0.000 0.992 0.000
#> SRR1818638     4  0.0290     0.7824 0.000 0.008 0.000 0.992 0.000
#> SRR1818635     1  0.4262    -0.6223 0.560 0.440 0.000 0.000 0.000
#> SRR1818636     1  0.4262    -0.6238 0.560 0.440 0.000 0.000 0.000
#> SRR1818643     2  0.4294     0.8478 0.468 0.532 0.000 0.000 0.000
#> SRR1818644     2  0.4294     0.8478 0.468 0.532 0.000 0.000 0.000
#> SRR1818641     2  0.4434     0.8507 0.460 0.536 0.000 0.000 0.004
#> SRR1818642     2  0.4440     0.8433 0.468 0.528 0.000 0.000 0.004
#> SRR1818633     3  0.3988     0.6229 0.196 0.036 0.768 0.000 0.000
#> SRR1818634     3  0.2997     0.7120 0.148 0.012 0.840 0.000 0.000
#> SRR1818665     1  0.0290     0.5534 0.992 0.008 0.000 0.000 0.000
#> SRR1818666     1  0.0162     0.5547 0.996 0.004 0.000 0.000 0.000
#> SRR1818667     4  0.3837     0.7825 0.000 0.308 0.000 0.692 0.000
#> SRR1818668     4  0.3816     0.7844 0.000 0.304 0.000 0.696 0.000
#> SRR1818669     1  0.1965     0.5505 0.904 0.096 0.000 0.000 0.000
#> SRR1818670     1  0.1732     0.5546 0.920 0.080 0.000 0.000 0.000
#> SRR1818663     1  0.1493     0.5635 0.948 0.028 0.000 0.000 0.024
#> SRR1818664     1  0.1310     0.5635 0.956 0.020 0.000 0.000 0.024
#> SRR1818629     2  0.4273     0.8524 0.448 0.552 0.000 0.000 0.000
#> SRR1818630     2  0.4273     0.8524 0.448 0.552 0.000 0.000 0.000
#> SRR1818627     1  0.3561     0.4071 0.740 0.260 0.000 0.000 0.000
#> SRR1818628     1  0.3741     0.3974 0.732 0.264 0.000 0.000 0.004
#> SRR1818621     5  0.0290     0.7194 0.000 0.000 0.008 0.000 0.992
#> SRR1818622     5  0.0290     0.7194 0.000 0.000 0.008 0.000 0.992
#> SRR1818625     1  0.2338     0.4910 0.884 0.112 0.000 0.000 0.004
#> SRR1818626     1  0.2124     0.5051 0.900 0.096 0.000 0.000 0.004
#> SRR1818623     4  0.1626     0.7582 0.000 0.044 0.016 0.940 0.000
#> SRR1818624     4  0.1626     0.7582 0.000 0.044 0.016 0.940 0.000
#> SRR1818619     1  0.3491     0.4276 0.768 0.228 0.000 0.000 0.004
#> SRR1818620     1  0.3461     0.4254 0.772 0.224 0.000 0.000 0.004
#> SRR1818617     1  0.4482    -0.2478 0.612 0.376 0.000 0.012 0.000
#> SRR1818618     1  0.4166    -0.0813 0.648 0.348 0.000 0.004 0.000
#> SRR1818615     4  0.3913     0.7813 0.000 0.324 0.000 0.676 0.000
#> SRR1818616     4  0.3837     0.7859 0.000 0.308 0.000 0.692 0.000
#> SRR1818609     4  0.0404     0.7802 0.000 0.012 0.000 0.988 0.000
#> SRR1818610     4  0.0404     0.7802 0.000 0.012 0.000 0.988 0.000
#> SRR1818607     2  0.5546     0.7659 0.340 0.576 0.000 0.084 0.000
#> SRR1818608     2  0.5435     0.7798 0.352 0.576 0.000 0.072 0.000
#> SRR1818613     5  0.5984     0.4674 0.416 0.096 0.004 0.000 0.484
#> SRR1818614     5  0.5935     0.4839 0.408 0.092 0.004 0.000 0.496
#> SRR1818611     5  0.2966     0.7399 0.184 0.000 0.000 0.000 0.816
#> SRR1818612     5  0.2813     0.7482 0.168 0.000 0.000 0.000 0.832
#> SRR1818605     5  0.6085     0.6583 0.212 0.036 0.112 0.000 0.640
#> SRR1818606     5  0.5926     0.6744 0.212 0.040 0.092 0.000 0.656

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>            class entropy silhouette    p1    p2    p3    p4    p5    p6
#> SRR1818631     3  0.3965     0.6117 0.000 0.008 0.604 0.000 0.000 0.388
#> SRR1818632     3  0.4057     0.5815 0.000 0.008 0.556 0.000 0.000 0.436
#> SRR1818679     6  0.3608     0.4083 0.072 0.016 0.096 0.000 0.000 0.816
#> SRR1818680     6  0.3164     0.4937 0.096 0.012 0.048 0.000 0.000 0.844
#> SRR1818677     1  0.3989    -0.0654 0.528 0.468 0.000 0.000 0.000 0.004
#> SRR1818678     1  0.3986    -0.0555 0.532 0.464 0.000 0.000 0.000 0.004
#> SRR1818675     3  0.4652     0.4158 0.004 0.024 0.520 0.004 0.000 0.448
#> SRR1818676     3  0.4510     0.4617 0.008 0.020 0.556 0.000 0.000 0.416
#> SRR1818673     1  0.4576    -0.0991 0.504 0.468 0.000 0.016 0.000 0.012
#> SRR1818674     1  0.4389    -0.1039 0.512 0.468 0.000 0.016 0.000 0.004
#> SRR1818671     4  0.5761    -0.2592 0.172 0.396 0.000 0.432 0.000 0.000
#> SRR1818672     4  0.5735    -0.2414 0.168 0.388 0.000 0.444 0.000 0.000
#> SRR1818661     3  0.0777     0.6954 0.000 0.004 0.972 0.000 0.000 0.024
#> SRR1818662     3  0.0777     0.6954 0.000 0.004 0.972 0.000 0.000 0.024
#> SRR1818655     1  0.1053     0.3817 0.964 0.012 0.000 0.000 0.004 0.020
#> SRR1818656     1  0.1275     0.3782 0.956 0.012 0.000 0.000 0.016 0.016
#> SRR1818653     5  0.1204     0.8138 0.056 0.000 0.000 0.000 0.944 0.000
#> SRR1818654     5  0.1075     0.8115 0.048 0.000 0.000 0.000 0.952 0.000
#> SRR1818651     1  0.6443    -0.3680 0.428 0.028 0.000 0.000 0.340 0.204
#> SRR1818652     1  0.6589    -0.4178 0.420 0.032 0.000 0.000 0.304 0.244
#> SRR1818657     1  0.2006     0.4312 0.904 0.080 0.000 0.000 0.000 0.016
#> SRR1818658     1  0.2006     0.4307 0.904 0.080 0.000 0.000 0.000 0.016
#> SRR1818649     6  0.5638     0.6837 0.412 0.116 0.000 0.000 0.008 0.464
#> SRR1818650     6  0.5731     0.6630 0.424 0.128 0.000 0.000 0.008 0.440
#> SRR1818659     1  0.3999    -0.3388 0.500 0.000 0.000 0.000 0.496 0.004
#> SRR1818647     3  0.5161     0.5418 0.000 0.264 0.636 0.076 0.000 0.024
#> SRR1818648     3  0.5073     0.5516 0.000 0.256 0.648 0.072 0.000 0.024
#> SRR1818645     2  0.3819     0.2858 0.372 0.624 0.000 0.004 0.000 0.000
#> SRR1818646     2  0.3934     0.2851 0.376 0.616 0.000 0.008 0.000 0.000
#> SRR1818639     1  0.3915     0.3997 0.776 0.092 0.000 0.000 0.128 0.004
#> SRR1818640     1  0.3612     0.4030 0.804 0.092 0.000 0.000 0.100 0.004
#> SRR1818637     4  0.0458     0.6910 0.000 0.016 0.000 0.984 0.000 0.000
#> SRR1818638     4  0.0458     0.6910 0.000 0.016 0.000 0.984 0.000 0.000
#> SRR1818635     1  0.3756     0.2789 0.712 0.268 0.000 0.000 0.000 0.020
#> SRR1818636     1  0.3606     0.2737 0.728 0.256 0.000 0.000 0.000 0.016
#> SRR1818643     1  0.4161    -0.0381 0.540 0.448 0.000 0.000 0.000 0.012
#> SRR1818644     1  0.4157    -0.0235 0.544 0.444 0.000 0.000 0.000 0.012
#> SRR1818641     1  0.3971    -0.0303 0.548 0.448 0.000 0.000 0.000 0.004
#> SRR1818642     1  0.3950    -0.0152 0.564 0.432 0.000 0.004 0.000 0.000
#> SRR1818633     3  0.3017     0.6571 0.132 0.016 0.840 0.008 0.000 0.004
#> SRR1818634     3  0.2708     0.6703 0.112 0.012 0.864 0.008 0.000 0.004
#> SRR1818665     1  0.4063    -0.4781 0.572 0.004 0.000 0.000 0.004 0.420
#> SRR1818666     1  0.4063    -0.4781 0.572 0.004 0.000 0.000 0.004 0.420
#> SRR1818667     2  0.4284     0.0989 0.012 0.544 0.004 0.440 0.000 0.000
#> SRR1818668     2  0.4169     0.0798 0.012 0.532 0.000 0.456 0.000 0.000
#> SRR1818669     6  0.4178     0.7334 0.372 0.020 0.000 0.000 0.000 0.608
#> SRR1818670     6  0.4099     0.7372 0.372 0.016 0.000 0.000 0.000 0.612
#> SRR1818663     1  0.5645    -0.6113 0.488 0.136 0.000 0.000 0.004 0.372
#> SRR1818664     1  0.5592    -0.6075 0.492 0.128 0.000 0.000 0.004 0.376
#> SRR1818629     1  0.3989    -0.0636 0.528 0.468 0.000 0.000 0.000 0.004
#> SRR1818630     1  0.3989    -0.0662 0.528 0.468 0.000 0.000 0.000 0.004
#> SRR1818627     6  0.3607     0.7702 0.348 0.000 0.000 0.000 0.000 0.652
#> SRR1818628     6  0.3634     0.7702 0.356 0.000 0.000 0.000 0.000 0.644
#> SRR1818621     5  0.0146     0.7766 0.000 0.000 0.000 0.000 0.996 0.004
#> SRR1818622     5  0.0146     0.7766 0.000 0.000 0.000 0.000 0.996 0.004
#> SRR1818625     1  0.3288    -0.0731 0.724 0.000 0.000 0.000 0.000 0.276
#> SRR1818626     1  0.3547    -0.1568 0.696 0.004 0.000 0.000 0.000 0.300
#> SRR1818623     4  0.4309     0.5726 0.000 0.104 0.020 0.760 0.000 0.116
#> SRR1818624     4  0.4255     0.5794 0.000 0.096 0.024 0.768 0.000 0.112
#> SRR1818619     1  0.4647     0.3479 0.700 0.096 0.000 0.008 0.000 0.196
#> SRR1818620     1  0.4374     0.3527 0.732 0.088 0.000 0.008 0.000 0.172
#> SRR1818617     1  0.4109     0.1923 0.652 0.328 0.000 0.008 0.000 0.012
#> SRR1818618     1  0.4235     0.2323 0.668 0.300 0.000 0.008 0.000 0.024
#> SRR1818615     2  0.4350     0.0216 0.000 0.552 0.004 0.428 0.000 0.016
#> SRR1818616     2  0.4386    -0.0545 0.000 0.516 0.004 0.464 0.000 0.016
#> SRR1818609     4  0.0551     0.6905 0.000 0.004 0.008 0.984 0.000 0.004
#> SRR1818610     4  0.0436     0.6918 0.000 0.004 0.004 0.988 0.000 0.004
#> SRR1818607     2  0.3984     0.2585 0.396 0.596 0.000 0.008 0.000 0.000
#> SRR1818608     2  0.4049     0.2253 0.412 0.580 0.000 0.004 0.000 0.004
#> SRR1818613     1  0.7105    -0.3312 0.440 0.176 0.000 0.000 0.264 0.120
#> SRR1818614     1  0.7081    -0.3342 0.448 0.176 0.000 0.000 0.256 0.120
#> SRR1818611     5  0.3053     0.7843 0.172 0.012 0.000 0.000 0.812 0.004
#> SRR1818612     5  0.3073     0.7898 0.164 0.016 0.000 0.000 0.816 0.004
#> SRR1818605     5  0.5918     0.6368 0.176 0.024 0.052 0.000 0.648 0.100
#> SRR1818606     5  0.5757     0.6545 0.176 0.020 0.052 0.000 0.660 0.092

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0